xref: /freebsd/sys/ufs/ffs/ffs_softdep.c (revision 55bce0c1203e70d8b62a3dedc9235ab39660c6f4)
1 /*-
2  * Copyright 1998, 2000 Marshall Kirk McKusick.
3  * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org>
4  * All rights reserved.
5  *
6  * The soft updates code is derived from the appendix of a University
7  * of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
8  * "Soft Updates: A Solution to the Metadata Update Problem in File
9  * Systems", CSE-TR-254-95, August 1995).
10  *
11  * Further information about soft updates can be obtained from:
12  *
13  *	Marshall Kirk McKusick		http://www.mckusick.com/softdep/
14  *	1614 Oxford Street		mckusick@mckusick.com
15  *	Berkeley, CA 94709-1608		+1-510-843-9542
16  *	USA
17  *
18  * Redistribution and use in source and binary forms, with or without
19  * modification, are permitted provided that the following conditions
20  * are met:
21  *
22  * 1. Redistributions of source code must retain the above copyright
23  *    notice, this list of conditions and the following disclaimer.
24  * 2. Redistributions in binary form must reproduce the above copyright
25  *    notice, this list of conditions and the following disclaimer in the
26  *    documentation and/or other materials provided with the distribution.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
29  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
31  * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
32  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
33  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
34  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
35  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37  * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38  *
39  *	from: @(#)ffs_softdep.c	9.59 (McKusick) 6/21/00
40  */
41 
42 #include <sys/cdefs.h>
43 __FBSDID("$FreeBSD$");
44 
45 #include "opt_ffs.h"
46 #include "opt_quota.h"
47 #include "opt_ddb.h"
48 
49 /*
50  * For now we want the safety net that the DEBUG flag provides.
51  */
52 #ifndef DEBUG
53 #define DEBUG
54 #endif
55 
56 #include <sys/param.h>
57 #include <sys/kernel.h>
58 #include <sys/systm.h>
59 #include <sys/bio.h>
60 #include <sys/buf.h>
61 #include <sys/kdb.h>
62 #include <sys/kthread.h>
63 #include <sys/ktr.h>
64 #include <sys/limits.h>
65 #include <sys/lock.h>
66 #include <sys/malloc.h>
67 #include <sys/mount.h>
68 #include <sys/mutex.h>
69 #include <sys/namei.h>
70 #include <sys/priv.h>
71 #include <sys/proc.h>
72 #include <sys/rwlock.h>
73 #include <sys/stat.h>
74 #include <sys/sysctl.h>
75 #include <sys/syslog.h>
76 #include <sys/vnode.h>
77 #include <sys/conf.h>
78 
79 #include <ufs/ufs/dir.h>
80 #include <ufs/ufs/extattr.h>
81 #include <ufs/ufs/quota.h>
82 #include <ufs/ufs/inode.h>
83 #include <ufs/ufs/ufsmount.h>
84 #include <ufs/ffs/fs.h>
85 #include <ufs/ffs/softdep.h>
86 #include <ufs/ffs/ffs_extern.h>
87 #include <ufs/ufs/ufs_extern.h>
88 
89 #include <vm/vm.h>
90 #include <vm/vm_extern.h>
91 #include <vm/vm_object.h>
92 
93 #include <geom/geom.h>
94 
95 #include <ddb/ddb.h>
96 
97 #define	KTR_SUJ	0	/* Define to KTR_SPARE. */
98 
99 #ifndef SOFTUPDATES
100 
101 int
102 softdep_flushfiles(oldmnt, flags, td)
103 	struct mount *oldmnt;
104 	int flags;
105 	struct thread *td;
106 {
107 
108 	panic("softdep_flushfiles called");
109 }
110 
111 int
112 softdep_mount(devvp, mp, fs, cred)
113 	struct vnode *devvp;
114 	struct mount *mp;
115 	struct fs *fs;
116 	struct ucred *cred;
117 {
118 
119 	return (0);
120 }
121 
122 void
123 softdep_initialize()
124 {
125 
126 	return;
127 }
128 
129 void
130 softdep_uninitialize()
131 {
132 
133 	return;
134 }
135 
136 void
137 softdep_unmount(mp)
138 	struct mount *mp;
139 {
140 
141 }
142 
143 void
144 softdep_setup_sbupdate(ump, fs, bp)
145 	struct ufsmount *ump;
146 	struct fs *fs;
147 	struct buf *bp;
148 {
149 }
150 
151 void
152 softdep_setup_inomapdep(bp, ip, newinum, mode)
153 	struct buf *bp;
154 	struct inode *ip;
155 	ino_t newinum;
156 	int mode;
157 {
158 
159 	panic("softdep_setup_inomapdep called");
160 }
161 
162 void
163 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
164 	struct buf *bp;
165 	struct mount *mp;
166 	ufs2_daddr_t newblkno;
167 	int frags;
168 	int oldfrags;
169 {
170 
171 	panic("softdep_setup_blkmapdep called");
172 }
173 
174 void
175 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
176 	struct inode *ip;
177 	ufs_lbn_t lbn;
178 	ufs2_daddr_t newblkno;
179 	ufs2_daddr_t oldblkno;
180 	long newsize;
181 	long oldsize;
182 	struct buf *bp;
183 {
184 
185 	panic("softdep_setup_allocdirect called");
186 }
187 
188 void
189 softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
190 	struct inode *ip;
191 	ufs_lbn_t lbn;
192 	ufs2_daddr_t newblkno;
193 	ufs2_daddr_t oldblkno;
194 	long newsize;
195 	long oldsize;
196 	struct buf *bp;
197 {
198 
199 	panic("softdep_setup_allocext called");
200 }
201 
202 void
203 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
204 	struct inode *ip;
205 	ufs_lbn_t lbn;
206 	struct buf *bp;
207 	int ptrno;
208 	ufs2_daddr_t newblkno;
209 	ufs2_daddr_t oldblkno;
210 	struct buf *nbp;
211 {
212 
213 	panic("softdep_setup_allocindir_page called");
214 }
215 
216 void
217 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
218 	struct buf *nbp;
219 	struct inode *ip;
220 	struct buf *bp;
221 	int ptrno;
222 	ufs2_daddr_t newblkno;
223 {
224 
225 	panic("softdep_setup_allocindir_meta called");
226 }
227 
228 void
229 softdep_journal_freeblocks(ip, cred, length, flags)
230 	struct inode *ip;
231 	struct ucred *cred;
232 	off_t length;
233 	int flags;
234 {
235 
236 	panic("softdep_journal_freeblocks called");
237 }
238 
239 void
240 softdep_journal_fsync(ip)
241 	struct inode *ip;
242 {
243 
244 	panic("softdep_journal_fsync called");
245 }
246 
247 void
248 softdep_setup_freeblocks(ip, length, flags)
249 	struct inode *ip;
250 	off_t length;
251 	int flags;
252 {
253 
254 	panic("softdep_setup_freeblocks called");
255 }
256 
257 void
258 softdep_freefile(pvp, ino, mode)
259 		struct vnode *pvp;
260 		ino_t ino;
261 		int mode;
262 {
263 
264 	panic("softdep_freefile called");
265 }
266 
267 int
268 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
269 	struct buf *bp;
270 	struct inode *dp;
271 	off_t diroffset;
272 	ino_t newinum;
273 	struct buf *newdirbp;
274 	int isnewblk;
275 {
276 
277 	panic("softdep_setup_directory_add called");
278 }
279 
280 void
281 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
282 	struct buf *bp;
283 	struct inode *dp;
284 	caddr_t base;
285 	caddr_t oldloc;
286 	caddr_t newloc;
287 	int entrysize;
288 {
289 
290 	panic("softdep_change_directoryentry_offset called");
291 }
292 
293 void
294 softdep_setup_remove(bp, dp, ip, isrmdir)
295 	struct buf *bp;
296 	struct inode *dp;
297 	struct inode *ip;
298 	int isrmdir;
299 {
300 
301 	panic("softdep_setup_remove called");
302 }
303 
304 void
305 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
306 	struct buf *bp;
307 	struct inode *dp;
308 	struct inode *ip;
309 	ino_t newinum;
310 	int isrmdir;
311 {
312 
313 	panic("softdep_setup_directory_change called");
314 }
315 
316 void
317 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
318 	struct mount *mp;
319 	struct buf *bp;
320 	ufs2_daddr_t blkno;
321 	int frags;
322 	struct workhead *wkhd;
323 {
324 
325 	panic("%s called", __FUNCTION__);
326 }
327 
328 void
329 softdep_setup_inofree(mp, bp, ino, wkhd)
330 	struct mount *mp;
331 	struct buf *bp;
332 	ino_t ino;
333 	struct workhead *wkhd;
334 {
335 
336 	panic("%s called", __FUNCTION__);
337 }
338 
339 void
340 softdep_setup_unlink(dp, ip)
341 	struct inode *dp;
342 	struct inode *ip;
343 {
344 
345 	panic("%s called", __FUNCTION__);
346 }
347 
348 void
349 softdep_setup_link(dp, ip)
350 	struct inode *dp;
351 	struct inode *ip;
352 {
353 
354 	panic("%s called", __FUNCTION__);
355 }
356 
357 void
358 softdep_revert_link(dp, ip)
359 	struct inode *dp;
360 	struct inode *ip;
361 {
362 
363 	panic("%s called", __FUNCTION__);
364 }
365 
366 void
367 softdep_setup_rmdir(dp, ip)
368 	struct inode *dp;
369 	struct inode *ip;
370 {
371 
372 	panic("%s called", __FUNCTION__);
373 }
374 
375 void
376 softdep_revert_rmdir(dp, ip)
377 	struct inode *dp;
378 	struct inode *ip;
379 {
380 
381 	panic("%s called", __FUNCTION__);
382 }
383 
384 void
385 softdep_setup_create(dp, ip)
386 	struct inode *dp;
387 	struct inode *ip;
388 {
389 
390 	panic("%s called", __FUNCTION__);
391 }
392 
393 void
394 softdep_revert_create(dp, ip)
395 	struct inode *dp;
396 	struct inode *ip;
397 {
398 
399 	panic("%s called", __FUNCTION__);
400 }
401 
402 void
403 softdep_setup_mkdir(dp, ip)
404 	struct inode *dp;
405 	struct inode *ip;
406 {
407 
408 	panic("%s called", __FUNCTION__);
409 }
410 
411 void
412 softdep_revert_mkdir(dp, ip)
413 	struct inode *dp;
414 	struct inode *ip;
415 {
416 
417 	panic("%s called", __FUNCTION__);
418 }
419 
420 void
421 softdep_setup_dotdot_link(dp, ip)
422 	struct inode *dp;
423 	struct inode *ip;
424 {
425 
426 	panic("%s called", __FUNCTION__);
427 }
428 
429 int
430 softdep_prealloc(vp, waitok)
431 	struct vnode *vp;
432 	int waitok;
433 {
434 
435 	panic("%s called", __FUNCTION__);
436 
437 	return (0);
438 }
439 
440 int
441 softdep_journal_lookup(mp, vpp)
442 	struct mount *mp;
443 	struct vnode **vpp;
444 {
445 
446 	return (ENOENT);
447 }
448 
449 void
450 softdep_change_linkcnt(ip)
451 	struct inode *ip;
452 {
453 
454 	panic("softdep_change_linkcnt called");
455 }
456 
457 void
458 softdep_load_inodeblock(ip)
459 	struct inode *ip;
460 {
461 
462 	panic("softdep_load_inodeblock called");
463 }
464 
465 void
466 softdep_update_inodeblock(ip, bp, waitfor)
467 	struct inode *ip;
468 	struct buf *bp;
469 	int waitfor;
470 {
471 
472 	panic("softdep_update_inodeblock called");
473 }
474 
475 int
476 softdep_fsync(vp)
477 	struct vnode *vp;	/* the "in_core" copy of the inode */
478 {
479 
480 	return (0);
481 }
482 
483 void
484 softdep_fsync_mountdev(vp)
485 	struct vnode *vp;
486 {
487 
488 	return;
489 }
490 
491 int
492 softdep_flushworklist(oldmnt, countp, td)
493 	struct mount *oldmnt;
494 	int *countp;
495 	struct thread *td;
496 {
497 
498 	*countp = 0;
499 	return (0);
500 }
501 
502 int
503 softdep_sync_metadata(struct vnode *vp)
504 {
505 
506 	return (0);
507 }
508 
509 int
510 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
511 {
512 
513 	return (0);
514 }
515 
516 int
517 softdep_slowdown(vp)
518 	struct vnode *vp;
519 {
520 
521 	panic("softdep_slowdown called");
522 }
523 
524 void
525 softdep_releasefile(ip)
526 	struct inode *ip;	/* inode with the zero effective link count */
527 {
528 
529 	panic("softdep_releasefile called");
530 }
531 
532 int
533 softdep_request_cleanup(fs, vp, cred, resource)
534 	struct fs *fs;
535 	struct vnode *vp;
536 	struct ucred *cred;
537 	int resource;
538 {
539 
540 	return (0);
541 }
542 
543 int
544 softdep_check_suspend(struct mount *mp,
545 		      struct vnode *devvp,
546 		      int softdep_deps,
547 		      int softdep_accdeps,
548 		      int secondary_writes,
549 		      int secondary_accwrites)
550 {
551 	struct bufobj *bo;
552 	int error;
553 
554 	(void) softdep_deps,
555 	(void) softdep_accdeps;
556 
557 	bo = &devvp->v_bufobj;
558 	ASSERT_BO_WLOCKED(bo);
559 
560 	MNT_ILOCK(mp);
561 	while (mp->mnt_secondary_writes != 0) {
562 		BO_UNLOCK(bo);
563 		msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
564 		    (PUSER - 1) | PDROP, "secwr", 0);
565 		BO_LOCK(bo);
566 		MNT_ILOCK(mp);
567 	}
568 
569 	/*
570 	 * Reasons for needing more work before suspend:
571 	 * - Dirty buffers on devvp.
572 	 * - Secondary writes occurred after start of vnode sync loop
573 	 */
574 	error = 0;
575 	if (bo->bo_numoutput > 0 ||
576 	    bo->bo_dirty.bv_cnt > 0 ||
577 	    secondary_writes != 0 ||
578 	    mp->mnt_secondary_writes != 0 ||
579 	    secondary_accwrites != mp->mnt_secondary_accwrites)
580 		error = EAGAIN;
581 	BO_UNLOCK(bo);
582 	return (error);
583 }
584 
585 void
586 softdep_get_depcounts(struct mount *mp,
587 		      int *softdepactivep,
588 		      int *softdepactiveaccp)
589 {
590 	(void) mp;
591 	*softdepactivep = 0;
592 	*softdepactiveaccp = 0;
593 }
594 
595 void
596 softdep_buf_append(bp, wkhd)
597 	struct buf *bp;
598 	struct workhead *wkhd;
599 {
600 
601 	panic("softdep_buf_appendwork called");
602 }
603 
604 void
605 softdep_inode_append(ip, cred, wkhd)
606 	struct inode *ip;
607 	struct ucred *cred;
608 	struct workhead *wkhd;
609 {
610 
611 	panic("softdep_inode_appendwork called");
612 }
613 
614 void
615 softdep_freework(wkhd)
616 	struct workhead *wkhd;
617 {
618 
619 	panic("softdep_freework called");
620 }
621 
622 #else
623 
624 FEATURE(softupdates, "FFS soft-updates support");
625 
626 /*
627  * These definitions need to be adapted to the system to which
628  * this file is being ported.
629  */
630 
631 #define M_SOFTDEP_FLAGS	(M_WAITOK)
632 
633 #define	D_PAGEDEP	0
634 #define	D_INODEDEP	1
635 #define	D_BMSAFEMAP	2
636 #define	D_NEWBLK	3
637 #define	D_ALLOCDIRECT	4
638 #define	D_INDIRDEP	5
639 #define	D_ALLOCINDIR	6
640 #define	D_FREEFRAG	7
641 #define	D_FREEBLKS	8
642 #define	D_FREEFILE	9
643 #define	D_DIRADD	10
644 #define	D_MKDIR		11
645 #define	D_DIRREM	12
646 #define	D_NEWDIRBLK	13
647 #define	D_FREEWORK	14
648 #define	D_FREEDEP	15
649 #define	D_JADDREF	16
650 #define	D_JREMREF	17
651 #define	D_JMVREF	18
652 #define	D_JNEWBLK	19
653 #define	D_JFREEBLK	20
654 #define	D_JFREEFRAG	21
655 #define	D_JSEG		22
656 #define	D_JSEGDEP	23
657 #define	D_SBDEP		24
658 #define	D_JTRUNC	25
659 #define	D_JFSYNC	26
660 #define	D_SENTINEL	27
661 #define	D_LAST		D_SENTINEL
662 
663 unsigned long dep_current[D_LAST + 1];
664 unsigned long dep_total[D_LAST + 1];
665 unsigned long dep_write[D_LAST + 1];
666 
667 
668 static SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW, 0,
669     "soft updates stats");
670 static SYSCTL_NODE(_debug_softdep, OID_AUTO, total, CTLFLAG_RW, 0,
671     "total dependencies allocated");
672 static SYSCTL_NODE(_debug_softdep, OID_AUTO, current, CTLFLAG_RW, 0,
673     "current dependencies allocated");
674 static SYSCTL_NODE(_debug_softdep, OID_AUTO, write, CTLFLAG_RW, 0,
675     "current dependencies written");
676 
677 #define	SOFTDEP_TYPE(type, str, long)					\
678     static MALLOC_DEFINE(M_ ## type, #str, long);			\
679     SYSCTL_ULONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD,	\
680 	&dep_total[D_ ## type], 0, "");					\
681     SYSCTL_ULONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD, 	\
682 	&dep_current[D_ ## type], 0, "");				\
683     SYSCTL_ULONG(_debug_softdep_write, OID_AUTO, str, CTLFLAG_RD, 	\
684 	&dep_write[D_ ## type], 0, "");
685 
686 SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies");
687 SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies");
688 SOFTDEP_TYPE(BMSAFEMAP, bmsafemap,
689     "Block or frag allocated from cyl group map");
690 SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency");
691 SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode");
692 SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies");
693 SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block");
694 SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode");
695 SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode");
696 SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated");
697 SOFTDEP_TYPE(DIRADD, diradd, "New directory entry");
698 SOFTDEP_TYPE(MKDIR, mkdir, "New directory");
699 SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted");
700 SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block");
701 SOFTDEP_TYPE(FREEWORK, freework, "free an inode block");
702 SOFTDEP_TYPE(FREEDEP, freedep, "track a block free");
703 SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add");
704 SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove");
705 SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move");
706 SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block");
707 SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block");
708 SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag");
709 SOFTDEP_TYPE(JSEG, jseg, "Journal segment");
710 SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete");
711 SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency");
712 SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation");
713 SOFTDEP_TYPE(JFSYNC, jfsync, "Journal fsync complete");
714 
715 static MALLOC_DEFINE(M_SENTINEL, "sentinel", "Worklist sentinel");
716 
717 static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes");
718 static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations");
719 
720 /*
721  * translate from workitem type to memory type
722  * MUST match the defines above, such that memtype[D_XXX] == M_XXX
723  */
724 static struct malloc_type *memtype[] = {
725 	M_PAGEDEP,
726 	M_INODEDEP,
727 	M_BMSAFEMAP,
728 	M_NEWBLK,
729 	M_ALLOCDIRECT,
730 	M_INDIRDEP,
731 	M_ALLOCINDIR,
732 	M_FREEFRAG,
733 	M_FREEBLKS,
734 	M_FREEFILE,
735 	M_DIRADD,
736 	M_MKDIR,
737 	M_DIRREM,
738 	M_NEWDIRBLK,
739 	M_FREEWORK,
740 	M_FREEDEP,
741 	M_JADDREF,
742 	M_JREMREF,
743 	M_JMVREF,
744 	M_JNEWBLK,
745 	M_JFREEBLK,
746 	M_JFREEFRAG,
747 	M_JSEG,
748 	M_JSEGDEP,
749 	M_SBDEP,
750 	M_JTRUNC,
751 	M_JFSYNC,
752 	M_SENTINEL
753 };
754 
755 static LIST_HEAD(mkdirlist, mkdir) mkdirlisthd;
756 
757 #define DtoM(type) (memtype[type])
758 
759 /*
760  * Names of malloc types.
761  */
762 #define TYPENAME(type)  \
763 	((unsigned)(type) <= D_LAST ? memtype[type]->ks_shortdesc : "???")
764 /*
765  * End system adaptation definitions.
766  */
767 
768 #define	DOTDOT_OFFSET	offsetof(struct dirtemplate, dotdot_ino)
769 #define	DOT_OFFSET	offsetof(struct dirtemplate, dot_ino)
770 
771 /*
772  * Forward declarations.
773  */
774 struct inodedep_hashhead;
775 struct newblk_hashhead;
776 struct pagedep_hashhead;
777 struct bmsafemap_hashhead;
778 
779 /*
780  * Private journaling structures.
781  */
782 struct jblocks {
783 	struct jseglst	jb_segs;	/* TAILQ of current segments. */
784 	struct jseg	*jb_writeseg;	/* Next write to complete. */
785 	struct jseg	*jb_oldestseg;	/* Oldest segment with valid entries. */
786 	struct jextent	*jb_extent;	/* Extent array. */
787 	uint64_t	jb_nextseq;	/* Next sequence number. */
788 	uint64_t	jb_oldestwrseq;	/* Oldest written sequence number. */
789 	uint8_t		jb_needseg;	/* Need a forced segment. */
790 	uint8_t		jb_suspended;	/* Did journal suspend writes? */
791 	int		jb_avail;	/* Available extents. */
792 	int		jb_used;	/* Last used extent. */
793 	int		jb_head;	/* Allocator head. */
794 	int		jb_off;		/* Allocator extent offset. */
795 	int		jb_blocks;	/* Total disk blocks covered. */
796 	int		jb_free;	/* Total disk blocks free. */
797 	int		jb_min;		/* Minimum free space. */
798 	int		jb_low;		/* Low on space. */
799 	int		jb_age;		/* Insertion time of oldest rec. */
800 };
801 
802 struct jextent {
803 	ufs2_daddr_t	je_daddr;	/* Disk block address. */
804 	int		je_blocks;	/* Disk block count. */
805 };
806 
807 /*
808  * Internal function prototypes.
809  */
810 static	void softdep_error(char *, int);
811 static	void drain_output(struct vnode *);
812 static	struct buf *getdirtybuf(struct buf *, struct rwlock *, int);
813 static	void clear_remove(void);
814 static	void clear_inodedeps(void);
815 static	void unlinked_inodedep(struct mount *, struct inodedep *);
816 static	void clear_unlinked_inodedep(struct inodedep *);
817 static	struct inodedep *first_unlinked_inodedep(struct ufsmount *);
818 static	int flush_pagedep_deps(struct vnode *, struct mount *,
819 	    struct diraddhd *);
820 static	int free_pagedep(struct pagedep *);
821 static	int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t);
822 static	int flush_inodedep_deps(struct vnode *, struct mount *, ino_t);
823 static	int flush_deplist(struct allocdirectlst *, int, int *);
824 static	int sync_cgs(struct mount *, int);
825 static	int handle_written_filepage(struct pagedep *, struct buf *);
826 static	int handle_written_sbdep(struct sbdep *, struct buf *);
827 static	void initiate_write_sbdep(struct sbdep *);
828 static  void diradd_inode_written(struct diradd *, struct inodedep *);
829 static	int handle_written_indirdep(struct indirdep *, struct buf *,
830 	    struct buf**);
831 static	int handle_written_inodeblock(struct inodedep *, struct buf *);
832 static	int jnewblk_rollforward(struct jnewblk *, struct fs *, struct cg *,
833 	    uint8_t *);
834 static	int handle_written_bmsafemap(struct bmsafemap *, struct buf *);
835 static	void handle_written_jaddref(struct jaddref *);
836 static	void handle_written_jremref(struct jremref *);
837 static	void handle_written_jseg(struct jseg *, struct buf *);
838 static	void handle_written_jnewblk(struct jnewblk *);
839 static	void handle_written_jblkdep(struct jblkdep *);
840 static	void handle_written_jfreefrag(struct jfreefrag *);
841 static	void complete_jseg(struct jseg *);
842 static	void complete_jsegs(struct jseg *);
843 static	void jseg_write(struct ufsmount *ump, struct jseg *, uint8_t *);
844 static	void jaddref_write(struct jaddref *, struct jseg *, uint8_t *);
845 static	void jremref_write(struct jremref *, struct jseg *, uint8_t *);
846 static	void jmvref_write(struct jmvref *, struct jseg *, uint8_t *);
847 static	void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *);
848 static	void jfsync_write(struct jfsync *, struct jseg *, uint8_t *data);
849 static	void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *);
850 static	void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *);
851 static	void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *);
852 static	inline void inoref_write(struct inoref *, struct jseg *,
853 	    struct jrefrec *);
854 static	void handle_allocdirect_partdone(struct allocdirect *,
855 	    struct workhead *);
856 static	struct jnewblk *cancel_newblk(struct newblk *, struct worklist *,
857 	    struct workhead *);
858 static	void indirdep_complete(struct indirdep *);
859 static	int indirblk_lookup(struct mount *, ufs2_daddr_t);
860 static	void indirblk_insert(struct freework *);
861 static	void indirblk_remove(struct freework *);
862 static	void handle_allocindir_partdone(struct allocindir *);
863 static	void initiate_write_filepage(struct pagedep *, struct buf *);
864 static	void initiate_write_indirdep(struct indirdep*, struct buf *);
865 static	void handle_written_mkdir(struct mkdir *, int);
866 static	int jnewblk_rollback(struct jnewblk *, struct fs *, struct cg *,
867 	    uint8_t *);
868 static	void initiate_write_bmsafemap(struct bmsafemap *, struct buf *);
869 static	void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *);
870 static	void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *);
871 static	void handle_workitem_freefile(struct freefile *);
872 static	int handle_workitem_remove(struct dirrem *, int);
873 static	struct dirrem *newdirrem(struct buf *, struct inode *,
874 	    struct inode *, int, struct dirrem **);
875 static	struct indirdep *indirdep_lookup(struct mount *, struct inode *,
876 	    struct buf *);
877 static	void cancel_indirdep(struct indirdep *, struct buf *,
878 	    struct freeblks *);
879 static	void free_indirdep(struct indirdep *);
880 static	void free_diradd(struct diradd *, struct workhead *);
881 static	void merge_diradd(struct inodedep *, struct diradd *);
882 static	void complete_diradd(struct diradd *);
883 static	struct diradd *diradd_lookup(struct pagedep *, int);
884 static	struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *,
885 	    struct jremref *);
886 static	struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *,
887 	    struct jremref *);
888 static	void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *,
889 	    struct jremref *, struct jremref *);
890 static	void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *,
891 	    struct jremref *);
892 static	void cancel_allocindir(struct allocindir *, struct buf *bp,
893 	    struct freeblks *, int);
894 static	int setup_trunc_indir(struct freeblks *, struct inode *,
895 	    ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t);
896 static	void complete_trunc_indir(struct freework *);
897 static	void trunc_indirdep(struct indirdep *, struct freeblks *, struct buf *,
898 	    int);
899 static	void complete_mkdir(struct mkdir *);
900 static	void free_newdirblk(struct newdirblk *);
901 static	void free_jremref(struct jremref *);
902 static	void free_jaddref(struct jaddref *);
903 static	void free_jsegdep(struct jsegdep *);
904 static	void free_jsegs(struct jblocks *);
905 static	void rele_jseg(struct jseg *);
906 static	void free_jseg(struct jseg *, struct jblocks *);
907 static	void free_jnewblk(struct jnewblk *);
908 static	void free_jblkdep(struct jblkdep *);
909 static	void free_jfreefrag(struct jfreefrag *);
910 static	void free_freedep(struct freedep *);
911 static	void journal_jremref(struct dirrem *, struct jremref *,
912 	    struct inodedep *);
913 static	void cancel_jnewblk(struct jnewblk *, struct workhead *);
914 static	int cancel_jaddref(struct jaddref *, struct inodedep *,
915 	    struct workhead *);
916 static	void cancel_jfreefrag(struct jfreefrag *);
917 static	inline void setup_freedirect(struct freeblks *, struct inode *,
918 	    int, int);
919 static	inline void setup_freeext(struct freeblks *, struct inode *, int, int);
920 static	inline void setup_freeindir(struct freeblks *, struct inode *, int,
921 	    ufs_lbn_t, int);
922 static	inline struct freeblks *newfreeblks(struct mount *, struct inode *);
923 static	void freeblks_free(struct ufsmount *, struct freeblks *, int);
924 static	void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t);
925 ufs2_daddr_t blkcount(struct fs *, ufs2_daddr_t, off_t);
926 static	int trunc_check_buf(struct buf *, int *, ufs_lbn_t, int, int);
927 static	void trunc_dependencies(struct inode *, struct freeblks *, ufs_lbn_t,
928 	    int, int);
929 static	void trunc_pages(struct inode *, off_t, ufs2_daddr_t, int);
930 static 	int cancel_pagedep(struct pagedep *, struct freeblks *, int);
931 static	int deallocate_dependencies(struct buf *, struct freeblks *, int);
932 static	void newblk_freefrag(struct newblk*);
933 static	void free_newblk(struct newblk *);
934 static	void cancel_allocdirect(struct allocdirectlst *,
935 	    struct allocdirect *, struct freeblks *);
936 static	int check_inode_unwritten(struct inodedep *);
937 static	int free_inodedep(struct inodedep *);
938 static	void freework_freeblock(struct freework *);
939 static	void freework_enqueue(struct freework *);
940 static	int handle_workitem_freeblocks(struct freeblks *, int);
941 static	int handle_complete_freeblocks(struct freeblks *, int);
942 static	void handle_workitem_indirblk(struct freework *);
943 static	void handle_written_freework(struct freework *);
944 static	void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *);
945 static	struct worklist *jnewblk_merge(struct worklist *, struct worklist *,
946 	    struct workhead *);
947 static	struct freefrag *setup_allocindir_phase2(struct buf *, struct inode *,
948 	    struct inodedep *, struct allocindir *, ufs_lbn_t);
949 static	struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t,
950 	    ufs2_daddr_t, ufs_lbn_t);
951 static	void handle_workitem_freefrag(struct freefrag *);
952 static	struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long,
953 	    ufs_lbn_t);
954 static	void allocdirect_merge(struct allocdirectlst *,
955 	    struct allocdirect *, struct allocdirect *);
956 static	struct freefrag *allocindir_merge(struct allocindir *,
957 	    struct allocindir *);
958 static	int bmsafemap_find(struct bmsafemap_hashhead *, struct mount *, int,
959 	    struct bmsafemap **);
960 static	struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *,
961 	    int cg, struct bmsafemap *);
962 static	int newblk_find(struct newblk_hashhead *, struct mount *, ufs2_daddr_t,
963 	    int, struct newblk **);
964 static	int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **);
965 static	int inodedep_find(struct inodedep_hashhead *, struct fs *, ino_t,
966 	    struct inodedep **);
967 static	int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **);
968 static	int pagedep_lookup(struct mount *, struct buf *bp, ino_t, ufs_lbn_t,
969 	    int, struct pagedep **);
970 static	int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t,
971 	    struct mount *mp, int, struct pagedep **);
972 static	void pause_timer(void *);
973 static	int request_cleanup(struct mount *, int);
974 static	int process_worklist_item(struct mount *, int, int);
975 static	void process_removes(struct vnode *);
976 static	void process_truncates(struct vnode *);
977 static	void jwork_move(struct workhead *, struct workhead *);
978 static	void jwork_insert(struct workhead *, struct jsegdep *);
979 static	void add_to_worklist(struct worklist *, int);
980 static	void wake_worklist(struct worklist *);
981 static	void wait_worklist(struct worklist *, char *);
982 static	void remove_from_worklist(struct worklist *);
983 static	void softdep_flush(void);
984 static	void softdep_flushjournal(struct mount *);
985 static	int softdep_speedup(void);
986 static	void worklist_speedup(void);
987 static	int journal_mount(struct mount *, struct fs *, struct ucred *);
988 static	void journal_unmount(struct mount *);
989 static	int journal_space(struct ufsmount *, int);
990 static	void journal_suspend(struct ufsmount *);
991 static	int journal_unsuspend(struct ufsmount *ump);
992 static	void softdep_prelink(struct vnode *, struct vnode *);
993 static	void add_to_journal(struct worklist *);
994 static	void remove_from_journal(struct worklist *);
995 static	void softdep_process_journal(struct mount *, struct worklist *, int);
996 static	struct jremref *newjremref(struct dirrem *, struct inode *,
997 	    struct inode *ip, off_t, nlink_t);
998 static	struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t,
999 	    uint16_t);
1000 static	inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t,
1001 	    uint16_t);
1002 static	inline struct jsegdep *inoref_jseg(struct inoref *);
1003 static	struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t);
1004 static	struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t,
1005 	    ufs2_daddr_t, int);
1006 static	struct jtrunc *newjtrunc(struct freeblks *, off_t, int);
1007 static	void move_newblock_dep(struct jaddref *, struct inodedep *);
1008 static	void cancel_jfreeblk(struct freeblks *, ufs2_daddr_t);
1009 static	struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *,
1010 	    ufs2_daddr_t, long, ufs_lbn_t);
1011 static	struct freework *newfreework(struct ufsmount *, struct freeblks *,
1012 	    struct freework *, ufs_lbn_t, ufs2_daddr_t, int, int, int);
1013 static	int jwait(struct worklist *, int);
1014 static	struct inodedep *inodedep_lookup_ip(struct inode *);
1015 static	int bmsafemap_backgroundwrite(struct bmsafemap *, struct buf *);
1016 static	struct freefile *handle_bufwait(struct inodedep *, struct workhead *);
1017 static	void handle_jwork(struct workhead *);
1018 static	struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *,
1019 	    struct mkdir **);
1020 static	struct jblocks *jblocks_create(void);
1021 static	ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *);
1022 static	void jblocks_free(struct jblocks *, struct mount *, int);
1023 static	void jblocks_destroy(struct jblocks *);
1024 static	void jblocks_add(struct jblocks *, ufs2_daddr_t, int);
1025 
1026 /*
1027  * Exported softdep operations.
1028  */
1029 static	void softdep_disk_io_initiation(struct buf *);
1030 static	void softdep_disk_write_complete(struct buf *);
1031 static	void softdep_deallocate_dependencies(struct buf *);
1032 static	int softdep_count_dependencies(struct buf *bp, int);
1033 
1034 static struct rwlock lk;
1035 RW_SYSINIT(softdep_lock, &lk, "Softdep Lock");
1036 
1037 #define TRY_ACQUIRE_LOCK(lk)		rw_try_wlock(lk)
1038 #define ACQUIRE_LOCK(lk)		rw_wlock(lk)
1039 #define FREE_LOCK(lk)			rw_wunlock(lk)
1040 
1041 #define	BUF_AREC(bp)			lockallowrecurse(&(bp)->b_lock)
1042 #define	BUF_NOREC(bp)			lockdisablerecurse(&(bp)->b_lock)
1043 
1044 /*
1045  * Worklist queue management.
1046  * These routines require that the lock be held.
1047  */
1048 #ifndef /* NOT */ DEBUG
1049 #define WORKLIST_INSERT(head, item) do {	\
1050 	(item)->wk_state |= ONWORKLIST;		\
1051 	LIST_INSERT_HEAD(head, item, wk_list);	\
1052 } while (0)
1053 #define WORKLIST_REMOVE(item) do {		\
1054 	(item)->wk_state &= ~ONWORKLIST;	\
1055 	LIST_REMOVE(item, wk_list);		\
1056 } while (0)
1057 #define WORKLIST_INSERT_UNLOCKED	WORKLIST_INSERT
1058 #define WORKLIST_REMOVE_UNLOCKED	WORKLIST_REMOVE
1059 
1060 #else /* DEBUG */
1061 static	void worklist_insert(struct workhead *, struct worklist *, int);
1062 static	void worklist_remove(struct worklist *, int);
1063 
1064 #define WORKLIST_INSERT(head, item) worklist_insert(head, item, 1)
1065 #define WORKLIST_INSERT_UNLOCKED(head, item) worklist_insert(head, item, 0)
1066 #define WORKLIST_REMOVE(item) worklist_remove(item, 1)
1067 #define WORKLIST_REMOVE_UNLOCKED(item) worklist_remove(item, 0)
1068 
1069 static void
1070 worklist_insert(head, item, locked)
1071 	struct workhead *head;
1072 	struct worklist *item;
1073 	int locked;
1074 {
1075 
1076 	if (locked)
1077 		rw_assert(&lk, RA_WLOCKED);
1078 	if (item->wk_state & ONWORKLIST)
1079 		panic("worklist_insert: %p %s(0x%X) already on list",
1080 		    item, TYPENAME(item->wk_type), item->wk_state);
1081 	item->wk_state |= ONWORKLIST;
1082 	LIST_INSERT_HEAD(head, item, wk_list);
1083 }
1084 
1085 static void
1086 worklist_remove(item, locked)
1087 	struct worklist *item;
1088 	int locked;
1089 {
1090 
1091 	if (locked)
1092 		rw_assert(&lk, RA_WLOCKED);
1093 	if ((item->wk_state & ONWORKLIST) == 0)
1094 		panic("worklist_remove: %p %s(0x%X) not on list",
1095 		    item, TYPENAME(item->wk_type), item->wk_state);
1096 	item->wk_state &= ~ONWORKLIST;
1097 	LIST_REMOVE(item, wk_list);
1098 }
1099 #endif /* DEBUG */
1100 
1101 /*
1102  * Merge two jsegdeps keeping only the oldest one as newer references
1103  * can't be discarded until after older references.
1104  */
1105 static inline struct jsegdep *
1106 jsegdep_merge(struct jsegdep *one, struct jsegdep *two)
1107 {
1108 	struct jsegdep *swp;
1109 
1110 	if (two == NULL)
1111 		return (one);
1112 
1113 	if (one->jd_seg->js_seq > two->jd_seg->js_seq) {
1114 		swp = one;
1115 		one = two;
1116 		two = swp;
1117 	}
1118 	WORKLIST_REMOVE(&two->jd_list);
1119 	free_jsegdep(two);
1120 
1121 	return (one);
1122 }
1123 
1124 /*
1125  * If two freedeps are compatible free one to reduce list size.
1126  */
1127 static inline struct freedep *
1128 freedep_merge(struct freedep *one, struct freedep *two)
1129 {
1130 	if (two == NULL)
1131 		return (one);
1132 
1133 	if (one->fd_freework == two->fd_freework) {
1134 		WORKLIST_REMOVE(&two->fd_list);
1135 		free_freedep(two);
1136 	}
1137 	return (one);
1138 }
1139 
1140 /*
1141  * Move journal work from one list to another.  Duplicate freedeps and
1142  * jsegdeps are coalesced to keep the lists as small as possible.
1143  */
1144 static void
1145 jwork_move(dst, src)
1146 	struct workhead *dst;
1147 	struct workhead *src;
1148 {
1149 	struct freedep *freedep;
1150 	struct jsegdep *jsegdep;
1151 	struct worklist *wkn;
1152 	struct worklist *wk;
1153 
1154 	KASSERT(dst != src,
1155 	    ("jwork_move: dst == src"));
1156 	freedep = NULL;
1157 	jsegdep = NULL;
1158 	LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) {
1159 		if (wk->wk_type == D_JSEGDEP)
1160 			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1161 		if (wk->wk_type == D_FREEDEP)
1162 			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1163 	}
1164 
1165 	rw_assert(&lk, RA_WLOCKED);
1166 	while ((wk = LIST_FIRST(src)) != NULL) {
1167 		WORKLIST_REMOVE(wk);
1168 		WORKLIST_INSERT(dst, wk);
1169 		if (wk->wk_type == D_JSEGDEP) {
1170 			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1171 			continue;
1172 		}
1173 		if (wk->wk_type == D_FREEDEP)
1174 			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1175 	}
1176 }
1177 
1178 static void
1179 jwork_insert(dst, jsegdep)
1180 	struct workhead *dst;
1181 	struct jsegdep *jsegdep;
1182 {
1183 	struct jsegdep *jsegdepn;
1184 	struct worklist *wk;
1185 
1186 	LIST_FOREACH(wk, dst, wk_list)
1187 		if (wk->wk_type == D_JSEGDEP)
1188 			break;
1189 	if (wk == NULL) {
1190 		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1191 		return;
1192 	}
1193 	jsegdepn = WK_JSEGDEP(wk);
1194 	if (jsegdep->jd_seg->js_seq < jsegdepn->jd_seg->js_seq) {
1195 		WORKLIST_REMOVE(wk);
1196 		free_jsegdep(jsegdepn);
1197 		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1198 	} else
1199 		free_jsegdep(jsegdep);
1200 }
1201 
1202 /*
1203  * Routines for tracking and managing workitems.
1204  */
1205 static	void workitem_free(struct worklist *, int);
1206 static	void workitem_alloc(struct worklist *, int, struct mount *);
1207 
1208 #define	WORKITEM_FREE(item, type) workitem_free((struct worklist *)(item), (type))
1209 
1210 static void
1211 workitem_free(item, type)
1212 	struct worklist *item;
1213 	int type;
1214 {
1215 	struct ufsmount *ump;
1216 	rw_assert(&lk, RA_WLOCKED);
1217 
1218 #ifdef DEBUG
1219 	if (item->wk_state & ONWORKLIST)
1220 		panic("workitem_free: %s(0x%X) still on list",
1221 		    TYPENAME(item->wk_type), item->wk_state);
1222 	if (item->wk_type != type)
1223 		panic("workitem_free: type mismatch %s != %s",
1224 		    TYPENAME(item->wk_type), TYPENAME(type));
1225 #endif
1226 	if (item->wk_state & IOWAITING)
1227 		wakeup(item);
1228 	ump = VFSTOUFS(item->wk_mp);
1229 	if (--ump->softdep_deps == 0 && ump->softdep_req)
1230 		wakeup(&ump->softdep_deps);
1231 	dep_current[type]--;
1232 	free(item, DtoM(type));
1233 }
1234 
1235 static void
1236 workitem_alloc(item, type, mp)
1237 	struct worklist *item;
1238 	int type;
1239 	struct mount *mp;
1240 {
1241 	struct ufsmount *ump;
1242 
1243 	item->wk_type = type;
1244 	item->wk_mp = mp;
1245 	item->wk_state = 0;
1246 
1247 	ump = VFSTOUFS(mp);
1248 	ACQUIRE_LOCK(&lk);
1249 	dep_current[type]++;
1250 	dep_total[type]++;
1251 	ump->softdep_deps++;
1252 	ump->softdep_accdeps++;
1253 	FREE_LOCK(&lk);
1254 }
1255 
1256 /*
1257  * Workitem queue management
1258  */
1259 static int max_softdeps;	/* maximum number of structs before slowdown */
1260 static int maxindirdeps = 50;	/* max number of indirdeps before slowdown */
1261 static int tickdelay = 2;	/* number of ticks to pause during slowdown */
1262 static int proc_waiting;	/* tracks whether we have a timeout posted */
1263 static int *stat_countp;	/* statistic to count in proc_waiting timeout */
1264 static struct callout softdep_callout;
1265 static int req_pending;
1266 static int req_clear_inodedeps;	/* syncer process flush some inodedeps */
1267 static int req_clear_remove;	/* syncer process flush some freeblks */
1268 static int softdep_flushcache = 0; /* Should we do BIO_FLUSH? */
1269 
1270 /*
1271  * runtime statistics
1272  */
1273 static int stat_worklist_push;	/* number of worklist cleanups */
1274 static int stat_blk_limit_push;	/* number of times block limit neared */
1275 static int stat_ino_limit_push;	/* number of times inode limit neared */
1276 static int stat_blk_limit_hit;	/* number of times block slowdown imposed */
1277 static int stat_ino_limit_hit;	/* number of times inode slowdown imposed */
1278 static int stat_sync_limit_hit;	/* number of synchronous slowdowns imposed */
1279 static int stat_indir_blk_ptrs;	/* bufs redirtied as indir ptrs not written */
1280 static int stat_inode_bitmap;	/* bufs redirtied as inode bitmap not written */
1281 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
1282 static int stat_dir_entry;	/* bufs redirtied as dir entry cannot write */
1283 static int stat_jaddref;	/* bufs redirtied as ino bitmap can not write */
1284 static int stat_jnewblk;	/* bufs redirtied as blk bitmap can not write */
1285 static int stat_journal_min;	/* Times hit journal min threshold */
1286 static int stat_journal_low;	/* Times hit journal low threshold */
1287 static int stat_journal_wait;	/* Times blocked in jwait(). */
1288 static int stat_jwait_filepage;	/* Times blocked in jwait() for filepage. */
1289 static int stat_jwait_freeblks;	/* Times blocked in jwait() for freeblks. */
1290 static int stat_jwait_inode;	/* Times blocked in jwait() for inodes. */
1291 static int stat_jwait_newblk;	/* Times blocked in jwait() for newblks. */
1292 static int stat_cleanup_high_delay; /* Maximum cleanup delay (in ticks) */
1293 static int stat_cleanup_blkrequests; /* Number of block cleanup requests */
1294 static int stat_cleanup_inorequests; /* Number of inode cleanup requests */
1295 static int stat_cleanup_retries; /* Number of cleanups that needed to flush */
1296 static int stat_cleanup_failures; /* Number of cleanup requests that failed */
1297 
1298 SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW,
1299     &max_softdeps, 0, "");
1300 SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW,
1301     &tickdelay, 0, "");
1302 SYSCTL_INT(_debug_softdep, OID_AUTO, maxindirdeps, CTLFLAG_RW,
1303     &maxindirdeps, 0, "");
1304 SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push, CTLFLAG_RW,
1305     &stat_worklist_push, 0,"");
1306 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push, CTLFLAG_RW,
1307     &stat_blk_limit_push, 0,"");
1308 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push, CTLFLAG_RW,
1309     &stat_ino_limit_push, 0,"");
1310 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit, CTLFLAG_RW,
1311     &stat_blk_limit_hit, 0, "");
1312 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit, CTLFLAG_RW,
1313     &stat_ino_limit_hit, 0, "");
1314 SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit, CTLFLAG_RW,
1315     &stat_sync_limit_hit, 0, "");
1316 SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW,
1317     &stat_indir_blk_ptrs, 0, "");
1318 SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap, CTLFLAG_RW,
1319     &stat_inode_bitmap, 0, "");
1320 SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW,
1321     &stat_direct_blk_ptrs, 0, "");
1322 SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry, CTLFLAG_RW,
1323     &stat_dir_entry, 0, "");
1324 SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback, CTLFLAG_RW,
1325     &stat_jaddref, 0, "");
1326 SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback, CTLFLAG_RW,
1327     &stat_jnewblk, 0, "");
1328 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low, CTLFLAG_RW,
1329     &stat_journal_low, 0, "");
1330 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min, CTLFLAG_RW,
1331     &stat_journal_min, 0, "");
1332 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait, CTLFLAG_RW,
1333     &stat_journal_wait, 0, "");
1334 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage, CTLFLAG_RW,
1335     &stat_jwait_filepage, 0, "");
1336 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks, CTLFLAG_RW,
1337     &stat_jwait_freeblks, 0, "");
1338 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode, CTLFLAG_RW,
1339     &stat_jwait_inode, 0, "");
1340 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk, CTLFLAG_RW,
1341     &stat_jwait_newblk, 0, "");
1342 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_blkrequests, CTLFLAG_RW,
1343     &stat_cleanup_blkrequests, 0, "");
1344 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_inorequests, CTLFLAG_RW,
1345     &stat_cleanup_inorequests, 0, "");
1346 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_high_delay, CTLFLAG_RW,
1347     &stat_cleanup_high_delay, 0, "");
1348 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_retries, CTLFLAG_RW,
1349     &stat_cleanup_retries, 0, "");
1350 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_failures, CTLFLAG_RW,
1351     &stat_cleanup_failures, 0, "");
1352 SYSCTL_INT(_debug_softdep, OID_AUTO, flushcache, CTLFLAG_RW,
1353     &softdep_flushcache, 0, "");
1354 
1355 SYSCTL_DECL(_vfs_ffs);
1356 
1357 LIST_HEAD(bmsafemap_hashhead, bmsafemap) *bmsafemap_hashtbl;
1358 static u_long	bmsafemap_hash;	/* size of hash table - 1 */
1359 
1360 static int compute_summary_at_mount = 0;	/* Whether to recompute the summary at mount time */
1361 SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW,
1362 	   &compute_summary_at_mount, 0, "Recompute summary at mount");
1363 
1364 static struct proc *softdepproc;
1365 static struct kproc_desc softdep_kp = {
1366 	"softdepflush",
1367 	softdep_flush,
1368 	&softdepproc
1369 };
1370 SYSINIT(sdproc, SI_SUB_KTHREAD_UPDATE, SI_ORDER_ANY, kproc_start,
1371     &softdep_kp);
1372 
1373 static void
1374 softdep_flush(void)
1375 {
1376 	struct mount *nmp;
1377 	struct mount *mp;
1378 	struct ufsmount *ump;
1379 	struct thread *td;
1380 	int remaining;
1381 	int progress;
1382 
1383 	td = curthread;
1384 	td->td_pflags |= TDP_NORUNNINGBUF;
1385 
1386 	for (;;) {
1387 		kproc_suspend_check(softdepproc);
1388 		ACQUIRE_LOCK(&lk);
1389 		/*
1390 		 * If requested, try removing inode or removal dependencies.
1391 		 */
1392 		if (req_clear_inodedeps) {
1393 			clear_inodedeps();
1394 			req_clear_inodedeps -= 1;
1395 			wakeup_one(&proc_waiting);
1396 		}
1397 		if (req_clear_remove) {
1398 			clear_remove();
1399 			req_clear_remove -= 1;
1400 			wakeup_one(&proc_waiting);
1401 		}
1402 		FREE_LOCK(&lk);
1403 		remaining = progress = 0;
1404 		mtx_lock(&mountlist_mtx);
1405 		for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp)  {
1406 			nmp = TAILQ_NEXT(mp, mnt_list);
1407 			if (MOUNTEDSOFTDEP(mp) == 0)
1408 				continue;
1409 			if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK))
1410 				continue;
1411 			progress += softdep_process_worklist(mp, 0);
1412 			ump = VFSTOUFS(mp);
1413 			remaining += ump->softdep_on_worklist;
1414 			mtx_lock(&mountlist_mtx);
1415 			nmp = TAILQ_NEXT(mp, mnt_list);
1416 			vfs_unbusy(mp);
1417 		}
1418 		mtx_unlock(&mountlist_mtx);
1419 		if (remaining && progress)
1420 			continue;
1421 		ACQUIRE_LOCK(&lk);
1422 		if (!req_pending)
1423 			msleep(&req_pending, &lk, PVM, "sdflush", hz);
1424 		req_pending = 0;
1425 		FREE_LOCK(&lk);
1426 	}
1427 }
1428 
1429 static void
1430 worklist_speedup(void)
1431 {
1432 	rw_assert(&lk, RA_WLOCKED);
1433 	if (req_pending == 0) {
1434 		req_pending = 1;
1435 		wakeup(&req_pending);
1436 	}
1437 }
1438 
1439 static int
1440 softdep_speedup(void)
1441 {
1442 
1443 	worklist_speedup();
1444 	bd_speedup();
1445 	return speedup_syncer();
1446 }
1447 
1448 /*
1449  * Add an item to the end of the work queue.
1450  * This routine requires that the lock be held.
1451  * This is the only routine that adds items to the list.
1452  * The following routine is the only one that removes items
1453  * and does so in order from first to last.
1454  */
1455 
1456 #define	WK_HEAD		0x0001	/* Add to HEAD. */
1457 #define	WK_NODELAY	0x0002	/* Process immediately. */
1458 
1459 static void
1460 add_to_worklist(wk, flags)
1461 	struct worklist *wk;
1462 	int flags;
1463 {
1464 	struct ufsmount *ump;
1465 
1466 	rw_assert(&lk, RA_WLOCKED);
1467 	ump = VFSTOUFS(wk->wk_mp);
1468 	if (wk->wk_state & ONWORKLIST)
1469 		panic("add_to_worklist: %s(0x%X) already on list",
1470 		    TYPENAME(wk->wk_type), wk->wk_state);
1471 	wk->wk_state |= ONWORKLIST;
1472 	if (ump->softdep_on_worklist == 0) {
1473 		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1474 		ump->softdep_worklist_tail = wk;
1475 	} else if (flags & WK_HEAD) {
1476 		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1477 	} else {
1478 		LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list);
1479 		ump->softdep_worklist_tail = wk;
1480 	}
1481 	ump->softdep_on_worklist += 1;
1482 	if (flags & WK_NODELAY)
1483 		worklist_speedup();
1484 }
1485 
1486 /*
1487  * Remove the item to be processed. If we are removing the last
1488  * item on the list, we need to recalculate the tail pointer.
1489  */
1490 static void
1491 remove_from_worklist(wk)
1492 	struct worklist *wk;
1493 {
1494 	struct ufsmount *ump;
1495 
1496 	ump = VFSTOUFS(wk->wk_mp);
1497 	WORKLIST_REMOVE(wk);
1498 	if (ump->softdep_worklist_tail == wk)
1499 		ump->softdep_worklist_tail =
1500 		    (struct worklist *)wk->wk_list.le_prev;
1501 	ump->softdep_on_worklist -= 1;
1502 }
1503 
1504 static void
1505 wake_worklist(wk)
1506 	struct worklist *wk;
1507 {
1508 	if (wk->wk_state & IOWAITING) {
1509 		wk->wk_state &= ~IOWAITING;
1510 		wakeup(wk);
1511 	}
1512 }
1513 
1514 static void
1515 wait_worklist(wk, wmesg)
1516 	struct worklist *wk;
1517 	char *wmesg;
1518 {
1519 
1520 	wk->wk_state |= IOWAITING;
1521 	msleep(wk, &lk, PVM, wmesg, 0);
1522 }
1523 
1524 /*
1525  * Process that runs once per second to handle items in the background queue.
1526  *
1527  * Note that we ensure that everything is done in the order in which they
1528  * appear in the queue. The code below depends on this property to ensure
1529  * that blocks of a file are freed before the inode itself is freed. This
1530  * ordering ensures that no new <vfsid, inum, lbn> triples will be generated
1531  * until all the old ones have been purged from the dependency lists.
1532  */
1533 int
1534 softdep_process_worklist(mp, full)
1535 	struct mount *mp;
1536 	int full;
1537 {
1538 	int cnt, matchcnt;
1539 	struct ufsmount *ump;
1540 	long starttime;
1541 
1542 	KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp"));
1543 	/*
1544 	 * Record the process identifier of our caller so that we can give
1545 	 * this process preferential treatment in request_cleanup below.
1546 	 */
1547 	matchcnt = 0;
1548 	ump = VFSTOUFS(mp);
1549 	ACQUIRE_LOCK(&lk);
1550 	starttime = time_second;
1551 	softdep_process_journal(mp, NULL, full?MNT_WAIT:0);
1552 	while (ump->softdep_on_worklist > 0) {
1553 		if ((cnt = process_worklist_item(mp, 10, LK_NOWAIT)) == 0)
1554 			break;
1555 		else
1556 			matchcnt += cnt;
1557 		/*
1558 		 * If requested, try removing inode or removal dependencies.
1559 		 */
1560 		if (req_clear_inodedeps) {
1561 			clear_inodedeps();
1562 			req_clear_inodedeps -= 1;
1563 			wakeup_one(&proc_waiting);
1564 		}
1565 		if (req_clear_remove) {
1566 			clear_remove();
1567 			req_clear_remove -= 1;
1568 			wakeup_one(&proc_waiting);
1569 		}
1570 		/*
1571 		 * We do not generally want to stop for buffer space, but if
1572 		 * we are really being a buffer hog, we will stop and wait.
1573 		 */
1574 		if (should_yield()) {
1575 			FREE_LOCK(&lk);
1576 			kern_yield(PRI_USER);
1577 			bwillwrite();
1578 			ACQUIRE_LOCK(&lk);
1579 		}
1580 		/*
1581 		 * Never allow processing to run for more than one
1582 		 * second. Otherwise the other mountpoints may get
1583 		 * excessively backlogged.
1584 		 */
1585 		if (!full && starttime != time_second)
1586 			break;
1587 	}
1588 	if (full == 0)
1589 		journal_unsuspend(ump);
1590 	FREE_LOCK(&lk);
1591 	return (matchcnt);
1592 }
1593 
1594 /*
1595  * Process all removes associated with a vnode if we are running out of
1596  * journal space.  Any other process which attempts to flush these will
1597  * be unable as we have the vnodes locked.
1598  */
1599 static void
1600 process_removes(vp)
1601 	struct vnode *vp;
1602 {
1603 	struct inodedep *inodedep;
1604 	struct dirrem *dirrem;
1605 	struct mount *mp;
1606 	ino_t inum;
1607 
1608 	rw_assert(&lk, RA_WLOCKED);
1609 
1610 	mp = vp->v_mount;
1611 	inum = VTOI(vp)->i_number;
1612 	for (;;) {
1613 top:
1614 		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1615 			return;
1616 		LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext) {
1617 			/*
1618 			 * If another thread is trying to lock this vnode
1619 			 * it will fail but we must wait for it to do so
1620 			 * before we can proceed.
1621 			 */
1622 			if (dirrem->dm_state & INPROGRESS) {
1623 				wait_worklist(&dirrem->dm_list, "pwrwait");
1624 				goto top;
1625 			}
1626 			if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) ==
1627 			    (COMPLETE | ONWORKLIST))
1628 				break;
1629 		}
1630 		if (dirrem == NULL)
1631 			return;
1632 		remove_from_worklist(&dirrem->dm_list);
1633 		FREE_LOCK(&lk);
1634 		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1635 			panic("process_removes: suspended filesystem");
1636 		handle_workitem_remove(dirrem, 0);
1637 		vn_finished_secondary_write(mp);
1638 		ACQUIRE_LOCK(&lk);
1639 	}
1640 }
1641 
1642 /*
1643  * Process all truncations associated with a vnode if we are running out
1644  * of journal space.  This is called when the vnode lock is already held
1645  * and no other process can clear the truncation.  This function returns
1646  * a value greater than zero if it did any work.
1647  */
1648 static void
1649 process_truncates(vp)
1650 	struct vnode *vp;
1651 {
1652 	struct inodedep *inodedep;
1653 	struct freeblks *freeblks;
1654 	struct mount *mp;
1655 	ino_t inum;
1656 	int cgwait;
1657 
1658 	rw_assert(&lk, RA_WLOCKED);
1659 
1660 	mp = vp->v_mount;
1661 	inum = VTOI(vp)->i_number;
1662 	for (;;) {
1663 		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1664 			return;
1665 		cgwait = 0;
1666 		TAILQ_FOREACH(freeblks, &inodedep->id_freeblklst, fb_next) {
1667 			/* Journal entries not yet written.  */
1668 			if (!LIST_EMPTY(&freeblks->fb_jblkdephd)) {
1669 				jwait(&LIST_FIRST(
1670 				    &freeblks->fb_jblkdephd)->jb_list,
1671 				    MNT_WAIT);
1672 				break;
1673 			}
1674 			/* Another thread is executing this item. */
1675 			if (freeblks->fb_state & INPROGRESS) {
1676 				wait_worklist(&freeblks->fb_list, "ptrwait");
1677 				break;
1678 			}
1679 			/* Freeblks is waiting on a inode write. */
1680 			if ((freeblks->fb_state & COMPLETE) == 0) {
1681 				FREE_LOCK(&lk);
1682 				ffs_update(vp, 1);
1683 				ACQUIRE_LOCK(&lk);
1684 				break;
1685 			}
1686 			if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST)) ==
1687 			    (ALLCOMPLETE | ONWORKLIST)) {
1688 				remove_from_worklist(&freeblks->fb_list);
1689 				freeblks->fb_state |= INPROGRESS;
1690 				FREE_LOCK(&lk);
1691 				if (vn_start_secondary_write(NULL, &mp,
1692 				    V_NOWAIT))
1693 					panic("process_truncates: "
1694 					    "suspended filesystem");
1695 				handle_workitem_freeblocks(freeblks, 0);
1696 				vn_finished_secondary_write(mp);
1697 				ACQUIRE_LOCK(&lk);
1698 				break;
1699 			}
1700 			if (freeblks->fb_cgwait)
1701 				cgwait++;
1702 		}
1703 		if (cgwait) {
1704 			FREE_LOCK(&lk);
1705 			sync_cgs(mp, MNT_WAIT);
1706 			ffs_sync_snap(mp, MNT_WAIT);
1707 			ACQUIRE_LOCK(&lk);
1708 			continue;
1709 		}
1710 		if (freeblks == NULL)
1711 			break;
1712 	}
1713 	return;
1714 }
1715 
1716 /*
1717  * Process one item on the worklist.
1718  */
1719 static int
1720 process_worklist_item(mp, target, flags)
1721 	struct mount *mp;
1722 	int target;
1723 	int flags;
1724 {
1725 	struct worklist sentinel;
1726 	struct worklist *wk;
1727 	struct ufsmount *ump;
1728 	int matchcnt;
1729 	int error;
1730 
1731 	rw_assert(&lk, RA_WLOCKED);
1732 	KASSERT(mp != NULL, ("process_worklist_item: NULL mp"));
1733 	/*
1734 	 * If we are being called because of a process doing a
1735 	 * copy-on-write, then it is not safe to write as we may
1736 	 * recurse into the copy-on-write routine.
1737 	 */
1738 	if (curthread->td_pflags & TDP_COWINPROGRESS)
1739 		return (-1);
1740 	PHOLD(curproc);	/* Don't let the stack go away. */
1741 	ump = VFSTOUFS(mp);
1742 	matchcnt = 0;
1743 	sentinel.wk_mp = NULL;
1744 	sentinel.wk_type = D_SENTINEL;
1745 	LIST_INSERT_HEAD(&ump->softdep_workitem_pending, &sentinel, wk_list);
1746 	for (wk = LIST_NEXT(&sentinel, wk_list); wk != NULL;
1747 	    wk = LIST_NEXT(&sentinel, wk_list)) {
1748 		if (wk->wk_type == D_SENTINEL) {
1749 			LIST_REMOVE(&sentinel, wk_list);
1750 			LIST_INSERT_AFTER(wk, &sentinel, wk_list);
1751 			continue;
1752 		}
1753 		if (wk->wk_state & INPROGRESS)
1754 			panic("process_worklist_item: %p already in progress.",
1755 			    wk);
1756 		wk->wk_state |= INPROGRESS;
1757 		remove_from_worklist(wk);
1758 		FREE_LOCK(&lk);
1759 		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1760 			panic("process_worklist_item: suspended filesystem");
1761 		switch (wk->wk_type) {
1762 		case D_DIRREM:
1763 			/* removal of a directory entry */
1764 			error = handle_workitem_remove(WK_DIRREM(wk), flags);
1765 			break;
1766 
1767 		case D_FREEBLKS:
1768 			/* releasing blocks and/or fragments from a file */
1769 			error = handle_workitem_freeblocks(WK_FREEBLKS(wk),
1770 			    flags);
1771 			break;
1772 
1773 		case D_FREEFRAG:
1774 			/* releasing a fragment when replaced as a file grows */
1775 			handle_workitem_freefrag(WK_FREEFRAG(wk));
1776 			error = 0;
1777 			break;
1778 
1779 		case D_FREEFILE:
1780 			/* releasing an inode when its link count drops to 0 */
1781 			handle_workitem_freefile(WK_FREEFILE(wk));
1782 			error = 0;
1783 			break;
1784 
1785 		default:
1786 			panic("%s_process_worklist: Unknown type %s",
1787 			    "softdep", TYPENAME(wk->wk_type));
1788 			/* NOTREACHED */
1789 		}
1790 		vn_finished_secondary_write(mp);
1791 		ACQUIRE_LOCK(&lk);
1792 		if (error == 0) {
1793 			if (++matchcnt == target)
1794 				break;
1795 			continue;
1796 		}
1797 		/*
1798 		 * We have to retry the worklist item later.  Wake up any
1799 		 * waiters who may be able to complete it immediately and
1800 		 * add the item back to the head so we don't try to execute
1801 		 * it again.
1802 		 */
1803 		wk->wk_state &= ~INPROGRESS;
1804 		wake_worklist(wk);
1805 		add_to_worklist(wk, WK_HEAD);
1806 	}
1807 	LIST_REMOVE(&sentinel, wk_list);
1808 	/* Sentinal could've become the tail from remove_from_worklist. */
1809 	if (ump->softdep_worklist_tail == &sentinel)
1810 		ump->softdep_worklist_tail =
1811 		    (struct worklist *)sentinel.wk_list.le_prev;
1812 	PRELE(curproc);
1813 	return (matchcnt);
1814 }
1815 
1816 /*
1817  * Move dependencies from one buffer to another.
1818  */
1819 int
1820 softdep_move_dependencies(oldbp, newbp)
1821 	struct buf *oldbp;
1822 	struct buf *newbp;
1823 {
1824 	struct worklist *wk, *wktail;
1825 	int dirty;
1826 
1827 	dirty = 0;
1828 	wktail = NULL;
1829 	ACQUIRE_LOCK(&lk);
1830 	while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) {
1831 		LIST_REMOVE(wk, wk_list);
1832 		if (wk->wk_type == D_BMSAFEMAP &&
1833 		    bmsafemap_backgroundwrite(WK_BMSAFEMAP(wk), newbp))
1834 			dirty = 1;
1835 		if (wktail == 0)
1836 			LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list);
1837 		else
1838 			LIST_INSERT_AFTER(wktail, wk, wk_list);
1839 		wktail = wk;
1840 	}
1841 	FREE_LOCK(&lk);
1842 
1843 	return (dirty);
1844 }
1845 
1846 /*
1847  * Purge the work list of all items associated with a particular mount point.
1848  */
1849 int
1850 softdep_flushworklist(oldmnt, countp, td)
1851 	struct mount *oldmnt;
1852 	int *countp;
1853 	struct thread *td;
1854 {
1855 	struct vnode *devvp;
1856 	int count, error = 0;
1857 	struct ufsmount *ump;
1858 
1859 	/*
1860 	 * Alternately flush the block device associated with the mount
1861 	 * point and process any dependencies that the flushing
1862 	 * creates. We continue until no more worklist dependencies
1863 	 * are found.
1864 	 */
1865 	*countp = 0;
1866 	ump = VFSTOUFS(oldmnt);
1867 	devvp = ump->um_devvp;
1868 	while ((count = softdep_process_worklist(oldmnt, 1)) > 0) {
1869 		*countp += count;
1870 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1871 		error = VOP_FSYNC(devvp, MNT_WAIT, td);
1872 		VOP_UNLOCK(devvp, 0);
1873 		if (error)
1874 			break;
1875 	}
1876 	return (error);
1877 }
1878 
1879 int
1880 softdep_waitidle(struct mount *mp)
1881 {
1882 	struct ufsmount *ump;
1883 	int error;
1884 	int i;
1885 
1886 	ump = VFSTOUFS(mp);
1887 	ACQUIRE_LOCK(&lk);
1888 	for (i = 0; i < 10 && ump->softdep_deps; i++) {
1889 		ump->softdep_req = 1;
1890 		if (ump->softdep_on_worklist)
1891 			panic("softdep_waitidle: work added after flush.");
1892 		msleep(&ump->softdep_deps, &lk, PVM, "softdeps", 1);
1893 	}
1894 	ump->softdep_req = 0;
1895 	FREE_LOCK(&lk);
1896 	error = 0;
1897 	if (i == 10) {
1898 		error = EBUSY;
1899 		printf("softdep_waitidle: Failed to flush worklist for %p\n",
1900 		    mp);
1901 	}
1902 
1903 	return (error);
1904 }
1905 
1906 /*
1907  * Flush all vnodes and worklist items associated with a specified mount point.
1908  */
1909 int
1910 softdep_flushfiles(oldmnt, flags, td)
1911 	struct mount *oldmnt;
1912 	int flags;
1913 	struct thread *td;
1914 {
1915 #ifdef QUOTA
1916 	struct ufsmount *ump;
1917 	int i;
1918 #endif
1919 	int error, early, depcount, loopcnt, retry_flush_count, retry;
1920 	int morework;
1921 
1922 	loopcnt = 10;
1923 	retry_flush_count = 3;
1924 retry_flush:
1925 	error = 0;
1926 
1927 	/*
1928 	 * Alternately flush the vnodes associated with the mount
1929 	 * point and process any dependencies that the flushing
1930 	 * creates. In theory, this loop can happen at most twice,
1931 	 * but we give it a few extra just to be sure.
1932 	 */
1933 	for (; loopcnt > 0; loopcnt--) {
1934 		/*
1935 		 * Do another flush in case any vnodes were brought in
1936 		 * as part of the cleanup operations.
1937 		 */
1938 		early = retry_flush_count == 1 || (oldmnt->mnt_kern_flag &
1939 		    MNTK_UNMOUNT) == 0 ? 0 : EARLYFLUSH;
1940 		if ((error = ffs_flushfiles(oldmnt, flags | early, td)) != 0)
1941 			break;
1942 		if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 ||
1943 		    depcount == 0)
1944 			break;
1945 	}
1946 	/*
1947 	 * If we are unmounting then it is an error to fail. If we
1948 	 * are simply trying to downgrade to read-only, then filesystem
1949 	 * activity can keep us busy forever, so we just fail with EBUSY.
1950 	 */
1951 	if (loopcnt == 0) {
1952 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT)
1953 			panic("softdep_flushfiles: looping");
1954 		error = EBUSY;
1955 	}
1956 	if (!error)
1957 		error = softdep_waitidle(oldmnt);
1958 	if (!error) {
1959 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) {
1960 			retry = 0;
1961 			MNT_ILOCK(oldmnt);
1962 			KASSERT((oldmnt->mnt_kern_flag & MNTK_NOINSMNTQ) != 0,
1963 			    ("softdep_flushfiles: !MNTK_NOINSMNTQ"));
1964 			morework = oldmnt->mnt_nvnodelistsize > 0;
1965 #ifdef QUOTA
1966 			ump = VFSTOUFS(oldmnt);
1967 			UFS_LOCK(ump);
1968 			for (i = 0; i < MAXQUOTAS; i++) {
1969 				if (ump->um_quotas[i] != NULLVP)
1970 					morework = 1;
1971 			}
1972 			UFS_UNLOCK(ump);
1973 #endif
1974 			if (morework) {
1975 				if (--retry_flush_count > 0) {
1976 					retry = 1;
1977 					loopcnt = 3;
1978 				} else
1979 					error = EBUSY;
1980 			}
1981 			MNT_IUNLOCK(oldmnt);
1982 			if (retry)
1983 				goto retry_flush;
1984 		}
1985 	}
1986 	return (error);
1987 }
1988 
1989 /*
1990  * Structure hashing.
1991  *
1992  * There are three types of structures that can be looked up:
1993  *	1) pagedep structures identified by mount point, inode number,
1994  *	   and logical block.
1995  *	2) inodedep structures identified by mount point and inode number.
1996  *	3) newblk structures identified by mount point and
1997  *	   physical block number.
1998  *
1999  * The "pagedep" and "inodedep" dependency structures are hashed
2000  * separately from the file blocks and inodes to which they correspond.
2001  * This separation helps when the in-memory copy of an inode or
2002  * file block must be replaced. It also obviates the need to access
2003  * an inode or file page when simply updating (or de-allocating)
2004  * dependency structures. Lookup of newblk structures is needed to
2005  * find newly allocated blocks when trying to associate them with
2006  * their allocdirect or allocindir structure.
2007  *
2008  * The lookup routines optionally create and hash a new instance when
2009  * an existing entry is not found.
2010  */
2011 #define DEPALLOC	0x0001	/* allocate structure if lookup fails */
2012 #define NODELAY		0x0002	/* cannot do background work */
2013 
2014 /*
2015  * Structures and routines associated with pagedep caching.
2016  */
2017 LIST_HEAD(pagedep_hashhead, pagedep) *pagedep_hashtbl;
2018 u_long	pagedep_hash;		/* size of hash table - 1 */
2019 #define	PAGEDEP_HASH(mp, inum, lbn) \
2020 	(&pagedep_hashtbl[((((register_t)(mp)) >> 13) + (inum) + (lbn)) & \
2021 	    pagedep_hash])
2022 
2023 static int
2024 pagedep_find(pagedephd, ino, lbn, mp, flags, pagedeppp)
2025 	struct pagedep_hashhead *pagedephd;
2026 	ino_t ino;
2027 	ufs_lbn_t lbn;
2028 	struct mount *mp;
2029 	int flags;
2030 	struct pagedep **pagedeppp;
2031 {
2032 	struct pagedep *pagedep;
2033 
2034 	LIST_FOREACH(pagedep, pagedephd, pd_hash) {
2035 		if (ino == pagedep->pd_ino && lbn == pagedep->pd_lbn &&
2036 		    mp == pagedep->pd_list.wk_mp) {
2037 			*pagedeppp = pagedep;
2038 			return (1);
2039 		}
2040 	}
2041 	*pagedeppp = NULL;
2042 	return (0);
2043 }
2044 /*
2045  * Look up a pagedep. Return 1 if found, 0 otherwise.
2046  * If not found, allocate if DEPALLOC flag is passed.
2047  * Found or allocated entry is returned in pagedeppp.
2048  * This routine must be called with splbio interrupts blocked.
2049  */
2050 static int
2051 pagedep_lookup(mp, bp, ino, lbn, flags, pagedeppp)
2052 	struct mount *mp;
2053 	struct buf *bp;
2054 	ino_t ino;
2055 	ufs_lbn_t lbn;
2056 	int flags;
2057 	struct pagedep **pagedeppp;
2058 {
2059 	struct pagedep *pagedep;
2060 	struct pagedep_hashhead *pagedephd;
2061 	struct worklist *wk;
2062 	int ret;
2063 	int i;
2064 
2065 	rw_assert(&lk, RA_WLOCKED);
2066 	if (bp) {
2067 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
2068 			if (wk->wk_type == D_PAGEDEP) {
2069 				*pagedeppp = WK_PAGEDEP(wk);
2070 				return (1);
2071 			}
2072 		}
2073 	}
2074 	pagedephd = PAGEDEP_HASH(mp, ino, lbn);
2075 	ret = pagedep_find(pagedephd, ino, lbn, mp, flags, pagedeppp);
2076 	if (ret) {
2077 		if (((*pagedeppp)->pd_state & ONWORKLIST) == 0 && bp)
2078 			WORKLIST_INSERT(&bp->b_dep, &(*pagedeppp)->pd_list);
2079 		return (1);
2080 	}
2081 	if ((flags & DEPALLOC) == 0)
2082 		return (0);
2083 	FREE_LOCK(&lk);
2084 	pagedep = malloc(sizeof(struct pagedep),
2085 	    M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO);
2086 	workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp);
2087 	ACQUIRE_LOCK(&lk);
2088 	ret = pagedep_find(pagedephd, ino, lbn, mp, flags, pagedeppp);
2089 	if (*pagedeppp) {
2090 		/*
2091 		 * This should never happen since we only create pagedeps
2092 		 * with the vnode lock held.  Could be an assert.
2093 		 */
2094 		WORKITEM_FREE(pagedep, D_PAGEDEP);
2095 		return (ret);
2096 	}
2097 	pagedep->pd_ino = ino;
2098 	pagedep->pd_lbn = lbn;
2099 	LIST_INIT(&pagedep->pd_dirremhd);
2100 	LIST_INIT(&pagedep->pd_pendinghd);
2101 	for (i = 0; i < DAHASHSZ; i++)
2102 		LIST_INIT(&pagedep->pd_diraddhd[i]);
2103 	LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
2104 	WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
2105 	*pagedeppp = pagedep;
2106 	return (0);
2107 }
2108 
2109 /*
2110  * Structures and routines associated with inodedep caching.
2111  */
2112 LIST_HEAD(inodedep_hashhead, inodedep) *inodedep_hashtbl;
2113 static u_long	inodedep_hash;	/* size of hash table - 1 */
2114 #define	INODEDEP_HASH(fs, inum) \
2115       (&inodedep_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & inodedep_hash])
2116 
2117 static int
2118 inodedep_find(inodedephd, fs, inum, inodedeppp)
2119 	struct inodedep_hashhead *inodedephd;
2120 	struct fs *fs;
2121 	ino_t inum;
2122 	struct inodedep **inodedeppp;
2123 {
2124 	struct inodedep *inodedep;
2125 
2126 	LIST_FOREACH(inodedep, inodedephd, id_hash)
2127 		if (inum == inodedep->id_ino && fs == inodedep->id_fs)
2128 			break;
2129 	if (inodedep) {
2130 		*inodedeppp = inodedep;
2131 		return (1);
2132 	}
2133 	*inodedeppp = NULL;
2134 
2135 	return (0);
2136 }
2137 /*
2138  * Look up an inodedep. Return 1 if found, 0 if not found.
2139  * If not found, allocate if DEPALLOC flag is passed.
2140  * Found or allocated entry is returned in inodedeppp.
2141  * This routine must be called with splbio interrupts blocked.
2142  */
2143 static int
2144 inodedep_lookup(mp, inum, flags, inodedeppp)
2145 	struct mount *mp;
2146 	ino_t inum;
2147 	int flags;
2148 	struct inodedep **inodedeppp;
2149 {
2150 	struct inodedep *inodedep;
2151 	struct inodedep_hashhead *inodedephd;
2152 	struct fs *fs;
2153 
2154 	rw_assert(&lk, RA_WLOCKED);
2155 	fs = VFSTOUFS(mp)->um_fs;
2156 	inodedephd = INODEDEP_HASH(fs, inum);
2157 
2158 	if (inodedep_find(inodedephd, fs, inum, inodedeppp))
2159 		return (1);
2160 	if ((flags & DEPALLOC) == 0)
2161 		return (0);
2162 	/*
2163 	 * If we are over our limit, try to improve the situation.
2164 	 */
2165 	if (dep_current[D_INODEDEP] > max_softdeps && (flags & NODELAY) == 0)
2166 		request_cleanup(mp, FLUSH_INODES);
2167 	FREE_LOCK(&lk);
2168 	inodedep = malloc(sizeof(struct inodedep),
2169 		M_INODEDEP, M_SOFTDEP_FLAGS);
2170 	workitem_alloc(&inodedep->id_list, D_INODEDEP, mp);
2171 	ACQUIRE_LOCK(&lk);
2172 	if (inodedep_find(inodedephd, fs, inum, inodedeppp)) {
2173 		WORKITEM_FREE(inodedep, D_INODEDEP);
2174 		return (1);
2175 	}
2176 	inodedep->id_fs = fs;
2177 	inodedep->id_ino = inum;
2178 	inodedep->id_state = ALLCOMPLETE;
2179 	inodedep->id_nlinkdelta = 0;
2180 	inodedep->id_savedino1 = NULL;
2181 	inodedep->id_savedsize = -1;
2182 	inodedep->id_savedextsize = -1;
2183 	inodedep->id_savednlink = -1;
2184 	inodedep->id_bmsafemap = NULL;
2185 	inodedep->id_mkdiradd = NULL;
2186 	LIST_INIT(&inodedep->id_dirremhd);
2187 	LIST_INIT(&inodedep->id_pendinghd);
2188 	LIST_INIT(&inodedep->id_inowait);
2189 	LIST_INIT(&inodedep->id_bufwait);
2190 	TAILQ_INIT(&inodedep->id_inoreflst);
2191 	TAILQ_INIT(&inodedep->id_inoupdt);
2192 	TAILQ_INIT(&inodedep->id_newinoupdt);
2193 	TAILQ_INIT(&inodedep->id_extupdt);
2194 	TAILQ_INIT(&inodedep->id_newextupdt);
2195 	TAILQ_INIT(&inodedep->id_freeblklst);
2196 	LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
2197 	*inodedeppp = inodedep;
2198 	return (0);
2199 }
2200 
2201 /*
2202  * Structures and routines associated with newblk caching.
2203  */
2204 LIST_HEAD(newblk_hashhead, newblk) *newblk_hashtbl;
2205 u_long	newblk_hash;		/* size of hash table - 1 */
2206 #define	NEWBLK_HASH(fs, inum) \
2207 	(&newblk_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & newblk_hash])
2208 
2209 static int
2210 newblk_find(newblkhd, mp, newblkno, flags, newblkpp)
2211 	struct newblk_hashhead *newblkhd;
2212 	struct mount *mp;
2213 	ufs2_daddr_t newblkno;
2214 	int flags;
2215 	struct newblk **newblkpp;
2216 {
2217 	struct newblk *newblk;
2218 
2219 	LIST_FOREACH(newblk, newblkhd, nb_hash) {
2220 		if (newblkno != newblk->nb_newblkno)
2221 			continue;
2222 		if (mp != newblk->nb_list.wk_mp)
2223 			continue;
2224 		/*
2225 		 * If we're creating a new dependency don't match those that
2226 		 * have already been converted to allocdirects.  This is for
2227 		 * a frag extend.
2228 		 */
2229 		if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK)
2230 			continue;
2231 		break;
2232 	}
2233 	if (newblk) {
2234 		*newblkpp = newblk;
2235 		return (1);
2236 	}
2237 	*newblkpp = NULL;
2238 	return (0);
2239 }
2240 
2241 /*
2242  * Look up a newblk. Return 1 if found, 0 if not found.
2243  * If not found, allocate if DEPALLOC flag is passed.
2244  * Found or allocated entry is returned in newblkpp.
2245  */
2246 static int
2247 newblk_lookup(mp, newblkno, flags, newblkpp)
2248 	struct mount *mp;
2249 	ufs2_daddr_t newblkno;
2250 	int flags;
2251 	struct newblk **newblkpp;
2252 {
2253 	struct newblk *newblk;
2254 	struct newblk_hashhead *newblkhd;
2255 
2256 	newblkhd = NEWBLK_HASH(VFSTOUFS(mp)->um_fs, newblkno);
2257 	if (newblk_find(newblkhd, mp, newblkno, flags, newblkpp))
2258 		return (1);
2259 	if ((flags & DEPALLOC) == 0)
2260 		return (0);
2261 	FREE_LOCK(&lk);
2262 	newblk = malloc(sizeof(union allblk), M_NEWBLK,
2263 	    M_SOFTDEP_FLAGS | M_ZERO);
2264 	workitem_alloc(&newblk->nb_list, D_NEWBLK, mp);
2265 	ACQUIRE_LOCK(&lk);
2266 	if (newblk_find(newblkhd, mp, newblkno, flags, newblkpp)) {
2267 		WORKITEM_FREE(newblk, D_NEWBLK);
2268 		return (1);
2269 	}
2270 	newblk->nb_freefrag = NULL;
2271 	LIST_INIT(&newblk->nb_indirdeps);
2272 	LIST_INIT(&newblk->nb_newdirblk);
2273 	LIST_INIT(&newblk->nb_jwork);
2274 	newblk->nb_state = ATTACHED;
2275 	newblk->nb_newblkno = newblkno;
2276 	LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
2277 	*newblkpp = newblk;
2278 	return (0);
2279 }
2280 
2281 /*
2282  * Structures and routines associated with freed indirect block caching.
2283  */
2284 struct freeworklst *indir_hashtbl;
2285 u_long	indir_hash;		/* size of hash table - 1 */
2286 #define	INDIR_HASH(mp, blkno) \
2287 	(&indir_hashtbl[((((register_t)(mp)) >> 13) + (blkno)) & indir_hash])
2288 
2289 /*
2290  * Lookup an indirect block in the indir hash table.  The freework is
2291  * removed and potentially freed.  The caller must do a blocking journal
2292  * write before writing to the blkno.
2293  */
2294 static int
2295 indirblk_lookup(mp, blkno)
2296 	struct mount *mp;
2297 	ufs2_daddr_t blkno;
2298 {
2299 	struct freework *freework;
2300 	struct freeworklst *wkhd;
2301 
2302 	wkhd = INDIR_HASH(mp, blkno);
2303 	TAILQ_FOREACH(freework, wkhd, fw_next) {
2304 		if (freework->fw_blkno != blkno)
2305 			continue;
2306 		if (freework->fw_list.wk_mp != mp)
2307 			continue;
2308 		indirblk_remove(freework);
2309 		return (1);
2310 	}
2311 	return (0);
2312 }
2313 
2314 /*
2315  * Insert an indirect block represented by freework into the indirblk
2316  * hash table so that it may prevent the block from being re-used prior
2317  * to the journal being written.
2318  */
2319 static void
2320 indirblk_insert(freework)
2321 	struct freework *freework;
2322 {
2323 	struct jblocks *jblocks;
2324 	struct jseg *jseg;
2325 
2326 	jblocks = VFSTOUFS(freework->fw_list.wk_mp)->softdep_jblocks;
2327 	jseg = TAILQ_LAST(&jblocks->jb_segs, jseglst);
2328 	if (jseg == NULL)
2329 		return;
2330 
2331 	LIST_INSERT_HEAD(&jseg->js_indirs, freework, fw_segs);
2332 	TAILQ_INSERT_HEAD(INDIR_HASH(freework->fw_list.wk_mp,
2333 	    freework->fw_blkno), freework, fw_next);
2334 	freework->fw_state &= ~DEPCOMPLETE;
2335 }
2336 
2337 static void
2338 indirblk_remove(freework)
2339 	struct freework *freework;
2340 {
2341 
2342 	LIST_REMOVE(freework, fw_segs);
2343 	TAILQ_REMOVE(INDIR_HASH(freework->fw_list.wk_mp,
2344 	    freework->fw_blkno), freework, fw_next);
2345 	freework->fw_state |= DEPCOMPLETE;
2346 	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
2347 		WORKITEM_FREE(freework, D_FREEWORK);
2348 }
2349 
2350 /*
2351  * Executed during filesystem system initialization before
2352  * mounting any filesystems.
2353  */
2354 void
2355 softdep_initialize()
2356 {
2357 	int i;
2358 
2359 	LIST_INIT(&mkdirlisthd);
2360 	max_softdeps = desiredvnodes * 4;
2361 	pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP, &pagedep_hash);
2362 	inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, &inodedep_hash);
2363 	newblk_hashtbl = hashinit(desiredvnodes / 5,  M_NEWBLK, &newblk_hash);
2364 	bmsafemap_hashtbl = hashinit(1024, M_BMSAFEMAP, &bmsafemap_hash);
2365 	i = 1 << (ffs(desiredvnodes / 10) - 1);
2366 	indir_hashtbl = malloc(i * sizeof(indir_hashtbl[0]), M_FREEWORK,
2367 	    M_WAITOK);
2368 	indir_hash = i - 1;
2369 	for (i = 0; i <= indir_hash; i++)
2370 		TAILQ_INIT(&indir_hashtbl[i]);
2371 
2372 	/* initialise bioops hack */
2373 	bioops.io_start = softdep_disk_io_initiation;
2374 	bioops.io_complete = softdep_disk_write_complete;
2375 	bioops.io_deallocate = softdep_deallocate_dependencies;
2376 	bioops.io_countdeps = softdep_count_dependencies;
2377 
2378 	/* Initialize the callout with an mtx. */
2379 	callout_init_mtx(&softdep_callout, &lk, 0);
2380 }
2381 
2382 /*
2383  * Executed after all filesystems have been unmounted during
2384  * filesystem module unload.
2385  */
2386 void
2387 softdep_uninitialize()
2388 {
2389 
2390 	callout_drain(&softdep_callout);
2391 	hashdestroy(pagedep_hashtbl, M_PAGEDEP, pagedep_hash);
2392 	hashdestroy(inodedep_hashtbl, M_INODEDEP, inodedep_hash);
2393 	hashdestroy(newblk_hashtbl, M_NEWBLK, newblk_hash);
2394 	hashdestroy(bmsafemap_hashtbl, M_BMSAFEMAP, bmsafemap_hash);
2395 	free(indir_hashtbl, M_FREEWORK);
2396 }
2397 
2398 /*
2399  * Called at mount time to notify the dependency code that a
2400  * filesystem wishes to use it.
2401  */
2402 int
2403 softdep_mount(devvp, mp, fs, cred)
2404 	struct vnode *devvp;
2405 	struct mount *mp;
2406 	struct fs *fs;
2407 	struct ucred *cred;
2408 {
2409 	struct csum_total cstotal;
2410 	struct ufsmount *ump;
2411 	struct cg *cgp;
2412 	struct buf *bp;
2413 	int error, cyl;
2414 
2415 	MNT_ILOCK(mp);
2416 	mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP;
2417 	if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) {
2418 		mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) |
2419 			MNTK_SOFTDEP | MNTK_NOASYNC;
2420 	}
2421 	MNT_IUNLOCK(mp);
2422 	ump = VFSTOUFS(mp);
2423 	LIST_INIT(&ump->softdep_workitem_pending);
2424 	LIST_INIT(&ump->softdep_journal_pending);
2425 	TAILQ_INIT(&ump->softdep_unlinked);
2426 	LIST_INIT(&ump->softdep_dirtycg);
2427 	ump->softdep_worklist_tail = NULL;
2428 	ump->softdep_on_worklist = 0;
2429 	ump->softdep_deps = 0;
2430 	if ((fs->fs_flags & FS_SUJ) &&
2431 	    (error = journal_mount(mp, fs, cred)) != 0) {
2432 		printf("Failed to start journal: %d\n", error);
2433 		return (error);
2434 	}
2435 	/*
2436 	 * When doing soft updates, the counters in the
2437 	 * superblock may have gotten out of sync. Recomputation
2438 	 * can take a long time and can be deferred for background
2439 	 * fsck.  However, the old behavior of scanning the cylinder
2440 	 * groups and recalculating them at mount time is available
2441 	 * by setting vfs.ffs.compute_summary_at_mount to one.
2442 	 */
2443 	if (compute_summary_at_mount == 0 || fs->fs_clean != 0)
2444 		return (0);
2445 	bzero(&cstotal, sizeof cstotal);
2446 	for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
2447 		if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)),
2448 		    fs->fs_cgsize, cred, &bp)) != 0) {
2449 			brelse(bp);
2450 			return (error);
2451 		}
2452 		cgp = (struct cg *)bp->b_data;
2453 		cstotal.cs_nffree += cgp->cg_cs.cs_nffree;
2454 		cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree;
2455 		cstotal.cs_nifree += cgp->cg_cs.cs_nifree;
2456 		cstotal.cs_ndir += cgp->cg_cs.cs_ndir;
2457 		fs->fs_cs(fs, cyl) = cgp->cg_cs;
2458 		brelse(bp);
2459 	}
2460 #ifdef DEBUG
2461 	if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
2462 		printf("%s: superblock summary recomputed\n", fs->fs_fsmnt);
2463 #endif
2464 	bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
2465 	return (0);
2466 }
2467 
2468 void
2469 softdep_unmount(mp)
2470 	struct mount *mp;
2471 {
2472 
2473 	MNT_ILOCK(mp);
2474 	mp->mnt_flag &= ~MNT_SOFTDEP;
2475 	if (MOUNTEDSUJ(mp) == 0) {
2476 		MNT_IUNLOCK(mp);
2477 		return;
2478 	}
2479 	mp->mnt_flag &= ~MNT_SUJ;
2480 	MNT_IUNLOCK(mp);
2481 	journal_unmount(mp);
2482 }
2483 
2484 static struct jblocks *
2485 jblocks_create(void)
2486 {
2487 	struct jblocks *jblocks;
2488 
2489 	jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO);
2490 	TAILQ_INIT(&jblocks->jb_segs);
2491 	jblocks->jb_avail = 10;
2492 	jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2493 	    M_JBLOCKS, M_WAITOK | M_ZERO);
2494 
2495 	return (jblocks);
2496 }
2497 
2498 static ufs2_daddr_t
2499 jblocks_alloc(jblocks, bytes, actual)
2500 	struct jblocks *jblocks;
2501 	int bytes;
2502 	int *actual;
2503 {
2504 	ufs2_daddr_t daddr;
2505 	struct jextent *jext;
2506 	int freecnt;
2507 	int blocks;
2508 
2509 	blocks = bytes / DEV_BSIZE;
2510 	jext = &jblocks->jb_extent[jblocks->jb_head];
2511 	freecnt = jext->je_blocks - jblocks->jb_off;
2512 	if (freecnt == 0) {
2513 		jblocks->jb_off = 0;
2514 		if (++jblocks->jb_head > jblocks->jb_used)
2515 			jblocks->jb_head = 0;
2516 		jext = &jblocks->jb_extent[jblocks->jb_head];
2517 		freecnt = jext->je_blocks;
2518 	}
2519 	if (freecnt > blocks)
2520 		freecnt = blocks;
2521 	*actual = freecnt * DEV_BSIZE;
2522 	daddr = jext->je_daddr + jblocks->jb_off;
2523 	jblocks->jb_off += freecnt;
2524 	jblocks->jb_free -= freecnt;
2525 
2526 	return (daddr);
2527 }
2528 
2529 static void
2530 jblocks_free(jblocks, mp, bytes)
2531 	struct jblocks *jblocks;
2532 	struct mount *mp;
2533 	int bytes;
2534 {
2535 
2536 	jblocks->jb_free += bytes / DEV_BSIZE;
2537 	if (jblocks->jb_suspended)
2538 		worklist_speedup();
2539 	wakeup(jblocks);
2540 }
2541 
2542 static void
2543 jblocks_destroy(jblocks)
2544 	struct jblocks *jblocks;
2545 {
2546 
2547 	if (jblocks->jb_extent)
2548 		free(jblocks->jb_extent, M_JBLOCKS);
2549 	free(jblocks, M_JBLOCKS);
2550 }
2551 
2552 static void
2553 jblocks_add(jblocks, daddr, blocks)
2554 	struct jblocks *jblocks;
2555 	ufs2_daddr_t daddr;
2556 	int blocks;
2557 {
2558 	struct jextent *jext;
2559 
2560 	jblocks->jb_blocks += blocks;
2561 	jblocks->jb_free += blocks;
2562 	jext = &jblocks->jb_extent[jblocks->jb_used];
2563 	/* Adding the first block. */
2564 	if (jext->je_daddr == 0) {
2565 		jext->je_daddr = daddr;
2566 		jext->je_blocks = blocks;
2567 		return;
2568 	}
2569 	/* Extending the last extent. */
2570 	if (jext->je_daddr + jext->je_blocks == daddr) {
2571 		jext->je_blocks += blocks;
2572 		return;
2573 	}
2574 	/* Adding a new extent. */
2575 	if (++jblocks->jb_used == jblocks->jb_avail) {
2576 		jblocks->jb_avail *= 2;
2577 		jext = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2578 		    M_JBLOCKS, M_WAITOK | M_ZERO);
2579 		memcpy(jext, jblocks->jb_extent,
2580 		    sizeof(struct jextent) * jblocks->jb_used);
2581 		free(jblocks->jb_extent, M_JBLOCKS);
2582 		jblocks->jb_extent = jext;
2583 	}
2584 	jext = &jblocks->jb_extent[jblocks->jb_used];
2585 	jext->je_daddr = daddr;
2586 	jext->je_blocks = blocks;
2587 	return;
2588 }
2589 
2590 int
2591 softdep_journal_lookup(mp, vpp)
2592 	struct mount *mp;
2593 	struct vnode **vpp;
2594 {
2595 	struct componentname cnp;
2596 	struct vnode *dvp;
2597 	ino_t sujournal;
2598 	int error;
2599 
2600 	error = VFS_VGET(mp, ROOTINO, LK_EXCLUSIVE, &dvp);
2601 	if (error)
2602 		return (error);
2603 	bzero(&cnp, sizeof(cnp));
2604 	cnp.cn_nameiop = LOOKUP;
2605 	cnp.cn_flags = ISLASTCN;
2606 	cnp.cn_thread = curthread;
2607 	cnp.cn_cred = curthread->td_ucred;
2608 	cnp.cn_pnbuf = SUJ_FILE;
2609 	cnp.cn_nameptr = SUJ_FILE;
2610 	cnp.cn_namelen = strlen(SUJ_FILE);
2611 	error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal);
2612 	vput(dvp);
2613 	if (error != 0)
2614 		return (error);
2615 	error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp);
2616 	return (error);
2617 }
2618 
2619 /*
2620  * Open and verify the journal file.
2621  */
2622 static int
2623 journal_mount(mp, fs, cred)
2624 	struct mount *mp;
2625 	struct fs *fs;
2626 	struct ucred *cred;
2627 {
2628 	struct jblocks *jblocks;
2629 	struct vnode *vp;
2630 	struct inode *ip;
2631 	ufs2_daddr_t blkno;
2632 	int bcount;
2633 	int error;
2634 	int i;
2635 
2636 	error = softdep_journal_lookup(mp, &vp);
2637 	if (error != 0) {
2638 		printf("Failed to find journal.  Use tunefs to create one\n");
2639 		return (error);
2640 	}
2641 	ip = VTOI(vp);
2642 	if (ip->i_size < SUJ_MIN) {
2643 		error = ENOSPC;
2644 		goto out;
2645 	}
2646 	bcount = lblkno(fs, ip->i_size);	/* Only use whole blocks. */
2647 	jblocks = jblocks_create();
2648 	for (i = 0; i < bcount; i++) {
2649 		error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL);
2650 		if (error)
2651 			break;
2652 		jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag));
2653 	}
2654 	if (error) {
2655 		jblocks_destroy(jblocks);
2656 		goto out;
2657 	}
2658 	jblocks->jb_low = jblocks->jb_free / 3;	/* Reserve 33%. */
2659 	jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */
2660 	VFSTOUFS(mp)->softdep_jblocks = jblocks;
2661 out:
2662 	if (error == 0) {
2663 		MNT_ILOCK(mp);
2664 		mp->mnt_flag |= MNT_SUJ;
2665 		mp->mnt_flag &= ~MNT_SOFTDEP;
2666 		MNT_IUNLOCK(mp);
2667 		/*
2668 		 * Only validate the journal contents if the
2669 		 * filesystem is clean, otherwise we write the logs
2670 		 * but they'll never be used.  If the filesystem was
2671 		 * still dirty when we mounted it the journal is
2672 		 * invalid and a new journal can only be valid if it
2673 		 * starts from a clean mount.
2674 		 */
2675 		if (fs->fs_clean) {
2676 			DIP_SET(ip, i_modrev, fs->fs_mtime);
2677 			ip->i_flags |= IN_MODIFIED;
2678 			ffs_update(vp, 1);
2679 		}
2680 	}
2681 	vput(vp);
2682 	return (error);
2683 }
2684 
2685 static void
2686 journal_unmount(mp)
2687 	struct mount *mp;
2688 {
2689 	struct ufsmount *ump;
2690 
2691 	ump = VFSTOUFS(mp);
2692 	if (ump->softdep_jblocks)
2693 		jblocks_destroy(ump->softdep_jblocks);
2694 	ump->softdep_jblocks = NULL;
2695 }
2696 
2697 /*
2698  * Called when a journal record is ready to be written.  Space is allocated
2699  * and the journal entry is created when the journal is flushed to stable
2700  * store.
2701  */
2702 static void
2703 add_to_journal(wk)
2704 	struct worklist *wk;
2705 {
2706 	struct ufsmount *ump;
2707 
2708 	rw_assert(&lk, RA_WLOCKED);
2709 	ump = VFSTOUFS(wk->wk_mp);
2710 	if (wk->wk_state & ONWORKLIST)
2711 		panic("add_to_journal: %s(0x%X) already on list",
2712 		    TYPENAME(wk->wk_type), wk->wk_state);
2713 	wk->wk_state |= ONWORKLIST | DEPCOMPLETE;
2714 	if (LIST_EMPTY(&ump->softdep_journal_pending)) {
2715 		ump->softdep_jblocks->jb_age = ticks;
2716 		LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list);
2717 	} else
2718 		LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list);
2719 	ump->softdep_journal_tail = wk;
2720 	ump->softdep_on_journal += 1;
2721 }
2722 
2723 /*
2724  * Remove an arbitrary item for the journal worklist maintain the tail
2725  * pointer.  This happens when a new operation obviates the need to
2726  * journal an old operation.
2727  */
2728 static void
2729 remove_from_journal(wk)
2730 	struct worklist *wk;
2731 {
2732 	struct ufsmount *ump;
2733 
2734 	rw_assert(&lk, RA_WLOCKED);
2735 	ump = VFSTOUFS(wk->wk_mp);
2736 #ifdef SUJ_DEBUG
2737 	{
2738 		struct worklist *wkn;
2739 
2740 		LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list)
2741 			if (wkn == wk)
2742 				break;
2743 		if (wkn == NULL)
2744 			panic("remove_from_journal: %p is not in journal", wk);
2745 	}
2746 #endif
2747 	/*
2748 	 * We emulate a TAILQ to save space in most structures which do not
2749 	 * require TAILQ semantics.  Here we must update the tail position
2750 	 * when removing the tail which is not the final entry. This works
2751 	 * only if the worklist linkage are at the beginning of the structure.
2752 	 */
2753 	if (ump->softdep_journal_tail == wk)
2754 		ump->softdep_journal_tail =
2755 		    (struct worklist *)wk->wk_list.le_prev;
2756 
2757 	WORKLIST_REMOVE(wk);
2758 	ump->softdep_on_journal -= 1;
2759 }
2760 
2761 /*
2762  * Check for journal space as well as dependency limits so the prelink
2763  * code can throttle both journaled and non-journaled filesystems.
2764  * Threshold is 0 for low and 1 for min.
2765  */
2766 static int
2767 journal_space(ump, thresh)
2768 	struct ufsmount *ump;
2769 	int thresh;
2770 {
2771 	struct jblocks *jblocks;
2772 	int avail;
2773 
2774 	jblocks = ump->softdep_jblocks;
2775 	if (jblocks == NULL)
2776 		return (1);
2777 	/*
2778 	 * We use a tighter restriction here to prevent request_cleanup()
2779 	 * running in threads from running into locks we currently hold.
2780 	 */
2781 	if (dep_current[D_INODEDEP] > (max_softdeps / 10) * 9)
2782 		return (0);
2783 	if (thresh)
2784 		thresh = jblocks->jb_min;
2785 	else
2786 		thresh = jblocks->jb_low;
2787 	avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE;
2788 	avail = jblocks->jb_free - avail;
2789 
2790 	return (avail > thresh);
2791 }
2792 
2793 static void
2794 journal_suspend(ump)
2795 	struct ufsmount *ump;
2796 {
2797 	struct jblocks *jblocks;
2798 	struct mount *mp;
2799 
2800 	mp = UFSTOVFS(ump);
2801 	jblocks = ump->softdep_jblocks;
2802 	MNT_ILOCK(mp);
2803 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
2804 		stat_journal_min++;
2805 		mp->mnt_kern_flag |= MNTK_SUSPEND;
2806 		mp->mnt_susp_owner = FIRST_THREAD_IN_PROC(softdepproc);
2807 	}
2808 	jblocks->jb_suspended = 1;
2809 	MNT_IUNLOCK(mp);
2810 }
2811 
2812 static int
2813 journal_unsuspend(struct ufsmount *ump)
2814 {
2815 	struct jblocks *jblocks;
2816 	struct mount *mp;
2817 
2818 	mp = UFSTOVFS(ump);
2819 	jblocks = ump->softdep_jblocks;
2820 
2821 	if (jblocks != NULL && jblocks->jb_suspended &&
2822 	    journal_space(ump, jblocks->jb_min)) {
2823 		jblocks->jb_suspended = 0;
2824 		FREE_LOCK(&lk);
2825 		mp->mnt_susp_owner = curthread;
2826 		vfs_write_resume(mp, 0);
2827 		ACQUIRE_LOCK(&lk);
2828 		return (1);
2829 	}
2830 	return (0);
2831 }
2832 
2833 /*
2834  * Called before any allocation function to be certain that there is
2835  * sufficient space in the journal prior to creating any new records.
2836  * Since in the case of block allocation we may have multiple locked
2837  * buffers at the time of the actual allocation we can not block
2838  * when the journal records are created.  Doing so would create a deadlock
2839  * if any of these buffers needed to be flushed to reclaim space.  Instead
2840  * we require a sufficiently large amount of available space such that
2841  * each thread in the system could have passed this allocation check and
2842  * still have sufficient free space.  With 20% of a minimum journal size
2843  * of 1MB we have 6553 records available.
2844  */
2845 int
2846 softdep_prealloc(vp, waitok)
2847 	struct vnode *vp;
2848 	int waitok;
2849 {
2850 	struct ufsmount *ump;
2851 
2852 	/*
2853 	 * Nothing to do if we are not running journaled soft updates.
2854 	 * If we currently hold the snapshot lock, we must avoid handling
2855 	 * other resources that could cause deadlock.
2856 	 */
2857 	if (DOINGSUJ(vp) == 0 || IS_SNAPSHOT(VTOI(vp)))
2858 		return (0);
2859 	ump = VFSTOUFS(vp->v_mount);
2860 	ACQUIRE_LOCK(&lk);
2861 	if (journal_space(ump, 0)) {
2862 		FREE_LOCK(&lk);
2863 		return (0);
2864 	}
2865 	stat_journal_low++;
2866 	FREE_LOCK(&lk);
2867 	if (waitok == MNT_NOWAIT)
2868 		return (ENOSPC);
2869 	/*
2870 	 * Attempt to sync this vnode once to flush any journal
2871 	 * work attached to it.
2872 	 */
2873 	if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0)
2874 		ffs_syncvnode(vp, waitok, 0);
2875 	ACQUIRE_LOCK(&lk);
2876 	process_removes(vp);
2877 	process_truncates(vp);
2878 	if (journal_space(ump, 0) == 0) {
2879 		softdep_speedup();
2880 		if (journal_space(ump, 1) == 0)
2881 			journal_suspend(ump);
2882 	}
2883 	FREE_LOCK(&lk);
2884 
2885 	return (0);
2886 }
2887 
2888 /*
2889  * Before adjusting a link count on a vnode verify that we have sufficient
2890  * journal space.  If not, process operations that depend on the currently
2891  * locked pair of vnodes to try to flush space as the syncer, buf daemon,
2892  * and softdep flush threads can not acquire these locks to reclaim space.
2893  */
2894 static void
2895 softdep_prelink(dvp, vp)
2896 	struct vnode *dvp;
2897 	struct vnode *vp;
2898 {
2899 	struct ufsmount *ump;
2900 
2901 	ump = VFSTOUFS(dvp->v_mount);
2902 	rw_assert(&lk, RA_WLOCKED);
2903 	/*
2904 	 * Nothing to do if we have sufficient journal space.
2905 	 * If we currently hold the snapshot lock, we must avoid
2906 	 * handling other resources that could cause deadlock.
2907 	 */
2908 	if (journal_space(ump, 0) || (vp && IS_SNAPSHOT(VTOI(vp))))
2909 		return;
2910 	stat_journal_low++;
2911 	FREE_LOCK(&lk);
2912 	if (vp)
2913 		ffs_syncvnode(vp, MNT_NOWAIT, 0);
2914 	ffs_syncvnode(dvp, MNT_WAIT, 0);
2915 	ACQUIRE_LOCK(&lk);
2916 	/* Process vp before dvp as it may create .. removes. */
2917 	if (vp) {
2918 		process_removes(vp);
2919 		process_truncates(vp);
2920 	}
2921 	process_removes(dvp);
2922 	process_truncates(dvp);
2923 	softdep_speedup();
2924 	process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT);
2925 	if (journal_space(ump, 0) == 0) {
2926 		softdep_speedup();
2927 		if (journal_space(ump, 1) == 0)
2928 			journal_suspend(ump);
2929 	}
2930 }
2931 
2932 static void
2933 jseg_write(ump, jseg, data)
2934 	struct ufsmount *ump;
2935 	struct jseg *jseg;
2936 	uint8_t *data;
2937 {
2938 	struct jsegrec *rec;
2939 
2940 	rec = (struct jsegrec *)data;
2941 	rec->jsr_seq = jseg->js_seq;
2942 	rec->jsr_oldest = jseg->js_oldseq;
2943 	rec->jsr_cnt = jseg->js_cnt;
2944 	rec->jsr_blocks = jseg->js_size / ump->um_devvp->v_bufobj.bo_bsize;
2945 	rec->jsr_crc = 0;
2946 	rec->jsr_time = ump->um_fs->fs_mtime;
2947 }
2948 
2949 static inline void
2950 inoref_write(inoref, jseg, rec)
2951 	struct inoref *inoref;
2952 	struct jseg *jseg;
2953 	struct jrefrec *rec;
2954 {
2955 
2956 	inoref->if_jsegdep->jd_seg = jseg;
2957 	rec->jr_ino = inoref->if_ino;
2958 	rec->jr_parent = inoref->if_parent;
2959 	rec->jr_nlink = inoref->if_nlink;
2960 	rec->jr_mode = inoref->if_mode;
2961 	rec->jr_diroff = inoref->if_diroff;
2962 }
2963 
2964 static void
2965 jaddref_write(jaddref, jseg, data)
2966 	struct jaddref *jaddref;
2967 	struct jseg *jseg;
2968 	uint8_t *data;
2969 {
2970 	struct jrefrec *rec;
2971 
2972 	rec = (struct jrefrec *)data;
2973 	rec->jr_op = JOP_ADDREF;
2974 	inoref_write(&jaddref->ja_ref, jseg, rec);
2975 }
2976 
2977 static void
2978 jremref_write(jremref, jseg, data)
2979 	struct jremref *jremref;
2980 	struct jseg *jseg;
2981 	uint8_t *data;
2982 {
2983 	struct jrefrec *rec;
2984 
2985 	rec = (struct jrefrec *)data;
2986 	rec->jr_op = JOP_REMREF;
2987 	inoref_write(&jremref->jr_ref, jseg, rec);
2988 }
2989 
2990 static void
2991 jmvref_write(jmvref, jseg, data)
2992 	struct jmvref *jmvref;
2993 	struct jseg *jseg;
2994 	uint8_t *data;
2995 {
2996 	struct jmvrec *rec;
2997 
2998 	rec = (struct jmvrec *)data;
2999 	rec->jm_op = JOP_MVREF;
3000 	rec->jm_ino = jmvref->jm_ino;
3001 	rec->jm_parent = jmvref->jm_parent;
3002 	rec->jm_oldoff = jmvref->jm_oldoff;
3003 	rec->jm_newoff = jmvref->jm_newoff;
3004 }
3005 
3006 static void
3007 jnewblk_write(jnewblk, jseg, data)
3008 	struct jnewblk *jnewblk;
3009 	struct jseg *jseg;
3010 	uint8_t *data;
3011 {
3012 	struct jblkrec *rec;
3013 
3014 	jnewblk->jn_jsegdep->jd_seg = jseg;
3015 	rec = (struct jblkrec *)data;
3016 	rec->jb_op = JOP_NEWBLK;
3017 	rec->jb_ino = jnewblk->jn_ino;
3018 	rec->jb_blkno = jnewblk->jn_blkno;
3019 	rec->jb_lbn = jnewblk->jn_lbn;
3020 	rec->jb_frags = jnewblk->jn_frags;
3021 	rec->jb_oldfrags = jnewblk->jn_oldfrags;
3022 }
3023 
3024 static void
3025 jfreeblk_write(jfreeblk, jseg, data)
3026 	struct jfreeblk *jfreeblk;
3027 	struct jseg *jseg;
3028 	uint8_t *data;
3029 {
3030 	struct jblkrec *rec;
3031 
3032 	jfreeblk->jf_dep.jb_jsegdep->jd_seg = jseg;
3033 	rec = (struct jblkrec *)data;
3034 	rec->jb_op = JOP_FREEBLK;
3035 	rec->jb_ino = jfreeblk->jf_ino;
3036 	rec->jb_blkno = jfreeblk->jf_blkno;
3037 	rec->jb_lbn = jfreeblk->jf_lbn;
3038 	rec->jb_frags = jfreeblk->jf_frags;
3039 	rec->jb_oldfrags = 0;
3040 }
3041 
3042 static void
3043 jfreefrag_write(jfreefrag, jseg, data)
3044 	struct jfreefrag *jfreefrag;
3045 	struct jseg *jseg;
3046 	uint8_t *data;
3047 {
3048 	struct jblkrec *rec;
3049 
3050 	jfreefrag->fr_jsegdep->jd_seg = jseg;
3051 	rec = (struct jblkrec *)data;
3052 	rec->jb_op = JOP_FREEBLK;
3053 	rec->jb_ino = jfreefrag->fr_ino;
3054 	rec->jb_blkno = jfreefrag->fr_blkno;
3055 	rec->jb_lbn = jfreefrag->fr_lbn;
3056 	rec->jb_frags = jfreefrag->fr_frags;
3057 	rec->jb_oldfrags = 0;
3058 }
3059 
3060 static void
3061 jtrunc_write(jtrunc, jseg, data)
3062 	struct jtrunc *jtrunc;
3063 	struct jseg *jseg;
3064 	uint8_t *data;
3065 {
3066 	struct jtrncrec *rec;
3067 
3068 	jtrunc->jt_dep.jb_jsegdep->jd_seg = jseg;
3069 	rec = (struct jtrncrec *)data;
3070 	rec->jt_op = JOP_TRUNC;
3071 	rec->jt_ino = jtrunc->jt_ino;
3072 	rec->jt_size = jtrunc->jt_size;
3073 	rec->jt_extsize = jtrunc->jt_extsize;
3074 }
3075 
3076 static void
3077 jfsync_write(jfsync, jseg, data)
3078 	struct jfsync *jfsync;
3079 	struct jseg *jseg;
3080 	uint8_t *data;
3081 {
3082 	struct jtrncrec *rec;
3083 
3084 	rec = (struct jtrncrec *)data;
3085 	rec->jt_op = JOP_SYNC;
3086 	rec->jt_ino = jfsync->jfs_ino;
3087 	rec->jt_size = jfsync->jfs_size;
3088 	rec->jt_extsize = jfsync->jfs_extsize;
3089 }
3090 
3091 static void
3092 softdep_flushjournal(mp)
3093 	struct mount *mp;
3094 {
3095 	struct jblocks *jblocks;
3096 	struct ufsmount *ump;
3097 
3098 	if (MOUNTEDSUJ(mp) == 0)
3099 		return;
3100 	ump = VFSTOUFS(mp);
3101 	jblocks = ump->softdep_jblocks;
3102 	ACQUIRE_LOCK(&lk);
3103 	while (ump->softdep_on_journal) {
3104 		jblocks->jb_needseg = 1;
3105 		softdep_process_journal(mp, NULL, MNT_WAIT);
3106 	}
3107 	FREE_LOCK(&lk);
3108 }
3109 
3110 static void softdep_synchronize_completed(struct bio *);
3111 static void softdep_synchronize(struct bio *, struct ufsmount *, void *);
3112 
3113 static void
3114 softdep_synchronize_completed(bp)
3115         struct bio *bp;
3116 {
3117 	struct jseg *oldest;
3118 	struct jseg *jseg;
3119 
3120 	/*
3121 	 * caller1 marks the last segment written before we issued the
3122 	 * synchronize cache.
3123 	 */
3124 	jseg = bp->bio_caller1;
3125 	oldest = NULL;
3126 	ACQUIRE_LOCK(&lk);
3127 	/*
3128 	 * Mark all the journal entries waiting on the synchronize cache
3129 	 * as completed so they may continue on.
3130 	 */
3131 	while (jseg != NULL && (jseg->js_state & COMPLETE) == 0) {
3132 		jseg->js_state |= COMPLETE;
3133 		oldest = jseg;
3134 		jseg = TAILQ_PREV(jseg, jseglst, js_next);
3135 	}
3136 	/*
3137 	 * Restart deferred journal entry processing from the oldest
3138 	 * completed jseg.
3139 	 */
3140 	if (oldest)
3141 		complete_jsegs(oldest);
3142 
3143 	FREE_LOCK(&lk);
3144 	g_destroy_bio(bp);
3145 }
3146 
3147 /*
3148  * Send BIO_FLUSH/SYNCHRONIZE CACHE to the device to enforce write ordering
3149  * barriers.  The journal must be written prior to any blocks that depend
3150  * on it and the journal can not be released until the blocks have be
3151  * written.  This code handles both barriers simultaneously.
3152  */
3153 static void
3154 softdep_synchronize(bp, ump, caller1)
3155 	struct bio *bp;
3156 	struct ufsmount *ump;
3157 	void *caller1;
3158 {
3159 
3160 	bp->bio_cmd = BIO_FLUSH;
3161 	bp->bio_flags |= BIO_ORDERED;
3162 	bp->bio_data = NULL;
3163 	bp->bio_offset = ump->um_cp->provider->mediasize;
3164 	bp->bio_length = 0;
3165 	bp->bio_done = softdep_synchronize_completed;
3166 	bp->bio_caller1 = caller1;
3167 	g_io_request(bp,
3168 	    (struct g_consumer *)ump->um_devvp->v_bufobj.bo_private);
3169 }
3170 
3171 /*
3172  * Flush some journal records to disk.
3173  */
3174 static void
3175 softdep_process_journal(mp, needwk, flags)
3176 	struct mount *mp;
3177 	struct worklist *needwk;
3178 	int flags;
3179 {
3180 	struct jblocks *jblocks;
3181 	struct ufsmount *ump;
3182 	struct worklist *wk;
3183 	struct jseg *jseg;
3184 	struct buf *bp;
3185 	struct bio *bio;
3186 	uint8_t *data;
3187 	struct fs *fs;
3188 	int shouldflush;
3189 	int segwritten;
3190 	int jrecmin;	/* Minimum records per block. */
3191 	int jrecmax;	/* Maximum records per block. */
3192 	int size;
3193 	int cnt;
3194 	int off;
3195 	int devbsize;
3196 
3197 	if (MOUNTEDSUJ(mp) == 0)
3198 		return;
3199 	shouldflush = softdep_flushcache;
3200 	bio = NULL;
3201 	jseg = NULL;
3202 	ump = VFSTOUFS(mp);
3203 	fs = ump->um_fs;
3204 	jblocks = ump->softdep_jblocks;
3205 	devbsize = ump->um_devvp->v_bufobj.bo_bsize;
3206 	/*
3207 	 * We write anywhere between a disk block and fs block.  The upper
3208 	 * bound is picked to prevent buffer cache fragmentation and limit
3209 	 * processing time per I/O.
3210 	 */
3211 	jrecmin = (devbsize / JREC_SIZE) - 1; /* -1 for seg header */
3212 	jrecmax = (fs->fs_bsize / devbsize) * jrecmin;
3213 	segwritten = 0;
3214 	for (;;) {
3215 		cnt = ump->softdep_on_journal;
3216 		/*
3217 		 * Criteria for writing a segment:
3218 		 * 1) We have a full block.
3219 		 * 2) We're called from jwait() and haven't found the
3220 		 *    journal item yet.
3221 		 * 3) Always write if needseg is set.
3222 		 * 4) If we are called from process_worklist and have
3223 		 *    not yet written anything we write a partial block
3224 		 *    to enforce a 1 second maximum latency on journal
3225 		 *    entries.
3226 		 */
3227 		if (cnt < (jrecmax - 1) && needwk == NULL &&
3228 		    jblocks->jb_needseg == 0 && (segwritten || cnt == 0))
3229 			break;
3230 		cnt++;
3231 		/*
3232 		 * Verify some free journal space.  softdep_prealloc() should
3233 	 	 * guarantee that we don't run out so this is indicative of
3234 		 * a problem with the flow control.  Try to recover
3235 		 * gracefully in any event.
3236 		 */
3237 		while (jblocks->jb_free == 0) {
3238 			if (flags != MNT_WAIT)
3239 				break;
3240 			printf("softdep: Out of journal space!\n");
3241 			softdep_speedup();
3242 			msleep(jblocks, &lk, PRIBIO, "jblocks", hz);
3243 		}
3244 		FREE_LOCK(&lk);
3245 		jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS);
3246 		workitem_alloc(&jseg->js_list, D_JSEG, mp);
3247 		LIST_INIT(&jseg->js_entries);
3248 		LIST_INIT(&jseg->js_indirs);
3249 		jseg->js_state = ATTACHED;
3250 		if (shouldflush == 0)
3251 			jseg->js_state |= COMPLETE;
3252 		else if (bio == NULL)
3253 			bio = g_alloc_bio();
3254 		jseg->js_jblocks = jblocks;
3255 		bp = geteblk(fs->fs_bsize, 0);
3256 		ACQUIRE_LOCK(&lk);
3257 		/*
3258 		 * If there was a race while we were allocating the block
3259 		 * and jseg the entry we care about was likely written.
3260 		 * We bail out in both the WAIT and NOWAIT case and assume
3261 		 * the caller will loop if the entry it cares about is
3262 		 * not written.
3263 		 */
3264 		cnt = ump->softdep_on_journal;
3265 		if (cnt + jblocks->jb_needseg == 0 || jblocks->jb_free == 0) {
3266 			bp->b_flags |= B_INVAL | B_NOCACHE;
3267 			WORKITEM_FREE(jseg, D_JSEG);
3268 			FREE_LOCK(&lk);
3269 			brelse(bp);
3270 			ACQUIRE_LOCK(&lk);
3271 			break;
3272 		}
3273 		/*
3274 		 * Calculate the disk block size required for the available
3275 		 * records rounded to the min size.
3276 		 */
3277 		if (cnt == 0)
3278 			size = devbsize;
3279 		else if (cnt < jrecmax)
3280 			size = howmany(cnt, jrecmin) * devbsize;
3281 		else
3282 			size = fs->fs_bsize;
3283 		/*
3284 		 * Allocate a disk block for this journal data and account
3285 		 * for truncation of the requested size if enough contiguous
3286 		 * space was not available.
3287 		 */
3288 		bp->b_blkno = jblocks_alloc(jblocks, size, &size);
3289 		bp->b_lblkno = bp->b_blkno;
3290 		bp->b_offset = bp->b_blkno * DEV_BSIZE;
3291 		bp->b_bcount = size;
3292 		bp->b_flags &= ~B_INVAL;
3293 		bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY;
3294 		/*
3295 		 * Initialize our jseg with cnt records.  Assign the next
3296 		 * sequence number to it and link it in-order.
3297 		 */
3298 		cnt = MIN(cnt, (size / devbsize) * jrecmin);
3299 		jseg->js_buf = bp;
3300 		jseg->js_cnt = cnt;
3301 		jseg->js_refs = cnt + 1;	/* Self ref. */
3302 		jseg->js_size = size;
3303 		jseg->js_seq = jblocks->jb_nextseq++;
3304 		if (jblocks->jb_oldestseg == NULL)
3305 			jblocks->jb_oldestseg = jseg;
3306 		jseg->js_oldseq = jblocks->jb_oldestseg->js_seq;
3307 		TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next);
3308 		if (jblocks->jb_writeseg == NULL)
3309 			jblocks->jb_writeseg = jseg;
3310 		/*
3311 		 * Start filling in records from the pending list.
3312 		 */
3313 		data = bp->b_data;
3314 		off = 0;
3315 		while ((wk = LIST_FIRST(&ump->softdep_journal_pending))
3316 		    != NULL) {
3317 			if (cnt == 0)
3318 				break;
3319 			/* Place a segment header on every device block. */
3320 			if ((off % devbsize) == 0) {
3321 				jseg_write(ump, jseg, data);
3322 				off += JREC_SIZE;
3323 				data = bp->b_data + off;
3324 			}
3325 			if (wk == needwk)
3326 				needwk = NULL;
3327 			remove_from_journal(wk);
3328 			wk->wk_state |= INPROGRESS;
3329 			WORKLIST_INSERT(&jseg->js_entries, wk);
3330 			switch (wk->wk_type) {
3331 			case D_JADDREF:
3332 				jaddref_write(WK_JADDREF(wk), jseg, data);
3333 				break;
3334 			case D_JREMREF:
3335 				jremref_write(WK_JREMREF(wk), jseg, data);
3336 				break;
3337 			case D_JMVREF:
3338 				jmvref_write(WK_JMVREF(wk), jseg, data);
3339 				break;
3340 			case D_JNEWBLK:
3341 				jnewblk_write(WK_JNEWBLK(wk), jseg, data);
3342 				break;
3343 			case D_JFREEBLK:
3344 				jfreeblk_write(WK_JFREEBLK(wk), jseg, data);
3345 				break;
3346 			case D_JFREEFRAG:
3347 				jfreefrag_write(WK_JFREEFRAG(wk), jseg, data);
3348 				break;
3349 			case D_JTRUNC:
3350 				jtrunc_write(WK_JTRUNC(wk), jseg, data);
3351 				break;
3352 			case D_JFSYNC:
3353 				jfsync_write(WK_JFSYNC(wk), jseg, data);
3354 				break;
3355 			default:
3356 				panic("process_journal: Unknown type %s",
3357 				    TYPENAME(wk->wk_type));
3358 				/* NOTREACHED */
3359 			}
3360 			off += JREC_SIZE;
3361 			data = bp->b_data + off;
3362 			cnt--;
3363 		}
3364 		/*
3365 		 * Write this one buffer and continue.
3366 		 */
3367 		segwritten = 1;
3368 		jblocks->jb_needseg = 0;
3369 		WORKLIST_INSERT(&bp->b_dep, &jseg->js_list);
3370 		FREE_LOCK(&lk);
3371 		pbgetvp(ump->um_devvp, bp);
3372 		/*
3373 		 * We only do the blocking wait once we find the journal
3374 		 * entry we're looking for.
3375 		 */
3376 		if (needwk == NULL && flags == MNT_WAIT)
3377 			bwrite(bp);
3378 		else
3379 			bawrite(bp);
3380 		ACQUIRE_LOCK(&lk);
3381 	}
3382 	/*
3383 	 * If we wrote a segment issue a synchronize cache so the journal
3384 	 * is reflected on disk before the data is written.  Since reclaiming
3385 	 * journal space also requires writing a journal record this
3386 	 * process also enforces a barrier before reclamation.
3387 	 */
3388 	if (segwritten && shouldflush) {
3389 		softdep_synchronize(bio, ump,
3390 		    TAILQ_LAST(&jblocks->jb_segs, jseglst));
3391 	} else if (bio)
3392 		g_destroy_bio(bio);
3393 	/*
3394 	 * If we've suspended the filesystem because we ran out of journal
3395 	 * space either try to sync it here to make some progress or
3396 	 * unsuspend it if we already have.
3397 	 */
3398 	if (flags == 0 && jblocks->jb_suspended) {
3399 		if (journal_unsuspend(ump))
3400 			return;
3401 		FREE_LOCK(&lk);
3402 		VFS_SYNC(mp, MNT_NOWAIT);
3403 		ffs_sbupdate(ump, MNT_WAIT, 0);
3404 		ACQUIRE_LOCK(&lk);
3405 	}
3406 }
3407 
3408 /*
3409  * Complete a jseg, allowing all dependencies awaiting journal writes
3410  * to proceed.  Each journal dependency also attaches a jsegdep to dependent
3411  * structures so that the journal segment can be freed to reclaim space.
3412  */
3413 static void
3414 complete_jseg(jseg)
3415 	struct jseg *jseg;
3416 {
3417 	struct worklist *wk;
3418 	struct jmvref *jmvref;
3419 	int waiting;
3420 #ifdef INVARIANTS
3421 	int i = 0;
3422 #endif
3423 
3424 	while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) {
3425 		WORKLIST_REMOVE(wk);
3426 		waiting = wk->wk_state & IOWAITING;
3427 		wk->wk_state &= ~(INPROGRESS | IOWAITING);
3428 		wk->wk_state |= COMPLETE;
3429 		KASSERT(i++ < jseg->js_cnt,
3430 		    ("handle_written_jseg: overflow %d >= %d",
3431 		    i - 1, jseg->js_cnt));
3432 		switch (wk->wk_type) {
3433 		case D_JADDREF:
3434 			handle_written_jaddref(WK_JADDREF(wk));
3435 			break;
3436 		case D_JREMREF:
3437 			handle_written_jremref(WK_JREMREF(wk));
3438 			break;
3439 		case D_JMVREF:
3440 			rele_jseg(jseg);	/* No jsegdep. */
3441 			jmvref = WK_JMVREF(wk);
3442 			LIST_REMOVE(jmvref, jm_deps);
3443 			if ((jmvref->jm_pagedep->pd_state & ONWORKLIST) == 0)
3444 				free_pagedep(jmvref->jm_pagedep);
3445 			WORKITEM_FREE(jmvref, D_JMVREF);
3446 			break;
3447 		case D_JNEWBLK:
3448 			handle_written_jnewblk(WK_JNEWBLK(wk));
3449 			break;
3450 		case D_JFREEBLK:
3451 			handle_written_jblkdep(&WK_JFREEBLK(wk)->jf_dep);
3452 			break;
3453 		case D_JTRUNC:
3454 			handle_written_jblkdep(&WK_JTRUNC(wk)->jt_dep);
3455 			break;
3456 		case D_JFSYNC:
3457 			rele_jseg(jseg);	/* No jsegdep. */
3458 			WORKITEM_FREE(wk, D_JFSYNC);
3459 			break;
3460 		case D_JFREEFRAG:
3461 			handle_written_jfreefrag(WK_JFREEFRAG(wk));
3462 			break;
3463 		default:
3464 			panic("handle_written_jseg: Unknown type %s",
3465 			    TYPENAME(wk->wk_type));
3466 			/* NOTREACHED */
3467 		}
3468 		if (waiting)
3469 			wakeup(wk);
3470 	}
3471 	/* Release the self reference so the structure may be freed. */
3472 	rele_jseg(jseg);
3473 }
3474 
3475 /*
3476  * Determine which jsegs are ready for completion processing.  Waits for
3477  * synchronize cache to complete as well as forcing in-order completion
3478  * of journal entries.
3479  */
3480 static void
3481 complete_jsegs(jseg)
3482 	struct jseg *jseg;
3483 {
3484 	struct jblocks *jblocks;
3485 	struct jseg *jsegn;
3486 
3487 	jblocks = jseg->js_jblocks;
3488 	/*
3489 	 * Don't allow out of order completions.  If this isn't the first
3490 	 * block wait for it to write before we're done.
3491 	 */
3492 	if (jseg != jblocks->jb_writeseg)
3493 		return;
3494 	/* Iterate through available jsegs processing their entries. */
3495 	while (jseg && (jseg->js_state & ALLCOMPLETE) == ALLCOMPLETE) {
3496 		jblocks->jb_oldestwrseq = jseg->js_oldseq;
3497 		jsegn = TAILQ_NEXT(jseg, js_next);
3498 		complete_jseg(jseg);
3499 		jseg = jsegn;
3500 	}
3501 	jblocks->jb_writeseg = jseg;
3502 	/*
3503 	 * Attempt to free jsegs now that oldestwrseq may have advanced.
3504 	 */
3505 	free_jsegs(jblocks);
3506 }
3507 
3508 /*
3509  * Mark a jseg as DEPCOMPLETE and throw away the buffer.  Attempt to handle
3510  * the final completions.
3511  */
3512 static void
3513 handle_written_jseg(jseg, bp)
3514 	struct jseg *jseg;
3515 	struct buf *bp;
3516 {
3517 
3518 	if (jseg->js_refs == 0)
3519 		panic("handle_written_jseg: No self-reference on %p", jseg);
3520 	jseg->js_state |= DEPCOMPLETE;
3521 	/*
3522 	 * We'll never need this buffer again, set flags so it will be
3523 	 * discarded.
3524 	 */
3525 	bp->b_flags |= B_INVAL | B_NOCACHE;
3526 	pbrelvp(bp);
3527 	complete_jsegs(jseg);
3528 }
3529 
3530 static inline struct jsegdep *
3531 inoref_jseg(inoref)
3532 	struct inoref *inoref;
3533 {
3534 	struct jsegdep *jsegdep;
3535 
3536 	jsegdep = inoref->if_jsegdep;
3537 	inoref->if_jsegdep = NULL;
3538 
3539 	return (jsegdep);
3540 }
3541 
3542 /*
3543  * Called once a jremref has made it to stable store.  The jremref is marked
3544  * complete and we attempt to free it.  Any pagedeps writes sleeping waiting
3545  * for the jremref to complete will be awoken by free_jremref.
3546  */
3547 static void
3548 handle_written_jremref(jremref)
3549 	struct jremref *jremref;
3550 {
3551 	struct inodedep *inodedep;
3552 	struct jsegdep *jsegdep;
3553 	struct dirrem *dirrem;
3554 
3555 	/* Grab the jsegdep. */
3556 	jsegdep = inoref_jseg(&jremref->jr_ref);
3557 	/*
3558 	 * Remove us from the inoref list.
3559 	 */
3560 	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino,
3561 	    0, &inodedep) == 0)
3562 		panic("handle_written_jremref: Lost inodedep");
3563 	TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
3564 	/*
3565 	 * Complete the dirrem.
3566 	 */
3567 	dirrem = jremref->jr_dirrem;
3568 	jremref->jr_dirrem = NULL;
3569 	LIST_REMOVE(jremref, jr_deps);
3570 	jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT;
3571 	jwork_insert(&dirrem->dm_jwork, jsegdep);
3572 	if (LIST_EMPTY(&dirrem->dm_jremrefhd) &&
3573 	    (dirrem->dm_state & COMPLETE) != 0)
3574 		add_to_worklist(&dirrem->dm_list, 0);
3575 	free_jremref(jremref);
3576 }
3577 
3578 /*
3579  * Called once a jaddref has made it to stable store.  The dependency is
3580  * marked complete and any dependent structures are added to the inode
3581  * bufwait list to be completed as soon as it is written.  If a bitmap write
3582  * depends on this entry we move the inode into the inodedephd of the
3583  * bmsafemap dependency and attempt to remove the jaddref from the bmsafemap.
3584  */
3585 static void
3586 handle_written_jaddref(jaddref)
3587 	struct jaddref *jaddref;
3588 {
3589 	struct jsegdep *jsegdep;
3590 	struct inodedep *inodedep;
3591 	struct diradd *diradd;
3592 	struct mkdir *mkdir;
3593 
3594 	/* Grab the jsegdep. */
3595 	jsegdep = inoref_jseg(&jaddref->ja_ref);
3596 	mkdir = NULL;
3597 	diradd = NULL;
3598 	if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
3599 	    0, &inodedep) == 0)
3600 		panic("handle_written_jaddref: Lost inodedep.");
3601 	if (jaddref->ja_diradd == NULL)
3602 		panic("handle_written_jaddref: No dependency");
3603 	if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) {
3604 		diradd = jaddref->ja_diradd;
3605 		WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list);
3606 	} else if (jaddref->ja_state & MKDIR_PARENT) {
3607 		mkdir = jaddref->ja_mkdir;
3608 		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list);
3609 	} else if (jaddref->ja_state & MKDIR_BODY)
3610 		mkdir = jaddref->ja_mkdir;
3611 	else
3612 		panic("handle_written_jaddref: Unknown dependency %p",
3613 		    jaddref->ja_diradd);
3614 	jaddref->ja_diradd = NULL;	/* also clears ja_mkdir */
3615 	/*
3616 	 * Remove us from the inode list.
3617 	 */
3618 	TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps);
3619 	/*
3620 	 * The mkdir may be waiting on the jaddref to clear before freeing.
3621 	 */
3622 	if (mkdir) {
3623 		KASSERT(mkdir->md_list.wk_type == D_MKDIR,
3624 		    ("handle_written_jaddref: Incorrect type for mkdir %s",
3625 		    TYPENAME(mkdir->md_list.wk_type)));
3626 		mkdir->md_jaddref = NULL;
3627 		diradd = mkdir->md_diradd;
3628 		mkdir->md_state |= DEPCOMPLETE;
3629 		complete_mkdir(mkdir);
3630 	}
3631 	jwork_insert(&diradd->da_jwork, jsegdep);
3632 	if (jaddref->ja_state & NEWBLOCK) {
3633 		inodedep->id_state |= ONDEPLIST;
3634 		LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd,
3635 		    inodedep, id_deps);
3636 	}
3637 	free_jaddref(jaddref);
3638 }
3639 
3640 /*
3641  * Called once a jnewblk journal is written.  The allocdirect or allocindir
3642  * is placed in the bmsafemap to await notification of a written bitmap.  If
3643  * the operation was canceled we add the segdep to the appropriate
3644  * dependency to free the journal space once the canceling operation
3645  * completes.
3646  */
3647 static void
3648 handle_written_jnewblk(jnewblk)
3649 	struct jnewblk *jnewblk;
3650 {
3651 	struct bmsafemap *bmsafemap;
3652 	struct freefrag *freefrag;
3653 	struct freework *freework;
3654 	struct jsegdep *jsegdep;
3655 	struct newblk *newblk;
3656 
3657 	/* Grab the jsegdep. */
3658 	jsegdep = jnewblk->jn_jsegdep;
3659 	jnewblk->jn_jsegdep = NULL;
3660 	if (jnewblk->jn_dep == NULL)
3661 		panic("handle_written_jnewblk: No dependency for the segdep.");
3662 	switch (jnewblk->jn_dep->wk_type) {
3663 	case D_NEWBLK:
3664 	case D_ALLOCDIRECT:
3665 	case D_ALLOCINDIR:
3666 		/*
3667 		 * Add the written block to the bmsafemap so it can
3668 		 * be notified when the bitmap is on disk.
3669 		 */
3670 		newblk = WK_NEWBLK(jnewblk->jn_dep);
3671 		newblk->nb_jnewblk = NULL;
3672 		if ((newblk->nb_state & GOINGAWAY) == 0) {
3673 			bmsafemap = newblk->nb_bmsafemap;
3674 			newblk->nb_state |= ONDEPLIST;
3675 			LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk,
3676 			    nb_deps);
3677 		}
3678 		jwork_insert(&newblk->nb_jwork, jsegdep);
3679 		break;
3680 	case D_FREEFRAG:
3681 		/*
3682 		 * A newblock being removed by a freefrag when replaced by
3683 		 * frag extension.
3684 		 */
3685 		freefrag = WK_FREEFRAG(jnewblk->jn_dep);
3686 		freefrag->ff_jdep = NULL;
3687 		jwork_insert(&freefrag->ff_jwork, jsegdep);
3688 		break;
3689 	case D_FREEWORK:
3690 		/*
3691 		 * A direct block was removed by truncate.
3692 		 */
3693 		freework = WK_FREEWORK(jnewblk->jn_dep);
3694 		freework->fw_jnewblk = NULL;
3695 		jwork_insert(&freework->fw_freeblks->fb_jwork, jsegdep);
3696 		break;
3697 	default:
3698 		panic("handle_written_jnewblk: Unknown type %d.",
3699 		    jnewblk->jn_dep->wk_type);
3700 	}
3701 	jnewblk->jn_dep = NULL;
3702 	free_jnewblk(jnewblk);
3703 }
3704 
3705 /*
3706  * Cancel a jfreefrag that won't be needed, probably due to colliding with
3707  * an in-flight allocation that has not yet been committed.  Divorce us
3708  * from the freefrag and mark it DEPCOMPLETE so that it may be added
3709  * to the worklist.
3710  */
3711 static void
3712 cancel_jfreefrag(jfreefrag)
3713 	struct jfreefrag *jfreefrag;
3714 {
3715 	struct freefrag *freefrag;
3716 
3717 	if (jfreefrag->fr_jsegdep) {
3718 		free_jsegdep(jfreefrag->fr_jsegdep);
3719 		jfreefrag->fr_jsegdep = NULL;
3720 	}
3721 	freefrag = jfreefrag->fr_freefrag;
3722 	jfreefrag->fr_freefrag = NULL;
3723 	free_jfreefrag(jfreefrag);
3724 	freefrag->ff_state |= DEPCOMPLETE;
3725 	CTR1(KTR_SUJ, "cancel_jfreefrag: blkno %jd", freefrag->ff_blkno);
3726 }
3727 
3728 /*
3729  * Free a jfreefrag when the parent freefrag is rendered obsolete.
3730  */
3731 static void
3732 free_jfreefrag(jfreefrag)
3733 	struct jfreefrag *jfreefrag;
3734 {
3735 
3736 	if (jfreefrag->fr_state & INPROGRESS)
3737 		WORKLIST_REMOVE(&jfreefrag->fr_list);
3738 	else if (jfreefrag->fr_state & ONWORKLIST)
3739 		remove_from_journal(&jfreefrag->fr_list);
3740 	if (jfreefrag->fr_freefrag != NULL)
3741 		panic("free_jfreefrag:  Still attached to a freefrag.");
3742 	WORKITEM_FREE(jfreefrag, D_JFREEFRAG);
3743 }
3744 
3745 /*
3746  * Called when the journal write for a jfreefrag completes.  The parent
3747  * freefrag is added to the worklist if this completes its dependencies.
3748  */
3749 static void
3750 handle_written_jfreefrag(jfreefrag)
3751 	struct jfreefrag *jfreefrag;
3752 {
3753 	struct jsegdep *jsegdep;
3754 	struct freefrag *freefrag;
3755 
3756 	/* Grab the jsegdep. */
3757 	jsegdep = jfreefrag->fr_jsegdep;
3758 	jfreefrag->fr_jsegdep = NULL;
3759 	freefrag = jfreefrag->fr_freefrag;
3760 	if (freefrag == NULL)
3761 		panic("handle_written_jfreefrag: No freefrag.");
3762 	freefrag->ff_state |= DEPCOMPLETE;
3763 	freefrag->ff_jdep = NULL;
3764 	jwork_insert(&freefrag->ff_jwork, jsegdep);
3765 	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
3766 		add_to_worklist(&freefrag->ff_list, 0);
3767 	jfreefrag->fr_freefrag = NULL;
3768 	free_jfreefrag(jfreefrag);
3769 }
3770 
3771 /*
3772  * Called when the journal write for a jfreeblk completes.  The jfreeblk
3773  * is removed from the freeblks list of pending journal writes and the
3774  * jsegdep is moved to the freeblks jwork to be completed when all blocks
3775  * have been reclaimed.
3776  */
3777 static void
3778 handle_written_jblkdep(jblkdep)
3779 	struct jblkdep *jblkdep;
3780 {
3781 	struct freeblks *freeblks;
3782 	struct jsegdep *jsegdep;
3783 
3784 	/* Grab the jsegdep. */
3785 	jsegdep = jblkdep->jb_jsegdep;
3786 	jblkdep->jb_jsegdep = NULL;
3787 	freeblks = jblkdep->jb_freeblks;
3788 	LIST_REMOVE(jblkdep, jb_deps);
3789 	jwork_insert(&freeblks->fb_jwork, jsegdep);
3790 	/*
3791 	 * If the freeblks is all journaled, we can add it to the worklist.
3792 	 */
3793 	if (LIST_EMPTY(&freeblks->fb_jblkdephd) &&
3794 	    (freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
3795 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
3796 
3797 	free_jblkdep(jblkdep);
3798 }
3799 
3800 static struct jsegdep *
3801 newjsegdep(struct worklist *wk)
3802 {
3803 	struct jsegdep *jsegdep;
3804 
3805 	jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS);
3806 	workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp);
3807 	jsegdep->jd_seg = NULL;
3808 
3809 	return (jsegdep);
3810 }
3811 
3812 static struct jmvref *
3813 newjmvref(dp, ino, oldoff, newoff)
3814 	struct inode *dp;
3815 	ino_t ino;
3816 	off_t oldoff;
3817 	off_t newoff;
3818 {
3819 	struct jmvref *jmvref;
3820 
3821 	jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS);
3822 	workitem_alloc(&jmvref->jm_list, D_JMVREF, UFSTOVFS(dp->i_ump));
3823 	jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE;
3824 	jmvref->jm_parent = dp->i_number;
3825 	jmvref->jm_ino = ino;
3826 	jmvref->jm_oldoff = oldoff;
3827 	jmvref->jm_newoff = newoff;
3828 
3829 	return (jmvref);
3830 }
3831 
3832 /*
3833  * Allocate a new jremref that tracks the removal of ip from dp with the
3834  * directory entry offset of diroff.  Mark the entry as ATTACHED and
3835  * DEPCOMPLETE as we have all the information required for the journal write
3836  * and the directory has already been removed from the buffer.  The caller
3837  * is responsible for linking the jremref into the pagedep and adding it
3838  * to the journal to write.  The MKDIR_PARENT flag is set if we're doing
3839  * a DOTDOT addition so handle_workitem_remove() can properly assign
3840  * the jsegdep when we're done.
3841  */
3842 static struct jremref *
3843 newjremref(struct dirrem *dirrem, struct inode *dp, struct inode *ip,
3844     off_t diroff, nlink_t nlink)
3845 {
3846 	struct jremref *jremref;
3847 
3848 	jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS);
3849 	workitem_alloc(&jremref->jr_list, D_JREMREF, UFSTOVFS(dp->i_ump));
3850 	jremref->jr_state = ATTACHED;
3851 	newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff,
3852 	   nlink, ip->i_mode);
3853 	jremref->jr_dirrem = dirrem;
3854 
3855 	return (jremref);
3856 }
3857 
3858 static inline void
3859 newinoref(struct inoref *inoref, ino_t ino, ino_t parent, off_t diroff,
3860     nlink_t nlink, uint16_t mode)
3861 {
3862 
3863 	inoref->if_jsegdep = newjsegdep(&inoref->if_list);
3864 	inoref->if_diroff = diroff;
3865 	inoref->if_ino = ino;
3866 	inoref->if_parent = parent;
3867 	inoref->if_nlink = nlink;
3868 	inoref->if_mode = mode;
3869 }
3870 
3871 /*
3872  * Allocate a new jaddref to track the addition of ino to dp at diroff.  The
3873  * directory offset may not be known until later.  The caller is responsible
3874  * adding the entry to the journal when this information is available.  nlink
3875  * should be the link count prior to the addition and mode is only required
3876  * to have the correct FMT.
3877  */
3878 static struct jaddref *
3879 newjaddref(struct inode *dp, ino_t ino, off_t diroff, int16_t nlink,
3880     uint16_t mode)
3881 {
3882 	struct jaddref *jaddref;
3883 
3884 	jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS);
3885 	workitem_alloc(&jaddref->ja_list, D_JADDREF, UFSTOVFS(dp->i_ump));
3886 	jaddref->ja_state = ATTACHED;
3887 	jaddref->ja_mkdir = NULL;
3888 	newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode);
3889 
3890 	return (jaddref);
3891 }
3892 
3893 /*
3894  * Create a new free dependency for a freework.  The caller is responsible
3895  * for adjusting the reference count when it has the lock held.  The freedep
3896  * will track an outstanding bitmap write that will ultimately clear the
3897  * freework to continue.
3898  */
3899 static struct freedep *
3900 newfreedep(struct freework *freework)
3901 {
3902 	struct freedep *freedep;
3903 
3904 	freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS);
3905 	workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp);
3906 	freedep->fd_freework = freework;
3907 
3908 	return (freedep);
3909 }
3910 
3911 /*
3912  * Free a freedep structure once the buffer it is linked to is written.  If
3913  * this is the last reference to the freework schedule it for completion.
3914  */
3915 static void
3916 free_freedep(freedep)
3917 	struct freedep *freedep;
3918 {
3919 	struct freework *freework;
3920 
3921 	freework = freedep->fd_freework;
3922 	freework->fw_freeblks->fb_cgwait--;
3923 	if (--freework->fw_ref == 0)
3924 		freework_enqueue(freework);
3925 	WORKITEM_FREE(freedep, D_FREEDEP);
3926 }
3927 
3928 /*
3929  * Allocate a new freework structure that may be a level in an indirect
3930  * when parent is not NULL or a top level block when it is.  The top level
3931  * freework structures are allocated without lk held and before the freeblks
3932  * is visible outside of softdep_setup_freeblocks().
3933  */
3934 static struct freework *
3935 newfreework(ump, freeblks, parent, lbn, nb, frags, off, journal)
3936 	struct ufsmount *ump;
3937 	struct freeblks *freeblks;
3938 	struct freework *parent;
3939 	ufs_lbn_t lbn;
3940 	ufs2_daddr_t nb;
3941 	int frags;
3942 	int off;
3943 	int journal;
3944 {
3945 	struct freework *freework;
3946 
3947 	freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS);
3948 	workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp);
3949 	freework->fw_state = ATTACHED;
3950 	freework->fw_jnewblk = NULL;
3951 	freework->fw_freeblks = freeblks;
3952 	freework->fw_parent = parent;
3953 	freework->fw_lbn = lbn;
3954 	freework->fw_blkno = nb;
3955 	freework->fw_frags = frags;
3956 	freework->fw_indir = NULL;
3957 	freework->fw_ref = (MOUNTEDSUJ(UFSTOVFS(ump)) == 0 || lbn >= -NXADDR)
3958 		? 0 : NINDIR(ump->um_fs) + 1;
3959 	freework->fw_start = freework->fw_off = off;
3960 	if (journal)
3961 		newjfreeblk(freeblks, lbn, nb, frags);
3962 	if (parent == NULL) {
3963 		ACQUIRE_LOCK(&lk);
3964 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
3965 		freeblks->fb_ref++;
3966 		FREE_LOCK(&lk);
3967 	}
3968 
3969 	return (freework);
3970 }
3971 
3972 /*
3973  * Eliminate a jfreeblk for a block that does not need journaling.
3974  */
3975 static void
3976 cancel_jfreeblk(freeblks, blkno)
3977 	struct freeblks *freeblks;
3978 	ufs2_daddr_t blkno;
3979 {
3980 	struct jfreeblk *jfreeblk;
3981 	struct jblkdep *jblkdep;
3982 
3983 	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) {
3984 		if (jblkdep->jb_list.wk_type != D_JFREEBLK)
3985 			continue;
3986 		jfreeblk = WK_JFREEBLK(&jblkdep->jb_list);
3987 		if (jfreeblk->jf_blkno == blkno)
3988 			break;
3989 	}
3990 	if (jblkdep == NULL)
3991 		return;
3992 	CTR1(KTR_SUJ, "cancel_jfreeblk: blkno %jd", blkno);
3993 	free_jsegdep(jblkdep->jb_jsegdep);
3994 	LIST_REMOVE(jblkdep, jb_deps);
3995 	WORKITEM_FREE(jfreeblk, D_JFREEBLK);
3996 }
3997 
3998 /*
3999  * Allocate a new jfreeblk to journal top level block pointer when truncating
4000  * a file.  The caller must add this to the worklist when lk is held.
4001  */
4002 static struct jfreeblk *
4003 newjfreeblk(freeblks, lbn, blkno, frags)
4004 	struct freeblks *freeblks;
4005 	ufs_lbn_t lbn;
4006 	ufs2_daddr_t blkno;
4007 	int frags;
4008 {
4009 	struct jfreeblk *jfreeblk;
4010 
4011 	jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS);
4012 	workitem_alloc(&jfreeblk->jf_dep.jb_list, D_JFREEBLK,
4013 	    freeblks->fb_list.wk_mp);
4014 	jfreeblk->jf_dep.jb_jsegdep = newjsegdep(&jfreeblk->jf_dep.jb_list);
4015 	jfreeblk->jf_dep.jb_freeblks = freeblks;
4016 	jfreeblk->jf_ino = freeblks->fb_inum;
4017 	jfreeblk->jf_lbn = lbn;
4018 	jfreeblk->jf_blkno = blkno;
4019 	jfreeblk->jf_frags = frags;
4020 	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jfreeblk->jf_dep, jb_deps);
4021 
4022 	return (jfreeblk);
4023 }
4024 
4025 /*
4026  * Allocate a new jtrunc to track a partial truncation.
4027  */
4028 static struct jtrunc *
4029 newjtrunc(freeblks, size, extsize)
4030 	struct freeblks *freeblks;
4031 	off_t size;
4032 	int extsize;
4033 {
4034 	struct jtrunc *jtrunc;
4035 
4036 	jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS);
4037 	workitem_alloc(&jtrunc->jt_dep.jb_list, D_JTRUNC,
4038 	    freeblks->fb_list.wk_mp);
4039 	jtrunc->jt_dep.jb_jsegdep = newjsegdep(&jtrunc->jt_dep.jb_list);
4040 	jtrunc->jt_dep.jb_freeblks = freeblks;
4041 	jtrunc->jt_ino = freeblks->fb_inum;
4042 	jtrunc->jt_size = size;
4043 	jtrunc->jt_extsize = extsize;
4044 	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jtrunc->jt_dep, jb_deps);
4045 
4046 	return (jtrunc);
4047 }
4048 
4049 /*
4050  * If we're canceling a new bitmap we have to search for another ref
4051  * to move into the bmsafemap dep.  This might be better expressed
4052  * with another structure.
4053  */
4054 static void
4055 move_newblock_dep(jaddref, inodedep)
4056 	struct jaddref *jaddref;
4057 	struct inodedep *inodedep;
4058 {
4059 	struct inoref *inoref;
4060 	struct jaddref *jaddrefn;
4061 
4062 	jaddrefn = NULL;
4063 	for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
4064 	    inoref = TAILQ_NEXT(inoref, if_deps)) {
4065 		if ((jaddref->ja_state & NEWBLOCK) &&
4066 		    inoref->if_list.wk_type == D_JADDREF) {
4067 			jaddrefn = (struct jaddref *)inoref;
4068 			break;
4069 		}
4070 	}
4071 	if (jaddrefn == NULL)
4072 		return;
4073 	jaddrefn->ja_state &= ~(ATTACHED | UNDONE);
4074 	jaddrefn->ja_state |= jaddref->ja_state &
4075 	    (ATTACHED | UNDONE | NEWBLOCK);
4076 	jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK);
4077 	jaddref->ja_state |= ATTACHED;
4078 	LIST_REMOVE(jaddref, ja_bmdeps);
4079 	LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn,
4080 	    ja_bmdeps);
4081 }
4082 
4083 /*
4084  * Cancel a jaddref either before it has been written or while it is being
4085  * written.  This happens when a link is removed before the add reaches
4086  * the disk.  The jaddref dependency is kept linked into the bmsafemap
4087  * and inode to prevent the link count or bitmap from reaching the disk
4088  * until handle_workitem_remove() re-adjusts the counts and bitmaps as
4089  * required.
4090  *
4091  * Returns 1 if the canceled addref requires journaling of the remove and
4092  * 0 otherwise.
4093  */
4094 static int
4095 cancel_jaddref(jaddref, inodedep, wkhd)
4096 	struct jaddref *jaddref;
4097 	struct inodedep *inodedep;
4098 	struct workhead *wkhd;
4099 {
4100 	struct inoref *inoref;
4101 	struct jsegdep *jsegdep;
4102 	int needsj;
4103 
4104 	KASSERT((jaddref->ja_state & COMPLETE) == 0,
4105 	    ("cancel_jaddref: Canceling complete jaddref"));
4106 	if (jaddref->ja_state & (INPROGRESS | COMPLETE))
4107 		needsj = 1;
4108 	else
4109 		needsj = 0;
4110 	if (inodedep == NULL)
4111 		if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
4112 		    0, &inodedep) == 0)
4113 			panic("cancel_jaddref: Lost inodedep");
4114 	/*
4115 	 * We must adjust the nlink of any reference operation that follows
4116 	 * us so that it is consistent with the in-memory reference.  This
4117 	 * ensures that inode nlink rollbacks always have the correct link.
4118 	 */
4119 	if (needsj == 0) {
4120 		for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
4121 		    inoref = TAILQ_NEXT(inoref, if_deps)) {
4122 			if (inoref->if_state & GOINGAWAY)
4123 				break;
4124 			inoref->if_nlink--;
4125 		}
4126 	}
4127 	jsegdep = inoref_jseg(&jaddref->ja_ref);
4128 	if (jaddref->ja_state & NEWBLOCK)
4129 		move_newblock_dep(jaddref, inodedep);
4130 	wake_worklist(&jaddref->ja_list);
4131 	jaddref->ja_mkdir = NULL;
4132 	if (jaddref->ja_state & INPROGRESS) {
4133 		jaddref->ja_state &= ~INPROGRESS;
4134 		WORKLIST_REMOVE(&jaddref->ja_list);
4135 		jwork_insert(wkhd, jsegdep);
4136 	} else {
4137 		free_jsegdep(jsegdep);
4138 		if (jaddref->ja_state & DEPCOMPLETE)
4139 			remove_from_journal(&jaddref->ja_list);
4140 	}
4141 	jaddref->ja_state |= (GOINGAWAY | DEPCOMPLETE);
4142 	/*
4143 	 * Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove
4144 	 * can arrange for them to be freed with the bitmap.  Otherwise we
4145 	 * no longer need this addref attached to the inoreflst and it
4146 	 * will incorrectly adjust nlink if we leave it.
4147 	 */
4148 	if ((jaddref->ja_state & NEWBLOCK) == 0) {
4149 		TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
4150 		    if_deps);
4151 		jaddref->ja_state |= COMPLETE;
4152 		free_jaddref(jaddref);
4153 		return (needsj);
4154 	}
4155 	/*
4156 	 * Leave the head of the list for jsegdeps for fast merging.
4157 	 */
4158 	if (LIST_FIRST(wkhd) != NULL) {
4159 		jaddref->ja_state |= ONWORKLIST;
4160 		LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list);
4161 	} else
4162 		WORKLIST_INSERT(wkhd, &jaddref->ja_list);
4163 
4164 	return (needsj);
4165 }
4166 
4167 /*
4168  * Attempt to free a jaddref structure when some work completes.  This
4169  * should only succeed once the entry is written and all dependencies have
4170  * been notified.
4171  */
4172 static void
4173 free_jaddref(jaddref)
4174 	struct jaddref *jaddref;
4175 {
4176 
4177 	if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE)
4178 		return;
4179 	if (jaddref->ja_ref.if_jsegdep)
4180 		panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n",
4181 		    jaddref, jaddref->ja_state);
4182 	if (jaddref->ja_state & NEWBLOCK)
4183 		LIST_REMOVE(jaddref, ja_bmdeps);
4184 	if (jaddref->ja_state & (INPROGRESS | ONWORKLIST))
4185 		panic("free_jaddref: Bad state %p(0x%X)",
4186 		    jaddref, jaddref->ja_state);
4187 	if (jaddref->ja_mkdir != NULL)
4188 		panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state);
4189 	WORKITEM_FREE(jaddref, D_JADDREF);
4190 }
4191 
4192 /*
4193  * Free a jremref structure once it has been written or discarded.
4194  */
4195 static void
4196 free_jremref(jremref)
4197 	struct jremref *jremref;
4198 {
4199 
4200 	if (jremref->jr_ref.if_jsegdep)
4201 		free_jsegdep(jremref->jr_ref.if_jsegdep);
4202 	if (jremref->jr_state & INPROGRESS)
4203 		panic("free_jremref: IO still pending");
4204 	WORKITEM_FREE(jremref, D_JREMREF);
4205 }
4206 
4207 /*
4208  * Free a jnewblk structure.
4209  */
4210 static void
4211 free_jnewblk(jnewblk)
4212 	struct jnewblk *jnewblk;
4213 {
4214 
4215 	if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE)
4216 		return;
4217 	LIST_REMOVE(jnewblk, jn_deps);
4218 	if (jnewblk->jn_dep != NULL)
4219 		panic("free_jnewblk: Dependency still attached.");
4220 	WORKITEM_FREE(jnewblk, D_JNEWBLK);
4221 }
4222 
4223 /*
4224  * Cancel a jnewblk which has been been made redundant by frag extension.
4225  */
4226 static void
4227 cancel_jnewblk(jnewblk, wkhd)
4228 	struct jnewblk *jnewblk;
4229 	struct workhead *wkhd;
4230 {
4231 	struct jsegdep *jsegdep;
4232 
4233 	CTR1(KTR_SUJ, "cancel_jnewblk: blkno %jd", jnewblk->jn_blkno);
4234 	jsegdep = jnewblk->jn_jsegdep;
4235 	if (jnewblk->jn_jsegdep == NULL || jnewblk->jn_dep == NULL)
4236 		panic("cancel_jnewblk: Invalid state");
4237 	jnewblk->jn_jsegdep  = NULL;
4238 	jnewblk->jn_dep = NULL;
4239 	jnewblk->jn_state |= GOINGAWAY;
4240 	if (jnewblk->jn_state & INPROGRESS) {
4241 		jnewblk->jn_state &= ~INPROGRESS;
4242 		WORKLIST_REMOVE(&jnewblk->jn_list);
4243 		jwork_insert(wkhd, jsegdep);
4244 	} else {
4245 		free_jsegdep(jsegdep);
4246 		remove_from_journal(&jnewblk->jn_list);
4247 	}
4248 	wake_worklist(&jnewblk->jn_list);
4249 	WORKLIST_INSERT(wkhd, &jnewblk->jn_list);
4250 }
4251 
4252 static void
4253 free_jblkdep(jblkdep)
4254 	struct jblkdep *jblkdep;
4255 {
4256 
4257 	if (jblkdep->jb_list.wk_type == D_JFREEBLK)
4258 		WORKITEM_FREE(jblkdep, D_JFREEBLK);
4259 	else if (jblkdep->jb_list.wk_type == D_JTRUNC)
4260 		WORKITEM_FREE(jblkdep, D_JTRUNC);
4261 	else
4262 		panic("free_jblkdep: Unexpected type %s",
4263 		    TYPENAME(jblkdep->jb_list.wk_type));
4264 }
4265 
4266 /*
4267  * Free a single jseg once it is no longer referenced in memory or on
4268  * disk.  Reclaim journal blocks and dependencies waiting for the segment
4269  * to disappear.
4270  */
4271 static void
4272 free_jseg(jseg, jblocks)
4273 	struct jseg *jseg;
4274 	struct jblocks *jblocks;
4275 {
4276 	struct freework *freework;
4277 
4278 	/*
4279 	 * Free freework structures that were lingering to indicate freed
4280 	 * indirect blocks that forced journal write ordering on reallocate.
4281 	 */
4282 	while ((freework = LIST_FIRST(&jseg->js_indirs)) != NULL)
4283 		indirblk_remove(freework);
4284 	if (jblocks->jb_oldestseg == jseg)
4285 		jblocks->jb_oldestseg = TAILQ_NEXT(jseg, js_next);
4286 	TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next);
4287 	jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size);
4288 	KASSERT(LIST_EMPTY(&jseg->js_entries),
4289 	    ("free_jseg: Freed jseg has valid entries."));
4290 	WORKITEM_FREE(jseg, D_JSEG);
4291 }
4292 
4293 /*
4294  * Free all jsegs that meet the criteria for being reclaimed and update
4295  * oldestseg.
4296  */
4297 static void
4298 free_jsegs(jblocks)
4299 	struct jblocks *jblocks;
4300 {
4301 	struct jseg *jseg;
4302 
4303 	/*
4304 	 * Free only those jsegs which have none allocated before them to
4305 	 * preserve the journal space ordering.
4306 	 */
4307 	while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) {
4308 		/*
4309 		 * Only reclaim space when nothing depends on this journal
4310 		 * set and another set has written that it is no longer
4311 		 * valid.
4312 		 */
4313 		if (jseg->js_refs != 0) {
4314 			jblocks->jb_oldestseg = jseg;
4315 			return;
4316 		}
4317 		if ((jseg->js_state & ALLCOMPLETE) != ALLCOMPLETE)
4318 			break;
4319 		if (jseg->js_seq > jblocks->jb_oldestwrseq)
4320 			break;
4321 		/*
4322 		 * We can free jsegs that didn't write entries when
4323 		 * oldestwrseq == js_seq.
4324 		 */
4325 		if (jseg->js_seq == jblocks->jb_oldestwrseq &&
4326 		    jseg->js_cnt != 0)
4327 			break;
4328 		free_jseg(jseg, jblocks);
4329 	}
4330 	/*
4331 	 * If we exited the loop above we still must discover the
4332 	 * oldest valid segment.
4333 	 */
4334 	if (jseg)
4335 		for (jseg = jblocks->jb_oldestseg; jseg != NULL;
4336 		     jseg = TAILQ_NEXT(jseg, js_next))
4337 			if (jseg->js_refs != 0)
4338 				break;
4339 	jblocks->jb_oldestseg = jseg;
4340 	/*
4341 	 * The journal has no valid records but some jsegs may still be
4342 	 * waiting on oldestwrseq to advance.  We force a small record
4343 	 * out to permit these lingering records to be reclaimed.
4344 	 */
4345 	if (jblocks->jb_oldestseg == NULL && !TAILQ_EMPTY(&jblocks->jb_segs))
4346 		jblocks->jb_needseg = 1;
4347 }
4348 
4349 /*
4350  * Release one reference to a jseg and free it if the count reaches 0.  This
4351  * should eventually reclaim journal space as well.
4352  */
4353 static void
4354 rele_jseg(jseg)
4355 	struct jseg *jseg;
4356 {
4357 
4358 	KASSERT(jseg->js_refs > 0,
4359 	    ("free_jseg: Invalid refcnt %d", jseg->js_refs));
4360 	if (--jseg->js_refs != 0)
4361 		return;
4362 	free_jsegs(jseg->js_jblocks);
4363 }
4364 
4365 /*
4366  * Release a jsegdep and decrement the jseg count.
4367  */
4368 static void
4369 free_jsegdep(jsegdep)
4370 	struct jsegdep *jsegdep;
4371 {
4372 
4373 	if (jsegdep->jd_seg)
4374 		rele_jseg(jsegdep->jd_seg);
4375 	WORKITEM_FREE(jsegdep, D_JSEGDEP);
4376 }
4377 
4378 /*
4379  * Wait for a journal item to make it to disk.  Initiate journal processing
4380  * if required.
4381  */
4382 static int
4383 jwait(wk, waitfor)
4384 	struct worklist *wk;
4385 	int waitfor;
4386 {
4387 
4388 	/*
4389 	 * Blocking journal waits cause slow synchronous behavior.  Record
4390 	 * stats on the frequency of these blocking operations.
4391 	 */
4392 	if (waitfor == MNT_WAIT) {
4393 		stat_journal_wait++;
4394 		switch (wk->wk_type) {
4395 		case D_JREMREF:
4396 		case D_JMVREF:
4397 			stat_jwait_filepage++;
4398 			break;
4399 		case D_JTRUNC:
4400 		case D_JFREEBLK:
4401 			stat_jwait_freeblks++;
4402 			break;
4403 		case D_JNEWBLK:
4404 			stat_jwait_newblk++;
4405 			break;
4406 		case D_JADDREF:
4407 			stat_jwait_inode++;
4408 			break;
4409 		default:
4410 			break;
4411 		}
4412 	}
4413 	/*
4414 	 * If IO has not started we process the journal.  We can't mark the
4415 	 * worklist item as IOWAITING because we drop the lock while
4416 	 * processing the journal and the worklist entry may be freed after
4417 	 * this point.  The caller may call back in and re-issue the request.
4418 	 */
4419 	if ((wk->wk_state & INPROGRESS) == 0) {
4420 		softdep_process_journal(wk->wk_mp, wk, waitfor);
4421 		if (waitfor != MNT_WAIT)
4422 			return (EBUSY);
4423 		return (0);
4424 	}
4425 	if (waitfor != MNT_WAIT)
4426 		return (EBUSY);
4427 	wait_worklist(wk, "jwait");
4428 	return (0);
4429 }
4430 
4431 /*
4432  * Lookup an inodedep based on an inode pointer and set the nlinkdelta as
4433  * appropriate.  This is a convenience function to reduce duplicate code
4434  * for the setup and revert functions below.
4435  */
4436 static struct inodedep *
4437 inodedep_lookup_ip(ip)
4438 	struct inode *ip;
4439 {
4440 	struct inodedep *inodedep;
4441 	int dflags;
4442 
4443 	KASSERT(ip->i_nlink >= ip->i_effnlink,
4444 	    ("inodedep_lookup_ip: bad delta"));
4445 	dflags = DEPALLOC;
4446 	if (IS_SNAPSHOT(ip))
4447 		dflags |= NODELAY;
4448 	(void) inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, dflags,
4449 	    &inodedep);
4450 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
4451 	KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
4452 
4453 	return (inodedep);
4454 }
4455 
4456 /*
4457  * Called prior to creating a new inode and linking it to a directory.  The
4458  * jaddref structure must already be allocated by softdep_setup_inomapdep
4459  * and it is discovered here so we can initialize the mode and update
4460  * nlinkdelta.
4461  */
4462 void
4463 softdep_setup_create(dp, ip)
4464 	struct inode *dp;
4465 	struct inode *ip;
4466 {
4467 	struct inodedep *inodedep;
4468 	struct jaddref *jaddref;
4469 	struct vnode *dvp;
4470 
4471 	KASSERT(ip->i_nlink == 1,
4472 	    ("softdep_setup_create: Invalid link count."));
4473 	dvp = ITOV(dp);
4474 	ACQUIRE_LOCK(&lk);
4475 	inodedep = inodedep_lookup_ip(ip);
4476 	if (DOINGSUJ(dvp)) {
4477 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4478 		    inoreflst);
4479 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
4480 		    ("softdep_setup_create: No addref structure present."));
4481 	}
4482 	softdep_prelink(dvp, NULL);
4483 	FREE_LOCK(&lk);
4484 }
4485 
4486 /*
4487  * Create a jaddref structure to track the addition of a DOTDOT link when
4488  * we are reparenting an inode as part of a rename.  This jaddref will be
4489  * found by softdep_setup_directory_change.  Adjusts nlinkdelta for
4490  * non-journaling softdep.
4491  */
4492 void
4493 softdep_setup_dotdot_link(dp, ip)
4494 	struct inode *dp;
4495 	struct inode *ip;
4496 {
4497 	struct inodedep *inodedep;
4498 	struct jaddref *jaddref;
4499 	struct vnode *dvp;
4500 	struct vnode *vp;
4501 
4502 	dvp = ITOV(dp);
4503 	vp = ITOV(ip);
4504 	jaddref = NULL;
4505 	/*
4506 	 * We don't set MKDIR_PARENT as this is not tied to a mkdir and
4507 	 * is used as a normal link would be.
4508 	 */
4509 	if (DOINGSUJ(dvp))
4510 		jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
4511 		    dp->i_effnlink - 1, dp->i_mode);
4512 	ACQUIRE_LOCK(&lk);
4513 	inodedep = inodedep_lookup_ip(dp);
4514 	if (jaddref)
4515 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4516 		    if_deps);
4517 	softdep_prelink(dvp, ITOV(ip));
4518 	FREE_LOCK(&lk);
4519 }
4520 
4521 /*
4522  * Create a jaddref structure to track a new link to an inode.  The directory
4523  * offset is not known until softdep_setup_directory_add or
4524  * softdep_setup_directory_change.  Adjusts nlinkdelta for non-journaling
4525  * softdep.
4526  */
4527 void
4528 softdep_setup_link(dp, ip)
4529 	struct inode *dp;
4530 	struct inode *ip;
4531 {
4532 	struct inodedep *inodedep;
4533 	struct jaddref *jaddref;
4534 	struct vnode *dvp;
4535 
4536 	dvp = ITOV(dp);
4537 	jaddref = NULL;
4538 	if (DOINGSUJ(dvp))
4539 		jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1,
4540 		    ip->i_mode);
4541 	ACQUIRE_LOCK(&lk);
4542 	inodedep = inodedep_lookup_ip(ip);
4543 	if (jaddref)
4544 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4545 		    if_deps);
4546 	softdep_prelink(dvp, ITOV(ip));
4547 	FREE_LOCK(&lk);
4548 }
4549 
4550 /*
4551  * Called to create the jaddref structures to track . and .. references as
4552  * well as lookup and further initialize the incomplete jaddref created
4553  * by softdep_setup_inomapdep when the inode was allocated.  Adjusts
4554  * nlinkdelta for non-journaling softdep.
4555  */
4556 void
4557 softdep_setup_mkdir(dp, ip)
4558 	struct inode *dp;
4559 	struct inode *ip;
4560 {
4561 	struct inodedep *inodedep;
4562 	struct jaddref *dotdotaddref;
4563 	struct jaddref *dotaddref;
4564 	struct jaddref *jaddref;
4565 	struct vnode *dvp;
4566 
4567 	dvp = ITOV(dp);
4568 	dotaddref = dotdotaddref = NULL;
4569 	if (DOINGSUJ(dvp)) {
4570 		dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1,
4571 		    ip->i_mode);
4572 		dotaddref->ja_state |= MKDIR_BODY;
4573 		dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
4574 		    dp->i_effnlink - 1, dp->i_mode);
4575 		dotdotaddref->ja_state |= MKDIR_PARENT;
4576 	}
4577 	ACQUIRE_LOCK(&lk);
4578 	inodedep = inodedep_lookup_ip(ip);
4579 	if (DOINGSUJ(dvp)) {
4580 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4581 		    inoreflst);
4582 		KASSERT(jaddref != NULL,
4583 		    ("softdep_setup_mkdir: No addref structure present."));
4584 		KASSERT(jaddref->ja_parent == dp->i_number,
4585 		    ("softdep_setup_mkdir: bad parent %ju",
4586 		    (uintmax_t)jaddref->ja_parent));
4587 		TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref,
4588 		    if_deps);
4589 	}
4590 	inodedep = inodedep_lookup_ip(dp);
4591 	if (DOINGSUJ(dvp))
4592 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst,
4593 		    &dotdotaddref->ja_ref, if_deps);
4594 	softdep_prelink(ITOV(dp), NULL);
4595 	FREE_LOCK(&lk);
4596 }
4597 
4598 /*
4599  * Called to track nlinkdelta of the inode and parent directories prior to
4600  * unlinking a directory.
4601  */
4602 void
4603 softdep_setup_rmdir(dp, ip)
4604 	struct inode *dp;
4605 	struct inode *ip;
4606 {
4607 	struct vnode *dvp;
4608 
4609 	dvp = ITOV(dp);
4610 	ACQUIRE_LOCK(&lk);
4611 	(void) inodedep_lookup_ip(ip);
4612 	(void) inodedep_lookup_ip(dp);
4613 	softdep_prelink(dvp, ITOV(ip));
4614 	FREE_LOCK(&lk);
4615 }
4616 
4617 /*
4618  * Called to track nlinkdelta of the inode and parent directories prior to
4619  * unlink.
4620  */
4621 void
4622 softdep_setup_unlink(dp, ip)
4623 	struct inode *dp;
4624 	struct inode *ip;
4625 {
4626 	struct vnode *dvp;
4627 
4628 	dvp = ITOV(dp);
4629 	ACQUIRE_LOCK(&lk);
4630 	(void) inodedep_lookup_ip(ip);
4631 	(void) inodedep_lookup_ip(dp);
4632 	softdep_prelink(dvp, ITOV(ip));
4633 	FREE_LOCK(&lk);
4634 }
4635 
4636 /*
4637  * Called to release the journal structures created by a failed non-directory
4638  * creation.  Adjusts nlinkdelta for non-journaling softdep.
4639  */
4640 void
4641 softdep_revert_create(dp, ip)
4642 	struct inode *dp;
4643 	struct inode *ip;
4644 {
4645 	struct inodedep *inodedep;
4646 	struct jaddref *jaddref;
4647 	struct vnode *dvp;
4648 
4649 	dvp = ITOV(dp);
4650 	ACQUIRE_LOCK(&lk);
4651 	inodedep = inodedep_lookup_ip(ip);
4652 	if (DOINGSUJ(dvp)) {
4653 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4654 		    inoreflst);
4655 		KASSERT(jaddref->ja_parent == dp->i_number,
4656 		    ("softdep_revert_create: addref parent mismatch"));
4657 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4658 	}
4659 	FREE_LOCK(&lk);
4660 }
4661 
4662 /*
4663  * Called to release the journal structures created by a failed dotdot link
4664  * creation.  Adjusts nlinkdelta for non-journaling softdep.
4665  */
4666 void
4667 softdep_revert_dotdot_link(dp, ip)
4668 	struct inode *dp;
4669 	struct inode *ip;
4670 {
4671 	struct inodedep *inodedep;
4672 	struct jaddref *jaddref;
4673 	struct vnode *dvp;
4674 
4675 	dvp = ITOV(dp);
4676 	ACQUIRE_LOCK(&lk);
4677 	inodedep = inodedep_lookup_ip(dp);
4678 	if (DOINGSUJ(dvp)) {
4679 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4680 		    inoreflst);
4681 		KASSERT(jaddref->ja_parent == ip->i_number,
4682 		    ("softdep_revert_dotdot_link: addref parent mismatch"));
4683 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4684 	}
4685 	FREE_LOCK(&lk);
4686 }
4687 
4688 /*
4689  * Called to release the journal structures created by a failed link
4690  * addition.  Adjusts nlinkdelta for non-journaling softdep.
4691  */
4692 void
4693 softdep_revert_link(dp, ip)
4694 	struct inode *dp;
4695 	struct inode *ip;
4696 {
4697 	struct inodedep *inodedep;
4698 	struct jaddref *jaddref;
4699 	struct vnode *dvp;
4700 
4701 	dvp = ITOV(dp);
4702 	ACQUIRE_LOCK(&lk);
4703 	inodedep = inodedep_lookup_ip(ip);
4704 	if (DOINGSUJ(dvp)) {
4705 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4706 		    inoreflst);
4707 		KASSERT(jaddref->ja_parent == dp->i_number,
4708 		    ("softdep_revert_link: addref parent mismatch"));
4709 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4710 	}
4711 	FREE_LOCK(&lk);
4712 }
4713 
4714 /*
4715  * Called to release the journal structures created by a failed mkdir
4716  * attempt.  Adjusts nlinkdelta for non-journaling softdep.
4717  */
4718 void
4719 softdep_revert_mkdir(dp, ip)
4720 	struct inode *dp;
4721 	struct inode *ip;
4722 {
4723 	struct inodedep *inodedep;
4724 	struct jaddref *jaddref;
4725 	struct jaddref *dotaddref;
4726 	struct vnode *dvp;
4727 
4728 	dvp = ITOV(dp);
4729 
4730 	ACQUIRE_LOCK(&lk);
4731 	inodedep = inodedep_lookup_ip(dp);
4732 	if (DOINGSUJ(dvp)) {
4733 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4734 		    inoreflst);
4735 		KASSERT(jaddref->ja_parent == ip->i_number,
4736 		    ("softdep_revert_mkdir: dotdot addref parent mismatch"));
4737 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4738 	}
4739 	inodedep = inodedep_lookup_ip(ip);
4740 	if (DOINGSUJ(dvp)) {
4741 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4742 		    inoreflst);
4743 		KASSERT(jaddref->ja_parent == dp->i_number,
4744 		    ("softdep_revert_mkdir: addref parent mismatch"));
4745 		dotaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
4746 		    inoreflst, if_deps);
4747 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4748 		KASSERT(dotaddref->ja_parent == ip->i_number,
4749 		    ("softdep_revert_mkdir: dot addref parent mismatch"));
4750 		cancel_jaddref(dotaddref, inodedep, &inodedep->id_inowait);
4751 	}
4752 	FREE_LOCK(&lk);
4753 }
4754 
4755 /*
4756  * Called to correct nlinkdelta after a failed rmdir.
4757  */
4758 void
4759 softdep_revert_rmdir(dp, ip)
4760 	struct inode *dp;
4761 	struct inode *ip;
4762 {
4763 
4764 	ACQUIRE_LOCK(&lk);
4765 	(void) inodedep_lookup_ip(ip);
4766 	(void) inodedep_lookup_ip(dp);
4767 	FREE_LOCK(&lk);
4768 }
4769 
4770 /*
4771  * Protecting the freemaps (or bitmaps).
4772  *
4773  * To eliminate the need to execute fsck before mounting a filesystem
4774  * after a power failure, one must (conservatively) guarantee that the
4775  * on-disk copy of the bitmaps never indicate that a live inode or block is
4776  * free.  So, when a block or inode is allocated, the bitmap should be
4777  * updated (on disk) before any new pointers.  When a block or inode is
4778  * freed, the bitmap should not be updated until all pointers have been
4779  * reset.  The latter dependency is handled by the delayed de-allocation
4780  * approach described below for block and inode de-allocation.  The former
4781  * dependency is handled by calling the following procedure when a block or
4782  * inode is allocated. When an inode is allocated an "inodedep" is created
4783  * with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
4784  * Each "inodedep" is also inserted into the hash indexing structure so
4785  * that any additional link additions can be made dependent on the inode
4786  * allocation.
4787  *
4788  * The ufs filesystem maintains a number of free block counts (e.g., per
4789  * cylinder group, per cylinder and per <cylinder, rotational position> pair)
4790  * in addition to the bitmaps.  These counts are used to improve efficiency
4791  * during allocation and therefore must be consistent with the bitmaps.
4792  * There is no convenient way to guarantee post-crash consistency of these
4793  * counts with simple update ordering, for two main reasons: (1) The counts
4794  * and bitmaps for a single cylinder group block are not in the same disk
4795  * sector.  If a disk write is interrupted (e.g., by power failure), one may
4796  * be written and the other not.  (2) Some of the counts are located in the
4797  * superblock rather than the cylinder group block. So, we focus our soft
4798  * updates implementation on protecting the bitmaps. When mounting a
4799  * filesystem, we recompute the auxiliary counts from the bitmaps.
4800  */
4801 
4802 /*
4803  * Called just after updating the cylinder group block to allocate an inode.
4804  */
4805 void
4806 softdep_setup_inomapdep(bp, ip, newinum, mode)
4807 	struct buf *bp;		/* buffer for cylgroup block with inode map */
4808 	struct inode *ip;	/* inode related to allocation */
4809 	ino_t newinum;		/* new inode number being allocated */
4810 	int mode;
4811 {
4812 	struct inodedep *inodedep;
4813 	struct bmsafemap *bmsafemap;
4814 	struct jaddref *jaddref;
4815 	struct mount *mp;
4816 	struct fs *fs;
4817 
4818 	mp = UFSTOVFS(ip->i_ump);
4819 	fs = ip->i_ump->um_fs;
4820 	jaddref = NULL;
4821 
4822 	/*
4823 	 * Allocate the journal reference add structure so that the bitmap
4824 	 * can be dependent on it.
4825 	 */
4826 	if (MOUNTEDSUJ(mp)) {
4827 		jaddref = newjaddref(ip, newinum, 0, 0, mode);
4828 		jaddref->ja_state |= NEWBLOCK;
4829 	}
4830 
4831 	/*
4832 	 * Create a dependency for the newly allocated inode.
4833 	 * Panic if it already exists as something is seriously wrong.
4834 	 * Otherwise add it to the dependency list for the buffer holding
4835 	 * the cylinder group map from which it was allocated.
4836 	 *
4837 	 * We have to preallocate a bmsafemap entry in case it is needed
4838 	 * in bmsafemap_lookup since once we allocate the inodedep, we
4839 	 * have to finish initializing it before we can FREE_LOCK().
4840 	 * By preallocating, we avoid FREE_LOCK() while doing a malloc
4841 	 * in bmsafemap_lookup. We cannot call bmsafemap_lookup before
4842 	 * creating the inodedep as it can be freed during the time
4843 	 * that we FREE_LOCK() while allocating the inodedep. We must
4844 	 * call workitem_alloc() before entering the locked section as
4845 	 * it also acquires the lock and we must avoid trying doing so
4846 	 * recursively.
4847 	 */
4848 	bmsafemap = malloc(sizeof(struct bmsafemap),
4849 	    M_BMSAFEMAP, M_SOFTDEP_FLAGS);
4850 	workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
4851 	ACQUIRE_LOCK(&lk);
4852 	if ((inodedep_lookup(mp, newinum, DEPALLOC | NODELAY, &inodedep)))
4853 		panic("softdep_setup_inomapdep: dependency %p for new"
4854 		    "inode already exists", inodedep);
4855 	bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum), bmsafemap);
4856 	if (jaddref) {
4857 		LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps);
4858 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4859 		    if_deps);
4860 	} else {
4861 		inodedep->id_state |= ONDEPLIST;
4862 		LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
4863 	}
4864 	inodedep->id_bmsafemap = bmsafemap;
4865 	inodedep->id_state &= ~DEPCOMPLETE;
4866 	FREE_LOCK(&lk);
4867 }
4868 
4869 /*
4870  * Called just after updating the cylinder group block to
4871  * allocate block or fragment.
4872  */
4873 void
4874 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
4875 	struct buf *bp;		/* buffer for cylgroup block with block map */
4876 	struct mount *mp;	/* filesystem doing allocation */
4877 	ufs2_daddr_t newblkno;	/* number of newly allocated block */
4878 	int frags;		/* Number of fragments. */
4879 	int oldfrags;		/* Previous number of fragments for extend. */
4880 {
4881 	struct newblk *newblk;
4882 	struct bmsafemap *bmsafemap;
4883 	struct jnewblk *jnewblk;
4884 	struct fs *fs;
4885 
4886 	fs = VFSTOUFS(mp)->um_fs;
4887 	jnewblk = NULL;
4888 	/*
4889 	 * Create a dependency for the newly allocated block.
4890 	 * Add it to the dependency list for the buffer holding
4891 	 * the cylinder group map from which it was allocated.
4892 	 */
4893 	if (MOUNTEDSUJ(mp)) {
4894 		jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS);
4895 		workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp);
4896 		jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list);
4897 		jnewblk->jn_state = ATTACHED;
4898 		jnewblk->jn_blkno = newblkno;
4899 		jnewblk->jn_frags = frags;
4900 		jnewblk->jn_oldfrags = oldfrags;
4901 #ifdef SUJ_DEBUG
4902 		{
4903 			struct cg *cgp;
4904 			uint8_t *blksfree;
4905 			long bno;
4906 			int i;
4907 
4908 			cgp = (struct cg *)bp->b_data;
4909 			blksfree = cg_blksfree(cgp);
4910 			bno = dtogd(fs, jnewblk->jn_blkno);
4911 			for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags;
4912 			    i++) {
4913 				if (isset(blksfree, bno + i))
4914 					panic("softdep_setup_blkmapdep: "
4915 					    "free fragment %d from %d-%d "
4916 					    "state 0x%X dep %p", i,
4917 					    jnewblk->jn_oldfrags,
4918 					    jnewblk->jn_frags,
4919 					    jnewblk->jn_state,
4920 					    jnewblk->jn_dep);
4921 			}
4922 		}
4923 #endif
4924 	}
4925 
4926 	CTR3(KTR_SUJ,
4927 	    "softdep_setup_blkmapdep: blkno %jd frags %d oldfrags %d",
4928 	    newblkno, frags, oldfrags);
4929 	ACQUIRE_LOCK(&lk);
4930 	if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0)
4931 		panic("softdep_setup_blkmapdep: found block");
4932 	newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp,
4933 	    dtog(fs, newblkno), NULL);
4934 	if (jnewblk) {
4935 		jnewblk->jn_dep = (struct worklist *)newblk;
4936 		LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps);
4937 	} else {
4938 		newblk->nb_state |= ONDEPLIST;
4939 		LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
4940 	}
4941 	newblk->nb_bmsafemap = bmsafemap;
4942 	newblk->nb_jnewblk = jnewblk;
4943 	FREE_LOCK(&lk);
4944 }
4945 
4946 #define	BMSAFEMAP_HASH(fs, cg) \
4947       (&bmsafemap_hashtbl[((((register_t)(fs)) >> 13) + (cg)) & bmsafemap_hash])
4948 
4949 static int
4950 bmsafemap_find(bmsafemaphd, mp, cg, bmsafemapp)
4951 	struct bmsafemap_hashhead *bmsafemaphd;
4952 	struct mount *mp;
4953 	int cg;
4954 	struct bmsafemap **bmsafemapp;
4955 {
4956 	struct bmsafemap *bmsafemap;
4957 
4958 	LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash)
4959 		if (bmsafemap->sm_list.wk_mp == mp && bmsafemap->sm_cg == cg)
4960 			break;
4961 	if (bmsafemap) {
4962 		*bmsafemapp = bmsafemap;
4963 		return (1);
4964 	}
4965 	*bmsafemapp = NULL;
4966 
4967 	return (0);
4968 }
4969 
4970 /*
4971  * Find the bmsafemap associated with a cylinder group buffer.
4972  * If none exists, create one. The buffer must be locked when
4973  * this routine is called and this routine must be called with
4974  * the softdep lock held. To avoid giving up the lock while
4975  * allocating a new bmsafemap, a preallocated bmsafemap may be
4976  * provided. If it is provided but not needed, it is freed.
4977  */
4978 static struct bmsafemap *
4979 bmsafemap_lookup(mp, bp, cg, newbmsafemap)
4980 	struct mount *mp;
4981 	struct buf *bp;
4982 	int cg;
4983 	struct bmsafemap *newbmsafemap;
4984 {
4985 	struct bmsafemap_hashhead *bmsafemaphd;
4986 	struct bmsafemap *bmsafemap, *collision;
4987 	struct worklist *wk;
4988 	struct fs *fs;
4989 
4990 	rw_assert(&lk, RA_WLOCKED);
4991 	KASSERT(bp != NULL, ("bmsafemap_lookup: missing buffer"));
4992 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
4993 		if (wk->wk_type == D_BMSAFEMAP) {
4994 			if (newbmsafemap)
4995 				WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP);
4996 			return (WK_BMSAFEMAP(wk));
4997 		}
4998 	}
4999 	fs = VFSTOUFS(mp)->um_fs;
5000 	bmsafemaphd = BMSAFEMAP_HASH(fs, cg);
5001 	if (bmsafemap_find(bmsafemaphd, mp, cg, &bmsafemap) == 1) {
5002 		if (newbmsafemap)
5003 			WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP);
5004 		return (bmsafemap);
5005 	}
5006 	if (newbmsafemap) {
5007 		bmsafemap = newbmsafemap;
5008 	} else {
5009 		FREE_LOCK(&lk);
5010 		bmsafemap = malloc(sizeof(struct bmsafemap),
5011 			M_BMSAFEMAP, M_SOFTDEP_FLAGS);
5012 		workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
5013 		ACQUIRE_LOCK(&lk);
5014 	}
5015 	bmsafemap->sm_buf = bp;
5016 	LIST_INIT(&bmsafemap->sm_inodedephd);
5017 	LIST_INIT(&bmsafemap->sm_inodedepwr);
5018 	LIST_INIT(&bmsafemap->sm_newblkhd);
5019 	LIST_INIT(&bmsafemap->sm_newblkwr);
5020 	LIST_INIT(&bmsafemap->sm_jaddrefhd);
5021 	LIST_INIT(&bmsafemap->sm_jnewblkhd);
5022 	LIST_INIT(&bmsafemap->sm_freehd);
5023 	LIST_INIT(&bmsafemap->sm_freewr);
5024 	if (bmsafemap_find(bmsafemaphd, mp, cg, &collision) == 1) {
5025 		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
5026 		return (collision);
5027 	}
5028 	bmsafemap->sm_cg = cg;
5029 	LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash);
5030 	LIST_INSERT_HEAD(&VFSTOUFS(mp)->softdep_dirtycg, bmsafemap, sm_next);
5031 	WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list);
5032 	return (bmsafemap);
5033 }
5034 
5035 /*
5036  * Direct block allocation dependencies.
5037  *
5038  * When a new block is allocated, the corresponding disk locations must be
5039  * initialized (with zeros or new data) before the on-disk inode points to
5040  * them.  Also, the freemap from which the block was allocated must be
5041  * updated (on disk) before the inode's pointer. These two dependencies are
5042  * independent of each other and are needed for all file blocks and indirect
5043  * blocks that are pointed to directly by the inode.  Just before the
5044  * "in-core" version of the inode is updated with a newly allocated block
5045  * number, a procedure (below) is called to setup allocation dependency
5046  * structures.  These structures are removed when the corresponding
5047  * dependencies are satisfied or when the block allocation becomes obsolete
5048  * (i.e., the file is deleted, the block is de-allocated, or the block is a
5049  * fragment that gets upgraded).  All of these cases are handled in
5050  * procedures described later.
5051  *
5052  * When a file extension causes a fragment to be upgraded, either to a larger
5053  * fragment or to a full block, the on-disk location may change (if the
5054  * previous fragment could not simply be extended). In this case, the old
5055  * fragment must be de-allocated, but not until after the inode's pointer has
5056  * been updated. In most cases, this is handled by later procedures, which
5057  * will construct a "freefrag" structure to be added to the workitem queue
5058  * when the inode update is complete (or obsolete).  The main exception to
5059  * this is when an allocation occurs while a pending allocation dependency
5060  * (for the same block pointer) remains.  This case is handled in the main
5061  * allocation dependency setup procedure by immediately freeing the
5062  * unreferenced fragments.
5063  */
5064 void
5065 softdep_setup_allocdirect(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
5066 	struct inode *ip;	/* inode to which block is being added */
5067 	ufs_lbn_t off;		/* block pointer within inode */
5068 	ufs2_daddr_t newblkno;	/* disk block number being added */
5069 	ufs2_daddr_t oldblkno;	/* previous block number, 0 unless frag */
5070 	long newsize;		/* size of new block */
5071 	long oldsize;		/* size of new block */
5072 	struct buf *bp;		/* bp for allocated block */
5073 {
5074 	struct allocdirect *adp, *oldadp;
5075 	struct allocdirectlst *adphead;
5076 	struct freefrag *freefrag;
5077 	struct inodedep *inodedep;
5078 	struct pagedep *pagedep;
5079 	struct jnewblk *jnewblk;
5080 	struct newblk *newblk;
5081 	struct mount *mp;
5082 	ufs_lbn_t lbn;
5083 
5084 	lbn = bp->b_lblkno;
5085 	mp = UFSTOVFS(ip->i_ump);
5086 	if (oldblkno && oldblkno != newblkno)
5087 		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn);
5088 	else
5089 		freefrag = NULL;
5090 
5091 	CTR6(KTR_SUJ,
5092 	    "softdep_setup_allocdirect: ino %d blkno %jd oldblkno %jd "
5093 	    "off %jd newsize %ld oldsize %d",
5094 	    ip->i_number, newblkno, oldblkno, off, newsize, oldsize);
5095 	ACQUIRE_LOCK(&lk);
5096 	if (off >= NDADDR) {
5097 		if (lbn > 0)
5098 			panic("softdep_setup_allocdirect: bad lbn %jd, off %jd",
5099 			    lbn, off);
5100 		/* allocating an indirect block */
5101 		if (oldblkno != 0)
5102 			panic("softdep_setup_allocdirect: non-zero indir");
5103 	} else {
5104 		if (off != lbn)
5105 			panic("softdep_setup_allocdirect: lbn %jd != off %jd",
5106 			    lbn, off);
5107 		/*
5108 		 * Allocating a direct block.
5109 		 *
5110 		 * If we are allocating a directory block, then we must
5111 		 * allocate an associated pagedep to track additions and
5112 		 * deletions.
5113 		 */
5114 		if ((ip->i_mode & IFMT) == IFDIR)
5115 			pagedep_lookup(mp, bp, ip->i_number, off, DEPALLOC,
5116 			    &pagedep);
5117 	}
5118 	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
5119 		panic("softdep_setup_allocdirect: lost block");
5120 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5121 	    ("softdep_setup_allocdirect: newblk already initialized"));
5122 	/*
5123 	 * Convert the newblk to an allocdirect.
5124 	 */
5125 	newblk->nb_list.wk_type = D_ALLOCDIRECT;
5126 	adp = (struct allocdirect *)newblk;
5127 	newblk->nb_freefrag = freefrag;
5128 	adp->ad_offset = off;
5129 	adp->ad_oldblkno = oldblkno;
5130 	adp->ad_newsize = newsize;
5131 	adp->ad_oldsize = oldsize;
5132 
5133 	/*
5134 	 * Finish initializing the journal.
5135 	 */
5136 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5137 		jnewblk->jn_ino = ip->i_number;
5138 		jnewblk->jn_lbn = lbn;
5139 		add_to_journal(&jnewblk->jn_list);
5140 	}
5141 	if (freefrag && freefrag->ff_jdep != NULL &&
5142 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5143 		add_to_journal(freefrag->ff_jdep);
5144 	inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep);
5145 	adp->ad_inodedep = inodedep;
5146 
5147 	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
5148 	/*
5149 	 * The list of allocdirects must be kept in sorted and ascending
5150 	 * order so that the rollback routines can quickly determine the
5151 	 * first uncommitted block (the size of the file stored on disk
5152 	 * ends at the end of the lowest committed fragment, or if there
5153 	 * are no fragments, at the end of the highest committed block).
5154 	 * Since files generally grow, the typical case is that the new
5155 	 * block is to be added at the end of the list. We speed this
5156 	 * special case by checking against the last allocdirect in the
5157 	 * list before laboriously traversing the list looking for the
5158 	 * insertion point.
5159 	 */
5160 	adphead = &inodedep->id_newinoupdt;
5161 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
5162 	if (oldadp == NULL || oldadp->ad_offset <= off) {
5163 		/* insert at end of list */
5164 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
5165 		if (oldadp != NULL && oldadp->ad_offset == off)
5166 			allocdirect_merge(adphead, adp, oldadp);
5167 		FREE_LOCK(&lk);
5168 		return;
5169 	}
5170 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
5171 		if (oldadp->ad_offset >= off)
5172 			break;
5173 	}
5174 	if (oldadp == NULL)
5175 		panic("softdep_setup_allocdirect: lost entry");
5176 	/* insert in middle of list */
5177 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5178 	if (oldadp->ad_offset == off)
5179 		allocdirect_merge(adphead, adp, oldadp);
5180 
5181 	FREE_LOCK(&lk);
5182 }
5183 
5184 /*
5185  * Merge a newer and older journal record to be stored either in a
5186  * newblock or freefrag.  This handles aggregating journal records for
5187  * fragment allocation into a second record as well as replacing a
5188  * journal free with an aborted journal allocation.  A segment for the
5189  * oldest record will be placed on wkhd if it has been written.  If not
5190  * the segment for the newer record will suffice.
5191  */
5192 static struct worklist *
5193 jnewblk_merge(new, old, wkhd)
5194 	struct worklist *new;
5195 	struct worklist *old;
5196 	struct workhead *wkhd;
5197 {
5198 	struct jnewblk *njnewblk;
5199 	struct jnewblk *jnewblk;
5200 
5201 	/* Handle NULLs to simplify callers. */
5202 	if (new == NULL)
5203 		return (old);
5204 	if (old == NULL)
5205 		return (new);
5206 	/* Replace a jfreefrag with a jnewblk. */
5207 	if (new->wk_type == D_JFREEFRAG) {
5208 		if (WK_JNEWBLK(old)->jn_blkno != WK_JFREEFRAG(new)->fr_blkno)
5209 			panic("jnewblk_merge: blkno mismatch: %p, %p",
5210 			    old, new);
5211 		cancel_jfreefrag(WK_JFREEFRAG(new));
5212 		return (old);
5213 	}
5214 	if (old->wk_type != D_JNEWBLK || new->wk_type != D_JNEWBLK)
5215 		panic("jnewblk_merge: Bad type: old %d new %d\n",
5216 		    old->wk_type, new->wk_type);
5217 	/*
5218 	 * Handle merging of two jnewblk records that describe
5219 	 * different sets of fragments in the same block.
5220 	 */
5221 	jnewblk = WK_JNEWBLK(old);
5222 	njnewblk = WK_JNEWBLK(new);
5223 	if (jnewblk->jn_blkno != njnewblk->jn_blkno)
5224 		panic("jnewblk_merge: Merging disparate blocks.");
5225 	/*
5226 	 * The record may be rolled back in the cg.
5227 	 */
5228 	if (jnewblk->jn_state & UNDONE) {
5229 		jnewblk->jn_state &= ~UNDONE;
5230 		njnewblk->jn_state |= UNDONE;
5231 		njnewblk->jn_state &= ~ATTACHED;
5232 	}
5233 	/*
5234 	 * We modify the newer addref and free the older so that if neither
5235 	 * has been written the most up-to-date copy will be on disk.  If
5236 	 * both have been written but rolled back we only temporarily need
5237 	 * one of them to fix the bits when the cg write completes.
5238 	 */
5239 	jnewblk->jn_state |= ATTACHED | COMPLETE;
5240 	njnewblk->jn_oldfrags = jnewblk->jn_oldfrags;
5241 	cancel_jnewblk(jnewblk, wkhd);
5242 	WORKLIST_REMOVE(&jnewblk->jn_list);
5243 	free_jnewblk(jnewblk);
5244 	return (new);
5245 }
5246 
5247 /*
5248  * Replace an old allocdirect dependency with a newer one.
5249  * This routine must be called with splbio interrupts blocked.
5250  */
5251 static void
5252 allocdirect_merge(adphead, newadp, oldadp)
5253 	struct allocdirectlst *adphead;	/* head of list holding allocdirects */
5254 	struct allocdirect *newadp;	/* allocdirect being added */
5255 	struct allocdirect *oldadp;	/* existing allocdirect being checked */
5256 {
5257 	struct worklist *wk;
5258 	struct freefrag *freefrag;
5259 
5260 	freefrag = NULL;
5261 	rw_assert(&lk, RA_WLOCKED);
5262 	if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
5263 	    newadp->ad_oldsize != oldadp->ad_newsize ||
5264 	    newadp->ad_offset >= NDADDR)
5265 		panic("%s %jd != new %jd || old size %ld != new %ld",
5266 		    "allocdirect_merge: old blkno",
5267 		    (intmax_t)newadp->ad_oldblkno,
5268 		    (intmax_t)oldadp->ad_newblkno,
5269 		    newadp->ad_oldsize, oldadp->ad_newsize);
5270 	newadp->ad_oldblkno = oldadp->ad_oldblkno;
5271 	newadp->ad_oldsize = oldadp->ad_oldsize;
5272 	/*
5273 	 * If the old dependency had a fragment to free or had never
5274 	 * previously had a block allocated, then the new dependency
5275 	 * can immediately post its freefrag and adopt the old freefrag.
5276 	 * This action is done by swapping the freefrag dependencies.
5277 	 * The new dependency gains the old one's freefrag, and the
5278 	 * old one gets the new one and then immediately puts it on
5279 	 * the worklist when it is freed by free_newblk. It is
5280 	 * not possible to do this swap when the old dependency had a
5281 	 * non-zero size but no previous fragment to free. This condition
5282 	 * arises when the new block is an extension of the old block.
5283 	 * Here, the first part of the fragment allocated to the new
5284 	 * dependency is part of the block currently claimed on disk by
5285 	 * the old dependency, so cannot legitimately be freed until the
5286 	 * conditions for the new dependency are fulfilled.
5287 	 */
5288 	freefrag = newadp->ad_freefrag;
5289 	if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
5290 		newadp->ad_freefrag = oldadp->ad_freefrag;
5291 		oldadp->ad_freefrag = freefrag;
5292 	}
5293 	/*
5294 	 * If we are tracking a new directory-block allocation,
5295 	 * move it from the old allocdirect to the new allocdirect.
5296 	 */
5297 	if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) {
5298 		WORKLIST_REMOVE(wk);
5299 		if (!LIST_EMPTY(&oldadp->ad_newdirblk))
5300 			panic("allocdirect_merge: extra newdirblk");
5301 		WORKLIST_INSERT(&newadp->ad_newdirblk, wk);
5302 	}
5303 	TAILQ_REMOVE(adphead, oldadp, ad_next);
5304 	/*
5305 	 * We need to move any journal dependencies over to the freefrag
5306 	 * that releases this block if it exists.  Otherwise we are
5307 	 * extending an existing block and we'll wait until that is
5308 	 * complete to release the journal space and extend the
5309 	 * new journal to cover this old space as well.
5310 	 */
5311 	if (freefrag == NULL) {
5312 		if (oldadp->ad_newblkno != newadp->ad_newblkno)
5313 			panic("allocdirect_merge: %jd != %jd",
5314 			    oldadp->ad_newblkno, newadp->ad_newblkno);
5315 		newadp->ad_block.nb_jnewblk = (struct jnewblk *)
5316 		    jnewblk_merge(&newadp->ad_block.nb_jnewblk->jn_list,
5317 		    &oldadp->ad_block.nb_jnewblk->jn_list,
5318 		    &newadp->ad_block.nb_jwork);
5319 		oldadp->ad_block.nb_jnewblk = NULL;
5320 		cancel_newblk(&oldadp->ad_block, NULL,
5321 		    &newadp->ad_block.nb_jwork);
5322 	} else {
5323 		wk = (struct worklist *) cancel_newblk(&oldadp->ad_block,
5324 		    &freefrag->ff_list, &freefrag->ff_jwork);
5325 		freefrag->ff_jdep = jnewblk_merge(freefrag->ff_jdep, wk,
5326 		    &freefrag->ff_jwork);
5327 	}
5328 	free_newblk(&oldadp->ad_block);
5329 }
5330 
5331 /*
5332  * Allocate a jfreefrag structure to journal a single block free.
5333  */
5334 static struct jfreefrag *
5335 newjfreefrag(freefrag, ip, blkno, size, lbn)
5336 	struct freefrag *freefrag;
5337 	struct inode *ip;
5338 	ufs2_daddr_t blkno;
5339 	long size;
5340 	ufs_lbn_t lbn;
5341 {
5342 	struct jfreefrag *jfreefrag;
5343 	struct fs *fs;
5344 
5345 	fs = ip->i_fs;
5346 	jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG,
5347 	    M_SOFTDEP_FLAGS);
5348 	workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, UFSTOVFS(ip->i_ump));
5349 	jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list);
5350 	jfreefrag->fr_state = ATTACHED | DEPCOMPLETE;
5351 	jfreefrag->fr_ino = ip->i_number;
5352 	jfreefrag->fr_lbn = lbn;
5353 	jfreefrag->fr_blkno = blkno;
5354 	jfreefrag->fr_frags = numfrags(fs, size);
5355 	jfreefrag->fr_freefrag = freefrag;
5356 
5357 	return (jfreefrag);
5358 }
5359 
5360 /*
5361  * Allocate a new freefrag structure.
5362  */
5363 static struct freefrag *
5364 newfreefrag(ip, blkno, size, lbn)
5365 	struct inode *ip;
5366 	ufs2_daddr_t blkno;
5367 	long size;
5368 	ufs_lbn_t lbn;
5369 {
5370 	struct freefrag *freefrag;
5371 	struct fs *fs;
5372 
5373 	CTR4(KTR_SUJ, "newfreefrag: ino %d blkno %jd size %ld lbn %jd",
5374 	    ip->i_number, blkno, size, lbn);
5375 	fs = ip->i_fs;
5376 	if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
5377 		panic("newfreefrag: frag size");
5378 	freefrag = malloc(sizeof(struct freefrag),
5379 	    M_FREEFRAG, M_SOFTDEP_FLAGS);
5380 	workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ip->i_ump));
5381 	freefrag->ff_state = ATTACHED;
5382 	LIST_INIT(&freefrag->ff_jwork);
5383 	freefrag->ff_inum = ip->i_number;
5384 	freefrag->ff_vtype = ITOV(ip)->v_type;
5385 	freefrag->ff_blkno = blkno;
5386 	freefrag->ff_fragsize = size;
5387 
5388 	if (MOUNTEDSUJ(UFSTOVFS(ip->i_ump))) {
5389 		freefrag->ff_jdep = (struct worklist *)
5390 		    newjfreefrag(freefrag, ip, blkno, size, lbn);
5391 	} else {
5392 		freefrag->ff_state |= DEPCOMPLETE;
5393 		freefrag->ff_jdep = NULL;
5394 	}
5395 
5396 	return (freefrag);
5397 }
5398 
5399 /*
5400  * This workitem de-allocates fragments that were replaced during
5401  * file block allocation.
5402  */
5403 static void
5404 handle_workitem_freefrag(freefrag)
5405 	struct freefrag *freefrag;
5406 {
5407 	struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp);
5408 	struct workhead wkhd;
5409 
5410 	CTR3(KTR_SUJ,
5411 	    "handle_workitem_freefrag: ino %d blkno %jd size %ld",
5412 	    freefrag->ff_inum, freefrag->ff_blkno, freefrag->ff_fragsize);
5413 	/*
5414 	 * It would be illegal to add new completion items to the
5415 	 * freefrag after it was schedule to be done so it must be
5416 	 * safe to modify the list head here.
5417 	 */
5418 	LIST_INIT(&wkhd);
5419 	ACQUIRE_LOCK(&lk);
5420 	LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list);
5421 	/*
5422 	 * If the journal has not been written we must cancel it here.
5423 	 */
5424 	if (freefrag->ff_jdep) {
5425 		if (freefrag->ff_jdep->wk_type != D_JNEWBLK)
5426 			panic("handle_workitem_freefrag: Unexpected type %d\n",
5427 			    freefrag->ff_jdep->wk_type);
5428 		cancel_jnewblk(WK_JNEWBLK(freefrag->ff_jdep), &wkhd);
5429 	}
5430 	FREE_LOCK(&lk);
5431 	ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno,
5432 	   freefrag->ff_fragsize, freefrag->ff_inum, freefrag->ff_vtype, &wkhd);
5433 	ACQUIRE_LOCK(&lk);
5434 	WORKITEM_FREE(freefrag, D_FREEFRAG);
5435 	FREE_LOCK(&lk);
5436 }
5437 
5438 /*
5439  * Set up a dependency structure for an external attributes data block.
5440  * This routine follows much of the structure of softdep_setup_allocdirect.
5441  * See the description of softdep_setup_allocdirect above for details.
5442  */
5443 void
5444 softdep_setup_allocext(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
5445 	struct inode *ip;
5446 	ufs_lbn_t off;
5447 	ufs2_daddr_t newblkno;
5448 	ufs2_daddr_t oldblkno;
5449 	long newsize;
5450 	long oldsize;
5451 	struct buf *bp;
5452 {
5453 	struct allocdirect *adp, *oldadp;
5454 	struct allocdirectlst *adphead;
5455 	struct freefrag *freefrag;
5456 	struct inodedep *inodedep;
5457 	struct jnewblk *jnewblk;
5458 	struct newblk *newblk;
5459 	struct mount *mp;
5460 	ufs_lbn_t lbn;
5461 
5462 	if (off >= NXADDR)
5463 		panic("softdep_setup_allocext: lbn %lld > NXADDR",
5464 		    (long long)off);
5465 
5466 	lbn = bp->b_lblkno;
5467 	mp = UFSTOVFS(ip->i_ump);
5468 	if (oldblkno && oldblkno != newblkno)
5469 		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn);
5470 	else
5471 		freefrag = NULL;
5472 
5473 	ACQUIRE_LOCK(&lk);
5474 	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
5475 		panic("softdep_setup_allocext: lost block");
5476 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5477 	    ("softdep_setup_allocext: newblk already initialized"));
5478 	/*
5479 	 * Convert the newblk to an allocdirect.
5480 	 */
5481 	newblk->nb_list.wk_type = D_ALLOCDIRECT;
5482 	adp = (struct allocdirect *)newblk;
5483 	newblk->nb_freefrag = freefrag;
5484 	adp->ad_offset = off;
5485 	adp->ad_oldblkno = oldblkno;
5486 	adp->ad_newsize = newsize;
5487 	adp->ad_oldsize = oldsize;
5488 	adp->ad_state |=  EXTDATA;
5489 
5490 	/*
5491 	 * Finish initializing the journal.
5492 	 */
5493 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5494 		jnewblk->jn_ino = ip->i_number;
5495 		jnewblk->jn_lbn = lbn;
5496 		add_to_journal(&jnewblk->jn_list);
5497 	}
5498 	if (freefrag && freefrag->ff_jdep != NULL &&
5499 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5500 		add_to_journal(freefrag->ff_jdep);
5501 	inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep);
5502 	adp->ad_inodedep = inodedep;
5503 
5504 	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
5505 	/*
5506 	 * The list of allocdirects must be kept in sorted and ascending
5507 	 * order so that the rollback routines can quickly determine the
5508 	 * first uncommitted block (the size of the file stored on disk
5509 	 * ends at the end of the lowest committed fragment, or if there
5510 	 * are no fragments, at the end of the highest committed block).
5511 	 * Since files generally grow, the typical case is that the new
5512 	 * block is to be added at the end of the list. We speed this
5513 	 * special case by checking against the last allocdirect in the
5514 	 * list before laboriously traversing the list looking for the
5515 	 * insertion point.
5516 	 */
5517 	adphead = &inodedep->id_newextupdt;
5518 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
5519 	if (oldadp == NULL || oldadp->ad_offset <= off) {
5520 		/* insert at end of list */
5521 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
5522 		if (oldadp != NULL && oldadp->ad_offset == off)
5523 			allocdirect_merge(adphead, adp, oldadp);
5524 		FREE_LOCK(&lk);
5525 		return;
5526 	}
5527 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
5528 		if (oldadp->ad_offset >= off)
5529 			break;
5530 	}
5531 	if (oldadp == NULL)
5532 		panic("softdep_setup_allocext: lost entry");
5533 	/* insert in middle of list */
5534 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5535 	if (oldadp->ad_offset == off)
5536 		allocdirect_merge(adphead, adp, oldadp);
5537 	FREE_LOCK(&lk);
5538 }
5539 
5540 /*
5541  * Indirect block allocation dependencies.
5542  *
5543  * The same dependencies that exist for a direct block also exist when
5544  * a new block is allocated and pointed to by an entry in a block of
5545  * indirect pointers. The undo/redo states described above are also
5546  * used here. Because an indirect block contains many pointers that
5547  * may have dependencies, a second copy of the entire in-memory indirect
5548  * block is kept. The buffer cache copy is always completely up-to-date.
5549  * The second copy, which is used only as a source for disk writes,
5550  * contains only the safe pointers (i.e., those that have no remaining
5551  * update dependencies). The second copy is freed when all pointers
5552  * are safe. The cache is not allowed to replace indirect blocks with
5553  * pending update dependencies. If a buffer containing an indirect
5554  * block with dependencies is written, these routines will mark it
5555  * dirty again. It can only be successfully written once all the
5556  * dependencies are removed. The ffs_fsync routine in conjunction with
5557  * softdep_sync_metadata work together to get all the dependencies
5558  * removed so that a file can be successfully written to disk. Three
5559  * procedures are used when setting up indirect block pointer
5560  * dependencies. The division is necessary because of the organization
5561  * of the "balloc" routine and because of the distinction between file
5562  * pages and file metadata blocks.
5563  */
5564 
5565 /*
5566  * Allocate a new allocindir structure.
5567  */
5568 static struct allocindir *
5569 newallocindir(ip, ptrno, newblkno, oldblkno, lbn)
5570 	struct inode *ip;	/* inode for file being extended */
5571 	int ptrno;		/* offset of pointer in indirect block */
5572 	ufs2_daddr_t newblkno;	/* disk block number being added */
5573 	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
5574 	ufs_lbn_t lbn;
5575 {
5576 	struct newblk *newblk;
5577 	struct allocindir *aip;
5578 	struct freefrag *freefrag;
5579 	struct jnewblk *jnewblk;
5580 
5581 	if (oldblkno)
5582 		freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize, lbn);
5583 	else
5584 		freefrag = NULL;
5585 	ACQUIRE_LOCK(&lk);
5586 	if (newblk_lookup(UFSTOVFS(ip->i_ump), newblkno, 0, &newblk) == 0)
5587 		panic("new_allocindir: lost block");
5588 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5589 	    ("newallocindir: newblk already initialized"));
5590 	newblk->nb_list.wk_type = D_ALLOCINDIR;
5591 	newblk->nb_freefrag = freefrag;
5592 	aip = (struct allocindir *)newblk;
5593 	aip->ai_offset = ptrno;
5594 	aip->ai_oldblkno = oldblkno;
5595 	aip->ai_lbn = lbn;
5596 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5597 		jnewblk->jn_ino = ip->i_number;
5598 		jnewblk->jn_lbn = lbn;
5599 		add_to_journal(&jnewblk->jn_list);
5600 	}
5601 	if (freefrag && freefrag->ff_jdep != NULL &&
5602 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5603 		add_to_journal(freefrag->ff_jdep);
5604 	return (aip);
5605 }
5606 
5607 /*
5608  * Called just before setting an indirect block pointer
5609  * to a newly allocated file page.
5610  */
5611 void
5612 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
5613 	struct inode *ip;	/* inode for file being extended */
5614 	ufs_lbn_t lbn;		/* allocated block number within file */
5615 	struct buf *bp;		/* buffer with indirect blk referencing page */
5616 	int ptrno;		/* offset of pointer in indirect block */
5617 	ufs2_daddr_t newblkno;	/* disk block number being added */
5618 	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
5619 	struct buf *nbp;	/* buffer holding allocated page */
5620 {
5621 	struct inodedep *inodedep;
5622 	struct freefrag *freefrag;
5623 	struct allocindir *aip;
5624 	struct pagedep *pagedep;
5625 	struct mount *mp;
5626 	int dflags;
5627 
5628 	if (lbn != nbp->b_lblkno)
5629 		panic("softdep_setup_allocindir_page: lbn %jd != lblkno %jd",
5630 		    lbn, bp->b_lblkno);
5631 	CTR4(KTR_SUJ,
5632 	    "softdep_setup_allocindir_page: ino %d blkno %jd oldblkno %jd "
5633 	    "lbn %jd", ip->i_number, newblkno, oldblkno, lbn);
5634 	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page");
5635 	mp = UFSTOVFS(ip->i_ump);
5636 	aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn);
5637 	dflags = DEPALLOC;
5638 	if (IS_SNAPSHOT(ip))
5639 		dflags |= NODELAY;
5640 	(void) inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
5641 	/*
5642 	 * If we are allocating a directory page, then we must
5643 	 * allocate an associated pagedep to track additions and
5644 	 * deletions.
5645 	 */
5646 	if ((ip->i_mode & IFMT) == IFDIR)
5647 		pagedep_lookup(mp, nbp, ip->i_number, lbn, DEPALLOC, &pagedep);
5648 	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
5649 	freefrag = setup_allocindir_phase2(bp, ip, inodedep, aip, lbn);
5650 	FREE_LOCK(&lk);
5651 	if (freefrag)
5652 		handle_workitem_freefrag(freefrag);
5653 }
5654 
5655 /*
5656  * Called just before setting an indirect block pointer to a
5657  * newly allocated indirect block.
5658  */
5659 void
5660 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
5661 	struct buf *nbp;	/* newly allocated indirect block */
5662 	struct inode *ip;	/* inode for file being extended */
5663 	struct buf *bp;		/* indirect block referencing allocated block */
5664 	int ptrno;		/* offset of pointer in indirect block */
5665 	ufs2_daddr_t newblkno;	/* disk block number being added */
5666 {
5667 	struct inodedep *inodedep;
5668 	struct allocindir *aip;
5669 	ufs_lbn_t lbn;
5670 	int dflags;
5671 
5672 	CTR3(KTR_SUJ,
5673 	    "softdep_setup_allocindir_meta: ino %d blkno %jd ptrno %d",
5674 	    ip->i_number, newblkno, ptrno);
5675 	lbn = nbp->b_lblkno;
5676 	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta");
5677 	aip = newallocindir(ip, ptrno, newblkno, 0, lbn);
5678 	dflags = DEPALLOC;
5679 	if (IS_SNAPSHOT(ip))
5680 		dflags |= NODELAY;
5681 	inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, dflags, &inodedep);
5682 	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
5683 	if (setup_allocindir_phase2(bp, ip, inodedep, aip, lbn))
5684 		panic("softdep_setup_allocindir_meta: Block already existed");
5685 	FREE_LOCK(&lk);
5686 }
5687 
5688 static void
5689 indirdep_complete(indirdep)
5690 	struct indirdep *indirdep;
5691 {
5692 	struct allocindir *aip;
5693 
5694 	LIST_REMOVE(indirdep, ir_next);
5695 	indirdep->ir_state |= DEPCOMPLETE;
5696 
5697 	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) {
5698 		LIST_REMOVE(aip, ai_next);
5699 		free_newblk(&aip->ai_block);
5700 	}
5701 	/*
5702 	 * If this indirdep is not attached to a buf it was simply waiting
5703 	 * on completion to clear completehd.  free_indirdep() asserts
5704 	 * that nothing is dangling.
5705 	 */
5706 	if ((indirdep->ir_state & ONWORKLIST) == 0)
5707 		free_indirdep(indirdep);
5708 }
5709 
5710 static struct indirdep *
5711 indirdep_lookup(mp, ip, bp)
5712 	struct mount *mp;
5713 	struct inode *ip;
5714 	struct buf *bp;
5715 {
5716 	struct indirdep *indirdep, *newindirdep;
5717 	struct newblk *newblk;
5718 	struct worklist *wk;
5719 	struct fs *fs;
5720 	ufs2_daddr_t blkno;
5721 
5722 	rw_assert(&lk, RA_WLOCKED);
5723 	indirdep = NULL;
5724 	newindirdep = NULL;
5725 	fs = ip->i_fs;
5726 	for (;;) {
5727 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5728 			if (wk->wk_type != D_INDIRDEP)
5729 				continue;
5730 			indirdep = WK_INDIRDEP(wk);
5731 			break;
5732 		}
5733 		/* Found on the buffer worklist, no new structure to free. */
5734 		if (indirdep != NULL && newindirdep == NULL)
5735 			return (indirdep);
5736 		if (indirdep != NULL && newindirdep != NULL)
5737 			panic("indirdep_lookup: simultaneous create");
5738 		/* None found on the buffer and a new structure is ready. */
5739 		if (indirdep == NULL && newindirdep != NULL)
5740 			break;
5741 		/* None found and no new structure available. */
5742 		FREE_LOCK(&lk);
5743 		newindirdep = malloc(sizeof(struct indirdep),
5744 		    M_INDIRDEP, M_SOFTDEP_FLAGS);
5745 		workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp);
5746 		newindirdep->ir_state = ATTACHED;
5747 		if (ip->i_ump->um_fstype == UFS1)
5748 			newindirdep->ir_state |= UFS1FMT;
5749 		TAILQ_INIT(&newindirdep->ir_trunc);
5750 		newindirdep->ir_saveddata = NULL;
5751 		LIST_INIT(&newindirdep->ir_deplisthd);
5752 		LIST_INIT(&newindirdep->ir_donehd);
5753 		LIST_INIT(&newindirdep->ir_writehd);
5754 		LIST_INIT(&newindirdep->ir_completehd);
5755 		if (bp->b_blkno == bp->b_lblkno) {
5756 			ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp,
5757 			    NULL, NULL);
5758 			bp->b_blkno = blkno;
5759 		}
5760 		newindirdep->ir_freeblks = NULL;
5761 		newindirdep->ir_savebp =
5762 		    getblk(ip->i_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0);
5763 		newindirdep->ir_bp = bp;
5764 		BUF_KERNPROC(newindirdep->ir_savebp);
5765 		bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
5766 		ACQUIRE_LOCK(&lk);
5767 	}
5768 	indirdep = newindirdep;
5769 	WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list);
5770 	/*
5771 	 * If the block is not yet allocated we don't set DEPCOMPLETE so
5772 	 * that we don't free dependencies until the pointers are valid.
5773 	 * This could search b_dep for D_ALLOCDIRECT/D_ALLOCINDIR rather
5774 	 * than using the hash.
5775 	 */
5776 	if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk))
5777 		LIST_INSERT_HEAD(&newblk->nb_indirdeps, indirdep, ir_next);
5778 	else
5779 		indirdep->ir_state |= DEPCOMPLETE;
5780 	return (indirdep);
5781 }
5782 
5783 /*
5784  * Called to finish the allocation of the "aip" allocated
5785  * by one of the two routines above.
5786  */
5787 static struct freefrag *
5788 setup_allocindir_phase2(bp, ip, inodedep, aip, lbn)
5789 	struct buf *bp;		/* in-memory copy of the indirect block */
5790 	struct inode *ip;	/* inode for file being extended */
5791 	struct inodedep *inodedep; /* Inodedep for ip */
5792 	struct allocindir *aip;	/* allocindir allocated by the above routines */
5793 	ufs_lbn_t lbn;		/* Logical block number for this block. */
5794 {
5795 	struct fs *fs;
5796 	struct indirdep *indirdep;
5797 	struct allocindir *oldaip;
5798 	struct freefrag *freefrag;
5799 	struct mount *mp;
5800 
5801 	rw_assert(&lk, RA_WLOCKED);
5802 	mp = UFSTOVFS(ip->i_ump);
5803 	fs = ip->i_fs;
5804 	if (bp->b_lblkno >= 0)
5805 		panic("setup_allocindir_phase2: not indir blk");
5806 	KASSERT(aip->ai_offset >= 0 && aip->ai_offset < NINDIR(fs),
5807 	    ("setup_allocindir_phase2: Bad offset %d", aip->ai_offset));
5808 	indirdep = indirdep_lookup(mp, ip, bp);
5809 	KASSERT(indirdep->ir_savebp != NULL,
5810 	    ("setup_allocindir_phase2 NULL ir_savebp"));
5811 	aip->ai_indirdep = indirdep;
5812 	/*
5813 	 * Check for an unwritten dependency for this indirect offset.  If
5814 	 * there is, merge the old dependency into the new one.  This happens
5815 	 * as a result of reallocblk only.
5816 	 */
5817 	freefrag = NULL;
5818 	if (aip->ai_oldblkno != 0) {
5819 		LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) {
5820 			if (oldaip->ai_offset == aip->ai_offset) {
5821 				freefrag = allocindir_merge(aip, oldaip);
5822 				goto done;
5823 			}
5824 		}
5825 		LIST_FOREACH(oldaip, &indirdep->ir_donehd, ai_next) {
5826 			if (oldaip->ai_offset == aip->ai_offset) {
5827 				freefrag = allocindir_merge(aip, oldaip);
5828 				goto done;
5829 			}
5830 		}
5831 	}
5832 done:
5833 	LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
5834 	return (freefrag);
5835 }
5836 
5837 /*
5838  * Merge two allocindirs which refer to the same block.  Move newblock
5839  * dependencies and setup the freefrags appropriately.
5840  */
5841 static struct freefrag *
5842 allocindir_merge(aip, oldaip)
5843 	struct allocindir *aip;
5844 	struct allocindir *oldaip;
5845 {
5846 	struct freefrag *freefrag;
5847 	struct worklist *wk;
5848 
5849 	if (oldaip->ai_newblkno != aip->ai_oldblkno)
5850 		panic("allocindir_merge: blkno");
5851 	aip->ai_oldblkno = oldaip->ai_oldblkno;
5852 	freefrag = aip->ai_freefrag;
5853 	aip->ai_freefrag = oldaip->ai_freefrag;
5854 	oldaip->ai_freefrag = NULL;
5855 	KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag"));
5856 	/*
5857 	 * If we are tracking a new directory-block allocation,
5858 	 * move it from the old allocindir to the new allocindir.
5859 	 */
5860 	if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) {
5861 		WORKLIST_REMOVE(wk);
5862 		if (!LIST_EMPTY(&oldaip->ai_newdirblk))
5863 			panic("allocindir_merge: extra newdirblk");
5864 		WORKLIST_INSERT(&aip->ai_newdirblk, wk);
5865 	}
5866 	/*
5867 	 * We can skip journaling for this freefrag and just complete
5868 	 * any pending journal work for the allocindir that is being
5869 	 * removed after the freefrag completes.
5870 	 */
5871 	if (freefrag->ff_jdep)
5872 		cancel_jfreefrag(WK_JFREEFRAG(freefrag->ff_jdep));
5873 	LIST_REMOVE(oldaip, ai_next);
5874 	freefrag->ff_jdep = (struct worklist *)cancel_newblk(&oldaip->ai_block,
5875 	    &freefrag->ff_list, &freefrag->ff_jwork);
5876 	free_newblk(&oldaip->ai_block);
5877 
5878 	return (freefrag);
5879 }
5880 
5881 static inline void
5882 setup_freedirect(freeblks, ip, i, needj)
5883 	struct freeblks *freeblks;
5884 	struct inode *ip;
5885 	int i;
5886 	int needj;
5887 {
5888 	ufs2_daddr_t blkno;
5889 	int frags;
5890 
5891 	blkno = DIP(ip, i_db[i]);
5892 	if (blkno == 0)
5893 		return;
5894 	DIP_SET(ip, i_db[i], 0);
5895 	frags = sblksize(ip->i_fs, ip->i_size, i);
5896 	frags = numfrags(ip->i_fs, frags);
5897 	newfreework(ip->i_ump, freeblks, NULL, i, blkno, frags, 0, needj);
5898 }
5899 
5900 static inline void
5901 setup_freeext(freeblks, ip, i, needj)
5902 	struct freeblks *freeblks;
5903 	struct inode *ip;
5904 	int i;
5905 	int needj;
5906 {
5907 	ufs2_daddr_t blkno;
5908 	int frags;
5909 
5910 	blkno = ip->i_din2->di_extb[i];
5911 	if (blkno == 0)
5912 		return;
5913 	ip->i_din2->di_extb[i] = 0;
5914 	frags = sblksize(ip->i_fs, ip->i_din2->di_extsize, i);
5915 	frags = numfrags(ip->i_fs, frags);
5916 	newfreework(ip->i_ump, freeblks, NULL, -1 - i, blkno, frags, 0, needj);
5917 }
5918 
5919 static inline void
5920 setup_freeindir(freeblks, ip, i, lbn, needj)
5921 	struct freeblks *freeblks;
5922 	struct inode *ip;
5923 	int i;
5924 	ufs_lbn_t lbn;
5925 	int needj;
5926 {
5927 	ufs2_daddr_t blkno;
5928 
5929 	blkno = DIP(ip, i_ib[i]);
5930 	if (blkno == 0)
5931 		return;
5932 	DIP_SET(ip, i_ib[i], 0);
5933 	newfreework(ip->i_ump, freeblks, NULL, lbn, blkno, ip->i_fs->fs_frag,
5934 	    0, needj);
5935 }
5936 
5937 static inline struct freeblks *
5938 newfreeblks(mp, ip)
5939 	struct mount *mp;
5940 	struct inode *ip;
5941 {
5942 	struct freeblks *freeblks;
5943 
5944 	freeblks = malloc(sizeof(struct freeblks),
5945 		M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO);
5946 	workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp);
5947 	LIST_INIT(&freeblks->fb_jblkdephd);
5948 	LIST_INIT(&freeblks->fb_jwork);
5949 	freeblks->fb_ref = 0;
5950 	freeblks->fb_cgwait = 0;
5951 	freeblks->fb_state = ATTACHED;
5952 	freeblks->fb_uid = ip->i_uid;
5953 	freeblks->fb_inum = ip->i_number;
5954 	freeblks->fb_vtype = ITOV(ip)->v_type;
5955 	freeblks->fb_modrev = DIP(ip, i_modrev);
5956 	freeblks->fb_devvp = ip->i_devvp;
5957 	freeblks->fb_chkcnt = 0;
5958 	freeblks->fb_len = 0;
5959 
5960 	return (freeblks);
5961 }
5962 
5963 static void
5964 trunc_indirdep(indirdep, freeblks, bp, off)
5965 	struct indirdep *indirdep;
5966 	struct freeblks *freeblks;
5967 	struct buf *bp;
5968 	int off;
5969 {
5970 	struct allocindir *aip, *aipn;
5971 
5972 	/*
5973 	 * The first set of allocindirs won't be in savedbp.
5974 	 */
5975 	LIST_FOREACH_SAFE(aip, &indirdep->ir_deplisthd, ai_next, aipn)
5976 		if (aip->ai_offset > off)
5977 			cancel_allocindir(aip, bp, freeblks, 1);
5978 	LIST_FOREACH_SAFE(aip, &indirdep->ir_donehd, ai_next, aipn)
5979 		if (aip->ai_offset > off)
5980 			cancel_allocindir(aip, bp, freeblks, 1);
5981 	/*
5982 	 * These will exist in savedbp.
5983 	 */
5984 	LIST_FOREACH_SAFE(aip, &indirdep->ir_writehd, ai_next, aipn)
5985 		if (aip->ai_offset > off)
5986 			cancel_allocindir(aip, NULL, freeblks, 0);
5987 	LIST_FOREACH_SAFE(aip, &indirdep->ir_completehd, ai_next, aipn)
5988 		if (aip->ai_offset > off)
5989 			cancel_allocindir(aip, NULL, freeblks, 0);
5990 }
5991 
5992 /*
5993  * Follow the chain of indirects down to lastlbn creating a freework
5994  * structure for each.  This will be used to start indir_trunc() at
5995  * the right offset and create the journal records for the parrtial
5996  * truncation.  A second step will handle the truncated dependencies.
5997  */
5998 static int
5999 setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno)
6000 	struct freeblks *freeblks;
6001 	struct inode *ip;
6002 	ufs_lbn_t lbn;
6003 	ufs_lbn_t lastlbn;
6004 	ufs2_daddr_t blkno;
6005 {
6006 	struct indirdep *indirdep;
6007 	struct indirdep *indirn;
6008 	struct freework *freework;
6009 	struct newblk *newblk;
6010 	struct mount *mp;
6011 	struct buf *bp;
6012 	uint8_t *start;
6013 	uint8_t *end;
6014 	ufs_lbn_t lbnadd;
6015 	int level;
6016 	int error;
6017 	int off;
6018 
6019 
6020 	freework = NULL;
6021 	if (blkno == 0)
6022 		return (0);
6023 	mp = freeblks->fb_list.wk_mp;
6024 	bp = getblk(ITOV(ip), lbn, mp->mnt_stat.f_iosize, 0, 0, 0);
6025 	if ((bp->b_flags & B_CACHE) == 0) {
6026 		bp->b_blkno = blkptrtodb(VFSTOUFS(mp), blkno);
6027 		bp->b_iocmd = BIO_READ;
6028 		bp->b_flags &= ~B_INVAL;
6029 		bp->b_ioflags &= ~BIO_ERROR;
6030 		vfs_busy_pages(bp, 0);
6031 		bp->b_iooffset = dbtob(bp->b_blkno);
6032 		bstrategy(bp);
6033 		curthread->td_ru.ru_inblock++;
6034 		error = bufwait(bp);
6035 		if (error) {
6036 			brelse(bp);
6037 			return (error);
6038 		}
6039 	}
6040 	level = lbn_level(lbn);
6041 	lbnadd = lbn_offset(ip->i_fs, level);
6042 	/*
6043 	 * Compute the offset of the last block we want to keep.  Store
6044 	 * in the freework the first block we want to completely free.
6045 	 */
6046 	off = (lastlbn - -(lbn + level)) / lbnadd;
6047 	if (off + 1 == NINDIR(ip->i_fs))
6048 		goto nowork;
6049 	freework = newfreework(ip->i_ump, freeblks, NULL, lbn, blkno, 0, off+1,
6050 	    0);
6051 	/*
6052 	 * Link the freework into the indirdep.  This will prevent any new
6053 	 * allocations from proceeding until we are finished with the
6054 	 * truncate and the block is written.
6055 	 */
6056 	ACQUIRE_LOCK(&lk);
6057 	indirdep = indirdep_lookup(mp, ip, bp);
6058 	if (indirdep->ir_freeblks)
6059 		panic("setup_trunc_indir: indirdep already truncated.");
6060 	TAILQ_INSERT_TAIL(&indirdep->ir_trunc, freework, fw_next);
6061 	freework->fw_indir = indirdep;
6062 	/*
6063 	 * Cancel any allocindirs that will not make it to disk.
6064 	 * We have to do this for all copies of the indirdep that
6065 	 * live on this newblk.
6066 	 */
6067 	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
6068 		newblk_lookup(mp, dbtofsb(ip->i_fs, bp->b_blkno), 0, &newblk);
6069 		LIST_FOREACH(indirn, &newblk->nb_indirdeps, ir_next)
6070 			trunc_indirdep(indirn, freeblks, bp, off);
6071 	} else
6072 		trunc_indirdep(indirdep, freeblks, bp, off);
6073 	FREE_LOCK(&lk);
6074 	/*
6075 	 * Creation is protected by the buf lock. The saveddata is only
6076 	 * needed if a full truncation follows a partial truncation but it
6077 	 * is difficult to allocate in that case so we fetch it anyway.
6078 	 */
6079 	if (indirdep->ir_saveddata == NULL)
6080 		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
6081 		    M_SOFTDEP_FLAGS);
6082 nowork:
6083 	/* Fetch the blkno of the child and the zero start offset. */
6084 	if (ip->i_ump->um_fstype == UFS1) {
6085 		blkno = ((ufs1_daddr_t *)bp->b_data)[off];
6086 		start = (uint8_t *)&((ufs1_daddr_t *)bp->b_data)[off+1];
6087 	} else {
6088 		blkno = ((ufs2_daddr_t *)bp->b_data)[off];
6089 		start = (uint8_t *)&((ufs2_daddr_t *)bp->b_data)[off+1];
6090 	}
6091 	if (freework) {
6092 		/* Zero the truncated pointers. */
6093 		end = bp->b_data + bp->b_bcount;
6094 		bzero(start, end - start);
6095 		bdwrite(bp);
6096 	} else
6097 		bqrelse(bp);
6098 	if (level == 0)
6099 		return (0);
6100 	lbn++; /* adjust level */
6101 	lbn -= (off * lbnadd);
6102 	return setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno);
6103 }
6104 
6105 /*
6106  * Complete the partial truncation of an indirect block setup by
6107  * setup_trunc_indir().  This zeros the truncated pointers in the saved
6108  * copy and writes them to disk before the freeblks is allowed to complete.
6109  */
6110 static void
6111 complete_trunc_indir(freework)
6112 	struct freework *freework;
6113 {
6114 	struct freework *fwn;
6115 	struct indirdep *indirdep;
6116 	struct buf *bp;
6117 	uintptr_t start;
6118 	int count;
6119 
6120 	indirdep = freework->fw_indir;
6121 	for (;;) {
6122 		bp = indirdep->ir_bp;
6123 		/* See if the block was discarded. */
6124 		if (bp == NULL)
6125 			break;
6126 		/* Inline part of getdirtybuf().  We dont want bremfree. */
6127 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0)
6128 			break;
6129 		if (BUF_LOCK(bp,
6130 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, &lk) == 0)
6131 			BUF_UNLOCK(bp);
6132 		ACQUIRE_LOCK(&lk);
6133 	}
6134 	rw_assert(&lk, RA_WLOCKED);
6135 	freework->fw_state |= DEPCOMPLETE;
6136 	TAILQ_REMOVE(&indirdep->ir_trunc, freework, fw_next);
6137 	/*
6138 	 * Zero the pointers in the saved copy.
6139 	 */
6140 	if (indirdep->ir_state & UFS1FMT)
6141 		start = sizeof(ufs1_daddr_t);
6142 	else
6143 		start = sizeof(ufs2_daddr_t);
6144 	start *= freework->fw_start;
6145 	count = indirdep->ir_savebp->b_bcount - start;
6146 	start += (uintptr_t)indirdep->ir_savebp->b_data;
6147 	bzero((char *)start, count);
6148 	/*
6149 	 * We need to start the next truncation in the list if it has not
6150 	 * been started yet.
6151 	 */
6152 	fwn = TAILQ_FIRST(&indirdep->ir_trunc);
6153 	if (fwn != NULL) {
6154 		if (fwn->fw_freeblks == indirdep->ir_freeblks)
6155 			TAILQ_REMOVE(&indirdep->ir_trunc, fwn, fw_next);
6156 		if ((fwn->fw_state & ONWORKLIST) == 0)
6157 			freework_enqueue(fwn);
6158 	}
6159 	/*
6160 	 * If bp is NULL the block was fully truncated, restore
6161 	 * the saved block list otherwise free it if it is no
6162 	 * longer needed.
6163 	 */
6164 	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
6165 		if (bp == NULL)
6166 			bcopy(indirdep->ir_saveddata,
6167 			    indirdep->ir_savebp->b_data,
6168 			    indirdep->ir_savebp->b_bcount);
6169 		free(indirdep->ir_saveddata, M_INDIRDEP);
6170 		indirdep->ir_saveddata = NULL;
6171 	}
6172 	/*
6173 	 * When bp is NULL there is a full truncation pending.  We
6174 	 * must wait for this full truncation to be journaled before
6175 	 * we can release this freework because the disk pointers will
6176 	 * never be written as zero.
6177 	 */
6178 	if (bp == NULL)  {
6179 		if (LIST_EMPTY(&indirdep->ir_freeblks->fb_jblkdephd))
6180 			handle_written_freework(freework);
6181 		else
6182 			WORKLIST_INSERT(&indirdep->ir_freeblks->fb_freeworkhd,
6183 			   &freework->fw_list);
6184 	} else {
6185 		/* Complete when the real copy is written. */
6186 		WORKLIST_INSERT(&bp->b_dep, &freework->fw_list);
6187 		BUF_UNLOCK(bp);
6188 	}
6189 }
6190 
6191 /*
6192  * Calculate the number of blocks we are going to release where datablocks
6193  * is the current total and length is the new file size.
6194  */
6195 ufs2_daddr_t
6196 blkcount(fs, datablocks, length)
6197 	struct fs *fs;
6198 	ufs2_daddr_t datablocks;
6199 	off_t length;
6200 {
6201 	off_t totblks, numblks;
6202 
6203 	totblks = 0;
6204 	numblks = howmany(length, fs->fs_bsize);
6205 	if (numblks <= NDADDR) {
6206 		totblks = howmany(length, fs->fs_fsize);
6207 		goto out;
6208 	}
6209         totblks = blkstofrags(fs, numblks);
6210 	numblks -= NDADDR;
6211 	/*
6212 	 * Count all single, then double, then triple indirects required.
6213 	 * Subtracting one indirects worth of blocks for each pass
6214 	 * acknowledges one of each pointed to by the inode.
6215 	 */
6216 	for (;;) {
6217 		totblks += blkstofrags(fs, howmany(numblks, NINDIR(fs)));
6218 		numblks -= NINDIR(fs);
6219 		if (numblks <= 0)
6220 			break;
6221 		numblks = howmany(numblks, NINDIR(fs));
6222 	}
6223 out:
6224 	totblks = fsbtodb(fs, totblks);
6225 	/*
6226 	 * Handle sparse files.  We can't reclaim more blocks than the inode
6227 	 * references.  We will correct it later in handle_complete_freeblks()
6228 	 * when we know the real count.
6229 	 */
6230 	if (totblks > datablocks)
6231 		return (0);
6232 	return (datablocks - totblks);
6233 }
6234 
6235 /*
6236  * Handle freeblocks for journaled softupdate filesystems.
6237  *
6238  * Contrary to normal softupdates, we must preserve the block pointers in
6239  * indirects until their subordinates are free.  This is to avoid journaling
6240  * every block that is freed which may consume more space than the journal
6241  * itself.  The recovery program will see the free block journals at the
6242  * base of the truncated area and traverse them to reclaim space.  The
6243  * pointers in the inode may be cleared immediately after the journal
6244  * records are written because each direct and indirect pointer in the
6245  * inode is recorded in a journal.  This permits full truncation to proceed
6246  * asynchronously.  The write order is journal -> inode -> cgs -> indirects.
6247  *
6248  * The algorithm is as follows:
6249  * 1) Traverse the in-memory state and create journal entries to release
6250  *    the relevant blocks and full indirect trees.
6251  * 2) Traverse the indirect block chain adding partial truncation freework
6252  *    records to indirects in the path to lastlbn.  The freework will
6253  *    prevent new allocation dependencies from being satisfied in this
6254  *    indirect until the truncation completes.
6255  * 3) Read and lock the inode block, performing an update with the new size
6256  *    and pointers.  This prevents truncated data from becoming valid on
6257  *    disk through step 4.
6258  * 4) Reap unsatisfied dependencies that are beyond the truncated area,
6259  *    eliminate journal work for those records that do not require it.
6260  * 5) Schedule the journal records to be written followed by the inode block.
6261  * 6) Allocate any necessary frags for the end of file.
6262  * 7) Zero any partially truncated blocks.
6263  *
6264  * From this truncation proceeds asynchronously using the freework and
6265  * indir_trunc machinery.  The file will not be extended again into a
6266  * partially truncated indirect block until all work is completed but
6267  * the normal dependency mechanism ensures that it is rolled back/forward
6268  * as appropriate.  Further truncation may occur without delay and is
6269  * serialized in indir_trunc().
6270  */
6271 void
6272 softdep_journal_freeblocks(ip, cred, length, flags)
6273 	struct inode *ip;	/* The inode whose length is to be reduced */
6274 	struct ucred *cred;
6275 	off_t length;		/* The new length for the file */
6276 	int flags;		/* IO_EXT and/or IO_NORMAL */
6277 {
6278 	struct freeblks *freeblks, *fbn;
6279 	struct worklist *wk, *wkn;
6280 	struct inodedep *inodedep;
6281 	struct jblkdep *jblkdep;
6282 	struct allocdirect *adp, *adpn;
6283 	struct fs *fs;
6284 	struct buf *bp;
6285 	struct vnode *vp;
6286 	struct mount *mp;
6287 	ufs2_daddr_t extblocks, datablocks;
6288 	ufs_lbn_t tmpval, lbn, lastlbn;
6289 	int frags, lastoff, iboff, allocblock, needj, dflags, error, i;
6290 
6291 	fs = ip->i_fs;
6292 	mp = UFSTOVFS(ip->i_ump);
6293 	vp = ITOV(ip);
6294 	needj = 1;
6295 	iboff = -1;
6296 	allocblock = 0;
6297 	extblocks = 0;
6298 	datablocks = 0;
6299 	frags = 0;
6300 	freeblks = newfreeblks(mp, ip);
6301 	ACQUIRE_LOCK(&lk);
6302 	/*
6303 	 * If we're truncating a removed file that will never be written
6304 	 * we don't need to journal the block frees.  The canceled journals
6305 	 * for the allocations will suffice.
6306 	 */
6307 	dflags = DEPALLOC;
6308 	if (IS_SNAPSHOT(ip))
6309 		dflags |= NODELAY;
6310 	inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
6311 	if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED &&
6312 	    length == 0)
6313 		needj = 0;
6314 	CTR3(KTR_SUJ, "softdep_journal_freeblks: ip %d length %ld needj %d",
6315 	    ip->i_number, length, needj);
6316 	FREE_LOCK(&lk);
6317 	/*
6318 	 * Calculate the lbn that we are truncating to.  This results in -1
6319 	 * if we're truncating the 0 bytes.  So it is the last lbn we want
6320 	 * to keep, not the first lbn we want to truncate.
6321 	 */
6322 	lastlbn = lblkno(fs, length + fs->fs_bsize - 1) - 1;
6323 	lastoff = blkoff(fs, length);
6324 	/*
6325 	 * Compute frags we are keeping in lastlbn.  0 means all.
6326 	 */
6327 	if (lastlbn >= 0 && lastlbn < NDADDR) {
6328 		frags = fragroundup(fs, lastoff);
6329 		/* adp offset of last valid allocdirect. */
6330 		iboff = lastlbn;
6331 	} else if (lastlbn > 0)
6332 		iboff = NDADDR;
6333 	if (fs->fs_magic == FS_UFS2_MAGIC)
6334 		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
6335 	/*
6336 	 * Handle normal data blocks and indirects.  This section saves
6337 	 * values used after the inode update to complete frag and indirect
6338 	 * truncation.
6339 	 */
6340 	if ((flags & IO_NORMAL) != 0) {
6341 		/*
6342 		 * Handle truncation of whole direct and indirect blocks.
6343 		 */
6344 		for (i = iboff + 1; i < NDADDR; i++)
6345 			setup_freedirect(freeblks, ip, i, needj);
6346 		for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR;
6347 		    i++, lbn += tmpval, tmpval *= NINDIR(fs)) {
6348 			/* Release a whole indirect tree. */
6349 			if (lbn > lastlbn) {
6350 				setup_freeindir(freeblks, ip, i, -lbn -i,
6351 				    needj);
6352 				continue;
6353 			}
6354 			iboff = i + NDADDR;
6355 			/*
6356 			 * Traverse partially truncated indirect tree.
6357 			 */
6358 			if (lbn <= lastlbn && lbn + tmpval - 1 > lastlbn)
6359 				setup_trunc_indir(freeblks, ip, -lbn - i,
6360 				    lastlbn, DIP(ip, i_ib[i]));
6361 		}
6362 		/*
6363 		 * Handle partial truncation to a frag boundary.
6364 		 */
6365 		if (frags) {
6366 			ufs2_daddr_t blkno;
6367 			long oldfrags;
6368 
6369 			oldfrags = blksize(fs, ip, lastlbn);
6370 			blkno = DIP(ip, i_db[lastlbn]);
6371 			if (blkno && oldfrags != frags) {
6372 				oldfrags -= frags;
6373 				oldfrags = numfrags(ip->i_fs, oldfrags);
6374 				blkno += numfrags(ip->i_fs, frags);
6375 				newfreework(ip->i_ump, freeblks, NULL, lastlbn,
6376 				    blkno, oldfrags, 0, needj);
6377 			} else if (blkno == 0)
6378 				allocblock = 1;
6379 		}
6380 		/*
6381 		 * Add a journal record for partial truncate if we are
6382 		 * handling indirect blocks.  Non-indirects need no extra
6383 		 * journaling.
6384 		 */
6385 		if (length != 0 && lastlbn >= NDADDR) {
6386 			ip->i_flag |= IN_TRUNCATED;
6387 			newjtrunc(freeblks, length, 0);
6388 		}
6389 		ip->i_size = length;
6390 		DIP_SET(ip, i_size, ip->i_size);
6391 		datablocks = DIP(ip, i_blocks) - extblocks;
6392 		if (length != 0)
6393 			datablocks = blkcount(ip->i_fs, datablocks, length);
6394 		freeblks->fb_len = length;
6395 	}
6396 	if ((flags & IO_EXT) != 0) {
6397 		for (i = 0; i < NXADDR; i++)
6398 			setup_freeext(freeblks, ip, i, needj);
6399 		ip->i_din2->di_extsize = 0;
6400 		datablocks += extblocks;
6401 	}
6402 #ifdef QUOTA
6403 	/* Reference the quotas in case the block count is wrong in the end. */
6404 	quotaref(vp, freeblks->fb_quota);
6405 	(void) chkdq(ip, -datablocks, NOCRED, 0);
6406 #endif
6407 	freeblks->fb_chkcnt = -datablocks;
6408 	UFS_LOCK(ip->i_ump);
6409 	fs->fs_pendingblocks += datablocks;
6410 	UFS_UNLOCK(ip->i_ump);
6411 	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
6412 	/*
6413 	 * Handle truncation of incomplete alloc direct dependencies.  We
6414 	 * hold the inode block locked to prevent incomplete dependencies
6415 	 * from reaching the disk while we are eliminating those that
6416 	 * have been truncated.  This is a partially inlined ffs_update().
6417 	 */
6418 	ufs_itimes(vp);
6419 	ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED);
6420 	error = bread(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
6421 	    (int)fs->fs_bsize, cred, &bp);
6422 	if (error) {
6423 		brelse(bp);
6424 		softdep_error("softdep_journal_freeblocks", error);
6425 		return;
6426 	}
6427 	if (bp->b_bufsize == fs->fs_bsize)
6428 		bp->b_flags |= B_CLUSTEROK;
6429 	softdep_update_inodeblock(ip, bp, 0);
6430 	if (ip->i_ump->um_fstype == UFS1)
6431 		*((struct ufs1_dinode *)bp->b_data +
6432 		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1;
6433 	else
6434 		*((struct ufs2_dinode *)bp->b_data +
6435 		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2;
6436 	ACQUIRE_LOCK(&lk);
6437 	(void) inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
6438 	if ((inodedep->id_state & IOSTARTED) != 0)
6439 		panic("softdep_setup_freeblocks: inode busy");
6440 	/*
6441 	 * Add the freeblks structure to the list of operations that
6442 	 * must await the zero'ed inode being written to disk. If we
6443 	 * still have a bitmap dependency (needj), then the inode
6444 	 * has never been written to disk, so we can process the
6445 	 * freeblks below once we have deleted the dependencies.
6446 	 */
6447 	if (needj)
6448 		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
6449 	else
6450 		freeblks->fb_state |= COMPLETE;
6451 	if ((flags & IO_NORMAL) != 0) {
6452 		TAILQ_FOREACH_SAFE(adp, &inodedep->id_inoupdt, ad_next, adpn) {
6453 			if (adp->ad_offset > iboff)
6454 				cancel_allocdirect(&inodedep->id_inoupdt, adp,
6455 				    freeblks);
6456 			/*
6457 			 * Truncate the allocdirect.  We could eliminate
6458 			 * or modify journal records as well.
6459 			 */
6460 			else if (adp->ad_offset == iboff && frags)
6461 				adp->ad_newsize = frags;
6462 		}
6463 	}
6464 	if ((flags & IO_EXT) != 0)
6465 		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0)
6466 			cancel_allocdirect(&inodedep->id_extupdt, adp,
6467 			    freeblks);
6468 	/*
6469 	 * Scan the bufwait list for newblock dependencies that will never
6470 	 * make it to disk.
6471 	 */
6472 	LIST_FOREACH_SAFE(wk, &inodedep->id_bufwait, wk_list, wkn) {
6473 		if (wk->wk_type != D_ALLOCDIRECT)
6474 			continue;
6475 		adp = WK_ALLOCDIRECT(wk);
6476 		if (((flags & IO_NORMAL) != 0 && (adp->ad_offset > iboff)) ||
6477 		    ((flags & IO_EXT) != 0 && (adp->ad_state & EXTDATA))) {
6478 			cancel_jfreeblk(freeblks, adp->ad_newblkno);
6479 			cancel_newblk(WK_NEWBLK(wk), NULL, &freeblks->fb_jwork);
6480 			WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
6481 		}
6482 	}
6483 	/*
6484 	 * Add journal work.
6485 	 */
6486 	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps)
6487 		add_to_journal(&jblkdep->jb_list);
6488 	FREE_LOCK(&lk);
6489 	bdwrite(bp);
6490 	/*
6491 	 * Truncate dependency structures beyond length.
6492 	 */
6493 	trunc_dependencies(ip, freeblks, lastlbn, frags, flags);
6494 	/*
6495 	 * This is only set when we need to allocate a fragment because
6496 	 * none existed at the end of a frag-sized file.  It handles only
6497 	 * allocating a new, zero filled block.
6498 	 */
6499 	if (allocblock) {
6500 		ip->i_size = length - lastoff;
6501 		DIP_SET(ip, i_size, ip->i_size);
6502 		error = UFS_BALLOC(vp, length - 1, 1, cred, BA_CLRBUF, &bp);
6503 		if (error != 0) {
6504 			softdep_error("softdep_journal_freeblks", error);
6505 			return;
6506 		}
6507 		ip->i_size = length;
6508 		DIP_SET(ip, i_size, length);
6509 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
6510 		allocbuf(bp, frags);
6511 		ffs_update(vp, 0);
6512 		bawrite(bp);
6513 	} else if (lastoff != 0 && vp->v_type != VDIR) {
6514 		int size;
6515 
6516 		/*
6517 		 * Zero the end of a truncated frag or block.
6518 		 */
6519 		size = sblksize(fs, length, lastlbn);
6520 		error = bread(vp, lastlbn, size, cred, &bp);
6521 		if (error) {
6522 			softdep_error("softdep_journal_freeblks", error);
6523 			return;
6524 		}
6525 		bzero((char *)bp->b_data + lastoff, size - lastoff);
6526 		bawrite(bp);
6527 
6528 	}
6529 	ACQUIRE_LOCK(&lk);
6530 	inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
6531 	TAILQ_INSERT_TAIL(&inodedep->id_freeblklst, freeblks, fb_next);
6532 	freeblks->fb_state |= DEPCOMPLETE | ONDEPLIST;
6533 	/*
6534 	 * We zero earlier truncations so they don't erroneously
6535 	 * update i_blocks.
6536 	 */
6537 	if (freeblks->fb_len == 0 && (flags & IO_NORMAL) != 0)
6538 		TAILQ_FOREACH(fbn, &inodedep->id_freeblklst, fb_next)
6539 			fbn->fb_len = 0;
6540 	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE &&
6541 	    LIST_EMPTY(&freeblks->fb_jblkdephd))
6542 		freeblks->fb_state |= INPROGRESS;
6543 	else
6544 		freeblks = NULL;
6545 	FREE_LOCK(&lk);
6546 	if (freeblks)
6547 		handle_workitem_freeblocks(freeblks, 0);
6548 	trunc_pages(ip, length, extblocks, flags);
6549 
6550 }
6551 
6552 /*
6553  * Flush a JOP_SYNC to the journal.
6554  */
6555 void
6556 softdep_journal_fsync(ip)
6557 	struct inode *ip;
6558 {
6559 	struct jfsync *jfsync;
6560 
6561 	if ((ip->i_flag & IN_TRUNCATED) == 0)
6562 		return;
6563 	ip->i_flag &= ~IN_TRUNCATED;
6564 	jfsync = malloc(sizeof(*jfsync), M_JFSYNC, M_SOFTDEP_FLAGS | M_ZERO);
6565 	workitem_alloc(&jfsync->jfs_list, D_JFSYNC, UFSTOVFS(ip->i_ump));
6566 	jfsync->jfs_size = ip->i_size;
6567 	jfsync->jfs_ino = ip->i_number;
6568 	ACQUIRE_LOCK(&lk);
6569 	add_to_journal(&jfsync->jfs_list);
6570 	jwait(&jfsync->jfs_list, MNT_WAIT);
6571 	FREE_LOCK(&lk);
6572 }
6573 
6574 /*
6575  * Block de-allocation dependencies.
6576  *
6577  * When blocks are de-allocated, the on-disk pointers must be nullified before
6578  * the blocks are made available for use by other files.  (The true
6579  * requirement is that old pointers must be nullified before new on-disk
6580  * pointers are set.  We chose this slightly more stringent requirement to
6581  * reduce complexity.) Our implementation handles this dependency by updating
6582  * the inode (or indirect block) appropriately but delaying the actual block
6583  * de-allocation (i.e., freemap and free space count manipulation) until
6584  * after the updated versions reach stable storage.  After the disk is
6585  * updated, the blocks can be safely de-allocated whenever it is convenient.
6586  * This implementation handles only the common case of reducing a file's
6587  * length to zero. Other cases are handled by the conventional synchronous
6588  * write approach.
6589  *
6590  * The ffs implementation with which we worked double-checks
6591  * the state of the block pointers and file size as it reduces
6592  * a file's length.  Some of this code is replicated here in our
6593  * soft updates implementation.  The freeblks->fb_chkcnt field is
6594  * used to transfer a part of this information to the procedure
6595  * that eventually de-allocates the blocks.
6596  *
6597  * This routine should be called from the routine that shortens
6598  * a file's length, before the inode's size or block pointers
6599  * are modified. It will save the block pointer information for
6600  * later release and zero the inode so that the calling routine
6601  * can release it.
6602  */
6603 void
6604 softdep_setup_freeblocks(ip, length, flags)
6605 	struct inode *ip;	/* The inode whose length is to be reduced */
6606 	off_t length;		/* The new length for the file */
6607 	int flags;		/* IO_EXT and/or IO_NORMAL */
6608 {
6609 	struct ufs1_dinode *dp1;
6610 	struct ufs2_dinode *dp2;
6611 	struct freeblks *freeblks;
6612 	struct inodedep *inodedep;
6613 	struct allocdirect *adp;
6614 	struct buf *bp;
6615 	struct fs *fs;
6616 	ufs2_daddr_t extblocks, datablocks;
6617 	struct mount *mp;
6618 	int i, delay, error, dflags;
6619 	ufs_lbn_t tmpval;
6620 	ufs_lbn_t lbn;
6621 
6622 	CTR2(KTR_SUJ, "softdep_setup_freeblks: ip %d length %ld",
6623 	    ip->i_number, length);
6624 	fs = ip->i_fs;
6625 	mp = UFSTOVFS(ip->i_ump);
6626 	if (length != 0)
6627 		panic("softdep_setup_freeblocks: non-zero length");
6628 	freeblks = newfreeblks(mp, ip);
6629 	extblocks = 0;
6630 	datablocks = 0;
6631 	if (fs->fs_magic == FS_UFS2_MAGIC)
6632 		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
6633 	if ((flags & IO_NORMAL) != 0) {
6634 		for (i = 0; i < NDADDR; i++)
6635 			setup_freedirect(freeblks, ip, i, 0);
6636 		for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR;
6637 		    i++, lbn += tmpval, tmpval *= NINDIR(fs))
6638 			setup_freeindir(freeblks, ip, i, -lbn -i, 0);
6639 		ip->i_size = 0;
6640 		DIP_SET(ip, i_size, 0);
6641 		datablocks = DIP(ip, i_blocks) - extblocks;
6642 	}
6643 	if ((flags & IO_EXT) != 0) {
6644 		for (i = 0; i < NXADDR; i++)
6645 			setup_freeext(freeblks, ip, i, 0);
6646 		ip->i_din2->di_extsize = 0;
6647 		datablocks += extblocks;
6648 	}
6649 #ifdef QUOTA
6650 	/* Reference the quotas in case the block count is wrong in the end. */
6651 	quotaref(ITOV(ip), freeblks->fb_quota);
6652 	(void) chkdq(ip, -datablocks, NOCRED, 0);
6653 #endif
6654 	freeblks->fb_chkcnt = -datablocks;
6655 	UFS_LOCK(ip->i_ump);
6656 	fs->fs_pendingblocks += datablocks;
6657 	UFS_UNLOCK(ip->i_ump);
6658 	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
6659 	/*
6660 	 * Push the zero'ed inode to to its disk buffer so that we are free
6661 	 * to delete its dependencies below. Once the dependencies are gone
6662 	 * the buffer can be safely released.
6663 	 */
6664 	if ((error = bread(ip->i_devvp,
6665 	    fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
6666 	    (int)fs->fs_bsize, NOCRED, &bp)) != 0) {
6667 		brelse(bp);
6668 		softdep_error("softdep_setup_freeblocks", error);
6669 	}
6670 	if (ip->i_ump->um_fstype == UFS1) {
6671 		dp1 = ((struct ufs1_dinode *)bp->b_data +
6672 		    ino_to_fsbo(fs, ip->i_number));
6673 		ip->i_din1->di_freelink = dp1->di_freelink;
6674 		*dp1 = *ip->i_din1;
6675 	} else {
6676 		dp2 = ((struct ufs2_dinode *)bp->b_data +
6677 		    ino_to_fsbo(fs, ip->i_number));
6678 		ip->i_din2->di_freelink = dp2->di_freelink;
6679 		*dp2 = *ip->i_din2;
6680 	}
6681 	/*
6682 	 * Find and eliminate any inode dependencies.
6683 	 */
6684 	ACQUIRE_LOCK(&lk);
6685 	dflags = DEPALLOC;
6686 	if (IS_SNAPSHOT(ip))
6687 		dflags |= NODELAY;
6688 	(void) inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
6689 	if ((inodedep->id_state & IOSTARTED) != 0)
6690 		panic("softdep_setup_freeblocks: inode busy");
6691 	/*
6692 	 * Add the freeblks structure to the list of operations that
6693 	 * must await the zero'ed inode being written to disk. If we
6694 	 * still have a bitmap dependency (delay == 0), then the inode
6695 	 * has never been written to disk, so we can process the
6696 	 * freeblks below once we have deleted the dependencies.
6697 	 */
6698 	delay = (inodedep->id_state & DEPCOMPLETE);
6699 	if (delay)
6700 		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
6701 	else
6702 		freeblks->fb_state |= COMPLETE;
6703 	/*
6704 	 * Because the file length has been truncated to zero, any
6705 	 * pending block allocation dependency structures associated
6706 	 * with this inode are obsolete and can simply be de-allocated.
6707 	 * We must first merge the two dependency lists to get rid of
6708 	 * any duplicate freefrag structures, then purge the merged list.
6709 	 * If we still have a bitmap dependency, then the inode has never
6710 	 * been written to disk, so we can free any fragments without delay.
6711 	 */
6712 	if (flags & IO_NORMAL) {
6713 		merge_inode_lists(&inodedep->id_newinoupdt,
6714 		    &inodedep->id_inoupdt);
6715 		while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != 0)
6716 			cancel_allocdirect(&inodedep->id_inoupdt, adp,
6717 			    freeblks);
6718 	}
6719 	if (flags & IO_EXT) {
6720 		merge_inode_lists(&inodedep->id_newextupdt,
6721 		    &inodedep->id_extupdt);
6722 		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0)
6723 			cancel_allocdirect(&inodedep->id_extupdt, adp,
6724 			    freeblks);
6725 	}
6726 	FREE_LOCK(&lk);
6727 	bdwrite(bp);
6728 	trunc_dependencies(ip, freeblks, -1, 0, flags);
6729 	ACQUIRE_LOCK(&lk);
6730 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
6731 		(void) free_inodedep(inodedep);
6732 	freeblks->fb_state |= DEPCOMPLETE;
6733 	/*
6734 	 * If the inode with zeroed block pointers is now on disk
6735 	 * we can start freeing blocks.
6736 	 */
6737 	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
6738 		freeblks->fb_state |= INPROGRESS;
6739 	else
6740 		freeblks = NULL;
6741 	FREE_LOCK(&lk);
6742 	if (freeblks)
6743 		handle_workitem_freeblocks(freeblks, 0);
6744 	trunc_pages(ip, length, extblocks, flags);
6745 }
6746 
6747 /*
6748  * Eliminate pages from the page cache that back parts of this inode and
6749  * adjust the vnode pager's idea of our size.  This prevents stale data
6750  * from hanging around in the page cache.
6751  */
6752 static void
6753 trunc_pages(ip, length, extblocks, flags)
6754 	struct inode *ip;
6755 	off_t length;
6756 	ufs2_daddr_t extblocks;
6757 	int flags;
6758 {
6759 	struct vnode *vp;
6760 	struct fs *fs;
6761 	ufs_lbn_t lbn;
6762 	off_t end, extend;
6763 
6764 	vp = ITOV(ip);
6765 	fs = ip->i_fs;
6766 	extend = OFF_TO_IDX(lblktosize(fs, -extblocks));
6767 	if ((flags & IO_EXT) != 0)
6768 		vn_pages_remove(vp, extend, 0);
6769 	if ((flags & IO_NORMAL) == 0)
6770 		return;
6771 	BO_LOCK(&vp->v_bufobj);
6772 	drain_output(vp);
6773 	BO_UNLOCK(&vp->v_bufobj);
6774 	/*
6775 	 * The vnode pager eliminates file pages we eliminate indirects
6776 	 * below.
6777 	 */
6778 	vnode_pager_setsize(vp, length);
6779 	/*
6780 	 * Calculate the end based on the last indirect we want to keep.  If
6781 	 * the block extends into indirects we can just use the negative of
6782 	 * its lbn.  Doubles and triples exist at lower numbers so we must
6783 	 * be careful not to remove those, if they exist.  double and triple
6784 	 * indirect lbns do not overlap with others so it is not important
6785 	 * to verify how many levels are required.
6786 	 */
6787 	lbn = lblkno(fs, length);
6788 	if (lbn >= NDADDR) {
6789 		/* Calculate the virtual lbn of the triple indirect. */
6790 		lbn = -lbn - (NIADDR - 1);
6791 		end = OFF_TO_IDX(lblktosize(fs, lbn));
6792 	} else
6793 		end = extend;
6794 	vn_pages_remove(vp, OFF_TO_IDX(OFF_MAX), end);
6795 }
6796 
6797 /*
6798  * See if the buf bp is in the range eliminated by truncation.
6799  */
6800 static int
6801 trunc_check_buf(bp, blkoffp, lastlbn, lastoff, flags)
6802 	struct buf *bp;
6803 	int *blkoffp;
6804 	ufs_lbn_t lastlbn;
6805 	int lastoff;
6806 	int flags;
6807 {
6808 	ufs_lbn_t lbn;
6809 
6810 	*blkoffp = 0;
6811 	/* Only match ext/normal blocks as appropriate. */
6812 	if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) ||
6813 	    ((flags & IO_NORMAL) == 0 && (bp->b_xflags & BX_ALTDATA) == 0))
6814 		return (0);
6815 	/* ALTDATA is always a full truncation. */
6816 	if ((bp->b_xflags & BX_ALTDATA) != 0)
6817 		return (1);
6818 	/* -1 is full truncation. */
6819 	if (lastlbn == -1)
6820 		return (1);
6821 	/*
6822 	 * If this is a partial truncate we only want those
6823 	 * blocks and indirect blocks that cover the range
6824 	 * we're after.
6825 	 */
6826 	lbn = bp->b_lblkno;
6827 	if (lbn < 0)
6828 		lbn = -(lbn + lbn_level(lbn));
6829 	if (lbn < lastlbn)
6830 		return (0);
6831 	/* Here we only truncate lblkno if it's partial. */
6832 	if (lbn == lastlbn) {
6833 		if (lastoff == 0)
6834 			return (0);
6835 		*blkoffp = lastoff;
6836 	}
6837 	return (1);
6838 }
6839 
6840 /*
6841  * Eliminate any dependencies that exist in memory beyond lblkno:off
6842  */
6843 static void
6844 trunc_dependencies(ip, freeblks, lastlbn, lastoff, flags)
6845 	struct inode *ip;
6846 	struct freeblks *freeblks;
6847 	ufs_lbn_t lastlbn;
6848 	int lastoff;
6849 	int flags;
6850 {
6851 	struct bufobj *bo;
6852 	struct vnode *vp;
6853 	struct buf *bp;
6854 	struct fs *fs;
6855 	int blkoff;
6856 
6857 	/*
6858 	 * We must wait for any I/O in progress to finish so that
6859 	 * all potential buffers on the dirty list will be visible.
6860 	 * Once they are all there, walk the list and get rid of
6861 	 * any dependencies.
6862 	 */
6863 	fs = ip->i_fs;
6864 	vp = ITOV(ip);
6865 	bo = &vp->v_bufobj;
6866 	BO_LOCK(bo);
6867 	drain_output(vp);
6868 	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
6869 		bp->b_vflags &= ~BV_SCANNED;
6870 restart:
6871 	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
6872 		if (bp->b_vflags & BV_SCANNED)
6873 			continue;
6874 		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
6875 			bp->b_vflags |= BV_SCANNED;
6876 			continue;
6877 		}
6878 		if ((bp = getdirtybuf(bp, BO_LOCKPTR(bo), MNT_WAIT)) == NULL)
6879 			goto restart;
6880 		BO_UNLOCK(bo);
6881 		if (deallocate_dependencies(bp, freeblks, blkoff))
6882 			bqrelse(bp);
6883 		else
6884 			brelse(bp);
6885 		BO_LOCK(bo);
6886 		goto restart;
6887 	}
6888 	/*
6889 	 * Now do the work of vtruncbuf while also matching indirect blocks.
6890 	 */
6891 	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs)
6892 		bp->b_vflags &= ~BV_SCANNED;
6893 cleanrestart:
6894 	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) {
6895 		if (bp->b_vflags & BV_SCANNED)
6896 			continue;
6897 		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
6898 			bp->b_vflags |= BV_SCANNED;
6899 			continue;
6900 		}
6901 		if (BUF_LOCK(bp,
6902 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
6903 		    BO_LOCKPTR(bo)) == ENOLCK) {
6904 			BO_LOCK(bo);
6905 			goto cleanrestart;
6906 		}
6907 		bp->b_vflags |= BV_SCANNED;
6908 		bremfree(bp);
6909 		if (blkoff != 0) {
6910 			allocbuf(bp, blkoff);
6911 			bqrelse(bp);
6912 		} else {
6913 			bp->b_flags |= B_INVAL | B_NOCACHE | B_RELBUF;
6914 			brelse(bp);
6915 		}
6916 		BO_LOCK(bo);
6917 		goto cleanrestart;
6918 	}
6919 	drain_output(vp);
6920 	BO_UNLOCK(bo);
6921 }
6922 
6923 static int
6924 cancel_pagedep(pagedep, freeblks, blkoff)
6925 	struct pagedep *pagedep;
6926 	struct freeblks *freeblks;
6927 	int blkoff;
6928 {
6929 	struct jremref *jremref;
6930 	struct jmvref *jmvref;
6931 	struct dirrem *dirrem, *tmp;
6932 	int i;
6933 
6934 	/*
6935 	 * Copy any directory remove dependencies to the list
6936 	 * to be processed after the freeblks proceeds.  If
6937 	 * directory entry never made it to disk they
6938 	 * can be dumped directly onto the work list.
6939 	 */
6940 	LIST_FOREACH_SAFE(dirrem, &pagedep->pd_dirremhd, dm_next, tmp) {
6941 		/* Skip this directory removal if it is intended to remain. */
6942 		if (dirrem->dm_offset < blkoff)
6943 			continue;
6944 		/*
6945 		 * If there are any dirrems we wait for the journal write
6946 		 * to complete and then restart the buf scan as the lock
6947 		 * has been dropped.
6948 		 */
6949 		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) {
6950 			jwait(&jremref->jr_list, MNT_WAIT);
6951 			return (ERESTART);
6952 		}
6953 		LIST_REMOVE(dirrem, dm_next);
6954 		dirrem->dm_dirinum = pagedep->pd_ino;
6955 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &dirrem->dm_list);
6956 	}
6957 	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) {
6958 		jwait(&jmvref->jm_list, MNT_WAIT);
6959 		return (ERESTART);
6960 	}
6961 	/*
6962 	 * When we're partially truncating a pagedep we just want to flush
6963 	 * journal entries and return.  There can not be any adds in the
6964 	 * truncated portion of the directory and newblk must remain if
6965 	 * part of the block remains.
6966 	 */
6967 	if (blkoff != 0) {
6968 		struct diradd *dap;
6969 
6970 		LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
6971 			if (dap->da_offset > blkoff)
6972 				panic("cancel_pagedep: diradd %p off %d > %d",
6973 				    dap, dap->da_offset, blkoff);
6974 		for (i = 0; i < DAHASHSZ; i++)
6975 			LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist)
6976 				if (dap->da_offset > blkoff)
6977 					panic("cancel_pagedep: diradd %p off %d > %d",
6978 					    dap, dap->da_offset, blkoff);
6979 		return (0);
6980 	}
6981 	/*
6982 	 * There should be no directory add dependencies present
6983 	 * as the directory could not be truncated until all
6984 	 * children were removed.
6985 	 */
6986 	KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL,
6987 	    ("deallocate_dependencies: pendinghd != NULL"));
6988 	for (i = 0; i < DAHASHSZ; i++)
6989 		KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL,
6990 		    ("deallocate_dependencies: diraddhd != NULL"));
6991 	if ((pagedep->pd_state & NEWBLOCK) != 0)
6992 		free_newdirblk(pagedep->pd_newdirblk);
6993 	if (free_pagedep(pagedep) == 0)
6994 		panic("Failed to free pagedep %p", pagedep);
6995 	return (0);
6996 }
6997 
6998 /*
6999  * Reclaim any dependency structures from a buffer that is about to
7000  * be reallocated to a new vnode. The buffer must be locked, thus,
7001  * no I/O completion operations can occur while we are manipulating
7002  * its associated dependencies. The mutex is held so that other I/O's
7003  * associated with related dependencies do not occur.
7004  */
7005 static int
7006 deallocate_dependencies(bp, freeblks, off)
7007 	struct buf *bp;
7008 	struct freeblks *freeblks;
7009 	int off;
7010 {
7011 	struct indirdep *indirdep;
7012 	struct pagedep *pagedep;
7013 	struct allocdirect *adp;
7014 	struct worklist *wk, *wkn;
7015 
7016 	ACQUIRE_LOCK(&lk);
7017 	LIST_FOREACH_SAFE(wk, &bp->b_dep, wk_list, wkn) {
7018 		switch (wk->wk_type) {
7019 		case D_INDIRDEP:
7020 			indirdep = WK_INDIRDEP(wk);
7021 			if (bp->b_lblkno >= 0 ||
7022 			    bp->b_blkno != indirdep->ir_savebp->b_lblkno)
7023 				panic("deallocate_dependencies: not indir");
7024 			cancel_indirdep(indirdep, bp, freeblks);
7025 			continue;
7026 
7027 		case D_PAGEDEP:
7028 			pagedep = WK_PAGEDEP(wk);
7029 			if (cancel_pagedep(pagedep, freeblks, off)) {
7030 				FREE_LOCK(&lk);
7031 				return (ERESTART);
7032 			}
7033 			continue;
7034 
7035 		case D_ALLOCINDIR:
7036 			/*
7037 			 * Simply remove the allocindir, we'll find it via
7038 			 * the indirdep where we can clear pointers if
7039 			 * needed.
7040 			 */
7041 			WORKLIST_REMOVE(wk);
7042 			continue;
7043 
7044 		case D_FREEWORK:
7045 			/*
7046 			 * A truncation is waiting for the zero'd pointers
7047 			 * to be written.  It can be freed when the freeblks
7048 			 * is journaled.
7049 			 */
7050 			WORKLIST_REMOVE(wk);
7051 			wk->wk_state |= ONDEPLIST;
7052 			WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
7053 			break;
7054 
7055 		case D_ALLOCDIRECT:
7056 			adp = WK_ALLOCDIRECT(wk);
7057 			if (off != 0)
7058 				continue;
7059 			/* FALLTHROUGH */
7060 		default:
7061 			panic("deallocate_dependencies: Unexpected type %s",
7062 			    TYPENAME(wk->wk_type));
7063 			/* NOTREACHED */
7064 		}
7065 	}
7066 	FREE_LOCK(&lk);
7067 	/*
7068 	 * Don't throw away this buf, we were partially truncating and
7069 	 * some deps may always remain.
7070 	 */
7071 	if (off) {
7072 		allocbuf(bp, off);
7073 		bp->b_vflags |= BV_SCANNED;
7074 		return (EBUSY);
7075 	}
7076 	bp->b_flags |= B_INVAL | B_NOCACHE;
7077 
7078 	return (0);
7079 }
7080 
7081 /*
7082  * An allocdirect is being canceled due to a truncate.  We must make sure
7083  * the journal entry is released in concert with the blkfree that releases
7084  * the storage.  Completed journal entries must not be released until the
7085  * space is no longer pointed to by the inode or in the bitmap.
7086  */
7087 static void
7088 cancel_allocdirect(adphead, adp, freeblks)
7089 	struct allocdirectlst *adphead;
7090 	struct allocdirect *adp;
7091 	struct freeblks *freeblks;
7092 {
7093 	struct freework *freework;
7094 	struct newblk *newblk;
7095 	struct worklist *wk;
7096 
7097 	TAILQ_REMOVE(adphead, adp, ad_next);
7098 	newblk = (struct newblk *)adp;
7099 	freework = NULL;
7100 	/*
7101 	 * Find the correct freework structure.
7102 	 */
7103 	LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) {
7104 		if (wk->wk_type != D_FREEWORK)
7105 			continue;
7106 		freework = WK_FREEWORK(wk);
7107 		if (freework->fw_blkno == newblk->nb_newblkno)
7108 			break;
7109 	}
7110 	if (freework == NULL)
7111 		panic("cancel_allocdirect: Freework not found");
7112 	/*
7113 	 * If a newblk exists at all we still have the journal entry that
7114 	 * initiated the allocation so we do not need to journal the free.
7115 	 */
7116 	cancel_jfreeblk(freeblks, freework->fw_blkno);
7117 	/*
7118 	 * If the journal hasn't been written the jnewblk must be passed
7119 	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
7120 	 * this by linking the journal dependency into the freework to be
7121 	 * freed when freework_freeblock() is called.  If the journal has
7122 	 * been written we can simply reclaim the journal space when the
7123 	 * freeblks work is complete.
7124 	 */
7125 	freework->fw_jnewblk = cancel_newblk(newblk, &freework->fw_list,
7126 	    &freeblks->fb_jwork);
7127 	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
7128 }
7129 
7130 
7131 /*
7132  * Cancel a new block allocation.  May be an indirect or direct block.  We
7133  * remove it from various lists and return any journal record that needs to
7134  * be resolved by the caller.
7135  *
7136  * A special consideration is made for indirects which were never pointed
7137  * at on disk and will never be found once this block is released.
7138  */
7139 static struct jnewblk *
7140 cancel_newblk(newblk, wk, wkhd)
7141 	struct newblk *newblk;
7142 	struct worklist *wk;
7143 	struct workhead *wkhd;
7144 {
7145 	struct jnewblk *jnewblk;
7146 
7147 	CTR1(KTR_SUJ, "cancel_newblk: blkno %jd", newblk->nb_newblkno);
7148 
7149 	newblk->nb_state |= GOINGAWAY;
7150 	/*
7151 	 * Previously we traversed the completedhd on each indirdep
7152 	 * attached to this newblk to cancel them and gather journal
7153 	 * work.  Since we need only the oldest journal segment and
7154 	 * the lowest point on the tree will always have the oldest
7155 	 * journal segment we are free to release the segments
7156 	 * of any subordinates and may leave the indirdep list to
7157 	 * indirdep_complete() when this newblk is freed.
7158 	 */
7159 	if (newblk->nb_state & ONDEPLIST) {
7160 		newblk->nb_state &= ~ONDEPLIST;
7161 		LIST_REMOVE(newblk, nb_deps);
7162 	}
7163 	if (newblk->nb_state & ONWORKLIST)
7164 		WORKLIST_REMOVE(&newblk->nb_list);
7165 	/*
7166 	 * If the journal entry hasn't been written we save a pointer to
7167 	 * the dependency that frees it until it is written or the
7168 	 * superseding operation completes.
7169 	 */
7170 	jnewblk = newblk->nb_jnewblk;
7171 	if (jnewblk != NULL && wk != NULL) {
7172 		newblk->nb_jnewblk = NULL;
7173 		jnewblk->jn_dep = wk;
7174 	}
7175 	if (!LIST_EMPTY(&newblk->nb_jwork))
7176 		jwork_move(wkhd, &newblk->nb_jwork);
7177 	/*
7178 	 * When truncating we must free the newdirblk early to remove
7179 	 * the pagedep from the hash before returning.
7180 	 */
7181 	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7182 		free_newdirblk(WK_NEWDIRBLK(wk));
7183 	if (!LIST_EMPTY(&newblk->nb_newdirblk))
7184 		panic("cancel_newblk: extra newdirblk");
7185 
7186 	return (jnewblk);
7187 }
7188 
7189 /*
7190  * Schedule the freefrag associated with a newblk to be released once
7191  * the pointers are written and the previous block is no longer needed.
7192  */
7193 static void
7194 newblk_freefrag(newblk)
7195 	struct newblk *newblk;
7196 {
7197 	struct freefrag *freefrag;
7198 
7199 	if (newblk->nb_freefrag == NULL)
7200 		return;
7201 	freefrag = newblk->nb_freefrag;
7202 	newblk->nb_freefrag = NULL;
7203 	freefrag->ff_state |= COMPLETE;
7204 	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
7205 		add_to_worklist(&freefrag->ff_list, 0);
7206 }
7207 
7208 /*
7209  * Free a newblk. Generate a new freefrag work request if appropriate.
7210  * This must be called after the inode pointer and any direct block pointers
7211  * are valid or fully removed via truncate or frag extension.
7212  */
7213 static void
7214 free_newblk(newblk)
7215 	struct newblk *newblk;
7216 {
7217 	struct indirdep *indirdep;
7218 	struct worklist *wk;
7219 
7220 	KASSERT(newblk->nb_jnewblk == NULL,
7221 	    ("free_newblk; jnewblk %p still attached", newblk->nb_jnewblk));
7222 	rw_assert(&lk, RA_WLOCKED);
7223 	newblk_freefrag(newblk);
7224 	if (newblk->nb_state & ONDEPLIST)
7225 		LIST_REMOVE(newblk, nb_deps);
7226 	if (newblk->nb_state & ONWORKLIST)
7227 		WORKLIST_REMOVE(&newblk->nb_list);
7228 	LIST_REMOVE(newblk, nb_hash);
7229 	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7230 		free_newdirblk(WK_NEWDIRBLK(wk));
7231 	if (!LIST_EMPTY(&newblk->nb_newdirblk))
7232 		panic("free_newblk: extra newdirblk");
7233 	while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL)
7234 		indirdep_complete(indirdep);
7235 	handle_jwork(&newblk->nb_jwork);
7236 	newblk->nb_list.wk_type = D_NEWBLK;
7237 	WORKITEM_FREE(newblk, D_NEWBLK);
7238 }
7239 
7240 /*
7241  * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep.
7242  * This routine must be called with splbio interrupts blocked.
7243  */
7244 static void
7245 free_newdirblk(newdirblk)
7246 	struct newdirblk *newdirblk;
7247 {
7248 	struct pagedep *pagedep;
7249 	struct diradd *dap;
7250 	struct worklist *wk;
7251 
7252 	rw_assert(&lk, RA_WLOCKED);
7253 	WORKLIST_REMOVE(&newdirblk->db_list);
7254 	/*
7255 	 * If the pagedep is still linked onto the directory buffer
7256 	 * dependency chain, then some of the entries on the
7257 	 * pd_pendinghd list may not be committed to disk yet. In
7258 	 * this case, we will simply clear the NEWBLOCK flag and
7259 	 * let the pd_pendinghd list be processed when the pagedep
7260 	 * is next written. If the pagedep is no longer on the buffer
7261 	 * dependency chain, then all the entries on the pd_pending
7262 	 * list are committed to disk and we can free them here.
7263 	 */
7264 	pagedep = newdirblk->db_pagedep;
7265 	pagedep->pd_state &= ~NEWBLOCK;
7266 	if ((pagedep->pd_state & ONWORKLIST) == 0) {
7267 		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
7268 			free_diradd(dap, NULL);
7269 		/*
7270 		 * If no dependencies remain, the pagedep will be freed.
7271 		 */
7272 		free_pagedep(pagedep);
7273 	}
7274 	/* Should only ever be one item in the list. */
7275 	while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) {
7276 		WORKLIST_REMOVE(wk);
7277 		handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
7278 	}
7279 	WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
7280 }
7281 
7282 /*
7283  * Prepare an inode to be freed. The actual free operation is not
7284  * done until the zero'ed inode has been written to disk.
7285  */
7286 void
7287 softdep_freefile(pvp, ino, mode)
7288 	struct vnode *pvp;
7289 	ino_t ino;
7290 	int mode;
7291 {
7292 	struct inode *ip = VTOI(pvp);
7293 	struct inodedep *inodedep;
7294 	struct freefile *freefile;
7295 	struct freeblks *freeblks;
7296 
7297 	/*
7298 	 * This sets up the inode de-allocation dependency.
7299 	 */
7300 	freefile = malloc(sizeof(struct freefile),
7301 		M_FREEFILE, M_SOFTDEP_FLAGS);
7302 	workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount);
7303 	freefile->fx_mode = mode;
7304 	freefile->fx_oldinum = ino;
7305 	freefile->fx_devvp = ip->i_devvp;
7306 	LIST_INIT(&freefile->fx_jwork);
7307 	UFS_LOCK(ip->i_ump);
7308 	ip->i_fs->fs_pendinginodes += 1;
7309 	UFS_UNLOCK(ip->i_ump);
7310 
7311 	/*
7312 	 * If the inodedep does not exist, then the zero'ed inode has
7313 	 * been written to disk. If the allocated inode has never been
7314 	 * written to disk, then the on-disk inode is zero'ed. In either
7315 	 * case we can free the file immediately.  If the journal was
7316 	 * canceled before being written the inode will never make it to
7317 	 * disk and we must send the canceled journal entrys to
7318 	 * ffs_freefile() to be cleared in conjunction with the bitmap.
7319 	 * Any blocks waiting on the inode to write can be safely freed
7320 	 * here as it will never been written.
7321 	 */
7322 	ACQUIRE_LOCK(&lk);
7323 	inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
7324 	if (inodedep) {
7325 		/*
7326 		 * Clear out freeblks that no longer need to reference
7327 		 * this inode.
7328 		 */
7329 		while ((freeblks =
7330 		    TAILQ_FIRST(&inodedep->id_freeblklst)) != NULL) {
7331 			TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks,
7332 			    fb_next);
7333 			freeblks->fb_state &= ~ONDEPLIST;
7334 		}
7335 		/*
7336 		 * Remove this inode from the unlinked list.
7337 		 */
7338 		if (inodedep->id_state & UNLINKED) {
7339 			/*
7340 			 * Save the journal work to be freed with the bitmap
7341 			 * before we clear UNLINKED.  Otherwise it can be lost
7342 			 * if the inode block is written.
7343 			 */
7344 			handle_bufwait(inodedep, &freefile->fx_jwork);
7345 			clear_unlinked_inodedep(inodedep);
7346 			/* Re-acquire inodedep as we've dropped lk. */
7347 			inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
7348 		}
7349 	}
7350 	if (inodedep == NULL || check_inode_unwritten(inodedep)) {
7351 		FREE_LOCK(&lk);
7352 		handle_workitem_freefile(freefile);
7353 		return;
7354 	}
7355 	if ((inodedep->id_state & DEPCOMPLETE) == 0)
7356 		inodedep->id_state |= GOINGAWAY;
7357 	WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
7358 	FREE_LOCK(&lk);
7359 	if (ip->i_number == ino)
7360 		ip->i_flag |= IN_MODIFIED;
7361 }
7362 
7363 /*
7364  * Check to see if an inode has never been written to disk. If
7365  * so free the inodedep and return success, otherwise return failure.
7366  * This routine must be called with splbio interrupts blocked.
7367  *
7368  * If we still have a bitmap dependency, then the inode has never
7369  * been written to disk. Drop the dependency as it is no longer
7370  * necessary since the inode is being deallocated. We set the
7371  * ALLCOMPLETE flags since the bitmap now properly shows that the
7372  * inode is not allocated. Even if the inode is actively being
7373  * written, it has been rolled back to its zero'ed state, so we
7374  * are ensured that a zero inode is what is on the disk. For short
7375  * lived files, this change will usually result in removing all the
7376  * dependencies from the inode so that it can be freed immediately.
7377  */
7378 static int
7379 check_inode_unwritten(inodedep)
7380 	struct inodedep *inodedep;
7381 {
7382 
7383 	rw_assert(&lk, RA_WLOCKED);
7384 
7385 	if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 ||
7386 	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
7387 	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
7388 	    !LIST_EMPTY(&inodedep->id_bufwait) ||
7389 	    !LIST_EMPTY(&inodedep->id_inowait) ||
7390 	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
7391 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
7392 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
7393 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
7394 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
7395 	    !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
7396 	    inodedep->id_mkdiradd != NULL ||
7397 	    inodedep->id_nlinkdelta != 0)
7398 		return (0);
7399 	/*
7400 	 * Another process might be in initiate_write_inodeblock_ufs[12]
7401 	 * trying to allocate memory without holding "Softdep Lock".
7402 	 */
7403 	if ((inodedep->id_state & IOSTARTED) != 0 &&
7404 	    inodedep->id_savedino1 == NULL)
7405 		return (0);
7406 
7407 	if (inodedep->id_state & ONDEPLIST)
7408 		LIST_REMOVE(inodedep, id_deps);
7409 	inodedep->id_state &= ~ONDEPLIST;
7410 	inodedep->id_state |= ALLCOMPLETE;
7411 	inodedep->id_bmsafemap = NULL;
7412 	if (inodedep->id_state & ONWORKLIST)
7413 		WORKLIST_REMOVE(&inodedep->id_list);
7414 	if (inodedep->id_savedino1 != NULL) {
7415 		free(inodedep->id_savedino1, M_SAVEDINO);
7416 		inodedep->id_savedino1 = NULL;
7417 	}
7418 	if (free_inodedep(inodedep) == 0)
7419 		panic("check_inode_unwritten: busy inode");
7420 	return (1);
7421 }
7422 
7423 /*
7424  * Try to free an inodedep structure. Return 1 if it could be freed.
7425  */
7426 static int
7427 free_inodedep(inodedep)
7428 	struct inodedep *inodedep;
7429 {
7430 
7431 	rw_assert(&lk, RA_WLOCKED);
7432 	if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 ||
7433 	    (inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
7434 	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
7435 	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
7436 	    !LIST_EMPTY(&inodedep->id_bufwait) ||
7437 	    !LIST_EMPTY(&inodedep->id_inowait) ||
7438 	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
7439 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
7440 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
7441 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
7442 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
7443 	    !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
7444 	    inodedep->id_mkdiradd != NULL ||
7445 	    inodedep->id_nlinkdelta != 0 ||
7446 	    inodedep->id_savedino1 != NULL)
7447 		return (0);
7448 	if (inodedep->id_state & ONDEPLIST)
7449 		LIST_REMOVE(inodedep, id_deps);
7450 	LIST_REMOVE(inodedep, id_hash);
7451 	WORKITEM_FREE(inodedep, D_INODEDEP);
7452 	return (1);
7453 }
7454 
7455 /*
7456  * Free the block referenced by a freework structure.  The parent freeblks
7457  * structure is released and completed when the final cg bitmap reaches
7458  * the disk.  This routine may be freeing a jnewblk which never made it to
7459  * disk in which case we do not have to wait as the operation is undone
7460  * in memory immediately.
7461  */
7462 static void
7463 freework_freeblock(freework)
7464 	struct freework *freework;
7465 {
7466 	struct freeblks *freeblks;
7467 	struct jnewblk *jnewblk;
7468 	struct ufsmount *ump;
7469 	struct workhead wkhd;
7470 	struct fs *fs;
7471 	int bsize;
7472 	int needj;
7473 
7474 	rw_assert(&lk, RA_WLOCKED);
7475 	/*
7476 	 * Handle partial truncate separately.
7477 	 */
7478 	if (freework->fw_indir) {
7479 		complete_trunc_indir(freework);
7480 		return;
7481 	}
7482 	freeblks = freework->fw_freeblks;
7483 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7484 	fs = ump->um_fs;
7485 	needj = MOUNTEDSUJ(freeblks->fb_list.wk_mp) != 0;
7486 	bsize = lfragtosize(fs, freework->fw_frags);
7487 	LIST_INIT(&wkhd);
7488 	/*
7489 	 * DEPCOMPLETE is cleared in indirblk_insert() if the block lives
7490 	 * on the indirblk hashtable and prevents premature freeing.
7491 	 */
7492 	freework->fw_state |= DEPCOMPLETE;
7493 	/*
7494 	 * SUJ needs to wait for the segment referencing freed indirect
7495 	 * blocks to expire so that we know the checker will not confuse
7496 	 * a re-allocated indirect block with its old contents.
7497 	 */
7498 	if (needj && freework->fw_lbn <= -NDADDR)
7499 		indirblk_insert(freework);
7500 	/*
7501 	 * If we are canceling an existing jnewblk pass it to the free
7502 	 * routine, otherwise pass the freeblk which will ultimately
7503 	 * release the freeblks.  If we're not journaling, we can just
7504 	 * free the freeblks immediately.
7505 	 */
7506 	jnewblk = freework->fw_jnewblk;
7507 	if (jnewblk != NULL) {
7508 		cancel_jnewblk(jnewblk, &wkhd);
7509 		needj = 0;
7510 	} else if (needj) {
7511 		freework->fw_state |= DELAYEDFREE;
7512 		freeblks->fb_cgwait++;
7513 		WORKLIST_INSERT(&wkhd, &freework->fw_list);
7514 	}
7515 	FREE_LOCK(&lk);
7516 	freeblks_free(ump, freeblks, btodb(bsize));
7517 	CTR4(KTR_SUJ,
7518 	    "freework_freeblock: ino %d blkno %jd lbn %jd size %ld",
7519 	    freeblks->fb_inum, freework->fw_blkno, freework->fw_lbn, bsize);
7520 	ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno, bsize,
7521 	    freeblks->fb_inum, freeblks->fb_vtype, &wkhd);
7522 	ACQUIRE_LOCK(&lk);
7523 	/*
7524 	 * The jnewblk will be discarded and the bits in the map never
7525 	 * made it to disk.  We can immediately free the freeblk.
7526 	 */
7527 	if (needj == 0)
7528 		handle_written_freework(freework);
7529 }
7530 
7531 /*
7532  * We enqueue freework items that need processing back on the freeblks and
7533  * add the freeblks to the worklist.  This makes it easier to find all work
7534  * required to flush a truncation in process_truncates().
7535  */
7536 static void
7537 freework_enqueue(freework)
7538 	struct freework *freework;
7539 {
7540 	struct freeblks *freeblks;
7541 
7542 	freeblks = freework->fw_freeblks;
7543 	if ((freework->fw_state & INPROGRESS) == 0)
7544 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
7545 	if ((freeblks->fb_state &
7546 	    (ONWORKLIST | INPROGRESS | ALLCOMPLETE)) == ALLCOMPLETE &&
7547 	    LIST_EMPTY(&freeblks->fb_jblkdephd))
7548 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
7549 }
7550 
7551 /*
7552  * Start, continue, or finish the process of freeing an indirect block tree.
7553  * The free operation may be paused at any point with fw_off containing the
7554  * offset to restart from.  This enables us to implement some flow control
7555  * for large truncates which may fan out and generate a huge number of
7556  * dependencies.
7557  */
7558 static void
7559 handle_workitem_indirblk(freework)
7560 	struct freework *freework;
7561 {
7562 	struct freeblks *freeblks;
7563 	struct ufsmount *ump;
7564 	struct fs *fs;
7565 
7566 	freeblks = freework->fw_freeblks;
7567 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7568 	fs = ump->um_fs;
7569 	if (freework->fw_state & DEPCOMPLETE) {
7570 		handle_written_freework(freework);
7571 		return;
7572 	}
7573 	if (freework->fw_off == NINDIR(fs)) {
7574 		freework_freeblock(freework);
7575 		return;
7576 	}
7577 	freework->fw_state |= INPROGRESS;
7578 	FREE_LOCK(&lk);
7579 	indir_trunc(freework, fsbtodb(fs, freework->fw_blkno),
7580 	    freework->fw_lbn);
7581 	ACQUIRE_LOCK(&lk);
7582 }
7583 
7584 /*
7585  * Called when a freework structure attached to a cg buf is written.  The
7586  * ref on either the parent or the freeblks structure is released and
7587  * the freeblks is added back to the worklist if there is more work to do.
7588  */
7589 static void
7590 handle_written_freework(freework)
7591 	struct freework *freework;
7592 {
7593 	struct freeblks *freeblks;
7594 	struct freework *parent;
7595 
7596 	freeblks = freework->fw_freeblks;
7597 	parent = freework->fw_parent;
7598 	if (freework->fw_state & DELAYEDFREE)
7599 		freeblks->fb_cgwait--;
7600 	freework->fw_state |= COMPLETE;
7601 	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
7602 		WORKITEM_FREE(freework, D_FREEWORK);
7603 	if (parent) {
7604 		if (--parent->fw_ref == 0)
7605 			freework_enqueue(parent);
7606 		return;
7607 	}
7608 	if (--freeblks->fb_ref != 0)
7609 		return;
7610 	if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST | INPROGRESS)) ==
7611 	    ALLCOMPLETE && LIST_EMPTY(&freeblks->fb_jblkdephd))
7612 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
7613 }
7614 
7615 /*
7616  * This workitem routine performs the block de-allocation.
7617  * The workitem is added to the pending list after the updated
7618  * inode block has been written to disk.  As mentioned above,
7619  * checks regarding the number of blocks de-allocated (compared
7620  * to the number of blocks allocated for the file) are also
7621  * performed in this function.
7622  */
7623 static int
7624 handle_workitem_freeblocks(freeblks, flags)
7625 	struct freeblks *freeblks;
7626 	int flags;
7627 {
7628 	struct freework *freework;
7629 	struct newblk *newblk;
7630 	struct allocindir *aip;
7631 	struct ufsmount *ump;
7632 	struct worklist *wk;
7633 
7634 	KASSERT(LIST_EMPTY(&freeblks->fb_jblkdephd),
7635 	    ("handle_workitem_freeblocks: Journal entries not written."));
7636 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7637 	ACQUIRE_LOCK(&lk);
7638 	while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) {
7639 		WORKLIST_REMOVE(wk);
7640 		switch (wk->wk_type) {
7641 		case D_DIRREM:
7642 			wk->wk_state |= COMPLETE;
7643 			add_to_worklist(wk, 0);
7644 			continue;
7645 
7646 		case D_ALLOCDIRECT:
7647 			free_newblk(WK_NEWBLK(wk));
7648 			continue;
7649 
7650 		case D_ALLOCINDIR:
7651 			aip = WK_ALLOCINDIR(wk);
7652 			freework = NULL;
7653 			if (aip->ai_state & DELAYEDFREE) {
7654 				FREE_LOCK(&lk);
7655 				freework = newfreework(ump, freeblks, NULL,
7656 				    aip->ai_lbn, aip->ai_newblkno,
7657 				    ump->um_fs->fs_frag, 0, 0);
7658 				ACQUIRE_LOCK(&lk);
7659 			}
7660 			newblk = WK_NEWBLK(wk);
7661 			if (newblk->nb_jnewblk) {
7662 				freework->fw_jnewblk = newblk->nb_jnewblk;
7663 				newblk->nb_jnewblk->jn_dep = &freework->fw_list;
7664 				newblk->nb_jnewblk = NULL;
7665 			}
7666 			free_newblk(newblk);
7667 			continue;
7668 
7669 		case D_FREEWORK:
7670 			freework = WK_FREEWORK(wk);
7671 			if (freework->fw_lbn <= -NDADDR)
7672 				handle_workitem_indirblk(freework);
7673 			else
7674 				freework_freeblock(freework);
7675 			continue;
7676 		default:
7677 			panic("handle_workitem_freeblocks: Unknown type %s",
7678 			    TYPENAME(wk->wk_type));
7679 		}
7680 	}
7681 	if (freeblks->fb_ref != 0) {
7682 		freeblks->fb_state &= ~INPROGRESS;
7683 		wake_worklist(&freeblks->fb_list);
7684 		freeblks = NULL;
7685 	}
7686 	FREE_LOCK(&lk);
7687 	if (freeblks)
7688 		return handle_complete_freeblocks(freeblks, flags);
7689 	return (0);
7690 }
7691 
7692 /*
7693  * Handle completion of block free via truncate.  This allows fs_pending
7694  * to track the actual free block count more closely than if we only updated
7695  * it at the end.  We must be careful to handle cases where the block count
7696  * on free was incorrect.
7697  */
7698 static void
7699 freeblks_free(ump, freeblks, blocks)
7700 	struct ufsmount *ump;
7701 	struct freeblks *freeblks;
7702 	int blocks;
7703 {
7704 	struct fs *fs;
7705 	ufs2_daddr_t remain;
7706 
7707 	UFS_LOCK(ump);
7708 	remain = -freeblks->fb_chkcnt;
7709 	freeblks->fb_chkcnt += blocks;
7710 	if (remain > 0) {
7711 		if (remain < blocks)
7712 			blocks = remain;
7713 		fs = ump->um_fs;
7714 		fs->fs_pendingblocks -= blocks;
7715 	}
7716 	UFS_UNLOCK(ump);
7717 }
7718 
7719 /*
7720  * Once all of the freework workitems are complete we can retire the
7721  * freeblocks dependency and any journal work awaiting completion.  This
7722  * can not be called until all other dependencies are stable on disk.
7723  */
7724 static int
7725 handle_complete_freeblocks(freeblks, flags)
7726 	struct freeblks *freeblks;
7727 	int flags;
7728 {
7729 	struct inodedep *inodedep;
7730 	struct inode *ip;
7731 	struct vnode *vp;
7732 	struct fs *fs;
7733 	struct ufsmount *ump;
7734 	ufs2_daddr_t spare;
7735 
7736 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7737 	fs = ump->um_fs;
7738 	flags = LK_EXCLUSIVE | flags;
7739 	spare = freeblks->fb_chkcnt;
7740 
7741 	/*
7742 	 * If we did not release the expected number of blocks we may have
7743 	 * to adjust the inode block count here.  Only do so if it wasn't
7744 	 * a truncation to zero and the modrev still matches.
7745 	 */
7746 	if (spare && freeblks->fb_len != 0) {
7747 		if (ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_inum,
7748 		    flags, &vp, FFSV_FORCEINSMQ) != 0)
7749 			return (EBUSY);
7750 		ip = VTOI(vp);
7751 		if (DIP(ip, i_modrev) == freeblks->fb_modrev) {
7752 			DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - spare);
7753 			ip->i_flag |= IN_CHANGE;
7754 			/*
7755 			 * We must wait so this happens before the
7756 			 * journal is reclaimed.
7757 			 */
7758 			ffs_update(vp, 1);
7759 		}
7760 		vput(vp);
7761 	}
7762 	if (spare < 0) {
7763 		UFS_LOCK(ump);
7764 		fs->fs_pendingblocks += spare;
7765 		UFS_UNLOCK(ump);
7766 	}
7767 #ifdef QUOTA
7768 	/* Handle spare. */
7769 	if (spare)
7770 		quotaadj(freeblks->fb_quota, ump, -spare);
7771 	quotarele(freeblks->fb_quota);
7772 #endif
7773 	ACQUIRE_LOCK(&lk);
7774 	if (freeblks->fb_state & ONDEPLIST) {
7775 		inodedep_lookup(freeblks->fb_list.wk_mp, freeblks->fb_inum,
7776 		    0, &inodedep);
7777 		TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, fb_next);
7778 		freeblks->fb_state &= ~ONDEPLIST;
7779 		if (TAILQ_EMPTY(&inodedep->id_freeblklst))
7780 			free_inodedep(inodedep);
7781 	}
7782 	/*
7783 	 * All of the freeblock deps must be complete prior to this call
7784 	 * so it's now safe to complete earlier outstanding journal entries.
7785 	 */
7786 	handle_jwork(&freeblks->fb_jwork);
7787 	WORKITEM_FREE(freeblks, D_FREEBLKS);
7788 	FREE_LOCK(&lk);
7789 	return (0);
7790 }
7791 
7792 /*
7793  * Release blocks associated with the freeblks and stored in the indirect
7794  * block dbn. If level is greater than SINGLE, the block is an indirect block
7795  * and recursive calls to indirtrunc must be used to cleanse other indirect
7796  * blocks.
7797  *
7798  * This handles partial and complete truncation of blocks.  Partial is noted
7799  * with goingaway == 0.  In this case the freework is completed after the
7800  * zero'd indirects are written to disk.  For full truncation the freework
7801  * is completed after the block is freed.
7802  */
7803 static void
7804 indir_trunc(freework, dbn, lbn)
7805 	struct freework *freework;
7806 	ufs2_daddr_t dbn;
7807 	ufs_lbn_t lbn;
7808 {
7809 	struct freework *nfreework;
7810 	struct workhead wkhd;
7811 	struct freeblks *freeblks;
7812 	struct buf *bp;
7813 	struct fs *fs;
7814 	struct indirdep *indirdep;
7815 	struct ufsmount *ump;
7816 	ufs1_daddr_t *bap1 = 0;
7817 	ufs2_daddr_t nb, nnb, *bap2 = 0;
7818 	ufs_lbn_t lbnadd, nlbn;
7819 	int i, nblocks, ufs1fmt;
7820 	int freedblocks;
7821 	int goingaway;
7822 	int freedeps;
7823 	int needj;
7824 	int level;
7825 	int cnt;
7826 
7827 	freeblks = freework->fw_freeblks;
7828 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7829 	fs = ump->um_fs;
7830 	/*
7831 	 * Get buffer of block pointers to be freed.  There are three cases:
7832 	 *
7833 	 * 1) Partial truncate caches the indirdep pointer in the freework
7834 	 *    which provides us a back copy to the save bp which holds the
7835 	 *    pointers we want to clear.  When this completes the zero
7836 	 *    pointers are written to the real copy.
7837 	 * 2) The indirect is being completely truncated, cancel_indirdep()
7838 	 *    eliminated the real copy and placed the indirdep on the saved
7839 	 *    copy.  The indirdep and buf are discarded when this completes.
7840 	 * 3) The indirect was not in memory, we read a copy off of the disk
7841 	 *    using the devvp and drop and invalidate the buffer when we're
7842 	 *    done.
7843 	 */
7844 	goingaway = 1;
7845 	indirdep = NULL;
7846 	if (freework->fw_indir != NULL) {
7847 		goingaway = 0;
7848 		indirdep = freework->fw_indir;
7849 		bp = indirdep->ir_savebp;
7850 		if (bp == NULL || bp->b_blkno != dbn)
7851 			panic("indir_trunc: Bad saved buf %p blkno %jd",
7852 			    bp, (intmax_t)dbn);
7853 	} else if ((bp = incore(&freeblks->fb_devvp->v_bufobj, dbn)) != NULL) {
7854 		/*
7855 		 * The lock prevents the buf dep list from changing and
7856 	 	 * indirects on devvp should only ever have one dependency.
7857 		 */
7858 		indirdep = WK_INDIRDEP(LIST_FIRST(&bp->b_dep));
7859 		if (indirdep == NULL || (indirdep->ir_state & GOINGAWAY) == 0)
7860 			panic("indir_trunc: Bad indirdep %p from buf %p",
7861 			    indirdep, bp);
7862 	} else if (bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize,
7863 	    NOCRED, &bp) != 0) {
7864 		brelse(bp);
7865 		return;
7866 	}
7867 	ACQUIRE_LOCK(&lk);
7868 	/* Protects against a race with complete_trunc_indir(). */
7869 	freework->fw_state &= ~INPROGRESS;
7870 	/*
7871 	 * If we have an indirdep we need to enforce the truncation order
7872 	 * and discard it when it is complete.
7873 	 */
7874 	if (indirdep) {
7875 		if (freework != TAILQ_FIRST(&indirdep->ir_trunc) &&
7876 		    !TAILQ_EMPTY(&indirdep->ir_trunc)) {
7877 			/*
7878 			 * Add the complete truncate to the list on the
7879 			 * indirdep to enforce in-order processing.
7880 			 */
7881 			if (freework->fw_indir == NULL)
7882 				TAILQ_INSERT_TAIL(&indirdep->ir_trunc,
7883 				    freework, fw_next);
7884 			FREE_LOCK(&lk);
7885 			return;
7886 		}
7887 		/*
7888 		 * If we're goingaway, free the indirdep.  Otherwise it will
7889 		 * linger until the write completes.
7890 		 */
7891 		if (goingaway) {
7892 			free_indirdep(indirdep);
7893 			ump->um_numindirdeps -= 1;
7894 		}
7895 	}
7896 	FREE_LOCK(&lk);
7897 	/* Initialize pointers depending on block size. */
7898 	if (ump->um_fstype == UFS1) {
7899 		bap1 = (ufs1_daddr_t *)bp->b_data;
7900 		nb = bap1[freework->fw_off];
7901 		ufs1fmt = 1;
7902 	} else {
7903 		bap2 = (ufs2_daddr_t *)bp->b_data;
7904 		nb = bap2[freework->fw_off];
7905 		ufs1fmt = 0;
7906 	}
7907 	level = lbn_level(lbn);
7908 	needj = MOUNTEDSUJ(UFSTOVFS(ump)) != 0;
7909 	lbnadd = lbn_offset(fs, level);
7910 	nblocks = btodb(fs->fs_bsize);
7911 	nfreework = freework;
7912 	freedeps = 0;
7913 	cnt = 0;
7914 	/*
7915 	 * Reclaim blocks.  Traverses into nested indirect levels and
7916 	 * arranges for the current level to be freed when subordinates
7917 	 * are free when journaling.
7918 	 */
7919 	for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) {
7920 		if (i != NINDIR(fs) - 1) {
7921 			if (ufs1fmt)
7922 				nnb = bap1[i+1];
7923 			else
7924 				nnb = bap2[i+1];
7925 		} else
7926 			nnb = 0;
7927 		if (nb == 0)
7928 			continue;
7929 		cnt++;
7930 		if (level != 0) {
7931 			nlbn = (lbn + 1) - (i * lbnadd);
7932 			if (needj != 0) {
7933 				nfreework = newfreework(ump, freeblks, freework,
7934 				    nlbn, nb, fs->fs_frag, 0, 0);
7935 				freedeps++;
7936 			}
7937 			indir_trunc(nfreework, fsbtodb(fs, nb), nlbn);
7938 		} else {
7939 			struct freedep *freedep;
7940 
7941 			/*
7942 			 * Attempt to aggregate freedep dependencies for
7943 			 * all blocks being released to the same CG.
7944 			 */
7945 			LIST_INIT(&wkhd);
7946 			if (needj != 0 &&
7947 			    (nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) {
7948 				freedep = newfreedep(freework);
7949 				WORKLIST_INSERT_UNLOCKED(&wkhd,
7950 				    &freedep->fd_list);
7951 				freedeps++;
7952 			}
7953 			CTR3(KTR_SUJ,
7954 			    "indir_trunc: ino %d blkno %jd size %ld",
7955 			    freeblks->fb_inum, nb, fs->fs_bsize);
7956 			ffs_blkfree(ump, fs, freeblks->fb_devvp, nb,
7957 			    fs->fs_bsize, freeblks->fb_inum,
7958 			    freeblks->fb_vtype, &wkhd);
7959 		}
7960 	}
7961 	if (goingaway) {
7962 		bp->b_flags |= B_INVAL | B_NOCACHE;
7963 		brelse(bp);
7964 	}
7965 	freedblocks = 0;
7966 	if (level == 0)
7967 		freedblocks = (nblocks * cnt);
7968 	if (needj == 0)
7969 		freedblocks += nblocks;
7970 	freeblks_free(ump, freeblks, freedblocks);
7971 	/*
7972 	 * If we are journaling set up the ref counts and offset so this
7973 	 * indirect can be completed when its children are free.
7974 	 */
7975 	if (needj) {
7976 		ACQUIRE_LOCK(&lk);
7977 		freework->fw_off = i;
7978 		freework->fw_ref += freedeps;
7979 		freework->fw_ref -= NINDIR(fs) + 1;
7980 		if (level == 0)
7981 			freeblks->fb_cgwait += freedeps;
7982 		if (freework->fw_ref == 0)
7983 			freework_freeblock(freework);
7984 		FREE_LOCK(&lk);
7985 		return;
7986 	}
7987 	/*
7988 	 * If we're not journaling we can free the indirect now.
7989 	 */
7990 	dbn = dbtofsb(fs, dbn);
7991 	CTR3(KTR_SUJ,
7992 	    "indir_trunc 2: ino %d blkno %jd size %ld",
7993 	    freeblks->fb_inum, dbn, fs->fs_bsize);
7994 	ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize,
7995 	    freeblks->fb_inum, freeblks->fb_vtype, NULL);
7996 	/* Non SUJ softdep does single-threaded truncations. */
7997 	if (freework->fw_blkno == dbn) {
7998 		freework->fw_state |= ALLCOMPLETE;
7999 		ACQUIRE_LOCK(&lk);
8000 		handle_written_freework(freework);
8001 		FREE_LOCK(&lk);
8002 	}
8003 	return;
8004 }
8005 
8006 /*
8007  * Cancel an allocindir when it is removed via truncation.  When bp is not
8008  * NULL the indirect never appeared on disk and is scheduled to be freed
8009  * independently of the indir so we can more easily track journal work.
8010  */
8011 static void
8012 cancel_allocindir(aip, bp, freeblks, trunc)
8013 	struct allocindir *aip;
8014 	struct buf *bp;
8015 	struct freeblks *freeblks;
8016 	int trunc;
8017 {
8018 	struct indirdep *indirdep;
8019 	struct freefrag *freefrag;
8020 	struct newblk *newblk;
8021 
8022 	newblk = (struct newblk *)aip;
8023 	LIST_REMOVE(aip, ai_next);
8024 	/*
8025 	 * We must eliminate the pointer in bp if it must be freed on its
8026 	 * own due to partial truncate or pending journal work.
8027 	 */
8028 	if (bp && (trunc || newblk->nb_jnewblk)) {
8029 		/*
8030 		 * Clear the pointer and mark the aip to be freed
8031 		 * directly if it never existed on disk.
8032 		 */
8033 		aip->ai_state |= DELAYEDFREE;
8034 		indirdep = aip->ai_indirdep;
8035 		if (indirdep->ir_state & UFS1FMT)
8036 			((ufs1_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
8037 		else
8038 			((ufs2_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
8039 	}
8040 	/*
8041 	 * When truncating the previous pointer will be freed via
8042 	 * savedbp.  Eliminate the freefrag which would dup free.
8043 	 */
8044 	if (trunc && (freefrag = newblk->nb_freefrag) != NULL) {
8045 		newblk->nb_freefrag = NULL;
8046 		if (freefrag->ff_jdep)
8047 			cancel_jfreefrag(
8048 			    WK_JFREEFRAG(freefrag->ff_jdep));
8049 		jwork_move(&freeblks->fb_jwork, &freefrag->ff_jwork);
8050 		WORKITEM_FREE(freefrag, D_FREEFRAG);
8051 	}
8052 	/*
8053 	 * If the journal hasn't been written the jnewblk must be passed
8054 	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
8055 	 * this by leaving the journal dependency on the newblk to be freed
8056 	 * when a freework is created in handle_workitem_freeblocks().
8057 	 */
8058 	cancel_newblk(newblk, NULL, &freeblks->fb_jwork);
8059 	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
8060 }
8061 
8062 /*
8063  * Create the mkdir dependencies for . and .. in a new directory.  Link them
8064  * in to a newdirblk so any subsequent additions are tracked properly.  The
8065  * caller is responsible for adding the mkdir1 dependency to the journal
8066  * and updating id_mkdiradd.  This function returns with lk held.
8067  */
8068 static struct mkdir *
8069 setup_newdir(dap, newinum, dinum, newdirbp, mkdirp)
8070 	struct diradd *dap;
8071 	ino_t newinum;
8072 	ino_t dinum;
8073 	struct buf *newdirbp;
8074 	struct mkdir **mkdirp;
8075 {
8076 	struct newblk *newblk;
8077 	struct pagedep *pagedep;
8078 	struct inodedep *inodedep;
8079 	struct newdirblk *newdirblk = 0;
8080 	struct mkdir *mkdir1, *mkdir2;
8081 	struct worklist *wk;
8082 	struct jaddref *jaddref;
8083 	struct mount *mp;
8084 
8085 	mp = dap->da_list.wk_mp;
8086 	newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK,
8087 	    M_SOFTDEP_FLAGS);
8088 	workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
8089 	LIST_INIT(&newdirblk->db_mkdir);
8090 	mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
8091 	workitem_alloc(&mkdir1->md_list, D_MKDIR, mp);
8092 	mkdir1->md_state = ATTACHED | MKDIR_BODY;
8093 	mkdir1->md_diradd = dap;
8094 	mkdir1->md_jaddref = NULL;
8095 	mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
8096 	workitem_alloc(&mkdir2->md_list, D_MKDIR, mp);
8097 	mkdir2->md_state = ATTACHED | MKDIR_PARENT;
8098 	mkdir2->md_diradd = dap;
8099 	mkdir2->md_jaddref = NULL;
8100 	if (MOUNTEDSUJ(mp) == 0) {
8101 		mkdir1->md_state |= DEPCOMPLETE;
8102 		mkdir2->md_state |= DEPCOMPLETE;
8103 	}
8104 	/*
8105 	 * Dependency on "." and ".." being written to disk.
8106 	 */
8107 	mkdir1->md_buf = newdirbp;
8108 	ACQUIRE_LOCK(&lk);
8109 	LIST_INSERT_HEAD(&mkdirlisthd, mkdir1, md_mkdirs);
8110 	/*
8111 	 * We must link the pagedep, allocdirect, and newdirblk for
8112 	 * the initial file page so the pointer to the new directory
8113 	 * is not written until the directory contents are live and
8114 	 * any subsequent additions are not marked live until the
8115 	 * block is reachable via the inode.
8116 	 */
8117 	if (pagedep_lookup(mp, newdirbp, newinum, 0, 0, &pagedep) == 0)
8118 		panic("setup_newdir: lost pagedep");
8119 	LIST_FOREACH(wk, &newdirbp->b_dep, wk_list)
8120 		if (wk->wk_type == D_ALLOCDIRECT)
8121 			break;
8122 	if (wk == NULL)
8123 		panic("setup_newdir: lost allocdirect");
8124 	if (pagedep->pd_state & NEWBLOCK)
8125 		panic("setup_newdir: NEWBLOCK already set");
8126 	newblk = WK_NEWBLK(wk);
8127 	pagedep->pd_state |= NEWBLOCK;
8128 	pagedep->pd_newdirblk = newdirblk;
8129 	newdirblk->db_pagedep = pagedep;
8130 	WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
8131 	WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list);
8132 	/*
8133 	 * Look up the inodedep for the parent directory so that we
8134 	 * can link mkdir2 into the pending dotdot jaddref or
8135 	 * the inode write if there is none.  If the inode is
8136 	 * ALLCOMPLETE and no jaddref is present all dependencies have
8137 	 * been satisfied and mkdir2 can be freed.
8138 	 */
8139 	inodedep_lookup(mp, dinum, 0, &inodedep);
8140 	if (MOUNTEDSUJ(mp)) {
8141 		if (inodedep == NULL)
8142 			panic("setup_newdir: Lost parent.");
8143 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8144 		    inoreflst);
8145 		KASSERT(jaddref != NULL && jaddref->ja_parent == newinum &&
8146 		    (jaddref->ja_state & MKDIR_PARENT),
8147 		    ("setup_newdir: bad dotdot jaddref %p", jaddref));
8148 		LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs);
8149 		mkdir2->md_jaddref = jaddref;
8150 		jaddref->ja_mkdir = mkdir2;
8151 	} else if (inodedep == NULL ||
8152 	    (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
8153 		dap->da_state &= ~MKDIR_PARENT;
8154 		WORKITEM_FREE(mkdir2, D_MKDIR);
8155 		mkdir2 = NULL;
8156 	} else {
8157 		LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs);
8158 		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir2->md_list);
8159 	}
8160 	*mkdirp = mkdir2;
8161 
8162 	return (mkdir1);
8163 }
8164 
8165 /*
8166  * Directory entry addition dependencies.
8167  *
8168  * When adding a new directory entry, the inode (with its incremented link
8169  * count) must be written to disk before the directory entry's pointer to it.
8170  * Also, if the inode is newly allocated, the corresponding freemap must be
8171  * updated (on disk) before the directory entry's pointer. These requirements
8172  * are met via undo/redo on the directory entry's pointer, which consists
8173  * simply of the inode number.
8174  *
8175  * As directory entries are added and deleted, the free space within a
8176  * directory block can become fragmented.  The ufs filesystem will compact
8177  * a fragmented directory block to make space for a new entry. When this
8178  * occurs, the offsets of previously added entries change. Any "diradd"
8179  * dependency structures corresponding to these entries must be updated with
8180  * the new offsets.
8181  */
8182 
8183 /*
8184  * This routine is called after the in-memory inode's link
8185  * count has been incremented, but before the directory entry's
8186  * pointer to the inode has been set.
8187  */
8188 int
8189 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
8190 	struct buf *bp;		/* buffer containing directory block */
8191 	struct inode *dp;	/* inode for directory */
8192 	off_t diroffset;	/* offset of new entry in directory */
8193 	ino_t newinum;		/* inode referenced by new directory entry */
8194 	struct buf *newdirbp;	/* non-NULL => contents of new mkdir */
8195 	int isnewblk;		/* entry is in a newly allocated block */
8196 {
8197 	int offset;		/* offset of new entry within directory block */
8198 	ufs_lbn_t lbn;		/* block in directory containing new entry */
8199 	struct fs *fs;
8200 	struct diradd *dap;
8201 	struct newblk *newblk;
8202 	struct pagedep *pagedep;
8203 	struct inodedep *inodedep;
8204 	struct newdirblk *newdirblk = 0;
8205 	struct mkdir *mkdir1, *mkdir2;
8206 	struct jaddref *jaddref;
8207 	struct mount *mp;
8208 	int isindir;
8209 
8210 	/*
8211 	 * Whiteouts have no dependencies.
8212 	 */
8213 	if (newinum == WINO) {
8214 		if (newdirbp != NULL)
8215 			bdwrite(newdirbp);
8216 		return (0);
8217 	}
8218 	jaddref = NULL;
8219 	mkdir1 = mkdir2 = NULL;
8220 	mp = UFSTOVFS(dp->i_ump);
8221 	fs = dp->i_fs;
8222 	lbn = lblkno(fs, diroffset);
8223 	offset = blkoff(fs, diroffset);
8224 	dap = malloc(sizeof(struct diradd), M_DIRADD,
8225 		M_SOFTDEP_FLAGS|M_ZERO);
8226 	workitem_alloc(&dap->da_list, D_DIRADD, mp);
8227 	dap->da_offset = offset;
8228 	dap->da_newinum = newinum;
8229 	dap->da_state = ATTACHED;
8230 	LIST_INIT(&dap->da_jwork);
8231 	isindir = bp->b_lblkno >= NDADDR;
8232 	if (isnewblk &&
8233 	    (isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) {
8234 		newdirblk = malloc(sizeof(struct newdirblk),
8235 		    M_NEWDIRBLK, M_SOFTDEP_FLAGS);
8236 		workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
8237 		LIST_INIT(&newdirblk->db_mkdir);
8238 	}
8239 	/*
8240 	 * If we're creating a new directory setup the dependencies and set
8241 	 * the dap state to wait for them.  Otherwise it's COMPLETE and
8242 	 * we can move on.
8243 	 */
8244 	if (newdirbp == NULL) {
8245 		dap->da_state |= DEPCOMPLETE;
8246 		ACQUIRE_LOCK(&lk);
8247 	} else {
8248 		dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
8249 		mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp,
8250 		    &mkdir2);
8251 	}
8252 	/*
8253 	 * Link into parent directory pagedep to await its being written.
8254 	 */
8255 	pagedep_lookup(mp, bp, dp->i_number, lbn, DEPALLOC, &pagedep);
8256 #ifdef DEBUG
8257 	if (diradd_lookup(pagedep, offset) != NULL)
8258 		panic("softdep_setup_directory_add: %p already at off %d\n",
8259 		    diradd_lookup(pagedep, offset), offset);
8260 #endif
8261 	dap->da_pagedep = pagedep;
8262 	LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
8263 	    da_pdlist);
8264 	inodedep_lookup(mp, newinum, DEPALLOC | NODELAY, &inodedep);
8265 	/*
8266 	 * If we're journaling, link the diradd into the jaddref so it
8267 	 * may be completed after the journal entry is written.  Otherwise,
8268 	 * link the diradd into its inodedep.  If the inode is not yet
8269 	 * written place it on the bufwait list, otherwise do the post-inode
8270 	 * write processing to put it on the id_pendinghd list.
8271 	 */
8272 	if (MOUNTEDSUJ(mp)) {
8273 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8274 		    inoreflst);
8275 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
8276 		    ("softdep_setup_directory_add: bad jaddref %p", jaddref));
8277 		jaddref->ja_diroff = diroffset;
8278 		jaddref->ja_diradd = dap;
8279 		add_to_journal(&jaddref->ja_list);
8280 	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
8281 		diradd_inode_written(dap, inodedep);
8282 	else
8283 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
8284 	/*
8285 	 * Add the journal entries for . and .. links now that the primary
8286 	 * link is written.
8287 	 */
8288 	if (mkdir1 != NULL && MOUNTEDSUJ(mp)) {
8289 		jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
8290 		    inoreflst, if_deps);
8291 		KASSERT(jaddref != NULL &&
8292 		    jaddref->ja_ino == jaddref->ja_parent &&
8293 		    (jaddref->ja_state & MKDIR_BODY),
8294 		    ("softdep_setup_directory_add: bad dot jaddref %p",
8295 		    jaddref));
8296 		mkdir1->md_jaddref = jaddref;
8297 		jaddref->ja_mkdir = mkdir1;
8298 		/*
8299 		 * It is important that the dotdot journal entry
8300 		 * is added prior to the dot entry since dot writes
8301 		 * both the dot and dotdot links.  These both must
8302 		 * be added after the primary link for the journal
8303 		 * to remain consistent.
8304 		 */
8305 		add_to_journal(&mkdir2->md_jaddref->ja_list);
8306 		add_to_journal(&jaddref->ja_list);
8307 	}
8308 	/*
8309 	 * If we are adding a new directory remember this diradd so that if
8310 	 * we rename it we can keep the dot and dotdot dependencies.  If
8311 	 * we are adding a new name for an inode that has a mkdiradd we
8312 	 * must be in rename and we have to move the dot and dotdot
8313 	 * dependencies to this new name.  The old name is being orphaned
8314 	 * soon.
8315 	 */
8316 	if (mkdir1 != NULL) {
8317 		if (inodedep->id_mkdiradd != NULL)
8318 			panic("softdep_setup_directory_add: Existing mkdir");
8319 		inodedep->id_mkdiradd = dap;
8320 	} else if (inodedep->id_mkdiradd)
8321 		merge_diradd(inodedep, dap);
8322 	if (newdirblk) {
8323 		/*
8324 		 * There is nothing to do if we are already tracking
8325 		 * this block.
8326 		 */
8327 		if ((pagedep->pd_state & NEWBLOCK) != 0) {
8328 			WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
8329 			FREE_LOCK(&lk);
8330 			return (0);
8331 		}
8332 		if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)
8333 		    == 0)
8334 			panic("softdep_setup_directory_add: lost entry");
8335 		WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
8336 		pagedep->pd_state |= NEWBLOCK;
8337 		pagedep->pd_newdirblk = newdirblk;
8338 		newdirblk->db_pagedep = pagedep;
8339 		FREE_LOCK(&lk);
8340 		/*
8341 		 * If we extended into an indirect signal direnter to sync.
8342 		 */
8343 		if (isindir)
8344 			return (1);
8345 		return (0);
8346 	}
8347 	FREE_LOCK(&lk);
8348 	return (0);
8349 }
8350 
8351 /*
8352  * This procedure is called to change the offset of a directory
8353  * entry when compacting a directory block which must be owned
8354  * exclusively by the caller. Note that the actual entry movement
8355  * must be done in this procedure to ensure that no I/O completions
8356  * occur while the move is in progress.
8357  */
8358 void
8359 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
8360 	struct buf *bp;		/* Buffer holding directory block. */
8361 	struct inode *dp;	/* inode for directory */
8362 	caddr_t base;		/* address of dp->i_offset */
8363 	caddr_t oldloc;		/* address of old directory location */
8364 	caddr_t newloc;		/* address of new directory location */
8365 	int entrysize;		/* size of directory entry */
8366 {
8367 	int offset, oldoffset, newoffset;
8368 	struct pagedep *pagedep;
8369 	struct jmvref *jmvref;
8370 	struct diradd *dap;
8371 	struct direct *de;
8372 	struct mount *mp;
8373 	ufs_lbn_t lbn;
8374 	int flags;
8375 
8376 	mp = UFSTOVFS(dp->i_ump);
8377 	de = (struct direct *)oldloc;
8378 	jmvref = NULL;
8379 	flags = 0;
8380 	/*
8381 	 * Moves are always journaled as it would be too complex to
8382 	 * determine if any affected adds or removes are present in the
8383 	 * journal.
8384 	 */
8385 	if (MOUNTEDSUJ(mp)) {
8386 		flags = DEPALLOC;
8387 		jmvref = newjmvref(dp, de->d_ino,
8388 		    dp->i_offset + (oldloc - base),
8389 		    dp->i_offset + (newloc - base));
8390 	}
8391 	lbn = lblkno(dp->i_fs, dp->i_offset);
8392 	offset = blkoff(dp->i_fs, dp->i_offset);
8393 	oldoffset = offset + (oldloc - base);
8394 	newoffset = offset + (newloc - base);
8395 	ACQUIRE_LOCK(&lk);
8396 	if (pagedep_lookup(mp, bp, dp->i_number, lbn, flags, &pagedep) == 0)
8397 		goto done;
8398 	dap = diradd_lookup(pagedep, oldoffset);
8399 	if (dap) {
8400 		dap->da_offset = newoffset;
8401 		newoffset = DIRADDHASH(newoffset);
8402 		oldoffset = DIRADDHASH(oldoffset);
8403 		if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE &&
8404 		    newoffset != oldoffset) {
8405 			LIST_REMOVE(dap, da_pdlist);
8406 			LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset],
8407 			    dap, da_pdlist);
8408 		}
8409 	}
8410 done:
8411 	if (jmvref) {
8412 		jmvref->jm_pagedep = pagedep;
8413 		LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps);
8414 		add_to_journal(&jmvref->jm_list);
8415 	}
8416 	bcopy(oldloc, newloc, entrysize);
8417 	FREE_LOCK(&lk);
8418 }
8419 
8420 /*
8421  * Move the mkdir dependencies and journal work from one diradd to another
8422  * when renaming a directory.  The new name must depend on the mkdir deps
8423  * completing as the old name did.  Directories can only have one valid link
8424  * at a time so one must be canonical.
8425  */
8426 static void
8427 merge_diradd(inodedep, newdap)
8428 	struct inodedep *inodedep;
8429 	struct diradd *newdap;
8430 {
8431 	struct diradd *olddap;
8432 	struct mkdir *mkdir, *nextmd;
8433 	short state;
8434 
8435 	olddap = inodedep->id_mkdiradd;
8436 	inodedep->id_mkdiradd = newdap;
8437 	if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8438 		newdap->da_state &= ~DEPCOMPLETE;
8439 		for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) {
8440 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
8441 			if (mkdir->md_diradd != olddap)
8442 				continue;
8443 			mkdir->md_diradd = newdap;
8444 			state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY);
8445 			newdap->da_state |= state;
8446 			olddap->da_state &= ~state;
8447 			if ((olddap->da_state &
8448 			    (MKDIR_PARENT | MKDIR_BODY)) == 0)
8449 				break;
8450 		}
8451 		if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
8452 			panic("merge_diradd: unfound ref");
8453 	}
8454 	/*
8455 	 * Any mkdir related journal items are not safe to be freed until
8456 	 * the new name is stable.
8457 	 */
8458 	jwork_move(&newdap->da_jwork, &olddap->da_jwork);
8459 	olddap->da_state |= DEPCOMPLETE;
8460 	complete_diradd(olddap);
8461 }
8462 
8463 /*
8464  * Move the diradd to the pending list when all diradd dependencies are
8465  * complete.
8466  */
8467 static void
8468 complete_diradd(dap)
8469 	struct diradd *dap;
8470 {
8471 	struct pagedep *pagedep;
8472 
8473 	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
8474 		if (dap->da_state & DIRCHG)
8475 			pagedep = dap->da_previous->dm_pagedep;
8476 		else
8477 			pagedep = dap->da_pagedep;
8478 		LIST_REMOVE(dap, da_pdlist);
8479 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
8480 	}
8481 }
8482 
8483 /*
8484  * Cancel a diradd when a dirrem overlaps with it.  We must cancel the journal
8485  * add entries and conditonally journal the remove.
8486  */
8487 static void
8488 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref)
8489 	struct diradd *dap;
8490 	struct dirrem *dirrem;
8491 	struct jremref *jremref;
8492 	struct jremref *dotremref;
8493 	struct jremref *dotdotremref;
8494 {
8495 	struct inodedep *inodedep;
8496 	struct jaddref *jaddref;
8497 	struct inoref *inoref;
8498 	struct mkdir *mkdir;
8499 
8500 	/*
8501 	 * If no remove references were allocated we're on a non-journaled
8502 	 * filesystem and can skip the cancel step.
8503 	 */
8504 	if (jremref == NULL) {
8505 		free_diradd(dap, NULL);
8506 		return;
8507 	}
8508 	/*
8509 	 * Cancel the primary name an free it if it does not require
8510 	 * journaling.
8511 	 */
8512 	if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum,
8513 	    0, &inodedep) != 0) {
8514 		/* Abort the addref that reference this diradd.  */
8515 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
8516 			if (inoref->if_list.wk_type != D_JADDREF)
8517 				continue;
8518 			jaddref = (struct jaddref *)inoref;
8519 			if (jaddref->ja_diradd != dap)
8520 				continue;
8521 			if (cancel_jaddref(jaddref, inodedep,
8522 			    &dirrem->dm_jwork) == 0) {
8523 				free_jremref(jremref);
8524 				jremref = NULL;
8525 			}
8526 			break;
8527 		}
8528 	}
8529 	/*
8530 	 * Cancel subordinate names and free them if they do not require
8531 	 * journaling.
8532 	 */
8533 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8534 		LIST_FOREACH(mkdir, &mkdirlisthd, md_mkdirs) {
8535 			if (mkdir->md_diradd != dap)
8536 				continue;
8537 			if ((jaddref = mkdir->md_jaddref) == NULL)
8538 				continue;
8539 			mkdir->md_jaddref = NULL;
8540 			if (mkdir->md_state & MKDIR_PARENT) {
8541 				if (cancel_jaddref(jaddref, NULL,
8542 				    &dirrem->dm_jwork) == 0) {
8543 					free_jremref(dotdotremref);
8544 					dotdotremref = NULL;
8545 				}
8546 			} else {
8547 				if (cancel_jaddref(jaddref, inodedep,
8548 				    &dirrem->dm_jwork) == 0) {
8549 					free_jremref(dotremref);
8550 					dotremref = NULL;
8551 				}
8552 			}
8553 		}
8554 	}
8555 
8556 	if (jremref)
8557 		journal_jremref(dirrem, jremref, inodedep);
8558 	if (dotremref)
8559 		journal_jremref(dirrem, dotremref, inodedep);
8560 	if (dotdotremref)
8561 		journal_jremref(dirrem, dotdotremref, NULL);
8562 	jwork_move(&dirrem->dm_jwork, &dap->da_jwork);
8563 	free_diradd(dap, &dirrem->dm_jwork);
8564 }
8565 
8566 /*
8567  * Free a diradd dependency structure. This routine must be called
8568  * with splbio interrupts blocked.
8569  */
8570 static void
8571 free_diradd(dap, wkhd)
8572 	struct diradd *dap;
8573 	struct workhead *wkhd;
8574 {
8575 	struct dirrem *dirrem;
8576 	struct pagedep *pagedep;
8577 	struct inodedep *inodedep;
8578 	struct mkdir *mkdir, *nextmd;
8579 
8580 	rw_assert(&lk, RA_WLOCKED);
8581 	LIST_REMOVE(dap, da_pdlist);
8582 	if (dap->da_state & ONWORKLIST)
8583 		WORKLIST_REMOVE(&dap->da_list);
8584 	if ((dap->da_state & DIRCHG) == 0) {
8585 		pagedep = dap->da_pagedep;
8586 	} else {
8587 		dirrem = dap->da_previous;
8588 		pagedep = dirrem->dm_pagedep;
8589 		dirrem->dm_dirinum = pagedep->pd_ino;
8590 		dirrem->dm_state |= COMPLETE;
8591 		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
8592 			add_to_worklist(&dirrem->dm_list, 0);
8593 	}
8594 	if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum,
8595 	    0, &inodedep) != 0)
8596 		if (inodedep->id_mkdiradd == dap)
8597 			inodedep->id_mkdiradd = NULL;
8598 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8599 		for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) {
8600 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
8601 			if (mkdir->md_diradd != dap)
8602 				continue;
8603 			dap->da_state &=
8604 			    ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
8605 			LIST_REMOVE(mkdir, md_mkdirs);
8606 			if (mkdir->md_state & ONWORKLIST)
8607 				WORKLIST_REMOVE(&mkdir->md_list);
8608 			if (mkdir->md_jaddref != NULL)
8609 				panic("free_diradd: Unexpected jaddref");
8610 			WORKITEM_FREE(mkdir, D_MKDIR);
8611 			if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
8612 				break;
8613 		}
8614 		if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
8615 			panic("free_diradd: unfound ref");
8616 	}
8617 	if (inodedep)
8618 		free_inodedep(inodedep);
8619 	/*
8620 	 * Free any journal segments waiting for the directory write.
8621 	 */
8622 	handle_jwork(&dap->da_jwork);
8623 	WORKITEM_FREE(dap, D_DIRADD);
8624 }
8625 
8626 /*
8627  * Directory entry removal dependencies.
8628  *
8629  * When removing a directory entry, the entry's inode pointer must be
8630  * zero'ed on disk before the corresponding inode's link count is decremented
8631  * (possibly freeing the inode for re-use). This dependency is handled by
8632  * updating the directory entry but delaying the inode count reduction until
8633  * after the directory block has been written to disk. After this point, the
8634  * inode count can be decremented whenever it is convenient.
8635  */
8636 
8637 /*
8638  * This routine should be called immediately after removing
8639  * a directory entry.  The inode's link count should not be
8640  * decremented by the calling procedure -- the soft updates
8641  * code will do this task when it is safe.
8642  */
8643 void
8644 softdep_setup_remove(bp, dp, ip, isrmdir)
8645 	struct buf *bp;		/* buffer containing directory block */
8646 	struct inode *dp;	/* inode for the directory being modified */
8647 	struct inode *ip;	/* inode for directory entry being removed */
8648 	int isrmdir;		/* indicates if doing RMDIR */
8649 {
8650 	struct dirrem *dirrem, *prevdirrem;
8651 	struct inodedep *inodedep;
8652 	int direct;
8653 
8654 	/*
8655 	 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK.  We want
8656 	 * newdirrem() to setup the full directory remove which requires
8657 	 * isrmdir > 1.
8658 	 */
8659 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
8660 	/*
8661 	 * Add the dirrem to the inodedep's pending remove list for quick
8662 	 * discovery later.
8663 	 */
8664 	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
8665 	    &inodedep) == 0)
8666 		panic("softdep_setup_remove: Lost inodedep.");
8667 	KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
8668 	dirrem->dm_state |= ONDEPLIST;
8669 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
8670 
8671 	/*
8672 	 * If the COMPLETE flag is clear, then there were no active
8673 	 * entries and we want to roll back to a zeroed entry until
8674 	 * the new inode is committed to disk. If the COMPLETE flag is
8675 	 * set then we have deleted an entry that never made it to
8676 	 * disk. If the entry we deleted resulted from a name change,
8677 	 * then the old name still resides on disk. We cannot delete
8678 	 * its inode (returned to us in prevdirrem) until the zeroed
8679 	 * directory entry gets to disk. The new inode has never been
8680 	 * referenced on the disk, so can be deleted immediately.
8681 	 */
8682 	if ((dirrem->dm_state & COMPLETE) == 0) {
8683 		LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
8684 		    dm_next);
8685 		FREE_LOCK(&lk);
8686 	} else {
8687 		if (prevdirrem != NULL)
8688 			LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd,
8689 			    prevdirrem, dm_next);
8690 		dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
8691 		direct = LIST_EMPTY(&dirrem->dm_jremrefhd);
8692 		FREE_LOCK(&lk);
8693 		if (direct)
8694 			handle_workitem_remove(dirrem, 0);
8695 	}
8696 }
8697 
8698 /*
8699  * Check for an entry matching 'offset' on both the pd_dirraddhd list and the
8700  * pd_pendinghd list of a pagedep.
8701  */
8702 static struct diradd *
8703 diradd_lookup(pagedep, offset)
8704 	struct pagedep *pagedep;
8705 	int offset;
8706 {
8707 	struct diradd *dap;
8708 
8709 	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist)
8710 		if (dap->da_offset == offset)
8711 			return (dap);
8712 	LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
8713 		if (dap->da_offset == offset)
8714 			return (dap);
8715 	return (NULL);
8716 }
8717 
8718 /*
8719  * Search for a .. diradd dependency in a directory that is being removed.
8720  * If the directory was renamed to a new parent we have a diradd rather
8721  * than a mkdir for the .. entry.  We need to cancel it now before
8722  * it is found in truncate().
8723  */
8724 static struct jremref *
8725 cancel_diradd_dotdot(ip, dirrem, jremref)
8726 	struct inode *ip;
8727 	struct dirrem *dirrem;
8728 	struct jremref *jremref;
8729 {
8730 	struct pagedep *pagedep;
8731 	struct diradd *dap;
8732 	struct worklist *wk;
8733 
8734 	if (pagedep_lookup(UFSTOVFS(ip->i_ump), NULL, ip->i_number, 0, 0,
8735 	    &pagedep) == 0)
8736 		return (jremref);
8737 	dap = diradd_lookup(pagedep, DOTDOT_OFFSET);
8738 	if (dap == NULL)
8739 		return (jremref);
8740 	cancel_diradd(dap, dirrem, jremref, NULL, NULL);
8741 	/*
8742 	 * Mark any journal work as belonging to the parent so it is freed
8743 	 * with the .. reference.
8744 	 */
8745 	LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
8746 		wk->wk_state |= MKDIR_PARENT;
8747 	return (NULL);
8748 }
8749 
8750 /*
8751  * Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to
8752  * replace it with a dirrem/diradd pair as a result of re-parenting a
8753  * directory.  This ensures that we don't simultaneously have a mkdir and
8754  * a diradd for the same .. entry.
8755  */
8756 static struct jremref *
8757 cancel_mkdir_dotdot(ip, dirrem, jremref)
8758 	struct inode *ip;
8759 	struct dirrem *dirrem;
8760 	struct jremref *jremref;
8761 {
8762 	struct inodedep *inodedep;
8763 	struct jaddref *jaddref;
8764 	struct mkdir *mkdir;
8765 	struct diradd *dap;
8766 
8767 	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
8768 	    &inodedep) == 0)
8769 		return (jremref);
8770 	dap = inodedep->id_mkdiradd;
8771 	if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0)
8772 		return (jremref);
8773 	for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir;
8774 	    mkdir = LIST_NEXT(mkdir, md_mkdirs))
8775 		if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT)
8776 			break;
8777 	if (mkdir == NULL)
8778 		panic("cancel_mkdir_dotdot: Unable to find mkdir\n");
8779 	if ((jaddref = mkdir->md_jaddref) != NULL) {
8780 		mkdir->md_jaddref = NULL;
8781 		jaddref->ja_state &= ~MKDIR_PARENT;
8782 		if (inodedep_lookup(UFSTOVFS(ip->i_ump), jaddref->ja_ino, 0,
8783 		    &inodedep) == 0)
8784 			panic("cancel_mkdir_dotdot: Lost parent inodedep");
8785 		if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) {
8786 			journal_jremref(dirrem, jremref, inodedep);
8787 			jremref = NULL;
8788 		}
8789 	}
8790 	if (mkdir->md_state & ONWORKLIST)
8791 		WORKLIST_REMOVE(&mkdir->md_list);
8792 	mkdir->md_state |= ALLCOMPLETE;
8793 	complete_mkdir(mkdir);
8794 	return (jremref);
8795 }
8796 
8797 static void
8798 journal_jremref(dirrem, jremref, inodedep)
8799 	struct dirrem *dirrem;
8800 	struct jremref *jremref;
8801 	struct inodedep *inodedep;
8802 {
8803 
8804 	if (inodedep == NULL)
8805 		if (inodedep_lookup(jremref->jr_list.wk_mp,
8806 		    jremref->jr_ref.if_ino, 0, &inodedep) == 0)
8807 			panic("journal_jremref: Lost inodedep");
8808 	LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps);
8809 	TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
8810 	add_to_journal(&jremref->jr_list);
8811 }
8812 
8813 static void
8814 dirrem_journal(dirrem, jremref, dotremref, dotdotremref)
8815 	struct dirrem *dirrem;
8816 	struct jremref *jremref;
8817 	struct jremref *dotremref;
8818 	struct jremref *dotdotremref;
8819 {
8820 	struct inodedep *inodedep;
8821 
8822 
8823 	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0,
8824 	    &inodedep) == 0)
8825 		panic("dirrem_journal: Lost inodedep");
8826 	journal_jremref(dirrem, jremref, inodedep);
8827 	if (dotremref)
8828 		journal_jremref(dirrem, dotremref, inodedep);
8829 	if (dotdotremref)
8830 		journal_jremref(dirrem, dotdotremref, NULL);
8831 }
8832 
8833 /*
8834  * Allocate a new dirrem if appropriate and return it along with
8835  * its associated pagedep. Called without a lock, returns with lock.
8836  */
8837 static struct dirrem *
8838 newdirrem(bp, dp, ip, isrmdir, prevdirremp)
8839 	struct buf *bp;		/* buffer containing directory block */
8840 	struct inode *dp;	/* inode for the directory being modified */
8841 	struct inode *ip;	/* inode for directory entry being removed */
8842 	int isrmdir;		/* indicates if doing RMDIR */
8843 	struct dirrem **prevdirremp; /* previously referenced inode, if any */
8844 {
8845 	int offset;
8846 	ufs_lbn_t lbn;
8847 	struct diradd *dap;
8848 	struct dirrem *dirrem;
8849 	struct pagedep *pagedep;
8850 	struct jremref *jremref;
8851 	struct jremref *dotremref;
8852 	struct jremref *dotdotremref;
8853 	struct vnode *dvp;
8854 
8855 	/*
8856 	 * Whiteouts have no deletion dependencies.
8857 	 */
8858 	if (ip == NULL)
8859 		panic("newdirrem: whiteout");
8860 	dvp = ITOV(dp);
8861 	/*
8862 	 * If we are over our limit, try to improve the situation.
8863 	 * Limiting the number of dirrem structures will also limit
8864 	 * the number of freefile and freeblks structures.
8865 	 */
8866 	ACQUIRE_LOCK(&lk);
8867 	if (!IS_SNAPSHOT(ip) && dep_current[D_DIRREM] > max_softdeps / 2)
8868 		(void) request_cleanup(ITOV(dp)->v_mount, FLUSH_BLOCKS);
8869 	FREE_LOCK(&lk);
8870 	dirrem = malloc(sizeof(struct dirrem),
8871 		M_DIRREM, M_SOFTDEP_FLAGS|M_ZERO);
8872 	workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount);
8873 	LIST_INIT(&dirrem->dm_jremrefhd);
8874 	LIST_INIT(&dirrem->dm_jwork);
8875 	dirrem->dm_state = isrmdir ? RMDIR : 0;
8876 	dirrem->dm_oldinum = ip->i_number;
8877 	*prevdirremp = NULL;
8878 	/*
8879 	 * Allocate remove reference structures to track journal write
8880 	 * dependencies.  We will always have one for the link and
8881 	 * when doing directories we will always have one more for dot.
8882 	 * When renaming a directory we skip the dotdot link change so
8883 	 * this is not needed.
8884 	 */
8885 	jremref = dotremref = dotdotremref = NULL;
8886 	if (DOINGSUJ(dvp)) {
8887 		if (isrmdir) {
8888 			jremref = newjremref(dirrem, dp, ip, dp->i_offset,
8889 			    ip->i_effnlink + 2);
8890 			dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET,
8891 			    ip->i_effnlink + 1);
8892 			dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET,
8893 			    dp->i_effnlink + 1);
8894 			dotdotremref->jr_state |= MKDIR_PARENT;
8895 		} else
8896 			jremref = newjremref(dirrem, dp, ip, dp->i_offset,
8897 			    ip->i_effnlink + 1);
8898 	}
8899 	ACQUIRE_LOCK(&lk);
8900 	lbn = lblkno(dp->i_fs, dp->i_offset);
8901 	offset = blkoff(dp->i_fs, dp->i_offset);
8902 	pagedep_lookup(UFSTOVFS(dp->i_ump), bp, dp->i_number, lbn, DEPALLOC,
8903 	    &pagedep);
8904 	dirrem->dm_pagedep = pagedep;
8905 	dirrem->dm_offset = offset;
8906 	/*
8907 	 * If we're renaming a .. link to a new directory, cancel any
8908 	 * existing MKDIR_PARENT mkdir.  If it has already been canceled
8909 	 * the jremref is preserved for any potential diradd in this
8910 	 * location.  This can not coincide with a rmdir.
8911 	 */
8912 	if (dp->i_offset == DOTDOT_OFFSET) {
8913 		if (isrmdir)
8914 			panic("newdirrem: .. directory change during remove?");
8915 		jremref = cancel_mkdir_dotdot(dp, dirrem, jremref);
8916 	}
8917 	/*
8918 	 * If we're removing a directory search for the .. dependency now and
8919 	 * cancel it.  Any pending journal work will be added to the dirrem
8920 	 * to be completed when the workitem remove completes.
8921 	 */
8922 	if (isrmdir)
8923 		dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref);
8924 	/*
8925 	 * Check for a diradd dependency for the same directory entry.
8926 	 * If present, then both dependencies become obsolete and can
8927 	 * be de-allocated.
8928 	 */
8929 	dap = diradd_lookup(pagedep, offset);
8930 	if (dap == NULL) {
8931 		/*
8932 		 * Link the jremref structures into the dirrem so they are
8933 		 * written prior to the pagedep.
8934 		 */
8935 		if (jremref)
8936 			dirrem_journal(dirrem, jremref, dotremref,
8937 			    dotdotremref);
8938 		return (dirrem);
8939 	}
8940 	/*
8941 	 * Must be ATTACHED at this point.
8942 	 */
8943 	if ((dap->da_state & ATTACHED) == 0)
8944 		panic("newdirrem: not ATTACHED");
8945 	if (dap->da_newinum != ip->i_number)
8946 		panic("newdirrem: inum %ju should be %ju",
8947 		    (uintmax_t)ip->i_number, (uintmax_t)dap->da_newinum);
8948 	/*
8949 	 * If we are deleting a changed name that never made it to disk,
8950 	 * then return the dirrem describing the previous inode (which
8951 	 * represents the inode currently referenced from this entry on disk).
8952 	 */
8953 	if ((dap->da_state & DIRCHG) != 0) {
8954 		*prevdirremp = dap->da_previous;
8955 		dap->da_state &= ~DIRCHG;
8956 		dap->da_pagedep = pagedep;
8957 	}
8958 	/*
8959 	 * We are deleting an entry that never made it to disk.
8960 	 * Mark it COMPLETE so we can delete its inode immediately.
8961 	 */
8962 	dirrem->dm_state |= COMPLETE;
8963 	cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref);
8964 #ifdef SUJ_DEBUG
8965 	if (isrmdir == 0) {
8966 		struct worklist *wk;
8967 
8968 		LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
8969 			if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT))
8970 				panic("bad wk %p (0x%X)\n", wk, wk->wk_state);
8971 	}
8972 #endif
8973 
8974 	return (dirrem);
8975 }
8976 
8977 /*
8978  * Directory entry change dependencies.
8979  *
8980  * Changing an existing directory entry requires that an add operation
8981  * be completed first followed by a deletion. The semantics for the addition
8982  * are identical to the description of adding a new entry above except
8983  * that the rollback is to the old inode number rather than zero. Once
8984  * the addition dependency is completed, the removal is done as described
8985  * in the removal routine above.
8986  */
8987 
8988 /*
8989  * This routine should be called immediately after changing
8990  * a directory entry.  The inode's link count should not be
8991  * decremented by the calling procedure -- the soft updates
8992  * code will perform this task when it is safe.
8993  */
8994 void
8995 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
8996 	struct buf *bp;		/* buffer containing directory block */
8997 	struct inode *dp;	/* inode for the directory being modified */
8998 	struct inode *ip;	/* inode for directory entry being removed */
8999 	ino_t newinum;		/* new inode number for changed entry */
9000 	int isrmdir;		/* indicates if doing RMDIR */
9001 {
9002 	int offset;
9003 	struct diradd *dap = NULL;
9004 	struct dirrem *dirrem, *prevdirrem;
9005 	struct pagedep *pagedep;
9006 	struct inodedep *inodedep;
9007 	struct jaddref *jaddref;
9008 	struct mount *mp;
9009 
9010 	offset = blkoff(dp->i_fs, dp->i_offset);
9011 	mp = UFSTOVFS(dp->i_ump);
9012 
9013 	/*
9014 	 * Whiteouts do not need diradd dependencies.
9015 	 */
9016 	if (newinum != WINO) {
9017 		dap = malloc(sizeof(struct diradd),
9018 		    M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO);
9019 		workitem_alloc(&dap->da_list, D_DIRADD, mp);
9020 		dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
9021 		dap->da_offset = offset;
9022 		dap->da_newinum = newinum;
9023 		LIST_INIT(&dap->da_jwork);
9024 	}
9025 
9026 	/*
9027 	 * Allocate a new dirrem and ACQUIRE_LOCK.
9028 	 */
9029 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
9030 	pagedep = dirrem->dm_pagedep;
9031 	/*
9032 	 * The possible values for isrmdir:
9033 	 *	0 - non-directory file rename
9034 	 *	1 - directory rename within same directory
9035 	 *   inum - directory rename to new directory of given inode number
9036 	 * When renaming to a new directory, we are both deleting and
9037 	 * creating a new directory entry, so the link count on the new
9038 	 * directory should not change. Thus we do not need the followup
9039 	 * dirrem which is usually done in handle_workitem_remove. We set
9040 	 * the DIRCHG flag to tell handle_workitem_remove to skip the
9041 	 * followup dirrem.
9042 	 */
9043 	if (isrmdir > 1)
9044 		dirrem->dm_state |= DIRCHG;
9045 
9046 	/*
9047 	 * Whiteouts have no additional dependencies,
9048 	 * so just put the dirrem on the correct list.
9049 	 */
9050 	if (newinum == WINO) {
9051 		if ((dirrem->dm_state & COMPLETE) == 0) {
9052 			LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
9053 			    dm_next);
9054 		} else {
9055 			dirrem->dm_dirinum = pagedep->pd_ino;
9056 			if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9057 				add_to_worklist(&dirrem->dm_list, 0);
9058 		}
9059 		FREE_LOCK(&lk);
9060 		return;
9061 	}
9062 	/*
9063 	 * Add the dirrem to the inodedep's pending remove list for quick
9064 	 * discovery later.  A valid nlinkdelta ensures that this lookup
9065 	 * will not fail.
9066 	 */
9067 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
9068 		panic("softdep_setup_directory_change: Lost inodedep.");
9069 	dirrem->dm_state |= ONDEPLIST;
9070 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9071 
9072 	/*
9073 	 * If the COMPLETE flag is clear, then there were no active
9074 	 * entries and we want to roll back to the previous inode until
9075 	 * the new inode is committed to disk. If the COMPLETE flag is
9076 	 * set, then we have deleted an entry that never made it to disk.
9077 	 * If the entry we deleted resulted from a name change, then the old
9078 	 * inode reference still resides on disk. Any rollback that we do
9079 	 * needs to be to that old inode (returned to us in prevdirrem). If
9080 	 * the entry we deleted resulted from a create, then there is
9081 	 * no entry on the disk, so we want to roll back to zero rather
9082 	 * than the uncommitted inode. In either of the COMPLETE cases we
9083 	 * want to immediately free the unwritten and unreferenced inode.
9084 	 */
9085 	if ((dirrem->dm_state & COMPLETE) == 0) {
9086 		dap->da_previous = dirrem;
9087 	} else {
9088 		if (prevdirrem != NULL) {
9089 			dap->da_previous = prevdirrem;
9090 		} else {
9091 			dap->da_state &= ~DIRCHG;
9092 			dap->da_pagedep = pagedep;
9093 		}
9094 		dirrem->dm_dirinum = pagedep->pd_ino;
9095 		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9096 			add_to_worklist(&dirrem->dm_list, 0);
9097 	}
9098 	/*
9099 	 * Lookup the jaddref for this journal entry.  We must finish
9100 	 * initializing it and make the diradd write dependent on it.
9101 	 * If we're not journaling, put it on the id_bufwait list if the
9102 	 * inode is not yet written. If it is written, do the post-inode
9103 	 * write processing to put it on the id_pendinghd list.
9104 	 */
9105 	inodedep_lookup(mp, newinum, DEPALLOC | NODELAY, &inodedep);
9106 	if (MOUNTEDSUJ(mp)) {
9107 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
9108 		    inoreflst);
9109 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
9110 		    ("softdep_setup_directory_change: bad jaddref %p",
9111 		    jaddref));
9112 		jaddref->ja_diroff = dp->i_offset;
9113 		jaddref->ja_diradd = dap;
9114 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
9115 		    dap, da_pdlist);
9116 		add_to_journal(&jaddref->ja_list);
9117 	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
9118 		dap->da_state |= COMPLETE;
9119 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
9120 		WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
9121 	} else {
9122 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
9123 		    dap, da_pdlist);
9124 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
9125 	}
9126 	/*
9127 	 * If we're making a new name for a directory that has not been
9128 	 * committed when need to move the dot and dotdot references to
9129 	 * this new name.
9130 	 */
9131 	if (inodedep->id_mkdiradd && dp->i_offset != DOTDOT_OFFSET)
9132 		merge_diradd(inodedep, dap);
9133 	FREE_LOCK(&lk);
9134 }
9135 
9136 /*
9137  * Called whenever the link count on an inode is changed.
9138  * It creates an inode dependency so that the new reference(s)
9139  * to the inode cannot be committed to disk until the updated
9140  * inode has been written.
9141  */
9142 void
9143 softdep_change_linkcnt(ip)
9144 	struct inode *ip;	/* the inode with the increased link count */
9145 {
9146 	struct inodedep *inodedep;
9147 	int dflags;
9148 
9149 	ACQUIRE_LOCK(&lk);
9150 	dflags = DEPALLOC;
9151 	if (IS_SNAPSHOT(ip))
9152 		dflags |= NODELAY;
9153 	inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, dflags, &inodedep);
9154 	if (ip->i_nlink < ip->i_effnlink)
9155 		panic("softdep_change_linkcnt: bad delta");
9156 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9157 	FREE_LOCK(&lk);
9158 }
9159 
9160 /*
9161  * Attach a sbdep dependency to the superblock buf so that we can keep
9162  * track of the head of the linked list of referenced but unlinked inodes.
9163  */
9164 void
9165 softdep_setup_sbupdate(ump, fs, bp)
9166 	struct ufsmount *ump;
9167 	struct fs *fs;
9168 	struct buf *bp;
9169 {
9170 	struct sbdep *sbdep;
9171 	struct worklist *wk;
9172 
9173 	if (MOUNTEDSUJ(UFSTOVFS(ump)) == 0)
9174 		return;
9175 	LIST_FOREACH(wk, &bp->b_dep, wk_list)
9176 		if (wk->wk_type == D_SBDEP)
9177 			break;
9178 	if (wk != NULL)
9179 		return;
9180 	sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS);
9181 	workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump));
9182 	sbdep->sb_fs = fs;
9183 	sbdep->sb_ump = ump;
9184 	ACQUIRE_LOCK(&lk);
9185 	WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list);
9186 	FREE_LOCK(&lk);
9187 }
9188 
9189 /*
9190  * Return the first unlinked inodedep which is ready to be the head of the
9191  * list.  The inodedep and all those after it must have valid next pointers.
9192  */
9193 static struct inodedep *
9194 first_unlinked_inodedep(ump)
9195 	struct ufsmount *ump;
9196 {
9197 	struct inodedep *inodedep;
9198 	struct inodedep *idp;
9199 
9200 	rw_assert(&lk, RA_WLOCKED);
9201 	for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst);
9202 	    inodedep; inodedep = idp) {
9203 		if ((inodedep->id_state & UNLINKNEXT) == 0)
9204 			return (NULL);
9205 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9206 		if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0)
9207 			break;
9208 		if ((inodedep->id_state & UNLINKPREV) == 0)
9209 			break;
9210 	}
9211 	return (inodedep);
9212 }
9213 
9214 /*
9215  * Set the sujfree unlinked head pointer prior to writing a superblock.
9216  */
9217 static void
9218 initiate_write_sbdep(sbdep)
9219 	struct sbdep *sbdep;
9220 {
9221 	struct inodedep *inodedep;
9222 	struct fs *bpfs;
9223 	struct fs *fs;
9224 
9225 	bpfs = sbdep->sb_fs;
9226 	fs = sbdep->sb_ump->um_fs;
9227 	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9228 	if (inodedep) {
9229 		fs->fs_sujfree = inodedep->id_ino;
9230 		inodedep->id_state |= UNLINKPREV;
9231 	} else
9232 		fs->fs_sujfree = 0;
9233 	bpfs->fs_sujfree = fs->fs_sujfree;
9234 }
9235 
9236 /*
9237  * After a superblock is written determine whether it must be written again
9238  * due to a changing unlinked list head.
9239  */
9240 static int
9241 handle_written_sbdep(sbdep, bp)
9242 	struct sbdep *sbdep;
9243 	struct buf *bp;
9244 {
9245 	struct inodedep *inodedep;
9246 	struct mount *mp;
9247 	struct fs *fs;
9248 
9249 	rw_assert(&lk, RA_WLOCKED);
9250 	fs = sbdep->sb_fs;
9251 	mp = UFSTOVFS(sbdep->sb_ump);
9252 	/*
9253 	 * If the superblock doesn't match the in-memory list start over.
9254 	 */
9255 	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9256 	if ((inodedep && fs->fs_sujfree != inodedep->id_ino) ||
9257 	    (inodedep == NULL && fs->fs_sujfree != 0)) {
9258 		bdirty(bp);
9259 		return (1);
9260 	}
9261 	WORKITEM_FREE(sbdep, D_SBDEP);
9262 	if (fs->fs_sujfree == 0)
9263 		return (0);
9264 	/*
9265 	 * Now that we have a record of this inode in stable store allow it
9266 	 * to be written to free up pending work.  Inodes may see a lot of
9267 	 * write activity after they are unlinked which we must not hold up.
9268 	 */
9269 	for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) {
9270 		if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS)
9271 			panic("handle_written_sbdep: Bad inodedep %p (0x%X)",
9272 			    inodedep, inodedep->id_state);
9273 		if (inodedep->id_state & UNLINKONLIST)
9274 			break;
9275 		inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST;
9276 	}
9277 
9278 	return (0);
9279 }
9280 
9281 /*
9282  * Mark an inodedep as unlinked and insert it into the in-memory unlinked list.
9283  */
9284 static void
9285 unlinked_inodedep(mp, inodedep)
9286 	struct mount *mp;
9287 	struct inodedep *inodedep;
9288 {
9289 	struct ufsmount *ump;
9290 
9291 	rw_assert(&lk, RA_WLOCKED);
9292 	if (MOUNTEDSUJ(mp) == 0)
9293 		return;
9294 	ump = VFSTOUFS(mp);
9295 	ump->um_fs->fs_fmod = 1;
9296 	if (inodedep->id_state & UNLINKED)
9297 		panic("unlinked_inodedep: %p already unlinked\n", inodedep);
9298 	inodedep->id_state |= UNLINKED;
9299 	TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked);
9300 }
9301 
9302 /*
9303  * Remove an inodedep from the unlinked inodedep list.  This may require
9304  * disk writes if the inode has made it that far.
9305  */
9306 static void
9307 clear_unlinked_inodedep(inodedep)
9308 	struct inodedep *inodedep;
9309 {
9310 	struct ufsmount *ump;
9311 	struct inodedep *idp;
9312 	struct inodedep *idn;
9313 	struct fs *fs;
9314 	struct buf *bp;
9315 	ino_t ino;
9316 	ino_t nino;
9317 	ino_t pino;
9318 	int error;
9319 
9320 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
9321 	fs = ump->um_fs;
9322 	ino = inodedep->id_ino;
9323 	error = 0;
9324 	for (;;) {
9325 		rw_assert(&lk, RA_WLOCKED);
9326 		KASSERT((inodedep->id_state & UNLINKED) != 0,
9327 		    ("clear_unlinked_inodedep: inodedep %p not unlinked",
9328 		    inodedep));
9329 		/*
9330 		 * If nothing has yet been written simply remove us from
9331 		 * the in memory list and return.  This is the most common
9332 		 * case where handle_workitem_remove() loses the final
9333 		 * reference.
9334 		 */
9335 		if ((inodedep->id_state & UNLINKLINKS) == 0)
9336 			break;
9337 		/*
9338 		 * If we have a NEXT pointer and no PREV pointer we can simply
9339 		 * clear NEXT's PREV and remove ourselves from the list.  Be
9340 		 * careful not to clear PREV if the superblock points at
9341 		 * next as well.
9342 		 */
9343 		idn = TAILQ_NEXT(inodedep, id_unlinked);
9344 		if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) {
9345 			if (idn && fs->fs_sujfree != idn->id_ino)
9346 				idn->id_state &= ~UNLINKPREV;
9347 			break;
9348 		}
9349 		/*
9350 		 * Here we have an inodedep which is actually linked into
9351 		 * the list.  We must remove it by forcing a write to the
9352 		 * link before us, whether it be the superblock or an inode.
9353 		 * Unfortunately the list may change while we're waiting
9354 		 * on the buf lock for either resource so we must loop until
9355 		 * we lock the right one.  If both the superblock and an
9356 		 * inode point to this inode we must clear the inode first
9357 		 * followed by the superblock.
9358 		 */
9359 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9360 		pino = 0;
9361 		if (idp && (idp->id_state & UNLINKNEXT))
9362 			pino = idp->id_ino;
9363 		FREE_LOCK(&lk);
9364 		if (pino == 0) {
9365 			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
9366 			    (int)fs->fs_sbsize, 0, 0, 0);
9367 		} else {
9368 			error = bread(ump->um_devvp,
9369 			    fsbtodb(fs, ino_to_fsba(fs, pino)),
9370 			    (int)fs->fs_bsize, NOCRED, &bp);
9371 			if (error)
9372 				brelse(bp);
9373 		}
9374 		ACQUIRE_LOCK(&lk);
9375 		if (error)
9376 			break;
9377 		/* If the list has changed restart the loop. */
9378 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9379 		nino = 0;
9380 		if (idp && (idp->id_state & UNLINKNEXT))
9381 			nino = idp->id_ino;
9382 		if (nino != pino ||
9383 		    (inodedep->id_state & UNLINKPREV) != UNLINKPREV) {
9384 			FREE_LOCK(&lk);
9385 			brelse(bp);
9386 			ACQUIRE_LOCK(&lk);
9387 			continue;
9388 		}
9389 		nino = 0;
9390 		idn = TAILQ_NEXT(inodedep, id_unlinked);
9391 		if (idn)
9392 			nino = idn->id_ino;
9393 		/*
9394 		 * Remove us from the in memory list.  After this we cannot
9395 		 * access the inodedep.
9396 		 */
9397 		KASSERT((inodedep->id_state & UNLINKED) != 0,
9398 		    ("clear_unlinked_inodedep: inodedep %p not unlinked",
9399 		    inodedep));
9400 		inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
9401 		TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
9402 		FREE_LOCK(&lk);
9403 		/*
9404 		 * The predecessor's next pointer is manually updated here
9405 		 * so that the NEXT flag is never cleared for an element
9406 		 * that is in the list.
9407 		 */
9408 		if (pino == 0) {
9409 			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
9410 			ffs_oldfscompat_write((struct fs *)bp->b_data, ump);
9411 			softdep_setup_sbupdate(ump, (struct fs *)bp->b_data,
9412 			    bp);
9413 		} else if (fs->fs_magic == FS_UFS1_MAGIC)
9414 			((struct ufs1_dinode *)bp->b_data +
9415 			    ino_to_fsbo(fs, pino))->di_freelink = nino;
9416 		else
9417 			((struct ufs2_dinode *)bp->b_data +
9418 			    ino_to_fsbo(fs, pino))->di_freelink = nino;
9419 		/*
9420 		 * If the bwrite fails we have no recourse to recover.  The
9421 		 * filesystem is corrupted already.
9422 		 */
9423 		bwrite(bp);
9424 		ACQUIRE_LOCK(&lk);
9425 		/*
9426 		 * If the superblock pointer still needs to be cleared force
9427 		 * a write here.
9428 		 */
9429 		if (fs->fs_sujfree == ino) {
9430 			FREE_LOCK(&lk);
9431 			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
9432 			    (int)fs->fs_sbsize, 0, 0, 0);
9433 			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
9434 			ffs_oldfscompat_write((struct fs *)bp->b_data, ump);
9435 			softdep_setup_sbupdate(ump, (struct fs *)bp->b_data,
9436 			    bp);
9437 			bwrite(bp);
9438 			ACQUIRE_LOCK(&lk);
9439 		}
9440 
9441 		if (fs->fs_sujfree != ino)
9442 			return;
9443 		panic("clear_unlinked_inodedep: Failed to clear free head");
9444 	}
9445 	if (inodedep->id_ino == fs->fs_sujfree)
9446 		panic("clear_unlinked_inodedep: Freeing head of free list");
9447 	inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
9448 	TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
9449 	return;
9450 }
9451 
9452 /*
9453  * This workitem decrements the inode's link count.
9454  * If the link count reaches zero, the file is removed.
9455  */
9456 static int
9457 handle_workitem_remove(dirrem, flags)
9458 	struct dirrem *dirrem;
9459 	int flags;
9460 {
9461 	struct inodedep *inodedep;
9462 	struct workhead dotdotwk;
9463 	struct worklist *wk;
9464 	struct ufsmount *ump;
9465 	struct mount *mp;
9466 	struct vnode *vp;
9467 	struct inode *ip;
9468 	ino_t oldinum;
9469 
9470 	if (dirrem->dm_state & ONWORKLIST)
9471 		panic("handle_workitem_remove: dirrem %p still on worklist",
9472 		    dirrem);
9473 	oldinum = dirrem->dm_oldinum;
9474 	mp = dirrem->dm_list.wk_mp;
9475 	ump = VFSTOUFS(mp);
9476 	flags |= LK_EXCLUSIVE;
9477 	if (ffs_vgetf(mp, oldinum, flags, &vp, FFSV_FORCEINSMQ) != 0)
9478 		return (EBUSY);
9479 	ip = VTOI(vp);
9480 	ACQUIRE_LOCK(&lk);
9481 	if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0)
9482 		panic("handle_workitem_remove: lost inodedep");
9483 	if (dirrem->dm_state & ONDEPLIST)
9484 		LIST_REMOVE(dirrem, dm_inonext);
9485 	KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
9486 	    ("handle_workitem_remove:  Journal entries not written."));
9487 
9488 	/*
9489 	 * Move all dependencies waiting on the remove to complete
9490 	 * from the dirrem to the inode inowait list to be completed
9491 	 * after the inode has been updated and written to disk.  Any
9492 	 * marked MKDIR_PARENT are saved to be completed when the .. ref
9493 	 * is removed.
9494 	 */
9495 	LIST_INIT(&dotdotwk);
9496 	while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) {
9497 		WORKLIST_REMOVE(wk);
9498 		if (wk->wk_state & MKDIR_PARENT) {
9499 			wk->wk_state &= ~MKDIR_PARENT;
9500 			WORKLIST_INSERT(&dotdotwk, wk);
9501 			continue;
9502 		}
9503 		WORKLIST_INSERT(&inodedep->id_inowait, wk);
9504 	}
9505 	LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list);
9506 	/*
9507 	 * Normal file deletion.
9508 	 */
9509 	if ((dirrem->dm_state & RMDIR) == 0) {
9510 		ip->i_nlink--;
9511 		DIP_SET(ip, i_nlink, ip->i_nlink);
9512 		ip->i_flag |= IN_CHANGE;
9513 		if (ip->i_nlink < ip->i_effnlink)
9514 			panic("handle_workitem_remove: bad file delta");
9515 		if (ip->i_nlink == 0)
9516 			unlinked_inodedep(mp, inodedep);
9517 		inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9518 		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
9519 		    ("handle_workitem_remove: worklist not empty. %s",
9520 		    TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type)));
9521 		WORKITEM_FREE(dirrem, D_DIRREM);
9522 		FREE_LOCK(&lk);
9523 		goto out;
9524 	}
9525 	/*
9526 	 * Directory deletion. Decrement reference count for both the
9527 	 * just deleted parent directory entry and the reference for ".".
9528 	 * Arrange to have the reference count on the parent decremented
9529 	 * to account for the loss of "..".
9530 	 */
9531 	ip->i_nlink -= 2;
9532 	DIP_SET(ip, i_nlink, ip->i_nlink);
9533 	ip->i_flag |= IN_CHANGE;
9534 	if (ip->i_nlink < ip->i_effnlink)
9535 		panic("handle_workitem_remove: bad dir delta");
9536 	if (ip->i_nlink == 0)
9537 		unlinked_inodedep(mp, inodedep);
9538 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9539 	/*
9540 	 * Rename a directory to a new parent. Since, we are both deleting
9541 	 * and creating a new directory entry, the link count on the new
9542 	 * directory should not change. Thus we skip the followup dirrem.
9543 	 */
9544 	if (dirrem->dm_state & DIRCHG) {
9545 		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
9546 		    ("handle_workitem_remove: DIRCHG and worklist not empty."));
9547 		WORKITEM_FREE(dirrem, D_DIRREM);
9548 		FREE_LOCK(&lk);
9549 		goto out;
9550 	}
9551 	dirrem->dm_state = ONDEPLIST;
9552 	dirrem->dm_oldinum = dirrem->dm_dirinum;
9553 	/*
9554 	 * Place the dirrem on the parent's diremhd list.
9555 	 */
9556 	if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0)
9557 		panic("handle_workitem_remove: lost dir inodedep");
9558 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9559 	/*
9560 	 * If the allocated inode has never been written to disk, then
9561 	 * the on-disk inode is zero'ed and we can remove the file
9562 	 * immediately.  When journaling if the inode has been marked
9563 	 * unlinked and not DEPCOMPLETE we know it can never be written.
9564 	 */
9565 	inodedep_lookup(mp, oldinum, 0, &inodedep);
9566 	if (inodedep == NULL ||
9567 	    (inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED ||
9568 	    check_inode_unwritten(inodedep)) {
9569 		FREE_LOCK(&lk);
9570 		vput(vp);
9571 		return handle_workitem_remove(dirrem, flags);
9572 	}
9573 	WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
9574 	FREE_LOCK(&lk);
9575 	ip->i_flag |= IN_CHANGE;
9576 out:
9577 	ffs_update(vp, 0);
9578 	vput(vp);
9579 	return (0);
9580 }
9581 
9582 /*
9583  * Inode de-allocation dependencies.
9584  *
9585  * When an inode's link count is reduced to zero, it can be de-allocated. We
9586  * found it convenient to postpone de-allocation until after the inode is
9587  * written to disk with its new link count (zero).  At this point, all of the
9588  * on-disk inode's block pointers are nullified and, with careful dependency
9589  * list ordering, all dependencies related to the inode will be satisfied and
9590  * the corresponding dependency structures de-allocated.  So, if/when the
9591  * inode is reused, there will be no mixing of old dependencies with new
9592  * ones.  This artificial dependency is set up by the block de-allocation
9593  * procedure above (softdep_setup_freeblocks) and completed by the
9594  * following procedure.
9595  */
9596 static void
9597 handle_workitem_freefile(freefile)
9598 	struct freefile *freefile;
9599 {
9600 	struct workhead wkhd;
9601 	struct fs *fs;
9602 	struct inodedep *idp;
9603 	struct ufsmount *ump;
9604 	int error;
9605 
9606 	ump = VFSTOUFS(freefile->fx_list.wk_mp);
9607 	fs = ump->um_fs;
9608 #ifdef DEBUG
9609 	ACQUIRE_LOCK(&lk);
9610 	error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp);
9611 	FREE_LOCK(&lk);
9612 	if (error)
9613 		panic("handle_workitem_freefile: inodedep %p survived", idp);
9614 #endif
9615 	UFS_LOCK(ump);
9616 	fs->fs_pendinginodes -= 1;
9617 	UFS_UNLOCK(ump);
9618 	LIST_INIT(&wkhd);
9619 	LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list);
9620 	if ((error = ffs_freefile(ump, fs, freefile->fx_devvp,
9621 	    freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0)
9622 		softdep_error("handle_workitem_freefile", error);
9623 	ACQUIRE_LOCK(&lk);
9624 	WORKITEM_FREE(freefile, D_FREEFILE);
9625 	FREE_LOCK(&lk);
9626 }
9627 
9628 
9629 /*
9630  * Helper function which unlinks marker element from work list and returns
9631  * the next element on the list.
9632  */
9633 static __inline struct worklist *
9634 markernext(struct worklist *marker)
9635 {
9636 	struct worklist *next;
9637 
9638 	next = LIST_NEXT(marker, wk_list);
9639 	LIST_REMOVE(marker, wk_list);
9640 	return next;
9641 }
9642 
9643 /*
9644  * Disk writes.
9645  *
9646  * The dependency structures constructed above are most actively used when file
9647  * system blocks are written to disk.  No constraints are placed on when a
9648  * block can be written, but unsatisfied update dependencies are made safe by
9649  * modifying (or replacing) the source memory for the duration of the disk
9650  * write.  When the disk write completes, the memory block is again brought
9651  * up-to-date.
9652  *
9653  * In-core inode structure reclamation.
9654  *
9655  * Because there are a finite number of "in-core" inode structures, they are
9656  * reused regularly.  By transferring all inode-related dependencies to the
9657  * in-memory inode block and indexing them separately (via "inodedep"s), we
9658  * can allow "in-core" inode structures to be reused at any time and avoid
9659  * any increase in contention.
9660  *
9661  * Called just before entering the device driver to initiate a new disk I/O.
9662  * The buffer must be locked, thus, no I/O completion operations can occur
9663  * while we are manipulating its associated dependencies.
9664  */
9665 static void
9666 softdep_disk_io_initiation(bp)
9667 	struct buf *bp;		/* structure describing disk write to occur */
9668 {
9669 	struct worklist *wk;
9670 	struct worklist marker;
9671 	struct inodedep *inodedep;
9672 	struct freeblks *freeblks;
9673 	struct jblkdep *jblkdep;
9674 	struct newblk *newblk;
9675 
9676 	/*
9677 	 * We only care about write operations. There should never
9678 	 * be dependencies for reads.
9679 	 */
9680 	if (bp->b_iocmd != BIO_WRITE)
9681 		panic("softdep_disk_io_initiation: not write");
9682 
9683 	if (bp->b_vflags & BV_BKGRDINPROG)
9684 		panic("softdep_disk_io_initiation: Writing buffer with "
9685 		    "background write in progress: %p", bp);
9686 
9687 	marker.wk_type = D_LAST + 1;	/* Not a normal workitem */
9688 	PHOLD(curproc);			/* Don't swap out kernel stack */
9689 
9690 	ACQUIRE_LOCK(&lk);
9691 	/*
9692 	 * Do any necessary pre-I/O processing.
9693 	 */
9694 	for (wk = LIST_FIRST(&bp->b_dep); wk != NULL;
9695 	     wk = markernext(&marker)) {
9696 		LIST_INSERT_AFTER(wk, &marker, wk_list);
9697 		switch (wk->wk_type) {
9698 
9699 		case D_PAGEDEP:
9700 			initiate_write_filepage(WK_PAGEDEP(wk), bp);
9701 			continue;
9702 
9703 		case D_INODEDEP:
9704 			inodedep = WK_INODEDEP(wk);
9705 			if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC)
9706 				initiate_write_inodeblock_ufs1(inodedep, bp);
9707 			else
9708 				initiate_write_inodeblock_ufs2(inodedep, bp);
9709 			continue;
9710 
9711 		case D_INDIRDEP:
9712 			initiate_write_indirdep(WK_INDIRDEP(wk), bp);
9713 			continue;
9714 
9715 		case D_BMSAFEMAP:
9716 			initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp);
9717 			continue;
9718 
9719 		case D_JSEG:
9720 			WK_JSEG(wk)->js_buf = NULL;
9721 			continue;
9722 
9723 		case D_FREEBLKS:
9724 			freeblks = WK_FREEBLKS(wk);
9725 			jblkdep = LIST_FIRST(&freeblks->fb_jblkdephd);
9726 			/*
9727 			 * We have to wait for the freeblks to be journaled
9728 			 * before we can write an inodeblock with updated
9729 			 * pointers.  Be careful to arrange the marker so
9730 			 * we revisit the freeblks if it's not removed by
9731 			 * the first jwait().
9732 			 */
9733 			if (jblkdep != NULL) {
9734 				LIST_REMOVE(&marker, wk_list);
9735 				LIST_INSERT_BEFORE(wk, &marker, wk_list);
9736 				jwait(&jblkdep->jb_list, MNT_WAIT);
9737 			}
9738 			continue;
9739 		case D_ALLOCDIRECT:
9740 		case D_ALLOCINDIR:
9741 			/*
9742 			 * We have to wait for the jnewblk to be journaled
9743 			 * before we can write to a block if the contents
9744 			 * may be confused with an earlier file's indirect
9745 			 * at recovery time.  Handle the marker as described
9746 			 * above.
9747 			 */
9748 			newblk = WK_NEWBLK(wk);
9749 			if (newblk->nb_jnewblk != NULL &&
9750 			    indirblk_lookup(newblk->nb_list.wk_mp,
9751 			    newblk->nb_newblkno)) {
9752 				LIST_REMOVE(&marker, wk_list);
9753 				LIST_INSERT_BEFORE(wk, &marker, wk_list);
9754 				jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
9755 			}
9756 			continue;
9757 
9758 		case D_SBDEP:
9759 			initiate_write_sbdep(WK_SBDEP(wk));
9760 			continue;
9761 
9762 		case D_MKDIR:
9763 		case D_FREEWORK:
9764 		case D_FREEDEP:
9765 		case D_JSEGDEP:
9766 			continue;
9767 
9768 		default:
9769 			panic("handle_disk_io_initiation: Unexpected type %s",
9770 			    TYPENAME(wk->wk_type));
9771 			/* NOTREACHED */
9772 		}
9773 	}
9774 	FREE_LOCK(&lk);
9775 	PRELE(curproc);			/* Allow swapout of kernel stack */
9776 }
9777 
9778 /*
9779  * Called from within the procedure above to deal with unsatisfied
9780  * allocation dependencies in a directory. The buffer must be locked,
9781  * thus, no I/O completion operations can occur while we are
9782  * manipulating its associated dependencies.
9783  */
9784 static void
9785 initiate_write_filepage(pagedep, bp)
9786 	struct pagedep *pagedep;
9787 	struct buf *bp;
9788 {
9789 	struct jremref *jremref;
9790 	struct jmvref *jmvref;
9791 	struct dirrem *dirrem;
9792 	struct diradd *dap;
9793 	struct direct *ep;
9794 	int i;
9795 
9796 	if (pagedep->pd_state & IOSTARTED) {
9797 		/*
9798 		 * This can only happen if there is a driver that does not
9799 		 * understand chaining. Here biodone will reissue the call
9800 		 * to strategy for the incomplete buffers.
9801 		 */
9802 		printf("initiate_write_filepage: already started\n");
9803 		return;
9804 	}
9805 	pagedep->pd_state |= IOSTARTED;
9806 	/*
9807 	 * Wait for all journal remove dependencies to hit the disk.
9808 	 * We can not allow any potentially conflicting directory adds
9809 	 * to be visible before removes and rollback is too difficult.
9810 	 * lk may be dropped and re-acquired, however we hold the buf
9811 	 * locked so the dependency can not go away.
9812 	 */
9813 	LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next)
9814 		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL)
9815 			jwait(&jremref->jr_list, MNT_WAIT);
9816 	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL)
9817 		jwait(&jmvref->jm_list, MNT_WAIT);
9818 	for (i = 0; i < DAHASHSZ; i++) {
9819 		LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
9820 			ep = (struct direct *)
9821 			    ((char *)bp->b_data + dap->da_offset);
9822 			if (ep->d_ino != dap->da_newinum)
9823 				panic("%s: dir inum %ju != new %ju",
9824 				    "initiate_write_filepage",
9825 				    (uintmax_t)ep->d_ino,
9826 				    (uintmax_t)dap->da_newinum);
9827 			if (dap->da_state & DIRCHG)
9828 				ep->d_ino = dap->da_previous->dm_oldinum;
9829 			else
9830 				ep->d_ino = 0;
9831 			dap->da_state &= ~ATTACHED;
9832 			dap->da_state |= UNDONE;
9833 		}
9834 	}
9835 }
9836 
9837 /*
9838  * Version of initiate_write_inodeblock that handles UFS1 dinodes.
9839  * Note that any bug fixes made to this routine must be done in the
9840  * version found below.
9841  *
9842  * Called from within the procedure above to deal with unsatisfied
9843  * allocation dependencies in an inodeblock. The buffer must be
9844  * locked, thus, no I/O completion operations can occur while we
9845  * are manipulating its associated dependencies.
9846  */
9847 static void
9848 initiate_write_inodeblock_ufs1(inodedep, bp)
9849 	struct inodedep *inodedep;
9850 	struct buf *bp;			/* The inode block */
9851 {
9852 	struct allocdirect *adp, *lastadp;
9853 	struct ufs1_dinode *dp;
9854 	struct ufs1_dinode *sip;
9855 	struct inoref *inoref;
9856 	struct fs *fs;
9857 	ufs_lbn_t i;
9858 #ifdef INVARIANTS
9859 	ufs_lbn_t prevlbn = 0;
9860 #endif
9861 	int deplist;
9862 
9863 	if (inodedep->id_state & IOSTARTED)
9864 		panic("initiate_write_inodeblock_ufs1: already started");
9865 	inodedep->id_state |= IOSTARTED;
9866 	fs = inodedep->id_fs;
9867 	dp = (struct ufs1_dinode *)bp->b_data +
9868 	    ino_to_fsbo(fs, inodedep->id_ino);
9869 
9870 	/*
9871 	 * If we're on the unlinked list but have not yet written our
9872 	 * next pointer initialize it here.
9873 	 */
9874 	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
9875 		struct inodedep *inon;
9876 
9877 		inon = TAILQ_NEXT(inodedep, id_unlinked);
9878 		dp->di_freelink = inon ? inon->id_ino : 0;
9879 	}
9880 	/*
9881 	 * If the bitmap is not yet written, then the allocated
9882 	 * inode cannot be written to disk.
9883 	 */
9884 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
9885 		if (inodedep->id_savedino1 != NULL)
9886 			panic("initiate_write_inodeblock_ufs1: I/O underway");
9887 		FREE_LOCK(&lk);
9888 		sip = malloc(sizeof(struct ufs1_dinode),
9889 		    M_SAVEDINO, M_SOFTDEP_FLAGS);
9890 		ACQUIRE_LOCK(&lk);
9891 		inodedep->id_savedino1 = sip;
9892 		*inodedep->id_savedino1 = *dp;
9893 		bzero((caddr_t)dp, sizeof(struct ufs1_dinode));
9894 		dp->di_gen = inodedep->id_savedino1->di_gen;
9895 		dp->di_freelink = inodedep->id_savedino1->di_freelink;
9896 		return;
9897 	}
9898 	/*
9899 	 * If no dependencies, then there is nothing to roll back.
9900 	 */
9901 	inodedep->id_savedsize = dp->di_size;
9902 	inodedep->id_savedextsize = 0;
9903 	inodedep->id_savednlink = dp->di_nlink;
9904 	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
9905 	    TAILQ_EMPTY(&inodedep->id_inoreflst))
9906 		return;
9907 	/*
9908 	 * Revert the link count to that of the first unwritten journal entry.
9909 	 */
9910 	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
9911 	if (inoref)
9912 		dp->di_nlink = inoref->if_nlink;
9913 	/*
9914 	 * Set the dependencies to busy.
9915 	 */
9916 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
9917 	     adp = TAILQ_NEXT(adp, ad_next)) {
9918 #ifdef INVARIANTS
9919 		if (deplist != 0 && prevlbn >= adp->ad_offset)
9920 			panic("softdep_write_inodeblock: lbn order");
9921 		prevlbn = adp->ad_offset;
9922 		if (adp->ad_offset < NDADDR &&
9923 		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
9924 			panic("%s: direct pointer #%jd mismatch %d != %jd",
9925 			    "softdep_write_inodeblock",
9926 			    (intmax_t)adp->ad_offset,
9927 			    dp->di_db[adp->ad_offset],
9928 			    (intmax_t)adp->ad_newblkno);
9929 		if (adp->ad_offset >= NDADDR &&
9930 		    dp->di_ib[adp->ad_offset - NDADDR] != adp->ad_newblkno)
9931 			panic("%s: indirect pointer #%jd mismatch %d != %jd",
9932 			    "softdep_write_inodeblock",
9933 			    (intmax_t)adp->ad_offset - NDADDR,
9934 			    dp->di_ib[adp->ad_offset - NDADDR],
9935 			    (intmax_t)adp->ad_newblkno);
9936 		deplist |= 1 << adp->ad_offset;
9937 		if ((adp->ad_state & ATTACHED) == 0)
9938 			panic("softdep_write_inodeblock: Unknown state 0x%x",
9939 			    adp->ad_state);
9940 #endif /* INVARIANTS */
9941 		adp->ad_state &= ~ATTACHED;
9942 		adp->ad_state |= UNDONE;
9943 	}
9944 	/*
9945 	 * The on-disk inode cannot claim to be any larger than the last
9946 	 * fragment that has been written. Otherwise, the on-disk inode
9947 	 * might have fragments that were not the last block in the file
9948 	 * which would corrupt the filesystem.
9949 	 */
9950 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
9951 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
9952 		if (adp->ad_offset >= NDADDR)
9953 			break;
9954 		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
9955 		/* keep going until hitting a rollback to a frag */
9956 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
9957 			continue;
9958 		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
9959 		for (i = adp->ad_offset + 1; i < NDADDR; i++) {
9960 #ifdef INVARIANTS
9961 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
9962 				panic("softdep_write_inodeblock: lost dep1");
9963 #endif /* INVARIANTS */
9964 			dp->di_db[i] = 0;
9965 		}
9966 		for (i = 0; i < NIADDR; i++) {
9967 #ifdef INVARIANTS
9968 			if (dp->di_ib[i] != 0 &&
9969 			    (deplist & ((1 << NDADDR) << i)) == 0)
9970 				panic("softdep_write_inodeblock: lost dep2");
9971 #endif /* INVARIANTS */
9972 			dp->di_ib[i] = 0;
9973 		}
9974 		return;
9975 	}
9976 	/*
9977 	 * If we have zero'ed out the last allocated block of the file,
9978 	 * roll back the size to the last currently allocated block.
9979 	 * We know that this last allocated block is a full-sized as
9980 	 * we already checked for fragments in the loop above.
9981 	 */
9982 	if (lastadp != NULL &&
9983 	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
9984 		for (i = lastadp->ad_offset; i >= 0; i--)
9985 			if (dp->di_db[i] != 0)
9986 				break;
9987 		dp->di_size = (i + 1) * fs->fs_bsize;
9988 	}
9989 	/*
9990 	 * The only dependencies are for indirect blocks.
9991 	 *
9992 	 * The file size for indirect block additions is not guaranteed.
9993 	 * Such a guarantee would be non-trivial to achieve. The conventional
9994 	 * synchronous write implementation also does not make this guarantee.
9995 	 * Fsck should catch and fix discrepancies. Arguably, the file size
9996 	 * can be over-estimated without destroying integrity when the file
9997 	 * moves into the indirect blocks (i.e., is large). If we want to
9998 	 * postpone fsck, we are stuck with this argument.
9999 	 */
10000 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
10001 		dp->di_ib[adp->ad_offset - NDADDR] = 0;
10002 }
10003 
10004 /*
10005  * Version of initiate_write_inodeblock that handles UFS2 dinodes.
10006  * Note that any bug fixes made to this routine must be done in the
10007  * version found above.
10008  *
10009  * Called from within the procedure above to deal with unsatisfied
10010  * allocation dependencies in an inodeblock. The buffer must be
10011  * locked, thus, no I/O completion operations can occur while we
10012  * are manipulating its associated dependencies.
10013  */
10014 static void
10015 initiate_write_inodeblock_ufs2(inodedep, bp)
10016 	struct inodedep *inodedep;
10017 	struct buf *bp;			/* The inode block */
10018 {
10019 	struct allocdirect *adp, *lastadp;
10020 	struct ufs2_dinode *dp;
10021 	struct ufs2_dinode *sip;
10022 	struct inoref *inoref;
10023 	struct fs *fs;
10024 	ufs_lbn_t i;
10025 #ifdef INVARIANTS
10026 	ufs_lbn_t prevlbn = 0;
10027 #endif
10028 	int deplist;
10029 
10030 	if (inodedep->id_state & IOSTARTED)
10031 		panic("initiate_write_inodeblock_ufs2: already started");
10032 	inodedep->id_state |= IOSTARTED;
10033 	fs = inodedep->id_fs;
10034 	dp = (struct ufs2_dinode *)bp->b_data +
10035 	    ino_to_fsbo(fs, inodedep->id_ino);
10036 
10037 	/*
10038 	 * If we're on the unlinked list but have not yet written our
10039 	 * next pointer initialize it here.
10040 	 */
10041 	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
10042 		struct inodedep *inon;
10043 
10044 		inon = TAILQ_NEXT(inodedep, id_unlinked);
10045 		dp->di_freelink = inon ? inon->id_ino : 0;
10046 	}
10047 	/*
10048 	 * If the bitmap is not yet written, then the allocated
10049 	 * inode cannot be written to disk.
10050 	 */
10051 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
10052 		if (inodedep->id_savedino2 != NULL)
10053 			panic("initiate_write_inodeblock_ufs2: I/O underway");
10054 		FREE_LOCK(&lk);
10055 		sip = malloc(sizeof(struct ufs2_dinode),
10056 		    M_SAVEDINO, M_SOFTDEP_FLAGS);
10057 		ACQUIRE_LOCK(&lk);
10058 		inodedep->id_savedino2 = sip;
10059 		*inodedep->id_savedino2 = *dp;
10060 		bzero((caddr_t)dp, sizeof(struct ufs2_dinode));
10061 		dp->di_gen = inodedep->id_savedino2->di_gen;
10062 		dp->di_freelink = inodedep->id_savedino2->di_freelink;
10063 		return;
10064 	}
10065 	/*
10066 	 * If no dependencies, then there is nothing to roll back.
10067 	 */
10068 	inodedep->id_savedsize = dp->di_size;
10069 	inodedep->id_savedextsize = dp->di_extsize;
10070 	inodedep->id_savednlink = dp->di_nlink;
10071 	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
10072 	    TAILQ_EMPTY(&inodedep->id_extupdt) &&
10073 	    TAILQ_EMPTY(&inodedep->id_inoreflst))
10074 		return;
10075 	/*
10076 	 * Revert the link count to that of the first unwritten journal entry.
10077 	 */
10078 	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
10079 	if (inoref)
10080 		dp->di_nlink = inoref->if_nlink;
10081 
10082 	/*
10083 	 * Set the ext data dependencies to busy.
10084 	 */
10085 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
10086 	     adp = TAILQ_NEXT(adp, ad_next)) {
10087 #ifdef INVARIANTS
10088 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10089 			panic("softdep_write_inodeblock: lbn order");
10090 		prevlbn = adp->ad_offset;
10091 		if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno)
10092 			panic("%s: direct pointer #%jd mismatch %jd != %jd",
10093 			    "softdep_write_inodeblock",
10094 			    (intmax_t)adp->ad_offset,
10095 			    (intmax_t)dp->di_extb[adp->ad_offset],
10096 			    (intmax_t)adp->ad_newblkno);
10097 		deplist |= 1 << adp->ad_offset;
10098 		if ((adp->ad_state & ATTACHED) == 0)
10099 			panic("softdep_write_inodeblock: Unknown state 0x%x",
10100 			    adp->ad_state);
10101 #endif /* INVARIANTS */
10102 		adp->ad_state &= ~ATTACHED;
10103 		adp->ad_state |= UNDONE;
10104 	}
10105 	/*
10106 	 * The on-disk inode cannot claim to be any larger than the last
10107 	 * fragment that has been written. Otherwise, the on-disk inode
10108 	 * might have fragments that were not the last block in the ext
10109 	 * data which would corrupt the filesystem.
10110 	 */
10111 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
10112 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10113 		dp->di_extb[adp->ad_offset] = adp->ad_oldblkno;
10114 		/* keep going until hitting a rollback to a frag */
10115 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10116 			continue;
10117 		dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10118 		for (i = adp->ad_offset + 1; i < NXADDR; i++) {
10119 #ifdef INVARIANTS
10120 			if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0)
10121 				panic("softdep_write_inodeblock: lost dep1");
10122 #endif /* INVARIANTS */
10123 			dp->di_extb[i] = 0;
10124 		}
10125 		lastadp = NULL;
10126 		break;
10127 	}
10128 	/*
10129 	 * If we have zero'ed out the last allocated block of the ext
10130 	 * data, roll back the size to the last currently allocated block.
10131 	 * We know that this last allocated block is a full-sized as
10132 	 * we already checked for fragments in the loop above.
10133 	 */
10134 	if (lastadp != NULL &&
10135 	    dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10136 		for (i = lastadp->ad_offset; i >= 0; i--)
10137 			if (dp->di_extb[i] != 0)
10138 				break;
10139 		dp->di_extsize = (i + 1) * fs->fs_bsize;
10140 	}
10141 	/*
10142 	 * Set the file data dependencies to busy.
10143 	 */
10144 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10145 	     adp = TAILQ_NEXT(adp, ad_next)) {
10146 #ifdef INVARIANTS
10147 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10148 			panic("softdep_write_inodeblock: lbn order");
10149 		if ((adp->ad_state & ATTACHED) == 0)
10150 			panic("inodedep %p and adp %p not attached", inodedep, adp);
10151 		prevlbn = adp->ad_offset;
10152 		if (adp->ad_offset < NDADDR &&
10153 		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
10154 			panic("%s: direct pointer #%jd mismatch %jd != %jd",
10155 			    "softdep_write_inodeblock",
10156 			    (intmax_t)adp->ad_offset,
10157 			    (intmax_t)dp->di_db[adp->ad_offset],
10158 			    (intmax_t)adp->ad_newblkno);
10159 		if (adp->ad_offset >= NDADDR &&
10160 		    dp->di_ib[adp->ad_offset - NDADDR] != adp->ad_newblkno)
10161 			panic("%s indirect pointer #%jd mismatch %jd != %jd",
10162 			    "softdep_write_inodeblock:",
10163 			    (intmax_t)adp->ad_offset - NDADDR,
10164 			    (intmax_t)dp->di_ib[adp->ad_offset - NDADDR],
10165 			    (intmax_t)adp->ad_newblkno);
10166 		deplist |= 1 << adp->ad_offset;
10167 		if ((adp->ad_state & ATTACHED) == 0)
10168 			panic("softdep_write_inodeblock: Unknown state 0x%x",
10169 			    adp->ad_state);
10170 #endif /* INVARIANTS */
10171 		adp->ad_state &= ~ATTACHED;
10172 		adp->ad_state |= UNDONE;
10173 	}
10174 	/*
10175 	 * The on-disk inode cannot claim to be any larger than the last
10176 	 * fragment that has been written. Otherwise, the on-disk inode
10177 	 * might have fragments that were not the last block in the file
10178 	 * which would corrupt the filesystem.
10179 	 */
10180 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10181 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10182 		if (adp->ad_offset >= NDADDR)
10183 			break;
10184 		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
10185 		/* keep going until hitting a rollback to a frag */
10186 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10187 			continue;
10188 		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10189 		for (i = adp->ad_offset + 1; i < NDADDR; i++) {
10190 #ifdef INVARIANTS
10191 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
10192 				panic("softdep_write_inodeblock: lost dep2");
10193 #endif /* INVARIANTS */
10194 			dp->di_db[i] = 0;
10195 		}
10196 		for (i = 0; i < NIADDR; i++) {
10197 #ifdef INVARIANTS
10198 			if (dp->di_ib[i] != 0 &&
10199 			    (deplist & ((1 << NDADDR) << i)) == 0)
10200 				panic("softdep_write_inodeblock: lost dep3");
10201 #endif /* INVARIANTS */
10202 			dp->di_ib[i] = 0;
10203 		}
10204 		return;
10205 	}
10206 	/*
10207 	 * If we have zero'ed out the last allocated block of the file,
10208 	 * roll back the size to the last currently allocated block.
10209 	 * We know that this last allocated block is a full-sized as
10210 	 * we already checked for fragments in the loop above.
10211 	 */
10212 	if (lastadp != NULL &&
10213 	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10214 		for (i = lastadp->ad_offset; i >= 0; i--)
10215 			if (dp->di_db[i] != 0)
10216 				break;
10217 		dp->di_size = (i + 1) * fs->fs_bsize;
10218 	}
10219 	/*
10220 	 * The only dependencies are for indirect blocks.
10221 	 *
10222 	 * The file size for indirect block additions is not guaranteed.
10223 	 * Such a guarantee would be non-trivial to achieve. The conventional
10224 	 * synchronous write implementation also does not make this guarantee.
10225 	 * Fsck should catch and fix discrepancies. Arguably, the file size
10226 	 * can be over-estimated without destroying integrity when the file
10227 	 * moves into the indirect blocks (i.e., is large). If we want to
10228 	 * postpone fsck, we are stuck with this argument.
10229 	 */
10230 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
10231 		dp->di_ib[adp->ad_offset - NDADDR] = 0;
10232 }
10233 
10234 /*
10235  * Cancel an indirdep as a result of truncation.  Release all of the
10236  * children allocindirs and place their journal work on the appropriate
10237  * list.
10238  */
10239 static void
10240 cancel_indirdep(indirdep, bp, freeblks)
10241 	struct indirdep *indirdep;
10242 	struct buf *bp;
10243 	struct freeblks *freeblks;
10244 {
10245 	struct allocindir *aip;
10246 
10247 	/*
10248 	 * None of the indirect pointers will ever be visible,
10249 	 * so they can simply be tossed. GOINGAWAY ensures
10250 	 * that allocated pointers will be saved in the buffer
10251 	 * cache until they are freed. Note that they will
10252 	 * only be able to be found by their physical address
10253 	 * since the inode mapping the logical address will
10254 	 * be gone. The save buffer used for the safe copy
10255 	 * was allocated in setup_allocindir_phase2 using
10256 	 * the physical address so it could be used for this
10257 	 * purpose. Hence we swap the safe copy with the real
10258 	 * copy, allowing the safe copy to be freed and holding
10259 	 * on to the real copy for later use in indir_trunc.
10260 	 */
10261 	if (indirdep->ir_state & GOINGAWAY)
10262 		panic("cancel_indirdep: already gone");
10263 	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
10264 		indirdep->ir_state |= DEPCOMPLETE;
10265 		LIST_REMOVE(indirdep, ir_next);
10266 	}
10267 	indirdep->ir_state |= GOINGAWAY;
10268 	VFSTOUFS(indirdep->ir_list.wk_mp)->um_numindirdeps += 1;
10269 	/*
10270 	 * Pass in bp for blocks still have journal writes
10271 	 * pending so we can cancel them on their own.
10272 	 */
10273 	while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != 0)
10274 		cancel_allocindir(aip, bp, freeblks, 0);
10275 	while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0)
10276 		cancel_allocindir(aip, NULL, freeblks, 0);
10277 	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != 0)
10278 		cancel_allocindir(aip, NULL, freeblks, 0);
10279 	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != 0)
10280 		cancel_allocindir(aip, NULL, freeblks, 0);
10281 	/*
10282 	 * If there are pending partial truncations we need to keep the
10283 	 * old block copy around until they complete.  This is because
10284 	 * the current b_data is not a perfect superset of the available
10285 	 * blocks.
10286 	 */
10287 	if (TAILQ_EMPTY(&indirdep->ir_trunc))
10288 		bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount);
10289 	else
10290 		bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
10291 	WORKLIST_REMOVE(&indirdep->ir_list);
10292 	WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list);
10293 	indirdep->ir_bp = NULL;
10294 	indirdep->ir_freeblks = freeblks;
10295 }
10296 
10297 /*
10298  * Free an indirdep once it no longer has new pointers to track.
10299  */
10300 static void
10301 free_indirdep(indirdep)
10302 	struct indirdep *indirdep;
10303 {
10304 
10305 	KASSERT(TAILQ_EMPTY(&indirdep->ir_trunc),
10306 	    ("free_indirdep: Indir trunc list not empty."));
10307 	KASSERT(LIST_EMPTY(&indirdep->ir_completehd),
10308 	    ("free_indirdep: Complete head not empty."));
10309 	KASSERT(LIST_EMPTY(&indirdep->ir_writehd),
10310 	    ("free_indirdep: write head not empty."));
10311 	KASSERT(LIST_EMPTY(&indirdep->ir_donehd),
10312 	    ("free_indirdep: done head not empty."));
10313 	KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd),
10314 	    ("free_indirdep: deplist head not empty."));
10315 	KASSERT((indirdep->ir_state & DEPCOMPLETE),
10316 	    ("free_indirdep: %p still on newblk list.", indirdep));
10317 	KASSERT(indirdep->ir_saveddata == NULL,
10318 	    ("free_indirdep: %p still has saved data.", indirdep));
10319 	if (indirdep->ir_state & ONWORKLIST)
10320 		WORKLIST_REMOVE(&indirdep->ir_list);
10321 	WORKITEM_FREE(indirdep, D_INDIRDEP);
10322 }
10323 
10324 /*
10325  * Called before a write to an indirdep.  This routine is responsible for
10326  * rolling back pointers to a safe state which includes only those
10327  * allocindirs which have been completed.
10328  */
10329 static void
10330 initiate_write_indirdep(indirdep, bp)
10331 	struct indirdep *indirdep;
10332 	struct buf *bp;
10333 {
10334 
10335 	indirdep->ir_state |= IOSTARTED;
10336 	if (indirdep->ir_state & GOINGAWAY)
10337 		panic("disk_io_initiation: indirdep gone");
10338 	/*
10339 	 * If there are no remaining dependencies, this will be writing
10340 	 * the real pointers.
10341 	 */
10342 	if (LIST_EMPTY(&indirdep->ir_deplisthd) &&
10343 	    TAILQ_EMPTY(&indirdep->ir_trunc))
10344 		return;
10345 	/*
10346 	 * Replace up-to-date version with safe version.
10347 	 */
10348 	if (indirdep->ir_saveddata == NULL) {
10349 		FREE_LOCK(&lk);
10350 		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
10351 		    M_SOFTDEP_FLAGS);
10352 		ACQUIRE_LOCK(&lk);
10353 	}
10354 	indirdep->ir_state &= ~ATTACHED;
10355 	indirdep->ir_state |= UNDONE;
10356 	bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
10357 	bcopy(indirdep->ir_savebp->b_data, bp->b_data,
10358 	    bp->b_bcount);
10359 }
10360 
10361 /*
10362  * Called when an inode has been cleared in a cg bitmap.  This finally
10363  * eliminates any canceled jaddrefs
10364  */
10365 void
10366 softdep_setup_inofree(mp, bp, ino, wkhd)
10367 	struct mount *mp;
10368 	struct buf *bp;
10369 	ino_t ino;
10370 	struct workhead *wkhd;
10371 {
10372 	struct worklist *wk, *wkn;
10373 	struct inodedep *inodedep;
10374 	uint8_t *inosused;
10375 	struct cg *cgp;
10376 	struct fs *fs;
10377 
10378 	ACQUIRE_LOCK(&lk);
10379 	fs = VFSTOUFS(mp)->um_fs;
10380 	cgp = (struct cg *)bp->b_data;
10381 	inosused = cg_inosused(cgp);
10382 	if (isset(inosused, ino % fs->fs_ipg))
10383 		panic("softdep_setup_inofree: inode %ju not freed.",
10384 		    (uintmax_t)ino);
10385 	if (inodedep_lookup(mp, ino, 0, &inodedep))
10386 		panic("softdep_setup_inofree: ino %ju has existing inodedep %p",
10387 		    (uintmax_t)ino, inodedep);
10388 	if (wkhd) {
10389 		LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) {
10390 			if (wk->wk_type != D_JADDREF)
10391 				continue;
10392 			WORKLIST_REMOVE(wk);
10393 			/*
10394 			 * We can free immediately even if the jaddref
10395 			 * isn't attached in a background write as now
10396 			 * the bitmaps are reconciled.
10397 		 	 */
10398 			wk->wk_state |= COMPLETE | ATTACHED;
10399 			free_jaddref(WK_JADDREF(wk));
10400 		}
10401 		jwork_move(&bp->b_dep, wkhd);
10402 	}
10403 	FREE_LOCK(&lk);
10404 }
10405 
10406 
10407 /*
10408  * Called via ffs_blkfree() after a set of frags has been cleared from a cg
10409  * map.  Any dependencies waiting for the write to clear are added to the
10410  * buf's list and any jnewblks that are being canceled are discarded
10411  * immediately.
10412  */
10413 void
10414 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
10415 	struct mount *mp;
10416 	struct buf *bp;
10417 	ufs2_daddr_t blkno;
10418 	int frags;
10419 	struct workhead *wkhd;
10420 {
10421 	struct bmsafemap *bmsafemap;
10422 	struct jnewblk *jnewblk;
10423 	struct worklist *wk;
10424 	struct fs *fs;
10425 #ifdef SUJ_DEBUG
10426 	uint8_t *blksfree;
10427 	struct cg *cgp;
10428 	ufs2_daddr_t jstart;
10429 	ufs2_daddr_t jend;
10430 	ufs2_daddr_t end;
10431 	long bno;
10432 	int i;
10433 #endif
10434 
10435 	CTR3(KTR_SUJ,
10436 	    "softdep_setup_blkfree: blkno %jd frags %d wk head %p",
10437 	    blkno, frags, wkhd);
10438 
10439 	ACQUIRE_LOCK(&lk);
10440 	/* Lookup the bmsafemap so we track when it is dirty. */
10441 	fs = VFSTOUFS(mp)->um_fs;
10442 	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
10443 	/*
10444 	 * Detach any jnewblks which have been canceled.  They must linger
10445 	 * until the bitmap is cleared again by ffs_blkfree() to prevent
10446 	 * an unjournaled allocation from hitting the disk.
10447 	 */
10448 	if (wkhd) {
10449 		while ((wk = LIST_FIRST(wkhd)) != NULL) {
10450 			CTR2(KTR_SUJ,
10451 			    "softdep_setup_blkfree: blkno %jd wk type %d",
10452 			    blkno, wk->wk_type);
10453 			WORKLIST_REMOVE(wk);
10454 			if (wk->wk_type != D_JNEWBLK) {
10455 				WORKLIST_INSERT(&bmsafemap->sm_freehd, wk);
10456 				continue;
10457 			}
10458 			jnewblk = WK_JNEWBLK(wk);
10459 			KASSERT(jnewblk->jn_state & GOINGAWAY,
10460 			    ("softdep_setup_blkfree: jnewblk not canceled."));
10461 #ifdef SUJ_DEBUG
10462 			/*
10463 			 * Assert that this block is free in the bitmap
10464 			 * before we discard the jnewblk.
10465 			 */
10466 			cgp = (struct cg *)bp->b_data;
10467 			blksfree = cg_blksfree(cgp);
10468 			bno = dtogd(fs, jnewblk->jn_blkno);
10469 			for (i = jnewblk->jn_oldfrags;
10470 			    i < jnewblk->jn_frags; i++) {
10471 				if (isset(blksfree, bno + i))
10472 					continue;
10473 				panic("softdep_setup_blkfree: not free");
10474 			}
10475 #endif
10476 			/*
10477 			 * Even if it's not attached we can free immediately
10478 			 * as the new bitmap is correct.
10479 			 */
10480 			wk->wk_state |= COMPLETE | ATTACHED;
10481 			free_jnewblk(jnewblk);
10482 		}
10483 	}
10484 
10485 #ifdef SUJ_DEBUG
10486 	/*
10487 	 * Assert that we are not freeing a block which has an outstanding
10488 	 * allocation dependency.
10489 	 */
10490 	fs = VFSTOUFS(mp)->um_fs;
10491 	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
10492 	end = blkno + frags;
10493 	LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
10494 		/*
10495 		 * Don't match against blocks that will be freed when the
10496 		 * background write is done.
10497 		 */
10498 		if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) ==
10499 		    (COMPLETE | DEPCOMPLETE))
10500 			continue;
10501 		jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags;
10502 		jend = jnewblk->jn_blkno + jnewblk->jn_frags;
10503 		if ((blkno >= jstart && blkno < jend) ||
10504 		    (end > jstart && end <= jend)) {
10505 			printf("state 0x%X %jd - %d %d dep %p\n",
10506 			    jnewblk->jn_state, jnewblk->jn_blkno,
10507 			    jnewblk->jn_oldfrags, jnewblk->jn_frags,
10508 			    jnewblk->jn_dep);
10509 			panic("softdep_setup_blkfree: "
10510 			    "%jd-%jd(%d) overlaps with %jd-%jd",
10511 			    blkno, end, frags, jstart, jend);
10512 		}
10513 	}
10514 #endif
10515 	FREE_LOCK(&lk);
10516 }
10517 
10518 /*
10519  * Revert a block allocation when the journal record that describes it
10520  * is not yet written.
10521  */
10522 int
10523 jnewblk_rollback(jnewblk, fs, cgp, blksfree)
10524 	struct jnewblk *jnewblk;
10525 	struct fs *fs;
10526 	struct cg *cgp;
10527 	uint8_t *blksfree;
10528 {
10529 	ufs1_daddr_t fragno;
10530 	long cgbno, bbase;
10531 	int frags, blk;
10532 	int i;
10533 
10534 	frags = 0;
10535 	cgbno = dtogd(fs, jnewblk->jn_blkno);
10536 	/*
10537 	 * We have to test which frags need to be rolled back.  We may
10538 	 * be operating on a stale copy when doing background writes.
10539 	 */
10540 	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++)
10541 		if (isclr(blksfree, cgbno + i))
10542 			frags++;
10543 	if (frags == 0)
10544 		return (0);
10545 	/*
10546 	 * This is mostly ffs_blkfree() sans some validation and
10547 	 * superblock updates.
10548 	 */
10549 	if (frags == fs->fs_frag) {
10550 		fragno = fragstoblks(fs, cgbno);
10551 		ffs_setblock(fs, blksfree, fragno);
10552 		ffs_clusteracct(fs, cgp, fragno, 1);
10553 		cgp->cg_cs.cs_nbfree++;
10554 	} else {
10555 		cgbno += jnewblk->jn_oldfrags;
10556 		bbase = cgbno - fragnum(fs, cgbno);
10557 		/* Decrement the old frags.  */
10558 		blk = blkmap(fs, blksfree, bbase);
10559 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
10560 		/* Deallocate the fragment */
10561 		for (i = 0; i < frags; i++)
10562 			setbit(blksfree, cgbno + i);
10563 		cgp->cg_cs.cs_nffree += frags;
10564 		/* Add back in counts associated with the new frags */
10565 		blk = blkmap(fs, blksfree, bbase);
10566 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
10567                 /* If a complete block has been reassembled, account for it. */
10568 		fragno = fragstoblks(fs, bbase);
10569 		if (ffs_isblock(fs, blksfree, fragno)) {
10570 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
10571 			ffs_clusteracct(fs, cgp, fragno, 1);
10572 			cgp->cg_cs.cs_nbfree++;
10573 		}
10574 	}
10575 	stat_jnewblk++;
10576 	jnewblk->jn_state &= ~ATTACHED;
10577 	jnewblk->jn_state |= UNDONE;
10578 
10579 	return (frags);
10580 }
10581 
10582 static void
10583 initiate_write_bmsafemap(bmsafemap, bp)
10584 	struct bmsafemap *bmsafemap;
10585 	struct buf *bp;			/* The cg block. */
10586 {
10587 	struct jaddref *jaddref;
10588 	struct jnewblk *jnewblk;
10589 	uint8_t *inosused;
10590 	uint8_t *blksfree;
10591 	struct cg *cgp;
10592 	struct fs *fs;
10593 	ino_t ino;
10594 
10595 	if (bmsafemap->sm_state & IOSTARTED)
10596 		return;
10597 	bmsafemap->sm_state |= IOSTARTED;
10598 	/*
10599 	 * Clear any inode allocations which are pending journal writes.
10600 	 */
10601 	if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) {
10602 		cgp = (struct cg *)bp->b_data;
10603 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
10604 		inosused = cg_inosused(cgp);
10605 		LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) {
10606 			ino = jaddref->ja_ino % fs->fs_ipg;
10607 			if (isset(inosused, ino)) {
10608 				if ((jaddref->ja_mode & IFMT) == IFDIR)
10609 					cgp->cg_cs.cs_ndir--;
10610 				cgp->cg_cs.cs_nifree++;
10611 				clrbit(inosused, ino);
10612 				jaddref->ja_state &= ~ATTACHED;
10613 				jaddref->ja_state |= UNDONE;
10614 				stat_jaddref++;
10615 			} else
10616 				panic("initiate_write_bmsafemap: inode %ju "
10617 				    "marked free", (uintmax_t)jaddref->ja_ino);
10618 		}
10619 	}
10620 	/*
10621 	 * Clear any block allocations which are pending journal writes.
10622 	 */
10623 	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
10624 		cgp = (struct cg *)bp->b_data;
10625 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
10626 		blksfree = cg_blksfree(cgp);
10627 		LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
10628 			if (jnewblk_rollback(jnewblk, fs, cgp, blksfree))
10629 				continue;
10630 			panic("initiate_write_bmsafemap: block %jd "
10631 			    "marked free", jnewblk->jn_blkno);
10632 		}
10633 	}
10634 	/*
10635 	 * Move allocation lists to the written lists so they can be
10636 	 * cleared once the block write is complete.
10637 	 */
10638 	LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr,
10639 	    inodedep, id_deps);
10640 	LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr,
10641 	    newblk, nb_deps);
10642 	LIST_SWAP(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, worklist,
10643 	    wk_list);
10644 }
10645 
10646 /*
10647  * This routine is called during the completion interrupt
10648  * service routine for a disk write (from the procedure called
10649  * by the device driver to inform the filesystem caches of
10650  * a request completion).  It should be called early in this
10651  * procedure, before the block is made available to other
10652  * processes or other routines are called.
10653  *
10654  */
10655 static void
10656 softdep_disk_write_complete(bp)
10657 	struct buf *bp;		/* describes the completed disk write */
10658 {
10659 	struct worklist *wk;
10660 	struct worklist *owk;
10661 	struct workhead reattach;
10662 	struct freeblks *freeblks;
10663 	struct buf *sbp;
10664 
10665 	/*
10666 	 * If an error occurred while doing the write, then the data
10667 	 * has not hit the disk and the dependencies cannot be unrolled.
10668 	 */
10669 	if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0)
10670 		return;
10671 	LIST_INIT(&reattach);
10672 	/*
10673 	 * This lock must not be released anywhere in this code segment.
10674 	 */
10675 	sbp = NULL;
10676 	owk = NULL;
10677 	ACQUIRE_LOCK(&lk);
10678 	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
10679 		WORKLIST_REMOVE(wk);
10680 		dep_write[wk->wk_type]++;
10681 		if (wk == owk)
10682 			panic("duplicate worklist: %p\n", wk);
10683 		owk = wk;
10684 		switch (wk->wk_type) {
10685 
10686 		case D_PAGEDEP:
10687 			if (handle_written_filepage(WK_PAGEDEP(wk), bp))
10688 				WORKLIST_INSERT(&reattach, wk);
10689 			continue;
10690 
10691 		case D_INODEDEP:
10692 			if (handle_written_inodeblock(WK_INODEDEP(wk), bp))
10693 				WORKLIST_INSERT(&reattach, wk);
10694 			continue;
10695 
10696 		case D_BMSAFEMAP:
10697 			if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp))
10698 				WORKLIST_INSERT(&reattach, wk);
10699 			continue;
10700 
10701 		case D_MKDIR:
10702 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
10703 			continue;
10704 
10705 		case D_ALLOCDIRECT:
10706 			wk->wk_state |= COMPLETE;
10707 			handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL);
10708 			continue;
10709 
10710 		case D_ALLOCINDIR:
10711 			wk->wk_state |= COMPLETE;
10712 			handle_allocindir_partdone(WK_ALLOCINDIR(wk));
10713 			continue;
10714 
10715 		case D_INDIRDEP:
10716 			if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp))
10717 				WORKLIST_INSERT(&reattach, wk);
10718 			continue;
10719 
10720 		case D_FREEBLKS:
10721 			wk->wk_state |= COMPLETE;
10722 			freeblks = WK_FREEBLKS(wk);
10723 			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE &&
10724 			    LIST_EMPTY(&freeblks->fb_jblkdephd))
10725 				add_to_worklist(wk, WK_NODELAY);
10726 			continue;
10727 
10728 		case D_FREEWORK:
10729 			handle_written_freework(WK_FREEWORK(wk));
10730 			break;
10731 
10732 		case D_JSEGDEP:
10733 			free_jsegdep(WK_JSEGDEP(wk));
10734 			continue;
10735 
10736 		case D_JSEG:
10737 			handle_written_jseg(WK_JSEG(wk), bp);
10738 			continue;
10739 
10740 		case D_SBDEP:
10741 			if (handle_written_sbdep(WK_SBDEP(wk), bp))
10742 				WORKLIST_INSERT(&reattach, wk);
10743 			continue;
10744 
10745 		case D_FREEDEP:
10746 			free_freedep(WK_FREEDEP(wk));
10747 			continue;
10748 
10749 		default:
10750 			panic("handle_disk_write_complete: Unknown type %s",
10751 			    TYPENAME(wk->wk_type));
10752 			/* NOTREACHED */
10753 		}
10754 	}
10755 	/*
10756 	 * Reattach any requests that must be redone.
10757 	 */
10758 	while ((wk = LIST_FIRST(&reattach)) != NULL) {
10759 		WORKLIST_REMOVE(wk);
10760 		WORKLIST_INSERT(&bp->b_dep, wk);
10761 	}
10762 	FREE_LOCK(&lk);
10763 	if (sbp)
10764 		brelse(sbp);
10765 }
10766 
10767 /*
10768  * Called from within softdep_disk_write_complete above. Note that
10769  * this routine is always called from interrupt level with further
10770  * splbio interrupts blocked.
10771  */
10772 static void
10773 handle_allocdirect_partdone(adp, wkhd)
10774 	struct allocdirect *adp;	/* the completed allocdirect */
10775 	struct workhead *wkhd;		/* Work to do when inode is writtne. */
10776 {
10777 	struct allocdirectlst *listhead;
10778 	struct allocdirect *listadp;
10779 	struct inodedep *inodedep;
10780 	long bsize;
10781 
10782 	if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
10783 		return;
10784 	/*
10785 	 * The on-disk inode cannot claim to be any larger than the last
10786 	 * fragment that has been written. Otherwise, the on-disk inode
10787 	 * might have fragments that were not the last block in the file
10788 	 * which would corrupt the filesystem. Thus, we cannot free any
10789 	 * allocdirects after one whose ad_oldblkno claims a fragment as
10790 	 * these blocks must be rolled back to zero before writing the inode.
10791 	 * We check the currently active set of allocdirects in id_inoupdt
10792 	 * or id_extupdt as appropriate.
10793 	 */
10794 	inodedep = adp->ad_inodedep;
10795 	bsize = inodedep->id_fs->fs_bsize;
10796 	if (adp->ad_state & EXTDATA)
10797 		listhead = &inodedep->id_extupdt;
10798 	else
10799 		listhead = &inodedep->id_inoupdt;
10800 	TAILQ_FOREACH(listadp, listhead, ad_next) {
10801 		/* found our block */
10802 		if (listadp == adp)
10803 			break;
10804 		/* continue if ad_oldlbn is not a fragment */
10805 		if (listadp->ad_oldsize == 0 ||
10806 		    listadp->ad_oldsize == bsize)
10807 			continue;
10808 		/* hit a fragment */
10809 		return;
10810 	}
10811 	/*
10812 	 * If we have reached the end of the current list without
10813 	 * finding the just finished dependency, then it must be
10814 	 * on the future dependency list. Future dependencies cannot
10815 	 * be freed until they are moved to the current list.
10816 	 */
10817 	if (listadp == NULL) {
10818 #ifdef DEBUG
10819 		if (adp->ad_state & EXTDATA)
10820 			listhead = &inodedep->id_newextupdt;
10821 		else
10822 			listhead = &inodedep->id_newinoupdt;
10823 		TAILQ_FOREACH(listadp, listhead, ad_next)
10824 			/* found our block */
10825 			if (listadp == adp)
10826 				break;
10827 		if (listadp == NULL)
10828 			panic("handle_allocdirect_partdone: lost dep");
10829 #endif /* DEBUG */
10830 		return;
10831 	}
10832 	/*
10833 	 * If we have found the just finished dependency, then queue
10834 	 * it along with anything that follows it that is complete.
10835 	 * Since the pointer has not yet been written in the inode
10836 	 * as the dependency prevents it, place the allocdirect on the
10837 	 * bufwait list where it will be freed once the pointer is
10838 	 * valid.
10839 	 */
10840 	if (wkhd == NULL)
10841 		wkhd = &inodedep->id_bufwait;
10842 	for (; adp; adp = listadp) {
10843 		listadp = TAILQ_NEXT(adp, ad_next);
10844 		if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
10845 			return;
10846 		TAILQ_REMOVE(listhead, adp, ad_next);
10847 		WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list);
10848 	}
10849 }
10850 
10851 /*
10852  * Called from within softdep_disk_write_complete above.  This routine
10853  * completes successfully written allocindirs.
10854  */
10855 static void
10856 handle_allocindir_partdone(aip)
10857 	struct allocindir *aip;		/* the completed allocindir */
10858 {
10859 	struct indirdep *indirdep;
10860 
10861 	if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
10862 		return;
10863 	indirdep = aip->ai_indirdep;
10864 	LIST_REMOVE(aip, ai_next);
10865 	/*
10866 	 * Don't set a pointer while the buffer is undergoing IO or while
10867 	 * we have active truncations.
10868 	 */
10869 	if (indirdep->ir_state & UNDONE || !TAILQ_EMPTY(&indirdep->ir_trunc)) {
10870 		LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
10871 		return;
10872 	}
10873 	if (indirdep->ir_state & UFS1FMT)
10874 		((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
10875 		    aip->ai_newblkno;
10876 	else
10877 		((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
10878 		    aip->ai_newblkno;
10879 	/*
10880 	 * Await the pointer write before freeing the allocindir.
10881 	 */
10882 	LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next);
10883 }
10884 
10885 /*
10886  * Release segments held on a jwork list.
10887  */
10888 static void
10889 handle_jwork(wkhd)
10890 	struct workhead *wkhd;
10891 {
10892 	struct worklist *wk;
10893 
10894 	while ((wk = LIST_FIRST(wkhd)) != NULL) {
10895 		WORKLIST_REMOVE(wk);
10896 		switch (wk->wk_type) {
10897 		case D_JSEGDEP:
10898 			free_jsegdep(WK_JSEGDEP(wk));
10899 			continue;
10900 		case D_FREEDEP:
10901 			free_freedep(WK_FREEDEP(wk));
10902 			continue;
10903 		case D_FREEFRAG:
10904 			rele_jseg(WK_JSEG(WK_FREEFRAG(wk)->ff_jdep));
10905 			WORKITEM_FREE(wk, D_FREEFRAG);
10906 			continue;
10907 		case D_FREEWORK:
10908 			handle_written_freework(WK_FREEWORK(wk));
10909 			continue;
10910 		default:
10911 			panic("handle_jwork: Unknown type %s\n",
10912 			    TYPENAME(wk->wk_type));
10913 		}
10914 	}
10915 }
10916 
10917 /*
10918  * Handle the bufwait list on an inode when it is safe to release items
10919  * held there.  This normally happens after an inode block is written but
10920  * may be delayed and handled later if there are pending journal items that
10921  * are not yet safe to be released.
10922  */
10923 static struct freefile *
10924 handle_bufwait(inodedep, refhd)
10925 	struct inodedep *inodedep;
10926 	struct workhead *refhd;
10927 {
10928 	struct jaddref *jaddref;
10929 	struct freefile *freefile;
10930 	struct worklist *wk;
10931 
10932 	freefile = NULL;
10933 	while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
10934 		WORKLIST_REMOVE(wk);
10935 		switch (wk->wk_type) {
10936 		case D_FREEFILE:
10937 			/*
10938 			 * We defer adding freefile to the worklist
10939 			 * until all other additions have been made to
10940 			 * ensure that it will be done after all the
10941 			 * old blocks have been freed.
10942 			 */
10943 			if (freefile != NULL)
10944 				panic("handle_bufwait: freefile");
10945 			freefile = WK_FREEFILE(wk);
10946 			continue;
10947 
10948 		case D_MKDIR:
10949 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
10950 			continue;
10951 
10952 		case D_DIRADD:
10953 			diradd_inode_written(WK_DIRADD(wk), inodedep);
10954 			continue;
10955 
10956 		case D_FREEFRAG:
10957 			wk->wk_state |= COMPLETE;
10958 			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE)
10959 				add_to_worklist(wk, 0);
10960 			continue;
10961 
10962 		case D_DIRREM:
10963 			wk->wk_state |= COMPLETE;
10964 			add_to_worklist(wk, 0);
10965 			continue;
10966 
10967 		case D_ALLOCDIRECT:
10968 		case D_ALLOCINDIR:
10969 			free_newblk(WK_NEWBLK(wk));
10970 			continue;
10971 
10972 		case D_JNEWBLK:
10973 			wk->wk_state |= COMPLETE;
10974 			free_jnewblk(WK_JNEWBLK(wk));
10975 			continue;
10976 
10977 		/*
10978 		 * Save freed journal segments and add references on
10979 		 * the supplied list which will delay their release
10980 		 * until the cg bitmap is cleared on disk.
10981 		 */
10982 		case D_JSEGDEP:
10983 			if (refhd == NULL)
10984 				free_jsegdep(WK_JSEGDEP(wk));
10985 			else
10986 				WORKLIST_INSERT(refhd, wk);
10987 			continue;
10988 
10989 		case D_JADDREF:
10990 			jaddref = WK_JADDREF(wk);
10991 			TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
10992 			    if_deps);
10993 			/*
10994 			 * Transfer any jaddrefs to the list to be freed with
10995 			 * the bitmap if we're handling a removed file.
10996 			 */
10997 			if (refhd == NULL) {
10998 				wk->wk_state |= COMPLETE;
10999 				free_jaddref(jaddref);
11000 			} else
11001 				WORKLIST_INSERT(refhd, wk);
11002 			continue;
11003 
11004 		default:
11005 			panic("handle_bufwait: Unknown type %p(%s)",
11006 			    wk, TYPENAME(wk->wk_type));
11007 			/* NOTREACHED */
11008 		}
11009 	}
11010 	return (freefile);
11011 }
11012 /*
11013  * Called from within softdep_disk_write_complete above to restore
11014  * in-memory inode block contents to their most up-to-date state. Note
11015  * that this routine is always called from interrupt level with further
11016  * splbio interrupts blocked.
11017  */
11018 static int
11019 handle_written_inodeblock(inodedep, bp)
11020 	struct inodedep *inodedep;
11021 	struct buf *bp;		/* buffer containing the inode block */
11022 {
11023 	struct freefile *freefile;
11024 	struct allocdirect *adp, *nextadp;
11025 	struct ufs1_dinode *dp1 = NULL;
11026 	struct ufs2_dinode *dp2 = NULL;
11027 	struct workhead wkhd;
11028 	int hadchanges, fstype;
11029 	ino_t freelink;
11030 
11031 	LIST_INIT(&wkhd);
11032 	hadchanges = 0;
11033 	freefile = NULL;
11034 	if ((inodedep->id_state & IOSTARTED) == 0)
11035 		panic("handle_written_inodeblock: not started");
11036 	inodedep->id_state &= ~IOSTARTED;
11037 	if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) {
11038 		fstype = UFS1;
11039 		dp1 = (struct ufs1_dinode *)bp->b_data +
11040 		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
11041 		freelink = dp1->di_freelink;
11042 	} else {
11043 		fstype = UFS2;
11044 		dp2 = (struct ufs2_dinode *)bp->b_data +
11045 		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
11046 		freelink = dp2->di_freelink;
11047 	}
11048 	/*
11049 	 * Leave this inodeblock dirty until it's in the list.
11050 	 */
11051 	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED) {
11052 		struct inodedep *inon;
11053 
11054 		inon = TAILQ_NEXT(inodedep, id_unlinked);
11055 		if ((inon == NULL && freelink == 0) ||
11056 		    (inon && inon->id_ino == freelink)) {
11057 			if (inon)
11058 				inon->id_state |= UNLINKPREV;
11059 			inodedep->id_state |= UNLINKNEXT;
11060 		}
11061 		hadchanges = 1;
11062 	}
11063 	/*
11064 	 * If we had to rollback the inode allocation because of
11065 	 * bitmaps being incomplete, then simply restore it.
11066 	 * Keep the block dirty so that it will not be reclaimed until
11067 	 * all associated dependencies have been cleared and the
11068 	 * corresponding updates written to disk.
11069 	 */
11070 	if (inodedep->id_savedino1 != NULL) {
11071 		hadchanges = 1;
11072 		if (fstype == UFS1)
11073 			*dp1 = *inodedep->id_savedino1;
11074 		else
11075 			*dp2 = *inodedep->id_savedino2;
11076 		free(inodedep->id_savedino1, M_SAVEDINO);
11077 		inodedep->id_savedino1 = NULL;
11078 		if ((bp->b_flags & B_DELWRI) == 0)
11079 			stat_inode_bitmap++;
11080 		bdirty(bp);
11081 		/*
11082 		 * If the inode is clear here and GOINGAWAY it will never
11083 		 * be written.  Process the bufwait and clear any pending
11084 		 * work which may include the freefile.
11085 		 */
11086 		if (inodedep->id_state & GOINGAWAY)
11087 			goto bufwait;
11088 		return (1);
11089 	}
11090 	inodedep->id_state |= COMPLETE;
11091 	/*
11092 	 * Roll forward anything that had to be rolled back before
11093 	 * the inode could be updated.
11094 	 */
11095 	for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
11096 		nextadp = TAILQ_NEXT(adp, ad_next);
11097 		if (adp->ad_state & ATTACHED)
11098 			panic("handle_written_inodeblock: new entry");
11099 		if (fstype == UFS1) {
11100 			if (adp->ad_offset < NDADDR) {
11101 				if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno)
11102 					panic("%s %s #%jd mismatch %d != %jd",
11103 					    "handle_written_inodeblock:",
11104 					    "direct pointer",
11105 					    (intmax_t)adp->ad_offset,
11106 					    dp1->di_db[adp->ad_offset],
11107 					    (intmax_t)adp->ad_oldblkno);
11108 				dp1->di_db[adp->ad_offset] = adp->ad_newblkno;
11109 			} else {
11110 				if (dp1->di_ib[adp->ad_offset - NDADDR] != 0)
11111 					panic("%s: %s #%jd allocated as %d",
11112 					    "handle_written_inodeblock",
11113 					    "indirect pointer",
11114 					    (intmax_t)adp->ad_offset - NDADDR,
11115 					    dp1->di_ib[adp->ad_offset - NDADDR]);
11116 				dp1->di_ib[adp->ad_offset - NDADDR] =
11117 				    adp->ad_newblkno;
11118 			}
11119 		} else {
11120 			if (adp->ad_offset < NDADDR) {
11121 				if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno)
11122 					panic("%s: %s #%jd %s %jd != %jd",
11123 					    "handle_written_inodeblock",
11124 					    "direct pointer",
11125 					    (intmax_t)adp->ad_offset, "mismatch",
11126 					    (intmax_t)dp2->di_db[adp->ad_offset],
11127 					    (intmax_t)adp->ad_oldblkno);
11128 				dp2->di_db[adp->ad_offset] = adp->ad_newblkno;
11129 			} else {
11130 				if (dp2->di_ib[adp->ad_offset - NDADDR] != 0)
11131 					panic("%s: %s #%jd allocated as %jd",
11132 					    "handle_written_inodeblock",
11133 					    "indirect pointer",
11134 					    (intmax_t)adp->ad_offset - NDADDR,
11135 					    (intmax_t)
11136 					    dp2->di_ib[adp->ad_offset - NDADDR]);
11137 				dp2->di_ib[adp->ad_offset - NDADDR] =
11138 				    adp->ad_newblkno;
11139 			}
11140 		}
11141 		adp->ad_state &= ~UNDONE;
11142 		adp->ad_state |= ATTACHED;
11143 		hadchanges = 1;
11144 	}
11145 	for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) {
11146 		nextadp = TAILQ_NEXT(adp, ad_next);
11147 		if (adp->ad_state & ATTACHED)
11148 			panic("handle_written_inodeblock: new entry");
11149 		if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno)
11150 			panic("%s: direct pointers #%jd %s %jd != %jd",
11151 			    "handle_written_inodeblock",
11152 			    (intmax_t)adp->ad_offset, "mismatch",
11153 			    (intmax_t)dp2->di_extb[adp->ad_offset],
11154 			    (intmax_t)adp->ad_oldblkno);
11155 		dp2->di_extb[adp->ad_offset] = adp->ad_newblkno;
11156 		adp->ad_state &= ~UNDONE;
11157 		adp->ad_state |= ATTACHED;
11158 		hadchanges = 1;
11159 	}
11160 	if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
11161 		stat_direct_blk_ptrs++;
11162 	/*
11163 	 * Reset the file size to its most up-to-date value.
11164 	 */
11165 	if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1)
11166 		panic("handle_written_inodeblock: bad size");
11167 	if (inodedep->id_savednlink > LINK_MAX)
11168 		panic("handle_written_inodeblock: Invalid link count "
11169 		    "%d for inodedep %p", inodedep->id_savednlink, inodedep);
11170 	if (fstype == UFS1) {
11171 		if (dp1->di_nlink != inodedep->id_savednlink) {
11172 			dp1->di_nlink = inodedep->id_savednlink;
11173 			hadchanges = 1;
11174 		}
11175 		if (dp1->di_size != inodedep->id_savedsize) {
11176 			dp1->di_size = inodedep->id_savedsize;
11177 			hadchanges = 1;
11178 		}
11179 	} else {
11180 		if (dp2->di_nlink != inodedep->id_savednlink) {
11181 			dp2->di_nlink = inodedep->id_savednlink;
11182 			hadchanges = 1;
11183 		}
11184 		if (dp2->di_size != inodedep->id_savedsize) {
11185 			dp2->di_size = inodedep->id_savedsize;
11186 			hadchanges = 1;
11187 		}
11188 		if (dp2->di_extsize != inodedep->id_savedextsize) {
11189 			dp2->di_extsize = inodedep->id_savedextsize;
11190 			hadchanges = 1;
11191 		}
11192 	}
11193 	inodedep->id_savedsize = -1;
11194 	inodedep->id_savedextsize = -1;
11195 	inodedep->id_savednlink = -1;
11196 	/*
11197 	 * If there were any rollbacks in the inode block, then it must be
11198 	 * marked dirty so that its will eventually get written back in
11199 	 * its correct form.
11200 	 */
11201 	if (hadchanges)
11202 		bdirty(bp);
11203 bufwait:
11204 	/*
11205 	 * Process any allocdirects that completed during the update.
11206 	 */
11207 	if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
11208 		handle_allocdirect_partdone(adp, &wkhd);
11209 	if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
11210 		handle_allocdirect_partdone(adp, &wkhd);
11211 	/*
11212 	 * Process deallocations that were held pending until the
11213 	 * inode had been written to disk. Freeing of the inode
11214 	 * is delayed until after all blocks have been freed to
11215 	 * avoid creation of new <vfsid, inum, lbn> triples
11216 	 * before the old ones have been deleted.  Completely
11217 	 * unlinked inodes are not processed until the unlinked
11218 	 * inode list is written or the last reference is removed.
11219 	 */
11220 	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) {
11221 		freefile = handle_bufwait(inodedep, NULL);
11222 		if (freefile && !LIST_EMPTY(&wkhd)) {
11223 			WORKLIST_INSERT(&wkhd, &freefile->fx_list);
11224 			freefile = NULL;
11225 		}
11226 	}
11227 	/*
11228 	 * Move rolled forward dependency completions to the bufwait list
11229 	 * now that those that were already written have been processed.
11230 	 */
11231 	if (!LIST_EMPTY(&wkhd) && hadchanges == 0)
11232 		panic("handle_written_inodeblock: bufwait but no changes");
11233 	jwork_move(&inodedep->id_bufwait, &wkhd);
11234 
11235 	if (freefile != NULL) {
11236 		/*
11237 		 * If the inode is goingaway it was never written.  Fake up
11238 		 * the state here so free_inodedep() can succeed.
11239 		 */
11240 		if (inodedep->id_state & GOINGAWAY)
11241 			inodedep->id_state |= COMPLETE | DEPCOMPLETE;
11242 		if (free_inodedep(inodedep) == 0)
11243 			panic("handle_written_inodeblock: live inodedep %p",
11244 			    inodedep);
11245 		add_to_worklist(&freefile->fx_list, 0);
11246 		return (0);
11247 	}
11248 
11249 	/*
11250 	 * If no outstanding dependencies, free it.
11251 	 */
11252 	if (free_inodedep(inodedep) ||
11253 	    (TAILQ_FIRST(&inodedep->id_inoreflst) == 0 &&
11254 	     TAILQ_FIRST(&inodedep->id_inoupdt) == 0 &&
11255 	     TAILQ_FIRST(&inodedep->id_extupdt) == 0 &&
11256 	     LIST_FIRST(&inodedep->id_bufwait) == 0))
11257 		return (0);
11258 	return (hadchanges);
11259 }
11260 
11261 static int
11262 handle_written_indirdep(indirdep, bp, bpp)
11263 	struct indirdep *indirdep;
11264 	struct buf *bp;
11265 	struct buf **bpp;
11266 {
11267 	struct allocindir *aip;
11268 	struct buf *sbp;
11269 	int chgs;
11270 
11271 	if (indirdep->ir_state & GOINGAWAY)
11272 		panic("handle_written_indirdep: indirdep gone");
11273 	if ((indirdep->ir_state & IOSTARTED) == 0)
11274 		panic("handle_written_indirdep: IO not started");
11275 	chgs = 0;
11276 	/*
11277 	 * If there were rollbacks revert them here.
11278 	 */
11279 	if (indirdep->ir_saveddata) {
11280 		bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount);
11281 		if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
11282 			free(indirdep->ir_saveddata, M_INDIRDEP);
11283 			indirdep->ir_saveddata = NULL;
11284 		}
11285 		chgs = 1;
11286 	}
11287 	indirdep->ir_state &= ~(UNDONE | IOSTARTED);
11288 	indirdep->ir_state |= ATTACHED;
11289 	/*
11290 	 * Move allocindirs with written pointers to the completehd if
11291 	 * the indirdep's pointer is not yet written.  Otherwise
11292 	 * free them here.
11293 	 */
11294 	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != 0) {
11295 		LIST_REMOVE(aip, ai_next);
11296 		if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
11297 			LIST_INSERT_HEAD(&indirdep->ir_completehd, aip,
11298 			    ai_next);
11299 			newblk_freefrag(&aip->ai_block);
11300 			continue;
11301 		}
11302 		free_newblk(&aip->ai_block);
11303 	}
11304 	/*
11305 	 * Move allocindirs that have finished dependency processing from
11306 	 * the done list to the write list after updating the pointers.
11307 	 */
11308 	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
11309 		while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) {
11310 			handle_allocindir_partdone(aip);
11311 			if (aip == LIST_FIRST(&indirdep->ir_donehd))
11312 				panic("disk_write_complete: not gone");
11313 			chgs = 1;
11314 		}
11315 	}
11316 	/*
11317 	 * Preserve the indirdep if there were any changes or if it is not
11318 	 * yet valid on disk.
11319 	 */
11320 	if (chgs) {
11321 		stat_indir_blk_ptrs++;
11322 		bdirty(bp);
11323 		return (1);
11324 	}
11325 	/*
11326 	 * If there were no changes we can discard the savedbp and detach
11327 	 * ourselves from the buf.  We are only carrying completed pointers
11328 	 * in this case.
11329 	 */
11330 	sbp = indirdep->ir_savebp;
11331 	sbp->b_flags |= B_INVAL | B_NOCACHE;
11332 	indirdep->ir_savebp = NULL;
11333 	indirdep->ir_bp = NULL;
11334 	if (*bpp != NULL)
11335 		panic("handle_written_indirdep: bp already exists.");
11336 	*bpp = sbp;
11337 	/*
11338 	 * The indirdep may not be freed until its parent points at it.
11339 	 */
11340 	if (indirdep->ir_state & DEPCOMPLETE)
11341 		free_indirdep(indirdep);
11342 
11343 	return (0);
11344 }
11345 
11346 /*
11347  * Process a diradd entry after its dependent inode has been written.
11348  * This routine must be called with splbio interrupts blocked.
11349  */
11350 static void
11351 diradd_inode_written(dap, inodedep)
11352 	struct diradd *dap;
11353 	struct inodedep *inodedep;
11354 {
11355 
11356 	dap->da_state |= COMPLETE;
11357 	complete_diradd(dap);
11358 	WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
11359 }
11360 
11361 /*
11362  * Returns true if the bmsafemap will have rollbacks when written.  Must
11363  * only be called with lk and the buf lock on the cg held.
11364  */
11365 static int
11366 bmsafemap_backgroundwrite(bmsafemap, bp)
11367 	struct bmsafemap *bmsafemap;
11368 	struct buf *bp;
11369 {
11370 	int dirty;
11371 
11372 	dirty = !LIST_EMPTY(&bmsafemap->sm_jaddrefhd) |
11373 	    !LIST_EMPTY(&bmsafemap->sm_jnewblkhd);
11374 	/*
11375 	 * If we're initiating a background write we need to process the
11376 	 * rollbacks as they exist now, not as they exist when IO starts.
11377 	 * No other consumers will look at the contents of the shadowed
11378 	 * buf so this is safe to do here.
11379 	 */
11380 	if (bp->b_xflags & BX_BKGRDMARKER)
11381 		initiate_write_bmsafemap(bmsafemap, bp);
11382 
11383 	return (dirty);
11384 }
11385 
11386 /*
11387  * Re-apply an allocation when a cg write is complete.
11388  */
11389 static int
11390 jnewblk_rollforward(jnewblk, fs, cgp, blksfree)
11391 	struct jnewblk *jnewblk;
11392 	struct fs *fs;
11393 	struct cg *cgp;
11394 	uint8_t *blksfree;
11395 {
11396 	ufs1_daddr_t fragno;
11397 	ufs2_daddr_t blkno;
11398 	long cgbno, bbase;
11399 	int frags, blk;
11400 	int i;
11401 
11402 	frags = 0;
11403 	cgbno = dtogd(fs, jnewblk->jn_blkno);
11404 	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) {
11405 		if (isclr(blksfree, cgbno + i))
11406 			panic("jnewblk_rollforward: re-allocated fragment");
11407 		frags++;
11408 	}
11409 	if (frags == fs->fs_frag) {
11410 		blkno = fragstoblks(fs, cgbno);
11411 		ffs_clrblock(fs, blksfree, (long)blkno);
11412 		ffs_clusteracct(fs, cgp, blkno, -1);
11413 		cgp->cg_cs.cs_nbfree--;
11414 	} else {
11415 		bbase = cgbno - fragnum(fs, cgbno);
11416 		cgbno += jnewblk->jn_oldfrags;
11417                 /* If a complete block had been reassembled, account for it. */
11418 		fragno = fragstoblks(fs, bbase);
11419 		if (ffs_isblock(fs, blksfree, fragno)) {
11420 			cgp->cg_cs.cs_nffree += fs->fs_frag;
11421 			ffs_clusteracct(fs, cgp, fragno, -1);
11422 			cgp->cg_cs.cs_nbfree--;
11423 		}
11424 		/* Decrement the old frags.  */
11425 		blk = blkmap(fs, blksfree, bbase);
11426 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
11427 		/* Allocate the fragment */
11428 		for (i = 0; i < frags; i++)
11429 			clrbit(blksfree, cgbno + i);
11430 		cgp->cg_cs.cs_nffree -= frags;
11431 		/* Add back in counts associated with the new frags */
11432 		blk = blkmap(fs, blksfree, bbase);
11433 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
11434 	}
11435 	return (frags);
11436 }
11437 
11438 /*
11439  * Complete a write to a bmsafemap structure.  Roll forward any bitmap
11440  * changes if it's not a background write.  Set all written dependencies
11441  * to DEPCOMPLETE and free the structure if possible.
11442  */
11443 static int
11444 handle_written_bmsafemap(bmsafemap, bp)
11445 	struct bmsafemap *bmsafemap;
11446 	struct buf *bp;
11447 {
11448 	struct newblk *newblk;
11449 	struct inodedep *inodedep;
11450 	struct jaddref *jaddref, *jatmp;
11451 	struct jnewblk *jnewblk, *jntmp;
11452 	struct ufsmount *ump;
11453 	uint8_t *inosused;
11454 	uint8_t *blksfree;
11455 	struct cg *cgp;
11456 	struct fs *fs;
11457 	ino_t ino;
11458 	int foreground;
11459 	int chgs;
11460 
11461 	if ((bmsafemap->sm_state & IOSTARTED) == 0)
11462 		panic("initiate_write_bmsafemap: Not started\n");
11463 	ump = VFSTOUFS(bmsafemap->sm_list.wk_mp);
11464 	chgs = 0;
11465 	bmsafemap->sm_state &= ~IOSTARTED;
11466 	foreground = (bp->b_xflags & BX_BKGRDMARKER) == 0;
11467 	/*
11468 	 * Release journal work that was waiting on the write.
11469 	 */
11470 	handle_jwork(&bmsafemap->sm_freewr);
11471 
11472 	/*
11473 	 * Restore unwritten inode allocation pending jaddref writes.
11474 	 */
11475 	if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) {
11476 		cgp = (struct cg *)bp->b_data;
11477 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11478 		inosused = cg_inosused(cgp);
11479 		LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd,
11480 		    ja_bmdeps, jatmp) {
11481 			if ((jaddref->ja_state & UNDONE) == 0)
11482 				continue;
11483 			ino = jaddref->ja_ino % fs->fs_ipg;
11484 			if (isset(inosused, ino))
11485 				panic("handle_written_bmsafemap: "
11486 				    "re-allocated inode");
11487 			/* Do the roll-forward only if it's a real copy. */
11488 			if (foreground) {
11489 				if ((jaddref->ja_mode & IFMT) == IFDIR)
11490 					cgp->cg_cs.cs_ndir++;
11491 				cgp->cg_cs.cs_nifree--;
11492 				setbit(inosused, ino);
11493 				chgs = 1;
11494 			}
11495 			jaddref->ja_state &= ~UNDONE;
11496 			jaddref->ja_state |= ATTACHED;
11497 			free_jaddref(jaddref);
11498 		}
11499 	}
11500 	/*
11501 	 * Restore any block allocations which are pending journal writes.
11502 	 */
11503 	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
11504 		cgp = (struct cg *)bp->b_data;
11505 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11506 		blksfree = cg_blksfree(cgp);
11507 		LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps,
11508 		    jntmp) {
11509 			if ((jnewblk->jn_state & UNDONE) == 0)
11510 				continue;
11511 			/* Do the roll-forward only if it's a real copy. */
11512 			if (foreground &&
11513 			    jnewblk_rollforward(jnewblk, fs, cgp, blksfree))
11514 				chgs = 1;
11515 			jnewblk->jn_state &= ~(UNDONE | NEWBLOCK);
11516 			jnewblk->jn_state |= ATTACHED;
11517 			free_jnewblk(jnewblk);
11518 		}
11519 	}
11520 	while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) {
11521 		newblk->nb_state |= DEPCOMPLETE;
11522 		newblk->nb_state &= ~ONDEPLIST;
11523 		newblk->nb_bmsafemap = NULL;
11524 		LIST_REMOVE(newblk, nb_deps);
11525 		if (newblk->nb_list.wk_type == D_ALLOCDIRECT)
11526 			handle_allocdirect_partdone(
11527 			    WK_ALLOCDIRECT(&newblk->nb_list), NULL);
11528 		else if (newblk->nb_list.wk_type == D_ALLOCINDIR)
11529 			handle_allocindir_partdone(
11530 			    WK_ALLOCINDIR(&newblk->nb_list));
11531 		else if (newblk->nb_list.wk_type != D_NEWBLK)
11532 			panic("handle_written_bmsafemap: Unexpected type: %s",
11533 			    TYPENAME(newblk->nb_list.wk_type));
11534 	}
11535 	while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) {
11536 		inodedep->id_state |= DEPCOMPLETE;
11537 		inodedep->id_state &= ~ONDEPLIST;
11538 		LIST_REMOVE(inodedep, id_deps);
11539 		inodedep->id_bmsafemap = NULL;
11540 	}
11541 	LIST_REMOVE(bmsafemap, sm_next);
11542 	if (chgs == 0 && LIST_EMPTY(&bmsafemap->sm_jaddrefhd) &&
11543 	    LIST_EMPTY(&bmsafemap->sm_jnewblkhd) &&
11544 	    LIST_EMPTY(&bmsafemap->sm_newblkhd) &&
11545 	    LIST_EMPTY(&bmsafemap->sm_inodedephd) &&
11546 	    LIST_EMPTY(&bmsafemap->sm_freehd)) {
11547 		LIST_REMOVE(bmsafemap, sm_hash);
11548 		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
11549 		return (0);
11550 	}
11551 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
11552 	if (foreground)
11553 		bdirty(bp);
11554 	return (1);
11555 }
11556 
11557 /*
11558  * Try to free a mkdir dependency.
11559  */
11560 static void
11561 complete_mkdir(mkdir)
11562 	struct mkdir *mkdir;
11563 {
11564 	struct diradd *dap;
11565 
11566 	if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE)
11567 		return;
11568 	LIST_REMOVE(mkdir, md_mkdirs);
11569 	dap = mkdir->md_diradd;
11570 	dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
11571 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) {
11572 		dap->da_state |= DEPCOMPLETE;
11573 		complete_diradd(dap);
11574 	}
11575 	WORKITEM_FREE(mkdir, D_MKDIR);
11576 }
11577 
11578 /*
11579  * Handle the completion of a mkdir dependency.
11580  */
11581 static void
11582 handle_written_mkdir(mkdir, type)
11583 	struct mkdir *mkdir;
11584 	int type;
11585 {
11586 
11587 	if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type)
11588 		panic("handle_written_mkdir: bad type");
11589 	mkdir->md_state |= COMPLETE;
11590 	complete_mkdir(mkdir);
11591 }
11592 
11593 static int
11594 free_pagedep(pagedep)
11595 	struct pagedep *pagedep;
11596 {
11597 	int i;
11598 
11599 	if (pagedep->pd_state & NEWBLOCK)
11600 		return (0);
11601 	if (!LIST_EMPTY(&pagedep->pd_dirremhd))
11602 		return (0);
11603 	for (i = 0; i < DAHASHSZ; i++)
11604 		if (!LIST_EMPTY(&pagedep->pd_diraddhd[i]))
11605 			return (0);
11606 	if (!LIST_EMPTY(&pagedep->pd_pendinghd))
11607 		return (0);
11608 	if (!LIST_EMPTY(&pagedep->pd_jmvrefhd))
11609 		return (0);
11610 	if (pagedep->pd_state & ONWORKLIST)
11611 		WORKLIST_REMOVE(&pagedep->pd_list);
11612 	LIST_REMOVE(pagedep, pd_hash);
11613 	WORKITEM_FREE(pagedep, D_PAGEDEP);
11614 
11615 	return (1);
11616 }
11617 
11618 /*
11619  * Called from within softdep_disk_write_complete above.
11620  * A write operation was just completed. Removed inodes can
11621  * now be freed and associated block pointers may be committed.
11622  * Note that this routine is always called from interrupt level
11623  * with further splbio interrupts blocked.
11624  */
11625 static int
11626 handle_written_filepage(pagedep, bp)
11627 	struct pagedep *pagedep;
11628 	struct buf *bp;		/* buffer containing the written page */
11629 {
11630 	struct dirrem *dirrem;
11631 	struct diradd *dap, *nextdap;
11632 	struct direct *ep;
11633 	int i, chgs;
11634 
11635 	if ((pagedep->pd_state & IOSTARTED) == 0)
11636 		panic("handle_written_filepage: not started");
11637 	pagedep->pd_state &= ~IOSTARTED;
11638 	/*
11639 	 * Process any directory removals that have been committed.
11640 	 */
11641 	while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
11642 		LIST_REMOVE(dirrem, dm_next);
11643 		dirrem->dm_state |= COMPLETE;
11644 		dirrem->dm_dirinum = pagedep->pd_ino;
11645 		KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
11646 		    ("handle_written_filepage: Journal entries not written."));
11647 		add_to_worklist(&dirrem->dm_list, 0);
11648 	}
11649 	/*
11650 	 * Free any directory additions that have been committed.
11651 	 * If it is a newly allocated block, we have to wait until
11652 	 * the on-disk directory inode claims the new block.
11653 	 */
11654 	if ((pagedep->pd_state & NEWBLOCK) == 0)
11655 		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
11656 			free_diradd(dap, NULL);
11657 	/*
11658 	 * Uncommitted directory entries must be restored.
11659 	 */
11660 	for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
11661 		for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
11662 		     dap = nextdap) {
11663 			nextdap = LIST_NEXT(dap, da_pdlist);
11664 			if (dap->da_state & ATTACHED)
11665 				panic("handle_written_filepage: attached");
11666 			ep = (struct direct *)
11667 			    ((char *)bp->b_data + dap->da_offset);
11668 			ep->d_ino = dap->da_newinum;
11669 			dap->da_state &= ~UNDONE;
11670 			dap->da_state |= ATTACHED;
11671 			chgs = 1;
11672 			/*
11673 			 * If the inode referenced by the directory has
11674 			 * been written out, then the dependency can be
11675 			 * moved to the pending list.
11676 			 */
11677 			if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
11678 				LIST_REMOVE(dap, da_pdlist);
11679 				LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
11680 				    da_pdlist);
11681 			}
11682 		}
11683 	}
11684 	/*
11685 	 * If there were any rollbacks in the directory, then it must be
11686 	 * marked dirty so that its will eventually get written back in
11687 	 * its correct form.
11688 	 */
11689 	if (chgs) {
11690 		if ((bp->b_flags & B_DELWRI) == 0)
11691 			stat_dir_entry++;
11692 		bdirty(bp);
11693 		return (1);
11694 	}
11695 	/*
11696 	 * If we are not waiting for a new directory block to be
11697 	 * claimed by its inode, then the pagedep will be freed.
11698 	 * Otherwise it will remain to track any new entries on
11699 	 * the page in case they are fsync'ed.
11700 	 */
11701 	free_pagedep(pagedep);
11702 	return (0);
11703 }
11704 
11705 /*
11706  * Writing back in-core inode structures.
11707  *
11708  * The filesystem only accesses an inode's contents when it occupies an
11709  * "in-core" inode structure.  These "in-core" structures are separate from
11710  * the page frames used to cache inode blocks.  Only the latter are
11711  * transferred to/from the disk.  So, when the updated contents of the
11712  * "in-core" inode structure are copied to the corresponding in-memory inode
11713  * block, the dependencies are also transferred.  The following procedure is
11714  * called when copying a dirty "in-core" inode to a cached inode block.
11715  */
11716 
11717 /*
11718  * Called when an inode is loaded from disk. If the effective link count
11719  * differed from the actual link count when it was last flushed, then we
11720  * need to ensure that the correct effective link count is put back.
11721  */
11722 void
11723 softdep_load_inodeblock(ip)
11724 	struct inode *ip;	/* the "in_core" copy of the inode */
11725 {
11726 	struct inodedep *inodedep;
11727 
11728 	/*
11729 	 * Check for alternate nlink count.
11730 	 */
11731 	ip->i_effnlink = ip->i_nlink;
11732 	ACQUIRE_LOCK(&lk);
11733 	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
11734 	    &inodedep) == 0) {
11735 		FREE_LOCK(&lk);
11736 		return;
11737 	}
11738 	ip->i_effnlink -= inodedep->id_nlinkdelta;
11739 	FREE_LOCK(&lk);
11740 }
11741 
11742 /*
11743  * This routine is called just before the "in-core" inode
11744  * information is to be copied to the in-memory inode block.
11745  * Recall that an inode block contains several inodes. If
11746  * the force flag is set, then the dependencies will be
11747  * cleared so that the update can always be made. Note that
11748  * the buffer is locked when this routine is called, so we
11749  * will never be in the middle of writing the inode block
11750  * to disk.
11751  */
11752 void
11753 softdep_update_inodeblock(ip, bp, waitfor)
11754 	struct inode *ip;	/* the "in_core" copy of the inode */
11755 	struct buf *bp;		/* the buffer containing the inode block */
11756 	int waitfor;		/* nonzero => update must be allowed */
11757 {
11758 	struct inodedep *inodedep;
11759 	struct inoref *inoref;
11760 	struct worklist *wk;
11761 	struct mount *mp;
11762 	struct buf *ibp;
11763 	struct fs *fs;
11764 	int error;
11765 
11766 	mp = UFSTOVFS(ip->i_ump);
11767 	fs = ip->i_fs;
11768 	/*
11769 	 * Preserve the freelink that is on disk.  clear_unlinked_inodedep()
11770 	 * does not have access to the in-core ip so must write directly into
11771 	 * the inode block buffer when setting freelink.
11772 	 */
11773 	if (fs->fs_magic == FS_UFS1_MAGIC)
11774 		DIP_SET(ip, i_freelink, ((struct ufs1_dinode *)bp->b_data +
11775 		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
11776 	else
11777 		DIP_SET(ip, i_freelink, ((struct ufs2_dinode *)bp->b_data +
11778 		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
11779 	/*
11780 	 * If the effective link count is not equal to the actual link
11781 	 * count, then we must track the difference in an inodedep while
11782 	 * the inode is (potentially) tossed out of the cache. Otherwise,
11783 	 * if there is no existing inodedep, then there are no dependencies
11784 	 * to track.
11785 	 */
11786 	ACQUIRE_LOCK(&lk);
11787 again:
11788 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
11789 		FREE_LOCK(&lk);
11790 		if (ip->i_effnlink != ip->i_nlink)
11791 			panic("softdep_update_inodeblock: bad link count");
11792 		return;
11793 	}
11794 	if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink)
11795 		panic("softdep_update_inodeblock: bad delta");
11796 	/*
11797 	 * If we're flushing all dependencies we must also move any waiting
11798 	 * for journal writes onto the bufwait list prior to I/O.
11799 	 */
11800 	if (waitfor) {
11801 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
11802 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
11803 			    == DEPCOMPLETE) {
11804 				jwait(&inoref->if_list, MNT_WAIT);
11805 				goto again;
11806 			}
11807 		}
11808 	}
11809 	/*
11810 	 * Changes have been initiated. Anything depending on these
11811 	 * changes cannot occur until this inode has been written.
11812 	 */
11813 	inodedep->id_state &= ~COMPLETE;
11814 	if ((inodedep->id_state & ONWORKLIST) == 0)
11815 		WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list);
11816 	/*
11817 	 * Any new dependencies associated with the incore inode must
11818 	 * now be moved to the list associated with the buffer holding
11819 	 * the in-memory copy of the inode. Once merged process any
11820 	 * allocdirects that are completed by the merger.
11821 	 */
11822 	merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt);
11823 	if (!TAILQ_EMPTY(&inodedep->id_inoupdt))
11824 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt),
11825 		    NULL);
11826 	merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt);
11827 	if (!TAILQ_EMPTY(&inodedep->id_extupdt))
11828 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt),
11829 		    NULL);
11830 	/*
11831 	 * Now that the inode has been pushed into the buffer, the
11832 	 * operations dependent on the inode being written to disk
11833 	 * can be moved to the id_bufwait so that they will be
11834 	 * processed when the buffer I/O completes.
11835 	 */
11836 	while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
11837 		WORKLIST_REMOVE(wk);
11838 		WORKLIST_INSERT(&inodedep->id_bufwait, wk);
11839 	}
11840 	/*
11841 	 * Newly allocated inodes cannot be written until the bitmap
11842 	 * that allocates them have been written (indicated by
11843 	 * DEPCOMPLETE being set in id_state). If we are doing a
11844 	 * forced sync (e.g., an fsync on a file), we force the bitmap
11845 	 * to be written so that the update can be done.
11846 	 */
11847 	if (waitfor == 0) {
11848 		FREE_LOCK(&lk);
11849 		return;
11850 	}
11851 retry:
11852 	if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) {
11853 		FREE_LOCK(&lk);
11854 		return;
11855 	}
11856 	ibp = inodedep->id_bmsafemap->sm_buf;
11857 	ibp = getdirtybuf(ibp, &lk, MNT_WAIT);
11858 	if (ibp == NULL) {
11859 		/*
11860 		 * If ibp came back as NULL, the dependency could have been
11861 		 * freed while we slept.  Look it up again, and check to see
11862 		 * that it has completed.
11863 		 */
11864 		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
11865 			goto retry;
11866 		FREE_LOCK(&lk);
11867 		return;
11868 	}
11869 	FREE_LOCK(&lk);
11870 	if ((error = bwrite(ibp)) != 0)
11871 		softdep_error("softdep_update_inodeblock: bwrite", error);
11872 }
11873 
11874 /*
11875  * Merge the a new inode dependency list (such as id_newinoupdt) into an
11876  * old inode dependency list (such as id_inoupdt). This routine must be
11877  * called with splbio interrupts blocked.
11878  */
11879 static void
11880 merge_inode_lists(newlisthead, oldlisthead)
11881 	struct allocdirectlst *newlisthead;
11882 	struct allocdirectlst *oldlisthead;
11883 {
11884 	struct allocdirect *listadp, *newadp;
11885 
11886 	newadp = TAILQ_FIRST(newlisthead);
11887 	for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) {
11888 		if (listadp->ad_offset < newadp->ad_offset) {
11889 			listadp = TAILQ_NEXT(listadp, ad_next);
11890 			continue;
11891 		}
11892 		TAILQ_REMOVE(newlisthead, newadp, ad_next);
11893 		TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
11894 		if (listadp->ad_offset == newadp->ad_offset) {
11895 			allocdirect_merge(oldlisthead, newadp,
11896 			    listadp);
11897 			listadp = newadp;
11898 		}
11899 		newadp = TAILQ_FIRST(newlisthead);
11900 	}
11901 	while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) {
11902 		TAILQ_REMOVE(newlisthead, newadp, ad_next);
11903 		TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next);
11904 	}
11905 }
11906 
11907 /*
11908  * If we are doing an fsync, then we must ensure that any directory
11909  * entries for the inode have been written after the inode gets to disk.
11910  */
11911 int
11912 softdep_fsync(vp)
11913 	struct vnode *vp;	/* the "in_core" copy of the inode */
11914 {
11915 	struct inodedep *inodedep;
11916 	struct pagedep *pagedep;
11917 	struct inoref *inoref;
11918 	struct worklist *wk;
11919 	struct diradd *dap;
11920 	struct mount *mp;
11921 	struct vnode *pvp;
11922 	struct inode *ip;
11923 	struct buf *bp;
11924 	struct fs *fs;
11925 	struct thread *td = curthread;
11926 	int error, flushparent, pagedep_new_block;
11927 	ino_t parentino;
11928 	ufs_lbn_t lbn;
11929 
11930 	ip = VTOI(vp);
11931 	fs = ip->i_fs;
11932 	mp = vp->v_mount;
11933 	ACQUIRE_LOCK(&lk);
11934 restart:
11935 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
11936 		FREE_LOCK(&lk);
11937 		return (0);
11938 	}
11939 	TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
11940 		if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
11941 		    == DEPCOMPLETE) {
11942 			jwait(&inoref->if_list, MNT_WAIT);
11943 			goto restart;
11944 		}
11945 	}
11946 	if (!LIST_EMPTY(&inodedep->id_inowait) ||
11947 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
11948 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
11949 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
11950 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt))
11951 		panic("softdep_fsync: pending ops %p", inodedep);
11952 	for (error = 0, flushparent = 0; ; ) {
11953 		if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
11954 			break;
11955 		if (wk->wk_type != D_DIRADD)
11956 			panic("softdep_fsync: Unexpected type %s",
11957 			    TYPENAME(wk->wk_type));
11958 		dap = WK_DIRADD(wk);
11959 		/*
11960 		 * Flush our parent if this directory entry has a MKDIR_PARENT
11961 		 * dependency or is contained in a newly allocated block.
11962 		 */
11963 		if (dap->da_state & DIRCHG)
11964 			pagedep = dap->da_previous->dm_pagedep;
11965 		else
11966 			pagedep = dap->da_pagedep;
11967 		parentino = pagedep->pd_ino;
11968 		lbn = pagedep->pd_lbn;
11969 		if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE)
11970 			panic("softdep_fsync: dirty");
11971 		if ((dap->da_state & MKDIR_PARENT) ||
11972 		    (pagedep->pd_state & NEWBLOCK))
11973 			flushparent = 1;
11974 		else
11975 			flushparent = 0;
11976 		/*
11977 		 * If we are being fsync'ed as part of vgone'ing this vnode,
11978 		 * then we will not be able to release and recover the
11979 		 * vnode below, so we just have to give up on writing its
11980 		 * directory entry out. It will eventually be written, just
11981 		 * not now, but then the user was not asking to have it
11982 		 * written, so we are not breaking any promises.
11983 		 */
11984 		if (vp->v_iflag & VI_DOOMED)
11985 			break;
11986 		/*
11987 		 * We prevent deadlock by always fetching inodes from the
11988 		 * root, moving down the directory tree. Thus, when fetching
11989 		 * our parent directory, we first try to get the lock. If
11990 		 * that fails, we must unlock ourselves before requesting
11991 		 * the lock on our parent. See the comment in ufs_lookup
11992 		 * for details on possible races.
11993 		 */
11994 		FREE_LOCK(&lk);
11995 		if (ffs_vgetf(mp, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp,
11996 		    FFSV_FORCEINSMQ)) {
11997 			error = vfs_busy(mp, MBF_NOWAIT);
11998 			if (error != 0) {
11999 				vfs_ref(mp);
12000 				VOP_UNLOCK(vp, 0);
12001 				error = vfs_busy(mp, 0);
12002 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
12003 				vfs_rel(mp);
12004 				if (error != 0)
12005 					return (ENOENT);
12006 				if (vp->v_iflag & VI_DOOMED) {
12007 					vfs_unbusy(mp);
12008 					return (ENOENT);
12009 				}
12010 			}
12011 			VOP_UNLOCK(vp, 0);
12012 			error = ffs_vgetf(mp, parentino, LK_EXCLUSIVE,
12013 			    &pvp, FFSV_FORCEINSMQ);
12014 			vfs_unbusy(mp);
12015 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
12016 			if (vp->v_iflag & VI_DOOMED) {
12017 				if (error == 0)
12018 					vput(pvp);
12019 				error = ENOENT;
12020 			}
12021 			if (error != 0)
12022 				return (error);
12023 		}
12024 		/*
12025 		 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps
12026 		 * that are contained in direct blocks will be resolved by
12027 		 * doing a ffs_update. Pagedeps contained in indirect blocks
12028 		 * may require a complete sync'ing of the directory. So, we
12029 		 * try the cheap and fast ffs_update first, and if that fails,
12030 		 * then we do the slower ffs_syncvnode of the directory.
12031 		 */
12032 		if (flushparent) {
12033 			int locked;
12034 
12035 			if ((error = ffs_update(pvp, 1)) != 0) {
12036 				vput(pvp);
12037 				return (error);
12038 			}
12039 			ACQUIRE_LOCK(&lk);
12040 			locked = 1;
12041 			if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) {
12042 				if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) {
12043 					if (wk->wk_type != D_DIRADD)
12044 						panic("softdep_fsync: Unexpected type %s",
12045 						      TYPENAME(wk->wk_type));
12046 					dap = WK_DIRADD(wk);
12047 					if (dap->da_state & DIRCHG)
12048 						pagedep = dap->da_previous->dm_pagedep;
12049 					else
12050 						pagedep = dap->da_pagedep;
12051 					pagedep_new_block = pagedep->pd_state & NEWBLOCK;
12052 					FREE_LOCK(&lk);
12053 					locked = 0;
12054 					if (pagedep_new_block && (error =
12055 					    ffs_syncvnode(pvp, MNT_WAIT, 0))) {
12056 						vput(pvp);
12057 						return (error);
12058 					}
12059 				}
12060 			}
12061 			if (locked)
12062 				FREE_LOCK(&lk);
12063 		}
12064 		/*
12065 		 * Flush directory page containing the inode's name.
12066 		 */
12067 		error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred,
12068 		    &bp);
12069 		if (error == 0)
12070 			error = bwrite(bp);
12071 		else
12072 			brelse(bp);
12073 		vput(pvp);
12074 		if (error != 0)
12075 			return (error);
12076 		ACQUIRE_LOCK(&lk);
12077 		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
12078 			break;
12079 	}
12080 	FREE_LOCK(&lk);
12081 	return (0);
12082 }
12083 
12084 /*
12085  * Flush all the dirty bitmaps associated with the block device
12086  * before flushing the rest of the dirty blocks so as to reduce
12087  * the number of dependencies that will have to be rolled back.
12088  *
12089  * XXX Unused?
12090  */
12091 void
12092 softdep_fsync_mountdev(vp)
12093 	struct vnode *vp;
12094 {
12095 	struct buf *bp, *nbp;
12096 	struct worklist *wk;
12097 	struct bufobj *bo;
12098 
12099 	if (!vn_isdisk(vp, NULL))
12100 		panic("softdep_fsync_mountdev: vnode not a disk");
12101 	bo = &vp->v_bufobj;
12102 restart:
12103 	BO_LOCK(bo);
12104 	ACQUIRE_LOCK(&lk);
12105 	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
12106 		/*
12107 		 * If it is already scheduled, skip to the next buffer.
12108 		 */
12109 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
12110 			continue;
12111 
12112 		if ((bp->b_flags & B_DELWRI) == 0)
12113 			panic("softdep_fsync_mountdev: not dirty");
12114 		/*
12115 		 * We are only interested in bitmaps with outstanding
12116 		 * dependencies.
12117 		 */
12118 		if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
12119 		    wk->wk_type != D_BMSAFEMAP ||
12120 		    (bp->b_vflags & BV_BKGRDINPROG)) {
12121 			BUF_UNLOCK(bp);
12122 			continue;
12123 		}
12124 		FREE_LOCK(&lk);
12125 		BO_UNLOCK(bo);
12126 		bremfree(bp);
12127 		(void) bawrite(bp);
12128 		goto restart;
12129 	}
12130 	FREE_LOCK(&lk);
12131 	drain_output(vp);
12132 	BO_UNLOCK(bo);
12133 }
12134 
12135 /*
12136  * Sync all cylinder groups that were dirty at the time this function is
12137  * called.  Newly dirtied cgs will be inserted before the sentinel.  This
12138  * is used to flush freedep activity that may be holding up writes to a
12139  * indirect block.
12140  */
12141 static int
12142 sync_cgs(mp, waitfor)
12143 	struct mount *mp;
12144 	int waitfor;
12145 {
12146 	struct bmsafemap *bmsafemap;
12147 	struct bmsafemap *sentinel;
12148 	struct ufsmount *ump;
12149 	struct buf *bp;
12150 	int error;
12151 
12152 	sentinel = malloc(sizeof(*sentinel), M_BMSAFEMAP, M_ZERO | M_WAITOK);
12153 	sentinel->sm_cg = -1;
12154 	ump = VFSTOUFS(mp);
12155 	error = 0;
12156 	ACQUIRE_LOCK(&lk);
12157 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, sentinel, sm_next);
12158 	for (bmsafemap = LIST_NEXT(sentinel, sm_next); bmsafemap != NULL;
12159 	    bmsafemap = LIST_NEXT(sentinel, sm_next)) {
12160 		/* Skip sentinels and cgs with no work to release. */
12161 		if (bmsafemap->sm_cg == -1 ||
12162 		    (LIST_EMPTY(&bmsafemap->sm_freehd) &&
12163 		    LIST_EMPTY(&bmsafemap->sm_freewr))) {
12164 			LIST_REMOVE(sentinel, sm_next);
12165 			LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next);
12166 			continue;
12167 		}
12168 		/*
12169 		 * If we don't get the lock and we're waiting try again, if
12170 		 * not move on to the next buf and try to sync it.
12171 		 */
12172 		bp = getdirtybuf(bmsafemap->sm_buf, &lk, waitfor);
12173 		if (bp == NULL && waitfor == MNT_WAIT)
12174 			continue;
12175 		LIST_REMOVE(sentinel, sm_next);
12176 		LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next);
12177 		if (bp == NULL)
12178 			continue;
12179 		FREE_LOCK(&lk);
12180 		if (waitfor == MNT_NOWAIT)
12181 			bawrite(bp);
12182 		else
12183 			error = bwrite(bp);
12184 		ACQUIRE_LOCK(&lk);
12185 		if (error)
12186 			break;
12187 	}
12188 	LIST_REMOVE(sentinel, sm_next);
12189 	FREE_LOCK(&lk);
12190 	free(sentinel, M_BMSAFEMAP);
12191 	return (error);
12192 }
12193 
12194 /*
12195  * This routine is called when we are trying to synchronously flush a
12196  * file. This routine must eliminate any filesystem metadata dependencies
12197  * so that the syncing routine can succeed.
12198  */
12199 int
12200 softdep_sync_metadata(struct vnode *vp)
12201 {
12202 	int error;
12203 
12204 	/*
12205 	 * Ensure that any direct block dependencies have been cleared,
12206 	 * truncations are started, and inode references are journaled.
12207 	 */
12208 	ACQUIRE_LOCK(&lk);
12209 	/*
12210 	 * Write all journal records to prevent rollbacks on devvp.
12211 	 */
12212 	if (vp->v_type == VCHR)
12213 		softdep_flushjournal(vp->v_mount);
12214 	error = flush_inodedep_deps(vp, vp->v_mount, VTOI(vp)->i_number);
12215 	/*
12216 	 * Ensure that all truncates are written so we won't find deps on
12217 	 * indirect blocks.
12218 	 */
12219 	process_truncates(vp);
12220 	FREE_LOCK(&lk);
12221 
12222 	return (error);
12223 }
12224 
12225 /*
12226  * This routine is called when we are attempting to sync a buf with
12227  * dependencies.  If waitfor is MNT_NOWAIT it attempts to schedule any
12228  * other IO it can but returns EBUSY if the buffer is not yet able to
12229  * be written.  Dependencies which will not cause rollbacks will always
12230  * return 0.
12231  */
12232 int
12233 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
12234 {
12235 	struct indirdep *indirdep;
12236 	struct pagedep *pagedep;
12237 	struct allocindir *aip;
12238 	struct newblk *newblk;
12239 	struct buf *nbp;
12240 	struct worklist *wk;
12241 	int i, error;
12242 
12243 	/*
12244 	 * For VCHR we just don't want to force flush any dependencies that
12245 	 * will cause rollbacks.
12246 	 */
12247 	if (vp->v_type == VCHR) {
12248 		if (waitfor == MNT_NOWAIT && softdep_count_dependencies(bp, 0))
12249 			return (EBUSY);
12250 		return (0);
12251 	}
12252 	ACQUIRE_LOCK(&lk);
12253 	/*
12254 	 * As we hold the buffer locked, none of its dependencies
12255 	 * will disappear.
12256 	 */
12257 	error = 0;
12258 top:
12259 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
12260 		switch (wk->wk_type) {
12261 
12262 		case D_ALLOCDIRECT:
12263 		case D_ALLOCINDIR:
12264 			newblk = WK_NEWBLK(wk);
12265 			if (newblk->nb_jnewblk != NULL) {
12266 				if (waitfor == MNT_NOWAIT) {
12267 					error = EBUSY;
12268 					goto out_unlock;
12269 				}
12270 				jwait(&newblk->nb_jnewblk->jn_list, waitfor);
12271 				goto top;
12272 			}
12273 			if (newblk->nb_state & DEPCOMPLETE ||
12274 			    waitfor == MNT_NOWAIT)
12275 				continue;
12276 			nbp = newblk->nb_bmsafemap->sm_buf;
12277 			nbp = getdirtybuf(nbp, &lk, waitfor);
12278 			if (nbp == NULL)
12279 				goto top;
12280 			FREE_LOCK(&lk);
12281 			if ((error = bwrite(nbp)) != 0)
12282 				goto out;
12283 			ACQUIRE_LOCK(&lk);
12284 			continue;
12285 
12286 		case D_INDIRDEP:
12287 			indirdep = WK_INDIRDEP(wk);
12288 			if (waitfor == MNT_NOWAIT) {
12289 				if (!TAILQ_EMPTY(&indirdep->ir_trunc) ||
12290 				    !LIST_EMPTY(&indirdep->ir_deplisthd)) {
12291 					error = EBUSY;
12292 					goto out_unlock;
12293 				}
12294 			}
12295 			if (!TAILQ_EMPTY(&indirdep->ir_trunc))
12296 				panic("softdep_sync_buf: truncation pending.");
12297 		restart:
12298 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
12299 				newblk = (struct newblk *)aip;
12300 				if (newblk->nb_jnewblk != NULL) {
12301 					jwait(&newblk->nb_jnewblk->jn_list,
12302 					    waitfor);
12303 					goto restart;
12304 				}
12305 				if (newblk->nb_state & DEPCOMPLETE)
12306 					continue;
12307 				nbp = newblk->nb_bmsafemap->sm_buf;
12308 				nbp = getdirtybuf(nbp, &lk, waitfor);
12309 				if (nbp == NULL)
12310 					goto restart;
12311 				FREE_LOCK(&lk);
12312 				if ((error = bwrite(nbp)) != 0)
12313 					goto out;
12314 				ACQUIRE_LOCK(&lk);
12315 				goto restart;
12316 			}
12317 			continue;
12318 
12319 		case D_PAGEDEP:
12320 			/*
12321 			 * Only flush directory entries in synchronous passes.
12322 			 */
12323 			if (waitfor != MNT_WAIT) {
12324 				error = EBUSY;
12325 				goto out_unlock;
12326 			}
12327 			/*
12328 			 * While syncing snapshots, we must allow recursive
12329 			 * lookups.
12330 			 */
12331 			BUF_AREC(bp);
12332 			/*
12333 			 * We are trying to sync a directory that may
12334 			 * have dependencies on both its own metadata
12335 			 * and/or dependencies on the inodes of any
12336 			 * recently allocated files. We walk its diradd
12337 			 * lists pushing out the associated inode.
12338 			 */
12339 			pagedep = WK_PAGEDEP(wk);
12340 			for (i = 0; i < DAHASHSZ; i++) {
12341 				if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0)
12342 					continue;
12343 				if ((error = flush_pagedep_deps(vp, wk->wk_mp,
12344 				    &pagedep->pd_diraddhd[i]))) {
12345 					BUF_NOREC(bp);
12346 					goto out_unlock;
12347 				}
12348 			}
12349 			BUF_NOREC(bp);
12350 			continue;
12351 
12352 		case D_FREEWORK:
12353 		case D_FREEDEP:
12354 		case D_JSEGDEP:
12355 		case D_JNEWBLK:
12356 			continue;
12357 
12358 		default:
12359 			panic("softdep_sync_buf: Unknown type %s",
12360 			    TYPENAME(wk->wk_type));
12361 			/* NOTREACHED */
12362 		}
12363 	}
12364 out_unlock:
12365 	FREE_LOCK(&lk);
12366 out:
12367 	return (error);
12368 }
12369 
12370 /*
12371  * Flush the dependencies associated with an inodedep.
12372  * Called with splbio blocked.
12373  */
12374 static int
12375 flush_inodedep_deps(vp, mp, ino)
12376 	struct vnode *vp;
12377 	struct mount *mp;
12378 	ino_t ino;
12379 {
12380 	struct inodedep *inodedep;
12381 	struct inoref *inoref;
12382 	int error, waitfor;
12383 
12384 	/*
12385 	 * This work is done in two passes. The first pass grabs most
12386 	 * of the buffers and begins asynchronously writing them. The
12387 	 * only way to wait for these asynchronous writes is to sleep
12388 	 * on the filesystem vnode which may stay busy for a long time
12389 	 * if the filesystem is active. So, instead, we make a second
12390 	 * pass over the dependencies blocking on each write. In the
12391 	 * usual case we will be blocking against a write that we
12392 	 * initiated, so when it is done the dependency will have been
12393 	 * resolved. Thus the second pass is expected to end quickly.
12394 	 * We give a brief window at the top of the loop to allow
12395 	 * any pending I/O to complete.
12396 	 */
12397 	for (error = 0, waitfor = MNT_NOWAIT; ; ) {
12398 		if (error)
12399 			return (error);
12400 		FREE_LOCK(&lk);
12401 		ACQUIRE_LOCK(&lk);
12402 restart:
12403 		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
12404 			return (0);
12405 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12406 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12407 			    == DEPCOMPLETE) {
12408 				jwait(&inoref->if_list, MNT_WAIT);
12409 				goto restart;
12410 			}
12411 		}
12412 		if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) ||
12413 		    flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) ||
12414 		    flush_deplist(&inodedep->id_extupdt, waitfor, &error) ||
12415 		    flush_deplist(&inodedep->id_newextupdt, waitfor, &error))
12416 			continue;
12417 		/*
12418 		 * If pass2, we are done, otherwise do pass 2.
12419 		 */
12420 		if (waitfor == MNT_WAIT)
12421 			break;
12422 		waitfor = MNT_WAIT;
12423 	}
12424 	/*
12425 	 * Try freeing inodedep in case all dependencies have been removed.
12426 	 */
12427 	if (inodedep_lookup(mp, ino, 0, &inodedep) != 0)
12428 		(void) free_inodedep(inodedep);
12429 	return (0);
12430 }
12431 
12432 /*
12433  * Flush an inode dependency list.
12434  * Called with splbio blocked.
12435  */
12436 static int
12437 flush_deplist(listhead, waitfor, errorp)
12438 	struct allocdirectlst *listhead;
12439 	int waitfor;
12440 	int *errorp;
12441 {
12442 	struct allocdirect *adp;
12443 	struct newblk *newblk;
12444 	struct buf *bp;
12445 
12446 	rw_assert(&lk, RA_WLOCKED);
12447 	TAILQ_FOREACH(adp, listhead, ad_next) {
12448 		newblk = (struct newblk *)adp;
12449 		if (newblk->nb_jnewblk != NULL) {
12450 			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
12451 			return (1);
12452 		}
12453 		if (newblk->nb_state & DEPCOMPLETE)
12454 			continue;
12455 		bp = newblk->nb_bmsafemap->sm_buf;
12456 		bp = getdirtybuf(bp, &lk, waitfor);
12457 		if (bp == NULL) {
12458 			if (waitfor == MNT_NOWAIT)
12459 				continue;
12460 			return (1);
12461 		}
12462 		FREE_LOCK(&lk);
12463 		if (waitfor == MNT_NOWAIT)
12464 			bawrite(bp);
12465 		else
12466 			*errorp = bwrite(bp);
12467 		ACQUIRE_LOCK(&lk);
12468 		return (1);
12469 	}
12470 	return (0);
12471 }
12472 
12473 /*
12474  * Flush dependencies associated with an allocdirect block.
12475  */
12476 static int
12477 flush_newblk_dep(vp, mp, lbn)
12478 	struct vnode *vp;
12479 	struct mount *mp;
12480 	ufs_lbn_t lbn;
12481 {
12482 	struct newblk *newblk;
12483 	struct bufobj *bo;
12484 	struct inode *ip;
12485 	struct buf *bp;
12486 	ufs2_daddr_t blkno;
12487 	int error;
12488 
12489 	error = 0;
12490 	bo = &vp->v_bufobj;
12491 	ip = VTOI(vp);
12492 	blkno = DIP(ip, i_db[lbn]);
12493 	if (blkno == 0)
12494 		panic("flush_newblk_dep: Missing block");
12495 	ACQUIRE_LOCK(&lk);
12496 	/*
12497 	 * Loop until all dependencies related to this block are satisfied.
12498 	 * We must be careful to restart after each sleep in case a write
12499 	 * completes some part of this process for us.
12500 	 */
12501 	for (;;) {
12502 		if (newblk_lookup(mp, blkno, 0, &newblk) == 0) {
12503 			FREE_LOCK(&lk);
12504 			break;
12505 		}
12506 		if (newblk->nb_list.wk_type != D_ALLOCDIRECT)
12507 			panic("flush_newblk_deps: Bad newblk %p", newblk);
12508 		/*
12509 		 * Flush the journal.
12510 		 */
12511 		if (newblk->nb_jnewblk != NULL) {
12512 			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
12513 			continue;
12514 		}
12515 		/*
12516 		 * Write the bitmap dependency.
12517 		 */
12518 		if ((newblk->nb_state & DEPCOMPLETE) == 0) {
12519 			bp = newblk->nb_bmsafemap->sm_buf;
12520 			bp = getdirtybuf(bp, &lk, MNT_WAIT);
12521 			if (bp == NULL)
12522 				continue;
12523 			FREE_LOCK(&lk);
12524 			error = bwrite(bp);
12525 			if (error)
12526 				break;
12527 			ACQUIRE_LOCK(&lk);
12528 			continue;
12529 		}
12530 		/*
12531 		 * Write the buffer.
12532 		 */
12533 		FREE_LOCK(&lk);
12534 		BO_LOCK(bo);
12535 		bp = gbincore(bo, lbn);
12536 		if (bp != NULL) {
12537 			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
12538 			    LK_INTERLOCK, BO_LOCKPTR(bo));
12539 			if (error == ENOLCK) {
12540 				ACQUIRE_LOCK(&lk);
12541 				continue; /* Slept, retry */
12542 			}
12543 			if (error != 0)
12544 				break;	/* Failed */
12545 			if (bp->b_flags & B_DELWRI) {
12546 				bremfree(bp);
12547 				error = bwrite(bp);
12548 				if (error)
12549 					break;
12550 			} else
12551 				BUF_UNLOCK(bp);
12552 		} else
12553 			BO_UNLOCK(bo);
12554 		/*
12555 		 * We have to wait for the direct pointers to
12556 		 * point at the newdirblk before the dependency
12557 		 * will go away.
12558 		 */
12559 		error = ffs_update(vp, 1);
12560 		if (error)
12561 			break;
12562 		ACQUIRE_LOCK(&lk);
12563 	}
12564 	return (error);
12565 }
12566 
12567 /*
12568  * Eliminate a pagedep dependency by flushing out all its diradd dependencies.
12569  * Called with splbio blocked.
12570  */
12571 static int
12572 flush_pagedep_deps(pvp, mp, diraddhdp)
12573 	struct vnode *pvp;
12574 	struct mount *mp;
12575 	struct diraddhd *diraddhdp;
12576 {
12577 	struct inodedep *inodedep;
12578 	struct inoref *inoref;
12579 	struct ufsmount *ump;
12580 	struct diradd *dap;
12581 	struct vnode *vp;
12582 	int error = 0;
12583 	struct buf *bp;
12584 	ino_t inum;
12585 
12586 	ump = VFSTOUFS(mp);
12587 restart:
12588 	while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
12589 		/*
12590 		 * Flush ourselves if this directory entry
12591 		 * has a MKDIR_PARENT dependency.
12592 		 */
12593 		if (dap->da_state & MKDIR_PARENT) {
12594 			FREE_LOCK(&lk);
12595 			if ((error = ffs_update(pvp, 1)) != 0)
12596 				break;
12597 			ACQUIRE_LOCK(&lk);
12598 			/*
12599 			 * If that cleared dependencies, go on to next.
12600 			 */
12601 			if (dap != LIST_FIRST(diraddhdp))
12602 				continue;
12603 			if (dap->da_state & MKDIR_PARENT)
12604 				panic("flush_pagedep_deps: MKDIR_PARENT");
12605 		}
12606 		/*
12607 		 * A newly allocated directory must have its "." and
12608 		 * ".." entries written out before its name can be
12609 		 * committed in its parent.
12610 		 */
12611 		inum = dap->da_newinum;
12612 		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
12613 			panic("flush_pagedep_deps: lost inode1");
12614 		/*
12615 		 * Wait for any pending journal adds to complete so we don't
12616 		 * cause rollbacks while syncing.
12617 		 */
12618 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12619 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12620 			    == DEPCOMPLETE) {
12621 				jwait(&inoref->if_list, MNT_WAIT);
12622 				goto restart;
12623 			}
12624 		}
12625 		if (dap->da_state & MKDIR_BODY) {
12626 			FREE_LOCK(&lk);
12627 			if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
12628 			    FFSV_FORCEINSMQ)))
12629 				break;
12630 			error = flush_newblk_dep(vp, mp, 0);
12631 			/*
12632 			 * If we still have the dependency we might need to
12633 			 * update the vnode to sync the new link count to
12634 			 * disk.
12635 			 */
12636 			if (error == 0 && dap == LIST_FIRST(diraddhdp))
12637 				error = ffs_update(vp, 1);
12638 			vput(vp);
12639 			if (error != 0)
12640 				break;
12641 			ACQUIRE_LOCK(&lk);
12642 			/*
12643 			 * If that cleared dependencies, go on to next.
12644 			 */
12645 			if (dap != LIST_FIRST(diraddhdp))
12646 				continue;
12647 			if (dap->da_state & MKDIR_BODY) {
12648 				inodedep_lookup(UFSTOVFS(ump), inum, 0,
12649 				    &inodedep);
12650 				panic("flush_pagedep_deps: MKDIR_BODY "
12651 				    "inodedep %p dap %p vp %p",
12652 				    inodedep, dap, vp);
12653 			}
12654 		}
12655 		/*
12656 		 * Flush the inode on which the directory entry depends.
12657 		 * Having accounted for MKDIR_PARENT and MKDIR_BODY above,
12658 		 * the only remaining dependency is that the updated inode
12659 		 * count must get pushed to disk. The inode has already
12660 		 * been pushed into its inode buffer (via VOP_UPDATE) at
12661 		 * the time of the reference count change. So we need only
12662 		 * locate that buffer, ensure that there will be no rollback
12663 		 * caused by a bitmap dependency, then write the inode buffer.
12664 		 */
12665 retry:
12666 		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
12667 			panic("flush_pagedep_deps: lost inode");
12668 		/*
12669 		 * If the inode still has bitmap dependencies,
12670 		 * push them to disk.
12671 		 */
12672 		if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) {
12673 			bp = inodedep->id_bmsafemap->sm_buf;
12674 			bp = getdirtybuf(bp, &lk, MNT_WAIT);
12675 			if (bp == NULL)
12676 				goto retry;
12677 			FREE_LOCK(&lk);
12678 			if ((error = bwrite(bp)) != 0)
12679 				break;
12680 			ACQUIRE_LOCK(&lk);
12681 			if (dap != LIST_FIRST(diraddhdp))
12682 				continue;
12683 		}
12684 		/*
12685 		 * If the inode is still sitting in a buffer waiting
12686 		 * to be written or waiting for the link count to be
12687 		 * adjusted update it here to flush it to disk.
12688 		 */
12689 		if (dap == LIST_FIRST(diraddhdp)) {
12690 			FREE_LOCK(&lk);
12691 			if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
12692 			    FFSV_FORCEINSMQ)))
12693 				break;
12694 			error = ffs_update(vp, 1);
12695 			vput(vp);
12696 			if (error)
12697 				break;
12698 			ACQUIRE_LOCK(&lk);
12699 		}
12700 		/*
12701 		 * If we have failed to get rid of all the dependencies
12702 		 * then something is seriously wrong.
12703 		 */
12704 		if (dap == LIST_FIRST(diraddhdp)) {
12705 			inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep);
12706 			panic("flush_pagedep_deps: failed to flush "
12707 			    "inodedep %p ino %ju dap %p",
12708 			    inodedep, (uintmax_t)inum, dap);
12709 		}
12710 	}
12711 	if (error)
12712 		ACQUIRE_LOCK(&lk);
12713 	return (error);
12714 }
12715 
12716 /*
12717  * A large burst of file addition or deletion activity can drive the
12718  * memory load excessively high. First attempt to slow things down
12719  * using the techniques below. If that fails, this routine requests
12720  * the offending operations to fall back to running synchronously
12721  * until the memory load returns to a reasonable level.
12722  */
12723 int
12724 softdep_slowdown(vp)
12725 	struct vnode *vp;
12726 {
12727 	struct ufsmount *ump;
12728 	int jlow;
12729 	int max_softdeps_hard;
12730 
12731 	ACQUIRE_LOCK(&lk);
12732 	jlow = 0;
12733 	/*
12734 	 * Check for journal space if needed.
12735 	 */
12736 	if (DOINGSUJ(vp)) {
12737 		ump = VFSTOUFS(vp->v_mount);
12738 		if (journal_space(ump, 0) == 0)
12739 			jlow = 1;
12740 	}
12741 	max_softdeps_hard = max_softdeps * 11 / 10;
12742 	if (dep_current[D_DIRREM] < max_softdeps_hard / 2 &&
12743 	    dep_current[D_INODEDEP] < max_softdeps_hard &&
12744 	    VFSTOUFS(vp->v_mount)->um_numindirdeps < maxindirdeps &&
12745 	    dep_current[D_FREEBLKS] < max_softdeps_hard && jlow == 0) {
12746 		FREE_LOCK(&lk);
12747   		return (0);
12748 	}
12749 	if (VFSTOUFS(vp->v_mount)->um_numindirdeps >= maxindirdeps || jlow)
12750 		softdep_speedup();
12751 	stat_sync_limit_hit += 1;
12752 	FREE_LOCK(&lk);
12753 	if (DOINGSUJ(vp))
12754 		return (0);
12755 	return (1);
12756 }
12757 
12758 /*
12759  * Called by the allocation routines when they are about to fail
12760  * in the hope that we can free up the requested resource (inodes
12761  * or disk space).
12762  *
12763  * First check to see if the work list has anything on it. If it has,
12764  * clean up entries until we successfully free the requested resource.
12765  * Because this process holds inodes locked, we cannot handle any remove
12766  * requests that might block on a locked inode as that could lead to
12767  * deadlock. If the worklist yields none of the requested resource,
12768  * start syncing out vnodes to free up the needed space.
12769  */
12770 int
12771 softdep_request_cleanup(fs, vp, cred, resource)
12772 	struct fs *fs;
12773 	struct vnode *vp;
12774 	struct ucred *cred;
12775 	int resource;
12776 {
12777 	struct ufsmount *ump;
12778 	struct mount *mp;
12779 	struct vnode *lvp, *mvp;
12780 	long starttime;
12781 	ufs2_daddr_t needed;
12782 	int error;
12783 
12784 	/*
12785 	 * If we are being called because of a process doing a
12786 	 * copy-on-write, then it is not safe to process any
12787 	 * worklist items as we will recurse into the copyonwrite
12788 	 * routine.  This will result in an incoherent snapshot.
12789 	 * If the vnode that we hold is a snapshot, we must avoid
12790 	 * handling other resources that could cause deadlock.
12791 	 */
12792 	if ((curthread->td_pflags & TDP_COWINPROGRESS) || IS_SNAPSHOT(VTOI(vp)))
12793 		return (0);
12794 
12795 	if (resource == FLUSH_BLOCKS_WAIT)
12796 		stat_cleanup_blkrequests += 1;
12797 	else
12798 		stat_cleanup_inorequests += 1;
12799 
12800 	mp = vp->v_mount;
12801 	ump = VFSTOUFS(mp);
12802 	mtx_assert(UFS_MTX(ump), MA_OWNED);
12803 	UFS_UNLOCK(ump);
12804 	error = ffs_update(vp, 1);
12805 	if (error != 0) {
12806 		UFS_LOCK(ump);
12807 		return (0);
12808 	}
12809 	/*
12810 	 * If we are in need of resources, consider pausing for
12811 	 * tickdelay to give ourselves some breathing room.
12812 	 */
12813 	ACQUIRE_LOCK(&lk);
12814 	process_removes(vp);
12815 	process_truncates(vp);
12816 	request_cleanup(UFSTOVFS(ump), resource);
12817 	FREE_LOCK(&lk);
12818 	/*
12819 	 * Now clean up at least as many resources as we will need.
12820 	 *
12821 	 * When requested to clean up inodes, the number that are needed
12822 	 * is set by the number of simultaneous writers (mnt_writeopcount)
12823 	 * plus a bit of slop (2) in case some more writers show up while
12824 	 * we are cleaning.
12825 	 *
12826 	 * When requested to free up space, the amount of space that
12827 	 * we need is enough blocks to allocate a full-sized segment
12828 	 * (fs_contigsumsize). The number of such segments that will
12829 	 * be needed is set by the number of simultaneous writers
12830 	 * (mnt_writeopcount) plus a bit of slop (2) in case some more
12831 	 * writers show up while we are cleaning.
12832 	 *
12833 	 * Additionally, if we are unpriviledged and allocating space,
12834 	 * we need to ensure that we clean up enough blocks to get the
12835 	 * needed number of blocks over the threshhold of the minimum
12836 	 * number of blocks required to be kept free by the filesystem
12837 	 * (fs_minfree).
12838 	 */
12839 	if (resource == FLUSH_INODES_WAIT) {
12840 		needed = vp->v_mount->mnt_writeopcount + 2;
12841 	} else if (resource == FLUSH_BLOCKS_WAIT) {
12842 		needed = (vp->v_mount->mnt_writeopcount + 2) *
12843 		    fs->fs_contigsumsize;
12844 		if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0))
12845 			needed += fragstoblks(fs,
12846 			    roundup((fs->fs_dsize * fs->fs_minfree / 100) -
12847 			    fs->fs_cstotal.cs_nffree, fs->fs_frag));
12848 	} else {
12849 		UFS_LOCK(ump);
12850 		printf("softdep_request_cleanup: Unknown resource type %d\n",
12851 		    resource);
12852 		return (0);
12853 	}
12854 	starttime = time_second;
12855 retry:
12856 	if ((resource == FLUSH_BLOCKS_WAIT && ump->softdep_on_worklist > 0 &&
12857 	    fs->fs_cstotal.cs_nbfree <= needed) ||
12858 	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
12859 	    fs->fs_cstotal.cs_nifree <= needed)) {
12860 		ACQUIRE_LOCK(&lk);
12861 		if (ump->softdep_on_worklist > 0 &&
12862 		    process_worklist_item(UFSTOVFS(ump),
12863 		    ump->softdep_on_worklist, LK_NOWAIT) != 0)
12864 			stat_worklist_push += 1;
12865 		FREE_LOCK(&lk);
12866 	}
12867 	/*
12868 	 * If we still need resources and there are no more worklist
12869 	 * entries to process to obtain them, we have to start flushing
12870 	 * the dirty vnodes to force the release of additional requests
12871 	 * to the worklist that we can then process to reap addition
12872 	 * resources. We walk the vnodes associated with the mount point
12873 	 * until we get the needed worklist requests that we can reap.
12874 	 */
12875 	if ((resource == FLUSH_BLOCKS_WAIT &&
12876 	     fs->fs_cstotal.cs_nbfree <= needed) ||
12877 	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
12878 	     fs->fs_cstotal.cs_nifree <= needed)) {
12879 		MNT_VNODE_FOREACH_ALL(lvp, mp, mvp) {
12880 			if (TAILQ_FIRST(&lvp->v_bufobj.bo_dirty.bv_hd) == 0) {
12881 				VI_UNLOCK(lvp);
12882 				continue;
12883 			}
12884 			if (vget(lvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT,
12885 			    curthread))
12886 				continue;
12887 			if (lvp->v_vflag & VV_NOSYNC) {	/* unlinked */
12888 				vput(lvp);
12889 				continue;
12890 			}
12891 			(void) ffs_syncvnode(lvp, MNT_NOWAIT, 0);
12892 			vput(lvp);
12893 		}
12894 		lvp = ump->um_devvp;
12895 		if (vn_lock(lvp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
12896 			VOP_FSYNC(lvp, MNT_NOWAIT, curthread);
12897 			VOP_UNLOCK(lvp, 0);
12898 		}
12899 		if (ump->softdep_on_worklist > 0) {
12900 			stat_cleanup_retries += 1;
12901 			goto retry;
12902 		}
12903 		stat_cleanup_failures += 1;
12904 	}
12905 	if (time_second - starttime > stat_cleanup_high_delay)
12906 		stat_cleanup_high_delay = time_second - starttime;
12907 	UFS_LOCK(ump);
12908 	return (1);
12909 }
12910 
12911 /*
12912  * If memory utilization has gotten too high, deliberately slow things
12913  * down and speed up the I/O processing.
12914  */
12915 extern struct thread *syncertd;
12916 static int
12917 request_cleanup(mp, resource)
12918 	struct mount *mp;
12919 	int resource;
12920 {
12921 	struct thread *td = curthread;
12922 	struct ufsmount *ump;
12923 
12924 	rw_assert(&lk, RA_WLOCKED);
12925 	/*
12926 	 * We never hold up the filesystem syncer or buf daemon.
12927 	 */
12928 	if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF))
12929 		return (0);
12930 	ump = VFSTOUFS(mp);
12931 	/*
12932 	 * First check to see if the work list has gotten backlogged.
12933 	 * If it has, co-opt this process to help clean up two entries.
12934 	 * Because this process may hold inodes locked, we cannot
12935 	 * handle any remove requests that might block on a locked
12936 	 * inode as that could lead to deadlock.  We set TDP_SOFTDEP
12937 	 * to avoid recursively processing the worklist.
12938 	 */
12939 	if (ump->softdep_on_worklist > max_softdeps / 10) {
12940 		td->td_pflags |= TDP_SOFTDEP;
12941 		process_worklist_item(mp, 2, LK_NOWAIT);
12942 		td->td_pflags &= ~TDP_SOFTDEP;
12943 		stat_worklist_push += 2;
12944 		return(1);
12945 	}
12946 	/*
12947 	 * Next, we attempt to speed up the syncer process. If that
12948 	 * is successful, then we allow the process to continue.
12949 	 */
12950 	if (softdep_speedup() &&
12951 	    resource != FLUSH_BLOCKS_WAIT &&
12952 	    resource != FLUSH_INODES_WAIT)
12953 		return(0);
12954 	/*
12955 	 * If we are resource constrained on inode dependencies, try
12956 	 * flushing some dirty inodes. Otherwise, we are constrained
12957 	 * by file deletions, so try accelerating flushes of directories
12958 	 * with removal dependencies. We would like to do the cleanup
12959 	 * here, but we probably hold an inode locked at this point and
12960 	 * that might deadlock against one that we try to clean. So,
12961 	 * the best that we can do is request the syncer daemon to do
12962 	 * the cleanup for us.
12963 	 */
12964 	switch (resource) {
12965 
12966 	case FLUSH_INODES:
12967 	case FLUSH_INODES_WAIT:
12968 		stat_ino_limit_push += 1;
12969 		req_clear_inodedeps += 1;
12970 		stat_countp = &stat_ino_limit_hit;
12971 		break;
12972 
12973 	case FLUSH_BLOCKS:
12974 	case FLUSH_BLOCKS_WAIT:
12975 		stat_blk_limit_push += 1;
12976 		req_clear_remove += 1;
12977 		stat_countp = &stat_blk_limit_hit;
12978 		break;
12979 
12980 	default:
12981 		panic("request_cleanup: unknown type");
12982 	}
12983 	/*
12984 	 * Hopefully the syncer daemon will catch up and awaken us.
12985 	 * We wait at most tickdelay before proceeding in any case.
12986 	 */
12987 	proc_waiting += 1;
12988 	if (callout_pending(&softdep_callout) == FALSE)
12989 		callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2,
12990 		    pause_timer, 0);
12991 
12992 	msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0);
12993 	proc_waiting -= 1;
12994 	return (1);
12995 }
12996 
12997 /*
12998  * Awaken processes pausing in request_cleanup and clear proc_waiting
12999  * to indicate that there is no longer a timer running.
13000  */
13001 static void
13002 pause_timer(arg)
13003 	void *arg;
13004 {
13005 
13006 	/*
13007 	 * The callout_ API has acquired mtx and will hold it around this
13008 	 * function call.
13009 	 */
13010 	*stat_countp += 1;
13011 	wakeup_one(&proc_waiting);
13012 	if (proc_waiting > 0)
13013 		callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2,
13014 		    pause_timer, 0);
13015 }
13016 
13017 /*
13018  * Flush out a directory with at least one removal dependency in an effort to
13019  * reduce the number of dirrem, freefile, and freeblks dependency structures.
13020  */
13021 static void
13022 clear_remove(void)
13023 {
13024 	struct pagedep_hashhead *pagedephd;
13025 	struct pagedep *pagedep;
13026 	static int next = 0;
13027 	struct mount *mp;
13028 	struct vnode *vp;
13029 	struct bufobj *bo;
13030 	int error, cnt;
13031 	ino_t ino;
13032 
13033 	rw_assert(&lk, RA_WLOCKED);
13034 
13035 	for (cnt = 0; cnt <= pagedep_hash; cnt++) {
13036 		pagedephd = &pagedep_hashtbl[next++];
13037 		if (next > pagedep_hash)
13038 			next = 0;
13039 		LIST_FOREACH(pagedep, pagedephd, pd_hash) {
13040 			if (LIST_EMPTY(&pagedep->pd_dirremhd))
13041 				continue;
13042 			mp = pagedep->pd_list.wk_mp;
13043 			ino = pagedep->pd_ino;
13044 			if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
13045 				continue;
13046 			FREE_LOCK(&lk);
13047 
13048 			/*
13049 			 * Let unmount clear deps
13050 			 */
13051 			error = vfs_busy(mp, MBF_NOWAIT);
13052 			if (error != 0)
13053 				goto finish_write;
13054 			error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
13055 			     FFSV_FORCEINSMQ);
13056 			vfs_unbusy(mp);
13057 			if (error != 0) {
13058 				softdep_error("clear_remove: vget", error);
13059 				goto finish_write;
13060 			}
13061 			if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
13062 				softdep_error("clear_remove: fsync", error);
13063 			bo = &vp->v_bufobj;
13064 			BO_LOCK(bo);
13065 			drain_output(vp);
13066 			BO_UNLOCK(bo);
13067 			vput(vp);
13068 		finish_write:
13069 			vn_finished_write(mp);
13070 			ACQUIRE_LOCK(&lk);
13071 			return;
13072 		}
13073 	}
13074 }
13075 
13076 /*
13077  * Clear out a block of dirty inodes in an effort to reduce
13078  * the number of inodedep dependency structures.
13079  */
13080 static void
13081 clear_inodedeps(void)
13082 {
13083 	struct inodedep_hashhead *inodedephd;
13084 	struct inodedep *inodedep;
13085 	static int next = 0;
13086 	struct mount *mp;
13087 	struct vnode *vp;
13088 	struct fs *fs;
13089 	int error, cnt;
13090 	ino_t firstino, lastino, ino;
13091 
13092 	rw_assert(&lk, RA_WLOCKED);
13093 	/*
13094 	 * Pick a random inode dependency to be cleared.
13095 	 * We will then gather up all the inodes in its block
13096 	 * that have dependencies and flush them out.
13097 	 */
13098 	for (cnt = 0; cnt <= inodedep_hash; cnt++) {
13099 		inodedephd = &inodedep_hashtbl[next++];
13100 		if (next > inodedep_hash)
13101 			next = 0;
13102 		if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
13103 			break;
13104 	}
13105 	if (inodedep == NULL)
13106 		return;
13107 	fs = inodedep->id_fs;
13108 	mp = inodedep->id_list.wk_mp;
13109 	/*
13110 	 * Find the last inode in the block with dependencies.
13111 	 */
13112 	firstino = inodedep->id_ino & ~(INOPB(fs) - 1);
13113 	for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
13114 		if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0)
13115 			break;
13116 	/*
13117 	 * Asynchronously push all but the last inode with dependencies.
13118 	 * Synchronously push the last inode with dependencies to ensure
13119 	 * that the inode block gets written to free up the inodedeps.
13120 	 */
13121 	for (ino = firstino; ino <= lastino; ino++) {
13122 		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
13123 			continue;
13124 		if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
13125 			continue;
13126 		FREE_LOCK(&lk);
13127 		error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */
13128 		if (error != 0) {
13129 			vn_finished_write(mp);
13130 			ACQUIRE_LOCK(&lk);
13131 			return;
13132 		}
13133 		if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
13134 		    FFSV_FORCEINSMQ)) != 0) {
13135 			softdep_error("clear_inodedeps: vget", error);
13136 			vfs_unbusy(mp);
13137 			vn_finished_write(mp);
13138 			ACQUIRE_LOCK(&lk);
13139 			return;
13140 		}
13141 		vfs_unbusy(mp);
13142 		if (ino == lastino) {
13143 			if ((error = ffs_syncvnode(vp, MNT_WAIT, 0)))
13144 				softdep_error("clear_inodedeps: fsync1", error);
13145 		} else {
13146 			if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
13147 				softdep_error("clear_inodedeps: fsync2", error);
13148 			BO_LOCK(&vp->v_bufobj);
13149 			drain_output(vp);
13150 			BO_UNLOCK(&vp->v_bufobj);
13151 		}
13152 		vput(vp);
13153 		vn_finished_write(mp);
13154 		ACQUIRE_LOCK(&lk);
13155 	}
13156 }
13157 
13158 void
13159 softdep_buf_append(bp, wkhd)
13160 	struct buf *bp;
13161 	struct workhead *wkhd;
13162 {
13163 	struct worklist *wk;
13164 
13165 	ACQUIRE_LOCK(&lk);
13166 	while ((wk = LIST_FIRST(wkhd)) != NULL) {
13167 		WORKLIST_REMOVE(wk);
13168 		WORKLIST_INSERT(&bp->b_dep, wk);
13169 	}
13170 	FREE_LOCK(&lk);
13171 
13172 }
13173 
13174 void
13175 softdep_inode_append(ip, cred, wkhd)
13176 	struct inode *ip;
13177 	struct ucred *cred;
13178 	struct workhead *wkhd;
13179 {
13180 	struct buf *bp;
13181 	struct fs *fs;
13182 	int error;
13183 
13184 	fs = ip->i_fs;
13185 	error = bread(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
13186 	    (int)fs->fs_bsize, cred, &bp);
13187 	if (error) {
13188 		bqrelse(bp);
13189 		softdep_freework(wkhd);
13190 		return;
13191 	}
13192 	softdep_buf_append(bp, wkhd);
13193 	bqrelse(bp);
13194 }
13195 
13196 void
13197 softdep_freework(wkhd)
13198 	struct workhead *wkhd;
13199 {
13200 
13201 	ACQUIRE_LOCK(&lk);
13202 	handle_jwork(wkhd);
13203 	FREE_LOCK(&lk);
13204 }
13205 
13206 /*
13207  * Function to determine if the buffer has outstanding dependencies
13208  * that will cause a roll-back if the buffer is written. If wantcount
13209  * is set, return number of dependencies, otherwise just yes or no.
13210  */
13211 static int
13212 softdep_count_dependencies(bp, wantcount)
13213 	struct buf *bp;
13214 	int wantcount;
13215 {
13216 	struct worklist *wk;
13217 	struct bmsafemap *bmsafemap;
13218 	struct freework *freework;
13219 	struct inodedep *inodedep;
13220 	struct indirdep *indirdep;
13221 	struct freeblks *freeblks;
13222 	struct allocindir *aip;
13223 	struct pagedep *pagedep;
13224 	struct dirrem *dirrem;
13225 	struct newblk *newblk;
13226 	struct mkdir *mkdir;
13227 	struct diradd *dap;
13228 	int i, retval;
13229 
13230 	retval = 0;
13231 	ACQUIRE_LOCK(&lk);
13232 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
13233 		switch (wk->wk_type) {
13234 
13235 		case D_INODEDEP:
13236 			inodedep = WK_INODEDEP(wk);
13237 			if ((inodedep->id_state & DEPCOMPLETE) == 0) {
13238 				/* bitmap allocation dependency */
13239 				retval += 1;
13240 				if (!wantcount)
13241 					goto out;
13242 			}
13243 			if (TAILQ_FIRST(&inodedep->id_inoupdt)) {
13244 				/* direct block pointer dependency */
13245 				retval += 1;
13246 				if (!wantcount)
13247 					goto out;
13248 			}
13249 			if (TAILQ_FIRST(&inodedep->id_extupdt)) {
13250 				/* direct block pointer dependency */
13251 				retval += 1;
13252 				if (!wantcount)
13253 					goto out;
13254 			}
13255 			if (TAILQ_FIRST(&inodedep->id_inoreflst)) {
13256 				/* Add reference dependency. */
13257 				retval += 1;
13258 				if (!wantcount)
13259 					goto out;
13260 			}
13261 			continue;
13262 
13263 		case D_INDIRDEP:
13264 			indirdep = WK_INDIRDEP(wk);
13265 
13266 			TAILQ_FOREACH(freework, &indirdep->ir_trunc, fw_next) {
13267 				/* indirect truncation dependency */
13268 				retval += 1;
13269 				if (!wantcount)
13270 					goto out;
13271 			}
13272 
13273 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
13274 				/* indirect block pointer dependency */
13275 				retval += 1;
13276 				if (!wantcount)
13277 					goto out;
13278 			}
13279 			continue;
13280 
13281 		case D_PAGEDEP:
13282 			pagedep = WK_PAGEDEP(wk);
13283 			LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
13284 				if (LIST_FIRST(&dirrem->dm_jremrefhd)) {
13285 					/* Journal remove ref dependency. */
13286 					retval += 1;
13287 					if (!wantcount)
13288 						goto out;
13289 				}
13290 			}
13291 			for (i = 0; i < DAHASHSZ; i++) {
13292 
13293 				LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
13294 					/* directory entry dependency */
13295 					retval += 1;
13296 					if (!wantcount)
13297 						goto out;
13298 				}
13299 			}
13300 			continue;
13301 
13302 		case D_BMSAFEMAP:
13303 			bmsafemap = WK_BMSAFEMAP(wk);
13304 			if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) {
13305 				/* Add reference dependency. */
13306 				retval += 1;
13307 				if (!wantcount)
13308 					goto out;
13309 			}
13310 			if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) {
13311 				/* Allocate block dependency. */
13312 				retval += 1;
13313 				if (!wantcount)
13314 					goto out;
13315 			}
13316 			continue;
13317 
13318 		case D_FREEBLKS:
13319 			freeblks = WK_FREEBLKS(wk);
13320 			if (LIST_FIRST(&freeblks->fb_jblkdephd)) {
13321 				/* Freeblk journal dependency. */
13322 				retval += 1;
13323 				if (!wantcount)
13324 					goto out;
13325 			}
13326 			continue;
13327 
13328 		case D_ALLOCDIRECT:
13329 		case D_ALLOCINDIR:
13330 			newblk = WK_NEWBLK(wk);
13331 			if (newblk->nb_jnewblk) {
13332 				/* Journal allocate dependency. */
13333 				retval += 1;
13334 				if (!wantcount)
13335 					goto out;
13336 			}
13337 			continue;
13338 
13339 		case D_MKDIR:
13340 			mkdir = WK_MKDIR(wk);
13341 			if (mkdir->md_jaddref) {
13342 				/* Journal reference dependency. */
13343 				retval += 1;
13344 				if (!wantcount)
13345 					goto out;
13346 			}
13347 			continue;
13348 
13349 		case D_FREEWORK:
13350 		case D_FREEDEP:
13351 		case D_JSEGDEP:
13352 		case D_JSEG:
13353 		case D_SBDEP:
13354 			/* never a dependency on these blocks */
13355 			continue;
13356 
13357 		default:
13358 			panic("softdep_count_dependencies: Unexpected type %s",
13359 			    TYPENAME(wk->wk_type));
13360 			/* NOTREACHED */
13361 		}
13362 	}
13363 out:
13364 	FREE_LOCK(&lk);
13365 	return retval;
13366 }
13367 
13368 /*
13369  * Acquire exclusive access to a buffer.
13370  * Must be called with a locked mtx parameter.
13371  * Return acquired buffer or NULL on failure.
13372  */
13373 static struct buf *
13374 getdirtybuf(bp, lock, waitfor)
13375 	struct buf *bp;
13376 	struct rwlock *lock;
13377 	int waitfor;
13378 {
13379 	int error;
13380 
13381 	rw_assert(lock, RA_WLOCKED);
13382 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) {
13383 		if (waitfor != MNT_WAIT)
13384 			return (NULL);
13385 		error = BUF_LOCK(bp,
13386 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, lock);
13387 		/*
13388 		 * Even if we sucessfully acquire bp here, we have dropped
13389 		 * lock, which may violates our guarantee.
13390 		 */
13391 		if (error == 0)
13392 			BUF_UNLOCK(bp);
13393 		else if (error != ENOLCK)
13394 			panic("getdirtybuf: inconsistent lock: %d", error);
13395 		rw_wlock(lock);
13396 		return (NULL);
13397 	}
13398 	if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
13399 		if (lock == &lk && waitfor == MNT_WAIT) {
13400 			rw_wunlock(lock);
13401 			BO_LOCK(bp->b_bufobj);
13402 			BUF_UNLOCK(bp);
13403 			if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
13404 				bp->b_vflags |= BV_BKGRDWAIT;
13405 				msleep(&bp->b_xflags, BO_LOCKPTR(bp->b_bufobj),
13406 				       PRIBIO | PDROP, "getbuf", 0);
13407 			} else
13408 				BO_UNLOCK(bp->b_bufobj);
13409 			rw_wlock(lock);
13410 			return (NULL);
13411 		}
13412 		BUF_UNLOCK(bp);
13413 		if (waitfor != MNT_WAIT)
13414 			return (NULL);
13415 		/*
13416 		 * The lock argument must be bp->b_vp's mutex in
13417 		 * this case.
13418 		 */
13419 #ifdef	DEBUG_VFS_LOCKS
13420 		if (bp->b_vp->v_type != VCHR)
13421 			ASSERT_BO_WLOCKED(bp->b_bufobj);
13422 #endif
13423 		bp->b_vflags |= BV_BKGRDWAIT;
13424 		rw_sleep(&bp->b_xflags, lock, PRIBIO, "getbuf", 0);
13425 		return (NULL);
13426 	}
13427 	if ((bp->b_flags & B_DELWRI) == 0) {
13428 		BUF_UNLOCK(bp);
13429 		return (NULL);
13430 	}
13431 	bremfree(bp);
13432 	return (bp);
13433 }
13434 
13435 
13436 /*
13437  * Check if it is safe to suspend the file system now.  On entry,
13438  * the vnode interlock for devvp should be held.  Return 0 with
13439  * the mount interlock held if the file system can be suspended now,
13440  * otherwise return EAGAIN with the mount interlock held.
13441  */
13442 int
13443 softdep_check_suspend(struct mount *mp,
13444 		      struct vnode *devvp,
13445 		      int softdep_deps,
13446 		      int softdep_accdeps,
13447 		      int secondary_writes,
13448 		      int secondary_accwrites)
13449 {
13450 	struct bufobj *bo;
13451 	struct ufsmount *ump;
13452 	int error;
13453 
13454 	ump = VFSTOUFS(mp);
13455 	bo = &devvp->v_bufobj;
13456 	ASSERT_BO_WLOCKED(bo);
13457 
13458 	for (;;) {
13459 		if (!TRY_ACQUIRE_LOCK(&lk)) {
13460 			BO_UNLOCK(bo);
13461 			ACQUIRE_LOCK(&lk);
13462 			FREE_LOCK(&lk);
13463 			BO_LOCK(bo);
13464 			continue;
13465 		}
13466 		MNT_ILOCK(mp);
13467 		if (mp->mnt_secondary_writes != 0) {
13468 			FREE_LOCK(&lk);
13469 			BO_UNLOCK(bo);
13470 			msleep(&mp->mnt_secondary_writes,
13471 			       MNT_MTX(mp),
13472 			       (PUSER - 1) | PDROP, "secwr", 0);
13473 			BO_LOCK(bo);
13474 			continue;
13475 		}
13476 		break;
13477 	}
13478 
13479 	/*
13480 	 * Reasons for needing more work before suspend:
13481 	 * - Dirty buffers on devvp.
13482 	 * - Softdep activity occurred after start of vnode sync loop
13483 	 * - Secondary writes occurred after start of vnode sync loop
13484 	 */
13485 	error = 0;
13486 	if (bo->bo_numoutput > 0 ||
13487 	    bo->bo_dirty.bv_cnt > 0 ||
13488 	    softdep_deps != 0 ||
13489 	    ump->softdep_deps != 0 ||
13490 	    softdep_accdeps != ump->softdep_accdeps ||
13491 	    secondary_writes != 0 ||
13492 	    mp->mnt_secondary_writes != 0 ||
13493 	    secondary_accwrites != mp->mnt_secondary_accwrites)
13494 		error = EAGAIN;
13495 	FREE_LOCK(&lk);
13496 	BO_UNLOCK(bo);
13497 	return (error);
13498 }
13499 
13500 
13501 /*
13502  * Get the number of dependency structures for the file system, both
13503  * the current number and the total number allocated.  These will
13504  * later be used to detect that softdep processing has occurred.
13505  */
13506 void
13507 softdep_get_depcounts(struct mount *mp,
13508 		      int *softdep_depsp,
13509 		      int *softdep_accdepsp)
13510 {
13511 	struct ufsmount *ump;
13512 
13513 	ump = VFSTOUFS(mp);
13514 	ACQUIRE_LOCK(&lk);
13515 	*softdep_depsp = ump->softdep_deps;
13516 	*softdep_accdepsp = ump->softdep_accdeps;
13517 	FREE_LOCK(&lk);
13518 }
13519 
13520 /*
13521  * Wait for pending output on a vnode to complete.
13522  * Must be called with vnode lock and interlock locked.
13523  *
13524  * XXX: Should just be a call to bufobj_wwait().
13525  */
13526 static void
13527 drain_output(vp)
13528 	struct vnode *vp;
13529 {
13530 	struct bufobj *bo;
13531 
13532 	bo = &vp->v_bufobj;
13533 	ASSERT_VOP_LOCKED(vp, "drain_output");
13534 	ASSERT_BO_WLOCKED(bo);
13535 
13536 	while (bo->bo_numoutput) {
13537 		bo->bo_flag |= BO_WWAIT;
13538 		msleep((caddr_t)&bo->bo_numoutput,
13539 		    BO_LOCKPTR(bo), PRIBIO + 1, "drainvp", 0);
13540 	}
13541 }
13542 
13543 /*
13544  * Called whenever a buffer that is being invalidated or reallocated
13545  * contains dependencies. This should only happen if an I/O error has
13546  * occurred. The routine is called with the buffer locked.
13547  */
13548 static void
13549 softdep_deallocate_dependencies(bp)
13550 	struct buf *bp;
13551 {
13552 
13553 	if ((bp->b_ioflags & BIO_ERROR) == 0)
13554 		panic("softdep_deallocate_dependencies: dangling deps");
13555 	if (bp->b_vp != NULL && bp->b_vp->v_mount != NULL)
13556 		softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error);
13557 	else
13558 		printf("softdep_deallocate_dependencies: "
13559 		    "got error %d while accessing filesystem\n", bp->b_error);
13560 	if (bp->b_error != ENXIO)
13561 		panic("softdep_deallocate_dependencies: unrecovered I/O error");
13562 }
13563 
13564 /*
13565  * Function to handle asynchronous write errors in the filesystem.
13566  */
13567 static void
13568 softdep_error(func, error)
13569 	char *func;
13570 	int error;
13571 {
13572 
13573 	/* XXX should do something better! */
13574 	printf("%s: got error %d while accessing filesystem\n", func, error);
13575 }
13576 
13577 #ifdef DDB
13578 
13579 static void
13580 inodedep_print(struct inodedep *inodedep, int verbose)
13581 {
13582 	db_printf("%p fs %p st %x ino %jd inoblk %jd delta %d nlink %d"
13583 	    " saveino %p\n",
13584 	    inodedep, inodedep->id_fs, inodedep->id_state,
13585 	    (intmax_t)inodedep->id_ino,
13586 	    (intmax_t)fsbtodb(inodedep->id_fs,
13587 	    ino_to_fsba(inodedep->id_fs, inodedep->id_ino)),
13588 	    inodedep->id_nlinkdelta, inodedep->id_savednlink,
13589 	    inodedep->id_savedino1);
13590 
13591 	if (verbose == 0)
13592 		return;
13593 
13594 	db_printf("\tpendinghd %p, bufwait %p, inowait %p, inoreflst %p, "
13595 	    "mkdiradd %p\n",
13596 	    LIST_FIRST(&inodedep->id_pendinghd),
13597 	    LIST_FIRST(&inodedep->id_bufwait),
13598 	    LIST_FIRST(&inodedep->id_inowait),
13599 	    TAILQ_FIRST(&inodedep->id_inoreflst),
13600 	    inodedep->id_mkdiradd);
13601 	db_printf("\tinoupdt %p, newinoupdt %p, extupdt %p, newextupdt %p\n",
13602 	    TAILQ_FIRST(&inodedep->id_inoupdt),
13603 	    TAILQ_FIRST(&inodedep->id_newinoupdt),
13604 	    TAILQ_FIRST(&inodedep->id_extupdt),
13605 	    TAILQ_FIRST(&inodedep->id_newextupdt));
13606 }
13607 
13608 DB_SHOW_COMMAND(inodedep, db_show_inodedep)
13609 {
13610 
13611 	if (have_addr == 0) {
13612 		db_printf("Address required\n");
13613 		return;
13614 	}
13615 	inodedep_print((struct inodedep*)addr, 1);
13616 }
13617 
13618 DB_SHOW_COMMAND(inodedeps, db_show_inodedeps)
13619 {
13620 	struct inodedep_hashhead *inodedephd;
13621 	struct inodedep *inodedep;
13622 	struct fs *fs;
13623 	int cnt;
13624 
13625 	fs = have_addr ? (struct fs *)addr : NULL;
13626 	for (cnt = 0; cnt < inodedep_hash; cnt++) {
13627 		inodedephd = &inodedep_hashtbl[cnt];
13628 		LIST_FOREACH(inodedep, inodedephd, id_hash) {
13629 			if (fs != NULL && fs != inodedep->id_fs)
13630 				continue;
13631 			inodedep_print(inodedep, 0);
13632 		}
13633 	}
13634 }
13635 
13636 DB_SHOW_COMMAND(worklist, db_show_worklist)
13637 {
13638 	struct worklist *wk;
13639 
13640 	if (have_addr == 0) {
13641 		db_printf("Address required\n");
13642 		return;
13643 	}
13644 	wk = (struct worklist *)addr;
13645 	printf("worklist: %p type %s state 0x%X\n",
13646 	    wk, TYPENAME(wk->wk_type), wk->wk_state);
13647 }
13648 
13649 DB_SHOW_COMMAND(workhead, db_show_workhead)
13650 {
13651 	struct workhead *wkhd;
13652 	struct worklist *wk;
13653 	int i;
13654 
13655 	if (have_addr == 0) {
13656 		db_printf("Address required\n");
13657 		return;
13658 	}
13659 	wkhd = (struct workhead *)addr;
13660 	wk = LIST_FIRST(wkhd);
13661 	for (i = 0; i < 100 && wk != NULL; i++, wk = LIST_NEXT(wk, wk_list))
13662 		db_printf("worklist: %p type %s state 0x%X",
13663 		    wk, TYPENAME(wk->wk_type), wk->wk_state);
13664 	if (i == 100)
13665 		db_printf("workhead overflow");
13666 	printf("\n");
13667 }
13668 
13669 
13670 DB_SHOW_COMMAND(mkdirs, db_show_mkdirs)
13671 {
13672 	struct jaddref *jaddref;
13673 	struct diradd *diradd;
13674 	struct mkdir *mkdir;
13675 
13676 	LIST_FOREACH(mkdir, &mkdirlisthd, md_mkdirs) {
13677 		diradd = mkdir->md_diradd;
13678 		db_printf("mkdir: %p state 0x%X dap %p state 0x%X",
13679 		    mkdir, mkdir->md_state, diradd, diradd->da_state);
13680 		if ((jaddref = mkdir->md_jaddref) != NULL)
13681 			db_printf(" jaddref %p jaddref state 0x%X",
13682 			    jaddref, jaddref->ja_state);
13683 		db_printf("\n");
13684 	}
13685 }
13686 
13687 #endif /* DDB */
13688 
13689 #endif /* SOFTUPDATES */
13690