1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright 1998, 2000 Marshall Kirk McKusick. 5 * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org> 6 * All rights reserved. 7 * 8 * The soft updates code is derived from the appendix of a University 9 * of Michigan technical report (Gregory R. Ganger and Yale N. Patt, 10 * "Soft Updates: A Solution to the Metadata Update Problem in File 11 * Systems", CSE-TR-254-95, August 1995). 12 * 13 * Further information about soft updates can be obtained from: 14 * 15 * Marshall Kirk McKusick http://www.mckusick.com/softdep/ 16 * 1614 Oxford Street mckusick@mckusick.com 17 * Berkeley, CA 94709-1608 +1-510-843-9542 18 * USA 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * 1. Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * 2. Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in the 28 * documentation and/or other materials provided with the distribution. 29 * 30 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 31 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 32 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 33 * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, 34 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 35 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 36 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 37 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 38 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 39 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 40 * 41 * from: @(#)ffs_softdep.c 9.59 (McKusick) 6/21/00 42 */ 43 44 #include <sys/cdefs.h> 45 __FBSDID("$FreeBSD$"); 46 47 #include "opt_ffs.h" 48 #include "opt_quota.h" 49 #include "opt_ddb.h" 50 51 #include <sys/param.h> 52 #include <sys/kernel.h> 53 #include <sys/systm.h> 54 #include <sys/bio.h> 55 #include <sys/buf.h> 56 #include <sys/kdb.h> 57 #include <sys/kthread.h> 58 #include <sys/ktr.h> 59 #include <sys/limits.h> 60 #include <sys/lock.h> 61 #include <sys/malloc.h> 62 #include <sys/mount.h> 63 #include <sys/mutex.h> 64 #include <sys/namei.h> 65 #include <sys/priv.h> 66 #include <sys/proc.h> 67 #include <sys/racct.h> 68 #include <sys/rwlock.h> 69 #include <sys/stat.h> 70 #include <sys/sysctl.h> 71 #include <sys/syslog.h> 72 #include <sys/vnode.h> 73 #include <sys/conf.h> 74 75 #include <ufs/ufs/dir.h> 76 #include <ufs/ufs/extattr.h> 77 #include <ufs/ufs/quota.h> 78 #include <ufs/ufs/inode.h> 79 #include <ufs/ufs/ufsmount.h> 80 #include <ufs/ffs/fs.h> 81 #include <ufs/ffs/softdep.h> 82 #include <ufs/ffs/ffs_extern.h> 83 #include <ufs/ufs/ufs_extern.h> 84 85 #include <vm/vm.h> 86 #include <vm/vm_extern.h> 87 #include <vm/vm_object.h> 88 89 #include <geom/geom.h> 90 #include <geom/geom_vfs.h> 91 92 #include <ddb/ddb.h> 93 94 #define KTR_SUJ 0 /* Define to KTR_SPARE. */ 95 96 #ifndef SOFTUPDATES 97 98 int 99 softdep_flushfiles(oldmnt, flags, td) 100 struct mount *oldmnt; 101 int flags; 102 struct thread *td; 103 { 104 105 panic("softdep_flushfiles called"); 106 } 107 108 int 109 softdep_mount(devvp, mp, fs, cred) 110 struct vnode *devvp; 111 struct mount *mp; 112 struct fs *fs; 113 struct ucred *cred; 114 { 115 116 return (0); 117 } 118 119 void 120 softdep_initialize() 121 { 122 123 return; 124 } 125 126 void 127 softdep_uninitialize() 128 { 129 130 return; 131 } 132 133 void 134 softdep_unmount(mp) 135 struct mount *mp; 136 { 137 138 panic("softdep_unmount called"); 139 } 140 141 void 142 softdep_setup_sbupdate(ump, fs, bp) 143 struct ufsmount *ump; 144 struct fs *fs; 145 struct buf *bp; 146 { 147 148 panic("softdep_setup_sbupdate called"); 149 } 150 151 void 152 softdep_setup_inomapdep(bp, ip, newinum, mode) 153 struct buf *bp; 154 struct inode *ip; 155 ino_t newinum; 156 int mode; 157 { 158 159 panic("softdep_setup_inomapdep called"); 160 } 161 162 void 163 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags) 164 struct buf *bp; 165 struct mount *mp; 166 ufs2_daddr_t newblkno; 167 int frags; 168 int oldfrags; 169 { 170 171 panic("softdep_setup_blkmapdep called"); 172 } 173 174 void 175 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 176 struct inode *ip; 177 ufs_lbn_t lbn; 178 ufs2_daddr_t newblkno; 179 ufs2_daddr_t oldblkno; 180 long newsize; 181 long oldsize; 182 struct buf *bp; 183 { 184 185 panic("softdep_setup_allocdirect called"); 186 } 187 188 void 189 softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 190 struct inode *ip; 191 ufs_lbn_t lbn; 192 ufs2_daddr_t newblkno; 193 ufs2_daddr_t oldblkno; 194 long newsize; 195 long oldsize; 196 struct buf *bp; 197 { 198 199 panic("softdep_setup_allocext called"); 200 } 201 202 void 203 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 204 struct inode *ip; 205 ufs_lbn_t lbn; 206 struct buf *bp; 207 int ptrno; 208 ufs2_daddr_t newblkno; 209 ufs2_daddr_t oldblkno; 210 struct buf *nbp; 211 { 212 213 panic("softdep_setup_allocindir_page called"); 214 } 215 216 void 217 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 218 struct buf *nbp; 219 struct inode *ip; 220 struct buf *bp; 221 int ptrno; 222 ufs2_daddr_t newblkno; 223 { 224 225 panic("softdep_setup_allocindir_meta called"); 226 } 227 228 void 229 softdep_journal_freeblocks(ip, cred, length, flags) 230 struct inode *ip; 231 struct ucred *cred; 232 off_t length; 233 int flags; 234 { 235 236 panic("softdep_journal_freeblocks called"); 237 } 238 239 void 240 softdep_journal_fsync(ip) 241 struct inode *ip; 242 { 243 244 panic("softdep_journal_fsync called"); 245 } 246 247 void 248 softdep_setup_freeblocks(ip, length, flags) 249 struct inode *ip; 250 off_t length; 251 int flags; 252 { 253 254 panic("softdep_setup_freeblocks called"); 255 } 256 257 void 258 softdep_freefile(pvp, ino, mode) 259 struct vnode *pvp; 260 ino_t ino; 261 int mode; 262 { 263 264 panic("softdep_freefile called"); 265 } 266 267 int 268 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk) 269 struct buf *bp; 270 struct inode *dp; 271 off_t diroffset; 272 ino_t newinum; 273 struct buf *newdirbp; 274 int isnewblk; 275 { 276 277 panic("softdep_setup_directory_add called"); 278 } 279 280 void 281 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize) 282 struct buf *bp; 283 struct inode *dp; 284 caddr_t base; 285 caddr_t oldloc; 286 caddr_t newloc; 287 int entrysize; 288 { 289 290 panic("softdep_change_directoryentry_offset called"); 291 } 292 293 void 294 softdep_setup_remove(bp, dp, ip, isrmdir) 295 struct buf *bp; 296 struct inode *dp; 297 struct inode *ip; 298 int isrmdir; 299 { 300 301 panic("softdep_setup_remove called"); 302 } 303 304 void 305 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 306 struct buf *bp; 307 struct inode *dp; 308 struct inode *ip; 309 ino_t newinum; 310 int isrmdir; 311 { 312 313 panic("softdep_setup_directory_change called"); 314 } 315 316 void 317 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd) 318 struct mount *mp; 319 struct buf *bp; 320 ufs2_daddr_t blkno; 321 int frags; 322 struct workhead *wkhd; 323 { 324 325 panic("%s called", __FUNCTION__); 326 } 327 328 void 329 softdep_setup_inofree(mp, bp, ino, wkhd) 330 struct mount *mp; 331 struct buf *bp; 332 ino_t ino; 333 struct workhead *wkhd; 334 { 335 336 panic("%s called", __FUNCTION__); 337 } 338 339 void 340 softdep_setup_unlink(dp, ip) 341 struct inode *dp; 342 struct inode *ip; 343 { 344 345 panic("%s called", __FUNCTION__); 346 } 347 348 void 349 softdep_setup_link(dp, ip) 350 struct inode *dp; 351 struct inode *ip; 352 { 353 354 panic("%s called", __FUNCTION__); 355 } 356 357 void 358 softdep_revert_link(dp, ip) 359 struct inode *dp; 360 struct inode *ip; 361 { 362 363 panic("%s called", __FUNCTION__); 364 } 365 366 void 367 softdep_setup_rmdir(dp, ip) 368 struct inode *dp; 369 struct inode *ip; 370 { 371 372 panic("%s called", __FUNCTION__); 373 } 374 375 void 376 softdep_revert_rmdir(dp, ip) 377 struct inode *dp; 378 struct inode *ip; 379 { 380 381 panic("%s called", __FUNCTION__); 382 } 383 384 void 385 softdep_setup_create(dp, ip) 386 struct inode *dp; 387 struct inode *ip; 388 { 389 390 panic("%s called", __FUNCTION__); 391 } 392 393 void 394 softdep_revert_create(dp, ip) 395 struct inode *dp; 396 struct inode *ip; 397 { 398 399 panic("%s called", __FUNCTION__); 400 } 401 402 void 403 softdep_setup_mkdir(dp, ip) 404 struct inode *dp; 405 struct inode *ip; 406 { 407 408 panic("%s called", __FUNCTION__); 409 } 410 411 void 412 softdep_revert_mkdir(dp, ip) 413 struct inode *dp; 414 struct inode *ip; 415 { 416 417 panic("%s called", __FUNCTION__); 418 } 419 420 void 421 softdep_setup_dotdot_link(dp, ip) 422 struct inode *dp; 423 struct inode *ip; 424 { 425 426 panic("%s called", __FUNCTION__); 427 } 428 429 int 430 softdep_prealloc(vp, waitok) 431 struct vnode *vp; 432 int waitok; 433 { 434 435 panic("%s called", __FUNCTION__); 436 } 437 438 int 439 softdep_journal_lookup(mp, vpp) 440 struct mount *mp; 441 struct vnode **vpp; 442 { 443 444 return (ENOENT); 445 } 446 447 void 448 softdep_change_linkcnt(ip) 449 struct inode *ip; 450 { 451 452 panic("softdep_change_linkcnt called"); 453 } 454 455 void 456 softdep_load_inodeblock(ip) 457 struct inode *ip; 458 { 459 460 panic("softdep_load_inodeblock called"); 461 } 462 463 void 464 softdep_update_inodeblock(ip, bp, waitfor) 465 struct inode *ip; 466 struct buf *bp; 467 int waitfor; 468 { 469 470 panic("softdep_update_inodeblock called"); 471 } 472 473 int 474 softdep_fsync(vp) 475 struct vnode *vp; /* the "in_core" copy of the inode */ 476 { 477 478 return (0); 479 } 480 481 void 482 softdep_fsync_mountdev(vp) 483 struct vnode *vp; 484 { 485 486 return; 487 } 488 489 int 490 softdep_flushworklist(oldmnt, countp, td) 491 struct mount *oldmnt; 492 int *countp; 493 struct thread *td; 494 { 495 496 *countp = 0; 497 return (0); 498 } 499 500 int 501 softdep_sync_metadata(struct vnode *vp) 502 { 503 504 panic("softdep_sync_metadata called"); 505 } 506 507 int 508 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor) 509 { 510 511 panic("softdep_sync_buf called"); 512 } 513 514 int 515 softdep_slowdown(vp) 516 struct vnode *vp; 517 { 518 519 panic("softdep_slowdown called"); 520 } 521 522 int 523 softdep_request_cleanup(fs, vp, cred, resource) 524 struct fs *fs; 525 struct vnode *vp; 526 struct ucred *cred; 527 int resource; 528 { 529 530 return (0); 531 } 532 533 int 534 softdep_check_suspend(struct mount *mp, 535 struct vnode *devvp, 536 int softdep_depcnt, 537 int softdep_accdepcnt, 538 int secondary_writes, 539 int secondary_accwrites) 540 { 541 struct bufobj *bo; 542 int error; 543 544 (void) softdep_depcnt, 545 (void) softdep_accdepcnt; 546 547 bo = &devvp->v_bufobj; 548 ASSERT_BO_WLOCKED(bo); 549 550 MNT_ILOCK(mp); 551 while (mp->mnt_secondary_writes != 0) { 552 BO_UNLOCK(bo); 553 msleep(&mp->mnt_secondary_writes, MNT_MTX(mp), 554 (PUSER - 1) | PDROP, "secwr", 0); 555 BO_LOCK(bo); 556 MNT_ILOCK(mp); 557 } 558 559 /* 560 * Reasons for needing more work before suspend: 561 * - Dirty buffers on devvp. 562 * - Secondary writes occurred after start of vnode sync loop 563 */ 564 error = 0; 565 if (bo->bo_numoutput > 0 || 566 bo->bo_dirty.bv_cnt > 0 || 567 secondary_writes != 0 || 568 mp->mnt_secondary_writes != 0 || 569 secondary_accwrites != mp->mnt_secondary_accwrites) 570 error = EAGAIN; 571 BO_UNLOCK(bo); 572 return (error); 573 } 574 575 void 576 softdep_get_depcounts(struct mount *mp, 577 int *softdepactivep, 578 int *softdepactiveaccp) 579 { 580 (void) mp; 581 *softdepactivep = 0; 582 *softdepactiveaccp = 0; 583 } 584 585 void 586 softdep_buf_append(bp, wkhd) 587 struct buf *bp; 588 struct workhead *wkhd; 589 { 590 591 panic("softdep_buf_appendwork called"); 592 } 593 594 void 595 softdep_inode_append(ip, cred, wkhd) 596 struct inode *ip; 597 struct ucred *cred; 598 struct workhead *wkhd; 599 { 600 601 panic("softdep_inode_appendwork called"); 602 } 603 604 void 605 softdep_freework(wkhd) 606 struct workhead *wkhd; 607 { 608 609 panic("softdep_freework called"); 610 } 611 612 int 613 softdep_prerename(fdvp, fvp, tdvp, tvp) 614 struct vnode *fdvp; 615 struct vnode *fvp; 616 struct vnode *tdvp; 617 struct vnode *tvp; 618 { 619 620 panic("softdep_prerename called"); 621 } 622 623 int 624 softdep_prelink(dvp, vp, will_direnter) 625 struct vnode *dvp; 626 struct vnode *vp; 627 int will_direnter; 628 { 629 630 panic("softdep_prelink called"); 631 } 632 633 #else 634 635 FEATURE(softupdates, "FFS soft-updates support"); 636 637 static SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 638 "soft updates stats"); 639 static SYSCTL_NODE(_debug_softdep, OID_AUTO, total, 640 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 641 "total dependencies allocated"); 642 static SYSCTL_NODE(_debug_softdep, OID_AUTO, highuse, 643 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 644 "high use dependencies allocated"); 645 static SYSCTL_NODE(_debug_softdep, OID_AUTO, current, 646 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 647 "current dependencies allocated"); 648 static SYSCTL_NODE(_debug_softdep, OID_AUTO, write, 649 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 650 "current dependencies written"); 651 652 unsigned long dep_current[D_LAST + 1]; 653 unsigned long dep_highuse[D_LAST + 1]; 654 unsigned long dep_total[D_LAST + 1]; 655 unsigned long dep_write[D_LAST + 1]; 656 657 #define SOFTDEP_TYPE(type, str, long) \ 658 static MALLOC_DEFINE(M_ ## type, #str, long); \ 659 SYSCTL_ULONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD, \ 660 &dep_total[D_ ## type], 0, ""); \ 661 SYSCTL_ULONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD, \ 662 &dep_current[D_ ## type], 0, ""); \ 663 SYSCTL_ULONG(_debug_softdep_highuse, OID_AUTO, str, CTLFLAG_RD, \ 664 &dep_highuse[D_ ## type], 0, ""); \ 665 SYSCTL_ULONG(_debug_softdep_write, OID_AUTO, str, CTLFLAG_RD, \ 666 &dep_write[D_ ## type], 0, ""); 667 668 SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies"); 669 SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies"); 670 SOFTDEP_TYPE(BMSAFEMAP, bmsafemap, 671 "Block or frag allocated from cyl group map"); 672 SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency"); 673 SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode"); 674 SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies"); 675 SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block"); 676 SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode"); 677 SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode"); 678 SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated"); 679 SOFTDEP_TYPE(DIRADD, diradd, "New directory entry"); 680 SOFTDEP_TYPE(MKDIR, mkdir, "New directory"); 681 SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted"); 682 SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block"); 683 SOFTDEP_TYPE(FREEWORK, freework, "free an inode block"); 684 SOFTDEP_TYPE(FREEDEP, freedep, "track a block free"); 685 SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add"); 686 SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove"); 687 SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move"); 688 SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block"); 689 SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block"); 690 SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag"); 691 SOFTDEP_TYPE(JSEG, jseg, "Journal segment"); 692 SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete"); 693 SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency"); 694 SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation"); 695 SOFTDEP_TYPE(JFSYNC, jfsync, "Journal fsync complete"); 696 697 static MALLOC_DEFINE(M_SENTINEL, "sentinel", "Worklist sentinel"); 698 699 static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes"); 700 static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations"); 701 static MALLOC_DEFINE(M_MOUNTDATA, "softdep", "Softdep per-mount data"); 702 703 #define M_SOFTDEP_FLAGS (M_WAITOK) 704 705 /* 706 * translate from workitem type to memory type 707 * MUST match the defines above, such that memtype[D_XXX] == M_XXX 708 */ 709 static struct malloc_type *memtype[] = { 710 NULL, 711 M_PAGEDEP, 712 M_INODEDEP, 713 M_BMSAFEMAP, 714 M_NEWBLK, 715 M_ALLOCDIRECT, 716 M_INDIRDEP, 717 M_ALLOCINDIR, 718 M_FREEFRAG, 719 M_FREEBLKS, 720 M_FREEFILE, 721 M_DIRADD, 722 M_MKDIR, 723 M_DIRREM, 724 M_NEWDIRBLK, 725 M_FREEWORK, 726 M_FREEDEP, 727 M_JADDREF, 728 M_JREMREF, 729 M_JMVREF, 730 M_JNEWBLK, 731 M_JFREEBLK, 732 M_JFREEFRAG, 733 M_JSEG, 734 M_JSEGDEP, 735 M_SBDEP, 736 M_JTRUNC, 737 M_JFSYNC, 738 M_SENTINEL 739 }; 740 741 #define DtoM(type) (memtype[type]) 742 743 /* 744 * Names of malloc types. 745 */ 746 #define TYPENAME(type) \ 747 ((unsigned)(type) <= D_LAST && (unsigned)(type) >= D_FIRST ? \ 748 memtype[type]->ks_shortdesc : "???") 749 /* 750 * End system adaptation definitions. 751 */ 752 753 #define DOTDOT_OFFSET offsetof(struct dirtemplate, dotdot_ino) 754 #define DOT_OFFSET offsetof(struct dirtemplate, dot_ino) 755 756 /* 757 * Internal function prototypes. 758 */ 759 static void check_clear_deps(struct mount *); 760 static void softdep_error(char *, int); 761 static int softdep_process_worklist(struct mount *, int); 762 static int softdep_waitidle(struct mount *, int); 763 static void drain_output(struct vnode *); 764 static struct buf *getdirtybuf(struct buf *, struct rwlock *, int); 765 static int check_inodedep_free(struct inodedep *); 766 static void clear_remove(struct mount *); 767 static void clear_inodedeps(struct mount *); 768 static void unlinked_inodedep(struct mount *, struct inodedep *); 769 static void clear_unlinked_inodedep(struct inodedep *); 770 static struct inodedep *first_unlinked_inodedep(struct ufsmount *); 771 static int flush_pagedep_deps(struct vnode *, struct mount *, 772 struct diraddhd *, struct buf *); 773 static int free_pagedep(struct pagedep *); 774 static int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t); 775 static int flush_inodedep_deps(struct vnode *, struct mount *, ino_t); 776 static int flush_deplist(struct allocdirectlst *, int, int *); 777 static int sync_cgs(struct mount *, int); 778 static int handle_written_filepage(struct pagedep *, struct buf *, int); 779 static int handle_written_sbdep(struct sbdep *, struct buf *); 780 static void initiate_write_sbdep(struct sbdep *); 781 static void diradd_inode_written(struct diradd *, struct inodedep *); 782 static int handle_written_indirdep(struct indirdep *, struct buf *, 783 struct buf**, int); 784 static int handle_written_inodeblock(struct inodedep *, struct buf *, int); 785 static int jnewblk_rollforward(struct jnewblk *, struct fs *, struct cg *, 786 uint8_t *); 787 static int handle_written_bmsafemap(struct bmsafemap *, struct buf *, int); 788 static void handle_written_jaddref(struct jaddref *); 789 static void handle_written_jremref(struct jremref *); 790 static void handle_written_jseg(struct jseg *, struct buf *); 791 static void handle_written_jnewblk(struct jnewblk *); 792 static void handle_written_jblkdep(struct jblkdep *); 793 static void handle_written_jfreefrag(struct jfreefrag *); 794 static void complete_jseg(struct jseg *); 795 static void complete_jsegs(struct jseg *); 796 static void jseg_write(struct ufsmount *ump, struct jseg *, uint8_t *); 797 static void jaddref_write(struct jaddref *, struct jseg *, uint8_t *); 798 static void jremref_write(struct jremref *, struct jseg *, uint8_t *); 799 static void jmvref_write(struct jmvref *, struct jseg *, uint8_t *); 800 static void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *); 801 static void jfsync_write(struct jfsync *, struct jseg *, uint8_t *data); 802 static void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *); 803 static void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *); 804 static void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *); 805 static inline void inoref_write(struct inoref *, struct jseg *, 806 struct jrefrec *); 807 static void handle_allocdirect_partdone(struct allocdirect *, 808 struct workhead *); 809 static struct jnewblk *cancel_newblk(struct newblk *, struct worklist *, 810 struct workhead *); 811 static void indirdep_complete(struct indirdep *); 812 static int indirblk_lookup(struct mount *, ufs2_daddr_t); 813 static void indirblk_insert(struct freework *); 814 static void indirblk_remove(struct freework *); 815 static void handle_allocindir_partdone(struct allocindir *); 816 static void initiate_write_filepage(struct pagedep *, struct buf *); 817 static void initiate_write_indirdep(struct indirdep*, struct buf *); 818 static void handle_written_mkdir(struct mkdir *, int); 819 static int jnewblk_rollback(struct jnewblk *, struct fs *, struct cg *, 820 uint8_t *); 821 static void initiate_write_bmsafemap(struct bmsafemap *, struct buf *); 822 static void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *); 823 static void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *); 824 static void handle_workitem_freefile(struct freefile *); 825 static int handle_workitem_remove(struct dirrem *, int); 826 static struct dirrem *newdirrem(struct buf *, struct inode *, 827 struct inode *, int, struct dirrem **); 828 static struct indirdep *indirdep_lookup(struct mount *, struct inode *, 829 struct buf *); 830 static void cancel_indirdep(struct indirdep *, struct buf *, 831 struct freeblks *); 832 static void free_indirdep(struct indirdep *); 833 static void free_diradd(struct diradd *, struct workhead *); 834 static void merge_diradd(struct inodedep *, struct diradd *); 835 static void complete_diradd(struct diradd *); 836 static struct diradd *diradd_lookup(struct pagedep *, int); 837 static struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *, 838 struct jremref *); 839 static struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *, 840 struct jremref *); 841 static void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *, 842 struct jremref *, struct jremref *); 843 static void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *, 844 struct jremref *); 845 static void cancel_allocindir(struct allocindir *, struct buf *bp, 846 struct freeblks *, int); 847 static int setup_trunc_indir(struct freeblks *, struct inode *, 848 ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t); 849 static void complete_trunc_indir(struct freework *); 850 static void trunc_indirdep(struct indirdep *, struct freeblks *, struct buf *, 851 int); 852 static void complete_mkdir(struct mkdir *); 853 static void free_newdirblk(struct newdirblk *); 854 static void free_jremref(struct jremref *); 855 static void free_jaddref(struct jaddref *); 856 static void free_jsegdep(struct jsegdep *); 857 static void free_jsegs(struct jblocks *); 858 static void rele_jseg(struct jseg *); 859 static void free_jseg(struct jseg *, struct jblocks *); 860 static void free_jnewblk(struct jnewblk *); 861 static void free_jblkdep(struct jblkdep *); 862 static void free_jfreefrag(struct jfreefrag *); 863 static void free_freedep(struct freedep *); 864 static void journal_jremref(struct dirrem *, struct jremref *, 865 struct inodedep *); 866 static void cancel_jnewblk(struct jnewblk *, struct workhead *); 867 static int cancel_jaddref(struct jaddref *, struct inodedep *, 868 struct workhead *); 869 static void cancel_jfreefrag(struct jfreefrag *); 870 static inline void setup_freedirect(struct freeblks *, struct inode *, 871 int, int); 872 static inline void setup_freeext(struct freeblks *, struct inode *, int, int); 873 static inline void setup_freeindir(struct freeblks *, struct inode *, int, 874 ufs_lbn_t, int); 875 static inline struct freeblks *newfreeblks(struct mount *, struct inode *); 876 static void freeblks_free(struct ufsmount *, struct freeblks *, int); 877 static void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t); 878 static ufs2_daddr_t blkcount(struct fs *, ufs2_daddr_t, off_t); 879 static int trunc_check_buf(struct buf *, int *, ufs_lbn_t, int, int); 880 static void trunc_dependencies(struct inode *, struct freeblks *, ufs_lbn_t, 881 int, int); 882 static void trunc_pages(struct inode *, off_t, ufs2_daddr_t, int); 883 static int cancel_pagedep(struct pagedep *, struct freeblks *, int); 884 static int deallocate_dependencies(struct buf *, struct freeblks *, int); 885 static void newblk_freefrag(struct newblk*); 886 static void free_newblk(struct newblk *); 887 static void cancel_allocdirect(struct allocdirectlst *, 888 struct allocdirect *, struct freeblks *); 889 static int check_inode_unwritten(struct inodedep *); 890 static int free_inodedep(struct inodedep *); 891 static void freework_freeblock(struct freework *, u_long); 892 static void freework_enqueue(struct freework *); 893 static int handle_workitem_freeblocks(struct freeblks *, int); 894 static int handle_complete_freeblocks(struct freeblks *, int); 895 static void handle_workitem_indirblk(struct freework *); 896 static void handle_written_freework(struct freework *); 897 static void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *); 898 static struct worklist *jnewblk_merge(struct worklist *, struct worklist *, 899 struct workhead *); 900 static struct freefrag *setup_allocindir_phase2(struct buf *, struct inode *, 901 struct inodedep *, struct allocindir *, ufs_lbn_t); 902 static struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t, 903 ufs2_daddr_t, ufs_lbn_t); 904 static void handle_workitem_freefrag(struct freefrag *); 905 static struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long, 906 ufs_lbn_t, u_long); 907 static void allocdirect_merge(struct allocdirectlst *, 908 struct allocdirect *, struct allocdirect *); 909 static struct freefrag *allocindir_merge(struct allocindir *, 910 struct allocindir *); 911 static int bmsafemap_find(struct bmsafemap_hashhead *, int, 912 struct bmsafemap **); 913 static struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *, 914 int cg, struct bmsafemap *); 915 static int newblk_find(struct newblk_hashhead *, ufs2_daddr_t, int, 916 struct newblk **); 917 static int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **); 918 static int inodedep_find(struct inodedep_hashhead *, ino_t, 919 struct inodedep **); 920 static int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **); 921 static int pagedep_lookup(struct mount *, struct buf *bp, ino_t, ufs_lbn_t, 922 int, struct pagedep **); 923 static int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t, 924 struct pagedep **); 925 static void pause_timer(void *); 926 static int request_cleanup(struct mount *, int); 927 static int softdep_request_cleanup_flush(struct mount *, struct ufsmount *); 928 static void schedule_cleanup(struct mount *); 929 static void softdep_ast_cleanup_proc(struct thread *); 930 static struct ufsmount *softdep_bp_to_mp(struct buf *bp); 931 static int process_worklist_item(struct mount *, int, int); 932 static void process_removes(struct vnode *); 933 static void process_truncates(struct vnode *); 934 static void jwork_move(struct workhead *, struct workhead *); 935 static void jwork_insert(struct workhead *, struct jsegdep *); 936 static void add_to_worklist(struct worklist *, int); 937 static void wake_worklist(struct worklist *); 938 static void wait_worklist(struct worklist *, char *); 939 static void remove_from_worklist(struct worklist *); 940 static void softdep_flush(void *); 941 static void softdep_flushjournal(struct mount *); 942 static int softdep_speedup(struct ufsmount *); 943 static void worklist_speedup(struct mount *); 944 static int journal_mount(struct mount *, struct fs *, struct ucred *); 945 static void journal_unmount(struct ufsmount *); 946 static int journal_space(struct ufsmount *, int); 947 static void journal_suspend(struct ufsmount *); 948 static int journal_unsuspend(struct ufsmount *ump); 949 static void add_to_journal(struct worklist *); 950 static void remove_from_journal(struct worklist *); 951 static bool softdep_excess_items(struct ufsmount *, int); 952 static void softdep_process_journal(struct mount *, struct worklist *, int); 953 static struct jremref *newjremref(struct dirrem *, struct inode *, 954 struct inode *ip, off_t, nlink_t); 955 static struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t, 956 uint16_t); 957 static inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t, 958 uint16_t); 959 static inline struct jsegdep *inoref_jseg(struct inoref *); 960 static struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t); 961 static struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t, 962 ufs2_daddr_t, int); 963 static void adjust_newfreework(struct freeblks *, int); 964 static struct jtrunc *newjtrunc(struct freeblks *, off_t, int); 965 static void move_newblock_dep(struct jaddref *, struct inodedep *); 966 static void cancel_jfreeblk(struct freeblks *, ufs2_daddr_t); 967 static struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *, 968 ufs2_daddr_t, long, ufs_lbn_t); 969 static struct freework *newfreework(struct ufsmount *, struct freeblks *, 970 struct freework *, ufs_lbn_t, ufs2_daddr_t, int, int, int); 971 static int jwait(struct worklist *, int); 972 static struct inodedep *inodedep_lookup_ip(struct inode *); 973 static int bmsafemap_backgroundwrite(struct bmsafemap *, struct buf *); 974 static struct freefile *handle_bufwait(struct inodedep *, struct workhead *); 975 static void handle_jwork(struct workhead *); 976 static struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *, 977 struct mkdir **); 978 static struct jblocks *jblocks_create(void); 979 static ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *); 980 static void jblocks_free(struct jblocks *, struct mount *, int); 981 static void jblocks_destroy(struct jblocks *); 982 static void jblocks_add(struct jblocks *, ufs2_daddr_t, int); 983 984 /* 985 * Exported softdep operations. 986 */ 987 static void softdep_disk_io_initiation(struct buf *); 988 static void softdep_disk_write_complete(struct buf *); 989 static void softdep_deallocate_dependencies(struct buf *); 990 static int softdep_count_dependencies(struct buf *bp, int); 991 992 /* 993 * Global lock over all of soft updates. 994 */ 995 static struct mtx lk; 996 MTX_SYSINIT(softdep_lock, &lk, "global softdep", MTX_DEF); 997 998 #define ACQUIRE_GBLLOCK(lk) mtx_lock(lk) 999 #define FREE_GBLLOCK(lk) mtx_unlock(lk) 1000 #define GBLLOCK_OWNED(lk) mtx_assert((lk), MA_OWNED) 1001 1002 /* 1003 * Per-filesystem soft-updates locking. 1004 */ 1005 #define LOCK_PTR(ump) (&(ump)->um_softdep->sd_fslock) 1006 #define TRY_ACQUIRE_LOCK(ump) rw_try_wlock(&(ump)->um_softdep->sd_fslock) 1007 #define ACQUIRE_LOCK(ump) rw_wlock(&(ump)->um_softdep->sd_fslock) 1008 #define FREE_LOCK(ump) rw_wunlock(&(ump)->um_softdep->sd_fslock) 1009 #define LOCK_OWNED(ump) rw_assert(&(ump)->um_softdep->sd_fslock, \ 1010 RA_WLOCKED) 1011 1012 #define BUF_AREC(bp) lockallowrecurse(&(bp)->b_lock) 1013 #define BUF_NOREC(bp) lockdisablerecurse(&(bp)->b_lock) 1014 1015 /* 1016 * Worklist queue management. 1017 * These routines require that the lock be held. 1018 */ 1019 #ifndef /* NOT */ INVARIANTS 1020 #define WORKLIST_INSERT(head, item) do { \ 1021 (item)->wk_state |= ONWORKLIST; \ 1022 LIST_INSERT_HEAD(head, item, wk_list); \ 1023 } while (0) 1024 #define WORKLIST_REMOVE(item) do { \ 1025 (item)->wk_state &= ~ONWORKLIST; \ 1026 LIST_REMOVE(item, wk_list); \ 1027 } while (0) 1028 #define WORKLIST_INSERT_UNLOCKED WORKLIST_INSERT 1029 #define WORKLIST_REMOVE_UNLOCKED WORKLIST_REMOVE 1030 1031 #else /* INVARIANTS */ 1032 static void worklist_insert(struct workhead *, struct worklist *, int, 1033 const char *, int); 1034 static void worklist_remove(struct worklist *, int, const char *, int); 1035 1036 #define WORKLIST_INSERT(head, item) \ 1037 worklist_insert(head, item, 1, __func__, __LINE__) 1038 #define WORKLIST_INSERT_UNLOCKED(head, item)\ 1039 worklist_insert(head, item, 0, __func__, __LINE__) 1040 #define WORKLIST_REMOVE(item)\ 1041 worklist_remove(item, 1, __func__, __LINE__) 1042 #define WORKLIST_REMOVE_UNLOCKED(item)\ 1043 worklist_remove(item, 0, __func__, __LINE__) 1044 1045 static void 1046 worklist_insert(head, item, locked, func, line) 1047 struct workhead *head; 1048 struct worklist *item; 1049 int locked; 1050 const char *func; 1051 int line; 1052 { 1053 1054 if (locked) 1055 LOCK_OWNED(VFSTOUFS(item->wk_mp)); 1056 if (item->wk_state & ONWORKLIST) 1057 panic("worklist_insert: %p %s(0x%X) already on list, " 1058 "added in function %s at line %d", 1059 item, TYPENAME(item->wk_type), item->wk_state, 1060 item->wk_func, item->wk_line); 1061 item->wk_state |= ONWORKLIST; 1062 item->wk_func = func; 1063 item->wk_line = line; 1064 LIST_INSERT_HEAD(head, item, wk_list); 1065 } 1066 1067 static void 1068 worklist_remove(item, locked, func, line) 1069 struct worklist *item; 1070 int locked; 1071 const char *func; 1072 int line; 1073 { 1074 1075 if (locked) 1076 LOCK_OWNED(VFSTOUFS(item->wk_mp)); 1077 if ((item->wk_state & ONWORKLIST) == 0) 1078 panic("worklist_remove: %p %s(0x%X) not on list, " 1079 "removed in function %s at line %d", 1080 item, TYPENAME(item->wk_type), item->wk_state, 1081 item->wk_func, item->wk_line); 1082 item->wk_state &= ~ONWORKLIST; 1083 item->wk_func = func; 1084 item->wk_line = line; 1085 LIST_REMOVE(item, wk_list); 1086 } 1087 #endif /* INVARIANTS */ 1088 1089 /* 1090 * Merge two jsegdeps keeping only the oldest one as newer references 1091 * can't be discarded until after older references. 1092 */ 1093 static inline struct jsegdep * 1094 jsegdep_merge(struct jsegdep *one, struct jsegdep *two) 1095 { 1096 struct jsegdep *swp; 1097 1098 if (two == NULL) 1099 return (one); 1100 1101 if (one->jd_seg->js_seq > two->jd_seg->js_seq) { 1102 swp = one; 1103 one = two; 1104 two = swp; 1105 } 1106 WORKLIST_REMOVE(&two->jd_list); 1107 free_jsegdep(two); 1108 1109 return (one); 1110 } 1111 1112 /* 1113 * If two freedeps are compatible free one to reduce list size. 1114 */ 1115 static inline struct freedep * 1116 freedep_merge(struct freedep *one, struct freedep *two) 1117 { 1118 if (two == NULL) 1119 return (one); 1120 1121 if (one->fd_freework == two->fd_freework) { 1122 WORKLIST_REMOVE(&two->fd_list); 1123 free_freedep(two); 1124 } 1125 return (one); 1126 } 1127 1128 /* 1129 * Move journal work from one list to another. Duplicate freedeps and 1130 * jsegdeps are coalesced to keep the lists as small as possible. 1131 */ 1132 static void 1133 jwork_move(dst, src) 1134 struct workhead *dst; 1135 struct workhead *src; 1136 { 1137 struct freedep *freedep; 1138 struct jsegdep *jsegdep; 1139 struct worklist *wkn; 1140 struct worklist *wk; 1141 1142 KASSERT(dst != src, 1143 ("jwork_move: dst == src")); 1144 freedep = NULL; 1145 jsegdep = NULL; 1146 LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) { 1147 if (wk->wk_type == D_JSEGDEP) 1148 jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep); 1149 else if (wk->wk_type == D_FREEDEP) 1150 freedep = freedep_merge(WK_FREEDEP(wk), freedep); 1151 } 1152 1153 while ((wk = LIST_FIRST(src)) != NULL) { 1154 WORKLIST_REMOVE(wk); 1155 WORKLIST_INSERT(dst, wk); 1156 if (wk->wk_type == D_JSEGDEP) { 1157 jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep); 1158 continue; 1159 } 1160 if (wk->wk_type == D_FREEDEP) 1161 freedep = freedep_merge(WK_FREEDEP(wk), freedep); 1162 } 1163 } 1164 1165 static void 1166 jwork_insert(dst, jsegdep) 1167 struct workhead *dst; 1168 struct jsegdep *jsegdep; 1169 { 1170 struct jsegdep *jsegdepn; 1171 struct worklist *wk; 1172 1173 LIST_FOREACH(wk, dst, wk_list) 1174 if (wk->wk_type == D_JSEGDEP) 1175 break; 1176 if (wk == NULL) { 1177 WORKLIST_INSERT(dst, &jsegdep->jd_list); 1178 return; 1179 } 1180 jsegdepn = WK_JSEGDEP(wk); 1181 if (jsegdep->jd_seg->js_seq < jsegdepn->jd_seg->js_seq) { 1182 WORKLIST_REMOVE(wk); 1183 free_jsegdep(jsegdepn); 1184 WORKLIST_INSERT(dst, &jsegdep->jd_list); 1185 } else 1186 free_jsegdep(jsegdep); 1187 } 1188 1189 /* 1190 * Routines for tracking and managing workitems. 1191 */ 1192 static void workitem_free(struct worklist *, int); 1193 static void workitem_alloc(struct worklist *, int, struct mount *); 1194 static void workitem_reassign(struct worklist *, int); 1195 1196 #define WORKITEM_FREE(item, type) \ 1197 workitem_free((struct worklist *)(item), (type)) 1198 #define WORKITEM_REASSIGN(item, type) \ 1199 workitem_reassign((struct worklist *)(item), (type)) 1200 1201 static void 1202 workitem_free(item, type) 1203 struct worklist *item; 1204 int type; 1205 { 1206 struct ufsmount *ump; 1207 1208 #ifdef INVARIANTS 1209 if (item->wk_state & ONWORKLIST) 1210 panic("workitem_free: %s(0x%X) still on list, " 1211 "added in function %s at line %d", 1212 TYPENAME(item->wk_type), item->wk_state, 1213 item->wk_func, item->wk_line); 1214 if (item->wk_type != type && type != D_NEWBLK) 1215 panic("workitem_free: type mismatch %s != %s", 1216 TYPENAME(item->wk_type), TYPENAME(type)); 1217 #endif 1218 if (item->wk_state & IOWAITING) 1219 wakeup(item); 1220 ump = VFSTOUFS(item->wk_mp); 1221 LOCK_OWNED(ump); 1222 KASSERT(ump->softdep_deps > 0, 1223 ("workitem_free: %s: softdep_deps going negative", 1224 ump->um_fs->fs_fsmnt)); 1225 if (--ump->softdep_deps == 0 && ump->softdep_req) 1226 wakeup(&ump->softdep_deps); 1227 KASSERT(dep_current[item->wk_type] > 0, 1228 ("workitem_free: %s: dep_current[%s] going negative", 1229 ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1230 KASSERT(ump->softdep_curdeps[item->wk_type] > 0, 1231 ("workitem_free: %s: softdep_curdeps[%s] going negative", 1232 ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1233 atomic_subtract_long(&dep_current[item->wk_type], 1); 1234 ump->softdep_curdeps[item->wk_type] -= 1; 1235 #ifdef INVARIANTS 1236 LIST_REMOVE(item, wk_all); 1237 #endif 1238 free(item, DtoM(type)); 1239 } 1240 1241 static void 1242 workitem_alloc(item, type, mp) 1243 struct worklist *item; 1244 int type; 1245 struct mount *mp; 1246 { 1247 struct ufsmount *ump; 1248 1249 item->wk_type = type; 1250 item->wk_mp = mp; 1251 item->wk_state = 0; 1252 1253 ump = VFSTOUFS(mp); 1254 ACQUIRE_GBLLOCK(&lk); 1255 dep_current[type]++; 1256 if (dep_current[type] > dep_highuse[type]) 1257 dep_highuse[type] = dep_current[type]; 1258 dep_total[type]++; 1259 FREE_GBLLOCK(&lk); 1260 ACQUIRE_LOCK(ump); 1261 ump->softdep_curdeps[type] += 1; 1262 ump->softdep_deps++; 1263 ump->softdep_accdeps++; 1264 #ifdef INVARIANTS 1265 LIST_INSERT_HEAD(&ump->softdep_alldeps[type], item, wk_all); 1266 #endif 1267 FREE_LOCK(ump); 1268 } 1269 1270 static void 1271 workitem_reassign(item, newtype) 1272 struct worklist *item; 1273 int newtype; 1274 { 1275 struct ufsmount *ump; 1276 1277 ump = VFSTOUFS(item->wk_mp); 1278 LOCK_OWNED(ump); 1279 KASSERT(ump->softdep_curdeps[item->wk_type] > 0, 1280 ("workitem_reassign: %s: softdep_curdeps[%s] going negative", 1281 VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1282 ump->softdep_curdeps[item->wk_type] -= 1; 1283 ump->softdep_curdeps[newtype] += 1; 1284 KASSERT(dep_current[item->wk_type] > 0, 1285 ("workitem_reassign: %s: dep_current[%s] going negative", 1286 VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1287 ACQUIRE_GBLLOCK(&lk); 1288 dep_current[newtype]++; 1289 dep_current[item->wk_type]--; 1290 if (dep_current[newtype] > dep_highuse[newtype]) 1291 dep_highuse[newtype] = dep_current[newtype]; 1292 dep_total[newtype]++; 1293 FREE_GBLLOCK(&lk); 1294 item->wk_type = newtype; 1295 } 1296 1297 /* 1298 * Workitem queue management 1299 */ 1300 static int max_softdeps; /* maximum number of structs before slowdown */ 1301 static int tickdelay = 2; /* number of ticks to pause during slowdown */ 1302 static int proc_waiting; /* tracks whether we have a timeout posted */ 1303 static int *stat_countp; /* statistic to count in proc_waiting timeout */ 1304 static struct callout softdep_callout; 1305 static int req_clear_inodedeps; /* syncer process flush some inodedeps */ 1306 static int req_clear_remove; /* syncer process flush some freeblks */ 1307 static int softdep_flushcache = 0; /* Should we do BIO_FLUSH? */ 1308 1309 /* 1310 * runtime statistics 1311 */ 1312 static int stat_flush_threads; /* number of softdep flushing threads */ 1313 static int stat_worklist_push; /* number of worklist cleanups */ 1314 static int stat_blk_limit_push; /* number of times block limit neared */ 1315 static int stat_ino_limit_push; /* number of times inode limit neared */ 1316 static int stat_blk_limit_hit; /* number of times block slowdown imposed */ 1317 static int stat_ino_limit_hit; /* number of times inode slowdown imposed */ 1318 static int stat_sync_limit_hit; /* number of synchronous slowdowns imposed */ 1319 static int stat_indir_blk_ptrs; /* bufs redirtied as indir ptrs not written */ 1320 static int stat_inode_bitmap; /* bufs redirtied as inode bitmap not written */ 1321 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */ 1322 static int stat_dir_entry; /* bufs redirtied as dir entry cannot write */ 1323 static int stat_jaddref; /* bufs redirtied as ino bitmap can not write */ 1324 static int stat_jnewblk; /* bufs redirtied as blk bitmap can not write */ 1325 static int stat_journal_min; /* Times hit journal min threshold */ 1326 static int stat_journal_low; /* Times hit journal low threshold */ 1327 static int stat_journal_wait; /* Times blocked in jwait(). */ 1328 static int stat_jwait_filepage; /* Times blocked in jwait() for filepage. */ 1329 static int stat_jwait_freeblks; /* Times blocked in jwait() for freeblks. */ 1330 static int stat_jwait_inode; /* Times blocked in jwait() for inodes. */ 1331 static int stat_jwait_newblk; /* Times blocked in jwait() for newblks. */ 1332 static int stat_cleanup_high_delay; /* Maximum cleanup delay (in ticks) */ 1333 static int stat_cleanup_blkrequests; /* Number of block cleanup requests */ 1334 static int stat_cleanup_inorequests; /* Number of inode cleanup requests */ 1335 static int stat_cleanup_retries; /* Number of cleanups that needed to flush */ 1336 static int stat_cleanup_failures; /* Number of cleanup requests that failed */ 1337 static int stat_emptyjblocks; /* Number of potentially empty journal blocks */ 1338 1339 SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW, 1340 &max_softdeps, 0, ""); 1341 SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW, 1342 &tickdelay, 0, ""); 1343 SYSCTL_INT(_debug_softdep, OID_AUTO, flush_threads, CTLFLAG_RD, 1344 &stat_flush_threads, 0, ""); 1345 SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push, 1346 CTLFLAG_RW | CTLFLAG_STATS, &stat_worklist_push, 0,""); 1347 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push, 1348 CTLFLAG_RW | CTLFLAG_STATS, &stat_blk_limit_push, 0,""); 1349 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push, 1350 CTLFLAG_RW | CTLFLAG_STATS, &stat_ino_limit_push, 0,""); 1351 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit, 1352 CTLFLAG_RW | CTLFLAG_STATS, &stat_blk_limit_hit, 0, ""); 1353 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit, 1354 CTLFLAG_RW | CTLFLAG_STATS, &stat_ino_limit_hit, 0, ""); 1355 SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit, 1356 CTLFLAG_RW | CTLFLAG_STATS, &stat_sync_limit_hit, 0, ""); 1357 SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs, 1358 CTLFLAG_RW | CTLFLAG_STATS, &stat_indir_blk_ptrs, 0, ""); 1359 SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap, 1360 CTLFLAG_RW | CTLFLAG_STATS, &stat_inode_bitmap, 0, ""); 1361 SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs, 1362 CTLFLAG_RW | CTLFLAG_STATS, &stat_direct_blk_ptrs, 0, ""); 1363 SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry, 1364 CTLFLAG_RW | CTLFLAG_STATS, &stat_dir_entry, 0, ""); 1365 SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback, 1366 CTLFLAG_RW | CTLFLAG_STATS, &stat_jaddref, 0, ""); 1367 SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback, 1368 CTLFLAG_RW | CTLFLAG_STATS, &stat_jnewblk, 0, ""); 1369 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low, 1370 CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_low, 0, ""); 1371 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min, 1372 CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_min, 0, ""); 1373 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait, 1374 CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_wait, 0, ""); 1375 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage, 1376 CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_filepage, 0, ""); 1377 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks, 1378 CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_freeblks, 0, ""); 1379 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode, 1380 CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_inode, 0, ""); 1381 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk, 1382 CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_newblk, 0, ""); 1383 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_blkrequests, 1384 CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_blkrequests, 0, ""); 1385 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_inorequests, 1386 CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_inorequests, 0, ""); 1387 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_high_delay, 1388 CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_high_delay, 0, ""); 1389 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_retries, 1390 CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_retries, 0, ""); 1391 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_failures, 1392 CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_failures, 0, ""); 1393 1394 SYSCTL_INT(_debug_softdep, OID_AUTO, flushcache, CTLFLAG_RW, 1395 &softdep_flushcache, 0, ""); 1396 SYSCTL_INT(_debug_softdep, OID_AUTO, emptyjblocks, CTLFLAG_RD, 1397 &stat_emptyjblocks, 0, ""); 1398 1399 SYSCTL_DECL(_vfs_ffs); 1400 1401 /* Whether to recompute the summary at mount time */ 1402 static int compute_summary_at_mount = 0; 1403 SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW, 1404 &compute_summary_at_mount, 0, "Recompute summary at mount"); 1405 static int print_threads = 0; 1406 SYSCTL_INT(_debug_softdep, OID_AUTO, print_threads, CTLFLAG_RW, 1407 &print_threads, 0, "Notify flusher thread start/stop"); 1408 1409 /* List of all filesystems mounted with soft updates */ 1410 static TAILQ_HEAD(, mount_softdeps) softdepmounts; 1411 1412 /* 1413 * This function fetches inode inum on mount point mp. We already 1414 * hold a locked vnode vp, and might have a locked buffer bp belonging 1415 * to vp. 1416 1417 * We must not block on acquiring the new inode lock as we will get 1418 * into a lock-order reversal with the buffer lock and possibly get a 1419 * deadlock. Thus if we cannot instantiate the requested vnode 1420 * without sleeping on its lock, we must unlock the vnode and the 1421 * buffer before doing a blocking on the vnode lock. We return 1422 * ERELOOKUP if we have had to unlock either the vnode or the buffer so 1423 * that the caller can reassess its state. 1424 * 1425 * Top-level VFS code (for syscalls and other consumers, e.g. callers 1426 * of VOP_FSYNC() in syncer) check for ERELOOKUP and restart at safe 1427 * point. 1428 * 1429 * Since callers expect to operate on fully constructed vnode, we also 1430 * recheck v_data after relock, and return ENOENT if NULL. 1431 * 1432 * If unlocking bp, we must unroll dequeueing its unfinished 1433 * dependencies, and clear scan flag, before unlocking. If unlocking 1434 * vp while it is under deactivation, we re-queue deactivation. 1435 */ 1436 static int 1437 get_parent_vp(struct vnode *vp, struct mount *mp, ino_t inum, struct buf *bp, 1438 struct diraddhd *diraddhdp, struct diraddhd *unfinishedp, 1439 struct vnode **rvp) 1440 { 1441 struct vnode *pvp; 1442 struct diradd *dap; 1443 int error; 1444 bool bplocked; 1445 1446 ASSERT_VOP_ELOCKED(vp, "child vnode must be locked"); 1447 for (bplocked = true, pvp = NULL;;) { 1448 error = ffs_vgetf(mp, inum, LK_EXCLUSIVE | LK_NOWAIT, &pvp, 1449 FFSV_FORCEINSMQ); 1450 if (error == 0) { 1451 /* 1452 * Since we could have unlocked vp, the inode 1453 * number could no longer indicate a 1454 * constructed node. In this case, we must 1455 * restart the syscall. 1456 */ 1457 if (VTOI(pvp)->i_mode == 0 || !bplocked) { 1458 if (VTOI(pvp)->i_mode == 0) 1459 vgone(pvp); 1460 vput(pvp); 1461 error = ERELOOKUP; 1462 goto out; 1463 } 1464 1465 error = 0; 1466 goto out1; 1467 } 1468 if (bp != NULL && bplocked) { 1469 /* 1470 * Requeue unfinished dependencies before 1471 * unlocking buffer, which could make 1472 * diraddhdp invalid. 1473 */ 1474 ACQUIRE_LOCK(VFSTOUFS(mp)); 1475 while ((dap = LIST_FIRST(unfinishedp)) != NULL) { 1476 LIST_REMOVE(dap, da_pdlist); 1477 LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist); 1478 } 1479 FREE_LOCK(VFSTOUFS(mp)); 1480 bp->b_vflags &= ~BV_SCANNED; 1481 BUF_NOREC(bp); 1482 BUF_UNLOCK(bp); 1483 bplocked = false; 1484 } 1485 1486 /* 1487 * Do not drop vnode lock while inactivating. This 1488 * would result in leaks of the VI flags and 1489 * reclaiming of non-truncated vnode. Instead, 1490 * re-schedule inactivation hoping that we would be 1491 * able to sync inode later. 1492 */ 1493 if ((vp->v_iflag & VI_DOINGINACT) != 0) { 1494 VI_LOCK(vp); 1495 vp->v_iflag |= VI_OWEINACT; 1496 VI_UNLOCK(vp); 1497 return (ERELOOKUP); 1498 } 1499 1500 VOP_UNLOCK(vp); 1501 error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &pvp, 1502 FFSV_FORCEINSMQ); 1503 if (error != 0) { 1504 MPASS(error != ERELOOKUP); 1505 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1506 break; 1507 } 1508 if (VTOI(pvp)->i_mode == 0) { 1509 vgone(pvp); 1510 vput(pvp); 1511 pvp = NULL; 1512 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1513 error = ERELOOKUP; 1514 break; 1515 } 1516 error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT); 1517 if (error == 0) 1518 break; 1519 vput(pvp); 1520 pvp = NULL; 1521 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1522 if (vp->v_data == NULL) { 1523 error = ENOENT; 1524 break; 1525 } 1526 } 1527 if (bp != NULL) { 1528 MPASS(!bplocked); 1529 error = ERELOOKUP; 1530 } 1531 if (error != 0 && pvp != NULL) { 1532 vput(pvp); 1533 pvp = NULL; 1534 } 1535 out1: 1536 *rvp = pvp; 1537 out: 1538 ASSERT_VOP_ELOCKED(vp, "child vnode must be locked on return"); 1539 return (error); 1540 } 1541 1542 /* 1543 * This function cleans the worklist for a filesystem. 1544 * Each filesystem running with soft dependencies gets its own 1545 * thread to run in this function. The thread is started up in 1546 * softdep_mount and shutdown in softdep_unmount. They show up 1547 * as part of the kernel "bufdaemon" process whose process 1548 * entry is available in bufdaemonproc. 1549 */ 1550 static int searchfailed; 1551 extern struct proc *bufdaemonproc; 1552 static void 1553 softdep_flush(addr) 1554 void *addr; 1555 { 1556 struct mount *mp; 1557 struct thread *td; 1558 struct ufsmount *ump; 1559 1560 td = curthread; 1561 td->td_pflags |= TDP_NORUNNINGBUF; 1562 mp = (struct mount *)addr; 1563 ump = VFSTOUFS(mp); 1564 atomic_add_int(&stat_flush_threads, 1); 1565 ACQUIRE_LOCK(ump); 1566 ump->softdep_flags &= ~FLUSH_STARTING; 1567 wakeup(&ump->softdep_flushtd); 1568 FREE_LOCK(ump); 1569 if (print_threads) { 1570 if (stat_flush_threads == 1) 1571 printf("Running %s at pid %d\n", bufdaemonproc->p_comm, 1572 bufdaemonproc->p_pid); 1573 printf("Start thread %s\n", td->td_name); 1574 } 1575 for (;;) { 1576 while (softdep_process_worklist(mp, 0) > 0 || 1577 (MOUNTEDSUJ(mp) && 1578 VFSTOUFS(mp)->softdep_jblocks->jb_suspended)) 1579 kthread_suspend_check(); 1580 ACQUIRE_LOCK(ump); 1581 if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) 1582 msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM, 1583 "sdflush", hz / 2); 1584 ump->softdep_flags &= ~FLUSH_CLEANUP; 1585 /* 1586 * Check to see if we are done and need to exit. 1587 */ 1588 if ((ump->softdep_flags & FLUSH_EXIT) == 0) { 1589 FREE_LOCK(ump); 1590 continue; 1591 } 1592 ump->softdep_flags &= ~FLUSH_EXIT; 1593 FREE_LOCK(ump); 1594 wakeup(&ump->softdep_flags); 1595 if (print_threads) 1596 printf("Stop thread %s: searchfailed %d, did cleanups %d\n", td->td_name, searchfailed, ump->um_softdep->sd_cleanups); 1597 atomic_subtract_int(&stat_flush_threads, 1); 1598 kthread_exit(); 1599 panic("kthread_exit failed\n"); 1600 } 1601 } 1602 1603 static void 1604 worklist_speedup(mp) 1605 struct mount *mp; 1606 { 1607 struct ufsmount *ump; 1608 1609 ump = VFSTOUFS(mp); 1610 LOCK_OWNED(ump); 1611 if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) 1612 ump->softdep_flags |= FLUSH_CLEANUP; 1613 wakeup(&ump->softdep_flushtd); 1614 } 1615 1616 static void 1617 softdep_send_speedup(struct ufsmount *ump, off_t shortage, u_int flags) 1618 { 1619 struct buf *bp; 1620 1621 if ((ump->um_flags & UM_CANSPEEDUP) == 0) 1622 return; 1623 1624 bp = malloc(sizeof(*bp), M_TRIM, M_WAITOK | M_ZERO); 1625 bp->b_iocmd = BIO_SPEEDUP; 1626 bp->b_ioflags = flags; 1627 bp->b_bcount = omin(shortage, LONG_MAX); 1628 g_vfs_strategy(ump->um_bo, bp); 1629 bufwait(bp); 1630 free(bp, M_TRIM); 1631 } 1632 1633 static int 1634 softdep_speedup(ump) 1635 struct ufsmount *ump; 1636 { 1637 struct ufsmount *altump; 1638 struct mount_softdeps *sdp; 1639 1640 LOCK_OWNED(ump); 1641 worklist_speedup(ump->um_mountp); 1642 bd_speedup(); 1643 /* 1644 * If we have global shortages, then we need other 1645 * filesystems to help with the cleanup. Here we wakeup a 1646 * flusher thread for a filesystem that is over its fair 1647 * share of resources. 1648 */ 1649 if (req_clear_inodedeps || req_clear_remove) { 1650 ACQUIRE_GBLLOCK(&lk); 1651 TAILQ_FOREACH(sdp, &softdepmounts, sd_next) { 1652 if ((altump = sdp->sd_ump) == ump) 1653 continue; 1654 if (((req_clear_inodedeps && 1655 altump->softdep_curdeps[D_INODEDEP] > 1656 max_softdeps / stat_flush_threads) || 1657 (req_clear_remove && 1658 altump->softdep_curdeps[D_DIRREM] > 1659 (max_softdeps / 2) / stat_flush_threads)) && 1660 TRY_ACQUIRE_LOCK(altump)) 1661 break; 1662 } 1663 if (sdp == NULL) { 1664 searchfailed++; 1665 FREE_GBLLOCK(&lk); 1666 } else { 1667 /* 1668 * Move to the end of the list so we pick a 1669 * different one on out next try. 1670 */ 1671 TAILQ_REMOVE(&softdepmounts, sdp, sd_next); 1672 TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next); 1673 FREE_GBLLOCK(&lk); 1674 if ((altump->softdep_flags & 1675 (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) 1676 altump->softdep_flags |= FLUSH_CLEANUP; 1677 altump->um_softdep->sd_cleanups++; 1678 wakeup(&altump->softdep_flushtd); 1679 FREE_LOCK(altump); 1680 } 1681 } 1682 return (speedup_syncer()); 1683 } 1684 1685 /* 1686 * Add an item to the end of the work queue. 1687 * This routine requires that the lock be held. 1688 * This is the only routine that adds items to the list. 1689 * The following routine is the only one that removes items 1690 * and does so in order from first to last. 1691 */ 1692 1693 #define WK_HEAD 0x0001 /* Add to HEAD. */ 1694 #define WK_NODELAY 0x0002 /* Process immediately. */ 1695 1696 static void 1697 add_to_worklist(wk, flags) 1698 struct worklist *wk; 1699 int flags; 1700 { 1701 struct ufsmount *ump; 1702 1703 ump = VFSTOUFS(wk->wk_mp); 1704 LOCK_OWNED(ump); 1705 if (wk->wk_state & ONWORKLIST) 1706 panic("add_to_worklist: %s(0x%X) already on list", 1707 TYPENAME(wk->wk_type), wk->wk_state); 1708 wk->wk_state |= ONWORKLIST; 1709 if (ump->softdep_on_worklist == 0) { 1710 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list); 1711 ump->softdep_worklist_tail = wk; 1712 } else if (flags & WK_HEAD) { 1713 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list); 1714 } else { 1715 LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list); 1716 ump->softdep_worklist_tail = wk; 1717 } 1718 ump->softdep_on_worklist += 1; 1719 if (flags & WK_NODELAY) 1720 worklist_speedup(wk->wk_mp); 1721 } 1722 1723 /* 1724 * Remove the item to be processed. If we are removing the last 1725 * item on the list, we need to recalculate the tail pointer. 1726 */ 1727 static void 1728 remove_from_worklist(wk) 1729 struct worklist *wk; 1730 { 1731 struct ufsmount *ump; 1732 1733 ump = VFSTOUFS(wk->wk_mp); 1734 if (ump->softdep_worklist_tail == wk) 1735 ump->softdep_worklist_tail = 1736 (struct worklist *)wk->wk_list.le_prev; 1737 WORKLIST_REMOVE(wk); 1738 ump->softdep_on_worklist -= 1; 1739 } 1740 1741 static void 1742 wake_worklist(wk) 1743 struct worklist *wk; 1744 { 1745 if (wk->wk_state & IOWAITING) { 1746 wk->wk_state &= ~IOWAITING; 1747 wakeup(wk); 1748 } 1749 } 1750 1751 static void 1752 wait_worklist(wk, wmesg) 1753 struct worklist *wk; 1754 char *wmesg; 1755 { 1756 struct ufsmount *ump; 1757 1758 ump = VFSTOUFS(wk->wk_mp); 1759 wk->wk_state |= IOWAITING; 1760 msleep(wk, LOCK_PTR(ump), PVM, wmesg, 0); 1761 } 1762 1763 /* 1764 * Process that runs once per second to handle items in the background queue. 1765 * 1766 * Note that we ensure that everything is done in the order in which they 1767 * appear in the queue. The code below depends on this property to ensure 1768 * that blocks of a file are freed before the inode itself is freed. This 1769 * ordering ensures that no new <vfsid, inum, lbn> triples will be generated 1770 * until all the old ones have been purged from the dependency lists. 1771 */ 1772 static int 1773 softdep_process_worklist(mp, full) 1774 struct mount *mp; 1775 int full; 1776 { 1777 int cnt, matchcnt; 1778 struct ufsmount *ump; 1779 long starttime; 1780 1781 KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp")); 1782 if (MOUNTEDSOFTDEP(mp) == 0) 1783 return (0); 1784 matchcnt = 0; 1785 ump = VFSTOUFS(mp); 1786 ACQUIRE_LOCK(ump); 1787 starttime = time_second; 1788 softdep_process_journal(mp, NULL, full ? MNT_WAIT : 0); 1789 check_clear_deps(mp); 1790 while (ump->softdep_on_worklist > 0) { 1791 if ((cnt = process_worklist_item(mp, 10, LK_NOWAIT)) == 0) 1792 break; 1793 else 1794 matchcnt += cnt; 1795 check_clear_deps(mp); 1796 /* 1797 * We do not generally want to stop for buffer space, but if 1798 * we are really being a buffer hog, we will stop and wait. 1799 */ 1800 if (should_yield()) { 1801 FREE_LOCK(ump); 1802 kern_yield(PRI_USER); 1803 bwillwrite(); 1804 ACQUIRE_LOCK(ump); 1805 } 1806 /* 1807 * Never allow processing to run for more than one 1808 * second. This gives the syncer thread the opportunity 1809 * to pause if appropriate. 1810 */ 1811 if (!full && starttime != time_second) 1812 break; 1813 } 1814 if (full == 0) 1815 journal_unsuspend(ump); 1816 FREE_LOCK(ump); 1817 return (matchcnt); 1818 } 1819 1820 /* 1821 * Process all removes associated with a vnode if we are running out of 1822 * journal space. Any other process which attempts to flush these will 1823 * be unable as we have the vnodes locked. 1824 */ 1825 static void 1826 process_removes(vp) 1827 struct vnode *vp; 1828 { 1829 struct inodedep *inodedep; 1830 struct dirrem *dirrem; 1831 struct ufsmount *ump; 1832 struct mount *mp; 1833 ino_t inum; 1834 1835 mp = vp->v_mount; 1836 ump = VFSTOUFS(mp); 1837 LOCK_OWNED(ump); 1838 inum = VTOI(vp)->i_number; 1839 for (;;) { 1840 top: 1841 if (inodedep_lookup(mp, inum, 0, &inodedep) == 0) 1842 return; 1843 LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext) { 1844 /* 1845 * If another thread is trying to lock this vnode 1846 * it will fail but we must wait for it to do so 1847 * before we can proceed. 1848 */ 1849 if (dirrem->dm_state & INPROGRESS) { 1850 wait_worklist(&dirrem->dm_list, "pwrwait"); 1851 goto top; 1852 } 1853 if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) == 1854 (COMPLETE | ONWORKLIST)) 1855 break; 1856 } 1857 if (dirrem == NULL) 1858 return; 1859 remove_from_worklist(&dirrem->dm_list); 1860 FREE_LOCK(ump); 1861 if (vn_start_secondary_write(NULL, &mp, V_NOWAIT)) 1862 panic("process_removes: suspended filesystem"); 1863 handle_workitem_remove(dirrem, 0); 1864 vn_finished_secondary_write(mp); 1865 ACQUIRE_LOCK(ump); 1866 } 1867 } 1868 1869 /* 1870 * Process all truncations associated with a vnode if we are running out 1871 * of journal space. This is called when the vnode lock is already held 1872 * and no other process can clear the truncation. This function returns 1873 * a value greater than zero if it did any work. 1874 */ 1875 static void 1876 process_truncates(vp) 1877 struct vnode *vp; 1878 { 1879 struct inodedep *inodedep; 1880 struct freeblks *freeblks; 1881 struct ufsmount *ump; 1882 struct mount *mp; 1883 ino_t inum; 1884 int cgwait; 1885 1886 mp = vp->v_mount; 1887 ump = VFSTOUFS(mp); 1888 LOCK_OWNED(ump); 1889 inum = VTOI(vp)->i_number; 1890 for (;;) { 1891 if (inodedep_lookup(mp, inum, 0, &inodedep) == 0) 1892 return; 1893 cgwait = 0; 1894 TAILQ_FOREACH(freeblks, &inodedep->id_freeblklst, fb_next) { 1895 /* Journal entries not yet written. */ 1896 if (!LIST_EMPTY(&freeblks->fb_jblkdephd)) { 1897 jwait(&LIST_FIRST( 1898 &freeblks->fb_jblkdephd)->jb_list, 1899 MNT_WAIT); 1900 break; 1901 } 1902 /* Another thread is executing this item. */ 1903 if (freeblks->fb_state & INPROGRESS) { 1904 wait_worklist(&freeblks->fb_list, "ptrwait"); 1905 break; 1906 } 1907 /* Freeblks is waiting on a inode write. */ 1908 if ((freeblks->fb_state & COMPLETE) == 0) { 1909 FREE_LOCK(ump); 1910 ffs_update(vp, 1); 1911 ACQUIRE_LOCK(ump); 1912 break; 1913 } 1914 if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST)) == 1915 (ALLCOMPLETE | ONWORKLIST)) { 1916 remove_from_worklist(&freeblks->fb_list); 1917 freeblks->fb_state |= INPROGRESS; 1918 FREE_LOCK(ump); 1919 if (vn_start_secondary_write(NULL, &mp, 1920 V_NOWAIT)) 1921 panic("process_truncates: " 1922 "suspended filesystem"); 1923 handle_workitem_freeblocks(freeblks, 0); 1924 vn_finished_secondary_write(mp); 1925 ACQUIRE_LOCK(ump); 1926 break; 1927 } 1928 if (freeblks->fb_cgwait) 1929 cgwait++; 1930 } 1931 if (cgwait) { 1932 FREE_LOCK(ump); 1933 sync_cgs(mp, MNT_WAIT); 1934 ffs_sync_snap(mp, MNT_WAIT); 1935 ACQUIRE_LOCK(ump); 1936 continue; 1937 } 1938 if (freeblks == NULL) 1939 break; 1940 } 1941 return; 1942 } 1943 1944 /* 1945 * Process one item on the worklist. 1946 */ 1947 static int 1948 process_worklist_item(mp, target, flags) 1949 struct mount *mp; 1950 int target; 1951 int flags; 1952 { 1953 struct worklist sentinel; 1954 struct worklist *wk; 1955 struct ufsmount *ump; 1956 int matchcnt; 1957 int error; 1958 1959 KASSERT(mp != NULL, ("process_worklist_item: NULL mp")); 1960 /* 1961 * If we are being called because of a process doing a 1962 * copy-on-write, then it is not safe to write as we may 1963 * recurse into the copy-on-write routine. 1964 */ 1965 if (curthread->td_pflags & TDP_COWINPROGRESS) 1966 return (-1); 1967 PHOLD(curproc); /* Don't let the stack go away. */ 1968 ump = VFSTOUFS(mp); 1969 LOCK_OWNED(ump); 1970 matchcnt = 0; 1971 sentinel.wk_mp = NULL; 1972 sentinel.wk_type = D_SENTINEL; 1973 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, &sentinel, wk_list); 1974 for (wk = LIST_NEXT(&sentinel, wk_list); wk != NULL; 1975 wk = LIST_NEXT(&sentinel, wk_list)) { 1976 if (wk->wk_type == D_SENTINEL) { 1977 LIST_REMOVE(&sentinel, wk_list); 1978 LIST_INSERT_AFTER(wk, &sentinel, wk_list); 1979 continue; 1980 } 1981 if (wk->wk_state & INPROGRESS) 1982 panic("process_worklist_item: %p already in progress.", 1983 wk); 1984 wk->wk_state |= INPROGRESS; 1985 remove_from_worklist(wk); 1986 FREE_LOCK(ump); 1987 if (vn_start_secondary_write(NULL, &mp, V_NOWAIT)) 1988 panic("process_worklist_item: suspended filesystem"); 1989 switch (wk->wk_type) { 1990 case D_DIRREM: 1991 /* removal of a directory entry */ 1992 error = handle_workitem_remove(WK_DIRREM(wk), flags); 1993 break; 1994 1995 case D_FREEBLKS: 1996 /* releasing blocks and/or fragments from a file */ 1997 error = handle_workitem_freeblocks(WK_FREEBLKS(wk), 1998 flags); 1999 break; 2000 2001 case D_FREEFRAG: 2002 /* releasing a fragment when replaced as a file grows */ 2003 handle_workitem_freefrag(WK_FREEFRAG(wk)); 2004 error = 0; 2005 break; 2006 2007 case D_FREEFILE: 2008 /* releasing an inode when its link count drops to 0 */ 2009 handle_workitem_freefile(WK_FREEFILE(wk)); 2010 error = 0; 2011 break; 2012 2013 default: 2014 panic("%s_process_worklist: Unknown type %s", 2015 "softdep", TYPENAME(wk->wk_type)); 2016 /* NOTREACHED */ 2017 } 2018 vn_finished_secondary_write(mp); 2019 ACQUIRE_LOCK(ump); 2020 if (error == 0) { 2021 if (++matchcnt == target) 2022 break; 2023 continue; 2024 } 2025 /* 2026 * We have to retry the worklist item later. Wake up any 2027 * waiters who may be able to complete it immediately and 2028 * add the item back to the head so we don't try to execute 2029 * it again. 2030 */ 2031 wk->wk_state &= ~INPROGRESS; 2032 wake_worklist(wk); 2033 add_to_worklist(wk, WK_HEAD); 2034 } 2035 /* Sentinal could've become the tail from remove_from_worklist. */ 2036 if (ump->softdep_worklist_tail == &sentinel) 2037 ump->softdep_worklist_tail = 2038 (struct worklist *)sentinel.wk_list.le_prev; 2039 LIST_REMOVE(&sentinel, wk_list); 2040 PRELE(curproc); 2041 return (matchcnt); 2042 } 2043 2044 /* 2045 * Move dependencies from one buffer to another. 2046 */ 2047 int 2048 softdep_move_dependencies(oldbp, newbp) 2049 struct buf *oldbp; 2050 struct buf *newbp; 2051 { 2052 struct worklist *wk, *wktail; 2053 struct ufsmount *ump; 2054 int dirty; 2055 2056 if ((wk = LIST_FIRST(&oldbp->b_dep)) == NULL) 2057 return (0); 2058 KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, 2059 ("softdep_move_dependencies called on non-softdep filesystem")); 2060 dirty = 0; 2061 wktail = NULL; 2062 ump = VFSTOUFS(wk->wk_mp); 2063 ACQUIRE_LOCK(ump); 2064 while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) { 2065 LIST_REMOVE(wk, wk_list); 2066 if (wk->wk_type == D_BMSAFEMAP && 2067 bmsafemap_backgroundwrite(WK_BMSAFEMAP(wk), newbp)) 2068 dirty = 1; 2069 if (wktail == NULL) 2070 LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list); 2071 else 2072 LIST_INSERT_AFTER(wktail, wk, wk_list); 2073 wktail = wk; 2074 } 2075 FREE_LOCK(ump); 2076 2077 return (dirty); 2078 } 2079 2080 /* 2081 * Purge the work list of all items associated with a particular mount point. 2082 */ 2083 int 2084 softdep_flushworklist(oldmnt, countp, td) 2085 struct mount *oldmnt; 2086 int *countp; 2087 struct thread *td; 2088 { 2089 struct vnode *devvp; 2090 struct ufsmount *ump; 2091 int count, error; 2092 2093 /* 2094 * Alternately flush the block device associated with the mount 2095 * point and process any dependencies that the flushing 2096 * creates. We continue until no more worklist dependencies 2097 * are found. 2098 */ 2099 *countp = 0; 2100 error = 0; 2101 ump = VFSTOUFS(oldmnt); 2102 devvp = ump->um_devvp; 2103 while ((count = softdep_process_worklist(oldmnt, 1)) > 0) { 2104 *countp += count; 2105 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 2106 error = VOP_FSYNC(devvp, MNT_WAIT, td); 2107 VOP_UNLOCK(devvp); 2108 if (error != 0) 2109 break; 2110 } 2111 return (error); 2112 } 2113 2114 #define SU_WAITIDLE_RETRIES 20 2115 static int 2116 softdep_waitidle(struct mount *mp, int flags __unused) 2117 { 2118 struct ufsmount *ump; 2119 struct vnode *devvp; 2120 struct thread *td; 2121 int error, i; 2122 2123 ump = VFSTOUFS(mp); 2124 devvp = ump->um_devvp; 2125 td = curthread; 2126 error = 0; 2127 ACQUIRE_LOCK(ump); 2128 for (i = 0; i < SU_WAITIDLE_RETRIES && ump->softdep_deps != 0; i++) { 2129 ump->softdep_req = 1; 2130 KASSERT((flags & FORCECLOSE) == 0 || 2131 ump->softdep_on_worklist == 0, 2132 ("softdep_waitidle: work added after flush")); 2133 msleep(&ump->softdep_deps, LOCK_PTR(ump), PVM | PDROP, 2134 "softdeps", 10 * hz); 2135 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 2136 error = VOP_FSYNC(devvp, MNT_WAIT, td); 2137 VOP_UNLOCK(devvp); 2138 ACQUIRE_LOCK(ump); 2139 if (error != 0) 2140 break; 2141 } 2142 ump->softdep_req = 0; 2143 if (i == SU_WAITIDLE_RETRIES && error == 0 && ump->softdep_deps != 0) { 2144 error = EBUSY; 2145 printf("softdep_waitidle: Failed to flush worklist for %p\n", 2146 mp); 2147 } 2148 FREE_LOCK(ump); 2149 return (error); 2150 } 2151 2152 /* 2153 * Flush all vnodes and worklist items associated with a specified mount point. 2154 */ 2155 int 2156 softdep_flushfiles(oldmnt, flags, td) 2157 struct mount *oldmnt; 2158 int flags; 2159 struct thread *td; 2160 { 2161 #ifdef QUOTA 2162 struct ufsmount *ump; 2163 int i; 2164 #endif 2165 int error, early, depcount, loopcnt, retry_flush_count, retry; 2166 int morework; 2167 2168 KASSERT(MOUNTEDSOFTDEP(oldmnt) != 0, 2169 ("softdep_flushfiles called on non-softdep filesystem")); 2170 loopcnt = 10; 2171 retry_flush_count = 3; 2172 retry_flush: 2173 error = 0; 2174 2175 /* 2176 * Alternately flush the vnodes associated with the mount 2177 * point and process any dependencies that the flushing 2178 * creates. In theory, this loop can happen at most twice, 2179 * but we give it a few extra just to be sure. 2180 */ 2181 for (; loopcnt > 0; loopcnt--) { 2182 /* 2183 * Do another flush in case any vnodes were brought in 2184 * as part of the cleanup operations. 2185 */ 2186 early = retry_flush_count == 1 || (oldmnt->mnt_kern_flag & 2187 MNTK_UNMOUNT) == 0 ? 0 : EARLYFLUSH; 2188 if ((error = ffs_flushfiles(oldmnt, flags | early, td)) != 0) 2189 break; 2190 if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 || 2191 depcount == 0) 2192 break; 2193 } 2194 /* 2195 * If we are unmounting then it is an error to fail. If we 2196 * are simply trying to downgrade to read-only, then filesystem 2197 * activity can keep us busy forever, so we just fail with EBUSY. 2198 */ 2199 if (loopcnt == 0) { 2200 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) 2201 panic("softdep_flushfiles: looping"); 2202 error = EBUSY; 2203 } 2204 if (!error) 2205 error = softdep_waitidle(oldmnt, flags); 2206 if (!error) { 2207 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) { 2208 retry = 0; 2209 MNT_ILOCK(oldmnt); 2210 morework = oldmnt->mnt_nvnodelistsize > 0; 2211 #ifdef QUOTA 2212 ump = VFSTOUFS(oldmnt); 2213 UFS_LOCK(ump); 2214 for (i = 0; i < MAXQUOTAS; i++) { 2215 if (ump->um_quotas[i] != NULLVP) 2216 morework = 1; 2217 } 2218 UFS_UNLOCK(ump); 2219 #endif 2220 if (morework) { 2221 if (--retry_flush_count > 0) { 2222 retry = 1; 2223 loopcnt = 3; 2224 } else 2225 error = EBUSY; 2226 } 2227 MNT_IUNLOCK(oldmnt); 2228 if (retry) 2229 goto retry_flush; 2230 } 2231 } 2232 return (error); 2233 } 2234 2235 /* 2236 * Structure hashing. 2237 * 2238 * There are four types of structures that can be looked up: 2239 * 1) pagedep structures identified by mount point, inode number, 2240 * and logical block. 2241 * 2) inodedep structures identified by mount point and inode number. 2242 * 3) newblk structures identified by mount point and 2243 * physical block number. 2244 * 4) bmsafemap structures identified by mount point and 2245 * cylinder group number. 2246 * 2247 * The "pagedep" and "inodedep" dependency structures are hashed 2248 * separately from the file blocks and inodes to which they correspond. 2249 * This separation helps when the in-memory copy of an inode or 2250 * file block must be replaced. It also obviates the need to access 2251 * an inode or file page when simply updating (or de-allocating) 2252 * dependency structures. Lookup of newblk structures is needed to 2253 * find newly allocated blocks when trying to associate them with 2254 * their allocdirect or allocindir structure. 2255 * 2256 * The lookup routines optionally create and hash a new instance when 2257 * an existing entry is not found. The bmsafemap lookup routine always 2258 * allocates a new structure if an existing one is not found. 2259 */ 2260 #define DEPALLOC 0x0001 /* allocate structure if lookup fails */ 2261 2262 /* 2263 * Structures and routines associated with pagedep caching. 2264 */ 2265 #define PAGEDEP_HASH(ump, inum, lbn) \ 2266 (&(ump)->pagedep_hashtbl[((inum) + (lbn)) & (ump)->pagedep_hash_size]) 2267 2268 static int 2269 pagedep_find(pagedephd, ino, lbn, pagedeppp) 2270 struct pagedep_hashhead *pagedephd; 2271 ino_t ino; 2272 ufs_lbn_t lbn; 2273 struct pagedep **pagedeppp; 2274 { 2275 struct pagedep *pagedep; 2276 2277 LIST_FOREACH(pagedep, pagedephd, pd_hash) { 2278 if (ino == pagedep->pd_ino && lbn == pagedep->pd_lbn) { 2279 *pagedeppp = pagedep; 2280 return (1); 2281 } 2282 } 2283 *pagedeppp = NULL; 2284 return (0); 2285 } 2286 /* 2287 * Look up a pagedep. Return 1 if found, 0 otherwise. 2288 * If not found, allocate if DEPALLOC flag is passed. 2289 * Found or allocated entry is returned in pagedeppp. 2290 */ 2291 static int 2292 pagedep_lookup(mp, bp, ino, lbn, flags, pagedeppp) 2293 struct mount *mp; 2294 struct buf *bp; 2295 ino_t ino; 2296 ufs_lbn_t lbn; 2297 int flags; 2298 struct pagedep **pagedeppp; 2299 { 2300 struct pagedep *pagedep; 2301 struct pagedep_hashhead *pagedephd; 2302 struct worklist *wk; 2303 struct ufsmount *ump; 2304 int ret; 2305 int i; 2306 2307 ump = VFSTOUFS(mp); 2308 LOCK_OWNED(ump); 2309 if (bp) { 2310 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 2311 if (wk->wk_type == D_PAGEDEP) { 2312 *pagedeppp = WK_PAGEDEP(wk); 2313 return (1); 2314 } 2315 } 2316 } 2317 pagedephd = PAGEDEP_HASH(ump, ino, lbn); 2318 ret = pagedep_find(pagedephd, ino, lbn, pagedeppp); 2319 if (ret) { 2320 if (((*pagedeppp)->pd_state & ONWORKLIST) == 0 && bp) 2321 WORKLIST_INSERT(&bp->b_dep, &(*pagedeppp)->pd_list); 2322 return (1); 2323 } 2324 if ((flags & DEPALLOC) == 0) 2325 return (0); 2326 FREE_LOCK(ump); 2327 pagedep = malloc(sizeof(struct pagedep), 2328 M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO); 2329 workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp); 2330 ACQUIRE_LOCK(ump); 2331 ret = pagedep_find(pagedephd, ino, lbn, pagedeppp); 2332 if (*pagedeppp) { 2333 /* 2334 * This should never happen since we only create pagedeps 2335 * with the vnode lock held. Could be an assert. 2336 */ 2337 WORKITEM_FREE(pagedep, D_PAGEDEP); 2338 return (ret); 2339 } 2340 pagedep->pd_ino = ino; 2341 pagedep->pd_lbn = lbn; 2342 LIST_INIT(&pagedep->pd_dirremhd); 2343 LIST_INIT(&pagedep->pd_pendinghd); 2344 for (i = 0; i < DAHASHSZ; i++) 2345 LIST_INIT(&pagedep->pd_diraddhd[i]); 2346 LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash); 2347 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 2348 *pagedeppp = pagedep; 2349 return (0); 2350 } 2351 2352 /* 2353 * Structures and routines associated with inodedep caching. 2354 */ 2355 #define INODEDEP_HASH(ump, inum) \ 2356 (&(ump)->inodedep_hashtbl[(inum) & (ump)->inodedep_hash_size]) 2357 2358 static int 2359 inodedep_find(inodedephd, inum, inodedeppp) 2360 struct inodedep_hashhead *inodedephd; 2361 ino_t inum; 2362 struct inodedep **inodedeppp; 2363 { 2364 struct inodedep *inodedep; 2365 2366 LIST_FOREACH(inodedep, inodedephd, id_hash) 2367 if (inum == inodedep->id_ino) 2368 break; 2369 if (inodedep) { 2370 *inodedeppp = inodedep; 2371 return (1); 2372 } 2373 *inodedeppp = NULL; 2374 2375 return (0); 2376 } 2377 /* 2378 * Look up an inodedep. Return 1 if found, 0 if not found. 2379 * If not found, allocate if DEPALLOC flag is passed. 2380 * Found or allocated entry is returned in inodedeppp. 2381 */ 2382 static int 2383 inodedep_lookup(mp, inum, flags, inodedeppp) 2384 struct mount *mp; 2385 ino_t inum; 2386 int flags; 2387 struct inodedep **inodedeppp; 2388 { 2389 struct inodedep *inodedep; 2390 struct inodedep_hashhead *inodedephd; 2391 struct ufsmount *ump; 2392 struct fs *fs; 2393 2394 ump = VFSTOUFS(mp); 2395 LOCK_OWNED(ump); 2396 fs = ump->um_fs; 2397 inodedephd = INODEDEP_HASH(ump, inum); 2398 2399 if (inodedep_find(inodedephd, inum, inodedeppp)) 2400 return (1); 2401 if ((flags & DEPALLOC) == 0) 2402 return (0); 2403 /* 2404 * If the system is over its limit and our filesystem is 2405 * responsible for more than our share of that usage and 2406 * we are not in a rush, request some inodedep cleanup. 2407 */ 2408 if (softdep_excess_items(ump, D_INODEDEP)) 2409 schedule_cleanup(mp); 2410 else 2411 FREE_LOCK(ump); 2412 inodedep = malloc(sizeof(struct inodedep), 2413 M_INODEDEP, M_SOFTDEP_FLAGS); 2414 workitem_alloc(&inodedep->id_list, D_INODEDEP, mp); 2415 ACQUIRE_LOCK(ump); 2416 if (inodedep_find(inodedephd, inum, inodedeppp)) { 2417 WORKITEM_FREE(inodedep, D_INODEDEP); 2418 return (1); 2419 } 2420 inodedep->id_fs = fs; 2421 inodedep->id_ino = inum; 2422 inodedep->id_state = ALLCOMPLETE; 2423 inodedep->id_nlinkdelta = 0; 2424 inodedep->id_nlinkwrote = -1; 2425 inodedep->id_savedino1 = NULL; 2426 inodedep->id_savedsize = -1; 2427 inodedep->id_savedextsize = -1; 2428 inodedep->id_savednlink = -1; 2429 inodedep->id_bmsafemap = NULL; 2430 inodedep->id_mkdiradd = NULL; 2431 LIST_INIT(&inodedep->id_dirremhd); 2432 LIST_INIT(&inodedep->id_pendinghd); 2433 LIST_INIT(&inodedep->id_inowait); 2434 LIST_INIT(&inodedep->id_bufwait); 2435 TAILQ_INIT(&inodedep->id_inoreflst); 2436 TAILQ_INIT(&inodedep->id_inoupdt); 2437 TAILQ_INIT(&inodedep->id_newinoupdt); 2438 TAILQ_INIT(&inodedep->id_extupdt); 2439 TAILQ_INIT(&inodedep->id_newextupdt); 2440 TAILQ_INIT(&inodedep->id_freeblklst); 2441 LIST_INSERT_HEAD(inodedephd, inodedep, id_hash); 2442 *inodedeppp = inodedep; 2443 return (0); 2444 } 2445 2446 /* 2447 * Structures and routines associated with newblk caching. 2448 */ 2449 #define NEWBLK_HASH(ump, inum) \ 2450 (&(ump)->newblk_hashtbl[(inum) & (ump)->newblk_hash_size]) 2451 2452 static int 2453 newblk_find(newblkhd, newblkno, flags, newblkpp) 2454 struct newblk_hashhead *newblkhd; 2455 ufs2_daddr_t newblkno; 2456 int flags; 2457 struct newblk **newblkpp; 2458 { 2459 struct newblk *newblk; 2460 2461 LIST_FOREACH(newblk, newblkhd, nb_hash) { 2462 if (newblkno != newblk->nb_newblkno) 2463 continue; 2464 /* 2465 * If we're creating a new dependency don't match those that 2466 * have already been converted to allocdirects. This is for 2467 * a frag extend. 2468 */ 2469 if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK) 2470 continue; 2471 break; 2472 } 2473 if (newblk) { 2474 *newblkpp = newblk; 2475 return (1); 2476 } 2477 *newblkpp = NULL; 2478 return (0); 2479 } 2480 2481 /* 2482 * Look up a newblk. Return 1 if found, 0 if not found. 2483 * If not found, allocate if DEPALLOC flag is passed. 2484 * Found or allocated entry is returned in newblkpp. 2485 */ 2486 static int 2487 newblk_lookup(mp, newblkno, flags, newblkpp) 2488 struct mount *mp; 2489 ufs2_daddr_t newblkno; 2490 int flags; 2491 struct newblk **newblkpp; 2492 { 2493 struct newblk *newblk; 2494 struct newblk_hashhead *newblkhd; 2495 struct ufsmount *ump; 2496 2497 ump = VFSTOUFS(mp); 2498 LOCK_OWNED(ump); 2499 newblkhd = NEWBLK_HASH(ump, newblkno); 2500 if (newblk_find(newblkhd, newblkno, flags, newblkpp)) 2501 return (1); 2502 if ((flags & DEPALLOC) == 0) 2503 return (0); 2504 if (softdep_excess_items(ump, D_NEWBLK) || 2505 softdep_excess_items(ump, D_ALLOCDIRECT) || 2506 softdep_excess_items(ump, D_ALLOCINDIR)) 2507 schedule_cleanup(mp); 2508 else 2509 FREE_LOCK(ump); 2510 newblk = malloc(sizeof(union allblk), M_NEWBLK, 2511 M_SOFTDEP_FLAGS | M_ZERO); 2512 workitem_alloc(&newblk->nb_list, D_NEWBLK, mp); 2513 ACQUIRE_LOCK(ump); 2514 if (newblk_find(newblkhd, newblkno, flags, newblkpp)) { 2515 WORKITEM_FREE(newblk, D_NEWBLK); 2516 return (1); 2517 } 2518 newblk->nb_freefrag = NULL; 2519 LIST_INIT(&newblk->nb_indirdeps); 2520 LIST_INIT(&newblk->nb_newdirblk); 2521 LIST_INIT(&newblk->nb_jwork); 2522 newblk->nb_state = ATTACHED; 2523 newblk->nb_newblkno = newblkno; 2524 LIST_INSERT_HEAD(newblkhd, newblk, nb_hash); 2525 *newblkpp = newblk; 2526 return (0); 2527 } 2528 2529 /* 2530 * Structures and routines associated with freed indirect block caching. 2531 */ 2532 #define INDIR_HASH(ump, blkno) \ 2533 (&(ump)->indir_hashtbl[(blkno) & (ump)->indir_hash_size]) 2534 2535 /* 2536 * Lookup an indirect block in the indir hash table. The freework is 2537 * removed and potentially freed. The caller must do a blocking journal 2538 * write before writing to the blkno. 2539 */ 2540 static int 2541 indirblk_lookup(mp, blkno) 2542 struct mount *mp; 2543 ufs2_daddr_t blkno; 2544 { 2545 struct freework *freework; 2546 struct indir_hashhead *wkhd; 2547 struct ufsmount *ump; 2548 2549 ump = VFSTOUFS(mp); 2550 wkhd = INDIR_HASH(ump, blkno); 2551 TAILQ_FOREACH(freework, wkhd, fw_next) { 2552 if (freework->fw_blkno != blkno) 2553 continue; 2554 indirblk_remove(freework); 2555 return (1); 2556 } 2557 return (0); 2558 } 2559 2560 /* 2561 * Insert an indirect block represented by freework into the indirblk 2562 * hash table so that it may prevent the block from being re-used prior 2563 * to the journal being written. 2564 */ 2565 static void 2566 indirblk_insert(freework) 2567 struct freework *freework; 2568 { 2569 struct jblocks *jblocks; 2570 struct jseg *jseg; 2571 struct ufsmount *ump; 2572 2573 ump = VFSTOUFS(freework->fw_list.wk_mp); 2574 jblocks = ump->softdep_jblocks; 2575 jseg = TAILQ_LAST(&jblocks->jb_segs, jseglst); 2576 if (jseg == NULL) 2577 return; 2578 2579 LIST_INSERT_HEAD(&jseg->js_indirs, freework, fw_segs); 2580 TAILQ_INSERT_HEAD(INDIR_HASH(ump, freework->fw_blkno), freework, 2581 fw_next); 2582 freework->fw_state &= ~DEPCOMPLETE; 2583 } 2584 2585 static void 2586 indirblk_remove(freework) 2587 struct freework *freework; 2588 { 2589 struct ufsmount *ump; 2590 2591 ump = VFSTOUFS(freework->fw_list.wk_mp); 2592 LIST_REMOVE(freework, fw_segs); 2593 TAILQ_REMOVE(INDIR_HASH(ump, freework->fw_blkno), freework, fw_next); 2594 freework->fw_state |= DEPCOMPLETE; 2595 if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE) 2596 WORKITEM_FREE(freework, D_FREEWORK); 2597 } 2598 2599 /* 2600 * Executed during filesystem system initialization before 2601 * mounting any filesystems. 2602 */ 2603 void 2604 softdep_initialize() 2605 { 2606 2607 TAILQ_INIT(&softdepmounts); 2608 #ifdef __LP64__ 2609 max_softdeps = desiredvnodes * 4; 2610 #else 2611 max_softdeps = desiredvnodes * 2; 2612 #endif 2613 2614 /* initialise bioops hack */ 2615 bioops.io_start = softdep_disk_io_initiation; 2616 bioops.io_complete = softdep_disk_write_complete; 2617 bioops.io_deallocate = softdep_deallocate_dependencies; 2618 bioops.io_countdeps = softdep_count_dependencies; 2619 softdep_ast_cleanup = softdep_ast_cleanup_proc; 2620 2621 /* Initialize the callout with an mtx. */ 2622 callout_init_mtx(&softdep_callout, &lk, 0); 2623 } 2624 2625 /* 2626 * Executed after all filesystems have been unmounted during 2627 * filesystem module unload. 2628 */ 2629 void 2630 softdep_uninitialize() 2631 { 2632 2633 /* clear bioops hack */ 2634 bioops.io_start = NULL; 2635 bioops.io_complete = NULL; 2636 bioops.io_deallocate = NULL; 2637 bioops.io_countdeps = NULL; 2638 softdep_ast_cleanup = NULL; 2639 2640 callout_drain(&softdep_callout); 2641 } 2642 2643 /* 2644 * Called at mount time to notify the dependency code that a 2645 * filesystem wishes to use it. 2646 */ 2647 int 2648 softdep_mount(devvp, mp, fs, cred) 2649 struct vnode *devvp; 2650 struct mount *mp; 2651 struct fs *fs; 2652 struct ucred *cred; 2653 { 2654 struct csum_total cstotal; 2655 struct mount_softdeps *sdp; 2656 struct ufsmount *ump; 2657 struct cg *cgp; 2658 struct buf *bp; 2659 u_int cyl, i; 2660 int error; 2661 2662 sdp = malloc(sizeof(struct mount_softdeps), M_MOUNTDATA, 2663 M_WAITOK | M_ZERO); 2664 MNT_ILOCK(mp); 2665 mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP; 2666 if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) { 2667 mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) | 2668 MNTK_SOFTDEP | MNTK_NOASYNC; 2669 } 2670 ump = VFSTOUFS(mp); 2671 ump->um_softdep = sdp; 2672 MNT_IUNLOCK(mp); 2673 rw_init(LOCK_PTR(ump), "per-fs softdep"); 2674 sdp->sd_ump = ump; 2675 LIST_INIT(&ump->softdep_workitem_pending); 2676 LIST_INIT(&ump->softdep_journal_pending); 2677 TAILQ_INIT(&ump->softdep_unlinked); 2678 LIST_INIT(&ump->softdep_dirtycg); 2679 ump->softdep_worklist_tail = NULL; 2680 ump->softdep_on_worklist = 0; 2681 ump->softdep_deps = 0; 2682 LIST_INIT(&ump->softdep_mkdirlisthd); 2683 ump->pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP, 2684 &ump->pagedep_hash_size); 2685 ump->pagedep_nextclean = 0; 2686 ump->inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, 2687 &ump->inodedep_hash_size); 2688 ump->inodedep_nextclean = 0; 2689 ump->newblk_hashtbl = hashinit(max_softdeps / 2, M_NEWBLK, 2690 &ump->newblk_hash_size); 2691 ump->bmsafemap_hashtbl = hashinit(1024, M_BMSAFEMAP, 2692 &ump->bmsafemap_hash_size); 2693 i = 1 << (ffs(desiredvnodes / 10) - 1); 2694 ump->indir_hashtbl = malloc(i * sizeof(struct indir_hashhead), 2695 M_FREEWORK, M_WAITOK); 2696 ump->indir_hash_size = i - 1; 2697 for (i = 0; i <= ump->indir_hash_size; i++) 2698 TAILQ_INIT(&ump->indir_hashtbl[i]); 2699 #ifdef INVARIANTS 2700 for (i = 0; i <= D_LAST; i++) 2701 LIST_INIT(&ump->softdep_alldeps[i]); 2702 #endif 2703 ACQUIRE_GBLLOCK(&lk); 2704 TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next); 2705 FREE_GBLLOCK(&lk); 2706 if ((fs->fs_flags & FS_SUJ) && 2707 (error = journal_mount(mp, fs, cred)) != 0) { 2708 printf("Failed to start journal: %d\n", error); 2709 softdep_unmount(mp); 2710 return (error); 2711 } 2712 /* 2713 * Start our flushing thread in the bufdaemon process. 2714 */ 2715 ACQUIRE_LOCK(ump); 2716 ump->softdep_flags |= FLUSH_STARTING; 2717 FREE_LOCK(ump); 2718 kproc_kthread_add(&softdep_flush, mp, &bufdaemonproc, 2719 &ump->softdep_flushtd, 0, 0, "softdepflush", "%s worker", 2720 mp->mnt_stat.f_mntonname); 2721 ACQUIRE_LOCK(ump); 2722 while ((ump->softdep_flags & FLUSH_STARTING) != 0) { 2723 msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM, "sdstart", 2724 hz / 2); 2725 } 2726 FREE_LOCK(ump); 2727 /* 2728 * When doing soft updates, the counters in the 2729 * superblock may have gotten out of sync. Recomputation 2730 * can take a long time and can be deferred for background 2731 * fsck. However, the old behavior of scanning the cylinder 2732 * groups and recalculating them at mount time is available 2733 * by setting vfs.ffs.compute_summary_at_mount to one. 2734 */ 2735 if (compute_summary_at_mount == 0 || fs->fs_clean != 0) 2736 return (0); 2737 bzero(&cstotal, sizeof cstotal); 2738 for (cyl = 0; cyl < fs->fs_ncg; cyl++) { 2739 if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)), 2740 fs->fs_cgsize, cred, &bp)) != 0) { 2741 brelse(bp); 2742 softdep_unmount(mp); 2743 return (error); 2744 } 2745 cgp = (struct cg *)bp->b_data; 2746 cstotal.cs_nffree += cgp->cg_cs.cs_nffree; 2747 cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree; 2748 cstotal.cs_nifree += cgp->cg_cs.cs_nifree; 2749 cstotal.cs_ndir += cgp->cg_cs.cs_ndir; 2750 fs->fs_cs(fs, cyl) = cgp->cg_cs; 2751 brelse(bp); 2752 } 2753 #ifdef INVARIANTS 2754 if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal)) 2755 printf("%s: superblock summary recomputed\n", fs->fs_fsmnt); 2756 #endif 2757 bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal); 2758 return (0); 2759 } 2760 2761 void 2762 softdep_unmount(mp) 2763 struct mount *mp; 2764 { 2765 struct ufsmount *ump; 2766 #ifdef INVARIANTS 2767 int i; 2768 #endif 2769 2770 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 2771 ("softdep_unmount called on non-softdep filesystem")); 2772 ump = VFSTOUFS(mp); 2773 MNT_ILOCK(mp); 2774 mp->mnt_flag &= ~MNT_SOFTDEP; 2775 if (MOUNTEDSUJ(mp) == 0) { 2776 MNT_IUNLOCK(mp); 2777 } else { 2778 mp->mnt_flag &= ~MNT_SUJ; 2779 MNT_IUNLOCK(mp); 2780 journal_unmount(ump); 2781 } 2782 /* 2783 * Shut down our flushing thread. Check for NULL is if 2784 * softdep_mount errors out before the thread has been created. 2785 */ 2786 if (ump->softdep_flushtd != NULL) { 2787 ACQUIRE_LOCK(ump); 2788 ump->softdep_flags |= FLUSH_EXIT; 2789 wakeup(&ump->softdep_flushtd); 2790 msleep(&ump->softdep_flags, LOCK_PTR(ump), PVM | PDROP, 2791 "sdwait", 0); 2792 KASSERT((ump->softdep_flags & FLUSH_EXIT) == 0, 2793 ("Thread shutdown failed")); 2794 } 2795 /* 2796 * Free up our resources. 2797 */ 2798 ACQUIRE_GBLLOCK(&lk); 2799 TAILQ_REMOVE(&softdepmounts, ump->um_softdep, sd_next); 2800 FREE_GBLLOCK(&lk); 2801 rw_destroy(LOCK_PTR(ump)); 2802 hashdestroy(ump->pagedep_hashtbl, M_PAGEDEP, ump->pagedep_hash_size); 2803 hashdestroy(ump->inodedep_hashtbl, M_INODEDEP, ump->inodedep_hash_size); 2804 hashdestroy(ump->newblk_hashtbl, M_NEWBLK, ump->newblk_hash_size); 2805 hashdestroy(ump->bmsafemap_hashtbl, M_BMSAFEMAP, 2806 ump->bmsafemap_hash_size); 2807 free(ump->indir_hashtbl, M_FREEWORK); 2808 #ifdef INVARIANTS 2809 for (i = 0; i <= D_LAST; i++) { 2810 KASSERT(ump->softdep_curdeps[i] == 0, 2811 ("Unmount %s: Dep type %s != 0 (%ld)", ump->um_fs->fs_fsmnt, 2812 TYPENAME(i), ump->softdep_curdeps[i])); 2813 KASSERT(LIST_EMPTY(&ump->softdep_alldeps[i]), 2814 ("Unmount %s: Dep type %s not empty (%p)", ump->um_fs->fs_fsmnt, 2815 TYPENAME(i), LIST_FIRST(&ump->softdep_alldeps[i]))); 2816 } 2817 #endif 2818 free(ump->um_softdep, M_MOUNTDATA); 2819 } 2820 2821 static struct jblocks * 2822 jblocks_create(void) 2823 { 2824 struct jblocks *jblocks; 2825 2826 jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO); 2827 TAILQ_INIT(&jblocks->jb_segs); 2828 jblocks->jb_avail = 10; 2829 jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail, 2830 M_JBLOCKS, M_WAITOK | M_ZERO); 2831 2832 return (jblocks); 2833 } 2834 2835 static ufs2_daddr_t 2836 jblocks_alloc(jblocks, bytes, actual) 2837 struct jblocks *jblocks; 2838 int bytes; 2839 int *actual; 2840 { 2841 ufs2_daddr_t daddr; 2842 struct jextent *jext; 2843 int freecnt; 2844 int blocks; 2845 2846 blocks = bytes / DEV_BSIZE; 2847 jext = &jblocks->jb_extent[jblocks->jb_head]; 2848 freecnt = jext->je_blocks - jblocks->jb_off; 2849 if (freecnt == 0) { 2850 jblocks->jb_off = 0; 2851 if (++jblocks->jb_head > jblocks->jb_used) 2852 jblocks->jb_head = 0; 2853 jext = &jblocks->jb_extent[jblocks->jb_head]; 2854 freecnt = jext->je_blocks; 2855 } 2856 if (freecnt > blocks) 2857 freecnt = blocks; 2858 *actual = freecnt * DEV_BSIZE; 2859 daddr = jext->je_daddr + jblocks->jb_off; 2860 jblocks->jb_off += freecnt; 2861 jblocks->jb_free -= freecnt; 2862 2863 return (daddr); 2864 } 2865 2866 static void 2867 jblocks_free(jblocks, mp, bytes) 2868 struct jblocks *jblocks; 2869 struct mount *mp; 2870 int bytes; 2871 { 2872 2873 LOCK_OWNED(VFSTOUFS(mp)); 2874 jblocks->jb_free += bytes / DEV_BSIZE; 2875 if (jblocks->jb_suspended) 2876 worklist_speedup(mp); 2877 wakeup(jblocks); 2878 } 2879 2880 static void 2881 jblocks_destroy(jblocks) 2882 struct jblocks *jblocks; 2883 { 2884 2885 if (jblocks->jb_extent) 2886 free(jblocks->jb_extent, M_JBLOCKS); 2887 free(jblocks, M_JBLOCKS); 2888 } 2889 2890 static void 2891 jblocks_add(jblocks, daddr, blocks) 2892 struct jblocks *jblocks; 2893 ufs2_daddr_t daddr; 2894 int blocks; 2895 { 2896 struct jextent *jext; 2897 2898 jblocks->jb_blocks += blocks; 2899 jblocks->jb_free += blocks; 2900 jext = &jblocks->jb_extent[jblocks->jb_used]; 2901 /* Adding the first block. */ 2902 if (jext->je_daddr == 0) { 2903 jext->je_daddr = daddr; 2904 jext->je_blocks = blocks; 2905 return; 2906 } 2907 /* Extending the last extent. */ 2908 if (jext->je_daddr + jext->je_blocks == daddr) { 2909 jext->je_blocks += blocks; 2910 return; 2911 } 2912 /* Adding a new extent. */ 2913 if (++jblocks->jb_used == jblocks->jb_avail) { 2914 jblocks->jb_avail *= 2; 2915 jext = malloc(sizeof(struct jextent) * jblocks->jb_avail, 2916 M_JBLOCKS, M_WAITOK | M_ZERO); 2917 memcpy(jext, jblocks->jb_extent, 2918 sizeof(struct jextent) * jblocks->jb_used); 2919 free(jblocks->jb_extent, M_JBLOCKS); 2920 jblocks->jb_extent = jext; 2921 } 2922 jext = &jblocks->jb_extent[jblocks->jb_used]; 2923 jext->je_daddr = daddr; 2924 jext->je_blocks = blocks; 2925 return; 2926 } 2927 2928 int 2929 softdep_journal_lookup(mp, vpp) 2930 struct mount *mp; 2931 struct vnode **vpp; 2932 { 2933 struct componentname cnp; 2934 struct vnode *dvp; 2935 ino_t sujournal; 2936 int error; 2937 2938 error = VFS_VGET(mp, UFS_ROOTINO, LK_EXCLUSIVE, &dvp); 2939 if (error) 2940 return (error); 2941 bzero(&cnp, sizeof(cnp)); 2942 cnp.cn_nameiop = LOOKUP; 2943 cnp.cn_flags = ISLASTCN; 2944 cnp.cn_thread = curthread; 2945 cnp.cn_cred = curthread->td_ucred; 2946 cnp.cn_pnbuf = SUJ_FILE; 2947 cnp.cn_nameptr = SUJ_FILE; 2948 cnp.cn_namelen = strlen(SUJ_FILE); 2949 error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal); 2950 vput(dvp); 2951 if (error != 0) 2952 return (error); 2953 error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp); 2954 return (error); 2955 } 2956 2957 /* 2958 * Open and verify the journal file. 2959 */ 2960 static int 2961 journal_mount(mp, fs, cred) 2962 struct mount *mp; 2963 struct fs *fs; 2964 struct ucred *cred; 2965 { 2966 struct jblocks *jblocks; 2967 struct ufsmount *ump; 2968 struct vnode *vp; 2969 struct inode *ip; 2970 ufs2_daddr_t blkno; 2971 int bcount; 2972 int error; 2973 int i; 2974 2975 ump = VFSTOUFS(mp); 2976 ump->softdep_journal_tail = NULL; 2977 ump->softdep_on_journal = 0; 2978 ump->softdep_accdeps = 0; 2979 ump->softdep_req = 0; 2980 ump->softdep_jblocks = NULL; 2981 error = softdep_journal_lookup(mp, &vp); 2982 if (error != 0) { 2983 printf("Failed to find journal. Use tunefs to create one\n"); 2984 return (error); 2985 } 2986 ip = VTOI(vp); 2987 if (ip->i_size < SUJ_MIN) { 2988 error = ENOSPC; 2989 goto out; 2990 } 2991 bcount = lblkno(fs, ip->i_size); /* Only use whole blocks. */ 2992 jblocks = jblocks_create(); 2993 for (i = 0; i < bcount; i++) { 2994 error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL); 2995 if (error) 2996 break; 2997 jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag)); 2998 } 2999 if (error) { 3000 jblocks_destroy(jblocks); 3001 goto out; 3002 } 3003 jblocks->jb_low = jblocks->jb_free / 3; /* Reserve 33%. */ 3004 jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */ 3005 ump->softdep_jblocks = jblocks; 3006 out: 3007 if (error == 0) { 3008 MNT_ILOCK(mp); 3009 mp->mnt_flag |= MNT_SUJ; 3010 mp->mnt_flag &= ~MNT_SOFTDEP; 3011 MNT_IUNLOCK(mp); 3012 /* 3013 * Only validate the journal contents if the 3014 * filesystem is clean, otherwise we write the logs 3015 * but they'll never be used. If the filesystem was 3016 * still dirty when we mounted it the journal is 3017 * invalid and a new journal can only be valid if it 3018 * starts from a clean mount. 3019 */ 3020 if (fs->fs_clean) { 3021 DIP_SET(ip, i_modrev, fs->fs_mtime); 3022 ip->i_flags |= IN_MODIFIED; 3023 ffs_update(vp, 1); 3024 } 3025 } 3026 vput(vp); 3027 return (error); 3028 } 3029 3030 static void 3031 journal_unmount(ump) 3032 struct ufsmount *ump; 3033 { 3034 3035 if (ump->softdep_jblocks) 3036 jblocks_destroy(ump->softdep_jblocks); 3037 ump->softdep_jblocks = NULL; 3038 } 3039 3040 /* 3041 * Called when a journal record is ready to be written. Space is allocated 3042 * and the journal entry is created when the journal is flushed to stable 3043 * store. 3044 */ 3045 static void 3046 add_to_journal(wk) 3047 struct worklist *wk; 3048 { 3049 struct ufsmount *ump; 3050 3051 ump = VFSTOUFS(wk->wk_mp); 3052 LOCK_OWNED(ump); 3053 if (wk->wk_state & ONWORKLIST) 3054 panic("add_to_journal: %s(0x%X) already on list", 3055 TYPENAME(wk->wk_type), wk->wk_state); 3056 wk->wk_state |= ONWORKLIST | DEPCOMPLETE; 3057 if (LIST_EMPTY(&ump->softdep_journal_pending)) { 3058 ump->softdep_jblocks->jb_age = ticks; 3059 LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list); 3060 } else 3061 LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list); 3062 ump->softdep_journal_tail = wk; 3063 ump->softdep_on_journal += 1; 3064 } 3065 3066 /* 3067 * Remove an arbitrary item for the journal worklist maintain the tail 3068 * pointer. This happens when a new operation obviates the need to 3069 * journal an old operation. 3070 */ 3071 static void 3072 remove_from_journal(wk) 3073 struct worklist *wk; 3074 { 3075 struct ufsmount *ump; 3076 3077 ump = VFSTOUFS(wk->wk_mp); 3078 LOCK_OWNED(ump); 3079 #ifdef INVARIANTS 3080 { 3081 struct worklist *wkn; 3082 3083 LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list) 3084 if (wkn == wk) 3085 break; 3086 if (wkn == NULL) 3087 panic("remove_from_journal: %p is not in journal", wk); 3088 } 3089 #endif 3090 /* 3091 * We emulate a TAILQ to save space in most structures which do not 3092 * require TAILQ semantics. Here we must update the tail position 3093 * when removing the tail which is not the final entry. This works 3094 * only if the worklist linkage are at the beginning of the structure. 3095 */ 3096 if (ump->softdep_journal_tail == wk) 3097 ump->softdep_journal_tail = 3098 (struct worklist *)wk->wk_list.le_prev; 3099 WORKLIST_REMOVE(wk); 3100 ump->softdep_on_journal -= 1; 3101 } 3102 3103 /* 3104 * Check for journal space as well as dependency limits so the prelink 3105 * code can throttle both journaled and non-journaled filesystems. 3106 * Threshold is 0 for low and 1 for min. 3107 */ 3108 static int 3109 journal_space(ump, thresh) 3110 struct ufsmount *ump; 3111 int thresh; 3112 { 3113 struct jblocks *jblocks; 3114 int limit, avail; 3115 3116 jblocks = ump->softdep_jblocks; 3117 if (jblocks == NULL) 3118 return (1); 3119 /* 3120 * We use a tighter restriction here to prevent request_cleanup() 3121 * running in threads from running into locks we currently hold. 3122 * We have to be over the limit and our filesystem has to be 3123 * responsible for more than our share of that usage. 3124 */ 3125 limit = (max_softdeps / 10) * 9; 3126 if (dep_current[D_INODEDEP] > limit && 3127 ump->softdep_curdeps[D_INODEDEP] > limit / stat_flush_threads) 3128 return (0); 3129 if (thresh) 3130 thresh = jblocks->jb_min; 3131 else 3132 thresh = jblocks->jb_low; 3133 avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE; 3134 avail = jblocks->jb_free - avail; 3135 3136 return (avail > thresh); 3137 } 3138 3139 static void 3140 journal_suspend(ump) 3141 struct ufsmount *ump; 3142 { 3143 struct jblocks *jblocks; 3144 struct mount *mp; 3145 bool set; 3146 3147 mp = UFSTOVFS(ump); 3148 if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) 3149 return; 3150 3151 jblocks = ump->softdep_jblocks; 3152 vfs_op_enter(mp); 3153 set = false; 3154 MNT_ILOCK(mp); 3155 if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) { 3156 stat_journal_min++; 3157 mp->mnt_kern_flag |= MNTK_SUSPEND; 3158 mp->mnt_susp_owner = ump->softdep_flushtd; 3159 set = true; 3160 } 3161 jblocks->jb_suspended = 1; 3162 MNT_IUNLOCK(mp); 3163 if (!set) 3164 vfs_op_exit(mp); 3165 } 3166 3167 static int 3168 journal_unsuspend(struct ufsmount *ump) 3169 { 3170 struct jblocks *jblocks; 3171 struct mount *mp; 3172 3173 mp = UFSTOVFS(ump); 3174 jblocks = ump->softdep_jblocks; 3175 3176 if (jblocks != NULL && jblocks->jb_suspended && 3177 journal_space(ump, jblocks->jb_min)) { 3178 jblocks->jb_suspended = 0; 3179 FREE_LOCK(ump); 3180 mp->mnt_susp_owner = curthread; 3181 vfs_write_resume(mp, 0); 3182 ACQUIRE_LOCK(ump); 3183 return (1); 3184 } 3185 return (0); 3186 } 3187 3188 /* 3189 * Called before any allocation function to be certain that there is 3190 * sufficient space in the journal prior to creating any new records. 3191 * Since in the case of block allocation we may have multiple locked 3192 * buffers at the time of the actual allocation we can not block 3193 * when the journal records are created. Doing so would create a deadlock 3194 * if any of these buffers needed to be flushed to reclaim space. Instead 3195 * we require a sufficiently large amount of available space such that 3196 * each thread in the system could have passed this allocation check and 3197 * still have sufficient free space. With 20% of a minimum journal size 3198 * of 1MB we have 6553 records available. 3199 */ 3200 int 3201 softdep_prealloc(vp, waitok) 3202 struct vnode *vp; 3203 int waitok; 3204 { 3205 struct ufsmount *ump; 3206 3207 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 3208 ("softdep_prealloc called on non-softdep filesystem")); 3209 /* 3210 * Nothing to do if we are not running journaled soft updates. 3211 * If we currently hold the snapshot lock, we must avoid 3212 * handling other resources that could cause deadlock. Do not 3213 * touch quotas vnode since it is typically recursed with 3214 * other vnode locks held. 3215 */ 3216 if (DOINGSUJ(vp) == 0 || IS_SNAPSHOT(VTOI(vp)) || 3217 (vp->v_vflag & VV_SYSTEM) != 0) 3218 return (0); 3219 ump = VFSTOUFS(vp->v_mount); 3220 ACQUIRE_LOCK(ump); 3221 if (journal_space(ump, 0)) { 3222 FREE_LOCK(ump); 3223 return (0); 3224 } 3225 stat_journal_low++; 3226 FREE_LOCK(ump); 3227 if (waitok == MNT_NOWAIT) 3228 return (ENOSPC); 3229 /* 3230 * Attempt to sync this vnode once to flush any journal 3231 * work attached to it. 3232 */ 3233 if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0) 3234 ffs_syncvnode(vp, waitok, 0); 3235 ACQUIRE_LOCK(ump); 3236 process_removes(vp); 3237 process_truncates(vp); 3238 if (journal_space(ump, 0) == 0) { 3239 softdep_speedup(ump); 3240 if (journal_space(ump, 1) == 0) 3241 journal_suspend(ump); 3242 } 3243 FREE_LOCK(ump); 3244 3245 return (0); 3246 } 3247 3248 /* 3249 * Try hard to sync all data and metadata for the vnode, and workitems 3250 * flushing which might conflict with the vnode lock. This is a 3251 * helper for softdep_prerename(). 3252 */ 3253 static int 3254 softdep_prerename_vnode(ump, vp) 3255 struct ufsmount *ump; 3256 struct vnode *vp; 3257 { 3258 int error; 3259 3260 ASSERT_VOP_ELOCKED(vp, "prehandle"); 3261 if (vp->v_data == NULL) 3262 return (0); 3263 error = VOP_FSYNC(vp, MNT_WAIT, curthread); 3264 if (error != 0) 3265 return (error); 3266 ACQUIRE_LOCK(ump); 3267 process_removes(vp); 3268 process_truncates(vp); 3269 FREE_LOCK(ump); 3270 return (0); 3271 } 3272 3273 /* 3274 * Must be called from VOP_RENAME() after all vnodes are locked. 3275 * Ensures that there is enough journal space for rename. It is 3276 * sufficiently different from softdep_prelink() by having to handle 3277 * four vnodes. 3278 */ 3279 int 3280 softdep_prerename(fdvp, fvp, tdvp, tvp) 3281 struct vnode *fdvp; 3282 struct vnode *fvp; 3283 struct vnode *tdvp; 3284 struct vnode *tvp; 3285 { 3286 struct ufsmount *ump; 3287 int error; 3288 3289 ump = VFSTOUFS(fdvp->v_mount); 3290 3291 if (journal_space(ump, 0)) 3292 return (0); 3293 3294 VOP_UNLOCK(tdvp); 3295 VOP_UNLOCK(fvp); 3296 if (tvp != NULL && tvp != tdvp) 3297 VOP_UNLOCK(tvp); 3298 3299 error = softdep_prerename_vnode(ump, fdvp); 3300 VOP_UNLOCK(fdvp); 3301 if (error != 0) 3302 return (error); 3303 3304 VOP_LOCK(fvp, LK_EXCLUSIVE | LK_RETRY); 3305 error = softdep_prerename_vnode(ump, fvp); 3306 VOP_UNLOCK(fvp); 3307 if (error != 0) 3308 return (error); 3309 3310 if (tdvp != fdvp) { 3311 VOP_LOCK(tdvp, LK_EXCLUSIVE | LK_RETRY); 3312 error = softdep_prerename_vnode(ump, tdvp); 3313 VOP_UNLOCK(tdvp); 3314 if (error != 0) 3315 return (error); 3316 } 3317 3318 if (tvp != fvp && tvp != NULL) { 3319 VOP_LOCK(tvp, LK_EXCLUSIVE | LK_RETRY); 3320 error = softdep_prerename_vnode(ump, tvp); 3321 VOP_UNLOCK(tvp); 3322 if (error != 0) 3323 return (error); 3324 } 3325 3326 ACQUIRE_LOCK(ump); 3327 softdep_speedup(ump); 3328 process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT); 3329 if (journal_space(ump, 0) == 0) { 3330 softdep_speedup(ump); 3331 if (journal_space(ump, 1) == 0) 3332 journal_suspend(ump); 3333 } 3334 FREE_LOCK(ump); 3335 return (ERELOOKUP); 3336 } 3337 3338 /* 3339 * Before adjusting a link count on a vnode verify that we have sufficient 3340 * journal space. If not, process operations that depend on the currently 3341 * locked pair of vnodes to try to flush space as the syncer, buf daemon, 3342 * and softdep flush threads can not acquire these locks to reclaim space. 3343 * 3344 * Returns 0 if all owned locks are still valid and were not dropped 3345 * in the process, in other case it returns either an error from sync, 3346 * or ERELOOKUP if any of the locks were re-acquired. In the later 3347 * case, the state of the vnodes cannot be relied upon and our VFS 3348 * syscall must be restarted at top level from the lookup. 3349 */ 3350 int 3351 softdep_prelink(dvp, vp, will_direnter) 3352 struct vnode *dvp; 3353 struct vnode *vp; 3354 int will_direnter; 3355 { 3356 struct ufsmount *ump; 3357 int error, error1; 3358 3359 ASSERT_VOP_ELOCKED(dvp, "prelink dvp"); 3360 if (vp != NULL) 3361 ASSERT_VOP_ELOCKED(vp, "prelink vp"); 3362 ump = VFSTOUFS(dvp->v_mount); 3363 3364 /* 3365 * Nothing to do if we have sufficient journal space. 3366 * If we currently hold the snapshot lock, we must avoid 3367 * handling other resources that could cause deadlock. 3368 * 3369 * will_direnter == 1: In case allocated a directory block in 3370 * an indirect block, we must prevent holes in the directory 3371 * created if directory entries are written out of order. To 3372 * accomplish this we fsync when we extend a directory into 3373 * indirects. During rename it's not safe to drop the tvp 3374 * lock so sync must be delayed until it is. 3375 * 3376 * This synchronous step could be removed if fsck and the 3377 * kernel were taught to fill in sparse directories rather 3378 * than panic. 3379 */ 3380 if (journal_space(ump, 0) || (vp != NULL && IS_SNAPSHOT(VTOI(vp)))) { 3381 error = 0; 3382 if (will_direnter && (vp == NULL || !IS_SNAPSHOT(VTOI(vp)))) { 3383 if (vp != NULL) 3384 VOP_UNLOCK(vp); 3385 error = ffs_syncvnode(dvp, MNT_WAIT, 0); 3386 if (vp != NULL) { 3387 error1 = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT); 3388 if (error1 != 0) { 3389 vn_lock_pair(dvp, true, vp, false); 3390 if (error == 0) 3391 error = ERELOOKUP; 3392 } else if (vp->v_data == NULL) { 3393 error = ERELOOKUP; 3394 } 3395 } 3396 } 3397 return (error); 3398 } 3399 3400 stat_journal_low++; 3401 if (vp != NULL) { 3402 VOP_UNLOCK(dvp); 3403 ffs_syncvnode(vp, MNT_NOWAIT, 0); 3404 vn_lock_pair(dvp, false, vp, true); 3405 if (dvp->v_data == NULL) 3406 return (ERELOOKUP); 3407 } 3408 if (vp != NULL) 3409 VOP_UNLOCK(vp); 3410 ffs_syncvnode(dvp, MNT_WAIT, 0); 3411 VOP_UNLOCK(dvp); 3412 3413 /* Process vp before dvp as it may create .. removes. */ 3414 if (vp != NULL) { 3415 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 3416 if (vp->v_data == NULL) { 3417 vn_lock_pair(dvp, false, vp, true); 3418 return (ERELOOKUP); 3419 } 3420 ACQUIRE_LOCK(ump); 3421 process_removes(vp); 3422 process_truncates(vp); 3423 FREE_LOCK(ump); 3424 VOP_UNLOCK(vp); 3425 } 3426 3427 vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY); 3428 if (dvp->v_data == NULL) { 3429 vn_lock_pair(dvp, true, vp, false); 3430 return (ERELOOKUP); 3431 } 3432 3433 ACQUIRE_LOCK(ump); 3434 process_removes(dvp); 3435 process_truncates(dvp); 3436 VOP_UNLOCK(dvp); 3437 softdep_speedup(ump); 3438 3439 process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT); 3440 if (journal_space(ump, 0) == 0) { 3441 softdep_speedup(ump); 3442 if (journal_space(ump, 1) == 0) 3443 journal_suspend(ump); 3444 } 3445 FREE_LOCK(ump); 3446 3447 vn_lock_pair(dvp, false, vp, false); 3448 return (ERELOOKUP); 3449 } 3450 3451 static void 3452 jseg_write(ump, jseg, data) 3453 struct ufsmount *ump; 3454 struct jseg *jseg; 3455 uint8_t *data; 3456 { 3457 struct jsegrec *rec; 3458 3459 rec = (struct jsegrec *)data; 3460 rec->jsr_seq = jseg->js_seq; 3461 rec->jsr_oldest = jseg->js_oldseq; 3462 rec->jsr_cnt = jseg->js_cnt; 3463 rec->jsr_blocks = jseg->js_size / ump->um_devvp->v_bufobj.bo_bsize; 3464 rec->jsr_crc = 0; 3465 rec->jsr_time = ump->um_fs->fs_mtime; 3466 } 3467 3468 static inline void 3469 inoref_write(inoref, jseg, rec) 3470 struct inoref *inoref; 3471 struct jseg *jseg; 3472 struct jrefrec *rec; 3473 { 3474 3475 inoref->if_jsegdep->jd_seg = jseg; 3476 rec->jr_ino = inoref->if_ino; 3477 rec->jr_parent = inoref->if_parent; 3478 rec->jr_nlink = inoref->if_nlink; 3479 rec->jr_mode = inoref->if_mode; 3480 rec->jr_diroff = inoref->if_diroff; 3481 } 3482 3483 static void 3484 jaddref_write(jaddref, jseg, data) 3485 struct jaddref *jaddref; 3486 struct jseg *jseg; 3487 uint8_t *data; 3488 { 3489 struct jrefrec *rec; 3490 3491 rec = (struct jrefrec *)data; 3492 rec->jr_op = JOP_ADDREF; 3493 inoref_write(&jaddref->ja_ref, jseg, rec); 3494 } 3495 3496 static void 3497 jremref_write(jremref, jseg, data) 3498 struct jremref *jremref; 3499 struct jseg *jseg; 3500 uint8_t *data; 3501 { 3502 struct jrefrec *rec; 3503 3504 rec = (struct jrefrec *)data; 3505 rec->jr_op = JOP_REMREF; 3506 inoref_write(&jremref->jr_ref, jseg, rec); 3507 } 3508 3509 static void 3510 jmvref_write(jmvref, jseg, data) 3511 struct jmvref *jmvref; 3512 struct jseg *jseg; 3513 uint8_t *data; 3514 { 3515 struct jmvrec *rec; 3516 3517 rec = (struct jmvrec *)data; 3518 rec->jm_op = JOP_MVREF; 3519 rec->jm_ino = jmvref->jm_ino; 3520 rec->jm_parent = jmvref->jm_parent; 3521 rec->jm_oldoff = jmvref->jm_oldoff; 3522 rec->jm_newoff = jmvref->jm_newoff; 3523 } 3524 3525 static void 3526 jnewblk_write(jnewblk, jseg, data) 3527 struct jnewblk *jnewblk; 3528 struct jseg *jseg; 3529 uint8_t *data; 3530 { 3531 struct jblkrec *rec; 3532 3533 jnewblk->jn_jsegdep->jd_seg = jseg; 3534 rec = (struct jblkrec *)data; 3535 rec->jb_op = JOP_NEWBLK; 3536 rec->jb_ino = jnewblk->jn_ino; 3537 rec->jb_blkno = jnewblk->jn_blkno; 3538 rec->jb_lbn = jnewblk->jn_lbn; 3539 rec->jb_frags = jnewblk->jn_frags; 3540 rec->jb_oldfrags = jnewblk->jn_oldfrags; 3541 } 3542 3543 static void 3544 jfreeblk_write(jfreeblk, jseg, data) 3545 struct jfreeblk *jfreeblk; 3546 struct jseg *jseg; 3547 uint8_t *data; 3548 { 3549 struct jblkrec *rec; 3550 3551 jfreeblk->jf_dep.jb_jsegdep->jd_seg = jseg; 3552 rec = (struct jblkrec *)data; 3553 rec->jb_op = JOP_FREEBLK; 3554 rec->jb_ino = jfreeblk->jf_ino; 3555 rec->jb_blkno = jfreeblk->jf_blkno; 3556 rec->jb_lbn = jfreeblk->jf_lbn; 3557 rec->jb_frags = jfreeblk->jf_frags; 3558 rec->jb_oldfrags = 0; 3559 } 3560 3561 static void 3562 jfreefrag_write(jfreefrag, jseg, data) 3563 struct jfreefrag *jfreefrag; 3564 struct jseg *jseg; 3565 uint8_t *data; 3566 { 3567 struct jblkrec *rec; 3568 3569 jfreefrag->fr_jsegdep->jd_seg = jseg; 3570 rec = (struct jblkrec *)data; 3571 rec->jb_op = JOP_FREEBLK; 3572 rec->jb_ino = jfreefrag->fr_ino; 3573 rec->jb_blkno = jfreefrag->fr_blkno; 3574 rec->jb_lbn = jfreefrag->fr_lbn; 3575 rec->jb_frags = jfreefrag->fr_frags; 3576 rec->jb_oldfrags = 0; 3577 } 3578 3579 static void 3580 jtrunc_write(jtrunc, jseg, data) 3581 struct jtrunc *jtrunc; 3582 struct jseg *jseg; 3583 uint8_t *data; 3584 { 3585 struct jtrncrec *rec; 3586 3587 jtrunc->jt_dep.jb_jsegdep->jd_seg = jseg; 3588 rec = (struct jtrncrec *)data; 3589 rec->jt_op = JOP_TRUNC; 3590 rec->jt_ino = jtrunc->jt_ino; 3591 rec->jt_size = jtrunc->jt_size; 3592 rec->jt_extsize = jtrunc->jt_extsize; 3593 } 3594 3595 static void 3596 jfsync_write(jfsync, jseg, data) 3597 struct jfsync *jfsync; 3598 struct jseg *jseg; 3599 uint8_t *data; 3600 { 3601 struct jtrncrec *rec; 3602 3603 rec = (struct jtrncrec *)data; 3604 rec->jt_op = JOP_SYNC; 3605 rec->jt_ino = jfsync->jfs_ino; 3606 rec->jt_size = jfsync->jfs_size; 3607 rec->jt_extsize = jfsync->jfs_extsize; 3608 } 3609 3610 static void 3611 softdep_flushjournal(mp) 3612 struct mount *mp; 3613 { 3614 struct jblocks *jblocks; 3615 struct ufsmount *ump; 3616 3617 if (MOUNTEDSUJ(mp) == 0) 3618 return; 3619 ump = VFSTOUFS(mp); 3620 jblocks = ump->softdep_jblocks; 3621 ACQUIRE_LOCK(ump); 3622 while (ump->softdep_on_journal) { 3623 jblocks->jb_needseg = 1; 3624 softdep_process_journal(mp, NULL, MNT_WAIT); 3625 } 3626 FREE_LOCK(ump); 3627 } 3628 3629 static void softdep_synchronize_completed(struct bio *); 3630 static void softdep_synchronize(struct bio *, struct ufsmount *, void *); 3631 3632 static void 3633 softdep_synchronize_completed(bp) 3634 struct bio *bp; 3635 { 3636 struct jseg *oldest; 3637 struct jseg *jseg; 3638 struct ufsmount *ump; 3639 3640 /* 3641 * caller1 marks the last segment written before we issued the 3642 * synchronize cache. 3643 */ 3644 jseg = bp->bio_caller1; 3645 if (jseg == NULL) { 3646 g_destroy_bio(bp); 3647 return; 3648 } 3649 ump = VFSTOUFS(jseg->js_list.wk_mp); 3650 ACQUIRE_LOCK(ump); 3651 oldest = NULL; 3652 /* 3653 * Mark all the journal entries waiting on the synchronize cache 3654 * as completed so they may continue on. 3655 */ 3656 while (jseg != NULL && (jseg->js_state & COMPLETE) == 0) { 3657 jseg->js_state |= COMPLETE; 3658 oldest = jseg; 3659 jseg = TAILQ_PREV(jseg, jseglst, js_next); 3660 } 3661 /* 3662 * Restart deferred journal entry processing from the oldest 3663 * completed jseg. 3664 */ 3665 if (oldest) 3666 complete_jsegs(oldest); 3667 3668 FREE_LOCK(ump); 3669 g_destroy_bio(bp); 3670 } 3671 3672 /* 3673 * Send BIO_FLUSH/SYNCHRONIZE CACHE to the device to enforce write ordering 3674 * barriers. The journal must be written prior to any blocks that depend 3675 * on it and the journal can not be released until the blocks have be 3676 * written. This code handles both barriers simultaneously. 3677 */ 3678 static void 3679 softdep_synchronize(bp, ump, caller1) 3680 struct bio *bp; 3681 struct ufsmount *ump; 3682 void *caller1; 3683 { 3684 3685 bp->bio_cmd = BIO_FLUSH; 3686 bp->bio_flags |= BIO_ORDERED; 3687 bp->bio_data = NULL; 3688 bp->bio_offset = ump->um_cp->provider->mediasize; 3689 bp->bio_length = 0; 3690 bp->bio_done = softdep_synchronize_completed; 3691 bp->bio_caller1 = caller1; 3692 g_io_request(bp, ump->um_cp); 3693 } 3694 3695 /* 3696 * Flush some journal records to disk. 3697 */ 3698 static void 3699 softdep_process_journal(mp, needwk, flags) 3700 struct mount *mp; 3701 struct worklist *needwk; 3702 int flags; 3703 { 3704 struct jblocks *jblocks; 3705 struct ufsmount *ump; 3706 struct worklist *wk; 3707 struct jseg *jseg; 3708 struct buf *bp; 3709 struct bio *bio; 3710 uint8_t *data; 3711 struct fs *fs; 3712 int shouldflush; 3713 int segwritten; 3714 int jrecmin; /* Minimum records per block. */ 3715 int jrecmax; /* Maximum records per block. */ 3716 int size; 3717 int cnt; 3718 int off; 3719 int devbsize; 3720 3721 if (MOUNTEDSUJ(mp) == 0) 3722 return; 3723 shouldflush = softdep_flushcache; 3724 bio = NULL; 3725 jseg = NULL; 3726 ump = VFSTOUFS(mp); 3727 LOCK_OWNED(ump); 3728 fs = ump->um_fs; 3729 jblocks = ump->softdep_jblocks; 3730 devbsize = ump->um_devvp->v_bufobj.bo_bsize; 3731 /* 3732 * We write anywhere between a disk block and fs block. The upper 3733 * bound is picked to prevent buffer cache fragmentation and limit 3734 * processing time per I/O. 3735 */ 3736 jrecmin = (devbsize / JREC_SIZE) - 1; /* -1 for seg header */ 3737 jrecmax = (fs->fs_bsize / devbsize) * jrecmin; 3738 segwritten = 0; 3739 for (;;) { 3740 cnt = ump->softdep_on_journal; 3741 /* 3742 * Criteria for writing a segment: 3743 * 1) We have a full block. 3744 * 2) We're called from jwait() and haven't found the 3745 * journal item yet. 3746 * 3) Always write if needseg is set. 3747 * 4) If we are called from process_worklist and have 3748 * not yet written anything we write a partial block 3749 * to enforce a 1 second maximum latency on journal 3750 * entries. 3751 */ 3752 if (cnt < (jrecmax - 1) && needwk == NULL && 3753 jblocks->jb_needseg == 0 && (segwritten || cnt == 0)) 3754 break; 3755 cnt++; 3756 /* 3757 * Verify some free journal space. softdep_prealloc() should 3758 * guarantee that we don't run out so this is indicative of 3759 * a problem with the flow control. Try to recover 3760 * gracefully in any event. 3761 */ 3762 while (jblocks->jb_free == 0) { 3763 if (flags != MNT_WAIT) 3764 break; 3765 printf("softdep: Out of journal space!\n"); 3766 softdep_speedup(ump); 3767 msleep(jblocks, LOCK_PTR(ump), PRIBIO, "jblocks", hz); 3768 } 3769 FREE_LOCK(ump); 3770 jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS); 3771 workitem_alloc(&jseg->js_list, D_JSEG, mp); 3772 LIST_INIT(&jseg->js_entries); 3773 LIST_INIT(&jseg->js_indirs); 3774 jseg->js_state = ATTACHED; 3775 if (shouldflush == 0) 3776 jseg->js_state |= COMPLETE; 3777 else if (bio == NULL) 3778 bio = g_alloc_bio(); 3779 jseg->js_jblocks = jblocks; 3780 bp = geteblk(fs->fs_bsize, 0); 3781 ACQUIRE_LOCK(ump); 3782 /* 3783 * If there was a race while we were allocating the block 3784 * and jseg the entry we care about was likely written. 3785 * We bail out in both the WAIT and NOWAIT case and assume 3786 * the caller will loop if the entry it cares about is 3787 * not written. 3788 */ 3789 cnt = ump->softdep_on_journal; 3790 if (cnt + jblocks->jb_needseg == 0 || jblocks->jb_free == 0) { 3791 bp->b_flags |= B_INVAL | B_NOCACHE; 3792 WORKITEM_FREE(jseg, D_JSEG); 3793 FREE_LOCK(ump); 3794 brelse(bp); 3795 ACQUIRE_LOCK(ump); 3796 break; 3797 } 3798 /* 3799 * Calculate the disk block size required for the available 3800 * records rounded to the min size. 3801 */ 3802 if (cnt == 0) 3803 size = devbsize; 3804 else if (cnt < jrecmax) 3805 size = howmany(cnt, jrecmin) * devbsize; 3806 else 3807 size = fs->fs_bsize; 3808 /* 3809 * Allocate a disk block for this journal data and account 3810 * for truncation of the requested size if enough contiguous 3811 * space was not available. 3812 */ 3813 bp->b_blkno = jblocks_alloc(jblocks, size, &size); 3814 bp->b_lblkno = bp->b_blkno; 3815 bp->b_offset = bp->b_blkno * DEV_BSIZE; 3816 bp->b_bcount = size; 3817 bp->b_flags &= ~B_INVAL; 3818 bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY; 3819 /* 3820 * Initialize our jseg with cnt records. Assign the next 3821 * sequence number to it and link it in-order. 3822 */ 3823 cnt = MIN(cnt, (size / devbsize) * jrecmin); 3824 jseg->js_buf = bp; 3825 jseg->js_cnt = cnt; 3826 jseg->js_refs = cnt + 1; /* Self ref. */ 3827 jseg->js_size = size; 3828 jseg->js_seq = jblocks->jb_nextseq++; 3829 if (jblocks->jb_oldestseg == NULL) 3830 jblocks->jb_oldestseg = jseg; 3831 jseg->js_oldseq = jblocks->jb_oldestseg->js_seq; 3832 TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next); 3833 if (jblocks->jb_writeseg == NULL) 3834 jblocks->jb_writeseg = jseg; 3835 /* 3836 * Start filling in records from the pending list. 3837 */ 3838 data = bp->b_data; 3839 off = 0; 3840 3841 /* 3842 * Always put a header on the first block. 3843 * XXX As with below, there might not be a chance to get 3844 * into the loop. Ensure that something valid is written. 3845 */ 3846 jseg_write(ump, jseg, data); 3847 off += JREC_SIZE; 3848 data = bp->b_data + off; 3849 3850 /* 3851 * XXX Something is wrong here. There's no work to do, 3852 * but we need to perform and I/O and allow it to complete 3853 * anyways. 3854 */ 3855 if (LIST_EMPTY(&ump->softdep_journal_pending)) 3856 stat_emptyjblocks++; 3857 3858 while ((wk = LIST_FIRST(&ump->softdep_journal_pending)) 3859 != NULL) { 3860 if (cnt == 0) 3861 break; 3862 /* Place a segment header on every device block. */ 3863 if ((off % devbsize) == 0) { 3864 jseg_write(ump, jseg, data); 3865 off += JREC_SIZE; 3866 data = bp->b_data + off; 3867 } 3868 if (wk == needwk) 3869 needwk = NULL; 3870 remove_from_journal(wk); 3871 wk->wk_state |= INPROGRESS; 3872 WORKLIST_INSERT(&jseg->js_entries, wk); 3873 switch (wk->wk_type) { 3874 case D_JADDREF: 3875 jaddref_write(WK_JADDREF(wk), jseg, data); 3876 break; 3877 case D_JREMREF: 3878 jremref_write(WK_JREMREF(wk), jseg, data); 3879 break; 3880 case D_JMVREF: 3881 jmvref_write(WK_JMVREF(wk), jseg, data); 3882 break; 3883 case D_JNEWBLK: 3884 jnewblk_write(WK_JNEWBLK(wk), jseg, data); 3885 break; 3886 case D_JFREEBLK: 3887 jfreeblk_write(WK_JFREEBLK(wk), jseg, data); 3888 break; 3889 case D_JFREEFRAG: 3890 jfreefrag_write(WK_JFREEFRAG(wk), jseg, data); 3891 break; 3892 case D_JTRUNC: 3893 jtrunc_write(WK_JTRUNC(wk), jseg, data); 3894 break; 3895 case D_JFSYNC: 3896 jfsync_write(WK_JFSYNC(wk), jseg, data); 3897 break; 3898 default: 3899 panic("process_journal: Unknown type %s", 3900 TYPENAME(wk->wk_type)); 3901 /* NOTREACHED */ 3902 } 3903 off += JREC_SIZE; 3904 data = bp->b_data + off; 3905 cnt--; 3906 } 3907 3908 /* Clear any remaining space so we don't leak kernel data */ 3909 if (size > off) 3910 bzero(data, size - off); 3911 3912 /* 3913 * Write this one buffer and continue. 3914 */ 3915 segwritten = 1; 3916 jblocks->jb_needseg = 0; 3917 WORKLIST_INSERT(&bp->b_dep, &jseg->js_list); 3918 FREE_LOCK(ump); 3919 bp->b_xflags |= BX_CVTENXIO; 3920 pbgetvp(ump->um_devvp, bp); 3921 /* 3922 * We only do the blocking wait once we find the journal 3923 * entry we're looking for. 3924 */ 3925 if (needwk == NULL && flags == MNT_WAIT) 3926 bwrite(bp); 3927 else 3928 bawrite(bp); 3929 ACQUIRE_LOCK(ump); 3930 } 3931 /* 3932 * If we wrote a segment issue a synchronize cache so the journal 3933 * is reflected on disk before the data is written. Since reclaiming 3934 * journal space also requires writing a journal record this 3935 * process also enforces a barrier before reclamation. 3936 */ 3937 if (segwritten && shouldflush) { 3938 softdep_synchronize(bio, ump, 3939 TAILQ_LAST(&jblocks->jb_segs, jseglst)); 3940 } else if (bio) 3941 g_destroy_bio(bio); 3942 /* 3943 * If we've suspended the filesystem because we ran out of journal 3944 * space either try to sync it here to make some progress or 3945 * unsuspend it if we already have. 3946 */ 3947 if (flags == 0 && jblocks->jb_suspended) { 3948 if (journal_unsuspend(ump)) 3949 return; 3950 FREE_LOCK(ump); 3951 VFS_SYNC(mp, MNT_NOWAIT); 3952 ffs_sbupdate(ump, MNT_WAIT, 0); 3953 ACQUIRE_LOCK(ump); 3954 } 3955 } 3956 3957 /* 3958 * Complete a jseg, allowing all dependencies awaiting journal writes 3959 * to proceed. Each journal dependency also attaches a jsegdep to dependent 3960 * structures so that the journal segment can be freed to reclaim space. 3961 */ 3962 static void 3963 complete_jseg(jseg) 3964 struct jseg *jseg; 3965 { 3966 struct worklist *wk; 3967 struct jmvref *jmvref; 3968 #ifdef INVARIANTS 3969 int i = 0; 3970 #endif 3971 3972 while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) { 3973 WORKLIST_REMOVE(wk); 3974 wk->wk_state &= ~INPROGRESS; 3975 wk->wk_state |= COMPLETE; 3976 KASSERT(i++ < jseg->js_cnt, 3977 ("handle_written_jseg: overflow %d >= %d", 3978 i - 1, jseg->js_cnt)); 3979 switch (wk->wk_type) { 3980 case D_JADDREF: 3981 handle_written_jaddref(WK_JADDREF(wk)); 3982 break; 3983 case D_JREMREF: 3984 handle_written_jremref(WK_JREMREF(wk)); 3985 break; 3986 case D_JMVREF: 3987 rele_jseg(jseg); /* No jsegdep. */ 3988 jmvref = WK_JMVREF(wk); 3989 LIST_REMOVE(jmvref, jm_deps); 3990 if ((jmvref->jm_pagedep->pd_state & ONWORKLIST) == 0) 3991 free_pagedep(jmvref->jm_pagedep); 3992 WORKITEM_FREE(jmvref, D_JMVREF); 3993 break; 3994 case D_JNEWBLK: 3995 handle_written_jnewblk(WK_JNEWBLK(wk)); 3996 break; 3997 case D_JFREEBLK: 3998 handle_written_jblkdep(&WK_JFREEBLK(wk)->jf_dep); 3999 break; 4000 case D_JTRUNC: 4001 handle_written_jblkdep(&WK_JTRUNC(wk)->jt_dep); 4002 break; 4003 case D_JFSYNC: 4004 rele_jseg(jseg); /* No jsegdep. */ 4005 WORKITEM_FREE(wk, D_JFSYNC); 4006 break; 4007 case D_JFREEFRAG: 4008 handle_written_jfreefrag(WK_JFREEFRAG(wk)); 4009 break; 4010 default: 4011 panic("handle_written_jseg: Unknown type %s", 4012 TYPENAME(wk->wk_type)); 4013 /* NOTREACHED */ 4014 } 4015 } 4016 /* Release the self reference so the structure may be freed. */ 4017 rele_jseg(jseg); 4018 } 4019 4020 /* 4021 * Determine which jsegs are ready for completion processing. Waits for 4022 * synchronize cache to complete as well as forcing in-order completion 4023 * of journal entries. 4024 */ 4025 static void 4026 complete_jsegs(jseg) 4027 struct jseg *jseg; 4028 { 4029 struct jblocks *jblocks; 4030 struct jseg *jsegn; 4031 4032 jblocks = jseg->js_jblocks; 4033 /* 4034 * Don't allow out of order completions. If this isn't the first 4035 * block wait for it to write before we're done. 4036 */ 4037 if (jseg != jblocks->jb_writeseg) 4038 return; 4039 /* Iterate through available jsegs processing their entries. */ 4040 while (jseg && (jseg->js_state & ALLCOMPLETE) == ALLCOMPLETE) { 4041 jblocks->jb_oldestwrseq = jseg->js_oldseq; 4042 jsegn = TAILQ_NEXT(jseg, js_next); 4043 complete_jseg(jseg); 4044 jseg = jsegn; 4045 } 4046 jblocks->jb_writeseg = jseg; 4047 /* 4048 * Attempt to free jsegs now that oldestwrseq may have advanced. 4049 */ 4050 free_jsegs(jblocks); 4051 } 4052 4053 /* 4054 * Mark a jseg as DEPCOMPLETE and throw away the buffer. Attempt to handle 4055 * the final completions. 4056 */ 4057 static void 4058 handle_written_jseg(jseg, bp) 4059 struct jseg *jseg; 4060 struct buf *bp; 4061 { 4062 4063 if (jseg->js_refs == 0) 4064 panic("handle_written_jseg: No self-reference on %p", jseg); 4065 jseg->js_state |= DEPCOMPLETE; 4066 /* 4067 * We'll never need this buffer again, set flags so it will be 4068 * discarded. 4069 */ 4070 bp->b_flags |= B_INVAL | B_NOCACHE; 4071 pbrelvp(bp); 4072 complete_jsegs(jseg); 4073 } 4074 4075 static inline struct jsegdep * 4076 inoref_jseg(inoref) 4077 struct inoref *inoref; 4078 { 4079 struct jsegdep *jsegdep; 4080 4081 jsegdep = inoref->if_jsegdep; 4082 inoref->if_jsegdep = NULL; 4083 4084 return (jsegdep); 4085 } 4086 4087 /* 4088 * Called once a jremref has made it to stable store. The jremref is marked 4089 * complete and we attempt to free it. Any pagedeps writes sleeping waiting 4090 * for the jremref to complete will be awoken by free_jremref. 4091 */ 4092 static void 4093 handle_written_jremref(jremref) 4094 struct jremref *jremref; 4095 { 4096 struct inodedep *inodedep; 4097 struct jsegdep *jsegdep; 4098 struct dirrem *dirrem; 4099 4100 /* Grab the jsegdep. */ 4101 jsegdep = inoref_jseg(&jremref->jr_ref); 4102 /* 4103 * Remove us from the inoref list. 4104 */ 4105 if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 4106 0, &inodedep) == 0) 4107 panic("handle_written_jremref: Lost inodedep"); 4108 TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps); 4109 /* 4110 * Complete the dirrem. 4111 */ 4112 dirrem = jremref->jr_dirrem; 4113 jremref->jr_dirrem = NULL; 4114 LIST_REMOVE(jremref, jr_deps); 4115 jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT; 4116 jwork_insert(&dirrem->dm_jwork, jsegdep); 4117 if (LIST_EMPTY(&dirrem->dm_jremrefhd) && 4118 (dirrem->dm_state & COMPLETE) != 0) 4119 add_to_worklist(&dirrem->dm_list, 0); 4120 free_jremref(jremref); 4121 } 4122 4123 /* 4124 * Called once a jaddref has made it to stable store. The dependency is 4125 * marked complete and any dependent structures are added to the inode 4126 * bufwait list to be completed as soon as it is written. If a bitmap write 4127 * depends on this entry we move the inode into the inodedephd of the 4128 * bmsafemap dependency and attempt to remove the jaddref from the bmsafemap. 4129 */ 4130 static void 4131 handle_written_jaddref(jaddref) 4132 struct jaddref *jaddref; 4133 { 4134 struct jsegdep *jsegdep; 4135 struct inodedep *inodedep; 4136 struct diradd *diradd; 4137 struct mkdir *mkdir; 4138 4139 /* Grab the jsegdep. */ 4140 jsegdep = inoref_jseg(&jaddref->ja_ref); 4141 mkdir = NULL; 4142 diradd = NULL; 4143 if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino, 4144 0, &inodedep) == 0) 4145 panic("handle_written_jaddref: Lost inodedep."); 4146 if (jaddref->ja_diradd == NULL) 4147 panic("handle_written_jaddref: No dependency"); 4148 if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) { 4149 diradd = jaddref->ja_diradd; 4150 WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list); 4151 } else if (jaddref->ja_state & MKDIR_PARENT) { 4152 mkdir = jaddref->ja_mkdir; 4153 WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list); 4154 } else if (jaddref->ja_state & MKDIR_BODY) 4155 mkdir = jaddref->ja_mkdir; 4156 else 4157 panic("handle_written_jaddref: Unknown dependency %p", 4158 jaddref->ja_diradd); 4159 jaddref->ja_diradd = NULL; /* also clears ja_mkdir */ 4160 /* 4161 * Remove us from the inode list. 4162 */ 4163 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps); 4164 /* 4165 * The mkdir may be waiting on the jaddref to clear before freeing. 4166 */ 4167 if (mkdir) { 4168 KASSERT(mkdir->md_list.wk_type == D_MKDIR, 4169 ("handle_written_jaddref: Incorrect type for mkdir %s", 4170 TYPENAME(mkdir->md_list.wk_type))); 4171 mkdir->md_jaddref = NULL; 4172 diradd = mkdir->md_diradd; 4173 mkdir->md_state |= DEPCOMPLETE; 4174 complete_mkdir(mkdir); 4175 } 4176 jwork_insert(&diradd->da_jwork, jsegdep); 4177 if (jaddref->ja_state & NEWBLOCK) { 4178 inodedep->id_state |= ONDEPLIST; 4179 LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd, 4180 inodedep, id_deps); 4181 } 4182 free_jaddref(jaddref); 4183 } 4184 4185 /* 4186 * Called once a jnewblk journal is written. The allocdirect or allocindir 4187 * is placed in the bmsafemap to await notification of a written bitmap. If 4188 * the operation was canceled we add the segdep to the appropriate 4189 * dependency to free the journal space once the canceling operation 4190 * completes. 4191 */ 4192 static void 4193 handle_written_jnewblk(jnewblk) 4194 struct jnewblk *jnewblk; 4195 { 4196 struct bmsafemap *bmsafemap; 4197 struct freefrag *freefrag; 4198 struct freework *freework; 4199 struct jsegdep *jsegdep; 4200 struct newblk *newblk; 4201 4202 /* Grab the jsegdep. */ 4203 jsegdep = jnewblk->jn_jsegdep; 4204 jnewblk->jn_jsegdep = NULL; 4205 if (jnewblk->jn_dep == NULL) 4206 panic("handle_written_jnewblk: No dependency for the segdep."); 4207 switch (jnewblk->jn_dep->wk_type) { 4208 case D_NEWBLK: 4209 case D_ALLOCDIRECT: 4210 case D_ALLOCINDIR: 4211 /* 4212 * Add the written block to the bmsafemap so it can 4213 * be notified when the bitmap is on disk. 4214 */ 4215 newblk = WK_NEWBLK(jnewblk->jn_dep); 4216 newblk->nb_jnewblk = NULL; 4217 if ((newblk->nb_state & GOINGAWAY) == 0) { 4218 bmsafemap = newblk->nb_bmsafemap; 4219 newblk->nb_state |= ONDEPLIST; 4220 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, 4221 nb_deps); 4222 } 4223 jwork_insert(&newblk->nb_jwork, jsegdep); 4224 break; 4225 case D_FREEFRAG: 4226 /* 4227 * A newblock being removed by a freefrag when replaced by 4228 * frag extension. 4229 */ 4230 freefrag = WK_FREEFRAG(jnewblk->jn_dep); 4231 freefrag->ff_jdep = NULL; 4232 jwork_insert(&freefrag->ff_jwork, jsegdep); 4233 break; 4234 case D_FREEWORK: 4235 /* 4236 * A direct block was removed by truncate. 4237 */ 4238 freework = WK_FREEWORK(jnewblk->jn_dep); 4239 freework->fw_jnewblk = NULL; 4240 jwork_insert(&freework->fw_freeblks->fb_jwork, jsegdep); 4241 break; 4242 default: 4243 panic("handle_written_jnewblk: Unknown type %d.", 4244 jnewblk->jn_dep->wk_type); 4245 } 4246 jnewblk->jn_dep = NULL; 4247 free_jnewblk(jnewblk); 4248 } 4249 4250 /* 4251 * Cancel a jfreefrag that won't be needed, probably due to colliding with 4252 * an in-flight allocation that has not yet been committed. Divorce us 4253 * from the freefrag and mark it DEPCOMPLETE so that it may be added 4254 * to the worklist. 4255 */ 4256 static void 4257 cancel_jfreefrag(jfreefrag) 4258 struct jfreefrag *jfreefrag; 4259 { 4260 struct freefrag *freefrag; 4261 4262 if (jfreefrag->fr_jsegdep) { 4263 free_jsegdep(jfreefrag->fr_jsegdep); 4264 jfreefrag->fr_jsegdep = NULL; 4265 } 4266 freefrag = jfreefrag->fr_freefrag; 4267 jfreefrag->fr_freefrag = NULL; 4268 free_jfreefrag(jfreefrag); 4269 freefrag->ff_state |= DEPCOMPLETE; 4270 CTR1(KTR_SUJ, "cancel_jfreefrag: blkno %jd", freefrag->ff_blkno); 4271 } 4272 4273 /* 4274 * Free a jfreefrag when the parent freefrag is rendered obsolete. 4275 */ 4276 static void 4277 free_jfreefrag(jfreefrag) 4278 struct jfreefrag *jfreefrag; 4279 { 4280 4281 if (jfreefrag->fr_state & INPROGRESS) 4282 WORKLIST_REMOVE(&jfreefrag->fr_list); 4283 else if (jfreefrag->fr_state & ONWORKLIST) 4284 remove_from_journal(&jfreefrag->fr_list); 4285 if (jfreefrag->fr_freefrag != NULL) 4286 panic("free_jfreefrag: Still attached to a freefrag."); 4287 WORKITEM_FREE(jfreefrag, D_JFREEFRAG); 4288 } 4289 4290 /* 4291 * Called when the journal write for a jfreefrag completes. The parent 4292 * freefrag is added to the worklist if this completes its dependencies. 4293 */ 4294 static void 4295 handle_written_jfreefrag(jfreefrag) 4296 struct jfreefrag *jfreefrag; 4297 { 4298 struct jsegdep *jsegdep; 4299 struct freefrag *freefrag; 4300 4301 /* Grab the jsegdep. */ 4302 jsegdep = jfreefrag->fr_jsegdep; 4303 jfreefrag->fr_jsegdep = NULL; 4304 freefrag = jfreefrag->fr_freefrag; 4305 if (freefrag == NULL) 4306 panic("handle_written_jfreefrag: No freefrag."); 4307 freefrag->ff_state |= DEPCOMPLETE; 4308 freefrag->ff_jdep = NULL; 4309 jwork_insert(&freefrag->ff_jwork, jsegdep); 4310 if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE) 4311 add_to_worklist(&freefrag->ff_list, 0); 4312 jfreefrag->fr_freefrag = NULL; 4313 free_jfreefrag(jfreefrag); 4314 } 4315 4316 /* 4317 * Called when the journal write for a jfreeblk completes. The jfreeblk 4318 * is removed from the freeblks list of pending journal writes and the 4319 * jsegdep is moved to the freeblks jwork to be completed when all blocks 4320 * have been reclaimed. 4321 */ 4322 static void 4323 handle_written_jblkdep(jblkdep) 4324 struct jblkdep *jblkdep; 4325 { 4326 struct freeblks *freeblks; 4327 struct jsegdep *jsegdep; 4328 4329 /* Grab the jsegdep. */ 4330 jsegdep = jblkdep->jb_jsegdep; 4331 jblkdep->jb_jsegdep = NULL; 4332 freeblks = jblkdep->jb_freeblks; 4333 LIST_REMOVE(jblkdep, jb_deps); 4334 jwork_insert(&freeblks->fb_jwork, jsegdep); 4335 /* 4336 * If the freeblks is all journaled, we can add it to the worklist. 4337 */ 4338 if (LIST_EMPTY(&freeblks->fb_jblkdephd) && 4339 (freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE) 4340 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 4341 4342 free_jblkdep(jblkdep); 4343 } 4344 4345 static struct jsegdep * 4346 newjsegdep(struct worklist *wk) 4347 { 4348 struct jsegdep *jsegdep; 4349 4350 jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS); 4351 workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp); 4352 jsegdep->jd_seg = NULL; 4353 4354 return (jsegdep); 4355 } 4356 4357 static struct jmvref * 4358 newjmvref(dp, ino, oldoff, newoff) 4359 struct inode *dp; 4360 ino_t ino; 4361 off_t oldoff; 4362 off_t newoff; 4363 { 4364 struct jmvref *jmvref; 4365 4366 jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS); 4367 workitem_alloc(&jmvref->jm_list, D_JMVREF, ITOVFS(dp)); 4368 jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE; 4369 jmvref->jm_parent = dp->i_number; 4370 jmvref->jm_ino = ino; 4371 jmvref->jm_oldoff = oldoff; 4372 jmvref->jm_newoff = newoff; 4373 4374 return (jmvref); 4375 } 4376 4377 /* 4378 * Allocate a new jremref that tracks the removal of ip from dp with the 4379 * directory entry offset of diroff. Mark the entry as ATTACHED and 4380 * DEPCOMPLETE as we have all the information required for the journal write 4381 * and the directory has already been removed from the buffer. The caller 4382 * is responsible for linking the jremref into the pagedep and adding it 4383 * to the journal to write. The MKDIR_PARENT flag is set if we're doing 4384 * a DOTDOT addition so handle_workitem_remove() can properly assign 4385 * the jsegdep when we're done. 4386 */ 4387 static struct jremref * 4388 newjremref(struct dirrem *dirrem, struct inode *dp, struct inode *ip, 4389 off_t diroff, nlink_t nlink) 4390 { 4391 struct jremref *jremref; 4392 4393 jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS); 4394 workitem_alloc(&jremref->jr_list, D_JREMREF, ITOVFS(dp)); 4395 jremref->jr_state = ATTACHED; 4396 newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff, 4397 nlink, ip->i_mode); 4398 jremref->jr_dirrem = dirrem; 4399 4400 return (jremref); 4401 } 4402 4403 static inline void 4404 newinoref(struct inoref *inoref, ino_t ino, ino_t parent, off_t diroff, 4405 nlink_t nlink, uint16_t mode) 4406 { 4407 4408 inoref->if_jsegdep = newjsegdep(&inoref->if_list); 4409 inoref->if_diroff = diroff; 4410 inoref->if_ino = ino; 4411 inoref->if_parent = parent; 4412 inoref->if_nlink = nlink; 4413 inoref->if_mode = mode; 4414 } 4415 4416 /* 4417 * Allocate a new jaddref to track the addition of ino to dp at diroff. The 4418 * directory offset may not be known until later. The caller is responsible 4419 * adding the entry to the journal when this information is available. nlink 4420 * should be the link count prior to the addition and mode is only required 4421 * to have the correct FMT. 4422 */ 4423 static struct jaddref * 4424 newjaddref(struct inode *dp, ino_t ino, off_t diroff, int16_t nlink, 4425 uint16_t mode) 4426 { 4427 struct jaddref *jaddref; 4428 4429 jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS); 4430 workitem_alloc(&jaddref->ja_list, D_JADDREF, ITOVFS(dp)); 4431 jaddref->ja_state = ATTACHED; 4432 jaddref->ja_mkdir = NULL; 4433 newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode); 4434 4435 return (jaddref); 4436 } 4437 4438 /* 4439 * Create a new free dependency for a freework. The caller is responsible 4440 * for adjusting the reference count when it has the lock held. The freedep 4441 * will track an outstanding bitmap write that will ultimately clear the 4442 * freework to continue. 4443 */ 4444 static struct freedep * 4445 newfreedep(struct freework *freework) 4446 { 4447 struct freedep *freedep; 4448 4449 freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS); 4450 workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp); 4451 freedep->fd_freework = freework; 4452 4453 return (freedep); 4454 } 4455 4456 /* 4457 * Free a freedep structure once the buffer it is linked to is written. If 4458 * this is the last reference to the freework schedule it for completion. 4459 */ 4460 static void 4461 free_freedep(freedep) 4462 struct freedep *freedep; 4463 { 4464 struct freework *freework; 4465 4466 freework = freedep->fd_freework; 4467 freework->fw_freeblks->fb_cgwait--; 4468 if (--freework->fw_ref == 0) 4469 freework_enqueue(freework); 4470 WORKITEM_FREE(freedep, D_FREEDEP); 4471 } 4472 4473 /* 4474 * Allocate a new freework structure that may be a level in an indirect 4475 * when parent is not NULL or a top level block when it is. The top level 4476 * freework structures are allocated without the per-filesystem lock held 4477 * and before the freeblks is visible outside of softdep_setup_freeblocks(). 4478 */ 4479 static struct freework * 4480 newfreework(ump, freeblks, parent, lbn, nb, frags, off, journal) 4481 struct ufsmount *ump; 4482 struct freeblks *freeblks; 4483 struct freework *parent; 4484 ufs_lbn_t lbn; 4485 ufs2_daddr_t nb; 4486 int frags; 4487 int off; 4488 int journal; 4489 { 4490 struct freework *freework; 4491 4492 freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS); 4493 workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp); 4494 freework->fw_state = ATTACHED; 4495 freework->fw_jnewblk = NULL; 4496 freework->fw_freeblks = freeblks; 4497 freework->fw_parent = parent; 4498 freework->fw_lbn = lbn; 4499 freework->fw_blkno = nb; 4500 freework->fw_frags = frags; 4501 freework->fw_indir = NULL; 4502 freework->fw_ref = (MOUNTEDSUJ(UFSTOVFS(ump)) == 0 || 4503 lbn >= -UFS_NXADDR) ? 0 : NINDIR(ump->um_fs) + 1; 4504 freework->fw_start = freework->fw_off = off; 4505 if (journal) 4506 newjfreeblk(freeblks, lbn, nb, frags); 4507 if (parent == NULL) { 4508 ACQUIRE_LOCK(ump); 4509 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list); 4510 freeblks->fb_ref++; 4511 FREE_LOCK(ump); 4512 } 4513 4514 return (freework); 4515 } 4516 4517 /* 4518 * Eliminate a jfreeblk for a block that does not need journaling. 4519 */ 4520 static void 4521 cancel_jfreeblk(freeblks, blkno) 4522 struct freeblks *freeblks; 4523 ufs2_daddr_t blkno; 4524 { 4525 struct jfreeblk *jfreeblk; 4526 struct jblkdep *jblkdep; 4527 4528 LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) { 4529 if (jblkdep->jb_list.wk_type != D_JFREEBLK) 4530 continue; 4531 jfreeblk = WK_JFREEBLK(&jblkdep->jb_list); 4532 if (jfreeblk->jf_blkno == blkno) 4533 break; 4534 } 4535 if (jblkdep == NULL) 4536 return; 4537 CTR1(KTR_SUJ, "cancel_jfreeblk: blkno %jd", blkno); 4538 free_jsegdep(jblkdep->jb_jsegdep); 4539 LIST_REMOVE(jblkdep, jb_deps); 4540 WORKITEM_FREE(jfreeblk, D_JFREEBLK); 4541 } 4542 4543 /* 4544 * Allocate a new jfreeblk to journal top level block pointer when truncating 4545 * a file. The caller must add this to the worklist when the per-filesystem 4546 * lock is held. 4547 */ 4548 static struct jfreeblk * 4549 newjfreeblk(freeblks, lbn, blkno, frags) 4550 struct freeblks *freeblks; 4551 ufs_lbn_t lbn; 4552 ufs2_daddr_t blkno; 4553 int frags; 4554 { 4555 struct jfreeblk *jfreeblk; 4556 4557 jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS); 4558 workitem_alloc(&jfreeblk->jf_dep.jb_list, D_JFREEBLK, 4559 freeblks->fb_list.wk_mp); 4560 jfreeblk->jf_dep.jb_jsegdep = newjsegdep(&jfreeblk->jf_dep.jb_list); 4561 jfreeblk->jf_dep.jb_freeblks = freeblks; 4562 jfreeblk->jf_ino = freeblks->fb_inum; 4563 jfreeblk->jf_lbn = lbn; 4564 jfreeblk->jf_blkno = blkno; 4565 jfreeblk->jf_frags = frags; 4566 LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jfreeblk->jf_dep, jb_deps); 4567 4568 return (jfreeblk); 4569 } 4570 4571 /* 4572 * The journal is only prepared to handle full-size block numbers, so we 4573 * have to adjust the record to reflect the change to a full-size block. 4574 * For example, suppose we have a block made up of fragments 8-15 and 4575 * want to free its last two fragments. We are given a request that says: 4576 * FREEBLK ino=5, blkno=14, lbn=0, frags=2, oldfrags=0 4577 * where frags are the number of fragments to free and oldfrags are the 4578 * number of fragments to keep. To block align it, we have to change it to 4579 * have a valid full-size blkno, so it becomes: 4580 * FREEBLK ino=5, blkno=8, lbn=0, frags=2, oldfrags=6 4581 */ 4582 static void 4583 adjust_newfreework(freeblks, frag_offset) 4584 struct freeblks *freeblks; 4585 int frag_offset; 4586 { 4587 struct jfreeblk *jfreeblk; 4588 4589 KASSERT((LIST_FIRST(&freeblks->fb_jblkdephd) != NULL && 4590 LIST_FIRST(&freeblks->fb_jblkdephd)->jb_list.wk_type == D_JFREEBLK), 4591 ("adjust_newfreework: Missing freeblks dependency")); 4592 4593 jfreeblk = WK_JFREEBLK(LIST_FIRST(&freeblks->fb_jblkdephd)); 4594 jfreeblk->jf_blkno -= frag_offset; 4595 jfreeblk->jf_frags += frag_offset; 4596 } 4597 4598 /* 4599 * Allocate a new jtrunc to track a partial truncation. 4600 */ 4601 static struct jtrunc * 4602 newjtrunc(freeblks, size, extsize) 4603 struct freeblks *freeblks; 4604 off_t size; 4605 int extsize; 4606 { 4607 struct jtrunc *jtrunc; 4608 4609 jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS); 4610 workitem_alloc(&jtrunc->jt_dep.jb_list, D_JTRUNC, 4611 freeblks->fb_list.wk_mp); 4612 jtrunc->jt_dep.jb_jsegdep = newjsegdep(&jtrunc->jt_dep.jb_list); 4613 jtrunc->jt_dep.jb_freeblks = freeblks; 4614 jtrunc->jt_ino = freeblks->fb_inum; 4615 jtrunc->jt_size = size; 4616 jtrunc->jt_extsize = extsize; 4617 LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jtrunc->jt_dep, jb_deps); 4618 4619 return (jtrunc); 4620 } 4621 4622 /* 4623 * If we're canceling a new bitmap we have to search for another ref 4624 * to move into the bmsafemap dep. This might be better expressed 4625 * with another structure. 4626 */ 4627 static void 4628 move_newblock_dep(jaddref, inodedep) 4629 struct jaddref *jaddref; 4630 struct inodedep *inodedep; 4631 { 4632 struct inoref *inoref; 4633 struct jaddref *jaddrefn; 4634 4635 jaddrefn = NULL; 4636 for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref; 4637 inoref = TAILQ_NEXT(inoref, if_deps)) { 4638 if ((jaddref->ja_state & NEWBLOCK) && 4639 inoref->if_list.wk_type == D_JADDREF) { 4640 jaddrefn = (struct jaddref *)inoref; 4641 break; 4642 } 4643 } 4644 if (jaddrefn == NULL) 4645 return; 4646 jaddrefn->ja_state &= ~(ATTACHED | UNDONE); 4647 jaddrefn->ja_state |= jaddref->ja_state & 4648 (ATTACHED | UNDONE | NEWBLOCK); 4649 jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK); 4650 jaddref->ja_state |= ATTACHED; 4651 LIST_REMOVE(jaddref, ja_bmdeps); 4652 LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn, 4653 ja_bmdeps); 4654 } 4655 4656 /* 4657 * Cancel a jaddref either before it has been written or while it is being 4658 * written. This happens when a link is removed before the add reaches 4659 * the disk. The jaddref dependency is kept linked into the bmsafemap 4660 * and inode to prevent the link count or bitmap from reaching the disk 4661 * until handle_workitem_remove() re-adjusts the counts and bitmaps as 4662 * required. 4663 * 4664 * Returns 1 if the canceled addref requires journaling of the remove and 4665 * 0 otherwise. 4666 */ 4667 static int 4668 cancel_jaddref(jaddref, inodedep, wkhd) 4669 struct jaddref *jaddref; 4670 struct inodedep *inodedep; 4671 struct workhead *wkhd; 4672 { 4673 struct inoref *inoref; 4674 struct jsegdep *jsegdep; 4675 int needsj; 4676 4677 KASSERT((jaddref->ja_state & COMPLETE) == 0, 4678 ("cancel_jaddref: Canceling complete jaddref")); 4679 if (jaddref->ja_state & (INPROGRESS | COMPLETE)) 4680 needsj = 1; 4681 else 4682 needsj = 0; 4683 if (inodedep == NULL) 4684 if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino, 4685 0, &inodedep) == 0) 4686 panic("cancel_jaddref: Lost inodedep"); 4687 /* 4688 * We must adjust the nlink of any reference operation that follows 4689 * us so that it is consistent with the in-memory reference. This 4690 * ensures that inode nlink rollbacks always have the correct link. 4691 */ 4692 if (needsj == 0) { 4693 for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref; 4694 inoref = TAILQ_NEXT(inoref, if_deps)) { 4695 if (inoref->if_state & GOINGAWAY) 4696 break; 4697 inoref->if_nlink--; 4698 } 4699 } 4700 jsegdep = inoref_jseg(&jaddref->ja_ref); 4701 if (jaddref->ja_state & NEWBLOCK) 4702 move_newblock_dep(jaddref, inodedep); 4703 wake_worklist(&jaddref->ja_list); 4704 jaddref->ja_mkdir = NULL; 4705 if (jaddref->ja_state & INPROGRESS) { 4706 jaddref->ja_state &= ~INPROGRESS; 4707 WORKLIST_REMOVE(&jaddref->ja_list); 4708 jwork_insert(wkhd, jsegdep); 4709 } else { 4710 free_jsegdep(jsegdep); 4711 if (jaddref->ja_state & DEPCOMPLETE) 4712 remove_from_journal(&jaddref->ja_list); 4713 } 4714 jaddref->ja_state |= (GOINGAWAY | DEPCOMPLETE); 4715 /* 4716 * Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove 4717 * can arrange for them to be freed with the bitmap. Otherwise we 4718 * no longer need this addref attached to the inoreflst and it 4719 * will incorrectly adjust nlink if we leave it. 4720 */ 4721 if ((jaddref->ja_state & NEWBLOCK) == 0) { 4722 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, 4723 if_deps); 4724 jaddref->ja_state |= COMPLETE; 4725 free_jaddref(jaddref); 4726 return (needsj); 4727 } 4728 /* 4729 * Leave the head of the list for jsegdeps for fast merging. 4730 */ 4731 if (LIST_FIRST(wkhd) != NULL) { 4732 jaddref->ja_state |= ONWORKLIST; 4733 LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list); 4734 } else 4735 WORKLIST_INSERT(wkhd, &jaddref->ja_list); 4736 4737 return (needsj); 4738 } 4739 4740 /* 4741 * Attempt to free a jaddref structure when some work completes. This 4742 * should only succeed once the entry is written and all dependencies have 4743 * been notified. 4744 */ 4745 static void 4746 free_jaddref(jaddref) 4747 struct jaddref *jaddref; 4748 { 4749 4750 if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE) 4751 return; 4752 if (jaddref->ja_ref.if_jsegdep) 4753 panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n", 4754 jaddref, jaddref->ja_state); 4755 if (jaddref->ja_state & NEWBLOCK) 4756 LIST_REMOVE(jaddref, ja_bmdeps); 4757 if (jaddref->ja_state & (INPROGRESS | ONWORKLIST)) 4758 panic("free_jaddref: Bad state %p(0x%X)", 4759 jaddref, jaddref->ja_state); 4760 if (jaddref->ja_mkdir != NULL) 4761 panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state); 4762 WORKITEM_FREE(jaddref, D_JADDREF); 4763 } 4764 4765 /* 4766 * Free a jremref structure once it has been written or discarded. 4767 */ 4768 static void 4769 free_jremref(jremref) 4770 struct jremref *jremref; 4771 { 4772 4773 if (jremref->jr_ref.if_jsegdep) 4774 free_jsegdep(jremref->jr_ref.if_jsegdep); 4775 if (jremref->jr_state & INPROGRESS) 4776 panic("free_jremref: IO still pending"); 4777 WORKITEM_FREE(jremref, D_JREMREF); 4778 } 4779 4780 /* 4781 * Free a jnewblk structure. 4782 */ 4783 static void 4784 free_jnewblk(jnewblk) 4785 struct jnewblk *jnewblk; 4786 { 4787 4788 if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE) 4789 return; 4790 LIST_REMOVE(jnewblk, jn_deps); 4791 if (jnewblk->jn_dep != NULL) 4792 panic("free_jnewblk: Dependency still attached."); 4793 WORKITEM_FREE(jnewblk, D_JNEWBLK); 4794 } 4795 4796 /* 4797 * Cancel a jnewblk which has been been made redundant by frag extension. 4798 */ 4799 static void 4800 cancel_jnewblk(jnewblk, wkhd) 4801 struct jnewblk *jnewblk; 4802 struct workhead *wkhd; 4803 { 4804 struct jsegdep *jsegdep; 4805 4806 CTR1(KTR_SUJ, "cancel_jnewblk: blkno %jd", jnewblk->jn_blkno); 4807 jsegdep = jnewblk->jn_jsegdep; 4808 if (jnewblk->jn_jsegdep == NULL || jnewblk->jn_dep == NULL) 4809 panic("cancel_jnewblk: Invalid state"); 4810 jnewblk->jn_jsegdep = NULL; 4811 jnewblk->jn_dep = NULL; 4812 jnewblk->jn_state |= GOINGAWAY; 4813 if (jnewblk->jn_state & INPROGRESS) { 4814 jnewblk->jn_state &= ~INPROGRESS; 4815 WORKLIST_REMOVE(&jnewblk->jn_list); 4816 jwork_insert(wkhd, jsegdep); 4817 } else { 4818 free_jsegdep(jsegdep); 4819 remove_from_journal(&jnewblk->jn_list); 4820 } 4821 wake_worklist(&jnewblk->jn_list); 4822 WORKLIST_INSERT(wkhd, &jnewblk->jn_list); 4823 } 4824 4825 static void 4826 free_jblkdep(jblkdep) 4827 struct jblkdep *jblkdep; 4828 { 4829 4830 if (jblkdep->jb_list.wk_type == D_JFREEBLK) 4831 WORKITEM_FREE(jblkdep, D_JFREEBLK); 4832 else if (jblkdep->jb_list.wk_type == D_JTRUNC) 4833 WORKITEM_FREE(jblkdep, D_JTRUNC); 4834 else 4835 panic("free_jblkdep: Unexpected type %s", 4836 TYPENAME(jblkdep->jb_list.wk_type)); 4837 } 4838 4839 /* 4840 * Free a single jseg once it is no longer referenced in memory or on 4841 * disk. Reclaim journal blocks and dependencies waiting for the segment 4842 * to disappear. 4843 */ 4844 static void 4845 free_jseg(jseg, jblocks) 4846 struct jseg *jseg; 4847 struct jblocks *jblocks; 4848 { 4849 struct freework *freework; 4850 4851 /* 4852 * Free freework structures that were lingering to indicate freed 4853 * indirect blocks that forced journal write ordering on reallocate. 4854 */ 4855 while ((freework = LIST_FIRST(&jseg->js_indirs)) != NULL) 4856 indirblk_remove(freework); 4857 if (jblocks->jb_oldestseg == jseg) 4858 jblocks->jb_oldestseg = TAILQ_NEXT(jseg, js_next); 4859 TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next); 4860 jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size); 4861 KASSERT(LIST_EMPTY(&jseg->js_entries), 4862 ("free_jseg: Freed jseg has valid entries.")); 4863 WORKITEM_FREE(jseg, D_JSEG); 4864 } 4865 4866 /* 4867 * Free all jsegs that meet the criteria for being reclaimed and update 4868 * oldestseg. 4869 */ 4870 static void 4871 free_jsegs(jblocks) 4872 struct jblocks *jblocks; 4873 { 4874 struct jseg *jseg; 4875 4876 /* 4877 * Free only those jsegs which have none allocated before them to 4878 * preserve the journal space ordering. 4879 */ 4880 while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) { 4881 /* 4882 * Only reclaim space when nothing depends on this journal 4883 * set and another set has written that it is no longer 4884 * valid. 4885 */ 4886 if (jseg->js_refs != 0) { 4887 jblocks->jb_oldestseg = jseg; 4888 return; 4889 } 4890 if ((jseg->js_state & ALLCOMPLETE) != ALLCOMPLETE) 4891 break; 4892 if (jseg->js_seq > jblocks->jb_oldestwrseq) 4893 break; 4894 /* 4895 * We can free jsegs that didn't write entries when 4896 * oldestwrseq == js_seq. 4897 */ 4898 if (jseg->js_seq == jblocks->jb_oldestwrseq && 4899 jseg->js_cnt != 0) 4900 break; 4901 free_jseg(jseg, jblocks); 4902 } 4903 /* 4904 * If we exited the loop above we still must discover the 4905 * oldest valid segment. 4906 */ 4907 if (jseg) 4908 for (jseg = jblocks->jb_oldestseg; jseg != NULL; 4909 jseg = TAILQ_NEXT(jseg, js_next)) 4910 if (jseg->js_refs != 0) 4911 break; 4912 jblocks->jb_oldestseg = jseg; 4913 /* 4914 * The journal has no valid records but some jsegs may still be 4915 * waiting on oldestwrseq to advance. We force a small record 4916 * out to permit these lingering records to be reclaimed. 4917 */ 4918 if (jblocks->jb_oldestseg == NULL && !TAILQ_EMPTY(&jblocks->jb_segs)) 4919 jblocks->jb_needseg = 1; 4920 } 4921 4922 /* 4923 * Release one reference to a jseg and free it if the count reaches 0. This 4924 * should eventually reclaim journal space as well. 4925 */ 4926 static void 4927 rele_jseg(jseg) 4928 struct jseg *jseg; 4929 { 4930 4931 KASSERT(jseg->js_refs > 0, 4932 ("free_jseg: Invalid refcnt %d", jseg->js_refs)); 4933 if (--jseg->js_refs != 0) 4934 return; 4935 free_jsegs(jseg->js_jblocks); 4936 } 4937 4938 /* 4939 * Release a jsegdep and decrement the jseg count. 4940 */ 4941 static void 4942 free_jsegdep(jsegdep) 4943 struct jsegdep *jsegdep; 4944 { 4945 4946 if (jsegdep->jd_seg) 4947 rele_jseg(jsegdep->jd_seg); 4948 WORKITEM_FREE(jsegdep, D_JSEGDEP); 4949 } 4950 4951 /* 4952 * Wait for a journal item to make it to disk. Initiate journal processing 4953 * if required. 4954 */ 4955 static int 4956 jwait(wk, waitfor) 4957 struct worklist *wk; 4958 int waitfor; 4959 { 4960 4961 LOCK_OWNED(VFSTOUFS(wk->wk_mp)); 4962 /* 4963 * Blocking journal waits cause slow synchronous behavior. Record 4964 * stats on the frequency of these blocking operations. 4965 */ 4966 if (waitfor == MNT_WAIT) { 4967 stat_journal_wait++; 4968 switch (wk->wk_type) { 4969 case D_JREMREF: 4970 case D_JMVREF: 4971 stat_jwait_filepage++; 4972 break; 4973 case D_JTRUNC: 4974 case D_JFREEBLK: 4975 stat_jwait_freeblks++; 4976 break; 4977 case D_JNEWBLK: 4978 stat_jwait_newblk++; 4979 break; 4980 case D_JADDREF: 4981 stat_jwait_inode++; 4982 break; 4983 default: 4984 break; 4985 } 4986 } 4987 /* 4988 * If IO has not started we process the journal. We can't mark the 4989 * worklist item as IOWAITING because we drop the lock while 4990 * processing the journal and the worklist entry may be freed after 4991 * this point. The caller may call back in and re-issue the request. 4992 */ 4993 if ((wk->wk_state & INPROGRESS) == 0) { 4994 softdep_process_journal(wk->wk_mp, wk, waitfor); 4995 if (waitfor != MNT_WAIT) 4996 return (EBUSY); 4997 return (0); 4998 } 4999 if (waitfor != MNT_WAIT) 5000 return (EBUSY); 5001 wait_worklist(wk, "jwait"); 5002 return (0); 5003 } 5004 5005 /* 5006 * Lookup an inodedep based on an inode pointer and set the nlinkdelta as 5007 * appropriate. This is a convenience function to reduce duplicate code 5008 * for the setup and revert functions below. 5009 */ 5010 static struct inodedep * 5011 inodedep_lookup_ip(ip) 5012 struct inode *ip; 5013 { 5014 struct inodedep *inodedep; 5015 5016 KASSERT(ip->i_nlink >= ip->i_effnlink, 5017 ("inodedep_lookup_ip: bad delta")); 5018 (void) inodedep_lookup(ITOVFS(ip), ip->i_number, DEPALLOC, 5019 &inodedep); 5020 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 5021 KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked")); 5022 5023 return (inodedep); 5024 } 5025 5026 /* 5027 * Called prior to creating a new inode and linking it to a directory. The 5028 * jaddref structure must already be allocated by softdep_setup_inomapdep 5029 * and it is discovered here so we can initialize the mode and update 5030 * nlinkdelta. 5031 */ 5032 void 5033 softdep_setup_create(dp, ip) 5034 struct inode *dp; 5035 struct inode *ip; 5036 { 5037 struct inodedep *inodedep; 5038 struct jaddref *jaddref; 5039 struct vnode *dvp; 5040 5041 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 5042 ("softdep_setup_create called on non-softdep filesystem")); 5043 KASSERT(ip->i_nlink == 1, 5044 ("softdep_setup_create: Invalid link count.")); 5045 dvp = ITOV(dp); 5046 ACQUIRE_LOCK(ITOUMP(dp)); 5047 inodedep = inodedep_lookup_ip(ip); 5048 if (DOINGSUJ(dvp)) { 5049 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 5050 inoreflst); 5051 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 5052 ("softdep_setup_create: No addref structure present.")); 5053 } 5054 FREE_LOCK(ITOUMP(dp)); 5055 } 5056 5057 /* 5058 * Create a jaddref structure to track the addition of a DOTDOT link when 5059 * we are reparenting an inode as part of a rename. This jaddref will be 5060 * found by softdep_setup_directory_change. Adjusts nlinkdelta for 5061 * non-journaling softdep. 5062 */ 5063 void 5064 softdep_setup_dotdot_link(dp, ip) 5065 struct inode *dp; 5066 struct inode *ip; 5067 { 5068 struct inodedep *inodedep; 5069 struct jaddref *jaddref; 5070 struct vnode *dvp; 5071 5072 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 5073 ("softdep_setup_dotdot_link called on non-softdep filesystem")); 5074 dvp = ITOV(dp); 5075 jaddref = NULL; 5076 /* 5077 * We don't set MKDIR_PARENT as this is not tied to a mkdir and 5078 * is used as a normal link would be. 5079 */ 5080 if (DOINGSUJ(dvp)) 5081 jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET, 5082 dp->i_effnlink - 1, dp->i_mode); 5083 ACQUIRE_LOCK(ITOUMP(dp)); 5084 inodedep = inodedep_lookup_ip(dp); 5085 if (jaddref) 5086 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 5087 if_deps); 5088 FREE_LOCK(ITOUMP(dp)); 5089 } 5090 5091 /* 5092 * Create a jaddref structure to track a new link to an inode. The directory 5093 * offset is not known until softdep_setup_directory_add or 5094 * softdep_setup_directory_change. Adjusts nlinkdelta for non-journaling 5095 * softdep. 5096 */ 5097 void 5098 softdep_setup_link(dp, ip) 5099 struct inode *dp; 5100 struct inode *ip; 5101 { 5102 struct inodedep *inodedep; 5103 struct jaddref *jaddref; 5104 struct vnode *dvp; 5105 5106 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 5107 ("softdep_setup_link called on non-softdep filesystem")); 5108 dvp = ITOV(dp); 5109 jaddref = NULL; 5110 if (DOINGSUJ(dvp)) 5111 jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1, 5112 ip->i_mode); 5113 ACQUIRE_LOCK(ITOUMP(dp)); 5114 inodedep = inodedep_lookup_ip(ip); 5115 if (jaddref) 5116 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 5117 if_deps); 5118 FREE_LOCK(ITOUMP(dp)); 5119 } 5120 5121 /* 5122 * Called to create the jaddref structures to track . and .. references as 5123 * well as lookup and further initialize the incomplete jaddref created 5124 * by softdep_setup_inomapdep when the inode was allocated. Adjusts 5125 * nlinkdelta for non-journaling softdep. 5126 */ 5127 void 5128 softdep_setup_mkdir(dp, ip) 5129 struct inode *dp; 5130 struct inode *ip; 5131 { 5132 struct inodedep *inodedep; 5133 struct jaddref *dotdotaddref; 5134 struct jaddref *dotaddref; 5135 struct jaddref *jaddref; 5136 struct vnode *dvp; 5137 5138 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 5139 ("softdep_setup_mkdir called on non-softdep filesystem")); 5140 dvp = ITOV(dp); 5141 dotaddref = dotdotaddref = NULL; 5142 if (DOINGSUJ(dvp)) { 5143 dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1, 5144 ip->i_mode); 5145 dotaddref->ja_state |= MKDIR_BODY; 5146 dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET, 5147 dp->i_effnlink - 1, dp->i_mode); 5148 dotdotaddref->ja_state |= MKDIR_PARENT; 5149 } 5150 ACQUIRE_LOCK(ITOUMP(dp)); 5151 inodedep = inodedep_lookup_ip(ip); 5152 if (DOINGSUJ(dvp)) { 5153 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 5154 inoreflst); 5155 KASSERT(jaddref != NULL, 5156 ("softdep_setup_mkdir: No addref structure present.")); 5157 KASSERT(jaddref->ja_parent == dp->i_number, 5158 ("softdep_setup_mkdir: bad parent %ju", 5159 (uintmax_t)jaddref->ja_parent)); 5160 TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref, 5161 if_deps); 5162 } 5163 inodedep = inodedep_lookup_ip(dp); 5164 if (DOINGSUJ(dvp)) 5165 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, 5166 &dotdotaddref->ja_ref, if_deps); 5167 FREE_LOCK(ITOUMP(dp)); 5168 } 5169 5170 /* 5171 * Called to track nlinkdelta of the inode and parent directories prior to 5172 * unlinking a directory. 5173 */ 5174 void 5175 softdep_setup_rmdir(dp, ip) 5176 struct inode *dp; 5177 struct inode *ip; 5178 { 5179 struct vnode *dvp; 5180 5181 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 5182 ("softdep_setup_rmdir called on non-softdep filesystem")); 5183 dvp = ITOV(dp); 5184 ACQUIRE_LOCK(ITOUMP(dp)); 5185 (void) inodedep_lookup_ip(ip); 5186 (void) inodedep_lookup_ip(dp); 5187 FREE_LOCK(ITOUMP(dp)); 5188 } 5189 5190 /* 5191 * Called to track nlinkdelta of the inode and parent directories prior to 5192 * unlink. 5193 */ 5194 void 5195 softdep_setup_unlink(dp, ip) 5196 struct inode *dp; 5197 struct inode *ip; 5198 { 5199 struct vnode *dvp; 5200 5201 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 5202 ("softdep_setup_unlink called on non-softdep filesystem")); 5203 dvp = ITOV(dp); 5204 ACQUIRE_LOCK(ITOUMP(dp)); 5205 (void) inodedep_lookup_ip(ip); 5206 (void) inodedep_lookup_ip(dp); 5207 FREE_LOCK(ITOUMP(dp)); 5208 } 5209 5210 /* 5211 * Called to release the journal structures created by a failed non-directory 5212 * creation. Adjusts nlinkdelta for non-journaling softdep. 5213 */ 5214 void 5215 softdep_revert_create(dp, ip) 5216 struct inode *dp; 5217 struct inode *ip; 5218 { 5219 struct inodedep *inodedep; 5220 struct jaddref *jaddref; 5221 struct vnode *dvp; 5222 5223 KASSERT(MOUNTEDSOFTDEP(ITOVFS((dp))) != 0, 5224 ("softdep_revert_create called on non-softdep filesystem")); 5225 dvp = ITOV(dp); 5226 ACQUIRE_LOCK(ITOUMP(dp)); 5227 inodedep = inodedep_lookup_ip(ip); 5228 if (DOINGSUJ(dvp)) { 5229 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 5230 inoreflst); 5231 KASSERT(jaddref->ja_parent == dp->i_number, 5232 ("softdep_revert_create: addref parent mismatch")); 5233 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 5234 } 5235 FREE_LOCK(ITOUMP(dp)); 5236 } 5237 5238 /* 5239 * Called to release the journal structures created by a failed link 5240 * addition. Adjusts nlinkdelta for non-journaling softdep. 5241 */ 5242 void 5243 softdep_revert_link(dp, ip) 5244 struct inode *dp; 5245 struct inode *ip; 5246 { 5247 struct inodedep *inodedep; 5248 struct jaddref *jaddref; 5249 struct vnode *dvp; 5250 5251 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 5252 ("softdep_revert_link called on non-softdep filesystem")); 5253 dvp = ITOV(dp); 5254 ACQUIRE_LOCK(ITOUMP(dp)); 5255 inodedep = inodedep_lookup_ip(ip); 5256 if (DOINGSUJ(dvp)) { 5257 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 5258 inoreflst); 5259 KASSERT(jaddref->ja_parent == dp->i_number, 5260 ("softdep_revert_link: addref parent mismatch")); 5261 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 5262 } 5263 FREE_LOCK(ITOUMP(dp)); 5264 } 5265 5266 /* 5267 * Called to release the journal structures created by a failed mkdir 5268 * attempt. Adjusts nlinkdelta for non-journaling softdep. 5269 */ 5270 void 5271 softdep_revert_mkdir(dp, ip) 5272 struct inode *dp; 5273 struct inode *ip; 5274 { 5275 struct inodedep *inodedep; 5276 struct jaddref *jaddref; 5277 struct jaddref *dotaddref; 5278 struct vnode *dvp; 5279 5280 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 5281 ("softdep_revert_mkdir called on non-softdep filesystem")); 5282 dvp = ITOV(dp); 5283 5284 ACQUIRE_LOCK(ITOUMP(dp)); 5285 inodedep = inodedep_lookup_ip(dp); 5286 if (DOINGSUJ(dvp)) { 5287 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 5288 inoreflst); 5289 KASSERT(jaddref->ja_parent == ip->i_number, 5290 ("softdep_revert_mkdir: dotdot addref parent mismatch")); 5291 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 5292 } 5293 inodedep = inodedep_lookup_ip(ip); 5294 if (DOINGSUJ(dvp)) { 5295 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 5296 inoreflst); 5297 KASSERT(jaddref->ja_parent == dp->i_number, 5298 ("softdep_revert_mkdir: addref parent mismatch")); 5299 dotaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref, 5300 inoreflst, if_deps); 5301 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 5302 KASSERT(dotaddref->ja_parent == ip->i_number, 5303 ("softdep_revert_mkdir: dot addref parent mismatch")); 5304 cancel_jaddref(dotaddref, inodedep, &inodedep->id_inowait); 5305 } 5306 FREE_LOCK(ITOUMP(dp)); 5307 } 5308 5309 /* 5310 * Called to correct nlinkdelta after a failed rmdir. 5311 */ 5312 void 5313 softdep_revert_rmdir(dp, ip) 5314 struct inode *dp; 5315 struct inode *ip; 5316 { 5317 5318 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 5319 ("softdep_revert_rmdir called on non-softdep filesystem")); 5320 ACQUIRE_LOCK(ITOUMP(dp)); 5321 (void) inodedep_lookup_ip(ip); 5322 (void) inodedep_lookup_ip(dp); 5323 FREE_LOCK(ITOUMP(dp)); 5324 } 5325 5326 /* 5327 * Protecting the freemaps (or bitmaps). 5328 * 5329 * To eliminate the need to execute fsck before mounting a filesystem 5330 * after a power failure, one must (conservatively) guarantee that the 5331 * on-disk copy of the bitmaps never indicate that a live inode or block is 5332 * free. So, when a block or inode is allocated, the bitmap should be 5333 * updated (on disk) before any new pointers. When a block or inode is 5334 * freed, the bitmap should not be updated until all pointers have been 5335 * reset. The latter dependency is handled by the delayed de-allocation 5336 * approach described below for block and inode de-allocation. The former 5337 * dependency is handled by calling the following procedure when a block or 5338 * inode is allocated. When an inode is allocated an "inodedep" is created 5339 * with its DEPCOMPLETE flag cleared until its bitmap is written to disk. 5340 * Each "inodedep" is also inserted into the hash indexing structure so 5341 * that any additional link additions can be made dependent on the inode 5342 * allocation. 5343 * 5344 * The ufs filesystem maintains a number of free block counts (e.g., per 5345 * cylinder group, per cylinder and per <cylinder, rotational position> pair) 5346 * in addition to the bitmaps. These counts are used to improve efficiency 5347 * during allocation and therefore must be consistent with the bitmaps. 5348 * There is no convenient way to guarantee post-crash consistency of these 5349 * counts with simple update ordering, for two main reasons: (1) The counts 5350 * and bitmaps for a single cylinder group block are not in the same disk 5351 * sector. If a disk write is interrupted (e.g., by power failure), one may 5352 * be written and the other not. (2) Some of the counts are located in the 5353 * superblock rather than the cylinder group block. So, we focus our soft 5354 * updates implementation on protecting the bitmaps. When mounting a 5355 * filesystem, we recompute the auxiliary counts from the bitmaps. 5356 */ 5357 5358 /* 5359 * Called just after updating the cylinder group block to allocate an inode. 5360 */ 5361 void 5362 softdep_setup_inomapdep(bp, ip, newinum, mode) 5363 struct buf *bp; /* buffer for cylgroup block with inode map */ 5364 struct inode *ip; /* inode related to allocation */ 5365 ino_t newinum; /* new inode number being allocated */ 5366 int mode; 5367 { 5368 struct inodedep *inodedep; 5369 struct bmsafemap *bmsafemap; 5370 struct jaddref *jaddref; 5371 struct mount *mp; 5372 struct fs *fs; 5373 5374 mp = ITOVFS(ip); 5375 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5376 ("softdep_setup_inomapdep called on non-softdep filesystem")); 5377 fs = VFSTOUFS(mp)->um_fs; 5378 jaddref = NULL; 5379 5380 /* 5381 * Allocate the journal reference add structure so that the bitmap 5382 * can be dependent on it. 5383 */ 5384 if (MOUNTEDSUJ(mp)) { 5385 jaddref = newjaddref(ip, newinum, 0, 0, mode); 5386 jaddref->ja_state |= NEWBLOCK; 5387 } 5388 5389 /* 5390 * Create a dependency for the newly allocated inode. 5391 * Panic if it already exists as something is seriously wrong. 5392 * Otherwise add it to the dependency list for the buffer holding 5393 * the cylinder group map from which it was allocated. 5394 * 5395 * We have to preallocate a bmsafemap entry in case it is needed 5396 * in bmsafemap_lookup since once we allocate the inodedep, we 5397 * have to finish initializing it before we can FREE_LOCK(). 5398 * By preallocating, we avoid FREE_LOCK() while doing a malloc 5399 * in bmsafemap_lookup. We cannot call bmsafemap_lookup before 5400 * creating the inodedep as it can be freed during the time 5401 * that we FREE_LOCK() while allocating the inodedep. We must 5402 * call workitem_alloc() before entering the locked section as 5403 * it also acquires the lock and we must avoid trying doing so 5404 * recursively. 5405 */ 5406 bmsafemap = malloc(sizeof(struct bmsafemap), 5407 M_BMSAFEMAP, M_SOFTDEP_FLAGS); 5408 workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp); 5409 ACQUIRE_LOCK(ITOUMP(ip)); 5410 if ((inodedep_lookup(mp, newinum, DEPALLOC, &inodedep))) 5411 panic("softdep_setup_inomapdep: dependency %p for new" 5412 "inode already exists", inodedep); 5413 bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum), bmsafemap); 5414 if (jaddref) { 5415 LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps); 5416 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 5417 if_deps); 5418 } else { 5419 inodedep->id_state |= ONDEPLIST; 5420 LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps); 5421 } 5422 inodedep->id_bmsafemap = bmsafemap; 5423 inodedep->id_state &= ~DEPCOMPLETE; 5424 FREE_LOCK(ITOUMP(ip)); 5425 } 5426 5427 /* 5428 * Called just after updating the cylinder group block to 5429 * allocate block or fragment. 5430 */ 5431 void 5432 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags) 5433 struct buf *bp; /* buffer for cylgroup block with block map */ 5434 struct mount *mp; /* filesystem doing allocation */ 5435 ufs2_daddr_t newblkno; /* number of newly allocated block */ 5436 int frags; /* Number of fragments. */ 5437 int oldfrags; /* Previous number of fragments for extend. */ 5438 { 5439 struct newblk *newblk; 5440 struct bmsafemap *bmsafemap; 5441 struct jnewblk *jnewblk; 5442 struct ufsmount *ump; 5443 struct fs *fs; 5444 5445 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5446 ("softdep_setup_blkmapdep called on non-softdep filesystem")); 5447 ump = VFSTOUFS(mp); 5448 fs = ump->um_fs; 5449 jnewblk = NULL; 5450 /* 5451 * Create a dependency for the newly allocated block. 5452 * Add it to the dependency list for the buffer holding 5453 * the cylinder group map from which it was allocated. 5454 */ 5455 if (MOUNTEDSUJ(mp)) { 5456 jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS); 5457 workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp); 5458 jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list); 5459 jnewblk->jn_state = ATTACHED; 5460 jnewblk->jn_blkno = newblkno; 5461 jnewblk->jn_frags = frags; 5462 jnewblk->jn_oldfrags = oldfrags; 5463 #ifdef INVARIANTS 5464 { 5465 struct cg *cgp; 5466 uint8_t *blksfree; 5467 long bno; 5468 int i; 5469 5470 cgp = (struct cg *)bp->b_data; 5471 blksfree = cg_blksfree(cgp); 5472 bno = dtogd(fs, jnewblk->jn_blkno); 5473 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; 5474 i++) { 5475 if (isset(blksfree, bno + i)) 5476 panic("softdep_setup_blkmapdep: " 5477 "free fragment %d from %d-%d " 5478 "state 0x%X dep %p", i, 5479 jnewblk->jn_oldfrags, 5480 jnewblk->jn_frags, 5481 jnewblk->jn_state, 5482 jnewblk->jn_dep); 5483 } 5484 } 5485 #endif 5486 } 5487 5488 CTR3(KTR_SUJ, 5489 "softdep_setup_blkmapdep: blkno %jd frags %d oldfrags %d", 5490 newblkno, frags, oldfrags); 5491 ACQUIRE_LOCK(ump); 5492 if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0) 5493 panic("softdep_setup_blkmapdep: found block"); 5494 newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp, 5495 dtog(fs, newblkno), NULL); 5496 if (jnewblk) { 5497 jnewblk->jn_dep = (struct worklist *)newblk; 5498 LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps); 5499 } else { 5500 newblk->nb_state |= ONDEPLIST; 5501 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps); 5502 } 5503 newblk->nb_bmsafemap = bmsafemap; 5504 newblk->nb_jnewblk = jnewblk; 5505 FREE_LOCK(ump); 5506 } 5507 5508 #define BMSAFEMAP_HASH(ump, cg) \ 5509 (&(ump)->bmsafemap_hashtbl[(cg) & (ump)->bmsafemap_hash_size]) 5510 5511 static int 5512 bmsafemap_find(bmsafemaphd, cg, bmsafemapp) 5513 struct bmsafemap_hashhead *bmsafemaphd; 5514 int cg; 5515 struct bmsafemap **bmsafemapp; 5516 { 5517 struct bmsafemap *bmsafemap; 5518 5519 LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash) 5520 if (bmsafemap->sm_cg == cg) 5521 break; 5522 if (bmsafemap) { 5523 *bmsafemapp = bmsafemap; 5524 return (1); 5525 } 5526 *bmsafemapp = NULL; 5527 5528 return (0); 5529 } 5530 5531 /* 5532 * Find the bmsafemap associated with a cylinder group buffer. 5533 * If none exists, create one. The buffer must be locked when 5534 * this routine is called and this routine must be called with 5535 * the softdep lock held. To avoid giving up the lock while 5536 * allocating a new bmsafemap, a preallocated bmsafemap may be 5537 * provided. If it is provided but not needed, it is freed. 5538 */ 5539 static struct bmsafemap * 5540 bmsafemap_lookup(mp, bp, cg, newbmsafemap) 5541 struct mount *mp; 5542 struct buf *bp; 5543 int cg; 5544 struct bmsafemap *newbmsafemap; 5545 { 5546 struct bmsafemap_hashhead *bmsafemaphd; 5547 struct bmsafemap *bmsafemap, *collision; 5548 struct worklist *wk; 5549 struct ufsmount *ump; 5550 5551 ump = VFSTOUFS(mp); 5552 LOCK_OWNED(ump); 5553 KASSERT(bp != NULL, ("bmsafemap_lookup: missing buffer")); 5554 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 5555 if (wk->wk_type == D_BMSAFEMAP) { 5556 if (newbmsafemap) 5557 WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP); 5558 return (WK_BMSAFEMAP(wk)); 5559 } 5560 } 5561 bmsafemaphd = BMSAFEMAP_HASH(ump, cg); 5562 if (bmsafemap_find(bmsafemaphd, cg, &bmsafemap) == 1) { 5563 if (newbmsafemap) 5564 WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP); 5565 return (bmsafemap); 5566 } 5567 if (newbmsafemap) { 5568 bmsafemap = newbmsafemap; 5569 } else { 5570 FREE_LOCK(ump); 5571 bmsafemap = malloc(sizeof(struct bmsafemap), 5572 M_BMSAFEMAP, M_SOFTDEP_FLAGS); 5573 workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp); 5574 ACQUIRE_LOCK(ump); 5575 } 5576 bmsafemap->sm_buf = bp; 5577 LIST_INIT(&bmsafemap->sm_inodedephd); 5578 LIST_INIT(&bmsafemap->sm_inodedepwr); 5579 LIST_INIT(&bmsafemap->sm_newblkhd); 5580 LIST_INIT(&bmsafemap->sm_newblkwr); 5581 LIST_INIT(&bmsafemap->sm_jaddrefhd); 5582 LIST_INIT(&bmsafemap->sm_jnewblkhd); 5583 LIST_INIT(&bmsafemap->sm_freehd); 5584 LIST_INIT(&bmsafemap->sm_freewr); 5585 if (bmsafemap_find(bmsafemaphd, cg, &collision) == 1) { 5586 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); 5587 return (collision); 5588 } 5589 bmsafemap->sm_cg = cg; 5590 LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash); 5591 LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next); 5592 WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list); 5593 return (bmsafemap); 5594 } 5595 5596 /* 5597 * Direct block allocation dependencies. 5598 * 5599 * When a new block is allocated, the corresponding disk locations must be 5600 * initialized (with zeros or new data) before the on-disk inode points to 5601 * them. Also, the freemap from which the block was allocated must be 5602 * updated (on disk) before the inode's pointer. These two dependencies are 5603 * independent of each other and are needed for all file blocks and indirect 5604 * blocks that are pointed to directly by the inode. Just before the 5605 * "in-core" version of the inode is updated with a newly allocated block 5606 * number, a procedure (below) is called to setup allocation dependency 5607 * structures. These structures are removed when the corresponding 5608 * dependencies are satisfied or when the block allocation becomes obsolete 5609 * (i.e., the file is deleted, the block is de-allocated, or the block is a 5610 * fragment that gets upgraded). All of these cases are handled in 5611 * procedures described later. 5612 * 5613 * When a file extension causes a fragment to be upgraded, either to a larger 5614 * fragment or to a full block, the on-disk location may change (if the 5615 * previous fragment could not simply be extended). In this case, the old 5616 * fragment must be de-allocated, but not until after the inode's pointer has 5617 * been updated. In most cases, this is handled by later procedures, which 5618 * will construct a "freefrag" structure to be added to the workitem queue 5619 * when the inode update is complete (or obsolete). The main exception to 5620 * this is when an allocation occurs while a pending allocation dependency 5621 * (for the same block pointer) remains. This case is handled in the main 5622 * allocation dependency setup procedure by immediately freeing the 5623 * unreferenced fragments. 5624 */ 5625 void 5626 softdep_setup_allocdirect(ip, off, newblkno, oldblkno, newsize, oldsize, bp) 5627 struct inode *ip; /* inode to which block is being added */ 5628 ufs_lbn_t off; /* block pointer within inode */ 5629 ufs2_daddr_t newblkno; /* disk block number being added */ 5630 ufs2_daddr_t oldblkno; /* previous block number, 0 unless frag */ 5631 long newsize; /* size of new block */ 5632 long oldsize; /* size of new block */ 5633 struct buf *bp; /* bp for allocated block */ 5634 { 5635 struct allocdirect *adp, *oldadp; 5636 struct allocdirectlst *adphead; 5637 struct freefrag *freefrag; 5638 struct inodedep *inodedep; 5639 struct pagedep *pagedep; 5640 struct jnewblk *jnewblk; 5641 struct newblk *newblk; 5642 struct mount *mp; 5643 ufs_lbn_t lbn; 5644 5645 lbn = bp->b_lblkno; 5646 mp = ITOVFS(ip); 5647 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5648 ("softdep_setup_allocdirect called on non-softdep filesystem")); 5649 if (oldblkno && oldblkno != newblkno) 5650 /* 5651 * The usual case is that a smaller fragment that 5652 * was just allocated has been replaced with a bigger 5653 * fragment or a full-size block. If it is marked as 5654 * B_DELWRI, the current contents have not been written 5655 * to disk. It is possible that the block was written 5656 * earlier, but very uncommon. If the block has never 5657 * been written, there is no need to send a BIO_DELETE 5658 * for it when it is freed. The gain from avoiding the 5659 * TRIMs for the common case of unwritten blocks far 5660 * exceeds the cost of the write amplification for the 5661 * uncommon case of failing to send a TRIM for a block 5662 * that had been written. 5663 */ 5664 freefrag = newfreefrag(ip, oldblkno, oldsize, lbn, 5665 (bp->b_flags & B_DELWRI) != 0 ? NOTRIM_KEY : SINGLETON_KEY); 5666 else 5667 freefrag = NULL; 5668 5669 CTR6(KTR_SUJ, 5670 "softdep_setup_allocdirect: ino %d blkno %jd oldblkno %jd " 5671 "off %jd newsize %ld oldsize %d", 5672 ip->i_number, newblkno, oldblkno, off, newsize, oldsize); 5673 ACQUIRE_LOCK(ITOUMP(ip)); 5674 if (off >= UFS_NDADDR) { 5675 if (lbn > 0) 5676 panic("softdep_setup_allocdirect: bad lbn %jd, off %jd", 5677 lbn, off); 5678 /* allocating an indirect block */ 5679 if (oldblkno != 0) 5680 panic("softdep_setup_allocdirect: non-zero indir"); 5681 } else { 5682 if (off != lbn) 5683 panic("softdep_setup_allocdirect: lbn %jd != off %jd", 5684 lbn, off); 5685 /* 5686 * Allocating a direct block. 5687 * 5688 * If we are allocating a directory block, then we must 5689 * allocate an associated pagedep to track additions and 5690 * deletions. 5691 */ 5692 if ((ip->i_mode & IFMT) == IFDIR) 5693 pagedep_lookup(mp, bp, ip->i_number, off, DEPALLOC, 5694 &pagedep); 5695 } 5696 if (newblk_lookup(mp, newblkno, 0, &newblk) == 0) 5697 panic("softdep_setup_allocdirect: lost block"); 5698 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 5699 ("softdep_setup_allocdirect: newblk already initialized")); 5700 /* 5701 * Convert the newblk to an allocdirect. 5702 */ 5703 WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT); 5704 adp = (struct allocdirect *)newblk; 5705 newblk->nb_freefrag = freefrag; 5706 adp->ad_offset = off; 5707 adp->ad_oldblkno = oldblkno; 5708 adp->ad_newsize = newsize; 5709 adp->ad_oldsize = oldsize; 5710 5711 /* 5712 * Finish initializing the journal. 5713 */ 5714 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 5715 jnewblk->jn_ino = ip->i_number; 5716 jnewblk->jn_lbn = lbn; 5717 add_to_journal(&jnewblk->jn_list); 5718 } 5719 if (freefrag && freefrag->ff_jdep != NULL && 5720 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 5721 add_to_journal(freefrag->ff_jdep); 5722 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 5723 adp->ad_inodedep = inodedep; 5724 5725 WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list); 5726 /* 5727 * The list of allocdirects must be kept in sorted and ascending 5728 * order so that the rollback routines can quickly determine the 5729 * first uncommitted block (the size of the file stored on disk 5730 * ends at the end of the lowest committed fragment, or if there 5731 * are no fragments, at the end of the highest committed block). 5732 * Since files generally grow, the typical case is that the new 5733 * block is to be added at the end of the list. We speed this 5734 * special case by checking against the last allocdirect in the 5735 * list before laboriously traversing the list looking for the 5736 * insertion point. 5737 */ 5738 adphead = &inodedep->id_newinoupdt; 5739 oldadp = TAILQ_LAST(adphead, allocdirectlst); 5740 if (oldadp == NULL || oldadp->ad_offset <= off) { 5741 /* insert at end of list */ 5742 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 5743 if (oldadp != NULL && oldadp->ad_offset == off) 5744 allocdirect_merge(adphead, adp, oldadp); 5745 FREE_LOCK(ITOUMP(ip)); 5746 return; 5747 } 5748 TAILQ_FOREACH(oldadp, adphead, ad_next) { 5749 if (oldadp->ad_offset >= off) 5750 break; 5751 } 5752 if (oldadp == NULL) 5753 panic("softdep_setup_allocdirect: lost entry"); 5754 /* insert in middle of list */ 5755 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 5756 if (oldadp->ad_offset == off) 5757 allocdirect_merge(adphead, adp, oldadp); 5758 5759 FREE_LOCK(ITOUMP(ip)); 5760 } 5761 5762 /* 5763 * Merge a newer and older journal record to be stored either in a 5764 * newblock or freefrag. This handles aggregating journal records for 5765 * fragment allocation into a second record as well as replacing a 5766 * journal free with an aborted journal allocation. A segment for the 5767 * oldest record will be placed on wkhd if it has been written. If not 5768 * the segment for the newer record will suffice. 5769 */ 5770 static struct worklist * 5771 jnewblk_merge(new, old, wkhd) 5772 struct worklist *new; 5773 struct worklist *old; 5774 struct workhead *wkhd; 5775 { 5776 struct jnewblk *njnewblk; 5777 struct jnewblk *jnewblk; 5778 5779 /* Handle NULLs to simplify callers. */ 5780 if (new == NULL) 5781 return (old); 5782 if (old == NULL) 5783 return (new); 5784 /* Replace a jfreefrag with a jnewblk. */ 5785 if (new->wk_type == D_JFREEFRAG) { 5786 if (WK_JNEWBLK(old)->jn_blkno != WK_JFREEFRAG(new)->fr_blkno) 5787 panic("jnewblk_merge: blkno mismatch: %p, %p", 5788 old, new); 5789 cancel_jfreefrag(WK_JFREEFRAG(new)); 5790 return (old); 5791 } 5792 if (old->wk_type != D_JNEWBLK || new->wk_type != D_JNEWBLK) 5793 panic("jnewblk_merge: Bad type: old %d new %d\n", 5794 old->wk_type, new->wk_type); 5795 /* 5796 * Handle merging of two jnewblk records that describe 5797 * different sets of fragments in the same block. 5798 */ 5799 jnewblk = WK_JNEWBLK(old); 5800 njnewblk = WK_JNEWBLK(new); 5801 if (jnewblk->jn_blkno != njnewblk->jn_blkno) 5802 panic("jnewblk_merge: Merging disparate blocks."); 5803 /* 5804 * The record may be rolled back in the cg. 5805 */ 5806 if (jnewblk->jn_state & UNDONE) { 5807 jnewblk->jn_state &= ~UNDONE; 5808 njnewblk->jn_state |= UNDONE; 5809 njnewblk->jn_state &= ~ATTACHED; 5810 } 5811 /* 5812 * We modify the newer addref and free the older so that if neither 5813 * has been written the most up-to-date copy will be on disk. If 5814 * both have been written but rolled back we only temporarily need 5815 * one of them to fix the bits when the cg write completes. 5816 */ 5817 jnewblk->jn_state |= ATTACHED | COMPLETE; 5818 njnewblk->jn_oldfrags = jnewblk->jn_oldfrags; 5819 cancel_jnewblk(jnewblk, wkhd); 5820 WORKLIST_REMOVE(&jnewblk->jn_list); 5821 free_jnewblk(jnewblk); 5822 return (new); 5823 } 5824 5825 /* 5826 * Replace an old allocdirect dependency with a newer one. 5827 */ 5828 static void 5829 allocdirect_merge(adphead, newadp, oldadp) 5830 struct allocdirectlst *adphead; /* head of list holding allocdirects */ 5831 struct allocdirect *newadp; /* allocdirect being added */ 5832 struct allocdirect *oldadp; /* existing allocdirect being checked */ 5833 { 5834 struct worklist *wk; 5835 struct freefrag *freefrag; 5836 5837 freefrag = NULL; 5838 LOCK_OWNED(VFSTOUFS(newadp->ad_list.wk_mp)); 5839 if (newadp->ad_oldblkno != oldadp->ad_newblkno || 5840 newadp->ad_oldsize != oldadp->ad_newsize || 5841 newadp->ad_offset >= UFS_NDADDR) 5842 panic("%s %jd != new %jd || old size %ld != new %ld", 5843 "allocdirect_merge: old blkno", 5844 (intmax_t)newadp->ad_oldblkno, 5845 (intmax_t)oldadp->ad_newblkno, 5846 newadp->ad_oldsize, oldadp->ad_newsize); 5847 newadp->ad_oldblkno = oldadp->ad_oldblkno; 5848 newadp->ad_oldsize = oldadp->ad_oldsize; 5849 /* 5850 * If the old dependency had a fragment to free or had never 5851 * previously had a block allocated, then the new dependency 5852 * can immediately post its freefrag and adopt the old freefrag. 5853 * This action is done by swapping the freefrag dependencies. 5854 * The new dependency gains the old one's freefrag, and the 5855 * old one gets the new one and then immediately puts it on 5856 * the worklist when it is freed by free_newblk. It is 5857 * not possible to do this swap when the old dependency had a 5858 * non-zero size but no previous fragment to free. This condition 5859 * arises when the new block is an extension of the old block. 5860 * Here, the first part of the fragment allocated to the new 5861 * dependency is part of the block currently claimed on disk by 5862 * the old dependency, so cannot legitimately be freed until the 5863 * conditions for the new dependency are fulfilled. 5864 */ 5865 freefrag = newadp->ad_freefrag; 5866 if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) { 5867 newadp->ad_freefrag = oldadp->ad_freefrag; 5868 oldadp->ad_freefrag = freefrag; 5869 } 5870 /* 5871 * If we are tracking a new directory-block allocation, 5872 * move it from the old allocdirect to the new allocdirect. 5873 */ 5874 if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) { 5875 WORKLIST_REMOVE(wk); 5876 if (!LIST_EMPTY(&oldadp->ad_newdirblk)) 5877 panic("allocdirect_merge: extra newdirblk"); 5878 WORKLIST_INSERT(&newadp->ad_newdirblk, wk); 5879 } 5880 TAILQ_REMOVE(adphead, oldadp, ad_next); 5881 /* 5882 * We need to move any journal dependencies over to the freefrag 5883 * that releases this block if it exists. Otherwise we are 5884 * extending an existing block and we'll wait until that is 5885 * complete to release the journal space and extend the 5886 * new journal to cover this old space as well. 5887 */ 5888 if (freefrag == NULL) { 5889 if (oldadp->ad_newblkno != newadp->ad_newblkno) 5890 panic("allocdirect_merge: %jd != %jd", 5891 oldadp->ad_newblkno, newadp->ad_newblkno); 5892 newadp->ad_block.nb_jnewblk = (struct jnewblk *) 5893 jnewblk_merge(&newadp->ad_block.nb_jnewblk->jn_list, 5894 &oldadp->ad_block.nb_jnewblk->jn_list, 5895 &newadp->ad_block.nb_jwork); 5896 oldadp->ad_block.nb_jnewblk = NULL; 5897 cancel_newblk(&oldadp->ad_block, NULL, 5898 &newadp->ad_block.nb_jwork); 5899 } else { 5900 wk = (struct worklist *) cancel_newblk(&oldadp->ad_block, 5901 &freefrag->ff_list, &freefrag->ff_jwork); 5902 freefrag->ff_jdep = jnewblk_merge(freefrag->ff_jdep, wk, 5903 &freefrag->ff_jwork); 5904 } 5905 free_newblk(&oldadp->ad_block); 5906 } 5907 5908 /* 5909 * Allocate a jfreefrag structure to journal a single block free. 5910 */ 5911 static struct jfreefrag * 5912 newjfreefrag(freefrag, ip, blkno, size, lbn) 5913 struct freefrag *freefrag; 5914 struct inode *ip; 5915 ufs2_daddr_t blkno; 5916 long size; 5917 ufs_lbn_t lbn; 5918 { 5919 struct jfreefrag *jfreefrag; 5920 struct fs *fs; 5921 5922 fs = ITOFS(ip); 5923 jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG, 5924 M_SOFTDEP_FLAGS); 5925 workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, ITOVFS(ip)); 5926 jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list); 5927 jfreefrag->fr_state = ATTACHED | DEPCOMPLETE; 5928 jfreefrag->fr_ino = ip->i_number; 5929 jfreefrag->fr_lbn = lbn; 5930 jfreefrag->fr_blkno = blkno; 5931 jfreefrag->fr_frags = numfrags(fs, size); 5932 jfreefrag->fr_freefrag = freefrag; 5933 5934 return (jfreefrag); 5935 } 5936 5937 /* 5938 * Allocate a new freefrag structure. 5939 */ 5940 static struct freefrag * 5941 newfreefrag(ip, blkno, size, lbn, key) 5942 struct inode *ip; 5943 ufs2_daddr_t blkno; 5944 long size; 5945 ufs_lbn_t lbn; 5946 u_long key; 5947 { 5948 struct freefrag *freefrag; 5949 struct ufsmount *ump; 5950 struct fs *fs; 5951 5952 CTR4(KTR_SUJ, "newfreefrag: ino %d blkno %jd size %ld lbn %jd", 5953 ip->i_number, blkno, size, lbn); 5954 ump = ITOUMP(ip); 5955 fs = ump->um_fs; 5956 if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag) 5957 panic("newfreefrag: frag size"); 5958 freefrag = malloc(sizeof(struct freefrag), 5959 M_FREEFRAG, M_SOFTDEP_FLAGS); 5960 workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ump)); 5961 freefrag->ff_state = ATTACHED; 5962 LIST_INIT(&freefrag->ff_jwork); 5963 freefrag->ff_inum = ip->i_number; 5964 freefrag->ff_vtype = ITOV(ip)->v_type; 5965 freefrag->ff_blkno = blkno; 5966 freefrag->ff_fragsize = size; 5967 freefrag->ff_key = key; 5968 5969 if (MOUNTEDSUJ(UFSTOVFS(ump))) { 5970 freefrag->ff_jdep = (struct worklist *) 5971 newjfreefrag(freefrag, ip, blkno, size, lbn); 5972 } else { 5973 freefrag->ff_state |= DEPCOMPLETE; 5974 freefrag->ff_jdep = NULL; 5975 } 5976 5977 return (freefrag); 5978 } 5979 5980 /* 5981 * This workitem de-allocates fragments that were replaced during 5982 * file block allocation. 5983 */ 5984 static void 5985 handle_workitem_freefrag(freefrag) 5986 struct freefrag *freefrag; 5987 { 5988 struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp); 5989 struct workhead wkhd; 5990 5991 CTR3(KTR_SUJ, 5992 "handle_workitem_freefrag: ino %d blkno %jd size %ld", 5993 freefrag->ff_inum, freefrag->ff_blkno, freefrag->ff_fragsize); 5994 /* 5995 * It would be illegal to add new completion items to the 5996 * freefrag after it was schedule to be done so it must be 5997 * safe to modify the list head here. 5998 */ 5999 LIST_INIT(&wkhd); 6000 ACQUIRE_LOCK(ump); 6001 LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list); 6002 /* 6003 * If the journal has not been written we must cancel it here. 6004 */ 6005 if (freefrag->ff_jdep) { 6006 if (freefrag->ff_jdep->wk_type != D_JNEWBLK) 6007 panic("handle_workitem_freefrag: Unexpected type %d\n", 6008 freefrag->ff_jdep->wk_type); 6009 cancel_jnewblk(WK_JNEWBLK(freefrag->ff_jdep), &wkhd); 6010 } 6011 FREE_LOCK(ump); 6012 ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno, 6013 freefrag->ff_fragsize, freefrag->ff_inum, freefrag->ff_vtype, 6014 &wkhd, freefrag->ff_key); 6015 ACQUIRE_LOCK(ump); 6016 WORKITEM_FREE(freefrag, D_FREEFRAG); 6017 FREE_LOCK(ump); 6018 } 6019 6020 /* 6021 * Set up a dependency structure for an external attributes data block. 6022 * This routine follows much of the structure of softdep_setup_allocdirect. 6023 * See the description of softdep_setup_allocdirect above for details. 6024 */ 6025 void 6026 softdep_setup_allocext(ip, off, newblkno, oldblkno, newsize, oldsize, bp) 6027 struct inode *ip; 6028 ufs_lbn_t off; 6029 ufs2_daddr_t newblkno; 6030 ufs2_daddr_t oldblkno; 6031 long newsize; 6032 long oldsize; 6033 struct buf *bp; 6034 { 6035 struct allocdirect *adp, *oldadp; 6036 struct allocdirectlst *adphead; 6037 struct freefrag *freefrag; 6038 struct inodedep *inodedep; 6039 struct jnewblk *jnewblk; 6040 struct newblk *newblk; 6041 struct mount *mp; 6042 struct ufsmount *ump; 6043 ufs_lbn_t lbn; 6044 6045 mp = ITOVFS(ip); 6046 ump = VFSTOUFS(mp); 6047 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 6048 ("softdep_setup_allocext called on non-softdep filesystem")); 6049 KASSERT(off < UFS_NXADDR, 6050 ("softdep_setup_allocext: lbn %lld > UFS_NXADDR", (long long)off)); 6051 6052 lbn = bp->b_lblkno; 6053 if (oldblkno && oldblkno != newblkno) 6054 /* 6055 * The usual case is that a smaller fragment that 6056 * was just allocated has been replaced with a bigger 6057 * fragment or a full-size block. If it is marked as 6058 * B_DELWRI, the current contents have not been written 6059 * to disk. It is possible that the block was written 6060 * earlier, but very uncommon. If the block has never 6061 * been written, there is no need to send a BIO_DELETE 6062 * for it when it is freed. The gain from avoiding the 6063 * TRIMs for the common case of unwritten blocks far 6064 * exceeds the cost of the write amplification for the 6065 * uncommon case of failing to send a TRIM for a block 6066 * that had been written. 6067 */ 6068 freefrag = newfreefrag(ip, oldblkno, oldsize, lbn, 6069 (bp->b_flags & B_DELWRI) != 0 ? NOTRIM_KEY : SINGLETON_KEY); 6070 else 6071 freefrag = NULL; 6072 6073 ACQUIRE_LOCK(ump); 6074 if (newblk_lookup(mp, newblkno, 0, &newblk) == 0) 6075 panic("softdep_setup_allocext: lost block"); 6076 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 6077 ("softdep_setup_allocext: newblk already initialized")); 6078 /* 6079 * Convert the newblk to an allocdirect. 6080 */ 6081 WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT); 6082 adp = (struct allocdirect *)newblk; 6083 newblk->nb_freefrag = freefrag; 6084 adp->ad_offset = off; 6085 adp->ad_oldblkno = oldblkno; 6086 adp->ad_newsize = newsize; 6087 adp->ad_oldsize = oldsize; 6088 adp->ad_state |= EXTDATA; 6089 6090 /* 6091 * Finish initializing the journal. 6092 */ 6093 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 6094 jnewblk->jn_ino = ip->i_number; 6095 jnewblk->jn_lbn = lbn; 6096 add_to_journal(&jnewblk->jn_list); 6097 } 6098 if (freefrag && freefrag->ff_jdep != NULL && 6099 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 6100 add_to_journal(freefrag->ff_jdep); 6101 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 6102 adp->ad_inodedep = inodedep; 6103 6104 WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list); 6105 /* 6106 * The list of allocdirects must be kept in sorted and ascending 6107 * order so that the rollback routines can quickly determine the 6108 * first uncommitted block (the size of the file stored on disk 6109 * ends at the end of the lowest committed fragment, or if there 6110 * are no fragments, at the end of the highest committed block). 6111 * Since files generally grow, the typical case is that the new 6112 * block is to be added at the end of the list. We speed this 6113 * special case by checking against the last allocdirect in the 6114 * list before laboriously traversing the list looking for the 6115 * insertion point. 6116 */ 6117 adphead = &inodedep->id_newextupdt; 6118 oldadp = TAILQ_LAST(adphead, allocdirectlst); 6119 if (oldadp == NULL || oldadp->ad_offset <= off) { 6120 /* insert at end of list */ 6121 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 6122 if (oldadp != NULL && oldadp->ad_offset == off) 6123 allocdirect_merge(adphead, adp, oldadp); 6124 FREE_LOCK(ump); 6125 return; 6126 } 6127 TAILQ_FOREACH(oldadp, adphead, ad_next) { 6128 if (oldadp->ad_offset >= off) 6129 break; 6130 } 6131 if (oldadp == NULL) 6132 panic("softdep_setup_allocext: lost entry"); 6133 /* insert in middle of list */ 6134 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 6135 if (oldadp->ad_offset == off) 6136 allocdirect_merge(adphead, adp, oldadp); 6137 FREE_LOCK(ump); 6138 } 6139 6140 /* 6141 * Indirect block allocation dependencies. 6142 * 6143 * The same dependencies that exist for a direct block also exist when 6144 * a new block is allocated and pointed to by an entry in a block of 6145 * indirect pointers. The undo/redo states described above are also 6146 * used here. Because an indirect block contains many pointers that 6147 * may have dependencies, a second copy of the entire in-memory indirect 6148 * block is kept. The buffer cache copy is always completely up-to-date. 6149 * The second copy, which is used only as a source for disk writes, 6150 * contains only the safe pointers (i.e., those that have no remaining 6151 * update dependencies). The second copy is freed when all pointers 6152 * are safe. The cache is not allowed to replace indirect blocks with 6153 * pending update dependencies. If a buffer containing an indirect 6154 * block with dependencies is written, these routines will mark it 6155 * dirty again. It can only be successfully written once all the 6156 * dependencies are removed. The ffs_fsync routine in conjunction with 6157 * softdep_sync_metadata work together to get all the dependencies 6158 * removed so that a file can be successfully written to disk. Three 6159 * procedures are used when setting up indirect block pointer 6160 * dependencies. The division is necessary because of the organization 6161 * of the "balloc" routine and because of the distinction between file 6162 * pages and file metadata blocks. 6163 */ 6164 6165 /* 6166 * Allocate a new allocindir structure. 6167 */ 6168 static struct allocindir * 6169 newallocindir(ip, ptrno, newblkno, oldblkno, lbn) 6170 struct inode *ip; /* inode for file being extended */ 6171 int ptrno; /* offset of pointer in indirect block */ 6172 ufs2_daddr_t newblkno; /* disk block number being added */ 6173 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 6174 ufs_lbn_t lbn; 6175 { 6176 struct newblk *newblk; 6177 struct allocindir *aip; 6178 struct freefrag *freefrag; 6179 struct jnewblk *jnewblk; 6180 6181 if (oldblkno) 6182 freefrag = newfreefrag(ip, oldblkno, ITOFS(ip)->fs_bsize, lbn, 6183 SINGLETON_KEY); 6184 else 6185 freefrag = NULL; 6186 ACQUIRE_LOCK(ITOUMP(ip)); 6187 if (newblk_lookup(ITOVFS(ip), newblkno, 0, &newblk) == 0) 6188 panic("new_allocindir: lost block"); 6189 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 6190 ("newallocindir: newblk already initialized")); 6191 WORKITEM_REASSIGN(newblk, D_ALLOCINDIR); 6192 newblk->nb_freefrag = freefrag; 6193 aip = (struct allocindir *)newblk; 6194 aip->ai_offset = ptrno; 6195 aip->ai_oldblkno = oldblkno; 6196 aip->ai_lbn = lbn; 6197 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 6198 jnewblk->jn_ino = ip->i_number; 6199 jnewblk->jn_lbn = lbn; 6200 add_to_journal(&jnewblk->jn_list); 6201 } 6202 if (freefrag && freefrag->ff_jdep != NULL && 6203 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 6204 add_to_journal(freefrag->ff_jdep); 6205 return (aip); 6206 } 6207 6208 /* 6209 * Called just before setting an indirect block pointer 6210 * to a newly allocated file page. 6211 */ 6212 void 6213 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 6214 struct inode *ip; /* inode for file being extended */ 6215 ufs_lbn_t lbn; /* allocated block number within file */ 6216 struct buf *bp; /* buffer with indirect blk referencing page */ 6217 int ptrno; /* offset of pointer in indirect block */ 6218 ufs2_daddr_t newblkno; /* disk block number being added */ 6219 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 6220 struct buf *nbp; /* buffer holding allocated page */ 6221 { 6222 struct inodedep *inodedep; 6223 struct freefrag *freefrag; 6224 struct allocindir *aip; 6225 struct pagedep *pagedep; 6226 struct mount *mp; 6227 struct ufsmount *ump; 6228 6229 mp = ITOVFS(ip); 6230 ump = VFSTOUFS(mp); 6231 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 6232 ("softdep_setup_allocindir_page called on non-softdep filesystem")); 6233 KASSERT(lbn == nbp->b_lblkno, 6234 ("softdep_setup_allocindir_page: lbn %jd != lblkno %jd", 6235 lbn, bp->b_lblkno)); 6236 CTR4(KTR_SUJ, 6237 "softdep_setup_allocindir_page: ino %d blkno %jd oldblkno %jd " 6238 "lbn %jd", ip->i_number, newblkno, oldblkno, lbn); 6239 ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page"); 6240 aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn); 6241 (void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 6242 /* 6243 * If we are allocating a directory page, then we must 6244 * allocate an associated pagedep to track additions and 6245 * deletions. 6246 */ 6247 if ((ip->i_mode & IFMT) == IFDIR) 6248 pagedep_lookup(mp, nbp, ip->i_number, lbn, DEPALLOC, &pagedep); 6249 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list); 6250 freefrag = setup_allocindir_phase2(bp, ip, inodedep, aip, lbn); 6251 FREE_LOCK(ump); 6252 if (freefrag) 6253 handle_workitem_freefrag(freefrag); 6254 } 6255 6256 /* 6257 * Called just before setting an indirect block pointer to a 6258 * newly allocated indirect block. 6259 */ 6260 void 6261 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 6262 struct buf *nbp; /* newly allocated indirect block */ 6263 struct inode *ip; /* inode for file being extended */ 6264 struct buf *bp; /* indirect block referencing allocated block */ 6265 int ptrno; /* offset of pointer in indirect block */ 6266 ufs2_daddr_t newblkno; /* disk block number being added */ 6267 { 6268 struct inodedep *inodedep; 6269 struct allocindir *aip; 6270 struct ufsmount *ump; 6271 ufs_lbn_t lbn; 6272 6273 ump = ITOUMP(ip); 6274 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 6275 ("softdep_setup_allocindir_meta called on non-softdep filesystem")); 6276 CTR3(KTR_SUJ, 6277 "softdep_setup_allocindir_meta: ino %d blkno %jd ptrno %d", 6278 ip->i_number, newblkno, ptrno); 6279 lbn = nbp->b_lblkno; 6280 ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta"); 6281 aip = newallocindir(ip, ptrno, newblkno, 0, lbn); 6282 inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep); 6283 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list); 6284 if (setup_allocindir_phase2(bp, ip, inodedep, aip, lbn)) 6285 panic("softdep_setup_allocindir_meta: Block already existed"); 6286 FREE_LOCK(ump); 6287 } 6288 6289 static void 6290 indirdep_complete(indirdep) 6291 struct indirdep *indirdep; 6292 { 6293 struct allocindir *aip; 6294 6295 LIST_REMOVE(indirdep, ir_next); 6296 indirdep->ir_state |= DEPCOMPLETE; 6297 6298 while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) { 6299 LIST_REMOVE(aip, ai_next); 6300 free_newblk(&aip->ai_block); 6301 } 6302 /* 6303 * If this indirdep is not attached to a buf it was simply waiting 6304 * on completion to clear completehd. free_indirdep() asserts 6305 * that nothing is dangling. 6306 */ 6307 if ((indirdep->ir_state & ONWORKLIST) == 0) 6308 free_indirdep(indirdep); 6309 } 6310 6311 static struct indirdep * 6312 indirdep_lookup(mp, ip, bp) 6313 struct mount *mp; 6314 struct inode *ip; 6315 struct buf *bp; 6316 { 6317 struct indirdep *indirdep, *newindirdep; 6318 struct newblk *newblk; 6319 struct ufsmount *ump; 6320 struct worklist *wk; 6321 struct fs *fs; 6322 ufs2_daddr_t blkno; 6323 6324 ump = VFSTOUFS(mp); 6325 LOCK_OWNED(ump); 6326 indirdep = NULL; 6327 newindirdep = NULL; 6328 fs = ump->um_fs; 6329 for (;;) { 6330 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 6331 if (wk->wk_type != D_INDIRDEP) 6332 continue; 6333 indirdep = WK_INDIRDEP(wk); 6334 break; 6335 } 6336 /* Found on the buffer worklist, no new structure to free. */ 6337 if (indirdep != NULL && newindirdep == NULL) 6338 return (indirdep); 6339 if (indirdep != NULL && newindirdep != NULL) 6340 panic("indirdep_lookup: simultaneous create"); 6341 /* None found on the buffer and a new structure is ready. */ 6342 if (indirdep == NULL && newindirdep != NULL) 6343 break; 6344 /* None found and no new structure available. */ 6345 FREE_LOCK(ump); 6346 newindirdep = malloc(sizeof(struct indirdep), 6347 M_INDIRDEP, M_SOFTDEP_FLAGS); 6348 workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp); 6349 newindirdep->ir_state = ATTACHED; 6350 if (I_IS_UFS1(ip)) 6351 newindirdep->ir_state |= UFS1FMT; 6352 TAILQ_INIT(&newindirdep->ir_trunc); 6353 newindirdep->ir_saveddata = NULL; 6354 LIST_INIT(&newindirdep->ir_deplisthd); 6355 LIST_INIT(&newindirdep->ir_donehd); 6356 LIST_INIT(&newindirdep->ir_writehd); 6357 LIST_INIT(&newindirdep->ir_completehd); 6358 if (bp->b_blkno == bp->b_lblkno) { 6359 ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp, 6360 NULL, NULL); 6361 bp->b_blkno = blkno; 6362 } 6363 newindirdep->ir_freeblks = NULL; 6364 newindirdep->ir_savebp = 6365 getblk(ump->um_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0); 6366 newindirdep->ir_bp = bp; 6367 BUF_KERNPROC(newindirdep->ir_savebp); 6368 bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount); 6369 ACQUIRE_LOCK(ump); 6370 } 6371 indirdep = newindirdep; 6372 WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list); 6373 /* 6374 * If the block is not yet allocated we don't set DEPCOMPLETE so 6375 * that we don't free dependencies until the pointers are valid. 6376 * This could search b_dep for D_ALLOCDIRECT/D_ALLOCINDIR rather 6377 * than using the hash. 6378 */ 6379 if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)) 6380 LIST_INSERT_HEAD(&newblk->nb_indirdeps, indirdep, ir_next); 6381 else 6382 indirdep->ir_state |= DEPCOMPLETE; 6383 return (indirdep); 6384 } 6385 6386 /* 6387 * Called to finish the allocation of the "aip" allocated 6388 * by one of the two routines above. 6389 */ 6390 static struct freefrag * 6391 setup_allocindir_phase2(bp, ip, inodedep, aip, lbn) 6392 struct buf *bp; /* in-memory copy of the indirect block */ 6393 struct inode *ip; /* inode for file being extended */ 6394 struct inodedep *inodedep; /* Inodedep for ip */ 6395 struct allocindir *aip; /* allocindir allocated by the above routines */ 6396 ufs_lbn_t lbn; /* Logical block number for this block. */ 6397 { 6398 struct fs *fs; 6399 struct indirdep *indirdep; 6400 struct allocindir *oldaip; 6401 struct freefrag *freefrag; 6402 struct mount *mp; 6403 struct ufsmount *ump; 6404 6405 mp = ITOVFS(ip); 6406 ump = VFSTOUFS(mp); 6407 LOCK_OWNED(ump); 6408 fs = ump->um_fs; 6409 if (bp->b_lblkno >= 0) 6410 panic("setup_allocindir_phase2: not indir blk"); 6411 KASSERT(aip->ai_offset >= 0 && aip->ai_offset < NINDIR(fs), 6412 ("setup_allocindir_phase2: Bad offset %d", aip->ai_offset)); 6413 indirdep = indirdep_lookup(mp, ip, bp); 6414 KASSERT(indirdep->ir_savebp != NULL, 6415 ("setup_allocindir_phase2 NULL ir_savebp")); 6416 aip->ai_indirdep = indirdep; 6417 /* 6418 * Check for an unwritten dependency for this indirect offset. If 6419 * there is, merge the old dependency into the new one. This happens 6420 * as a result of reallocblk only. 6421 */ 6422 freefrag = NULL; 6423 if (aip->ai_oldblkno != 0) { 6424 LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) { 6425 if (oldaip->ai_offset == aip->ai_offset) { 6426 freefrag = allocindir_merge(aip, oldaip); 6427 goto done; 6428 } 6429 } 6430 LIST_FOREACH(oldaip, &indirdep->ir_donehd, ai_next) { 6431 if (oldaip->ai_offset == aip->ai_offset) { 6432 freefrag = allocindir_merge(aip, oldaip); 6433 goto done; 6434 } 6435 } 6436 } 6437 done: 6438 LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next); 6439 return (freefrag); 6440 } 6441 6442 /* 6443 * Merge two allocindirs which refer to the same block. Move newblock 6444 * dependencies and setup the freefrags appropriately. 6445 */ 6446 static struct freefrag * 6447 allocindir_merge(aip, oldaip) 6448 struct allocindir *aip; 6449 struct allocindir *oldaip; 6450 { 6451 struct freefrag *freefrag; 6452 struct worklist *wk; 6453 6454 if (oldaip->ai_newblkno != aip->ai_oldblkno) 6455 panic("allocindir_merge: blkno"); 6456 aip->ai_oldblkno = oldaip->ai_oldblkno; 6457 freefrag = aip->ai_freefrag; 6458 aip->ai_freefrag = oldaip->ai_freefrag; 6459 oldaip->ai_freefrag = NULL; 6460 KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag")); 6461 /* 6462 * If we are tracking a new directory-block allocation, 6463 * move it from the old allocindir to the new allocindir. 6464 */ 6465 if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) { 6466 WORKLIST_REMOVE(wk); 6467 if (!LIST_EMPTY(&oldaip->ai_newdirblk)) 6468 panic("allocindir_merge: extra newdirblk"); 6469 WORKLIST_INSERT(&aip->ai_newdirblk, wk); 6470 } 6471 /* 6472 * We can skip journaling for this freefrag and just complete 6473 * any pending journal work for the allocindir that is being 6474 * removed after the freefrag completes. 6475 */ 6476 if (freefrag->ff_jdep) 6477 cancel_jfreefrag(WK_JFREEFRAG(freefrag->ff_jdep)); 6478 LIST_REMOVE(oldaip, ai_next); 6479 freefrag->ff_jdep = (struct worklist *)cancel_newblk(&oldaip->ai_block, 6480 &freefrag->ff_list, &freefrag->ff_jwork); 6481 free_newblk(&oldaip->ai_block); 6482 6483 return (freefrag); 6484 } 6485 6486 static inline void 6487 setup_freedirect(freeblks, ip, i, needj) 6488 struct freeblks *freeblks; 6489 struct inode *ip; 6490 int i; 6491 int needj; 6492 { 6493 struct ufsmount *ump; 6494 ufs2_daddr_t blkno; 6495 int frags; 6496 6497 blkno = DIP(ip, i_db[i]); 6498 if (blkno == 0) 6499 return; 6500 DIP_SET(ip, i_db[i], 0); 6501 ump = ITOUMP(ip); 6502 frags = sblksize(ump->um_fs, ip->i_size, i); 6503 frags = numfrags(ump->um_fs, frags); 6504 newfreework(ump, freeblks, NULL, i, blkno, frags, 0, needj); 6505 } 6506 6507 static inline void 6508 setup_freeext(freeblks, ip, i, needj) 6509 struct freeblks *freeblks; 6510 struct inode *ip; 6511 int i; 6512 int needj; 6513 { 6514 struct ufsmount *ump; 6515 ufs2_daddr_t blkno; 6516 int frags; 6517 6518 blkno = ip->i_din2->di_extb[i]; 6519 if (blkno == 0) 6520 return; 6521 ip->i_din2->di_extb[i] = 0; 6522 ump = ITOUMP(ip); 6523 frags = sblksize(ump->um_fs, ip->i_din2->di_extsize, i); 6524 frags = numfrags(ump->um_fs, frags); 6525 newfreework(ump, freeblks, NULL, -1 - i, blkno, frags, 0, needj); 6526 } 6527 6528 static inline void 6529 setup_freeindir(freeblks, ip, i, lbn, needj) 6530 struct freeblks *freeblks; 6531 struct inode *ip; 6532 int i; 6533 ufs_lbn_t lbn; 6534 int needj; 6535 { 6536 struct ufsmount *ump; 6537 ufs2_daddr_t blkno; 6538 6539 blkno = DIP(ip, i_ib[i]); 6540 if (blkno == 0) 6541 return; 6542 DIP_SET(ip, i_ib[i], 0); 6543 ump = ITOUMP(ip); 6544 newfreework(ump, freeblks, NULL, lbn, blkno, ump->um_fs->fs_frag, 6545 0, needj); 6546 } 6547 6548 static inline struct freeblks * 6549 newfreeblks(mp, ip) 6550 struct mount *mp; 6551 struct inode *ip; 6552 { 6553 struct freeblks *freeblks; 6554 6555 freeblks = malloc(sizeof(struct freeblks), 6556 M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO); 6557 workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp); 6558 LIST_INIT(&freeblks->fb_jblkdephd); 6559 LIST_INIT(&freeblks->fb_jwork); 6560 freeblks->fb_ref = 0; 6561 freeblks->fb_cgwait = 0; 6562 freeblks->fb_state = ATTACHED; 6563 freeblks->fb_uid = ip->i_uid; 6564 freeblks->fb_inum = ip->i_number; 6565 freeblks->fb_vtype = ITOV(ip)->v_type; 6566 freeblks->fb_modrev = DIP(ip, i_modrev); 6567 freeblks->fb_devvp = ITODEVVP(ip); 6568 freeblks->fb_chkcnt = 0; 6569 freeblks->fb_len = 0; 6570 6571 return (freeblks); 6572 } 6573 6574 static void 6575 trunc_indirdep(indirdep, freeblks, bp, off) 6576 struct indirdep *indirdep; 6577 struct freeblks *freeblks; 6578 struct buf *bp; 6579 int off; 6580 { 6581 struct allocindir *aip, *aipn; 6582 6583 /* 6584 * The first set of allocindirs won't be in savedbp. 6585 */ 6586 LIST_FOREACH_SAFE(aip, &indirdep->ir_deplisthd, ai_next, aipn) 6587 if (aip->ai_offset > off) 6588 cancel_allocindir(aip, bp, freeblks, 1); 6589 LIST_FOREACH_SAFE(aip, &indirdep->ir_donehd, ai_next, aipn) 6590 if (aip->ai_offset > off) 6591 cancel_allocindir(aip, bp, freeblks, 1); 6592 /* 6593 * These will exist in savedbp. 6594 */ 6595 LIST_FOREACH_SAFE(aip, &indirdep->ir_writehd, ai_next, aipn) 6596 if (aip->ai_offset > off) 6597 cancel_allocindir(aip, NULL, freeblks, 0); 6598 LIST_FOREACH_SAFE(aip, &indirdep->ir_completehd, ai_next, aipn) 6599 if (aip->ai_offset > off) 6600 cancel_allocindir(aip, NULL, freeblks, 0); 6601 } 6602 6603 /* 6604 * Follow the chain of indirects down to lastlbn creating a freework 6605 * structure for each. This will be used to start indir_trunc() at 6606 * the right offset and create the journal records for the parrtial 6607 * truncation. A second step will handle the truncated dependencies. 6608 */ 6609 static int 6610 setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno) 6611 struct freeblks *freeblks; 6612 struct inode *ip; 6613 ufs_lbn_t lbn; 6614 ufs_lbn_t lastlbn; 6615 ufs2_daddr_t blkno; 6616 { 6617 struct indirdep *indirdep; 6618 struct indirdep *indirn; 6619 struct freework *freework; 6620 struct newblk *newblk; 6621 struct mount *mp; 6622 struct ufsmount *ump; 6623 struct buf *bp; 6624 uint8_t *start; 6625 uint8_t *end; 6626 ufs_lbn_t lbnadd; 6627 int level; 6628 int error; 6629 int off; 6630 6631 freework = NULL; 6632 if (blkno == 0) 6633 return (0); 6634 mp = freeblks->fb_list.wk_mp; 6635 ump = VFSTOUFS(mp); 6636 /* 6637 * Here, calls to VOP_BMAP() will fail. However, we already have 6638 * the on-disk address, so we just pass it to bread() instead of 6639 * having bread() attempt to calculate it using VOP_BMAP(). 6640 */ 6641 error = ffs_breadz(ump, ITOV(ip), lbn, blkptrtodb(ump, blkno), 6642 (int)mp->mnt_stat.f_iosize, NULL, NULL, 0, NOCRED, 0, NULL, &bp); 6643 if (error) 6644 return (error); 6645 level = lbn_level(lbn); 6646 lbnadd = lbn_offset(ump->um_fs, level); 6647 /* 6648 * Compute the offset of the last block we want to keep. Store 6649 * in the freework the first block we want to completely free. 6650 */ 6651 off = (lastlbn - -(lbn + level)) / lbnadd; 6652 if (off + 1 == NINDIR(ump->um_fs)) 6653 goto nowork; 6654 freework = newfreework(ump, freeblks, NULL, lbn, blkno, 0, off + 1, 0); 6655 /* 6656 * Link the freework into the indirdep. This will prevent any new 6657 * allocations from proceeding until we are finished with the 6658 * truncate and the block is written. 6659 */ 6660 ACQUIRE_LOCK(ump); 6661 indirdep = indirdep_lookup(mp, ip, bp); 6662 if (indirdep->ir_freeblks) 6663 panic("setup_trunc_indir: indirdep already truncated."); 6664 TAILQ_INSERT_TAIL(&indirdep->ir_trunc, freework, fw_next); 6665 freework->fw_indir = indirdep; 6666 /* 6667 * Cancel any allocindirs that will not make it to disk. 6668 * We have to do this for all copies of the indirdep that 6669 * live on this newblk. 6670 */ 6671 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 6672 if (newblk_lookup(mp, dbtofsb(ump->um_fs, bp->b_blkno), 0, 6673 &newblk) == 0) 6674 panic("setup_trunc_indir: lost block"); 6675 LIST_FOREACH(indirn, &newblk->nb_indirdeps, ir_next) 6676 trunc_indirdep(indirn, freeblks, bp, off); 6677 } else 6678 trunc_indirdep(indirdep, freeblks, bp, off); 6679 FREE_LOCK(ump); 6680 /* 6681 * Creation is protected by the buf lock. The saveddata is only 6682 * needed if a full truncation follows a partial truncation but it 6683 * is difficult to allocate in that case so we fetch it anyway. 6684 */ 6685 if (indirdep->ir_saveddata == NULL) 6686 indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP, 6687 M_SOFTDEP_FLAGS); 6688 nowork: 6689 /* Fetch the blkno of the child and the zero start offset. */ 6690 if (I_IS_UFS1(ip)) { 6691 blkno = ((ufs1_daddr_t *)bp->b_data)[off]; 6692 start = (uint8_t *)&((ufs1_daddr_t *)bp->b_data)[off+1]; 6693 } else { 6694 blkno = ((ufs2_daddr_t *)bp->b_data)[off]; 6695 start = (uint8_t *)&((ufs2_daddr_t *)bp->b_data)[off+1]; 6696 } 6697 if (freework) { 6698 /* Zero the truncated pointers. */ 6699 end = bp->b_data + bp->b_bcount; 6700 bzero(start, end - start); 6701 bdwrite(bp); 6702 } else 6703 bqrelse(bp); 6704 if (level == 0) 6705 return (0); 6706 lbn++; /* adjust level */ 6707 lbn -= (off * lbnadd); 6708 return setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno); 6709 } 6710 6711 /* 6712 * Complete the partial truncation of an indirect block setup by 6713 * setup_trunc_indir(). This zeros the truncated pointers in the saved 6714 * copy and writes them to disk before the freeblks is allowed to complete. 6715 */ 6716 static void 6717 complete_trunc_indir(freework) 6718 struct freework *freework; 6719 { 6720 struct freework *fwn; 6721 struct indirdep *indirdep; 6722 struct ufsmount *ump; 6723 struct buf *bp; 6724 uintptr_t start; 6725 int count; 6726 6727 ump = VFSTOUFS(freework->fw_list.wk_mp); 6728 LOCK_OWNED(ump); 6729 indirdep = freework->fw_indir; 6730 for (;;) { 6731 bp = indirdep->ir_bp; 6732 /* See if the block was discarded. */ 6733 if (bp == NULL) 6734 break; 6735 /* Inline part of getdirtybuf(). We dont want bremfree. */ 6736 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0) 6737 break; 6738 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 6739 LOCK_PTR(ump)) == 0) 6740 BUF_UNLOCK(bp); 6741 ACQUIRE_LOCK(ump); 6742 } 6743 freework->fw_state |= DEPCOMPLETE; 6744 TAILQ_REMOVE(&indirdep->ir_trunc, freework, fw_next); 6745 /* 6746 * Zero the pointers in the saved copy. 6747 */ 6748 if (indirdep->ir_state & UFS1FMT) 6749 start = sizeof(ufs1_daddr_t); 6750 else 6751 start = sizeof(ufs2_daddr_t); 6752 start *= freework->fw_start; 6753 count = indirdep->ir_savebp->b_bcount - start; 6754 start += (uintptr_t)indirdep->ir_savebp->b_data; 6755 bzero((char *)start, count); 6756 /* 6757 * We need to start the next truncation in the list if it has not 6758 * been started yet. 6759 */ 6760 fwn = TAILQ_FIRST(&indirdep->ir_trunc); 6761 if (fwn != NULL) { 6762 if (fwn->fw_freeblks == indirdep->ir_freeblks) 6763 TAILQ_REMOVE(&indirdep->ir_trunc, fwn, fw_next); 6764 if ((fwn->fw_state & ONWORKLIST) == 0) 6765 freework_enqueue(fwn); 6766 } 6767 /* 6768 * If bp is NULL the block was fully truncated, restore 6769 * the saved block list otherwise free it if it is no 6770 * longer needed. 6771 */ 6772 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 6773 if (bp == NULL) 6774 bcopy(indirdep->ir_saveddata, 6775 indirdep->ir_savebp->b_data, 6776 indirdep->ir_savebp->b_bcount); 6777 free(indirdep->ir_saveddata, M_INDIRDEP); 6778 indirdep->ir_saveddata = NULL; 6779 } 6780 /* 6781 * When bp is NULL there is a full truncation pending. We 6782 * must wait for this full truncation to be journaled before 6783 * we can release this freework because the disk pointers will 6784 * never be written as zero. 6785 */ 6786 if (bp == NULL) { 6787 if (LIST_EMPTY(&indirdep->ir_freeblks->fb_jblkdephd)) 6788 handle_written_freework(freework); 6789 else 6790 WORKLIST_INSERT(&indirdep->ir_freeblks->fb_freeworkhd, 6791 &freework->fw_list); 6792 if (fwn == NULL) { 6793 freework->fw_indir = (void *)0x0000deadbeef0000; 6794 bp = indirdep->ir_savebp; 6795 indirdep->ir_savebp = NULL; 6796 free_indirdep(indirdep); 6797 FREE_LOCK(ump); 6798 brelse(bp); 6799 ACQUIRE_LOCK(ump); 6800 } 6801 } else { 6802 /* Complete when the real copy is written. */ 6803 WORKLIST_INSERT(&bp->b_dep, &freework->fw_list); 6804 BUF_UNLOCK(bp); 6805 } 6806 } 6807 6808 /* 6809 * Calculate the number of blocks we are going to release where datablocks 6810 * is the current total and length is the new file size. 6811 */ 6812 static ufs2_daddr_t 6813 blkcount(fs, datablocks, length) 6814 struct fs *fs; 6815 ufs2_daddr_t datablocks; 6816 off_t length; 6817 { 6818 off_t totblks, numblks; 6819 6820 totblks = 0; 6821 numblks = howmany(length, fs->fs_bsize); 6822 if (numblks <= UFS_NDADDR) { 6823 totblks = howmany(length, fs->fs_fsize); 6824 goto out; 6825 } 6826 totblks = blkstofrags(fs, numblks); 6827 numblks -= UFS_NDADDR; 6828 /* 6829 * Count all single, then double, then triple indirects required. 6830 * Subtracting one indirects worth of blocks for each pass 6831 * acknowledges one of each pointed to by the inode. 6832 */ 6833 for (;;) { 6834 totblks += blkstofrags(fs, howmany(numblks, NINDIR(fs))); 6835 numblks -= NINDIR(fs); 6836 if (numblks <= 0) 6837 break; 6838 numblks = howmany(numblks, NINDIR(fs)); 6839 } 6840 out: 6841 totblks = fsbtodb(fs, totblks); 6842 /* 6843 * Handle sparse files. We can't reclaim more blocks than the inode 6844 * references. We will correct it later in handle_complete_freeblks() 6845 * when we know the real count. 6846 */ 6847 if (totblks > datablocks) 6848 return (0); 6849 return (datablocks - totblks); 6850 } 6851 6852 /* 6853 * Handle freeblocks for journaled softupdate filesystems. 6854 * 6855 * Contrary to normal softupdates, we must preserve the block pointers in 6856 * indirects until their subordinates are free. This is to avoid journaling 6857 * every block that is freed which may consume more space than the journal 6858 * itself. The recovery program will see the free block journals at the 6859 * base of the truncated area and traverse them to reclaim space. The 6860 * pointers in the inode may be cleared immediately after the journal 6861 * records are written because each direct and indirect pointer in the 6862 * inode is recorded in a journal. This permits full truncation to proceed 6863 * asynchronously. The write order is journal -> inode -> cgs -> indirects. 6864 * 6865 * The algorithm is as follows: 6866 * 1) Traverse the in-memory state and create journal entries to release 6867 * the relevant blocks and full indirect trees. 6868 * 2) Traverse the indirect block chain adding partial truncation freework 6869 * records to indirects in the path to lastlbn. The freework will 6870 * prevent new allocation dependencies from being satisfied in this 6871 * indirect until the truncation completes. 6872 * 3) Read and lock the inode block, performing an update with the new size 6873 * and pointers. This prevents truncated data from becoming valid on 6874 * disk through step 4. 6875 * 4) Reap unsatisfied dependencies that are beyond the truncated area, 6876 * eliminate journal work for those records that do not require it. 6877 * 5) Schedule the journal records to be written followed by the inode block. 6878 * 6) Allocate any necessary frags for the end of file. 6879 * 7) Zero any partially truncated blocks. 6880 * 6881 * From this truncation proceeds asynchronously using the freework and 6882 * indir_trunc machinery. The file will not be extended again into a 6883 * partially truncated indirect block until all work is completed but 6884 * the normal dependency mechanism ensures that it is rolled back/forward 6885 * as appropriate. Further truncation may occur without delay and is 6886 * serialized in indir_trunc(). 6887 */ 6888 void 6889 softdep_journal_freeblocks(ip, cred, length, flags) 6890 struct inode *ip; /* The inode whose length is to be reduced */ 6891 struct ucred *cred; 6892 off_t length; /* The new length for the file */ 6893 int flags; /* IO_EXT and/or IO_NORMAL */ 6894 { 6895 struct freeblks *freeblks, *fbn; 6896 struct worklist *wk, *wkn; 6897 struct inodedep *inodedep; 6898 struct jblkdep *jblkdep; 6899 struct allocdirect *adp, *adpn; 6900 struct ufsmount *ump; 6901 struct fs *fs; 6902 struct buf *bp; 6903 struct vnode *vp; 6904 struct mount *mp; 6905 daddr_t dbn; 6906 ufs2_daddr_t extblocks, datablocks; 6907 ufs_lbn_t tmpval, lbn, lastlbn; 6908 int frags, lastoff, iboff, allocblock, needj, error, i; 6909 6910 ump = ITOUMP(ip); 6911 mp = UFSTOVFS(ump); 6912 fs = ump->um_fs; 6913 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 6914 ("softdep_journal_freeblocks called on non-softdep filesystem")); 6915 vp = ITOV(ip); 6916 needj = 1; 6917 iboff = -1; 6918 allocblock = 0; 6919 extblocks = 0; 6920 datablocks = 0; 6921 frags = 0; 6922 freeblks = newfreeblks(mp, ip); 6923 ACQUIRE_LOCK(ump); 6924 /* 6925 * If we're truncating a removed file that will never be written 6926 * we don't need to journal the block frees. The canceled journals 6927 * for the allocations will suffice. 6928 */ 6929 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 6930 if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED && 6931 length == 0) 6932 needj = 0; 6933 CTR3(KTR_SUJ, "softdep_journal_freeblks: ip %d length %ld needj %d", 6934 ip->i_number, length, needj); 6935 FREE_LOCK(ump); 6936 /* 6937 * Calculate the lbn that we are truncating to. This results in -1 6938 * if we're truncating the 0 bytes. So it is the last lbn we want 6939 * to keep, not the first lbn we want to truncate. 6940 */ 6941 lastlbn = lblkno(fs, length + fs->fs_bsize - 1) - 1; 6942 lastoff = blkoff(fs, length); 6943 /* 6944 * Compute frags we are keeping in lastlbn. 0 means all. 6945 */ 6946 if (lastlbn >= 0 && lastlbn < UFS_NDADDR) { 6947 frags = fragroundup(fs, lastoff); 6948 /* adp offset of last valid allocdirect. */ 6949 iboff = lastlbn; 6950 } else if (lastlbn > 0) 6951 iboff = UFS_NDADDR; 6952 if (fs->fs_magic == FS_UFS2_MAGIC) 6953 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 6954 /* 6955 * Handle normal data blocks and indirects. This section saves 6956 * values used after the inode update to complete frag and indirect 6957 * truncation. 6958 */ 6959 if ((flags & IO_NORMAL) != 0) { 6960 /* 6961 * Handle truncation of whole direct and indirect blocks. 6962 */ 6963 for (i = iboff + 1; i < UFS_NDADDR; i++) 6964 setup_freedirect(freeblks, ip, i, needj); 6965 for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR; 6966 i < UFS_NIADDR; 6967 i++, lbn += tmpval, tmpval *= NINDIR(fs)) { 6968 /* Release a whole indirect tree. */ 6969 if (lbn > lastlbn) { 6970 setup_freeindir(freeblks, ip, i, -lbn -i, 6971 needj); 6972 continue; 6973 } 6974 iboff = i + UFS_NDADDR; 6975 /* 6976 * Traverse partially truncated indirect tree. 6977 */ 6978 if (lbn <= lastlbn && lbn + tmpval - 1 > lastlbn) 6979 setup_trunc_indir(freeblks, ip, -lbn - i, 6980 lastlbn, DIP(ip, i_ib[i])); 6981 } 6982 /* 6983 * Handle partial truncation to a frag boundary. 6984 */ 6985 if (frags) { 6986 ufs2_daddr_t blkno; 6987 long oldfrags; 6988 6989 oldfrags = blksize(fs, ip, lastlbn); 6990 blkno = DIP(ip, i_db[lastlbn]); 6991 if (blkno && oldfrags != frags) { 6992 oldfrags -= frags; 6993 oldfrags = numfrags(fs, oldfrags); 6994 blkno += numfrags(fs, frags); 6995 newfreework(ump, freeblks, NULL, lastlbn, 6996 blkno, oldfrags, 0, needj); 6997 if (needj) 6998 adjust_newfreework(freeblks, 6999 numfrags(fs, frags)); 7000 } else if (blkno == 0) 7001 allocblock = 1; 7002 } 7003 /* 7004 * Add a journal record for partial truncate if we are 7005 * handling indirect blocks. Non-indirects need no extra 7006 * journaling. 7007 */ 7008 if (length != 0 && lastlbn >= UFS_NDADDR) { 7009 UFS_INODE_SET_FLAG(ip, IN_TRUNCATED); 7010 newjtrunc(freeblks, length, 0); 7011 } 7012 ip->i_size = length; 7013 DIP_SET(ip, i_size, ip->i_size); 7014 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE); 7015 datablocks = DIP(ip, i_blocks) - extblocks; 7016 if (length != 0) 7017 datablocks = blkcount(fs, datablocks, length); 7018 freeblks->fb_len = length; 7019 } 7020 if ((flags & IO_EXT) != 0) { 7021 for (i = 0; i < UFS_NXADDR; i++) 7022 setup_freeext(freeblks, ip, i, needj); 7023 ip->i_din2->di_extsize = 0; 7024 datablocks += extblocks; 7025 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE); 7026 } 7027 #ifdef QUOTA 7028 /* Reference the quotas in case the block count is wrong in the end. */ 7029 quotaref(vp, freeblks->fb_quota); 7030 (void) chkdq(ip, -datablocks, NOCRED, FORCE); 7031 #endif 7032 freeblks->fb_chkcnt = -datablocks; 7033 UFS_LOCK(ump); 7034 fs->fs_pendingblocks += datablocks; 7035 UFS_UNLOCK(ump); 7036 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks); 7037 /* 7038 * Handle truncation of incomplete alloc direct dependencies. We 7039 * hold the inode block locked to prevent incomplete dependencies 7040 * from reaching the disk while we are eliminating those that 7041 * have been truncated. This is a partially inlined ffs_update(). 7042 */ 7043 ufs_itimes(vp); 7044 ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED); 7045 dbn = fsbtodb(fs, ino_to_fsba(fs, ip->i_number)); 7046 error = ffs_breadz(ump, ump->um_devvp, dbn, dbn, (int)fs->fs_bsize, 7047 NULL, NULL, 0, cred, 0, NULL, &bp); 7048 if (error) { 7049 softdep_error("softdep_journal_freeblocks", error); 7050 return; 7051 } 7052 if (bp->b_bufsize == fs->fs_bsize) 7053 bp->b_flags |= B_CLUSTEROK; 7054 softdep_update_inodeblock(ip, bp, 0); 7055 if (ump->um_fstype == UFS1) { 7056 *((struct ufs1_dinode *)bp->b_data + 7057 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1; 7058 } else { 7059 ffs_update_dinode_ckhash(fs, ip->i_din2); 7060 *((struct ufs2_dinode *)bp->b_data + 7061 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2; 7062 } 7063 ACQUIRE_LOCK(ump); 7064 (void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 7065 if ((inodedep->id_state & IOSTARTED) != 0) 7066 panic("softdep_setup_freeblocks: inode busy"); 7067 /* 7068 * Add the freeblks structure to the list of operations that 7069 * must await the zero'ed inode being written to disk. If we 7070 * still have a bitmap dependency (needj), then the inode 7071 * has never been written to disk, so we can process the 7072 * freeblks below once we have deleted the dependencies. 7073 */ 7074 if (needj) 7075 WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list); 7076 else 7077 freeblks->fb_state |= COMPLETE; 7078 if ((flags & IO_NORMAL) != 0) { 7079 TAILQ_FOREACH_SAFE(adp, &inodedep->id_inoupdt, ad_next, adpn) { 7080 if (adp->ad_offset > iboff) 7081 cancel_allocdirect(&inodedep->id_inoupdt, adp, 7082 freeblks); 7083 /* 7084 * Truncate the allocdirect. We could eliminate 7085 * or modify journal records as well. 7086 */ 7087 else if (adp->ad_offset == iboff && frags) 7088 adp->ad_newsize = frags; 7089 } 7090 } 7091 if ((flags & IO_EXT) != 0) 7092 while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 7093 cancel_allocdirect(&inodedep->id_extupdt, adp, 7094 freeblks); 7095 /* 7096 * Scan the bufwait list for newblock dependencies that will never 7097 * make it to disk. 7098 */ 7099 LIST_FOREACH_SAFE(wk, &inodedep->id_bufwait, wk_list, wkn) { 7100 if (wk->wk_type != D_ALLOCDIRECT) 7101 continue; 7102 adp = WK_ALLOCDIRECT(wk); 7103 if (((flags & IO_NORMAL) != 0 && (adp->ad_offset > iboff)) || 7104 ((flags & IO_EXT) != 0 && (adp->ad_state & EXTDATA))) { 7105 cancel_jfreeblk(freeblks, adp->ad_newblkno); 7106 cancel_newblk(WK_NEWBLK(wk), NULL, &freeblks->fb_jwork); 7107 WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk); 7108 } 7109 } 7110 /* 7111 * Add journal work. 7112 */ 7113 LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) 7114 add_to_journal(&jblkdep->jb_list); 7115 FREE_LOCK(ump); 7116 bdwrite(bp); 7117 /* 7118 * Truncate dependency structures beyond length. 7119 */ 7120 trunc_dependencies(ip, freeblks, lastlbn, frags, flags); 7121 /* 7122 * This is only set when we need to allocate a fragment because 7123 * none existed at the end of a frag-sized file. It handles only 7124 * allocating a new, zero filled block. 7125 */ 7126 if (allocblock) { 7127 ip->i_size = length - lastoff; 7128 DIP_SET(ip, i_size, ip->i_size); 7129 error = UFS_BALLOC(vp, length - 1, 1, cred, BA_CLRBUF, &bp); 7130 if (error != 0) { 7131 softdep_error("softdep_journal_freeblks", error); 7132 return; 7133 } 7134 ip->i_size = length; 7135 DIP_SET(ip, i_size, length); 7136 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE); 7137 allocbuf(bp, frags); 7138 ffs_update(vp, 0); 7139 bawrite(bp); 7140 } else if (lastoff != 0 && vp->v_type != VDIR) { 7141 int size; 7142 7143 /* 7144 * Zero the end of a truncated frag or block. 7145 */ 7146 size = sblksize(fs, length, lastlbn); 7147 error = bread(vp, lastlbn, size, cred, &bp); 7148 if (error == 0) { 7149 bzero((char *)bp->b_data + lastoff, size - lastoff); 7150 bawrite(bp); 7151 } else if (!ffs_fsfail_cleanup(ump, error)) { 7152 softdep_error("softdep_journal_freeblks", error); 7153 return; 7154 } 7155 } 7156 ACQUIRE_LOCK(ump); 7157 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 7158 TAILQ_INSERT_TAIL(&inodedep->id_freeblklst, freeblks, fb_next); 7159 freeblks->fb_state |= DEPCOMPLETE | ONDEPLIST; 7160 /* 7161 * We zero earlier truncations so they don't erroneously 7162 * update i_blocks. 7163 */ 7164 if (freeblks->fb_len == 0 && (flags & IO_NORMAL) != 0) 7165 TAILQ_FOREACH(fbn, &inodedep->id_freeblklst, fb_next) 7166 fbn->fb_len = 0; 7167 if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE && 7168 LIST_EMPTY(&freeblks->fb_jblkdephd)) 7169 freeblks->fb_state |= INPROGRESS; 7170 else 7171 freeblks = NULL; 7172 FREE_LOCK(ump); 7173 if (freeblks) 7174 handle_workitem_freeblocks(freeblks, 0); 7175 trunc_pages(ip, length, extblocks, flags); 7176 7177 } 7178 7179 /* 7180 * Flush a JOP_SYNC to the journal. 7181 */ 7182 void 7183 softdep_journal_fsync(ip) 7184 struct inode *ip; 7185 { 7186 struct jfsync *jfsync; 7187 struct ufsmount *ump; 7188 7189 ump = ITOUMP(ip); 7190 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 7191 ("softdep_journal_fsync called on non-softdep filesystem")); 7192 if ((ip->i_flag & IN_TRUNCATED) == 0) 7193 return; 7194 ip->i_flag &= ~IN_TRUNCATED; 7195 jfsync = malloc(sizeof(*jfsync), M_JFSYNC, M_SOFTDEP_FLAGS | M_ZERO); 7196 workitem_alloc(&jfsync->jfs_list, D_JFSYNC, UFSTOVFS(ump)); 7197 jfsync->jfs_size = ip->i_size; 7198 jfsync->jfs_ino = ip->i_number; 7199 ACQUIRE_LOCK(ump); 7200 add_to_journal(&jfsync->jfs_list); 7201 jwait(&jfsync->jfs_list, MNT_WAIT); 7202 FREE_LOCK(ump); 7203 } 7204 7205 /* 7206 * Block de-allocation dependencies. 7207 * 7208 * When blocks are de-allocated, the on-disk pointers must be nullified before 7209 * the blocks are made available for use by other files. (The true 7210 * requirement is that old pointers must be nullified before new on-disk 7211 * pointers are set. We chose this slightly more stringent requirement to 7212 * reduce complexity.) Our implementation handles this dependency by updating 7213 * the inode (or indirect block) appropriately but delaying the actual block 7214 * de-allocation (i.e., freemap and free space count manipulation) until 7215 * after the updated versions reach stable storage. After the disk is 7216 * updated, the blocks can be safely de-allocated whenever it is convenient. 7217 * This implementation handles only the common case of reducing a file's 7218 * length to zero. Other cases are handled by the conventional synchronous 7219 * write approach. 7220 * 7221 * The ffs implementation with which we worked double-checks 7222 * the state of the block pointers and file size as it reduces 7223 * a file's length. Some of this code is replicated here in our 7224 * soft updates implementation. The freeblks->fb_chkcnt field is 7225 * used to transfer a part of this information to the procedure 7226 * that eventually de-allocates the blocks. 7227 * 7228 * This routine should be called from the routine that shortens 7229 * a file's length, before the inode's size or block pointers 7230 * are modified. It will save the block pointer information for 7231 * later release and zero the inode so that the calling routine 7232 * can release it. 7233 */ 7234 void 7235 softdep_setup_freeblocks(ip, length, flags) 7236 struct inode *ip; /* The inode whose length is to be reduced */ 7237 off_t length; /* The new length for the file */ 7238 int flags; /* IO_EXT and/or IO_NORMAL */ 7239 { 7240 struct ufs1_dinode *dp1; 7241 struct ufs2_dinode *dp2; 7242 struct freeblks *freeblks; 7243 struct inodedep *inodedep; 7244 struct allocdirect *adp; 7245 struct ufsmount *ump; 7246 struct buf *bp; 7247 struct fs *fs; 7248 ufs2_daddr_t extblocks, datablocks; 7249 struct mount *mp; 7250 int i, delay, error; 7251 ufs_lbn_t tmpval; 7252 ufs_lbn_t lbn; 7253 7254 ump = ITOUMP(ip); 7255 mp = UFSTOVFS(ump); 7256 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 7257 ("softdep_setup_freeblocks called on non-softdep filesystem")); 7258 CTR2(KTR_SUJ, "softdep_setup_freeblks: ip %d length %ld", 7259 ip->i_number, length); 7260 KASSERT(length == 0, ("softdep_setup_freeblocks: non-zero length")); 7261 fs = ump->um_fs; 7262 if ((error = bread(ump->um_devvp, 7263 fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 7264 (int)fs->fs_bsize, NOCRED, &bp)) != 0) { 7265 if (!ffs_fsfail_cleanup(ump, error)) 7266 softdep_error("softdep_setup_freeblocks", error); 7267 return; 7268 } 7269 freeblks = newfreeblks(mp, ip); 7270 extblocks = 0; 7271 datablocks = 0; 7272 if (fs->fs_magic == FS_UFS2_MAGIC) 7273 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 7274 if ((flags & IO_NORMAL) != 0) { 7275 for (i = 0; i < UFS_NDADDR; i++) 7276 setup_freedirect(freeblks, ip, i, 0); 7277 for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR; 7278 i < UFS_NIADDR; 7279 i++, lbn += tmpval, tmpval *= NINDIR(fs)) 7280 setup_freeindir(freeblks, ip, i, -lbn -i, 0); 7281 ip->i_size = 0; 7282 DIP_SET(ip, i_size, 0); 7283 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE); 7284 datablocks = DIP(ip, i_blocks) - extblocks; 7285 } 7286 if ((flags & IO_EXT) != 0) { 7287 for (i = 0; i < UFS_NXADDR; i++) 7288 setup_freeext(freeblks, ip, i, 0); 7289 ip->i_din2->di_extsize = 0; 7290 datablocks += extblocks; 7291 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE); 7292 } 7293 #ifdef QUOTA 7294 /* Reference the quotas in case the block count is wrong in the end. */ 7295 quotaref(ITOV(ip), freeblks->fb_quota); 7296 (void) chkdq(ip, -datablocks, NOCRED, FORCE); 7297 #endif 7298 freeblks->fb_chkcnt = -datablocks; 7299 UFS_LOCK(ump); 7300 fs->fs_pendingblocks += datablocks; 7301 UFS_UNLOCK(ump); 7302 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks); 7303 /* 7304 * Push the zero'ed inode to its disk buffer so that we are free 7305 * to delete its dependencies below. Once the dependencies are gone 7306 * the buffer can be safely released. 7307 */ 7308 if (ump->um_fstype == UFS1) { 7309 dp1 = ((struct ufs1_dinode *)bp->b_data + 7310 ino_to_fsbo(fs, ip->i_number)); 7311 ip->i_din1->di_freelink = dp1->di_freelink; 7312 *dp1 = *ip->i_din1; 7313 } else { 7314 dp2 = ((struct ufs2_dinode *)bp->b_data + 7315 ino_to_fsbo(fs, ip->i_number)); 7316 ip->i_din2->di_freelink = dp2->di_freelink; 7317 ffs_update_dinode_ckhash(fs, ip->i_din2); 7318 *dp2 = *ip->i_din2; 7319 } 7320 /* 7321 * Find and eliminate any inode dependencies. 7322 */ 7323 ACQUIRE_LOCK(ump); 7324 (void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 7325 if ((inodedep->id_state & IOSTARTED) != 0) 7326 panic("softdep_setup_freeblocks: inode busy"); 7327 /* 7328 * Add the freeblks structure to the list of operations that 7329 * must await the zero'ed inode being written to disk. If we 7330 * still have a bitmap dependency (delay == 0), then the inode 7331 * has never been written to disk, so we can process the 7332 * freeblks below once we have deleted the dependencies. 7333 */ 7334 delay = (inodedep->id_state & DEPCOMPLETE); 7335 if (delay) 7336 WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list); 7337 else 7338 freeblks->fb_state |= COMPLETE; 7339 /* 7340 * Because the file length has been truncated to zero, any 7341 * pending block allocation dependency structures associated 7342 * with this inode are obsolete and can simply be de-allocated. 7343 * We must first merge the two dependency lists to get rid of 7344 * any duplicate freefrag structures, then purge the merged list. 7345 * If we still have a bitmap dependency, then the inode has never 7346 * been written to disk, so we can free any fragments without delay. 7347 */ 7348 if (flags & IO_NORMAL) { 7349 merge_inode_lists(&inodedep->id_newinoupdt, 7350 &inodedep->id_inoupdt); 7351 while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL) 7352 cancel_allocdirect(&inodedep->id_inoupdt, adp, 7353 freeblks); 7354 } 7355 if (flags & IO_EXT) { 7356 merge_inode_lists(&inodedep->id_newextupdt, 7357 &inodedep->id_extupdt); 7358 while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 7359 cancel_allocdirect(&inodedep->id_extupdt, adp, 7360 freeblks); 7361 } 7362 FREE_LOCK(ump); 7363 bdwrite(bp); 7364 trunc_dependencies(ip, freeblks, -1, 0, flags); 7365 ACQUIRE_LOCK(ump); 7366 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) 7367 (void) free_inodedep(inodedep); 7368 freeblks->fb_state |= DEPCOMPLETE; 7369 /* 7370 * If the inode with zeroed block pointers is now on disk 7371 * we can start freeing blocks. 7372 */ 7373 if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE) 7374 freeblks->fb_state |= INPROGRESS; 7375 else 7376 freeblks = NULL; 7377 FREE_LOCK(ump); 7378 if (freeblks) 7379 handle_workitem_freeblocks(freeblks, 0); 7380 trunc_pages(ip, length, extblocks, flags); 7381 } 7382 7383 /* 7384 * Eliminate pages from the page cache that back parts of this inode and 7385 * adjust the vnode pager's idea of our size. This prevents stale data 7386 * from hanging around in the page cache. 7387 */ 7388 static void 7389 trunc_pages(ip, length, extblocks, flags) 7390 struct inode *ip; 7391 off_t length; 7392 ufs2_daddr_t extblocks; 7393 int flags; 7394 { 7395 struct vnode *vp; 7396 struct fs *fs; 7397 ufs_lbn_t lbn; 7398 off_t end, extend; 7399 7400 vp = ITOV(ip); 7401 fs = ITOFS(ip); 7402 extend = OFF_TO_IDX(lblktosize(fs, -extblocks)); 7403 if ((flags & IO_EXT) != 0) 7404 vn_pages_remove(vp, extend, 0); 7405 if ((flags & IO_NORMAL) == 0) 7406 return; 7407 BO_LOCK(&vp->v_bufobj); 7408 drain_output(vp); 7409 BO_UNLOCK(&vp->v_bufobj); 7410 /* 7411 * The vnode pager eliminates file pages we eliminate indirects 7412 * below. 7413 */ 7414 vnode_pager_setsize(vp, length); 7415 /* 7416 * Calculate the end based on the last indirect we want to keep. If 7417 * the block extends into indirects we can just use the negative of 7418 * its lbn. Doubles and triples exist at lower numbers so we must 7419 * be careful not to remove those, if they exist. double and triple 7420 * indirect lbns do not overlap with others so it is not important 7421 * to verify how many levels are required. 7422 */ 7423 lbn = lblkno(fs, length); 7424 if (lbn >= UFS_NDADDR) { 7425 /* Calculate the virtual lbn of the triple indirect. */ 7426 lbn = -lbn - (UFS_NIADDR - 1); 7427 end = OFF_TO_IDX(lblktosize(fs, lbn)); 7428 } else 7429 end = extend; 7430 vn_pages_remove(vp, OFF_TO_IDX(OFF_MAX), end); 7431 } 7432 7433 /* 7434 * See if the buf bp is in the range eliminated by truncation. 7435 */ 7436 static int 7437 trunc_check_buf(bp, blkoffp, lastlbn, lastoff, flags) 7438 struct buf *bp; 7439 int *blkoffp; 7440 ufs_lbn_t lastlbn; 7441 int lastoff; 7442 int flags; 7443 { 7444 ufs_lbn_t lbn; 7445 7446 *blkoffp = 0; 7447 /* Only match ext/normal blocks as appropriate. */ 7448 if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) || 7449 ((flags & IO_NORMAL) == 0 && (bp->b_xflags & BX_ALTDATA) == 0)) 7450 return (0); 7451 /* ALTDATA is always a full truncation. */ 7452 if ((bp->b_xflags & BX_ALTDATA) != 0) 7453 return (1); 7454 /* -1 is full truncation. */ 7455 if (lastlbn == -1) 7456 return (1); 7457 /* 7458 * If this is a partial truncate we only want those 7459 * blocks and indirect blocks that cover the range 7460 * we're after. 7461 */ 7462 lbn = bp->b_lblkno; 7463 if (lbn < 0) 7464 lbn = -(lbn + lbn_level(lbn)); 7465 if (lbn < lastlbn) 7466 return (0); 7467 /* Here we only truncate lblkno if it's partial. */ 7468 if (lbn == lastlbn) { 7469 if (lastoff == 0) 7470 return (0); 7471 *blkoffp = lastoff; 7472 } 7473 return (1); 7474 } 7475 7476 /* 7477 * Eliminate any dependencies that exist in memory beyond lblkno:off 7478 */ 7479 static void 7480 trunc_dependencies(ip, freeblks, lastlbn, lastoff, flags) 7481 struct inode *ip; 7482 struct freeblks *freeblks; 7483 ufs_lbn_t lastlbn; 7484 int lastoff; 7485 int flags; 7486 { 7487 struct bufobj *bo; 7488 struct vnode *vp; 7489 struct buf *bp; 7490 int blkoff; 7491 7492 /* 7493 * We must wait for any I/O in progress to finish so that 7494 * all potential buffers on the dirty list will be visible. 7495 * Once they are all there, walk the list and get rid of 7496 * any dependencies. 7497 */ 7498 vp = ITOV(ip); 7499 bo = &vp->v_bufobj; 7500 BO_LOCK(bo); 7501 drain_output(vp); 7502 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) 7503 bp->b_vflags &= ~BV_SCANNED; 7504 restart: 7505 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) { 7506 if (bp->b_vflags & BV_SCANNED) 7507 continue; 7508 if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) { 7509 bp->b_vflags |= BV_SCANNED; 7510 continue; 7511 } 7512 KASSERT(bp->b_bufobj == bo, ("Wrong object in buffer")); 7513 if ((bp = getdirtybuf(bp, BO_LOCKPTR(bo), MNT_WAIT)) == NULL) 7514 goto restart; 7515 BO_UNLOCK(bo); 7516 if (deallocate_dependencies(bp, freeblks, blkoff)) 7517 bqrelse(bp); 7518 else 7519 brelse(bp); 7520 BO_LOCK(bo); 7521 goto restart; 7522 } 7523 /* 7524 * Now do the work of vtruncbuf while also matching indirect blocks. 7525 */ 7526 TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) 7527 bp->b_vflags &= ~BV_SCANNED; 7528 cleanrestart: 7529 TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) { 7530 if (bp->b_vflags & BV_SCANNED) 7531 continue; 7532 if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) { 7533 bp->b_vflags |= BV_SCANNED; 7534 continue; 7535 } 7536 if (BUF_LOCK(bp, 7537 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 7538 BO_LOCKPTR(bo)) == ENOLCK) { 7539 BO_LOCK(bo); 7540 goto cleanrestart; 7541 } 7542 bp->b_vflags |= BV_SCANNED; 7543 bremfree(bp); 7544 if (blkoff != 0) { 7545 allocbuf(bp, blkoff); 7546 bqrelse(bp); 7547 } else { 7548 bp->b_flags |= B_INVAL | B_NOCACHE | B_RELBUF; 7549 brelse(bp); 7550 } 7551 BO_LOCK(bo); 7552 goto cleanrestart; 7553 } 7554 drain_output(vp); 7555 BO_UNLOCK(bo); 7556 } 7557 7558 static int 7559 cancel_pagedep(pagedep, freeblks, blkoff) 7560 struct pagedep *pagedep; 7561 struct freeblks *freeblks; 7562 int blkoff; 7563 { 7564 struct jremref *jremref; 7565 struct jmvref *jmvref; 7566 struct dirrem *dirrem, *tmp; 7567 int i; 7568 7569 /* 7570 * Copy any directory remove dependencies to the list 7571 * to be processed after the freeblks proceeds. If 7572 * directory entry never made it to disk they 7573 * can be dumped directly onto the work list. 7574 */ 7575 LIST_FOREACH_SAFE(dirrem, &pagedep->pd_dirremhd, dm_next, tmp) { 7576 /* Skip this directory removal if it is intended to remain. */ 7577 if (dirrem->dm_offset < blkoff) 7578 continue; 7579 /* 7580 * If there are any dirrems we wait for the journal write 7581 * to complete and then restart the buf scan as the lock 7582 * has been dropped. 7583 */ 7584 while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) { 7585 jwait(&jremref->jr_list, MNT_WAIT); 7586 return (ERESTART); 7587 } 7588 LIST_REMOVE(dirrem, dm_next); 7589 dirrem->dm_dirinum = pagedep->pd_ino; 7590 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &dirrem->dm_list); 7591 } 7592 while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) { 7593 jwait(&jmvref->jm_list, MNT_WAIT); 7594 return (ERESTART); 7595 } 7596 /* 7597 * When we're partially truncating a pagedep we just want to flush 7598 * journal entries and return. There can not be any adds in the 7599 * truncated portion of the directory and newblk must remain if 7600 * part of the block remains. 7601 */ 7602 if (blkoff != 0) { 7603 struct diradd *dap; 7604 7605 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) 7606 if (dap->da_offset > blkoff) 7607 panic("cancel_pagedep: diradd %p off %d > %d", 7608 dap, dap->da_offset, blkoff); 7609 for (i = 0; i < DAHASHSZ; i++) 7610 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) 7611 if (dap->da_offset > blkoff) 7612 panic("cancel_pagedep: diradd %p off %d > %d", 7613 dap, dap->da_offset, blkoff); 7614 return (0); 7615 } 7616 /* 7617 * There should be no directory add dependencies present 7618 * as the directory could not be truncated until all 7619 * children were removed. 7620 */ 7621 KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL, 7622 ("deallocate_dependencies: pendinghd != NULL")); 7623 for (i = 0; i < DAHASHSZ; i++) 7624 KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL, 7625 ("deallocate_dependencies: diraddhd != NULL")); 7626 if ((pagedep->pd_state & NEWBLOCK) != 0) 7627 free_newdirblk(pagedep->pd_newdirblk); 7628 if (free_pagedep(pagedep) == 0) 7629 panic("Failed to free pagedep %p", pagedep); 7630 return (0); 7631 } 7632 7633 /* 7634 * Reclaim any dependency structures from a buffer that is about to 7635 * be reallocated to a new vnode. The buffer must be locked, thus, 7636 * no I/O completion operations can occur while we are manipulating 7637 * its associated dependencies. The mutex is held so that other I/O's 7638 * associated with related dependencies do not occur. 7639 */ 7640 static int 7641 deallocate_dependencies(bp, freeblks, off) 7642 struct buf *bp; 7643 struct freeblks *freeblks; 7644 int off; 7645 { 7646 struct indirdep *indirdep; 7647 struct pagedep *pagedep; 7648 struct worklist *wk, *wkn; 7649 struct ufsmount *ump; 7650 7651 ump = softdep_bp_to_mp(bp); 7652 if (ump == NULL) 7653 goto done; 7654 ACQUIRE_LOCK(ump); 7655 LIST_FOREACH_SAFE(wk, &bp->b_dep, wk_list, wkn) { 7656 switch (wk->wk_type) { 7657 case D_INDIRDEP: 7658 indirdep = WK_INDIRDEP(wk); 7659 if (bp->b_lblkno >= 0 || 7660 bp->b_blkno != indirdep->ir_savebp->b_lblkno) 7661 panic("deallocate_dependencies: not indir"); 7662 cancel_indirdep(indirdep, bp, freeblks); 7663 continue; 7664 7665 case D_PAGEDEP: 7666 pagedep = WK_PAGEDEP(wk); 7667 if (cancel_pagedep(pagedep, freeblks, off)) { 7668 FREE_LOCK(ump); 7669 return (ERESTART); 7670 } 7671 continue; 7672 7673 case D_ALLOCINDIR: 7674 /* 7675 * Simply remove the allocindir, we'll find it via 7676 * the indirdep where we can clear pointers if 7677 * needed. 7678 */ 7679 WORKLIST_REMOVE(wk); 7680 continue; 7681 7682 case D_FREEWORK: 7683 /* 7684 * A truncation is waiting for the zero'd pointers 7685 * to be written. It can be freed when the freeblks 7686 * is journaled. 7687 */ 7688 WORKLIST_REMOVE(wk); 7689 wk->wk_state |= ONDEPLIST; 7690 WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk); 7691 break; 7692 7693 case D_ALLOCDIRECT: 7694 if (off != 0) 7695 continue; 7696 /* FALLTHROUGH */ 7697 default: 7698 panic("deallocate_dependencies: Unexpected type %s", 7699 TYPENAME(wk->wk_type)); 7700 /* NOTREACHED */ 7701 } 7702 } 7703 FREE_LOCK(ump); 7704 done: 7705 /* 7706 * Don't throw away this buf, we were partially truncating and 7707 * some deps may always remain. 7708 */ 7709 if (off) { 7710 allocbuf(bp, off); 7711 bp->b_vflags |= BV_SCANNED; 7712 return (EBUSY); 7713 } 7714 bp->b_flags |= B_INVAL | B_NOCACHE; 7715 7716 return (0); 7717 } 7718 7719 /* 7720 * An allocdirect is being canceled due to a truncate. We must make sure 7721 * the journal entry is released in concert with the blkfree that releases 7722 * the storage. Completed journal entries must not be released until the 7723 * space is no longer pointed to by the inode or in the bitmap. 7724 */ 7725 static void 7726 cancel_allocdirect(adphead, adp, freeblks) 7727 struct allocdirectlst *adphead; 7728 struct allocdirect *adp; 7729 struct freeblks *freeblks; 7730 { 7731 struct freework *freework; 7732 struct newblk *newblk; 7733 struct worklist *wk; 7734 7735 TAILQ_REMOVE(adphead, adp, ad_next); 7736 newblk = (struct newblk *)adp; 7737 freework = NULL; 7738 /* 7739 * Find the correct freework structure. 7740 */ 7741 LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) { 7742 if (wk->wk_type != D_FREEWORK) 7743 continue; 7744 freework = WK_FREEWORK(wk); 7745 if (freework->fw_blkno == newblk->nb_newblkno) 7746 break; 7747 } 7748 if (freework == NULL) 7749 panic("cancel_allocdirect: Freework not found"); 7750 /* 7751 * If a newblk exists at all we still have the journal entry that 7752 * initiated the allocation so we do not need to journal the free. 7753 */ 7754 cancel_jfreeblk(freeblks, freework->fw_blkno); 7755 /* 7756 * If the journal hasn't been written the jnewblk must be passed 7757 * to the call to ffs_blkfree that reclaims the space. We accomplish 7758 * this by linking the journal dependency into the freework to be 7759 * freed when freework_freeblock() is called. If the journal has 7760 * been written we can simply reclaim the journal space when the 7761 * freeblks work is complete. 7762 */ 7763 freework->fw_jnewblk = cancel_newblk(newblk, &freework->fw_list, 7764 &freeblks->fb_jwork); 7765 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list); 7766 } 7767 7768 /* 7769 * Cancel a new block allocation. May be an indirect or direct block. We 7770 * remove it from various lists and return any journal record that needs to 7771 * be resolved by the caller. 7772 * 7773 * A special consideration is made for indirects which were never pointed 7774 * at on disk and will never be found once this block is released. 7775 */ 7776 static struct jnewblk * 7777 cancel_newblk(newblk, wk, wkhd) 7778 struct newblk *newblk; 7779 struct worklist *wk; 7780 struct workhead *wkhd; 7781 { 7782 struct jnewblk *jnewblk; 7783 7784 CTR1(KTR_SUJ, "cancel_newblk: blkno %jd", newblk->nb_newblkno); 7785 7786 newblk->nb_state |= GOINGAWAY; 7787 /* 7788 * Previously we traversed the completedhd on each indirdep 7789 * attached to this newblk to cancel them and gather journal 7790 * work. Since we need only the oldest journal segment and 7791 * the lowest point on the tree will always have the oldest 7792 * journal segment we are free to release the segments 7793 * of any subordinates and may leave the indirdep list to 7794 * indirdep_complete() when this newblk is freed. 7795 */ 7796 if (newblk->nb_state & ONDEPLIST) { 7797 newblk->nb_state &= ~ONDEPLIST; 7798 LIST_REMOVE(newblk, nb_deps); 7799 } 7800 if (newblk->nb_state & ONWORKLIST) 7801 WORKLIST_REMOVE(&newblk->nb_list); 7802 /* 7803 * If the journal entry hasn't been written we save a pointer to 7804 * the dependency that frees it until it is written or the 7805 * superseding operation completes. 7806 */ 7807 jnewblk = newblk->nb_jnewblk; 7808 if (jnewblk != NULL && wk != NULL) { 7809 newblk->nb_jnewblk = NULL; 7810 jnewblk->jn_dep = wk; 7811 } 7812 if (!LIST_EMPTY(&newblk->nb_jwork)) 7813 jwork_move(wkhd, &newblk->nb_jwork); 7814 /* 7815 * When truncating we must free the newdirblk early to remove 7816 * the pagedep from the hash before returning. 7817 */ 7818 if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL) 7819 free_newdirblk(WK_NEWDIRBLK(wk)); 7820 if (!LIST_EMPTY(&newblk->nb_newdirblk)) 7821 panic("cancel_newblk: extra newdirblk"); 7822 7823 return (jnewblk); 7824 } 7825 7826 /* 7827 * Schedule the freefrag associated with a newblk to be released once 7828 * the pointers are written and the previous block is no longer needed. 7829 */ 7830 static void 7831 newblk_freefrag(newblk) 7832 struct newblk *newblk; 7833 { 7834 struct freefrag *freefrag; 7835 7836 if (newblk->nb_freefrag == NULL) 7837 return; 7838 freefrag = newblk->nb_freefrag; 7839 newblk->nb_freefrag = NULL; 7840 freefrag->ff_state |= COMPLETE; 7841 if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE) 7842 add_to_worklist(&freefrag->ff_list, 0); 7843 } 7844 7845 /* 7846 * Free a newblk. Generate a new freefrag work request if appropriate. 7847 * This must be called after the inode pointer and any direct block pointers 7848 * are valid or fully removed via truncate or frag extension. 7849 */ 7850 static void 7851 free_newblk(newblk) 7852 struct newblk *newblk; 7853 { 7854 struct indirdep *indirdep; 7855 struct worklist *wk; 7856 7857 KASSERT(newblk->nb_jnewblk == NULL, 7858 ("free_newblk: jnewblk %p still attached", newblk->nb_jnewblk)); 7859 KASSERT(newblk->nb_list.wk_type != D_NEWBLK, 7860 ("free_newblk: unclaimed newblk")); 7861 LOCK_OWNED(VFSTOUFS(newblk->nb_list.wk_mp)); 7862 newblk_freefrag(newblk); 7863 if (newblk->nb_state & ONDEPLIST) 7864 LIST_REMOVE(newblk, nb_deps); 7865 if (newblk->nb_state & ONWORKLIST) 7866 WORKLIST_REMOVE(&newblk->nb_list); 7867 LIST_REMOVE(newblk, nb_hash); 7868 if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL) 7869 free_newdirblk(WK_NEWDIRBLK(wk)); 7870 if (!LIST_EMPTY(&newblk->nb_newdirblk)) 7871 panic("free_newblk: extra newdirblk"); 7872 while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL) 7873 indirdep_complete(indirdep); 7874 handle_jwork(&newblk->nb_jwork); 7875 WORKITEM_FREE(newblk, D_NEWBLK); 7876 } 7877 7878 /* 7879 * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep. 7880 */ 7881 static void 7882 free_newdirblk(newdirblk) 7883 struct newdirblk *newdirblk; 7884 { 7885 struct pagedep *pagedep; 7886 struct diradd *dap; 7887 struct worklist *wk; 7888 7889 LOCK_OWNED(VFSTOUFS(newdirblk->db_list.wk_mp)); 7890 WORKLIST_REMOVE(&newdirblk->db_list); 7891 /* 7892 * If the pagedep is still linked onto the directory buffer 7893 * dependency chain, then some of the entries on the 7894 * pd_pendinghd list may not be committed to disk yet. In 7895 * this case, we will simply clear the NEWBLOCK flag and 7896 * let the pd_pendinghd list be processed when the pagedep 7897 * is next written. If the pagedep is no longer on the buffer 7898 * dependency chain, then all the entries on the pd_pending 7899 * list are committed to disk and we can free them here. 7900 */ 7901 pagedep = newdirblk->db_pagedep; 7902 pagedep->pd_state &= ~NEWBLOCK; 7903 if ((pagedep->pd_state & ONWORKLIST) == 0) { 7904 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 7905 free_diradd(dap, NULL); 7906 /* 7907 * If no dependencies remain, the pagedep will be freed. 7908 */ 7909 free_pagedep(pagedep); 7910 } 7911 /* Should only ever be one item in the list. */ 7912 while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) { 7913 WORKLIST_REMOVE(wk); 7914 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); 7915 } 7916 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 7917 } 7918 7919 /* 7920 * Prepare an inode to be freed. The actual free operation is not 7921 * done until the zero'ed inode has been written to disk. 7922 */ 7923 void 7924 softdep_freefile(pvp, ino, mode) 7925 struct vnode *pvp; 7926 ino_t ino; 7927 int mode; 7928 { 7929 struct inode *ip = VTOI(pvp); 7930 struct inodedep *inodedep; 7931 struct freefile *freefile; 7932 struct freeblks *freeblks; 7933 struct ufsmount *ump; 7934 7935 ump = ITOUMP(ip); 7936 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 7937 ("softdep_freefile called on non-softdep filesystem")); 7938 /* 7939 * This sets up the inode de-allocation dependency. 7940 */ 7941 freefile = malloc(sizeof(struct freefile), 7942 M_FREEFILE, M_SOFTDEP_FLAGS); 7943 workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount); 7944 freefile->fx_mode = mode; 7945 freefile->fx_oldinum = ino; 7946 freefile->fx_devvp = ump->um_devvp; 7947 LIST_INIT(&freefile->fx_jwork); 7948 UFS_LOCK(ump); 7949 ump->um_fs->fs_pendinginodes += 1; 7950 UFS_UNLOCK(ump); 7951 7952 /* 7953 * If the inodedep does not exist, then the zero'ed inode has 7954 * been written to disk. If the allocated inode has never been 7955 * written to disk, then the on-disk inode is zero'ed. In either 7956 * case we can free the file immediately. If the journal was 7957 * canceled before being written the inode will never make it to 7958 * disk and we must send the canceled journal entrys to 7959 * ffs_freefile() to be cleared in conjunction with the bitmap. 7960 * Any blocks waiting on the inode to write can be safely freed 7961 * here as it will never been written. 7962 */ 7963 ACQUIRE_LOCK(ump); 7964 inodedep_lookup(pvp->v_mount, ino, 0, &inodedep); 7965 if (inodedep) { 7966 /* 7967 * Clear out freeblks that no longer need to reference 7968 * this inode. 7969 */ 7970 while ((freeblks = 7971 TAILQ_FIRST(&inodedep->id_freeblklst)) != NULL) { 7972 TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, 7973 fb_next); 7974 freeblks->fb_state &= ~ONDEPLIST; 7975 } 7976 /* 7977 * Remove this inode from the unlinked list. 7978 */ 7979 if (inodedep->id_state & UNLINKED) { 7980 /* 7981 * Save the journal work to be freed with the bitmap 7982 * before we clear UNLINKED. Otherwise it can be lost 7983 * if the inode block is written. 7984 */ 7985 handle_bufwait(inodedep, &freefile->fx_jwork); 7986 clear_unlinked_inodedep(inodedep); 7987 /* 7988 * Re-acquire inodedep as we've dropped the 7989 * per-filesystem lock in clear_unlinked_inodedep(). 7990 */ 7991 inodedep_lookup(pvp->v_mount, ino, 0, &inodedep); 7992 } 7993 } 7994 if (inodedep == NULL || check_inode_unwritten(inodedep)) { 7995 FREE_LOCK(ump); 7996 handle_workitem_freefile(freefile); 7997 return; 7998 } 7999 if ((inodedep->id_state & DEPCOMPLETE) == 0) 8000 inodedep->id_state |= GOINGAWAY; 8001 WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list); 8002 FREE_LOCK(ump); 8003 if (ip->i_number == ino) 8004 UFS_INODE_SET_FLAG(ip, IN_MODIFIED); 8005 } 8006 8007 /* 8008 * Check to see if an inode has never been written to disk. If 8009 * so free the inodedep and return success, otherwise return failure. 8010 * 8011 * If we still have a bitmap dependency, then the inode has never 8012 * been written to disk. Drop the dependency as it is no longer 8013 * necessary since the inode is being deallocated. We set the 8014 * ALLCOMPLETE flags since the bitmap now properly shows that the 8015 * inode is not allocated. Even if the inode is actively being 8016 * written, it has been rolled back to its zero'ed state, so we 8017 * are ensured that a zero inode is what is on the disk. For short 8018 * lived files, this change will usually result in removing all the 8019 * dependencies from the inode so that it can be freed immediately. 8020 */ 8021 static int 8022 check_inode_unwritten(inodedep) 8023 struct inodedep *inodedep; 8024 { 8025 8026 LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp)); 8027 8028 if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 || 8029 !LIST_EMPTY(&inodedep->id_dirremhd) || 8030 !LIST_EMPTY(&inodedep->id_pendinghd) || 8031 !LIST_EMPTY(&inodedep->id_bufwait) || 8032 !LIST_EMPTY(&inodedep->id_inowait) || 8033 !TAILQ_EMPTY(&inodedep->id_inoreflst) || 8034 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 8035 !TAILQ_EMPTY(&inodedep->id_newinoupdt) || 8036 !TAILQ_EMPTY(&inodedep->id_extupdt) || 8037 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 8038 !TAILQ_EMPTY(&inodedep->id_freeblklst) || 8039 inodedep->id_mkdiradd != NULL || 8040 inodedep->id_nlinkdelta != 0) 8041 return (0); 8042 /* 8043 * Another process might be in initiate_write_inodeblock_ufs[12] 8044 * trying to allocate memory without holding "Softdep Lock". 8045 */ 8046 if ((inodedep->id_state & IOSTARTED) != 0 && 8047 inodedep->id_savedino1 == NULL) 8048 return (0); 8049 8050 if (inodedep->id_state & ONDEPLIST) 8051 LIST_REMOVE(inodedep, id_deps); 8052 inodedep->id_state &= ~ONDEPLIST; 8053 inodedep->id_state |= ALLCOMPLETE; 8054 inodedep->id_bmsafemap = NULL; 8055 if (inodedep->id_state & ONWORKLIST) 8056 WORKLIST_REMOVE(&inodedep->id_list); 8057 if (inodedep->id_savedino1 != NULL) { 8058 free(inodedep->id_savedino1, M_SAVEDINO); 8059 inodedep->id_savedino1 = NULL; 8060 } 8061 if (free_inodedep(inodedep) == 0) 8062 panic("check_inode_unwritten: busy inode"); 8063 return (1); 8064 } 8065 8066 static int 8067 check_inodedep_free(inodedep) 8068 struct inodedep *inodedep; 8069 { 8070 8071 LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp)); 8072 if ((inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE || 8073 !LIST_EMPTY(&inodedep->id_dirremhd) || 8074 !LIST_EMPTY(&inodedep->id_pendinghd) || 8075 !LIST_EMPTY(&inodedep->id_bufwait) || 8076 !LIST_EMPTY(&inodedep->id_inowait) || 8077 !TAILQ_EMPTY(&inodedep->id_inoreflst) || 8078 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 8079 !TAILQ_EMPTY(&inodedep->id_newinoupdt) || 8080 !TAILQ_EMPTY(&inodedep->id_extupdt) || 8081 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 8082 !TAILQ_EMPTY(&inodedep->id_freeblklst) || 8083 inodedep->id_mkdiradd != NULL || 8084 inodedep->id_nlinkdelta != 0 || 8085 inodedep->id_savedino1 != NULL) 8086 return (0); 8087 return (1); 8088 } 8089 8090 /* 8091 * Try to free an inodedep structure. Return 1 if it could be freed. 8092 */ 8093 static int 8094 free_inodedep(inodedep) 8095 struct inodedep *inodedep; 8096 { 8097 8098 LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp)); 8099 if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 || 8100 !check_inodedep_free(inodedep)) 8101 return (0); 8102 if (inodedep->id_state & ONDEPLIST) 8103 LIST_REMOVE(inodedep, id_deps); 8104 LIST_REMOVE(inodedep, id_hash); 8105 WORKITEM_FREE(inodedep, D_INODEDEP); 8106 return (1); 8107 } 8108 8109 /* 8110 * Free the block referenced by a freework structure. The parent freeblks 8111 * structure is released and completed when the final cg bitmap reaches 8112 * the disk. This routine may be freeing a jnewblk which never made it to 8113 * disk in which case we do not have to wait as the operation is undone 8114 * in memory immediately. 8115 */ 8116 static void 8117 freework_freeblock(freework, key) 8118 struct freework *freework; 8119 u_long key; 8120 { 8121 struct freeblks *freeblks; 8122 struct jnewblk *jnewblk; 8123 struct ufsmount *ump; 8124 struct workhead wkhd; 8125 struct fs *fs; 8126 int bsize; 8127 int needj; 8128 8129 ump = VFSTOUFS(freework->fw_list.wk_mp); 8130 LOCK_OWNED(ump); 8131 /* 8132 * Handle partial truncate separately. 8133 */ 8134 if (freework->fw_indir) { 8135 complete_trunc_indir(freework); 8136 return; 8137 } 8138 freeblks = freework->fw_freeblks; 8139 fs = ump->um_fs; 8140 needj = MOUNTEDSUJ(freeblks->fb_list.wk_mp) != 0; 8141 bsize = lfragtosize(fs, freework->fw_frags); 8142 LIST_INIT(&wkhd); 8143 /* 8144 * DEPCOMPLETE is cleared in indirblk_insert() if the block lives 8145 * on the indirblk hashtable and prevents premature freeing. 8146 */ 8147 freework->fw_state |= DEPCOMPLETE; 8148 /* 8149 * SUJ needs to wait for the segment referencing freed indirect 8150 * blocks to expire so that we know the checker will not confuse 8151 * a re-allocated indirect block with its old contents. 8152 */ 8153 if (needj && freework->fw_lbn <= -UFS_NDADDR) 8154 indirblk_insert(freework); 8155 /* 8156 * If we are canceling an existing jnewblk pass it to the free 8157 * routine, otherwise pass the freeblk which will ultimately 8158 * release the freeblks. If we're not journaling, we can just 8159 * free the freeblks immediately. 8160 */ 8161 jnewblk = freework->fw_jnewblk; 8162 if (jnewblk != NULL) { 8163 cancel_jnewblk(jnewblk, &wkhd); 8164 needj = 0; 8165 } else if (needj) { 8166 freework->fw_state |= DELAYEDFREE; 8167 freeblks->fb_cgwait++; 8168 WORKLIST_INSERT(&wkhd, &freework->fw_list); 8169 } 8170 FREE_LOCK(ump); 8171 freeblks_free(ump, freeblks, btodb(bsize)); 8172 CTR4(KTR_SUJ, 8173 "freework_freeblock: ino %jd blkno %jd lbn %jd size %d", 8174 freeblks->fb_inum, freework->fw_blkno, freework->fw_lbn, bsize); 8175 ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno, bsize, 8176 freeblks->fb_inum, freeblks->fb_vtype, &wkhd, key); 8177 ACQUIRE_LOCK(ump); 8178 /* 8179 * The jnewblk will be discarded and the bits in the map never 8180 * made it to disk. We can immediately free the freeblk. 8181 */ 8182 if (needj == 0) 8183 handle_written_freework(freework); 8184 } 8185 8186 /* 8187 * We enqueue freework items that need processing back on the freeblks and 8188 * add the freeblks to the worklist. This makes it easier to find all work 8189 * required to flush a truncation in process_truncates(). 8190 */ 8191 static void 8192 freework_enqueue(freework) 8193 struct freework *freework; 8194 { 8195 struct freeblks *freeblks; 8196 8197 freeblks = freework->fw_freeblks; 8198 if ((freework->fw_state & INPROGRESS) == 0) 8199 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list); 8200 if ((freeblks->fb_state & 8201 (ONWORKLIST | INPROGRESS | ALLCOMPLETE)) == ALLCOMPLETE && 8202 LIST_EMPTY(&freeblks->fb_jblkdephd)) 8203 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 8204 } 8205 8206 /* 8207 * Start, continue, or finish the process of freeing an indirect block tree. 8208 * The free operation may be paused at any point with fw_off containing the 8209 * offset to restart from. This enables us to implement some flow control 8210 * for large truncates which may fan out and generate a huge number of 8211 * dependencies. 8212 */ 8213 static void 8214 handle_workitem_indirblk(freework) 8215 struct freework *freework; 8216 { 8217 struct freeblks *freeblks; 8218 struct ufsmount *ump; 8219 struct fs *fs; 8220 8221 freeblks = freework->fw_freeblks; 8222 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 8223 fs = ump->um_fs; 8224 if (freework->fw_state & DEPCOMPLETE) { 8225 handle_written_freework(freework); 8226 return; 8227 } 8228 if (freework->fw_off == NINDIR(fs)) { 8229 freework_freeblock(freework, SINGLETON_KEY); 8230 return; 8231 } 8232 freework->fw_state |= INPROGRESS; 8233 FREE_LOCK(ump); 8234 indir_trunc(freework, fsbtodb(fs, freework->fw_blkno), 8235 freework->fw_lbn); 8236 ACQUIRE_LOCK(ump); 8237 } 8238 8239 /* 8240 * Called when a freework structure attached to a cg buf is written. The 8241 * ref on either the parent or the freeblks structure is released and 8242 * the freeblks is added back to the worklist if there is more work to do. 8243 */ 8244 static void 8245 handle_written_freework(freework) 8246 struct freework *freework; 8247 { 8248 struct freeblks *freeblks; 8249 struct freework *parent; 8250 8251 freeblks = freework->fw_freeblks; 8252 parent = freework->fw_parent; 8253 if (freework->fw_state & DELAYEDFREE) 8254 freeblks->fb_cgwait--; 8255 freework->fw_state |= COMPLETE; 8256 if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE) 8257 WORKITEM_FREE(freework, D_FREEWORK); 8258 if (parent) { 8259 if (--parent->fw_ref == 0) 8260 freework_enqueue(parent); 8261 return; 8262 } 8263 if (--freeblks->fb_ref != 0) 8264 return; 8265 if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST | INPROGRESS)) == 8266 ALLCOMPLETE && LIST_EMPTY(&freeblks->fb_jblkdephd)) 8267 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 8268 } 8269 8270 /* 8271 * This workitem routine performs the block de-allocation. 8272 * The workitem is added to the pending list after the updated 8273 * inode block has been written to disk. As mentioned above, 8274 * checks regarding the number of blocks de-allocated (compared 8275 * to the number of blocks allocated for the file) are also 8276 * performed in this function. 8277 */ 8278 static int 8279 handle_workitem_freeblocks(freeblks, flags) 8280 struct freeblks *freeblks; 8281 int flags; 8282 { 8283 struct freework *freework; 8284 struct newblk *newblk; 8285 struct allocindir *aip; 8286 struct ufsmount *ump; 8287 struct worklist *wk; 8288 u_long key; 8289 8290 KASSERT(LIST_EMPTY(&freeblks->fb_jblkdephd), 8291 ("handle_workitem_freeblocks: Journal entries not written.")); 8292 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 8293 key = ffs_blkrelease_start(ump, freeblks->fb_devvp, freeblks->fb_inum); 8294 ACQUIRE_LOCK(ump); 8295 while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) { 8296 WORKLIST_REMOVE(wk); 8297 switch (wk->wk_type) { 8298 case D_DIRREM: 8299 wk->wk_state |= COMPLETE; 8300 add_to_worklist(wk, 0); 8301 continue; 8302 8303 case D_ALLOCDIRECT: 8304 free_newblk(WK_NEWBLK(wk)); 8305 continue; 8306 8307 case D_ALLOCINDIR: 8308 aip = WK_ALLOCINDIR(wk); 8309 freework = NULL; 8310 if (aip->ai_state & DELAYEDFREE) { 8311 FREE_LOCK(ump); 8312 freework = newfreework(ump, freeblks, NULL, 8313 aip->ai_lbn, aip->ai_newblkno, 8314 ump->um_fs->fs_frag, 0, 0); 8315 ACQUIRE_LOCK(ump); 8316 } 8317 newblk = WK_NEWBLK(wk); 8318 if (newblk->nb_jnewblk) { 8319 freework->fw_jnewblk = newblk->nb_jnewblk; 8320 newblk->nb_jnewblk->jn_dep = &freework->fw_list; 8321 newblk->nb_jnewblk = NULL; 8322 } 8323 free_newblk(newblk); 8324 continue; 8325 8326 case D_FREEWORK: 8327 freework = WK_FREEWORK(wk); 8328 if (freework->fw_lbn <= -UFS_NDADDR) 8329 handle_workitem_indirblk(freework); 8330 else 8331 freework_freeblock(freework, key); 8332 continue; 8333 default: 8334 panic("handle_workitem_freeblocks: Unknown type %s", 8335 TYPENAME(wk->wk_type)); 8336 } 8337 } 8338 if (freeblks->fb_ref != 0) { 8339 freeblks->fb_state &= ~INPROGRESS; 8340 wake_worklist(&freeblks->fb_list); 8341 freeblks = NULL; 8342 } 8343 FREE_LOCK(ump); 8344 ffs_blkrelease_finish(ump, key); 8345 if (freeblks) 8346 return handle_complete_freeblocks(freeblks, flags); 8347 return (0); 8348 } 8349 8350 /* 8351 * Handle completion of block free via truncate. This allows fs_pending 8352 * to track the actual free block count more closely than if we only updated 8353 * it at the end. We must be careful to handle cases where the block count 8354 * on free was incorrect. 8355 */ 8356 static void 8357 freeblks_free(ump, freeblks, blocks) 8358 struct ufsmount *ump; 8359 struct freeblks *freeblks; 8360 int blocks; 8361 { 8362 struct fs *fs; 8363 ufs2_daddr_t remain; 8364 8365 UFS_LOCK(ump); 8366 remain = -freeblks->fb_chkcnt; 8367 freeblks->fb_chkcnt += blocks; 8368 if (remain > 0) { 8369 if (remain < blocks) 8370 blocks = remain; 8371 fs = ump->um_fs; 8372 fs->fs_pendingblocks -= blocks; 8373 } 8374 UFS_UNLOCK(ump); 8375 } 8376 8377 /* 8378 * Once all of the freework workitems are complete we can retire the 8379 * freeblocks dependency and any journal work awaiting completion. This 8380 * can not be called until all other dependencies are stable on disk. 8381 */ 8382 static int 8383 handle_complete_freeblocks(freeblks, flags) 8384 struct freeblks *freeblks; 8385 int flags; 8386 { 8387 struct inodedep *inodedep; 8388 struct inode *ip; 8389 struct vnode *vp; 8390 struct fs *fs; 8391 struct ufsmount *ump; 8392 ufs2_daddr_t spare; 8393 8394 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 8395 fs = ump->um_fs; 8396 flags = LK_EXCLUSIVE | flags; 8397 spare = freeblks->fb_chkcnt; 8398 8399 /* 8400 * If we did not release the expected number of blocks we may have 8401 * to adjust the inode block count here. Only do so if it wasn't 8402 * a truncation to zero and the modrev still matches. 8403 */ 8404 if (spare && freeblks->fb_len != 0) { 8405 if (ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_inum, 8406 flags, &vp, FFSV_FORCEINSMQ) != 0) 8407 return (EBUSY); 8408 ip = VTOI(vp); 8409 if (ip->i_mode == 0) { 8410 vgone(vp); 8411 } else if (DIP(ip, i_modrev) == freeblks->fb_modrev) { 8412 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - spare); 8413 UFS_INODE_SET_FLAG(ip, IN_CHANGE); 8414 /* 8415 * We must wait so this happens before the 8416 * journal is reclaimed. 8417 */ 8418 ffs_update(vp, 1); 8419 } 8420 vput(vp); 8421 } 8422 if (spare < 0) { 8423 UFS_LOCK(ump); 8424 fs->fs_pendingblocks += spare; 8425 UFS_UNLOCK(ump); 8426 } 8427 #ifdef QUOTA 8428 /* Handle spare. */ 8429 if (spare) 8430 quotaadj(freeblks->fb_quota, ump, -spare); 8431 quotarele(freeblks->fb_quota); 8432 #endif 8433 ACQUIRE_LOCK(ump); 8434 if (freeblks->fb_state & ONDEPLIST) { 8435 inodedep_lookup(freeblks->fb_list.wk_mp, freeblks->fb_inum, 8436 0, &inodedep); 8437 TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, fb_next); 8438 freeblks->fb_state &= ~ONDEPLIST; 8439 if (TAILQ_EMPTY(&inodedep->id_freeblklst)) 8440 free_inodedep(inodedep); 8441 } 8442 /* 8443 * All of the freeblock deps must be complete prior to this call 8444 * so it's now safe to complete earlier outstanding journal entries. 8445 */ 8446 handle_jwork(&freeblks->fb_jwork); 8447 WORKITEM_FREE(freeblks, D_FREEBLKS); 8448 FREE_LOCK(ump); 8449 return (0); 8450 } 8451 8452 /* 8453 * Release blocks associated with the freeblks and stored in the indirect 8454 * block dbn. If level is greater than SINGLE, the block is an indirect block 8455 * and recursive calls to indirtrunc must be used to cleanse other indirect 8456 * blocks. 8457 * 8458 * This handles partial and complete truncation of blocks. Partial is noted 8459 * with goingaway == 0. In this case the freework is completed after the 8460 * zero'd indirects are written to disk. For full truncation the freework 8461 * is completed after the block is freed. 8462 */ 8463 static void 8464 indir_trunc(freework, dbn, lbn) 8465 struct freework *freework; 8466 ufs2_daddr_t dbn; 8467 ufs_lbn_t lbn; 8468 { 8469 struct freework *nfreework; 8470 struct workhead wkhd; 8471 struct freeblks *freeblks; 8472 struct buf *bp; 8473 struct fs *fs; 8474 struct indirdep *indirdep; 8475 struct mount *mp; 8476 struct ufsmount *ump; 8477 ufs1_daddr_t *bap1; 8478 ufs2_daddr_t nb, nnb, *bap2; 8479 ufs_lbn_t lbnadd, nlbn; 8480 u_long key; 8481 int nblocks, ufs1fmt, freedblocks; 8482 int goingaway, freedeps, needj, level, cnt, i, error; 8483 8484 freeblks = freework->fw_freeblks; 8485 mp = freeblks->fb_list.wk_mp; 8486 ump = VFSTOUFS(mp); 8487 fs = ump->um_fs; 8488 /* 8489 * Get buffer of block pointers to be freed. There are three cases: 8490 * 8491 * 1) Partial truncate caches the indirdep pointer in the freework 8492 * which provides us a back copy to the save bp which holds the 8493 * pointers we want to clear. When this completes the zero 8494 * pointers are written to the real copy. 8495 * 2) The indirect is being completely truncated, cancel_indirdep() 8496 * eliminated the real copy and placed the indirdep on the saved 8497 * copy. The indirdep and buf are discarded when this completes. 8498 * 3) The indirect was not in memory, we read a copy off of the disk 8499 * using the devvp and drop and invalidate the buffer when we're 8500 * done. 8501 */ 8502 goingaway = 1; 8503 indirdep = NULL; 8504 if (freework->fw_indir != NULL) { 8505 goingaway = 0; 8506 indirdep = freework->fw_indir; 8507 bp = indirdep->ir_savebp; 8508 if (bp == NULL || bp->b_blkno != dbn) 8509 panic("indir_trunc: Bad saved buf %p blkno %jd", 8510 bp, (intmax_t)dbn); 8511 } else if ((bp = incore(&freeblks->fb_devvp->v_bufobj, dbn)) != NULL) { 8512 /* 8513 * The lock prevents the buf dep list from changing and 8514 * indirects on devvp should only ever have one dependency. 8515 */ 8516 indirdep = WK_INDIRDEP(LIST_FIRST(&bp->b_dep)); 8517 if (indirdep == NULL || (indirdep->ir_state & GOINGAWAY) == 0) 8518 panic("indir_trunc: Bad indirdep %p from buf %p", 8519 indirdep, bp); 8520 } else { 8521 error = ffs_breadz(ump, freeblks->fb_devvp, dbn, dbn, 8522 (int)fs->fs_bsize, NULL, NULL, 0, NOCRED, 0, NULL, &bp); 8523 if (error) 8524 return; 8525 } 8526 ACQUIRE_LOCK(ump); 8527 /* Protects against a race with complete_trunc_indir(). */ 8528 freework->fw_state &= ~INPROGRESS; 8529 /* 8530 * If we have an indirdep we need to enforce the truncation order 8531 * and discard it when it is complete. 8532 */ 8533 if (indirdep) { 8534 if (freework != TAILQ_FIRST(&indirdep->ir_trunc) && 8535 !TAILQ_EMPTY(&indirdep->ir_trunc)) { 8536 /* 8537 * Add the complete truncate to the list on the 8538 * indirdep to enforce in-order processing. 8539 */ 8540 if (freework->fw_indir == NULL) 8541 TAILQ_INSERT_TAIL(&indirdep->ir_trunc, 8542 freework, fw_next); 8543 FREE_LOCK(ump); 8544 return; 8545 } 8546 /* 8547 * If we're goingaway, free the indirdep. Otherwise it will 8548 * linger until the write completes. 8549 */ 8550 if (goingaway) { 8551 KASSERT(indirdep->ir_savebp == bp, 8552 ("indir_trunc: losing ir_savebp %p", 8553 indirdep->ir_savebp)); 8554 indirdep->ir_savebp = NULL; 8555 free_indirdep(indirdep); 8556 } 8557 } 8558 FREE_LOCK(ump); 8559 /* Initialize pointers depending on block size. */ 8560 if (ump->um_fstype == UFS1) { 8561 bap1 = (ufs1_daddr_t *)bp->b_data; 8562 nb = bap1[freework->fw_off]; 8563 ufs1fmt = 1; 8564 bap2 = NULL; 8565 } else { 8566 bap2 = (ufs2_daddr_t *)bp->b_data; 8567 nb = bap2[freework->fw_off]; 8568 ufs1fmt = 0; 8569 bap1 = NULL; 8570 } 8571 level = lbn_level(lbn); 8572 needj = MOUNTEDSUJ(UFSTOVFS(ump)) != 0; 8573 lbnadd = lbn_offset(fs, level); 8574 nblocks = btodb(fs->fs_bsize); 8575 nfreework = freework; 8576 freedeps = 0; 8577 cnt = 0; 8578 /* 8579 * Reclaim blocks. Traverses into nested indirect levels and 8580 * arranges for the current level to be freed when subordinates 8581 * are free when journaling. 8582 */ 8583 key = ffs_blkrelease_start(ump, freeblks->fb_devvp, freeblks->fb_inum); 8584 for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) { 8585 if (UFS_CHECK_BLKNO(mp, freeblks->fb_inum, nb, 8586 fs->fs_bsize) != 0) 8587 nb = 0; 8588 if (i != NINDIR(fs) - 1) { 8589 if (ufs1fmt) 8590 nnb = bap1[i+1]; 8591 else 8592 nnb = bap2[i+1]; 8593 } else 8594 nnb = 0; 8595 if (nb == 0) 8596 continue; 8597 cnt++; 8598 if (level != 0) { 8599 nlbn = (lbn + 1) - (i * lbnadd); 8600 if (needj != 0) { 8601 nfreework = newfreework(ump, freeblks, freework, 8602 nlbn, nb, fs->fs_frag, 0, 0); 8603 freedeps++; 8604 } 8605 indir_trunc(nfreework, fsbtodb(fs, nb), nlbn); 8606 } else { 8607 struct freedep *freedep; 8608 8609 /* 8610 * Attempt to aggregate freedep dependencies for 8611 * all blocks being released to the same CG. 8612 */ 8613 LIST_INIT(&wkhd); 8614 if (needj != 0 && 8615 (nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) { 8616 freedep = newfreedep(freework); 8617 WORKLIST_INSERT_UNLOCKED(&wkhd, 8618 &freedep->fd_list); 8619 freedeps++; 8620 } 8621 CTR3(KTR_SUJ, 8622 "indir_trunc: ino %jd blkno %jd size %d", 8623 freeblks->fb_inum, nb, fs->fs_bsize); 8624 ffs_blkfree(ump, fs, freeblks->fb_devvp, nb, 8625 fs->fs_bsize, freeblks->fb_inum, 8626 freeblks->fb_vtype, &wkhd, key); 8627 } 8628 } 8629 ffs_blkrelease_finish(ump, key); 8630 if (goingaway) { 8631 bp->b_flags |= B_INVAL | B_NOCACHE; 8632 brelse(bp); 8633 } 8634 freedblocks = 0; 8635 if (level == 0) 8636 freedblocks = (nblocks * cnt); 8637 if (needj == 0) 8638 freedblocks += nblocks; 8639 freeblks_free(ump, freeblks, freedblocks); 8640 /* 8641 * If we are journaling set up the ref counts and offset so this 8642 * indirect can be completed when its children are free. 8643 */ 8644 if (needj) { 8645 ACQUIRE_LOCK(ump); 8646 freework->fw_off = i; 8647 freework->fw_ref += freedeps; 8648 freework->fw_ref -= NINDIR(fs) + 1; 8649 if (level == 0) 8650 freeblks->fb_cgwait += freedeps; 8651 if (freework->fw_ref == 0) 8652 freework_freeblock(freework, SINGLETON_KEY); 8653 FREE_LOCK(ump); 8654 return; 8655 } 8656 /* 8657 * If we're not journaling we can free the indirect now. 8658 */ 8659 dbn = dbtofsb(fs, dbn); 8660 CTR3(KTR_SUJ, 8661 "indir_trunc 2: ino %jd blkno %jd size %d", 8662 freeblks->fb_inum, dbn, fs->fs_bsize); 8663 ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize, 8664 freeblks->fb_inum, freeblks->fb_vtype, NULL, SINGLETON_KEY); 8665 /* Non SUJ softdep does single-threaded truncations. */ 8666 if (freework->fw_blkno == dbn) { 8667 freework->fw_state |= ALLCOMPLETE; 8668 ACQUIRE_LOCK(ump); 8669 handle_written_freework(freework); 8670 FREE_LOCK(ump); 8671 } 8672 return; 8673 } 8674 8675 /* 8676 * Cancel an allocindir when it is removed via truncation. When bp is not 8677 * NULL the indirect never appeared on disk and is scheduled to be freed 8678 * independently of the indir so we can more easily track journal work. 8679 */ 8680 static void 8681 cancel_allocindir(aip, bp, freeblks, trunc) 8682 struct allocindir *aip; 8683 struct buf *bp; 8684 struct freeblks *freeblks; 8685 int trunc; 8686 { 8687 struct indirdep *indirdep; 8688 struct freefrag *freefrag; 8689 struct newblk *newblk; 8690 8691 newblk = (struct newblk *)aip; 8692 LIST_REMOVE(aip, ai_next); 8693 /* 8694 * We must eliminate the pointer in bp if it must be freed on its 8695 * own due to partial truncate or pending journal work. 8696 */ 8697 if (bp && (trunc || newblk->nb_jnewblk)) { 8698 /* 8699 * Clear the pointer and mark the aip to be freed 8700 * directly if it never existed on disk. 8701 */ 8702 aip->ai_state |= DELAYEDFREE; 8703 indirdep = aip->ai_indirdep; 8704 if (indirdep->ir_state & UFS1FMT) 8705 ((ufs1_daddr_t *)bp->b_data)[aip->ai_offset] = 0; 8706 else 8707 ((ufs2_daddr_t *)bp->b_data)[aip->ai_offset] = 0; 8708 } 8709 /* 8710 * When truncating the previous pointer will be freed via 8711 * savedbp. Eliminate the freefrag which would dup free. 8712 */ 8713 if (trunc && (freefrag = newblk->nb_freefrag) != NULL) { 8714 newblk->nb_freefrag = NULL; 8715 if (freefrag->ff_jdep) 8716 cancel_jfreefrag( 8717 WK_JFREEFRAG(freefrag->ff_jdep)); 8718 jwork_move(&freeblks->fb_jwork, &freefrag->ff_jwork); 8719 WORKITEM_FREE(freefrag, D_FREEFRAG); 8720 } 8721 /* 8722 * If the journal hasn't been written the jnewblk must be passed 8723 * to the call to ffs_blkfree that reclaims the space. We accomplish 8724 * this by leaving the journal dependency on the newblk to be freed 8725 * when a freework is created in handle_workitem_freeblocks(). 8726 */ 8727 cancel_newblk(newblk, NULL, &freeblks->fb_jwork); 8728 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list); 8729 } 8730 8731 /* 8732 * Create the mkdir dependencies for . and .. in a new directory. Link them 8733 * in to a newdirblk so any subsequent additions are tracked properly. The 8734 * caller is responsible for adding the mkdir1 dependency to the journal 8735 * and updating id_mkdiradd. This function returns with the per-filesystem 8736 * lock held. 8737 */ 8738 static struct mkdir * 8739 setup_newdir(dap, newinum, dinum, newdirbp, mkdirp) 8740 struct diradd *dap; 8741 ino_t newinum; 8742 ino_t dinum; 8743 struct buf *newdirbp; 8744 struct mkdir **mkdirp; 8745 { 8746 struct newblk *newblk; 8747 struct pagedep *pagedep; 8748 struct inodedep *inodedep; 8749 struct newdirblk *newdirblk; 8750 struct mkdir *mkdir1, *mkdir2; 8751 struct worklist *wk; 8752 struct jaddref *jaddref; 8753 struct ufsmount *ump; 8754 struct mount *mp; 8755 8756 mp = dap->da_list.wk_mp; 8757 ump = VFSTOUFS(mp); 8758 newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK, 8759 M_SOFTDEP_FLAGS); 8760 workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp); 8761 LIST_INIT(&newdirblk->db_mkdir); 8762 mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS); 8763 workitem_alloc(&mkdir1->md_list, D_MKDIR, mp); 8764 mkdir1->md_state = ATTACHED | MKDIR_BODY; 8765 mkdir1->md_diradd = dap; 8766 mkdir1->md_jaddref = NULL; 8767 mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS); 8768 workitem_alloc(&mkdir2->md_list, D_MKDIR, mp); 8769 mkdir2->md_state = ATTACHED | MKDIR_PARENT; 8770 mkdir2->md_diradd = dap; 8771 mkdir2->md_jaddref = NULL; 8772 if (MOUNTEDSUJ(mp) == 0) { 8773 mkdir1->md_state |= DEPCOMPLETE; 8774 mkdir2->md_state |= DEPCOMPLETE; 8775 } 8776 /* 8777 * Dependency on "." and ".." being written to disk. 8778 */ 8779 mkdir1->md_buf = newdirbp; 8780 ACQUIRE_LOCK(VFSTOUFS(mp)); 8781 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir1, md_mkdirs); 8782 /* 8783 * We must link the pagedep, allocdirect, and newdirblk for 8784 * the initial file page so the pointer to the new directory 8785 * is not written until the directory contents are live and 8786 * any subsequent additions are not marked live until the 8787 * block is reachable via the inode. 8788 */ 8789 if (pagedep_lookup(mp, newdirbp, newinum, 0, 0, &pagedep) == 0) 8790 panic("setup_newdir: lost pagedep"); 8791 LIST_FOREACH(wk, &newdirbp->b_dep, wk_list) 8792 if (wk->wk_type == D_ALLOCDIRECT) 8793 break; 8794 if (wk == NULL) 8795 panic("setup_newdir: lost allocdirect"); 8796 if (pagedep->pd_state & NEWBLOCK) 8797 panic("setup_newdir: NEWBLOCK already set"); 8798 newblk = WK_NEWBLK(wk); 8799 pagedep->pd_state |= NEWBLOCK; 8800 pagedep->pd_newdirblk = newdirblk; 8801 newdirblk->db_pagedep = pagedep; 8802 WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list); 8803 WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list); 8804 /* 8805 * Look up the inodedep for the parent directory so that we 8806 * can link mkdir2 into the pending dotdot jaddref or 8807 * the inode write if there is none. If the inode is 8808 * ALLCOMPLETE and no jaddref is present all dependencies have 8809 * been satisfied and mkdir2 can be freed. 8810 */ 8811 inodedep_lookup(mp, dinum, 0, &inodedep); 8812 if (MOUNTEDSUJ(mp)) { 8813 if (inodedep == NULL) 8814 panic("setup_newdir: Lost parent."); 8815 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 8816 inoreflst); 8817 KASSERT(jaddref != NULL && jaddref->ja_parent == newinum && 8818 (jaddref->ja_state & MKDIR_PARENT), 8819 ("setup_newdir: bad dotdot jaddref %p", jaddref)); 8820 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs); 8821 mkdir2->md_jaddref = jaddref; 8822 jaddref->ja_mkdir = mkdir2; 8823 } else if (inodedep == NULL || 8824 (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 8825 dap->da_state &= ~MKDIR_PARENT; 8826 WORKITEM_FREE(mkdir2, D_MKDIR); 8827 mkdir2 = NULL; 8828 } else { 8829 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs); 8830 WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir2->md_list); 8831 } 8832 *mkdirp = mkdir2; 8833 8834 return (mkdir1); 8835 } 8836 8837 /* 8838 * Directory entry addition dependencies. 8839 * 8840 * When adding a new directory entry, the inode (with its incremented link 8841 * count) must be written to disk before the directory entry's pointer to it. 8842 * Also, if the inode is newly allocated, the corresponding freemap must be 8843 * updated (on disk) before the directory entry's pointer. These requirements 8844 * are met via undo/redo on the directory entry's pointer, which consists 8845 * simply of the inode number. 8846 * 8847 * As directory entries are added and deleted, the free space within a 8848 * directory block can become fragmented. The ufs filesystem will compact 8849 * a fragmented directory block to make space for a new entry. When this 8850 * occurs, the offsets of previously added entries change. Any "diradd" 8851 * dependency structures corresponding to these entries must be updated with 8852 * the new offsets. 8853 */ 8854 8855 /* 8856 * This routine is called after the in-memory inode's link 8857 * count has been incremented, but before the directory entry's 8858 * pointer to the inode has been set. 8859 */ 8860 int 8861 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk) 8862 struct buf *bp; /* buffer containing directory block */ 8863 struct inode *dp; /* inode for directory */ 8864 off_t diroffset; /* offset of new entry in directory */ 8865 ino_t newinum; /* inode referenced by new directory entry */ 8866 struct buf *newdirbp; /* non-NULL => contents of new mkdir */ 8867 int isnewblk; /* entry is in a newly allocated block */ 8868 { 8869 int offset; /* offset of new entry within directory block */ 8870 ufs_lbn_t lbn; /* block in directory containing new entry */ 8871 struct fs *fs; 8872 struct diradd *dap; 8873 struct newblk *newblk; 8874 struct pagedep *pagedep; 8875 struct inodedep *inodedep; 8876 struct newdirblk *newdirblk; 8877 struct mkdir *mkdir1, *mkdir2; 8878 struct jaddref *jaddref; 8879 struct ufsmount *ump; 8880 struct mount *mp; 8881 int isindir; 8882 8883 mp = ITOVFS(dp); 8884 ump = VFSTOUFS(mp); 8885 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 8886 ("softdep_setup_directory_add called on non-softdep filesystem")); 8887 /* 8888 * Whiteouts have no dependencies. 8889 */ 8890 if (newinum == UFS_WINO) { 8891 if (newdirbp != NULL) 8892 bdwrite(newdirbp); 8893 return (0); 8894 } 8895 jaddref = NULL; 8896 mkdir1 = mkdir2 = NULL; 8897 fs = ump->um_fs; 8898 lbn = lblkno(fs, diroffset); 8899 offset = blkoff(fs, diroffset); 8900 dap = malloc(sizeof(struct diradd), M_DIRADD, 8901 M_SOFTDEP_FLAGS|M_ZERO); 8902 workitem_alloc(&dap->da_list, D_DIRADD, mp); 8903 dap->da_offset = offset; 8904 dap->da_newinum = newinum; 8905 dap->da_state = ATTACHED; 8906 LIST_INIT(&dap->da_jwork); 8907 isindir = bp->b_lblkno >= UFS_NDADDR; 8908 newdirblk = NULL; 8909 if (isnewblk && 8910 (isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) { 8911 newdirblk = malloc(sizeof(struct newdirblk), 8912 M_NEWDIRBLK, M_SOFTDEP_FLAGS); 8913 workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp); 8914 LIST_INIT(&newdirblk->db_mkdir); 8915 } 8916 /* 8917 * If we're creating a new directory setup the dependencies and set 8918 * the dap state to wait for them. Otherwise it's COMPLETE and 8919 * we can move on. 8920 */ 8921 if (newdirbp == NULL) { 8922 dap->da_state |= DEPCOMPLETE; 8923 ACQUIRE_LOCK(ump); 8924 } else { 8925 dap->da_state |= MKDIR_BODY | MKDIR_PARENT; 8926 mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp, 8927 &mkdir2); 8928 } 8929 /* 8930 * Link into parent directory pagedep to await its being written. 8931 */ 8932 pagedep_lookup(mp, bp, dp->i_number, lbn, DEPALLOC, &pagedep); 8933 #ifdef INVARIANTS 8934 if (diradd_lookup(pagedep, offset) != NULL) 8935 panic("softdep_setup_directory_add: %p already at off %d\n", 8936 diradd_lookup(pagedep, offset), offset); 8937 #endif 8938 dap->da_pagedep = pagedep; 8939 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap, 8940 da_pdlist); 8941 inodedep_lookup(mp, newinum, DEPALLOC, &inodedep); 8942 /* 8943 * If we're journaling, link the diradd into the jaddref so it 8944 * may be completed after the journal entry is written. Otherwise, 8945 * link the diradd into its inodedep. If the inode is not yet 8946 * written place it on the bufwait list, otherwise do the post-inode 8947 * write processing to put it on the id_pendinghd list. 8948 */ 8949 if (MOUNTEDSUJ(mp)) { 8950 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 8951 inoreflst); 8952 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 8953 ("softdep_setup_directory_add: bad jaddref %p", jaddref)); 8954 jaddref->ja_diroff = diroffset; 8955 jaddref->ja_diradd = dap; 8956 add_to_journal(&jaddref->ja_list); 8957 } else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) 8958 diradd_inode_written(dap, inodedep); 8959 else 8960 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 8961 /* 8962 * Add the journal entries for . and .. links now that the primary 8963 * link is written. 8964 */ 8965 if (mkdir1 != NULL && MOUNTEDSUJ(mp)) { 8966 jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref, 8967 inoreflst, if_deps); 8968 KASSERT(jaddref != NULL && 8969 jaddref->ja_ino == jaddref->ja_parent && 8970 (jaddref->ja_state & MKDIR_BODY), 8971 ("softdep_setup_directory_add: bad dot jaddref %p", 8972 jaddref)); 8973 mkdir1->md_jaddref = jaddref; 8974 jaddref->ja_mkdir = mkdir1; 8975 /* 8976 * It is important that the dotdot journal entry 8977 * is added prior to the dot entry since dot writes 8978 * both the dot and dotdot links. These both must 8979 * be added after the primary link for the journal 8980 * to remain consistent. 8981 */ 8982 add_to_journal(&mkdir2->md_jaddref->ja_list); 8983 add_to_journal(&jaddref->ja_list); 8984 } 8985 /* 8986 * If we are adding a new directory remember this diradd so that if 8987 * we rename it we can keep the dot and dotdot dependencies. If 8988 * we are adding a new name for an inode that has a mkdiradd we 8989 * must be in rename and we have to move the dot and dotdot 8990 * dependencies to this new name. The old name is being orphaned 8991 * soon. 8992 */ 8993 if (mkdir1 != NULL) { 8994 if (inodedep->id_mkdiradd != NULL) 8995 panic("softdep_setup_directory_add: Existing mkdir"); 8996 inodedep->id_mkdiradd = dap; 8997 } else if (inodedep->id_mkdiradd) 8998 merge_diradd(inodedep, dap); 8999 if (newdirblk != NULL) { 9000 /* 9001 * There is nothing to do if we are already tracking 9002 * this block. 9003 */ 9004 if ((pagedep->pd_state & NEWBLOCK) != 0) { 9005 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 9006 FREE_LOCK(ump); 9007 return (0); 9008 } 9009 if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk) 9010 == 0) 9011 panic("softdep_setup_directory_add: lost entry"); 9012 WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list); 9013 pagedep->pd_state |= NEWBLOCK; 9014 pagedep->pd_newdirblk = newdirblk; 9015 newdirblk->db_pagedep = pagedep; 9016 FREE_LOCK(ump); 9017 /* 9018 * If we extended into an indirect signal direnter to sync. 9019 */ 9020 if (isindir) 9021 return (1); 9022 return (0); 9023 } 9024 FREE_LOCK(ump); 9025 return (0); 9026 } 9027 9028 /* 9029 * This procedure is called to change the offset of a directory 9030 * entry when compacting a directory block which must be owned 9031 * exclusively by the caller. Note that the actual entry movement 9032 * must be done in this procedure to ensure that no I/O completions 9033 * occur while the move is in progress. 9034 */ 9035 void 9036 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize) 9037 struct buf *bp; /* Buffer holding directory block. */ 9038 struct inode *dp; /* inode for directory */ 9039 caddr_t base; /* address of dp->i_offset */ 9040 caddr_t oldloc; /* address of old directory location */ 9041 caddr_t newloc; /* address of new directory location */ 9042 int entrysize; /* size of directory entry */ 9043 { 9044 int offset, oldoffset, newoffset; 9045 struct pagedep *pagedep; 9046 struct jmvref *jmvref; 9047 struct diradd *dap; 9048 struct direct *de; 9049 struct mount *mp; 9050 struct ufsmount *ump; 9051 ufs_lbn_t lbn; 9052 int flags; 9053 9054 mp = ITOVFS(dp); 9055 ump = VFSTOUFS(mp); 9056 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 9057 ("softdep_change_directoryentry_offset called on " 9058 "non-softdep filesystem")); 9059 de = (struct direct *)oldloc; 9060 jmvref = NULL; 9061 flags = 0; 9062 /* 9063 * Moves are always journaled as it would be too complex to 9064 * determine if any affected adds or removes are present in the 9065 * journal. 9066 */ 9067 if (MOUNTEDSUJ(mp)) { 9068 flags = DEPALLOC; 9069 jmvref = newjmvref(dp, de->d_ino, 9070 I_OFFSET(dp) + (oldloc - base), 9071 I_OFFSET(dp) + (newloc - base)); 9072 } 9073 lbn = lblkno(ump->um_fs, I_OFFSET(dp)); 9074 offset = blkoff(ump->um_fs, I_OFFSET(dp)); 9075 oldoffset = offset + (oldloc - base); 9076 newoffset = offset + (newloc - base); 9077 ACQUIRE_LOCK(ump); 9078 if (pagedep_lookup(mp, bp, dp->i_number, lbn, flags, &pagedep) == 0) 9079 goto done; 9080 dap = diradd_lookup(pagedep, oldoffset); 9081 if (dap) { 9082 dap->da_offset = newoffset; 9083 newoffset = DIRADDHASH(newoffset); 9084 oldoffset = DIRADDHASH(oldoffset); 9085 if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE && 9086 newoffset != oldoffset) { 9087 LIST_REMOVE(dap, da_pdlist); 9088 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset], 9089 dap, da_pdlist); 9090 } 9091 } 9092 done: 9093 if (jmvref) { 9094 jmvref->jm_pagedep = pagedep; 9095 LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps); 9096 add_to_journal(&jmvref->jm_list); 9097 } 9098 bcopy(oldloc, newloc, entrysize); 9099 FREE_LOCK(ump); 9100 } 9101 9102 /* 9103 * Move the mkdir dependencies and journal work from one diradd to another 9104 * when renaming a directory. The new name must depend on the mkdir deps 9105 * completing as the old name did. Directories can only have one valid link 9106 * at a time so one must be canonical. 9107 */ 9108 static void 9109 merge_diradd(inodedep, newdap) 9110 struct inodedep *inodedep; 9111 struct diradd *newdap; 9112 { 9113 struct diradd *olddap; 9114 struct mkdir *mkdir, *nextmd; 9115 struct ufsmount *ump; 9116 short state; 9117 9118 olddap = inodedep->id_mkdiradd; 9119 inodedep->id_mkdiradd = newdap; 9120 if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 9121 newdap->da_state &= ~DEPCOMPLETE; 9122 ump = VFSTOUFS(inodedep->id_list.wk_mp); 9123 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; 9124 mkdir = nextmd) { 9125 nextmd = LIST_NEXT(mkdir, md_mkdirs); 9126 if (mkdir->md_diradd != olddap) 9127 continue; 9128 mkdir->md_diradd = newdap; 9129 state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY); 9130 newdap->da_state |= state; 9131 olddap->da_state &= ~state; 9132 if ((olddap->da_state & 9133 (MKDIR_PARENT | MKDIR_BODY)) == 0) 9134 break; 9135 } 9136 if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) 9137 panic("merge_diradd: unfound ref"); 9138 } 9139 /* 9140 * Any mkdir related journal items are not safe to be freed until 9141 * the new name is stable. 9142 */ 9143 jwork_move(&newdap->da_jwork, &olddap->da_jwork); 9144 olddap->da_state |= DEPCOMPLETE; 9145 complete_diradd(olddap); 9146 } 9147 9148 /* 9149 * Move the diradd to the pending list when all diradd dependencies are 9150 * complete. 9151 */ 9152 static void 9153 complete_diradd(dap) 9154 struct diradd *dap; 9155 { 9156 struct pagedep *pagedep; 9157 9158 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 9159 if (dap->da_state & DIRCHG) 9160 pagedep = dap->da_previous->dm_pagedep; 9161 else 9162 pagedep = dap->da_pagedep; 9163 LIST_REMOVE(dap, da_pdlist); 9164 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 9165 } 9166 } 9167 9168 /* 9169 * Cancel a diradd when a dirrem overlaps with it. We must cancel the journal 9170 * add entries and conditonally journal the remove. 9171 */ 9172 static void 9173 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref) 9174 struct diradd *dap; 9175 struct dirrem *dirrem; 9176 struct jremref *jremref; 9177 struct jremref *dotremref; 9178 struct jremref *dotdotremref; 9179 { 9180 struct inodedep *inodedep; 9181 struct jaddref *jaddref; 9182 struct inoref *inoref; 9183 struct ufsmount *ump; 9184 struct mkdir *mkdir; 9185 9186 /* 9187 * If no remove references were allocated we're on a non-journaled 9188 * filesystem and can skip the cancel step. 9189 */ 9190 if (jremref == NULL) { 9191 free_diradd(dap, NULL); 9192 return; 9193 } 9194 /* 9195 * Cancel the primary name an free it if it does not require 9196 * journaling. 9197 */ 9198 if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum, 9199 0, &inodedep) != 0) { 9200 /* Abort the addref that reference this diradd. */ 9201 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 9202 if (inoref->if_list.wk_type != D_JADDREF) 9203 continue; 9204 jaddref = (struct jaddref *)inoref; 9205 if (jaddref->ja_diradd != dap) 9206 continue; 9207 if (cancel_jaddref(jaddref, inodedep, 9208 &dirrem->dm_jwork) == 0) { 9209 free_jremref(jremref); 9210 jremref = NULL; 9211 } 9212 break; 9213 } 9214 } 9215 /* 9216 * Cancel subordinate names and free them if they do not require 9217 * journaling. 9218 */ 9219 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 9220 ump = VFSTOUFS(dap->da_list.wk_mp); 9221 LIST_FOREACH(mkdir, &ump->softdep_mkdirlisthd, md_mkdirs) { 9222 if (mkdir->md_diradd != dap) 9223 continue; 9224 if ((jaddref = mkdir->md_jaddref) == NULL) 9225 continue; 9226 mkdir->md_jaddref = NULL; 9227 if (mkdir->md_state & MKDIR_PARENT) { 9228 if (cancel_jaddref(jaddref, NULL, 9229 &dirrem->dm_jwork) == 0) { 9230 free_jremref(dotdotremref); 9231 dotdotremref = NULL; 9232 } 9233 } else { 9234 if (cancel_jaddref(jaddref, inodedep, 9235 &dirrem->dm_jwork) == 0) { 9236 free_jremref(dotremref); 9237 dotremref = NULL; 9238 } 9239 } 9240 } 9241 } 9242 9243 if (jremref) 9244 journal_jremref(dirrem, jremref, inodedep); 9245 if (dotremref) 9246 journal_jremref(dirrem, dotremref, inodedep); 9247 if (dotdotremref) 9248 journal_jremref(dirrem, dotdotremref, NULL); 9249 jwork_move(&dirrem->dm_jwork, &dap->da_jwork); 9250 free_diradd(dap, &dirrem->dm_jwork); 9251 } 9252 9253 /* 9254 * Free a diradd dependency structure. 9255 */ 9256 static void 9257 free_diradd(dap, wkhd) 9258 struct diradd *dap; 9259 struct workhead *wkhd; 9260 { 9261 struct dirrem *dirrem; 9262 struct pagedep *pagedep; 9263 struct inodedep *inodedep; 9264 struct mkdir *mkdir, *nextmd; 9265 struct ufsmount *ump; 9266 9267 ump = VFSTOUFS(dap->da_list.wk_mp); 9268 LOCK_OWNED(ump); 9269 LIST_REMOVE(dap, da_pdlist); 9270 if (dap->da_state & ONWORKLIST) 9271 WORKLIST_REMOVE(&dap->da_list); 9272 if ((dap->da_state & DIRCHG) == 0) { 9273 pagedep = dap->da_pagedep; 9274 } else { 9275 dirrem = dap->da_previous; 9276 pagedep = dirrem->dm_pagedep; 9277 dirrem->dm_dirinum = pagedep->pd_ino; 9278 dirrem->dm_state |= COMPLETE; 9279 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 9280 add_to_worklist(&dirrem->dm_list, 0); 9281 } 9282 if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum, 9283 0, &inodedep) != 0) 9284 if (inodedep->id_mkdiradd == dap) 9285 inodedep->id_mkdiradd = NULL; 9286 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 9287 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; 9288 mkdir = nextmd) { 9289 nextmd = LIST_NEXT(mkdir, md_mkdirs); 9290 if (mkdir->md_diradd != dap) 9291 continue; 9292 dap->da_state &= 9293 ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)); 9294 LIST_REMOVE(mkdir, md_mkdirs); 9295 if (mkdir->md_state & ONWORKLIST) 9296 WORKLIST_REMOVE(&mkdir->md_list); 9297 if (mkdir->md_jaddref != NULL) 9298 panic("free_diradd: Unexpected jaddref"); 9299 WORKITEM_FREE(mkdir, D_MKDIR); 9300 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) 9301 break; 9302 } 9303 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) 9304 panic("free_diradd: unfound ref"); 9305 } 9306 if (inodedep) 9307 free_inodedep(inodedep); 9308 /* 9309 * Free any journal segments waiting for the directory write. 9310 */ 9311 handle_jwork(&dap->da_jwork); 9312 WORKITEM_FREE(dap, D_DIRADD); 9313 } 9314 9315 /* 9316 * Directory entry removal dependencies. 9317 * 9318 * When removing a directory entry, the entry's inode pointer must be 9319 * zero'ed on disk before the corresponding inode's link count is decremented 9320 * (possibly freeing the inode for re-use). This dependency is handled by 9321 * updating the directory entry but delaying the inode count reduction until 9322 * after the directory block has been written to disk. After this point, the 9323 * inode count can be decremented whenever it is convenient. 9324 */ 9325 9326 /* 9327 * This routine should be called immediately after removing 9328 * a directory entry. The inode's link count should not be 9329 * decremented by the calling procedure -- the soft updates 9330 * code will do this task when it is safe. 9331 */ 9332 void 9333 softdep_setup_remove(bp, dp, ip, isrmdir) 9334 struct buf *bp; /* buffer containing directory block */ 9335 struct inode *dp; /* inode for the directory being modified */ 9336 struct inode *ip; /* inode for directory entry being removed */ 9337 int isrmdir; /* indicates if doing RMDIR */ 9338 { 9339 struct dirrem *dirrem, *prevdirrem; 9340 struct inodedep *inodedep; 9341 struct ufsmount *ump; 9342 int direct; 9343 9344 ump = ITOUMP(ip); 9345 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 9346 ("softdep_setup_remove called on non-softdep filesystem")); 9347 /* 9348 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK. We want 9349 * newdirrem() to setup the full directory remove which requires 9350 * isrmdir > 1. 9351 */ 9352 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 9353 /* 9354 * Add the dirrem to the inodedep's pending remove list for quick 9355 * discovery later. 9356 */ 9357 if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0) 9358 panic("softdep_setup_remove: Lost inodedep."); 9359 KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked")); 9360 dirrem->dm_state |= ONDEPLIST; 9361 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 9362 9363 /* 9364 * If the COMPLETE flag is clear, then there were no active 9365 * entries and we want to roll back to a zeroed entry until 9366 * the new inode is committed to disk. If the COMPLETE flag is 9367 * set then we have deleted an entry that never made it to 9368 * disk. If the entry we deleted resulted from a name change, 9369 * then the old name still resides on disk. We cannot delete 9370 * its inode (returned to us in prevdirrem) until the zeroed 9371 * directory entry gets to disk. The new inode has never been 9372 * referenced on the disk, so can be deleted immediately. 9373 */ 9374 if ((dirrem->dm_state & COMPLETE) == 0) { 9375 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem, 9376 dm_next); 9377 FREE_LOCK(ump); 9378 } else { 9379 if (prevdirrem != NULL) 9380 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, 9381 prevdirrem, dm_next); 9382 dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino; 9383 direct = LIST_EMPTY(&dirrem->dm_jremrefhd); 9384 FREE_LOCK(ump); 9385 if (direct) 9386 handle_workitem_remove(dirrem, 0); 9387 } 9388 } 9389 9390 /* 9391 * Check for an entry matching 'offset' on both the pd_dirraddhd list and the 9392 * pd_pendinghd list of a pagedep. 9393 */ 9394 static struct diradd * 9395 diradd_lookup(pagedep, offset) 9396 struct pagedep *pagedep; 9397 int offset; 9398 { 9399 struct diradd *dap; 9400 9401 LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist) 9402 if (dap->da_offset == offset) 9403 return (dap); 9404 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) 9405 if (dap->da_offset == offset) 9406 return (dap); 9407 return (NULL); 9408 } 9409 9410 /* 9411 * Search for a .. diradd dependency in a directory that is being removed. 9412 * If the directory was renamed to a new parent we have a diradd rather 9413 * than a mkdir for the .. entry. We need to cancel it now before 9414 * it is found in truncate(). 9415 */ 9416 static struct jremref * 9417 cancel_diradd_dotdot(ip, dirrem, jremref) 9418 struct inode *ip; 9419 struct dirrem *dirrem; 9420 struct jremref *jremref; 9421 { 9422 struct pagedep *pagedep; 9423 struct diradd *dap; 9424 struct worklist *wk; 9425 9426 if (pagedep_lookup(ITOVFS(ip), NULL, ip->i_number, 0, 0, &pagedep) == 0) 9427 return (jremref); 9428 dap = diradd_lookup(pagedep, DOTDOT_OFFSET); 9429 if (dap == NULL) 9430 return (jremref); 9431 cancel_diradd(dap, dirrem, jremref, NULL, NULL); 9432 /* 9433 * Mark any journal work as belonging to the parent so it is freed 9434 * with the .. reference. 9435 */ 9436 LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list) 9437 wk->wk_state |= MKDIR_PARENT; 9438 return (NULL); 9439 } 9440 9441 /* 9442 * Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to 9443 * replace it with a dirrem/diradd pair as a result of re-parenting a 9444 * directory. This ensures that we don't simultaneously have a mkdir and 9445 * a diradd for the same .. entry. 9446 */ 9447 static struct jremref * 9448 cancel_mkdir_dotdot(ip, dirrem, jremref) 9449 struct inode *ip; 9450 struct dirrem *dirrem; 9451 struct jremref *jremref; 9452 { 9453 struct inodedep *inodedep; 9454 struct jaddref *jaddref; 9455 struct ufsmount *ump; 9456 struct mkdir *mkdir; 9457 struct diradd *dap; 9458 struct mount *mp; 9459 9460 mp = ITOVFS(ip); 9461 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 9462 return (jremref); 9463 dap = inodedep->id_mkdiradd; 9464 if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0) 9465 return (jremref); 9466 ump = VFSTOUFS(inodedep->id_list.wk_mp); 9467 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; 9468 mkdir = LIST_NEXT(mkdir, md_mkdirs)) 9469 if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT) 9470 break; 9471 if (mkdir == NULL) 9472 panic("cancel_mkdir_dotdot: Unable to find mkdir\n"); 9473 if ((jaddref = mkdir->md_jaddref) != NULL) { 9474 mkdir->md_jaddref = NULL; 9475 jaddref->ja_state &= ~MKDIR_PARENT; 9476 if (inodedep_lookup(mp, jaddref->ja_ino, 0, &inodedep) == 0) 9477 panic("cancel_mkdir_dotdot: Lost parent inodedep"); 9478 if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) { 9479 journal_jremref(dirrem, jremref, inodedep); 9480 jremref = NULL; 9481 } 9482 } 9483 if (mkdir->md_state & ONWORKLIST) 9484 WORKLIST_REMOVE(&mkdir->md_list); 9485 mkdir->md_state |= ALLCOMPLETE; 9486 complete_mkdir(mkdir); 9487 return (jremref); 9488 } 9489 9490 static void 9491 journal_jremref(dirrem, jremref, inodedep) 9492 struct dirrem *dirrem; 9493 struct jremref *jremref; 9494 struct inodedep *inodedep; 9495 { 9496 9497 if (inodedep == NULL) 9498 if (inodedep_lookup(jremref->jr_list.wk_mp, 9499 jremref->jr_ref.if_ino, 0, &inodedep) == 0) 9500 panic("journal_jremref: Lost inodedep"); 9501 LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps); 9502 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps); 9503 add_to_journal(&jremref->jr_list); 9504 } 9505 9506 static void 9507 dirrem_journal(dirrem, jremref, dotremref, dotdotremref) 9508 struct dirrem *dirrem; 9509 struct jremref *jremref; 9510 struct jremref *dotremref; 9511 struct jremref *dotdotremref; 9512 { 9513 struct inodedep *inodedep; 9514 9515 if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0, 9516 &inodedep) == 0) 9517 panic("dirrem_journal: Lost inodedep"); 9518 journal_jremref(dirrem, jremref, inodedep); 9519 if (dotremref) 9520 journal_jremref(dirrem, dotremref, inodedep); 9521 if (dotdotremref) 9522 journal_jremref(dirrem, dotdotremref, NULL); 9523 } 9524 9525 /* 9526 * Allocate a new dirrem if appropriate and return it along with 9527 * its associated pagedep. Called without a lock, returns with lock. 9528 */ 9529 static struct dirrem * 9530 newdirrem(bp, dp, ip, isrmdir, prevdirremp) 9531 struct buf *bp; /* buffer containing directory block */ 9532 struct inode *dp; /* inode for the directory being modified */ 9533 struct inode *ip; /* inode for directory entry being removed */ 9534 int isrmdir; /* indicates if doing RMDIR */ 9535 struct dirrem **prevdirremp; /* previously referenced inode, if any */ 9536 { 9537 int offset; 9538 ufs_lbn_t lbn; 9539 struct diradd *dap; 9540 struct dirrem *dirrem; 9541 struct pagedep *pagedep; 9542 struct jremref *jremref; 9543 struct jremref *dotremref; 9544 struct jremref *dotdotremref; 9545 struct vnode *dvp; 9546 struct ufsmount *ump; 9547 9548 /* 9549 * Whiteouts have no deletion dependencies. 9550 */ 9551 if (ip == NULL) 9552 panic("newdirrem: whiteout"); 9553 dvp = ITOV(dp); 9554 ump = ITOUMP(dp); 9555 9556 /* 9557 * If the system is over its limit and our filesystem is 9558 * responsible for more than our share of that usage and 9559 * we are not a snapshot, request some inodedep cleanup. 9560 * Limiting the number of dirrem structures will also limit 9561 * the number of freefile and freeblks structures. 9562 */ 9563 ACQUIRE_LOCK(ump); 9564 if (!IS_SNAPSHOT(ip) && softdep_excess_items(ump, D_DIRREM)) 9565 schedule_cleanup(UFSTOVFS(ump)); 9566 else 9567 FREE_LOCK(ump); 9568 dirrem = malloc(sizeof(struct dirrem), M_DIRREM, M_SOFTDEP_FLAGS | 9569 M_ZERO); 9570 workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount); 9571 LIST_INIT(&dirrem->dm_jremrefhd); 9572 LIST_INIT(&dirrem->dm_jwork); 9573 dirrem->dm_state = isrmdir ? RMDIR : 0; 9574 dirrem->dm_oldinum = ip->i_number; 9575 *prevdirremp = NULL; 9576 /* 9577 * Allocate remove reference structures to track journal write 9578 * dependencies. We will always have one for the link and 9579 * when doing directories we will always have one more for dot. 9580 * When renaming a directory we skip the dotdot link change so 9581 * this is not needed. 9582 */ 9583 jremref = dotremref = dotdotremref = NULL; 9584 if (DOINGSUJ(dvp)) { 9585 if (isrmdir) { 9586 jremref = newjremref(dirrem, dp, ip, I_OFFSET(dp), 9587 ip->i_effnlink + 2); 9588 dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET, 9589 ip->i_effnlink + 1); 9590 dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET, 9591 dp->i_effnlink + 1); 9592 dotdotremref->jr_state |= MKDIR_PARENT; 9593 } else 9594 jremref = newjremref(dirrem, dp, ip, I_OFFSET(dp), 9595 ip->i_effnlink + 1); 9596 } 9597 ACQUIRE_LOCK(ump); 9598 lbn = lblkno(ump->um_fs, I_OFFSET(dp)); 9599 offset = blkoff(ump->um_fs, I_OFFSET(dp)); 9600 pagedep_lookup(UFSTOVFS(ump), bp, dp->i_number, lbn, DEPALLOC, 9601 &pagedep); 9602 dirrem->dm_pagedep = pagedep; 9603 dirrem->dm_offset = offset; 9604 /* 9605 * If we're renaming a .. link to a new directory, cancel any 9606 * existing MKDIR_PARENT mkdir. If it has already been canceled 9607 * the jremref is preserved for any potential diradd in this 9608 * location. This can not coincide with a rmdir. 9609 */ 9610 if (I_OFFSET(dp) == DOTDOT_OFFSET) { 9611 if (isrmdir) 9612 panic("newdirrem: .. directory change during remove?"); 9613 jremref = cancel_mkdir_dotdot(dp, dirrem, jremref); 9614 } 9615 /* 9616 * If we're removing a directory search for the .. dependency now and 9617 * cancel it. Any pending journal work will be added to the dirrem 9618 * to be completed when the workitem remove completes. 9619 */ 9620 if (isrmdir) 9621 dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref); 9622 /* 9623 * Check for a diradd dependency for the same directory entry. 9624 * If present, then both dependencies become obsolete and can 9625 * be de-allocated. 9626 */ 9627 dap = diradd_lookup(pagedep, offset); 9628 if (dap == NULL) { 9629 /* 9630 * Link the jremref structures into the dirrem so they are 9631 * written prior to the pagedep. 9632 */ 9633 if (jremref) 9634 dirrem_journal(dirrem, jremref, dotremref, 9635 dotdotremref); 9636 return (dirrem); 9637 } 9638 /* 9639 * Must be ATTACHED at this point. 9640 */ 9641 if ((dap->da_state & ATTACHED) == 0) 9642 panic("newdirrem: not ATTACHED"); 9643 if (dap->da_newinum != ip->i_number) 9644 panic("newdirrem: inum %ju should be %ju", 9645 (uintmax_t)ip->i_number, (uintmax_t)dap->da_newinum); 9646 /* 9647 * If we are deleting a changed name that never made it to disk, 9648 * then return the dirrem describing the previous inode (which 9649 * represents the inode currently referenced from this entry on disk). 9650 */ 9651 if ((dap->da_state & DIRCHG) != 0) { 9652 *prevdirremp = dap->da_previous; 9653 dap->da_state &= ~DIRCHG; 9654 dap->da_pagedep = pagedep; 9655 } 9656 /* 9657 * We are deleting an entry that never made it to disk. 9658 * Mark it COMPLETE so we can delete its inode immediately. 9659 */ 9660 dirrem->dm_state |= COMPLETE; 9661 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref); 9662 #ifdef INVARIANTS 9663 if (isrmdir == 0) { 9664 struct worklist *wk; 9665 9666 LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list) 9667 if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT)) 9668 panic("bad wk %p (0x%X)\n", wk, wk->wk_state); 9669 } 9670 #endif 9671 9672 return (dirrem); 9673 } 9674 9675 /* 9676 * Directory entry change dependencies. 9677 * 9678 * Changing an existing directory entry requires that an add operation 9679 * be completed first followed by a deletion. The semantics for the addition 9680 * are identical to the description of adding a new entry above except 9681 * that the rollback is to the old inode number rather than zero. Once 9682 * the addition dependency is completed, the removal is done as described 9683 * in the removal routine above. 9684 */ 9685 9686 /* 9687 * This routine should be called immediately after changing 9688 * a directory entry. The inode's link count should not be 9689 * decremented by the calling procedure -- the soft updates 9690 * code will perform this task when it is safe. 9691 */ 9692 void 9693 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 9694 struct buf *bp; /* buffer containing directory block */ 9695 struct inode *dp; /* inode for the directory being modified */ 9696 struct inode *ip; /* inode for directory entry being removed */ 9697 ino_t newinum; /* new inode number for changed entry */ 9698 int isrmdir; /* indicates if doing RMDIR */ 9699 { 9700 int offset; 9701 struct diradd *dap = NULL; 9702 struct dirrem *dirrem, *prevdirrem; 9703 struct pagedep *pagedep; 9704 struct inodedep *inodedep; 9705 struct jaddref *jaddref; 9706 struct mount *mp; 9707 struct ufsmount *ump; 9708 9709 mp = ITOVFS(dp); 9710 ump = VFSTOUFS(mp); 9711 offset = blkoff(ump->um_fs, I_OFFSET(dp)); 9712 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 9713 ("softdep_setup_directory_change called on non-softdep filesystem")); 9714 9715 /* 9716 * Whiteouts do not need diradd dependencies. 9717 */ 9718 if (newinum != UFS_WINO) { 9719 dap = malloc(sizeof(struct diradd), 9720 M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO); 9721 workitem_alloc(&dap->da_list, D_DIRADD, mp); 9722 dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE; 9723 dap->da_offset = offset; 9724 dap->da_newinum = newinum; 9725 LIST_INIT(&dap->da_jwork); 9726 } 9727 9728 /* 9729 * Allocate a new dirrem and ACQUIRE_LOCK. 9730 */ 9731 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 9732 pagedep = dirrem->dm_pagedep; 9733 /* 9734 * The possible values for isrmdir: 9735 * 0 - non-directory file rename 9736 * 1 - directory rename within same directory 9737 * inum - directory rename to new directory of given inode number 9738 * When renaming to a new directory, we are both deleting and 9739 * creating a new directory entry, so the link count on the new 9740 * directory should not change. Thus we do not need the followup 9741 * dirrem which is usually done in handle_workitem_remove. We set 9742 * the DIRCHG flag to tell handle_workitem_remove to skip the 9743 * followup dirrem. 9744 */ 9745 if (isrmdir > 1) 9746 dirrem->dm_state |= DIRCHG; 9747 9748 /* 9749 * Whiteouts have no additional dependencies, 9750 * so just put the dirrem on the correct list. 9751 */ 9752 if (newinum == UFS_WINO) { 9753 if ((dirrem->dm_state & COMPLETE) == 0) { 9754 LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem, 9755 dm_next); 9756 } else { 9757 dirrem->dm_dirinum = pagedep->pd_ino; 9758 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 9759 add_to_worklist(&dirrem->dm_list, 0); 9760 } 9761 FREE_LOCK(ump); 9762 return; 9763 } 9764 /* 9765 * Add the dirrem to the inodedep's pending remove list for quick 9766 * discovery later. A valid nlinkdelta ensures that this lookup 9767 * will not fail. 9768 */ 9769 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 9770 panic("softdep_setup_directory_change: Lost inodedep."); 9771 dirrem->dm_state |= ONDEPLIST; 9772 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 9773 9774 /* 9775 * If the COMPLETE flag is clear, then there were no active 9776 * entries and we want to roll back to the previous inode until 9777 * the new inode is committed to disk. If the COMPLETE flag is 9778 * set, then we have deleted an entry that never made it to disk. 9779 * If the entry we deleted resulted from a name change, then the old 9780 * inode reference still resides on disk. Any rollback that we do 9781 * needs to be to that old inode (returned to us in prevdirrem). If 9782 * the entry we deleted resulted from a create, then there is 9783 * no entry on the disk, so we want to roll back to zero rather 9784 * than the uncommitted inode. In either of the COMPLETE cases we 9785 * want to immediately free the unwritten and unreferenced inode. 9786 */ 9787 if ((dirrem->dm_state & COMPLETE) == 0) { 9788 dap->da_previous = dirrem; 9789 } else { 9790 if (prevdirrem != NULL) { 9791 dap->da_previous = prevdirrem; 9792 } else { 9793 dap->da_state &= ~DIRCHG; 9794 dap->da_pagedep = pagedep; 9795 } 9796 dirrem->dm_dirinum = pagedep->pd_ino; 9797 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 9798 add_to_worklist(&dirrem->dm_list, 0); 9799 } 9800 /* 9801 * Lookup the jaddref for this journal entry. We must finish 9802 * initializing it and make the diradd write dependent on it. 9803 * If we're not journaling, put it on the id_bufwait list if the 9804 * inode is not yet written. If it is written, do the post-inode 9805 * write processing to put it on the id_pendinghd list. 9806 */ 9807 inodedep_lookup(mp, newinum, DEPALLOC, &inodedep); 9808 if (MOUNTEDSUJ(mp)) { 9809 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 9810 inoreflst); 9811 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 9812 ("softdep_setup_directory_change: bad jaddref %p", 9813 jaddref)); 9814 jaddref->ja_diroff = I_OFFSET(dp); 9815 jaddref->ja_diradd = dap; 9816 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], 9817 dap, da_pdlist); 9818 add_to_journal(&jaddref->ja_list); 9819 } else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 9820 dap->da_state |= COMPLETE; 9821 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 9822 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 9823 } else { 9824 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], 9825 dap, da_pdlist); 9826 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 9827 } 9828 /* 9829 * If we're making a new name for a directory that has not been 9830 * committed when need to move the dot and dotdot references to 9831 * this new name. 9832 */ 9833 if (inodedep->id_mkdiradd && I_OFFSET(dp) != DOTDOT_OFFSET) 9834 merge_diradd(inodedep, dap); 9835 FREE_LOCK(ump); 9836 } 9837 9838 /* 9839 * Called whenever the link count on an inode is changed. 9840 * It creates an inode dependency so that the new reference(s) 9841 * to the inode cannot be committed to disk until the updated 9842 * inode has been written. 9843 */ 9844 void 9845 softdep_change_linkcnt(ip) 9846 struct inode *ip; /* the inode with the increased link count */ 9847 { 9848 struct inodedep *inodedep; 9849 struct ufsmount *ump; 9850 9851 ump = ITOUMP(ip); 9852 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 9853 ("softdep_change_linkcnt called on non-softdep filesystem")); 9854 ACQUIRE_LOCK(ump); 9855 inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep); 9856 if (ip->i_nlink < ip->i_effnlink) 9857 panic("softdep_change_linkcnt: bad delta"); 9858 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 9859 FREE_LOCK(ump); 9860 } 9861 9862 /* 9863 * Attach a sbdep dependency to the superblock buf so that we can keep 9864 * track of the head of the linked list of referenced but unlinked inodes. 9865 */ 9866 void 9867 softdep_setup_sbupdate(ump, fs, bp) 9868 struct ufsmount *ump; 9869 struct fs *fs; 9870 struct buf *bp; 9871 { 9872 struct sbdep *sbdep; 9873 struct worklist *wk; 9874 9875 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 9876 ("softdep_setup_sbupdate called on non-softdep filesystem")); 9877 LIST_FOREACH(wk, &bp->b_dep, wk_list) 9878 if (wk->wk_type == D_SBDEP) 9879 break; 9880 if (wk != NULL) 9881 return; 9882 sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS); 9883 workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump)); 9884 sbdep->sb_fs = fs; 9885 sbdep->sb_ump = ump; 9886 ACQUIRE_LOCK(ump); 9887 WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list); 9888 FREE_LOCK(ump); 9889 } 9890 9891 /* 9892 * Return the first unlinked inodedep which is ready to be the head of the 9893 * list. The inodedep and all those after it must have valid next pointers. 9894 */ 9895 static struct inodedep * 9896 first_unlinked_inodedep(ump) 9897 struct ufsmount *ump; 9898 { 9899 struct inodedep *inodedep; 9900 struct inodedep *idp; 9901 9902 LOCK_OWNED(ump); 9903 for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst); 9904 inodedep; inodedep = idp) { 9905 if ((inodedep->id_state & UNLINKNEXT) == 0) 9906 return (NULL); 9907 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 9908 if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0) 9909 break; 9910 if ((inodedep->id_state & UNLINKPREV) == 0) 9911 break; 9912 } 9913 return (inodedep); 9914 } 9915 9916 /* 9917 * Set the sujfree unlinked head pointer prior to writing a superblock. 9918 */ 9919 static void 9920 initiate_write_sbdep(sbdep) 9921 struct sbdep *sbdep; 9922 { 9923 struct inodedep *inodedep; 9924 struct fs *bpfs; 9925 struct fs *fs; 9926 9927 bpfs = sbdep->sb_fs; 9928 fs = sbdep->sb_ump->um_fs; 9929 inodedep = first_unlinked_inodedep(sbdep->sb_ump); 9930 if (inodedep) { 9931 fs->fs_sujfree = inodedep->id_ino; 9932 inodedep->id_state |= UNLINKPREV; 9933 } else 9934 fs->fs_sujfree = 0; 9935 bpfs->fs_sujfree = fs->fs_sujfree; 9936 /* 9937 * Because we have made changes to the superblock, we need to 9938 * recompute its check-hash. 9939 */ 9940 bpfs->fs_ckhash = ffs_calc_sbhash(bpfs); 9941 } 9942 9943 /* 9944 * After a superblock is written determine whether it must be written again 9945 * due to a changing unlinked list head. 9946 */ 9947 static int 9948 handle_written_sbdep(sbdep, bp) 9949 struct sbdep *sbdep; 9950 struct buf *bp; 9951 { 9952 struct inodedep *inodedep; 9953 struct fs *fs; 9954 9955 LOCK_OWNED(sbdep->sb_ump); 9956 fs = sbdep->sb_fs; 9957 /* 9958 * If the superblock doesn't match the in-memory list start over. 9959 */ 9960 inodedep = first_unlinked_inodedep(sbdep->sb_ump); 9961 if ((inodedep && fs->fs_sujfree != inodedep->id_ino) || 9962 (inodedep == NULL && fs->fs_sujfree != 0)) { 9963 bdirty(bp); 9964 return (1); 9965 } 9966 WORKITEM_FREE(sbdep, D_SBDEP); 9967 if (fs->fs_sujfree == 0) 9968 return (0); 9969 /* 9970 * Now that we have a record of this inode in stable store allow it 9971 * to be written to free up pending work. Inodes may see a lot of 9972 * write activity after they are unlinked which we must not hold up. 9973 */ 9974 for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) { 9975 if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS) 9976 panic("handle_written_sbdep: Bad inodedep %p (0x%X)", 9977 inodedep, inodedep->id_state); 9978 if (inodedep->id_state & UNLINKONLIST) 9979 break; 9980 inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST; 9981 } 9982 9983 return (0); 9984 } 9985 9986 /* 9987 * Mark an inodedep as unlinked and insert it into the in-memory unlinked list. 9988 */ 9989 static void 9990 unlinked_inodedep(mp, inodedep) 9991 struct mount *mp; 9992 struct inodedep *inodedep; 9993 { 9994 struct ufsmount *ump; 9995 9996 ump = VFSTOUFS(mp); 9997 LOCK_OWNED(ump); 9998 if (MOUNTEDSUJ(mp) == 0) 9999 return; 10000 ump->um_fs->fs_fmod = 1; 10001 if (inodedep->id_state & UNLINKED) 10002 panic("unlinked_inodedep: %p already unlinked\n", inodedep); 10003 inodedep->id_state |= UNLINKED; 10004 TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked); 10005 } 10006 10007 /* 10008 * Remove an inodedep from the unlinked inodedep list. This may require 10009 * disk writes if the inode has made it that far. 10010 */ 10011 static void 10012 clear_unlinked_inodedep(inodedep) 10013 struct inodedep *inodedep; 10014 { 10015 struct ufs2_dinode *dip; 10016 struct ufsmount *ump; 10017 struct inodedep *idp; 10018 struct inodedep *idn; 10019 struct fs *fs, *bpfs; 10020 struct buf *bp; 10021 daddr_t dbn; 10022 ino_t ino; 10023 ino_t nino; 10024 ino_t pino; 10025 int error; 10026 10027 ump = VFSTOUFS(inodedep->id_list.wk_mp); 10028 fs = ump->um_fs; 10029 ino = inodedep->id_ino; 10030 error = 0; 10031 for (;;) { 10032 LOCK_OWNED(ump); 10033 KASSERT((inodedep->id_state & UNLINKED) != 0, 10034 ("clear_unlinked_inodedep: inodedep %p not unlinked", 10035 inodedep)); 10036 /* 10037 * If nothing has yet been written simply remove us from 10038 * the in memory list and return. This is the most common 10039 * case where handle_workitem_remove() loses the final 10040 * reference. 10041 */ 10042 if ((inodedep->id_state & UNLINKLINKS) == 0) 10043 break; 10044 /* 10045 * If we have a NEXT pointer and no PREV pointer we can simply 10046 * clear NEXT's PREV and remove ourselves from the list. Be 10047 * careful not to clear PREV if the superblock points at 10048 * next as well. 10049 */ 10050 idn = TAILQ_NEXT(inodedep, id_unlinked); 10051 if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) { 10052 if (idn && fs->fs_sujfree != idn->id_ino) 10053 idn->id_state &= ~UNLINKPREV; 10054 break; 10055 } 10056 /* 10057 * Here we have an inodedep which is actually linked into 10058 * the list. We must remove it by forcing a write to the 10059 * link before us, whether it be the superblock or an inode. 10060 * Unfortunately the list may change while we're waiting 10061 * on the buf lock for either resource so we must loop until 10062 * we lock the right one. If both the superblock and an 10063 * inode point to this inode we must clear the inode first 10064 * followed by the superblock. 10065 */ 10066 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 10067 pino = 0; 10068 if (idp && (idp->id_state & UNLINKNEXT)) 10069 pino = idp->id_ino; 10070 FREE_LOCK(ump); 10071 if (pino == 0) { 10072 bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc), 10073 (int)fs->fs_sbsize, 0, 0, 0); 10074 } else { 10075 dbn = fsbtodb(fs, ino_to_fsba(fs, pino)); 10076 error = ffs_breadz(ump, ump->um_devvp, dbn, dbn, 10077 (int)fs->fs_bsize, NULL, NULL, 0, NOCRED, 0, NULL, 10078 &bp); 10079 } 10080 ACQUIRE_LOCK(ump); 10081 if (error) 10082 break; 10083 /* If the list has changed restart the loop. */ 10084 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 10085 nino = 0; 10086 if (idp && (idp->id_state & UNLINKNEXT)) 10087 nino = idp->id_ino; 10088 if (nino != pino || 10089 (inodedep->id_state & UNLINKPREV) != UNLINKPREV) { 10090 FREE_LOCK(ump); 10091 brelse(bp); 10092 ACQUIRE_LOCK(ump); 10093 continue; 10094 } 10095 nino = 0; 10096 idn = TAILQ_NEXT(inodedep, id_unlinked); 10097 if (idn) 10098 nino = idn->id_ino; 10099 /* 10100 * Remove us from the in memory list. After this we cannot 10101 * access the inodedep. 10102 */ 10103 KASSERT((inodedep->id_state & UNLINKED) != 0, 10104 ("clear_unlinked_inodedep: inodedep %p not unlinked", 10105 inodedep)); 10106 inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST); 10107 TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked); 10108 FREE_LOCK(ump); 10109 /* 10110 * The predecessor's next pointer is manually updated here 10111 * so that the NEXT flag is never cleared for an element 10112 * that is in the list. 10113 */ 10114 if (pino == 0) { 10115 bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize); 10116 bpfs = (struct fs *)bp->b_data; 10117 ffs_oldfscompat_write(bpfs, ump); 10118 softdep_setup_sbupdate(ump, bpfs, bp); 10119 /* 10120 * Because we may have made changes to the superblock, 10121 * we need to recompute its check-hash. 10122 */ 10123 bpfs->fs_ckhash = ffs_calc_sbhash(bpfs); 10124 } else if (fs->fs_magic == FS_UFS1_MAGIC) { 10125 ((struct ufs1_dinode *)bp->b_data + 10126 ino_to_fsbo(fs, pino))->di_freelink = nino; 10127 } else { 10128 dip = (struct ufs2_dinode *)bp->b_data + 10129 ino_to_fsbo(fs, pino); 10130 dip->di_freelink = nino; 10131 ffs_update_dinode_ckhash(fs, dip); 10132 } 10133 /* 10134 * If the bwrite fails we have no recourse to recover. The 10135 * filesystem is corrupted already. 10136 */ 10137 bwrite(bp); 10138 ACQUIRE_LOCK(ump); 10139 /* 10140 * If the superblock pointer still needs to be cleared force 10141 * a write here. 10142 */ 10143 if (fs->fs_sujfree == ino) { 10144 FREE_LOCK(ump); 10145 bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc), 10146 (int)fs->fs_sbsize, 0, 0, 0); 10147 bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize); 10148 bpfs = (struct fs *)bp->b_data; 10149 ffs_oldfscompat_write(bpfs, ump); 10150 softdep_setup_sbupdate(ump, bpfs, bp); 10151 /* 10152 * Because we may have made changes to the superblock, 10153 * we need to recompute its check-hash. 10154 */ 10155 bpfs->fs_ckhash = ffs_calc_sbhash(bpfs); 10156 bwrite(bp); 10157 ACQUIRE_LOCK(ump); 10158 } 10159 10160 if (fs->fs_sujfree != ino) 10161 return; 10162 panic("clear_unlinked_inodedep: Failed to clear free head"); 10163 } 10164 if (inodedep->id_ino == fs->fs_sujfree) 10165 panic("clear_unlinked_inodedep: Freeing head of free list"); 10166 inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST); 10167 TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked); 10168 return; 10169 } 10170 10171 /* 10172 * This workitem decrements the inode's link count. 10173 * If the link count reaches zero, the file is removed. 10174 */ 10175 static int 10176 handle_workitem_remove(dirrem, flags) 10177 struct dirrem *dirrem; 10178 int flags; 10179 { 10180 struct inodedep *inodedep; 10181 struct workhead dotdotwk; 10182 struct worklist *wk; 10183 struct ufsmount *ump; 10184 struct mount *mp; 10185 struct vnode *vp; 10186 struct inode *ip; 10187 ino_t oldinum; 10188 10189 if (dirrem->dm_state & ONWORKLIST) 10190 panic("handle_workitem_remove: dirrem %p still on worklist", 10191 dirrem); 10192 oldinum = dirrem->dm_oldinum; 10193 mp = dirrem->dm_list.wk_mp; 10194 ump = VFSTOUFS(mp); 10195 flags |= LK_EXCLUSIVE; 10196 if (ffs_vgetf(mp, oldinum, flags, &vp, FFSV_FORCEINSMQ) != 0) 10197 return (EBUSY); 10198 ip = VTOI(vp); 10199 MPASS(ip->i_mode != 0); 10200 ACQUIRE_LOCK(ump); 10201 if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0) 10202 panic("handle_workitem_remove: lost inodedep"); 10203 if (dirrem->dm_state & ONDEPLIST) 10204 LIST_REMOVE(dirrem, dm_inonext); 10205 KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd), 10206 ("handle_workitem_remove: Journal entries not written.")); 10207 10208 /* 10209 * Move all dependencies waiting on the remove to complete 10210 * from the dirrem to the inode inowait list to be completed 10211 * after the inode has been updated and written to disk. 10212 * 10213 * Any marked MKDIR_PARENT are saved to be completed when the 10214 * dotdot ref is removed unless DIRCHG is specified. For 10215 * directory change operations there will be no further 10216 * directory writes and the jsegdeps need to be moved along 10217 * with the rest to be completed when the inode is free or 10218 * stable in the inode free list. 10219 */ 10220 LIST_INIT(&dotdotwk); 10221 while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) { 10222 WORKLIST_REMOVE(wk); 10223 if ((dirrem->dm_state & DIRCHG) == 0 && 10224 wk->wk_state & MKDIR_PARENT) { 10225 wk->wk_state &= ~MKDIR_PARENT; 10226 WORKLIST_INSERT(&dotdotwk, wk); 10227 continue; 10228 } 10229 WORKLIST_INSERT(&inodedep->id_inowait, wk); 10230 } 10231 LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list); 10232 /* 10233 * Normal file deletion. 10234 */ 10235 if ((dirrem->dm_state & RMDIR) == 0) { 10236 ip->i_nlink--; 10237 KASSERT(ip->i_nlink >= 0, ("handle_workitem_remove: file ino " 10238 "%ju negative i_nlink %d", (intmax_t)ip->i_number, 10239 ip->i_nlink)); 10240 DIP_SET(ip, i_nlink, ip->i_nlink); 10241 UFS_INODE_SET_FLAG(ip, IN_CHANGE); 10242 if (ip->i_nlink < ip->i_effnlink) 10243 panic("handle_workitem_remove: bad file delta"); 10244 if (ip->i_nlink == 0) 10245 unlinked_inodedep(mp, inodedep); 10246 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 10247 KASSERT(LIST_EMPTY(&dirrem->dm_jwork), 10248 ("handle_workitem_remove: worklist not empty. %s", 10249 TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type))); 10250 WORKITEM_FREE(dirrem, D_DIRREM); 10251 FREE_LOCK(ump); 10252 goto out; 10253 } 10254 /* 10255 * Directory deletion. Decrement reference count for both the 10256 * just deleted parent directory entry and the reference for ".". 10257 * Arrange to have the reference count on the parent decremented 10258 * to account for the loss of "..". 10259 */ 10260 ip->i_nlink -= 2; 10261 KASSERT(ip->i_nlink >= 0, ("handle_workitem_remove: directory ino " 10262 "%ju negative i_nlink %d", (intmax_t)ip->i_number, ip->i_nlink)); 10263 DIP_SET(ip, i_nlink, ip->i_nlink); 10264 UFS_INODE_SET_FLAG(ip, IN_CHANGE); 10265 if (ip->i_nlink < ip->i_effnlink) 10266 panic("handle_workitem_remove: bad dir delta"); 10267 if (ip->i_nlink == 0) 10268 unlinked_inodedep(mp, inodedep); 10269 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 10270 /* 10271 * Rename a directory to a new parent. Since, we are both deleting 10272 * and creating a new directory entry, the link count on the new 10273 * directory should not change. Thus we skip the followup dirrem. 10274 */ 10275 if (dirrem->dm_state & DIRCHG) { 10276 KASSERT(LIST_EMPTY(&dirrem->dm_jwork), 10277 ("handle_workitem_remove: DIRCHG and worklist not empty.")); 10278 WORKITEM_FREE(dirrem, D_DIRREM); 10279 FREE_LOCK(ump); 10280 goto out; 10281 } 10282 dirrem->dm_state = ONDEPLIST; 10283 dirrem->dm_oldinum = dirrem->dm_dirinum; 10284 /* 10285 * Place the dirrem on the parent's diremhd list. 10286 */ 10287 if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0) 10288 panic("handle_workitem_remove: lost dir inodedep"); 10289 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 10290 /* 10291 * If the allocated inode has never been written to disk, then 10292 * the on-disk inode is zero'ed and we can remove the file 10293 * immediately. When journaling if the inode has been marked 10294 * unlinked and not DEPCOMPLETE we know it can never be written. 10295 */ 10296 inodedep_lookup(mp, oldinum, 0, &inodedep); 10297 if (inodedep == NULL || 10298 (inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED || 10299 check_inode_unwritten(inodedep)) { 10300 FREE_LOCK(ump); 10301 vput(vp); 10302 return handle_workitem_remove(dirrem, flags); 10303 } 10304 WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list); 10305 FREE_LOCK(ump); 10306 UFS_INODE_SET_FLAG(ip, IN_CHANGE); 10307 out: 10308 ffs_update(vp, 0); 10309 vput(vp); 10310 return (0); 10311 } 10312 10313 /* 10314 * Inode de-allocation dependencies. 10315 * 10316 * When an inode's link count is reduced to zero, it can be de-allocated. We 10317 * found it convenient to postpone de-allocation until after the inode is 10318 * written to disk with its new link count (zero). At this point, all of the 10319 * on-disk inode's block pointers are nullified and, with careful dependency 10320 * list ordering, all dependencies related to the inode will be satisfied and 10321 * the corresponding dependency structures de-allocated. So, if/when the 10322 * inode is reused, there will be no mixing of old dependencies with new 10323 * ones. This artificial dependency is set up by the block de-allocation 10324 * procedure above (softdep_setup_freeblocks) and completed by the 10325 * following procedure. 10326 */ 10327 static void 10328 handle_workitem_freefile(freefile) 10329 struct freefile *freefile; 10330 { 10331 struct workhead wkhd; 10332 struct fs *fs; 10333 struct ufsmount *ump; 10334 int error; 10335 #ifdef INVARIANTS 10336 struct inodedep *idp; 10337 #endif 10338 10339 ump = VFSTOUFS(freefile->fx_list.wk_mp); 10340 fs = ump->um_fs; 10341 #ifdef INVARIANTS 10342 ACQUIRE_LOCK(ump); 10343 error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp); 10344 FREE_LOCK(ump); 10345 if (error) 10346 panic("handle_workitem_freefile: inodedep %p survived", idp); 10347 #endif 10348 UFS_LOCK(ump); 10349 fs->fs_pendinginodes -= 1; 10350 UFS_UNLOCK(ump); 10351 LIST_INIT(&wkhd); 10352 LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list); 10353 if ((error = ffs_freefile(ump, fs, freefile->fx_devvp, 10354 freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0) 10355 softdep_error("handle_workitem_freefile", error); 10356 ACQUIRE_LOCK(ump); 10357 WORKITEM_FREE(freefile, D_FREEFILE); 10358 FREE_LOCK(ump); 10359 } 10360 10361 /* 10362 * Helper function which unlinks marker element from work list and returns 10363 * the next element on the list. 10364 */ 10365 static __inline struct worklist * 10366 markernext(struct worklist *marker) 10367 { 10368 struct worklist *next; 10369 10370 next = LIST_NEXT(marker, wk_list); 10371 LIST_REMOVE(marker, wk_list); 10372 return next; 10373 } 10374 10375 /* 10376 * Disk writes. 10377 * 10378 * The dependency structures constructed above are most actively used when file 10379 * system blocks are written to disk. No constraints are placed on when a 10380 * block can be written, but unsatisfied update dependencies are made safe by 10381 * modifying (or replacing) the source memory for the duration of the disk 10382 * write. When the disk write completes, the memory block is again brought 10383 * up-to-date. 10384 * 10385 * In-core inode structure reclamation. 10386 * 10387 * Because there are a finite number of "in-core" inode structures, they are 10388 * reused regularly. By transferring all inode-related dependencies to the 10389 * in-memory inode block and indexing them separately (via "inodedep"s), we 10390 * can allow "in-core" inode structures to be reused at any time and avoid 10391 * any increase in contention. 10392 * 10393 * Called just before entering the device driver to initiate a new disk I/O. 10394 * The buffer must be locked, thus, no I/O completion operations can occur 10395 * while we are manipulating its associated dependencies. 10396 */ 10397 static void 10398 softdep_disk_io_initiation(bp) 10399 struct buf *bp; /* structure describing disk write to occur */ 10400 { 10401 struct worklist *wk; 10402 struct worklist marker; 10403 struct inodedep *inodedep; 10404 struct freeblks *freeblks; 10405 struct jblkdep *jblkdep; 10406 struct newblk *newblk; 10407 struct ufsmount *ump; 10408 10409 /* 10410 * We only care about write operations. There should never 10411 * be dependencies for reads. 10412 */ 10413 if (bp->b_iocmd != BIO_WRITE) 10414 panic("softdep_disk_io_initiation: not write"); 10415 10416 if (bp->b_vflags & BV_BKGRDINPROG) 10417 panic("softdep_disk_io_initiation: Writing buffer with " 10418 "background write in progress: %p", bp); 10419 10420 ump = softdep_bp_to_mp(bp); 10421 if (ump == NULL) 10422 return; 10423 10424 marker.wk_type = D_LAST + 1; /* Not a normal workitem */ 10425 PHOLD(curproc); /* Don't swap out kernel stack */ 10426 ACQUIRE_LOCK(ump); 10427 /* 10428 * Do any necessary pre-I/O processing. 10429 */ 10430 for (wk = LIST_FIRST(&bp->b_dep); wk != NULL; 10431 wk = markernext(&marker)) { 10432 LIST_INSERT_AFTER(wk, &marker, wk_list); 10433 switch (wk->wk_type) { 10434 case D_PAGEDEP: 10435 initiate_write_filepage(WK_PAGEDEP(wk), bp); 10436 continue; 10437 10438 case D_INODEDEP: 10439 inodedep = WK_INODEDEP(wk); 10440 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) 10441 initiate_write_inodeblock_ufs1(inodedep, bp); 10442 else 10443 initiate_write_inodeblock_ufs2(inodedep, bp); 10444 continue; 10445 10446 case D_INDIRDEP: 10447 initiate_write_indirdep(WK_INDIRDEP(wk), bp); 10448 continue; 10449 10450 case D_BMSAFEMAP: 10451 initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp); 10452 continue; 10453 10454 case D_JSEG: 10455 WK_JSEG(wk)->js_buf = NULL; 10456 continue; 10457 10458 case D_FREEBLKS: 10459 freeblks = WK_FREEBLKS(wk); 10460 jblkdep = LIST_FIRST(&freeblks->fb_jblkdephd); 10461 /* 10462 * We have to wait for the freeblks to be journaled 10463 * before we can write an inodeblock with updated 10464 * pointers. Be careful to arrange the marker so 10465 * we revisit the freeblks if it's not removed by 10466 * the first jwait(). 10467 */ 10468 if (jblkdep != NULL) { 10469 LIST_REMOVE(&marker, wk_list); 10470 LIST_INSERT_BEFORE(wk, &marker, wk_list); 10471 jwait(&jblkdep->jb_list, MNT_WAIT); 10472 } 10473 continue; 10474 case D_ALLOCDIRECT: 10475 case D_ALLOCINDIR: 10476 /* 10477 * We have to wait for the jnewblk to be journaled 10478 * before we can write to a block if the contents 10479 * may be confused with an earlier file's indirect 10480 * at recovery time. Handle the marker as described 10481 * above. 10482 */ 10483 newblk = WK_NEWBLK(wk); 10484 if (newblk->nb_jnewblk != NULL && 10485 indirblk_lookup(newblk->nb_list.wk_mp, 10486 newblk->nb_newblkno)) { 10487 LIST_REMOVE(&marker, wk_list); 10488 LIST_INSERT_BEFORE(wk, &marker, wk_list); 10489 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 10490 } 10491 continue; 10492 10493 case D_SBDEP: 10494 initiate_write_sbdep(WK_SBDEP(wk)); 10495 continue; 10496 10497 case D_MKDIR: 10498 case D_FREEWORK: 10499 case D_FREEDEP: 10500 case D_JSEGDEP: 10501 continue; 10502 10503 default: 10504 panic("handle_disk_io_initiation: Unexpected type %s", 10505 TYPENAME(wk->wk_type)); 10506 /* NOTREACHED */ 10507 } 10508 } 10509 FREE_LOCK(ump); 10510 PRELE(curproc); /* Allow swapout of kernel stack */ 10511 } 10512 10513 /* 10514 * Called from within the procedure above to deal with unsatisfied 10515 * allocation dependencies in a directory. The buffer must be locked, 10516 * thus, no I/O completion operations can occur while we are 10517 * manipulating its associated dependencies. 10518 */ 10519 static void 10520 initiate_write_filepage(pagedep, bp) 10521 struct pagedep *pagedep; 10522 struct buf *bp; 10523 { 10524 struct jremref *jremref; 10525 struct jmvref *jmvref; 10526 struct dirrem *dirrem; 10527 struct diradd *dap; 10528 struct direct *ep; 10529 int i; 10530 10531 if (pagedep->pd_state & IOSTARTED) { 10532 /* 10533 * This can only happen if there is a driver that does not 10534 * understand chaining. Here biodone will reissue the call 10535 * to strategy for the incomplete buffers. 10536 */ 10537 printf("initiate_write_filepage: already started\n"); 10538 return; 10539 } 10540 pagedep->pd_state |= IOSTARTED; 10541 /* 10542 * Wait for all journal remove dependencies to hit the disk. 10543 * We can not allow any potentially conflicting directory adds 10544 * to be visible before removes and rollback is too difficult. 10545 * The per-filesystem lock may be dropped and re-acquired, however 10546 * we hold the buf locked so the dependency can not go away. 10547 */ 10548 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) 10549 while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) 10550 jwait(&jremref->jr_list, MNT_WAIT); 10551 while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) 10552 jwait(&jmvref->jm_list, MNT_WAIT); 10553 for (i = 0; i < DAHASHSZ; i++) { 10554 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 10555 ep = (struct direct *) 10556 ((char *)bp->b_data + dap->da_offset); 10557 if (ep->d_ino != dap->da_newinum) 10558 panic("%s: dir inum %ju != new %ju", 10559 "initiate_write_filepage", 10560 (uintmax_t)ep->d_ino, 10561 (uintmax_t)dap->da_newinum); 10562 if (dap->da_state & DIRCHG) 10563 ep->d_ino = dap->da_previous->dm_oldinum; 10564 else 10565 ep->d_ino = 0; 10566 dap->da_state &= ~ATTACHED; 10567 dap->da_state |= UNDONE; 10568 } 10569 } 10570 } 10571 10572 /* 10573 * Version of initiate_write_inodeblock that handles UFS1 dinodes. 10574 * Note that any bug fixes made to this routine must be done in the 10575 * version found below. 10576 * 10577 * Called from within the procedure above to deal with unsatisfied 10578 * allocation dependencies in an inodeblock. The buffer must be 10579 * locked, thus, no I/O completion operations can occur while we 10580 * are manipulating its associated dependencies. 10581 */ 10582 static void 10583 initiate_write_inodeblock_ufs1(inodedep, bp) 10584 struct inodedep *inodedep; 10585 struct buf *bp; /* The inode block */ 10586 { 10587 struct allocdirect *adp, *lastadp; 10588 struct ufs1_dinode *dp; 10589 struct ufs1_dinode *sip; 10590 struct inoref *inoref; 10591 struct ufsmount *ump; 10592 struct fs *fs; 10593 ufs_lbn_t i; 10594 #ifdef INVARIANTS 10595 ufs_lbn_t prevlbn = 0; 10596 #endif 10597 int deplist; 10598 10599 if (inodedep->id_state & IOSTARTED) 10600 panic("initiate_write_inodeblock_ufs1: already started"); 10601 inodedep->id_state |= IOSTARTED; 10602 fs = inodedep->id_fs; 10603 ump = VFSTOUFS(inodedep->id_list.wk_mp); 10604 LOCK_OWNED(ump); 10605 dp = (struct ufs1_dinode *)bp->b_data + 10606 ino_to_fsbo(fs, inodedep->id_ino); 10607 10608 /* 10609 * If we're on the unlinked list but have not yet written our 10610 * next pointer initialize it here. 10611 */ 10612 if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) { 10613 struct inodedep *inon; 10614 10615 inon = TAILQ_NEXT(inodedep, id_unlinked); 10616 dp->di_freelink = inon ? inon->id_ino : 0; 10617 } 10618 /* 10619 * If the bitmap is not yet written, then the allocated 10620 * inode cannot be written to disk. 10621 */ 10622 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 10623 if (inodedep->id_savedino1 != NULL) 10624 panic("initiate_write_inodeblock_ufs1: I/O underway"); 10625 FREE_LOCK(ump); 10626 sip = malloc(sizeof(struct ufs1_dinode), 10627 M_SAVEDINO, M_SOFTDEP_FLAGS); 10628 ACQUIRE_LOCK(ump); 10629 inodedep->id_savedino1 = sip; 10630 *inodedep->id_savedino1 = *dp; 10631 bzero((caddr_t)dp, sizeof(struct ufs1_dinode)); 10632 dp->di_gen = inodedep->id_savedino1->di_gen; 10633 dp->di_freelink = inodedep->id_savedino1->di_freelink; 10634 return; 10635 } 10636 /* 10637 * If no dependencies, then there is nothing to roll back. 10638 */ 10639 inodedep->id_savedsize = dp->di_size; 10640 inodedep->id_savedextsize = 0; 10641 inodedep->id_savednlink = dp->di_nlink; 10642 if (TAILQ_EMPTY(&inodedep->id_inoupdt) && 10643 TAILQ_EMPTY(&inodedep->id_inoreflst)) 10644 return; 10645 /* 10646 * Revert the link count to that of the first unwritten journal entry. 10647 */ 10648 inoref = TAILQ_FIRST(&inodedep->id_inoreflst); 10649 if (inoref) 10650 dp->di_nlink = inoref->if_nlink; 10651 /* 10652 * Set the dependencies to busy. 10653 */ 10654 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10655 adp = TAILQ_NEXT(adp, ad_next)) { 10656 #ifdef INVARIANTS 10657 if (deplist != 0 && prevlbn >= adp->ad_offset) 10658 panic("softdep_write_inodeblock: lbn order"); 10659 prevlbn = adp->ad_offset; 10660 if (adp->ad_offset < UFS_NDADDR && 10661 dp->di_db[adp->ad_offset] != adp->ad_newblkno) 10662 panic("initiate_write_inodeblock_ufs1: " 10663 "direct pointer #%jd mismatch %d != %jd", 10664 (intmax_t)adp->ad_offset, 10665 dp->di_db[adp->ad_offset], 10666 (intmax_t)adp->ad_newblkno); 10667 if (adp->ad_offset >= UFS_NDADDR && 10668 dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno) 10669 panic("initiate_write_inodeblock_ufs1: " 10670 "indirect pointer #%jd mismatch %d != %jd", 10671 (intmax_t)adp->ad_offset - UFS_NDADDR, 10672 dp->di_ib[adp->ad_offset - UFS_NDADDR], 10673 (intmax_t)adp->ad_newblkno); 10674 deplist |= 1 << adp->ad_offset; 10675 if ((adp->ad_state & ATTACHED) == 0) 10676 panic("initiate_write_inodeblock_ufs1: " 10677 "Unknown state 0x%x", adp->ad_state); 10678 #endif /* INVARIANTS */ 10679 adp->ad_state &= ~ATTACHED; 10680 adp->ad_state |= UNDONE; 10681 } 10682 /* 10683 * The on-disk inode cannot claim to be any larger than the last 10684 * fragment that has been written. Otherwise, the on-disk inode 10685 * might have fragments that were not the last block in the file 10686 * which would corrupt the filesystem. 10687 */ 10688 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10689 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10690 if (adp->ad_offset >= UFS_NDADDR) 10691 break; 10692 dp->di_db[adp->ad_offset] = adp->ad_oldblkno; 10693 /* keep going until hitting a rollback to a frag */ 10694 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10695 continue; 10696 dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10697 for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) { 10698 #ifdef INVARIANTS 10699 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) 10700 panic("initiate_write_inodeblock_ufs1: " 10701 "lost dep1"); 10702 #endif /* INVARIANTS */ 10703 dp->di_db[i] = 0; 10704 } 10705 for (i = 0; i < UFS_NIADDR; i++) { 10706 #ifdef INVARIANTS 10707 if (dp->di_ib[i] != 0 && 10708 (deplist & ((1 << UFS_NDADDR) << i)) == 0) 10709 panic("initiate_write_inodeblock_ufs1: " 10710 "lost dep2"); 10711 #endif /* INVARIANTS */ 10712 dp->di_ib[i] = 0; 10713 } 10714 return; 10715 } 10716 /* 10717 * If we have zero'ed out the last allocated block of the file, 10718 * roll back the size to the last currently allocated block. 10719 * We know that this last allocated block is a full-sized as 10720 * we already checked for fragments in the loop above. 10721 */ 10722 if (lastadp != NULL && 10723 dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10724 for (i = lastadp->ad_offset; i >= 0; i--) 10725 if (dp->di_db[i] != 0) 10726 break; 10727 dp->di_size = (i + 1) * fs->fs_bsize; 10728 } 10729 /* 10730 * The only dependencies are for indirect blocks. 10731 * 10732 * The file size for indirect block additions is not guaranteed. 10733 * Such a guarantee would be non-trivial to achieve. The conventional 10734 * synchronous write implementation also does not make this guarantee. 10735 * Fsck should catch and fix discrepancies. Arguably, the file size 10736 * can be over-estimated without destroying integrity when the file 10737 * moves into the indirect blocks (i.e., is large). If we want to 10738 * postpone fsck, we are stuck with this argument. 10739 */ 10740 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 10741 dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0; 10742 } 10743 10744 /* 10745 * Version of initiate_write_inodeblock that handles UFS2 dinodes. 10746 * Note that any bug fixes made to this routine must be done in the 10747 * version found above. 10748 * 10749 * Called from within the procedure above to deal with unsatisfied 10750 * allocation dependencies in an inodeblock. The buffer must be 10751 * locked, thus, no I/O completion operations can occur while we 10752 * are manipulating its associated dependencies. 10753 */ 10754 static void 10755 initiate_write_inodeblock_ufs2(inodedep, bp) 10756 struct inodedep *inodedep; 10757 struct buf *bp; /* The inode block */ 10758 { 10759 struct allocdirect *adp, *lastadp; 10760 struct ufs2_dinode *dp; 10761 struct ufs2_dinode *sip; 10762 struct inoref *inoref; 10763 struct ufsmount *ump; 10764 struct fs *fs; 10765 ufs_lbn_t i; 10766 #ifdef INVARIANTS 10767 ufs_lbn_t prevlbn = 0; 10768 #endif 10769 int deplist; 10770 10771 if (inodedep->id_state & IOSTARTED) 10772 panic("initiate_write_inodeblock_ufs2: already started"); 10773 inodedep->id_state |= IOSTARTED; 10774 fs = inodedep->id_fs; 10775 ump = VFSTOUFS(inodedep->id_list.wk_mp); 10776 LOCK_OWNED(ump); 10777 dp = (struct ufs2_dinode *)bp->b_data + 10778 ino_to_fsbo(fs, inodedep->id_ino); 10779 10780 /* 10781 * If we're on the unlinked list but have not yet written our 10782 * next pointer initialize it here. 10783 */ 10784 if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) { 10785 struct inodedep *inon; 10786 10787 inon = TAILQ_NEXT(inodedep, id_unlinked); 10788 dp->di_freelink = inon ? inon->id_ino : 0; 10789 ffs_update_dinode_ckhash(fs, dp); 10790 } 10791 /* 10792 * If the bitmap is not yet written, then the allocated 10793 * inode cannot be written to disk. 10794 */ 10795 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 10796 if (inodedep->id_savedino2 != NULL) 10797 panic("initiate_write_inodeblock_ufs2: I/O underway"); 10798 FREE_LOCK(ump); 10799 sip = malloc(sizeof(struct ufs2_dinode), 10800 M_SAVEDINO, M_SOFTDEP_FLAGS); 10801 ACQUIRE_LOCK(ump); 10802 inodedep->id_savedino2 = sip; 10803 *inodedep->id_savedino2 = *dp; 10804 bzero((caddr_t)dp, sizeof(struct ufs2_dinode)); 10805 dp->di_gen = inodedep->id_savedino2->di_gen; 10806 dp->di_freelink = inodedep->id_savedino2->di_freelink; 10807 return; 10808 } 10809 /* 10810 * If no dependencies, then there is nothing to roll back. 10811 */ 10812 inodedep->id_savedsize = dp->di_size; 10813 inodedep->id_savedextsize = dp->di_extsize; 10814 inodedep->id_savednlink = dp->di_nlink; 10815 if (TAILQ_EMPTY(&inodedep->id_inoupdt) && 10816 TAILQ_EMPTY(&inodedep->id_extupdt) && 10817 TAILQ_EMPTY(&inodedep->id_inoreflst)) 10818 return; 10819 /* 10820 * Revert the link count to that of the first unwritten journal entry. 10821 */ 10822 inoref = TAILQ_FIRST(&inodedep->id_inoreflst); 10823 if (inoref) 10824 dp->di_nlink = inoref->if_nlink; 10825 10826 /* 10827 * Set the ext data dependencies to busy. 10828 */ 10829 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 10830 adp = TAILQ_NEXT(adp, ad_next)) { 10831 #ifdef INVARIANTS 10832 if (deplist != 0 && prevlbn >= adp->ad_offset) 10833 panic("initiate_write_inodeblock_ufs2: lbn order"); 10834 prevlbn = adp->ad_offset; 10835 if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno) 10836 panic("initiate_write_inodeblock_ufs2: " 10837 "ext pointer #%jd mismatch %jd != %jd", 10838 (intmax_t)adp->ad_offset, 10839 (intmax_t)dp->di_extb[adp->ad_offset], 10840 (intmax_t)adp->ad_newblkno); 10841 deplist |= 1 << adp->ad_offset; 10842 if ((adp->ad_state & ATTACHED) == 0) 10843 panic("initiate_write_inodeblock_ufs2: Unknown " 10844 "state 0x%x", adp->ad_state); 10845 #endif /* INVARIANTS */ 10846 adp->ad_state &= ~ATTACHED; 10847 adp->ad_state |= UNDONE; 10848 } 10849 /* 10850 * The on-disk inode cannot claim to be any larger than the last 10851 * fragment that has been written. Otherwise, the on-disk inode 10852 * might have fragments that were not the last block in the ext 10853 * data which would corrupt the filesystem. 10854 */ 10855 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 10856 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10857 dp->di_extb[adp->ad_offset] = adp->ad_oldblkno; 10858 /* keep going until hitting a rollback to a frag */ 10859 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10860 continue; 10861 dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10862 for (i = adp->ad_offset + 1; i < UFS_NXADDR; i++) { 10863 #ifdef INVARIANTS 10864 if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0) 10865 panic("initiate_write_inodeblock_ufs2: " 10866 "lost dep1"); 10867 #endif /* INVARIANTS */ 10868 dp->di_extb[i] = 0; 10869 } 10870 lastadp = NULL; 10871 break; 10872 } 10873 /* 10874 * If we have zero'ed out the last allocated block of the ext 10875 * data, roll back the size to the last currently allocated block. 10876 * We know that this last allocated block is a full-sized as 10877 * we already checked for fragments in the loop above. 10878 */ 10879 if (lastadp != NULL && 10880 dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10881 for (i = lastadp->ad_offset; i >= 0; i--) 10882 if (dp->di_extb[i] != 0) 10883 break; 10884 dp->di_extsize = (i + 1) * fs->fs_bsize; 10885 } 10886 /* 10887 * Set the file data dependencies to busy. 10888 */ 10889 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10890 adp = TAILQ_NEXT(adp, ad_next)) { 10891 #ifdef INVARIANTS 10892 if (deplist != 0 && prevlbn >= adp->ad_offset) 10893 panic("softdep_write_inodeblock: lbn order"); 10894 if ((adp->ad_state & ATTACHED) == 0) 10895 panic("inodedep %p and adp %p not attached", inodedep, adp); 10896 prevlbn = adp->ad_offset; 10897 if (!ffs_fsfail_cleanup(ump, 0) && 10898 adp->ad_offset < UFS_NDADDR && 10899 dp->di_db[adp->ad_offset] != adp->ad_newblkno) 10900 panic("initiate_write_inodeblock_ufs2: " 10901 "direct pointer #%jd mismatch %jd != %jd", 10902 (intmax_t)adp->ad_offset, 10903 (intmax_t)dp->di_db[adp->ad_offset], 10904 (intmax_t)adp->ad_newblkno); 10905 if (!ffs_fsfail_cleanup(ump, 0) && 10906 adp->ad_offset >= UFS_NDADDR && 10907 dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno) 10908 panic("initiate_write_inodeblock_ufs2: " 10909 "indirect pointer #%jd mismatch %jd != %jd", 10910 (intmax_t)adp->ad_offset - UFS_NDADDR, 10911 (intmax_t)dp->di_ib[adp->ad_offset - UFS_NDADDR], 10912 (intmax_t)adp->ad_newblkno); 10913 deplist |= 1 << adp->ad_offset; 10914 if ((adp->ad_state & ATTACHED) == 0) 10915 panic("initiate_write_inodeblock_ufs2: Unknown " 10916 "state 0x%x", adp->ad_state); 10917 #endif /* INVARIANTS */ 10918 adp->ad_state &= ~ATTACHED; 10919 adp->ad_state |= UNDONE; 10920 } 10921 /* 10922 * The on-disk inode cannot claim to be any larger than the last 10923 * fragment that has been written. Otherwise, the on-disk inode 10924 * might have fragments that were not the last block in the file 10925 * which would corrupt the filesystem. 10926 */ 10927 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10928 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10929 if (adp->ad_offset >= UFS_NDADDR) 10930 break; 10931 dp->di_db[adp->ad_offset] = adp->ad_oldblkno; 10932 /* keep going until hitting a rollback to a frag */ 10933 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10934 continue; 10935 dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10936 for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) { 10937 #ifdef INVARIANTS 10938 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) 10939 panic("initiate_write_inodeblock_ufs2: " 10940 "lost dep2"); 10941 #endif /* INVARIANTS */ 10942 dp->di_db[i] = 0; 10943 } 10944 for (i = 0; i < UFS_NIADDR; i++) { 10945 #ifdef INVARIANTS 10946 if (dp->di_ib[i] != 0 && 10947 (deplist & ((1 << UFS_NDADDR) << i)) == 0) 10948 panic("initiate_write_inodeblock_ufs2: " 10949 "lost dep3"); 10950 #endif /* INVARIANTS */ 10951 dp->di_ib[i] = 0; 10952 } 10953 ffs_update_dinode_ckhash(fs, dp); 10954 return; 10955 } 10956 /* 10957 * If we have zero'ed out the last allocated block of the file, 10958 * roll back the size to the last currently allocated block. 10959 * We know that this last allocated block is a full-sized as 10960 * we already checked for fragments in the loop above. 10961 */ 10962 if (lastadp != NULL && 10963 dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10964 for (i = lastadp->ad_offset; i >= 0; i--) 10965 if (dp->di_db[i] != 0) 10966 break; 10967 dp->di_size = (i + 1) * fs->fs_bsize; 10968 } 10969 /* 10970 * The only dependencies are for indirect blocks. 10971 * 10972 * The file size for indirect block additions is not guaranteed. 10973 * Such a guarantee would be non-trivial to achieve. The conventional 10974 * synchronous write implementation also does not make this guarantee. 10975 * Fsck should catch and fix discrepancies. Arguably, the file size 10976 * can be over-estimated without destroying integrity when the file 10977 * moves into the indirect blocks (i.e., is large). If we want to 10978 * postpone fsck, we are stuck with this argument. 10979 */ 10980 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 10981 dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0; 10982 ffs_update_dinode_ckhash(fs, dp); 10983 } 10984 10985 /* 10986 * Cancel an indirdep as a result of truncation. Release all of the 10987 * children allocindirs and place their journal work on the appropriate 10988 * list. 10989 */ 10990 static void 10991 cancel_indirdep(indirdep, bp, freeblks) 10992 struct indirdep *indirdep; 10993 struct buf *bp; 10994 struct freeblks *freeblks; 10995 { 10996 struct allocindir *aip; 10997 10998 /* 10999 * None of the indirect pointers will ever be visible, 11000 * so they can simply be tossed. GOINGAWAY ensures 11001 * that allocated pointers will be saved in the buffer 11002 * cache until they are freed. Note that they will 11003 * only be able to be found by their physical address 11004 * since the inode mapping the logical address will 11005 * be gone. The save buffer used for the safe copy 11006 * was allocated in setup_allocindir_phase2 using 11007 * the physical address so it could be used for this 11008 * purpose. Hence we swap the safe copy with the real 11009 * copy, allowing the safe copy to be freed and holding 11010 * on to the real copy for later use in indir_trunc. 11011 */ 11012 if (indirdep->ir_state & GOINGAWAY) 11013 panic("cancel_indirdep: already gone"); 11014 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 11015 indirdep->ir_state |= DEPCOMPLETE; 11016 LIST_REMOVE(indirdep, ir_next); 11017 } 11018 indirdep->ir_state |= GOINGAWAY; 11019 /* 11020 * Pass in bp for blocks still have journal writes 11021 * pending so we can cancel them on their own. 11022 */ 11023 while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != NULL) 11024 cancel_allocindir(aip, bp, freeblks, 0); 11025 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL) 11026 cancel_allocindir(aip, NULL, freeblks, 0); 11027 while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL) 11028 cancel_allocindir(aip, NULL, freeblks, 0); 11029 while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) 11030 cancel_allocindir(aip, NULL, freeblks, 0); 11031 /* 11032 * If there are pending partial truncations we need to keep the 11033 * old block copy around until they complete. This is because 11034 * the current b_data is not a perfect superset of the available 11035 * blocks. 11036 */ 11037 if (TAILQ_EMPTY(&indirdep->ir_trunc)) 11038 bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount); 11039 else 11040 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); 11041 WORKLIST_REMOVE(&indirdep->ir_list); 11042 WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list); 11043 indirdep->ir_bp = NULL; 11044 indirdep->ir_freeblks = freeblks; 11045 } 11046 11047 /* 11048 * Free an indirdep once it no longer has new pointers to track. 11049 */ 11050 static void 11051 free_indirdep(indirdep) 11052 struct indirdep *indirdep; 11053 { 11054 11055 KASSERT(TAILQ_EMPTY(&indirdep->ir_trunc), 11056 ("free_indirdep: Indir trunc list not empty.")); 11057 KASSERT(LIST_EMPTY(&indirdep->ir_completehd), 11058 ("free_indirdep: Complete head not empty.")); 11059 KASSERT(LIST_EMPTY(&indirdep->ir_writehd), 11060 ("free_indirdep: write head not empty.")); 11061 KASSERT(LIST_EMPTY(&indirdep->ir_donehd), 11062 ("free_indirdep: done head not empty.")); 11063 KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd), 11064 ("free_indirdep: deplist head not empty.")); 11065 KASSERT((indirdep->ir_state & DEPCOMPLETE), 11066 ("free_indirdep: %p still on newblk list.", indirdep)); 11067 KASSERT(indirdep->ir_saveddata == NULL, 11068 ("free_indirdep: %p still has saved data.", indirdep)); 11069 KASSERT(indirdep->ir_savebp == NULL, 11070 ("free_indirdep: %p still has savebp buffer.", indirdep)); 11071 if (indirdep->ir_state & ONWORKLIST) 11072 WORKLIST_REMOVE(&indirdep->ir_list); 11073 WORKITEM_FREE(indirdep, D_INDIRDEP); 11074 } 11075 11076 /* 11077 * Called before a write to an indirdep. This routine is responsible for 11078 * rolling back pointers to a safe state which includes only those 11079 * allocindirs which have been completed. 11080 */ 11081 static void 11082 initiate_write_indirdep(indirdep, bp) 11083 struct indirdep *indirdep; 11084 struct buf *bp; 11085 { 11086 struct ufsmount *ump; 11087 11088 indirdep->ir_state |= IOSTARTED; 11089 if (indirdep->ir_state & GOINGAWAY) 11090 panic("disk_io_initiation: indirdep gone"); 11091 /* 11092 * If there are no remaining dependencies, this will be writing 11093 * the real pointers. 11094 */ 11095 if (LIST_EMPTY(&indirdep->ir_deplisthd) && 11096 TAILQ_EMPTY(&indirdep->ir_trunc)) 11097 return; 11098 /* 11099 * Replace up-to-date version with safe version. 11100 */ 11101 if (indirdep->ir_saveddata == NULL) { 11102 ump = VFSTOUFS(indirdep->ir_list.wk_mp); 11103 LOCK_OWNED(ump); 11104 FREE_LOCK(ump); 11105 indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP, 11106 M_SOFTDEP_FLAGS); 11107 ACQUIRE_LOCK(ump); 11108 } 11109 indirdep->ir_state &= ~ATTACHED; 11110 indirdep->ir_state |= UNDONE; 11111 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); 11112 bcopy(indirdep->ir_savebp->b_data, bp->b_data, 11113 bp->b_bcount); 11114 } 11115 11116 /* 11117 * Called when an inode has been cleared in a cg bitmap. This finally 11118 * eliminates any canceled jaddrefs 11119 */ 11120 void 11121 softdep_setup_inofree(mp, bp, ino, wkhd) 11122 struct mount *mp; 11123 struct buf *bp; 11124 ino_t ino; 11125 struct workhead *wkhd; 11126 { 11127 struct worklist *wk, *wkn; 11128 struct inodedep *inodedep; 11129 struct ufsmount *ump; 11130 uint8_t *inosused; 11131 struct cg *cgp; 11132 struct fs *fs; 11133 11134 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 11135 ("softdep_setup_inofree called on non-softdep filesystem")); 11136 ump = VFSTOUFS(mp); 11137 ACQUIRE_LOCK(ump); 11138 if (!ffs_fsfail_cleanup(ump, 0)) { 11139 fs = ump->um_fs; 11140 cgp = (struct cg *)bp->b_data; 11141 inosused = cg_inosused(cgp); 11142 if (isset(inosused, ino % fs->fs_ipg)) 11143 panic("softdep_setup_inofree: inode %ju not freed.", 11144 (uintmax_t)ino); 11145 } 11146 if (inodedep_lookup(mp, ino, 0, &inodedep)) 11147 panic("softdep_setup_inofree: ino %ju has existing inodedep %p", 11148 (uintmax_t)ino, inodedep); 11149 if (wkhd) { 11150 LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) { 11151 if (wk->wk_type != D_JADDREF) 11152 continue; 11153 WORKLIST_REMOVE(wk); 11154 /* 11155 * We can free immediately even if the jaddref 11156 * isn't attached in a background write as now 11157 * the bitmaps are reconciled. 11158 */ 11159 wk->wk_state |= COMPLETE | ATTACHED; 11160 free_jaddref(WK_JADDREF(wk)); 11161 } 11162 jwork_move(&bp->b_dep, wkhd); 11163 } 11164 FREE_LOCK(ump); 11165 } 11166 11167 /* 11168 * Called via ffs_blkfree() after a set of frags has been cleared from a cg 11169 * map. Any dependencies waiting for the write to clear are added to the 11170 * buf's list and any jnewblks that are being canceled are discarded 11171 * immediately. 11172 */ 11173 void 11174 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd) 11175 struct mount *mp; 11176 struct buf *bp; 11177 ufs2_daddr_t blkno; 11178 int frags; 11179 struct workhead *wkhd; 11180 { 11181 struct bmsafemap *bmsafemap; 11182 struct jnewblk *jnewblk; 11183 struct ufsmount *ump; 11184 struct worklist *wk; 11185 struct fs *fs; 11186 #ifdef INVARIANTS 11187 uint8_t *blksfree; 11188 struct cg *cgp; 11189 ufs2_daddr_t jstart; 11190 ufs2_daddr_t jend; 11191 ufs2_daddr_t end; 11192 long bno; 11193 int i; 11194 #endif 11195 11196 CTR3(KTR_SUJ, 11197 "softdep_setup_blkfree: blkno %jd frags %d wk head %p", 11198 blkno, frags, wkhd); 11199 11200 ump = VFSTOUFS(mp); 11201 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 11202 ("softdep_setup_blkfree called on non-softdep filesystem")); 11203 ACQUIRE_LOCK(ump); 11204 /* Lookup the bmsafemap so we track when it is dirty. */ 11205 fs = ump->um_fs; 11206 bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL); 11207 /* 11208 * Detach any jnewblks which have been canceled. They must linger 11209 * until the bitmap is cleared again by ffs_blkfree() to prevent 11210 * an unjournaled allocation from hitting the disk. 11211 */ 11212 if (wkhd) { 11213 while ((wk = LIST_FIRST(wkhd)) != NULL) { 11214 CTR2(KTR_SUJ, 11215 "softdep_setup_blkfree: blkno %jd wk type %d", 11216 blkno, wk->wk_type); 11217 WORKLIST_REMOVE(wk); 11218 if (wk->wk_type != D_JNEWBLK) { 11219 WORKLIST_INSERT(&bmsafemap->sm_freehd, wk); 11220 continue; 11221 } 11222 jnewblk = WK_JNEWBLK(wk); 11223 KASSERT(jnewblk->jn_state & GOINGAWAY, 11224 ("softdep_setup_blkfree: jnewblk not canceled.")); 11225 #ifdef INVARIANTS 11226 /* 11227 * Assert that this block is free in the bitmap 11228 * before we discard the jnewblk. 11229 */ 11230 cgp = (struct cg *)bp->b_data; 11231 blksfree = cg_blksfree(cgp); 11232 bno = dtogd(fs, jnewblk->jn_blkno); 11233 for (i = jnewblk->jn_oldfrags; 11234 i < jnewblk->jn_frags; i++) { 11235 if (isset(blksfree, bno + i)) 11236 continue; 11237 panic("softdep_setup_blkfree: not free"); 11238 } 11239 #endif 11240 /* 11241 * Even if it's not attached we can free immediately 11242 * as the new bitmap is correct. 11243 */ 11244 wk->wk_state |= COMPLETE | ATTACHED; 11245 free_jnewblk(jnewblk); 11246 } 11247 } 11248 11249 #ifdef INVARIANTS 11250 /* 11251 * Assert that we are not freeing a block which has an outstanding 11252 * allocation dependency. 11253 */ 11254 fs = VFSTOUFS(mp)->um_fs; 11255 bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL); 11256 end = blkno + frags; 11257 LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) { 11258 /* 11259 * Don't match against blocks that will be freed when the 11260 * background write is done. 11261 */ 11262 if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) == 11263 (COMPLETE | DEPCOMPLETE)) 11264 continue; 11265 jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags; 11266 jend = jnewblk->jn_blkno + jnewblk->jn_frags; 11267 if ((blkno >= jstart && blkno < jend) || 11268 (end > jstart && end <= jend)) { 11269 printf("state 0x%X %jd - %d %d dep %p\n", 11270 jnewblk->jn_state, jnewblk->jn_blkno, 11271 jnewblk->jn_oldfrags, jnewblk->jn_frags, 11272 jnewblk->jn_dep); 11273 panic("softdep_setup_blkfree: " 11274 "%jd-%jd(%d) overlaps with %jd-%jd", 11275 blkno, end, frags, jstart, jend); 11276 } 11277 } 11278 #endif 11279 FREE_LOCK(ump); 11280 } 11281 11282 /* 11283 * Revert a block allocation when the journal record that describes it 11284 * is not yet written. 11285 */ 11286 static int 11287 jnewblk_rollback(jnewblk, fs, cgp, blksfree) 11288 struct jnewblk *jnewblk; 11289 struct fs *fs; 11290 struct cg *cgp; 11291 uint8_t *blksfree; 11292 { 11293 ufs1_daddr_t fragno; 11294 long cgbno, bbase; 11295 int frags, blk; 11296 int i; 11297 11298 frags = 0; 11299 cgbno = dtogd(fs, jnewblk->jn_blkno); 11300 /* 11301 * We have to test which frags need to be rolled back. We may 11302 * be operating on a stale copy when doing background writes. 11303 */ 11304 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) 11305 if (isclr(blksfree, cgbno + i)) 11306 frags++; 11307 if (frags == 0) 11308 return (0); 11309 /* 11310 * This is mostly ffs_blkfree() sans some validation and 11311 * superblock updates. 11312 */ 11313 if (frags == fs->fs_frag) { 11314 fragno = fragstoblks(fs, cgbno); 11315 ffs_setblock(fs, blksfree, fragno); 11316 ffs_clusteracct(fs, cgp, fragno, 1); 11317 cgp->cg_cs.cs_nbfree++; 11318 } else { 11319 cgbno += jnewblk->jn_oldfrags; 11320 bbase = cgbno - fragnum(fs, cgbno); 11321 /* Decrement the old frags. */ 11322 blk = blkmap(fs, blksfree, bbase); 11323 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 11324 /* Deallocate the fragment */ 11325 for (i = 0; i < frags; i++) 11326 setbit(blksfree, cgbno + i); 11327 cgp->cg_cs.cs_nffree += frags; 11328 /* Add back in counts associated with the new frags */ 11329 blk = blkmap(fs, blksfree, bbase); 11330 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 11331 /* If a complete block has been reassembled, account for it. */ 11332 fragno = fragstoblks(fs, bbase); 11333 if (ffs_isblock(fs, blksfree, fragno)) { 11334 cgp->cg_cs.cs_nffree -= fs->fs_frag; 11335 ffs_clusteracct(fs, cgp, fragno, 1); 11336 cgp->cg_cs.cs_nbfree++; 11337 } 11338 } 11339 stat_jnewblk++; 11340 jnewblk->jn_state &= ~ATTACHED; 11341 jnewblk->jn_state |= UNDONE; 11342 11343 return (frags); 11344 } 11345 11346 static void 11347 initiate_write_bmsafemap(bmsafemap, bp) 11348 struct bmsafemap *bmsafemap; 11349 struct buf *bp; /* The cg block. */ 11350 { 11351 struct jaddref *jaddref; 11352 struct jnewblk *jnewblk; 11353 uint8_t *inosused; 11354 uint8_t *blksfree; 11355 struct cg *cgp; 11356 struct fs *fs; 11357 ino_t ino; 11358 11359 /* 11360 * If this is a background write, we did this at the time that 11361 * the copy was made, so do not need to do it again. 11362 */ 11363 if (bmsafemap->sm_state & IOSTARTED) 11364 return; 11365 bmsafemap->sm_state |= IOSTARTED; 11366 /* 11367 * Clear any inode allocations which are pending journal writes. 11368 */ 11369 if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) { 11370 cgp = (struct cg *)bp->b_data; 11371 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 11372 inosused = cg_inosused(cgp); 11373 LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) { 11374 ino = jaddref->ja_ino % fs->fs_ipg; 11375 if (isset(inosused, ino)) { 11376 if ((jaddref->ja_mode & IFMT) == IFDIR) 11377 cgp->cg_cs.cs_ndir--; 11378 cgp->cg_cs.cs_nifree++; 11379 clrbit(inosused, ino); 11380 jaddref->ja_state &= ~ATTACHED; 11381 jaddref->ja_state |= UNDONE; 11382 stat_jaddref++; 11383 } else 11384 panic("initiate_write_bmsafemap: inode %ju " 11385 "marked free", (uintmax_t)jaddref->ja_ino); 11386 } 11387 } 11388 /* 11389 * Clear any block allocations which are pending journal writes. 11390 */ 11391 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) { 11392 cgp = (struct cg *)bp->b_data; 11393 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 11394 blksfree = cg_blksfree(cgp); 11395 LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) { 11396 if (jnewblk_rollback(jnewblk, fs, cgp, blksfree)) 11397 continue; 11398 panic("initiate_write_bmsafemap: block %jd " 11399 "marked free", jnewblk->jn_blkno); 11400 } 11401 } 11402 /* 11403 * Move allocation lists to the written lists so they can be 11404 * cleared once the block write is complete. 11405 */ 11406 LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr, 11407 inodedep, id_deps); 11408 LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr, 11409 newblk, nb_deps); 11410 LIST_SWAP(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, worklist, 11411 wk_list); 11412 } 11413 11414 void 11415 softdep_handle_error(struct buf *bp) 11416 { 11417 struct ufsmount *ump; 11418 11419 ump = softdep_bp_to_mp(bp); 11420 if (ump == NULL) 11421 return; 11422 11423 if (ffs_fsfail_cleanup(ump, bp->b_error)) { 11424 /* 11425 * No future writes will succeed, so the on-disk image is safe. 11426 * Pretend that this write succeeded so that the softdep state 11427 * will be cleaned up naturally. 11428 */ 11429 bp->b_ioflags &= ~BIO_ERROR; 11430 bp->b_error = 0; 11431 } 11432 } 11433 11434 /* 11435 * This routine is called during the completion interrupt 11436 * service routine for a disk write (from the procedure called 11437 * by the device driver to inform the filesystem caches of 11438 * a request completion). It should be called early in this 11439 * procedure, before the block is made available to other 11440 * processes or other routines are called. 11441 * 11442 */ 11443 static void 11444 softdep_disk_write_complete(bp) 11445 struct buf *bp; /* describes the completed disk write */ 11446 { 11447 struct worklist *wk; 11448 struct worklist *owk; 11449 struct ufsmount *ump; 11450 struct workhead reattach; 11451 struct freeblks *freeblks; 11452 struct buf *sbp; 11453 11454 ump = softdep_bp_to_mp(bp); 11455 KASSERT(LIST_EMPTY(&bp->b_dep) || ump != NULL, 11456 ("softdep_disk_write_complete: softdep_bp_to_mp returned NULL " 11457 "with outstanding dependencies for buffer %p", bp)); 11458 if (ump == NULL) 11459 return; 11460 if ((bp->b_ioflags & BIO_ERROR) != 0) 11461 softdep_handle_error(bp); 11462 /* 11463 * If an error occurred while doing the write, then the data 11464 * has not hit the disk and the dependencies cannot be processed. 11465 * But we do have to go through and roll forward any dependencies 11466 * that were rolled back before the disk write. 11467 */ 11468 sbp = NULL; 11469 ACQUIRE_LOCK(ump); 11470 if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0) { 11471 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 11472 switch (wk->wk_type) { 11473 case D_PAGEDEP: 11474 handle_written_filepage(WK_PAGEDEP(wk), bp, 0); 11475 continue; 11476 11477 case D_INODEDEP: 11478 handle_written_inodeblock(WK_INODEDEP(wk), 11479 bp, 0); 11480 continue; 11481 11482 case D_BMSAFEMAP: 11483 handle_written_bmsafemap(WK_BMSAFEMAP(wk), 11484 bp, 0); 11485 continue; 11486 11487 case D_INDIRDEP: 11488 handle_written_indirdep(WK_INDIRDEP(wk), 11489 bp, &sbp, 0); 11490 continue; 11491 default: 11492 /* nothing to roll forward */ 11493 continue; 11494 } 11495 } 11496 FREE_LOCK(ump); 11497 if (sbp) 11498 brelse(sbp); 11499 return; 11500 } 11501 LIST_INIT(&reattach); 11502 11503 /* 11504 * Ump SU lock must not be released anywhere in this code segment. 11505 */ 11506 owk = NULL; 11507 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) { 11508 WORKLIST_REMOVE(wk); 11509 atomic_add_long(&dep_write[wk->wk_type], 1); 11510 if (wk == owk) 11511 panic("duplicate worklist: %p\n", wk); 11512 owk = wk; 11513 switch (wk->wk_type) { 11514 case D_PAGEDEP: 11515 if (handle_written_filepage(WK_PAGEDEP(wk), bp, 11516 WRITESUCCEEDED)) 11517 WORKLIST_INSERT(&reattach, wk); 11518 continue; 11519 11520 case D_INODEDEP: 11521 if (handle_written_inodeblock(WK_INODEDEP(wk), bp, 11522 WRITESUCCEEDED)) 11523 WORKLIST_INSERT(&reattach, wk); 11524 continue; 11525 11526 case D_BMSAFEMAP: 11527 if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp, 11528 WRITESUCCEEDED)) 11529 WORKLIST_INSERT(&reattach, wk); 11530 continue; 11531 11532 case D_MKDIR: 11533 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); 11534 continue; 11535 11536 case D_ALLOCDIRECT: 11537 wk->wk_state |= COMPLETE; 11538 handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL); 11539 continue; 11540 11541 case D_ALLOCINDIR: 11542 wk->wk_state |= COMPLETE; 11543 handle_allocindir_partdone(WK_ALLOCINDIR(wk)); 11544 continue; 11545 11546 case D_INDIRDEP: 11547 if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp, 11548 WRITESUCCEEDED)) 11549 WORKLIST_INSERT(&reattach, wk); 11550 continue; 11551 11552 case D_FREEBLKS: 11553 wk->wk_state |= COMPLETE; 11554 freeblks = WK_FREEBLKS(wk); 11555 if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE && 11556 LIST_EMPTY(&freeblks->fb_jblkdephd)) 11557 add_to_worklist(wk, WK_NODELAY); 11558 continue; 11559 11560 case D_FREEWORK: 11561 handle_written_freework(WK_FREEWORK(wk)); 11562 break; 11563 11564 case D_JSEGDEP: 11565 free_jsegdep(WK_JSEGDEP(wk)); 11566 continue; 11567 11568 case D_JSEG: 11569 handle_written_jseg(WK_JSEG(wk), bp); 11570 continue; 11571 11572 case D_SBDEP: 11573 if (handle_written_sbdep(WK_SBDEP(wk), bp)) 11574 WORKLIST_INSERT(&reattach, wk); 11575 continue; 11576 11577 case D_FREEDEP: 11578 free_freedep(WK_FREEDEP(wk)); 11579 continue; 11580 11581 default: 11582 panic("handle_disk_write_complete: Unknown type %s", 11583 TYPENAME(wk->wk_type)); 11584 /* NOTREACHED */ 11585 } 11586 } 11587 /* 11588 * Reattach any requests that must be redone. 11589 */ 11590 while ((wk = LIST_FIRST(&reattach)) != NULL) { 11591 WORKLIST_REMOVE(wk); 11592 WORKLIST_INSERT(&bp->b_dep, wk); 11593 } 11594 FREE_LOCK(ump); 11595 if (sbp) 11596 brelse(sbp); 11597 } 11598 11599 /* 11600 * Called from within softdep_disk_write_complete above. 11601 */ 11602 static void 11603 handle_allocdirect_partdone(adp, wkhd) 11604 struct allocdirect *adp; /* the completed allocdirect */ 11605 struct workhead *wkhd; /* Work to do when inode is writtne. */ 11606 { 11607 struct allocdirectlst *listhead; 11608 struct allocdirect *listadp; 11609 struct inodedep *inodedep; 11610 long bsize; 11611 11612 LOCK_OWNED(VFSTOUFS(adp->ad_block.nb_list.wk_mp)); 11613 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 11614 return; 11615 /* 11616 * The on-disk inode cannot claim to be any larger than the last 11617 * fragment that has been written. Otherwise, the on-disk inode 11618 * might have fragments that were not the last block in the file 11619 * which would corrupt the filesystem. Thus, we cannot free any 11620 * allocdirects after one whose ad_oldblkno claims a fragment as 11621 * these blocks must be rolled back to zero before writing the inode. 11622 * We check the currently active set of allocdirects in id_inoupdt 11623 * or id_extupdt as appropriate. 11624 */ 11625 inodedep = adp->ad_inodedep; 11626 bsize = inodedep->id_fs->fs_bsize; 11627 if (adp->ad_state & EXTDATA) 11628 listhead = &inodedep->id_extupdt; 11629 else 11630 listhead = &inodedep->id_inoupdt; 11631 TAILQ_FOREACH(listadp, listhead, ad_next) { 11632 /* found our block */ 11633 if (listadp == adp) 11634 break; 11635 /* continue if ad_oldlbn is not a fragment */ 11636 if (listadp->ad_oldsize == 0 || 11637 listadp->ad_oldsize == bsize) 11638 continue; 11639 /* hit a fragment */ 11640 return; 11641 } 11642 /* 11643 * If we have reached the end of the current list without 11644 * finding the just finished dependency, then it must be 11645 * on the future dependency list. Future dependencies cannot 11646 * be freed until they are moved to the current list. 11647 */ 11648 if (listadp == NULL) { 11649 #ifdef INVARIANTS 11650 if (adp->ad_state & EXTDATA) 11651 listhead = &inodedep->id_newextupdt; 11652 else 11653 listhead = &inodedep->id_newinoupdt; 11654 TAILQ_FOREACH(listadp, listhead, ad_next) 11655 /* found our block */ 11656 if (listadp == adp) 11657 break; 11658 if (listadp == NULL) 11659 panic("handle_allocdirect_partdone: lost dep"); 11660 #endif /* INVARIANTS */ 11661 return; 11662 } 11663 /* 11664 * If we have found the just finished dependency, then queue 11665 * it along with anything that follows it that is complete. 11666 * Since the pointer has not yet been written in the inode 11667 * as the dependency prevents it, place the allocdirect on the 11668 * bufwait list where it will be freed once the pointer is 11669 * valid. 11670 */ 11671 if (wkhd == NULL) 11672 wkhd = &inodedep->id_bufwait; 11673 for (; adp; adp = listadp) { 11674 listadp = TAILQ_NEXT(adp, ad_next); 11675 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 11676 return; 11677 TAILQ_REMOVE(listhead, adp, ad_next); 11678 WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list); 11679 } 11680 } 11681 11682 /* 11683 * Called from within softdep_disk_write_complete above. This routine 11684 * completes successfully written allocindirs. 11685 */ 11686 static void 11687 handle_allocindir_partdone(aip) 11688 struct allocindir *aip; /* the completed allocindir */ 11689 { 11690 struct indirdep *indirdep; 11691 11692 if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE) 11693 return; 11694 indirdep = aip->ai_indirdep; 11695 LIST_REMOVE(aip, ai_next); 11696 /* 11697 * Don't set a pointer while the buffer is undergoing IO or while 11698 * we have active truncations. 11699 */ 11700 if (indirdep->ir_state & UNDONE || !TAILQ_EMPTY(&indirdep->ir_trunc)) { 11701 LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next); 11702 return; 11703 } 11704 if (indirdep->ir_state & UFS1FMT) 11705 ((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 11706 aip->ai_newblkno; 11707 else 11708 ((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 11709 aip->ai_newblkno; 11710 /* 11711 * Await the pointer write before freeing the allocindir. 11712 */ 11713 LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next); 11714 } 11715 11716 /* 11717 * Release segments held on a jwork list. 11718 */ 11719 static void 11720 handle_jwork(wkhd) 11721 struct workhead *wkhd; 11722 { 11723 struct worklist *wk; 11724 11725 while ((wk = LIST_FIRST(wkhd)) != NULL) { 11726 WORKLIST_REMOVE(wk); 11727 switch (wk->wk_type) { 11728 case D_JSEGDEP: 11729 free_jsegdep(WK_JSEGDEP(wk)); 11730 continue; 11731 case D_FREEDEP: 11732 free_freedep(WK_FREEDEP(wk)); 11733 continue; 11734 case D_FREEFRAG: 11735 rele_jseg(WK_JSEG(WK_FREEFRAG(wk)->ff_jdep)); 11736 WORKITEM_FREE(wk, D_FREEFRAG); 11737 continue; 11738 case D_FREEWORK: 11739 handle_written_freework(WK_FREEWORK(wk)); 11740 continue; 11741 default: 11742 panic("handle_jwork: Unknown type %s\n", 11743 TYPENAME(wk->wk_type)); 11744 } 11745 } 11746 } 11747 11748 /* 11749 * Handle the bufwait list on an inode when it is safe to release items 11750 * held there. This normally happens after an inode block is written but 11751 * may be delayed and handled later if there are pending journal items that 11752 * are not yet safe to be released. 11753 */ 11754 static struct freefile * 11755 handle_bufwait(inodedep, refhd) 11756 struct inodedep *inodedep; 11757 struct workhead *refhd; 11758 { 11759 struct jaddref *jaddref; 11760 struct freefile *freefile; 11761 struct worklist *wk; 11762 11763 freefile = NULL; 11764 while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) { 11765 WORKLIST_REMOVE(wk); 11766 switch (wk->wk_type) { 11767 case D_FREEFILE: 11768 /* 11769 * We defer adding freefile to the worklist 11770 * until all other additions have been made to 11771 * ensure that it will be done after all the 11772 * old blocks have been freed. 11773 */ 11774 if (freefile != NULL) 11775 panic("handle_bufwait: freefile"); 11776 freefile = WK_FREEFILE(wk); 11777 continue; 11778 11779 case D_MKDIR: 11780 handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT); 11781 continue; 11782 11783 case D_DIRADD: 11784 diradd_inode_written(WK_DIRADD(wk), inodedep); 11785 continue; 11786 11787 case D_FREEFRAG: 11788 wk->wk_state |= COMPLETE; 11789 if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE) 11790 add_to_worklist(wk, 0); 11791 continue; 11792 11793 case D_DIRREM: 11794 wk->wk_state |= COMPLETE; 11795 add_to_worklist(wk, 0); 11796 continue; 11797 11798 case D_ALLOCDIRECT: 11799 case D_ALLOCINDIR: 11800 free_newblk(WK_NEWBLK(wk)); 11801 continue; 11802 11803 case D_JNEWBLK: 11804 wk->wk_state |= COMPLETE; 11805 free_jnewblk(WK_JNEWBLK(wk)); 11806 continue; 11807 11808 /* 11809 * Save freed journal segments and add references on 11810 * the supplied list which will delay their release 11811 * until the cg bitmap is cleared on disk. 11812 */ 11813 case D_JSEGDEP: 11814 if (refhd == NULL) 11815 free_jsegdep(WK_JSEGDEP(wk)); 11816 else 11817 WORKLIST_INSERT(refhd, wk); 11818 continue; 11819 11820 case D_JADDREF: 11821 jaddref = WK_JADDREF(wk); 11822 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, 11823 if_deps); 11824 /* 11825 * Transfer any jaddrefs to the list to be freed with 11826 * the bitmap if we're handling a removed file. 11827 */ 11828 if (refhd == NULL) { 11829 wk->wk_state |= COMPLETE; 11830 free_jaddref(jaddref); 11831 } else 11832 WORKLIST_INSERT(refhd, wk); 11833 continue; 11834 11835 default: 11836 panic("handle_bufwait: Unknown type %p(%s)", 11837 wk, TYPENAME(wk->wk_type)); 11838 /* NOTREACHED */ 11839 } 11840 } 11841 return (freefile); 11842 } 11843 /* 11844 * Called from within softdep_disk_write_complete above to restore 11845 * in-memory inode block contents to their most up-to-date state. Note 11846 * that this routine is always called from interrupt level with further 11847 * interrupts from this device blocked. 11848 * 11849 * If the write did not succeed, we will do all the roll-forward 11850 * operations, but we will not take the actions that will allow its 11851 * dependencies to be processed. 11852 */ 11853 static int 11854 handle_written_inodeblock(inodedep, bp, flags) 11855 struct inodedep *inodedep; 11856 struct buf *bp; /* buffer containing the inode block */ 11857 int flags; 11858 { 11859 struct freefile *freefile; 11860 struct allocdirect *adp, *nextadp; 11861 struct ufs1_dinode *dp1 = NULL; 11862 struct ufs2_dinode *dp2 = NULL; 11863 struct workhead wkhd; 11864 int hadchanges, fstype; 11865 ino_t freelink; 11866 11867 LIST_INIT(&wkhd); 11868 hadchanges = 0; 11869 freefile = NULL; 11870 if ((inodedep->id_state & IOSTARTED) == 0) 11871 panic("handle_written_inodeblock: not started"); 11872 inodedep->id_state &= ~IOSTARTED; 11873 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) { 11874 fstype = UFS1; 11875 dp1 = (struct ufs1_dinode *)bp->b_data + 11876 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 11877 freelink = dp1->di_freelink; 11878 } else { 11879 fstype = UFS2; 11880 dp2 = (struct ufs2_dinode *)bp->b_data + 11881 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 11882 freelink = dp2->di_freelink; 11883 } 11884 /* 11885 * Leave this inodeblock dirty until it's in the list. 11886 */ 11887 if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED && 11888 (flags & WRITESUCCEEDED)) { 11889 struct inodedep *inon; 11890 11891 inon = TAILQ_NEXT(inodedep, id_unlinked); 11892 if ((inon == NULL && freelink == 0) || 11893 (inon && inon->id_ino == freelink)) { 11894 if (inon) 11895 inon->id_state |= UNLINKPREV; 11896 inodedep->id_state |= UNLINKNEXT; 11897 } 11898 hadchanges = 1; 11899 } 11900 /* 11901 * If we had to rollback the inode allocation because of 11902 * bitmaps being incomplete, then simply restore it. 11903 * Keep the block dirty so that it will not be reclaimed until 11904 * all associated dependencies have been cleared and the 11905 * corresponding updates written to disk. 11906 */ 11907 if (inodedep->id_savedino1 != NULL) { 11908 hadchanges = 1; 11909 if (fstype == UFS1) 11910 *dp1 = *inodedep->id_savedino1; 11911 else 11912 *dp2 = *inodedep->id_savedino2; 11913 free(inodedep->id_savedino1, M_SAVEDINO); 11914 inodedep->id_savedino1 = NULL; 11915 if ((bp->b_flags & B_DELWRI) == 0) 11916 stat_inode_bitmap++; 11917 bdirty(bp); 11918 /* 11919 * If the inode is clear here and GOINGAWAY it will never 11920 * be written. Process the bufwait and clear any pending 11921 * work which may include the freefile. 11922 */ 11923 if (inodedep->id_state & GOINGAWAY) 11924 goto bufwait; 11925 return (1); 11926 } 11927 if (flags & WRITESUCCEEDED) 11928 inodedep->id_state |= COMPLETE; 11929 /* 11930 * Roll forward anything that had to be rolled back before 11931 * the inode could be updated. 11932 */ 11933 for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) { 11934 nextadp = TAILQ_NEXT(adp, ad_next); 11935 if (adp->ad_state & ATTACHED) 11936 panic("handle_written_inodeblock: new entry"); 11937 if (fstype == UFS1) { 11938 if (adp->ad_offset < UFS_NDADDR) { 11939 if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno) 11940 panic("%s %s #%jd mismatch %d != %jd", 11941 "handle_written_inodeblock:", 11942 "direct pointer", 11943 (intmax_t)adp->ad_offset, 11944 dp1->di_db[adp->ad_offset], 11945 (intmax_t)adp->ad_oldblkno); 11946 dp1->di_db[adp->ad_offset] = adp->ad_newblkno; 11947 } else { 11948 if (dp1->di_ib[adp->ad_offset - UFS_NDADDR] != 11949 0) 11950 panic("%s: %s #%jd allocated as %d", 11951 "handle_written_inodeblock", 11952 "indirect pointer", 11953 (intmax_t)adp->ad_offset - 11954 UFS_NDADDR, 11955 dp1->di_ib[adp->ad_offset - 11956 UFS_NDADDR]); 11957 dp1->di_ib[adp->ad_offset - UFS_NDADDR] = 11958 adp->ad_newblkno; 11959 } 11960 } else { 11961 if (adp->ad_offset < UFS_NDADDR) { 11962 if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno) 11963 panic("%s: %s #%jd %s %jd != %jd", 11964 "handle_written_inodeblock", 11965 "direct pointer", 11966 (intmax_t)adp->ad_offset, "mismatch", 11967 (intmax_t)dp2->di_db[adp->ad_offset], 11968 (intmax_t)adp->ad_oldblkno); 11969 dp2->di_db[adp->ad_offset] = adp->ad_newblkno; 11970 } else { 11971 if (dp2->di_ib[adp->ad_offset - UFS_NDADDR] != 11972 0) 11973 panic("%s: %s #%jd allocated as %jd", 11974 "handle_written_inodeblock", 11975 "indirect pointer", 11976 (intmax_t)adp->ad_offset - 11977 UFS_NDADDR, 11978 (intmax_t) 11979 dp2->di_ib[adp->ad_offset - 11980 UFS_NDADDR]); 11981 dp2->di_ib[adp->ad_offset - UFS_NDADDR] = 11982 adp->ad_newblkno; 11983 } 11984 } 11985 adp->ad_state &= ~UNDONE; 11986 adp->ad_state |= ATTACHED; 11987 hadchanges = 1; 11988 } 11989 for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) { 11990 nextadp = TAILQ_NEXT(adp, ad_next); 11991 if (adp->ad_state & ATTACHED) 11992 panic("handle_written_inodeblock: new entry"); 11993 if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno) 11994 panic("%s: direct pointers #%jd %s %jd != %jd", 11995 "handle_written_inodeblock", 11996 (intmax_t)adp->ad_offset, "mismatch", 11997 (intmax_t)dp2->di_extb[adp->ad_offset], 11998 (intmax_t)adp->ad_oldblkno); 11999 dp2->di_extb[adp->ad_offset] = adp->ad_newblkno; 12000 adp->ad_state &= ~UNDONE; 12001 adp->ad_state |= ATTACHED; 12002 hadchanges = 1; 12003 } 12004 if (hadchanges && (bp->b_flags & B_DELWRI) == 0) 12005 stat_direct_blk_ptrs++; 12006 /* 12007 * Reset the file size to its most up-to-date value. 12008 */ 12009 if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1) 12010 panic("handle_written_inodeblock: bad size"); 12011 if (inodedep->id_savednlink > UFS_LINK_MAX) 12012 panic("handle_written_inodeblock: Invalid link count " 12013 "%jd for inodedep %p", (uintmax_t)inodedep->id_savednlink, 12014 inodedep); 12015 if (fstype == UFS1) { 12016 if (dp1->di_nlink != inodedep->id_savednlink) { 12017 dp1->di_nlink = inodedep->id_savednlink; 12018 hadchanges = 1; 12019 } 12020 if (dp1->di_size != inodedep->id_savedsize) { 12021 dp1->di_size = inodedep->id_savedsize; 12022 hadchanges = 1; 12023 } 12024 } else { 12025 if (dp2->di_nlink != inodedep->id_savednlink) { 12026 dp2->di_nlink = inodedep->id_savednlink; 12027 hadchanges = 1; 12028 } 12029 if (dp2->di_size != inodedep->id_savedsize) { 12030 dp2->di_size = inodedep->id_savedsize; 12031 hadchanges = 1; 12032 } 12033 if (dp2->di_extsize != inodedep->id_savedextsize) { 12034 dp2->di_extsize = inodedep->id_savedextsize; 12035 hadchanges = 1; 12036 } 12037 } 12038 inodedep->id_savedsize = -1; 12039 inodedep->id_savedextsize = -1; 12040 inodedep->id_savednlink = -1; 12041 /* 12042 * If there were any rollbacks in the inode block, then it must be 12043 * marked dirty so that its will eventually get written back in 12044 * its correct form. 12045 */ 12046 if (hadchanges) { 12047 if (fstype == UFS2) 12048 ffs_update_dinode_ckhash(inodedep->id_fs, dp2); 12049 bdirty(bp); 12050 } 12051 bufwait: 12052 /* 12053 * If the write did not succeed, we have done all the roll-forward 12054 * operations, but we cannot take the actions that will allow its 12055 * dependencies to be processed. 12056 */ 12057 if ((flags & WRITESUCCEEDED) == 0) 12058 return (hadchanges); 12059 /* 12060 * Process any allocdirects that completed during the update. 12061 */ 12062 if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL) 12063 handle_allocdirect_partdone(adp, &wkhd); 12064 if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 12065 handle_allocdirect_partdone(adp, &wkhd); 12066 /* 12067 * Process deallocations that were held pending until the 12068 * inode had been written to disk. Freeing of the inode 12069 * is delayed until after all blocks have been freed to 12070 * avoid creation of new <vfsid, inum, lbn> triples 12071 * before the old ones have been deleted. Completely 12072 * unlinked inodes are not processed until the unlinked 12073 * inode list is written or the last reference is removed. 12074 */ 12075 if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) { 12076 freefile = handle_bufwait(inodedep, NULL); 12077 if (freefile && !LIST_EMPTY(&wkhd)) { 12078 WORKLIST_INSERT(&wkhd, &freefile->fx_list); 12079 freefile = NULL; 12080 } 12081 } 12082 /* 12083 * Move rolled forward dependency completions to the bufwait list 12084 * now that those that were already written have been processed. 12085 */ 12086 if (!LIST_EMPTY(&wkhd) && hadchanges == 0) 12087 panic("handle_written_inodeblock: bufwait but no changes"); 12088 jwork_move(&inodedep->id_bufwait, &wkhd); 12089 12090 if (freefile != NULL) { 12091 /* 12092 * If the inode is goingaway it was never written. Fake up 12093 * the state here so free_inodedep() can succeed. 12094 */ 12095 if (inodedep->id_state & GOINGAWAY) 12096 inodedep->id_state |= COMPLETE | DEPCOMPLETE; 12097 if (free_inodedep(inodedep) == 0) 12098 panic("handle_written_inodeblock: live inodedep %p", 12099 inodedep); 12100 add_to_worklist(&freefile->fx_list, 0); 12101 return (0); 12102 } 12103 12104 /* 12105 * If no outstanding dependencies, free it. 12106 */ 12107 if (free_inodedep(inodedep) || 12108 (TAILQ_FIRST(&inodedep->id_inoreflst) == 0 && 12109 TAILQ_FIRST(&inodedep->id_inoupdt) == 0 && 12110 TAILQ_FIRST(&inodedep->id_extupdt) == 0 && 12111 LIST_FIRST(&inodedep->id_bufwait) == 0)) 12112 return (0); 12113 return (hadchanges); 12114 } 12115 12116 /* 12117 * Perform needed roll-forwards and kick off any dependencies that 12118 * can now be processed. 12119 * 12120 * If the write did not succeed, we will do all the roll-forward 12121 * operations, but we will not take the actions that will allow its 12122 * dependencies to be processed. 12123 */ 12124 static int 12125 handle_written_indirdep(indirdep, bp, bpp, flags) 12126 struct indirdep *indirdep; 12127 struct buf *bp; 12128 struct buf **bpp; 12129 int flags; 12130 { 12131 struct allocindir *aip; 12132 struct buf *sbp; 12133 int chgs; 12134 12135 if (indirdep->ir_state & GOINGAWAY) 12136 panic("handle_written_indirdep: indirdep gone"); 12137 if ((indirdep->ir_state & IOSTARTED) == 0) 12138 panic("handle_written_indirdep: IO not started"); 12139 chgs = 0; 12140 /* 12141 * If there were rollbacks revert them here. 12142 */ 12143 if (indirdep->ir_saveddata) { 12144 bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount); 12145 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 12146 free(indirdep->ir_saveddata, M_INDIRDEP); 12147 indirdep->ir_saveddata = NULL; 12148 } 12149 chgs = 1; 12150 } 12151 indirdep->ir_state &= ~(UNDONE | IOSTARTED); 12152 indirdep->ir_state |= ATTACHED; 12153 /* 12154 * If the write did not succeed, we have done all the roll-forward 12155 * operations, but we cannot take the actions that will allow its 12156 * dependencies to be processed. 12157 */ 12158 if ((flags & WRITESUCCEEDED) == 0) { 12159 stat_indir_blk_ptrs++; 12160 bdirty(bp); 12161 return (1); 12162 } 12163 /* 12164 * Move allocindirs with written pointers to the completehd if 12165 * the indirdep's pointer is not yet written. Otherwise 12166 * free them here. 12167 */ 12168 while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL) { 12169 LIST_REMOVE(aip, ai_next); 12170 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 12171 LIST_INSERT_HEAD(&indirdep->ir_completehd, aip, 12172 ai_next); 12173 newblk_freefrag(&aip->ai_block); 12174 continue; 12175 } 12176 free_newblk(&aip->ai_block); 12177 } 12178 /* 12179 * Move allocindirs that have finished dependency processing from 12180 * the done list to the write list after updating the pointers. 12181 */ 12182 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 12183 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL) { 12184 handle_allocindir_partdone(aip); 12185 if (aip == LIST_FIRST(&indirdep->ir_donehd)) 12186 panic("disk_write_complete: not gone"); 12187 chgs = 1; 12188 } 12189 } 12190 /* 12191 * Preserve the indirdep if there were any changes or if it is not 12192 * yet valid on disk. 12193 */ 12194 if (chgs) { 12195 stat_indir_blk_ptrs++; 12196 bdirty(bp); 12197 return (1); 12198 } 12199 /* 12200 * If there were no changes we can discard the savedbp and detach 12201 * ourselves from the buf. We are only carrying completed pointers 12202 * in this case. 12203 */ 12204 sbp = indirdep->ir_savebp; 12205 sbp->b_flags |= B_INVAL | B_NOCACHE; 12206 indirdep->ir_savebp = NULL; 12207 indirdep->ir_bp = NULL; 12208 if (*bpp != NULL) 12209 panic("handle_written_indirdep: bp already exists."); 12210 *bpp = sbp; 12211 /* 12212 * The indirdep may not be freed until its parent points at it. 12213 */ 12214 if (indirdep->ir_state & DEPCOMPLETE) 12215 free_indirdep(indirdep); 12216 12217 return (0); 12218 } 12219 12220 /* 12221 * Process a diradd entry after its dependent inode has been written. 12222 */ 12223 static void 12224 diradd_inode_written(dap, inodedep) 12225 struct diradd *dap; 12226 struct inodedep *inodedep; 12227 { 12228 12229 LOCK_OWNED(VFSTOUFS(dap->da_list.wk_mp)); 12230 dap->da_state |= COMPLETE; 12231 complete_diradd(dap); 12232 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 12233 } 12234 12235 /* 12236 * Returns true if the bmsafemap will have rollbacks when written. Must only 12237 * be called with the per-filesystem lock and the buf lock on the cg held. 12238 */ 12239 static int 12240 bmsafemap_backgroundwrite(bmsafemap, bp) 12241 struct bmsafemap *bmsafemap; 12242 struct buf *bp; 12243 { 12244 int dirty; 12245 12246 LOCK_OWNED(VFSTOUFS(bmsafemap->sm_list.wk_mp)); 12247 dirty = !LIST_EMPTY(&bmsafemap->sm_jaddrefhd) | 12248 !LIST_EMPTY(&bmsafemap->sm_jnewblkhd); 12249 /* 12250 * If we're initiating a background write we need to process the 12251 * rollbacks as they exist now, not as they exist when IO starts. 12252 * No other consumers will look at the contents of the shadowed 12253 * buf so this is safe to do here. 12254 */ 12255 if (bp->b_xflags & BX_BKGRDMARKER) 12256 initiate_write_bmsafemap(bmsafemap, bp); 12257 12258 return (dirty); 12259 } 12260 12261 /* 12262 * Re-apply an allocation when a cg write is complete. 12263 */ 12264 static int 12265 jnewblk_rollforward(jnewblk, fs, cgp, blksfree) 12266 struct jnewblk *jnewblk; 12267 struct fs *fs; 12268 struct cg *cgp; 12269 uint8_t *blksfree; 12270 { 12271 ufs1_daddr_t fragno; 12272 ufs2_daddr_t blkno; 12273 long cgbno, bbase; 12274 int frags, blk; 12275 int i; 12276 12277 frags = 0; 12278 cgbno = dtogd(fs, jnewblk->jn_blkno); 12279 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) { 12280 if (isclr(blksfree, cgbno + i)) 12281 panic("jnewblk_rollforward: re-allocated fragment"); 12282 frags++; 12283 } 12284 if (frags == fs->fs_frag) { 12285 blkno = fragstoblks(fs, cgbno); 12286 ffs_clrblock(fs, blksfree, (long)blkno); 12287 ffs_clusteracct(fs, cgp, blkno, -1); 12288 cgp->cg_cs.cs_nbfree--; 12289 } else { 12290 bbase = cgbno - fragnum(fs, cgbno); 12291 cgbno += jnewblk->jn_oldfrags; 12292 /* If a complete block had been reassembled, account for it. */ 12293 fragno = fragstoblks(fs, bbase); 12294 if (ffs_isblock(fs, blksfree, fragno)) { 12295 cgp->cg_cs.cs_nffree += fs->fs_frag; 12296 ffs_clusteracct(fs, cgp, fragno, -1); 12297 cgp->cg_cs.cs_nbfree--; 12298 } 12299 /* Decrement the old frags. */ 12300 blk = blkmap(fs, blksfree, bbase); 12301 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 12302 /* Allocate the fragment */ 12303 for (i = 0; i < frags; i++) 12304 clrbit(blksfree, cgbno + i); 12305 cgp->cg_cs.cs_nffree -= frags; 12306 /* Add back in counts associated with the new frags */ 12307 blk = blkmap(fs, blksfree, bbase); 12308 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 12309 } 12310 return (frags); 12311 } 12312 12313 /* 12314 * Complete a write to a bmsafemap structure. Roll forward any bitmap 12315 * changes if it's not a background write. Set all written dependencies 12316 * to DEPCOMPLETE and free the structure if possible. 12317 * 12318 * If the write did not succeed, we will do all the roll-forward 12319 * operations, but we will not take the actions that will allow its 12320 * dependencies to be processed. 12321 */ 12322 static int 12323 handle_written_bmsafemap(bmsafemap, bp, flags) 12324 struct bmsafemap *bmsafemap; 12325 struct buf *bp; 12326 int flags; 12327 { 12328 struct newblk *newblk; 12329 struct inodedep *inodedep; 12330 struct jaddref *jaddref, *jatmp; 12331 struct jnewblk *jnewblk, *jntmp; 12332 struct ufsmount *ump; 12333 uint8_t *inosused; 12334 uint8_t *blksfree; 12335 struct cg *cgp; 12336 struct fs *fs; 12337 ino_t ino; 12338 int foreground; 12339 int chgs; 12340 12341 if ((bmsafemap->sm_state & IOSTARTED) == 0) 12342 panic("handle_written_bmsafemap: Not started\n"); 12343 ump = VFSTOUFS(bmsafemap->sm_list.wk_mp); 12344 chgs = 0; 12345 bmsafemap->sm_state &= ~IOSTARTED; 12346 foreground = (bp->b_xflags & BX_BKGRDMARKER) == 0; 12347 /* 12348 * If write was successful, release journal work that was waiting 12349 * on the write. Otherwise move the work back. 12350 */ 12351 if (flags & WRITESUCCEEDED) 12352 handle_jwork(&bmsafemap->sm_freewr); 12353 else 12354 LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, 12355 worklist, wk_list); 12356 12357 /* 12358 * Restore unwritten inode allocation pending jaddref writes. 12359 */ 12360 if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) { 12361 cgp = (struct cg *)bp->b_data; 12362 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 12363 inosused = cg_inosused(cgp); 12364 LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd, 12365 ja_bmdeps, jatmp) { 12366 if ((jaddref->ja_state & UNDONE) == 0) 12367 continue; 12368 ino = jaddref->ja_ino % fs->fs_ipg; 12369 if (isset(inosused, ino)) 12370 panic("handle_written_bmsafemap: " 12371 "re-allocated inode"); 12372 /* Do the roll-forward only if it's a real copy. */ 12373 if (foreground) { 12374 if ((jaddref->ja_mode & IFMT) == IFDIR) 12375 cgp->cg_cs.cs_ndir++; 12376 cgp->cg_cs.cs_nifree--; 12377 setbit(inosused, ino); 12378 chgs = 1; 12379 } 12380 jaddref->ja_state &= ~UNDONE; 12381 jaddref->ja_state |= ATTACHED; 12382 free_jaddref(jaddref); 12383 } 12384 } 12385 /* 12386 * Restore any block allocations which are pending journal writes. 12387 */ 12388 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) { 12389 cgp = (struct cg *)bp->b_data; 12390 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 12391 blksfree = cg_blksfree(cgp); 12392 LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps, 12393 jntmp) { 12394 if ((jnewblk->jn_state & UNDONE) == 0) 12395 continue; 12396 /* Do the roll-forward only if it's a real copy. */ 12397 if (foreground && 12398 jnewblk_rollforward(jnewblk, fs, cgp, blksfree)) 12399 chgs = 1; 12400 jnewblk->jn_state &= ~(UNDONE | NEWBLOCK); 12401 jnewblk->jn_state |= ATTACHED; 12402 free_jnewblk(jnewblk); 12403 } 12404 } 12405 /* 12406 * If the write did not succeed, we have done all the roll-forward 12407 * operations, but we cannot take the actions that will allow its 12408 * dependencies to be processed. 12409 */ 12410 if ((flags & WRITESUCCEEDED) == 0) { 12411 LIST_CONCAT(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr, 12412 newblk, nb_deps); 12413 LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, 12414 worklist, wk_list); 12415 if (foreground) 12416 bdirty(bp); 12417 return (1); 12418 } 12419 while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) { 12420 newblk->nb_state |= DEPCOMPLETE; 12421 newblk->nb_state &= ~ONDEPLIST; 12422 newblk->nb_bmsafemap = NULL; 12423 LIST_REMOVE(newblk, nb_deps); 12424 if (newblk->nb_list.wk_type == D_ALLOCDIRECT) 12425 handle_allocdirect_partdone( 12426 WK_ALLOCDIRECT(&newblk->nb_list), NULL); 12427 else if (newblk->nb_list.wk_type == D_ALLOCINDIR) 12428 handle_allocindir_partdone( 12429 WK_ALLOCINDIR(&newblk->nb_list)); 12430 else if (newblk->nb_list.wk_type != D_NEWBLK) 12431 panic("handle_written_bmsafemap: Unexpected type: %s", 12432 TYPENAME(newblk->nb_list.wk_type)); 12433 } 12434 while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) { 12435 inodedep->id_state |= DEPCOMPLETE; 12436 inodedep->id_state &= ~ONDEPLIST; 12437 LIST_REMOVE(inodedep, id_deps); 12438 inodedep->id_bmsafemap = NULL; 12439 } 12440 LIST_REMOVE(bmsafemap, sm_next); 12441 if (chgs == 0 && LIST_EMPTY(&bmsafemap->sm_jaddrefhd) && 12442 LIST_EMPTY(&bmsafemap->sm_jnewblkhd) && 12443 LIST_EMPTY(&bmsafemap->sm_newblkhd) && 12444 LIST_EMPTY(&bmsafemap->sm_inodedephd) && 12445 LIST_EMPTY(&bmsafemap->sm_freehd)) { 12446 LIST_REMOVE(bmsafemap, sm_hash); 12447 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); 12448 return (0); 12449 } 12450 LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next); 12451 if (foreground) 12452 bdirty(bp); 12453 return (1); 12454 } 12455 12456 /* 12457 * Try to free a mkdir dependency. 12458 */ 12459 static void 12460 complete_mkdir(mkdir) 12461 struct mkdir *mkdir; 12462 { 12463 struct diradd *dap; 12464 12465 if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE) 12466 return; 12467 LIST_REMOVE(mkdir, md_mkdirs); 12468 dap = mkdir->md_diradd; 12469 dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)); 12470 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) { 12471 dap->da_state |= DEPCOMPLETE; 12472 complete_diradd(dap); 12473 } 12474 WORKITEM_FREE(mkdir, D_MKDIR); 12475 } 12476 12477 /* 12478 * Handle the completion of a mkdir dependency. 12479 */ 12480 static void 12481 handle_written_mkdir(mkdir, type) 12482 struct mkdir *mkdir; 12483 int type; 12484 { 12485 12486 if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type) 12487 panic("handle_written_mkdir: bad type"); 12488 mkdir->md_state |= COMPLETE; 12489 complete_mkdir(mkdir); 12490 } 12491 12492 static int 12493 free_pagedep(pagedep) 12494 struct pagedep *pagedep; 12495 { 12496 int i; 12497 12498 if (pagedep->pd_state & NEWBLOCK) 12499 return (0); 12500 if (!LIST_EMPTY(&pagedep->pd_dirremhd)) 12501 return (0); 12502 for (i = 0; i < DAHASHSZ; i++) 12503 if (!LIST_EMPTY(&pagedep->pd_diraddhd[i])) 12504 return (0); 12505 if (!LIST_EMPTY(&pagedep->pd_pendinghd)) 12506 return (0); 12507 if (!LIST_EMPTY(&pagedep->pd_jmvrefhd)) 12508 return (0); 12509 if (pagedep->pd_state & ONWORKLIST) 12510 WORKLIST_REMOVE(&pagedep->pd_list); 12511 LIST_REMOVE(pagedep, pd_hash); 12512 WORKITEM_FREE(pagedep, D_PAGEDEP); 12513 12514 return (1); 12515 } 12516 12517 /* 12518 * Called from within softdep_disk_write_complete above. 12519 * A write operation was just completed. Removed inodes can 12520 * now be freed and associated block pointers may be committed. 12521 * Note that this routine is always called from interrupt level 12522 * with further interrupts from this device blocked. 12523 * 12524 * If the write did not succeed, we will do all the roll-forward 12525 * operations, but we will not take the actions that will allow its 12526 * dependencies to be processed. 12527 */ 12528 static int 12529 handle_written_filepage(pagedep, bp, flags) 12530 struct pagedep *pagedep; 12531 struct buf *bp; /* buffer containing the written page */ 12532 int flags; 12533 { 12534 struct dirrem *dirrem; 12535 struct diradd *dap, *nextdap; 12536 struct direct *ep; 12537 int i, chgs; 12538 12539 if ((pagedep->pd_state & IOSTARTED) == 0) 12540 panic("handle_written_filepage: not started"); 12541 pagedep->pd_state &= ~IOSTARTED; 12542 if ((flags & WRITESUCCEEDED) == 0) 12543 goto rollforward; 12544 /* 12545 * Process any directory removals that have been committed. 12546 */ 12547 while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) { 12548 LIST_REMOVE(dirrem, dm_next); 12549 dirrem->dm_state |= COMPLETE; 12550 dirrem->dm_dirinum = pagedep->pd_ino; 12551 KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd), 12552 ("handle_written_filepage: Journal entries not written.")); 12553 add_to_worklist(&dirrem->dm_list, 0); 12554 } 12555 /* 12556 * Free any directory additions that have been committed. 12557 * If it is a newly allocated block, we have to wait until 12558 * the on-disk directory inode claims the new block. 12559 */ 12560 if ((pagedep->pd_state & NEWBLOCK) == 0) 12561 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 12562 free_diradd(dap, NULL); 12563 rollforward: 12564 /* 12565 * Uncommitted directory entries must be restored. 12566 */ 12567 for (chgs = 0, i = 0; i < DAHASHSZ; i++) { 12568 for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap; 12569 dap = nextdap) { 12570 nextdap = LIST_NEXT(dap, da_pdlist); 12571 if (dap->da_state & ATTACHED) 12572 panic("handle_written_filepage: attached"); 12573 ep = (struct direct *) 12574 ((char *)bp->b_data + dap->da_offset); 12575 ep->d_ino = dap->da_newinum; 12576 dap->da_state &= ~UNDONE; 12577 dap->da_state |= ATTACHED; 12578 chgs = 1; 12579 /* 12580 * If the inode referenced by the directory has 12581 * been written out, then the dependency can be 12582 * moved to the pending list. 12583 */ 12584 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 12585 LIST_REMOVE(dap, da_pdlist); 12586 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, 12587 da_pdlist); 12588 } 12589 } 12590 } 12591 /* 12592 * If there were any rollbacks in the directory, then it must be 12593 * marked dirty so that its will eventually get written back in 12594 * its correct form. 12595 */ 12596 if (chgs || (flags & WRITESUCCEEDED) == 0) { 12597 if ((bp->b_flags & B_DELWRI) == 0) 12598 stat_dir_entry++; 12599 bdirty(bp); 12600 return (1); 12601 } 12602 /* 12603 * If we are not waiting for a new directory block to be 12604 * claimed by its inode, then the pagedep will be freed. 12605 * Otherwise it will remain to track any new entries on 12606 * the page in case they are fsync'ed. 12607 */ 12608 free_pagedep(pagedep); 12609 return (0); 12610 } 12611 12612 /* 12613 * Writing back in-core inode structures. 12614 * 12615 * The filesystem only accesses an inode's contents when it occupies an 12616 * "in-core" inode structure. These "in-core" structures are separate from 12617 * the page frames used to cache inode blocks. Only the latter are 12618 * transferred to/from the disk. So, when the updated contents of the 12619 * "in-core" inode structure are copied to the corresponding in-memory inode 12620 * block, the dependencies are also transferred. The following procedure is 12621 * called when copying a dirty "in-core" inode to a cached inode block. 12622 */ 12623 12624 /* 12625 * Called when an inode is loaded from disk. If the effective link count 12626 * differed from the actual link count when it was last flushed, then we 12627 * need to ensure that the correct effective link count is put back. 12628 */ 12629 void 12630 softdep_load_inodeblock(ip) 12631 struct inode *ip; /* the "in_core" copy of the inode */ 12632 { 12633 struct inodedep *inodedep; 12634 struct ufsmount *ump; 12635 12636 ump = ITOUMP(ip); 12637 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 12638 ("softdep_load_inodeblock called on non-softdep filesystem")); 12639 /* 12640 * Check for alternate nlink count. 12641 */ 12642 ip->i_effnlink = ip->i_nlink; 12643 ACQUIRE_LOCK(ump); 12644 if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0) { 12645 FREE_LOCK(ump); 12646 return; 12647 } 12648 if (ip->i_nlink != inodedep->id_nlinkwrote && 12649 inodedep->id_nlinkwrote != -1) { 12650 KASSERT(ip->i_nlink == 0 && 12651 (ump->um_flags & UM_FSFAIL_CLEANUP) != 0, 12652 ("read bad i_nlink value")); 12653 ip->i_effnlink = ip->i_nlink = inodedep->id_nlinkwrote; 12654 } 12655 ip->i_effnlink -= inodedep->id_nlinkdelta; 12656 KASSERT(ip->i_effnlink >= 0, 12657 ("softdep_load_inodeblock: negative i_effnlink")); 12658 FREE_LOCK(ump); 12659 } 12660 12661 /* 12662 * This routine is called just before the "in-core" inode 12663 * information is to be copied to the in-memory inode block. 12664 * Recall that an inode block contains several inodes. If 12665 * the force flag is set, then the dependencies will be 12666 * cleared so that the update can always be made. Note that 12667 * the buffer is locked when this routine is called, so we 12668 * will never be in the middle of writing the inode block 12669 * to disk. 12670 */ 12671 void 12672 softdep_update_inodeblock(ip, bp, waitfor) 12673 struct inode *ip; /* the "in_core" copy of the inode */ 12674 struct buf *bp; /* the buffer containing the inode block */ 12675 int waitfor; /* nonzero => update must be allowed */ 12676 { 12677 struct inodedep *inodedep; 12678 struct inoref *inoref; 12679 struct ufsmount *ump; 12680 struct worklist *wk; 12681 struct mount *mp; 12682 struct buf *ibp; 12683 struct fs *fs; 12684 int error; 12685 12686 ump = ITOUMP(ip); 12687 mp = UFSTOVFS(ump); 12688 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 12689 ("softdep_update_inodeblock called on non-softdep filesystem")); 12690 fs = ump->um_fs; 12691 /* 12692 * Preserve the freelink that is on disk. clear_unlinked_inodedep() 12693 * does not have access to the in-core ip so must write directly into 12694 * the inode block buffer when setting freelink. 12695 */ 12696 if (fs->fs_magic == FS_UFS1_MAGIC) 12697 DIP_SET(ip, i_freelink, ((struct ufs1_dinode *)bp->b_data + 12698 ino_to_fsbo(fs, ip->i_number))->di_freelink); 12699 else 12700 DIP_SET(ip, i_freelink, ((struct ufs2_dinode *)bp->b_data + 12701 ino_to_fsbo(fs, ip->i_number))->di_freelink); 12702 /* 12703 * If the effective link count is not equal to the actual link 12704 * count, then we must track the difference in an inodedep while 12705 * the inode is (potentially) tossed out of the cache. Otherwise, 12706 * if there is no existing inodedep, then there are no dependencies 12707 * to track. 12708 */ 12709 ACQUIRE_LOCK(ump); 12710 again: 12711 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) { 12712 FREE_LOCK(ump); 12713 if (ip->i_effnlink != ip->i_nlink) 12714 panic("softdep_update_inodeblock: bad link count"); 12715 return; 12716 } 12717 KASSERT(ip->i_nlink >= inodedep->id_nlinkdelta, 12718 ("softdep_update_inodeblock inconsistent ip %p i_nlink %d " 12719 "inodedep %p id_nlinkdelta %jd", 12720 ip, ip->i_nlink, inodedep, (intmax_t)inodedep->id_nlinkdelta)); 12721 inodedep->id_nlinkwrote = ip->i_nlink; 12722 if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink) 12723 panic("softdep_update_inodeblock: bad delta"); 12724 /* 12725 * If we're flushing all dependencies we must also move any waiting 12726 * for journal writes onto the bufwait list prior to I/O. 12727 */ 12728 if (waitfor) { 12729 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 12730 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 12731 == DEPCOMPLETE) { 12732 jwait(&inoref->if_list, MNT_WAIT); 12733 goto again; 12734 } 12735 } 12736 } 12737 /* 12738 * Changes have been initiated. Anything depending on these 12739 * changes cannot occur until this inode has been written. 12740 */ 12741 inodedep->id_state &= ~COMPLETE; 12742 if ((inodedep->id_state & ONWORKLIST) == 0) 12743 WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list); 12744 /* 12745 * Any new dependencies associated with the incore inode must 12746 * now be moved to the list associated with the buffer holding 12747 * the in-memory copy of the inode. Once merged process any 12748 * allocdirects that are completed by the merger. 12749 */ 12750 merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt); 12751 if (!TAILQ_EMPTY(&inodedep->id_inoupdt)) 12752 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt), 12753 NULL); 12754 merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt); 12755 if (!TAILQ_EMPTY(&inodedep->id_extupdt)) 12756 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt), 12757 NULL); 12758 /* 12759 * Now that the inode has been pushed into the buffer, the 12760 * operations dependent on the inode being written to disk 12761 * can be moved to the id_bufwait so that they will be 12762 * processed when the buffer I/O completes. 12763 */ 12764 while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) { 12765 WORKLIST_REMOVE(wk); 12766 WORKLIST_INSERT(&inodedep->id_bufwait, wk); 12767 } 12768 /* 12769 * Newly allocated inodes cannot be written until the bitmap 12770 * that allocates them have been written (indicated by 12771 * DEPCOMPLETE being set in id_state). If we are doing a 12772 * forced sync (e.g., an fsync on a file), we force the bitmap 12773 * to be written so that the update can be done. 12774 */ 12775 if (waitfor == 0) { 12776 FREE_LOCK(ump); 12777 return; 12778 } 12779 retry: 12780 if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) { 12781 FREE_LOCK(ump); 12782 return; 12783 } 12784 ibp = inodedep->id_bmsafemap->sm_buf; 12785 ibp = getdirtybuf(ibp, LOCK_PTR(ump), MNT_WAIT); 12786 if (ibp == NULL) { 12787 /* 12788 * If ibp came back as NULL, the dependency could have been 12789 * freed while we slept. Look it up again, and check to see 12790 * that it has completed. 12791 */ 12792 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) 12793 goto retry; 12794 FREE_LOCK(ump); 12795 return; 12796 } 12797 FREE_LOCK(ump); 12798 if ((error = bwrite(ibp)) != 0) 12799 softdep_error("softdep_update_inodeblock: bwrite", error); 12800 } 12801 12802 /* 12803 * Merge the a new inode dependency list (such as id_newinoupdt) into an 12804 * old inode dependency list (such as id_inoupdt). 12805 */ 12806 static void 12807 merge_inode_lists(newlisthead, oldlisthead) 12808 struct allocdirectlst *newlisthead; 12809 struct allocdirectlst *oldlisthead; 12810 { 12811 struct allocdirect *listadp, *newadp; 12812 12813 newadp = TAILQ_FIRST(newlisthead); 12814 if (newadp != NULL) 12815 LOCK_OWNED(VFSTOUFS(newadp->ad_block.nb_list.wk_mp)); 12816 for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) { 12817 if (listadp->ad_offset < newadp->ad_offset) { 12818 listadp = TAILQ_NEXT(listadp, ad_next); 12819 continue; 12820 } 12821 TAILQ_REMOVE(newlisthead, newadp, ad_next); 12822 TAILQ_INSERT_BEFORE(listadp, newadp, ad_next); 12823 if (listadp->ad_offset == newadp->ad_offset) { 12824 allocdirect_merge(oldlisthead, newadp, 12825 listadp); 12826 listadp = newadp; 12827 } 12828 newadp = TAILQ_FIRST(newlisthead); 12829 } 12830 while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) { 12831 TAILQ_REMOVE(newlisthead, newadp, ad_next); 12832 TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next); 12833 } 12834 } 12835 12836 /* 12837 * If we are doing an fsync, then we must ensure that any directory 12838 * entries for the inode have been written after the inode gets to disk. 12839 */ 12840 int 12841 softdep_fsync(vp) 12842 struct vnode *vp; /* the "in_core" copy of the inode */ 12843 { 12844 struct inodedep *inodedep; 12845 struct pagedep *pagedep; 12846 struct inoref *inoref; 12847 struct ufsmount *ump; 12848 struct worklist *wk; 12849 struct diradd *dap; 12850 struct mount *mp; 12851 struct vnode *pvp; 12852 struct inode *ip; 12853 struct buf *bp; 12854 struct fs *fs; 12855 struct thread *td = curthread; 12856 int error, flushparent, pagedep_new_block; 12857 ino_t parentino; 12858 ufs_lbn_t lbn; 12859 12860 ip = VTOI(vp); 12861 mp = vp->v_mount; 12862 ump = VFSTOUFS(mp); 12863 fs = ump->um_fs; 12864 if (MOUNTEDSOFTDEP(mp) == 0) 12865 return (0); 12866 ACQUIRE_LOCK(ump); 12867 restart: 12868 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) { 12869 FREE_LOCK(ump); 12870 return (0); 12871 } 12872 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 12873 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 12874 == DEPCOMPLETE) { 12875 jwait(&inoref->if_list, MNT_WAIT); 12876 goto restart; 12877 } 12878 } 12879 if (!LIST_EMPTY(&inodedep->id_inowait) || 12880 !TAILQ_EMPTY(&inodedep->id_extupdt) || 12881 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 12882 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 12883 !TAILQ_EMPTY(&inodedep->id_newinoupdt)) 12884 panic("softdep_fsync: pending ops %p", inodedep); 12885 for (error = 0, flushparent = 0; ; ) { 12886 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL) 12887 break; 12888 if (wk->wk_type != D_DIRADD) 12889 panic("softdep_fsync: Unexpected type %s", 12890 TYPENAME(wk->wk_type)); 12891 dap = WK_DIRADD(wk); 12892 /* 12893 * Flush our parent if this directory entry has a MKDIR_PARENT 12894 * dependency or is contained in a newly allocated block. 12895 */ 12896 if (dap->da_state & DIRCHG) 12897 pagedep = dap->da_previous->dm_pagedep; 12898 else 12899 pagedep = dap->da_pagedep; 12900 parentino = pagedep->pd_ino; 12901 lbn = pagedep->pd_lbn; 12902 if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE) 12903 panic("softdep_fsync: dirty"); 12904 if ((dap->da_state & MKDIR_PARENT) || 12905 (pagedep->pd_state & NEWBLOCK)) 12906 flushparent = 1; 12907 else 12908 flushparent = 0; 12909 /* 12910 * If we are being fsync'ed as part of vgone'ing this vnode, 12911 * then we will not be able to release and recover the 12912 * vnode below, so we just have to give up on writing its 12913 * directory entry out. It will eventually be written, just 12914 * not now, but then the user was not asking to have it 12915 * written, so we are not breaking any promises. 12916 */ 12917 if (VN_IS_DOOMED(vp)) 12918 break; 12919 /* 12920 * We prevent deadlock by always fetching inodes from the 12921 * root, moving down the directory tree. Thus, when fetching 12922 * our parent directory, we first try to get the lock. If 12923 * that fails, we must unlock ourselves before requesting 12924 * the lock on our parent. See the comment in ufs_lookup 12925 * for details on possible races. 12926 */ 12927 FREE_LOCK(ump); 12928 error = get_parent_vp(vp, mp, parentino, NULL, NULL, NULL, 12929 &pvp); 12930 if (error == ERELOOKUP) 12931 error = 0; 12932 if (error != 0) 12933 return (error); 12934 /* 12935 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps 12936 * that are contained in direct blocks will be resolved by 12937 * doing a ffs_update. Pagedeps contained in indirect blocks 12938 * may require a complete sync'ing of the directory. So, we 12939 * try the cheap and fast ffs_update first, and if that fails, 12940 * then we do the slower ffs_syncvnode of the directory. 12941 */ 12942 if (flushparent) { 12943 int locked; 12944 12945 if ((error = ffs_update(pvp, 1)) != 0) { 12946 vput(pvp); 12947 return (error); 12948 } 12949 ACQUIRE_LOCK(ump); 12950 locked = 1; 12951 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) { 12952 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) { 12953 if (wk->wk_type != D_DIRADD) 12954 panic("softdep_fsync: Unexpected type %s", 12955 TYPENAME(wk->wk_type)); 12956 dap = WK_DIRADD(wk); 12957 if (dap->da_state & DIRCHG) 12958 pagedep = dap->da_previous->dm_pagedep; 12959 else 12960 pagedep = dap->da_pagedep; 12961 pagedep_new_block = pagedep->pd_state & NEWBLOCK; 12962 FREE_LOCK(ump); 12963 locked = 0; 12964 if (pagedep_new_block && (error = 12965 ffs_syncvnode(pvp, MNT_WAIT, 0))) { 12966 vput(pvp); 12967 return (error); 12968 } 12969 } 12970 } 12971 if (locked) 12972 FREE_LOCK(ump); 12973 } 12974 /* 12975 * Flush directory page containing the inode's name. 12976 */ 12977 error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred, 12978 &bp); 12979 if (error == 0) 12980 error = bwrite(bp); 12981 else 12982 brelse(bp); 12983 vput(pvp); 12984 if (!ffs_fsfail_cleanup(ump, error)) 12985 return (error); 12986 ACQUIRE_LOCK(ump); 12987 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 12988 break; 12989 } 12990 FREE_LOCK(ump); 12991 return (0); 12992 } 12993 12994 /* 12995 * Flush all the dirty bitmaps associated with the block device 12996 * before flushing the rest of the dirty blocks so as to reduce 12997 * the number of dependencies that will have to be rolled back. 12998 * 12999 * XXX Unused? 13000 */ 13001 void 13002 softdep_fsync_mountdev(vp) 13003 struct vnode *vp; 13004 { 13005 struct buf *bp, *nbp; 13006 struct worklist *wk; 13007 struct bufobj *bo; 13008 13009 if (!vn_isdisk(vp)) 13010 panic("softdep_fsync_mountdev: vnode not a disk"); 13011 bo = &vp->v_bufobj; 13012 restart: 13013 BO_LOCK(bo); 13014 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 13015 /* 13016 * If it is already scheduled, skip to the next buffer. 13017 */ 13018 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) 13019 continue; 13020 13021 if ((bp->b_flags & B_DELWRI) == 0) 13022 panic("softdep_fsync_mountdev: not dirty"); 13023 /* 13024 * We are only interested in bitmaps with outstanding 13025 * dependencies. 13026 */ 13027 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL || 13028 wk->wk_type != D_BMSAFEMAP || 13029 (bp->b_vflags & BV_BKGRDINPROG)) { 13030 BUF_UNLOCK(bp); 13031 continue; 13032 } 13033 BO_UNLOCK(bo); 13034 bremfree(bp); 13035 (void) bawrite(bp); 13036 goto restart; 13037 } 13038 drain_output(vp); 13039 BO_UNLOCK(bo); 13040 } 13041 13042 /* 13043 * Sync all cylinder groups that were dirty at the time this function is 13044 * called. Newly dirtied cgs will be inserted before the sentinel. This 13045 * is used to flush freedep activity that may be holding up writes to a 13046 * indirect block. 13047 */ 13048 static int 13049 sync_cgs(mp, waitfor) 13050 struct mount *mp; 13051 int waitfor; 13052 { 13053 struct bmsafemap *bmsafemap; 13054 struct bmsafemap *sentinel; 13055 struct ufsmount *ump; 13056 struct buf *bp; 13057 int error; 13058 13059 sentinel = malloc(sizeof(*sentinel), M_BMSAFEMAP, M_ZERO | M_WAITOK); 13060 sentinel->sm_cg = -1; 13061 ump = VFSTOUFS(mp); 13062 error = 0; 13063 ACQUIRE_LOCK(ump); 13064 LIST_INSERT_HEAD(&ump->softdep_dirtycg, sentinel, sm_next); 13065 for (bmsafemap = LIST_NEXT(sentinel, sm_next); bmsafemap != NULL; 13066 bmsafemap = LIST_NEXT(sentinel, sm_next)) { 13067 /* Skip sentinels and cgs with no work to release. */ 13068 if (bmsafemap->sm_cg == -1 || 13069 (LIST_EMPTY(&bmsafemap->sm_freehd) && 13070 LIST_EMPTY(&bmsafemap->sm_freewr))) { 13071 LIST_REMOVE(sentinel, sm_next); 13072 LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next); 13073 continue; 13074 } 13075 /* 13076 * If we don't get the lock and we're waiting try again, if 13077 * not move on to the next buf and try to sync it. 13078 */ 13079 bp = getdirtybuf(bmsafemap->sm_buf, LOCK_PTR(ump), waitfor); 13080 if (bp == NULL && waitfor == MNT_WAIT) 13081 continue; 13082 LIST_REMOVE(sentinel, sm_next); 13083 LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next); 13084 if (bp == NULL) 13085 continue; 13086 FREE_LOCK(ump); 13087 if (waitfor == MNT_NOWAIT) 13088 bawrite(bp); 13089 else 13090 error = bwrite(bp); 13091 ACQUIRE_LOCK(ump); 13092 if (error) 13093 break; 13094 } 13095 LIST_REMOVE(sentinel, sm_next); 13096 FREE_LOCK(ump); 13097 free(sentinel, M_BMSAFEMAP); 13098 return (error); 13099 } 13100 13101 /* 13102 * This routine is called when we are trying to synchronously flush a 13103 * file. This routine must eliminate any filesystem metadata dependencies 13104 * so that the syncing routine can succeed. 13105 */ 13106 int 13107 softdep_sync_metadata(struct vnode *vp) 13108 { 13109 struct inode *ip; 13110 int error; 13111 13112 ip = VTOI(vp); 13113 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 13114 ("softdep_sync_metadata called on non-softdep filesystem")); 13115 /* 13116 * Ensure that any direct block dependencies have been cleared, 13117 * truncations are started, and inode references are journaled. 13118 */ 13119 ACQUIRE_LOCK(VFSTOUFS(vp->v_mount)); 13120 /* 13121 * Write all journal records to prevent rollbacks on devvp. 13122 */ 13123 if (vp->v_type == VCHR) 13124 softdep_flushjournal(vp->v_mount); 13125 error = flush_inodedep_deps(vp, vp->v_mount, ip->i_number); 13126 /* 13127 * Ensure that all truncates are written so we won't find deps on 13128 * indirect blocks. 13129 */ 13130 process_truncates(vp); 13131 FREE_LOCK(VFSTOUFS(vp->v_mount)); 13132 13133 return (error); 13134 } 13135 13136 /* 13137 * This routine is called when we are attempting to sync a buf with 13138 * dependencies. If waitfor is MNT_NOWAIT it attempts to schedule any 13139 * other IO it can but returns EBUSY if the buffer is not yet able to 13140 * be written. Dependencies which will not cause rollbacks will always 13141 * return 0. 13142 */ 13143 int 13144 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor) 13145 { 13146 struct indirdep *indirdep; 13147 struct pagedep *pagedep; 13148 struct allocindir *aip; 13149 struct newblk *newblk; 13150 struct ufsmount *ump; 13151 struct buf *nbp; 13152 struct worklist *wk; 13153 int i, error; 13154 13155 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 13156 ("softdep_sync_buf called on non-softdep filesystem")); 13157 /* 13158 * For VCHR we just don't want to force flush any dependencies that 13159 * will cause rollbacks. 13160 */ 13161 if (vp->v_type == VCHR) { 13162 if (waitfor == MNT_NOWAIT && softdep_count_dependencies(bp, 0)) 13163 return (EBUSY); 13164 return (0); 13165 } 13166 ump = VFSTOUFS(vp->v_mount); 13167 ACQUIRE_LOCK(ump); 13168 /* 13169 * As we hold the buffer locked, none of its dependencies 13170 * will disappear. 13171 */ 13172 error = 0; 13173 top: 13174 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 13175 switch (wk->wk_type) { 13176 case D_ALLOCDIRECT: 13177 case D_ALLOCINDIR: 13178 newblk = WK_NEWBLK(wk); 13179 if (newblk->nb_jnewblk != NULL) { 13180 if (waitfor == MNT_NOWAIT) { 13181 error = EBUSY; 13182 goto out_unlock; 13183 } 13184 jwait(&newblk->nb_jnewblk->jn_list, waitfor); 13185 goto top; 13186 } 13187 if (newblk->nb_state & DEPCOMPLETE || 13188 waitfor == MNT_NOWAIT) 13189 continue; 13190 nbp = newblk->nb_bmsafemap->sm_buf; 13191 nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor); 13192 if (nbp == NULL) 13193 goto top; 13194 FREE_LOCK(ump); 13195 if ((error = bwrite(nbp)) != 0) 13196 goto out; 13197 ACQUIRE_LOCK(ump); 13198 continue; 13199 13200 case D_INDIRDEP: 13201 indirdep = WK_INDIRDEP(wk); 13202 if (waitfor == MNT_NOWAIT) { 13203 if (!TAILQ_EMPTY(&indirdep->ir_trunc) || 13204 !LIST_EMPTY(&indirdep->ir_deplisthd)) { 13205 error = EBUSY; 13206 goto out_unlock; 13207 } 13208 } 13209 if (!TAILQ_EMPTY(&indirdep->ir_trunc)) 13210 panic("softdep_sync_buf: truncation pending."); 13211 restart: 13212 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) { 13213 newblk = (struct newblk *)aip; 13214 if (newblk->nb_jnewblk != NULL) { 13215 jwait(&newblk->nb_jnewblk->jn_list, 13216 waitfor); 13217 goto restart; 13218 } 13219 if (newblk->nb_state & DEPCOMPLETE) 13220 continue; 13221 nbp = newblk->nb_bmsafemap->sm_buf; 13222 nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor); 13223 if (nbp == NULL) 13224 goto restart; 13225 FREE_LOCK(ump); 13226 if ((error = bwrite(nbp)) != 0) 13227 goto out; 13228 ACQUIRE_LOCK(ump); 13229 goto restart; 13230 } 13231 continue; 13232 13233 case D_PAGEDEP: 13234 /* 13235 * Only flush directory entries in synchronous passes. 13236 */ 13237 if (waitfor != MNT_WAIT) { 13238 error = EBUSY; 13239 goto out_unlock; 13240 } 13241 /* 13242 * While syncing snapshots, we must allow recursive 13243 * lookups. 13244 */ 13245 BUF_AREC(bp); 13246 /* 13247 * We are trying to sync a directory that may 13248 * have dependencies on both its own metadata 13249 * and/or dependencies on the inodes of any 13250 * recently allocated files. We walk its diradd 13251 * lists pushing out the associated inode. 13252 */ 13253 pagedep = WK_PAGEDEP(wk); 13254 for (i = 0; i < DAHASHSZ; i++) { 13255 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0) 13256 continue; 13257 error = flush_pagedep_deps(vp, wk->wk_mp, 13258 &pagedep->pd_diraddhd[i], bp); 13259 if (error != 0) { 13260 if (error != ERELOOKUP) 13261 BUF_NOREC(bp); 13262 goto out_unlock; 13263 } 13264 } 13265 BUF_NOREC(bp); 13266 continue; 13267 13268 case D_FREEWORK: 13269 case D_FREEDEP: 13270 case D_JSEGDEP: 13271 case D_JNEWBLK: 13272 continue; 13273 13274 default: 13275 panic("softdep_sync_buf: Unknown type %s", 13276 TYPENAME(wk->wk_type)); 13277 /* NOTREACHED */ 13278 } 13279 } 13280 out_unlock: 13281 FREE_LOCK(ump); 13282 out: 13283 return (error); 13284 } 13285 13286 /* 13287 * Flush the dependencies associated with an inodedep. 13288 */ 13289 static int 13290 flush_inodedep_deps(vp, mp, ino) 13291 struct vnode *vp; 13292 struct mount *mp; 13293 ino_t ino; 13294 { 13295 struct inodedep *inodedep; 13296 struct inoref *inoref; 13297 struct ufsmount *ump; 13298 int error, waitfor; 13299 13300 /* 13301 * This work is done in two passes. The first pass grabs most 13302 * of the buffers and begins asynchronously writing them. The 13303 * only way to wait for these asynchronous writes is to sleep 13304 * on the filesystem vnode which may stay busy for a long time 13305 * if the filesystem is active. So, instead, we make a second 13306 * pass over the dependencies blocking on each write. In the 13307 * usual case we will be blocking against a write that we 13308 * initiated, so when it is done the dependency will have been 13309 * resolved. Thus the second pass is expected to end quickly. 13310 * We give a brief window at the top of the loop to allow 13311 * any pending I/O to complete. 13312 */ 13313 ump = VFSTOUFS(mp); 13314 LOCK_OWNED(ump); 13315 for (error = 0, waitfor = MNT_NOWAIT; ; ) { 13316 if (error) 13317 return (error); 13318 FREE_LOCK(ump); 13319 ACQUIRE_LOCK(ump); 13320 restart: 13321 if (inodedep_lookup(mp, ino, 0, &inodedep) == 0) 13322 return (0); 13323 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 13324 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 13325 == DEPCOMPLETE) { 13326 jwait(&inoref->if_list, MNT_WAIT); 13327 goto restart; 13328 } 13329 } 13330 if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) || 13331 flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) || 13332 flush_deplist(&inodedep->id_extupdt, waitfor, &error) || 13333 flush_deplist(&inodedep->id_newextupdt, waitfor, &error)) 13334 continue; 13335 /* 13336 * If pass2, we are done, otherwise do pass 2. 13337 */ 13338 if (waitfor == MNT_WAIT) 13339 break; 13340 waitfor = MNT_WAIT; 13341 } 13342 /* 13343 * Try freeing inodedep in case all dependencies have been removed. 13344 */ 13345 if (inodedep_lookup(mp, ino, 0, &inodedep) != 0) 13346 (void) free_inodedep(inodedep); 13347 return (0); 13348 } 13349 13350 /* 13351 * Flush an inode dependency list. 13352 */ 13353 static int 13354 flush_deplist(listhead, waitfor, errorp) 13355 struct allocdirectlst *listhead; 13356 int waitfor; 13357 int *errorp; 13358 { 13359 struct allocdirect *adp; 13360 struct newblk *newblk; 13361 struct ufsmount *ump; 13362 struct buf *bp; 13363 13364 if ((adp = TAILQ_FIRST(listhead)) == NULL) 13365 return (0); 13366 ump = VFSTOUFS(adp->ad_list.wk_mp); 13367 LOCK_OWNED(ump); 13368 TAILQ_FOREACH(adp, listhead, ad_next) { 13369 newblk = (struct newblk *)adp; 13370 if (newblk->nb_jnewblk != NULL) { 13371 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 13372 return (1); 13373 } 13374 if (newblk->nb_state & DEPCOMPLETE) 13375 continue; 13376 bp = newblk->nb_bmsafemap->sm_buf; 13377 bp = getdirtybuf(bp, LOCK_PTR(ump), waitfor); 13378 if (bp == NULL) { 13379 if (waitfor == MNT_NOWAIT) 13380 continue; 13381 return (1); 13382 } 13383 FREE_LOCK(ump); 13384 if (waitfor == MNT_NOWAIT) 13385 bawrite(bp); 13386 else 13387 *errorp = bwrite(bp); 13388 ACQUIRE_LOCK(ump); 13389 return (1); 13390 } 13391 return (0); 13392 } 13393 13394 /* 13395 * Flush dependencies associated with an allocdirect block. 13396 */ 13397 static int 13398 flush_newblk_dep(vp, mp, lbn) 13399 struct vnode *vp; 13400 struct mount *mp; 13401 ufs_lbn_t lbn; 13402 { 13403 struct newblk *newblk; 13404 struct ufsmount *ump; 13405 struct bufobj *bo; 13406 struct inode *ip; 13407 struct buf *bp; 13408 ufs2_daddr_t blkno; 13409 int error; 13410 13411 error = 0; 13412 bo = &vp->v_bufobj; 13413 ip = VTOI(vp); 13414 blkno = DIP(ip, i_db[lbn]); 13415 if (blkno == 0) 13416 panic("flush_newblk_dep: Missing block"); 13417 ump = VFSTOUFS(mp); 13418 ACQUIRE_LOCK(ump); 13419 /* 13420 * Loop until all dependencies related to this block are satisfied. 13421 * We must be careful to restart after each sleep in case a write 13422 * completes some part of this process for us. 13423 */ 13424 for (;;) { 13425 if (newblk_lookup(mp, blkno, 0, &newblk) == 0) { 13426 FREE_LOCK(ump); 13427 break; 13428 } 13429 if (newblk->nb_list.wk_type != D_ALLOCDIRECT) 13430 panic("flush_newblk_dep: Bad newblk %p", newblk); 13431 /* 13432 * Flush the journal. 13433 */ 13434 if (newblk->nb_jnewblk != NULL) { 13435 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 13436 continue; 13437 } 13438 /* 13439 * Write the bitmap dependency. 13440 */ 13441 if ((newblk->nb_state & DEPCOMPLETE) == 0) { 13442 bp = newblk->nb_bmsafemap->sm_buf; 13443 bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT); 13444 if (bp == NULL) 13445 continue; 13446 FREE_LOCK(ump); 13447 error = bwrite(bp); 13448 if (error) 13449 break; 13450 ACQUIRE_LOCK(ump); 13451 continue; 13452 } 13453 /* 13454 * Write the buffer. 13455 */ 13456 FREE_LOCK(ump); 13457 BO_LOCK(bo); 13458 bp = gbincore(bo, lbn); 13459 if (bp != NULL) { 13460 error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | 13461 LK_INTERLOCK, BO_LOCKPTR(bo)); 13462 if (error == ENOLCK) { 13463 ACQUIRE_LOCK(ump); 13464 error = 0; 13465 continue; /* Slept, retry */ 13466 } 13467 if (error != 0) 13468 break; /* Failed */ 13469 if (bp->b_flags & B_DELWRI) { 13470 bremfree(bp); 13471 error = bwrite(bp); 13472 if (error) 13473 break; 13474 } else 13475 BUF_UNLOCK(bp); 13476 } else 13477 BO_UNLOCK(bo); 13478 /* 13479 * We have to wait for the direct pointers to 13480 * point at the newdirblk before the dependency 13481 * will go away. 13482 */ 13483 error = ffs_update(vp, 1); 13484 if (error) 13485 break; 13486 ACQUIRE_LOCK(ump); 13487 } 13488 return (error); 13489 } 13490 13491 /* 13492 * Eliminate a pagedep dependency by flushing out all its diradd dependencies. 13493 */ 13494 static int 13495 flush_pagedep_deps(pvp, mp, diraddhdp, locked_bp) 13496 struct vnode *pvp; 13497 struct mount *mp; 13498 struct diraddhd *diraddhdp; 13499 struct buf *locked_bp; 13500 { 13501 struct inodedep *inodedep; 13502 struct inoref *inoref; 13503 struct ufsmount *ump; 13504 struct diradd *dap; 13505 struct vnode *vp; 13506 int error = 0; 13507 struct buf *bp; 13508 ino_t inum; 13509 struct diraddhd unfinished; 13510 13511 LIST_INIT(&unfinished); 13512 ump = VFSTOUFS(mp); 13513 LOCK_OWNED(ump); 13514 restart: 13515 while ((dap = LIST_FIRST(diraddhdp)) != NULL) { 13516 /* 13517 * Flush ourselves if this directory entry 13518 * has a MKDIR_PARENT dependency. 13519 */ 13520 if (dap->da_state & MKDIR_PARENT) { 13521 FREE_LOCK(ump); 13522 if ((error = ffs_update(pvp, 1)) != 0) 13523 break; 13524 ACQUIRE_LOCK(ump); 13525 /* 13526 * If that cleared dependencies, go on to next. 13527 */ 13528 if (dap != LIST_FIRST(diraddhdp)) 13529 continue; 13530 /* 13531 * All MKDIR_PARENT dependencies and all the 13532 * NEWBLOCK pagedeps that are contained in direct 13533 * blocks were resolved by doing above ffs_update. 13534 * Pagedeps contained in indirect blocks may 13535 * require a complete sync'ing of the directory. 13536 * We are in the midst of doing a complete sync, 13537 * so if they are not resolved in this pass we 13538 * defer them for now as they will be sync'ed by 13539 * our caller shortly. 13540 */ 13541 LIST_REMOVE(dap, da_pdlist); 13542 LIST_INSERT_HEAD(&unfinished, dap, da_pdlist); 13543 continue; 13544 } 13545 /* 13546 * A newly allocated directory must have its "." and 13547 * ".." entries written out before its name can be 13548 * committed in its parent. 13549 */ 13550 inum = dap->da_newinum; 13551 if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0) 13552 panic("flush_pagedep_deps: lost inode1"); 13553 /* 13554 * Wait for any pending journal adds to complete so we don't 13555 * cause rollbacks while syncing. 13556 */ 13557 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 13558 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 13559 == DEPCOMPLETE) { 13560 jwait(&inoref->if_list, MNT_WAIT); 13561 goto restart; 13562 } 13563 } 13564 if (dap->da_state & MKDIR_BODY) { 13565 FREE_LOCK(ump); 13566 error = get_parent_vp(pvp, mp, inum, locked_bp, 13567 diraddhdp, &unfinished, &vp); 13568 if (error != 0) 13569 break; 13570 error = flush_newblk_dep(vp, mp, 0); 13571 /* 13572 * If we still have the dependency we might need to 13573 * update the vnode to sync the new link count to 13574 * disk. 13575 */ 13576 if (error == 0 && dap == LIST_FIRST(diraddhdp)) 13577 error = ffs_update(vp, 1); 13578 vput(vp); 13579 if (error != 0) 13580 break; 13581 ACQUIRE_LOCK(ump); 13582 /* 13583 * If that cleared dependencies, go on to next. 13584 */ 13585 if (dap != LIST_FIRST(diraddhdp)) 13586 continue; 13587 if (dap->da_state & MKDIR_BODY) { 13588 inodedep_lookup(UFSTOVFS(ump), inum, 0, 13589 &inodedep); 13590 panic("flush_pagedep_deps: MKDIR_BODY " 13591 "inodedep %p dap %p vp %p", 13592 inodedep, dap, vp); 13593 } 13594 } 13595 /* 13596 * Flush the inode on which the directory entry depends. 13597 * Having accounted for MKDIR_PARENT and MKDIR_BODY above, 13598 * the only remaining dependency is that the updated inode 13599 * count must get pushed to disk. The inode has already 13600 * been pushed into its inode buffer (via VOP_UPDATE) at 13601 * the time of the reference count change. So we need only 13602 * locate that buffer, ensure that there will be no rollback 13603 * caused by a bitmap dependency, then write the inode buffer. 13604 */ 13605 retry: 13606 if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0) 13607 panic("flush_pagedep_deps: lost inode"); 13608 /* 13609 * If the inode still has bitmap dependencies, 13610 * push them to disk. 13611 */ 13612 if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) { 13613 bp = inodedep->id_bmsafemap->sm_buf; 13614 bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT); 13615 if (bp == NULL) 13616 goto retry; 13617 FREE_LOCK(ump); 13618 if ((error = bwrite(bp)) != 0) 13619 break; 13620 ACQUIRE_LOCK(ump); 13621 if (dap != LIST_FIRST(diraddhdp)) 13622 continue; 13623 } 13624 /* 13625 * If the inode is still sitting in a buffer waiting 13626 * to be written or waiting for the link count to be 13627 * adjusted update it here to flush it to disk. 13628 */ 13629 if (dap == LIST_FIRST(diraddhdp)) { 13630 FREE_LOCK(ump); 13631 error = get_parent_vp(pvp, mp, inum, locked_bp, 13632 diraddhdp, &unfinished, &vp); 13633 if (error != 0) 13634 break; 13635 error = ffs_update(vp, 1); 13636 vput(vp); 13637 if (error) 13638 break; 13639 ACQUIRE_LOCK(ump); 13640 } 13641 /* 13642 * If we have failed to get rid of all the dependencies 13643 * then something is seriously wrong. 13644 */ 13645 if (dap == LIST_FIRST(diraddhdp)) { 13646 inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep); 13647 panic("flush_pagedep_deps: failed to flush " 13648 "inodedep %p ino %ju dap %p", 13649 inodedep, (uintmax_t)inum, dap); 13650 } 13651 } 13652 if (error) 13653 ACQUIRE_LOCK(ump); 13654 while ((dap = LIST_FIRST(&unfinished)) != NULL) { 13655 LIST_REMOVE(dap, da_pdlist); 13656 LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist); 13657 } 13658 return (error); 13659 } 13660 13661 /* 13662 * A large burst of file addition or deletion activity can drive the 13663 * memory load excessively high. First attempt to slow things down 13664 * using the techniques below. If that fails, this routine requests 13665 * the offending operations to fall back to running synchronously 13666 * until the memory load returns to a reasonable level. 13667 */ 13668 int 13669 softdep_slowdown(vp) 13670 struct vnode *vp; 13671 { 13672 struct ufsmount *ump; 13673 int jlow; 13674 int max_softdeps_hard; 13675 13676 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 13677 ("softdep_slowdown called on non-softdep filesystem")); 13678 ump = VFSTOUFS(vp->v_mount); 13679 ACQUIRE_LOCK(ump); 13680 jlow = 0; 13681 /* 13682 * Check for journal space if needed. 13683 */ 13684 if (DOINGSUJ(vp)) { 13685 if (journal_space(ump, 0) == 0) 13686 jlow = 1; 13687 } 13688 /* 13689 * If the system is under its limits and our filesystem is 13690 * not responsible for more than our share of the usage and 13691 * we are not low on journal space, then no need to slow down. 13692 */ 13693 max_softdeps_hard = max_softdeps * 11 / 10; 13694 if (dep_current[D_DIRREM] < max_softdeps_hard / 2 && 13695 dep_current[D_INODEDEP] < max_softdeps_hard && 13696 dep_current[D_INDIRDEP] < max_softdeps_hard / 1000 && 13697 dep_current[D_FREEBLKS] < max_softdeps_hard && jlow == 0 && 13698 ump->softdep_curdeps[D_DIRREM] < 13699 (max_softdeps_hard / 2) / stat_flush_threads && 13700 ump->softdep_curdeps[D_INODEDEP] < 13701 max_softdeps_hard / stat_flush_threads && 13702 ump->softdep_curdeps[D_INDIRDEP] < 13703 (max_softdeps_hard / 1000) / stat_flush_threads && 13704 ump->softdep_curdeps[D_FREEBLKS] < 13705 max_softdeps_hard / stat_flush_threads) { 13706 FREE_LOCK(ump); 13707 return (0); 13708 } 13709 /* 13710 * If the journal is low or our filesystem is over its limit 13711 * then speedup the cleanup. 13712 */ 13713 if (ump->softdep_curdeps[D_INDIRDEP] < 13714 (max_softdeps_hard / 1000) / stat_flush_threads || jlow) 13715 softdep_speedup(ump); 13716 stat_sync_limit_hit += 1; 13717 FREE_LOCK(ump); 13718 /* 13719 * We only slow down the rate at which new dependencies are 13720 * generated if we are not using journaling. With journaling, 13721 * the cleanup should always be sufficient to keep things 13722 * under control. 13723 */ 13724 if (DOINGSUJ(vp)) 13725 return (0); 13726 return (1); 13727 } 13728 13729 /* 13730 * Called by the allocation routines when they are about to fail 13731 * in the hope that we can free up the requested resource (inodes 13732 * or disk space). 13733 * 13734 * First check to see if the work list has anything on it. If it has, 13735 * clean up entries until we successfully free the requested resource. 13736 * Because this process holds inodes locked, we cannot handle any remove 13737 * requests that might block on a locked inode as that could lead to 13738 * deadlock. If the worklist yields none of the requested resource, 13739 * start syncing out vnodes to free up the needed space. 13740 */ 13741 int 13742 softdep_request_cleanup(fs, vp, cred, resource) 13743 struct fs *fs; 13744 struct vnode *vp; 13745 struct ucred *cred; 13746 int resource; 13747 { 13748 struct ufsmount *ump; 13749 struct mount *mp; 13750 long starttime; 13751 ufs2_daddr_t needed; 13752 int error, failed_vnode; 13753 13754 /* 13755 * If we are being called because of a process doing a 13756 * copy-on-write, then it is not safe to process any 13757 * worklist items as we will recurse into the copyonwrite 13758 * routine. This will result in an incoherent snapshot. 13759 * If the vnode that we hold is a snapshot, we must avoid 13760 * handling other resources that could cause deadlock. 13761 */ 13762 if ((curthread->td_pflags & TDP_COWINPROGRESS) || IS_SNAPSHOT(VTOI(vp))) 13763 return (0); 13764 13765 if (resource == FLUSH_BLOCKS_WAIT) 13766 stat_cleanup_blkrequests += 1; 13767 else 13768 stat_cleanup_inorequests += 1; 13769 13770 mp = vp->v_mount; 13771 ump = VFSTOUFS(mp); 13772 mtx_assert(UFS_MTX(ump), MA_OWNED); 13773 UFS_UNLOCK(ump); 13774 error = ffs_update(vp, 1); 13775 if (error != 0 || MOUNTEDSOFTDEP(mp) == 0) { 13776 UFS_LOCK(ump); 13777 return (0); 13778 } 13779 /* 13780 * If we are in need of resources, start by cleaning up 13781 * any block removals associated with our inode. 13782 */ 13783 ACQUIRE_LOCK(ump); 13784 process_removes(vp); 13785 process_truncates(vp); 13786 FREE_LOCK(ump); 13787 /* 13788 * Now clean up at least as many resources as we will need. 13789 * 13790 * When requested to clean up inodes, the number that are needed 13791 * is set by the number of simultaneous writers (mnt_writeopcount) 13792 * plus a bit of slop (2) in case some more writers show up while 13793 * we are cleaning. 13794 * 13795 * When requested to free up space, the amount of space that 13796 * we need is enough blocks to allocate a full-sized segment 13797 * (fs_contigsumsize). The number of such segments that will 13798 * be needed is set by the number of simultaneous writers 13799 * (mnt_writeopcount) plus a bit of slop (2) in case some more 13800 * writers show up while we are cleaning. 13801 * 13802 * Additionally, if we are unpriviledged and allocating space, 13803 * we need to ensure that we clean up enough blocks to get the 13804 * needed number of blocks over the threshold of the minimum 13805 * number of blocks required to be kept free by the filesystem 13806 * (fs_minfree). 13807 */ 13808 if (resource == FLUSH_INODES_WAIT) { 13809 needed = vfs_mount_fetch_counter(vp->v_mount, 13810 MNT_COUNT_WRITEOPCOUNT) + 2; 13811 } else if (resource == FLUSH_BLOCKS_WAIT) { 13812 needed = (vfs_mount_fetch_counter(vp->v_mount, 13813 MNT_COUNT_WRITEOPCOUNT) + 2) * fs->fs_contigsumsize; 13814 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE)) 13815 needed += fragstoblks(fs, 13816 roundup((fs->fs_dsize * fs->fs_minfree / 100) - 13817 fs->fs_cstotal.cs_nffree, fs->fs_frag)); 13818 } else { 13819 printf("softdep_request_cleanup: Unknown resource type %d\n", 13820 resource); 13821 UFS_LOCK(ump); 13822 return (0); 13823 } 13824 starttime = time_second; 13825 retry: 13826 if (resource == FLUSH_BLOCKS_WAIT && 13827 fs->fs_cstotal.cs_nbfree <= needed) 13828 softdep_send_speedup(ump, needed * fs->fs_bsize, 13829 BIO_SPEEDUP_TRIM); 13830 if ((resource == FLUSH_BLOCKS_WAIT && ump->softdep_on_worklist > 0 && 13831 fs->fs_cstotal.cs_nbfree <= needed) || 13832 (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 && 13833 fs->fs_cstotal.cs_nifree <= needed)) { 13834 ACQUIRE_LOCK(ump); 13835 if (ump->softdep_on_worklist > 0 && 13836 process_worklist_item(UFSTOVFS(ump), 13837 ump->softdep_on_worklist, LK_NOWAIT) != 0) 13838 stat_worklist_push += 1; 13839 FREE_LOCK(ump); 13840 } 13841 /* 13842 * If we still need resources and there are no more worklist 13843 * entries to process to obtain them, we have to start flushing 13844 * the dirty vnodes to force the release of additional requests 13845 * to the worklist that we can then process to reap addition 13846 * resources. We walk the vnodes associated with the mount point 13847 * until we get the needed worklist requests that we can reap. 13848 * 13849 * If there are several threads all needing to clean the same 13850 * mount point, only one is allowed to walk the mount list. 13851 * When several threads all try to walk the same mount list, 13852 * they end up competing with each other and often end up in 13853 * livelock. This approach ensures that forward progress is 13854 * made at the cost of occational ENOSPC errors being returned 13855 * that might otherwise have been avoided. 13856 */ 13857 error = 1; 13858 if ((resource == FLUSH_BLOCKS_WAIT && 13859 fs->fs_cstotal.cs_nbfree <= needed) || 13860 (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 && 13861 fs->fs_cstotal.cs_nifree <= needed)) { 13862 ACQUIRE_LOCK(ump); 13863 if ((ump->um_softdep->sd_flags & FLUSH_RC_ACTIVE) == 0) { 13864 ump->um_softdep->sd_flags |= FLUSH_RC_ACTIVE; 13865 FREE_LOCK(ump); 13866 failed_vnode = softdep_request_cleanup_flush(mp, ump); 13867 ACQUIRE_LOCK(ump); 13868 ump->um_softdep->sd_flags &= ~FLUSH_RC_ACTIVE; 13869 FREE_LOCK(ump); 13870 if (ump->softdep_on_worklist > 0) { 13871 stat_cleanup_retries += 1; 13872 if (!failed_vnode) 13873 goto retry; 13874 } 13875 } else { 13876 FREE_LOCK(ump); 13877 error = 0; 13878 } 13879 stat_cleanup_failures += 1; 13880 } 13881 if (time_second - starttime > stat_cleanup_high_delay) 13882 stat_cleanup_high_delay = time_second - starttime; 13883 UFS_LOCK(ump); 13884 return (error); 13885 } 13886 13887 /* 13888 * Scan the vnodes for the specified mount point flushing out any 13889 * vnodes that can be locked without waiting. Finally, try to flush 13890 * the device associated with the mount point if it can be locked 13891 * without waiting. 13892 * 13893 * We return 0 if we were able to lock every vnode in our scan. 13894 * If we had to skip one or more vnodes, we return 1. 13895 */ 13896 static int 13897 softdep_request_cleanup_flush(mp, ump) 13898 struct mount *mp; 13899 struct ufsmount *ump; 13900 { 13901 struct thread *td; 13902 struct vnode *lvp, *mvp; 13903 int failed_vnode; 13904 13905 failed_vnode = 0; 13906 td = curthread; 13907 MNT_VNODE_FOREACH_ALL(lvp, mp, mvp) { 13908 if (TAILQ_FIRST(&lvp->v_bufobj.bo_dirty.bv_hd) == 0) { 13909 VI_UNLOCK(lvp); 13910 continue; 13911 } 13912 if (vget(lvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT) != 0) { 13913 failed_vnode = 1; 13914 continue; 13915 } 13916 if (lvp->v_vflag & VV_NOSYNC) { /* unlinked */ 13917 vput(lvp); 13918 continue; 13919 } 13920 (void) ffs_syncvnode(lvp, MNT_NOWAIT, 0); 13921 vput(lvp); 13922 } 13923 lvp = ump->um_devvp; 13924 if (vn_lock(lvp, LK_EXCLUSIVE | LK_NOWAIT) == 0) { 13925 VOP_FSYNC(lvp, MNT_NOWAIT, td); 13926 VOP_UNLOCK(lvp); 13927 } 13928 return (failed_vnode); 13929 } 13930 13931 static bool 13932 softdep_excess_items(struct ufsmount *ump, int item) 13933 { 13934 13935 KASSERT(item >= 0 && item < D_LAST, ("item %d", item)); 13936 return (dep_current[item] > max_softdeps && 13937 ump->softdep_curdeps[item] > max_softdeps / 13938 stat_flush_threads); 13939 } 13940 13941 static void 13942 schedule_cleanup(struct mount *mp) 13943 { 13944 struct ufsmount *ump; 13945 struct thread *td; 13946 13947 ump = VFSTOUFS(mp); 13948 LOCK_OWNED(ump); 13949 FREE_LOCK(ump); 13950 td = curthread; 13951 if ((td->td_pflags & TDP_KTHREAD) != 0 && 13952 (td->td_proc->p_flag2 & P2_AST_SU) == 0) { 13953 /* 13954 * No ast is delivered to kernel threads, so nobody 13955 * would deref the mp. Some kernel threads 13956 * explicitely check for AST, e.g. NFS daemon does 13957 * this in the serving loop. 13958 */ 13959 return; 13960 } 13961 if (td->td_su != NULL) 13962 vfs_rel(td->td_su); 13963 vfs_ref(mp); 13964 td->td_su = mp; 13965 thread_lock(td); 13966 td->td_flags |= TDF_ASTPENDING; 13967 thread_unlock(td); 13968 } 13969 13970 static void 13971 softdep_ast_cleanup_proc(struct thread *td) 13972 { 13973 struct mount *mp; 13974 struct ufsmount *ump; 13975 int error; 13976 bool req; 13977 13978 while ((mp = td->td_su) != NULL) { 13979 td->td_su = NULL; 13980 error = vfs_busy(mp, MBF_NOWAIT); 13981 vfs_rel(mp); 13982 if (error != 0) 13983 return; 13984 if (ffs_own_mount(mp) && MOUNTEDSOFTDEP(mp)) { 13985 ump = VFSTOUFS(mp); 13986 for (;;) { 13987 req = false; 13988 ACQUIRE_LOCK(ump); 13989 if (softdep_excess_items(ump, D_INODEDEP)) { 13990 req = true; 13991 request_cleanup(mp, FLUSH_INODES); 13992 } 13993 if (softdep_excess_items(ump, D_DIRREM)) { 13994 req = true; 13995 request_cleanup(mp, FLUSH_BLOCKS); 13996 } 13997 FREE_LOCK(ump); 13998 if (softdep_excess_items(ump, D_NEWBLK) || 13999 softdep_excess_items(ump, D_ALLOCDIRECT) || 14000 softdep_excess_items(ump, D_ALLOCINDIR)) { 14001 error = vn_start_write(NULL, &mp, 14002 V_WAIT); 14003 if (error == 0) { 14004 req = true; 14005 VFS_SYNC(mp, MNT_WAIT); 14006 vn_finished_write(mp); 14007 } 14008 } 14009 if ((td->td_pflags & TDP_KTHREAD) != 0 || !req) 14010 break; 14011 } 14012 } 14013 vfs_unbusy(mp); 14014 } 14015 if ((mp = td->td_su) != NULL) { 14016 td->td_su = NULL; 14017 vfs_rel(mp); 14018 } 14019 } 14020 14021 /* 14022 * If memory utilization has gotten too high, deliberately slow things 14023 * down and speed up the I/O processing. 14024 */ 14025 static int 14026 request_cleanup(mp, resource) 14027 struct mount *mp; 14028 int resource; 14029 { 14030 struct thread *td = curthread; 14031 struct ufsmount *ump; 14032 14033 ump = VFSTOUFS(mp); 14034 LOCK_OWNED(ump); 14035 /* 14036 * We never hold up the filesystem syncer or buf daemon. 14037 */ 14038 if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF)) 14039 return (0); 14040 /* 14041 * First check to see if the work list has gotten backlogged. 14042 * If it has, co-opt this process to help clean up two entries. 14043 * Because this process may hold inodes locked, we cannot 14044 * handle any remove requests that might block on a locked 14045 * inode as that could lead to deadlock. We set TDP_SOFTDEP 14046 * to avoid recursively processing the worklist. 14047 */ 14048 if (ump->softdep_on_worklist > max_softdeps / 10) { 14049 td->td_pflags |= TDP_SOFTDEP; 14050 process_worklist_item(mp, 2, LK_NOWAIT); 14051 td->td_pflags &= ~TDP_SOFTDEP; 14052 stat_worklist_push += 2; 14053 return(1); 14054 } 14055 /* 14056 * Next, we attempt to speed up the syncer process. If that 14057 * is successful, then we allow the process to continue. 14058 */ 14059 if (softdep_speedup(ump) && 14060 resource != FLUSH_BLOCKS_WAIT && 14061 resource != FLUSH_INODES_WAIT) 14062 return(0); 14063 /* 14064 * If we are resource constrained on inode dependencies, try 14065 * flushing some dirty inodes. Otherwise, we are constrained 14066 * by file deletions, so try accelerating flushes of directories 14067 * with removal dependencies. We would like to do the cleanup 14068 * here, but we probably hold an inode locked at this point and 14069 * that might deadlock against one that we try to clean. So, 14070 * the best that we can do is request the syncer daemon to do 14071 * the cleanup for us. 14072 */ 14073 switch (resource) { 14074 case FLUSH_INODES: 14075 case FLUSH_INODES_WAIT: 14076 ACQUIRE_GBLLOCK(&lk); 14077 stat_ino_limit_push += 1; 14078 req_clear_inodedeps += 1; 14079 FREE_GBLLOCK(&lk); 14080 stat_countp = &stat_ino_limit_hit; 14081 break; 14082 14083 case FLUSH_BLOCKS: 14084 case FLUSH_BLOCKS_WAIT: 14085 ACQUIRE_GBLLOCK(&lk); 14086 stat_blk_limit_push += 1; 14087 req_clear_remove += 1; 14088 FREE_GBLLOCK(&lk); 14089 stat_countp = &stat_blk_limit_hit; 14090 break; 14091 14092 default: 14093 panic("request_cleanup: unknown type"); 14094 } 14095 /* 14096 * Hopefully the syncer daemon will catch up and awaken us. 14097 * We wait at most tickdelay before proceeding in any case. 14098 */ 14099 ACQUIRE_GBLLOCK(&lk); 14100 FREE_LOCK(ump); 14101 proc_waiting += 1; 14102 if (callout_pending(&softdep_callout) == FALSE) 14103 callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2, 14104 pause_timer, 0); 14105 14106 if ((td->td_pflags & TDP_KTHREAD) == 0) 14107 msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0); 14108 proc_waiting -= 1; 14109 FREE_GBLLOCK(&lk); 14110 ACQUIRE_LOCK(ump); 14111 return (1); 14112 } 14113 14114 /* 14115 * Awaken processes pausing in request_cleanup and clear proc_waiting 14116 * to indicate that there is no longer a timer running. Pause_timer 14117 * will be called with the global softdep mutex (&lk) locked. 14118 */ 14119 static void 14120 pause_timer(arg) 14121 void *arg; 14122 { 14123 14124 GBLLOCK_OWNED(&lk); 14125 /* 14126 * The callout_ API has acquired mtx and will hold it around this 14127 * function call. 14128 */ 14129 *stat_countp += proc_waiting; 14130 wakeup(&proc_waiting); 14131 } 14132 14133 /* 14134 * If requested, try removing inode or removal dependencies. 14135 */ 14136 static void 14137 check_clear_deps(mp) 14138 struct mount *mp; 14139 { 14140 struct ufsmount *ump; 14141 bool suj_susp; 14142 14143 /* 14144 * Tell the lower layers that any TRIM or WRITE transactions that have 14145 * been delayed for performance reasons should proceed to help alleviate 14146 * the shortage faster. The race between checking req_* and the softdep 14147 * mutex (lk) is fine since this is an advisory operation that at most 14148 * causes deferred work to be done sooner. 14149 */ 14150 ump = VFSTOUFS(mp); 14151 suj_susp = MOUNTEDSUJ(mp) && ump->softdep_jblocks->jb_suspended; 14152 if (req_clear_remove || req_clear_inodedeps || suj_susp) { 14153 FREE_LOCK(ump); 14154 softdep_send_speedup(ump, 0, BIO_SPEEDUP_TRIM | BIO_SPEEDUP_WRITE); 14155 ACQUIRE_LOCK(ump); 14156 } 14157 14158 /* 14159 * If we are suspended, it may be because of our using 14160 * too many inodedeps, so help clear them out. 14161 */ 14162 if (suj_susp) 14163 clear_inodedeps(mp); 14164 14165 /* 14166 * General requests for cleanup of backed up dependencies 14167 */ 14168 ACQUIRE_GBLLOCK(&lk); 14169 if (req_clear_inodedeps) { 14170 req_clear_inodedeps -= 1; 14171 FREE_GBLLOCK(&lk); 14172 clear_inodedeps(mp); 14173 ACQUIRE_GBLLOCK(&lk); 14174 wakeup(&proc_waiting); 14175 } 14176 if (req_clear_remove) { 14177 req_clear_remove -= 1; 14178 FREE_GBLLOCK(&lk); 14179 clear_remove(mp); 14180 ACQUIRE_GBLLOCK(&lk); 14181 wakeup(&proc_waiting); 14182 } 14183 FREE_GBLLOCK(&lk); 14184 } 14185 14186 /* 14187 * Flush out a directory with at least one removal dependency in an effort to 14188 * reduce the number of dirrem, freefile, and freeblks dependency structures. 14189 */ 14190 static void 14191 clear_remove(mp) 14192 struct mount *mp; 14193 { 14194 struct pagedep_hashhead *pagedephd; 14195 struct pagedep *pagedep; 14196 struct ufsmount *ump; 14197 struct vnode *vp; 14198 struct bufobj *bo; 14199 int error, cnt; 14200 ino_t ino; 14201 14202 ump = VFSTOUFS(mp); 14203 LOCK_OWNED(ump); 14204 14205 for (cnt = 0; cnt <= ump->pagedep_hash_size; cnt++) { 14206 pagedephd = &ump->pagedep_hashtbl[ump->pagedep_nextclean++]; 14207 if (ump->pagedep_nextclean > ump->pagedep_hash_size) 14208 ump->pagedep_nextclean = 0; 14209 LIST_FOREACH(pagedep, pagedephd, pd_hash) { 14210 if (LIST_EMPTY(&pagedep->pd_dirremhd)) 14211 continue; 14212 ino = pagedep->pd_ino; 14213 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 14214 continue; 14215 FREE_LOCK(ump); 14216 14217 /* 14218 * Let unmount clear deps 14219 */ 14220 error = vfs_busy(mp, MBF_NOWAIT); 14221 if (error != 0) 14222 goto finish_write; 14223 error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp, 14224 FFSV_FORCEINSMQ); 14225 vfs_unbusy(mp); 14226 if (error != 0) { 14227 softdep_error("clear_remove: vget", error); 14228 goto finish_write; 14229 } 14230 MPASS(VTOI(vp)->i_mode != 0); 14231 if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0))) 14232 softdep_error("clear_remove: fsync", error); 14233 bo = &vp->v_bufobj; 14234 BO_LOCK(bo); 14235 drain_output(vp); 14236 BO_UNLOCK(bo); 14237 vput(vp); 14238 finish_write: 14239 vn_finished_write(mp); 14240 ACQUIRE_LOCK(ump); 14241 return; 14242 } 14243 } 14244 } 14245 14246 /* 14247 * Clear out a block of dirty inodes in an effort to reduce 14248 * the number of inodedep dependency structures. 14249 */ 14250 static void 14251 clear_inodedeps(mp) 14252 struct mount *mp; 14253 { 14254 struct inodedep_hashhead *inodedephd; 14255 struct inodedep *inodedep; 14256 struct ufsmount *ump; 14257 struct vnode *vp; 14258 struct fs *fs; 14259 int error, cnt; 14260 ino_t firstino, lastino, ino; 14261 14262 ump = VFSTOUFS(mp); 14263 fs = ump->um_fs; 14264 LOCK_OWNED(ump); 14265 /* 14266 * Pick a random inode dependency to be cleared. 14267 * We will then gather up all the inodes in its block 14268 * that have dependencies and flush them out. 14269 */ 14270 for (cnt = 0; cnt <= ump->inodedep_hash_size; cnt++) { 14271 inodedephd = &ump->inodedep_hashtbl[ump->inodedep_nextclean++]; 14272 if (ump->inodedep_nextclean > ump->inodedep_hash_size) 14273 ump->inodedep_nextclean = 0; 14274 if ((inodedep = LIST_FIRST(inodedephd)) != NULL) 14275 break; 14276 } 14277 if (inodedep == NULL) 14278 return; 14279 /* 14280 * Find the last inode in the block with dependencies. 14281 */ 14282 firstino = rounddown2(inodedep->id_ino, INOPB(fs)); 14283 for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--) 14284 if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0) 14285 break; 14286 /* 14287 * Asynchronously push all but the last inode with dependencies. 14288 * Synchronously push the last inode with dependencies to ensure 14289 * that the inode block gets written to free up the inodedeps. 14290 */ 14291 for (ino = firstino; ino <= lastino; ino++) { 14292 if (inodedep_lookup(mp, ino, 0, &inodedep) == 0) 14293 continue; 14294 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 14295 continue; 14296 FREE_LOCK(ump); 14297 error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */ 14298 if (error != 0) { 14299 vn_finished_write(mp); 14300 ACQUIRE_LOCK(ump); 14301 return; 14302 } 14303 if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp, 14304 FFSV_FORCEINSMQ)) != 0) { 14305 softdep_error("clear_inodedeps: vget", error); 14306 vfs_unbusy(mp); 14307 vn_finished_write(mp); 14308 ACQUIRE_LOCK(ump); 14309 return; 14310 } 14311 vfs_unbusy(mp); 14312 if (VTOI(vp)->i_mode == 0) { 14313 vgone(vp); 14314 } else if (ino == lastino) { 14315 if ((error = ffs_syncvnode(vp, MNT_WAIT, 0))) 14316 softdep_error("clear_inodedeps: fsync1", error); 14317 } else { 14318 if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0))) 14319 softdep_error("clear_inodedeps: fsync2", error); 14320 BO_LOCK(&vp->v_bufobj); 14321 drain_output(vp); 14322 BO_UNLOCK(&vp->v_bufobj); 14323 } 14324 vput(vp); 14325 vn_finished_write(mp); 14326 ACQUIRE_LOCK(ump); 14327 } 14328 } 14329 14330 void 14331 softdep_buf_append(bp, wkhd) 14332 struct buf *bp; 14333 struct workhead *wkhd; 14334 { 14335 struct worklist *wk; 14336 struct ufsmount *ump; 14337 14338 if ((wk = LIST_FIRST(wkhd)) == NULL) 14339 return; 14340 KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, 14341 ("softdep_buf_append called on non-softdep filesystem")); 14342 ump = VFSTOUFS(wk->wk_mp); 14343 ACQUIRE_LOCK(ump); 14344 while ((wk = LIST_FIRST(wkhd)) != NULL) { 14345 WORKLIST_REMOVE(wk); 14346 WORKLIST_INSERT(&bp->b_dep, wk); 14347 } 14348 FREE_LOCK(ump); 14349 14350 } 14351 14352 void 14353 softdep_inode_append(ip, cred, wkhd) 14354 struct inode *ip; 14355 struct ucred *cred; 14356 struct workhead *wkhd; 14357 { 14358 struct buf *bp; 14359 struct fs *fs; 14360 struct ufsmount *ump; 14361 int error; 14362 14363 ump = ITOUMP(ip); 14364 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 14365 ("softdep_inode_append called on non-softdep filesystem")); 14366 fs = ump->um_fs; 14367 error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 14368 (int)fs->fs_bsize, cred, &bp); 14369 if (error) { 14370 bqrelse(bp); 14371 softdep_freework(wkhd); 14372 return; 14373 } 14374 softdep_buf_append(bp, wkhd); 14375 bqrelse(bp); 14376 } 14377 14378 void 14379 softdep_freework(wkhd) 14380 struct workhead *wkhd; 14381 { 14382 struct worklist *wk; 14383 struct ufsmount *ump; 14384 14385 if ((wk = LIST_FIRST(wkhd)) == NULL) 14386 return; 14387 KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, 14388 ("softdep_freework called on non-softdep filesystem")); 14389 ump = VFSTOUFS(wk->wk_mp); 14390 ACQUIRE_LOCK(ump); 14391 handle_jwork(wkhd); 14392 FREE_LOCK(ump); 14393 } 14394 14395 static struct ufsmount * 14396 softdep_bp_to_mp(bp) 14397 struct buf *bp; 14398 { 14399 struct mount *mp; 14400 struct vnode *vp; 14401 14402 if (LIST_EMPTY(&bp->b_dep)) 14403 return (NULL); 14404 vp = bp->b_vp; 14405 KASSERT(vp != NULL, 14406 ("%s, buffer with dependencies lacks vnode", __func__)); 14407 14408 /* 14409 * The ump mount point is stable after we get a correct 14410 * pointer, since bp is locked and this prevents unmount from 14411 * proceeding. But to get to it, we cannot dereference bp->b_dep 14412 * head wk_mp, because we do not yet own SU ump lock and 14413 * workitem might be freed while dereferenced. 14414 */ 14415 retry: 14416 switch (vp->v_type) { 14417 case VCHR: 14418 VI_LOCK(vp); 14419 mp = vp->v_type == VCHR ? vp->v_rdev->si_mountpt : NULL; 14420 VI_UNLOCK(vp); 14421 if (mp == NULL) 14422 goto retry; 14423 break; 14424 case VREG: 14425 case VDIR: 14426 case VLNK: 14427 case VFIFO: 14428 case VSOCK: 14429 mp = vp->v_mount; 14430 break; 14431 case VBLK: 14432 vn_printf(vp, "softdep_bp_to_mp: unexpected block device\n"); 14433 /* FALLTHROUGH */ 14434 case VNON: 14435 case VBAD: 14436 case VMARKER: 14437 mp = NULL; 14438 break; 14439 default: 14440 vn_printf(vp, "unknown vnode type"); 14441 mp = NULL; 14442 break; 14443 } 14444 return (VFSTOUFS(mp)); 14445 } 14446 14447 /* 14448 * Function to determine if the buffer has outstanding dependencies 14449 * that will cause a roll-back if the buffer is written. If wantcount 14450 * is set, return number of dependencies, otherwise just yes or no. 14451 */ 14452 static int 14453 softdep_count_dependencies(bp, wantcount) 14454 struct buf *bp; 14455 int wantcount; 14456 { 14457 struct worklist *wk; 14458 struct ufsmount *ump; 14459 struct bmsafemap *bmsafemap; 14460 struct freework *freework; 14461 struct inodedep *inodedep; 14462 struct indirdep *indirdep; 14463 struct freeblks *freeblks; 14464 struct allocindir *aip; 14465 struct pagedep *pagedep; 14466 struct dirrem *dirrem; 14467 struct newblk *newblk; 14468 struct mkdir *mkdir; 14469 struct diradd *dap; 14470 int i, retval; 14471 14472 ump = softdep_bp_to_mp(bp); 14473 if (ump == NULL) 14474 return (0); 14475 retval = 0; 14476 ACQUIRE_LOCK(ump); 14477 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 14478 switch (wk->wk_type) { 14479 case D_INODEDEP: 14480 inodedep = WK_INODEDEP(wk); 14481 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 14482 /* bitmap allocation dependency */ 14483 retval += 1; 14484 if (!wantcount) 14485 goto out; 14486 } 14487 if (TAILQ_FIRST(&inodedep->id_inoupdt)) { 14488 /* direct block pointer dependency */ 14489 retval += 1; 14490 if (!wantcount) 14491 goto out; 14492 } 14493 if (TAILQ_FIRST(&inodedep->id_extupdt)) { 14494 /* direct block pointer dependency */ 14495 retval += 1; 14496 if (!wantcount) 14497 goto out; 14498 } 14499 if (TAILQ_FIRST(&inodedep->id_inoreflst)) { 14500 /* Add reference dependency. */ 14501 retval += 1; 14502 if (!wantcount) 14503 goto out; 14504 } 14505 continue; 14506 14507 case D_INDIRDEP: 14508 indirdep = WK_INDIRDEP(wk); 14509 14510 TAILQ_FOREACH(freework, &indirdep->ir_trunc, fw_next) { 14511 /* indirect truncation dependency */ 14512 retval += 1; 14513 if (!wantcount) 14514 goto out; 14515 } 14516 14517 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) { 14518 /* indirect block pointer dependency */ 14519 retval += 1; 14520 if (!wantcount) 14521 goto out; 14522 } 14523 continue; 14524 14525 case D_PAGEDEP: 14526 pagedep = WK_PAGEDEP(wk); 14527 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) { 14528 if (LIST_FIRST(&dirrem->dm_jremrefhd)) { 14529 /* Journal remove ref dependency. */ 14530 retval += 1; 14531 if (!wantcount) 14532 goto out; 14533 } 14534 } 14535 for (i = 0; i < DAHASHSZ; i++) { 14536 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 14537 /* directory entry dependency */ 14538 retval += 1; 14539 if (!wantcount) 14540 goto out; 14541 } 14542 } 14543 continue; 14544 14545 case D_BMSAFEMAP: 14546 bmsafemap = WK_BMSAFEMAP(wk); 14547 if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) { 14548 /* Add reference dependency. */ 14549 retval += 1; 14550 if (!wantcount) 14551 goto out; 14552 } 14553 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) { 14554 /* Allocate block dependency. */ 14555 retval += 1; 14556 if (!wantcount) 14557 goto out; 14558 } 14559 continue; 14560 14561 case D_FREEBLKS: 14562 freeblks = WK_FREEBLKS(wk); 14563 if (LIST_FIRST(&freeblks->fb_jblkdephd)) { 14564 /* Freeblk journal dependency. */ 14565 retval += 1; 14566 if (!wantcount) 14567 goto out; 14568 } 14569 continue; 14570 14571 case D_ALLOCDIRECT: 14572 case D_ALLOCINDIR: 14573 newblk = WK_NEWBLK(wk); 14574 if (newblk->nb_jnewblk) { 14575 /* Journal allocate dependency. */ 14576 retval += 1; 14577 if (!wantcount) 14578 goto out; 14579 } 14580 continue; 14581 14582 case D_MKDIR: 14583 mkdir = WK_MKDIR(wk); 14584 if (mkdir->md_jaddref) { 14585 /* Journal reference dependency. */ 14586 retval += 1; 14587 if (!wantcount) 14588 goto out; 14589 } 14590 continue; 14591 14592 case D_FREEWORK: 14593 case D_FREEDEP: 14594 case D_JSEGDEP: 14595 case D_JSEG: 14596 case D_SBDEP: 14597 /* never a dependency on these blocks */ 14598 continue; 14599 14600 default: 14601 panic("softdep_count_dependencies: Unexpected type %s", 14602 TYPENAME(wk->wk_type)); 14603 /* NOTREACHED */ 14604 } 14605 } 14606 out: 14607 FREE_LOCK(ump); 14608 return (retval); 14609 } 14610 14611 /* 14612 * Acquire exclusive access to a buffer. 14613 * Must be called with a locked mtx parameter. 14614 * Return acquired buffer or NULL on failure. 14615 */ 14616 static struct buf * 14617 getdirtybuf(bp, lock, waitfor) 14618 struct buf *bp; 14619 struct rwlock *lock; 14620 int waitfor; 14621 { 14622 int error; 14623 14624 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) { 14625 if (waitfor != MNT_WAIT) 14626 return (NULL); 14627 error = BUF_LOCK(bp, 14628 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, lock); 14629 /* 14630 * Even if we successfully acquire bp here, we have dropped 14631 * lock, which may violates our guarantee. 14632 */ 14633 if (error == 0) 14634 BUF_UNLOCK(bp); 14635 else if (error != ENOLCK) 14636 panic("getdirtybuf: inconsistent lock: %d", error); 14637 rw_wlock(lock); 14638 return (NULL); 14639 } 14640 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) { 14641 if (lock != BO_LOCKPTR(bp->b_bufobj) && waitfor == MNT_WAIT) { 14642 rw_wunlock(lock); 14643 BO_LOCK(bp->b_bufobj); 14644 BUF_UNLOCK(bp); 14645 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) { 14646 bp->b_vflags |= BV_BKGRDWAIT; 14647 msleep(&bp->b_xflags, BO_LOCKPTR(bp->b_bufobj), 14648 PRIBIO | PDROP, "getbuf", 0); 14649 } else 14650 BO_UNLOCK(bp->b_bufobj); 14651 rw_wlock(lock); 14652 return (NULL); 14653 } 14654 BUF_UNLOCK(bp); 14655 if (waitfor != MNT_WAIT) 14656 return (NULL); 14657 #ifdef DEBUG_VFS_LOCKS 14658 if (bp->b_vp->v_type != VCHR) 14659 ASSERT_BO_WLOCKED(bp->b_bufobj); 14660 #endif 14661 bp->b_vflags |= BV_BKGRDWAIT; 14662 rw_sleep(&bp->b_xflags, lock, PRIBIO, "getbuf", 0); 14663 return (NULL); 14664 } 14665 if ((bp->b_flags & B_DELWRI) == 0) { 14666 BUF_UNLOCK(bp); 14667 return (NULL); 14668 } 14669 bremfree(bp); 14670 return (bp); 14671 } 14672 14673 /* 14674 * Check if it is safe to suspend the file system now. On entry, 14675 * the vnode interlock for devvp should be held. Return 0 with 14676 * the mount interlock held if the file system can be suspended now, 14677 * otherwise return EAGAIN with the mount interlock held. 14678 */ 14679 int 14680 softdep_check_suspend(struct mount *mp, 14681 struct vnode *devvp, 14682 int softdep_depcnt, 14683 int softdep_accdepcnt, 14684 int secondary_writes, 14685 int secondary_accwrites) 14686 { 14687 struct bufobj *bo; 14688 struct ufsmount *ump; 14689 struct inodedep *inodedep; 14690 int error, unlinked; 14691 14692 bo = &devvp->v_bufobj; 14693 ASSERT_BO_WLOCKED(bo); 14694 14695 /* 14696 * If we are not running with soft updates, then we need only 14697 * deal with secondary writes as we try to suspend. 14698 */ 14699 if (MOUNTEDSOFTDEP(mp) == 0) { 14700 MNT_ILOCK(mp); 14701 while (mp->mnt_secondary_writes != 0) { 14702 BO_UNLOCK(bo); 14703 msleep(&mp->mnt_secondary_writes, MNT_MTX(mp), 14704 (PUSER - 1) | PDROP, "secwr", 0); 14705 BO_LOCK(bo); 14706 MNT_ILOCK(mp); 14707 } 14708 14709 /* 14710 * Reasons for needing more work before suspend: 14711 * - Dirty buffers on devvp. 14712 * - Secondary writes occurred after start of vnode sync loop 14713 */ 14714 error = 0; 14715 if (bo->bo_numoutput > 0 || 14716 bo->bo_dirty.bv_cnt > 0 || 14717 secondary_writes != 0 || 14718 mp->mnt_secondary_writes != 0 || 14719 secondary_accwrites != mp->mnt_secondary_accwrites) 14720 error = EAGAIN; 14721 BO_UNLOCK(bo); 14722 return (error); 14723 } 14724 14725 /* 14726 * If we are running with soft updates, then we need to coordinate 14727 * with them as we try to suspend. 14728 */ 14729 ump = VFSTOUFS(mp); 14730 for (;;) { 14731 if (!TRY_ACQUIRE_LOCK(ump)) { 14732 BO_UNLOCK(bo); 14733 ACQUIRE_LOCK(ump); 14734 FREE_LOCK(ump); 14735 BO_LOCK(bo); 14736 continue; 14737 } 14738 MNT_ILOCK(mp); 14739 if (mp->mnt_secondary_writes != 0) { 14740 FREE_LOCK(ump); 14741 BO_UNLOCK(bo); 14742 msleep(&mp->mnt_secondary_writes, 14743 MNT_MTX(mp), 14744 (PUSER - 1) | PDROP, "secwr", 0); 14745 BO_LOCK(bo); 14746 continue; 14747 } 14748 break; 14749 } 14750 14751 unlinked = 0; 14752 if (MOUNTEDSUJ(mp)) { 14753 for (inodedep = TAILQ_FIRST(&ump->softdep_unlinked); 14754 inodedep != NULL; 14755 inodedep = TAILQ_NEXT(inodedep, id_unlinked)) { 14756 if ((inodedep->id_state & (UNLINKED | UNLINKLINKS | 14757 UNLINKONLIST)) != (UNLINKED | UNLINKLINKS | 14758 UNLINKONLIST) || 14759 !check_inodedep_free(inodedep)) 14760 continue; 14761 unlinked++; 14762 } 14763 } 14764 14765 /* 14766 * Reasons for needing more work before suspend: 14767 * - Dirty buffers on devvp. 14768 * - Softdep activity occurred after start of vnode sync loop 14769 * - Secondary writes occurred after start of vnode sync loop 14770 */ 14771 error = 0; 14772 if (bo->bo_numoutput > 0 || 14773 bo->bo_dirty.bv_cnt > 0 || 14774 softdep_depcnt != unlinked || 14775 ump->softdep_deps != unlinked || 14776 softdep_accdepcnt != ump->softdep_accdeps || 14777 secondary_writes != 0 || 14778 mp->mnt_secondary_writes != 0 || 14779 secondary_accwrites != mp->mnt_secondary_accwrites) 14780 error = EAGAIN; 14781 FREE_LOCK(ump); 14782 BO_UNLOCK(bo); 14783 return (error); 14784 } 14785 14786 /* 14787 * Get the number of dependency structures for the file system, both 14788 * the current number and the total number allocated. These will 14789 * later be used to detect that softdep processing has occurred. 14790 */ 14791 void 14792 softdep_get_depcounts(struct mount *mp, 14793 int *softdep_depsp, 14794 int *softdep_accdepsp) 14795 { 14796 struct ufsmount *ump; 14797 14798 if (MOUNTEDSOFTDEP(mp) == 0) { 14799 *softdep_depsp = 0; 14800 *softdep_accdepsp = 0; 14801 return; 14802 } 14803 ump = VFSTOUFS(mp); 14804 ACQUIRE_LOCK(ump); 14805 *softdep_depsp = ump->softdep_deps; 14806 *softdep_accdepsp = ump->softdep_accdeps; 14807 FREE_LOCK(ump); 14808 } 14809 14810 /* 14811 * Wait for pending output on a vnode to complete. 14812 */ 14813 static void 14814 drain_output(vp) 14815 struct vnode *vp; 14816 { 14817 14818 ASSERT_VOP_LOCKED(vp, "drain_output"); 14819 (void)bufobj_wwait(&vp->v_bufobj, 0, 0); 14820 } 14821 14822 /* 14823 * Called whenever a buffer that is being invalidated or reallocated 14824 * contains dependencies. This should only happen if an I/O error has 14825 * occurred. The routine is called with the buffer locked. 14826 */ 14827 static void 14828 softdep_deallocate_dependencies(bp) 14829 struct buf *bp; 14830 { 14831 14832 if ((bp->b_ioflags & BIO_ERROR) == 0) 14833 panic("softdep_deallocate_dependencies: dangling deps"); 14834 if (bp->b_vp != NULL && bp->b_vp->v_mount != NULL) 14835 softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error); 14836 else 14837 printf("softdep_deallocate_dependencies: " 14838 "got error %d while accessing filesystem\n", bp->b_error); 14839 if (bp->b_error != ENXIO) 14840 panic("softdep_deallocate_dependencies: unrecovered I/O error"); 14841 } 14842 14843 /* 14844 * Function to handle asynchronous write errors in the filesystem. 14845 */ 14846 static void 14847 softdep_error(func, error) 14848 char *func; 14849 int error; 14850 { 14851 14852 /* XXX should do something better! */ 14853 printf("%s: got error %d while accessing filesystem\n", func, error); 14854 } 14855 14856 #ifdef DDB 14857 14858 /* exported to ffs_vfsops.c */ 14859 extern void db_print_ffs(struct ufsmount *ump); 14860 void 14861 db_print_ffs(struct ufsmount *ump) 14862 { 14863 db_printf("mp %p (%s) devvp %p\n", ump->um_mountp, 14864 ump->um_mountp->mnt_stat.f_mntonname, ump->um_devvp); 14865 db_printf(" fs %p su_wl %d su_deps %d su_req %d\n", 14866 ump->um_fs, ump->softdep_on_worklist, 14867 ump->softdep_deps, ump->softdep_req); 14868 } 14869 14870 static void 14871 worklist_print(struct worklist *wk, int verbose) 14872 { 14873 14874 if (!verbose) { 14875 db_printf("%s: %p state 0x%b\n", TYPENAME(wk->wk_type), wk, 14876 (u_int)wk->wk_state, PRINT_SOFTDEP_FLAGS); 14877 return; 14878 } 14879 db_printf("worklist: %p type %s state 0x%b next %p\n ", wk, 14880 TYPENAME(wk->wk_type), (u_int)wk->wk_state, PRINT_SOFTDEP_FLAGS, 14881 LIST_NEXT(wk, wk_list)); 14882 db_print_ffs(VFSTOUFS(wk->wk_mp)); 14883 } 14884 14885 static void 14886 inodedep_print(struct inodedep *inodedep, int verbose) 14887 { 14888 14889 worklist_print(&inodedep->id_list, 0); 14890 db_printf(" fs %p ino %jd inoblk %jd delta %jd nlink %jd\n", 14891 inodedep->id_fs, 14892 (intmax_t)inodedep->id_ino, 14893 (intmax_t)fsbtodb(inodedep->id_fs, 14894 ino_to_fsba(inodedep->id_fs, inodedep->id_ino)), 14895 (intmax_t)inodedep->id_nlinkdelta, 14896 (intmax_t)inodedep->id_savednlink); 14897 14898 if (verbose == 0) 14899 return; 14900 14901 db_printf(" bmsafemap %p, mkdiradd %p, inoreflst %p\n", 14902 inodedep->id_bmsafemap, 14903 inodedep->id_mkdiradd, 14904 TAILQ_FIRST(&inodedep->id_inoreflst)); 14905 db_printf(" dirremhd %p, pendinghd %p, bufwait %p\n", 14906 LIST_FIRST(&inodedep->id_dirremhd), 14907 LIST_FIRST(&inodedep->id_pendinghd), 14908 LIST_FIRST(&inodedep->id_bufwait)); 14909 db_printf(" inowait %p, inoupdt %p, newinoupdt %p\n", 14910 LIST_FIRST(&inodedep->id_inowait), 14911 TAILQ_FIRST(&inodedep->id_inoupdt), 14912 TAILQ_FIRST(&inodedep->id_newinoupdt)); 14913 db_printf(" extupdt %p, newextupdt %p, freeblklst %p\n", 14914 TAILQ_FIRST(&inodedep->id_extupdt), 14915 TAILQ_FIRST(&inodedep->id_newextupdt), 14916 TAILQ_FIRST(&inodedep->id_freeblklst)); 14917 db_printf(" saveino %p, savedsize %jd, savedextsize %jd\n", 14918 inodedep->id_savedino1, 14919 (intmax_t)inodedep->id_savedsize, 14920 (intmax_t)inodedep->id_savedextsize); 14921 } 14922 14923 static void 14924 newblk_print(struct newblk *nbp) 14925 { 14926 14927 worklist_print(&nbp->nb_list, 0); 14928 db_printf(" newblkno %jd\n", (intmax_t)nbp->nb_newblkno); 14929 db_printf(" jnewblk %p, bmsafemap %p, freefrag %p\n", 14930 &nbp->nb_jnewblk, 14931 &nbp->nb_bmsafemap, 14932 &nbp->nb_freefrag); 14933 db_printf(" indirdeps %p, newdirblk %p, jwork %p\n", 14934 LIST_FIRST(&nbp->nb_indirdeps), 14935 LIST_FIRST(&nbp->nb_newdirblk), 14936 LIST_FIRST(&nbp->nb_jwork)); 14937 } 14938 14939 static void 14940 allocdirect_print(struct allocdirect *adp) 14941 { 14942 14943 newblk_print(&adp->ad_block); 14944 db_printf(" oldblkno %jd, oldsize %ld, newsize %ld\n", 14945 adp->ad_oldblkno, adp->ad_oldsize, adp->ad_newsize); 14946 db_printf(" offset %d, inodedep %p\n", 14947 adp->ad_offset, adp->ad_inodedep); 14948 } 14949 14950 static void 14951 allocindir_print(struct allocindir *aip) 14952 { 14953 14954 newblk_print(&aip->ai_block); 14955 db_printf(" oldblkno %jd, lbn %jd\n", 14956 (intmax_t)aip->ai_oldblkno, (intmax_t)aip->ai_lbn); 14957 db_printf(" offset %d, indirdep %p\n", 14958 aip->ai_offset, aip->ai_indirdep); 14959 } 14960 14961 static void 14962 mkdir_print(struct mkdir *mkdir) 14963 { 14964 14965 worklist_print(&mkdir->md_list, 0); 14966 db_printf(" diradd %p, jaddref %p, buf %p\n", 14967 mkdir->md_diradd, mkdir->md_jaddref, mkdir->md_buf); 14968 } 14969 14970 DB_SHOW_COMMAND(sd_inodedep, db_show_sd_inodedep) 14971 { 14972 14973 if (have_addr == 0) { 14974 db_printf("inodedep address required\n"); 14975 return; 14976 } 14977 inodedep_print((struct inodedep*)addr, 1); 14978 } 14979 14980 DB_SHOW_COMMAND(sd_allinodedeps, db_show_sd_allinodedeps) 14981 { 14982 struct inodedep_hashhead *inodedephd; 14983 struct inodedep *inodedep; 14984 struct ufsmount *ump; 14985 int cnt; 14986 14987 if (have_addr == 0) { 14988 db_printf("ufsmount address required\n"); 14989 return; 14990 } 14991 ump = (struct ufsmount *)addr; 14992 for (cnt = 0; cnt < ump->inodedep_hash_size; cnt++) { 14993 inodedephd = &ump->inodedep_hashtbl[cnt]; 14994 LIST_FOREACH(inodedep, inodedephd, id_hash) { 14995 inodedep_print(inodedep, 0); 14996 } 14997 } 14998 } 14999 15000 DB_SHOW_COMMAND(sd_worklist, db_show_sd_worklist) 15001 { 15002 15003 if (have_addr == 0) { 15004 db_printf("worklist address required\n"); 15005 return; 15006 } 15007 worklist_print((struct worklist *)addr, 1); 15008 } 15009 15010 DB_SHOW_COMMAND(sd_workhead, db_show_sd_workhead) 15011 { 15012 struct worklist *wk; 15013 struct workhead *wkhd; 15014 15015 if (have_addr == 0) { 15016 db_printf("worklist address required " 15017 "(for example value in bp->b_dep)\n"); 15018 return; 15019 } 15020 /* 15021 * We often do not have the address of the worklist head but 15022 * instead a pointer to its first entry (e.g., we have the 15023 * contents of bp->b_dep rather than &bp->b_dep). But the back 15024 * pointer of bp->b_dep will point at the head of the list, so 15025 * we cheat and use that instead. If we are in the middle of 15026 * a list we will still get the same result, so nothing 15027 * unexpected will result. 15028 */ 15029 wk = (struct worklist *)addr; 15030 if (wk == NULL) 15031 return; 15032 wkhd = (struct workhead *)wk->wk_list.le_prev; 15033 LIST_FOREACH(wk, wkhd, wk_list) { 15034 switch(wk->wk_type) { 15035 case D_INODEDEP: 15036 inodedep_print(WK_INODEDEP(wk), 0); 15037 continue; 15038 case D_ALLOCDIRECT: 15039 allocdirect_print(WK_ALLOCDIRECT(wk)); 15040 continue; 15041 case D_ALLOCINDIR: 15042 allocindir_print(WK_ALLOCINDIR(wk)); 15043 continue; 15044 case D_MKDIR: 15045 mkdir_print(WK_MKDIR(wk)); 15046 continue; 15047 default: 15048 worklist_print(wk, 0); 15049 continue; 15050 } 15051 } 15052 } 15053 15054 DB_SHOW_COMMAND(sd_mkdir, db_show_sd_mkdir) 15055 { 15056 if (have_addr == 0) { 15057 db_printf("mkdir address required\n"); 15058 return; 15059 } 15060 mkdir_print((struct mkdir *)addr); 15061 } 15062 15063 DB_SHOW_COMMAND(sd_mkdir_list, db_show_sd_mkdir_list) 15064 { 15065 struct mkdirlist *mkdirlisthd; 15066 struct mkdir *mkdir; 15067 15068 if (have_addr == 0) { 15069 db_printf("mkdir listhead address required\n"); 15070 return; 15071 } 15072 mkdirlisthd = (struct mkdirlist *)addr; 15073 LIST_FOREACH(mkdir, mkdirlisthd, md_mkdirs) { 15074 mkdir_print(mkdir); 15075 if (mkdir->md_diradd != NULL) { 15076 db_printf(" "); 15077 worklist_print(&mkdir->md_diradd->da_list, 0); 15078 } 15079 if (mkdir->md_jaddref != NULL) { 15080 db_printf(" "); 15081 worklist_print(&mkdir->md_jaddref->ja_list, 0); 15082 } 15083 } 15084 } 15085 15086 DB_SHOW_COMMAND(sd_allocdirect, db_show_sd_allocdirect) 15087 { 15088 if (have_addr == 0) { 15089 db_printf("allocdirect address required\n"); 15090 return; 15091 } 15092 allocdirect_print((struct allocdirect *)addr); 15093 } 15094 15095 DB_SHOW_COMMAND(sd_allocindir, db_show_sd_allocindir) 15096 { 15097 if (have_addr == 0) { 15098 db_printf("allocindir address required\n"); 15099 return; 15100 } 15101 allocindir_print((struct allocindir *)addr); 15102 } 15103 15104 #endif /* DDB */ 15105 15106 #endif /* SOFTUPDATES */ 15107