1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright 1998, 2000 Marshall Kirk McKusick. 5 * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org> 6 * All rights reserved. 7 * 8 * The soft updates code is derived from the appendix of a University 9 * of Michigan technical report (Gregory R. Ganger and Yale N. Patt, 10 * "Soft Updates: A Solution to the Metadata Update Problem in File 11 * Systems", CSE-TR-254-95, August 1995). 12 * 13 * Further information about soft updates can be obtained from: 14 * 15 * Marshall Kirk McKusick http://www.mckusick.com/softdep/ 16 * 1614 Oxford Street mckusick@mckusick.com 17 * Berkeley, CA 94709-1608 +1-510-843-9542 18 * USA 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * 1. Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * 2. Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in the 28 * documentation and/or other materials provided with the distribution. 29 * 30 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 31 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 32 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 33 * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, 34 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 35 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 36 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 37 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 38 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 39 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 40 * 41 * from: @(#)ffs_softdep.c 9.59 (McKusick) 6/21/00 42 */ 43 44 #include <sys/cdefs.h> 45 __FBSDID("$FreeBSD$"); 46 47 #include "opt_ffs.h" 48 #include "opt_quota.h" 49 #include "opt_ddb.h" 50 51 /* 52 * For now we want the safety net that the DEBUG flag provides. 53 */ 54 #ifndef DEBUG 55 #define DEBUG 56 #endif 57 58 #include <sys/param.h> 59 #include <sys/kernel.h> 60 #include <sys/systm.h> 61 #include <sys/bio.h> 62 #include <sys/buf.h> 63 #include <sys/kdb.h> 64 #include <sys/kthread.h> 65 #include <sys/ktr.h> 66 #include <sys/limits.h> 67 #include <sys/lock.h> 68 #include <sys/malloc.h> 69 #include <sys/mount.h> 70 #include <sys/mutex.h> 71 #include <sys/namei.h> 72 #include <sys/priv.h> 73 #include <sys/proc.h> 74 #include <sys/racct.h> 75 #include <sys/rwlock.h> 76 #include <sys/stat.h> 77 #include <sys/sysctl.h> 78 #include <sys/syslog.h> 79 #include <sys/vnode.h> 80 #include <sys/conf.h> 81 82 #include <ufs/ufs/dir.h> 83 #include <ufs/ufs/extattr.h> 84 #include <ufs/ufs/quota.h> 85 #include <ufs/ufs/inode.h> 86 #include <ufs/ufs/ufsmount.h> 87 #include <ufs/ffs/fs.h> 88 #include <ufs/ffs/softdep.h> 89 #include <ufs/ffs/ffs_extern.h> 90 #include <ufs/ufs/ufs_extern.h> 91 92 #include <vm/vm.h> 93 #include <vm/vm_extern.h> 94 #include <vm/vm_object.h> 95 96 #include <geom/geom.h> 97 98 #include <ddb/ddb.h> 99 100 #define KTR_SUJ 0 /* Define to KTR_SPARE. */ 101 102 #ifndef SOFTUPDATES 103 104 int 105 softdep_flushfiles(oldmnt, flags, td) 106 struct mount *oldmnt; 107 int flags; 108 struct thread *td; 109 { 110 111 panic("softdep_flushfiles called"); 112 } 113 114 int 115 softdep_mount(devvp, mp, fs, cred) 116 struct vnode *devvp; 117 struct mount *mp; 118 struct fs *fs; 119 struct ucred *cred; 120 { 121 122 return (0); 123 } 124 125 void 126 softdep_initialize() 127 { 128 129 return; 130 } 131 132 void 133 softdep_uninitialize() 134 { 135 136 return; 137 } 138 139 void 140 softdep_unmount(mp) 141 struct mount *mp; 142 { 143 144 panic("softdep_unmount called"); 145 } 146 147 void 148 softdep_setup_sbupdate(ump, fs, bp) 149 struct ufsmount *ump; 150 struct fs *fs; 151 struct buf *bp; 152 { 153 154 panic("softdep_setup_sbupdate called"); 155 } 156 157 void 158 softdep_setup_inomapdep(bp, ip, newinum, mode) 159 struct buf *bp; 160 struct inode *ip; 161 ino_t newinum; 162 int mode; 163 { 164 165 panic("softdep_setup_inomapdep called"); 166 } 167 168 void 169 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags) 170 struct buf *bp; 171 struct mount *mp; 172 ufs2_daddr_t newblkno; 173 int frags; 174 int oldfrags; 175 { 176 177 panic("softdep_setup_blkmapdep called"); 178 } 179 180 void 181 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 182 struct inode *ip; 183 ufs_lbn_t lbn; 184 ufs2_daddr_t newblkno; 185 ufs2_daddr_t oldblkno; 186 long newsize; 187 long oldsize; 188 struct buf *bp; 189 { 190 191 panic("softdep_setup_allocdirect called"); 192 } 193 194 void 195 softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 196 struct inode *ip; 197 ufs_lbn_t lbn; 198 ufs2_daddr_t newblkno; 199 ufs2_daddr_t oldblkno; 200 long newsize; 201 long oldsize; 202 struct buf *bp; 203 { 204 205 panic("softdep_setup_allocext called"); 206 } 207 208 void 209 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 210 struct inode *ip; 211 ufs_lbn_t lbn; 212 struct buf *bp; 213 int ptrno; 214 ufs2_daddr_t newblkno; 215 ufs2_daddr_t oldblkno; 216 struct buf *nbp; 217 { 218 219 panic("softdep_setup_allocindir_page called"); 220 } 221 222 void 223 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 224 struct buf *nbp; 225 struct inode *ip; 226 struct buf *bp; 227 int ptrno; 228 ufs2_daddr_t newblkno; 229 { 230 231 panic("softdep_setup_allocindir_meta called"); 232 } 233 234 void 235 softdep_journal_freeblocks(ip, cred, length, flags) 236 struct inode *ip; 237 struct ucred *cred; 238 off_t length; 239 int flags; 240 { 241 242 panic("softdep_journal_freeblocks called"); 243 } 244 245 void 246 softdep_journal_fsync(ip) 247 struct inode *ip; 248 { 249 250 panic("softdep_journal_fsync called"); 251 } 252 253 void 254 softdep_setup_freeblocks(ip, length, flags) 255 struct inode *ip; 256 off_t length; 257 int flags; 258 { 259 260 panic("softdep_setup_freeblocks called"); 261 } 262 263 void 264 softdep_freefile(pvp, ino, mode) 265 struct vnode *pvp; 266 ino_t ino; 267 int mode; 268 { 269 270 panic("softdep_freefile called"); 271 } 272 273 int 274 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk) 275 struct buf *bp; 276 struct inode *dp; 277 off_t diroffset; 278 ino_t newinum; 279 struct buf *newdirbp; 280 int isnewblk; 281 { 282 283 panic("softdep_setup_directory_add called"); 284 } 285 286 void 287 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize) 288 struct buf *bp; 289 struct inode *dp; 290 caddr_t base; 291 caddr_t oldloc; 292 caddr_t newloc; 293 int entrysize; 294 { 295 296 panic("softdep_change_directoryentry_offset called"); 297 } 298 299 void 300 softdep_setup_remove(bp, dp, ip, isrmdir) 301 struct buf *bp; 302 struct inode *dp; 303 struct inode *ip; 304 int isrmdir; 305 { 306 307 panic("softdep_setup_remove called"); 308 } 309 310 void 311 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 312 struct buf *bp; 313 struct inode *dp; 314 struct inode *ip; 315 ino_t newinum; 316 int isrmdir; 317 { 318 319 panic("softdep_setup_directory_change called"); 320 } 321 322 void 323 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd) 324 struct mount *mp; 325 struct buf *bp; 326 ufs2_daddr_t blkno; 327 int frags; 328 struct workhead *wkhd; 329 { 330 331 panic("%s called", __FUNCTION__); 332 } 333 334 void 335 softdep_setup_inofree(mp, bp, ino, wkhd) 336 struct mount *mp; 337 struct buf *bp; 338 ino_t ino; 339 struct workhead *wkhd; 340 { 341 342 panic("%s called", __FUNCTION__); 343 } 344 345 void 346 softdep_setup_unlink(dp, ip) 347 struct inode *dp; 348 struct inode *ip; 349 { 350 351 panic("%s called", __FUNCTION__); 352 } 353 354 void 355 softdep_setup_link(dp, ip) 356 struct inode *dp; 357 struct inode *ip; 358 { 359 360 panic("%s called", __FUNCTION__); 361 } 362 363 void 364 softdep_revert_link(dp, ip) 365 struct inode *dp; 366 struct inode *ip; 367 { 368 369 panic("%s called", __FUNCTION__); 370 } 371 372 void 373 softdep_setup_rmdir(dp, ip) 374 struct inode *dp; 375 struct inode *ip; 376 { 377 378 panic("%s called", __FUNCTION__); 379 } 380 381 void 382 softdep_revert_rmdir(dp, ip) 383 struct inode *dp; 384 struct inode *ip; 385 { 386 387 panic("%s called", __FUNCTION__); 388 } 389 390 void 391 softdep_setup_create(dp, ip) 392 struct inode *dp; 393 struct inode *ip; 394 { 395 396 panic("%s called", __FUNCTION__); 397 } 398 399 void 400 softdep_revert_create(dp, ip) 401 struct inode *dp; 402 struct inode *ip; 403 { 404 405 panic("%s called", __FUNCTION__); 406 } 407 408 void 409 softdep_setup_mkdir(dp, ip) 410 struct inode *dp; 411 struct inode *ip; 412 { 413 414 panic("%s called", __FUNCTION__); 415 } 416 417 void 418 softdep_revert_mkdir(dp, ip) 419 struct inode *dp; 420 struct inode *ip; 421 { 422 423 panic("%s called", __FUNCTION__); 424 } 425 426 void 427 softdep_setup_dotdot_link(dp, ip) 428 struct inode *dp; 429 struct inode *ip; 430 { 431 432 panic("%s called", __FUNCTION__); 433 } 434 435 int 436 softdep_prealloc(vp, waitok) 437 struct vnode *vp; 438 int waitok; 439 { 440 441 panic("%s called", __FUNCTION__); 442 } 443 444 int 445 softdep_journal_lookup(mp, vpp) 446 struct mount *mp; 447 struct vnode **vpp; 448 { 449 450 return (ENOENT); 451 } 452 453 void 454 softdep_change_linkcnt(ip) 455 struct inode *ip; 456 { 457 458 panic("softdep_change_linkcnt called"); 459 } 460 461 void 462 softdep_load_inodeblock(ip) 463 struct inode *ip; 464 { 465 466 panic("softdep_load_inodeblock called"); 467 } 468 469 void 470 softdep_update_inodeblock(ip, bp, waitfor) 471 struct inode *ip; 472 struct buf *bp; 473 int waitfor; 474 { 475 476 panic("softdep_update_inodeblock called"); 477 } 478 479 int 480 softdep_fsync(vp) 481 struct vnode *vp; /* the "in_core" copy of the inode */ 482 { 483 484 return (0); 485 } 486 487 void 488 softdep_fsync_mountdev(vp) 489 struct vnode *vp; 490 { 491 492 return; 493 } 494 495 int 496 softdep_flushworklist(oldmnt, countp, td) 497 struct mount *oldmnt; 498 int *countp; 499 struct thread *td; 500 { 501 502 *countp = 0; 503 return (0); 504 } 505 506 int 507 softdep_sync_metadata(struct vnode *vp) 508 { 509 510 panic("softdep_sync_metadata called"); 511 } 512 513 int 514 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor) 515 { 516 517 panic("softdep_sync_buf called"); 518 } 519 520 int 521 softdep_slowdown(vp) 522 struct vnode *vp; 523 { 524 525 panic("softdep_slowdown called"); 526 } 527 528 int 529 softdep_request_cleanup(fs, vp, cred, resource) 530 struct fs *fs; 531 struct vnode *vp; 532 struct ucred *cred; 533 int resource; 534 { 535 536 return (0); 537 } 538 539 int 540 softdep_check_suspend(struct mount *mp, 541 struct vnode *devvp, 542 int softdep_depcnt, 543 int softdep_accdepcnt, 544 int secondary_writes, 545 int secondary_accwrites) 546 { 547 struct bufobj *bo; 548 int error; 549 550 (void) softdep_depcnt, 551 (void) softdep_accdepcnt; 552 553 bo = &devvp->v_bufobj; 554 ASSERT_BO_WLOCKED(bo); 555 556 MNT_ILOCK(mp); 557 while (mp->mnt_secondary_writes != 0) { 558 BO_UNLOCK(bo); 559 msleep(&mp->mnt_secondary_writes, MNT_MTX(mp), 560 (PUSER - 1) | PDROP, "secwr", 0); 561 BO_LOCK(bo); 562 MNT_ILOCK(mp); 563 } 564 565 /* 566 * Reasons for needing more work before suspend: 567 * - Dirty buffers on devvp. 568 * - Secondary writes occurred after start of vnode sync loop 569 */ 570 error = 0; 571 if (bo->bo_numoutput > 0 || 572 bo->bo_dirty.bv_cnt > 0 || 573 secondary_writes != 0 || 574 mp->mnt_secondary_writes != 0 || 575 secondary_accwrites != mp->mnt_secondary_accwrites) 576 error = EAGAIN; 577 BO_UNLOCK(bo); 578 return (error); 579 } 580 581 void 582 softdep_get_depcounts(struct mount *mp, 583 int *softdepactivep, 584 int *softdepactiveaccp) 585 { 586 (void) mp; 587 *softdepactivep = 0; 588 *softdepactiveaccp = 0; 589 } 590 591 void 592 softdep_buf_append(bp, wkhd) 593 struct buf *bp; 594 struct workhead *wkhd; 595 { 596 597 panic("softdep_buf_appendwork called"); 598 } 599 600 void 601 softdep_inode_append(ip, cred, wkhd) 602 struct inode *ip; 603 struct ucred *cred; 604 struct workhead *wkhd; 605 { 606 607 panic("softdep_inode_appendwork called"); 608 } 609 610 void 611 softdep_freework(wkhd) 612 struct workhead *wkhd; 613 { 614 615 panic("softdep_freework called"); 616 } 617 618 #else 619 620 FEATURE(softupdates, "FFS soft-updates support"); 621 622 static SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW, 0, 623 "soft updates stats"); 624 static SYSCTL_NODE(_debug_softdep, OID_AUTO, total, CTLFLAG_RW, 0, 625 "total dependencies allocated"); 626 static SYSCTL_NODE(_debug_softdep, OID_AUTO, highuse, CTLFLAG_RW, 0, 627 "high use dependencies allocated"); 628 static SYSCTL_NODE(_debug_softdep, OID_AUTO, current, CTLFLAG_RW, 0, 629 "current dependencies allocated"); 630 static SYSCTL_NODE(_debug_softdep, OID_AUTO, write, CTLFLAG_RW, 0, 631 "current dependencies written"); 632 633 unsigned long dep_current[D_LAST + 1]; 634 unsigned long dep_highuse[D_LAST + 1]; 635 unsigned long dep_total[D_LAST + 1]; 636 unsigned long dep_write[D_LAST + 1]; 637 638 #define SOFTDEP_TYPE(type, str, long) \ 639 static MALLOC_DEFINE(M_ ## type, #str, long); \ 640 SYSCTL_ULONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD, \ 641 &dep_total[D_ ## type], 0, ""); \ 642 SYSCTL_ULONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD, \ 643 &dep_current[D_ ## type], 0, ""); \ 644 SYSCTL_ULONG(_debug_softdep_highuse, OID_AUTO, str, CTLFLAG_RD, \ 645 &dep_highuse[D_ ## type], 0, ""); \ 646 SYSCTL_ULONG(_debug_softdep_write, OID_AUTO, str, CTLFLAG_RD, \ 647 &dep_write[D_ ## type], 0, ""); 648 649 SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies"); 650 SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies"); 651 SOFTDEP_TYPE(BMSAFEMAP, bmsafemap, 652 "Block or frag allocated from cyl group map"); 653 SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency"); 654 SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode"); 655 SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies"); 656 SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block"); 657 SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode"); 658 SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode"); 659 SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated"); 660 SOFTDEP_TYPE(DIRADD, diradd, "New directory entry"); 661 SOFTDEP_TYPE(MKDIR, mkdir, "New directory"); 662 SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted"); 663 SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block"); 664 SOFTDEP_TYPE(FREEWORK, freework, "free an inode block"); 665 SOFTDEP_TYPE(FREEDEP, freedep, "track a block free"); 666 SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add"); 667 SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove"); 668 SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move"); 669 SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block"); 670 SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block"); 671 SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag"); 672 SOFTDEP_TYPE(JSEG, jseg, "Journal segment"); 673 SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete"); 674 SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency"); 675 SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation"); 676 SOFTDEP_TYPE(JFSYNC, jfsync, "Journal fsync complete"); 677 678 static MALLOC_DEFINE(M_SENTINEL, "sentinel", "Worklist sentinel"); 679 680 static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes"); 681 static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations"); 682 static MALLOC_DEFINE(M_MOUNTDATA, "softdep", "Softdep per-mount data"); 683 684 #define M_SOFTDEP_FLAGS (M_WAITOK) 685 686 /* 687 * translate from workitem type to memory type 688 * MUST match the defines above, such that memtype[D_XXX] == M_XXX 689 */ 690 static struct malloc_type *memtype[] = { 691 NULL, 692 M_PAGEDEP, 693 M_INODEDEP, 694 M_BMSAFEMAP, 695 M_NEWBLK, 696 M_ALLOCDIRECT, 697 M_INDIRDEP, 698 M_ALLOCINDIR, 699 M_FREEFRAG, 700 M_FREEBLKS, 701 M_FREEFILE, 702 M_DIRADD, 703 M_MKDIR, 704 M_DIRREM, 705 M_NEWDIRBLK, 706 M_FREEWORK, 707 M_FREEDEP, 708 M_JADDREF, 709 M_JREMREF, 710 M_JMVREF, 711 M_JNEWBLK, 712 M_JFREEBLK, 713 M_JFREEFRAG, 714 M_JSEG, 715 M_JSEGDEP, 716 M_SBDEP, 717 M_JTRUNC, 718 M_JFSYNC, 719 M_SENTINEL 720 }; 721 722 #define DtoM(type) (memtype[type]) 723 724 /* 725 * Names of malloc types. 726 */ 727 #define TYPENAME(type) \ 728 ((unsigned)(type) <= D_LAST && (unsigned)(type) >= D_FIRST ? \ 729 memtype[type]->ks_shortdesc : "???") 730 /* 731 * End system adaptation definitions. 732 */ 733 734 #define DOTDOT_OFFSET offsetof(struct dirtemplate, dotdot_ino) 735 #define DOT_OFFSET offsetof(struct dirtemplate, dot_ino) 736 737 /* 738 * Internal function prototypes. 739 */ 740 static void check_clear_deps(struct mount *); 741 static void softdep_error(char *, int); 742 static int softdep_process_worklist(struct mount *, int); 743 static int softdep_waitidle(struct mount *, int); 744 static void drain_output(struct vnode *); 745 static struct buf *getdirtybuf(struct buf *, struct rwlock *, int); 746 static int check_inodedep_free(struct inodedep *); 747 static void clear_remove(struct mount *); 748 static void clear_inodedeps(struct mount *); 749 static void unlinked_inodedep(struct mount *, struct inodedep *); 750 static void clear_unlinked_inodedep(struct inodedep *); 751 static struct inodedep *first_unlinked_inodedep(struct ufsmount *); 752 static int flush_pagedep_deps(struct vnode *, struct mount *, 753 struct diraddhd *); 754 static int free_pagedep(struct pagedep *); 755 static int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t); 756 static int flush_inodedep_deps(struct vnode *, struct mount *, ino_t); 757 static int flush_deplist(struct allocdirectlst *, int, int *); 758 static int sync_cgs(struct mount *, int); 759 static int handle_written_filepage(struct pagedep *, struct buf *, int); 760 static int handle_written_sbdep(struct sbdep *, struct buf *); 761 static void initiate_write_sbdep(struct sbdep *); 762 static void diradd_inode_written(struct diradd *, struct inodedep *); 763 static int handle_written_indirdep(struct indirdep *, struct buf *, 764 struct buf**, int); 765 static int handle_written_inodeblock(struct inodedep *, struct buf *, int); 766 static int jnewblk_rollforward(struct jnewblk *, struct fs *, struct cg *, 767 uint8_t *); 768 static int handle_written_bmsafemap(struct bmsafemap *, struct buf *, int); 769 static void handle_written_jaddref(struct jaddref *); 770 static void handle_written_jremref(struct jremref *); 771 static void handle_written_jseg(struct jseg *, struct buf *); 772 static void handle_written_jnewblk(struct jnewblk *); 773 static void handle_written_jblkdep(struct jblkdep *); 774 static void handle_written_jfreefrag(struct jfreefrag *); 775 static void complete_jseg(struct jseg *); 776 static void complete_jsegs(struct jseg *); 777 static void jseg_write(struct ufsmount *ump, struct jseg *, uint8_t *); 778 static void jaddref_write(struct jaddref *, struct jseg *, uint8_t *); 779 static void jremref_write(struct jremref *, struct jseg *, uint8_t *); 780 static void jmvref_write(struct jmvref *, struct jseg *, uint8_t *); 781 static void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *); 782 static void jfsync_write(struct jfsync *, struct jseg *, uint8_t *data); 783 static void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *); 784 static void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *); 785 static void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *); 786 static inline void inoref_write(struct inoref *, struct jseg *, 787 struct jrefrec *); 788 static void handle_allocdirect_partdone(struct allocdirect *, 789 struct workhead *); 790 static struct jnewblk *cancel_newblk(struct newblk *, struct worklist *, 791 struct workhead *); 792 static void indirdep_complete(struct indirdep *); 793 static int indirblk_lookup(struct mount *, ufs2_daddr_t); 794 static void indirblk_insert(struct freework *); 795 static void indirblk_remove(struct freework *); 796 static void handle_allocindir_partdone(struct allocindir *); 797 static void initiate_write_filepage(struct pagedep *, struct buf *); 798 static void initiate_write_indirdep(struct indirdep*, struct buf *); 799 static void handle_written_mkdir(struct mkdir *, int); 800 static int jnewblk_rollback(struct jnewblk *, struct fs *, struct cg *, 801 uint8_t *); 802 static void initiate_write_bmsafemap(struct bmsafemap *, struct buf *); 803 static void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *); 804 static void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *); 805 static void handle_workitem_freefile(struct freefile *); 806 static int handle_workitem_remove(struct dirrem *, int); 807 static struct dirrem *newdirrem(struct buf *, struct inode *, 808 struct inode *, int, struct dirrem **); 809 static struct indirdep *indirdep_lookup(struct mount *, struct inode *, 810 struct buf *); 811 static void cancel_indirdep(struct indirdep *, struct buf *, 812 struct freeblks *); 813 static void free_indirdep(struct indirdep *); 814 static void free_diradd(struct diradd *, struct workhead *); 815 static void merge_diradd(struct inodedep *, struct diradd *); 816 static void complete_diradd(struct diradd *); 817 static struct diradd *diradd_lookup(struct pagedep *, int); 818 static struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *, 819 struct jremref *); 820 static struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *, 821 struct jremref *); 822 static void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *, 823 struct jremref *, struct jremref *); 824 static void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *, 825 struct jremref *); 826 static void cancel_allocindir(struct allocindir *, struct buf *bp, 827 struct freeblks *, int); 828 static int setup_trunc_indir(struct freeblks *, struct inode *, 829 ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t); 830 static void complete_trunc_indir(struct freework *); 831 static void trunc_indirdep(struct indirdep *, struct freeblks *, struct buf *, 832 int); 833 static void complete_mkdir(struct mkdir *); 834 static void free_newdirblk(struct newdirblk *); 835 static void free_jremref(struct jremref *); 836 static void free_jaddref(struct jaddref *); 837 static void free_jsegdep(struct jsegdep *); 838 static void free_jsegs(struct jblocks *); 839 static void rele_jseg(struct jseg *); 840 static void free_jseg(struct jseg *, struct jblocks *); 841 static void free_jnewblk(struct jnewblk *); 842 static void free_jblkdep(struct jblkdep *); 843 static void free_jfreefrag(struct jfreefrag *); 844 static void free_freedep(struct freedep *); 845 static void journal_jremref(struct dirrem *, struct jremref *, 846 struct inodedep *); 847 static void cancel_jnewblk(struct jnewblk *, struct workhead *); 848 static int cancel_jaddref(struct jaddref *, struct inodedep *, 849 struct workhead *); 850 static void cancel_jfreefrag(struct jfreefrag *); 851 static inline void setup_freedirect(struct freeblks *, struct inode *, 852 int, int); 853 static inline void setup_freeext(struct freeblks *, struct inode *, int, int); 854 static inline void setup_freeindir(struct freeblks *, struct inode *, int, 855 ufs_lbn_t, int); 856 static inline struct freeblks *newfreeblks(struct mount *, struct inode *); 857 static void freeblks_free(struct ufsmount *, struct freeblks *, int); 858 static void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t); 859 static ufs2_daddr_t blkcount(struct fs *, ufs2_daddr_t, off_t); 860 static int trunc_check_buf(struct buf *, int *, ufs_lbn_t, int, int); 861 static void trunc_dependencies(struct inode *, struct freeblks *, ufs_lbn_t, 862 int, int); 863 static void trunc_pages(struct inode *, off_t, ufs2_daddr_t, int); 864 static int cancel_pagedep(struct pagedep *, struct freeblks *, int); 865 static int deallocate_dependencies(struct buf *, struct freeblks *, int); 866 static void newblk_freefrag(struct newblk*); 867 static void free_newblk(struct newblk *); 868 static void cancel_allocdirect(struct allocdirectlst *, 869 struct allocdirect *, struct freeblks *); 870 static int check_inode_unwritten(struct inodedep *); 871 static int free_inodedep(struct inodedep *); 872 static void freework_freeblock(struct freework *); 873 static void freework_enqueue(struct freework *); 874 static int handle_workitem_freeblocks(struct freeblks *, int); 875 static int handle_complete_freeblocks(struct freeblks *, int); 876 static void handle_workitem_indirblk(struct freework *); 877 static void handle_written_freework(struct freework *); 878 static void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *); 879 static struct worklist *jnewblk_merge(struct worklist *, struct worklist *, 880 struct workhead *); 881 static struct freefrag *setup_allocindir_phase2(struct buf *, struct inode *, 882 struct inodedep *, struct allocindir *, ufs_lbn_t); 883 static struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t, 884 ufs2_daddr_t, ufs_lbn_t); 885 static void handle_workitem_freefrag(struct freefrag *); 886 static struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long, 887 ufs_lbn_t); 888 static void allocdirect_merge(struct allocdirectlst *, 889 struct allocdirect *, struct allocdirect *); 890 static struct freefrag *allocindir_merge(struct allocindir *, 891 struct allocindir *); 892 static int bmsafemap_find(struct bmsafemap_hashhead *, int, 893 struct bmsafemap **); 894 static struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *, 895 int cg, struct bmsafemap *); 896 static int newblk_find(struct newblk_hashhead *, ufs2_daddr_t, int, 897 struct newblk **); 898 static int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **); 899 static int inodedep_find(struct inodedep_hashhead *, ino_t, 900 struct inodedep **); 901 static int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **); 902 static int pagedep_lookup(struct mount *, struct buf *bp, ino_t, ufs_lbn_t, 903 int, struct pagedep **); 904 static int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t, 905 struct pagedep **); 906 static void pause_timer(void *); 907 static int request_cleanup(struct mount *, int); 908 static int softdep_request_cleanup_flush(struct mount *, struct ufsmount *); 909 static void schedule_cleanup(struct mount *); 910 static void softdep_ast_cleanup_proc(struct thread *); 911 static struct ufsmount *softdep_bp_to_mp(struct buf *bp); 912 static int process_worklist_item(struct mount *, int, int); 913 static void process_removes(struct vnode *); 914 static void process_truncates(struct vnode *); 915 static void jwork_move(struct workhead *, struct workhead *); 916 static void jwork_insert(struct workhead *, struct jsegdep *); 917 static void add_to_worklist(struct worklist *, int); 918 static void wake_worklist(struct worklist *); 919 static void wait_worklist(struct worklist *, char *); 920 static void remove_from_worklist(struct worklist *); 921 static void softdep_flush(void *); 922 static void softdep_flushjournal(struct mount *); 923 static int softdep_speedup(struct ufsmount *); 924 static void worklist_speedup(struct mount *); 925 static int journal_mount(struct mount *, struct fs *, struct ucred *); 926 static void journal_unmount(struct ufsmount *); 927 static int journal_space(struct ufsmount *, int); 928 static void journal_suspend(struct ufsmount *); 929 static int journal_unsuspend(struct ufsmount *ump); 930 static void softdep_prelink(struct vnode *, struct vnode *); 931 static void add_to_journal(struct worklist *); 932 static void remove_from_journal(struct worklist *); 933 static bool softdep_excess_items(struct ufsmount *, int); 934 static void softdep_process_journal(struct mount *, struct worklist *, int); 935 static struct jremref *newjremref(struct dirrem *, struct inode *, 936 struct inode *ip, off_t, nlink_t); 937 static struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t, 938 uint16_t); 939 static inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t, 940 uint16_t); 941 static inline struct jsegdep *inoref_jseg(struct inoref *); 942 static struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t); 943 static struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t, 944 ufs2_daddr_t, int); 945 static void adjust_newfreework(struct freeblks *, int); 946 static struct jtrunc *newjtrunc(struct freeblks *, off_t, int); 947 static void move_newblock_dep(struct jaddref *, struct inodedep *); 948 static void cancel_jfreeblk(struct freeblks *, ufs2_daddr_t); 949 static struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *, 950 ufs2_daddr_t, long, ufs_lbn_t); 951 static struct freework *newfreework(struct ufsmount *, struct freeblks *, 952 struct freework *, ufs_lbn_t, ufs2_daddr_t, int, int, int); 953 static int jwait(struct worklist *, int); 954 static struct inodedep *inodedep_lookup_ip(struct inode *); 955 static int bmsafemap_backgroundwrite(struct bmsafemap *, struct buf *); 956 static struct freefile *handle_bufwait(struct inodedep *, struct workhead *); 957 static void handle_jwork(struct workhead *); 958 static struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *, 959 struct mkdir **); 960 static struct jblocks *jblocks_create(void); 961 static ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *); 962 static void jblocks_free(struct jblocks *, struct mount *, int); 963 static void jblocks_destroy(struct jblocks *); 964 static void jblocks_add(struct jblocks *, ufs2_daddr_t, int); 965 966 /* 967 * Exported softdep operations. 968 */ 969 static void softdep_disk_io_initiation(struct buf *); 970 static void softdep_disk_write_complete(struct buf *); 971 static void softdep_deallocate_dependencies(struct buf *); 972 static int softdep_count_dependencies(struct buf *bp, int); 973 974 /* 975 * Global lock over all of soft updates. 976 */ 977 static struct mtx lk; 978 MTX_SYSINIT(softdep_lock, &lk, "Global Softdep Lock", MTX_DEF); 979 980 #define ACQUIRE_GBLLOCK(lk) mtx_lock(lk) 981 #define FREE_GBLLOCK(lk) mtx_unlock(lk) 982 #define GBLLOCK_OWNED(lk) mtx_assert((lk), MA_OWNED) 983 984 /* 985 * Per-filesystem soft-updates locking. 986 */ 987 #define LOCK_PTR(ump) (&(ump)->um_softdep->sd_fslock) 988 #define TRY_ACQUIRE_LOCK(ump) rw_try_wlock(&(ump)->um_softdep->sd_fslock) 989 #define ACQUIRE_LOCK(ump) rw_wlock(&(ump)->um_softdep->sd_fslock) 990 #define FREE_LOCK(ump) rw_wunlock(&(ump)->um_softdep->sd_fslock) 991 #define LOCK_OWNED(ump) rw_assert(&(ump)->um_softdep->sd_fslock, \ 992 RA_WLOCKED) 993 994 #define BUF_AREC(bp) lockallowrecurse(&(bp)->b_lock) 995 #define BUF_NOREC(bp) lockdisablerecurse(&(bp)->b_lock) 996 997 /* 998 * Worklist queue management. 999 * These routines require that the lock be held. 1000 */ 1001 #ifndef /* NOT */ DEBUG 1002 #define WORKLIST_INSERT(head, item) do { \ 1003 (item)->wk_state |= ONWORKLIST; \ 1004 LIST_INSERT_HEAD(head, item, wk_list); \ 1005 } while (0) 1006 #define WORKLIST_REMOVE(item) do { \ 1007 (item)->wk_state &= ~ONWORKLIST; \ 1008 LIST_REMOVE(item, wk_list); \ 1009 } while (0) 1010 #define WORKLIST_INSERT_UNLOCKED WORKLIST_INSERT 1011 #define WORKLIST_REMOVE_UNLOCKED WORKLIST_REMOVE 1012 1013 #else /* DEBUG */ 1014 static void worklist_insert(struct workhead *, struct worklist *, int); 1015 static void worklist_remove(struct worklist *, int); 1016 1017 #define WORKLIST_INSERT(head, item) worklist_insert(head, item, 1) 1018 #define WORKLIST_INSERT_UNLOCKED(head, item) worklist_insert(head, item, 0) 1019 #define WORKLIST_REMOVE(item) worklist_remove(item, 1) 1020 #define WORKLIST_REMOVE_UNLOCKED(item) worklist_remove(item, 0) 1021 1022 static void 1023 worklist_insert(head, item, locked) 1024 struct workhead *head; 1025 struct worklist *item; 1026 int locked; 1027 { 1028 1029 if (locked) 1030 LOCK_OWNED(VFSTOUFS(item->wk_mp)); 1031 if (item->wk_state & ONWORKLIST) 1032 panic("worklist_insert: %p %s(0x%X) already on list", 1033 item, TYPENAME(item->wk_type), item->wk_state); 1034 item->wk_state |= ONWORKLIST; 1035 LIST_INSERT_HEAD(head, item, wk_list); 1036 } 1037 1038 static void 1039 worklist_remove(item, locked) 1040 struct worklist *item; 1041 int locked; 1042 { 1043 1044 if (locked) 1045 LOCK_OWNED(VFSTOUFS(item->wk_mp)); 1046 if ((item->wk_state & ONWORKLIST) == 0) 1047 panic("worklist_remove: %p %s(0x%X) not on list", 1048 item, TYPENAME(item->wk_type), item->wk_state); 1049 item->wk_state &= ~ONWORKLIST; 1050 LIST_REMOVE(item, wk_list); 1051 } 1052 #endif /* DEBUG */ 1053 1054 /* 1055 * Merge two jsegdeps keeping only the oldest one as newer references 1056 * can't be discarded until after older references. 1057 */ 1058 static inline struct jsegdep * 1059 jsegdep_merge(struct jsegdep *one, struct jsegdep *two) 1060 { 1061 struct jsegdep *swp; 1062 1063 if (two == NULL) 1064 return (one); 1065 1066 if (one->jd_seg->js_seq > two->jd_seg->js_seq) { 1067 swp = one; 1068 one = two; 1069 two = swp; 1070 } 1071 WORKLIST_REMOVE(&two->jd_list); 1072 free_jsegdep(two); 1073 1074 return (one); 1075 } 1076 1077 /* 1078 * If two freedeps are compatible free one to reduce list size. 1079 */ 1080 static inline struct freedep * 1081 freedep_merge(struct freedep *one, struct freedep *two) 1082 { 1083 if (two == NULL) 1084 return (one); 1085 1086 if (one->fd_freework == two->fd_freework) { 1087 WORKLIST_REMOVE(&two->fd_list); 1088 free_freedep(two); 1089 } 1090 return (one); 1091 } 1092 1093 /* 1094 * Move journal work from one list to another. Duplicate freedeps and 1095 * jsegdeps are coalesced to keep the lists as small as possible. 1096 */ 1097 static void 1098 jwork_move(dst, src) 1099 struct workhead *dst; 1100 struct workhead *src; 1101 { 1102 struct freedep *freedep; 1103 struct jsegdep *jsegdep; 1104 struct worklist *wkn; 1105 struct worklist *wk; 1106 1107 KASSERT(dst != src, 1108 ("jwork_move: dst == src")); 1109 freedep = NULL; 1110 jsegdep = NULL; 1111 LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) { 1112 if (wk->wk_type == D_JSEGDEP) 1113 jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep); 1114 else if (wk->wk_type == D_FREEDEP) 1115 freedep = freedep_merge(WK_FREEDEP(wk), freedep); 1116 } 1117 1118 while ((wk = LIST_FIRST(src)) != NULL) { 1119 WORKLIST_REMOVE(wk); 1120 WORKLIST_INSERT(dst, wk); 1121 if (wk->wk_type == D_JSEGDEP) { 1122 jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep); 1123 continue; 1124 } 1125 if (wk->wk_type == D_FREEDEP) 1126 freedep = freedep_merge(WK_FREEDEP(wk), freedep); 1127 } 1128 } 1129 1130 static void 1131 jwork_insert(dst, jsegdep) 1132 struct workhead *dst; 1133 struct jsegdep *jsegdep; 1134 { 1135 struct jsegdep *jsegdepn; 1136 struct worklist *wk; 1137 1138 LIST_FOREACH(wk, dst, wk_list) 1139 if (wk->wk_type == D_JSEGDEP) 1140 break; 1141 if (wk == NULL) { 1142 WORKLIST_INSERT(dst, &jsegdep->jd_list); 1143 return; 1144 } 1145 jsegdepn = WK_JSEGDEP(wk); 1146 if (jsegdep->jd_seg->js_seq < jsegdepn->jd_seg->js_seq) { 1147 WORKLIST_REMOVE(wk); 1148 free_jsegdep(jsegdepn); 1149 WORKLIST_INSERT(dst, &jsegdep->jd_list); 1150 } else 1151 free_jsegdep(jsegdep); 1152 } 1153 1154 /* 1155 * Routines for tracking and managing workitems. 1156 */ 1157 static void workitem_free(struct worklist *, int); 1158 static void workitem_alloc(struct worklist *, int, struct mount *); 1159 static void workitem_reassign(struct worklist *, int); 1160 1161 #define WORKITEM_FREE(item, type) \ 1162 workitem_free((struct worklist *)(item), (type)) 1163 #define WORKITEM_REASSIGN(item, type) \ 1164 workitem_reassign((struct worklist *)(item), (type)) 1165 1166 static void 1167 workitem_free(item, type) 1168 struct worklist *item; 1169 int type; 1170 { 1171 struct ufsmount *ump; 1172 1173 #ifdef DEBUG 1174 if (item->wk_state & ONWORKLIST) 1175 panic("workitem_free: %s(0x%X) still on list", 1176 TYPENAME(item->wk_type), item->wk_state); 1177 if (item->wk_type != type && type != D_NEWBLK) 1178 panic("workitem_free: type mismatch %s != %s", 1179 TYPENAME(item->wk_type), TYPENAME(type)); 1180 #endif 1181 if (item->wk_state & IOWAITING) 1182 wakeup(item); 1183 ump = VFSTOUFS(item->wk_mp); 1184 LOCK_OWNED(ump); 1185 KASSERT(ump->softdep_deps > 0, 1186 ("workitem_free: %s: softdep_deps going negative", 1187 ump->um_fs->fs_fsmnt)); 1188 if (--ump->softdep_deps == 0 && ump->softdep_req) 1189 wakeup(&ump->softdep_deps); 1190 KASSERT(dep_current[item->wk_type] > 0, 1191 ("workitem_free: %s: dep_current[%s] going negative", 1192 ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1193 KASSERT(ump->softdep_curdeps[item->wk_type] > 0, 1194 ("workitem_free: %s: softdep_curdeps[%s] going negative", 1195 ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1196 atomic_subtract_long(&dep_current[item->wk_type], 1); 1197 ump->softdep_curdeps[item->wk_type] -= 1; 1198 free(item, DtoM(type)); 1199 } 1200 1201 static void 1202 workitem_alloc(item, type, mp) 1203 struct worklist *item; 1204 int type; 1205 struct mount *mp; 1206 { 1207 struct ufsmount *ump; 1208 1209 item->wk_type = type; 1210 item->wk_mp = mp; 1211 item->wk_state = 0; 1212 1213 ump = VFSTOUFS(mp); 1214 ACQUIRE_GBLLOCK(&lk); 1215 dep_current[type]++; 1216 if (dep_current[type] > dep_highuse[type]) 1217 dep_highuse[type] = dep_current[type]; 1218 dep_total[type]++; 1219 FREE_GBLLOCK(&lk); 1220 ACQUIRE_LOCK(ump); 1221 ump->softdep_curdeps[type] += 1; 1222 ump->softdep_deps++; 1223 ump->softdep_accdeps++; 1224 FREE_LOCK(ump); 1225 } 1226 1227 static void 1228 workitem_reassign(item, newtype) 1229 struct worklist *item; 1230 int newtype; 1231 { 1232 struct ufsmount *ump; 1233 1234 ump = VFSTOUFS(item->wk_mp); 1235 LOCK_OWNED(ump); 1236 KASSERT(ump->softdep_curdeps[item->wk_type] > 0, 1237 ("workitem_reassign: %s: softdep_curdeps[%s] going negative", 1238 VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1239 ump->softdep_curdeps[item->wk_type] -= 1; 1240 ump->softdep_curdeps[newtype] += 1; 1241 KASSERT(dep_current[item->wk_type] > 0, 1242 ("workitem_reassign: %s: dep_current[%s] going negative", 1243 VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1244 ACQUIRE_GBLLOCK(&lk); 1245 dep_current[newtype]++; 1246 dep_current[item->wk_type]--; 1247 if (dep_current[newtype] > dep_highuse[newtype]) 1248 dep_highuse[newtype] = dep_current[newtype]; 1249 dep_total[newtype]++; 1250 FREE_GBLLOCK(&lk); 1251 item->wk_type = newtype; 1252 } 1253 1254 /* 1255 * Workitem queue management 1256 */ 1257 static int max_softdeps; /* maximum number of structs before slowdown */ 1258 static int tickdelay = 2; /* number of ticks to pause during slowdown */ 1259 static int proc_waiting; /* tracks whether we have a timeout posted */ 1260 static int *stat_countp; /* statistic to count in proc_waiting timeout */ 1261 static struct callout softdep_callout; 1262 static int req_clear_inodedeps; /* syncer process flush some inodedeps */ 1263 static int req_clear_remove; /* syncer process flush some freeblks */ 1264 static int softdep_flushcache = 0; /* Should we do BIO_FLUSH? */ 1265 1266 /* 1267 * runtime statistics 1268 */ 1269 static int stat_flush_threads; /* number of softdep flushing threads */ 1270 static int stat_worklist_push; /* number of worklist cleanups */ 1271 static int stat_blk_limit_push; /* number of times block limit neared */ 1272 static int stat_ino_limit_push; /* number of times inode limit neared */ 1273 static int stat_blk_limit_hit; /* number of times block slowdown imposed */ 1274 static int stat_ino_limit_hit; /* number of times inode slowdown imposed */ 1275 static int stat_sync_limit_hit; /* number of synchronous slowdowns imposed */ 1276 static int stat_indir_blk_ptrs; /* bufs redirtied as indir ptrs not written */ 1277 static int stat_inode_bitmap; /* bufs redirtied as inode bitmap not written */ 1278 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */ 1279 static int stat_dir_entry; /* bufs redirtied as dir entry cannot write */ 1280 static int stat_jaddref; /* bufs redirtied as ino bitmap can not write */ 1281 static int stat_jnewblk; /* bufs redirtied as blk bitmap can not write */ 1282 static int stat_journal_min; /* Times hit journal min threshold */ 1283 static int stat_journal_low; /* Times hit journal low threshold */ 1284 static int stat_journal_wait; /* Times blocked in jwait(). */ 1285 static int stat_jwait_filepage; /* Times blocked in jwait() for filepage. */ 1286 static int stat_jwait_freeblks; /* Times blocked in jwait() for freeblks. */ 1287 static int stat_jwait_inode; /* Times blocked in jwait() for inodes. */ 1288 static int stat_jwait_newblk; /* Times blocked in jwait() for newblks. */ 1289 static int stat_cleanup_high_delay; /* Maximum cleanup delay (in ticks) */ 1290 static int stat_cleanup_blkrequests; /* Number of block cleanup requests */ 1291 static int stat_cleanup_inorequests; /* Number of inode cleanup requests */ 1292 static int stat_cleanup_retries; /* Number of cleanups that needed to flush */ 1293 static int stat_cleanup_failures; /* Number of cleanup requests that failed */ 1294 static int stat_emptyjblocks; /* Number of potentially empty journal blocks */ 1295 1296 SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW, 1297 &max_softdeps, 0, ""); 1298 SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW, 1299 &tickdelay, 0, ""); 1300 SYSCTL_INT(_debug_softdep, OID_AUTO, flush_threads, CTLFLAG_RD, 1301 &stat_flush_threads, 0, ""); 1302 SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push, CTLFLAG_RW, 1303 &stat_worklist_push, 0,""); 1304 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push, CTLFLAG_RW, 1305 &stat_blk_limit_push, 0,""); 1306 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push, CTLFLAG_RW, 1307 &stat_ino_limit_push, 0,""); 1308 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit, CTLFLAG_RW, 1309 &stat_blk_limit_hit, 0, ""); 1310 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit, CTLFLAG_RW, 1311 &stat_ino_limit_hit, 0, ""); 1312 SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit, CTLFLAG_RW, 1313 &stat_sync_limit_hit, 0, ""); 1314 SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW, 1315 &stat_indir_blk_ptrs, 0, ""); 1316 SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap, CTLFLAG_RW, 1317 &stat_inode_bitmap, 0, ""); 1318 SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW, 1319 &stat_direct_blk_ptrs, 0, ""); 1320 SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry, CTLFLAG_RW, 1321 &stat_dir_entry, 0, ""); 1322 SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback, CTLFLAG_RW, 1323 &stat_jaddref, 0, ""); 1324 SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback, CTLFLAG_RW, 1325 &stat_jnewblk, 0, ""); 1326 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low, CTLFLAG_RW, 1327 &stat_journal_low, 0, ""); 1328 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min, CTLFLAG_RW, 1329 &stat_journal_min, 0, ""); 1330 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait, CTLFLAG_RW, 1331 &stat_journal_wait, 0, ""); 1332 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage, CTLFLAG_RW, 1333 &stat_jwait_filepage, 0, ""); 1334 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks, CTLFLAG_RW, 1335 &stat_jwait_freeblks, 0, ""); 1336 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode, CTLFLAG_RW, 1337 &stat_jwait_inode, 0, ""); 1338 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk, CTLFLAG_RW, 1339 &stat_jwait_newblk, 0, ""); 1340 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_blkrequests, CTLFLAG_RW, 1341 &stat_cleanup_blkrequests, 0, ""); 1342 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_inorequests, CTLFLAG_RW, 1343 &stat_cleanup_inorequests, 0, ""); 1344 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_high_delay, CTLFLAG_RW, 1345 &stat_cleanup_high_delay, 0, ""); 1346 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_retries, CTLFLAG_RW, 1347 &stat_cleanup_retries, 0, ""); 1348 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_failures, CTLFLAG_RW, 1349 &stat_cleanup_failures, 0, ""); 1350 SYSCTL_INT(_debug_softdep, OID_AUTO, flushcache, CTLFLAG_RW, 1351 &softdep_flushcache, 0, ""); 1352 SYSCTL_INT(_debug_softdep, OID_AUTO, emptyjblocks, CTLFLAG_RD, 1353 &stat_emptyjblocks, 0, ""); 1354 1355 SYSCTL_DECL(_vfs_ffs); 1356 1357 /* Whether to recompute the summary at mount time */ 1358 static int compute_summary_at_mount = 0; 1359 SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW, 1360 &compute_summary_at_mount, 0, "Recompute summary at mount"); 1361 static int print_threads = 0; 1362 SYSCTL_INT(_debug_softdep, OID_AUTO, print_threads, CTLFLAG_RW, 1363 &print_threads, 0, "Notify flusher thread start/stop"); 1364 1365 /* List of all filesystems mounted with soft updates */ 1366 static TAILQ_HEAD(, mount_softdeps) softdepmounts; 1367 1368 /* 1369 * This function cleans the worklist for a filesystem. 1370 * Each filesystem running with soft dependencies gets its own 1371 * thread to run in this function. The thread is started up in 1372 * softdep_mount and shutdown in softdep_unmount. They show up 1373 * as part of the kernel "bufdaemon" process whose process 1374 * entry is available in bufdaemonproc. 1375 */ 1376 static int searchfailed; 1377 extern struct proc *bufdaemonproc; 1378 static void 1379 softdep_flush(addr) 1380 void *addr; 1381 { 1382 struct mount *mp; 1383 struct thread *td; 1384 struct ufsmount *ump; 1385 1386 td = curthread; 1387 td->td_pflags |= TDP_NORUNNINGBUF; 1388 mp = (struct mount *)addr; 1389 ump = VFSTOUFS(mp); 1390 atomic_add_int(&stat_flush_threads, 1); 1391 ACQUIRE_LOCK(ump); 1392 ump->softdep_flags &= ~FLUSH_STARTING; 1393 wakeup(&ump->softdep_flushtd); 1394 FREE_LOCK(ump); 1395 if (print_threads) { 1396 if (stat_flush_threads == 1) 1397 printf("Running %s at pid %d\n", bufdaemonproc->p_comm, 1398 bufdaemonproc->p_pid); 1399 printf("Start thread %s\n", td->td_name); 1400 } 1401 for (;;) { 1402 while (softdep_process_worklist(mp, 0) > 0 || 1403 (MOUNTEDSUJ(mp) && 1404 VFSTOUFS(mp)->softdep_jblocks->jb_suspended)) 1405 kthread_suspend_check(); 1406 ACQUIRE_LOCK(ump); 1407 if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) 1408 msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM, 1409 "sdflush", hz / 2); 1410 ump->softdep_flags &= ~FLUSH_CLEANUP; 1411 /* 1412 * Check to see if we are done and need to exit. 1413 */ 1414 if ((ump->softdep_flags & FLUSH_EXIT) == 0) { 1415 FREE_LOCK(ump); 1416 continue; 1417 } 1418 ump->softdep_flags &= ~FLUSH_EXIT; 1419 FREE_LOCK(ump); 1420 wakeup(&ump->softdep_flags); 1421 if (print_threads) 1422 printf("Stop thread %s: searchfailed %d, did cleanups %d\n", td->td_name, searchfailed, ump->um_softdep->sd_cleanups); 1423 atomic_subtract_int(&stat_flush_threads, 1); 1424 kthread_exit(); 1425 panic("kthread_exit failed\n"); 1426 } 1427 } 1428 1429 static void 1430 worklist_speedup(mp) 1431 struct mount *mp; 1432 { 1433 struct ufsmount *ump; 1434 1435 ump = VFSTOUFS(mp); 1436 LOCK_OWNED(ump); 1437 if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) 1438 ump->softdep_flags |= FLUSH_CLEANUP; 1439 wakeup(&ump->softdep_flushtd); 1440 } 1441 1442 static int 1443 softdep_speedup(ump) 1444 struct ufsmount *ump; 1445 { 1446 struct ufsmount *altump; 1447 struct mount_softdeps *sdp; 1448 1449 LOCK_OWNED(ump); 1450 worklist_speedup(ump->um_mountp); 1451 bd_speedup(); 1452 /* 1453 * If we have global shortages, then we need other 1454 * filesystems to help with the cleanup. Here we wakeup a 1455 * flusher thread for a filesystem that is over its fair 1456 * share of resources. 1457 */ 1458 if (req_clear_inodedeps || req_clear_remove) { 1459 ACQUIRE_GBLLOCK(&lk); 1460 TAILQ_FOREACH(sdp, &softdepmounts, sd_next) { 1461 if ((altump = sdp->sd_ump) == ump) 1462 continue; 1463 if (((req_clear_inodedeps && 1464 altump->softdep_curdeps[D_INODEDEP] > 1465 max_softdeps / stat_flush_threads) || 1466 (req_clear_remove && 1467 altump->softdep_curdeps[D_DIRREM] > 1468 (max_softdeps / 2) / stat_flush_threads)) && 1469 TRY_ACQUIRE_LOCK(altump)) 1470 break; 1471 } 1472 if (sdp == NULL) { 1473 searchfailed++; 1474 FREE_GBLLOCK(&lk); 1475 } else { 1476 /* 1477 * Move to the end of the list so we pick a 1478 * different one on out next try. 1479 */ 1480 TAILQ_REMOVE(&softdepmounts, sdp, sd_next); 1481 TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next); 1482 FREE_GBLLOCK(&lk); 1483 if ((altump->softdep_flags & 1484 (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) 1485 altump->softdep_flags |= FLUSH_CLEANUP; 1486 altump->um_softdep->sd_cleanups++; 1487 wakeup(&altump->softdep_flushtd); 1488 FREE_LOCK(altump); 1489 } 1490 } 1491 return (speedup_syncer()); 1492 } 1493 1494 /* 1495 * Add an item to the end of the work queue. 1496 * This routine requires that the lock be held. 1497 * This is the only routine that adds items to the list. 1498 * The following routine is the only one that removes items 1499 * and does so in order from first to last. 1500 */ 1501 1502 #define WK_HEAD 0x0001 /* Add to HEAD. */ 1503 #define WK_NODELAY 0x0002 /* Process immediately. */ 1504 1505 static void 1506 add_to_worklist(wk, flags) 1507 struct worklist *wk; 1508 int flags; 1509 { 1510 struct ufsmount *ump; 1511 1512 ump = VFSTOUFS(wk->wk_mp); 1513 LOCK_OWNED(ump); 1514 if (wk->wk_state & ONWORKLIST) 1515 panic("add_to_worklist: %s(0x%X) already on list", 1516 TYPENAME(wk->wk_type), wk->wk_state); 1517 wk->wk_state |= ONWORKLIST; 1518 if (ump->softdep_on_worklist == 0) { 1519 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list); 1520 ump->softdep_worklist_tail = wk; 1521 } else if (flags & WK_HEAD) { 1522 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list); 1523 } else { 1524 LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list); 1525 ump->softdep_worklist_tail = wk; 1526 } 1527 ump->softdep_on_worklist += 1; 1528 if (flags & WK_NODELAY) 1529 worklist_speedup(wk->wk_mp); 1530 } 1531 1532 /* 1533 * Remove the item to be processed. If we are removing the last 1534 * item on the list, we need to recalculate the tail pointer. 1535 */ 1536 static void 1537 remove_from_worklist(wk) 1538 struct worklist *wk; 1539 { 1540 struct ufsmount *ump; 1541 1542 ump = VFSTOUFS(wk->wk_mp); 1543 if (ump->softdep_worklist_tail == wk) 1544 ump->softdep_worklist_tail = 1545 (struct worklist *)wk->wk_list.le_prev; 1546 WORKLIST_REMOVE(wk); 1547 ump->softdep_on_worklist -= 1; 1548 } 1549 1550 static void 1551 wake_worklist(wk) 1552 struct worklist *wk; 1553 { 1554 if (wk->wk_state & IOWAITING) { 1555 wk->wk_state &= ~IOWAITING; 1556 wakeup(wk); 1557 } 1558 } 1559 1560 static void 1561 wait_worklist(wk, wmesg) 1562 struct worklist *wk; 1563 char *wmesg; 1564 { 1565 struct ufsmount *ump; 1566 1567 ump = VFSTOUFS(wk->wk_mp); 1568 wk->wk_state |= IOWAITING; 1569 msleep(wk, LOCK_PTR(ump), PVM, wmesg, 0); 1570 } 1571 1572 /* 1573 * Process that runs once per second to handle items in the background queue. 1574 * 1575 * Note that we ensure that everything is done in the order in which they 1576 * appear in the queue. The code below depends on this property to ensure 1577 * that blocks of a file are freed before the inode itself is freed. This 1578 * ordering ensures that no new <vfsid, inum, lbn> triples will be generated 1579 * until all the old ones have been purged from the dependency lists. 1580 */ 1581 static int 1582 softdep_process_worklist(mp, full) 1583 struct mount *mp; 1584 int full; 1585 { 1586 int cnt, matchcnt; 1587 struct ufsmount *ump; 1588 long starttime; 1589 1590 KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp")); 1591 if (MOUNTEDSOFTDEP(mp) == 0) 1592 return (0); 1593 matchcnt = 0; 1594 ump = VFSTOUFS(mp); 1595 ACQUIRE_LOCK(ump); 1596 starttime = time_second; 1597 softdep_process_journal(mp, NULL, full ? MNT_WAIT : 0); 1598 check_clear_deps(mp); 1599 while (ump->softdep_on_worklist > 0) { 1600 if ((cnt = process_worklist_item(mp, 10, LK_NOWAIT)) == 0) 1601 break; 1602 else 1603 matchcnt += cnt; 1604 check_clear_deps(mp); 1605 /* 1606 * We do not generally want to stop for buffer space, but if 1607 * we are really being a buffer hog, we will stop and wait. 1608 */ 1609 if (should_yield()) { 1610 FREE_LOCK(ump); 1611 kern_yield(PRI_USER); 1612 bwillwrite(); 1613 ACQUIRE_LOCK(ump); 1614 } 1615 /* 1616 * Never allow processing to run for more than one 1617 * second. This gives the syncer thread the opportunity 1618 * to pause if appropriate. 1619 */ 1620 if (!full && starttime != time_second) 1621 break; 1622 } 1623 if (full == 0) 1624 journal_unsuspend(ump); 1625 FREE_LOCK(ump); 1626 return (matchcnt); 1627 } 1628 1629 /* 1630 * Process all removes associated with a vnode if we are running out of 1631 * journal space. Any other process which attempts to flush these will 1632 * be unable as we have the vnodes locked. 1633 */ 1634 static void 1635 process_removes(vp) 1636 struct vnode *vp; 1637 { 1638 struct inodedep *inodedep; 1639 struct dirrem *dirrem; 1640 struct ufsmount *ump; 1641 struct mount *mp; 1642 ino_t inum; 1643 1644 mp = vp->v_mount; 1645 ump = VFSTOUFS(mp); 1646 LOCK_OWNED(ump); 1647 inum = VTOI(vp)->i_number; 1648 for (;;) { 1649 top: 1650 if (inodedep_lookup(mp, inum, 0, &inodedep) == 0) 1651 return; 1652 LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext) { 1653 /* 1654 * If another thread is trying to lock this vnode 1655 * it will fail but we must wait for it to do so 1656 * before we can proceed. 1657 */ 1658 if (dirrem->dm_state & INPROGRESS) { 1659 wait_worklist(&dirrem->dm_list, "pwrwait"); 1660 goto top; 1661 } 1662 if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) == 1663 (COMPLETE | ONWORKLIST)) 1664 break; 1665 } 1666 if (dirrem == NULL) 1667 return; 1668 remove_from_worklist(&dirrem->dm_list); 1669 FREE_LOCK(ump); 1670 if (vn_start_secondary_write(NULL, &mp, V_NOWAIT)) 1671 panic("process_removes: suspended filesystem"); 1672 handle_workitem_remove(dirrem, 0); 1673 vn_finished_secondary_write(mp); 1674 ACQUIRE_LOCK(ump); 1675 } 1676 } 1677 1678 /* 1679 * Process all truncations associated with a vnode if we are running out 1680 * of journal space. This is called when the vnode lock is already held 1681 * and no other process can clear the truncation. This function returns 1682 * a value greater than zero if it did any work. 1683 */ 1684 static void 1685 process_truncates(vp) 1686 struct vnode *vp; 1687 { 1688 struct inodedep *inodedep; 1689 struct freeblks *freeblks; 1690 struct ufsmount *ump; 1691 struct mount *mp; 1692 ino_t inum; 1693 int cgwait; 1694 1695 mp = vp->v_mount; 1696 ump = VFSTOUFS(mp); 1697 LOCK_OWNED(ump); 1698 inum = VTOI(vp)->i_number; 1699 for (;;) { 1700 if (inodedep_lookup(mp, inum, 0, &inodedep) == 0) 1701 return; 1702 cgwait = 0; 1703 TAILQ_FOREACH(freeblks, &inodedep->id_freeblklst, fb_next) { 1704 /* Journal entries not yet written. */ 1705 if (!LIST_EMPTY(&freeblks->fb_jblkdephd)) { 1706 jwait(&LIST_FIRST( 1707 &freeblks->fb_jblkdephd)->jb_list, 1708 MNT_WAIT); 1709 break; 1710 } 1711 /* Another thread is executing this item. */ 1712 if (freeblks->fb_state & INPROGRESS) { 1713 wait_worklist(&freeblks->fb_list, "ptrwait"); 1714 break; 1715 } 1716 /* Freeblks is waiting on a inode write. */ 1717 if ((freeblks->fb_state & COMPLETE) == 0) { 1718 FREE_LOCK(ump); 1719 ffs_update(vp, 1); 1720 ACQUIRE_LOCK(ump); 1721 break; 1722 } 1723 if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST)) == 1724 (ALLCOMPLETE | ONWORKLIST)) { 1725 remove_from_worklist(&freeblks->fb_list); 1726 freeblks->fb_state |= INPROGRESS; 1727 FREE_LOCK(ump); 1728 if (vn_start_secondary_write(NULL, &mp, 1729 V_NOWAIT)) 1730 panic("process_truncates: " 1731 "suspended filesystem"); 1732 handle_workitem_freeblocks(freeblks, 0); 1733 vn_finished_secondary_write(mp); 1734 ACQUIRE_LOCK(ump); 1735 break; 1736 } 1737 if (freeblks->fb_cgwait) 1738 cgwait++; 1739 } 1740 if (cgwait) { 1741 FREE_LOCK(ump); 1742 sync_cgs(mp, MNT_WAIT); 1743 ffs_sync_snap(mp, MNT_WAIT); 1744 ACQUIRE_LOCK(ump); 1745 continue; 1746 } 1747 if (freeblks == NULL) 1748 break; 1749 } 1750 return; 1751 } 1752 1753 /* 1754 * Process one item on the worklist. 1755 */ 1756 static int 1757 process_worklist_item(mp, target, flags) 1758 struct mount *mp; 1759 int target; 1760 int flags; 1761 { 1762 struct worklist sentinel; 1763 struct worklist *wk; 1764 struct ufsmount *ump; 1765 int matchcnt; 1766 int error; 1767 1768 KASSERT(mp != NULL, ("process_worklist_item: NULL mp")); 1769 /* 1770 * If we are being called because of a process doing a 1771 * copy-on-write, then it is not safe to write as we may 1772 * recurse into the copy-on-write routine. 1773 */ 1774 if (curthread->td_pflags & TDP_COWINPROGRESS) 1775 return (-1); 1776 PHOLD(curproc); /* Don't let the stack go away. */ 1777 ump = VFSTOUFS(mp); 1778 LOCK_OWNED(ump); 1779 matchcnt = 0; 1780 sentinel.wk_mp = NULL; 1781 sentinel.wk_type = D_SENTINEL; 1782 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, &sentinel, wk_list); 1783 for (wk = LIST_NEXT(&sentinel, wk_list); wk != NULL; 1784 wk = LIST_NEXT(&sentinel, wk_list)) { 1785 if (wk->wk_type == D_SENTINEL) { 1786 LIST_REMOVE(&sentinel, wk_list); 1787 LIST_INSERT_AFTER(wk, &sentinel, wk_list); 1788 continue; 1789 } 1790 if (wk->wk_state & INPROGRESS) 1791 panic("process_worklist_item: %p already in progress.", 1792 wk); 1793 wk->wk_state |= INPROGRESS; 1794 remove_from_worklist(wk); 1795 FREE_LOCK(ump); 1796 if (vn_start_secondary_write(NULL, &mp, V_NOWAIT)) 1797 panic("process_worklist_item: suspended filesystem"); 1798 switch (wk->wk_type) { 1799 case D_DIRREM: 1800 /* removal of a directory entry */ 1801 error = handle_workitem_remove(WK_DIRREM(wk), flags); 1802 break; 1803 1804 case D_FREEBLKS: 1805 /* releasing blocks and/or fragments from a file */ 1806 error = handle_workitem_freeblocks(WK_FREEBLKS(wk), 1807 flags); 1808 break; 1809 1810 case D_FREEFRAG: 1811 /* releasing a fragment when replaced as a file grows */ 1812 handle_workitem_freefrag(WK_FREEFRAG(wk)); 1813 error = 0; 1814 break; 1815 1816 case D_FREEFILE: 1817 /* releasing an inode when its link count drops to 0 */ 1818 handle_workitem_freefile(WK_FREEFILE(wk)); 1819 error = 0; 1820 break; 1821 1822 default: 1823 panic("%s_process_worklist: Unknown type %s", 1824 "softdep", TYPENAME(wk->wk_type)); 1825 /* NOTREACHED */ 1826 } 1827 vn_finished_secondary_write(mp); 1828 ACQUIRE_LOCK(ump); 1829 if (error == 0) { 1830 if (++matchcnt == target) 1831 break; 1832 continue; 1833 } 1834 /* 1835 * We have to retry the worklist item later. Wake up any 1836 * waiters who may be able to complete it immediately and 1837 * add the item back to the head so we don't try to execute 1838 * it again. 1839 */ 1840 wk->wk_state &= ~INPROGRESS; 1841 wake_worklist(wk); 1842 add_to_worklist(wk, WK_HEAD); 1843 } 1844 /* Sentinal could've become the tail from remove_from_worklist. */ 1845 if (ump->softdep_worklist_tail == &sentinel) 1846 ump->softdep_worklist_tail = 1847 (struct worklist *)sentinel.wk_list.le_prev; 1848 LIST_REMOVE(&sentinel, wk_list); 1849 PRELE(curproc); 1850 return (matchcnt); 1851 } 1852 1853 /* 1854 * Move dependencies from one buffer to another. 1855 */ 1856 int 1857 softdep_move_dependencies(oldbp, newbp) 1858 struct buf *oldbp; 1859 struct buf *newbp; 1860 { 1861 struct worklist *wk, *wktail; 1862 struct ufsmount *ump; 1863 int dirty; 1864 1865 if ((wk = LIST_FIRST(&oldbp->b_dep)) == NULL) 1866 return (0); 1867 KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, 1868 ("softdep_move_dependencies called on non-softdep filesystem")); 1869 dirty = 0; 1870 wktail = NULL; 1871 ump = VFSTOUFS(wk->wk_mp); 1872 ACQUIRE_LOCK(ump); 1873 while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) { 1874 LIST_REMOVE(wk, wk_list); 1875 if (wk->wk_type == D_BMSAFEMAP && 1876 bmsafemap_backgroundwrite(WK_BMSAFEMAP(wk), newbp)) 1877 dirty = 1; 1878 if (wktail == NULL) 1879 LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list); 1880 else 1881 LIST_INSERT_AFTER(wktail, wk, wk_list); 1882 wktail = wk; 1883 } 1884 FREE_LOCK(ump); 1885 1886 return (dirty); 1887 } 1888 1889 /* 1890 * Purge the work list of all items associated with a particular mount point. 1891 */ 1892 int 1893 softdep_flushworklist(oldmnt, countp, td) 1894 struct mount *oldmnt; 1895 int *countp; 1896 struct thread *td; 1897 { 1898 struct vnode *devvp; 1899 struct ufsmount *ump; 1900 int count, error; 1901 1902 /* 1903 * Alternately flush the block device associated with the mount 1904 * point and process any dependencies that the flushing 1905 * creates. We continue until no more worklist dependencies 1906 * are found. 1907 */ 1908 *countp = 0; 1909 error = 0; 1910 ump = VFSTOUFS(oldmnt); 1911 devvp = ump->um_devvp; 1912 while ((count = softdep_process_worklist(oldmnt, 1)) > 0) { 1913 *countp += count; 1914 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 1915 error = VOP_FSYNC(devvp, MNT_WAIT, td); 1916 VOP_UNLOCK(devvp, 0); 1917 if (error != 0) 1918 break; 1919 } 1920 return (error); 1921 } 1922 1923 #define SU_WAITIDLE_RETRIES 20 1924 static int 1925 softdep_waitidle(struct mount *mp, int flags __unused) 1926 { 1927 struct ufsmount *ump; 1928 struct vnode *devvp; 1929 struct thread *td; 1930 int error, i; 1931 1932 ump = VFSTOUFS(mp); 1933 devvp = ump->um_devvp; 1934 td = curthread; 1935 error = 0; 1936 ACQUIRE_LOCK(ump); 1937 for (i = 0; i < SU_WAITIDLE_RETRIES && ump->softdep_deps != 0; i++) { 1938 ump->softdep_req = 1; 1939 KASSERT((flags & FORCECLOSE) == 0 || 1940 ump->softdep_on_worklist == 0, 1941 ("softdep_waitidle: work added after flush")); 1942 msleep(&ump->softdep_deps, LOCK_PTR(ump), PVM | PDROP, 1943 "softdeps", 10 * hz); 1944 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 1945 error = VOP_FSYNC(devvp, MNT_WAIT, td); 1946 VOP_UNLOCK(devvp, 0); 1947 ACQUIRE_LOCK(ump); 1948 if (error != 0) 1949 break; 1950 } 1951 ump->softdep_req = 0; 1952 if (i == SU_WAITIDLE_RETRIES && error == 0 && ump->softdep_deps != 0) { 1953 error = EBUSY; 1954 printf("softdep_waitidle: Failed to flush worklist for %p\n", 1955 mp); 1956 } 1957 FREE_LOCK(ump); 1958 return (error); 1959 } 1960 1961 /* 1962 * Flush all vnodes and worklist items associated with a specified mount point. 1963 */ 1964 int 1965 softdep_flushfiles(oldmnt, flags, td) 1966 struct mount *oldmnt; 1967 int flags; 1968 struct thread *td; 1969 { 1970 #ifdef QUOTA 1971 struct ufsmount *ump; 1972 int i; 1973 #endif 1974 int error, early, depcount, loopcnt, retry_flush_count, retry; 1975 int morework; 1976 1977 KASSERT(MOUNTEDSOFTDEP(oldmnt) != 0, 1978 ("softdep_flushfiles called on non-softdep filesystem")); 1979 loopcnt = 10; 1980 retry_flush_count = 3; 1981 retry_flush: 1982 error = 0; 1983 1984 /* 1985 * Alternately flush the vnodes associated with the mount 1986 * point and process any dependencies that the flushing 1987 * creates. In theory, this loop can happen at most twice, 1988 * but we give it a few extra just to be sure. 1989 */ 1990 for (; loopcnt > 0; loopcnt--) { 1991 /* 1992 * Do another flush in case any vnodes were brought in 1993 * as part of the cleanup operations. 1994 */ 1995 early = retry_flush_count == 1 || (oldmnt->mnt_kern_flag & 1996 MNTK_UNMOUNT) == 0 ? 0 : EARLYFLUSH; 1997 if ((error = ffs_flushfiles(oldmnt, flags | early, td)) != 0) 1998 break; 1999 if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 || 2000 depcount == 0) 2001 break; 2002 } 2003 /* 2004 * If we are unmounting then it is an error to fail. If we 2005 * are simply trying to downgrade to read-only, then filesystem 2006 * activity can keep us busy forever, so we just fail with EBUSY. 2007 */ 2008 if (loopcnt == 0) { 2009 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) 2010 panic("softdep_flushfiles: looping"); 2011 error = EBUSY; 2012 } 2013 if (!error) 2014 error = softdep_waitidle(oldmnt, flags); 2015 if (!error) { 2016 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) { 2017 retry = 0; 2018 MNT_ILOCK(oldmnt); 2019 KASSERT((oldmnt->mnt_kern_flag & MNTK_NOINSMNTQ) != 0, 2020 ("softdep_flushfiles: !MNTK_NOINSMNTQ")); 2021 morework = oldmnt->mnt_nvnodelistsize > 0; 2022 #ifdef QUOTA 2023 ump = VFSTOUFS(oldmnt); 2024 UFS_LOCK(ump); 2025 for (i = 0; i < MAXQUOTAS; i++) { 2026 if (ump->um_quotas[i] != NULLVP) 2027 morework = 1; 2028 } 2029 UFS_UNLOCK(ump); 2030 #endif 2031 if (morework) { 2032 if (--retry_flush_count > 0) { 2033 retry = 1; 2034 loopcnt = 3; 2035 } else 2036 error = EBUSY; 2037 } 2038 MNT_IUNLOCK(oldmnt); 2039 if (retry) 2040 goto retry_flush; 2041 } 2042 } 2043 return (error); 2044 } 2045 2046 /* 2047 * Structure hashing. 2048 * 2049 * There are four types of structures that can be looked up: 2050 * 1) pagedep structures identified by mount point, inode number, 2051 * and logical block. 2052 * 2) inodedep structures identified by mount point and inode number. 2053 * 3) newblk structures identified by mount point and 2054 * physical block number. 2055 * 4) bmsafemap structures identified by mount point and 2056 * cylinder group number. 2057 * 2058 * The "pagedep" and "inodedep" dependency structures are hashed 2059 * separately from the file blocks and inodes to which they correspond. 2060 * This separation helps when the in-memory copy of an inode or 2061 * file block must be replaced. It also obviates the need to access 2062 * an inode or file page when simply updating (or de-allocating) 2063 * dependency structures. Lookup of newblk structures is needed to 2064 * find newly allocated blocks when trying to associate them with 2065 * their allocdirect or allocindir structure. 2066 * 2067 * The lookup routines optionally create and hash a new instance when 2068 * an existing entry is not found. The bmsafemap lookup routine always 2069 * allocates a new structure if an existing one is not found. 2070 */ 2071 #define DEPALLOC 0x0001 /* allocate structure if lookup fails */ 2072 2073 /* 2074 * Structures and routines associated with pagedep caching. 2075 */ 2076 #define PAGEDEP_HASH(ump, inum, lbn) \ 2077 (&(ump)->pagedep_hashtbl[((inum) + (lbn)) & (ump)->pagedep_hash_size]) 2078 2079 static int 2080 pagedep_find(pagedephd, ino, lbn, pagedeppp) 2081 struct pagedep_hashhead *pagedephd; 2082 ino_t ino; 2083 ufs_lbn_t lbn; 2084 struct pagedep **pagedeppp; 2085 { 2086 struct pagedep *pagedep; 2087 2088 LIST_FOREACH(pagedep, pagedephd, pd_hash) { 2089 if (ino == pagedep->pd_ino && lbn == pagedep->pd_lbn) { 2090 *pagedeppp = pagedep; 2091 return (1); 2092 } 2093 } 2094 *pagedeppp = NULL; 2095 return (0); 2096 } 2097 /* 2098 * Look up a pagedep. Return 1 if found, 0 otherwise. 2099 * If not found, allocate if DEPALLOC flag is passed. 2100 * Found or allocated entry is returned in pagedeppp. 2101 * This routine must be called with splbio interrupts blocked. 2102 */ 2103 static int 2104 pagedep_lookup(mp, bp, ino, lbn, flags, pagedeppp) 2105 struct mount *mp; 2106 struct buf *bp; 2107 ino_t ino; 2108 ufs_lbn_t lbn; 2109 int flags; 2110 struct pagedep **pagedeppp; 2111 { 2112 struct pagedep *pagedep; 2113 struct pagedep_hashhead *pagedephd; 2114 struct worklist *wk; 2115 struct ufsmount *ump; 2116 int ret; 2117 int i; 2118 2119 ump = VFSTOUFS(mp); 2120 LOCK_OWNED(ump); 2121 if (bp) { 2122 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 2123 if (wk->wk_type == D_PAGEDEP) { 2124 *pagedeppp = WK_PAGEDEP(wk); 2125 return (1); 2126 } 2127 } 2128 } 2129 pagedephd = PAGEDEP_HASH(ump, ino, lbn); 2130 ret = pagedep_find(pagedephd, ino, lbn, pagedeppp); 2131 if (ret) { 2132 if (((*pagedeppp)->pd_state & ONWORKLIST) == 0 && bp) 2133 WORKLIST_INSERT(&bp->b_dep, &(*pagedeppp)->pd_list); 2134 return (1); 2135 } 2136 if ((flags & DEPALLOC) == 0) 2137 return (0); 2138 FREE_LOCK(ump); 2139 pagedep = malloc(sizeof(struct pagedep), 2140 M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO); 2141 workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp); 2142 ACQUIRE_LOCK(ump); 2143 ret = pagedep_find(pagedephd, ino, lbn, pagedeppp); 2144 if (*pagedeppp) { 2145 /* 2146 * This should never happen since we only create pagedeps 2147 * with the vnode lock held. Could be an assert. 2148 */ 2149 WORKITEM_FREE(pagedep, D_PAGEDEP); 2150 return (ret); 2151 } 2152 pagedep->pd_ino = ino; 2153 pagedep->pd_lbn = lbn; 2154 LIST_INIT(&pagedep->pd_dirremhd); 2155 LIST_INIT(&pagedep->pd_pendinghd); 2156 for (i = 0; i < DAHASHSZ; i++) 2157 LIST_INIT(&pagedep->pd_diraddhd[i]); 2158 LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash); 2159 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 2160 *pagedeppp = pagedep; 2161 return (0); 2162 } 2163 2164 /* 2165 * Structures and routines associated with inodedep caching. 2166 */ 2167 #define INODEDEP_HASH(ump, inum) \ 2168 (&(ump)->inodedep_hashtbl[(inum) & (ump)->inodedep_hash_size]) 2169 2170 static int 2171 inodedep_find(inodedephd, inum, inodedeppp) 2172 struct inodedep_hashhead *inodedephd; 2173 ino_t inum; 2174 struct inodedep **inodedeppp; 2175 { 2176 struct inodedep *inodedep; 2177 2178 LIST_FOREACH(inodedep, inodedephd, id_hash) 2179 if (inum == inodedep->id_ino) 2180 break; 2181 if (inodedep) { 2182 *inodedeppp = inodedep; 2183 return (1); 2184 } 2185 *inodedeppp = NULL; 2186 2187 return (0); 2188 } 2189 /* 2190 * Look up an inodedep. Return 1 if found, 0 if not found. 2191 * If not found, allocate if DEPALLOC flag is passed. 2192 * Found or allocated entry is returned in inodedeppp. 2193 * This routine must be called with splbio interrupts blocked. 2194 */ 2195 static int 2196 inodedep_lookup(mp, inum, flags, inodedeppp) 2197 struct mount *mp; 2198 ino_t inum; 2199 int flags; 2200 struct inodedep **inodedeppp; 2201 { 2202 struct inodedep *inodedep; 2203 struct inodedep_hashhead *inodedephd; 2204 struct ufsmount *ump; 2205 struct fs *fs; 2206 2207 ump = VFSTOUFS(mp); 2208 LOCK_OWNED(ump); 2209 fs = ump->um_fs; 2210 inodedephd = INODEDEP_HASH(ump, inum); 2211 2212 if (inodedep_find(inodedephd, inum, inodedeppp)) 2213 return (1); 2214 if ((flags & DEPALLOC) == 0) 2215 return (0); 2216 /* 2217 * If the system is over its limit and our filesystem is 2218 * responsible for more than our share of that usage and 2219 * we are not in a rush, request some inodedep cleanup. 2220 */ 2221 if (softdep_excess_items(ump, D_INODEDEP)) 2222 schedule_cleanup(mp); 2223 else 2224 FREE_LOCK(ump); 2225 inodedep = malloc(sizeof(struct inodedep), 2226 M_INODEDEP, M_SOFTDEP_FLAGS); 2227 workitem_alloc(&inodedep->id_list, D_INODEDEP, mp); 2228 ACQUIRE_LOCK(ump); 2229 if (inodedep_find(inodedephd, inum, inodedeppp)) { 2230 WORKITEM_FREE(inodedep, D_INODEDEP); 2231 return (1); 2232 } 2233 inodedep->id_fs = fs; 2234 inodedep->id_ino = inum; 2235 inodedep->id_state = ALLCOMPLETE; 2236 inodedep->id_nlinkdelta = 0; 2237 inodedep->id_savedino1 = NULL; 2238 inodedep->id_savedsize = -1; 2239 inodedep->id_savedextsize = -1; 2240 inodedep->id_savednlink = -1; 2241 inodedep->id_bmsafemap = NULL; 2242 inodedep->id_mkdiradd = NULL; 2243 LIST_INIT(&inodedep->id_dirremhd); 2244 LIST_INIT(&inodedep->id_pendinghd); 2245 LIST_INIT(&inodedep->id_inowait); 2246 LIST_INIT(&inodedep->id_bufwait); 2247 TAILQ_INIT(&inodedep->id_inoreflst); 2248 TAILQ_INIT(&inodedep->id_inoupdt); 2249 TAILQ_INIT(&inodedep->id_newinoupdt); 2250 TAILQ_INIT(&inodedep->id_extupdt); 2251 TAILQ_INIT(&inodedep->id_newextupdt); 2252 TAILQ_INIT(&inodedep->id_freeblklst); 2253 LIST_INSERT_HEAD(inodedephd, inodedep, id_hash); 2254 *inodedeppp = inodedep; 2255 return (0); 2256 } 2257 2258 /* 2259 * Structures and routines associated with newblk caching. 2260 */ 2261 #define NEWBLK_HASH(ump, inum) \ 2262 (&(ump)->newblk_hashtbl[(inum) & (ump)->newblk_hash_size]) 2263 2264 static int 2265 newblk_find(newblkhd, newblkno, flags, newblkpp) 2266 struct newblk_hashhead *newblkhd; 2267 ufs2_daddr_t newblkno; 2268 int flags; 2269 struct newblk **newblkpp; 2270 { 2271 struct newblk *newblk; 2272 2273 LIST_FOREACH(newblk, newblkhd, nb_hash) { 2274 if (newblkno != newblk->nb_newblkno) 2275 continue; 2276 /* 2277 * If we're creating a new dependency don't match those that 2278 * have already been converted to allocdirects. This is for 2279 * a frag extend. 2280 */ 2281 if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK) 2282 continue; 2283 break; 2284 } 2285 if (newblk) { 2286 *newblkpp = newblk; 2287 return (1); 2288 } 2289 *newblkpp = NULL; 2290 return (0); 2291 } 2292 2293 /* 2294 * Look up a newblk. Return 1 if found, 0 if not found. 2295 * If not found, allocate if DEPALLOC flag is passed. 2296 * Found or allocated entry is returned in newblkpp. 2297 */ 2298 static int 2299 newblk_lookup(mp, newblkno, flags, newblkpp) 2300 struct mount *mp; 2301 ufs2_daddr_t newblkno; 2302 int flags; 2303 struct newblk **newblkpp; 2304 { 2305 struct newblk *newblk; 2306 struct newblk_hashhead *newblkhd; 2307 struct ufsmount *ump; 2308 2309 ump = VFSTOUFS(mp); 2310 LOCK_OWNED(ump); 2311 newblkhd = NEWBLK_HASH(ump, newblkno); 2312 if (newblk_find(newblkhd, newblkno, flags, newblkpp)) 2313 return (1); 2314 if ((flags & DEPALLOC) == 0) 2315 return (0); 2316 if (softdep_excess_items(ump, D_NEWBLK) || 2317 softdep_excess_items(ump, D_ALLOCDIRECT) || 2318 softdep_excess_items(ump, D_ALLOCINDIR)) 2319 schedule_cleanup(mp); 2320 else 2321 FREE_LOCK(ump); 2322 newblk = malloc(sizeof(union allblk), M_NEWBLK, 2323 M_SOFTDEP_FLAGS | M_ZERO); 2324 workitem_alloc(&newblk->nb_list, D_NEWBLK, mp); 2325 ACQUIRE_LOCK(ump); 2326 if (newblk_find(newblkhd, newblkno, flags, newblkpp)) { 2327 WORKITEM_FREE(newblk, D_NEWBLK); 2328 return (1); 2329 } 2330 newblk->nb_freefrag = NULL; 2331 LIST_INIT(&newblk->nb_indirdeps); 2332 LIST_INIT(&newblk->nb_newdirblk); 2333 LIST_INIT(&newblk->nb_jwork); 2334 newblk->nb_state = ATTACHED; 2335 newblk->nb_newblkno = newblkno; 2336 LIST_INSERT_HEAD(newblkhd, newblk, nb_hash); 2337 *newblkpp = newblk; 2338 return (0); 2339 } 2340 2341 /* 2342 * Structures and routines associated with freed indirect block caching. 2343 */ 2344 #define INDIR_HASH(ump, blkno) \ 2345 (&(ump)->indir_hashtbl[(blkno) & (ump)->indir_hash_size]) 2346 2347 /* 2348 * Lookup an indirect block in the indir hash table. The freework is 2349 * removed and potentially freed. The caller must do a blocking journal 2350 * write before writing to the blkno. 2351 */ 2352 static int 2353 indirblk_lookup(mp, blkno) 2354 struct mount *mp; 2355 ufs2_daddr_t blkno; 2356 { 2357 struct freework *freework; 2358 struct indir_hashhead *wkhd; 2359 struct ufsmount *ump; 2360 2361 ump = VFSTOUFS(mp); 2362 wkhd = INDIR_HASH(ump, blkno); 2363 TAILQ_FOREACH(freework, wkhd, fw_next) { 2364 if (freework->fw_blkno != blkno) 2365 continue; 2366 indirblk_remove(freework); 2367 return (1); 2368 } 2369 return (0); 2370 } 2371 2372 /* 2373 * Insert an indirect block represented by freework into the indirblk 2374 * hash table so that it may prevent the block from being re-used prior 2375 * to the journal being written. 2376 */ 2377 static void 2378 indirblk_insert(freework) 2379 struct freework *freework; 2380 { 2381 struct jblocks *jblocks; 2382 struct jseg *jseg; 2383 struct ufsmount *ump; 2384 2385 ump = VFSTOUFS(freework->fw_list.wk_mp); 2386 jblocks = ump->softdep_jblocks; 2387 jseg = TAILQ_LAST(&jblocks->jb_segs, jseglst); 2388 if (jseg == NULL) 2389 return; 2390 2391 LIST_INSERT_HEAD(&jseg->js_indirs, freework, fw_segs); 2392 TAILQ_INSERT_HEAD(INDIR_HASH(ump, freework->fw_blkno), freework, 2393 fw_next); 2394 freework->fw_state &= ~DEPCOMPLETE; 2395 } 2396 2397 static void 2398 indirblk_remove(freework) 2399 struct freework *freework; 2400 { 2401 struct ufsmount *ump; 2402 2403 ump = VFSTOUFS(freework->fw_list.wk_mp); 2404 LIST_REMOVE(freework, fw_segs); 2405 TAILQ_REMOVE(INDIR_HASH(ump, freework->fw_blkno), freework, fw_next); 2406 freework->fw_state |= DEPCOMPLETE; 2407 if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE) 2408 WORKITEM_FREE(freework, D_FREEWORK); 2409 } 2410 2411 /* 2412 * Executed during filesystem system initialization before 2413 * mounting any filesystems. 2414 */ 2415 void 2416 softdep_initialize() 2417 { 2418 2419 TAILQ_INIT(&softdepmounts); 2420 #ifdef __LP64__ 2421 max_softdeps = desiredvnodes * 4; 2422 #else 2423 max_softdeps = desiredvnodes * 2; 2424 #endif 2425 2426 /* initialise bioops hack */ 2427 bioops.io_start = softdep_disk_io_initiation; 2428 bioops.io_complete = softdep_disk_write_complete; 2429 bioops.io_deallocate = softdep_deallocate_dependencies; 2430 bioops.io_countdeps = softdep_count_dependencies; 2431 softdep_ast_cleanup = softdep_ast_cleanup_proc; 2432 2433 /* Initialize the callout with an mtx. */ 2434 callout_init_mtx(&softdep_callout, &lk, 0); 2435 } 2436 2437 /* 2438 * Executed after all filesystems have been unmounted during 2439 * filesystem module unload. 2440 */ 2441 void 2442 softdep_uninitialize() 2443 { 2444 2445 /* clear bioops hack */ 2446 bioops.io_start = NULL; 2447 bioops.io_complete = NULL; 2448 bioops.io_deallocate = NULL; 2449 bioops.io_countdeps = NULL; 2450 softdep_ast_cleanup = NULL; 2451 2452 callout_drain(&softdep_callout); 2453 } 2454 2455 /* 2456 * Called at mount time to notify the dependency code that a 2457 * filesystem wishes to use it. 2458 */ 2459 int 2460 softdep_mount(devvp, mp, fs, cred) 2461 struct vnode *devvp; 2462 struct mount *mp; 2463 struct fs *fs; 2464 struct ucred *cred; 2465 { 2466 struct csum_total cstotal; 2467 struct mount_softdeps *sdp; 2468 struct ufsmount *ump; 2469 struct cg *cgp; 2470 struct buf *bp; 2471 u_int cyl, i; 2472 int error; 2473 2474 sdp = malloc(sizeof(struct mount_softdeps), M_MOUNTDATA, 2475 M_WAITOK | M_ZERO); 2476 MNT_ILOCK(mp); 2477 mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP; 2478 if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) { 2479 mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) | 2480 MNTK_SOFTDEP | MNTK_NOASYNC; 2481 } 2482 ump = VFSTOUFS(mp); 2483 ump->um_softdep = sdp; 2484 MNT_IUNLOCK(mp); 2485 rw_init(LOCK_PTR(ump), "Per-Filesystem Softdep Lock"); 2486 sdp->sd_ump = ump; 2487 LIST_INIT(&ump->softdep_workitem_pending); 2488 LIST_INIT(&ump->softdep_journal_pending); 2489 TAILQ_INIT(&ump->softdep_unlinked); 2490 LIST_INIT(&ump->softdep_dirtycg); 2491 ump->softdep_worklist_tail = NULL; 2492 ump->softdep_on_worklist = 0; 2493 ump->softdep_deps = 0; 2494 LIST_INIT(&ump->softdep_mkdirlisthd); 2495 ump->pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP, 2496 &ump->pagedep_hash_size); 2497 ump->pagedep_nextclean = 0; 2498 ump->inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, 2499 &ump->inodedep_hash_size); 2500 ump->inodedep_nextclean = 0; 2501 ump->newblk_hashtbl = hashinit(max_softdeps / 2, M_NEWBLK, 2502 &ump->newblk_hash_size); 2503 ump->bmsafemap_hashtbl = hashinit(1024, M_BMSAFEMAP, 2504 &ump->bmsafemap_hash_size); 2505 i = 1 << (ffs(desiredvnodes / 10) - 1); 2506 ump->indir_hashtbl = malloc(i * sizeof(struct indir_hashhead), 2507 M_FREEWORK, M_WAITOK); 2508 ump->indir_hash_size = i - 1; 2509 for (i = 0; i <= ump->indir_hash_size; i++) 2510 TAILQ_INIT(&ump->indir_hashtbl[i]); 2511 ACQUIRE_GBLLOCK(&lk); 2512 TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next); 2513 FREE_GBLLOCK(&lk); 2514 if ((fs->fs_flags & FS_SUJ) && 2515 (error = journal_mount(mp, fs, cred)) != 0) { 2516 printf("Failed to start journal: %d\n", error); 2517 softdep_unmount(mp); 2518 return (error); 2519 } 2520 /* 2521 * Start our flushing thread in the bufdaemon process. 2522 */ 2523 ACQUIRE_LOCK(ump); 2524 ump->softdep_flags |= FLUSH_STARTING; 2525 FREE_LOCK(ump); 2526 kproc_kthread_add(&softdep_flush, mp, &bufdaemonproc, 2527 &ump->softdep_flushtd, 0, 0, "softdepflush", "%s worker", 2528 mp->mnt_stat.f_mntonname); 2529 ACQUIRE_LOCK(ump); 2530 while ((ump->softdep_flags & FLUSH_STARTING) != 0) { 2531 msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM, "sdstart", 2532 hz / 2); 2533 } 2534 FREE_LOCK(ump); 2535 /* 2536 * When doing soft updates, the counters in the 2537 * superblock may have gotten out of sync. Recomputation 2538 * can take a long time and can be deferred for background 2539 * fsck. However, the old behavior of scanning the cylinder 2540 * groups and recalculating them at mount time is available 2541 * by setting vfs.ffs.compute_summary_at_mount to one. 2542 */ 2543 if (compute_summary_at_mount == 0 || fs->fs_clean != 0) 2544 return (0); 2545 bzero(&cstotal, sizeof cstotal); 2546 for (cyl = 0; cyl < fs->fs_ncg; cyl++) { 2547 if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)), 2548 fs->fs_cgsize, cred, &bp)) != 0) { 2549 brelse(bp); 2550 softdep_unmount(mp); 2551 return (error); 2552 } 2553 cgp = (struct cg *)bp->b_data; 2554 cstotal.cs_nffree += cgp->cg_cs.cs_nffree; 2555 cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree; 2556 cstotal.cs_nifree += cgp->cg_cs.cs_nifree; 2557 cstotal.cs_ndir += cgp->cg_cs.cs_ndir; 2558 fs->fs_cs(fs, cyl) = cgp->cg_cs; 2559 brelse(bp); 2560 } 2561 #ifdef DEBUG 2562 if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal)) 2563 printf("%s: superblock summary recomputed\n", fs->fs_fsmnt); 2564 #endif 2565 bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal); 2566 return (0); 2567 } 2568 2569 void 2570 softdep_unmount(mp) 2571 struct mount *mp; 2572 { 2573 struct ufsmount *ump; 2574 #ifdef INVARIANTS 2575 int i; 2576 #endif 2577 2578 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 2579 ("softdep_unmount called on non-softdep filesystem")); 2580 ump = VFSTOUFS(mp); 2581 MNT_ILOCK(mp); 2582 mp->mnt_flag &= ~MNT_SOFTDEP; 2583 if (MOUNTEDSUJ(mp) == 0) { 2584 MNT_IUNLOCK(mp); 2585 } else { 2586 mp->mnt_flag &= ~MNT_SUJ; 2587 MNT_IUNLOCK(mp); 2588 journal_unmount(ump); 2589 } 2590 /* 2591 * Shut down our flushing thread. Check for NULL is if 2592 * softdep_mount errors out before the thread has been created. 2593 */ 2594 if (ump->softdep_flushtd != NULL) { 2595 ACQUIRE_LOCK(ump); 2596 ump->softdep_flags |= FLUSH_EXIT; 2597 wakeup(&ump->softdep_flushtd); 2598 msleep(&ump->softdep_flags, LOCK_PTR(ump), PVM | PDROP, 2599 "sdwait", 0); 2600 KASSERT((ump->softdep_flags & FLUSH_EXIT) == 0, 2601 ("Thread shutdown failed")); 2602 } 2603 /* 2604 * Free up our resources. 2605 */ 2606 ACQUIRE_GBLLOCK(&lk); 2607 TAILQ_REMOVE(&softdepmounts, ump->um_softdep, sd_next); 2608 FREE_GBLLOCK(&lk); 2609 rw_destroy(LOCK_PTR(ump)); 2610 hashdestroy(ump->pagedep_hashtbl, M_PAGEDEP, ump->pagedep_hash_size); 2611 hashdestroy(ump->inodedep_hashtbl, M_INODEDEP, ump->inodedep_hash_size); 2612 hashdestroy(ump->newblk_hashtbl, M_NEWBLK, ump->newblk_hash_size); 2613 hashdestroy(ump->bmsafemap_hashtbl, M_BMSAFEMAP, 2614 ump->bmsafemap_hash_size); 2615 free(ump->indir_hashtbl, M_FREEWORK); 2616 #ifdef INVARIANTS 2617 for (i = 0; i <= D_LAST; i++) 2618 KASSERT(ump->softdep_curdeps[i] == 0, 2619 ("Unmount %s: Dep type %s != 0 (%ld)", ump->um_fs->fs_fsmnt, 2620 TYPENAME(i), ump->softdep_curdeps[i])); 2621 #endif 2622 free(ump->um_softdep, M_MOUNTDATA); 2623 } 2624 2625 static struct jblocks * 2626 jblocks_create(void) 2627 { 2628 struct jblocks *jblocks; 2629 2630 jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO); 2631 TAILQ_INIT(&jblocks->jb_segs); 2632 jblocks->jb_avail = 10; 2633 jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail, 2634 M_JBLOCKS, M_WAITOK | M_ZERO); 2635 2636 return (jblocks); 2637 } 2638 2639 static ufs2_daddr_t 2640 jblocks_alloc(jblocks, bytes, actual) 2641 struct jblocks *jblocks; 2642 int bytes; 2643 int *actual; 2644 { 2645 ufs2_daddr_t daddr; 2646 struct jextent *jext; 2647 int freecnt; 2648 int blocks; 2649 2650 blocks = bytes / DEV_BSIZE; 2651 jext = &jblocks->jb_extent[jblocks->jb_head]; 2652 freecnt = jext->je_blocks - jblocks->jb_off; 2653 if (freecnt == 0) { 2654 jblocks->jb_off = 0; 2655 if (++jblocks->jb_head > jblocks->jb_used) 2656 jblocks->jb_head = 0; 2657 jext = &jblocks->jb_extent[jblocks->jb_head]; 2658 freecnt = jext->je_blocks; 2659 } 2660 if (freecnt > blocks) 2661 freecnt = blocks; 2662 *actual = freecnt * DEV_BSIZE; 2663 daddr = jext->je_daddr + jblocks->jb_off; 2664 jblocks->jb_off += freecnt; 2665 jblocks->jb_free -= freecnt; 2666 2667 return (daddr); 2668 } 2669 2670 static void 2671 jblocks_free(jblocks, mp, bytes) 2672 struct jblocks *jblocks; 2673 struct mount *mp; 2674 int bytes; 2675 { 2676 2677 LOCK_OWNED(VFSTOUFS(mp)); 2678 jblocks->jb_free += bytes / DEV_BSIZE; 2679 if (jblocks->jb_suspended) 2680 worklist_speedup(mp); 2681 wakeup(jblocks); 2682 } 2683 2684 static void 2685 jblocks_destroy(jblocks) 2686 struct jblocks *jblocks; 2687 { 2688 2689 if (jblocks->jb_extent) 2690 free(jblocks->jb_extent, M_JBLOCKS); 2691 free(jblocks, M_JBLOCKS); 2692 } 2693 2694 static void 2695 jblocks_add(jblocks, daddr, blocks) 2696 struct jblocks *jblocks; 2697 ufs2_daddr_t daddr; 2698 int blocks; 2699 { 2700 struct jextent *jext; 2701 2702 jblocks->jb_blocks += blocks; 2703 jblocks->jb_free += blocks; 2704 jext = &jblocks->jb_extent[jblocks->jb_used]; 2705 /* Adding the first block. */ 2706 if (jext->je_daddr == 0) { 2707 jext->je_daddr = daddr; 2708 jext->je_blocks = blocks; 2709 return; 2710 } 2711 /* Extending the last extent. */ 2712 if (jext->je_daddr + jext->je_blocks == daddr) { 2713 jext->je_blocks += blocks; 2714 return; 2715 } 2716 /* Adding a new extent. */ 2717 if (++jblocks->jb_used == jblocks->jb_avail) { 2718 jblocks->jb_avail *= 2; 2719 jext = malloc(sizeof(struct jextent) * jblocks->jb_avail, 2720 M_JBLOCKS, M_WAITOK | M_ZERO); 2721 memcpy(jext, jblocks->jb_extent, 2722 sizeof(struct jextent) * jblocks->jb_used); 2723 free(jblocks->jb_extent, M_JBLOCKS); 2724 jblocks->jb_extent = jext; 2725 } 2726 jext = &jblocks->jb_extent[jblocks->jb_used]; 2727 jext->je_daddr = daddr; 2728 jext->je_blocks = blocks; 2729 return; 2730 } 2731 2732 int 2733 softdep_journal_lookup(mp, vpp) 2734 struct mount *mp; 2735 struct vnode **vpp; 2736 { 2737 struct componentname cnp; 2738 struct vnode *dvp; 2739 ino_t sujournal; 2740 int error; 2741 2742 error = VFS_VGET(mp, UFS_ROOTINO, LK_EXCLUSIVE, &dvp); 2743 if (error) 2744 return (error); 2745 bzero(&cnp, sizeof(cnp)); 2746 cnp.cn_nameiop = LOOKUP; 2747 cnp.cn_flags = ISLASTCN; 2748 cnp.cn_thread = curthread; 2749 cnp.cn_cred = curthread->td_ucred; 2750 cnp.cn_pnbuf = SUJ_FILE; 2751 cnp.cn_nameptr = SUJ_FILE; 2752 cnp.cn_namelen = strlen(SUJ_FILE); 2753 error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal); 2754 vput(dvp); 2755 if (error != 0) 2756 return (error); 2757 error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp); 2758 return (error); 2759 } 2760 2761 /* 2762 * Open and verify the journal file. 2763 */ 2764 static int 2765 journal_mount(mp, fs, cred) 2766 struct mount *mp; 2767 struct fs *fs; 2768 struct ucred *cred; 2769 { 2770 struct jblocks *jblocks; 2771 struct ufsmount *ump; 2772 struct vnode *vp; 2773 struct inode *ip; 2774 ufs2_daddr_t blkno; 2775 int bcount; 2776 int error; 2777 int i; 2778 2779 ump = VFSTOUFS(mp); 2780 ump->softdep_journal_tail = NULL; 2781 ump->softdep_on_journal = 0; 2782 ump->softdep_accdeps = 0; 2783 ump->softdep_req = 0; 2784 ump->softdep_jblocks = NULL; 2785 error = softdep_journal_lookup(mp, &vp); 2786 if (error != 0) { 2787 printf("Failed to find journal. Use tunefs to create one\n"); 2788 return (error); 2789 } 2790 ip = VTOI(vp); 2791 if (ip->i_size < SUJ_MIN) { 2792 error = ENOSPC; 2793 goto out; 2794 } 2795 bcount = lblkno(fs, ip->i_size); /* Only use whole blocks. */ 2796 jblocks = jblocks_create(); 2797 for (i = 0; i < bcount; i++) { 2798 error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL); 2799 if (error) 2800 break; 2801 jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag)); 2802 } 2803 if (error) { 2804 jblocks_destroy(jblocks); 2805 goto out; 2806 } 2807 jblocks->jb_low = jblocks->jb_free / 3; /* Reserve 33%. */ 2808 jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */ 2809 ump->softdep_jblocks = jblocks; 2810 out: 2811 if (error == 0) { 2812 MNT_ILOCK(mp); 2813 mp->mnt_flag |= MNT_SUJ; 2814 mp->mnt_flag &= ~MNT_SOFTDEP; 2815 MNT_IUNLOCK(mp); 2816 /* 2817 * Only validate the journal contents if the 2818 * filesystem is clean, otherwise we write the logs 2819 * but they'll never be used. If the filesystem was 2820 * still dirty when we mounted it the journal is 2821 * invalid and a new journal can only be valid if it 2822 * starts from a clean mount. 2823 */ 2824 if (fs->fs_clean) { 2825 DIP_SET(ip, i_modrev, fs->fs_mtime); 2826 ip->i_flags |= IN_MODIFIED; 2827 ffs_update(vp, 1); 2828 } 2829 } 2830 vput(vp); 2831 return (error); 2832 } 2833 2834 static void 2835 journal_unmount(ump) 2836 struct ufsmount *ump; 2837 { 2838 2839 if (ump->softdep_jblocks) 2840 jblocks_destroy(ump->softdep_jblocks); 2841 ump->softdep_jblocks = NULL; 2842 } 2843 2844 /* 2845 * Called when a journal record is ready to be written. Space is allocated 2846 * and the journal entry is created when the journal is flushed to stable 2847 * store. 2848 */ 2849 static void 2850 add_to_journal(wk) 2851 struct worklist *wk; 2852 { 2853 struct ufsmount *ump; 2854 2855 ump = VFSTOUFS(wk->wk_mp); 2856 LOCK_OWNED(ump); 2857 if (wk->wk_state & ONWORKLIST) 2858 panic("add_to_journal: %s(0x%X) already on list", 2859 TYPENAME(wk->wk_type), wk->wk_state); 2860 wk->wk_state |= ONWORKLIST | DEPCOMPLETE; 2861 if (LIST_EMPTY(&ump->softdep_journal_pending)) { 2862 ump->softdep_jblocks->jb_age = ticks; 2863 LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list); 2864 } else 2865 LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list); 2866 ump->softdep_journal_tail = wk; 2867 ump->softdep_on_journal += 1; 2868 } 2869 2870 /* 2871 * Remove an arbitrary item for the journal worklist maintain the tail 2872 * pointer. This happens when a new operation obviates the need to 2873 * journal an old operation. 2874 */ 2875 static void 2876 remove_from_journal(wk) 2877 struct worklist *wk; 2878 { 2879 struct ufsmount *ump; 2880 2881 ump = VFSTOUFS(wk->wk_mp); 2882 LOCK_OWNED(ump); 2883 #ifdef SUJ_DEBUG 2884 { 2885 struct worklist *wkn; 2886 2887 LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list) 2888 if (wkn == wk) 2889 break; 2890 if (wkn == NULL) 2891 panic("remove_from_journal: %p is not in journal", wk); 2892 } 2893 #endif 2894 /* 2895 * We emulate a TAILQ to save space in most structures which do not 2896 * require TAILQ semantics. Here we must update the tail position 2897 * when removing the tail which is not the final entry. This works 2898 * only if the worklist linkage are at the beginning of the structure. 2899 */ 2900 if (ump->softdep_journal_tail == wk) 2901 ump->softdep_journal_tail = 2902 (struct worklist *)wk->wk_list.le_prev; 2903 WORKLIST_REMOVE(wk); 2904 ump->softdep_on_journal -= 1; 2905 } 2906 2907 /* 2908 * Check for journal space as well as dependency limits so the prelink 2909 * code can throttle both journaled and non-journaled filesystems. 2910 * Threshold is 0 for low and 1 for min. 2911 */ 2912 static int 2913 journal_space(ump, thresh) 2914 struct ufsmount *ump; 2915 int thresh; 2916 { 2917 struct jblocks *jblocks; 2918 int limit, avail; 2919 2920 jblocks = ump->softdep_jblocks; 2921 if (jblocks == NULL) 2922 return (1); 2923 /* 2924 * We use a tighter restriction here to prevent request_cleanup() 2925 * running in threads from running into locks we currently hold. 2926 * We have to be over the limit and our filesystem has to be 2927 * responsible for more than our share of that usage. 2928 */ 2929 limit = (max_softdeps / 10) * 9; 2930 if (dep_current[D_INODEDEP] > limit && 2931 ump->softdep_curdeps[D_INODEDEP] > limit / stat_flush_threads) 2932 return (0); 2933 if (thresh) 2934 thresh = jblocks->jb_min; 2935 else 2936 thresh = jblocks->jb_low; 2937 avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE; 2938 avail = jblocks->jb_free - avail; 2939 2940 return (avail > thresh); 2941 } 2942 2943 static void 2944 journal_suspend(ump) 2945 struct ufsmount *ump; 2946 { 2947 struct jblocks *jblocks; 2948 struct mount *mp; 2949 2950 mp = UFSTOVFS(ump); 2951 jblocks = ump->softdep_jblocks; 2952 MNT_ILOCK(mp); 2953 if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) { 2954 stat_journal_min++; 2955 mp->mnt_kern_flag |= MNTK_SUSPEND; 2956 mp->mnt_susp_owner = ump->softdep_flushtd; 2957 } 2958 jblocks->jb_suspended = 1; 2959 MNT_IUNLOCK(mp); 2960 } 2961 2962 static int 2963 journal_unsuspend(struct ufsmount *ump) 2964 { 2965 struct jblocks *jblocks; 2966 struct mount *mp; 2967 2968 mp = UFSTOVFS(ump); 2969 jblocks = ump->softdep_jblocks; 2970 2971 if (jblocks != NULL && jblocks->jb_suspended && 2972 journal_space(ump, jblocks->jb_min)) { 2973 jblocks->jb_suspended = 0; 2974 FREE_LOCK(ump); 2975 mp->mnt_susp_owner = curthread; 2976 vfs_write_resume(mp, 0); 2977 ACQUIRE_LOCK(ump); 2978 return (1); 2979 } 2980 return (0); 2981 } 2982 2983 /* 2984 * Called before any allocation function to be certain that there is 2985 * sufficient space in the journal prior to creating any new records. 2986 * Since in the case of block allocation we may have multiple locked 2987 * buffers at the time of the actual allocation we can not block 2988 * when the journal records are created. Doing so would create a deadlock 2989 * if any of these buffers needed to be flushed to reclaim space. Instead 2990 * we require a sufficiently large amount of available space such that 2991 * each thread in the system could have passed this allocation check and 2992 * still have sufficient free space. With 20% of a minimum journal size 2993 * of 1MB we have 6553 records available. 2994 */ 2995 int 2996 softdep_prealloc(vp, waitok) 2997 struct vnode *vp; 2998 int waitok; 2999 { 3000 struct ufsmount *ump; 3001 3002 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 3003 ("softdep_prealloc called on non-softdep filesystem")); 3004 /* 3005 * Nothing to do if we are not running journaled soft updates. 3006 * If we currently hold the snapshot lock, we must avoid 3007 * handling other resources that could cause deadlock. Do not 3008 * touch quotas vnode since it is typically recursed with 3009 * other vnode locks held. 3010 */ 3011 if (DOINGSUJ(vp) == 0 || IS_SNAPSHOT(VTOI(vp)) || 3012 (vp->v_vflag & VV_SYSTEM) != 0) 3013 return (0); 3014 ump = VFSTOUFS(vp->v_mount); 3015 ACQUIRE_LOCK(ump); 3016 if (journal_space(ump, 0)) { 3017 FREE_LOCK(ump); 3018 return (0); 3019 } 3020 stat_journal_low++; 3021 FREE_LOCK(ump); 3022 if (waitok == MNT_NOWAIT) 3023 return (ENOSPC); 3024 /* 3025 * Attempt to sync this vnode once to flush any journal 3026 * work attached to it. 3027 */ 3028 if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0) 3029 ffs_syncvnode(vp, waitok, 0); 3030 ACQUIRE_LOCK(ump); 3031 process_removes(vp); 3032 process_truncates(vp); 3033 if (journal_space(ump, 0) == 0) { 3034 softdep_speedup(ump); 3035 if (journal_space(ump, 1) == 0) 3036 journal_suspend(ump); 3037 } 3038 FREE_LOCK(ump); 3039 3040 return (0); 3041 } 3042 3043 /* 3044 * Before adjusting a link count on a vnode verify that we have sufficient 3045 * journal space. If not, process operations that depend on the currently 3046 * locked pair of vnodes to try to flush space as the syncer, buf daemon, 3047 * and softdep flush threads can not acquire these locks to reclaim space. 3048 */ 3049 static void 3050 softdep_prelink(dvp, vp) 3051 struct vnode *dvp; 3052 struct vnode *vp; 3053 { 3054 struct ufsmount *ump; 3055 3056 ump = VFSTOUFS(dvp->v_mount); 3057 LOCK_OWNED(ump); 3058 /* 3059 * Nothing to do if we have sufficient journal space. 3060 * If we currently hold the snapshot lock, we must avoid 3061 * handling other resources that could cause deadlock. 3062 */ 3063 if (journal_space(ump, 0) || (vp && IS_SNAPSHOT(VTOI(vp)))) 3064 return; 3065 stat_journal_low++; 3066 FREE_LOCK(ump); 3067 if (vp) 3068 ffs_syncvnode(vp, MNT_NOWAIT, 0); 3069 ffs_syncvnode(dvp, MNT_WAIT, 0); 3070 ACQUIRE_LOCK(ump); 3071 /* Process vp before dvp as it may create .. removes. */ 3072 if (vp) { 3073 process_removes(vp); 3074 process_truncates(vp); 3075 } 3076 process_removes(dvp); 3077 process_truncates(dvp); 3078 softdep_speedup(ump); 3079 process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT); 3080 if (journal_space(ump, 0) == 0) { 3081 softdep_speedup(ump); 3082 if (journal_space(ump, 1) == 0) 3083 journal_suspend(ump); 3084 } 3085 } 3086 3087 static void 3088 jseg_write(ump, jseg, data) 3089 struct ufsmount *ump; 3090 struct jseg *jseg; 3091 uint8_t *data; 3092 { 3093 struct jsegrec *rec; 3094 3095 rec = (struct jsegrec *)data; 3096 rec->jsr_seq = jseg->js_seq; 3097 rec->jsr_oldest = jseg->js_oldseq; 3098 rec->jsr_cnt = jseg->js_cnt; 3099 rec->jsr_blocks = jseg->js_size / ump->um_devvp->v_bufobj.bo_bsize; 3100 rec->jsr_crc = 0; 3101 rec->jsr_time = ump->um_fs->fs_mtime; 3102 } 3103 3104 static inline void 3105 inoref_write(inoref, jseg, rec) 3106 struct inoref *inoref; 3107 struct jseg *jseg; 3108 struct jrefrec *rec; 3109 { 3110 3111 inoref->if_jsegdep->jd_seg = jseg; 3112 rec->jr_ino = inoref->if_ino; 3113 rec->jr_parent = inoref->if_parent; 3114 rec->jr_nlink = inoref->if_nlink; 3115 rec->jr_mode = inoref->if_mode; 3116 rec->jr_diroff = inoref->if_diroff; 3117 } 3118 3119 static void 3120 jaddref_write(jaddref, jseg, data) 3121 struct jaddref *jaddref; 3122 struct jseg *jseg; 3123 uint8_t *data; 3124 { 3125 struct jrefrec *rec; 3126 3127 rec = (struct jrefrec *)data; 3128 rec->jr_op = JOP_ADDREF; 3129 inoref_write(&jaddref->ja_ref, jseg, rec); 3130 } 3131 3132 static void 3133 jremref_write(jremref, jseg, data) 3134 struct jremref *jremref; 3135 struct jseg *jseg; 3136 uint8_t *data; 3137 { 3138 struct jrefrec *rec; 3139 3140 rec = (struct jrefrec *)data; 3141 rec->jr_op = JOP_REMREF; 3142 inoref_write(&jremref->jr_ref, jseg, rec); 3143 } 3144 3145 static void 3146 jmvref_write(jmvref, jseg, data) 3147 struct jmvref *jmvref; 3148 struct jseg *jseg; 3149 uint8_t *data; 3150 { 3151 struct jmvrec *rec; 3152 3153 rec = (struct jmvrec *)data; 3154 rec->jm_op = JOP_MVREF; 3155 rec->jm_ino = jmvref->jm_ino; 3156 rec->jm_parent = jmvref->jm_parent; 3157 rec->jm_oldoff = jmvref->jm_oldoff; 3158 rec->jm_newoff = jmvref->jm_newoff; 3159 } 3160 3161 static void 3162 jnewblk_write(jnewblk, jseg, data) 3163 struct jnewblk *jnewblk; 3164 struct jseg *jseg; 3165 uint8_t *data; 3166 { 3167 struct jblkrec *rec; 3168 3169 jnewblk->jn_jsegdep->jd_seg = jseg; 3170 rec = (struct jblkrec *)data; 3171 rec->jb_op = JOP_NEWBLK; 3172 rec->jb_ino = jnewblk->jn_ino; 3173 rec->jb_blkno = jnewblk->jn_blkno; 3174 rec->jb_lbn = jnewblk->jn_lbn; 3175 rec->jb_frags = jnewblk->jn_frags; 3176 rec->jb_oldfrags = jnewblk->jn_oldfrags; 3177 } 3178 3179 static void 3180 jfreeblk_write(jfreeblk, jseg, data) 3181 struct jfreeblk *jfreeblk; 3182 struct jseg *jseg; 3183 uint8_t *data; 3184 { 3185 struct jblkrec *rec; 3186 3187 jfreeblk->jf_dep.jb_jsegdep->jd_seg = jseg; 3188 rec = (struct jblkrec *)data; 3189 rec->jb_op = JOP_FREEBLK; 3190 rec->jb_ino = jfreeblk->jf_ino; 3191 rec->jb_blkno = jfreeblk->jf_blkno; 3192 rec->jb_lbn = jfreeblk->jf_lbn; 3193 rec->jb_frags = jfreeblk->jf_frags; 3194 rec->jb_oldfrags = 0; 3195 } 3196 3197 static void 3198 jfreefrag_write(jfreefrag, jseg, data) 3199 struct jfreefrag *jfreefrag; 3200 struct jseg *jseg; 3201 uint8_t *data; 3202 { 3203 struct jblkrec *rec; 3204 3205 jfreefrag->fr_jsegdep->jd_seg = jseg; 3206 rec = (struct jblkrec *)data; 3207 rec->jb_op = JOP_FREEBLK; 3208 rec->jb_ino = jfreefrag->fr_ino; 3209 rec->jb_blkno = jfreefrag->fr_blkno; 3210 rec->jb_lbn = jfreefrag->fr_lbn; 3211 rec->jb_frags = jfreefrag->fr_frags; 3212 rec->jb_oldfrags = 0; 3213 } 3214 3215 static void 3216 jtrunc_write(jtrunc, jseg, data) 3217 struct jtrunc *jtrunc; 3218 struct jseg *jseg; 3219 uint8_t *data; 3220 { 3221 struct jtrncrec *rec; 3222 3223 jtrunc->jt_dep.jb_jsegdep->jd_seg = jseg; 3224 rec = (struct jtrncrec *)data; 3225 rec->jt_op = JOP_TRUNC; 3226 rec->jt_ino = jtrunc->jt_ino; 3227 rec->jt_size = jtrunc->jt_size; 3228 rec->jt_extsize = jtrunc->jt_extsize; 3229 } 3230 3231 static void 3232 jfsync_write(jfsync, jseg, data) 3233 struct jfsync *jfsync; 3234 struct jseg *jseg; 3235 uint8_t *data; 3236 { 3237 struct jtrncrec *rec; 3238 3239 rec = (struct jtrncrec *)data; 3240 rec->jt_op = JOP_SYNC; 3241 rec->jt_ino = jfsync->jfs_ino; 3242 rec->jt_size = jfsync->jfs_size; 3243 rec->jt_extsize = jfsync->jfs_extsize; 3244 } 3245 3246 static void 3247 softdep_flushjournal(mp) 3248 struct mount *mp; 3249 { 3250 struct jblocks *jblocks; 3251 struct ufsmount *ump; 3252 3253 if (MOUNTEDSUJ(mp) == 0) 3254 return; 3255 ump = VFSTOUFS(mp); 3256 jblocks = ump->softdep_jblocks; 3257 ACQUIRE_LOCK(ump); 3258 while (ump->softdep_on_journal) { 3259 jblocks->jb_needseg = 1; 3260 softdep_process_journal(mp, NULL, MNT_WAIT); 3261 } 3262 FREE_LOCK(ump); 3263 } 3264 3265 static void softdep_synchronize_completed(struct bio *); 3266 static void softdep_synchronize(struct bio *, struct ufsmount *, void *); 3267 3268 static void 3269 softdep_synchronize_completed(bp) 3270 struct bio *bp; 3271 { 3272 struct jseg *oldest; 3273 struct jseg *jseg; 3274 struct ufsmount *ump; 3275 3276 /* 3277 * caller1 marks the last segment written before we issued the 3278 * synchronize cache. 3279 */ 3280 jseg = bp->bio_caller1; 3281 if (jseg == NULL) { 3282 g_destroy_bio(bp); 3283 return; 3284 } 3285 ump = VFSTOUFS(jseg->js_list.wk_mp); 3286 ACQUIRE_LOCK(ump); 3287 oldest = NULL; 3288 /* 3289 * Mark all the journal entries waiting on the synchronize cache 3290 * as completed so they may continue on. 3291 */ 3292 while (jseg != NULL && (jseg->js_state & COMPLETE) == 0) { 3293 jseg->js_state |= COMPLETE; 3294 oldest = jseg; 3295 jseg = TAILQ_PREV(jseg, jseglst, js_next); 3296 } 3297 /* 3298 * Restart deferred journal entry processing from the oldest 3299 * completed jseg. 3300 */ 3301 if (oldest) 3302 complete_jsegs(oldest); 3303 3304 FREE_LOCK(ump); 3305 g_destroy_bio(bp); 3306 } 3307 3308 /* 3309 * Send BIO_FLUSH/SYNCHRONIZE CACHE to the device to enforce write ordering 3310 * barriers. The journal must be written prior to any blocks that depend 3311 * on it and the journal can not be released until the blocks have be 3312 * written. This code handles both barriers simultaneously. 3313 */ 3314 static void 3315 softdep_synchronize(bp, ump, caller1) 3316 struct bio *bp; 3317 struct ufsmount *ump; 3318 void *caller1; 3319 { 3320 3321 bp->bio_cmd = BIO_FLUSH; 3322 bp->bio_flags |= BIO_ORDERED; 3323 bp->bio_data = NULL; 3324 bp->bio_offset = ump->um_cp->provider->mediasize; 3325 bp->bio_length = 0; 3326 bp->bio_done = softdep_synchronize_completed; 3327 bp->bio_caller1 = caller1; 3328 g_io_request(bp, 3329 (struct g_consumer *)ump->um_devvp->v_bufobj.bo_private); 3330 } 3331 3332 /* 3333 * Flush some journal records to disk. 3334 */ 3335 static void 3336 softdep_process_journal(mp, needwk, flags) 3337 struct mount *mp; 3338 struct worklist *needwk; 3339 int flags; 3340 { 3341 struct jblocks *jblocks; 3342 struct ufsmount *ump; 3343 struct worklist *wk; 3344 struct jseg *jseg; 3345 struct buf *bp; 3346 struct bio *bio; 3347 uint8_t *data; 3348 struct fs *fs; 3349 int shouldflush; 3350 int segwritten; 3351 int jrecmin; /* Minimum records per block. */ 3352 int jrecmax; /* Maximum records per block. */ 3353 int size; 3354 int cnt; 3355 int off; 3356 int devbsize; 3357 3358 if (MOUNTEDSUJ(mp) == 0) 3359 return; 3360 shouldflush = softdep_flushcache; 3361 bio = NULL; 3362 jseg = NULL; 3363 ump = VFSTOUFS(mp); 3364 LOCK_OWNED(ump); 3365 fs = ump->um_fs; 3366 jblocks = ump->softdep_jblocks; 3367 devbsize = ump->um_devvp->v_bufobj.bo_bsize; 3368 /* 3369 * We write anywhere between a disk block and fs block. The upper 3370 * bound is picked to prevent buffer cache fragmentation and limit 3371 * processing time per I/O. 3372 */ 3373 jrecmin = (devbsize / JREC_SIZE) - 1; /* -1 for seg header */ 3374 jrecmax = (fs->fs_bsize / devbsize) * jrecmin; 3375 segwritten = 0; 3376 for (;;) { 3377 cnt = ump->softdep_on_journal; 3378 /* 3379 * Criteria for writing a segment: 3380 * 1) We have a full block. 3381 * 2) We're called from jwait() and haven't found the 3382 * journal item yet. 3383 * 3) Always write if needseg is set. 3384 * 4) If we are called from process_worklist and have 3385 * not yet written anything we write a partial block 3386 * to enforce a 1 second maximum latency on journal 3387 * entries. 3388 */ 3389 if (cnt < (jrecmax - 1) && needwk == NULL && 3390 jblocks->jb_needseg == 0 && (segwritten || cnt == 0)) 3391 break; 3392 cnt++; 3393 /* 3394 * Verify some free journal space. softdep_prealloc() should 3395 * guarantee that we don't run out so this is indicative of 3396 * a problem with the flow control. Try to recover 3397 * gracefully in any event. 3398 */ 3399 while (jblocks->jb_free == 0) { 3400 if (flags != MNT_WAIT) 3401 break; 3402 printf("softdep: Out of journal space!\n"); 3403 softdep_speedup(ump); 3404 msleep(jblocks, LOCK_PTR(ump), PRIBIO, "jblocks", hz); 3405 } 3406 FREE_LOCK(ump); 3407 jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS); 3408 workitem_alloc(&jseg->js_list, D_JSEG, mp); 3409 LIST_INIT(&jseg->js_entries); 3410 LIST_INIT(&jseg->js_indirs); 3411 jseg->js_state = ATTACHED; 3412 if (shouldflush == 0) 3413 jseg->js_state |= COMPLETE; 3414 else if (bio == NULL) 3415 bio = g_alloc_bio(); 3416 jseg->js_jblocks = jblocks; 3417 bp = geteblk(fs->fs_bsize, 0); 3418 ACQUIRE_LOCK(ump); 3419 /* 3420 * If there was a race while we were allocating the block 3421 * and jseg the entry we care about was likely written. 3422 * We bail out in both the WAIT and NOWAIT case and assume 3423 * the caller will loop if the entry it cares about is 3424 * not written. 3425 */ 3426 cnt = ump->softdep_on_journal; 3427 if (cnt + jblocks->jb_needseg == 0 || jblocks->jb_free == 0) { 3428 bp->b_flags |= B_INVAL | B_NOCACHE; 3429 WORKITEM_FREE(jseg, D_JSEG); 3430 FREE_LOCK(ump); 3431 brelse(bp); 3432 ACQUIRE_LOCK(ump); 3433 break; 3434 } 3435 /* 3436 * Calculate the disk block size required for the available 3437 * records rounded to the min size. 3438 */ 3439 if (cnt == 0) 3440 size = devbsize; 3441 else if (cnt < jrecmax) 3442 size = howmany(cnt, jrecmin) * devbsize; 3443 else 3444 size = fs->fs_bsize; 3445 /* 3446 * Allocate a disk block for this journal data and account 3447 * for truncation of the requested size if enough contiguous 3448 * space was not available. 3449 */ 3450 bp->b_blkno = jblocks_alloc(jblocks, size, &size); 3451 bp->b_lblkno = bp->b_blkno; 3452 bp->b_offset = bp->b_blkno * DEV_BSIZE; 3453 bp->b_bcount = size; 3454 bp->b_flags &= ~B_INVAL; 3455 bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY; 3456 /* 3457 * Initialize our jseg with cnt records. Assign the next 3458 * sequence number to it and link it in-order. 3459 */ 3460 cnt = MIN(cnt, (size / devbsize) * jrecmin); 3461 jseg->js_buf = bp; 3462 jseg->js_cnt = cnt; 3463 jseg->js_refs = cnt + 1; /* Self ref. */ 3464 jseg->js_size = size; 3465 jseg->js_seq = jblocks->jb_nextseq++; 3466 if (jblocks->jb_oldestseg == NULL) 3467 jblocks->jb_oldestseg = jseg; 3468 jseg->js_oldseq = jblocks->jb_oldestseg->js_seq; 3469 TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next); 3470 if (jblocks->jb_writeseg == NULL) 3471 jblocks->jb_writeseg = jseg; 3472 /* 3473 * Start filling in records from the pending list. 3474 */ 3475 data = bp->b_data; 3476 off = 0; 3477 3478 /* 3479 * Always put a header on the first block. 3480 * XXX As with below, there might not be a chance to get 3481 * into the loop. Ensure that something valid is written. 3482 */ 3483 jseg_write(ump, jseg, data); 3484 off += JREC_SIZE; 3485 data = bp->b_data + off; 3486 3487 /* 3488 * XXX Something is wrong here. There's no work to do, 3489 * but we need to perform and I/O and allow it to complete 3490 * anyways. 3491 */ 3492 if (LIST_EMPTY(&ump->softdep_journal_pending)) 3493 stat_emptyjblocks++; 3494 3495 while ((wk = LIST_FIRST(&ump->softdep_journal_pending)) 3496 != NULL) { 3497 if (cnt == 0) 3498 break; 3499 /* Place a segment header on every device block. */ 3500 if ((off % devbsize) == 0) { 3501 jseg_write(ump, jseg, data); 3502 off += JREC_SIZE; 3503 data = bp->b_data + off; 3504 } 3505 if (wk == needwk) 3506 needwk = NULL; 3507 remove_from_journal(wk); 3508 wk->wk_state |= INPROGRESS; 3509 WORKLIST_INSERT(&jseg->js_entries, wk); 3510 switch (wk->wk_type) { 3511 case D_JADDREF: 3512 jaddref_write(WK_JADDREF(wk), jseg, data); 3513 break; 3514 case D_JREMREF: 3515 jremref_write(WK_JREMREF(wk), jseg, data); 3516 break; 3517 case D_JMVREF: 3518 jmvref_write(WK_JMVREF(wk), jseg, data); 3519 break; 3520 case D_JNEWBLK: 3521 jnewblk_write(WK_JNEWBLK(wk), jseg, data); 3522 break; 3523 case D_JFREEBLK: 3524 jfreeblk_write(WK_JFREEBLK(wk), jseg, data); 3525 break; 3526 case D_JFREEFRAG: 3527 jfreefrag_write(WK_JFREEFRAG(wk), jseg, data); 3528 break; 3529 case D_JTRUNC: 3530 jtrunc_write(WK_JTRUNC(wk), jseg, data); 3531 break; 3532 case D_JFSYNC: 3533 jfsync_write(WK_JFSYNC(wk), jseg, data); 3534 break; 3535 default: 3536 panic("process_journal: Unknown type %s", 3537 TYPENAME(wk->wk_type)); 3538 /* NOTREACHED */ 3539 } 3540 off += JREC_SIZE; 3541 data = bp->b_data + off; 3542 cnt--; 3543 } 3544 3545 /* Clear any remaining space so we don't leak kernel data */ 3546 if (size > off) 3547 bzero(data, size - off); 3548 3549 /* 3550 * Write this one buffer and continue. 3551 */ 3552 segwritten = 1; 3553 jblocks->jb_needseg = 0; 3554 WORKLIST_INSERT(&bp->b_dep, &jseg->js_list); 3555 FREE_LOCK(ump); 3556 pbgetvp(ump->um_devvp, bp); 3557 /* 3558 * We only do the blocking wait once we find the journal 3559 * entry we're looking for. 3560 */ 3561 if (needwk == NULL && flags == MNT_WAIT) 3562 bwrite(bp); 3563 else 3564 bawrite(bp); 3565 ACQUIRE_LOCK(ump); 3566 } 3567 /* 3568 * If we wrote a segment issue a synchronize cache so the journal 3569 * is reflected on disk before the data is written. Since reclaiming 3570 * journal space also requires writing a journal record this 3571 * process also enforces a barrier before reclamation. 3572 */ 3573 if (segwritten && shouldflush) { 3574 softdep_synchronize(bio, ump, 3575 TAILQ_LAST(&jblocks->jb_segs, jseglst)); 3576 } else if (bio) 3577 g_destroy_bio(bio); 3578 /* 3579 * If we've suspended the filesystem because we ran out of journal 3580 * space either try to sync it here to make some progress or 3581 * unsuspend it if we already have. 3582 */ 3583 if (flags == 0 && jblocks->jb_suspended) { 3584 if (journal_unsuspend(ump)) 3585 return; 3586 FREE_LOCK(ump); 3587 VFS_SYNC(mp, MNT_NOWAIT); 3588 ffs_sbupdate(ump, MNT_WAIT, 0); 3589 ACQUIRE_LOCK(ump); 3590 } 3591 } 3592 3593 /* 3594 * Complete a jseg, allowing all dependencies awaiting journal writes 3595 * to proceed. Each journal dependency also attaches a jsegdep to dependent 3596 * structures so that the journal segment can be freed to reclaim space. 3597 */ 3598 static void 3599 complete_jseg(jseg) 3600 struct jseg *jseg; 3601 { 3602 struct worklist *wk; 3603 struct jmvref *jmvref; 3604 #ifdef INVARIANTS 3605 int i = 0; 3606 #endif 3607 3608 while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) { 3609 WORKLIST_REMOVE(wk); 3610 wk->wk_state &= ~INPROGRESS; 3611 wk->wk_state |= COMPLETE; 3612 KASSERT(i++ < jseg->js_cnt, 3613 ("handle_written_jseg: overflow %d >= %d", 3614 i - 1, jseg->js_cnt)); 3615 switch (wk->wk_type) { 3616 case D_JADDREF: 3617 handle_written_jaddref(WK_JADDREF(wk)); 3618 break; 3619 case D_JREMREF: 3620 handle_written_jremref(WK_JREMREF(wk)); 3621 break; 3622 case D_JMVREF: 3623 rele_jseg(jseg); /* No jsegdep. */ 3624 jmvref = WK_JMVREF(wk); 3625 LIST_REMOVE(jmvref, jm_deps); 3626 if ((jmvref->jm_pagedep->pd_state & ONWORKLIST) == 0) 3627 free_pagedep(jmvref->jm_pagedep); 3628 WORKITEM_FREE(jmvref, D_JMVREF); 3629 break; 3630 case D_JNEWBLK: 3631 handle_written_jnewblk(WK_JNEWBLK(wk)); 3632 break; 3633 case D_JFREEBLK: 3634 handle_written_jblkdep(&WK_JFREEBLK(wk)->jf_dep); 3635 break; 3636 case D_JTRUNC: 3637 handle_written_jblkdep(&WK_JTRUNC(wk)->jt_dep); 3638 break; 3639 case D_JFSYNC: 3640 rele_jseg(jseg); /* No jsegdep. */ 3641 WORKITEM_FREE(wk, D_JFSYNC); 3642 break; 3643 case D_JFREEFRAG: 3644 handle_written_jfreefrag(WK_JFREEFRAG(wk)); 3645 break; 3646 default: 3647 panic("handle_written_jseg: Unknown type %s", 3648 TYPENAME(wk->wk_type)); 3649 /* NOTREACHED */ 3650 } 3651 } 3652 /* Release the self reference so the structure may be freed. */ 3653 rele_jseg(jseg); 3654 } 3655 3656 /* 3657 * Determine which jsegs are ready for completion processing. Waits for 3658 * synchronize cache to complete as well as forcing in-order completion 3659 * of journal entries. 3660 */ 3661 static void 3662 complete_jsegs(jseg) 3663 struct jseg *jseg; 3664 { 3665 struct jblocks *jblocks; 3666 struct jseg *jsegn; 3667 3668 jblocks = jseg->js_jblocks; 3669 /* 3670 * Don't allow out of order completions. If this isn't the first 3671 * block wait for it to write before we're done. 3672 */ 3673 if (jseg != jblocks->jb_writeseg) 3674 return; 3675 /* Iterate through available jsegs processing their entries. */ 3676 while (jseg && (jseg->js_state & ALLCOMPLETE) == ALLCOMPLETE) { 3677 jblocks->jb_oldestwrseq = jseg->js_oldseq; 3678 jsegn = TAILQ_NEXT(jseg, js_next); 3679 complete_jseg(jseg); 3680 jseg = jsegn; 3681 } 3682 jblocks->jb_writeseg = jseg; 3683 /* 3684 * Attempt to free jsegs now that oldestwrseq may have advanced. 3685 */ 3686 free_jsegs(jblocks); 3687 } 3688 3689 /* 3690 * Mark a jseg as DEPCOMPLETE and throw away the buffer. Attempt to handle 3691 * the final completions. 3692 */ 3693 static void 3694 handle_written_jseg(jseg, bp) 3695 struct jseg *jseg; 3696 struct buf *bp; 3697 { 3698 3699 if (jseg->js_refs == 0) 3700 panic("handle_written_jseg: No self-reference on %p", jseg); 3701 jseg->js_state |= DEPCOMPLETE; 3702 /* 3703 * We'll never need this buffer again, set flags so it will be 3704 * discarded. 3705 */ 3706 bp->b_flags |= B_INVAL | B_NOCACHE; 3707 pbrelvp(bp); 3708 complete_jsegs(jseg); 3709 } 3710 3711 static inline struct jsegdep * 3712 inoref_jseg(inoref) 3713 struct inoref *inoref; 3714 { 3715 struct jsegdep *jsegdep; 3716 3717 jsegdep = inoref->if_jsegdep; 3718 inoref->if_jsegdep = NULL; 3719 3720 return (jsegdep); 3721 } 3722 3723 /* 3724 * Called once a jremref has made it to stable store. The jremref is marked 3725 * complete and we attempt to free it. Any pagedeps writes sleeping waiting 3726 * for the jremref to complete will be awoken by free_jremref. 3727 */ 3728 static void 3729 handle_written_jremref(jremref) 3730 struct jremref *jremref; 3731 { 3732 struct inodedep *inodedep; 3733 struct jsegdep *jsegdep; 3734 struct dirrem *dirrem; 3735 3736 /* Grab the jsegdep. */ 3737 jsegdep = inoref_jseg(&jremref->jr_ref); 3738 /* 3739 * Remove us from the inoref list. 3740 */ 3741 if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 3742 0, &inodedep) == 0) 3743 panic("handle_written_jremref: Lost inodedep"); 3744 TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps); 3745 /* 3746 * Complete the dirrem. 3747 */ 3748 dirrem = jremref->jr_dirrem; 3749 jremref->jr_dirrem = NULL; 3750 LIST_REMOVE(jremref, jr_deps); 3751 jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT; 3752 jwork_insert(&dirrem->dm_jwork, jsegdep); 3753 if (LIST_EMPTY(&dirrem->dm_jremrefhd) && 3754 (dirrem->dm_state & COMPLETE) != 0) 3755 add_to_worklist(&dirrem->dm_list, 0); 3756 free_jremref(jremref); 3757 } 3758 3759 /* 3760 * Called once a jaddref has made it to stable store. The dependency is 3761 * marked complete and any dependent structures are added to the inode 3762 * bufwait list to be completed as soon as it is written. If a bitmap write 3763 * depends on this entry we move the inode into the inodedephd of the 3764 * bmsafemap dependency and attempt to remove the jaddref from the bmsafemap. 3765 */ 3766 static void 3767 handle_written_jaddref(jaddref) 3768 struct jaddref *jaddref; 3769 { 3770 struct jsegdep *jsegdep; 3771 struct inodedep *inodedep; 3772 struct diradd *diradd; 3773 struct mkdir *mkdir; 3774 3775 /* Grab the jsegdep. */ 3776 jsegdep = inoref_jseg(&jaddref->ja_ref); 3777 mkdir = NULL; 3778 diradd = NULL; 3779 if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino, 3780 0, &inodedep) == 0) 3781 panic("handle_written_jaddref: Lost inodedep."); 3782 if (jaddref->ja_diradd == NULL) 3783 panic("handle_written_jaddref: No dependency"); 3784 if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) { 3785 diradd = jaddref->ja_diradd; 3786 WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list); 3787 } else if (jaddref->ja_state & MKDIR_PARENT) { 3788 mkdir = jaddref->ja_mkdir; 3789 WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list); 3790 } else if (jaddref->ja_state & MKDIR_BODY) 3791 mkdir = jaddref->ja_mkdir; 3792 else 3793 panic("handle_written_jaddref: Unknown dependency %p", 3794 jaddref->ja_diradd); 3795 jaddref->ja_diradd = NULL; /* also clears ja_mkdir */ 3796 /* 3797 * Remove us from the inode list. 3798 */ 3799 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps); 3800 /* 3801 * The mkdir may be waiting on the jaddref to clear before freeing. 3802 */ 3803 if (mkdir) { 3804 KASSERT(mkdir->md_list.wk_type == D_MKDIR, 3805 ("handle_written_jaddref: Incorrect type for mkdir %s", 3806 TYPENAME(mkdir->md_list.wk_type))); 3807 mkdir->md_jaddref = NULL; 3808 diradd = mkdir->md_diradd; 3809 mkdir->md_state |= DEPCOMPLETE; 3810 complete_mkdir(mkdir); 3811 } 3812 jwork_insert(&diradd->da_jwork, jsegdep); 3813 if (jaddref->ja_state & NEWBLOCK) { 3814 inodedep->id_state |= ONDEPLIST; 3815 LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd, 3816 inodedep, id_deps); 3817 } 3818 free_jaddref(jaddref); 3819 } 3820 3821 /* 3822 * Called once a jnewblk journal is written. The allocdirect or allocindir 3823 * is placed in the bmsafemap to await notification of a written bitmap. If 3824 * the operation was canceled we add the segdep to the appropriate 3825 * dependency to free the journal space once the canceling operation 3826 * completes. 3827 */ 3828 static void 3829 handle_written_jnewblk(jnewblk) 3830 struct jnewblk *jnewblk; 3831 { 3832 struct bmsafemap *bmsafemap; 3833 struct freefrag *freefrag; 3834 struct freework *freework; 3835 struct jsegdep *jsegdep; 3836 struct newblk *newblk; 3837 3838 /* Grab the jsegdep. */ 3839 jsegdep = jnewblk->jn_jsegdep; 3840 jnewblk->jn_jsegdep = NULL; 3841 if (jnewblk->jn_dep == NULL) 3842 panic("handle_written_jnewblk: No dependency for the segdep."); 3843 switch (jnewblk->jn_dep->wk_type) { 3844 case D_NEWBLK: 3845 case D_ALLOCDIRECT: 3846 case D_ALLOCINDIR: 3847 /* 3848 * Add the written block to the bmsafemap so it can 3849 * be notified when the bitmap is on disk. 3850 */ 3851 newblk = WK_NEWBLK(jnewblk->jn_dep); 3852 newblk->nb_jnewblk = NULL; 3853 if ((newblk->nb_state & GOINGAWAY) == 0) { 3854 bmsafemap = newblk->nb_bmsafemap; 3855 newblk->nb_state |= ONDEPLIST; 3856 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, 3857 nb_deps); 3858 } 3859 jwork_insert(&newblk->nb_jwork, jsegdep); 3860 break; 3861 case D_FREEFRAG: 3862 /* 3863 * A newblock being removed by a freefrag when replaced by 3864 * frag extension. 3865 */ 3866 freefrag = WK_FREEFRAG(jnewblk->jn_dep); 3867 freefrag->ff_jdep = NULL; 3868 jwork_insert(&freefrag->ff_jwork, jsegdep); 3869 break; 3870 case D_FREEWORK: 3871 /* 3872 * A direct block was removed by truncate. 3873 */ 3874 freework = WK_FREEWORK(jnewblk->jn_dep); 3875 freework->fw_jnewblk = NULL; 3876 jwork_insert(&freework->fw_freeblks->fb_jwork, jsegdep); 3877 break; 3878 default: 3879 panic("handle_written_jnewblk: Unknown type %d.", 3880 jnewblk->jn_dep->wk_type); 3881 } 3882 jnewblk->jn_dep = NULL; 3883 free_jnewblk(jnewblk); 3884 } 3885 3886 /* 3887 * Cancel a jfreefrag that won't be needed, probably due to colliding with 3888 * an in-flight allocation that has not yet been committed. Divorce us 3889 * from the freefrag and mark it DEPCOMPLETE so that it may be added 3890 * to the worklist. 3891 */ 3892 static void 3893 cancel_jfreefrag(jfreefrag) 3894 struct jfreefrag *jfreefrag; 3895 { 3896 struct freefrag *freefrag; 3897 3898 if (jfreefrag->fr_jsegdep) { 3899 free_jsegdep(jfreefrag->fr_jsegdep); 3900 jfreefrag->fr_jsegdep = NULL; 3901 } 3902 freefrag = jfreefrag->fr_freefrag; 3903 jfreefrag->fr_freefrag = NULL; 3904 free_jfreefrag(jfreefrag); 3905 freefrag->ff_state |= DEPCOMPLETE; 3906 CTR1(KTR_SUJ, "cancel_jfreefrag: blkno %jd", freefrag->ff_blkno); 3907 } 3908 3909 /* 3910 * Free a jfreefrag when the parent freefrag is rendered obsolete. 3911 */ 3912 static void 3913 free_jfreefrag(jfreefrag) 3914 struct jfreefrag *jfreefrag; 3915 { 3916 3917 if (jfreefrag->fr_state & INPROGRESS) 3918 WORKLIST_REMOVE(&jfreefrag->fr_list); 3919 else if (jfreefrag->fr_state & ONWORKLIST) 3920 remove_from_journal(&jfreefrag->fr_list); 3921 if (jfreefrag->fr_freefrag != NULL) 3922 panic("free_jfreefrag: Still attached to a freefrag."); 3923 WORKITEM_FREE(jfreefrag, D_JFREEFRAG); 3924 } 3925 3926 /* 3927 * Called when the journal write for a jfreefrag completes. The parent 3928 * freefrag is added to the worklist if this completes its dependencies. 3929 */ 3930 static void 3931 handle_written_jfreefrag(jfreefrag) 3932 struct jfreefrag *jfreefrag; 3933 { 3934 struct jsegdep *jsegdep; 3935 struct freefrag *freefrag; 3936 3937 /* Grab the jsegdep. */ 3938 jsegdep = jfreefrag->fr_jsegdep; 3939 jfreefrag->fr_jsegdep = NULL; 3940 freefrag = jfreefrag->fr_freefrag; 3941 if (freefrag == NULL) 3942 panic("handle_written_jfreefrag: No freefrag."); 3943 freefrag->ff_state |= DEPCOMPLETE; 3944 freefrag->ff_jdep = NULL; 3945 jwork_insert(&freefrag->ff_jwork, jsegdep); 3946 if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE) 3947 add_to_worklist(&freefrag->ff_list, 0); 3948 jfreefrag->fr_freefrag = NULL; 3949 free_jfreefrag(jfreefrag); 3950 } 3951 3952 /* 3953 * Called when the journal write for a jfreeblk completes. The jfreeblk 3954 * is removed from the freeblks list of pending journal writes and the 3955 * jsegdep is moved to the freeblks jwork to be completed when all blocks 3956 * have been reclaimed. 3957 */ 3958 static void 3959 handle_written_jblkdep(jblkdep) 3960 struct jblkdep *jblkdep; 3961 { 3962 struct freeblks *freeblks; 3963 struct jsegdep *jsegdep; 3964 3965 /* Grab the jsegdep. */ 3966 jsegdep = jblkdep->jb_jsegdep; 3967 jblkdep->jb_jsegdep = NULL; 3968 freeblks = jblkdep->jb_freeblks; 3969 LIST_REMOVE(jblkdep, jb_deps); 3970 jwork_insert(&freeblks->fb_jwork, jsegdep); 3971 /* 3972 * If the freeblks is all journaled, we can add it to the worklist. 3973 */ 3974 if (LIST_EMPTY(&freeblks->fb_jblkdephd) && 3975 (freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE) 3976 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 3977 3978 free_jblkdep(jblkdep); 3979 } 3980 3981 static struct jsegdep * 3982 newjsegdep(struct worklist *wk) 3983 { 3984 struct jsegdep *jsegdep; 3985 3986 jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS); 3987 workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp); 3988 jsegdep->jd_seg = NULL; 3989 3990 return (jsegdep); 3991 } 3992 3993 static struct jmvref * 3994 newjmvref(dp, ino, oldoff, newoff) 3995 struct inode *dp; 3996 ino_t ino; 3997 off_t oldoff; 3998 off_t newoff; 3999 { 4000 struct jmvref *jmvref; 4001 4002 jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS); 4003 workitem_alloc(&jmvref->jm_list, D_JMVREF, ITOVFS(dp)); 4004 jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE; 4005 jmvref->jm_parent = dp->i_number; 4006 jmvref->jm_ino = ino; 4007 jmvref->jm_oldoff = oldoff; 4008 jmvref->jm_newoff = newoff; 4009 4010 return (jmvref); 4011 } 4012 4013 /* 4014 * Allocate a new jremref that tracks the removal of ip from dp with the 4015 * directory entry offset of diroff. Mark the entry as ATTACHED and 4016 * DEPCOMPLETE as we have all the information required for the journal write 4017 * and the directory has already been removed from the buffer. The caller 4018 * is responsible for linking the jremref into the pagedep and adding it 4019 * to the journal to write. The MKDIR_PARENT flag is set if we're doing 4020 * a DOTDOT addition so handle_workitem_remove() can properly assign 4021 * the jsegdep when we're done. 4022 */ 4023 static struct jremref * 4024 newjremref(struct dirrem *dirrem, struct inode *dp, struct inode *ip, 4025 off_t diroff, nlink_t nlink) 4026 { 4027 struct jremref *jremref; 4028 4029 jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS); 4030 workitem_alloc(&jremref->jr_list, D_JREMREF, ITOVFS(dp)); 4031 jremref->jr_state = ATTACHED; 4032 newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff, 4033 nlink, ip->i_mode); 4034 jremref->jr_dirrem = dirrem; 4035 4036 return (jremref); 4037 } 4038 4039 static inline void 4040 newinoref(struct inoref *inoref, ino_t ino, ino_t parent, off_t diroff, 4041 nlink_t nlink, uint16_t mode) 4042 { 4043 4044 inoref->if_jsegdep = newjsegdep(&inoref->if_list); 4045 inoref->if_diroff = diroff; 4046 inoref->if_ino = ino; 4047 inoref->if_parent = parent; 4048 inoref->if_nlink = nlink; 4049 inoref->if_mode = mode; 4050 } 4051 4052 /* 4053 * Allocate a new jaddref to track the addition of ino to dp at diroff. The 4054 * directory offset may not be known until later. The caller is responsible 4055 * adding the entry to the journal when this information is available. nlink 4056 * should be the link count prior to the addition and mode is only required 4057 * to have the correct FMT. 4058 */ 4059 static struct jaddref * 4060 newjaddref(struct inode *dp, ino_t ino, off_t diroff, int16_t nlink, 4061 uint16_t mode) 4062 { 4063 struct jaddref *jaddref; 4064 4065 jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS); 4066 workitem_alloc(&jaddref->ja_list, D_JADDREF, ITOVFS(dp)); 4067 jaddref->ja_state = ATTACHED; 4068 jaddref->ja_mkdir = NULL; 4069 newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode); 4070 4071 return (jaddref); 4072 } 4073 4074 /* 4075 * Create a new free dependency for a freework. The caller is responsible 4076 * for adjusting the reference count when it has the lock held. The freedep 4077 * will track an outstanding bitmap write that will ultimately clear the 4078 * freework to continue. 4079 */ 4080 static struct freedep * 4081 newfreedep(struct freework *freework) 4082 { 4083 struct freedep *freedep; 4084 4085 freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS); 4086 workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp); 4087 freedep->fd_freework = freework; 4088 4089 return (freedep); 4090 } 4091 4092 /* 4093 * Free a freedep structure once the buffer it is linked to is written. If 4094 * this is the last reference to the freework schedule it for completion. 4095 */ 4096 static void 4097 free_freedep(freedep) 4098 struct freedep *freedep; 4099 { 4100 struct freework *freework; 4101 4102 freework = freedep->fd_freework; 4103 freework->fw_freeblks->fb_cgwait--; 4104 if (--freework->fw_ref == 0) 4105 freework_enqueue(freework); 4106 WORKITEM_FREE(freedep, D_FREEDEP); 4107 } 4108 4109 /* 4110 * Allocate a new freework structure that may be a level in an indirect 4111 * when parent is not NULL or a top level block when it is. The top level 4112 * freework structures are allocated without the per-filesystem lock held 4113 * and before the freeblks is visible outside of softdep_setup_freeblocks(). 4114 */ 4115 static struct freework * 4116 newfreework(ump, freeblks, parent, lbn, nb, frags, off, journal) 4117 struct ufsmount *ump; 4118 struct freeblks *freeblks; 4119 struct freework *parent; 4120 ufs_lbn_t lbn; 4121 ufs2_daddr_t nb; 4122 int frags; 4123 int off; 4124 int journal; 4125 { 4126 struct freework *freework; 4127 4128 freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS); 4129 workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp); 4130 freework->fw_state = ATTACHED; 4131 freework->fw_jnewblk = NULL; 4132 freework->fw_freeblks = freeblks; 4133 freework->fw_parent = parent; 4134 freework->fw_lbn = lbn; 4135 freework->fw_blkno = nb; 4136 freework->fw_frags = frags; 4137 freework->fw_indir = NULL; 4138 freework->fw_ref = (MOUNTEDSUJ(UFSTOVFS(ump)) == 0 || 4139 lbn >= -UFS_NXADDR) ? 0 : NINDIR(ump->um_fs) + 1; 4140 freework->fw_start = freework->fw_off = off; 4141 if (journal) 4142 newjfreeblk(freeblks, lbn, nb, frags); 4143 if (parent == NULL) { 4144 ACQUIRE_LOCK(ump); 4145 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list); 4146 freeblks->fb_ref++; 4147 FREE_LOCK(ump); 4148 } 4149 4150 return (freework); 4151 } 4152 4153 /* 4154 * Eliminate a jfreeblk for a block that does not need journaling. 4155 */ 4156 static void 4157 cancel_jfreeblk(freeblks, blkno) 4158 struct freeblks *freeblks; 4159 ufs2_daddr_t blkno; 4160 { 4161 struct jfreeblk *jfreeblk; 4162 struct jblkdep *jblkdep; 4163 4164 LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) { 4165 if (jblkdep->jb_list.wk_type != D_JFREEBLK) 4166 continue; 4167 jfreeblk = WK_JFREEBLK(&jblkdep->jb_list); 4168 if (jfreeblk->jf_blkno == blkno) 4169 break; 4170 } 4171 if (jblkdep == NULL) 4172 return; 4173 CTR1(KTR_SUJ, "cancel_jfreeblk: blkno %jd", blkno); 4174 free_jsegdep(jblkdep->jb_jsegdep); 4175 LIST_REMOVE(jblkdep, jb_deps); 4176 WORKITEM_FREE(jfreeblk, D_JFREEBLK); 4177 } 4178 4179 /* 4180 * Allocate a new jfreeblk to journal top level block pointer when truncating 4181 * a file. The caller must add this to the worklist when the per-filesystem 4182 * lock is held. 4183 */ 4184 static struct jfreeblk * 4185 newjfreeblk(freeblks, lbn, blkno, frags) 4186 struct freeblks *freeblks; 4187 ufs_lbn_t lbn; 4188 ufs2_daddr_t blkno; 4189 int frags; 4190 { 4191 struct jfreeblk *jfreeblk; 4192 4193 jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS); 4194 workitem_alloc(&jfreeblk->jf_dep.jb_list, D_JFREEBLK, 4195 freeblks->fb_list.wk_mp); 4196 jfreeblk->jf_dep.jb_jsegdep = newjsegdep(&jfreeblk->jf_dep.jb_list); 4197 jfreeblk->jf_dep.jb_freeblks = freeblks; 4198 jfreeblk->jf_ino = freeblks->fb_inum; 4199 jfreeblk->jf_lbn = lbn; 4200 jfreeblk->jf_blkno = blkno; 4201 jfreeblk->jf_frags = frags; 4202 LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jfreeblk->jf_dep, jb_deps); 4203 4204 return (jfreeblk); 4205 } 4206 4207 /* 4208 * The journal is only prepared to handle full-size block numbers, so we 4209 * have to adjust the record to reflect the change to a full-size block. 4210 * For example, suppose we have a block made up of fragments 8-15 and 4211 * want to free its last two fragments. We are given a request that says: 4212 * FREEBLK ino=5, blkno=14, lbn=0, frags=2, oldfrags=0 4213 * where frags are the number of fragments to free and oldfrags are the 4214 * number of fragments to keep. To block align it, we have to change it to 4215 * have a valid full-size blkno, so it becomes: 4216 * FREEBLK ino=5, blkno=8, lbn=0, frags=2, oldfrags=6 4217 */ 4218 static void 4219 adjust_newfreework(freeblks, frag_offset) 4220 struct freeblks *freeblks; 4221 int frag_offset; 4222 { 4223 struct jfreeblk *jfreeblk; 4224 4225 KASSERT((LIST_FIRST(&freeblks->fb_jblkdephd) != NULL && 4226 LIST_FIRST(&freeblks->fb_jblkdephd)->jb_list.wk_type == D_JFREEBLK), 4227 ("adjust_newfreework: Missing freeblks dependency")); 4228 4229 jfreeblk = WK_JFREEBLK(LIST_FIRST(&freeblks->fb_jblkdephd)); 4230 jfreeblk->jf_blkno -= frag_offset; 4231 jfreeblk->jf_frags += frag_offset; 4232 } 4233 4234 /* 4235 * Allocate a new jtrunc to track a partial truncation. 4236 */ 4237 static struct jtrunc * 4238 newjtrunc(freeblks, size, extsize) 4239 struct freeblks *freeblks; 4240 off_t size; 4241 int extsize; 4242 { 4243 struct jtrunc *jtrunc; 4244 4245 jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS); 4246 workitem_alloc(&jtrunc->jt_dep.jb_list, D_JTRUNC, 4247 freeblks->fb_list.wk_mp); 4248 jtrunc->jt_dep.jb_jsegdep = newjsegdep(&jtrunc->jt_dep.jb_list); 4249 jtrunc->jt_dep.jb_freeblks = freeblks; 4250 jtrunc->jt_ino = freeblks->fb_inum; 4251 jtrunc->jt_size = size; 4252 jtrunc->jt_extsize = extsize; 4253 LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jtrunc->jt_dep, jb_deps); 4254 4255 return (jtrunc); 4256 } 4257 4258 /* 4259 * If we're canceling a new bitmap we have to search for another ref 4260 * to move into the bmsafemap dep. This might be better expressed 4261 * with another structure. 4262 */ 4263 static void 4264 move_newblock_dep(jaddref, inodedep) 4265 struct jaddref *jaddref; 4266 struct inodedep *inodedep; 4267 { 4268 struct inoref *inoref; 4269 struct jaddref *jaddrefn; 4270 4271 jaddrefn = NULL; 4272 for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref; 4273 inoref = TAILQ_NEXT(inoref, if_deps)) { 4274 if ((jaddref->ja_state & NEWBLOCK) && 4275 inoref->if_list.wk_type == D_JADDREF) { 4276 jaddrefn = (struct jaddref *)inoref; 4277 break; 4278 } 4279 } 4280 if (jaddrefn == NULL) 4281 return; 4282 jaddrefn->ja_state &= ~(ATTACHED | UNDONE); 4283 jaddrefn->ja_state |= jaddref->ja_state & 4284 (ATTACHED | UNDONE | NEWBLOCK); 4285 jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK); 4286 jaddref->ja_state |= ATTACHED; 4287 LIST_REMOVE(jaddref, ja_bmdeps); 4288 LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn, 4289 ja_bmdeps); 4290 } 4291 4292 /* 4293 * Cancel a jaddref either before it has been written or while it is being 4294 * written. This happens when a link is removed before the add reaches 4295 * the disk. The jaddref dependency is kept linked into the bmsafemap 4296 * and inode to prevent the link count or bitmap from reaching the disk 4297 * until handle_workitem_remove() re-adjusts the counts and bitmaps as 4298 * required. 4299 * 4300 * Returns 1 if the canceled addref requires journaling of the remove and 4301 * 0 otherwise. 4302 */ 4303 static int 4304 cancel_jaddref(jaddref, inodedep, wkhd) 4305 struct jaddref *jaddref; 4306 struct inodedep *inodedep; 4307 struct workhead *wkhd; 4308 { 4309 struct inoref *inoref; 4310 struct jsegdep *jsegdep; 4311 int needsj; 4312 4313 KASSERT((jaddref->ja_state & COMPLETE) == 0, 4314 ("cancel_jaddref: Canceling complete jaddref")); 4315 if (jaddref->ja_state & (INPROGRESS | COMPLETE)) 4316 needsj = 1; 4317 else 4318 needsj = 0; 4319 if (inodedep == NULL) 4320 if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino, 4321 0, &inodedep) == 0) 4322 panic("cancel_jaddref: Lost inodedep"); 4323 /* 4324 * We must adjust the nlink of any reference operation that follows 4325 * us so that it is consistent with the in-memory reference. This 4326 * ensures that inode nlink rollbacks always have the correct link. 4327 */ 4328 if (needsj == 0) { 4329 for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref; 4330 inoref = TAILQ_NEXT(inoref, if_deps)) { 4331 if (inoref->if_state & GOINGAWAY) 4332 break; 4333 inoref->if_nlink--; 4334 } 4335 } 4336 jsegdep = inoref_jseg(&jaddref->ja_ref); 4337 if (jaddref->ja_state & NEWBLOCK) 4338 move_newblock_dep(jaddref, inodedep); 4339 wake_worklist(&jaddref->ja_list); 4340 jaddref->ja_mkdir = NULL; 4341 if (jaddref->ja_state & INPROGRESS) { 4342 jaddref->ja_state &= ~INPROGRESS; 4343 WORKLIST_REMOVE(&jaddref->ja_list); 4344 jwork_insert(wkhd, jsegdep); 4345 } else { 4346 free_jsegdep(jsegdep); 4347 if (jaddref->ja_state & DEPCOMPLETE) 4348 remove_from_journal(&jaddref->ja_list); 4349 } 4350 jaddref->ja_state |= (GOINGAWAY | DEPCOMPLETE); 4351 /* 4352 * Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove 4353 * can arrange for them to be freed with the bitmap. Otherwise we 4354 * no longer need this addref attached to the inoreflst and it 4355 * will incorrectly adjust nlink if we leave it. 4356 */ 4357 if ((jaddref->ja_state & NEWBLOCK) == 0) { 4358 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, 4359 if_deps); 4360 jaddref->ja_state |= COMPLETE; 4361 free_jaddref(jaddref); 4362 return (needsj); 4363 } 4364 /* 4365 * Leave the head of the list for jsegdeps for fast merging. 4366 */ 4367 if (LIST_FIRST(wkhd) != NULL) { 4368 jaddref->ja_state |= ONWORKLIST; 4369 LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list); 4370 } else 4371 WORKLIST_INSERT(wkhd, &jaddref->ja_list); 4372 4373 return (needsj); 4374 } 4375 4376 /* 4377 * Attempt to free a jaddref structure when some work completes. This 4378 * should only succeed once the entry is written and all dependencies have 4379 * been notified. 4380 */ 4381 static void 4382 free_jaddref(jaddref) 4383 struct jaddref *jaddref; 4384 { 4385 4386 if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE) 4387 return; 4388 if (jaddref->ja_ref.if_jsegdep) 4389 panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n", 4390 jaddref, jaddref->ja_state); 4391 if (jaddref->ja_state & NEWBLOCK) 4392 LIST_REMOVE(jaddref, ja_bmdeps); 4393 if (jaddref->ja_state & (INPROGRESS | ONWORKLIST)) 4394 panic("free_jaddref: Bad state %p(0x%X)", 4395 jaddref, jaddref->ja_state); 4396 if (jaddref->ja_mkdir != NULL) 4397 panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state); 4398 WORKITEM_FREE(jaddref, D_JADDREF); 4399 } 4400 4401 /* 4402 * Free a jremref structure once it has been written or discarded. 4403 */ 4404 static void 4405 free_jremref(jremref) 4406 struct jremref *jremref; 4407 { 4408 4409 if (jremref->jr_ref.if_jsegdep) 4410 free_jsegdep(jremref->jr_ref.if_jsegdep); 4411 if (jremref->jr_state & INPROGRESS) 4412 panic("free_jremref: IO still pending"); 4413 WORKITEM_FREE(jremref, D_JREMREF); 4414 } 4415 4416 /* 4417 * Free a jnewblk structure. 4418 */ 4419 static void 4420 free_jnewblk(jnewblk) 4421 struct jnewblk *jnewblk; 4422 { 4423 4424 if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE) 4425 return; 4426 LIST_REMOVE(jnewblk, jn_deps); 4427 if (jnewblk->jn_dep != NULL) 4428 panic("free_jnewblk: Dependency still attached."); 4429 WORKITEM_FREE(jnewblk, D_JNEWBLK); 4430 } 4431 4432 /* 4433 * Cancel a jnewblk which has been been made redundant by frag extension. 4434 */ 4435 static void 4436 cancel_jnewblk(jnewblk, wkhd) 4437 struct jnewblk *jnewblk; 4438 struct workhead *wkhd; 4439 { 4440 struct jsegdep *jsegdep; 4441 4442 CTR1(KTR_SUJ, "cancel_jnewblk: blkno %jd", jnewblk->jn_blkno); 4443 jsegdep = jnewblk->jn_jsegdep; 4444 if (jnewblk->jn_jsegdep == NULL || jnewblk->jn_dep == NULL) 4445 panic("cancel_jnewblk: Invalid state"); 4446 jnewblk->jn_jsegdep = NULL; 4447 jnewblk->jn_dep = NULL; 4448 jnewblk->jn_state |= GOINGAWAY; 4449 if (jnewblk->jn_state & INPROGRESS) { 4450 jnewblk->jn_state &= ~INPROGRESS; 4451 WORKLIST_REMOVE(&jnewblk->jn_list); 4452 jwork_insert(wkhd, jsegdep); 4453 } else { 4454 free_jsegdep(jsegdep); 4455 remove_from_journal(&jnewblk->jn_list); 4456 } 4457 wake_worklist(&jnewblk->jn_list); 4458 WORKLIST_INSERT(wkhd, &jnewblk->jn_list); 4459 } 4460 4461 static void 4462 free_jblkdep(jblkdep) 4463 struct jblkdep *jblkdep; 4464 { 4465 4466 if (jblkdep->jb_list.wk_type == D_JFREEBLK) 4467 WORKITEM_FREE(jblkdep, D_JFREEBLK); 4468 else if (jblkdep->jb_list.wk_type == D_JTRUNC) 4469 WORKITEM_FREE(jblkdep, D_JTRUNC); 4470 else 4471 panic("free_jblkdep: Unexpected type %s", 4472 TYPENAME(jblkdep->jb_list.wk_type)); 4473 } 4474 4475 /* 4476 * Free a single jseg once it is no longer referenced in memory or on 4477 * disk. Reclaim journal blocks and dependencies waiting for the segment 4478 * to disappear. 4479 */ 4480 static void 4481 free_jseg(jseg, jblocks) 4482 struct jseg *jseg; 4483 struct jblocks *jblocks; 4484 { 4485 struct freework *freework; 4486 4487 /* 4488 * Free freework structures that were lingering to indicate freed 4489 * indirect blocks that forced journal write ordering on reallocate. 4490 */ 4491 while ((freework = LIST_FIRST(&jseg->js_indirs)) != NULL) 4492 indirblk_remove(freework); 4493 if (jblocks->jb_oldestseg == jseg) 4494 jblocks->jb_oldestseg = TAILQ_NEXT(jseg, js_next); 4495 TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next); 4496 jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size); 4497 KASSERT(LIST_EMPTY(&jseg->js_entries), 4498 ("free_jseg: Freed jseg has valid entries.")); 4499 WORKITEM_FREE(jseg, D_JSEG); 4500 } 4501 4502 /* 4503 * Free all jsegs that meet the criteria for being reclaimed and update 4504 * oldestseg. 4505 */ 4506 static void 4507 free_jsegs(jblocks) 4508 struct jblocks *jblocks; 4509 { 4510 struct jseg *jseg; 4511 4512 /* 4513 * Free only those jsegs which have none allocated before them to 4514 * preserve the journal space ordering. 4515 */ 4516 while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) { 4517 /* 4518 * Only reclaim space when nothing depends on this journal 4519 * set and another set has written that it is no longer 4520 * valid. 4521 */ 4522 if (jseg->js_refs != 0) { 4523 jblocks->jb_oldestseg = jseg; 4524 return; 4525 } 4526 if ((jseg->js_state & ALLCOMPLETE) != ALLCOMPLETE) 4527 break; 4528 if (jseg->js_seq > jblocks->jb_oldestwrseq) 4529 break; 4530 /* 4531 * We can free jsegs that didn't write entries when 4532 * oldestwrseq == js_seq. 4533 */ 4534 if (jseg->js_seq == jblocks->jb_oldestwrseq && 4535 jseg->js_cnt != 0) 4536 break; 4537 free_jseg(jseg, jblocks); 4538 } 4539 /* 4540 * If we exited the loop above we still must discover the 4541 * oldest valid segment. 4542 */ 4543 if (jseg) 4544 for (jseg = jblocks->jb_oldestseg; jseg != NULL; 4545 jseg = TAILQ_NEXT(jseg, js_next)) 4546 if (jseg->js_refs != 0) 4547 break; 4548 jblocks->jb_oldestseg = jseg; 4549 /* 4550 * The journal has no valid records but some jsegs may still be 4551 * waiting on oldestwrseq to advance. We force a small record 4552 * out to permit these lingering records to be reclaimed. 4553 */ 4554 if (jblocks->jb_oldestseg == NULL && !TAILQ_EMPTY(&jblocks->jb_segs)) 4555 jblocks->jb_needseg = 1; 4556 } 4557 4558 /* 4559 * Release one reference to a jseg and free it if the count reaches 0. This 4560 * should eventually reclaim journal space as well. 4561 */ 4562 static void 4563 rele_jseg(jseg) 4564 struct jseg *jseg; 4565 { 4566 4567 KASSERT(jseg->js_refs > 0, 4568 ("free_jseg: Invalid refcnt %d", jseg->js_refs)); 4569 if (--jseg->js_refs != 0) 4570 return; 4571 free_jsegs(jseg->js_jblocks); 4572 } 4573 4574 /* 4575 * Release a jsegdep and decrement the jseg count. 4576 */ 4577 static void 4578 free_jsegdep(jsegdep) 4579 struct jsegdep *jsegdep; 4580 { 4581 4582 if (jsegdep->jd_seg) 4583 rele_jseg(jsegdep->jd_seg); 4584 WORKITEM_FREE(jsegdep, D_JSEGDEP); 4585 } 4586 4587 /* 4588 * Wait for a journal item to make it to disk. Initiate journal processing 4589 * if required. 4590 */ 4591 static int 4592 jwait(wk, waitfor) 4593 struct worklist *wk; 4594 int waitfor; 4595 { 4596 4597 LOCK_OWNED(VFSTOUFS(wk->wk_mp)); 4598 /* 4599 * Blocking journal waits cause slow synchronous behavior. Record 4600 * stats on the frequency of these blocking operations. 4601 */ 4602 if (waitfor == MNT_WAIT) { 4603 stat_journal_wait++; 4604 switch (wk->wk_type) { 4605 case D_JREMREF: 4606 case D_JMVREF: 4607 stat_jwait_filepage++; 4608 break; 4609 case D_JTRUNC: 4610 case D_JFREEBLK: 4611 stat_jwait_freeblks++; 4612 break; 4613 case D_JNEWBLK: 4614 stat_jwait_newblk++; 4615 break; 4616 case D_JADDREF: 4617 stat_jwait_inode++; 4618 break; 4619 default: 4620 break; 4621 } 4622 } 4623 /* 4624 * If IO has not started we process the journal. We can't mark the 4625 * worklist item as IOWAITING because we drop the lock while 4626 * processing the journal and the worklist entry may be freed after 4627 * this point. The caller may call back in and re-issue the request. 4628 */ 4629 if ((wk->wk_state & INPROGRESS) == 0) { 4630 softdep_process_journal(wk->wk_mp, wk, waitfor); 4631 if (waitfor != MNT_WAIT) 4632 return (EBUSY); 4633 return (0); 4634 } 4635 if (waitfor != MNT_WAIT) 4636 return (EBUSY); 4637 wait_worklist(wk, "jwait"); 4638 return (0); 4639 } 4640 4641 /* 4642 * Lookup an inodedep based on an inode pointer and set the nlinkdelta as 4643 * appropriate. This is a convenience function to reduce duplicate code 4644 * for the setup and revert functions below. 4645 */ 4646 static struct inodedep * 4647 inodedep_lookup_ip(ip) 4648 struct inode *ip; 4649 { 4650 struct inodedep *inodedep; 4651 4652 KASSERT(ip->i_nlink >= ip->i_effnlink, 4653 ("inodedep_lookup_ip: bad delta")); 4654 (void) inodedep_lookup(ITOVFS(ip), ip->i_number, DEPALLOC, 4655 &inodedep); 4656 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 4657 KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked")); 4658 4659 return (inodedep); 4660 } 4661 4662 /* 4663 * Called prior to creating a new inode and linking it to a directory. The 4664 * jaddref structure must already be allocated by softdep_setup_inomapdep 4665 * and it is discovered here so we can initialize the mode and update 4666 * nlinkdelta. 4667 */ 4668 void 4669 softdep_setup_create(dp, ip) 4670 struct inode *dp; 4671 struct inode *ip; 4672 { 4673 struct inodedep *inodedep; 4674 struct jaddref *jaddref; 4675 struct vnode *dvp; 4676 4677 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4678 ("softdep_setup_create called on non-softdep filesystem")); 4679 KASSERT(ip->i_nlink == 1, 4680 ("softdep_setup_create: Invalid link count.")); 4681 dvp = ITOV(dp); 4682 ACQUIRE_LOCK(ITOUMP(dp)); 4683 inodedep = inodedep_lookup_ip(ip); 4684 if (DOINGSUJ(dvp)) { 4685 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4686 inoreflst); 4687 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 4688 ("softdep_setup_create: No addref structure present.")); 4689 } 4690 softdep_prelink(dvp, NULL); 4691 FREE_LOCK(ITOUMP(dp)); 4692 } 4693 4694 /* 4695 * Create a jaddref structure to track the addition of a DOTDOT link when 4696 * we are reparenting an inode as part of a rename. This jaddref will be 4697 * found by softdep_setup_directory_change. Adjusts nlinkdelta for 4698 * non-journaling softdep. 4699 */ 4700 void 4701 softdep_setup_dotdot_link(dp, ip) 4702 struct inode *dp; 4703 struct inode *ip; 4704 { 4705 struct inodedep *inodedep; 4706 struct jaddref *jaddref; 4707 struct vnode *dvp; 4708 4709 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4710 ("softdep_setup_dotdot_link called on non-softdep filesystem")); 4711 dvp = ITOV(dp); 4712 jaddref = NULL; 4713 /* 4714 * We don't set MKDIR_PARENT as this is not tied to a mkdir and 4715 * is used as a normal link would be. 4716 */ 4717 if (DOINGSUJ(dvp)) 4718 jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET, 4719 dp->i_effnlink - 1, dp->i_mode); 4720 ACQUIRE_LOCK(ITOUMP(dp)); 4721 inodedep = inodedep_lookup_ip(dp); 4722 if (jaddref) 4723 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 4724 if_deps); 4725 softdep_prelink(dvp, ITOV(ip)); 4726 FREE_LOCK(ITOUMP(dp)); 4727 } 4728 4729 /* 4730 * Create a jaddref structure to track a new link to an inode. The directory 4731 * offset is not known until softdep_setup_directory_add or 4732 * softdep_setup_directory_change. Adjusts nlinkdelta for non-journaling 4733 * softdep. 4734 */ 4735 void 4736 softdep_setup_link(dp, ip) 4737 struct inode *dp; 4738 struct inode *ip; 4739 { 4740 struct inodedep *inodedep; 4741 struct jaddref *jaddref; 4742 struct vnode *dvp; 4743 4744 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4745 ("softdep_setup_link called on non-softdep filesystem")); 4746 dvp = ITOV(dp); 4747 jaddref = NULL; 4748 if (DOINGSUJ(dvp)) 4749 jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1, 4750 ip->i_mode); 4751 ACQUIRE_LOCK(ITOUMP(dp)); 4752 inodedep = inodedep_lookup_ip(ip); 4753 if (jaddref) 4754 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 4755 if_deps); 4756 softdep_prelink(dvp, ITOV(ip)); 4757 FREE_LOCK(ITOUMP(dp)); 4758 } 4759 4760 /* 4761 * Called to create the jaddref structures to track . and .. references as 4762 * well as lookup and further initialize the incomplete jaddref created 4763 * by softdep_setup_inomapdep when the inode was allocated. Adjusts 4764 * nlinkdelta for non-journaling softdep. 4765 */ 4766 void 4767 softdep_setup_mkdir(dp, ip) 4768 struct inode *dp; 4769 struct inode *ip; 4770 { 4771 struct inodedep *inodedep; 4772 struct jaddref *dotdotaddref; 4773 struct jaddref *dotaddref; 4774 struct jaddref *jaddref; 4775 struct vnode *dvp; 4776 4777 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4778 ("softdep_setup_mkdir called on non-softdep filesystem")); 4779 dvp = ITOV(dp); 4780 dotaddref = dotdotaddref = NULL; 4781 if (DOINGSUJ(dvp)) { 4782 dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1, 4783 ip->i_mode); 4784 dotaddref->ja_state |= MKDIR_BODY; 4785 dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET, 4786 dp->i_effnlink - 1, dp->i_mode); 4787 dotdotaddref->ja_state |= MKDIR_PARENT; 4788 } 4789 ACQUIRE_LOCK(ITOUMP(dp)); 4790 inodedep = inodedep_lookup_ip(ip); 4791 if (DOINGSUJ(dvp)) { 4792 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4793 inoreflst); 4794 KASSERT(jaddref != NULL, 4795 ("softdep_setup_mkdir: No addref structure present.")); 4796 KASSERT(jaddref->ja_parent == dp->i_number, 4797 ("softdep_setup_mkdir: bad parent %ju", 4798 (uintmax_t)jaddref->ja_parent)); 4799 TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref, 4800 if_deps); 4801 } 4802 inodedep = inodedep_lookup_ip(dp); 4803 if (DOINGSUJ(dvp)) 4804 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, 4805 &dotdotaddref->ja_ref, if_deps); 4806 softdep_prelink(ITOV(dp), NULL); 4807 FREE_LOCK(ITOUMP(dp)); 4808 } 4809 4810 /* 4811 * Called to track nlinkdelta of the inode and parent directories prior to 4812 * unlinking a directory. 4813 */ 4814 void 4815 softdep_setup_rmdir(dp, ip) 4816 struct inode *dp; 4817 struct inode *ip; 4818 { 4819 struct vnode *dvp; 4820 4821 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4822 ("softdep_setup_rmdir called on non-softdep filesystem")); 4823 dvp = ITOV(dp); 4824 ACQUIRE_LOCK(ITOUMP(dp)); 4825 (void) inodedep_lookup_ip(ip); 4826 (void) inodedep_lookup_ip(dp); 4827 softdep_prelink(dvp, ITOV(ip)); 4828 FREE_LOCK(ITOUMP(dp)); 4829 } 4830 4831 /* 4832 * Called to track nlinkdelta of the inode and parent directories prior to 4833 * unlink. 4834 */ 4835 void 4836 softdep_setup_unlink(dp, ip) 4837 struct inode *dp; 4838 struct inode *ip; 4839 { 4840 struct vnode *dvp; 4841 4842 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4843 ("softdep_setup_unlink called on non-softdep filesystem")); 4844 dvp = ITOV(dp); 4845 ACQUIRE_LOCK(ITOUMP(dp)); 4846 (void) inodedep_lookup_ip(ip); 4847 (void) inodedep_lookup_ip(dp); 4848 softdep_prelink(dvp, ITOV(ip)); 4849 FREE_LOCK(ITOUMP(dp)); 4850 } 4851 4852 /* 4853 * Called to release the journal structures created by a failed non-directory 4854 * creation. Adjusts nlinkdelta for non-journaling softdep. 4855 */ 4856 void 4857 softdep_revert_create(dp, ip) 4858 struct inode *dp; 4859 struct inode *ip; 4860 { 4861 struct inodedep *inodedep; 4862 struct jaddref *jaddref; 4863 struct vnode *dvp; 4864 4865 KASSERT(MOUNTEDSOFTDEP(ITOVFS((dp))) != 0, 4866 ("softdep_revert_create called on non-softdep filesystem")); 4867 dvp = ITOV(dp); 4868 ACQUIRE_LOCK(ITOUMP(dp)); 4869 inodedep = inodedep_lookup_ip(ip); 4870 if (DOINGSUJ(dvp)) { 4871 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4872 inoreflst); 4873 KASSERT(jaddref->ja_parent == dp->i_number, 4874 ("softdep_revert_create: addref parent mismatch")); 4875 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4876 } 4877 FREE_LOCK(ITOUMP(dp)); 4878 } 4879 4880 /* 4881 * Called to release the journal structures created by a failed link 4882 * addition. Adjusts nlinkdelta for non-journaling softdep. 4883 */ 4884 void 4885 softdep_revert_link(dp, ip) 4886 struct inode *dp; 4887 struct inode *ip; 4888 { 4889 struct inodedep *inodedep; 4890 struct jaddref *jaddref; 4891 struct vnode *dvp; 4892 4893 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4894 ("softdep_revert_link called on non-softdep filesystem")); 4895 dvp = ITOV(dp); 4896 ACQUIRE_LOCK(ITOUMP(dp)); 4897 inodedep = inodedep_lookup_ip(ip); 4898 if (DOINGSUJ(dvp)) { 4899 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4900 inoreflst); 4901 KASSERT(jaddref->ja_parent == dp->i_number, 4902 ("softdep_revert_link: addref parent mismatch")); 4903 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4904 } 4905 FREE_LOCK(ITOUMP(dp)); 4906 } 4907 4908 /* 4909 * Called to release the journal structures created by a failed mkdir 4910 * attempt. Adjusts nlinkdelta for non-journaling softdep. 4911 */ 4912 void 4913 softdep_revert_mkdir(dp, ip) 4914 struct inode *dp; 4915 struct inode *ip; 4916 { 4917 struct inodedep *inodedep; 4918 struct jaddref *jaddref; 4919 struct jaddref *dotaddref; 4920 struct vnode *dvp; 4921 4922 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4923 ("softdep_revert_mkdir called on non-softdep filesystem")); 4924 dvp = ITOV(dp); 4925 4926 ACQUIRE_LOCK(ITOUMP(dp)); 4927 inodedep = inodedep_lookup_ip(dp); 4928 if (DOINGSUJ(dvp)) { 4929 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4930 inoreflst); 4931 KASSERT(jaddref->ja_parent == ip->i_number, 4932 ("softdep_revert_mkdir: dotdot addref parent mismatch")); 4933 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4934 } 4935 inodedep = inodedep_lookup_ip(ip); 4936 if (DOINGSUJ(dvp)) { 4937 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4938 inoreflst); 4939 KASSERT(jaddref->ja_parent == dp->i_number, 4940 ("softdep_revert_mkdir: addref parent mismatch")); 4941 dotaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref, 4942 inoreflst, if_deps); 4943 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4944 KASSERT(dotaddref->ja_parent == ip->i_number, 4945 ("softdep_revert_mkdir: dot addref parent mismatch")); 4946 cancel_jaddref(dotaddref, inodedep, &inodedep->id_inowait); 4947 } 4948 FREE_LOCK(ITOUMP(dp)); 4949 } 4950 4951 /* 4952 * Called to correct nlinkdelta after a failed rmdir. 4953 */ 4954 void 4955 softdep_revert_rmdir(dp, ip) 4956 struct inode *dp; 4957 struct inode *ip; 4958 { 4959 4960 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4961 ("softdep_revert_rmdir called on non-softdep filesystem")); 4962 ACQUIRE_LOCK(ITOUMP(dp)); 4963 (void) inodedep_lookup_ip(ip); 4964 (void) inodedep_lookup_ip(dp); 4965 FREE_LOCK(ITOUMP(dp)); 4966 } 4967 4968 /* 4969 * Protecting the freemaps (or bitmaps). 4970 * 4971 * To eliminate the need to execute fsck before mounting a filesystem 4972 * after a power failure, one must (conservatively) guarantee that the 4973 * on-disk copy of the bitmaps never indicate that a live inode or block is 4974 * free. So, when a block or inode is allocated, the bitmap should be 4975 * updated (on disk) before any new pointers. When a block or inode is 4976 * freed, the bitmap should not be updated until all pointers have been 4977 * reset. The latter dependency is handled by the delayed de-allocation 4978 * approach described below for block and inode de-allocation. The former 4979 * dependency is handled by calling the following procedure when a block or 4980 * inode is allocated. When an inode is allocated an "inodedep" is created 4981 * with its DEPCOMPLETE flag cleared until its bitmap is written to disk. 4982 * Each "inodedep" is also inserted into the hash indexing structure so 4983 * that any additional link additions can be made dependent on the inode 4984 * allocation. 4985 * 4986 * The ufs filesystem maintains a number of free block counts (e.g., per 4987 * cylinder group, per cylinder and per <cylinder, rotational position> pair) 4988 * in addition to the bitmaps. These counts are used to improve efficiency 4989 * during allocation and therefore must be consistent with the bitmaps. 4990 * There is no convenient way to guarantee post-crash consistency of these 4991 * counts with simple update ordering, for two main reasons: (1) The counts 4992 * and bitmaps for a single cylinder group block are not in the same disk 4993 * sector. If a disk write is interrupted (e.g., by power failure), one may 4994 * be written and the other not. (2) Some of the counts are located in the 4995 * superblock rather than the cylinder group block. So, we focus our soft 4996 * updates implementation on protecting the bitmaps. When mounting a 4997 * filesystem, we recompute the auxiliary counts from the bitmaps. 4998 */ 4999 5000 /* 5001 * Called just after updating the cylinder group block to allocate an inode. 5002 */ 5003 void 5004 softdep_setup_inomapdep(bp, ip, newinum, mode) 5005 struct buf *bp; /* buffer for cylgroup block with inode map */ 5006 struct inode *ip; /* inode related to allocation */ 5007 ino_t newinum; /* new inode number being allocated */ 5008 int mode; 5009 { 5010 struct inodedep *inodedep; 5011 struct bmsafemap *bmsafemap; 5012 struct jaddref *jaddref; 5013 struct mount *mp; 5014 struct fs *fs; 5015 5016 mp = ITOVFS(ip); 5017 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5018 ("softdep_setup_inomapdep called on non-softdep filesystem")); 5019 fs = VFSTOUFS(mp)->um_fs; 5020 jaddref = NULL; 5021 5022 /* 5023 * Allocate the journal reference add structure so that the bitmap 5024 * can be dependent on it. 5025 */ 5026 if (MOUNTEDSUJ(mp)) { 5027 jaddref = newjaddref(ip, newinum, 0, 0, mode); 5028 jaddref->ja_state |= NEWBLOCK; 5029 } 5030 5031 /* 5032 * Create a dependency for the newly allocated inode. 5033 * Panic if it already exists as something is seriously wrong. 5034 * Otherwise add it to the dependency list for the buffer holding 5035 * the cylinder group map from which it was allocated. 5036 * 5037 * We have to preallocate a bmsafemap entry in case it is needed 5038 * in bmsafemap_lookup since once we allocate the inodedep, we 5039 * have to finish initializing it before we can FREE_LOCK(). 5040 * By preallocating, we avoid FREE_LOCK() while doing a malloc 5041 * in bmsafemap_lookup. We cannot call bmsafemap_lookup before 5042 * creating the inodedep as it can be freed during the time 5043 * that we FREE_LOCK() while allocating the inodedep. We must 5044 * call workitem_alloc() before entering the locked section as 5045 * it also acquires the lock and we must avoid trying doing so 5046 * recursively. 5047 */ 5048 bmsafemap = malloc(sizeof(struct bmsafemap), 5049 M_BMSAFEMAP, M_SOFTDEP_FLAGS); 5050 workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp); 5051 ACQUIRE_LOCK(ITOUMP(ip)); 5052 if ((inodedep_lookup(mp, newinum, DEPALLOC, &inodedep))) 5053 panic("softdep_setup_inomapdep: dependency %p for new" 5054 "inode already exists", inodedep); 5055 bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum), bmsafemap); 5056 if (jaddref) { 5057 LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps); 5058 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 5059 if_deps); 5060 } else { 5061 inodedep->id_state |= ONDEPLIST; 5062 LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps); 5063 } 5064 inodedep->id_bmsafemap = bmsafemap; 5065 inodedep->id_state &= ~DEPCOMPLETE; 5066 FREE_LOCK(ITOUMP(ip)); 5067 } 5068 5069 /* 5070 * Called just after updating the cylinder group block to 5071 * allocate block or fragment. 5072 */ 5073 void 5074 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags) 5075 struct buf *bp; /* buffer for cylgroup block with block map */ 5076 struct mount *mp; /* filesystem doing allocation */ 5077 ufs2_daddr_t newblkno; /* number of newly allocated block */ 5078 int frags; /* Number of fragments. */ 5079 int oldfrags; /* Previous number of fragments for extend. */ 5080 { 5081 struct newblk *newblk; 5082 struct bmsafemap *bmsafemap; 5083 struct jnewblk *jnewblk; 5084 struct ufsmount *ump; 5085 struct fs *fs; 5086 5087 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5088 ("softdep_setup_blkmapdep called on non-softdep filesystem")); 5089 ump = VFSTOUFS(mp); 5090 fs = ump->um_fs; 5091 jnewblk = NULL; 5092 /* 5093 * Create a dependency for the newly allocated block. 5094 * Add it to the dependency list for the buffer holding 5095 * the cylinder group map from which it was allocated. 5096 */ 5097 if (MOUNTEDSUJ(mp)) { 5098 jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS); 5099 workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp); 5100 jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list); 5101 jnewblk->jn_state = ATTACHED; 5102 jnewblk->jn_blkno = newblkno; 5103 jnewblk->jn_frags = frags; 5104 jnewblk->jn_oldfrags = oldfrags; 5105 #ifdef SUJ_DEBUG 5106 { 5107 struct cg *cgp; 5108 uint8_t *blksfree; 5109 long bno; 5110 int i; 5111 5112 cgp = (struct cg *)bp->b_data; 5113 blksfree = cg_blksfree(cgp); 5114 bno = dtogd(fs, jnewblk->jn_blkno); 5115 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; 5116 i++) { 5117 if (isset(blksfree, bno + i)) 5118 panic("softdep_setup_blkmapdep: " 5119 "free fragment %d from %d-%d " 5120 "state 0x%X dep %p", i, 5121 jnewblk->jn_oldfrags, 5122 jnewblk->jn_frags, 5123 jnewblk->jn_state, 5124 jnewblk->jn_dep); 5125 } 5126 } 5127 #endif 5128 } 5129 5130 CTR3(KTR_SUJ, 5131 "softdep_setup_blkmapdep: blkno %jd frags %d oldfrags %d", 5132 newblkno, frags, oldfrags); 5133 ACQUIRE_LOCK(ump); 5134 if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0) 5135 panic("softdep_setup_blkmapdep: found block"); 5136 newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp, 5137 dtog(fs, newblkno), NULL); 5138 if (jnewblk) { 5139 jnewblk->jn_dep = (struct worklist *)newblk; 5140 LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps); 5141 } else { 5142 newblk->nb_state |= ONDEPLIST; 5143 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps); 5144 } 5145 newblk->nb_bmsafemap = bmsafemap; 5146 newblk->nb_jnewblk = jnewblk; 5147 FREE_LOCK(ump); 5148 } 5149 5150 #define BMSAFEMAP_HASH(ump, cg) \ 5151 (&(ump)->bmsafemap_hashtbl[(cg) & (ump)->bmsafemap_hash_size]) 5152 5153 static int 5154 bmsafemap_find(bmsafemaphd, cg, bmsafemapp) 5155 struct bmsafemap_hashhead *bmsafemaphd; 5156 int cg; 5157 struct bmsafemap **bmsafemapp; 5158 { 5159 struct bmsafemap *bmsafemap; 5160 5161 LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash) 5162 if (bmsafemap->sm_cg == cg) 5163 break; 5164 if (bmsafemap) { 5165 *bmsafemapp = bmsafemap; 5166 return (1); 5167 } 5168 *bmsafemapp = NULL; 5169 5170 return (0); 5171 } 5172 5173 /* 5174 * Find the bmsafemap associated with a cylinder group buffer. 5175 * If none exists, create one. The buffer must be locked when 5176 * this routine is called and this routine must be called with 5177 * the softdep lock held. To avoid giving up the lock while 5178 * allocating a new bmsafemap, a preallocated bmsafemap may be 5179 * provided. If it is provided but not needed, it is freed. 5180 */ 5181 static struct bmsafemap * 5182 bmsafemap_lookup(mp, bp, cg, newbmsafemap) 5183 struct mount *mp; 5184 struct buf *bp; 5185 int cg; 5186 struct bmsafemap *newbmsafemap; 5187 { 5188 struct bmsafemap_hashhead *bmsafemaphd; 5189 struct bmsafemap *bmsafemap, *collision; 5190 struct worklist *wk; 5191 struct ufsmount *ump; 5192 5193 ump = VFSTOUFS(mp); 5194 LOCK_OWNED(ump); 5195 KASSERT(bp != NULL, ("bmsafemap_lookup: missing buffer")); 5196 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 5197 if (wk->wk_type == D_BMSAFEMAP) { 5198 if (newbmsafemap) 5199 WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP); 5200 return (WK_BMSAFEMAP(wk)); 5201 } 5202 } 5203 bmsafemaphd = BMSAFEMAP_HASH(ump, cg); 5204 if (bmsafemap_find(bmsafemaphd, cg, &bmsafemap) == 1) { 5205 if (newbmsafemap) 5206 WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP); 5207 return (bmsafemap); 5208 } 5209 if (newbmsafemap) { 5210 bmsafemap = newbmsafemap; 5211 } else { 5212 FREE_LOCK(ump); 5213 bmsafemap = malloc(sizeof(struct bmsafemap), 5214 M_BMSAFEMAP, M_SOFTDEP_FLAGS); 5215 workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp); 5216 ACQUIRE_LOCK(ump); 5217 } 5218 bmsafemap->sm_buf = bp; 5219 LIST_INIT(&bmsafemap->sm_inodedephd); 5220 LIST_INIT(&bmsafemap->sm_inodedepwr); 5221 LIST_INIT(&bmsafemap->sm_newblkhd); 5222 LIST_INIT(&bmsafemap->sm_newblkwr); 5223 LIST_INIT(&bmsafemap->sm_jaddrefhd); 5224 LIST_INIT(&bmsafemap->sm_jnewblkhd); 5225 LIST_INIT(&bmsafemap->sm_freehd); 5226 LIST_INIT(&bmsafemap->sm_freewr); 5227 if (bmsafemap_find(bmsafemaphd, cg, &collision) == 1) { 5228 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); 5229 return (collision); 5230 } 5231 bmsafemap->sm_cg = cg; 5232 LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash); 5233 LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next); 5234 WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list); 5235 return (bmsafemap); 5236 } 5237 5238 /* 5239 * Direct block allocation dependencies. 5240 * 5241 * When a new block is allocated, the corresponding disk locations must be 5242 * initialized (with zeros or new data) before the on-disk inode points to 5243 * them. Also, the freemap from which the block was allocated must be 5244 * updated (on disk) before the inode's pointer. These two dependencies are 5245 * independent of each other and are needed for all file blocks and indirect 5246 * blocks that are pointed to directly by the inode. Just before the 5247 * "in-core" version of the inode is updated with a newly allocated block 5248 * number, a procedure (below) is called to setup allocation dependency 5249 * structures. These structures are removed when the corresponding 5250 * dependencies are satisfied or when the block allocation becomes obsolete 5251 * (i.e., the file is deleted, the block is de-allocated, or the block is a 5252 * fragment that gets upgraded). All of these cases are handled in 5253 * procedures described later. 5254 * 5255 * When a file extension causes a fragment to be upgraded, either to a larger 5256 * fragment or to a full block, the on-disk location may change (if the 5257 * previous fragment could not simply be extended). In this case, the old 5258 * fragment must be de-allocated, but not until after the inode's pointer has 5259 * been updated. In most cases, this is handled by later procedures, which 5260 * will construct a "freefrag" structure to be added to the workitem queue 5261 * when the inode update is complete (or obsolete). The main exception to 5262 * this is when an allocation occurs while a pending allocation dependency 5263 * (for the same block pointer) remains. This case is handled in the main 5264 * allocation dependency setup procedure by immediately freeing the 5265 * unreferenced fragments. 5266 */ 5267 void 5268 softdep_setup_allocdirect(ip, off, newblkno, oldblkno, newsize, oldsize, bp) 5269 struct inode *ip; /* inode to which block is being added */ 5270 ufs_lbn_t off; /* block pointer within inode */ 5271 ufs2_daddr_t newblkno; /* disk block number being added */ 5272 ufs2_daddr_t oldblkno; /* previous block number, 0 unless frag */ 5273 long newsize; /* size of new block */ 5274 long oldsize; /* size of new block */ 5275 struct buf *bp; /* bp for allocated block */ 5276 { 5277 struct allocdirect *adp, *oldadp; 5278 struct allocdirectlst *adphead; 5279 struct freefrag *freefrag; 5280 struct inodedep *inodedep; 5281 struct pagedep *pagedep; 5282 struct jnewblk *jnewblk; 5283 struct newblk *newblk; 5284 struct mount *mp; 5285 ufs_lbn_t lbn; 5286 5287 lbn = bp->b_lblkno; 5288 mp = ITOVFS(ip); 5289 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5290 ("softdep_setup_allocdirect called on non-softdep filesystem")); 5291 if (oldblkno && oldblkno != newblkno) 5292 freefrag = newfreefrag(ip, oldblkno, oldsize, lbn); 5293 else 5294 freefrag = NULL; 5295 5296 CTR6(KTR_SUJ, 5297 "softdep_setup_allocdirect: ino %d blkno %jd oldblkno %jd " 5298 "off %jd newsize %ld oldsize %d", 5299 ip->i_number, newblkno, oldblkno, off, newsize, oldsize); 5300 ACQUIRE_LOCK(ITOUMP(ip)); 5301 if (off >= UFS_NDADDR) { 5302 if (lbn > 0) 5303 panic("softdep_setup_allocdirect: bad lbn %jd, off %jd", 5304 lbn, off); 5305 /* allocating an indirect block */ 5306 if (oldblkno != 0) 5307 panic("softdep_setup_allocdirect: non-zero indir"); 5308 } else { 5309 if (off != lbn) 5310 panic("softdep_setup_allocdirect: lbn %jd != off %jd", 5311 lbn, off); 5312 /* 5313 * Allocating a direct block. 5314 * 5315 * If we are allocating a directory block, then we must 5316 * allocate an associated pagedep to track additions and 5317 * deletions. 5318 */ 5319 if ((ip->i_mode & IFMT) == IFDIR) 5320 pagedep_lookup(mp, bp, ip->i_number, off, DEPALLOC, 5321 &pagedep); 5322 } 5323 if (newblk_lookup(mp, newblkno, 0, &newblk) == 0) 5324 panic("softdep_setup_allocdirect: lost block"); 5325 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 5326 ("softdep_setup_allocdirect: newblk already initialized")); 5327 /* 5328 * Convert the newblk to an allocdirect. 5329 */ 5330 WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT); 5331 adp = (struct allocdirect *)newblk; 5332 newblk->nb_freefrag = freefrag; 5333 adp->ad_offset = off; 5334 adp->ad_oldblkno = oldblkno; 5335 adp->ad_newsize = newsize; 5336 adp->ad_oldsize = oldsize; 5337 5338 /* 5339 * Finish initializing the journal. 5340 */ 5341 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 5342 jnewblk->jn_ino = ip->i_number; 5343 jnewblk->jn_lbn = lbn; 5344 add_to_journal(&jnewblk->jn_list); 5345 } 5346 if (freefrag && freefrag->ff_jdep != NULL && 5347 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 5348 add_to_journal(freefrag->ff_jdep); 5349 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 5350 adp->ad_inodedep = inodedep; 5351 5352 WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list); 5353 /* 5354 * The list of allocdirects must be kept in sorted and ascending 5355 * order so that the rollback routines can quickly determine the 5356 * first uncommitted block (the size of the file stored on disk 5357 * ends at the end of the lowest committed fragment, or if there 5358 * are no fragments, at the end of the highest committed block). 5359 * Since files generally grow, the typical case is that the new 5360 * block is to be added at the end of the list. We speed this 5361 * special case by checking against the last allocdirect in the 5362 * list before laboriously traversing the list looking for the 5363 * insertion point. 5364 */ 5365 adphead = &inodedep->id_newinoupdt; 5366 oldadp = TAILQ_LAST(adphead, allocdirectlst); 5367 if (oldadp == NULL || oldadp->ad_offset <= off) { 5368 /* insert at end of list */ 5369 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 5370 if (oldadp != NULL && oldadp->ad_offset == off) 5371 allocdirect_merge(adphead, adp, oldadp); 5372 FREE_LOCK(ITOUMP(ip)); 5373 return; 5374 } 5375 TAILQ_FOREACH(oldadp, adphead, ad_next) { 5376 if (oldadp->ad_offset >= off) 5377 break; 5378 } 5379 if (oldadp == NULL) 5380 panic("softdep_setup_allocdirect: lost entry"); 5381 /* insert in middle of list */ 5382 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 5383 if (oldadp->ad_offset == off) 5384 allocdirect_merge(adphead, adp, oldadp); 5385 5386 FREE_LOCK(ITOUMP(ip)); 5387 } 5388 5389 /* 5390 * Merge a newer and older journal record to be stored either in a 5391 * newblock or freefrag. This handles aggregating journal records for 5392 * fragment allocation into a second record as well as replacing a 5393 * journal free with an aborted journal allocation. A segment for the 5394 * oldest record will be placed on wkhd if it has been written. If not 5395 * the segment for the newer record will suffice. 5396 */ 5397 static struct worklist * 5398 jnewblk_merge(new, old, wkhd) 5399 struct worklist *new; 5400 struct worklist *old; 5401 struct workhead *wkhd; 5402 { 5403 struct jnewblk *njnewblk; 5404 struct jnewblk *jnewblk; 5405 5406 /* Handle NULLs to simplify callers. */ 5407 if (new == NULL) 5408 return (old); 5409 if (old == NULL) 5410 return (new); 5411 /* Replace a jfreefrag with a jnewblk. */ 5412 if (new->wk_type == D_JFREEFRAG) { 5413 if (WK_JNEWBLK(old)->jn_blkno != WK_JFREEFRAG(new)->fr_blkno) 5414 panic("jnewblk_merge: blkno mismatch: %p, %p", 5415 old, new); 5416 cancel_jfreefrag(WK_JFREEFRAG(new)); 5417 return (old); 5418 } 5419 if (old->wk_type != D_JNEWBLK || new->wk_type != D_JNEWBLK) 5420 panic("jnewblk_merge: Bad type: old %d new %d\n", 5421 old->wk_type, new->wk_type); 5422 /* 5423 * Handle merging of two jnewblk records that describe 5424 * different sets of fragments in the same block. 5425 */ 5426 jnewblk = WK_JNEWBLK(old); 5427 njnewblk = WK_JNEWBLK(new); 5428 if (jnewblk->jn_blkno != njnewblk->jn_blkno) 5429 panic("jnewblk_merge: Merging disparate blocks."); 5430 /* 5431 * The record may be rolled back in the cg. 5432 */ 5433 if (jnewblk->jn_state & UNDONE) { 5434 jnewblk->jn_state &= ~UNDONE; 5435 njnewblk->jn_state |= UNDONE; 5436 njnewblk->jn_state &= ~ATTACHED; 5437 } 5438 /* 5439 * We modify the newer addref and free the older so that if neither 5440 * has been written the most up-to-date copy will be on disk. If 5441 * both have been written but rolled back we only temporarily need 5442 * one of them to fix the bits when the cg write completes. 5443 */ 5444 jnewblk->jn_state |= ATTACHED | COMPLETE; 5445 njnewblk->jn_oldfrags = jnewblk->jn_oldfrags; 5446 cancel_jnewblk(jnewblk, wkhd); 5447 WORKLIST_REMOVE(&jnewblk->jn_list); 5448 free_jnewblk(jnewblk); 5449 return (new); 5450 } 5451 5452 /* 5453 * Replace an old allocdirect dependency with a newer one. 5454 * This routine must be called with splbio interrupts blocked. 5455 */ 5456 static void 5457 allocdirect_merge(adphead, newadp, oldadp) 5458 struct allocdirectlst *adphead; /* head of list holding allocdirects */ 5459 struct allocdirect *newadp; /* allocdirect being added */ 5460 struct allocdirect *oldadp; /* existing allocdirect being checked */ 5461 { 5462 struct worklist *wk; 5463 struct freefrag *freefrag; 5464 5465 freefrag = NULL; 5466 LOCK_OWNED(VFSTOUFS(newadp->ad_list.wk_mp)); 5467 if (newadp->ad_oldblkno != oldadp->ad_newblkno || 5468 newadp->ad_oldsize != oldadp->ad_newsize || 5469 newadp->ad_offset >= UFS_NDADDR) 5470 panic("%s %jd != new %jd || old size %ld != new %ld", 5471 "allocdirect_merge: old blkno", 5472 (intmax_t)newadp->ad_oldblkno, 5473 (intmax_t)oldadp->ad_newblkno, 5474 newadp->ad_oldsize, oldadp->ad_newsize); 5475 newadp->ad_oldblkno = oldadp->ad_oldblkno; 5476 newadp->ad_oldsize = oldadp->ad_oldsize; 5477 /* 5478 * If the old dependency had a fragment to free or had never 5479 * previously had a block allocated, then the new dependency 5480 * can immediately post its freefrag and adopt the old freefrag. 5481 * This action is done by swapping the freefrag dependencies. 5482 * The new dependency gains the old one's freefrag, and the 5483 * old one gets the new one and then immediately puts it on 5484 * the worklist when it is freed by free_newblk. It is 5485 * not possible to do this swap when the old dependency had a 5486 * non-zero size but no previous fragment to free. This condition 5487 * arises when the new block is an extension of the old block. 5488 * Here, the first part of the fragment allocated to the new 5489 * dependency is part of the block currently claimed on disk by 5490 * the old dependency, so cannot legitimately be freed until the 5491 * conditions for the new dependency are fulfilled. 5492 */ 5493 freefrag = newadp->ad_freefrag; 5494 if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) { 5495 newadp->ad_freefrag = oldadp->ad_freefrag; 5496 oldadp->ad_freefrag = freefrag; 5497 } 5498 /* 5499 * If we are tracking a new directory-block allocation, 5500 * move it from the old allocdirect to the new allocdirect. 5501 */ 5502 if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) { 5503 WORKLIST_REMOVE(wk); 5504 if (!LIST_EMPTY(&oldadp->ad_newdirblk)) 5505 panic("allocdirect_merge: extra newdirblk"); 5506 WORKLIST_INSERT(&newadp->ad_newdirblk, wk); 5507 } 5508 TAILQ_REMOVE(adphead, oldadp, ad_next); 5509 /* 5510 * We need to move any journal dependencies over to the freefrag 5511 * that releases this block if it exists. Otherwise we are 5512 * extending an existing block and we'll wait until that is 5513 * complete to release the journal space and extend the 5514 * new journal to cover this old space as well. 5515 */ 5516 if (freefrag == NULL) { 5517 if (oldadp->ad_newblkno != newadp->ad_newblkno) 5518 panic("allocdirect_merge: %jd != %jd", 5519 oldadp->ad_newblkno, newadp->ad_newblkno); 5520 newadp->ad_block.nb_jnewblk = (struct jnewblk *) 5521 jnewblk_merge(&newadp->ad_block.nb_jnewblk->jn_list, 5522 &oldadp->ad_block.nb_jnewblk->jn_list, 5523 &newadp->ad_block.nb_jwork); 5524 oldadp->ad_block.nb_jnewblk = NULL; 5525 cancel_newblk(&oldadp->ad_block, NULL, 5526 &newadp->ad_block.nb_jwork); 5527 } else { 5528 wk = (struct worklist *) cancel_newblk(&oldadp->ad_block, 5529 &freefrag->ff_list, &freefrag->ff_jwork); 5530 freefrag->ff_jdep = jnewblk_merge(freefrag->ff_jdep, wk, 5531 &freefrag->ff_jwork); 5532 } 5533 free_newblk(&oldadp->ad_block); 5534 } 5535 5536 /* 5537 * Allocate a jfreefrag structure to journal a single block free. 5538 */ 5539 static struct jfreefrag * 5540 newjfreefrag(freefrag, ip, blkno, size, lbn) 5541 struct freefrag *freefrag; 5542 struct inode *ip; 5543 ufs2_daddr_t blkno; 5544 long size; 5545 ufs_lbn_t lbn; 5546 { 5547 struct jfreefrag *jfreefrag; 5548 struct fs *fs; 5549 5550 fs = ITOFS(ip); 5551 jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG, 5552 M_SOFTDEP_FLAGS); 5553 workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, ITOVFS(ip)); 5554 jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list); 5555 jfreefrag->fr_state = ATTACHED | DEPCOMPLETE; 5556 jfreefrag->fr_ino = ip->i_number; 5557 jfreefrag->fr_lbn = lbn; 5558 jfreefrag->fr_blkno = blkno; 5559 jfreefrag->fr_frags = numfrags(fs, size); 5560 jfreefrag->fr_freefrag = freefrag; 5561 5562 return (jfreefrag); 5563 } 5564 5565 /* 5566 * Allocate a new freefrag structure. 5567 */ 5568 static struct freefrag * 5569 newfreefrag(ip, blkno, size, lbn) 5570 struct inode *ip; 5571 ufs2_daddr_t blkno; 5572 long size; 5573 ufs_lbn_t lbn; 5574 { 5575 struct freefrag *freefrag; 5576 struct ufsmount *ump; 5577 struct fs *fs; 5578 5579 CTR4(KTR_SUJ, "newfreefrag: ino %d blkno %jd size %ld lbn %jd", 5580 ip->i_number, blkno, size, lbn); 5581 ump = ITOUMP(ip); 5582 fs = ump->um_fs; 5583 if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag) 5584 panic("newfreefrag: frag size"); 5585 freefrag = malloc(sizeof(struct freefrag), 5586 M_FREEFRAG, M_SOFTDEP_FLAGS); 5587 workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ump)); 5588 freefrag->ff_state = ATTACHED; 5589 LIST_INIT(&freefrag->ff_jwork); 5590 freefrag->ff_inum = ip->i_number; 5591 freefrag->ff_vtype = ITOV(ip)->v_type; 5592 freefrag->ff_blkno = blkno; 5593 freefrag->ff_fragsize = size; 5594 5595 if (MOUNTEDSUJ(UFSTOVFS(ump))) { 5596 freefrag->ff_jdep = (struct worklist *) 5597 newjfreefrag(freefrag, ip, blkno, size, lbn); 5598 } else { 5599 freefrag->ff_state |= DEPCOMPLETE; 5600 freefrag->ff_jdep = NULL; 5601 } 5602 5603 return (freefrag); 5604 } 5605 5606 /* 5607 * This workitem de-allocates fragments that were replaced during 5608 * file block allocation. 5609 */ 5610 static void 5611 handle_workitem_freefrag(freefrag) 5612 struct freefrag *freefrag; 5613 { 5614 struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp); 5615 struct workhead wkhd; 5616 5617 CTR3(KTR_SUJ, 5618 "handle_workitem_freefrag: ino %d blkno %jd size %ld", 5619 freefrag->ff_inum, freefrag->ff_blkno, freefrag->ff_fragsize); 5620 /* 5621 * It would be illegal to add new completion items to the 5622 * freefrag after it was schedule to be done so it must be 5623 * safe to modify the list head here. 5624 */ 5625 LIST_INIT(&wkhd); 5626 ACQUIRE_LOCK(ump); 5627 LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list); 5628 /* 5629 * If the journal has not been written we must cancel it here. 5630 */ 5631 if (freefrag->ff_jdep) { 5632 if (freefrag->ff_jdep->wk_type != D_JNEWBLK) 5633 panic("handle_workitem_freefrag: Unexpected type %d\n", 5634 freefrag->ff_jdep->wk_type); 5635 cancel_jnewblk(WK_JNEWBLK(freefrag->ff_jdep), &wkhd); 5636 } 5637 FREE_LOCK(ump); 5638 ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno, 5639 freefrag->ff_fragsize, freefrag->ff_inum, freefrag->ff_vtype, &wkhd); 5640 ACQUIRE_LOCK(ump); 5641 WORKITEM_FREE(freefrag, D_FREEFRAG); 5642 FREE_LOCK(ump); 5643 } 5644 5645 /* 5646 * Set up a dependency structure for an external attributes data block. 5647 * This routine follows much of the structure of softdep_setup_allocdirect. 5648 * See the description of softdep_setup_allocdirect above for details. 5649 */ 5650 void 5651 softdep_setup_allocext(ip, off, newblkno, oldblkno, newsize, oldsize, bp) 5652 struct inode *ip; 5653 ufs_lbn_t off; 5654 ufs2_daddr_t newblkno; 5655 ufs2_daddr_t oldblkno; 5656 long newsize; 5657 long oldsize; 5658 struct buf *bp; 5659 { 5660 struct allocdirect *adp, *oldadp; 5661 struct allocdirectlst *adphead; 5662 struct freefrag *freefrag; 5663 struct inodedep *inodedep; 5664 struct jnewblk *jnewblk; 5665 struct newblk *newblk; 5666 struct mount *mp; 5667 struct ufsmount *ump; 5668 ufs_lbn_t lbn; 5669 5670 mp = ITOVFS(ip); 5671 ump = VFSTOUFS(mp); 5672 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5673 ("softdep_setup_allocext called on non-softdep filesystem")); 5674 KASSERT(off < UFS_NXADDR, 5675 ("softdep_setup_allocext: lbn %lld > UFS_NXADDR", (long long)off)); 5676 5677 lbn = bp->b_lblkno; 5678 if (oldblkno && oldblkno != newblkno) 5679 freefrag = newfreefrag(ip, oldblkno, oldsize, lbn); 5680 else 5681 freefrag = NULL; 5682 5683 ACQUIRE_LOCK(ump); 5684 if (newblk_lookup(mp, newblkno, 0, &newblk) == 0) 5685 panic("softdep_setup_allocext: lost block"); 5686 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 5687 ("softdep_setup_allocext: newblk already initialized")); 5688 /* 5689 * Convert the newblk to an allocdirect. 5690 */ 5691 WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT); 5692 adp = (struct allocdirect *)newblk; 5693 newblk->nb_freefrag = freefrag; 5694 adp->ad_offset = off; 5695 adp->ad_oldblkno = oldblkno; 5696 adp->ad_newsize = newsize; 5697 adp->ad_oldsize = oldsize; 5698 adp->ad_state |= EXTDATA; 5699 5700 /* 5701 * Finish initializing the journal. 5702 */ 5703 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 5704 jnewblk->jn_ino = ip->i_number; 5705 jnewblk->jn_lbn = lbn; 5706 add_to_journal(&jnewblk->jn_list); 5707 } 5708 if (freefrag && freefrag->ff_jdep != NULL && 5709 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 5710 add_to_journal(freefrag->ff_jdep); 5711 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 5712 adp->ad_inodedep = inodedep; 5713 5714 WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list); 5715 /* 5716 * The list of allocdirects must be kept in sorted and ascending 5717 * order so that the rollback routines can quickly determine the 5718 * first uncommitted block (the size of the file stored on disk 5719 * ends at the end of the lowest committed fragment, or if there 5720 * are no fragments, at the end of the highest committed block). 5721 * Since files generally grow, the typical case is that the new 5722 * block is to be added at the end of the list. We speed this 5723 * special case by checking against the last allocdirect in the 5724 * list before laboriously traversing the list looking for the 5725 * insertion point. 5726 */ 5727 adphead = &inodedep->id_newextupdt; 5728 oldadp = TAILQ_LAST(adphead, allocdirectlst); 5729 if (oldadp == NULL || oldadp->ad_offset <= off) { 5730 /* insert at end of list */ 5731 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 5732 if (oldadp != NULL && oldadp->ad_offset == off) 5733 allocdirect_merge(adphead, adp, oldadp); 5734 FREE_LOCK(ump); 5735 return; 5736 } 5737 TAILQ_FOREACH(oldadp, adphead, ad_next) { 5738 if (oldadp->ad_offset >= off) 5739 break; 5740 } 5741 if (oldadp == NULL) 5742 panic("softdep_setup_allocext: lost entry"); 5743 /* insert in middle of list */ 5744 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 5745 if (oldadp->ad_offset == off) 5746 allocdirect_merge(adphead, adp, oldadp); 5747 FREE_LOCK(ump); 5748 } 5749 5750 /* 5751 * Indirect block allocation dependencies. 5752 * 5753 * The same dependencies that exist for a direct block also exist when 5754 * a new block is allocated and pointed to by an entry in a block of 5755 * indirect pointers. The undo/redo states described above are also 5756 * used here. Because an indirect block contains many pointers that 5757 * may have dependencies, a second copy of the entire in-memory indirect 5758 * block is kept. The buffer cache copy is always completely up-to-date. 5759 * The second copy, which is used only as a source for disk writes, 5760 * contains only the safe pointers (i.e., those that have no remaining 5761 * update dependencies). The second copy is freed when all pointers 5762 * are safe. The cache is not allowed to replace indirect blocks with 5763 * pending update dependencies. If a buffer containing an indirect 5764 * block with dependencies is written, these routines will mark it 5765 * dirty again. It can only be successfully written once all the 5766 * dependencies are removed. The ffs_fsync routine in conjunction with 5767 * softdep_sync_metadata work together to get all the dependencies 5768 * removed so that a file can be successfully written to disk. Three 5769 * procedures are used when setting up indirect block pointer 5770 * dependencies. The division is necessary because of the organization 5771 * of the "balloc" routine and because of the distinction between file 5772 * pages and file metadata blocks. 5773 */ 5774 5775 /* 5776 * Allocate a new allocindir structure. 5777 */ 5778 static struct allocindir * 5779 newallocindir(ip, ptrno, newblkno, oldblkno, lbn) 5780 struct inode *ip; /* inode for file being extended */ 5781 int ptrno; /* offset of pointer in indirect block */ 5782 ufs2_daddr_t newblkno; /* disk block number being added */ 5783 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 5784 ufs_lbn_t lbn; 5785 { 5786 struct newblk *newblk; 5787 struct allocindir *aip; 5788 struct freefrag *freefrag; 5789 struct jnewblk *jnewblk; 5790 5791 if (oldblkno) 5792 freefrag = newfreefrag(ip, oldblkno, ITOFS(ip)->fs_bsize, lbn); 5793 else 5794 freefrag = NULL; 5795 ACQUIRE_LOCK(ITOUMP(ip)); 5796 if (newblk_lookup(ITOVFS(ip), newblkno, 0, &newblk) == 0) 5797 panic("new_allocindir: lost block"); 5798 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 5799 ("newallocindir: newblk already initialized")); 5800 WORKITEM_REASSIGN(newblk, D_ALLOCINDIR); 5801 newblk->nb_freefrag = freefrag; 5802 aip = (struct allocindir *)newblk; 5803 aip->ai_offset = ptrno; 5804 aip->ai_oldblkno = oldblkno; 5805 aip->ai_lbn = lbn; 5806 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 5807 jnewblk->jn_ino = ip->i_number; 5808 jnewblk->jn_lbn = lbn; 5809 add_to_journal(&jnewblk->jn_list); 5810 } 5811 if (freefrag && freefrag->ff_jdep != NULL && 5812 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 5813 add_to_journal(freefrag->ff_jdep); 5814 return (aip); 5815 } 5816 5817 /* 5818 * Called just before setting an indirect block pointer 5819 * to a newly allocated file page. 5820 */ 5821 void 5822 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 5823 struct inode *ip; /* inode for file being extended */ 5824 ufs_lbn_t lbn; /* allocated block number within file */ 5825 struct buf *bp; /* buffer with indirect blk referencing page */ 5826 int ptrno; /* offset of pointer in indirect block */ 5827 ufs2_daddr_t newblkno; /* disk block number being added */ 5828 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 5829 struct buf *nbp; /* buffer holding allocated page */ 5830 { 5831 struct inodedep *inodedep; 5832 struct freefrag *freefrag; 5833 struct allocindir *aip; 5834 struct pagedep *pagedep; 5835 struct mount *mp; 5836 struct ufsmount *ump; 5837 5838 mp = ITOVFS(ip); 5839 ump = VFSTOUFS(mp); 5840 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5841 ("softdep_setup_allocindir_page called on non-softdep filesystem")); 5842 KASSERT(lbn == nbp->b_lblkno, 5843 ("softdep_setup_allocindir_page: lbn %jd != lblkno %jd", 5844 lbn, bp->b_lblkno)); 5845 CTR4(KTR_SUJ, 5846 "softdep_setup_allocindir_page: ino %d blkno %jd oldblkno %jd " 5847 "lbn %jd", ip->i_number, newblkno, oldblkno, lbn); 5848 ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page"); 5849 aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn); 5850 (void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 5851 /* 5852 * If we are allocating a directory page, then we must 5853 * allocate an associated pagedep to track additions and 5854 * deletions. 5855 */ 5856 if ((ip->i_mode & IFMT) == IFDIR) 5857 pagedep_lookup(mp, nbp, ip->i_number, lbn, DEPALLOC, &pagedep); 5858 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list); 5859 freefrag = setup_allocindir_phase2(bp, ip, inodedep, aip, lbn); 5860 FREE_LOCK(ump); 5861 if (freefrag) 5862 handle_workitem_freefrag(freefrag); 5863 } 5864 5865 /* 5866 * Called just before setting an indirect block pointer to a 5867 * newly allocated indirect block. 5868 */ 5869 void 5870 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 5871 struct buf *nbp; /* newly allocated indirect block */ 5872 struct inode *ip; /* inode for file being extended */ 5873 struct buf *bp; /* indirect block referencing allocated block */ 5874 int ptrno; /* offset of pointer in indirect block */ 5875 ufs2_daddr_t newblkno; /* disk block number being added */ 5876 { 5877 struct inodedep *inodedep; 5878 struct allocindir *aip; 5879 struct ufsmount *ump; 5880 ufs_lbn_t lbn; 5881 5882 ump = ITOUMP(ip); 5883 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 5884 ("softdep_setup_allocindir_meta called on non-softdep filesystem")); 5885 CTR3(KTR_SUJ, 5886 "softdep_setup_allocindir_meta: ino %d blkno %jd ptrno %d", 5887 ip->i_number, newblkno, ptrno); 5888 lbn = nbp->b_lblkno; 5889 ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta"); 5890 aip = newallocindir(ip, ptrno, newblkno, 0, lbn); 5891 inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep); 5892 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list); 5893 if (setup_allocindir_phase2(bp, ip, inodedep, aip, lbn)) 5894 panic("softdep_setup_allocindir_meta: Block already existed"); 5895 FREE_LOCK(ump); 5896 } 5897 5898 static void 5899 indirdep_complete(indirdep) 5900 struct indirdep *indirdep; 5901 { 5902 struct allocindir *aip; 5903 5904 LIST_REMOVE(indirdep, ir_next); 5905 indirdep->ir_state |= DEPCOMPLETE; 5906 5907 while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) { 5908 LIST_REMOVE(aip, ai_next); 5909 free_newblk(&aip->ai_block); 5910 } 5911 /* 5912 * If this indirdep is not attached to a buf it was simply waiting 5913 * on completion to clear completehd. free_indirdep() asserts 5914 * that nothing is dangling. 5915 */ 5916 if ((indirdep->ir_state & ONWORKLIST) == 0) 5917 free_indirdep(indirdep); 5918 } 5919 5920 static struct indirdep * 5921 indirdep_lookup(mp, ip, bp) 5922 struct mount *mp; 5923 struct inode *ip; 5924 struct buf *bp; 5925 { 5926 struct indirdep *indirdep, *newindirdep; 5927 struct newblk *newblk; 5928 struct ufsmount *ump; 5929 struct worklist *wk; 5930 struct fs *fs; 5931 ufs2_daddr_t blkno; 5932 5933 ump = VFSTOUFS(mp); 5934 LOCK_OWNED(ump); 5935 indirdep = NULL; 5936 newindirdep = NULL; 5937 fs = ump->um_fs; 5938 for (;;) { 5939 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 5940 if (wk->wk_type != D_INDIRDEP) 5941 continue; 5942 indirdep = WK_INDIRDEP(wk); 5943 break; 5944 } 5945 /* Found on the buffer worklist, no new structure to free. */ 5946 if (indirdep != NULL && newindirdep == NULL) 5947 return (indirdep); 5948 if (indirdep != NULL && newindirdep != NULL) 5949 panic("indirdep_lookup: simultaneous create"); 5950 /* None found on the buffer and a new structure is ready. */ 5951 if (indirdep == NULL && newindirdep != NULL) 5952 break; 5953 /* None found and no new structure available. */ 5954 FREE_LOCK(ump); 5955 newindirdep = malloc(sizeof(struct indirdep), 5956 M_INDIRDEP, M_SOFTDEP_FLAGS); 5957 workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp); 5958 newindirdep->ir_state = ATTACHED; 5959 if (I_IS_UFS1(ip)) 5960 newindirdep->ir_state |= UFS1FMT; 5961 TAILQ_INIT(&newindirdep->ir_trunc); 5962 newindirdep->ir_saveddata = NULL; 5963 LIST_INIT(&newindirdep->ir_deplisthd); 5964 LIST_INIT(&newindirdep->ir_donehd); 5965 LIST_INIT(&newindirdep->ir_writehd); 5966 LIST_INIT(&newindirdep->ir_completehd); 5967 if (bp->b_blkno == bp->b_lblkno) { 5968 ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp, 5969 NULL, NULL); 5970 bp->b_blkno = blkno; 5971 } 5972 newindirdep->ir_freeblks = NULL; 5973 newindirdep->ir_savebp = 5974 getblk(ump->um_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0); 5975 newindirdep->ir_bp = bp; 5976 BUF_KERNPROC(newindirdep->ir_savebp); 5977 bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount); 5978 ACQUIRE_LOCK(ump); 5979 } 5980 indirdep = newindirdep; 5981 WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list); 5982 /* 5983 * If the block is not yet allocated we don't set DEPCOMPLETE so 5984 * that we don't free dependencies until the pointers are valid. 5985 * This could search b_dep for D_ALLOCDIRECT/D_ALLOCINDIR rather 5986 * than using the hash. 5987 */ 5988 if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)) 5989 LIST_INSERT_HEAD(&newblk->nb_indirdeps, indirdep, ir_next); 5990 else 5991 indirdep->ir_state |= DEPCOMPLETE; 5992 return (indirdep); 5993 } 5994 5995 /* 5996 * Called to finish the allocation of the "aip" allocated 5997 * by one of the two routines above. 5998 */ 5999 static struct freefrag * 6000 setup_allocindir_phase2(bp, ip, inodedep, aip, lbn) 6001 struct buf *bp; /* in-memory copy of the indirect block */ 6002 struct inode *ip; /* inode for file being extended */ 6003 struct inodedep *inodedep; /* Inodedep for ip */ 6004 struct allocindir *aip; /* allocindir allocated by the above routines */ 6005 ufs_lbn_t lbn; /* Logical block number for this block. */ 6006 { 6007 struct fs *fs; 6008 struct indirdep *indirdep; 6009 struct allocindir *oldaip; 6010 struct freefrag *freefrag; 6011 struct mount *mp; 6012 struct ufsmount *ump; 6013 6014 mp = ITOVFS(ip); 6015 ump = VFSTOUFS(mp); 6016 LOCK_OWNED(ump); 6017 fs = ump->um_fs; 6018 if (bp->b_lblkno >= 0) 6019 panic("setup_allocindir_phase2: not indir blk"); 6020 KASSERT(aip->ai_offset >= 0 && aip->ai_offset < NINDIR(fs), 6021 ("setup_allocindir_phase2: Bad offset %d", aip->ai_offset)); 6022 indirdep = indirdep_lookup(mp, ip, bp); 6023 KASSERT(indirdep->ir_savebp != NULL, 6024 ("setup_allocindir_phase2 NULL ir_savebp")); 6025 aip->ai_indirdep = indirdep; 6026 /* 6027 * Check for an unwritten dependency for this indirect offset. If 6028 * there is, merge the old dependency into the new one. This happens 6029 * as a result of reallocblk only. 6030 */ 6031 freefrag = NULL; 6032 if (aip->ai_oldblkno != 0) { 6033 LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) { 6034 if (oldaip->ai_offset == aip->ai_offset) { 6035 freefrag = allocindir_merge(aip, oldaip); 6036 goto done; 6037 } 6038 } 6039 LIST_FOREACH(oldaip, &indirdep->ir_donehd, ai_next) { 6040 if (oldaip->ai_offset == aip->ai_offset) { 6041 freefrag = allocindir_merge(aip, oldaip); 6042 goto done; 6043 } 6044 } 6045 } 6046 done: 6047 LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next); 6048 return (freefrag); 6049 } 6050 6051 /* 6052 * Merge two allocindirs which refer to the same block. Move newblock 6053 * dependencies and setup the freefrags appropriately. 6054 */ 6055 static struct freefrag * 6056 allocindir_merge(aip, oldaip) 6057 struct allocindir *aip; 6058 struct allocindir *oldaip; 6059 { 6060 struct freefrag *freefrag; 6061 struct worklist *wk; 6062 6063 if (oldaip->ai_newblkno != aip->ai_oldblkno) 6064 panic("allocindir_merge: blkno"); 6065 aip->ai_oldblkno = oldaip->ai_oldblkno; 6066 freefrag = aip->ai_freefrag; 6067 aip->ai_freefrag = oldaip->ai_freefrag; 6068 oldaip->ai_freefrag = NULL; 6069 KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag")); 6070 /* 6071 * If we are tracking a new directory-block allocation, 6072 * move it from the old allocindir to the new allocindir. 6073 */ 6074 if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) { 6075 WORKLIST_REMOVE(wk); 6076 if (!LIST_EMPTY(&oldaip->ai_newdirblk)) 6077 panic("allocindir_merge: extra newdirblk"); 6078 WORKLIST_INSERT(&aip->ai_newdirblk, wk); 6079 } 6080 /* 6081 * We can skip journaling for this freefrag and just complete 6082 * any pending journal work for the allocindir that is being 6083 * removed after the freefrag completes. 6084 */ 6085 if (freefrag->ff_jdep) 6086 cancel_jfreefrag(WK_JFREEFRAG(freefrag->ff_jdep)); 6087 LIST_REMOVE(oldaip, ai_next); 6088 freefrag->ff_jdep = (struct worklist *)cancel_newblk(&oldaip->ai_block, 6089 &freefrag->ff_list, &freefrag->ff_jwork); 6090 free_newblk(&oldaip->ai_block); 6091 6092 return (freefrag); 6093 } 6094 6095 static inline void 6096 setup_freedirect(freeblks, ip, i, needj) 6097 struct freeblks *freeblks; 6098 struct inode *ip; 6099 int i; 6100 int needj; 6101 { 6102 struct ufsmount *ump; 6103 ufs2_daddr_t blkno; 6104 int frags; 6105 6106 blkno = DIP(ip, i_db[i]); 6107 if (blkno == 0) 6108 return; 6109 DIP_SET(ip, i_db[i], 0); 6110 ump = ITOUMP(ip); 6111 frags = sblksize(ump->um_fs, ip->i_size, i); 6112 frags = numfrags(ump->um_fs, frags); 6113 newfreework(ump, freeblks, NULL, i, blkno, frags, 0, needj); 6114 } 6115 6116 static inline void 6117 setup_freeext(freeblks, ip, i, needj) 6118 struct freeblks *freeblks; 6119 struct inode *ip; 6120 int i; 6121 int needj; 6122 { 6123 struct ufsmount *ump; 6124 ufs2_daddr_t blkno; 6125 int frags; 6126 6127 blkno = ip->i_din2->di_extb[i]; 6128 if (blkno == 0) 6129 return; 6130 ip->i_din2->di_extb[i] = 0; 6131 ump = ITOUMP(ip); 6132 frags = sblksize(ump->um_fs, ip->i_din2->di_extsize, i); 6133 frags = numfrags(ump->um_fs, frags); 6134 newfreework(ump, freeblks, NULL, -1 - i, blkno, frags, 0, needj); 6135 } 6136 6137 static inline void 6138 setup_freeindir(freeblks, ip, i, lbn, needj) 6139 struct freeblks *freeblks; 6140 struct inode *ip; 6141 int i; 6142 ufs_lbn_t lbn; 6143 int needj; 6144 { 6145 struct ufsmount *ump; 6146 ufs2_daddr_t blkno; 6147 6148 blkno = DIP(ip, i_ib[i]); 6149 if (blkno == 0) 6150 return; 6151 DIP_SET(ip, i_ib[i], 0); 6152 ump = ITOUMP(ip); 6153 newfreework(ump, freeblks, NULL, lbn, blkno, ump->um_fs->fs_frag, 6154 0, needj); 6155 } 6156 6157 static inline struct freeblks * 6158 newfreeblks(mp, ip) 6159 struct mount *mp; 6160 struct inode *ip; 6161 { 6162 struct freeblks *freeblks; 6163 6164 freeblks = malloc(sizeof(struct freeblks), 6165 M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO); 6166 workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp); 6167 LIST_INIT(&freeblks->fb_jblkdephd); 6168 LIST_INIT(&freeblks->fb_jwork); 6169 freeblks->fb_ref = 0; 6170 freeblks->fb_cgwait = 0; 6171 freeblks->fb_state = ATTACHED; 6172 freeblks->fb_uid = ip->i_uid; 6173 freeblks->fb_inum = ip->i_number; 6174 freeblks->fb_vtype = ITOV(ip)->v_type; 6175 freeblks->fb_modrev = DIP(ip, i_modrev); 6176 freeblks->fb_devvp = ITODEVVP(ip); 6177 freeblks->fb_chkcnt = 0; 6178 freeblks->fb_len = 0; 6179 6180 return (freeblks); 6181 } 6182 6183 static void 6184 trunc_indirdep(indirdep, freeblks, bp, off) 6185 struct indirdep *indirdep; 6186 struct freeblks *freeblks; 6187 struct buf *bp; 6188 int off; 6189 { 6190 struct allocindir *aip, *aipn; 6191 6192 /* 6193 * The first set of allocindirs won't be in savedbp. 6194 */ 6195 LIST_FOREACH_SAFE(aip, &indirdep->ir_deplisthd, ai_next, aipn) 6196 if (aip->ai_offset > off) 6197 cancel_allocindir(aip, bp, freeblks, 1); 6198 LIST_FOREACH_SAFE(aip, &indirdep->ir_donehd, ai_next, aipn) 6199 if (aip->ai_offset > off) 6200 cancel_allocindir(aip, bp, freeblks, 1); 6201 /* 6202 * These will exist in savedbp. 6203 */ 6204 LIST_FOREACH_SAFE(aip, &indirdep->ir_writehd, ai_next, aipn) 6205 if (aip->ai_offset > off) 6206 cancel_allocindir(aip, NULL, freeblks, 0); 6207 LIST_FOREACH_SAFE(aip, &indirdep->ir_completehd, ai_next, aipn) 6208 if (aip->ai_offset > off) 6209 cancel_allocindir(aip, NULL, freeblks, 0); 6210 } 6211 6212 /* 6213 * Follow the chain of indirects down to lastlbn creating a freework 6214 * structure for each. This will be used to start indir_trunc() at 6215 * the right offset and create the journal records for the parrtial 6216 * truncation. A second step will handle the truncated dependencies. 6217 */ 6218 static int 6219 setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno) 6220 struct freeblks *freeblks; 6221 struct inode *ip; 6222 ufs_lbn_t lbn; 6223 ufs_lbn_t lastlbn; 6224 ufs2_daddr_t blkno; 6225 { 6226 struct indirdep *indirdep; 6227 struct indirdep *indirn; 6228 struct freework *freework; 6229 struct newblk *newblk; 6230 struct mount *mp; 6231 struct ufsmount *ump; 6232 struct buf *bp; 6233 uint8_t *start; 6234 uint8_t *end; 6235 ufs_lbn_t lbnadd; 6236 int level; 6237 int error; 6238 int off; 6239 6240 6241 freework = NULL; 6242 if (blkno == 0) 6243 return (0); 6244 mp = freeblks->fb_list.wk_mp; 6245 ump = VFSTOUFS(mp); 6246 bp = getblk(ITOV(ip), lbn, mp->mnt_stat.f_iosize, 0, 0, 0); 6247 if ((bp->b_flags & B_CACHE) == 0) { 6248 bp->b_blkno = blkptrtodb(VFSTOUFS(mp), blkno); 6249 bp->b_iocmd = BIO_READ; 6250 bp->b_flags &= ~B_INVAL; 6251 bp->b_ioflags &= ~BIO_ERROR; 6252 vfs_busy_pages(bp, 0); 6253 bp->b_iooffset = dbtob(bp->b_blkno); 6254 bstrategy(bp); 6255 #ifdef RACCT 6256 if (racct_enable) { 6257 PROC_LOCK(curproc); 6258 racct_add_buf(curproc, bp, 0); 6259 PROC_UNLOCK(curproc); 6260 } 6261 #endif /* RACCT */ 6262 curthread->td_ru.ru_inblock++; 6263 error = bufwait(bp); 6264 if (error) { 6265 brelse(bp); 6266 return (error); 6267 } 6268 } 6269 level = lbn_level(lbn); 6270 lbnadd = lbn_offset(ump->um_fs, level); 6271 /* 6272 * Compute the offset of the last block we want to keep. Store 6273 * in the freework the first block we want to completely free. 6274 */ 6275 off = (lastlbn - -(lbn + level)) / lbnadd; 6276 if (off + 1 == NINDIR(ump->um_fs)) 6277 goto nowork; 6278 freework = newfreework(ump, freeblks, NULL, lbn, blkno, 0, off + 1, 0); 6279 /* 6280 * Link the freework into the indirdep. This will prevent any new 6281 * allocations from proceeding until we are finished with the 6282 * truncate and the block is written. 6283 */ 6284 ACQUIRE_LOCK(ump); 6285 indirdep = indirdep_lookup(mp, ip, bp); 6286 if (indirdep->ir_freeblks) 6287 panic("setup_trunc_indir: indirdep already truncated."); 6288 TAILQ_INSERT_TAIL(&indirdep->ir_trunc, freework, fw_next); 6289 freework->fw_indir = indirdep; 6290 /* 6291 * Cancel any allocindirs that will not make it to disk. 6292 * We have to do this for all copies of the indirdep that 6293 * live on this newblk. 6294 */ 6295 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 6296 newblk_lookup(mp, dbtofsb(ump->um_fs, bp->b_blkno), 0, &newblk); 6297 LIST_FOREACH(indirn, &newblk->nb_indirdeps, ir_next) 6298 trunc_indirdep(indirn, freeblks, bp, off); 6299 } else 6300 trunc_indirdep(indirdep, freeblks, bp, off); 6301 FREE_LOCK(ump); 6302 /* 6303 * Creation is protected by the buf lock. The saveddata is only 6304 * needed if a full truncation follows a partial truncation but it 6305 * is difficult to allocate in that case so we fetch it anyway. 6306 */ 6307 if (indirdep->ir_saveddata == NULL) 6308 indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP, 6309 M_SOFTDEP_FLAGS); 6310 nowork: 6311 /* Fetch the blkno of the child and the zero start offset. */ 6312 if (I_IS_UFS1(ip)) { 6313 blkno = ((ufs1_daddr_t *)bp->b_data)[off]; 6314 start = (uint8_t *)&((ufs1_daddr_t *)bp->b_data)[off+1]; 6315 } else { 6316 blkno = ((ufs2_daddr_t *)bp->b_data)[off]; 6317 start = (uint8_t *)&((ufs2_daddr_t *)bp->b_data)[off+1]; 6318 } 6319 if (freework) { 6320 /* Zero the truncated pointers. */ 6321 end = bp->b_data + bp->b_bcount; 6322 bzero(start, end - start); 6323 bdwrite(bp); 6324 } else 6325 bqrelse(bp); 6326 if (level == 0) 6327 return (0); 6328 lbn++; /* adjust level */ 6329 lbn -= (off * lbnadd); 6330 return setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno); 6331 } 6332 6333 /* 6334 * Complete the partial truncation of an indirect block setup by 6335 * setup_trunc_indir(). This zeros the truncated pointers in the saved 6336 * copy and writes them to disk before the freeblks is allowed to complete. 6337 */ 6338 static void 6339 complete_trunc_indir(freework) 6340 struct freework *freework; 6341 { 6342 struct freework *fwn; 6343 struct indirdep *indirdep; 6344 struct ufsmount *ump; 6345 struct buf *bp; 6346 uintptr_t start; 6347 int count; 6348 6349 ump = VFSTOUFS(freework->fw_list.wk_mp); 6350 LOCK_OWNED(ump); 6351 indirdep = freework->fw_indir; 6352 for (;;) { 6353 bp = indirdep->ir_bp; 6354 /* See if the block was discarded. */ 6355 if (bp == NULL) 6356 break; 6357 /* Inline part of getdirtybuf(). We dont want bremfree. */ 6358 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0) 6359 break; 6360 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 6361 LOCK_PTR(ump)) == 0) 6362 BUF_UNLOCK(bp); 6363 ACQUIRE_LOCK(ump); 6364 } 6365 freework->fw_state |= DEPCOMPLETE; 6366 TAILQ_REMOVE(&indirdep->ir_trunc, freework, fw_next); 6367 /* 6368 * Zero the pointers in the saved copy. 6369 */ 6370 if (indirdep->ir_state & UFS1FMT) 6371 start = sizeof(ufs1_daddr_t); 6372 else 6373 start = sizeof(ufs2_daddr_t); 6374 start *= freework->fw_start; 6375 count = indirdep->ir_savebp->b_bcount - start; 6376 start += (uintptr_t)indirdep->ir_savebp->b_data; 6377 bzero((char *)start, count); 6378 /* 6379 * We need to start the next truncation in the list if it has not 6380 * been started yet. 6381 */ 6382 fwn = TAILQ_FIRST(&indirdep->ir_trunc); 6383 if (fwn != NULL) { 6384 if (fwn->fw_freeblks == indirdep->ir_freeblks) 6385 TAILQ_REMOVE(&indirdep->ir_trunc, fwn, fw_next); 6386 if ((fwn->fw_state & ONWORKLIST) == 0) 6387 freework_enqueue(fwn); 6388 } 6389 /* 6390 * If bp is NULL the block was fully truncated, restore 6391 * the saved block list otherwise free it if it is no 6392 * longer needed. 6393 */ 6394 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 6395 if (bp == NULL) 6396 bcopy(indirdep->ir_saveddata, 6397 indirdep->ir_savebp->b_data, 6398 indirdep->ir_savebp->b_bcount); 6399 free(indirdep->ir_saveddata, M_INDIRDEP); 6400 indirdep->ir_saveddata = NULL; 6401 } 6402 /* 6403 * When bp is NULL there is a full truncation pending. We 6404 * must wait for this full truncation to be journaled before 6405 * we can release this freework because the disk pointers will 6406 * never be written as zero. 6407 */ 6408 if (bp == NULL) { 6409 if (LIST_EMPTY(&indirdep->ir_freeblks->fb_jblkdephd)) 6410 handle_written_freework(freework); 6411 else 6412 WORKLIST_INSERT(&indirdep->ir_freeblks->fb_freeworkhd, 6413 &freework->fw_list); 6414 } else { 6415 /* Complete when the real copy is written. */ 6416 WORKLIST_INSERT(&bp->b_dep, &freework->fw_list); 6417 BUF_UNLOCK(bp); 6418 } 6419 } 6420 6421 /* 6422 * Calculate the number of blocks we are going to release where datablocks 6423 * is the current total and length is the new file size. 6424 */ 6425 static ufs2_daddr_t 6426 blkcount(fs, datablocks, length) 6427 struct fs *fs; 6428 ufs2_daddr_t datablocks; 6429 off_t length; 6430 { 6431 off_t totblks, numblks; 6432 6433 totblks = 0; 6434 numblks = howmany(length, fs->fs_bsize); 6435 if (numblks <= UFS_NDADDR) { 6436 totblks = howmany(length, fs->fs_fsize); 6437 goto out; 6438 } 6439 totblks = blkstofrags(fs, numblks); 6440 numblks -= UFS_NDADDR; 6441 /* 6442 * Count all single, then double, then triple indirects required. 6443 * Subtracting one indirects worth of blocks for each pass 6444 * acknowledges one of each pointed to by the inode. 6445 */ 6446 for (;;) { 6447 totblks += blkstofrags(fs, howmany(numblks, NINDIR(fs))); 6448 numblks -= NINDIR(fs); 6449 if (numblks <= 0) 6450 break; 6451 numblks = howmany(numblks, NINDIR(fs)); 6452 } 6453 out: 6454 totblks = fsbtodb(fs, totblks); 6455 /* 6456 * Handle sparse files. We can't reclaim more blocks than the inode 6457 * references. We will correct it later in handle_complete_freeblks() 6458 * when we know the real count. 6459 */ 6460 if (totblks > datablocks) 6461 return (0); 6462 return (datablocks - totblks); 6463 } 6464 6465 /* 6466 * Handle freeblocks for journaled softupdate filesystems. 6467 * 6468 * Contrary to normal softupdates, we must preserve the block pointers in 6469 * indirects until their subordinates are free. This is to avoid journaling 6470 * every block that is freed which may consume more space than the journal 6471 * itself. The recovery program will see the free block journals at the 6472 * base of the truncated area and traverse them to reclaim space. The 6473 * pointers in the inode may be cleared immediately after the journal 6474 * records are written because each direct and indirect pointer in the 6475 * inode is recorded in a journal. This permits full truncation to proceed 6476 * asynchronously. The write order is journal -> inode -> cgs -> indirects. 6477 * 6478 * The algorithm is as follows: 6479 * 1) Traverse the in-memory state and create journal entries to release 6480 * the relevant blocks and full indirect trees. 6481 * 2) Traverse the indirect block chain adding partial truncation freework 6482 * records to indirects in the path to lastlbn. The freework will 6483 * prevent new allocation dependencies from being satisfied in this 6484 * indirect until the truncation completes. 6485 * 3) Read and lock the inode block, performing an update with the new size 6486 * and pointers. This prevents truncated data from becoming valid on 6487 * disk through step 4. 6488 * 4) Reap unsatisfied dependencies that are beyond the truncated area, 6489 * eliminate journal work for those records that do not require it. 6490 * 5) Schedule the journal records to be written followed by the inode block. 6491 * 6) Allocate any necessary frags for the end of file. 6492 * 7) Zero any partially truncated blocks. 6493 * 6494 * From this truncation proceeds asynchronously using the freework and 6495 * indir_trunc machinery. The file will not be extended again into a 6496 * partially truncated indirect block until all work is completed but 6497 * the normal dependency mechanism ensures that it is rolled back/forward 6498 * as appropriate. Further truncation may occur without delay and is 6499 * serialized in indir_trunc(). 6500 */ 6501 void 6502 softdep_journal_freeblocks(ip, cred, length, flags) 6503 struct inode *ip; /* The inode whose length is to be reduced */ 6504 struct ucred *cred; 6505 off_t length; /* The new length for the file */ 6506 int flags; /* IO_EXT and/or IO_NORMAL */ 6507 { 6508 struct freeblks *freeblks, *fbn; 6509 struct worklist *wk, *wkn; 6510 struct inodedep *inodedep; 6511 struct jblkdep *jblkdep; 6512 struct allocdirect *adp, *adpn; 6513 struct ufsmount *ump; 6514 struct fs *fs; 6515 struct buf *bp; 6516 struct vnode *vp; 6517 struct mount *mp; 6518 ufs2_daddr_t extblocks, datablocks; 6519 ufs_lbn_t tmpval, lbn, lastlbn; 6520 int frags, lastoff, iboff, allocblock, needj, error, i; 6521 6522 ump = ITOUMP(ip); 6523 mp = UFSTOVFS(ump); 6524 fs = ump->um_fs; 6525 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 6526 ("softdep_journal_freeblocks called on non-softdep filesystem")); 6527 vp = ITOV(ip); 6528 needj = 1; 6529 iboff = -1; 6530 allocblock = 0; 6531 extblocks = 0; 6532 datablocks = 0; 6533 frags = 0; 6534 freeblks = newfreeblks(mp, ip); 6535 ACQUIRE_LOCK(ump); 6536 /* 6537 * If we're truncating a removed file that will never be written 6538 * we don't need to journal the block frees. The canceled journals 6539 * for the allocations will suffice. 6540 */ 6541 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 6542 if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED && 6543 length == 0) 6544 needj = 0; 6545 CTR3(KTR_SUJ, "softdep_journal_freeblks: ip %d length %ld needj %d", 6546 ip->i_number, length, needj); 6547 FREE_LOCK(ump); 6548 /* 6549 * Calculate the lbn that we are truncating to. This results in -1 6550 * if we're truncating the 0 bytes. So it is the last lbn we want 6551 * to keep, not the first lbn we want to truncate. 6552 */ 6553 lastlbn = lblkno(fs, length + fs->fs_bsize - 1) - 1; 6554 lastoff = blkoff(fs, length); 6555 /* 6556 * Compute frags we are keeping in lastlbn. 0 means all. 6557 */ 6558 if (lastlbn >= 0 && lastlbn < UFS_NDADDR) { 6559 frags = fragroundup(fs, lastoff); 6560 /* adp offset of last valid allocdirect. */ 6561 iboff = lastlbn; 6562 } else if (lastlbn > 0) 6563 iboff = UFS_NDADDR; 6564 if (fs->fs_magic == FS_UFS2_MAGIC) 6565 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 6566 /* 6567 * Handle normal data blocks and indirects. This section saves 6568 * values used after the inode update to complete frag and indirect 6569 * truncation. 6570 */ 6571 if ((flags & IO_NORMAL) != 0) { 6572 /* 6573 * Handle truncation of whole direct and indirect blocks. 6574 */ 6575 for (i = iboff + 1; i < UFS_NDADDR; i++) 6576 setup_freedirect(freeblks, ip, i, needj); 6577 for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR; 6578 i < UFS_NIADDR; 6579 i++, lbn += tmpval, tmpval *= NINDIR(fs)) { 6580 /* Release a whole indirect tree. */ 6581 if (lbn > lastlbn) { 6582 setup_freeindir(freeblks, ip, i, -lbn -i, 6583 needj); 6584 continue; 6585 } 6586 iboff = i + UFS_NDADDR; 6587 /* 6588 * Traverse partially truncated indirect tree. 6589 */ 6590 if (lbn <= lastlbn && lbn + tmpval - 1 > lastlbn) 6591 setup_trunc_indir(freeblks, ip, -lbn - i, 6592 lastlbn, DIP(ip, i_ib[i])); 6593 } 6594 /* 6595 * Handle partial truncation to a frag boundary. 6596 */ 6597 if (frags) { 6598 ufs2_daddr_t blkno; 6599 long oldfrags; 6600 6601 oldfrags = blksize(fs, ip, lastlbn); 6602 blkno = DIP(ip, i_db[lastlbn]); 6603 if (blkno && oldfrags != frags) { 6604 oldfrags -= frags; 6605 oldfrags = numfrags(fs, oldfrags); 6606 blkno += numfrags(fs, frags); 6607 newfreework(ump, freeblks, NULL, lastlbn, 6608 blkno, oldfrags, 0, needj); 6609 if (needj) 6610 adjust_newfreework(freeblks, 6611 numfrags(fs, frags)); 6612 } else if (blkno == 0) 6613 allocblock = 1; 6614 } 6615 /* 6616 * Add a journal record for partial truncate if we are 6617 * handling indirect blocks. Non-indirects need no extra 6618 * journaling. 6619 */ 6620 if (length != 0 && lastlbn >= UFS_NDADDR) { 6621 ip->i_flag |= IN_TRUNCATED; 6622 newjtrunc(freeblks, length, 0); 6623 } 6624 ip->i_size = length; 6625 DIP_SET(ip, i_size, ip->i_size); 6626 datablocks = DIP(ip, i_blocks) - extblocks; 6627 if (length != 0) 6628 datablocks = blkcount(fs, datablocks, length); 6629 freeblks->fb_len = length; 6630 } 6631 if ((flags & IO_EXT) != 0) { 6632 for (i = 0; i < UFS_NXADDR; i++) 6633 setup_freeext(freeblks, ip, i, needj); 6634 ip->i_din2->di_extsize = 0; 6635 datablocks += extblocks; 6636 } 6637 #ifdef QUOTA 6638 /* Reference the quotas in case the block count is wrong in the end. */ 6639 quotaref(vp, freeblks->fb_quota); 6640 (void) chkdq(ip, -datablocks, NOCRED, 0); 6641 #endif 6642 freeblks->fb_chkcnt = -datablocks; 6643 UFS_LOCK(ump); 6644 fs->fs_pendingblocks += datablocks; 6645 UFS_UNLOCK(ump); 6646 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks); 6647 /* 6648 * Handle truncation of incomplete alloc direct dependencies. We 6649 * hold the inode block locked to prevent incomplete dependencies 6650 * from reaching the disk while we are eliminating those that 6651 * have been truncated. This is a partially inlined ffs_update(). 6652 */ 6653 ufs_itimes(vp); 6654 ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED); 6655 error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 6656 (int)fs->fs_bsize, cred, &bp); 6657 if (error) { 6658 brelse(bp); 6659 softdep_error("softdep_journal_freeblocks", error); 6660 return; 6661 } 6662 if (bp->b_bufsize == fs->fs_bsize) 6663 bp->b_flags |= B_CLUSTEROK; 6664 softdep_update_inodeblock(ip, bp, 0); 6665 if (ump->um_fstype == UFS1) 6666 *((struct ufs1_dinode *)bp->b_data + 6667 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1; 6668 else 6669 *((struct ufs2_dinode *)bp->b_data + 6670 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2; 6671 ACQUIRE_LOCK(ump); 6672 (void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 6673 if ((inodedep->id_state & IOSTARTED) != 0) 6674 panic("softdep_setup_freeblocks: inode busy"); 6675 /* 6676 * Add the freeblks structure to the list of operations that 6677 * must await the zero'ed inode being written to disk. If we 6678 * still have a bitmap dependency (needj), then the inode 6679 * has never been written to disk, so we can process the 6680 * freeblks below once we have deleted the dependencies. 6681 */ 6682 if (needj) 6683 WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list); 6684 else 6685 freeblks->fb_state |= COMPLETE; 6686 if ((flags & IO_NORMAL) != 0) { 6687 TAILQ_FOREACH_SAFE(adp, &inodedep->id_inoupdt, ad_next, adpn) { 6688 if (adp->ad_offset > iboff) 6689 cancel_allocdirect(&inodedep->id_inoupdt, adp, 6690 freeblks); 6691 /* 6692 * Truncate the allocdirect. We could eliminate 6693 * or modify journal records as well. 6694 */ 6695 else if (adp->ad_offset == iboff && frags) 6696 adp->ad_newsize = frags; 6697 } 6698 } 6699 if ((flags & IO_EXT) != 0) 6700 while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 6701 cancel_allocdirect(&inodedep->id_extupdt, adp, 6702 freeblks); 6703 /* 6704 * Scan the bufwait list for newblock dependencies that will never 6705 * make it to disk. 6706 */ 6707 LIST_FOREACH_SAFE(wk, &inodedep->id_bufwait, wk_list, wkn) { 6708 if (wk->wk_type != D_ALLOCDIRECT) 6709 continue; 6710 adp = WK_ALLOCDIRECT(wk); 6711 if (((flags & IO_NORMAL) != 0 && (adp->ad_offset > iboff)) || 6712 ((flags & IO_EXT) != 0 && (adp->ad_state & EXTDATA))) { 6713 cancel_jfreeblk(freeblks, adp->ad_newblkno); 6714 cancel_newblk(WK_NEWBLK(wk), NULL, &freeblks->fb_jwork); 6715 WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk); 6716 } 6717 } 6718 /* 6719 * Add journal work. 6720 */ 6721 LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) 6722 add_to_journal(&jblkdep->jb_list); 6723 FREE_LOCK(ump); 6724 bdwrite(bp); 6725 /* 6726 * Truncate dependency structures beyond length. 6727 */ 6728 trunc_dependencies(ip, freeblks, lastlbn, frags, flags); 6729 /* 6730 * This is only set when we need to allocate a fragment because 6731 * none existed at the end of a frag-sized file. It handles only 6732 * allocating a new, zero filled block. 6733 */ 6734 if (allocblock) { 6735 ip->i_size = length - lastoff; 6736 DIP_SET(ip, i_size, ip->i_size); 6737 error = UFS_BALLOC(vp, length - 1, 1, cred, BA_CLRBUF, &bp); 6738 if (error != 0) { 6739 softdep_error("softdep_journal_freeblks", error); 6740 return; 6741 } 6742 ip->i_size = length; 6743 DIP_SET(ip, i_size, length); 6744 ip->i_flag |= IN_CHANGE | IN_UPDATE; 6745 allocbuf(bp, frags); 6746 ffs_update(vp, 0); 6747 bawrite(bp); 6748 } else if (lastoff != 0 && vp->v_type != VDIR) { 6749 int size; 6750 6751 /* 6752 * Zero the end of a truncated frag or block. 6753 */ 6754 size = sblksize(fs, length, lastlbn); 6755 error = bread(vp, lastlbn, size, cred, &bp); 6756 if (error) { 6757 softdep_error("softdep_journal_freeblks", error); 6758 return; 6759 } 6760 bzero((char *)bp->b_data + lastoff, size - lastoff); 6761 bawrite(bp); 6762 6763 } 6764 ACQUIRE_LOCK(ump); 6765 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 6766 TAILQ_INSERT_TAIL(&inodedep->id_freeblklst, freeblks, fb_next); 6767 freeblks->fb_state |= DEPCOMPLETE | ONDEPLIST; 6768 /* 6769 * We zero earlier truncations so they don't erroneously 6770 * update i_blocks. 6771 */ 6772 if (freeblks->fb_len == 0 && (flags & IO_NORMAL) != 0) 6773 TAILQ_FOREACH(fbn, &inodedep->id_freeblklst, fb_next) 6774 fbn->fb_len = 0; 6775 if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE && 6776 LIST_EMPTY(&freeblks->fb_jblkdephd)) 6777 freeblks->fb_state |= INPROGRESS; 6778 else 6779 freeblks = NULL; 6780 FREE_LOCK(ump); 6781 if (freeblks) 6782 handle_workitem_freeblocks(freeblks, 0); 6783 trunc_pages(ip, length, extblocks, flags); 6784 6785 } 6786 6787 /* 6788 * Flush a JOP_SYNC to the journal. 6789 */ 6790 void 6791 softdep_journal_fsync(ip) 6792 struct inode *ip; 6793 { 6794 struct jfsync *jfsync; 6795 struct ufsmount *ump; 6796 6797 ump = ITOUMP(ip); 6798 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 6799 ("softdep_journal_fsync called on non-softdep filesystem")); 6800 if ((ip->i_flag & IN_TRUNCATED) == 0) 6801 return; 6802 ip->i_flag &= ~IN_TRUNCATED; 6803 jfsync = malloc(sizeof(*jfsync), M_JFSYNC, M_SOFTDEP_FLAGS | M_ZERO); 6804 workitem_alloc(&jfsync->jfs_list, D_JFSYNC, UFSTOVFS(ump)); 6805 jfsync->jfs_size = ip->i_size; 6806 jfsync->jfs_ino = ip->i_number; 6807 ACQUIRE_LOCK(ump); 6808 add_to_journal(&jfsync->jfs_list); 6809 jwait(&jfsync->jfs_list, MNT_WAIT); 6810 FREE_LOCK(ump); 6811 } 6812 6813 /* 6814 * Block de-allocation dependencies. 6815 * 6816 * When blocks are de-allocated, the on-disk pointers must be nullified before 6817 * the blocks are made available for use by other files. (The true 6818 * requirement is that old pointers must be nullified before new on-disk 6819 * pointers are set. We chose this slightly more stringent requirement to 6820 * reduce complexity.) Our implementation handles this dependency by updating 6821 * the inode (or indirect block) appropriately but delaying the actual block 6822 * de-allocation (i.e., freemap and free space count manipulation) until 6823 * after the updated versions reach stable storage. After the disk is 6824 * updated, the blocks can be safely de-allocated whenever it is convenient. 6825 * This implementation handles only the common case of reducing a file's 6826 * length to zero. Other cases are handled by the conventional synchronous 6827 * write approach. 6828 * 6829 * The ffs implementation with which we worked double-checks 6830 * the state of the block pointers and file size as it reduces 6831 * a file's length. Some of this code is replicated here in our 6832 * soft updates implementation. The freeblks->fb_chkcnt field is 6833 * used to transfer a part of this information to the procedure 6834 * that eventually de-allocates the blocks. 6835 * 6836 * This routine should be called from the routine that shortens 6837 * a file's length, before the inode's size or block pointers 6838 * are modified. It will save the block pointer information for 6839 * later release and zero the inode so that the calling routine 6840 * can release it. 6841 */ 6842 void 6843 softdep_setup_freeblocks(ip, length, flags) 6844 struct inode *ip; /* The inode whose length is to be reduced */ 6845 off_t length; /* The new length for the file */ 6846 int flags; /* IO_EXT and/or IO_NORMAL */ 6847 { 6848 struct ufs1_dinode *dp1; 6849 struct ufs2_dinode *dp2; 6850 struct freeblks *freeblks; 6851 struct inodedep *inodedep; 6852 struct allocdirect *adp; 6853 struct ufsmount *ump; 6854 struct buf *bp; 6855 struct fs *fs; 6856 ufs2_daddr_t extblocks, datablocks; 6857 struct mount *mp; 6858 int i, delay, error; 6859 ufs_lbn_t tmpval; 6860 ufs_lbn_t lbn; 6861 6862 ump = ITOUMP(ip); 6863 mp = UFSTOVFS(ump); 6864 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 6865 ("softdep_setup_freeblocks called on non-softdep filesystem")); 6866 CTR2(KTR_SUJ, "softdep_setup_freeblks: ip %d length %ld", 6867 ip->i_number, length); 6868 KASSERT(length == 0, ("softdep_setup_freeblocks: non-zero length")); 6869 fs = ump->um_fs; 6870 if ((error = bread(ump->um_devvp, 6871 fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 6872 (int)fs->fs_bsize, NOCRED, &bp)) != 0) { 6873 brelse(bp); 6874 softdep_error("softdep_setup_freeblocks", error); 6875 return; 6876 } 6877 freeblks = newfreeblks(mp, ip); 6878 extblocks = 0; 6879 datablocks = 0; 6880 if (fs->fs_magic == FS_UFS2_MAGIC) 6881 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 6882 if ((flags & IO_NORMAL) != 0) { 6883 for (i = 0; i < UFS_NDADDR; i++) 6884 setup_freedirect(freeblks, ip, i, 0); 6885 for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR; 6886 i < UFS_NIADDR; 6887 i++, lbn += tmpval, tmpval *= NINDIR(fs)) 6888 setup_freeindir(freeblks, ip, i, -lbn -i, 0); 6889 ip->i_size = 0; 6890 DIP_SET(ip, i_size, 0); 6891 datablocks = DIP(ip, i_blocks) - extblocks; 6892 } 6893 if ((flags & IO_EXT) != 0) { 6894 for (i = 0; i < UFS_NXADDR; i++) 6895 setup_freeext(freeblks, ip, i, 0); 6896 ip->i_din2->di_extsize = 0; 6897 datablocks += extblocks; 6898 } 6899 #ifdef QUOTA 6900 /* Reference the quotas in case the block count is wrong in the end. */ 6901 quotaref(ITOV(ip), freeblks->fb_quota); 6902 (void) chkdq(ip, -datablocks, NOCRED, 0); 6903 #endif 6904 freeblks->fb_chkcnt = -datablocks; 6905 UFS_LOCK(ump); 6906 fs->fs_pendingblocks += datablocks; 6907 UFS_UNLOCK(ump); 6908 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks); 6909 /* 6910 * Push the zero'ed inode to its disk buffer so that we are free 6911 * to delete its dependencies below. Once the dependencies are gone 6912 * the buffer can be safely released. 6913 */ 6914 if (ump->um_fstype == UFS1) { 6915 dp1 = ((struct ufs1_dinode *)bp->b_data + 6916 ino_to_fsbo(fs, ip->i_number)); 6917 ip->i_din1->di_freelink = dp1->di_freelink; 6918 *dp1 = *ip->i_din1; 6919 } else { 6920 dp2 = ((struct ufs2_dinode *)bp->b_data + 6921 ino_to_fsbo(fs, ip->i_number)); 6922 ip->i_din2->di_freelink = dp2->di_freelink; 6923 *dp2 = *ip->i_din2; 6924 } 6925 /* 6926 * Find and eliminate any inode dependencies. 6927 */ 6928 ACQUIRE_LOCK(ump); 6929 (void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 6930 if ((inodedep->id_state & IOSTARTED) != 0) 6931 panic("softdep_setup_freeblocks: inode busy"); 6932 /* 6933 * Add the freeblks structure to the list of operations that 6934 * must await the zero'ed inode being written to disk. If we 6935 * still have a bitmap dependency (delay == 0), then the inode 6936 * has never been written to disk, so we can process the 6937 * freeblks below once we have deleted the dependencies. 6938 */ 6939 delay = (inodedep->id_state & DEPCOMPLETE); 6940 if (delay) 6941 WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list); 6942 else 6943 freeblks->fb_state |= COMPLETE; 6944 /* 6945 * Because the file length has been truncated to zero, any 6946 * pending block allocation dependency structures associated 6947 * with this inode are obsolete and can simply be de-allocated. 6948 * We must first merge the two dependency lists to get rid of 6949 * any duplicate freefrag structures, then purge the merged list. 6950 * If we still have a bitmap dependency, then the inode has never 6951 * been written to disk, so we can free any fragments without delay. 6952 */ 6953 if (flags & IO_NORMAL) { 6954 merge_inode_lists(&inodedep->id_newinoupdt, 6955 &inodedep->id_inoupdt); 6956 while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL) 6957 cancel_allocdirect(&inodedep->id_inoupdt, adp, 6958 freeblks); 6959 } 6960 if (flags & IO_EXT) { 6961 merge_inode_lists(&inodedep->id_newextupdt, 6962 &inodedep->id_extupdt); 6963 while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 6964 cancel_allocdirect(&inodedep->id_extupdt, adp, 6965 freeblks); 6966 } 6967 FREE_LOCK(ump); 6968 bdwrite(bp); 6969 trunc_dependencies(ip, freeblks, -1, 0, flags); 6970 ACQUIRE_LOCK(ump); 6971 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) 6972 (void) free_inodedep(inodedep); 6973 freeblks->fb_state |= DEPCOMPLETE; 6974 /* 6975 * If the inode with zeroed block pointers is now on disk 6976 * we can start freeing blocks. 6977 */ 6978 if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE) 6979 freeblks->fb_state |= INPROGRESS; 6980 else 6981 freeblks = NULL; 6982 FREE_LOCK(ump); 6983 if (freeblks) 6984 handle_workitem_freeblocks(freeblks, 0); 6985 trunc_pages(ip, length, extblocks, flags); 6986 } 6987 6988 /* 6989 * Eliminate pages from the page cache that back parts of this inode and 6990 * adjust the vnode pager's idea of our size. This prevents stale data 6991 * from hanging around in the page cache. 6992 */ 6993 static void 6994 trunc_pages(ip, length, extblocks, flags) 6995 struct inode *ip; 6996 off_t length; 6997 ufs2_daddr_t extblocks; 6998 int flags; 6999 { 7000 struct vnode *vp; 7001 struct fs *fs; 7002 ufs_lbn_t lbn; 7003 off_t end, extend; 7004 7005 vp = ITOV(ip); 7006 fs = ITOFS(ip); 7007 extend = OFF_TO_IDX(lblktosize(fs, -extblocks)); 7008 if ((flags & IO_EXT) != 0) 7009 vn_pages_remove(vp, extend, 0); 7010 if ((flags & IO_NORMAL) == 0) 7011 return; 7012 BO_LOCK(&vp->v_bufobj); 7013 drain_output(vp); 7014 BO_UNLOCK(&vp->v_bufobj); 7015 /* 7016 * The vnode pager eliminates file pages we eliminate indirects 7017 * below. 7018 */ 7019 vnode_pager_setsize(vp, length); 7020 /* 7021 * Calculate the end based on the last indirect we want to keep. If 7022 * the block extends into indirects we can just use the negative of 7023 * its lbn. Doubles and triples exist at lower numbers so we must 7024 * be careful not to remove those, if they exist. double and triple 7025 * indirect lbns do not overlap with others so it is not important 7026 * to verify how many levels are required. 7027 */ 7028 lbn = lblkno(fs, length); 7029 if (lbn >= UFS_NDADDR) { 7030 /* Calculate the virtual lbn of the triple indirect. */ 7031 lbn = -lbn - (UFS_NIADDR - 1); 7032 end = OFF_TO_IDX(lblktosize(fs, lbn)); 7033 } else 7034 end = extend; 7035 vn_pages_remove(vp, OFF_TO_IDX(OFF_MAX), end); 7036 } 7037 7038 /* 7039 * See if the buf bp is in the range eliminated by truncation. 7040 */ 7041 static int 7042 trunc_check_buf(bp, blkoffp, lastlbn, lastoff, flags) 7043 struct buf *bp; 7044 int *blkoffp; 7045 ufs_lbn_t lastlbn; 7046 int lastoff; 7047 int flags; 7048 { 7049 ufs_lbn_t lbn; 7050 7051 *blkoffp = 0; 7052 /* Only match ext/normal blocks as appropriate. */ 7053 if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) || 7054 ((flags & IO_NORMAL) == 0 && (bp->b_xflags & BX_ALTDATA) == 0)) 7055 return (0); 7056 /* ALTDATA is always a full truncation. */ 7057 if ((bp->b_xflags & BX_ALTDATA) != 0) 7058 return (1); 7059 /* -1 is full truncation. */ 7060 if (lastlbn == -1) 7061 return (1); 7062 /* 7063 * If this is a partial truncate we only want those 7064 * blocks and indirect blocks that cover the range 7065 * we're after. 7066 */ 7067 lbn = bp->b_lblkno; 7068 if (lbn < 0) 7069 lbn = -(lbn + lbn_level(lbn)); 7070 if (lbn < lastlbn) 7071 return (0); 7072 /* Here we only truncate lblkno if it's partial. */ 7073 if (lbn == lastlbn) { 7074 if (lastoff == 0) 7075 return (0); 7076 *blkoffp = lastoff; 7077 } 7078 return (1); 7079 } 7080 7081 /* 7082 * Eliminate any dependencies that exist in memory beyond lblkno:off 7083 */ 7084 static void 7085 trunc_dependencies(ip, freeblks, lastlbn, lastoff, flags) 7086 struct inode *ip; 7087 struct freeblks *freeblks; 7088 ufs_lbn_t lastlbn; 7089 int lastoff; 7090 int flags; 7091 { 7092 struct bufobj *bo; 7093 struct vnode *vp; 7094 struct buf *bp; 7095 int blkoff; 7096 7097 /* 7098 * We must wait for any I/O in progress to finish so that 7099 * all potential buffers on the dirty list will be visible. 7100 * Once they are all there, walk the list and get rid of 7101 * any dependencies. 7102 */ 7103 vp = ITOV(ip); 7104 bo = &vp->v_bufobj; 7105 BO_LOCK(bo); 7106 drain_output(vp); 7107 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) 7108 bp->b_vflags &= ~BV_SCANNED; 7109 restart: 7110 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) { 7111 if (bp->b_vflags & BV_SCANNED) 7112 continue; 7113 if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) { 7114 bp->b_vflags |= BV_SCANNED; 7115 continue; 7116 } 7117 KASSERT(bp->b_bufobj == bo, ("Wrong object in buffer")); 7118 if ((bp = getdirtybuf(bp, BO_LOCKPTR(bo), MNT_WAIT)) == NULL) 7119 goto restart; 7120 BO_UNLOCK(bo); 7121 if (deallocate_dependencies(bp, freeblks, blkoff)) 7122 bqrelse(bp); 7123 else 7124 brelse(bp); 7125 BO_LOCK(bo); 7126 goto restart; 7127 } 7128 /* 7129 * Now do the work of vtruncbuf while also matching indirect blocks. 7130 */ 7131 TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) 7132 bp->b_vflags &= ~BV_SCANNED; 7133 cleanrestart: 7134 TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) { 7135 if (bp->b_vflags & BV_SCANNED) 7136 continue; 7137 if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) { 7138 bp->b_vflags |= BV_SCANNED; 7139 continue; 7140 } 7141 if (BUF_LOCK(bp, 7142 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 7143 BO_LOCKPTR(bo)) == ENOLCK) { 7144 BO_LOCK(bo); 7145 goto cleanrestart; 7146 } 7147 bp->b_vflags |= BV_SCANNED; 7148 bremfree(bp); 7149 if (blkoff != 0) { 7150 allocbuf(bp, blkoff); 7151 bqrelse(bp); 7152 } else { 7153 bp->b_flags |= B_INVAL | B_NOCACHE | B_RELBUF; 7154 brelse(bp); 7155 } 7156 BO_LOCK(bo); 7157 goto cleanrestart; 7158 } 7159 drain_output(vp); 7160 BO_UNLOCK(bo); 7161 } 7162 7163 static int 7164 cancel_pagedep(pagedep, freeblks, blkoff) 7165 struct pagedep *pagedep; 7166 struct freeblks *freeblks; 7167 int blkoff; 7168 { 7169 struct jremref *jremref; 7170 struct jmvref *jmvref; 7171 struct dirrem *dirrem, *tmp; 7172 int i; 7173 7174 /* 7175 * Copy any directory remove dependencies to the list 7176 * to be processed after the freeblks proceeds. If 7177 * directory entry never made it to disk they 7178 * can be dumped directly onto the work list. 7179 */ 7180 LIST_FOREACH_SAFE(dirrem, &pagedep->pd_dirremhd, dm_next, tmp) { 7181 /* Skip this directory removal if it is intended to remain. */ 7182 if (dirrem->dm_offset < blkoff) 7183 continue; 7184 /* 7185 * If there are any dirrems we wait for the journal write 7186 * to complete and then restart the buf scan as the lock 7187 * has been dropped. 7188 */ 7189 while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) { 7190 jwait(&jremref->jr_list, MNT_WAIT); 7191 return (ERESTART); 7192 } 7193 LIST_REMOVE(dirrem, dm_next); 7194 dirrem->dm_dirinum = pagedep->pd_ino; 7195 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &dirrem->dm_list); 7196 } 7197 while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) { 7198 jwait(&jmvref->jm_list, MNT_WAIT); 7199 return (ERESTART); 7200 } 7201 /* 7202 * When we're partially truncating a pagedep we just want to flush 7203 * journal entries and return. There can not be any adds in the 7204 * truncated portion of the directory and newblk must remain if 7205 * part of the block remains. 7206 */ 7207 if (blkoff != 0) { 7208 struct diradd *dap; 7209 7210 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) 7211 if (dap->da_offset > blkoff) 7212 panic("cancel_pagedep: diradd %p off %d > %d", 7213 dap, dap->da_offset, blkoff); 7214 for (i = 0; i < DAHASHSZ; i++) 7215 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) 7216 if (dap->da_offset > blkoff) 7217 panic("cancel_pagedep: diradd %p off %d > %d", 7218 dap, dap->da_offset, blkoff); 7219 return (0); 7220 } 7221 /* 7222 * There should be no directory add dependencies present 7223 * as the directory could not be truncated until all 7224 * children were removed. 7225 */ 7226 KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL, 7227 ("deallocate_dependencies: pendinghd != NULL")); 7228 for (i = 0; i < DAHASHSZ; i++) 7229 KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL, 7230 ("deallocate_dependencies: diraddhd != NULL")); 7231 if ((pagedep->pd_state & NEWBLOCK) != 0) 7232 free_newdirblk(pagedep->pd_newdirblk); 7233 if (free_pagedep(pagedep) == 0) 7234 panic("Failed to free pagedep %p", pagedep); 7235 return (0); 7236 } 7237 7238 /* 7239 * Reclaim any dependency structures from a buffer that is about to 7240 * be reallocated to a new vnode. The buffer must be locked, thus, 7241 * no I/O completion operations can occur while we are manipulating 7242 * its associated dependencies. The mutex is held so that other I/O's 7243 * associated with related dependencies do not occur. 7244 */ 7245 static int 7246 deallocate_dependencies(bp, freeblks, off) 7247 struct buf *bp; 7248 struct freeblks *freeblks; 7249 int off; 7250 { 7251 struct indirdep *indirdep; 7252 struct pagedep *pagedep; 7253 struct worklist *wk, *wkn; 7254 struct ufsmount *ump; 7255 7256 ump = softdep_bp_to_mp(bp); 7257 if (ump == NULL) 7258 goto done; 7259 ACQUIRE_LOCK(ump); 7260 LIST_FOREACH_SAFE(wk, &bp->b_dep, wk_list, wkn) { 7261 switch (wk->wk_type) { 7262 case D_INDIRDEP: 7263 indirdep = WK_INDIRDEP(wk); 7264 if (bp->b_lblkno >= 0 || 7265 bp->b_blkno != indirdep->ir_savebp->b_lblkno) 7266 panic("deallocate_dependencies: not indir"); 7267 cancel_indirdep(indirdep, bp, freeblks); 7268 continue; 7269 7270 case D_PAGEDEP: 7271 pagedep = WK_PAGEDEP(wk); 7272 if (cancel_pagedep(pagedep, freeblks, off)) { 7273 FREE_LOCK(ump); 7274 return (ERESTART); 7275 } 7276 continue; 7277 7278 case D_ALLOCINDIR: 7279 /* 7280 * Simply remove the allocindir, we'll find it via 7281 * the indirdep where we can clear pointers if 7282 * needed. 7283 */ 7284 WORKLIST_REMOVE(wk); 7285 continue; 7286 7287 case D_FREEWORK: 7288 /* 7289 * A truncation is waiting for the zero'd pointers 7290 * to be written. It can be freed when the freeblks 7291 * is journaled. 7292 */ 7293 WORKLIST_REMOVE(wk); 7294 wk->wk_state |= ONDEPLIST; 7295 WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk); 7296 break; 7297 7298 case D_ALLOCDIRECT: 7299 if (off != 0) 7300 continue; 7301 /* FALLTHROUGH */ 7302 default: 7303 panic("deallocate_dependencies: Unexpected type %s", 7304 TYPENAME(wk->wk_type)); 7305 /* NOTREACHED */ 7306 } 7307 } 7308 FREE_LOCK(ump); 7309 done: 7310 /* 7311 * Don't throw away this buf, we were partially truncating and 7312 * some deps may always remain. 7313 */ 7314 if (off) { 7315 allocbuf(bp, off); 7316 bp->b_vflags |= BV_SCANNED; 7317 return (EBUSY); 7318 } 7319 bp->b_flags |= B_INVAL | B_NOCACHE; 7320 7321 return (0); 7322 } 7323 7324 /* 7325 * An allocdirect is being canceled due to a truncate. We must make sure 7326 * the journal entry is released in concert with the blkfree that releases 7327 * the storage. Completed journal entries must not be released until the 7328 * space is no longer pointed to by the inode or in the bitmap. 7329 */ 7330 static void 7331 cancel_allocdirect(adphead, adp, freeblks) 7332 struct allocdirectlst *adphead; 7333 struct allocdirect *adp; 7334 struct freeblks *freeblks; 7335 { 7336 struct freework *freework; 7337 struct newblk *newblk; 7338 struct worklist *wk; 7339 7340 TAILQ_REMOVE(adphead, adp, ad_next); 7341 newblk = (struct newblk *)adp; 7342 freework = NULL; 7343 /* 7344 * Find the correct freework structure. 7345 */ 7346 LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) { 7347 if (wk->wk_type != D_FREEWORK) 7348 continue; 7349 freework = WK_FREEWORK(wk); 7350 if (freework->fw_blkno == newblk->nb_newblkno) 7351 break; 7352 } 7353 if (freework == NULL) 7354 panic("cancel_allocdirect: Freework not found"); 7355 /* 7356 * If a newblk exists at all we still have the journal entry that 7357 * initiated the allocation so we do not need to journal the free. 7358 */ 7359 cancel_jfreeblk(freeblks, freework->fw_blkno); 7360 /* 7361 * If the journal hasn't been written the jnewblk must be passed 7362 * to the call to ffs_blkfree that reclaims the space. We accomplish 7363 * this by linking the journal dependency into the freework to be 7364 * freed when freework_freeblock() is called. If the journal has 7365 * been written we can simply reclaim the journal space when the 7366 * freeblks work is complete. 7367 */ 7368 freework->fw_jnewblk = cancel_newblk(newblk, &freework->fw_list, 7369 &freeblks->fb_jwork); 7370 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list); 7371 } 7372 7373 7374 /* 7375 * Cancel a new block allocation. May be an indirect or direct block. We 7376 * remove it from various lists and return any journal record that needs to 7377 * be resolved by the caller. 7378 * 7379 * A special consideration is made for indirects which were never pointed 7380 * at on disk and will never be found once this block is released. 7381 */ 7382 static struct jnewblk * 7383 cancel_newblk(newblk, wk, wkhd) 7384 struct newblk *newblk; 7385 struct worklist *wk; 7386 struct workhead *wkhd; 7387 { 7388 struct jnewblk *jnewblk; 7389 7390 CTR1(KTR_SUJ, "cancel_newblk: blkno %jd", newblk->nb_newblkno); 7391 7392 newblk->nb_state |= GOINGAWAY; 7393 /* 7394 * Previously we traversed the completedhd on each indirdep 7395 * attached to this newblk to cancel them and gather journal 7396 * work. Since we need only the oldest journal segment and 7397 * the lowest point on the tree will always have the oldest 7398 * journal segment we are free to release the segments 7399 * of any subordinates and may leave the indirdep list to 7400 * indirdep_complete() when this newblk is freed. 7401 */ 7402 if (newblk->nb_state & ONDEPLIST) { 7403 newblk->nb_state &= ~ONDEPLIST; 7404 LIST_REMOVE(newblk, nb_deps); 7405 } 7406 if (newblk->nb_state & ONWORKLIST) 7407 WORKLIST_REMOVE(&newblk->nb_list); 7408 /* 7409 * If the journal entry hasn't been written we save a pointer to 7410 * the dependency that frees it until it is written or the 7411 * superseding operation completes. 7412 */ 7413 jnewblk = newblk->nb_jnewblk; 7414 if (jnewblk != NULL && wk != NULL) { 7415 newblk->nb_jnewblk = NULL; 7416 jnewblk->jn_dep = wk; 7417 } 7418 if (!LIST_EMPTY(&newblk->nb_jwork)) 7419 jwork_move(wkhd, &newblk->nb_jwork); 7420 /* 7421 * When truncating we must free the newdirblk early to remove 7422 * the pagedep from the hash before returning. 7423 */ 7424 if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL) 7425 free_newdirblk(WK_NEWDIRBLK(wk)); 7426 if (!LIST_EMPTY(&newblk->nb_newdirblk)) 7427 panic("cancel_newblk: extra newdirblk"); 7428 7429 return (jnewblk); 7430 } 7431 7432 /* 7433 * Schedule the freefrag associated with a newblk to be released once 7434 * the pointers are written and the previous block is no longer needed. 7435 */ 7436 static void 7437 newblk_freefrag(newblk) 7438 struct newblk *newblk; 7439 { 7440 struct freefrag *freefrag; 7441 7442 if (newblk->nb_freefrag == NULL) 7443 return; 7444 freefrag = newblk->nb_freefrag; 7445 newblk->nb_freefrag = NULL; 7446 freefrag->ff_state |= COMPLETE; 7447 if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE) 7448 add_to_worklist(&freefrag->ff_list, 0); 7449 } 7450 7451 /* 7452 * Free a newblk. Generate a new freefrag work request if appropriate. 7453 * This must be called after the inode pointer and any direct block pointers 7454 * are valid or fully removed via truncate or frag extension. 7455 */ 7456 static void 7457 free_newblk(newblk) 7458 struct newblk *newblk; 7459 { 7460 struct indirdep *indirdep; 7461 struct worklist *wk; 7462 7463 KASSERT(newblk->nb_jnewblk == NULL, 7464 ("free_newblk: jnewblk %p still attached", newblk->nb_jnewblk)); 7465 KASSERT(newblk->nb_list.wk_type != D_NEWBLK, 7466 ("free_newblk: unclaimed newblk")); 7467 LOCK_OWNED(VFSTOUFS(newblk->nb_list.wk_mp)); 7468 newblk_freefrag(newblk); 7469 if (newblk->nb_state & ONDEPLIST) 7470 LIST_REMOVE(newblk, nb_deps); 7471 if (newblk->nb_state & ONWORKLIST) 7472 WORKLIST_REMOVE(&newblk->nb_list); 7473 LIST_REMOVE(newblk, nb_hash); 7474 if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL) 7475 free_newdirblk(WK_NEWDIRBLK(wk)); 7476 if (!LIST_EMPTY(&newblk->nb_newdirblk)) 7477 panic("free_newblk: extra newdirblk"); 7478 while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL) 7479 indirdep_complete(indirdep); 7480 handle_jwork(&newblk->nb_jwork); 7481 WORKITEM_FREE(newblk, D_NEWBLK); 7482 } 7483 7484 /* 7485 * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep. 7486 * This routine must be called with splbio interrupts blocked. 7487 */ 7488 static void 7489 free_newdirblk(newdirblk) 7490 struct newdirblk *newdirblk; 7491 { 7492 struct pagedep *pagedep; 7493 struct diradd *dap; 7494 struct worklist *wk; 7495 7496 LOCK_OWNED(VFSTOUFS(newdirblk->db_list.wk_mp)); 7497 WORKLIST_REMOVE(&newdirblk->db_list); 7498 /* 7499 * If the pagedep is still linked onto the directory buffer 7500 * dependency chain, then some of the entries on the 7501 * pd_pendinghd list may not be committed to disk yet. In 7502 * this case, we will simply clear the NEWBLOCK flag and 7503 * let the pd_pendinghd list be processed when the pagedep 7504 * is next written. If the pagedep is no longer on the buffer 7505 * dependency chain, then all the entries on the pd_pending 7506 * list are committed to disk and we can free them here. 7507 */ 7508 pagedep = newdirblk->db_pagedep; 7509 pagedep->pd_state &= ~NEWBLOCK; 7510 if ((pagedep->pd_state & ONWORKLIST) == 0) { 7511 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 7512 free_diradd(dap, NULL); 7513 /* 7514 * If no dependencies remain, the pagedep will be freed. 7515 */ 7516 free_pagedep(pagedep); 7517 } 7518 /* Should only ever be one item in the list. */ 7519 while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) { 7520 WORKLIST_REMOVE(wk); 7521 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); 7522 } 7523 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 7524 } 7525 7526 /* 7527 * Prepare an inode to be freed. The actual free operation is not 7528 * done until the zero'ed inode has been written to disk. 7529 */ 7530 void 7531 softdep_freefile(pvp, ino, mode) 7532 struct vnode *pvp; 7533 ino_t ino; 7534 int mode; 7535 { 7536 struct inode *ip = VTOI(pvp); 7537 struct inodedep *inodedep; 7538 struct freefile *freefile; 7539 struct freeblks *freeblks; 7540 struct ufsmount *ump; 7541 7542 ump = ITOUMP(ip); 7543 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 7544 ("softdep_freefile called on non-softdep filesystem")); 7545 /* 7546 * This sets up the inode de-allocation dependency. 7547 */ 7548 freefile = malloc(sizeof(struct freefile), 7549 M_FREEFILE, M_SOFTDEP_FLAGS); 7550 workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount); 7551 freefile->fx_mode = mode; 7552 freefile->fx_oldinum = ino; 7553 freefile->fx_devvp = ump->um_devvp; 7554 LIST_INIT(&freefile->fx_jwork); 7555 UFS_LOCK(ump); 7556 ump->um_fs->fs_pendinginodes += 1; 7557 UFS_UNLOCK(ump); 7558 7559 /* 7560 * If the inodedep does not exist, then the zero'ed inode has 7561 * been written to disk. If the allocated inode has never been 7562 * written to disk, then the on-disk inode is zero'ed. In either 7563 * case we can free the file immediately. If the journal was 7564 * canceled before being written the inode will never make it to 7565 * disk and we must send the canceled journal entrys to 7566 * ffs_freefile() to be cleared in conjunction with the bitmap. 7567 * Any blocks waiting on the inode to write can be safely freed 7568 * here as it will never been written. 7569 */ 7570 ACQUIRE_LOCK(ump); 7571 inodedep_lookup(pvp->v_mount, ino, 0, &inodedep); 7572 if (inodedep) { 7573 /* 7574 * Clear out freeblks that no longer need to reference 7575 * this inode. 7576 */ 7577 while ((freeblks = 7578 TAILQ_FIRST(&inodedep->id_freeblklst)) != NULL) { 7579 TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, 7580 fb_next); 7581 freeblks->fb_state &= ~ONDEPLIST; 7582 } 7583 /* 7584 * Remove this inode from the unlinked list. 7585 */ 7586 if (inodedep->id_state & UNLINKED) { 7587 /* 7588 * Save the journal work to be freed with the bitmap 7589 * before we clear UNLINKED. Otherwise it can be lost 7590 * if the inode block is written. 7591 */ 7592 handle_bufwait(inodedep, &freefile->fx_jwork); 7593 clear_unlinked_inodedep(inodedep); 7594 /* 7595 * Re-acquire inodedep as we've dropped the 7596 * per-filesystem lock in clear_unlinked_inodedep(). 7597 */ 7598 inodedep_lookup(pvp->v_mount, ino, 0, &inodedep); 7599 } 7600 } 7601 if (inodedep == NULL || check_inode_unwritten(inodedep)) { 7602 FREE_LOCK(ump); 7603 handle_workitem_freefile(freefile); 7604 return; 7605 } 7606 if ((inodedep->id_state & DEPCOMPLETE) == 0) 7607 inodedep->id_state |= GOINGAWAY; 7608 WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list); 7609 FREE_LOCK(ump); 7610 if (ip->i_number == ino) 7611 ip->i_flag |= IN_MODIFIED; 7612 } 7613 7614 /* 7615 * Check to see if an inode has never been written to disk. If 7616 * so free the inodedep and return success, otherwise return failure. 7617 * This routine must be called with splbio interrupts blocked. 7618 * 7619 * If we still have a bitmap dependency, then the inode has never 7620 * been written to disk. Drop the dependency as it is no longer 7621 * necessary since the inode is being deallocated. We set the 7622 * ALLCOMPLETE flags since the bitmap now properly shows that the 7623 * inode is not allocated. Even if the inode is actively being 7624 * written, it has been rolled back to its zero'ed state, so we 7625 * are ensured that a zero inode is what is on the disk. For short 7626 * lived files, this change will usually result in removing all the 7627 * dependencies from the inode so that it can be freed immediately. 7628 */ 7629 static int 7630 check_inode_unwritten(inodedep) 7631 struct inodedep *inodedep; 7632 { 7633 7634 LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp)); 7635 7636 if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 || 7637 !LIST_EMPTY(&inodedep->id_dirremhd) || 7638 !LIST_EMPTY(&inodedep->id_pendinghd) || 7639 !LIST_EMPTY(&inodedep->id_bufwait) || 7640 !LIST_EMPTY(&inodedep->id_inowait) || 7641 !TAILQ_EMPTY(&inodedep->id_inoreflst) || 7642 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 7643 !TAILQ_EMPTY(&inodedep->id_newinoupdt) || 7644 !TAILQ_EMPTY(&inodedep->id_extupdt) || 7645 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 7646 !TAILQ_EMPTY(&inodedep->id_freeblklst) || 7647 inodedep->id_mkdiradd != NULL || 7648 inodedep->id_nlinkdelta != 0) 7649 return (0); 7650 /* 7651 * Another process might be in initiate_write_inodeblock_ufs[12] 7652 * trying to allocate memory without holding "Softdep Lock". 7653 */ 7654 if ((inodedep->id_state & IOSTARTED) != 0 && 7655 inodedep->id_savedino1 == NULL) 7656 return (0); 7657 7658 if (inodedep->id_state & ONDEPLIST) 7659 LIST_REMOVE(inodedep, id_deps); 7660 inodedep->id_state &= ~ONDEPLIST; 7661 inodedep->id_state |= ALLCOMPLETE; 7662 inodedep->id_bmsafemap = NULL; 7663 if (inodedep->id_state & ONWORKLIST) 7664 WORKLIST_REMOVE(&inodedep->id_list); 7665 if (inodedep->id_savedino1 != NULL) { 7666 free(inodedep->id_savedino1, M_SAVEDINO); 7667 inodedep->id_savedino1 = NULL; 7668 } 7669 if (free_inodedep(inodedep) == 0) 7670 panic("check_inode_unwritten: busy inode"); 7671 return (1); 7672 } 7673 7674 static int 7675 check_inodedep_free(inodedep) 7676 struct inodedep *inodedep; 7677 { 7678 7679 LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp)); 7680 if ((inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE || 7681 !LIST_EMPTY(&inodedep->id_dirremhd) || 7682 !LIST_EMPTY(&inodedep->id_pendinghd) || 7683 !LIST_EMPTY(&inodedep->id_bufwait) || 7684 !LIST_EMPTY(&inodedep->id_inowait) || 7685 !TAILQ_EMPTY(&inodedep->id_inoreflst) || 7686 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 7687 !TAILQ_EMPTY(&inodedep->id_newinoupdt) || 7688 !TAILQ_EMPTY(&inodedep->id_extupdt) || 7689 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 7690 !TAILQ_EMPTY(&inodedep->id_freeblklst) || 7691 inodedep->id_mkdiradd != NULL || 7692 inodedep->id_nlinkdelta != 0 || 7693 inodedep->id_savedino1 != NULL) 7694 return (0); 7695 return (1); 7696 } 7697 7698 /* 7699 * Try to free an inodedep structure. Return 1 if it could be freed. 7700 */ 7701 static int 7702 free_inodedep(inodedep) 7703 struct inodedep *inodedep; 7704 { 7705 7706 LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp)); 7707 if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 || 7708 !check_inodedep_free(inodedep)) 7709 return (0); 7710 if (inodedep->id_state & ONDEPLIST) 7711 LIST_REMOVE(inodedep, id_deps); 7712 LIST_REMOVE(inodedep, id_hash); 7713 WORKITEM_FREE(inodedep, D_INODEDEP); 7714 return (1); 7715 } 7716 7717 /* 7718 * Free the block referenced by a freework structure. The parent freeblks 7719 * structure is released and completed when the final cg bitmap reaches 7720 * the disk. This routine may be freeing a jnewblk which never made it to 7721 * disk in which case we do not have to wait as the operation is undone 7722 * in memory immediately. 7723 */ 7724 static void 7725 freework_freeblock(freework) 7726 struct freework *freework; 7727 { 7728 struct freeblks *freeblks; 7729 struct jnewblk *jnewblk; 7730 struct ufsmount *ump; 7731 struct workhead wkhd; 7732 struct fs *fs; 7733 int bsize; 7734 int needj; 7735 7736 ump = VFSTOUFS(freework->fw_list.wk_mp); 7737 LOCK_OWNED(ump); 7738 /* 7739 * Handle partial truncate separately. 7740 */ 7741 if (freework->fw_indir) { 7742 complete_trunc_indir(freework); 7743 return; 7744 } 7745 freeblks = freework->fw_freeblks; 7746 fs = ump->um_fs; 7747 needj = MOUNTEDSUJ(freeblks->fb_list.wk_mp) != 0; 7748 bsize = lfragtosize(fs, freework->fw_frags); 7749 LIST_INIT(&wkhd); 7750 /* 7751 * DEPCOMPLETE is cleared in indirblk_insert() if the block lives 7752 * on the indirblk hashtable and prevents premature freeing. 7753 */ 7754 freework->fw_state |= DEPCOMPLETE; 7755 /* 7756 * SUJ needs to wait for the segment referencing freed indirect 7757 * blocks to expire so that we know the checker will not confuse 7758 * a re-allocated indirect block with its old contents. 7759 */ 7760 if (needj && freework->fw_lbn <= -UFS_NDADDR) 7761 indirblk_insert(freework); 7762 /* 7763 * If we are canceling an existing jnewblk pass it to the free 7764 * routine, otherwise pass the freeblk which will ultimately 7765 * release the freeblks. If we're not journaling, we can just 7766 * free the freeblks immediately. 7767 */ 7768 jnewblk = freework->fw_jnewblk; 7769 if (jnewblk != NULL) { 7770 cancel_jnewblk(jnewblk, &wkhd); 7771 needj = 0; 7772 } else if (needj) { 7773 freework->fw_state |= DELAYEDFREE; 7774 freeblks->fb_cgwait++; 7775 WORKLIST_INSERT(&wkhd, &freework->fw_list); 7776 } 7777 FREE_LOCK(ump); 7778 freeblks_free(ump, freeblks, btodb(bsize)); 7779 CTR4(KTR_SUJ, 7780 "freework_freeblock: ino %d blkno %jd lbn %jd size %ld", 7781 freeblks->fb_inum, freework->fw_blkno, freework->fw_lbn, bsize); 7782 ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno, bsize, 7783 freeblks->fb_inum, freeblks->fb_vtype, &wkhd); 7784 ACQUIRE_LOCK(ump); 7785 /* 7786 * The jnewblk will be discarded and the bits in the map never 7787 * made it to disk. We can immediately free the freeblk. 7788 */ 7789 if (needj == 0) 7790 handle_written_freework(freework); 7791 } 7792 7793 /* 7794 * We enqueue freework items that need processing back on the freeblks and 7795 * add the freeblks to the worklist. This makes it easier to find all work 7796 * required to flush a truncation in process_truncates(). 7797 */ 7798 static void 7799 freework_enqueue(freework) 7800 struct freework *freework; 7801 { 7802 struct freeblks *freeblks; 7803 7804 freeblks = freework->fw_freeblks; 7805 if ((freework->fw_state & INPROGRESS) == 0) 7806 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list); 7807 if ((freeblks->fb_state & 7808 (ONWORKLIST | INPROGRESS | ALLCOMPLETE)) == ALLCOMPLETE && 7809 LIST_EMPTY(&freeblks->fb_jblkdephd)) 7810 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 7811 } 7812 7813 /* 7814 * Start, continue, or finish the process of freeing an indirect block tree. 7815 * The free operation may be paused at any point with fw_off containing the 7816 * offset to restart from. This enables us to implement some flow control 7817 * for large truncates which may fan out and generate a huge number of 7818 * dependencies. 7819 */ 7820 static void 7821 handle_workitem_indirblk(freework) 7822 struct freework *freework; 7823 { 7824 struct freeblks *freeblks; 7825 struct ufsmount *ump; 7826 struct fs *fs; 7827 7828 freeblks = freework->fw_freeblks; 7829 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 7830 fs = ump->um_fs; 7831 if (freework->fw_state & DEPCOMPLETE) { 7832 handle_written_freework(freework); 7833 return; 7834 } 7835 if (freework->fw_off == NINDIR(fs)) { 7836 freework_freeblock(freework); 7837 return; 7838 } 7839 freework->fw_state |= INPROGRESS; 7840 FREE_LOCK(ump); 7841 indir_trunc(freework, fsbtodb(fs, freework->fw_blkno), 7842 freework->fw_lbn); 7843 ACQUIRE_LOCK(ump); 7844 } 7845 7846 /* 7847 * Called when a freework structure attached to a cg buf is written. The 7848 * ref on either the parent or the freeblks structure is released and 7849 * the freeblks is added back to the worklist if there is more work to do. 7850 */ 7851 static void 7852 handle_written_freework(freework) 7853 struct freework *freework; 7854 { 7855 struct freeblks *freeblks; 7856 struct freework *parent; 7857 7858 freeblks = freework->fw_freeblks; 7859 parent = freework->fw_parent; 7860 if (freework->fw_state & DELAYEDFREE) 7861 freeblks->fb_cgwait--; 7862 freework->fw_state |= COMPLETE; 7863 if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE) 7864 WORKITEM_FREE(freework, D_FREEWORK); 7865 if (parent) { 7866 if (--parent->fw_ref == 0) 7867 freework_enqueue(parent); 7868 return; 7869 } 7870 if (--freeblks->fb_ref != 0) 7871 return; 7872 if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST | INPROGRESS)) == 7873 ALLCOMPLETE && LIST_EMPTY(&freeblks->fb_jblkdephd)) 7874 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 7875 } 7876 7877 /* 7878 * This workitem routine performs the block de-allocation. 7879 * The workitem is added to the pending list after the updated 7880 * inode block has been written to disk. As mentioned above, 7881 * checks regarding the number of blocks de-allocated (compared 7882 * to the number of blocks allocated for the file) are also 7883 * performed in this function. 7884 */ 7885 static int 7886 handle_workitem_freeblocks(freeblks, flags) 7887 struct freeblks *freeblks; 7888 int flags; 7889 { 7890 struct freework *freework; 7891 struct newblk *newblk; 7892 struct allocindir *aip; 7893 struct ufsmount *ump; 7894 struct worklist *wk; 7895 7896 KASSERT(LIST_EMPTY(&freeblks->fb_jblkdephd), 7897 ("handle_workitem_freeblocks: Journal entries not written.")); 7898 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 7899 ACQUIRE_LOCK(ump); 7900 while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) { 7901 WORKLIST_REMOVE(wk); 7902 switch (wk->wk_type) { 7903 case D_DIRREM: 7904 wk->wk_state |= COMPLETE; 7905 add_to_worklist(wk, 0); 7906 continue; 7907 7908 case D_ALLOCDIRECT: 7909 free_newblk(WK_NEWBLK(wk)); 7910 continue; 7911 7912 case D_ALLOCINDIR: 7913 aip = WK_ALLOCINDIR(wk); 7914 freework = NULL; 7915 if (aip->ai_state & DELAYEDFREE) { 7916 FREE_LOCK(ump); 7917 freework = newfreework(ump, freeblks, NULL, 7918 aip->ai_lbn, aip->ai_newblkno, 7919 ump->um_fs->fs_frag, 0, 0); 7920 ACQUIRE_LOCK(ump); 7921 } 7922 newblk = WK_NEWBLK(wk); 7923 if (newblk->nb_jnewblk) { 7924 freework->fw_jnewblk = newblk->nb_jnewblk; 7925 newblk->nb_jnewblk->jn_dep = &freework->fw_list; 7926 newblk->nb_jnewblk = NULL; 7927 } 7928 free_newblk(newblk); 7929 continue; 7930 7931 case D_FREEWORK: 7932 freework = WK_FREEWORK(wk); 7933 if (freework->fw_lbn <= -UFS_NDADDR) 7934 handle_workitem_indirblk(freework); 7935 else 7936 freework_freeblock(freework); 7937 continue; 7938 default: 7939 panic("handle_workitem_freeblocks: Unknown type %s", 7940 TYPENAME(wk->wk_type)); 7941 } 7942 } 7943 if (freeblks->fb_ref != 0) { 7944 freeblks->fb_state &= ~INPROGRESS; 7945 wake_worklist(&freeblks->fb_list); 7946 freeblks = NULL; 7947 } 7948 FREE_LOCK(ump); 7949 if (freeblks) 7950 return handle_complete_freeblocks(freeblks, flags); 7951 return (0); 7952 } 7953 7954 /* 7955 * Handle completion of block free via truncate. This allows fs_pending 7956 * to track the actual free block count more closely than if we only updated 7957 * it at the end. We must be careful to handle cases where the block count 7958 * on free was incorrect. 7959 */ 7960 static void 7961 freeblks_free(ump, freeblks, blocks) 7962 struct ufsmount *ump; 7963 struct freeblks *freeblks; 7964 int blocks; 7965 { 7966 struct fs *fs; 7967 ufs2_daddr_t remain; 7968 7969 UFS_LOCK(ump); 7970 remain = -freeblks->fb_chkcnt; 7971 freeblks->fb_chkcnt += blocks; 7972 if (remain > 0) { 7973 if (remain < blocks) 7974 blocks = remain; 7975 fs = ump->um_fs; 7976 fs->fs_pendingblocks -= blocks; 7977 } 7978 UFS_UNLOCK(ump); 7979 } 7980 7981 /* 7982 * Once all of the freework workitems are complete we can retire the 7983 * freeblocks dependency and any journal work awaiting completion. This 7984 * can not be called until all other dependencies are stable on disk. 7985 */ 7986 static int 7987 handle_complete_freeblocks(freeblks, flags) 7988 struct freeblks *freeblks; 7989 int flags; 7990 { 7991 struct inodedep *inodedep; 7992 struct inode *ip; 7993 struct vnode *vp; 7994 struct fs *fs; 7995 struct ufsmount *ump; 7996 ufs2_daddr_t spare; 7997 7998 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 7999 fs = ump->um_fs; 8000 flags = LK_EXCLUSIVE | flags; 8001 spare = freeblks->fb_chkcnt; 8002 8003 /* 8004 * If we did not release the expected number of blocks we may have 8005 * to adjust the inode block count here. Only do so if it wasn't 8006 * a truncation to zero and the modrev still matches. 8007 */ 8008 if (spare && freeblks->fb_len != 0) { 8009 if (ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_inum, 8010 flags, &vp, FFSV_FORCEINSMQ) != 0) 8011 return (EBUSY); 8012 ip = VTOI(vp); 8013 if (DIP(ip, i_modrev) == freeblks->fb_modrev) { 8014 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - spare); 8015 ip->i_flag |= IN_CHANGE; 8016 /* 8017 * We must wait so this happens before the 8018 * journal is reclaimed. 8019 */ 8020 ffs_update(vp, 1); 8021 } 8022 vput(vp); 8023 } 8024 if (spare < 0) { 8025 UFS_LOCK(ump); 8026 fs->fs_pendingblocks += spare; 8027 UFS_UNLOCK(ump); 8028 } 8029 #ifdef QUOTA 8030 /* Handle spare. */ 8031 if (spare) 8032 quotaadj(freeblks->fb_quota, ump, -spare); 8033 quotarele(freeblks->fb_quota); 8034 #endif 8035 ACQUIRE_LOCK(ump); 8036 if (freeblks->fb_state & ONDEPLIST) { 8037 inodedep_lookup(freeblks->fb_list.wk_mp, freeblks->fb_inum, 8038 0, &inodedep); 8039 TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, fb_next); 8040 freeblks->fb_state &= ~ONDEPLIST; 8041 if (TAILQ_EMPTY(&inodedep->id_freeblklst)) 8042 free_inodedep(inodedep); 8043 } 8044 /* 8045 * All of the freeblock deps must be complete prior to this call 8046 * so it's now safe to complete earlier outstanding journal entries. 8047 */ 8048 handle_jwork(&freeblks->fb_jwork); 8049 WORKITEM_FREE(freeblks, D_FREEBLKS); 8050 FREE_LOCK(ump); 8051 return (0); 8052 } 8053 8054 /* 8055 * Release blocks associated with the freeblks and stored in the indirect 8056 * block dbn. If level is greater than SINGLE, the block is an indirect block 8057 * and recursive calls to indirtrunc must be used to cleanse other indirect 8058 * blocks. 8059 * 8060 * This handles partial and complete truncation of blocks. Partial is noted 8061 * with goingaway == 0. In this case the freework is completed after the 8062 * zero'd indirects are written to disk. For full truncation the freework 8063 * is completed after the block is freed. 8064 */ 8065 static void 8066 indir_trunc(freework, dbn, lbn) 8067 struct freework *freework; 8068 ufs2_daddr_t dbn; 8069 ufs_lbn_t lbn; 8070 { 8071 struct freework *nfreework; 8072 struct workhead wkhd; 8073 struct freeblks *freeblks; 8074 struct buf *bp; 8075 struct fs *fs; 8076 struct indirdep *indirdep; 8077 struct ufsmount *ump; 8078 ufs1_daddr_t *bap1; 8079 ufs2_daddr_t nb, nnb, *bap2; 8080 ufs_lbn_t lbnadd, nlbn; 8081 int i, nblocks, ufs1fmt; 8082 int freedblocks; 8083 int goingaway; 8084 int freedeps; 8085 int needj; 8086 int level; 8087 int cnt; 8088 8089 freeblks = freework->fw_freeblks; 8090 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 8091 fs = ump->um_fs; 8092 /* 8093 * Get buffer of block pointers to be freed. There are three cases: 8094 * 8095 * 1) Partial truncate caches the indirdep pointer in the freework 8096 * which provides us a back copy to the save bp which holds the 8097 * pointers we want to clear. When this completes the zero 8098 * pointers are written to the real copy. 8099 * 2) The indirect is being completely truncated, cancel_indirdep() 8100 * eliminated the real copy and placed the indirdep on the saved 8101 * copy. The indirdep and buf are discarded when this completes. 8102 * 3) The indirect was not in memory, we read a copy off of the disk 8103 * using the devvp and drop and invalidate the buffer when we're 8104 * done. 8105 */ 8106 goingaway = 1; 8107 indirdep = NULL; 8108 if (freework->fw_indir != NULL) { 8109 goingaway = 0; 8110 indirdep = freework->fw_indir; 8111 bp = indirdep->ir_savebp; 8112 if (bp == NULL || bp->b_blkno != dbn) 8113 panic("indir_trunc: Bad saved buf %p blkno %jd", 8114 bp, (intmax_t)dbn); 8115 } else if ((bp = incore(&freeblks->fb_devvp->v_bufobj, dbn)) != NULL) { 8116 /* 8117 * The lock prevents the buf dep list from changing and 8118 * indirects on devvp should only ever have one dependency. 8119 */ 8120 indirdep = WK_INDIRDEP(LIST_FIRST(&bp->b_dep)); 8121 if (indirdep == NULL || (indirdep->ir_state & GOINGAWAY) == 0) 8122 panic("indir_trunc: Bad indirdep %p from buf %p", 8123 indirdep, bp); 8124 } else if (bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize, 8125 NOCRED, &bp) != 0) { 8126 brelse(bp); 8127 return; 8128 } 8129 ACQUIRE_LOCK(ump); 8130 /* Protects against a race with complete_trunc_indir(). */ 8131 freework->fw_state &= ~INPROGRESS; 8132 /* 8133 * If we have an indirdep we need to enforce the truncation order 8134 * and discard it when it is complete. 8135 */ 8136 if (indirdep) { 8137 if (freework != TAILQ_FIRST(&indirdep->ir_trunc) && 8138 !TAILQ_EMPTY(&indirdep->ir_trunc)) { 8139 /* 8140 * Add the complete truncate to the list on the 8141 * indirdep to enforce in-order processing. 8142 */ 8143 if (freework->fw_indir == NULL) 8144 TAILQ_INSERT_TAIL(&indirdep->ir_trunc, 8145 freework, fw_next); 8146 FREE_LOCK(ump); 8147 return; 8148 } 8149 /* 8150 * If we're goingaway, free the indirdep. Otherwise it will 8151 * linger until the write completes. 8152 */ 8153 if (goingaway) 8154 free_indirdep(indirdep); 8155 } 8156 FREE_LOCK(ump); 8157 /* Initialize pointers depending on block size. */ 8158 if (ump->um_fstype == UFS1) { 8159 bap1 = (ufs1_daddr_t *)bp->b_data; 8160 nb = bap1[freework->fw_off]; 8161 ufs1fmt = 1; 8162 bap2 = NULL; 8163 } else { 8164 bap2 = (ufs2_daddr_t *)bp->b_data; 8165 nb = bap2[freework->fw_off]; 8166 ufs1fmt = 0; 8167 bap1 = NULL; 8168 } 8169 level = lbn_level(lbn); 8170 needj = MOUNTEDSUJ(UFSTOVFS(ump)) != 0; 8171 lbnadd = lbn_offset(fs, level); 8172 nblocks = btodb(fs->fs_bsize); 8173 nfreework = freework; 8174 freedeps = 0; 8175 cnt = 0; 8176 /* 8177 * Reclaim blocks. Traverses into nested indirect levels and 8178 * arranges for the current level to be freed when subordinates 8179 * are free when journaling. 8180 */ 8181 for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) { 8182 if (i != NINDIR(fs) - 1) { 8183 if (ufs1fmt) 8184 nnb = bap1[i+1]; 8185 else 8186 nnb = bap2[i+1]; 8187 } else 8188 nnb = 0; 8189 if (nb == 0) 8190 continue; 8191 cnt++; 8192 if (level != 0) { 8193 nlbn = (lbn + 1) - (i * lbnadd); 8194 if (needj != 0) { 8195 nfreework = newfreework(ump, freeblks, freework, 8196 nlbn, nb, fs->fs_frag, 0, 0); 8197 freedeps++; 8198 } 8199 indir_trunc(nfreework, fsbtodb(fs, nb), nlbn); 8200 } else { 8201 struct freedep *freedep; 8202 8203 /* 8204 * Attempt to aggregate freedep dependencies for 8205 * all blocks being released to the same CG. 8206 */ 8207 LIST_INIT(&wkhd); 8208 if (needj != 0 && 8209 (nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) { 8210 freedep = newfreedep(freework); 8211 WORKLIST_INSERT_UNLOCKED(&wkhd, 8212 &freedep->fd_list); 8213 freedeps++; 8214 } 8215 CTR3(KTR_SUJ, 8216 "indir_trunc: ino %d blkno %jd size %ld", 8217 freeblks->fb_inum, nb, fs->fs_bsize); 8218 ffs_blkfree(ump, fs, freeblks->fb_devvp, nb, 8219 fs->fs_bsize, freeblks->fb_inum, 8220 freeblks->fb_vtype, &wkhd); 8221 } 8222 } 8223 if (goingaway) { 8224 bp->b_flags |= B_INVAL | B_NOCACHE; 8225 brelse(bp); 8226 } 8227 freedblocks = 0; 8228 if (level == 0) 8229 freedblocks = (nblocks * cnt); 8230 if (needj == 0) 8231 freedblocks += nblocks; 8232 freeblks_free(ump, freeblks, freedblocks); 8233 /* 8234 * If we are journaling set up the ref counts and offset so this 8235 * indirect can be completed when its children are free. 8236 */ 8237 if (needj) { 8238 ACQUIRE_LOCK(ump); 8239 freework->fw_off = i; 8240 freework->fw_ref += freedeps; 8241 freework->fw_ref -= NINDIR(fs) + 1; 8242 if (level == 0) 8243 freeblks->fb_cgwait += freedeps; 8244 if (freework->fw_ref == 0) 8245 freework_freeblock(freework); 8246 FREE_LOCK(ump); 8247 return; 8248 } 8249 /* 8250 * If we're not journaling we can free the indirect now. 8251 */ 8252 dbn = dbtofsb(fs, dbn); 8253 CTR3(KTR_SUJ, 8254 "indir_trunc 2: ino %d blkno %jd size %ld", 8255 freeblks->fb_inum, dbn, fs->fs_bsize); 8256 ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize, 8257 freeblks->fb_inum, freeblks->fb_vtype, NULL); 8258 /* Non SUJ softdep does single-threaded truncations. */ 8259 if (freework->fw_blkno == dbn) { 8260 freework->fw_state |= ALLCOMPLETE; 8261 ACQUIRE_LOCK(ump); 8262 handle_written_freework(freework); 8263 FREE_LOCK(ump); 8264 } 8265 return; 8266 } 8267 8268 /* 8269 * Cancel an allocindir when it is removed via truncation. When bp is not 8270 * NULL the indirect never appeared on disk and is scheduled to be freed 8271 * independently of the indir so we can more easily track journal work. 8272 */ 8273 static void 8274 cancel_allocindir(aip, bp, freeblks, trunc) 8275 struct allocindir *aip; 8276 struct buf *bp; 8277 struct freeblks *freeblks; 8278 int trunc; 8279 { 8280 struct indirdep *indirdep; 8281 struct freefrag *freefrag; 8282 struct newblk *newblk; 8283 8284 newblk = (struct newblk *)aip; 8285 LIST_REMOVE(aip, ai_next); 8286 /* 8287 * We must eliminate the pointer in bp if it must be freed on its 8288 * own due to partial truncate or pending journal work. 8289 */ 8290 if (bp && (trunc || newblk->nb_jnewblk)) { 8291 /* 8292 * Clear the pointer and mark the aip to be freed 8293 * directly if it never existed on disk. 8294 */ 8295 aip->ai_state |= DELAYEDFREE; 8296 indirdep = aip->ai_indirdep; 8297 if (indirdep->ir_state & UFS1FMT) 8298 ((ufs1_daddr_t *)bp->b_data)[aip->ai_offset] = 0; 8299 else 8300 ((ufs2_daddr_t *)bp->b_data)[aip->ai_offset] = 0; 8301 } 8302 /* 8303 * When truncating the previous pointer will be freed via 8304 * savedbp. Eliminate the freefrag which would dup free. 8305 */ 8306 if (trunc && (freefrag = newblk->nb_freefrag) != NULL) { 8307 newblk->nb_freefrag = NULL; 8308 if (freefrag->ff_jdep) 8309 cancel_jfreefrag( 8310 WK_JFREEFRAG(freefrag->ff_jdep)); 8311 jwork_move(&freeblks->fb_jwork, &freefrag->ff_jwork); 8312 WORKITEM_FREE(freefrag, D_FREEFRAG); 8313 } 8314 /* 8315 * If the journal hasn't been written the jnewblk must be passed 8316 * to the call to ffs_blkfree that reclaims the space. We accomplish 8317 * this by leaving the journal dependency on the newblk to be freed 8318 * when a freework is created in handle_workitem_freeblocks(). 8319 */ 8320 cancel_newblk(newblk, NULL, &freeblks->fb_jwork); 8321 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list); 8322 } 8323 8324 /* 8325 * Create the mkdir dependencies for . and .. in a new directory. Link them 8326 * in to a newdirblk so any subsequent additions are tracked properly. The 8327 * caller is responsible for adding the mkdir1 dependency to the journal 8328 * and updating id_mkdiradd. This function returns with the per-filesystem 8329 * lock held. 8330 */ 8331 static struct mkdir * 8332 setup_newdir(dap, newinum, dinum, newdirbp, mkdirp) 8333 struct diradd *dap; 8334 ino_t newinum; 8335 ino_t dinum; 8336 struct buf *newdirbp; 8337 struct mkdir **mkdirp; 8338 { 8339 struct newblk *newblk; 8340 struct pagedep *pagedep; 8341 struct inodedep *inodedep; 8342 struct newdirblk *newdirblk; 8343 struct mkdir *mkdir1, *mkdir2; 8344 struct worklist *wk; 8345 struct jaddref *jaddref; 8346 struct ufsmount *ump; 8347 struct mount *mp; 8348 8349 mp = dap->da_list.wk_mp; 8350 ump = VFSTOUFS(mp); 8351 newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK, 8352 M_SOFTDEP_FLAGS); 8353 workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp); 8354 LIST_INIT(&newdirblk->db_mkdir); 8355 mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS); 8356 workitem_alloc(&mkdir1->md_list, D_MKDIR, mp); 8357 mkdir1->md_state = ATTACHED | MKDIR_BODY; 8358 mkdir1->md_diradd = dap; 8359 mkdir1->md_jaddref = NULL; 8360 mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS); 8361 workitem_alloc(&mkdir2->md_list, D_MKDIR, mp); 8362 mkdir2->md_state = ATTACHED | MKDIR_PARENT; 8363 mkdir2->md_diradd = dap; 8364 mkdir2->md_jaddref = NULL; 8365 if (MOUNTEDSUJ(mp) == 0) { 8366 mkdir1->md_state |= DEPCOMPLETE; 8367 mkdir2->md_state |= DEPCOMPLETE; 8368 } 8369 /* 8370 * Dependency on "." and ".." being written to disk. 8371 */ 8372 mkdir1->md_buf = newdirbp; 8373 ACQUIRE_LOCK(VFSTOUFS(mp)); 8374 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir1, md_mkdirs); 8375 /* 8376 * We must link the pagedep, allocdirect, and newdirblk for 8377 * the initial file page so the pointer to the new directory 8378 * is not written until the directory contents are live and 8379 * any subsequent additions are not marked live until the 8380 * block is reachable via the inode. 8381 */ 8382 if (pagedep_lookup(mp, newdirbp, newinum, 0, 0, &pagedep) == 0) 8383 panic("setup_newdir: lost pagedep"); 8384 LIST_FOREACH(wk, &newdirbp->b_dep, wk_list) 8385 if (wk->wk_type == D_ALLOCDIRECT) 8386 break; 8387 if (wk == NULL) 8388 panic("setup_newdir: lost allocdirect"); 8389 if (pagedep->pd_state & NEWBLOCK) 8390 panic("setup_newdir: NEWBLOCK already set"); 8391 newblk = WK_NEWBLK(wk); 8392 pagedep->pd_state |= NEWBLOCK; 8393 pagedep->pd_newdirblk = newdirblk; 8394 newdirblk->db_pagedep = pagedep; 8395 WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list); 8396 WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list); 8397 /* 8398 * Look up the inodedep for the parent directory so that we 8399 * can link mkdir2 into the pending dotdot jaddref or 8400 * the inode write if there is none. If the inode is 8401 * ALLCOMPLETE and no jaddref is present all dependencies have 8402 * been satisfied and mkdir2 can be freed. 8403 */ 8404 inodedep_lookup(mp, dinum, 0, &inodedep); 8405 if (MOUNTEDSUJ(mp)) { 8406 if (inodedep == NULL) 8407 panic("setup_newdir: Lost parent."); 8408 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 8409 inoreflst); 8410 KASSERT(jaddref != NULL && jaddref->ja_parent == newinum && 8411 (jaddref->ja_state & MKDIR_PARENT), 8412 ("setup_newdir: bad dotdot jaddref %p", jaddref)); 8413 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs); 8414 mkdir2->md_jaddref = jaddref; 8415 jaddref->ja_mkdir = mkdir2; 8416 } else if (inodedep == NULL || 8417 (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 8418 dap->da_state &= ~MKDIR_PARENT; 8419 WORKITEM_FREE(mkdir2, D_MKDIR); 8420 mkdir2 = NULL; 8421 } else { 8422 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs); 8423 WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir2->md_list); 8424 } 8425 *mkdirp = mkdir2; 8426 8427 return (mkdir1); 8428 } 8429 8430 /* 8431 * Directory entry addition dependencies. 8432 * 8433 * When adding a new directory entry, the inode (with its incremented link 8434 * count) must be written to disk before the directory entry's pointer to it. 8435 * Also, if the inode is newly allocated, the corresponding freemap must be 8436 * updated (on disk) before the directory entry's pointer. These requirements 8437 * are met via undo/redo on the directory entry's pointer, which consists 8438 * simply of the inode number. 8439 * 8440 * As directory entries are added and deleted, the free space within a 8441 * directory block can become fragmented. The ufs filesystem will compact 8442 * a fragmented directory block to make space for a new entry. When this 8443 * occurs, the offsets of previously added entries change. Any "diradd" 8444 * dependency structures corresponding to these entries must be updated with 8445 * the new offsets. 8446 */ 8447 8448 /* 8449 * This routine is called after the in-memory inode's link 8450 * count has been incremented, but before the directory entry's 8451 * pointer to the inode has been set. 8452 */ 8453 int 8454 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk) 8455 struct buf *bp; /* buffer containing directory block */ 8456 struct inode *dp; /* inode for directory */ 8457 off_t diroffset; /* offset of new entry in directory */ 8458 ino_t newinum; /* inode referenced by new directory entry */ 8459 struct buf *newdirbp; /* non-NULL => contents of new mkdir */ 8460 int isnewblk; /* entry is in a newly allocated block */ 8461 { 8462 int offset; /* offset of new entry within directory block */ 8463 ufs_lbn_t lbn; /* block in directory containing new entry */ 8464 struct fs *fs; 8465 struct diradd *dap; 8466 struct newblk *newblk; 8467 struct pagedep *pagedep; 8468 struct inodedep *inodedep; 8469 struct newdirblk *newdirblk; 8470 struct mkdir *mkdir1, *mkdir2; 8471 struct jaddref *jaddref; 8472 struct ufsmount *ump; 8473 struct mount *mp; 8474 int isindir; 8475 8476 mp = ITOVFS(dp); 8477 ump = VFSTOUFS(mp); 8478 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 8479 ("softdep_setup_directory_add called on non-softdep filesystem")); 8480 /* 8481 * Whiteouts have no dependencies. 8482 */ 8483 if (newinum == UFS_WINO) { 8484 if (newdirbp != NULL) 8485 bdwrite(newdirbp); 8486 return (0); 8487 } 8488 jaddref = NULL; 8489 mkdir1 = mkdir2 = NULL; 8490 fs = ump->um_fs; 8491 lbn = lblkno(fs, diroffset); 8492 offset = blkoff(fs, diroffset); 8493 dap = malloc(sizeof(struct diradd), M_DIRADD, 8494 M_SOFTDEP_FLAGS|M_ZERO); 8495 workitem_alloc(&dap->da_list, D_DIRADD, mp); 8496 dap->da_offset = offset; 8497 dap->da_newinum = newinum; 8498 dap->da_state = ATTACHED; 8499 LIST_INIT(&dap->da_jwork); 8500 isindir = bp->b_lblkno >= UFS_NDADDR; 8501 newdirblk = NULL; 8502 if (isnewblk && 8503 (isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) { 8504 newdirblk = malloc(sizeof(struct newdirblk), 8505 M_NEWDIRBLK, M_SOFTDEP_FLAGS); 8506 workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp); 8507 LIST_INIT(&newdirblk->db_mkdir); 8508 } 8509 /* 8510 * If we're creating a new directory setup the dependencies and set 8511 * the dap state to wait for them. Otherwise it's COMPLETE and 8512 * we can move on. 8513 */ 8514 if (newdirbp == NULL) { 8515 dap->da_state |= DEPCOMPLETE; 8516 ACQUIRE_LOCK(ump); 8517 } else { 8518 dap->da_state |= MKDIR_BODY | MKDIR_PARENT; 8519 mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp, 8520 &mkdir2); 8521 } 8522 /* 8523 * Link into parent directory pagedep to await its being written. 8524 */ 8525 pagedep_lookup(mp, bp, dp->i_number, lbn, DEPALLOC, &pagedep); 8526 #ifdef DEBUG 8527 if (diradd_lookup(pagedep, offset) != NULL) 8528 panic("softdep_setup_directory_add: %p already at off %d\n", 8529 diradd_lookup(pagedep, offset), offset); 8530 #endif 8531 dap->da_pagedep = pagedep; 8532 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap, 8533 da_pdlist); 8534 inodedep_lookup(mp, newinum, DEPALLOC, &inodedep); 8535 /* 8536 * If we're journaling, link the diradd into the jaddref so it 8537 * may be completed after the journal entry is written. Otherwise, 8538 * link the diradd into its inodedep. If the inode is not yet 8539 * written place it on the bufwait list, otherwise do the post-inode 8540 * write processing to put it on the id_pendinghd list. 8541 */ 8542 if (MOUNTEDSUJ(mp)) { 8543 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 8544 inoreflst); 8545 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 8546 ("softdep_setup_directory_add: bad jaddref %p", jaddref)); 8547 jaddref->ja_diroff = diroffset; 8548 jaddref->ja_diradd = dap; 8549 add_to_journal(&jaddref->ja_list); 8550 } else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) 8551 diradd_inode_written(dap, inodedep); 8552 else 8553 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 8554 /* 8555 * Add the journal entries for . and .. links now that the primary 8556 * link is written. 8557 */ 8558 if (mkdir1 != NULL && MOUNTEDSUJ(mp)) { 8559 jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref, 8560 inoreflst, if_deps); 8561 KASSERT(jaddref != NULL && 8562 jaddref->ja_ino == jaddref->ja_parent && 8563 (jaddref->ja_state & MKDIR_BODY), 8564 ("softdep_setup_directory_add: bad dot jaddref %p", 8565 jaddref)); 8566 mkdir1->md_jaddref = jaddref; 8567 jaddref->ja_mkdir = mkdir1; 8568 /* 8569 * It is important that the dotdot journal entry 8570 * is added prior to the dot entry since dot writes 8571 * both the dot and dotdot links. These both must 8572 * be added after the primary link for the journal 8573 * to remain consistent. 8574 */ 8575 add_to_journal(&mkdir2->md_jaddref->ja_list); 8576 add_to_journal(&jaddref->ja_list); 8577 } 8578 /* 8579 * If we are adding a new directory remember this diradd so that if 8580 * we rename it we can keep the dot and dotdot dependencies. If 8581 * we are adding a new name for an inode that has a mkdiradd we 8582 * must be in rename and we have to move the dot and dotdot 8583 * dependencies to this new name. The old name is being orphaned 8584 * soon. 8585 */ 8586 if (mkdir1 != NULL) { 8587 if (inodedep->id_mkdiradd != NULL) 8588 panic("softdep_setup_directory_add: Existing mkdir"); 8589 inodedep->id_mkdiradd = dap; 8590 } else if (inodedep->id_mkdiradd) 8591 merge_diradd(inodedep, dap); 8592 if (newdirblk != NULL) { 8593 /* 8594 * There is nothing to do if we are already tracking 8595 * this block. 8596 */ 8597 if ((pagedep->pd_state & NEWBLOCK) != 0) { 8598 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 8599 FREE_LOCK(ump); 8600 return (0); 8601 } 8602 if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk) 8603 == 0) 8604 panic("softdep_setup_directory_add: lost entry"); 8605 WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list); 8606 pagedep->pd_state |= NEWBLOCK; 8607 pagedep->pd_newdirblk = newdirblk; 8608 newdirblk->db_pagedep = pagedep; 8609 FREE_LOCK(ump); 8610 /* 8611 * If we extended into an indirect signal direnter to sync. 8612 */ 8613 if (isindir) 8614 return (1); 8615 return (0); 8616 } 8617 FREE_LOCK(ump); 8618 return (0); 8619 } 8620 8621 /* 8622 * This procedure is called to change the offset of a directory 8623 * entry when compacting a directory block which must be owned 8624 * exclusively by the caller. Note that the actual entry movement 8625 * must be done in this procedure to ensure that no I/O completions 8626 * occur while the move is in progress. 8627 */ 8628 void 8629 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize) 8630 struct buf *bp; /* Buffer holding directory block. */ 8631 struct inode *dp; /* inode for directory */ 8632 caddr_t base; /* address of dp->i_offset */ 8633 caddr_t oldloc; /* address of old directory location */ 8634 caddr_t newloc; /* address of new directory location */ 8635 int entrysize; /* size of directory entry */ 8636 { 8637 int offset, oldoffset, newoffset; 8638 struct pagedep *pagedep; 8639 struct jmvref *jmvref; 8640 struct diradd *dap; 8641 struct direct *de; 8642 struct mount *mp; 8643 struct ufsmount *ump; 8644 ufs_lbn_t lbn; 8645 int flags; 8646 8647 mp = ITOVFS(dp); 8648 ump = VFSTOUFS(mp); 8649 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 8650 ("softdep_change_directoryentry_offset called on " 8651 "non-softdep filesystem")); 8652 de = (struct direct *)oldloc; 8653 jmvref = NULL; 8654 flags = 0; 8655 /* 8656 * Moves are always journaled as it would be too complex to 8657 * determine if any affected adds or removes are present in the 8658 * journal. 8659 */ 8660 if (MOUNTEDSUJ(mp)) { 8661 flags = DEPALLOC; 8662 jmvref = newjmvref(dp, de->d_ino, 8663 dp->i_offset + (oldloc - base), 8664 dp->i_offset + (newloc - base)); 8665 } 8666 lbn = lblkno(ump->um_fs, dp->i_offset); 8667 offset = blkoff(ump->um_fs, dp->i_offset); 8668 oldoffset = offset + (oldloc - base); 8669 newoffset = offset + (newloc - base); 8670 ACQUIRE_LOCK(ump); 8671 if (pagedep_lookup(mp, bp, dp->i_number, lbn, flags, &pagedep) == 0) 8672 goto done; 8673 dap = diradd_lookup(pagedep, oldoffset); 8674 if (dap) { 8675 dap->da_offset = newoffset; 8676 newoffset = DIRADDHASH(newoffset); 8677 oldoffset = DIRADDHASH(oldoffset); 8678 if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE && 8679 newoffset != oldoffset) { 8680 LIST_REMOVE(dap, da_pdlist); 8681 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset], 8682 dap, da_pdlist); 8683 } 8684 } 8685 done: 8686 if (jmvref) { 8687 jmvref->jm_pagedep = pagedep; 8688 LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps); 8689 add_to_journal(&jmvref->jm_list); 8690 } 8691 bcopy(oldloc, newloc, entrysize); 8692 FREE_LOCK(ump); 8693 } 8694 8695 /* 8696 * Move the mkdir dependencies and journal work from one diradd to another 8697 * when renaming a directory. The new name must depend on the mkdir deps 8698 * completing as the old name did. Directories can only have one valid link 8699 * at a time so one must be canonical. 8700 */ 8701 static void 8702 merge_diradd(inodedep, newdap) 8703 struct inodedep *inodedep; 8704 struct diradd *newdap; 8705 { 8706 struct diradd *olddap; 8707 struct mkdir *mkdir, *nextmd; 8708 struct ufsmount *ump; 8709 short state; 8710 8711 olddap = inodedep->id_mkdiradd; 8712 inodedep->id_mkdiradd = newdap; 8713 if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 8714 newdap->da_state &= ~DEPCOMPLETE; 8715 ump = VFSTOUFS(inodedep->id_list.wk_mp); 8716 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; 8717 mkdir = nextmd) { 8718 nextmd = LIST_NEXT(mkdir, md_mkdirs); 8719 if (mkdir->md_diradd != olddap) 8720 continue; 8721 mkdir->md_diradd = newdap; 8722 state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY); 8723 newdap->da_state |= state; 8724 olddap->da_state &= ~state; 8725 if ((olddap->da_state & 8726 (MKDIR_PARENT | MKDIR_BODY)) == 0) 8727 break; 8728 } 8729 if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) 8730 panic("merge_diradd: unfound ref"); 8731 } 8732 /* 8733 * Any mkdir related journal items are not safe to be freed until 8734 * the new name is stable. 8735 */ 8736 jwork_move(&newdap->da_jwork, &olddap->da_jwork); 8737 olddap->da_state |= DEPCOMPLETE; 8738 complete_diradd(olddap); 8739 } 8740 8741 /* 8742 * Move the diradd to the pending list when all diradd dependencies are 8743 * complete. 8744 */ 8745 static void 8746 complete_diradd(dap) 8747 struct diradd *dap; 8748 { 8749 struct pagedep *pagedep; 8750 8751 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 8752 if (dap->da_state & DIRCHG) 8753 pagedep = dap->da_previous->dm_pagedep; 8754 else 8755 pagedep = dap->da_pagedep; 8756 LIST_REMOVE(dap, da_pdlist); 8757 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 8758 } 8759 } 8760 8761 /* 8762 * Cancel a diradd when a dirrem overlaps with it. We must cancel the journal 8763 * add entries and conditonally journal the remove. 8764 */ 8765 static void 8766 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref) 8767 struct diradd *dap; 8768 struct dirrem *dirrem; 8769 struct jremref *jremref; 8770 struct jremref *dotremref; 8771 struct jremref *dotdotremref; 8772 { 8773 struct inodedep *inodedep; 8774 struct jaddref *jaddref; 8775 struct inoref *inoref; 8776 struct ufsmount *ump; 8777 struct mkdir *mkdir; 8778 8779 /* 8780 * If no remove references were allocated we're on a non-journaled 8781 * filesystem and can skip the cancel step. 8782 */ 8783 if (jremref == NULL) { 8784 free_diradd(dap, NULL); 8785 return; 8786 } 8787 /* 8788 * Cancel the primary name an free it if it does not require 8789 * journaling. 8790 */ 8791 if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum, 8792 0, &inodedep) != 0) { 8793 /* Abort the addref that reference this diradd. */ 8794 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 8795 if (inoref->if_list.wk_type != D_JADDREF) 8796 continue; 8797 jaddref = (struct jaddref *)inoref; 8798 if (jaddref->ja_diradd != dap) 8799 continue; 8800 if (cancel_jaddref(jaddref, inodedep, 8801 &dirrem->dm_jwork) == 0) { 8802 free_jremref(jremref); 8803 jremref = NULL; 8804 } 8805 break; 8806 } 8807 } 8808 /* 8809 * Cancel subordinate names and free them if they do not require 8810 * journaling. 8811 */ 8812 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 8813 ump = VFSTOUFS(dap->da_list.wk_mp); 8814 LIST_FOREACH(mkdir, &ump->softdep_mkdirlisthd, md_mkdirs) { 8815 if (mkdir->md_diradd != dap) 8816 continue; 8817 if ((jaddref = mkdir->md_jaddref) == NULL) 8818 continue; 8819 mkdir->md_jaddref = NULL; 8820 if (mkdir->md_state & MKDIR_PARENT) { 8821 if (cancel_jaddref(jaddref, NULL, 8822 &dirrem->dm_jwork) == 0) { 8823 free_jremref(dotdotremref); 8824 dotdotremref = NULL; 8825 } 8826 } else { 8827 if (cancel_jaddref(jaddref, inodedep, 8828 &dirrem->dm_jwork) == 0) { 8829 free_jremref(dotremref); 8830 dotremref = NULL; 8831 } 8832 } 8833 } 8834 } 8835 8836 if (jremref) 8837 journal_jremref(dirrem, jremref, inodedep); 8838 if (dotremref) 8839 journal_jremref(dirrem, dotremref, inodedep); 8840 if (dotdotremref) 8841 journal_jremref(dirrem, dotdotremref, NULL); 8842 jwork_move(&dirrem->dm_jwork, &dap->da_jwork); 8843 free_diradd(dap, &dirrem->dm_jwork); 8844 } 8845 8846 /* 8847 * Free a diradd dependency structure. This routine must be called 8848 * with splbio interrupts blocked. 8849 */ 8850 static void 8851 free_diradd(dap, wkhd) 8852 struct diradd *dap; 8853 struct workhead *wkhd; 8854 { 8855 struct dirrem *dirrem; 8856 struct pagedep *pagedep; 8857 struct inodedep *inodedep; 8858 struct mkdir *mkdir, *nextmd; 8859 struct ufsmount *ump; 8860 8861 ump = VFSTOUFS(dap->da_list.wk_mp); 8862 LOCK_OWNED(ump); 8863 LIST_REMOVE(dap, da_pdlist); 8864 if (dap->da_state & ONWORKLIST) 8865 WORKLIST_REMOVE(&dap->da_list); 8866 if ((dap->da_state & DIRCHG) == 0) { 8867 pagedep = dap->da_pagedep; 8868 } else { 8869 dirrem = dap->da_previous; 8870 pagedep = dirrem->dm_pagedep; 8871 dirrem->dm_dirinum = pagedep->pd_ino; 8872 dirrem->dm_state |= COMPLETE; 8873 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 8874 add_to_worklist(&dirrem->dm_list, 0); 8875 } 8876 if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum, 8877 0, &inodedep) != 0) 8878 if (inodedep->id_mkdiradd == dap) 8879 inodedep->id_mkdiradd = NULL; 8880 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 8881 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; 8882 mkdir = nextmd) { 8883 nextmd = LIST_NEXT(mkdir, md_mkdirs); 8884 if (mkdir->md_diradd != dap) 8885 continue; 8886 dap->da_state &= 8887 ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)); 8888 LIST_REMOVE(mkdir, md_mkdirs); 8889 if (mkdir->md_state & ONWORKLIST) 8890 WORKLIST_REMOVE(&mkdir->md_list); 8891 if (mkdir->md_jaddref != NULL) 8892 panic("free_diradd: Unexpected jaddref"); 8893 WORKITEM_FREE(mkdir, D_MKDIR); 8894 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) 8895 break; 8896 } 8897 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) 8898 panic("free_diradd: unfound ref"); 8899 } 8900 if (inodedep) 8901 free_inodedep(inodedep); 8902 /* 8903 * Free any journal segments waiting for the directory write. 8904 */ 8905 handle_jwork(&dap->da_jwork); 8906 WORKITEM_FREE(dap, D_DIRADD); 8907 } 8908 8909 /* 8910 * Directory entry removal dependencies. 8911 * 8912 * When removing a directory entry, the entry's inode pointer must be 8913 * zero'ed on disk before the corresponding inode's link count is decremented 8914 * (possibly freeing the inode for re-use). This dependency is handled by 8915 * updating the directory entry but delaying the inode count reduction until 8916 * after the directory block has been written to disk. After this point, the 8917 * inode count can be decremented whenever it is convenient. 8918 */ 8919 8920 /* 8921 * This routine should be called immediately after removing 8922 * a directory entry. The inode's link count should not be 8923 * decremented by the calling procedure -- the soft updates 8924 * code will do this task when it is safe. 8925 */ 8926 void 8927 softdep_setup_remove(bp, dp, ip, isrmdir) 8928 struct buf *bp; /* buffer containing directory block */ 8929 struct inode *dp; /* inode for the directory being modified */ 8930 struct inode *ip; /* inode for directory entry being removed */ 8931 int isrmdir; /* indicates if doing RMDIR */ 8932 { 8933 struct dirrem *dirrem, *prevdirrem; 8934 struct inodedep *inodedep; 8935 struct ufsmount *ump; 8936 int direct; 8937 8938 ump = ITOUMP(ip); 8939 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 8940 ("softdep_setup_remove called on non-softdep filesystem")); 8941 /* 8942 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK. We want 8943 * newdirrem() to setup the full directory remove which requires 8944 * isrmdir > 1. 8945 */ 8946 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 8947 /* 8948 * Add the dirrem to the inodedep's pending remove list for quick 8949 * discovery later. 8950 */ 8951 if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0) 8952 panic("softdep_setup_remove: Lost inodedep."); 8953 KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked")); 8954 dirrem->dm_state |= ONDEPLIST; 8955 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 8956 8957 /* 8958 * If the COMPLETE flag is clear, then there were no active 8959 * entries and we want to roll back to a zeroed entry until 8960 * the new inode is committed to disk. If the COMPLETE flag is 8961 * set then we have deleted an entry that never made it to 8962 * disk. If the entry we deleted resulted from a name change, 8963 * then the old name still resides on disk. We cannot delete 8964 * its inode (returned to us in prevdirrem) until the zeroed 8965 * directory entry gets to disk. The new inode has never been 8966 * referenced on the disk, so can be deleted immediately. 8967 */ 8968 if ((dirrem->dm_state & COMPLETE) == 0) { 8969 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem, 8970 dm_next); 8971 FREE_LOCK(ump); 8972 } else { 8973 if (prevdirrem != NULL) 8974 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, 8975 prevdirrem, dm_next); 8976 dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino; 8977 direct = LIST_EMPTY(&dirrem->dm_jremrefhd); 8978 FREE_LOCK(ump); 8979 if (direct) 8980 handle_workitem_remove(dirrem, 0); 8981 } 8982 } 8983 8984 /* 8985 * Check for an entry matching 'offset' on both the pd_dirraddhd list and the 8986 * pd_pendinghd list of a pagedep. 8987 */ 8988 static struct diradd * 8989 diradd_lookup(pagedep, offset) 8990 struct pagedep *pagedep; 8991 int offset; 8992 { 8993 struct diradd *dap; 8994 8995 LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist) 8996 if (dap->da_offset == offset) 8997 return (dap); 8998 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) 8999 if (dap->da_offset == offset) 9000 return (dap); 9001 return (NULL); 9002 } 9003 9004 /* 9005 * Search for a .. diradd dependency in a directory that is being removed. 9006 * If the directory was renamed to a new parent we have a diradd rather 9007 * than a mkdir for the .. entry. We need to cancel it now before 9008 * it is found in truncate(). 9009 */ 9010 static struct jremref * 9011 cancel_diradd_dotdot(ip, dirrem, jremref) 9012 struct inode *ip; 9013 struct dirrem *dirrem; 9014 struct jremref *jremref; 9015 { 9016 struct pagedep *pagedep; 9017 struct diradd *dap; 9018 struct worklist *wk; 9019 9020 if (pagedep_lookup(ITOVFS(ip), NULL, ip->i_number, 0, 0, &pagedep) == 0) 9021 return (jremref); 9022 dap = diradd_lookup(pagedep, DOTDOT_OFFSET); 9023 if (dap == NULL) 9024 return (jremref); 9025 cancel_diradd(dap, dirrem, jremref, NULL, NULL); 9026 /* 9027 * Mark any journal work as belonging to the parent so it is freed 9028 * with the .. reference. 9029 */ 9030 LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list) 9031 wk->wk_state |= MKDIR_PARENT; 9032 return (NULL); 9033 } 9034 9035 /* 9036 * Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to 9037 * replace it with a dirrem/diradd pair as a result of re-parenting a 9038 * directory. This ensures that we don't simultaneously have a mkdir and 9039 * a diradd for the same .. entry. 9040 */ 9041 static struct jremref * 9042 cancel_mkdir_dotdot(ip, dirrem, jremref) 9043 struct inode *ip; 9044 struct dirrem *dirrem; 9045 struct jremref *jremref; 9046 { 9047 struct inodedep *inodedep; 9048 struct jaddref *jaddref; 9049 struct ufsmount *ump; 9050 struct mkdir *mkdir; 9051 struct diradd *dap; 9052 struct mount *mp; 9053 9054 mp = ITOVFS(ip); 9055 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 9056 return (jremref); 9057 dap = inodedep->id_mkdiradd; 9058 if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0) 9059 return (jremref); 9060 ump = VFSTOUFS(inodedep->id_list.wk_mp); 9061 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; 9062 mkdir = LIST_NEXT(mkdir, md_mkdirs)) 9063 if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT) 9064 break; 9065 if (mkdir == NULL) 9066 panic("cancel_mkdir_dotdot: Unable to find mkdir\n"); 9067 if ((jaddref = mkdir->md_jaddref) != NULL) { 9068 mkdir->md_jaddref = NULL; 9069 jaddref->ja_state &= ~MKDIR_PARENT; 9070 if (inodedep_lookup(mp, jaddref->ja_ino, 0, &inodedep) == 0) 9071 panic("cancel_mkdir_dotdot: Lost parent inodedep"); 9072 if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) { 9073 journal_jremref(dirrem, jremref, inodedep); 9074 jremref = NULL; 9075 } 9076 } 9077 if (mkdir->md_state & ONWORKLIST) 9078 WORKLIST_REMOVE(&mkdir->md_list); 9079 mkdir->md_state |= ALLCOMPLETE; 9080 complete_mkdir(mkdir); 9081 return (jremref); 9082 } 9083 9084 static void 9085 journal_jremref(dirrem, jremref, inodedep) 9086 struct dirrem *dirrem; 9087 struct jremref *jremref; 9088 struct inodedep *inodedep; 9089 { 9090 9091 if (inodedep == NULL) 9092 if (inodedep_lookup(jremref->jr_list.wk_mp, 9093 jremref->jr_ref.if_ino, 0, &inodedep) == 0) 9094 panic("journal_jremref: Lost inodedep"); 9095 LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps); 9096 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps); 9097 add_to_journal(&jremref->jr_list); 9098 } 9099 9100 static void 9101 dirrem_journal(dirrem, jremref, dotremref, dotdotremref) 9102 struct dirrem *dirrem; 9103 struct jremref *jremref; 9104 struct jremref *dotremref; 9105 struct jremref *dotdotremref; 9106 { 9107 struct inodedep *inodedep; 9108 9109 9110 if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0, 9111 &inodedep) == 0) 9112 panic("dirrem_journal: Lost inodedep"); 9113 journal_jremref(dirrem, jremref, inodedep); 9114 if (dotremref) 9115 journal_jremref(dirrem, dotremref, inodedep); 9116 if (dotdotremref) 9117 journal_jremref(dirrem, dotdotremref, NULL); 9118 } 9119 9120 /* 9121 * Allocate a new dirrem if appropriate and return it along with 9122 * its associated pagedep. Called without a lock, returns with lock. 9123 */ 9124 static struct dirrem * 9125 newdirrem(bp, dp, ip, isrmdir, prevdirremp) 9126 struct buf *bp; /* buffer containing directory block */ 9127 struct inode *dp; /* inode for the directory being modified */ 9128 struct inode *ip; /* inode for directory entry being removed */ 9129 int isrmdir; /* indicates if doing RMDIR */ 9130 struct dirrem **prevdirremp; /* previously referenced inode, if any */ 9131 { 9132 int offset; 9133 ufs_lbn_t lbn; 9134 struct diradd *dap; 9135 struct dirrem *dirrem; 9136 struct pagedep *pagedep; 9137 struct jremref *jremref; 9138 struct jremref *dotremref; 9139 struct jremref *dotdotremref; 9140 struct vnode *dvp; 9141 struct ufsmount *ump; 9142 9143 /* 9144 * Whiteouts have no deletion dependencies. 9145 */ 9146 if (ip == NULL) 9147 panic("newdirrem: whiteout"); 9148 dvp = ITOV(dp); 9149 ump = ITOUMP(dp); 9150 9151 /* 9152 * If the system is over its limit and our filesystem is 9153 * responsible for more than our share of that usage and 9154 * we are not a snapshot, request some inodedep cleanup. 9155 * Limiting the number of dirrem structures will also limit 9156 * the number of freefile and freeblks structures. 9157 */ 9158 ACQUIRE_LOCK(ump); 9159 if (!IS_SNAPSHOT(ip) && softdep_excess_items(ump, D_DIRREM)) 9160 schedule_cleanup(UFSTOVFS(ump)); 9161 else 9162 FREE_LOCK(ump); 9163 dirrem = malloc(sizeof(struct dirrem), M_DIRREM, M_SOFTDEP_FLAGS | 9164 M_ZERO); 9165 workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount); 9166 LIST_INIT(&dirrem->dm_jremrefhd); 9167 LIST_INIT(&dirrem->dm_jwork); 9168 dirrem->dm_state = isrmdir ? RMDIR : 0; 9169 dirrem->dm_oldinum = ip->i_number; 9170 *prevdirremp = NULL; 9171 /* 9172 * Allocate remove reference structures to track journal write 9173 * dependencies. We will always have one for the link and 9174 * when doing directories we will always have one more for dot. 9175 * When renaming a directory we skip the dotdot link change so 9176 * this is not needed. 9177 */ 9178 jremref = dotremref = dotdotremref = NULL; 9179 if (DOINGSUJ(dvp)) { 9180 if (isrmdir) { 9181 jremref = newjremref(dirrem, dp, ip, dp->i_offset, 9182 ip->i_effnlink + 2); 9183 dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET, 9184 ip->i_effnlink + 1); 9185 dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET, 9186 dp->i_effnlink + 1); 9187 dotdotremref->jr_state |= MKDIR_PARENT; 9188 } else 9189 jremref = newjremref(dirrem, dp, ip, dp->i_offset, 9190 ip->i_effnlink + 1); 9191 } 9192 ACQUIRE_LOCK(ump); 9193 lbn = lblkno(ump->um_fs, dp->i_offset); 9194 offset = blkoff(ump->um_fs, dp->i_offset); 9195 pagedep_lookup(UFSTOVFS(ump), bp, dp->i_number, lbn, DEPALLOC, 9196 &pagedep); 9197 dirrem->dm_pagedep = pagedep; 9198 dirrem->dm_offset = offset; 9199 /* 9200 * If we're renaming a .. link to a new directory, cancel any 9201 * existing MKDIR_PARENT mkdir. If it has already been canceled 9202 * the jremref is preserved for any potential diradd in this 9203 * location. This can not coincide with a rmdir. 9204 */ 9205 if (dp->i_offset == DOTDOT_OFFSET) { 9206 if (isrmdir) 9207 panic("newdirrem: .. directory change during remove?"); 9208 jremref = cancel_mkdir_dotdot(dp, dirrem, jremref); 9209 } 9210 /* 9211 * If we're removing a directory search for the .. dependency now and 9212 * cancel it. Any pending journal work will be added to the dirrem 9213 * to be completed when the workitem remove completes. 9214 */ 9215 if (isrmdir) 9216 dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref); 9217 /* 9218 * Check for a diradd dependency for the same directory entry. 9219 * If present, then both dependencies become obsolete and can 9220 * be de-allocated. 9221 */ 9222 dap = diradd_lookup(pagedep, offset); 9223 if (dap == NULL) { 9224 /* 9225 * Link the jremref structures into the dirrem so they are 9226 * written prior to the pagedep. 9227 */ 9228 if (jremref) 9229 dirrem_journal(dirrem, jremref, dotremref, 9230 dotdotremref); 9231 return (dirrem); 9232 } 9233 /* 9234 * Must be ATTACHED at this point. 9235 */ 9236 if ((dap->da_state & ATTACHED) == 0) 9237 panic("newdirrem: not ATTACHED"); 9238 if (dap->da_newinum != ip->i_number) 9239 panic("newdirrem: inum %ju should be %ju", 9240 (uintmax_t)ip->i_number, (uintmax_t)dap->da_newinum); 9241 /* 9242 * If we are deleting a changed name that never made it to disk, 9243 * then return the dirrem describing the previous inode (which 9244 * represents the inode currently referenced from this entry on disk). 9245 */ 9246 if ((dap->da_state & DIRCHG) != 0) { 9247 *prevdirremp = dap->da_previous; 9248 dap->da_state &= ~DIRCHG; 9249 dap->da_pagedep = pagedep; 9250 } 9251 /* 9252 * We are deleting an entry that never made it to disk. 9253 * Mark it COMPLETE so we can delete its inode immediately. 9254 */ 9255 dirrem->dm_state |= COMPLETE; 9256 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref); 9257 #ifdef SUJ_DEBUG 9258 if (isrmdir == 0) { 9259 struct worklist *wk; 9260 9261 LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list) 9262 if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT)) 9263 panic("bad wk %p (0x%X)\n", wk, wk->wk_state); 9264 } 9265 #endif 9266 9267 return (dirrem); 9268 } 9269 9270 /* 9271 * Directory entry change dependencies. 9272 * 9273 * Changing an existing directory entry requires that an add operation 9274 * be completed first followed by a deletion. The semantics for the addition 9275 * are identical to the description of adding a new entry above except 9276 * that the rollback is to the old inode number rather than zero. Once 9277 * the addition dependency is completed, the removal is done as described 9278 * in the removal routine above. 9279 */ 9280 9281 /* 9282 * This routine should be called immediately after changing 9283 * a directory entry. The inode's link count should not be 9284 * decremented by the calling procedure -- the soft updates 9285 * code will perform this task when it is safe. 9286 */ 9287 void 9288 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 9289 struct buf *bp; /* buffer containing directory block */ 9290 struct inode *dp; /* inode for the directory being modified */ 9291 struct inode *ip; /* inode for directory entry being removed */ 9292 ino_t newinum; /* new inode number for changed entry */ 9293 int isrmdir; /* indicates if doing RMDIR */ 9294 { 9295 int offset; 9296 struct diradd *dap = NULL; 9297 struct dirrem *dirrem, *prevdirrem; 9298 struct pagedep *pagedep; 9299 struct inodedep *inodedep; 9300 struct jaddref *jaddref; 9301 struct mount *mp; 9302 struct ufsmount *ump; 9303 9304 mp = ITOVFS(dp); 9305 ump = VFSTOUFS(mp); 9306 offset = blkoff(ump->um_fs, dp->i_offset); 9307 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 9308 ("softdep_setup_directory_change called on non-softdep filesystem")); 9309 9310 /* 9311 * Whiteouts do not need diradd dependencies. 9312 */ 9313 if (newinum != UFS_WINO) { 9314 dap = malloc(sizeof(struct diradd), 9315 M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO); 9316 workitem_alloc(&dap->da_list, D_DIRADD, mp); 9317 dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE; 9318 dap->da_offset = offset; 9319 dap->da_newinum = newinum; 9320 LIST_INIT(&dap->da_jwork); 9321 } 9322 9323 /* 9324 * Allocate a new dirrem and ACQUIRE_LOCK. 9325 */ 9326 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 9327 pagedep = dirrem->dm_pagedep; 9328 /* 9329 * The possible values for isrmdir: 9330 * 0 - non-directory file rename 9331 * 1 - directory rename within same directory 9332 * inum - directory rename to new directory of given inode number 9333 * When renaming to a new directory, we are both deleting and 9334 * creating a new directory entry, so the link count on the new 9335 * directory should not change. Thus we do not need the followup 9336 * dirrem which is usually done in handle_workitem_remove. We set 9337 * the DIRCHG flag to tell handle_workitem_remove to skip the 9338 * followup dirrem. 9339 */ 9340 if (isrmdir > 1) 9341 dirrem->dm_state |= DIRCHG; 9342 9343 /* 9344 * Whiteouts have no additional dependencies, 9345 * so just put the dirrem on the correct list. 9346 */ 9347 if (newinum == UFS_WINO) { 9348 if ((dirrem->dm_state & COMPLETE) == 0) { 9349 LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem, 9350 dm_next); 9351 } else { 9352 dirrem->dm_dirinum = pagedep->pd_ino; 9353 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 9354 add_to_worklist(&dirrem->dm_list, 0); 9355 } 9356 FREE_LOCK(ump); 9357 return; 9358 } 9359 /* 9360 * Add the dirrem to the inodedep's pending remove list for quick 9361 * discovery later. A valid nlinkdelta ensures that this lookup 9362 * will not fail. 9363 */ 9364 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 9365 panic("softdep_setup_directory_change: Lost inodedep."); 9366 dirrem->dm_state |= ONDEPLIST; 9367 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 9368 9369 /* 9370 * If the COMPLETE flag is clear, then there were no active 9371 * entries and we want to roll back to the previous inode until 9372 * the new inode is committed to disk. If the COMPLETE flag is 9373 * set, then we have deleted an entry that never made it to disk. 9374 * If the entry we deleted resulted from a name change, then the old 9375 * inode reference still resides on disk. Any rollback that we do 9376 * needs to be to that old inode (returned to us in prevdirrem). If 9377 * the entry we deleted resulted from a create, then there is 9378 * no entry on the disk, so we want to roll back to zero rather 9379 * than the uncommitted inode. In either of the COMPLETE cases we 9380 * want to immediately free the unwritten and unreferenced inode. 9381 */ 9382 if ((dirrem->dm_state & COMPLETE) == 0) { 9383 dap->da_previous = dirrem; 9384 } else { 9385 if (prevdirrem != NULL) { 9386 dap->da_previous = prevdirrem; 9387 } else { 9388 dap->da_state &= ~DIRCHG; 9389 dap->da_pagedep = pagedep; 9390 } 9391 dirrem->dm_dirinum = pagedep->pd_ino; 9392 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 9393 add_to_worklist(&dirrem->dm_list, 0); 9394 } 9395 /* 9396 * Lookup the jaddref for this journal entry. We must finish 9397 * initializing it and make the diradd write dependent on it. 9398 * If we're not journaling, put it on the id_bufwait list if the 9399 * inode is not yet written. If it is written, do the post-inode 9400 * write processing to put it on the id_pendinghd list. 9401 */ 9402 inodedep_lookup(mp, newinum, DEPALLOC, &inodedep); 9403 if (MOUNTEDSUJ(mp)) { 9404 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 9405 inoreflst); 9406 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 9407 ("softdep_setup_directory_change: bad jaddref %p", 9408 jaddref)); 9409 jaddref->ja_diroff = dp->i_offset; 9410 jaddref->ja_diradd = dap; 9411 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], 9412 dap, da_pdlist); 9413 add_to_journal(&jaddref->ja_list); 9414 } else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 9415 dap->da_state |= COMPLETE; 9416 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 9417 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 9418 } else { 9419 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], 9420 dap, da_pdlist); 9421 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 9422 } 9423 /* 9424 * If we're making a new name for a directory that has not been 9425 * committed when need to move the dot and dotdot references to 9426 * this new name. 9427 */ 9428 if (inodedep->id_mkdiradd && dp->i_offset != DOTDOT_OFFSET) 9429 merge_diradd(inodedep, dap); 9430 FREE_LOCK(ump); 9431 } 9432 9433 /* 9434 * Called whenever the link count on an inode is changed. 9435 * It creates an inode dependency so that the new reference(s) 9436 * to the inode cannot be committed to disk until the updated 9437 * inode has been written. 9438 */ 9439 void 9440 softdep_change_linkcnt(ip) 9441 struct inode *ip; /* the inode with the increased link count */ 9442 { 9443 struct inodedep *inodedep; 9444 struct ufsmount *ump; 9445 9446 ump = ITOUMP(ip); 9447 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 9448 ("softdep_change_linkcnt called on non-softdep filesystem")); 9449 ACQUIRE_LOCK(ump); 9450 inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep); 9451 if (ip->i_nlink < ip->i_effnlink) 9452 panic("softdep_change_linkcnt: bad delta"); 9453 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 9454 FREE_LOCK(ump); 9455 } 9456 9457 /* 9458 * Attach a sbdep dependency to the superblock buf so that we can keep 9459 * track of the head of the linked list of referenced but unlinked inodes. 9460 */ 9461 void 9462 softdep_setup_sbupdate(ump, fs, bp) 9463 struct ufsmount *ump; 9464 struct fs *fs; 9465 struct buf *bp; 9466 { 9467 struct sbdep *sbdep; 9468 struct worklist *wk; 9469 9470 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 9471 ("softdep_setup_sbupdate called on non-softdep filesystem")); 9472 LIST_FOREACH(wk, &bp->b_dep, wk_list) 9473 if (wk->wk_type == D_SBDEP) 9474 break; 9475 if (wk != NULL) 9476 return; 9477 sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS); 9478 workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump)); 9479 sbdep->sb_fs = fs; 9480 sbdep->sb_ump = ump; 9481 ACQUIRE_LOCK(ump); 9482 WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list); 9483 FREE_LOCK(ump); 9484 } 9485 9486 /* 9487 * Return the first unlinked inodedep which is ready to be the head of the 9488 * list. The inodedep and all those after it must have valid next pointers. 9489 */ 9490 static struct inodedep * 9491 first_unlinked_inodedep(ump) 9492 struct ufsmount *ump; 9493 { 9494 struct inodedep *inodedep; 9495 struct inodedep *idp; 9496 9497 LOCK_OWNED(ump); 9498 for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst); 9499 inodedep; inodedep = idp) { 9500 if ((inodedep->id_state & UNLINKNEXT) == 0) 9501 return (NULL); 9502 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 9503 if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0) 9504 break; 9505 if ((inodedep->id_state & UNLINKPREV) == 0) 9506 break; 9507 } 9508 return (inodedep); 9509 } 9510 9511 /* 9512 * Set the sujfree unlinked head pointer prior to writing a superblock. 9513 */ 9514 static void 9515 initiate_write_sbdep(sbdep) 9516 struct sbdep *sbdep; 9517 { 9518 struct inodedep *inodedep; 9519 struct fs *bpfs; 9520 struct fs *fs; 9521 9522 bpfs = sbdep->sb_fs; 9523 fs = sbdep->sb_ump->um_fs; 9524 inodedep = first_unlinked_inodedep(sbdep->sb_ump); 9525 if (inodedep) { 9526 fs->fs_sujfree = inodedep->id_ino; 9527 inodedep->id_state |= UNLINKPREV; 9528 } else 9529 fs->fs_sujfree = 0; 9530 bpfs->fs_sujfree = fs->fs_sujfree; 9531 } 9532 9533 /* 9534 * After a superblock is written determine whether it must be written again 9535 * due to a changing unlinked list head. 9536 */ 9537 static int 9538 handle_written_sbdep(sbdep, bp) 9539 struct sbdep *sbdep; 9540 struct buf *bp; 9541 { 9542 struct inodedep *inodedep; 9543 struct fs *fs; 9544 9545 LOCK_OWNED(sbdep->sb_ump); 9546 fs = sbdep->sb_fs; 9547 /* 9548 * If the superblock doesn't match the in-memory list start over. 9549 */ 9550 inodedep = first_unlinked_inodedep(sbdep->sb_ump); 9551 if ((inodedep && fs->fs_sujfree != inodedep->id_ino) || 9552 (inodedep == NULL && fs->fs_sujfree != 0)) { 9553 bdirty(bp); 9554 return (1); 9555 } 9556 WORKITEM_FREE(sbdep, D_SBDEP); 9557 if (fs->fs_sujfree == 0) 9558 return (0); 9559 /* 9560 * Now that we have a record of this inode in stable store allow it 9561 * to be written to free up pending work. Inodes may see a lot of 9562 * write activity after they are unlinked which we must not hold up. 9563 */ 9564 for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) { 9565 if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS) 9566 panic("handle_written_sbdep: Bad inodedep %p (0x%X)", 9567 inodedep, inodedep->id_state); 9568 if (inodedep->id_state & UNLINKONLIST) 9569 break; 9570 inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST; 9571 } 9572 9573 return (0); 9574 } 9575 9576 /* 9577 * Mark an inodedep as unlinked and insert it into the in-memory unlinked list. 9578 */ 9579 static void 9580 unlinked_inodedep(mp, inodedep) 9581 struct mount *mp; 9582 struct inodedep *inodedep; 9583 { 9584 struct ufsmount *ump; 9585 9586 ump = VFSTOUFS(mp); 9587 LOCK_OWNED(ump); 9588 if (MOUNTEDSUJ(mp) == 0) 9589 return; 9590 ump->um_fs->fs_fmod = 1; 9591 if (inodedep->id_state & UNLINKED) 9592 panic("unlinked_inodedep: %p already unlinked\n", inodedep); 9593 inodedep->id_state |= UNLINKED; 9594 TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked); 9595 } 9596 9597 /* 9598 * Remove an inodedep from the unlinked inodedep list. This may require 9599 * disk writes if the inode has made it that far. 9600 */ 9601 static void 9602 clear_unlinked_inodedep(inodedep) 9603 struct inodedep *inodedep; 9604 { 9605 struct ufsmount *ump; 9606 struct inodedep *idp; 9607 struct inodedep *idn; 9608 struct fs *fs; 9609 struct buf *bp; 9610 ino_t ino; 9611 ino_t nino; 9612 ino_t pino; 9613 int error; 9614 9615 ump = VFSTOUFS(inodedep->id_list.wk_mp); 9616 fs = ump->um_fs; 9617 ino = inodedep->id_ino; 9618 error = 0; 9619 for (;;) { 9620 LOCK_OWNED(ump); 9621 KASSERT((inodedep->id_state & UNLINKED) != 0, 9622 ("clear_unlinked_inodedep: inodedep %p not unlinked", 9623 inodedep)); 9624 /* 9625 * If nothing has yet been written simply remove us from 9626 * the in memory list and return. This is the most common 9627 * case where handle_workitem_remove() loses the final 9628 * reference. 9629 */ 9630 if ((inodedep->id_state & UNLINKLINKS) == 0) 9631 break; 9632 /* 9633 * If we have a NEXT pointer and no PREV pointer we can simply 9634 * clear NEXT's PREV and remove ourselves from the list. Be 9635 * careful not to clear PREV if the superblock points at 9636 * next as well. 9637 */ 9638 idn = TAILQ_NEXT(inodedep, id_unlinked); 9639 if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) { 9640 if (idn && fs->fs_sujfree != idn->id_ino) 9641 idn->id_state &= ~UNLINKPREV; 9642 break; 9643 } 9644 /* 9645 * Here we have an inodedep which is actually linked into 9646 * the list. We must remove it by forcing a write to the 9647 * link before us, whether it be the superblock or an inode. 9648 * Unfortunately the list may change while we're waiting 9649 * on the buf lock for either resource so we must loop until 9650 * we lock the right one. If both the superblock and an 9651 * inode point to this inode we must clear the inode first 9652 * followed by the superblock. 9653 */ 9654 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 9655 pino = 0; 9656 if (idp && (idp->id_state & UNLINKNEXT)) 9657 pino = idp->id_ino; 9658 FREE_LOCK(ump); 9659 if (pino == 0) { 9660 bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc), 9661 (int)fs->fs_sbsize, 0, 0, 0); 9662 } else { 9663 error = bread(ump->um_devvp, 9664 fsbtodb(fs, ino_to_fsba(fs, pino)), 9665 (int)fs->fs_bsize, NOCRED, &bp); 9666 if (error) 9667 brelse(bp); 9668 } 9669 ACQUIRE_LOCK(ump); 9670 if (error) 9671 break; 9672 /* If the list has changed restart the loop. */ 9673 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 9674 nino = 0; 9675 if (idp && (idp->id_state & UNLINKNEXT)) 9676 nino = idp->id_ino; 9677 if (nino != pino || 9678 (inodedep->id_state & UNLINKPREV) != UNLINKPREV) { 9679 FREE_LOCK(ump); 9680 brelse(bp); 9681 ACQUIRE_LOCK(ump); 9682 continue; 9683 } 9684 nino = 0; 9685 idn = TAILQ_NEXT(inodedep, id_unlinked); 9686 if (idn) 9687 nino = idn->id_ino; 9688 /* 9689 * Remove us from the in memory list. After this we cannot 9690 * access the inodedep. 9691 */ 9692 KASSERT((inodedep->id_state & UNLINKED) != 0, 9693 ("clear_unlinked_inodedep: inodedep %p not unlinked", 9694 inodedep)); 9695 inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST); 9696 TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked); 9697 FREE_LOCK(ump); 9698 /* 9699 * The predecessor's next pointer is manually updated here 9700 * so that the NEXT flag is never cleared for an element 9701 * that is in the list. 9702 */ 9703 if (pino == 0) { 9704 bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize); 9705 ffs_oldfscompat_write((struct fs *)bp->b_data, ump); 9706 softdep_setup_sbupdate(ump, (struct fs *)bp->b_data, 9707 bp); 9708 } else if (fs->fs_magic == FS_UFS1_MAGIC) 9709 ((struct ufs1_dinode *)bp->b_data + 9710 ino_to_fsbo(fs, pino))->di_freelink = nino; 9711 else 9712 ((struct ufs2_dinode *)bp->b_data + 9713 ino_to_fsbo(fs, pino))->di_freelink = nino; 9714 /* 9715 * If the bwrite fails we have no recourse to recover. The 9716 * filesystem is corrupted already. 9717 */ 9718 bwrite(bp); 9719 ACQUIRE_LOCK(ump); 9720 /* 9721 * If the superblock pointer still needs to be cleared force 9722 * a write here. 9723 */ 9724 if (fs->fs_sujfree == ino) { 9725 FREE_LOCK(ump); 9726 bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc), 9727 (int)fs->fs_sbsize, 0, 0, 0); 9728 bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize); 9729 ffs_oldfscompat_write((struct fs *)bp->b_data, ump); 9730 softdep_setup_sbupdate(ump, (struct fs *)bp->b_data, 9731 bp); 9732 bwrite(bp); 9733 ACQUIRE_LOCK(ump); 9734 } 9735 9736 if (fs->fs_sujfree != ino) 9737 return; 9738 panic("clear_unlinked_inodedep: Failed to clear free head"); 9739 } 9740 if (inodedep->id_ino == fs->fs_sujfree) 9741 panic("clear_unlinked_inodedep: Freeing head of free list"); 9742 inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST); 9743 TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked); 9744 return; 9745 } 9746 9747 /* 9748 * This workitem decrements the inode's link count. 9749 * If the link count reaches zero, the file is removed. 9750 */ 9751 static int 9752 handle_workitem_remove(dirrem, flags) 9753 struct dirrem *dirrem; 9754 int flags; 9755 { 9756 struct inodedep *inodedep; 9757 struct workhead dotdotwk; 9758 struct worklist *wk; 9759 struct ufsmount *ump; 9760 struct mount *mp; 9761 struct vnode *vp; 9762 struct inode *ip; 9763 ino_t oldinum; 9764 9765 if (dirrem->dm_state & ONWORKLIST) 9766 panic("handle_workitem_remove: dirrem %p still on worklist", 9767 dirrem); 9768 oldinum = dirrem->dm_oldinum; 9769 mp = dirrem->dm_list.wk_mp; 9770 ump = VFSTOUFS(mp); 9771 flags |= LK_EXCLUSIVE; 9772 if (ffs_vgetf(mp, oldinum, flags, &vp, FFSV_FORCEINSMQ) != 0) 9773 return (EBUSY); 9774 ip = VTOI(vp); 9775 ACQUIRE_LOCK(ump); 9776 if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0) 9777 panic("handle_workitem_remove: lost inodedep"); 9778 if (dirrem->dm_state & ONDEPLIST) 9779 LIST_REMOVE(dirrem, dm_inonext); 9780 KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd), 9781 ("handle_workitem_remove: Journal entries not written.")); 9782 9783 /* 9784 * Move all dependencies waiting on the remove to complete 9785 * from the dirrem to the inode inowait list to be completed 9786 * after the inode has been updated and written to disk. Any 9787 * marked MKDIR_PARENT are saved to be completed when the .. ref 9788 * is removed. 9789 */ 9790 LIST_INIT(&dotdotwk); 9791 while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) { 9792 WORKLIST_REMOVE(wk); 9793 if (wk->wk_state & MKDIR_PARENT) { 9794 wk->wk_state &= ~MKDIR_PARENT; 9795 WORKLIST_INSERT(&dotdotwk, wk); 9796 continue; 9797 } 9798 WORKLIST_INSERT(&inodedep->id_inowait, wk); 9799 } 9800 LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list); 9801 /* 9802 * Normal file deletion. 9803 */ 9804 if ((dirrem->dm_state & RMDIR) == 0) { 9805 ip->i_nlink--; 9806 DIP_SET(ip, i_nlink, ip->i_nlink); 9807 ip->i_flag |= IN_CHANGE; 9808 if (ip->i_nlink < ip->i_effnlink) 9809 panic("handle_workitem_remove: bad file delta"); 9810 if (ip->i_nlink == 0) 9811 unlinked_inodedep(mp, inodedep); 9812 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 9813 KASSERT(LIST_EMPTY(&dirrem->dm_jwork), 9814 ("handle_workitem_remove: worklist not empty. %s", 9815 TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type))); 9816 WORKITEM_FREE(dirrem, D_DIRREM); 9817 FREE_LOCK(ump); 9818 goto out; 9819 } 9820 /* 9821 * Directory deletion. Decrement reference count for both the 9822 * just deleted parent directory entry and the reference for ".". 9823 * Arrange to have the reference count on the parent decremented 9824 * to account for the loss of "..". 9825 */ 9826 ip->i_nlink -= 2; 9827 DIP_SET(ip, i_nlink, ip->i_nlink); 9828 ip->i_flag |= IN_CHANGE; 9829 if (ip->i_nlink < ip->i_effnlink) 9830 panic("handle_workitem_remove: bad dir delta"); 9831 if (ip->i_nlink == 0) 9832 unlinked_inodedep(mp, inodedep); 9833 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 9834 /* 9835 * Rename a directory to a new parent. Since, we are both deleting 9836 * and creating a new directory entry, the link count on the new 9837 * directory should not change. Thus we skip the followup dirrem. 9838 */ 9839 if (dirrem->dm_state & DIRCHG) { 9840 KASSERT(LIST_EMPTY(&dirrem->dm_jwork), 9841 ("handle_workitem_remove: DIRCHG and worklist not empty.")); 9842 WORKITEM_FREE(dirrem, D_DIRREM); 9843 FREE_LOCK(ump); 9844 goto out; 9845 } 9846 dirrem->dm_state = ONDEPLIST; 9847 dirrem->dm_oldinum = dirrem->dm_dirinum; 9848 /* 9849 * Place the dirrem on the parent's diremhd list. 9850 */ 9851 if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0) 9852 panic("handle_workitem_remove: lost dir inodedep"); 9853 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 9854 /* 9855 * If the allocated inode has never been written to disk, then 9856 * the on-disk inode is zero'ed and we can remove the file 9857 * immediately. When journaling if the inode has been marked 9858 * unlinked and not DEPCOMPLETE we know it can never be written. 9859 */ 9860 inodedep_lookup(mp, oldinum, 0, &inodedep); 9861 if (inodedep == NULL || 9862 (inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED || 9863 check_inode_unwritten(inodedep)) { 9864 FREE_LOCK(ump); 9865 vput(vp); 9866 return handle_workitem_remove(dirrem, flags); 9867 } 9868 WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list); 9869 FREE_LOCK(ump); 9870 ip->i_flag |= IN_CHANGE; 9871 out: 9872 ffs_update(vp, 0); 9873 vput(vp); 9874 return (0); 9875 } 9876 9877 /* 9878 * Inode de-allocation dependencies. 9879 * 9880 * When an inode's link count is reduced to zero, it can be de-allocated. We 9881 * found it convenient to postpone de-allocation until after the inode is 9882 * written to disk with its new link count (zero). At this point, all of the 9883 * on-disk inode's block pointers are nullified and, with careful dependency 9884 * list ordering, all dependencies related to the inode will be satisfied and 9885 * the corresponding dependency structures de-allocated. So, if/when the 9886 * inode is reused, there will be no mixing of old dependencies with new 9887 * ones. This artificial dependency is set up by the block de-allocation 9888 * procedure above (softdep_setup_freeblocks) and completed by the 9889 * following procedure. 9890 */ 9891 static void 9892 handle_workitem_freefile(freefile) 9893 struct freefile *freefile; 9894 { 9895 struct workhead wkhd; 9896 struct fs *fs; 9897 struct inodedep *idp; 9898 struct ufsmount *ump; 9899 int error; 9900 9901 ump = VFSTOUFS(freefile->fx_list.wk_mp); 9902 fs = ump->um_fs; 9903 #ifdef DEBUG 9904 ACQUIRE_LOCK(ump); 9905 error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp); 9906 FREE_LOCK(ump); 9907 if (error) 9908 panic("handle_workitem_freefile: inodedep %p survived", idp); 9909 #endif 9910 UFS_LOCK(ump); 9911 fs->fs_pendinginodes -= 1; 9912 UFS_UNLOCK(ump); 9913 LIST_INIT(&wkhd); 9914 LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list); 9915 if ((error = ffs_freefile(ump, fs, freefile->fx_devvp, 9916 freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0) 9917 softdep_error("handle_workitem_freefile", error); 9918 ACQUIRE_LOCK(ump); 9919 WORKITEM_FREE(freefile, D_FREEFILE); 9920 FREE_LOCK(ump); 9921 } 9922 9923 9924 /* 9925 * Helper function which unlinks marker element from work list and returns 9926 * the next element on the list. 9927 */ 9928 static __inline struct worklist * 9929 markernext(struct worklist *marker) 9930 { 9931 struct worklist *next; 9932 9933 next = LIST_NEXT(marker, wk_list); 9934 LIST_REMOVE(marker, wk_list); 9935 return next; 9936 } 9937 9938 /* 9939 * Disk writes. 9940 * 9941 * The dependency structures constructed above are most actively used when file 9942 * system blocks are written to disk. No constraints are placed on when a 9943 * block can be written, but unsatisfied update dependencies are made safe by 9944 * modifying (or replacing) the source memory for the duration of the disk 9945 * write. When the disk write completes, the memory block is again brought 9946 * up-to-date. 9947 * 9948 * In-core inode structure reclamation. 9949 * 9950 * Because there are a finite number of "in-core" inode structures, they are 9951 * reused regularly. By transferring all inode-related dependencies to the 9952 * in-memory inode block and indexing them separately (via "inodedep"s), we 9953 * can allow "in-core" inode structures to be reused at any time and avoid 9954 * any increase in contention. 9955 * 9956 * Called just before entering the device driver to initiate a new disk I/O. 9957 * The buffer must be locked, thus, no I/O completion operations can occur 9958 * while we are manipulating its associated dependencies. 9959 */ 9960 static void 9961 softdep_disk_io_initiation(bp) 9962 struct buf *bp; /* structure describing disk write to occur */ 9963 { 9964 struct worklist *wk; 9965 struct worklist marker; 9966 struct inodedep *inodedep; 9967 struct freeblks *freeblks; 9968 struct jblkdep *jblkdep; 9969 struct newblk *newblk; 9970 struct ufsmount *ump; 9971 9972 /* 9973 * We only care about write operations. There should never 9974 * be dependencies for reads. 9975 */ 9976 if (bp->b_iocmd != BIO_WRITE) 9977 panic("softdep_disk_io_initiation: not write"); 9978 9979 if (bp->b_vflags & BV_BKGRDINPROG) 9980 panic("softdep_disk_io_initiation: Writing buffer with " 9981 "background write in progress: %p", bp); 9982 9983 ump = softdep_bp_to_mp(bp); 9984 if (ump == NULL) 9985 return; 9986 9987 marker.wk_type = D_LAST + 1; /* Not a normal workitem */ 9988 PHOLD(curproc); /* Don't swap out kernel stack */ 9989 ACQUIRE_LOCK(ump); 9990 /* 9991 * Do any necessary pre-I/O processing. 9992 */ 9993 for (wk = LIST_FIRST(&bp->b_dep); wk != NULL; 9994 wk = markernext(&marker)) { 9995 LIST_INSERT_AFTER(wk, &marker, wk_list); 9996 switch (wk->wk_type) { 9997 9998 case D_PAGEDEP: 9999 initiate_write_filepage(WK_PAGEDEP(wk), bp); 10000 continue; 10001 10002 case D_INODEDEP: 10003 inodedep = WK_INODEDEP(wk); 10004 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) 10005 initiate_write_inodeblock_ufs1(inodedep, bp); 10006 else 10007 initiate_write_inodeblock_ufs2(inodedep, bp); 10008 continue; 10009 10010 case D_INDIRDEP: 10011 initiate_write_indirdep(WK_INDIRDEP(wk), bp); 10012 continue; 10013 10014 case D_BMSAFEMAP: 10015 initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp); 10016 continue; 10017 10018 case D_JSEG: 10019 WK_JSEG(wk)->js_buf = NULL; 10020 continue; 10021 10022 case D_FREEBLKS: 10023 freeblks = WK_FREEBLKS(wk); 10024 jblkdep = LIST_FIRST(&freeblks->fb_jblkdephd); 10025 /* 10026 * We have to wait for the freeblks to be journaled 10027 * before we can write an inodeblock with updated 10028 * pointers. Be careful to arrange the marker so 10029 * we revisit the freeblks if it's not removed by 10030 * the first jwait(). 10031 */ 10032 if (jblkdep != NULL) { 10033 LIST_REMOVE(&marker, wk_list); 10034 LIST_INSERT_BEFORE(wk, &marker, wk_list); 10035 jwait(&jblkdep->jb_list, MNT_WAIT); 10036 } 10037 continue; 10038 case D_ALLOCDIRECT: 10039 case D_ALLOCINDIR: 10040 /* 10041 * We have to wait for the jnewblk to be journaled 10042 * before we can write to a block if the contents 10043 * may be confused with an earlier file's indirect 10044 * at recovery time. Handle the marker as described 10045 * above. 10046 */ 10047 newblk = WK_NEWBLK(wk); 10048 if (newblk->nb_jnewblk != NULL && 10049 indirblk_lookup(newblk->nb_list.wk_mp, 10050 newblk->nb_newblkno)) { 10051 LIST_REMOVE(&marker, wk_list); 10052 LIST_INSERT_BEFORE(wk, &marker, wk_list); 10053 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 10054 } 10055 continue; 10056 10057 case D_SBDEP: 10058 initiate_write_sbdep(WK_SBDEP(wk)); 10059 continue; 10060 10061 case D_MKDIR: 10062 case D_FREEWORK: 10063 case D_FREEDEP: 10064 case D_JSEGDEP: 10065 continue; 10066 10067 default: 10068 panic("handle_disk_io_initiation: Unexpected type %s", 10069 TYPENAME(wk->wk_type)); 10070 /* NOTREACHED */ 10071 } 10072 } 10073 FREE_LOCK(ump); 10074 PRELE(curproc); /* Allow swapout of kernel stack */ 10075 } 10076 10077 /* 10078 * Called from within the procedure above to deal with unsatisfied 10079 * allocation dependencies in a directory. The buffer must be locked, 10080 * thus, no I/O completion operations can occur while we are 10081 * manipulating its associated dependencies. 10082 */ 10083 static void 10084 initiate_write_filepage(pagedep, bp) 10085 struct pagedep *pagedep; 10086 struct buf *bp; 10087 { 10088 struct jremref *jremref; 10089 struct jmvref *jmvref; 10090 struct dirrem *dirrem; 10091 struct diradd *dap; 10092 struct direct *ep; 10093 int i; 10094 10095 if (pagedep->pd_state & IOSTARTED) { 10096 /* 10097 * This can only happen if there is a driver that does not 10098 * understand chaining. Here biodone will reissue the call 10099 * to strategy for the incomplete buffers. 10100 */ 10101 printf("initiate_write_filepage: already started\n"); 10102 return; 10103 } 10104 pagedep->pd_state |= IOSTARTED; 10105 /* 10106 * Wait for all journal remove dependencies to hit the disk. 10107 * We can not allow any potentially conflicting directory adds 10108 * to be visible before removes and rollback is too difficult. 10109 * The per-filesystem lock may be dropped and re-acquired, however 10110 * we hold the buf locked so the dependency can not go away. 10111 */ 10112 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) 10113 while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) 10114 jwait(&jremref->jr_list, MNT_WAIT); 10115 while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) 10116 jwait(&jmvref->jm_list, MNT_WAIT); 10117 for (i = 0; i < DAHASHSZ; i++) { 10118 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 10119 ep = (struct direct *) 10120 ((char *)bp->b_data + dap->da_offset); 10121 if (ep->d_ino != dap->da_newinum) 10122 panic("%s: dir inum %ju != new %ju", 10123 "initiate_write_filepage", 10124 (uintmax_t)ep->d_ino, 10125 (uintmax_t)dap->da_newinum); 10126 if (dap->da_state & DIRCHG) 10127 ep->d_ino = dap->da_previous->dm_oldinum; 10128 else 10129 ep->d_ino = 0; 10130 dap->da_state &= ~ATTACHED; 10131 dap->da_state |= UNDONE; 10132 } 10133 } 10134 } 10135 10136 /* 10137 * Version of initiate_write_inodeblock that handles UFS1 dinodes. 10138 * Note that any bug fixes made to this routine must be done in the 10139 * version found below. 10140 * 10141 * Called from within the procedure above to deal with unsatisfied 10142 * allocation dependencies in an inodeblock. The buffer must be 10143 * locked, thus, no I/O completion operations can occur while we 10144 * are manipulating its associated dependencies. 10145 */ 10146 static void 10147 initiate_write_inodeblock_ufs1(inodedep, bp) 10148 struct inodedep *inodedep; 10149 struct buf *bp; /* The inode block */ 10150 { 10151 struct allocdirect *adp, *lastadp; 10152 struct ufs1_dinode *dp; 10153 struct ufs1_dinode *sip; 10154 struct inoref *inoref; 10155 struct ufsmount *ump; 10156 struct fs *fs; 10157 ufs_lbn_t i; 10158 #ifdef INVARIANTS 10159 ufs_lbn_t prevlbn = 0; 10160 #endif 10161 int deplist; 10162 10163 if (inodedep->id_state & IOSTARTED) 10164 panic("initiate_write_inodeblock_ufs1: already started"); 10165 inodedep->id_state |= IOSTARTED; 10166 fs = inodedep->id_fs; 10167 ump = VFSTOUFS(inodedep->id_list.wk_mp); 10168 LOCK_OWNED(ump); 10169 dp = (struct ufs1_dinode *)bp->b_data + 10170 ino_to_fsbo(fs, inodedep->id_ino); 10171 10172 /* 10173 * If we're on the unlinked list but have not yet written our 10174 * next pointer initialize it here. 10175 */ 10176 if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) { 10177 struct inodedep *inon; 10178 10179 inon = TAILQ_NEXT(inodedep, id_unlinked); 10180 dp->di_freelink = inon ? inon->id_ino : 0; 10181 } 10182 /* 10183 * If the bitmap is not yet written, then the allocated 10184 * inode cannot be written to disk. 10185 */ 10186 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 10187 if (inodedep->id_savedino1 != NULL) 10188 panic("initiate_write_inodeblock_ufs1: I/O underway"); 10189 FREE_LOCK(ump); 10190 sip = malloc(sizeof(struct ufs1_dinode), 10191 M_SAVEDINO, M_SOFTDEP_FLAGS); 10192 ACQUIRE_LOCK(ump); 10193 inodedep->id_savedino1 = sip; 10194 *inodedep->id_savedino1 = *dp; 10195 bzero((caddr_t)dp, sizeof(struct ufs1_dinode)); 10196 dp->di_gen = inodedep->id_savedino1->di_gen; 10197 dp->di_freelink = inodedep->id_savedino1->di_freelink; 10198 return; 10199 } 10200 /* 10201 * If no dependencies, then there is nothing to roll back. 10202 */ 10203 inodedep->id_savedsize = dp->di_size; 10204 inodedep->id_savedextsize = 0; 10205 inodedep->id_savednlink = dp->di_nlink; 10206 if (TAILQ_EMPTY(&inodedep->id_inoupdt) && 10207 TAILQ_EMPTY(&inodedep->id_inoreflst)) 10208 return; 10209 /* 10210 * Revert the link count to that of the first unwritten journal entry. 10211 */ 10212 inoref = TAILQ_FIRST(&inodedep->id_inoreflst); 10213 if (inoref) 10214 dp->di_nlink = inoref->if_nlink; 10215 /* 10216 * Set the dependencies to busy. 10217 */ 10218 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10219 adp = TAILQ_NEXT(adp, ad_next)) { 10220 #ifdef INVARIANTS 10221 if (deplist != 0 && prevlbn >= adp->ad_offset) 10222 panic("softdep_write_inodeblock: lbn order"); 10223 prevlbn = adp->ad_offset; 10224 if (adp->ad_offset < UFS_NDADDR && 10225 dp->di_db[adp->ad_offset] != adp->ad_newblkno) 10226 panic("%s: direct pointer #%jd mismatch %d != %jd", 10227 "softdep_write_inodeblock", 10228 (intmax_t)adp->ad_offset, 10229 dp->di_db[adp->ad_offset], 10230 (intmax_t)adp->ad_newblkno); 10231 if (adp->ad_offset >= UFS_NDADDR && 10232 dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno) 10233 panic("%s: indirect pointer #%jd mismatch %d != %jd", 10234 "softdep_write_inodeblock", 10235 (intmax_t)adp->ad_offset - UFS_NDADDR, 10236 dp->di_ib[adp->ad_offset - UFS_NDADDR], 10237 (intmax_t)adp->ad_newblkno); 10238 deplist |= 1 << adp->ad_offset; 10239 if ((adp->ad_state & ATTACHED) == 0) 10240 panic("softdep_write_inodeblock: Unknown state 0x%x", 10241 adp->ad_state); 10242 #endif /* INVARIANTS */ 10243 adp->ad_state &= ~ATTACHED; 10244 adp->ad_state |= UNDONE; 10245 } 10246 /* 10247 * The on-disk inode cannot claim to be any larger than the last 10248 * fragment that has been written. Otherwise, the on-disk inode 10249 * might have fragments that were not the last block in the file 10250 * which would corrupt the filesystem. 10251 */ 10252 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10253 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10254 if (adp->ad_offset >= UFS_NDADDR) 10255 break; 10256 dp->di_db[adp->ad_offset] = adp->ad_oldblkno; 10257 /* keep going until hitting a rollback to a frag */ 10258 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10259 continue; 10260 dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10261 for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) { 10262 #ifdef INVARIANTS 10263 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) 10264 panic("softdep_write_inodeblock: lost dep1"); 10265 #endif /* INVARIANTS */ 10266 dp->di_db[i] = 0; 10267 } 10268 for (i = 0; i < UFS_NIADDR; i++) { 10269 #ifdef INVARIANTS 10270 if (dp->di_ib[i] != 0 && 10271 (deplist & ((1 << UFS_NDADDR) << i)) == 0) 10272 panic("softdep_write_inodeblock: lost dep2"); 10273 #endif /* INVARIANTS */ 10274 dp->di_ib[i] = 0; 10275 } 10276 return; 10277 } 10278 /* 10279 * If we have zero'ed out the last allocated block of the file, 10280 * roll back the size to the last currently allocated block. 10281 * We know that this last allocated block is a full-sized as 10282 * we already checked for fragments in the loop above. 10283 */ 10284 if (lastadp != NULL && 10285 dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10286 for (i = lastadp->ad_offset; i >= 0; i--) 10287 if (dp->di_db[i] != 0) 10288 break; 10289 dp->di_size = (i + 1) * fs->fs_bsize; 10290 } 10291 /* 10292 * The only dependencies are for indirect blocks. 10293 * 10294 * The file size for indirect block additions is not guaranteed. 10295 * Such a guarantee would be non-trivial to achieve. The conventional 10296 * synchronous write implementation also does not make this guarantee. 10297 * Fsck should catch and fix discrepancies. Arguably, the file size 10298 * can be over-estimated without destroying integrity when the file 10299 * moves into the indirect blocks (i.e., is large). If we want to 10300 * postpone fsck, we are stuck with this argument. 10301 */ 10302 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 10303 dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0; 10304 } 10305 10306 /* 10307 * Version of initiate_write_inodeblock that handles UFS2 dinodes. 10308 * Note that any bug fixes made to this routine must be done in the 10309 * version found above. 10310 * 10311 * Called from within the procedure above to deal with unsatisfied 10312 * allocation dependencies in an inodeblock. The buffer must be 10313 * locked, thus, no I/O completion operations can occur while we 10314 * are manipulating its associated dependencies. 10315 */ 10316 static void 10317 initiate_write_inodeblock_ufs2(inodedep, bp) 10318 struct inodedep *inodedep; 10319 struct buf *bp; /* The inode block */ 10320 { 10321 struct allocdirect *adp, *lastadp; 10322 struct ufs2_dinode *dp; 10323 struct ufs2_dinode *sip; 10324 struct inoref *inoref; 10325 struct ufsmount *ump; 10326 struct fs *fs; 10327 ufs_lbn_t i; 10328 #ifdef INVARIANTS 10329 ufs_lbn_t prevlbn = 0; 10330 #endif 10331 int deplist; 10332 10333 if (inodedep->id_state & IOSTARTED) 10334 panic("initiate_write_inodeblock_ufs2: already started"); 10335 inodedep->id_state |= IOSTARTED; 10336 fs = inodedep->id_fs; 10337 ump = VFSTOUFS(inodedep->id_list.wk_mp); 10338 LOCK_OWNED(ump); 10339 dp = (struct ufs2_dinode *)bp->b_data + 10340 ino_to_fsbo(fs, inodedep->id_ino); 10341 10342 /* 10343 * If we're on the unlinked list but have not yet written our 10344 * next pointer initialize it here. 10345 */ 10346 if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) { 10347 struct inodedep *inon; 10348 10349 inon = TAILQ_NEXT(inodedep, id_unlinked); 10350 dp->di_freelink = inon ? inon->id_ino : 0; 10351 } 10352 /* 10353 * If the bitmap is not yet written, then the allocated 10354 * inode cannot be written to disk. 10355 */ 10356 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 10357 if (inodedep->id_savedino2 != NULL) 10358 panic("initiate_write_inodeblock_ufs2: I/O underway"); 10359 FREE_LOCK(ump); 10360 sip = malloc(sizeof(struct ufs2_dinode), 10361 M_SAVEDINO, M_SOFTDEP_FLAGS); 10362 ACQUIRE_LOCK(ump); 10363 inodedep->id_savedino2 = sip; 10364 *inodedep->id_savedino2 = *dp; 10365 bzero((caddr_t)dp, sizeof(struct ufs2_dinode)); 10366 dp->di_gen = inodedep->id_savedino2->di_gen; 10367 dp->di_freelink = inodedep->id_savedino2->di_freelink; 10368 return; 10369 } 10370 /* 10371 * If no dependencies, then there is nothing to roll back. 10372 */ 10373 inodedep->id_savedsize = dp->di_size; 10374 inodedep->id_savedextsize = dp->di_extsize; 10375 inodedep->id_savednlink = dp->di_nlink; 10376 if (TAILQ_EMPTY(&inodedep->id_inoupdt) && 10377 TAILQ_EMPTY(&inodedep->id_extupdt) && 10378 TAILQ_EMPTY(&inodedep->id_inoreflst)) 10379 return; 10380 /* 10381 * Revert the link count to that of the first unwritten journal entry. 10382 */ 10383 inoref = TAILQ_FIRST(&inodedep->id_inoreflst); 10384 if (inoref) 10385 dp->di_nlink = inoref->if_nlink; 10386 10387 /* 10388 * Set the ext data dependencies to busy. 10389 */ 10390 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 10391 adp = TAILQ_NEXT(adp, ad_next)) { 10392 #ifdef INVARIANTS 10393 if (deplist != 0 && prevlbn >= adp->ad_offset) 10394 panic("softdep_write_inodeblock: lbn order"); 10395 prevlbn = adp->ad_offset; 10396 if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno) 10397 panic("%s: direct pointer #%jd mismatch %jd != %jd", 10398 "softdep_write_inodeblock", 10399 (intmax_t)adp->ad_offset, 10400 (intmax_t)dp->di_extb[adp->ad_offset], 10401 (intmax_t)adp->ad_newblkno); 10402 deplist |= 1 << adp->ad_offset; 10403 if ((adp->ad_state & ATTACHED) == 0) 10404 panic("softdep_write_inodeblock: Unknown state 0x%x", 10405 adp->ad_state); 10406 #endif /* INVARIANTS */ 10407 adp->ad_state &= ~ATTACHED; 10408 adp->ad_state |= UNDONE; 10409 } 10410 /* 10411 * The on-disk inode cannot claim to be any larger than the last 10412 * fragment that has been written. Otherwise, the on-disk inode 10413 * might have fragments that were not the last block in the ext 10414 * data which would corrupt the filesystem. 10415 */ 10416 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 10417 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10418 dp->di_extb[adp->ad_offset] = adp->ad_oldblkno; 10419 /* keep going until hitting a rollback to a frag */ 10420 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10421 continue; 10422 dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10423 for (i = adp->ad_offset + 1; i < UFS_NXADDR; i++) { 10424 #ifdef INVARIANTS 10425 if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0) 10426 panic("softdep_write_inodeblock: lost dep1"); 10427 #endif /* INVARIANTS */ 10428 dp->di_extb[i] = 0; 10429 } 10430 lastadp = NULL; 10431 break; 10432 } 10433 /* 10434 * If we have zero'ed out the last allocated block of the ext 10435 * data, roll back the size to the last currently allocated block. 10436 * We know that this last allocated block is a full-sized as 10437 * we already checked for fragments in the loop above. 10438 */ 10439 if (lastadp != NULL && 10440 dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10441 for (i = lastadp->ad_offset; i >= 0; i--) 10442 if (dp->di_extb[i] != 0) 10443 break; 10444 dp->di_extsize = (i + 1) * fs->fs_bsize; 10445 } 10446 /* 10447 * Set the file data dependencies to busy. 10448 */ 10449 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10450 adp = TAILQ_NEXT(adp, ad_next)) { 10451 #ifdef INVARIANTS 10452 if (deplist != 0 && prevlbn >= adp->ad_offset) 10453 panic("softdep_write_inodeblock: lbn order"); 10454 if ((adp->ad_state & ATTACHED) == 0) 10455 panic("inodedep %p and adp %p not attached", inodedep, adp); 10456 prevlbn = adp->ad_offset; 10457 if (adp->ad_offset < UFS_NDADDR && 10458 dp->di_db[adp->ad_offset] != adp->ad_newblkno) 10459 panic("%s: direct pointer #%jd mismatch %jd != %jd", 10460 "softdep_write_inodeblock", 10461 (intmax_t)adp->ad_offset, 10462 (intmax_t)dp->di_db[adp->ad_offset], 10463 (intmax_t)adp->ad_newblkno); 10464 if (adp->ad_offset >= UFS_NDADDR && 10465 dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno) 10466 panic("%s indirect pointer #%jd mismatch %jd != %jd", 10467 "softdep_write_inodeblock:", 10468 (intmax_t)adp->ad_offset - UFS_NDADDR, 10469 (intmax_t)dp->di_ib[adp->ad_offset - UFS_NDADDR], 10470 (intmax_t)adp->ad_newblkno); 10471 deplist |= 1 << adp->ad_offset; 10472 if ((adp->ad_state & ATTACHED) == 0) 10473 panic("softdep_write_inodeblock: Unknown state 0x%x", 10474 adp->ad_state); 10475 #endif /* INVARIANTS */ 10476 adp->ad_state &= ~ATTACHED; 10477 adp->ad_state |= UNDONE; 10478 } 10479 /* 10480 * The on-disk inode cannot claim to be any larger than the last 10481 * fragment that has been written. Otherwise, the on-disk inode 10482 * might have fragments that were not the last block in the file 10483 * which would corrupt the filesystem. 10484 */ 10485 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10486 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10487 if (adp->ad_offset >= UFS_NDADDR) 10488 break; 10489 dp->di_db[adp->ad_offset] = adp->ad_oldblkno; 10490 /* keep going until hitting a rollback to a frag */ 10491 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10492 continue; 10493 dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10494 for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) { 10495 #ifdef INVARIANTS 10496 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) 10497 panic("softdep_write_inodeblock: lost dep2"); 10498 #endif /* INVARIANTS */ 10499 dp->di_db[i] = 0; 10500 } 10501 for (i = 0; i < UFS_NIADDR; i++) { 10502 #ifdef INVARIANTS 10503 if (dp->di_ib[i] != 0 && 10504 (deplist & ((1 << UFS_NDADDR) << i)) == 0) 10505 panic("softdep_write_inodeblock: lost dep3"); 10506 #endif /* INVARIANTS */ 10507 dp->di_ib[i] = 0; 10508 } 10509 return; 10510 } 10511 /* 10512 * If we have zero'ed out the last allocated block of the file, 10513 * roll back the size to the last currently allocated block. 10514 * We know that this last allocated block is a full-sized as 10515 * we already checked for fragments in the loop above. 10516 */ 10517 if (lastadp != NULL && 10518 dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10519 for (i = lastadp->ad_offset; i >= 0; i--) 10520 if (dp->di_db[i] != 0) 10521 break; 10522 dp->di_size = (i + 1) * fs->fs_bsize; 10523 } 10524 /* 10525 * The only dependencies are for indirect blocks. 10526 * 10527 * The file size for indirect block additions is not guaranteed. 10528 * Such a guarantee would be non-trivial to achieve. The conventional 10529 * synchronous write implementation also does not make this guarantee. 10530 * Fsck should catch and fix discrepancies. Arguably, the file size 10531 * can be over-estimated without destroying integrity when the file 10532 * moves into the indirect blocks (i.e., is large). If we want to 10533 * postpone fsck, we are stuck with this argument. 10534 */ 10535 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 10536 dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0; 10537 } 10538 10539 /* 10540 * Cancel an indirdep as a result of truncation. Release all of the 10541 * children allocindirs and place their journal work on the appropriate 10542 * list. 10543 */ 10544 static void 10545 cancel_indirdep(indirdep, bp, freeblks) 10546 struct indirdep *indirdep; 10547 struct buf *bp; 10548 struct freeblks *freeblks; 10549 { 10550 struct allocindir *aip; 10551 10552 /* 10553 * None of the indirect pointers will ever be visible, 10554 * so they can simply be tossed. GOINGAWAY ensures 10555 * that allocated pointers will be saved in the buffer 10556 * cache until they are freed. Note that they will 10557 * only be able to be found by their physical address 10558 * since the inode mapping the logical address will 10559 * be gone. The save buffer used for the safe copy 10560 * was allocated in setup_allocindir_phase2 using 10561 * the physical address so it could be used for this 10562 * purpose. Hence we swap the safe copy with the real 10563 * copy, allowing the safe copy to be freed and holding 10564 * on to the real copy for later use in indir_trunc. 10565 */ 10566 if (indirdep->ir_state & GOINGAWAY) 10567 panic("cancel_indirdep: already gone"); 10568 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 10569 indirdep->ir_state |= DEPCOMPLETE; 10570 LIST_REMOVE(indirdep, ir_next); 10571 } 10572 indirdep->ir_state |= GOINGAWAY; 10573 /* 10574 * Pass in bp for blocks still have journal writes 10575 * pending so we can cancel them on their own. 10576 */ 10577 while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != NULL) 10578 cancel_allocindir(aip, bp, freeblks, 0); 10579 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL) 10580 cancel_allocindir(aip, NULL, freeblks, 0); 10581 while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL) 10582 cancel_allocindir(aip, NULL, freeblks, 0); 10583 while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) 10584 cancel_allocindir(aip, NULL, freeblks, 0); 10585 /* 10586 * If there are pending partial truncations we need to keep the 10587 * old block copy around until they complete. This is because 10588 * the current b_data is not a perfect superset of the available 10589 * blocks. 10590 */ 10591 if (TAILQ_EMPTY(&indirdep->ir_trunc)) 10592 bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount); 10593 else 10594 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); 10595 WORKLIST_REMOVE(&indirdep->ir_list); 10596 WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list); 10597 indirdep->ir_bp = NULL; 10598 indirdep->ir_freeblks = freeblks; 10599 } 10600 10601 /* 10602 * Free an indirdep once it no longer has new pointers to track. 10603 */ 10604 static void 10605 free_indirdep(indirdep) 10606 struct indirdep *indirdep; 10607 { 10608 10609 KASSERT(TAILQ_EMPTY(&indirdep->ir_trunc), 10610 ("free_indirdep: Indir trunc list not empty.")); 10611 KASSERT(LIST_EMPTY(&indirdep->ir_completehd), 10612 ("free_indirdep: Complete head not empty.")); 10613 KASSERT(LIST_EMPTY(&indirdep->ir_writehd), 10614 ("free_indirdep: write head not empty.")); 10615 KASSERT(LIST_EMPTY(&indirdep->ir_donehd), 10616 ("free_indirdep: done head not empty.")); 10617 KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd), 10618 ("free_indirdep: deplist head not empty.")); 10619 KASSERT((indirdep->ir_state & DEPCOMPLETE), 10620 ("free_indirdep: %p still on newblk list.", indirdep)); 10621 KASSERT(indirdep->ir_saveddata == NULL, 10622 ("free_indirdep: %p still has saved data.", indirdep)); 10623 if (indirdep->ir_state & ONWORKLIST) 10624 WORKLIST_REMOVE(&indirdep->ir_list); 10625 WORKITEM_FREE(indirdep, D_INDIRDEP); 10626 } 10627 10628 /* 10629 * Called before a write to an indirdep. This routine is responsible for 10630 * rolling back pointers to a safe state which includes only those 10631 * allocindirs which have been completed. 10632 */ 10633 static void 10634 initiate_write_indirdep(indirdep, bp) 10635 struct indirdep *indirdep; 10636 struct buf *bp; 10637 { 10638 struct ufsmount *ump; 10639 10640 indirdep->ir_state |= IOSTARTED; 10641 if (indirdep->ir_state & GOINGAWAY) 10642 panic("disk_io_initiation: indirdep gone"); 10643 /* 10644 * If there are no remaining dependencies, this will be writing 10645 * the real pointers. 10646 */ 10647 if (LIST_EMPTY(&indirdep->ir_deplisthd) && 10648 TAILQ_EMPTY(&indirdep->ir_trunc)) 10649 return; 10650 /* 10651 * Replace up-to-date version with safe version. 10652 */ 10653 if (indirdep->ir_saveddata == NULL) { 10654 ump = VFSTOUFS(indirdep->ir_list.wk_mp); 10655 LOCK_OWNED(ump); 10656 FREE_LOCK(ump); 10657 indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP, 10658 M_SOFTDEP_FLAGS); 10659 ACQUIRE_LOCK(ump); 10660 } 10661 indirdep->ir_state &= ~ATTACHED; 10662 indirdep->ir_state |= UNDONE; 10663 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); 10664 bcopy(indirdep->ir_savebp->b_data, bp->b_data, 10665 bp->b_bcount); 10666 } 10667 10668 /* 10669 * Called when an inode has been cleared in a cg bitmap. This finally 10670 * eliminates any canceled jaddrefs 10671 */ 10672 void 10673 softdep_setup_inofree(mp, bp, ino, wkhd) 10674 struct mount *mp; 10675 struct buf *bp; 10676 ino_t ino; 10677 struct workhead *wkhd; 10678 { 10679 struct worklist *wk, *wkn; 10680 struct inodedep *inodedep; 10681 struct ufsmount *ump; 10682 uint8_t *inosused; 10683 struct cg *cgp; 10684 struct fs *fs; 10685 10686 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 10687 ("softdep_setup_inofree called on non-softdep filesystem")); 10688 ump = VFSTOUFS(mp); 10689 ACQUIRE_LOCK(ump); 10690 fs = ump->um_fs; 10691 cgp = (struct cg *)bp->b_data; 10692 inosused = cg_inosused(cgp); 10693 if (isset(inosused, ino % fs->fs_ipg)) 10694 panic("softdep_setup_inofree: inode %ju not freed.", 10695 (uintmax_t)ino); 10696 if (inodedep_lookup(mp, ino, 0, &inodedep)) 10697 panic("softdep_setup_inofree: ino %ju has existing inodedep %p", 10698 (uintmax_t)ino, inodedep); 10699 if (wkhd) { 10700 LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) { 10701 if (wk->wk_type != D_JADDREF) 10702 continue; 10703 WORKLIST_REMOVE(wk); 10704 /* 10705 * We can free immediately even if the jaddref 10706 * isn't attached in a background write as now 10707 * the bitmaps are reconciled. 10708 */ 10709 wk->wk_state |= COMPLETE | ATTACHED; 10710 free_jaddref(WK_JADDREF(wk)); 10711 } 10712 jwork_move(&bp->b_dep, wkhd); 10713 } 10714 FREE_LOCK(ump); 10715 } 10716 10717 10718 /* 10719 * Called via ffs_blkfree() after a set of frags has been cleared from a cg 10720 * map. Any dependencies waiting for the write to clear are added to the 10721 * buf's list and any jnewblks that are being canceled are discarded 10722 * immediately. 10723 */ 10724 void 10725 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd) 10726 struct mount *mp; 10727 struct buf *bp; 10728 ufs2_daddr_t blkno; 10729 int frags; 10730 struct workhead *wkhd; 10731 { 10732 struct bmsafemap *bmsafemap; 10733 struct jnewblk *jnewblk; 10734 struct ufsmount *ump; 10735 struct worklist *wk; 10736 struct fs *fs; 10737 #ifdef SUJ_DEBUG 10738 uint8_t *blksfree; 10739 struct cg *cgp; 10740 ufs2_daddr_t jstart; 10741 ufs2_daddr_t jend; 10742 ufs2_daddr_t end; 10743 long bno; 10744 int i; 10745 #endif 10746 10747 CTR3(KTR_SUJ, 10748 "softdep_setup_blkfree: blkno %jd frags %d wk head %p", 10749 blkno, frags, wkhd); 10750 10751 ump = VFSTOUFS(mp); 10752 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 10753 ("softdep_setup_blkfree called on non-softdep filesystem")); 10754 ACQUIRE_LOCK(ump); 10755 /* Lookup the bmsafemap so we track when it is dirty. */ 10756 fs = ump->um_fs; 10757 bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL); 10758 /* 10759 * Detach any jnewblks which have been canceled. They must linger 10760 * until the bitmap is cleared again by ffs_blkfree() to prevent 10761 * an unjournaled allocation from hitting the disk. 10762 */ 10763 if (wkhd) { 10764 while ((wk = LIST_FIRST(wkhd)) != NULL) { 10765 CTR2(KTR_SUJ, 10766 "softdep_setup_blkfree: blkno %jd wk type %d", 10767 blkno, wk->wk_type); 10768 WORKLIST_REMOVE(wk); 10769 if (wk->wk_type != D_JNEWBLK) { 10770 WORKLIST_INSERT(&bmsafemap->sm_freehd, wk); 10771 continue; 10772 } 10773 jnewblk = WK_JNEWBLK(wk); 10774 KASSERT(jnewblk->jn_state & GOINGAWAY, 10775 ("softdep_setup_blkfree: jnewblk not canceled.")); 10776 #ifdef SUJ_DEBUG 10777 /* 10778 * Assert that this block is free in the bitmap 10779 * before we discard the jnewblk. 10780 */ 10781 cgp = (struct cg *)bp->b_data; 10782 blksfree = cg_blksfree(cgp); 10783 bno = dtogd(fs, jnewblk->jn_blkno); 10784 for (i = jnewblk->jn_oldfrags; 10785 i < jnewblk->jn_frags; i++) { 10786 if (isset(blksfree, bno + i)) 10787 continue; 10788 panic("softdep_setup_blkfree: not free"); 10789 } 10790 #endif 10791 /* 10792 * Even if it's not attached we can free immediately 10793 * as the new bitmap is correct. 10794 */ 10795 wk->wk_state |= COMPLETE | ATTACHED; 10796 free_jnewblk(jnewblk); 10797 } 10798 } 10799 10800 #ifdef SUJ_DEBUG 10801 /* 10802 * Assert that we are not freeing a block which has an outstanding 10803 * allocation dependency. 10804 */ 10805 fs = VFSTOUFS(mp)->um_fs; 10806 bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL); 10807 end = blkno + frags; 10808 LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) { 10809 /* 10810 * Don't match against blocks that will be freed when the 10811 * background write is done. 10812 */ 10813 if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) == 10814 (COMPLETE | DEPCOMPLETE)) 10815 continue; 10816 jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags; 10817 jend = jnewblk->jn_blkno + jnewblk->jn_frags; 10818 if ((blkno >= jstart && blkno < jend) || 10819 (end > jstart && end <= jend)) { 10820 printf("state 0x%X %jd - %d %d dep %p\n", 10821 jnewblk->jn_state, jnewblk->jn_blkno, 10822 jnewblk->jn_oldfrags, jnewblk->jn_frags, 10823 jnewblk->jn_dep); 10824 panic("softdep_setup_blkfree: " 10825 "%jd-%jd(%d) overlaps with %jd-%jd", 10826 blkno, end, frags, jstart, jend); 10827 } 10828 } 10829 #endif 10830 FREE_LOCK(ump); 10831 } 10832 10833 /* 10834 * Revert a block allocation when the journal record that describes it 10835 * is not yet written. 10836 */ 10837 static int 10838 jnewblk_rollback(jnewblk, fs, cgp, blksfree) 10839 struct jnewblk *jnewblk; 10840 struct fs *fs; 10841 struct cg *cgp; 10842 uint8_t *blksfree; 10843 { 10844 ufs1_daddr_t fragno; 10845 long cgbno, bbase; 10846 int frags, blk; 10847 int i; 10848 10849 frags = 0; 10850 cgbno = dtogd(fs, jnewblk->jn_blkno); 10851 /* 10852 * We have to test which frags need to be rolled back. We may 10853 * be operating on a stale copy when doing background writes. 10854 */ 10855 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) 10856 if (isclr(blksfree, cgbno + i)) 10857 frags++; 10858 if (frags == 0) 10859 return (0); 10860 /* 10861 * This is mostly ffs_blkfree() sans some validation and 10862 * superblock updates. 10863 */ 10864 if (frags == fs->fs_frag) { 10865 fragno = fragstoblks(fs, cgbno); 10866 ffs_setblock(fs, blksfree, fragno); 10867 ffs_clusteracct(fs, cgp, fragno, 1); 10868 cgp->cg_cs.cs_nbfree++; 10869 } else { 10870 cgbno += jnewblk->jn_oldfrags; 10871 bbase = cgbno - fragnum(fs, cgbno); 10872 /* Decrement the old frags. */ 10873 blk = blkmap(fs, blksfree, bbase); 10874 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 10875 /* Deallocate the fragment */ 10876 for (i = 0; i < frags; i++) 10877 setbit(blksfree, cgbno + i); 10878 cgp->cg_cs.cs_nffree += frags; 10879 /* Add back in counts associated with the new frags */ 10880 blk = blkmap(fs, blksfree, bbase); 10881 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 10882 /* If a complete block has been reassembled, account for it. */ 10883 fragno = fragstoblks(fs, bbase); 10884 if (ffs_isblock(fs, blksfree, fragno)) { 10885 cgp->cg_cs.cs_nffree -= fs->fs_frag; 10886 ffs_clusteracct(fs, cgp, fragno, 1); 10887 cgp->cg_cs.cs_nbfree++; 10888 } 10889 } 10890 stat_jnewblk++; 10891 jnewblk->jn_state &= ~ATTACHED; 10892 jnewblk->jn_state |= UNDONE; 10893 10894 return (frags); 10895 } 10896 10897 static void 10898 initiate_write_bmsafemap(bmsafemap, bp) 10899 struct bmsafemap *bmsafemap; 10900 struct buf *bp; /* The cg block. */ 10901 { 10902 struct jaddref *jaddref; 10903 struct jnewblk *jnewblk; 10904 uint8_t *inosused; 10905 uint8_t *blksfree; 10906 struct cg *cgp; 10907 struct fs *fs; 10908 ino_t ino; 10909 10910 /* 10911 * If this is a background write, we did this at the time that 10912 * the copy was made, so do not need to do it again. 10913 */ 10914 if (bmsafemap->sm_state & IOSTARTED) 10915 return; 10916 bmsafemap->sm_state |= IOSTARTED; 10917 /* 10918 * Clear any inode allocations which are pending journal writes. 10919 */ 10920 if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) { 10921 cgp = (struct cg *)bp->b_data; 10922 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 10923 inosused = cg_inosused(cgp); 10924 LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) { 10925 ino = jaddref->ja_ino % fs->fs_ipg; 10926 if (isset(inosused, ino)) { 10927 if ((jaddref->ja_mode & IFMT) == IFDIR) 10928 cgp->cg_cs.cs_ndir--; 10929 cgp->cg_cs.cs_nifree++; 10930 clrbit(inosused, ino); 10931 jaddref->ja_state &= ~ATTACHED; 10932 jaddref->ja_state |= UNDONE; 10933 stat_jaddref++; 10934 } else 10935 panic("initiate_write_bmsafemap: inode %ju " 10936 "marked free", (uintmax_t)jaddref->ja_ino); 10937 } 10938 } 10939 /* 10940 * Clear any block allocations which are pending journal writes. 10941 */ 10942 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) { 10943 cgp = (struct cg *)bp->b_data; 10944 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 10945 blksfree = cg_blksfree(cgp); 10946 LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) { 10947 if (jnewblk_rollback(jnewblk, fs, cgp, blksfree)) 10948 continue; 10949 panic("initiate_write_bmsafemap: block %jd " 10950 "marked free", jnewblk->jn_blkno); 10951 } 10952 } 10953 /* 10954 * Move allocation lists to the written lists so they can be 10955 * cleared once the block write is complete. 10956 */ 10957 LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr, 10958 inodedep, id_deps); 10959 LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr, 10960 newblk, nb_deps); 10961 LIST_SWAP(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, worklist, 10962 wk_list); 10963 } 10964 10965 /* 10966 * This routine is called during the completion interrupt 10967 * service routine for a disk write (from the procedure called 10968 * by the device driver to inform the filesystem caches of 10969 * a request completion). It should be called early in this 10970 * procedure, before the block is made available to other 10971 * processes or other routines are called. 10972 * 10973 */ 10974 static void 10975 softdep_disk_write_complete(bp) 10976 struct buf *bp; /* describes the completed disk write */ 10977 { 10978 struct worklist *wk; 10979 struct worklist *owk; 10980 struct ufsmount *ump; 10981 struct workhead reattach; 10982 struct freeblks *freeblks; 10983 struct buf *sbp; 10984 10985 ump = softdep_bp_to_mp(bp); 10986 if (ump == NULL) 10987 return; 10988 10989 sbp = NULL; 10990 10991 /* 10992 * If an error occurred while doing the write, then the data 10993 * has not hit the disk and the dependencies cannot be processed. 10994 * But we do have to go through and roll forward any dependencies 10995 * that were rolled back before the disk write. 10996 */ 10997 ACQUIRE_LOCK(ump); 10998 if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0) { 10999 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 11000 switch (wk->wk_type) { 11001 11002 case D_PAGEDEP: 11003 handle_written_filepage(WK_PAGEDEP(wk), bp, 0); 11004 continue; 11005 11006 case D_INODEDEP: 11007 handle_written_inodeblock(WK_INODEDEP(wk), 11008 bp, 0); 11009 continue; 11010 11011 case D_BMSAFEMAP: 11012 handle_written_bmsafemap(WK_BMSAFEMAP(wk), 11013 bp, 0); 11014 continue; 11015 11016 case D_INDIRDEP: 11017 handle_written_indirdep(WK_INDIRDEP(wk), 11018 bp, &sbp, 0); 11019 continue; 11020 default: 11021 /* nothing to roll forward */ 11022 continue; 11023 } 11024 } 11025 FREE_LOCK(ump); 11026 return; 11027 } 11028 LIST_INIT(&reattach); 11029 11030 /* 11031 * Ump SU lock must not be released anywhere in this code segment. 11032 */ 11033 owk = NULL; 11034 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) { 11035 WORKLIST_REMOVE(wk); 11036 atomic_add_long(&dep_write[wk->wk_type], 1); 11037 if (wk == owk) 11038 panic("duplicate worklist: %p\n", wk); 11039 owk = wk; 11040 switch (wk->wk_type) { 11041 11042 case D_PAGEDEP: 11043 if (handle_written_filepage(WK_PAGEDEP(wk), bp, 11044 WRITESUCCEEDED)) 11045 WORKLIST_INSERT(&reattach, wk); 11046 continue; 11047 11048 case D_INODEDEP: 11049 if (handle_written_inodeblock(WK_INODEDEP(wk), bp, 11050 WRITESUCCEEDED)) 11051 WORKLIST_INSERT(&reattach, wk); 11052 continue; 11053 11054 case D_BMSAFEMAP: 11055 if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp, 11056 WRITESUCCEEDED)) 11057 WORKLIST_INSERT(&reattach, wk); 11058 continue; 11059 11060 case D_MKDIR: 11061 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); 11062 continue; 11063 11064 case D_ALLOCDIRECT: 11065 wk->wk_state |= COMPLETE; 11066 handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL); 11067 continue; 11068 11069 case D_ALLOCINDIR: 11070 wk->wk_state |= COMPLETE; 11071 handle_allocindir_partdone(WK_ALLOCINDIR(wk)); 11072 continue; 11073 11074 case D_INDIRDEP: 11075 if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp, 11076 WRITESUCCEEDED)) 11077 WORKLIST_INSERT(&reattach, wk); 11078 continue; 11079 11080 case D_FREEBLKS: 11081 wk->wk_state |= COMPLETE; 11082 freeblks = WK_FREEBLKS(wk); 11083 if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE && 11084 LIST_EMPTY(&freeblks->fb_jblkdephd)) 11085 add_to_worklist(wk, WK_NODELAY); 11086 continue; 11087 11088 case D_FREEWORK: 11089 handle_written_freework(WK_FREEWORK(wk)); 11090 break; 11091 11092 case D_JSEGDEP: 11093 free_jsegdep(WK_JSEGDEP(wk)); 11094 continue; 11095 11096 case D_JSEG: 11097 handle_written_jseg(WK_JSEG(wk), bp); 11098 continue; 11099 11100 case D_SBDEP: 11101 if (handle_written_sbdep(WK_SBDEP(wk), bp)) 11102 WORKLIST_INSERT(&reattach, wk); 11103 continue; 11104 11105 case D_FREEDEP: 11106 free_freedep(WK_FREEDEP(wk)); 11107 continue; 11108 11109 default: 11110 panic("handle_disk_write_complete: Unknown type %s", 11111 TYPENAME(wk->wk_type)); 11112 /* NOTREACHED */ 11113 } 11114 } 11115 /* 11116 * Reattach any requests that must be redone. 11117 */ 11118 while ((wk = LIST_FIRST(&reattach)) != NULL) { 11119 WORKLIST_REMOVE(wk); 11120 WORKLIST_INSERT(&bp->b_dep, wk); 11121 } 11122 FREE_LOCK(ump); 11123 if (sbp) 11124 brelse(sbp); 11125 } 11126 11127 /* 11128 * Called from within softdep_disk_write_complete above. Note that 11129 * this routine is always called from interrupt level with further 11130 * splbio interrupts blocked. 11131 */ 11132 static void 11133 handle_allocdirect_partdone(adp, wkhd) 11134 struct allocdirect *adp; /* the completed allocdirect */ 11135 struct workhead *wkhd; /* Work to do when inode is writtne. */ 11136 { 11137 struct allocdirectlst *listhead; 11138 struct allocdirect *listadp; 11139 struct inodedep *inodedep; 11140 long bsize; 11141 11142 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 11143 return; 11144 /* 11145 * The on-disk inode cannot claim to be any larger than the last 11146 * fragment that has been written. Otherwise, the on-disk inode 11147 * might have fragments that were not the last block in the file 11148 * which would corrupt the filesystem. Thus, we cannot free any 11149 * allocdirects after one whose ad_oldblkno claims a fragment as 11150 * these blocks must be rolled back to zero before writing the inode. 11151 * We check the currently active set of allocdirects in id_inoupdt 11152 * or id_extupdt as appropriate. 11153 */ 11154 inodedep = adp->ad_inodedep; 11155 bsize = inodedep->id_fs->fs_bsize; 11156 if (adp->ad_state & EXTDATA) 11157 listhead = &inodedep->id_extupdt; 11158 else 11159 listhead = &inodedep->id_inoupdt; 11160 TAILQ_FOREACH(listadp, listhead, ad_next) { 11161 /* found our block */ 11162 if (listadp == adp) 11163 break; 11164 /* continue if ad_oldlbn is not a fragment */ 11165 if (listadp->ad_oldsize == 0 || 11166 listadp->ad_oldsize == bsize) 11167 continue; 11168 /* hit a fragment */ 11169 return; 11170 } 11171 /* 11172 * If we have reached the end of the current list without 11173 * finding the just finished dependency, then it must be 11174 * on the future dependency list. Future dependencies cannot 11175 * be freed until they are moved to the current list. 11176 */ 11177 if (listadp == NULL) { 11178 #ifdef DEBUG 11179 if (adp->ad_state & EXTDATA) 11180 listhead = &inodedep->id_newextupdt; 11181 else 11182 listhead = &inodedep->id_newinoupdt; 11183 TAILQ_FOREACH(listadp, listhead, ad_next) 11184 /* found our block */ 11185 if (listadp == adp) 11186 break; 11187 if (listadp == NULL) 11188 panic("handle_allocdirect_partdone: lost dep"); 11189 #endif /* DEBUG */ 11190 return; 11191 } 11192 /* 11193 * If we have found the just finished dependency, then queue 11194 * it along with anything that follows it that is complete. 11195 * Since the pointer has not yet been written in the inode 11196 * as the dependency prevents it, place the allocdirect on the 11197 * bufwait list where it will be freed once the pointer is 11198 * valid. 11199 */ 11200 if (wkhd == NULL) 11201 wkhd = &inodedep->id_bufwait; 11202 for (; adp; adp = listadp) { 11203 listadp = TAILQ_NEXT(adp, ad_next); 11204 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 11205 return; 11206 TAILQ_REMOVE(listhead, adp, ad_next); 11207 WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list); 11208 } 11209 } 11210 11211 /* 11212 * Called from within softdep_disk_write_complete above. This routine 11213 * completes successfully written allocindirs. 11214 */ 11215 static void 11216 handle_allocindir_partdone(aip) 11217 struct allocindir *aip; /* the completed allocindir */ 11218 { 11219 struct indirdep *indirdep; 11220 11221 if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE) 11222 return; 11223 indirdep = aip->ai_indirdep; 11224 LIST_REMOVE(aip, ai_next); 11225 /* 11226 * Don't set a pointer while the buffer is undergoing IO or while 11227 * we have active truncations. 11228 */ 11229 if (indirdep->ir_state & UNDONE || !TAILQ_EMPTY(&indirdep->ir_trunc)) { 11230 LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next); 11231 return; 11232 } 11233 if (indirdep->ir_state & UFS1FMT) 11234 ((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 11235 aip->ai_newblkno; 11236 else 11237 ((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 11238 aip->ai_newblkno; 11239 /* 11240 * Await the pointer write before freeing the allocindir. 11241 */ 11242 LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next); 11243 } 11244 11245 /* 11246 * Release segments held on a jwork list. 11247 */ 11248 static void 11249 handle_jwork(wkhd) 11250 struct workhead *wkhd; 11251 { 11252 struct worklist *wk; 11253 11254 while ((wk = LIST_FIRST(wkhd)) != NULL) { 11255 WORKLIST_REMOVE(wk); 11256 switch (wk->wk_type) { 11257 case D_JSEGDEP: 11258 free_jsegdep(WK_JSEGDEP(wk)); 11259 continue; 11260 case D_FREEDEP: 11261 free_freedep(WK_FREEDEP(wk)); 11262 continue; 11263 case D_FREEFRAG: 11264 rele_jseg(WK_JSEG(WK_FREEFRAG(wk)->ff_jdep)); 11265 WORKITEM_FREE(wk, D_FREEFRAG); 11266 continue; 11267 case D_FREEWORK: 11268 handle_written_freework(WK_FREEWORK(wk)); 11269 continue; 11270 default: 11271 panic("handle_jwork: Unknown type %s\n", 11272 TYPENAME(wk->wk_type)); 11273 } 11274 } 11275 } 11276 11277 /* 11278 * Handle the bufwait list on an inode when it is safe to release items 11279 * held there. This normally happens after an inode block is written but 11280 * may be delayed and handled later if there are pending journal items that 11281 * are not yet safe to be released. 11282 */ 11283 static struct freefile * 11284 handle_bufwait(inodedep, refhd) 11285 struct inodedep *inodedep; 11286 struct workhead *refhd; 11287 { 11288 struct jaddref *jaddref; 11289 struct freefile *freefile; 11290 struct worklist *wk; 11291 11292 freefile = NULL; 11293 while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) { 11294 WORKLIST_REMOVE(wk); 11295 switch (wk->wk_type) { 11296 case D_FREEFILE: 11297 /* 11298 * We defer adding freefile to the worklist 11299 * until all other additions have been made to 11300 * ensure that it will be done after all the 11301 * old blocks have been freed. 11302 */ 11303 if (freefile != NULL) 11304 panic("handle_bufwait: freefile"); 11305 freefile = WK_FREEFILE(wk); 11306 continue; 11307 11308 case D_MKDIR: 11309 handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT); 11310 continue; 11311 11312 case D_DIRADD: 11313 diradd_inode_written(WK_DIRADD(wk), inodedep); 11314 continue; 11315 11316 case D_FREEFRAG: 11317 wk->wk_state |= COMPLETE; 11318 if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE) 11319 add_to_worklist(wk, 0); 11320 continue; 11321 11322 case D_DIRREM: 11323 wk->wk_state |= COMPLETE; 11324 add_to_worklist(wk, 0); 11325 continue; 11326 11327 case D_ALLOCDIRECT: 11328 case D_ALLOCINDIR: 11329 free_newblk(WK_NEWBLK(wk)); 11330 continue; 11331 11332 case D_JNEWBLK: 11333 wk->wk_state |= COMPLETE; 11334 free_jnewblk(WK_JNEWBLK(wk)); 11335 continue; 11336 11337 /* 11338 * Save freed journal segments and add references on 11339 * the supplied list which will delay their release 11340 * until the cg bitmap is cleared on disk. 11341 */ 11342 case D_JSEGDEP: 11343 if (refhd == NULL) 11344 free_jsegdep(WK_JSEGDEP(wk)); 11345 else 11346 WORKLIST_INSERT(refhd, wk); 11347 continue; 11348 11349 case D_JADDREF: 11350 jaddref = WK_JADDREF(wk); 11351 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, 11352 if_deps); 11353 /* 11354 * Transfer any jaddrefs to the list to be freed with 11355 * the bitmap if we're handling a removed file. 11356 */ 11357 if (refhd == NULL) { 11358 wk->wk_state |= COMPLETE; 11359 free_jaddref(jaddref); 11360 } else 11361 WORKLIST_INSERT(refhd, wk); 11362 continue; 11363 11364 default: 11365 panic("handle_bufwait: Unknown type %p(%s)", 11366 wk, TYPENAME(wk->wk_type)); 11367 /* NOTREACHED */ 11368 } 11369 } 11370 return (freefile); 11371 } 11372 /* 11373 * Called from within softdep_disk_write_complete above to restore 11374 * in-memory inode block contents to their most up-to-date state. Note 11375 * that this routine is always called from interrupt level with further 11376 * interrupts from this device blocked. 11377 * 11378 * If the write did not succeed, we will do all the roll-forward 11379 * operations, but we will not take the actions that will allow its 11380 * dependencies to be processed. 11381 */ 11382 static int 11383 handle_written_inodeblock(inodedep, bp, flags) 11384 struct inodedep *inodedep; 11385 struct buf *bp; /* buffer containing the inode block */ 11386 int flags; 11387 { 11388 struct freefile *freefile; 11389 struct allocdirect *adp, *nextadp; 11390 struct ufs1_dinode *dp1 = NULL; 11391 struct ufs2_dinode *dp2 = NULL; 11392 struct workhead wkhd; 11393 int hadchanges, fstype; 11394 ino_t freelink; 11395 11396 LIST_INIT(&wkhd); 11397 hadchanges = 0; 11398 freefile = NULL; 11399 if ((inodedep->id_state & IOSTARTED) == 0) 11400 panic("handle_written_inodeblock: not started"); 11401 inodedep->id_state &= ~IOSTARTED; 11402 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) { 11403 fstype = UFS1; 11404 dp1 = (struct ufs1_dinode *)bp->b_data + 11405 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 11406 freelink = dp1->di_freelink; 11407 } else { 11408 fstype = UFS2; 11409 dp2 = (struct ufs2_dinode *)bp->b_data + 11410 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 11411 freelink = dp2->di_freelink; 11412 } 11413 /* 11414 * Leave this inodeblock dirty until it's in the list. 11415 */ 11416 if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED && 11417 (flags & WRITESUCCEEDED)) { 11418 struct inodedep *inon; 11419 11420 inon = TAILQ_NEXT(inodedep, id_unlinked); 11421 if ((inon == NULL && freelink == 0) || 11422 (inon && inon->id_ino == freelink)) { 11423 if (inon) 11424 inon->id_state |= UNLINKPREV; 11425 inodedep->id_state |= UNLINKNEXT; 11426 } 11427 hadchanges = 1; 11428 } 11429 /* 11430 * If we had to rollback the inode allocation because of 11431 * bitmaps being incomplete, then simply restore it. 11432 * Keep the block dirty so that it will not be reclaimed until 11433 * all associated dependencies have been cleared and the 11434 * corresponding updates written to disk. 11435 */ 11436 if (inodedep->id_savedino1 != NULL) { 11437 hadchanges = 1; 11438 if (fstype == UFS1) 11439 *dp1 = *inodedep->id_savedino1; 11440 else 11441 *dp2 = *inodedep->id_savedino2; 11442 free(inodedep->id_savedino1, M_SAVEDINO); 11443 inodedep->id_savedino1 = NULL; 11444 if ((bp->b_flags & B_DELWRI) == 0) 11445 stat_inode_bitmap++; 11446 bdirty(bp); 11447 /* 11448 * If the inode is clear here and GOINGAWAY it will never 11449 * be written. Process the bufwait and clear any pending 11450 * work which may include the freefile. 11451 */ 11452 if (inodedep->id_state & GOINGAWAY) 11453 goto bufwait; 11454 return (1); 11455 } 11456 if (flags & WRITESUCCEEDED) 11457 inodedep->id_state |= COMPLETE; 11458 /* 11459 * Roll forward anything that had to be rolled back before 11460 * the inode could be updated. 11461 */ 11462 for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) { 11463 nextadp = TAILQ_NEXT(adp, ad_next); 11464 if (adp->ad_state & ATTACHED) 11465 panic("handle_written_inodeblock: new entry"); 11466 if (fstype == UFS1) { 11467 if (adp->ad_offset < UFS_NDADDR) { 11468 if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno) 11469 panic("%s %s #%jd mismatch %d != %jd", 11470 "handle_written_inodeblock:", 11471 "direct pointer", 11472 (intmax_t)adp->ad_offset, 11473 dp1->di_db[adp->ad_offset], 11474 (intmax_t)adp->ad_oldblkno); 11475 dp1->di_db[adp->ad_offset] = adp->ad_newblkno; 11476 } else { 11477 if (dp1->di_ib[adp->ad_offset - UFS_NDADDR] != 11478 0) 11479 panic("%s: %s #%jd allocated as %d", 11480 "handle_written_inodeblock", 11481 "indirect pointer", 11482 (intmax_t)adp->ad_offset - 11483 UFS_NDADDR, 11484 dp1->di_ib[adp->ad_offset - 11485 UFS_NDADDR]); 11486 dp1->di_ib[adp->ad_offset - UFS_NDADDR] = 11487 adp->ad_newblkno; 11488 } 11489 } else { 11490 if (adp->ad_offset < UFS_NDADDR) { 11491 if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno) 11492 panic("%s: %s #%jd %s %jd != %jd", 11493 "handle_written_inodeblock", 11494 "direct pointer", 11495 (intmax_t)adp->ad_offset, "mismatch", 11496 (intmax_t)dp2->di_db[adp->ad_offset], 11497 (intmax_t)adp->ad_oldblkno); 11498 dp2->di_db[adp->ad_offset] = adp->ad_newblkno; 11499 } else { 11500 if (dp2->di_ib[adp->ad_offset - UFS_NDADDR] != 11501 0) 11502 panic("%s: %s #%jd allocated as %jd", 11503 "handle_written_inodeblock", 11504 "indirect pointer", 11505 (intmax_t)adp->ad_offset - 11506 UFS_NDADDR, 11507 (intmax_t) 11508 dp2->di_ib[adp->ad_offset - 11509 UFS_NDADDR]); 11510 dp2->di_ib[adp->ad_offset - UFS_NDADDR] = 11511 adp->ad_newblkno; 11512 } 11513 } 11514 adp->ad_state &= ~UNDONE; 11515 adp->ad_state |= ATTACHED; 11516 hadchanges = 1; 11517 } 11518 for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) { 11519 nextadp = TAILQ_NEXT(adp, ad_next); 11520 if (adp->ad_state & ATTACHED) 11521 panic("handle_written_inodeblock: new entry"); 11522 if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno) 11523 panic("%s: direct pointers #%jd %s %jd != %jd", 11524 "handle_written_inodeblock", 11525 (intmax_t)adp->ad_offset, "mismatch", 11526 (intmax_t)dp2->di_extb[adp->ad_offset], 11527 (intmax_t)adp->ad_oldblkno); 11528 dp2->di_extb[adp->ad_offset] = adp->ad_newblkno; 11529 adp->ad_state &= ~UNDONE; 11530 adp->ad_state |= ATTACHED; 11531 hadchanges = 1; 11532 } 11533 if (hadchanges && (bp->b_flags & B_DELWRI) == 0) 11534 stat_direct_blk_ptrs++; 11535 /* 11536 * Reset the file size to its most up-to-date value. 11537 */ 11538 if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1) 11539 panic("handle_written_inodeblock: bad size"); 11540 if (inodedep->id_savednlink > UFS_LINK_MAX) 11541 panic("handle_written_inodeblock: Invalid link count " 11542 "%jd for inodedep %p", (uintmax_t)inodedep->id_savednlink, 11543 inodedep); 11544 if (fstype == UFS1) { 11545 if (dp1->di_nlink != inodedep->id_savednlink) { 11546 dp1->di_nlink = inodedep->id_savednlink; 11547 hadchanges = 1; 11548 } 11549 if (dp1->di_size != inodedep->id_savedsize) { 11550 dp1->di_size = inodedep->id_savedsize; 11551 hadchanges = 1; 11552 } 11553 } else { 11554 if (dp2->di_nlink != inodedep->id_savednlink) { 11555 dp2->di_nlink = inodedep->id_savednlink; 11556 hadchanges = 1; 11557 } 11558 if (dp2->di_size != inodedep->id_savedsize) { 11559 dp2->di_size = inodedep->id_savedsize; 11560 hadchanges = 1; 11561 } 11562 if (dp2->di_extsize != inodedep->id_savedextsize) { 11563 dp2->di_extsize = inodedep->id_savedextsize; 11564 hadchanges = 1; 11565 } 11566 } 11567 inodedep->id_savedsize = -1; 11568 inodedep->id_savedextsize = -1; 11569 inodedep->id_savednlink = -1; 11570 /* 11571 * If there were any rollbacks in the inode block, then it must be 11572 * marked dirty so that its will eventually get written back in 11573 * its correct form. 11574 */ 11575 if (hadchanges) 11576 bdirty(bp); 11577 bufwait: 11578 /* 11579 * If the write did not succeed, we have done all the roll-forward 11580 * operations, but we cannot take the actions that will allow its 11581 * dependencies to be processed. 11582 */ 11583 if ((flags & WRITESUCCEEDED) == 0) 11584 return (hadchanges); 11585 /* 11586 * Process any allocdirects that completed during the update. 11587 */ 11588 if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL) 11589 handle_allocdirect_partdone(adp, &wkhd); 11590 if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 11591 handle_allocdirect_partdone(adp, &wkhd); 11592 /* 11593 * Process deallocations that were held pending until the 11594 * inode had been written to disk. Freeing of the inode 11595 * is delayed until after all blocks have been freed to 11596 * avoid creation of new <vfsid, inum, lbn> triples 11597 * before the old ones have been deleted. Completely 11598 * unlinked inodes are not processed until the unlinked 11599 * inode list is written or the last reference is removed. 11600 */ 11601 if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) { 11602 freefile = handle_bufwait(inodedep, NULL); 11603 if (freefile && !LIST_EMPTY(&wkhd)) { 11604 WORKLIST_INSERT(&wkhd, &freefile->fx_list); 11605 freefile = NULL; 11606 } 11607 } 11608 /* 11609 * Move rolled forward dependency completions to the bufwait list 11610 * now that those that were already written have been processed. 11611 */ 11612 if (!LIST_EMPTY(&wkhd) && hadchanges == 0) 11613 panic("handle_written_inodeblock: bufwait but no changes"); 11614 jwork_move(&inodedep->id_bufwait, &wkhd); 11615 11616 if (freefile != NULL) { 11617 /* 11618 * If the inode is goingaway it was never written. Fake up 11619 * the state here so free_inodedep() can succeed. 11620 */ 11621 if (inodedep->id_state & GOINGAWAY) 11622 inodedep->id_state |= COMPLETE | DEPCOMPLETE; 11623 if (free_inodedep(inodedep) == 0) 11624 panic("handle_written_inodeblock: live inodedep %p", 11625 inodedep); 11626 add_to_worklist(&freefile->fx_list, 0); 11627 return (0); 11628 } 11629 11630 /* 11631 * If no outstanding dependencies, free it. 11632 */ 11633 if (free_inodedep(inodedep) || 11634 (TAILQ_FIRST(&inodedep->id_inoreflst) == 0 && 11635 TAILQ_FIRST(&inodedep->id_inoupdt) == 0 && 11636 TAILQ_FIRST(&inodedep->id_extupdt) == 0 && 11637 LIST_FIRST(&inodedep->id_bufwait) == 0)) 11638 return (0); 11639 return (hadchanges); 11640 } 11641 11642 /* 11643 * Perform needed roll-forwards and kick off any dependencies that 11644 * can now be processed. 11645 * 11646 * If the write did not succeed, we will do all the roll-forward 11647 * operations, but we will not take the actions that will allow its 11648 * dependencies to be processed. 11649 */ 11650 static int 11651 handle_written_indirdep(indirdep, bp, bpp, flags) 11652 struct indirdep *indirdep; 11653 struct buf *bp; 11654 struct buf **bpp; 11655 int flags; 11656 { 11657 struct allocindir *aip; 11658 struct buf *sbp; 11659 int chgs; 11660 11661 if (indirdep->ir_state & GOINGAWAY) 11662 panic("handle_written_indirdep: indirdep gone"); 11663 if ((indirdep->ir_state & IOSTARTED) == 0) 11664 panic("handle_written_indirdep: IO not started"); 11665 chgs = 0; 11666 /* 11667 * If there were rollbacks revert them here. 11668 */ 11669 if (indirdep->ir_saveddata) { 11670 bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount); 11671 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 11672 free(indirdep->ir_saveddata, M_INDIRDEP); 11673 indirdep->ir_saveddata = NULL; 11674 } 11675 chgs = 1; 11676 } 11677 indirdep->ir_state &= ~(UNDONE | IOSTARTED); 11678 indirdep->ir_state |= ATTACHED; 11679 /* 11680 * If the write did not succeed, we have done all the roll-forward 11681 * operations, but we cannot take the actions that will allow its 11682 * dependencies to be processed. 11683 */ 11684 if ((flags & WRITESUCCEEDED) == 0) { 11685 stat_indir_blk_ptrs++; 11686 bdirty(bp); 11687 return (1); 11688 } 11689 /* 11690 * Move allocindirs with written pointers to the completehd if 11691 * the indirdep's pointer is not yet written. Otherwise 11692 * free them here. 11693 */ 11694 while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL) { 11695 LIST_REMOVE(aip, ai_next); 11696 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 11697 LIST_INSERT_HEAD(&indirdep->ir_completehd, aip, 11698 ai_next); 11699 newblk_freefrag(&aip->ai_block); 11700 continue; 11701 } 11702 free_newblk(&aip->ai_block); 11703 } 11704 /* 11705 * Move allocindirs that have finished dependency processing from 11706 * the done list to the write list after updating the pointers. 11707 */ 11708 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 11709 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL) { 11710 handle_allocindir_partdone(aip); 11711 if (aip == LIST_FIRST(&indirdep->ir_donehd)) 11712 panic("disk_write_complete: not gone"); 11713 chgs = 1; 11714 } 11715 } 11716 /* 11717 * Preserve the indirdep if there were any changes or if it is not 11718 * yet valid on disk. 11719 */ 11720 if (chgs) { 11721 stat_indir_blk_ptrs++; 11722 bdirty(bp); 11723 return (1); 11724 } 11725 /* 11726 * If there were no changes we can discard the savedbp and detach 11727 * ourselves from the buf. We are only carrying completed pointers 11728 * in this case. 11729 */ 11730 sbp = indirdep->ir_savebp; 11731 sbp->b_flags |= B_INVAL | B_NOCACHE; 11732 indirdep->ir_savebp = NULL; 11733 indirdep->ir_bp = NULL; 11734 if (*bpp != NULL) 11735 panic("handle_written_indirdep: bp already exists."); 11736 *bpp = sbp; 11737 /* 11738 * The indirdep may not be freed until its parent points at it. 11739 */ 11740 if (indirdep->ir_state & DEPCOMPLETE) 11741 free_indirdep(indirdep); 11742 11743 return (0); 11744 } 11745 11746 /* 11747 * Process a diradd entry after its dependent inode has been written. 11748 * This routine must be called with splbio interrupts blocked. 11749 */ 11750 static void 11751 diradd_inode_written(dap, inodedep) 11752 struct diradd *dap; 11753 struct inodedep *inodedep; 11754 { 11755 11756 dap->da_state |= COMPLETE; 11757 complete_diradd(dap); 11758 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 11759 } 11760 11761 /* 11762 * Returns true if the bmsafemap will have rollbacks when written. Must only 11763 * be called with the per-filesystem lock and the buf lock on the cg held. 11764 */ 11765 static int 11766 bmsafemap_backgroundwrite(bmsafemap, bp) 11767 struct bmsafemap *bmsafemap; 11768 struct buf *bp; 11769 { 11770 int dirty; 11771 11772 LOCK_OWNED(VFSTOUFS(bmsafemap->sm_list.wk_mp)); 11773 dirty = !LIST_EMPTY(&bmsafemap->sm_jaddrefhd) | 11774 !LIST_EMPTY(&bmsafemap->sm_jnewblkhd); 11775 /* 11776 * If we're initiating a background write we need to process the 11777 * rollbacks as they exist now, not as they exist when IO starts. 11778 * No other consumers will look at the contents of the shadowed 11779 * buf so this is safe to do here. 11780 */ 11781 if (bp->b_xflags & BX_BKGRDMARKER) 11782 initiate_write_bmsafemap(bmsafemap, bp); 11783 11784 return (dirty); 11785 } 11786 11787 /* 11788 * Re-apply an allocation when a cg write is complete. 11789 */ 11790 static int 11791 jnewblk_rollforward(jnewblk, fs, cgp, blksfree) 11792 struct jnewblk *jnewblk; 11793 struct fs *fs; 11794 struct cg *cgp; 11795 uint8_t *blksfree; 11796 { 11797 ufs1_daddr_t fragno; 11798 ufs2_daddr_t blkno; 11799 long cgbno, bbase; 11800 int frags, blk; 11801 int i; 11802 11803 frags = 0; 11804 cgbno = dtogd(fs, jnewblk->jn_blkno); 11805 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) { 11806 if (isclr(blksfree, cgbno + i)) 11807 panic("jnewblk_rollforward: re-allocated fragment"); 11808 frags++; 11809 } 11810 if (frags == fs->fs_frag) { 11811 blkno = fragstoblks(fs, cgbno); 11812 ffs_clrblock(fs, blksfree, (long)blkno); 11813 ffs_clusteracct(fs, cgp, blkno, -1); 11814 cgp->cg_cs.cs_nbfree--; 11815 } else { 11816 bbase = cgbno - fragnum(fs, cgbno); 11817 cgbno += jnewblk->jn_oldfrags; 11818 /* If a complete block had been reassembled, account for it. */ 11819 fragno = fragstoblks(fs, bbase); 11820 if (ffs_isblock(fs, blksfree, fragno)) { 11821 cgp->cg_cs.cs_nffree += fs->fs_frag; 11822 ffs_clusteracct(fs, cgp, fragno, -1); 11823 cgp->cg_cs.cs_nbfree--; 11824 } 11825 /* Decrement the old frags. */ 11826 blk = blkmap(fs, blksfree, bbase); 11827 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 11828 /* Allocate the fragment */ 11829 for (i = 0; i < frags; i++) 11830 clrbit(blksfree, cgbno + i); 11831 cgp->cg_cs.cs_nffree -= frags; 11832 /* Add back in counts associated with the new frags */ 11833 blk = blkmap(fs, blksfree, bbase); 11834 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 11835 } 11836 return (frags); 11837 } 11838 11839 /* 11840 * Complete a write to a bmsafemap structure. Roll forward any bitmap 11841 * changes if it's not a background write. Set all written dependencies 11842 * to DEPCOMPLETE and free the structure if possible. 11843 * 11844 * If the write did not succeed, we will do all the roll-forward 11845 * operations, but we will not take the actions that will allow its 11846 * dependencies to be processed. 11847 */ 11848 static int 11849 handle_written_bmsafemap(bmsafemap, bp, flags) 11850 struct bmsafemap *bmsafemap; 11851 struct buf *bp; 11852 int flags; 11853 { 11854 struct newblk *newblk; 11855 struct inodedep *inodedep; 11856 struct jaddref *jaddref, *jatmp; 11857 struct jnewblk *jnewblk, *jntmp; 11858 struct ufsmount *ump; 11859 uint8_t *inosused; 11860 uint8_t *blksfree; 11861 struct cg *cgp; 11862 struct fs *fs; 11863 ino_t ino; 11864 int foreground; 11865 int chgs; 11866 11867 if ((bmsafemap->sm_state & IOSTARTED) == 0) 11868 panic("handle_written_bmsafemap: Not started\n"); 11869 ump = VFSTOUFS(bmsafemap->sm_list.wk_mp); 11870 chgs = 0; 11871 bmsafemap->sm_state &= ~IOSTARTED; 11872 foreground = (bp->b_xflags & BX_BKGRDMARKER) == 0; 11873 /* 11874 * If write was successful, release journal work that was waiting 11875 * on the write. Otherwise move the work back. 11876 */ 11877 if (flags & WRITESUCCEEDED) 11878 handle_jwork(&bmsafemap->sm_freewr); 11879 else 11880 LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, 11881 worklist, wk_list); 11882 11883 /* 11884 * Restore unwritten inode allocation pending jaddref writes. 11885 */ 11886 if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) { 11887 cgp = (struct cg *)bp->b_data; 11888 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 11889 inosused = cg_inosused(cgp); 11890 LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd, 11891 ja_bmdeps, jatmp) { 11892 if ((jaddref->ja_state & UNDONE) == 0) 11893 continue; 11894 ino = jaddref->ja_ino % fs->fs_ipg; 11895 if (isset(inosused, ino)) 11896 panic("handle_written_bmsafemap: " 11897 "re-allocated inode"); 11898 /* Do the roll-forward only if it's a real copy. */ 11899 if (foreground) { 11900 if ((jaddref->ja_mode & IFMT) == IFDIR) 11901 cgp->cg_cs.cs_ndir++; 11902 cgp->cg_cs.cs_nifree--; 11903 setbit(inosused, ino); 11904 chgs = 1; 11905 } 11906 jaddref->ja_state &= ~UNDONE; 11907 jaddref->ja_state |= ATTACHED; 11908 free_jaddref(jaddref); 11909 } 11910 } 11911 /* 11912 * Restore any block allocations which are pending journal writes. 11913 */ 11914 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) { 11915 cgp = (struct cg *)bp->b_data; 11916 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 11917 blksfree = cg_blksfree(cgp); 11918 LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps, 11919 jntmp) { 11920 if ((jnewblk->jn_state & UNDONE) == 0) 11921 continue; 11922 /* Do the roll-forward only if it's a real copy. */ 11923 if (foreground && 11924 jnewblk_rollforward(jnewblk, fs, cgp, blksfree)) 11925 chgs = 1; 11926 jnewblk->jn_state &= ~(UNDONE | NEWBLOCK); 11927 jnewblk->jn_state |= ATTACHED; 11928 free_jnewblk(jnewblk); 11929 } 11930 } 11931 /* 11932 * If the write did not succeed, we have done all the roll-forward 11933 * operations, but we cannot take the actions that will allow its 11934 * dependencies to be processed. 11935 */ 11936 if ((flags & WRITESUCCEEDED) == 0) { 11937 LIST_CONCAT(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr, 11938 newblk, nb_deps); 11939 LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, 11940 worklist, wk_list); 11941 if (foreground) 11942 bdirty(bp); 11943 return (1); 11944 } 11945 while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) { 11946 newblk->nb_state |= DEPCOMPLETE; 11947 newblk->nb_state &= ~ONDEPLIST; 11948 newblk->nb_bmsafemap = NULL; 11949 LIST_REMOVE(newblk, nb_deps); 11950 if (newblk->nb_list.wk_type == D_ALLOCDIRECT) 11951 handle_allocdirect_partdone( 11952 WK_ALLOCDIRECT(&newblk->nb_list), NULL); 11953 else if (newblk->nb_list.wk_type == D_ALLOCINDIR) 11954 handle_allocindir_partdone( 11955 WK_ALLOCINDIR(&newblk->nb_list)); 11956 else if (newblk->nb_list.wk_type != D_NEWBLK) 11957 panic("handle_written_bmsafemap: Unexpected type: %s", 11958 TYPENAME(newblk->nb_list.wk_type)); 11959 } 11960 while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) { 11961 inodedep->id_state |= DEPCOMPLETE; 11962 inodedep->id_state &= ~ONDEPLIST; 11963 LIST_REMOVE(inodedep, id_deps); 11964 inodedep->id_bmsafemap = NULL; 11965 } 11966 LIST_REMOVE(bmsafemap, sm_next); 11967 if (chgs == 0 && LIST_EMPTY(&bmsafemap->sm_jaddrefhd) && 11968 LIST_EMPTY(&bmsafemap->sm_jnewblkhd) && 11969 LIST_EMPTY(&bmsafemap->sm_newblkhd) && 11970 LIST_EMPTY(&bmsafemap->sm_inodedephd) && 11971 LIST_EMPTY(&bmsafemap->sm_freehd)) { 11972 LIST_REMOVE(bmsafemap, sm_hash); 11973 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); 11974 return (0); 11975 } 11976 LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next); 11977 if (foreground) 11978 bdirty(bp); 11979 return (1); 11980 } 11981 11982 /* 11983 * Try to free a mkdir dependency. 11984 */ 11985 static void 11986 complete_mkdir(mkdir) 11987 struct mkdir *mkdir; 11988 { 11989 struct diradd *dap; 11990 11991 if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE) 11992 return; 11993 LIST_REMOVE(mkdir, md_mkdirs); 11994 dap = mkdir->md_diradd; 11995 dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)); 11996 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) { 11997 dap->da_state |= DEPCOMPLETE; 11998 complete_diradd(dap); 11999 } 12000 WORKITEM_FREE(mkdir, D_MKDIR); 12001 } 12002 12003 /* 12004 * Handle the completion of a mkdir dependency. 12005 */ 12006 static void 12007 handle_written_mkdir(mkdir, type) 12008 struct mkdir *mkdir; 12009 int type; 12010 { 12011 12012 if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type) 12013 panic("handle_written_mkdir: bad type"); 12014 mkdir->md_state |= COMPLETE; 12015 complete_mkdir(mkdir); 12016 } 12017 12018 static int 12019 free_pagedep(pagedep) 12020 struct pagedep *pagedep; 12021 { 12022 int i; 12023 12024 if (pagedep->pd_state & NEWBLOCK) 12025 return (0); 12026 if (!LIST_EMPTY(&pagedep->pd_dirremhd)) 12027 return (0); 12028 for (i = 0; i < DAHASHSZ; i++) 12029 if (!LIST_EMPTY(&pagedep->pd_diraddhd[i])) 12030 return (0); 12031 if (!LIST_EMPTY(&pagedep->pd_pendinghd)) 12032 return (0); 12033 if (!LIST_EMPTY(&pagedep->pd_jmvrefhd)) 12034 return (0); 12035 if (pagedep->pd_state & ONWORKLIST) 12036 WORKLIST_REMOVE(&pagedep->pd_list); 12037 LIST_REMOVE(pagedep, pd_hash); 12038 WORKITEM_FREE(pagedep, D_PAGEDEP); 12039 12040 return (1); 12041 } 12042 12043 /* 12044 * Called from within softdep_disk_write_complete above. 12045 * A write operation was just completed. Removed inodes can 12046 * now be freed and associated block pointers may be committed. 12047 * Note that this routine is always called from interrupt level 12048 * with further interrupts from this device blocked. 12049 * 12050 * If the write did not succeed, we will do all the roll-forward 12051 * operations, but we will not take the actions that will allow its 12052 * dependencies to be processed. 12053 */ 12054 static int 12055 handle_written_filepage(pagedep, bp, flags) 12056 struct pagedep *pagedep; 12057 struct buf *bp; /* buffer containing the written page */ 12058 int flags; 12059 { 12060 struct dirrem *dirrem; 12061 struct diradd *dap, *nextdap; 12062 struct direct *ep; 12063 int i, chgs; 12064 12065 if ((pagedep->pd_state & IOSTARTED) == 0) 12066 panic("handle_written_filepage: not started"); 12067 pagedep->pd_state &= ~IOSTARTED; 12068 if ((flags & WRITESUCCEEDED) == 0) 12069 goto rollforward; 12070 /* 12071 * Process any directory removals that have been committed. 12072 */ 12073 while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) { 12074 LIST_REMOVE(dirrem, dm_next); 12075 dirrem->dm_state |= COMPLETE; 12076 dirrem->dm_dirinum = pagedep->pd_ino; 12077 KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd), 12078 ("handle_written_filepage: Journal entries not written.")); 12079 add_to_worklist(&dirrem->dm_list, 0); 12080 } 12081 /* 12082 * Free any directory additions that have been committed. 12083 * If it is a newly allocated block, we have to wait until 12084 * the on-disk directory inode claims the new block. 12085 */ 12086 if ((pagedep->pd_state & NEWBLOCK) == 0) 12087 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 12088 free_diradd(dap, NULL); 12089 rollforward: 12090 /* 12091 * Uncommitted directory entries must be restored. 12092 */ 12093 for (chgs = 0, i = 0; i < DAHASHSZ; i++) { 12094 for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap; 12095 dap = nextdap) { 12096 nextdap = LIST_NEXT(dap, da_pdlist); 12097 if (dap->da_state & ATTACHED) 12098 panic("handle_written_filepage: attached"); 12099 ep = (struct direct *) 12100 ((char *)bp->b_data + dap->da_offset); 12101 ep->d_ino = dap->da_newinum; 12102 dap->da_state &= ~UNDONE; 12103 dap->da_state |= ATTACHED; 12104 chgs = 1; 12105 /* 12106 * If the inode referenced by the directory has 12107 * been written out, then the dependency can be 12108 * moved to the pending list. 12109 */ 12110 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 12111 LIST_REMOVE(dap, da_pdlist); 12112 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, 12113 da_pdlist); 12114 } 12115 } 12116 } 12117 /* 12118 * If there were any rollbacks in the directory, then it must be 12119 * marked dirty so that its will eventually get written back in 12120 * its correct form. 12121 */ 12122 if (chgs || (flags & WRITESUCCEEDED) == 0) { 12123 if ((bp->b_flags & B_DELWRI) == 0) 12124 stat_dir_entry++; 12125 bdirty(bp); 12126 return (1); 12127 } 12128 /* 12129 * If we are not waiting for a new directory block to be 12130 * claimed by its inode, then the pagedep will be freed. 12131 * Otherwise it will remain to track any new entries on 12132 * the page in case they are fsync'ed. 12133 */ 12134 free_pagedep(pagedep); 12135 return (0); 12136 } 12137 12138 /* 12139 * Writing back in-core inode structures. 12140 * 12141 * The filesystem only accesses an inode's contents when it occupies an 12142 * "in-core" inode structure. These "in-core" structures are separate from 12143 * the page frames used to cache inode blocks. Only the latter are 12144 * transferred to/from the disk. So, when the updated contents of the 12145 * "in-core" inode structure are copied to the corresponding in-memory inode 12146 * block, the dependencies are also transferred. The following procedure is 12147 * called when copying a dirty "in-core" inode to a cached inode block. 12148 */ 12149 12150 /* 12151 * Called when an inode is loaded from disk. If the effective link count 12152 * differed from the actual link count when it was last flushed, then we 12153 * need to ensure that the correct effective link count is put back. 12154 */ 12155 void 12156 softdep_load_inodeblock(ip) 12157 struct inode *ip; /* the "in_core" copy of the inode */ 12158 { 12159 struct inodedep *inodedep; 12160 struct ufsmount *ump; 12161 12162 ump = ITOUMP(ip); 12163 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 12164 ("softdep_load_inodeblock called on non-softdep filesystem")); 12165 /* 12166 * Check for alternate nlink count. 12167 */ 12168 ip->i_effnlink = ip->i_nlink; 12169 ACQUIRE_LOCK(ump); 12170 if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0) { 12171 FREE_LOCK(ump); 12172 return; 12173 } 12174 ip->i_effnlink -= inodedep->id_nlinkdelta; 12175 FREE_LOCK(ump); 12176 } 12177 12178 /* 12179 * This routine is called just before the "in-core" inode 12180 * information is to be copied to the in-memory inode block. 12181 * Recall that an inode block contains several inodes. If 12182 * the force flag is set, then the dependencies will be 12183 * cleared so that the update can always be made. Note that 12184 * the buffer is locked when this routine is called, so we 12185 * will never be in the middle of writing the inode block 12186 * to disk. 12187 */ 12188 void 12189 softdep_update_inodeblock(ip, bp, waitfor) 12190 struct inode *ip; /* the "in_core" copy of the inode */ 12191 struct buf *bp; /* the buffer containing the inode block */ 12192 int waitfor; /* nonzero => update must be allowed */ 12193 { 12194 struct inodedep *inodedep; 12195 struct inoref *inoref; 12196 struct ufsmount *ump; 12197 struct worklist *wk; 12198 struct mount *mp; 12199 struct buf *ibp; 12200 struct fs *fs; 12201 int error; 12202 12203 ump = ITOUMP(ip); 12204 mp = UFSTOVFS(ump); 12205 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 12206 ("softdep_update_inodeblock called on non-softdep filesystem")); 12207 fs = ump->um_fs; 12208 /* 12209 * Preserve the freelink that is on disk. clear_unlinked_inodedep() 12210 * does not have access to the in-core ip so must write directly into 12211 * the inode block buffer when setting freelink. 12212 */ 12213 if (fs->fs_magic == FS_UFS1_MAGIC) 12214 DIP_SET(ip, i_freelink, ((struct ufs1_dinode *)bp->b_data + 12215 ino_to_fsbo(fs, ip->i_number))->di_freelink); 12216 else 12217 DIP_SET(ip, i_freelink, ((struct ufs2_dinode *)bp->b_data + 12218 ino_to_fsbo(fs, ip->i_number))->di_freelink); 12219 /* 12220 * If the effective link count is not equal to the actual link 12221 * count, then we must track the difference in an inodedep while 12222 * the inode is (potentially) tossed out of the cache. Otherwise, 12223 * if there is no existing inodedep, then there are no dependencies 12224 * to track. 12225 */ 12226 ACQUIRE_LOCK(ump); 12227 again: 12228 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) { 12229 FREE_LOCK(ump); 12230 if (ip->i_effnlink != ip->i_nlink) 12231 panic("softdep_update_inodeblock: bad link count"); 12232 return; 12233 } 12234 if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink) 12235 panic("softdep_update_inodeblock: bad delta"); 12236 /* 12237 * If we're flushing all dependencies we must also move any waiting 12238 * for journal writes onto the bufwait list prior to I/O. 12239 */ 12240 if (waitfor) { 12241 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 12242 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 12243 == DEPCOMPLETE) { 12244 jwait(&inoref->if_list, MNT_WAIT); 12245 goto again; 12246 } 12247 } 12248 } 12249 /* 12250 * Changes have been initiated. Anything depending on these 12251 * changes cannot occur until this inode has been written. 12252 */ 12253 inodedep->id_state &= ~COMPLETE; 12254 if ((inodedep->id_state & ONWORKLIST) == 0) 12255 WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list); 12256 /* 12257 * Any new dependencies associated with the incore inode must 12258 * now be moved to the list associated with the buffer holding 12259 * the in-memory copy of the inode. Once merged process any 12260 * allocdirects that are completed by the merger. 12261 */ 12262 merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt); 12263 if (!TAILQ_EMPTY(&inodedep->id_inoupdt)) 12264 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt), 12265 NULL); 12266 merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt); 12267 if (!TAILQ_EMPTY(&inodedep->id_extupdt)) 12268 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt), 12269 NULL); 12270 /* 12271 * Now that the inode has been pushed into the buffer, the 12272 * operations dependent on the inode being written to disk 12273 * can be moved to the id_bufwait so that they will be 12274 * processed when the buffer I/O completes. 12275 */ 12276 while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) { 12277 WORKLIST_REMOVE(wk); 12278 WORKLIST_INSERT(&inodedep->id_bufwait, wk); 12279 } 12280 /* 12281 * Newly allocated inodes cannot be written until the bitmap 12282 * that allocates them have been written (indicated by 12283 * DEPCOMPLETE being set in id_state). If we are doing a 12284 * forced sync (e.g., an fsync on a file), we force the bitmap 12285 * to be written so that the update can be done. 12286 */ 12287 if (waitfor == 0) { 12288 FREE_LOCK(ump); 12289 return; 12290 } 12291 retry: 12292 if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) { 12293 FREE_LOCK(ump); 12294 return; 12295 } 12296 ibp = inodedep->id_bmsafemap->sm_buf; 12297 ibp = getdirtybuf(ibp, LOCK_PTR(ump), MNT_WAIT); 12298 if (ibp == NULL) { 12299 /* 12300 * If ibp came back as NULL, the dependency could have been 12301 * freed while we slept. Look it up again, and check to see 12302 * that it has completed. 12303 */ 12304 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) 12305 goto retry; 12306 FREE_LOCK(ump); 12307 return; 12308 } 12309 FREE_LOCK(ump); 12310 if ((error = bwrite(ibp)) != 0) 12311 softdep_error("softdep_update_inodeblock: bwrite", error); 12312 } 12313 12314 /* 12315 * Merge the a new inode dependency list (such as id_newinoupdt) into an 12316 * old inode dependency list (such as id_inoupdt). This routine must be 12317 * called with splbio interrupts blocked. 12318 */ 12319 static void 12320 merge_inode_lists(newlisthead, oldlisthead) 12321 struct allocdirectlst *newlisthead; 12322 struct allocdirectlst *oldlisthead; 12323 { 12324 struct allocdirect *listadp, *newadp; 12325 12326 newadp = TAILQ_FIRST(newlisthead); 12327 for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) { 12328 if (listadp->ad_offset < newadp->ad_offset) { 12329 listadp = TAILQ_NEXT(listadp, ad_next); 12330 continue; 12331 } 12332 TAILQ_REMOVE(newlisthead, newadp, ad_next); 12333 TAILQ_INSERT_BEFORE(listadp, newadp, ad_next); 12334 if (listadp->ad_offset == newadp->ad_offset) { 12335 allocdirect_merge(oldlisthead, newadp, 12336 listadp); 12337 listadp = newadp; 12338 } 12339 newadp = TAILQ_FIRST(newlisthead); 12340 } 12341 while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) { 12342 TAILQ_REMOVE(newlisthead, newadp, ad_next); 12343 TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next); 12344 } 12345 } 12346 12347 /* 12348 * If we are doing an fsync, then we must ensure that any directory 12349 * entries for the inode have been written after the inode gets to disk. 12350 */ 12351 int 12352 softdep_fsync(vp) 12353 struct vnode *vp; /* the "in_core" copy of the inode */ 12354 { 12355 struct inodedep *inodedep; 12356 struct pagedep *pagedep; 12357 struct inoref *inoref; 12358 struct ufsmount *ump; 12359 struct worklist *wk; 12360 struct diradd *dap; 12361 struct mount *mp; 12362 struct vnode *pvp; 12363 struct inode *ip; 12364 struct buf *bp; 12365 struct fs *fs; 12366 struct thread *td = curthread; 12367 int error, flushparent, pagedep_new_block; 12368 ino_t parentino; 12369 ufs_lbn_t lbn; 12370 12371 ip = VTOI(vp); 12372 mp = vp->v_mount; 12373 ump = VFSTOUFS(mp); 12374 fs = ump->um_fs; 12375 if (MOUNTEDSOFTDEP(mp) == 0) 12376 return (0); 12377 ACQUIRE_LOCK(ump); 12378 restart: 12379 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) { 12380 FREE_LOCK(ump); 12381 return (0); 12382 } 12383 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 12384 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 12385 == DEPCOMPLETE) { 12386 jwait(&inoref->if_list, MNT_WAIT); 12387 goto restart; 12388 } 12389 } 12390 if (!LIST_EMPTY(&inodedep->id_inowait) || 12391 !TAILQ_EMPTY(&inodedep->id_extupdt) || 12392 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 12393 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 12394 !TAILQ_EMPTY(&inodedep->id_newinoupdt)) 12395 panic("softdep_fsync: pending ops %p", inodedep); 12396 for (error = 0, flushparent = 0; ; ) { 12397 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL) 12398 break; 12399 if (wk->wk_type != D_DIRADD) 12400 panic("softdep_fsync: Unexpected type %s", 12401 TYPENAME(wk->wk_type)); 12402 dap = WK_DIRADD(wk); 12403 /* 12404 * Flush our parent if this directory entry has a MKDIR_PARENT 12405 * dependency or is contained in a newly allocated block. 12406 */ 12407 if (dap->da_state & DIRCHG) 12408 pagedep = dap->da_previous->dm_pagedep; 12409 else 12410 pagedep = dap->da_pagedep; 12411 parentino = pagedep->pd_ino; 12412 lbn = pagedep->pd_lbn; 12413 if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE) 12414 panic("softdep_fsync: dirty"); 12415 if ((dap->da_state & MKDIR_PARENT) || 12416 (pagedep->pd_state & NEWBLOCK)) 12417 flushparent = 1; 12418 else 12419 flushparent = 0; 12420 /* 12421 * If we are being fsync'ed as part of vgone'ing this vnode, 12422 * then we will not be able to release and recover the 12423 * vnode below, so we just have to give up on writing its 12424 * directory entry out. It will eventually be written, just 12425 * not now, but then the user was not asking to have it 12426 * written, so we are not breaking any promises. 12427 */ 12428 if (vp->v_iflag & VI_DOOMED) 12429 break; 12430 /* 12431 * We prevent deadlock by always fetching inodes from the 12432 * root, moving down the directory tree. Thus, when fetching 12433 * our parent directory, we first try to get the lock. If 12434 * that fails, we must unlock ourselves before requesting 12435 * the lock on our parent. See the comment in ufs_lookup 12436 * for details on possible races. 12437 */ 12438 FREE_LOCK(ump); 12439 if (ffs_vgetf(mp, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp, 12440 FFSV_FORCEINSMQ)) { 12441 error = vfs_busy(mp, MBF_NOWAIT); 12442 if (error != 0) { 12443 vfs_ref(mp); 12444 VOP_UNLOCK(vp, 0); 12445 error = vfs_busy(mp, 0); 12446 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 12447 vfs_rel(mp); 12448 if (error != 0) 12449 return (ENOENT); 12450 if (vp->v_iflag & VI_DOOMED) { 12451 vfs_unbusy(mp); 12452 return (ENOENT); 12453 } 12454 } 12455 VOP_UNLOCK(vp, 0); 12456 error = ffs_vgetf(mp, parentino, LK_EXCLUSIVE, 12457 &pvp, FFSV_FORCEINSMQ); 12458 vfs_unbusy(mp); 12459 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 12460 if (vp->v_iflag & VI_DOOMED) { 12461 if (error == 0) 12462 vput(pvp); 12463 error = ENOENT; 12464 } 12465 if (error != 0) 12466 return (error); 12467 } 12468 /* 12469 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps 12470 * that are contained in direct blocks will be resolved by 12471 * doing a ffs_update. Pagedeps contained in indirect blocks 12472 * may require a complete sync'ing of the directory. So, we 12473 * try the cheap and fast ffs_update first, and if that fails, 12474 * then we do the slower ffs_syncvnode of the directory. 12475 */ 12476 if (flushparent) { 12477 int locked; 12478 12479 if ((error = ffs_update(pvp, 1)) != 0) { 12480 vput(pvp); 12481 return (error); 12482 } 12483 ACQUIRE_LOCK(ump); 12484 locked = 1; 12485 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) { 12486 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) { 12487 if (wk->wk_type != D_DIRADD) 12488 panic("softdep_fsync: Unexpected type %s", 12489 TYPENAME(wk->wk_type)); 12490 dap = WK_DIRADD(wk); 12491 if (dap->da_state & DIRCHG) 12492 pagedep = dap->da_previous->dm_pagedep; 12493 else 12494 pagedep = dap->da_pagedep; 12495 pagedep_new_block = pagedep->pd_state & NEWBLOCK; 12496 FREE_LOCK(ump); 12497 locked = 0; 12498 if (pagedep_new_block && (error = 12499 ffs_syncvnode(pvp, MNT_WAIT, 0))) { 12500 vput(pvp); 12501 return (error); 12502 } 12503 } 12504 } 12505 if (locked) 12506 FREE_LOCK(ump); 12507 } 12508 /* 12509 * Flush directory page containing the inode's name. 12510 */ 12511 error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred, 12512 &bp); 12513 if (error == 0) 12514 error = bwrite(bp); 12515 else 12516 brelse(bp); 12517 vput(pvp); 12518 if (error != 0) 12519 return (error); 12520 ACQUIRE_LOCK(ump); 12521 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 12522 break; 12523 } 12524 FREE_LOCK(ump); 12525 return (0); 12526 } 12527 12528 /* 12529 * Flush all the dirty bitmaps associated with the block device 12530 * before flushing the rest of the dirty blocks so as to reduce 12531 * the number of dependencies that will have to be rolled back. 12532 * 12533 * XXX Unused? 12534 */ 12535 void 12536 softdep_fsync_mountdev(vp) 12537 struct vnode *vp; 12538 { 12539 struct buf *bp, *nbp; 12540 struct worklist *wk; 12541 struct bufobj *bo; 12542 12543 if (!vn_isdisk(vp, NULL)) 12544 panic("softdep_fsync_mountdev: vnode not a disk"); 12545 bo = &vp->v_bufobj; 12546 restart: 12547 BO_LOCK(bo); 12548 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 12549 /* 12550 * If it is already scheduled, skip to the next buffer. 12551 */ 12552 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) 12553 continue; 12554 12555 if ((bp->b_flags & B_DELWRI) == 0) 12556 panic("softdep_fsync_mountdev: not dirty"); 12557 /* 12558 * We are only interested in bitmaps with outstanding 12559 * dependencies. 12560 */ 12561 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL || 12562 wk->wk_type != D_BMSAFEMAP || 12563 (bp->b_vflags & BV_BKGRDINPROG)) { 12564 BUF_UNLOCK(bp); 12565 continue; 12566 } 12567 BO_UNLOCK(bo); 12568 bremfree(bp); 12569 (void) bawrite(bp); 12570 goto restart; 12571 } 12572 drain_output(vp); 12573 BO_UNLOCK(bo); 12574 } 12575 12576 /* 12577 * Sync all cylinder groups that were dirty at the time this function is 12578 * called. Newly dirtied cgs will be inserted before the sentinel. This 12579 * is used to flush freedep activity that may be holding up writes to a 12580 * indirect block. 12581 */ 12582 static int 12583 sync_cgs(mp, waitfor) 12584 struct mount *mp; 12585 int waitfor; 12586 { 12587 struct bmsafemap *bmsafemap; 12588 struct bmsafemap *sentinel; 12589 struct ufsmount *ump; 12590 struct buf *bp; 12591 int error; 12592 12593 sentinel = malloc(sizeof(*sentinel), M_BMSAFEMAP, M_ZERO | M_WAITOK); 12594 sentinel->sm_cg = -1; 12595 ump = VFSTOUFS(mp); 12596 error = 0; 12597 ACQUIRE_LOCK(ump); 12598 LIST_INSERT_HEAD(&ump->softdep_dirtycg, sentinel, sm_next); 12599 for (bmsafemap = LIST_NEXT(sentinel, sm_next); bmsafemap != NULL; 12600 bmsafemap = LIST_NEXT(sentinel, sm_next)) { 12601 /* Skip sentinels and cgs with no work to release. */ 12602 if (bmsafemap->sm_cg == -1 || 12603 (LIST_EMPTY(&bmsafemap->sm_freehd) && 12604 LIST_EMPTY(&bmsafemap->sm_freewr))) { 12605 LIST_REMOVE(sentinel, sm_next); 12606 LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next); 12607 continue; 12608 } 12609 /* 12610 * If we don't get the lock and we're waiting try again, if 12611 * not move on to the next buf and try to sync it. 12612 */ 12613 bp = getdirtybuf(bmsafemap->sm_buf, LOCK_PTR(ump), waitfor); 12614 if (bp == NULL && waitfor == MNT_WAIT) 12615 continue; 12616 LIST_REMOVE(sentinel, sm_next); 12617 LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next); 12618 if (bp == NULL) 12619 continue; 12620 FREE_LOCK(ump); 12621 if (waitfor == MNT_NOWAIT) 12622 bawrite(bp); 12623 else 12624 error = bwrite(bp); 12625 ACQUIRE_LOCK(ump); 12626 if (error) 12627 break; 12628 } 12629 LIST_REMOVE(sentinel, sm_next); 12630 FREE_LOCK(ump); 12631 free(sentinel, M_BMSAFEMAP); 12632 return (error); 12633 } 12634 12635 /* 12636 * This routine is called when we are trying to synchronously flush a 12637 * file. This routine must eliminate any filesystem metadata dependencies 12638 * so that the syncing routine can succeed. 12639 */ 12640 int 12641 softdep_sync_metadata(struct vnode *vp) 12642 { 12643 struct inode *ip; 12644 int error; 12645 12646 ip = VTOI(vp); 12647 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 12648 ("softdep_sync_metadata called on non-softdep filesystem")); 12649 /* 12650 * Ensure that any direct block dependencies have been cleared, 12651 * truncations are started, and inode references are journaled. 12652 */ 12653 ACQUIRE_LOCK(VFSTOUFS(vp->v_mount)); 12654 /* 12655 * Write all journal records to prevent rollbacks on devvp. 12656 */ 12657 if (vp->v_type == VCHR) 12658 softdep_flushjournal(vp->v_mount); 12659 error = flush_inodedep_deps(vp, vp->v_mount, ip->i_number); 12660 /* 12661 * Ensure that all truncates are written so we won't find deps on 12662 * indirect blocks. 12663 */ 12664 process_truncates(vp); 12665 FREE_LOCK(VFSTOUFS(vp->v_mount)); 12666 12667 return (error); 12668 } 12669 12670 /* 12671 * This routine is called when we are attempting to sync a buf with 12672 * dependencies. If waitfor is MNT_NOWAIT it attempts to schedule any 12673 * other IO it can but returns EBUSY if the buffer is not yet able to 12674 * be written. Dependencies which will not cause rollbacks will always 12675 * return 0. 12676 */ 12677 int 12678 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor) 12679 { 12680 struct indirdep *indirdep; 12681 struct pagedep *pagedep; 12682 struct allocindir *aip; 12683 struct newblk *newblk; 12684 struct ufsmount *ump; 12685 struct buf *nbp; 12686 struct worklist *wk; 12687 int i, error; 12688 12689 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 12690 ("softdep_sync_buf called on non-softdep filesystem")); 12691 /* 12692 * For VCHR we just don't want to force flush any dependencies that 12693 * will cause rollbacks. 12694 */ 12695 if (vp->v_type == VCHR) { 12696 if (waitfor == MNT_NOWAIT && softdep_count_dependencies(bp, 0)) 12697 return (EBUSY); 12698 return (0); 12699 } 12700 ump = VFSTOUFS(vp->v_mount); 12701 ACQUIRE_LOCK(ump); 12702 /* 12703 * As we hold the buffer locked, none of its dependencies 12704 * will disappear. 12705 */ 12706 error = 0; 12707 top: 12708 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 12709 switch (wk->wk_type) { 12710 12711 case D_ALLOCDIRECT: 12712 case D_ALLOCINDIR: 12713 newblk = WK_NEWBLK(wk); 12714 if (newblk->nb_jnewblk != NULL) { 12715 if (waitfor == MNT_NOWAIT) { 12716 error = EBUSY; 12717 goto out_unlock; 12718 } 12719 jwait(&newblk->nb_jnewblk->jn_list, waitfor); 12720 goto top; 12721 } 12722 if (newblk->nb_state & DEPCOMPLETE || 12723 waitfor == MNT_NOWAIT) 12724 continue; 12725 nbp = newblk->nb_bmsafemap->sm_buf; 12726 nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor); 12727 if (nbp == NULL) 12728 goto top; 12729 FREE_LOCK(ump); 12730 if ((error = bwrite(nbp)) != 0) 12731 goto out; 12732 ACQUIRE_LOCK(ump); 12733 continue; 12734 12735 case D_INDIRDEP: 12736 indirdep = WK_INDIRDEP(wk); 12737 if (waitfor == MNT_NOWAIT) { 12738 if (!TAILQ_EMPTY(&indirdep->ir_trunc) || 12739 !LIST_EMPTY(&indirdep->ir_deplisthd)) { 12740 error = EBUSY; 12741 goto out_unlock; 12742 } 12743 } 12744 if (!TAILQ_EMPTY(&indirdep->ir_trunc)) 12745 panic("softdep_sync_buf: truncation pending."); 12746 restart: 12747 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) { 12748 newblk = (struct newblk *)aip; 12749 if (newblk->nb_jnewblk != NULL) { 12750 jwait(&newblk->nb_jnewblk->jn_list, 12751 waitfor); 12752 goto restart; 12753 } 12754 if (newblk->nb_state & DEPCOMPLETE) 12755 continue; 12756 nbp = newblk->nb_bmsafemap->sm_buf; 12757 nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor); 12758 if (nbp == NULL) 12759 goto restart; 12760 FREE_LOCK(ump); 12761 if ((error = bwrite(nbp)) != 0) 12762 goto out; 12763 ACQUIRE_LOCK(ump); 12764 goto restart; 12765 } 12766 continue; 12767 12768 case D_PAGEDEP: 12769 /* 12770 * Only flush directory entries in synchronous passes. 12771 */ 12772 if (waitfor != MNT_WAIT) { 12773 error = EBUSY; 12774 goto out_unlock; 12775 } 12776 /* 12777 * While syncing snapshots, we must allow recursive 12778 * lookups. 12779 */ 12780 BUF_AREC(bp); 12781 /* 12782 * We are trying to sync a directory that may 12783 * have dependencies on both its own metadata 12784 * and/or dependencies on the inodes of any 12785 * recently allocated files. We walk its diradd 12786 * lists pushing out the associated inode. 12787 */ 12788 pagedep = WK_PAGEDEP(wk); 12789 for (i = 0; i < DAHASHSZ; i++) { 12790 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0) 12791 continue; 12792 if ((error = flush_pagedep_deps(vp, wk->wk_mp, 12793 &pagedep->pd_diraddhd[i]))) { 12794 BUF_NOREC(bp); 12795 goto out_unlock; 12796 } 12797 } 12798 BUF_NOREC(bp); 12799 continue; 12800 12801 case D_FREEWORK: 12802 case D_FREEDEP: 12803 case D_JSEGDEP: 12804 case D_JNEWBLK: 12805 continue; 12806 12807 default: 12808 panic("softdep_sync_buf: Unknown type %s", 12809 TYPENAME(wk->wk_type)); 12810 /* NOTREACHED */ 12811 } 12812 } 12813 out_unlock: 12814 FREE_LOCK(ump); 12815 out: 12816 return (error); 12817 } 12818 12819 /* 12820 * Flush the dependencies associated with an inodedep. 12821 * Called with splbio blocked. 12822 */ 12823 static int 12824 flush_inodedep_deps(vp, mp, ino) 12825 struct vnode *vp; 12826 struct mount *mp; 12827 ino_t ino; 12828 { 12829 struct inodedep *inodedep; 12830 struct inoref *inoref; 12831 struct ufsmount *ump; 12832 int error, waitfor; 12833 12834 /* 12835 * This work is done in two passes. The first pass grabs most 12836 * of the buffers and begins asynchronously writing them. The 12837 * only way to wait for these asynchronous writes is to sleep 12838 * on the filesystem vnode which may stay busy for a long time 12839 * if the filesystem is active. So, instead, we make a second 12840 * pass over the dependencies blocking on each write. In the 12841 * usual case we will be blocking against a write that we 12842 * initiated, so when it is done the dependency will have been 12843 * resolved. Thus the second pass is expected to end quickly. 12844 * We give a brief window at the top of the loop to allow 12845 * any pending I/O to complete. 12846 */ 12847 ump = VFSTOUFS(mp); 12848 LOCK_OWNED(ump); 12849 for (error = 0, waitfor = MNT_NOWAIT; ; ) { 12850 if (error) 12851 return (error); 12852 FREE_LOCK(ump); 12853 ACQUIRE_LOCK(ump); 12854 restart: 12855 if (inodedep_lookup(mp, ino, 0, &inodedep) == 0) 12856 return (0); 12857 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 12858 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 12859 == DEPCOMPLETE) { 12860 jwait(&inoref->if_list, MNT_WAIT); 12861 goto restart; 12862 } 12863 } 12864 if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) || 12865 flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) || 12866 flush_deplist(&inodedep->id_extupdt, waitfor, &error) || 12867 flush_deplist(&inodedep->id_newextupdt, waitfor, &error)) 12868 continue; 12869 /* 12870 * If pass2, we are done, otherwise do pass 2. 12871 */ 12872 if (waitfor == MNT_WAIT) 12873 break; 12874 waitfor = MNT_WAIT; 12875 } 12876 /* 12877 * Try freeing inodedep in case all dependencies have been removed. 12878 */ 12879 if (inodedep_lookup(mp, ino, 0, &inodedep) != 0) 12880 (void) free_inodedep(inodedep); 12881 return (0); 12882 } 12883 12884 /* 12885 * Flush an inode dependency list. 12886 * Called with splbio blocked. 12887 */ 12888 static int 12889 flush_deplist(listhead, waitfor, errorp) 12890 struct allocdirectlst *listhead; 12891 int waitfor; 12892 int *errorp; 12893 { 12894 struct allocdirect *adp; 12895 struct newblk *newblk; 12896 struct ufsmount *ump; 12897 struct buf *bp; 12898 12899 if ((adp = TAILQ_FIRST(listhead)) == NULL) 12900 return (0); 12901 ump = VFSTOUFS(adp->ad_list.wk_mp); 12902 LOCK_OWNED(ump); 12903 TAILQ_FOREACH(adp, listhead, ad_next) { 12904 newblk = (struct newblk *)adp; 12905 if (newblk->nb_jnewblk != NULL) { 12906 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 12907 return (1); 12908 } 12909 if (newblk->nb_state & DEPCOMPLETE) 12910 continue; 12911 bp = newblk->nb_bmsafemap->sm_buf; 12912 bp = getdirtybuf(bp, LOCK_PTR(ump), waitfor); 12913 if (bp == NULL) { 12914 if (waitfor == MNT_NOWAIT) 12915 continue; 12916 return (1); 12917 } 12918 FREE_LOCK(ump); 12919 if (waitfor == MNT_NOWAIT) 12920 bawrite(bp); 12921 else 12922 *errorp = bwrite(bp); 12923 ACQUIRE_LOCK(ump); 12924 return (1); 12925 } 12926 return (0); 12927 } 12928 12929 /* 12930 * Flush dependencies associated with an allocdirect block. 12931 */ 12932 static int 12933 flush_newblk_dep(vp, mp, lbn) 12934 struct vnode *vp; 12935 struct mount *mp; 12936 ufs_lbn_t lbn; 12937 { 12938 struct newblk *newblk; 12939 struct ufsmount *ump; 12940 struct bufobj *bo; 12941 struct inode *ip; 12942 struct buf *bp; 12943 ufs2_daddr_t blkno; 12944 int error; 12945 12946 error = 0; 12947 bo = &vp->v_bufobj; 12948 ip = VTOI(vp); 12949 blkno = DIP(ip, i_db[lbn]); 12950 if (blkno == 0) 12951 panic("flush_newblk_dep: Missing block"); 12952 ump = VFSTOUFS(mp); 12953 ACQUIRE_LOCK(ump); 12954 /* 12955 * Loop until all dependencies related to this block are satisfied. 12956 * We must be careful to restart after each sleep in case a write 12957 * completes some part of this process for us. 12958 */ 12959 for (;;) { 12960 if (newblk_lookup(mp, blkno, 0, &newblk) == 0) { 12961 FREE_LOCK(ump); 12962 break; 12963 } 12964 if (newblk->nb_list.wk_type != D_ALLOCDIRECT) 12965 panic("flush_newblk_dep: Bad newblk %p", newblk); 12966 /* 12967 * Flush the journal. 12968 */ 12969 if (newblk->nb_jnewblk != NULL) { 12970 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 12971 continue; 12972 } 12973 /* 12974 * Write the bitmap dependency. 12975 */ 12976 if ((newblk->nb_state & DEPCOMPLETE) == 0) { 12977 bp = newblk->nb_bmsafemap->sm_buf; 12978 bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT); 12979 if (bp == NULL) 12980 continue; 12981 FREE_LOCK(ump); 12982 error = bwrite(bp); 12983 if (error) 12984 break; 12985 ACQUIRE_LOCK(ump); 12986 continue; 12987 } 12988 /* 12989 * Write the buffer. 12990 */ 12991 FREE_LOCK(ump); 12992 BO_LOCK(bo); 12993 bp = gbincore(bo, lbn); 12994 if (bp != NULL) { 12995 error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | 12996 LK_INTERLOCK, BO_LOCKPTR(bo)); 12997 if (error == ENOLCK) { 12998 ACQUIRE_LOCK(ump); 12999 error = 0; 13000 continue; /* Slept, retry */ 13001 } 13002 if (error != 0) 13003 break; /* Failed */ 13004 if (bp->b_flags & B_DELWRI) { 13005 bremfree(bp); 13006 error = bwrite(bp); 13007 if (error) 13008 break; 13009 } else 13010 BUF_UNLOCK(bp); 13011 } else 13012 BO_UNLOCK(bo); 13013 /* 13014 * We have to wait for the direct pointers to 13015 * point at the newdirblk before the dependency 13016 * will go away. 13017 */ 13018 error = ffs_update(vp, 1); 13019 if (error) 13020 break; 13021 ACQUIRE_LOCK(ump); 13022 } 13023 return (error); 13024 } 13025 13026 /* 13027 * Eliminate a pagedep dependency by flushing out all its diradd dependencies. 13028 * Called with splbio blocked. 13029 */ 13030 static int 13031 flush_pagedep_deps(pvp, mp, diraddhdp) 13032 struct vnode *pvp; 13033 struct mount *mp; 13034 struct diraddhd *diraddhdp; 13035 { 13036 struct inodedep *inodedep; 13037 struct inoref *inoref; 13038 struct ufsmount *ump; 13039 struct diradd *dap; 13040 struct vnode *vp; 13041 int error = 0; 13042 struct buf *bp; 13043 ino_t inum; 13044 struct diraddhd unfinished; 13045 13046 LIST_INIT(&unfinished); 13047 ump = VFSTOUFS(mp); 13048 LOCK_OWNED(ump); 13049 restart: 13050 while ((dap = LIST_FIRST(diraddhdp)) != NULL) { 13051 /* 13052 * Flush ourselves if this directory entry 13053 * has a MKDIR_PARENT dependency. 13054 */ 13055 if (dap->da_state & MKDIR_PARENT) { 13056 FREE_LOCK(ump); 13057 if ((error = ffs_update(pvp, 1)) != 0) 13058 break; 13059 ACQUIRE_LOCK(ump); 13060 /* 13061 * If that cleared dependencies, go on to next. 13062 */ 13063 if (dap != LIST_FIRST(diraddhdp)) 13064 continue; 13065 /* 13066 * All MKDIR_PARENT dependencies and all the 13067 * NEWBLOCK pagedeps that are contained in direct 13068 * blocks were resolved by doing above ffs_update. 13069 * Pagedeps contained in indirect blocks may 13070 * require a complete sync'ing of the directory. 13071 * We are in the midst of doing a complete sync, 13072 * so if they are not resolved in this pass we 13073 * defer them for now as they will be sync'ed by 13074 * our caller shortly. 13075 */ 13076 LIST_REMOVE(dap, da_pdlist); 13077 LIST_INSERT_HEAD(&unfinished, dap, da_pdlist); 13078 continue; 13079 } 13080 /* 13081 * A newly allocated directory must have its "." and 13082 * ".." entries written out before its name can be 13083 * committed in its parent. 13084 */ 13085 inum = dap->da_newinum; 13086 if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0) 13087 panic("flush_pagedep_deps: lost inode1"); 13088 /* 13089 * Wait for any pending journal adds to complete so we don't 13090 * cause rollbacks while syncing. 13091 */ 13092 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 13093 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 13094 == DEPCOMPLETE) { 13095 jwait(&inoref->if_list, MNT_WAIT); 13096 goto restart; 13097 } 13098 } 13099 if (dap->da_state & MKDIR_BODY) { 13100 FREE_LOCK(ump); 13101 if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp, 13102 FFSV_FORCEINSMQ))) 13103 break; 13104 error = flush_newblk_dep(vp, mp, 0); 13105 /* 13106 * If we still have the dependency we might need to 13107 * update the vnode to sync the new link count to 13108 * disk. 13109 */ 13110 if (error == 0 && dap == LIST_FIRST(diraddhdp)) 13111 error = ffs_update(vp, 1); 13112 vput(vp); 13113 if (error != 0) 13114 break; 13115 ACQUIRE_LOCK(ump); 13116 /* 13117 * If that cleared dependencies, go on to next. 13118 */ 13119 if (dap != LIST_FIRST(diraddhdp)) 13120 continue; 13121 if (dap->da_state & MKDIR_BODY) { 13122 inodedep_lookup(UFSTOVFS(ump), inum, 0, 13123 &inodedep); 13124 panic("flush_pagedep_deps: MKDIR_BODY " 13125 "inodedep %p dap %p vp %p", 13126 inodedep, dap, vp); 13127 } 13128 } 13129 /* 13130 * Flush the inode on which the directory entry depends. 13131 * Having accounted for MKDIR_PARENT and MKDIR_BODY above, 13132 * the only remaining dependency is that the updated inode 13133 * count must get pushed to disk. The inode has already 13134 * been pushed into its inode buffer (via VOP_UPDATE) at 13135 * the time of the reference count change. So we need only 13136 * locate that buffer, ensure that there will be no rollback 13137 * caused by a bitmap dependency, then write the inode buffer. 13138 */ 13139 retry: 13140 if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0) 13141 panic("flush_pagedep_deps: lost inode"); 13142 /* 13143 * If the inode still has bitmap dependencies, 13144 * push them to disk. 13145 */ 13146 if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) { 13147 bp = inodedep->id_bmsafemap->sm_buf; 13148 bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT); 13149 if (bp == NULL) 13150 goto retry; 13151 FREE_LOCK(ump); 13152 if ((error = bwrite(bp)) != 0) 13153 break; 13154 ACQUIRE_LOCK(ump); 13155 if (dap != LIST_FIRST(diraddhdp)) 13156 continue; 13157 } 13158 /* 13159 * If the inode is still sitting in a buffer waiting 13160 * to be written or waiting for the link count to be 13161 * adjusted update it here to flush it to disk. 13162 */ 13163 if (dap == LIST_FIRST(diraddhdp)) { 13164 FREE_LOCK(ump); 13165 if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp, 13166 FFSV_FORCEINSMQ))) 13167 break; 13168 error = ffs_update(vp, 1); 13169 vput(vp); 13170 if (error) 13171 break; 13172 ACQUIRE_LOCK(ump); 13173 } 13174 /* 13175 * If we have failed to get rid of all the dependencies 13176 * then something is seriously wrong. 13177 */ 13178 if (dap == LIST_FIRST(diraddhdp)) { 13179 inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep); 13180 panic("flush_pagedep_deps: failed to flush " 13181 "inodedep %p ino %ju dap %p", 13182 inodedep, (uintmax_t)inum, dap); 13183 } 13184 } 13185 if (error) 13186 ACQUIRE_LOCK(ump); 13187 while ((dap = LIST_FIRST(&unfinished)) != NULL) { 13188 LIST_REMOVE(dap, da_pdlist); 13189 LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist); 13190 } 13191 return (error); 13192 } 13193 13194 /* 13195 * A large burst of file addition or deletion activity can drive the 13196 * memory load excessively high. First attempt to slow things down 13197 * using the techniques below. If that fails, this routine requests 13198 * the offending operations to fall back to running synchronously 13199 * until the memory load returns to a reasonable level. 13200 */ 13201 int 13202 softdep_slowdown(vp) 13203 struct vnode *vp; 13204 { 13205 struct ufsmount *ump; 13206 int jlow; 13207 int max_softdeps_hard; 13208 13209 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 13210 ("softdep_slowdown called on non-softdep filesystem")); 13211 ump = VFSTOUFS(vp->v_mount); 13212 ACQUIRE_LOCK(ump); 13213 jlow = 0; 13214 /* 13215 * Check for journal space if needed. 13216 */ 13217 if (DOINGSUJ(vp)) { 13218 if (journal_space(ump, 0) == 0) 13219 jlow = 1; 13220 } 13221 /* 13222 * If the system is under its limits and our filesystem is 13223 * not responsible for more than our share of the usage and 13224 * we are not low on journal space, then no need to slow down. 13225 */ 13226 max_softdeps_hard = max_softdeps * 11 / 10; 13227 if (dep_current[D_DIRREM] < max_softdeps_hard / 2 && 13228 dep_current[D_INODEDEP] < max_softdeps_hard && 13229 dep_current[D_INDIRDEP] < max_softdeps_hard / 1000 && 13230 dep_current[D_FREEBLKS] < max_softdeps_hard && jlow == 0 && 13231 ump->softdep_curdeps[D_DIRREM] < 13232 (max_softdeps_hard / 2) / stat_flush_threads && 13233 ump->softdep_curdeps[D_INODEDEP] < 13234 max_softdeps_hard / stat_flush_threads && 13235 ump->softdep_curdeps[D_INDIRDEP] < 13236 (max_softdeps_hard / 1000) / stat_flush_threads && 13237 ump->softdep_curdeps[D_FREEBLKS] < 13238 max_softdeps_hard / stat_flush_threads) { 13239 FREE_LOCK(ump); 13240 return (0); 13241 } 13242 /* 13243 * If the journal is low or our filesystem is over its limit 13244 * then speedup the cleanup. 13245 */ 13246 if (ump->softdep_curdeps[D_INDIRDEP] < 13247 (max_softdeps_hard / 1000) / stat_flush_threads || jlow) 13248 softdep_speedup(ump); 13249 stat_sync_limit_hit += 1; 13250 FREE_LOCK(ump); 13251 /* 13252 * We only slow down the rate at which new dependencies are 13253 * generated if we are not using journaling. With journaling, 13254 * the cleanup should always be sufficient to keep things 13255 * under control. 13256 */ 13257 if (DOINGSUJ(vp)) 13258 return (0); 13259 return (1); 13260 } 13261 13262 /* 13263 * Called by the allocation routines when they are about to fail 13264 * in the hope that we can free up the requested resource (inodes 13265 * or disk space). 13266 * 13267 * First check to see if the work list has anything on it. If it has, 13268 * clean up entries until we successfully free the requested resource. 13269 * Because this process holds inodes locked, we cannot handle any remove 13270 * requests that might block on a locked inode as that could lead to 13271 * deadlock. If the worklist yields none of the requested resource, 13272 * start syncing out vnodes to free up the needed space. 13273 */ 13274 int 13275 softdep_request_cleanup(fs, vp, cred, resource) 13276 struct fs *fs; 13277 struct vnode *vp; 13278 struct ucred *cred; 13279 int resource; 13280 { 13281 struct ufsmount *ump; 13282 struct mount *mp; 13283 long starttime; 13284 ufs2_daddr_t needed; 13285 int error, failed_vnode; 13286 13287 /* 13288 * If we are being called because of a process doing a 13289 * copy-on-write, then it is not safe to process any 13290 * worklist items as we will recurse into the copyonwrite 13291 * routine. This will result in an incoherent snapshot. 13292 * If the vnode that we hold is a snapshot, we must avoid 13293 * handling other resources that could cause deadlock. 13294 */ 13295 if ((curthread->td_pflags & TDP_COWINPROGRESS) || IS_SNAPSHOT(VTOI(vp))) 13296 return (0); 13297 13298 if (resource == FLUSH_BLOCKS_WAIT) 13299 stat_cleanup_blkrequests += 1; 13300 else 13301 stat_cleanup_inorequests += 1; 13302 13303 mp = vp->v_mount; 13304 ump = VFSTOUFS(mp); 13305 mtx_assert(UFS_MTX(ump), MA_OWNED); 13306 UFS_UNLOCK(ump); 13307 error = ffs_update(vp, 1); 13308 if (error != 0 || MOUNTEDSOFTDEP(mp) == 0) { 13309 UFS_LOCK(ump); 13310 return (0); 13311 } 13312 /* 13313 * If we are in need of resources, start by cleaning up 13314 * any block removals associated with our inode. 13315 */ 13316 ACQUIRE_LOCK(ump); 13317 process_removes(vp); 13318 process_truncates(vp); 13319 FREE_LOCK(ump); 13320 /* 13321 * Now clean up at least as many resources as we will need. 13322 * 13323 * When requested to clean up inodes, the number that are needed 13324 * is set by the number of simultaneous writers (mnt_writeopcount) 13325 * plus a bit of slop (2) in case some more writers show up while 13326 * we are cleaning. 13327 * 13328 * When requested to free up space, the amount of space that 13329 * we need is enough blocks to allocate a full-sized segment 13330 * (fs_contigsumsize). The number of such segments that will 13331 * be needed is set by the number of simultaneous writers 13332 * (mnt_writeopcount) plus a bit of slop (2) in case some more 13333 * writers show up while we are cleaning. 13334 * 13335 * Additionally, if we are unpriviledged and allocating space, 13336 * we need to ensure that we clean up enough blocks to get the 13337 * needed number of blocks over the threshold of the minimum 13338 * number of blocks required to be kept free by the filesystem 13339 * (fs_minfree). 13340 */ 13341 if (resource == FLUSH_INODES_WAIT) { 13342 needed = vp->v_mount->mnt_writeopcount + 2; 13343 } else if (resource == FLUSH_BLOCKS_WAIT) { 13344 needed = (vp->v_mount->mnt_writeopcount + 2) * 13345 fs->fs_contigsumsize; 13346 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0)) 13347 needed += fragstoblks(fs, 13348 roundup((fs->fs_dsize * fs->fs_minfree / 100) - 13349 fs->fs_cstotal.cs_nffree, fs->fs_frag)); 13350 } else { 13351 UFS_LOCK(ump); 13352 printf("softdep_request_cleanup: Unknown resource type %d\n", 13353 resource); 13354 return (0); 13355 } 13356 starttime = time_second; 13357 retry: 13358 if ((resource == FLUSH_BLOCKS_WAIT && ump->softdep_on_worklist > 0 && 13359 fs->fs_cstotal.cs_nbfree <= needed) || 13360 (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 && 13361 fs->fs_cstotal.cs_nifree <= needed)) { 13362 ACQUIRE_LOCK(ump); 13363 if (ump->softdep_on_worklist > 0 && 13364 process_worklist_item(UFSTOVFS(ump), 13365 ump->softdep_on_worklist, LK_NOWAIT) != 0) 13366 stat_worklist_push += 1; 13367 FREE_LOCK(ump); 13368 } 13369 /* 13370 * If we still need resources and there are no more worklist 13371 * entries to process to obtain them, we have to start flushing 13372 * the dirty vnodes to force the release of additional requests 13373 * to the worklist that we can then process to reap addition 13374 * resources. We walk the vnodes associated with the mount point 13375 * until we get the needed worklist requests that we can reap. 13376 * 13377 * If there are several threads all needing to clean the same 13378 * mount point, only one is allowed to walk the mount list. 13379 * When several threads all try to walk the same mount list, 13380 * they end up competing with each other and often end up in 13381 * livelock. This approach ensures that forward progress is 13382 * made at the cost of occational ENOSPC errors being returned 13383 * that might otherwise have been avoided. 13384 */ 13385 error = 1; 13386 if ((resource == FLUSH_BLOCKS_WAIT && 13387 fs->fs_cstotal.cs_nbfree <= needed) || 13388 (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 && 13389 fs->fs_cstotal.cs_nifree <= needed)) { 13390 ACQUIRE_LOCK(ump); 13391 if ((ump->um_softdep->sd_flags & FLUSH_RC_ACTIVE) == 0) { 13392 ump->um_softdep->sd_flags |= FLUSH_RC_ACTIVE; 13393 FREE_LOCK(ump); 13394 failed_vnode = softdep_request_cleanup_flush(mp, ump); 13395 ACQUIRE_LOCK(ump); 13396 ump->um_softdep->sd_flags &= ~FLUSH_RC_ACTIVE; 13397 FREE_LOCK(ump); 13398 if (ump->softdep_on_worklist > 0) { 13399 stat_cleanup_retries += 1; 13400 if (!failed_vnode) 13401 goto retry; 13402 } 13403 } else { 13404 FREE_LOCK(ump); 13405 error = 0; 13406 } 13407 stat_cleanup_failures += 1; 13408 } 13409 if (time_second - starttime > stat_cleanup_high_delay) 13410 stat_cleanup_high_delay = time_second - starttime; 13411 UFS_LOCK(ump); 13412 return (error); 13413 } 13414 13415 /* 13416 * Scan the vnodes for the specified mount point flushing out any 13417 * vnodes that can be locked without waiting. Finally, try to flush 13418 * the device associated with the mount point if it can be locked 13419 * without waiting. 13420 * 13421 * We return 0 if we were able to lock every vnode in our scan. 13422 * If we had to skip one or more vnodes, we return 1. 13423 */ 13424 static int 13425 softdep_request_cleanup_flush(mp, ump) 13426 struct mount *mp; 13427 struct ufsmount *ump; 13428 { 13429 struct thread *td; 13430 struct vnode *lvp, *mvp; 13431 int failed_vnode; 13432 13433 failed_vnode = 0; 13434 td = curthread; 13435 MNT_VNODE_FOREACH_ALL(lvp, mp, mvp) { 13436 if (TAILQ_FIRST(&lvp->v_bufobj.bo_dirty.bv_hd) == 0) { 13437 VI_UNLOCK(lvp); 13438 continue; 13439 } 13440 if (vget(lvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT, 13441 td) != 0) { 13442 failed_vnode = 1; 13443 continue; 13444 } 13445 if (lvp->v_vflag & VV_NOSYNC) { /* unlinked */ 13446 vput(lvp); 13447 continue; 13448 } 13449 (void) ffs_syncvnode(lvp, MNT_NOWAIT, 0); 13450 vput(lvp); 13451 } 13452 lvp = ump->um_devvp; 13453 if (vn_lock(lvp, LK_EXCLUSIVE | LK_NOWAIT) == 0) { 13454 VOP_FSYNC(lvp, MNT_NOWAIT, td); 13455 VOP_UNLOCK(lvp, 0); 13456 } 13457 return (failed_vnode); 13458 } 13459 13460 static bool 13461 softdep_excess_items(struct ufsmount *ump, int item) 13462 { 13463 13464 KASSERT(item >= 0 && item < D_LAST, ("item %d", item)); 13465 return (dep_current[item] > max_softdeps && 13466 ump->softdep_curdeps[item] > max_softdeps / 13467 stat_flush_threads); 13468 } 13469 13470 static void 13471 schedule_cleanup(struct mount *mp) 13472 { 13473 struct ufsmount *ump; 13474 struct thread *td; 13475 13476 ump = VFSTOUFS(mp); 13477 LOCK_OWNED(ump); 13478 FREE_LOCK(ump); 13479 td = curthread; 13480 if ((td->td_pflags & TDP_KTHREAD) != 0 && 13481 (td->td_proc->p_flag2 & P2_AST_SU) == 0) { 13482 /* 13483 * No ast is delivered to kernel threads, so nobody 13484 * would deref the mp. Some kernel threads 13485 * explicitely check for AST, e.g. NFS daemon does 13486 * this in the serving loop. 13487 */ 13488 return; 13489 } 13490 if (td->td_su != NULL) 13491 vfs_rel(td->td_su); 13492 vfs_ref(mp); 13493 td->td_su = mp; 13494 thread_lock(td); 13495 td->td_flags |= TDF_ASTPENDING; 13496 thread_unlock(td); 13497 } 13498 13499 static void 13500 softdep_ast_cleanup_proc(struct thread *td) 13501 { 13502 struct mount *mp; 13503 struct ufsmount *ump; 13504 int error; 13505 bool req; 13506 13507 while ((mp = td->td_su) != NULL) { 13508 td->td_su = NULL; 13509 error = vfs_busy(mp, MBF_NOWAIT); 13510 vfs_rel(mp); 13511 if (error != 0) 13512 return; 13513 if (ffs_own_mount(mp) && MOUNTEDSOFTDEP(mp)) { 13514 ump = VFSTOUFS(mp); 13515 for (;;) { 13516 req = false; 13517 ACQUIRE_LOCK(ump); 13518 if (softdep_excess_items(ump, D_INODEDEP)) { 13519 req = true; 13520 request_cleanup(mp, FLUSH_INODES); 13521 } 13522 if (softdep_excess_items(ump, D_DIRREM)) { 13523 req = true; 13524 request_cleanup(mp, FLUSH_BLOCKS); 13525 } 13526 FREE_LOCK(ump); 13527 if (softdep_excess_items(ump, D_NEWBLK) || 13528 softdep_excess_items(ump, D_ALLOCDIRECT) || 13529 softdep_excess_items(ump, D_ALLOCINDIR)) { 13530 error = vn_start_write(NULL, &mp, 13531 V_WAIT); 13532 if (error == 0) { 13533 req = true; 13534 VFS_SYNC(mp, MNT_WAIT); 13535 vn_finished_write(mp); 13536 } 13537 } 13538 if ((td->td_pflags & TDP_KTHREAD) != 0 || !req) 13539 break; 13540 } 13541 } 13542 vfs_unbusy(mp); 13543 } 13544 if ((mp = td->td_su) != NULL) { 13545 td->td_su = NULL; 13546 vfs_rel(mp); 13547 } 13548 } 13549 13550 /* 13551 * If memory utilization has gotten too high, deliberately slow things 13552 * down and speed up the I/O processing. 13553 */ 13554 static int 13555 request_cleanup(mp, resource) 13556 struct mount *mp; 13557 int resource; 13558 { 13559 struct thread *td = curthread; 13560 struct ufsmount *ump; 13561 13562 ump = VFSTOUFS(mp); 13563 LOCK_OWNED(ump); 13564 /* 13565 * We never hold up the filesystem syncer or buf daemon. 13566 */ 13567 if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF)) 13568 return (0); 13569 /* 13570 * First check to see if the work list has gotten backlogged. 13571 * If it has, co-opt this process to help clean up two entries. 13572 * Because this process may hold inodes locked, we cannot 13573 * handle any remove requests that might block on a locked 13574 * inode as that could lead to deadlock. We set TDP_SOFTDEP 13575 * to avoid recursively processing the worklist. 13576 */ 13577 if (ump->softdep_on_worklist > max_softdeps / 10) { 13578 td->td_pflags |= TDP_SOFTDEP; 13579 process_worklist_item(mp, 2, LK_NOWAIT); 13580 td->td_pflags &= ~TDP_SOFTDEP; 13581 stat_worklist_push += 2; 13582 return(1); 13583 } 13584 /* 13585 * Next, we attempt to speed up the syncer process. If that 13586 * is successful, then we allow the process to continue. 13587 */ 13588 if (softdep_speedup(ump) && 13589 resource != FLUSH_BLOCKS_WAIT && 13590 resource != FLUSH_INODES_WAIT) 13591 return(0); 13592 /* 13593 * If we are resource constrained on inode dependencies, try 13594 * flushing some dirty inodes. Otherwise, we are constrained 13595 * by file deletions, so try accelerating flushes of directories 13596 * with removal dependencies. We would like to do the cleanup 13597 * here, but we probably hold an inode locked at this point and 13598 * that might deadlock against one that we try to clean. So, 13599 * the best that we can do is request the syncer daemon to do 13600 * the cleanup for us. 13601 */ 13602 switch (resource) { 13603 13604 case FLUSH_INODES: 13605 case FLUSH_INODES_WAIT: 13606 ACQUIRE_GBLLOCK(&lk); 13607 stat_ino_limit_push += 1; 13608 req_clear_inodedeps += 1; 13609 FREE_GBLLOCK(&lk); 13610 stat_countp = &stat_ino_limit_hit; 13611 break; 13612 13613 case FLUSH_BLOCKS: 13614 case FLUSH_BLOCKS_WAIT: 13615 ACQUIRE_GBLLOCK(&lk); 13616 stat_blk_limit_push += 1; 13617 req_clear_remove += 1; 13618 FREE_GBLLOCK(&lk); 13619 stat_countp = &stat_blk_limit_hit; 13620 break; 13621 13622 default: 13623 panic("request_cleanup: unknown type"); 13624 } 13625 /* 13626 * Hopefully the syncer daemon will catch up and awaken us. 13627 * We wait at most tickdelay before proceeding in any case. 13628 */ 13629 ACQUIRE_GBLLOCK(&lk); 13630 FREE_LOCK(ump); 13631 proc_waiting += 1; 13632 if (callout_pending(&softdep_callout) == FALSE) 13633 callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2, 13634 pause_timer, 0); 13635 13636 if ((td->td_pflags & TDP_KTHREAD) == 0) 13637 msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0); 13638 proc_waiting -= 1; 13639 FREE_GBLLOCK(&lk); 13640 ACQUIRE_LOCK(ump); 13641 return (1); 13642 } 13643 13644 /* 13645 * Awaken processes pausing in request_cleanup and clear proc_waiting 13646 * to indicate that there is no longer a timer running. Pause_timer 13647 * will be called with the global softdep mutex (&lk) locked. 13648 */ 13649 static void 13650 pause_timer(arg) 13651 void *arg; 13652 { 13653 13654 GBLLOCK_OWNED(&lk); 13655 /* 13656 * The callout_ API has acquired mtx and will hold it around this 13657 * function call. 13658 */ 13659 *stat_countp += proc_waiting; 13660 wakeup(&proc_waiting); 13661 } 13662 13663 /* 13664 * If requested, try removing inode or removal dependencies. 13665 */ 13666 static void 13667 check_clear_deps(mp) 13668 struct mount *mp; 13669 { 13670 13671 /* 13672 * If we are suspended, it may be because of our using 13673 * too many inodedeps, so help clear them out. 13674 */ 13675 if (MOUNTEDSUJ(mp) && VFSTOUFS(mp)->softdep_jblocks->jb_suspended) 13676 clear_inodedeps(mp); 13677 /* 13678 * General requests for cleanup of backed up dependencies 13679 */ 13680 ACQUIRE_GBLLOCK(&lk); 13681 if (req_clear_inodedeps) { 13682 req_clear_inodedeps -= 1; 13683 FREE_GBLLOCK(&lk); 13684 clear_inodedeps(mp); 13685 ACQUIRE_GBLLOCK(&lk); 13686 wakeup(&proc_waiting); 13687 } 13688 if (req_clear_remove) { 13689 req_clear_remove -= 1; 13690 FREE_GBLLOCK(&lk); 13691 clear_remove(mp); 13692 ACQUIRE_GBLLOCK(&lk); 13693 wakeup(&proc_waiting); 13694 } 13695 FREE_GBLLOCK(&lk); 13696 } 13697 13698 /* 13699 * Flush out a directory with at least one removal dependency in an effort to 13700 * reduce the number of dirrem, freefile, and freeblks dependency structures. 13701 */ 13702 static void 13703 clear_remove(mp) 13704 struct mount *mp; 13705 { 13706 struct pagedep_hashhead *pagedephd; 13707 struct pagedep *pagedep; 13708 struct ufsmount *ump; 13709 struct vnode *vp; 13710 struct bufobj *bo; 13711 int error, cnt; 13712 ino_t ino; 13713 13714 ump = VFSTOUFS(mp); 13715 LOCK_OWNED(ump); 13716 13717 for (cnt = 0; cnt <= ump->pagedep_hash_size; cnt++) { 13718 pagedephd = &ump->pagedep_hashtbl[ump->pagedep_nextclean++]; 13719 if (ump->pagedep_nextclean > ump->pagedep_hash_size) 13720 ump->pagedep_nextclean = 0; 13721 LIST_FOREACH(pagedep, pagedephd, pd_hash) { 13722 if (LIST_EMPTY(&pagedep->pd_dirremhd)) 13723 continue; 13724 ino = pagedep->pd_ino; 13725 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 13726 continue; 13727 FREE_LOCK(ump); 13728 13729 /* 13730 * Let unmount clear deps 13731 */ 13732 error = vfs_busy(mp, MBF_NOWAIT); 13733 if (error != 0) 13734 goto finish_write; 13735 error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp, 13736 FFSV_FORCEINSMQ); 13737 vfs_unbusy(mp); 13738 if (error != 0) { 13739 softdep_error("clear_remove: vget", error); 13740 goto finish_write; 13741 } 13742 if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0))) 13743 softdep_error("clear_remove: fsync", error); 13744 bo = &vp->v_bufobj; 13745 BO_LOCK(bo); 13746 drain_output(vp); 13747 BO_UNLOCK(bo); 13748 vput(vp); 13749 finish_write: 13750 vn_finished_write(mp); 13751 ACQUIRE_LOCK(ump); 13752 return; 13753 } 13754 } 13755 } 13756 13757 /* 13758 * Clear out a block of dirty inodes in an effort to reduce 13759 * the number of inodedep dependency structures. 13760 */ 13761 static void 13762 clear_inodedeps(mp) 13763 struct mount *mp; 13764 { 13765 struct inodedep_hashhead *inodedephd; 13766 struct inodedep *inodedep; 13767 struct ufsmount *ump; 13768 struct vnode *vp; 13769 struct fs *fs; 13770 int error, cnt; 13771 ino_t firstino, lastino, ino; 13772 13773 ump = VFSTOUFS(mp); 13774 fs = ump->um_fs; 13775 LOCK_OWNED(ump); 13776 /* 13777 * Pick a random inode dependency to be cleared. 13778 * We will then gather up all the inodes in its block 13779 * that have dependencies and flush them out. 13780 */ 13781 for (cnt = 0; cnt <= ump->inodedep_hash_size; cnt++) { 13782 inodedephd = &ump->inodedep_hashtbl[ump->inodedep_nextclean++]; 13783 if (ump->inodedep_nextclean > ump->inodedep_hash_size) 13784 ump->inodedep_nextclean = 0; 13785 if ((inodedep = LIST_FIRST(inodedephd)) != NULL) 13786 break; 13787 } 13788 if (inodedep == NULL) 13789 return; 13790 /* 13791 * Find the last inode in the block with dependencies. 13792 */ 13793 firstino = rounddown2(inodedep->id_ino, INOPB(fs)); 13794 for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--) 13795 if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0) 13796 break; 13797 /* 13798 * Asynchronously push all but the last inode with dependencies. 13799 * Synchronously push the last inode with dependencies to ensure 13800 * that the inode block gets written to free up the inodedeps. 13801 */ 13802 for (ino = firstino; ino <= lastino; ino++) { 13803 if (inodedep_lookup(mp, ino, 0, &inodedep) == 0) 13804 continue; 13805 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 13806 continue; 13807 FREE_LOCK(ump); 13808 error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */ 13809 if (error != 0) { 13810 vn_finished_write(mp); 13811 ACQUIRE_LOCK(ump); 13812 return; 13813 } 13814 if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp, 13815 FFSV_FORCEINSMQ)) != 0) { 13816 softdep_error("clear_inodedeps: vget", error); 13817 vfs_unbusy(mp); 13818 vn_finished_write(mp); 13819 ACQUIRE_LOCK(ump); 13820 return; 13821 } 13822 vfs_unbusy(mp); 13823 if (ino == lastino) { 13824 if ((error = ffs_syncvnode(vp, MNT_WAIT, 0))) 13825 softdep_error("clear_inodedeps: fsync1", error); 13826 } else { 13827 if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0))) 13828 softdep_error("clear_inodedeps: fsync2", error); 13829 BO_LOCK(&vp->v_bufobj); 13830 drain_output(vp); 13831 BO_UNLOCK(&vp->v_bufobj); 13832 } 13833 vput(vp); 13834 vn_finished_write(mp); 13835 ACQUIRE_LOCK(ump); 13836 } 13837 } 13838 13839 void 13840 softdep_buf_append(bp, wkhd) 13841 struct buf *bp; 13842 struct workhead *wkhd; 13843 { 13844 struct worklist *wk; 13845 struct ufsmount *ump; 13846 13847 if ((wk = LIST_FIRST(wkhd)) == NULL) 13848 return; 13849 KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, 13850 ("softdep_buf_append called on non-softdep filesystem")); 13851 ump = VFSTOUFS(wk->wk_mp); 13852 ACQUIRE_LOCK(ump); 13853 while ((wk = LIST_FIRST(wkhd)) != NULL) { 13854 WORKLIST_REMOVE(wk); 13855 WORKLIST_INSERT(&bp->b_dep, wk); 13856 } 13857 FREE_LOCK(ump); 13858 13859 } 13860 13861 void 13862 softdep_inode_append(ip, cred, wkhd) 13863 struct inode *ip; 13864 struct ucred *cred; 13865 struct workhead *wkhd; 13866 { 13867 struct buf *bp; 13868 struct fs *fs; 13869 struct ufsmount *ump; 13870 int error; 13871 13872 ump = ITOUMP(ip); 13873 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 13874 ("softdep_inode_append called on non-softdep filesystem")); 13875 fs = ump->um_fs; 13876 error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 13877 (int)fs->fs_bsize, cred, &bp); 13878 if (error) { 13879 bqrelse(bp); 13880 softdep_freework(wkhd); 13881 return; 13882 } 13883 softdep_buf_append(bp, wkhd); 13884 bqrelse(bp); 13885 } 13886 13887 void 13888 softdep_freework(wkhd) 13889 struct workhead *wkhd; 13890 { 13891 struct worklist *wk; 13892 struct ufsmount *ump; 13893 13894 if ((wk = LIST_FIRST(wkhd)) == NULL) 13895 return; 13896 KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, 13897 ("softdep_freework called on non-softdep filesystem")); 13898 ump = VFSTOUFS(wk->wk_mp); 13899 ACQUIRE_LOCK(ump); 13900 handle_jwork(wkhd); 13901 FREE_LOCK(ump); 13902 } 13903 13904 static struct ufsmount * 13905 softdep_bp_to_mp(bp) 13906 struct buf *bp; 13907 { 13908 struct mount *mp; 13909 struct vnode *vp; 13910 13911 if (LIST_EMPTY(&bp->b_dep)) 13912 return (NULL); 13913 vp = bp->b_vp; 13914 13915 /* 13916 * The ump mount point is stable after we get a correct 13917 * pointer, since bp is locked and this prevents unmount from 13918 * proceeding. But to get to it, we cannot dereference bp->b_dep 13919 * head wk_mp, because we do not yet own SU ump lock and 13920 * workitem might be freed while dereferenced. 13921 */ 13922 retry: 13923 if (vp->v_type == VCHR) { 13924 VI_LOCK(vp); 13925 mp = vp->v_type == VCHR ? vp->v_rdev->si_mountpt : NULL; 13926 VI_UNLOCK(vp); 13927 if (mp == NULL) 13928 goto retry; 13929 } else if (vp->v_type == VREG || vp->v_type == VDIR || 13930 vp->v_type == VLNK) { 13931 mp = vp->v_mount; 13932 } else { 13933 return (NULL); 13934 } 13935 return (VFSTOUFS(mp)); 13936 } 13937 13938 /* 13939 * Function to determine if the buffer has outstanding dependencies 13940 * that will cause a roll-back if the buffer is written. If wantcount 13941 * is set, return number of dependencies, otherwise just yes or no. 13942 */ 13943 static int 13944 softdep_count_dependencies(bp, wantcount) 13945 struct buf *bp; 13946 int wantcount; 13947 { 13948 struct worklist *wk; 13949 struct ufsmount *ump; 13950 struct bmsafemap *bmsafemap; 13951 struct freework *freework; 13952 struct inodedep *inodedep; 13953 struct indirdep *indirdep; 13954 struct freeblks *freeblks; 13955 struct allocindir *aip; 13956 struct pagedep *pagedep; 13957 struct dirrem *dirrem; 13958 struct newblk *newblk; 13959 struct mkdir *mkdir; 13960 struct diradd *dap; 13961 int i, retval; 13962 13963 ump = softdep_bp_to_mp(bp); 13964 if (ump == NULL) 13965 return (0); 13966 retval = 0; 13967 ACQUIRE_LOCK(ump); 13968 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 13969 switch (wk->wk_type) { 13970 13971 case D_INODEDEP: 13972 inodedep = WK_INODEDEP(wk); 13973 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 13974 /* bitmap allocation dependency */ 13975 retval += 1; 13976 if (!wantcount) 13977 goto out; 13978 } 13979 if (TAILQ_FIRST(&inodedep->id_inoupdt)) { 13980 /* direct block pointer dependency */ 13981 retval += 1; 13982 if (!wantcount) 13983 goto out; 13984 } 13985 if (TAILQ_FIRST(&inodedep->id_extupdt)) { 13986 /* direct block pointer dependency */ 13987 retval += 1; 13988 if (!wantcount) 13989 goto out; 13990 } 13991 if (TAILQ_FIRST(&inodedep->id_inoreflst)) { 13992 /* Add reference dependency. */ 13993 retval += 1; 13994 if (!wantcount) 13995 goto out; 13996 } 13997 continue; 13998 13999 case D_INDIRDEP: 14000 indirdep = WK_INDIRDEP(wk); 14001 14002 TAILQ_FOREACH(freework, &indirdep->ir_trunc, fw_next) { 14003 /* indirect truncation dependency */ 14004 retval += 1; 14005 if (!wantcount) 14006 goto out; 14007 } 14008 14009 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) { 14010 /* indirect block pointer dependency */ 14011 retval += 1; 14012 if (!wantcount) 14013 goto out; 14014 } 14015 continue; 14016 14017 case D_PAGEDEP: 14018 pagedep = WK_PAGEDEP(wk); 14019 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) { 14020 if (LIST_FIRST(&dirrem->dm_jremrefhd)) { 14021 /* Journal remove ref dependency. */ 14022 retval += 1; 14023 if (!wantcount) 14024 goto out; 14025 } 14026 } 14027 for (i = 0; i < DAHASHSZ; i++) { 14028 14029 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 14030 /* directory entry dependency */ 14031 retval += 1; 14032 if (!wantcount) 14033 goto out; 14034 } 14035 } 14036 continue; 14037 14038 case D_BMSAFEMAP: 14039 bmsafemap = WK_BMSAFEMAP(wk); 14040 if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) { 14041 /* Add reference dependency. */ 14042 retval += 1; 14043 if (!wantcount) 14044 goto out; 14045 } 14046 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) { 14047 /* Allocate block dependency. */ 14048 retval += 1; 14049 if (!wantcount) 14050 goto out; 14051 } 14052 continue; 14053 14054 case D_FREEBLKS: 14055 freeblks = WK_FREEBLKS(wk); 14056 if (LIST_FIRST(&freeblks->fb_jblkdephd)) { 14057 /* Freeblk journal dependency. */ 14058 retval += 1; 14059 if (!wantcount) 14060 goto out; 14061 } 14062 continue; 14063 14064 case D_ALLOCDIRECT: 14065 case D_ALLOCINDIR: 14066 newblk = WK_NEWBLK(wk); 14067 if (newblk->nb_jnewblk) { 14068 /* Journal allocate dependency. */ 14069 retval += 1; 14070 if (!wantcount) 14071 goto out; 14072 } 14073 continue; 14074 14075 case D_MKDIR: 14076 mkdir = WK_MKDIR(wk); 14077 if (mkdir->md_jaddref) { 14078 /* Journal reference dependency. */ 14079 retval += 1; 14080 if (!wantcount) 14081 goto out; 14082 } 14083 continue; 14084 14085 case D_FREEWORK: 14086 case D_FREEDEP: 14087 case D_JSEGDEP: 14088 case D_JSEG: 14089 case D_SBDEP: 14090 /* never a dependency on these blocks */ 14091 continue; 14092 14093 default: 14094 panic("softdep_count_dependencies: Unexpected type %s", 14095 TYPENAME(wk->wk_type)); 14096 /* NOTREACHED */ 14097 } 14098 } 14099 out: 14100 FREE_LOCK(ump); 14101 return (retval); 14102 } 14103 14104 /* 14105 * Acquire exclusive access to a buffer. 14106 * Must be called with a locked mtx parameter. 14107 * Return acquired buffer or NULL on failure. 14108 */ 14109 static struct buf * 14110 getdirtybuf(bp, lock, waitfor) 14111 struct buf *bp; 14112 struct rwlock *lock; 14113 int waitfor; 14114 { 14115 int error; 14116 14117 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) { 14118 if (waitfor != MNT_WAIT) 14119 return (NULL); 14120 error = BUF_LOCK(bp, 14121 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, lock); 14122 /* 14123 * Even if we successfully acquire bp here, we have dropped 14124 * lock, which may violates our guarantee. 14125 */ 14126 if (error == 0) 14127 BUF_UNLOCK(bp); 14128 else if (error != ENOLCK) 14129 panic("getdirtybuf: inconsistent lock: %d", error); 14130 rw_wlock(lock); 14131 return (NULL); 14132 } 14133 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) { 14134 if (lock != BO_LOCKPTR(bp->b_bufobj) && waitfor == MNT_WAIT) { 14135 rw_wunlock(lock); 14136 BO_LOCK(bp->b_bufobj); 14137 BUF_UNLOCK(bp); 14138 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) { 14139 bp->b_vflags |= BV_BKGRDWAIT; 14140 msleep(&bp->b_xflags, BO_LOCKPTR(bp->b_bufobj), 14141 PRIBIO | PDROP, "getbuf", 0); 14142 } else 14143 BO_UNLOCK(bp->b_bufobj); 14144 rw_wlock(lock); 14145 return (NULL); 14146 } 14147 BUF_UNLOCK(bp); 14148 if (waitfor != MNT_WAIT) 14149 return (NULL); 14150 #ifdef DEBUG_VFS_LOCKS 14151 if (bp->b_vp->v_type != VCHR) 14152 ASSERT_BO_WLOCKED(bp->b_bufobj); 14153 #endif 14154 bp->b_vflags |= BV_BKGRDWAIT; 14155 rw_sleep(&bp->b_xflags, lock, PRIBIO, "getbuf", 0); 14156 return (NULL); 14157 } 14158 if ((bp->b_flags & B_DELWRI) == 0) { 14159 BUF_UNLOCK(bp); 14160 return (NULL); 14161 } 14162 bremfree(bp); 14163 return (bp); 14164 } 14165 14166 14167 /* 14168 * Check if it is safe to suspend the file system now. On entry, 14169 * the vnode interlock for devvp should be held. Return 0 with 14170 * the mount interlock held if the file system can be suspended now, 14171 * otherwise return EAGAIN with the mount interlock held. 14172 */ 14173 int 14174 softdep_check_suspend(struct mount *mp, 14175 struct vnode *devvp, 14176 int softdep_depcnt, 14177 int softdep_accdepcnt, 14178 int secondary_writes, 14179 int secondary_accwrites) 14180 { 14181 struct bufobj *bo; 14182 struct ufsmount *ump; 14183 struct inodedep *inodedep; 14184 int error, unlinked; 14185 14186 bo = &devvp->v_bufobj; 14187 ASSERT_BO_WLOCKED(bo); 14188 14189 /* 14190 * If we are not running with soft updates, then we need only 14191 * deal with secondary writes as we try to suspend. 14192 */ 14193 if (MOUNTEDSOFTDEP(mp) == 0) { 14194 MNT_ILOCK(mp); 14195 while (mp->mnt_secondary_writes != 0) { 14196 BO_UNLOCK(bo); 14197 msleep(&mp->mnt_secondary_writes, MNT_MTX(mp), 14198 (PUSER - 1) | PDROP, "secwr", 0); 14199 BO_LOCK(bo); 14200 MNT_ILOCK(mp); 14201 } 14202 14203 /* 14204 * Reasons for needing more work before suspend: 14205 * - Dirty buffers on devvp. 14206 * - Secondary writes occurred after start of vnode sync loop 14207 */ 14208 error = 0; 14209 if (bo->bo_numoutput > 0 || 14210 bo->bo_dirty.bv_cnt > 0 || 14211 secondary_writes != 0 || 14212 mp->mnt_secondary_writes != 0 || 14213 secondary_accwrites != mp->mnt_secondary_accwrites) 14214 error = EAGAIN; 14215 BO_UNLOCK(bo); 14216 return (error); 14217 } 14218 14219 /* 14220 * If we are running with soft updates, then we need to coordinate 14221 * with them as we try to suspend. 14222 */ 14223 ump = VFSTOUFS(mp); 14224 for (;;) { 14225 if (!TRY_ACQUIRE_LOCK(ump)) { 14226 BO_UNLOCK(bo); 14227 ACQUIRE_LOCK(ump); 14228 FREE_LOCK(ump); 14229 BO_LOCK(bo); 14230 continue; 14231 } 14232 MNT_ILOCK(mp); 14233 if (mp->mnt_secondary_writes != 0) { 14234 FREE_LOCK(ump); 14235 BO_UNLOCK(bo); 14236 msleep(&mp->mnt_secondary_writes, 14237 MNT_MTX(mp), 14238 (PUSER - 1) | PDROP, "secwr", 0); 14239 BO_LOCK(bo); 14240 continue; 14241 } 14242 break; 14243 } 14244 14245 unlinked = 0; 14246 if (MOUNTEDSUJ(mp)) { 14247 for (inodedep = TAILQ_FIRST(&ump->softdep_unlinked); 14248 inodedep != NULL; 14249 inodedep = TAILQ_NEXT(inodedep, id_unlinked)) { 14250 if ((inodedep->id_state & (UNLINKED | UNLINKLINKS | 14251 UNLINKONLIST)) != (UNLINKED | UNLINKLINKS | 14252 UNLINKONLIST) || 14253 !check_inodedep_free(inodedep)) 14254 continue; 14255 unlinked++; 14256 } 14257 } 14258 14259 /* 14260 * Reasons for needing more work before suspend: 14261 * - Dirty buffers on devvp. 14262 * - Softdep activity occurred after start of vnode sync loop 14263 * - Secondary writes occurred after start of vnode sync loop 14264 */ 14265 error = 0; 14266 if (bo->bo_numoutput > 0 || 14267 bo->bo_dirty.bv_cnt > 0 || 14268 softdep_depcnt != unlinked || 14269 ump->softdep_deps != unlinked || 14270 softdep_accdepcnt != ump->softdep_accdeps || 14271 secondary_writes != 0 || 14272 mp->mnt_secondary_writes != 0 || 14273 secondary_accwrites != mp->mnt_secondary_accwrites) 14274 error = EAGAIN; 14275 FREE_LOCK(ump); 14276 BO_UNLOCK(bo); 14277 return (error); 14278 } 14279 14280 14281 /* 14282 * Get the number of dependency structures for the file system, both 14283 * the current number and the total number allocated. These will 14284 * later be used to detect that softdep processing has occurred. 14285 */ 14286 void 14287 softdep_get_depcounts(struct mount *mp, 14288 int *softdep_depsp, 14289 int *softdep_accdepsp) 14290 { 14291 struct ufsmount *ump; 14292 14293 if (MOUNTEDSOFTDEP(mp) == 0) { 14294 *softdep_depsp = 0; 14295 *softdep_accdepsp = 0; 14296 return; 14297 } 14298 ump = VFSTOUFS(mp); 14299 ACQUIRE_LOCK(ump); 14300 *softdep_depsp = ump->softdep_deps; 14301 *softdep_accdepsp = ump->softdep_accdeps; 14302 FREE_LOCK(ump); 14303 } 14304 14305 /* 14306 * Wait for pending output on a vnode to complete. 14307 */ 14308 static void 14309 drain_output(vp) 14310 struct vnode *vp; 14311 { 14312 14313 ASSERT_VOP_LOCKED(vp, "drain_output"); 14314 (void)bufobj_wwait(&vp->v_bufobj, 0, 0); 14315 } 14316 14317 /* 14318 * Called whenever a buffer that is being invalidated or reallocated 14319 * contains dependencies. This should only happen if an I/O error has 14320 * occurred. The routine is called with the buffer locked. 14321 */ 14322 static void 14323 softdep_deallocate_dependencies(bp) 14324 struct buf *bp; 14325 { 14326 14327 if ((bp->b_ioflags & BIO_ERROR) == 0) 14328 panic("softdep_deallocate_dependencies: dangling deps"); 14329 if (bp->b_vp != NULL && bp->b_vp->v_mount != NULL) 14330 softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error); 14331 else 14332 printf("softdep_deallocate_dependencies: " 14333 "got error %d while accessing filesystem\n", bp->b_error); 14334 if (bp->b_error != ENXIO) 14335 panic("softdep_deallocate_dependencies: unrecovered I/O error"); 14336 } 14337 14338 /* 14339 * Function to handle asynchronous write errors in the filesystem. 14340 */ 14341 static void 14342 softdep_error(func, error) 14343 char *func; 14344 int error; 14345 { 14346 14347 /* XXX should do something better! */ 14348 printf("%s: got error %d while accessing filesystem\n", func, error); 14349 } 14350 14351 #ifdef DDB 14352 14353 static void 14354 inodedep_print(struct inodedep *inodedep, int verbose) 14355 { 14356 db_printf("%p fs %p st %x ino %jd inoblk %jd delta %jd nlink %jd" 14357 " saveino %p\n", 14358 inodedep, inodedep->id_fs, inodedep->id_state, 14359 (intmax_t)inodedep->id_ino, 14360 (intmax_t)fsbtodb(inodedep->id_fs, 14361 ino_to_fsba(inodedep->id_fs, inodedep->id_ino)), 14362 (intmax_t)inodedep->id_nlinkdelta, 14363 (intmax_t)inodedep->id_savednlink, 14364 inodedep->id_savedino1); 14365 14366 if (verbose == 0) 14367 return; 14368 14369 db_printf("\tpendinghd %p, bufwait %p, inowait %p, inoreflst %p, " 14370 "mkdiradd %p\n", 14371 LIST_FIRST(&inodedep->id_pendinghd), 14372 LIST_FIRST(&inodedep->id_bufwait), 14373 LIST_FIRST(&inodedep->id_inowait), 14374 TAILQ_FIRST(&inodedep->id_inoreflst), 14375 inodedep->id_mkdiradd); 14376 db_printf("\tinoupdt %p, newinoupdt %p, extupdt %p, newextupdt %p\n", 14377 TAILQ_FIRST(&inodedep->id_inoupdt), 14378 TAILQ_FIRST(&inodedep->id_newinoupdt), 14379 TAILQ_FIRST(&inodedep->id_extupdt), 14380 TAILQ_FIRST(&inodedep->id_newextupdt)); 14381 } 14382 14383 DB_SHOW_COMMAND(inodedep, db_show_inodedep) 14384 { 14385 14386 if (have_addr == 0) { 14387 db_printf("Address required\n"); 14388 return; 14389 } 14390 inodedep_print((struct inodedep*)addr, 1); 14391 } 14392 14393 DB_SHOW_COMMAND(inodedeps, db_show_inodedeps) 14394 { 14395 struct inodedep_hashhead *inodedephd; 14396 struct inodedep *inodedep; 14397 struct ufsmount *ump; 14398 int cnt; 14399 14400 if (have_addr == 0) { 14401 db_printf("Address required\n"); 14402 return; 14403 } 14404 ump = (struct ufsmount *)addr; 14405 for (cnt = 0; cnt < ump->inodedep_hash_size; cnt++) { 14406 inodedephd = &ump->inodedep_hashtbl[cnt]; 14407 LIST_FOREACH(inodedep, inodedephd, id_hash) { 14408 inodedep_print(inodedep, 0); 14409 } 14410 } 14411 } 14412 14413 DB_SHOW_COMMAND(worklist, db_show_worklist) 14414 { 14415 struct worklist *wk; 14416 14417 if (have_addr == 0) { 14418 db_printf("Address required\n"); 14419 return; 14420 } 14421 wk = (struct worklist *)addr; 14422 printf("worklist: %p type %s state 0x%X\n", 14423 wk, TYPENAME(wk->wk_type), wk->wk_state); 14424 } 14425 14426 DB_SHOW_COMMAND(workhead, db_show_workhead) 14427 { 14428 struct workhead *wkhd; 14429 struct worklist *wk; 14430 int i; 14431 14432 if (have_addr == 0) { 14433 db_printf("Address required\n"); 14434 return; 14435 } 14436 wkhd = (struct workhead *)addr; 14437 wk = LIST_FIRST(wkhd); 14438 for (i = 0; i < 100 && wk != NULL; i++, wk = LIST_NEXT(wk, wk_list)) 14439 db_printf("worklist: %p type %s state 0x%X", 14440 wk, TYPENAME(wk->wk_type), wk->wk_state); 14441 if (i == 100) 14442 db_printf("workhead overflow"); 14443 printf("\n"); 14444 } 14445 14446 14447 DB_SHOW_COMMAND(mkdirs, db_show_mkdirs) 14448 { 14449 struct mkdirlist *mkdirlisthd; 14450 struct jaddref *jaddref; 14451 struct diradd *diradd; 14452 struct mkdir *mkdir; 14453 14454 if (have_addr == 0) { 14455 db_printf("Address required\n"); 14456 return; 14457 } 14458 mkdirlisthd = (struct mkdirlist *)addr; 14459 LIST_FOREACH(mkdir, mkdirlisthd, md_mkdirs) { 14460 diradd = mkdir->md_diradd; 14461 db_printf("mkdir: %p state 0x%X dap %p state 0x%X", 14462 mkdir, mkdir->md_state, diradd, diradd->da_state); 14463 if ((jaddref = mkdir->md_jaddref) != NULL) 14464 db_printf(" jaddref %p jaddref state 0x%X", 14465 jaddref, jaddref->ja_state); 14466 db_printf("\n"); 14467 } 14468 } 14469 14470 /* exported to ffs_vfsops.c */ 14471 extern void db_print_ffs(struct ufsmount *ump); 14472 void 14473 db_print_ffs(struct ufsmount *ump) 14474 { 14475 db_printf("mp %p %s devvp %p fs %p su_wl %d su_deps %d su_req %d\n", 14476 ump->um_mountp, ump->um_mountp->mnt_stat.f_mntonname, 14477 ump->um_devvp, ump->um_fs, ump->softdep_on_worklist, 14478 ump->softdep_deps, ump->softdep_req); 14479 } 14480 14481 #endif /* DDB */ 14482 14483 #endif /* SOFTUPDATES */ 14484