1 /* 2 * Copyright 1998, 2000 Marshall Kirk McKusick. All Rights Reserved. 3 * 4 * The soft updates code is derived from the appendix of a University 5 * of Michigan technical report (Gregory R. Ganger and Yale N. Patt, 6 * "Soft Updates: A Solution to the Metadata Update Problem in File 7 * Systems", CSE-TR-254-95, August 1995). 8 * 9 * Further information about soft updates can be obtained from: 10 * 11 * Marshall Kirk McKusick http://www.mckusick.com/softdep/ 12 * 1614 Oxford Street mckusick@mckusick.com 13 * Berkeley, CA 94709-1608 +1-510-843-9542 14 * USA 15 * 16 * Redistribution and use in source and binary forms, with or without 17 * modification, are permitted provided that the following conditions 18 * are met: 19 * 20 * 1. Redistributions of source code must retain the above copyright 21 * notice, this list of conditions and the following disclaimer. 22 * 2. Redistributions in binary form must reproduce the above copyright 23 * notice, this list of conditions and the following disclaimer in the 24 * documentation and/or other materials provided with the distribution. 25 * 26 * THIS SOFTWARE IS PROVIDED BY MARSHALL KIRK MCKUSICK ``AS IS'' AND ANY 27 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 28 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 29 * DISCLAIMED. IN NO EVENT SHALL MARSHALL KIRK MCKUSICK BE LIABLE FOR 30 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * from: @(#)ffs_softdep.c 9.59 (McKusick) 6/21/00 39 * $FreeBSD$ 40 */ 41 42 /* 43 * For now we want the safety net that the DIAGNOSTIC and DEBUG flags provide. 44 */ 45 #ifndef DIAGNOSTIC 46 #define DIAGNOSTIC 47 #endif 48 #ifndef DEBUG 49 #define DEBUG 50 #endif 51 52 #include <sys/param.h> 53 #include <sys/kernel.h> 54 #include <sys/systm.h> 55 #include <sys/bio.h> 56 #include <sys/buf.h> 57 #include <sys/malloc.h> 58 #include <sys/mount.h> 59 #include <sys/proc.h> 60 #include <sys/stat.h> 61 #include <sys/syslog.h> 62 #include <sys/vnode.h> 63 #include <sys/conf.h> 64 #include <ufs/ufs/dir.h> 65 #include <ufs/ufs/extattr.h> 66 #include <ufs/ufs/quota.h> 67 #include <ufs/ufs/inode.h> 68 #include <ufs/ufs/ufsmount.h> 69 #include <ufs/ffs/fs.h> 70 #include <ufs/ffs/softdep.h> 71 #include <ufs/ffs/ffs_extern.h> 72 #include <ufs/ufs/ufs_extern.h> 73 74 /* 75 * These definitions need to be adapted to the system to which 76 * this file is being ported. 77 */ 78 /* 79 * malloc types defined for the softdep system. 80 */ 81 static MALLOC_DEFINE(M_PAGEDEP, "pagedep","File page dependencies"); 82 static MALLOC_DEFINE(M_INODEDEP, "inodedep","Inode dependencies"); 83 static MALLOC_DEFINE(M_NEWBLK, "newblk","New block allocation"); 84 static MALLOC_DEFINE(M_BMSAFEMAP, "bmsafemap","Block or frag allocated from cyl group map"); 85 static MALLOC_DEFINE(M_ALLOCDIRECT, "allocdirect","Block or frag dependency for an inode"); 86 static MALLOC_DEFINE(M_INDIRDEP, "indirdep","Indirect block dependencies"); 87 static MALLOC_DEFINE(M_ALLOCINDIR, "allocindir","Block dependency for an indirect block"); 88 static MALLOC_DEFINE(M_FREEFRAG, "freefrag","Previously used frag for an inode"); 89 static MALLOC_DEFINE(M_FREEBLKS, "freeblks","Blocks freed from an inode"); 90 static MALLOC_DEFINE(M_FREEFILE, "freefile","Inode deallocated"); 91 static MALLOC_DEFINE(M_DIRADD, "diradd","New directory entry"); 92 static MALLOC_DEFINE(M_MKDIR, "mkdir","New directory"); 93 static MALLOC_DEFINE(M_DIRREM, "dirrem","Directory entry deleted"); 94 static MALLOC_DEFINE(M_NEWDIRBLK, "newdirblk","Unclaimed new directory block"); 95 96 #define M_SOFTDEP_FLAGS (M_WAITOK | M_USE_RESERVE) 97 98 #define D_PAGEDEP 0 99 #define D_INODEDEP 1 100 #define D_NEWBLK 2 101 #define D_BMSAFEMAP 3 102 #define D_ALLOCDIRECT 4 103 #define D_INDIRDEP 5 104 #define D_ALLOCINDIR 6 105 #define D_FREEFRAG 7 106 #define D_FREEBLKS 8 107 #define D_FREEFILE 9 108 #define D_DIRADD 10 109 #define D_MKDIR 11 110 #define D_DIRREM 12 111 #define D_NEWDIRBLK 13 112 #define D_LAST D_NEWDIRBLK 113 114 /* 115 * translate from workitem type to memory type 116 * MUST match the defines above, such that memtype[D_XXX] == M_XXX 117 */ 118 static struct malloc_type *memtype[] = { 119 M_PAGEDEP, 120 M_INODEDEP, 121 M_NEWBLK, 122 M_BMSAFEMAP, 123 M_ALLOCDIRECT, 124 M_INDIRDEP, 125 M_ALLOCINDIR, 126 M_FREEFRAG, 127 M_FREEBLKS, 128 M_FREEFILE, 129 M_DIRADD, 130 M_MKDIR, 131 M_DIRREM, 132 M_NEWDIRBLK 133 }; 134 135 #define DtoM(type) (memtype[type]) 136 137 /* 138 * Names of malloc types. 139 */ 140 #define TYPENAME(type) \ 141 ((unsigned)(type) < D_LAST ? memtype[type]->ks_shortdesc : "???") 142 /* 143 * End system adaptaion definitions. 144 */ 145 146 /* 147 * Internal function prototypes. 148 */ 149 static void softdep_error __P((char *, int)); 150 static void drain_output __P((struct vnode *, int)); 151 static int getdirtybuf __P((struct buf **, int)); 152 static void clear_remove __P((struct proc *)); 153 static void clear_inodedeps __P((struct proc *)); 154 static int flush_pagedep_deps __P((struct vnode *, struct mount *, 155 struct diraddhd *)); 156 static int flush_inodedep_deps __P((struct fs *, ino_t)); 157 static int handle_written_filepage __P((struct pagedep *, struct buf *)); 158 static void diradd_inode_written __P((struct diradd *, struct inodedep *)); 159 static int handle_written_inodeblock __P((struct inodedep *, struct buf *)); 160 static void handle_allocdirect_partdone __P((struct allocdirect *)); 161 static void handle_allocindir_partdone __P((struct allocindir *)); 162 static void initiate_write_filepage __P((struct pagedep *, struct buf *)); 163 static void handle_written_mkdir __P((struct mkdir *, int)); 164 static void initiate_write_inodeblock __P((struct inodedep *, struct buf *)); 165 static void handle_workitem_freefile __P((struct freefile *)); 166 static void handle_workitem_remove __P((struct dirrem *)); 167 static struct dirrem *newdirrem __P((struct buf *, struct inode *, 168 struct inode *, int, struct dirrem **)); 169 static void free_diradd __P((struct diradd *)); 170 static void free_allocindir __P((struct allocindir *, struct inodedep *)); 171 static void free_newdirblk __P((struct newdirblk *)); 172 static int indir_trunc __P((struct inode *, ufs_daddr_t, int, ufs_lbn_t, 173 long *)); 174 static void deallocate_dependencies __P((struct buf *, struct inodedep *)); 175 static void free_allocdirect __P((struct allocdirectlst *, 176 struct allocdirect *, int)); 177 static int check_inode_unwritten __P((struct inodedep *)); 178 static int free_inodedep __P((struct inodedep *)); 179 static void handle_workitem_freeblocks __P((struct freeblks *, int)); 180 static void merge_inode_lists __P((struct inodedep *)); 181 static void setup_allocindir_phase2 __P((struct buf *, struct inode *, 182 struct allocindir *)); 183 static struct allocindir *newallocindir __P((struct inode *, int, ufs_daddr_t, 184 ufs_daddr_t)); 185 static void handle_workitem_freefrag __P((struct freefrag *)); 186 static struct freefrag *newfreefrag __P((struct inode *, ufs_daddr_t, long)); 187 static void allocdirect_merge __P((struct allocdirectlst *, 188 struct allocdirect *, struct allocdirect *)); 189 static struct bmsafemap *bmsafemap_lookup __P((struct buf *)); 190 static int newblk_lookup __P((struct fs *, ufs_daddr_t, int, 191 struct newblk **)); 192 static int inodedep_lookup __P((struct fs *, ino_t, int, struct inodedep **)); 193 static int pagedep_lookup __P((struct inode *, ufs_lbn_t, int, 194 struct pagedep **)); 195 static void pause_timer __P((void *)); 196 static int request_cleanup __P((int, int)); 197 static int process_worklist_item __P((struct mount *, int)); 198 static void add_to_worklist __P((struct worklist *)); 199 200 /* 201 * Exported softdep operations. 202 */ 203 static void softdep_disk_io_initiation __P((struct buf *)); 204 static void softdep_disk_write_complete __P((struct buf *)); 205 static void softdep_deallocate_dependencies __P((struct buf *)); 206 static void softdep_move_dependencies __P((struct buf *, struct buf *)); 207 static int softdep_count_dependencies __P((struct buf *bp, int)); 208 209 struct bio_ops bioops = { 210 softdep_disk_io_initiation, /* io_start */ 211 softdep_disk_write_complete, /* io_complete */ 212 softdep_deallocate_dependencies, /* io_deallocate */ 213 softdep_move_dependencies, /* io_movedeps */ 214 softdep_count_dependencies, /* io_countdeps */ 215 }; 216 217 /* 218 * Locking primitives. 219 * 220 * For a uniprocessor, all we need to do is protect against disk 221 * interrupts. For a multiprocessor, this lock would have to be 222 * a mutex. A single mutex is used throughout this file, though 223 * finer grain locking could be used if contention warranted it. 224 * 225 * For a multiprocessor, the sleep call would accept a lock and 226 * release it after the sleep processing was complete. In a uniprocessor 227 * implementation there is no such interlock, so we simple mark 228 * the places where it needs to be done with the `interlocked' form 229 * of the lock calls. Since the uniprocessor sleep already interlocks 230 * the spl, there is nothing that really needs to be done. 231 */ 232 #ifndef /* NOT */ DEBUG 233 static struct lockit { 234 int lkt_spl; 235 } lk = { 0 }; 236 #define ACQUIRE_LOCK(lk) (lk)->lkt_spl = splbio() 237 #define FREE_LOCK(lk) splx((lk)->lkt_spl) 238 #define ACQUIRE_LOCK_INTERLOCKED(lk) 239 #define FREE_LOCK_INTERLOCKED(lk) 240 241 #else /* DEBUG */ 242 static struct lockit { 243 int lkt_spl; 244 pid_t lkt_held; 245 } lk = { 0, -1 }; 246 static int lockcnt; 247 248 static void acquire_lock __P((struct lockit *)); 249 static void free_lock __P((struct lockit *)); 250 static void acquire_lock_interlocked __P((struct lockit *)); 251 static void free_lock_interlocked __P((struct lockit *)); 252 253 #define ACQUIRE_LOCK(lk) acquire_lock(lk) 254 #define FREE_LOCK(lk) free_lock(lk) 255 #define ACQUIRE_LOCK_INTERLOCKED(lk) acquire_lock_interlocked(lk) 256 #define FREE_LOCK_INTERLOCKED(lk) free_lock_interlocked(lk) 257 258 static void 259 acquire_lock(lk) 260 struct lockit *lk; 261 { 262 pid_t holder; 263 264 if (lk->lkt_held != -1) { 265 holder = lk->lkt_held; 266 FREE_LOCK(lk); 267 if (holder == CURPROC->p_pid) 268 panic("softdep_lock: locking against myself"); 269 else 270 panic("softdep_lock: lock held by %d", holder); 271 } 272 lk->lkt_spl = splbio(); 273 lk->lkt_held = CURPROC->p_pid; 274 lockcnt++; 275 } 276 277 static void 278 free_lock(lk) 279 struct lockit *lk; 280 { 281 282 if (lk->lkt_held == -1) 283 panic("softdep_unlock: lock not held"); 284 lk->lkt_held = -1; 285 splx(lk->lkt_spl); 286 } 287 288 static void 289 acquire_lock_interlocked(lk) 290 struct lockit *lk; 291 { 292 pid_t holder; 293 294 if (lk->lkt_held != -1) { 295 holder = lk->lkt_held; 296 FREE_LOCK(lk); 297 if (holder == CURPROC->p_pid) 298 panic("softdep_lock_interlocked: locking against self"); 299 else 300 panic("softdep_lock_interlocked: lock held by %d", 301 holder); 302 } 303 lk->lkt_held = CURPROC->p_pid; 304 lockcnt++; 305 } 306 307 static void 308 free_lock_interlocked(lk) 309 struct lockit *lk; 310 { 311 312 if (lk->lkt_held == -1) 313 panic("softdep_unlock_interlocked: lock not held"); 314 lk->lkt_held = -1; 315 } 316 #endif /* DEBUG */ 317 318 /* 319 * Place holder for real semaphores. 320 */ 321 struct sema { 322 int value; 323 pid_t holder; 324 char *name; 325 int prio; 326 int timo; 327 }; 328 static void sema_init __P((struct sema *, char *, int, int)); 329 static int sema_get __P((struct sema *, struct lockit *)); 330 static void sema_release __P((struct sema *)); 331 332 static void 333 sema_init(semap, name, prio, timo) 334 struct sema *semap; 335 char *name; 336 int prio, timo; 337 { 338 339 semap->holder = -1; 340 semap->value = 0; 341 semap->name = name; 342 semap->prio = prio; 343 semap->timo = timo; 344 } 345 346 static int 347 sema_get(semap, interlock) 348 struct sema *semap; 349 struct lockit *interlock; 350 { 351 352 if (semap->value++ > 0) { 353 if (interlock != NULL) 354 FREE_LOCK_INTERLOCKED(interlock); 355 tsleep((caddr_t)semap, semap->prio, semap->name, semap->timo); 356 if (interlock != NULL) { 357 ACQUIRE_LOCK_INTERLOCKED(interlock); 358 FREE_LOCK(interlock); 359 } 360 return (0); 361 } 362 semap->holder = CURPROC->p_pid; 363 if (interlock != NULL) 364 FREE_LOCK(interlock); 365 return (1); 366 } 367 368 static void 369 sema_release(semap) 370 struct sema *semap; 371 { 372 373 if (semap->value <= 0 || semap->holder != CURPROC->p_pid) { 374 if (lk.lkt_held != -1) 375 FREE_LOCK(&lk); 376 panic("sema_release: not held"); 377 } 378 if (--semap->value > 0) { 379 semap->value = 0; 380 wakeup(semap); 381 } 382 semap->holder = -1; 383 } 384 385 /* 386 * Worklist queue management. 387 * These routines require that the lock be held. 388 */ 389 #ifndef /* NOT */ DEBUG 390 #define WORKLIST_INSERT(head, item) do { \ 391 (item)->wk_state |= ONWORKLIST; \ 392 LIST_INSERT_HEAD(head, item, wk_list); \ 393 } while (0) 394 #define WORKLIST_REMOVE(item) do { \ 395 (item)->wk_state &= ~ONWORKLIST; \ 396 LIST_REMOVE(item, wk_list); \ 397 } while (0) 398 #define WORKITEM_FREE(item, type) FREE(item, DtoM(type)) 399 400 #else /* DEBUG */ 401 static void worklist_insert __P((struct workhead *, struct worklist *)); 402 static void worklist_remove __P((struct worklist *)); 403 static void workitem_free __P((struct worklist *, int)); 404 405 #define WORKLIST_INSERT(head, item) worklist_insert(head, item) 406 #define WORKLIST_REMOVE(item) worklist_remove(item) 407 #define WORKITEM_FREE(item, type) workitem_free((struct worklist *)item, type) 408 409 static void 410 worklist_insert(head, item) 411 struct workhead *head; 412 struct worklist *item; 413 { 414 415 if (lk.lkt_held == -1) 416 panic("worklist_insert: lock not held"); 417 if (item->wk_state & ONWORKLIST) { 418 FREE_LOCK(&lk); 419 panic("worklist_insert: already on list"); 420 } 421 item->wk_state |= ONWORKLIST; 422 LIST_INSERT_HEAD(head, item, wk_list); 423 } 424 425 static void 426 worklist_remove(item) 427 struct worklist *item; 428 { 429 430 if (lk.lkt_held == -1) 431 panic("worklist_remove: lock not held"); 432 if ((item->wk_state & ONWORKLIST) == 0) { 433 FREE_LOCK(&lk); 434 panic("worklist_remove: not on list"); 435 } 436 item->wk_state &= ~ONWORKLIST; 437 LIST_REMOVE(item, wk_list); 438 } 439 440 static void 441 workitem_free(item, type) 442 struct worklist *item; 443 int type; 444 { 445 446 if (item->wk_state & ONWORKLIST) { 447 if (lk.lkt_held != -1) 448 FREE_LOCK(&lk); 449 panic("workitem_free: still on list"); 450 } 451 if (item->wk_type != type) { 452 if (lk.lkt_held != -1) 453 FREE_LOCK(&lk); 454 panic("workitem_free: type mismatch"); 455 } 456 FREE(item, DtoM(type)); 457 } 458 #endif /* DEBUG */ 459 460 /* 461 * Workitem queue management 462 */ 463 static struct workhead softdep_workitem_pending; 464 static int num_on_worklist; /* number of worklist items to be processed */ 465 static int softdep_worklist_busy; /* 1 => trying to do unmount */ 466 static int softdep_worklist_req; /* serialized waiters */ 467 static int max_softdeps; /* maximum number of structs before slowdown */ 468 static int tickdelay = 2; /* number of ticks to pause during slowdown */ 469 static int proc_waiting; /* tracks whether we have a timeout posted */ 470 static int *stat_countp; /* statistic to count in proc_waiting timeout */ 471 static struct callout_handle handle; /* handle on posted proc_waiting timeout */ 472 static struct proc *filesys_syncer; /* proc of filesystem syncer process */ 473 static int req_clear_inodedeps; /* syncer process flush some inodedeps */ 474 #define FLUSH_INODES 1 475 static int req_clear_remove; /* syncer process flush some freeblks */ 476 #define FLUSH_REMOVE 2 477 /* 478 * runtime statistics 479 */ 480 static int stat_worklist_push; /* number of worklist cleanups */ 481 static int stat_blk_limit_push; /* number of times block limit neared */ 482 static int stat_ino_limit_push; /* number of times inode limit neared */ 483 static int stat_blk_limit_hit; /* number of times block slowdown imposed */ 484 static int stat_ino_limit_hit; /* number of times inode slowdown imposed */ 485 static int stat_sync_limit_hit; /* number of synchronous slowdowns imposed */ 486 static int stat_indir_blk_ptrs; /* bufs redirtied as indir ptrs not written */ 487 static int stat_inode_bitmap; /* bufs redirtied as inode bitmap not written */ 488 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */ 489 static int stat_dir_entry; /* bufs redirtied as dir entry cannot write */ 490 #ifdef DEBUG 491 #include <vm/vm.h> 492 #include <sys/sysctl.h> 493 SYSCTL_INT(_debug, OID_AUTO, max_softdeps, CTLFLAG_RW, &max_softdeps, 0, ""); 494 SYSCTL_INT(_debug, OID_AUTO, tickdelay, CTLFLAG_RW, &tickdelay, 0, ""); 495 SYSCTL_INT(_debug, OID_AUTO, worklist_push, CTLFLAG_RW, &stat_worklist_push, 0,""); 496 SYSCTL_INT(_debug, OID_AUTO, blk_limit_push, CTLFLAG_RW, &stat_blk_limit_push, 0,""); 497 SYSCTL_INT(_debug, OID_AUTO, ino_limit_push, CTLFLAG_RW, &stat_ino_limit_push, 0,""); 498 SYSCTL_INT(_debug, OID_AUTO, blk_limit_hit, CTLFLAG_RW, &stat_blk_limit_hit, 0, ""); 499 SYSCTL_INT(_debug, OID_AUTO, ino_limit_hit, CTLFLAG_RW, &stat_ino_limit_hit, 0, ""); 500 SYSCTL_INT(_debug, OID_AUTO, sync_limit_hit, CTLFLAG_RW, &stat_sync_limit_hit, 0, ""); 501 SYSCTL_INT(_debug, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW, &stat_indir_blk_ptrs, 0, ""); 502 SYSCTL_INT(_debug, OID_AUTO, inode_bitmap, CTLFLAG_RW, &stat_inode_bitmap, 0, ""); 503 SYSCTL_INT(_debug, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW, &stat_direct_blk_ptrs, 0, ""); 504 SYSCTL_INT(_debug, OID_AUTO, dir_entry, CTLFLAG_RW, &stat_dir_entry, 0, ""); 505 #endif /* DEBUG */ 506 507 /* 508 * Add an item to the end of the work queue. 509 * This routine requires that the lock be held. 510 * This is the only routine that adds items to the list. 511 * The following routine is the only one that removes items 512 * and does so in order from first to last. 513 */ 514 static void 515 add_to_worklist(wk) 516 struct worklist *wk; 517 { 518 static struct worklist *worklist_tail; 519 520 if (wk->wk_state & ONWORKLIST) { 521 if (lk.lkt_held != -1) 522 FREE_LOCK(&lk); 523 panic("add_to_worklist: already on list"); 524 } 525 wk->wk_state |= ONWORKLIST; 526 if (LIST_FIRST(&softdep_workitem_pending) == NULL) 527 LIST_INSERT_HEAD(&softdep_workitem_pending, wk, wk_list); 528 else 529 LIST_INSERT_AFTER(worklist_tail, wk, wk_list); 530 worklist_tail = wk; 531 num_on_worklist += 1; 532 } 533 534 /* 535 * Process that runs once per second to handle items in the background queue. 536 * 537 * Note that we ensure that everything is done in the order in which they 538 * appear in the queue. The code below depends on this property to ensure 539 * that blocks of a file are freed before the inode itself is freed. This 540 * ordering ensures that no new <vfsid, inum, lbn> triples will be generated 541 * until all the old ones have been purged from the dependency lists. 542 */ 543 int 544 softdep_process_worklist(matchmnt) 545 struct mount *matchmnt; 546 { 547 struct proc *p = CURPROC; 548 int matchcnt, loopcount; 549 long starttime; 550 551 /* 552 * Record the process identifier of our caller so that we can give 553 * this process preferential treatment in request_cleanup below. 554 */ 555 filesys_syncer = p; 556 matchcnt = 0; 557 558 /* 559 * There is no danger of having multiple processes run this 560 * code, but we have to single-thread it when softdep_flushfiles() 561 * is in operation to get an accurate count of the number of items 562 * related to its mount point that are in the list. 563 */ 564 if (matchmnt == NULL) { 565 if (softdep_worklist_busy < 0) 566 return(-1); 567 softdep_worklist_busy += 1; 568 } 569 570 /* 571 * If requested, try removing inode or removal dependencies. 572 */ 573 if (req_clear_inodedeps) { 574 clear_inodedeps(p); 575 req_clear_inodedeps -= 1; 576 wakeup_one(&proc_waiting); 577 } 578 if (req_clear_remove) { 579 clear_remove(p); 580 req_clear_remove -= 1; 581 wakeup_one(&proc_waiting); 582 } 583 loopcount = 1; 584 starttime = time_second; 585 while (num_on_worklist > 0) { 586 matchcnt += process_worklist_item(matchmnt, 0); 587 588 /* 589 * If a umount operation wants to run the worklist 590 * accurately, abort. 591 */ 592 if (softdep_worklist_req && matchmnt == NULL) { 593 matchcnt = -1; 594 break; 595 } 596 597 /* 598 * If requested, try removing inode or removal dependencies. 599 */ 600 if (req_clear_inodedeps) { 601 clear_inodedeps(p); 602 req_clear_inodedeps -= 1; 603 wakeup_one(&proc_waiting); 604 } 605 if (req_clear_remove) { 606 clear_remove(p); 607 req_clear_remove -= 1; 608 wakeup_one(&proc_waiting); 609 } 610 /* 611 * We do not generally want to stop for buffer space, but if 612 * we are really being a buffer hog, we will stop and wait. 613 */ 614 if (loopcount++ % 128 == 0) 615 bwillwrite(); 616 /* 617 * Never allow processing to run for more than one 618 * second. Otherwise the other syncer tasks may get 619 * excessively backlogged. 620 */ 621 if (starttime != time_second && matchmnt == NULL) { 622 matchcnt = -1; 623 break; 624 } 625 } 626 if (matchmnt == NULL) { 627 softdep_worklist_busy -= 1; 628 if (softdep_worklist_req && softdep_worklist_busy == 0) 629 wakeup(&softdep_worklist_req); 630 } 631 return (matchcnt); 632 } 633 634 /* 635 * Process one item on the worklist. 636 */ 637 static int 638 process_worklist_item(matchmnt, flags) 639 struct mount *matchmnt; 640 int flags; 641 { 642 struct worklist *wk; 643 struct dirrem *dirrem; 644 struct mount *mp; 645 struct vnode *vp; 646 int matchcnt = 0; 647 648 ACQUIRE_LOCK(&lk); 649 /* 650 * Normally we just process each item on the worklist in order. 651 * However, if we are in a situation where we cannot lock any 652 * inodes, we have to skip over any dirrem requests whose 653 * vnodes are resident and locked. 654 */ 655 LIST_FOREACH(wk, &softdep_workitem_pending, wk_list) { 656 if ((flags & LK_NOWAIT) == 0 || wk->wk_type != D_DIRREM) 657 break; 658 dirrem = WK_DIRREM(wk); 659 vp = ufs_ihashlookup(VFSTOUFS(dirrem->dm_mnt)->um_dev, 660 dirrem->dm_oldinum); 661 if (vp == NULL || !VOP_ISLOCKED(vp, CURPROC)) 662 break; 663 } 664 if (wk == 0) { 665 FREE_LOCK(&lk); 666 return (0); 667 } 668 WORKLIST_REMOVE(wk); 669 num_on_worklist -= 1; 670 FREE_LOCK(&lk); 671 switch (wk->wk_type) { 672 673 case D_DIRREM: 674 /* removal of a directory entry */ 675 mp = WK_DIRREM(wk)->dm_mnt; 676 if (vn_write_suspend_wait(NULL, mp, V_NOWAIT)) 677 panic("%s: dirrem on suspended filesystem", 678 "process_worklist_item"); 679 if (mp == matchmnt) 680 matchcnt += 1; 681 handle_workitem_remove(WK_DIRREM(wk)); 682 break; 683 684 case D_FREEBLKS: 685 /* releasing blocks and/or fragments from a file */ 686 mp = WK_FREEBLKS(wk)->fb_mnt; 687 if (vn_write_suspend_wait(NULL, mp, V_NOWAIT)) 688 panic("%s: freeblks on suspended filesystem", 689 "process_worklist_item"); 690 if (mp == matchmnt) 691 matchcnt += 1; 692 handle_workitem_freeblocks(WK_FREEBLKS(wk), flags & LK_NOWAIT); 693 break; 694 695 case D_FREEFRAG: 696 /* releasing a fragment when replaced as a file grows */ 697 mp = WK_FREEFRAG(wk)->ff_mnt; 698 if (vn_write_suspend_wait(NULL, mp, V_NOWAIT)) 699 panic("%s: freefrag on suspended filesystem", 700 "process_worklist_item"); 701 if (mp == matchmnt) 702 matchcnt += 1; 703 handle_workitem_freefrag(WK_FREEFRAG(wk)); 704 break; 705 706 case D_FREEFILE: 707 /* releasing an inode when its link count drops to 0 */ 708 mp = WK_FREEFILE(wk)->fx_mnt; 709 if (vn_write_suspend_wait(NULL, mp, V_NOWAIT)) 710 panic("%s: freefile on suspended filesystem", 711 "process_worklist_item"); 712 if (mp == matchmnt) 713 matchcnt += 1; 714 handle_workitem_freefile(WK_FREEFILE(wk)); 715 break; 716 717 default: 718 panic("%s_process_worklist: Unknown type %s", 719 "softdep", TYPENAME(wk->wk_type)); 720 /* NOTREACHED */ 721 } 722 return (matchcnt); 723 } 724 725 /* 726 * Move dependencies from one buffer to another. 727 */ 728 static void 729 softdep_move_dependencies(oldbp, newbp) 730 struct buf *oldbp; 731 struct buf *newbp; 732 { 733 struct worklist *wk, *wktail; 734 735 if (LIST_FIRST(&newbp->b_dep) != NULL) 736 panic("softdep_move_dependencies: need merge code"); 737 wktail = 0; 738 ACQUIRE_LOCK(&lk); 739 while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) { 740 LIST_REMOVE(wk, wk_list); 741 if (wktail == 0) 742 LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list); 743 else 744 LIST_INSERT_AFTER(wktail, wk, wk_list); 745 wktail = wk; 746 } 747 FREE_LOCK(&lk); 748 } 749 750 /* 751 * Purge the work list of all items associated with a particular mount point. 752 */ 753 int 754 softdep_flushworklist(oldmnt, countp, p) 755 struct mount *oldmnt; 756 int *countp; 757 struct proc *p; 758 { 759 struct vnode *devvp; 760 int count, error = 0; 761 762 /* 763 * Await our turn to clear out the queue, then serialize access. 764 */ 765 while (softdep_worklist_busy) { 766 softdep_worklist_req += 1; 767 tsleep(&softdep_worklist_req, PRIBIO, "softflush", 0); 768 softdep_worklist_req -= 1; 769 } 770 softdep_worklist_busy = -1; 771 /* 772 * Alternately flush the block device associated with the mount 773 * point and process any dependencies that the flushing 774 * creates. We continue until no more worklist dependencies 775 * are found. 776 */ 777 *countp = 0; 778 devvp = VFSTOUFS(oldmnt)->um_devvp; 779 while ((count = softdep_process_worklist(oldmnt)) > 0) { 780 *countp += count; 781 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY, p); 782 error = VOP_FSYNC(devvp, p->p_ucred, MNT_WAIT, p); 783 VOP_UNLOCK(devvp, 0, p); 784 if (error) 785 break; 786 } 787 softdep_worklist_busy = 0; 788 if (softdep_worklist_req) 789 wakeup(&softdep_worklist_req); 790 return (error); 791 } 792 793 /* 794 * Flush all vnodes and worklist items associated with a specified mount point. 795 */ 796 int 797 softdep_flushfiles(oldmnt, flags, p) 798 struct mount *oldmnt; 799 int flags; 800 struct proc *p; 801 { 802 int error, count, loopcnt; 803 804 /* 805 * Alternately flush the vnodes associated with the mount 806 * point and process any dependencies that the flushing 807 * creates. In theory, this loop can happen at most twice, 808 * but we give it a few extra just to be sure. 809 */ 810 for (loopcnt = 10; loopcnt > 0; loopcnt--) { 811 /* 812 * Do another flush in case any vnodes were brought in 813 * as part of the cleanup operations. 814 */ 815 if ((error = ffs_flushfiles(oldmnt, flags, p)) != 0) 816 break; 817 if ((error = softdep_flushworklist(oldmnt, &count, p)) != 0 || 818 count == 0) 819 break; 820 } 821 /* 822 * If we are unmounting then it is an error to fail. If we 823 * are simply trying to downgrade to read-only, then filesystem 824 * activity can keep us busy forever, so we just fail with EBUSY. 825 */ 826 if (loopcnt == 0) { 827 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) 828 panic("softdep_flushfiles: looping"); 829 error = EBUSY; 830 } 831 return (error); 832 } 833 834 /* 835 * Structure hashing. 836 * 837 * There are three types of structures that can be looked up: 838 * 1) pagedep structures identified by mount point, inode number, 839 * and logical block. 840 * 2) inodedep structures identified by mount point and inode number. 841 * 3) newblk structures identified by mount point and 842 * physical block number. 843 * 844 * The "pagedep" and "inodedep" dependency structures are hashed 845 * separately from the file blocks and inodes to which they correspond. 846 * This separation helps when the in-memory copy of an inode or 847 * file block must be replaced. It also obviates the need to access 848 * an inode or file page when simply updating (or de-allocating) 849 * dependency structures. Lookup of newblk structures is needed to 850 * find newly allocated blocks when trying to associate them with 851 * their allocdirect or allocindir structure. 852 * 853 * The lookup routines optionally create and hash a new instance when 854 * an existing entry is not found. 855 */ 856 #define DEPALLOC 0x0001 /* allocate structure if lookup fails */ 857 #define NODELAY 0x0002 /* cannot do background work */ 858 859 /* 860 * Structures and routines associated with pagedep caching. 861 */ 862 LIST_HEAD(pagedep_hashhead, pagedep) *pagedep_hashtbl; 863 u_long pagedep_hash; /* size of hash table - 1 */ 864 #define PAGEDEP_HASH(mp, inum, lbn) \ 865 (&pagedep_hashtbl[((((register_t)(mp)) >> 13) + (inum) + (lbn)) & \ 866 pagedep_hash]) 867 static struct sema pagedep_in_progress; 868 869 /* 870 * Look up a pagedep. Return 1 if found, 0 if not found. 871 * If not found, allocate if DEPALLOC flag is passed. 872 * Found or allocated entry is returned in pagedeppp. 873 * This routine must be called with splbio interrupts blocked. 874 */ 875 static int 876 pagedep_lookup(ip, lbn, flags, pagedeppp) 877 struct inode *ip; 878 ufs_lbn_t lbn; 879 int flags; 880 struct pagedep **pagedeppp; 881 { 882 struct pagedep *pagedep; 883 struct pagedep_hashhead *pagedephd; 884 struct mount *mp; 885 int i; 886 887 #ifdef DEBUG 888 if (lk.lkt_held == -1) 889 panic("pagedep_lookup: lock not held"); 890 #endif 891 mp = ITOV(ip)->v_mount; 892 pagedephd = PAGEDEP_HASH(mp, ip->i_number, lbn); 893 top: 894 LIST_FOREACH(pagedep, pagedephd, pd_hash) 895 if (ip->i_number == pagedep->pd_ino && 896 lbn == pagedep->pd_lbn && 897 mp == pagedep->pd_mnt) 898 break; 899 if (pagedep) { 900 *pagedeppp = pagedep; 901 return (1); 902 } 903 if ((flags & DEPALLOC) == 0) { 904 *pagedeppp = NULL; 905 return (0); 906 } 907 if (sema_get(&pagedep_in_progress, &lk) == 0) { 908 ACQUIRE_LOCK(&lk); 909 goto top; 910 } 911 MALLOC(pagedep, struct pagedep *, sizeof(struct pagedep), M_PAGEDEP, 912 M_SOFTDEP_FLAGS|M_ZERO); 913 pagedep->pd_list.wk_type = D_PAGEDEP; 914 pagedep->pd_mnt = mp; 915 pagedep->pd_ino = ip->i_number; 916 pagedep->pd_lbn = lbn; 917 LIST_INIT(&pagedep->pd_dirremhd); 918 LIST_INIT(&pagedep->pd_pendinghd); 919 for (i = 0; i < DAHASHSZ; i++) 920 LIST_INIT(&pagedep->pd_diraddhd[i]); 921 ACQUIRE_LOCK(&lk); 922 LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash); 923 sema_release(&pagedep_in_progress); 924 *pagedeppp = pagedep; 925 return (0); 926 } 927 928 /* 929 * Structures and routines associated with inodedep caching. 930 */ 931 LIST_HEAD(inodedep_hashhead, inodedep) *inodedep_hashtbl; 932 static u_long inodedep_hash; /* size of hash table - 1 */ 933 static long num_inodedep; /* number of inodedep allocated */ 934 #define INODEDEP_HASH(fs, inum) \ 935 (&inodedep_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & inodedep_hash]) 936 static struct sema inodedep_in_progress; 937 938 /* 939 * Look up a inodedep. Return 1 if found, 0 if not found. 940 * If not found, allocate if DEPALLOC flag is passed. 941 * Found or allocated entry is returned in inodedeppp. 942 * This routine must be called with splbio interrupts blocked. 943 */ 944 static int 945 inodedep_lookup(fs, inum, flags, inodedeppp) 946 struct fs *fs; 947 ino_t inum; 948 int flags; 949 struct inodedep **inodedeppp; 950 { 951 struct inodedep *inodedep; 952 struct inodedep_hashhead *inodedephd; 953 int firsttry; 954 955 #ifdef DEBUG 956 if (lk.lkt_held == -1) 957 panic("inodedep_lookup: lock not held"); 958 #endif 959 firsttry = 1; 960 inodedephd = INODEDEP_HASH(fs, inum); 961 top: 962 LIST_FOREACH(inodedep, inodedephd, id_hash) 963 if (inum == inodedep->id_ino && fs == inodedep->id_fs) 964 break; 965 if (inodedep) { 966 *inodedeppp = inodedep; 967 return (1); 968 } 969 if ((flags & DEPALLOC) == 0) { 970 *inodedeppp = NULL; 971 return (0); 972 } 973 /* 974 * If we are over our limit, try to improve the situation. 975 */ 976 if (num_inodedep > max_softdeps && firsttry && (flags & NODELAY) == 0 && 977 request_cleanup(FLUSH_INODES, 1)) { 978 firsttry = 0; 979 goto top; 980 } 981 if (sema_get(&inodedep_in_progress, &lk) == 0) { 982 ACQUIRE_LOCK(&lk); 983 goto top; 984 } 985 num_inodedep += 1; 986 MALLOC(inodedep, struct inodedep *, sizeof(struct inodedep), 987 M_INODEDEP, M_SOFTDEP_FLAGS); 988 inodedep->id_list.wk_type = D_INODEDEP; 989 inodedep->id_fs = fs; 990 inodedep->id_ino = inum; 991 inodedep->id_state = ALLCOMPLETE; 992 inodedep->id_nlinkdelta = 0; 993 inodedep->id_savedino = NULL; 994 inodedep->id_savedsize = -1; 995 inodedep->id_buf = NULL; 996 LIST_INIT(&inodedep->id_pendinghd); 997 LIST_INIT(&inodedep->id_inowait); 998 LIST_INIT(&inodedep->id_bufwait); 999 TAILQ_INIT(&inodedep->id_inoupdt); 1000 TAILQ_INIT(&inodedep->id_newinoupdt); 1001 ACQUIRE_LOCK(&lk); 1002 LIST_INSERT_HEAD(inodedephd, inodedep, id_hash); 1003 sema_release(&inodedep_in_progress); 1004 *inodedeppp = inodedep; 1005 return (0); 1006 } 1007 1008 /* 1009 * Structures and routines associated with newblk caching. 1010 */ 1011 LIST_HEAD(newblk_hashhead, newblk) *newblk_hashtbl; 1012 u_long newblk_hash; /* size of hash table - 1 */ 1013 #define NEWBLK_HASH(fs, inum) \ 1014 (&newblk_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & newblk_hash]) 1015 static struct sema newblk_in_progress; 1016 1017 /* 1018 * Look up a newblk. Return 1 if found, 0 if not found. 1019 * If not found, allocate if DEPALLOC flag is passed. 1020 * Found or allocated entry is returned in newblkpp. 1021 */ 1022 static int 1023 newblk_lookup(fs, newblkno, flags, newblkpp) 1024 struct fs *fs; 1025 ufs_daddr_t newblkno; 1026 int flags; 1027 struct newblk **newblkpp; 1028 { 1029 struct newblk *newblk; 1030 struct newblk_hashhead *newblkhd; 1031 1032 newblkhd = NEWBLK_HASH(fs, newblkno); 1033 top: 1034 LIST_FOREACH(newblk, newblkhd, nb_hash) 1035 if (newblkno == newblk->nb_newblkno && fs == newblk->nb_fs) 1036 break; 1037 if (newblk) { 1038 *newblkpp = newblk; 1039 return (1); 1040 } 1041 if ((flags & DEPALLOC) == 0) { 1042 *newblkpp = NULL; 1043 return (0); 1044 } 1045 if (sema_get(&newblk_in_progress, 0) == 0) 1046 goto top; 1047 MALLOC(newblk, struct newblk *, sizeof(struct newblk), 1048 M_NEWBLK, M_SOFTDEP_FLAGS); 1049 newblk->nb_state = 0; 1050 newblk->nb_fs = fs; 1051 newblk->nb_newblkno = newblkno; 1052 LIST_INSERT_HEAD(newblkhd, newblk, nb_hash); 1053 sema_release(&newblk_in_progress); 1054 *newblkpp = newblk; 1055 return (0); 1056 } 1057 1058 /* 1059 * Executed during filesystem system initialization before 1060 * mounting any file systems. 1061 */ 1062 void 1063 softdep_initialize() 1064 { 1065 1066 LIST_INIT(&mkdirlisthd); 1067 LIST_INIT(&softdep_workitem_pending); 1068 max_softdeps = min(desiredvnodes * 8, 1069 M_INODEDEP->ks_limit / (2 * sizeof(struct inodedep))); 1070 pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP, 1071 &pagedep_hash); 1072 sema_init(&pagedep_in_progress, "pagedep", PRIBIO, 0); 1073 inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, &inodedep_hash); 1074 sema_init(&inodedep_in_progress, "inodedep", PRIBIO, 0); 1075 newblk_hashtbl = hashinit(64, M_NEWBLK, &newblk_hash); 1076 sema_init(&newblk_in_progress, "newblk", PRIBIO, 0); 1077 } 1078 1079 /* 1080 * Called at mount time to notify the dependency code that a 1081 * filesystem wishes to use it. 1082 */ 1083 int 1084 softdep_mount(devvp, mp, fs, cred) 1085 struct vnode *devvp; 1086 struct mount *mp; 1087 struct fs *fs; 1088 struct ucred *cred; 1089 { 1090 struct csum cstotal; 1091 struct cg *cgp; 1092 struct buf *bp; 1093 int error, cyl; 1094 1095 mp->mnt_flag &= ~MNT_ASYNC; 1096 mp->mnt_flag |= MNT_SOFTDEP; 1097 /* 1098 * When doing soft updates, the counters in the 1099 * superblock may have gotten out of sync, so we have 1100 * to scan the cylinder groups and recalculate them. 1101 */ 1102 if (fs->fs_clean != 0) 1103 return (0); 1104 bzero(&cstotal, sizeof cstotal); 1105 for (cyl = 0; cyl < fs->fs_ncg; cyl++) { 1106 if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)), 1107 fs->fs_cgsize, cred, &bp)) != 0) { 1108 brelse(bp); 1109 return (error); 1110 } 1111 cgp = (struct cg *)bp->b_data; 1112 cstotal.cs_nffree += cgp->cg_cs.cs_nffree; 1113 cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree; 1114 cstotal.cs_nifree += cgp->cg_cs.cs_nifree; 1115 cstotal.cs_ndir += cgp->cg_cs.cs_ndir; 1116 fs->fs_cs(fs, cyl) = cgp->cg_cs; 1117 brelse(bp); 1118 } 1119 #ifdef DEBUG 1120 if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal)) 1121 printf("%s: superblock summary recomputed\n", fs->fs_fsmnt); 1122 #endif 1123 bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal); 1124 return (0); 1125 } 1126 1127 /* 1128 * Protecting the freemaps (or bitmaps). 1129 * 1130 * To eliminate the need to execute fsck before mounting a file system 1131 * after a power failure, one must (conservatively) guarantee that the 1132 * on-disk copy of the bitmaps never indicate that a live inode or block is 1133 * free. So, when a block or inode is allocated, the bitmap should be 1134 * updated (on disk) before any new pointers. When a block or inode is 1135 * freed, the bitmap should not be updated until all pointers have been 1136 * reset. The latter dependency is handled by the delayed de-allocation 1137 * approach described below for block and inode de-allocation. The former 1138 * dependency is handled by calling the following procedure when a block or 1139 * inode is allocated. When an inode is allocated an "inodedep" is created 1140 * with its DEPCOMPLETE flag cleared until its bitmap is written to disk. 1141 * Each "inodedep" is also inserted into the hash indexing structure so 1142 * that any additional link additions can be made dependent on the inode 1143 * allocation. 1144 * 1145 * The ufs file system maintains a number of free block counts (e.g., per 1146 * cylinder group, per cylinder and per <cylinder, rotational position> pair) 1147 * in addition to the bitmaps. These counts are used to improve efficiency 1148 * during allocation and therefore must be consistent with the bitmaps. 1149 * There is no convenient way to guarantee post-crash consistency of these 1150 * counts with simple update ordering, for two main reasons: (1) The counts 1151 * and bitmaps for a single cylinder group block are not in the same disk 1152 * sector. If a disk write is interrupted (e.g., by power failure), one may 1153 * be written and the other not. (2) Some of the counts are located in the 1154 * superblock rather than the cylinder group block. So, we focus our soft 1155 * updates implementation on protecting the bitmaps. When mounting a 1156 * filesystem, we recompute the auxiliary counts from the bitmaps. 1157 */ 1158 1159 /* 1160 * Called just after updating the cylinder group block to allocate an inode. 1161 */ 1162 void 1163 softdep_setup_inomapdep(bp, ip, newinum) 1164 struct buf *bp; /* buffer for cylgroup block with inode map */ 1165 struct inode *ip; /* inode related to allocation */ 1166 ino_t newinum; /* new inode number being allocated */ 1167 { 1168 struct inodedep *inodedep; 1169 struct bmsafemap *bmsafemap; 1170 1171 /* 1172 * Create a dependency for the newly allocated inode. 1173 * Panic if it already exists as something is seriously wrong. 1174 * Otherwise add it to the dependency list for the buffer holding 1175 * the cylinder group map from which it was allocated. 1176 */ 1177 ACQUIRE_LOCK(&lk); 1178 if ((inodedep_lookup(ip->i_fs, newinum, DEPALLOC|NODELAY, &inodedep))) { 1179 FREE_LOCK(&lk); 1180 panic("softdep_setup_inomapdep: found inode"); 1181 } 1182 inodedep->id_buf = bp; 1183 inodedep->id_state &= ~DEPCOMPLETE; 1184 bmsafemap = bmsafemap_lookup(bp); 1185 LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps); 1186 FREE_LOCK(&lk); 1187 } 1188 1189 /* 1190 * Called just after updating the cylinder group block to 1191 * allocate block or fragment. 1192 */ 1193 void 1194 softdep_setup_blkmapdep(bp, fs, newblkno) 1195 struct buf *bp; /* buffer for cylgroup block with block map */ 1196 struct fs *fs; /* filesystem doing allocation */ 1197 ufs_daddr_t newblkno; /* number of newly allocated block */ 1198 { 1199 struct newblk *newblk; 1200 struct bmsafemap *bmsafemap; 1201 1202 /* 1203 * Create a dependency for the newly allocated block. 1204 * Add it to the dependency list for the buffer holding 1205 * the cylinder group map from which it was allocated. 1206 */ 1207 if (newblk_lookup(fs, newblkno, DEPALLOC, &newblk) != 0) 1208 panic("softdep_setup_blkmapdep: found block"); 1209 ACQUIRE_LOCK(&lk); 1210 newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(bp); 1211 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps); 1212 FREE_LOCK(&lk); 1213 } 1214 1215 /* 1216 * Find the bmsafemap associated with a cylinder group buffer. 1217 * If none exists, create one. The buffer must be locked when 1218 * this routine is called and this routine must be called with 1219 * splbio interrupts blocked. 1220 */ 1221 static struct bmsafemap * 1222 bmsafemap_lookup(bp) 1223 struct buf *bp; 1224 { 1225 struct bmsafemap *bmsafemap; 1226 struct worklist *wk; 1227 1228 #ifdef DEBUG 1229 if (lk.lkt_held == -1) 1230 panic("bmsafemap_lookup: lock not held"); 1231 #endif 1232 LIST_FOREACH(wk, &bp->b_dep, wk_list) 1233 if (wk->wk_type == D_BMSAFEMAP) 1234 return (WK_BMSAFEMAP(wk)); 1235 FREE_LOCK(&lk); 1236 MALLOC(bmsafemap, struct bmsafemap *, sizeof(struct bmsafemap), 1237 M_BMSAFEMAP, M_SOFTDEP_FLAGS); 1238 bmsafemap->sm_list.wk_type = D_BMSAFEMAP; 1239 bmsafemap->sm_list.wk_state = 0; 1240 bmsafemap->sm_buf = bp; 1241 LIST_INIT(&bmsafemap->sm_allocdirecthd); 1242 LIST_INIT(&bmsafemap->sm_allocindirhd); 1243 LIST_INIT(&bmsafemap->sm_inodedephd); 1244 LIST_INIT(&bmsafemap->sm_newblkhd); 1245 ACQUIRE_LOCK(&lk); 1246 WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list); 1247 return (bmsafemap); 1248 } 1249 1250 /* 1251 * Direct block allocation dependencies. 1252 * 1253 * When a new block is allocated, the corresponding disk locations must be 1254 * initialized (with zeros or new data) before the on-disk inode points to 1255 * them. Also, the freemap from which the block was allocated must be 1256 * updated (on disk) before the inode's pointer. These two dependencies are 1257 * independent of each other and are needed for all file blocks and indirect 1258 * blocks that are pointed to directly by the inode. Just before the 1259 * "in-core" version of the inode is updated with a newly allocated block 1260 * number, a procedure (below) is called to setup allocation dependency 1261 * structures. These structures are removed when the corresponding 1262 * dependencies are satisfied or when the block allocation becomes obsolete 1263 * (i.e., the file is deleted, the block is de-allocated, or the block is a 1264 * fragment that gets upgraded). All of these cases are handled in 1265 * procedures described later. 1266 * 1267 * When a file extension causes a fragment to be upgraded, either to a larger 1268 * fragment or to a full block, the on-disk location may change (if the 1269 * previous fragment could not simply be extended). In this case, the old 1270 * fragment must be de-allocated, but not until after the inode's pointer has 1271 * been updated. In most cases, this is handled by later procedures, which 1272 * will construct a "freefrag" structure to be added to the workitem queue 1273 * when the inode update is complete (or obsolete). The main exception to 1274 * this is when an allocation occurs while a pending allocation dependency 1275 * (for the same block pointer) remains. This case is handled in the main 1276 * allocation dependency setup procedure by immediately freeing the 1277 * unreferenced fragments. 1278 */ 1279 void 1280 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 1281 struct inode *ip; /* inode to which block is being added */ 1282 ufs_lbn_t lbn; /* block pointer within inode */ 1283 ufs_daddr_t newblkno; /* disk block number being added */ 1284 ufs_daddr_t oldblkno; /* previous block number, 0 unless frag */ 1285 long newsize; /* size of new block */ 1286 long oldsize; /* size of new block */ 1287 struct buf *bp; /* bp for allocated block */ 1288 { 1289 struct allocdirect *adp, *oldadp; 1290 struct allocdirectlst *adphead; 1291 struct bmsafemap *bmsafemap; 1292 struct inodedep *inodedep; 1293 struct pagedep *pagedep; 1294 struct newblk *newblk; 1295 1296 MALLOC(adp, struct allocdirect *, sizeof(struct allocdirect), 1297 M_ALLOCDIRECT, M_SOFTDEP_FLAGS|M_ZERO); 1298 adp->ad_list.wk_type = D_ALLOCDIRECT; 1299 adp->ad_lbn = lbn; 1300 adp->ad_newblkno = newblkno; 1301 adp->ad_oldblkno = oldblkno; 1302 adp->ad_newsize = newsize; 1303 adp->ad_oldsize = oldsize; 1304 adp->ad_state = ATTACHED; 1305 LIST_INIT(&adp->ad_newdirblk); 1306 if (newblkno == oldblkno) 1307 adp->ad_freefrag = NULL; 1308 else 1309 adp->ad_freefrag = newfreefrag(ip, oldblkno, oldsize); 1310 1311 if (newblk_lookup(ip->i_fs, newblkno, 0, &newblk) == 0) 1312 panic("softdep_setup_allocdirect: lost block"); 1313 1314 ACQUIRE_LOCK(&lk); 1315 inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC | NODELAY, &inodedep); 1316 adp->ad_inodedep = inodedep; 1317 1318 if (newblk->nb_state == DEPCOMPLETE) { 1319 adp->ad_state |= DEPCOMPLETE; 1320 adp->ad_buf = NULL; 1321 } else { 1322 bmsafemap = newblk->nb_bmsafemap; 1323 adp->ad_buf = bmsafemap->sm_buf; 1324 LIST_REMOVE(newblk, nb_deps); 1325 LIST_INSERT_HEAD(&bmsafemap->sm_allocdirecthd, adp, ad_deps); 1326 } 1327 LIST_REMOVE(newblk, nb_hash); 1328 FREE(newblk, M_NEWBLK); 1329 1330 WORKLIST_INSERT(&bp->b_dep, &adp->ad_list); 1331 if (lbn >= NDADDR) { 1332 /* allocating an indirect block */ 1333 if (oldblkno != 0) { 1334 FREE_LOCK(&lk); 1335 panic("softdep_setup_allocdirect: non-zero indir"); 1336 } 1337 } else { 1338 /* 1339 * Allocating a direct block. 1340 * 1341 * If we are allocating a directory block, then we must 1342 * allocate an associated pagedep to track additions and 1343 * deletions. 1344 */ 1345 if ((ip->i_mode & IFMT) == IFDIR && 1346 pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0) 1347 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 1348 } 1349 /* 1350 * The list of allocdirects must be kept in sorted and ascending 1351 * order so that the rollback routines can quickly determine the 1352 * first uncommitted block (the size of the file stored on disk 1353 * ends at the end of the lowest committed fragment, or if there 1354 * are no fragments, at the end of the highest committed block). 1355 * Since files generally grow, the typical case is that the new 1356 * block is to be added at the end of the list. We speed this 1357 * special case by checking against the last allocdirect in the 1358 * list before laboriously traversing the list looking for the 1359 * insertion point. 1360 */ 1361 adphead = &inodedep->id_newinoupdt; 1362 oldadp = TAILQ_LAST(adphead, allocdirectlst); 1363 if (oldadp == NULL || oldadp->ad_lbn <= lbn) { 1364 /* insert at end of list */ 1365 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 1366 if (oldadp != NULL && oldadp->ad_lbn == lbn) 1367 allocdirect_merge(adphead, adp, oldadp); 1368 FREE_LOCK(&lk); 1369 return; 1370 } 1371 TAILQ_FOREACH(oldadp, adphead, ad_next) { 1372 if (oldadp->ad_lbn >= lbn) 1373 break; 1374 } 1375 if (oldadp == NULL) { 1376 FREE_LOCK(&lk); 1377 panic("softdep_setup_allocdirect: lost entry"); 1378 } 1379 /* insert in middle of list */ 1380 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 1381 if (oldadp->ad_lbn == lbn) 1382 allocdirect_merge(adphead, adp, oldadp); 1383 FREE_LOCK(&lk); 1384 } 1385 1386 /* 1387 * Replace an old allocdirect dependency with a newer one. 1388 * This routine must be called with splbio interrupts blocked. 1389 */ 1390 static void 1391 allocdirect_merge(adphead, newadp, oldadp) 1392 struct allocdirectlst *adphead; /* head of list holding allocdirects */ 1393 struct allocdirect *newadp; /* allocdirect being added */ 1394 struct allocdirect *oldadp; /* existing allocdirect being checked */ 1395 { 1396 struct worklist *wk; 1397 struct freefrag *freefrag; 1398 struct newdirblk *newdirblk; 1399 1400 #ifdef DEBUG 1401 if (lk.lkt_held == -1) 1402 panic("allocdirect_merge: lock not held"); 1403 #endif 1404 if (newadp->ad_oldblkno != oldadp->ad_newblkno || 1405 newadp->ad_oldsize != oldadp->ad_newsize || 1406 newadp->ad_lbn >= NDADDR) { 1407 FREE_LOCK(&lk); 1408 panic("allocdirect_merge: old %d != new %d || lbn %ld >= %d", 1409 newadp->ad_oldblkno, oldadp->ad_newblkno, newadp->ad_lbn, 1410 NDADDR); 1411 } 1412 newadp->ad_oldblkno = oldadp->ad_oldblkno; 1413 newadp->ad_oldsize = oldadp->ad_oldsize; 1414 /* 1415 * If the old dependency had a fragment to free or had never 1416 * previously had a block allocated, then the new dependency 1417 * can immediately post its freefrag and adopt the old freefrag. 1418 * This action is done by swapping the freefrag dependencies. 1419 * The new dependency gains the old one's freefrag, and the 1420 * old one gets the new one and then immediately puts it on 1421 * the worklist when it is freed by free_allocdirect. It is 1422 * not possible to do this swap when the old dependency had a 1423 * non-zero size but no previous fragment to free. This condition 1424 * arises when the new block is an extension of the old block. 1425 * Here, the first part of the fragment allocated to the new 1426 * dependency is part of the block currently claimed on disk by 1427 * the old dependency, so cannot legitimately be freed until the 1428 * conditions for the new dependency are fulfilled. 1429 */ 1430 if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) { 1431 freefrag = newadp->ad_freefrag; 1432 newadp->ad_freefrag = oldadp->ad_freefrag; 1433 oldadp->ad_freefrag = freefrag; 1434 } 1435 /* 1436 * If we are tracking a new directory-block allocation, 1437 * move it from the old allocdirect to the new allocdirect. 1438 */ 1439 if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) { 1440 newdirblk = WK_NEWDIRBLK(wk); 1441 WORKLIST_REMOVE(&newdirblk->db_list); 1442 if (LIST_FIRST(&oldadp->ad_newdirblk) != NULL) 1443 panic("allocdirect_merge: extra newdirblk"); 1444 WORKLIST_INSERT(&newadp->ad_newdirblk, &newdirblk->db_list); 1445 } 1446 free_allocdirect(adphead, oldadp, 0); 1447 } 1448 1449 /* 1450 * Allocate a new freefrag structure if needed. 1451 */ 1452 static struct freefrag * 1453 newfreefrag(ip, blkno, size) 1454 struct inode *ip; 1455 ufs_daddr_t blkno; 1456 long size; 1457 { 1458 struct freefrag *freefrag; 1459 struct fs *fs; 1460 1461 if (blkno == 0) 1462 return (NULL); 1463 fs = ip->i_fs; 1464 if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag) 1465 panic("newfreefrag: frag size"); 1466 MALLOC(freefrag, struct freefrag *, sizeof(struct freefrag), 1467 M_FREEFRAG, M_SOFTDEP_FLAGS); 1468 freefrag->ff_list.wk_type = D_FREEFRAG; 1469 freefrag->ff_state = ip->i_uid & ~ONWORKLIST; /* XXX - used below */ 1470 freefrag->ff_inum = ip->i_number; 1471 freefrag->ff_mnt = ITOV(ip)->v_mount; 1472 freefrag->ff_devvp = ip->i_devvp; 1473 freefrag->ff_blkno = blkno; 1474 freefrag->ff_fragsize = size; 1475 return (freefrag); 1476 } 1477 1478 /* 1479 * This workitem de-allocates fragments that were replaced during 1480 * file block allocation. 1481 */ 1482 static void 1483 handle_workitem_freefrag(freefrag) 1484 struct freefrag *freefrag; 1485 { 1486 struct inode tip; 1487 1488 tip.i_vnode = NULL; 1489 tip.i_fs = VFSTOUFS(freefrag->ff_mnt)->um_fs; 1490 tip.i_devvp = freefrag->ff_devvp; 1491 tip.i_dev = freefrag->ff_devvp->v_rdev; 1492 tip.i_number = freefrag->ff_inum; 1493 tip.i_uid = freefrag->ff_state & ~ONWORKLIST; /* XXX - set above */ 1494 ffs_blkfree(&tip, freefrag->ff_blkno, freefrag->ff_fragsize); 1495 FREE(freefrag, M_FREEFRAG); 1496 } 1497 1498 /* 1499 * Indirect block allocation dependencies. 1500 * 1501 * The same dependencies that exist for a direct block also exist when 1502 * a new block is allocated and pointed to by an entry in a block of 1503 * indirect pointers. The undo/redo states described above are also 1504 * used here. Because an indirect block contains many pointers that 1505 * may have dependencies, a second copy of the entire in-memory indirect 1506 * block is kept. The buffer cache copy is always completely up-to-date. 1507 * The second copy, which is used only as a source for disk writes, 1508 * contains only the safe pointers (i.e., those that have no remaining 1509 * update dependencies). The second copy is freed when all pointers 1510 * are safe. The cache is not allowed to replace indirect blocks with 1511 * pending update dependencies. If a buffer containing an indirect 1512 * block with dependencies is written, these routines will mark it 1513 * dirty again. It can only be successfully written once all the 1514 * dependencies are removed. The ffs_fsync routine in conjunction with 1515 * softdep_sync_metadata work together to get all the dependencies 1516 * removed so that a file can be successfully written to disk. Three 1517 * procedures are used when setting up indirect block pointer 1518 * dependencies. The division is necessary because of the organization 1519 * of the "balloc" routine and because of the distinction between file 1520 * pages and file metadata blocks. 1521 */ 1522 1523 /* 1524 * Allocate a new allocindir structure. 1525 */ 1526 static struct allocindir * 1527 newallocindir(ip, ptrno, newblkno, oldblkno) 1528 struct inode *ip; /* inode for file being extended */ 1529 int ptrno; /* offset of pointer in indirect block */ 1530 ufs_daddr_t newblkno; /* disk block number being added */ 1531 ufs_daddr_t oldblkno; /* previous block number, 0 if none */ 1532 { 1533 struct allocindir *aip; 1534 1535 MALLOC(aip, struct allocindir *, sizeof(struct allocindir), 1536 M_ALLOCINDIR, M_SOFTDEP_FLAGS|M_ZERO); 1537 aip->ai_list.wk_type = D_ALLOCINDIR; 1538 aip->ai_state = ATTACHED; 1539 aip->ai_offset = ptrno; 1540 aip->ai_newblkno = newblkno; 1541 aip->ai_oldblkno = oldblkno; 1542 aip->ai_freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize); 1543 return (aip); 1544 } 1545 1546 /* 1547 * Called just before setting an indirect block pointer 1548 * to a newly allocated file page. 1549 */ 1550 void 1551 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 1552 struct inode *ip; /* inode for file being extended */ 1553 ufs_lbn_t lbn; /* allocated block number within file */ 1554 struct buf *bp; /* buffer with indirect blk referencing page */ 1555 int ptrno; /* offset of pointer in indirect block */ 1556 ufs_daddr_t newblkno; /* disk block number being added */ 1557 ufs_daddr_t oldblkno; /* previous block number, 0 if none */ 1558 struct buf *nbp; /* buffer holding allocated page */ 1559 { 1560 struct allocindir *aip; 1561 struct pagedep *pagedep; 1562 1563 aip = newallocindir(ip, ptrno, newblkno, oldblkno); 1564 ACQUIRE_LOCK(&lk); 1565 /* 1566 * If we are allocating a directory page, then we must 1567 * allocate an associated pagedep to track additions and 1568 * deletions. 1569 */ 1570 if ((ip->i_mode & IFMT) == IFDIR && 1571 pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0) 1572 WORKLIST_INSERT(&nbp->b_dep, &pagedep->pd_list); 1573 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_list); 1574 FREE_LOCK(&lk); 1575 setup_allocindir_phase2(bp, ip, aip); 1576 } 1577 1578 /* 1579 * Called just before setting an indirect block pointer to a 1580 * newly allocated indirect block. 1581 */ 1582 void 1583 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 1584 struct buf *nbp; /* newly allocated indirect block */ 1585 struct inode *ip; /* inode for file being extended */ 1586 struct buf *bp; /* indirect block referencing allocated block */ 1587 int ptrno; /* offset of pointer in indirect block */ 1588 ufs_daddr_t newblkno; /* disk block number being added */ 1589 { 1590 struct allocindir *aip; 1591 1592 aip = newallocindir(ip, ptrno, newblkno, 0); 1593 ACQUIRE_LOCK(&lk); 1594 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_list); 1595 FREE_LOCK(&lk); 1596 setup_allocindir_phase2(bp, ip, aip); 1597 } 1598 1599 /* 1600 * Called to finish the allocation of the "aip" allocated 1601 * by one of the two routines above. 1602 */ 1603 static void 1604 setup_allocindir_phase2(bp, ip, aip) 1605 struct buf *bp; /* in-memory copy of the indirect block */ 1606 struct inode *ip; /* inode for file being extended */ 1607 struct allocindir *aip; /* allocindir allocated by the above routines */ 1608 { 1609 struct worklist *wk; 1610 struct indirdep *indirdep, *newindirdep; 1611 struct bmsafemap *bmsafemap; 1612 struct allocindir *oldaip; 1613 struct freefrag *freefrag; 1614 struct newblk *newblk; 1615 1616 if (bp->b_lblkno >= 0) 1617 panic("setup_allocindir_phase2: not indir blk"); 1618 for (indirdep = NULL, newindirdep = NULL; ; ) { 1619 ACQUIRE_LOCK(&lk); 1620 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 1621 if (wk->wk_type != D_INDIRDEP) 1622 continue; 1623 indirdep = WK_INDIRDEP(wk); 1624 break; 1625 } 1626 if (indirdep == NULL && newindirdep) { 1627 indirdep = newindirdep; 1628 WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list); 1629 newindirdep = NULL; 1630 } 1631 FREE_LOCK(&lk); 1632 if (indirdep) { 1633 if (newblk_lookup(ip->i_fs, aip->ai_newblkno, 0, 1634 &newblk) == 0) 1635 panic("setup_allocindir: lost block"); 1636 ACQUIRE_LOCK(&lk); 1637 if (newblk->nb_state == DEPCOMPLETE) { 1638 aip->ai_state |= DEPCOMPLETE; 1639 aip->ai_buf = NULL; 1640 } else { 1641 bmsafemap = newblk->nb_bmsafemap; 1642 aip->ai_buf = bmsafemap->sm_buf; 1643 LIST_REMOVE(newblk, nb_deps); 1644 LIST_INSERT_HEAD(&bmsafemap->sm_allocindirhd, 1645 aip, ai_deps); 1646 } 1647 LIST_REMOVE(newblk, nb_hash); 1648 FREE(newblk, M_NEWBLK); 1649 aip->ai_indirdep = indirdep; 1650 /* 1651 * Check to see if there is an existing dependency 1652 * for this block. If there is, merge the old 1653 * dependency into the new one. 1654 */ 1655 if (aip->ai_oldblkno == 0) 1656 oldaip = NULL; 1657 else 1658 1659 LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) 1660 if (oldaip->ai_offset == aip->ai_offset) 1661 break; 1662 freefrag = NULL; 1663 if (oldaip != NULL) { 1664 if (oldaip->ai_newblkno != aip->ai_oldblkno) { 1665 FREE_LOCK(&lk); 1666 panic("setup_allocindir_phase2: blkno"); 1667 } 1668 aip->ai_oldblkno = oldaip->ai_oldblkno; 1669 freefrag = aip->ai_freefrag; 1670 aip->ai_freefrag = oldaip->ai_freefrag; 1671 oldaip->ai_freefrag = NULL; 1672 free_allocindir(oldaip, NULL); 1673 } 1674 LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next); 1675 ((ufs_daddr_t *)indirdep->ir_savebp->b_data) 1676 [aip->ai_offset] = aip->ai_oldblkno; 1677 FREE_LOCK(&lk); 1678 if (freefrag != NULL) 1679 handle_workitem_freefrag(freefrag); 1680 } 1681 if (newindirdep) { 1682 if (indirdep->ir_savebp != NULL) 1683 brelse(newindirdep->ir_savebp); 1684 WORKITEM_FREE((caddr_t)newindirdep, D_INDIRDEP); 1685 } 1686 if (indirdep) 1687 break; 1688 MALLOC(newindirdep, struct indirdep *, sizeof(struct indirdep), 1689 M_INDIRDEP, M_SOFTDEP_FLAGS); 1690 newindirdep->ir_list.wk_type = D_INDIRDEP; 1691 newindirdep->ir_state = ATTACHED; 1692 LIST_INIT(&newindirdep->ir_deplisthd); 1693 LIST_INIT(&newindirdep->ir_donehd); 1694 if (bp->b_blkno == bp->b_lblkno) 1695 ufs_bmaparray(bp->b_vp, bp->b_lblkno, &bp->b_blkno, NULL, NULL); 1696 newindirdep->ir_savebp = 1697 getblk(ip->i_devvp, bp->b_blkno, bp->b_bcount, 0, 0); 1698 BUF_KERNPROC(newindirdep->ir_savebp); 1699 bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount); 1700 } 1701 } 1702 1703 /* 1704 * Block de-allocation dependencies. 1705 * 1706 * When blocks are de-allocated, the on-disk pointers must be nullified before 1707 * the blocks are made available for use by other files. (The true 1708 * requirement is that old pointers must be nullified before new on-disk 1709 * pointers are set. We chose this slightly more stringent requirement to 1710 * reduce complexity.) Our implementation handles this dependency by updating 1711 * the inode (or indirect block) appropriately but delaying the actual block 1712 * de-allocation (i.e., freemap and free space count manipulation) until 1713 * after the updated versions reach stable storage. After the disk is 1714 * updated, the blocks can be safely de-allocated whenever it is convenient. 1715 * This implementation handles only the common case of reducing a file's 1716 * length to zero. Other cases are handled by the conventional synchronous 1717 * write approach. 1718 * 1719 * The ffs implementation with which we worked double-checks 1720 * the state of the block pointers and file size as it reduces 1721 * a file's length. Some of this code is replicated here in our 1722 * soft updates implementation. The freeblks->fb_chkcnt field is 1723 * used to transfer a part of this information to the procedure 1724 * that eventually de-allocates the blocks. 1725 * 1726 * This routine should be called from the routine that shortens 1727 * a file's length, before the inode's size or block pointers 1728 * are modified. It will save the block pointer information for 1729 * later release and zero the inode so that the calling routine 1730 * can release it. 1731 */ 1732 void 1733 softdep_setup_freeblocks(ip, length) 1734 struct inode *ip; /* The inode whose length is to be reduced */ 1735 off_t length; /* The new length for the file */ 1736 { 1737 struct freeblks *freeblks; 1738 struct inodedep *inodedep; 1739 struct allocdirect *adp; 1740 struct vnode *vp; 1741 struct buf *bp; 1742 struct fs *fs; 1743 int i, delay, error; 1744 1745 fs = ip->i_fs; 1746 if (length != 0) 1747 panic("softdep_setup_freeblocks: non-zero length"); 1748 MALLOC(freeblks, struct freeblks *, sizeof(struct freeblks), 1749 M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO); 1750 freeblks->fb_list.wk_type = D_FREEBLKS; 1751 freeblks->fb_uid = ip->i_uid; 1752 freeblks->fb_previousinum = ip->i_number; 1753 freeblks->fb_devvp = ip->i_devvp; 1754 freeblks->fb_mnt = ITOV(ip)->v_mount; 1755 freeblks->fb_oldsize = ip->i_size; 1756 freeblks->fb_newsize = length; 1757 freeblks->fb_chkcnt = ip->i_blocks; 1758 for (i = 0; i < NDADDR; i++) { 1759 freeblks->fb_dblks[i] = ip->i_db[i]; 1760 ip->i_db[i] = 0; 1761 } 1762 for (i = 0; i < NIADDR; i++) { 1763 freeblks->fb_iblks[i] = ip->i_ib[i]; 1764 ip->i_ib[i] = 0; 1765 } 1766 ip->i_blocks = 0; 1767 ip->i_size = 0; 1768 /* 1769 * If the file was removed, then the space being freed was 1770 * accounted for then (see softdep_filereleased()). If the 1771 * file is merely being truncated, then we account for it now. 1772 */ 1773 if ((ip->i_flag & IN_SPACECOUNTED) == 0) 1774 fs->fs_pendingblocks += freeblks->fb_chkcnt; 1775 /* 1776 * Push the zero'ed inode to to its disk buffer so that we are free 1777 * to delete its dependencies below. Once the dependencies are gone 1778 * the buffer can be safely released. 1779 */ 1780 if ((error = bread(ip->i_devvp, 1781 fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 1782 (int)fs->fs_bsize, NOCRED, &bp)) != 0) 1783 softdep_error("softdep_setup_freeblocks", error); 1784 *((struct dinode *)bp->b_data + ino_to_fsbo(fs, ip->i_number)) = 1785 ip->i_din; 1786 /* 1787 * Find and eliminate any inode dependencies. 1788 */ 1789 ACQUIRE_LOCK(&lk); 1790 (void) inodedep_lookup(fs, ip->i_number, DEPALLOC, &inodedep); 1791 if ((inodedep->id_state & IOSTARTED) != 0) { 1792 FREE_LOCK(&lk); 1793 panic("softdep_setup_freeblocks: inode busy"); 1794 } 1795 /* 1796 * Add the freeblks structure to the list of operations that 1797 * must await the zero'ed inode being written to disk. If we 1798 * still have a bitmap dependency (delay == 0), then the inode 1799 * has never been written to disk, so we can process the 1800 * freeblks below once we have deleted the dependencies. 1801 */ 1802 delay = (inodedep->id_state & DEPCOMPLETE); 1803 if (delay) 1804 WORKLIST_INSERT(&inodedep->id_bufwait, &freeblks->fb_list); 1805 /* 1806 * Because the file length has been truncated to zero, any 1807 * pending block allocation dependency structures associated 1808 * with this inode are obsolete and can simply be de-allocated. 1809 * We must first merge the two dependency lists to get rid of 1810 * any duplicate freefrag structures, then purge the merged list. 1811 * If we still have a bitmap dependency, then the inode has never 1812 * been written to disk, so we can free any fragments without delay. 1813 */ 1814 merge_inode_lists(inodedep); 1815 while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != 0) 1816 free_allocdirect(&inodedep->id_inoupdt, adp, delay); 1817 FREE_LOCK(&lk); 1818 bdwrite(bp); 1819 /* 1820 * We must wait for any I/O in progress to finish so that 1821 * all potential buffers on the dirty list will be visible. 1822 * Once they are all there, walk the list and get rid of 1823 * any dependencies. 1824 */ 1825 vp = ITOV(ip); 1826 ACQUIRE_LOCK(&lk); 1827 drain_output(vp, 1); 1828 while (getdirtybuf(&TAILQ_FIRST(&vp->v_dirtyblkhd), MNT_WAIT)) { 1829 bp = TAILQ_FIRST(&vp->v_dirtyblkhd); 1830 (void) inodedep_lookup(fs, ip->i_number, 0, &inodedep); 1831 deallocate_dependencies(bp, inodedep); 1832 bp->b_flags |= B_INVAL | B_NOCACHE; 1833 FREE_LOCK(&lk); 1834 brelse(bp); 1835 ACQUIRE_LOCK(&lk); 1836 } 1837 if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) != 0) 1838 (void) free_inodedep(inodedep); 1839 FREE_LOCK(&lk); 1840 /* 1841 * If the inode has never been written to disk (delay == 0), 1842 * then we can process the freeblks now that we have deleted 1843 * the dependencies. 1844 */ 1845 if (!delay) 1846 handle_workitem_freeblocks(freeblks, 0); 1847 } 1848 1849 /* 1850 * Reclaim any dependency structures from a buffer that is about to 1851 * be reallocated to a new vnode. The buffer must be locked, thus, 1852 * no I/O completion operations can occur while we are manipulating 1853 * its associated dependencies. The mutex is held so that other I/O's 1854 * associated with related dependencies do not occur. 1855 */ 1856 static void 1857 deallocate_dependencies(bp, inodedep) 1858 struct buf *bp; 1859 struct inodedep *inodedep; 1860 { 1861 struct worklist *wk; 1862 struct indirdep *indirdep; 1863 struct allocindir *aip; 1864 struct pagedep *pagedep; 1865 struct dirrem *dirrem; 1866 struct diradd *dap; 1867 int i; 1868 1869 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) { 1870 switch (wk->wk_type) { 1871 1872 case D_INDIRDEP: 1873 indirdep = WK_INDIRDEP(wk); 1874 /* 1875 * None of the indirect pointers will ever be visible, 1876 * so they can simply be tossed. GOINGAWAY ensures 1877 * that allocated pointers will be saved in the buffer 1878 * cache until they are freed. Note that they will 1879 * only be able to be found by their physical address 1880 * since the inode mapping the logical address will 1881 * be gone. The save buffer used for the safe copy 1882 * was allocated in setup_allocindir_phase2 using 1883 * the physical address so it could be used for this 1884 * purpose. Hence we swap the safe copy with the real 1885 * copy, allowing the safe copy to be freed and holding 1886 * on to the real copy for later use in indir_trunc. 1887 */ 1888 if (indirdep->ir_state & GOINGAWAY) { 1889 FREE_LOCK(&lk); 1890 panic("deallocate_dependencies: already gone"); 1891 } 1892 indirdep->ir_state |= GOINGAWAY; 1893 while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != 0) 1894 free_allocindir(aip, inodedep); 1895 if (bp->b_lblkno >= 0 || 1896 bp->b_blkno != indirdep->ir_savebp->b_lblkno) { 1897 FREE_LOCK(&lk); 1898 panic("deallocate_dependencies: not indir"); 1899 } 1900 bcopy(bp->b_data, indirdep->ir_savebp->b_data, 1901 bp->b_bcount); 1902 WORKLIST_REMOVE(wk); 1903 WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, wk); 1904 continue; 1905 1906 case D_PAGEDEP: 1907 pagedep = WK_PAGEDEP(wk); 1908 /* 1909 * None of the directory additions will ever be 1910 * visible, so they can simply be tossed. 1911 */ 1912 for (i = 0; i < DAHASHSZ; i++) 1913 while ((dap = 1914 LIST_FIRST(&pagedep->pd_diraddhd[i]))) 1915 free_diradd(dap); 1916 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != 0) 1917 free_diradd(dap); 1918 /* 1919 * Copy any directory remove dependencies to the list 1920 * to be processed after the zero'ed inode is written. 1921 * If the inode has already been written, then they 1922 * can be dumped directly onto the work list. 1923 */ 1924 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) { 1925 LIST_REMOVE(dirrem, dm_next); 1926 dirrem->dm_dirinum = pagedep->pd_ino; 1927 if (inodedep == NULL || 1928 (inodedep->id_state & ALLCOMPLETE) == 1929 ALLCOMPLETE) 1930 add_to_worklist(&dirrem->dm_list); 1931 else 1932 WORKLIST_INSERT(&inodedep->id_bufwait, 1933 &dirrem->dm_list); 1934 } 1935 if ((pagedep->pd_state & NEWBLOCK) != 0) { 1936 LIST_FOREACH(wk, &inodedep->id_bufwait, wk_list) 1937 if (wk->wk_type == D_NEWDIRBLK && 1938 WK_NEWDIRBLK(wk)->db_pagedep == 1939 pagedep) 1940 break; 1941 if (wk != NULL) { 1942 WORKLIST_REMOVE(wk); 1943 free_newdirblk(WK_NEWDIRBLK(wk)); 1944 } else { 1945 FREE_LOCK(&lk); 1946 panic("deallocate_dependencies: " 1947 "lost pagedep"); 1948 } 1949 } 1950 WORKLIST_REMOVE(&pagedep->pd_list); 1951 LIST_REMOVE(pagedep, pd_hash); 1952 WORKITEM_FREE(pagedep, D_PAGEDEP); 1953 continue; 1954 1955 case D_ALLOCINDIR: 1956 free_allocindir(WK_ALLOCINDIR(wk), inodedep); 1957 continue; 1958 1959 case D_ALLOCDIRECT: 1960 case D_INODEDEP: 1961 FREE_LOCK(&lk); 1962 panic("deallocate_dependencies: Unexpected type %s", 1963 TYPENAME(wk->wk_type)); 1964 /* NOTREACHED */ 1965 1966 default: 1967 FREE_LOCK(&lk); 1968 panic("deallocate_dependencies: Unknown type %s", 1969 TYPENAME(wk->wk_type)); 1970 /* NOTREACHED */ 1971 } 1972 } 1973 } 1974 1975 /* 1976 * Free an allocdirect. Generate a new freefrag work request if appropriate. 1977 * This routine must be called with splbio interrupts blocked. 1978 */ 1979 static void 1980 free_allocdirect(adphead, adp, delay) 1981 struct allocdirectlst *adphead; 1982 struct allocdirect *adp; 1983 int delay; 1984 { 1985 struct newdirblk *newdirblk; 1986 struct worklist *wk; 1987 1988 #ifdef DEBUG 1989 if (lk.lkt_held == -1) 1990 panic("free_allocdirect: lock not held"); 1991 #endif 1992 if ((adp->ad_state & DEPCOMPLETE) == 0) 1993 LIST_REMOVE(adp, ad_deps); 1994 TAILQ_REMOVE(adphead, adp, ad_next); 1995 if ((adp->ad_state & COMPLETE) == 0) 1996 WORKLIST_REMOVE(&adp->ad_list); 1997 if (adp->ad_freefrag != NULL) { 1998 if (delay) 1999 WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait, 2000 &adp->ad_freefrag->ff_list); 2001 else 2002 add_to_worklist(&adp->ad_freefrag->ff_list); 2003 } 2004 if ((wk = LIST_FIRST(&adp->ad_newdirblk)) != NULL) { 2005 newdirblk = WK_NEWDIRBLK(wk); 2006 WORKLIST_REMOVE(&newdirblk->db_list); 2007 if (LIST_FIRST(&adp->ad_newdirblk) != NULL) 2008 panic("free_allocdirect: extra newdirblk"); 2009 if (delay) 2010 WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait, 2011 &newdirblk->db_list); 2012 else 2013 free_newdirblk(newdirblk); 2014 } 2015 WORKITEM_FREE(adp, D_ALLOCDIRECT); 2016 } 2017 2018 /* 2019 * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep. 2020 * This routine must be called with splbio interrupts blocked. 2021 */ 2022 static void 2023 free_newdirblk(newdirblk) 2024 struct newdirblk *newdirblk; 2025 { 2026 struct pagedep *pagedep; 2027 struct diradd *dap; 2028 int i; 2029 2030 #ifdef DEBUG 2031 if (lk.lkt_held == -1) 2032 panic("free_newdirblk: lock not held"); 2033 #endif 2034 /* 2035 * If the pagedep is still linked onto the directory buffer 2036 * dependency chain, then some of the entries on the 2037 * pd_pendinghd list may not be committed to disk yet. In 2038 * this case, we will simply clear the NEWBLOCK flag and 2039 * let the pd_pendinghd list be processed when the pagedep 2040 * is next written. If the pagedep is no longer on the buffer 2041 * dependency chain, then all the entries on the pd_pending 2042 * list are committed to disk and we can free them here. 2043 */ 2044 pagedep = newdirblk->db_pagedep; 2045 pagedep->pd_state &= ~NEWBLOCK; 2046 if ((pagedep->pd_state & ONWORKLIST) == 0) 2047 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 2048 free_diradd(dap); 2049 /* 2050 * If no dependencies remain, the pagedep will be freed. 2051 */ 2052 for (i = 0; i < DAHASHSZ; i++) 2053 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) != NULL) 2054 break; 2055 if (i == DAHASHSZ && (pagedep->pd_state & ONWORKLIST) == 0) { 2056 LIST_REMOVE(pagedep, pd_hash); 2057 WORKITEM_FREE(pagedep, D_PAGEDEP); 2058 } 2059 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 2060 } 2061 2062 /* 2063 * Prepare an inode to be freed. The actual free operation is not 2064 * done until the zero'ed inode has been written to disk. 2065 */ 2066 void 2067 softdep_freefile(pvp, ino, mode) 2068 struct vnode *pvp; 2069 ino_t ino; 2070 int mode; 2071 { 2072 struct inode *ip = VTOI(pvp); 2073 struct inodedep *inodedep; 2074 struct freefile *freefile; 2075 2076 /* 2077 * This sets up the inode de-allocation dependency. 2078 */ 2079 MALLOC(freefile, struct freefile *, sizeof(struct freefile), 2080 M_FREEFILE, M_SOFTDEP_FLAGS); 2081 freefile->fx_list.wk_type = D_FREEFILE; 2082 freefile->fx_list.wk_state = 0; 2083 freefile->fx_mode = mode; 2084 freefile->fx_oldinum = ino; 2085 freefile->fx_devvp = ip->i_devvp; 2086 freefile->fx_mnt = ITOV(ip)->v_mount; 2087 if ((ip->i_flag & IN_SPACECOUNTED) == 0) 2088 ip->i_fs->fs_pendinginodes += 1; 2089 2090 /* 2091 * If the inodedep does not exist, then the zero'ed inode has 2092 * been written to disk. If the allocated inode has never been 2093 * written to disk, then the on-disk inode is zero'ed. In either 2094 * case we can free the file immediately. 2095 */ 2096 ACQUIRE_LOCK(&lk); 2097 if (inodedep_lookup(ip->i_fs, ino, 0, &inodedep) == 0 || 2098 check_inode_unwritten(inodedep)) { 2099 FREE_LOCK(&lk); 2100 handle_workitem_freefile(freefile); 2101 return; 2102 } 2103 WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list); 2104 FREE_LOCK(&lk); 2105 } 2106 2107 /* 2108 * Check to see if an inode has never been written to disk. If 2109 * so free the inodedep and return success, otherwise return failure. 2110 * This routine must be called with splbio interrupts blocked. 2111 * 2112 * If we still have a bitmap dependency, then the inode has never 2113 * been written to disk. Drop the dependency as it is no longer 2114 * necessary since the inode is being deallocated. We set the 2115 * ALLCOMPLETE flags since the bitmap now properly shows that the 2116 * inode is not allocated. Even if the inode is actively being 2117 * written, it has been rolled back to its zero'ed state, so we 2118 * are ensured that a zero inode is what is on the disk. For short 2119 * lived files, this change will usually result in removing all the 2120 * dependencies from the inode so that it can be freed immediately. 2121 */ 2122 static int 2123 check_inode_unwritten(inodedep) 2124 struct inodedep *inodedep; 2125 { 2126 2127 if ((inodedep->id_state & DEPCOMPLETE) != 0 || 2128 LIST_FIRST(&inodedep->id_pendinghd) != NULL || 2129 LIST_FIRST(&inodedep->id_bufwait) != NULL || 2130 LIST_FIRST(&inodedep->id_inowait) != NULL || 2131 TAILQ_FIRST(&inodedep->id_inoupdt) != NULL || 2132 TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL || 2133 inodedep->id_nlinkdelta != 0) 2134 return (0); 2135 inodedep->id_state |= ALLCOMPLETE; 2136 LIST_REMOVE(inodedep, id_deps); 2137 inodedep->id_buf = NULL; 2138 if (inodedep->id_state & ONWORKLIST) 2139 WORKLIST_REMOVE(&inodedep->id_list); 2140 if (inodedep->id_savedino != NULL) { 2141 FREE(inodedep->id_savedino, M_INODEDEP); 2142 inodedep->id_savedino = NULL; 2143 } 2144 if (free_inodedep(inodedep) == 0) { 2145 FREE_LOCK(&lk); 2146 panic("check_inode_unwritten: busy inode"); 2147 } 2148 return (1); 2149 } 2150 2151 /* 2152 * Try to free an inodedep structure. Return 1 if it could be freed. 2153 */ 2154 static int 2155 free_inodedep(inodedep) 2156 struct inodedep *inodedep; 2157 { 2158 2159 if ((inodedep->id_state & ONWORKLIST) != 0 || 2160 (inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE || 2161 LIST_FIRST(&inodedep->id_pendinghd) != NULL || 2162 LIST_FIRST(&inodedep->id_bufwait) != NULL || 2163 LIST_FIRST(&inodedep->id_inowait) != NULL || 2164 TAILQ_FIRST(&inodedep->id_inoupdt) != NULL || 2165 TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL || 2166 inodedep->id_nlinkdelta != 0 || inodedep->id_savedino != NULL) 2167 return (0); 2168 LIST_REMOVE(inodedep, id_hash); 2169 WORKITEM_FREE(inodedep, D_INODEDEP); 2170 num_inodedep -= 1; 2171 return (1); 2172 } 2173 2174 /* 2175 * This workitem routine performs the block de-allocation. 2176 * The workitem is added to the pending list after the updated 2177 * inode block has been written to disk. As mentioned above, 2178 * checks regarding the number of blocks de-allocated (compared 2179 * to the number of blocks allocated for the file) are also 2180 * performed in this function. 2181 */ 2182 static void 2183 handle_workitem_freeblocks(freeblks, flags) 2184 struct freeblks *freeblks; 2185 int flags; 2186 { 2187 struct inode tip, *ip; 2188 struct vnode *vp; 2189 ufs_daddr_t bn; 2190 struct fs *fs; 2191 int i, level, bsize; 2192 long nblocks, blocksreleased = 0; 2193 int error, allerror = 0; 2194 ufs_lbn_t baselbns[NIADDR], tmpval; 2195 2196 tip.i_fs = fs = VFSTOUFS(freeblks->fb_mnt)->um_fs; 2197 tip.i_number = freeblks->fb_previousinum; 2198 tip.i_devvp = freeblks->fb_devvp; 2199 tip.i_dev = freeblks->fb_devvp->v_rdev; 2200 tip.i_size = freeblks->fb_oldsize; 2201 tip.i_uid = freeblks->fb_uid; 2202 tip.i_vnode = NULL; 2203 tmpval = 1; 2204 baselbns[0] = NDADDR; 2205 for (i = 1; i < NIADDR; i++) { 2206 tmpval *= NINDIR(fs); 2207 baselbns[i] = baselbns[i - 1] + tmpval; 2208 } 2209 nblocks = btodb(fs->fs_bsize); 2210 blocksreleased = 0; 2211 /* 2212 * Indirect blocks first. 2213 */ 2214 for (level = (NIADDR - 1); level >= 0; level--) { 2215 if ((bn = freeblks->fb_iblks[level]) == 0) 2216 continue; 2217 if ((error = indir_trunc(&tip, fsbtodb(fs, bn), level, 2218 baselbns[level], &blocksreleased)) == 0) 2219 allerror = error; 2220 ffs_blkfree(&tip, bn, fs->fs_bsize); 2221 fs->fs_pendingblocks -= nblocks; 2222 blocksreleased += nblocks; 2223 } 2224 /* 2225 * All direct blocks or frags. 2226 */ 2227 for (i = (NDADDR - 1); i >= 0; i--) { 2228 if ((bn = freeblks->fb_dblks[i]) == 0) 2229 continue; 2230 bsize = blksize(fs, &tip, i); 2231 ffs_blkfree(&tip, bn, bsize); 2232 fs->fs_pendingblocks -= btodb(bsize); 2233 blocksreleased += btodb(bsize); 2234 } 2235 /* 2236 * If we still have not finished background cleanup, then check 2237 * to see if the block count needs to be adjusted. 2238 */ 2239 if (freeblks->fb_chkcnt != blocksreleased && 2240 (fs->fs_flags & FS_UNCLEAN) != 0 && (flags & LK_NOWAIT) == 0 && 2241 VFS_VGET(freeblks->fb_mnt, freeblks->fb_previousinum, &vp) == 0) { 2242 ip = VTOI(vp); 2243 ip->i_blocks += freeblks->fb_chkcnt - blocksreleased; 2244 ip->i_flag |= IN_CHANGE; 2245 vput(vp); 2246 } 2247 2248 #ifdef DIAGNOSTIC 2249 if (freeblks->fb_chkcnt != blocksreleased && 2250 ((fs->fs_flags & FS_UNCLEAN) == 0 || (flags & LK_NOWAIT) != 0)) 2251 printf("handle_workitem_freeblocks: block count"); 2252 if (allerror) 2253 softdep_error("handle_workitem_freeblks", allerror); 2254 #endif /* DIAGNOSTIC */ 2255 2256 WORKITEM_FREE(freeblks, D_FREEBLKS); 2257 } 2258 2259 /* 2260 * Release blocks associated with the inode ip and stored in the indirect 2261 * block dbn. If level is greater than SINGLE, the block is an indirect block 2262 * and recursive calls to indirtrunc must be used to cleanse other indirect 2263 * blocks. 2264 */ 2265 static int 2266 indir_trunc(ip, dbn, level, lbn, countp) 2267 struct inode *ip; 2268 ufs_daddr_t dbn; 2269 int level; 2270 ufs_lbn_t lbn; 2271 long *countp; 2272 { 2273 struct buf *bp; 2274 ufs_daddr_t *bap; 2275 ufs_daddr_t nb; 2276 struct fs *fs; 2277 struct worklist *wk; 2278 struct indirdep *indirdep; 2279 int i, lbnadd, nblocks; 2280 int error, allerror = 0; 2281 2282 fs = ip->i_fs; 2283 lbnadd = 1; 2284 for (i = level; i > 0; i--) 2285 lbnadd *= NINDIR(fs); 2286 /* 2287 * Get buffer of block pointers to be freed. This routine is not 2288 * called until the zero'ed inode has been written, so it is safe 2289 * to free blocks as they are encountered. Because the inode has 2290 * been zero'ed, calls to bmap on these blocks will fail. So, we 2291 * have to use the on-disk address and the block device for the 2292 * filesystem to look them up. If the file was deleted before its 2293 * indirect blocks were all written to disk, the routine that set 2294 * us up (deallocate_dependencies) will have arranged to leave 2295 * a complete copy of the indirect block in memory for our use. 2296 * Otherwise we have to read the blocks in from the disk. 2297 */ 2298 ACQUIRE_LOCK(&lk); 2299 if ((bp = incore(ip->i_devvp, dbn)) != NULL && 2300 (wk = LIST_FIRST(&bp->b_dep)) != NULL) { 2301 if (wk->wk_type != D_INDIRDEP || 2302 (indirdep = WK_INDIRDEP(wk))->ir_savebp != bp || 2303 (indirdep->ir_state & GOINGAWAY) == 0) { 2304 FREE_LOCK(&lk); 2305 panic("indir_trunc: lost indirdep"); 2306 } 2307 WORKLIST_REMOVE(wk); 2308 WORKITEM_FREE(indirdep, D_INDIRDEP); 2309 if (LIST_FIRST(&bp->b_dep) != NULL) { 2310 FREE_LOCK(&lk); 2311 panic("indir_trunc: dangling dep"); 2312 } 2313 FREE_LOCK(&lk); 2314 } else { 2315 FREE_LOCK(&lk); 2316 error = bread(ip->i_devvp, dbn, (int)fs->fs_bsize, NOCRED, &bp); 2317 if (error) 2318 return (error); 2319 } 2320 /* 2321 * Recursively free indirect blocks. 2322 */ 2323 bap = (ufs_daddr_t *)bp->b_data; 2324 nblocks = btodb(fs->fs_bsize); 2325 for (i = NINDIR(fs) - 1; i >= 0; i--) { 2326 if ((nb = bap[i]) == 0) 2327 continue; 2328 if (level != 0) { 2329 if ((error = indir_trunc(ip, fsbtodb(fs, nb), 2330 level - 1, lbn + (i * lbnadd), countp)) != 0) 2331 allerror = error; 2332 } 2333 ffs_blkfree(ip, nb, fs->fs_bsize); 2334 fs->fs_pendingblocks -= nblocks; 2335 *countp += nblocks; 2336 } 2337 bp->b_flags |= B_INVAL | B_NOCACHE; 2338 brelse(bp); 2339 return (allerror); 2340 } 2341 2342 /* 2343 * Free an allocindir. 2344 * This routine must be called with splbio interrupts blocked. 2345 */ 2346 static void 2347 free_allocindir(aip, inodedep) 2348 struct allocindir *aip; 2349 struct inodedep *inodedep; 2350 { 2351 struct freefrag *freefrag; 2352 2353 #ifdef DEBUG 2354 if (lk.lkt_held == -1) 2355 panic("free_allocindir: lock not held"); 2356 #endif 2357 if ((aip->ai_state & DEPCOMPLETE) == 0) 2358 LIST_REMOVE(aip, ai_deps); 2359 if (aip->ai_state & ONWORKLIST) 2360 WORKLIST_REMOVE(&aip->ai_list); 2361 LIST_REMOVE(aip, ai_next); 2362 if ((freefrag = aip->ai_freefrag) != NULL) { 2363 if (inodedep == NULL) 2364 add_to_worklist(&freefrag->ff_list); 2365 else 2366 WORKLIST_INSERT(&inodedep->id_bufwait, 2367 &freefrag->ff_list); 2368 } 2369 WORKITEM_FREE(aip, D_ALLOCINDIR); 2370 } 2371 2372 /* 2373 * Directory entry addition dependencies. 2374 * 2375 * When adding a new directory entry, the inode (with its incremented link 2376 * count) must be written to disk before the directory entry's pointer to it. 2377 * Also, if the inode is newly allocated, the corresponding freemap must be 2378 * updated (on disk) before the directory entry's pointer. These requirements 2379 * are met via undo/redo on the directory entry's pointer, which consists 2380 * simply of the inode number. 2381 * 2382 * As directory entries are added and deleted, the free space within a 2383 * directory block can become fragmented. The ufs file system will compact 2384 * a fragmented directory block to make space for a new entry. When this 2385 * occurs, the offsets of previously added entries change. Any "diradd" 2386 * dependency structures corresponding to these entries must be updated with 2387 * the new offsets. 2388 */ 2389 2390 /* 2391 * This routine is called after the in-memory inode's link 2392 * count has been incremented, but before the directory entry's 2393 * pointer to the inode has been set. 2394 */ 2395 int 2396 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk) 2397 struct buf *bp; /* buffer containing directory block */ 2398 struct inode *dp; /* inode for directory */ 2399 off_t diroffset; /* offset of new entry in directory */ 2400 long newinum; /* inode referenced by new directory entry */ 2401 struct buf *newdirbp; /* non-NULL => contents of new mkdir */ 2402 int isnewblk; /* entry is in a newly allocated block */ 2403 { 2404 int offset; /* offset of new entry within directory block */ 2405 ufs_lbn_t lbn; /* block in directory containing new entry */ 2406 struct fs *fs; 2407 struct diradd *dap; 2408 struct allocdirect *adp; 2409 struct pagedep *pagedep; 2410 struct inodedep *inodedep; 2411 struct newdirblk *newdirblk = 0; 2412 struct mkdir *mkdir1, *mkdir2; 2413 2414 /* 2415 * Whiteouts have no dependencies. 2416 */ 2417 if (newinum == WINO) { 2418 if (newdirbp != NULL) 2419 bdwrite(newdirbp); 2420 return (0); 2421 } 2422 2423 fs = dp->i_fs; 2424 lbn = lblkno(fs, diroffset); 2425 offset = blkoff(fs, diroffset); 2426 MALLOC(dap, struct diradd *, sizeof(struct diradd), M_DIRADD, 2427 M_SOFTDEP_FLAGS|M_ZERO); 2428 dap->da_list.wk_type = D_DIRADD; 2429 dap->da_offset = offset; 2430 dap->da_newinum = newinum; 2431 dap->da_state = ATTACHED; 2432 if (isnewblk && lbn < NDADDR && fragoff(fs, diroffset) == 0) { 2433 MALLOC(newdirblk, struct newdirblk *, sizeof(struct newdirblk), 2434 M_NEWDIRBLK, M_SOFTDEP_FLAGS); 2435 newdirblk->db_list.wk_type = D_NEWDIRBLK; 2436 newdirblk->db_state = 0; 2437 } 2438 if (newdirbp == NULL) { 2439 dap->da_state |= DEPCOMPLETE; 2440 ACQUIRE_LOCK(&lk); 2441 } else { 2442 dap->da_state |= MKDIR_BODY | MKDIR_PARENT; 2443 MALLOC(mkdir1, struct mkdir *, sizeof(struct mkdir), M_MKDIR, 2444 M_SOFTDEP_FLAGS); 2445 mkdir1->md_list.wk_type = D_MKDIR; 2446 mkdir1->md_state = MKDIR_BODY; 2447 mkdir1->md_diradd = dap; 2448 MALLOC(mkdir2, struct mkdir *, sizeof(struct mkdir), M_MKDIR, 2449 M_SOFTDEP_FLAGS); 2450 mkdir2->md_list.wk_type = D_MKDIR; 2451 mkdir2->md_state = MKDIR_PARENT; 2452 mkdir2->md_diradd = dap; 2453 /* 2454 * Dependency on "." and ".." being written to disk. 2455 */ 2456 mkdir1->md_buf = newdirbp; 2457 ACQUIRE_LOCK(&lk); 2458 LIST_INSERT_HEAD(&mkdirlisthd, mkdir1, md_mkdirs); 2459 WORKLIST_INSERT(&newdirbp->b_dep, &mkdir1->md_list); 2460 FREE_LOCK(&lk); 2461 bdwrite(newdirbp); 2462 /* 2463 * Dependency on link count increase for parent directory 2464 */ 2465 ACQUIRE_LOCK(&lk); 2466 if (inodedep_lookup(fs, dp->i_number, 0, &inodedep) == 0 2467 || (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 2468 dap->da_state &= ~MKDIR_PARENT; 2469 WORKITEM_FREE(mkdir2, D_MKDIR); 2470 } else { 2471 LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs); 2472 WORKLIST_INSERT(&inodedep->id_bufwait,&mkdir2->md_list); 2473 } 2474 } 2475 /* 2476 * Link into parent directory pagedep to await its being written. 2477 */ 2478 if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0) 2479 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 2480 dap->da_pagedep = pagedep; 2481 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap, 2482 da_pdlist); 2483 /* 2484 * Link into its inodedep. Put it on the id_bufwait list if the inode 2485 * is not yet written. If it is written, do the post-inode write 2486 * processing to put it on the id_pendinghd list. 2487 */ 2488 (void) inodedep_lookup(fs, newinum, DEPALLOC, &inodedep); 2489 if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) 2490 diradd_inode_written(dap, inodedep); 2491 else 2492 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 2493 if (isnewblk) { 2494 /* 2495 * Directories growing into indirect blocks are rare 2496 * enough and the frequency of new block allocation 2497 * in those cases even more rare, that we choose not 2498 * to bother tracking them. Rather we simply force the 2499 * new directory entry to disk. 2500 */ 2501 if (lbn >= NDADDR) { 2502 FREE_LOCK(&lk); 2503 /* 2504 * We only have a new allocation when at the 2505 * beginning of a new block, not when we are 2506 * expanding into an existing block. 2507 */ 2508 if (blkoff(fs, diroffset) == 0) 2509 return (1); 2510 return (0); 2511 } 2512 /* 2513 * We only have a new allocation when at the beginning 2514 * of a new fragment, not when we are expanding into an 2515 * existing fragment. Also, there is nothing to do if we 2516 * are already tracking this block. 2517 */ 2518 if (fragoff(fs, diroffset) != 0) { 2519 FREE_LOCK(&lk); 2520 return (0); 2521 } 2522 if ((pagedep->pd_state & NEWBLOCK) != 0) { 2523 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 2524 FREE_LOCK(&lk); 2525 return (0); 2526 } 2527 /* 2528 * Find our associated allocdirect and have it track us. 2529 */ 2530 if (inodedep_lookup(fs, dp->i_number, 0, &inodedep) == 0) 2531 panic("softdep_setup_directory_add: lost inodedep"); 2532 adp = TAILQ_LAST(&inodedep->id_newinoupdt, allocdirectlst); 2533 if (adp == NULL || adp->ad_lbn != lbn) { 2534 FREE_LOCK(&lk); 2535 panic("softdep_setup_directory_add: lost entry"); 2536 } 2537 pagedep->pd_state |= NEWBLOCK; 2538 newdirblk->db_pagedep = pagedep; 2539 WORKLIST_INSERT(&adp->ad_newdirblk, &newdirblk->db_list); 2540 } 2541 FREE_LOCK(&lk); 2542 return (0); 2543 } 2544 2545 /* 2546 * This procedure is called to change the offset of a directory 2547 * entry when compacting a directory block which must be owned 2548 * exclusively by the caller. Note that the actual entry movement 2549 * must be done in this procedure to ensure that no I/O completions 2550 * occur while the move is in progress. 2551 */ 2552 void 2553 softdep_change_directoryentry_offset(dp, base, oldloc, newloc, entrysize) 2554 struct inode *dp; /* inode for directory */ 2555 caddr_t base; /* address of dp->i_offset */ 2556 caddr_t oldloc; /* address of old directory location */ 2557 caddr_t newloc; /* address of new directory location */ 2558 int entrysize; /* size of directory entry */ 2559 { 2560 int offset, oldoffset, newoffset; 2561 struct pagedep *pagedep; 2562 struct diradd *dap; 2563 ufs_lbn_t lbn; 2564 2565 ACQUIRE_LOCK(&lk); 2566 lbn = lblkno(dp->i_fs, dp->i_offset); 2567 offset = blkoff(dp->i_fs, dp->i_offset); 2568 if (pagedep_lookup(dp, lbn, 0, &pagedep) == 0) 2569 goto done; 2570 oldoffset = offset + (oldloc - base); 2571 newoffset = offset + (newloc - base); 2572 2573 LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(oldoffset)], da_pdlist) { 2574 if (dap->da_offset != oldoffset) 2575 continue; 2576 dap->da_offset = newoffset; 2577 if (DIRADDHASH(newoffset) == DIRADDHASH(oldoffset)) 2578 break; 2579 LIST_REMOVE(dap, da_pdlist); 2580 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(newoffset)], 2581 dap, da_pdlist); 2582 break; 2583 } 2584 if (dap == NULL) { 2585 2586 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) { 2587 if (dap->da_offset == oldoffset) { 2588 dap->da_offset = newoffset; 2589 break; 2590 } 2591 } 2592 } 2593 done: 2594 bcopy(oldloc, newloc, entrysize); 2595 FREE_LOCK(&lk); 2596 } 2597 2598 /* 2599 * Free a diradd dependency structure. This routine must be called 2600 * with splbio interrupts blocked. 2601 */ 2602 static void 2603 free_diradd(dap) 2604 struct diradd *dap; 2605 { 2606 struct dirrem *dirrem; 2607 struct pagedep *pagedep; 2608 struct inodedep *inodedep; 2609 struct mkdir *mkdir, *nextmd; 2610 2611 #ifdef DEBUG 2612 if (lk.lkt_held == -1) 2613 panic("free_diradd: lock not held"); 2614 #endif 2615 WORKLIST_REMOVE(&dap->da_list); 2616 LIST_REMOVE(dap, da_pdlist); 2617 if ((dap->da_state & DIRCHG) == 0) { 2618 pagedep = dap->da_pagedep; 2619 } else { 2620 dirrem = dap->da_previous; 2621 pagedep = dirrem->dm_pagedep; 2622 dirrem->dm_dirinum = pagedep->pd_ino; 2623 add_to_worklist(&dirrem->dm_list); 2624 } 2625 if (inodedep_lookup(VFSTOUFS(pagedep->pd_mnt)->um_fs, dap->da_newinum, 2626 0, &inodedep) != 0) 2627 (void) free_inodedep(inodedep); 2628 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 2629 for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) { 2630 nextmd = LIST_NEXT(mkdir, md_mkdirs); 2631 if (mkdir->md_diradd != dap) 2632 continue; 2633 dap->da_state &= ~mkdir->md_state; 2634 WORKLIST_REMOVE(&mkdir->md_list); 2635 LIST_REMOVE(mkdir, md_mkdirs); 2636 WORKITEM_FREE(mkdir, D_MKDIR); 2637 } 2638 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 2639 FREE_LOCK(&lk); 2640 panic("free_diradd: unfound ref"); 2641 } 2642 } 2643 WORKITEM_FREE(dap, D_DIRADD); 2644 } 2645 2646 /* 2647 * Directory entry removal dependencies. 2648 * 2649 * When removing a directory entry, the entry's inode pointer must be 2650 * zero'ed on disk before the corresponding inode's link count is decremented 2651 * (possibly freeing the inode for re-use). This dependency is handled by 2652 * updating the directory entry but delaying the inode count reduction until 2653 * after the directory block has been written to disk. After this point, the 2654 * inode count can be decremented whenever it is convenient. 2655 */ 2656 2657 /* 2658 * This routine should be called immediately after removing 2659 * a directory entry. The inode's link count should not be 2660 * decremented by the calling procedure -- the soft updates 2661 * code will do this task when it is safe. 2662 */ 2663 void 2664 softdep_setup_remove(bp, dp, ip, isrmdir) 2665 struct buf *bp; /* buffer containing directory block */ 2666 struct inode *dp; /* inode for the directory being modified */ 2667 struct inode *ip; /* inode for directory entry being removed */ 2668 int isrmdir; /* indicates if doing RMDIR */ 2669 { 2670 struct dirrem *dirrem, *prevdirrem; 2671 2672 /* 2673 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK. 2674 */ 2675 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 2676 2677 /* 2678 * If the COMPLETE flag is clear, then there were no active 2679 * entries and we want to roll back to a zeroed entry until 2680 * the new inode is committed to disk. If the COMPLETE flag is 2681 * set then we have deleted an entry that never made it to 2682 * disk. If the entry we deleted resulted from a name change, 2683 * then the old name still resides on disk. We cannot delete 2684 * its inode (returned to us in prevdirrem) until the zeroed 2685 * directory entry gets to disk. The new inode has never been 2686 * referenced on the disk, so can be deleted immediately. 2687 */ 2688 if ((dirrem->dm_state & COMPLETE) == 0) { 2689 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem, 2690 dm_next); 2691 FREE_LOCK(&lk); 2692 } else { 2693 if (prevdirrem != NULL) 2694 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, 2695 prevdirrem, dm_next); 2696 dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino; 2697 FREE_LOCK(&lk); 2698 handle_workitem_remove(dirrem); 2699 } 2700 } 2701 2702 /* 2703 * Allocate a new dirrem if appropriate and return it along with 2704 * its associated pagedep. Called without a lock, returns with lock. 2705 */ 2706 static long num_dirrem; /* number of dirrem allocated */ 2707 static struct dirrem * 2708 newdirrem(bp, dp, ip, isrmdir, prevdirremp) 2709 struct buf *bp; /* buffer containing directory block */ 2710 struct inode *dp; /* inode for the directory being modified */ 2711 struct inode *ip; /* inode for directory entry being removed */ 2712 int isrmdir; /* indicates if doing RMDIR */ 2713 struct dirrem **prevdirremp; /* previously referenced inode, if any */ 2714 { 2715 int offset; 2716 ufs_lbn_t lbn; 2717 struct diradd *dap; 2718 struct dirrem *dirrem; 2719 struct pagedep *pagedep; 2720 2721 /* 2722 * Whiteouts have no deletion dependencies. 2723 */ 2724 if (ip == NULL) 2725 panic("newdirrem: whiteout"); 2726 /* 2727 * If we are over our limit, try to improve the situation. 2728 * Limiting the number of dirrem structures will also limit 2729 * the number of freefile and freeblks structures. 2730 */ 2731 if (num_dirrem > max_softdeps / 2) 2732 (void) request_cleanup(FLUSH_REMOVE, 0); 2733 num_dirrem += 1; 2734 MALLOC(dirrem, struct dirrem *, sizeof(struct dirrem), 2735 M_DIRREM, M_SOFTDEP_FLAGS|M_ZERO); 2736 dirrem->dm_list.wk_type = D_DIRREM; 2737 dirrem->dm_state = isrmdir ? RMDIR : 0; 2738 dirrem->dm_mnt = ITOV(ip)->v_mount; 2739 dirrem->dm_oldinum = ip->i_number; 2740 *prevdirremp = NULL; 2741 2742 ACQUIRE_LOCK(&lk); 2743 lbn = lblkno(dp->i_fs, dp->i_offset); 2744 offset = blkoff(dp->i_fs, dp->i_offset); 2745 if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0) 2746 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 2747 dirrem->dm_pagedep = pagedep; 2748 /* 2749 * Check for a diradd dependency for the same directory entry. 2750 * If present, then both dependencies become obsolete and can 2751 * be de-allocated. Check for an entry on both the pd_dirraddhd 2752 * list and the pd_pendinghd list. 2753 */ 2754 2755 LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist) 2756 if (dap->da_offset == offset) 2757 break; 2758 if (dap == NULL) { 2759 2760 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) 2761 if (dap->da_offset == offset) 2762 break; 2763 if (dap == NULL) 2764 return (dirrem); 2765 } 2766 /* 2767 * Must be ATTACHED at this point. 2768 */ 2769 if ((dap->da_state & ATTACHED) == 0) { 2770 FREE_LOCK(&lk); 2771 panic("newdirrem: not ATTACHED"); 2772 } 2773 if (dap->da_newinum != ip->i_number) { 2774 FREE_LOCK(&lk); 2775 panic("newdirrem: inum %d should be %d", 2776 ip->i_number, dap->da_newinum); 2777 } 2778 /* 2779 * If we are deleting a changed name that never made it to disk, 2780 * then return the dirrem describing the previous inode (which 2781 * represents the inode currently referenced from this entry on disk). 2782 */ 2783 if ((dap->da_state & DIRCHG) != 0) { 2784 *prevdirremp = dap->da_previous; 2785 dap->da_state &= ~DIRCHG; 2786 dap->da_pagedep = pagedep; 2787 } 2788 /* 2789 * We are deleting an entry that never made it to disk. 2790 * Mark it COMPLETE so we can delete its inode immediately. 2791 */ 2792 dirrem->dm_state |= COMPLETE; 2793 free_diradd(dap); 2794 return (dirrem); 2795 } 2796 2797 /* 2798 * Directory entry change dependencies. 2799 * 2800 * Changing an existing directory entry requires that an add operation 2801 * be completed first followed by a deletion. The semantics for the addition 2802 * are identical to the description of adding a new entry above except 2803 * that the rollback is to the old inode number rather than zero. Once 2804 * the addition dependency is completed, the removal is done as described 2805 * in the removal routine above. 2806 */ 2807 2808 /* 2809 * This routine should be called immediately after changing 2810 * a directory entry. The inode's link count should not be 2811 * decremented by the calling procedure -- the soft updates 2812 * code will perform this task when it is safe. 2813 */ 2814 void 2815 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 2816 struct buf *bp; /* buffer containing directory block */ 2817 struct inode *dp; /* inode for the directory being modified */ 2818 struct inode *ip; /* inode for directory entry being removed */ 2819 long newinum; /* new inode number for changed entry */ 2820 int isrmdir; /* indicates if doing RMDIR */ 2821 { 2822 int offset; 2823 struct diradd *dap = NULL; 2824 struct dirrem *dirrem, *prevdirrem; 2825 struct pagedep *pagedep; 2826 struct inodedep *inodedep; 2827 2828 offset = blkoff(dp->i_fs, dp->i_offset); 2829 2830 /* 2831 * Whiteouts do not need diradd dependencies. 2832 */ 2833 if (newinum != WINO) { 2834 MALLOC(dap, struct diradd *, sizeof(struct diradd), 2835 M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO); 2836 dap->da_list.wk_type = D_DIRADD; 2837 dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE; 2838 dap->da_offset = offset; 2839 dap->da_newinum = newinum; 2840 } 2841 2842 /* 2843 * Allocate a new dirrem and ACQUIRE_LOCK. 2844 */ 2845 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 2846 pagedep = dirrem->dm_pagedep; 2847 /* 2848 * The possible values for isrmdir: 2849 * 0 - non-directory file rename 2850 * 1 - directory rename within same directory 2851 * inum - directory rename to new directory of given inode number 2852 * When renaming to a new directory, we are both deleting and 2853 * creating a new directory entry, so the link count on the new 2854 * directory should not change. Thus we do not need the followup 2855 * dirrem which is usually done in handle_workitem_remove. We set 2856 * the DIRCHG flag to tell handle_workitem_remove to skip the 2857 * followup dirrem. 2858 */ 2859 if (isrmdir > 1) 2860 dirrem->dm_state |= DIRCHG; 2861 2862 /* 2863 * Whiteouts have no additional dependencies, 2864 * so just put the dirrem on the correct list. 2865 */ 2866 if (newinum == WINO) { 2867 if ((dirrem->dm_state & COMPLETE) == 0) { 2868 LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem, 2869 dm_next); 2870 } else { 2871 dirrem->dm_dirinum = pagedep->pd_ino; 2872 add_to_worklist(&dirrem->dm_list); 2873 } 2874 FREE_LOCK(&lk); 2875 return; 2876 } 2877 2878 /* 2879 * If the COMPLETE flag is clear, then there were no active 2880 * entries and we want to roll back to the previous inode until 2881 * the new inode is committed to disk. If the COMPLETE flag is 2882 * set, then we have deleted an entry that never made it to disk. 2883 * If the entry we deleted resulted from a name change, then the old 2884 * inode reference still resides on disk. Any rollback that we do 2885 * needs to be to that old inode (returned to us in prevdirrem). If 2886 * the entry we deleted resulted from a create, then there is 2887 * no entry on the disk, so we want to roll back to zero rather 2888 * than the uncommitted inode. In either of the COMPLETE cases we 2889 * want to immediately free the unwritten and unreferenced inode. 2890 */ 2891 if ((dirrem->dm_state & COMPLETE) == 0) { 2892 dap->da_previous = dirrem; 2893 } else { 2894 if (prevdirrem != NULL) { 2895 dap->da_previous = prevdirrem; 2896 } else { 2897 dap->da_state &= ~DIRCHG; 2898 dap->da_pagedep = pagedep; 2899 } 2900 dirrem->dm_dirinum = pagedep->pd_ino; 2901 add_to_worklist(&dirrem->dm_list); 2902 } 2903 /* 2904 * Link into its inodedep. Put it on the id_bufwait list if the inode 2905 * is not yet written. If it is written, do the post-inode write 2906 * processing to put it on the id_pendinghd list. 2907 */ 2908 if (inodedep_lookup(dp->i_fs, newinum, DEPALLOC, &inodedep) == 0 || 2909 (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 2910 dap->da_state |= COMPLETE; 2911 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 2912 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 2913 } else { 2914 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], 2915 dap, da_pdlist); 2916 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 2917 } 2918 FREE_LOCK(&lk); 2919 } 2920 2921 /* 2922 * Called whenever the link count on an inode is changed. 2923 * It creates an inode dependency so that the new reference(s) 2924 * to the inode cannot be committed to disk until the updated 2925 * inode has been written. 2926 */ 2927 void 2928 softdep_change_linkcnt(ip) 2929 struct inode *ip; /* the inode with the increased link count */ 2930 { 2931 struct inodedep *inodedep; 2932 2933 ACQUIRE_LOCK(&lk); 2934 (void) inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC, &inodedep); 2935 if (ip->i_nlink < ip->i_effnlink) { 2936 FREE_LOCK(&lk); 2937 panic("softdep_change_linkcnt: bad delta"); 2938 } 2939 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 2940 FREE_LOCK(&lk); 2941 } 2942 2943 /* 2944 * Called when the effective link count and the reference count 2945 * on an inode drops to zero. At this point there are no names 2946 * referencing the file in the filesystem and no active file 2947 * references. The space associated with the file will be freed 2948 * as soon as the necessary soft dependencies are cleared. 2949 */ 2950 void 2951 softdep_releasefile(ip) 2952 struct inode *ip; /* inode with the zero effective link count */ 2953 { 2954 struct inodedep *inodedep; 2955 2956 if (ip->i_effnlink > 0) 2957 panic("softdep_filerelease: file still referenced"); 2958 /* 2959 * We may be called several times as the real reference count 2960 * drops to zero. We only want to account for the space once. 2961 */ 2962 if (ip->i_flag & IN_SPACECOUNTED) 2963 return; 2964 /* 2965 * We have to deactivate a snapshot otherwise copyonwrites may 2966 * add blocks and the cleanup may remove blocks after we have 2967 * tried to account for them. 2968 */ 2969 if ((ip->i_flags & SF_SNAPSHOT) != 0) 2970 ffs_snapremove(ITOV(ip)); 2971 /* 2972 * If we are tracking an nlinkdelta, we have to also remember 2973 * whether we accounted for the freed space yet. 2974 */ 2975 ACQUIRE_LOCK(&lk); 2976 if ((inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep))) 2977 inodedep->id_state |= SPACECOUNTED; 2978 FREE_LOCK(&lk); 2979 ip->i_fs->fs_pendingblocks += ip->i_blocks; 2980 ip->i_fs->fs_pendinginodes += 1; 2981 ip->i_flag |= IN_SPACECOUNTED; 2982 } 2983 2984 /* 2985 * This workitem decrements the inode's link count. 2986 * If the link count reaches zero, the file is removed. 2987 */ 2988 static void 2989 handle_workitem_remove(dirrem) 2990 struct dirrem *dirrem; 2991 { 2992 struct proc *p = CURPROC; /* XXX */ 2993 struct inodedep *inodedep; 2994 struct vnode *vp; 2995 struct inode *ip; 2996 ino_t oldinum; 2997 int error; 2998 2999 if ((error = VFS_VGET(dirrem->dm_mnt, dirrem->dm_oldinum, &vp)) != 0) { 3000 softdep_error("handle_workitem_remove: vget", error); 3001 return; 3002 } 3003 ip = VTOI(vp); 3004 ACQUIRE_LOCK(&lk); 3005 if ((inodedep_lookup(ip->i_fs, dirrem->dm_oldinum, 0, &inodedep)) == 0){ 3006 FREE_LOCK(&lk); 3007 panic("handle_workitem_remove: lost inodedep"); 3008 } 3009 /* 3010 * Normal file deletion. 3011 */ 3012 if ((dirrem->dm_state & RMDIR) == 0) { 3013 ip->i_nlink--; 3014 ip->i_flag |= IN_CHANGE; 3015 if (ip->i_nlink < ip->i_effnlink) { 3016 FREE_LOCK(&lk); 3017 panic("handle_workitem_remove: bad file delta"); 3018 } 3019 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 3020 FREE_LOCK(&lk); 3021 vput(vp); 3022 num_dirrem -= 1; 3023 WORKITEM_FREE(dirrem, D_DIRREM); 3024 return; 3025 } 3026 /* 3027 * Directory deletion. Decrement reference count for both the 3028 * just deleted parent directory entry and the reference for ".". 3029 * Next truncate the directory to length zero. When the 3030 * truncation completes, arrange to have the reference count on 3031 * the parent decremented to account for the loss of "..". 3032 */ 3033 ip->i_nlink -= 2; 3034 ip->i_flag |= IN_CHANGE; 3035 if (ip->i_nlink < ip->i_effnlink) { 3036 FREE_LOCK(&lk); 3037 panic("handle_workitem_remove: bad dir delta"); 3038 } 3039 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 3040 FREE_LOCK(&lk); 3041 if ((error = UFS_TRUNCATE(vp, (off_t)0, 0, p->p_ucred, p)) != 0) 3042 softdep_error("handle_workitem_remove: truncate", error); 3043 /* 3044 * Rename a directory to a new parent. Since, we are both deleting 3045 * and creating a new directory entry, the link count on the new 3046 * directory should not change. Thus we skip the followup dirrem. 3047 */ 3048 if (dirrem->dm_state & DIRCHG) { 3049 vput(vp); 3050 num_dirrem -= 1; 3051 WORKITEM_FREE(dirrem, D_DIRREM); 3052 return; 3053 } 3054 /* 3055 * If the inodedep does not exist, then the zero'ed inode has 3056 * been written to disk. If the allocated inode has never been 3057 * written to disk, then the on-disk inode is zero'ed. In either 3058 * case we can remove the file immediately. 3059 */ 3060 ACQUIRE_LOCK(&lk); 3061 dirrem->dm_state = 0; 3062 oldinum = dirrem->dm_oldinum; 3063 dirrem->dm_oldinum = dirrem->dm_dirinum; 3064 if (inodedep_lookup(ip->i_fs, oldinum, 0, &inodedep) == 0 || 3065 check_inode_unwritten(inodedep)) { 3066 FREE_LOCK(&lk); 3067 vput(vp); 3068 handle_workitem_remove(dirrem); 3069 return; 3070 } 3071 WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list); 3072 FREE_LOCK(&lk); 3073 vput(vp); 3074 } 3075 3076 /* 3077 * Inode de-allocation dependencies. 3078 * 3079 * When an inode's link count is reduced to zero, it can be de-allocated. We 3080 * found it convenient to postpone de-allocation until after the inode is 3081 * written to disk with its new link count (zero). At this point, all of the 3082 * on-disk inode's block pointers are nullified and, with careful dependency 3083 * list ordering, all dependencies related to the inode will be satisfied and 3084 * the corresponding dependency structures de-allocated. So, if/when the 3085 * inode is reused, there will be no mixing of old dependencies with new 3086 * ones. This artificial dependency is set up by the block de-allocation 3087 * procedure above (softdep_setup_freeblocks) and completed by the 3088 * following procedure. 3089 */ 3090 static void 3091 handle_workitem_freefile(freefile) 3092 struct freefile *freefile; 3093 { 3094 struct fs *fs; 3095 struct inode tip; 3096 struct inodedep *idp; 3097 int error; 3098 3099 fs = VFSTOUFS(freefile->fx_mnt)->um_fs; 3100 #ifdef DEBUG 3101 ACQUIRE_LOCK(&lk); 3102 error = inodedep_lookup(fs, freefile->fx_oldinum, 0, &idp); 3103 FREE_LOCK(&lk); 3104 if (error) 3105 panic("handle_workitem_freefile: inodedep survived"); 3106 #endif 3107 tip.i_devvp = freefile->fx_devvp; 3108 tip.i_dev = freefile->fx_devvp->v_rdev; 3109 tip.i_fs = fs; 3110 fs->fs_pendinginodes -= 1; 3111 if ((error = ffs_freefile(&tip, freefile->fx_oldinum, freefile->fx_mode)) != 0) 3112 softdep_error("handle_workitem_freefile", error); 3113 WORKITEM_FREE(freefile, D_FREEFILE); 3114 } 3115 3116 /* 3117 * Disk writes. 3118 * 3119 * The dependency structures constructed above are most actively used when file 3120 * system blocks are written to disk. No constraints are placed on when a 3121 * block can be written, but unsatisfied update dependencies are made safe by 3122 * modifying (or replacing) the source memory for the duration of the disk 3123 * write. When the disk write completes, the memory block is again brought 3124 * up-to-date. 3125 * 3126 * In-core inode structure reclamation. 3127 * 3128 * Because there are a finite number of "in-core" inode structures, they are 3129 * reused regularly. By transferring all inode-related dependencies to the 3130 * in-memory inode block and indexing them separately (via "inodedep"s), we 3131 * can allow "in-core" inode structures to be reused at any time and avoid 3132 * any increase in contention. 3133 * 3134 * Called just before entering the device driver to initiate a new disk I/O. 3135 * The buffer must be locked, thus, no I/O completion operations can occur 3136 * while we are manipulating its associated dependencies. 3137 */ 3138 static void 3139 softdep_disk_io_initiation(bp) 3140 struct buf *bp; /* structure describing disk write to occur */ 3141 { 3142 struct worklist *wk, *nextwk; 3143 struct indirdep *indirdep; 3144 3145 /* 3146 * We only care about write operations. There should never 3147 * be dependencies for reads. 3148 */ 3149 if (bp->b_iocmd == BIO_READ) 3150 panic("softdep_disk_io_initiation: read"); 3151 /* 3152 * Do any necessary pre-I/O processing. 3153 */ 3154 for (wk = LIST_FIRST(&bp->b_dep); wk; wk = nextwk) { 3155 nextwk = LIST_NEXT(wk, wk_list); 3156 switch (wk->wk_type) { 3157 3158 case D_PAGEDEP: 3159 initiate_write_filepage(WK_PAGEDEP(wk), bp); 3160 continue; 3161 3162 case D_INODEDEP: 3163 initiate_write_inodeblock(WK_INODEDEP(wk), bp); 3164 continue; 3165 3166 case D_INDIRDEP: 3167 indirdep = WK_INDIRDEP(wk); 3168 if (indirdep->ir_state & GOINGAWAY) 3169 panic("disk_io_initiation: indirdep gone"); 3170 /* 3171 * If there are no remaining dependencies, this 3172 * will be writing the real pointers, so the 3173 * dependency can be freed. 3174 */ 3175 if (LIST_FIRST(&indirdep->ir_deplisthd) == NULL) { 3176 indirdep->ir_savebp->b_flags |= B_INVAL | B_NOCACHE; 3177 brelse(indirdep->ir_savebp); 3178 /* inline expand WORKLIST_REMOVE(wk); */ 3179 wk->wk_state &= ~ONWORKLIST; 3180 LIST_REMOVE(wk, wk_list); 3181 WORKITEM_FREE(indirdep, D_INDIRDEP); 3182 continue; 3183 } 3184 /* 3185 * Replace up-to-date version with safe version. 3186 */ 3187 MALLOC(indirdep->ir_saveddata, caddr_t, bp->b_bcount, 3188 M_INDIRDEP, M_SOFTDEP_FLAGS); 3189 ACQUIRE_LOCK(&lk); 3190 indirdep->ir_state &= ~ATTACHED; 3191 indirdep->ir_state |= UNDONE; 3192 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); 3193 bcopy(indirdep->ir_savebp->b_data, bp->b_data, 3194 bp->b_bcount); 3195 FREE_LOCK(&lk); 3196 continue; 3197 3198 case D_MKDIR: 3199 case D_BMSAFEMAP: 3200 case D_ALLOCDIRECT: 3201 case D_ALLOCINDIR: 3202 continue; 3203 3204 default: 3205 panic("handle_disk_io_initiation: Unexpected type %s", 3206 TYPENAME(wk->wk_type)); 3207 /* NOTREACHED */ 3208 } 3209 } 3210 } 3211 3212 /* 3213 * Called from within the procedure above to deal with unsatisfied 3214 * allocation dependencies in a directory. The buffer must be locked, 3215 * thus, no I/O completion operations can occur while we are 3216 * manipulating its associated dependencies. 3217 */ 3218 static void 3219 initiate_write_filepage(pagedep, bp) 3220 struct pagedep *pagedep; 3221 struct buf *bp; 3222 { 3223 struct diradd *dap; 3224 struct direct *ep; 3225 int i; 3226 3227 if (pagedep->pd_state & IOSTARTED) { 3228 /* 3229 * This can only happen if there is a driver that does not 3230 * understand chaining. Here biodone will reissue the call 3231 * to strategy for the incomplete buffers. 3232 */ 3233 printf("initiate_write_filepage: already started\n"); 3234 return; 3235 } 3236 pagedep->pd_state |= IOSTARTED; 3237 ACQUIRE_LOCK(&lk); 3238 for (i = 0; i < DAHASHSZ; i++) { 3239 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 3240 ep = (struct direct *) 3241 ((char *)bp->b_data + dap->da_offset); 3242 if (ep->d_ino != dap->da_newinum) { 3243 FREE_LOCK(&lk); 3244 panic("%s: dir inum %d != new %d", 3245 "initiate_write_filepage", 3246 ep->d_ino, dap->da_newinum); 3247 } 3248 if (dap->da_state & DIRCHG) 3249 ep->d_ino = dap->da_previous->dm_oldinum; 3250 else 3251 ep->d_ino = 0; 3252 dap->da_state &= ~ATTACHED; 3253 dap->da_state |= UNDONE; 3254 } 3255 } 3256 FREE_LOCK(&lk); 3257 } 3258 3259 /* 3260 * Called from within the procedure above to deal with unsatisfied 3261 * allocation dependencies in an inodeblock. The buffer must be 3262 * locked, thus, no I/O completion operations can occur while we 3263 * are manipulating its associated dependencies. 3264 */ 3265 static void 3266 initiate_write_inodeblock(inodedep, bp) 3267 struct inodedep *inodedep; 3268 struct buf *bp; /* The inode block */ 3269 { 3270 struct allocdirect *adp, *lastadp; 3271 struct dinode *dp; 3272 struct fs *fs; 3273 ufs_lbn_t prevlbn = 0; 3274 int i, deplist; 3275 3276 if (inodedep->id_state & IOSTARTED) 3277 panic("initiate_write_inodeblock: already started"); 3278 inodedep->id_state |= IOSTARTED; 3279 fs = inodedep->id_fs; 3280 dp = (struct dinode *)bp->b_data + 3281 ino_to_fsbo(fs, inodedep->id_ino); 3282 /* 3283 * If the bitmap is not yet written, then the allocated 3284 * inode cannot be written to disk. 3285 */ 3286 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 3287 if (inodedep->id_savedino != NULL) 3288 panic("initiate_write_inodeblock: already doing I/O"); 3289 MALLOC(inodedep->id_savedino, struct dinode *, 3290 sizeof(struct dinode), M_INODEDEP, M_SOFTDEP_FLAGS); 3291 *inodedep->id_savedino = *dp; 3292 bzero((caddr_t)dp, sizeof(struct dinode)); 3293 return; 3294 } 3295 /* 3296 * If no dependencies, then there is nothing to roll back. 3297 */ 3298 inodedep->id_savedsize = dp->di_size; 3299 if (TAILQ_FIRST(&inodedep->id_inoupdt) == NULL) 3300 return; 3301 /* 3302 * Set the dependencies to busy. 3303 */ 3304 ACQUIRE_LOCK(&lk); 3305 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 3306 adp = TAILQ_NEXT(adp, ad_next)) { 3307 #ifdef DIAGNOSTIC 3308 if (deplist != 0 && prevlbn >= adp->ad_lbn) { 3309 FREE_LOCK(&lk); 3310 panic("softdep_write_inodeblock: lbn order"); 3311 } 3312 prevlbn = adp->ad_lbn; 3313 if (adp->ad_lbn < NDADDR && 3314 dp->di_db[adp->ad_lbn] != adp->ad_newblkno) { 3315 FREE_LOCK(&lk); 3316 panic("%s: direct pointer #%ld mismatch %d != %d", 3317 "softdep_write_inodeblock", adp->ad_lbn, 3318 dp->di_db[adp->ad_lbn], adp->ad_newblkno); 3319 } 3320 if (adp->ad_lbn >= NDADDR && 3321 dp->di_ib[adp->ad_lbn - NDADDR] != adp->ad_newblkno) { 3322 FREE_LOCK(&lk); 3323 panic("%s: indirect pointer #%ld mismatch %d != %d", 3324 "softdep_write_inodeblock", adp->ad_lbn - NDADDR, 3325 dp->di_ib[adp->ad_lbn - NDADDR], adp->ad_newblkno); 3326 } 3327 deplist |= 1 << adp->ad_lbn; 3328 if ((adp->ad_state & ATTACHED) == 0) { 3329 FREE_LOCK(&lk); 3330 panic("softdep_write_inodeblock: Unknown state 0x%x", 3331 adp->ad_state); 3332 } 3333 #endif /* DIAGNOSTIC */ 3334 adp->ad_state &= ~ATTACHED; 3335 adp->ad_state |= UNDONE; 3336 } 3337 /* 3338 * The on-disk inode cannot claim to be any larger than the last 3339 * fragment that has been written. Otherwise, the on-disk inode 3340 * might have fragments that were not the last block in the file 3341 * which would corrupt the filesystem. 3342 */ 3343 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 3344 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 3345 if (adp->ad_lbn >= NDADDR) 3346 break; 3347 dp->di_db[adp->ad_lbn] = adp->ad_oldblkno; 3348 /* keep going until hitting a rollback to a frag */ 3349 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 3350 continue; 3351 dp->di_size = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize; 3352 for (i = adp->ad_lbn + 1; i < NDADDR; i++) { 3353 #ifdef DIAGNOSTIC 3354 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) { 3355 FREE_LOCK(&lk); 3356 panic("softdep_write_inodeblock: lost dep1"); 3357 } 3358 #endif /* DIAGNOSTIC */ 3359 dp->di_db[i] = 0; 3360 } 3361 for (i = 0; i < NIADDR; i++) { 3362 #ifdef DIAGNOSTIC 3363 if (dp->di_ib[i] != 0 && 3364 (deplist & ((1 << NDADDR) << i)) == 0) { 3365 FREE_LOCK(&lk); 3366 panic("softdep_write_inodeblock: lost dep2"); 3367 } 3368 #endif /* DIAGNOSTIC */ 3369 dp->di_ib[i] = 0; 3370 } 3371 FREE_LOCK(&lk); 3372 return; 3373 } 3374 /* 3375 * If we have zero'ed out the last allocated block of the file, 3376 * roll back the size to the last currently allocated block. 3377 * We know that this last allocated block is a full-sized as 3378 * we already checked for fragments in the loop above. 3379 */ 3380 if (lastadp != NULL && 3381 dp->di_size <= (lastadp->ad_lbn + 1) * fs->fs_bsize) { 3382 for (i = lastadp->ad_lbn; i >= 0; i--) 3383 if (dp->di_db[i] != 0) 3384 break; 3385 dp->di_size = (i + 1) * fs->fs_bsize; 3386 } 3387 /* 3388 * The only dependencies are for indirect blocks. 3389 * 3390 * The file size for indirect block additions is not guaranteed. 3391 * Such a guarantee would be non-trivial to achieve. The conventional 3392 * synchronous write implementation also does not make this guarantee. 3393 * Fsck should catch and fix discrepancies. Arguably, the file size 3394 * can be over-estimated without destroying integrity when the file 3395 * moves into the indirect blocks (i.e., is large). If we want to 3396 * postpone fsck, we are stuck with this argument. 3397 */ 3398 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 3399 dp->di_ib[adp->ad_lbn - NDADDR] = 0; 3400 FREE_LOCK(&lk); 3401 } 3402 3403 /* 3404 * This routine is called during the completion interrupt 3405 * service routine for a disk write (from the procedure called 3406 * by the device driver to inform the file system caches of 3407 * a request completion). It should be called early in this 3408 * procedure, before the block is made available to other 3409 * processes or other routines are called. 3410 */ 3411 static void 3412 softdep_disk_write_complete(bp) 3413 struct buf *bp; /* describes the completed disk write */ 3414 { 3415 struct worklist *wk; 3416 struct workhead reattach; 3417 struct newblk *newblk; 3418 struct allocindir *aip; 3419 struct allocdirect *adp; 3420 struct indirdep *indirdep; 3421 struct inodedep *inodedep; 3422 struct bmsafemap *bmsafemap; 3423 3424 #ifdef DEBUG 3425 if (lk.lkt_held != -1) 3426 panic("softdep_disk_write_complete: lock is held"); 3427 lk.lkt_held = -2; 3428 #endif 3429 LIST_INIT(&reattach); 3430 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) { 3431 WORKLIST_REMOVE(wk); 3432 switch (wk->wk_type) { 3433 3434 case D_PAGEDEP: 3435 if (handle_written_filepage(WK_PAGEDEP(wk), bp)) 3436 WORKLIST_INSERT(&reattach, wk); 3437 continue; 3438 3439 case D_INODEDEP: 3440 if (handle_written_inodeblock(WK_INODEDEP(wk), bp)) 3441 WORKLIST_INSERT(&reattach, wk); 3442 continue; 3443 3444 case D_BMSAFEMAP: 3445 bmsafemap = WK_BMSAFEMAP(wk); 3446 while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkhd))) { 3447 newblk->nb_state |= DEPCOMPLETE; 3448 newblk->nb_bmsafemap = NULL; 3449 LIST_REMOVE(newblk, nb_deps); 3450 } 3451 while ((adp = 3452 LIST_FIRST(&bmsafemap->sm_allocdirecthd))) { 3453 adp->ad_state |= DEPCOMPLETE; 3454 adp->ad_buf = NULL; 3455 LIST_REMOVE(adp, ad_deps); 3456 handle_allocdirect_partdone(adp); 3457 } 3458 while ((aip = 3459 LIST_FIRST(&bmsafemap->sm_allocindirhd))) { 3460 aip->ai_state |= DEPCOMPLETE; 3461 aip->ai_buf = NULL; 3462 LIST_REMOVE(aip, ai_deps); 3463 handle_allocindir_partdone(aip); 3464 } 3465 while ((inodedep = 3466 LIST_FIRST(&bmsafemap->sm_inodedephd)) != NULL) { 3467 inodedep->id_state |= DEPCOMPLETE; 3468 LIST_REMOVE(inodedep, id_deps); 3469 inodedep->id_buf = NULL; 3470 } 3471 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); 3472 continue; 3473 3474 case D_MKDIR: 3475 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); 3476 continue; 3477 3478 case D_ALLOCDIRECT: 3479 adp = WK_ALLOCDIRECT(wk); 3480 adp->ad_state |= COMPLETE; 3481 handle_allocdirect_partdone(adp); 3482 continue; 3483 3484 case D_ALLOCINDIR: 3485 aip = WK_ALLOCINDIR(wk); 3486 aip->ai_state |= COMPLETE; 3487 handle_allocindir_partdone(aip); 3488 continue; 3489 3490 case D_INDIRDEP: 3491 indirdep = WK_INDIRDEP(wk); 3492 if (indirdep->ir_state & GOINGAWAY) { 3493 lk.lkt_held = -1; 3494 panic("disk_write_complete: indirdep gone"); 3495 } 3496 bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount); 3497 FREE(indirdep->ir_saveddata, M_INDIRDEP); 3498 indirdep->ir_saveddata = 0; 3499 indirdep->ir_state &= ~UNDONE; 3500 indirdep->ir_state |= ATTACHED; 3501 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) { 3502 handle_allocindir_partdone(aip); 3503 if (aip == LIST_FIRST(&indirdep->ir_donehd)) { 3504 lk.lkt_held = -1; 3505 panic("disk_write_complete: not gone"); 3506 } 3507 } 3508 WORKLIST_INSERT(&reattach, wk); 3509 if ((bp->b_flags & B_DELWRI) == 0) 3510 stat_indir_blk_ptrs++; 3511 bdirty(bp); 3512 continue; 3513 3514 default: 3515 lk.lkt_held = -1; 3516 panic("handle_disk_write_complete: Unknown type %s", 3517 TYPENAME(wk->wk_type)); 3518 /* NOTREACHED */ 3519 } 3520 } 3521 /* 3522 * Reattach any requests that must be redone. 3523 */ 3524 while ((wk = LIST_FIRST(&reattach)) != NULL) { 3525 WORKLIST_REMOVE(wk); 3526 WORKLIST_INSERT(&bp->b_dep, wk); 3527 } 3528 #ifdef DEBUG 3529 if (lk.lkt_held != -2) 3530 panic("softdep_disk_write_complete: lock lost"); 3531 lk.lkt_held = -1; 3532 #endif 3533 } 3534 3535 /* 3536 * Called from within softdep_disk_write_complete above. Note that 3537 * this routine is always called from interrupt level with further 3538 * splbio interrupts blocked. 3539 */ 3540 static void 3541 handle_allocdirect_partdone(adp) 3542 struct allocdirect *adp; /* the completed allocdirect */ 3543 { 3544 struct allocdirect *listadp; 3545 struct inodedep *inodedep; 3546 long bsize, delay; 3547 3548 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 3549 return; 3550 if (adp->ad_buf != NULL) { 3551 lk.lkt_held = -1; 3552 panic("handle_allocdirect_partdone: dangling dep"); 3553 } 3554 /* 3555 * The on-disk inode cannot claim to be any larger than the last 3556 * fragment that has been written. Otherwise, the on-disk inode 3557 * might have fragments that were not the last block in the file 3558 * which would corrupt the filesystem. Thus, we cannot free any 3559 * allocdirects after one whose ad_oldblkno claims a fragment as 3560 * these blocks must be rolled back to zero before writing the inode. 3561 * We check the currently active set of allocdirects in id_inoupdt. 3562 */ 3563 inodedep = adp->ad_inodedep; 3564 bsize = inodedep->id_fs->fs_bsize; 3565 TAILQ_FOREACH(listadp, &inodedep->id_inoupdt, ad_next) { 3566 /* found our block */ 3567 if (listadp == adp) 3568 break; 3569 /* continue if ad_oldlbn is not a fragment */ 3570 if (listadp->ad_oldsize == 0 || 3571 listadp->ad_oldsize == bsize) 3572 continue; 3573 /* hit a fragment */ 3574 return; 3575 } 3576 /* 3577 * If we have reached the end of the current list without 3578 * finding the just finished dependency, then it must be 3579 * on the future dependency list. Future dependencies cannot 3580 * be freed until they are moved to the current list. 3581 */ 3582 if (listadp == NULL) { 3583 #ifdef DEBUG 3584 TAILQ_FOREACH(listadp, &inodedep->id_newinoupdt, ad_next) 3585 /* found our block */ 3586 if (listadp == adp) 3587 break; 3588 if (listadp == NULL) { 3589 lk.lkt_held = -1; 3590 panic("handle_allocdirect_partdone: lost dep"); 3591 } 3592 #endif /* DEBUG */ 3593 return; 3594 } 3595 /* 3596 * If we have found the just finished dependency, then free 3597 * it along with anything that follows it that is complete. 3598 * If the inode still has a bitmap dependency, then it has 3599 * never been written to disk, hence the on-disk inode cannot 3600 * reference the old fragment so we can free it without delay. 3601 */ 3602 delay = (inodedep->id_state & DEPCOMPLETE); 3603 for (; adp; adp = listadp) { 3604 listadp = TAILQ_NEXT(adp, ad_next); 3605 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 3606 return; 3607 free_allocdirect(&inodedep->id_inoupdt, adp, delay); 3608 } 3609 } 3610 3611 /* 3612 * Called from within softdep_disk_write_complete above. Note that 3613 * this routine is always called from interrupt level with further 3614 * splbio interrupts blocked. 3615 */ 3616 static void 3617 handle_allocindir_partdone(aip) 3618 struct allocindir *aip; /* the completed allocindir */ 3619 { 3620 struct indirdep *indirdep; 3621 3622 if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE) 3623 return; 3624 if (aip->ai_buf != NULL) { 3625 lk.lkt_held = -1; 3626 panic("handle_allocindir_partdone: dangling dependency"); 3627 } 3628 indirdep = aip->ai_indirdep; 3629 if (indirdep->ir_state & UNDONE) { 3630 LIST_REMOVE(aip, ai_next); 3631 LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next); 3632 return; 3633 } 3634 ((ufs_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 3635 aip->ai_newblkno; 3636 LIST_REMOVE(aip, ai_next); 3637 if (aip->ai_freefrag != NULL) 3638 add_to_worklist(&aip->ai_freefrag->ff_list); 3639 WORKITEM_FREE(aip, D_ALLOCINDIR); 3640 } 3641 3642 /* 3643 * Called from within softdep_disk_write_complete above to restore 3644 * in-memory inode block contents to their most up-to-date state. Note 3645 * that this routine is always called from interrupt level with further 3646 * splbio interrupts blocked. 3647 */ 3648 static int 3649 handle_written_inodeblock(inodedep, bp) 3650 struct inodedep *inodedep; 3651 struct buf *bp; /* buffer containing the inode block */ 3652 { 3653 struct worklist *wk, *filefree; 3654 struct allocdirect *adp, *nextadp; 3655 struct dinode *dp; 3656 int hadchanges; 3657 3658 if ((inodedep->id_state & IOSTARTED) == 0) { 3659 lk.lkt_held = -1; 3660 panic("handle_written_inodeblock: not started"); 3661 } 3662 inodedep->id_state &= ~IOSTARTED; 3663 inodedep->id_state |= COMPLETE; 3664 dp = (struct dinode *)bp->b_data + 3665 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 3666 /* 3667 * If we had to rollback the inode allocation because of 3668 * bitmaps being incomplete, then simply restore it. 3669 * Keep the block dirty so that it will not be reclaimed until 3670 * all associated dependencies have been cleared and the 3671 * corresponding updates written to disk. 3672 */ 3673 if (inodedep->id_savedino != NULL) { 3674 *dp = *inodedep->id_savedino; 3675 FREE(inodedep->id_savedino, M_INODEDEP); 3676 inodedep->id_savedino = NULL; 3677 if ((bp->b_flags & B_DELWRI) == 0) 3678 stat_inode_bitmap++; 3679 bdirty(bp); 3680 return (1); 3681 } 3682 /* 3683 * Roll forward anything that had to be rolled back before 3684 * the inode could be updated. 3685 */ 3686 hadchanges = 0; 3687 for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) { 3688 nextadp = TAILQ_NEXT(adp, ad_next); 3689 if (adp->ad_state & ATTACHED) { 3690 lk.lkt_held = -1; 3691 panic("handle_written_inodeblock: new entry"); 3692 } 3693 if (adp->ad_lbn < NDADDR) { 3694 if (dp->di_db[adp->ad_lbn] != adp->ad_oldblkno) { 3695 lk.lkt_held = -1; 3696 panic("%s: %s #%ld mismatch %d != %d", 3697 "handle_written_inodeblock", 3698 "direct pointer", adp->ad_lbn, 3699 dp->di_db[adp->ad_lbn], adp->ad_oldblkno); 3700 } 3701 dp->di_db[adp->ad_lbn] = adp->ad_newblkno; 3702 } else { 3703 if (dp->di_ib[adp->ad_lbn - NDADDR] != 0) { 3704 lk.lkt_held = -1; 3705 panic("%s: %s #%ld allocated as %d", 3706 "handle_written_inodeblock", 3707 "indirect pointer", adp->ad_lbn - NDADDR, 3708 dp->di_ib[adp->ad_lbn - NDADDR]); 3709 } 3710 dp->di_ib[adp->ad_lbn - NDADDR] = adp->ad_newblkno; 3711 } 3712 adp->ad_state &= ~UNDONE; 3713 adp->ad_state |= ATTACHED; 3714 hadchanges = 1; 3715 } 3716 if (hadchanges && (bp->b_flags & B_DELWRI) == 0) 3717 stat_direct_blk_ptrs++; 3718 /* 3719 * Reset the file size to its most up-to-date value. 3720 */ 3721 if (inodedep->id_savedsize == -1) { 3722 lk.lkt_held = -1; 3723 panic("handle_written_inodeblock: bad size"); 3724 } 3725 if (dp->di_size != inodedep->id_savedsize) { 3726 dp->di_size = inodedep->id_savedsize; 3727 hadchanges = 1; 3728 } 3729 inodedep->id_savedsize = -1; 3730 /* 3731 * If there were any rollbacks in the inode block, then it must be 3732 * marked dirty so that its will eventually get written back in 3733 * its correct form. 3734 */ 3735 if (hadchanges) 3736 bdirty(bp); 3737 /* 3738 * Process any allocdirects that completed during the update. 3739 */ 3740 if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL) 3741 handle_allocdirect_partdone(adp); 3742 /* 3743 * Process deallocations that were held pending until the 3744 * inode had been written to disk. Freeing of the inode 3745 * is delayed until after all blocks have been freed to 3746 * avoid creation of new <vfsid, inum, lbn> triples 3747 * before the old ones have been deleted. 3748 */ 3749 filefree = NULL; 3750 while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) { 3751 WORKLIST_REMOVE(wk); 3752 switch (wk->wk_type) { 3753 3754 case D_FREEFILE: 3755 /* 3756 * We defer adding filefree to the worklist until 3757 * all other additions have been made to ensure 3758 * that it will be done after all the old blocks 3759 * have been freed. 3760 */ 3761 if (filefree != NULL) { 3762 lk.lkt_held = -1; 3763 panic("handle_written_inodeblock: filefree"); 3764 } 3765 filefree = wk; 3766 continue; 3767 3768 case D_MKDIR: 3769 handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT); 3770 continue; 3771 3772 case D_DIRADD: 3773 diradd_inode_written(WK_DIRADD(wk), inodedep); 3774 continue; 3775 3776 case D_FREEBLKS: 3777 case D_FREEFRAG: 3778 case D_DIRREM: 3779 add_to_worklist(wk); 3780 continue; 3781 3782 case D_NEWDIRBLK: 3783 free_newdirblk(WK_NEWDIRBLK(wk)); 3784 continue; 3785 3786 default: 3787 lk.lkt_held = -1; 3788 panic("handle_written_inodeblock: Unknown type %s", 3789 TYPENAME(wk->wk_type)); 3790 /* NOTREACHED */ 3791 } 3792 } 3793 if (filefree != NULL) { 3794 if (free_inodedep(inodedep) == 0) { 3795 lk.lkt_held = -1; 3796 panic("handle_written_inodeblock: live inodedep"); 3797 } 3798 add_to_worklist(filefree); 3799 return (0); 3800 } 3801 3802 /* 3803 * If no outstanding dependencies, free it. 3804 */ 3805 if (free_inodedep(inodedep) || TAILQ_FIRST(&inodedep->id_inoupdt) == 0) 3806 return (0); 3807 return (hadchanges); 3808 } 3809 3810 /* 3811 * Process a diradd entry after its dependent inode has been written. 3812 * This routine must be called with splbio interrupts blocked. 3813 */ 3814 static void 3815 diradd_inode_written(dap, inodedep) 3816 struct diradd *dap; 3817 struct inodedep *inodedep; 3818 { 3819 struct pagedep *pagedep; 3820 3821 dap->da_state |= COMPLETE; 3822 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 3823 if (dap->da_state & DIRCHG) 3824 pagedep = dap->da_previous->dm_pagedep; 3825 else 3826 pagedep = dap->da_pagedep; 3827 LIST_REMOVE(dap, da_pdlist); 3828 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 3829 } 3830 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 3831 } 3832 3833 /* 3834 * Handle the completion of a mkdir dependency. 3835 */ 3836 static void 3837 handle_written_mkdir(mkdir, type) 3838 struct mkdir *mkdir; 3839 int type; 3840 { 3841 struct diradd *dap; 3842 struct pagedep *pagedep; 3843 3844 if (mkdir->md_state != type) { 3845 lk.lkt_held = -1; 3846 panic("handle_written_mkdir: bad type"); 3847 } 3848 dap = mkdir->md_diradd; 3849 dap->da_state &= ~type; 3850 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) 3851 dap->da_state |= DEPCOMPLETE; 3852 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 3853 if (dap->da_state & DIRCHG) 3854 pagedep = dap->da_previous->dm_pagedep; 3855 else 3856 pagedep = dap->da_pagedep; 3857 LIST_REMOVE(dap, da_pdlist); 3858 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 3859 } 3860 LIST_REMOVE(mkdir, md_mkdirs); 3861 WORKITEM_FREE(mkdir, D_MKDIR); 3862 } 3863 3864 /* 3865 * Called from within softdep_disk_write_complete above. 3866 * A write operation was just completed. Removed inodes can 3867 * now be freed and associated block pointers may be committed. 3868 * Note that this routine is always called from interrupt level 3869 * with further splbio interrupts blocked. 3870 */ 3871 static int 3872 handle_written_filepage(pagedep, bp) 3873 struct pagedep *pagedep; 3874 struct buf *bp; /* buffer containing the written page */ 3875 { 3876 struct dirrem *dirrem; 3877 struct diradd *dap, *nextdap; 3878 struct direct *ep; 3879 int i, chgs; 3880 3881 if ((pagedep->pd_state & IOSTARTED) == 0) { 3882 lk.lkt_held = -1; 3883 panic("handle_written_filepage: not started"); 3884 } 3885 pagedep->pd_state &= ~IOSTARTED; 3886 /* 3887 * Process any directory removals that have been committed. 3888 */ 3889 while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) { 3890 LIST_REMOVE(dirrem, dm_next); 3891 dirrem->dm_dirinum = pagedep->pd_ino; 3892 add_to_worklist(&dirrem->dm_list); 3893 } 3894 /* 3895 * Free any directory additions that have been committed. 3896 * If it is a newly allocated block, we have to wait until 3897 * the on-disk directory inode claims the new block. 3898 */ 3899 if ((pagedep->pd_state & NEWBLOCK) == 0) 3900 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 3901 free_diradd(dap); 3902 /* 3903 * Uncommitted directory entries must be restored. 3904 */ 3905 for (chgs = 0, i = 0; i < DAHASHSZ; i++) { 3906 for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap; 3907 dap = nextdap) { 3908 nextdap = LIST_NEXT(dap, da_pdlist); 3909 if (dap->da_state & ATTACHED) { 3910 lk.lkt_held = -1; 3911 panic("handle_written_filepage: attached"); 3912 } 3913 ep = (struct direct *) 3914 ((char *)bp->b_data + dap->da_offset); 3915 ep->d_ino = dap->da_newinum; 3916 dap->da_state &= ~UNDONE; 3917 dap->da_state |= ATTACHED; 3918 chgs = 1; 3919 /* 3920 * If the inode referenced by the directory has 3921 * been written out, then the dependency can be 3922 * moved to the pending list. 3923 */ 3924 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 3925 LIST_REMOVE(dap, da_pdlist); 3926 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, 3927 da_pdlist); 3928 } 3929 } 3930 } 3931 /* 3932 * If there were any rollbacks in the directory, then it must be 3933 * marked dirty so that its will eventually get written back in 3934 * its correct form. 3935 */ 3936 if (chgs) { 3937 if ((bp->b_flags & B_DELWRI) == 0) 3938 stat_dir_entry++; 3939 bdirty(bp); 3940 return (1); 3941 } 3942 /* 3943 * If no dependencies remain and we are not waiting for a 3944 * new directory block to be claimed by its inode, then the 3945 * pagedep will be freed. Otherwise it will remain to track 3946 * any new entries on the page in case they are fsync'ed. 3947 */ 3948 if (LIST_FIRST(&pagedep->pd_pendinghd) == 0 && 3949 (pagedep->pd_state & NEWBLOCK) == 0) { 3950 LIST_REMOVE(pagedep, pd_hash); 3951 WORKITEM_FREE(pagedep, D_PAGEDEP); 3952 } 3953 return (0); 3954 } 3955 3956 /* 3957 * Writing back in-core inode structures. 3958 * 3959 * The file system only accesses an inode's contents when it occupies an 3960 * "in-core" inode structure. These "in-core" structures are separate from 3961 * the page frames used to cache inode blocks. Only the latter are 3962 * transferred to/from the disk. So, when the updated contents of the 3963 * "in-core" inode structure are copied to the corresponding in-memory inode 3964 * block, the dependencies are also transferred. The following procedure is 3965 * called when copying a dirty "in-core" inode to a cached inode block. 3966 */ 3967 3968 /* 3969 * Called when an inode is loaded from disk. If the effective link count 3970 * differed from the actual link count when it was last flushed, then we 3971 * need to ensure that the correct effective link count is put back. 3972 */ 3973 void 3974 softdep_load_inodeblock(ip) 3975 struct inode *ip; /* the "in_core" copy of the inode */ 3976 { 3977 struct inodedep *inodedep; 3978 3979 /* 3980 * Check for alternate nlink count. 3981 */ 3982 ip->i_effnlink = ip->i_nlink; 3983 ACQUIRE_LOCK(&lk); 3984 if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) { 3985 FREE_LOCK(&lk); 3986 return; 3987 } 3988 ip->i_effnlink -= inodedep->id_nlinkdelta; 3989 if (inodedep->id_state & SPACECOUNTED) 3990 ip->i_flag |= IN_SPACECOUNTED; 3991 FREE_LOCK(&lk); 3992 } 3993 3994 /* 3995 * This routine is called just before the "in-core" inode 3996 * information is to be copied to the in-memory inode block. 3997 * Recall that an inode block contains several inodes. If 3998 * the force flag is set, then the dependencies will be 3999 * cleared so that the update can always be made. Note that 4000 * the buffer is locked when this routine is called, so we 4001 * will never be in the middle of writing the inode block 4002 * to disk. 4003 */ 4004 void 4005 softdep_update_inodeblock(ip, bp, waitfor) 4006 struct inode *ip; /* the "in_core" copy of the inode */ 4007 struct buf *bp; /* the buffer containing the inode block */ 4008 int waitfor; /* nonzero => update must be allowed */ 4009 { 4010 struct inodedep *inodedep; 4011 struct worklist *wk; 4012 int error, gotit; 4013 4014 /* 4015 * If the effective link count is not equal to the actual link 4016 * count, then we must track the difference in an inodedep while 4017 * the inode is (potentially) tossed out of the cache. Otherwise, 4018 * if there is no existing inodedep, then there are no dependencies 4019 * to track. 4020 */ 4021 ACQUIRE_LOCK(&lk); 4022 if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) { 4023 FREE_LOCK(&lk); 4024 if (ip->i_effnlink != ip->i_nlink) 4025 panic("softdep_update_inodeblock: bad link count"); 4026 return; 4027 } 4028 if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink) { 4029 FREE_LOCK(&lk); 4030 panic("softdep_update_inodeblock: bad delta"); 4031 } 4032 /* 4033 * Changes have been initiated. Anything depending on these 4034 * changes cannot occur until this inode has been written. 4035 */ 4036 inodedep->id_state &= ~COMPLETE; 4037 if ((inodedep->id_state & ONWORKLIST) == 0) 4038 WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list); 4039 /* 4040 * Any new dependencies associated with the incore inode must 4041 * now be moved to the list associated with the buffer holding 4042 * the in-memory copy of the inode. Once merged process any 4043 * allocdirects that are completed by the merger. 4044 */ 4045 merge_inode_lists(inodedep); 4046 if (TAILQ_FIRST(&inodedep->id_inoupdt) != NULL) 4047 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt)); 4048 /* 4049 * Now that the inode has been pushed into the buffer, the 4050 * operations dependent on the inode being written to disk 4051 * can be moved to the id_bufwait so that they will be 4052 * processed when the buffer I/O completes. 4053 */ 4054 while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) { 4055 WORKLIST_REMOVE(wk); 4056 WORKLIST_INSERT(&inodedep->id_bufwait, wk); 4057 } 4058 /* 4059 * Newly allocated inodes cannot be written until the bitmap 4060 * that allocates them have been written (indicated by 4061 * DEPCOMPLETE being set in id_state). If we are doing a 4062 * forced sync (e.g., an fsync on a file), we force the bitmap 4063 * to be written so that the update can be done. 4064 */ 4065 if ((inodedep->id_state & DEPCOMPLETE) != 0 || waitfor == 0) { 4066 FREE_LOCK(&lk); 4067 return; 4068 } 4069 gotit = getdirtybuf(&inodedep->id_buf, MNT_WAIT); 4070 FREE_LOCK(&lk); 4071 if (gotit && 4072 (error = BUF_WRITE(inodedep->id_buf)) != 0) 4073 softdep_error("softdep_update_inodeblock: bwrite", error); 4074 if ((inodedep->id_state & DEPCOMPLETE) == 0) 4075 panic("softdep_update_inodeblock: update failed"); 4076 } 4077 4078 /* 4079 * Merge the new inode dependency list (id_newinoupdt) into the old 4080 * inode dependency list (id_inoupdt). This routine must be called 4081 * with splbio interrupts blocked. 4082 */ 4083 static void 4084 merge_inode_lists(inodedep) 4085 struct inodedep *inodedep; 4086 { 4087 struct allocdirect *listadp, *newadp; 4088 4089 newadp = TAILQ_FIRST(&inodedep->id_newinoupdt); 4090 for (listadp = TAILQ_FIRST(&inodedep->id_inoupdt); listadp && newadp;) { 4091 if (listadp->ad_lbn < newadp->ad_lbn) { 4092 listadp = TAILQ_NEXT(listadp, ad_next); 4093 continue; 4094 } 4095 TAILQ_REMOVE(&inodedep->id_newinoupdt, newadp, ad_next); 4096 TAILQ_INSERT_BEFORE(listadp, newadp, ad_next); 4097 if (listadp->ad_lbn == newadp->ad_lbn) { 4098 allocdirect_merge(&inodedep->id_inoupdt, newadp, 4099 listadp); 4100 listadp = newadp; 4101 } 4102 newadp = TAILQ_FIRST(&inodedep->id_newinoupdt); 4103 } 4104 while ((newadp = TAILQ_FIRST(&inodedep->id_newinoupdt)) != NULL) { 4105 TAILQ_REMOVE(&inodedep->id_newinoupdt, newadp, ad_next); 4106 TAILQ_INSERT_TAIL(&inodedep->id_inoupdt, newadp, ad_next); 4107 } 4108 } 4109 4110 /* 4111 * If we are doing an fsync, then we must ensure that any directory 4112 * entries for the inode have been written after the inode gets to disk. 4113 */ 4114 int 4115 softdep_fsync(vp) 4116 struct vnode *vp; /* the "in_core" copy of the inode */ 4117 { 4118 struct inodedep *inodedep; 4119 struct pagedep *pagedep; 4120 struct worklist *wk; 4121 struct diradd *dap; 4122 struct mount *mnt; 4123 struct vnode *pvp; 4124 struct inode *ip; 4125 struct buf *bp; 4126 struct fs *fs; 4127 struct proc *p = CURPROC; /* XXX */ 4128 int error, flushparent; 4129 ino_t parentino; 4130 ufs_lbn_t lbn; 4131 4132 ip = VTOI(vp); 4133 fs = ip->i_fs; 4134 ACQUIRE_LOCK(&lk); 4135 if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0) { 4136 FREE_LOCK(&lk); 4137 return (0); 4138 } 4139 if (LIST_FIRST(&inodedep->id_inowait) != NULL || 4140 LIST_FIRST(&inodedep->id_bufwait) != NULL || 4141 TAILQ_FIRST(&inodedep->id_inoupdt) != NULL || 4142 TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL) { 4143 FREE_LOCK(&lk); 4144 panic("softdep_fsync: pending ops"); 4145 } 4146 for (error = 0, flushparent = 0; ; ) { 4147 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL) 4148 break; 4149 if (wk->wk_type != D_DIRADD) { 4150 FREE_LOCK(&lk); 4151 panic("softdep_fsync: Unexpected type %s", 4152 TYPENAME(wk->wk_type)); 4153 } 4154 dap = WK_DIRADD(wk); 4155 /* 4156 * Flush our parent if this directory entry has a MKDIR_PARENT 4157 * dependency or is contained in a newly allocated block. 4158 */ 4159 if (dap->da_state & DIRCHG) 4160 pagedep = dap->da_previous->dm_pagedep; 4161 else 4162 pagedep = dap->da_pagedep; 4163 mnt = pagedep->pd_mnt; 4164 parentino = pagedep->pd_ino; 4165 lbn = pagedep->pd_lbn; 4166 if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE) { 4167 FREE_LOCK(&lk); 4168 panic("softdep_fsync: dirty"); 4169 } 4170 if ((dap->da_state & MKDIR_PARENT) || 4171 (pagedep->pd_state & NEWBLOCK)) 4172 flushparent = 1; 4173 else 4174 flushparent = 0; 4175 /* 4176 * If we are being fsync'ed as part of vgone'ing this vnode, 4177 * then we will not be able to release and recover the 4178 * vnode below, so we just have to give up on writing its 4179 * directory entry out. It will eventually be written, just 4180 * not now, but then the user was not asking to have it 4181 * written, so we are not breaking any promises. 4182 */ 4183 if (vp->v_flag & VXLOCK) 4184 break; 4185 /* 4186 * We prevent deadlock by always fetching inodes from the 4187 * root, moving down the directory tree. Thus, when fetching 4188 * our parent directory, we must unlock ourselves before 4189 * requesting the lock on our parent. See the comment in 4190 * ufs_lookup for details on possible races. 4191 */ 4192 FREE_LOCK(&lk); 4193 VOP_UNLOCK(vp, 0, p); 4194 error = VFS_VGET(mnt, parentino, &pvp); 4195 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, p); 4196 if (error != 0) 4197 return (error); 4198 /* 4199 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps 4200 * that are contained in direct blocks will be resolved by 4201 * doing a UFS_UPDATE. Pagedeps contained in indirect blocks 4202 * may require a complete sync'ing of the directory. So, we 4203 * try the cheap and fast UFS_UPDATE first, and if that fails, 4204 * then we do the slower VOP_FSYNC of the directory. 4205 */ 4206 if (flushparent) { 4207 if ((error = UFS_UPDATE(pvp, 1)) != 0) { 4208 vput(pvp); 4209 return (error); 4210 } 4211 if ((pagedep->pd_state & NEWBLOCK) && 4212 (error = VOP_FSYNC(pvp, p->p_ucred, MNT_WAIT, p))) { 4213 vput(pvp); 4214 return (error); 4215 } 4216 } 4217 /* 4218 * Flush directory page containing the inode's name. 4219 */ 4220 error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), p->p_ucred, 4221 &bp); 4222 if (error == 0) 4223 error = BUF_WRITE(bp); 4224 vput(pvp); 4225 if (error != 0) 4226 return (error); 4227 ACQUIRE_LOCK(&lk); 4228 if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0) 4229 break; 4230 } 4231 FREE_LOCK(&lk); 4232 return (0); 4233 } 4234 4235 /* 4236 * Flush all the dirty bitmaps associated with the block device 4237 * before flushing the rest of the dirty blocks so as to reduce 4238 * the number of dependencies that will have to be rolled back. 4239 */ 4240 void 4241 softdep_fsync_mountdev(vp) 4242 struct vnode *vp; 4243 { 4244 struct buf *bp, *nbp; 4245 struct worklist *wk; 4246 4247 if (!vn_isdisk(vp, NULL)) 4248 panic("softdep_fsync_mountdev: vnode not a disk"); 4249 ACQUIRE_LOCK(&lk); 4250 for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { 4251 nbp = TAILQ_NEXT(bp, b_vnbufs); 4252 /* 4253 * If it is already scheduled, skip to the next buffer. 4254 */ 4255 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) 4256 continue; 4257 if ((bp->b_flags & B_DELWRI) == 0) { 4258 FREE_LOCK(&lk); 4259 panic("softdep_fsync_mountdev: not dirty"); 4260 } 4261 /* 4262 * We are only interested in bitmaps with outstanding 4263 * dependencies. 4264 */ 4265 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL || 4266 wk->wk_type != D_BMSAFEMAP || 4267 (bp->b_xflags & BX_BKGRDINPROG)) { 4268 BUF_UNLOCK(bp); 4269 continue; 4270 } 4271 bremfree(bp); 4272 FREE_LOCK(&lk); 4273 (void) bawrite(bp); 4274 ACQUIRE_LOCK(&lk); 4275 /* 4276 * Since we may have slept during the I/O, we need 4277 * to start from a known point. 4278 */ 4279 nbp = TAILQ_FIRST(&vp->v_dirtyblkhd); 4280 } 4281 drain_output(vp, 1); 4282 FREE_LOCK(&lk); 4283 } 4284 4285 /* 4286 * This routine is called when we are trying to synchronously flush a 4287 * file. This routine must eliminate any filesystem metadata dependencies 4288 * so that the syncing routine can succeed by pushing the dirty blocks 4289 * associated with the file. If any I/O errors occur, they are returned. 4290 */ 4291 int 4292 softdep_sync_metadata(ap) 4293 struct vop_fsync_args /* { 4294 struct vnode *a_vp; 4295 struct ucred *a_cred; 4296 int a_waitfor; 4297 struct proc *a_p; 4298 } */ *ap; 4299 { 4300 struct vnode *vp = ap->a_vp; 4301 struct pagedep *pagedep; 4302 struct allocdirect *adp; 4303 struct allocindir *aip; 4304 struct buf *bp, *nbp; 4305 struct worklist *wk; 4306 int i, error, waitfor; 4307 4308 /* 4309 * Check whether this vnode is involved in a filesystem 4310 * that is doing soft dependency processing. 4311 */ 4312 if (!vn_isdisk(vp, NULL)) { 4313 if (!DOINGSOFTDEP(vp)) 4314 return (0); 4315 } else 4316 if (vp->v_rdev->si_mountpoint == NULL || 4317 (vp->v_rdev->si_mountpoint->mnt_flag & MNT_SOFTDEP) == 0) 4318 return (0); 4319 /* 4320 * Ensure that any direct block dependencies have been cleared. 4321 */ 4322 ACQUIRE_LOCK(&lk); 4323 if ((error = flush_inodedep_deps(VTOI(vp)->i_fs, VTOI(vp)->i_number))) { 4324 FREE_LOCK(&lk); 4325 return (error); 4326 } 4327 /* 4328 * For most files, the only metadata dependencies are the 4329 * cylinder group maps that allocate their inode or blocks. 4330 * The block allocation dependencies can be found by traversing 4331 * the dependency lists for any buffers that remain on their 4332 * dirty buffer list. The inode allocation dependency will 4333 * be resolved when the inode is updated with MNT_WAIT. 4334 * This work is done in two passes. The first pass grabs most 4335 * of the buffers and begins asynchronously writing them. The 4336 * only way to wait for these asynchronous writes is to sleep 4337 * on the filesystem vnode which may stay busy for a long time 4338 * if the filesystem is active. So, instead, we make a second 4339 * pass over the dependencies blocking on each write. In the 4340 * usual case we will be blocking against a write that we 4341 * initiated, so when it is done the dependency will have been 4342 * resolved. Thus the second pass is expected to end quickly. 4343 */ 4344 waitfor = MNT_NOWAIT; 4345 top: 4346 if (getdirtybuf(&TAILQ_FIRST(&vp->v_dirtyblkhd), MNT_WAIT) == 0) { 4347 FREE_LOCK(&lk); 4348 return (0); 4349 } 4350 bp = TAILQ_FIRST(&vp->v_dirtyblkhd); 4351 /* While syncing snapshots, we must allow recursive lookups */ 4352 bp->b_lock.lk_flags |= LK_CANRECURSE; 4353 loop: 4354 /* 4355 * As we hold the buffer locked, none of its dependencies 4356 * will disappear. 4357 */ 4358 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 4359 switch (wk->wk_type) { 4360 4361 case D_ALLOCDIRECT: 4362 adp = WK_ALLOCDIRECT(wk); 4363 if (adp->ad_state & DEPCOMPLETE) 4364 continue; 4365 nbp = adp->ad_buf; 4366 if (getdirtybuf(&nbp, waitfor) == 0) 4367 continue; 4368 FREE_LOCK(&lk); 4369 if (waitfor == MNT_NOWAIT) { 4370 bawrite(nbp); 4371 } else if ((error = BUF_WRITE(nbp)) != 0) { 4372 break; 4373 } 4374 ACQUIRE_LOCK(&lk); 4375 continue; 4376 4377 case D_ALLOCINDIR: 4378 aip = WK_ALLOCINDIR(wk); 4379 if (aip->ai_state & DEPCOMPLETE) 4380 continue; 4381 nbp = aip->ai_buf; 4382 if (getdirtybuf(&nbp, waitfor) == 0) 4383 continue; 4384 FREE_LOCK(&lk); 4385 if (waitfor == MNT_NOWAIT) { 4386 bawrite(nbp); 4387 } else if ((error = BUF_WRITE(nbp)) != 0) { 4388 break; 4389 } 4390 ACQUIRE_LOCK(&lk); 4391 continue; 4392 4393 case D_INDIRDEP: 4394 restart: 4395 4396 LIST_FOREACH(aip, &WK_INDIRDEP(wk)->ir_deplisthd, ai_next) { 4397 if (aip->ai_state & DEPCOMPLETE) 4398 continue; 4399 nbp = aip->ai_buf; 4400 if (getdirtybuf(&nbp, MNT_WAIT) == 0) 4401 goto restart; 4402 FREE_LOCK(&lk); 4403 if ((error = BUF_WRITE(nbp)) != 0) { 4404 break; 4405 } 4406 ACQUIRE_LOCK(&lk); 4407 goto restart; 4408 } 4409 continue; 4410 4411 case D_INODEDEP: 4412 if ((error = flush_inodedep_deps(WK_INODEDEP(wk)->id_fs, 4413 WK_INODEDEP(wk)->id_ino)) != 0) { 4414 FREE_LOCK(&lk); 4415 break; 4416 } 4417 continue; 4418 4419 case D_PAGEDEP: 4420 /* 4421 * We are trying to sync a directory that may 4422 * have dependencies on both its own metadata 4423 * and/or dependencies on the inodes of any 4424 * recently allocated files. We walk its diradd 4425 * lists pushing out the associated inode. 4426 */ 4427 pagedep = WK_PAGEDEP(wk); 4428 for (i = 0; i < DAHASHSZ; i++) { 4429 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0) 4430 continue; 4431 if ((error = 4432 flush_pagedep_deps(vp, pagedep->pd_mnt, 4433 &pagedep->pd_diraddhd[i]))) { 4434 FREE_LOCK(&lk); 4435 break; 4436 } 4437 } 4438 continue; 4439 4440 case D_MKDIR: 4441 /* 4442 * This case should never happen if the vnode has 4443 * been properly sync'ed. However, if this function 4444 * is used at a place where the vnode has not yet 4445 * been sync'ed, this dependency can show up. So, 4446 * rather than panic, just flush it. 4447 */ 4448 nbp = WK_MKDIR(wk)->md_buf; 4449 if (getdirtybuf(&nbp, waitfor) == 0) 4450 continue; 4451 FREE_LOCK(&lk); 4452 if (waitfor == MNT_NOWAIT) { 4453 bawrite(nbp); 4454 } else if ((error = BUF_WRITE(nbp)) != 0) { 4455 break; 4456 } 4457 ACQUIRE_LOCK(&lk); 4458 continue; 4459 4460 case D_BMSAFEMAP: 4461 /* 4462 * This case should never happen if the vnode has 4463 * been properly sync'ed. However, if this function 4464 * is used at a place where the vnode has not yet 4465 * been sync'ed, this dependency can show up. So, 4466 * rather than panic, just flush it. 4467 */ 4468 nbp = WK_BMSAFEMAP(wk)->sm_buf; 4469 if (getdirtybuf(&nbp, waitfor) == 0) 4470 continue; 4471 FREE_LOCK(&lk); 4472 if (waitfor == MNT_NOWAIT) { 4473 bawrite(nbp); 4474 } else if ((error = BUF_WRITE(nbp)) != 0) { 4475 break; 4476 } 4477 ACQUIRE_LOCK(&lk); 4478 continue; 4479 4480 default: 4481 FREE_LOCK(&lk); 4482 panic("softdep_sync_metadata: Unknown type %s", 4483 TYPENAME(wk->wk_type)); 4484 /* NOTREACHED */ 4485 } 4486 /* We reach here only in error and unlocked */ 4487 if (error == 0) 4488 panic("softdep_sync_metadata: zero error"); 4489 bp->b_lock.lk_flags &= ~LK_CANRECURSE; 4490 bawrite(bp); 4491 return (error); 4492 } 4493 (void) getdirtybuf(&TAILQ_NEXT(bp, b_vnbufs), MNT_WAIT); 4494 nbp = TAILQ_NEXT(bp, b_vnbufs); 4495 FREE_LOCK(&lk); 4496 bp->b_lock.lk_flags &= ~LK_CANRECURSE; 4497 bawrite(bp); 4498 ACQUIRE_LOCK(&lk); 4499 if (nbp != NULL) { 4500 bp = nbp; 4501 goto loop; 4502 } 4503 /* 4504 * We must wait for any I/O in progress to finish so that 4505 * all potential buffers on the dirty list will be visible. 4506 * Once they are all there, proceed with the second pass 4507 * which will wait for the I/O as per above. 4508 */ 4509 drain_output(vp, 1); 4510 /* 4511 * The brief unlock is to allow any pent up dependency 4512 * processing to be done. 4513 */ 4514 if (waitfor == MNT_NOWAIT) { 4515 waitfor = MNT_WAIT; 4516 FREE_LOCK(&lk); 4517 ACQUIRE_LOCK(&lk); 4518 goto top; 4519 } 4520 4521 /* 4522 * If we have managed to get rid of all the dirty buffers, 4523 * then we are done. For certain directories and block 4524 * devices, we may need to do further work. 4525 */ 4526 if (TAILQ_FIRST(&vp->v_dirtyblkhd) == NULL) { 4527 FREE_LOCK(&lk); 4528 return (0); 4529 } 4530 4531 FREE_LOCK(&lk); 4532 /* 4533 * If we are trying to sync a block device, some of its buffers may 4534 * contain metadata that cannot be written until the contents of some 4535 * partially written files have been written to disk. The only easy 4536 * way to accomplish this is to sync the entire filesystem (luckily 4537 * this happens rarely). 4538 */ 4539 if (vn_isdisk(vp, NULL) && 4540 vp->v_rdev->si_mountpoint && !VOP_ISLOCKED(vp, NULL) && 4541 (error = VFS_SYNC(vp->v_rdev->si_mountpoint, MNT_WAIT, ap->a_cred, 4542 ap->a_p)) != 0) 4543 return (error); 4544 return (0); 4545 } 4546 4547 /* 4548 * Flush the dependencies associated with an inodedep. 4549 * Called with splbio blocked. 4550 */ 4551 static int 4552 flush_inodedep_deps(fs, ino) 4553 struct fs *fs; 4554 ino_t ino; 4555 { 4556 struct inodedep *inodedep; 4557 struct allocdirect *adp; 4558 int error, waitfor; 4559 struct buf *bp; 4560 4561 /* 4562 * This work is done in two passes. The first pass grabs most 4563 * of the buffers and begins asynchronously writing them. The 4564 * only way to wait for these asynchronous writes is to sleep 4565 * on the filesystem vnode which may stay busy for a long time 4566 * if the filesystem is active. So, instead, we make a second 4567 * pass over the dependencies blocking on each write. In the 4568 * usual case we will be blocking against a write that we 4569 * initiated, so when it is done the dependency will have been 4570 * resolved. Thus the second pass is expected to end quickly. 4571 * We give a brief window at the top of the loop to allow 4572 * any pending I/O to complete. 4573 */ 4574 for (waitfor = MNT_NOWAIT; ; ) { 4575 FREE_LOCK(&lk); 4576 ACQUIRE_LOCK(&lk); 4577 if (inodedep_lookup(fs, ino, 0, &inodedep) == 0) 4578 return (0); 4579 TAILQ_FOREACH(adp, &inodedep->id_inoupdt, ad_next) { 4580 if (adp->ad_state & DEPCOMPLETE) 4581 continue; 4582 bp = adp->ad_buf; 4583 if (getdirtybuf(&bp, waitfor) == 0) { 4584 if (waitfor == MNT_NOWAIT) 4585 continue; 4586 break; 4587 } 4588 FREE_LOCK(&lk); 4589 if (waitfor == MNT_NOWAIT) { 4590 bawrite(bp); 4591 } else if ((error = BUF_WRITE(bp)) != 0) { 4592 ACQUIRE_LOCK(&lk); 4593 return (error); 4594 } 4595 ACQUIRE_LOCK(&lk); 4596 break; 4597 } 4598 if (adp != NULL) 4599 continue; 4600 TAILQ_FOREACH(adp, &inodedep->id_newinoupdt, ad_next) { 4601 if (adp->ad_state & DEPCOMPLETE) 4602 continue; 4603 bp = adp->ad_buf; 4604 if (getdirtybuf(&bp, waitfor) == 0) { 4605 if (waitfor == MNT_NOWAIT) 4606 continue; 4607 break; 4608 } 4609 FREE_LOCK(&lk); 4610 if (waitfor == MNT_NOWAIT) { 4611 bawrite(bp); 4612 } else if ((error = BUF_WRITE(bp)) != 0) { 4613 ACQUIRE_LOCK(&lk); 4614 return (error); 4615 } 4616 ACQUIRE_LOCK(&lk); 4617 break; 4618 } 4619 if (adp != NULL) 4620 continue; 4621 /* 4622 * If pass2, we are done, otherwise do pass 2. 4623 */ 4624 if (waitfor == MNT_WAIT) 4625 break; 4626 waitfor = MNT_WAIT; 4627 } 4628 /* 4629 * Try freeing inodedep in case all dependencies have been removed. 4630 */ 4631 if (inodedep_lookup(fs, ino, 0, &inodedep) != 0) 4632 (void) free_inodedep(inodedep); 4633 return (0); 4634 } 4635 4636 /* 4637 * Eliminate a pagedep dependency by flushing out all its diradd dependencies. 4638 * Called with splbio blocked. 4639 */ 4640 static int 4641 flush_pagedep_deps(pvp, mp, diraddhdp) 4642 struct vnode *pvp; 4643 struct mount *mp; 4644 struct diraddhd *diraddhdp; 4645 { 4646 struct proc *p = CURPROC; /* XXX */ 4647 struct inodedep *inodedep; 4648 struct ufsmount *ump; 4649 struct diradd *dap; 4650 struct vnode *vp; 4651 int gotit, error = 0; 4652 struct buf *bp; 4653 ino_t inum; 4654 4655 ump = VFSTOUFS(mp); 4656 while ((dap = LIST_FIRST(diraddhdp)) != NULL) { 4657 /* 4658 * Flush ourselves if this directory entry 4659 * has a MKDIR_PARENT dependency. 4660 */ 4661 if (dap->da_state & MKDIR_PARENT) { 4662 FREE_LOCK(&lk); 4663 if ((error = UFS_UPDATE(pvp, 1)) != 0) 4664 break; 4665 ACQUIRE_LOCK(&lk); 4666 /* 4667 * If that cleared dependencies, go on to next. 4668 */ 4669 if (dap != LIST_FIRST(diraddhdp)) 4670 continue; 4671 if (dap->da_state & MKDIR_PARENT) { 4672 FREE_LOCK(&lk); 4673 panic("flush_pagedep_deps: MKDIR_PARENT"); 4674 } 4675 } 4676 /* 4677 * A newly allocated directory must have its "." and 4678 * ".." entries written out before its name can be 4679 * committed in its parent. We do not want or need 4680 * the full semantics of a synchronous VOP_FSYNC as 4681 * that may end up here again, once for each directory 4682 * level in the filesystem. Instead, we push the blocks 4683 * and wait for them to clear. We have to fsync twice 4684 * because the first call may choose to defer blocks 4685 * that still have dependencies, but deferral will 4686 * happen at most once. 4687 */ 4688 inum = dap->da_newinum; 4689 if (dap->da_state & MKDIR_BODY) { 4690 FREE_LOCK(&lk); 4691 if ((error = VFS_VGET(mp, inum, &vp)) != 0) 4692 break; 4693 if ((error=VOP_FSYNC(vp, p->p_ucred, MNT_NOWAIT, p)) || 4694 (error=VOP_FSYNC(vp, p->p_ucred, MNT_NOWAIT, p))) { 4695 vput(vp); 4696 break; 4697 } 4698 drain_output(vp, 0); 4699 vput(vp); 4700 ACQUIRE_LOCK(&lk); 4701 /* 4702 * If that cleared dependencies, go on to next. 4703 */ 4704 if (dap != LIST_FIRST(diraddhdp)) 4705 continue; 4706 if (dap->da_state & MKDIR_BODY) { 4707 FREE_LOCK(&lk); 4708 panic("flush_pagedep_deps: MKDIR_BODY"); 4709 } 4710 } 4711 /* 4712 * Flush the inode on which the directory entry depends. 4713 * Having accounted for MKDIR_PARENT and MKDIR_BODY above, 4714 * the only remaining dependency is that the updated inode 4715 * count must get pushed to disk. The inode has already 4716 * been pushed into its inode buffer (via VOP_UPDATE) at 4717 * the time of the reference count change. So we need only 4718 * locate that buffer, ensure that there will be no rollback 4719 * caused by a bitmap dependency, then write the inode buffer. 4720 */ 4721 if (inodedep_lookup(ump->um_fs, inum, 0, &inodedep) == 0) { 4722 FREE_LOCK(&lk); 4723 panic("flush_pagedep_deps: lost inode"); 4724 } 4725 /* 4726 * If the inode still has bitmap dependencies, 4727 * push them to disk. 4728 */ 4729 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 4730 gotit = getdirtybuf(&inodedep->id_buf, MNT_WAIT); 4731 FREE_LOCK(&lk); 4732 if (gotit && 4733 (error = BUF_WRITE(inodedep->id_buf)) != 0) 4734 break; 4735 ACQUIRE_LOCK(&lk); 4736 if (dap != LIST_FIRST(diraddhdp)) 4737 continue; 4738 } 4739 /* 4740 * If the inode is still sitting in a buffer waiting 4741 * to be written, push it to disk. 4742 */ 4743 FREE_LOCK(&lk); 4744 if ((error = bread(ump->um_devvp, 4745 fsbtodb(ump->um_fs, ino_to_fsba(ump->um_fs, inum)), 4746 (int)ump->um_fs->fs_bsize, NOCRED, &bp)) != 0) 4747 break; 4748 if ((error = BUF_WRITE(bp)) != 0) 4749 break; 4750 ACQUIRE_LOCK(&lk); 4751 /* 4752 * If we have failed to get rid of all the dependencies 4753 * then something is seriously wrong. 4754 */ 4755 if (dap == LIST_FIRST(diraddhdp)) { 4756 FREE_LOCK(&lk); 4757 panic("flush_pagedep_deps: flush failed"); 4758 } 4759 } 4760 if (error) 4761 ACQUIRE_LOCK(&lk); 4762 return (error); 4763 } 4764 4765 /* 4766 * A large burst of file addition or deletion activity can drive the 4767 * memory load excessively high. First attempt to slow things down 4768 * using the techniques below. If that fails, this routine requests 4769 * the offending operations to fall back to running synchronously 4770 * until the memory load returns to a reasonable level. 4771 */ 4772 int 4773 softdep_slowdown(vp) 4774 struct vnode *vp; 4775 { 4776 int max_softdeps_hard; 4777 4778 max_softdeps_hard = max_softdeps * 11 / 10; 4779 if (num_dirrem < max_softdeps_hard / 2 && 4780 num_inodedep < max_softdeps_hard) 4781 return (0); 4782 stat_sync_limit_hit += 1; 4783 return (1); 4784 } 4785 4786 /* 4787 * If memory utilization has gotten too high, deliberately slow things 4788 * down and speed up the I/O processing. 4789 */ 4790 static int 4791 request_cleanup(resource, islocked) 4792 int resource; 4793 int islocked; 4794 { 4795 struct proc *p = CURPROC; 4796 4797 /* 4798 * We never hold up the filesystem syncer process. 4799 */ 4800 if (p == filesys_syncer) 4801 return (0); 4802 /* 4803 * First check to see if the work list has gotten backlogged. 4804 * If it has, co-opt this process to help clean up two entries. 4805 * Because this process may hold inodes locked, we cannot 4806 * handle any remove requests that might block on a locked 4807 * inode as that could lead to deadlock. 4808 */ 4809 if (num_on_worklist > max_softdeps / 10) { 4810 if (islocked) 4811 FREE_LOCK(&lk); 4812 process_worklist_item(NULL, LK_NOWAIT); 4813 process_worklist_item(NULL, LK_NOWAIT); 4814 stat_worklist_push += 2; 4815 if (islocked) 4816 ACQUIRE_LOCK(&lk); 4817 return(1); 4818 } 4819 /* 4820 * Next, we attempt to speed up the syncer process. If that 4821 * is successful, then we allow the process to continue. 4822 */ 4823 if (speedup_syncer()) 4824 return(0); 4825 /* 4826 * If we are resource constrained on inode dependencies, try 4827 * flushing some dirty inodes. Otherwise, we are constrained 4828 * by file deletions, so try accelerating flushes of directories 4829 * with removal dependencies. We would like to do the cleanup 4830 * here, but we probably hold an inode locked at this point and 4831 * that might deadlock against one that we try to clean. So, 4832 * the best that we can do is request the syncer daemon to do 4833 * the cleanup for us. 4834 */ 4835 switch (resource) { 4836 4837 case FLUSH_INODES: 4838 stat_ino_limit_push += 1; 4839 req_clear_inodedeps += 1; 4840 stat_countp = &stat_ino_limit_hit; 4841 break; 4842 4843 case FLUSH_REMOVE: 4844 stat_blk_limit_push += 1; 4845 req_clear_remove += 1; 4846 stat_countp = &stat_blk_limit_hit; 4847 break; 4848 4849 default: 4850 if (islocked) 4851 FREE_LOCK(&lk); 4852 panic("request_cleanup: unknown type"); 4853 } 4854 /* 4855 * Hopefully the syncer daemon will catch up and awaken us. 4856 * We wait at most tickdelay before proceeding in any case. 4857 */ 4858 if (islocked == 0) 4859 ACQUIRE_LOCK(&lk); 4860 proc_waiting += 1; 4861 if (handle.callout == NULL) 4862 handle = timeout(pause_timer, 0, tickdelay > 2 ? tickdelay : 2); 4863 FREE_LOCK_INTERLOCKED(&lk); 4864 (void) tsleep((caddr_t)&proc_waiting, PPAUSE, "softupdate", 0); 4865 ACQUIRE_LOCK_INTERLOCKED(&lk); 4866 proc_waiting -= 1; 4867 if (islocked == 0) 4868 FREE_LOCK(&lk); 4869 return (1); 4870 } 4871 4872 /* 4873 * Awaken processes pausing in request_cleanup and clear proc_waiting 4874 * to indicate that there is no longer a timer running. 4875 */ 4876 void 4877 pause_timer(arg) 4878 void *arg; 4879 { 4880 4881 *stat_countp += 1; 4882 wakeup_one(&proc_waiting); 4883 if (proc_waiting > 0) 4884 handle = timeout(pause_timer, 0, tickdelay > 2 ? tickdelay : 2); 4885 else 4886 handle.callout = NULL; 4887 } 4888 4889 /* 4890 * Flush out a directory with at least one removal dependency in an effort to 4891 * reduce the number of dirrem, freefile, and freeblks dependency structures. 4892 */ 4893 static void 4894 clear_remove(p) 4895 struct proc *p; 4896 { 4897 struct pagedep_hashhead *pagedephd; 4898 struct pagedep *pagedep; 4899 static int next = 0; 4900 struct mount *mp; 4901 struct vnode *vp; 4902 int error, cnt; 4903 ino_t ino; 4904 4905 ACQUIRE_LOCK(&lk); 4906 for (cnt = 0; cnt < pagedep_hash; cnt++) { 4907 pagedephd = &pagedep_hashtbl[next++]; 4908 if (next >= pagedep_hash) 4909 next = 0; 4910 LIST_FOREACH(pagedep, pagedephd, pd_hash) { 4911 if (LIST_FIRST(&pagedep->pd_dirremhd) == NULL) 4912 continue; 4913 mp = pagedep->pd_mnt; 4914 ino = pagedep->pd_ino; 4915 FREE_LOCK(&lk); 4916 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 4917 continue; 4918 if ((error = VFS_VGET(mp, ino, &vp)) != 0) { 4919 softdep_error("clear_remove: vget", error); 4920 vn_finished_write(mp); 4921 return; 4922 } 4923 if ((error = VOP_FSYNC(vp, p->p_ucred, MNT_NOWAIT, p))) 4924 softdep_error("clear_remove: fsync", error); 4925 drain_output(vp, 0); 4926 vput(vp); 4927 vn_finished_write(mp); 4928 return; 4929 } 4930 } 4931 FREE_LOCK(&lk); 4932 } 4933 4934 /* 4935 * Clear out a block of dirty inodes in an effort to reduce 4936 * the number of inodedep dependency structures. 4937 */ 4938 static void 4939 clear_inodedeps(p) 4940 struct proc *p; 4941 { 4942 struct inodedep_hashhead *inodedephd; 4943 struct inodedep *inodedep; 4944 static int next = 0; 4945 struct mount *mp; 4946 struct vnode *vp; 4947 struct fs *fs; 4948 int error, cnt; 4949 ino_t firstino, lastino, ino; 4950 4951 ACQUIRE_LOCK(&lk); 4952 /* 4953 * Pick a random inode dependency to be cleared. 4954 * We will then gather up all the inodes in its block 4955 * that have dependencies and flush them out. 4956 */ 4957 for (cnt = 0; cnt < inodedep_hash; cnt++) { 4958 inodedephd = &inodedep_hashtbl[next++]; 4959 if (next >= inodedep_hash) 4960 next = 0; 4961 if ((inodedep = LIST_FIRST(inodedephd)) != NULL) 4962 break; 4963 } 4964 if (inodedep == NULL) 4965 return; 4966 /* 4967 * Ugly code to find mount point given pointer to superblock. 4968 */ 4969 fs = inodedep->id_fs; 4970 TAILQ_FOREACH(mp, &mountlist, mnt_list) 4971 if ((mp->mnt_flag & MNT_SOFTDEP) && fs == VFSTOUFS(mp)->um_fs) 4972 break; 4973 /* 4974 * Find the last inode in the block with dependencies. 4975 */ 4976 firstino = inodedep->id_ino & ~(INOPB(fs) - 1); 4977 for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--) 4978 if (inodedep_lookup(fs, lastino, 0, &inodedep) != 0) 4979 break; 4980 /* 4981 * Asynchronously push all but the last inode with dependencies. 4982 * Synchronously push the last inode with dependencies to ensure 4983 * that the inode block gets written to free up the inodedeps. 4984 */ 4985 for (ino = firstino; ino <= lastino; ino++) { 4986 if (inodedep_lookup(fs, ino, 0, &inodedep) == 0) 4987 continue; 4988 FREE_LOCK(&lk); 4989 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 4990 continue; 4991 if ((error = VFS_VGET(mp, ino, &vp)) != 0) { 4992 softdep_error("clear_inodedeps: vget", error); 4993 vn_finished_write(mp); 4994 return; 4995 } 4996 if (ino == lastino) { 4997 if ((error = VOP_FSYNC(vp, p->p_ucred, MNT_WAIT, p))) 4998 softdep_error("clear_inodedeps: fsync1", error); 4999 } else { 5000 if ((error = VOP_FSYNC(vp, p->p_ucred, MNT_NOWAIT, p))) 5001 softdep_error("clear_inodedeps: fsync2", error); 5002 drain_output(vp, 0); 5003 } 5004 vput(vp); 5005 vn_finished_write(mp); 5006 ACQUIRE_LOCK(&lk); 5007 } 5008 FREE_LOCK(&lk); 5009 } 5010 5011 /* 5012 * Function to determine if the buffer has outstanding dependencies 5013 * that will cause a roll-back if the buffer is written. If wantcount 5014 * is set, return number of dependencies, otherwise just yes or no. 5015 */ 5016 static int 5017 softdep_count_dependencies(bp, wantcount) 5018 struct buf *bp; 5019 int wantcount; 5020 { 5021 struct worklist *wk; 5022 struct inodedep *inodedep; 5023 struct indirdep *indirdep; 5024 struct allocindir *aip; 5025 struct pagedep *pagedep; 5026 struct diradd *dap; 5027 int i, retval; 5028 5029 retval = 0; 5030 ACQUIRE_LOCK(&lk); 5031 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 5032 switch (wk->wk_type) { 5033 5034 case D_INODEDEP: 5035 inodedep = WK_INODEDEP(wk); 5036 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 5037 /* bitmap allocation dependency */ 5038 retval += 1; 5039 if (!wantcount) 5040 goto out; 5041 } 5042 if (TAILQ_FIRST(&inodedep->id_inoupdt)) { 5043 /* direct block pointer dependency */ 5044 retval += 1; 5045 if (!wantcount) 5046 goto out; 5047 } 5048 continue; 5049 5050 case D_INDIRDEP: 5051 indirdep = WK_INDIRDEP(wk); 5052 5053 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) { 5054 /* indirect block pointer dependency */ 5055 retval += 1; 5056 if (!wantcount) 5057 goto out; 5058 } 5059 continue; 5060 5061 case D_PAGEDEP: 5062 pagedep = WK_PAGEDEP(wk); 5063 for (i = 0; i < DAHASHSZ; i++) { 5064 5065 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 5066 /* directory entry dependency */ 5067 retval += 1; 5068 if (!wantcount) 5069 goto out; 5070 } 5071 } 5072 continue; 5073 5074 case D_BMSAFEMAP: 5075 case D_ALLOCDIRECT: 5076 case D_ALLOCINDIR: 5077 case D_MKDIR: 5078 /* never a dependency on these blocks */ 5079 continue; 5080 5081 default: 5082 FREE_LOCK(&lk); 5083 panic("softdep_check_for_rollback: Unexpected type %s", 5084 TYPENAME(wk->wk_type)); 5085 /* NOTREACHED */ 5086 } 5087 } 5088 out: 5089 FREE_LOCK(&lk); 5090 return retval; 5091 } 5092 5093 /* 5094 * Acquire exclusive access to a buffer. 5095 * Must be called with splbio blocked. 5096 * Return 1 if buffer was acquired. 5097 */ 5098 static int 5099 getdirtybuf(bpp, waitfor) 5100 struct buf **bpp; 5101 int waitfor; 5102 { 5103 struct buf *bp; 5104 5105 for (;;) { 5106 if ((bp = *bpp) == NULL) 5107 return (0); 5108 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) == 0) { 5109 if ((bp->b_xflags & BX_BKGRDINPROG) == 0) 5110 break; 5111 BUF_UNLOCK(bp); 5112 if (waitfor != MNT_WAIT) 5113 return (0); 5114 bp->b_xflags |= BX_BKGRDWAIT; 5115 FREE_LOCK_INTERLOCKED(&lk); 5116 tsleep(&bp->b_xflags, PRIBIO, "getbuf", 0); 5117 ACQUIRE_LOCK_INTERLOCKED(&lk); 5118 continue; 5119 } 5120 if (waitfor != MNT_WAIT) 5121 return (0); 5122 FREE_LOCK_INTERLOCKED(&lk); 5123 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL) != ENOLCK) 5124 panic("getdirtybuf: inconsistent lock"); 5125 ACQUIRE_LOCK_INTERLOCKED(&lk); 5126 } 5127 if ((bp->b_flags & B_DELWRI) == 0) { 5128 BUF_UNLOCK(bp); 5129 return (0); 5130 } 5131 bremfree(bp); 5132 return (1); 5133 } 5134 5135 /* 5136 * Wait for pending output on a vnode to complete. 5137 * Must be called with vnode locked. 5138 */ 5139 static void 5140 drain_output(vp, islocked) 5141 struct vnode *vp; 5142 int islocked; 5143 { 5144 5145 if (!islocked) 5146 ACQUIRE_LOCK(&lk); 5147 while (vp->v_numoutput) { 5148 vp->v_flag |= VBWAIT; 5149 FREE_LOCK_INTERLOCKED(&lk); 5150 tsleep((caddr_t)&vp->v_numoutput, PRIBIO + 1, "drainvp", 0); 5151 ACQUIRE_LOCK_INTERLOCKED(&lk); 5152 } 5153 if (!islocked) 5154 FREE_LOCK(&lk); 5155 } 5156 5157 /* 5158 * Called whenever a buffer that is being invalidated or reallocated 5159 * contains dependencies. This should only happen if an I/O error has 5160 * occurred. The routine is called with the buffer locked. 5161 */ 5162 static void 5163 softdep_deallocate_dependencies(bp) 5164 struct buf *bp; 5165 { 5166 5167 if ((bp->b_ioflags & BIO_ERROR) == 0) 5168 panic("softdep_deallocate_dependencies: dangling deps"); 5169 softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error); 5170 panic("softdep_deallocate_dependencies: unrecovered I/O error"); 5171 } 5172 5173 /* 5174 * Function to handle asynchronous write errors in the filesystem. 5175 */ 5176 void 5177 softdep_error(func, error) 5178 char *func; 5179 int error; 5180 { 5181 5182 /* XXX should do something better! */ 5183 printf("%s: got error %d while accessing filesystem\n", func, error); 5184 } 5185