1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright 1998, 2000 Marshall Kirk McKusick. 5 * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org> 6 * All rights reserved. 7 * 8 * The soft updates code is derived from the appendix of a University 9 * of Michigan technical report (Gregory R. Ganger and Yale N. Patt, 10 * "Soft Updates: A Solution to the Metadata Update Problem in File 11 * Systems", CSE-TR-254-95, August 1995). 12 * 13 * Further information about soft updates can be obtained from: 14 * 15 * Marshall Kirk McKusick http://www.mckusick.com/softdep/ 16 * 1614 Oxford Street mckusick@mckusick.com 17 * Berkeley, CA 94709-1608 +1-510-843-9542 18 * USA 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * 1. Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * 2. Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in the 28 * documentation and/or other materials provided with the distribution. 29 * 30 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 31 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 32 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 33 * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, 34 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 35 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 36 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 37 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 38 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 39 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 40 * 41 * from: @(#)ffs_softdep.c 9.59 (McKusick) 6/21/00 42 */ 43 44 #include <sys/cdefs.h> 45 __FBSDID("$FreeBSD$"); 46 47 #include "opt_ffs.h" 48 #include "opt_quota.h" 49 #include "opt_ddb.h" 50 51 #include <sys/param.h> 52 #include <sys/kernel.h> 53 #include <sys/systm.h> 54 #include <sys/bio.h> 55 #include <sys/buf.h> 56 #include <sys/kdb.h> 57 #include <sys/kthread.h> 58 #include <sys/ktr.h> 59 #include <sys/limits.h> 60 #include <sys/lock.h> 61 #include <sys/malloc.h> 62 #include <sys/mount.h> 63 #include <sys/mutex.h> 64 #include <sys/namei.h> 65 #include <sys/priv.h> 66 #include <sys/proc.h> 67 #include <sys/racct.h> 68 #include <sys/rwlock.h> 69 #include <sys/stat.h> 70 #include <sys/sysctl.h> 71 #include <sys/syslog.h> 72 #include <sys/vnode.h> 73 #include <sys/conf.h> 74 75 #include <ufs/ufs/dir.h> 76 #include <ufs/ufs/extattr.h> 77 #include <ufs/ufs/quota.h> 78 #include <ufs/ufs/inode.h> 79 #include <ufs/ufs/ufsmount.h> 80 #include <ufs/ffs/fs.h> 81 #include <ufs/ffs/softdep.h> 82 #include <ufs/ffs/ffs_extern.h> 83 #include <ufs/ufs/ufs_extern.h> 84 85 #include <vm/vm.h> 86 #include <vm/vm_extern.h> 87 #include <vm/vm_object.h> 88 89 #include <geom/geom.h> 90 #include <geom/geom_vfs.h> 91 92 #include <ddb/ddb.h> 93 94 #define KTR_SUJ 0 /* Define to KTR_SPARE. */ 95 96 #ifndef SOFTUPDATES 97 98 int 99 softdep_flushfiles(oldmnt, flags, td) 100 struct mount *oldmnt; 101 int flags; 102 struct thread *td; 103 { 104 105 panic("softdep_flushfiles called"); 106 } 107 108 int 109 softdep_mount(devvp, mp, fs, cred) 110 struct vnode *devvp; 111 struct mount *mp; 112 struct fs *fs; 113 struct ucred *cred; 114 { 115 116 return (0); 117 } 118 119 void 120 softdep_initialize() 121 { 122 123 return; 124 } 125 126 void 127 softdep_uninitialize() 128 { 129 130 return; 131 } 132 133 void 134 softdep_unmount(mp) 135 struct mount *mp; 136 { 137 138 panic("softdep_unmount called"); 139 } 140 141 void 142 softdep_setup_sbupdate(ump, fs, bp) 143 struct ufsmount *ump; 144 struct fs *fs; 145 struct buf *bp; 146 { 147 148 panic("softdep_setup_sbupdate called"); 149 } 150 151 void 152 softdep_setup_inomapdep(bp, ip, newinum, mode) 153 struct buf *bp; 154 struct inode *ip; 155 ino_t newinum; 156 int mode; 157 { 158 159 panic("softdep_setup_inomapdep called"); 160 } 161 162 void 163 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags) 164 struct buf *bp; 165 struct mount *mp; 166 ufs2_daddr_t newblkno; 167 int frags; 168 int oldfrags; 169 { 170 171 panic("softdep_setup_blkmapdep called"); 172 } 173 174 void 175 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 176 struct inode *ip; 177 ufs_lbn_t lbn; 178 ufs2_daddr_t newblkno; 179 ufs2_daddr_t oldblkno; 180 long newsize; 181 long oldsize; 182 struct buf *bp; 183 { 184 185 panic("softdep_setup_allocdirect called"); 186 } 187 188 void 189 softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 190 struct inode *ip; 191 ufs_lbn_t lbn; 192 ufs2_daddr_t newblkno; 193 ufs2_daddr_t oldblkno; 194 long newsize; 195 long oldsize; 196 struct buf *bp; 197 { 198 199 panic("softdep_setup_allocext called"); 200 } 201 202 void 203 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 204 struct inode *ip; 205 ufs_lbn_t lbn; 206 struct buf *bp; 207 int ptrno; 208 ufs2_daddr_t newblkno; 209 ufs2_daddr_t oldblkno; 210 struct buf *nbp; 211 { 212 213 panic("softdep_setup_allocindir_page called"); 214 } 215 216 void 217 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 218 struct buf *nbp; 219 struct inode *ip; 220 struct buf *bp; 221 int ptrno; 222 ufs2_daddr_t newblkno; 223 { 224 225 panic("softdep_setup_allocindir_meta called"); 226 } 227 228 void 229 softdep_journal_freeblocks(ip, cred, length, flags) 230 struct inode *ip; 231 struct ucred *cred; 232 off_t length; 233 int flags; 234 { 235 236 panic("softdep_journal_freeblocks called"); 237 } 238 239 void 240 softdep_journal_fsync(ip) 241 struct inode *ip; 242 { 243 244 panic("softdep_journal_fsync called"); 245 } 246 247 void 248 softdep_setup_freeblocks(ip, length, flags) 249 struct inode *ip; 250 off_t length; 251 int flags; 252 { 253 254 panic("softdep_setup_freeblocks called"); 255 } 256 257 void 258 softdep_freefile(pvp, ino, mode) 259 struct vnode *pvp; 260 ino_t ino; 261 int mode; 262 { 263 264 panic("softdep_freefile called"); 265 } 266 267 int 268 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk) 269 struct buf *bp; 270 struct inode *dp; 271 off_t diroffset; 272 ino_t newinum; 273 struct buf *newdirbp; 274 int isnewblk; 275 { 276 277 panic("softdep_setup_directory_add called"); 278 } 279 280 void 281 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize) 282 struct buf *bp; 283 struct inode *dp; 284 caddr_t base; 285 caddr_t oldloc; 286 caddr_t newloc; 287 int entrysize; 288 { 289 290 panic("softdep_change_directoryentry_offset called"); 291 } 292 293 void 294 softdep_setup_remove(bp, dp, ip, isrmdir) 295 struct buf *bp; 296 struct inode *dp; 297 struct inode *ip; 298 int isrmdir; 299 { 300 301 panic("softdep_setup_remove called"); 302 } 303 304 void 305 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 306 struct buf *bp; 307 struct inode *dp; 308 struct inode *ip; 309 ino_t newinum; 310 int isrmdir; 311 { 312 313 panic("softdep_setup_directory_change called"); 314 } 315 316 void 317 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd) 318 struct mount *mp; 319 struct buf *bp; 320 ufs2_daddr_t blkno; 321 int frags; 322 struct workhead *wkhd; 323 { 324 325 panic("%s called", __FUNCTION__); 326 } 327 328 void 329 softdep_setup_inofree(mp, bp, ino, wkhd) 330 struct mount *mp; 331 struct buf *bp; 332 ino_t ino; 333 struct workhead *wkhd; 334 { 335 336 panic("%s called", __FUNCTION__); 337 } 338 339 void 340 softdep_setup_unlink(dp, ip) 341 struct inode *dp; 342 struct inode *ip; 343 { 344 345 panic("%s called", __FUNCTION__); 346 } 347 348 void 349 softdep_setup_link(dp, ip) 350 struct inode *dp; 351 struct inode *ip; 352 { 353 354 panic("%s called", __FUNCTION__); 355 } 356 357 void 358 softdep_revert_link(dp, ip) 359 struct inode *dp; 360 struct inode *ip; 361 { 362 363 panic("%s called", __FUNCTION__); 364 } 365 366 void 367 softdep_setup_rmdir(dp, ip) 368 struct inode *dp; 369 struct inode *ip; 370 { 371 372 panic("%s called", __FUNCTION__); 373 } 374 375 void 376 softdep_revert_rmdir(dp, ip) 377 struct inode *dp; 378 struct inode *ip; 379 { 380 381 panic("%s called", __FUNCTION__); 382 } 383 384 void 385 softdep_setup_create(dp, ip) 386 struct inode *dp; 387 struct inode *ip; 388 { 389 390 panic("%s called", __FUNCTION__); 391 } 392 393 void 394 softdep_revert_create(dp, ip) 395 struct inode *dp; 396 struct inode *ip; 397 { 398 399 panic("%s called", __FUNCTION__); 400 } 401 402 void 403 softdep_setup_mkdir(dp, ip) 404 struct inode *dp; 405 struct inode *ip; 406 { 407 408 panic("%s called", __FUNCTION__); 409 } 410 411 void 412 softdep_revert_mkdir(dp, ip) 413 struct inode *dp; 414 struct inode *ip; 415 { 416 417 panic("%s called", __FUNCTION__); 418 } 419 420 void 421 softdep_setup_dotdot_link(dp, ip) 422 struct inode *dp; 423 struct inode *ip; 424 { 425 426 panic("%s called", __FUNCTION__); 427 } 428 429 int 430 softdep_prealloc(vp, waitok) 431 struct vnode *vp; 432 int waitok; 433 { 434 435 panic("%s called", __FUNCTION__); 436 } 437 438 int 439 softdep_journal_lookup(mp, vpp) 440 struct mount *mp; 441 struct vnode **vpp; 442 { 443 444 return (ENOENT); 445 } 446 447 void 448 softdep_change_linkcnt(ip) 449 struct inode *ip; 450 { 451 452 panic("softdep_change_linkcnt called"); 453 } 454 455 void 456 softdep_load_inodeblock(ip) 457 struct inode *ip; 458 { 459 460 panic("softdep_load_inodeblock called"); 461 } 462 463 void 464 softdep_update_inodeblock(ip, bp, waitfor) 465 struct inode *ip; 466 struct buf *bp; 467 int waitfor; 468 { 469 470 panic("softdep_update_inodeblock called"); 471 } 472 473 int 474 softdep_fsync(vp) 475 struct vnode *vp; /* the "in_core" copy of the inode */ 476 { 477 478 return (0); 479 } 480 481 void 482 softdep_fsync_mountdev(vp) 483 struct vnode *vp; 484 { 485 486 return; 487 } 488 489 int 490 softdep_flushworklist(oldmnt, countp, td) 491 struct mount *oldmnt; 492 int *countp; 493 struct thread *td; 494 { 495 496 *countp = 0; 497 return (0); 498 } 499 500 int 501 softdep_sync_metadata(struct vnode *vp) 502 { 503 504 panic("softdep_sync_metadata called"); 505 } 506 507 int 508 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor) 509 { 510 511 panic("softdep_sync_buf called"); 512 } 513 514 int 515 softdep_slowdown(vp) 516 struct vnode *vp; 517 { 518 519 panic("softdep_slowdown called"); 520 } 521 522 int 523 softdep_request_cleanup(fs, vp, cred, resource) 524 struct fs *fs; 525 struct vnode *vp; 526 struct ucred *cred; 527 int resource; 528 { 529 530 return (0); 531 } 532 533 int 534 softdep_check_suspend(struct mount *mp, 535 struct vnode *devvp, 536 int softdep_depcnt, 537 int softdep_accdepcnt, 538 int secondary_writes, 539 int secondary_accwrites) 540 { 541 struct bufobj *bo; 542 int error; 543 544 (void) softdep_depcnt, 545 (void) softdep_accdepcnt; 546 547 bo = &devvp->v_bufobj; 548 ASSERT_BO_WLOCKED(bo); 549 550 MNT_ILOCK(mp); 551 while (mp->mnt_secondary_writes != 0) { 552 BO_UNLOCK(bo); 553 msleep(&mp->mnt_secondary_writes, MNT_MTX(mp), 554 (PUSER - 1) | PDROP, "secwr", 0); 555 BO_LOCK(bo); 556 MNT_ILOCK(mp); 557 } 558 559 /* 560 * Reasons for needing more work before suspend: 561 * - Dirty buffers on devvp. 562 * - Secondary writes occurred after start of vnode sync loop 563 */ 564 error = 0; 565 if (bo->bo_numoutput > 0 || 566 bo->bo_dirty.bv_cnt > 0 || 567 secondary_writes != 0 || 568 mp->mnt_secondary_writes != 0 || 569 secondary_accwrites != mp->mnt_secondary_accwrites) 570 error = EAGAIN; 571 BO_UNLOCK(bo); 572 return (error); 573 } 574 575 void 576 softdep_get_depcounts(struct mount *mp, 577 int *softdepactivep, 578 int *softdepactiveaccp) 579 { 580 (void) mp; 581 *softdepactivep = 0; 582 *softdepactiveaccp = 0; 583 } 584 585 void 586 softdep_buf_append(bp, wkhd) 587 struct buf *bp; 588 struct workhead *wkhd; 589 { 590 591 panic("softdep_buf_appendwork called"); 592 } 593 594 void 595 softdep_inode_append(ip, cred, wkhd) 596 struct inode *ip; 597 struct ucred *cred; 598 struct workhead *wkhd; 599 { 600 601 panic("softdep_inode_appendwork called"); 602 } 603 604 void 605 softdep_freework(wkhd) 606 struct workhead *wkhd; 607 { 608 609 panic("softdep_freework called"); 610 } 611 612 #else 613 614 FEATURE(softupdates, "FFS soft-updates support"); 615 616 static SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW, 0, 617 "soft updates stats"); 618 static SYSCTL_NODE(_debug_softdep, OID_AUTO, total, CTLFLAG_RW, 0, 619 "total dependencies allocated"); 620 static SYSCTL_NODE(_debug_softdep, OID_AUTO, highuse, CTLFLAG_RW, 0, 621 "high use dependencies allocated"); 622 static SYSCTL_NODE(_debug_softdep, OID_AUTO, current, CTLFLAG_RW, 0, 623 "current dependencies allocated"); 624 static SYSCTL_NODE(_debug_softdep, OID_AUTO, write, CTLFLAG_RW, 0, 625 "current dependencies written"); 626 627 unsigned long dep_current[D_LAST + 1]; 628 unsigned long dep_highuse[D_LAST + 1]; 629 unsigned long dep_total[D_LAST + 1]; 630 unsigned long dep_write[D_LAST + 1]; 631 632 #define SOFTDEP_TYPE(type, str, long) \ 633 static MALLOC_DEFINE(M_ ## type, #str, long); \ 634 SYSCTL_ULONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD, \ 635 &dep_total[D_ ## type], 0, ""); \ 636 SYSCTL_ULONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD, \ 637 &dep_current[D_ ## type], 0, ""); \ 638 SYSCTL_ULONG(_debug_softdep_highuse, OID_AUTO, str, CTLFLAG_RD, \ 639 &dep_highuse[D_ ## type], 0, ""); \ 640 SYSCTL_ULONG(_debug_softdep_write, OID_AUTO, str, CTLFLAG_RD, \ 641 &dep_write[D_ ## type], 0, ""); 642 643 SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies"); 644 SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies"); 645 SOFTDEP_TYPE(BMSAFEMAP, bmsafemap, 646 "Block or frag allocated from cyl group map"); 647 SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency"); 648 SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode"); 649 SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies"); 650 SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block"); 651 SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode"); 652 SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode"); 653 SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated"); 654 SOFTDEP_TYPE(DIRADD, diradd, "New directory entry"); 655 SOFTDEP_TYPE(MKDIR, mkdir, "New directory"); 656 SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted"); 657 SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block"); 658 SOFTDEP_TYPE(FREEWORK, freework, "free an inode block"); 659 SOFTDEP_TYPE(FREEDEP, freedep, "track a block free"); 660 SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add"); 661 SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove"); 662 SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move"); 663 SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block"); 664 SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block"); 665 SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag"); 666 SOFTDEP_TYPE(JSEG, jseg, "Journal segment"); 667 SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete"); 668 SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency"); 669 SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation"); 670 SOFTDEP_TYPE(JFSYNC, jfsync, "Journal fsync complete"); 671 672 static MALLOC_DEFINE(M_SENTINEL, "sentinel", "Worklist sentinel"); 673 674 static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes"); 675 static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations"); 676 static MALLOC_DEFINE(M_MOUNTDATA, "softdep", "Softdep per-mount data"); 677 678 #define M_SOFTDEP_FLAGS (M_WAITOK) 679 680 /* 681 * translate from workitem type to memory type 682 * MUST match the defines above, such that memtype[D_XXX] == M_XXX 683 */ 684 static struct malloc_type *memtype[] = { 685 NULL, 686 M_PAGEDEP, 687 M_INODEDEP, 688 M_BMSAFEMAP, 689 M_NEWBLK, 690 M_ALLOCDIRECT, 691 M_INDIRDEP, 692 M_ALLOCINDIR, 693 M_FREEFRAG, 694 M_FREEBLKS, 695 M_FREEFILE, 696 M_DIRADD, 697 M_MKDIR, 698 M_DIRREM, 699 M_NEWDIRBLK, 700 M_FREEWORK, 701 M_FREEDEP, 702 M_JADDREF, 703 M_JREMREF, 704 M_JMVREF, 705 M_JNEWBLK, 706 M_JFREEBLK, 707 M_JFREEFRAG, 708 M_JSEG, 709 M_JSEGDEP, 710 M_SBDEP, 711 M_JTRUNC, 712 M_JFSYNC, 713 M_SENTINEL 714 }; 715 716 #define DtoM(type) (memtype[type]) 717 718 /* 719 * Names of malloc types. 720 */ 721 #define TYPENAME(type) \ 722 ((unsigned)(type) <= D_LAST && (unsigned)(type) >= D_FIRST ? \ 723 memtype[type]->ks_shortdesc : "???") 724 /* 725 * End system adaptation definitions. 726 */ 727 728 #define DOTDOT_OFFSET offsetof(struct dirtemplate, dotdot_ino) 729 #define DOT_OFFSET offsetof(struct dirtemplate, dot_ino) 730 731 /* 732 * Internal function prototypes. 733 */ 734 static void check_clear_deps(struct mount *); 735 static void softdep_error(char *, int); 736 static int softdep_process_worklist(struct mount *, int); 737 static int softdep_waitidle(struct mount *, int); 738 static void drain_output(struct vnode *); 739 static struct buf *getdirtybuf(struct buf *, struct rwlock *, int); 740 static int check_inodedep_free(struct inodedep *); 741 static void clear_remove(struct mount *); 742 static void clear_inodedeps(struct mount *); 743 static void unlinked_inodedep(struct mount *, struct inodedep *); 744 static void clear_unlinked_inodedep(struct inodedep *); 745 static struct inodedep *first_unlinked_inodedep(struct ufsmount *); 746 static int flush_pagedep_deps(struct vnode *, struct mount *, 747 struct diraddhd *); 748 static int free_pagedep(struct pagedep *); 749 static int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t); 750 static int flush_inodedep_deps(struct vnode *, struct mount *, ino_t); 751 static int flush_deplist(struct allocdirectlst *, int, int *); 752 static int sync_cgs(struct mount *, int); 753 static int handle_written_filepage(struct pagedep *, struct buf *, int); 754 static int handle_written_sbdep(struct sbdep *, struct buf *); 755 static void initiate_write_sbdep(struct sbdep *); 756 static void diradd_inode_written(struct diradd *, struct inodedep *); 757 static int handle_written_indirdep(struct indirdep *, struct buf *, 758 struct buf**, int); 759 static int handle_written_inodeblock(struct inodedep *, struct buf *, int); 760 static int jnewblk_rollforward(struct jnewblk *, struct fs *, struct cg *, 761 uint8_t *); 762 static int handle_written_bmsafemap(struct bmsafemap *, struct buf *, int); 763 static void handle_written_jaddref(struct jaddref *); 764 static void handle_written_jremref(struct jremref *); 765 static void handle_written_jseg(struct jseg *, struct buf *); 766 static void handle_written_jnewblk(struct jnewblk *); 767 static void handle_written_jblkdep(struct jblkdep *); 768 static void handle_written_jfreefrag(struct jfreefrag *); 769 static void complete_jseg(struct jseg *); 770 static void complete_jsegs(struct jseg *); 771 static void jseg_write(struct ufsmount *ump, struct jseg *, uint8_t *); 772 static void jaddref_write(struct jaddref *, struct jseg *, uint8_t *); 773 static void jremref_write(struct jremref *, struct jseg *, uint8_t *); 774 static void jmvref_write(struct jmvref *, struct jseg *, uint8_t *); 775 static void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *); 776 static void jfsync_write(struct jfsync *, struct jseg *, uint8_t *data); 777 static void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *); 778 static void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *); 779 static void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *); 780 static inline void inoref_write(struct inoref *, struct jseg *, 781 struct jrefrec *); 782 static void handle_allocdirect_partdone(struct allocdirect *, 783 struct workhead *); 784 static struct jnewblk *cancel_newblk(struct newblk *, struct worklist *, 785 struct workhead *); 786 static void indirdep_complete(struct indirdep *); 787 static int indirblk_lookup(struct mount *, ufs2_daddr_t); 788 static void indirblk_insert(struct freework *); 789 static void indirblk_remove(struct freework *); 790 static void handle_allocindir_partdone(struct allocindir *); 791 static void initiate_write_filepage(struct pagedep *, struct buf *); 792 static void initiate_write_indirdep(struct indirdep*, struct buf *); 793 static void handle_written_mkdir(struct mkdir *, int); 794 static int jnewblk_rollback(struct jnewblk *, struct fs *, struct cg *, 795 uint8_t *); 796 static void initiate_write_bmsafemap(struct bmsafemap *, struct buf *); 797 static void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *); 798 static void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *); 799 static void handle_workitem_freefile(struct freefile *); 800 static int handle_workitem_remove(struct dirrem *, int); 801 static struct dirrem *newdirrem(struct buf *, struct inode *, 802 struct inode *, int, struct dirrem **); 803 static struct indirdep *indirdep_lookup(struct mount *, struct inode *, 804 struct buf *); 805 static void cancel_indirdep(struct indirdep *, struct buf *, 806 struct freeblks *); 807 static void free_indirdep(struct indirdep *); 808 static void free_diradd(struct diradd *, struct workhead *); 809 static void merge_diradd(struct inodedep *, struct diradd *); 810 static void complete_diradd(struct diradd *); 811 static struct diradd *diradd_lookup(struct pagedep *, int); 812 static struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *, 813 struct jremref *); 814 static struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *, 815 struct jremref *); 816 static void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *, 817 struct jremref *, struct jremref *); 818 static void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *, 819 struct jremref *); 820 static void cancel_allocindir(struct allocindir *, struct buf *bp, 821 struct freeblks *, int); 822 static int setup_trunc_indir(struct freeblks *, struct inode *, 823 ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t); 824 static void complete_trunc_indir(struct freework *); 825 static void trunc_indirdep(struct indirdep *, struct freeblks *, struct buf *, 826 int); 827 static void complete_mkdir(struct mkdir *); 828 static void free_newdirblk(struct newdirblk *); 829 static void free_jremref(struct jremref *); 830 static void free_jaddref(struct jaddref *); 831 static void free_jsegdep(struct jsegdep *); 832 static void free_jsegs(struct jblocks *); 833 static void rele_jseg(struct jseg *); 834 static void free_jseg(struct jseg *, struct jblocks *); 835 static void free_jnewblk(struct jnewblk *); 836 static void free_jblkdep(struct jblkdep *); 837 static void free_jfreefrag(struct jfreefrag *); 838 static void free_freedep(struct freedep *); 839 static void journal_jremref(struct dirrem *, struct jremref *, 840 struct inodedep *); 841 static void cancel_jnewblk(struct jnewblk *, struct workhead *); 842 static int cancel_jaddref(struct jaddref *, struct inodedep *, 843 struct workhead *); 844 static void cancel_jfreefrag(struct jfreefrag *); 845 static inline void setup_freedirect(struct freeblks *, struct inode *, 846 int, int); 847 static inline void setup_freeext(struct freeblks *, struct inode *, int, int); 848 static inline void setup_freeindir(struct freeblks *, struct inode *, int, 849 ufs_lbn_t, int); 850 static inline struct freeblks *newfreeblks(struct mount *, struct inode *); 851 static void freeblks_free(struct ufsmount *, struct freeblks *, int); 852 static void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t); 853 static ufs2_daddr_t blkcount(struct fs *, ufs2_daddr_t, off_t); 854 static int trunc_check_buf(struct buf *, int *, ufs_lbn_t, int, int); 855 static void trunc_dependencies(struct inode *, struct freeblks *, ufs_lbn_t, 856 int, int); 857 static void trunc_pages(struct inode *, off_t, ufs2_daddr_t, int); 858 static int cancel_pagedep(struct pagedep *, struct freeblks *, int); 859 static int deallocate_dependencies(struct buf *, struct freeblks *, int); 860 static void newblk_freefrag(struct newblk*); 861 static void free_newblk(struct newblk *); 862 static void cancel_allocdirect(struct allocdirectlst *, 863 struct allocdirect *, struct freeblks *); 864 static int check_inode_unwritten(struct inodedep *); 865 static int free_inodedep(struct inodedep *); 866 static void freework_freeblock(struct freework *, u_long); 867 static void freework_enqueue(struct freework *); 868 static int handle_workitem_freeblocks(struct freeblks *, int); 869 static int handle_complete_freeblocks(struct freeblks *, int); 870 static void handle_workitem_indirblk(struct freework *); 871 static void handle_written_freework(struct freework *); 872 static void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *); 873 static struct worklist *jnewblk_merge(struct worklist *, struct worklist *, 874 struct workhead *); 875 static struct freefrag *setup_allocindir_phase2(struct buf *, struct inode *, 876 struct inodedep *, struct allocindir *, ufs_lbn_t); 877 static struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t, 878 ufs2_daddr_t, ufs_lbn_t); 879 static void handle_workitem_freefrag(struct freefrag *); 880 static struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long, 881 ufs_lbn_t, u_long); 882 static void allocdirect_merge(struct allocdirectlst *, 883 struct allocdirect *, struct allocdirect *); 884 static struct freefrag *allocindir_merge(struct allocindir *, 885 struct allocindir *); 886 static int bmsafemap_find(struct bmsafemap_hashhead *, int, 887 struct bmsafemap **); 888 static struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *, 889 int cg, struct bmsafemap *); 890 static int newblk_find(struct newblk_hashhead *, ufs2_daddr_t, int, 891 struct newblk **); 892 static int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **); 893 static int inodedep_find(struct inodedep_hashhead *, ino_t, 894 struct inodedep **); 895 static int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **); 896 static int pagedep_lookup(struct mount *, struct buf *bp, ino_t, ufs_lbn_t, 897 int, struct pagedep **); 898 static int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t, 899 struct pagedep **); 900 static void pause_timer(void *); 901 static int request_cleanup(struct mount *, int); 902 static int softdep_request_cleanup_flush(struct mount *, struct ufsmount *); 903 static void schedule_cleanup(struct mount *); 904 static void softdep_ast_cleanup_proc(struct thread *); 905 static struct ufsmount *softdep_bp_to_mp(struct buf *bp); 906 static int process_worklist_item(struct mount *, int, int); 907 static void process_removes(struct vnode *); 908 static void process_truncates(struct vnode *); 909 static void jwork_move(struct workhead *, struct workhead *); 910 static void jwork_insert(struct workhead *, struct jsegdep *); 911 static void add_to_worklist(struct worklist *, int); 912 static void wake_worklist(struct worklist *); 913 static void wait_worklist(struct worklist *, char *); 914 static void remove_from_worklist(struct worklist *); 915 static void softdep_flush(void *); 916 static void softdep_flushjournal(struct mount *); 917 static int softdep_speedup(struct ufsmount *); 918 static void worklist_speedup(struct mount *); 919 static int journal_mount(struct mount *, struct fs *, struct ucred *); 920 static void journal_unmount(struct ufsmount *); 921 static int journal_space(struct ufsmount *, int); 922 static void journal_suspend(struct ufsmount *); 923 static int journal_unsuspend(struct ufsmount *ump); 924 static void softdep_prelink(struct vnode *, struct vnode *); 925 static void add_to_journal(struct worklist *); 926 static void remove_from_journal(struct worklist *); 927 static bool softdep_excess_items(struct ufsmount *, int); 928 static void softdep_process_journal(struct mount *, struct worklist *, int); 929 static struct jremref *newjremref(struct dirrem *, struct inode *, 930 struct inode *ip, off_t, nlink_t); 931 static struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t, 932 uint16_t); 933 static inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t, 934 uint16_t); 935 static inline struct jsegdep *inoref_jseg(struct inoref *); 936 static struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t); 937 static struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t, 938 ufs2_daddr_t, int); 939 static void adjust_newfreework(struct freeblks *, int); 940 static struct jtrunc *newjtrunc(struct freeblks *, off_t, int); 941 static void move_newblock_dep(struct jaddref *, struct inodedep *); 942 static void cancel_jfreeblk(struct freeblks *, ufs2_daddr_t); 943 static struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *, 944 ufs2_daddr_t, long, ufs_lbn_t); 945 static struct freework *newfreework(struct ufsmount *, struct freeblks *, 946 struct freework *, ufs_lbn_t, ufs2_daddr_t, int, int, int); 947 static int jwait(struct worklist *, int); 948 static struct inodedep *inodedep_lookup_ip(struct inode *); 949 static int bmsafemap_backgroundwrite(struct bmsafemap *, struct buf *); 950 static struct freefile *handle_bufwait(struct inodedep *, struct workhead *); 951 static void handle_jwork(struct workhead *); 952 static struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *, 953 struct mkdir **); 954 static struct jblocks *jblocks_create(void); 955 static ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *); 956 static void jblocks_free(struct jblocks *, struct mount *, int); 957 static void jblocks_destroy(struct jblocks *); 958 static void jblocks_add(struct jblocks *, ufs2_daddr_t, int); 959 960 /* 961 * Exported softdep operations. 962 */ 963 static void softdep_disk_io_initiation(struct buf *); 964 static void softdep_disk_write_complete(struct buf *); 965 static void softdep_deallocate_dependencies(struct buf *); 966 static int softdep_count_dependencies(struct buf *bp, int); 967 968 /* 969 * Global lock over all of soft updates. 970 */ 971 static struct mtx lk; 972 MTX_SYSINIT(softdep_lock, &lk, "global softdep", MTX_DEF); 973 974 #define ACQUIRE_GBLLOCK(lk) mtx_lock(lk) 975 #define FREE_GBLLOCK(lk) mtx_unlock(lk) 976 #define GBLLOCK_OWNED(lk) mtx_assert((lk), MA_OWNED) 977 978 /* 979 * Per-filesystem soft-updates locking. 980 */ 981 #define LOCK_PTR(ump) (&(ump)->um_softdep->sd_fslock) 982 #define TRY_ACQUIRE_LOCK(ump) rw_try_wlock(&(ump)->um_softdep->sd_fslock) 983 #define ACQUIRE_LOCK(ump) rw_wlock(&(ump)->um_softdep->sd_fslock) 984 #define FREE_LOCK(ump) rw_wunlock(&(ump)->um_softdep->sd_fslock) 985 #define LOCK_OWNED(ump) rw_assert(&(ump)->um_softdep->sd_fslock, \ 986 RA_WLOCKED) 987 988 #define BUF_AREC(bp) lockallowrecurse(&(bp)->b_lock) 989 #define BUF_NOREC(bp) lockdisablerecurse(&(bp)->b_lock) 990 991 /* 992 * Worklist queue management. 993 * These routines require that the lock be held. 994 */ 995 #ifndef /* NOT */ INVARIANTS 996 #define WORKLIST_INSERT(head, item) do { \ 997 (item)->wk_state |= ONWORKLIST; \ 998 LIST_INSERT_HEAD(head, item, wk_list); \ 999 } while (0) 1000 #define WORKLIST_REMOVE(item) do { \ 1001 (item)->wk_state &= ~ONWORKLIST; \ 1002 LIST_REMOVE(item, wk_list); \ 1003 } while (0) 1004 #define WORKLIST_INSERT_UNLOCKED WORKLIST_INSERT 1005 #define WORKLIST_REMOVE_UNLOCKED WORKLIST_REMOVE 1006 1007 #else /* INVARIANTS */ 1008 static void worklist_insert(struct workhead *, struct worklist *, int, 1009 const char *, int); 1010 static void worklist_remove(struct worklist *, int, const char *, int); 1011 1012 #define WORKLIST_INSERT(head, item) \ 1013 worklist_insert(head, item, 1, __func__, __LINE__) 1014 #define WORKLIST_INSERT_UNLOCKED(head, item)\ 1015 worklist_insert(head, item, 0, __func__, __LINE__) 1016 #define WORKLIST_REMOVE(item)\ 1017 worklist_remove(item, 1, __func__, __LINE__) 1018 #define WORKLIST_REMOVE_UNLOCKED(item)\ 1019 worklist_remove(item, 0, __func__, __LINE__) 1020 1021 static void 1022 worklist_insert(head, item, locked, func, line) 1023 struct workhead *head; 1024 struct worklist *item; 1025 int locked; 1026 const char *func; 1027 int line; 1028 { 1029 1030 if (locked) 1031 LOCK_OWNED(VFSTOUFS(item->wk_mp)); 1032 if (item->wk_state & ONWORKLIST) 1033 panic("worklist_insert: %p %s(0x%X) already on list, " 1034 "added in function %s at line %d", 1035 item, TYPENAME(item->wk_type), item->wk_state, 1036 item->wk_func, item->wk_line); 1037 item->wk_state |= ONWORKLIST; 1038 item->wk_func = func; 1039 item->wk_line = line; 1040 LIST_INSERT_HEAD(head, item, wk_list); 1041 } 1042 1043 static void 1044 worklist_remove(item, locked, func, line) 1045 struct worklist *item; 1046 int locked; 1047 const char *func; 1048 int line; 1049 { 1050 1051 if (locked) 1052 LOCK_OWNED(VFSTOUFS(item->wk_mp)); 1053 if ((item->wk_state & ONWORKLIST) == 0) 1054 panic("worklist_remove: %p %s(0x%X) not on list, " 1055 "removed in function %s at line %d", 1056 item, TYPENAME(item->wk_type), item->wk_state, 1057 item->wk_func, item->wk_line); 1058 item->wk_state &= ~ONWORKLIST; 1059 item->wk_func = func; 1060 item->wk_line = line; 1061 LIST_REMOVE(item, wk_list); 1062 } 1063 #endif /* INVARIANTS */ 1064 1065 /* 1066 * Merge two jsegdeps keeping only the oldest one as newer references 1067 * can't be discarded until after older references. 1068 */ 1069 static inline struct jsegdep * 1070 jsegdep_merge(struct jsegdep *one, struct jsegdep *two) 1071 { 1072 struct jsegdep *swp; 1073 1074 if (two == NULL) 1075 return (one); 1076 1077 if (one->jd_seg->js_seq > two->jd_seg->js_seq) { 1078 swp = one; 1079 one = two; 1080 two = swp; 1081 } 1082 WORKLIST_REMOVE(&two->jd_list); 1083 free_jsegdep(two); 1084 1085 return (one); 1086 } 1087 1088 /* 1089 * If two freedeps are compatible free one to reduce list size. 1090 */ 1091 static inline struct freedep * 1092 freedep_merge(struct freedep *one, struct freedep *two) 1093 { 1094 if (two == NULL) 1095 return (one); 1096 1097 if (one->fd_freework == two->fd_freework) { 1098 WORKLIST_REMOVE(&two->fd_list); 1099 free_freedep(two); 1100 } 1101 return (one); 1102 } 1103 1104 /* 1105 * Move journal work from one list to another. Duplicate freedeps and 1106 * jsegdeps are coalesced to keep the lists as small as possible. 1107 */ 1108 static void 1109 jwork_move(dst, src) 1110 struct workhead *dst; 1111 struct workhead *src; 1112 { 1113 struct freedep *freedep; 1114 struct jsegdep *jsegdep; 1115 struct worklist *wkn; 1116 struct worklist *wk; 1117 1118 KASSERT(dst != src, 1119 ("jwork_move: dst == src")); 1120 freedep = NULL; 1121 jsegdep = NULL; 1122 LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) { 1123 if (wk->wk_type == D_JSEGDEP) 1124 jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep); 1125 else if (wk->wk_type == D_FREEDEP) 1126 freedep = freedep_merge(WK_FREEDEP(wk), freedep); 1127 } 1128 1129 while ((wk = LIST_FIRST(src)) != NULL) { 1130 WORKLIST_REMOVE(wk); 1131 WORKLIST_INSERT(dst, wk); 1132 if (wk->wk_type == D_JSEGDEP) { 1133 jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep); 1134 continue; 1135 } 1136 if (wk->wk_type == D_FREEDEP) 1137 freedep = freedep_merge(WK_FREEDEP(wk), freedep); 1138 } 1139 } 1140 1141 static void 1142 jwork_insert(dst, jsegdep) 1143 struct workhead *dst; 1144 struct jsegdep *jsegdep; 1145 { 1146 struct jsegdep *jsegdepn; 1147 struct worklist *wk; 1148 1149 LIST_FOREACH(wk, dst, wk_list) 1150 if (wk->wk_type == D_JSEGDEP) 1151 break; 1152 if (wk == NULL) { 1153 WORKLIST_INSERT(dst, &jsegdep->jd_list); 1154 return; 1155 } 1156 jsegdepn = WK_JSEGDEP(wk); 1157 if (jsegdep->jd_seg->js_seq < jsegdepn->jd_seg->js_seq) { 1158 WORKLIST_REMOVE(wk); 1159 free_jsegdep(jsegdepn); 1160 WORKLIST_INSERT(dst, &jsegdep->jd_list); 1161 } else 1162 free_jsegdep(jsegdep); 1163 } 1164 1165 /* 1166 * Routines for tracking and managing workitems. 1167 */ 1168 static void workitem_free(struct worklist *, int); 1169 static void workitem_alloc(struct worklist *, int, struct mount *); 1170 static void workitem_reassign(struct worklist *, int); 1171 1172 #define WORKITEM_FREE(item, type) \ 1173 workitem_free((struct worklist *)(item), (type)) 1174 #define WORKITEM_REASSIGN(item, type) \ 1175 workitem_reassign((struct worklist *)(item), (type)) 1176 1177 static void 1178 workitem_free(item, type) 1179 struct worklist *item; 1180 int type; 1181 { 1182 struct ufsmount *ump; 1183 1184 #ifdef INVARIANTS 1185 if (item->wk_state & ONWORKLIST) 1186 panic("workitem_free: %s(0x%X) still on list, " 1187 "added in function %s at line %d", 1188 TYPENAME(item->wk_type), item->wk_state, 1189 item->wk_func, item->wk_line); 1190 if (item->wk_type != type && type != D_NEWBLK) 1191 panic("workitem_free: type mismatch %s != %s", 1192 TYPENAME(item->wk_type), TYPENAME(type)); 1193 #endif 1194 if (item->wk_state & IOWAITING) 1195 wakeup(item); 1196 ump = VFSTOUFS(item->wk_mp); 1197 LOCK_OWNED(ump); 1198 KASSERT(ump->softdep_deps > 0, 1199 ("workitem_free: %s: softdep_deps going negative", 1200 ump->um_fs->fs_fsmnt)); 1201 if (--ump->softdep_deps == 0 && ump->softdep_req) 1202 wakeup(&ump->softdep_deps); 1203 KASSERT(dep_current[item->wk_type] > 0, 1204 ("workitem_free: %s: dep_current[%s] going negative", 1205 ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1206 KASSERT(ump->softdep_curdeps[item->wk_type] > 0, 1207 ("workitem_free: %s: softdep_curdeps[%s] going negative", 1208 ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1209 atomic_subtract_long(&dep_current[item->wk_type], 1); 1210 ump->softdep_curdeps[item->wk_type] -= 1; 1211 #ifdef INVARIANTS 1212 LIST_REMOVE(item, wk_all); 1213 #endif 1214 free(item, DtoM(type)); 1215 } 1216 1217 static void 1218 workitem_alloc(item, type, mp) 1219 struct worklist *item; 1220 int type; 1221 struct mount *mp; 1222 { 1223 struct ufsmount *ump; 1224 1225 item->wk_type = type; 1226 item->wk_mp = mp; 1227 item->wk_state = 0; 1228 1229 ump = VFSTOUFS(mp); 1230 ACQUIRE_GBLLOCK(&lk); 1231 dep_current[type]++; 1232 if (dep_current[type] > dep_highuse[type]) 1233 dep_highuse[type] = dep_current[type]; 1234 dep_total[type]++; 1235 FREE_GBLLOCK(&lk); 1236 ACQUIRE_LOCK(ump); 1237 ump->softdep_curdeps[type] += 1; 1238 ump->softdep_deps++; 1239 ump->softdep_accdeps++; 1240 #ifdef INVARIANTS 1241 LIST_INSERT_HEAD(&ump->softdep_alldeps[type], item, wk_all); 1242 #endif 1243 FREE_LOCK(ump); 1244 } 1245 1246 static void 1247 workitem_reassign(item, newtype) 1248 struct worklist *item; 1249 int newtype; 1250 { 1251 struct ufsmount *ump; 1252 1253 ump = VFSTOUFS(item->wk_mp); 1254 LOCK_OWNED(ump); 1255 KASSERT(ump->softdep_curdeps[item->wk_type] > 0, 1256 ("workitem_reassign: %s: softdep_curdeps[%s] going negative", 1257 VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1258 ump->softdep_curdeps[item->wk_type] -= 1; 1259 ump->softdep_curdeps[newtype] += 1; 1260 KASSERT(dep_current[item->wk_type] > 0, 1261 ("workitem_reassign: %s: dep_current[%s] going negative", 1262 VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1263 ACQUIRE_GBLLOCK(&lk); 1264 dep_current[newtype]++; 1265 dep_current[item->wk_type]--; 1266 if (dep_current[newtype] > dep_highuse[newtype]) 1267 dep_highuse[newtype] = dep_current[newtype]; 1268 dep_total[newtype]++; 1269 FREE_GBLLOCK(&lk); 1270 item->wk_type = newtype; 1271 } 1272 1273 /* 1274 * Workitem queue management 1275 */ 1276 static int max_softdeps; /* maximum number of structs before slowdown */ 1277 static int tickdelay = 2; /* number of ticks to pause during slowdown */ 1278 static int proc_waiting; /* tracks whether we have a timeout posted */ 1279 static int *stat_countp; /* statistic to count in proc_waiting timeout */ 1280 static struct callout softdep_callout; 1281 static int req_clear_inodedeps; /* syncer process flush some inodedeps */ 1282 static int req_clear_remove; /* syncer process flush some freeblks */ 1283 static int softdep_flushcache = 0; /* Should we do BIO_FLUSH? */ 1284 1285 /* 1286 * runtime statistics 1287 */ 1288 static int stat_flush_threads; /* number of softdep flushing threads */ 1289 static int stat_worklist_push; /* number of worklist cleanups */ 1290 static int stat_blk_limit_push; /* number of times block limit neared */ 1291 static int stat_ino_limit_push; /* number of times inode limit neared */ 1292 static int stat_blk_limit_hit; /* number of times block slowdown imposed */ 1293 static int stat_ino_limit_hit; /* number of times inode slowdown imposed */ 1294 static int stat_sync_limit_hit; /* number of synchronous slowdowns imposed */ 1295 static int stat_indir_blk_ptrs; /* bufs redirtied as indir ptrs not written */ 1296 static int stat_inode_bitmap; /* bufs redirtied as inode bitmap not written */ 1297 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */ 1298 static int stat_dir_entry; /* bufs redirtied as dir entry cannot write */ 1299 static int stat_jaddref; /* bufs redirtied as ino bitmap can not write */ 1300 static int stat_jnewblk; /* bufs redirtied as blk bitmap can not write */ 1301 static int stat_journal_min; /* Times hit journal min threshold */ 1302 static int stat_journal_low; /* Times hit journal low threshold */ 1303 static int stat_journal_wait; /* Times blocked in jwait(). */ 1304 static int stat_jwait_filepage; /* Times blocked in jwait() for filepage. */ 1305 static int stat_jwait_freeblks; /* Times blocked in jwait() for freeblks. */ 1306 static int stat_jwait_inode; /* Times blocked in jwait() for inodes. */ 1307 static int stat_jwait_newblk; /* Times blocked in jwait() for newblks. */ 1308 static int stat_cleanup_high_delay; /* Maximum cleanup delay (in ticks) */ 1309 static int stat_cleanup_blkrequests; /* Number of block cleanup requests */ 1310 static int stat_cleanup_inorequests; /* Number of inode cleanup requests */ 1311 static int stat_cleanup_retries; /* Number of cleanups that needed to flush */ 1312 static int stat_cleanup_failures; /* Number of cleanup requests that failed */ 1313 static int stat_emptyjblocks; /* Number of potentially empty journal blocks */ 1314 1315 SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW, 1316 &max_softdeps, 0, ""); 1317 SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW, 1318 &tickdelay, 0, ""); 1319 SYSCTL_INT(_debug_softdep, OID_AUTO, flush_threads, CTLFLAG_RD, 1320 &stat_flush_threads, 0, ""); 1321 SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push, 1322 CTLFLAG_RW | CTLFLAG_STATS, &stat_worklist_push, 0,""); 1323 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push, 1324 CTLFLAG_RW | CTLFLAG_STATS, &stat_blk_limit_push, 0,""); 1325 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push, 1326 CTLFLAG_RW | CTLFLAG_STATS, &stat_ino_limit_push, 0,""); 1327 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit, 1328 CTLFLAG_RW | CTLFLAG_STATS, &stat_blk_limit_hit, 0, ""); 1329 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit, 1330 CTLFLAG_RW | CTLFLAG_STATS, &stat_ino_limit_hit, 0, ""); 1331 SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit, 1332 CTLFLAG_RW | CTLFLAG_STATS, &stat_sync_limit_hit, 0, ""); 1333 SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs, 1334 CTLFLAG_RW | CTLFLAG_STATS, &stat_indir_blk_ptrs, 0, ""); 1335 SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap, 1336 CTLFLAG_RW | CTLFLAG_STATS, &stat_inode_bitmap, 0, ""); 1337 SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs, 1338 CTLFLAG_RW | CTLFLAG_STATS, &stat_direct_blk_ptrs, 0, ""); 1339 SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry, 1340 CTLFLAG_RW | CTLFLAG_STATS, &stat_dir_entry, 0, ""); 1341 SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback, 1342 CTLFLAG_RW | CTLFLAG_STATS, &stat_jaddref, 0, ""); 1343 SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback, 1344 CTLFLAG_RW | CTLFLAG_STATS, &stat_jnewblk, 0, ""); 1345 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low, 1346 CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_low, 0, ""); 1347 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min, 1348 CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_min, 0, ""); 1349 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait, 1350 CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_wait, 0, ""); 1351 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage, 1352 CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_filepage, 0, ""); 1353 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks, 1354 CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_freeblks, 0, ""); 1355 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode, 1356 CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_inode, 0, ""); 1357 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk, 1358 CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_newblk, 0, ""); 1359 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_blkrequests, 1360 CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_blkrequests, 0, ""); 1361 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_inorequests, 1362 CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_inorequests, 0, ""); 1363 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_high_delay, 1364 CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_high_delay, 0, ""); 1365 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_retries, 1366 CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_retries, 0, ""); 1367 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_failures, 1368 CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_failures, 0, ""); 1369 1370 SYSCTL_INT(_debug_softdep, OID_AUTO, flushcache, CTLFLAG_RW, 1371 &softdep_flushcache, 0, ""); 1372 SYSCTL_INT(_debug_softdep, OID_AUTO, emptyjblocks, CTLFLAG_RD, 1373 &stat_emptyjblocks, 0, ""); 1374 1375 SYSCTL_DECL(_vfs_ffs); 1376 1377 /* Whether to recompute the summary at mount time */ 1378 static int compute_summary_at_mount = 0; 1379 SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW, 1380 &compute_summary_at_mount, 0, "Recompute summary at mount"); 1381 static int print_threads = 0; 1382 SYSCTL_INT(_debug_softdep, OID_AUTO, print_threads, CTLFLAG_RW, 1383 &print_threads, 0, "Notify flusher thread start/stop"); 1384 1385 /* List of all filesystems mounted with soft updates */ 1386 static TAILQ_HEAD(, mount_softdeps) softdepmounts; 1387 1388 /* 1389 * This function cleans the worklist for a filesystem. 1390 * Each filesystem running with soft dependencies gets its own 1391 * thread to run in this function. The thread is started up in 1392 * softdep_mount and shutdown in softdep_unmount. They show up 1393 * as part of the kernel "bufdaemon" process whose process 1394 * entry is available in bufdaemonproc. 1395 */ 1396 static int searchfailed; 1397 extern struct proc *bufdaemonproc; 1398 static void 1399 softdep_flush(addr) 1400 void *addr; 1401 { 1402 struct mount *mp; 1403 struct thread *td; 1404 struct ufsmount *ump; 1405 1406 td = curthread; 1407 td->td_pflags |= TDP_NORUNNINGBUF; 1408 mp = (struct mount *)addr; 1409 ump = VFSTOUFS(mp); 1410 atomic_add_int(&stat_flush_threads, 1); 1411 ACQUIRE_LOCK(ump); 1412 ump->softdep_flags &= ~FLUSH_STARTING; 1413 wakeup(&ump->softdep_flushtd); 1414 FREE_LOCK(ump); 1415 if (print_threads) { 1416 if (stat_flush_threads == 1) 1417 printf("Running %s at pid %d\n", bufdaemonproc->p_comm, 1418 bufdaemonproc->p_pid); 1419 printf("Start thread %s\n", td->td_name); 1420 } 1421 for (;;) { 1422 while (softdep_process_worklist(mp, 0) > 0 || 1423 (MOUNTEDSUJ(mp) && 1424 VFSTOUFS(mp)->softdep_jblocks->jb_suspended)) 1425 kthread_suspend_check(); 1426 ACQUIRE_LOCK(ump); 1427 if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) 1428 msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM, 1429 "sdflush", hz / 2); 1430 ump->softdep_flags &= ~FLUSH_CLEANUP; 1431 /* 1432 * Check to see if we are done and need to exit. 1433 */ 1434 if ((ump->softdep_flags & FLUSH_EXIT) == 0) { 1435 FREE_LOCK(ump); 1436 continue; 1437 } 1438 ump->softdep_flags &= ~FLUSH_EXIT; 1439 FREE_LOCK(ump); 1440 wakeup(&ump->softdep_flags); 1441 if (print_threads) 1442 printf("Stop thread %s: searchfailed %d, did cleanups %d\n", td->td_name, searchfailed, ump->um_softdep->sd_cleanups); 1443 atomic_subtract_int(&stat_flush_threads, 1); 1444 kthread_exit(); 1445 panic("kthread_exit failed\n"); 1446 } 1447 } 1448 1449 static void 1450 worklist_speedup(mp) 1451 struct mount *mp; 1452 { 1453 struct ufsmount *ump; 1454 1455 ump = VFSTOUFS(mp); 1456 LOCK_OWNED(ump); 1457 if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) 1458 ump->softdep_flags |= FLUSH_CLEANUP; 1459 wakeup(&ump->softdep_flushtd); 1460 } 1461 1462 static void 1463 softdep_send_speedup(struct ufsmount *ump, size_t shortage, u_int flags) 1464 { 1465 struct buf *bp; 1466 1467 bp = malloc(sizeof(*bp), M_TRIM, M_WAITOK | M_ZERO); 1468 bp->b_iocmd = BIO_SPEEDUP; 1469 bp->b_ioflags = flags; 1470 bp->b_bcount = shortage; 1471 g_vfs_strategy(ump->um_bo, bp); 1472 bufwait(bp); 1473 free(bp, M_TRIM); 1474 } 1475 1476 static int 1477 softdep_speedup(ump) 1478 struct ufsmount *ump; 1479 { 1480 struct ufsmount *altump; 1481 struct mount_softdeps *sdp; 1482 1483 LOCK_OWNED(ump); 1484 worklist_speedup(ump->um_mountp); 1485 bd_speedup(); 1486 /* 1487 * If we have global shortages, then we need other 1488 * filesystems to help with the cleanup. Here we wakeup a 1489 * flusher thread for a filesystem that is over its fair 1490 * share of resources. 1491 */ 1492 if (req_clear_inodedeps || req_clear_remove) { 1493 ACQUIRE_GBLLOCK(&lk); 1494 TAILQ_FOREACH(sdp, &softdepmounts, sd_next) { 1495 if ((altump = sdp->sd_ump) == ump) 1496 continue; 1497 if (((req_clear_inodedeps && 1498 altump->softdep_curdeps[D_INODEDEP] > 1499 max_softdeps / stat_flush_threads) || 1500 (req_clear_remove && 1501 altump->softdep_curdeps[D_DIRREM] > 1502 (max_softdeps / 2) / stat_flush_threads)) && 1503 TRY_ACQUIRE_LOCK(altump)) 1504 break; 1505 } 1506 if (sdp == NULL) { 1507 searchfailed++; 1508 FREE_GBLLOCK(&lk); 1509 } else { 1510 /* 1511 * Move to the end of the list so we pick a 1512 * different one on out next try. 1513 */ 1514 TAILQ_REMOVE(&softdepmounts, sdp, sd_next); 1515 TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next); 1516 FREE_GBLLOCK(&lk); 1517 if ((altump->softdep_flags & 1518 (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) 1519 altump->softdep_flags |= FLUSH_CLEANUP; 1520 altump->um_softdep->sd_cleanups++; 1521 wakeup(&altump->softdep_flushtd); 1522 FREE_LOCK(altump); 1523 } 1524 } 1525 return (speedup_syncer()); 1526 } 1527 1528 /* 1529 * Add an item to the end of the work queue. 1530 * This routine requires that the lock be held. 1531 * This is the only routine that adds items to the list. 1532 * The following routine is the only one that removes items 1533 * and does so in order from first to last. 1534 */ 1535 1536 #define WK_HEAD 0x0001 /* Add to HEAD. */ 1537 #define WK_NODELAY 0x0002 /* Process immediately. */ 1538 1539 static void 1540 add_to_worklist(wk, flags) 1541 struct worklist *wk; 1542 int flags; 1543 { 1544 struct ufsmount *ump; 1545 1546 ump = VFSTOUFS(wk->wk_mp); 1547 LOCK_OWNED(ump); 1548 if (wk->wk_state & ONWORKLIST) 1549 panic("add_to_worklist: %s(0x%X) already on list", 1550 TYPENAME(wk->wk_type), wk->wk_state); 1551 wk->wk_state |= ONWORKLIST; 1552 if (ump->softdep_on_worklist == 0) { 1553 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list); 1554 ump->softdep_worklist_tail = wk; 1555 } else if (flags & WK_HEAD) { 1556 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list); 1557 } else { 1558 LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list); 1559 ump->softdep_worklist_tail = wk; 1560 } 1561 ump->softdep_on_worklist += 1; 1562 if (flags & WK_NODELAY) 1563 worklist_speedup(wk->wk_mp); 1564 } 1565 1566 /* 1567 * Remove the item to be processed. If we are removing the last 1568 * item on the list, we need to recalculate the tail pointer. 1569 */ 1570 static void 1571 remove_from_worklist(wk) 1572 struct worklist *wk; 1573 { 1574 struct ufsmount *ump; 1575 1576 ump = VFSTOUFS(wk->wk_mp); 1577 if (ump->softdep_worklist_tail == wk) 1578 ump->softdep_worklist_tail = 1579 (struct worklist *)wk->wk_list.le_prev; 1580 WORKLIST_REMOVE(wk); 1581 ump->softdep_on_worklist -= 1; 1582 } 1583 1584 static void 1585 wake_worklist(wk) 1586 struct worklist *wk; 1587 { 1588 if (wk->wk_state & IOWAITING) { 1589 wk->wk_state &= ~IOWAITING; 1590 wakeup(wk); 1591 } 1592 } 1593 1594 static void 1595 wait_worklist(wk, wmesg) 1596 struct worklist *wk; 1597 char *wmesg; 1598 { 1599 struct ufsmount *ump; 1600 1601 ump = VFSTOUFS(wk->wk_mp); 1602 wk->wk_state |= IOWAITING; 1603 msleep(wk, LOCK_PTR(ump), PVM, wmesg, 0); 1604 } 1605 1606 /* 1607 * Process that runs once per second to handle items in the background queue. 1608 * 1609 * Note that we ensure that everything is done in the order in which they 1610 * appear in the queue. The code below depends on this property to ensure 1611 * that blocks of a file are freed before the inode itself is freed. This 1612 * ordering ensures that no new <vfsid, inum, lbn> triples will be generated 1613 * until all the old ones have been purged from the dependency lists. 1614 */ 1615 static int 1616 softdep_process_worklist(mp, full) 1617 struct mount *mp; 1618 int full; 1619 { 1620 int cnt, matchcnt; 1621 struct ufsmount *ump; 1622 long starttime; 1623 1624 KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp")); 1625 if (MOUNTEDSOFTDEP(mp) == 0) 1626 return (0); 1627 matchcnt = 0; 1628 ump = VFSTOUFS(mp); 1629 ACQUIRE_LOCK(ump); 1630 starttime = time_second; 1631 softdep_process_journal(mp, NULL, full ? MNT_WAIT : 0); 1632 check_clear_deps(mp); 1633 while (ump->softdep_on_worklist > 0) { 1634 if ((cnt = process_worklist_item(mp, 10, LK_NOWAIT)) == 0) 1635 break; 1636 else 1637 matchcnt += cnt; 1638 check_clear_deps(mp); 1639 /* 1640 * We do not generally want to stop for buffer space, but if 1641 * we are really being a buffer hog, we will stop and wait. 1642 */ 1643 if (should_yield()) { 1644 FREE_LOCK(ump); 1645 kern_yield(PRI_USER); 1646 bwillwrite(); 1647 ACQUIRE_LOCK(ump); 1648 } 1649 /* 1650 * Never allow processing to run for more than one 1651 * second. This gives the syncer thread the opportunity 1652 * to pause if appropriate. 1653 */ 1654 if (!full && starttime != time_second) 1655 break; 1656 } 1657 if (full == 0) 1658 journal_unsuspend(ump); 1659 FREE_LOCK(ump); 1660 return (matchcnt); 1661 } 1662 1663 /* 1664 * Process all removes associated with a vnode if we are running out of 1665 * journal space. Any other process which attempts to flush these will 1666 * be unable as we have the vnodes locked. 1667 */ 1668 static void 1669 process_removes(vp) 1670 struct vnode *vp; 1671 { 1672 struct inodedep *inodedep; 1673 struct dirrem *dirrem; 1674 struct ufsmount *ump; 1675 struct mount *mp; 1676 ino_t inum; 1677 1678 mp = vp->v_mount; 1679 ump = VFSTOUFS(mp); 1680 LOCK_OWNED(ump); 1681 inum = VTOI(vp)->i_number; 1682 for (;;) { 1683 top: 1684 if (inodedep_lookup(mp, inum, 0, &inodedep) == 0) 1685 return; 1686 LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext) { 1687 /* 1688 * If another thread is trying to lock this vnode 1689 * it will fail but we must wait for it to do so 1690 * before we can proceed. 1691 */ 1692 if (dirrem->dm_state & INPROGRESS) { 1693 wait_worklist(&dirrem->dm_list, "pwrwait"); 1694 goto top; 1695 } 1696 if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) == 1697 (COMPLETE | ONWORKLIST)) 1698 break; 1699 } 1700 if (dirrem == NULL) 1701 return; 1702 remove_from_worklist(&dirrem->dm_list); 1703 FREE_LOCK(ump); 1704 if (vn_start_secondary_write(NULL, &mp, V_NOWAIT)) 1705 panic("process_removes: suspended filesystem"); 1706 handle_workitem_remove(dirrem, 0); 1707 vn_finished_secondary_write(mp); 1708 ACQUIRE_LOCK(ump); 1709 } 1710 } 1711 1712 /* 1713 * Process all truncations associated with a vnode if we are running out 1714 * of journal space. This is called when the vnode lock is already held 1715 * and no other process can clear the truncation. This function returns 1716 * a value greater than zero if it did any work. 1717 */ 1718 static void 1719 process_truncates(vp) 1720 struct vnode *vp; 1721 { 1722 struct inodedep *inodedep; 1723 struct freeblks *freeblks; 1724 struct ufsmount *ump; 1725 struct mount *mp; 1726 ino_t inum; 1727 int cgwait; 1728 1729 mp = vp->v_mount; 1730 ump = VFSTOUFS(mp); 1731 LOCK_OWNED(ump); 1732 inum = VTOI(vp)->i_number; 1733 for (;;) { 1734 if (inodedep_lookup(mp, inum, 0, &inodedep) == 0) 1735 return; 1736 cgwait = 0; 1737 TAILQ_FOREACH(freeblks, &inodedep->id_freeblklst, fb_next) { 1738 /* Journal entries not yet written. */ 1739 if (!LIST_EMPTY(&freeblks->fb_jblkdephd)) { 1740 jwait(&LIST_FIRST( 1741 &freeblks->fb_jblkdephd)->jb_list, 1742 MNT_WAIT); 1743 break; 1744 } 1745 /* Another thread is executing this item. */ 1746 if (freeblks->fb_state & INPROGRESS) { 1747 wait_worklist(&freeblks->fb_list, "ptrwait"); 1748 break; 1749 } 1750 /* Freeblks is waiting on a inode write. */ 1751 if ((freeblks->fb_state & COMPLETE) == 0) { 1752 FREE_LOCK(ump); 1753 ffs_update(vp, 1); 1754 ACQUIRE_LOCK(ump); 1755 break; 1756 } 1757 if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST)) == 1758 (ALLCOMPLETE | ONWORKLIST)) { 1759 remove_from_worklist(&freeblks->fb_list); 1760 freeblks->fb_state |= INPROGRESS; 1761 FREE_LOCK(ump); 1762 if (vn_start_secondary_write(NULL, &mp, 1763 V_NOWAIT)) 1764 panic("process_truncates: " 1765 "suspended filesystem"); 1766 handle_workitem_freeblocks(freeblks, 0); 1767 vn_finished_secondary_write(mp); 1768 ACQUIRE_LOCK(ump); 1769 break; 1770 } 1771 if (freeblks->fb_cgwait) 1772 cgwait++; 1773 } 1774 if (cgwait) { 1775 FREE_LOCK(ump); 1776 sync_cgs(mp, MNT_WAIT); 1777 ffs_sync_snap(mp, MNT_WAIT); 1778 ACQUIRE_LOCK(ump); 1779 continue; 1780 } 1781 if (freeblks == NULL) 1782 break; 1783 } 1784 return; 1785 } 1786 1787 /* 1788 * Process one item on the worklist. 1789 */ 1790 static int 1791 process_worklist_item(mp, target, flags) 1792 struct mount *mp; 1793 int target; 1794 int flags; 1795 { 1796 struct worklist sentinel; 1797 struct worklist *wk; 1798 struct ufsmount *ump; 1799 int matchcnt; 1800 int error; 1801 1802 KASSERT(mp != NULL, ("process_worklist_item: NULL mp")); 1803 /* 1804 * If we are being called because of a process doing a 1805 * copy-on-write, then it is not safe to write as we may 1806 * recurse into the copy-on-write routine. 1807 */ 1808 if (curthread->td_pflags & TDP_COWINPROGRESS) 1809 return (-1); 1810 PHOLD(curproc); /* Don't let the stack go away. */ 1811 ump = VFSTOUFS(mp); 1812 LOCK_OWNED(ump); 1813 matchcnt = 0; 1814 sentinel.wk_mp = NULL; 1815 sentinel.wk_type = D_SENTINEL; 1816 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, &sentinel, wk_list); 1817 for (wk = LIST_NEXT(&sentinel, wk_list); wk != NULL; 1818 wk = LIST_NEXT(&sentinel, wk_list)) { 1819 if (wk->wk_type == D_SENTINEL) { 1820 LIST_REMOVE(&sentinel, wk_list); 1821 LIST_INSERT_AFTER(wk, &sentinel, wk_list); 1822 continue; 1823 } 1824 if (wk->wk_state & INPROGRESS) 1825 panic("process_worklist_item: %p already in progress.", 1826 wk); 1827 wk->wk_state |= INPROGRESS; 1828 remove_from_worklist(wk); 1829 FREE_LOCK(ump); 1830 if (vn_start_secondary_write(NULL, &mp, V_NOWAIT)) 1831 panic("process_worklist_item: suspended filesystem"); 1832 switch (wk->wk_type) { 1833 case D_DIRREM: 1834 /* removal of a directory entry */ 1835 error = handle_workitem_remove(WK_DIRREM(wk), flags); 1836 break; 1837 1838 case D_FREEBLKS: 1839 /* releasing blocks and/or fragments from a file */ 1840 error = handle_workitem_freeblocks(WK_FREEBLKS(wk), 1841 flags); 1842 break; 1843 1844 case D_FREEFRAG: 1845 /* releasing a fragment when replaced as a file grows */ 1846 handle_workitem_freefrag(WK_FREEFRAG(wk)); 1847 error = 0; 1848 break; 1849 1850 case D_FREEFILE: 1851 /* releasing an inode when its link count drops to 0 */ 1852 handle_workitem_freefile(WK_FREEFILE(wk)); 1853 error = 0; 1854 break; 1855 1856 default: 1857 panic("%s_process_worklist: Unknown type %s", 1858 "softdep", TYPENAME(wk->wk_type)); 1859 /* NOTREACHED */ 1860 } 1861 vn_finished_secondary_write(mp); 1862 ACQUIRE_LOCK(ump); 1863 if (error == 0) { 1864 if (++matchcnt == target) 1865 break; 1866 continue; 1867 } 1868 /* 1869 * We have to retry the worklist item later. Wake up any 1870 * waiters who may be able to complete it immediately and 1871 * add the item back to the head so we don't try to execute 1872 * it again. 1873 */ 1874 wk->wk_state &= ~INPROGRESS; 1875 wake_worklist(wk); 1876 add_to_worklist(wk, WK_HEAD); 1877 } 1878 /* Sentinal could've become the tail from remove_from_worklist. */ 1879 if (ump->softdep_worklist_tail == &sentinel) 1880 ump->softdep_worklist_tail = 1881 (struct worklist *)sentinel.wk_list.le_prev; 1882 LIST_REMOVE(&sentinel, wk_list); 1883 PRELE(curproc); 1884 return (matchcnt); 1885 } 1886 1887 /* 1888 * Move dependencies from one buffer to another. 1889 */ 1890 int 1891 softdep_move_dependencies(oldbp, newbp) 1892 struct buf *oldbp; 1893 struct buf *newbp; 1894 { 1895 struct worklist *wk, *wktail; 1896 struct ufsmount *ump; 1897 int dirty; 1898 1899 if ((wk = LIST_FIRST(&oldbp->b_dep)) == NULL) 1900 return (0); 1901 KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, 1902 ("softdep_move_dependencies called on non-softdep filesystem")); 1903 dirty = 0; 1904 wktail = NULL; 1905 ump = VFSTOUFS(wk->wk_mp); 1906 ACQUIRE_LOCK(ump); 1907 while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) { 1908 LIST_REMOVE(wk, wk_list); 1909 if (wk->wk_type == D_BMSAFEMAP && 1910 bmsafemap_backgroundwrite(WK_BMSAFEMAP(wk), newbp)) 1911 dirty = 1; 1912 if (wktail == NULL) 1913 LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list); 1914 else 1915 LIST_INSERT_AFTER(wktail, wk, wk_list); 1916 wktail = wk; 1917 } 1918 FREE_LOCK(ump); 1919 1920 return (dirty); 1921 } 1922 1923 /* 1924 * Purge the work list of all items associated with a particular mount point. 1925 */ 1926 int 1927 softdep_flushworklist(oldmnt, countp, td) 1928 struct mount *oldmnt; 1929 int *countp; 1930 struct thread *td; 1931 { 1932 struct vnode *devvp; 1933 struct ufsmount *ump; 1934 int count, error; 1935 1936 /* 1937 * Alternately flush the block device associated with the mount 1938 * point and process any dependencies that the flushing 1939 * creates. We continue until no more worklist dependencies 1940 * are found. 1941 */ 1942 *countp = 0; 1943 error = 0; 1944 ump = VFSTOUFS(oldmnt); 1945 devvp = ump->um_devvp; 1946 while ((count = softdep_process_worklist(oldmnt, 1)) > 0) { 1947 *countp += count; 1948 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 1949 error = VOP_FSYNC(devvp, MNT_WAIT, td); 1950 VOP_UNLOCK(devvp); 1951 if (error != 0) 1952 break; 1953 } 1954 return (error); 1955 } 1956 1957 #define SU_WAITIDLE_RETRIES 20 1958 static int 1959 softdep_waitidle(struct mount *mp, int flags __unused) 1960 { 1961 struct ufsmount *ump; 1962 struct vnode *devvp; 1963 struct thread *td; 1964 int error, i; 1965 1966 ump = VFSTOUFS(mp); 1967 devvp = ump->um_devvp; 1968 td = curthread; 1969 error = 0; 1970 ACQUIRE_LOCK(ump); 1971 for (i = 0; i < SU_WAITIDLE_RETRIES && ump->softdep_deps != 0; i++) { 1972 ump->softdep_req = 1; 1973 KASSERT((flags & FORCECLOSE) == 0 || 1974 ump->softdep_on_worklist == 0, 1975 ("softdep_waitidle: work added after flush")); 1976 msleep(&ump->softdep_deps, LOCK_PTR(ump), PVM | PDROP, 1977 "softdeps", 10 * hz); 1978 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 1979 error = VOP_FSYNC(devvp, MNT_WAIT, td); 1980 VOP_UNLOCK(devvp); 1981 ACQUIRE_LOCK(ump); 1982 if (error != 0) 1983 break; 1984 } 1985 ump->softdep_req = 0; 1986 if (i == SU_WAITIDLE_RETRIES && error == 0 && ump->softdep_deps != 0) { 1987 error = EBUSY; 1988 printf("softdep_waitidle: Failed to flush worklist for %p\n", 1989 mp); 1990 } 1991 FREE_LOCK(ump); 1992 return (error); 1993 } 1994 1995 /* 1996 * Flush all vnodes and worklist items associated with a specified mount point. 1997 */ 1998 int 1999 softdep_flushfiles(oldmnt, flags, td) 2000 struct mount *oldmnt; 2001 int flags; 2002 struct thread *td; 2003 { 2004 #ifdef QUOTA 2005 struct ufsmount *ump; 2006 int i; 2007 #endif 2008 int error, early, depcount, loopcnt, retry_flush_count, retry; 2009 int morework; 2010 2011 KASSERT(MOUNTEDSOFTDEP(oldmnt) != 0, 2012 ("softdep_flushfiles called on non-softdep filesystem")); 2013 loopcnt = 10; 2014 retry_flush_count = 3; 2015 retry_flush: 2016 error = 0; 2017 2018 /* 2019 * Alternately flush the vnodes associated with the mount 2020 * point and process any dependencies that the flushing 2021 * creates. In theory, this loop can happen at most twice, 2022 * but we give it a few extra just to be sure. 2023 */ 2024 for (; loopcnt > 0; loopcnt--) { 2025 /* 2026 * Do another flush in case any vnodes were brought in 2027 * as part of the cleanup operations. 2028 */ 2029 early = retry_flush_count == 1 || (oldmnt->mnt_kern_flag & 2030 MNTK_UNMOUNT) == 0 ? 0 : EARLYFLUSH; 2031 if ((error = ffs_flushfiles(oldmnt, flags | early, td)) != 0) 2032 break; 2033 if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 || 2034 depcount == 0) 2035 break; 2036 } 2037 /* 2038 * If we are unmounting then it is an error to fail. If we 2039 * are simply trying to downgrade to read-only, then filesystem 2040 * activity can keep us busy forever, so we just fail with EBUSY. 2041 */ 2042 if (loopcnt == 0) { 2043 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) 2044 panic("softdep_flushfiles: looping"); 2045 error = EBUSY; 2046 } 2047 if (!error) 2048 error = softdep_waitidle(oldmnt, flags); 2049 if (!error) { 2050 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) { 2051 retry = 0; 2052 MNT_ILOCK(oldmnt); 2053 morework = oldmnt->mnt_nvnodelistsize > 0; 2054 #ifdef QUOTA 2055 ump = VFSTOUFS(oldmnt); 2056 UFS_LOCK(ump); 2057 for (i = 0; i < MAXQUOTAS; i++) { 2058 if (ump->um_quotas[i] != NULLVP) 2059 morework = 1; 2060 } 2061 UFS_UNLOCK(ump); 2062 #endif 2063 if (morework) { 2064 if (--retry_flush_count > 0) { 2065 retry = 1; 2066 loopcnt = 3; 2067 } else 2068 error = EBUSY; 2069 } 2070 MNT_IUNLOCK(oldmnt); 2071 if (retry) 2072 goto retry_flush; 2073 } 2074 } 2075 return (error); 2076 } 2077 2078 /* 2079 * Structure hashing. 2080 * 2081 * There are four types of structures that can be looked up: 2082 * 1) pagedep structures identified by mount point, inode number, 2083 * and logical block. 2084 * 2) inodedep structures identified by mount point and inode number. 2085 * 3) newblk structures identified by mount point and 2086 * physical block number. 2087 * 4) bmsafemap structures identified by mount point and 2088 * cylinder group number. 2089 * 2090 * The "pagedep" and "inodedep" dependency structures are hashed 2091 * separately from the file blocks and inodes to which they correspond. 2092 * This separation helps when the in-memory copy of an inode or 2093 * file block must be replaced. It also obviates the need to access 2094 * an inode or file page when simply updating (or de-allocating) 2095 * dependency structures. Lookup of newblk structures is needed to 2096 * find newly allocated blocks when trying to associate them with 2097 * their allocdirect or allocindir structure. 2098 * 2099 * The lookup routines optionally create and hash a new instance when 2100 * an existing entry is not found. The bmsafemap lookup routine always 2101 * allocates a new structure if an existing one is not found. 2102 */ 2103 #define DEPALLOC 0x0001 /* allocate structure if lookup fails */ 2104 2105 /* 2106 * Structures and routines associated with pagedep caching. 2107 */ 2108 #define PAGEDEP_HASH(ump, inum, lbn) \ 2109 (&(ump)->pagedep_hashtbl[((inum) + (lbn)) & (ump)->pagedep_hash_size]) 2110 2111 static int 2112 pagedep_find(pagedephd, ino, lbn, pagedeppp) 2113 struct pagedep_hashhead *pagedephd; 2114 ino_t ino; 2115 ufs_lbn_t lbn; 2116 struct pagedep **pagedeppp; 2117 { 2118 struct pagedep *pagedep; 2119 2120 LIST_FOREACH(pagedep, pagedephd, pd_hash) { 2121 if (ino == pagedep->pd_ino && lbn == pagedep->pd_lbn) { 2122 *pagedeppp = pagedep; 2123 return (1); 2124 } 2125 } 2126 *pagedeppp = NULL; 2127 return (0); 2128 } 2129 /* 2130 * Look up a pagedep. Return 1 if found, 0 otherwise. 2131 * If not found, allocate if DEPALLOC flag is passed. 2132 * Found or allocated entry is returned in pagedeppp. 2133 */ 2134 static int 2135 pagedep_lookup(mp, bp, ino, lbn, flags, pagedeppp) 2136 struct mount *mp; 2137 struct buf *bp; 2138 ino_t ino; 2139 ufs_lbn_t lbn; 2140 int flags; 2141 struct pagedep **pagedeppp; 2142 { 2143 struct pagedep *pagedep; 2144 struct pagedep_hashhead *pagedephd; 2145 struct worklist *wk; 2146 struct ufsmount *ump; 2147 int ret; 2148 int i; 2149 2150 ump = VFSTOUFS(mp); 2151 LOCK_OWNED(ump); 2152 if (bp) { 2153 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 2154 if (wk->wk_type == D_PAGEDEP) { 2155 *pagedeppp = WK_PAGEDEP(wk); 2156 return (1); 2157 } 2158 } 2159 } 2160 pagedephd = PAGEDEP_HASH(ump, ino, lbn); 2161 ret = pagedep_find(pagedephd, ino, lbn, pagedeppp); 2162 if (ret) { 2163 if (((*pagedeppp)->pd_state & ONWORKLIST) == 0 && bp) 2164 WORKLIST_INSERT(&bp->b_dep, &(*pagedeppp)->pd_list); 2165 return (1); 2166 } 2167 if ((flags & DEPALLOC) == 0) 2168 return (0); 2169 FREE_LOCK(ump); 2170 pagedep = malloc(sizeof(struct pagedep), 2171 M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO); 2172 workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp); 2173 ACQUIRE_LOCK(ump); 2174 ret = pagedep_find(pagedephd, ino, lbn, pagedeppp); 2175 if (*pagedeppp) { 2176 /* 2177 * This should never happen since we only create pagedeps 2178 * with the vnode lock held. Could be an assert. 2179 */ 2180 WORKITEM_FREE(pagedep, D_PAGEDEP); 2181 return (ret); 2182 } 2183 pagedep->pd_ino = ino; 2184 pagedep->pd_lbn = lbn; 2185 LIST_INIT(&pagedep->pd_dirremhd); 2186 LIST_INIT(&pagedep->pd_pendinghd); 2187 for (i = 0; i < DAHASHSZ; i++) 2188 LIST_INIT(&pagedep->pd_diraddhd[i]); 2189 LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash); 2190 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 2191 *pagedeppp = pagedep; 2192 return (0); 2193 } 2194 2195 /* 2196 * Structures and routines associated with inodedep caching. 2197 */ 2198 #define INODEDEP_HASH(ump, inum) \ 2199 (&(ump)->inodedep_hashtbl[(inum) & (ump)->inodedep_hash_size]) 2200 2201 static int 2202 inodedep_find(inodedephd, inum, inodedeppp) 2203 struct inodedep_hashhead *inodedephd; 2204 ino_t inum; 2205 struct inodedep **inodedeppp; 2206 { 2207 struct inodedep *inodedep; 2208 2209 LIST_FOREACH(inodedep, inodedephd, id_hash) 2210 if (inum == inodedep->id_ino) 2211 break; 2212 if (inodedep) { 2213 *inodedeppp = inodedep; 2214 return (1); 2215 } 2216 *inodedeppp = NULL; 2217 2218 return (0); 2219 } 2220 /* 2221 * Look up an inodedep. Return 1 if found, 0 if not found. 2222 * If not found, allocate if DEPALLOC flag is passed. 2223 * Found or allocated entry is returned in inodedeppp. 2224 */ 2225 static int 2226 inodedep_lookup(mp, inum, flags, inodedeppp) 2227 struct mount *mp; 2228 ino_t inum; 2229 int flags; 2230 struct inodedep **inodedeppp; 2231 { 2232 struct inodedep *inodedep; 2233 struct inodedep_hashhead *inodedephd; 2234 struct ufsmount *ump; 2235 struct fs *fs; 2236 2237 ump = VFSTOUFS(mp); 2238 LOCK_OWNED(ump); 2239 fs = ump->um_fs; 2240 inodedephd = INODEDEP_HASH(ump, inum); 2241 2242 if (inodedep_find(inodedephd, inum, inodedeppp)) 2243 return (1); 2244 if ((flags & DEPALLOC) == 0) 2245 return (0); 2246 /* 2247 * If the system is over its limit and our filesystem is 2248 * responsible for more than our share of that usage and 2249 * we are not in a rush, request some inodedep cleanup. 2250 */ 2251 if (softdep_excess_items(ump, D_INODEDEP)) 2252 schedule_cleanup(mp); 2253 else 2254 FREE_LOCK(ump); 2255 inodedep = malloc(sizeof(struct inodedep), 2256 M_INODEDEP, M_SOFTDEP_FLAGS); 2257 workitem_alloc(&inodedep->id_list, D_INODEDEP, mp); 2258 ACQUIRE_LOCK(ump); 2259 if (inodedep_find(inodedephd, inum, inodedeppp)) { 2260 WORKITEM_FREE(inodedep, D_INODEDEP); 2261 return (1); 2262 } 2263 inodedep->id_fs = fs; 2264 inodedep->id_ino = inum; 2265 inodedep->id_state = ALLCOMPLETE; 2266 inodedep->id_nlinkdelta = 0; 2267 inodedep->id_savedino1 = NULL; 2268 inodedep->id_savedsize = -1; 2269 inodedep->id_savedextsize = -1; 2270 inodedep->id_savednlink = -1; 2271 inodedep->id_bmsafemap = NULL; 2272 inodedep->id_mkdiradd = NULL; 2273 LIST_INIT(&inodedep->id_dirremhd); 2274 LIST_INIT(&inodedep->id_pendinghd); 2275 LIST_INIT(&inodedep->id_inowait); 2276 LIST_INIT(&inodedep->id_bufwait); 2277 TAILQ_INIT(&inodedep->id_inoreflst); 2278 TAILQ_INIT(&inodedep->id_inoupdt); 2279 TAILQ_INIT(&inodedep->id_newinoupdt); 2280 TAILQ_INIT(&inodedep->id_extupdt); 2281 TAILQ_INIT(&inodedep->id_newextupdt); 2282 TAILQ_INIT(&inodedep->id_freeblklst); 2283 LIST_INSERT_HEAD(inodedephd, inodedep, id_hash); 2284 *inodedeppp = inodedep; 2285 return (0); 2286 } 2287 2288 /* 2289 * Structures and routines associated with newblk caching. 2290 */ 2291 #define NEWBLK_HASH(ump, inum) \ 2292 (&(ump)->newblk_hashtbl[(inum) & (ump)->newblk_hash_size]) 2293 2294 static int 2295 newblk_find(newblkhd, newblkno, flags, newblkpp) 2296 struct newblk_hashhead *newblkhd; 2297 ufs2_daddr_t newblkno; 2298 int flags; 2299 struct newblk **newblkpp; 2300 { 2301 struct newblk *newblk; 2302 2303 LIST_FOREACH(newblk, newblkhd, nb_hash) { 2304 if (newblkno != newblk->nb_newblkno) 2305 continue; 2306 /* 2307 * If we're creating a new dependency don't match those that 2308 * have already been converted to allocdirects. This is for 2309 * a frag extend. 2310 */ 2311 if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK) 2312 continue; 2313 break; 2314 } 2315 if (newblk) { 2316 *newblkpp = newblk; 2317 return (1); 2318 } 2319 *newblkpp = NULL; 2320 return (0); 2321 } 2322 2323 /* 2324 * Look up a newblk. Return 1 if found, 0 if not found. 2325 * If not found, allocate if DEPALLOC flag is passed. 2326 * Found or allocated entry is returned in newblkpp. 2327 */ 2328 static int 2329 newblk_lookup(mp, newblkno, flags, newblkpp) 2330 struct mount *mp; 2331 ufs2_daddr_t newblkno; 2332 int flags; 2333 struct newblk **newblkpp; 2334 { 2335 struct newblk *newblk; 2336 struct newblk_hashhead *newblkhd; 2337 struct ufsmount *ump; 2338 2339 ump = VFSTOUFS(mp); 2340 LOCK_OWNED(ump); 2341 newblkhd = NEWBLK_HASH(ump, newblkno); 2342 if (newblk_find(newblkhd, newblkno, flags, newblkpp)) 2343 return (1); 2344 if ((flags & DEPALLOC) == 0) 2345 return (0); 2346 if (softdep_excess_items(ump, D_NEWBLK) || 2347 softdep_excess_items(ump, D_ALLOCDIRECT) || 2348 softdep_excess_items(ump, D_ALLOCINDIR)) 2349 schedule_cleanup(mp); 2350 else 2351 FREE_LOCK(ump); 2352 newblk = malloc(sizeof(union allblk), M_NEWBLK, 2353 M_SOFTDEP_FLAGS | M_ZERO); 2354 workitem_alloc(&newblk->nb_list, D_NEWBLK, mp); 2355 ACQUIRE_LOCK(ump); 2356 if (newblk_find(newblkhd, newblkno, flags, newblkpp)) { 2357 WORKITEM_FREE(newblk, D_NEWBLK); 2358 return (1); 2359 } 2360 newblk->nb_freefrag = NULL; 2361 LIST_INIT(&newblk->nb_indirdeps); 2362 LIST_INIT(&newblk->nb_newdirblk); 2363 LIST_INIT(&newblk->nb_jwork); 2364 newblk->nb_state = ATTACHED; 2365 newblk->nb_newblkno = newblkno; 2366 LIST_INSERT_HEAD(newblkhd, newblk, nb_hash); 2367 *newblkpp = newblk; 2368 return (0); 2369 } 2370 2371 /* 2372 * Structures and routines associated with freed indirect block caching. 2373 */ 2374 #define INDIR_HASH(ump, blkno) \ 2375 (&(ump)->indir_hashtbl[(blkno) & (ump)->indir_hash_size]) 2376 2377 /* 2378 * Lookup an indirect block in the indir hash table. The freework is 2379 * removed and potentially freed. The caller must do a blocking journal 2380 * write before writing to the blkno. 2381 */ 2382 static int 2383 indirblk_lookup(mp, blkno) 2384 struct mount *mp; 2385 ufs2_daddr_t blkno; 2386 { 2387 struct freework *freework; 2388 struct indir_hashhead *wkhd; 2389 struct ufsmount *ump; 2390 2391 ump = VFSTOUFS(mp); 2392 wkhd = INDIR_HASH(ump, blkno); 2393 TAILQ_FOREACH(freework, wkhd, fw_next) { 2394 if (freework->fw_blkno != blkno) 2395 continue; 2396 indirblk_remove(freework); 2397 return (1); 2398 } 2399 return (0); 2400 } 2401 2402 /* 2403 * Insert an indirect block represented by freework into the indirblk 2404 * hash table so that it may prevent the block from being re-used prior 2405 * to the journal being written. 2406 */ 2407 static void 2408 indirblk_insert(freework) 2409 struct freework *freework; 2410 { 2411 struct jblocks *jblocks; 2412 struct jseg *jseg; 2413 struct ufsmount *ump; 2414 2415 ump = VFSTOUFS(freework->fw_list.wk_mp); 2416 jblocks = ump->softdep_jblocks; 2417 jseg = TAILQ_LAST(&jblocks->jb_segs, jseglst); 2418 if (jseg == NULL) 2419 return; 2420 2421 LIST_INSERT_HEAD(&jseg->js_indirs, freework, fw_segs); 2422 TAILQ_INSERT_HEAD(INDIR_HASH(ump, freework->fw_blkno), freework, 2423 fw_next); 2424 freework->fw_state &= ~DEPCOMPLETE; 2425 } 2426 2427 static void 2428 indirblk_remove(freework) 2429 struct freework *freework; 2430 { 2431 struct ufsmount *ump; 2432 2433 ump = VFSTOUFS(freework->fw_list.wk_mp); 2434 LIST_REMOVE(freework, fw_segs); 2435 TAILQ_REMOVE(INDIR_HASH(ump, freework->fw_blkno), freework, fw_next); 2436 freework->fw_state |= DEPCOMPLETE; 2437 if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE) 2438 WORKITEM_FREE(freework, D_FREEWORK); 2439 } 2440 2441 /* 2442 * Executed during filesystem system initialization before 2443 * mounting any filesystems. 2444 */ 2445 void 2446 softdep_initialize() 2447 { 2448 2449 TAILQ_INIT(&softdepmounts); 2450 #ifdef __LP64__ 2451 max_softdeps = desiredvnodes * 4; 2452 #else 2453 max_softdeps = desiredvnodes * 2; 2454 #endif 2455 2456 /* initialise bioops hack */ 2457 bioops.io_start = softdep_disk_io_initiation; 2458 bioops.io_complete = softdep_disk_write_complete; 2459 bioops.io_deallocate = softdep_deallocate_dependencies; 2460 bioops.io_countdeps = softdep_count_dependencies; 2461 softdep_ast_cleanup = softdep_ast_cleanup_proc; 2462 2463 /* Initialize the callout with an mtx. */ 2464 callout_init_mtx(&softdep_callout, &lk, 0); 2465 } 2466 2467 /* 2468 * Executed after all filesystems have been unmounted during 2469 * filesystem module unload. 2470 */ 2471 void 2472 softdep_uninitialize() 2473 { 2474 2475 /* clear bioops hack */ 2476 bioops.io_start = NULL; 2477 bioops.io_complete = NULL; 2478 bioops.io_deallocate = NULL; 2479 bioops.io_countdeps = NULL; 2480 softdep_ast_cleanup = NULL; 2481 2482 callout_drain(&softdep_callout); 2483 } 2484 2485 /* 2486 * Called at mount time to notify the dependency code that a 2487 * filesystem wishes to use it. 2488 */ 2489 int 2490 softdep_mount(devvp, mp, fs, cred) 2491 struct vnode *devvp; 2492 struct mount *mp; 2493 struct fs *fs; 2494 struct ucred *cred; 2495 { 2496 struct csum_total cstotal; 2497 struct mount_softdeps *sdp; 2498 struct ufsmount *ump; 2499 struct cg *cgp; 2500 struct buf *bp; 2501 u_int cyl, i; 2502 int error; 2503 2504 sdp = malloc(sizeof(struct mount_softdeps), M_MOUNTDATA, 2505 M_WAITOK | M_ZERO); 2506 MNT_ILOCK(mp); 2507 mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP; 2508 if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) { 2509 mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) | 2510 MNTK_SOFTDEP | MNTK_NOASYNC; 2511 } 2512 ump = VFSTOUFS(mp); 2513 ump->um_softdep = sdp; 2514 MNT_IUNLOCK(mp); 2515 rw_init(LOCK_PTR(ump), "per-fs softdep"); 2516 sdp->sd_ump = ump; 2517 LIST_INIT(&ump->softdep_workitem_pending); 2518 LIST_INIT(&ump->softdep_journal_pending); 2519 TAILQ_INIT(&ump->softdep_unlinked); 2520 LIST_INIT(&ump->softdep_dirtycg); 2521 ump->softdep_worklist_tail = NULL; 2522 ump->softdep_on_worklist = 0; 2523 ump->softdep_deps = 0; 2524 LIST_INIT(&ump->softdep_mkdirlisthd); 2525 ump->pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP, 2526 &ump->pagedep_hash_size); 2527 ump->pagedep_nextclean = 0; 2528 ump->inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, 2529 &ump->inodedep_hash_size); 2530 ump->inodedep_nextclean = 0; 2531 ump->newblk_hashtbl = hashinit(max_softdeps / 2, M_NEWBLK, 2532 &ump->newblk_hash_size); 2533 ump->bmsafemap_hashtbl = hashinit(1024, M_BMSAFEMAP, 2534 &ump->bmsafemap_hash_size); 2535 i = 1 << (ffs(desiredvnodes / 10) - 1); 2536 ump->indir_hashtbl = malloc(i * sizeof(struct indir_hashhead), 2537 M_FREEWORK, M_WAITOK); 2538 ump->indir_hash_size = i - 1; 2539 for (i = 0; i <= ump->indir_hash_size; i++) 2540 TAILQ_INIT(&ump->indir_hashtbl[i]); 2541 #ifdef INVARIANTS 2542 for (i = 0; i <= D_LAST; i++) 2543 LIST_INIT(&ump->softdep_alldeps[i]); 2544 #endif 2545 ACQUIRE_GBLLOCK(&lk); 2546 TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next); 2547 FREE_GBLLOCK(&lk); 2548 if ((fs->fs_flags & FS_SUJ) && 2549 (error = journal_mount(mp, fs, cred)) != 0) { 2550 printf("Failed to start journal: %d\n", error); 2551 softdep_unmount(mp); 2552 return (error); 2553 } 2554 /* 2555 * Start our flushing thread in the bufdaemon process. 2556 */ 2557 ACQUIRE_LOCK(ump); 2558 ump->softdep_flags |= FLUSH_STARTING; 2559 FREE_LOCK(ump); 2560 kproc_kthread_add(&softdep_flush, mp, &bufdaemonproc, 2561 &ump->softdep_flushtd, 0, 0, "softdepflush", "%s worker", 2562 mp->mnt_stat.f_mntonname); 2563 ACQUIRE_LOCK(ump); 2564 while ((ump->softdep_flags & FLUSH_STARTING) != 0) { 2565 msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM, "sdstart", 2566 hz / 2); 2567 } 2568 FREE_LOCK(ump); 2569 /* 2570 * When doing soft updates, the counters in the 2571 * superblock may have gotten out of sync. Recomputation 2572 * can take a long time and can be deferred for background 2573 * fsck. However, the old behavior of scanning the cylinder 2574 * groups and recalculating them at mount time is available 2575 * by setting vfs.ffs.compute_summary_at_mount to one. 2576 */ 2577 if (compute_summary_at_mount == 0 || fs->fs_clean != 0) 2578 return (0); 2579 bzero(&cstotal, sizeof cstotal); 2580 for (cyl = 0; cyl < fs->fs_ncg; cyl++) { 2581 if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)), 2582 fs->fs_cgsize, cred, &bp)) != 0) { 2583 brelse(bp); 2584 softdep_unmount(mp); 2585 return (error); 2586 } 2587 cgp = (struct cg *)bp->b_data; 2588 cstotal.cs_nffree += cgp->cg_cs.cs_nffree; 2589 cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree; 2590 cstotal.cs_nifree += cgp->cg_cs.cs_nifree; 2591 cstotal.cs_ndir += cgp->cg_cs.cs_ndir; 2592 fs->fs_cs(fs, cyl) = cgp->cg_cs; 2593 brelse(bp); 2594 } 2595 #ifdef INVARIANTS 2596 if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal)) 2597 printf("%s: superblock summary recomputed\n", fs->fs_fsmnt); 2598 #endif 2599 bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal); 2600 return (0); 2601 } 2602 2603 void 2604 softdep_unmount(mp) 2605 struct mount *mp; 2606 { 2607 struct ufsmount *ump; 2608 #ifdef INVARIANTS 2609 int i; 2610 #endif 2611 2612 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 2613 ("softdep_unmount called on non-softdep filesystem")); 2614 ump = VFSTOUFS(mp); 2615 MNT_ILOCK(mp); 2616 mp->mnt_flag &= ~MNT_SOFTDEP; 2617 if (MOUNTEDSUJ(mp) == 0) { 2618 MNT_IUNLOCK(mp); 2619 } else { 2620 mp->mnt_flag &= ~MNT_SUJ; 2621 MNT_IUNLOCK(mp); 2622 journal_unmount(ump); 2623 } 2624 /* 2625 * Shut down our flushing thread. Check for NULL is if 2626 * softdep_mount errors out before the thread has been created. 2627 */ 2628 if (ump->softdep_flushtd != NULL) { 2629 ACQUIRE_LOCK(ump); 2630 ump->softdep_flags |= FLUSH_EXIT; 2631 wakeup(&ump->softdep_flushtd); 2632 msleep(&ump->softdep_flags, LOCK_PTR(ump), PVM | PDROP, 2633 "sdwait", 0); 2634 KASSERT((ump->softdep_flags & FLUSH_EXIT) == 0, 2635 ("Thread shutdown failed")); 2636 } 2637 /* 2638 * Free up our resources. 2639 */ 2640 ACQUIRE_GBLLOCK(&lk); 2641 TAILQ_REMOVE(&softdepmounts, ump->um_softdep, sd_next); 2642 FREE_GBLLOCK(&lk); 2643 rw_destroy(LOCK_PTR(ump)); 2644 hashdestroy(ump->pagedep_hashtbl, M_PAGEDEP, ump->pagedep_hash_size); 2645 hashdestroy(ump->inodedep_hashtbl, M_INODEDEP, ump->inodedep_hash_size); 2646 hashdestroy(ump->newblk_hashtbl, M_NEWBLK, ump->newblk_hash_size); 2647 hashdestroy(ump->bmsafemap_hashtbl, M_BMSAFEMAP, 2648 ump->bmsafemap_hash_size); 2649 free(ump->indir_hashtbl, M_FREEWORK); 2650 #ifdef INVARIANTS 2651 for (i = 0; i <= D_LAST; i++) { 2652 KASSERT(ump->softdep_curdeps[i] == 0, 2653 ("Unmount %s: Dep type %s != 0 (%ld)", ump->um_fs->fs_fsmnt, 2654 TYPENAME(i), ump->softdep_curdeps[i])); 2655 KASSERT(LIST_EMPTY(&ump->softdep_alldeps[i]), 2656 ("Unmount %s: Dep type %s not empty (%p)", ump->um_fs->fs_fsmnt, 2657 TYPENAME(i), LIST_FIRST(&ump->softdep_alldeps[i]))); 2658 } 2659 #endif 2660 free(ump->um_softdep, M_MOUNTDATA); 2661 } 2662 2663 static struct jblocks * 2664 jblocks_create(void) 2665 { 2666 struct jblocks *jblocks; 2667 2668 jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO); 2669 TAILQ_INIT(&jblocks->jb_segs); 2670 jblocks->jb_avail = 10; 2671 jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail, 2672 M_JBLOCKS, M_WAITOK | M_ZERO); 2673 2674 return (jblocks); 2675 } 2676 2677 static ufs2_daddr_t 2678 jblocks_alloc(jblocks, bytes, actual) 2679 struct jblocks *jblocks; 2680 int bytes; 2681 int *actual; 2682 { 2683 ufs2_daddr_t daddr; 2684 struct jextent *jext; 2685 int freecnt; 2686 int blocks; 2687 2688 blocks = bytes / DEV_BSIZE; 2689 jext = &jblocks->jb_extent[jblocks->jb_head]; 2690 freecnt = jext->je_blocks - jblocks->jb_off; 2691 if (freecnt == 0) { 2692 jblocks->jb_off = 0; 2693 if (++jblocks->jb_head > jblocks->jb_used) 2694 jblocks->jb_head = 0; 2695 jext = &jblocks->jb_extent[jblocks->jb_head]; 2696 freecnt = jext->je_blocks; 2697 } 2698 if (freecnt > blocks) 2699 freecnt = blocks; 2700 *actual = freecnt * DEV_BSIZE; 2701 daddr = jext->je_daddr + jblocks->jb_off; 2702 jblocks->jb_off += freecnt; 2703 jblocks->jb_free -= freecnt; 2704 2705 return (daddr); 2706 } 2707 2708 static void 2709 jblocks_free(jblocks, mp, bytes) 2710 struct jblocks *jblocks; 2711 struct mount *mp; 2712 int bytes; 2713 { 2714 2715 LOCK_OWNED(VFSTOUFS(mp)); 2716 jblocks->jb_free += bytes / DEV_BSIZE; 2717 if (jblocks->jb_suspended) 2718 worklist_speedup(mp); 2719 wakeup(jblocks); 2720 } 2721 2722 static void 2723 jblocks_destroy(jblocks) 2724 struct jblocks *jblocks; 2725 { 2726 2727 if (jblocks->jb_extent) 2728 free(jblocks->jb_extent, M_JBLOCKS); 2729 free(jblocks, M_JBLOCKS); 2730 } 2731 2732 static void 2733 jblocks_add(jblocks, daddr, blocks) 2734 struct jblocks *jblocks; 2735 ufs2_daddr_t daddr; 2736 int blocks; 2737 { 2738 struct jextent *jext; 2739 2740 jblocks->jb_blocks += blocks; 2741 jblocks->jb_free += blocks; 2742 jext = &jblocks->jb_extent[jblocks->jb_used]; 2743 /* Adding the first block. */ 2744 if (jext->je_daddr == 0) { 2745 jext->je_daddr = daddr; 2746 jext->je_blocks = blocks; 2747 return; 2748 } 2749 /* Extending the last extent. */ 2750 if (jext->je_daddr + jext->je_blocks == daddr) { 2751 jext->je_blocks += blocks; 2752 return; 2753 } 2754 /* Adding a new extent. */ 2755 if (++jblocks->jb_used == jblocks->jb_avail) { 2756 jblocks->jb_avail *= 2; 2757 jext = malloc(sizeof(struct jextent) * jblocks->jb_avail, 2758 M_JBLOCKS, M_WAITOK | M_ZERO); 2759 memcpy(jext, jblocks->jb_extent, 2760 sizeof(struct jextent) * jblocks->jb_used); 2761 free(jblocks->jb_extent, M_JBLOCKS); 2762 jblocks->jb_extent = jext; 2763 } 2764 jext = &jblocks->jb_extent[jblocks->jb_used]; 2765 jext->je_daddr = daddr; 2766 jext->je_blocks = blocks; 2767 return; 2768 } 2769 2770 int 2771 softdep_journal_lookup(mp, vpp) 2772 struct mount *mp; 2773 struct vnode **vpp; 2774 { 2775 struct componentname cnp; 2776 struct vnode *dvp; 2777 ino_t sujournal; 2778 int error; 2779 2780 error = VFS_VGET(mp, UFS_ROOTINO, LK_EXCLUSIVE, &dvp); 2781 if (error) 2782 return (error); 2783 bzero(&cnp, sizeof(cnp)); 2784 cnp.cn_nameiop = LOOKUP; 2785 cnp.cn_flags = ISLASTCN; 2786 cnp.cn_thread = curthread; 2787 cnp.cn_cred = curthread->td_ucred; 2788 cnp.cn_pnbuf = SUJ_FILE; 2789 cnp.cn_nameptr = SUJ_FILE; 2790 cnp.cn_namelen = strlen(SUJ_FILE); 2791 error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal); 2792 vput(dvp); 2793 if (error != 0) 2794 return (error); 2795 error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp); 2796 return (error); 2797 } 2798 2799 /* 2800 * Open and verify the journal file. 2801 */ 2802 static int 2803 journal_mount(mp, fs, cred) 2804 struct mount *mp; 2805 struct fs *fs; 2806 struct ucred *cred; 2807 { 2808 struct jblocks *jblocks; 2809 struct ufsmount *ump; 2810 struct vnode *vp; 2811 struct inode *ip; 2812 ufs2_daddr_t blkno; 2813 int bcount; 2814 int error; 2815 int i; 2816 2817 ump = VFSTOUFS(mp); 2818 ump->softdep_journal_tail = NULL; 2819 ump->softdep_on_journal = 0; 2820 ump->softdep_accdeps = 0; 2821 ump->softdep_req = 0; 2822 ump->softdep_jblocks = NULL; 2823 error = softdep_journal_lookup(mp, &vp); 2824 if (error != 0) { 2825 printf("Failed to find journal. Use tunefs to create one\n"); 2826 return (error); 2827 } 2828 ip = VTOI(vp); 2829 if (ip->i_size < SUJ_MIN) { 2830 error = ENOSPC; 2831 goto out; 2832 } 2833 bcount = lblkno(fs, ip->i_size); /* Only use whole blocks. */ 2834 jblocks = jblocks_create(); 2835 for (i = 0; i < bcount; i++) { 2836 error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL); 2837 if (error) 2838 break; 2839 jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag)); 2840 } 2841 if (error) { 2842 jblocks_destroy(jblocks); 2843 goto out; 2844 } 2845 jblocks->jb_low = jblocks->jb_free / 3; /* Reserve 33%. */ 2846 jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */ 2847 ump->softdep_jblocks = jblocks; 2848 out: 2849 if (error == 0) { 2850 MNT_ILOCK(mp); 2851 mp->mnt_flag |= MNT_SUJ; 2852 mp->mnt_flag &= ~MNT_SOFTDEP; 2853 MNT_IUNLOCK(mp); 2854 /* 2855 * Only validate the journal contents if the 2856 * filesystem is clean, otherwise we write the logs 2857 * but they'll never be used. If the filesystem was 2858 * still dirty when we mounted it the journal is 2859 * invalid and a new journal can only be valid if it 2860 * starts from a clean mount. 2861 */ 2862 if (fs->fs_clean) { 2863 DIP_SET(ip, i_modrev, fs->fs_mtime); 2864 ip->i_flags |= IN_MODIFIED; 2865 ffs_update(vp, 1); 2866 } 2867 } 2868 vput(vp); 2869 return (error); 2870 } 2871 2872 static void 2873 journal_unmount(ump) 2874 struct ufsmount *ump; 2875 { 2876 2877 if (ump->softdep_jblocks) 2878 jblocks_destroy(ump->softdep_jblocks); 2879 ump->softdep_jblocks = NULL; 2880 } 2881 2882 /* 2883 * Called when a journal record is ready to be written. Space is allocated 2884 * and the journal entry is created when the journal is flushed to stable 2885 * store. 2886 */ 2887 static void 2888 add_to_journal(wk) 2889 struct worklist *wk; 2890 { 2891 struct ufsmount *ump; 2892 2893 ump = VFSTOUFS(wk->wk_mp); 2894 LOCK_OWNED(ump); 2895 if (wk->wk_state & ONWORKLIST) 2896 panic("add_to_journal: %s(0x%X) already on list", 2897 TYPENAME(wk->wk_type), wk->wk_state); 2898 wk->wk_state |= ONWORKLIST | DEPCOMPLETE; 2899 if (LIST_EMPTY(&ump->softdep_journal_pending)) { 2900 ump->softdep_jblocks->jb_age = ticks; 2901 LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list); 2902 } else 2903 LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list); 2904 ump->softdep_journal_tail = wk; 2905 ump->softdep_on_journal += 1; 2906 } 2907 2908 /* 2909 * Remove an arbitrary item for the journal worklist maintain the tail 2910 * pointer. This happens when a new operation obviates the need to 2911 * journal an old operation. 2912 */ 2913 static void 2914 remove_from_journal(wk) 2915 struct worklist *wk; 2916 { 2917 struct ufsmount *ump; 2918 2919 ump = VFSTOUFS(wk->wk_mp); 2920 LOCK_OWNED(ump); 2921 #ifdef INVARIANTS 2922 { 2923 struct worklist *wkn; 2924 2925 LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list) 2926 if (wkn == wk) 2927 break; 2928 if (wkn == NULL) 2929 panic("remove_from_journal: %p is not in journal", wk); 2930 } 2931 #endif 2932 /* 2933 * We emulate a TAILQ to save space in most structures which do not 2934 * require TAILQ semantics. Here we must update the tail position 2935 * when removing the tail which is not the final entry. This works 2936 * only if the worklist linkage are at the beginning of the structure. 2937 */ 2938 if (ump->softdep_journal_tail == wk) 2939 ump->softdep_journal_tail = 2940 (struct worklist *)wk->wk_list.le_prev; 2941 WORKLIST_REMOVE(wk); 2942 ump->softdep_on_journal -= 1; 2943 } 2944 2945 /* 2946 * Check for journal space as well as dependency limits so the prelink 2947 * code can throttle both journaled and non-journaled filesystems. 2948 * Threshold is 0 for low and 1 for min. 2949 */ 2950 static int 2951 journal_space(ump, thresh) 2952 struct ufsmount *ump; 2953 int thresh; 2954 { 2955 struct jblocks *jblocks; 2956 int limit, avail; 2957 2958 jblocks = ump->softdep_jblocks; 2959 if (jblocks == NULL) 2960 return (1); 2961 /* 2962 * We use a tighter restriction here to prevent request_cleanup() 2963 * running in threads from running into locks we currently hold. 2964 * We have to be over the limit and our filesystem has to be 2965 * responsible for more than our share of that usage. 2966 */ 2967 limit = (max_softdeps / 10) * 9; 2968 if (dep_current[D_INODEDEP] > limit && 2969 ump->softdep_curdeps[D_INODEDEP] > limit / stat_flush_threads) 2970 return (0); 2971 if (thresh) 2972 thresh = jblocks->jb_min; 2973 else 2974 thresh = jblocks->jb_low; 2975 avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE; 2976 avail = jblocks->jb_free - avail; 2977 2978 return (avail > thresh); 2979 } 2980 2981 static void 2982 journal_suspend(ump) 2983 struct ufsmount *ump; 2984 { 2985 struct jblocks *jblocks; 2986 struct mount *mp; 2987 bool set; 2988 2989 mp = UFSTOVFS(ump); 2990 if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) 2991 return; 2992 2993 jblocks = ump->softdep_jblocks; 2994 vfs_op_enter(mp); 2995 set = false; 2996 MNT_ILOCK(mp); 2997 if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) { 2998 stat_journal_min++; 2999 mp->mnt_kern_flag |= MNTK_SUSPEND; 3000 mp->mnt_susp_owner = ump->softdep_flushtd; 3001 set = true; 3002 } 3003 jblocks->jb_suspended = 1; 3004 MNT_IUNLOCK(mp); 3005 if (!set) 3006 vfs_op_exit(mp); 3007 } 3008 3009 static int 3010 journal_unsuspend(struct ufsmount *ump) 3011 { 3012 struct jblocks *jblocks; 3013 struct mount *mp; 3014 3015 mp = UFSTOVFS(ump); 3016 jblocks = ump->softdep_jblocks; 3017 3018 if (jblocks != NULL && jblocks->jb_suspended && 3019 journal_space(ump, jblocks->jb_min)) { 3020 jblocks->jb_suspended = 0; 3021 FREE_LOCK(ump); 3022 mp->mnt_susp_owner = curthread; 3023 vfs_write_resume(mp, 0); 3024 ACQUIRE_LOCK(ump); 3025 return (1); 3026 } 3027 return (0); 3028 } 3029 3030 /* 3031 * Called before any allocation function to be certain that there is 3032 * sufficient space in the journal prior to creating any new records. 3033 * Since in the case of block allocation we may have multiple locked 3034 * buffers at the time of the actual allocation we can not block 3035 * when the journal records are created. Doing so would create a deadlock 3036 * if any of these buffers needed to be flushed to reclaim space. Instead 3037 * we require a sufficiently large amount of available space such that 3038 * each thread in the system could have passed this allocation check and 3039 * still have sufficient free space. With 20% of a minimum journal size 3040 * of 1MB we have 6553 records available. 3041 */ 3042 int 3043 softdep_prealloc(vp, waitok) 3044 struct vnode *vp; 3045 int waitok; 3046 { 3047 struct ufsmount *ump; 3048 3049 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 3050 ("softdep_prealloc called on non-softdep filesystem")); 3051 /* 3052 * Nothing to do if we are not running journaled soft updates. 3053 * If we currently hold the snapshot lock, we must avoid 3054 * handling other resources that could cause deadlock. Do not 3055 * touch quotas vnode since it is typically recursed with 3056 * other vnode locks held. 3057 */ 3058 if (DOINGSUJ(vp) == 0 || IS_SNAPSHOT(VTOI(vp)) || 3059 (vp->v_vflag & VV_SYSTEM) != 0) 3060 return (0); 3061 ump = VFSTOUFS(vp->v_mount); 3062 ACQUIRE_LOCK(ump); 3063 if (journal_space(ump, 0)) { 3064 FREE_LOCK(ump); 3065 return (0); 3066 } 3067 stat_journal_low++; 3068 FREE_LOCK(ump); 3069 if (waitok == MNT_NOWAIT) 3070 return (ENOSPC); 3071 /* 3072 * Attempt to sync this vnode once to flush any journal 3073 * work attached to it. 3074 */ 3075 if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0) 3076 ffs_syncvnode(vp, waitok, 0); 3077 ACQUIRE_LOCK(ump); 3078 process_removes(vp); 3079 process_truncates(vp); 3080 if (journal_space(ump, 0) == 0) { 3081 softdep_speedup(ump); 3082 if (journal_space(ump, 1) == 0) 3083 journal_suspend(ump); 3084 } 3085 FREE_LOCK(ump); 3086 3087 return (0); 3088 } 3089 3090 /* 3091 * Before adjusting a link count on a vnode verify that we have sufficient 3092 * journal space. If not, process operations that depend on the currently 3093 * locked pair of vnodes to try to flush space as the syncer, buf daemon, 3094 * and softdep flush threads can not acquire these locks to reclaim space. 3095 */ 3096 static void 3097 softdep_prelink(dvp, vp) 3098 struct vnode *dvp; 3099 struct vnode *vp; 3100 { 3101 struct ufsmount *ump; 3102 3103 ump = VFSTOUFS(dvp->v_mount); 3104 LOCK_OWNED(ump); 3105 /* 3106 * Nothing to do if we have sufficient journal space. 3107 * If we currently hold the snapshot lock, we must avoid 3108 * handling other resources that could cause deadlock. 3109 */ 3110 if (journal_space(ump, 0) || (vp && IS_SNAPSHOT(VTOI(vp)))) 3111 return; 3112 stat_journal_low++; 3113 FREE_LOCK(ump); 3114 if (vp) 3115 ffs_syncvnode(vp, MNT_NOWAIT, 0); 3116 ffs_syncvnode(dvp, MNT_WAIT, 0); 3117 ACQUIRE_LOCK(ump); 3118 /* Process vp before dvp as it may create .. removes. */ 3119 if (vp) { 3120 process_removes(vp); 3121 process_truncates(vp); 3122 } 3123 process_removes(dvp); 3124 process_truncates(dvp); 3125 softdep_speedup(ump); 3126 process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT); 3127 if (journal_space(ump, 0) == 0) { 3128 softdep_speedup(ump); 3129 if (journal_space(ump, 1) == 0) 3130 journal_suspend(ump); 3131 } 3132 } 3133 3134 static void 3135 jseg_write(ump, jseg, data) 3136 struct ufsmount *ump; 3137 struct jseg *jseg; 3138 uint8_t *data; 3139 { 3140 struct jsegrec *rec; 3141 3142 rec = (struct jsegrec *)data; 3143 rec->jsr_seq = jseg->js_seq; 3144 rec->jsr_oldest = jseg->js_oldseq; 3145 rec->jsr_cnt = jseg->js_cnt; 3146 rec->jsr_blocks = jseg->js_size / ump->um_devvp->v_bufobj.bo_bsize; 3147 rec->jsr_crc = 0; 3148 rec->jsr_time = ump->um_fs->fs_mtime; 3149 } 3150 3151 static inline void 3152 inoref_write(inoref, jseg, rec) 3153 struct inoref *inoref; 3154 struct jseg *jseg; 3155 struct jrefrec *rec; 3156 { 3157 3158 inoref->if_jsegdep->jd_seg = jseg; 3159 rec->jr_ino = inoref->if_ino; 3160 rec->jr_parent = inoref->if_parent; 3161 rec->jr_nlink = inoref->if_nlink; 3162 rec->jr_mode = inoref->if_mode; 3163 rec->jr_diroff = inoref->if_diroff; 3164 } 3165 3166 static void 3167 jaddref_write(jaddref, jseg, data) 3168 struct jaddref *jaddref; 3169 struct jseg *jseg; 3170 uint8_t *data; 3171 { 3172 struct jrefrec *rec; 3173 3174 rec = (struct jrefrec *)data; 3175 rec->jr_op = JOP_ADDREF; 3176 inoref_write(&jaddref->ja_ref, jseg, rec); 3177 } 3178 3179 static void 3180 jremref_write(jremref, jseg, data) 3181 struct jremref *jremref; 3182 struct jseg *jseg; 3183 uint8_t *data; 3184 { 3185 struct jrefrec *rec; 3186 3187 rec = (struct jrefrec *)data; 3188 rec->jr_op = JOP_REMREF; 3189 inoref_write(&jremref->jr_ref, jseg, rec); 3190 } 3191 3192 static void 3193 jmvref_write(jmvref, jseg, data) 3194 struct jmvref *jmvref; 3195 struct jseg *jseg; 3196 uint8_t *data; 3197 { 3198 struct jmvrec *rec; 3199 3200 rec = (struct jmvrec *)data; 3201 rec->jm_op = JOP_MVREF; 3202 rec->jm_ino = jmvref->jm_ino; 3203 rec->jm_parent = jmvref->jm_parent; 3204 rec->jm_oldoff = jmvref->jm_oldoff; 3205 rec->jm_newoff = jmvref->jm_newoff; 3206 } 3207 3208 static void 3209 jnewblk_write(jnewblk, jseg, data) 3210 struct jnewblk *jnewblk; 3211 struct jseg *jseg; 3212 uint8_t *data; 3213 { 3214 struct jblkrec *rec; 3215 3216 jnewblk->jn_jsegdep->jd_seg = jseg; 3217 rec = (struct jblkrec *)data; 3218 rec->jb_op = JOP_NEWBLK; 3219 rec->jb_ino = jnewblk->jn_ino; 3220 rec->jb_blkno = jnewblk->jn_blkno; 3221 rec->jb_lbn = jnewblk->jn_lbn; 3222 rec->jb_frags = jnewblk->jn_frags; 3223 rec->jb_oldfrags = jnewblk->jn_oldfrags; 3224 } 3225 3226 static void 3227 jfreeblk_write(jfreeblk, jseg, data) 3228 struct jfreeblk *jfreeblk; 3229 struct jseg *jseg; 3230 uint8_t *data; 3231 { 3232 struct jblkrec *rec; 3233 3234 jfreeblk->jf_dep.jb_jsegdep->jd_seg = jseg; 3235 rec = (struct jblkrec *)data; 3236 rec->jb_op = JOP_FREEBLK; 3237 rec->jb_ino = jfreeblk->jf_ino; 3238 rec->jb_blkno = jfreeblk->jf_blkno; 3239 rec->jb_lbn = jfreeblk->jf_lbn; 3240 rec->jb_frags = jfreeblk->jf_frags; 3241 rec->jb_oldfrags = 0; 3242 } 3243 3244 static void 3245 jfreefrag_write(jfreefrag, jseg, data) 3246 struct jfreefrag *jfreefrag; 3247 struct jseg *jseg; 3248 uint8_t *data; 3249 { 3250 struct jblkrec *rec; 3251 3252 jfreefrag->fr_jsegdep->jd_seg = jseg; 3253 rec = (struct jblkrec *)data; 3254 rec->jb_op = JOP_FREEBLK; 3255 rec->jb_ino = jfreefrag->fr_ino; 3256 rec->jb_blkno = jfreefrag->fr_blkno; 3257 rec->jb_lbn = jfreefrag->fr_lbn; 3258 rec->jb_frags = jfreefrag->fr_frags; 3259 rec->jb_oldfrags = 0; 3260 } 3261 3262 static void 3263 jtrunc_write(jtrunc, jseg, data) 3264 struct jtrunc *jtrunc; 3265 struct jseg *jseg; 3266 uint8_t *data; 3267 { 3268 struct jtrncrec *rec; 3269 3270 jtrunc->jt_dep.jb_jsegdep->jd_seg = jseg; 3271 rec = (struct jtrncrec *)data; 3272 rec->jt_op = JOP_TRUNC; 3273 rec->jt_ino = jtrunc->jt_ino; 3274 rec->jt_size = jtrunc->jt_size; 3275 rec->jt_extsize = jtrunc->jt_extsize; 3276 } 3277 3278 static void 3279 jfsync_write(jfsync, jseg, data) 3280 struct jfsync *jfsync; 3281 struct jseg *jseg; 3282 uint8_t *data; 3283 { 3284 struct jtrncrec *rec; 3285 3286 rec = (struct jtrncrec *)data; 3287 rec->jt_op = JOP_SYNC; 3288 rec->jt_ino = jfsync->jfs_ino; 3289 rec->jt_size = jfsync->jfs_size; 3290 rec->jt_extsize = jfsync->jfs_extsize; 3291 } 3292 3293 static void 3294 softdep_flushjournal(mp) 3295 struct mount *mp; 3296 { 3297 struct jblocks *jblocks; 3298 struct ufsmount *ump; 3299 3300 if (MOUNTEDSUJ(mp) == 0) 3301 return; 3302 ump = VFSTOUFS(mp); 3303 jblocks = ump->softdep_jblocks; 3304 ACQUIRE_LOCK(ump); 3305 while (ump->softdep_on_journal) { 3306 jblocks->jb_needseg = 1; 3307 softdep_process_journal(mp, NULL, MNT_WAIT); 3308 } 3309 FREE_LOCK(ump); 3310 } 3311 3312 static void softdep_synchronize_completed(struct bio *); 3313 static void softdep_synchronize(struct bio *, struct ufsmount *, void *); 3314 3315 static void 3316 softdep_synchronize_completed(bp) 3317 struct bio *bp; 3318 { 3319 struct jseg *oldest; 3320 struct jseg *jseg; 3321 struct ufsmount *ump; 3322 3323 /* 3324 * caller1 marks the last segment written before we issued the 3325 * synchronize cache. 3326 */ 3327 jseg = bp->bio_caller1; 3328 if (jseg == NULL) { 3329 g_destroy_bio(bp); 3330 return; 3331 } 3332 ump = VFSTOUFS(jseg->js_list.wk_mp); 3333 ACQUIRE_LOCK(ump); 3334 oldest = NULL; 3335 /* 3336 * Mark all the journal entries waiting on the synchronize cache 3337 * as completed so they may continue on. 3338 */ 3339 while (jseg != NULL && (jseg->js_state & COMPLETE) == 0) { 3340 jseg->js_state |= COMPLETE; 3341 oldest = jseg; 3342 jseg = TAILQ_PREV(jseg, jseglst, js_next); 3343 } 3344 /* 3345 * Restart deferred journal entry processing from the oldest 3346 * completed jseg. 3347 */ 3348 if (oldest) 3349 complete_jsegs(oldest); 3350 3351 FREE_LOCK(ump); 3352 g_destroy_bio(bp); 3353 } 3354 3355 /* 3356 * Send BIO_FLUSH/SYNCHRONIZE CACHE to the device to enforce write ordering 3357 * barriers. The journal must be written prior to any blocks that depend 3358 * on it and the journal can not be released until the blocks have be 3359 * written. This code handles both barriers simultaneously. 3360 */ 3361 static void 3362 softdep_synchronize(bp, ump, caller1) 3363 struct bio *bp; 3364 struct ufsmount *ump; 3365 void *caller1; 3366 { 3367 3368 bp->bio_cmd = BIO_FLUSH; 3369 bp->bio_flags |= BIO_ORDERED; 3370 bp->bio_data = NULL; 3371 bp->bio_offset = ump->um_cp->provider->mediasize; 3372 bp->bio_length = 0; 3373 bp->bio_done = softdep_synchronize_completed; 3374 bp->bio_caller1 = caller1; 3375 g_io_request(bp, ump->um_cp); 3376 } 3377 3378 /* 3379 * Flush some journal records to disk. 3380 */ 3381 static void 3382 softdep_process_journal(mp, needwk, flags) 3383 struct mount *mp; 3384 struct worklist *needwk; 3385 int flags; 3386 { 3387 struct jblocks *jblocks; 3388 struct ufsmount *ump; 3389 struct worklist *wk; 3390 struct jseg *jseg; 3391 struct buf *bp; 3392 struct bio *bio; 3393 uint8_t *data; 3394 struct fs *fs; 3395 int shouldflush; 3396 int segwritten; 3397 int jrecmin; /* Minimum records per block. */ 3398 int jrecmax; /* Maximum records per block. */ 3399 int size; 3400 int cnt; 3401 int off; 3402 int devbsize; 3403 3404 if (MOUNTEDSUJ(mp) == 0) 3405 return; 3406 shouldflush = softdep_flushcache; 3407 bio = NULL; 3408 jseg = NULL; 3409 ump = VFSTOUFS(mp); 3410 LOCK_OWNED(ump); 3411 fs = ump->um_fs; 3412 jblocks = ump->softdep_jblocks; 3413 devbsize = ump->um_devvp->v_bufobj.bo_bsize; 3414 /* 3415 * We write anywhere between a disk block and fs block. The upper 3416 * bound is picked to prevent buffer cache fragmentation and limit 3417 * processing time per I/O. 3418 */ 3419 jrecmin = (devbsize / JREC_SIZE) - 1; /* -1 for seg header */ 3420 jrecmax = (fs->fs_bsize / devbsize) * jrecmin; 3421 segwritten = 0; 3422 for (;;) { 3423 cnt = ump->softdep_on_journal; 3424 /* 3425 * Criteria for writing a segment: 3426 * 1) We have a full block. 3427 * 2) We're called from jwait() and haven't found the 3428 * journal item yet. 3429 * 3) Always write if needseg is set. 3430 * 4) If we are called from process_worklist and have 3431 * not yet written anything we write a partial block 3432 * to enforce a 1 second maximum latency on journal 3433 * entries. 3434 */ 3435 if (cnt < (jrecmax - 1) && needwk == NULL && 3436 jblocks->jb_needseg == 0 && (segwritten || cnt == 0)) 3437 break; 3438 cnt++; 3439 /* 3440 * Verify some free journal space. softdep_prealloc() should 3441 * guarantee that we don't run out so this is indicative of 3442 * a problem with the flow control. Try to recover 3443 * gracefully in any event. 3444 */ 3445 while (jblocks->jb_free == 0) { 3446 if (flags != MNT_WAIT) 3447 break; 3448 printf("softdep: Out of journal space!\n"); 3449 softdep_speedup(ump); 3450 msleep(jblocks, LOCK_PTR(ump), PRIBIO, "jblocks", hz); 3451 } 3452 FREE_LOCK(ump); 3453 jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS); 3454 workitem_alloc(&jseg->js_list, D_JSEG, mp); 3455 LIST_INIT(&jseg->js_entries); 3456 LIST_INIT(&jseg->js_indirs); 3457 jseg->js_state = ATTACHED; 3458 if (shouldflush == 0) 3459 jseg->js_state |= COMPLETE; 3460 else if (bio == NULL) 3461 bio = g_alloc_bio(); 3462 jseg->js_jblocks = jblocks; 3463 bp = geteblk(fs->fs_bsize, 0); 3464 ACQUIRE_LOCK(ump); 3465 /* 3466 * If there was a race while we were allocating the block 3467 * and jseg the entry we care about was likely written. 3468 * We bail out in both the WAIT and NOWAIT case and assume 3469 * the caller will loop if the entry it cares about is 3470 * not written. 3471 */ 3472 cnt = ump->softdep_on_journal; 3473 if (cnt + jblocks->jb_needseg == 0 || jblocks->jb_free == 0) { 3474 bp->b_flags |= B_INVAL | B_NOCACHE; 3475 WORKITEM_FREE(jseg, D_JSEG); 3476 FREE_LOCK(ump); 3477 brelse(bp); 3478 ACQUIRE_LOCK(ump); 3479 break; 3480 } 3481 /* 3482 * Calculate the disk block size required for the available 3483 * records rounded to the min size. 3484 */ 3485 if (cnt == 0) 3486 size = devbsize; 3487 else if (cnt < jrecmax) 3488 size = howmany(cnt, jrecmin) * devbsize; 3489 else 3490 size = fs->fs_bsize; 3491 /* 3492 * Allocate a disk block for this journal data and account 3493 * for truncation of the requested size if enough contiguous 3494 * space was not available. 3495 */ 3496 bp->b_blkno = jblocks_alloc(jblocks, size, &size); 3497 bp->b_lblkno = bp->b_blkno; 3498 bp->b_offset = bp->b_blkno * DEV_BSIZE; 3499 bp->b_bcount = size; 3500 bp->b_flags &= ~B_INVAL; 3501 bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY; 3502 /* 3503 * Initialize our jseg with cnt records. Assign the next 3504 * sequence number to it and link it in-order. 3505 */ 3506 cnt = MIN(cnt, (size / devbsize) * jrecmin); 3507 jseg->js_buf = bp; 3508 jseg->js_cnt = cnt; 3509 jseg->js_refs = cnt + 1; /* Self ref. */ 3510 jseg->js_size = size; 3511 jseg->js_seq = jblocks->jb_nextseq++; 3512 if (jblocks->jb_oldestseg == NULL) 3513 jblocks->jb_oldestseg = jseg; 3514 jseg->js_oldseq = jblocks->jb_oldestseg->js_seq; 3515 TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next); 3516 if (jblocks->jb_writeseg == NULL) 3517 jblocks->jb_writeseg = jseg; 3518 /* 3519 * Start filling in records from the pending list. 3520 */ 3521 data = bp->b_data; 3522 off = 0; 3523 3524 /* 3525 * Always put a header on the first block. 3526 * XXX As with below, there might not be a chance to get 3527 * into the loop. Ensure that something valid is written. 3528 */ 3529 jseg_write(ump, jseg, data); 3530 off += JREC_SIZE; 3531 data = bp->b_data + off; 3532 3533 /* 3534 * XXX Something is wrong here. There's no work to do, 3535 * but we need to perform and I/O and allow it to complete 3536 * anyways. 3537 */ 3538 if (LIST_EMPTY(&ump->softdep_journal_pending)) 3539 stat_emptyjblocks++; 3540 3541 while ((wk = LIST_FIRST(&ump->softdep_journal_pending)) 3542 != NULL) { 3543 if (cnt == 0) 3544 break; 3545 /* Place a segment header on every device block. */ 3546 if ((off % devbsize) == 0) { 3547 jseg_write(ump, jseg, data); 3548 off += JREC_SIZE; 3549 data = bp->b_data + off; 3550 } 3551 if (wk == needwk) 3552 needwk = NULL; 3553 remove_from_journal(wk); 3554 wk->wk_state |= INPROGRESS; 3555 WORKLIST_INSERT(&jseg->js_entries, wk); 3556 switch (wk->wk_type) { 3557 case D_JADDREF: 3558 jaddref_write(WK_JADDREF(wk), jseg, data); 3559 break; 3560 case D_JREMREF: 3561 jremref_write(WK_JREMREF(wk), jseg, data); 3562 break; 3563 case D_JMVREF: 3564 jmvref_write(WK_JMVREF(wk), jseg, data); 3565 break; 3566 case D_JNEWBLK: 3567 jnewblk_write(WK_JNEWBLK(wk), jseg, data); 3568 break; 3569 case D_JFREEBLK: 3570 jfreeblk_write(WK_JFREEBLK(wk), jseg, data); 3571 break; 3572 case D_JFREEFRAG: 3573 jfreefrag_write(WK_JFREEFRAG(wk), jseg, data); 3574 break; 3575 case D_JTRUNC: 3576 jtrunc_write(WK_JTRUNC(wk), jseg, data); 3577 break; 3578 case D_JFSYNC: 3579 jfsync_write(WK_JFSYNC(wk), jseg, data); 3580 break; 3581 default: 3582 panic("process_journal: Unknown type %s", 3583 TYPENAME(wk->wk_type)); 3584 /* NOTREACHED */ 3585 } 3586 off += JREC_SIZE; 3587 data = bp->b_data + off; 3588 cnt--; 3589 } 3590 3591 /* Clear any remaining space so we don't leak kernel data */ 3592 if (size > off) 3593 bzero(data, size - off); 3594 3595 /* 3596 * Write this one buffer and continue. 3597 */ 3598 segwritten = 1; 3599 jblocks->jb_needseg = 0; 3600 WORKLIST_INSERT(&bp->b_dep, &jseg->js_list); 3601 FREE_LOCK(ump); 3602 pbgetvp(ump->um_devvp, bp); 3603 /* 3604 * We only do the blocking wait once we find the journal 3605 * entry we're looking for. 3606 */ 3607 if (needwk == NULL && flags == MNT_WAIT) 3608 bwrite(bp); 3609 else 3610 bawrite(bp); 3611 ACQUIRE_LOCK(ump); 3612 } 3613 /* 3614 * If we wrote a segment issue a synchronize cache so the journal 3615 * is reflected on disk before the data is written. Since reclaiming 3616 * journal space also requires writing a journal record this 3617 * process also enforces a barrier before reclamation. 3618 */ 3619 if (segwritten && shouldflush) { 3620 softdep_synchronize(bio, ump, 3621 TAILQ_LAST(&jblocks->jb_segs, jseglst)); 3622 } else if (bio) 3623 g_destroy_bio(bio); 3624 /* 3625 * If we've suspended the filesystem because we ran out of journal 3626 * space either try to sync it here to make some progress or 3627 * unsuspend it if we already have. 3628 */ 3629 if (flags == 0 && jblocks->jb_suspended) { 3630 if (journal_unsuspend(ump)) 3631 return; 3632 FREE_LOCK(ump); 3633 VFS_SYNC(mp, MNT_NOWAIT); 3634 ffs_sbupdate(ump, MNT_WAIT, 0); 3635 ACQUIRE_LOCK(ump); 3636 } 3637 } 3638 3639 /* 3640 * Complete a jseg, allowing all dependencies awaiting journal writes 3641 * to proceed. Each journal dependency also attaches a jsegdep to dependent 3642 * structures so that the journal segment can be freed to reclaim space. 3643 */ 3644 static void 3645 complete_jseg(jseg) 3646 struct jseg *jseg; 3647 { 3648 struct worklist *wk; 3649 struct jmvref *jmvref; 3650 #ifdef INVARIANTS 3651 int i = 0; 3652 #endif 3653 3654 while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) { 3655 WORKLIST_REMOVE(wk); 3656 wk->wk_state &= ~INPROGRESS; 3657 wk->wk_state |= COMPLETE; 3658 KASSERT(i++ < jseg->js_cnt, 3659 ("handle_written_jseg: overflow %d >= %d", 3660 i - 1, jseg->js_cnt)); 3661 switch (wk->wk_type) { 3662 case D_JADDREF: 3663 handle_written_jaddref(WK_JADDREF(wk)); 3664 break; 3665 case D_JREMREF: 3666 handle_written_jremref(WK_JREMREF(wk)); 3667 break; 3668 case D_JMVREF: 3669 rele_jseg(jseg); /* No jsegdep. */ 3670 jmvref = WK_JMVREF(wk); 3671 LIST_REMOVE(jmvref, jm_deps); 3672 if ((jmvref->jm_pagedep->pd_state & ONWORKLIST) == 0) 3673 free_pagedep(jmvref->jm_pagedep); 3674 WORKITEM_FREE(jmvref, D_JMVREF); 3675 break; 3676 case D_JNEWBLK: 3677 handle_written_jnewblk(WK_JNEWBLK(wk)); 3678 break; 3679 case D_JFREEBLK: 3680 handle_written_jblkdep(&WK_JFREEBLK(wk)->jf_dep); 3681 break; 3682 case D_JTRUNC: 3683 handle_written_jblkdep(&WK_JTRUNC(wk)->jt_dep); 3684 break; 3685 case D_JFSYNC: 3686 rele_jseg(jseg); /* No jsegdep. */ 3687 WORKITEM_FREE(wk, D_JFSYNC); 3688 break; 3689 case D_JFREEFRAG: 3690 handle_written_jfreefrag(WK_JFREEFRAG(wk)); 3691 break; 3692 default: 3693 panic("handle_written_jseg: Unknown type %s", 3694 TYPENAME(wk->wk_type)); 3695 /* NOTREACHED */ 3696 } 3697 } 3698 /* Release the self reference so the structure may be freed. */ 3699 rele_jseg(jseg); 3700 } 3701 3702 /* 3703 * Determine which jsegs are ready for completion processing. Waits for 3704 * synchronize cache to complete as well as forcing in-order completion 3705 * of journal entries. 3706 */ 3707 static void 3708 complete_jsegs(jseg) 3709 struct jseg *jseg; 3710 { 3711 struct jblocks *jblocks; 3712 struct jseg *jsegn; 3713 3714 jblocks = jseg->js_jblocks; 3715 /* 3716 * Don't allow out of order completions. If this isn't the first 3717 * block wait for it to write before we're done. 3718 */ 3719 if (jseg != jblocks->jb_writeseg) 3720 return; 3721 /* Iterate through available jsegs processing their entries. */ 3722 while (jseg && (jseg->js_state & ALLCOMPLETE) == ALLCOMPLETE) { 3723 jblocks->jb_oldestwrseq = jseg->js_oldseq; 3724 jsegn = TAILQ_NEXT(jseg, js_next); 3725 complete_jseg(jseg); 3726 jseg = jsegn; 3727 } 3728 jblocks->jb_writeseg = jseg; 3729 /* 3730 * Attempt to free jsegs now that oldestwrseq may have advanced. 3731 */ 3732 free_jsegs(jblocks); 3733 } 3734 3735 /* 3736 * Mark a jseg as DEPCOMPLETE and throw away the buffer. Attempt to handle 3737 * the final completions. 3738 */ 3739 static void 3740 handle_written_jseg(jseg, bp) 3741 struct jseg *jseg; 3742 struct buf *bp; 3743 { 3744 3745 if (jseg->js_refs == 0) 3746 panic("handle_written_jseg: No self-reference on %p", jseg); 3747 jseg->js_state |= DEPCOMPLETE; 3748 /* 3749 * We'll never need this buffer again, set flags so it will be 3750 * discarded. 3751 */ 3752 bp->b_flags |= B_INVAL | B_NOCACHE; 3753 pbrelvp(bp); 3754 complete_jsegs(jseg); 3755 } 3756 3757 static inline struct jsegdep * 3758 inoref_jseg(inoref) 3759 struct inoref *inoref; 3760 { 3761 struct jsegdep *jsegdep; 3762 3763 jsegdep = inoref->if_jsegdep; 3764 inoref->if_jsegdep = NULL; 3765 3766 return (jsegdep); 3767 } 3768 3769 /* 3770 * Called once a jremref has made it to stable store. The jremref is marked 3771 * complete and we attempt to free it. Any pagedeps writes sleeping waiting 3772 * for the jremref to complete will be awoken by free_jremref. 3773 */ 3774 static void 3775 handle_written_jremref(jremref) 3776 struct jremref *jremref; 3777 { 3778 struct inodedep *inodedep; 3779 struct jsegdep *jsegdep; 3780 struct dirrem *dirrem; 3781 3782 /* Grab the jsegdep. */ 3783 jsegdep = inoref_jseg(&jremref->jr_ref); 3784 /* 3785 * Remove us from the inoref list. 3786 */ 3787 if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 3788 0, &inodedep) == 0) 3789 panic("handle_written_jremref: Lost inodedep"); 3790 TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps); 3791 /* 3792 * Complete the dirrem. 3793 */ 3794 dirrem = jremref->jr_dirrem; 3795 jremref->jr_dirrem = NULL; 3796 LIST_REMOVE(jremref, jr_deps); 3797 jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT; 3798 jwork_insert(&dirrem->dm_jwork, jsegdep); 3799 if (LIST_EMPTY(&dirrem->dm_jremrefhd) && 3800 (dirrem->dm_state & COMPLETE) != 0) 3801 add_to_worklist(&dirrem->dm_list, 0); 3802 free_jremref(jremref); 3803 } 3804 3805 /* 3806 * Called once a jaddref has made it to stable store. The dependency is 3807 * marked complete and any dependent structures are added to the inode 3808 * bufwait list to be completed as soon as it is written. If a bitmap write 3809 * depends on this entry we move the inode into the inodedephd of the 3810 * bmsafemap dependency and attempt to remove the jaddref from the bmsafemap. 3811 */ 3812 static void 3813 handle_written_jaddref(jaddref) 3814 struct jaddref *jaddref; 3815 { 3816 struct jsegdep *jsegdep; 3817 struct inodedep *inodedep; 3818 struct diradd *diradd; 3819 struct mkdir *mkdir; 3820 3821 /* Grab the jsegdep. */ 3822 jsegdep = inoref_jseg(&jaddref->ja_ref); 3823 mkdir = NULL; 3824 diradd = NULL; 3825 if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino, 3826 0, &inodedep) == 0) 3827 panic("handle_written_jaddref: Lost inodedep."); 3828 if (jaddref->ja_diradd == NULL) 3829 panic("handle_written_jaddref: No dependency"); 3830 if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) { 3831 diradd = jaddref->ja_diradd; 3832 WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list); 3833 } else if (jaddref->ja_state & MKDIR_PARENT) { 3834 mkdir = jaddref->ja_mkdir; 3835 WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list); 3836 } else if (jaddref->ja_state & MKDIR_BODY) 3837 mkdir = jaddref->ja_mkdir; 3838 else 3839 panic("handle_written_jaddref: Unknown dependency %p", 3840 jaddref->ja_diradd); 3841 jaddref->ja_diradd = NULL; /* also clears ja_mkdir */ 3842 /* 3843 * Remove us from the inode list. 3844 */ 3845 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps); 3846 /* 3847 * The mkdir may be waiting on the jaddref to clear before freeing. 3848 */ 3849 if (mkdir) { 3850 KASSERT(mkdir->md_list.wk_type == D_MKDIR, 3851 ("handle_written_jaddref: Incorrect type for mkdir %s", 3852 TYPENAME(mkdir->md_list.wk_type))); 3853 mkdir->md_jaddref = NULL; 3854 diradd = mkdir->md_diradd; 3855 mkdir->md_state |= DEPCOMPLETE; 3856 complete_mkdir(mkdir); 3857 } 3858 jwork_insert(&diradd->da_jwork, jsegdep); 3859 if (jaddref->ja_state & NEWBLOCK) { 3860 inodedep->id_state |= ONDEPLIST; 3861 LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd, 3862 inodedep, id_deps); 3863 } 3864 free_jaddref(jaddref); 3865 } 3866 3867 /* 3868 * Called once a jnewblk journal is written. The allocdirect or allocindir 3869 * is placed in the bmsafemap to await notification of a written bitmap. If 3870 * the operation was canceled we add the segdep to the appropriate 3871 * dependency to free the journal space once the canceling operation 3872 * completes. 3873 */ 3874 static void 3875 handle_written_jnewblk(jnewblk) 3876 struct jnewblk *jnewblk; 3877 { 3878 struct bmsafemap *bmsafemap; 3879 struct freefrag *freefrag; 3880 struct freework *freework; 3881 struct jsegdep *jsegdep; 3882 struct newblk *newblk; 3883 3884 /* Grab the jsegdep. */ 3885 jsegdep = jnewblk->jn_jsegdep; 3886 jnewblk->jn_jsegdep = NULL; 3887 if (jnewblk->jn_dep == NULL) 3888 panic("handle_written_jnewblk: No dependency for the segdep."); 3889 switch (jnewblk->jn_dep->wk_type) { 3890 case D_NEWBLK: 3891 case D_ALLOCDIRECT: 3892 case D_ALLOCINDIR: 3893 /* 3894 * Add the written block to the bmsafemap so it can 3895 * be notified when the bitmap is on disk. 3896 */ 3897 newblk = WK_NEWBLK(jnewblk->jn_dep); 3898 newblk->nb_jnewblk = NULL; 3899 if ((newblk->nb_state & GOINGAWAY) == 0) { 3900 bmsafemap = newblk->nb_bmsafemap; 3901 newblk->nb_state |= ONDEPLIST; 3902 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, 3903 nb_deps); 3904 } 3905 jwork_insert(&newblk->nb_jwork, jsegdep); 3906 break; 3907 case D_FREEFRAG: 3908 /* 3909 * A newblock being removed by a freefrag when replaced by 3910 * frag extension. 3911 */ 3912 freefrag = WK_FREEFRAG(jnewblk->jn_dep); 3913 freefrag->ff_jdep = NULL; 3914 jwork_insert(&freefrag->ff_jwork, jsegdep); 3915 break; 3916 case D_FREEWORK: 3917 /* 3918 * A direct block was removed by truncate. 3919 */ 3920 freework = WK_FREEWORK(jnewblk->jn_dep); 3921 freework->fw_jnewblk = NULL; 3922 jwork_insert(&freework->fw_freeblks->fb_jwork, jsegdep); 3923 break; 3924 default: 3925 panic("handle_written_jnewblk: Unknown type %d.", 3926 jnewblk->jn_dep->wk_type); 3927 } 3928 jnewblk->jn_dep = NULL; 3929 free_jnewblk(jnewblk); 3930 } 3931 3932 /* 3933 * Cancel a jfreefrag that won't be needed, probably due to colliding with 3934 * an in-flight allocation that has not yet been committed. Divorce us 3935 * from the freefrag and mark it DEPCOMPLETE so that it may be added 3936 * to the worklist. 3937 */ 3938 static void 3939 cancel_jfreefrag(jfreefrag) 3940 struct jfreefrag *jfreefrag; 3941 { 3942 struct freefrag *freefrag; 3943 3944 if (jfreefrag->fr_jsegdep) { 3945 free_jsegdep(jfreefrag->fr_jsegdep); 3946 jfreefrag->fr_jsegdep = NULL; 3947 } 3948 freefrag = jfreefrag->fr_freefrag; 3949 jfreefrag->fr_freefrag = NULL; 3950 free_jfreefrag(jfreefrag); 3951 freefrag->ff_state |= DEPCOMPLETE; 3952 CTR1(KTR_SUJ, "cancel_jfreefrag: blkno %jd", freefrag->ff_blkno); 3953 } 3954 3955 /* 3956 * Free a jfreefrag when the parent freefrag is rendered obsolete. 3957 */ 3958 static void 3959 free_jfreefrag(jfreefrag) 3960 struct jfreefrag *jfreefrag; 3961 { 3962 3963 if (jfreefrag->fr_state & INPROGRESS) 3964 WORKLIST_REMOVE(&jfreefrag->fr_list); 3965 else if (jfreefrag->fr_state & ONWORKLIST) 3966 remove_from_journal(&jfreefrag->fr_list); 3967 if (jfreefrag->fr_freefrag != NULL) 3968 panic("free_jfreefrag: Still attached to a freefrag."); 3969 WORKITEM_FREE(jfreefrag, D_JFREEFRAG); 3970 } 3971 3972 /* 3973 * Called when the journal write for a jfreefrag completes. The parent 3974 * freefrag is added to the worklist if this completes its dependencies. 3975 */ 3976 static void 3977 handle_written_jfreefrag(jfreefrag) 3978 struct jfreefrag *jfreefrag; 3979 { 3980 struct jsegdep *jsegdep; 3981 struct freefrag *freefrag; 3982 3983 /* Grab the jsegdep. */ 3984 jsegdep = jfreefrag->fr_jsegdep; 3985 jfreefrag->fr_jsegdep = NULL; 3986 freefrag = jfreefrag->fr_freefrag; 3987 if (freefrag == NULL) 3988 panic("handle_written_jfreefrag: No freefrag."); 3989 freefrag->ff_state |= DEPCOMPLETE; 3990 freefrag->ff_jdep = NULL; 3991 jwork_insert(&freefrag->ff_jwork, jsegdep); 3992 if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE) 3993 add_to_worklist(&freefrag->ff_list, 0); 3994 jfreefrag->fr_freefrag = NULL; 3995 free_jfreefrag(jfreefrag); 3996 } 3997 3998 /* 3999 * Called when the journal write for a jfreeblk completes. The jfreeblk 4000 * is removed from the freeblks list of pending journal writes and the 4001 * jsegdep is moved to the freeblks jwork to be completed when all blocks 4002 * have been reclaimed. 4003 */ 4004 static void 4005 handle_written_jblkdep(jblkdep) 4006 struct jblkdep *jblkdep; 4007 { 4008 struct freeblks *freeblks; 4009 struct jsegdep *jsegdep; 4010 4011 /* Grab the jsegdep. */ 4012 jsegdep = jblkdep->jb_jsegdep; 4013 jblkdep->jb_jsegdep = NULL; 4014 freeblks = jblkdep->jb_freeblks; 4015 LIST_REMOVE(jblkdep, jb_deps); 4016 jwork_insert(&freeblks->fb_jwork, jsegdep); 4017 /* 4018 * If the freeblks is all journaled, we can add it to the worklist. 4019 */ 4020 if (LIST_EMPTY(&freeblks->fb_jblkdephd) && 4021 (freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE) 4022 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 4023 4024 free_jblkdep(jblkdep); 4025 } 4026 4027 static struct jsegdep * 4028 newjsegdep(struct worklist *wk) 4029 { 4030 struct jsegdep *jsegdep; 4031 4032 jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS); 4033 workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp); 4034 jsegdep->jd_seg = NULL; 4035 4036 return (jsegdep); 4037 } 4038 4039 static struct jmvref * 4040 newjmvref(dp, ino, oldoff, newoff) 4041 struct inode *dp; 4042 ino_t ino; 4043 off_t oldoff; 4044 off_t newoff; 4045 { 4046 struct jmvref *jmvref; 4047 4048 jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS); 4049 workitem_alloc(&jmvref->jm_list, D_JMVREF, ITOVFS(dp)); 4050 jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE; 4051 jmvref->jm_parent = dp->i_number; 4052 jmvref->jm_ino = ino; 4053 jmvref->jm_oldoff = oldoff; 4054 jmvref->jm_newoff = newoff; 4055 4056 return (jmvref); 4057 } 4058 4059 /* 4060 * Allocate a new jremref that tracks the removal of ip from dp with the 4061 * directory entry offset of diroff. Mark the entry as ATTACHED and 4062 * DEPCOMPLETE as we have all the information required for the journal write 4063 * and the directory has already been removed from the buffer. The caller 4064 * is responsible for linking the jremref into the pagedep and adding it 4065 * to the journal to write. The MKDIR_PARENT flag is set if we're doing 4066 * a DOTDOT addition so handle_workitem_remove() can properly assign 4067 * the jsegdep when we're done. 4068 */ 4069 static struct jremref * 4070 newjremref(struct dirrem *dirrem, struct inode *dp, struct inode *ip, 4071 off_t diroff, nlink_t nlink) 4072 { 4073 struct jremref *jremref; 4074 4075 jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS); 4076 workitem_alloc(&jremref->jr_list, D_JREMREF, ITOVFS(dp)); 4077 jremref->jr_state = ATTACHED; 4078 newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff, 4079 nlink, ip->i_mode); 4080 jremref->jr_dirrem = dirrem; 4081 4082 return (jremref); 4083 } 4084 4085 static inline void 4086 newinoref(struct inoref *inoref, ino_t ino, ino_t parent, off_t diroff, 4087 nlink_t nlink, uint16_t mode) 4088 { 4089 4090 inoref->if_jsegdep = newjsegdep(&inoref->if_list); 4091 inoref->if_diroff = diroff; 4092 inoref->if_ino = ino; 4093 inoref->if_parent = parent; 4094 inoref->if_nlink = nlink; 4095 inoref->if_mode = mode; 4096 } 4097 4098 /* 4099 * Allocate a new jaddref to track the addition of ino to dp at diroff. The 4100 * directory offset may not be known until later. The caller is responsible 4101 * adding the entry to the journal when this information is available. nlink 4102 * should be the link count prior to the addition and mode is only required 4103 * to have the correct FMT. 4104 */ 4105 static struct jaddref * 4106 newjaddref(struct inode *dp, ino_t ino, off_t diroff, int16_t nlink, 4107 uint16_t mode) 4108 { 4109 struct jaddref *jaddref; 4110 4111 jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS); 4112 workitem_alloc(&jaddref->ja_list, D_JADDREF, ITOVFS(dp)); 4113 jaddref->ja_state = ATTACHED; 4114 jaddref->ja_mkdir = NULL; 4115 newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode); 4116 4117 return (jaddref); 4118 } 4119 4120 /* 4121 * Create a new free dependency for a freework. The caller is responsible 4122 * for adjusting the reference count when it has the lock held. The freedep 4123 * will track an outstanding bitmap write that will ultimately clear the 4124 * freework to continue. 4125 */ 4126 static struct freedep * 4127 newfreedep(struct freework *freework) 4128 { 4129 struct freedep *freedep; 4130 4131 freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS); 4132 workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp); 4133 freedep->fd_freework = freework; 4134 4135 return (freedep); 4136 } 4137 4138 /* 4139 * Free a freedep structure once the buffer it is linked to is written. If 4140 * this is the last reference to the freework schedule it for completion. 4141 */ 4142 static void 4143 free_freedep(freedep) 4144 struct freedep *freedep; 4145 { 4146 struct freework *freework; 4147 4148 freework = freedep->fd_freework; 4149 freework->fw_freeblks->fb_cgwait--; 4150 if (--freework->fw_ref == 0) 4151 freework_enqueue(freework); 4152 WORKITEM_FREE(freedep, D_FREEDEP); 4153 } 4154 4155 /* 4156 * Allocate a new freework structure that may be a level in an indirect 4157 * when parent is not NULL or a top level block when it is. The top level 4158 * freework structures are allocated without the per-filesystem lock held 4159 * and before the freeblks is visible outside of softdep_setup_freeblocks(). 4160 */ 4161 static struct freework * 4162 newfreework(ump, freeblks, parent, lbn, nb, frags, off, journal) 4163 struct ufsmount *ump; 4164 struct freeblks *freeblks; 4165 struct freework *parent; 4166 ufs_lbn_t lbn; 4167 ufs2_daddr_t nb; 4168 int frags; 4169 int off; 4170 int journal; 4171 { 4172 struct freework *freework; 4173 4174 freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS); 4175 workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp); 4176 freework->fw_state = ATTACHED; 4177 freework->fw_jnewblk = NULL; 4178 freework->fw_freeblks = freeblks; 4179 freework->fw_parent = parent; 4180 freework->fw_lbn = lbn; 4181 freework->fw_blkno = nb; 4182 freework->fw_frags = frags; 4183 freework->fw_indir = NULL; 4184 freework->fw_ref = (MOUNTEDSUJ(UFSTOVFS(ump)) == 0 || 4185 lbn >= -UFS_NXADDR) ? 0 : NINDIR(ump->um_fs) + 1; 4186 freework->fw_start = freework->fw_off = off; 4187 if (journal) 4188 newjfreeblk(freeblks, lbn, nb, frags); 4189 if (parent == NULL) { 4190 ACQUIRE_LOCK(ump); 4191 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list); 4192 freeblks->fb_ref++; 4193 FREE_LOCK(ump); 4194 } 4195 4196 return (freework); 4197 } 4198 4199 /* 4200 * Eliminate a jfreeblk for a block that does not need journaling. 4201 */ 4202 static void 4203 cancel_jfreeblk(freeblks, blkno) 4204 struct freeblks *freeblks; 4205 ufs2_daddr_t blkno; 4206 { 4207 struct jfreeblk *jfreeblk; 4208 struct jblkdep *jblkdep; 4209 4210 LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) { 4211 if (jblkdep->jb_list.wk_type != D_JFREEBLK) 4212 continue; 4213 jfreeblk = WK_JFREEBLK(&jblkdep->jb_list); 4214 if (jfreeblk->jf_blkno == blkno) 4215 break; 4216 } 4217 if (jblkdep == NULL) 4218 return; 4219 CTR1(KTR_SUJ, "cancel_jfreeblk: blkno %jd", blkno); 4220 free_jsegdep(jblkdep->jb_jsegdep); 4221 LIST_REMOVE(jblkdep, jb_deps); 4222 WORKITEM_FREE(jfreeblk, D_JFREEBLK); 4223 } 4224 4225 /* 4226 * Allocate a new jfreeblk to journal top level block pointer when truncating 4227 * a file. The caller must add this to the worklist when the per-filesystem 4228 * lock is held. 4229 */ 4230 static struct jfreeblk * 4231 newjfreeblk(freeblks, lbn, blkno, frags) 4232 struct freeblks *freeblks; 4233 ufs_lbn_t lbn; 4234 ufs2_daddr_t blkno; 4235 int frags; 4236 { 4237 struct jfreeblk *jfreeblk; 4238 4239 jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS); 4240 workitem_alloc(&jfreeblk->jf_dep.jb_list, D_JFREEBLK, 4241 freeblks->fb_list.wk_mp); 4242 jfreeblk->jf_dep.jb_jsegdep = newjsegdep(&jfreeblk->jf_dep.jb_list); 4243 jfreeblk->jf_dep.jb_freeblks = freeblks; 4244 jfreeblk->jf_ino = freeblks->fb_inum; 4245 jfreeblk->jf_lbn = lbn; 4246 jfreeblk->jf_blkno = blkno; 4247 jfreeblk->jf_frags = frags; 4248 LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jfreeblk->jf_dep, jb_deps); 4249 4250 return (jfreeblk); 4251 } 4252 4253 /* 4254 * The journal is only prepared to handle full-size block numbers, so we 4255 * have to adjust the record to reflect the change to a full-size block. 4256 * For example, suppose we have a block made up of fragments 8-15 and 4257 * want to free its last two fragments. We are given a request that says: 4258 * FREEBLK ino=5, blkno=14, lbn=0, frags=2, oldfrags=0 4259 * where frags are the number of fragments to free and oldfrags are the 4260 * number of fragments to keep. To block align it, we have to change it to 4261 * have a valid full-size blkno, so it becomes: 4262 * FREEBLK ino=5, blkno=8, lbn=0, frags=2, oldfrags=6 4263 */ 4264 static void 4265 adjust_newfreework(freeblks, frag_offset) 4266 struct freeblks *freeblks; 4267 int frag_offset; 4268 { 4269 struct jfreeblk *jfreeblk; 4270 4271 KASSERT((LIST_FIRST(&freeblks->fb_jblkdephd) != NULL && 4272 LIST_FIRST(&freeblks->fb_jblkdephd)->jb_list.wk_type == D_JFREEBLK), 4273 ("adjust_newfreework: Missing freeblks dependency")); 4274 4275 jfreeblk = WK_JFREEBLK(LIST_FIRST(&freeblks->fb_jblkdephd)); 4276 jfreeblk->jf_blkno -= frag_offset; 4277 jfreeblk->jf_frags += frag_offset; 4278 } 4279 4280 /* 4281 * Allocate a new jtrunc to track a partial truncation. 4282 */ 4283 static struct jtrunc * 4284 newjtrunc(freeblks, size, extsize) 4285 struct freeblks *freeblks; 4286 off_t size; 4287 int extsize; 4288 { 4289 struct jtrunc *jtrunc; 4290 4291 jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS); 4292 workitem_alloc(&jtrunc->jt_dep.jb_list, D_JTRUNC, 4293 freeblks->fb_list.wk_mp); 4294 jtrunc->jt_dep.jb_jsegdep = newjsegdep(&jtrunc->jt_dep.jb_list); 4295 jtrunc->jt_dep.jb_freeblks = freeblks; 4296 jtrunc->jt_ino = freeblks->fb_inum; 4297 jtrunc->jt_size = size; 4298 jtrunc->jt_extsize = extsize; 4299 LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jtrunc->jt_dep, jb_deps); 4300 4301 return (jtrunc); 4302 } 4303 4304 /* 4305 * If we're canceling a new bitmap we have to search for another ref 4306 * to move into the bmsafemap dep. This might be better expressed 4307 * with another structure. 4308 */ 4309 static void 4310 move_newblock_dep(jaddref, inodedep) 4311 struct jaddref *jaddref; 4312 struct inodedep *inodedep; 4313 { 4314 struct inoref *inoref; 4315 struct jaddref *jaddrefn; 4316 4317 jaddrefn = NULL; 4318 for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref; 4319 inoref = TAILQ_NEXT(inoref, if_deps)) { 4320 if ((jaddref->ja_state & NEWBLOCK) && 4321 inoref->if_list.wk_type == D_JADDREF) { 4322 jaddrefn = (struct jaddref *)inoref; 4323 break; 4324 } 4325 } 4326 if (jaddrefn == NULL) 4327 return; 4328 jaddrefn->ja_state &= ~(ATTACHED | UNDONE); 4329 jaddrefn->ja_state |= jaddref->ja_state & 4330 (ATTACHED | UNDONE | NEWBLOCK); 4331 jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK); 4332 jaddref->ja_state |= ATTACHED; 4333 LIST_REMOVE(jaddref, ja_bmdeps); 4334 LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn, 4335 ja_bmdeps); 4336 } 4337 4338 /* 4339 * Cancel a jaddref either before it has been written or while it is being 4340 * written. This happens when a link is removed before the add reaches 4341 * the disk. The jaddref dependency is kept linked into the bmsafemap 4342 * and inode to prevent the link count or bitmap from reaching the disk 4343 * until handle_workitem_remove() re-adjusts the counts and bitmaps as 4344 * required. 4345 * 4346 * Returns 1 if the canceled addref requires journaling of the remove and 4347 * 0 otherwise. 4348 */ 4349 static int 4350 cancel_jaddref(jaddref, inodedep, wkhd) 4351 struct jaddref *jaddref; 4352 struct inodedep *inodedep; 4353 struct workhead *wkhd; 4354 { 4355 struct inoref *inoref; 4356 struct jsegdep *jsegdep; 4357 int needsj; 4358 4359 KASSERT((jaddref->ja_state & COMPLETE) == 0, 4360 ("cancel_jaddref: Canceling complete jaddref")); 4361 if (jaddref->ja_state & (INPROGRESS | COMPLETE)) 4362 needsj = 1; 4363 else 4364 needsj = 0; 4365 if (inodedep == NULL) 4366 if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino, 4367 0, &inodedep) == 0) 4368 panic("cancel_jaddref: Lost inodedep"); 4369 /* 4370 * We must adjust the nlink of any reference operation that follows 4371 * us so that it is consistent with the in-memory reference. This 4372 * ensures that inode nlink rollbacks always have the correct link. 4373 */ 4374 if (needsj == 0) { 4375 for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref; 4376 inoref = TAILQ_NEXT(inoref, if_deps)) { 4377 if (inoref->if_state & GOINGAWAY) 4378 break; 4379 inoref->if_nlink--; 4380 } 4381 } 4382 jsegdep = inoref_jseg(&jaddref->ja_ref); 4383 if (jaddref->ja_state & NEWBLOCK) 4384 move_newblock_dep(jaddref, inodedep); 4385 wake_worklist(&jaddref->ja_list); 4386 jaddref->ja_mkdir = NULL; 4387 if (jaddref->ja_state & INPROGRESS) { 4388 jaddref->ja_state &= ~INPROGRESS; 4389 WORKLIST_REMOVE(&jaddref->ja_list); 4390 jwork_insert(wkhd, jsegdep); 4391 } else { 4392 free_jsegdep(jsegdep); 4393 if (jaddref->ja_state & DEPCOMPLETE) 4394 remove_from_journal(&jaddref->ja_list); 4395 } 4396 jaddref->ja_state |= (GOINGAWAY | DEPCOMPLETE); 4397 /* 4398 * Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove 4399 * can arrange for them to be freed with the bitmap. Otherwise we 4400 * no longer need this addref attached to the inoreflst and it 4401 * will incorrectly adjust nlink if we leave it. 4402 */ 4403 if ((jaddref->ja_state & NEWBLOCK) == 0) { 4404 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, 4405 if_deps); 4406 jaddref->ja_state |= COMPLETE; 4407 free_jaddref(jaddref); 4408 return (needsj); 4409 } 4410 /* 4411 * Leave the head of the list for jsegdeps for fast merging. 4412 */ 4413 if (LIST_FIRST(wkhd) != NULL) { 4414 jaddref->ja_state |= ONWORKLIST; 4415 LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list); 4416 } else 4417 WORKLIST_INSERT(wkhd, &jaddref->ja_list); 4418 4419 return (needsj); 4420 } 4421 4422 /* 4423 * Attempt to free a jaddref structure when some work completes. This 4424 * should only succeed once the entry is written and all dependencies have 4425 * been notified. 4426 */ 4427 static void 4428 free_jaddref(jaddref) 4429 struct jaddref *jaddref; 4430 { 4431 4432 if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE) 4433 return; 4434 if (jaddref->ja_ref.if_jsegdep) 4435 panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n", 4436 jaddref, jaddref->ja_state); 4437 if (jaddref->ja_state & NEWBLOCK) 4438 LIST_REMOVE(jaddref, ja_bmdeps); 4439 if (jaddref->ja_state & (INPROGRESS | ONWORKLIST)) 4440 panic("free_jaddref: Bad state %p(0x%X)", 4441 jaddref, jaddref->ja_state); 4442 if (jaddref->ja_mkdir != NULL) 4443 panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state); 4444 WORKITEM_FREE(jaddref, D_JADDREF); 4445 } 4446 4447 /* 4448 * Free a jremref structure once it has been written or discarded. 4449 */ 4450 static void 4451 free_jremref(jremref) 4452 struct jremref *jremref; 4453 { 4454 4455 if (jremref->jr_ref.if_jsegdep) 4456 free_jsegdep(jremref->jr_ref.if_jsegdep); 4457 if (jremref->jr_state & INPROGRESS) 4458 panic("free_jremref: IO still pending"); 4459 WORKITEM_FREE(jremref, D_JREMREF); 4460 } 4461 4462 /* 4463 * Free a jnewblk structure. 4464 */ 4465 static void 4466 free_jnewblk(jnewblk) 4467 struct jnewblk *jnewblk; 4468 { 4469 4470 if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE) 4471 return; 4472 LIST_REMOVE(jnewblk, jn_deps); 4473 if (jnewblk->jn_dep != NULL) 4474 panic("free_jnewblk: Dependency still attached."); 4475 WORKITEM_FREE(jnewblk, D_JNEWBLK); 4476 } 4477 4478 /* 4479 * Cancel a jnewblk which has been been made redundant by frag extension. 4480 */ 4481 static void 4482 cancel_jnewblk(jnewblk, wkhd) 4483 struct jnewblk *jnewblk; 4484 struct workhead *wkhd; 4485 { 4486 struct jsegdep *jsegdep; 4487 4488 CTR1(KTR_SUJ, "cancel_jnewblk: blkno %jd", jnewblk->jn_blkno); 4489 jsegdep = jnewblk->jn_jsegdep; 4490 if (jnewblk->jn_jsegdep == NULL || jnewblk->jn_dep == NULL) 4491 panic("cancel_jnewblk: Invalid state"); 4492 jnewblk->jn_jsegdep = NULL; 4493 jnewblk->jn_dep = NULL; 4494 jnewblk->jn_state |= GOINGAWAY; 4495 if (jnewblk->jn_state & INPROGRESS) { 4496 jnewblk->jn_state &= ~INPROGRESS; 4497 WORKLIST_REMOVE(&jnewblk->jn_list); 4498 jwork_insert(wkhd, jsegdep); 4499 } else { 4500 free_jsegdep(jsegdep); 4501 remove_from_journal(&jnewblk->jn_list); 4502 } 4503 wake_worklist(&jnewblk->jn_list); 4504 WORKLIST_INSERT(wkhd, &jnewblk->jn_list); 4505 } 4506 4507 static void 4508 free_jblkdep(jblkdep) 4509 struct jblkdep *jblkdep; 4510 { 4511 4512 if (jblkdep->jb_list.wk_type == D_JFREEBLK) 4513 WORKITEM_FREE(jblkdep, D_JFREEBLK); 4514 else if (jblkdep->jb_list.wk_type == D_JTRUNC) 4515 WORKITEM_FREE(jblkdep, D_JTRUNC); 4516 else 4517 panic("free_jblkdep: Unexpected type %s", 4518 TYPENAME(jblkdep->jb_list.wk_type)); 4519 } 4520 4521 /* 4522 * Free a single jseg once it is no longer referenced in memory or on 4523 * disk. Reclaim journal blocks and dependencies waiting for the segment 4524 * to disappear. 4525 */ 4526 static void 4527 free_jseg(jseg, jblocks) 4528 struct jseg *jseg; 4529 struct jblocks *jblocks; 4530 { 4531 struct freework *freework; 4532 4533 /* 4534 * Free freework structures that were lingering to indicate freed 4535 * indirect blocks that forced journal write ordering on reallocate. 4536 */ 4537 while ((freework = LIST_FIRST(&jseg->js_indirs)) != NULL) 4538 indirblk_remove(freework); 4539 if (jblocks->jb_oldestseg == jseg) 4540 jblocks->jb_oldestseg = TAILQ_NEXT(jseg, js_next); 4541 TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next); 4542 jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size); 4543 KASSERT(LIST_EMPTY(&jseg->js_entries), 4544 ("free_jseg: Freed jseg has valid entries.")); 4545 WORKITEM_FREE(jseg, D_JSEG); 4546 } 4547 4548 /* 4549 * Free all jsegs that meet the criteria for being reclaimed and update 4550 * oldestseg. 4551 */ 4552 static void 4553 free_jsegs(jblocks) 4554 struct jblocks *jblocks; 4555 { 4556 struct jseg *jseg; 4557 4558 /* 4559 * Free only those jsegs which have none allocated before them to 4560 * preserve the journal space ordering. 4561 */ 4562 while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) { 4563 /* 4564 * Only reclaim space when nothing depends on this journal 4565 * set and another set has written that it is no longer 4566 * valid. 4567 */ 4568 if (jseg->js_refs != 0) { 4569 jblocks->jb_oldestseg = jseg; 4570 return; 4571 } 4572 if ((jseg->js_state & ALLCOMPLETE) != ALLCOMPLETE) 4573 break; 4574 if (jseg->js_seq > jblocks->jb_oldestwrseq) 4575 break; 4576 /* 4577 * We can free jsegs that didn't write entries when 4578 * oldestwrseq == js_seq. 4579 */ 4580 if (jseg->js_seq == jblocks->jb_oldestwrseq && 4581 jseg->js_cnt != 0) 4582 break; 4583 free_jseg(jseg, jblocks); 4584 } 4585 /* 4586 * If we exited the loop above we still must discover the 4587 * oldest valid segment. 4588 */ 4589 if (jseg) 4590 for (jseg = jblocks->jb_oldestseg; jseg != NULL; 4591 jseg = TAILQ_NEXT(jseg, js_next)) 4592 if (jseg->js_refs != 0) 4593 break; 4594 jblocks->jb_oldestseg = jseg; 4595 /* 4596 * The journal has no valid records but some jsegs may still be 4597 * waiting on oldestwrseq to advance. We force a small record 4598 * out to permit these lingering records to be reclaimed. 4599 */ 4600 if (jblocks->jb_oldestseg == NULL && !TAILQ_EMPTY(&jblocks->jb_segs)) 4601 jblocks->jb_needseg = 1; 4602 } 4603 4604 /* 4605 * Release one reference to a jseg and free it if the count reaches 0. This 4606 * should eventually reclaim journal space as well. 4607 */ 4608 static void 4609 rele_jseg(jseg) 4610 struct jseg *jseg; 4611 { 4612 4613 KASSERT(jseg->js_refs > 0, 4614 ("free_jseg: Invalid refcnt %d", jseg->js_refs)); 4615 if (--jseg->js_refs != 0) 4616 return; 4617 free_jsegs(jseg->js_jblocks); 4618 } 4619 4620 /* 4621 * Release a jsegdep and decrement the jseg count. 4622 */ 4623 static void 4624 free_jsegdep(jsegdep) 4625 struct jsegdep *jsegdep; 4626 { 4627 4628 if (jsegdep->jd_seg) 4629 rele_jseg(jsegdep->jd_seg); 4630 WORKITEM_FREE(jsegdep, D_JSEGDEP); 4631 } 4632 4633 /* 4634 * Wait for a journal item to make it to disk. Initiate journal processing 4635 * if required. 4636 */ 4637 static int 4638 jwait(wk, waitfor) 4639 struct worklist *wk; 4640 int waitfor; 4641 { 4642 4643 LOCK_OWNED(VFSTOUFS(wk->wk_mp)); 4644 /* 4645 * Blocking journal waits cause slow synchronous behavior. Record 4646 * stats on the frequency of these blocking operations. 4647 */ 4648 if (waitfor == MNT_WAIT) { 4649 stat_journal_wait++; 4650 switch (wk->wk_type) { 4651 case D_JREMREF: 4652 case D_JMVREF: 4653 stat_jwait_filepage++; 4654 break; 4655 case D_JTRUNC: 4656 case D_JFREEBLK: 4657 stat_jwait_freeblks++; 4658 break; 4659 case D_JNEWBLK: 4660 stat_jwait_newblk++; 4661 break; 4662 case D_JADDREF: 4663 stat_jwait_inode++; 4664 break; 4665 default: 4666 break; 4667 } 4668 } 4669 /* 4670 * If IO has not started we process the journal. We can't mark the 4671 * worklist item as IOWAITING because we drop the lock while 4672 * processing the journal and the worklist entry may be freed after 4673 * this point. The caller may call back in and re-issue the request. 4674 */ 4675 if ((wk->wk_state & INPROGRESS) == 0) { 4676 softdep_process_journal(wk->wk_mp, wk, waitfor); 4677 if (waitfor != MNT_WAIT) 4678 return (EBUSY); 4679 return (0); 4680 } 4681 if (waitfor != MNT_WAIT) 4682 return (EBUSY); 4683 wait_worklist(wk, "jwait"); 4684 return (0); 4685 } 4686 4687 /* 4688 * Lookup an inodedep based on an inode pointer and set the nlinkdelta as 4689 * appropriate. This is a convenience function to reduce duplicate code 4690 * for the setup and revert functions below. 4691 */ 4692 static struct inodedep * 4693 inodedep_lookup_ip(ip) 4694 struct inode *ip; 4695 { 4696 struct inodedep *inodedep; 4697 4698 KASSERT(ip->i_nlink >= ip->i_effnlink, 4699 ("inodedep_lookup_ip: bad delta")); 4700 (void) inodedep_lookup(ITOVFS(ip), ip->i_number, DEPALLOC, 4701 &inodedep); 4702 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 4703 KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked")); 4704 4705 return (inodedep); 4706 } 4707 4708 /* 4709 * Called prior to creating a new inode and linking it to a directory. The 4710 * jaddref structure must already be allocated by softdep_setup_inomapdep 4711 * and it is discovered here so we can initialize the mode and update 4712 * nlinkdelta. 4713 */ 4714 void 4715 softdep_setup_create(dp, ip) 4716 struct inode *dp; 4717 struct inode *ip; 4718 { 4719 struct inodedep *inodedep; 4720 struct jaddref *jaddref; 4721 struct vnode *dvp; 4722 4723 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4724 ("softdep_setup_create called on non-softdep filesystem")); 4725 KASSERT(ip->i_nlink == 1, 4726 ("softdep_setup_create: Invalid link count.")); 4727 dvp = ITOV(dp); 4728 ACQUIRE_LOCK(ITOUMP(dp)); 4729 inodedep = inodedep_lookup_ip(ip); 4730 if (DOINGSUJ(dvp)) { 4731 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4732 inoreflst); 4733 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 4734 ("softdep_setup_create: No addref structure present.")); 4735 } 4736 softdep_prelink(dvp, NULL); 4737 FREE_LOCK(ITOUMP(dp)); 4738 } 4739 4740 /* 4741 * Create a jaddref structure to track the addition of a DOTDOT link when 4742 * we are reparenting an inode as part of a rename. This jaddref will be 4743 * found by softdep_setup_directory_change. Adjusts nlinkdelta for 4744 * non-journaling softdep. 4745 */ 4746 void 4747 softdep_setup_dotdot_link(dp, ip) 4748 struct inode *dp; 4749 struct inode *ip; 4750 { 4751 struct inodedep *inodedep; 4752 struct jaddref *jaddref; 4753 struct vnode *dvp; 4754 4755 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4756 ("softdep_setup_dotdot_link called on non-softdep filesystem")); 4757 dvp = ITOV(dp); 4758 jaddref = NULL; 4759 /* 4760 * We don't set MKDIR_PARENT as this is not tied to a mkdir and 4761 * is used as a normal link would be. 4762 */ 4763 if (DOINGSUJ(dvp)) 4764 jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET, 4765 dp->i_effnlink - 1, dp->i_mode); 4766 ACQUIRE_LOCK(ITOUMP(dp)); 4767 inodedep = inodedep_lookup_ip(dp); 4768 if (jaddref) 4769 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 4770 if_deps); 4771 softdep_prelink(dvp, ITOV(ip)); 4772 FREE_LOCK(ITOUMP(dp)); 4773 } 4774 4775 /* 4776 * Create a jaddref structure to track a new link to an inode. The directory 4777 * offset is not known until softdep_setup_directory_add or 4778 * softdep_setup_directory_change. Adjusts nlinkdelta for non-journaling 4779 * softdep. 4780 */ 4781 void 4782 softdep_setup_link(dp, ip) 4783 struct inode *dp; 4784 struct inode *ip; 4785 { 4786 struct inodedep *inodedep; 4787 struct jaddref *jaddref; 4788 struct vnode *dvp; 4789 4790 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4791 ("softdep_setup_link called on non-softdep filesystem")); 4792 dvp = ITOV(dp); 4793 jaddref = NULL; 4794 if (DOINGSUJ(dvp)) 4795 jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1, 4796 ip->i_mode); 4797 ACQUIRE_LOCK(ITOUMP(dp)); 4798 inodedep = inodedep_lookup_ip(ip); 4799 if (jaddref) 4800 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 4801 if_deps); 4802 softdep_prelink(dvp, ITOV(ip)); 4803 FREE_LOCK(ITOUMP(dp)); 4804 } 4805 4806 /* 4807 * Called to create the jaddref structures to track . and .. references as 4808 * well as lookup and further initialize the incomplete jaddref created 4809 * by softdep_setup_inomapdep when the inode was allocated. Adjusts 4810 * nlinkdelta for non-journaling softdep. 4811 */ 4812 void 4813 softdep_setup_mkdir(dp, ip) 4814 struct inode *dp; 4815 struct inode *ip; 4816 { 4817 struct inodedep *inodedep; 4818 struct jaddref *dotdotaddref; 4819 struct jaddref *dotaddref; 4820 struct jaddref *jaddref; 4821 struct vnode *dvp; 4822 4823 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4824 ("softdep_setup_mkdir called on non-softdep filesystem")); 4825 dvp = ITOV(dp); 4826 dotaddref = dotdotaddref = NULL; 4827 if (DOINGSUJ(dvp)) { 4828 dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1, 4829 ip->i_mode); 4830 dotaddref->ja_state |= MKDIR_BODY; 4831 dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET, 4832 dp->i_effnlink - 1, dp->i_mode); 4833 dotdotaddref->ja_state |= MKDIR_PARENT; 4834 } 4835 ACQUIRE_LOCK(ITOUMP(dp)); 4836 inodedep = inodedep_lookup_ip(ip); 4837 if (DOINGSUJ(dvp)) { 4838 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4839 inoreflst); 4840 KASSERT(jaddref != NULL, 4841 ("softdep_setup_mkdir: No addref structure present.")); 4842 KASSERT(jaddref->ja_parent == dp->i_number, 4843 ("softdep_setup_mkdir: bad parent %ju", 4844 (uintmax_t)jaddref->ja_parent)); 4845 TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref, 4846 if_deps); 4847 } 4848 inodedep = inodedep_lookup_ip(dp); 4849 if (DOINGSUJ(dvp)) 4850 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, 4851 &dotdotaddref->ja_ref, if_deps); 4852 softdep_prelink(ITOV(dp), NULL); 4853 FREE_LOCK(ITOUMP(dp)); 4854 } 4855 4856 /* 4857 * Called to track nlinkdelta of the inode and parent directories prior to 4858 * unlinking a directory. 4859 */ 4860 void 4861 softdep_setup_rmdir(dp, ip) 4862 struct inode *dp; 4863 struct inode *ip; 4864 { 4865 struct vnode *dvp; 4866 4867 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4868 ("softdep_setup_rmdir called on non-softdep filesystem")); 4869 dvp = ITOV(dp); 4870 ACQUIRE_LOCK(ITOUMP(dp)); 4871 (void) inodedep_lookup_ip(ip); 4872 (void) inodedep_lookup_ip(dp); 4873 softdep_prelink(dvp, ITOV(ip)); 4874 FREE_LOCK(ITOUMP(dp)); 4875 } 4876 4877 /* 4878 * Called to track nlinkdelta of the inode and parent directories prior to 4879 * unlink. 4880 */ 4881 void 4882 softdep_setup_unlink(dp, ip) 4883 struct inode *dp; 4884 struct inode *ip; 4885 { 4886 struct vnode *dvp; 4887 4888 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4889 ("softdep_setup_unlink called on non-softdep filesystem")); 4890 dvp = ITOV(dp); 4891 ACQUIRE_LOCK(ITOUMP(dp)); 4892 (void) inodedep_lookup_ip(ip); 4893 (void) inodedep_lookup_ip(dp); 4894 softdep_prelink(dvp, ITOV(ip)); 4895 FREE_LOCK(ITOUMP(dp)); 4896 } 4897 4898 /* 4899 * Called to release the journal structures created by a failed non-directory 4900 * creation. Adjusts nlinkdelta for non-journaling softdep. 4901 */ 4902 void 4903 softdep_revert_create(dp, ip) 4904 struct inode *dp; 4905 struct inode *ip; 4906 { 4907 struct inodedep *inodedep; 4908 struct jaddref *jaddref; 4909 struct vnode *dvp; 4910 4911 KASSERT(MOUNTEDSOFTDEP(ITOVFS((dp))) != 0, 4912 ("softdep_revert_create called on non-softdep filesystem")); 4913 dvp = ITOV(dp); 4914 ACQUIRE_LOCK(ITOUMP(dp)); 4915 inodedep = inodedep_lookup_ip(ip); 4916 if (DOINGSUJ(dvp)) { 4917 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4918 inoreflst); 4919 KASSERT(jaddref->ja_parent == dp->i_number, 4920 ("softdep_revert_create: addref parent mismatch")); 4921 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4922 } 4923 FREE_LOCK(ITOUMP(dp)); 4924 } 4925 4926 /* 4927 * Called to release the journal structures created by a failed link 4928 * addition. Adjusts nlinkdelta for non-journaling softdep. 4929 */ 4930 void 4931 softdep_revert_link(dp, ip) 4932 struct inode *dp; 4933 struct inode *ip; 4934 { 4935 struct inodedep *inodedep; 4936 struct jaddref *jaddref; 4937 struct vnode *dvp; 4938 4939 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4940 ("softdep_revert_link called on non-softdep filesystem")); 4941 dvp = ITOV(dp); 4942 ACQUIRE_LOCK(ITOUMP(dp)); 4943 inodedep = inodedep_lookup_ip(ip); 4944 if (DOINGSUJ(dvp)) { 4945 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4946 inoreflst); 4947 KASSERT(jaddref->ja_parent == dp->i_number, 4948 ("softdep_revert_link: addref parent mismatch")); 4949 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4950 } 4951 FREE_LOCK(ITOUMP(dp)); 4952 } 4953 4954 /* 4955 * Called to release the journal structures created by a failed mkdir 4956 * attempt. Adjusts nlinkdelta for non-journaling softdep. 4957 */ 4958 void 4959 softdep_revert_mkdir(dp, ip) 4960 struct inode *dp; 4961 struct inode *ip; 4962 { 4963 struct inodedep *inodedep; 4964 struct jaddref *jaddref; 4965 struct jaddref *dotaddref; 4966 struct vnode *dvp; 4967 4968 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4969 ("softdep_revert_mkdir called on non-softdep filesystem")); 4970 dvp = ITOV(dp); 4971 4972 ACQUIRE_LOCK(ITOUMP(dp)); 4973 inodedep = inodedep_lookup_ip(dp); 4974 if (DOINGSUJ(dvp)) { 4975 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4976 inoreflst); 4977 KASSERT(jaddref->ja_parent == ip->i_number, 4978 ("softdep_revert_mkdir: dotdot addref parent mismatch")); 4979 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4980 } 4981 inodedep = inodedep_lookup_ip(ip); 4982 if (DOINGSUJ(dvp)) { 4983 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4984 inoreflst); 4985 KASSERT(jaddref->ja_parent == dp->i_number, 4986 ("softdep_revert_mkdir: addref parent mismatch")); 4987 dotaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref, 4988 inoreflst, if_deps); 4989 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4990 KASSERT(dotaddref->ja_parent == ip->i_number, 4991 ("softdep_revert_mkdir: dot addref parent mismatch")); 4992 cancel_jaddref(dotaddref, inodedep, &inodedep->id_inowait); 4993 } 4994 FREE_LOCK(ITOUMP(dp)); 4995 } 4996 4997 /* 4998 * Called to correct nlinkdelta after a failed rmdir. 4999 */ 5000 void 5001 softdep_revert_rmdir(dp, ip) 5002 struct inode *dp; 5003 struct inode *ip; 5004 { 5005 5006 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 5007 ("softdep_revert_rmdir called on non-softdep filesystem")); 5008 ACQUIRE_LOCK(ITOUMP(dp)); 5009 (void) inodedep_lookup_ip(ip); 5010 (void) inodedep_lookup_ip(dp); 5011 FREE_LOCK(ITOUMP(dp)); 5012 } 5013 5014 /* 5015 * Protecting the freemaps (or bitmaps). 5016 * 5017 * To eliminate the need to execute fsck before mounting a filesystem 5018 * after a power failure, one must (conservatively) guarantee that the 5019 * on-disk copy of the bitmaps never indicate that a live inode or block is 5020 * free. So, when a block or inode is allocated, the bitmap should be 5021 * updated (on disk) before any new pointers. When a block or inode is 5022 * freed, the bitmap should not be updated until all pointers have been 5023 * reset. The latter dependency is handled by the delayed de-allocation 5024 * approach described below for block and inode de-allocation. The former 5025 * dependency is handled by calling the following procedure when a block or 5026 * inode is allocated. When an inode is allocated an "inodedep" is created 5027 * with its DEPCOMPLETE flag cleared until its bitmap is written to disk. 5028 * Each "inodedep" is also inserted into the hash indexing structure so 5029 * that any additional link additions can be made dependent on the inode 5030 * allocation. 5031 * 5032 * The ufs filesystem maintains a number of free block counts (e.g., per 5033 * cylinder group, per cylinder and per <cylinder, rotational position> pair) 5034 * in addition to the bitmaps. These counts are used to improve efficiency 5035 * during allocation and therefore must be consistent with the bitmaps. 5036 * There is no convenient way to guarantee post-crash consistency of these 5037 * counts with simple update ordering, for two main reasons: (1) The counts 5038 * and bitmaps for a single cylinder group block are not in the same disk 5039 * sector. If a disk write is interrupted (e.g., by power failure), one may 5040 * be written and the other not. (2) Some of the counts are located in the 5041 * superblock rather than the cylinder group block. So, we focus our soft 5042 * updates implementation on protecting the bitmaps. When mounting a 5043 * filesystem, we recompute the auxiliary counts from the bitmaps. 5044 */ 5045 5046 /* 5047 * Called just after updating the cylinder group block to allocate an inode. 5048 */ 5049 void 5050 softdep_setup_inomapdep(bp, ip, newinum, mode) 5051 struct buf *bp; /* buffer for cylgroup block with inode map */ 5052 struct inode *ip; /* inode related to allocation */ 5053 ino_t newinum; /* new inode number being allocated */ 5054 int mode; 5055 { 5056 struct inodedep *inodedep; 5057 struct bmsafemap *bmsafemap; 5058 struct jaddref *jaddref; 5059 struct mount *mp; 5060 struct fs *fs; 5061 5062 mp = ITOVFS(ip); 5063 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5064 ("softdep_setup_inomapdep called on non-softdep filesystem")); 5065 fs = VFSTOUFS(mp)->um_fs; 5066 jaddref = NULL; 5067 5068 /* 5069 * Allocate the journal reference add structure so that the bitmap 5070 * can be dependent on it. 5071 */ 5072 if (MOUNTEDSUJ(mp)) { 5073 jaddref = newjaddref(ip, newinum, 0, 0, mode); 5074 jaddref->ja_state |= NEWBLOCK; 5075 } 5076 5077 /* 5078 * Create a dependency for the newly allocated inode. 5079 * Panic if it already exists as something is seriously wrong. 5080 * Otherwise add it to the dependency list for the buffer holding 5081 * the cylinder group map from which it was allocated. 5082 * 5083 * We have to preallocate a bmsafemap entry in case it is needed 5084 * in bmsafemap_lookup since once we allocate the inodedep, we 5085 * have to finish initializing it before we can FREE_LOCK(). 5086 * By preallocating, we avoid FREE_LOCK() while doing a malloc 5087 * in bmsafemap_lookup. We cannot call bmsafemap_lookup before 5088 * creating the inodedep as it can be freed during the time 5089 * that we FREE_LOCK() while allocating the inodedep. We must 5090 * call workitem_alloc() before entering the locked section as 5091 * it also acquires the lock and we must avoid trying doing so 5092 * recursively. 5093 */ 5094 bmsafemap = malloc(sizeof(struct bmsafemap), 5095 M_BMSAFEMAP, M_SOFTDEP_FLAGS); 5096 workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp); 5097 ACQUIRE_LOCK(ITOUMP(ip)); 5098 if ((inodedep_lookup(mp, newinum, DEPALLOC, &inodedep))) 5099 panic("softdep_setup_inomapdep: dependency %p for new" 5100 "inode already exists", inodedep); 5101 bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum), bmsafemap); 5102 if (jaddref) { 5103 LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps); 5104 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 5105 if_deps); 5106 } else { 5107 inodedep->id_state |= ONDEPLIST; 5108 LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps); 5109 } 5110 inodedep->id_bmsafemap = bmsafemap; 5111 inodedep->id_state &= ~DEPCOMPLETE; 5112 FREE_LOCK(ITOUMP(ip)); 5113 } 5114 5115 /* 5116 * Called just after updating the cylinder group block to 5117 * allocate block or fragment. 5118 */ 5119 void 5120 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags) 5121 struct buf *bp; /* buffer for cylgroup block with block map */ 5122 struct mount *mp; /* filesystem doing allocation */ 5123 ufs2_daddr_t newblkno; /* number of newly allocated block */ 5124 int frags; /* Number of fragments. */ 5125 int oldfrags; /* Previous number of fragments for extend. */ 5126 { 5127 struct newblk *newblk; 5128 struct bmsafemap *bmsafemap; 5129 struct jnewblk *jnewblk; 5130 struct ufsmount *ump; 5131 struct fs *fs; 5132 5133 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5134 ("softdep_setup_blkmapdep called on non-softdep filesystem")); 5135 ump = VFSTOUFS(mp); 5136 fs = ump->um_fs; 5137 jnewblk = NULL; 5138 /* 5139 * Create a dependency for the newly allocated block. 5140 * Add it to the dependency list for the buffer holding 5141 * the cylinder group map from which it was allocated. 5142 */ 5143 if (MOUNTEDSUJ(mp)) { 5144 jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS); 5145 workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp); 5146 jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list); 5147 jnewblk->jn_state = ATTACHED; 5148 jnewblk->jn_blkno = newblkno; 5149 jnewblk->jn_frags = frags; 5150 jnewblk->jn_oldfrags = oldfrags; 5151 #ifdef INVARIANTS 5152 { 5153 struct cg *cgp; 5154 uint8_t *blksfree; 5155 long bno; 5156 int i; 5157 5158 cgp = (struct cg *)bp->b_data; 5159 blksfree = cg_blksfree(cgp); 5160 bno = dtogd(fs, jnewblk->jn_blkno); 5161 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; 5162 i++) { 5163 if (isset(blksfree, bno + i)) 5164 panic("softdep_setup_blkmapdep: " 5165 "free fragment %d from %d-%d " 5166 "state 0x%X dep %p", i, 5167 jnewblk->jn_oldfrags, 5168 jnewblk->jn_frags, 5169 jnewblk->jn_state, 5170 jnewblk->jn_dep); 5171 } 5172 } 5173 #endif 5174 } 5175 5176 CTR3(KTR_SUJ, 5177 "softdep_setup_blkmapdep: blkno %jd frags %d oldfrags %d", 5178 newblkno, frags, oldfrags); 5179 ACQUIRE_LOCK(ump); 5180 if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0) 5181 panic("softdep_setup_blkmapdep: found block"); 5182 newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp, 5183 dtog(fs, newblkno), NULL); 5184 if (jnewblk) { 5185 jnewblk->jn_dep = (struct worklist *)newblk; 5186 LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps); 5187 } else { 5188 newblk->nb_state |= ONDEPLIST; 5189 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps); 5190 } 5191 newblk->nb_bmsafemap = bmsafemap; 5192 newblk->nb_jnewblk = jnewblk; 5193 FREE_LOCK(ump); 5194 } 5195 5196 #define BMSAFEMAP_HASH(ump, cg) \ 5197 (&(ump)->bmsafemap_hashtbl[(cg) & (ump)->bmsafemap_hash_size]) 5198 5199 static int 5200 bmsafemap_find(bmsafemaphd, cg, bmsafemapp) 5201 struct bmsafemap_hashhead *bmsafemaphd; 5202 int cg; 5203 struct bmsafemap **bmsafemapp; 5204 { 5205 struct bmsafemap *bmsafemap; 5206 5207 LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash) 5208 if (bmsafemap->sm_cg == cg) 5209 break; 5210 if (bmsafemap) { 5211 *bmsafemapp = bmsafemap; 5212 return (1); 5213 } 5214 *bmsafemapp = NULL; 5215 5216 return (0); 5217 } 5218 5219 /* 5220 * Find the bmsafemap associated with a cylinder group buffer. 5221 * If none exists, create one. The buffer must be locked when 5222 * this routine is called and this routine must be called with 5223 * the softdep lock held. To avoid giving up the lock while 5224 * allocating a new bmsafemap, a preallocated bmsafemap may be 5225 * provided. If it is provided but not needed, it is freed. 5226 */ 5227 static struct bmsafemap * 5228 bmsafemap_lookup(mp, bp, cg, newbmsafemap) 5229 struct mount *mp; 5230 struct buf *bp; 5231 int cg; 5232 struct bmsafemap *newbmsafemap; 5233 { 5234 struct bmsafemap_hashhead *bmsafemaphd; 5235 struct bmsafemap *bmsafemap, *collision; 5236 struct worklist *wk; 5237 struct ufsmount *ump; 5238 5239 ump = VFSTOUFS(mp); 5240 LOCK_OWNED(ump); 5241 KASSERT(bp != NULL, ("bmsafemap_lookup: missing buffer")); 5242 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 5243 if (wk->wk_type == D_BMSAFEMAP) { 5244 if (newbmsafemap) 5245 WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP); 5246 return (WK_BMSAFEMAP(wk)); 5247 } 5248 } 5249 bmsafemaphd = BMSAFEMAP_HASH(ump, cg); 5250 if (bmsafemap_find(bmsafemaphd, cg, &bmsafemap) == 1) { 5251 if (newbmsafemap) 5252 WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP); 5253 return (bmsafemap); 5254 } 5255 if (newbmsafemap) { 5256 bmsafemap = newbmsafemap; 5257 } else { 5258 FREE_LOCK(ump); 5259 bmsafemap = malloc(sizeof(struct bmsafemap), 5260 M_BMSAFEMAP, M_SOFTDEP_FLAGS); 5261 workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp); 5262 ACQUIRE_LOCK(ump); 5263 } 5264 bmsafemap->sm_buf = bp; 5265 LIST_INIT(&bmsafemap->sm_inodedephd); 5266 LIST_INIT(&bmsafemap->sm_inodedepwr); 5267 LIST_INIT(&bmsafemap->sm_newblkhd); 5268 LIST_INIT(&bmsafemap->sm_newblkwr); 5269 LIST_INIT(&bmsafemap->sm_jaddrefhd); 5270 LIST_INIT(&bmsafemap->sm_jnewblkhd); 5271 LIST_INIT(&bmsafemap->sm_freehd); 5272 LIST_INIT(&bmsafemap->sm_freewr); 5273 if (bmsafemap_find(bmsafemaphd, cg, &collision) == 1) { 5274 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); 5275 return (collision); 5276 } 5277 bmsafemap->sm_cg = cg; 5278 LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash); 5279 LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next); 5280 WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list); 5281 return (bmsafemap); 5282 } 5283 5284 /* 5285 * Direct block allocation dependencies. 5286 * 5287 * When a new block is allocated, the corresponding disk locations must be 5288 * initialized (with zeros or new data) before the on-disk inode points to 5289 * them. Also, the freemap from which the block was allocated must be 5290 * updated (on disk) before the inode's pointer. These two dependencies are 5291 * independent of each other and are needed for all file blocks and indirect 5292 * blocks that are pointed to directly by the inode. Just before the 5293 * "in-core" version of the inode is updated with a newly allocated block 5294 * number, a procedure (below) is called to setup allocation dependency 5295 * structures. These structures are removed when the corresponding 5296 * dependencies are satisfied or when the block allocation becomes obsolete 5297 * (i.e., the file is deleted, the block is de-allocated, or the block is a 5298 * fragment that gets upgraded). All of these cases are handled in 5299 * procedures described later. 5300 * 5301 * When a file extension causes a fragment to be upgraded, either to a larger 5302 * fragment or to a full block, the on-disk location may change (if the 5303 * previous fragment could not simply be extended). In this case, the old 5304 * fragment must be de-allocated, but not until after the inode's pointer has 5305 * been updated. In most cases, this is handled by later procedures, which 5306 * will construct a "freefrag" structure to be added to the workitem queue 5307 * when the inode update is complete (or obsolete). The main exception to 5308 * this is when an allocation occurs while a pending allocation dependency 5309 * (for the same block pointer) remains. This case is handled in the main 5310 * allocation dependency setup procedure by immediately freeing the 5311 * unreferenced fragments. 5312 */ 5313 void 5314 softdep_setup_allocdirect(ip, off, newblkno, oldblkno, newsize, oldsize, bp) 5315 struct inode *ip; /* inode to which block is being added */ 5316 ufs_lbn_t off; /* block pointer within inode */ 5317 ufs2_daddr_t newblkno; /* disk block number being added */ 5318 ufs2_daddr_t oldblkno; /* previous block number, 0 unless frag */ 5319 long newsize; /* size of new block */ 5320 long oldsize; /* size of new block */ 5321 struct buf *bp; /* bp for allocated block */ 5322 { 5323 struct allocdirect *adp, *oldadp; 5324 struct allocdirectlst *adphead; 5325 struct freefrag *freefrag; 5326 struct inodedep *inodedep; 5327 struct pagedep *pagedep; 5328 struct jnewblk *jnewblk; 5329 struct newblk *newblk; 5330 struct mount *mp; 5331 ufs_lbn_t lbn; 5332 5333 lbn = bp->b_lblkno; 5334 mp = ITOVFS(ip); 5335 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5336 ("softdep_setup_allocdirect called on non-softdep filesystem")); 5337 if (oldblkno && oldblkno != newblkno) 5338 /* 5339 * The usual case is that a smaller fragment that 5340 * was just allocated has been replaced with a bigger 5341 * fragment or a full-size block. If it is marked as 5342 * B_DELWRI, the current contents have not been written 5343 * to disk. It is possible that the block was written 5344 * earlier, but very uncommon. If the block has never 5345 * been written, there is no need to send a BIO_DELETE 5346 * for it when it is freed. The gain from avoiding the 5347 * TRIMs for the common case of unwritten blocks far 5348 * exceeds the cost of the write amplification for the 5349 * uncommon case of failing to send a TRIM for a block 5350 * that had been written. 5351 */ 5352 freefrag = newfreefrag(ip, oldblkno, oldsize, lbn, 5353 (bp->b_flags & B_DELWRI) != 0 ? NOTRIM_KEY : SINGLETON_KEY); 5354 else 5355 freefrag = NULL; 5356 5357 CTR6(KTR_SUJ, 5358 "softdep_setup_allocdirect: ino %d blkno %jd oldblkno %jd " 5359 "off %jd newsize %ld oldsize %d", 5360 ip->i_number, newblkno, oldblkno, off, newsize, oldsize); 5361 ACQUIRE_LOCK(ITOUMP(ip)); 5362 if (off >= UFS_NDADDR) { 5363 if (lbn > 0) 5364 panic("softdep_setup_allocdirect: bad lbn %jd, off %jd", 5365 lbn, off); 5366 /* allocating an indirect block */ 5367 if (oldblkno != 0) 5368 panic("softdep_setup_allocdirect: non-zero indir"); 5369 } else { 5370 if (off != lbn) 5371 panic("softdep_setup_allocdirect: lbn %jd != off %jd", 5372 lbn, off); 5373 /* 5374 * Allocating a direct block. 5375 * 5376 * If we are allocating a directory block, then we must 5377 * allocate an associated pagedep to track additions and 5378 * deletions. 5379 */ 5380 if ((ip->i_mode & IFMT) == IFDIR) 5381 pagedep_lookup(mp, bp, ip->i_number, off, DEPALLOC, 5382 &pagedep); 5383 } 5384 if (newblk_lookup(mp, newblkno, 0, &newblk) == 0) 5385 panic("softdep_setup_allocdirect: lost block"); 5386 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 5387 ("softdep_setup_allocdirect: newblk already initialized")); 5388 /* 5389 * Convert the newblk to an allocdirect. 5390 */ 5391 WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT); 5392 adp = (struct allocdirect *)newblk; 5393 newblk->nb_freefrag = freefrag; 5394 adp->ad_offset = off; 5395 adp->ad_oldblkno = oldblkno; 5396 adp->ad_newsize = newsize; 5397 adp->ad_oldsize = oldsize; 5398 5399 /* 5400 * Finish initializing the journal. 5401 */ 5402 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 5403 jnewblk->jn_ino = ip->i_number; 5404 jnewblk->jn_lbn = lbn; 5405 add_to_journal(&jnewblk->jn_list); 5406 } 5407 if (freefrag && freefrag->ff_jdep != NULL && 5408 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 5409 add_to_journal(freefrag->ff_jdep); 5410 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 5411 adp->ad_inodedep = inodedep; 5412 5413 WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list); 5414 /* 5415 * The list of allocdirects must be kept in sorted and ascending 5416 * order so that the rollback routines can quickly determine the 5417 * first uncommitted block (the size of the file stored on disk 5418 * ends at the end of the lowest committed fragment, or if there 5419 * are no fragments, at the end of the highest committed block). 5420 * Since files generally grow, the typical case is that the new 5421 * block is to be added at the end of the list. We speed this 5422 * special case by checking against the last allocdirect in the 5423 * list before laboriously traversing the list looking for the 5424 * insertion point. 5425 */ 5426 adphead = &inodedep->id_newinoupdt; 5427 oldadp = TAILQ_LAST(adphead, allocdirectlst); 5428 if (oldadp == NULL || oldadp->ad_offset <= off) { 5429 /* insert at end of list */ 5430 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 5431 if (oldadp != NULL && oldadp->ad_offset == off) 5432 allocdirect_merge(adphead, adp, oldadp); 5433 FREE_LOCK(ITOUMP(ip)); 5434 return; 5435 } 5436 TAILQ_FOREACH(oldadp, adphead, ad_next) { 5437 if (oldadp->ad_offset >= off) 5438 break; 5439 } 5440 if (oldadp == NULL) 5441 panic("softdep_setup_allocdirect: lost entry"); 5442 /* insert in middle of list */ 5443 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 5444 if (oldadp->ad_offset == off) 5445 allocdirect_merge(adphead, adp, oldadp); 5446 5447 FREE_LOCK(ITOUMP(ip)); 5448 } 5449 5450 /* 5451 * Merge a newer and older journal record to be stored either in a 5452 * newblock or freefrag. This handles aggregating journal records for 5453 * fragment allocation into a second record as well as replacing a 5454 * journal free with an aborted journal allocation. A segment for the 5455 * oldest record will be placed on wkhd if it has been written. If not 5456 * the segment for the newer record will suffice. 5457 */ 5458 static struct worklist * 5459 jnewblk_merge(new, old, wkhd) 5460 struct worklist *new; 5461 struct worklist *old; 5462 struct workhead *wkhd; 5463 { 5464 struct jnewblk *njnewblk; 5465 struct jnewblk *jnewblk; 5466 5467 /* Handle NULLs to simplify callers. */ 5468 if (new == NULL) 5469 return (old); 5470 if (old == NULL) 5471 return (new); 5472 /* Replace a jfreefrag with a jnewblk. */ 5473 if (new->wk_type == D_JFREEFRAG) { 5474 if (WK_JNEWBLK(old)->jn_blkno != WK_JFREEFRAG(new)->fr_blkno) 5475 panic("jnewblk_merge: blkno mismatch: %p, %p", 5476 old, new); 5477 cancel_jfreefrag(WK_JFREEFRAG(new)); 5478 return (old); 5479 } 5480 if (old->wk_type != D_JNEWBLK || new->wk_type != D_JNEWBLK) 5481 panic("jnewblk_merge: Bad type: old %d new %d\n", 5482 old->wk_type, new->wk_type); 5483 /* 5484 * Handle merging of two jnewblk records that describe 5485 * different sets of fragments in the same block. 5486 */ 5487 jnewblk = WK_JNEWBLK(old); 5488 njnewblk = WK_JNEWBLK(new); 5489 if (jnewblk->jn_blkno != njnewblk->jn_blkno) 5490 panic("jnewblk_merge: Merging disparate blocks."); 5491 /* 5492 * The record may be rolled back in the cg. 5493 */ 5494 if (jnewblk->jn_state & UNDONE) { 5495 jnewblk->jn_state &= ~UNDONE; 5496 njnewblk->jn_state |= UNDONE; 5497 njnewblk->jn_state &= ~ATTACHED; 5498 } 5499 /* 5500 * We modify the newer addref and free the older so that if neither 5501 * has been written the most up-to-date copy will be on disk. If 5502 * both have been written but rolled back we only temporarily need 5503 * one of them to fix the bits when the cg write completes. 5504 */ 5505 jnewblk->jn_state |= ATTACHED | COMPLETE; 5506 njnewblk->jn_oldfrags = jnewblk->jn_oldfrags; 5507 cancel_jnewblk(jnewblk, wkhd); 5508 WORKLIST_REMOVE(&jnewblk->jn_list); 5509 free_jnewblk(jnewblk); 5510 return (new); 5511 } 5512 5513 /* 5514 * Replace an old allocdirect dependency with a newer one. 5515 */ 5516 static void 5517 allocdirect_merge(adphead, newadp, oldadp) 5518 struct allocdirectlst *adphead; /* head of list holding allocdirects */ 5519 struct allocdirect *newadp; /* allocdirect being added */ 5520 struct allocdirect *oldadp; /* existing allocdirect being checked */ 5521 { 5522 struct worklist *wk; 5523 struct freefrag *freefrag; 5524 5525 freefrag = NULL; 5526 LOCK_OWNED(VFSTOUFS(newadp->ad_list.wk_mp)); 5527 if (newadp->ad_oldblkno != oldadp->ad_newblkno || 5528 newadp->ad_oldsize != oldadp->ad_newsize || 5529 newadp->ad_offset >= UFS_NDADDR) 5530 panic("%s %jd != new %jd || old size %ld != new %ld", 5531 "allocdirect_merge: old blkno", 5532 (intmax_t)newadp->ad_oldblkno, 5533 (intmax_t)oldadp->ad_newblkno, 5534 newadp->ad_oldsize, oldadp->ad_newsize); 5535 newadp->ad_oldblkno = oldadp->ad_oldblkno; 5536 newadp->ad_oldsize = oldadp->ad_oldsize; 5537 /* 5538 * If the old dependency had a fragment to free or had never 5539 * previously had a block allocated, then the new dependency 5540 * can immediately post its freefrag and adopt the old freefrag. 5541 * This action is done by swapping the freefrag dependencies. 5542 * The new dependency gains the old one's freefrag, and the 5543 * old one gets the new one and then immediately puts it on 5544 * the worklist when it is freed by free_newblk. It is 5545 * not possible to do this swap when the old dependency had a 5546 * non-zero size but no previous fragment to free. This condition 5547 * arises when the new block is an extension of the old block. 5548 * Here, the first part of the fragment allocated to the new 5549 * dependency is part of the block currently claimed on disk by 5550 * the old dependency, so cannot legitimately be freed until the 5551 * conditions for the new dependency are fulfilled. 5552 */ 5553 freefrag = newadp->ad_freefrag; 5554 if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) { 5555 newadp->ad_freefrag = oldadp->ad_freefrag; 5556 oldadp->ad_freefrag = freefrag; 5557 } 5558 /* 5559 * If we are tracking a new directory-block allocation, 5560 * move it from the old allocdirect to the new allocdirect. 5561 */ 5562 if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) { 5563 WORKLIST_REMOVE(wk); 5564 if (!LIST_EMPTY(&oldadp->ad_newdirblk)) 5565 panic("allocdirect_merge: extra newdirblk"); 5566 WORKLIST_INSERT(&newadp->ad_newdirblk, wk); 5567 } 5568 TAILQ_REMOVE(adphead, oldadp, ad_next); 5569 /* 5570 * We need to move any journal dependencies over to the freefrag 5571 * that releases this block if it exists. Otherwise we are 5572 * extending an existing block and we'll wait until that is 5573 * complete to release the journal space and extend the 5574 * new journal to cover this old space as well. 5575 */ 5576 if (freefrag == NULL) { 5577 if (oldadp->ad_newblkno != newadp->ad_newblkno) 5578 panic("allocdirect_merge: %jd != %jd", 5579 oldadp->ad_newblkno, newadp->ad_newblkno); 5580 newadp->ad_block.nb_jnewblk = (struct jnewblk *) 5581 jnewblk_merge(&newadp->ad_block.nb_jnewblk->jn_list, 5582 &oldadp->ad_block.nb_jnewblk->jn_list, 5583 &newadp->ad_block.nb_jwork); 5584 oldadp->ad_block.nb_jnewblk = NULL; 5585 cancel_newblk(&oldadp->ad_block, NULL, 5586 &newadp->ad_block.nb_jwork); 5587 } else { 5588 wk = (struct worklist *) cancel_newblk(&oldadp->ad_block, 5589 &freefrag->ff_list, &freefrag->ff_jwork); 5590 freefrag->ff_jdep = jnewblk_merge(freefrag->ff_jdep, wk, 5591 &freefrag->ff_jwork); 5592 } 5593 free_newblk(&oldadp->ad_block); 5594 } 5595 5596 /* 5597 * Allocate a jfreefrag structure to journal a single block free. 5598 */ 5599 static struct jfreefrag * 5600 newjfreefrag(freefrag, ip, blkno, size, lbn) 5601 struct freefrag *freefrag; 5602 struct inode *ip; 5603 ufs2_daddr_t blkno; 5604 long size; 5605 ufs_lbn_t lbn; 5606 { 5607 struct jfreefrag *jfreefrag; 5608 struct fs *fs; 5609 5610 fs = ITOFS(ip); 5611 jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG, 5612 M_SOFTDEP_FLAGS); 5613 workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, ITOVFS(ip)); 5614 jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list); 5615 jfreefrag->fr_state = ATTACHED | DEPCOMPLETE; 5616 jfreefrag->fr_ino = ip->i_number; 5617 jfreefrag->fr_lbn = lbn; 5618 jfreefrag->fr_blkno = blkno; 5619 jfreefrag->fr_frags = numfrags(fs, size); 5620 jfreefrag->fr_freefrag = freefrag; 5621 5622 return (jfreefrag); 5623 } 5624 5625 /* 5626 * Allocate a new freefrag structure. 5627 */ 5628 static struct freefrag * 5629 newfreefrag(ip, blkno, size, lbn, key) 5630 struct inode *ip; 5631 ufs2_daddr_t blkno; 5632 long size; 5633 ufs_lbn_t lbn; 5634 u_long key; 5635 { 5636 struct freefrag *freefrag; 5637 struct ufsmount *ump; 5638 struct fs *fs; 5639 5640 CTR4(KTR_SUJ, "newfreefrag: ino %d blkno %jd size %ld lbn %jd", 5641 ip->i_number, blkno, size, lbn); 5642 ump = ITOUMP(ip); 5643 fs = ump->um_fs; 5644 if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag) 5645 panic("newfreefrag: frag size"); 5646 freefrag = malloc(sizeof(struct freefrag), 5647 M_FREEFRAG, M_SOFTDEP_FLAGS); 5648 workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ump)); 5649 freefrag->ff_state = ATTACHED; 5650 LIST_INIT(&freefrag->ff_jwork); 5651 freefrag->ff_inum = ip->i_number; 5652 freefrag->ff_vtype = ITOV(ip)->v_type; 5653 freefrag->ff_blkno = blkno; 5654 freefrag->ff_fragsize = size; 5655 freefrag->ff_key = key; 5656 5657 if (MOUNTEDSUJ(UFSTOVFS(ump))) { 5658 freefrag->ff_jdep = (struct worklist *) 5659 newjfreefrag(freefrag, ip, blkno, size, lbn); 5660 } else { 5661 freefrag->ff_state |= DEPCOMPLETE; 5662 freefrag->ff_jdep = NULL; 5663 } 5664 5665 return (freefrag); 5666 } 5667 5668 /* 5669 * This workitem de-allocates fragments that were replaced during 5670 * file block allocation. 5671 */ 5672 static void 5673 handle_workitem_freefrag(freefrag) 5674 struct freefrag *freefrag; 5675 { 5676 struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp); 5677 struct workhead wkhd; 5678 5679 CTR3(KTR_SUJ, 5680 "handle_workitem_freefrag: ino %d blkno %jd size %ld", 5681 freefrag->ff_inum, freefrag->ff_blkno, freefrag->ff_fragsize); 5682 /* 5683 * It would be illegal to add new completion items to the 5684 * freefrag after it was schedule to be done so it must be 5685 * safe to modify the list head here. 5686 */ 5687 LIST_INIT(&wkhd); 5688 ACQUIRE_LOCK(ump); 5689 LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list); 5690 /* 5691 * If the journal has not been written we must cancel it here. 5692 */ 5693 if (freefrag->ff_jdep) { 5694 if (freefrag->ff_jdep->wk_type != D_JNEWBLK) 5695 panic("handle_workitem_freefrag: Unexpected type %d\n", 5696 freefrag->ff_jdep->wk_type); 5697 cancel_jnewblk(WK_JNEWBLK(freefrag->ff_jdep), &wkhd); 5698 } 5699 FREE_LOCK(ump); 5700 ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno, 5701 freefrag->ff_fragsize, freefrag->ff_inum, freefrag->ff_vtype, 5702 &wkhd, freefrag->ff_key); 5703 ACQUIRE_LOCK(ump); 5704 WORKITEM_FREE(freefrag, D_FREEFRAG); 5705 FREE_LOCK(ump); 5706 } 5707 5708 /* 5709 * Set up a dependency structure for an external attributes data block. 5710 * This routine follows much of the structure of softdep_setup_allocdirect. 5711 * See the description of softdep_setup_allocdirect above for details. 5712 */ 5713 void 5714 softdep_setup_allocext(ip, off, newblkno, oldblkno, newsize, oldsize, bp) 5715 struct inode *ip; 5716 ufs_lbn_t off; 5717 ufs2_daddr_t newblkno; 5718 ufs2_daddr_t oldblkno; 5719 long newsize; 5720 long oldsize; 5721 struct buf *bp; 5722 { 5723 struct allocdirect *adp, *oldadp; 5724 struct allocdirectlst *adphead; 5725 struct freefrag *freefrag; 5726 struct inodedep *inodedep; 5727 struct jnewblk *jnewblk; 5728 struct newblk *newblk; 5729 struct mount *mp; 5730 struct ufsmount *ump; 5731 ufs_lbn_t lbn; 5732 5733 mp = ITOVFS(ip); 5734 ump = VFSTOUFS(mp); 5735 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5736 ("softdep_setup_allocext called on non-softdep filesystem")); 5737 KASSERT(off < UFS_NXADDR, 5738 ("softdep_setup_allocext: lbn %lld > UFS_NXADDR", (long long)off)); 5739 5740 lbn = bp->b_lblkno; 5741 if (oldblkno && oldblkno != newblkno) 5742 /* 5743 * The usual case is that a smaller fragment that 5744 * was just allocated has been replaced with a bigger 5745 * fragment or a full-size block. If it is marked as 5746 * B_DELWRI, the current contents have not been written 5747 * to disk. It is possible that the block was written 5748 * earlier, but very uncommon. If the block has never 5749 * been written, there is no need to send a BIO_DELETE 5750 * for it when it is freed. The gain from avoiding the 5751 * TRIMs for the common case of unwritten blocks far 5752 * exceeds the cost of the write amplification for the 5753 * uncommon case of failing to send a TRIM for a block 5754 * that had been written. 5755 */ 5756 freefrag = newfreefrag(ip, oldblkno, oldsize, lbn, 5757 (bp->b_flags & B_DELWRI) != 0 ? NOTRIM_KEY : SINGLETON_KEY); 5758 else 5759 freefrag = NULL; 5760 5761 ACQUIRE_LOCK(ump); 5762 if (newblk_lookup(mp, newblkno, 0, &newblk) == 0) 5763 panic("softdep_setup_allocext: lost block"); 5764 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 5765 ("softdep_setup_allocext: newblk already initialized")); 5766 /* 5767 * Convert the newblk to an allocdirect. 5768 */ 5769 WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT); 5770 adp = (struct allocdirect *)newblk; 5771 newblk->nb_freefrag = freefrag; 5772 adp->ad_offset = off; 5773 adp->ad_oldblkno = oldblkno; 5774 adp->ad_newsize = newsize; 5775 adp->ad_oldsize = oldsize; 5776 adp->ad_state |= EXTDATA; 5777 5778 /* 5779 * Finish initializing the journal. 5780 */ 5781 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 5782 jnewblk->jn_ino = ip->i_number; 5783 jnewblk->jn_lbn = lbn; 5784 add_to_journal(&jnewblk->jn_list); 5785 } 5786 if (freefrag && freefrag->ff_jdep != NULL && 5787 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 5788 add_to_journal(freefrag->ff_jdep); 5789 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 5790 adp->ad_inodedep = inodedep; 5791 5792 WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list); 5793 /* 5794 * The list of allocdirects must be kept in sorted and ascending 5795 * order so that the rollback routines can quickly determine the 5796 * first uncommitted block (the size of the file stored on disk 5797 * ends at the end of the lowest committed fragment, or if there 5798 * are no fragments, at the end of the highest committed block). 5799 * Since files generally grow, the typical case is that the new 5800 * block is to be added at the end of the list. We speed this 5801 * special case by checking against the last allocdirect in the 5802 * list before laboriously traversing the list looking for the 5803 * insertion point. 5804 */ 5805 adphead = &inodedep->id_newextupdt; 5806 oldadp = TAILQ_LAST(adphead, allocdirectlst); 5807 if (oldadp == NULL || oldadp->ad_offset <= off) { 5808 /* insert at end of list */ 5809 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 5810 if (oldadp != NULL && oldadp->ad_offset == off) 5811 allocdirect_merge(adphead, adp, oldadp); 5812 FREE_LOCK(ump); 5813 return; 5814 } 5815 TAILQ_FOREACH(oldadp, adphead, ad_next) { 5816 if (oldadp->ad_offset >= off) 5817 break; 5818 } 5819 if (oldadp == NULL) 5820 panic("softdep_setup_allocext: lost entry"); 5821 /* insert in middle of list */ 5822 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 5823 if (oldadp->ad_offset == off) 5824 allocdirect_merge(adphead, adp, oldadp); 5825 FREE_LOCK(ump); 5826 } 5827 5828 /* 5829 * Indirect block allocation dependencies. 5830 * 5831 * The same dependencies that exist for a direct block also exist when 5832 * a new block is allocated and pointed to by an entry in a block of 5833 * indirect pointers. The undo/redo states described above are also 5834 * used here. Because an indirect block contains many pointers that 5835 * may have dependencies, a second copy of the entire in-memory indirect 5836 * block is kept. The buffer cache copy is always completely up-to-date. 5837 * The second copy, which is used only as a source for disk writes, 5838 * contains only the safe pointers (i.e., those that have no remaining 5839 * update dependencies). The second copy is freed when all pointers 5840 * are safe. The cache is not allowed to replace indirect blocks with 5841 * pending update dependencies. If a buffer containing an indirect 5842 * block with dependencies is written, these routines will mark it 5843 * dirty again. It can only be successfully written once all the 5844 * dependencies are removed. The ffs_fsync routine in conjunction with 5845 * softdep_sync_metadata work together to get all the dependencies 5846 * removed so that a file can be successfully written to disk. Three 5847 * procedures are used when setting up indirect block pointer 5848 * dependencies. The division is necessary because of the organization 5849 * of the "balloc" routine and because of the distinction between file 5850 * pages and file metadata blocks. 5851 */ 5852 5853 /* 5854 * Allocate a new allocindir structure. 5855 */ 5856 static struct allocindir * 5857 newallocindir(ip, ptrno, newblkno, oldblkno, lbn) 5858 struct inode *ip; /* inode for file being extended */ 5859 int ptrno; /* offset of pointer in indirect block */ 5860 ufs2_daddr_t newblkno; /* disk block number being added */ 5861 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 5862 ufs_lbn_t lbn; 5863 { 5864 struct newblk *newblk; 5865 struct allocindir *aip; 5866 struct freefrag *freefrag; 5867 struct jnewblk *jnewblk; 5868 5869 if (oldblkno) 5870 freefrag = newfreefrag(ip, oldblkno, ITOFS(ip)->fs_bsize, lbn, 5871 SINGLETON_KEY); 5872 else 5873 freefrag = NULL; 5874 ACQUIRE_LOCK(ITOUMP(ip)); 5875 if (newblk_lookup(ITOVFS(ip), newblkno, 0, &newblk) == 0) 5876 panic("new_allocindir: lost block"); 5877 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 5878 ("newallocindir: newblk already initialized")); 5879 WORKITEM_REASSIGN(newblk, D_ALLOCINDIR); 5880 newblk->nb_freefrag = freefrag; 5881 aip = (struct allocindir *)newblk; 5882 aip->ai_offset = ptrno; 5883 aip->ai_oldblkno = oldblkno; 5884 aip->ai_lbn = lbn; 5885 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 5886 jnewblk->jn_ino = ip->i_number; 5887 jnewblk->jn_lbn = lbn; 5888 add_to_journal(&jnewblk->jn_list); 5889 } 5890 if (freefrag && freefrag->ff_jdep != NULL && 5891 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 5892 add_to_journal(freefrag->ff_jdep); 5893 return (aip); 5894 } 5895 5896 /* 5897 * Called just before setting an indirect block pointer 5898 * to a newly allocated file page. 5899 */ 5900 void 5901 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 5902 struct inode *ip; /* inode for file being extended */ 5903 ufs_lbn_t lbn; /* allocated block number within file */ 5904 struct buf *bp; /* buffer with indirect blk referencing page */ 5905 int ptrno; /* offset of pointer in indirect block */ 5906 ufs2_daddr_t newblkno; /* disk block number being added */ 5907 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 5908 struct buf *nbp; /* buffer holding allocated page */ 5909 { 5910 struct inodedep *inodedep; 5911 struct freefrag *freefrag; 5912 struct allocindir *aip; 5913 struct pagedep *pagedep; 5914 struct mount *mp; 5915 struct ufsmount *ump; 5916 5917 mp = ITOVFS(ip); 5918 ump = VFSTOUFS(mp); 5919 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5920 ("softdep_setup_allocindir_page called on non-softdep filesystem")); 5921 KASSERT(lbn == nbp->b_lblkno, 5922 ("softdep_setup_allocindir_page: lbn %jd != lblkno %jd", 5923 lbn, bp->b_lblkno)); 5924 CTR4(KTR_SUJ, 5925 "softdep_setup_allocindir_page: ino %d blkno %jd oldblkno %jd " 5926 "lbn %jd", ip->i_number, newblkno, oldblkno, lbn); 5927 ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page"); 5928 aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn); 5929 (void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 5930 /* 5931 * If we are allocating a directory page, then we must 5932 * allocate an associated pagedep to track additions and 5933 * deletions. 5934 */ 5935 if ((ip->i_mode & IFMT) == IFDIR) 5936 pagedep_lookup(mp, nbp, ip->i_number, lbn, DEPALLOC, &pagedep); 5937 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list); 5938 freefrag = setup_allocindir_phase2(bp, ip, inodedep, aip, lbn); 5939 FREE_LOCK(ump); 5940 if (freefrag) 5941 handle_workitem_freefrag(freefrag); 5942 } 5943 5944 /* 5945 * Called just before setting an indirect block pointer to a 5946 * newly allocated indirect block. 5947 */ 5948 void 5949 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 5950 struct buf *nbp; /* newly allocated indirect block */ 5951 struct inode *ip; /* inode for file being extended */ 5952 struct buf *bp; /* indirect block referencing allocated block */ 5953 int ptrno; /* offset of pointer in indirect block */ 5954 ufs2_daddr_t newblkno; /* disk block number being added */ 5955 { 5956 struct inodedep *inodedep; 5957 struct allocindir *aip; 5958 struct ufsmount *ump; 5959 ufs_lbn_t lbn; 5960 5961 ump = ITOUMP(ip); 5962 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 5963 ("softdep_setup_allocindir_meta called on non-softdep filesystem")); 5964 CTR3(KTR_SUJ, 5965 "softdep_setup_allocindir_meta: ino %d blkno %jd ptrno %d", 5966 ip->i_number, newblkno, ptrno); 5967 lbn = nbp->b_lblkno; 5968 ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta"); 5969 aip = newallocindir(ip, ptrno, newblkno, 0, lbn); 5970 inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep); 5971 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list); 5972 if (setup_allocindir_phase2(bp, ip, inodedep, aip, lbn)) 5973 panic("softdep_setup_allocindir_meta: Block already existed"); 5974 FREE_LOCK(ump); 5975 } 5976 5977 static void 5978 indirdep_complete(indirdep) 5979 struct indirdep *indirdep; 5980 { 5981 struct allocindir *aip; 5982 5983 LIST_REMOVE(indirdep, ir_next); 5984 indirdep->ir_state |= DEPCOMPLETE; 5985 5986 while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) { 5987 LIST_REMOVE(aip, ai_next); 5988 free_newblk(&aip->ai_block); 5989 } 5990 /* 5991 * If this indirdep is not attached to a buf it was simply waiting 5992 * on completion to clear completehd. free_indirdep() asserts 5993 * that nothing is dangling. 5994 */ 5995 if ((indirdep->ir_state & ONWORKLIST) == 0) 5996 free_indirdep(indirdep); 5997 } 5998 5999 static struct indirdep * 6000 indirdep_lookup(mp, ip, bp) 6001 struct mount *mp; 6002 struct inode *ip; 6003 struct buf *bp; 6004 { 6005 struct indirdep *indirdep, *newindirdep; 6006 struct newblk *newblk; 6007 struct ufsmount *ump; 6008 struct worklist *wk; 6009 struct fs *fs; 6010 ufs2_daddr_t blkno; 6011 6012 ump = VFSTOUFS(mp); 6013 LOCK_OWNED(ump); 6014 indirdep = NULL; 6015 newindirdep = NULL; 6016 fs = ump->um_fs; 6017 for (;;) { 6018 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 6019 if (wk->wk_type != D_INDIRDEP) 6020 continue; 6021 indirdep = WK_INDIRDEP(wk); 6022 break; 6023 } 6024 /* Found on the buffer worklist, no new structure to free. */ 6025 if (indirdep != NULL && newindirdep == NULL) 6026 return (indirdep); 6027 if (indirdep != NULL && newindirdep != NULL) 6028 panic("indirdep_lookup: simultaneous create"); 6029 /* None found on the buffer and a new structure is ready. */ 6030 if (indirdep == NULL && newindirdep != NULL) 6031 break; 6032 /* None found and no new structure available. */ 6033 FREE_LOCK(ump); 6034 newindirdep = malloc(sizeof(struct indirdep), 6035 M_INDIRDEP, M_SOFTDEP_FLAGS); 6036 workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp); 6037 newindirdep->ir_state = ATTACHED; 6038 if (I_IS_UFS1(ip)) 6039 newindirdep->ir_state |= UFS1FMT; 6040 TAILQ_INIT(&newindirdep->ir_trunc); 6041 newindirdep->ir_saveddata = NULL; 6042 LIST_INIT(&newindirdep->ir_deplisthd); 6043 LIST_INIT(&newindirdep->ir_donehd); 6044 LIST_INIT(&newindirdep->ir_writehd); 6045 LIST_INIT(&newindirdep->ir_completehd); 6046 if (bp->b_blkno == bp->b_lblkno) { 6047 ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp, 6048 NULL, NULL); 6049 bp->b_blkno = blkno; 6050 } 6051 newindirdep->ir_freeblks = NULL; 6052 newindirdep->ir_savebp = 6053 getblk(ump->um_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0); 6054 newindirdep->ir_bp = bp; 6055 BUF_KERNPROC(newindirdep->ir_savebp); 6056 bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount); 6057 ACQUIRE_LOCK(ump); 6058 } 6059 indirdep = newindirdep; 6060 WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list); 6061 /* 6062 * If the block is not yet allocated we don't set DEPCOMPLETE so 6063 * that we don't free dependencies until the pointers are valid. 6064 * This could search b_dep for D_ALLOCDIRECT/D_ALLOCINDIR rather 6065 * than using the hash. 6066 */ 6067 if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)) 6068 LIST_INSERT_HEAD(&newblk->nb_indirdeps, indirdep, ir_next); 6069 else 6070 indirdep->ir_state |= DEPCOMPLETE; 6071 return (indirdep); 6072 } 6073 6074 /* 6075 * Called to finish the allocation of the "aip" allocated 6076 * by one of the two routines above. 6077 */ 6078 static struct freefrag * 6079 setup_allocindir_phase2(bp, ip, inodedep, aip, lbn) 6080 struct buf *bp; /* in-memory copy of the indirect block */ 6081 struct inode *ip; /* inode for file being extended */ 6082 struct inodedep *inodedep; /* Inodedep for ip */ 6083 struct allocindir *aip; /* allocindir allocated by the above routines */ 6084 ufs_lbn_t lbn; /* Logical block number for this block. */ 6085 { 6086 struct fs *fs; 6087 struct indirdep *indirdep; 6088 struct allocindir *oldaip; 6089 struct freefrag *freefrag; 6090 struct mount *mp; 6091 struct ufsmount *ump; 6092 6093 mp = ITOVFS(ip); 6094 ump = VFSTOUFS(mp); 6095 LOCK_OWNED(ump); 6096 fs = ump->um_fs; 6097 if (bp->b_lblkno >= 0) 6098 panic("setup_allocindir_phase2: not indir blk"); 6099 KASSERT(aip->ai_offset >= 0 && aip->ai_offset < NINDIR(fs), 6100 ("setup_allocindir_phase2: Bad offset %d", aip->ai_offset)); 6101 indirdep = indirdep_lookup(mp, ip, bp); 6102 KASSERT(indirdep->ir_savebp != NULL, 6103 ("setup_allocindir_phase2 NULL ir_savebp")); 6104 aip->ai_indirdep = indirdep; 6105 /* 6106 * Check for an unwritten dependency for this indirect offset. If 6107 * there is, merge the old dependency into the new one. This happens 6108 * as a result of reallocblk only. 6109 */ 6110 freefrag = NULL; 6111 if (aip->ai_oldblkno != 0) { 6112 LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) { 6113 if (oldaip->ai_offset == aip->ai_offset) { 6114 freefrag = allocindir_merge(aip, oldaip); 6115 goto done; 6116 } 6117 } 6118 LIST_FOREACH(oldaip, &indirdep->ir_donehd, ai_next) { 6119 if (oldaip->ai_offset == aip->ai_offset) { 6120 freefrag = allocindir_merge(aip, oldaip); 6121 goto done; 6122 } 6123 } 6124 } 6125 done: 6126 LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next); 6127 return (freefrag); 6128 } 6129 6130 /* 6131 * Merge two allocindirs which refer to the same block. Move newblock 6132 * dependencies and setup the freefrags appropriately. 6133 */ 6134 static struct freefrag * 6135 allocindir_merge(aip, oldaip) 6136 struct allocindir *aip; 6137 struct allocindir *oldaip; 6138 { 6139 struct freefrag *freefrag; 6140 struct worklist *wk; 6141 6142 if (oldaip->ai_newblkno != aip->ai_oldblkno) 6143 panic("allocindir_merge: blkno"); 6144 aip->ai_oldblkno = oldaip->ai_oldblkno; 6145 freefrag = aip->ai_freefrag; 6146 aip->ai_freefrag = oldaip->ai_freefrag; 6147 oldaip->ai_freefrag = NULL; 6148 KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag")); 6149 /* 6150 * If we are tracking a new directory-block allocation, 6151 * move it from the old allocindir to the new allocindir. 6152 */ 6153 if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) { 6154 WORKLIST_REMOVE(wk); 6155 if (!LIST_EMPTY(&oldaip->ai_newdirblk)) 6156 panic("allocindir_merge: extra newdirblk"); 6157 WORKLIST_INSERT(&aip->ai_newdirblk, wk); 6158 } 6159 /* 6160 * We can skip journaling for this freefrag and just complete 6161 * any pending journal work for the allocindir that is being 6162 * removed after the freefrag completes. 6163 */ 6164 if (freefrag->ff_jdep) 6165 cancel_jfreefrag(WK_JFREEFRAG(freefrag->ff_jdep)); 6166 LIST_REMOVE(oldaip, ai_next); 6167 freefrag->ff_jdep = (struct worklist *)cancel_newblk(&oldaip->ai_block, 6168 &freefrag->ff_list, &freefrag->ff_jwork); 6169 free_newblk(&oldaip->ai_block); 6170 6171 return (freefrag); 6172 } 6173 6174 static inline void 6175 setup_freedirect(freeblks, ip, i, needj) 6176 struct freeblks *freeblks; 6177 struct inode *ip; 6178 int i; 6179 int needj; 6180 { 6181 struct ufsmount *ump; 6182 ufs2_daddr_t blkno; 6183 int frags; 6184 6185 blkno = DIP(ip, i_db[i]); 6186 if (blkno == 0) 6187 return; 6188 DIP_SET(ip, i_db[i], 0); 6189 ump = ITOUMP(ip); 6190 frags = sblksize(ump->um_fs, ip->i_size, i); 6191 frags = numfrags(ump->um_fs, frags); 6192 newfreework(ump, freeblks, NULL, i, blkno, frags, 0, needj); 6193 } 6194 6195 static inline void 6196 setup_freeext(freeblks, ip, i, needj) 6197 struct freeblks *freeblks; 6198 struct inode *ip; 6199 int i; 6200 int needj; 6201 { 6202 struct ufsmount *ump; 6203 ufs2_daddr_t blkno; 6204 int frags; 6205 6206 blkno = ip->i_din2->di_extb[i]; 6207 if (blkno == 0) 6208 return; 6209 ip->i_din2->di_extb[i] = 0; 6210 ump = ITOUMP(ip); 6211 frags = sblksize(ump->um_fs, ip->i_din2->di_extsize, i); 6212 frags = numfrags(ump->um_fs, frags); 6213 newfreework(ump, freeblks, NULL, -1 - i, blkno, frags, 0, needj); 6214 } 6215 6216 static inline void 6217 setup_freeindir(freeblks, ip, i, lbn, needj) 6218 struct freeblks *freeblks; 6219 struct inode *ip; 6220 int i; 6221 ufs_lbn_t lbn; 6222 int needj; 6223 { 6224 struct ufsmount *ump; 6225 ufs2_daddr_t blkno; 6226 6227 blkno = DIP(ip, i_ib[i]); 6228 if (blkno == 0) 6229 return; 6230 DIP_SET(ip, i_ib[i], 0); 6231 ump = ITOUMP(ip); 6232 newfreework(ump, freeblks, NULL, lbn, blkno, ump->um_fs->fs_frag, 6233 0, needj); 6234 } 6235 6236 static inline struct freeblks * 6237 newfreeblks(mp, ip) 6238 struct mount *mp; 6239 struct inode *ip; 6240 { 6241 struct freeblks *freeblks; 6242 6243 freeblks = malloc(sizeof(struct freeblks), 6244 M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO); 6245 workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp); 6246 LIST_INIT(&freeblks->fb_jblkdephd); 6247 LIST_INIT(&freeblks->fb_jwork); 6248 freeblks->fb_ref = 0; 6249 freeblks->fb_cgwait = 0; 6250 freeblks->fb_state = ATTACHED; 6251 freeblks->fb_uid = ip->i_uid; 6252 freeblks->fb_inum = ip->i_number; 6253 freeblks->fb_vtype = ITOV(ip)->v_type; 6254 freeblks->fb_modrev = DIP(ip, i_modrev); 6255 freeblks->fb_devvp = ITODEVVP(ip); 6256 freeblks->fb_chkcnt = 0; 6257 freeblks->fb_len = 0; 6258 6259 return (freeblks); 6260 } 6261 6262 static void 6263 trunc_indirdep(indirdep, freeblks, bp, off) 6264 struct indirdep *indirdep; 6265 struct freeblks *freeblks; 6266 struct buf *bp; 6267 int off; 6268 { 6269 struct allocindir *aip, *aipn; 6270 6271 /* 6272 * The first set of allocindirs won't be in savedbp. 6273 */ 6274 LIST_FOREACH_SAFE(aip, &indirdep->ir_deplisthd, ai_next, aipn) 6275 if (aip->ai_offset > off) 6276 cancel_allocindir(aip, bp, freeblks, 1); 6277 LIST_FOREACH_SAFE(aip, &indirdep->ir_donehd, ai_next, aipn) 6278 if (aip->ai_offset > off) 6279 cancel_allocindir(aip, bp, freeblks, 1); 6280 /* 6281 * These will exist in savedbp. 6282 */ 6283 LIST_FOREACH_SAFE(aip, &indirdep->ir_writehd, ai_next, aipn) 6284 if (aip->ai_offset > off) 6285 cancel_allocindir(aip, NULL, freeblks, 0); 6286 LIST_FOREACH_SAFE(aip, &indirdep->ir_completehd, ai_next, aipn) 6287 if (aip->ai_offset > off) 6288 cancel_allocindir(aip, NULL, freeblks, 0); 6289 } 6290 6291 /* 6292 * Follow the chain of indirects down to lastlbn creating a freework 6293 * structure for each. This will be used to start indir_trunc() at 6294 * the right offset and create the journal records for the parrtial 6295 * truncation. A second step will handle the truncated dependencies. 6296 */ 6297 static int 6298 setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno) 6299 struct freeblks *freeblks; 6300 struct inode *ip; 6301 ufs_lbn_t lbn; 6302 ufs_lbn_t lastlbn; 6303 ufs2_daddr_t blkno; 6304 { 6305 struct indirdep *indirdep; 6306 struct indirdep *indirn; 6307 struct freework *freework; 6308 struct newblk *newblk; 6309 struct mount *mp; 6310 struct ufsmount *ump; 6311 struct buf *bp; 6312 uint8_t *start; 6313 uint8_t *end; 6314 ufs_lbn_t lbnadd; 6315 int level; 6316 int error; 6317 int off; 6318 6319 6320 freework = NULL; 6321 if (blkno == 0) 6322 return (0); 6323 mp = freeblks->fb_list.wk_mp; 6324 ump = VFSTOUFS(mp); 6325 /* 6326 * Here, calls to VOP_BMAP() will fail. However, we already have 6327 * the on-disk address, so we just pass it to bread() instead of 6328 * having bread() attempt to calculate it using VOP_BMAP(). 6329 */ 6330 error = breadn_flags(ITOV(ip), lbn, blkptrtodb(ump, blkno), 6331 (int)mp->mnt_stat.f_iosize, NULL, NULL, 0, NOCRED, 0, NULL, &bp); 6332 if (error) 6333 return (error); 6334 level = lbn_level(lbn); 6335 lbnadd = lbn_offset(ump->um_fs, level); 6336 /* 6337 * Compute the offset of the last block we want to keep. Store 6338 * in the freework the first block we want to completely free. 6339 */ 6340 off = (lastlbn - -(lbn + level)) / lbnadd; 6341 if (off + 1 == NINDIR(ump->um_fs)) 6342 goto nowork; 6343 freework = newfreework(ump, freeblks, NULL, lbn, blkno, 0, off + 1, 0); 6344 /* 6345 * Link the freework into the indirdep. This will prevent any new 6346 * allocations from proceeding until we are finished with the 6347 * truncate and the block is written. 6348 */ 6349 ACQUIRE_LOCK(ump); 6350 indirdep = indirdep_lookup(mp, ip, bp); 6351 if (indirdep->ir_freeblks) 6352 panic("setup_trunc_indir: indirdep already truncated."); 6353 TAILQ_INSERT_TAIL(&indirdep->ir_trunc, freework, fw_next); 6354 freework->fw_indir = indirdep; 6355 /* 6356 * Cancel any allocindirs that will not make it to disk. 6357 * We have to do this for all copies of the indirdep that 6358 * live on this newblk. 6359 */ 6360 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 6361 if (newblk_lookup(mp, dbtofsb(ump->um_fs, bp->b_blkno), 0, 6362 &newblk) == 0) 6363 panic("setup_trunc_indir: lost block"); 6364 LIST_FOREACH(indirn, &newblk->nb_indirdeps, ir_next) 6365 trunc_indirdep(indirn, freeblks, bp, off); 6366 } else 6367 trunc_indirdep(indirdep, freeblks, bp, off); 6368 FREE_LOCK(ump); 6369 /* 6370 * Creation is protected by the buf lock. The saveddata is only 6371 * needed if a full truncation follows a partial truncation but it 6372 * is difficult to allocate in that case so we fetch it anyway. 6373 */ 6374 if (indirdep->ir_saveddata == NULL) 6375 indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP, 6376 M_SOFTDEP_FLAGS); 6377 nowork: 6378 /* Fetch the blkno of the child and the zero start offset. */ 6379 if (I_IS_UFS1(ip)) { 6380 blkno = ((ufs1_daddr_t *)bp->b_data)[off]; 6381 start = (uint8_t *)&((ufs1_daddr_t *)bp->b_data)[off+1]; 6382 } else { 6383 blkno = ((ufs2_daddr_t *)bp->b_data)[off]; 6384 start = (uint8_t *)&((ufs2_daddr_t *)bp->b_data)[off+1]; 6385 } 6386 if (freework) { 6387 /* Zero the truncated pointers. */ 6388 end = bp->b_data + bp->b_bcount; 6389 bzero(start, end - start); 6390 bdwrite(bp); 6391 } else 6392 bqrelse(bp); 6393 if (level == 0) 6394 return (0); 6395 lbn++; /* adjust level */ 6396 lbn -= (off * lbnadd); 6397 return setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno); 6398 } 6399 6400 /* 6401 * Complete the partial truncation of an indirect block setup by 6402 * setup_trunc_indir(). This zeros the truncated pointers in the saved 6403 * copy and writes them to disk before the freeblks is allowed to complete. 6404 */ 6405 static void 6406 complete_trunc_indir(freework) 6407 struct freework *freework; 6408 { 6409 struct freework *fwn; 6410 struct indirdep *indirdep; 6411 struct ufsmount *ump; 6412 struct buf *bp; 6413 uintptr_t start; 6414 int count; 6415 6416 ump = VFSTOUFS(freework->fw_list.wk_mp); 6417 LOCK_OWNED(ump); 6418 indirdep = freework->fw_indir; 6419 for (;;) { 6420 bp = indirdep->ir_bp; 6421 /* See if the block was discarded. */ 6422 if (bp == NULL) 6423 break; 6424 /* Inline part of getdirtybuf(). We dont want bremfree. */ 6425 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0) 6426 break; 6427 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 6428 LOCK_PTR(ump)) == 0) 6429 BUF_UNLOCK(bp); 6430 ACQUIRE_LOCK(ump); 6431 } 6432 freework->fw_state |= DEPCOMPLETE; 6433 TAILQ_REMOVE(&indirdep->ir_trunc, freework, fw_next); 6434 /* 6435 * Zero the pointers in the saved copy. 6436 */ 6437 if (indirdep->ir_state & UFS1FMT) 6438 start = sizeof(ufs1_daddr_t); 6439 else 6440 start = sizeof(ufs2_daddr_t); 6441 start *= freework->fw_start; 6442 count = indirdep->ir_savebp->b_bcount - start; 6443 start += (uintptr_t)indirdep->ir_savebp->b_data; 6444 bzero((char *)start, count); 6445 /* 6446 * We need to start the next truncation in the list if it has not 6447 * been started yet. 6448 */ 6449 fwn = TAILQ_FIRST(&indirdep->ir_trunc); 6450 if (fwn != NULL) { 6451 if (fwn->fw_freeblks == indirdep->ir_freeblks) 6452 TAILQ_REMOVE(&indirdep->ir_trunc, fwn, fw_next); 6453 if ((fwn->fw_state & ONWORKLIST) == 0) 6454 freework_enqueue(fwn); 6455 } 6456 /* 6457 * If bp is NULL the block was fully truncated, restore 6458 * the saved block list otherwise free it if it is no 6459 * longer needed. 6460 */ 6461 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 6462 if (bp == NULL) 6463 bcopy(indirdep->ir_saveddata, 6464 indirdep->ir_savebp->b_data, 6465 indirdep->ir_savebp->b_bcount); 6466 free(indirdep->ir_saveddata, M_INDIRDEP); 6467 indirdep->ir_saveddata = NULL; 6468 } 6469 /* 6470 * When bp is NULL there is a full truncation pending. We 6471 * must wait for this full truncation to be journaled before 6472 * we can release this freework because the disk pointers will 6473 * never be written as zero. 6474 */ 6475 if (bp == NULL) { 6476 if (LIST_EMPTY(&indirdep->ir_freeblks->fb_jblkdephd)) 6477 handle_written_freework(freework); 6478 else 6479 WORKLIST_INSERT(&indirdep->ir_freeblks->fb_freeworkhd, 6480 &freework->fw_list); 6481 } else { 6482 /* Complete when the real copy is written. */ 6483 WORKLIST_INSERT(&bp->b_dep, &freework->fw_list); 6484 BUF_UNLOCK(bp); 6485 } 6486 } 6487 6488 /* 6489 * Calculate the number of blocks we are going to release where datablocks 6490 * is the current total and length is the new file size. 6491 */ 6492 static ufs2_daddr_t 6493 blkcount(fs, datablocks, length) 6494 struct fs *fs; 6495 ufs2_daddr_t datablocks; 6496 off_t length; 6497 { 6498 off_t totblks, numblks; 6499 6500 totblks = 0; 6501 numblks = howmany(length, fs->fs_bsize); 6502 if (numblks <= UFS_NDADDR) { 6503 totblks = howmany(length, fs->fs_fsize); 6504 goto out; 6505 } 6506 totblks = blkstofrags(fs, numblks); 6507 numblks -= UFS_NDADDR; 6508 /* 6509 * Count all single, then double, then triple indirects required. 6510 * Subtracting one indirects worth of blocks for each pass 6511 * acknowledges one of each pointed to by the inode. 6512 */ 6513 for (;;) { 6514 totblks += blkstofrags(fs, howmany(numblks, NINDIR(fs))); 6515 numblks -= NINDIR(fs); 6516 if (numblks <= 0) 6517 break; 6518 numblks = howmany(numblks, NINDIR(fs)); 6519 } 6520 out: 6521 totblks = fsbtodb(fs, totblks); 6522 /* 6523 * Handle sparse files. We can't reclaim more blocks than the inode 6524 * references. We will correct it later in handle_complete_freeblks() 6525 * when we know the real count. 6526 */ 6527 if (totblks > datablocks) 6528 return (0); 6529 return (datablocks - totblks); 6530 } 6531 6532 /* 6533 * Handle freeblocks for journaled softupdate filesystems. 6534 * 6535 * Contrary to normal softupdates, we must preserve the block pointers in 6536 * indirects until their subordinates are free. This is to avoid journaling 6537 * every block that is freed which may consume more space than the journal 6538 * itself. The recovery program will see the free block journals at the 6539 * base of the truncated area and traverse them to reclaim space. The 6540 * pointers in the inode may be cleared immediately after the journal 6541 * records are written because each direct and indirect pointer in the 6542 * inode is recorded in a journal. This permits full truncation to proceed 6543 * asynchronously. The write order is journal -> inode -> cgs -> indirects. 6544 * 6545 * The algorithm is as follows: 6546 * 1) Traverse the in-memory state and create journal entries to release 6547 * the relevant blocks and full indirect trees. 6548 * 2) Traverse the indirect block chain adding partial truncation freework 6549 * records to indirects in the path to lastlbn. The freework will 6550 * prevent new allocation dependencies from being satisfied in this 6551 * indirect until the truncation completes. 6552 * 3) Read and lock the inode block, performing an update with the new size 6553 * and pointers. This prevents truncated data from becoming valid on 6554 * disk through step 4. 6555 * 4) Reap unsatisfied dependencies that are beyond the truncated area, 6556 * eliminate journal work for those records that do not require it. 6557 * 5) Schedule the journal records to be written followed by the inode block. 6558 * 6) Allocate any necessary frags for the end of file. 6559 * 7) Zero any partially truncated blocks. 6560 * 6561 * From this truncation proceeds asynchronously using the freework and 6562 * indir_trunc machinery. The file will not be extended again into a 6563 * partially truncated indirect block until all work is completed but 6564 * the normal dependency mechanism ensures that it is rolled back/forward 6565 * as appropriate. Further truncation may occur without delay and is 6566 * serialized in indir_trunc(). 6567 */ 6568 void 6569 softdep_journal_freeblocks(ip, cred, length, flags) 6570 struct inode *ip; /* The inode whose length is to be reduced */ 6571 struct ucred *cred; 6572 off_t length; /* The new length for the file */ 6573 int flags; /* IO_EXT and/or IO_NORMAL */ 6574 { 6575 struct freeblks *freeblks, *fbn; 6576 struct worklist *wk, *wkn; 6577 struct inodedep *inodedep; 6578 struct jblkdep *jblkdep; 6579 struct allocdirect *adp, *adpn; 6580 struct ufsmount *ump; 6581 struct fs *fs; 6582 struct buf *bp; 6583 struct vnode *vp; 6584 struct mount *mp; 6585 ufs2_daddr_t extblocks, datablocks; 6586 ufs_lbn_t tmpval, lbn, lastlbn; 6587 int frags, lastoff, iboff, allocblock, needj, error, i; 6588 6589 ump = ITOUMP(ip); 6590 mp = UFSTOVFS(ump); 6591 fs = ump->um_fs; 6592 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 6593 ("softdep_journal_freeblocks called on non-softdep filesystem")); 6594 vp = ITOV(ip); 6595 needj = 1; 6596 iboff = -1; 6597 allocblock = 0; 6598 extblocks = 0; 6599 datablocks = 0; 6600 frags = 0; 6601 freeblks = newfreeblks(mp, ip); 6602 ACQUIRE_LOCK(ump); 6603 /* 6604 * If we're truncating a removed file that will never be written 6605 * we don't need to journal the block frees. The canceled journals 6606 * for the allocations will suffice. 6607 */ 6608 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 6609 if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED && 6610 length == 0) 6611 needj = 0; 6612 CTR3(KTR_SUJ, "softdep_journal_freeblks: ip %d length %ld needj %d", 6613 ip->i_number, length, needj); 6614 FREE_LOCK(ump); 6615 /* 6616 * Calculate the lbn that we are truncating to. This results in -1 6617 * if we're truncating the 0 bytes. So it is the last lbn we want 6618 * to keep, not the first lbn we want to truncate. 6619 */ 6620 lastlbn = lblkno(fs, length + fs->fs_bsize - 1) - 1; 6621 lastoff = blkoff(fs, length); 6622 /* 6623 * Compute frags we are keeping in lastlbn. 0 means all. 6624 */ 6625 if (lastlbn >= 0 && lastlbn < UFS_NDADDR) { 6626 frags = fragroundup(fs, lastoff); 6627 /* adp offset of last valid allocdirect. */ 6628 iboff = lastlbn; 6629 } else if (lastlbn > 0) 6630 iboff = UFS_NDADDR; 6631 if (fs->fs_magic == FS_UFS2_MAGIC) 6632 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 6633 /* 6634 * Handle normal data blocks and indirects. This section saves 6635 * values used after the inode update to complete frag and indirect 6636 * truncation. 6637 */ 6638 if ((flags & IO_NORMAL) != 0) { 6639 /* 6640 * Handle truncation of whole direct and indirect blocks. 6641 */ 6642 for (i = iboff + 1; i < UFS_NDADDR; i++) 6643 setup_freedirect(freeblks, ip, i, needj); 6644 for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR; 6645 i < UFS_NIADDR; 6646 i++, lbn += tmpval, tmpval *= NINDIR(fs)) { 6647 /* Release a whole indirect tree. */ 6648 if (lbn > lastlbn) { 6649 setup_freeindir(freeblks, ip, i, -lbn -i, 6650 needj); 6651 continue; 6652 } 6653 iboff = i + UFS_NDADDR; 6654 /* 6655 * Traverse partially truncated indirect tree. 6656 */ 6657 if (lbn <= lastlbn && lbn + tmpval - 1 > lastlbn) 6658 setup_trunc_indir(freeblks, ip, -lbn - i, 6659 lastlbn, DIP(ip, i_ib[i])); 6660 } 6661 /* 6662 * Handle partial truncation to a frag boundary. 6663 */ 6664 if (frags) { 6665 ufs2_daddr_t blkno; 6666 long oldfrags; 6667 6668 oldfrags = blksize(fs, ip, lastlbn); 6669 blkno = DIP(ip, i_db[lastlbn]); 6670 if (blkno && oldfrags != frags) { 6671 oldfrags -= frags; 6672 oldfrags = numfrags(fs, oldfrags); 6673 blkno += numfrags(fs, frags); 6674 newfreework(ump, freeblks, NULL, lastlbn, 6675 blkno, oldfrags, 0, needj); 6676 if (needj) 6677 adjust_newfreework(freeblks, 6678 numfrags(fs, frags)); 6679 } else if (blkno == 0) 6680 allocblock = 1; 6681 } 6682 /* 6683 * Add a journal record for partial truncate if we are 6684 * handling indirect blocks. Non-indirects need no extra 6685 * journaling. 6686 */ 6687 if (length != 0 && lastlbn >= UFS_NDADDR) { 6688 UFS_INODE_SET_FLAG(ip, IN_TRUNCATED); 6689 newjtrunc(freeblks, length, 0); 6690 } 6691 ip->i_size = length; 6692 DIP_SET(ip, i_size, ip->i_size); 6693 datablocks = DIP(ip, i_blocks) - extblocks; 6694 if (length != 0) 6695 datablocks = blkcount(fs, datablocks, length); 6696 freeblks->fb_len = length; 6697 } 6698 if ((flags & IO_EXT) != 0) { 6699 for (i = 0; i < UFS_NXADDR; i++) 6700 setup_freeext(freeblks, ip, i, needj); 6701 ip->i_din2->di_extsize = 0; 6702 datablocks += extblocks; 6703 } 6704 #ifdef QUOTA 6705 /* Reference the quotas in case the block count is wrong in the end. */ 6706 quotaref(vp, freeblks->fb_quota); 6707 (void) chkdq(ip, -datablocks, NOCRED, FORCE); 6708 #endif 6709 freeblks->fb_chkcnt = -datablocks; 6710 UFS_LOCK(ump); 6711 fs->fs_pendingblocks += datablocks; 6712 UFS_UNLOCK(ump); 6713 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks); 6714 /* 6715 * Handle truncation of incomplete alloc direct dependencies. We 6716 * hold the inode block locked to prevent incomplete dependencies 6717 * from reaching the disk while we are eliminating those that 6718 * have been truncated. This is a partially inlined ffs_update(). 6719 */ 6720 ufs_itimes(vp); 6721 ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED); 6722 error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 6723 (int)fs->fs_bsize, cred, &bp); 6724 if (error) { 6725 softdep_error("softdep_journal_freeblocks", error); 6726 return; 6727 } 6728 if (bp->b_bufsize == fs->fs_bsize) 6729 bp->b_flags |= B_CLUSTEROK; 6730 softdep_update_inodeblock(ip, bp, 0); 6731 if (ump->um_fstype == UFS1) { 6732 *((struct ufs1_dinode *)bp->b_data + 6733 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1; 6734 } else { 6735 ffs_update_dinode_ckhash(fs, ip->i_din2); 6736 *((struct ufs2_dinode *)bp->b_data + 6737 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2; 6738 } 6739 ACQUIRE_LOCK(ump); 6740 (void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 6741 if ((inodedep->id_state & IOSTARTED) != 0) 6742 panic("softdep_setup_freeblocks: inode busy"); 6743 /* 6744 * Add the freeblks structure to the list of operations that 6745 * must await the zero'ed inode being written to disk. If we 6746 * still have a bitmap dependency (needj), then the inode 6747 * has never been written to disk, so we can process the 6748 * freeblks below once we have deleted the dependencies. 6749 */ 6750 if (needj) 6751 WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list); 6752 else 6753 freeblks->fb_state |= COMPLETE; 6754 if ((flags & IO_NORMAL) != 0) { 6755 TAILQ_FOREACH_SAFE(adp, &inodedep->id_inoupdt, ad_next, adpn) { 6756 if (adp->ad_offset > iboff) 6757 cancel_allocdirect(&inodedep->id_inoupdt, adp, 6758 freeblks); 6759 /* 6760 * Truncate the allocdirect. We could eliminate 6761 * or modify journal records as well. 6762 */ 6763 else if (adp->ad_offset == iboff && frags) 6764 adp->ad_newsize = frags; 6765 } 6766 } 6767 if ((flags & IO_EXT) != 0) 6768 while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 6769 cancel_allocdirect(&inodedep->id_extupdt, adp, 6770 freeblks); 6771 /* 6772 * Scan the bufwait list for newblock dependencies that will never 6773 * make it to disk. 6774 */ 6775 LIST_FOREACH_SAFE(wk, &inodedep->id_bufwait, wk_list, wkn) { 6776 if (wk->wk_type != D_ALLOCDIRECT) 6777 continue; 6778 adp = WK_ALLOCDIRECT(wk); 6779 if (((flags & IO_NORMAL) != 0 && (adp->ad_offset > iboff)) || 6780 ((flags & IO_EXT) != 0 && (adp->ad_state & EXTDATA))) { 6781 cancel_jfreeblk(freeblks, adp->ad_newblkno); 6782 cancel_newblk(WK_NEWBLK(wk), NULL, &freeblks->fb_jwork); 6783 WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk); 6784 } 6785 } 6786 /* 6787 * Add journal work. 6788 */ 6789 LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) 6790 add_to_journal(&jblkdep->jb_list); 6791 FREE_LOCK(ump); 6792 bdwrite(bp); 6793 /* 6794 * Truncate dependency structures beyond length. 6795 */ 6796 trunc_dependencies(ip, freeblks, lastlbn, frags, flags); 6797 /* 6798 * This is only set when we need to allocate a fragment because 6799 * none existed at the end of a frag-sized file. It handles only 6800 * allocating a new, zero filled block. 6801 */ 6802 if (allocblock) { 6803 ip->i_size = length - lastoff; 6804 DIP_SET(ip, i_size, ip->i_size); 6805 error = UFS_BALLOC(vp, length - 1, 1, cred, BA_CLRBUF, &bp); 6806 if (error != 0) { 6807 softdep_error("softdep_journal_freeblks", error); 6808 return; 6809 } 6810 ip->i_size = length; 6811 DIP_SET(ip, i_size, length); 6812 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE); 6813 allocbuf(bp, frags); 6814 ffs_update(vp, 0); 6815 bawrite(bp); 6816 } else if (lastoff != 0 && vp->v_type != VDIR) { 6817 int size; 6818 6819 /* 6820 * Zero the end of a truncated frag or block. 6821 */ 6822 size = sblksize(fs, length, lastlbn); 6823 error = bread(vp, lastlbn, size, cred, &bp); 6824 if (error) { 6825 softdep_error("softdep_journal_freeblks", error); 6826 return; 6827 } 6828 bzero((char *)bp->b_data + lastoff, size - lastoff); 6829 bawrite(bp); 6830 6831 } 6832 ACQUIRE_LOCK(ump); 6833 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 6834 TAILQ_INSERT_TAIL(&inodedep->id_freeblklst, freeblks, fb_next); 6835 freeblks->fb_state |= DEPCOMPLETE | ONDEPLIST; 6836 /* 6837 * We zero earlier truncations so they don't erroneously 6838 * update i_blocks. 6839 */ 6840 if (freeblks->fb_len == 0 && (flags & IO_NORMAL) != 0) 6841 TAILQ_FOREACH(fbn, &inodedep->id_freeblklst, fb_next) 6842 fbn->fb_len = 0; 6843 if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE && 6844 LIST_EMPTY(&freeblks->fb_jblkdephd)) 6845 freeblks->fb_state |= INPROGRESS; 6846 else 6847 freeblks = NULL; 6848 FREE_LOCK(ump); 6849 if (freeblks) 6850 handle_workitem_freeblocks(freeblks, 0); 6851 trunc_pages(ip, length, extblocks, flags); 6852 6853 } 6854 6855 /* 6856 * Flush a JOP_SYNC to the journal. 6857 */ 6858 void 6859 softdep_journal_fsync(ip) 6860 struct inode *ip; 6861 { 6862 struct jfsync *jfsync; 6863 struct ufsmount *ump; 6864 6865 ump = ITOUMP(ip); 6866 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 6867 ("softdep_journal_fsync called on non-softdep filesystem")); 6868 if ((ip->i_flag & IN_TRUNCATED) == 0) 6869 return; 6870 ip->i_flag &= ~IN_TRUNCATED; 6871 jfsync = malloc(sizeof(*jfsync), M_JFSYNC, M_SOFTDEP_FLAGS | M_ZERO); 6872 workitem_alloc(&jfsync->jfs_list, D_JFSYNC, UFSTOVFS(ump)); 6873 jfsync->jfs_size = ip->i_size; 6874 jfsync->jfs_ino = ip->i_number; 6875 ACQUIRE_LOCK(ump); 6876 add_to_journal(&jfsync->jfs_list); 6877 jwait(&jfsync->jfs_list, MNT_WAIT); 6878 FREE_LOCK(ump); 6879 } 6880 6881 /* 6882 * Block de-allocation dependencies. 6883 * 6884 * When blocks are de-allocated, the on-disk pointers must be nullified before 6885 * the blocks are made available for use by other files. (The true 6886 * requirement is that old pointers must be nullified before new on-disk 6887 * pointers are set. We chose this slightly more stringent requirement to 6888 * reduce complexity.) Our implementation handles this dependency by updating 6889 * the inode (or indirect block) appropriately but delaying the actual block 6890 * de-allocation (i.e., freemap and free space count manipulation) until 6891 * after the updated versions reach stable storage. After the disk is 6892 * updated, the blocks can be safely de-allocated whenever it is convenient. 6893 * This implementation handles only the common case of reducing a file's 6894 * length to zero. Other cases are handled by the conventional synchronous 6895 * write approach. 6896 * 6897 * The ffs implementation with which we worked double-checks 6898 * the state of the block pointers and file size as it reduces 6899 * a file's length. Some of this code is replicated here in our 6900 * soft updates implementation. The freeblks->fb_chkcnt field is 6901 * used to transfer a part of this information to the procedure 6902 * that eventually de-allocates the blocks. 6903 * 6904 * This routine should be called from the routine that shortens 6905 * a file's length, before the inode's size or block pointers 6906 * are modified. It will save the block pointer information for 6907 * later release and zero the inode so that the calling routine 6908 * can release it. 6909 */ 6910 void 6911 softdep_setup_freeblocks(ip, length, flags) 6912 struct inode *ip; /* The inode whose length is to be reduced */ 6913 off_t length; /* The new length for the file */ 6914 int flags; /* IO_EXT and/or IO_NORMAL */ 6915 { 6916 struct ufs1_dinode *dp1; 6917 struct ufs2_dinode *dp2; 6918 struct freeblks *freeblks; 6919 struct inodedep *inodedep; 6920 struct allocdirect *adp; 6921 struct ufsmount *ump; 6922 struct buf *bp; 6923 struct fs *fs; 6924 ufs2_daddr_t extblocks, datablocks; 6925 struct mount *mp; 6926 int i, delay, error; 6927 ufs_lbn_t tmpval; 6928 ufs_lbn_t lbn; 6929 6930 ump = ITOUMP(ip); 6931 mp = UFSTOVFS(ump); 6932 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 6933 ("softdep_setup_freeblocks called on non-softdep filesystem")); 6934 CTR2(KTR_SUJ, "softdep_setup_freeblks: ip %d length %ld", 6935 ip->i_number, length); 6936 KASSERT(length == 0, ("softdep_setup_freeblocks: non-zero length")); 6937 fs = ump->um_fs; 6938 if ((error = bread(ump->um_devvp, 6939 fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 6940 (int)fs->fs_bsize, NOCRED, &bp)) != 0) { 6941 brelse(bp); 6942 softdep_error("softdep_setup_freeblocks", error); 6943 return; 6944 } 6945 freeblks = newfreeblks(mp, ip); 6946 extblocks = 0; 6947 datablocks = 0; 6948 if (fs->fs_magic == FS_UFS2_MAGIC) 6949 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 6950 if ((flags & IO_NORMAL) != 0) { 6951 for (i = 0; i < UFS_NDADDR; i++) 6952 setup_freedirect(freeblks, ip, i, 0); 6953 for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR; 6954 i < UFS_NIADDR; 6955 i++, lbn += tmpval, tmpval *= NINDIR(fs)) 6956 setup_freeindir(freeblks, ip, i, -lbn -i, 0); 6957 ip->i_size = 0; 6958 DIP_SET(ip, i_size, 0); 6959 datablocks = DIP(ip, i_blocks) - extblocks; 6960 } 6961 if ((flags & IO_EXT) != 0) { 6962 for (i = 0; i < UFS_NXADDR; i++) 6963 setup_freeext(freeblks, ip, i, 0); 6964 ip->i_din2->di_extsize = 0; 6965 datablocks += extblocks; 6966 } 6967 #ifdef QUOTA 6968 /* Reference the quotas in case the block count is wrong in the end. */ 6969 quotaref(ITOV(ip), freeblks->fb_quota); 6970 (void) chkdq(ip, -datablocks, NOCRED, FORCE); 6971 #endif 6972 freeblks->fb_chkcnt = -datablocks; 6973 UFS_LOCK(ump); 6974 fs->fs_pendingblocks += datablocks; 6975 UFS_UNLOCK(ump); 6976 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks); 6977 /* 6978 * Push the zero'ed inode to its disk buffer so that we are free 6979 * to delete its dependencies below. Once the dependencies are gone 6980 * the buffer can be safely released. 6981 */ 6982 if (ump->um_fstype == UFS1) { 6983 dp1 = ((struct ufs1_dinode *)bp->b_data + 6984 ino_to_fsbo(fs, ip->i_number)); 6985 ip->i_din1->di_freelink = dp1->di_freelink; 6986 *dp1 = *ip->i_din1; 6987 } else { 6988 dp2 = ((struct ufs2_dinode *)bp->b_data + 6989 ino_to_fsbo(fs, ip->i_number)); 6990 ip->i_din2->di_freelink = dp2->di_freelink; 6991 ffs_update_dinode_ckhash(fs, ip->i_din2); 6992 *dp2 = *ip->i_din2; 6993 } 6994 /* 6995 * Find and eliminate any inode dependencies. 6996 */ 6997 ACQUIRE_LOCK(ump); 6998 (void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 6999 if ((inodedep->id_state & IOSTARTED) != 0) 7000 panic("softdep_setup_freeblocks: inode busy"); 7001 /* 7002 * Add the freeblks structure to the list of operations that 7003 * must await the zero'ed inode being written to disk. If we 7004 * still have a bitmap dependency (delay == 0), then the inode 7005 * has never been written to disk, so we can process the 7006 * freeblks below once we have deleted the dependencies. 7007 */ 7008 delay = (inodedep->id_state & DEPCOMPLETE); 7009 if (delay) 7010 WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list); 7011 else 7012 freeblks->fb_state |= COMPLETE; 7013 /* 7014 * Because the file length has been truncated to zero, any 7015 * pending block allocation dependency structures associated 7016 * with this inode are obsolete and can simply be de-allocated. 7017 * We must first merge the two dependency lists to get rid of 7018 * any duplicate freefrag structures, then purge the merged list. 7019 * If we still have a bitmap dependency, then the inode has never 7020 * been written to disk, so we can free any fragments without delay. 7021 */ 7022 if (flags & IO_NORMAL) { 7023 merge_inode_lists(&inodedep->id_newinoupdt, 7024 &inodedep->id_inoupdt); 7025 while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL) 7026 cancel_allocdirect(&inodedep->id_inoupdt, adp, 7027 freeblks); 7028 } 7029 if (flags & IO_EXT) { 7030 merge_inode_lists(&inodedep->id_newextupdt, 7031 &inodedep->id_extupdt); 7032 while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 7033 cancel_allocdirect(&inodedep->id_extupdt, adp, 7034 freeblks); 7035 } 7036 FREE_LOCK(ump); 7037 bdwrite(bp); 7038 trunc_dependencies(ip, freeblks, -1, 0, flags); 7039 ACQUIRE_LOCK(ump); 7040 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) 7041 (void) free_inodedep(inodedep); 7042 freeblks->fb_state |= DEPCOMPLETE; 7043 /* 7044 * If the inode with zeroed block pointers is now on disk 7045 * we can start freeing blocks. 7046 */ 7047 if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE) 7048 freeblks->fb_state |= INPROGRESS; 7049 else 7050 freeblks = NULL; 7051 FREE_LOCK(ump); 7052 if (freeblks) 7053 handle_workitem_freeblocks(freeblks, 0); 7054 trunc_pages(ip, length, extblocks, flags); 7055 } 7056 7057 /* 7058 * Eliminate pages from the page cache that back parts of this inode and 7059 * adjust the vnode pager's idea of our size. This prevents stale data 7060 * from hanging around in the page cache. 7061 */ 7062 static void 7063 trunc_pages(ip, length, extblocks, flags) 7064 struct inode *ip; 7065 off_t length; 7066 ufs2_daddr_t extblocks; 7067 int flags; 7068 { 7069 struct vnode *vp; 7070 struct fs *fs; 7071 ufs_lbn_t lbn; 7072 off_t end, extend; 7073 7074 vp = ITOV(ip); 7075 fs = ITOFS(ip); 7076 extend = OFF_TO_IDX(lblktosize(fs, -extblocks)); 7077 if ((flags & IO_EXT) != 0) 7078 vn_pages_remove(vp, extend, 0); 7079 if ((flags & IO_NORMAL) == 0) 7080 return; 7081 BO_LOCK(&vp->v_bufobj); 7082 drain_output(vp); 7083 BO_UNLOCK(&vp->v_bufobj); 7084 /* 7085 * The vnode pager eliminates file pages we eliminate indirects 7086 * below. 7087 */ 7088 vnode_pager_setsize(vp, length); 7089 /* 7090 * Calculate the end based on the last indirect we want to keep. If 7091 * the block extends into indirects we can just use the negative of 7092 * its lbn. Doubles and triples exist at lower numbers so we must 7093 * be careful not to remove those, if they exist. double and triple 7094 * indirect lbns do not overlap with others so it is not important 7095 * to verify how many levels are required. 7096 */ 7097 lbn = lblkno(fs, length); 7098 if (lbn >= UFS_NDADDR) { 7099 /* Calculate the virtual lbn of the triple indirect. */ 7100 lbn = -lbn - (UFS_NIADDR - 1); 7101 end = OFF_TO_IDX(lblktosize(fs, lbn)); 7102 } else 7103 end = extend; 7104 vn_pages_remove(vp, OFF_TO_IDX(OFF_MAX), end); 7105 } 7106 7107 /* 7108 * See if the buf bp is in the range eliminated by truncation. 7109 */ 7110 static int 7111 trunc_check_buf(bp, blkoffp, lastlbn, lastoff, flags) 7112 struct buf *bp; 7113 int *blkoffp; 7114 ufs_lbn_t lastlbn; 7115 int lastoff; 7116 int flags; 7117 { 7118 ufs_lbn_t lbn; 7119 7120 *blkoffp = 0; 7121 /* Only match ext/normal blocks as appropriate. */ 7122 if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) || 7123 ((flags & IO_NORMAL) == 0 && (bp->b_xflags & BX_ALTDATA) == 0)) 7124 return (0); 7125 /* ALTDATA is always a full truncation. */ 7126 if ((bp->b_xflags & BX_ALTDATA) != 0) 7127 return (1); 7128 /* -1 is full truncation. */ 7129 if (lastlbn == -1) 7130 return (1); 7131 /* 7132 * If this is a partial truncate we only want those 7133 * blocks and indirect blocks that cover the range 7134 * we're after. 7135 */ 7136 lbn = bp->b_lblkno; 7137 if (lbn < 0) 7138 lbn = -(lbn + lbn_level(lbn)); 7139 if (lbn < lastlbn) 7140 return (0); 7141 /* Here we only truncate lblkno if it's partial. */ 7142 if (lbn == lastlbn) { 7143 if (lastoff == 0) 7144 return (0); 7145 *blkoffp = lastoff; 7146 } 7147 return (1); 7148 } 7149 7150 /* 7151 * Eliminate any dependencies that exist in memory beyond lblkno:off 7152 */ 7153 static void 7154 trunc_dependencies(ip, freeblks, lastlbn, lastoff, flags) 7155 struct inode *ip; 7156 struct freeblks *freeblks; 7157 ufs_lbn_t lastlbn; 7158 int lastoff; 7159 int flags; 7160 { 7161 struct bufobj *bo; 7162 struct vnode *vp; 7163 struct buf *bp; 7164 int blkoff; 7165 7166 /* 7167 * We must wait for any I/O in progress to finish so that 7168 * all potential buffers on the dirty list will be visible. 7169 * Once they are all there, walk the list and get rid of 7170 * any dependencies. 7171 */ 7172 vp = ITOV(ip); 7173 bo = &vp->v_bufobj; 7174 BO_LOCK(bo); 7175 drain_output(vp); 7176 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) 7177 bp->b_vflags &= ~BV_SCANNED; 7178 restart: 7179 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) { 7180 if (bp->b_vflags & BV_SCANNED) 7181 continue; 7182 if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) { 7183 bp->b_vflags |= BV_SCANNED; 7184 continue; 7185 } 7186 KASSERT(bp->b_bufobj == bo, ("Wrong object in buffer")); 7187 if ((bp = getdirtybuf(bp, BO_LOCKPTR(bo), MNT_WAIT)) == NULL) 7188 goto restart; 7189 BO_UNLOCK(bo); 7190 if (deallocate_dependencies(bp, freeblks, blkoff)) 7191 bqrelse(bp); 7192 else 7193 brelse(bp); 7194 BO_LOCK(bo); 7195 goto restart; 7196 } 7197 /* 7198 * Now do the work of vtruncbuf while also matching indirect blocks. 7199 */ 7200 TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) 7201 bp->b_vflags &= ~BV_SCANNED; 7202 cleanrestart: 7203 TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) { 7204 if (bp->b_vflags & BV_SCANNED) 7205 continue; 7206 if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) { 7207 bp->b_vflags |= BV_SCANNED; 7208 continue; 7209 } 7210 if (BUF_LOCK(bp, 7211 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 7212 BO_LOCKPTR(bo)) == ENOLCK) { 7213 BO_LOCK(bo); 7214 goto cleanrestart; 7215 } 7216 bp->b_vflags |= BV_SCANNED; 7217 bremfree(bp); 7218 if (blkoff != 0) { 7219 allocbuf(bp, blkoff); 7220 bqrelse(bp); 7221 } else { 7222 bp->b_flags |= B_INVAL | B_NOCACHE | B_RELBUF; 7223 brelse(bp); 7224 } 7225 BO_LOCK(bo); 7226 goto cleanrestart; 7227 } 7228 drain_output(vp); 7229 BO_UNLOCK(bo); 7230 } 7231 7232 static int 7233 cancel_pagedep(pagedep, freeblks, blkoff) 7234 struct pagedep *pagedep; 7235 struct freeblks *freeblks; 7236 int blkoff; 7237 { 7238 struct jremref *jremref; 7239 struct jmvref *jmvref; 7240 struct dirrem *dirrem, *tmp; 7241 int i; 7242 7243 /* 7244 * Copy any directory remove dependencies to the list 7245 * to be processed after the freeblks proceeds. If 7246 * directory entry never made it to disk they 7247 * can be dumped directly onto the work list. 7248 */ 7249 LIST_FOREACH_SAFE(dirrem, &pagedep->pd_dirremhd, dm_next, tmp) { 7250 /* Skip this directory removal if it is intended to remain. */ 7251 if (dirrem->dm_offset < blkoff) 7252 continue; 7253 /* 7254 * If there are any dirrems we wait for the journal write 7255 * to complete and then restart the buf scan as the lock 7256 * has been dropped. 7257 */ 7258 while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) { 7259 jwait(&jremref->jr_list, MNT_WAIT); 7260 return (ERESTART); 7261 } 7262 LIST_REMOVE(dirrem, dm_next); 7263 dirrem->dm_dirinum = pagedep->pd_ino; 7264 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &dirrem->dm_list); 7265 } 7266 while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) { 7267 jwait(&jmvref->jm_list, MNT_WAIT); 7268 return (ERESTART); 7269 } 7270 /* 7271 * When we're partially truncating a pagedep we just want to flush 7272 * journal entries and return. There can not be any adds in the 7273 * truncated portion of the directory and newblk must remain if 7274 * part of the block remains. 7275 */ 7276 if (blkoff != 0) { 7277 struct diradd *dap; 7278 7279 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) 7280 if (dap->da_offset > blkoff) 7281 panic("cancel_pagedep: diradd %p off %d > %d", 7282 dap, dap->da_offset, blkoff); 7283 for (i = 0; i < DAHASHSZ; i++) 7284 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) 7285 if (dap->da_offset > blkoff) 7286 panic("cancel_pagedep: diradd %p off %d > %d", 7287 dap, dap->da_offset, blkoff); 7288 return (0); 7289 } 7290 /* 7291 * There should be no directory add dependencies present 7292 * as the directory could not be truncated until all 7293 * children were removed. 7294 */ 7295 KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL, 7296 ("deallocate_dependencies: pendinghd != NULL")); 7297 for (i = 0; i < DAHASHSZ; i++) 7298 KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL, 7299 ("deallocate_dependencies: diraddhd != NULL")); 7300 if ((pagedep->pd_state & NEWBLOCK) != 0) 7301 free_newdirblk(pagedep->pd_newdirblk); 7302 if (free_pagedep(pagedep) == 0) 7303 panic("Failed to free pagedep %p", pagedep); 7304 return (0); 7305 } 7306 7307 /* 7308 * Reclaim any dependency structures from a buffer that is about to 7309 * be reallocated to a new vnode. The buffer must be locked, thus, 7310 * no I/O completion operations can occur while we are manipulating 7311 * its associated dependencies. The mutex is held so that other I/O's 7312 * associated with related dependencies do not occur. 7313 */ 7314 static int 7315 deallocate_dependencies(bp, freeblks, off) 7316 struct buf *bp; 7317 struct freeblks *freeblks; 7318 int off; 7319 { 7320 struct indirdep *indirdep; 7321 struct pagedep *pagedep; 7322 struct worklist *wk, *wkn; 7323 struct ufsmount *ump; 7324 7325 ump = softdep_bp_to_mp(bp); 7326 if (ump == NULL) 7327 goto done; 7328 ACQUIRE_LOCK(ump); 7329 LIST_FOREACH_SAFE(wk, &bp->b_dep, wk_list, wkn) { 7330 switch (wk->wk_type) { 7331 case D_INDIRDEP: 7332 indirdep = WK_INDIRDEP(wk); 7333 if (bp->b_lblkno >= 0 || 7334 bp->b_blkno != indirdep->ir_savebp->b_lblkno) 7335 panic("deallocate_dependencies: not indir"); 7336 cancel_indirdep(indirdep, bp, freeblks); 7337 continue; 7338 7339 case D_PAGEDEP: 7340 pagedep = WK_PAGEDEP(wk); 7341 if (cancel_pagedep(pagedep, freeblks, off)) { 7342 FREE_LOCK(ump); 7343 return (ERESTART); 7344 } 7345 continue; 7346 7347 case D_ALLOCINDIR: 7348 /* 7349 * Simply remove the allocindir, we'll find it via 7350 * the indirdep where we can clear pointers if 7351 * needed. 7352 */ 7353 WORKLIST_REMOVE(wk); 7354 continue; 7355 7356 case D_FREEWORK: 7357 /* 7358 * A truncation is waiting for the zero'd pointers 7359 * to be written. It can be freed when the freeblks 7360 * is journaled. 7361 */ 7362 WORKLIST_REMOVE(wk); 7363 wk->wk_state |= ONDEPLIST; 7364 WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk); 7365 break; 7366 7367 case D_ALLOCDIRECT: 7368 if (off != 0) 7369 continue; 7370 /* FALLTHROUGH */ 7371 default: 7372 panic("deallocate_dependencies: Unexpected type %s", 7373 TYPENAME(wk->wk_type)); 7374 /* NOTREACHED */ 7375 } 7376 } 7377 FREE_LOCK(ump); 7378 done: 7379 /* 7380 * Don't throw away this buf, we were partially truncating and 7381 * some deps may always remain. 7382 */ 7383 if (off) { 7384 allocbuf(bp, off); 7385 bp->b_vflags |= BV_SCANNED; 7386 return (EBUSY); 7387 } 7388 bp->b_flags |= B_INVAL | B_NOCACHE; 7389 7390 return (0); 7391 } 7392 7393 /* 7394 * An allocdirect is being canceled due to a truncate. We must make sure 7395 * the journal entry is released in concert with the blkfree that releases 7396 * the storage. Completed journal entries must not be released until the 7397 * space is no longer pointed to by the inode or in the bitmap. 7398 */ 7399 static void 7400 cancel_allocdirect(adphead, adp, freeblks) 7401 struct allocdirectlst *adphead; 7402 struct allocdirect *adp; 7403 struct freeblks *freeblks; 7404 { 7405 struct freework *freework; 7406 struct newblk *newblk; 7407 struct worklist *wk; 7408 7409 TAILQ_REMOVE(adphead, adp, ad_next); 7410 newblk = (struct newblk *)adp; 7411 freework = NULL; 7412 /* 7413 * Find the correct freework structure. 7414 */ 7415 LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) { 7416 if (wk->wk_type != D_FREEWORK) 7417 continue; 7418 freework = WK_FREEWORK(wk); 7419 if (freework->fw_blkno == newblk->nb_newblkno) 7420 break; 7421 } 7422 if (freework == NULL) 7423 panic("cancel_allocdirect: Freework not found"); 7424 /* 7425 * If a newblk exists at all we still have the journal entry that 7426 * initiated the allocation so we do not need to journal the free. 7427 */ 7428 cancel_jfreeblk(freeblks, freework->fw_blkno); 7429 /* 7430 * If the journal hasn't been written the jnewblk must be passed 7431 * to the call to ffs_blkfree that reclaims the space. We accomplish 7432 * this by linking the journal dependency into the freework to be 7433 * freed when freework_freeblock() is called. If the journal has 7434 * been written we can simply reclaim the journal space when the 7435 * freeblks work is complete. 7436 */ 7437 freework->fw_jnewblk = cancel_newblk(newblk, &freework->fw_list, 7438 &freeblks->fb_jwork); 7439 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list); 7440 } 7441 7442 7443 /* 7444 * Cancel a new block allocation. May be an indirect or direct block. We 7445 * remove it from various lists and return any journal record that needs to 7446 * be resolved by the caller. 7447 * 7448 * A special consideration is made for indirects which were never pointed 7449 * at on disk and will never be found once this block is released. 7450 */ 7451 static struct jnewblk * 7452 cancel_newblk(newblk, wk, wkhd) 7453 struct newblk *newblk; 7454 struct worklist *wk; 7455 struct workhead *wkhd; 7456 { 7457 struct jnewblk *jnewblk; 7458 7459 CTR1(KTR_SUJ, "cancel_newblk: blkno %jd", newblk->nb_newblkno); 7460 7461 newblk->nb_state |= GOINGAWAY; 7462 /* 7463 * Previously we traversed the completedhd on each indirdep 7464 * attached to this newblk to cancel them and gather journal 7465 * work. Since we need only the oldest journal segment and 7466 * the lowest point on the tree will always have the oldest 7467 * journal segment we are free to release the segments 7468 * of any subordinates and may leave the indirdep list to 7469 * indirdep_complete() when this newblk is freed. 7470 */ 7471 if (newblk->nb_state & ONDEPLIST) { 7472 newblk->nb_state &= ~ONDEPLIST; 7473 LIST_REMOVE(newblk, nb_deps); 7474 } 7475 if (newblk->nb_state & ONWORKLIST) 7476 WORKLIST_REMOVE(&newblk->nb_list); 7477 /* 7478 * If the journal entry hasn't been written we save a pointer to 7479 * the dependency that frees it until it is written or the 7480 * superseding operation completes. 7481 */ 7482 jnewblk = newblk->nb_jnewblk; 7483 if (jnewblk != NULL && wk != NULL) { 7484 newblk->nb_jnewblk = NULL; 7485 jnewblk->jn_dep = wk; 7486 } 7487 if (!LIST_EMPTY(&newblk->nb_jwork)) 7488 jwork_move(wkhd, &newblk->nb_jwork); 7489 /* 7490 * When truncating we must free the newdirblk early to remove 7491 * the pagedep from the hash before returning. 7492 */ 7493 if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL) 7494 free_newdirblk(WK_NEWDIRBLK(wk)); 7495 if (!LIST_EMPTY(&newblk->nb_newdirblk)) 7496 panic("cancel_newblk: extra newdirblk"); 7497 7498 return (jnewblk); 7499 } 7500 7501 /* 7502 * Schedule the freefrag associated with a newblk to be released once 7503 * the pointers are written and the previous block is no longer needed. 7504 */ 7505 static void 7506 newblk_freefrag(newblk) 7507 struct newblk *newblk; 7508 { 7509 struct freefrag *freefrag; 7510 7511 if (newblk->nb_freefrag == NULL) 7512 return; 7513 freefrag = newblk->nb_freefrag; 7514 newblk->nb_freefrag = NULL; 7515 freefrag->ff_state |= COMPLETE; 7516 if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE) 7517 add_to_worklist(&freefrag->ff_list, 0); 7518 } 7519 7520 /* 7521 * Free a newblk. Generate a new freefrag work request if appropriate. 7522 * This must be called after the inode pointer and any direct block pointers 7523 * are valid or fully removed via truncate or frag extension. 7524 */ 7525 static void 7526 free_newblk(newblk) 7527 struct newblk *newblk; 7528 { 7529 struct indirdep *indirdep; 7530 struct worklist *wk; 7531 7532 KASSERT(newblk->nb_jnewblk == NULL, 7533 ("free_newblk: jnewblk %p still attached", newblk->nb_jnewblk)); 7534 KASSERT(newblk->nb_list.wk_type != D_NEWBLK, 7535 ("free_newblk: unclaimed newblk")); 7536 LOCK_OWNED(VFSTOUFS(newblk->nb_list.wk_mp)); 7537 newblk_freefrag(newblk); 7538 if (newblk->nb_state & ONDEPLIST) 7539 LIST_REMOVE(newblk, nb_deps); 7540 if (newblk->nb_state & ONWORKLIST) 7541 WORKLIST_REMOVE(&newblk->nb_list); 7542 LIST_REMOVE(newblk, nb_hash); 7543 if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL) 7544 free_newdirblk(WK_NEWDIRBLK(wk)); 7545 if (!LIST_EMPTY(&newblk->nb_newdirblk)) 7546 panic("free_newblk: extra newdirblk"); 7547 while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL) 7548 indirdep_complete(indirdep); 7549 handle_jwork(&newblk->nb_jwork); 7550 WORKITEM_FREE(newblk, D_NEWBLK); 7551 } 7552 7553 /* 7554 * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep. 7555 */ 7556 static void 7557 free_newdirblk(newdirblk) 7558 struct newdirblk *newdirblk; 7559 { 7560 struct pagedep *pagedep; 7561 struct diradd *dap; 7562 struct worklist *wk; 7563 7564 LOCK_OWNED(VFSTOUFS(newdirblk->db_list.wk_mp)); 7565 WORKLIST_REMOVE(&newdirblk->db_list); 7566 /* 7567 * If the pagedep is still linked onto the directory buffer 7568 * dependency chain, then some of the entries on the 7569 * pd_pendinghd list may not be committed to disk yet. In 7570 * this case, we will simply clear the NEWBLOCK flag and 7571 * let the pd_pendinghd list be processed when the pagedep 7572 * is next written. If the pagedep is no longer on the buffer 7573 * dependency chain, then all the entries on the pd_pending 7574 * list are committed to disk and we can free them here. 7575 */ 7576 pagedep = newdirblk->db_pagedep; 7577 pagedep->pd_state &= ~NEWBLOCK; 7578 if ((pagedep->pd_state & ONWORKLIST) == 0) { 7579 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 7580 free_diradd(dap, NULL); 7581 /* 7582 * If no dependencies remain, the pagedep will be freed. 7583 */ 7584 free_pagedep(pagedep); 7585 } 7586 /* Should only ever be one item in the list. */ 7587 while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) { 7588 WORKLIST_REMOVE(wk); 7589 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); 7590 } 7591 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 7592 } 7593 7594 /* 7595 * Prepare an inode to be freed. The actual free operation is not 7596 * done until the zero'ed inode has been written to disk. 7597 */ 7598 void 7599 softdep_freefile(pvp, ino, mode) 7600 struct vnode *pvp; 7601 ino_t ino; 7602 int mode; 7603 { 7604 struct inode *ip = VTOI(pvp); 7605 struct inodedep *inodedep; 7606 struct freefile *freefile; 7607 struct freeblks *freeblks; 7608 struct ufsmount *ump; 7609 7610 ump = ITOUMP(ip); 7611 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 7612 ("softdep_freefile called on non-softdep filesystem")); 7613 /* 7614 * This sets up the inode de-allocation dependency. 7615 */ 7616 freefile = malloc(sizeof(struct freefile), 7617 M_FREEFILE, M_SOFTDEP_FLAGS); 7618 workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount); 7619 freefile->fx_mode = mode; 7620 freefile->fx_oldinum = ino; 7621 freefile->fx_devvp = ump->um_devvp; 7622 LIST_INIT(&freefile->fx_jwork); 7623 UFS_LOCK(ump); 7624 ump->um_fs->fs_pendinginodes += 1; 7625 UFS_UNLOCK(ump); 7626 7627 /* 7628 * If the inodedep does not exist, then the zero'ed inode has 7629 * been written to disk. If the allocated inode has never been 7630 * written to disk, then the on-disk inode is zero'ed. In either 7631 * case we can free the file immediately. If the journal was 7632 * canceled before being written the inode will never make it to 7633 * disk and we must send the canceled journal entrys to 7634 * ffs_freefile() to be cleared in conjunction with the bitmap. 7635 * Any blocks waiting on the inode to write can be safely freed 7636 * here as it will never been written. 7637 */ 7638 ACQUIRE_LOCK(ump); 7639 inodedep_lookup(pvp->v_mount, ino, 0, &inodedep); 7640 if (inodedep) { 7641 /* 7642 * Clear out freeblks that no longer need to reference 7643 * this inode. 7644 */ 7645 while ((freeblks = 7646 TAILQ_FIRST(&inodedep->id_freeblklst)) != NULL) { 7647 TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, 7648 fb_next); 7649 freeblks->fb_state &= ~ONDEPLIST; 7650 } 7651 /* 7652 * Remove this inode from the unlinked list. 7653 */ 7654 if (inodedep->id_state & UNLINKED) { 7655 /* 7656 * Save the journal work to be freed with the bitmap 7657 * before we clear UNLINKED. Otherwise it can be lost 7658 * if the inode block is written. 7659 */ 7660 handle_bufwait(inodedep, &freefile->fx_jwork); 7661 clear_unlinked_inodedep(inodedep); 7662 /* 7663 * Re-acquire inodedep as we've dropped the 7664 * per-filesystem lock in clear_unlinked_inodedep(). 7665 */ 7666 inodedep_lookup(pvp->v_mount, ino, 0, &inodedep); 7667 } 7668 } 7669 if (inodedep == NULL || check_inode_unwritten(inodedep)) { 7670 FREE_LOCK(ump); 7671 handle_workitem_freefile(freefile); 7672 return; 7673 } 7674 if ((inodedep->id_state & DEPCOMPLETE) == 0) 7675 inodedep->id_state |= GOINGAWAY; 7676 WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list); 7677 FREE_LOCK(ump); 7678 if (ip->i_number == ino) 7679 UFS_INODE_SET_FLAG(ip, IN_MODIFIED); 7680 } 7681 7682 /* 7683 * Check to see if an inode has never been written to disk. If 7684 * so free the inodedep and return success, otherwise return failure. 7685 * 7686 * If we still have a bitmap dependency, then the inode has never 7687 * been written to disk. Drop the dependency as it is no longer 7688 * necessary since the inode is being deallocated. We set the 7689 * ALLCOMPLETE flags since the bitmap now properly shows that the 7690 * inode is not allocated. Even if the inode is actively being 7691 * written, it has been rolled back to its zero'ed state, so we 7692 * are ensured that a zero inode is what is on the disk. For short 7693 * lived files, this change will usually result in removing all the 7694 * dependencies from the inode so that it can be freed immediately. 7695 */ 7696 static int 7697 check_inode_unwritten(inodedep) 7698 struct inodedep *inodedep; 7699 { 7700 7701 LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp)); 7702 7703 if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 || 7704 !LIST_EMPTY(&inodedep->id_dirremhd) || 7705 !LIST_EMPTY(&inodedep->id_pendinghd) || 7706 !LIST_EMPTY(&inodedep->id_bufwait) || 7707 !LIST_EMPTY(&inodedep->id_inowait) || 7708 !TAILQ_EMPTY(&inodedep->id_inoreflst) || 7709 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 7710 !TAILQ_EMPTY(&inodedep->id_newinoupdt) || 7711 !TAILQ_EMPTY(&inodedep->id_extupdt) || 7712 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 7713 !TAILQ_EMPTY(&inodedep->id_freeblklst) || 7714 inodedep->id_mkdiradd != NULL || 7715 inodedep->id_nlinkdelta != 0) 7716 return (0); 7717 /* 7718 * Another process might be in initiate_write_inodeblock_ufs[12] 7719 * trying to allocate memory without holding "Softdep Lock". 7720 */ 7721 if ((inodedep->id_state & IOSTARTED) != 0 && 7722 inodedep->id_savedino1 == NULL) 7723 return (0); 7724 7725 if (inodedep->id_state & ONDEPLIST) 7726 LIST_REMOVE(inodedep, id_deps); 7727 inodedep->id_state &= ~ONDEPLIST; 7728 inodedep->id_state |= ALLCOMPLETE; 7729 inodedep->id_bmsafemap = NULL; 7730 if (inodedep->id_state & ONWORKLIST) 7731 WORKLIST_REMOVE(&inodedep->id_list); 7732 if (inodedep->id_savedino1 != NULL) { 7733 free(inodedep->id_savedino1, M_SAVEDINO); 7734 inodedep->id_savedino1 = NULL; 7735 } 7736 if (free_inodedep(inodedep) == 0) 7737 panic("check_inode_unwritten: busy inode"); 7738 return (1); 7739 } 7740 7741 static int 7742 check_inodedep_free(inodedep) 7743 struct inodedep *inodedep; 7744 { 7745 7746 LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp)); 7747 if ((inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE || 7748 !LIST_EMPTY(&inodedep->id_dirremhd) || 7749 !LIST_EMPTY(&inodedep->id_pendinghd) || 7750 !LIST_EMPTY(&inodedep->id_bufwait) || 7751 !LIST_EMPTY(&inodedep->id_inowait) || 7752 !TAILQ_EMPTY(&inodedep->id_inoreflst) || 7753 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 7754 !TAILQ_EMPTY(&inodedep->id_newinoupdt) || 7755 !TAILQ_EMPTY(&inodedep->id_extupdt) || 7756 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 7757 !TAILQ_EMPTY(&inodedep->id_freeblklst) || 7758 inodedep->id_mkdiradd != NULL || 7759 inodedep->id_nlinkdelta != 0 || 7760 inodedep->id_savedino1 != NULL) 7761 return (0); 7762 return (1); 7763 } 7764 7765 /* 7766 * Try to free an inodedep structure. Return 1 if it could be freed. 7767 */ 7768 static int 7769 free_inodedep(inodedep) 7770 struct inodedep *inodedep; 7771 { 7772 7773 LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp)); 7774 if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 || 7775 !check_inodedep_free(inodedep)) 7776 return (0); 7777 if (inodedep->id_state & ONDEPLIST) 7778 LIST_REMOVE(inodedep, id_deps); 7779 LIST_REMOVE(inodedep, id_hash); 7780 WORKITEM_FREE(inodedep, D_INODEDEP); 7781 return (1); 7782 } 7783 7784 /* 7785 * Free the block referenced by a freework structure. The parent freeblks 7786 * structure is released and completed when the final cg bitmap reaches 7787 * the disk. This routine may be freeing a jnewblk which never made it to 7788 * disk in which case we do not have to wait as the operation is undone 7789 * in memory immediately. 7790 */ 7791 static void 7792 freework_freeblock(freework, key) 7793 struct freework *freework; 7794 u_long key; 7795 { 7796 struct freeblks *freeblks; 7797 struct jnewblk *jnewblk; 7798 struct ufsmount *ump; 7799 struct workhead wkhd; 7800 struct fs *fs; 7801 int bsize; 7802 int needj; 7803 7804 ump = VFSTOUFS(freework->fw_list.wk_mp); 7805 LOCK_OWNED(ump); 7806 /* 7807 * Handle partial truncate separately. 7808 */ 7809 if (freework->fw_indir) { 7810 complete_trunc_indir(freework); 7811 return; 7812 } 7813 freeblks = freework->fw_freeblks; 7814 fs = ump->um_fs; 7815 needj = MOUNTEDSUJ(freeblks->fb_list.wk_mp) != 0; 7816 bsize = lfragtosize(fs, freework->fw_frags); 7817 LIST_INIT(&wkhd); 7818 /* 7819 * DEPCOMPLETE is cleared in indirblk_insert() if the block lives 7820 * on the indirblk hashtable and prevents premature freeing. 7821 */ 7822 freework->fw_state |= DEPCOMPLETE; 7823 /* 7824 * SUJ needs to wait for the segment referencing freed indirect 7825 * blocks to expire so that we know the checker will not confuse 7826 * a re-allocated indirect block with its old contents. 7827 */ 7828 if (needj && freework->fw_lbn <= -UFS_NDADDR) 7829 indirblk_insert(freework); 7830 /* 7831 * If we are canceling an existing jnewblk pass it to the free 7832 * routine, otherwise pass the freeblk which will ultimately 7833 * release the freeblks. If we're not journaling, we can just 7834 * free the freeblks immediately. 7835 */ 7836 jnewblk = freework->fw_jnewblk; 7837 if (jnewblk != NULL) { 7838 cancel_jnewblk(jnewblk, &wkhd); 7839 needj = 0; 7840 } else if (needj) { 7841 freework->fw_state |= DELAYEDFREE; 7842 freeblks->fb_cgwait++; 7843 WORKLIST_INSERT(&wkhd, &freework->fw_list); 7844 } 7845 FREE_LOCK(ump); 7846 freeblks_free(ump, freeblks, btodb(bsize)); 7847 CTR4(KTR_SUJ, 7848 "freework_freeblock: ino %jd blkno %jd lbn %jd size %d", 7849 freeblks->fb_inum, freework->fw_blkno, freework->fw_lbn, bsize); 7850 ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno, bsize, 7851 freeblks->fb_inum, freeblks->fb_vtype, &wkhd, key); 7852 ACQUIRE_LOCK(ump); 7853 /* 7854 * The jnewblk will be discarded and the bits in the map never 7855 * made it to disk. We can immediately free the freeblk. 7856 */ 7857 if (needj == 0) 7858 handle_written_freework(freework); 7859 } 7860 7861 /* 7862 * We enqueue freework items that need processing back on the freeblks and 7863 * add the freeblks to the worklist. This makes it easier to find all work 7864 * required to flush a truncation in process_truncates(). 7865 */ 7866 static void 7867 freework_enqueue(freework) 7868 struct freework *freework; 7869 { 7870 struct freeblks *freeblks; 7871 7872 freeblks = freework->fw_freeblks; 7873 if ((freework->fw_state & INPROGRESS) == 0) 7874 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list); 7875 if ((freeblks->fb_state & 7876 (ONWORKLIST | INPROGRESS | ALLCOMPLETE)) == ALLCOMPLETE && 7877 LIST_EMPTY(&freeblks->fb_jblkdephd)) 7878 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 7879 } 7880 7881 /* 7882 * Start, continue, or finish the process of freeing an indirect block tree. 7883 * The free operation may be paused at any point with fw_off containing the 7884 * offset to restart from. This enables us to implement some flow control 7885 * for large truncates which may fan out and generate a huge number of 7886 * dependencies. 7887 */ 7888 static void 7889 handle_workitem_indirblk(freework) 7890 struct freework *freework; 7891 { 7892 struct freeblks *freeblks; 7893 struct ufsmount *ump; 7894 struct fs *fs; 7895 7896 freeblks = freework->fw_freeblks; 7897 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 7898 fs = ump->um_fs; 7899 if (freework->fw_state & DEPCOMPLETE) { 7900 handle_written_freework(freework); 7901 return; 7902 } 7903 if (freework->fw_off == NINDIR(fs)) { 7904 freework_freeblock(freework, SINGLETON_KEY); 7905 return; 7906 } 7907 freework->fw_state |= INPROGRESS; 7908 FREE_LOCK(ump); 7909 indir_trunc(freework, fsbtodb(fs, freework->fw_blkno), 7910 freework->fw_lbn); 7911 ACQUIRE_LOCK(ump); 7912 } 7913 7914 /* 7915 * Called when a freework structure attached to a cg buf is written. The 7916 * ref on either the parent or the freeblks structure is released and 7917 * the freeblks is added back to the worklist if there is more work to do. 7918 */ 7919 static void 7920 handle_written_freework(freework) 7921 struct freework *freework; 7922 { 7923 struct freeblks *freeblks; 7924 struct freework *parent; 7925 7926 freeblks = freework->fw_freeblks; 7927 parent = freework->fw_parent; 7928 if (freework->fw_state & DELAYEDFREE) 7929 freeblks->fb_cgwait--; 7930 freework->fw_state |= COMPLETE; 7931 if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE) 7932 WORKITEM_FREE(freework, D_FREEWORK); 7933 if (parent) { 7934 if (--parent->fw_ref == 0) 7935 freework_enqueue(parent); 7936 return; 7937 } 7938 if (--freeblks->fb_ref != 0) 7939 return; 7940 if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST | INPROGRESS)) == 7941 ALLCOMPLETE && LIST_EMPTY(&freeblks->fb_jblkdephd)) 7942 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 7943 } 7944 7945 /* 7946 * This workitem routine performs the block de-allocation. 7947 * The workitem is added to the pending list after the updated 7948 * inode block has been written to disk. As mentioned above, 7949 * checks regarding the number of blocks de-allocated (compared 7950 * to the number of blocks allocated for the file) are also 7951 * performed in this function. 7952 */ 7953 static int 7954 handle_workitem_freeblocks(freeblks, flags) 7955 struct freeblks *freeblks; 7956 int flags; 7957 { 7958 struct freework *freework; 7959 struct newblk *newblk; 7960 struct allocindir *aip; 7961 struct ufsmount *ump; 7962 struct worklist *wk; 7963 u_long key; 7964 7965 KASSERT(LIST_EMPTY(&freeblks->fb_jblkdephd), 7966 ("handle_workitem_freeblocks: Journal entries not written.")); 7967 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 7968 key = ffs_blkrelease_start(ump, freeblks->fb_devvp, freeblks->fb_inum); 7969 ACQUIRE_LOCK(ump); 7970 while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) { 7971 WORKLIST_REMOVE(wk); 7972 switch (wk->wk_type) { 7973 case D_DIRREM: 7974 wk->wk_state |= COMPLETE; 7975 add_to_worklist(wk, 0); 7976 continue; 7977 7978 case D_ALLOCDIRECT: 7979 free_newblk(WK_NEWBLK(wk)); 7980 continue; 7981 7982 case D_ALLOCINDIR: 7983 aip = WK_ALLOCINDIR(wk); 7984 freework = NULL; 7985 if (aip->ai_state & DELAYEDFREE) { 7986 FREE_LOCK(ump); 7987 freework = newfreework(ump, freeblks, NULL, 7988 aip->ai_lbn, aip->ai_newblkno, 7989 ump->um_fs->fs_frag, 0, 0); 7990 ACQUIRE_LOCK(ump); 7991 } 7992 newblk = WK_NEWBLK(wk); 7993 if (newblk->nb_jnewblk) { 7994 freework->fw_jnewblk = newblk->nb_jnewblk; 7995 newblk->nb_jnewblk->jn_dep = &freework->fw_list; 7996 newblk->nb_jnewblk = NULL; 7997 } 7998 free_newblk(newblk); 7999 continue; 8000 8001 case D_FREEWORK: 8002 freework = WK_FREEWORK(wk); 8003 if (freework->fw_lbn <= -UFS_NDADDR) 8004 handle_workitem_indirblk(freework); 8005 else 8006 freework_freeblock(freework, key); 8007 continue; 8008 default: 8009 panic("handle_workitem_freeblocks: Unknown type %s", 8010 TYPENAME(wk->wk_type)); 8011 } 8012 } 8013 if (freeblks->fb_ref != 0) { 8014 freeblks->fb_state &= ~INPROGRESS; 8015 wake_worklist(&freeblks->fb_list); 8016 freeblks = NULL; 8017 } 8018 FREE_LOCK(ump); 8019 ffs_blkrelease_finish(ump, key); 8020 if (freeblks) 8021 return handle_complete_freeblocks(freeblks, flags); 8022 return (0); 8023 } 8024 8025 /* 8026 * Handle completion of block free via truncate. This allows fs_pending 8027 * to track the actual free block count more closely than if we only updated 8028 * it at the end. We must be careful to handle cases where the block count 8029 * on free was incorrect. 8030 */ 8031 static void 8032 freeblks_free(ump, freeblks, blocks) 8033 struct ufsmount *ump; 8034 struct freeblks *freeblks; 8035 int blocks; 8036 { 8037 struct fs *fs; 8038 ufs2_daddr_t remain; 8039 8040 UFS_LOCK(ump); 8041 remain = -freeblks->fb_chkcnt; 8042 freeblks->fb_chkcnt += blocks; 8043 if (remain > 0) { 8044 if (remain < blocks) 8045 blocks = remain; 8046 fs = ump->um_fs; 8047 fs->fs_pendingblocks -= blocks; 8048 } 8049 UFS_UNLOCK(ump); 8050 } 8051 8052 /* 8053 * Once all of the freework workitems are complete we can retire the 8054 * freeblocks dependency and any journal work awaiting completion. This 8055 * can not be called until all other dependencies are stable on disk. 8056 */ 8057 static int 8058 handle_complete_freeblocks(freeblks, flags) 8059 struct freeblks *freeblks; 8060 int flags; 8061 { 8062 struct inodedep *inodedep; 8063 struct inode *ip; 8064 struct vnode *vp; 8065 struct fs *fs; 8066 struct ufsmount *ump; 8067 ufs2_daddr_t spare; 8068 8069 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 8070 fs = ump->um_fs; 8071 flags = LK_EXCLUSIVE | flags; 8072 spare = freeblks->fb_chkcnt; 8073 8074 /* 8075 * If we did not release the expected number of blocks we may have 8076 * to adjust the inode block count here. Only do so if it wasn't 8077 * a truncation to zero and the modrev still matches. 8078 */ 8079 if (spare && freeblks->fb_len != 0) { 8080 if (ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_inum, 8081 flags, &vp, FFSV_FORCEINSMQ) != 0) 8082 return (EBUSY); 8083 ip = VTOI(vp); 8084 if (ip->i_mode == 0) { 8085 vgone(vp); 8086 } else if (DIP(ip, i_modrev) == freeblks->fb_modrev) { 8087 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - spare); 8088 UFS_INODE_SET_FLAG(ip, IN_CHANGE); 8089 /* 8090 * We must wait so this happens before the 8091 * journal is reclaimed. 8092 */ 8093 ffs_update(vp, 1); 8094 } 8095 vput(vp); 8096 } 8097 if (spare < 0) { 8098 UFS_LOCK(ump); 8099 fs->fs_pendingblocks += spare; 8100 UFS_UNLOCK(ump); 8101 } 8102 #ifdef QUOTA 8103 /* Handle spare. */ 8104 if (spare) 8105 quotaadj(freeblks->fb_quota, ump, -spare); 8106 quotarele(freeblks->fb_quota); 8107 #endif 8108 ACQUIRE_LOCK(ump); 8109 if (freeblks->fb_state & ONDEPLIST) { 8110 inodedep_lookup(freeblks->fb_list.wk_mp, freeblks->fb_inum, 8111 0, &inodedep); 8112 TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, fb_next); 8113 freeblks->fb_state &= ~ONDEPLIST; 8114 if (TAILQ_EMPTY(&inodedep->id_freeblklst)) 8115 free_inodedep(inodedep); 8116 } 8117 /* 8118 * All of the freeblock deps must be complete prior to this call 8119 * so it's now safe to complete earlier outstanding journal entries. 8120 */ 8121 handle_jwork(&freeblks->fb_jwork); 8122 WORKITEM_FREE(freeblks, D_FREEBLKS); 8123 FREE_LOCK(ump); 8124 return (0); 8125 } 8126 8127 /* 8128 * Release blocks associated with the freeblks and stored in the indirect 8129 * block dbn. If level is greater than SINGLE, the block is an indirect block 8130 * and recursive calls to indirtrunc must be used to cleanse other indirect 8131 * blocks. 8132 * 8133 * This handles partial and complete truncation of blocks. Partial is noted 8134 * with goingaway == 0. In this case the freework is completed after the 8135 * zero'd indirects are written to disk. For full truncation the freework 8136 * is completed after the block is freed. 8137 */ 8138 static void 8139 indir_trunc(freework, dbn, lbn) 8140 struct freework *freework; 8141 ufs2_daddr_t dbn; 8142 ufs_lbn_t lbn; 8143 { 8144 struct freework *nfreework; 8145 struct workhead wkhd; 8146 struct freeblks *freeblks; 8147 struct buf *bp; 8148 struct fs *fs; 8149 struct indirdep *indirdep; 8150 struct mount *mp; 8151 struct ufsmount *ump; 8152 ufs1_daddr_t *bap1; 8153 ufs2_daddr_t nb, nnb, *bap2; 8154 ufs_lbn_t lbnadd, nlbn; 8155 u_long key; 8156 int nblocks, ufs1fmt, freedblocks; 8157 int goingaway, freedeps, needj, level, cnt, i; 8158 8159 freeblks = freework->fw_freeblks; 8160 mp = freeblks->fb_list.wk_mp; 8161 ump = VFSTOUFS(mp); 8162 fs = ump->um_fs; 8163 /* 8164 * Get buffer of block pointers to be freed. There are three cases: 8165 * 8166 * 1) Partial truncate caches the indirdep pointer in the freework 8167 * which provides us a back copy to the save bp which holds the 8168 * pointers we want to clear. When this completes the zero 8169 * pointers are written to the real copy. 8170 * 2) The indirect is being completely truncated, cancel_indirdep() 8171 * eliminated the real copy and placed the indirdep on the saved 8172 * copy. The indirdep and buf are discarded when this completes. 8173 * 3) The indirect was not in memory, we read a copy off of the disk 8174 * using the devvp and drop and invalidate the buffer when we're 8175 * done. 8176 */ 8177 goingaway = 1; 8178 indirdep = NULL; 8179 if (freework->fw_indir != NULL) { 8180 goingaway = 0; 8181 indirdep = freework->fw_indir; 8182 bp = indirdep->ir_savebp; 8183 if (bp == NULL || bp->b_blkno != dbn) 8184 panic("indir_trunc: Bad saved buf %p blkno %jd", 8185 bp, (intmax_t)dbn); 8186 } else if ((bp = incore(&freeblks->fb_devvp->v_bufobj, dbn)) != NULL) { 8187 /* 8188 * The lock prevents the buf dep list from changing and 8189 * indirects on devvp should only ever have one dependency. 8190 */ 8191 indirdep = WK_INDIRDEP(LIST_FIRST(&bp->b_dep)); 8192 if (indirdep == NULL || (indirdep->ir_state & GOINGAWAY) == 0) 8193 panic("indir_trunc: Bad indirdep %p from buf %p", 8194 indirdep, bp); 8195 } else if (bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize, 8196 NOCRED, &bp) != 0) { 8197 brelse(bp); 8198 return; 8199 } 8200 ACQUIRE_LOCK(ump); 8201 /* Protects against a race with complete_trunc_indir(). */ 8202 freework->fw_state &= ~INPROGRESS; 8203 /* 8204 * If we have an indirdep we need to enforce the truncation order 8205 * and discard it when it is complete. 8206 */ 8207 if (indirdep) { 8208 if (freework != TAILQ_FIRST(&indirdep->ir_trunc) && 8209 !TAILQ_EMPTY(&indirdep->ir_trunc)) { 8210 /* 8211 * Add the complete truncate to the list on the 8212 * indirdep to enforce in-order processing. 8213 */ 8214 if (freework->fw_indir == NULL) 8215 TAILQ_INSERT_TAIL(&indirdep->ir_trunc, 8216 freework, fw_next); 8217 FREE_LOCK(ump); 8218 return; 8219 } 8220 /* 8221 * If we're goingaway, free the indirdep. Otherwise it will 8222 * linger until the write completes. 8223 */ 8224 if (goingaway) 8225 free_indirdep(indirdep); 8226 } 8227 FREE_LOCK(ump); 8228 /* Initialize pointers depending on block size. */ 8229 if (ump->um_fstype == UFS1) { 8230 bap1 = (ufs1_daddr_t *)bp->b_data; 8231 nb = bap1[freework->fw_off]; 8232 ufs1fmt = 1; 8233 bap2 = NULL; 8234 } else { 8235 bap2 = (ufs2_daddr_t *)bp->b_data; 8236 nb = bap2[freework->fw_off]; 8237 ufs1fmt = 0; 8238 bap1 = NULL; 8239 } 8240 level = lbn_level(lbn); 8241 needj = MOUNTEDSUJ(UFSTOVFS(ump)) != 0; 8242 lbnadd = lbn_offset(fs, level); 8243 nblocks = btodb(fs->fs_bsize); 8244 nfreework = freework; 8245 freedeps = 0; 8246 cnt = 0; 8247 /* 8248 * Reclaim blocks. Traverses into nested indirect levels and 8249 * arranges for the current level to be freed when subordinates 8250 * are free when journaling. 8251 */ 8252 key = ffs_blkrelease_start(ump, freeblks->fb_devvp, freeblks->fb_inum); 8253 for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) { 8254 if (UFS_CHECK_BLKNO(mp, freeblks->fb_inum, nb, 8255 fs->fs_bsize) != 0) 8256 nb = 0; 8257 if (i != NINDIR(fs) - 1) { 8258 if (ufs1fmt) 8259 nnb = bap1[i+1]; 8260 else 8261 nnb = bap2[i+1]; 8262 } else 8263 nnb = 0; 8264 if (nb == 0) 8265 continue; 8266 cnt++; 8267 if (level != 0) { 8268 nlbn = (lbn + 1) - (i * lbnadd); 8269 if (needj != 0) { 8270 nfreework = newfreework(ump, freeblks, freework, 8271 nlbn, nb, fs->fs_frag, 0, 0); 8272 freedeps++; 8273 } 8274 indir_trunc(nfreework, fsbtodb(fs, nb), nlbn); 8275 } else { 8276 struct freedep *freedep; 8277 8278 /* 8279 * Attempt to aggregate freedep dependencies for 8280 * all blocks being released to the same CG. 8281 */ 8282 LIST_INIT(&wkhd); 8283 if (needj != 0 && 8284 (nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) { 8285 freedep = newfreedep(freework); 8286 WORKLIST_INSERT_UNLOCKED(&wkhd, 8287 &freedep->fd_list); 8288 freedeps++; 8289 } 8290 CTR3(KTR_SUJ, 8291 "indir_trunc: ino %jd blkno %jd size %d", 8292 freeblks->fb_inum, nb, fs->fs_bsize); 8293 ffs_blkfree(ump, fs, freeblks->fb_devvp, nb, 8294 fs->fs_bsize, freeblks->fb_inum, 8295 freeblks->fb_vtype, &wkhd, key); 8296 } 8297 } 8298 ffs_blkrelease_finish(ump, key); 8299 if (goingaway) { 8300 bp->b_flags |= B_INVAL | B_NOCACHE; 8301 brelse(bp); 8302 } 8303 freedblocks = 0; 8304 if (level == 0) 8305 freedblocks = (nblocks * cnt); 8306 if (needj == 0) 8307 freedblocks += nblocks; 8308 freeblks_free(ump, freeblks, freedblocks); 8309 /* 8310 * If we are journaling set up the ref counts and offset so this 8311 * indirect can be completed when its children are free. 8312 */ 8313 if (needj) { 8314 ACQUIRE_LOCK(ump); 8315 freework->fw_off = i; 8316 freework->fw_ref += freedeps; 8317 freework->fw_ref -= NINDIR(fs) + 1; 8318 if (level == 0) 8319 freeblks->fb_cgwait += freedeps; 8320 if (freework->fw_ref == 0) 8321 freework_freeblock(freework, SINGLETON_KEY); 8322 FREE_LOCK(ump); 8323 return; 8324 } 8325 /* 8326 * If we're not journaling we can free the indirect now. 8327 */ 8328 dbn = dbtofsb(fs, dbn); 8329 CTR3(KTR_SUJ, 8330 "indir_trunc 2: ino %jd blkno %jd size %d", 8331 freeblks->fb_inum, dbn, fs->fs_bsize); 8332 ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize, 8333 freeblks->fb_inum, freeblks->fb_vtype, NULL, SINGLETON_KEY); 8334 /* Non SUJ softdep does single-threaded truncations. */ 8335 if (freework->fw_blkno == dbn) { 8336 freework->fw_state |= ALLCOMPLETE; 8337 ACQUIRE_LOCK(ump); 8338 handle_written_freework(freework); 8339 FREE_LOCK(ump); 8340 } 8341 return; 8342 } 8343 8344 /* 8345 * Cancel an allocindir when it is removed via truncation. When bp is not 8346 * NULL the indirect never appeared on disk and is scheduled to be freed 8347 * independently of the indir so we can more easily track journal work. 8348 */ 8349 static void 8350 cancel_allocindir(aip, bp, freeblks, trunc) 8351 struct allocindir *aip; 8352 struct buf *bp; 8353 struct freeblks *freeblks; 8354 int trunc; 8355 { 8356 struct indirdep *indirdep; 8357 struct freefrag *freefrag; 8358 struct newblk *newblk; 8359 8360 newblk = (struct newblk *)aip; 8361 LIST_REMOVE(aip, ai_next); 8362 /* 8363 * We must eliminate the pointer in bp if it must be freed on its 8364 * own due to partial truncate or pending journal work. 8365 */ 8366 if (bp && (trunc || newblk->nb_jnewblk)) { 8367 /* 8368 * Clear the pointer and mark the aip to be freed 8369 * directly if it never existed on disk. 8370 */ 8371 aip->ai_state |= DELAYEDFREE; 8372 indirdep = aip->ai_indirdep; 8373 if (indirdep->ir_state & UFS1FMT) 8374 ((ufs1_daddr_t *)bp->b_data)[aip->ai_offset] = 0; 8375 else 8376 ((ufs2_daddr_t *)bp->b_data)[aip->ai_offset] = 0; 8377 } 8378 /* 8379 * When truncating the previous pointer will be freed via 8380 * savedbp. Eliminate the freefrag which would dup free. 8381 */ 8382 if (trunc && (freefrag = newblk->nb_freefrag) != NULL) { 8383 newblk->nb_freefrag = NULL; 8384 if (freefrag->ff_jdep) 8385 cancel_jfreefrag( 8386 WK_JFREEFRAG(freefrag->ff_jdep)); 8387 jwork_move(&freeblks->fb_jwork, &freefrag->ff_jwork); 8388 WORKITEM_FREE(freefrag, D_FREEFRAG); 8389 } 8390 /* 8391 * If the journal hasn't been written the jnewblk must be passed 8392 * to the call to ffs_blkfree that reclaims the space. We accomplish 8393 * this by leaving the journal dependency on the newblk to be freed 8394 * when a freework is created in handle_workitem_freeblocks(). 8395 */ 8396 cancel_newblk(newblk, NULL, &freeblks->fb_jwork); 8397 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list); 8398 } 8399 8400 /* 8401 * Create the mkdir dependencies for . and .. in a new directory. Link them 8402 * in to a newdirblk so any subsequent additions are tracked properly. The 8403 * caller is responsible for adding the mkdir1 dependency to the journal 8404 * and updating id_mkdiradd. This function returns with the per-filesystem 8405 * lock held. 8406 */ 8407 static struct mkdir * 8408 setup_newdir(dap, newinum, dinum, newdirbp, mkdirp) 8409 struct diradd *dap; 8410 ino_t newinum; 8411 ino_t dinum; 8412 struct buf *newdirbp; 8413 struct mkdir **mkdirp; 8414 { 8415 struct newblk *newblk; 8416 struct pagedep *pagedep; 8417 struct inodedep *inodedep; 8418 struct newdirblk *newdirblk; 8419 struct mkdir *mkdir1, *mkdir2; 8420 struct worklist *wk; 8421 struct jaddref *jaddref; 8422 struct ufsmount *ump; 8423 struct mount *mp; 8424 8425 mp = dap->da_list.wk_mp; 8426 ump = VFSTOUFS(mp); 8427 newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK, 8428 M_SOFTDEP_FLAGS); 8429 workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp); 8430 LIST_INIT(&newdirblk->db_mkdir); 8431 mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS); 8432 workitem_alloc(&mkdir1->md_list, D_MKDIR, mp); 8433 mkdir1->md_state = ATTACHED | MKDIR_BODY; 8434 mkdir1->md_diradd = dap; 8435 mkdir1->md_jaddref = NULL; 8436 mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS); 8437 workitem_alloc(&mkdir2->md_list, D_MKDIR, mp); 8438 mkdir2->md_state = ATTACHED | MKDIR_PARENT; 8439 mkdir2->md_diradd = dap; 8440 mkdir2->md_jaddref = NULL; 8441 if (MOUNTEDSUJ(mp) == 0) { 8442 mkdir1->md_state |= DEPCOMPLETE; 8443 mkdir2->md_state |= DEPCOMPLETE; 8444 } 8445 /* 8446 * Dependency on "." and ".." being written to disk. 8447 */ 8448 mkdir1->md_buf = newdirbp; 8449 ACQUIRE_LOCK(VFSTOUFS(mp)); 8450 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir1, md_mkdirs); 8451 /* 8452 * We must link the pagedep, allocdirect, and newdirblk for 8453 * the initial file page so the pointer to the new directory 8454 * is not written until the directory contents are live and 8455 * any subsequent additions are not marked live until the 8456 * block is reachable via the inode. 8457 */ 8458 if (pagedep_lookup(mp, newdirbp, newinum, 0, 0, &pagedep) == 0) 8459 panic("setup_newdir: lost pagedep"); 8460 LIST_FOREACH(wk, &newdirbp->b_dep, wk_list) 8461 if (wk->wk_type == D_ALLOCDIRECT) 8462 break; 8463 if (wk == NULL) 8464 panic("setup_newdir: lost allocdirect"); 8465 if (pagedep->pd_state & NEWBLOCK) 8466 panic("setup_newdir: NEWBLOCK already set"); 8467 newblk = WK_NEWBLK(wk); 8468 pagedep->pd_state |= NEWBLOCK; 8469 pagedep->pd_newdirblk = newdirblk; 8470 newdirblk->db_pagedep = pagedep; 8471 WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list); 8472 WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list); 8473 /* 8474 * Look up the inodedep for the parent directory so that we 8475 * can link mkdir2 into the pending dotdot jaddref or 8476 * the inode write if there is none. If the inode is 8477 * ALLCOMPLETE and no jaddref is present all dependencies have 8478 * been satisfied and mkdir2 can be freed. 8479 */ 8480 inodedep_lookup(mp, dinum, 0, &inodedep); 8481 if (MOUNTEDSUJ(mp)) { 8482 if (inodedep == NULL) 8483 panic("setup_newdir: Lost parent."); 8484 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 8485 inoreflst); 8486 KASSERT(jaddref != NULL && jaddref->ja_parent == newinum && 8487 (jaddref->ja_state & MKDIR_PARENT), 8488 ("setup_newdir: bad dotdot jaddref %p", jaddref)); 8489 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs); 8490 mkdir2->md_jaddref = jaddref; 8491 jaddref->ja_mkdir = mkdir2; 8492 } else if (inodedep == NULL || 8493 (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 8494 dap->da_state &= ~MKDIR_PARENT; 8495 WORKITEM_FREE(mkdir2, D_MKDIR); 8496 mkdir2 = NULL; 8497 } else { 8498 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs); 8499 WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir2->md_list); 8500 } 8501 *mkdirp = mkdir2; 8502 8503 return (mkdir1); 8504 } 8505 8506 /* 8507 * Directory entry addition dependencies. 8508 * 8509 * When adding a new directory entry, the inode (with its incremented link 8510 * count) must be written to disk before the directory entry's pointer to it. 8511 * Also, if the inode is newly allocated, the corresponding freemap must be 8512 * updated (on disk) before the directory entry's pointer. These requirements 8513 * are met via undo/redo on the directory entry's pointer, which consists 8514 * simply of the inode number. 8515 * 8516 * As directory entries are added and deleted, the free space within a 8517 * directory block can become fragmented. The ufs filesystem will compact 8518 * a fragmented directory block to make space for a new entry. When this 8519 * occurs, the offsets of previously added entries change. Any "diradd" 8520 * dependency structures corresponding to these entries must be updated with 8521 * the new offsets. 8522 */ 8523 8524 /* 8525 * This routine is called after the in-memory inode's link 8526 * count has been incremented, but before the directory entry's 8527 * pointer to the inode has been set. 8528 */ 8529 int 8530 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk) 8531 struct buf *bp; /* buffer containing directory block */ 8532 struct inode *dp; /* inode for directory */ 8533 off_t diroffset; /* offset of new entry in directory */ 8534 ino_t newinum; /* inode referenced by new directory entry */ 8535 struct buf *newdirbp; /* non-NULL => contents of new mkdir */ 8536 int isnewblk; /* entry is in a newly allocated block */ 8537 { 8538 int offset; /* offset of new entry within directory block */ 8539 ufs_lbn_t lbn; /* block in directory containing new entry */ 8540 struct fs *fs; 8541 struct diradd *dap; 8542 struct newblk *newblk; 8543 struct pagedep *pagedep; 8544 struct inodedep *inodedep; 8545 struct newdirblk *newdirblk; 8546 struct mkdir *mkdir1, *mkdir2; 8547 struct jaddref *jaddref; 8548 struct ufsmount *ump; 8549 struct mount *mp; 8550 int isindir; 8551 8552 mp = ITOVFS(dp); 8553 ump = VFSTOUFS(mp); 8554 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 8555 ("softdep_setup_directory_add called on non-softdep filesystem")); 8556 /* 8557 * Whiteouts have no dependencies. 8558 */ 8559 if (newinum == UFS_WINO) { 8560 if (newdirbp != NULL) 8561 bdwrite(newdirbp); 8562 return (0); 8563 } 8564 jaddref = NULL; 8565 mkdir1 = mkdir2 = NULL; 8566 fs = ump->um_fs; 8567 lbn = lblkno(fs, diroffset); 8568 offset = blkoff(fs, diroffset); 8569 dap = malloc(sizeof(struct diradd), M_DIRADD, 8570 M_SOFTDEP_FLAGS|M_ZERO); 8571 workitem_alloc(&dap->da_list, D_DIRADD, mp); 8572 dap->da_offset = offset; 8573 dap->da_newinum = newinum; 8574 dap->da_state = ATTACHED; 8575 LIST_INIT(&dap->da_jwork); 8576 isindir = bp->b_lblkno >= UFS_NDADDR; 8577 newdirblk = NULL; 8578 if (isnewblk && 8579 (isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) { 8580 newdirblk = malloc(sizeof(struct newdirblk), 8581 M_NEWDIRBLK, M_SOFTDEP_FLAGS); 8582 workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp); 8583 LIST_INIT(&newdirblk->db_mkdir); 8584 } 8585 /* 8586 * If we're creating a new directory setup the dependencies and set 8587 * the dap state to wait for them. Otherwise it's COMPLETE and 8588 * we can move on. 8589 */ 8590 if (newdirbp == NULL) { 8591 dap->da_state |= DEPCOMPLETE; 8592 ACQUIRE_LOCK(ump); 8593 } else { 8594 dap->da_state |= MKDIR_BODY | MKDIR_PARENT; 8595 mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp, 8596 &mkdir2); 8597 } 8598 /* 8599 * Link into parent directory pagedep to await its being written. 8600 */ 8601 pagedep_lookup(mp, bp, dp->i_number, lbn, DEPALLOC, &pagedep); 8602 #ifdef INVARIANTS 8603 if (diradd_lookup(pagedep, offset) != NULL) 8604 panic("softdep_setup_directory_add: %p already at off %d\n", 8605 diradd_lookup(pagedep, offset), offset); 8606 #endif 8607 dap->da_pagedep = pagedep; 8608 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap, 8609 da_pdlist); 8610 inodedep_lookup(mp, newinum, DEPALLOC, &inodedep); 8611 /* 8612 * If we're journaling, link the diradd into the jaddref so it 8613 * may be completed after the journal entry is written. Otherwise, 8614 * link the diradd into its inodedep. If the inode is not yet 8615 * written place it on the bufwait list, otherwise do the post-inode 8616 * write processing to put it on the id_pendinghd list. 8617 */ 8618 if (MOUNTEDSUJ(mp)) { 8619 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 8620 inoreflst); 8621 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 8622 ("softdep_setup_directory_add: bad jaddref %p", jaddref)); 8623 jaddref->ja_diroff = diroffset; 8624 jaddref->ja_diradd = dap; 8625 add_to_journal(&jaddref->ja_list); 8626 } else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) 8627 diradd_inode_written(dap, inodedep); 8628 else 8629 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 8630 /* 8631 * Add the journal entries for . and .. links now that the primary 8632 * link is written. 8633 */ 8634 if (mkdir1 != NULL && MOUNTEDSUJ(mp)) { 8635 jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref, 8636 inoreflst, if_deps); 8637 KASSERT(jaddref != NULL && 8638 jaddref->ja_ino == jaddref->ja_parent && 8639 (jaddref->ja_state & MKDIR_BODY), 8640 ("softdep_setup_directory_add: bad dot jaddref %p", 8641 jaddref)); 8642 mkdir1->md_jaddref = jaddref; 8643 jaddref->ja_mkdir = mkdir1; 8644 /* 8645 * It is important that the dotdot journal entry 8646 * is added prior to the dot entry since dot writes 8647 * both the dot and dotdot links. These both must 8648 * be added after the primary link for the journal 8649 * to remain consistent. 8650 */ 8651 add_to_journal(&mkdir2->md_jaddref->ja_list); 8652 add_to_journal(&jaddref->ja_list); 8653 } 8654 /* 8655 * If we are adding a new directory remember this diradd so that if 8656 * we rename it we can keep the dot and dotdot dependencies. If 8657 * we are adding a new name for an inode that has a mkdiradd we 8658 * must be in rename and we have to move the dot and dotdot 8659 * dependencies to this new name. The old name is being orphaned 8660 * soon. 8661 */ 8662 if (mkdir1 != NULL) { 8663 if (inodedep->id_mkdiradd != NULL) 8664 panic("softdep_setup_directory_add: Existing mkdir"); 8665 inodedep->id_mkdiradd = dap; 8666 } else if (inodedep->id_mkdiradd) 8667 merge_diradd(inodedep, dap); 8668 if (newdirblk != NULL) { 8669 /* 8670 * There is nothing to do if we are already tracking 8671 * this block. 8672 */ 8673 if ((pagedep->pd_state & NEWBLOCK) != 0) { 8674 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 8675 FREE_LOCK(ump); 8676 return (0); 8677 } 8678 if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk) 8679 == 0) 8680 panic("softdep_setup_directory_add: lost entry"); 8681 WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list); 8682 pagedep->pd_state |= NEWBLOCK; 8683 pagedep->pd_newdirblk = newdirblk; 8684 newdirblk->db_pagedep = pagedep; 8685 FREE_LOCK(ump); 8686 /* 8687 * If we extended into an indirect signal direnter to sync. 8688 */ 8689 if (isindir) 8690 return (1); 8691 return (0); 8692 } 8693 FREE_LOCK(ump); 8694 return (0); 8695 } 8696 8697 /* 8698 * This procedure is called to change the offset of a directory 8699 * entry when compacting a directory block which must be owned 8700 * exclusively by the caller. Note that the actual entry movement 8701 * must be done in this procedure to ensure that no I/O completions 8702 * occur while the move is in progress. 8703 */ 8704 void 8705 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize) 8706 struct buf *bp; /* Buffer holding directory block. */ 8707 struct inode *dp; /* inode for directory */ 8708 caddr_t base; /* address of dp->i_offset */ 8709 caddr_t oldloc; /* address of old directory location */ 8710 caddr_t newloc; /* address of new directory location */ 8711 int entrysize; /* size of directory entry */ 8712 { 8713 int offset, oldoffset, newoffset; 8714 struct pagedep *pagedep; 8715 struct jmvref *jmvref; 8716 struct diradd *dap; 8717 struct direct *de; 8718 struct mount *mp; 8719 struct ufsmount *ump; 8720 ufs_lbn_t lbn; 8721 int flags; 8722 8723 mp = ITOVFS(dp); 8724 ump = VFSTOUFS(mp); 8725 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 8726 ("softdep_change_directoryentry_offset called on " 8727 "non-softdep filesystem")); 8728 de = (struct direct *)oldloc; 8729 jmvref = NULL; 8730 flags = 0; 8731 /* 8732 * Moves are always journaled as it would be too complex to 8733 * determine if any affected adds or removes are present in the 8734 * journal. 8735 */ 8736 if (MOUNTEDSUJ(mp)) { 8737 flags = DEPALLOC; 8738 jmvref = newjmvref(dp, de->d_ino, 8739 dp->i_offset + (oldloc - base), 8740 dp->i_offset + (newloc - base)); 8741 } 8742 lbn = lblkno(ump->um_fs, dp->i_offset); 8743 offset = blkoff(ump->um_fs, dp->i_offset); 8744 oldoffset = offset + (oldloc - base); 8745 newoffset = offset + (newloc - base); 8746 ACQUIRE_LOCK(ump); 8747 if (pagedep_lookup(mp, bp, dp->i_number, lbn, flags, &pagedep) == 0) 8748 goto done; 8749 dap = diradd_lookup(pagedep, oldoffset); 8750 if (dap) { 8751 dap->da_offset = newoffset; 8752 newoffset = DIRADDHASH(newoffset); 8753 oldoffset = DIRADDHASH(oldoffset); 8754 if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE && 8755 newoffset != oldoffset) { 8756 LIST_REMOVE(dap, da_pdlist); 8757 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset], 8758 dap, da_pdlist); 8759 } 8760 } 8761 done: 8762 if (jmvref) { 8763 jmvref->jm_pagedep = pagedep; 8764 LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps); 8765 add_to_journal(&jmvref->jm_list); 8766 } 8767 bcopy(oldloc, newloc, entrysize); 8768 FREE_LOCK(ump); 8769 } 8770 8771 /* 8772 * Move the mkdir dependencies and journal work from one diradd to another 8773 * when renaming a directory. The new name must depend on the mkdir deps 8774 * completing as the old name did. Directories can only have one valid link 8775 * at a time so one must be canonical. 8776 */ 8777 static void 8778 merge_diradd(inodedep, newdap) 8779 struct inodedep *inodedep; 8780 struct diradd *newdap; 8781 { 8782 struct diradd *olddap; 8783 struct mkdir *mkdir, *nextmd; 8784 struct ufsmount *ump; 8785 short state; 8786 8787 olddap = inodedep->id_mkdiradd; 8788 inodedep->id_mkdiradd = newdap; 8789 if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 8790 newdap->da_state &= ~DEPCOMPLETE; 8791 ump = VFSTOUFS(inodedep->id_list.wk_mp); 8792 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; 8793 mkdir = nextmd) { 8794 nextmd = LIST_NEXT(mkdir, md_mkdirs); 8795 if (mkdir->md_diradd != olddap) 8796 continue; 8797 mkdir->md_diradd = newdap; 8798 state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY); 8799 newdap->da_state |= state; 8800 olddap->da_state &= ~state; 8801 if ((olddap->da_state & 8802 (MKDIR_PARENT | MKDIR_BODY)) == 0) 8803 break; 8804 } 8805 if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) 8806 panic("merge_diradd: unfound ref"); 8807 } 8808 /* 8809 * Any mkdir related journal items are not safe to be freed until 8810 * the new name is stable. 8811 */ 8812 jwork_move(&newdap->da_jwork, &olddap->da_jwork); 8813 olddap->da_state |= DEPCOMPLETE; 8814 complete_diradd(olddap); 8815 } 8816 8817 /* 8818 * Move the diradd to the pending list when all diradd dependencies are 8819 * complete. 8820 */ 8821 static void 8822 complete_diradd(dap) 8823 struct diradd *dap; 8824 { 8825 struct pagedep *pagedep; 8826 8827 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 8828 if (dap->da_state & DIRCHG) 8829 pagedep = dap->da_previous->dm_pagedep; 8830 else 8831 pagedep = dap->da_pagedep; 8832 LIST_REMOVE(dap, da_pdlist); 8833 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 8834 } 8835 } 8836 8837 /* 8838 * Cancel a diradd when a dirrem overlaps with it. We must cancel the journal 8839 * add entries and conditonally journal the remove. 8840 */ 8841 static void 8842 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref) 8843 struct diradd *dap; 8844 struct dirrem *dirrem; 8845 struct jremref *jremref; 8846 struct jremref *dotremref; 8847 struct jremref *dotdotremref; 8848 { 8849 struct inodedep *inodedep; 8850 struct jaddref *jaddref; 8851 struct inoref *inoref; 8852 struct ufsmount *ump; 8853 struct mkdir *mkdir; 8854 8855 /* 8856 * If no remove references were allocated we're on a non-journaled 8857 * filesystem and can skip the cancel step. 8858 */ 8859 if (jremref == NULL) { 8860 free_diradd(dap, NULL); 8861 return; 8862 } 8863 /* 8864 * Cancel the primary name an free it if it does not require 8865 * journaling. 8866 */ 8867 if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum, 8868 0, &inodedep) != 0) { 8869 /* Abort the addref that reference this diradd. */ 8870 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 8871 if (inoref->if_list.wk_type != D_JADDREF) 8872 continue; 8873 jaddref = (struct jaddref *)inoref; 8874 if (jaddref->ja_diradd != dap) 8875 continue; 8876 if (cancel_jaddref(jaddref, inodedep, 8877 &dirrem->dm_jwork) == 0) { 8878 free_jremref(jremref); 8879 jremref = NULL; 8880 } 8881 break; 8882 } 8883 } 8884 /* 8885 * Cancel subordinate names and free them if they do not require 8886 * journaling. 8887 */ 8888 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 8889 ump = VFSTOUFS(dap->da_list.wk_mp); 8890 LIST_FOREACH(mkdir, &ump->softdep_mkdirlisthd, md_mkdirs) { 8891 if (mkdir->md_diradd != dap) 8892 continue; 8893 if ((jaddref = mkdir->md_jaddref) == NULL) 8894 continue; 8895 mkdir->md_jaddref = NULL; 8896 if (mkdir->md_state & MKDIR_PARENT) { 8897 if (cancel_jaddref(jaddref, NULL, 8898 &dirrem->dm_jwork) == 0) { 8899 free_jremref(dotdotremref); 8900 dotdotremref = NULL; 8901 } 8902 } else { 8903 if (cancel_jaddref(jaddref, inodedep, 8904 &dirrem->dm_jwork) == 0) { 8905 free_jremref(dotremref); 8906 dotremref = NULL; 8907 } 8908 } 8909 } 8910 } 8911 8912 if (jremref) 8913 journal_jremref(dirrem, jremref, inodedep); 8914 if (dotremref) 8915 journal_jremref(dirrem, dotremref, inodedep); 8916 if (dotdotremref) 8917 journal_jremref(dirrem, dotdotremref, NULL); 8918 jwork_move(&dirrem->dm_jwork, &dap->da_jwork); 8919 free_diradd(dap, &dirrem->dm_jwork); 8920 } 8921 8922 /* 8923 * Free a diradd dependency structure. 8924 */ 8925 static void 8926 free_diradd(dap, wkhd) 8927 struct diradd *dap; 8928 struct workhead *wkhd; 8929 { 8930 struct dirrem *dirrem; 8931 struct pagedep *pagedep; 8932 struct inodedep *inodedep; 8933 struct mkdir *mkdir, *nextmd; 8934 struct ufsmount *ump; 8935 8936 ump = VFSTOUFS(dap->da_list.wk_mp); 8937 LOCK_OWNED(ump); 8938 LIST_REMOVE(dap, da_pdlist); 8939 if (dap->da_state & ONWORKLIST) 8940 WORKLIST_REMOVE(&dap->da_list); 8941 if ((dap->da_state & DIRCHG) == 0) { 8942 pagedep = dap->da_pagedep; 8943 } else { 8944 dirrem = dap->da_previous; 8945 pagedep = dirrem->dm_pagedep; 8946 dirrem->dm_dirinum = pagedep->pd_ino; 8947 dirrem->dm_state |= COMPLETE; 8948 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 8949 add_to_worklist(&dirrem->dm_list, 0); 8950 } 8951 if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum, 8952 0, &inodedep) != 0) 8953 if (inodedep->id_mkdiradd == dap) 8954 inodedep->id_mkdiradd = NULL; 8955 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 8956 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; 8957 mkdir = nextmd) { 8958 nextmd = LIST_NEXT(mkdir, md_mkdirs); 8959 if (mkdir->md_diradd != dap) 8960 continue; 8961 dap->da_state &= 8962 ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)); 8963 LIST_REMOVE(mkdir, md_mkdirs); 8964 if (mkdir->md_state & ONWORKLIST) 8965 WORKLIST_REMOVE(&mkdir->md_list); 8966 if (mkdir->md_jaddref != NULL) 8967 panic("free_diradd: Unexpected jaddref"); 8968 WORKITEM_FREE(mkdir, D_MKDIR); 8969 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) 8970 break; 8971 } 8972 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) 8973 panic("free_diradd: unfound ref"); 8974 } 8975 if (inodedep) 8976 free_inodedep(inodedep); 8977 /* 8978 * Free any journal segments waiting for the directory write. 8979 */ 8980 handle_jwork(&dap->da_jwork); 8981 WORKITEM_FREE(dap, D_DIRADD); 8982 } 8983 8984 /* 8985 * Directory entry removal dependencies. 8986 * 8987 * When removing a directory entry, the entry's inode pointer must be 8988 * zero'ed on disk before the corresponding inode's link count is decremented 8989 * (possibly freeing the inode for re-use). This dependency is handled by 8990 * updating the directory entry but delaying the inode count reduction until 8991 * after the directory block has been written to disk. After this point, the 8992 * inode count can be decremented whenever it is convenient. 8993 */ 8994 8995 /* 8996 * This routine should be called immediately after removing 8997 * a directory entry. The inode's link count should not be 8998 * decremented by the calling procedure -- the soft updates 8999 * code will do this task when it is safe. 9000 */ 9001 void 9002 softdep_setup_remove(bp, dp, ip, isrmdir) 9003 struct buf *bp; /* buffer containing directory block */ 9004 struct inode *dp; /* inode for the directory being modified */ 9005 struct inode *ip; /* inode for directory entry being removed */ 9006 int isrmdir; /* indicates if doing RMDIR */ 9007 { 9008 struct dirrem *dirrem, *prevdirrem; 9009 struct inodedep *inodedep; 9010 struct ufsmount *ump; 9011 int direct; 9012 9013 ump = ITOUMP(ip); 9014 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 9015 ("softdep_setup_remove called on non-softdep filesystem")); 9016 /* 9017 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK. We want 9018 * newdirrem() to setup the full directory remove which requires 9019 * isrmdir > 1. 9020 */ 9021 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 9022 /* 9023 * Add the dirrem to the inodedep's pending remove list for quick 9024 * discovery later. 9025 */ 9026 if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0) 9027 panic("softdep_setup_remove: Lost inodedep."); 9028 KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked")); 9029 dirrem->dm_state |= ONDEPLIST; 9030 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 9031 9032 /* 9033 * If the COMPLETE flag is clear, then there were no active 9034 * entries and we want to roll back to a zeroed entry until 9035 * the new inode is committed to disk. If the COMPLETE flag is 9036 * set then we have deleted an entry that never made it to 9037 * disk. If the entry we deleted resulted from a name change, 9038 * then the old name still resides on disk. We cannot delete 9039 * its inode (returned to us in prevdirrem) until the zeroed 9040 * directory entry gets to disk. The new inode has never been 9041 * referenced on the disk, so can be deleted immediately. 9042 */ 9043 if ((dirrem->dm_state & COMPLETE) == 0) { 9044 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem, 9045 dm_next); 9046 FREE_LOCK(ump); 9047 } else { 9048 if (prevdirrem != NULL) 9049 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, 9050 prevdirrem, dm_next); 9051 dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino; 9052 direct = LIST_EMPTY(&dirrem->dm_jremrefhd); 9053 FREE_LOCK(ump); 9054 if (direct) 9055 handle_workitem_remove(dirrem, 0); 9056 } 9057 } 9058 9059 /* 9060 * Check for an entry matching 'offset' on both the pd_dirraddhd list and the 9061 * pd_pendinghd list of a pagedep. 9062 */ 9063 static struct diradd * 9064 diradd_lookup(pagedep, offset) 9065 struct pagedep *pagedep; 9066 int offset; 9067 { 9068 struct diradd *dap; 9069 9070 LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist) 9071 if (dap->da_offset == offset) 9072 return (dap); 9073 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) 9074 if (dap->da_offset == offset) 9075 return (dap); 9076 return (NULL); 9077 } 9078 9079 /* 9080 * Search for a .. diradd dependency in a directory that is being removed. 9081 * If the directory was renamed to a new parent we have a diradd rather 9082 * than a mkdir for the .. entry. We need to cancel it now before 9083 * it is found in truncate(). 9084 */ 9085 static struct jremref * 9086 cancel_diradd_dotdot(ip, dirrem, jremref) 9087 struct inode *ip; 9088 struct dirrem *dirrem; 9089 struct jremref *jremref; 9090 { 9091 struct pagedep *pagedep; 9092 struct diradd *dap; 9093 struct worklist *wk; 9094 9095 if (pagedep_lookup(ITOVFS(ip), NULL, ip->i_number, 0, 0, &pagedep) == 0) 9096 return (jremref); 9097 dap = diradd_lookup(pagedep, DOTDOT_OFFSET); 9098 if (dap == NULL) 9099 return (jremref); 9100 cancel_diradd(dap, dirrem, jremref, NULL, NULL); 9101 /* 9102 * Mark any journal work as belonging to the parent so it is freed 9103 * with the .. reference. 9104 */ 9105 LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list) 9106 wk->wk_state |= MKDIR_PARENT; 9107 return (NULL); 9108 } 9109 9110 /* 9111 * Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to 9112 * replace it with a dirrem/diradd pair as a result of re-parenting a 9113 * directory. This ensures that we don't simultaneously have a mkdir and 9114 * a diradd for the same .. entry. 9115 */ 9116 static struct jremref * 9117 cancel_mkdir_dotdot(ip, dirrem, jremref) 9118 struct inode *ip; 9119 struct dirrem *dirrem; 9120 struct jremref *jremref; 9121 { 9122 struct inodedep *inodedep; 9123 struct jaddref *jaddref; 9124 struct ufsmount *ump; 9125 struct mkdir *mkdir; 9126 struct diradd *dap; 9127 struct mount *mp; 9128 9129 mp = ITOVFS(ip); 9130 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 9131 return (jremref); 9132 dap = inodedep->id_mkdiradd; 9133 if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0) 9134 return (jremref); 9135 ump = VFSTOUFS(inodedep->id_list.wk_mp); 9136 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; 9137 mkdir = LIST_NEXT(mkdir, md_mkdirs)) 9138 if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT) 9139 break; 9140 if (mkdir == NULL) 9141 panic("cancel_mkdir_dotdot: Unable to find mkdir\n"); 9142 if ((jaddref = mkdir->md_jaddref) != NULL) { 9143 mkdir->md_jaddref = NULL; 9144 jaddref->ja_state &= ~MKDIR_PARENT; 9145 if (inodedep_lookup(mp, jaddref->ja_ino, 0, &inodedep) == 0) 9146 panic("cancel_mkdir_dotdot: Lost parent inodedep"); 9147 if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) { 9148 journal_jremref(dirrem, jremref, inodedep); 9149 jremref = NULL; 9150 } 9151 } 9152 if (mkdir->md_state & ONWORKLIST) 9153 WORKLIST_REMOVE(&mkdir->md_list); 9154 mkdir->md_state |= ALLCOMPLETE; 9155 complete_mkdir(mkdir); 9156 return (jremref); 9157 } 9158 9159 static void 9160 journal_jremref(dirrem, jremref, inodedep) 9161 struct dirrem *dirrem; 9162 struct jremref *jremref; 9163 struct inodedep *inodedep; 9164 { 9165 9166 if (inodedep == NULL) 9167 if (inodedep_lookup(jremref->jr_list.wk_mp, 9168 jremref->jr_ref.if_ino, 0, &inodedep) == 0) 9169 panic("journal_jremref: Lost inodedep"); 9170 LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps); 9171 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps); 9172 add_to_journal(&jremref->jr_list); 9173 } 9174 9175 static void 9176 dirrem_journal(dirrem, jremref, dotremref, dotdotremref) 9177 struct dirrem *dirrem; 9178 struct jremref *jremref; 9179 struct jremref *dotremref; 9180 struct jremref *dotdotremref; 9181 { 9182 struct inodedep *inodedep; 9183 9184 9185 if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0, 9186 &inodedep) == 0) 9187 panic("dirrem_journal: Lost inodedep"); 9188 journal_jremref(dirrem, jremref, inodedep); 9189 if (dotremref) 9190 journal_jremref(dirrem, dotremref, inodedep); 9191 if (dotdotremref) 9192 journal_jremref(dirrem, dotdotremref, NULL); 9193 } 9194 9195 /* 9196 * Allocate a new dirrem if appropriate and return it along with 9197 * its associated pagedep. Called without a lock, returns with lock. 9198 */ 9199 static struct dirrem * 9200 newdirrem(bp, dp, ip, isrmdir, prevdirremp) 9201 struct buf *bp; /* buffer containing directory block */ 9202 struct inode *dp; /* inode for the directory being modified */ 9203 struct inode *ip; /* inode for directory entry being removed */ 9204 int isrmdir; /* indicates if doing RMDIR */ 9205 struct dirrem **prevdirremp; /* previously referenced inode, if any */ 9206 { 9207 int offset; 9208 ufs_lbn_t lbn; 9209 struct diradd *dap; 9210 struct dirrem *dirrem; 9211 struct pagedep *pagedep; 9212 struct jremref *jremref; 9213 struct jremref *dotremref; 9214 struct jremref *dotdotremref; 9215 struct vnode *dvp; 9216 struct ufsmount *ump; 9217 9218 /* 9219 * Whiteouts have no deletion dependencies. 9220 */ 9221 if (ip == NULL) 9222 panic("newdirrem: whiteout"); 9223 dvp = ITOV(dp); 9224 ump = ITOUMP(dp); 9225 9226 /* 9227 * If the system is over its limit and our filesystem is 9228 * responsible for more than our share of that usage and 9229 * we are not a snapshot, request some inodedep cleanup. 9230 * Limiting the number of dirrem structures will also limit 9231 * the number of freefile and freeblks structures. 9232 */ 9233 ACQUIRE_LOCK(ump); 9234 if (!IS_SNAPSHOT(ip) && softdep_excess_items(ump, D_DIRREM)) 9235 schedule_cleanup(UFSTOVFS(ump)); 9236 else 9237 FREE_LOCK(ump); 9238 dirrem = malloc(sizeof(struct dirrem), M_DIRREM, M_SOFTDEP_FLAGS | 9239 M_ZERO); 9240 workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount); 9241 LIST_INIT(&dirrem->dm_jremrefhd); 9242 LIST_INIT(&dirrem->dm_jwork); 9243 dirrem->dm_state = isrmdir ? RMDIR : 0; 9244 dirrem->dm_oldinum = ip->i_number; 9245 *prevdirremp = NULL; 9246 /* 9247 * Allocate remove reference structures to track journal write 9248 * dependencies. We will always have one for the link and 9249 * when doing directories we will always have one more for dot. 9250 * When renaming a directory we skip the dotdot link change so 9251 * this is not needed. 9252 */ 9253 jremref = dotremref = dotdotremref = NULL; 9254 if (DOINGSUJ(dvp)) { 9255 if (isrmdir) { 9256 jremref = newjremref(dirrem, dp, ip, dp->i_offset, 9257 ip->i_effnlink + 2); 9258 dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET, 9259 ip->i_effnlink + 1); 9260 dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET, 9261 dp->i_effnlink + 1); 9262 dotdotremref->jr_state |= MKDIR_PARENT; 9263 } else 9264 jremref = newjremref(dirrem, dp, ip, dp->i_offset, 9265 ip->i_effnlink + 1); 9266 } 9267 ACQUIRE_LOCK(ump); 9268 lbn = lblkno(ump->um_fs, dp->i_offset); 9269 offset = blkoff(ump->um_fs, dp->i_offset); 9270 pagedep_lookup(UFSTOVFS(ump), bp, dp->i_number, lbn, DEPALLOC, 9271 &pagedep); 9272 dirrem->dm_pagedep = pagedep; 9273 dirrem->dm_offset = offset; 9274 /* 9275 * If we're renaming a .. link to a new directory, cancel any 9276 * existing MKDIR_PARENT mkdir. If it has already been canceled 9277 * the jremref is preserved for any potential diradd in this 9278 * location. This can not coincide with a rmdir. 9279 */ 9280 if (dp->i_offset == DOTDOT_OFFSET) { 9281 if (isrmdir) 9282 panic("newdirrem: .. directory change during remove?"); 9283 jremref = cancel_mkdir_dotdot(dp, dirrem, jremref); 9284 } 9285 /* 9286 * If we're removing a directory search for the .. dependency now and 9287 * cancel it. Any pending journal work will be added to the dirrem 9288 * to be completed when the workitem remove completes. 9289 */ 9290 if (isrmdir) 9291 dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref); 9292 /* 9293 * Check for a diradd dependency for the same directory entry. 9294 * If present, then both dependencies become obsolete and can 9295 * be de-allocated. 9296 */ 9297 dap = diradd_lookup(pagedep, offset); 9298 if (dap == NULL) { 9299 /* 9300 * Link the jremref structures into the dirrem so they are 9301 * written prior to the pagedep. 9302 */ 9303 if (jremref) 9304 dirrem_journal(dirrem, jremref, dotremref, 9305 dotdotremref); 9306 return (dirrem); 9307 } 9308 /* 9309 * Must be ATTACHED at this point. 9310 */ 9311 if ((dap->da_state & ATTACHED) == 0) 9312 panic("newdirrem: not ATTACHED"); 9313 if (dap->da_newinum != ip->i_number) 9314 panic("newdirrem: inum %ju should be %ju", 9315 (uintmax_t)ip->i_number, (uintmax_t)dap->da_newinum); 9316 /* 9317 * If we are deleting a changed name that never made it to disk, 9318 * then return the dirrem describing the previous inode (which 9319 * represents the inode currently referenced from this entry on disk). 9320 */ 9321 if ((dap->da_state & DIRCHG) != 0) { 9322 *prevdirremp = dap->da_previous; 9323 dap->da_state &= ~DIRCHG; 9324 dap->da_pagedep = pagedep; 9325 } 9326 /* 9327 * We are deleting an entry that never made it to disk. 9328 * Mark it COMPLETE so we can delete its inode immediately. 9329 */ 9330 dirrem->dm_state |= COMPLETE; 9331 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref); 9332 #ifdef INVARIANTS 9333 if (isrmdir == 0) { 9334 struct worklist *wk; 9335 9336 LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list) 9337 if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT)) 9338 panic("bad wk %p (0x%X)\n", wk, wk->wk_state); 9339 } 9340 #endif 9341 9342 return (dirrem); 9343 } 9344 9345 /* 9346 * Directory entry change dependencies. 9347 * 9348 * Changing an existing directory entry requires that an add operation 9349 * be completed first followed by a deletion. The semantics for the addition 9350 * are identical to the description of adding a new entry above except 9351 * that the rollback is to the old inode number rather than zero. Once 9352 * the addition dependency is completed, the removal is done as described 9353 * in the removal routine above. 9354 */ 9355 9356 /* 9357 * This routine should be called immediately after changing 9358 * a directory entry. The inode's link count should not be 9359 * decremented by the calling procedure -- the soft updates 9360 * code will perform this task when it is safe. 9361 */ 9362 void 9363 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 9364 struct buf *bp; /* buffer containing directory block */ 9365 struct inode *dp; /* inode for the directory being modified */ 9366 struct inode *ip; /* inode for directory entry being removed */ 9367 ino_t newinum; /* new inode number for changed entry */ 9368 int isrmdir; /* indicates if doing RMDIR */ 9369 { 9370 int offset; 9371 struct diradd *dap = NULL; 9372 struct dirrem *dirrem, *prevdirrem; 9373 struct pagedep *pagedep; 9374 struct inodedep *inodedep; 9375 struct jaddref *jaddref; 9376 struct mount *mp; 9377 struct ufsmount *ump; 9378 9379 mp = ITOVFS(dp); 9380 ump = VFSTOUFS(mp); 9381 offset = blkoff(ump->um_fs, dp->i_offset); 9382 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 9383 ("softdep_setup_directory_change called on non-softdep filesystem")); 9384 9385 /* 9386 * Whiteouts do not need diradd dependencies. 9387 */ 9388 if (newinum != UFS_WINO) { 9389 dap = malloc(sizeof(struct diradd), 9390 M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO); 9391 workitem_alloc(&dap->da_list, D_DIRADD, mp); 9392 dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE; 9393 dap->da_offset = offset; 9394 dap->da_newinum = newinum; 9395 LIST_INIT(&dap->da_jwork); 9396 } 9397 9398 /* 9399 * Allocate a new dirrem and ACQUIRE_LOCK. 9400 */ 9401 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 9402 pagedep = dirrem->dm_pagedep; 9403 /* 9404 * The possible values for isrmdir: 9405 * 0 - non-directory file rename 9406 * 1 - directory rename within same directory 9407 * inum - directory rename to new directory of given inode number 9408 * When renaming to a new directory, we are both deleting and 9409 * creating a new directory entry, so the link count on the new 9410 * directory should not change. Thus we do not need the followup 9411 * dirrem which is usually done in handle_workitem_remove. We set 9412 * the DIRCHG flag to tell handle_workitem_remove to skip the 9413 * followup dirrem. 9414 */ 9415 if (isrmdir > 1) 9416 dirrem->dm_state |= DIRCHG; 9417 9418 /* 9419 * Whiteouts have no additional dependencies, 9420 * so just put the dirrem on the correct list. 9421 */ 9422 if (newinum == UFS_WINO) { 9423 if ((dirrem->dm_state & COMPLETE) == 0) { 9424 LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem, 9425 dm_next); 9426 } else { 9427 dirrem->dm_dirinum = pagedep->pd_ino; 9428 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 9429 add_to_worklist(&dirrem->dm_list, 0); 9430 } 9431 FREE_LOCK(ump); 9432 return; 9433 } 9434 /* 9435 * Add the dirrem to the inodedep's pending remove list for quick 9436 * discovery later. A valid nlinkdelta ensures that this lookup 9437 * will not fail. 9438 */ 9439 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 9440 panic("softdep_setup_directory_change: Lost inodedep."); 9441 dirrem->dm_state |= ONDEPLIST; 9442 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 9443 9444 /* 9445 * If the COMPLETE flag is clear, then there were no active 9446 * entries and we want to roll back to the previous inode until 9447 * the new inode is committed to disk. If the COMPLETE flag is 9448 * set, then we have deleted an entry that never made it to disk. 9449 * If the entry we deleted resulted from a name change, then the old 9450 * inode reference still resides on disk. Any rollback that we do 9451 * needs to be to that old inode (returned to us in prevdirrem). If 9452 * the entry we deleted resulted from a create, then there is 9453 * no entry on the disk, so we want to roll back to zero rather 9454 * than the uncommitted inode. In either of the COMPLETE cases we 9455 * want to immediately free the unwritten and unreferenced inode. 9456 */ 9457 if ((dirrem->dm_state & COMPLETE) == 0) { 9458 dap->da_previous = dirrem; 9459 } else { 9460 if (prevdirrem != NULL) { 9461 dap->da_previous = prevdirrem; 9462 } else { 9463 dap->da_state &= ~DIRCHG; 9464 dap->da_pagedep = pagedep; 9465 } 9466 dirrem->dm_dirinum = pagedep->pd_ino; 9467 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 9468 add_to_worklist(&dirrem->dm_list, 0); 9469 } 9470 /* 9471 * Lookup the jaddref for this journal entry. We must finish 9472 * initializing it and make the diradd write dependent on it. 9473 * If we're not journaling, put it on the id_bufwait list if the 9474 * inode is not yet written. If it is written, do the post-inode 9475 * write processing to put it on the id_pendinghd list. 9476 */ 9477 inodedep_lookup(mp, newinum, DEPALLOC, &inodedep); 9478 if (MOUNTEDSUJ(mp)) { 9479 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 9480 inoreflst); 9481 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 9482 ("softdep_setup_directory_change: bad jaddref %p", 9483 jaddref)); 9484 jaddref->ja_diroff = dp->i_offset; 9485 jaddref->ja_diradd = dap; 9486 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], 9487 dap, da_pdlist); 9488 add_to_journal(&jaddref->ja_list); 9489 } else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 9490 dap->da_state |= COMPLETE; 9491 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 9492 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 9493 } else { 9494 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], 9495 dap, da_pdlist); 9496 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 9497 } 9498 /* 9499 * If we're making a new name for a directory that has not been 9500 * committed when need to move the dot and dotdot references to 9501 * this new name. 9502 */ 9503 if (inodedep->id_mkdiradd && dp->i_offset != DOTDOT_OFFSET) 9504 merge_diradd(inodedep, dap); 9505 FREE_LOCK(ump); 9506 } 9507 9508 /* 9509 * Called whenever the link count on an inode is changed. 9510 * It creates an inode dependency so that the new reference(s) 9511 * to the inode cannot be committed to disk until the updated 9512 * inode has been written. 9513 */ 9514 void 9515 softdep_change_linkcnt(ip) 9516 struct inode *ip; /* the inode with the increased link count */ 9517 { 9518 struct inodedep *inodedep; 9519 struct ufsmount *ump; 9520 9521 ump = ITOUMP(ip); 9522 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 9523 ("softdep_change_linkcnt called on non-softdep filesystem")); 9524 ACQUIRE_LOCK(ump); 9525 inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep); 9526 if (ip->i_nlink < ip->i_effnlink) 9527 panic("softdep_change_linkcnt: bad delta"); 9528 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 9529 FREE_LOCK(ump); 9530 } 9531 9532 /* 9533 * Attach a sbdep dependency to the superblock buf so that we can keep 9534 * track of the head of the linked list of referenced but unlinked inodes. 9535 */ 9536 void 9537 softdep_setup_sbupdate(ump, fs, bp) 9538 struct ufsmount *ump; 9539 struct fs *fs; 9540 struct buf *bp; 9541 { 9542 struct sbdep *sbdep; 9543 struct worklist *wk; 9544 9545 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 9546 ("softdep_setup_sbupdate called on non-softdep filesystem")); 9547 LIST_FOREACH(wk, &bp->b_dep, wk_list) 9548 if (wk->wk_type == D_SBDEP) 9549 break; 9550 if (wk != NULL) 9551 return; 9552 sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS); 9553 workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump)); 9554 sbdep->sb_fs = fs; 9555 sbdep->sb_ump = ump; 9556 ACQUIRE_LOCK(ump); 9557 WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list); 9558 FREE_LOCK(ump); 9559 } 9560 9561 /* 9562 * Return the first unlinked inodedep which is ready to be the head of the 9563 * list. The inodedep and all those after it must have valid next pointers. 9564 */ 9565 static struct inodedep * 9566 first_unlinked_inodedep(ump) 9567 struct ufsmount *ump; 9568 { 9569 struct inodedep *inodedep; 9570 struct inodedep *idp; 9571 9572 LOCK_OWNED(ump); 9573 for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst); 9574 inodedep; inodedep = idp) { 9575 if ((inodedep->id_state & UNLINKNEXT) == 0) 9576 return (NULL); 9577 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 9578 if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0) 9579 break; 9580 if ((inodedep->id_state & UNLINKPREV) == 0) 9581 break; 9582 } 9583 return (inodedep); 9584 } 9585 9586 /* 9587 * Set the sujfree unlinked head pointer prior to writing a superblock. 9588 */ 9589 static void 9590 initiate_write_sbdep(sbdep) 9591 struct sbdep *sbdep; 9592 { 9593 struct inodedep *inodedep; 9594 struct fs *bpfs; 9595 struct fs *fs; 9596 9597 bpfs = sbdep->sb_fs; 9598 fs = sbdep->sb_ump->um_fs; 9599 inodedep = first_unlinked_inodedep(sbdep->sb_ump); 9600 if (inodedep) { 9601 fs->fs_sujfree = inodedep->id_ino; 9602 inodedep->id_state |= UNLINKPREV; 9603 } else 9604 fs->fs_sujfree = 0; 9605 bpfs->fs_sujfree = fs->fs_sujfree; 9606 /* 9607 * Because we have made changes to the superblock, we need to 9608 * recompute its check-hash. 9609 */ 9610 bpfs->fs_ckhash = ffs_calc_sbhash(bpfs); 9611 } 9612 9613 /* 9614 * After a superblock is written determine whether it must be written again 9615 * due to a changing unlinked list head. 9616 */ 9617 static int 9618 handle_written_sbdep(sbdep, bp) 9619 struct sbdep *sbdep; 9620 struct buf *bp; 9621 { 9622 struct inodedep *inodedep; 9623 struct fs *fs; 9624 9625 LOCK_OWNED(sbdep->sb_ump); 9626 fs = sbdep->sb_fs; 9627 /* 9628 * If the superblock doesn't match the in-memory list start over. 9629 */ 9630 inodedep = first_unlinked_inodedep(sbdep->sb_ump); 9631 if ((inodedep && fs->fs_sujfree != inodedep->id_ino) || 9632 (inodedep == NULL && fs->fs_sujfree != 0)) { 9633 bdirty(bp); 9634 return (1); 9635 } 9636 WORKITEM_FREE(sbdep, D_SBDEP); 9637 if (fs->fs_sujfree == 0) 9638 return (0); 9639 /* 9640 * Now that we have a record of this inode in stable store allow it 9641 * to be written to free up pending work. Inodes may see a lot of 9642 * write activity after they are unlinked which we must not hold up. 9643 */ 9644 for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) { 9645 if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS) 9646 panic("handle_written_sbdep: Bad inodedep %p (0x%X)", 9647 inodedep, inodedep->id_state); 9648 if (inodedep->id_state & UNLINKONLIST) 9649 break; 9650 inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST; 9651 } 9652 9653 return (0); 9654 } 9655 9656 /* 9657 * Mark an inodedep as unlinked and insert it into the in-memory unlinked list. 9658 */ 9659 static void 9660 unlinked_inodedep(mp, inodedep) 9661 struct mount *mp; 9662 struct inodedep *inodedep; 9663 { 9664 struct ufsmount *ump; 9665 9666 ump = VFSTOUFS(mp); 9667 LOCK_OWNED(ump); 9668 if (MOUNTEDSUJ(mp) == 0) 9669 return; 9670 ump->um_fs->fs_fmod = 1; 9671 if (inodedep->id_state & UNLINKED) 9672 panic("unlinked_inodedep: %p already unlinked\n", inodedep); 9673 inodedep->id_state |= UNLINKED; 9674 TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked); 9675 } 9676 9677 /* 9678 * Remove an inodedep from the unlinked inodedep list. This may require 9679 * disk writes if the inode has made it that far. 9680 */ 9681 static void 9682 clear_unlinked_inodedep(inodedep) 9683 struct inodedep *inodedep; 9684 { 9685 struct ufs2_dinode *dip; 9686 struct ufsmount *ump; 9687 struct inodedep *idp; 9688 struct inodedep *idn; 9689 struct fs *fs, *bpfs; 9690 struct buf *bp; 9691 ino_t ino; 9692 ino_t nino; 9693 ino_t pino; 9694 int error; 9695 9696 ump = VFSTOUFS(inodedep->id_list.wk_mp); 9697 fs = ump->um_fs; 9698 ino = inodedep->id_ino; 9699 error = 0; 9700 for (;;) { 9701 LOCK_OWNED(ump); 9702 KASSERT((inodedep->id_state & UNLINKED) != 0, 9703 ("clear_unlinked_inodedep: inodedep %p not unlinked", 9704 inodedep)); 9705 /* 9706 * If nothing has yet been written simply remove us from 9707 * the in memory list and return. This is the most common 9708 * case where handle_workitem_remove() loses the final 9709 * reference. 9710 */ 9711 if ((inodedep->id_state & UNLINKLINKS) == 0) 9712 break; 9713 /* 9714 * If we have a NEXT pointer and no PREV pointer we can simply 9715 * clear NEXT's PREV and remove ourselves from the list. Be 9716 * careful not to clear PREV if the superblock points at 9717 * next as well. 9718 */ 9719 idn = TAILQ_NEXT(inodedep, id_unlinked); 9720 if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) { 9721 if (idn && fs->fs_sujfree != idn->id_ino) 9722 idn->id_state &= ~UNLINKPREV; 9723 break; 9724 } 9725 /* 9726 * Here we have an inodedep which is actually linked into 9727 * the list. We must remove it by forcing a write to the 9728 * link before us, whether it be the superblock or an inode. 9729 * Unfortunately the list may change while we're waiting 9730 * on the buf lock for either resource so we must loop until 9731 * we lock the right one. If both the superblock and an 9732 * inode point to this inode we must clear the inode first 9733 * followed by the superblock. 9734 */ 9735 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 9736 pino = 0; 9737 if (idp && (idp->id_state & UNLINKNEXT)) 9738 pino = idp->id_ino; 9739 FREE_LOCK(ump); 9740 if (pino == 0) { 9741 bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc), 9742 (int)fs->fs_sbsize, 0, 0, 0); 9743 } else { 9744 error = bread(ump->um_devvp, 9745 fsbtodb(fs, ino_to_fsba(fs, pino)), 9746 (int)fs->fs_bsize, NOCRED, &bp); 9747 if (error) 9748 brelse(bp); 9749 } 9750 ACQUIRE_LOCK(ump); 9751 if (error) 9752 break; 9753 /* If the list has changed restart the loop. */ 9754 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 9755 nino = 0; 9756 if (idp && (idp->id_state & UNLINKNEXT)) 9757 nino = idp->id_ino; 9758 if (nino != pino || 9759 (inodedep->id_state & UNLINKPREV) != UNLINKPREV) { 9760 FREE_LOCK(ump); 9761 brelse(bp); 9762 ACQUIRE_LOCK(ump); 9763 continue; 9764 } 9765 nino = 0; 9766 idn = TAILQ_NEXT(inodedep, id_unlinked); 9767 if (idn) 9768 nino = idn->id_ino; 9769 /* 9770 * Remove us from the in memory list. After this we cannot 9771 * access the inodedep. 9772 */ 9773 KASSERT((inodedep->id_state & UNLINKED) != 0, 9774 ("clear_unlinked_inodedep: inodedep %p not unlinked", 9775 inodedep)); 9776 inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST); 9777 TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked); 9778 FREE_LOCK(ump); 9779 /* 9780 * The predecessor's next pointer is manually updated here 9781 * so that the NEXT flag is never cleared for an element 9782 * that is in the list. 9783 */ 9784 if (pino == 0) { 9785 bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize); 9786 bpfs = (struct fs *)bp->b_data; 9787 ffs_oldfscompat_write(bpfs, ump); 9788 softdep_setup_sbupdate(ump, bpfs, bp); 9789 /* 9790 * Because we may have made changes to the superblock, 9791 * we need to recompute its check-hash. 9792 */ 9793 bpfs->fs_ckhash = ffs_calc_sbhash(bpfs); 9794 } else if (fs->fs_magic == FS_UFS1_MAGIC) { 9795 ((struct ufs1_dinode *)bp->b_data + 9796 ino_to_fsbo(fs, pino))->di_freelink = nino; 9797 } else { 9798 dip = (struct ufs2_dinode *)bp->b_data + 9799 ino_to_fsbo(fs, pino); 9800 dip->di_freelink = nino; 9801 ffs_update_dinode_ckhash(fs, dip); 9802 } 9803 /* 9804 * If the bwrite fails we have no recourse to recover. The 9805 * filesystem is corrupted already. 9806 */ 9807 bwrite(bp); 9808 ACQUIRE_LOCK(ump); 9809 /* 9810 * If the superblock pointer still needs to be cleared force 9811 * a write here. 9812 */ 9813 if (fs->fs_sujfree == ino) { 9814 FREE_LOCK(ump); 9815 bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc), 9816 (int)fs->fs_sbsize, 0, 0, 0); 9817 bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize); 9818 bpfs = (struct fs *)bp->b_data; 9819 ffs_oldfscompat_write(bpfs, ump); 9820 softdep_setup_sbupdate(ump, bpfs, bp); 9821 /* 9822 * Because we may have made changes to the superblock, 9823 * we need to recompute its check-hash. 9824 */ 9825 bpfs->fs_ckhash = ffs_calc_sbhash(bpfs); 9826 bwrite(bp); 9827 ACQUIRE_LOCK(ump); 9828 } 9829 9830 if (fs->fs_sujfree != ino) 9831 return; 9832 panic("clear_unlinked_inodedep: Failed to clear free head"); 9833 } 9834 if (inodedep->id_ino == fs->fs_sujfree) 9835 panic("clear_unlinked_inodedep: Freeing head of free list"); 9836 inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST); 9837 TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked); 9838 return; 9839 } 9840 9841 /* 9842 * This workitem decrements the inode's link count. 9843 * If the link count reaches zero, the file is removed. 9844 */ 9845 static int 9846 handle_workitem_remove(dirrem, flags) 9847 struct dirrem *dirrem; 9848 int flags; 9849 { 9850 struct inodedep *inodedep; 9851 struct workhead dotdotwk; 9852 struct worklist *wk; 9853 struct ufsmount *ump; 9854 struct mount *mp; 9855 struct vnode *vp; 9856 struct inode *ip; 9857 ino_t oldinum; 9858 9859 if (dirrem->dm_state & ONWORKLIST) 9860 panic("handle_workitem_remove: dirrem %p still on worklist", 9861 dirrem); 9862 oldinum = dirrem->dm_oldinum; 9863 mp = dirrem->dm_list.wk_mp; 9864 ump = VFSTOUFS(mp); 9865 flags |= LK_EXCLUSIVE; 9866 if (ffs_vgetf(mp, oldinum, flags, &vp, FFSV_FORCEINSMQ) != 0) 9867 return (EBUSY); 9868 ip = VTOI(vp); 9869 MPASS(ip->i_mode != 0); 9870 ACQUIRE_LOCK(ump); 9871 if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0) 9872 panic("handle_workitem_remove: lost inodedep"); 9873 if (dirrem->dm_state & ONDEPLIST) 9874 LIST_REMOVE(dirrem, dm_inonext); 9875 KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd), 9876 ("handle_workitem_remove: Journal entries not written.")); 9877 9878 /* 9879 * Move all dependencies waiting on the remove to complete 9880 * from the dirrem to the inode inowait list to be completed 9881 * after the inode has been updated and written to disk. 9882 * 9883 * Any marked MKDIR_PARENT are saved to be completed when the 9884 * dotdot ref is removed unless DIRCHG is specified. For 9885 * directory change operations there will be no further 9886 * directory writes and the jsegdeps need to be moved along 9887 * with the rest to be completed when the inode is free or 9888 * stable in the inode free list. 9889 */ 9890 LIST_INIT(&dotdotwk); 9891 while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) { 9892 WORKLIST_REMOVE(wk); 9893 if ((dirrem->dm_state & DIRCHG) == 0 && 9894 wk->wk_state & MKDIR_PARENT) { 9895 wk->wk_state &= ~MKDIR_PARENT; 9896 WORKLIST_INSERT(&dotdotwk, wk); 9897 continue; 9898 } 9899 WORKLIST_INSERT(&inodedep->id_inowait, wk); 9900 } 9901 LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list); 9902 /* 9903 * Normal file deletion. 9904 */ 9905 if ((dirrem->dm_state & RMDIR) == 0) { 9906 ip->i_nlink--; 9907 KASSERT(ip->i_nlink >= 0, ("handle_workitem_remove: file ino " 9908 "%ju negative i_nlink %d", (intmax_t)ip->i_number, 9909 ip->i_nlink)); 9910 DIP_SET(ip, i_nlink, ip->i_nlink); 9911 UFS_INODE_SET_FLAG(ip, IN_CHANGE); 9912 if (ip->i_nlink < ip->i_effnlink) 9913 panic("handle_workitem_remove: bad file delta"); 9914 if (ip->i_nlink == 0) 9915 unlinked_inodedep(mp, inodedep); 9916 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 9917 KASSERT(LIST_EMPTY(&dirrem->dm_jwork), 9918 ("handle_workitem_remove: worklist not empty. %s", 9919 TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type))); 9920 WORKITEM_FREE(dirrem, D_DIRREM); 9921 FREE_LOCK(ump); 9922 goto out; 9923 } 9924 /* 9925 * Directory deletion. Decrement reference count for both the 9926 * just deleted parent directory entry and the reference for ".". 9927 * Arrange to have the reference count on the parent decremented 9928 * to account for the loss of "..". 9929 */ 9930 ip->i_nlink -= 2; 9931 KASSERT(ip->i_nlink >= 0, ("handle_workitem_remove: directory ino " 9932 "%ju negative i_nlink %d", (intmax_t)ip->i_number, ip->i_nlink)); 9933 DIP_SET(ip, i_nlink, ip->i_nlink); 9934 UFS_INODE_SET_FLAG(ip, IN_CHANGE); 9935 if (ip->i_nlink < ip->i_effnlink) 9936 panic("handle_workitem_remove: bad dir delta"); 9937 if (ip->i_nlink == 0) 9938 unlinked_inodedep(mp, inodedep); 9939 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 9940 /* 9941 * Rename a directory to a new parent. Since, we are both deleting 9942 * and creating a new directory entry, the link count on the new 9943 * directory should not change. Thus we skip the followup dirrem. 9944 */ 9945 if (dirrem->dm_state & DIRCHG) { 9946 KASSERT(LIST_EMPTY(&dirrem->dm_jwork), 9947 ("handle_workitem_remove: DIRCHG and worklist not empty.")); 9948 WORKITEM_FREE(dirrem, D_DIRREM); 9949 FREE_LOCK(ump); 9950 goto out; 9951 } 9952 dirrem->dm_state = ONDEPLIST; 9953 dirrem->dm_oldinum = dirrem->dm_dirinum; 9954 /* 9955 * Place the dirrem on the parent's diremhd list. 9956 */ 9957 if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0) 9958 panic("handle_workitem_remove: lost dir inodedep"); 9959 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 9960 /* 9961 * If the allocated inode has never been written to disk, then 9962 * the on-disk inode is zero'ed and we can remove the file 9963 * immediately. When journaling if the inode has been marked 9964 * unlinked and not DEPCOMPLETE we know it can never be written. 9965 */ 9966 inodedep_lookup(mp, oldinum, 0, &inodedep); 9967 if (inodedep == NULL || 9968 (inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED || 9969 check_inode_unwritten(inodedep)) { 9970 FREE_LOCK(ump); 9971 vput(vp); 9972 return handle_workitem_remove(dirrem, flags); 9973 } 9974 WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list); 9975 FREE_LOCK(ump); 9976 UFS_INODE_SET_FLAG(ip, IN_CHANGE); 9977 out: 9978 ffs_update(vp, 0); 9979 vput(vp); 9980 return (0); 9981 } 9982 9983 /* 9984 * Inode de-allocation dependencies. 9985 * 9986 * When an inode's link count is reduced to zero, it can be de-allocated. We 9987 * found it convenient to postpone de-allocation until after the inode is 9988 * written to disk with its new link count (zero). At this point, all of the 9989 * on-disk inode's block pointers are nullified and, with careful dependency 9990 * list ordering, all dependencies related to the inode will be satisfied and 9991 * the corresponding dependency structures de-allocated. So, if/when the 9992 * inode is reused, there will be no mixing of old dependencies with new 9993 * ones. This artificial dependency is set up by the block de-allocation 9994 * procedure above (softdep_setup_freeblocks) and completed by the 9995 * following procedure. 9996 */ 9997 static void 9998 handle_workitem_freefile(freefile) 9999 struct freefile *freefile; 10000 { 10001 struct workhead wkhd; 10002 struct fs *fs; 10003 struct ufsmount *ump; 10004 int error; 10005 #ifdef INVARIANTS 10006 struct inodedep *idp; 10007 #endif 10008 10009 ump = VFSTOUFS(freefile->fx_list.wk_mp); 10010 fs = ump->um_fs; 10011 #ifdef INVARIANTS 10012 ACQUIRE_LOCK(ump); 10013 error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp); 10014 FREE_LOCK(ump); 10015 if (error) 10016 panic("handle_workitem_freefile: inodedep %p survived", idp); 10017 #endif 10018 UFS_LOCK(ump); 10019 fs->fs_pendinginodes -= 1; 10020 UFS_UNLOCK(ump); 10021 LIST_INIT(&wkhd); 10022 LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list); 10023 if ((error = ffs_freefile(ump, fs, freefile->fx_devvp, 10024 freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0) 10025 softdep_error("handle_workitem_freefile", error); 10026 ACQUIRE_LOCK(ump); 10027 WORKITEM_FREE(freefile, D_FREEFILE); 10028 FREE_LOCK(ump); 10029 } 10030 10031 10032 /* 10033 * Helper function which unlinks marker element from work list and returns 10034 * the next element on the list. 10035 */ 10036 static __inline struct worklist * 10037 markernext(struct worklist *marker) 10038 { 10039 struct worklist *next; 10040 10041 next = LIST_NEXT(marker, wk_list); 10042 LIST_REMOVE(marker, wk_list); 10043 return next; 10044 } 10045 10046 /* 10047 * Disk writes. 10048 * 10049 * The dependency structures constructed above are most actively used when file 10050 * system blocks are written to disk. No constraints are placed on when a 10051 * block can be written, but unsatisfied update dependencies are made safe by 10052 * modifying (or replacing) the source memory for the duration of the disk 10053 * write. When the disk write completes, the memory block is again brought 10054 * up-to-date. 10055 * 10056 * In-core inode structure reclamation. 10057 * 10058 * Because there are a finite number of "in-core" inode structures, they are 10059 * reused regularly. By transferring all inode-related dependencies to the 10060 * in-memory inode block and indexing them separately (via "inodedep"s), we 10061 * can allow "in-core" inode structures to be reused at any time and avoid 10062 * any increase in contention. 10063 * 10064 * Called just before entering the device driver to initiate a new disk I/O. 10065 * The buffer must be locked, thus, no I/O completion operations can occur 10066 * while we are manipulating its associated dependencies. 10067 */ 10068 static void 10069 softdep_disk_io_initiation(bp) 10070 struct buf *bp; /* structure describing disk write to occur */ 10071 { 10072 struct worklist *wk; 10073 struct worklist marker; 10074 struct inodedep *inodedep; 10075 struct freeblks *freeblks; 10076 struct jblkdep *jblkdep; 10077 struct newblk *newblk; 10078 struct ufsmount *ump; 10079 10080 /* 10081 * We only care about write operations. There should never 10082 * be dependencies for reads. 10083 */ 10084 if (bp->b_iocmd != BIO_WRITE) 10085 panic("softdep_disk_io_initiation: not write"); 10086 10087 if (bp->b_vflags & BV_BKGRDINPROG) 10088 panic("softdep_disk_io_initiation: Writing buffer with " 10089 "background write in progress: %p", bp); 10090 10091 ump = softdep_bp_to_mp(bp); 10092 if (ump == NULL) 10093 return; 10094 10095 marker.wk_type = D_LAST + 1; /* Not a normal workitem */ 10096 PHOLD(curproc); /* Don't swap out kernel stack */ 10097 ACQUIRE_LOCK(ump); 10098 /* 10099 * Do any necessary pre-I/O processing. 10100 */ 10101 for (wk = LIST_FIRST(&bp->b_dep); wk != NULL; 10102 wk = markernext(&marker)) { 10103 LIST_INSERT_AFTER(wk, &marker, wk_list); 10104 switch (wk->wk_type) { 10105 10106 case D_PAGEDEP: 10107 initiate_write_filepage(WK_PAGEDEP(wk), bp); 10108 continue; 10109 10110 case D_INODEDEP: 10111 inodedep = WK_INODEDEP(wk); 10112 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) 10113 initiate_write_inodeblock_ufs1(inodedep, bp); 10114 else 10115 initiate_write_inodeblock_ufs2(inodedep, bp); 10116 continue; 10117 10118 case D_INDIRDEP: 10119 initiate_write_indirdep(WK_INDIRDEP(wk), bp); 10120 continue; 10121 10122 case D_BMSAFEMAP: 10123 initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp); 10124 continue; 10125 10126 case D_JSEG: 10127 WK_JSEG(wk)->js_buf = NULL; 10128 continue; 10129 10130 case D_FREEBLKS: 10131 freeblks = WK_FREEBLKS(wk); 10132 jblkdep = LIST_FIRST(&freeblks->fb_jblkdephd); 10133 /* 10134 * We have to wait for the freeblks to be journaled 10135 * before we can write an inodeblock with updated 10136 * pointers. Be careful to arrange the marker so 10137 * we revisit the freeblks if it's not removed by 10138 * the first jwait(). 10139 */ 10140 if (jblkdep != NULL) { 10141 LIST_REMOVE(&marker, wk_list); 10142 LIST_INSERT_BEFORE(wk, &marker, wk_list); 10143 jwait(&jblkdep->jb_list, MNT_WAIT); 10144 } 10145 continue; 10146 case D_ALLOCDIRECT: 10147 case D_ALLOCINDIR: 10148 /* 10149 * We have to wait for the jnewblk to be journaled 10150 * before we can write to a block if the contents 10151 * may be confused with an earlier file's indirect 10152 * at recovery time. Handle the marker as described 10153 * above. 10154 */ 10155 newblk = WK_NEWBLK(wk); 10156 if (newblk->nb_jnewblk != NULL && 10157 indirblk_lookup(newblk->nb_list.wk_mp, 10158 newblk->nb_newblkno)) { 10159 LIST_REMOVE(&marker, wk_list); 10160 LIST_INSERT_BEFORE(wk, &marker, wk_list); 10161 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 10162 } 10163 continue; 10164 10165 case D_SBDEP: 10166 initiate_write_sbdep(WK_SBDEP(wk)); 10167 continue; 10168 10169 case D_MKDIR: 10170 case D_FREEWORK: 10171 case D_FREEDEP: 10172 case D_JSEGDEP: 10173 continue; 10174 10175 default: 10176 panic("handle_disk_io_initiation: Unexpected type %s", 10177 TYPENAME(wk->wk_type)); 10178 /* NOTREACHED */ 10179 } 10180 } 10181 FREE_LOCK(ump); 10182 PRELE(curproc); /* Allow swapout of kernel stack */ 10183 } 10184 10185 /* 10186 * Called from within the procedure above to deal with unsatisfied 10187 * allocation dependencies in a directory. The buffer must be locked, 10188 * thus, no I/O completion operations can occur while we are 10189 * manipulating its associated dependencies. 10190 */ 10191 static void 10192 initiate_write_filepage(pagedep, bp) 10193 struct pagedep *pagedep; 10194 struct buf *bp; 10195 { 10196 struct jremref *jremref; 10197 struct jmvref *jmvref; 10198 struct dirrem *dirrem; 10199 struct diradd *dap; 10200 struct direct *ep; 10201 int i; 10202 10203 if (pagedep->pd_state & IOSTARTED) { 10204 /* 10205 * This can only happen if there is a driver that does not 10206 * understand chaining. Here biodone will reissue the call 10207 * to strategy for the incomplete buffers. 10208 */ 10209 printf("initiate_write_filepage: already started\n"); 10210 return; 10211 } 10212 pagedep->pd_state |= IOSTARTED; 10213 /* 10214 * Wait for all journal remove dependencies to hit the disk. 10215 * We can not allow any potentially conflicting directory adds 10216 * to be visible before removes and rollback is too difficult. 10217 * The per-filesystem lock may be dropped and re-acquired, however 10218 * we hold the buf locked so the dependency can not go away. 10219 */ 10220 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) 10221 while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) 10222 jwait(&jremref->jr_list, MNT_WAIT); 10223 while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) 10224 jwait(&jmvref->jm_list, MNT_WAIT); 10225 for (i = 0; i < DAHASHSZ; i++) { 10226 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 10227 ep = (struct direct *) 10228 ((char *)bp->b_data + dap->da_offset); 10229 if (ep->d_ino != dap->da_newinum) 10230 panic("%s: dir inum %ju != new %ju", 10231 "initiate_write_filepage", 10232 (uintmax_t)ep->d_ino, 10233 (uintmax_t)dap->da_newinum); 10234 if (dap->da_state & DIRCHG) 10235 ep->d_ino = dap->da_previous->dm_oldinum; 10236 else 10237 ep->d_ino = 0; 10238 dap->da_state &= ~ATTACHED; 10239 dap->da_state |= UNDONE; 10240 } 10241 } 10242 } 10243 10244 /* 10245 * Version of initiate_write_inodeblock that handles UFS1 dinodes. 10246 * Note that any bug fixes made to this routine must be done in the 10247 * version found below. 10248 * 10249 * Called from within the procedure above to deal with unsatisfied 10250 * allocation dependencies in an inodeblock. The buffer must be 10251 * locked, thus, no I/O completion operations can occur while we 10252 * are manipulating its associated dependencies. 10253 */ 10254 static void 10255 initiate_write_inodeblock_ufs1(inodedep, bp) 10256 struct inodedep *inodedep; 10257 struct buf *bp; /* The inode block */ 10258 { 10259 struct allocdirect *adp, *lastadp; 10260 struct ufs1_dinode *dp; 10261 struct ufs1_dinode *sip; 10262 struct inoref *inoref; 10263 struct ufsmount *ump; 10264 struct fs *fs; 10265 ufs_lbn_t i; 10266 #ifdef INVARIANTS 10267 ufs_lbn_t prevlbn = 0; 10268 #endif 10269 int deplist; 10270 10271 if (inodedep->id_state & IOSTARTED) 10272 panic("initiate_write_inodeblock_ufs1: already started"); 10273 inodedep->id_state |= IOSTARTED; 10274 fs = inodedep->id_fs; 10275 ump = VFSTOUFS(inodedep->id_list.wk_mp); 10276 LOCK_OWNED(ump); 10277 dp = (struct ufs1_dinode *)bp->b_data + 10278 ino_to_fsbo(fs, inodedep->id_ino); 10279 10280 /* 10281 * If we're on the unlinked list but have not yet written our 10282 * next pointer initialize it here. 10283 */ 10284 if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) { 10285 struct inodedep *inon; 10286 10287 inon = TAILQ_NEXT(inodedep, id_unlinked); 10288 dp->di_freelink = inon ? inon->id_ino : 0; 10289 } 10290 /* 10291 * If the bitmap is not yet written, then the allocated 10292 * inode cannot be written to disk. 10293 */ 10294 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 10295 if (inodedep->id_savedino1 != NULL) 10296 panic("initiate_write_inodeblock_ufs1: I/O underway"); 10297 FREE_LOCK(ump); 10298 sip = malloc(sizeof(struct ufs1_dinode), 10299 M_SAVEDINO, M_SOFTDEP_FLAGS); 10300 ACQUIRE_LOCK(ump); 10301 inodedep->id_savedino1 = sip; 10302 *inodedep->id_savedino1 = *dp; 10303 bzero((caddr_t)dp, sizeof(struct ufs1_dinode)); 10304 dp->di_gen = inodedep->id_savedino1->di_gen; 10305 dp->di_freelink = inodedep->id_savedino1->di_freelink; 10306 return; 10307 } 10308 /* 10309 * If no dependencies, then there is nothing to roll back. 10310 */ 10311 inodedep->id_savedsize = dp->di_size; 10312 inodedep->id_savedextsize = 0; 10313 inodedep->id_savednlink = dp->di_nlink; 10314 if (TAILQ_EMPTY(&inodedep->id_inoupdt) && 10315 TAILQ_EMPTY(&inodedep->id_inoreflst)) 10316 return; 10317 /* 10318 * Revert the link count to that of the first unwritten journal entry. 10319 */ 10320 inoref = TAILQ_FIRST(&inodedep->id_inoreflst); 10321 if (inoref) 10322 dp->di_nlink = inoref->if_nlink; 10323 /* 10324 * Set the dependencies to busy. 10325 */ 10326 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10327 adp = TAILQ_NEXT(adp, ad_next)) { 10328 #ifdef INVARIANTS 10329 if (deplist != 0 && prevlbn >= adp->ad_offset) 10330 panic("softdep_write_inodeblock: lbn order"); 10331 prevlbn = adp->ad_offset; 10332 if (adp->ad_offset < UFS_NDADDR && 10333 dp->di_db[adp->ad_offset] != adp->ad_newblkno) 10334 panic("initiate_write_inodeblock_ufs1: " 10335 "direct pointer #%jd mismatch %d != %jd", 10336 (intmax_t)adp->ad_offset, 10337 dp->di_db[adp->ad_offset], 10338 (intmax_t)adp->ad_newblkno); 10339 if (adp->ad_offset >= UFS_NDADDR && 10340 dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno) 10341 panic("initiate_write_inodeblock_ufs1: " 10342 "indirect pointer #%jd mismatch %d != %jd", 10343 (intmax_t)adp->ad_offset - UFS_NDADDR, 10344 dp->di_ib[adp->ad_offset - UFS_NDADDR], 10345 (intmax_t)adp->ad_newblkno); 10346 deplist |= 1 << adp->ad_offset; 10347 if ((adp->ad_state & ATTACHED) == 0) 10348 panic("initiate_write_inodeblock_ufs1: " 10349 "Unknown state 0x%x", adp->ad_state); 10350 #endif /* INVARIANTS */ 10351 adp->ad_state &= ~ATTACHED; 10352 adp->ad_state |= UNDONE; 10353 } 10354 /* 10355 * The on-disk inode cannot claim to be any larger than the last 10356 * fragment that has been written. Otherwise, the on-disk inode 10357 * might have fragments that were not the last block in the file 10358 * which would corrupt the filesystem. 10359 */ 10360 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10361 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10362 if (adp->ad_offset >= UFS_NDADDR) 10363 break; 10364 dp->di_db[adp->ad_offset] = adp->ad_oldblkno; 10365 /* keep going until hitting a rollback to a frag */ 10366 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10367 continue; 10368 dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10369 for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) { 10370 #ifdef INVARIANTS 10371 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) 10372 panic("initiate_write_inodeblock_ufs1: " 10373 "lost dep1"); 10374 #endif /* INVARIANTS */ 10375 dp->di_db[i] = 0; 10376 } 10377 for (i = 0; i < UFS_NIADDR; i++) { 10378 #ifdef INVARIANTS 10379 if (dp->di_ib[i] != 0 && 10380 (deplist & ((1 << UFS_NDADDR) << i)) == 0) 10381 panic("initiate_write_inodeblock_ufs1: " 10382 "lost dep2"); 10383 #endif /* INVARIANTS */ 10384 dp->di_ib[i] = 0; 10385 } 10386 return; 10387 } 10388 /* 10389 * If we have zero'ed out the last allocated block of the file, 10390 * roll back the size to the last currently allocated block. 10391 * We know that this last allocated block is a full-sized as 10392 * we already checked for fragments in the loop above. 10393 */ 10394 if (lastadp != NULL && 10395 dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10396 for (i = lastadp->ad_offset; i >= 0; i--) 10397 if (dp->di_db[i] != 0) 10398 break; 10399 dp->di_size = (i + 1) * fs->fs_bsize; 10400 } 10401 /* 10402 * The only dependencies are for indirect blocks. 10403 * 10404 * The file size for indirect block additions is not guaranteed. 10405 * Such a guarantee would be non-trivial to achieve. The conventional 10406 * synchronous write implementation also does not make this guarantee. 10407 * Fsck should catch and fix discrepancies. Arguably, the file size 10408 * can be over-estimated without destroying integrity when the file 10409 * moves into the indirect blocks (i.e., is large). If we want to 10410 * postpone fsck, we are stuck with this argument. 10411 */ 10412 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 10413 dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0; 10414 } 10415 10416 /* 10417 * Version of initiate_write_inodeblock that handles UFS2 dinodes. 10418 * Note that any bug fixes made to this routine must be done in the 10419 * version found above. 10420 * 10421 * Called from within the procedure above to deal with unsatisfied 10422 * allocation dependencies in an inodeblock. The buffer must be 10423 * locked, thus, no I/O completion operations can occur while we 10424 * are manipulating its associated dependencies. 10425 */ 10426 static void 10427 initiate_write_inodeblock_ufs2(inodedep, bp) 10428 struct inodedep *inodedep; 10429 struct buf *bp; /* The inode block */ 10430 { 10431 struct allocdirect *adp, *lastadp; 10432 struct ufs2_dinode *dp; 10433 struct ufs2_dinode *sip; 10434 struct inoref *inoref; 10435 struct ufsmount *ump; 10436 struct fs *fs; 10437 ufs_lbn_t i; 10438 #ifdef INVARIANTS 10439 ufs_lbn_t prevlbn = 0; 10440 #endif 10441 int deplist; 10442 10443 if (inodedep->id_state & IOSTARTED) 10444 panic("initiate_write_inodeblock_ufs2: already started"); 10445 inodedep->id_state |= IOSTARTED; 10446 fs = inodedep->id_fs; 10447 ump = VFSTOUFS(inodedep->id_list.wk_mp); 10448 LOCK_OWNED(ump); 10449 dp = (struct ufs2_dinode *)bp->b_data + 10450 ino_to_fsbo(fs, inodedep->id_ino); 10451 10452 /* 10453 * If we're on the unlinked list but have not yet written our 10454 * next pointer initialize it here. 10455 */ 10456 if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) { 10457 struct inodedep *inon; 10458 10459 inon = TAILQ_NEXT(inodedep, id_unlinked); 10460 dp->di_freelink = inon ? inon->id_ino : 0; 10461 ffs_update_dinode_ckhash(fs, dp); 10462 } 10463 /* 10464 * If the bitmap is not yet written, then the allocated 10465 * inode cannot be written to disk. 10466 */ 10467 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 10468 if (inodedep->id_savedino2 != NULL) 10469 panic("initiate_write_inodeblock_ufs2: I/O underway"); 10470 FREE_LOCK(ump); 10471 sip = malloc(sizeof(struct ufs2_dinode), 10472 M_SAVEDINO, M_SOFTDEP_FLAGS); 10473 ACQUIRE_LOCK(ump); 10474 inodedep->id_savedino2 = sip; 10475 *inodedep->id_savedino2 = *dp; 10476 bzero((caddr_t)dp, sizeof(struct ufs2_dinode)); 10477 dp->di_gen = inodedep->id_savedino2->di_gen; 10478 dp->di_freelink = inodedep->id_savedino2->di_freelink; 10479 return; 10480 } 10481 /* 10482 * If no dependencies, then there is nothing to roll back. 10483 */ 10484 inodedep->id_savedsize = dp->di_size; 10485 inodedep->id_savedextsize = dp->di_extsize; 10486 inodedep->id_savednlink = dp->di_nlink; 10487 if (TAILQ_EMPTY(&inodedep->id_inoupdt) && 10488 TAILQ_EMPTY(&inodedep->id_extupdt) && 10489 TAILQ_EMPTY(&inodedep->id_inoreflst)) 10490 return; 10491 /* 10492 * Revert the link count to that of the first unwritten journal entry. 10493 */ 10494 inoref = TAILQ_FIRST(&inodedep->id_inoreflst); 10495 if (inoref) 10496 dp->di_nlink = inoref->if_nlink; 10497 10498 /* 10499 * Set the ext data dependencies to busy. 10500 */ 10501 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 10502 adp = TAILQ_NEXT(adp, ad_next)) { 10503 #ifdef INVARIANTS 10504 if (deplist != 0 && prevlbn >= adp->ad_offset) 10505 panic("initiate_write_inodeblock_ufs2: lbn order"); 10506 prevlbn = adp->ad_offset; 10507 if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno) 10508 panic("initiate_write_inodeblock_ufs2: " 10509 "ext pointer #%jd mismatch %jd != %jd", 10510 (intmax_t)adp->ad_offset, 10511 (intmax_t)dp->di_extb[adp->ad_offset], 10512 (intmax_t)adp->ad_newblkno); 10513 deplist |= 1 << adp->ad_offset; 10514 if ((adp->ad_state & ATTACHED) == 0) 10515 panic("initiate_write_inodeblock_ufs2: Unknown " 10516 "state 0x%x", adp->ad_state); 10517 #endif /* INVARIANTS */ 10518 adp->ad_state &= ~ATTACHED; 10519 adp->ad_state |= UNDONE; 10520 } 10521 /* 10522 * The on-disk inode cannot claim to be any larger than the last 10523 * fragment that has been written. Otherwise, the on-disk inode 10524 * might have fragments that were not the last block in the ext 10525 * data which would corrupt the filesystem. 10526 */ 10527 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 10528 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10529 dp->di_extb[adp->ad_offset] = adp->ad_oldblkno; 10530 /* keep going until hitting a rollback to a frag */ 10531 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10532 continue; 10533 dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10534 for (i = adp->ad_offset + 1; i < UFS_NXADDR; i++) { 10535 #ifdef INVARIANTS 10536 if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0) 10537 panic("initiate_write_inodeblock_ufs2: " 10538 "lost dep1"); 10539 #endif /* INVARIANTS */ 10540 dp->di_extb[i] = 0; 10541 } 10542 lastadp = NULL; 10543 break; 10544 } 10545 /* 10546 * If we have zero'ed out the last allocated block of the ext 10547 * data, roll back the size to the last currently allocated block. 10548 * We know that this last allocated block is a full-sized as 10549 * we already checked for fragments in the loop above. 10550 */ 10551 if (lastadp != NULL && 10552 dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10553 for (i = lastadp->ad_offset; i >= 0; i--) 10554 if (dp->di_extb[i] != 0) 10555 break; 10556 dp->di_extsize = (i + 1) * fs->fs_bsize; 10557 } 10558 /* 10559 * Set the file data dependencies to busy. 10560 */ 10561 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10562 adp = TAILQ_NEXT(adp, ad_next)) { 10563 #ifdef INVARIANTS 10564 if (deplist != 0 && prevlbn >= adp->ad_offset) 10565 panic("softdep_write_inodeblock: lbn order"); 10566 if ((adp->ad_state & ATTACHED) == 0) 10567 panic("inodedep %p and adp %p not attached", inodedep, adp); 10568 prevlbn = adp->ad_offset; 10569 if (adp->ad_offset < UFS_NDADDR && 10570 dp->di_db[adp->ad_offset] != adp->ad_newblkno) 10571 panic("initiate_write_inodeblock_ufs2: " 10572 "direct pointer #%jd mismatch %jd != %jd", 10573 (intmax_t)adp->ad_offset, 10574 (intmax_t)dp->di_db[adp->ad_offset], 10575 (intmax_t)adp->ad_newblkno); 10576 if (adp->ad_offset >= UFS_NDADDR && 10577 dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno) 10578 panic("initiate_write_inodeblock_ufs2: " 10579 "indirect pointer #%jd mismatch %jd != %jd", 10580 (intmax_t)adp->ad_offset - UFS_NDADDR, 10581 (intmax_t)dp->di_ib[adp->ad_offset - UFS_NDADDR], 10582 (intmax_t)adp->ad_newblkno); 10583 deplist |= 1 << adp->ad_offset; 10584 if ((adp->ad_state & ATTACHED) == 0) 10585 panic("initiate_write_inodeblock_ufs2: Unknown " 10586 "state 0x%x", adp->ad_state); 10587 #endif /* INVARIANTS */ 10588 adp->ad_state &= ~ATTACHED; 10589 adp->ad_state |= UNDONE; 10590 } 10591 /* 10592 * The on-disk inode cannot claim to be any larger than the last 10593 * fragment that has been written. Otherwise, the on-disk inode 10594 * might have fragments that were not the last block in the file 10595 * which would corrupt the filesystem. 10596 */ 10597 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10598 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10599 if (adp->ad_offset >= UFS_NDADDR) 10600 break; 10601 dp->di_db[adp->ad_offset] = adp->ad_oldblkno; 10602 /* keep going until hitting a rollback to a frag */ 10603 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10604 continue; 10605 dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10606 for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) { 10607 #ifdef INVARIANTS 10608 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) 10609 panic("initiate_write_inodeblock_ufs2: " 10610 "lost dep2"); 10611 #endif /* INVARIANTS */ 10612 dp->di_db[i] = 0; 10613 } 10614 for (i = 0; i < UFS_NIADDR; i++) { 10615 #ifdef INVARIANTS 10616 if (dp->di_ib[i] != 0 && 10617 (deplist & ((1 << UFS_NDADDR) << i)) == 0) 10618 panic("initiate_write_inodeblock_ufs2: " 10619 "lost dep3"); 10620 #endif /* INVARIANTS */ 10621 dp->di_ib[i] = 0; 10622 } 10623 ffs_update_dinode_ckhash(fs, dp); 10624 return; 10625 } 10626 /* 10627 * If we have zero'ed out the last allocated block of the file, 10628 * roll back the size to the last currently allocated block. 10629 * We know that this last allocated block is a full-sized as 10630 * we already checked for fragments in the loop above. 10631 */ 10632 if (lastadp != NULL && 10633 dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10634 for (i = lastadp->ad_offset; i >= 0; i--) 10635 if (dp->di_db[i] != 0) 10636 break; 10637 dp->di_size = (i + 1) * fs->fs_bsize; 10638 } 10639 /* 10640 * The only dependencies are for indirect blocks. 10641 * 10642 * The file size for indirect block additions is not guaranteed. 10643 * Such a guarantee would be non-trivial to achieve. The conventional 10644 * synchronous write implementation also does not make this guarantee. 10645 * Fsck should catch and fix discrepancies. Arguably, the file size 10646 * can be over-estimated without destroying integrity when the file 10647 * moves into the indirect blocks (i.e., is large). If we want to 10648 * postpone fsck, we are stuck with this argument. 10649 */ 10650 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 10651 dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0; 10652 ffs_update_dinode_ckhash(fs, dp); 10653 } 10654 10655 /* 10656 * Cancel an indirdep as a result of truncation. Release all of the 10657 * children allocindirs and place their journal work on the appropriate 10658 * list. 10659 */ 10660 static void 10661 cancel_indirdep(indirdep, bp, freeblks) 10662 struct indirdep *indirdep; 10663 struct buf *bp; 10664 struct freeblks *freeblks; 10665 { 10666 struct allocindir *aip; 10667 10668 /* 10669 * None of the indirect pointers will ever be visible, 10670 * so they can simply be tossed. GOINGAWAY ensures 10671 * that allocated pointers will be saved in the buffer 10672 * cache until they are freed. Note that they will 10673 * only be able to be found by their physical address 10674 * since the inode mapping the logical address will 10675 * be gone. The save buffer used for the safe copy 10676 * was allocated in setup_allocindir_phase2 using 10677 * the physical address so it could be used for this 10678 * purpose. Hence we swap the safe copy with the real 10679 * copy, allowing the safe copy to be freed and holding 10680 * on to the real copy for later use in indir_trunc. 10681 */ 10682 if (indirdep->ir_state & GOINGAWAY) 10683 panic("cancel_indirdep: already gone"); 10684 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 10685 indirdep->ir_state |= DEPCOMPLETE; 10686 LIST_REMOVE(indirdep, ir_next); 10687 } 10688 indirdep->ir_state |= GOINGAWAY; 10689 /* 10690 * Pass in bp for blocks still have journal writes 10691 * pending so we can cancel them on their own. 10692 */ 10693 while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != NULL) 10694 cancel_allocindir(aip, bp, freeblks, 0); 10695 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL) 10696 cancel_allocindir(aip, NULL, freeblks, 0); 10697 while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL) 10698 cancel_allocindir(aip, NULL, freeblks, 0); 10699 while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) 10700 cancel_allocindir(aip, NULL, freeblks, 0); 10701 /* 10702 * If there are pending partial truncations we need to keep the 10703 * old block copy around until they complete. This is because 10704 * the current b_data is not a perfect superset of the available 10705 * blocks. 10706 */ 10707 if (TAILQ_EMPTY(&indirdep->ir_trunc)) 10708 bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount); 10709 else 10710 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); 10711 WORKLIST_REMOVE(&indirdep->ir_list); 10712 WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list); 10713 indirdep->ir_bp = NULL; 10714 indirdep->ir_freeblks = freeblks; 10715 } 10716 10717 /* 10718 * Free an indirdep once it no longer has new pointers to track. 10719 */ 10720 static void 10721 free_indirdep(indirdep) 10722 struct indirdep *indirdep; 10723 { 10724 10725 KASSERT(TAILQ_EMPTY(&indirdep->ir_trunc), 10726 ("free_indirdep: Indir trunc list not empty.")); 10727 KASSERT(LIST_EMPTY(&indirdep->ir_completehd), 10728 ("free_indirdep: Complete head not empty.")); 10729 KASSERT(LIST_EMPTY(&indirdep->ir_writehd), 10730 ("free_indirdep: write head not empty.")); 10731 KASSERT(LIST_EMPTY(&indirdep->ir_donehd), 10732 ("free_indirdep: done head not empty.")); 10733 KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd), 10734 ("free_indirdep: deplist head not empty.")); 10735 KASSERT((indirdep->ir_state & DEPCOMPLETE), 10736 ("free_indirdep: %p still on newblk list.", indirdep)); 10737 KASSERT(indirdep->ir_saveddata == NULL, 10738 ("free_indirdep: %p still has saved data.", indirdep)); 10739 if (indirdep->ir_state & ONWORKLIST) 10740 WORKLIST_REMOVE(&indirdep->ir_list); 10741 WORKITEM_FREE(indirdep, D_INDIRDEP); 10742 } 10743 10744 /* 10745 * Called before a write to an indirdep. This routine is responsible for 10746 * rolling back pointers to a safe state which includes only those 10747 * allocindirs which have been completed. 10748 */ 10749 static void 10750 initiate_write_indirdep(indirdep, bp) 10751 struct indirdep *indirdep; 10752 struct buf *bp; 10753 { 10754 struct ufsmount *ump; 10755 10756 indirdep->ir_state |= IOSTARTED; 10757 if (indirdep->ir_state & GOINGAWAY) 10758 panic("disk_io_initiation: indirdep gone"); 10759 /* 10760 * If there are no remaining dependencies, this will be writing 10761 * the real pointers. 10762 */ 10763 if (LIST_EMPTY(&indirdep->ir_deplisthd) && 10764 TAILQ_EMPTY(&indirdep->ir_trunc)) 10765 return; 10766 /* 10767 * Replace up-to-date version with safe version. 10768 */ 10769 if (indirdep->ir_saveddata == NULL) { 10770 ump = VFSTOUFS(indirdep->ir_list.wk_mp); 10771 LOCK_OWNED(ump); 10772 FREE_LOCK(ump); 10773 indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP, 10774 M_SOFTDEP_FLAGS); 10775 ACQUIRE_LOCK(ump); 10776 } 10777 indirdep->ir_state &= ~ATTACHED; 10778 indirdep->ir_state |= UNDONE; 10779 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); 10780 bcopy(indirdep->ir_savebp->b_data, bp->b_data, 10781 bp->b_bcount); 10782 } 10783 10784 /* 10785 * Called when an inode has been cleared in a cg bitmap. This finally 10786 * eliminates any canceled jaddrefs 10787 */ 10788 void 10789 softdep_setup_inofree(mp, bp, ino, wkhd) 10790 struct mount *mp; 10791 struct buf *bp; 10792 ino_t ino; 10793 struct workhead *wkhd; 10794 { 10795 struct worklist *wk, *wkn; 10796 struct inodedep *inodedep; 10797 struct ufsmount *ump; 10798 uint8_t *inosused; 10799 struct cg *cgp; 10800 struct fs *fs; 10801 10802 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 10803 ("softdep_setup_inofree called on non-softdep filesystem")); 10804 ump = VFSTOUFS(mp); 10805 ACQUIRE_LOCK(ump); 10806 fs = ump->um_fs; 10807 cgp = (struct cg *)bp->b_data; 10808 inosused = cg_inosused(cgp); 10809 if (isset(inosused, ino % fs->fs_ipg)) 10810 panic("softdep_setup_inofree: inode %ju not freed.", 10811 (uintmax_t)ino); 10812 if (inodedep_lookup(mp, ino, 0, &inodedep)) 10813 panic("softdep_setup_inofree: ino %ju has existing inodedep %p", 10814 (uintmax_t)ino, inodedep); 10815 if (wkhd) { 10816 LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) { 10817 if (wk->wk_type != D_JADDREF) 10818 continue; 10819 WORKLIST_REMOVE(wk); 10820 /* 10821 * We can free immediately even if the jaddref 10822 * isn't attached in a background write as now 10823 * the bitmaps are reconciled. 10824 */ 10825 wk->wk_state |= COMPLETE | ATTACHED; 10826 free_jaddref(WK_JADDREF(wk)); 10827 } 10828 jwork_move(&bp->b_dep, wkhd); 10829 } 10830 FREE_LOCK(ump); 10831 } 10832 10833 /* 10834 * Called via ffs_blkfree() after a set of frags has been cleared from a cg 10835 * map. Any dependencies waiting for the write to clear are added to the 10836 * buf's list and any jnewblks that are being canceled are discarded 10837 * immediately. 10838 */ 10839 void 10840 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd) 10841 struct mount *mp; 10842 struct buf *bp; 10843 ufs2_daddr_t blkno; 10844 int frags; 10845 struct workhead *wkhd; 10846 { 10847 struct bmsafemap *bmsafemap; 10848 struct jnewblk *jnewblk; 10849 struct ufsmount *ump; 10850 struct worklist *wk; 10851 struct fs *fs; 10852 #ifdef INVARIANTS 10853 uint8_t *blksfree; 10854 struct cg *cgp; 10855 ufs2_daddr_t jstart; 10856 ufs2_daddr_t jend; 10857 ufs2_daddr_t end; 10858 long bno; 10859 int i; 10860 #endif 10861 10862 CTR3(KTR_SUJ, 10863 "softdep_setup_blkfree: blkno %jd frags %d wk head %p", 10864 blkno, frags, wkhd); 10865 10866 ump = VFSTOUFS(mp); 10867 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 10868 ("softdep_setup_blkfree called on non-softdep filesystem")); 10869 ACQUIRE_LOCK(ump); 10870 /* Lookup the bmsafemap so we track when it is dirty. */ 10871 fs = ump->um_fs; 10872 bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL); 10873 /* 10874 * Detach any jnewblks which have been canceled. They must linger 10875 * until the bitmap is cleared again by ffs_blkfree() to prevent 10876 * an unjournaled allocation from hitting the disk. 10877 */ 10878 if (wkhd) { 10879 while ((wk = LIST_FIRST(wkhd)) != NULL) { 10880 CTR2(KTR_SUJ, 10881 "softdep_setup_blkfree: blkno %jd wk type %d", 10882 blkno, wk->wk_type); 10883 WORKLIST_REMOVE(wk); 10884 if (wk->wk_type != D_JNEWBLK) { 10885 WORKLIST_INSERT(&bmsafemap->sm_freehd, wk); 10886 continue; 10887 } 10888 jnewblk = WK_JNEWBLK(wk); 10889 KASSERT(jnewblk->jn_state & GOINGAWAY, 10890 ("softdep_setup_blkfree: jnewblk not canceled.")); 10891 #ifdef INVARIANTS 10892 /* 10893 * Assert that this block is free in the bitmap 10894 * before we discard the jnewblk. 10895 */ 10896 cgp = (struct cg *)bp->b_data; 10897 blksfree = cg_blksfree(cgp); 10898 bno = dtogd(fs, jnewblk->jn_blkno); 10899 for (i = jnewblk->jn_oldfrags; 10900 i < jnewblk->jn_frags; i++) { 10901 if (isset(blksfree, bno + i)) 10902 continue; 10903 panic("softdep_setup_blkfree: not free"); 10904 } 10905 #endif 10906 /* 10907 * Even if it's not attached we can free immediately 10908 * as the new bitmap is correct. 10909 */ 10910 wk->wk_state |= COMPLETE | ATTACHED; 10911 free_jnewblk(jnewblk); 10912 } 10913 } 10914 10915 #ifdef INVARIANTS 10916 /* 10917 * Assert that we are not freeing a block which has an outstanding 10918 * allocation dependency. 10919 */ 10920 fs = VFSTOUFS(mp)->um_fs; 10921 bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL); 10922 end = blkno + frags; 10923 LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) { 10924 /* 10925 * Don't match against blocks that will be freed when the 10926 * background write is done. 10927 */ 10928 if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) == 10929 (COMPLETE | DEPCOMPLETE)) 10930 continue; 10931 jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags; 10932 jend = jnewblk->jn_blkno + jnewblk->jn_frags; 10933 if ((blkno >= jstart && blkno < jend) || 10934 (end > jstart && end <= jend)) { 10935 printf("state 0x%X %jd - %d %d dep %p\n", 10936 jnewblk->jn_state, jnewblk->jn_blkno, 10937 jnewblk->jn_oldfrags, jnewblk->jn_frags, 10938 jnewblk->jn_dep); 10939 panic("softdep_setup_blkfree: " 10940 "%jd-%jd(%d) overlaps with %jd-%jd", 10941 blkno, end, frags, jstart, jend); 10942 } 10943 } 10944 #endif 10945 FREE_LOCK(ump); 10946 } 10947 10948 /* 10949 * Revert a block allocation when the journal record that describes it 10950 * is not yet written. 10951 */ 10952 static int 10953 jnewblk_rollback(jnewblk, fs, cgp, blksfree) 10954 struct jnewblk *jnewblk; 10955 struct fs *fs; 10956 struct cg *cgp; 10957 uint8_t *blksfree; 10958 { 10959 ufs1_daddr_t fragno; 10960 long cgbno, bbase; 10961 int frags, blk; 10962 int i; 10963 10964 frags = 0; 10965 cgbno = dtogd(fs, jnewblk->jn_blkno); 10966 /* 10967 * We have to test which frags need to be rolled back. We may 10968 * be operating on a stale copy when doing background writes. 10969 */ 10970 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) 10971 if (isclr(blksfree, cgbno + i)) 10972 frags++; 10973 if (frags == 0) 10974 return (0); 10975 /* 10976 * This is mostly ffs_blkfree() sans some validation and 10977 * superblock updates. 10978 */ 10979 if (frags == fs->fs_frag) { 10980 fragno = fragstoblks(fs, cgbno); 10981 ffs_setblock(fs, blksfree, fragno); 10982 ffs_clusteracct(fs, cgp, fragno, 1); 10983 cgp->cg_cs.cs_nbfree++; 10984 } else { 10985 cgbno += jnewblk->jn_oldfrags; 10986 bbase = cgbno - fragnum(fs, cgbno); 10987 /* Decrement the old frags. */ 10988 blk = blkmap(fs, blksfree, bbase); 10989 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 10990 /* Deallocate the fragment */ 10991 for (i = 0; i < frags; i++) 10992 setbit(blksfree, cgbno + i); 10993 cgp->cg_cs.cs_nffree += frags; 10994 /* Add back in counts associated with the new frags */ 10995 blk = blkmap(fs, blksfree, bbase); 10996 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 10997 /* If a complete block has been reassembled, account for it. */ 10998 fragno = fragstoblks(fs, bbase); 10999 if (ffs_isblock(fs, blksfree, fragno)) { 11000 cgp->cg_cs.cs_nffree -= fs->fs_frag; 11001 ffs_clusteracct(fs, cgp, fragno, 1); 11002 cgp->cg_cs.cs_nbfree++; 11003 } 11004 } 11005 stat_jnewblk++; 11006 jnewblk->jn_state &= ~ATTACHED; 11007 jnewblk->jn_state |= UNDONE; 11008 11009 return (frags); 11010 } 11011 11012 static void 11013 initiate_write_bmsafemap(bmsafemap, bp) 11014 struct bmsafemap *bmsafemap; 11015 struct buf *bp; /* The cg block. */ 11016 { 11017 struct jaddref *jaddref; 11018 struct jnewblk *jnewblk; 11019 uint8_t *inosused; 11020 uint8_t *blksfree; 11021 struct cg *cgp; 11022 struct fs *fs; 11023 ino_t ino; 11024 11025 /* 11026 * If this is a background write, we did this at the time that 11027 * the copy was made, so do not need to do it again. 11028 */ 11029 if (bmsafemap->sm_state & IOSTARTED) 11030 return; 11031 bmsafemap->sm_state |= IOSTARTED; 11032 /* 11033 * Clear any inode allocations which are pending journal writes. 11034 */ 11035 if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) { 11036 cgp = (struct cg *)bp->b_data; 11037 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 11038 inosused = cg_inosused(cgp); 11039 LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) { 11040 ino = jaddref->ja_ino % fs->fs_ipg; 11041 if (isset(inosused, ino)) { 11042 if ((jaddref->ja_mode & IFMT) == IFDIR) 11043 cgp->cg_cs.cs_ndir--; 11044 cgp->cg_cs.cs_nifree++; 11045 clrbit(inosused, ino); 11046 jaddref->ja_state &= ~ATTACHED; 11047 jaddref->ja_state |= UNDONE; 11048 stat_jaddref++; 11049 } else 11050 panic("initiate_write_bmsafemap: inode %ju " 11051 "marked free", (uintmax_t)jaddref->ja_ino); 11052 } 11053 } 11054 /* 11055 * Clear any block allocations which are pending journal writes. 11056 */ 11057 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) { 11058 cgp = (struct cg *)bp->b_data; 11059 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 11060 blksfree = cg_blksfree(cgp); 11061 LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) { 11062 if (jnewblk_rollback(jnewblk, fs, cgp, blksfree)) 11063 continue; 11064 panic("initiate_write_bmsafemap: block %jd " 11065 "marked free", jnewblk->jn_blkno); 11066 } 11067 } 11068 /* 11069 * Move allocation lists to the written lists so they can be 11070 * cleared once the block write is complete. 11071 */ 11072 LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr, 11073 inodedep, id_deps); 11074 LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr, 11075 newblk, nb_deps); 11076 LIST_SWAP(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, worklist, 11077 wk_list); 11078 } 11079 11080 /* 11081 * This routine is called during the completion interrupt 11082 * service routine for a disk write (from the procedure called 11083 * by the device driver to inform the filesystem caches of 11084 * a request completion). It should be called early in this 11085 * procedure, before the block is made available to other 11086 * processes or other routines are called. 11087 * 11088 */ 11089 static void 11090 softdep_disk_write_complete(bp) 11091 struct buf *bp; /* describes the completed disk write */ 11092 { 11093 struct worklist *wk; 11094 struct worklist *owk; 11095 struct ufsmount *ump; 11096 struct workhead reattach; 11097 struct freeblks *freeblks; 11098 struct buf *sbp; 11099 11100 ump = softdep_bp_to_mp(bp); 11101 KASSERT(LIST_EMPTY(&bp->b_dep) || ump != NULL, 11102 ("softdep_disk_write_complete: softdep_bp_to_mp returned NULL " 11103 "with outstanding dependencies for buffer %p", bp)); 11104 if (ump == NULL) 11105 return; 11106 /* 11107 * If an error occurred while doing the write, then the data 11108 * has not hit the disk and the dependencies cannot be processed. 11109 * But we do have to go through and roll forward any dependencies 11110 * that were rolled back before the disk write. 11111 */ 11112 sbp = NULL; 11113 ACQUIRE_LOCK(ump); 11114 if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0) { 11115 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 11116 switch (wk->wk_type) { 11117 11118 case D_PAGEDEP: 11119 handle_written_filepage(WK_PAGEDEP(wk), bp, 0); 11120 continue; 11121 11122 case D_INODEDEP: 11123 handle_written_inodeblock(WK_INODEDEP(wk), 11124 bp, 0); 11125 continue; 11126 11127 case D_BMSAFEMAP: 11128 handle_written_bmsafemap(WK_BMSAFEMAP(wk), 11129 bp, 0); 11130 continue; 11131 11132 case D_INDIRDEP: 11133 handle_written_indirdep(WK_INDIRDEP(wk), 11134 bp, &sbp, 0); 11135 continue; 11136 default: 11137 /* nothing to roll forward */ 11138 continue; 11139 } 11140 } 11141 FREE_LOCK(ump); 11142 if (sbp) 11143 brelse(sbp); 11144 return; 11145 } 11146 LIST_INIT(&reattach); 11147 11148 /* 11149 * Ump SU lock must not be released anywhere in this code segment. 11150 */ 11151 owk = NULL; 11152 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) { 11153 WORKLIST_REMOVE(wk); 11154 atomic_add_long(&dep_write[wk->wk_type], 1); 11155 if (wk == owk) 11156 panic("duplicate worklist: %p\n", wk); 11157 owk = wk; 11158 switch (wk->wk_type) { 11159 11160 case D_PAGEDEP: 11161 if (handle_written_filepage(WK_PAGEDEP(wk), bp, 11162 WRITESUCCEEDED)) 11163 WORKLIST_INSERT(&reattach, wk); 11164 continue; 11165 11166 case D_INODEDEP: 11167 if (handle_written_inodeblock(WK_INODEDEP(wk), bp, 11168 WRITESUCCEEDED)) 11169 WORKLIST_INSERT(&reattach, wk); 11170 continue; 11171 11172 case D_BMSAFEMAP: 11173 if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp, 11174 WRITESUCCEEDED)) 11175 WORKLIST_INSERT(&reattach, wk); 11176 continue; 11177 11178 case D_MKDIR: 11179 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); 11180 continue; 11181 11182 case D_ALLOCDIRECT: 11183 wk->wk_state |= COMPLETE; 11184 handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL); 11185 continue; 11186 11187 case D_ALLOCINDIR: 11188 wk->wk_state |= COMPLETE; 11189 handle_allocindir_partdone(WK_ALLOCINDIR(wk)); 11190 continue; 11191 11192 case D_INDIRDEP: 11193 if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp, 11194 WRITESUCCEEDED)) 11195 WORKLIST_INSERT(&reattach, wk); 11196 continue; 11197 11198 case D_FREEBLKS: 11199 wk->wk_state |= COMPLETE; 11200 freeblks = WK_FREEBLKS(wk); 11201 if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE && 11202 LIST_EMPTY(&freeblks->fb_jblkdephd)) 11203 add_to_worklist(wk, WK_NODELAY); 11204 continue; 11205 11206 case D_FREEWORK: 11207 handle_written_freework(WK_FREEWORK(wk)); 11208 break; 11209 11210 case D_JSEGDEP: 11211 free_jsegdep(WK_JSEGDEP(wk)); 11212 continue; 11213 11214 case D_JSEG: 11215 handle_written_jseg(WK_JSEG(wk), bp); 11216 continue; 11217 11218 case D_SBDEP: 11219 if (handle_written_sbdep(WK_SBDEP(wk), bp)) 11220 WORKLIST_INSERT(&reattach, wk); 11221 continue; 11222 11223 case D_FREEDEP: 11224 free_freedep(WK_FREEDEP(wk)); 11225 continue; 11226 11227 default: 11228 panic("handle_disk_write_complete: Unknown type %s", 11229 TYPENAME(wk->wk_type)); 11230 /* NOTREACHED */ 11231 } 11232 } 11233 /* 11234 * Reattach any requests that must be redone. 11235 */ 11236 while ((wk = LIST_FIRST(&reattach)) != NULL) { 11237 WORKLIST_REMOVE(wk); 11238 WORKLIST_INSERT(&bp->b_dep, wk); 11239 } 11240 FREE_LOCK(ump); 11241 if (sbp) 11242 brelse(sbp); 11243 } 11244 11245 /* 11246 * Called from within softdep_disk_write_complete above. 11247 */ 11248 static void 11249 handle_allocdirect_partdone(adp, wkhd) 11250 struct allocdirect *adp; /* the completed allocdirect */ 11251 struct workhead *wkhd; /* Work to do when inode is writtne. */ 11252 { 11253 struct allocdirectlst *listhead; 11254 struct allocdirect *listadp; 11255 struct inodedep *inodedep; 11256 long bsize; 11257 11258 LOCK_OWNED(VFSTOUFS(adp->ad_block.nb_list.wk_mp)); 11259 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 11260 return; 11261 /* 11262 * The on-disk inode cannot claim to be any larger than the last 11263 * fragment that has been written. Otherwise, the on-disk inode 11264 * might have fragments that were not the last block in the file 11265 * which would corrupt the filesystem. Thus, we cannot free any 11266 * allocdirects after one whose ad_oldblkno claims a fragment as 11267 * these blocks must be rolled back to zero before writing the inode. 11268 * We check the currently active set of allocdirects in id_inoupdt 11269 * or id_extupdt as appropriate. 11270 */ 11271 inodedep = adp->ad_inodedep; 11272 bsize = inodedep->id_fs->fs_bsize; 11273 if (adp->ad_state & EXTDATA) 11274 listhead = &inodedep->id_extupdt; 11275 else 11276 listhead = &inodedep->id_inoupdt; 11277 TAILQ_FOREACH(listadp, listhead, ad_next) { 11278 /* found our block */ 11279 if (listadp == adp) 11280 break; 11281 /* continue if ad_oldlbn is not a fragment */ 11282 if (listadp->ad_oldsize == 0 || 11283 listadp->ad_oldsize == bsize) 11284 continue; 11285 /* hit a fragment */ 11286 return; 11287 } 11288 /* 11289 * If we have reached the end of the current list without 11290 * finding the just finished dependency, then it must be 11291 * on the future dependency list. Future dependencies cannot 11292 * be freed until they are moved to the current list. 11293 */ 11294 if (listadp == NULL) { 11295 #ifdef INVARIANTS 11296 if (adp->ad_state & EXTDATA) 11297 listhead = &inodedep->id_newextupdt; 11298 else 11299 listhead = &inodedep->id_newinoupdt; 11300 TAILQ_FOREACH(listadp, listhead, ad_next) 11301 /* found our block */ 11302 if (listadp == adp) 11303 break; 11304 if (listadp == NULL) 11305 panic("handle_allocdirect_partdone: lost dep"); 11306 #endif /* INVARIANTS */ 11307 return; 11308 } 11309 /* 11310 * If we have found the just finished dependency, then queue 11311 * it along with anything that follows it that is complete. 11312 * Since the pointer has not yet been written in the inode 11313 * as the dependency prevents it, place the allocdirect on the 11314 * bufwait list where it will be freed once the pointer is 11315 * valid. 11316 */ 11317 if (wkhd == NULL) 11318 wkhd = &inodedep->id_bufwait; 11319 for (; adp; adp = listadp) { 11320 listadp = TAILQ_NEXT(adp, ad_next); 11321 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 11322 return; 11323 TAILQ_REMOVE(listhead, adp, ad_next); 11324 WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list); 11325 } 11326 } 11327 11328 /* 11329 * Called from within softdep_disk_write_complete above. This routine 11330 * completes successfully written allocindirs. 11331 */ 11332 static void 11333 handle_allocindir_partdone(aip) 11334 struct allocindir *aip; /* the completed allocindir */ 11335 { 11336 struct indirdep *indirdep; 11337 11338 if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE) 11339 return; 11340 indirdep = aip->ai_indirdep; 11341 LIST_REMOVE(aip, ai_next); 11342 /* 11343 * Don't set a pointer while the buffer is undergoing IO or while 11344 * we have active truncations. 11345 */ 11346 if (indirdep->ir_state & UNDONE || !TAILQ_EMPTY(&indirdep->ir_trunc)) { 11347 LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next); 11348 return; 11349 } 11350 if (indirdep->ir_state & UFS1FMT) 11351 ((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 11352 aip->ai_newblkno; 11353 else 11354 ((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 11355 aip->ai_newblkno; 11356 /* 11357 * Await the pointer write before freeing the allocindir. 11358 */ 11359 LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next); 11360 } 11361 11362 /* 11363 * Release segments held on a jwork list. 11364 */ 11365 static void 11366 handle_jwork(wkhd) 11367 struct workhead *wkhd; 11368 { 11369 struct worklist *wk; 11370 11371 while ((wk = LIST_FIRST(wkhd)) != NULL) { 11372 WORKLIST_REMOVE(wk); 11373 switch (wk->wk_type) { 11374 case D_JSEGDEP: 11375 free_jsegdep(WK_JSEGDEP(wk)); 11376 continue; 11377 case D_FREEDEP: 11378 free_freedep(WK_FREEDEP(wk)); 11379 continue; 11380 case D_FREEFRAG: 11381 rele_jseg(WK_JSEG(WK_FREEFRAG(wk)->ff_jdep)); 11382 WORKITEM_FREE(wk, D_FREEFRAG); 11383 continue; 11384 case D_FREEWORK: 11385 handle_written_freework(WK_FREEWORK(wk)); 11386 continue; 11387 default: 11388 panic("handle_jwork: Unknown type %s\n", 11389 TYPENAME(wk->wk_type)); 11390 } 11391 } 11392 } 11393 11394 /* 11395 * Handle the bufwait list on an inode when it is safe to release items 11396 * held there. This normally happens after an inode block is written but 11397 * may be delayed and handled later if there are pending journal items that 11398 * are not yet safe to be released. 11399 */ 11400 static struct freefile * 11401 handle_bufwait(inodedep, refhd) 11402 struct inodedep *inodedep; 11403 struct workhead *refhd; 11404 { 11405 struct jaddref *jaddref; 11406 struct freefile *freefile; 11407 struct worklist *wk; 11408 11409 freefile = NULL; 11410 while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) { 11411 WORKLIST_REMOVE(wk); 11412 switch (wk->wk_type) { 11413 case D_FREEFILE: 11414 /* 11415 * We defer adding freefile to the worklist 11416 * until all other additions have been made to 11417 * ensure that it will be done after all the 11418 * old blocks have been freed. 11419 */ 11420 if (freefile != NULL) 11421 panic("handle_bufwait: freefile"); 11422 freefile = WK_FREEFILE(wk); 11423 continue; 11424 11425 case D_MKDIR: 11426 handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT); 11427 continue; 11428 11429 case D_DIRADD: 11430 diradd_inode_written(WK_DIRADD(wk), inodedep); 11431 continue; 11432 11433 case D_FREEFRAG: 11434 wk->wk_state |= COMPLETE; 11435 if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE) 11436 add_to_worklist(wk, 0); 11437 continue; 11438 11439 case D_DIRREM: 11440 wk->wk_state |= COMPLETE; 11441 add_to_worklist(wk, 0); 11442 continue; 11443 11444 case D_ALLOCDIRECT: 11445 case D_ALLOCINDIR: 11446 free_newblk(WK_NEWBLK(wk)); 11447 continue; 11448 11449 case D_JNEWBLK: 11450 wk->wk_state |= COMPLETE; 11451 free_jnewblk(WK_JNEWBLK(wk)); 11452 continue; 11453 11454 /* 11455 * Save freed journal segments and add references on 11456 * the supplied list which will delay their release 11457 * until the cg bitmap is cleared on disk. 11458 */ 11459 case D_JSEGDEP: 11460 if (refhd == NULL) 11461 free_jsegdep(WK_JSEGDEP(wk)); 11462 else 11463 WORKLIST_INSERT(refhd, wk); 11464 continue; 11465 11466 case D_JADDREF: 11467 jaddref = WK_JADDREF(wk); 11468 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, 11469 if_deps); 11470 /* 11471 * Transfer any jaddrefs to the list to be freed with 11472 * the bitmap if we're handling a removed file. 11473 */ 11474 if (refhd == NULL) { 11475 wk->wk_state |= COMPLETE; 11476 free_jaddref(jaddref); 11477 } else 11478 WORKLIST_INSERT(refhd, wk); 11479 continue; 11480 11481 default: 11482 panic("handle_bufwait: Unknown type %p(%s)", 11483 wk, TYPENAME(wk->wk_type)); 11484 /* NOTREACHED */ 11485 } 11486 } 11487 return (freefile); 11488 } 11489 /* 11490 * Called from within softdep_disk_write_complete above to restore 11491 * in-memory inode block contents to their most up-to-date state. Note 11492 * that this routine is always called from interrupt level with further 11493 * interrupts from this device blocked. 11494 * 11495 * If the write did not succeed, we will do all the roll-forward 11496 * operations, but we will not take the actions that will allow its 11497 * dependencies to be processed. 11498 */ 11499 static int 11500 handle_written_inodeblock(inodedep, bp, flags) 11501 struct inodedep *inodedep; 11502 struct buf *bp; /* buffer containing the inode block */ 11503 int flags; 11504 { 11505 struct freefile *freefile; 11506 struct allocdirect *adp, *nextadp; 11507 struct ufs1_dinode *dp1 = NULL; 11508 struct ufs2_dinode *dp2 = NULL; 11509 struct workhead wkhd; 11510 int hadchanges, fstype; 11511 ino_t freelink; 11512 11513 LIST_INIT(&wkhd); 11514 hadchanges = 0; 11515 freefile = NULL; 11516 if ((inodedep->id_state & IOSTARTED) == 0) 11517 panic("handle_written_inodeblock: not started"); 11518 inodedep->id_state &= ~IOSTARTED; 11519 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) { 11520 fstype = UFS1; 11521 dp1 = (struct ufs1_dinode *)bp->b_data + 11522 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 11523 freelink = dp1->di_freelink; 11524 } else { 11525 fstype = UFS2; 11526 dp2 = (struct ufs2_dinode *)bp->b_data + 11527 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 11528 freelink = dp2->di_freelink; 11529 } 11530 /* 11531 * Leave this inodeblock dirty until it's in the list. 11532 */ 11533 if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED && 11534 (flags & WRITESUCCEEDED)) { 11535 struct inodedep *inon; 11536 11537 inon = TAILQ_NEXT(inodedep, id_unlinked); 11538 if ((inon == NULL && freelink == 0) || 11539 (inon && inon->id_ino == freelink)) { 11540 if (inon) 11541 inon->id_state |= UNLINKPREV; 11542 inodedep->id_state |= UNLINKNEXT; 11543 } 11544 hadchanges = 1; 11545 } 11546 /* 11547 * If we had to rollback the inode allocation because of 11548 * bitmaps being incomplete, then simply restore it. 11549 * Keep the block dirty so that it will not be reclaimed until 11550 * all associated dependencies have been cleared and the 11551 * corresponding updates written to disk. 11552 */ 11553 if (inodedep->id_savedino1 != NULL) { 11554 hadchanges = 1; 11555 if (fstype == UFS1) 11556 *dp1 = *inodedep->id_savedino1; 11557 else 11558 *dp2 = *inodedep->id_savedino2; 11559 free(inodedep->id_savedino1, M_SAVEDINO); 11560 inodedep->id_savedino1 = NULL; 11561 if ((bp->b_flags & B_DELWRI) == 0) 11562 stat_inode_bitmap++; 11563 bdirty(bp); 11564 /* 11565 * If the inode is clear here and GOINGAWAY it will never 11566 * be written. Process the bufwait and clear any pending 11567 * work which may include the freefile. 11568 */ 11569 if (inodedep->id_state & GOINGAWAY) 11570 goto bufwait; 11571 return (1); 11572 } 11573 if (flags & WRITESUCCEEDED) 11574 inodedep->id_state |= COMPLETE; 11575 /* 11576 * Roll forward anything that had to be rolled back before 11577 * the inode could be updated. 11578 */ 11579 for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) { 11580 nextadp = TAILQ_NEXT(adp, ad_next); 11581 if (adp->ad_state & ATTACHED) 11582 panic("handle_written_inodeblock: new entry"); 11583 if (fstype == UFS1) { 11584 if (adp->ad_offset < UFS_NDADDR) { 11585 if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno) 11586 panic("%s %s #%jd mismatch %d != %jd", 11587 "handle_written_inodeblock:", 11588 "direct pointer", 11589 (intmax_t)adp->ad_offset, 11590 dp1->di_db[adp->ad_offset], 11591 (intmax_t)adp->ad_oldblkno); 11592 dp1->di_db[adp->ad_offset] = adp->ad_newblkno; 11593 } else { 11594 if (dp1->di_ib[adp->ad_offset - UFS_NDADDR] != 11595 0) 11596 panic("%s: %s #%jd allocated as %d", 11597 "handle_written_inodeblock", 11598 "indirect pointer", 11599 (intmax_t)adp->ad_offset - 11600 UFS_NDADDR, 11601 dp1->di_ib[adp->ad_offset - 11602 UFS_NDADDR]); 11603 dp1->di_ib[adp->ad_offset - UFS_NDADDR] = 11604 adp->ad_newblkno; 11605 } 11606 } else { 11607 if (adp->ad_offset < UFS_NDADDR) { 11608 if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno) 11609 panic("%s: %s #%jd %s %jd != %jd", 11610 "handle_written_inodeblock", 11611 "direct pointer", 11612 (intmax_t)adp->ad_offset, "mismatch", 11613 (intmax_t)dp2->di_db[adp->ad_offset], 11614 (intmax_t)adp->ad_oldblkno); 11615 dp2->di_db[adp->ad_offset] = adp->ad_newblkno; 11616 } else { 11617 if (dp2->di_ib[adp->ad_offset - UFS_NDADDR] != 11618 0) 11619 panic("%s: %s #%jd allocated as %jd", 11620 "handle_written_inodeblock", 11621 "indirect pointer", 11622 (intmax_t)adp->ad_offset - 11623 UFS_NDADDR, 11624 (intmax_t) 11625 dp2->di_ib[adp->ad_offset - 11626 UFS_NDADDR]); 11627 dp2->di_ib[adp->ad_offset - UFS_NDADDR] = 11628 adp->ad_newblkno; 11629 } 11630 } 11631 adp->ad_state &= ~UNDONE; 11632 adp->ad_state |= ATTACHED; 11633 hadchanges = 1; 11634 } 11635 for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) { 11636 nextadp = TAILQ_NEXT(adp, ad_next); 11637 if (adp->ad_state & ATTACHED) 11638 panic("handle_written_inodeblock: new entry"); 11639 if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno) 11640 panic("%s: direct pointers #%jd %s %jd != %jd", 11641 "handle_written_inodeblock", 11642 (intmax_t)adp->ad_offset, "mismatch", 11643 (intmax_t)dp2->di_extb[adp->ad_offset], 11644 (intmax_t)adp->ad_oldblkno); 11645 dp2->di_extb[adp->ad_offset] = adp->ad_newblkno; 11646 adp->ad_state &= ~UNDONE; 11647 adp->ad_state |= ATTACHED; 11648 hadchanges = 1; 11649 } 11650 if (hadchanges && (bp->b_flags & B_DELWRI) == 0) 11651 stat_direct_blk_ptrs++; 11652 /* 11653 * Reset the file size to its most up-to-date value. 11654 */ 11655 if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1) 11656 panic("handle_written_inodeblock: bad size"); 11657 if (inodedep->id_savednlink > UFS_LINK_MAX) 11658 panic("handle_written_inodeblock: Invalid link count " 11659 "%jd for inodedep %p", (uintmax_t)inodedep->id_savednlink, 11660 inodedep); 11661 if (fstype == UFS1) { 11662 if (dp1->di_nlink != inodedep->id_savednlink) { 11663 dp1->di_nlink = inodedep->id_savednlink; 11664 hadchanges = 1; 11665 } 11666 if (dp1->di_size != inodedep->id_savedsize) { 11667 dp1->di_size = inodedep->id_savedsize; 11668 hadchanges = 1; 11669 } 11670 } else { 11671 if (dp2->di_nlink != inodedep->id_savednlink) { 11672 dp2->di_nlink = inodedep->id_savednlink; 11673 hadchanges = 1; 11674 } 11675 if (dp2->di_size != inodedep->id_savedsize) { 11676 dp2->di_size = inodedep->id_savedsize; 11677 hadchanges = 1; 11678 } 11679 if (dp2->di_extsize != inodedep->id_savedextsize) { 11680 dp2->di_extsize = inodedep->id_savedextsize; 11681 hadchanges = 1; 11682 } 11683 } 11684 inodedep->id_savedsize = -1; 11685 inodedep->id_savedextsize = -1; 11686 inodedep->id_savednlink = -1; 11687 /* 11688 * If there were any rollbacks in the inode block, then it must be 11689 * marked dirty so that its will eventually get written back in 11690 * its correct form. 11691 */ 11692 if (hadchanges) { 11693 if (fstype == UFS2) 11694 ffs_update_dinode_ckhash(inodedep->id_fs, dp2); 11695 bdirty(bp); 11696 } 11697 bufwait: 11698 /* 11699 * If the write did not succeed, we have done all the roll-forward 11700 * operations, but we cannot take the actions that will allow its 11701 * dependencies to be processed. 11702 */ 11703 if ((flags & WRITESUCCEEDED) == 0) 11704 return (hadchanges); 11705 /* 11706 * Process any allocdirects that completed during the update. 11707 */ 11708 if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL) 11709 handle_allocdirect_partdone(adp, &wkhd); 11710 if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 11711 handle_allocdirect_partdone(adp, &wkhd); 11712 /* 11713 * Process deallocations that were held pending until the 11714 * inode had been written to disk. Freeing of the inode 11715 * is delayed until after all blocks have been freed to 11716 * avoid creation of new <vfsid, inum, lbn> triples 11717 * before the old ones have been deleted. Completely 11718 * unlinked inodes are not processed until the unlinked 11719 * inode list is written or the last reference is removed. 11720 */ 11721 if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) { 11722 freefile = handle_bufwait(inodedep, NULL); 11723 if (freefile && !LIST_EMPTY(&wkhd)) { 11724 WORKLIST_INSERT(&wkhd, &freefile->fx_list); 11725 freefile = NULL; 11726 } 11727 } 11728 /* 11729 * Move rolled forward dependency completions to the bufwait list 11730 * now that those that were already written have been processed. 11731 */ 11732 if (!LIST_EMPTY(&wkhd) && hadchanges == 0) 11733 panic("handle_written_inodeblock: bufwait but no changes"); 11734 jwork_move(&inodedep->id_bufwait, &wkhd); 11735 11736 if (freefile != NULL) { 11737 /* 11738 * If the inode is goingaway it was never written. Fake up 11739 * the state here so free_inodedep() can succeed. 11740 */ 11741 if (inodedep->id_state & GOINGAWAY) 11742 inodedep->id_state |= COMPLETE | DEPCOMPLETE; 11743 if (free_inodedep(inodedep) == 0) 11744 panic("handle_written_inodeblock: live inodedep %p", 11745 inodedep); 11746 add_to_worklist(&freefile->fx_list, 0); 11747 return (0); 11748 } 11749 11750 /* 11751 * If no outstanding dependencies, free it. 11752 */ 11753 if (free_inodedep(inodedep) || 11754 (TAILQ_FIRST(&inodedep->id_inoreflst) == 0 && 11755 TAILQ_FIRST(&inodedep->id_inoupdt) == 0 && 11756 TAILQ_FIRST(&inodedep->id_extupdt) == 0 && 11757 LIST_FIRST(&inodedep->id_bufwait) == 0)) 11758 return (0); 11759 return (hadchanges); 11760 } 11761 11762 /* 11763 * Perform needed roll-forwards and kick off any dependencies that 11764 * can now be processed. 11765 * 11766 * If the write did not succeed, we will do all the roll-forward 11767 * operations, but we will not take the actions that will allow its 11768 * dependencies to be processed. 11769 */ 11770 static int 11771 handle_written_indirdep(indirdep, bp, bpp, flags) 11772 struct indirdep *indirdep; 11773 struct buf *bp; 11774 struct buf **bpp; 11775 int flags; 11776 { 11777 struct allocindir *aip; 11778 struct buf *sbp; 11779 int chgs; 11780 11781 if (indirdep->ir_state & GOINGAWAY) 11782 panic("handle_written_indirdep: indirdep gone"); 11783 if ((indirdep->ir_state & IOSTARTED) == 0) 11784 panic("handle_written_indirdep: IO not started"); 11785 chgs = 0; 11786 /* 11787 * If there were rollbacks revert them here. 11788 */ 11789 if (indirdep->ir_saveddata) { 11790 bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount); 11791 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 11792 free(indirdep->ir_saveddata, M_INDIRDEP); 11793 indirdep->ir_saveddata = NULL; 11794 } 11795 chgs = 1; 11796 } 11797 indirdep->ir_state &= ~(UNDONE | IOSTARTED); 11798 indirdep->ir_state |= ATTACHED; 11799 /* 11800 * If the write did not succeed, we have done all the roll-forward 11801 * operations, but we cannot take the actions that will allow its 11802 * dependencies to be processed. 11803 */ 11804 if ((flags & WRITESUCCEEDED) == 0) { 11805 stat_indir_blk_ptrs++; 11806 bdirty(bp); 11807 return (1); 11808 } 11809 /* 11810 * Move allocindirs with written pointers to the completehd if 11811 * the indirdep's pointer is not yet written. Otherwise 11812 * free them here. 11813 */ 11814 while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL) { 11815 LIST_REMOVE(aip, ai_next); 11816 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 11817 LIST_INSERT_HEAD(&indirdep->ir_completehd, aip, 11818 ai_next); 11819 newblk_freefrag(&aip->ai_block); 11820 continue; 11821 } 11822 free_newblk(&aip->ai_block); 11823 } 11824 /* 11825 * Move allocindirs that have finished dependency processing from 11826 * the done list to the write list after updating the pointers. 11827 */ 11828 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 11829 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL) { 11830 handle_allocindir_partdone(aip); 11831 if (aip == LIST_FIRST(&indirdep->ir_donehd)) 11832 panic("disk_write_complete: not gone"); 11833 chgs = 1; 11834 } 11835 } 11836 /* 11837 * Preserve the indirdep if there were any changes or if it is not 11838 * yet valid on disk. 11839 */ 11840 if (chgs) { 11841 stat_indir_blk_ptrs++; 11842 bdirty(bp); 11843 return (1); 11844 } 11845 /* 11846 * If there were no changes we can discard the savedbp and detach 11847 * ourselves from the buf. We are only carrying completed pointers 11848 * in this case. 11849 */ 11850 sbp = indirdep->ir_savebp; 11851 sbp->b_flags |= B_INVAL | B_NOCACHE; 11852 indirdep->ir_savebp = NULL; 11853 indirdep->ir_bp = NULL; 11854 if (*bpp != NULL) 11855 panic("handle_written_indirdep: bp already exists."); 11856 *bpp = sbp; 11857 /* 11858 * The indirdep may not be freed until its parent points at it. 11859 */ 11860 if (indirdep->ir_state & DEPCOMPLETE) 11861 free_indirdep(indirdep); 11862 11863 return (0); 11864 } 11865 11866 /* 11867 * Process a diradd entry after its dependent inode has been written. 11868 */ 11869 static void 11870 diradd_inode_written(dap, inodedep) 11871 struct diradd *dap; 11872 struct inodedep *inodedep; 11873 { 11874 11875 LOCK_OWNED(VFSTOUFS(dap->da_list.wk_mp)); 11876 dap->da_state |= COMPLETE; 11877 complete_diradd(dap); 11878 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 11879 } 11880 11881 /* 11882 * Returns true if the bmsafemap will have rollbacks when written. Must only 11883 * be called with the per-filesystem lock and the buf lock on the cg held. 11884 */ 11885 static int 11886 bmsafemap_backgroundwrite(bmsafemap, bp) 11887 struct bmsafemap *bmsafemap; 11888 struct buf *bp; 11889 { 11890 int dirty; 11891 11892 LOCK_OWNED(VFSTOUFS(bmsafemap->sm_list.wk_mp)); 11893 dirty = !LIST_EMPTY(&bmsafemap->sm_jaddrefhd) | 11894 !LIST_EMPTY(&bmsafemap->sm_jnewblkhd); 11895 /* 11896 * If we're initiating a background write we need to process the 11897 * rollbacks as they exist now, not as they exist when IO starts. 11898 * No other consumers will look at the contents of the shadowed 11899 * buf so this is safe to do here. 11900 */ 11901 if (bp->b_xflags & BX_BKGRDMARKER) 11902 initiate_write_bmsafemap(bmsafemap, bp); 11903 11904 return (dirty); 11905 } 11906 11907 /* 11908 * Re-apply an allocation when a cg write is complete. 11909 */ 11910 static int 11911 jnewblk_rollforward(jnewblk, fs, cgp, blksfree) 11912 struct jnewblk *jnewblk; 11913 struct fs *fs; 11914 struct cg *cgp; 11915 uint8_t *blksfree; 11916 { 11917 ufs1_daddr_t fragno; 11918 ufs2_daddr_t blkno; 11919 long cgbno, bbase; 11920 int frags, blk; 11921 int i; 11922 11923 frags = 0; 11924 cgbno = dtogd(fs, jnewblk->jn_blkno); 11925 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) { 11926 if (isclr(blksfree, cgbno + i)) 11927 panic("jnewblk_rollforward: re-allocated fragment"); 11928 frags++; 11929 } 11930 if (frags == fs->fs_frag) { 11931 blkno = fragstoblks(fs, cgbno); 11932 ffs_clrblock(fs, blksfree, (long)blkno); 11933 ffs_clusteracct(fs, cgp, blkno, -1); 11934 cgp->cg_cs.cs_nbfree--; 11935 } else { 11936 bbase = cgbno - fragnum(fs, cgbno); 11937 cgbno += jnewblk->jn_oldfrags; 11938 /* If a complete block had been reassembled, account for it. */ 11939 fragno = fragstoblks(fs, bbase); 11940 if (ffs_isblock(fs, blksfree, fragno)) { 11941 cgp->cg_cs.cs_nffree += fs->fs_frag; 11942 ffs_clusteracct(fs, cgp, fragno, -1); 11943 cgp->cg_cs.cs_nbfree--; 11944 } 11945 /* Decrement the old frags. */ 11946 blk = blkmap(fs, blksfree, bbase); 11947 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 11948 /* Allocate the fragment */ 11949 for (i = 0; i < frags; i++) 11950 clrbit(blksfree, cgbno + i); 11951 cgp->cg_cs.cs_nffree -= frags; 11952 /* Add back in counts associated with the new frags */ 11953 blk = blkmap(fs, blksfree, bbase); 11954 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 11955 } 11956 return (frags); 11957 } 11958 11959 /* 11960 * Complete a write to a bmsafemap structure. Roll forward any bitmap 11961 * changes if it's not a background write. Set all written dependencies 11962 * to DEPCOMPLETE and free the structure if possible. 11963 * 11964 * If the write did not succeed, we will do all the roll-forward 11965 * operations, but we will not take the actions that will allow its 11966 * dependencies to be processed. 11967 */ 11968 static int 11969 handle_written_bmsafemap(bmsafemap, bp, flags) 11970 struct bmsafemap *bmsafemap; 11971 struct buf *bp; 11972 int flags; 11973 { 11974 struct newblk *newblk; 11975 struct inodedep *inodedep; 11976 struct jaddref *jaddref, *jatmp; 11977 struct jnewblk *jnewblk, *jntmp; 11978 struct ufsmount *ump; 11979 uint8_t *inosused; 11980 uint8_t *blksfree; 11981 struct cg *cgp; 11982 struct fs *fs; 11983 ino_t ino; 11984 int foreground; 11985 int chgs; 11986 11987 if ((bmsafemap->sm_state & IOSTARTED) == 0) 11988 panic("handle_written_bmsafemap: Not started\n"); 11989 ump = VFSTOUFS(bmsafemap->sm_list.wk_mp); 11990 chgs = 0; 11991 bmsafemap->sm_state &= ~IOSTARTED; 11992 foreground = (bp->b_xflags & BX_BKGRDMARKER) == 0; 11993 /* 11994 * If write was successful, release journal work that was waiting 11995 * on the write. Otherwise move the work back. 11996 */ 11997 if (flags & WRITESUCCEEDED) 11998 handle_jwork(&bmsafemap->sm_freewr); 11999 else 12000 LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, 12001 worklist, wk_list); 12002 12003 /* 12004 * Restore unwritten inode allocation pending jaddref writes. 12005 */ 12006 if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) { 12007 cgp = (struct cg *)bp->b_data; 12008 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 12009 inosused = cg_inosused(cgp); 12010 LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd, 12011 ja_bmdeps, jatmp) { 12012 if ((jaddref->ja_state & UNDONE) == 0) 12013 continue; 12014 ino = jaddref->ja_ino % fs->fs_ipg; 12015 if (isset(inosused, ino)) 12016 panic("handle_written_bmsafemap: " 12017 "re-allocated inode"); 12018 /* Do the roll-forward only if it's a real copy. */ 12019 if (foreground) { 12020 if ((jaddref->ja_mode & IFMT) == IFDIR) 12021 cgp->cg_cs.cs_ndir++; 12022 cgp->cg_cs.cs_nifree--; 12023 setbit(inosused, ino); 12024 chgs = 1; 12025 } 12026 jaddref->ja_state &= ~UNDONE; 12027 jaddref->ja_state |= ATTACHED; 12028 free_jaddref(jaddref); 12029 } 12030 } 12031 /* 12032 * Restore any block allocations which are pending journal writes. 12033 */ 12034 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) { 12035 cgp = (struct cg *)bp->b_data; 12036 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 12037 blksfree = cg_blksfree(cgp); 12038 LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps, 12039 jntmp) { 12040 if ((jnewblk->jn_state & UNDONE) == 0) 12041 continue; 12042 /* Do the roll-forward only if it's a real copy. */ 12043 if (foreground && 12044 jnewblk_rollforward(jnewblk, fs, cgp, blksfree)) 12045 chgs = 1; 12046 jnewblk->jn_state &= ~(UNDONE | NEWBLOCK); 12047 jnewblk->jn_state |= ATTACHED; 12048 free_jnewblk(jnewblk); 12049 } 12050 } 12051 /* 12052 * If the write did not succeed, we have done all the roll-forward 12053 * operations, but we cannot take the actions that will allow its 12054 * dependencies to be processed. 12055 */ 12056 if ((flags & WRITESUCCEEDED) == 0) { 12057 LIST_CONCAT(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr, 12058 newblk, nb_deps); 12059 LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, 12060 worklist, wk_list); 12061 if (foreground) 12062 bdirty(bp); 12063 return (1); 12064 } 12065 while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) { 12066 newblk->nb_state |= DEPCOMPLETE; 12067 newblk->nb_state &= ~ONDEPLIST; 12068 newblk->nb_bmsafemap = NULL; 12069 LIST_REMOVE(newblk, nb_deps); 12070 if (newblk->nb_list.wk_type == D_ALLOCDIRECT) 12071 handle_allocdirect_partdone( 12072 WK_ALLOCDIRECT(&newblk->nb_list), NULL); 12073 else if (newblk->nb_list.wk_type == D_ALLOCINDIR) 12074 handle_allocindir_partdone( 12075 WK_ALLOCINDIR(&newblk->nb_list)); 12076 else if (newblk->nb_list.wk_type != D_NEWBLK) 12077 panic("handle_written_bmsafemap: Unexpected type: %s", 12078 TYPENAME(newblk->nb_list.wk_type)); 12079 } 12080 while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) { 12081 inodedep->id_state |= DEPCOMPLETE; 12082 inodedep->id_state &= ~ONDEPLIST; 12083 LIST_REMOVE(inodedep, id_deps); 12084 inodedep->id_bmsafemap = NULL; 12085 } 12086 LIST_REMOVE(bmsafemap, sm_next); 12087 if (chgs == 0 && LIST_EMPTY(&bmsafemap->sm_jaddrefhd) && 12088 LIST_EMPTY(&bmsafemap->sm_jnewblkhd) && 12089 LIST_EMPTY(&bmsafemap->sm_newblkhd) && 12090 LIST_EMPTY(&bmsafemap->sm_inodedephd) && 12091 LIST_EMPTY(&bmsafemap->sm_freehd)) { 12092 LIST_REMOVE(bmsafemap, sm_hash); 12093 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); 12094 return (0); 12095 } 12096 LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next); 12097 if (foreground) 12098 bdirty(bp); 12099 return (1); 12100 } 12101 12102 /* 12103 * Try to free a mkdir dependency. 12104 */ 12105 static void 12106 complete_mkdir(mkdir) 12107 struct mkdir *mkdir; 12108 { 12109 struct diradd *dap; 12110 12111 if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE) 12112 return; 12113 LIST_REMOVE(mkdir, md_mkdirs); 12114 dap = mkdir->md_diradd; 12115 dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)); 12116 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) { 12117 dap->da_state |= DEPCOMPLETE; 12118 complete_diradd(dap); 12119 } 12120 WORKITEM_FREE(mkdir, D_MKDIR); 12121 } 12122 12123 /* 12124 * Handle the completion of a mkdir dependency. 12125 */ 12126 static void 12127 handle_written_mkdir(mkdir, type) 12128 struct mkdir *mkdir; 12129 int type; 12130 { 12131 12132 if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type) 12133 panic("handle_written_mkdir: bad type"); 12134 mkdir->md_state |= COMPLETE; 12135 complete_mkdir(mkdir); 12136 } 12137 12138 static int 12139 free_pagedep(pagedep) 12140 struct pagedep *pagedep; 12141 { 12142 int i; 12143 12144 if (pagedep->pd_state & NEWBLOCK) 12145 return (0); 12146 if (!LIST_EMPTY(&pagedep->pd_dirremhd)) 12147 return (0); 12148 for (i = 0; i < DAHASHSZ; i++) 12149 if (!LIST_EMPTY(&pagedep->pd_diraddhd[i])) 12150 return (0); 12151 if (!LIST_EMPTY(&pagedep->pd_pendinghd)) 12152 return (0); 12153 if (!LIST_EMPTY(&pagedep->pd_jmvrefhd)) 12154 return (0); 12155 if (pagedep->pd_state & ONWORKLIST) 12156 WORKLIST_REMOVE(&pagedep->pd_list); 12157 LIST_REMOVE(pagedep, pd_hash); 12158 WORKITEM_FREE(pagedep, D_PAGEDEP); 12159 12160 return (1); 12161 } 12162 12163 /* 12164 * Called from within softdep_disk_write_complete above. 12165 * A write operation was just completed. Removed inodes can 12166 * now be freed and associated block pointers may be committed. 12167 * Note that this routine is always called from interrupt level 12168 * with further interrupts from this device blocked. 12169 * 12170 * If the write did not succeed, we will do all the roll-forward 12171 * operations, but we will not take the actions that will allow its 12172 * dependencies to be processed. 12173 */ 12174 static int 12175 handle_written_filepage(pagedep, bp, flags) 12176 struct pagedep *pagedep; 12177 struct buf *bp; /* buffer containing the written page */ 12178 int flags; 12179 { 12180 struct dirrem *dirrem; 12181 struct diradd *dap, *nextdap; 12182 struct direct *ep; 12183 int i, chgs; 12184 12185 if ((pagedep->pd_state & IOSTARTED) == 0) 12186 panic("handle_written_filepage: not started"); 12187 pagedep->pd_state &= ~IOSTARTED; 12188 if ((flags & WRITESUCCEEDED) == 0) 12189 goto rollforward; 12190 /* 12191 * Process any directory removals that have been committed. 12192 */ 12193 while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) { 12194 LIST_REMOVE(dirrem, dm_next); 12195 dirrem->dm_state |= COMPLETE; 12196 dirrem->dm_dirinum = pagedep->pd_ino; 12197 KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd), 12198 ("handle_written_filepage: Journal entries not written.")); 12199 add_to_worklist(&dirrem->dm_list, 0); 12200 } 12201 /* 12202 * Free any directory additions that have been committed. 12203 * If it is a newly allocated block, we have to wait until 12204 * the on-disk directory inode claims the new block. 12205 */ 12206 if ((pagedep->pd_state & NEWBLOCK) == 0) 12207 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 12208 free_diradd(dap, NULL); 12209 rollforward: 12210 /* 12211 * Uncommitted directory entries must be restored. 12212 */ 12213 for (chgs = 0, i = 0; i < DAHASHSZ; i++) { 12214 for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap; 12215 dap = nextdap) { 12216 nextdap = LIST_NEXT(dap, da_pdlist); 12217 if (dap->da_state & ATTACHED) 12218 panic("handle_written_filepage: attached"); 12219 ep = (struct direct *) 12220 ((char *)bp->b_data + dap->da_offset); 12221 ep->d_ino = dap->da_newinum; 12222 dap->da_state &= ~UNDONE; 12223 dap->da_state |= ATTACHED; 12224 chgs = 1; 12225 /* 12226 * If the inode referenced by the directory has 12227 * been written out, then the dependency can be 12228 * moved to the pending list. 12229 */ 12230 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 12231 LIST_REMOVE(dap, da_pdlist); 12232 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, 12233 da_pdlist); 12234 } 12235 } 12236 } 12237 /* 12238 * If there were any rollbacks in the directory, then it must be 12239 * marked dirty so that its will eventually get written back in 12240 * its correct form. 12241 */ 12242 if (chgs || (flags & WRITESUCCEEDED) == 0) { 12243 if ((bp->b_flags & B_DELWRI) == 0) 12244 stat_dir_entry++; 12245 bdirty(bp); 12246 return (1); 12247 } 12248 /* 12249 * If we are not waiting for a new directory block to be 12250 * claimed by its inode, then the pagedep will be freed. 12251 * Otherwise it will remain to track any new entries on 12252 * the page in case they are fsync'ed. 12253 */ 12254 free_pagedep(pagedep); 12255 return (0); 12256 } 12257 12258 /* 12259 * Writing back in-core inode structures. 12260 * 12261 * The filesystem only accesses an inode's contents when it occupies an 12262 * "in-core" inode structure. These "in-core" structures are separate from 12263 * the page frames used to cache inode blocks. Only the latter are 12264 * transferred to/from the disk. So, when the updated contents of the 12265 * "in-core" inode structure are copied to the corresponding in-memory inode 12266 * block, the dependencies are also transferred. The following procedure is 12267 * called when copying a dirty "in-core" inode to a cached inode block. 12268 */ 12269 12270 /* 12271 * Called when an inode is loaded from disk. If the effective link count 12272 * differed from the actual link count when it was last flushed, then we 12273 * need to ensure that the correct effective link count is put back. 12274 */ 12275 void 12276 softdep_load_inodeblock(ip) 12277 struct inode *ip; /* the "in_core" copy of the inode */ 12278 { 12279 struct inodedep *inodedep; 12280 struct ufsmount *ump; 12281 12282 ump = ITOUMP(ip); 12283 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 12284 ("softdep_load_inodeblock called on non-softdep filesystem")); 12285 /* 12286 * Check for alternate nlink count. 12287 */ 12288 ip->i_effnlink = ip->i_nlink; 12289 ACQUIRE_LOCK(ump); 12290 if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0) { 12291 FREE_LOCK(ump); 12292 return; 12293 } 12294 ip->i_effnlink -= inodedep->id_nlinkdelta; 12295 KASSERT(ip->i_effnlink >= 0, 12296 ("softdep_load_inodeblock: negative i_effnlink")); 12297 FREE_LOCK(ump); 12298 } 12299 12300 /* 12301 * This routine is called just before the "in-core" inode 12302 * information is to be copied to the in-memory inode block. 12303 * Recall that an inode block contains several inodes. If 12304 * the force flag is set, then the dependencies will be 12305 * cleared so that the update can always be made. Note that 12306 * the buffer is locked when this routine is called, so we 12307 * will never be in the middle of writing the inode block 12308 * to disk. 12309 */ 12310 void 12311 softdep_update_inodeblock(ip, bp, waitfor) 12312 struct inode *ip; /* the "in_core" copy of the inode */ 12313 struct buf *bp; /* the buffer containing the inode block */ 12314 int waitfor; /* nonzero => update must be allowed */ 12315 { 12316 struct inodedep *inodedep; 12317 struct inoref *inoref; 12318 struct ufsmount *ump; 12319 struct worklist *wk; 12320 struct mount *mp; 12321 struct buf *ibp; 12322 struct fs *fs; 12323 int error; 12324 12325 ump = ITOUMP(ip); 12326 mp = UFSTOVFS(ump); 12327 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 12328 ("softdep_update_inodeblock called on non-softdep filesystem")); 12329 fs = ump->um_fs; 12330 /* 12331 * Preserve the freelink that is on disk. clear_unlinked_inodedep() 12332 * does not have access to the in-core ip so must write directly into 12333 * the inode block buffer when setting freelink. 12334 */ 12335 if (fs->fs_magic == FS_UFS1_MAGIC) 12336 DIP_SET(ip, i_freelink, ((struct ufs1_dinode *)bp->b_data + 12337 ino_to_fsbo(fs, ip->i_number))->di_freelink); 12338 else 12339 DIP_SET(ip, i_freelink, ((struct ufs2_dinode *)bp->b_data + 12340 ino_to_fsbo(fs, ip->i_number))->di_freelink); 12341 /* 12342 * If the effective link count is not equal to the actual link 12343 * count, then we must track the difference in an inodedep while 12344 * the inode is (potentially) tossed out of the cache. Otherwise, 12345 * if there is no existing inodedep, then there are no dependencies 12346 * to track. 12347 */ 12348 ACQUIRE_LOCK(ump); 12349 again: 12350 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) { 12351 FREE_LOCK(ump); 12352 if (ip->i_effnlink != ip->i_nlink) 12353 panic("softdep_update_inodeblock: bad link count"); 12354 return; 12355 } 12356 if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink) 12357 panic("softdep_update_inodeblock: bad delta"); 12358 /* 12359 * If we're flushing all dependencies we must also move any waiting 12360 * for journal writes onto the bufwait list prior to I/O. 12361 */ 12362 if (waitfor) { 12363 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 12364 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 12365 == DEPCOMPLETE) { 12366 jwait(&inoref->if_list, MNT_WAIT); 12367 goto again; 12368 } 12369 } 12370 } 12371 /* 12372 * Changes have been initiated. Anything depending on these 12373 * changes cannot occur until this inode has been written. 12374 */ 12375 inodedep->id_state &= ~COMPLETE; 12376 if ((inodedep->id_state & ONWORKLIST) == 0) 12377 WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list); 12378 /* 12379 * Any new dependencies associated with the incore inode must 12380 * now be moved to the list associated with the buffer holding 12381 * the in-memory copy of the inode. Once merged process any 12382 * allocdirects that are completed by the merger. 12383 */ 12384 merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt); 12385 if (!TAILQ_EMPTY(&inodedep->id_inoupdt)) 12386 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt), 12387 NULL); 12388 merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt); 12389 if (!TAILQ_EMPTY(&inodedep->id_extupdt)) 12390 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt), 12391 NULL); 12392 /* 12393 * Now that the inode has been pushed into the buffer, the 12394 * operations dependent on the inode being written to disk 12395 * can be moved to the id_bufwait so that they will be 12396 * processed when the buffer I/O completes. 12397 */ 12398 while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) { 12399 WORKLIST_REMOVE(wk); 12400 WORKLIST_INSERT(&inodedep->id_bufwait, wk); 12401 } 12402 /* 12403 * Newly allocated inodes cannot be written until the bitmap 12404 * that allocates them have been written (indicated by 12405 * DEPCOMPLETE being set in id_state). If we are doing a 12406 * forced sync (e.g., an fsync on a file), we force the bitmap 12407 * to be written so that the update can be done. 12408 */ 12409 if (waitfor == 0) { 12410 FREE_LOCK(ump); 12411 return; 12412 } 12413 retry: 12414 if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) { 12415 FREE_LOCK(ump); 12416 return; 12417 } 12418 ibp = inodedep->id_bmsafemap->sm_buf; 12419 ibp = getdirtybuf(ibp, LOCK_PTR(ump), MNT_WAIT); 12420 if (ibp == NULL) { 12421 /* 12422 * If ibp came back as NULL, the dependency could have been 12423 * freed while we slept. Look it up again, and check to see 12424 * that it has completed. 12425 */ 12426 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) 12427 goto retry; 12428 FREE_LOCK(ump); 12429 return; 12430 } 12431 FREE_LOCK(ump); 12432 if ((error = bwrite(ibp)) != 0) 12433 softdep_error("softdep_update_inodeblock: bwrite", error); 12434 } 12435 12436 /* 12437 * Merge the a new inode dependency list (such as id_newinoupdt) into an 12438 * old inode dependency list (such as id_inoupdt). 12439 */ 12440 static void 12441 merge_inode_lists(newlisthead, oldlisthead) 12442 struct allocdirectlst *newlisthead; 12443 struct allocdirectlst *oldlisthead; 12444 { 12445 struct allocdirect *listadp, *newadp; 12446 12447 newadp = TAILQ_FIRST(newlisthead); 12448 if (newadp != NULL) 12449 LOCK_OWNED(VFSTOUFS(newadp->ad_block.nb_list.wk_mp)); 12450 for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) { 12451 if (listadp->ad_offset < newadp->ad_offset) { 12452 listadp = TAILQ_NEXT(listadp, ad_next); 12453 continue; 12454 } 12455 TAILQ_REMOVE(newlisthead, newadp, ad_next); 12456 TAILQ_INSERT_BEFORE(listadp, newadp, ad_next); 12457 if (listadp->ad_offset == newadp->ad_offset) { 12458 allocdirect_merge(oldlisthead, newadp, 12459 listadp); 12460 listadp = newadp; 12461 } 12462 newadp = TAILQ_FIRST(newlisthead); 12463 } 12464 while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) { 12465 TAILQ_REMOVE(newlisthead, newadp, ad_next); 12466 TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next); 12467 } 12468 } 12469 12470 /* 12471 * If we are doing an fsync, then we must ensure that any directory 12472 * entries for the inode have been written after the inode gets to disk. 12473 */ 12474 int 12475 softdep_fsync(vp) 12476 struct vnode *vp; /* the "in_core" copy of the inode */ 12477 { 12478 struct inodedep *inodedep; 12479 struct pagedep *pagedep; 12480 struct inoref *inoref; 12481 struct ufsmount *ump; 12482 struct worklist *wk; 12483 struct diradd *dap; 12484 struct mount *mp; 12485 struct vnode *pvp; 12486 struct inode *ip; 12487 struct buf *bp; 12488 struct fs *fs; 12489 struct thread *td = curthread; 12490 int error, flushparent, pagedep_new_block; 12491 ino_t parentino; 12492 ufs_lbn_t lbn; 12493 12494 ip = VTOI(vp); 12495 mp = vp->v_mount; 12496 ump = VFSTOUFS(mp); 12497 fs = ump->um_fs; 12498 if (MOUNTEDSOFTDEP(mp) == 0) 12499 return (0); 12500 ACQUIRE_LOCK(ump); 12501 restart: 12502 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) { 12503 FREE_LOCK(ump); 12504 return (0); 12505 } 12506 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 12507 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 12508 == DEPCOMPLETE) { 12509 jwait(&inoref->if_list, MNT_WAIT); 12510 goto restart; 12511 } 12512 } 12513 if (!LIST_EMPTY(&inodedep->id_inowait) || 12514 !TAILQ_EMPTY(&inodedep->id_extupdt) || 12515 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 12516 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 12517 !TAILQ_EMPTY(&inodedep->id_newinoupdt)) 12518 panic("softdep_fsync: pending ops %p", inodedep); 12519 for (error = 0, flushparent = 0; ; ) { 12520 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL) 12521 break; 12522 if (wk->wk_type != D_DIRADD) 12523 panic("softdep_fsync: Unexpected type %s", 12524 TYPENAME(wk->wk_type)); 12525 dap = WK_DIRADD(wk); 12526 /* 12527 * Flush our parent if this directory entry has a MKDIR_PARENT 12528 * dependency or is contained in a newly allocated block. 12529 */ 12530 if (dap->da_state & DIRCHG) 12531 pagedep = dap->da_previous->dm_pagedep; 12532 else 12533 pagedep = dap->da_pagedep; 12534 parentino = pagedep->pd_ino; 12535 lbn = pagedep->pd_lbn; 12536 if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE) 12537 panic("softdep_fsync: dirty"); 12538 if ((dap->da_state & MKDIR_PARENT) || 12539 (pagedep->pd_state & NEWBLOCK)) 12540 flushparent = 1; 12541 else 12542 flushparent = 0; 12543 /* 12544 * If we are being fsync'ed as part of vgone'ing this vnode, 12545 * then we will not be able to release and recover the 12546 * vnode below, so we just have to give up on writing its 12547 * directory entry out. It will eventually be written, just 12548 * not now, but then the user was not asking to have it 12549 * written, so we are not breaking any promises. 12550 */ 12551 if (VN_IS_DOOMED(vp)) 12552 break; 12553 /* 12554 * We prevent deadlock by always fetching inodes from the 12555 * root, moving down the directory tree. Thus, when fetching 12556 * our parent directory, we first try to get the lock. If 12557 * that fails, we must unlock ourselves before requesting 12558 * the lock on our parent. See the comment in ufs_lookup 12559 * for details on possible races. 12560 */ 12561 FREE_LOCK(ump); 12562 if (ffs_vgetf(mp, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp, 12563 FFSV_FORCEINSMQ)) { 12564 /* 12565 * Unmount cannot proceed after unlock because 12566 * caller must have called vn_start_write(). 12567 */ 12568 VOP_UNLOCK(vp); 12569 error = ffs_vgetf(mp, parentino, LK_EXCLUSIVE, 12570 &pvp, FFSV_FORCEINSMQ); 12571 MPASS(VTOI(pvp)->i_mode != 0); 12572 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 12573 if (VN_IS_DOOMED(vp)) { 12574 if (error == 0) 12575 vput(pvp); 12576 error = ENOENT; 12577 } 12578 if (error != 0) 12579 return (error); 12580 } 12581 /* 12582 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps 12583 * that are contained in direct blocks will be resolved by 12584 * doing a ffs_update. Pagedeps contained in indirect blocks 12585 * may require a complete sync'ing of the directory. So, we 12586 * try the cheap and fast ffs_update first, and if that fails, 12587 * then we do the slower ffs_syncvnode of the directory. 12588 */ 12589 if (flushparent) { 12590 int locked; 12591 12592 if ((error = ffs_update(pvp, 1)) != 0) { 12593 vput(pvp); 12594 return (error); 12595 } 12596 ACQUIRE_LOCK(ump); 12597 locked = 1; 12598 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) { 12599 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) { 12600 if (wk->wk_type != D_DIRADD) 12601 panic("softdep_fsync: Unexpected type %s", 12602 TYPENAME(wk->wk_type)); 12603 dap = WK_DIRADD(wk); 12604 if (dap->da_state & DIRCHG) 12605 pagedep = dap->da_previous->dm_pagedep; 12606 else 12607 pagedep = dap->da_pagedep; 12608 pagedep_new_block = pagedep->pd_state & NEWBLOCK; 12609 FREE_LOCK(ump); 12610 locked = 0; 12611 if (pagedep_new_block && (error = 12612 ffs_syncvnode(pvp, MNT_WAIT, 0))) { 12613 vput(pvp); 12614 return (error); 12615 } 12616 } 12617 } 12618 if (locked) 12619 FREE_LOCK(ump); 12620 } 12621 /* 12622 * Flush directory page containing the inode's name. 12623 */ 12624 error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred, 12625 &bp); 12626 if (error == 0) 12627 error = bwrite(bp); 12628 else 12629 brelse(bp); 12630 vput(pvp); 12631 if (error != 0) 12632 return (error); 12633 ACQUIRE_LOCK(ump); 12634 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 12635 break; 12636 } 12637 FREE_LOCK(ump); 12638 return (0); 12639 } 12640 12641 /* 12642 * Flush all the dirty bitmaps associated with the block device 12643 * before flushing the rest of the dirty blocks so as to reduce 12644 * the number of dependencies that will have to be rolled back. 12645 * 12646 * XXX Unused? 12647 */ 12648 void 12649 softdep_fsync_mountdev(vp) 12650 struct vnode *vp; 12651 { 12652 struct buf *bp, *nbp; 12653 struct worklist *wk; 12654 struct bufobj *bo; 12655 12656 if (!vn_isdisk(vp, NULL)) 12657 panic("softdep_fsync_mountdev: vnode not a disk"); 12658 bo = &vp->v_bufobj; 12659 restart: 12660 BO_LOCK(bo); 12661 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 12662 /* 12663 * If it is already scheduled, skip to the next buffer. 12664 */ 12665 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) 12666 continue; 12667 12668 if ((bp->b_flags & B_DELWRI) == 0) 12669 panic("softdep_fsync_mountdev: not dirty"); 12670 /* 12671 * We are only interested in bitmaps with outstanding 12672 * dependencies. 12673 */ 12674 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL || 12675 wk->wk_type != D_BMSAFEMAP || 12676 (bp->b_vflags & BV_BKGRDINPROG)) { 12677 BUF_UNLOCK(bp); 12678 continue; 12679 } 12680 BO_UNLOCK(bo); 12681 bremfree(bp); 12682 (void) bawrite(bp); 12683 goto restart; 12684 } 12685 drain_output(vp); 12686 BO_UNLOCK(bo); 12687 } 12688 12689 /* 12690 * Sync all cylinder groups that were dirty at the time this function is 12691 * called. Newly dirtied cgs will be inserted before the sentinel. This 12692 * is used to flush freedep activity that may be holding up writes to a 12693 * indirect block. 12694 */ 12695 static int 12696 sync_cgs(mp, waitfor) 12697 struct mount *mp; 12698 int waitfor; 12699 { 12700 struct bmsafemap *bmsafemap; 12701 struct bmsafemap *sentinel; 12702 struct ufsmount *ump; 12703 struct buf *bp; 12704 int error; 12705 12706 sentinel = malloc(sizeof(*sentinel), M_BMSAFEMAP, M_ZERO | M_WAITOK); 12707 sentinel->sm_cg = -1; 12708 ump = VFSTOUFS(mp); 12709 error = 0; 12710 ACQUIRE_LOCK(ump); 12711 LIST_INSERT_HEAD(&ump->softdep_dirtycg, sentinel, sm_next); 12712 for (bmsafemap = LIST_NEXT(sentinel, sm_next); bmsafemap != NULL; 12713 bmsafemap = LIST_NEXT(sentinel, sm_next)) { 12714 /* Skip sentinels and cgs with no work to release. */ 12715 if (bmsafemap->sm_cg == -1 || 12716 (LIST_EMPTY(&bmsafemap->sm_freehd) && 12717 LIST_EMPTY(&bmsafemap->sm_freewr))) { 12718 LIST_REMOVE(sentinel, sm_next); 12719 LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next); 12720 continue; 12721 } 12722 /* 12723 * If we don't get the lock and we're waiting try again, if 12724 * not move on to the next buf and try to sync it. 12725 */ 12726 bp = getdirtybuf(bmsafemap->sm_buf, LOCK_PTR(ump), waitfor); 12727 if (bp == NULL && waitfor == MNT_WAIT) 12728 continue; 12729 LIST_REMOVE(sentinel, sm_next); 12730 LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next); 12731 if (bp == NULL) 12732 continue; 12733 FREE_LOCK(ump); 12734 if (waitfor == MNT_NOWAIT) 12735 bawrite(bp); 12736 else 12737 error = bwrite(bp); 12738 ACQUIRE_LOCK(ump); 12739 if (error) 12740 break; 12741 } 12742 LIST_REMOVE(sentinel, sm_next); 12743 FREE_LOCK(ump); 12744 free(sentinel, M_BMSAFEMAP); 12745 return (error); 12746 } 12747 12748 /* 12749 * This routine is called when we are trying to synchronously flush a 12750 * file. This routine must eliminate any filesystem metadata dependencies 12751 * so that the syncing routine can succeed. 12752 */ 12753 int 12754 softdep_sync_metadata(struct vnode *vp) 12755 { 12756 struct inode *ip; 12757 int error; 12758 12759 ip = VTOI(vp); 12760 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 12761 ("softdep_sync_metadata called on non-softdep filesystem")); 12762 /* 12763 * Ensure that any direct block dependencies have been cleared, 12764 * truncations are started, and inode references are journaled. 12765 */ 12766 ACQUIRE_LOCK(VFSTOUFS(vp->v_mount)); 12767 /* 12768 * Write all journal records to prevent rollbacks on devvp. 12769 */ 12770 if (vp->v_type == VCHR) 12771 softdep_flushjournal(vp->v_mount); 12772 error = flush_inodedep_deps(vp, vp->v_mount, ip->i_number); 12773 /* 12774 * Ensure that all truncates are written so we won't find deps on 12775 * indirect blocks. 12776 */ 12777 process_truncates(vp); 12778 FREE_LOCK(VFSTOUFS(vp->v_mount)); 12779 12780 return (error); 12781 } 12782 12783 /* 12784 * This routine is called when we are attempting to sync a buf with 12785 * dependencies. If waitfor is MNT_NOWAIT it attempts to schedule any 12786 * other IO it can but returns EBUSY if the buffer is not yet able to 12787 * be written. Dependencies which will not cause rollbacks will always 12788 * return 0. 12789 */ 12790 int 12791 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor) 12792 { 12793 struct indirdep *indirdep; 12794 struct pagedep *pagedep; 12795 struct allocindir *aip; 12796 struct newblk *newblk; 12797 struct ufsmount *ump; 12798 struct buf *nbp; 12799 struct worklist *wk; 12800 int i, error; 12801 12802 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 12803 ("softdep_sync_buf called on non-softdep filesystem")); 12804 /* 12805 * For VCHR we just don't want to force flush any dependencies that 12806 * will cause rollbacks. 12807 */ 12808 if (vp->v_type == VCHR) { 12809 if (waitfor == MNT_NOWAIT && softdep_count_dependencies(bp, 0)) 12810 return (EBUSY); 12811 return (0); 12812 } 12813 ump = VFSTOUFS(vp->v_mount); 12814 ACQUIRE_LOCK(ump); 12815 /* 12816 * As we hold the buffer locked, none of its dependencies 12817 * will disappear. 12818 */ 12819 error = 0; 12820 top: 12821 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 12822 switch (wk->wk_type) { 12823 12824 case D_ALLOCDIRECT: 12825 case D_ALLOCINDIR: 12826 newblk = WK_NEWBLK(wk); 12827 if (newblk->nb_jnewblk != NULL) { 12828 if (waitfor == MNT_NOWAIT) { 12829 error = EBUSY; 12830 goto out_unlock; 12831 } 12832 jwait(&newblk->nb_jnewblk->jn_list, waitfor); 12833 goto top; 12834 } 12835 if (newblk->nb_state & DEPCOMPLETE || 12836 waitfor == MNT_NOWAIT) 12837 continue; 12838 nbp = newblk->nb_bmsafemap->sm_buf; 12839 nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor); 12840 if (nbp == NULL) 12841 goto top; 12842 FREE_LOCK(ump); 12843 if ((error = bwrite(nbp)) != 0) 12844 goto out; 12845 ACQUIRE_LOCK(ump); 12846 continue; 12847 12848 case D_INDIRDEP: 12849 indirdep = WK_INDIRDEP(wk); 12850 if (waitfor == MNT_NOWAIT) { 12851 if (!TAILQ_EMPTY(&indirdep->ir_trunc) || 12852 !LIST_EMPTY(&indirdep->ir_deplisthd)) { 12853 error = EBUSY; 12854 goto out_unlock; 12855 } 12856 } 12857 if (!TAILQ_EMPTY(&indirdep->ir_trunc)) 12858 panic("softdep_sync_buf: truncation pending."); 12859 restart: 12860 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) { 12861 newblk = (struct newblk *)aip; 12862 if (newblk->nb_jnewblk != NULL) { 12863 jwait(&newblk->nb_jnewblk->jn_list, 12864 waitfor); 12865 goto restart; 12866 } 12867 if (newblk->nb_state & DEPCOMPLETE) 12868 continue; 12869 nbp = newblk->nb_bmsafemap->sm_buf; 12870 nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor); 12871 if (nbp == NULL) 12872 goto restart; 12873 FREE_LOCK(ump); 12874 if ((error = bwrite(nbp)) != 0) 12875 goto out; 12876 ACQUIRE_LOCK(ump); 12877 goto restart; 12878 } 12879 continue; 12880 12881 case D_PAGEDEP: 12882 /* 12883 * Only flush directory entries in synchronous passes. 12884 */ 12885 if (waitfor != MNT_WAIT) { 12886 error = EBUSY; 12887 goto out_unlock; 12888 } 12889 /* 12890 * While syncing snapshots, we must allow recursive 12891 * lookups. 12892 */ 12893 BUF_AREC(bp); 12894 /* 12895 * We are trying to sync a directory that may 12896 * have dependencies on both its own metadata 12897 * and/or dependencies on the inodes of any 12898 * recently allocated files. We walk its diradd 12899 * lists pushing out the associated inode. 12900 */ 12901 pagedep = WK_PAGEDEP(wk); 12902 for (i = 0; i < DAHASHSZ; i++) { 12903 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0) 12904 continue; 12905 if ((error = flush_pagedep_deps(vp, wk->wk_mp, 12906 &pagedep->pd_diraddhd[i]))) { 12907 BUF_NOREC(bp); 12908 goto out_unlock; 12909 } 12910 } 12911 BUF_NOREC(bp); 12912 continue; 12913 12914 case D_FREEWORK: 12915 case D_FREEDEP: 12916 case D_JSEGDEP: 12917 case D_JNEWBLK: 12918 continue; 12919 12920 default: 12921 panic("softdep_sync_buf: Unknown type %s", 12922 TYPENAME(wk->wk_type)); 12923 /* NOTREACHED */ 12924 } 12925 } 12926 out_unlock: 12927 FREE_LOCK(ump); 12928 out: 12929 return (error); 12930 } 12931 12932 /* 12933 * Flush the dependencies associated with an inodedep. 12934 */ 12935 static int 12936 flush_inodedep_deps(vp, mp, ino) 12937 struct vnode *vp; 12938 struct mount *mp; 12939 ino_t ino; 12940 { 12941 struct inodedep *inodedep; 12942 struct inoref *inoref; 12943 struct ufsmount *ump; 12944 int error, waitfor; 12945 12946 /* 12947 * This work is done in two passes. The first pass grabs most 12948 * of the buffers and begins asynchronously writing them. The 12949 * only way to wait for these asynchronous writes is to sleep 12950 * on the filesystem vnode which may stay busy for a long time 12951 * if the filesystem is active. So, instead, we make a second 12952 * pass over the dependencies blocking on each write. In the 12953 * usual case we will be blocking against a write that we 12954 * initiated, so when it is done the dependency will have been 12955 * resolved. Thus the second pass is expected to end quickly. 12956 * We give a brief window at the top of the loop to allow 12957 * any pending I/O to complete. 12958 */ 12959 ump = VFSTOUFS(mp); 12960 LOCK_OWNED(ump); 12961 for (error = 0, waitfor = MNT_NOWAIT; ; ) { 12962 if (error) 12963 return (error); 12964 FREE_LOCK(ump); 12965 ACQUIRE_LOCK(ump); 12966 restart: 12967 if (inodedep_lookup(mp, ino, 0, &inodedep) == 0) 12968 return (0); 12969 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 12970 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 12971 == DEPCOMPLETE) { 12972 jwait(&inoref->if_list, MNT_WAIT); 12973 goto restart; 12974 } 12975 } 12976 if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) || 12977 flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) || 12978 flush_deplist(&inodedep->id_extupdt, waitfor, &error) || 12979 flush_deplist(&inodedep->id_newextupdt, waitfor, &error)) 12980 continue; 12981 /* 12982 * If pass2, we are done, otherwise do pass 2. 12983 */ 12984 if (waitfor == MNT_WAIT) 12985 break; 12986 waitfor = MNT_WAIT; 12987 } 12988 /* 12989 * Try freeing inodedep in case all dependencies have been removed. 12990 */ 12991 if (inodedep_lookup(mp, ino, 0, &inodedep) != 0) 12992 (void) free_inodedep(inodedep); 12993 return (0); 12994 } 12995 12996 /* 12997 * Flush an inode dependency list. 12998 */ 12999 static int 13000 flush_deplist(listhead, waitfor, errorp) 13001 struct allocdirectlst *listhead; 13002 int waitfor; 13003 int *errorp; 13004 { 13005 struct allocdirect *adp; 13006 struct newblk *newblk; 13007 struct ufsmount *ump; 13008 struct buf *bp; 13009 13010 if ((adp = TAILQ_FIRST(listhead)) == NULL) 13011 return (0); 13012 ump = VFSTOUFS(adp->ad_list.wk_mp); 13013 LOCK_OWNED(ump); 13014 TAILQ_FOREACH(adp, listhead, ad_next) { 13015 newblk = (struct newblk *)adp; 13016 if (newblk->nb_jnewblk != NULL) { 13017 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 13018 return (1); 13019 } 13020 if (newblk->nb_state & DEPCOMPLETE) 13021 continue; 13022 bp = newblk->nb_bmsafemap->sm_buf; 13023 bp = getdirtybuf(bp, LOCK_PTR(ump), waitfor); 13024 if (bp == NULL) { 13025 if (waitfor == MNT_NOWAIT) 13026 continue; 13027 return (1); 13028 } 13029 FREE_LOCK(ump); 13030 if (waitfor == MNT_NOWAIT) 13031 bawrite(bp); 13032 else 13033 *errorp = bwrite(bp); 13034 ACQUIRE_LOCK(ump); 13035 return (1); 13036 } 13037 return (0); 13038 } 13039 13040 /* 13041 * Flush dependencies associated with an allocdirect block. 13042 */ 13043 static int 13044 flush_newblk_dep(vp, mp, lbn) 13045 struct vnode *vp; 13046 struct mount *mp; 13047 ufs_lbn_t lbn; 13048 { 13049 struct newblk *newblk; 13050 struct ufsmount *ump; 13051 struct bufobj *bo; 13052 struct inode *ip; 13053 struct buf *bp; 13054 ufs2_daddr_t blkno; 13055 int error; 13056 13057 error = 0; 13058 bo = &vp->v_bufobj; 13059 ip = VTOI(vp); 13060 blkno = DIP(ip, i_db[lbn]); 13061 if (blkno == 0) 13062 panic("flush_newblk_dep: Missing block"); 13063 ump = VFSTOUFS(mp); 13064 ACQUIRE_LOCK(ump); 13065 /* 13066 * Loop until all dependencies related to this block are satisfied. 13067 * We must be careful to restart after each sleep in case a write 13068 * completes some part of this process for us. 13069 */ 13070 for (;;) { 13071 if (newblk_lookup(mp, blkno, 0, &newblk) == 0) { 13072 FREE_LOCK(ump); 13073 break; 13074 } 13075 if (newblk->nb_list.wk_type != D_ALLOCDIRECT) 13076 panic("flush_newblk_dep: Bad newblk %p", newblk); 13077 /* 13078 * Flush the journal. 13079 */ 13080 if (newblk->nb_jnewblk != NULL) { 13081 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 13082 continue; 13083 } 13084 /* 13085 * Write the bitmap dependency. 13086 */ 13087 if ((newblk->nb_state & DEPCOMPLETE) == 0) { 13088 bp = newblk->nb_bmsafemap->sm_buf; 13089 bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT); 13090 if (bp == NULL) 13091 continue; 13092 FREE_LOCK(ump); 13093 error = bwrite(bp); 13094 if (error) 13095 break; 13096 ACQUIRE_LOCK(ump); 13097 continue; 13098 } 13099 /* 13100 * Write the buffer. 13101 */ 13102 FREE_LOCK(ump); 13103 BO_LOCK(bo); 13104 bp = gbincore(bo, lbn); 13105 if (bp != NULL) { 13106 error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | 13107 LK_INTERLOCK, BO_LOCKPTR(bo)); 13108 if (error == ENOLCK) { 13109 ACQUIRE_LOCK(ump); 13110 error = 0; 13111 continue; /* Slept, retry */ 13112 } 13113 if (error != 0) 13114 break; /* Failed */ 13115 if (bp->b_flags & B_DELWRI) { 13116 bremfree(bp); 13117 error = bwrite(bp); 13118 if (error) 13119 break; 13120 } else 13121 BUF_UNLOCK(bp); 13122 } else 13123 BO_UNLOCK(bo); 13124 /* 13125 * We have to wait for the direct pointers to 13126 * point at the newdirblk before the dependency 13127 * will go away. 13128 */ 13129 error = ffs_update(vp, 1); 13130 if (error) 13131 break; 13132 ACQUIRE_LOCK(ump); 13133 } 13134 return (error); 13135 } 13136 13137 /* 13138 * Eliminate a pagedep dependency by flushing out all its diradd dependencies. 13139 */ 13140 static int 13141 flush_pagedep_deps(pvp, mp, diraddhdp) 13142 struct vnode *pvp; 13143 struct mount *mp; 13144 struct diraddhd *diraddhdp; 13145 { 13146 struct inodedep *inodedep; 13147 struct inoref *inoref; 13148 struct ufsmount *ump; 13149 struct diradd *dap; 13150 struct vnode *vp; 13151 int error = 0; 13152 struct buf *bp; 13153 ino_t inum; 13154 struct diraddhd unfinished; 13155 13156 LIST_INIT(&unfinished); 13157 ump = VFSTOUFS(mp); 13158 LOCK_OWNED(ump); 13159 restart: 13160 while ((dap = LIST_FIRST(diraddhdp)) != NULL) { 13161 /* 13162 * Flush ourselves if this directory entry 13163 * has a MKDIR_PARENT dependency. 13164 */ 13165 if (dap->da_state & MKDIR_PARENT) { 13166 FREE_LOCK(ump); 13167 if ((error = ffs_update(pvp, 1)) != 0) 13168 break; 13169 ACQUIRE_LOCK(ump); 13170 /* 13171 * If that cleared dependencies, go on to next. 13172 */ 13173 if (dap != LIST_FIRST(diraddhdp)) 13174 continue; 13175 /* 13176 * All MKDIR_PARENT dependencies and all the 13177 * NEWBLOCK pagedeps that are contained in direct 13178 * blocks were resolved by doing above ffs_update. 13179 * Pagedeps contained in indirect blocks may 13180 * require a complete sync'ing of the directory. 13181 * We are in the midst of doing a complete sync, 13182 * so if they are not resolved in this pass we 13183 * defer them for now as they will be sync'ed by 13184 * our caller shortly. 13185 */ 13186 LIST_REMOVE(dap, da_pdlist); 13187 LIST_INSERT_HEAD(&unfinished, dap, da_pdlist); 13188 continue; 13189 } 13190 /* 13191 * A newly allocated directory must have its "." and 13192 * ".." entries written out before its name can be 13193 * committed in its parent. 13194 */ 13195 inum = dap->da_newinum; 13196 if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0) 13197 panic("flush_pagedep_deps: lost inode1"); 13198 /* 13199 * Wait for any pending journal adds to complete so we don't 13200 * cause rollbacks while syncing. 13201 */ 13202 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 13203 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 13204 == DEPCOMPLETE) { 13205 jwait(&inoref->if_list, MNT_WAIT); 13206 goto restart; 13207 } 13208 } 13209 if (dap->da_state & MKDIR_BODY) { 13210 FREE_LOCK(ump); 13211 if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp, 13212 FFSV_FORCEINSMQ))) 13213 break; 13214 MPASS(VTOI(vp)->i_mode != 0); 13215 error = flush_newblk_dep(vp, mp, 0); 13216 /* 13217 * If we still have the dependency we might need to 13218 * update the vnode to sync the new link count to 13219 * disk. 13220 */ 13221 if (error == 0 && dap == LIST_FIRST(diraddhdp)) 13222 error = ffs_update(vp, 1); 13223 vput(vp); 13224 if (error != 0) 13225 break; 13226 ACQUIRE_LOCK(ump); 13227 /* 13228 * If that cleared dependencies, go on to next. 13229 */ 13230 if (dap != LIST_FIRST(diraddhdp)) 13231 continue; 13232 if (dap->da_state & MKDIR_BODY) { 13233 inodedep_lookup(UFSTOVFS(ump), inum, 0, 13234 &inodedep); 13235 panic("flush_pagedep_deps: MKDIR_BODY " 13236 "inodedep %p dap %p vp %p", 13237 inodedep, dap, vp); 13238 } 13239 } 13240 /* 13241 * Flush the inode on which the directory entry depends. 13242 * Having accounted for MKDIR_PARENT and MKDIR_BODY above, 13243 * the only remaining dependency is that the updated inode 13244 * count must get pushed to disk. The inode has already 13245 * been pushed into its inode buffer (via VOP_UPDATE) at 13246 * the time of the reference count change. So we need only 13247 * locate that buffer, ensure that there will be no rollback 13248 * caused by a bitmap dependency, then write the inode buffer. 13249 */ 13250 retry: 13251 if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0) 13252 panic("flush_pagedep_deps: lost inode"); 13253 /* 13254 * If the inode still has bitmap dependencies, 13255 * push them to disk. 13256 */ 13257 if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) { 13258 bp = inodedep->id_bmsafemap->sm_buf; 13259 bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT); 13260 if (bp == NULL) 13261 goto retry; 13262 FREE_LOCK(ump); 13263 if ((error = bwrite(bp)) != 0) 13264 break; 13265 ACQUIRE_LOCK(ump); 13266 if (dap != LIST_FIRST(diraddhdp)) 13267 continue; 13268 } 13269 /* 13270 * If the inode is still sitting in a buffer waiting 13271 * to be written or waiting for the link count to be 13272 * adjusted update it here to flush it to disk. 13273 */ 13274 if (dap == LIST_FIRST(diraddhdp)) { 13275 FREE_LOCK(ump); 13276 if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp, 13277 FFSV_FORCEINSMQ))) 13278 break; 13279 MPASS(VTOI(vp)->i_mode != 0); 13280 error = ffs_update(vp, 1); 13281 vput(vp); 13282 if (error) 13283 break; 13284 ACQUIRE_LOCK(ump); 13285 } 13286 /* 13287 * If we have failed to get rid of all the dependencies 13288 * then something is seriously wrong. 13289 */ 13290 if (dap == LIST_FIRST(diraddhdp)) { 13291 inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep); 13292 panic("flush_pagedep_deps: failed to flush " 13293 "inodedep %p ino %ju dap %p", 13294 inodedep, (uintmax_t)inum, dap); 13295 } 13296 } 13297 if (error) 13298 ACQUIRE_LOCK(ump); 13299 while ((dap = LIST_FIRST(&unfinished)) != NULL) { 13300 LIST_REMOVE(dap, da_pdlist); 13301 LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist); 13302 } 13303 return (error); 13304 } 13305 13306 /* 13307 * A large burst of file addition or deletion activity can drive the 13308 * memory load excessively high. First attempt to slow things down 13309 * using the techniques below. If that fails, this routine requests 13310 * the offending operations to fall back to running synchronously 13311 * until the memory load returns to a reasonable level. 13312 */ 13313 int 13314 softdep_slowdown(vp) 13315 struct vnode *vp; 13316 { 13317 struct ufsmount *ump; 13318 int jlow; 13319 int max_softdeps_hard; 13320 13321 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 13322 ("softdep_slowdown called on non-softdep filesystem")); 13323 ump = VFSTOUFS(vp->v_mount); 13324 ACQUIRE_LOCK(ump); 13325 jlow = 0; 13326 /* 13327 * Check for journal space if needed. 13328 */ 13329 if (DOINGSUJ(vp)) { 13330 if (journal_space(ump, 0) == 0) 13331 jlow = 1; 13332 } 13333 /* 13334 * If the system is under its limits and our filesystem is 13335 * not responsible for more than our share of the usage and 13336 * we are not low on journal space, then no need to slow down. 13337 */ 13338 max_softdeps_hard = max_softdeps * 11 / 10; 13339 if (dep_current[D_DIRREM] < max_softdeps_hard / 2 && 13340 dep_current[D_INODEDEP] < max_softdeps_hard && 13341 dep_current[D_INDIRDEP] < max_softdeps_hard / 1000 && 13342 dep_current[D_FREEBLKS] < max_softdeps_hard && jlow == 0 && 13343 ump->softdep_curdeps[D_DIRREM] < 13344 (max_softdeps_hard / 2) / stat_flush_threads && 13345 ump->softdep_curdeps[D_INODEDEP] < 13346 max_softdeps_hard / stat_flush_threads && 13347 ump->softdep_curdeps[D_INDIRDEP] < 13348 (max_softdeps_hard / 1000) / stat_flush_threads && 13349 ump->softdep_curdeps[D_FREEBLKS] < 13350 max_softdeps_hard / stat_flush_threads) { 13351 FREE_LOCK(ump); 13352 return (0); 13353 } 13354 /* 13355 * If the journal is low or our filesystem is over its limit 13356 * then speedup the cleanup. 13357 */ 13358 if (ump->softdep_curdeps[D_INDIRDEP] < 13359 (max_softdeps_hard / 1000) / stat_flush_threads || jlow) 13360 softdep_speedup(ump); 13361 stat_sync_limit_hit += 1; 13362 FREE_LOCK(ump); 13363 /* 13364 * We only slow down the rate at which new dependencies are 13365 * generated if we are not using journaling. With journaling, 13366 * the cleanup should always be sufficient to keep things 13367 * under control. 13368 */ 13369 if (DOINGSUJ(vp)) 13370 return (0); 13371 return (1); 13372 } 13373 13374 /* 13375 * Called by the allocation routines when they are about to fail 13376 * in the hope that we can free up the requested resource (inodes 13377 * or disk space). 13378 * 13379 * First check to see if the work list has anything on it. If it has, 13380 * clean up entries until we successfully free the requested resource. 13381 * Because this process holds inodes locked, we cannot handle any remove 13382 * requests that might block on a locked inode as that could lead to 13383 * deadlock. If the worklist yields none of the requested resource, 13384 * start syncing out vnodes to free up the needed space. 13385 */ 13386 int 13387 softdep_request_cleanup(fs, vp, cred, resource) 13388 struct fs *fs; 13389 struct vnode *vp; 13390 struct ucred *cred; 13391 int resource; 13392 { 13393 struct ufsmount *ump; 13394 struct mount *mp; 13395 long starttime; 13396 ufs2_daddr_t needed; 13397 int error, failed_vnode; 13398 13399 /* 13400 * If we are being called because of a process doing a 13401 * copy-on-write, then it is not safe to process any 13402 * worklist items as we will recurse into the copyonwrite 13403 * routine. This will result in an incoherent snapshot. 13404 * If the vnode that we hold is a snapshot, we must avoid 13405 * handling other resources that could cause deadlock. 13406 */ 13407 if ((curthread->td_pflags & TDP_COWINPROGRESS) || IS_SNAPSHOT(VTOI(vp))) 13408 return (0); 13409 13410 if (resource == FLUSH_BLOCKS_WAIT) 13411 stat_cleanup_blkrequests += 1; 13412 else 13413 stat_cleanup_inorequests += 1; 13414 13415 mp = vp->v_mount; 13416 ump = VFSTOUFS(mp); 13417 mtx_assert(UFS_MTX(ump), MA_OWNED); 13418 UFS_UNLOCK(ump); 13419 error = ffs_update(vp, 1); 13420 if (error != 0 || MOUNTEDSOFTDEP(mp) == 0) { 13421 UFS_LOCK(ump); 13422 return (0); 13423 } 13424 /* 13425 * If we are in need of resources, start by cleaning up 13426 * any block removals associated with our inode. 13427 */ 13428 ACQUIRE_LOCK(ump); 13429 process_removes(vp); 13430 process_truncates(vp); 13431 FREE_LOCK(ump); 13432 /* 13433 * Now clean up at least as many resources as we will need. 13434 * 13435 * When requested to clean up inodes, the number that are needed 13436 * is set by the number of simultaneous writers (mnt_writeopcount) 13437 * plus a bit of slop (2) in case some more writers show up while 13438 * we are cleaning. 13439 * 13440 * When requested to free up space, the amount of space that 13441 * we need is enough blocks to allocate a full-sized segment 13442 * (fs_contigsumsize). The number of such segments that will 13443 * be needed is set by the number of simultaneous writers 13444 * (mnt_writeopcount) plus a bit of slop (2) in case some more 13445 * writers show up while we are cleaning. 13446 * 13447 * Additionally, if we are unpriviledged and allocating space, 13448 * we need to ensure that we clean up enough blocks to get the 13449 * needed number of blocks over the threshold of the minimum 13450 * number of blocks required to be kept free by the filesystem 13451 * (fs_minfree). 13452 */ 13453 if (resource == FLUSH_INODES_WAIT) { 13454 needed = vfs_mount_fetch_counter(vp->v_mount, 13455 MNT_COUNT_WRITEOPCOUNT) + 2; 13456 } else if (resource == FLUSH_BLOCKS_WAIT) { 13457 needed = (vfs_mount_fetch_counter(vp->v_mount, 13458 MNT_COUNT_WRITEOPCOUNT) + 2) * fs->fs_contigsumsize; 13459 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE)) 13460 needed += fragstoblks(fs, 13461 roundup((fs->fs_dsize * fs->fs_minfree / 100) - 13462 fs->fs_cstotal.cs_nffree, fs->fs_frag)); 13463 } else { 13464 printf("softdep_request_cleanup: Unknown resource type %d\n", 13465 resource); 13466 UFS_LOCK(ump); 13467 return (0); 13468 } 13469 starttime = time_second; 13470 retry: 13471 if (resource == FLUSH_BLOCKS_WAIT && 13472 fs->fs_cstotal.cs_nbfree <= needed) 13473 softdep_send_speedup(ump, needed * fs->fs_bsize, 13474 BIO_SPEEDUP_TRIM); 13475 if ((resource == FLUSH_BLOCKS_WAIT && ump->softdep_on_worklist > 0 && 13476 fs->fs_cstotal.cs_nbfree <= needed) || 13477 (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 && 13478 fs->fs_cstotal.cs_nifree <= needed)) { 13479 ACQUIRE_LOCK(ump); 13480 if (ump->softdep_on_worklist > 0 && 13481 process_worklist_item(UFSTOVFS(ump), 13482 ump->softdep_on_worklist, LK_NOWAIT) != 0) 13483 stat_worklist_push += 1; 13484 FREE_LOCK(ump); 13485 } 13486 /* 13487 * If we still need resources and there are no more worklist 13488 * entries to process to obtain them, we have to start flushing 13489 * the dirty vnodes to force the release of additional requests 13490 * to the worklist that we can then process to reap addition 13491 * resources. We walk the vnodes associated with the mount point 13492 * until we get the needed worklist requests that we can reap. 13493 * 13494 * If there are several threads all needing to clean the same 13495 * mount point, only one is allowed to walk the mount list. 13496 * When several threads all try to walk the same mount list, 13497 * they end up competing with each other and often end up in 13498 * livelock. This approach ensures that forward progress is 13499 * made at the cost of occational ENOSPC errors being returned 13500 * that might otherwise have been avoided. 13501 */ 13502 error = 1; 13503 if ((resource == FLUSH_BLOCKS_WAIT && 13504 fs->fs_cstotal.cs_nbfree <= needed) || 13505 (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 && 13506 fs->fs_cstotal.cs_nifree <= needed)) { 13507 ACQUIRE_LOCK(ump); 13508 if ((ump->um_softdep->sd_flags & FLUSH_RC_ACTIVE) == 0) { 13509 ump->um_softdep->sd_flags |= FLUSH_RC_ACTIVE; 13510 FREE_LOCK(ump); 13511 failed_vnode = softdep_request_cleanup_flush(mp, ump); 13512 ACQUIRE_LOCK(ump); 13513 ump->um_softdep->sd_flags &= ~FLUSH_RC_ACTIVE; 13514 FREE_LOCK(ump); 13515 if (ump->softdep_on_worklist > 0) { 13516 stat_cleanup_retries += 1; 13517 if (!failed_vnode) 13518 goto retry; 13519 } 13520 } else { 13521 FREE_LOCK(ump); 13522 error = 0; 13523 } 13524 stat_cleanup_failures += 1; 13525 } 13526 if (time_second - starttime > stat_cleanup_high_delay) 13527 stat_cleanup_high_delay = time_second - starttime; 13528 UFS_LOCK(ump); 13529 return (error); 13530 } 13531 13532 /* 13533 * Scan the vnodes for the specified mount point flushing out any 13534 * vnodes that can be locked without waiting. Finally, try to flush 13535 * the device associated with the mount point if it can be locked 13536 * without waiting. 13537 * 13538 * We return 0 if we were able to lock every vnode in our scan. 13539 * If we had to skip one or more vnodes, we return 1. 13540 */ 13541 static int 13542 softdep_request_cleanup_flush(mp, ump) 13543 struct mount *mp; 13544 struct ufsmount *ump; 13545 { 13546 struct thread *td; 13547 struct vnode *lvp, *mvp; 13548 int failed_vnode; 13549 13550 failed_vnode = 0; 13551 td = curthread; 13552 MNT_VNODE_FOREACH_ALL(lvp, mp, mvp) { 13553 if (TAILQ_FIRST(&lvp->v_bufobj.bo_dirty.bv_hd) == 0) { 13554 VI_UNLOCK(lvp); 13555 continue; 13556 } 13557 if (vget(lvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT, 13558 td) != 0) { 13559 failed_vnode = 1; 13560 continue; 13561 } 13562 if (lvp->v_vflag & VV_NOSYNC) { /* unlinked */ 13563 vput(lvp); 13564 continue; 13565 } 13566 (void) ffs_syncvnode(lvp, MNT_NOWAIT, 0); 13567 vput(lvp); 13568 } 13569 lvp = ump->um_devvp; 13570 if (vn_lock(lvp, LK_EXCLUSIVE | LK_NOWAIT) == 0) { 13571 VOP_FSYNC(lvp, MNT_NOWAIT, td); 13572 VOP_UNLOCK(lvp); 13573 } 13574 return (failed_vnode); 13575 } 13576 13577 static bool 13578 softdep_excess_items(struct ufsmount *ump, int item) 13579 { 13580 13581 KASSERT(item >= 0 && item < D_LAST, ("item %d", item)); 13582 return (dep_current[item] > max_softdeps && 13583 ump->softdep_curdeps[item] > max_softdeps / 13584 stat_flush_threads); 13585 } 13586 13587 static void 13588 schedule_cleanup(struct mount *mp) 13589 { 13590 struct ufsmount *ump; 13591 struct thread *td; 13592 13593 ump = VFSTOUFS(mp); 13594 LOCK_OWNED(ump); 13595 FREE_LOCK(ump); 13596 td = curthread; 13597 if ((td->td_pflags & TDP_KTHREAD) != 0 && 13598 (td->td_proc->p_flag2 & P2_AST_SU) == 0) { 13599 /* 13600 * No ast is delivered to kernel threads, so nobody 13601 * would deref the mp. Some kernel threads 13602 * explicitely check for AST, e.g. NFS daemon does 13603 * this in the serving loop. 13604 */ 13605 return; 13606 } 13607 if (td->td_su != NULL) 13608 vfs_rel(td->td_su); 13609 vfs_ref(mp); 13610 td->td_su = mp; 13611 thread_lock(td); 13612 td->td_flags |= TDF_ASTPENDING; 13613 thread_unlock(td); 13614 } 13615 13616 static void 13617 softdep_ast_cleanup_proc(struct thread *td) 13618 { 13619 struct mount *mp; 13620 struct ufsmount *ump; 13621 int error; 13622 bool req; 13623 13624 while ((mp = td->td_su) != NULL) { 13625 td->td_su = NULL; 13626 error = vfs_busy(mp, MBF_NOWAIT); 13627 vfs_rel(mp); 13628 if (error != 0) 13629 return; 13630 if (ffs_own_mount(mp) && MOUNTEDSOFTDEP(mp)) { 13631 ump = VFSTOUFS(mp); 13632 for (;;) { 13633 req = false; 13634 ACQUIRE_LOCK(ump); 13635 if (softdep_excess_items(ump, D_INODEDEP)) { 13636 req = true; 13637 request_cleanup(mp, FLUSH_INODES); 13638 } 13639 if (softdep_excess_items(ump, D_DIRREM)) { 13640 req = true; 13641 request_cleanup(mp, FLUSH_BLOCKS); 13642 } 13643 FREE_LOCK(ump); 13644 if (softdep_excess_items(ump, D_NEWBLK) || 13645 softdep_excess_items(ump, D_ALLOCDIRECT) || 13646 softdep_excess_items(ump, D_ALLOCINDIR)) { 13647 error = vn_start_write(NULL, &mp, 13648 V_WAIT); 13649 if (error == 0) { 13650 req = true; 13651 VFS_SYNC(mp, MNT_WAIT); 13652 vn_finished_write(mp); 13653 } 13654 } 13655 if ((td->td_pflags & TDP_KTHREAD) != 0 || !req) 13656 break; 13657 } 13658 } 13659 vfs_unbusy(mp); 13660 } 13661 if ((mp = td->td_su) != NULL) { 13662 td->td_su = NULL; 13663 vfs_rel(mp); 13664 } 13665 } 13666 13667 /* 13668 * If memory utilization has gotten too high, deliberately slow things 13669 * down and speed up the I/O processing. 13670 */ 13671 static int 13672 request_cleanup(mp, resource) 13673 struct mount *mp; 13674 int resource; 13675 { 13676 struct thread *td = curthread; 13677 struct ufsmount *ump; 13678 13679 ump = VFSTOUFS(mp); 13680 LOCK_OWNED(ump); 13681 /* 13682 * We never hold up the filesystem syncer or buf daemon. 13683 */ 13684 if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF)) 13685 return (0); 13686 /* 13687 * First check to see if the work list has gotten backlogged. 13688 * If it has, co-opt this process to help clean up two entries. 13689 * Because this process may hold inodes locked, we cannot 13690 * handle any remove requests that might block on a locked 13691 * inode as that could lead to deadlock. We set TDP_SOFTDEP 13692 * to avoid recursively processing the worklist. 13693 */ 13694 if (ump->softdep_on_worklist > max_softdeps / 10) { 13695 td->td_pflags |= TDP_SOFTDEP; 13696 process_worklist_item(mp, 2, LK_NOWAIT); 13697 td->td_pflags &= ~TDP_SOFTDEP; 13698 stat_worklist_push += 2; 13699 return(1); 13700 } 13701 /* 13702 * Next, we attempt to speed up the syncer process. If that 13703 * is successful, then we allow the process to continue. 13704 */ 13705 if (softdep_speedup(ump) && 13706 resource != FLUSH_BLOCKS_WAIT && 13707 resource != FLUSH_INODES_WAIT) 13708 return(0); 13709 /* 13710 * If we are resource constrained on inode dependencies, try 13711 * flushing some dirty inodes. Otherwise, we are constrained 13712 * by file deletions, so try accelerating flushes of directories 13713 * with removal dependencies. We would like to do the cleanup 13714 * here, but we probably hold an inode locked at this point and 13715 * that might deadlock against one that we try to clean. So, 13716 * the best that we can do is request the syncer daemon to do 13717 * the cleanup for us. 13718 */ 13719 switch (resource) { 13720 13721 case FLUSH_INODES: 13722 case FLUSH_INODES_WAIT: 13723 ACQUIRE_GBLLOCK(&lk); 13724 stat_ino_limit_push += 1; 13725 req_clear_inodedeps += 1; 13726 FREE_GBLLOCK(&lk); 13727 stat_countp = &stat_ino_limit_hit; 13728 break; 13729 13730 case FLUSH_BLOCKS: 13731 case FLUSH_BLOCKS_WAIT: 13732 ACQUIRE_GBLLOCK(&lk); 13733 stat_blk_limit_push += 1; 13734 req_clear_remove += 1; 13735 FREE_GBLLOCK(&lk); 13736 stat_countp = &stat_blk_limit_hit; 13737 break; 13738 13739 default: 13740 panic("request_cleanup: unknown type"); 13741 } 13742 /* 13743 * Hopefully the syncer daemon will catch up and awaken us. 13744 * We wait at most tickdelay before proceeding in any case. 13745 */ 13746 ACQUIRE_GBLLOCK(&lk); 13747 FREE_LOCK(ump); 13748 proc_waiting += 1; 13749 if (callout_pending(&softdep_callout) == FALSE) 13750 callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2, 13751 pause_timer, 0); 13752 13753 if ((td->td_pflags & TDP_KTHREAD) == 0) 13754 msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0); 13755 proc_waiting -= 1; 13756 FREE_GBLLOCK(&lk); 13757 ACQUIRE_LOCK(ump); 13758 return (1); 13759 } 13760 13761 /* 13762 * Awaken processes pausing in request_cleanup and clear proc_waiting 13763 * to indicate that there is no longer a timer running. Pause_timer 13764 * will be called with the global softdep mutex (&lk) locked. 13765 */ 13766 static void 13767 pause_timer(arg) 13768 void *arg; 13769 { 13770 13771 GBLLOCK_OWNED(&lk); 13772 /* 13773 * The callout_ API has acquired mtx and will hold it around this 13774 * function call. 13775 */ 13776 *stat_countp += proc_waiting; 13777 wakeup(&proc_waiting); 13778 } 13779 13780 /* 13781 * If requested, try removing inode or removal dependencies. 13782 */ 13783 static void 13784 check_clear_deps(mp) 13785 struct mount *mp; 13786 { 13787 struct ufsmount *ump; 13788 bool suj_susp; 13789 13790 /* 13791 * Tell the lower layers that any TRIM or WRITE transactions that have 13792 * been delayed for performance reasons should proceed to help alleviate 13793 * the shortage faster. The race between checking req_* and the softdep 13794 * mutex (lk) is fine since this is an advisory operation that at most 13795 * causes deferred work to be done sooner. 13796 */ 13797 ump = VFSTOUFS(mp); 13798 suj_susp = MOUNTEDSUJ(mp) && ump->softdep_jblocks->jb_suspended; 13799 if (req_clear_remove || req_clear_inodedeps || suj_susp) { 13800 FREE_LOCK(ump); 13801 softdep_send_speedup(ump, 0, BIO_SPEEDUP_TRIM | BIO_SPEEDUP_WRITE); 13802 ACQUIRE_LOCK(ump); 13803 } 13804 13805 /* 13806 * If we are suspended, it may be because of our using 13807 * too many inodedeps, so help clear them out. 13808 */ 13809 if (suj_susp) 13810 clear_inodedeps(mp); 13811 13812 /* 13813 * General requests for cleanup of backed up dependencies 13814 */ 13815 ACQUIRE_GBLLOCK(&lk); 13816 if (req_clear_inodedeps) { 13817 req_clear_inodedeps -= 1; 13818 FREE_GBLLOCK(&lk); 13819 clear_inodedeps(mp); 13820 ACQUIRE_GBLLOCK(&lk); 13821 wakeup(&proc_waiting); 13822 } 13823 if (req_clear_remove) { 13824 req_clear_remove -= 1; 13825 FREE_GBLLOCK(&lk); 13826 clear_remove(mp); 13827 ACQUIRE_GBLLOCK(&lk); 13828 wakeup(&proc_waiting); 13829 } 13830 FREE_GBLLOCK(&lk); 13831 } 13832 13833 /* 13834 * Flush out a directory with at least one removal dependency in an effort to 13835 * reduce the number of dirrem, freefile, and freeblks dependency structures. 13836 */ 13837 static void 13838 clear_remove(mp) 13839 struct mount *mp; 13840 { 13841 struct pagedep_hashhead *pagedephd; 13842 struct pagedep *pagedep; 13843 struct ufsmount *ump; 13844 struct vnode *vp; 13845 struct bufobj *bo; 13846 int error, cnt; 13847 ino_t ino; 13848 13849 ump = VFSTOUFS(mp); 13850 LOCK_OWNED(ump); 13851 13852 for (cnt = 0; cnt <= ump->pagedep_hash_size; cnt++) { 13853 pagedephd = &ump->pagedep_hashtbl[ump->pagedep_nextclean++]; 13854 if (ump->pagedep_nextclean > ump->pagedep_hash_size) 13855 ump->pagedep_nextclean = 0; 13856 LIST_FOREACH(pagedep, pagedephd, pd_hash) { 13857 if (LIST_EMPTY(&pagedep->pd_dirremhd)) 13858 continue; 13859 ino = pagedep->pd_ino; 13860 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 13861 continue; 13862 FREE_LOCK(ump); 13863 13864 /* 13865 * Let unmount clear deps 13866 */ 13867 error = vfs_busy(mp, MBF_NOWAIT); 13868 if (error != 0) 13869 goto finish_write; 13870 error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp, 13871 FFSV_FORCEINSMQ); 13872 vfs_unbusy(mp); 13873 if (error != 0) { 13874 softdep_error("clear_remove: vget", error); 13875 goto finish_write; 13876 } 13877 MPASS(VTOI(vp)->i_mode != 0); 13878 if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0))) 13879 softdep_error("clear_remove: fsync", error); 13880 bo = &vp->v_bufobj; 13881 BO_LOCK(bo); 13882 drain_output(vp); 13883 BO_UNLOCK(bo); 13884 vput(vp); 13885 finish_write: 13886 vn_finished_write(mp); 13887 ACQUIRE_LOCK(ump); 13888 return; 13889 } 13890 } 13891 } 13892 13893 /* 13894 * Clear out a block of dirty inodes in an effort to reduce 13895 * the number of inodedep dependency structures. 13896 */ 13897 static void 13898 clear_inodedeps(mp) 13899 struct mount *mp; 13900 { 13901 struct inodedep_hashhead *inodedephd; 13902 struct inodedep *inodedep; 13903 struct ufsmount *ump; 13904 struct vnode *vp; 13905 struct fs *fs; 13906 int error, cnt; 13907 ino_t firstino, lastino, ino; 13908 13909 ump = VFSTOUFS(mp); 13910 fs = ump->um_fs; 13911 LOCK_OWNED(ump); 13912 /* 13913 * Pick a random inode dependency to be cleared. 13914 * We will then gather up all the inodes in its block 13915 * that have dependencies and flush them out. 13916 */ 13917 for (cnt = 0; cnt <= ump->inodedep_hash_size; cnt++) { 13918 inodedephd = &ump->inodedep_hashtbl[ump->inodedep_nextclean++]; 13919 if (ump->inodedep_nextclean > ump->inodedep_hash_size) 13920 ump->inodedep_nextclean = 0; 13921 if ((inodedep = LIST_FIRST(inodedephd)) != NULL) 13922 break; 13923 } 13924 if (inodedep == NULL) 13925 return; 13926 /* 13927 * Find the last inode in the block with dependencies. 13928 */ 13929 firstino = rounddown2(inodedep->id_ino, INOPB(fs)); 13930 for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--) 13931 if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0) 13932 break; 13933 /* 13934 * Asynchronously push all but the last inode with dependencies. 13935 * Synchronously push the last inode with dependencies to ensure 13936 * that the inode block gets written to free up the inodedeps. 13937 */ 13938 for (ino = firstino; ino <= lastino; ino++) { 13939 if (inodedep_lookup(mp, ino, 0, &inodedep) == 0) 13940 continue; 13941 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 13942 continue; 13943 FREE_LOCK(ump); 13944 error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */ 13945 if (error != 0) { 13946 vn_finished_write(mp); 13947 ACQUIRE_LOCK(ump); 13948 return; 13949 } 13950 if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp, 13951 FFSV_FORCEINSMQ)) != 0) { 13952 softdep_error("clear_inodedeps: vget", error); 13953 vfs_unbusy(mp); 13954 vn_finished_write(mp); 13955 ACQUIRE_LOCK(ump); 13956 return; 13957 } 13958 vfs_unbusy(mp); 13959 if (VTOI(vp)->i_mode == 0) { 13960 vgone(vp); 13961 } else if (ino == lastino) { 13962 if ((error = ffs_syncvnode(vp, MNT_WAIT, 0))) 13963 softdep_error("clear_inodedeps: fsync1", error); 13964 } else { 13965 if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0))) 13966 softdep_error("clear_inodedeps: fsync2", error); 13967 BO_LOCK(&vp->v_bufobj); 13968 drain_output(vp); 13969 BO_UNLOCK(&vp->v_bufobj); 13970 } 13971 vput(vp); 13972 vn_finished_write(mp); 13973 ACQUIRE_LOCK(ump); 13974 } 13975 } 13976 13977 void 13978 softdep_buf_append(bp, wkhd) 13979 struct buf *bp; 13980 struct workhead *wkhd; 13981 { 13982 struct worklist *wk; 13983 struct ufsmount *ump; 13984 13985 if ((wk = LIST_FIRST(wkhd)) == NULL) 13986 return; 13987 KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, 13988 ("softdep_buf_append called on non-softdep filesystem")); 13989 ump = VFSTOUFS(wk->wk_mp); 13990 ACQUIRE_LOCK(ump); 13991 while ((wk = LIST_FIRST(wkhd)) != NULL) { 13992 WORKLIST_REMOVE(wk); 13993 WORKLIST_INSERT(&bp->b_dep, wk); 13994 } 13995 FREE_LOCK(ump); 13996 13997 } 13998 13999 void 14000 softdep_inode_append(ip, cred, wkhd) 14001 struct inode *ip; 14002 struct ucred *cred; 14003 struct workhead *wkhd; 14004 { 14005 struct buf *bp; 14006 struct fs *fs; 14007 struct ufsmount *ump; 14008 int error; 14009 14010 ump = ITOUMP(ip); 14011 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 14012 ("softdep_inode_append called on non-softdep filesystem")); 14013 fs = ump->um_fs; 14014 error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 14015 (int)fs->fs_bsize, cred, &bp); 14016 if (error) { 14017 bqrelse(bp); 14018 softdep_freework(wkhd); 14019 return; 14020 } 14021 softdep_buf_append(bp, wkhd); 14022 bqrelse(bp); 14023 } 14024 14025 void 14026 softdep_freework(wkhd) 14027 struct workhead *wkhd; 14028 { 14029 struct worklist *wk; 14030 struct ufsmount *ump; 14031 14032 if ((wk = LIST_FIRST(wkhd)) == NULL) 14033 return; 14034 KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, 14035 ("softdep_freework called on non-softdep filesystem")); 14036 ump = VFSTOUFS(wk->wk_mp); 14037 ACQUIRE_LOCK(ump); 14038 handle_jwork(wkhd); 14039 FREE_LOCK(ump); 14040 } 14041 14042 static struct ufsmount * 14043 softdep_bp_to_mp(bp) 14044 struct buf *bp; 14045 { 14046 struct mount *mp; 14047 struct vnode *vp; 14048 14049 if (LIST_EMPTY(&bp->b_dep)) 14050 return (NULL); 14051 vp = bp->b_vp; 14052 KASSERT(vp != NULL, 14053 ("%s, buffer with dependencies lacks vnode", __func__)); 14054 14055 /* 14056 * The ump mount point is stable after we get a correct 14057 * pointer, since bp is locked and this prevents unmount from 14058 * proceeding. But to get to it, we cannot dereference bp->b_dep 14059 * head wk_mp, because we do not yet own SU ump lock and 14060 * workitem might be freed while dereferenced. 14061 */ 14062 retry: 14063 switch (vp->v_type) { 14064 case VCHR: 14065 VI_LOCK(vp); 14066 mp = vp->v_type == VCHR ? vp->v_rdev->si_mountpt : NULL; 14067 VI_UNLOCK(vp); 14068 if (mp == NULL) 14069 goto retry; 14070 break; 14071 case VREG: 14072 case VDIR: 14073 case VLNK: 14074 case VFIFO: 14075 case VSOCK: 14076 mp = vp->v_mount; 14077 break; 14078 case VBLK: 14079 vn_printf(vp, "softdep_bp_to_mp: unexpected block device\n"); 14080 /* FALLTHROUGH */ 14081 case VNON: 14082 case VBAD: 14083 case VMARKER: 14084 mp = NULL; 14085 break; 14086 default: 14087 vn_printf(vp, "unknown vnode type"); 14088 mp = NULL; 14089 break; 14090 } 14091 return (VFSTOUFS(mp)); 14092 } 14093 14094 /* 14095 * Function to determine if the buffer has outstanding dependencies 14096 * that will cause a roll-back if the buffer is written. If wantcount 14097 * is set, return number of dependencies, otherwise just yes or no. 14098 */ 14099 static int 14100 softdep_count_dependencies(bp, wantcount) 14101 struct buf *bp; 14102 int wantcount; 14103 { 14104 struct worklist *wk; 14105 struct ufsmount *ump; 14106 struct bmsafemap *bmsafemap; 14107 struct freework *freework; 14108 struct inodedep *inodedep; 14109 struct indirdep *indirdep; 14110 struct freeblks *freeblks; 14111 struct allocindir *aip; 14112 struct pagedep *pagedep; 14113 struct dirrem *dirrem; 14114 struct newblk *newblk; 14115 struct mkdir *mkdir; 14116 struct diradd *dap; 14117 int i, retval; 14118 14119 ump = softdep_bp_to_mp(bp); 14120 if (ump == NULL) 14121 return (0); 14122 retval = 0; 14123 ACQUIRE_LOCK(ump); 14124 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 14125 switch (wk->wk_type) { 14126 14127 case D_INODEDEP: 14128 inodedep = WK_INODEDEP(wk); 14129 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 14130 /* bitmap allocation dependency */ 14131 retval += 1; 14132 if (!wantcount) 14133 goto out; 14134 } 14135 if (TAILQ_FIRST(&inodedep->id_inoupdt)) { 14136 /* direct block pointer dependency */ 14137 retval += 1; 14138 if (!wantcount) 14139 goto out; 14140 } 14141 if (TAILQ_FIRST(&inodedep->id_extupdt)) { 14142 /* direct block pointer dependency */ 14143 retval += 1; 14144 if (!wantcount) 14145 goto out; 14146 } 14147 if (TAILQ_FIRST(&inodedep->id_inoreflst)) { 14148 /* Add reference dependency. */ 14149 retval += 1; 14150 if (!wantcount) 14151 goto out; 14152 } 14153 continue; 14154 14155 case D_INDIRDEP: 14156 indirdep = WK_INDIRDEP(wk); 14157 14158 TAILQ_FOREACH(freework, &indirdep->ir_trunc, fw_next) { 14159 /* indirect truncation dependency */ 14160 retval += 1; 14161 if (!wantcount) 14162 goto out; 14163 } 14164 14165 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) { 14166 /* indirect block pointer dependency */ 14167 retval += 1; 14168 if (!wantcount) 14169 goto out; 14170 } 14171 continue; 14172 14173 case D_PAGEDEP: 14174 pagedep = WK_PAGEDEP(wk); 14175 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) { 14176 if (LIST_FIRST(&dirrem->dm_jremrefhd)) { 14177 /* Journal remove ref dependency. */ 14178 retval += 1; 14179 if (!wantcount) 14180 goto out; 14181 } 14182 } 14183 for (i = 0; i < DAHASHSZ; i++) { 14184 14185 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 14186 /* directory entry dependency */ 14187 retval += 1; 14188 if (!wantcount) 14189 goto out; 14190 } 14191 } 14192 continue; 14193 14194 case D_BMSAFEMAP: 14195 bmsafemap = WK_BMSAFEMAP(wk); 14196 if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) { 14197 /* Add reference dependency. */ 14198 retval += 1; 14199 if (!wantcount) 14200 goto out; 14201 } 14202 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) { 14203 /* Allocate block dependency. */ 14204 retval += 1; 14205 if (!wantcount) 14206 goto out; 14207 } 14208 continue; 14209 14210 case D_FREEBLKS: 14211 freeblks = WK_FREEBLKS(wk); 14212 if (LIST_FIRST(&freeblks->fb_jblkdephd)) { 14213 /* Freeblk journal dependency. */ 14214 retval += 1; 14215 if (!wantcount) 14216 goto out; 14217 } 14218 continue; 14219 14220 case D_ALLOCDIRECT: 14221 case D_ALLOCINDIR: 14222 newblk = WK_NEWBLK(wk); 14223 if (newblk->nb_jnewblk) { 14224 /* Journal allocate dependency. */ 14225 retval += 1; 14226 if (!wantcount) 14227 goto out; 14228 } 14229 continue; 14230 14231 case D_MKDIR: 14232 mkdir = WK_MKDIR(wk); 14233 if (mkdir->md_jaddref) { 14234 /* Journal reference dependency. */ 14235 retval += 1; 14236 if (!wantcount) 14237 goto out; 14238 } 14239 continue; 14240 14241 case D_FREEWORK: 14242 case D_FREEDEP: 14243 case D_JSEGDEP: 14244 case D_JSEG: 14245 case D_SBDEP: 14246 /* never a dependency on these blocks */ 14247 continue; 14248 14249 default: 14250 panic("softdep_count_dependencies: Unexpected type %s", 14251 TYPENAME(wk->wk_type)); 14252 /* NOTREACHED */ 14253 } 14254 } 14255 out: 14256 FREE_LOCK(ump); 14257 return (retval); 14258 } 14259 14260 /* 14261 * Acquire exclusive access to a buffer. 14262 * Must be called with a locked mtx parameter. 14263 * Return acquired buffer or NULL on failure. 14264 */ 14265 static struct buf * 14266 getdirtybuf(bp, lock, waitfor) 14267 struct buf *bp; 14268 struct rwlock *lock; 14269 int waitfor; 14270 { 14271 int error; 14272 14273 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) { 14274 if (waitfor != MNT_WAIT) 14275 return (NULL); 14276 error = BUF_LOCK(bp, 14277 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, lock); 14278 /* 14279 * Even if we successfully acquire bp here, we have dropped 14280 * lock, which may violates our guarantee. 14281 */ 14282 if (error == 0) 14283 BUF_UNLOCK(bp); 14284 else if (error != ENOLCK) 14285 panic("getdirtybuf: inconsistent lock: %d", error); 14286 rw_wlock(lock); 14287 return (NULL); 14288 } 14289 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) { 14290 if (lock != BO_LOCKPTR(bp->b_bufobj) && waitfor == MNT_WAIT) { 14291 rw_wunlock(lock); 14292 BO_LOCK(bp->b_bufobj); 14293 BUF_UNLOCK(bp); 14294 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) { 14295 bp->b_vflags |= BV_BKGRDWAIT; 14296 msleep(&bp->b_xflags, BO_LOCKPTR(bp->b_bufobj), 14297 PRIBIO | PDROP, "getbuf", 0); 14298 } else 14299 BO_UNLOCK(bp->b_bufobj); 14300 rw_wlock(lock); 14301 return (NULL); 14302 } 14303 BUF_UNLOCK(bp); 14304 if (waitfor != MNT_WAIT) 14305 return (NULL); 14306 #ifdef DEBUG_VFS_LOCKS 14307 if (bp->b_vp->v_type != VCHR) 14308 ASSERT_BO_WLOCKED(bp->b_bufobj); 14309 #endif 14310 bp->b_vflags |= BV_BKGRDWAIT; 14311 rw_sleep(&bp->b_xflags, lock, PRIBIO, "getbuf", 0); 14312 return (NULL); 14313 } 14314 if ((bp->b_flags & B_DELWRI) == 0) { 14315 BUF_UNLOCK(bp); 14316 return (NULL); 14317 } 14318 bremfree(bp); 14319 return (bp); 14320 } 14321 14322 14323 /* 14324 * Check if it is safe to suspend the file system now. On entry, 14325 * the vnode interlock for devvp should be held. Return 0 with 14326 * the mount interlock held if the file system can be suspended now, 14327 * otherwise return EAGAIN with the mount interlock held. 14328 */ 14329 int 14330 softdep_check_suspend(struct mount *mp, 14331 struct vnode *devvp, 14332 int softdep_depcnt, 14333 int softdep_accdepcnt, 14334 int secondary_writes, 14335 int secondary_accwrites) 14336 { 14337 struct bufobj *bo; 14338 struct ufsmount *ump; 14339 struct inodedep *inodedep; 14340 int error, unlinked; 14341 14342 bo = &devvp->v_bufobj; 14343 ASSERT_BO_WLOCKED(bo); 14344 14345 /* 14346 * If we are not running with soft updates, then we need only 14347 * deal with secondary writes as we try to suspend. 14348 */ 14349 if (MOUNTEDSOFTDEP(mp) == 0) { 14350 MNT_ILOCK(mp); 14351 while (mp->mnt_secondary_writes != 0) { 14352 BO_UNLOCK(bo); 14353 msleep(&mp->mnt_secondary_writes, MNT_MTX(mp), 14354 (PUSER - 1) | PDROP, "secwr", 0); 14355 BO_LOCK(bo); 14356 MNT_ILOCK(mp); 14357 } 14358 14359 /* 14360 * Reasons for needing more work before suspend: 14361 * - Dirty buffers on devvp. 14362 * - Secondary writes occurred after start of vnode sync loop 14363 */ 14364 error = 0; 14365 if (bo->bo_numoutput > 0 || 14366 bo->bo_dirty.bv_cnt > 0 || 14367 secondary_writes != 0 || 14368 mp->mnt_secondary_writes != 0 || 14369 secondary_accwrites != mp->mnt_secondary_accwrites) 14370 error = EAGAIN; 14371 BO_UNLOCK(bo); 14372 return (error); 14373 } 14374 14375 /* 14376 * If we are running with soft updates, then we need to coordinate 14377 * with them as we try to suspend. 14378 */ 14379 ump = VFSTOUFS(mp); 14380 for (;;) { 14381 if (!TRY_ACQUIRE_LOCK(ump)) { 14382 BO_UNLOCK(bo); 14383 ACQUIRE_LOCK(ump); 14384 FREE_LOCK(ump); 14385 BO_LOCK(bo); 14386 continue; 14387 } 14388 MNT_ILOCK(mp); 14389 if (mp->mnt_secondary_writes != 0) { 14390 FREE_LOCK(ump); 14391 BO_UNLOCK(bo); 14392 msleep(&mp->mnt_secondary_writes, 14393 MNT_MTX(mp), 14394 (PUSER - 1) | PDROP, "secwr", 0); 14395 BO_LOCK(bo); 14396 continue; 14397 } 14398 break; 14399 } 14400 14401 unlinked = 0; 14402 if (MOUNTEDSUJ(mp)) { 14403 for (inodedep = TAILQ_FIRST(&ump->softdep_unlinked); 14404 inodedep != NULL; 14405 inodedep = TAILQ_NEXT(inodedep, id_unlinked)) { 14406 if ((inodedep->id_state & (UNLINKED | UNLINKLINKS | 14407 UNLINKONLIST)) != (UNLINKED | UNLINKLINKS | 14408 UNLINKONLIST) || 14409 !check_inodedep_free(inodedep)) 14410 continue; 14411 unlinked++; 14412 } 14413 } 14414 14415 /* 14416 * Reasons for needing more work before suspend: 14417 * - Dirty buffers on devvp. 14418 * - Softdep activity occurred after start of vnode sync loop 14419 * - Secondary writes occurred after start of vnode sync loop 14420 */ 14421 error = 0; 14422 if (bo->bo_numoutput > 0 || 14423 bo->bo_dirty.bv_cnt > 0 || 14424 softdep_depcnt != unlinked || 14425 ump->softdep_deps != unlinked || 14426 softdep_accdepcnt != ump->softdep_accdeps || 14427 secondary_writes != 0 || 14428 mp->mnt_secondary_writes != 0 || 14429 secondary_accwrites != mp->mnt_secondary_accwrites) 14430 error = EAGAIN; 14431 FREE_LOCK(ump); 14432 BO_UNLOCK(bo); 14433 return (error); 14434 } 14435 14436 14437 /* 14438 * Get the number of dependency structures for the file system, both 14439 * the current number and the total number allocated. These will 14440 * later be used to detect that softdep processing has occurred. 14441 */ 14442 void 14443 softdep_get_depcounts(struct mount *mp, 14444 int *softdep_depsp, 14445 int *softdep_accdepsp) 14446 { 14447 struct ufsmount *ump; 14448 14449 if (MOUNTEDSOFTDEP(mp) == 0) { 14450 *softdep_depsp = 0; 14451 *softdep_accdepsp = 0; 14452 return; 14453 } 14454 ump = VFSTOUFS(mp); 14455 ACQUIRE_LOCK(ump); 14456 *softdep_depsp = ump->softdep_deps; 14457 *softdep_accdepsp = ump->softdep_accdeps; 14458 FREE_LOCK(ump); 14459 } 14460 14461 /* 14462 * Wait for pending output on a vnode to complete. 14463 */ 14464 static void 14465 drain_output(vp) 14466 struct vnode *vp; 14467 { 14468 14469 ASSERT_VOP_LOCKED(vp, "drain_output"); 14470 (void)bufobj_wwait(&vp->v_bufobj, 0, 0); 14471 } 14472 14473 /* 14474 * Called whenever a buffer that is being invalidated or reallocated 14475 * contains dependencies. This should only happen if an I/O error has 14476 * occurred. The routine is called with the buffer locked. 14477 */ 14478 static void 14479 softdep_deallocate_dependencies(bp) 14480 struct buf *bp; 14481 { 14482 14483 if ((bp->b_ioflags & BIO_ERROR) == 0) 14484 panic("softdep_deallocate_dependencies: dangling deps"); 14485 if (bp->b_vp != NULL && bp->b_vp->v_mount != NULL) 14486 softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error); 14487 else 14488 printf("softdep_deallocate_dependencies: " 14489 "got error %d while accessing filesystem\n", bp->b_error); 14490 if (bp->b_error != ENXIO) 14491 panic("softdep_deallocate_dependencies: unrecovered I/O error"); 14492 } 14493 14494 /* 14495 * Function to handle asynchronous write errors in the filesystem. 14496 */ 14497 static void 14498 softdep_error(func, error) 14499 char *func; 14500 int error; 14501 { 14502 14503 /* XXX should do something better! */ 14504 printf("%s: got error %d while accessing filesystem\n", func, error); 14505 } 14506 14507 #ifdef DDB 14508 14509 /* exported to ffs_vfsops.c */ 14510 extern void db_print_ffs(struct ufsmount *ump); 14511 void 14512 db_print_ffs(struct ufsmount *ump) 14513 { 14514 db_printf("mp %p (%s) devvp %p\n", ump->um_mountp, 14515 ump->um_mountp->mnt_stat.f_mntonname, ump->um_devvp); 14516 db_printf(" fs %p su_wl %d su_deps %d su_req %d\n", 14517 ump->um_fs, ump->softdep_on_worklist, 14518 ump->softdep_deps, ump->softdep_req); 14519 } 14520 14521 static void 14522 worklist_print(struct worklist *wk, int verbose) 14523 { 14524 14525 if (!verbose) { 14526 db_printf("%s: %p state 0x%b\n", TYPENAME(wk->wk_type), wk, 14527 (u_int)wk->wk_state, PRINT_SOFTDEP_FLAGS); 14528 return; 14529 } 14530 db_printf("worklist: %p type %s state 0x%b next %p\n ", wk, 14531 TYPENAME(wk->wk_type), (u_int)wk->wk_state, PRINT_SOFTDEP_FLAGS, 14532 LIST_NEXT(wk, wk_list)); 14533 db_print_ffs(VFSTOUFS(wk->wk_mp)); 14534 } 14535 14536 static void 14537 inodedep_print(struct inodedep *inodedep, int verbose) 14538 { 14539 14540 worklist_print(&inodedep->id_list, 0); 14541 db_printf(" fs %p ino %jd inoblk %jd delta %jd nlink %jd\n", 14542 inodedep->id_fs, 14543 (intmax_t)inodedep->id_ino, 14544 (intmax_t)fsbtodb(inodedep->id_fs, 14545 ino_to_fsba(inodedep->id_fs, inodedep->id_ino)), 14546 (intmax_t)inodedep->id_nlinkdelta, 14547 (intmax_t)inodedep->id_savednlink); 14548 14549 if (verbose == 0) 14550 return; 14551 14552 db_printf(" bmsafemap %p, mkdiradd %p, inoreflst %p\n", 14553 inodedep->id_bmsafemap, 14554 inodedep->id_mkdiradd, 14555 TAILQ_FIRST(&inodedep->id_inoreflst)); 14556 db_printf(" dirremhd %p, pendinghd %p, bufwait %p\n", 14557 LIST_FIRST(&inodedep->id_dirremhd), 14558 LIST_FIRST(&inodedep->id_pendinghd), 14559 LIST_FIRST(&inodedep->id_bufwait)); 14560 db_printf(" inowait %p, inoupdt %p, newinoupdt %p\n", 14561 LIST_FIRST(&inodedep->id_inowait), 14562 TAILQ_FIRST(&inodedep->id_inoupdt), 14563 TAILQ_FIRST(&inodedep->id_newinoupdt)); 14564 db_printf(" extupdt %p, newextupdt %p, freeblklst %p\n", 14565 TAILQ_FIRST(&inodedep->id_extupdt), 14566 TAILQ_FIRST(&inodedep->id_newextupdt), 14567 TAILQ_FIRST(&inodedep->id_freeblklst)); 14568 db_printf(" saveino %p, savedsize %jd, savedextsize %jd\n", 14569 inodedep->id_savedino1, 14570 (intmax_t)inodedep->id_savedsize, 14571 (intmax_t)inodedep->id_savedextsize); 14572 } 14573 14574 static void 14575 newblk_print(struct newblk *nbp) 14576 { 14577 14578 worklist_print(&nbp->nb_list, 0); 14579 db_printf(" newblkno %jd\n", (intmax_t)nbp->nb_newblkno); 14580 db_printf(" jnewblk %p, bmsafemap %p, freefrag %p\n", 14581 &nbp->nb_jnewblk, 14582 &nbp->nb_bmsafemap, 14583 &nbp->nb_freefrag); 14584 db_printf(" indirdeps %p, newdirblk %p, jwork %p\n", 14585 LIST_FIRST(&nbp->nb_indirdeps), 14586 LIST_FIRST(&nbp->nb_newdirblk), 14587 LIST_FIRST(&nbp->nb_jwork)); 14588 } 14589 14590 static void 14591 allocdirect_print(struct allocdirect *adp) 14592 { 14593 14594 newblk_print(&adp->ad_block); 14595 db_printf(" oldblkno %jd, oldsize %ld, newsize %ld\n", 14596 adp->ad_oldblkno, adp->ad_oldsize, adp->ad_newsize); 14597 db_printf(" offset %d, inodedep %p\n", 14598 adp->ad_offset, adp->ad_inodedep); 14599 } 14600 14601 static void 14602 allocindir_print(struct allocindir *aip) 14603 { 14604 14605 newblk_print(&aip->ai_block); 14606 db_printf(" oldblkno %jd, lbn %jd\n", 14607 (intmax_t)aip->ai_oldblkno, (intmax_t)aip->ai_lbn); 14608 db_printf(" offset %d, indirdep %p\n", 14609 aip->ai_offset, aip->ai_indirdep); 14610 } 14611 14612 static void 14613 mkdir_print(struct mkdir *mkdir) 14614 { 14615 14616 worklist_print(&mkdir->md_list, 0); 14617 db_printf(" diradd %p, jaddref %p, buf %p\n", 14618 mkdir->md_diradd, mkdir->md_jaddref, mkdir->md_buf); 14619 } 14620 14621 DB_SHOW_COMMAND(sd_inodedep, db_show_sd_inodedep) 14622 { 14623 14624 if (have_addr == 0) { 14625 db_printf("inodedep address required\n"); 14626 return; 14627 } 14628 inodedep_print((struct inodedep*)addr, 1); 14629 } 14630 14631 DB_SHOW_COMMAND(sd_allinodedeps, db_show_sd_allinodedeps) 14632 { 14633 struct inodedep_hashhead *inodedephd; 14634 struct inodedep *inodedep; 14635 struct ufsmount *ump; 14636 int cnt; 14637 14638 if (have_addr == 0) { 14639 db_printf("ufsmount address required\n"); 14640 return; 14641 } 14642 ump = (struct ufsmount *)addr; 14643 for (cnt = 0; cnt < ump->inodedep_hash_size; cnt++) { 14644 inodedephd = &ump->inodedep_hashtbl[cnt]; 14645 LIST_FOREACH(inodedep, inodedephd, id_hash) { 14646 inodedep_print(inodedep, 0); 14647 } 14648 } 14649 } 14650 14651 DB_SHOW_COMMAND(sd_worklist, db_show_sd_worklist) 14652 { 14653 14654 if (have_addr == 0) { 14655 db_printf("worklist address required\n"); 14656 return; 14657 } 14658 worklist_print((struct worklist *)addr, 1); 14659 } 14660 14661 DB_SHOW_COMMAND(sd_workhead, db_show_sd_workhead) 14662 { 14663 struct worklist *wk; 14664 struct workhead *wkhd; 14665 14666 if (have_addr == 0) { 14667 db_printf("worklist address required " 14668 "(for example value in bp->b_dep)\n"); 14669 return; 14670 } 14671 /* 14672 * We often do not have the address of the worklist head but 14673 * instead a pointer to its first entry (e.g., we have the 14674 * contents of bp->b_dep rather than &bp->b_dep). But the back 14675 * pointer of bp->b_dep will point at the head of the list, so 14676 * we cheat and use that instead. If we are in the middle of 14677 * a list we will still get the same result, so nothing 14678 * unexpected will result. 14679 */ 14680 wk = (struct worklist *)addr; 14681 if (wk == NULL) 14682 return; 14683 wkhd = (struct workhead *)wk->wk_list.le_prev; 14684 LIST_FOREACH(wk, wkhd, wk_list) { 14685 switch(wk->wk_type) { 14686 case D_INODEDEP: 14687 inodedep_print(WK_INODEDEP(wk), 0); 14688 continue; 14689 case D_ALLOCDIRECT: 14690 allocdirect_print(WK_ALLOCDIRECT(wk)); 14691 continue; 14692 case D_ALLOCINDIR: 14693 allocindir_print(WK_ALLOCINDIR(wk)); 14694 continue; 14695 case D_MKDIR: 14696 mkdir_print(WK_MKDIR(wk)); 14697 continue; 14698 default: 14699 worklist_print(wk, 0); 14700 continue; 14701 } 14702 } 14703 } 14704 14705 DB_SHOW_COMMAND(sd_mkdir, db_show_sd_mkdir) 14706 { 14707 if (have_addr == 0) { 14708 db_printf("mkdir address required\n"); 14709 return; 14710 } 14711 mkdir_print((struct mkdir *)addr); 14712 } 14713 14714 DB_SHOW_COMMAND(sd_mkdir_list, db_show_sd_mkdir_list) 14715 { 14716 struct mkdirlist *mkdirlisthd; 14717 struct mkdir *mkdir; 14718 14719 if (have_addr == 0) { 14720 db_printf("mkdir listhead address required\n"); 14721 return; 14722 } 14723 mkdirlisthd = (struct mkdirlist *)addr; 14724 LIST_FOREACH(mkdir, mkdirlisthd, md_mkdirs) { 14725 mkdir_print(mkdir); 14726 if (mkdir->md_diradd != NULL) { 14727 db_printf(" "); 14728 worklist_print(&mkdir->md_diradd->da_list, 0); 14729 } 14730 if (mkdir->md_jaddref != NULL) { 14731 db_printf(" "); 14732 worklist_print(&mkdir->md_jaddref->ja_list, 0); 14733 } 14734 } 14735 } 14736 14737 DB_SHOW_COMMAND(sd_allocdirect, db_show_sd_allocdirect) 14738 { 14739 if (have_addr == 0) { 14740 db_printf("allocdirect address required\n"); 14741 return; 14742 } 14743 allocdirect_print((struct allocdirect *)addr); 14744 } 14745 14746 DB_SHOW_COMMAND(sd_allocindir, db_show_sd_allocindir) 14747 { 14748 if (have_addr == 0) { 14749 db_printf("allocindir address required\n"); 14750 return; 14751 } 14752 allocindir_print((struct allocindir *)addr); 14753 } 14754 14755 #endif /* DDB */ 14756 14757 #endif /* SOFTUPDATES */ 14758