xref: /freebsd/sys/ufs/ffs/ffs_softdep.c (revision 488ab515d6cc02f6f743f0badfc8e94eb553cd30)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright 1998, 2000 Marshall Kirk McKusick.
5  * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org>
6  * All rights reserved.
7  *
8  * The soft updates code is derived from the appendix of a University
9  * of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
10  * "Soft Updates: A Solution to the Metadata Update Problem in File
11  * Systems", CSE-TR-254-95, August 1995).
12  *
13  * Further information about soft updates can be obtained from:
14  *
15  *	Marshall Kirk McKusick		http://www.mckusick.com/softdep/
16  *	1614 Oxford Street		mckusick@mckusick.com
17  *	Berkeley, CA 94709-1608		+1-510-843-9542
18  *	USA
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  * 1. Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  * 2. Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in the
28  *    documentation and/or other materials provided with the distribution.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
31  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
32  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
33  * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
34  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
35  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
36  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
37  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
38  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
39  * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40  *
41  *	from: @(#)ffs_softdep.c	9.59 (McKusick) 6/21/00
42  */
43 
44 #include <sys/cdefs.h>
45 __FBSDID("$FreeBSD$");
46 
47 #include "opt_ffs.h"
48 #include "opt_quota.h"
49 #include "opt_ddb.h"
50 
51 /*
52  * For now we want the safety net that the DEBUG flag provides.
53  */
54 #ifndef DEBUG
55 #define DEBUG
56 #endif
57 
58 #include <sys/param.h>
59 #include <sys/kernel.h>
60 #include <sys/systm.h>
61 #include <sys/bio.h>
62 #include <sys/buf.h>
63 #include <sys/kdb.h>
64 #include <sys/kthread.h>
65 #include <sys/ktr.h>
66 #include <sys/limits.h>
67 #include <sys/lock.h>
68 #include <sys/malloc.h>
69 #include <sys/mount.h>
70 #include <sys/mutex.h>
71 #include <sys/namei.h>
72 #include <sys/priv.h>
73 #include <sys/proc.h>
74 #include <sys/racct.h>
75 #include <sys/rwlock.h>
76 #include <sys/stat.h>
77 #include <sys/sysctl.h>
78 #include <sys/syslog.h>
79 #include <sys/vnode.h>
80 #include <sys/conf.h>
81 
82 #include <ufs/ufs/dir.h>
83 #include <ufs/ufs/extattr.h>
84 #include <ufs/ufs/quota.h>
85 #include <ufs/ufs/inode.h>
86 #include <ufs/ufs/ufsmount.h>
87 #include <ufs/ffs/fs.h>
88 #include <ufs/ffs/softdep.h>
89 #include <ufs/ffs/ffs_extern.h>
90 #include <ufs/ufs/ufs_extern.h>
91 
92 #include <vm/vm.h>
93 #include <vm/vm_extern.h>
94 #include <vm/vm_object.h>
95 
96 #include <geom/geom.h>
97 
98 #include <ddb/ddb.h>
99 
100 #define	KTR_SUJ	0	/* Define to KTR_SPARE. */
101 
102 #ifndef SOFTUPDATES
103 
104 int
105 softdep_flushfiles(oldmnt, flags, td)
106 	struct mount *oldmnt;
107 	int flags;
108 	struct thread *td;
109 {
110 
111 	panic("softdep_flushfiles called");
112 }
113 
114 int
115 softdep_mount(devvp, mp, fs, cred)
116 	struct vnode *devvp;
117 	struct mount *mp;
118 	struct fs *fs;
119 	struct ucred *cred;
120 {
121 
122 	return (0);
123 }
124 
125 void
126 softdep_initialize()
127 {
128 
129 	return;
130 }
131 
132 void
133 softdep_uninitialize()
134 {
135 
136 	return;
137 }
138 
139 void
140 softdep_unmount(mp)
141 	struct mount *mp;
142 {
143 
144 	panic("softdep_unmount called");
145 }
146 
147 void
148 softdep_setup_sbupdate(ump, fs, bp)
149 	struct ufsmount *ump;
150 	struct fs *fs;
151 	struct buf *bp;
152 {
153 
154 	panic("softdep_setup_sbupdate called");
155 }
156 
157 void
158 softdep_setup_inomapdep(bp, ip, newinum, mode)
159 	struct buf *bp;
160 	struct inode *ip;
161 	ino_t newinum;
162 	int mode;
163 {
164 
165 	panic("softdep_setup_inomapdep called");
166 }
167 
168 void
169 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
170 	struct buf *bp;
171 	struct mount *mp;
172 	ufs2_daddr_t newblkno;
173 	int frags;
174 	int oldfrags;
175 {
176 
177 	panic("softdep_setup_blkmapdep called");
178 }
179 
180 void
181 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
182 	struct inode *ip;
183 	ufs_lbn_t lbn;
184 	ufs2_daddr_t newblkno;
185 	ufs2_daddr_t oldblkno;
186 	long newsize;
187 	long oldsize;
188 	struct buf *bp;
189 {
190 
191 	panic("softdep_setup_allocdirect called");
192 }
193 
194 void
195 softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
196 	struct inode *ip;
197 	ufs_lbn_t lbn;
198 	ufs2_daddr_t newblkno;
199 	ufs2_daddr_t oldblkno;
200 	long newsize;
201 	long oldsize;
202 	struct buf *bp;
203 {
204 
205 	panic("softdep_setup_allocext called");
206 }
207 
208 void
209 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
210 	struct inode *ip;
211 	ufs_lbn_t lbn;
212 	struct buf *bp;
213 	int ptrno;
214 	ufs2_daddr_t newblkno;
215 	ufs2_daddr_t oldblkno;
216 	struct buf *nbp;
217 {
218 
219 	panic("softdep_setup_allocindir_page called");
220 }
221 
222 void
223 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
224 	struct buf *nbp;
225 	struct inode *ip;
226 	struct buf *bp;
227 	int ptrno;
228 	ufs2_daddr_t newblkno;
229 {
230 
231 	panic("softdep_setup_allocindir_meta called");
232 }
233 
234 void
235 softdep_journal_freeblocks(ip, cred, length, flags)
236 	struct inode *ip;
237 	struct ucred *cred;
238 	off_t length;
239 	int flags;
240 {
241 
242 	panic("softdep_journal_freeblocks called");
243 }
244 
245 void
246 softdep_journal_fsync(ip)
247 	struct inode *ip;
248 {
249 
250 	panic("softdep_journal_fsync called");
251 }
252 
253 void
254 softdep_setup_freeblocks(ip, length, flags)
255 	struct inode *ip;
256 	off_t length;
257 	int flags;
258 {
259 
260 	panic("softdep_setup_freeblocks called");
261 }
262 
263 void
264 softdep_freefile(pvp, ino, mode)
265 		struct vnode *pvp;
266 		ino_t ino;
267 		int mode;
268 {
269 
270 	panic("softdep_freefile called");
271 }
272 
273 int
274 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
275 	struct buf *bp;
276 	struct inode *dp;
277 	off_t diroffset;
278 	ino_t newinum;
279 	struct buf *newdirbp;
280 	int isnewblk;
281 {
282 
283 	panic("softdep_setup_directory_add called");
284 }
285 
286 void
287 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
288 	struct buf *bp;
289 	struct inode *dp;
290 	caddr_t base;
291 	caddr_t oldloc;
292 	caddr_t newloc;
293 	int entrysize;
294 {
295 
296 	panic("softdep_change_directoryentry_offset called");
297 }
298 
299 void
300 softdep_setup_remove(bp, dp, ip, isrmdir)
301 	struct buf *bp;
302 	struct inode *dp;
303 	struct inode *ip;
304 	int isrmdir;
305 {
306 
307 	panic("softdep_setup_remove called");
308 }
309 
310 void
311 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
312 	struct buf *bp;
313 	struct inode *dp;
314 	struct inode *ip;
315 	ino_t newinum;
316 	int isrmdir;
317 {
318 
319 	panic("softdep_setup_directory_change called");
320 }
321 
322 void
323 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
324 	struct mount *mp;
325 	struct buf *bp;
326 	ufs2_daddr_t blkno;
327 	int frags;
328 	struct workhead *wkhd;
329 {
330 
331 	panic("%s called", __FUNCTION__);
332 }
333 
334 void
335 softdep_setup_inofree(mp, bp, ino, wkhd)
336 	struct mount *mp;
337 	struct buf *bp;
338 	ino_t ino;
339 	struct workhead *wkhd;
340 {
341 
342 	panic("%s called", __FUNCTION__);
343 }
344 
345 void
346 softdep_setup_unlink(dp, ip)
347 	struct inode *dp;
348 	struct inode *ip;
349 {
350 
351 	panic("%s called", __FUNCTION__);
352 }
353 
354 void
355 softdep_setup_link(dp, ip)
356 	struct inode *dp;
357 	struct inode *ip;
358 {
359 
360 	panic("%s called", __FUNCTION__);
361 }
362 
363 void
364 softdep_revert_link(dp, ip)
365 	struct inode *dp;
366 	struct inode *ip;
367 {
368 
369 	panic("%s called", __FUNCTION__);
370 }
371 
372 void
373 softdep_setup_rmdir(dp, ip)
374 	struct inode *dp;
375 	struct inode *ip;
376 {
377 
378 	panic("%s called", __FUNCTION__);
379 }
380 
381 void
382 softdep_revert_rmdir(dp, ip)
383 	struct inode *dp;
384 	struct inode *ip;
385 {
386 
387 	panic("%s called", __FUNCTION__);
388 }
389 
390 void
391 softdep_setup_create(dp, ip)
392 	struct inode *dp;
393 	struct inode *ip;
394 {
395 
396 	panic("%s called", __FUNCTION__);
397 }
398 
399 void
400 softdep_revert_create(dp, ip)
401 	struct inode *dp;
402 	struct inode *ip;
403 {
404 
405 	panic("%s called", __FUNCTION__);
406 }
407 
408 void
409 softdep_setup_mkdir(dp, ip)
410 	struct inode *dp;
411 	struct inode *ip;
412 {
413 
414 	panic("%s called", __FUNCTION__);
415 }
416 
417 void
418 softdep_revert_mkdir(dp, ip)
419 	struct inode *dp;
420 	struct inode *ip;
421 {
422 
423 	panic("%s called", __FUNCTION__);
424 }
425 
426 void
427 softdep_setup_dotdot_link(dp, ip)
428 	struct inode *dp;
429 	struct inode *ip;
430 {
431 
432 	panic("%s called", __FUNCTION__);
433 }
434 
435 int
436 softdep_prealloc(vp, waitok)
437 	struct vnode *vp;
438 	int waitok;
439 {
440 
441 	panic("%s called", __FUNCTION__);
442 }
443 
444 int
445 softdep_journal_lookup(mp, vpp)
446 	struct mount *mp;
447 	struct vnode **vpp;
448 {
449 
450 	return (ENOENT);
451 }
452 
453 void
454 softdep_change_linkcnt(ip)
455 	struct inode *ip;
456 {
457 
458 	panic("softdep_change_linkcnt called");
459 }
460 
461 void
462 softdep_load_inodeblock(ip)
463 	struct inode *ip;
464 {
465 
466 	panic("softdep_load_inodeblock called");
467 }
468 
469 void
470 softdep_update_inodeblock(ip, bp, waitfor)
471 	struct inode *ip;
472 	struct buf *bp;
473 	int waitfor;
474 {
475 
476 	panic("softdep_update_inodeblock called");
477 }
478 
479 int
480 softdep_fsync(vp)
481 	struct vnode *vp;	/* the "in_core" copy of the inode */
482 {
483 
484 	return (0);
485 }
486 
487 void
488 softdep_fsync_mountdev(vp)
489 	struct vnode *vp;
490 {
491 
492 	return;
493 }
494 
495 int
496 softdep_flushworklist(oldmnt, countp, td)
497 	struct mount *oldmnt;
498 	int *countp;
499 	struct thread *td;
500 {
501 
502 	*countp = 0;
503 	return (0);
504 }
505 
506 int
507 softdep_sync_metadata(struct vnode *vp)
508 {
509 
510 	panic("softdep_sync_metadata called");
511 }
512 
513 int
514 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
515 {
516 
517 	panic("softdep_sync_buf called");
518 }
519 
520 int
521 softdep_slowdown(vp)
522 	struct vnode *vp;
523 {
524 
525 	panic("softdep_slowdown called");
526 }
527 
528 int
529 softdep_request_cleanup(fs, vp, cred, resource)
530 	struct fs *fs;
531 	struct vnode *vp;
532 	struct ucred *cred;
533 	int resource;
534 {
535 
536 	return (0);
537 }
538 
539 int
540 softdep_check_suspend(struct mount *mp,
541 		      struct vnode *devvp,
542 		      int softdep_depcnt,
543 		      int softdep_accdepcnt,
544 		      int secondary_writes,
545 		      int secondary_accwrites)
546 {
547 	struct bufobj *bo;
548 	int error;
549 
550 	(void) softdep_depcnt,
551 	(void) softdep_accdepcnt;
552 
553 	bo = &devvp->v_bufobj;
554 	ASSERT_BO_WLOCKED(bo);
555 
556 	MNT_ILOCK(mp);
557 	while (mp->mnt_secondary_writes != 0) {
558 		BO_UNLOCK(bo);
559 		msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
560 		    (PUSER - 1) | PDROP, "secwr", 0);
561 		BO_LOCK(bo);
562 		MNT_ILOCK(mp);
563 	}
564 
565 	/*
566 	 * Reasons for needing more work before suspend:
567 	 * - Dirty buffers on devvp.
568 	 * - Secondary writes occurred after start of vnode sync loop
569 	 */
570 	error = 0;
571 	if (bo->bo_numoutput > 0 ||
572 	    bo->bo_dirty.bv_cnt > 0 ||
573 	    secondary_writes != 0 ||
574 	    mp->mnt_secondary_writes != 0 ||
575 	    secondary_accwrites != mp->mnt_secondary_accwrites)
576 		error = EAGAIN;
577 	BO_UNLOCK(bo);
578 	return (error);
579 }
580 
581 void
582 softdep_get_depcounts(struct mount *mp,
583 		      int *softdepactivep,
584 		      int *softdepactiveaccp)
585 {
586 	(void) mp;
587 	*softdepactivep = 0;
588 	*softdepactiveaccp = 0;
589 }
590 
591 void
592 softdep_buf_append(bp, wkhd)
593 	struct buf *bp;
594 	struct workhead *wkhd;
595 {
596 
597 	panic("softdep_buf_appendwork called");
598 }
599 
600 void
601 softdep_inode_append(ip, cred, wkhd)
602 	struct inode *ip;
603 	struct ucred *cred;
604 	struct workhead *wkhd;
605 {
606 
607 	panic("softdep_inode_appendwork called");
608 }
609 
610 void
611 softdep_freework(wkhd)
612 	struct workhead *wkhd;
613 {
614 
615 	panic("softdep_freework called");
616 }
617 
618 #else
619 
620 FEATURE(softupdates, "FFS soft-updates support");
621 
622 static SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW, 0,
623     "soft updates stats");
624 static SYSCTL_NODE(_debug_softdep, OID_AUTO, total, CTLFLAG_RW, 0,
625     "total dependencies allocated");
626 static SYSCTL_NODE(_debug_softdep, OID_AUTO, highuse, CTLFLAG_RW, 0,
627     "high use dependencies allocated");
628 static SYSCTL_NODE(_debug_softdep, OID_AUTO, current, CTLFLAG_RW, 0,
629     "current dependencies allocated");
630 static SYSCTL_NODE(_debug_softdep, OID_AUTO, write, CTLFLAG_RW, 0,
631     "current dependencies written");
632 
633 unsigned long dep_current[D_LAST + 1];
634 unsigned long dep_highuse[D_LAST + 1];
635 unsigned long dep_total[D_LAST + 1];
636 unsigned long dep_write[D_LAST + 1];
637 
638 #define	SOFTDEP_TYPE(type, str, long)					\
639     static MALLOC_DEFINE(M_ ## type, #str, long);			\
640     SYSCTL_ULONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD,	\
641 	&dep_total[D_ ## type], 0, "");					\
642     SYSCTL_ULONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD, 	\
643 	&dep_current[D_ ## type], 0, "");				\
644     SYSCTL_ULONG(_debug_softdep_highuse, OID_AUTO, str, CTLFLAG_RD, 	\
645 	&dep_highuse[D_ ## type], 0, "");				\
646     SYSCTL_ULONG(_debug_softdep_write, OID_AUTO, str, CTLFLAG_RD, 	\
647 	&dep_write[D_ ## type], 0, "");
648 
649 SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies");
650 SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies");
651 SOFTDEP_TYPE(BMSAFEMAP, bmsafemap,
652     "Block or frag allocated from cyl group map");
653 SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency");
654 SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode");
655 SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies");
656 SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block");
657 SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode");
658 SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode");
659 SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated");
660 SOFTDEP_TYPE(DIRADD, diradd, "New directory entry");
661 SOFTDEP_TYPE(MKDIR, mkdir, "New directory");
662 SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted");
663 SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block");
664 SOFTDEP_TYPE(FREEWORK, freework, "free an inode block");
665 SOFTDEP_TYPE(FREEDEP, freedep, "track a block free");
666 SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add");
667 SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove");
668 SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move");
669 SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block");
670 SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block");
671 SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag");
672 SOFTDEP_TYPE(JSEG, jseg, "Journal segment");
673 SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete");
674 SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency");
675 SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation");
676 SOFTDEP_TYPE(JFSYNC, jfsync, "Journal fsync complete");
677 
678 static MALLOC_DEFINE(M_SENTINEL, "sentinel", "Worklist sentinel");
679 
680 static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes");
681 static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations");
682 static MALLOC_DEFINE(M_MOUNTDATA, "softdep", "Softdep per-mount data");
683 
684 #define M_SOFTDEP_FLAGS	(M_WAITOK)
685 
686 /*
687  * translate from workitem type to memory type
688  * MUST match the defines above, such that memtype[D_XXX] == M_XXX
689  */
690 static struct malloc_type *memtype[] = {
691 	NULL,
692 	M_PAGEDEP,
693 	M_INODEDEP,
694 	M_BMSAFEMAP,
695 	M_NEWBLK,
696 	M_ALLOCDIRECT,
697 	M_INDIRDEP,
698 	M_ALLOCINDIR,
699 	M_FREEFRAG,
700 	M_FREEBLKS,
701 	M_FREEFILE,
702 	M_DIRADD,
703 	M_MKDIR,
704 	M_DIRREM,
705 	M_NEWDIRBLK,
706 	M_FREEWORK,
707 	M_FREEDEP,
708 	M_JADDREF,
709 	M_JREMREF,
710 	M_JMVREF,
711 	M_JNEWBLK,
712 	M_JFREEBLK,
713 	M_JFREEFRAG,
714 	M_JSEG,
715 	M_JSEGDEP,
716 	M_SBDEP,
717 	M_JTRUNC,
718 	M_JFSYNC,
719 	M_SENTINEL
720 };
721 
722 #define DtoM(type) (memtype[type])
723 
724 /*
725  * Names of malloc types.
726  */
727 #define TYPENAME(type)  \
728 	((unsigned)(type) <= D_LAST && (unsigned)(type) >= D_FIRST ? \
729 	memtype[type]->ks_shortdesc : "???")
730 /*
731  * End system adaptation definitions.
732  */
733 
734 #define	DOTDOT_OFFSET	offsetof(struct dirtemplate, dotdot_ino)
735 #define	DOT_OFFSET	offsetof(struct dirtemplate, dot_ino)
736 
737 /*
738  * Internal function prototypes.
739  */
740 static	void check_clear_deps(struct mount *);
741 static	void softdep_error(char *, int);
742 static	int softdep_process_worklist(struct mount *, int);
743 static	int softdep_waitidle(struct mount *, int);
744 static	void drain_output(struct vnode *);
745 static	struct buf *getdirtybuf(struct buf *, struct rwlock *, int);
746 static	int check_inodedep_free(struct inodedep *);
747 static	void clear_remove(struct mount *);
748 static	void clear_inodedeps(struct mount *);
749 static	void unlinked_inodedep(struct mount *, struct inodedep *);
750 static	void clear_unlinked_inodedep(struct inodedep *);
751 static	struct inodedep *first_unlinked_inodedep(struct ufsmount *);
752 static	int flush_pagedep_deps(struct vnode *, struct mount *,
753 	    struct diraddhd *);
754 static	int free_pagedep(struct pagedep *);
755 static	int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t);
756 static	int flush_inodedep_deps(struct vnode *, struct mount *, ino_t);
757 static	int flush_deplist(struct allocdirectlst *, int, int *);
758 static	int sync_cgs(struct mount *, int);
759 static	int handle_written_filepage(struct pagedep *, struct buf *, int);
760 static	int handle_written_sbdep(struct sbdep *, struct buf *);
761 static	void initiate_write_sbdep(struct sbdep *);
762 static	void diradd_inode_written(struct diradd *, struct inodedep *);
763 static	int handle_written_indirdep(struct indirdep *, struct buf *,
764 	    struct buf**, int);
765 static	int handle_written_inodeblock(struct inodedep *, struct buf *, int);
766 static	int jnewblk_rollforward(struct jnewblk *, struct fs *, struct cg *,
767 	    uint8_t *);
768 static	int handle_written_bmsafemap(struct bmsafemap *, struct buf *, int);
769 static	void handle_written_jaddref(struct jaddref *);
770 static	void handle_written_jremref(struct jremref *);
771 static	void handle_written_jseg(struct jseg *, struct buf *);
772 static	void handle_written_jnewblk(struct jnewblk *);
773 static	void handle_written_jblkdep(struct jblkdep *);
774 static	void handle_written_jfreefrag(struct jfreefrag *);
775 static	void complete_jseg(struct jseg *);
776 static	void complete_jsegs(struct jseg *);
777 static	void jseg_write(struct ufsmount *ump, struct jseg *, uint8_t *);
778 static	void jaddref_write(struct jaddref *, struct jseg *, uint8_t *);
779 static	void jremref_write(struct jremref *, struct jseg *, uint8_t *);
780 static	void jmvref_write(struct jmvref *, struct jseg *, uint8_t *);
781 static	void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *);
782 static	void jfsync_write(struct jfsync *, struct jseg *, uint8_t *data);
783 static	void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *);
784 static	void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *);
785 static	void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *);
786 static	inline void inoref_write(struct inoref *, struct jseg *,
787 	    struct jrefrec *);
788 static	void handle_allocdirect_partdone(struct allocdirect *,
789 	    struct workhead *);
790 static	struct jnewblk *cancel_newblk(struct newblk *, struct worklist *,
791 	    struct workhead *);
792 static	void indirdep_complete(struct indirdep *);
793 static	int indirblk_lookup(struct mount *, ufs2_daddr_t);
794 static	void indirblk_insert(struct freework *);
795 static	void indirblk_remove(struct freework *);
796 static	void handle_allocindir_partdone(struct allocindir *);
797 static	void initiate_write_filepage(struct pagedep *, struct buf *);
798 static	void initiate_write_indirdep(struct indirdep*, struct buf *);
799 static	void handle_written_mkdir(struct mkdir *, int);
800 static	int jnewblk_rollback(struct jnewblk *, struct fs *, struct cg *,
801 	    uint8_t *);
802 static	void initiate_write_bmsafemap(struct bmsafemap *, struct buf *);
803 static	void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *);
804 static	void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *);
805 static	void handle_workitem_freefile(struct freefile *);
806 static	int handle_workitem_remove(struct dirrem *, int);
807 static	struct dirrem *newdirrem(struct buf *, struct inode *,
808 	    struct inode *, int, struct dirrem **);
809 static	struct indirdep *indirdep_lookup(struct mount *, struct inode *,
810 	    struct buf *);
811 static	void cancel_indirdep(struct indirdep *, struct buf *,
812 	    struct freeblks *);
813 static	void free_indirdep(struct indirdep *);
814 static	void free_diradd(struct diradd *, struct workhead *);
815 static	void merge_diradd(struct inodedep *, struct diradd *);
816 static	void complete_diradd(struct diradd *);
817 static	struct diradd *diradd_lookup(struct pagedep *, int);
818 static	struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *,
819 	    struct jremref *);
820 static	struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *,
821 	    struct jremref *);
822 static	void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *,
823 	    struct jremref *, struct jremref *);
824 static	void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *,
825 	    struct jremref *);
826 static	void cancel_allocindir(struct allocindir *, struct buf *bp,
827 	    struct freeblks *, int);
828 static	int setup_trunc_indir(struct freeblks *, struct inode *,
829 	    ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t);
830 static	void complete_trunc_indir(struct freework *);
831 static	void trunc_indirdep(struct indirdep *, struct freeblks *, struct buf *,
832 	    int);
833 static	void complete_mkdir(struct mkdir *);
834 static	void free_newdirblk(struct newdirblk *);
835 static	void free_jremref(struct jremref *);
836 static	void free_jaddref(struct jaddref *);
837 static	void free_jsegdep(struct jsegdep *);
838 static	void free_jsegs(struct jblocks *);
839 static	void rele_jseg(struct jseg *);
840 static	void free_jseg(struct jseg *, struct jblocks *);
841 static	void free_jnewblk(struct jnewblk *);
842 static	void free_jblkdep(struct jblkdep *);
843 static	void free_jfreefrag(struct jfreefrag *);
844 static	void free_freedep(struct freedep *);
845 static	void journal_jremref(struct dirrem *, struct jremref *,
846 	    struct inodedep *);
847 static	void cancel_jnewblk(struct jnewblk *, struct workhead *);
848 static	int cancel_jaddref(struct jaddref *, struct inodedep *,
849 	    struct workhead *);
850 static	void cancel_jfreefrag(struct jfreefrag *);
851 static	inline void setup_freedirect(struct freeblks *, struct inode *,
852 	    int, int);
853 static	inline void setup_freeext(struct freeblks *, struct inode *, int, int);
854 static	inline void setup_freeindir(struct freeblks *, struct inode *, int,
855 	    ufs_lbn_t, int);
856 static	inline struct freeblks *newfreeblks(struct mount *, struct inode *);
857 static	void freeblks_free(struct ufsmount *, struct freeblks *, int);
858 static	void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t);
859 static	ufs2_daddr_t blkcount(struct fs *, ufs2_daddr_t, off_t);
860 static	int trunc_check_buf(struct buf *, int *, ufs_lbn_t, int, int);
861 static	void trunc_dependencies(struct inode *, struct freeblks *, ufs_lbn_t,
862 	    int, int);
863 static	void trunc_pages(struct inode *, off_t, ufs2_daddr_t, int);
864 static 	int cancel_pagedep(struct pagedep *, struct freeblks *, int);
865 static	int deallocate_dependencies(struct buf *, struct freeblks *, int);
866 static	void newblk_freefrag(struct newblk*);
867 static	void free_newblk(struct newblk *);
868 static	void cancel_allocdirect(struct allocdirectlst *,
869 	    struct allocdirect *, struct freeblks *);
870 static	int check_inode_unwritten(struct inodedep *);
871 static	int free_inodedep(struct inodedep *);
872 static	void freework_freeblock(struct freework *);
873 static	void freework_enqueue(struct freework *);
874 static	int handle_workitem_freeblocks(struct freeblks *, int);
875 static	int handle_complete_freeblocks(struct freeblks *, int);
876 static	void handle_workitem_indirblk(struct freework *);
877 static	void handle_written_freework(struct freework *);
878 static	void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *);
879 static	struct worklist *jnewblk_merge(struct worklist *, struct worklist *,
880 	    struct workhead *);
881 static	struct freefrag *setup_allocindir_phase2(struct buf *, struct inode *,
882 	    struct inodedep *, struct allocindir *, ufs_lbn_t);
883 static	struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t,
884 	    ufs2_daddr_t, ufs_lbn_t);
885 static	void handle_workitem_freefrag(struct freefrag *);
886 static	struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long,
887 	    ufs_lbn_t);
888 static	void allocdirect_merge(struct allocdirectlst *,
889 	    struct allocdirect *, struct allocdirect *);
890 static	struct freefrag *allocindir_merge(struct allocindir *,
891 	    struct allocindir *);
892 static	int bmsafemap_find(struct bmsafemap_hashhead *, int,
893 	    struct bmsafemap **);
894 static	struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *,
895 	    int cg, struct bmsafemap *);
896 static	int newblk_find(struct newblk_hashhead *, ufs2_daddr_t, int,
897 	    struct newblk **);
898 static	int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **);
899 static	int inodedep_find(struct inodedep_hashhead *, ino_t,
900 	    struct inodedep **);
901 static	int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **);
902 static	int pagedep_lookup(struct mount *, struct buf *bp, ino_t, ufs_lbn_t,
903 	    int, struct pagedep **);
904 static	int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t,
905 	    struct pagedep **);
906 static	void pause_timer(void *);
907 static	int request_cleanup(struct mount *, int);
908 static	int softdep_request_cleanup_flush(struct mount *, struct ufsmount *);
909 static	void schedule_cleanup(struct mount *);
910 static void softdep_ast_cleanup_proc(struct thread *);
911 static struct ufsmount *softdep_bp_to_mp(struct buf *bp);
912 static	int process_worklist_item(struct mount *, int, int);
913 static	void process_removes(struct vnode *);
914 static	void process_truncates(struct vnode *);
915 static	void jwork_move(struct workhead *, struct workhead *);
916 static	void jwork_insert(struct workhead *, struct jsegdep *);
917 static	void add_to_worklist(struct worklist *, int);
918 static	void wake_worklist(struct worklist *);
919 static	void wait_worklist(struct worklist *, char *);
920 static	void remove_from_worklist(struct worklist *);
921 static	void softdep_flush(void *);
922 static	void softdep_flushjournal(struct mount *);
923 static	int softdep_speedup(struct ufsmount *);
924 static	void worklist_speedup(struct mount *);
925 static	int journal_mount(struct mount *, struct fs *, struct ucred *);
926 static	void journal_unmount(struct ufsmount *);
927 static	int journal_space(struct ufsmount *, int);
928 static	void journal_suspend(struct ufsmount *);
929 static	int journal_unsuspend(struct ufsmount *ump);
930 static	void softdep_prelink(struct vnode *, struct vnode *);
931 static	void add_to_journal(struct worklist *);
932 static	void remove_from_journal(struct worklist *);
933 static	bool softdep_excess_items(struct ufsmount *, int);
934 static	void softdep_process_journal(struct mount *, struct worklist *, int);
935 static	struct jremref *newjremref(struct dirrem *, struct inode *,
936 	    struct inode *ip, off_t, nlink_t);
937 static	struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t,
938 	    uint16_t);
939 static	inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t,
940 	    uint16_t);
941 static	inline struct jsegdep *inoref_jseg(struct inoref *);
942 static	struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t);
943 static	struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t,
944 	    ufs2_daddr_t, int);
945 static	void adjust_newfreework(struct freeblks *, int);
946 static	struct jtrunc *newjtrunc(struct freeblks *, off_t, int);
947 static	void move_newblock_dep(struct jaddref *, struct inodedep *);
948 static	void cancel_jfreeblk(struct freeblks *, ufs2_daddr_t);
949 static	struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *,
950 	    ufs2_daddr_t, long, ufs_lbn_t);
951 static	struct freework *newfreework(struct ufsmount *, struct freeblks *,
952 	    struct freework *, ufs_lbn_t, ufs2_daddr_t, int, int, int);
953 static	int jwait(struct worklist *, int);
954 static	struct inodedep *inodedep_lookup_ip(struct inode *);
955 static	int bmsafemap_backgroundwrite(struct bmsafemap *, struct buf *);
956 static	struct freefile *handle_bufwait(struct inodedep *, struct workhead *);
957 static	void handle_jwork(struct workhead *);
958 static	struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *,
959 	    struct mkdir **);
960 static	struct jblocks *jblocks_create(void);
961 static	ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *);
962 static	void jblocks_free(struct jblocks *, struct mount *, int);
963 static	void jblocks_destroy(struct jblocks *);
964 static	void jblocks_add(struct jblocks *, ufs2_daddr_t, int);
965 
966 /*
967  * Exported softdep operations.
968  */
969 static	void softdep_disk_io_initiation(struct buf *);
970 static	void softdep_disk_write_complete(struct buf *);
971 static	void softdep_deallocate_dependencies(struct buf *);
972 static	int softdep_count_dependencies(struct buf *bp, int);
973 
974 /*
975  * Global lock over all of soft updates.
976  */
977 static struct mtx lk;
978 MTX_SYSINIT(softdep_lock, &lk, "Global Softdep Lock", MTX_DEF);
979 
980 #define ACQUIRE_GBLLOCK(lk)	mtx_lock(lk)
981 #define FREE_GBLLOCK(lk)	mtx_unlock(lk)
982 #define GBLLOCK_OWNED(lk)	mtx_assert((lk), MA_OWNED)
983 
984 /*
985  * Per-filesystem soft-updates locking.
986  */
987 #define LOCK_PTR(ump)		(&(ump)->um_softdep->sd_fslock)
988 #define TRY_ACQUIRE_LOCK(ump)	rw_try_wlock(&(ump)->um_softdep->sd_fslock)
989 #define ACQUIRE_LOCK(ump)	rw_wlock(&(ump)->um_softdep->sd_fslock)
990 #define FREE_LOCK(ump)		rw_wunlock(&(ump)->um_softdep->sd_fslock)
991 #define LOCK_OWNED(ump)		rw_assert(&(ump)->um_softdep->sd_fslock, \
992 				    RA_WLOCKED)
993 
994 #define	BUF_AREC(bp)		lockallowrecurse(&(bp)->b_lock)
995 #define	BUF_NOREC(bp)		lockdisablerecurse(&(bp)->b_lock)
996 
997 /*
998  * Worklist queue management.
999  * These routines require that the lock be held.
1000  */
1001 #ifndef /* NOT */ DEBUG
1002 #define WORKLIST_INSERT(head, item) do {	\
1003 	(item)->wk_state |= ONWORKLIST;		\
1004 	LIST_INSERT_HEAD(head, item, wk_list);	\
1005 } while (0)
1006 #define WORKLIST_REMOVE(item) do {		\
1007 	(item)->wk_state &= ~ONWORKLIST;	\
1008 	LIST_REMOVE(item, wk_list);		\
1009 } while (0)
1010 #define WORKLIST_INSERT_UNLOCKED	WORKLIST_INSERT
1011 #define WORKLIST_REMOVE_UNLOCKED	WORKLIST_REMOVE
1012 
1013 #else /* DEBUG */
1014 static	void worklist_insert(struct workhead *, struct worklist *, int);
1015 static	void worklist_remove(struct worklist *, int);
1016 
1017 #define WORKLIST_INSERT(head, item) worklist_insert(head, item, 1)
1018 #define WORKLIST_INSERT_UNLOCKED(head, item) worklist_insert(head, item, 0)
1019 #define WORKLIST_REMOVE(item) worklist_remove(item, 1)
1020 #define WORKLIST_REMOVE_UNLOCKED(item) worklist_remove(item, 0)
1021 
1022 static void
1023 worklist_insert(head, item, locked)
1024 	struct workhead *head;
1025 	struct worklist *item;
1026 	int locked;
1027 {
1028 
1029 	if (locked)
1030 		LOCK_OWNED(VFSTOUFS(item->wk_mp));
1031 	if (item->wk_state & ONWORKLIST)
1032 		panic("worklist_insert: %p %s(0x%X) already on list",
1033 		    item, TYPENAME(item->wk_type), item->wk_state);
1034 	item->wk_state |= ONWORKLIST;
1035 	LIST_INSERT_HEAD(head, item, wk_list);
1036 }
1037 
1038 static void
1039 worklist_remove(item, locked)
1040 	struct worklist *item;
1041 	int locked;
1042 {
1043 
1044 	if (locked)
1045 		LOCK_OWNED(VFSTOUFS(item->wk_mp));
1046 	if ((item->wk_state & ONWORKLIST) == 0)
1047 		panic("worklist_remove: %p %s(0x%X) not on list",
1048 		    item, TYPENAME(item->wk_type), item->wk_state);
1049 	item->wk_state &= ~ONWORKLIST;
1050 	LIST_REMOVE(item, wk_list);
1051 }
1052 #endif /* DEBUG */
1053 
1054 /*
1055  * Merge two jsegdeps keeping only the oldest one as newer references
1056  * can't be discarded until after older references.
1057  */
1058 static inline struct jsegdep *
1059 jsegdep_merge(struct jsegdep *one, struct jsegdep *two)
1060 {
1061 	struct jsegdep *swp;
1062 
1063 	if (two == NULL)
1064 		return (one);
1065 
1066 	if (one->jd_seg->js_seq > two->jd_seg->js_seq) {
1067 		swp = one;
1068 		one = two;
1069 		two = swp;
1070 	}
1071 	WORKLIST_REMOVE(&two->jd_list);
1072 	free_jsegdep(two);
1073 
1074 	return (one);
1075 }
1076 
1077 /*
1078  * If two freedeps are compatible free one to reduce list size.
1079  */
1080 static inline struct freedep *
1081 freedep_merge(struct freedep *one, struct freedep *two)
1082 {
1083 	if (two == NULL)
1084 		return (one);
1085 
1086 	if (one->fd_freework == two->fd_freework) {
1087 		WORKLIST_REMOVE(&two->fd_list);
1088 		free_freedep(two);
1089 	}
1090 	return (one);
1091 }
1092 
1093 /*
1094  * Move journal work from one list to another.  Duplicate freedeps and
1095  * jsegdeps are coalesced to keep the lists as small as possible.
1096  */
1097 static void
1098 jwork_move(dst, src)
1099 	struct workhead *dst;
1100 	struct workhead *src;
1101 {
1102 	struct freedep *freedep;
1103 	struct jsegdep *jsegdep;
1104 	struct worklist *wkn;
1105 	struct worklist *wk;
1106 
1107 	KASSERT(dst != src,
1108 	    ("jwork_move: dst == src"));
1109 	freedep = NULL;
1110 	jsegdep = NULL;
1111 	LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) {
1112 		if (wk->wk_type == D_JSEGDEP)
1113 			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1114 		else if (wk->wk_type == D_FREEDEP)
1115 			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1116 	}
1117 
1118 	while ((wk = LIST_FIRST(src)) != NULL) {
1119 		WORKLIST_REMOVE(wk);
1120 		WORKLIST_INSERT(dst, wk);
1121 		if (wk->wk_type == D_JSEGDEP) {
1122 			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1123 			continue;
1124 		}
1125 		if (wk->wk_type == D_FREEDEP)
1126 			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1127 	}
1128 }
1129 
1130 static void
1131 jwork_insert(dst, jsegdep)
1132 	struct workhead *dst;
1133 	struct jsegdep *jsegdep;
1134 {
1135 	struct jsegdep *jsegdepn;
1136 	struct worklist *wk;
1137 
1138 	LIST_FOREACH(wk, dst, wk_list)
1139 		if (wk->wk_type == D_JSEGDEP)
1140 			break;
1141 	if (wk == NULL) {
1142 		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1143 		return;
1144 	}
1145 	jsegdepn = WK_JSEGDEP(wk);
1146 	if (jsegdep->jd_seg->js_seq < jsegdepn->jd_seg->js_seq) {
1147 		WORKLIST_REMOVE(wk);
1148 		free_jsegdep(jsegdepn);
1149 		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1150 	} else
1151 		free_jsegdep(jsegdep);
1152 }
1153 
1154 /*
1155  * Routines for tracking and managing workitems.
1156  */
1157 static	void workitem_free(struct worklist *, int);
1158 static	void workitem_alloc(struct worklist *, int, struct mount *);
1159 static	void workitem_reassign(struct worklist *, int);
1160 
1161 #define	WORKITEM_FREE(item, type) \
1162 	workitem_free((struct worklist *)(item), (type))
1163 #define	WORKITEM_REASSIGN(item, type) \
1164 	workitem_reassign((struct worklist *)(item), (type))
1165 
1166 static void
1167 workitem_free(item, type)
1168 	struct worklist *item;
1169 	int type;
1170 {
1171 	struct ufsmount *ump;
1172 
1173 #ifdef DEBUG
1174 	if (item->wk_state & ONWORKLIST)
1175 		panic("workitem_free: %s(0x%X) still on list",
1176 		    TYPENAME(item->wk_type), item->wk_state);
1177 	if (item->wk_type != type && type != D_NEWBLK)
1178 		panic("workitem_free: type mismatch %s != %s",
1179 		    TYPENAME(item->wk_type), TYPENAME(type));
1180 #endif
1181 	if (item->wk_state & IOWAITING)
1182 		wakeup(item);
1183 	ump = VFSTOUFS(item->wk_mp);
1184 	LOCK_OWNED(ump);
1185 	KASSERT(ump->softdep_deps > 0,
1186 	    ("workitem_free: %s: softdep_deps going negative",
1187 	    ump->um_fs->fs_fsmnt));
1188 	if (--ump->softdep_deps == 0 && ump->softdep_req)
1189 		wakeup(&ump->softdep_deps);
1190 	KASSERT(dep_current[item->wk_type] > 0,
1191 	    ("workitem_free: %s: dep_current[%s] going negative",
1192 	    ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1193 	KASSERT(ump->softdep_curdeps[item->wk_type] > 0,
1194 	    ("workitem_free: %s: softdep_curdeps[%s] going negative",
1195 	    ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1196 	atomic_subtract_long(&dep_current[item->wk_type], 1);
1197 	ump->softdep_curdeps[item->wk_type] -= 1;
1198 	free(item, DtoM(type));
1199 }
1200 
1201 static void
1202 workitem_alloc(item, type, mp)
1203 	struct worklist *item;
1204 	int type;
1205 	struct mount *mp;
1206 {
1207 	struct ufsmount *ump;
1208 
1209 	item->wk_type = type;
1210 	item->wk_mp = mp;
1211 	item->wk_state = 0;
1212 
1213 	ump = VFSTOUFS(mp);
1214 	ACQUIRE_GBLLOCK(&lk);
1215 	dep_current[type]++;
1216 	if (dep_current[type] > dep_highuse[type])
1217 		dep_highuse[type] = dep_current[type];
1218 	dep_total[type]++;
1219 	FREE_GBLLOCK(&lk);
1220 	ACQUIRE_LOCK(ump);
1221 	ump->softdep_curdeps[type] += 1;
1222 	ump->softdep_deps++;
1223 	ump->softdep_accdeps++;
1224 	FREE_LOCK(ump);
1225 }
1226 
1227 static void
1228 workitem_reassign(item, newtype)
1229 	struct worklist *item;
1230 	int newtype;
1231 {
1232 	struct ufsmount *ump;
1233 
1234 	ump = VFSTOUFS(item->wk_mp);
1235 	LOCK_OWNED(ump);
1236 	KASSERT(ump->softdep_curdeps[item->wk_type] > 0,
1237 	    ("workitem_reassign: %s: softdep_curdeps[%s] going negative",
1238 	    VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1239 	ump->softdep_curdeps[item->wk_type] -= 1;
1240 	ump->softdep_curdeps[newtype] += 1;
1241 	KASSERT(dep_current[item->wk_type] > 0,
1242 	    ("workitem_reassign: %s: dep_current[%s] going negative",
1243 	    VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1244 	ACQUIRE_GBLLOCK(&lk);
1245 	dep_current[newtype]++;
1246 	dep_current[item->wk_type]--;
1247 	if (dep_current[newtype] > dep_highuse[newtype])
1248 		dep_highuse[newtype] = dep_current[newtype];
1249 	dep_total[newtype]++;
1250 	FREE_GBLLOCK(&lk);
1251 	item->wk_type = newtype;
1252 }
1253 
1254 /*
1255  * Workitem queue management
1256  */
1257 static int max_softdeps;	/* maximum number of structs before slowdown */
1258 static int tickdelay = 2;	/* number of ticks to pause during slowdown */
1259 static int proc_waiting;	/* tracks whether we have a timeout posted */
1260 static int *stat_countp;	/* statistic to count in proc_waiting timeout */
1261 static struct callout softdep_callout;
1262 static int req_clear_inodedeps;	/* syncer process flush some inodedeps */
1263 static int req_clear_remove;	/* syncer process flush some freeblks */
1264 static int softdep_flushcache = 0; /* Should we do BIO_FLUSH? */
1265 
1266 /*
1267  * runtime statistics
1268  */
1269 static int stat_flush_threads;	/* number of softdep flushing threads */
1270 static int stat_worklist_push;	/* number of worklist cleanups */
1271 static int stat_blk_limit_push;	/* number of times block limit neared */
1272 static int stat_ino_limit_push;	/* number of times inode limit neared */
1273 static int stat_blk_limit_hit;	/* number of times block slowdown imposed */
1274 static int stat_ino_limit_hit;	/* number of times inode slowdown imposed */
1275 static int stat_sync_limit_hit;	/* number of synchronous slowdowns imposed */
1276 static int stat_indir_blk_ptrs;	/* bufs redirtied as indir ptrs not written */
1277 static int stat_inode_bitmap;	/* bufs redirtied as inode bitmap not written */
1278 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
1279 static int stat_dir_entry;	/* bufs redirtied as dir entry cannot write */
1280 static int stat_jaddref;	/* bufs redirtied as ino bitmap can not write */
1281 static int stat_jnewblk;	/* bufs redirtied as blk bitmap can not write */
1282 static int stat_journal_min;	/* Times hit journal min threshold */
1283 static int stat_journal_low;	/* Times hit journal low threshold */
1284 static int stat_journal_wait;	/* Times blocked in jwait(). */
1285 static int stat_jwait_filepage;	/* Times blocked in jwait() for filepage. */
1286 static int stat_jwait_freeblks;	/* Times blocked in jwait() for freeblks. */
1287 static int stat_jwait_inode;	/* Times blocked in jwait() for inodes. */
1288 static int stat_jwait_newblk;	/* Times blocked in jwait() for newblks. */
1289 static int stat_cleanup_high_delay; /* Maximum cleanup delay (in ticks) */
1290 static int stat_cleanup_blkrequests; /* Number of block cleanup requests */
1291 static int stat_cleanup_inorequests; /* Number of inode cleanup requests */
1292 static int stat_cleanup_retries; /* Number of cleanups that needed to flush */
1293 static int stat_cleanup_failures; /* Number of cleanup requests that failed */
1294 static int stat_emptyjblocks; /* Number of potentially empty journal blocks */
1295 
1296 SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW,
1297     &max_softdeps, 0, "");
1298 SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW,
1299     &tickdelay, 0, "");
1300 SYSCTL_INT(_debug_softdep, OID_AUTO, flush_threads, CTLFLAG_RD,
1301     &stat_flush_threads, 0, "");
1302 SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push, CTLFLAG_RW,
1303     &stat_worklist_push, 0,"");
1304 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push, CTLFLAG_RW,
1305     &stat_blk_limit_push, 0,"");
1306 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push, CTLFLAG_RW,
1307     &stat_ino_limit_push, 0,"");
1308 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit, CTLFLAG_RW,
1309     &stat_blk_limit_hit, 0, "");
1310 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit, CTLFLAG_RW,
1311     &stat_ino_limit_hit, 0, "");
1312 SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit, CTLFLAG_RW,
1313     &stat_sync_limit_hit, 0, "");
1314 SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW,
1315     &stat_indir_blk_ptrs, 0, "");
1316 SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap, CTLFLAG_RW,
1317     &stat_inode_bitmap, 0, "");
1318 SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW,
1319     &stat_direct_blk_ptrs, 0, "");
1320 SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry, CTLFLAG_RW,
1321     &stat_dir_entry, 0, "");
1322 SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback, CTLFLAG_RW,
1323     &stat_jaddref, 0, "");
1324 SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback, CTLFLAG_RW,
1325     &stat_jnewblk, 0, "");
1326 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low, CTLFLAG_RW,
1327     &stat_journal_low, 0, "");
1328 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min, CTLFLAG_RW,
1329     &stat_journal_min, 0, "");
1330 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait, CTLFLAG_RW,
1331     &stat_journal_wait, 0, "");
1332 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage, CTLFLAG_RW,
1333     &stat_jwait_filepage, 0, "");
1334 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks, CTLFLAG_RW,
1335     &stat_jwait_freeblks, 0, "");
1336 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode, CTLFLAG_RW,
1337     &stat_jwait_inode, 0, "");
1338 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk, CTLFLAG_RW,
1339     &stat_jwait_newblk, 0, "");
1340 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_blkrequests, CTLFLAG_RW,
1341     &stat_cleanup_blkrequests, 0, "");
1342 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_inorequests, CTLFLAG_RW,
1343     &stat_cleanup_inorequests, 0, "");
1344 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_high_delay, CTLFLAG_RW,
1345     &stat_cleanup_high_delay, 0, "");
1346 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_retries, CTLFLAG_RW,
1347     &stat_cleanup_retries, 0, "");
1348 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_failures, CTLFLAG_RW,
1349     &stat_cleanup_failures, 0, "");
1350 SYSCTL_INT(_debug_softdep, OID_AUTO, flushcache, CTLFLAG_RW,
1351     &softdep_flushcache, 0, "");
1352 SYSCTL_INT(_debug_softdep, OID_AUTO, emptyjblocks, CTLFLAG_RD,
1353     &stat_emptyjblocks, 0, "");
1354 
1355 SYSCTL_DECL(_vfs_ffs);
1356 
1357 /* Whether to recompute the summary at mount time */
1358 static int compute_summary_at_mount = 0;
1359 SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW,
1360 	   &compute_summary_at_mount, 0, "Recompute summary at mount");
1361 static int print_threads = 0;
1362 SYSCTL_INT(_debug_softdep, OID_AUTO, print_threads, CTLFLAG_RW,
1363     &print_threads, 0, "Notify flusher thread start/stop");
1364 
1365 /* List of all filesystems mounted with soft updates */
1366 static TAILQ_HEAD(, mount_softdeps) softdepmounts;
1367 
1368 /*
1369  * This function cleans the worklist for a filesystem.
1370  * Each filesystem running with soft dependencies gets its own
1371  * thread to run in this function. The thread is started up in
1372  * softdep_mount and shutdown in softdep_unmount. They show up
1373  * as part of the kernel "bufdaemon" process whose process
1374  * entry is available in bufdaemonproc.
1375  */
1376 static int searchfailed;
1377 extern struct proc *bufdaemonproc;
1378 static void
1379 softdep_flush(addr)
1380 	void *addr;
1381 {
1382 	struct mount *mp;
1383 	struct thread *td;
1384 	struct ufsmount *ump;
1385 
1386 	td = curthread;
1387 	td->td_pflags |= TDP_NORUNNINGBUF;
1388 	mp = (struct mount *)addr;
1389 	ump = VFSTOUFS(mp);
1390 	atomic_add_int(&stat_flush_threads, 1);
1391 	ACQUIRE_LOCK(ump);
1392 	ump->softdep_flags &= ~FLUSH_STARTING;
1393 	wakeup(&ump->softdep_flushtd);
1394 	FREE_LOCK(ump);
1395 	if (print_threads) {
1396 		if (stat_flush_threads == 1)
1397 			printf("Running %s at pid %d\n", bufdaemonproc->p_comm,
1398 			    bufdaemonproc->p_pid);
1399 		printf("Start thread %s\n", td->td_name);
1400 	}
1401 	for (;;) {
1402 		while (softdep_process_worklist(mp, 0) > 0 ||
1403 		    (MOUNTEDSUJ(mp) &&
1404 		    VFSTOUFS(mp)->softdep_jblocks->jb_suspended))
1405 			kthread_suspend_check();
1406 		ACQUIRE_LOCK(ump);
1407 		if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
1408 			msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM,
1409 			    "sdflush", hz / 2);
1410 		ump->softdep_flags &= ~FLUSH_CLEANUP;
1411 		/*
1412 		 * Check to see if we are done and need to exit.
1413 		 */
1414 		if ((ump->softdep_flags & FLUSH_EXIT) == 0) {
1415 			FREE_LOCK(ump);
1416 			continue;
1417 		}
1418 		ump->softdep_flags &= ~FLUSH_EXIT;
1419 		FREE_LOCK(ump);
1420 		wakeup(&ump->softdep_flags);
1421 		if (print_threads)
1422 			printf("Stop thread %s: searchfailed %d, did cleanups %d\n", td->td_name, searchfailed, ump->um_softdep->sd_cleanups);
1423 		atomic_subtract_int(&stat_flush_threads, 1);
1424 		kthread_exit();
1425 		panic("kthread_exit failed\n");
1426 	}
1427 }
1428 
1429 static void
1430 worklist_speedup(mp)
1431 	struct mount *mp;
1432 {
1433 	struct ufsmount *ump;
1434 
1435 	ump = VFSTOUFS(mp);
1436 	LOCK_OWNED(ump);
1437 	if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
1438 		ump->softdep_flags |= FLUSH_CLEANUP;
1439 	wakeup(&ump->softdep_flushtd);
1440 }
1441 
1442 static int
1443 softdep_speedup(ump)
1444 	struct ufsmount *ump;
1445 {
1446 	struct ufsmount *altump;
1447 	struct mount_softdeps *sdp;
1448 
1449 	LOCK_OWNED(ump);
1450 	worklist_speedup(ump->um_mountp);
1451 	bd_speedup();
1452 	/*
1453 	 * If we have global shortages, then we need other
1454 	 * filesystems to help with the cleanup. Here we wakeup a
1455 	 * flusher thread for a filesystem that is over its fair
1456 	 * share of resources.
1457 	 */
1458 	if (req_clear_inodedeps || req_clear_remove) {
1459 		ACQUIRE_GBLLOCK(&lk);
1460 		TAILQ_FOREACH(sdp, &softdepmounts, sd_next) {
1461 			if ((altump = sdp->sd_ump) == ump)
1462 				continue;
1463 			if (((req_clear_inodedeps &&
1464 			    altump->softdep_curdeps[D_INODEDEP] >
1465 			    max_softdeps / stat_flush_threads) ||
1466 			    (req_clear_remove &&
1467 			    altump->softdep_curdeps[D_DIRREM] >
1468 			    (max_softdeps / 2) / stat_flush_threads)) &&
1469 			    TRY_ACQUIRE_LOCK(altump))
1470 				break;
1471 		}
1472 		if (sdp == NULL) {
1473 			searchfailed++;
1474 			FREE_GBLLOCK(&lk);
1475 		} else {
1476 			/*
1477 			 * Move to the end of the list so we pick a
1478 			 * different one on out next try.
1479 			 */
1480 			TAILQ_REMOVE(&softdepmounts, sdp, sd_next);
1481 			TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next);
1482 			FREE_GBLLOCK(&lk);
1483 			if ((altump->softdep_flags &
1484 			    (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
1485 				altump->softdep_flags |= FLUSH_CLEANUP;
1486 			altump->um_softdep->sd_cleanups++;
1487 			wakeup(&altump->softdep_flushtd);
1488 			FREE_LOCK(altump);
1489 		}
1490 	}
1491 	return (speedup_syncer());
1492 }
1493 
1494 /*
1495  * Add an item to the end of the work queue.
1496  * This routine requires that the lock be held.
1497  * This is the only routine that adds items to the list.
1498  * The following routine is the only one that removes items
1499  * and does so in order from first to last.
1500  */
1501 
1502 #define	WK_HEAD		0x0001	/* Add to HEAD. */
1503 #define	WK_NODELAY	0x0002	/* Process immediately. */
1504 
1505 static void
1506 add_to_worklist(wk, flags)
1507 	struct worklist *wk;
1508 	int flags;
1509 {
1510 	struct ufsmount *ump;
1511 
1512 	ump = VFSTOUFS(wk->wk_mp);
1513 	LOCK_OWNED(ump);
1514 	if (wk->wk_state & ONWORKLIST)
1515 		panic("add_to_worklist: %s(0x%X) already on list",
1516 		    TYPENAME(wk->wk_type), wk->wk_state);
1517 	wk->wk_state |= ONWORKLIST;
1518 	if (ump->softdep_on_worklist == 0) {
1519 		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1520 		ump->softdep_worklist_tail = wk;
1521 	} else if (flags & WK_HEAD) {
1522 		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1523 	} else {
1524 		LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list);
1525 		ump->softdep_worklist_tail = wk;
1526 	}
1527 	ump->softdep_on_worklist += 1;
1528 	if (flags & WK_NODELAY)
1529 		worklist_speedup(wk->wk_mp);
1530 }
1531 
1532 /*
1533  * Remove the item to be processed. If we are removing the last
1534  * item on the list, we need to recalculate the tail pointer.
1535  */
1536 static void
1537 remove_from_worklist(wk)
1538 	struct worklist *wk;
1539 {
1540 	struct ufsmount *ump;
1541 
1542 	ump = VFSTOUFS(wk->wk_mp);
1543 	if (ump->softdep_worklist_tail == wk)
1544 		ump->softdep_worklist_tail =
1545 		    (struct worklist *)wk->wk_list.le_prev;
1546 	WORKLIST_REMOVE(wk);
1547 	ump->softdep_on_worklist -= 1;
1548 }
1549 
1550 static void
1551 wake_worklist(wk)
1552 	struct worklist *wk;
1553 {
1554 	if (wk->wk_state & IOWAITING) {
1555 		wk->wk_state &= ~IOWAITING;
1556 		wakeup(wk);
1557 	}
1558 }
1559 
1560 static void
1561 wait_worklist(wk, wmesg)
1562 	struct worklist *wk;
1563 	char *wmesg;
1564 {
1565 	struct ufsmount *ump;
1566 
1567 	ump = VFSTOUFS(wk->wk_mp);
1568 	wk->wk_state |= IOWAITING;
1569 	msleep(wk, LOCK_PTR(ump), PVM, wmesg, 0);
1570 }
1571 
1572 /*
1573  * Process that runs once per second to handle items in the background queue.
1574  *
1575  * Note that we ensure that everything is done in the order in which they
1576  * appear in the queue. The code below depends on this property to ensure
1577  * that blocks of a file are freed before the inode itself is freed. This
1578  * ordering ensures that no new <vfsid, inum, lbn> triples will be generated
1579  * until all the old ones have been purged from the dependency lists.
1580  */
1581 static int
1582 softdep_process_worklist(mp, full)
1583 	struct mount *mp;
1584 	int full;
1585 {
1586 	int cnt, matchcnt;
1587 	struct ufsmount *ump;
1588 	long starttime;
1589 
1590 	KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp"));
1591 	if (MOUNTEDSOFTDEP(mp) == 0)
1592 		return (0);
1593 	matchcnt = 0;
1594 	ump = VFSTOUFS(mp);
1595 	ACQUIRE_LOCK(ump);
1596 	starttime = time_second;
1597 	softdep_process_journal(mp, NULL, full ? MNT_WAIT : 0);
1598 	check_clear_deps(mp);
1599 	while (ump->softdep_on_worklist > 0) {
1600 		if ((cnt = process_worklist_item(mp, 10, LK_NOWAIT)) == 0)
1601 			break;
1602 		else
1603 			matchcnt += cnt;
1604 		check_clear_deps(mp);
1605 		/*
1606 		 * We do not generally want to stop for buffer space, but if
1607 		 * we are really being a buffer hog, we will stop and wait.
1608 		 */
1609 		if (should_yield()) {
1610 			FREE_LOCK(ump);
1611 			kern_yield(PRI_USER);
1612 			bwillwrite();
1613 			ACQUIRE_LOCK(ump);
1614 		}
1615 		/*
1616 		 * Never allow processing to run for more than one
1617 		 * second. This gives the syncer thread the opportunity
1618 		 * to pause if appropriate.
1619 		 */
1620 		if (!full && starttime != time_second)
1621 			break;
1622 	}
1623 	if (full == 0)
1624 		journal_unsuspend(ump);
1625 	FREE_LOCK(ump);
1626 	return (matchcnt);
1627 }
1628 
1629 /*
1630  * Process all removes associated with a vnode if we are running out of
1631  * journal space.  Any other process which attempts to flush these will
1632  * be unable as we have the vnodes locked.
1633  */
1634 static void
1635 process_removes(vp)
1636 	struct vnode *vp;
1637 {
1638 	struct inodedep *inodedep;
1639 	struct dirrem *dirrem;
1640 	struct ufsmount *ump;
1641 	struct mount *mp;
1642 	ino_t inum;
1643 
1644 	mp = vp->v_mount;
1645 	ump = VFSTOUFS(mp);
1646 	LOCK_OWNED(ump);
1647 	inum = VTOI(vp)->i_number;
1648 	for (;;) {
1649 top:
1650 		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1651 			return;
1652 		LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext) {
1653 			/*
1654 			 * If another thread is trying to lock this vnode
1655 			 * it will fail but we must wait for it to do so
1656 			 * before we can proceed.
1657 			 */
1658 			if (dirrem->dm_state & INPROGRESS) {
1659 				wait_worklist(&dirrem->dm_list, "pwrwait");
1660 				goto top;
1661 			}
1662 			if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) ==
1663 			    (COMPLETE | ONWORKLIST))
1664 				break;
1665 		}
1666 		if (dirrem == NULL)
1667 			return;
1668 		remove_from_worklist(&dirrem->dm_list);
1669 		FREE_LOCK(ump);
1670 		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1671 			panic("process_removes: suspended filesystem");
1672 		handle_workitem_remove(dirrem, 0);
1673 		vn_finished_secondary_write(mp);
1674 		ACQUIRE_LOCK(ump);
1675 	}
1676 }
1677 
1678 /*
1679  * Process all truncations associated with a vnode if we are running out
1680  * of journal space.  This is called when the vnode lock is already held
1681  * and no other process can clear the truncation.  This function returns
1682  * a value greater than zero if it did any work.
1683  */
1684 static void
1685 process_truncates(vp)
1686 	struct vnode *vp;
1687 {
1688 	struct inodedep *inodedep;
1689 	struct freeblks *freeblks;
1690 	struct ufsmount *ump;
1691 	struct mount *mp;
1692 	ino_t inum;
1693 	int cgwait;
1694 
1695 	mp = vp->v_mount;
1696 	ump = VFSTOUFS(mp);
1697 	LOCK_OWNED(ump);
1698 	inum = VTOI(vp)->i_number;
1699 	for (;;) {
1700 		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1701 			return;
1702 		cgwait = 0;
1703 		TAILQ_FOREACH(freeblks, &inodedep->id_freeblklst, fb_next) {
1704 			/* Journal entries not yet written.  */
1705 			if (!LIST_EMPTY(&freeblks->fb_jblkdephd)) {
1706 				jwait(&LIST_FIRST(
1707 				    &freeblks->fb_jblkdephd)->jb_list,
1708 				    MNT_WAIT);
1709 				break;
1710 			}
1711 			/* Another thread is executing this item. */
1712 			if (freeblks->fb_state & INPROGRESS) {
1713 				wait_worklist(&freeblks->fb_list, "ptrwait");
1714 				break;
1715 			}
1716 			/* Freeblks is waiting on a inode write. */
1717 			if ((freeblks->fb_state & COMPLETE) == 0) {
1718 				FREE_LOCK(ump);
1719 				ffs_update(vp, 1);
1720 				ACQUIRE_LOCK(ump);
1721 				break;
1722 			}
1723 			if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST)) ==
1724 			    (ALLCOMPLETE | ONWORKLIST)) {
1725 				remove_from_worklist(&freeblks->fb_list);
1726 				freeblks->fb_state |= INPROGRESS;
1727 				FREE_LOCK(ump);
1728 				if (vn_start_secondary_write(NULL, &mp,
1729 				    V_NOWAIT))
1730 					panic("process_truncates: "
1731 					    "suspended filesystem");
1732 				handle_workitem_freeblocks(freeblks, 0);
1733 				vn_finished_secondary_write(mp);
1734 				ACQUIRE_LOCK(ump);
1735 				break;
1736 			}
1737 			if (freeblks->fb_cgwait)
1738 				cgwait++;
1739 		}
1740 		if (cgwait) {
1741 			FREE_LOCK(ump);
1742 			sync_cgs(mp, MNT_WAIT);
1743 			ffs_sync_snap(mp, MNT_WAIT);
1744 			ACQUIRE_LOCK(ump);
1745 			continue;
1746 		}
1747 		if (freeblks == NULL)
1748 			break;
1749 	}
1750 	return;
1751 }
1752 
1753 /*
1754  * Process one item on the worklist.
1755  */
1756 static int
1757 process_worklist_item(mp, target, flags)
1758 	struct mount *mp;
1759 	int target;
1760 	int flags;
1761 {
1762 	struct worklist sentinel;
1763 	struct worklist *wk;
1764 	struct ufsmount *ump;
1765 	int matchcnt;
1766 	int error;
1767 
1768 	KASSERT(mp != NULL, ("process_worklist_item: NULL mp"));
1769 	/*
1770 	 * If we are being called because of a process doing a
1771 	 * copy-on-write, then it is not safe to write as we may
1772 	 * recurse into the copy-on-write routine.
1773 	 */
1774 	if (curthread->td_pflags & TDP_COWINPROGRESS)
1775 		return (-1);
1776 	PHOLD(curproc);	/* Don't let the stack go away. */
1777 	ump = VFSTOUFS(mp);
1778 	LOCK_OWNED(ump);
1779 	matchcnt = 0;
1780 	sentinel.wk_mp = NULL;
1781 	sentinel.wk_type = D_SENTINEL;
1782 	LIST_INSERT_HEAD(&ump->softdep_workitem_pending, &sentinel, wk_list);
1783 	for (wk = LIST_NEXT(&sentinel, wk_list); wk != NULL;
1784 	    wk = LIST_NEXT(&sentinel, wk_list)) {
1785 		if (wk->wk_type == D_SENTINEL) {
1786 			LIST_REMOVE(&sentinel, wk_list);
1787 			LIST_INSERT_AFTER(wk, &sentinel, wk_list);
1788 			continue;
1789 		}
1790 		if (wk->wk_state & INPROGRESS)
1791 			panic("process_worklist_item: %p already in progress.",
1792 			    wk);
1793 		wk->wk_state |= INPROGRESS;
1794 		remove_from_worklist(wk);
1795 		FREE_LOCK(ump);
1796 		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1797 			panic("process_worklist_item: suspended filesystem");
1798 		switch (wk->wk_type) {
1799 		case D_DIRREM:
1800 			/* removal of a directory entry */
1801 			error = handle_workitem_remove(WK_DIRREM(wk), flags);
1802 			break;
1803 
1804 		case D_FREEBLKS:
1805 			/* releasing blocks and/or fragments from a file */
1806 			error = handle_workitem_freeblocks(WK_FREEBLKS(wk),
1807 			    flags);
1808 			break;
1809 
1810 		case D_FREEFRAG:
1811 			/* releasing a fragment when replaced as a file grows */
1812 			handle_workitem_freefrag(WK_FREEFRAG(wk));
1813 			error = 0;
1814 			break;
1815 
1816 		case D_FREEFILE:
1817 			/* releasing an inode when its link count drops to 0 */
1818 			handle_workitem_freefile(WK_FREEFILE(wk));
1819 			error = 0;
1820 			break;
1821 
1822 		default:
1823 			panic("%s_process_worklist: Unknown type %s",
1824 			    "softdep", TYPENAME(wk->wk_type));
1825 			/* NOTREACHED */
1826 		}
1827 		vn_finished_secondary_write(mp);
1828 		ACQUIRE_LOCK(ump);
1829 		if (error == 0) {
1830 			if (++matchcnt == target)
1831 				break;
1832 			continue;
1833 		}
1834 		/*
1835 		 * We have to retry the worklist item later.  Wake up any
1836 		 * waiters who may be able to complete it immediately and
1837 		 * add the item back to the head so we don't try to execute
1838 		 * it again.
1839 		 */
1840 		wk->wk_state &= ~INPROGRESS;
1841 		wake_worklist(wk);
1842 		add_to_worklist(wk, WK_HEAD);
1843 	}
1844 	/* Sentinal could've become the tail from remove_from_worklist. */
1845 	if (ump->softdep_worklist_tail == &sentinel)
1846 		ump->softdep_worklist_tail =
1847 		    (struct worklist *)sentinel.wk_list.le_prev;
1848 	LIST_REMOVE(&sentinel, wk_list);
1849 	PRELE(curproc);
1850 	return (matchcnt);
1851 }
1852 
1853 /*
1854  * Move dependencies from one buffer to another.
1855  */
1856 int
1857 softdep_move_dependencies(oldbp, newbp)
1858 	struct buf *oldbp;
1859 	struct buf *newbp;
1860 {
1861 	struct worklist *wk, *wktail;
1862 	struct ufsmount *ump;
1863 	int dirty;
1864 
1865 	if ((wk = LIST_FIRST(&oldbp->b_dep)) == NULL)
1866 		return (0);
1867 	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
1868 	    ("softdep_move_dependencies called on non-softdep filesystem"));
1869 	dirty = 0;
1870 	wktail = NULL;
1871 	ump = VFSTOUFS(wk->wk_mp);
1872 	ACQUIRE_LOCK(ump);
1873 	while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) {
1874 		LIST_REMOVE(wk, wk_list);
1875 		if (wk->wk_type == D_BMSAFEMAP &&
1876 		    bmsafemap_backgroundwrite(WK_BMSAFEMAP(wk), newbp))
1877 			dirty = 1;
1878 		if (wktail == NULL)
1879 			LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list);
1880 		else
1881 			LIST_INSERT_AFTER(wktail, wk, wk_list);
1882 		wktail = wk;
1883 	}
1884 	FREE_LOCK(ump);
1885 
1886 	return (dirty);
1887 }
1888 
1889 /*
1890  * Purge the work list of all items associated with a particular mount point.
1891  */
1892 int
1893 softdep_flushworklist(oldmnt, countp, td)
1894 	struct mount *oldmnt;
1895 	int *countp;
1896 	struct thread *td;
1897 {
1898 	struct vnode *devvp;
1899 	struct ufsmount *ump;
1900 	int count, error;
1901 
1902 	/*
1903 	 * Alternately flush the block device associated with the mount
1904 	 * point and process any dependencies that the flushing
1905 	 * creates. We continue until no more worklist dependencies
1906 	 * are found.
1907 	 */
1908 	*countp = 0;
1909 	error = 0;
1910 	ump = VFSTOUFS(oldmnt);
1911 	devvp = ump->um_devvp;
1912 	while ((count = softdep_process_worklist(oldmnt, 1)) > 0) {
1913 		*countp += count;
1914 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1915 		error = VOP_FSYNC(devvp, MNT_WAIT, td);
1916 		VOP_UNLOCK(devvp, 0);
1917 		if (error != 0)
1918 			break;
1919 	}
1920 	return (error);
1921 }
1922 
1923 #define	SU_WAITIDLE_RETRIES	20
1924 static int
1925 softdep_waitidle(struct mount *mp, int flags __unused)
1926 {
1927 	struct ufsmount *ump;
1928 	struct vnode *devvp;
1929 	struct thread *td;
1930 	int error, i;
1931 
1932 	ump = VFSTOUFS(mp);
1933 	devvp = ump->um_devvp;
1934 	td = curthread;
1935 	error = 0;
1936 	ACQUIRE_LOCK(ump);
1937 	for (i = 0; i < SU_WAITIDLE_RETRIES && ump->softdep_deps != 0; i++) {
1938 		ump->softdep_req = 1;
1939 		KASSERT((flags & FORCECLOSE) == 0 ||
1940 		    ump->softdep_on_worklist == 0,
1941 		    ("softdep_waitidle: work added after flush"));
1942 		msleep(&ump->softdep_deps, LOCK_PTR(ump), PVM | PDROP,
1943 		    "softdeps", 10 * hz);
1944 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1945 		error = VOP_FSYNC(devvp, MNT_WAIT, td);
1946 		VOP_UNLOCK(devvp, 0);
1947 		ACQUIRE_LOCK(ump);
1948 		if (error != 0)
1949 			break;
1950 	}
1951 	ump->softdep_req = 0;
1952 	if (i == SU_WAITIDLE_RETRIES && error == 0 && ump->softdep_deps != 0) {
1953 		error = EBUSY;
1954 		printf("softdep_waitidle: Failed to flush worklist for %p\n",
1955 		    mp);
1956 	}
1957 	FREE_LOCK(ump);
1958 	return (error);
1959 }
1960 
1961 /*
1962  * Flush all vnodes and worklist items associated with a specified mount point.
1963  */
1964 int
1965 softdep_flushfiles(oldmnt, flags, td)
1966 	struct mount *oldmnt;
1967 	int flags;
1968 	struct thread *td;
1969 {
1970 #ifdef QUOTA
1971 	struct ufsmount *ump;
1972 	int i;
1973 #endif
1974 	int error, early, depcount, loopcnt, retry_flush_count, retry;
1975 	int morework;
1976 
1977 	KASSERT(MOUNTEDSOFTDEP(oldmnt) != 0,
1978 	    ("softdep_flushfiles called on non-softdep filesystem"));
1979 	loopcnt = 10;
1980 	retry_flush_count = 3;
1981 retry_flush:
1982 	error = 0;
1983 
1984 	/*
1985 	 * Alternately flush the vnodes associated with the mount
1986 	 * point and process any dependencies that the flushing
1987 	 * creates. In theory, this loop can happen at most twice,
1988 	 * but we give it a few extra just to be sure.
1989 	 */
1990 	for (; loopcnt > 0; loopcnt--) {
1991 		/*
1992 		 * Do another flush in case any vnodes were brought in
1993 		 * as part of the cleanup operations.
1994 		 */
1995 		early = retry_flush_count == 1 || (oldmnt->mnt_kern_flag &
1996 		    MNTK_UNMOUNT) == 0 ? 0 : EARLYFLUSH;
1997 		if ((error = ffs_flushfiles(oldmnt, flags | early, td)) != 0)
1998 			break;
1999 		if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 ||
2000 		    depcount == 0)
2001 			break;
2002 	}
2003 	/*
2004 	 * If we are unmounting then it is an error to fail. If we
2005 	 * are simply trying to downgrade to read-only, then filesystem
2006 	 * activity can keep us busy forever, so we just fail with EBUSY.
2007 	 */
2008 	if (loopcnt == 0) {
2009 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT)
2010 			panic("softdep_flushfiles: looping");
2011 		error = EBUSY;
2012 	}
2013 	if (!error)
2014 		error = softdep_waitidle(oldmnt, flags);
2015 	if (!error) {
2016 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) {
2017 			retry = 0;
2018 			MNT_ILOCK(oldmnt);
2019 			KASSERT((oldmnt->mnt_kern_flag & MNTK_NOINSMNTQ) != 0,
2020 			    ("softdep_flushfiles: !MNTK_NOINSMNTQ"));
2021 			morework = oldmnt->mnt_nvnodelistsize > 0;
2022 #ifdef QUOTA
2023 			ump = VFSTOUFS(oldmnt);
2024 			UFS_LOCK(ump);
2025 			for (i = 0; i < MAXQUOTAS; i++) {
2026 				if (ump->um_quotas[i] != NULLVP)
2027 					morework = 1;
2028 			}
2029 			UFS_UNLOCK(ump);
2030 #endif
2031 			if (morework) {
2032 				if (--retry_flush_count > 0) {
2033 					retry = 1;
2034 					loopcnt = 3;
2035 				} else
2036 					error = EBUSY;
2037 			}
2038 			MNT_IUNLOCK(oldmnt);
2039 			if (retry)
2040 				goto retry_flush;
2041 		}
2042 	}
2043 	return (error);
2044 }
2045 
2046 /*
2047  * Structure hashing.
2048  *
2049  * There are four types of structures that can be looked up:
2050  *	1) pagedep structures identified by mount point, inode number,
2051  *	   and logical block.
2052  *	2) inodedep structures identified by mount point and inode number.
2053  *	3) newblk structures identified by mount point and
2054  *	   physical block number.
2055  *	4) bmsafemap structures identified by mount point and
2056  *	   cylinder group number.
2057  *
2058  * The "pagedep" and "inodedep" dependency structures are hashed
2059  * separately from the file blocks and inodes to which they correspond.
2060  * This separation helps when the in-memory copy of an inode or
2061  * file block must be replaced. It also obviates the need to access
2062  * an inode or file page when simply updating (or de-allocating)
2063  * dependency structures. Lookup of newblk structures is needed to
2064  * find newly allocated blocks when trying to associate them with
2065  * their allocdirect or allocindir structure.
2066  *
2067  * The lookup routines optionally create and hash a new instance when
2068  * an existing entry is not found. The bmsafemap lookup routine always
2069  * allocates a new structure if an existing one is not found.
2070  */
2071 #define DEPALLOC	0x0001	/* allocate structure if lookup fails */
2072 
2073 /*
2074  * Structures and routines associated with pagedep caching.
2075  */
2076 #define	PAGEDEP_HASH(ump, inum, lbn) \
2077 	(&(ump)->pagedep_hashtbl[((inum) + (lbn)) & (ump)->pagedep_hash_size])
2078 
2079 static int
2080 pagedep_find(pagedephd, ino, lbn, pagedeppp)
2081 	struct pagedep_hashhead *pagedephd;
2082 	ino_t ino;
2083 	ufs_lbn_t lbn;
2084 	struct pagedep **pagedeppp;
2085 {
2086 	struct pagedep *pagedep;
2087 
2088 	LIST_FOREACH(pagedep, pagedephd, pd_hash) {
2089 		if (ino == pagedep->pd_ino && lbn == pagedep->pd_lbn) {
2090 			*pagedeppp = pagedep;
2091 			return (1);
2092 		}
2093 	}
2094 	*pagedeppp = NULL;
2095 	return (0);
2096 }
2097 /*
2098  * Look up a pagedep. Return 1 if found, 0 otherwise.
2099  * If not found, allocate if DEPALLOC flag is passed.
2100  * Found or allocated entry is returned in pagedeppp.
2101  * This routine must be called with splbio interrupts blocked.
2102  */
2103 static int
2104 pagedep_lookup(mp, bp, ino, lbn, flags, pagedeppp)
2105 	struct mount *mp;
2106 	struct buf *bp;
2107 	ino_t ino;
2108 	ufs_lbn_t lbn;
2109 	int flags;
2110 	struct pagedep **pagedeppp;
2111 {
2112 	struct pagedep *pagedep;
2113 	struct pagedep_hashhead *pagedephd;
2114 	struct worklist *wk;
2115 	struct ufsmount *ump;
2116 	int ret;
2117 	int i;
2118 
2119 	ump = VFSTOUFS(mp);
2120 	LOCK_OWNED(ump);
2121 	if (bp) {
2122 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
2123 			if (wk->wk_type == D_PAGEDEP) {
2124 				*pagedeppp = WK_PAGEDEP(wk);
2125 				return (1);
2126 			}
2127 		}
2128 	}
2129 	pagedephd = PAGEDEP_HASH(ump, ino, lbn);
2130 	ret = pagedep_find(pagedephd, ino, lbn, pagedeppp);
2131 	if (ret) {
2132 		if (((*pagedeppp)->pd_state & ONWORKLIST) == 0 && bp)
2133 			WORKLIST_INSERT(&bp->b_dep, &(*pagedeppp)->pd_list);
2134 		return (1);
2135 	}
2136 	if ((flags & DEPALLOC) == 0)
2137 		return (0);
2138 	FREE_LOCK(ump);
2139 	pagedep = malloc(sizeof(struct pagedep),
2140 	    M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO);
2141 	workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp);
2142 	ACQUIRE_LOCK(ump);
2143 	ret = pagedep_find(pagedephd, ino, lbn, pagedeppp);
2144 	if (*pagedeppp) {
2145 		/*
2146 		 * This should never happen since we only create pagedeps
2147 		 * with the vnode lock held.  Could be an assert.
2148 		 */
2149 		WORKITEM_FREE(pagedep, D_PAGEDEP);
2150 		return (ret);
2151 	}
2152 	pagedep->pd_ino = ino;
2153 	pagedep->pd_lbn = lbn;
2154 	LIST_INIT(&pagedep->pd_dirremhd);
2155 	LIST_INIT(&pagedep->pd_pendinghd);
2156 	for (i = 0; i < DAHASHSZ; i++)
2157 		LIST_INIT(&pagedep->pd_diraddhd[i]);
2158 	LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
2159 	WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
2160 	*pagedeppp = pagedep;
2161 	return (0);
2162 }
2163 
2164 /*
2165  * Structures and routines associated with inodedep caching.
2166  */
2167 #define	INODEDEP_HASH(ump, inum) \
2168       (&(ump)->inodedep_hashtbl[(inum) & (ump)->inodedep_hash_size])
2169 
2170 static int
2171 inodedep_find(inodedephd, inum, inodedeppp)
2172 	struct inodedep_hashhead *inodedephd;
2173 	ino_t inum;
2174 	struct inodedep **inodedeppp;
2175 {
2176 	struct inodedep *inodedep;
2177 
2178 	LIST_FOREACH(inodedep, inodedephd, id_hash)
2179 		if (inum == inodedep->id_ino)
2180 			break;
2181 	if (inodedep) {
2182 		*inodedeppp = inodedep;
2183 		return (1);
2184 	}
2185 	*inodedeppp = NULL;
2186 
2187 	return (0);
2188 }
2189 /*
2190  * Look up an inodedep. Return 1 if found, 0 if not found.
2191  * If not found, allocate if DEPALLOC flag is passed.
2192  * Found or allocated entry is returned in inodedeppp.
2193  * This routine must be called with splbio interrupts blocked.
2194  */
2195 static int
2196 inodedep_lookup(mp, inum, flags, inodedeppp)
2197 	struct mount *mp;
2198 	ino_t inum;
2199 	int flags;
2200 	struct inodedep **inodedeppp;
2201 {
2202 	struct inodedep *inodedep;
2203 	struct inodedep_hashhead *inodedephd;
2204 	struct ufsmount *ump;
2205 	struct fs *fs;
2206 
2207 	ump = VFSTOUFS(mp);
2208 	LOCK_OWNED(ump);
2209 	fs = ump->um_fs;
2210 	inodedephd = INODEDEP_HASH(ump, inum);
2211 
2212 	if (inodedep_find(inodedephd, inum, inodedeppp))
2213 		return (1);
2214 	if ((flags & DEPALLOC) == 0)
2215 		return (0);
2216 	/*
2217 	 * If the system is over its limit and our filesystem is
2218 	 * responsible for more than our share of that usage and
2219 	 * we are not in a rush, request some inodedep cleanup.
2220 	 */
2221 	if (softdep_excess_items(ump, D_INODEDEP))
2222 		schedule_cleanup(mp);
2223 	else
2224 		FREE_LOCK(ump);
2225 	inodedep = malloc(sizeof(struct inodedep),
2226 		M_INODEDEP, M_SOFTDEP_FLAGS);
2227 	workitem_alloc(&inodedep->id_list, D_INODEDEP, mp);
2228 	ACQUIRE_LOCK(ump);
2229 	if (inodedep_find(inodedephd, inum, inodedeppp)) {
2230 		WORKITEM_FREE(inodedep, D_INODEDEP);
2231 		return (1);
2232 	}
2233 	inodedep->id_fs = fs;
2234 	inodedep->id_ino = inum;
2235 	inodedep->id_state = ALLCOMPLETE;
2236 	inodedep->id_nlinkdelta = 0;
2237 	inodedep->id_savedino1 = NULL;
2238 	inodedep->id_savedsize = -1;
2239 	inodedep->id_savedextsize = -1;
2240 	inodedep->id_savednlink = -1;
2241 	inodedep->id_bmsafemap = NULL;
2242 	inodedep->id_mkdiradd = NULL;
2243 	LIST_INIT(&inodedep->id_dirremhd);
2244 	LIST_INIT(&inodedep->id_pendinghd);
2245 	LIST_INIT(&inodedep->id_inowait);
2246 	LIST_INIT(&inodedep->id_bufwait);
2247 	TAILQ_INIT(&inodedep->id_inoreflst);
2248 	TAILQ_INIT(&inodedep->id_inoupdt);
2249 	TAILQ_INIT(&inodedep->id_newinoupdt);
2250 	TAILQ_INIT(&inodedep->id_extupdt);
2251 	TAILQ_INIT(&inodedep->id_newextupdt);
2252 	TAILQ_INIT(&inodedep->id_freeblklst);
2253 	LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
2254 	*inodedeppp = inodedep;
2255 	return (0);
2256 }
2257 
2258 /*
2259  * Structures and routines associated with newblk caching.
2260  */
2261 #define	NEWBLK_HASH(ump, inum) \
2262 	(&(ump)->newblk_hashtbl[(inum) & (ump)->newblk_hash_size])
2263 
2264 static int
2265 newblk_find(newblkhd, newblkno, flags, newblkpp)
2266 	struct newblk_hashhead *newblkhd;
2267 	ufs2_daddr_t newblkno;
2268 	int flags;
2269 	struct newblk **newblkpp;
2270 {
2271 	struct newblk *newblk;
2272 
2273 	LIST_FOREACH(newblk, newblkhd, nb_hash) {
2274 		if (newblkno != newblk->nb_newblkno)
2275 			continue;
2276 		/*
2277 		 * If we're creating a new dependency don't match those that
2278 		 * have already been converted to allocdirects.  This is for
2279 		 * a frag extend.
2280 		 */
2281 		if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK)
2282 			continue;
2283 		break;
2284 	}
2285 	if (newblk) {
2286 		*newblkpp = newblk;
2287 		return (1);
2288 	}
2289 	*newblkpp = NULL;
2290 	return (0);
2291 }
2292 
2293 /*
2294  * Look up a newblk. Return 1 if found, 0 if not found.
2295  * If not found, allocate if DEPALLOC flag is passed.
2296  * Found or allocated entry is returned in newblkpp.
2297  */
2298 static int
2299 newblk_lookup(mp, newblkno, flags, newblkpp)
2300 	struct mount *mp;
2301 	ufs2_daddr_t newblkno;
2302 	int flags;
2303 	struct newblk **newblkpp;
2304 {
2305 	struct newblk *newblk;
2306 	struct newblk_hashhead *newblkhd;
2307 	struct ufsmount *ump;
2308 
2309 	ump = VFSTOUFS(mp);
2310 	LOCK_OWNED(ump);
2311 	newblkhd = NEWBLK_HASH(ump, newblkno);
2312 	if (newblk_find(newblkhd, newblkno, flags, newblkpp))
2313 		return (1);
2314 	if ((flags & DEPALLOC) == 0)
2315 		return (0);
2316 	if (softdep_excess_items(ump, D_NEWBLK) ||
2317 	    softdep_excess_items(ump, D_ALLOCDIRECT) ||
2318 	    softdep_excess_items(ump, D_ALLOCINDIR))
2319 		schedule_cleanup(mp);
2320 	else
2321 		FREE_LOCK(ump);
2322 	newblk = malloc(sizeof(union allblk), M_NEWBLK,
2323 	    M_SOFTDEP_FLAGS | M_ZERO);
2324 	workitem_alloc(&newblk->nb_list, D_NEWBLK, mp);
2325 	ACQUIRE_LOCK(ump);
2326 	if (newblk_find(newblkhd, newblkno, flags, newblkpp)) {
2327 		WORKITEM_FREE(newblk, D_NEWBLK);
2328 		return (1);
2329 	}
2330 	newblk->nb_freefrag = NULL;
2331 	LIST_INIT(&newblk->nb_indirdeps);
2332 	LIST_INIT(&newblk->nb_newdirblk);
2333 	LIST_INIT(&newblk->nb_jwork);
2334 	newblk->nb_state = ATTACHED;
2335 	newblk->nb_newblkno = newblkno;
2336 	LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
2337 	*newblkpp = newblk;
2338 	return (0);
2339 }
2340 
2341 /*
2342  * Structures and routines associated with freed indirect block caching.
2343  */
2344 #define	INDIR_HASH(ump, blkno) \
2345 	(&(ump)->indir_hashtbl[(blkno) & (ump)->indir_hash_size])
2346 
2347 /*
2348  * Lookup an indirect block in the indir hash table.  The freework is
2349  * removed and potentially freed.  The caller must do a blocking journal
2350  * write before writing to the blkno.
2351  */
2352 static int
2353 indirblk_lookup(mp, blkno)
2354 	struct mount *mp;
2355 	ufs2_daddr_t blkno;
2356 {
2357 	struct freework *freework;
2358 	struct indir_hashhead *wkhd;
2359 	struct ufsmount *ump;
2360 
2361 	ump = VFSTOUFS(mp);
2362 	wkhd = INDIR_HASH(ump, blkno);
2363 	TAILQ_FOREACH(freework, wkhd, fw_next) {
2364 		if (freework->fw_blkno != blkno)
2365 			continue;
2366 		indirblk_remove(freework);
2367 		return (1);
2368 	}
2369 	return (0);
2370 }
2371 
2372 /*
2373  * Insert an indirect block represented by freework into the indirblk
2374  * hash table so that it may prevent the block from being re-used prior
2375  * to the journal being written.
2376  */
2377 static void
2378 indirblk_insert(freework)
2379 	struct freework *freework;
2380 {
2381 	struct jblocks *jblocks;
2382 	struct jseg *jseg;
2383 	struct ufsmount *ump;
2384 
2385 	ump = VFSTOUFS(freework->fw_list.wk_mp);
2386 	jblocks = ump->softdep_jblocks;
2387 	jseg = TAILQ_LAST(&jblocks->jb_segs, jseglst);
2388 	if (jseg == NULL)
2389 		return;
2390 
2391 	LIST_INSERT_HEAD(&jseg->js_indirs, freework, fw_segs);
2392 	TAILQ_INSERT_HEAD(INDIR_HASH(ump, freework->fw_blkno), freework,
2393 	    fw_next);
2394 	freework->fw_state &= ~DEPCOMPLETE;
2395 }
2396 
2397 static void
2398 indirblk_remove(freework)
2399 	struct freework *freework;
2400 {
2401 	struct ufsmount *ump;
2402 
2403 	ump = VFSTOUFS(freework->fw_list.wk_mp);
2404 	LIST_REMOVE(freework, fw_segs);
2405 	TAILQ_REMOVE(INDIR_HASH(ump, freework->fw_blkno), freework, fw_next);
2406 	freework->fw_state |= DEPCOMPLETE;
2407 	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
2408 		WORKITEM_FREE(freework, D_FREEWORK);
2409 }
2410 
2411 /*
2412  * Executed during filesystem system initialization before
2413  * mounting any filesystems.
2414  */
2415 void
2416 softdep_initialize()
2417 {
2418 
2419 	TAILQ_INIT(&softdepmounts);
2420 #ifdef __LP64__
2421 	max_softdeps = desiredvnodes * 4;
2422 #else
2423 	max_softdeps = desiredvnodes * 2;
2424 #endif
2425 
2426 	/* initialise bioops hack */
2427 	bioops.io_start = softdep_disk_io_initiation;
2428 	bioops.io_complete = softdep_disk_write_complete;
2429 	bioops.io_deallocate = softdep_deallocate_dependencies;
2430 	bioops.io_countdeps = softdep_count_dependencies;
2431 	softdep_ast_cleanup = softdep_ast_cleanup_proc;
2432 
2433 	/* Initialize the callout with an mtx. */
2434 	callout_init_mtx(&softdep_callout, &lk, 0);
2435 }
2436 
2437 /*
2438  * Executed after all filesystems have been unmounted during
2439  * filesystem module unload.
2440  */
2441 void
2442 softdep_uninitialize()
2443 {
2444 
2445 	/* clear bioops hack */
2446 	bioops.io_start = NULL;
2447 	bioops.io_complete = NULL;
2448 	bioops.io_deallocate = NULL;
2449 	bioops.io_countdeps = NULL;
2450 	softdep_ast_cleanup = NULL;
2451 
2452 	callout_drain(&softdep_callout);
2453 }
2454 
2455 /*
2456  * Called at mount time to notify the dependency code that a
2457  * filesystem wishes to use it.
2458  */
2459 int
2460 softdep_mount(devvp, mp, fs, cred)
2461 	struct vnode *devvp;
2462 	struct mount *mp;
2463 	struct fs *fs;
2464 	struct ucred *cred;
2465 {
2466 	struct csum_total cstotal;
2467 	struct mount_softdeps *sdp;
2468 	struct ufsmount *ump;
2469 	struct cg *cgp;
2470 	struct buf *bp;
2471 	u_int cyl, i;
2472 	int error;
2473 
2474 	sdp = malloc(sizeof(struct mount_softdeps), M_MOUNTDATA,
2475 	    M_WAITOK | M_ZERO);
2476 	MNT_ILOCK(mp);
2477 	mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP;
2478 	if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) {
2479 		mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) |
2480 			MNTK_SOFTDEP | MNTK_NOASYNC;
2481 	}
2482 	ump = VFSTOUFS(mp);
2483 	ump->um_softdep = sdp;
2484 	MNT_IUNLOCK(mp);
2485 	rw_init(LOCK_PTR(ump), "Per-Filesystem Softdep Lock");
2486 	sdp->sd_ump = ump;
2487 	LIST_INIT(&ump->softdep_workitem_pending);
2488 	LIST_INIT(&ump->softdep_journal_pending);
2489 	TAILQ_INIT(&ump->softdep_unlinked);
2490 	LIST_INIT(&ump->softdep_dirtycg);
2491 	ump->softdep_worklist_tail = NULL;
2492 	ump->softdep_on_worklist = 0;
2493 	ump->softdep_deps = 0;
2494 	LIST_INIT(&ump->softdep_mkdirlisthd);
2495 	ump->pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP,
2496 	    &ump->pagedep_hash_size);
2497 	ump->pagedep_nextclean = 0;
2498 	ump->inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP,
2499 	    &ump->inodedep_hash_size);
2500 	ump->inodedep_nextclean = 0;
2501 	ump->newblk_hashtbl = hashinit(max_softdeps / 2,  M_NEWBLK,
2502 	    &ump->newblk_hash_size);
2503 	ump->bmsafemap_hashtbl = hashinit(1024, M_BMSAFEMAP,
2504 	    &ump->bmsafemap_hash_size);
2505 	i = 1 << (ffs(desiredvnodes / 10) - 1);
2506 	ump->indir_hashtbl = malloc(i * sizeof(struct indir_hashhead),
2507 	    M_FREEWORK, M_WAITOK);
2508 	ump->indir_hash_size = i - 1;
2509 	for (i = 0; i <= ump->indir_hash_size; i++)
2510 		TAILQ_INIT(&ump->indir_hashtbl[i]);
2511 	ACQUIRE_GBLLOCK(&lk);
2512 	TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next);
2513 	FREE_GBLLOCK(&lk);
2514 	if ((fs->fs_flags & FS_SUJ) &&
2515 	    (error = journal_mount(mp, fs, cred)) != 0) {
2516 		printf("Failed to start journal: %d\n", error);
2517 		softdep_unmount(mp);
2518 		return (error);
2519 	}
2520 	/*
2521 	 * Start our flushing thread in the bufdaemon process.
2522 	 */
2523 	ACQUIRE_LOCK(ump);
2524 	ump->softdep_flags |= FLUSH_STARTING;
2525 	FREE_LOCK(ump);
2526 	kproc_kthread_add(&softdep_flush, mp, &bufdaemonproc,
2527 	    &ump->softdep_flushtd, 0, 0, "softdepflush", "%s worker",
2528 	    mp->mnt_stat.f_mntonname);
2529 	ACQUIRE_LOCK(ump);
2530 	while ((ump->softdep_flags & FLUSH_STARTING) != 0) {
2531 		msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM, "sdstart",
2532 		    hz / 2);
2533 	}
2534 	FREE_LOCK(ump);
2535 	/*
2536 	 * When doing soft updates, the counters in the
2537 	 * superblock may have gotten out of sync. Recomputation
2538 	 * can take a long time and can be deferred for background
2539 	 * fsck.  However, the old behavior of scanning the cylinder
2540 	 * groups and recalculating them at mount time is available
2541 	 * by setting vfs.ffs.compute_summary_at_mount to one.
2542 	 */
2543 	if (compute_summary_at_mount == 0 || fs->fs_clean != 0)
2544 		return (0);
2545 	bzero(&cstotal, sizeof cstotal);
2546 	for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
2547 		if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)),
2548 		    fs->fs_cgsize, cred, &bp)) != 0) {
2549 			brelse(bp);
2550 			softdep_unmount(mp);
2551 			return (error);
2552 		}
2553 		cgp = (struct cg *)bp->b_data;
2554 		cstotal.cs_nffree += cgp->cg_cs.cs_nffree;
2555 		cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree;
2556 		cstotal.cs_nifree += cgp->cg_cs.cs_nifree;
2557 		cstotal.cs_ndir += cgp->cg_cs.cs_ndir;
2558 		fs->fs_cs(fs, cyl) = cgp->cg_cs;
2559 		brelse(bp);
2560 	}
2561 #ifdef DEBUG
2562 	if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
2563 		printf("%s: superblock summary recomputed\n", fs->fs_fsmnt);
2564 #endif
2565 	bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
2566 	return (0);
2567 }
2568 
2569 void
2570 softdep_unmount(mp)
2571 	struct mount *mp;
2572 {
2573 	struct ufsmount *ump;
2574 #ifdef INVARIANTS
2575 	int i;
2576 #endif
2577 
2578 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
2579 	    ("softdep_unmount called on non-softdep filesystem"));
2580 	ump = VFSTOUFS(mp);
2581 	MNT_ILOCK(mp);
2582 	mp->mnt_flag &= ~MNT_SOFTDEP;
2583 	if (MOUNTEDSUJ(mp) == 0) {
2584 		MNT_IUNLOCK(mp);
2585 	} else {
2586 		mp->mnt_flag &= ~MNT_SUJ;
2587 		MNT_IUNLOCK(mp);
2588 		journal_unmount(ump);
2589 	}
2590 	/*
2591 	 * Shut down our flushing thread. Check for NULL is if
2592 	 * softdep_mount errors out before the thread has been created.
2593 	 */
2594 	if (ump->softdep_flushtd != NULL) {
2595 		ACQUIRE_LOCK(ump);
2596 		ump->softdep_flags |= FLUSH_EXIT;
2597 		wakeup(&ump->softdep_flushtd);
2598 		msleep(&ump->softdep_flags, LOCK_PTR(ump), PVM | PDROP,
2599 		    "sdwait", 0);
2600 		KASSERT((ump->softdep_flags & FLUSH_EXIT) == 0,
2601 		    ("Thread shutdown failed"));
2602 	}
2603 	/*
2604 	 * Free up our resources.
2605 	 */
2606 	ACQUIRE_GBLLOCK(&lk);
2607 	TAILQ_REMOVE(&softdepmounts, ump->um_softdep, sd_next);
2608 	FREE_GBLLOCK(&lk);
2609 	rw_destroy(LOCK_PTR(ump));
2610 	hashdestroy(ump->pagedep_hashtbl, M_PAGEDEP, ump->pagedep_hash_size);
2611 	hashdestroy(ump->inodedep_hashtbl, M_INODEDEP, ump->inodedep_hash_size);
2612 	hashdestroy(ump->newblk_hashtbl, M_NEWBLK, ump->newblk_hash_size);
2613 	hashdestroy(ump->bmsafemap_hashtbl, M_BMSAFEMAP,
2614 	    ump->bmsafemap_hash_size);
2615 	free(ump->indir_hashtbl, M_FREEWORK);
2616 #ifdef INVARIANTS
2617 	for (i = 0; i <= D_LAST; i++)
2618 		KASSERT(ump->softdep_curdeps[i] == 0,
2619 		    ("Unmount %s: Dep type %s != 0 (%ld)", ump->um_fs->fs_fsmnt,
2620 		    TYPENAME(i), ump->softdep_curdeps[i]));
2621 #endif
2622 	free(ump->um_softdep, M_MOUNTDATA);
2623 }
2624 
2625 static struct jblocks *
2626 jblocks_create(void)
2627 {
2628 	struct jblocks *jblocks;
2629 
2630 	jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO);
2631 	TAILQ_INIT(&jblocks->jb_segs);
2632 	jblocks->jb_avail = 10;
2633 	jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2634 	    M_JBLOCKS, M_WAITOK | M_ZERO);
2635 
2636 	return (jblocks);
2637 }
2638 
2639 static ufs2_daddr_t
2640 jblocks_alloc(jblocks, bytes, actual)
2641 	struct jblocks *jblocks;
2642 	int bytes;
2643 	int *actual;
2644 {
2645 	ufs2_daddr_t daddr;
2646 	struct jextent *jext;
2647 	int freecnt;
2648 	int blocks;
2649 
2650 	blocks = bytes / DEV_BSIZE;
2651 	jext = &jblocks->jb_extent[jblocks->jb_head];
2652 	freecnt = jext->je_blocks - jblocks->jb_off;
2653 	if (freecnt == 0) {
2654 		jblocks->jb_off = 0;
2655 		if (++jblocks->jb_head > jblocks->jb_used)
2656 			jblocks->jb_head = 0;
2657 		jext = &jblocks->jb_extent[jblocks->jb_head];
2658 		freecnt = jext->je_blocks;
2659 	}
2660 	if (freecnt > blocks)
2661 		freecnt = blocks;
2662 	*actual = freecnt * DEV_BSIZE;
2663 	daddr = jext->je_daddr + jblocks->jb_off;
2664 	jblocks->jb_off += freecnt;
2665 	jblocks->jb_free -= freecnt;
2666 
2667 	return (daddr);
2668 }
2669 
2670 static void
2671 jblocks_free(jblocks, mp, bytes)
2672 	struct jblocks *jblocks;
2673 	struct mount *mp;
2674 	int bytes;
2675 {
2676 
2677 	LOCK_OWNED(VFSTOUFS(mp));
2678 	jblocks->jb_free += bytes / DEV_BSIZE;
2679 	if (jblocks->jb_suspended)
2680 		worklist_speedup(mp);
2681 	wakeup(jblocks);
2682 }
2683 
2684 static void
2685 jblocks_destroy(jblocks)
2686 	struct jblocks *jblocks;
2687 {
2688 
2689 	if (jblocks->jb_extent)
2690 		free(jblocks->jb_extent, M_JBLOCKS);
2691 	free(jblocks, M_JBLOCKS);
2692 }
2693 
2694 static void
2695 jblocks_add(jblocks, daddr, blocks)
2696 	struct jblocks *jblocks;
2697 	ufs2_daddr_t daddr;
2698 	int blocks;
2699 {
2700 	struct jextent *jext;
2701 
2702 	jblocks->jb_blocks += blocks;
2703 	jblocks->jb_free += blocks;
2704 	jext = &jblocks->jb_extent[jblocks->jb_used];
2705 	/* Adding the first block. */
2706 	if (jext->je_daddr == 0) {
2707 		jext->je_daddr = daddr;
2708 		jext->je_blocks = blocks;
2709 		return;
2710 	}
2711 	/* Extending the last extent. */
2712 	if (jext->je_daddr + jext->je_blocks == daddr) {
2713 		jext->je_blocks += blocks;
2714 		return;
2715 	}
2716 	/* Adding a new extent. */
2717 	if (++jblocks->jb_used == jblocks->jb_avail) {
2718 		jblocks->jb_avail *= 2;
2719 		jext = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2720 		    M_JBLOCKS, M_WAITOK | M_ZERO);
2721 		memcpy(jext, jblocks->jb_extent,
2722 		    sizeof(struct jextent) * jblocks->jb_used);
2723 		free(jblocks->jb_extent, M_JBLOCKS);
2724 		jblocks->jb_extent = jext;
2725 	}
2726 	jext = &jblocks->jb_extent[jblocks->jb_used];
2727 	jext->je_daddr = daddr;
2728 	jext->je_blocks = blocks;
2729 	return;
2730 }
2731 
2732 int
2733 softdep_journal_lookup(mp, vpp)
2734 	struct mount *mp;
2735 	struct vnode **vpp;
2736 {
2737 	struct componentname cnp;
2738 	struct vnode *dvp;
2739 	ino_t sujournal;
2740 	int error;
2741 
2742 	error = VFS_VGET(mp, UFS_ROOTINO, LK_EXCLUSIVE, &dvp);
2743 	if (error)
2744 		return (error);
2745 	bzero(&cnp, sizeof(cnp));
2746 	cnp.cn_nameiop = LOOKUP;
2747 	cnp.cn_flags = ISLASTCN;
2748 	cnp.cn_thread = curthread;
2749 	cnp.cn_cred = curthread->td_ucred;
2750 	cnp.cn_pnbuf = SUJ_FILE;
2751 	cnp.cn_nameptr = SUJ_FILE;
2752 	cnp.cn_namelen = strlen(SUJ_FILE);
2753 	error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal);
2754 	vput(dvp);
2755 	if (error != 0)
2756 		return (error);
2757 	error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp);
2758 	return (error);
2759 }
2760 
2761 /*
2762  * Open and verify the journal file.
2763  */
2764 static int
2765 journal_mount(mp, fs, cred)
2766 	struct mount *mp;
2767 	struct fs *fs;
2768 	struct ucred *cred;
2769 {
2770 	struct jblocks *jblocks;
2771 	struct ufsmount *ump;
2772 	struct vnode *vp;
2773 	struct inode *ip;
2774 	ufs2_daddr_t blkno;
2775 	int bcount;
2776 	int error;
2777 	int i;
2778 
2779 	ump = VFSTOUFS(mp);
2780 	ump->softdep_journal_tail = NULL;
2781 	ump->softdep_on_journal = 0;
2782 	ump->softdep_accdeps = 0;
2783 	ump->softdep_req = 0;
2784 	ump->softdep_jblocks = NULL;
2785 	error = softdep_journal_lookup(mp, &vp);
2786 	if (error != 0) {
2787 		printf("Failed to find journal.  Use tunefs to create one\n");
2788 		return (error);
2789 	}
2790 	ip = VTOI(vp);
2791 	if (ip->i_size < SUJ_MIN) {
2792 		error = ENOSPC;
2793 		goto out;
2794 	}
2795 	bcount = lblkno(fs, ip->i_size);	/* Only use whole blocks. */
2796 	jblocks = jblocks_create();
2797 	for (i = 0; i < bcount; i++) {
2798 		error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL);
2799 		if (error)
2800 			break;
2801 		jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag));
2802 	}
2803 	if (error) {
2804 		jblocks_destroy(jblocks);
2805 		goto out;
2806 	}
2807 	jblocks->jb_low = jblocks->jb_free / 3;	/* Reserve 33%. */
2808 	jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */
2809 	ump->softdep_jblocks = jblocks;
2810 out:
2811 	if (error == 0) {
2812 		MNT_ILOCK(mp);
2813 		mp->mnt_flag |= MNT_SUJ;
2814 		mp->mnt_flag &= ~MNT_SOFTDEP;
2815 		MNT_IUNLOCK(mp);
2816 		/*
2817 		 * Only validate the journal contents if the
2818 		 * filesystem is clean, otherwise we write the logs
2819 		 * but they'll never be used.  If the filesystem was
2820 		 * still dirty when we mounted it the journal is
2821 		 * invalid and a new journal can only be valid if it
2822 		 * starts from a clean mount.
2823 		 */
2824 		if (fs->fs_clean) {
2825 			DIP_SET(ip, i_modrev, fs->fs_mtime);
2826 			ip->i_flags |= IN_MODIFIED;
2827 			ffs_update(vp, 1);
2828 		}
2829 	}
2830 	vput(vp);
2831 	return (error);
2832 }
2833 
2834 static void
2835 journal_unmount(ump)
2836 	struct ufsmount *ump;
2837 {
2838 
2839 	if (ump->softdep_jblocks)
2840 		jblocks_destroy(ump->softdep_jblocks);
2841 	ump->softdep_jblocks = NULL;
2842 }
2843 
2844 /*
2845  * Called when a journal record is ready to be written.  Space is allocated
2846  * and the journal entry is created when the journal is flushed to stable
2847  * store.
2848  */
2849 static void
2850 add_to_journal(wk)
2851 	struct worklist *wk;
2852 {
2853 	struct ufsmount *ump;
2854 
2855 	ump = VFSTOUFS(wk->wk_mp);
2856 	LOCK_OWNED(ump);
2857 	if (wk->wk_state & ONWORKLIST)
2858 		panic("add_to_journal: %s(0x%X) already on list",
2859 		    TYPENAME(wk->wk_type), wk->wk_state);
2860 	wk->wk_state |= ONWORKLIST | DEPCOMPLETE;
2861 	if (LIST_EMPTY(&ump->softdep_journal_pending)) {
2862 		ump->softdep_jblocks->jb_age = ticks;
2863 		LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list);
2864 	} else
2865 		LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list);
2866 	ump->softdep_journal_tail = wk;
2867 	ump->softdep_on_journal += 1;
2868 }
2869 
2870 /*
2871  * Remove an arbitrary item for the journal worklist maintain the tail
2872  * pointer.  This happens when a new operation obviates the need to
2873  * journal an old operation.
2874  */
2875 static void
2876 remove_from_journal(wk)
2877 	struct worklist *wk;
2878 {
2879 	struct ufsmount *ump;
2880 
2881 	ump = VFSTOUFS(wk->wk_mp);
2882 	LOCK_OWNED(ump);
2883 #ifdef SUJ_DEBUG
2884 	{
2885 		struct worklist *wkn;
2886 
2887 		LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list)
2888 			if (wkn == wk)
2889 				break;
2890 		if (wkn == NULL)
2891 			panic("remove_from_journal: %p is not in journal", wk);
2892 	}
2893 #endif
2894 	/*
2895 	 * We emulate a TAILQ to save space in most structures which do not
2896 	 * require TAILQ semantics.  Here we must update the tail position
2897 	 * when removing the tail which is not the final entry. This works
2898 	 * only if the worklist linkage are at the beginning of the structure.
2899 	 */
2900 	if (ump->softdep_journal_tail == wk)
2901 		ump->softdep_journal_tail =
2902 		    (struct worklist *)wk->wk_list.le_prev;
2903 	WORKLIST_REMOVE(wk);
2904 	ump->softdep_on_journal -= 1;
2905 }
2906 
2907 /*
2908  * Check for journal space as well as dependency limits so the prelink
2909  * code can throttle both journaled and non-journaled filesystems.
2910  * Threshold is 0 for low and 1 for min.
2911  */
2912 static int
2913 journal_space(ump, thresh)
2914 	struct ufsmount *ump;
2915 	int thresh;
2916 {
2917 	struct jblocks *jblocks;
2918 	int limit, avail;
2919 
2920 	jblocks = ump->softdep_jblocks;
2921 	if (jblocks == NULL)
2922 		return (1);
2923 	/*
2924 	 * We use a tighter restriction here to prevent request_cleanup()
2925 	 * running in threads from running into locks we currently hold.
2926 	 * We have to be over the limit and our filesystem has to be
2927 	 * responsible for more than our share of that usage.
2928 	 */
2929 	limit = (max_softdeps / 10) * 9;
2930 	if (dep_current[D_INODEDEP] > limit &&
2931 	    ump->softdep_curdeps[D_INODEDEP] > limit / stat_flush_threads)
2932 		return (0);
2933 	if (thresh)
2934 		thresh = jblocks->jb_min;
2935 	else
2936 		thresh = jblocks->jb_low;
2937 	avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE;
2938 	avail = jblocks->jb_free - avail;
2939 
2940 	return (avail > thresh);
2941 }
2942 
2943 static void
2944 journal_suspend(ump)
2945 	struct ufsmount *ump;
2946 {
2947 	struct jblocks *jblocks;
2948 	struct mount *mp;
2949 
2950 	mp = UFSTOVFS(ump);
2951 	jblocks = ump->softdep_jblocks;
2952 	MNT_ILOCK(mp);
2953 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
2954 		stat_journal_min++;
2955 		mp->mnt_kern_flag |= MNTK_SUSPEND;
2956 		mp->mnt_susp_owner = ump->softdep_flushtd;
2957 	}
2958 	jblocks->jb_suspended = 1;
2959 	MNT_IUNLOCK(mp);
2960 }
2961 
2962 static int
2963 journal_unsuspend(struct ufsmount *ump)
2964 {
2965 	struct jblocks *jblocks;
2966 	struct mount *mp;
2967 
2968 	mp = UFSTOVFS(ump);
2969 	jblocks = ump->softdep_jblocks;
2970 
2971 	if (jblocks != NULL && jblocks->jb_suspended &&
2972 	    journal_space(ump, jblocks->jb_min)) {
2973 		jblocks->jb_suspended = 0;
2974 		FREE_LOCK(ump);
2975 		mp->mnt_susp_owner = curthread;
2976 		vfs_write_resume(mp, 0);
2977 		ACQUIRE_LOCK(ump);
2978 		return (1);
2979 	}
2980 	return (0);
2981 }
2982 
2983 /*
2984  * Called before any allocation function to be certain that there is
2985  * sufficient space in the journal prior to creating any new records.
2986  * Since in the case of block allocation we may have multiple locked
2987  * buffers at the time of the actual allocation we can not block
2988  * when the journal records are created.  Doing so would create a deadlock
2989  * if any of these buffers needed to be flushed to reclaim space.  Instead
2990  * we require a sufficiently large amount of available space such that
2991  * each thread in the system could have passed this allocation check and
2992  * still have sufficient free space.  With 20% of a minimum journal size
2993  * of 1MB we have 6553 records available.
2994  */
2995 int
2996 softdep_prealloc(vp, waitok)
2997 	struct vnode *vp;
2998 	int waitok;
2999 {
3000 	struct ufsmount *ump;
3001 
3002 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
3003 	    ("softdep_prealloc called on non-softdep filesystem"));
3004 	/*
3005 	 * Nothing to do if we are not running journaled soft updates.
3006 	 * If we currently hold the snapshot lock, we must avoid
3007 	 * handling other resources that could cause deadlock.  Do not
3008 	 * touch quotas vnode since it is typically recursed with
3009 	 * other vnode locks held.
3010 	 */
3011 	if (DOINGSUJ(vp) == 0 || IS_SNAPSHOT(VTOI(vp)) ||
3012 	    (vp->v_vflag & VV_SYSTEM) != 0)
3013 		return (0);
3014 	ump = VFSTOUFS(vp->v_mount);
3015 	ACQUIRE_LOCK(ump);
3016 	if (journal_space(ump, 0)) {
3017 		FREE_LOCK(ump);
3018 		return (0);
3019 	}
3020 	stat_journal_low++;
3021 	FREE_LOCK(ump);
3022 	if (waitok == MNT_NOWAIT)
3023 		return (ENOSPC);
3024 	/*
3025 	 * Attempt to sync this vnode once to flush any journal
3026 	 * work attached to it.
3027 	 */
3028 	if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0)
3029 		ffs_syncvnode(vp, waitok, 0);
3030 	ACQUIRE_LOCK(ump);
3031 	process_removes(vp);
3032 	process_truncates(vp);
3033 	if (journal_space(ump, 0) == 0) {
3034 		softdep_speedup(ump);
3035 		if (journal_space(ump, 1) == 0)
3036 			journal_suspend(ump);
3037 	}
3038 	FREE_LOCK(ump);
3039 
3040 	return (0);
3041 }
3042 
3043 /*
3044  * Before adjusting a link count on a vnode verify that we have sufficient
3045  * journal space.  If not, process operations that depend on the currently
3046  * locked pair of vnodes to try to flush space as the syncer, buf daemon,
3047  * and softdep flush threads can not acquire these locks to reclaim space.
3048  */
3049 static void
3050 softdep_prelink(dvp, vp)
3051 	struct vnode *dvp;
3052 	struct vnode *vp;
3053 {
3054 	struct ufsmount *ump;
3055 
3056 	ump = VFSTOUFS(dvp->v_mount);
3057 	LOCK_OWNED(ump);
3058 	/*
3059 	 * Nothing to do if we have sufficient journal space.
3060 	 * If we currently hold the snapshot lock, we must avoid
3061 	 * handling other resources that could cause deadlock.
3062 	 */
3063 	if (journal_space(ump, 0) || (vp && IS_SNAPSHOT(VTOI(vp))))
3064 		return;
3065 	stat_journal_low++;
3066 	FREE_LOCK(ump);
3067 	if (vp)
3068 		ffs_syncvnode(vp, MNT_NOWAIT, 0);
3069 	ffs_syncvnode(dvp, MNT_WAIT, 0);
3070 	ACQUIRE_LOCK(ump);
3071 	/* Process vp before dvp as it may create .. removes. */
3072 	if (vp) {
3073 		process_removes(vp);
3074 		process_truncates(vp);
3075 	}
3076 	process_removes(dvp);
3077 	process_truncates(dvp);
3078 	softdep_speedup(ump);
3079 	process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT);
3080 	if (journal_space(ump, 0) == 0) {
3081 		softdep_speedup(ump);
3082 		if (journal_space(ump, 1) == 0)
3083 			journal_suspend(ump);
3084 	}
3085 }
3086 
3087 static void
3088 jseg_write(ump, jseg, data)
3089 	struct ufsmount *ump;
3090 	struct jseg *jseg;
3091 	uint8_t *data;
3092 {
3093 	struct jsegrec *rec;
3094 
3095 	rec = (struct jsegrec *)data;
3096 	rec->jsr_seq = jseg->js_seq;
3097 	rec->jsr_oldest = jseg->js_oldseq;
3098 	rec->jsr_cnt = jseg->js_cnt;
3099 	rec->jsr_blocks = jseg->js_size / ump->um_devvp->v_bufobj.bo_bsize;
3100 	rec->jsr_crc = 0;
3101 	rec->jsr_time = ump->um_fs->fs_mtime;
3102 }
3103 
3104 static inline void
3105 inoref_write(inoref, jseg, rec)
3106 	struct inoref *inoref;
3107 	struct jseg *jseg;
3108 	struct jrefrec *rec;
3109 {
3110 
3111 	inoref->if_jsegdep->jd_seg = jseg;
3112 	rec->jr_ino = inoref->if_ino;
3113 	rec->jr_parent = inoref->if_parent;
3114 	rec->jr_nlink = inoref->if_nlink;
3115 	rec->jr_mode = inoref->if_mode;
3116 	rec->jr_diroff = inoref->if_diroff;
3117 }
3118 
3119 static void
3120 jaddref_write(jaddref, jseg, data)
3121 	struct jaddref *jaddref;
3122 	struct jseg *jseg;
3123 	uint8_t *data;
3124 {
3125 	struct jrefrec *rec;
3126 
3127 	rec = (struct jrefrec *)data;
3128 	rec->jr_op = JOP_ADDREF;
3129 	inoref_write(&jaddref->ja_ref, jseg, rec);
3130 }
3131 
3132 static void
3133 jremref_write(jremref, jseg, data)
3134 	struct jremref *jremref;
3135 	struct jseg *jseg;
3136 	uint8_t *data;
3137 {
3138 	struct jrefrec *rec;
3139 
3140 	rec = (struct jrefrec *)data;
3141 	rec->jr_op = JOP_REMREF;
3142 	inoref_write(&jremref->jr_ref, jseg, rec);
3143 }
3144 
3145 static void
3146 jmvref_write(jmvref, jseg, data)
3147 	struct jmvref *jmvref;
3148 	struct jseg *jseg;
3149 	uint8_t *data;
3150 {
3151 	struct jmvrec *rec;
3152 
3153 	rec = (struct jmvrec *)data;
3154 	rec->jm_op = JOP_MVREF;
3155 	rec->jm_ino = jmvref->jm_ino;
3156 	rec->jm_parent = jmvref->jm_parent;
3157 	rec->jm_oldoff = jmvref->jm_oldoff;
3158 	rec->jm_newoff = jmvref->jm_newoff;
3159 }
3160 
3161 static void
3162 jnewblk_write(jnewblk, jseg, data)
3163 	struct jnewblk *jnewblk;
3164 	struct jseg *jseg;
3165 	uint8_t *data;
3166 {
3167 	struct jblkrec *rec;
3168 
3169 	jnewblk->jn_jsegdep->jd_seg = jseg;
3170 	rec = (struct jblkrec *)data;
3171 	rec->jb_op = JOP_NEWBLK;
3172 	rec->jb_ino = jnewblk->jn_ino;
3173 	rec->jb_blkno = jnewblk->jn_blkno;
3174 	rec->jb_lbn = jnewblk->jn_lbn;
3175 	rec->jb_frags = jnewblk->jn_frags;
3176 	rec->jb_oldfrags = jnewblk->jn_oldfrags;
3177 }
3178 
3179 static void
3180 jfreeblk_write(jfreeblk, jseg, data)
3181 	struct jfreeblk *jfreeblk;
3182 	struct jseg *jseg;
3183 	uint8_t *data;
3184 {
3185 	struct jblkrec *rec;
3186 
3187 	jfreeblk->jf_dep.jb_jsegdep->jd_seg = jseg;
3188 	rec = (struct jblkrec *)data;
3189 	rec->jb_op = JOP_FREEBLK;
3190 	rec->jb_ino = jfreeblk->jf_ino;
3191 	rec->jb_blkno = jfreeblk->jf_blkno;
3192 	rec->jb_lbn = jfreeblk->jf_lbn;
3193 	rec->jb_frags = jfreeblk->jf_frags;
3194 	rec->jb_oldfrags = 0;
3195 }
3196 
3197 static void
3198 jfreefrag_write(jfreefrag, jseg, data)
3199 	struct jfreefrag *jfreefrag;
3200 	struct jseg *jseg;
3201 	uint8_t *data;
3202 {
3203 	struct jblkrec *rec;
3204 
3205 	jfreefrag->fr_jsegdep->jd_seg = jseg;
3206 	rec = (struct jblkrec *)data;
3207 	rec->jb_op = JOP_FREEBLK;
3208 	rec->jb_ino = jfreefrag->fr_ino;
3209 	rec->jb_blkno = jfreefrag->fr_blkno;
3210 	rec->jb_lbn = jfreefrag->fr_lbn;
3211 	rec->jb_frags = jfreefrag->fr_frags;
3212 	rec->jb_oldfrags = 0;
3213 }
3214 
3215 static void
3216 jtrunc_write(jtrunc, jseg, data)
3217 	struct jtrunc *jtrunc;
3218 	struct jseg *jseg;
3219 	uint8_t *data;
3220 {
3221 	struct jtrncrec *rec;
3222 
3223 	jtrunc->jt_dep.jb_jsegdep->jd_seg = jseg;
3224 	rec = (struct jtrncrec *)data;
3225 	rec->jt_op = JOP_TRUNC;
3226 	rec->jt_ino = jtrunc->jt_ino;
3227 	rec->jt_size = jtrunc->jt_size;
3228 	rec->jt_extsize = jtrunc->jt_extsize;
3229 }
3230 
3231 static void
3232 jfsync_write(jfsync, jseg, data)
3233 	struct jfsync *jfsync;
3234 	struct jseg *jseg;
3235 	uint8_t *data;
3236 {
3237 	struct jtrncrec *rec;
3238 
3239 	rec = (struct jtrncrec *)data;
3240 	rec->jt_op = JOP_SYNC;
3241 	rec->jt_ino = jfsync->jfs_ino;
3242 	rec->jt_size = jfsync->jfs_size;
3243 	rec->jt_extsize = jfsync->jfs_extsize;
3244 }
3245 
3246 static void
3247 softdep_flushjournal(mp)
3248 	struct mount *mp;
3249 {
3250 	struct jblocks *jblocks;
3251 	struct ufsmount *ump;
3252 
3253 	if (MOUNTEDSUJ(mp) == 0)
3254 		return;
3255 	ump = VFSTOUFS(mp);
3256 	jblocks = ump->softdep_jblocks;
3257 	ACQUIRE_LOCK(ump);
3258 	while (ump->softdep_on_journal) {
3259 		jblocks->jb_needseg = 1;
3260 		softdep_process_journal(mp, NULL, MNT_WAIT);
3261 	}
3262 	FREE_LOCK(ump);
3263 }
3264 
3265 static void softdep_synchronize_completed(struct bio *);
3266 static void softdep_synchronize(struct bio *, struct ufsmount *, void *);
3267 
3268 static void
3269 softdep_synchronize_completed(bp)
3270         struct bio *bp;
3271 {
3272 	struct jseg *oldest;
3273 	struct jseg *jseg;
3274 	struct ufsmount *ump;
3275 
3276 	/*
3277 	 * caller1 marks the last segment written before we issued the
3278 	 * synchronize cache.
3279 	 */
3280 	jseg = bp->bio_caller1;
3281 	if (jseg == NULL) {
3282 		g_destroy_bio(bp);
3283 		return;
3284 	}
3285 	ump = VFSTOUFS(jseg->js_list.wk_mp);
3286 	ACQUIRE_LOCK(ump);
3287 	oldest = NULL;
3288 	/*
3289 	 * Mark all the journal entries waiting on the synchronize cache
3290 	 * as completed so they may continue on.
3291 	 */
3292 	while (jseg != NULL && (jseg->js_state & COMPLETE) == 0) {
3293 		jseg->js_state |= COMPLETE;
3294 		oldest = jseg;
3295 		jseg = TAILQ_PREV(jseg, jseglst, js_next);
3296 	}
3297 	/*
3298 	 * Restart deferred journal entry processing from the oldest
3299 	 * completed jseg.
3300 	 */
3301 	if (oldest)
3302 		complete_jsegs(oldest);
3303 
3304 	FREE_LOCK(ump);
3305 	g_destroy_bio(bp);
3306 }
3307 
3308 /*
3309  * Send BIO_FLUSH/SYNCHRONIZE CACHE to the device to enforce write ordering
3310  * barriers.  The journal must be written prior to any blocks that depend
3311  * on it and the journal can not be released until the blocks have be
3312  * written.  This code handles both barriers simultaneously.
3313  */
3314 static void
3315 softdep_synchronize(bp, ump, caller1)
3316 	struct bio *bp;
3317 	struct ufsmount *ump;
3318 	void *caller1;
3319 {
3320 
3321 	bp->bio_cmd = BIO_FLUSH;
3322 	bp->bio_flags |= BIO_ORDERED;
3323 	bp->bio_data = NULL;
3324 	bp->bio_offset = ump->um_cp->provider->mediasize;
3325 	bp->bio_length = 0;
3326 	bp->bio_done = softdep_synchronize_completed;
3327 	bp->bio_caller1 = caller1;
3328 	g_io_request(bp,
3329 	    (struct g_consumer *)ump->um_devvp->v_bufobj.bo_private);
3330 }
3331 
3332 /*
3333  * Flush some journal records to disk.
3334  */
3335 static void
3336 softdep_process_journal(mp, needwk, flags)
3337 	struct mount *mp;
3338 	struct worklist *needwk;
3339 	int flags;
3340 {
3341 	struct jblocks *jblocks;
3342 	struct ufsmount *ump;
3343 	struct worklist *wk;
3344 	struct jseg *jseg;
3345 	struct buf *bp;
3346 	struct bio *bio;
3347 	uint8_t *data;
3348 	struct fs *fs;
3349 	int shouldflush;
3350 	int segwritten;
3351 	int jrecmin;	/* Minimum records per block. */
3352 	int jrecmax;	/* Maximum records per block. */
3353 	int size;
3354 	int cnt;
3355 	int off;
3356 	int devbsize;
3357 
3358 	if (MOUNTEDSUJ(mp) == 0)
3359 		return;
3360 	shouldflush = softdep_flushcache;
3361 	bio = NULL;
3362 	jseg = NULL;
3363 	ump = VFSTOUFS(mp);
3364 	LOCK_OWNED(ump);
3365 	fs = ump->um_fs;
3366 	jblocks = ump->softdep_jblocks;
3367 	devbsize = ump->um_devvp->v_bufobj.bo_bsize;
3368 	/*
3369 	 * We write anywhere between a disk block and fs block.  The upper
3370 	 * bound is picked to prevent buffer cache fragmentation and limit
3371 	 * processing time per I/O.
3372 	 */
3373 	jrecmin = (devbsize / JREC_SIZE) - 1; /* -1 for seg header */
3374 	jrecmax = (fs->fs_bsize / devbsize) * jrecmin;
3375 	segwritten = 0;
3376 	for (;;) {
3377 		cnt = ump->softdep_on_journal;
3378 		/*
3379 		 * Criteria for writing a segment:
3380 		 * 1) We have a full block.
3381 		 * 2) We're called from jwait() and haven't found the
3382 		 *    journal item yet.
3383 		 * 3) Always write if needseg is set.
3384 		 * 4) If we are called from process_worklist and have
3385 		 *    not yet written anything we write a partial block
3386 		 *    to enforce a 1 second maximum latency on journal
3387 		 *    entries.
3388 		 */
3389 		if (cnt < (jrecmax - 1) && needwk == NULL &&
3390 		    jblocks->jb_needseg == 0 && (segwritten || cnt == 0))
3391 			break;
3392 		cnt++;
3393 		/*
3394 		 * Verify some free journal space.  softdep_prealloc() should
3395 		 * guarantee that we don't run out so this is indicative of
3396 		 * a problem with the flow control.  Try to recover
3397 		 * gracefully in any event.
3398 		 */
3399 		while (jblocks->jb_free == 0) {
3400 			if (flags != MNT_WAIT)
3401 				break;
3402 			printf("softdep: Out of journal space!\n");
3403 			softdep_speedup(ump);
3404 			msleep(jblocks, LOCK_PTR(ump), PRIBIO, "jblocks", hz);
3405 		}
3406 		FREE_LOCK(ump);
3407 		jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS);
3408 		workitem_alloc(&jseg->js_list, D_JSEG, mp);
3409 		LIST_INIT(&jseg->js_entries);
3410 		LIST_INIT(&jseg->js_indirs);
3411 		jseg->js_state = ATTACHED;
3412 		if (shouldflush == 0)
3413 			jseg->js_state |= COMPLETE;
3414 		else if (bio == NULL)
3415 			bio = g_alloc_bio();
3416 		jseg->js_jblocks = jblocks;
3417 		bp = geteblk(fs->fs_bsize, 0);
3418 		ACQUIRE_LOCK(ump);
3419 		/*
3420 		 * If there was a race while we were allocating the block
3421 		 * and jseg the entry we care about was likely written.
3422 		 * We bail out in both the WAIT and NOWAIT case and assume
3423 		 * the caller will loop if the entry it cares about is
3424 		 * not written.
3425 		 */
3426 		cnt = ump->softdep_on_journal;
3427 		if (cnt + jblocks->jb_needseg == 0 || jblocks->jb_free == 0) {
3428 			bp->b_flags |= B_INVAL | B_NOCACHE;
3429 			WORKITEM_FREE(jseg, D_JSEG);
3430 			FREE_LOCK(ump);
3431 			brelse(bp);
3432 			ACQUIRE_LOCK(ump);
3433 			break;
3434 		}
3435 		/*
3436 		 * Calculate the disk block size required for the available
3437 		 * records rounded to the min size.
3438 		 */
3439 		if (cnt == 0)
3440 			size = devbsize;
3441 		else if (cnt < jrecmax)
3442 			size = howmany(cnt, jrecmin) * devbsize;
3443 		else
3444 			size = fs->fs_bsize;
3445 		/*
3446 		 * Allocate a disk block for this journal data and account
3447 		 * for truncation of the requested size if enough contiguous
3448 		 * space was not available.
3449 		 */
3450 		bp->b_blkno = jblocks_alloc(jblocks, size, &size);
3451 		bp->b_lblkno = bp->b_blkno;
3452 		bp->b_offset = bp->b_blkno * DEV_BSIZE;
3453 		bp->b_bcount = size;
3454 		bp->b_flags &= ~B_INVAL;
3455 		bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY;
3456 		/*
3457 		 * Initialize our jseg with cnt records.  Assign the next
3458 		 * sequence number to it and link it in-order.
3459 		 */
3460 		cnt = MIN(cnt, (size / devbsize) * jrecmin);
3461 		jseg->js_buf = bp;
3462 		jseg->js_cnt = cnt;
3463 		jseg->js_refs = cnt + 1;	/* Self ref. */
3464 		jseg->js_size = size;
3465 		jseg->js_seq = jblocks->jb_nextseq++;
3466 		if (jblocks->jb_oldestseg == NULL)
3467 			jblocks->jb_oldestseg = jseg;
3468 		jseg->js_oldseq = jblocks->jb_oldestseg->js_seq;
3469 		TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next);
3470 		if (jblocks->jb_writeseg == NULL)
3471 			jblocks->jb_writeseg = jseg;
3472 		/*
3473 		 * Start filling in records from the pending list.
3474 		 */
3475 		data = bp->b_data;
3476 		off = 0;
3477 
3478 		/*
3479 		 * Always put a header on the first block.
3480 		 * XXX As with below, there might not be a chance to get
3481 		 * into the loop.  Ensure that something valid is written.
3482 		 */
3483 		jseg_write(ump, jseg, data);
3484 		off += JREC_SIZE;
3485 		data = bp->b_data + off;
3486 
3487 		/*
3488 		 * XXX Something is wrong here.  There's no work to do,
3489 		 * but we need to perform and I/O and allow it to complete
3490 		 * anyways.
3491 		 */
3492 		if (LIST_EMPTY(&ump->softdep_journal_pending))
3493 			stat_emptyjblocks++;
3494 
3495 		while ((wk = LIST_FIRST(&ump->softdep_journal_pending))
3496 		    != NULL) {
3497 			if (cnt == 0)
3498 				break;
3499 			/* Place a segment header on every device block. */
3500 			if ((off % devbsize) == 0) {
3501 				jseg_write(ump, jseg, data);
3502 				off += JREC_SIZE;
3503 				data = bp->b_data + off;
3504 			}
3505 			if (wk == needwk)
3506 				needwk = NULL;
3507 			remove_from_journal(wk);
3508 			wk->wk_state |= INPROGRESS;
3509 			WORKLIST_INSERT(&jseg->js_entries, wk);
3510 			switch (wk->wk_type) {
3511 			case D_JADDREF:
3512 				jaddref_write(WK_JADDREF(wk), jseg, data);
3513 				break;
3514 			case D_JREMREF:
3515 				jremref_write(WK_JREMREF(wk), jseg, data);
3516 				break;
3517 			case D_JMVREF:
3518 				jmvref_write(WK_JMVREF(wk), jseg, data);
3519 				break;
3520 			case D_JNEWBLK:
3521 				jnewblk_write(WK_JNEWBLK(wk), jseg, data);
3522 				break;
3523 			case D_JFREEBLK:
3524 				jfreeblk_write(WK_JFREEBLK(wk), jseg, data);
3525 				break;
3526 			case D_JFREEFRAG:
3527 				jfreefrag_write(WK_JFREEFRAG(wk), jseg, data);
3528 				break;
3529 			case D_JTRUNC:
3530 				jtrunc_write(WK_JTRUNC(wk), jseg, data);
3531 				break;
3532 			case D_JFSYNC:
3533 				jfsync_write(WK_JFSYNC(wk), jseg, data);
3534 				break;
3535 			default:
3536 				panic("process_journal: Unknown type %s",
3537 				    TYPENAME(wk->wk_type));
3538 				/* NOTREACHED */
3539 			}
3540 			off += JREC_SIZE;
3541 			data = bp->b_data + off;
3542 			cnt--;
3543 		}
3544 
3545 		/* Clear any remaining space so we don't leak kernel data */
3546 		if (size > off)
3547 			bzero(data, size - off);
3548 
3549 		/*
3550 		 * Write this one buffer and continue.
3551 		 */
3552 		segwritten = 1;
3553 		jblocks->jb_needseg = 0;
3554 		WORKLIST_INSERT(&bp->b_dep, &jseg->js_list);
3555 		FREE_LOCK(ump);
3556 		pbgetvp(ump->um_devvp, bp);
3557 		/*
3558 		 * We only do the blocking wait once we find the journal
3559 		 * entry we're looking for.
3560 		 */
3561 		if (needwk == NULL && flags == MNT_WAIT)
3562 			bwrite(bp);
3563 		else
3564 			bawrite(bp);
3565 		ACQUIRE_LOCK(ump);
3566 	}
3567 	/*
3568 	 * If we wrote a segment issue a synchronize cache so the journal
3569 	 * is reflected on disk before the data is written.  Since reclaiming
3570 	 * journal space also requires writing a journal record this
3571 	 * process also enforces a barrier before reclamation.
3572 	 */
3573 	if (segwritten && shouldflush) {
3574 		softdep_synchronize(bio, ump,
3575 		    TAILQ_LAST(&jblocks->jb_segs, jseglst));
3576 	} else if (bio)
3577 		g_destroy_bio(bio);
3578 	/*
3579 	 * If we've suspended the filesystem because we ran out of journal
3580 	 * space either try to sync it here to make some progress or
3581 	 * unsuspend it if we already have.
3582 	 */
3583 	if (flags == 0 && jblocks->jb_suspended) {
3584 		if (journal_unsuspend(ump))
3585 			return;
3586 		FREE_LOCK(ump);
3587 		VFS_SYNC(mp, MNT_NOWAIT);
3588 		ffs_sbupdate(ump, MNT_WAIT, 0);
3589 		ACQUIRE_LOCK(ump);
3590 	}
3591 }
3592 
3593 /*
3594  * Complete a jseg, allowing all dependencies awaiting journal writes
3595  * to proceed.  Each journal dependency also attaches a jsegdep to dependent
3596  * structures so that the journal segment can be freed to reclaim space.
3597  */
3598 static void
3599 complete_jseg(jseg)
3600 	struct jseg *jseg;
3601 {
3602 	struct worklist *wk;
3603 	struct jmvref *jmvref;
3604 #ifdef INVARIANTS
3605 	int i = 0;
3606 #endif
3607 
3608 	while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) {
3609 		WORKLIST_REMOVE(wk);
3610 		wk->wk_state &= ~INPROGRESS;
3611 		wk->wk_state |= COMPLETE;
3612 		KASSERT(i++ < jseg->js_cnt,
3613 		    ("handle_written_jseg: overflow %d >= %d",
3614 		    i - 1, jseg->js_cnt));
3615 		switch (wk->wk_type) {
3616 		case D_JADDREF:
3617 			handle_written_jaddref(WK_JADDREF(wk));
3618 			break;
3619 		case D_JREMREF:
3620 			handle_written_jremref(WK_JREMREF(wk));
3621 			break;
3622 		case D_JMVREF:
3623 			rele_jseg(jseg);	/* No jsegdep. */
3624 			jmvref = WK_JMVREF(wk);
3625 			LIST_REMOVE(jmvref, jm_deps);
3626 			if ((jmvref->jm_pagedep->pd_state & ONWORKLIST) == 0)
3627 				free_pagedep(jmvref->jm_pagedep);
3628 			WORKITEM_FREE(jmvref, D_JMVREF);
3629 			break;
3630 		case D_JNEWBLK:
3631 			handle_written_jnewblk(WK_JNEWBLK(wk));
3632 			break;
3633 		case D_JFREEBLK:
3634 			handle_written_jblkdep(&WK_JFREEBLK(wk)->jf_dep);
3635 			break;
3636 		case D_JTRUNC:
3637 			handle_written_jblkdep(&WK_JTRUNC(wk)->jt_dep);
3638 			break;
3639 		case D_JFSYNC:
3640 			rele_jseg(jseg);	/* No jsegdep. */
3641 			WORKITEM_FREE(wk, D_JFSYNC);
3642 			break;
3643 		case D_JFREEFRAG:
3644 			handle_written_jfreefrag(WK_JFREEFRAG(wk));
3645 			break;
3646 		default:
3647 			panic("handle_written_jseg: Unknown type %s",
3648 			    TYPENAME(wk->wk_type));
3649 			/* NOTREACHED */
3650 		}
3651 	}
3652 	/* Release the self reference so the structure may be freed. */
3653 	rele_jseg(jseg);
3654 }
3655 
3656 /*
3657  * Determine which jsegs are ready for completion processing.  Waits for
3658  * synchronize cache to complete as well as forcing in-order completion
3659  * of journal entries.
3660  */
3661 static void
3662 complete_jsegs(jseg)
3663 	struct jseg *jseg;
3664 {
3665 	struct jblocks *jblocks;
3666 	struct jseg *jsegn;
3667 
3668 	jblocks = jseg->js_jblocks;
3669 	/*
3670 	 * Don't allow out of order completions.  If this isn't the first
3671 	 * block wait for it to write before we're done.
3672 	 */
3673 	if (jseg != jblocks->jb_writeseg)
3674 		return;
3675 	/* Iterate through available jsegs processing their entries. */
3676 	while (jseg && (jseg->js_state & ALLCOMPLETE) == ALLCOMPLETE) {
3677 		jblocks->jb_oldestwrseq = jseg->js_oldseq;
3678 		jsegn = TAILQ_NEXT(jseg, js_next);
3679 		complete_jseg(jseg);
3680 		jseg = jsegn;
3681 	}
3682 	jblocks->jb_writeseg = jseg;
3683 	/*
3684 	 * Attempt to free jsegs now that oldestwrseq may have advanced.
3685 	 */
3686 	free_jsegs(jblocks);
3687 }
3688 
3689 /*
3690  * Mark a jseg as DEPCOMPLETE and throw away the buffer.  Attempt to handle
3691  * the final completions.
3692  */
3693 static void
3694 handle_written_jseg(jseg, bp)
3695 	struct jseg *jseg;
3696 	struct buf *bp;
3697 {
3698 
3699 	if (jseg->js_refs == 0)
3700 		panic("handle_written_jseg: No self-reference on %p", jseg);
3701 	jseg->js_state |= DEPCOMPLETE;
3702 	/*
3703 	 * We'll never need this buffer again, set flags so it will be
3704 	 * discarded.
3705 	 */
3706 	bp->b_flags |= B_INVAL | B_NOCACHE;
3707 	pbrelvp(bp);
3708 	complete_jsegs(jseg);
3709 }
3710 
3711 static inline struct jsegdep *
3712 inoref_jseg(inoref)
3713 	struct inoref *inoref;
3714 {
3715 	struct jsegdep *jsegdep;
3716 
3717 	jsegdep = inoref->if_jsegdep;
3718 	inoref->if_jsegdep = NULL;
3719 
3720 	return (jsegdep);
3721 }
3722 
3723 /*
3724  * Called once a jremref has made it to stable store.  The jremref is marked
3725  * complete and we attempt to free it.  Any pagedeps writes sleeping waiting
3726  * for the jremref to complete will be awoken by free_jremref.
3727  */
3728 static void
3729 handle_written_jremref(jremref)
3730 	struct jremref *jremref;
3731 {
3732 	struct inodedep *inodedep;
3733 	struct jsegdep *jsegdep;
3734 	struct dirrem *dirrem;
3735 
3736 	/* Grab the jsegdep. */
3737 	jsegdep = inoref_jseg(&jremref->jr_ref);
3738 	/*
3739 	 * Remove us from the inoref list.
3740 	 */
3741 	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino,
3742 	    0, &inodedep) == 0)
3743 		panic("handle_written_jremref: Lost inodedep");
3744 	TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
3745 	/*
3746 	 * Complete the dirrem.
3747 	 */
3748 	dirrem = jremref->jr_dirrem;
3749 	jremref->jr_dirrem = NULL;
3750 	LIST_REMOVE(jremref, jr_deps);
3751 	jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT;
3752 	jwork_insert(&dirrem->dm_jwork, jsegdep);
3753 	if (LIST_EMPTY(&dirrem->dm_jremrefhd) &&
3754 	    (dirrem->dm_state & COMPLETE) != 0)
3755 		add_to_worklist(&dirrem->dm_list, 0);
3756 	free_jremref(jremref);
3757 }
3758 
3759 /*
3760  * Called once a jaddref has made it to stable store.  The dependency is
3761  * marked complete and any dependent structures are added to the inode
3762  * bufwait list to be completed as soon as it is written.  If a bitmap write
3763  * depends on this entry we move the inode into the inodedephd of the
3764  * bmsafemap dependency and attempt to remove the jaddref from the bmsafemap.
3765  */
3766 static void
3767 handle_written_jaddref(jaddref)
3768 	struct jaddref *jaddref;
3769 {
3770 	struct jsegdep *jsegdep;
3771 	struct inodedep *inodedep;
3772 	struct diradd *diradd;
3773 	struct mkdir *mkdir;
3774 
3775 	/* Grab the jsegdep. */
3776 	jsegdep = inoref_jseg(&jaddref->ja_ref);
3777 	mkdir = NULL;
3778 	diradd = NULL;
3779 	if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
3780 	    0, &inodedep) == 0)
3781 		panic("handle_written_jaddref: Lost inodedep.");
3782 	if (jaddref->ja_diradd == NULL)
3783 		panic("handle_written_jaddref: No dependency");
3784 	if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) {
3785 		diradd = jaddref->ja_diradd;
3786 		WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list);
3787 	} else if (jaddref->ja_state & MKDIR_PARENT) {
3788 		mkdir = jaddref->ja_mkdir;
3789 		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list);
3790 	} else if (jaddref->ja_state & MKDIR_BODY)
3791 		mkdir = jaddref->ja_mkdir;
3792 	else
3793 		panic("handle_written_jaddref: Unknown dependency %p",
3794 		    jaddref->ja_diradd);
3795 	jaddref->ja_diradd = NULL;	/* also clears ja_mkdir */
3796 	/*
3797 	 * Remove us from the inode list.
3798 	 */
3799 	TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps);
3800 	/*
3801 	 * The mkdir may be waiting on the jaddref to clear before freeing.
3802 	 */
3803 	if (mkdir) {
3804 		KASSERT(mkdir->md_list.wk_type == D_MKDIR,
3805 		    ("handle_written_jaddref: Incorrect type for mkdir %s",
3806 		    TYPENAME(mkdir->md_list.wk_type)));
3807 		mkdir->md_jaddref = NULL;
3808 		diradd = mkdir->md_diradd;
3809 		mkdir->md_state |= DEPCOMPLETE;
3810 		complete_mkdir(mkdir);
3811 	}
3812 	jwork_insert(&diradd->da_jwork, jsegdep);
3813 	if (jaddref->ja_state & NEWBLOCK) {
3814 		inodedep->id_state |= ONDEPLIST;
3815 		LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd,
3816 		    inodedep, id_deps);
3817 	}
3818 	free_jaddref(jaddref);
3819 }
3820 
3821 /*
3822  * Called once a jnewblk journal is written.  The allocdirect or allocindir
3823  * is placed in the bmsafemap to await notification of a written bitmap.  If
3824  * the operation was canceled we add the segdep to the appropriate
3825  * dependency to free the journal space once the canceling operation
3826  * completes.
3827  */
3828 static void
3829 handle_written_jnewblk(jnewblk)
3830 	struct jnewblk *jnewblk;
3831 {
3832 	struct bmsafemap *bmsafemap;
3833 	struct freefrag *freefrag;
3834 	struct freework *freework;
3835 	struct jsegdep *jsegdep;
3836 	struct newblk *newblk;
3837 
3838 	/* Grab the jsegdep. */
3839 	jsegdep = jnewblk->jn_jsegdep;
3840 	jnewblk->jn_jsegdep = NULL;
3841 	if (jnewblk->jn_dep == NULL)
3842 		panic("handle_written_jnewblk: No dependency for the segdep.");
3843 	switch (jnewblk->jn_dep->wk_type) {
3844 	case D_NEWBLK:
3845 	case D_ALLOCDIRECT:
3846 	case D_ALLOCINDIR:
3847 		/*
3848 		 * Add the written block to the bmsafemap so it can
3849 		 * be notified when the bitmap is on disk.
3850 		 */
3851 		newblk = WK_NEWBLK(jnewblk->jn_dep);
3852 		newblk->nb_jnewblk = NULL;
3853 		if ((newblk->nb_state & GOINGAWAY) == 0) {
3854 			bmsafemap = newblk->nb_bmsafemap;
3855 			newblk->nb_state |= ONDEPLIST;
3856 			LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk,
3857 			    nb_deps);
3858 		}
3859 		jwork_insert(&newblk->nb_jwork, jsegdep);
3860 		break;
3861 	case D_FREEFRAG:
3862 		/*
3863 		 * A newblock being removed by a freefrag when replaced by
3864 		 * frag extension.
3865 		 */
3866 		freefrag = WK_FREEFRAG(jnewblk->jn_dep);
3867 		freefrag->ff_jdep = NULL;
3868 		jwork_insert(&freefrag->ff_jwork, jsegdep);
3869 		break;
3870 	case D_FREEWORK:
3871 		/*
3872 		 * A direct block was removed by truncate.
3873 		 */
3874 		freework = WK_FREEWORK(jnewblk->jn_dep);
3875 		freework->fw_jnewblk = NULL;
3876 		jwork_insert(&freework->fw_freeblks->fb_jwork, jsegdep);
3877 		break;
3878 	default:
3879 		panic("handle_written_jnewblk: Unknown type %d.",
3880 		    jnewblk->jn_dep->wk_type);
3881 	}
3882 	jnewblk->jn_dep = NULL;
3883 	free_jnewblk(jnewblk);
3884 }
3885 
3886 /*
3887  * Cancel a jfreefrag that won't be needed, probably due to colliding with
3888  * an in-flight allocation that has not yet been committed.  Divorce us
3889  * from the freefrag and mark it DEPCOMPLETE so that it may be added
3890  * to the worklist.
3891  */
3892 static void
3893 cancel_jfreefrag(jfreefrag)
3894 	struct jfreefrag *jfreefrag;
3895 {
3896 	struct freefrag *freefrag;
3897 
3898 	if (jfreefrag->fr_jsegdep) {
3899 		free_jsegdep(jfreefrag->fr_jsegdep);
3900 		jfreefrag->fr_jsegdep = NULL;
3901 	}
3902 	freefrag = jfreefrag->fr_freefrag;
3903 	jfreefrag->fr_freefrag = NULL;
3904 	free_jfreefrag(jfreefrag);
3905 	freefrag->ff_state |= DEPCOMPLETE;
3906 	CTR1(KTR_SUJ, "cancel_jfreefrag: blkno %jd", freefrag->ff_blkno);
3907 }
3908 
3909 /*
3910  * Free a jfreefrag when the parent freefrag is rendered obsolete.
3911  */
3912 static void
3913 free_jfreefrag(jfreefrag)
3914 	struct jfreefrag *jfreefrag;
3915 {
3916 
3917 	if (jfreefrag->fr_state & INPROGRESS)
3918 		WORKLIST_REMOVE(&jfreefrag->fr_list);
3919 	else if (jfreefrag->fr_state & ONWORKLIST)
3920 		remove_from_journal(&jfreefrag->fr_list);
3921 	if (jfreefrag->fr_freefrag != NULL)
3922 		panic("free_jfreefrag:  Still attached to a freefrag.");
3923 	WORKITEM_FREE(jfreefrag, D_JFREEFRAG);
3924 }
3925 
3926 /*
3927  * Called when the journal write for a jfreefrag completes.  The parent
3928  * freefrag is added to the worklist if this completes its dependencies.
3929  */
3930 static void
3931 handle_written_jfreefrag(jfreefrag)
3932 	struct jfreefrag *jfreefrag;
3933 {
3934 	struct jsegdep *jsegdep;
3935 	struct freefrag *freefrag;
3936 
3937 	/* Grab the jsegdep. */
3938 	jsegdep = jfreefrag->fr_jsegdep;
3939 	jfreefrag->fr_jsegdep = NULL;
3940 	freefrag = jfreefrag->fr_freefrag;
3941 	if (freefrag == NULL)
3942 		panic("handle_written_jfreefrag: No freefrag.");
3943 	freefrag->ff_state |= DEPCOMPLETE;
3944 	freefrag->ff_jdep = NULL;
3945 	jwork_insert(&freefrag->ff_jwork, jsegdep);
3946 	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
3947 		add_to_worklist(&freefrag->ff_list, 0);
3948 	jfreefrag->fr_freefrag = NULL;
3949 	free_jfreefrag(jfreefrag);
3950 }
3951 
3952 /*
3953  * Called when the journal write for a jfreeblk completes.  The jfreeblk
3954  * is removed from the freeblks list of pending journal writes and the
3955  * jsegdep is moved to the freeblks jwork to be completed when all blocks
3956  * have been reclaimed.
3957  */
3958 static void
3959 handle_written_jblkdep(jblkdep)
3960 	struct jblkdep *jblkdep;
3961 {
3962 	struct freeblks *freeblks;
3963 	struct jsegdep *jsegdep;
3964 
3965 	/* Grab the jsegdep. */
3966 	jsegdep = jblkdep->jb_jsegdep;
3967 	jblkdep->jb_jsegdep = NULL;
3968 	freeblks = jblkdep->jb_freeblks;
3969 	LIST_REMOVE(jblkdep, jb_deps);
3970 	jwork_insert(&freeblks->fb_jwork, jsegdep);
3971 	/*
3972 	 * If the freeblks is all journaled, we can add it to the worklist.
3973 	 */
3974 	if (LIST_EMPTY(&freeblks->fb_jblkdephd) &&
3975 	    (freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
3976 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
3977 
3978 	free_jblkdep(jblkdep);
3979 }
3980 
3981 static struct jsegdep *
3982 newjsegdep(struct worklist *wk)
3983 {
3984 	struct jsegdep *jsegdep;
3985 
3986 	jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS);
3987 	workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp);
3988 	jsegdep->jd_seg = NULL;
3989 
3990 	return (jsegdep);
3991 }
3992 
3993 static struct jmvref *
3994 newjmvref(dp, ino, oldoff, newoff)
3995 	struct inode *dp;
3996 	ino_t ino;
3997 	off_t oldoff;
3998 	off_t newoff;
3999 {
4000 	struct jmvref *jmvref;
4001 
4002 	jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS);
4003 	workitem_alloc(&jmvref->jm_list, D_JMVREF, ITOVFS(dp));
4004 	jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE;
4005 	jmvref->jm_parent = dp->i_number;
4006 	jmvref->jm_ino = ino;
4007 	jmvref->jm_oldoff = oldoff;
4008 	jmvref->jm_newoff = newoff;
4009 
4010 	return (jmvref);
4011 }
4012 
4013 /*
4014  * Allocate a new jremref that tracks the removal of ip from dp with the
4015  * directory entry offset of diroff.  Mark the entry as ATTACHED and
4016  * DEPCOMPLETE as we have all the information required for the journal write
4017  * and the directory has already been removed from the buffer.  The caller
4018  * is responsible for linking the jremref into the pagedep and adding it
4019  * to the journal to write.  The MKDIR_PARENT flag is set if we're doing
4020  * a DOTDOT addition so handle_workitem_remove() can properly assign
4021  * the jsegdep when we're done.
4022  */
4023 static struct jremref *
4024 newjremref(struct dirrem *dirrem, struct inode *dp, struct inode *ip,
4025     off_t diroff, nlink_t nlink)
4026 {
4027 	struct jremref *jremref;
4028 
4029 	jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS);
4030 	workitem_alloc(&jremref->jr_list, D_JREMREF, ITOVFS(dp));
4031 	jremref->jr_state = ATTACHED;
4032 	newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff,
4033 	   nlink, ip->i_mode);
4034 	jremref->jr_dirrem = dirrem;
4035 
4036 	return (jremref);
4037 }
4038 
4039 static inline void
4040 newinoref(struct inoref *inoref, ino_t ino, ino_t parent, off_t diroff,
4041     nlink_t nlink, uint16_t mode)
4042 {
4043 
4044 	inoref->if_jsegdep = newjsegdep(&inoref->if_list);
4045 	inoref->if_diroff = diroff;
4046 	inoref->if_ino = ino;
4047 	inoref->if_parent = parent;
4048 	inoref->if_nlink = nlink;
4049 	inoref->if_mode = mode;
4050 }
4051 
4052 /*
4053  * Allocate a new jaddref to track the addition of ino to dp at diroff.  The
4054  * directory offset may not be known until later.  The caller is responsible
4055  * adding the entry to the journal when this information is available.  nlink
4056  * should be the link count prior to the addition and mode is only required
4057  * to have the correct FMT.
4058  */
4059 static struct jaddref *
4060 newjaddref(struct inode *dp, ino_t ino, off_t diroff, int16_t nlink,
4061     uint16_t mode)
4062 {
4063 	struct jaddref *jaddref;
4064 
4065 	jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS);
4066 	workitem_alloc(&jaddref->ja_list, D_JADDREF, ITOVFS(dp));
4067 	jaddref->ja_state = ATTACHED;
4068 	jaddref->ja_mkdir = NULL;
4069 	newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode);
4070 
4071 	return (jaddref);
4072 }
4073 
4074 /*
4075  * Create a new free dependency for a freework.  The caller is responsible
4076  * for adjusting the reference count when it has the lock held.  The freedep
4077  * will track an outstanding bitmap write that will ultimately clear the
4078  * freework to continue.
4079  */
4080 static struct freedep *
4081 newfreedep(struct freework *freework)
4082 {
4083 	struct freedep *freedep;
4084 
4085 	freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS);
4086 	workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp);
4087 	freedep->fd_freework = freework;
4088 
4089 	return (freedep);
4090 }
4091 
4092 /*
4093  * Free a freedep structure once the buffer it is linked to is written.  If
4094  * this is the last reference to the freework schedule it for completion.
4095  */
4096 static void
4097 free_freedep(freedep)
4098 	struct freedep *freedep;
4099 {
4100 	struct freework *freework;
4101 
4102 	freework = freedep->fd_freework;
4103 	freework->fw_freeblks->fb_cgwait--;
4104 	if (--freework->fw_ref == 0)
4105 		freework_enqueue(freework);
4106 	WORKITEM_FREE(freedep, D_FREEDEP);
4107 }
4108 
4109 /*
4110  * Allocate a new freework structure that may be a level in an indirect
4111  * when parent is not NULL or a top level block when it is.  The top level
4112  * freework structures are allocated without the per-filesystem lock held
4113  * and before the freeblks is visible outside of softdep_setup_freeblocks().
4114  */
4115 static struct freework *
4116 newfreework(ump, freeblks, parent, lbn, nb, frags, off, journal)
4117 	struct ufsmount *ump;
4118 	struct freeblks *freeblks;
4119 	struct freework *parent;
4120 	ufs_lbn_t lbn;
4121 	ufs2_daddr_t nb;
4122 	int frags;
4123 	int off;
4124 	int journal;
4125 {
4126 	struct freework *freework;
4127 
4128 	freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS);
4129 	workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp);
4130 	freework->fw_state = ATTACHED;
4131 	freework->fw_jnewblk = NULL;
4132 	freework->fw_freeblks = freeblks;
4133 	freework->fw_parent = parent;
4134 	freework->fw_lbn = lbn;
4135 	freework->fw_blkno = nb;
4136 	freework->fw_frags = frags;
4137 	freework->fw_indir = NULL;
4138 	freework->fw_ref = (MOUNTEDSUJ(UFSTOVFS(ump)) == 0 ||
4139 	    lbn >= -UFS_NXADDR) ? 0 : NINDIR(ump->um_fs) + 1;
4140 	freework->fw_start = freework->fw_off = off;
4141 	if (journal)
4142 		newjfreeblk(freeblks, lbn, nb, frags);
4143 	if (parent == NULL) {
4144 		ACQUIRE_LOCK(ump);
4145 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
4146 		freeblks->fb_ref++;
4147 		FREE_LOCK(ump);
4148 	}
4149 
4150 	return (freework);
4151 }
4152 
4153 /*
4154  * Eliminate a jfreeblk for a block that does not need journaling.
4155  */
4156 static void
4157 cancel_jfreeblk(freeblks, blkno)
4158 	struct freeblks *freeblks;
4159 	ufs2_daddr_t blkno;
4160 {
4161 	struct jfreeblk *jfreeblk;
4162 	struct jblkdep *jblkdep;
4163 
4164 	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) {
4165 		if (jblkdep->jb_list.wk_type != D_JFREEBLK)
4166 			continue;
4167 		jfreeblk = WK_JFREEBLK(&jblkdep->jb_list);
4168 		if (jfreeblk->jf_blkno == blkno)
4169 			break;
4170 	}
4171 	if (jblkdep == NULL)
4172 		return;
4173 	CTR1(KTR_SUJ, "cancel_jfreeblk: blkno %jd", blkno);
4174 	free_jsegdep(jblkdep->jb_jsegdep);
4175 	LIST_REMOVE(jblkdep, jb_deps);
4176 	WORKITEM_FREE(jfreeblk, D_JFREEBLK);
4177 }
4178 
4179 /*
4180  * Allocate a new jfreeblk to journal top level block pointer when truncating
4181  * a file.  The caller must add this to the worklist when the per-filesystem
4182  * lock is held.
4183  */
4184 static struct jfreeblk *
4185 newjfreeblk(freeblks, lbn, blkno, frags)
4186 	struct freeblks *freeblks;
4187 	ufs_lbn_t lbn;
4188 	ufs2_daddr_t blkno;
4189 	int frags;
4190 {
4191 	struct jfreeblk *jfreeblk;
4192 
4193 	jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS);
4194 	workitem_alloc(&jfreeblk->jf_dep.jb_list, D_JFREEBLK,
4195 	    freeblks->fb_list.wk_mp);
4196 	jfreeblk->jf_dep.jb_jsegdep = newjsegdep(&jfreeblk->jf_dep.jb_list);
4197 	jfreeblk->jf_dep.jb_freeblks = freeblks;
4198 	jfreeblk->jf_ino = freeblks->fb_inum;
4199 	jfreeblk->jf_lbn = lbn;
4200 	jfreeblk->jf_blkno = blkno;
4201 	jfreeblk->jf_frags = frags;
4202 	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jfreeblk->jf_dep, jb_deps);
4203 
4204 	return (jfreeblk);
4205 }
4206 
4207 /*
4208  * The journal is only prepared to handle full-size block numbers, so we
4209  * have to adjust the record to reflect the change to a full-size block.
4210  * For example, suppose we have a block made up of fragments 8-15 and
4211  * want to free its last two fragments. We are given a request that says:
4212  *     FREEBLK ino=5, blkno=14, lbn=0, frags=2, oldfrags=0
4213  * where frags are the number of fragments to free and oldfrags are the
4214  * number of fragments to keep. To block align it, we have to change it to
4215  * have a valid full-size blkno, so it becomes:
4216  *     FREEBLK ino=5, blkno=8, lbn=0, frags=2, oldfrags=6
4217  */
4218 static void
4219 adjust_newfreework(freeblks, frag_offset)
4220 	struct freeblks *freeblks;
4221 	int frag_offset;
4222 {
4223 	struct jfreeblk *jfreeblk;
4224 
4225 	KASSERT((LIST_FIRST(&freeblks->fb_jblkdephd) != NULL &&
4226 	    LIST_FIRST(&freeblks->fb_jblkdephd)->jb_list.wk_type == D_JFREEBLK),
4227 	    ("adjust_newfreework: Missing freeblks dependency"));
4228 
4229 	jfreeblk = WK_JFREEBLK(LIST_FIRST(&freeblks->fb_jblkdephd));
4230 	jfreeblk->jf_blkno -= frag_offset;
4231 	jfreeblk->jf_frags += frag_offset;
4232 }
4233 
4234 /*
4235  * Allocate a new jtrunc to track a partial truncation.
4236  */
4237 static struct jtrunc *
4238 newjtrunc(freeblks, size, extsize)
4239 	struct freeblks *freeblks;
4240 	off_t size;
4241 	int extsize;
4242 {
4243 	struct jtrunc *jtrunc;
4244 
4245 	jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS);
4246 	workitem_alloc(&jtrunc->jt_dep.jb_list, D_JTRUNC,
4247 	    freeblks->fb_list.wk_mp);
4248 	jtrunc->jt_dep.jb_jsegdep = newjsegdep(&jtrunc->jt_dep.jb_list);
4249 	jtrunc->jt_dep.jb_freeblks = freeblks;
4250 	jtrunc->jt_ino = freeblks->fb_inum;
4251 	jtrunc->jt_size = size;
4252 	jtrunc->jt_extsize = extsize;
4253 	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jtrunc->jt_dep, jb_deps);
4254 
4255 	return (jtrunc);
4256 }
4257 
4258 /*
4259  * If we're canceling a new bitmap we have to search for another ref
4260  * to move into the bmsafemap dep.  This might be better expressed
4261  * with another structure.
4262  */
4263 static void
4264 move_newblock_dep(jaddref, inodedep)
4265 	struct jaddref *jaddref;
4266 	struct inodedep *inodedep;
4267 {
4268 	struct inoref *inoref;
4269 	struct jaddref *jaddrefn;
4270 
4271 	jaddrefn = NULL;
4272 	for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
4273 	    inoref = TAILQ_NEXT(inoref, if_deps)) {
4274 		if ((jaddref->ja_state & NEWBLOCK) &&
4275 		    inoref->if_list.wk_type == D_JADDREF) {
4276 			jaddrefn = (struct jaddref *)inoref;
4277 			break;
4278 		}
4279 	}
4280 	if (jaddrefn == NULL)
4281 		return;
4282 	jaddrefn->ja_state &= ~(ATTACHED | UNDONE);
4283 	jaddrefn->ja_state |= jaddref->ja_state &
4284 	    (ATTACHED | UNDONE | NEWBLOCK);
4285 	jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK);
4286 	jaddref->ja_state |= ATTACHED;
4287 	LIST_REMOVE(jaddref, ja_bmdeps);
4288 	LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn,
4289 	    ja_bmdeps);
4290 }
4291 
4292 /*
4293  * Cancel a jaddref either before it has been written or while it is being
4294  * written.  This happens when a link is removed before the add reaches
4295  * the disk.  The jaddref dependency is kept linked into the bmsafemap
4296  * and inode to prevent the link count or bitmap from reaching the disk
4297  * until handle_workitem_remove() re-adjusts the counts and bitmaps as
4298  * required.
4299  *
4300  * Returns 1 if the canceled addref requires journaling of the remove and
4301  * 0 otherwise.
4302  */
4303 static int
4304 cancel_jaddref(jaddref, inodedep, wkhd)
4305 	struct jaddref *jaddref;
4306 	struct inodedep *inodedep;
4307 	struct workhead *wkhd;
4308 {
4309 	struct inoref *inoref;
4310 	struct jsegdep *jsegdep;
4311 	int needsj;
4312 
4313 	KASSERT((jaddref->ja_state & COMPLETE) == 0,
4314 	    ("cancel_jaddref: Canceling complete jaddref"));
4315 	if (jaddref->ja_state & (INPROGRESS | COMPLETE))
4316 		needsj = 1;
4317 	else
4318 		needsj = 0;
4319 	if (inodedep == NULL)
4320 		if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
4321 		    0, &inodedep) == 0)
4322 			panic("cancel_jaddref: Lost inodedep");
4323 	/*
4324 	 * We must adjust the nlink of any reference operation that follows
4325 	 * us so that it is consistent with the in-memory reference.  This
4326 	 * ensures that inode nlink rollbacks always have the correct link.
4327 	 */
4328 	if (needsj == 0) {
4329 		for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
4330 		    inoref = TAILQ_NEXT(inoref, if_deps)) {
4331 			if (inoref->if_state & GOINGAWAY)
4332 				break;
4333 			inoref->if_nlink--;
4334 		}
4335 	}
4336 	jsegdep = inoref_jseg(&jaddref->ja_ref);
4337 	if (jaddref->ja_state & NEWBLOCK)
4338 		move_newblock_dep(jaddref, inodedep);
4339 	wake_worklist(&jaddref->ja_list);
4340 	jaddref->ja_mkdir = NULL;
4341 	if (jaddref->ja_state & INPROGRESS) {
4342 		jaddref->ja_state &= ~INPROGRESS;
4343 		WORKLIST_REMOVE(&jaddref->ja_list);
4344 		jwork_insert(wkhd, jsegdep);
4345 	} else {
4346 		free_jsegdep(jsegdep);
4347 		if (jaddref->ja_state & DEPCOMPLETE)
4348 			remove_from_journal(&jaddref->ja_list);
4349 	}
4350 	jaddref->ja_state |= (GOINGAWAY | DEPCOMPLETE);
4351 	/*
4352 	 * Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove
4353 	 * can arrange for them to be freed with the bitmap.  Otherwise we
4354 	 * no longer need this addref attached to the inoreflst and it
4355 	 * will incorrectly adjust nlink if we leave it.
4356 	 */
4357 	if ((jaddref->ja_state & NEWBLOCK) == 0) {
4358 		TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
4359 		    if_deps);
4360 		jaddref->ja_state |= COMPLETE;
4361 		free_jaddref(jaddref);
4362 		return (needsj);
4363 	}
4364 	/*
4365 	 * Leave the head of the list for jsegdeps for fast merging.
4366 	 */
4367 	if (LIST_FIRST(wkhd) != NULL) {
4368 		jaddref->ja_state |= ONWORKLIST;
4369 		LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list);
4370 	} else
4371 		WORKLIST_INSERT(wkhd, &jaddref->ja_list);
4372 
4373 	return (needsj);
4374 }
4375 
4376 /*
4377  * Attempt to free a jaddref structure when some work completes.  This
4378  * should only succeed once the entry is written and all dependencies have
4379  * been notified.
4380  */
4381 static void
4382 free_jaddref(jaddref)
4383 	struct jaddref *jaddref;
4384 {
4385 
4386 	if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE)
4387 		return;
4388 	if (jaddref->ja_ref.if_jsegdep)
4389 		panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n",
4390 		    jaddref, jaddref->ja_state);
4391 	if (jaddref->ja_state & NEWBLOCK)
4392 		LIST_REMOVE(jaddref, ja_bmdeps);
4393 	if (jaddref->ja_state & (INPROGRESS | ONWORKLIST))
4394 		panic("free_jaddref: Bad state %p(0x%X)",
4395 		    jaddref, jaddref->ja_state);
4396 	if (jaddref->ja_mkdir != NULL)
4397 		panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state);
4398 	WORKITEM_FREE(jaddref, D_JADDREF);
4399 }
4400 
4401 /*
4402  * Free a jremref structure once it has been written or discarded.
4403  */
4404 static void
4405 free_jremref(jremref)
4406 	struct jremref *jremref;
4407 {
4408 
4409 	if (jremref->jr_ref.if_jsegdep)
4410 		free_jsegdep(jremref->jr_ref.if_jsegdep);
4411 	if (jremref->jr_state & INPROGRESS)
4412 		panic("free_jremref: IO still pending");
4413 	WORKITEM_FREE(jremref, D_JREMREF);
4414 }
4415 
4416 /*
4417  * Free a jnewblk structure.
4418  */
4419 static void
4420 free_jnewblk(jnewblk)
4421 	struct jnewblk *jnewblk;
4422 {
4423 
4424 	if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE)
4425 		return;
4426 	LIST_REMOVE(jnewblk, jn_deps);
4427 	if (jnewblk->jn_dep != NULL)
4428 		panic("free_jnewblk: Dependency still attached.");
4429 	WORKITEM_FREE(jnewblk, D_JNEWBLK);
4430 }
4431 
4432 /*
4433  * Cancel a jnewblk which has been been made redundant by frag extension.
4434  */
4435 static void
4436 cancel_jnewblk(jnewblk, wkhd)
4437 	struct jnewblk *jnewblk;
4438 	struct workhead *wkhd;
4439 {
4440 	struct jsegdep *jsegdep;
4441 
4442 	CTR1(KTR_SUJ, "cancel_jnewblk: blkno %jd", jnewblk->jn_blkno);
4443 	jsegdep = jnewblk->jn_jsegdep;
4444 	if (jnewblk->jn_jsegdep == NULL || jnewblk->jn_dep == NULL)
4445 		panic("cancel_jnewblk: Invalid state");
4446 	jnewblk->jn_jsegdep  = NULL;
4447 	jnewblk->jn_dep = NULL;
4448 	jnewblk->jn_state |= GOINGAWAY;
4449 	if (jnewblk->jn_state & INPROGRESS) {
4450 		jnewblk->jn_state &= ~INPROGRESS;
4451 		WORKLIST_REMOVE(&jnewblk->jn_list);
4452 		jwork_insert(wkhd, jsegdep);
4453 	} else {
4454 		free_jsegdep(jsegdep);
4455 		remove_from_journal(&jnewblk->jn_list);
4456 	}
4457 	wake_worklist(&jnewblk->jn_list);
4458 	WORKLIST_INSERT(wkhd, &jnewblk->jn_list);
4459 }
4460 
4461 static void
4462 free_jblkdep(jblkdep)
4463 	struct jblkdep *jblkdep;
4464 {
4465 
4466 	if (jblkdep->jb_list.wk_type == D_JFREEBLK)
4467 		WORKITEM_FREE(jblkdep, D_JFREEBLK);
4468 	else if (jblkdep->jb_list.wk_type == D_JTRUNC)
4469 		WORKITEM_FREE(jblkdep, D_JTRUNC);
4470 	else
4471 		panic("free_jblkdep: Unexpected type %s",
4472 		    TYPENAME(jblkdep->jb_list.wk_type));
4473 }
4474 
4475 /*
4476  * Free a single jseg once it is no longer referenced in memory or on
4477  * disk.  Reclaim journal blocks and dependencies waiting for the segment
4478  * to disappear.
4479  */
4480 static void
4481 free_jseg(jseg, jblocks)
4482 	struct jseg *jseg;
4483 	struct jblocks *jblocks;
4484 {
4485 	struct freework *freework;
4486 
4487 	/*
4488 	 * Free freework structures that were lingering to indicate freed
4489 	 * indirect blocks that forced journal write ordering on reallocate.
4490 	 */
4491 	while ((freework = LIST_FIRST(&jseg->js_indirs)) != NULL)
4492 		indirblk_remove(freework);
4493 	if (jblocks->jb_oldestseg == jseg)
4494 		jblocks->jb_oldestseg = TAILQ_NEXT(jseg, js_next);
4495 	TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next);
4496 	jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size);
4497 	KASSERT(LIST_EMPTY(&jseg->js_entries),
4498 	    ("free_jseg: Freed jseg has valid entries."));
4499 	WORKITEM_FREE(jseg, D_JSEG);
4500 }
4501 
4502 /*
4503  * Free all jsegs that meet the criteria for being reclaimed and update
4504  * oldestseg.
4505  */
4506 static void
4507 free_jsegs(jblocks)
4508 	struct jblocks *jblocks;
4509 {
4510 	struct jseg *jseg;
4511 
4512 	/*
4513 	 * Free only those jsegs which have none allocated before them to
4514 	 * preserve the journal space ordering.
4515 	 */
4516 	while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) {
4517 		/*
4518 		 * Only reclaim space when nothing depends on this journal
4519 		 * set and another set has written that it is no longer
4520 		 * valid.
4521 		 */
4522 		if (jseg->js_refs != 0) {
4523 			jblocks->jb_oldestseg = jseg;
4524 			return;
4525 		}
4526 		if ((jseg->js_state & ALLCOMPLETE) != ALLCOMPLETE)
4527 			break;
4528 		if (jseg->js_seq > jblocks->jb_oldestwrseq)
4529 			break;
4530 		/*
4531 		 * We can free jsegs that didn't write entries when
4532 		 * oldestwrseq == js_seq.
4533 		 */
4534 		if (jseg->js_seq == jblocks->jb_oldestwrseq &&
4535 		    jseg->js_cnt != 0)
4536 			break;
4537 		free_jseg(jseg, jblocks);
4538 	}
4539 	/*
4540 	 * If we exited the loop above we still must discover the
4541 	 * oldest valid segment.
4542 	 */
4543 	if (jseg)
4544 		for (jseg = jblocks->jb_oldestseg; jseg != NULL;
4545 		     jseg = TAILQ_NEXT(jseg, js_next))
4546 			if (jseg->js_refs != 0)
4547 				break;
4548 	jblocks->jb_oldestseg = jseg;
4549 	/*
4550 	 * The journal has no valid records but some jsegs may still be
4551 	 * waiting on oldestwrseq to advance.  We force a small record
4552 	 * out to permit these lingering records to be reclaimed.
4553 	 */
4554 	if (jblocks->jb_oldestseg == NULL && !TAILQ_EMPTY(&jblocks->jb_segs))
4555 		jblocks->jb_needseg = 1;
4556 }
4557 
4558 /*
4559  * Release one reference to a jseg and free it if the count reaches 0.  This
4560  * should eventually reclaim journal space as well.
4561  */
4562 static void
4563 rele_jseg(jseg)
4564 	struct jseg *jseg;
4565 {
4566 
4567 	KASSERT(jseg->js_refs > 0,
4568 	    ("free_jseg: Invalid refcnt %d", jseg->js_refs));
4569 	if (--jseg->js_refs != 0)
4570 		return;
4571 	free_jsegs(jseg->js_jblocks);
4572 }
4573 
4574 /*
4575  * Release a jsegdep and decrement the jseg count.
4576  */
4577 static void
4578 free_jsegdep(jsegdep)
4579 	struct jsegdep *jsegdep;
4580 {
4581 
4582 	if (jsegdep->jd_seg)
4583 		rele_jseg(jsegdep->jd_seg);
4584 	WORKITEM_FREE(jsegdep, D_JSEGDEP);
4585 }
4586 
4587 /*
4588  * Wait for a journal item to make it to disk.  Initiate journal processing
4589  * if required.
4590  */
4591 static int
4592 jwait(wk, waitfor)
4593 	struct worklist *wk;
4594 	int waitfor;
4595 {
4596 
4597 	LOCK_OWNED(VFSTOUFS(wk->wk_mp));
4598 	/*
4599 	 * Blocking journal waits cause slow synchronous behavior.  Record
4600 	 * stats on the frequency of these blocking operations.
4601 	 */
4602 	if (waitfor == MNT_WAIT) {
4603 		stat_journal_wait++;
4604 		switch (wk->wk_type) {
4605 		case D_JREMREF:
4606 		case D_JMVREF:
4607 			stat_jwait_filepage++;
4608 			break;
4609 		case D_JTRUNC:
4610 		case D_JFREEBLK:
4611 			stat_jwait_freeblks++;
4612 			break;
4613 		case D_JNEWBLK:
4614 			stat_jwait_newblk++;
4615 			break;
4616 		case D_JADDREF:
4617 			stat_jwait_inode++;
4618 			break;
4619 		default:
4620 			break;
4621 		}
4622 	}
4623 	/*
4624 	 * If IO has not started we process the journal.  We can't mark the
4625 	 * worklist item as IOWAITING because we drop the lock while
4626 	 * processing the journal and the worklist entry may be freed after
4627 	 * this point.  The caller may call back in and re-issue the request.
4628 	 */
4629 	if ((wk->wk_state & INPROGRESS) == 0) {
4630 		softdep_process_journal(wk->wk_mp, wk, waitfor);
4631 		if (waitfor != MNT_WAIT)
4632 			return (EBUSY);
4633 		return (0);
4634 	}
4635 	if (waitfor != MNT_WAIT)
4636 		return (EBUSY);
4637 	wait_worklist(wk, "jwait");
4638 	return (0);
4639 }
4640 
4641 /*
4642  * Lookup an inodedep based on an inode pointer and set the nlinkdelta as
4643  * appropriate.  This is a convenience function to reduce duplicate code
4644  * for the setup and revert functions below.
4645  */
4646 static struct inodedep *
4647 inodedep_lookup_ip(ip)
4648 	struct inode *ip;
4649 {
4650 	struct inodedep *inodedep;
4651 
4652 	KASSERT(ip->i_nlink >= ip->i_effnlink,
4653 	    ("inodedep_lookup_ip: bad delta"));
4654 	(void) inodedep_lookup(ITOVFS(ip), ip->i_number, DEPALLOC,
4655 	    &inodedep);
4656 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
4657 	KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
4658 
4659 	return (inodedep);
4660 }
4661 
4662 /*
4663  * Called prior to creating a new inode and linking it to a directory.  The
4664  * jaddref structure must already be allocated by softdep_setup_inomapdep
4665  * and it is discovered here so we can initialize the mode and update
4666  * nlinkdelta.
4667  */
4668 void
4669 softdep_setup_create(dp, ip)
4670 	struct inode *dp;
4671 	struct inode *ip;
4672 {
4673 	struct inodedep *inodedep;
4674 	struct jaddref *jaddref;
4675 	struct vnode *dvp;
4676 
4677 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4678 	    ("softdep_setup_create called on non-softdep filesystem"));
4679 	KASSERT(ip->i_nlink == 1,
4680 	    ("softdep_setup_create: Invalid link count."));
4681 	dvp = ITOV(dp);
4682 	ACQUIRE_LOCK(ITOUMP(dp));
4683 	inodedep = inodedep_lookup_ip(ip);
4684 	if (DOINGSUJ(dvp)) {
4685 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4686 		    inoreflst);
4687 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
4688 		    ("softdep_setup_create: No addref structure present."));
4689 	}
4690 	softdep_prelink(dvp, NULL);
4691 	FREE_LOCK(ITOUMP(dp));
4692 }
4693 
4694 /*
4695  * Create a jaddref structure to track the addition of a DOTDOT link when
4696  * we are reparenting an inode as part of a rename.  This jaddref will be
4697  * found by softdep_setup_directory_change.  Adjusts nlinkdelta for
4698  * non-journaling softdep.
4699  */
4700 void
4701 softdep_setup_dotdot_link(dp, ip)
4702 	struct inode *dp;
4703 	struct inode *ip;
4704 {
4705 	struct inodedep *inodedep;
4706 	struct jaddref *jaddref;
4707 	struct vnode *dvp;
4708 
4709 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4710 	    ("softdep_setup_dotdot_link called on non-softdep filesystem"));
4711 	dvp = ITOV(dp);
4712 	jaddref = NULL;
4713 	/*
4714 	 * We don't set MKDIR_PARENT as this is not tied to a mkdir and
4715 	 * is used as a normal link would be.
4716 	 */
4717 	if (DOINGSUJ(dvp))
4718 		jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
4719 		    dp->i_effnlink - 1, dp->i_mode);
4720 	ACQUIRE_LOCK(ITOUMP(dp));
4721 	inodedep = inodedep_lookup_ip(dp);
4722 	if (jaddref)
4723 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4724 		    if_deps);
4725 	softdep_prelink(dvp, ITOV(ip));
4726 	FREE_LOCK(ITOUMP(dp));
4727 }
4728 
4729 /*
4730  * Create a jaddref structure to track a new link to an inode.  The directory
4731  * offset is not known until softdep_setup_directory_add or
4732  * softdep_setup_directory_change.  Adjusts nlinkdelta for non-journaling
4733  * softdep.
4734  */
4735 void
4736 softdep_setup_link(dp, ip)
4737 	struct inode *dp;
4738 	struct inode *ip;
4739 {
4740 	struct inodedep *inodedep;
4741 	struct jaddref *jaddref;
4742 	struct vnode *dvp;
4743 
4744 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4745 	    ("softdep_setup_link called on non-softdep filesystem"));
4746 	dvp = ITOV(dp);
4747 	jaddref = NULL;
4748 	if (DOINGSUJ(dvp))
4749 		jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1,
4750 		    ip->i_mode);
4751 	ACQUIRE_LOCK(ITOUMP(dp));
4752 	inodedep = inodedep_lookup_ip(ip);
4753 	if (jaddref)
4754 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4755 		    if_deps);
4756 	softdep_prelink(dvp, ITOV(ip));
4757 	FREE_LOCK(ITOUMP(dp));
4758 }
4759 
4760 /*
4761  * Called to create the jaddref structures to track . and .. references as
4762  * well as lookup and further initialize the incomplete jaddref created
4763  * by softdep_setup_inomapdep when the inode was allocated.  Adjusts
4764  * nlinkdelta for non-journaling softdep.
4765  */
4766 void
4767 softdep_setup_mkdir(dp, ip)
4768 	struct inode *dp;
4769 	struct inode *ip;
4770 {
4771 	struct inodedep *inodedep;
4772 	struct jaddref *dotdotaddref;
4773 	struct jaddref *dotaddref;
4774 	struct jaddref *jaddref;
4775 	struct vnode *dvp;
4776 
4777 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4778 	    ("softdep_setup_mkdir called on non-softdep filesystem"));
4779 	dvp = ITOV(dp);
4780 	dotaddref = dotdotaddref = NULL;
4781 	if (DOINGSUJ(dvp)) {
4782 		dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1,
4783 		    ip->i_mode);
4784 		dotaddref->ja_state |= MKDIR_BODY;
4785 		dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
4786 		    dp->i_effnlink - 1, dp->i_mode);
4787 		dotdotaddref->ja_state |= MKDIR_PARENT;
4788 	}
4789 	ACQUIRE_LOCK(ITOUMP(dp));
4790 	inodedep = inodedep_lookup_ip(ip);
4791 	if (DOINGSUJ(dvp)) {
4792 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4793 		    inoreflst);
4794 		KASSERT(jaddref != NULL,
4795 		    ("softdep_setup_mkdir: No addref structure present."));
4796 		KASSERT(jaddref->ja_parent == dp->i_number,
4797 		    ("softdep_setup_mkdir: bad parent %ju",
4798 		    (uintmax_t)jaddref->ja_parent));
4799 		TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref,
4800 		    if_deps);
4801 	}
4802 	inodedep = inodedep_lookup_ip(dp);
4803 	if (DOINGSUJ(dvp))
4804 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst,
4805 		    &dotdotaddref->ja_ref, if_deps);
4806 	softdep_prelink(ITOV(dp), NULL);
4807 	FREE_LOCK(ITOUMP(dp));
4808 }
4809 
4810 /*
4811  * Called to track nlinkdelta of the inode and parent directories prior to
4812  * unlinking a directory.
4813  */
4814 void
4815 softdep_setup_rmdir(dp, ip)
4816 	struct inode *dp;
4817 	struct inode *ip;
4818 {
4819 	struct vnode *dvp;
4820 
4821 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4822 	    ("softdep_setup_rmdir called on non-softdep filesystem"));
4823 	dvp = ITOV(dp);
4824 	ACQUIRE_LOCK(ITOUMP(dp));
4825 	(void) inodedep_lookup_ip(ip);
4826 	(void) inodedep_lookup_ip(dp);
4827 	softdep_prelink(dvp, ITOV(ip));
4828 	FREE_LOCK(ITOUMP(dp));
4829 }
4830 
4831 /*
4832  * Called to track nlinkdelta of the inode and parent directories prior to
4833  * unlink.
4834  */
4835 void
4836 softdep_setup_unlink(dp, ip)
4837 	struct inode *dp;
4838 	struct inode *ip;
4839 {
4840 	struct vnode *dvp;
4841 
4842 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4843 	    ("softdep_setup_unlink called on non-softdep filesystem"));
4844 	dvp = ITOV(dp);
4845 	ACQUIRE_LOCK(ITOUMP(dp));
4846 	(void) inodedep_lookup_ip(ip);
4847 	(void) inodedep_lookup_ip(dp);
4848 	softdep_prelink(dvp, ITOV(ip));
4849 	FREE_LOCK(ITOUMP(dp));
4850 }
4851 
4852 /*
4853  * Called to release the journal structures created by a failed non-directory
4854  * creation.  Adjusts nlinkdelta for non-journaling softdep.
4855  */
4856 void
4857 softdep_revert_create(dp, ip)
4858 	struct inode *dp;
4859 	struct inode *ip;
4860 {
4861 	struct inodedep *inodedep;
4862 	struct jaddref *jaddref;
4863 	struct vnode *dvp;
4864 
4865 	KASSERT(MOUNTEDSOFTDEP(ITOVFS((dp))) != 0,
4866 	    ("softdep_revert_create called on non-softdep filesystem"));
4867 	dvp = ITOV(dp);
4868 	ACQUIRE_LOCK(ITOUMP(dp));
4869 	inodedep = inodedep_lookup_ip(ip);
4870 	if (DOINGSUJ(dvp)) {
4871 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4872 		    inoreflst);
4873 		KASSERT(jaddref->ja_parent == dp->i_number,
4874 		    ("softdep_revert_create: addref parent mismatch"));
4875 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4876 	}
4877 	FREE_LOCK(ITOUMP(dp));
4878 }
4879 
4880 /*
4881  * Called to release the journal structures created by a failed link
4882  * addition.  Adjusts nlinkdelta for non-journaling softdep.
4883  */
4884 void
4885 softdep_revert_link(dp, ip)
4886 	struct inode *dp;
4887 	struct inode *ip;
4888 {
4889 	struct inodedep *inodedep;
4890 	struct jaddref *jaddref;
4891 	struct vnode *dvp;
4892 
4893 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4894 	    ("softdep_revert_link called on non-softdep filesystem"));
4895 	dvp = ITOV(dp);
4896 	ACQUIRE_LOCK(ITOUMP(dp));
4897 	inodedep = inodedep_lookup_ip(ip);
4898 	if (DOINGSUJ(dvp)) {
4899 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4900 		    inoreflst);
4901 		KASSERT(jaddref->ja_parent == dp->i_number,
4902 		    ("softdep_revert_link: addref parent mismatch"));
4903 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4904 	}
4905 	FREE_LOCK(ITOUMP(dp));
4906 }
4907 
4908 /*
4909  * Called to release the journal structures created by a failed mkdir
4910  * attempt.  Adjusts nlinkdelta for non-journaling softdep.
4911  */
4912 void
4913 softdep_revert_mkdir(dp, ip)
4914 	struct inode *dp;
4915 	struct inode *ip;
4916 {
4917 	struct inodedep *inodedep;
4918 	struct jaddref *jaddref;
4919 	struct jaddref *dotaddref;
4920 	struct vnode *dvp;
4921 
4922 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4923 	    ("softdep_revert_mkdir called on non-softdep filesystem"));
4924 	dvp = ITOV(dp);
4925 
4926 	ACQUIRE_LOCK(ITOUMP(dp));
4927 	inodedep = inodedep_lookup_ip(dp);
4928 	if (DOINGSUJ(dvp)) {
4929 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4930 		    inoreflst);
4931 		KASSERT(jaddref->ja_parent == ip->i_number,
4932 		    ("softdep_revert_mkdir: dotdot addref parent mismatch"));
4933 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4934 	}
4935 	inodedep = inodedep_lookup_ip(ip);
4936 	if (DOINGSUJ(dvp)) {
4937 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4938 		    inoreflst);
4939 		KASSERT(jaddref->ja_parent == dp->i_number,
4940 		    ("softdep_revert_mkdir: addref parent mismatch"));
4941 		dotaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
4942 		    inoreflst, if_deps);
4943 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4944 		KASSERT(dotaddref->ja_parent == ip->i_number,
4945 		    ("softdep_revert_mkdir: dot addref parent mismatch"));
4946 		cancel_jaddref(dotaddref, inodedep, &inodedep->id_inowait);
4947 	}
4948 	FREE_LOCK(ITOUMP(dp));
4949 }
4950 
4951 /*
4952  * Called to correct nlinkdelta after a failed rmdir.
4953  */
4954 void
4955 softdep_revert_rmdir(dp, ip)
4956 	struct inode *dp;
4957 	struct inode *ip;
4958 {
4959 
4960 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4961 	    ("softdep_revert_rmdir called on non-softdep filesystem"));
4962 	ACQUIRE_LOCK(ITOUMP(dp));
4963 	(void) inodedep_lookup_ip(ip);
4964 	(void) inodedep_lookup_ip(dp);
4965 	FREE_LOCK(ITOUMP(dp));
4966 }
4967 
4968 /*
4969  * Protecting the freemaps (or bitmaps).
4970  *
4971  * To eliminate the need to execute fsck before mounting a filesystem
4972  * after a power failure, one must (conservatively) guarantee that the
4973  * on-disk copy of the bitmaps never indicate that a live inode or block is
4974  * free.  So, when a block or inode is allocated, the bitmap should be
4975  * updated (on disk) before any new pointers.  When a block or inode is
4976  * freed, the bitmap should not be updated until all pointers have been
4977  * reset.  The latter dependency is handled by the delayed de-allocation
4978  * approach described below for block and inode de-allocation.  The former
4979  * dependency is handled by calling the following procedure when a block or
4980  * inode is allocated. When an inode is allocated an "inodedep" is created
4981  * with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
4982  * Each "inodedep" is also inserted into the hash indexing structure so
4983  * that any additional link additions can be made dependent on the inode
4984  * allocation.
4985  *
4986  * The ufs filesystem maintains a number of free block counts (e.g., per
4987  * cylinder group, per cylinder and per <cylinder, rotational position> pair)
4988  * in addition to the bitmaps.  These counts are used to improve efficiency
4989  * during allocation and therefore must be consistent with the bitmaps.
4990  * There is no convenient way to guarantee post-crash consistency of these
4991  * counts with simple update ordering, for two main reasons: (1) The counts
4992  * and bitmaps for a single cylinder group block are not in the same disk
4993  * sector.  If a disk write is interrupted (e.g., by power failure), one may
4994  * be written and the other not.  (2) Some of the counts are located in the
4995  * superblock rather than the cylinder group block. So, we focus our soft
4996  * updates implementation on protecting the bitmaps. When mounting a
4997  * filesystem, we recompute the auxiliary counts from the bitmaps.
4998  */
4999 
5000 /*
5001  * Called just after updating the cylinder group block to allocate an inode.
5002  */
5003 void
5004 softdep_setup_inomapdep(bp, ip, newinum, mode)
5005 	struct buf *bp;		/* buffer for cylgroup block with inode map */
5006 	struct inode *ip;	/* inode related to allocation */
5007 	ino_t newinum;		/* new inode number being allocated */
5008 	int mode;
5009 {
5010 	struct inodedep *inodedep;
5011 	struct bmsafemap *bmsafemap;
5012 	struct jaddref *jaddref;
5013 	struct mount *mp;
5014 	struct fs *fs;
5015 
5016 	mp = ITOVFS(ip);
5017 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5018 	    ("softdep_setup_inomapdep called on non-softdep filesystem"));
5019 	fs = VFSTOUFS(mp)->um_fs;
5020 	jaddref = NULL;
5021 
5022 	/*
5023 	 * Allocate the journal reference add structure so that the bitmap
5024 	 * can be dependent on it.
5025 	 */
5026 	if (MOUNTEDSUJ(mp)) {
5027 		jaddref = newjaddref(ip, newinum, 0, 0, mode);
5028 		jaddref->ja_state |= NEWBLOCK;
5029 	}
5030 
5031 	/*
5032 	 * Create a dependency for the newly allocated inode.
5033 	 * Panic if it already exists as something is seriously wrong.
5034 	 * Otherwise add it to the dependency list for the buffer holding
5035 	 * the cylinder group map from which it was allocated.
5036 	 *
5037 	 * We have to preallocate a bmsafemap entry in case it is needed
5038 	 * in bmsafemap_lookup since once we allocate the inodedep, we
5039 	 * have to finish initializing it before we can FREE_LOCK().
5040 	 * By preallocating, we avoid FREE_LOCK() while doing a malloc
5041 	 * in bmsafemap_lookup. We cannot call bmsafemap_lookup before
5042 	 * creating the inodedep as it can be freed during the time
5043 	 * that we FREE_LOCK() while allocating the inodedep. We must
5044 	 * call workitem_alloc() before entering the locked section as
5045 	 * it also acquires the lock and we must avoid trying doing so
5046 	 * recursively.
5047 	 */
5048 	bmsafemap = malloc(sizeof(struct bmsafemap),
5049 	    M_BMSAFEMAP, M_SOFTDEP_FLAGS);
5050 	workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
5051 	ACQUIRE_LOCK(ITOUMP(ip));
5052 	if ((inodedep_lookup(mp, newinum, DEPALLOC, &inodedep)))
5053 		panic("softdep_setup_inomapdep: dependency %p for new"
5054 		    "inode already exists", inodedep);
5055 	bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum), bmsafemap);
5056 	if (jaddref) {
5057 		LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps);
5058 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
5059 		    if_deps);
5060 	} else {
5061 		inodedep->id_state |= ONDEPLIST;
5062 		LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
5063 	}
5064 	inodedep->id_bmsafemap = bmsafemap;
5065 	inodedep->id_state &= ~DEPCOMPLETE;
5066 	FREE_LOCK(ITOUMP(ip));
5067 }
5068 
5069 /*
5070  * Called just after updating the cylinder group block to
5071  * allocate block or fragment.
5072  */
5073 void
5074 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
5075 	struct buf *bp;		/* buffer for cylgroup block with block map */
5076 	struct mount *mp;	/* filesystem doing allocation */
5077 	ufs2_daddr_t newblkno;	/* number of newly allocated block */
5078 	int frags;		/* Number of fragments. */
5079 	int oldfrags;		/* Previous number of fragments for extend. */
5080 {
5081 	struct newblk *newblk;
5082 	struct bmsafemap *bmsafemap;
5083 	struct jnewblk *jnewblk;
5084 	struct ufsmount *ump;
5085 	struct fs *fs;
5086 
5087 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5088 	    ("softdep_setup_blkmapdep called on non-softdep filesystem"));
5089 	ump = VFSTOUFS(mp);
5090 	fs = ump->um_fs;
5091 	jnewblk = NULL;
5092 	/*
5093 	 * Create a dependency for the newly allocated block.
5094 	 * Add it to the dependency list for the buffer holding
5095 	 * the cylinder group map from which it was allocated.
5096 	 */
5097 	if (MOUNTEDSUJ(mp)) {
5098 		jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS);
5099 		workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp);
5100 		jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list);
5101 		jnewblk->jn_state = ATTACHED;
5102 		jnewblk->jn_blkno = newblkno;
5103 		jnewblk->jn_frags = frags;
5104 		jnewblk->jn_oldfrags = oldfrags;
5105 #ifdef SUJ_DEBUG
5106 		{
5107 			struct cg *cgp;
5108 			uint8_t *blksfree;
5109 			long bno;
5110 			int i;
5111 
5112 			cgp = (struct cg *)bp->b_data;
5113 			blksfree = cg_blksfree(cgp);
5114 			bno = dtogd(fs, jnewblk->jn_blkno);
5115 			for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags;
5116 			    i++) {
5117 				if (isset(blksfree, bno + i))
5118 					panic("softdep_setup_blkmapdep: "
5119 					    "free fragment %d from %d-%d "
5120 					    "state 0x%X dep %p", i,
5121 					    jnewblk->jn_oldfrags,
5122 					    jnewblk->jn_frags,
5123 					    jnewblk->jn_state,
5124 					    jnewblk->jn_dep);
5125 			}
5126 		}
5127 #endif
5128 	}
5129 
5130 	CTR3(KTR_SUJ,
5131 	    "softdep_setup_blkmapdep: blkno %jd frags %d oldfrags %d",
5132 	    newblkno, frags, oldfrags);
5133 	ACQUIRE_LOCK(ump);
5134 	if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0)
5135 		panic("softdep_setup_blkmapdep: found block");
5136 	newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp,
5137 	    dtog(fs, newblkno), NULL);
5138 	if (jnewblk) {
5139 		jnewblk->jn_dep = (struct worklist *)newblk;
5140 		LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps);
5141 	} else {
5142 		newblk->nb_state |= ONDEPLIST;
5143 		LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
5144 	}
5145 	newblk->nb_bmsafemap = bmsafemap;
5146 	newblk->nb_jnewblk = jnewblk;
5147 	FREE_LOCK(ump);
5148 }
5149 
5150 #define	BMSAFEMAP_HASH(ump, cg) \
5151       (&(ump)->bmsafemap_hashtbl[(cg) & (ump)->bmsafemap_hash_size])
5152 
5153 static int
5154 bmsafemap_find(bmsafemaphd, cg, bmsafemapp)
5155 	struct bmsafemap_hashhead *bmsafemaphd;
5156 	int cg;
5157 	struct bmsafemap **bmsafemapp;
5158 {
5159 	struct bmsafemap *bmsafemap;
5160 
5161 	LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash)
5162 		if (bmsafemap->sm_cg == cg)
5163 			break;
5164 	if (bmsafemap) {
5165 		*bmsafemapp = bmsafemap;
5166 		return (1);
5167 	}
5168 	*bmsafemapp = NULL;
5169 
5170 	return (0);
5171 }
5172 
5173 /*
5174  * Find the bmsafemap associated with a cylinder group buffer.
5175  * If none exists, create one. The buffer must be locked when
5176  * this routine is called and this routine must be called with
5177  * the softdep lock held. To avoid giving up the lock while
5178  * allocating a new bmsafemap, a preallocated bmsafemap may be
5179  * provided. If it is provided but not needed, it is freed.
5180  */
5181 static struct bmsafemap *
5182 bmsafemap_lookup(mp, bp, cg, newbmsafemap)
5183 	struct mount *mp;
5184 	struct buf *bp;
5185 	int cg;
5186 	struct bmsafemap *newbmsafemap;
5187 {
5188 	struct bmsafemap_hashhead *bmsafemaphd;
5189 	struct bmsafemap *bmsafemap, *collision;
5190 	struct worklist *wk;
5191 	struct ufsmount *ump;
5192 
5193 	ump = VFSTOUFS(mp);
5194 	LOCK_OWNED(ump);
5195 	KASSERT(bp != NULL, ("bmsafemap_lookup: missing buffer"));
5196 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5197 		if (wk->wk_type == D_BMSAFEMAP) {
5198 			if (newbmsafemap)
5199 				WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP);
5200 			return (WK_BMSAFEMAP(wk));
5201 		}
5202 	}
5203 	bmsafemaphd = BMSAFEMAP_HASH(ump, cg);
5204 	if (bmsafemap_find(bmsafemaphd, cg, &bmsafemap) == 1) {
5205 		if (newbmsafemap)
5206 			WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP);
5207 		return (bmsafemap);
5208 	}
5209 	if (newbmsafemap) {
5210 		bmsafemap = newbmsafemap;
5211 	} else {
5212 		FREE_LOCK(ump);
5213 		bmsafemap = malloc(sizeof(struct bmsafemap),
5214 			M_BMSAFEMAP, M_SOFTDEP_FLAGS);
5215 		workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
5216 		ACQUIRE_LOCK(ump);
5217 	}
5218 	bmsafemap->sm_buf = bp;
5219 	LIST_INIT(&bmsafemap->sm_inodedephd);
5220 	LIST_INIT(&bmsafemap->sm_inodedepwr);
5221 	LIST_INIT(&bmsafemap->sm_newblkhd);
5222 	LIST_INIT(&bmsafemap->sm_newblkwr);
5223 	LIST_INIT(&bmsafemap->sm_jaddrefhd);
5224 	LIST_INIT(&bmsafemap->sm_jnewblkhd);
5225 	LIST_INIT(&bmsafemap->sm_freehd);
5226 	LIST_INIT(&bmsafemap->sm_freewr);
5227 	if (bmsafemap_find(bmsafemaphd, cg, &collision) == 1) {
5228 		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
5229 		return (collision);
5230 	}
5231 	bmsafemap->sm_cg = cg;
5232 	LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash);
5233 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
5234 	WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list);
5235 	return (bmsafemap);
5236 }
5237 
5238 /*
5239  * Direct block allocation dependencies.
5240  *
5241  * When a new block is allocated, the corresponding disk locations must be
5242  * initialized (with zeros or new data) before the on-disk inode points to
5243  * them.  Also, the freemap from which the block was allocated must be
5244  * updated (on disk) before the inode's pointer. These two dependencies are
5245  * independent of each other and are needed for all file blocks and indirect
5246  * blocks that are pointed to directly by the inode.  Just before the
5247  * "in-core" version of the inode is updated with a newly allocated block
5248  * number, a procedure (below) is called to setup allocation dependency
5249  * structures.  These structures are removed when the corresponding
5250  * dependencies are satisfied or when the block allocation becomes obsolete
5251  * (i.e., the file is deleted, the block is de-allocated, or the block is a
5252  * fragment that gets upgraded).  All of these cases are handled in
5253  * procedures described later.
5254  *
5255  * When a file extension causes a fragment to be upgraded, either to a larger
5256  * fragment or to a full block, the on-disk location may change (if the
5257  * previous fragment could not simply be extended). In this case, the old
5258  * fragment must be de-allocated, but not until after the inode's pointer has
5259  * been updated. In most cases, this is handled by later procedures, which
5260  * will construct a "freefrag" structure to be added to the workitem queue
5261  * when the inode update is complete (or obsolete).  The main exception to
5262  * this is when an allocation occurs while a pending allocation dependency
5263  * (for the same block pointer) remains.  This case is handled in the main
5264  * allocation dependency setup procedure by immediately freeing the
5265  * unreferenced fragments.
5266  */
5267 void
5268 softdep_setup_allocdirect(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
5269 	struct inode *ip;	/* inode to which block is being added */
5270 	ufs_lbn_t off;		/* block pointer within inode */
5271 	ufs2_daddr_t newblkno;	/* disk block number being added */
5272 	ufs2_daddr_t oldblkno;	/* previous block number, 0 unless frag */
5273 	long newsize;		/* size of new block */
5274 	long oldsize;		/* size of new block */
5275 	struct buf *bp;		/* bp for allocated block */
5276 {
5277 	struct allocdirect *adp, *oldadp;
5278 	struct allocdirectlst *adphead;
5279 	struct freefrag *freefrag;
5280 	struct inodedep *inodedep;
5281 	struct pagedep *pagedep;
5282 	struct jnewblk *jnewblk;
5283 	struct newblk *newblk;
5284 	struct mount *mp;
5285 	ufs_lbn_t lbn;
5286 
5287 	lbn = bp->b_lblkno;
5288 	mp = ITOVFS(ip);
5289 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5290 	    ("softdep_setup_allocdirect called on non-softdep filesystem"));
5291 	if (oldblkno && oldblkno != newblkno)
5292 		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn);
5293 	else
5294 		freefrag = NULL;
5295 
5296 	CTR6(KTR_SUJ,
5297 	    "softdep_setup_allocdirect: ino %d blkno %jd oldblkno %jd "
5298 	    "off %jd newsize %ld oldsize %d",
5299 	    ip->i_number, newblkno, oldblkno, off, newsize, oldsize);
5300 	ACQUIRE_LOCK(ITOUMP(ip));
5301 	if (off >= UFS_NDADDR) {
5302 		if (lbn > 0)
5303 			panic("softdep_setup_allocdirect: bad lbn %jd, off %jd",
5304 			    lbn, off);
5305 		/* allocating an indirect block */
5306 		if (oldblkno != 0)
5307 			panic("softdep_setup_allocdirect: non-zero indir");
5308 	} else {
5309 		if (off != lbn)
5310 			panic("softdep_setup_allocdirect: lbn %jd != off %jd",
5311 			    lbn, off);
5312 		/*
5313 		 * Allocating a direct block.
5314 		 *
5315 		 * If we are allocating a directory block, then we must
5316 		 * allocate an associated pagedep to track additions and
5317 		 * deletions.
5318 		 */
5319 		if ((ip->i_mode & IFMT) == IFDIR)
5320 			pagedep_lookup(mp, bp, ip->i_number, off, DEPALLOC,
5321 			    &pagedep);
5322 	}
5323 	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
5324 		panic("softdep_setup_allocdirect: lost block");
5325 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5326 	    ("softdep_setup_allocdirect: newblk already initialized"));
5327 	/*
5328 	 * Convert the newblk to an allocdirect.
5329 	 */
5330 	WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT);
5331 	adp = (struct allocdirect *)newblk;
5332 	newblk->nb_freefrag = freefrag;
5333 	adp->ad_offset = off;
5334 	adp->ad_oldblkno = oldblkno;
5335 	adp->ad_newsize = newsize;
5336 	adp->ad_oldsize = oldsize;
5337 
5338 	/*
5339 	 * Finish initializing the journal.
5340 	 */
5341 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5342 		jnewblk->jn_ino = ip->i_number;
5343 		jnewblk->jn_lbn = lbn;
5344 		add_to_journal(&jnewblk->jn_list);
5345 	}
5346 	if (freefrag && freefrag->ff_jdep != NULL &&
5347 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5348 		add_to_journal(freefrag->ff_jdep);
5349 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
5350 	adp->ad_inodedep = inodedep;
5351 
5352 	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
5353 	/*
5354 	 * The list of allocdirects must be kept in sorted and ascending
5355 	 * order so that the rollback routines can quickly determine the
5356 	 * first uncommitted block (the size of the file stored on disk
5357 	 * ends at the end of the lowest committed fragment, or if there
5358 	 * are no fragments, at the end of the highest committed block).
5359 	 * Since files generally grow, the typical case is that the new
5360 	 * block is to be added at the end of the list. We speed this
5361 	 * special case by checking against the last allocdirect in the
5362 	 * list before laboriously traversing the list looking for the
5363 	 * insertion point.
5364 	 */
5365 	adphead = &inodedep->id_newinoupdt;
5366 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
5367 	if (oldadp == NULL || oldadp->ad_offset <= off) {
5368 		/* insert at end of list */
5369 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
5370 		if (oldadp != NULL && oldadp->ad_offset == off)
5371 			allocdirect_merge(adphead, adp, oldadp);
5372 		FREE_LOCK(ITOUMP(ip));
5373 		return;
5374 	}
5375 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
5376 		if (oldadp->ad_offset >= off)
5377 			break;
5378 	}
5379 	if (oldadp == NULL)
5380 		panic("softdep_setup_allocdirect: lost entry");
5381 	/* insert in middle of list */
5382 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5383 	if (oldadp->ad_offset == off)
5384 		allocdirect_merge(adphead, adp, oldadp);
5385 
5386 	FREE_LOCK(ITOUMP(ip));
5387 }
5388 
5389 /*
5390  * Merge a newer and older journal record to be stored either in a
5391  * newblock or freefrag.  This handles aggregating journal records for
5392  * fragment allocation into a second record as well as replacing a
5393  * journal free with an aborted journal allocation.  A segment for the
5394  * oldest record will be placed on wkhd if it has been written.  If not
5395  * the segment for the newer record will suffice.
5396  */
5397 static struct worklist *
5398 jnewblk_merge(new, old, wkhd)
5399 	struct worklist *new;
5400 	struct worklist *old;
5401 	struct workhead *wkhd;
5402 {
5403 	struct jnewblk *njnewblk;
5404 	struct jnewblk *jnewblk;
5405 
5406 	/* Handle NULLs to simplify callers. */
5407 	if (new == NULL)
5408 		return (old);
5409 	if (old == NULL)
5410 		return (new);
5411 	/* Replace a jfreefrag with a jnewblk. */
5412 	if (new->wk_type == D_JFREEFRAG) {
5413 		if (WK_JNEWBLK(old)->jn_blkno != WK_JFREEFRAG(new)->fr_blkno)
5414 			panic("jnewblk_merge: blkno mismatch: %p, %p",
5415 			    old, new);
5416 		cancel_jfreefrag(WK_JFREEFRAG(new));
5417 		return (old);
5418 	}
5419 	if (old->wk_type != D_JNEWBLK || new->wk_type != D_JNEWBLK)
5420 		panic("jnewblk_merge: Bad type: old %d new %d\n",
5421 		    old->wk_type, new->wk_type);
5422 	/*
5423 	 * Handle merging of two jnewblk records that describe
5424 	 * different sets of fragments in the same block.
5425 	 */
5426 	jnewblk = WK_JNEWBLK(old);
5427 	njnewblk = WK_JNEWBLK(new);
5428 	if (jnewblk->jn_blkno != njnewblk->jn_blkno)
5429 		panic("jnewblk_merge: Merging disparate blocks.");
5430 	/*
5431 	 * The record may be rolled back in the cg.
5432 	 */
5433 	if (jnewblk->jn_state & UNDONE) {
5434 		jnewblk->jn_state &= ~UNDONE;
5435 		njnewblk->jn_state |= UNDONE;
5436 		njnewblk->jn_state &= ~ATTACHED;
5437 	}
5438 	/*
5439 	 * We modify the newer addref and free the older so that if neither
5440 	 * has been written the most up-to-date copy will be on disk.  If
5441 	 * both have been written but rolled back we only temporarily need
5442 	 * one of them to fix the bits when the cg write completes.
5443 	 */
5444 	jnewblk->jn_state |= ATTACHED | COMPLETE;
5445 	njnewblk->jn_oldfrags = jnewblk->jn_oldfrags;
5446 	cancel_jnewblk(jnewblk, wkhd);
5447 	WORKLIST_REMOVE(&jnewblk->jn_list);
5448 	free_jnewblk(jnewblk);
5449 	return (new);
5450 }
5451 
5452 /*
5453  * Replace an old allocdirect dependency with a newer one.
5454  * This routine must be called with splbio interrupts blocked.
5455  */
5456 static void
5457 allocdirect_merge(adphead, newadp, oldadp)
5458 	struct allocdirectlst *adphead;	/* head of list holding allocdirects */
5459 	struct allocdirect *newadp;	/* allocdirect being added */
5460 	struct allocdirect *oldadp;	/* existing allocdirect being checked */
5461 {
5462 	struct worklist *wk;
5463 	struct freefrag *freefrag;
5464 
5465 	freefrag = NULL;
5466 	LOCK_OWNED(VFSTOUFS(newadp->ad_list.wk_mp));
5467 	if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
5468 	    newadp->ad_oldsize != oldadp->ad_newsize ||
5469 	    newadp->ad_offset >= UFS_NDADDR)
5470 		panic("%s %jd != new %jd || old size %ld != new %ld",
5471 		    "allocdirect_merge: old blkno",
5472 		    (intmax_t)newadp->ad_oldblkno,
5473 		    (intmax_t)oldadp->ad_newblkno,
5474 		    newadp->ad_oldsize, oldadp->ad_newsize);
5475 	newadp->ad_oldblkno = oldadp->ad_oldblkno;
5476 	newadp->ad_oldsize = oldadp->ad_oldsize;
5477 	/*
5478 	 * If the old dependency had a fragment to free or had never
5479 	 * previously had a block allocated, then the new dependency
5480 	 * can immediately post its freefrag and adopt the old freefrag.
5481 	 * This action is done by swapping the freefrag dependencies.
5482 	 * The new dependency gains the old one's freefrag, and the
5483 	 * old one gets the new one and then immediately puts it on
5484 	 * the worklist when it is freed by free_newblk. It is
5485 	 * not possible to do this swap when the old dependency had a
5486 	 * non-zero size but no previous fragment to free. This condition
5487 	 * arises when the new block is an extension of the old block.
5488 	 * Here, the first part of the fragment allocated to the new
5489 	 * dependency is part of the block currently claimed on disk by
5490 	 * the old dependency, so cannot legitimately be freed until the
5491 	 * conditions for the new dependency are fulfilled.
5492 	 */
5493 	freefrag = newadp->ad_freefrag;
5494 	if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
5495 		newadp->ad_freefrag = oldadp->ad_freefrag;
5496 		oldadp->ad_freefrag = freefrag;
5497 	}
5498 	/*
5499 	 * If we are tracking a new directory-block allocation,
5500 	 * move it from the old allocdirect to the new allocdirect.
5501 	 */
5502 	if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) {
5503 		WORKLIST_REMOVE(wk);
5504 		if (!LIST_EMPTY(&oldadp->ad_newdirblk))
5505 			panic("allocdirect_merge: extra newdirblk");
5506 		WORKLIST_INSERT(&newadp->ad_newdirblk, wk);
5507 	}
5508 	TAILQ_REMOVE(adphead, oldadp, ad_next);
5509 	/*
5510 	 * We need to move any journal dependencies over to the freefrag
5511 	 * that releases this block if it exists.  Otherwise we are
5512 	 * extending an existing block and we'll wait until that is
5513 	 * complete to release the journal space and extend the
5514 	 * new journal to cover this old space as well.
5515 	 */
5516 	if (freefrag == NULL) {
5517 		if (oldadp->ad_newblkno != newadp->ad_newblkno)
5518 			panic("allocdirect_merge: %jd != %jd",
5519 			    oldadp->ad_newblkno, newadp->ad_newblkno);
5520 		newadp->ad_block.nb_jnewblk = (struct jnewblk *)
5521 		    jnewblk_merge(&newadp->ad_block.nb_jnewblk->jn_list,
5522 		    &oldadp->ad_block.nb_jnewblk->jn_list,
5523 		    &newadp->ad_block.nb_jwork);
5524 		oldadp->ad_block.nb_jnewblk = NULL;
5525 		cancel_newblk(&oldadp->ad_block, NULL,
5526 		    &newadp->ad_block.nb_jwork);
5527 	} else {
5528 		wk = (struct worklist *) cancel_newblk(&oldadp->ad_block,
5529 		    &freefrag->ff_list, &freefrag->ff_jwork);
5530 		freefrag->ff_jdep = jnewblk_merge(freefrag->ff_jdep, wk,
5531 		    &freefrag->ff_jwork);
5532 	}
5533 	free_newblk(&oldadp->ad_block);
5534 }
5535 
5536 /*
5537  * Allocate a jfreefrag structure to journal a single block free.
5538  */
5539 static struct jfreefrag *
5540 newjfreefrag(freefrag, ip, blkno, size, lbn)
5541 	struct freefrag *freefrag;
5542 	struct inode *ip;
5543 	ufs2_daddr_t blkno;
5544 	long size;
5545 	ufs_lbn_t lbn;
5546 {
5547 	struct jfreefrag *jfreefrag;
5548 	struct fs *fs;
5549 
5550 	fs = ITOFS(ip);
5551 	jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG,
5552 	    M_SOFTDEP_FLAGS);
5553 	workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, ITOVFS(ip));
5554 	jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list);
5555 	jfreefrag->fr_state = ATTACHED | DEPCOMPLETE;
5556 	jfreefrag->fr_ino = ip->i_number;
5557 	jfreefrag->fr_lbn = lbn;
5558 	jfreefrag->fr_blkno = blkno;
5559 	jfreefrag->fr_frags = numfrags(fs, size);
5560 	jfreefrag->fr_freefrag = freefrag;
5561 
5562 	return (jfreefrag);
5563 }
5564 
5565 /*
5566  * Allocate a new freefrag structure.
5567  */
5568 static struct freefrag *
5569 newfreefrag(ip, blkno, size, lbn)
5570 	struct inode *ip;
5571 	ufs2_daddr_t blkno;
5572 	long size;
5573 	ufs_lbn_t lbn;
5574 {
5575 	struct freefrag *freefrag;
5576 	struct ufsmount *ump;
5577 	struct fs *fs;
5578 
5579 	CTR4(KTR_SUJ, "newfreefrag: ino %d blkno %jd size %ld lbn %jd",
5580 	    ip->i_number, blkno, size, lbn);
5581 	ump = ITOUMP(ip);
5582 	fs = ump->um_fs;
5583 	if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
5584 		panic("newfreefrag: frag size");
5585 	freefrag = malloc(sizeof(struct freefrag),
5586 	    M_FREEFRAG, M_SOFTDEP_FLAGS);
5587 	workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ump));
5588 	freefrag->ff_state = ATTACHED;
5589 	LIST_INIT(&freefrag->ff_jwork);
5590 	freefrag->ff_inum = ip->i_number;
5591 	freefrag->ff_vtype = ITOV(ip)->v_type;
5592 	freefrag->ff_blkno = blkno;
5593 	freefrag->ff_fragsize = size;
5594 
5595 	if (MOUNTEDSUJ(UFSTOVFS(ump))) {
5596 		freefrag->ff_jdep = (struct worklist *)
5597 		    newjfreefrag(freefrag, ip, blkno, size, lbn);
5598 	} else {
5599 		freefrag->ff_state |= DEPCOMPLETE;
5600 		freefrag->ff_jdep = NULL;
5601 	}
5602 
5603 	return (freefrag);
5604 }
5605 
5606 /*
5607  * This workitem de-allocates fragments that were replaced during
5608  * file block allocation.
5609  */
5610 static void
5611 handle_workitem_freefrag(freefrag)
5612 	struct freefrag *freefrag;
5613 {
5614 	struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp);
5615 	struct workhead wkhd;
5616 
5617 	CTR3(KTR_SUJ,
5618 	    "handle_workitem_freefrag: ino %d blkno %jd size %ld",
5619 	    freefrag->ff_inum, freefrag->ff_blkno, freefrag->ff_fragsize);
5620 	/*
5621 	 * It would be illegal to add new completion items to the
5622 	 * freefrag after it was schedule to be done so it must be
5623 	 * safe to modify the list head here.
5624 	 */
5625 	LIST_INIT(&wkhd);
5626 	ACQUIRE_LOCK(ump);
5627 	LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list);
5628 	/*
5629 	 * If the journal has not been written we must cancel it here.
5630 	 */
5631 	if (freefrag->ff_jdep) {
5632 		if (freefrag->ff_jdep->wk_type != D_JNEWBLK)
5633 			panic("handle_workitem_freefrag: Unexpected type %d\n",
5634 			    freefrag->ff_jdep->wk_type);
5635 		cancel_jnewblk(WK_JNEWBLK(freefrag->ff_jdep), &wkhd);
5636 	}
5637 	FREE_LOCK(ump);
5638 	ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno,
5639 	   freefrag->ff_fragsize, freefrag->ff_inum, freefrag->ff_vtype, &wkhd);
5640 	ACQUIRE_LOCK(ump);
5641 	WORKITEM_FREE(freefrag, D_FREEFRAG);
5642 	FREE_LOCK(ump);
5643 }
5644 
5645 /*
5646  * Set up a dependency structure for an external attributes data block.
5647  * This routine follows much of the structure of softdep_setup_allocdirect.
5648  * See the description of softdep_setup_allocdirect above for details.
5649  */
5650 void
5651 softdep_setup_allocext(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
5652 	struct inode *ip;
5653 	ufs_lbn_t off;
5654 	ufs2_daddr_t newblkno;
5655 	ufs2_daddr_t oldblkno;
5656 	long newsize;
5657 	long oldsize;
5658 	struct buf *bp;
5659 {
5660 	struct allocdirect *adp, *oldadp;
5661 	struct allocdirectlst *adphead;
5662 	struct freefrag *freefrag;
5663 	struct inodedep *inodedep;
5664 	struct jnewblk *jnewblk;
5665 	struct newblk *newblk;
5666 	struct mount *mp;
5667 	struct ufsmount *ump;
5668 	ufs_lbn_t lbn;
5669 
5670 	mp = ITOVFS(ip);
5671 	ump = VFSTOUFS(mp);
5672 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5673 	    ("softdep_setup_allocext called on non-softdep filesystem"));
5674 	KASSERT(off < UFS_NXADDR,
5675 	    ("softdep_setup_allocext: lbn %lld > UFS_NXADDR", (long long)off));
5676 
5677 	lbn = bp->b_lblkno;
5678 	if (oldblkno && oldblkno != newblkno)
5679 		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn);
5680 	else
5681 		freefrag = NULL;
5682 
5683 	ACQUIRE_LOCK(ump);
5684 	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
5685 		panic("softdep_setup_allocext: lost block");
5686 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5687 	    ("softdep_setup_allocext: newblk already initialized"));
5688 	/*
5689 	 * Convert the newblk to an allocdirect.
5690 	 */
5691 	WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT);
5692 	adp = (struct allocdirect *)newblk;
5693 	newblk->nb_freefrag = freefrag;
5694 	adp->ad_offset = off;
5695 	adp->ad_oldblkno = oldblkno;
5696 	adp->ad_newsize = newsize;
5697 	adp->ad_oldsize = oldsize;
5698 	adp->ad_state |=  EXTDATA;
5699 
5700 	/*
5701 	 * Finish initializing the journal.
5702 	 */
5703 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5704 		jnewblk->jn_ino = ip->i_number;
5705 		jnewblk->jn_lbn = lbn;
5706 		add_to_journal(&jnewblk->jn_list);
5707 	}
5708 	if (freefrag && freefrag->ff_jdep != NULL &&
5709 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5710 		add_to_journal(freefrag->ff_jdep);
5711 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
5712 	adp->ad_inodedep = inodedep;
5713 
5714 	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
5715 	/*
5716 	 * The list of allocdirects must be kept in sorted and ascending
5717 	 * order so that the rollback routines can quickly determine the
5718 	 * first uncommitted block (the size of the file stored on disk
5719 	 * ends at the end of the lowest committed fragment, or if there
5720 	 * are no fragments, at the end of the highest committed block).
5721 	 * Since files generally grow, the typical case is that the new
5722 	 * block is to be added at the end of the list. We speed this
5723 	 * special case by checking against the last allocdirect in the
5724 	 * list before laboriously traversing the list looking for the
5725 	 * insertion point.
5726 	 */
5727 	adphead = &inodedep->id_newextupdt;
5728 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
5729 	if (oldadp == NULL || oldadp->ad_offset <= off) {
5730 		/* insert at end of list */
5731 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
5732 		if (oldadp != NULL && oldadp->ad_offset == off)
5733 			allocdirect_merge(adphead, adp, oldadp);
5734 		FREE_LOCK(ump);
5735 		return;
5736 	}
5737 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
5738 		if (oldadp->ad_offset >= off)
5739 			break;
5740 	}
5741 	if (oldadp == NULL)
5742 		panic("softdep_setup_allocext: lost entry");
5743 	/* insert in middle of list */
5744 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5745 	if (oldadp->ad_offset == off)
5746 		allocdirect_merge(adphead, adp, oldadp);
5747 	FREE_LOCK(ump);
5748 }
5749 
5750 /*
5751  * Indirect block allocation dependencies.
5752  *
5753  * The same dependencies that exist for a direct block also exist when
5754  * a new block is allocated and pointed to by an entry in a block of
5755  * indirect pointers. The undo/redo states described above are also
5756  * used here. Because an indirect block contains many pointers that
5757  * may have dependencies, a second copy of the entire in-memory indirect
5758  * block is kept. The buffer cache copy is always completely up-to-date.
5759  * The second copy, which is used only as a source for disk writes,
5760  * contains only the safe pointers (i.e., those that have no remaining
5761  * update dependencies). The second copy is freed when all pointers
5762  * are safe. The cache is not allowed to replace indirect blocks with
5763  * pending update dependencies. If a buffer containing an indirect
5764  * block with dependencies is written, these routines will mark it
5765  * dirty again. It can only be successfully written once all the
5766  * dependencies are removed. The ffs_fsync routine in conjunction with
5767  * softdep_sync_metadata work together to get all the dependencies
5768  * removed so that a file can be successfully written to disk. Three
5769  * procedures are used when setting up indirect block pointer
5770  * dependencies. The division is necessary because of the organization
5771  * of the "balloc" routine and because of the distinction between file
5772  * pages and file metadata blocks.
5773  */
5774 
5775 /*
5776  * Allocate a new allocindir structure.
5777  */
5778 static struct allocindir *
5779 newallocindir(ip, ptrno, newblkno, oldblkno, lbn)
5780 	struct inode *ip;	/* inode for file being extended */
5781 	int ptrno;		/* offset of pointer in indirect block */
5782 	ufs2_daddr_t newblkno;	/* disk block number being added */
5783 	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
5784 	ufs_lbn_t lbn;
5785 {
5786 	struct newblk *newblk;
5787 	struct allocindir *aip;
5788 	struct freefrag *freefrag;
5789 	struct jnewblk *jnewblk;
5790 
5791 	if (oldblkno)
5792 		freefrag = newfreefrag(ip, oldblkno, ITOFS(ip)->fs_bsize, lbn);
5793 	else
5794 		freefrag = NULL;
5795 	ACQUIRE_LOCK(ITOUMP(ip));
5796 	if (newblk_lookup(ITOVFS(ip), newblkno, 0, &newblk) == 0)
5797 		panic("new_allocindir: lost block");
5798 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5799 	    ("newallocindir: newblk already initialized"));
5800 	WORKITEM_REASSIGN(newblk, D_ALLOCINDIR);
5801 	newblk->nb_freefrag = freefrag;
5802 	aip = (struct allocindir *)newblk;
5803 	aip->ai_offset = ptrno;
5804 	aip->ai_oldblkno = oldblkno;
5805 	aip->ai_lbn = lbn;
5806 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5807 		jnewblk->jn_ino = ip->i_number;
5808 		jnewblk->jn_lbn = lbn;
5809 		add_to_journal(&jnewblk->jn_list);
5810 	}
5811 	if (freefrag && freefrag->ff_jdep != NULL &&
5812 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5813 		add_to_journal(freefrag->ff_jdep);
5814 	return (aip);
5815 }
5816 
5817 /*
5818  * Called just before setting an indirect block pointer
5819  * to a newly allocated file page.
5820  */
5821 void
5822 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
5823 	struct inode *ip;	/* inode for file being extended */
5824 	ufs_lbn_t lbn;		/* allocated block number within file */
5825 	struct buf *bp;		/* buffer with indirect blk referencing page */
5826 	int ptrno;		/* offset of pointer in indirect block */
5827 	ufs2_daddr_t newblkno;	/* disk block number being added */
5828 	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
5829 	struct buf *nbp;	/* buffer holding allocated page */
5830 {
5831 	struct inodedep *inodedep;
5832 	struct freefrag *freefrag;
5833 	struct allocindir *aip;
5834 	struct pagedep *pagedep;
5835 	struct mount *mp;
5836 	struct ufsmount *ump;
5837 
5838 	mp = ITOVFS(ip);
5839 	ump = VFSTOUFS(mp);
5840 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5841 	    ("softdep_setup_allocindir_page called on non-softdep filesystem"));
5842 	KASSERT(lbn == nbp->b_lblkno,
5843 	    ("softdep_setup_allocindir_page: lbn %jd != lblkno %jd",
5844 	    lbn, bp->b_lblkno));
5845 	CTR4(KTR_SUJ,
5846 	    "softdep_setup_allocindir_page: ino %d blkno %jd oldblkno %jd "
5847 	    "lbn %jd", ip->i_number, newblkno, oldblkno, lbn);
5848 	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page");
5849 	aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn);
5850 	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
5851 	/*
5852 	 * If we are allocating a directory page, then we must
5853 	 * allocate an associated pagedep to track additions and
5854 	 * deletions.
5855 	 */
5856 	if ((ip->i_mode & IFMT) == IFDIR)
5857 		pagedep_lookup(mp, nbp, ip->i_number, lbn, DEPALLOC, &pagedep);
5858 	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
5859 	freefrag = setup_allocindir_phase2(bp, ip, inodedep, aip, lbn);
5860 	FREE_LOCK(ump);
5861 	if (freefrag)
5862 		handle_workitem_freefrag(freefrag);
5863 }
5864 
5865 /*
5866  * Called just before setting an indirect block pointer to a
5867  * newly allocated indirect block.
5868  */
5869 void
5870 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
5871 	struct buf *nbp;	/* newly allocated indirect block */
5872 	struct inode *ip;	/* inode for file being extended */
5873 	struct buf *bp;		/* indirect block referencing allocated block */
5874 	int ptrno;		/* offset of pointer in indirect block */
5875 	ufs2_daddr_t newblkno;	/* disk block number being added */
5876 {
5877 	struct inodedep *inodedep;
5878 	struct allocindir *aip;
5879 	struct ufsmount *ump;
5880 	ufs_lbn_t lbn;
5881 
5882 	ump = ITOUMP(ip);
5883 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
5884 	    ("softdep_setup_allocindir_meta called on non-softdep filesystem"));
5885 	CTR3(KTR_SUJ,
5886 	    "softdep_setup_allocindir_meta: ino %d blkno %jd ptrno %d",
5887 	    ip->i_number, newblkno, ptrno);
5888 	lbn = nbp->b_lblkno;
5889 	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta");
5890 	aip = newallocindir(ip, ptrno, newblkno, 0, lbn);
5891 	inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep);
5892 	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
5893 	if (setup_allocindir_phase2(bp, ip, inodedep, aip, lbn))
5894 		panic("softdep_setup_allocindir_meta: Block already existed");
5895 	FREE_LOCK(ump);
5896 }
5897 
5898 static void
5899 indirdep_complete(indirdep)
5900 	struct indirdep *indirdep;
5901 {
5902 	struct allocindir *aip;
5903 
5904 	LIST_REMOVE(indirdep, ir_next);
5905 	indirdep->ir_state |= DEPCOMPLETE;
5906 
5907 	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) {
5908 		LIST_REMOVE(aip, ai_next);
5909 		free_newblk(&aip->ai_block);
5910 	}
5911 	/*
5912 	 * If this indirdep is not attached to a buf it was simply waiting
5913 	 * on completion to clear completehd.  free_indirdep() asserts
5914 	 * that nothing is dangling.
5915 	 */
5916 	if ((indirdep->ir_state & ONWORKLIST) == 0)
5917 		free_indirdep(indirdep);
5918 }
5919 
5920 static struct indirdep *
5921 indirdep_lookup(mp, ip, bp)
5922 	struct mount *mp;
5923 	struct inode *ip;
5924 	struct buf *bp;
5925 {
5926 	struct indirdep *indirdep, *newindirdep;
5927 	struct newblk *newblk;
5928 	struct ufsmount *ump;
5929 	struct worklist *wk;
5930 	struct fs *fs;
5931 	ufs2_daddr_t blkno;
5932 
5933 	ump = VFSTOUFS(mp);
5934 	LOCK_OWNED(ump);
5935 	indirdep = NULL;
5936 	newindirdep = NULL;
5937 	fs = ump->um_fs;
5938 	for (;;) {
5939 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5940 			if (wk->wk_type != D_INDIRDEP)
5941 				continue;
5942 			indirdep = WK_INDIRDEP(wk);
5943 			break;
5944 		}
5945 		/* Found on the buffer worklist, no new structure to free. */
5946 		if (indirdep != NULL && newindirdep == NULL)
5947 			return (indirdep);
5948 		if (indirdep != NULL && newindirdep != NULL)
5949 			panic("indirdep_lookup: simultaneous create");
5950 		/* None found on the buffer and a new structure is ready. */
5951 		if (indirdep == NULL && newindirdep != NULL)
5952 			break;
5953 		/* None found and no new structure available. */
5954 		FREE_LOCK(ump);
5955 		newindirdep = malloc(sizeof(struct indirdep),
5956 		    M_INDIRDEP, M_SOFTDEP_FLAGS);
5957 		workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp);
5958 		newindirdep->ir_state = ATTACHED;
5959 		if (I_IS_UFS1(ip))
5960 			newindirdep->ir_state |= UFS1FMT;
5961 		TAILQ_INIT(&newindirdep->ir_trunc);
5962 		newindirdep->ir_saveddata = NULL;
5963 		LIST_INIT(&newindirdep->ir_deplisthd);
5964 		LIST_INIT(&newindirdep->ir_donehd);
5965 		LIST_INIT(&newindirdep->ir_writehd);
5966 		LIST_INIT(&newindirdep->ir_completehd);
5967 		if (bp->b_blkno == bp->b_lblkno) {
5968 			ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp,
5969 			    NULL, NULL);
5970 			bp->b_blkno = blkno;
5971 		}
5972 		newindirdep->ir_freeblks = NULL;
5973 		newindirdep->ir_savebp =
5974 		    getblk(ump->um_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0);
5975 		newindirdep->ir_bp = bp;
5976 		BUF_KERNPROC(newindirdep->ir_savebp);
5977 		bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
5978 		ACQUIRE_LOCK(ump);
5979 	}
5980 	indirdep = newindirdep;
5981 	WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list);
5982 	/*
5983 	 * If the block is not yet allocated we don't set DEPCOMPLETE so
5984 	 * that we don't free dependencies until the pointers are valid.
5985 	 * This could search b_dep for D_ALLOCDIRECT/D_ALLOCINDIR rather
5986 	 * than using the hash.
5987 	 */
5988 	if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk))
5989 		LIST_INSERT_HEAD(&newblk->nb_indirdeps, indirdep, ir_next);
5990 	else
5991 		indirdep->ir_state |= DEPCOMPLETE;
5992 	return (indirdep);
5993 }
5994 
5995 /*
5996  * Called to finish the allocation of the "aip" allocated
5997  * by one of the two routines above.
5998  */
5999 static struct freefrag *
6000 setup_allocindir_phase2(bp, ip, inodedep, aip, lbn)
6001 	struct buf *bp;		/* in-memory copy of the indirect block */
6002 	struct inode *ip;	/* inode for file being extended */
6003 	struct inodedep *inodedep; /* Inodedep for ip */
6004 	struct allocindir *aip;	/* allocindir allocated by the above routines */
6005 	ufs_lbn_t lbn;		/* Logical block number for this block. */
6006 {
6007 	struct fs *fs;
6008 	struct indirdep *indirdep;
6009 	struct allocindir *oldaip;
6010 	struct freefrag *freefrag;
6011 	struct mount *mp;
6012 	struct ufsmount *ump;
6013 
6014 	mp = ITOVFS(ip);
6015 	ump = VFSTOUFS(mp);
6016 	LOCK_OWNED(ump);
6017 	fs = ump->um_fs;
6018 	if (bp->b_lblkno >= 0)
6019 		panic("setup_allocindir_phase2: not indir blk");
6020 	KASSERT(aip->ai_offset >= 0 && aip->ai_offset < NINDIR(fs),
6021 	    ("setup_allocindir_phase2: Bad offset %d", aip->ai_offset));
6022 	indirdep = indirdep_lookup(mp, ip, bp);
6023 	KASSERT(indirdep->ir_savebp != NULL,
6024 	    ("setup_allocindir_phase2 NULL ir_savebp"));
6025 	aip->ai_indirdep = indirdep;
6026 	/*
6027 	 * Check for an unwritten dependency for this indirect offset.  If
6028 	 * there is, merge the old dependency into the new one.  This happens
6029 	 * as a result of reallocblk only.
6030 	 */
6031 	freefrag = NULL;
6032 	if (aip->ai_oldblkno != 0) {
6033 		LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) {
6034 			if (oldaip->ai_offset == aip->ai_offset) {
6035 				freefrag = allocindir_merge(aip, oldaip);
6036 				goto done;
6037 			}
6038 		}
6039 		LIST_FOREACH(oldaip, &indirdep->ir_donehd, ai_next) {
6040 			if (oldaip->ai_offset == aip->ai_offset) {
6041 				freefrag = allocindir_merge(aip, oldaip);
6042 				goto done;
6043 			}
6044 		}
6045 	}
6046 done:
6047 	LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
6048 	return (freefrag);
6049 }
6050 
6051 /*
6052  * Merge two allocindirs which refer to the same block.  Move newblock
6053  * dependencies and setup the freefrags appropriately.
6054  */
6055 static struct freefrag *
6056 allocindir_merge(aip, oldaip)
6057 	struct allocindir *aip;
6058 	struct allocindir *oldaip;
6059 {
6060 	struct freefrag *freefrag;
6061 	struct worklist *wk;
6062 
6063 	if (oldaip->ai_newblkno != aip->ai_oldblkno)
6064 		panic("allocindir_merge: blkno");
6065 	aip->ai_oldblkno = oldaip->ai_oldblkno;
6066 	freefrag = aip->ai_freefrag;
6067 	aip->ai_freefrag = oldaip->ai_freefrag;
6068 	oldaip->ai_freefrag = NULL;
6069 	KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag"));
6070 	/*
6071 	 * If we are tracking a new directory-block allocation,
6072 	 * move it from the old allocindir to the new allocindir.
6073 	 */
6074 	if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) {
6075 		WORKLIST_REMOVE(wk);
6076 		if (!LIST_EMPTY(&oldaip->ai_newdirblk))
6077 			panic("allocindir_merge: extra newdirblk");
6078 		WORKLIST_INSERT(&aip->ai_newdirblk, wk);
6079 	}
6080 	/*
6081 	 * We can skip journaling for this freefrag and just complete
6082 	 * any pending journal work for the allocindir that is being
6083 	 * removed after the freefrag completes.
6084 	 */
6085 	if (freefrag->ff_jdep)
6086 		cancel_jfreefrag(WK_JFREEFRAG(freefrag->ff_jdep));
6087 	LIST_REMOVE(oldaip, ai_next);
6088 	freefrag->ff_jdep = (struct worklist *)cancel_newblk(&oldaip->ai_block,
6089 	    &freefrag->ff_list, &freefrag->ff_jwork);
6090 	free_newblk(&oldaip->ai_block);
6091 
6092 	return (freefrag);
6093 }
6094 
6095 static inline void
6096 setup_freedirect(freeblks, ip, i, needj)
6097 	struct freeblks *freeblks;
6098 	struct inode *ip;
6099 	int i;
6100 	int needj;
6101 {
6102 	struct ufsmount *ump;
6103 	ufs2_daddr_t blkno;
6104 	int frags;
6105 
6106 	blkno = DIP(ip, i_db[i]);
6107 	if (blkno == 0)
6108 		return;
6109 	DIP_SET(ip, i_db[i], 0);
6110 	ump = ITOUMP(ip);
6111 	frags = sblksize(ump->um_fs, ip->i_size, i);
6112 	frags = numfrags(ump->um_fs, frags);
6113 	newfreework(ump, freeblks, NULL, i, blkno, frags, 0, needj);
6114 }
6115 
6116 static inline void
6117 setup_freeext(freeblks, ip, i, needj)
6118 	struct freeblks *freeblks;
6119 	struct inode *ip;
6120 	int i;
6121 	int needj;
6122 {
6123 	struct ufsmount *ump;
6124 	ufs2_daddr_t blkno;
6125 	int frags;
6126 
6127 	blkno = ip->i_din2->di_extb[i];
6128 	if (blkno == 0)
6129 		return;
6130 	ip->i_din2->di_extb[i] = 0;
6131 	ump = ITOUMP(ip);
6132 	frags = sblksize(ump->um_fs, ip->i_din2->di_extsize, i);
6133 	frags = numfrags(ump->um_fs, frags);
6134 	newfreework(ump, freeblks, NULL, -1 - i, blkno, frags, 0, needj);
6135 }
6136 
6137 static inline void
6138 setup_freeindir(freeblks, ip, i, lbn, needj)
6139 	struct freeblks *freeblks;
6140 	struct inode *ip;
6141 	int i;
6142 	ufs_lbn_t lbn;
6143 	int needj;
6144 {
6145 	struct ufsmount *ump;
6146 	ufs2_daddr_t blkno;
6147 
6148 	blkno = DIP(ip, i_ib[i]);
6149 	if (blkno == 0)
6150 		return;
6151 	DIP_SET(ip, i_ib[i], 0);
6152 	ump = ITOUMP(ip);
6153 	newfreework(ump, freeblks, NULL, lbn, blkno, ump->um_fs->fs_frag,
6154 	    0, needj);
6155 }
6156 
6157 static inline struct freeblks *
6158 newfreeblks(mp, ip)
6159 	struct mount *mp;
6160 	struct inode *ip;
6161 {
6162 	struct freeblks *freeblks;
6163 
6164 	freeblks = malloc(sizeof(struct freeblks),
6165 		M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO);
6166 	workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp);
6167 	LIST_INIT(&freeblks->fb_jblkdephd);
6168 	LIST_INIT(&freeblks->fb_jwork);
6169 	freeblks->fb_ref = 0;
6170 	freeblks->fb_cgwait = 0;
6171 	freeblks->fb_state = ATTACHED;
6172 	freeblks->fb_uid = ip->i_uid;
6173 	freeblks->fb_inum = ip->i_number;
6174 	freeblks->fb_vtype = ITOV(ip)->v_type;
6175 	freeblks->fb_modrev = DIP(ip, i_modrev);
6176 	freeblks->fb_devvp = ITODEVVP(ip);
6177 	freeblks->fb_chkcnt = 0;
6178 	freeblks->fb_len = 0;
6179 
6180 	return (freeblks);
6181 }
6182 
6183 static void
6184 trunc_indirdep(indirdep, freeblks, bp, off)
6185 	struct indirdep *indirdep;
6186 	struct freeblks *freeblks;
6187 	struct buf *bp;
6188 	int off;
6189 {
6190 	struct allocindir *aip, *aipn;
6191 
6192 	/*
6193 	 * The first set of allocindirs won't be in savedbp.
6194 	 */
6195 	LIST_FOREACH_SAFE(aip, &indirdep->ir_deplisthd, ai_next, aipn)
6196 		if (aip->ai_offset > off)
6197 			cancel_allocindir(aip, bp, freeblks, 1);
6198 	LIST_FOREACH_SAFE(aip, &indirdep->ir_donehd, ai_next, aipn)
6199 		if (aip->ai_offset > off)
6200 			cancel_allocindir(aip, bp, freeblks, 1);
6201 	/*
6202 	 * These will exist in savedbp.
6203 	 */
6204 	LIST_FOREACH_SAFE(aip, &indirdep->ir_writehd, ai_next, aipn)
6205 		if (aip->ai_offset > off)
6206 			cancel_allocindir(aip, NULL, freeblks, 0);
6207 	LIST_FOREACH_SAFE(aip, &indirdep->ir_completehd, ai_next, aipn)
6208 		if (aip->ai_offset > off)
6209 			cancel_allocindir(aip, NULL, freeblks, 0);
6210 }
6211 
6212 /*
6213  * Follow the chain of indirects down to lastlbn creating a freework
6214  * structure for each.  This will be used to start indir_trunc() at
6215  * the right offset and create the journal records for the parrtial
6216  * truncation.  A second step will handle the truncated dependencies.
6217  */
6218 static int
6219 setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno)
6220 	struct freeblks *freeblks;
6221 	struct inode *ip;
6222 	ufs_lbn_t lbn;
6223 	ufs_lbn_t lastlbn;
6224 	ufs2_daddr_t blkno;
6225 {
6226 	struct indirdep *indirdep;
6227 	struct indirdep *indirn;
6228 	struct freework *freework;
6229 	struct newblk *newblk;
6230 	struct mount *mp;
6231 	struct ufsmount *ump;
6232 	struct buf *bp;
6233 	uint8_t *start;
6234 	uint8_t *end;
6235 	ufs_lbn_t lbnadd;
6236 	int level;
6237 	int error;
6238 	int off;
6239 
6240 
6241 	freework = NULL;
6242 	if (blkno == 0)
6243 		return (0);
6244 	mp = freeblks->fb_list.wk_mp;
6245 	ump = VFSTOUFS(mp);
6246 	bp = getblk(ITOV(ip), lbn, mp->mnt_stat.f_iosize, 0, 0, 0);
6247 	if ((bp->b_flags & B_CACHE) == 0) {
6248 		bp->b_blkno = blkptrtodb(VFSTOUFS(mp), blkno);
6249 		bp->b_iocmd = BIO_READ;
6250 		bp->b_flags &= ~B_INVAL;
6251 		bp->b_ioflags &= ~BIO_ERROR;
6252 		vfs_busy_pages(bp, 0);
6253 		bp->b_iooffset = dbtob(bp->b_blkno);
6254 		bstrategy(bp);
6255 #ifdef RACCT
6256 		if (racct_enable) {
6257 			PROC_LOCK(curproc);
6258 			racct_add_buf(curproc, bp, 0);
6259 			PROC_UNLOCK(curproc);
6260 		}
6261 #endif /* RACCT */
6262 		curthread->td_ru.ru_inblock++;
6263 		error = bufwait(bp);
6264 		if (error) {
6265 			brelse(bp);
6266 			return (error);
6267 		}
6268 	}
6269 	level = lbn_level(lbn);
6270 	lbnadd = lbn_offset(ump->um_fs, level);
6271 	/*
6272 	 * Compute the offset of the last block we want to keep.  Store
6273 	 * in the freework the first block we want to completely free.
6274 	 */
6275 	off = (lastlbn - -(lbn + level)) / lbnadd;
6276 	if (off + 1 == NINDIR(ump->um_fs))
6277 		goto nowork;
6278 	freework = newfreework(ump, freeblks, NULL, lbn, blkno, 0, off + 1, 0);
6279 	/*
6280 	 * Link the freework into the indirdep.  This will prevent any new
6281 	 * allocations from proceeding until we are finished with the
6282 	 * truncate and the block is written.
6283 	 */
6284 	ACQUIRE_LOCK(ump);
6285 	indirdep = indirdep_lookup(mp, ip, bp);
6286 	if (indirdep->ir_freeblks)
6287 		panic("setup_trunc_indir: indirdep already truncated.");
6288 	TAILQ_INSERT_TAIL(&indirdep->ir_trunc, freework, fw_next);
6289 	freework->fw_indir = indirdep;
6290 	/*
6291 	 * Cancel any allocindirs that will not make it to disk.
6292 	 * We have to do this for all copies of the indirdep that
6293 	 * live on this newblk.
6294 	 */
6295 	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
6296 		newblk_lookup(mp, dbtofsb(ump->um_fs, bp->b_blkno), 0, &newblk);
6297 		LIST_FOREACH(indirn, &newblk->nb_indirdeps, ir_next)
6298 			trunc_indirdep(indirn, freeblks, bp, off);
6299 	} else
6300 		trunc_indirdep(indirdep, freeblks, bp, off);
6301 	FREE_LOCK(ump);
6302 	/*
6303 	 * Creation is protected by the buf lock. The saveddata is only
6304 	 * needed if a full truncation follows a partial truncation but it
6305 	 * is difficult to allocate in that case so we fetch it anyway.
6306 	 */
6307 	if (indirdep->ir_saveddata == NULL)
6308 		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
6309 		    M_SOFTDEP_FLAGS);
6310 nowork:
6311 	/* Fetch the blkno of the child and the zero start offset. */
6312 	if (I_IS_UFS1(ip)) {
6313 		blkno = ((ufs1_daddr_t *)bp->b_data)[off];
6314 		start = (uint8_t *)&((ufs1_daddr_t *)bp->b_data)[off+1];
6315 	} else {
6316 		blkno = ((ufs2_daddr_t *)bp->b_data)[off];
6317 		start = (uint8_t *)&((ufs2_daddr_t *)bp->b_data)[off+1];
6318 	}
6319 	if (freework) {
6320 		/* Zero the truncated pointers. */
6321 		end = bp->b_data + bp->b_bcount;
6322 		bzero(start, end - start);
6323 		bdwrite(bp);
6324 	} else
6325 		bqrelse(bp);
6326 	if (level == 0)
6327 		return (0);
6328 	lbn++; /* adjust level */
6329 	lbn -= (off * lbnadd);
6330 	return setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno);
6331 }
6332 
6333 /*
6334  * Complete the partial truncation of an indirect block setup by
6335  * setup_trunc_indir().  This zeros the truncated pointers in the saved
6336  * copy and writes them to disk before the freeblks is allowed to complete.
6337  */
6338 static void
6339 complete_trunc_indir(freework)
6340 	struct freework *freework;
6341 {
6342 	struct freework *fwn;
6343 	struct indirdep *indirdep;
6344 	struct ufsmount *ump;
6345 	struct buf *bp;
6346 	uintptr_t start;
6347 	int count;
6348 
6349 	ump = VFSTOUFS(freework->fw_list.wk_mp);
6350 	LOCK_OWNED(ump);
6351 	indirdep = freework->fw_indir;
6352 	for (;;) {
6353 		bp = indirdep->ir_bp;
6354 		/* See if the block was discarded. */
6355 		if (bp == NULL)
6356 			break;
6357 		/* Inline part of getdirtybuf().  We dont want bremfree. */
6358 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0)
6359 			break;
6360 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
6361 		    LOCK_PTR(ump)) == 0)
6362 			BUF_UNLOCK(bp);
6363 		ACQUIRE_LOCK(ump);
6364 	}
6365 	freework->fw_state |= DEPCOMPLETE;
6366 	TAILQ_REMOVE(&indirdep->ir_trunc, freework, fw_next);
6367 	/*
6368 	 * Zero the pointers in the saved copy.
6369 	 */
6370 	if (indirdep->ir_state & UFS1FMT)
6371 		start = sizeof(ufs1_daddr_t);
6372 	else
6373 		start = sizeof(ufs2_daddr_t);
6374 	start *= freework->fw_start;
6375 	count = indirdep->ir_savebp->b_bcount - start;
6376 	start += (uintptr_t)indirdep->ir_savebp->b_data;
6377 	bzero((char *)start, count);
6378 	/*
6379 	 * We need to start the next truncation in the list if it has not
6380 	 * been started yet.
6381 	 */
6382 	fwn = TAILQ_FIRST(&indirdep->ir_trunc);
6383 	if (fwn != NULL) {
6384 		if (fwn->fw_freeblks == indirdep->ir_freeblks)
6385 			TAILQ_REMOVE(&indirdep->ir_trunc, fwn, fw_next);
6386 		if ((fwn->fw_state & ONWORKLIST) == 0)
6387 			freework_enqueue(fwn);
6388 	}
6389 	/*
6390 	 * If bp is NULL the block was fully truncated, restore
6391 	 * the saved block list otherwise free it if it is no
6392 	 * longer needed.
6393 	 */
6394 	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
6395 		if (bp == NULL)
6396 			bcopy(indirdep->ir_saveddata,
6397 			    indirdep->ir_savebp->b_data,
6398 			    indirdep->ir_savebp->b_bcount);
6399 		free(indirdep->ir_saveddata, M_INDIRDEP);
6400 		indirdep->ir_saveddata = NULL;
6401 	}
6402 	/*
6403 	 * When bp is NULL there is a full truncation pending.  We
6404 	 * must wait for this full truncation to be journaled before
6405 	 * we can release this freework because the disk pointers will
6406 	 * never be written as zero.
6407 	 */
6408 	if (bp == NULL)  {
6409 		if (LIST_EMPTY(&indirdep->ir_freeblks->fb_jblkdephd))
6410 			handle_written_freework(freework);
6411 		else
6412 			WORKLIST_INSERT(&indirdep->ir_freeblks->fb_freeworkhd,
6413 			   &freework->fw_list);
6414 	} else {
6415 		/* Complete when the real copy is written. */
6416 		WORKLIST_INSERT(&bp->b_dep, &freework->fw_list);
6417 		BUF_UNLOCK(bp);
6418 	}
6419 }
6420 
6421 /*
6422  * Calculate the number of blocks we are going to release where datablocks
6423  * is the current total and length is the new file size.
6424  */
6425 static ufs2_daddr_t
6426 blkcount(fs, datablocks, length)
6427 	struct fs *fs;
6428 	ufs2_daddr_t datablocks;
6429 	off_t length;
6430 {
6431 	off_t totblks, numblks;
6432 
6433 	totblks = 0;
6434 	numblks = howmany(length, fs->fs_bsize);
6435 	if (numblks <= UFS_NDADDR) {
6436 		totblks = howmany(length, fs->fs_fsize);
6437 		goto out;
6438 	}
6439         totblks = blkstofrags(fs, numblks);
6440 	numblks -= UFS_NDADDR;
6441 	/*
6442 	 * Count all single, then double, then triple indirects required.
6443 	 * Subtracting one indirects worth of blocks for each pass
6444 	 * acknowledges one of each pointed to by the inode.
6445 	 */
6446 	for (;;) {
6447 		totblks += blkstofrags(fs, howmany(numblks, NINDIR(fs)));
6448 		numblks -= NINDIR(fs);
6449 		if (numblks <= 0)
6450 			break;
6451 		numblks = howmany(numblks, NINDIR(fs));
6452 	}
6453 out:
6454 	totblks = fsbtodb(fs, totblks);
6455 	/*
6456 	 * Handle sparse files.  We can't reclaim more blocks than the inode
6457 	 * references.  We will correct it later in handle_complete_freeblks()
6458 	 * when we know the real count.
6459 	 */
6460 	if (totblks > datablocks)
6461 		return (0);
6462 	return (datablocks - totblks);
6463 }
6464 
6465 /*
6466  * Handle freeblocks for journaled softupdate filesystems.
6467  *
6468  * Contrary to normal softupdates, we must preserve the block pointers in
6469  * indirects until their subordinates are free.  This is to avoid journaling
6470  * every block that is freed which may consume more space than the journal
6471  * itself.  The recovery program will see the free block journals at the
6472  * base of the truncated area and traverse them to reclaim space.  The
6473  * pointers in the inode may be cleared immediately after the journal
6474  * records are written because each direct and indirect pointer in the
6475  * inode is recorded in a journal.  This permits full truncation to proceed
6476  * asynchronously.  The write order is journal -> inode -> cgs -> indirects.
6477  *
6478  * The algorithm is as follows:
6479  * 1) Traverse the in-memory state and create journal entries to release
6480  *    the relevant blocks and full indirect trees.
6481  * 2) Traverse the indirect block chain adding partial truncation freework
6482  *    records to indirects in the path to lastlbn.  The freework will
6483  *    prevent new allocation dependencies from being satisfied in this
6484  *    indirect until the truncation completes.
6485  * 3) Read and lock the inode block, performing an update with the new size
6486  *    and pointers.  This prevents truncated data from becoming valid on
6487  *    disk through step 4.
6488  * 4) Reap unsatisfied dependencies that are beyond the truncated area,
6489  *    eliminate journal work for those records that do not require it.
6490  * 5) Schedule the journal records to be written followed by the inode block.
6491  * 6) Allocate any necessary frags for the end of file.
6492  * 7) Zero any partially truncated blocks.
6493  *
6494  * From this truncation proceeds asynchronously using the freework and
6495  * indir_trunc machinery.  The file will not be extended again into a
6496  * partially truncated indirect block until all work is completed but
6497  * the normal dependency mechanism ensures that it is rolled back/forward
6498  * as appropriate.  Further truncation may occur without delay and is
6499  * serialized in indir_trunc().
6500  */
6501 void
6502 softdep_journal_freeblocks(ip, cred, length, flags)
6503 	struct inode *ip;	/* The inode whose length is to be reduced */
6504 	struct ucred *cred;
6505 	off_t length;		/* The new length for the file */
6506 	int flags;		/* IO_EXT and/or IO_NORMAL */
6507 {
6508 	struct freeblks *freeblks, *fbn;
6509 	struct worklist *wk, *wkn;
6510 	struct inodedep *inodedep;
6511 	struct jblkdep *jblkdep;
6512 	struct allocdirect *adp, *adpn;
6513 	struct ufsmount *ump;
6514 	struct fs *fs;
6515 	struct buf *bp;
6516 	struct vnode *vp;
6517 	struct mount *mp;
6518 	ufs2_daddr_t extblocks, datablocks;
6519 	ufs_lbn_t tmpval, lbn, lastlbn;
6520 	int frags, lastoff, iboff, allocblock, needj, error, i;
6521 
6522 	ump = ITOUMP(ip);
6523 	mp = UFSTOVFS(ump);
6524 	fs = ump->um_fs;
6525 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
6526 	    ("softdep_journal_freeblocks called on non-softdep filesystem"));
6527 	vp = ITOV(ip);
6528 	needj = 1;
6529 	iboff = -1;
6530 	allocblock = 0;
6531 	extblocks = 0;
6532 	datablocks = 0;
6533 	frags = 0;
6534 	freeblks = newfreeblks(mp, ip);
6535 	ACQUIRE_LOCK(ump);
6536 	/*
6537 	 * If we're truncating a removed file that will never be written
6538 	 * we don't need to journal the block frees.  The canceled journals
6539 	 * for the allocations will suffice.
6540 	 */
6541 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6542 	if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED &&
6543 	    length == 0)
6544 		needj = 0;
6545 	CTR3(KTR_SUJ, "softdep_journal_freeblks: ip %d length %ld needj %d",
6546 	    ip->i_number, length, needj);
6547 	FREE_LOCK(ump);
6548 	/*
6549 	 * Calculate the lbn that we are truncating to.  This results in -1
6550 	 * if we're truncating the 0 bytes.  So it is the last lbn we want
6551 	 * to keep, not the first lbn we want to truncate.
6552 	 */
6553 	lastlbn = lblkno(fs, length + fs->fs_bsize - 1) - 1;
6554 	lastoff = blkoff(fs, length);
6555 	/*
6556 	 * Compute frags we are keeping in lastlbn.  0 means all.
6557 	 */
6558 	if (lastlbn >= 0 && lastlbn < UFS_NDADDR) {
6559 		frags = fragroundup(fs, lastoff);
6560 		/* adp offset of last valid allocdirect. */
6561 		iboff = lastlbn;
6562 	} else if (lastlbn > 0)
6563 		iboff = UFS_NDADDR;
6564 	if (fs->fs_magic == FS_UFS2_MAGIC)
6565 		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
6566 	/*
6567 	 * Handle normal data blocks and indirects.  This section saves
6568 	 * values used after the inode update to complete frag and indirect
6569 	 * truncation.
6570 	 */
6571 	if ((flags & IO_NORMAL) != 0) {
6572 		/*
6573 		 * Handle truncation of whole direct and indirect blocks.
6574 		 */
6575 		for (i = iboff + 1; i < UFS_NDADDR; i++)
6576 			setup_freedirect(freeblks, ip, i, needj);
6577 		for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR;
6578 		    i < UFS_NIADDR;
6579 		    i++, lbn += tmpval, tmpval *= NINDIR(fs)) {
6580 			/* Release a whole indirect tree. */
6581 			if (lbn > lastlbn) {
6582 				setup_freeindir(freeblks, ip, i, -lbn -i,
6583 				    needj);
6584 				continue;
6585 			}
6586 			iboff = i + UFS_NDADDR;
6587 			/*
6588 			 * Traverse partially truncated indirect tree.
6589 			 */
6590 			if (lbn <= lastlbn && lbn + tmpval - 1 > lastlbn)
6591 				setup_trunc_indir(freeblks, ip, -lbn - i,
6592 				    lastlbn, DIP(ip, i_ib[i]));
6593 		}
6594 		/*
6595 		 * Handle partial truncation to a frag boundary.
6596 		 */
6597 		if (frags) {
6598 			ufs2_daddr_t blkno;
6599 			long oldfrags;
6600 
6601 			oldfrags = blksize(fs, ip, lastlbn);
6602 			blkno = DIP(ip, i_db[lastlbn]);
6603 			if (blkno && oldfrags != frags) {
6604 				oldfrags -= frags;
6605 				oldfrags = numfrags(fs, oldfrags);
6606 				blkno += numfrags(fs, frags);
6607 				newfreework(ump, freeblks, NULL, lastlbn,
6608 				    blkno, oldfrags, 0, needj);
6609 				if (needj)
6610 					adjust_newfreework(freeblks,
6611 					    numfrags(fs, frags));
6612 			} else if (blkno == 0)
6613 				allocblock = 1;
6614 		}
6615 		/*
6616 		 * Add a journal record for partial truncate if we are
6617 		 * handling indirect blocks.  Non-indirects need no extra
6618 		 * journaling.
6619 		 */
6620 		if (length != 0 && lastlbn >= UFS_NDADDR) {
6621 			ip->i_flag |= IN_TRUNCATED;
6622 			newjtrunc(freeblks, length, 0);
6623 		}
6624 		ip->i_size = length;
6625 		DIP_SET(ip, i_size, ip->i_size);
6626 		datablocks = DIP(ip, i_blocks) - extblocks;
6627 		if (length != 0)
6628 			datablocks = blkcount(fs, datablocks, length);
6629 		freeblks->fb_len = length;
6630 	}
6631 	if ((flags & IO_EXT) != 0) {
6632 		for (i = 0; i < UFS_NXADDR; i++)
6633 			setup_freeext(freeblks, ip, i, needj);
6634 		ip->i_din2->di_extsize = 0;
6635 		datablocks += extblocks;
6636 	}
6637 #ifdef QUOTA
6638 	/* Reference the quotas in case the block count is wrong in the end. */
6639 	quotaref(vp, freeblks->fb_quota);
6640 	(void) chkdq(ip, -datablocks, NOCRED, 0);
6641 #endif
6642 	freeblks->fb_chkcnt = -datablocks;
6643 	UFS_LOCK(ump);
6644 	fs->fs_pendingblocks += datablocks;
6645 	UFS_UNLOCK(ump);
6646 	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
6647 	/*
6648 	 * Handle truncation of incomplete alloc direct dependencies.  We
6649 	 * hold the inode block locked to prevent incomplete dependencies
6650 	 * from reaching the disk while we are eliminating those that
6651 	 * have been truncated.  This is a partially inlined ffs_update().
6652 	 */
6653 	ufs_itimes(vp);
6654 	ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED);
6655 	error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
6656 	    (int)fs->fs_bsize, cred, &bp);
6657 	if (error) {
6658 		brelse(bp);
6659 		softdep_error("softdep_journal_freeblocks", error);
6660 		return;
6661 	}
6662 	if (bp->b_bufsize == fs->fs_bsize)
6663 		bp->b_flags |= B_CLUSTEROK;
6664 	softdep_update_inodeblock(ip, bp, 0);
6665 	if (ump->um_fstype == UFS1)
6666 		*((struct ufs1_dinode *)bp->b_data +
6667 		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1;
6668 	else
6669 		*((struct ufs2_dinode *)bp->b_data +
6670 		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2;
6671 	ACQUIRE_LOCK(ump);
6672 	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6673 	if ((inodedep->id_state & IOSTARTED) != 0)
6674 		panic("softdep_setup_freeblocks: inode busy");
6675 	/*
6676 	 * Add the freeblks structure to the list of operations that
6677 	 * must await the zero'ed inode being written to disk. If we
6678 	 * still have a bitmap dependency (needj), then the inode
6679 	 * has never been written to disk, so we can process the
6680 	 * freeblks below once we have deleted the dependencies.
6681 	 */
6682 	if (needj)
6683 		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
6684 	else
6685 		freeblks->fb_state |= COMPLETE;
6686 	if ((flags & IO_NORMAL) != 0) {
6687 		TAILQ_FOREACH_SAFE(adp, &inodedep->id_inoupdt, ad_next, adpn) {
6688 			if (adp->ad_offset > iboff)
6689 				cancel_allocdirect(&inodedep->id_inoupdt, adp,
6690 				    freeblks);
6691 			/*
6692 			 * Truncate the allocdirect.  We could eliminate
6693 			 * or modify journal records as well.
6694 			 */
6695 			else if (adp->ad_offset == iboff && frags)
6696 				adp->ad_newsize = frags;
6697 		}
6698 	}
6699 	if ((flags & IO_EXT) != 0)
6700 		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
6701 			cancel_allocdirect(&inodedep->id_extupdt, adp,
6702 			    freeblks);
6703 	/*
6704 	 * Scan the bufwait list for newblock dependencies that will never
6705 	 * make it to disk.
6706 	 */
6707 	LIST_FOREACH_SAFE(wk, &inodedep->id_bufwait, wk_list, wkn) {
6708 		if (wk->wk_type != D_ALLOCDIRECT)
6709 			continue;
6710 		adp = WK_ALLOCDIRECT(wk);
6711 		if (((flags & IO_NORMAL) != 0 && (adp->ad_offset > iboff)) ||
6712 		    ((flags & IO_EXT) != 0 && (adp->ad_state & EXTDATA))) {
6713 			cancel_jfreeblk(freeblks, adp->ad_newblkno);
6714 			cancel_newblk(WK_NEWBLK(wk), NULL, &freeblks->fb_jwork);
6715 			WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
6716 		}
6717 	}
6718 	/*
6719 	 * Add journal work.
6720 	 */
6721 	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps)
6722 		add_to_journal(&jblkdep->jb_list);
6723 	FREE_LOCK(ump);
6724 	bdwrite(bp);
6725 	/*
6726 	 * Truncate dependency structures beyond length.
6727 	 */
6728 	trunc_dependencies(ip, freeblks, lastlbn, frags, flags);
6729 	/*
6730 	 * This is only set when we need to allocate a fragment because
6731 	 * none existed at the end of a frag-sized file.  It handles only
6732 	 * allocating a new, zero filled block.
6733 	 */
6734 	if (allocblock) {
6735 		ip->i_size = length - lastoff;
6736 		DIP_SET(ip, i_size, ip->i_size);
6737 		error = UFS_BALLOC(vp, length - 1, 1, cred, BA_CLRBUF, &bp);
6738 		if (error != 0) {
6739 			softdep_error("softdep_journal_freeblks", error);
6740 			return;
6741 		}
6742 		ip->i_size = length;
6743 		DIP_SET(ip, i_size, length);
6744 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
6745 		allocbuf(bp, frags);
6746 		ffs_update(vp, 0);
6747 		bawrite(bp);
6748 	} else if (lastoff != 0 && vp->v_type != VDIR) {
6749 		int size;
6750 
6751 		/*
6752 		 * Zero the end of a truncated frag or block.
6753 		 */
6754 		size = sblksize(fs, length, lastlbn);
6755 		error = bread(vp, lastlbn, size, cred, &bp);
6756 		if (error) {
6757 			softdep_error("softdep_journal_freeblks", error);
6758 			return;
6759 		}
6760 		bzero((char *)bp->b_data + lastoff, size - lastoff);
6761 		bawrite(bp);
6762 
6763 	}
6764 	ACQUIRE_LOCK(ump);
6765 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6766 	TAILQ_INSERT_TAIL(&inodedep->id_freeblklst, freeblks, fb_next);
6767 	freeblks->fb_state |= DEPCOMPLETE | ONDEPLIST;
6768 	/*
6769 	 * We zero earlier truncations so they don't erroneously
6770 	 * update i_blocks.
6771 	 */
6772 	if (freeblks->fb_len == 0 && (flags & IO_NORMAL) != 0)
6773 		TAILQ_FOREACH(fbn, &inodedep->id_freeblklst, fb_next)
6774 			fbn->fb_len = 0;
6775 	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE &&
6776 	    LIST_EMPTY(&freeblks->fb_jblkdephd))
6777 		freeblks->fb_state |= INPROGRESS;
6778 	else
6779 		freeblks = NULL;
6780 	FREE_LOCK(ump);
6781 	if (freeblks)
6782 		handle_workitem_freeblocks(freeblks, 0);
6783 	trunc_pages(ip, length, extblocks, flags);
6784 
6785 }
6786 
6787 /*
6788  * Flush a JOP_SYNC to the journal.
6789  */
6790 void
6791 softdep_journal_fsync(ip)
6792 	struct inode *ip;
6793 {
6794 	struct jfsync *jfsync;
6795 	struct ufsmount *ump;
6796 
6797 	ump = ITOUMP(ip);
6798 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
6799 	    ("softdep_journal_fsync called on non-softdep filesystem"));
6800 	if ((ip->i_flag & IN_TRUNCATED) == 0)
6801 		return;
6802 	ip->i_flag &= ~IN_TRUNCATED;
6803 	jfsync = malloc(sizeof(*jfsync), M_JFSYNC, M_SOFTDEP_FLAGS | M_ZERO);
6804 	workitem_alloc(&jfsync->jfs_list, D_JFSYNC, UFSTOVFS(ump));
6805 	jfsync->jfs_size = ip->i_size;
6806 	jfsync->jfs_ino = ip->i_number;
6807 	ACQUIRE_LOCK(ump);
6808 	add_to_journal(&jfsync->jfs_list);
6809 	jwait(&jfsync->jfs_list, MNT_WAIT);
6810 	FREE_LOCK(ump);
6811 }
6812 
6813 /*
6814  * Block de-allocation dependencies.
6815  *
6816  * When blocks are de-allocated, the on-disk pointers must be nullified before
6817  * the blocks are made available for use by other files.  (The true
6818  * requirement is that old pointers must be nullified before new on-disk
6819  * pointers are set.  We chose this slightly more stringent requirement to
6820  * reduce complexity.) Our implementation handles this dependency by updating
6821  * the inode (or indirect block) appropriately but delaying the actual block
6822  * de-allocation (i.e., freemap and free space count manipulation) until
6823  * after the updated versions reach stable storage.  After the disk is
6824  * updated, the blocks can be safely de-allocated whenever it is convenient.
6825  * This implementation handles only the common case of reducing a file's
6826  * length to zero. Other cases are handled by the conventional synchronous
6827  * write approach.
6828  *
6829  * The ffs implementation with which we worked double-checks
6830  * the state of the block pointers and file size as it reduces
6831  * a file's length.  Some of this code is replicated here in our
6832  * soft updates implementation.  The freeblks->fb_chkcnt field is
6833  * used to transfer a part of this information to the procedure
6834  * that eventually de-allocates the blocks.
6835  *
6836  * This routine should be called from the routine that shortens
6837  * a file's length, before the inode's size or block pointers
6838  * are modified. It will save the block pointer information for
6839  * later release and zero the inode so that the calling routine
6840  * can release it.
6841  */
6842 void
6843 softdep_setup_freeblocks(ip, length, flags)
6844 	struct inode *ip;	/* The inode whose length is to be reduced */
6845 	off_t length;		/* The new length for the file */
6846 	int flags;		/* IO_EXT and/or IO_NORMAL */
6847 {
6848 	struct ufs1_dinode *dp1;
6849 	struct ufs2_dinode *dp2;
6850 	struct freeblks *freeblks;
6851 	struct inodedep *inodedep;
6852 	struct allocdirect *adp;
6853 	struct ufsmount *ump;
6854 	struct buf *bp;
6855 	struct fs *fs;
6856 	ufs2_daddr_t extblocks, datablocks;
6857 	struct mount *mp;
6858 	int i, delay, error;
6859 	ufs_lbn_t tmpval;
6860 	ufs_lbn_t lbn;
6861 
6862 	ump = ITOUMP(ip);
6863 	mp = UFSTOVFS(ump);
6864 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
6865 	    ("softdep_setup_freeblocks called on non-softdep filesystem"));
6866 	CTR2(KTR_SUJ, "softdep_setup_freeblks: ip %d length %ld",
6867 	    ip->i_number, length);
6868 	KASSERT(length == 0, ("softdep_setup_freeblocks: non-zero length"));
6869 	fs = ump->um_fs;
6870 	if ((error = bread(ump->um_devvp,
6871 	    fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
6872 	    (int)fs->fs_bsize, NOCRED, &bp)) != 0) {
6873 		brelse(bp);
6874 		softdep_error("softdep_setup_freeblocks", error);
6875 		return;
6876 	}
6877 	freeblks = newfreeblks(mp, ip);
6878 	extblocks = 0;
6879 	datablocks = 0;
6880 	if (fs->fs_magic == FS_UFS2_MAGIC)
6881 		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
6882 	if ((flags & IO_NORMAL) != 0) {
6883 		for (i = 0; i < UFS_NDADDR; i++)
6884 			setup_freedirect(freeblks, ip, i, 0);
6885 		for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR;
6886 		    i < UFS_NIADDR;
6887 		    i++, lbn += tmpval, tmpval *= NINDIR(fs))
6888 			setup_freeindir(freeblks, ip, i, -lbn -i, 0);
6889 		ip->i_size = 0;
6890 		DIP_SET(ip, i_size, 0);
6891 		datablocks = DIP(ip, i_blocks) - extblocks;
6892 	}
6893 	if ((flags & IO_EXT) != 0) {
6894 		for (i = 0; i < UFS_NXADDR; i++)
6895 			setup_freeext(freeblks, ip, i, 0);
6896 		ip->i_din2->di_extsize = 0;
6897 		datablocks += extblocks;
6898 	}
6899 #ifdef QUOTA
6900 	/* Reference the quotas in case the block count is wrong in the end. */
6901 	quotaref(ITOV(ip), freeblks->fb_quota);
6902 	(void) chkdq(ip, -datablocks, NOCRED, 0);
6903 #endif
6904 	freeblks->fb_chkcnt = -datablocks;
6905 	UFS_LOCK(ump);
6906 	fs->fs_pendingblocks += datablocks;
6907 	UFS_UNLOCK(ump);
6908 	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
6909 	/*
6910 	 * Push the zero'ed inode to its disk buffer so that we are free
6911 	 * to delete its dependencies below. Once the dependencies are gone
6912 	 * the buffer can be safely released.
6913 	 */
6914 	if (ump->um_fstype == UFS1) {
6915 		dp1 = ((struct ufs1_dinode *)bp->b_data +
6916 		    ino_to_fsbo(fs, ip->i_number));
6917 		ip->i_din1->di_freelink = dp1->di_freelink;
6918 		*dp1 = *ip->i_din1;
6919 	} else {
6920 		dp2 = ((struct ufs2_dinode *)bp->b_data +
6921 		    ino_to_fsbo(fs, ip->i_number));
6922 		ip->i_din2->di_freelink = dp2->di_freelink;
6923 		*dp2 = *ip->i_din2;
6924 	}
6925 	/*
6926 	 * Find and eliminate any inode dependencies.
6927 	 */
6928 	ACQUIRE_LOCK(ump);
6929 	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6930 	if ((inodedep->id_state & IOSTARTED) != 0)
6931 		panic("softdep_setup_freeblocks: inode busy");
6932 	/*
6933 	 * Add the freeblks structure to the list of operations that
6934 	 * must await the zero'ed inode being written to disk. If we
6935 	 * still have a bitmap dependency (delay == 0), then the inode
6936 	 * has never been written to disk, so we can process the
6937 	 * freeblks below once we have deleted the dependencies.
6938 	 */
6939 	delay = (inodedep->id_state & DEPCOMPLETE);
6940 	if (delay)
6941 		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
6942 	else
6943 		freeblks->fb_state |= COMPLETE;
6944 	/*
6945 	 * Because the file length has been truncated to zero, any
6946 	 * pending block allocation dependency structures associated
6947 	 * with this inode are obsolete and can simply be de-allocated.
6948 	 * We must first merge the two dependency lists to get rid of
6949 	 * any duplicate freefrag structures, then purge the merged list.
6950 	 * If we still have a bitmap dependency, then the inode has never
6951 	 * been written to disk, so we can free any fragments without delay.
6952 	 */
6953 	if (flags & IO_NORMAL) {
6954 		merge_inode_lists(&inodedep->id_newinoupdt,
6955 		    &inodedep->id_inoupdt);
6956 		while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
6957 			cancel_allocdirect(&inodedep->id_inoupdt, adp,
6958 			    freeblks);
6959 	}
6960 	if (flags & IO_EXT) {
6961 		merge_inode_lists(&inodedep->id_newextupdt,
6962 		    &inodedep->id_extupdt);
6963 		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
6964 			cancel_allocdirect(&inodedep->id_extupdt, adp,
6965 			    freeblks);
6966 	}
6967 	FREE_LOCK(ump);
6968 	bdwrite(bp);
6969 	trunc_dependencies(ip, freeblks, -1, 0, flags);
6970 	ACQUIRE_LOCK(ump);
6971 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
6972 		(void) free_inodedep(inodedep);
6973 	freeblks->fb_state |= DEPCOMPLETE;
6974 	/*
6975 	 * If the inode with zeroed block pointers is now on disk
6976 	 * we can start freeing blocks.
6977 	 */
6978 	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
6979 		freeblks->fb_state |= INPROGRESS;
6980 	else
6981 		freeblks = NULL;
6982 	FREE_LOCK(ump);
6983 	if (freeblks)
6984 		handle_workitem_freeblocks(freeblks, 0);
6985 	trunc_pages(ip, length, extblocks, flags);
6986 }
6987 
6988 /*
6989  * Eliminate pages from the page cache that back parts of this inode and
6990  * adjust the vnode pager's idea of our size.  This prevents stale data
6991  * from hanging around in the page cache.
6992  */
6993 static void
6994 trunc_pages(ip, length, extblocks, flags)
6995 	struct inode *ip;
6996 	off_t length;
6997 	ufs2_daddr_t extblocks;
6998 	int flags;
6999 {
7000 	struct vnode *vp;
7001 	struct fs *fs;
7002 	ufs_lbn_t lbn;
7003 	off_t end, extend;
7004 
7005 	vp = ITOV(ip);
7006 	fs = ITOFS(ip);
7007 	extend = OFF_TO_IDX(lblktosize(fs, -extblocks));
7008 	if ((flags & IO_EXT) != 0)
7009 		vn_pages_remove(vp, extend, 0);
7010 	if ((flags & IO_NORMAL) == 0)
7011 		return;
7012 	BO_LOCK(&vp->v_bufobj);
7013 	drain_output(vp);
7014 	BO_UNLOCK(&vp->v_bufobj);
7015 	/*
7016 	 * The vnode pager eliminates file pages we eliminate indirects
7017 	 * below.
7018 	 */
7019 	vnode_pager_setsize(vp, length);
7020 	/*
7021 	 * Calculate the end based on the last indirect we want to keep.  If
7022 	 * the block extends into indirects we can just use the negative of
7023 	 * its lbn.  Doubles and triples exist at lower numbers so we must
7024 	 * be careful not to remove those, if they exist.  double and triple
7025 	 * indirect lbns do not overlap with others so it is not important
7026 	 * to verify how many levels are required.
7027 	 */
7028 	lbn = lblkno(fs, length);
7029 	if (lbn >= UFS_NDADDR) {
7030 		/* Calculate the virtual lbn of the triple indirect. */
7031 		lbn = -lbn - (UFS_NIADDR - 1);
7032 		end = OFF_TO_IDX(lblktosize(fs, lbn));
7033 	} else
7034 		end = extend;
7035 	vn_pages_remove(vp, OFF_TO_IDX(OFF_MAX), end);
7036 }
7037 
7038 /*
7039  * See if the buf bp is in the range eliminated by truncation.
7040  */
7041 static int
7042 trunc_check_buf(bp, blkoffp, lastlbn, lastoff, flags)
7043 	struct buf *bp;
7044 	int *blkoffp;
7045 	ufs_lbn_t lastlbn;
7046 	int lastoff;
7047 	int flags;
7048 {
7049 	ufs_lbn_t lbn;
7050 
7051 	*blkoffp = 0;
7052 	/* Only match ext/normal blocks as appropriate. */
7053 	if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) ||
7054 	    ((flags & IO_NORMAL) == 0 && (bp->b_xflags & BX_ALTDATA) == 0))
7055 		return (0);
7056 	/* ALTDATA is always a full truncation. */
7057 	if ((bp->b_xflags & BX_ALTDATA) != 0)
7058 		return (1);
7059 	/* -1 is full truncation. */
7060 	if (lastlbn == -1)
7061 		return (1);
7062 	/*
7063 	 * If this is a partial truncate we only want those
7064 	 * blocks and indirect blocks that cover the range
7065 	 * we're after.
7066 	 */
7067 	lbn = bp->b_lblkno;
7068 	if (lbn < 0)
7069 		lbn = -(lbn + lbn_level(lbn));
7070 	if (lbn < lastlbn)
7071 		return (0);
7072 	/* Here we only truncate lblkno if it's partial. */
7073 	if (lbn == lastlbn) {
7074 		if (lastoff == 0)
7075 			return (0);
7076 		*blkoffp = lastoff;
7077 	}
7078 	return (1);
7079 }
7080 
7081 /*
7082  * Eliminate any dependencies that exist in memory beyond lblkno:off
7083  */
7084 static void
7085 trunc_dependencies(ip, freeblks, lastlbn, lastoff, flags)
7086 	struct inode *ip;
7087 	struct freeblks *freeblks;
7088 	ufs_lbn_t lastlbn;
7089 	int lastoff;
7090 	int flags;
7091 {
7092 	struct bufobj *bo;
7093 	struct vnode *vp;
7094 	struct buf *bp;
7095 	int blkoff;
7096 
7097 	/*
7098 	 * We must wait for any I/O in progress to finish so that
7099 	 * all potential buffers on the dirty list will be visible.
7100 	 * Once they are all there, walk the list and get rid of
7101 	 * any dependencies.
7102 	 */
7103 	vp = ITOV(ip);
7104 	bo = &vp->v_bufobj;
7105 	BO_LOCK(bo);
7106 	drain_output(vp);
7107 	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
7108 		bp->b_vflags &= ~BV_SCANNED;
7109 restart:
7110 	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
7111 		if (bp->b_vflags & BV_SCANNED)
7112 			continue;
7113 		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
7114 			bp->b_vflags |= BV_SCANNED;
7115 			continue;
7116 		}
7117 		KASSERT(bp->b_bufobj == bo, ("Wrong object in buffer"));
7118 		if ((bp = getdirtybuf(bp, BO_LOCKPTR(bo), MNT_WAIT)) == NULL)
7119 			goto restart;
7120 		BO_UNLOCK(bo);
7121 		if (deallocate_dependencies(bp, freeblks, blkoff))
7122 			bqrelse(bp);
7123 		else
7124 			brelse(bp);
7125 		BO_LOCK(bo);
7126 		goto restart;
7127 	}
7128 	/*
7129 	 * Now do the work of vtruncbuf while also matching indirect blocks.
7130 	 */
7131 	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs)
7132 		bp->b_vflags &= ~BV_SCANNED;
7133 cleanrestart:
7134 	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) {
7135 		if (bp->b_vflags & BV_SCANNED)
7136 			continue;
7137 		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
7138 			bp->b_vflags |= BV_SCANNED;
7139 			continue;
7140 		}
7141 		if (BUF_LOCK(bp,
7142 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
7143 		    BO_LOCKPTR(bo)) == ENOLCK) {
7144 			BO_LOCK(bo);
7145 			goto cleanrestart;
7146 		}
7147 		bp->b_vflags |= BV_SCANNED;
7148 		bremfree(bp);
7149 		if (blkoff != 0) {
7150 			allocbuf(bp, blkoff);
7151 			bqrelse(bp);
7152 		} else {
7153 			bp->b_flags |= B_INVAL | B_NOCACHE | B_RELBUF;
7154 			brelse(bp);
7155 		}
7156 		BO_LOCK(bo);
7157 		goto cleanrestart;
7158 	}
7159 	drain_output(vp);
7160 	BO_UNLOCK(bo);
7161 }
7162 
7163 static int
7164 cancel_pagedep(pagedep, freeblks, blkoff)
7165 	struct pagedep *pagedep;
7166 	struct freeblks *freeblks;
7167 	int blkoff;
7168 {
7169 	struct jremref *jremref;
7170 	struct jmvref *jmvref;
7171 	struct dirrem *dirrem, *tmp;
7172 	int i;
7173 
7174 	/*
7175 	 * Copy any directory remove dependencies to the list
7176 	 * to be processed after the freeblks proceeds.  If
7177 	 * directory entry never made it to disk they
7178 	 * can be dumped directly onto the work list.
7179 	 */
7180 	LIST_FOREACH_SAFE(dirrem, &pagedep->pd_dirremhd, dm_next, tmp) {
7181 		/* Skip this directory removal if it is intended to remain. */
7182 		if (dirrem->dm_offset < blkoff)
7183 			continue;
7184 		/*
7185 		 * If there are any dirrems we wait for the journal write
7186 		 * to complete and then restart the buf scan as the lock
7187 		 * has been dropped.
7188 		 */
7189 		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) {
7190 			jwait(&jremref->jr_list, MNT_WAIT);
7191 			return (ERESTART);
7192 		}
7193 		LIST_REMOVE(dirrem, dm_next);
7194 		dirrem->dm_dirinum = pagedep->pd_ino;
7195 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &dirrem->dm_list);
7196 	}
7197 	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) {
7198 		jwait(&jmvref->jm_list, MNT_WAIT);
7199 		return (ERESTART);
7200 	}
7201 	/*
7202 	 * When we're partially truncating a pagedep we just want to flush
7203 	 * journal entries and return.  There can not be any adds in the
7204 	 * truncated portion of the directory and newblk must remain if
7205 	 * part of the block remains.
7206 	 */
7207 	if (blkoff != 0) {
7208 		struct diradd *dap;
7209 
7210 		LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
7211 			if (dap->da_offset > blkoff)
7212 				panic("cancel_pagedep: diradd %p off %d > %d",
7213 				    dap, dap->da_offset, blkoff);
7214 		for (i = 0; i < DAHASHSZ; i++)
7215 			LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist)
7216 				if (dap->da_offset > blkoff)
7217 					panic("cancel_pagedep: diradd %p off %d > %d",
7218 					    dap, dap->da_offset, blkoff);
7219 		return (0);
7220 	}
7221 	/*
7222 	 * There should be no directory add dependencies present
7223 	 * as the directory could not be truncated until all
7224 	 * children were removed.
7225 	 */
7226 	KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL,
7227 	    ("deallocate_dependencies: pendinghd != NULL"));
7228 	for (i = 0; i < DAHASHSZ; i++)
7229 		KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL,
7230 		    ("deallocate_dependencies: diraddhd != NULL"));
7231 	if ((pagedep->pd_state & NEWBLOCK) != 0)
7232 		free_newdirblk(pagedep->pd_newdirblk);
7233 	if (free_pagedep(pagedep) == 0)
7234 		panic("Failed to free pagedep %p", pagedep);
7235 	return (0);
7236 }
7237 
7238 /*
7239  * Reclaim any dependency structures from a buffer that is about to
7240  * be reallocated to a new vnode. The buffer must be locked, thus,
7241  * no I/O completion operations can occur while we are manipulating
7242  * its associated dependencies. The mutex is held so that other I/O's
7243  * associated with related dependencies do not occur.
7244  */
7245 static int
7246 deallocate_dependencies(bp, freeblks, off)
7247 	struct buf *bp;
7248 	struct freeblks *freeblks;
7249 	int off;
7250 {
7251 	struct indirdep *indirdep;
7252 	struct pagedep *pagedep;
7253 	struct worklist *wk, *wkn;
7254 	struct ufsmount *ump;
7255 
7256 	ump = softdep_bp_to_mp(bp);
7257 	if (ump == NULL)
7258 		goto done;
7259 	ACQUIRE_LOCK(ump);
7260 	LIST_FOREACH_SAFE(wk, &bp->b_dep, wk_list, wkn) {
7261 		switch (wk->wk_type) {
7262 		case D_INDIRDEP:
7263 			indirdep = WK_INDIRDEP(wk);
7264 			if (bp->b_lblkno >= 0 ||
7265 			    bp->b_blkno != indirdep->ir_savebp->b_lblkno)
7266 				panic("deallocate_dependencies: not indir");
7267 			cancel_indirdep(indirdep, bp, freeblks);
7268 			continue;
7269 
7270 		case D_PAGEDEP:
7271 			pagedep = WK_PAGEDEP(wk);
7272 			if (cancel_pagedep(pagedep, freeblks, off)) {
7273 				FREE_LOCK(ump);
7274 				return (ERESTART);
7275 			}
7276 			continue;
7277 
7278 		case D_ALLOCINDIR:
7279 			/*
7280 			 * Simply remove the allocindir, we'll find it via
7281 			 * the indirdep where we can clear pointers if
7282 			 * needed.
7283 			 */
7284 			WORKLIST_REMOVE(wk);
7285 			continue;
7286 
7287 		case D_FREEWORK:
7288 			/*
7289 			 * A truncation is waiting for the zero'd pointers
7290 			 * to be written.  It can be freed when the freeblks
7291 			 * is journaled.
7292 			 */
7293 			WORKLIST_REMOVE(wk);
7294 			wk->wk_state |= ONDEPLIST;
7295 			WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
7296 			break;
7297 
7298 		case D_ALLOCDIRECT:
7299 			if (off != 0)
7300 				continue;
7301 			/* FALLTHROUGH */
7302 		default:
7303 			panic("deallocate_dependencies: Unexpected type %s",
7304 			    TYPENAME(wk->wk_type));
7305 			/* NOTREACHED */
7306 		}
7307 	}
7308 	FREE_LOCK(ump);
7309 done:
7310 	/*
7311 	 * Don't throw away this buf, we were partially truncating and
7312 	 * some deps may always remain.
7313 	 */
7314 	if (off) {
7315 		allocbuf(bp, off);
7316 		bp->b_vflags |= BV_SCANNED;
7317 		return (EBUSY);
7318 	}
7319 	bp->b_flags |= B_INVAL | B_NOCACHE;
7320 
7321 	return (0);
7322 }
7323 
7324 /*
7325  * An allocdirect is being canceled due to a truncate.  We must make sure
7326  * the journal entry is released in concert with the blkfree that releases
7327  * the storage.  Completed journal entries must not be released until the
7328  * space is no longer pointed to by the inode or in the bitmap.
7329  */
7330 static void
7331 cancel_allocdirect(adphead, adp, freeblks)
7332 	struct allocdirectlst *adphead;
7333 	struct allocdirect *adp;
7334 	struct freeblks *freeblks;
7335 {
7336 	struct freework *freework;
7337 	struct newblk *newblk;
7338 	struct worklist *wk;
7339 
7340 	TAILQ_REMOVE(adphead, adp, ad_next);
7341 	newblk = (struct newblk *)adp;
7342 	freework = NULL;
7343 	/*
7344 	 * Find the correct freework structure.
7345 	 */
7346 	LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) {
7347 		if (wk->wk_type != D_FREEWORK)
7348 			continue;
7349 		freework = WK_FREEWORK(wk);
7350 		if (freework->fw_blkno == newblk->nb_newblkno)
7351 			break;
7352 	}
7353 	if (freework == NULL)
7354 		panic("cancel_allocdirect: Freework not found");
7355 	/*
7356 	 * If a newblk exists at all we still have the journal entry that
7357 	 * initiated the allocation so we do not need to journal the free.
7358 	 */
7359 	cancel_jfreeblk(freeblks, freework->fw_blkno);
7360 	/*
7361 	 * If the journal hasn't been written the jnewblk must be passed
7362 	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
7363 	 * this by linking the journal dependency into the freework to be
7364 	 * freed when freework_freeblock() is called.  If the journal has
7365 	 * been written we can simply reclaim the journal space when the
7366 	 * freeblks work is complete.
7367 	 */
7368 	freework->fw_jnewblk = cancel_newblk(newblk, &freework->fw_list,
7369 	    &freeblks->fb_jwork);
7370 	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
7371 }
7372 
7373 
7374 /*
7375  * Cancel a new block allocation.  May be an indirect or direct block.  We
7376  * remove it from various lists and return any journal record that needs to
7377  * be resolved by the caller.
7378  *
7379  * A special consideration is made for indirects which were never pointed
7380  * at on disk and will never be found once this block is released.
7381  */
7382 static struct jnewblk *
7383 cancel_newblk(newblk, wk, wkhd)
7384 	struct newblk *newblk;
7385 	struct worklist *wk;
7386 	struct workhead *wkhd;
7387 {
7388 	struct jnewblk *jnewblk;
7389 
7390 	CTR1(KTR_SUJ, "cancel_newblk: blkno %jd", newblk->nb_newblkno);
7391 
7392 	newblk->nb_state |= GOINGAWAY;
7393 	/*
7394 	 * Previously we traversed the completedhd on each indirdep
7395 	 * attached to this newblk to cancel them and gather journal
7396 	 * work.  Since we need only the oldest journal segment and
7397 	 * the lowest point on the tree will always have the oldest
7398 	 * journal segment we are free to release the segments
7399 	 * of any subordinates and may leave the indirdep list to
7400 	 * indirdep_complete() when this newblk is freed.
7401 	 */
7402 	if (newblk->nb_state & ONDEPLIST) {
7403 		newblk->nb_state &= ~ONDEPLIST;
7404 		LIST_REMOVE(newblk, nb_deps);
7405 	}
7406 	if (newblk->nb_state & ONWORKLIST)
7407 		WORKLIST_REMOVE(&newblk->nb_list);
7408 	/*
7409 	 * If the journal entry hasn't been written we save a pointer to
7410 	 * the dependency that frees it until it is written or the
7411 	 * superseding operation completes.
7412 	 */
7413 	jnewblk = newblk->nb_jnewblk;
7414 	if (jnewblk != NULL && wk != NULL) {
7415 		newblk->nb_jnewblk = NULL;
7416 		jnewblk->jn_dep = wk;
7417 	}
7418 	if (!LIST_EMPTY(&newblk->nb_jwork))
7419 		jwork_move(wkhd, &newblk->nb_jwork);
7420 	/*
7421 	 * When truncating we must free the newdirblk early to remove
7422 	 * the pagedep from the hash before returning.
7423 	 */
7424 	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7425 		free_newdirblk(WK_NEWDIRBLK(wk));
7426 	if (!LIST_EMPTY(&newblk->nb_newdirblk))
7427 		panic("cancel_newblk: extra newdirblk");
7428 
7429 	return (jnewblk);
7430 }
7431 
7432 /*
7433  * Schedule the freefrag associated with a newblk to be released once
7434  * the pointers are written and the previous block is no longer needed.
7435  */
7436 static void
7437 newblk_freefrag(newblk)
7438 	struct newblk *newblk;
7439 {
7440 	struct freefrag *freefrag;
7441 
7442 	if (newblk->nb_freefrag == NULL)
7443 		return;
7444 	freefrag = newblk->nb_freefrag;
7445 	newblk->nb_freefrag = NULL;
7446 	freefrag->ff_state |= COMPLETE;
7447 	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
7448 		add_to_worklist(&freefrag->ff_list, 0);
7449 }
7450 
7451 /*
7452  * Free a newblk. Generate a new freefrag work request if appropriate.
7453  * This must be called after the inode pointer and any direct block pointers
7454  * are valid or fully removed via truncate or frag extension.
7455  */
7456 static void
7457 free_newblk(newblk)
7458 	struct newblk *newblk;
7459 {
7460 	struct indirdep *indirdep;
7461 	struct worklist *wk;
7462 
7463 	KASSERT(newblk->nb_jnewblk == NULL,
7464 	    ("free_newblk: jnewblk %p still attached", newblk->nb_jnewblk));
7465 	KASSERT(newblk->nb_list.wk_type != D_NEWBLK,
7466 	    ("free_newblk: unclaimed newblk"));
7467 	LOCK_OWNED(VFSTOUFS(newblk->nb_list.wk_mp));
7468 	newblk_freefrag(newblk);
7469 	if (newblk->nb_state & ONDEPLIST)
7470 		LIST_REMOVE(newblk, nb_deps);
7471 	if (newblk->nb_state & ONWORKLIST)
7472 		WORKLIST_REMOVE(&newblk->nb_list);
7473 	LIST_REMOVE(newblk, nb_hash);
7474 	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7475 		free_newdirblk(WK_NEWDIRBLK(wk));
7476 	if (!LIST_EMPTY(&newblk->nb_newdirblk))
7477 		panic("free_newblk: extra newdirblk");
7478 	while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL)
7479 		indirdep_complete(indirdep);
7480 	handle_jwork(&newblk->nb_jwork);
7481 	WORKITEM_FREE(newblk, D_NEWBLK);
7482 }
7483 
7484 /*
7485  * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep.
7486  * This routine must be called with splbio interrupts blocked.
7487  */
7488 static void
7489 free_newdirblk(newdirblk)
7490 	struct newdirblk *newdirblk;
7491 {
7492 	struct pagedep *pagedep;
7493 	struct diradd *dap;
7494 	struct worklist *wk;
7495 
7496 	LOCK_OWNED(VFSTOUFS(newdirblk->db_list.wk_mp));
7497 	WORKLIST_REMOVE(&newdirblk->db_list);
7498 	/*
7499 	 * If the pagedep is still linked onto the directory buffer
7500 	 * dependency chain, then some of the entries on the
7501 	 * pd_pendinghd list may not be committed to disk yet. In
7502 	 * this case, we will simply clear the NEWBLOCK flag and
7503 	 * let the pd_pendinghd list be processed when the pagedep
7504 	 * is next written. If the pagedep is no longer on the buffer
7505 	 * dependency chain, then all the entries on the pd_pending
7506 	 * list are committed to disk and we can free them here.
7507 	 */
7508 	pagedep = newdirblk->db_pagedep;
7509 	pagedep->pd_state &= ~NEWBLOCK;
7510 	if ((pagedep->pd_state & ONWORKLIST) == 0) {
7511 		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
7512 			free_diradd(dap, NULL);
7513 		/*
7514 		 * If no dependencies remain, the pagedep will be freed.
7515 		 */
7516 		free_pagedep(pagedep);
7517 	}
7518 	/* Should only ever be one item in the list. */
7519 	while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) {
7520 		WORKLIST_REMOVE(wk);
7521 		handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
7522 	}
7523 	WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
7524 }
7525 
7526 /*
7527  * Prepare an inode to be freed. The actual free operation is not
7528  * done until the zero'ed inode has been written to disk.
7529  */
7530 void
7531 softdep_freefile(pvp, ino, mode)
7532 	struct vnode *pvp;
7533 	ino_t ino;
7534 	int mode;
7535 {
7536 	struct inode *ip = VTOI(pvp);
7537 	struct inodedep *inodedep;
7538 	struct freefile *freefile;
7539 	struct freeblks *freeblks;
7540 	struct ufsmount *ump;
7541 
7542 	ump = ITOUMP(ip);
7543 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
7544 	    ("softdep_freefile called on non-softdep filesystem"));
7545 	/*
7546 	 * This sets up the inode de-allocation dependency.
7547 	 */
7548 	freefile = malloc(sizeof(struct freefile),
7549 		M_FREEFILE, M_SOFTDEP_FLAGS);
7550 	workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount);
7551 	freefile->fx_mode = mode;
7552 	freefile->fx_oldinum = ino;
7553 	freefile->fx_devvp = ump->um_devvp;
7554 	LIST_INIT(&freefile->fx_jwork);
7555 	UFS_LOCK(ump);
7556 	ump->um_fs->fs_pendinginodes += 1;
7557 	UFS_UNLOCK(ump);
7558 
7559 	/*
7560 	 * If the inodedep does not exist, then the zero'ed inode has
7561 	 * been written to disk. If the allocated inode has never been
7562 	 * written to disk, then the on-disk inode is zero'ed. In either
7563 	 * case we can free the file immediately.  If the journal was
7564 	 * canceled before being written the inode will never make it to
7565 	 * disk and we must send the canceled journal entrys to
7566 	 * ffs_freefile() to be cleared in conjunction with the bitmap.
7567 	 * Any blocks waiting on the inode to write can be safely freed
7568 	 * here as it will never been written.
7569 	 */
7570 	ACQUIRE_LOCK(ump);
7571 	inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
7572 	if (inodedep) {
7573 		/*
7574 		 * Clear out freeblks that no longer need to reference
7575 		 * this inode.
7576 		 */
7577 		while ((freeblks =
7578 		    TAILQ_FIRST(&inodedep->id_freeblklst)) != NULL) {
7579 			TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks,
7580 			    fb_next);
7581 			freeblks->fb_state &= ~ONDEPLIST;
7582 		}
7583 		/*
7584 		 * Remove this inode from the unlinked list.
7585 		 */
7586 		if (inodedep->id_state & UNLINKED) {
7587 			/*
7588 			 * Save the journal work to be freed with the bitmap
7589 			 * before we clear UNLINKED.  Otherwise it can be lost
7590 			 * if the inode block is written.
7591 			 */
7592 			handle_bufwait(inodedep, &freefile->fx_jwork);
7593 			clear_unlinked_inodedep(inodedep);
7594 			/*
7595 			 * Re-acquire inodedep as we've dropped the
7596 			 * per-filesystem lock in clear_unlinked_inodedep().
7597 			 */
7598 			inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
7599 		}
7600 	}
7601 	if (inodedep == NULL || check_inode_unwritten(inodedep)) {
7602 		FREE_LOCK(ump);
7603 		handle_workitem_freefile(freefile);
7604 		return;
7605 	}
7606 	if ((inodedep->id_state & DEPCOMPLETE) == 0)
7607 		inodedep->id_state |= GOINGAWAY;
7608 	WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
7609 	FREE_LOCK(ump);
7610 	if (ip->i_number == ino)
7611 		ip->i_flag |= IN_MODIFIED;
7612 }
7613 
7614 /*
7615  * Check to see if an inode has never been written to disk. If
7616  * so free the inodedep and return success, otherwise return failure.
7617  * This routine must be called with splbio interrupts blocked.
7618  *
7619  * If we still have a bitmap dependency, then the inode has never
7620  * been written to disk. Drop the dependency as it is no longer
7621  * necessary since the inode is being deallocated. We set the
7622  * ALLCOMPLETE flags since the bitmap now properly shows that the
7623  * inode is not allocated. Even if the inode is actively being
7624  * written, it has been rolled back to its zero'ed state, so we
7625  * are ensured that a zero inode is what is on the disk. For short
7626  * lived files, this change will usually result in removing all the
7627  * dependencies from the inode so that it can be freed immediately.
7628  */
7629 static int
7630 check_inode_unwritten(inodedep)
7631 	struct inodedep *inodedep;
7632 {
7633 
7634 	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
7635 
7636 	if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 ||
7637 	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
7638 	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
7639 	    !LIST_EMPTY(&inodedep->id_bufwait) ||
7640 	    !LIST_EMPTY(&inodedep->id_inowait) ||
7641 	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
7642 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
7643 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
7644 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
7645 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
7646 	    !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
7647 	    inodedep->id_mkdiradd != NULL ||
7648 	    inodedep->id_nlinkdelta != 0)
7649 		return (0);
7650 	/*
7651 	 * Another process might be in initiate_write_inodeblock_ufs[12]
7652 	 * trying to allocate memory without holding "Softdep Lock".
7653 	 */
7654 	if ((inodedep->id_state & IOSTARTED) != 0 &&
7655 	    inodedep->id_savedino1 == NULL)
7656 		return (0);
7657 
7658 	if (inodedep->id_state & ONDEPLIST)
7659 		LIST_REMOVE(inodedep, id_deps);
7660 	inodedep->id_state &= ~ONDEPLIST;
7661 	inodedep->id_state |= ALLCOMPLETE;
7662 	inodedep->id_bmsafemap = NULL;
7663 	if (inodedep->id_state & ONWORKLIST)
7664 		WORKLIST_REMOVE(&inodedep->id_list);
7665 	if (inodedep->id_savedino1 != NULL) {
7666 		free(inodedep->id_savedino1, M_SAVEDINO);
7667 		inodedep->id_savedino1 = NULL;
7668 	}
7669 	if (free_inodedep(inodedep) == 0)
7670 		panic("check_inode_unwritten: busy inode");
7671 	return (1);
7672 }
7673 
7674 static int
7675 check_inodedep_free(inodedep)
7676 	struct inodedep *inodedep;
7677 {
7678 
7679 	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
7680 	if ((inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
7681 	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
7682 	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
7683 	    !LIST_EMPTY(&inodedep->id_bufwait) ||
7684 	    !LIST_EMPTY(&inodedep->id_inowait) ||
7685 	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
7686 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
7687 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
7688 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
7689 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
7690 	    !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
7691 	    inodedep->id_mkdiradd != NULL ||
7692 	    inodedep->id_nlinkdelta != 0 ||
7693 	    inodedep->id_savedino1 != NULL)
7694 		return (0);
7695 	return (1);
7696 }
7697 
7698 /*
7699  * Try to free an inodedep structure. Return 1 if it could be freed.
7700  */
7701 static int
7702 free_inodedep(inodedep)
7703 	struct inodedep *inodedep;
7704 {
7705 
7706 	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
7707 	if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 ||
7708 	    !check_inodedep_free(inodedep))
7709 		return (0);
7710 	if (inodedep->id_state & ONDEPLIST)
7711 		LIST_REMOVE(inodedep, id_deps);
7712 	LIST_REMOVE(inodedep, id_hash);
7713 	WORKITEM_FREE(inodedep, D_INODEDEP);
7714 	return (1);
7715 }
7716 
7717 /*
7718  * Free the block referenced by a freework structure.  The parent freeblks
7719  * structure is released and completed when the final cg bitmap reaches
7720  * the disk.  This routine may be freeing a jnewblk which never made it to
7721  * disk in which case we do not have to wait as the operation is undone
7722  * in memory immediately.
7723  */
7724 static void
7725 freework_freeblock(freework)
7726 	struct freework *freework;
7727 {
7728 	struct freeblks *freeblks;
7729 	struct jnewblk *jnewblk;
7730 	struct ufsmount *ump;
7731 	struct workhead wkhd;
7732 	struct fs *fs;
7733 	int bsize;
7734 	int needj;
7735 
7736 	ump = VFSTOUFS(freework->fw_list.wk_mp);
7737 	LOCK_OWNED(ump);
7738 	/*
7739 	 * Handle partial truncate separately.
7740 	 */
7741 	if (freework->fw_indir) {
7742 		complete_trunc_indir(freework);
7743 		return;
7744 	}
7745 	freeblks = freework->fw_freeblks;
7746 	fs = ump->um_fs;
7747 	needj = MOUNTEDSUJ(freeblks->fb_list.wk_mp) != 0;
7748 	bsize = lfragtosize(fs, freework->fw_frags);
7749 	LIST_INIT(&wkhd);
7750 	/*
7751 	 * DEPCOMPLETE is cleared in indirblk_insert() if the block lives
7752 	 * on the indirblk hashtable and prevents premature freeing.
7753 	 */
7754 	freework->fw_state |= DEPCOMPLETE;
7755 	/*
7756 	 * SUJ needs to wait for the segment referencing freed indirect
7757 	 * blocks to expire so that we know the checker will not confuse
7758 	 * a re-allocated indirect block with its old contents.
7759 	 */
7760 	if (needj && freework->fw_lbn <= -UFS_NDADDR)
7761 		indirblk_insert(freework);
7762 	/*
7763 	 * If we are canceling an existing jnewblk pass it to the free
7764 	 * routine, otherwise pass the freeblk which will ultimately
7765 	 * release the freeblks.  If we're not journaling, we can just
7766 	 * free the freeblks immediately.
7767 	 */
7768 	jnewblk = freework->fw_jnewblk;
7769 	if (jnewblk != NULL) {
7770 		cancel_jnewblk(jnewblk, &wkhd);
7771 		needj = 0;
7772 	} else if (needj) {
7773 		freework->fw_state |= DELAYEDFREE;
7774 		freeblks->fb_cgwait++;
7775 		WORKLIST_INSERT(&wkhd, &freework->fw_list);
7776 	}
7777 	FREE_LOCK(ump);
7778 	freeblks_free(ump, freeblks, btodb(bsize));
7779 	CTR4(KTR_SUJ,
7780 	    "freework_freeblock: ino %d blkno %jd lbn %jd size %ld",
7781 	    freeblks->fb_inum, freework->fw_blkno, freework->fw_lbn, bsize);
7782 	ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno, bsize,
7783 	    freeblks->fb_inum, freeblks->fb_vtype, &wkhd);
7784 	ACQUIRE_LOCK(ump);
7785 	/*
7786 	 * The jnewblk will be discarded and the bits in the map never
7787 	 * made it to disk.  We can immediately free the freeblk.
7788 	 */
7789 	if (needj == 0)
7790 		handle_written_freework(freework);
7791 }
7792 
7793 /*
7794  * We enqueue freework items that need processing back on the freeblks and
7795  * add the freeblks to the worklist.  This makes it easier to find all work
7796  * required to flush a truncation in process_truncates().
7797  */
7798 static void
7799 freework_enqueue(freework)
7800 	struct freework *freework;
7801 {
7802 	struct freeblks *freeblks;
7803 
7804 	freeblks = freework->fw_freeblks;
7805 	if ((freework->fw_state & INPROGRESS) == 0)
7806 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
7807 	if ((freeblks->fb_state &
7808 	    (ONWORKLIST | INPROGRESS | ALLCOMPLETE)) == ALLCOMPLETE &&
7809 	    LIST_EMPTY(&freeblks->fb_jblkdephd))
7810 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
7811 }
7812 
7813 /*
7814  * Start, continue, or finish the process of freeing an indirect block tree.
7815  * The free operation may be paused at any point with fw_off containing the
7816  * offset to restart from.  This enables us to implement some flow control
7817  * for large truncates which may fan out and generate a huge number of
7818  * dependencies.
7819  */
7820 static void
7821 handle_workitem_indirblk(freework)
7822 	struct freework *freework;
7823 {
7824 	struct freeblks *freeblks;
7825 	struct ufsmount *ump;
7826 	struct fs *fs;
7827 
7828 	freeblks = freework->fw_freeblks;
7829 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7830 	fs = ump->um_fs;
7831 	if (freework->fw_state & DEPCOMPLETE) {
7832 		handle_written_freework(freework);
7833 		return;
7834 	}
7835 	if (freework->fw_off == NINDIR(fs)) {
7836 		freework_freeblock(freework);
7837 		return;
7838 	}
7839 	freework->fw_state |= INPROGRESS;
7840 	FREE_LOCK(ump);
7841 	indir_trunc(freework, fsbtodb(fs, freework->fw_blkno),
7842 	    freework->fw_lbn);
7843 	ACQUIRE_LOCK(ump);
7844 }
7845 
7846 /*
7847  * Called when a freework structure attached to a cg buf is written.  The
7848  * ref on either the parent or the freeblks structure is released and
7849  * the freeblks is added back to the worklist if there is more work to do.
7850  */
7851 static void
7852 handle_written_freework(freework)
7853 	struct freework *freework;
7854 {
7855 	struct freeblks *freeblks;
7856 	struct freework *parent;
7857 
7858 	freeblks = freework->fw_freeblks;
7859 	parent = freework->fw_parent;
7860 	if (freework->fw_state & DELAYEDFREE)
7861 		freeblks->fb_cgwait--;
7862 	freework->fw_state |= COMPLETE;
7863 	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
7864 		WORKITEM_FREE(freework, D_FREEWORK);
7865 	if (parent) {
7866 		if (--parent->fw_ref == 0)
7867 			freework_enqueue(parent);
7868 		return;
7869 	}
7870 	if (--freeblks->fb_ref != 0)
7871 		return;
7872 	if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST | INPROGRESS)) ==
7873 	    ALLCOMPLETE && LIST_EMPTY(&freeblks->fb_jblkdephd))
7874 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
7875 }
7876 
7877 /*
7878  * This workitem routine performs the block de-allocation.
7879  * The workitem is added to the pending list after the updated
7880  * inode block has been written to disk.  As mentioned above,
7881  * checks regarding the number of blocks de-allocated (compared
7882  * to the number of blocks allocated for the file) are also
7883  * performed in this function.
7884  */
7885 static int
7886 handle_workitem_freeblocks(freeblks, flags)
7887 	struct freeblks *freeblks;
7888 	int flags;
7889 {
7890 	struct freework *freework;
7891 	struct newblk *newblk;
7892 	struct allocindir *aip;
7893 	struct ufsmount *ump;
7894 	struct worklist *wk;
7895 
7896 	KASSERT(LIST_EMPTY(&freeblks->fb_jblkdephd),
7897 	    ("handle_workitem_freeblocks: Journal entries not written."));
7898 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7899 	ACQUIRE_LOCK(ump);
7900 	while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) {
7901 		WORKLIST_REMOVE(wk);
7902 		switch (wk->wk_type) {
7903 		case D_DIRREM:
7904 			wk->wk_state |= COMPLETE;
7905 			add_to_worklist(wk, 0);
7906 			continue;
7907 
7908 		case D_ALLOCDIRECT:
7909 			free_newblk(WK_NEWBLK(wk));
7910 			continue;
7911 
7912 		case D_ALLOCINDIR:
7913 			aip = WK_ALLOCINDIR(wk);
7914 			freework = NULL;
7915 			if (aip->ai_state & DELAYEDFREE) {
7916 				FREE_LOCK(ump);
7917 				freework = newfreework(ump, freeblks, NULL,
7918 				    aip->ai_lbn, aip->ai_newblkno,
7919 				    ump->um_fs->fs_frag, 0, 0);
7920 				ACQUIRE_LOCK(ump);
7921 			}
7922 			newblk = WK_NEWBLK(wk);
7923 			if (newblk->nb_jnewblk) {
7924 				freework->fw_jnewblk = newblk->nb_jnewblk;
7925 				newblk->nb_jnewblk->jn_dep = &freework->fw_list;
7926 				newblk->nb_jnewblk = NULL;
7927 			}
7928 			free_newblk(newblk);
7929 			continue;
7930 
7931 		case D_FREEWORK:
7932 			freework = WK_FREEWORK(wk);
7933 			if (freework->fw_lbn <= -UFS_NDADDR)
7934 				handle_workitem_indirblk(freework);
7935 			else
7936 				freework_freeblock(freework);
7937 			continue;
7938 		default:
7939 			panic("handle_workitem_freeblocks: Unknown type %s",
7940 			    TYPENAME(wk->wk_type));
7941 		}
7942 	}
7943 	if (freeblks->fb_ref != 0) {
7944 		freeblks->fb_state &= ~INPROGRESS;
7945 		wake_worklist(&freeblks->fb_list);
7946 		freeblks = NULL;
7947 	}
7948 	FREE_LOCK(ump);
7949 	if (freeblks)
7950 		return handle_complete_freeblocks(freeblks, flags);
7951 	return (0);
7952 }
7953 
7954 /*
7955  * Handle completion of block free via truncate.  This allows fs_pending
7956  * to track the actual free block count more closely than if we only updated
7957  * it at the end.  We must be careful to handle cases where the block count
7958  * on free was incorrect.
7959  */
7960 static void
7961 freeblks_free(ump, freeblks, blocks)
7962 	struct ufsmount *ump;
7963 	struct freeblks *freeblks;
7964 	int blocks;
7965 {
7966 	struct fs *fs;
7967 	ufs2_daddr_t remain;
7968 
7969 	UFS_LOCK(ump);
7970 	remain = -freeblks->fb_chkcnt;
7971 	freeblks->fb_chkcnt += blocks;
7972 	if (remain > 0) {
7973 		if (remain < blocks)
7974 			blocks = remain;
7975 		fs = ump->um_fs;
7976 		fs->fs_pendingblocks -= blocks;
7977 	}
7978 	UFS_UNLOCK(ump);
7979 }
7980 
7981 /*
7982  * Once all of the freework workitems are complete we can retire the
7983  * freeblocks dependency and any journal work awaiting completion.  This
7984  * can not be called until all other dependencies are stable on disk.
7985  */
7986 static int
7987 handle_complete_freeblocks(freeblks, flags)
7988 	struct freeblks *freeblks;
7989 	int flags;
7990 {
7991 	struct inodedep *inodedep;
7992 	struct inode *ip;
7993 	struct vnode *vp;
7994 	struct fs *fs;
7995 	struct ufsmount *ump;
7996 	ufs2_daddr_t spare;
7997 
7998 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7999 	fs = ump->um_fs;
8000 	flags = LK_EXCLUSIVE | flags;
8001 	spare = freeblks->fb_chkcnt;
8002 
8003 	/*
8004 	 * If we did not release the expected number of blocks we may have
8005 	 * to adjust the inode block count here.  Only do so if it wasn't
8006 	 * a truncation to zero and the modrev still matches.
8007 	 */
8008 	if (spare && freeblks->fb_len != 0) {
8009 		if (ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_inum,
8010 		    flags, &vp, FFSV_FORCEINSMQ) != 0)
8011 			return (EBUSY);
8012 		ip = VTOI(vp);
8013 		if (DIP(ip, i_modrev) == freeblks->fb_modrev) {
8014 			DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - spare);
8015 			ip->i_flag |= IN_CHANGE;
8016 			/*
8017 			 * We must wait so this happens before the
8018 			 * journal is reclaimed.
8019 			 */
8020 			ffs_update(vp, 1);
8021 		}
8022 		vput(vp);
8023 	}
8024 	if (spare < 0) {
8025 		UFS_LOCK(ump);
8026 		fs->fs_pendingblocks += spare;
8027 		UFS_UNLOCK(ump);
8028 	}
8029 #ifdef QUOTA
8030 	/* Handle spare. */
8031 	if (spare)
8032 		quotaadj(freeblks->fb_quota, ump, -spare);
8033 	quotarele(freeblks->fb_quota);
8034 #endif
8035 	ACQUIRE_LOCK(ump);
8036 	if (freeblks->fb_state & ONDEPLIST) {
8037 		inodedep_lookup(freeblks->fb_list.wk_mp, freeblks->fb_inum,
8038 		    0, &inodedep);
8039 		TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, fb_next);
8040 		freeblks->fb_state &= ~ONDEPLIST;
8041 		if (TAILQ_EMPTY(&inodedep->id_freeblklst))
8042 			free_inodedep(inodedep);
8043 	}
8044 	/*
8045 	 * All of the freeblock deps must be complete prior to this call
8046 	 * so it's now safe to complete earlier outstanding journal entries.
8047 	 */
8048 	handle_jwork(&freeblks->fb_jwork);
8049 	WORKITEM_FREE(freeblks, D_FREEBLKS);
8050 	FREE_LOCK(ump);
8051 	return (0);
8052 }
8053 
8054 /*
8055  * Release blocks associated with the freeblks and stored in the indirect
8056  * block dbn. If level is greater than SINGLE, the block is an indirect block
8057  * and recursive calls to indirtrunc must be used to cleanse other indirect
8058  * blocks.
8059  *
8060  * This handles partial and complete truncation of blocks.  Partial is noted
8061  * with goingaway == 0.  In this case the freework is completed after the
8062  * zero'd indirects are written to disk.  For full truncation the freework
8063  * is completed after the block is freed.
8064  */
8065 static void
8066 indir_trunc(freework, dbn, lbn)
8067 	struct freework *freework;
8068 	ufs2_daddr_t dbn;
8069 	ufs_lbn_t lbn;
8070 {
8071 	struct freework *nfreework;
8072 	struct workhead wkhd;
8073 	struct freeblks *freeblks;
8074 	struct buf *bp;
8075 	struct fs *fs;
8076 	struct indirdep *indirdep;
8077 	struct ufsmount *ump;
8078 	ufs1_daddr_t *bap1;
8079 	ufs2_daddr_t nb, nnb, *bap2;
8080 	ufs_lbn_t lbnadd, nlbn;
8081 	int i, nblocks, ufs1fmt;
8082 	int freedblocks;
8083 	int goingaway;
8084 	int freedeps;
8085 	int needj;
8086 	int level;
8087 	int cnt;
8088 
8089 	freeblks = freework->fw_freeblks;
8090 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
8091 	fs = ump->um_fs;
8092 	/*
8093 	 * Get buffer of block pointers to be freed.  There are three cases:
8094 	 *
8095 	 * 1) Partial truncate caches the indirdep pointer in the freework
8096 	 *    which provides us a back copy to the save bp which holds the
8097 	 *    pointers we want to clear.  When this completes the zero
8098 	 *    pointers are written to the real copy.
8099 	 * 2) The indirect is being completely truncated, cancel_indirdep()
8100 	 *    eliminated the real copy and placed the indirdep on the saved
8101 	 *    copy.  The indirdep and buf are discarded when this completes.
8102 	 * 3) The indirect was not in memory, we read a copy off of the disk
8103 	 *    using the devvp and drop and invalidate the buffer when we're
8104 	 *    done.
8105 	 */
8106 	goingaway = 1;
8107 	indirdep = NULL;
8108 	if (freework->fw_indir != NULL) {
8109 		goingaway = 0;
8110 		indirdep = freework->fw_indir;
8111 		bp = indirdep->ir_savebp;
8112 		if (bp == NULL || bp->b_blkno != dbn)
8113 			panic("indir_trunc: Bad saved buf %p blkno %jd",
8114 			    bp, (intmax_t)dbn);
8115 	} else if ((bp = incore(&freeblks->fb_devvp->v_bufobj, dbn)) != NULL) {
8116 		/*
8117 		 * The lock prevents the buf dep list from changing and
8118 	 	 * indirects on devvp should only ever have one dependency.
8119 		 */
8120 		indirdep = WK_INDIRDEP(LIST_FIRST(&bp->b_dep));
8121 		if (indirdep == NULL || (indirdep->ir_state & GOINGAWAY) == 0)
8122 			panic("indir_trunc: Bad indirdep %p from buf %p",
8123 			    indirdep, bp);
8124 	} else if (bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize,
8125 	    NOCRED, &bp) != 0) {
8126 		brelse(bp);
8127 		return;
8128 	}
8129 	ACQUIRE_LOCK(ump);
8130 	/* Protects against a race with complete_trunc_indir(). */
8131 	freework->fw_state &= ~INPROGRESS;
8132 	/*
8133 	 * If we have an indirdep we need to enforce the truncation order
8134 	 * and discard it when it is complete.
8135 	 */
8136 	if (indirdep) {
8137 		if (freework != TAILQ_FIRST(&indirdep->ir_trunc) &&
8138 		    !TAILQ_EMPTY(&indirdep->ir_trunc)) {
8139 			/*
8140 			 * Add the complete truncate to the list on the
8141 			 * indirdep to enforce in-order processing.
8142 			 */
8143 			if (freework->fw_indir == NULL)
8144 				TAILQ_INSERT_TAIL(&indirdep->ir_trunc,
8145 				    freework, fw_next);
8146 			FREE_LOCK(ump);
8147 			return;
8148 		}
8149 		/*
8150 		 * If we're goingaway, free the indirdep.  Otherwise it will
8151 		 * linger until the write completes.
8152 		 */
8153 		if (goingaway)
8154 			free_indirdep(indirdep);
8155 	}
8156 	FREE_LOCK(ump);
8157 	/* Initialize pointers depending on block size. */
8158 	if (ump->um_fstype == UFS1) {
8159 		bap1 = (ufs1_daddr_t *)bp->b_data;
8160 		nb = bap1[freework->fw_off];
8161 		ufs1fmt = 1;
8162 		bap2 = NULL;
8163 	} else {
8164 		bap2 = (ufs2_daddr_t *)bp->b_data;
8165 		nb = bap2[freework->fw_off];
8166 		ufs1fmt = 0;
8167 		bap1 = NULL;
8168 	}
8169 	level = lbn_level(lbn);
8170 	needj = MOUNTEDSUJ(UFSTOVFS(ump)) != 0;
8171 	lbnadd = lbn_offset(fs, level);
8172 	nblocks = btodb(fs->fs_bsize);
8173 	nfreework = freework;
8174 	freedeps = 0;
8175 	cnt = 0;
8176 	/*
8177 	 * Reclaim blocks.  Traverses into nested indirect levels and
8178 	 * arranges for the current level to be freed when subordinates
8179 	 * are free when journaling.
8180 	 */
8181 	for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) {
8182 		if (i != NINDIR(fs) - 1) {
8183 			if (ufs1fmt)
8184 				nnb = bap1[i+1];
8185 			else
8186 				nnb = bap2[i+1];
8187 		} else
8188 			nnb = 0;
8189 		if (nb == 0)
8190 			continue;
8191 		cnt++;
8192 		if (level != 0) {
8193 			nlbn = (lbn + 1) - (i * lbnadd);
8194 			if (needj != 0) {
8195 				nfreework = newfreework(ump, freeblks, freework,
8196 				    nlbn, nb, fs->fs_frag, 0, 0);
8197 				freedeps++;
8198 			}
8199 			indir_trunc(nfreework, fsbtodb(fs, nb), nlbn);
8200 		} else {
8201 			struct freedep *freedep;
8202 
8203 			/*
8204 			 * Attempt to aggregate freedep dependencies for
8205 			 * all blocks being released to the same CG.
8206 			 */
8207 			LIST_INIT(&wkhd);
8208 			if (needj != 0 &&
8209 			    (nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) {
8210 				freedep = newfreedep(freework);
8211 				WORKLIST_INSERT_UNLOCKED(&wkhd,
8212 				    &freedep->fd_list);
8213 				freedeps++;
8214 			}
8215 			CTR3(KTR_SUJ,
8216 			    "indir_trunc: ino %d blkno %jd size %ld",
8217 			    freeblks->fb_inum, nb, fs->fs_bsize);
8218 			ffs_blkfree(ump, fs, freeblks->fb_devvp, nb,
8219 			    fs->fs_bsize, freeblks->fb_inum,
8220 			    freeblks->fb_vtype, &wkhd);
8221 		}
8222 	}
8223 	if (goingaway) {
8224 		bp->b_flags |= B_INVAL | B_NOCACHE;
8225 		brelse(bp);
8226 	}
8227 	freedblocks = 0;
8228 	if (level == 0)
8229 		freedblocks = (nblocks * cnt);
8230 	if (needj == 0)
8231 		freedblocks += nblocks;
8232 	freeblks_free(ump, freeblks, freedblocks);
8233 	/*
8234 	 * If we are journaling set up the ref counts and offset so this
8235 	 * indirect can be completed when its children are free.
8236 	 */
8237 	if (needj) {
8238 		ACQUIRE_LOCK(ump);
8239 		freework->fw_off = i;
8240 		freework->fw_ref += freedeps;
8241 		freework->fw_ref -= NINDIR(fs) + 1;
8242 		if (level == 0)
8243 			freeblks->fb_cgwait += freedeps;
8244 		if (freework->fw_ref == 0)
8245 			freework_freeblock(freework);
8246 		FREE_LOCK(ump);
8247 		return;
8248 	}
8249 	/*
8250 	 * If we're not journaling we can free the indirect now.
8251 	 */
8252 	dbn = dbtofsb(fs, dbn);
8253 	CTR3(KTR_SUJ,
8254 	    "indir_trunc 2: ino %d blkno %jd size %ld",
8255 	    freeblks->fb_inum, dbn, fs->fs_bsize);
8256 	ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize,
8257 	    freeblks->fb_inum, freeblks->fb_vtype, NULL);
8258 	/* Non SUJ softdep does single-threaded truncations. */
8259 	if (freework->fw_blkno == dbn) {
8260 		freework->fw_state |= ALLCOMPLETE;
8261 		ACQUIRE_LOCK(ump);
8262 		handle_written_freework(freework);
8263 		FREE_LOCK(ump);
8264 	}
8265 	return;
8266 }
8267 
8268 /*
8269  * Cancel an allocindir when it is removed via truncation.  When bp is not
8270  * NULL the indirect never appeared on disk and is scheduled to be freed
8271  * independently of the indir so we can more easily track journal work.
8272  */
8273 static void
8274 cancel_allocindir(aip, bp, freeblks, trunc)
8275 	struct allocindir *aip;
8276 	struct buf *bp;
8277 	struct freeblks *freeblks;
8278 	int trunc;
8279 {
8280 	struct indirdep *indirdep;
8281 	struct freefrag *freefrag;
8282 	struct newblk *newblk;
8283 
8284 	newblk = (struct newblk *)aip;
8285 	LIST_REMOVE(aip, ai_next);
8286 	/*
8287 	 * We must eliminate the pointer in bp if it must be freed on its
8288 	 * own due to partial truncate or pending journal work.
8289 	 */
8290 	if (bp && (trunc || newblk->nb_jnewblk)) {
8291 		/*
8292 		 * Clear the pointer and mark the aip to be freed
8293 		 * directly if it never existed on disk.
8294 		 */
8295 		aip->ai_state |= DELAYEDFREE;
8296 		indirdep = aip->ai_indirdep;
8297 		if (indirdep->ir_state & UFS1FMT)
8298 			((ufs1_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
8299 		else
8300 			((ufs2_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
8301 	}
8302 	/*
8303 	 * When truncating the previous pointer will be freed via
8304 	 * savedbp.  Eliminate the freefrag which would dup free.
8305 	 */
8306 	if (trunc && (freefrag = newblk->nb_freefrag) != NULL) {
8307 		newblk->nb_freefrag = NULL;
8308 		if (freefrag->ff_jdep)
8309 			cancel_jfreefrag(
8310 			    WK_JFREEFRAG(freefrag->ff_jdep));
8311 		jwork_move(&freeblks->fb_jwork, &freefrag->ff_jwork);
8312 		WORKITEM_FREE(freefrag, D_FREEFRAG);
8313 	}
8314 	/*
8315 	 * If the journal hasn't been written the jnewblk must be passed
8316 	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
8317 	 * this by leaving the journal dependency on the newblk to be freed
8318 	 * when a freework is created in handle_workitem_freeblocks().
8319 	 */
8320 	cancel_newblk(newblk, NULL, &freeblks->fb_jwork);
8321 	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
8322 }
8323 
8324 /*
8325  * Create the mkdir dependencies for . and .. in a new directory.  Link them
8326  * in to a newdirblk so any subsequent additions are tracked properly.  The
8327  * caller is responsible for adding the mkdir1 dependency to the journal
8328  * and updating id_mkdiradd.  This function returns with the per-filesystem
8329  * lock held.
8330  */
8331 static struct mkdir *
8332 setup_newdir(dap, newinum, dinum, newdirbp, mkdirp)
8333 	struct diradd *dap;
8334 	ino_t newinum;
8335 	ino_t dinum;
8336 	struct buf *newdirbp;
8337 	struct mkdir **mkdirp;
8338 {
8339 	struct newblk *newblk;
8340 	struct pagedep *pagedep;
8341 	struct inodedep *inodedep;
8342 	struct newdirblk *newdirblk;
8343 	struct mkdir *mkdir1, *mkdir2;
8344 	struct worklist *wk;
8345 	struct jaddref *jaddref;
8346 	struct ufsmount *ump;
8347 	struct mount *mp;
8348 
8349 	mp = dap->da_list.wk_mp;
8350 	ump = VFSTOUFS(mp);
8351 	newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK,
8352 	    M_SOFTDEP_FLAGS);
8353 	workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
8354 	LIST_INIT(&newdirblk->db_mkdir);
8355 	mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
8356 	workitem_alloc(&mkdir1->md_list, D_MKDIR, mp);
8357 	mkdir1->md_state = ATTACHED | MKDIR_BODY;
8358 	mkdir1->md_diradd = dap;
8359 	mkdir1->md_jaddref = NULL;
8360 	mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
8361 	workitem_alloc(&mkdir2->md_list, D_MKDIR, mp);
8362 	mkdir2->md_state = ATTACHED | MKDIR_PARENT;
8363 	mkdir2->md_diradd = dap;
8364 	mkdir2->md_jaddref = NULL;
8365 	if (MOUNTEDSUJ(mp) == 0) {
8366 		mkdir1->md_state |= DEPCOMPLETE;
8367 		mkdir2->md_state |= DEPCOMPLETE;
8368 	}
8369 	/*
8370 	 * Dependency on "." and ".." being written to disk.
8371 	 */
8372 	mkdir1->md_buf = newdirbp;
8373 	ACQUIRE_LOCK(VFSTOUFS(mp));
8374 	LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir1, md_mkdirs);
8375 	/*
8376 	 * We must link the pagedep, allocdirect, and newdirblk for
8377 	 * the initial file page so the pointer to the new directory
8378 	 * is not written until the directory contents are live and
8379 	 * any subsequent additions are not marked live until the
8380 	 * block is reachable via the inode.
8381 	 */
8382 	if (pagedep_lookup(mp, newdirbp, newinum, 0, 0, &pagedep) == 0)
8383 		panic("setup_newdir: lost pagedep");
8384 	LIST_FOREACH(wk, &newdirbp->b_dep, wk_list)
8385 		if (wk->wk_type == D_ALLOCDIRECT)
8386 			break;
8387 	if (wk == NULL)
8388 		panic("setup_newdir: lost allocdirect");
8389 	if (pagedep->pd_state & NEWBLOCK)
8390 		panic("setup_newdir: NEWBLOCK already set");
8391 	newblk = WK_NEWBLK(wk);
8392 	pagedep->pd_state |= NEWBLOCK;
8393 	pagedep->pd_newdirblk = newdirblk;
8394 	newdirblk->db_pagedep = pagedep;
8395 	WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
8396 	WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list);
8397 	/*
8398 	 * Look up the inodedep for the parent directory so that we
8399 	 * can link mkdir2 into the pending dotdot jaddref or
8400 	 * the inode write if there is none.  If the inode is
8401 	 * ALLCOMPLETE and no jaddref is present all dependencies have
8402 	 * been satisfied and mkdir2 can be freed.
8403 	 */
8404 	inodedep_lookup(mp, dinum, 0, &inodedep);
8405 	if (MOUNTEDSUJ(mp)) {
8406 		if (inodedep == NULL)
8407 			panic("setup_newdir: Lost parent.");
8408 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8409 		    inoreflst);
8410 		KASSERT(jaddref != NULL && jaddref->ja_parent == newinum &&
8411 		    (jaddref->ja_state & MKDIR_PARENT),
8412 		    ("setup_newdir: bad dotdot jaddref %p", jaddref));
8413 		LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs);
8414 		mkdir2->md_jaddref = jaddref;
8415 		jaddref->ja_mkdir = mkdir2;
8416 	} else if (inodedep == NULL ||
8417 	    (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
8418 		dap->da_state &= ~MKDIR_PARENT;
8419 		WORKITEM_FREE(mkdir2, D_MKDIR);
8420 		mkdir2 = NULL;
8421 	} else {
8422 		LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs);
8423 		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir2->md_list);
8424 	}
8425 	*mkdirp = mkdir2;
8426 
8427 	return (mkdir1);
8428 }
8429 
8430 /*
8431  * Directory entry addition dependencies.
8432  *
8433  * When adding a new directory entry, the inode (with its incremented link
8434  * count) must be written to disk before the directory entry's pointer to it.
8435  * Also, if the inode is newly allocated, the corresponding freemap must be
8436  * updated (on disk) before the directory entry's pointer. These requirements
8437  * are met via undo/redo on the directory entry's pointer, which consists
8438  * simply of the inode number.
8439  *
8440  * As directory entries are added and deleted, the free space within a
8441  * directory block can become fragmented.  The ufs filesystem will compact
8442  * a fragmented directory block to make space for a new entry. When this
8443  * occurs, the offsets of previously added entries change. Any "diradd"
8444  * dependency structures corresponding to these entries must be updated with
8445  * the new offsets.
8446  */
8447 
8448 /*
8449  * This routine is called after the in-memory inode's link
8450  * count has been incremented, but before the directory entry's
8451  * pointer to the inode has been set.
8452  */
8453 int
8454 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
8455 	struct buf *bp;		/* buffer containing directory block */
8456 	struct inode *dp;	/* inode for directory */
8457 	off_t diroffset;	/* offset of new entry in directory */
8458 	ino_t newinum;		/* inode referenced by new directory entry */
8459 	struct buf *newdirbp;	/* non-NULL => contents of new mkdir */
8460 	int isnewblk;		/* entry is in a newly allocated block */
8461 {
8462 	int offset;		/* offset of new entry within directory block */
8463 	ufs_lbn_t lbn;		/* block in directory containing new entry */
8464 	struct fs *fs;
8465 	struct diradd *dap;
8466 	struct newblk *newblk;
8467 	struct pagedep *pagedep;
8468 	struct inodedep *inodedep;
8469 	struct newdirblk *newdirblk;
8470 	struct mkdir *mkdir1, *mkdir2;
8471 	struct jaddref *jaddref;
8472 	struct ufsmount *ump;
8473 	struct mount *mp;
8474 	int isindir;
8475 
8476 	mp = ITOVFS(dp);
8477 	ump = VFSTOUFS(mp);
8478 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
8479 	    ("softdep_setup_directory_add called on non-softdep filesystem"));
8480 	/*
8481 	 * Whiteouts have no dependencies.
8482 	 */
8483 	if (newinum == UFS_WINO) {
8484 		if (newdirbp != NULL)
8485 			bdwrite(newdirbp);
8486 		return (0);
8487 	}
8488 	jaddref = NULL;
8489 	mkdir1 = mkdir2 = NULL;
8490 	fs = ump->um_fs;
8491 	lbn = lblkno(fs, diroffset);
8492 	offset = blkoff(fs, diroffset);
8493 	dap = malloc(sizeof(struct diradd), M_DIRADD,
8494 		M_SOFTDEP_FLAGS|M_ZERO);
8495 	workitem_alloc(&dap->da_list, D_DIRADD, mp);
8496 	dap->da_offset = offset;
8497 	dap->da_newinum = newinum;
8498 	dap->da_state = ATTACHED;
8499 	LIST_INIT(&dap->da_jwork);
8500 	isindir = bp->b_lblkno >= UFS_NDADDR;
8501 	newdirblk = NULL;
8502 	if (isnewblk &&
8503 	    (isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) {
8504 		newdirblk = malloc(sizeof(struct newdirblk),
8505 		    M_NEWDIRBLK, M_SOFTDEP_FLAGS);
8506 		workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
8507 		LIST_INIT(&newdirblk->db_mkdir);
8508 	}
8509 	/*
8510 	 * If we're creating a new directory setup the dependencies and set
8511 	 * the dap state to wait for them.  Otherwise it's COMPLETE and
8512 	 * we can move on.
8513 	 */
8514 	if (newdirbp == NULL) {
8515 		dap->da_state |= DEPCOMPLETE;
8516 		ACQUIRE_LOCK(ump);
8517 	} else {
8518 		dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
8519 		mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp,
8520 		    &mkdir2);
8521 	}
8522 	/*
8523 	 * Link into parent directory pagedep to await its being written.
8524 	 */
8525 	pagedep_lookup(mp, bp, dp->i_number, lbn, DEPALLOC, &pagedep);
8526 #ifdef DEBUG
8527 	if (diradd_lookup(pagedep, offset) != NULL)
8528 		panic("softdep_setup_directory_add: %p already at off %d\n",
8529 		    diradd_lookup(pagedep, offset), offset);
8530 #endif
8531 	dap->da_pagedep = pagedep;
8532 	LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
8533 	    da_pdlist);
8534 	inodedep_lookup(mp, newinum, DEPALLOC, &inodedep);
8535 	/*
8536 	 * If we're journaling, link the diradd into the jaddref so it
8537 	 * may be completed after the journal entry is written.  Otherwise,
8538 	 * link the diradd into its inodedep.  If the inode is not yet
8539 	 * written place it on the bufwait list, otherwise do the post-inode
8540 	 * write processing to put it on the id_pendinghd list.
8541 	 */
8542 	if (MOUNTEDSUJ(mp)) {
8543 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8544 		    inoreflst);
8545 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
8546 		    ("softdep_setup_directory_add: bad jaddref %p", jaddref));
8547 		jaddref->ja_diroff = diroffset;
8548 		jaddref->ja_diradd = dap;
8549 		add_to_journal(&jaddref->ja_list);
8550 	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
8551 		diradd_inode_written(dap, inodedep);
8552 	else
8553 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
8554 	/*
8555 	 * Add the journal entries for . and .. links now that the primary
8556 	 * link is written.
8557 	 */
8558 	if (mkdir1 != NULL && MOUNTEDSUJ(mp)) {
8559 		jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
8560 		    inoreflst, if_deps);
8561 		KASSERT(jaddref != NULL &&
8562 		    jaddref->ja_ino == jaddref->ja_parent &&
8563 		    (jaddref->ja_state & MKDIR_BODY),
8564 		    ("softdep_setup_directory_add: bad dot jaddref %p",
8565 		    jaddref));
8566 		mkdir1->md_jaddref = jaddref;
8567 		jaddref->ja_mkdir = mkdir1;
8568 		/*
8569 		 * It is important that the dotdot journal entry
8570 		 * is added prior to the dot entry since dot writes
8571 		 * both the dot and dotdot links.  These both must
8572 		 * be added after the primary link for the journal
8573 		 * to remain consistent.
8574 		 */
8575 		add_to_journal(&mkdir2->md_jaddref->ja_list);
8576 		add_to_journal(&jaddref->ja_list);
8577 	}
8578 	/*
8579 	 * If we are adding a new directory remember this diradd so that if
8580 	 * we rename it we can keep the dot and dotdot dependencies.  If
8581 	 * we are adding a new name for an inode that has a mkdiradd we
8582 	 * must be in rename and we have to move the dot and dotdot
8583 	 * dependencies to this new name.  The old name is being orphaned
8584 	 * soon.
8585 	 */
8586 	if (mkdir1 != NULL) {
8587 		if (inodedep->id_mkdiradd != NULL)
8588 			panic("softdep_setup_directory_add: Existing mkdir");
8589 		inodedep->id_mkdiradd = dap;
8590 	} else if (inodedep->id_mkdiradd)
8591 		merge_diradd(inodedep, dap);
8592 	if (newdirblk != NULL) {
8593 		/*
8594 		 * There is nothing to do if we are already tracking
8595 		 * this block.
8596 		 */
8597 		if ((pagedep->pd_state & NEWBLOCK) != 0) {
8598 			WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
8599 			FREE_LOCK(ump);
8600 			return (0);
8601 		}
8602 		if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)
8603 		    == 0)
8604 			panic("softdep_setup_directory_add: lost entry");
8605 		WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
8606 		pagedep->pd_state |= NEWBLOCK;
8607 		pagedep->pd_newdirblk = newdirblk;
8608 		newdirblk->db_pagedep = pagedep;
8609 		FREE_LOCK(ump);
8610 		/*
8611 		 * If we extended into an indirect signal direnter to sync.
8612 		 */
8613 		if (isindir)
8614 			return (1);
8615 		return (0);
8616 	}
8617 	FREE_LOCK(ump);
8618 	return (0);
8619 }
8620 
8621 /*
8622  * This procedure is called to change the offset of a directory
8623  * entry when compacting a directory block which must be owned
8624  * exclusively by the caller. Note that the actual entry movement
8625  * must be done in this procedure to ensure that no I/O completions
8626  * occur while the move is in progress.
8627  */
8628 void
8629 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
8630 	struct buf *bp;		/* Buffer holding directory block. */
8631 	struct inode *dp;	/* inode for directory */
8632 	caddr_t base;		/* address of dp->i_offset */
8633 	caddr_t oldloc;		/* address of old directory location */
8634 	caddr_t newloc;		/* address of new directory location */
8635 	int entrysize;		/* size of directory entry */
8636 {
8637 	int offset, oldoffset, newoffset;
8638 	struct pagedep *pagedep;
8639 	struct jmvref *jmvref;
8640 	struct diradd *dap;
8641 	struct direct *de;
8642 	struct mount *mp;
8643 	struct ufsmount *ump;
8644 	ufs_lbn_t lbn;
8645 	int flags;
8646 
8647 	mp = ITOVFS(dp);
8648 	ump = VFSTOUFS(mp);
8649 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
8650 	    ("softdep_change_directoryentry_offset called on "
8651 	     "non-softdep filesystem"));
8652 	de = (struct direct *)oldloc;
8653 	jmvref = NULL;
8654 	flags = 0;
8655 	/*
8656 	 * Moves are always journaled as it would be too complex to
8657 	 * determine if any affected adds or removes are present in the
8658 	 * journal.
8659 	 */
8660 	if (MOUNTEDSUJ(mp)) {
8661 		flags = DEPALLOC;
8662 		jmvref = newjmvref(dp, de->d_ino,
8663 		    dp->i_offset + (oldloc - base),
8664 		    dp->i_offset + (newloc - base));
8665 	}
8666 	lbn = lblkno(ump->um_fs, dp->i_offset);
8667 	offset = blkoff(ump->um_fs, dp->i_offset);
8668 	oldoffset = offset + (oldloc - base);
8669 	newoffset = offset + (newloc - base);
8670 	ACQUIRE_LOCK(ump);
8671 	if (pagedep_lookup(mp, bp, dp->i_number, lbn, flags, &pagedep) == 0)
8672 		goto done;
8673 	dap = diradd_lookup(pagedep, oldoffset);
8674 	if (dap) {
8675 		dap->da_offset = newoffset;
8676 		newoffset = DIRADDHASH(newoffset);
8677 		oldoffset = DIRADDHASH(oldoffset);
8678 		if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE &&
8679 		    newoffset != oldoffset) {
8680 			LIST_REMOVE(dap, da_pdlist);
8681 			LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset],
8682 			    dap, da_pdlist);
8683 		}
8684 	}
8685 done:
8686 	if (jmvref) {
8687 		jmvref->jm_pagedep = pagedep;
8688 		LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps);
8689 		add_to_journal(&jmvref->jm_list);
8690 	}
8691 	bcopy(oldloc, newloc, entrysize);
8692 	FREE_LOCK(ump);
8693 }
8694 
8695 /*
8696  * Move the mkdir dependencies and journal work from one diradd to another
8697  * when renaming a directory.  The new name must depend on the mkdir deps
8698  * completing as the old name did.  Directories can only have one valid link
8699  * at a time so one must be canonical.
8700  */
8701 static void
8702 merge_diradd(inodedep, newdap)
8703 	struct inodedep *inodedep;
8704 	struct diradd *newdap;
8705 {
8706 	struct diradd *olddap;
8707 	struct mkdir *mkdir, *nextmd;
8708 	struct ufsmount *ump;
8709 	short state;
8710 
8711 	olddap = inodedep->id_mkdiradd;
8712 	inodedep->id_mkdiradd = newdap;
8713 	if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8714 		newdap->da_state &= ~DEPCOMPLETE;
8715 		ump = VFSTOUFS(inodedep->id_list.wk_mp);
8716 		for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
8717 		     mkdir = nextmd) {
8718 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
8719 			if (mkdir->md_diradd != olddap)
8720 				continue;
8721 			mkdir->md_diradd = newdap;
8722 			state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY);
8723 			newdap->da_state |= state;
8724 			olddap->da_state &= ~state;
8725 			if ((olddap->da_state &
8726 			    (MKDIR_PARENT | MKDIR_BODY)) == 0)
8727 				break;
8728 		}
8729 		if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
8730 			panic("merge_diradd: unfound ref");
8731 	}
8732 	/*
8733 	 * Any mkdir related journal items are not safe to be freed until
8734 	 * the new name is stable.
8735 	 */
8736 	jwork_move(&newdap->da_jwork, &olddap->da_jwork);
8737 	olddap->da_state |= DEPCOMPLETE;
8738 	complete_diradd(olddap);
8739 }
8740 
8741 /*
8742  * Move the diradd to the pending list when all diradd dependencies are
8743  * complete.
8744  */
8745 static void
8746 complete_diradd(dap)
8747 	struct diradd *dap;
8748 {
8749 	struct pagedep *pagedep;
8750 
8751 	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
8752 		if (dap->da_state & DIRCHG)
8753 			pagedep = dap->da_previous->dm_pagedep;
8754 		else
8755 			pagedep = dap->da_pagedep;
8756 		LIST_REMOVE(dap, da_pdlist);
8757 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
8758 	}
8759 }
8760 
8761 /*
8762  * Cancel a diradd when a dirrem overlaps with it.  We must cancel the journal
8763  * add entries and conditonally journal the remove.
8764  */
8765 static void
8766 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref)
8767 	struct diradd *dap;
8768 	struct dirrem *dirrem;
8769 	struct jremref *jremref;
8770 	struct jremref *dotremref;
8771 	struct jremref *dotdotremref;
8772 {
8773 	struct inodedep *inodedep;
8774 	struct jaddref *jaddref;
8775 	struct inoref *inoref;
8776 	struct ufsmount *ump;
8777 	struct mkdir *mkdir;
8778 
8779 	/*
8780 	 * If no remove references were allocated we're on a non-journaled
8781 	 * filesystem and can skip the cancel step.
8782 	 */
8783 	if (jremref == NULL) {
8784 		free_diradd(dap, NULL);
8785 		return;
8786 	}
8787 	/*
8788 	 * Cancel the primary name an free it if it does not require
8789 	 * journaling.
8790 	 */
8791 	if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum,
8792 	    0, &inodedep) != 0) {
8793 		/* Abort the addref that reference this diradd.  */
8794 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
8795 			if (inoref->if_list.wk_type != D_JADDREF)
8796 				continue;
8797 			jaddref = (struct jaddref *)inoref;
8798 			if (jaddref->ja_diradd != dap)
8799 				continue;
8800 			if (cancel_jaddref(jaddref, inodedep,
8801 			    &dirrem->dm_jwork) == 0) {
8802 				free_jremref(jremref);
8803 				jremref = NULL;
8804 			}
8805 			break;
8806 		}
8807 	}
8808 	/*
8809 	 * Cancel subordinate names and free them if they do not require
8810 	 * journaling.
8811 	 */
8812 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8813 		ump = VFSTOUFS(dap->da_list.wk_mp);
8814 		LIST_FOREACH(mkdir, &ump->softdep_mkdirlisthd, md_mkdirs) {
8815 			if (mkdir->md_diradd != dap)
8816 				continue;
8817 			if ((jaddref = mkdir->md_jaddref) == NULL)
8818 				continue;
8819 			mkdir->md_jaddref = NULL;
8820 			if (mkdir->md_state & MKDIR_PARENT) {
8821 				if (cancel_jaddref(jaddref, NULL,
8822 				    &dirrem->dm_jwork) == 0) {
8823 					free_jremref(dotdotremref);
8824 					dotdotremref = NULL;
8825 				}
8826 			} else {
8827 				if (cancel_jaddref(jaddref, inodedep,
8828 				    &dirrem->dm_jwork) == 0) {
8829 					free_jremref(dotremref);
8830 					dotremref = NULL;
8831 				}
8832 			}
8833 		}
8834 	}
8835 
8836 	if (jremref)
8837 		journal_jremref(dirrem, jremref, inodedep);
8838 	if (dotremref)
8839 		journal_jremref(dirrem, dotremref, inodedep);
8840 	if (dotdotremref)
8841 		journal_jremref(dirrem, dotdotremref, NULL);
8842 	jwork_move(&dirrem->dm_jwork, &dap->da_jwork);
8843 	free_diradd(dap, &dirrem->dm_jwork);
8844 }
8845 
8846 /*
8847  * Free a diradd dependency structure. This routine must be called
8848  * with splbio interrupts blocked.
8849  */
8850 static void
8851 free_diradd(dap, wkhd)
8852 	struct diradd *dap;
8853 	struct workhead *wkhd;
8854 {
8855 	struct dirrem *dirrem;
8856 	struct pagedep *pagedep;
8857 	struct inodedep *inodedep;
8858 	struct mkdir *mkdir, *nextmd;
8859 	struct ufsmount *ump;
8860 
8861 	ump = VFSTOUFS(dap->da_list.wk_mp);
8862 	LOCK_OWNED(ump);
8863 	LIST_REMOVE(dap, da_pdlist);
8864 	if (dap->da_state & ONWORKLIST)
8865 		WORKLIST_REMOVE(&dap->da_list);
8866 	if ((dap->da_state & DIRCHG) == 0) {
8867 		pagedep = dap->da_pagedep;
8868 	} else {
8869 		dirrem = dap->da_previous;
8870 		pagedep = dirrem->dm_pagedep;
8871 		dirrem->dm_dirinum = pagedep->pd_ino;
8872 		dirrem->dm_state |= COMPLETE;
8873 		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
8874 			add_to_worklist(&dirrem->dm_list, 0);
8875 	}
8876 	if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum,
8877 	    0, &inodedep) != 0)
8878 		if (inodedep->id_mkdiradd == dap)
8879 			inodedep->id_mkdiradd = NULL;
8880 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8881 		for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
8882 		     mkdir = nextmd) {
8883 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
8884 			if (mkdir->md_diradd != dap)
8885 				continue;
8886 			dap->da_state &=
8887 			    ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
8888 			LIST_REMOVE(mkdir, md_mkdirs);
8889 			if (mkdir->md_state & ONWORKLIST)
8890 				WORKLIST_REMOVE(&mkdir->md_list);
8891 			if (mkdir->md_jaddref != NULL)
8892 				panic("free_diradd: Unexpected jaddref");
8893 			WORKITEM_FREE(mkdir, D_MKDIR);
8894 			if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
8895 				break;
8896 		}
8897 		if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
8898 			panic("free_diradd: unfound ref");
8899 	}
8900 	if (inodedep)
8901 		free_inodedep(inodedep);
8902 	/*
8903 	 * Free any journal segments waiting for the directory write.
8904 	 */
8905 	handle_jwork(&dap->da_jwork);
8906 	WORKITEM_FREE(dap, D_DIRADD);
8907 }
8908 
8909 /*
8910  * Directory entry removal dependencies.
8911  *
8912  * When removing a directory entry, the entry's inode pointer must be
8913  * zero'ed on disk before the corresponding inode's link count is decremented
8914  * (possibly freeing the inode for re-use). This dependency is handled by
8915  * updating the directory entry but delaying the inode count reduction until
8916  * after the directory block has been written to disk. After this point, the
8917  * inode count can be decremented whenever it is convenient.
8918  */
8919 
8920 /*
8921  * This routine should be called immediately after removing
8922  * a directory entry.  The inode's link count should not be
8923  * decremented by the calling procedure -- the soft updates
8924  * code will do this task when it is safe.
8925  */
8926 void
8927 softdep_setup_remove(bp, dp, ip, isrmdir)
8928 	struct buf *bp;		/* buffer containing directory block */
8929 	struct inode *dp;	/* inode for the directory being modified */
8930 	struct inode *ip;	/* inode for directory entry being removed */
8931 	int isrmdir;		/* indicates if doing RMDIR */
8932 {
8933 	struct dirrem *dirrem, *prevdirrem;
8934 	struct inodedep *inodedep;
8935 	struct ufsmount *ump;
8936 	int direct;
8937 
8938 	ump = ITOUMP(ip);
8939 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
8940 	    ("softdep_setup_remove called on non-softdep filesystem"));
8941 	/*
8942 	 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK.  We want
8943 	 * newdirrem() to setup the full directory remove which requires
8944 	 * isrmdir > 1.
8945 	 */
8946 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
8947 	/*
8948 	 * Add the dirrem to the inodedep's pending remove list for quick
8949 	 * discovery later.
8950 	 */
8951 	if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0)
8952 		panic("softdep_setup_remove: Lost inodedep.");
8953 	KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
8954 	dirrem->dm_state |= ONDEPLIST;
8955 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
8956 
8957 	/*
8958 	 * If the COMPLETE flag is clear, then there were no active
8959 	 * entries and we want to roll back to a zeroed entry until
8960 	 * the new inode is committed to disk. If the COMPLETE flag is
8961 	 * set then we have deleted an entry that never made it to
8962 	 * disk. If the entry we deleted resulted from a name change,
8963 	 * then the old name still resides on disk. We cannot delete
8964 	 * its inode (returned to us in prevdirrem) until the zeroed
8965 	 * directory entry gets to disk. The new inode has never been
8966 	 * referenced on the disk, so can be deleted immediately.
8967 	 */
8968 	if ((dirrem->dm_state & COMPLETE) == 0) {
8969 		LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
8970 		    dm_next);
8971 		FREE_LOCK(ump);
8972 	} else {
8973 		if (prevdirrem != NULL)
8974 			LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd,
8975 			    prevdirrem, dm_next);
8976 		dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
8977 		direct = LIST_EMPTY(&dirrem->dm_jremrefhd);
8978 		FREE_LOCK(ump);
8979 		if (direct)
8980 			handle_workitem_remove(dirrem, 0);
8981 	}
8982 }
8983 
8984 /*
8985  * Check for an entry matching 'offset' on both the pd_dirraddhd list and the
8986  * pd_pendinghd list of a pagedep.
8987  */
8988 static struct diradd *
8989 diradd_lookup(pagedep, offset)
8990 	struct pagedep *pagedep;
8991 	int offset;
8992 {
8993 	struct diradd *dap;
8994 
8995 	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist)
8996 		if (dap->da_offset == offset)
8997 			return (dap);
8998 	LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
8999 		if (dap->da_offset == offset)
9000 			return (dap);
9001 	return (NULL);
9002 }
9003 
9004 /*
9005  * Search for a .. diradd dependency in a directory that is being removed.
9006  * If the directory was renamed to a new parent we have a diradd rather
9007  * than a mkdir for the .. entry.  We need to cancel it now before
9008  * it is found in truncate().
9009  */
9010 static struct jremref *
9011 cancel_diradd_dotdot(ip, dirrem, jremref)
9012 	struct inode *ip;
9013 	struct dirrem *dirrem;
9014 	struct jremref *jremref;
9015 {
9016 	struct pagedep *pagedep;
9017 	struct diradd *dap;
9018 	struct worklist *wk;
9019 
9020 	if (pagedep_lookup(ITOVFS(ip), NULL, ip->i_number, 0, 0, &pagedep) == 0)
9021 		return (jremref);
9022 	dap = diradd_lookup(pagedep, DOTDOT_OFFSET);
9023 	if (dap == NULL)
9024 		return (jremref);
9025 	cancel_diradd(dap, dirrem, jremref, NULL, NULL);
9026 	/*
9027 	 * Mark any journal work as belonging to the parent so it is freed
9028 	 * with the .. reference.
9029 	 */
9030 	LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
9031 		wk->wk_state |= MKDIR_PARENT;
9032 	return (NULL);
9033 }
9034 
9035 /*
9036  * Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to
9037  * replace it with a dirrem/diradd pair as a result of re-parenting a
9038  * directory.  This ensures that we don't simultaneously have a mkdir and
9039  * a diradd for the same .. entry.
9040  */
9041 static struct jremref *
9042 cancel_mkdir_dotdot(ip, dirrem, jremref)
9043 	struct inode *ip;
9044 	struct dirrem *dirrem;
9045 	struct jremref *jremref;
9046 {
9047 	struct inodedep *inodedep;
9048 	struct jaddref *jaddref;
9049 	struct ufsmount *ump;
9050 	struct mkdir *mkdir;
9051 	struct diradd *dap;
9052 	struct mount *mp;
9053 
9054 	mp = ITOVFS(ip);
9055 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
9056 		return (jremref);
9057 	dap = inodedep->id_mkdiradd;
9058 	if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0)
9059 		return (jremref);
9060 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
9061 	for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
9062 	    mkdir = LIST_NEXT(mkdir, md_mkdirs))
9063 		if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT)
9064 			break;
9065 	if (mkdir == NULL)
9066 		panic("cancel_mkdir_dotdot: Unable to find mkdir\n");
9067 	if ((jaddref = mkdir->md_jaddref) != NULL) {
9068 		mkdir->md_jaddref = NULL;
9069 		jaddref->ja_state &= ~MKDIR_PARENT;
9070 		if (inodedep_lookup(mp, jaddref->ja_ino, 0, &inodedep) == 0)
9071 			panic("cancel_mkdir_dotdot: Lost parent inodedep");
9072 		if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) {
9073 			journal_jremref(dirrem, jremref, inodedep);
9074 			jremref = NULL;
9075 		}
9076 	}
9077 	if (mkdir->md_state & ONWORKLIST)
9078 		WORKLIST_REMOVE(&mkdir->md_list);
9079 	mkdir->md_state |= ALLCOMPLETE;
9080 	complete_mkdir(mkdir);
9081 	return (jremref);
9082 }
9083 
9084 static void
9085 journal_jremref(dirrem, jremref, inodedep)
9086 	struct dirrem *dirrem;
9087 	struct jremref *jremref;
9088 	struct inodedep *inodedep;
9089 {
9090 
9091 	if (inodedep == NULL)
9092 		if (inodedep_lookup(jremref->jr_list.wk_mp,
9093 		    jremref->jr_ref.if_ino, 0, &inodedep) == 0)
9094 			panic("journal_jremref: Lost inodedep");
9095 	LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps);
9096 	TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
9097 	add_to_journal(&jremref->jr_list);
9098 }
9099 
9100 static void
9101 dirrem_journal(dirrem, jremref, dotremref, dotdotremref)
9102 	struct dirrem *dirrem;
9103 	struct jremref *jremref;
9104 	struct jremref *dotremref;
9105 	struct jremref *dotdotremref;
9106 {
9107 	struct inodedep *inodedep;
9108 
9109 
9110 	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0,
9111 	    &inodedep) == 0)
9112 		panic("dirrem_journal: Lost inodedep");
9113 	journal_jremref(dirrem, jremref, inodedep);
9114 	if (dotremref)
9115 		journal_jremref(dirrem, dotremref, inodedep);
9116 	if (dotdotremref)
9117 		journal_jremref(dirrem, dotdotremref, NULL);
9118 }
9119 
9120 /*
9121  * Allocate a new dirrem if appropriate and return it along with
9122  * its associated pagedep. Called without a lock, returns with lock.
9123  */
9124 static struct dirrem *
9125 newdirrem(bp, dp, ip, isrmdir, prevdirremp)
9126 	struct buf *bp;		/* buffer containing directory block */
9127 	struct inode *dp;	/* inode for the directory being modified */
9128 	struct inode *ip;	/* inode for directory entry being removed */
9129 	int isrmdir;		/* indicates if doing RMDIR */
9130 	struct dirrem **prevdirremp; /* previously referenced inode, if any */
9131 {
9132 	int offset;
9133 	ufs_lbn_t lbn;
9134 	struct diradd *dap;
9135 	struct dirrem *dirrem;
9136 	struct pagedep *pagedep;
9137 	struct jremref *jremref;
9138 	struct jremref *dotremref;
9139 	struct jremref *dotdotremref;
9140 	struct vnode *dvp;
9141 	struct ufsmount *ump;
9142 
9143 	/*
9144 	 * Whiteouts have no deletion dependencies.
9145 	 */
9146 	if (ip == NULL)
9147 		panic("newdirrem: whiteout");
9148 	dvp = ITOV(dp);
9149 	ump = ITOUMP(dp);
9150 
9151 	/*
9152 	 * If the system is over its limit and our filesystem is
9153 	 * responsible for more than our share of that usage and
9154 	 * we are not a snapshot, request some inodedep cleanup.
9155 	 * Limiting the number of dirrem structures will also limit
9156 	 * the number of freefile and freeblks structures.
9157 	 */
9158 	ACQUIRE_LOCK(ump);
9159 	if (!IS_SNAPSHOT(ip) && softdep_excess_items(ump, D_DIRREM))
9160 		schedule_cleanup(UFSTOVFS(ump));
9161 	else
9162 		FREE_LOCK(ump);
9163 	dirrem = malloc(sizeof(struct dirrem), M_DIRREM, M_SOFTDEP_FLAGS |
9164 	    M_ZERO);
9165 	workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount);
9166 	LIST_INIT(&dirrem->dm_jremrefhd);
9167 	LIST_INIT(&dirrem->dm_jwork);
9168 	dirrem->dm_state = isrmdir ? RMDIR : 0;
9169 	dirrem->dm_oldinum = ip->i_number;
9170 	*prevdirremp = NULL;
9171 	/*
9172 	 * Allocate remove reference structures to track journal write
9173 	 * dependencies.  We will always have one for the link and
9174 	 * when doing directories we will always have one more for dot.
9175 	 * When renaming a directory we skip the dotdot link change so
9176 	 * this is not needed.
9177 	 */
9178 	jremref = dotremref = dotdotremref = NULL;
9179 	if (DOINGSUJ(dvp)) {
9180 		if (isrmdir) {
9181 			jremref = newjremref(dirrem, dp, ip, dp->i_offset,
9182 			    ip->i_effnlink + 2);
9183 			dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET,
9184 			    ip->i_effnlink + 1);
9185 			dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET,
9186 			    dp->i_effnlink + 1);
9187 			dotdotremref->jr_state |= MKDIR_PARENT;
9188 		} else
9189 			jremref = newjremref(dirrem, dp, ip, dp->i_offset,
9190 			    ip->i_effnlink + 1);
9191 	}
9192 	ACQUIRE_LOCK(ump);
9193 	lbn = lblkno(ump->um_fs, dp->i_offset);
9194 	offset = blkoff(ump->um_fs, dp->i_offset);
9195 	pagedep_lookup(UFSTOVFS(ump), bp, dp->i_number, lbn, DEPALLOC,
9196 	    &pagedep);
9197 	dirrem->dm_pagedep = pagedep;
9198 	dirrem->dm_offset = offset;
9199 	/*
9200 	 * If we're renaming a .. link to a new directory, cancel any
9201 	 * existing MKDIR_PARENT mkdir.  If it has already been canceled
9202 	 * the jremref is preserved for any potential diradd in this
9203 	 * location.  This can not coincide with a rmdir.
9204 	 */
9205 	if (dp->i_offset == DOTDOT_OFFSET) {
9206 		if (isrmdir)
9207 			panic("newdirrem: .. directory change during remove?");
9208 		jremref = cancel_mkdir_dotdot(dp, dirrem, jremref);
9209 	}
9210 	/*
9211 	 * If we're removing a directory search for the .. dependency now and
9212 	 * cancel it.  Any pending journal work will be added to the dirrem
9213 	 * to be completed when the workitem remove completes.
9214 	 */
9215 	if (isrmdir)
9216 		dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref);
9217 	/*
9218 	 * Check for a diradd dependency for the same directory entry.
9219 	 * If present, then both dependencies become obsolete and can
9220 	 * be de-allocated.
9221 	 */
9222 	dap = diradd_lookup(pagedep, offset);
9223 	if (dap == NULL) {
9224 		/*
9225 		 * Link the jremref structures into the dirrem so they are
9226 		 * written prior to the pagedep.
9227 		 */
9228 		if (jremref)
9229 			dirrem_journal(dirrem, jremref, dotremref,
9230 			    dotdotremref);
9231 		return (dirrem);
9232 	}
9233 	/*
9234 	 * Must be ATTACHED at this point.
9235 	 */
9236 	if ((dap->da_state & ATTACHED) == 0)
9237 		panic("newdirrem: not ATTACHED");
9238 	if (dap->da_newinum != ip->i_number)
9239 		panic("newdirrem: inum %ju should be %ju",
9240 		    (uintmax_t)ip->i_number, (uintmax_t)dap->da_newinum);
9241 	/*
9242 	 * If we are deleting a changed name that never made it to disk,
9243 	 * then return the dirrem describing the previous inode (which
9244 	 * represents the inode currently referenced from this entry on disk).
9245 	 */
9246 	if ((dap->da_state & DIRCHG) != 0) {
9247 		*prevdirremp = dap->da_previous;
9248 		dap->da_state &= ~DIRCHG;
9249 		dap->da_pagedep = pagedep;
9250 	}
9251 	/*
9252 	 * We are deleting an entry that never made it to disk.
9253 	 * Mark it COMPLETE so we can delete its inode immediately.
9254 	 */
9255 	dirrem->dm_state |= COMPLETE;
9256 	cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref);
9257 #ifdef SUJ_DEBUG
9258 	if (isrmdir == 0) {
9259 		struct worklist *wk;
9260 
9261 		LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
9262 			if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT))
9263 				panic("bad wk %p (0x%X)\n", wk, wk->wk_state);
9264 	}
9265 #endif
9266 
9267 	return (dirrem);
9268 }
9269 
9270 /*
9271  * Directory entry change dependencies.
9272  *
9273  * Changing an existing directory entry requires that an add operation
9274  * be completed first followed by a deletion. The semantics for the addition
9275  * are identical to the description of adding a new entry above except
9276  * that the rollback is to the old inode number rather than zero. Once
9277  * the addition dependency is completed, the removal is done as described
9278  * in the removal routine above.
9279  */
9280 
9281 /*
9282  * This routine should be called immediately after changing
9283  * a directory entry.  The inode's link count should not be
9284  * decremented by the calling procedure -- the soft updates
9285  * code will perform this task when it is safe.
9286  */
9287 void
9288 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
9289 	struct buf *bp;		/* buffer containing directory block */
9290 	struct inode *dp;	/* inode for the directory being modified */
9291 	struct inode *ip;	/* inode for directory entry being removed */
9292 	ino_t newinum;		/* new inode number for changed entry */
9293 	int isrmdir;		/* indicates if doing RMDIR */
9294 {
9295 	int offset;
9296 	struct diradd *dap = NULL;
9297 	struct dirrem *dirrem, *prevdirrem;
9298 	struct pagedep *pagedep;
9299 	struct inodedep *inodedep;
9300 	struct jaddref *jaddref;
9301 	struct mount *mp;
9302 	struct ufsmount *ump;
9303 
9304 	mp = ITOVFS(dp);
9305 	ump = VFSTOUFS(mp);
9306 	offset = blkoff(ump->um_fs, dp->i_offset);
9307 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
9308 	   ("softdep_setup_directory_change called on non-softdep filesystem"));
9309 
9310 	/*
9311 	 * Whiteouts do not need diradd dependencies.
9312 	 */
9313 	if (newinum != UFS_WINO) {
9314 		dap = malloc(sizeof(struct diradd),
9315 		    M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO);
9316 		workitem_alloc(&dap->da_list, D_DIRADD, mp);
9317 		dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
9318 		dap->da_offset = offset;
9319 		dap->da_newinum = newinum;
9320 		LIST_INIT(&dap->da_jwork);
9321 	}
9322 
9323 	/*
9324 	 * Allocate a new dirrem and ACQUIRE_LOCK.
9325 	 */
9326 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
9327 	pagedep = dirrem->dm_pagedep;
9328 	/*
9329 	 * The possible values for isrmdir:
9330 	 *	0 - non-directory file rename
9331 	 *	1 - directory rename within same directory
9332 	 *   inum - directory rename to new directory of given inode number
9333 	 * When renaming to a new directory, we are both deleting and
9334 	 * creating a new directory entry, so the link count on the new
9335 	 * directory should not change. Thus we do not need the followup
9336 	 * dirrem which is usually done in handle_workitem_remove. We set
9337 	 * the DIRCHG flag to tell handle_workitem_remove to skip the
9338 	 * followup dirrem.
9339 	 */
9340 	if (isrmdir > 1)
9341 		dirrem->dm_state |= DIRCHG;
9342 
9343 	/*
9344 	 * Whiteouts have no additional dependencies,
9345 	 * so just put the dirrem on the correct list.
9346 	 */
9347 	if (newinum == UFS_WINO) {
9348 		if ((dirrem->dm_state & COMPLETE) == 0) {
9349 			LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
9350 			    dm_next);
9351 		} else {
9352 			dirrem->dm_dirinum = pagedep->pd_ino;
9353 			if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9354 				add_to_worklist(&dirrem->dm_list, 0);
9355 		}
9356 		FREE_LOCK(ump);
9357 		return;
9358 	}
9359 	/*
9360 	 * Add the dirrem to the inodedep's pending remove list for quick
9361 	 * discovery later.  A valid nlinkdelta ensures that this lookup
9362 	 * will not fail.
9363 	 */
9364 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
9365 		panic("softdep_setup_directory_change: Lost inodedep.");
9366 	dirrem->dm_state |= ONDEPLIST;
9367 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9368 
9369 	/*
9370 	 * If the COMPLETE flag is clear, then there were no active
9371 	 * entries and we want to roll back to the previous inode until
9372 	 * the new inode is committed to disk. If the COMPLETE flag is
9373 	 * set, then we have deleted an entry that never made it to disk.
9374 	 * If the entry we deleted resulted from a name change, then the old
9375 	 * inode reference still resides on disk. Any rollback that we do
9376 	 * needs to be to that old inode (returned to us in prevdirrem). If
9377 	 * the entry we deleted resulted from a create, then there is
9378 	 * no entry on the disk, so we want to roll back to zero rather
9379 	 * than the uncommitted inode. In either of the COMPLETE cases we
9380 	 * want to immediately free the unwritten and unreferenced inode.
9381 	 */
9382 	if ((dirrem->dm_state & COMPLETE) == 0) {
9383 		dap->da_previous = dirrem;
9384 	} else {
9385 		if (prevdirrem != NULL) {
9386 			dap->da_previous = prevdirrem;
9387 		} else {
9388 			dap->da_state &= ~DIRCHG;
9389 			dap->da_pagedep = pagedep;
9390 		}
9391 		dirrem->dm_dirinum = pagedep->pd_ino;
9392 		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9393 			add_to_worklist(&dirrem->dm_list, 0);
9394 	}
9395 	/*
9396 	 * Lookup the jaddref for this journal entry.  We must finish
9397 	 * initializing it and make the diradd write dependent on it.
9398 	 * If we're not journaling, put it on the id_bufwait list if the
9399 	 * inode is not yet written. If it is written, do the post-inode
9400 	 * write processing to put it on the id_pendinghd list.
9401 	 */
9402 	inodedep_lookup(mp, newinum, DEPALLOC, &inodedep);
9403 	if (MOUNTEDSUJ(mp)) {
9404 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
9405 		    inoreflst);
9406 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
9407 		    ("softdep_setup_directory_change: bad jaddref %p",
9408 		    jaddref));
9409 		jaddref->ja_diroff = dp->i_offset;
9410 		jaddref->ja_diradd = dap;
9411 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
9412 		    dap, da_pdlist);
9413 		add_to_journal(&jaddref->ja_list);
9414 	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
9415 		dap->da_state |= COMPLETE;
9416 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
9417 		WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
9418 	} else {
9419 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
9420 		    dap, da_pdlist);
9421 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
9422 	}
9423 	/*
9424 	 * If we're making a new name for a directory that has not been
9425 	 * committed when need to move the dot and dotdot references to
9426 	 * this new name.
9427 	 */
9428 	if (inodedep->id_mkdiradd && dp->i_offset != DOTDOT_OFFSET)
9429 		merge_diradd(inodedep, dap);
9430 	FREE_LOCK(ump);
9431 }
9432 
9433 /*
9434  * Called whenever the link count on an inode is changed.
9435  * It creates an inode dependency so that the new reference(s)
9436  * to the inode cannot be committed to disk until the updated
9437  * inode has been written.
9438  */
9439 void
9440 softdep_change_linkcnt(ip)
9441 	struct inode *ip;	/* the inode with the increased link count */
9442 {
9443 	struct inodedep *inodedep;
9444 	struct ufsmount *ump;
9445 
9446 	ump = ITOUMP(ip);
9447 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
9448 	    ("softdep_change_linkcnt called on non-softdep filesystem"));
9449 	ACQUIRE_LOCK(ump);
9450 	inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep);
9451 	if (ip->i_nlink < ip->i_effnlink)
9452 		panic("softdep_change_linkcnt: bad delta");
9453 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9454 	FREE_LOCK(ump);
9455 }
9456 
9457 /*
9458  * Attach a sbdep dependency to the superblock buf so that we can keep
9459  * track of the head of the linked list of referenced but unlinked inodes.
9460  */
9461 void
9462 softdep_setup_sbupdate(ump, fs, bp)
9463 	struct ufsmount *ump;
9464 	struct fs *fs;
9465 	struct buf *bp;
9466 {
9467 	struct sbdep *sbdep;
9468 	struct worklist *wk;
9469 
9470 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
9471 	    ("softdep_setup_sbupdate called on non-softdep filesystem"));
9472 	LIST_FOREACH(wk, &bp->b_dep, wk_list)
9473 		if (wk->wk_type == D_SBDEP)
9474 			break;
9475 	if (wk != NULL)
9476 		return;
9477 	sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS);
9478 	workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump));
9479 	sbdep->sb_fs = fs;
9480 	sbdep->sb_ump = ump;
9481 	ACQUIRE_LOCK(ump);
9482 	WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list);
9483 	FREE_LOCK(ump);
9484 }
9485 
9486 /*
9487  * Return the first unlinked inodedep which is ready to be the head of the
9488  * list.  The inodedep and all those after it must have valid next pointers.
9489  */
9490 static struct inodedep *
9491 first_unlinked_inodedep(ump)
9492 	struct ufsmount *ump;
9493 {
9494 	struct inodedep *inodedep;
9495 	struct inodedep *idp;
9496 
9497 	LOCK_OWNED(ump);
9498 	for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst);
9499 	    inodedep; inodedep = idp) {
9500 		if ((inodedep->id_state & UNLINKNEXT) == 0)
9501 			return (NULL);
9502 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9503 		if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0)
9504 			break;
9505 		if ((inodedep->id_state & UNLINKPREV) == 0)
9506 			break;
9507 	}
9508 	return (inodedep);
9509 }
9510 
9511 /*
9512  * Set the sujfree unlinked head pointer prior to writing a superblock.
9513  */
9514 static void
9515 initiate_write_sbdep(sbdep)
9516 	struct sbdep *sbdep;
9517 {
9518 	struct inodedep *inodedep;
9519 	struct fs *bpfs;
9520 	struct fs *fs;
9521 
9522 	bpfs = sbdep->sb_fs;
9523 	fs = sbdep->sb_ump->um_fs;
9524 	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9525 	if (inodedep) {
9526 		fs->fs_sujfree = inodedep->id_ino;
9527 		inodedep->id_state |= UNLINKPREV;
9528 	} else
9529 		fs->fs_sujfree = 0;
9530 	bpfs->fs_sujfree = fs->fs_sujfree;
9531 }
9532 
9533 /*
9534  * After a superblock is written determine whether it must be written again
9535  * due to a changing unlinked list head.
9536  */
9537 static int
9538 handle_written_sbdep(sbdep, bp)
9539 	struct sbdep *sbdep;
9540 	struct buf *bp;
9541 {
9542 	struct inodedep *inodedep;
9543 	struct fs *fs;
9544 
9545 	LOCK_OWNED(sbdep->sb_ump);
9546 	fs = sbdep->sb_fs;
9547 	/*
9548 	 * If the superblock doesn't match the in-memory list start over.
9549 	 */
9550 	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9551 	if ((inodedep && fs->fs_sujfree != inodedep->id_ino) ||
9552 	    (inodedep == NULL && fs->fs_sujfree != 0)) {
9553 		bdirty(bp);
9554 		return (1);
9555 	}
9556 	WORKITEM_FREE(sbdep, D_SBDEP);
9557 	if (fs->fs_sujfree == 0)
9558 		return (0);
9559 	/*
9560 	 * Now that we have a record of this inode in stable store allow it
9561 	 * to be written to free up pending work.  Inodes may see a lot of
9562 	 * write activity after they are unlinked which we must not hold up.
9563 	 */
9564 	for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) {
9565 		if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS)
9566 			panic("handle_written_sbdep: Bad inodedep %p (0x%X)",
9567 			    inodedep, inodedep->id_state);
9568 		if (inodedep->id_state & UNLINKONLIST)
9569 			break;
9570 		inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST;
9571 	}
9572 
9573 	return (0);
9574 }
9575 
9576 /*
9577  * Mark an inodedep as unlinked and insert it into the in-memory unlinked list.
9578  */
9579 static void
9580 unlinked_inodedep(mp, inodedep)
9581 	struct mount *mp;
9582 	struct inodedep *inodedep;
9583 {
9584 	struct ufsmount *ump;
9585 
9586 	ump = VFSTOUFS(mp);
9587 	LOCK_OWNED(ump);
9588 	if (MOUNTEDSUJ(mp) == 0)
9589 		return;
9590 	ump->um_fs->fs_fmod = 1;
9591 	if (inodedep->id_state & UNLINKED)
9592 		panic("unlinked_inodedep: %p already unlinked\n", inodedep);
9593 	inodedep->id_state |= UNLINKED;
9594 	TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked);
9595 }
9596 
9597 /*
9598  * Remove an inodedep from the unlinked inodedep list.  This may require
9599  * disk writes if the inode has made it that far.
9600  */
9601 static void
9602 clear_unlinked_inodedep(inodedep)
9603 	struct inodedep *inodedep;
9604 {
9605 	struct ufsmount *ump;
9606 	struct inodedep *idp;
9607 	struct inodedep *idn;
9608 	struct fs *fs;
9609 	struct buf *bp;
9610 	ino_t ino;
9611 	ino_t nino;
9612 	ino_t pino;
9613 	int error;
9614 
9615 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
9616 	fs = ump->um_fs;
9617 	ino = inodedep->id_ino;
9618 	error = 0;
9619 	for (;;) {
9620 		LOCK_OWNED(ump);
9621 		KASSERT((inodedep->id_state & UNLINKED) != 0,
9622 		    ("clear_unlinked_inodedep: inodedep %p not unlinked",
9623 		    inodedep));
9624 		/*
9625 		 * If nothing has yet been written simply remove us from
9626 		 * the in memory list and return.  This is the most common
9627 		 * case where handle_workitem_remove() loses the final
9628 		 * reference.
9629 		 */
9630 		if ((inodedep->id_state & UNLINKLINKS) == 0)
9631 			break;
9632 		/*
9633 		 * If we have a NEXT pointer and no PREV pointer we can simply
9634 		 * clear NEXT's PREV and remove ourselves from the list.  Be
9635 		 * careful not to clear PREV if the superblock points at
9636 		 * next as well.
9637 		 */
9638 		idn = TAILQ_NEXT(inodedep, id_unlinked);
9639 		if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) {
9640 			if (idn && fs->fs_sujfree != idn->id_ino)
9641 				idn->id_state &= ~UNLINKPREV;
9642 			break;
9643 		}
9644 		/*
9645 		 * Here we have an inodedep which is actually linked into
9646 		 * the list.  We must remove it by forcing a write to the
9647 		 * link before us, whether it be the superblock or an inode.
9648 		 * Unfortunately the list may change while we're waiting
9649 		 * on the buf lock for either resource so we must loop until
9650 		 * we lock the right one.  If both the superblock and an
9651 		 * inode point to this inode we must clear the inode first
9652 		 * followed by the superblock.
9653 		 */
9654 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9655 		pino = 0;
9656 		if (idp && (idp->id_state & UNLINKNEXT))
9657 			pino = idp->id_ino;
9658 		FREE_LOCK(ump);
9659 		if (pino == 0) {
9660 			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
9661 			    (int)fs->fs_sbsize, 0, 0, 0);
9662 		} else {
9663 			error = bread(ump->um_devvp,
9664 			    fsbtodb(fs, ino_to_fsba(fs, pino)),
9665 			    (int)fs->fs_bsize, NOCRED, &bp);
9666 			if (error)
9667 				brelse(bp);
9668 		}
9669 		ACQUIRE_LOCK(ump);
9670 		if (error)
9671 			break;
9672 		/* If the list has changed restart the loop. */
9673 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9674 		nino = 0;
9675 		if (idp && (idp->id_state & UNLINKNEXT))
9676 			nino = idp->id_ino;
9677 		if (nino != pino ||
9678 		    (inodedep->id_state & UNLINKPREV) != UNLINKPREV) {
9679 			FREE_LOCK(ump);
9680 			brelse(bp);
9681 			ACQUIRE_LOCK(ump);
9682 			continue;
9683 		}
9684 		nino = 0;
9685 		idn = TAILQ_NEXT(inodedep, id_unlinked);
9686 		if (idn)
9687 			nino = idn->id_ino;
9688 		/*
9689 		 * Remove us from the in memory list.  After this we cannot
9690 		 * access the inodedep.
9691 		 */
9692 		KASSERT((inodedep->id_state & UNLINKED) != 0,
9693 		    ("clear_unlinked_inodedep: inodedep %p not unlinked",
9694 		    inodedep));
9695 		inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
9696 		TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
9697 		FREE_LOCK(ump);
9698 		/*
9699 		 * The predecessor's next pointer is manually updated here
9700 		 * so that the NEXT flag is never cleared for an element
9701 		 * that is in the list.
9702 		 */
9703 		if (pino == 0) {
9704 			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
9705 			ffs_oldfscompat_write((struct fs *)bp->b_data, ump);
9706 			softdep_setup_sbupdate(ump, (struct fs *)bp->b_data,
9707 			    bp);
9708 		} else if (fs->fs_magic == FS_UFS1_MAGIC)
9709 			((struct ufs1_dinode *)bp->b_data +
9710 			    ino_to_fsbo(fs, pino))->di_freelink = nino;
9711 		else
9712 			((struct ufs2_dinode *)bp->b_data +
9713 			    ino_to_fsbo(fs, pino))->di_freelink = nino;
9714 		/*
9715 		 * If the bwrite fails we have no recourse to recover.  The
9716 		 * filesystem is corrupted already.
9717 		 */
9718 		bwrite(bp);
9719 		ACQUIRE_LOCK(ump);
9720 		/*
9721 		 * If the superblock pointer still needs to be cleared force
9722 		 * a write here.
9723 		 */
9724 		if (fs->fs_sujfree == ino) {
9725 			FREE_LOCK(ump);
9726 			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
9727 			    (int)fs->fs_sbsize, 0, 0, 0);
9728 			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
9729 			ffs_oldfscompat_write((struct fs *)bp->b_data, ump);
9730 			softdep_setup_sbupdate(ump, (struct fs *)bp->b_data,
9731 			    bp);
9732 			bwrite(bp);
9733 			ACQUIRE_LOCK(ump);
9734 		}
9735 
9736 		if (fs->fs_sujfree != ino)
9737 			return;
9738 		panic("clear_unlinked_inodedep: Failed to clear free head");
9739 	}
9740 	if (inodedep->id_ino == fs->fs_sujfree)
9741 		panic("clear_unlinked_inodedep: Freeing head of free list");
9742 	inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
9743 	TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
9744 	return;
9745 }
9746 
9747 /*
9748  * This workitem decrements the inode's link count.
9749  * If the link count reaches zero, the file is removed.
9750  */
9751 static int
9752 handle_workitem_remove(dirrem, flags)
9753 	struct dirrem *dirrem;
9754 	int flags;
9755 {
9756 	struct inodedep *inodedep;
9757 	struct workhead dotdotwk;
9758 	struct worklist *wk;
9759 	struct ufsmount *ump;
9760 	struct mount *mp;
9761 	struct vnode *vp;
9762 	struct inode *ip;
9763 	ino_t oldinum;
9764 
9765 	if (dirrem->dm_state & ONWORKLIST)
9766 		panic("handle_workitem_remove: dirrem %p still on worklist",
9767 		    dirrem);
9768 	oldinum = dirrem->dm_oldinum;
9769 	mp = dirrem->dm_list.wk_mp;
9770 	ump = VFSTOUFS(mp);
9771 	flags |= LK_EXCLUSIVE;
9772 	if (ffs_vgetf(mp, oldinum, flags, &vp, FFSV_FORCEINSMQ) != 0)
9773 		return (EBUSY);
9774 	ip = VTOI(vp);
9775 	ACQUIRE_LOCK(ump);
9776 	if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0)
9777 		panic("handle_workitem_remove: lost inodedep");
9778 	if (dirrem->dm_state & ONDEPLIST)
9779 		LIST_REMOVE(dirrem, dm_inonext);
9780 	KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
9781 	    ("handle_workitem_remove:  Journal entries not written."));
9782 
9783 	/*
9784 	 * Move all dependencies waiting on the remove to complete
9785 	 * from the dirrem to the inode inowait list to be completed
9786 	 * after the inode has been updated and written to disk.  Any
9787 	 * marked MKDIR_PARENT are saved to be completed when the .. ref
9788 	 * is removed.
9789 	 */
9790 	LIST_INIT(&dotdotwk);
9791 	while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) {
9792 		WORKLIST_REMOVE(wk);
9793 		if (wk->wk_state & MKDIR_PARENT) {
9794 			wk->wk_state &= ~MKDIR_PARENT;
9795 			WORKLIST_INSERT(&dotdotwk, wk);
9796 			continue;
9797 		}
9798 		WORKLIST_INSERT(&inodedep->id_inowait, wk);
9799 	}
9800 	LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list);
9801 	/*
9802 	 * Normal file deletion.
9803 	 */
9804 	if ((dirrem->dm_state & RMDIR) == 0) {
9805 		ip->i_nlink--;
9806 		DIP_SET(ip, i_nlink, ip->i_nlink);
9807 		ip->i_flag |= IN_CHANGE;
9808 		if (ip->i_nlink < ip->i_effnlink)
9809 			panic("handle_workitem_remove: bad file delta");
9810 		if (ip->i_nlink == 0)
9811 			unlinked_inodedep(mp, inodedep);
9812 		inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9813 		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
9814 		    ("handle_workitem_remove: worklist not empty. %s",
9815 		    TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type)));
9816 		WORKITEM_FREE(dirrem, D_DIRREM);
9817 		FREE_LOCK(ump);
9818 		goto out;
9819 	}
9820 	/*
9821 	 * Directory deletion. Decrement reference count for both the
9822 	 * just deleted parent directory entry and the reference for ".".
9823 	 * Arrange to have the reference count on the parent decremented
9824 	 * to account for the loss of "..".
9825 	 */
9826 	ip->i_nlink -= 2;
9827 	DIP_SET(ip, i_nlink, ip->i_nlink);
9828 	ip->i_flag |= IN_CHANGE;
9829 	if (ip->i_nlink < ip->i_effnlink)
9830 		panic("handle_workitem_remove: bad dir delta");
9831 	if (ip->i_nlink == 0)
9832 		unlinked_inodedep(mp, inodedep);
9833 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9834 	/*
9835 	 * Rename a directory to a new parent. Since, we are both deleting
9836 	 * and creating a new directory entry, the link count on the new
9837 	 * directory should not change. Thus we skip the followup dirrem.
9838 	 */
9839 	if (dirrem->dm_state & DIRCHG) {
9840 		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
9841 		    ("handle_workitem_remove: DIRCHG and worklist not empty."));
9842 		WORKITEM_FREE(dirrem, D_DIRREM);
9843 		FREE_LOCK(ump);
9844 		goto out;
9845 	}
9846 	dirrem->dm_state = ONDEPLIST;
9847 	dirrem->dm_oldinum = dirrem->dm_dirinum;
9848 	/*
9849 	 * Place the dirrem on the parent's diremhd list.
9850 	 */
9851 	if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0)
9852 		panic("handle_workitem_remove: lost dir inodedep");
9853 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9854 	/*
9855 	 * If the allocated inode has never been written to disk, then
9856 	 * the on-disk inode is zero'ed and we can remove the file
9857 	 * immediately.  When journaling if the inode has been marked
9858 	 * unlinked and not DEPCOMPLETE we know it can never be written.
9859 	 */
9860 	inodedep_lookup(mp, oldinum, 0, &inodedep);
9861 	if (inodedep == NULL ||
9862 	    (inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED ||
9863 	    check_inode_unwritten(inodedep)) {
9864 		FREE_LOCK(ump);
9865 		vput(vp);
9866 		return handle_workitem_remove(dirrem, flags);
9867 	}
9868 	WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
9869 	FREE_LOCK(ump);
9870 	ip->i_flag |= IN_CHANGE;
9871 out:
9872 	ffs_update(vp, 0);
9873 	vput(vp);
9874 	return (0);
9875 }
9876 
9877 /*
9878  * Inode de-allocation dependencies.
9879  *
9880  * When an inode's link count is reduced to zero, it can be de-allocated. We
9881  * found it convenient to postpone de-allocation until after the inode is
9882  * written to disk with its new link count (zero).  At this point, all of the
9883  * on-disk inode's block pointers are nullified and, with careful dependency
9884  * list ordering, all dependencies related to the inode will be satisfied and
9885  * the corresponding dependency structures de-allocated.  So, if/when the
9886  * inode is reused, there will be no mixing of old dependencies with new
9887  * ones.  This artificial dependency is set up by the block de-allocation
9888  * procedure above (softdep_setup_freeblocks) and completed by the
9889  * following procedure.
9890  */
9891 static void
9892 handle_workitem_freefile(freefile)
9893 	struct freefile *freefile;
9894 {
9895 	struct workhead wkhd;
9896 	struct fs *fs;
9897 	struct inodedep *idp;
9898 	struct ufsmount *ump;
9899 	int error;
9900 
9901 	ump = VFSTOUFS(freefile->fx_list.wk_mp);
9902 	fs = ump->um_fs;
9903 #ifdef DEBUG
9904 	ACQUIRE_LOCK(ump);
9905 	error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp);
9906 	FREE_LOCK(ump);
9907 	if (error)
9908 		panic("handle_workitem_freefile: inodedep %p survived", idp);
9909 #endif
9910 	UFS_LOCK(ump);
9911 	fs->fs_pendinginodes -= 1;
9912 	UFS_UNLOCK(ump);
9913 	LIST_INIT(&wkhd);
9914 	LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list);
9915 	if ((error = ffs_freefile(ump, fs, freefile->fx_devvp,
9916 	    freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0)
9917 		softdep_error("handle_workitem_freefile", error);
9918 	ACQUIRE_LOCK(ump);
9919 	WORKITEM_FREE(freefile, D_FREEFILE);
9920 	FREE_LOCK(ump);
9921 }
9922 
9923 
9924 /*
9925  * Helper function which unlinks marker element from work list and returns
9926  * the next element on the list.
9927  */
9928 static __inline struct worklist *
9929 markernext(struct worklist *marker)
9930 {
9931 	struct worklist *next;
9932 
9933 	next = LIST_NEXT(marker, wk_list);
9934 	LIST_REMOVE(marker, wk_list);
9935 	return next;
9936 }
9937 
9938 /*
9939  * Disk writes.
9940  *
9941  * The dependency structures constructed above are most actively used when file
9942  * system blocks are written to disk.  No constraints are placed on when a
9943  * block can be written, but unsatisfied update dependencies are made safe by
9944  * modifying (or replacing) the source memory for the duration of the disk
9945  * write.  When the disk write completes, the memory block is again brought
9946  * up-to-date.
9947  *
9948  * In-core inode structure reclamation.
9949  *
9950  * Because there are a finite number of "in-core" inode structures, they are
9951  * reused regularly.  By transferring all inode-related dependencies to the
9952  * in-memory inode block and indexing them separately (via "inodedep"s), we
9953  * can allow "in-core" inode structures to be reused at any time and avoid
9954  * any increase in contention.
9955  *
9956  * Called just before entering the device driver to initiate a new disk I/O.
9957  * The buffer must be locked, thus, no I/O completion operations can occur
9958  * while we are manipulating its associated dependencies.
9959  */
9960 static void
9961 softdep_disk_io_initiation(bp)
9962 	struct buf *bp;		/* structure describing disk write to occur */
9963 {
9964 	struct worklist *wk;
9965 	struct worklist marker;
9966 	struct inodedep *inodedep;
9967 	struct freeblks *freeblks;
9968 	struct jblkdep *jblkdep;
9969 	struct newblk *newblk;
9970 	struct ufsmount *ump;
9971 
9972 	/*
9973 	 * We only care about write operations. There should never
9974 	 * be dependencies for reads.
9975 	 */
9976 	if (bp->b_iocmd != BIO_WRITE)
9977 		panic("softdep_disk_io_initiation: not write");
9978 
9979 	if (bp->b_vflags & BV_BKGRDINPROG)
9980 		panic("softdep_disk_io_initiation: Writing buffer with "
9981 		    "background write in progress: %p", bp);
9982 
9983 	ump = softdep_bp_to_mp(bp);
9984 	if (ump == NULL)
9985 		return;
9986 
9987 	marker.wk_type = D_LAST + 1;	/* Not a normal workitem */
9988 	PHOLD(curproc);			/* Don't swap out kernel stack */
9989 	ACQUIRE_LOCK(ump);
9990 	/*
9991 	 * Do any necessary pre-I/O processing.
9992 	 */
9993 	for (wk = LIST_FIRST(&bp->b_dep); wk != NULL;
9994 	     wk = markernext(&marker)) {
9995 		LIST_INSERT_AFTER(wk, &marker, wk_list);
9996 		switch (wk->wk_type) {
9997 
9998 		case D_PAGEDEP:
9999 			initiate_write_filepage(WK_PAGEDEP(wk), bp);
10000 			continue;
10001 
10002 		case D_INODEDEP:
10003 			inodedep = WK_INODEDEP(wk);
10004 			if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC)
10005 				initiate_write_inodeblock_ufs1(inodedep, bp);
10006 			else
10007 				initiate_write_inodeblock_ufs2(inodedep, bp);
10008 			continue;
10009 
10010 		case D_INDIRDEP:
10011 			initiate_write_indirdep(WK_INDIRDEP(wk), bp);
10012 			continue;
10013 
10014 		case D_BMSAFEMAP:
10015 			initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp);
10016 			continue;
10017 
10018 		case D_JSEG:
10019 			WK_JSEG(wk)->js_buf = NULL;
10020 			continue;
10021 
10022 		case D_FREEBLKS:
10023 			freeblks = WK_FREEBLKS(wk);
10024 			jblkdep = LIST_FIRST(&freeblks->fb_jblkdephd);
10025 			/*
10026 			 * We have to wait for the freeblks to be journaled
10027 			 * before we can write an inodeblock with updated
10028 			 * pointers.  Be careful to arrange the marker so
10029 			 * we revisit the freeblks if it's not removed by
10030 			 * the first jwait().
10031 			 */
10032 			if (jblkdep != NULL) {
10033 				LIST_REMOVE(&marker, wk_list);
10034 				LIST_INSERT_BEFORE(wk, &marker, wk_list);
10035 				jwait(&jblkdep->jb_list, MNT_WAIT);
10036 			}
10037 			continue;
10038 		case D_ALLOCDIRECT:
10039 		case D_ALLOCINDIR:
10040 			/*
10041 			 * We have to wait for the jnewblk to be journaled
10042 			 * before we can write to a block if the contents
10043 			 * may be confused with an earlier file's indirect
10044 			 * at recovery time.  Handle the marker as described
10045 			 * above.
10046 			 */
10047 			newblk = WK_NEWBLK(wk);
10048 			if (newblk->nb_jnewblk != NULL &&
10049 			    indirblk_lookup(newblk->nb_list.wk_mp,
10050 			    newblk->nb_newblkno)) {
10051 				LIST_REMOVE(&marker, wk_list);
10052 				LIST_INSERT_BEFORE(wk, &marker, wk_list);
10053 				jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
10054 			}
10055 			continue;
10056 
10057 		case D_SBDEP:
10058 			initiate_write_sbdep(WK_SBDEP(wk));
10059 			continue;
10060 
10061 		case D_MKDIR:
10062 		case D_FREEWORK:
10063 		case D_FREEDEP:
10064 		case D_JSEGDEP:
10065 			continue;
10066 
10067 		default:
10068 			panic("handle_disk_io_initiation: Unexpected type %s",
10069 			    TYPENAME(wk->wk_type));
10070 			/* NOTREACHED */
10071 		}
10072 	}
10073 	FREE_LOCK(ump);
10074 	PRELE(curproc);			/* Allow swapout of kernel stack */
10075 }
10076 
10077 /*
10078  * Called from within the procedure above to deal with unsatisfied
10079  * allocation dependencies in a directory. The buffer must be locked,
10080  * thus, no I/O completion operations can occur while we are
10081  * manipulating its associated dependencies.
10082  */
10083 static void
10084 initiate_write_filepage(pagedep, bp)
10085 	struct pagedep *pagedep;
10086 	struct buf *bp;
10087 {
10088 	struct jremref *jremref;
10089 	struct jmvref *jmvref;
10090 	struct dirrem *dirrem;
10091 	struct diradd *dap;
10092 	struct direct *ep;
10093 	int i;
10094 
10095 	if (pagedep->pd_state & IOSTARTED) {
10096 		/*
10097 		 * This can only happen if there is a driver that does not
10098 		 * understand chaining. Here biodone will reissue the call
10099 		 * to strategy for the incomplete buffers.
10100 		 */
10101 		printf("initiate_write_filepage: already started\n");
10102 		return;
10103 	}
10104 	pagedep->pd_state |= IOSTARTED;
10105 	/*
10106 	 * Wait for all journal remove dependencies to hit the disk.
10107 	 * We can not allow any potentially conflicting directory adds
10108 	 * to be visible before removes and rollback is too difficult.
10109 	 * The per-filesystem lock may be dropped and re-acquired, however
10110 	 * we hold the buf locked so the dependency can not go away.
10111 	 */
10112 	LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next)
10113 		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL)
10114 			jwait(&jremref->jr_list, MNT_WAIT);
10115 	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL)
10116 		jwait(&jmvref->jm_list, MNT_WAIT);
10117 	for (i = 0; i < DAHASHSZ; i++) {
10118 		LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
10119 			ep = (struct direct *)
10120 			    ((char *)bp->b_data + dap->da_offset);
10121 			if (ep->d_ino != dap->da_newinum)
10122 				panic("%s: dir inum %ju != new %ju",
10123 				    "initiate_write_filepage",
10124 				    (uintmax_t)ep->d_ino,
10125 				    (uintmax_t)dap->da_newinum);
10126 			if (dap->da_state & DIRCHG)
10127 				ep->d_ino = dap->da_previous->dm_oldinum;
10128 			else
10129 				ep->d_ino = 0;
10130 			dap->da_state &= ~ATTACHED;
10131 			dap->da_state |= UNDONE;
10132 		}
10133 	}
10134 }
10135 
10136 /*
10137  * Version of initiate_write_inodeblock that handles UFS1 dinodes.
10138  * Note that any bug fixes made to this routine must be done in the
10139  * version found below.
10140  *
10141  * Called from within the procedure above to deal with unsatisfied
10142  * allocation dependencies in an inodeblock. The buffer must be
10143  * locked, thus, no I/O completion operations can occur while we
10144  * are manipulating its associated dependencies.
10145  */
10146 static void
10147 initiate_write_inodeblock_ufs1(inodedep, bp)
10148 	struct inodedep *inodedep;
10149 	struct buf *bp;			/* The inode block */
10150 {
10151 	struct allocdirect *adp, *lastadp;
10152 	struct ufs1_dinode *dp;
10153 	struct ufs1_dinode *sip;
10154 	struct inoref *inoref;
10155 	struct ufsmount *ump;
10156 	struct fs *fs;
10157 	ufs_lbn_t i;
10158 #ifdef INVARIANTS
10159 	ufs_lbn_t prevlbn = 0;
10160 #endif
10161 	int deplist;
10162 
10163 	if (inodedep->id_state & IOSTARTED)
10164 		panic("initiate_write_inodeblock_ufs1: already started");
10165 	inodedep->id_state |= IOSTARTED;
10166 	fs = inodedep->id_fs;
10167 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
10168 	LOCK_OWNED(ump);
10169 	dp = (struct ufs1_dinode *)bp->b_data +
10170 	    ino_to_fsbo(fs, inodedep->id_ino);
10171 
10172 	/*
10173 	 * If we're on the unlinked list but have not yet written our
10174 	 * next pointer initialize it here.
10175 	 */
10176 	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
10177 		struct inodedep *inon;
10178 
10179 		inon = TAILQ_NEXT(inodedep, id_unlinked);
10180 		dp->di_freelink = inon ? inon->id_ino : 0;
10181 	}
10182 	/*
10183 	 * If the bitmap is not yet written, then the allocated
10184 	 * inode cannot be written to disk.
10185 	 */
10186 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
10187 		if (inodedep->id_savedino1 != NULL)
10188 			panic("initiate_write_inodeblock_ufs1: I/O underway");
10189 		FREE_LOCK(ump);
10190 		sip = malloc(sizeof(struct ufs1_dinode),
10191 		    M_SAVEDINO, M_SOFTDEP_FLAGS);
10192 		ACQUIRE_LOCK(ump);
10193 		inodedep->id_savedino1 = sip;
10194 		*inodedep->id_savedino1 = *dp;
10195 		bzero((caddr_t)dp, sizeof(struct ufs1_dinode));
10196 		dp->di_gen = inodedep->id_savedino1->di_gen;
10197 		dp->di_freelink = inodedep->id_savedino1->di_freelink;
10198 		return;
10199 	}
10200 	/*
10201 	 * If no dependencies, then there is nothing to roll back.
10202 	 */
10203 	inodedep->id_savedsize = dp->di_size;
10204 	inodedep->id_savedextsize = 0;
10205 	inodedep->id_savednlink = dp->di_nlink;
10206 	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
10207 	    TAILQ_EMPTY(&inodedep->id_inoreflst))
10208 		return;
10209 	/*
10210 	 * Revert the link count to that of the first unwritten journal entry.
10211 	 */
10212 	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
10213 	if (inoref)
10214 		dp->di_nlink = inoref->if_nlink;
10215 	/*
10216 	 * Set the dependencies to busy.
10217 	 */
10218 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10219 	     adp = TAILQ_NEXT(adp, ad_next)) {
10220 #ifdef INVARIANTS
10221 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10222 			panic("softdep_write_inodeblock: lbn order");
10223 		prevlbn = adp->ad_offset;
10224 		if (adp->ad_offset < UFS_NDADDR &&
10225 		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
10226 			panic("%s: direct pointer #%jd mismatch %d != %jd",
10227 			    "softdep_write_inodeblock",
10228 			    (intmax_t)adp->ad_offset,
10229 			    dp->di_db[adp->ad_offset],
10230 			    (intmax_t)adp->ad_newblkno);
10231 		if (adp->ad_offset >= UFS_NDADDR &&
10232 		    dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno)
10233 			panic("%s: indirect pointer #%jd mismatch %d != %jd",
10234 			    "softdep_write_inodeblock",
10235 			    (intmax_t)adp->ad_offset - UFS_NDADDR,
10236 			    dp->di_ib[adp->ad_offset - UFS_NDADDR],
10237 			    (intmax_t)adp->ad_newblkno);
10238 		deplist |= 1 << adp->ad_offset;
10239 		if ((adp->ad_state & ATTACHED) == 0)
10240 			panic("softdep_write_inodeblock: Unknown state 0x%x",
10241 			    adp->ad_state);
10242 #endif /* INVARIANTS */
10243 		adp->ad_state &= ~ATTACHED;
10244 		adp->ad_state |= UNDONE;
10245 	}
10246 	/*
10247 	 * The on-disk inode cannot claim to be any larger than the last
10248 	 * fragment that has been written. Otherwise, the on-disk inode
10249 	 * might have fragments that were not the last block in the file
10250 	 * which would corrupt the filesystem.
10251 	 */
10252 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10253 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10254 		if (adp->ad_offset >= UFS_NDADDR)
10255 			break;
10256 		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
10257 		/* keep going until hitting a rollback to a frag */
10258 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10259 			continue;
10260 		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10261 		for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) {
10262 #ifdef INVARIANTS
10263 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
10264 				panic("softdep_write_inodeblock: lost dep1");
10265 #endif /* INVARIANTS */
10266 			dp->di_db[i] = 0;
10267 		}
10268 		for (i = 0; i < UFS_NIADDR; i++) {
10269 #ifdef INVARIANTS
10270 			if (dp->di_ib[i] != 0 &&
10271 			    (deplist & ((1 << UFS_NDADDR) << i)) == 0)
10272 				panic("softdep_write_inodeblock: lost dep2");
10273 #endif /* INVARIANTS */
10274 			dp->di_ib[i] = 0;
10275 		}
10276 		return;
10277 	}
10278 	/*
10279 	 * If we have zero'ed out the last allocated block of the file,
10280 	 * roll back the size to the last currently allocated block.
10281 	 * We know that this last allocated block is a full-sized as
10282 	 * we already checked for fragments in the loop above.
10283 	 */
10284 	if (lastadp != NULL &&
10285 	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10286 		for (i = lastadp->ad_offset; i >= 0; i--)
10287 			if (dp->di_db[i] != 0)
10288 				break;
10289 		dp->di_size = (i + 1) * fs->fs_bsize;
10290 	}
10291 	/*
10292 	 * The only dependencies are for indirect blocks.
10293 	 *
10294 	 * The file size for indirect block additions is not guaranteed.
10295 	 * Such a guarantee would be non-trivial to achieve. The conventional
10296 	 * synchronous write implementation also does not make this guarantee.
10297 	 * Fsck should catch and fix discrepancies. Arguably, the file size
10298 	 * can be over-estimated without destroying integrity when the file
10299 	 * moves into the indirect blocks (i.e., is large). If we want to
10300 	 * postpone fsck, we are stuck with this argument.
10301 	 */
10302 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
10303 		dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0;
10304 }
10305 
10306 /*
10307  * Version of initiate_write_inodeblock that handles UFS2 dinodes.
10308  * Note that any bug fixes made to this routine must be done in the
10309  * version found above.
10310  *
10311  * Called from within the procedure above to deal with unsatisfied
10312  * allocation dependencies in an inodeblock. The buffer must be
10313  * locked, thus, no I/O completion operations can occur while we
10314  * are manipulating its associated dependencies.
10315  */
10316 static void
10317 initiate_write_inodeblock_ufs2(inodedep, bp)
10318 	struct inodedep *inodedep;
10319 	struct buf *bp;			/* The inode block */
10320 {
10321 	struct allocdirect *adp, *lastadp;
10322 	struct ufs2_dinode *dp;
10323 	struct ufs2_dinode *sip;
10324 	struct inoref *inoref;
10325 	struct ufsmount *ump;
10326 	struct fs *fs;
10327 	ufs_lbn_t i;
10328 #ifdef INVARIANTS
10329 	ufs_lbn_t prevlbn = 0;
10330 #endif
10331 	int deplist;
10332 
10333 	if (inodedep->id_state & IOSTARTED)
10334 		panic("initiate_write_inodeblock_ufs2: already started");
10335 	inodedep->id_state |= IOSTARTED;
10336 	fs = inodedep->id_fs;
10337 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
10338 	LOCK_OWNED(ump);
10339 	dp = (struct ufs2_dinode *)bp->b_data +
10340 	    ino_to_fsbo(fs, inodedep->id_ino);
10341 
10342 	/*
10343 	 * If we're on the unlinked list but have not yet written our
10344 	 * next pointer initialize it here.
10345 	 */
10346 	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
10347 		struct inodedep *inon;
10348 
10349 		inon = TAILQ_NEXT(inodedep, id_unlinked);
10350 		dp->di_freelink = inon ? inon->id_ino : 0;
10351 	}
10352 	/*
10353 	 * If the bitmap is not yet written, then the allocated
10354 	 * inode cannot be written to disk.
10355 	 */
10356 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
10357 		if (inodedep->id_savedino2 != NULL)
10358 			panic("initiate_write_inodeblock_ufs2: I/O underway");
10359 		FREE_LOCK(ump);
10360 		sip = malloc(sizeof(struct ufs2_dinode),
10361 		    M_SAVEDINO, M_SOFTDEP_FLAGS);
10362 		ACQUIRE_LOCK(ump);
10363 		inodedep->id_savedino2 = sip;
10364 		*inodedep->id_savedino2 = *dp;
10365 		bzero((caddr_t)dp, sizeof(struct ufs2_dinode));
10366 		dp->di_gen = inodedep->id_savedino2->di_gen;
10367 		dp->di_freelink = inodedep->id_savedino2->di_freelink;
10368 		return;
10369 	}
10370 	/*
10371 	 * If no dependencies, then there is nothing to roll back.
10372 	 */
10373 	inodedep->id_savedsize = dp->di_size;
10374 	inodedep->id_savedextsize = dp->di_extsize;
10375 	inodedep->id_savednlink = dp->di_nlink;
10376 	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
10377 	    TAILQ_EMPTY(&inodedep->id_extupdt) &&
10378 	    TAILQ_EMPTY(&inodedep->id_inoreflst))
10379 		return;
10380 	/*
10381 	 * Revert the link count to that of the first unwritten journal entry.
10382 	 */
10383 	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
10384 	if (inoref)
10385 		dp->di_nlink = inoref->if_nlink;
10386 
10387 	/*
10388 	 * Set the ext data dependencies to busy.
10389 	 */
10390 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
10391 	     adp = TAILQ_NEXT(adp, ad_next)) {
10392 #ifdef INVARIANTS
10393 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10394 			panic("softdep_write_inodeblock: lbn order");
10395 		prevlbn = adp->ad_offset;
10396 		if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno)
10397 			panic("%s: direct pointer #%jd mismatch %jd != %jd",
10398 			    "softdep_write_inodeblock",
10399 			    (intmax_t)adp->ad_offset,
10400 			    (intmax_t)dp->di_extb[adp->ad_offset],
10401 			    (intmax_t)adp->ad_newblkno);
10402 		deplist |= 1 << adp->ad_offset;
10403 		if ((adp->ad_state & ATTACHED) == 0)
10404 			panic("softdep_write_inodeblock: Unknown state 0x%x",
10405 			    adp->ad_state);
10406 #endif /* INVARIANTS */
10407 		adp->ad_state &= ~ATTACHED;
10408 		adp->ad_state |= UNDONE;
10409 	}
10410 	/*
10411 	 * The on-disk inode cannot claim to be any larger than the last
10412 	 * fragment that has been written. Otherwise, the on-disk inode
10413 	 * might have fragments that were not the last block in the ext
10414 	 * data which would corrupt the filesystem.
10415 	 */
10416 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
10417 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10418 		dp->di_extb[adp->ad_offset] = adp->ad_oldblkno;
10419 		/* keep going until hitting a rollback to a frag */
10420 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10421 			continue;
10422 		dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10423 		for (i = adp->ad_offset + 1; i < UFS_NXADDR; i++) {
10424 #ifdef INVARIANTS
10425 			if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0)
10426 				panic("softdep_write_inodeblock: lost dep1");
10427 #endif /* INVARIANTS */
10428 			dp->di_extb[i] = 0;
10429 		}
10430 		lastadp = NULL;
10431 		break;
10432 	}
10433 	/*
10434 	 * If we have zero'ed out the last allocated block of the ext
10435 	 * data, roll back the size to the last currently allocated block.
10436 	 * We know that this last allocated block is a full-sized as
10437 	 * we already checked for fragments in the loop above.
10438 	 */
10439 	if (lastadp != NULL &&
10440 	    dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10441 		for (i = lastadp->ad_offset; i >= 0; i--)
10442 			if (dp->di_extb[i] != 0)
10443 				break;
10444 		dp->di_extsize = (i + 1) * fs->fs_bsize;
10445 	}
10446 	/*
10447 	 * Set the file data dependencies to busy.
10448 	 */
10449 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10450 	     adp = TAILQ_NEXT(adp, ad_next)) {
10451 #ifdef INVARIANTS
10452 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10453 			panic("softdep_write_inodeblock: lbn order");
10454 		if ((adp->ad_state & ATTACHED) == 0)
10455 			panic("inodedep %p and adp %p not attached", inodedep, adp);
10456 		prevlbn = adp->ad_offset;
10457 		if (adp->ad_offset < UFS_NDADDR &&
10458 		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
10459 			panic("%s: direct pointer #%jd mismatch %jd != %jd",
10460 			    "softdep_write_inodeblock",
10461 			    (intmax_t)adp->ad_offset,
10462 			    (intmax_t)dp->di_db[adp->ad_offset],
10463 			    (intmax_t)adp->ad_newblkno);
10464 		if (adp->ad_offset >= UFS_NDADDR &&
10465 		    dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno)
10466 			panic("%s indirect pointer #%jd mismatch %jd != %jd",
10467 			    "softdep_write_inodeblock:",
10468 			    (intmax_t)adp->ad_offset - UFS_NDADDR,
10469 			    (intmax_t)dp->di_ib[adp->ad_offset - UFS_NDADDR],
10470 			    (intmax_t)adp->ad_newblkno);
10471 		deplist |= 1 << adp->ad_offset;
10472 		if ((adp->ad_state & ATTACHED) == 0)
10473 			panic("softdep_write_inodeblock: Unknown state 0x%x",
10474 			    adp->ad_state);
10475 #endif /* INVARIANTS */
10476 		adp->ad_state &= ~ATTACHED;
10477 		adp->ad_state |= UNDONE;
10478 	}
10479 	/*
10480 	 * The on-disk inode cannot claim to be any larger than the last
10481 	 * fragment that has been written. Otherwise, the on-disk inode
10482 	 * might have fragments that were not the last block in the file
10483 	 * which would corrupt the filesystem.
10484 	 */
10485 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10486 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10487 		if (adp->ad_offset >= UFS_NDADDR)
10488 			break;
10489 		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
10490 		/* keep going until hitting a rollback to a frag */
10491 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10492 			continue;
10493 		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10494 		for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) {
10495 #ifdef INVARIANTS
10496 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
10497 				panic("softdep_write_inodeblock: lost dep2");
10498 #endif /* INVARIANTS */
10499 			dp->di_db[i] = 0;
10500 		}
10501 		for (i = 0; i < UFS_NIADDR; i++) {
10502 #ifdef INVARIANTS
10503 			if (dp->di_ib[i] != 0 &&
10504 			    (deplist & ((1 << UFS_NDADDR) << i)) == 0)
10505 				panic("softdep_write_inodeblock: lost dep3");
10506 #endif /* INVARIANTS */
10507 			dp->di_ib[i] = 0;
10508 		}
10509 		return;
10510 	}
10511 	/*
10512 	 * If we have zero'ed out the last allocated block of the file,
10513 	 * roll back the size to the last currently allocated block.
10514 	 * We know that this last allocated block is a full-sized as
10515 	 * we already checked for fragments in the loop above.
10516 	 */
10517 	if (lastadp != NULL &&
10518 	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10519 		for (i = lastadp->ad_offset; i >= 0; i--)
10520 			if (dp->di_db[i] != 0)
10521 				break;
10522 		dp->di_size = (i + 1) * fs->fs_bsize;
10523 	}
10524 	/*
10525 	 * The only dependencies are for indirect blocks.
10526 	 *
10527 	 * The file size for indirect block additions is not guaranteed.
10528 	 * Such a guarantee would be non-trivial to achieve. The conventional
10529 	 * synchronous write implementation also does not make this guarantee.
10530 	 * Fsck should catch and fix discrepancies. Arguably, the file size
10531 	 * can be over-estimated without destroying integrity when the file
10532 	 * moves into the indirect blocks (i.e., is large). If we want to
10533 	 * postpone fsck, we are stuck with this argument.
10534 	 */
10535 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
10536 		dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0;
10537 }
10538 
10539 /*
10540  * Cancel an indirdep as a result of truncation.  Release all of the
10541  * children allocindirs and place their journal work on the appropriate
10542  * list.
10543  */
10544 static void
10545 cancel_indirdep(indirdep, bp, freeblks)
10546 	struct indirdep *indirdep;
10547 	struct buf *bp;
10548 	struct freeblks *freeblks;
10549 {
10550 	struct allocindir *aip;
10551 
10552 	/*
10553 	 * None of the indirect pointers will ever be visible,
10554 	 * so they can simply be tossed. GOINGAWAY ensures
10555 	 * that allocated pointers will be saved in the buffer
10556 	 * cache until they are freed. Note that they will
10557 	 * only be able to be found by their physical address
10558 	 * since the inode mapping the logical address will
10559 	 * be gone. The save buffer used for the safe copy
10560 	 * was allocated in setup_allocindir_phase2 using
10561 	 * the physical address so it could be used for this
10562 	 * purpose. Hence we swap the safe copy with the real
10563 	 * copy, allowing the safe copy to be freed and holding
10564 	 * on to the real copy for later use in indir_trunc.
10565 	 */
10566 	if (indirdep->ir_state & GOINGAWAY)
10567 		panic("cancel_indirdep: already gone");
10568 	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
10569 		indirdep->ir_state |= DEPCOMPLETE;
10570 		LIST_REMOVE(indirdep, ir_next);
10571 	}
10572 	indirdep->ir_state |= GOINGAWAY;
10573 	/*
10574 	 * Pass in bp for blocks still have journal writes
10575 	 * pending so we can cancel them on their own.
10576 	 */
10577 	while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != NULL)
10578 		cancel_allocindir(aip, bp, freeblks, 0);
10579 	while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL)
10580 		cancel_allocindir(aip, NULL, freeblks, 0);
10581 	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL)
10582 		cancel_allocindir(aip, NULL, freeblks, 0);
10583 	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL)
10584 		cancel_allocindir(aip, NULL, freeblks, 0);
10585 	/*
10586 	 * If there are pending partial truncations we need to keep the
10587 	 * old block copy around until they complete.  This is because
10588 	 * the current b_data is not a perfect superset of the available
10589 	 * blocks.
10590 	 */
10591 	if (TAILQ_EMPTY(&indirdep->ir_trunc))
10592 		bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount);
10593 	else
10594 		bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
10595 	WORKLIST_REMOVE(&indirdep->ir_list);
10596 	WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list);
10597 	indirdep->ir_bp = NULL;
10598 	indirdep->ir_freeblks = freeblks;
10599 }
10600 
10601 /*
10602  * Free an indirdep once it no longer has new pointers to track.
10603  */
10604 static void
10605 free_indirdep(indirdep)
10606 	struct indirdep *indirdep;
10607 {
10608 
10609 	KASSERT(TAILQ_EMPTY(&indirdep->ir_trunc),
10610 	    ("free_indirdep: Indir trunc list not empty."));
10611 	KASSERT(LIST_EMPTY(&indirdep->ir_completehd),
10612 	    ("free_indirdep: Complete head not empty."));
10613 	KASSERT(LIST_EMPTY(&indirdep->ir_writehd),
10614 	    ("free_indirdep: write head not empty."));
10615 	KASSERT(LIST_EMPTY(&indirdep->ir_donehd),
10616 	    ("free_indirdep: done head not empty."));
10617 	KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd),
10618 	    ("free_indirdep: deplist head not empty."));
10619 	KASSERT((indirdep->ir_state & DEPCOMPLETE),
10620 	    ("free_indirdep: %p still on newblk list.", indirdep));
10621 	KASSERT(indirdep->ir_saveddata == NULL,
10622 	    ("free_indirdep: %p still has saved data.", indirdep));
10623 	if (indirdep->ir_state & ONWORKLIST)
10624 		WORKLIST_REMOVE(&indirdep->ir_list);
10625 	WORKITEM_FREE(indirdep, D_INDIRDEP);
10626 }
10627 
10628 /*
10629  * Called before a write to an indirdep.  This routine is responsible for
10630  * rolling back pointers to a safe state which includes only those
10631  * allocindirs which have been completed.
10632  */
10633 static void
10634 initiate_write_indirdep(indirdep, bp)
10635 	struct indirdep *indirdep;
10636 	struct buf *bp;
10637 {
10638 	struct ufsmount *ump;
10639 
10640 	indirdep->ir_state |= IOSTARTED;
10641 	if (indirdep->ir_state & GOINGAWAY)
10642 		panic("disk_io_initiation: indirdep gone");
10643 	/*
10644 	 * If there are no remaining dependencies, this will be writing
10645 	 * the real pointers.
10646 	 */
10647 	if (LIST_EMPTY(&indirdep->ir_deplisthd) &&
10648 	    TAILQ_EMPTY(&indirdep->ir_trunc))
10649 		return;
10650 	/*
10651 	 * Replace up-to-date version with safe version.
10652 	 */
10653 	if (indirdep->ir_saveddata == NULL) {
10654 		ump = VFSTOUFS(indirdep->ir_list.wk_mp);
10655 		LOCK_OWNED(ump);
10656 		FREE_LOCK(ump);
10657 		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
10658 		    M_SOFTDEP_FLAGS);
10659 		ACQUIRE_LOCK(ump);
10660 	}
10661 	indirdep->ir_state &= ~ATTACHED;
10662 	indirdep->ir_state |= UNDONE;
10663 	bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
10664 	bcopy(indirdep->ir_savebp->b_data, bp->b_data,
10665 	    bp->b_bcount);
10666 }
10667 
10668 /*
10669  * Called when an inode has been cleared in a cg bitmap.  This finally
10670  * eliminates any canceled jaddrefs
10671  */
10672 void
10673 softdep_setup_inofree(mp, bp, ino, wkhd)
10674 	struct mount *mp;
10675 	struct buf *bp;
10676 	ino_t ino;
10677 	struct workhead *wkhd;
10678 {
10679 	struct worklist *wk, *wkn;
10680 	struct inodedep *inodedep;
10681 	struct ufsmount *ump;
10682 	uint8_t *inosused;
10683 	struct cg *cgp;
10684 	struct fs *fs;
10685 
10686 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
10687 	    ("softdep_setup_inofree called on non-softdep filesystem"));
10688 	ump = VFSTOUFS(mp);
10689 	ACQUIRE_LOCK(ump);
10690 	fs = ump->um_fs;
10691 	cgp = (struct cg *)bp->b_data;
10692 	inosused = cg_inosused(cgp);
10693 	if (isset(inosused, ino % fs->fs_ipg))
10694 		panic("softdep_setup_inofree: inode %ju not freed.",
10695 		    (uintmax_t)ino);
10696 	if (inodedep_lookup(mp, ino, 0, &inodedep))
10697 		panic("softdep_setup_inofree: ino %ju has existing inodedep %p",
10698 		    (uintmax_t)ino, inodedep);
10699 	if (wkhd) {
10700 		LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) {
10701 			if (wk->wk_type != D_JADDREF)
10702 				continue;
10703 			WORKLIST_REMOVE(wk);
10704 			/*
10705 			 * We can free immediately even if the jaddref
10706 			 * isn't attached in a background write as now
10707 			 * the bitmaps are reconciled.
10708 			 */
10709 			wk->wk_state |= COMPLETE | ATTACHED;
10710 			free_jaddref(WK_JADDREF(wk));
10711 		}
10712 		jwork_move(&bp->b_dep, wkhd);
10713 	}
10714 	FREE_LOCK(ump);
10715 }
10716 
10717 
10718 /*
10719  * Called via ffs_blkfree() after a set of frags has been cleared from a cg
10720  * map.  Any dependencies waiting for the write to clear are added to the
10721  * buf's list and any jnewblks that are being canceled are discarded
10722  * immediately.
10723  */
10724 void
10725 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
10726 	struct mount *mp;
10727 	struct buf *bp;
10728 	ufs2_daddr_t blkno;
10729 	int frags;
10730 	struct workhead *wkhd;
10731 {
10732 	struct bmsafemap *bmsafemap;
10733 	struct jnewblk *jnewblk;
10734 	struct ufsmount *ump;
10735 	struct worklist *wk;
10736 	struct fs *fs;
10737 #ifdef SUJ_DEBUG
10738 	uint8_t *blksfree;
10739 	struct cg *cgp;
10740 	ufs2_daddr_t jstart;
10741 	ufs2_daddr_t jend;
10742 	ufs2_daddr_t end;
10743 	long bno;
10744 	int i;
10745 #endif
10746 
10747 	CTR3(KTR_SUJ,
10748 	    "softdep_setup_blkfree: blkno %jd frags %d wk head %p",
10749 	    blkno, frags, wkhd);
10750 
10751 	ump = VFSTOUFS(mp);
10752 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
10753 	    ("softdep_setup_blkfree called on non-softdep filesystem"));
10754 	ACQUIRE_LOCK(ump);
10755 	/* Lookup the bmsafemap so we track when it is dirty. */
10756 	fs = ump->um_fs;
10757 	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
10758 	/*
10759 	 * Detach any jnewblks which have been canceled.  They must linger
10760 	 * until the bitmap is cleared again by ffs_blkfree() to prevent
10761 	 * an unjournaled allocation from hitting the disk.
10762 	 */
10763 	if (wkhd) {
10764 		while ((wk = LIST_FIRST(wkhd)) != NULL) {
10765 			CTR2(KTR_SUJ,
10766 			    "softdep_setup_blkfree: blkno %jd wk type %d",
10767 			    blkno, wk->wk_type);
10768 			WORKLIST_REMOVE(wk);
10769 			if (wk->wk_type != D_JNEWBLK) {
10770 				WORKLIST_INSERT(&bmsafemap->sm_freehd, wk);
10771 				continue;
10772 			}
10773 			jnewblk = WK_JNEWBLK(wk);
10774 			KASSERT(jnewblk->jn_state & GOINGAWAY,
10775 			    ("softdep_setup_blkfree: jnewblk not canceled."));
10776 #ifdef SUJ_DEBUG
10777 			/*
10778 			 * Assert that this block is free in the bitmap
10779 			 * before we discard the jnewblk.
10780 			 */
10781 			cgp = (struct cg *)bp->b_data;
10782 			blksfree = cg_blksfree(cgp);
10783 			bno = dtogd(fs, jnewblk->jn_blkno);
10784 			for (i = jnewblk->jn_oldfrags;
10785 			    i < jnewblk->jn_frags; i++) {
10786 				if (isset(blksfree, bno + i))
10787 					continue;
10788 				panic("softdep_setup_blkfree: not free");
10789 			}
10790 #endif
10791 			/*
10792 			 * Even if it's not attached we can free immediately
10793 			 * as the new bitmap is correct.
10794 			 */
10795 			wk->wk_state |= COMPLETE | ATTACHED;
10796 			free_jnewblk(jnewblk);
10797 		}
10798 	}
10799 
10800 #ifdef SUJ_DEBUG
10801 	/*
10802 	 * Assert that we are not freeing a block which has an outstanding
10803 	 * allocation dependency.
10804 	 */
10805 	fs = VFSTOUFS(mp)->um_fs;
10806 	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
10807 	end = blkno + frags;
10808 	LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
10809 		/*
10810 		 * Don't match against blocks that will be freed when the
10811 		 * background write is done.
10812 		 */
10813 		if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) ==
10814 		    (COMPLETE | DEPCOMPLETE))
10815 			continue;
10816 		jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags;
10817 		jend = jnewblk->jn_blkno + jnewblk->jn_frags;
10818 		if ((blkno >= jstart && blkno < jend) ||
10819 		    (end > jstart && end <= jend)) {
10820 			printf("state 0x%X %jd - %d %d dep %p\n",
10821 			    jnewblk->jn_state, jnewblk->jn_blkno,
10822 			    jnewblk->jn_oldfrags, jnewblk->jn_frags,
10823 			    jnewblk->jn_dep);
10824 			panic("softdep_setup_blkfree: "
10825 			    "%jd-%jd(%d) overlaps with %jd-%jd",
10826 			    blkno, end, frags, jstart, jend);
10827 		}
10828 	}
10829 #endif
10830 	FREE_LOCK(ump);
10831 }
10832 
10833 /*
10834  * Revert a block allocation when the journal record that describes it
10835  * is not yet written.
10836  */
10837 static int
10838 jnewblk_rollback(jnewblk, fs, cgp, blksfree)
10839 	struct jnewblk *jnewblk;
10840 	struct fs *fs;
10841 	struct cg *cgp;
10842 	uint8_t *blksfree;
10843 {
10844 	ufs1_daddr_t fragno;
10845 	long cgbno, bbase;
10846 	int frags, blk;
10847 	int i;
10848 
10849 	frags = 0;
10850 	cgbno = dtogd(fs, jnewblk->jn_blkno);
10851 	/*
10852 	 * We have to test which frags need to be rolled back.  We may
10853 	 * be operating on a stale copy when doing background writes.
10854 	 */
10855 	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++)
10856 		if (isclr(blksfree, cgbno + i))
10857 			frags++;
10858 	if (frags == 0)
10859 		return (0);
10860 	/*
10861 	 * This is mostly ffs_blkfree() sans some validation and
10862 	 * superblock updates.
10863 	 */
10864 	if (frags == fs->fs_frag) {
10865 		fragno = fragstoblks(fs, cgbno);
10866 		ffs_setblock(fs, blksfree, fragno);
10867 		ffs_clusteracct(fs, cgp, fragno, 1);
10868 		cgp->cg_cs.cs_nbfree++;
10869 	} else {
10870 		cgbno += jnewblk->jn_oldfrags;
10871 		bbase = cgbno - fragnum(fs, cgbno);
10872 		/* Decrement the old frags.  */
10873 		blk = blkmap(fs, blksfree, bbase);
10874 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
10875 		/* Deallocate the fragment */
10876 		for (i = 0; i < frags; i++)
10877 			setbit(blksfree, cgbno + i);
10878 		cgp->cg_cs.cs_nffree += frags;
10879 		/* Add back in counts associated with the new frags */
10880 		blk = blkmap(fs, blksfree, bbase);
10881 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
10882 		/* If a complete block has been reassembled, account for it. */
10883 		fragno = fragstoblks(fs, bbase);
10884 		if (ffs_isblock(fs, blksfree, fragno)) {
10885 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
10886 			ffs_clusteracct(fs, cgp, fragno, 1);
10887 			cgp->cg_cs.cs_nbfree++;
10888 		}
10889 	}
10890 	stat_jnewblk++;
10891 	jnewblk->jn_state &= ~ATTACHED;
10892 	jnewblk->jn_state |= UNDONE;
10893 
10894 	return (frags);
10895 }
10896 
10897 static void
10898 initiate_write_bmsafemap(bmsafemap, bp)
10899 	struct bmsafemap *bmsafemap;
10900 	struct buf *bp;			/* The cg block. */
10901 {
10902 	struct jaddref *jaddref;
10903 	struct jnewblk *jnewblk;
10904 	uint8_t *inosused;
10905 	uint8_t *blksfree;
10906 	struct cg *cgp;
10907 	struct fs *fs;
10908 	ino_t ino;
10909 
10910 	/*
10911 	 * If this is a background write, we did this at the time that
10912 	 * the copy was made, so do not need to do it again.
10913 	 */
10914 	if (bmsafemap->sm_state & IOSTARTED)
10915 		return;
10916 	bmsafemap->sm_state |= IOSTARTED;
10917 	/*
10918 	 * Clear any inode allocations which are pending journal writes.
10919 	 */
10920 	if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) {
10921 		cgp = (struct cg *)bp->b_data;
10922 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
10923 		inosused = cg_inosused(cgp);
10924 		LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) {
10925 			ino = jaddref->ja_ino % fs->fs_ipg;
10926 			if (isset(inosused, ino)) {
10927 				if ((jaddref->ja_mode & IFMT) == IFDIR)
10928 					cgp->cg_cs.cs_ndir--;
10929 				cgp->cg_cs.cs_nifree++;
10930 				clrbit(inosused, ino);
10931 				jaddref->ja_state &= ~ATTACHED;
10932 				jaddref->ja_state |= UNDONE;
10933 				stat_jaddref++;
10934 			} else
10935 				panic("initiate_write_bmsafemap: inode %ju "
10936 				    "marked free", (uintmax_t)jaddref->ja_ino);
10937 		}
10938 	}
10939 	/*
10940 	 * Clear any block allocations which are pending journal writes.
10941 	 */
10942 	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
10943 		cgp = (struct cg *)bp->b_data;
10944 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
10945 		blksfree = cg_blksfree(cgp);
10946 		LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
10947 			if (jnewblk_rollback(jnewblk, fs, cgp, blksfree))
10948 				continue;
10949 			panic("initiate_write_bmsafemap: block %jd "
10950 			    "marked free", jnewblk->jn_blkno);
10951 		}
10952 	}
10953 	/*
10954 	 * Move allocation lists to the written lists so they can be
10955 	 * cleared once the block write is complete.
10956 	 */
10957 	LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr,
10958 	    inodedep, id_deps);
10959 	LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr,
10960 	    newblk, nb_deps);
10961 	LIST_SWAP(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, worklist,
10962 	    wk_list);
10963 }
10964 
10965 /*
10966  * This routine is called during the completion interrupt
10967  * service routine for a disk write (from the procedure called
10968  * by the device driver to inform the filesystem caches of
10969  * a request completion).  It should be called early in this
10970  * procedure, before the block is made available to other
10971  * processes or other routines are called.
10972  *
10973  */
10974 static void
10975 softdep_disk_write_complete(bp)
10976 	struct buf *bp;		/* describes the completed disk write */
10977 {
10978 	struct worklist *wk;
10979 	struct worklist *owk;
10980 	struct ufsmount *ump;
10981 	struct workhead reattach;
10982 	struct freeblks *freeblks;
10983 	struct buf *sbp;
10984 
10985 	ump = softdep_bp_to_mp(bp);
10986 	if (ump == NULL)
10987 		return;
10988 
10989 	sbp = NULL;
10990 
10991 	/*
10992 	 * If an error occurred while doing the write, then the data
10993 	 * has not hit the disk and the dependencies cannot be processed.
10994 	 * But we do have to go through and roll forward any dependencies
10995 	 * that were rolled back before the disk write.
10996 	 */
10997 	ACQUIRE_LOCK(ump);
10998 	if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0) {
10999 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
11000 			switch (wk->wk_type) {
11001 
11002 			case D_PAGEDEP:
11003 				handle_written_filepage(WK_PAGEDEP(wk), bp, 0);
11004 				continue;
11005 
11006 			case D_INODEDEP:
11007 				handle_written_inodeblock(WK_INODEDEP(wk),
11008 				    bp, 0);
11009 				continue;
11010 
11011 			case D_BMSAFEMAP:
11012 				handle_written_bmsafemap(WK_BMSAFEMAP(wk),
11013 				    bp, 0);
11014 				continue;
11015 
11016 			case D_INDIRDEP:
11017 				handle_written_indirdep(WK_INDIRDEP(wk),
11018 				    bp, &sbp, 0);
11019 				continue;
11020 			default:
11021 				/* nothing to roll forward */
11022 				continue;
11023 			}
11024 		}
11025 		FREE_LOCK(ump);
11026 		return;
11027 	}
11028 	LIST_INIT(&reattach);
11029 
11030 	/*
11031 	 * Ump SU lock must not be released anywhere in this code segment.
11032 	 */
11033 	owk = NULL;
11034 	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
11035 		WORKLIST_REMOVE(wk);
11036 		atomic_add_long(&dep_write[wk->wk_type], 1);
11037 		if (wk == owk)
11038 			panic("duplicate worklist: %p\n", wk);
11039 		owk = wk;
11040 		switch (wk->wk_type) {
11041 
11042 		case D_PAGEDEP:
11043 			if (handle_written_filepage(WK_PAGEDEP(wk), bp,
11044 			    WRITESUCCEEDED))
11045 				WORKLIST_INSERT(&reattach, wk);
11046 			continue;
11047 
11048 		case D_INODEDEP:
11049 			if (handle_written_inodeblock(WK_INODEDEP(wk), bp,
11050 			    WRITESUCCEEDED))
11051 				WORKLIST_INSERT(&reattach, wk);
11052 			continue;
11053 
11054 		case D_BMSAFEMAP:
11055 			if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp,
11056 			    WRITESUCCEEDED))
11057 				WORKLIST_INSERT(&reattach, wk);
11058 			continue;
11059 
11060 		case D_MKDIR:
11061 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
11062 			continue;
11063 
11064 		case D_ALLOCDIRECT:
11065 			wk->wk_state |= COMPLETE;
11066 			handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL);
11067 			continue;
11068 
11069 		case D_ALLOCINDIR:
11070 			wk->wk_state |= COMPLETE;
11071 			handle_allocindir_partdone(WK_ALLOCINDIR(wk));
11072 			continue;
11073 
11074 		case D_INDIRDEP:
11075 			if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp,
11076 			    WRITESUCCEEDED))
11077 				WORKLIST_INSERT(&reattach, wk);
11078 			continue;
11079 
11080 		case D_FREEBLKS:
11081 			wk->wk_state |= COMPLETE;
11082 			freeblks = WK_FREEBLKS(wk);
11083 			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE &&
11084 			    LIST_EMPTY(&freeblks->fb_jblkdephd))
11085 				add_to_worklist(wk, WK_NODELAY);
11086 			continue;
11087 
11088 		case D_FREEWORK:
11089 			handle_written_freework(WK_FREEWORK(wk));
11090 			break;
11091 
11092 		case D_JSEGDEP:
11093 			free_jsegdep(WK_JSEGDEP(wk));
11094 			continue;
11095 
11096 		case D_JSEG:
11097 			handle_written_jseg(WK_JSEG(wk), bp);
11098 			continue;
11099 
11100 		case D_SBDEP:
11101 			if (handle_written_sbdep(WK_SBDEP(wk), bp))
11102 				WORKLIST_INSERT(&reattach, wk);
11103 			continue;
11104 
11105 		case D_FREEDEP:
11106 			free_freedep(WK_FREEDEP(wk));
11107 			continue;
11108 
11109 		default:
11110 			panic("handle_disk_write_complete: Unknown type %s",
11111 			    TYPENAME(wk->wk_type));
11112 			/* NOTREACHED */
11113 		}
11114 	}
11115 	/*
11116 	 * Reattach any requests that must be redone.
11117 	 */
11118 	while ((wk = LIST_FIRST(&reattach)) != NULL) {
11119 		WORKLIST_REMOVE(wk);
11120 		WORKLIST_INSERT(&bp->b_dep, wk);
11121 	}
11122 	FREE_LOCK(ump);
11123 	if (sbp)
11124 		brelse(sbp);
11125 }
11126 
11127 /*
11128  * Called from within softdep_disk_write_complete above. Note that
11129  * this routine is always called from interrupt level with further
11130  * splbio interrupts blocked.
11131  */
11132 static void
11133 handle_allocdirect_partdone(adp, wkhd)
11134 	struct allocdirect *adp;	/* the completed allocdirect */
11135 	struct workhead *wkhd;		/* Work to do when inode is writtne. */
11136 {
11137 	struct allocdirectlst *listhead;
11138 	struct allocdirect *listadp;
11139 	struct inodedep *inodedep;
11140 	long bsize;
11141 
11142 	if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
11143 		return;
11144 	/*
11145 	 * The on-disk inode cannot claim to be any larger than the last
11146 	 * fragment that has been written. Otherwise, the on-disk inode
11147 	 * might have fragments that were not the last block in the file
11148 	 * which would corrupt the filesystem. Thus, we cannot free any
11149 	 * allocdirects after one whose ad_oldblkno claims a fragment as
11150 	 * these blocks must be rolled back to zero before writing the inode.
11151 	 * We check the currently active set of allocdirects in id_inoupdt
11152 	 * or id_extupdt as appropriate.
11153 	 */
11154 	inodedep = adp->ad_inodedep;
11155 	bsize = inodedep->id_fs->fs_bsize;
11156 	if (adp->ad_state & EXTDATA)
11157 		listhead = &inodedep->id_extupdt;
11158 	else
11159 		listhead = &inodedep->id_inoupdt;
11160 	TAILQ_FOREACH(listadp, listhead, ad_next) {
11161 		/* found our block */
11162 		if (listadp == adp)
11163 			break;
11164 		/* continue if ad_oldlbn is not a fragment */
11165 		if (listadp->ad_oldsize == 0 ||
11166 		    listadp->ad_oldsize == bsize)
11167 			continue;
11168 		/* hit a fragment */
11169 		return;
11170 	}
11171 	/*
11172 	 * If we have reached the end of the current list without
11173 	 * finding the just finished dependency, then it must be
11174 	 * on the future dependency list. Future dependencies cannot
11175 	 * be freed until they are moved to the current list.
11176 	 */
11177 	if (listadp == NULL) {
11178 #ifdef DEBUG
11179 		if (adp->ad_state & EXTDATA)
11180 			listhead = &inodedep->id_newextupdt;
11181 		else
11182 			listhead = &inodedep->id_newinoupdt;
11183 		TAILQ_FOREACH(listadp, listhead, ad_next)
11184 			/* found our block */
11185 			if (listadp == adp)
11186 				break;
11187 		if (listadp == NULL)
11188 			panic("handle_allocdirect_partdone: lost dep");
11189 #endif /* DEBUG */
11190 		return;
11191 	}
11192 	/*
11193 	 * If we have found the just finished dependency, then queue
11194 	 * it along with anything that follows it that is complete.
11195 	 * Since the pointer has not yet been written in the inode
11196 	 * as the dependency prevents it, place the allocdirect on the
11197 	 * bufwait list where it will be freed once the pointer is
11198 	 * valid.
11199 	 */
11200 	if (wkhd == NULL)
11201 		wkhd = &inodedep->id_bufwait;
11202 	for (; adp; adp = listadp) {
11203 		listadp = TAILQ_NEXT(adp, ad_next);
11204 		if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
11205 			return;
11206 		TAILQ_REMOVE(listhead, adp, ad_next);
11207 		WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list);
11208 	}
11209 }
11210 
11211 /*
11212  * Called from within softdep_disk_write_complete above.  This routine
11213  * completes successfully written allocindirs.
11214  */
11215 static void
11216 handle_allocindir_partdone(aip)
11217 	struct allocindir *aip;		/* the completed allocindir */
11218 {
11219 	struct indirdep *indirdep;
11220 
11221 	if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
11222 		return;
11223 	indirdep = aip->ai_indirdep;
11224 	LIST_REMOVE(aip, ai_next);
11225 	/*
11226 	 * Don't set a pointer while the buffer is undergoing IO or while
11227 	 * we have active truncations.
11228 	 */
11229 	if (indirdep->ir_state & UNDONE || !TAILQ_EMPTY(&indirdep->ir_trunc)) {
11230 		LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
11231 		return;
11232 	}
11233 	if (indirdep->ir_state & UFS1FMT)
11234 		((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
11235 		    aip->ai_newblkno;
11236 	else
11237 		((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
11238 		    aip->ai_newblkno;
11239 	/*
11240 	 * Await the pointer write before freeing the allocindir.
11241 	 */
11242 	LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next);
11243 }
11244 
11245 /*
11246  * Release segments held on a jwork list.
11247  */
11248 static void
11249 handle_jwork(wkhd)
11250 	struct workhead *wkhd;
11251 {
11252 	struct worklist *wk;
11253 
11254 	while ((wk = LIST_FIRST(wkhd)) != NULL) {
11255 		WORKLIST_REMOVE(wk);
11256 		switch (wk->wk_type) {
11257 		case D_JSEGDEP:
11258 			free_jsegdep(WK_JSEGDEP(wk));
11259 			continue;
11260 		case D_FREEDEP:
11261 			free_freedep(WK_FREEDEP(wk));
11262 			continue;
11263 		case D_FREEFRAG:
11264 			rele_jseg(WK_JSEG(WK_FREEFRAG(wk)->ff_jdep));
11265 			WORKITEM_FREE(wk, D_FREEFRAG);
11266 			continue;
11267 		case D_FREEWORK:
11268 			handle_written_freework(WK_FREEWORK(wk));
11269 			continue;
11270 		default:
11271 			panic("handle_jwork: Unknown type %s\n",
11272 			    TYPENAME(wk->wk_type));
11273 		}
11274 	}
11275 }
11276 
11277 /*
11278  * Handle the bufwait list on an inode when it is safe to release items
11279  * held there.  This normally happens after an inode block is written but
11280  * may be delayed and handled later if there are pending journal items that
11281  * are not yet safe to be released.
11282  */
11283 static struct freefile *
11284 handle_bufwait(inodedep, refhd)
11285 	struct inodedep *inodedep;
11286 	struct workhead *refhd;
11287 {
11288 	struct jaddref *jaddref;
11289 	struct freefile *freefile;
11290 	struct worklist *wk;
11291 
11292 	freefile = NULL;
11293 	while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
11294 		WORKLIST_REMOVE(wk);
11295 		switch (wk->wk_type) {
11296 		case D_FREEFILE:
11297 			/*
11298 			 * We defer adding freefile to the worklist
11299 			 * until all other additions have been made to
11300 			 * ensure that it will be done after all the
11301 			 * old blocks have been freed.
11302 			 */
11303 			if (freefile != NULL)
11304 				panic("handle_bufwait: freefile");
11305 			freefile = WK_FREEFILE(wk);
11306 			continue;
11307 
11308 		case D_MKDIR:
11309 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
11310 			continue;
11311 
11312 		case D_DIRADD:
11313 			diradd_inode_written(WK_DIRADD(wk), inodedep);
11314 			continue;
11315 
11316 		case D_FREEFRAG:
11317 			wk->wk_state |= COMPLETE;
11318 			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE)
11319 				add_to_worklist(wk, 0);
11320 			continue;
11321 
11322 		case D_DIRREM:
11323 			wk->wk_state |= COMPLETE;
11324 			add_to_worklist(wk, 0);
11325 			continue;
11326 
11327 		case D_ALLOCDIRECT:
11328 		case D_ALLOCINDIR:
11329 			free_newblk(WK_NEWBLK(wk));
11330 			continue;
11331 
11332 		case D_JNEWBLK:
11333 			wk->wk_state |= COMPLETE;
11334 			free_jnewblk(WK_JNEWBLK(wk));
11335 			continue;
11336 
11337 		/*
11338 		 * Save freed journal segments and add references on
11339 		 * the supplied list which will delay their release
11340 		 * until the cg bitmap is cleared on disk.
11341 		 */
11342 		case D_JSEGDEP:
11343 			if (refhd == NULL)
11344 				free_jsegdep(WK_JSEGDEP(wk));
11345 			else
11346 				WORKLIST_INSERT(refhd, wk);
11347 			continue;
11348 
11349 		case D_JADDREF:
11350 			jaddref = WK_JADDREF(wk);
11351 			TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
11352 			    if_deps);
11353 			/*
11354 			 * Transfer any jaddrefs to the list to be freed with
11355 			 * the bitmap if we're handling a removed file.
11356 			 */
11357 			if (refhd == NULL) {
11358 				wk->wk_state |= COMPLETE;
11359 				free_jaddref(jaddref);
11360 			} else
11361 				WORKLIST_INSERT(refhd, wk);
11362 			continue;
11363 
11364 		default:
11365 			panic("handle_bufwait: Unknown type %p(%s)",
11366 			    wk, TYPENAME(wk->wk_type));
11367 			/* NOTREACHED */
11368 		}
11369 	}
11370 	return (freefile);
11371 }
11372 /*
11373  * Called from within softdep_disk_write_complete above to restore
11374  * in-memory inode block contents to their most up-to-date state. Note
11375  * that this routine is always called from interrupt level with further
11376  * interrupts from this device blocked.
11377  *
11378  * If the write did not succeed, we will do all the roll-forward
11379  * operations, but we will not take the actions that will allow its
11380  * dependencies to be processed.
11381  */
11382 static int
11383 handle_written_inodeblock(inodedep, bp, flags)
11384 	struct inodedep *inodedep;
11385 	struct buf *bp;		/* buffer containing the inode block */
11386 	int flags;
11387 {
11388 	struct freefile *freefile;
11389 	struct allocdirect *adp, *nextadp;
11390 	struct ufs1_dinode *dp1 = NULL;
11391 	struct ufs2_dinode *dp2 = NULL;
11392 	struct workhead wkhd;
11393 	int hadchanges, fstype;
11394 	ino_t freelink;
11395 
11396 	LIST_INIT(&wkhd);
11397 	hadchanges = 0;
11398 	freefile = NULL;
11399 	if ((inodedep->id_state & IOSTARTED) == 0)
11400 		panic("handle_written_inodeblock: not started");
11401 	inodedep->id_state &= ~IOSTARTED;
11402 	if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) {
11403 		fstype = UFS1;
11404 		dp1 = (struct ufs1_dinode *)bp->b_data +
11405 		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
11406 		freelink = dp1->di_freelink;
11407 	} else {
11408 		fstype = UFS2;
11409 		dp2 = (struct ufs2_dinode *)bp->b_data +
11410 		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
11411 		freelink = dp2->di_freelink;
11412 	}
11413 	/*
11414 	 * Leave this inodeblock dirty until it's in the list.
11415 	 */
11416 	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED &&
11417 	    (flags & WRITESUCCEEDED)) {
11418 		struct inodedep *inon;
11419 
11420 		inon = TAILQ_NEXT(inodedep, id_unlinked);
11421 		if ((inon == NULL && freelink == 0) ||
11422 		    (inon && inon->id_ino == freelink)) {
11423 			if (inon)
11424 				inon->id_state |= UNLINKPREV;
11425 			inodedep->id_state |= UNLINKNEXT;
11426 		}
11427 		hadchanges = 1;
11428 	}
11429 	/*
11430 	 * If we had to rollback the inode allocation because of
11431 	 * bitmaps being incomplete, then simply restore it.
11432 	 * Keep the block dirty so that it will not be reclaimed until
11433 	 * all associated dependencies have been cleared and the
11434 	 * corresponding updates written to disk.
11435 	 */
11436 	if (inodedep->id_savedino1 != NULL) {
11437 		hadchanges = 1;
11438 		if (fstype == UFS1)
11439 			*dp1 = *inodedep->id_savedino1;
11440 		else
11441 			*dp2 = *inodedep->id_savedino2;
11442 		free(inodedep->id_savedino1, M_SAVEDINO);
11443 		inodedep->id_savedino1 = NULL;
11444 		if ((bp->b_flags & B_DELWRI) == 0)
11445 			stat_inode_bitmap++;
11446 		bdirty(bp);
11447 		/*
11448 		 * If the inode is clear here and GOINGAWAY it will never
11449 		 * be written.  Process the bufwait and clear any pending
11450 		 * work which may include the freefile.
11451 		 */
11452 		if (inodedep->id_state & GOINGAWAY)
11453 			goto bufwait;
11454 		return (1);
11455 	}
11456 	if (flags & WRITESUCCEEDED)
11457 		inodedep->id_state |= COMPLETE;
11458 	/*
11459 	 * Roll forward anything that had to be rolled back before
11460 	 * the inode could be updated.
11461 	 */
11462 	for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
11463 		nextadp = TAILQ_NEXT(adp, ad_next);
11464 		if (adp->ad_state & ATTACHED)
11465 			panic("handle_written_inodeblock: new entry");
11466 		if (fstype == UFS1) {
11467 			if (adp->ad_offset < UFS_NDADDR) {
11468 				if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno)
11469 					panic("%s %s #%jd mismatch %d != %jd",
11470 					    "handle_written_inodeblock:",
11471 					    "direct pointer",
11472 					    (intmax_t)adp->ad_offset,
11473 					    dp1->di_db[adp->ad_offset],
11474 					    (intmax_t)adp->ad_oldblkno);
11475 				dp1->di_db[adp->ad_offset] = adp->ad_newblkno;
11476 			} else {
11477 				if (dp1->di_ib[adp->ad_offset - UFS_NDADDR] !=
11478 				    0)
11479 					panic("%s: %s #%jd allocated as %d",
11480 					    "handle_written_inodeblock",
11481 					    "indirect pointer",
11482 					    (intmax_t)adp->ad_offset -
11483 					    UFS_NDADDR,
11484 					    dp1->di_ib[adp->ad_offset -
11485 					    UFS_NDADDR]);
11486 				dp1->di_ib[adp->ad_offset - UFS_NDADDR] =
11487 				    adp->ad_newblkno;
11488 			}
11489 		} else {
11490 			if (adp->ad_offset < UFS_NDADDR) {
11491 				if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno)
11492 					panic("%s: %s #%jd %s %jd != %jd",
11493 					    "handle_written_inodeblock",
11494 					    "direct pointer",
11495 					    (intmax_t)adp->ad_offset, "mismatch",
11496 					    (intmax_t)dp2->di_db[adp->ad_offset],
11497 					    (intmax_t)adp->ad_oldblkno);
11498 				dp2->di_db[adp->ad_offset] = adp->ad_newblkno;
11499 			} else {
11500 				if (dp2->di_ib[adp->ad_offset - UFS_NDADDR] !=
11501 				    0)
11502 					panic("%s: %s #%jd allocated as %jd",
11503 					    "handle_written_inodeblock",
11504 					    "indirect pointer",
11505 					    (intmax_t)adp->ad_offset -
11506 					    UFS_NDADDR,
11507 					    (intmax_t)
11508 					    dp2->di_ib[adp->ad_offset -
11509 					    UFS_NDADDR]);
11510 				dp2->di_ib[adp->ad_offset - UFS_NDADDR] =
11511 				    adp->ad_newblkno;
11512 			}
11513 		}
11514 		adp->ad_state &= ~UNDONE;
11515 		adp->ad_state |= ATTACHED;
11516 		hadchanges = 1;
11517 	}
11518 	for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) {
11519 		nextadp = TAILQ_NEXT(adp, ad_next);
11520 		if (adp->ad_state & ATTACHED)
11521 			panic("handle_written_inodeblock: new entry");
11522 		if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno)
11523 			panic("%s: direct pointers #%jd %s %jd != %jd",
11524 			    "handle_written_inodeblock",
11525 			    (intmax_t)adp->ad_offset, "mismatch",
11526 			    (intmax_t)dp2->di_extb[adp->ad_offset],
11527 			    (intmax_t)adp->ad_oldblkno);
11528 		dp2->di_extb[adp->ad_offset] = adp->ad_newblkno;
11529 		adp->ad_state &= ~UNDONE;
11530 		adp->ad_state |= ATTACHED;
11531 		hadchanges = 1;
11532 	}
11533 	if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
11534 		stat_direct_blk_ptrs++;
11535 	/*
11536 	 * Reset the file size to its most up-to-date value.
11537 	 */
11538 	if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1)
11539 		panic("handle_written_inodeblock: bad size");
11540 	if (inodedep->id_savednlink > UFS_LINK_MAX)
11541 		panic("handle_written_inodeblock: Invalid link count "
11542 		    "%jd for inodedep %p", (uintmax_t)inodedep->id_savednlink,
11543 		    inodedep);
11544 	if (fstype == UFS1) {
11545 		if (dp1->di_nlink != inodedep->id_savednlink) {
11546 			dp1->di_nlink = inodedep->id_savednlink;
11547 			hadchanges = 1;
11548 		}
11549 		if (dp1->di_size != inodedep->id_savedsize) {
11550 			dp1->di_size = inodedep->id_savedsize;
11551 			hadchanges = 1;
11552 		}
11553 	} else {
11554 		if (dp2->di_nlink != inodedep->id_savednlink) {
11555 			dp2->di_nlink = inodedep->id_savednlink;
11556 			hadchanges = 1;
11557 		}
11558 		if (dp2->di_size != inodedep->id_savedsize) {
11559 			dp2->di_size = inodedep->id_savedsize;
11560 			hadchanges = 1;
11561 		}
11562 		if (dp2->di_extsize != inodedep->id_savedextsize) {
11563 			dp2->di_extsize = inodedep->id_savedextsize;
11564 			hadchanges = 1;
11565 		}
11566 	}
11567 	inodedep->id_savedsize = -1;
11568 	inodedep->id_savedextsize = -1;
11569 	inodedep->id_savednlink = -1;
11570 	/*
11571 	 * If there were any rollbacks in the inode block, then it must be
11572 	 * marked dirty so that its will eventually get written back in
11573 	 * its correct form.
11574 	 */
11575 	if (hadchanges)
11576 		bdirty(bp);
11577 bufwait:
11578 	/*
11579 	 * If the write did not succeed, we have done all the roll-forward
11580 	 * operations, but we cannot take the actions that will allow its
11581 	 * dependencies to be processed.
11582 	 */
11583 	if ((flags & WRITESUCCEEDED) == 0)
11584 		return (hadchanges);
11585 	/*
11586 	 * Process any allocdirects that completed during the update.
11587 	 */
11588 	if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
11589 		handle_allocdirect_partdone(adp, &wkhd);
11590 	if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
11591 		handle_allocdirect_partdone(adp, &wkhd);
11592 	/*
11593 	 * Process deallocations that were held pending until the
11594 	 * inode had been written to disk. Freeing of the inode
11595 	 * is delayed until after all blocks have been freed to
11596 	 * avoid creation of new <vfsid, inum, lbn> triples
11597 	 * before the old ones have been deleted.  Completely
11598 	 * unlinked inodes are not processed until the unlinked
11599 	 * inode list is written or the last reference is removed.
11600 	 */
11601 	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) {
11602 		freefile = handle_bufwait(inodedep, NULL);
11603 		if (freefile && !LIST_EMPTY(&wkhd)) {
11604 			WORKLIST_INSERT(&wkhd, &freefile->fx_list);
11605 			freefile = NULL;
11606 		}
11607 	}
11608 	/*
11609 	 * Move rolled forward dependency completions to the bufwait list
11610 	 * now that those that were already written have been processed.
11611 	 */
11612 	if (!LIST_EMPTY(&wkhd) && hadchanges == 0)
11613 		panic("handle_written_inodeblock: bufwait but no changes");
11614 	jwork_move(&inodedep->id_bufwait, &wkhd);
11615 
11616 	if (freefile != NULL) {
11617 		/*
11618 		 * If the inode is goingaway it was never written.  Fake up
11619 		 * the state here so free_inodedep() can succeed.
11620 		 */
11621 		if (inodedep->id_state & GOINGAWAY)
11622 			inodedep->id_state |= COMPLETE | DEPCOMPLETE;
11623 		if (free_inodedep(inodedep) == 0)
11624 			panic("handle_written_inodeblock: live inodedep %p",
11625 			    inodedep);
11626 		add_to_worklist(&freefile->fx_list, 0);
11627 		return (0);
11628 	}
11629 
11630 	/*
11631 	 * If no outstanding dependencies, free it.
11632 	 */
11633 	if (free_inodedep(inodedep) ||
11634 	    (TAILQ_FIRST(&inodedep->id_inoreflst) == 0 &&
11635 	     TAILQ_FIRST(&inodedep->id_inoupdt) == 0 &&
11636 	     TAILQ_FIRST(&inodedep->id_extupdt) == 0 &&
11637 	     LIST_FIRST(&inodedep->id_bufwait) == 0))
11638 		return (0);
11639 	return (hadchanges);
11640 }
11641 
11642 /*
11643  * Perform needed roll-forwards and kick off any dependencies that
11644  * can now be processed.
11645  *
11646  * If the write did not succeed, we will do all the roll-forward
11647  * operations, but we will not take the actions that will allow its
11648  * dependencies to be processed.
11649  */
11650 static int
11651 handle_written_indirdep(indirdep, bp, bpp, flags)
11652 	struct indirdep *indirdep;
11653 	struct buf *bp;
11654 	struct buf **bpp;
11655 	int flags;
11656 {
11657 	struct allocindir *aip;
11658 	struct buf *sbp;
11659 	int chgs;
11660 
11661 	if (indirdep->ir_state & GOINGAWAY)
11662 		panic("handle_written_indirdep: indirdep gone");
11663 	if ((indirdep->ir_state & IOSTARTED) == 0)
11664 		panic("handle_written_indirdep: IO not started");
11665 	chgs = 0;
11666 	/*
11667 	 * If there were rollbacks revert them here.
11668 	 */
11669 	if (indirdep->ir_saveddata) {
11670 		bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount);
11671 		if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
11672 			free(indirdep->ir_saveddata, M_INDIRDEP);
11673 			indirdep->ir_saveddata = NULL;
11674 		}
11675 		chgs = 1;
11676 	}
11677 	indirdep->ir_state &= ~(UNDONE | IOSTARTED);
11678 	indirdep->ir_state |= ATTACHED;
11679 	/*
11680 	 * If the write did not succeed, we have done all the roll-forward
11681 	 * operations, but we cannot take the actions that will allow its
11682 	 * dependencies to be processed.
11683 	 */
11684 	if ((flags & WRITESUCCEEDED) == 0) {
11685 		stat_indir_blk_ptrs++;
11686 		bdirty(bp);
11687 		return (1);
11688 	}
11689 	/*
11690 	 * Move allocindirs with written pointers to the completehd if
11691 	 * the indirdep's pointer is not yet written.  Otherwise
11692 	 * free them here.
11693 	 */
11694 	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL) {
11695 		LIST_REMOVE(aip, ai_next);
11696 		if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
11697 			LIST_INSERT_HEAD(&indirdep->ir_completehd, aip,
11698 			    ai_next);
11699 			newblk_freefrag(&aip->ai_block);
11700 			continue;
11701 		}
11702 		free_newblk(&aip->ai_block);
11703 	}
11704 	/*
11705 	 * Move allocindirs that have finished dependency processing from
11706 	 * the done list to the write list after updating the pointers.
11707 	 */
11708 	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
11709 		while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL) {
11710 			handle_allocindir_partdone(aip);
11711 			if (aip == LIST_FIRST(&indirdep->ir_donehd))
11712 				panic("disk_write_complete: not gone");
11713 			chgs = 1;
11714 		}
11715 	}
11716 	/*
11717 	 * Preserve the indirdep if there were any changes or if it is not
11718 	 * yet valid on disk.
11719 	 */
11720 	if (chgs) {
11721 		stat_indir_blk_ptrs++;
11722 		bdirty(bp);
11723 		return (1);
11724 	}
11725 	/*
11726 	 * If there were no changes we can discard the savedbp and detach
11727 	 * ourselves from the buf.  We are only carrying completed pointers
11728 	 * in this case.
11729 	 */
11730 	sbp = indirdep->ir_savebp;
11731 	sbp->b_flags |= B_INVAL | B_NOCACHE;
11732 	indirdep->ir_savebp = NULL;
11733 	indirdep->ir_bp = NULL;
11734 	if (*bpp != NULL)
11735 		panic("handle_written_indirdep: bp already exists.");
11736 	*bpp = sbp;
11737 	/*
11738 	 * The indirdep may not be freed until its parent points at it.
11739 	 */
11740 	if (indirdep->ir_state & DEPCOMPLETE)
11741 		free_indirdep(indirdep);
11742 
11743 	return (0);
11744 }
11745 
11746 /*
11747  * Process a diradd entry after its dependent inode has been written.
11748  * This routine must be called with splbio interrupts blocked.
11749  */
11750 static void
11751 diradd_inode_written(dap, inodedep)
11752 	struct diradd *dap;
11753 	struct inodedep *inodedep;
11754 {
11755 
11756 	dap->da_state |= COMPLETE;
11757 	complete_diradd(dap);
11758 	WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
11759 }
11760 
11761 /*
11762  * Returns true if the bmsafemap will have rollbacks when written.  Must only
11763  * be called with the per-filesystem lock and the buf lock on the cg held.
11764  */
11765 static int
11766 bmsafemap_backgroundwrite(bmsafemap, bp)
11767 	struct bmsafemap *bmsafemap;
11768 	struct buf *bp;
11769 {
11770 	int dirty;
11771 
11772 	LOCK_OWNED(VFSTOUFS(bmsafemap->sm_list.wk_mp));
11773 	dirty = !LIST_EMPTY(&bmsafemap->sm_jaddrefhd) |
11774 	    !LIST_EMPTY(&bmsafemap->sm_jnewblkhd);
11775 	/*
11776 	 * If we're initiating a background write we need to process the
11777 	 * rollbacks as they exist now, not as they exist when IO starts.
11778 	 * No other consumers will look at the contents of the shadowed
11779 	 * buf so this is safe to do here.
11780 	 */
11781 	if (bp->b_xflags & BX_BKGRDMARKER)
11782 		initiate_write_bmsafemap(bmsafemap, bp);
11783 
11784 	return (dirty);
11785 }
11786 
11787 /*
11788  * Re-apply an allocation when a cg write is complete.
11789  */
11790 static int
11791 jnewblk_rollforward(jnewblk, fs, cgp, blksfree)
11792 	struct jnewblk *jnewblk;
11793 	struct fs *fs;
11794 	struct cg *cgp;
11795 	uint8_t *blksfree;
11796 {
11797 	ufs1_daddr_t fragno;
11798 	ufs2_daddr_t blkno;
11799 	long cgbno, bbase;
11800 	int frags, blk;
11801 	int i;
11802 
11803 	frags = 0;
11804 	cgbno = dtogd(fs, jnewblk->jn_blkno);
11805 	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) {
11806 		if (isclr(blksfree, cgbno + i))
11807 			panic("jnewblk_rollforward: re-allocated fragment");
11808 		frags++;
11809 	}
11810 	if (frags == fs->fs_frag) {
11811 		blkno = fragstoblks(fs, cgbno);
11812 		ffs_clrblock(fs, blksfree, (long)blkno);
11813 		ffs_clusteracct(fs, cgp, blkno, -1);
11814 		cgp->cg_cs.cs_nbfree--;
11815 	} else {
11816 		bbase = cgbno - fragnum(fs, cgbno);
11817 		cgbno += jnewblk->jn_oldfrags;
11818                 /* If a complete block had been reassembled, account for it. */
11819 		fragno = fragstoblks(fs, bbase);
11820 		if (ffs_isblock(fs, blksfree, fragno)) {
11821 			cgp->cg_cs.cs_nffree += fs->fs_frag;
11822 			ffs_clusteracct(fs, cgp, fragno, -1);
11823 			cgp->cg_cs.cs_nbfree--;
11824 		}
11825 		/* Decrement the old frags.  */
11826 		blk = blkmap(fs, blksfree, bbase);
11827 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
11828 		/* Allocate the fragment */
11829 		for (i = 0; i < frags; i++)
11830 			clrbit(blksfree, cgbno + i);
11831 		cgp->cg_cs.cs_nffree -= frags;
11832 		/* Add back in counts associated with the new frags */
11833 		blk = blkmap(fs, blksfree, bbase);
11834 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
11835 	}
11836 	return (frags);
11837 }
11838 
11839 /*
11840  * Complete a write to a bmsafemap structure.  Roll forward any bitmap
11841  * changes if it's not a background write.  Set all written dependencies
11842  * to DEPCOMPLETE and free the structure if possible.
11843  *
11844  * If the write did not succeed, we will do all the roll-forward
11845  * operations, but we will not take the actions that will allow its
11846  * dependencies to be processed.
11847  */
11848 static int
11849 handle_written_bmsafemap(bmsafemap, bp, flags)
11850 	struct bmsafemap *bmsafemap;
11851 	struct buf *bp;
11852 	int flags;
11853 {
11854 	struct newblk *newblk;
11855 	struct inodedep *inodedep;
11856 	struct jaddref *jaddref, *jatmp;
11857 	struct jnewblk *jnewblk, *jntmp;
11858 	struct ufsmount *ump;
11859 	uint8_t *inosused;
11860 	uint8_t *blksfree;
11861 	struct cg *cgp;
11862 	struct fs *fs;
11863 	ino_t ino;
11864 	int foreground;
11865 	int chgs;
11866 
11867 	if ((bmsafemap->sm_state & IOSTARTED) == 0)
11868 		panic("handle_written_bmsafemap: Not started\n");
11869 	ump = VFSTOUFS(bmsafemap->sm_list.wk_mp);
11870 	chgs = 0;
11871 	bmsafemap->sm_state &= ~IOSTARTED;
11872 	foreground = (bp->b_xflags & BX_BKGRDMARKER) == 0;
11873 	/*
11874 	 * If write was successful, release journal work that was waiting
11875 	 * on the write. Otherwise move the work back.
11876 	 */
11877 	if (flags & WRITESUCCEEDED)
11878 		handle_jwork(&bmsafemap->sm_freewr);
11879 	else
11880 		LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr,
11881 		    worklist, wk_list);
11882 
11883 	/*
11884 	 * Restore unwritten inode allocation pending jaddref writes.
11885 	 */
11886 	if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) {
11887 		cgp = (struct cg *)bp->b_data;
11888 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11889 		inosused = cg_inosused(cgp);
11890 		LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd,
11891 		    ja_bmdeps, jatmp) {
11892 			if ((jaddref->ja_state & UNDONE) == 0)
11893 				continue;
11894 			ino = jaddref->ja_ino % fs->fs_ipg;
11895 			if (isset(inosused, ino))
11896 				panic("handle_written_bmsafemap: "
11897 				    "re-allocated inode");
11898 			/* Do the roll-forward only if it's a real copy. */
11899 			if (foreground) {
11900 				if ((jaddref->ja_mode & IFMT) == IFDIR)
11901 					cgp->cg_cs.cs_ndir++;
11902 				cgp->cg_cs.cs_nifree--;
11903 				setbit(inosused, ino);
11904 				chgs = 1;
11905 			}
11906 			jaddref->ja_state &= ~UNDONE;
11907 			jaddref->ja_state |= ATTACHED;
11908 			free_jaddref(jaddref);
11909 		}
11910 	}
11911 	/*
11912 	 * Restore any block allocations which are pending journal writes.
11913 	 */
11914 	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
11915 		cgp = (struct cg *)bp->b_data;
11916 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11917 		blksfree = cg_blksfree(cgp);
11918 		LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps,
11919 		    jntmp) {
11920 			if ((jnewblk->jn_state & UNDONE) == 0)
11921 				continue;
11922 			/* Do the roll-forward only if it's a real copy. */
11923 			if (foreground &&
11924 			    jnewblk_rollforward(jnewblk, fs, cgp, blksfree))
11925 				chgs = 1;
11926 			jnewblk->jn_state &= ~(UNDONE | NEWBLOCK);
11927 			jnewblk->jn_state |= ATTACHED;
11928 			free_jnewblk(jnewblk);
11929 		}
11930 	}
11931 	/*
11932 	 * If the write did not succeed, we have done all the roll-forward
11933 	 * operations, but we cannot take the actions that will allow its
11934 	 * dependencies to be processed.
11935 	 */
11936 	if ((flags & WRITESUCCEEDED) == 0) {
11937 		LIST_CONCAT(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr,
11938 		    newblk, nb_deps);
11939 		LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr,
11940 		    worklist, wk_list);
11941 		if (foreground)
11942 			bdirty(bp);
11943 		return (1);
11944 	}
11945 	while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) {
11946 		newblk->nb_state |= DEPCOMPLETE;
11947 		newblk->nb_state &= ~ONDEPLIST;
11948 		newblk->nb_bmsafemap = NULL;
11949 		LIST_REMOVE(newblk, nb_deps);
11950 		if (newblk->nb_list.wk_type == D_ALLOCDIRECT)
11951 			handle_allocdirect_partdone(
11952 			    WK_ALLOCDIRECT(&newblk->nb_list), NULL);
11953 		else if (newblk->nb_list.wk_type == D_ALLOCINDIR)
11954 			handle_allocindir_partdone(
11955 			    WK_ALLOCINDIR(&newblk->nb_list));
11956 		else if (newblk->nb_list.wk_type != D_NEWBLK)
11957 			panic("handle_written_bmsafemap: Unexpected type: %s",
11958 			    TYPENAME(newblk->nb_list.wk_type));
11959 	}
11960 	while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) {
11961 		inodedep->id_state |= DEPCOMPLETE;
11962 		inodedep->id_state &= ~ONDEPLIST;
11963 		LIST_REMOVE(inodedep, id_deps);
11964 		inodedep->id_bmsafemap = NULL;
11965 	}
11966 	LIST_REMOVE(bmsafemap, sm_next);
11967 	if (chgs == 0 && LIST_EMPTY(&bmsafemap->sm_jaddrefhd) &&
11968 	    LIST_EMPTY(&bmsafemap->sm_jnewblkhd) &&
11969 	    LIST_EMPTY(&bmsafemap->sm_newblkhd) &&
11970 	    LIST_EMPTY(&bmsafemap->sm_inodedephd) &&
11971 	    LIST_EMPTY(&bmsafemap->sm_freehd)) {
11972 		LIST_REMOVE(bmsafemap, sm_hash);
11973 		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
11974 		return (0);
11975 	}
11976 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
11977 	if (foreground)
11978 		bdirty(bp);
11979 	return (1);
11980 }
11981 
11982 /*
11983  * Try to free a mkdir dependency.
11984  */
11985 static void
11986 complete_mkdir(mkdir)
11987 	struct mkdir *mkdir;
11988 {
11989 	struct diradd *dap;
11990 
11991 	if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE)
11992 		return;
11993 	LIST_REMOVE(mkdir, md_mkdirs);
11994 	dap = mkdir->md_diradd;
11995 	dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
11996 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) {
11997 		dap->da_state |= DEPCOMPLETE;
11998 		complete_diradd(dap);
11999 	}
12000 	WORKITEM_FREE(mkdir, D_MKDIR);
12001 }
12002 
12003 /*
12004  * Handle the completion of a mkdir dependency.
12005  */
12006 static void
12007 handle_written_mkdir(mkdir, type)
12008 	struct mkdir *mkdir;
12009 	int type;
12010 {
12011 
12012 	if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type)
12013 		panic("handle_written_mkdir: bad type");
12014 	mkdir->md_state |= COMPLETE;
12015 	complete_mkdir(mkdir);
12016 }
12017 
12018 static int
12019 free_pagedep(pagedep)
12020 	struct pagedep *pagedep;
12021 {
12022 	int i;
12023 
12024 	if (pagedep->pd_state & NEWBLOCK)
12025 		return (0);
12026 	if (!LIST_EMPTY(&pagedep->pd_dirremhd))
12027 		return (0);
12028 	for (i = 0; i < DAHASHSZ; i++)
12029 		if (!LIST_EMPTY(&pagedep->pd_diraddhd[i]))
12030 			return (0);
12031 	if (!LIST_EMPTY(&pagedep->pd_pendinghd))
12032 		return (0);
12033 	if (!LIST_EMPTY(&pagedep->pd_jmvrefhd))
12034 		return (0);
12035 	if (pagedep->pd_state & ONWORKLIST)
12036 		WORKLIST_REMOVE(&pagedep->pd_list);
12037 	LIST_REMOVE(pagedep, pd_hash);
12038 	WORKITEM_FREE(pagedep, D_PAGEDEP);
12039 
12040 	return (1);
12041 }
12042 
12043 /*
12044  * Called from within softdep_disk_write_complete above.
12045  * A write operation was just completed. Removed inodes can
12046  * now be freed and associated block pointers may be committed.
12047  * Note that this routine is always called from interrupt level
12048  * with further interrupts from this device blocked.
12049  *
12050  * If the write did not succeed, we will do all the roll-forward
12051  * operations, but we will not take the actions that will allow its
12052  * dependencies to be processed.
12053  */
12054 static int
12055 handle_written_filepage(pagedep, bp, flags)
12056 	struct pagedep *pagedep;
12057 	struct buf *bp;		/* buffer containing the written page */
12058 	int flags;
12059 {
12060 	struct dirrem *dirrem;
12061 	struct diradd *dap, *nextdap;
12062 	struct direct *ep;
12063 	int i, chgs;
12064 
12065 	if ((pagedep->pd_state & IOSTARTED) == 0)
12066 		panic("handle_written_filepage: not started");
12067 	pagedep->pd_state &= ~IOSTARTED;
12068 	if ((flags & WRITESUCCEEDED) == 0)
12069 		goto rollforward;
12070 	/*
12071 	 * Process any directory removals that have been committed.
12072 	 */
12073 	while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
12074 		LIST_REMOVE(dirrem, dm_next);
12075 		dirrem->dm_state |= COMPLETE;
12076 		dirrem->dm_dirinum = pagedep->pd_ino;
12077 		KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
12078 		    ("handle_written_filepage: Journal entries not written."));
12079 		add_to_worklist(&dirrem->dm_list, 0);
12080 	}
12081 	/*
12082 	 * Free any directory additions that have been committed.
12083 	 * If it is a newly allocated block, we have to wait until
12084 	 * the on-disk directory inode claims the new block.
12085 	 */
12086 	if ((pagedep->pd_state & NEWBLOCK) == 0)
12087 		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
12088 			free_diradd(dap, NULL);
12089 rollforward:
12090 	/*
12091 	 * Uncommitted directory entries must be restored.
12092 	 */
12093 	for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
12094 		for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
12095 		     dap = nextdap) {
12096 			nextdap = LIST_NEXT(dap, da_pdlist);
12097 			if (dap->da_state & ATTACHED)
12098 				panic("handle_written_filepage: attached");
12099 			ep = (struct direct *)
12100 			    ((char *)bp->b_data + dap->da_offset);
12101 			ep->d_ino = dap->da_newinum;
12102 			dap->da_state &= ~UNDONE;
12103 			dap->da_state |= ATTACHED;
12104 			chgs = 1;
12105 			/*
12106 			 * If the inode referenced by the directory has
12107 			 * been written out, then the dependency can be
12108 			 * moved to the pending list.
12109 			 */
12110 			if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
12111 				LIST_REMOVE(dap, da_pdlist);
12112 				LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
12113 				    da_pdlist);
12114 			}
12115 		}
12116 	}
12117 	/*
12118 	 * If there were any rollbacks in the directory, then it must be
12119 	 * marked dirty so that its will eventually get written back in
12120 	 * its correct form.
12121 	 */
12122 	if (chgs || (flags & WRITESUCCEEDED) == 0) {
12123 		if ((bp->b_flags & B_DELWRI) == 0)
12124 			stat_dir_entry++;
12125 		bdirty(bp);
12126 		return (1);
12127 	}
12128 	/*
12129 	 * If we are not waiting for a new directory block to be
12130 	 * claimed by its inode, then the pagedep will be freed.
12131 	 * Otherwise it will remain to track any new entries on
12132 	 * the page in case they are fsync'ed.
12133 	 */
12134 	free_pagedep(pagedep);
12135 	return (0);
12136 }
12137 
12138 /*
12139  * Writing back in-core inode structures.
12140  *
12141  * The filesystem only accesses an inode's contents when it occupies an
12142  * "in-core" inode structure.  These "in-core" structures are separate from
12143  * the page frames used to cache inode blocks.  Only the latter are
12144  * transferred to/from the disk.  So, when the updated contents of the
12145  * "in-core" inode structure are copied to the corresponding in-memory inode
12146  * block, the dependencies are also transferred.  The following procedure is
12147  * called when copying a dirty "in-core" inode to a cached inode block.
12148  */
12149 
12150 /*
12151  * Called when an inode is loaded from disk. If the effective link count
12152  * differed from the actual link count when it was last flushed, then we
12153  * need to ensure that the correct effective link count is put back.
12154  */
12155 void
12156 softdep_load_inodeblock(ip)
12157 	struct inode *ip;	/* the "in_core" copy of the inode */
12158 {
12159 	struct inodedep *inodedep;
12160 	struct ufsmount *ump;
12161 
12162 	ump = ITOUMP(ip);
12163 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
12164 	    ("softdep_load_inodeblock called on non-softdep filesystem"));
12165 	/*
12166 	 * Check for alternate nlink count.
12167 	 */
12168 	ip->i_effnlink = ip->i_nlink;
12169 	ACQUIRE_LOCK(ump);
12170 	if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0) {
12171 		FREE_LOCK(ump);
12172 		return;
12173 	}
12174 	ip->i_effnlink -= inodedep->id_nlinkdelta;
12175 	FREE_LOCK(ump);
12176 }
12177 
12178 /*
12179  * This routine is called just before the "in-core" inode
12180  * information is to be copied to the in-memory inode block.
12181  * Recall that an inode block contains several inodes. If
12182  * the force flag is set, then the dependencies will be
12183  * cleared so that the update can always be made. Note that
12184  * the buffer is locked when this routine is called, so we
12185  * will never be in the middle of writing the inode block
12186  * to disk.
12187  */
12188 void
12189 softdep_update_inodeblock(ip, bp, waitfor)
12190 	struct inode *ip;	/* the "in_core" copy of the inode */
12191 	struct buf *bp;		/* the buffer containing the inode block */
12192 	int waitfor;		/* nonzero => update must be allowed */
12193 {
12194 	struct inodedep *inodedep;
12195 	struct inoref *inoref;
12196 	struct ufsmount *ump;
12197 	struct worklist *wk;
12198 	struct mount *mp;
12199 	struct buf *ibp;
12200 	struct fs *fs;
12201 	int error;
12202 
12203 	ump = ITOUMP(ip);
12204 	mp = UFSTOVFS(ump);
12205 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
12206 	    ("softdep_update_inodeblock called on non-softdep filesystem"));
12207 	fs = ump->um_fs;
12208 	/*
12209 	 * Preserve the freelink that is on disk.  clear_unlinked_inodedep()
12210 	 * does not have access to the in-core ip so must write directly into
12211 	 * the inode block buffer when setting freelink.
12212 	 */
12213 	if (fs->fs_magic == FS_UFS1_MAGIC)
12214 		DIP_SET(ip, i_freelink, ((struct ufs1_dinode *)bp->b_data +
12215 		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
12216 	else
12217 		DIP_SET(ip, i_freelink, ((struct ufs2_dinode *)bp->b_data +
12218 		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
12219 	/*
12220 	 * If the effective link count is not equal to the actual link
12221 	 * count, then we must track the difference in an inodedep while
12222 	 * the inode is (potentially) tossed out of the cache. Otherwise,
12223 	 * if there is no existing inodedep, then there are no dependencies
12224 	 * to track.
12225 	 */
12226 	ACQUIRE_LOCK(ump);
12227 again:
12228 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
12229 		FREE_LOCK(ump);
12230 		if (ip->i_effnlink != ip->i_nlink)
12231 			panic("softdep_update_inodeblock: bad link count");
12232 		return;
12233 	}
12234 	if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink)
12235 		panic("softdep_update_inodeblock: bad delta");
12236 	/*
12237 	 * If we're flushing all dependencies we must also move any waiting
12238 	 * for journal writes onto the bufwait list prior to I/O.
12239 	 */
12240 	if (waitfor) {
12241 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12242 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12243 			    == DEPCOMPLETE) {
12244 				jwait(&inoref->if_list, MNT_WAIT);
12245 				goto again;
12246 			}
12247 		}
12248 	}
12249 	/*
12250 	 * Changes have been initiated. Anything depending on these
12251 	 * changes cannot occur until this inode has been written.
12252 	 */
12253 	inodedep->id_state &= ~COMPLETE;
12254 	if ((inodedep->id_state & ONWORKLIST) == 0)
12255 		WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list);
12256 	/*
12257 	 * Any new dependencies associated with the incore inode must
12258 	 * now be moved to the list associated with the buffer holding
12259 	 * the in-memory copy of the inode. Once merged process any
12260 	 * allocdirects that are completed by the merger.
12261 	 */
12262 	merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt);
12263 	if (!TAILQ_EMPTY(&inodedep->id_inoupdt))
12264 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt),
12265 		    NULL);
12266 	merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt);
12267 	if (!TAILQ_EMPTY(&inodedep->id_extupdt))
12268 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt),
12269 		    NULL);
12270 	/*
12271 	 * Now that the inode has been pushed into the buffer, the
12272 	 * operations dependent on the inode being written to disk
12273 	 * can be moved to the id_bufwait so that they will be
12274 	 * processed when the buffer I/O completes.
12275 	 */
12276 	while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
12277 		WORKLIST_REMOVE(wk);
12278 		WORKLIST_INSERT(&inodedep->id_bufwait, wk);
12279 	}
12280 	/*
12281 	 * Newly allocated inodes cannot be written until the bitmap
12282 	 * that allocates them have been written (indicated by
12283 	 * DEPCOMPLETE being set in id_state). If we are doing a
12284 	 * forced sync (e.g., an fsync on a file), we force the bitmap
12285 	 * to be written so that the update can be done.
12286 	 */
12287 	if (waitfor == 0) {
12288 		FREE_LOCK(ump);
12289 		return;
12290 	}
12291 retry:
12292 	if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) {
12293 		FREE_LOCK(ump);
12294 		return;
12295 	}
12296 	ibp = inodedep->id_bmsafemap->sm_buf;
12297 	ibp = getdirtybuf(ibp, LOCK_PTR(ump), MNT_WAIT);
12298 	if (ibp == NULL) {
12299 		/*
12300 		 * If ibp came back as NULL, the dependency could have been
12301 		 * freed while we slept.  Look it up again, and check to see
12302 		 * that it has completed.
12303 		 */
12304 		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
12305 			goto retry;
12306 		FREE_LOCK(ump);
12307 		return;
12308 	}
12309 	FREE_LOCK(ump);
12310 	if ((error = bwrite(ibp)) != 0)
12311 		softdep_error("softdep_update_inodeblock: bwrite", error);
12312 }
12313 
12314 /*
12315  * Merge the a new inode dependency list (such as id_newinoupdt) into an
12316  * old inode dependency list (such as id_inoupdt). This routine must be
12317  * called with splbio interrupts blocked.
12318  */
12319 static void
12320 merge_inode_lists(newlisthead, oldlisthead)
12321 	struct allocdirectlst *newlisthead;
12322 	struct allocdirectlst *oldlisthead;
12323 {
12324 	struct allocdirect *listadp, *newadp;
12325 
12326 	newadp = TAILQ_FIRST(newlisthead);
12327 	for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) {
12328 		if (listadp->ad_offset < newadp->ad_offset) {
12329 			listadp = TAILQ_NEXT(listadp, ad_next);
12330 			continue;
12331 		}
12332 		TAILQ_REMOVE(newlisthead, newadp, ad_next);
12333 		TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
12334 		if (listadp->ad_offset == newadp->ad_offset) {
12335 			allocdirect_merge(oldlisthead, newadp,
12336 			    listadp);
12337 			listadp = newadp;
12338 		}
12339 		newadp = TAILQ_FIRST(newlisthead);
12340 	}
12341 	while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) {
12342 		TAILQ_REMOVE(newlisthead, newadp, ad_next);
12343 		TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next);
12344 	}
12345 }
12346 
12347 /*
12348  * If we are doing an fsync, then we must ensure that any directory
12349  * entries for the inode have been written after the inode gets to disk.
12350  */
12351 int
12352 softdep_fsync(vp)
12353 	struct vnode *vp;	/* the "in_core" copy of the inode */
12354 {
12355 	struct inodedep *inodedep;
12356 	struct pagedep *pagedep;
12357 	struct inoref *inoref;
12358 	struct ufsmount *ump;
12359 	struct worklist *wk;
12360 	struct diradd *dap;
12361 	struct mount *mp;
12362 	struct vnode *pvp;
12363 	struct inode *ip;
12364 	struct buf *bp;
12365 	struct fs *fs;
12366 	struct thread *td = curthread;
12367 	int error, flushparent, pagedep_new_block;
12368 	ino_t parentino;
12369 	ufs_lbn_t lbn;
12370 
12371 	ip = VTOI(vp);
12372 	mp = vp->v_mount;
12373 	ump = VFSTOUFS(mp);
12374 	fs = ump->um_fs;
12375 	if (MOUNTEDSOFTDEP(mp) == 0)
12376 		return (0);
12377 	ACQUIRE_LOCK(ump);
12378 restart:
12379 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
12380 		FREE_LOCK(ump);
12381 		return (0);
12382 	}
12383 	TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12384 		if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12385 		    == DEPCOMPLETE) {
12386 			jwait(&inoref->if_list, MNT_WAIT);
12387 			goto restart;
12388 		}
12389 	}
12390 	if (!LIST_EMPTY(&inodedep->id_inowait) ||
12391 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
12392 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
12393 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
12394 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt))
12395 		panic("softdep_fsync: pending ops %p", inodedep);
12396 	for (error = 0, flushparent = 0; ; ) {
12397 		if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
12398 			break;
12399 		if (wk->wk_type != D_DIRADD)
12400 			panic("softdep_fsync: Unexpected type %s",
12401 			    TYPENAME(wk->wk_type));
12402 		dap = WK_DIRADD(wk);
12403 		/*
12404 		 * Flush our parent if this directory entry has a MKDIR_PARENT
12405 		 * dependency or is contained in a newly allocated block.
12406 		 */
12407 		if (dap->da_state & DIRCHG)
12408 			pagedep = dap->da_previous->dm_pagedep;
12409 		else
12410 			pagedep = dap->da_pagedep;
12411 		parentino = pagedep->pd_ino;
12412 		lbn = pagedep->pd_lbn;
12413 		if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE)
12414 			panic("softdep_fsync: dirty");
12415 		if ((dap->da_state & MKDIR_PARENT) ||
12416 		    (pagedep->pd_state & NEWBLOCK))
12417 			flushparent = 1;
12418 		else
12419 			flushparent = 0;
12420 		/*
12421 		 * If we are being fsync'ed as part of vgone'ing this vnode,
12422 		 * then we will not be able to release and recover the
12423 		 * vnode below, so we just have to give up on writing its
12424 		 * directory entry out. It will eventually be written, just
12425 		 * not now, but then the user was not asking to have it
12426 		 * written, so we are not breaking any promises.
12427 		 */
12428 		if (vp->v_iflag & VI_DOOMED)
12429 			break;
12430 		/*
12431 		 * We prevent deadlock by always fetching inodes from the
12432 		 * root, moving down the directory tree. Thus, when fetching
12433 		 * our parent directory, we first try to get the lock. If
12434 		 * that fails, we must unlock ourselves before requesting
12435 		 * the lock on our parent. See the comment in ufs_lookup
12436 		 * for details on possible races.
12437 		 */
12438 		FREE_LOCK(ump);
12439 		if (ffs_vgetf(mp, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp,
12440 		    FFSV_FORCEINSMQ)) {
12441 			error = vfs_busy(mp, MBF_NOWAIT);
12442 			if (error != 0) {
12443 				vfs_ref(mp);
12444 				VOP_UNLOCK(vp, 0);
12445 				error = vfs_busy(mp, 0);
12446 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
12447 				vfs_rel(mp);
12448 				if (error != 0)
12449 					return (ENOENT);
12450 				if (vp->v_iflag & VI_DOOMED) {
12451 					vfs_unbusy(mp);
12452 					return (ENOENT);
12453 				}
12454 			}
12455 			VOP_UNLOCK(vp, 0);
12456 			error = ffs_vgetf(mp, parentino, LK_EXCLUSIVE,
12457 			    &pvp, FFSV_FORCEINSMQ);
12458 			vfs_unbusy(mp);
12459 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
12460 			if (vp->v_iflag & VI_DOOMED) {
12461 				if (error == 0)
12462 					vput(pvp);
12463 				error = ENOENT;
12464 			}
12465 			if (error != 0)
12466 				return (error);
12467 		}
12468 		/*
12469 		 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps
12470 		 * that are contained in direct blocks will be resolved by
12471 		 * doing a ffs_update. Pagedeps contained in indirect blocks
12472 		 * may require a complete sync'ing of the directory. So, we
12473 		 * try the cheap and fast ffs_update first, and if that fails,
12474 		 * then we do the slower ffs_syncvnode of the directory.
12475 		 */
12476 		if (flushparent) {
12477 			int locked;
12478 
12479 			if ((error = ffs_update(pvp, 1)) != 0) {
12480 				vput(pvp);
12481 				return (error);
12482 			}
12483 			ACQUIRE_LOCK(ump);
12484 			locked = 1;
12485 			if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) {
12486 				if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) {
12487 					if (wk->wk_type != D_DIRADD)
12488 						panic("softdep_fsync: Unexpected type %s",
12489 						      TYPENAME(wk->wk_type));
12490 					dap = WK_DIRADD(wk);
12491 					if (dap->da_state & DIRCHG)
12492 						pagedep = dap->da_previous->dm_pagedep;
12493 					else
12494 						pagedep = dap->da_pagedep;
12495 					pagedep_new_block = pagedep->pd_state & NEWBLOCK;
12496 					FREE_LOCK(ump);
12497 					locked = 0;
12498 					if (pagedep_new_block && (error =
12499 					    ffs_syncvnode(pvp, MNT_WAIT, 0))) {
12500 						vput(pvp);
12501 						return (error);
12502 					}
12503 				}
12504 			}
12505 			if (locked)
12506 				FREE_LOCK(ump);
12507 		}
12508 		/*
12509 		 * Flush directory page containing the inode's name.
12510 		 */
12511 		error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred,
12512 		    &bp);
12513 		if (error == 0)
12514 			error = bwrite(bp);
12515 		else
12516 			brelse(bp);
12517 		vput(pvp);
12518 		if (error != 0)
12519 			return (error);
12520 		ACQUIRE_LOCK(ump);
12521 		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
12522 			break;
12523 	}
12524 	FREE_LOCK(ump);
12525 	return (0);
12526 }
12527 
12528 /*
12529  * Flush all the dirty bitmaps associated with the block device
12530  * before flushing the rest of the dirty blocks so as to reduce
12531  * the number of dependencies that will have to be rolled back.
12532  *
12533  * XXX Unused?
12534  */
12535 void
12536 softdep_fsync_mountdev(vp)
12537 	struct vnode *vp;
12538 {
12539 	struct buf *bp, *nbp;
12540 	struct worklist *wk;
12541 	struct bufobj *bo;
12542 
12543 	if (!vn_isdisk(vp, NULL))
12544 		panic("softdep_fsync_mountdev: vnode not a disk");
12545 	bo = &vp->v_bufobj;
12546 restart:
12547 	BO_LOCK(bo);
12548 	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
12549 		/*
12550 		 * If it is already scheduled, skip to the next buffer.
12551 		 */
12552 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
12553 			continue;
12554 
12555 		if ((bp->b_flags & B_DELWRI) == 0)
12556 			panic("softdep_fsync_mountdev: not dirty");
12557 		/*
12558 		 * We are only interested in bitmaps with outstanding
12559 		 * dependencies.
12560 		 */
12561 		if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
12562 		    wk->wk_type != D_BMSAFEMAP ||
12563 		    (bp->b_vflags & BV_BKGRDINPROG)) {
12564 			BUF_UNLOCK(bp);
12565 			continue;
12566 		}
12567 		BO_UNLOCK(bo);
12568 		bremfree(bp);
12569 		(void) bawrite(bp);
12570 		goto restart;
12571 	}
12572 	drain_output(vp);
12573 	BO_UNLOCK(bo);
12574 }
12575 
12576 /*
12577  * Sync all cylinder groups that were dirty at the time this function is
12578  * called.  Newly dirtied cgs will be inserted before the sentinel.  This
12579  * is used to flush freedep activity that may be holding up writes to a
12580  * indirect block.
12581  */
12582 static int
12583 sync_cgs(mp, waitfor)
12584 	struct mount *mp;
12585 	int waitfor;
12586 {
12587 	struct bmsafemap *bmsafemap;
12588 	struct bmsafemap *sentinel;
12589 	struct ufsmount *ump;
12590 	struct buf *bp;
12591 	int error;
12592 
12593 	sentinel = malloc(sizeof(*sentinel), M_BMSAFEMAP, M_ZERO | M_WAITOK);
12594 	sentinel->sm_cg = -1;
12595 	ump = VFSTOUFS(mp);
12596 	error = 0;
12597 	ACQUIRE_LOCK(ump);
12598 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, sentinel, sm_next);
12599 	for (bmsafemap = LIST_NEXT(sentinel, sm_next); bmsafemap != NULL;
12600 	    bmsafemap = LIST_NEXT(sentinel, sm_next)) {
12601 		/* Skip sentinels and cgs with no work to release. */
12602 		if (bmsafemap->sm_cg == -1 ||
12603 		    (LIST_EMPTY(&bmsafemap->sm_freehd) &&
12604 		    LIST_EMPTY(&bmsafemap->sm_freewr))) {
12605 			LIST_REMOVE(sentinel, sm_next);
12606 			LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next);
12607 			continue;
12608 		}
12609 		/*
12610 		 * If we don't get the lock and we're waiting try again, if
12611 		 * not move on to the next buf and try to sync it.
12612 		 */
12613 		bp = getdirtybuf(bmsafemap->sm_buf, LOCK_PTR(ump), waitfor);
12614 		if (bp == NULL && waitfor == MNT_WAIT)
12615 			continue;
12616 		LIST_REMOVE(sentinel, sm_next);
12617 		LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next);
12618 		if (bp == NULL)
12619 			continue;
12620 		FREE_LOCK(ump);
12621 		if (waitfor == MNT_NOWAIT)
12622 			bawrite(bp);
12623 		else
12624 			error = bwrite(bp);
12625 		ACQUIRE_LOCK(ump);
12626 		if (error)
12627 			break;
12628 	}
12629 	LIST_REMOVE(sentinel, sm_next);
12630 	FREE_LOCK(ump);
12631 	free(sentinel, M_BMSAFEMAP);
12632 	return (error);
12633 }
12634 
12635 /*
12636  * This routine is called when we are trying to synchronously flush a
12637  * file. This routine must eliminate any filesystem metadata dependencies
12638  * so that the syncing routine can succeed.
12639  */
12640 int
12641 softdep_sync_metadata(struct vnode *vp)
12642 {
12643 	struct inode *ip;
12644 	int error;
12645 
12646 	ip = VTOI(vp);
12647 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
12648 	    ("softdep_sync_metadata called on non-softdep filesystem"));
12649 	/*
12650 	 * Ensure that any direct block dependencies have been cleared,
12651 	 * truncations are started, and inode references are journaled.
12652 	 */
12653 	ACQUIRE_LOCK(VFSTOUFS(vp->v_mount));
12654 	/*
12655 	 * Write all journal records to prevent rollbacks on devvp.
12656 	 */
12657 	if (vp->v_type == VCHR)
12658 		softdep_flushjournal(vp->v_mount);
12659 	error = flush_inodedep_deps(vp, vp->v_mount, ip->i_number);
12660 	/*
12661 	 * Ensure that all truncates are written so we won't find deps on
12662 	 * indirect blocks.
12663 	 */
12664 	process_truncates(vp);
12665 	FREE_LOCK(VFSTOUFS(vp->v_mount));
12666 
12667 	return (error);
12668 }
12669 
12670 /*
12671  * This routine is called when we are attempting to sync a buf with
12672  * dependencies.  If waitfor is MNT_NOWAIT it attempts to schedule any
12673  * other IO it can but returns EBUSY if the buffer is not yet able to
12674  * be written.  Dependencies which will not cause rollbacks will always
12675  * return 0.
12676  */
12677 int
12678 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
12679 {
12680 	struct indirdep *indirdep;
12681 	struct pagedep *pagedep;
12682 	struct allocindir *aip;
12683 	struct newblk *newblk;
12684 	struct ufsmount *ump;
12685 	struct buf *nbp;
12686 	struct worklist *wk;
12687 	int i, error;
12688 
12689 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
12690 	    ("softdep_sync_buf called on non-softdep filesystem"));
12691 	/*
12692 	 * For VCHR we just don't want to force flush any dependencies that
12693 	 * will cause rollbacks.
12694 	 */
12695 	if (vp->v_type == VCHR) {
12696 		if (waitfor == MNT_NOWAIT && softdep_count_dependencies(bp, 0))
12697 			return (EBUSY);
12698 		return (0);
12699 	}
12700 	ump = VFSTOUFS(vp->v_mount);
12701 	ACQUIRE_LOCK(ump);
12702 	/*
12703 	 * As we hold the buffer locked, none of its dependencies
12704 	 * will disappear.
12705 	 */
12706 	error = 0;
12707 top:
12708 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
12709 		switch (wk->wk_type) {
12710 
12711 		case D_ALLOCDIRECT:
12712 		case D_ALLOCINDIR:
12713 			newblk = WK_NEWBLK(wk);
12714 			if (newblk->nb_jnewblk != NULL) {
12715 				if (waitfor == MNT_NOWAIT) {
12716 					error = EBUSY;
12717 					goto out_unlock;
12718 				}
12719 				jwait(&newblk->nb_jnewblk->jn_list, waitfor);
12720 				goto top;
12721 			}
12722 			if (newblk->nb_state & DEPCOMPLETE ||
12723 			    waitfor == MNT_NOWAIT)
12724 				continue;
12725 			nbp = newblk->nb_bmsafemap->sm_buf;
12726 			nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor);
12727 			if (nbp == NULL)
12728 				goto top;
12729 			FREE_LOCK(ump);
12730 			if ((error = bwrite(nbp)) != 0)
12731 				goto out;
12732 			ACQUIRE_LOCK(ump);
12733 			continue;
12734 
12735 		case D_INDIRDEP:
12736 			indirdep = WK_INDIRDEP(wk);
12737 			if (waitfor == MNT_NOWAIT) {
12738 				if (!TAILQ_EMPTY(&indirdep->ir_trunc) ||
12739 				    !LIST_EMPTY(&indirdep->ir_deplisthd)) {
12740 					error = EBUSY;
12741 					goto out_unlock;
12742 				}
12743 			}
12744 			if (!TAILQ_EMPTY(&indirdep->ir_trunc))
12745 				panic("softdep_sync_buf: truncation pending.");
12746 		restart:
12747 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
12748 				newblk = (struct newblk *)aip;
12749 				if (newblk->nb_jnewblk != NULL) {
12750 					jwait(&newblk->nb_jnewblk->jn_list,
12751 					    waitfor);
12752 					goto restart;
12753 				}
12754 				if (newblk->nb_state & DEPCOMPLETE)
12755 					continue;
12756 				nbp = newblk->nb_bmsafemap->sm_buf;
12757 				nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor);
12758 				if (nbp == NULL)
12759 					goto restart;
12760 				FREE_LOCK(ump);
12761 				if ((error = bwrite(nbp)) != 0)
12762 					goto out;
12763 				ACQUIRE_LOCK(ump);
12764 				goto restart;
12765 			}
12766 			continue;
12767 
12768 		case D_PAGEDEP:
12769 			/*
12770 			 * Only flush directory entries in synchronous passes.
12771 			 */
12772 			if (waitfor != MNT_WAIT) {
12773 				error = EBUSY;
12774 				goto out_unlock;
12775 			}
12776 			/*
12777 			 * While syncing snapshots, we must allow recursive
12778 			 * lookups.
12779 			 */
12780 			BUF_AREC(bp);
12781 			/*
12782 			 * We are trying to sync a directory that may
12783 			 * have dependencies on both its own metadata
12784 			 * and/or dependencies on the inodes of any
12785 			 * recently allocated files. We walk its diradd
12786 			 * lists pushing out the associated inode.
12787 			 */
12788 			pagedep = WK_PAGEDEP(wk);
12789 			for (i = 0; i < DAHASHSZ; i++) {
12790 				if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0)
12791 					continue;
12792 				if ((error = flush_pagedep_deps(vp, wk->wk_mp,
12793 				    &pagedep->pd_diraddhd[i]))) {
12794 					BUF_NOREC(bp);
12795 					goto out_unlock;
12796 				}
12797 			}
12798 			BUF_NOREC(bp);
12799 			continue;
12800 
12801 		case D_FREEWORK:
12802 		case D_FREEDEP:
12803 		case D_JSEGDEP:
12804 		case D_JNEWBLK:
12805 			continue;
12806 
12807 		default:
12808 			panic("softdep_sync_buf: Unknown type %s",
12809 			    TYPENAME(wk->wk_type));
12810 			/* NOTREACHED */
12811 		}
12812 	}
12813 out_unlock:
12814 	FREE_LOCK(ump);
12815 out:
12816 	return (error);
12817 }
12818 
12819 /*
12820  * Flush the dependencies associated with an inodedep.
12821  * Called with splbio blocked.
12822  */
12823 static int
12824 flush_inodedep_deps(vp, mp, ino)
12825 	struct vnode *vp;
12826 	struct mount *mp;
12827 	ino_t ino;
12828 {
12829 	struct inodedep *inodedep;
12830 	struct inoref *inoref;
12831 	struct ufsmount *ump;
12832 	int error, waitfor;
12833 
12834 	/*
12835 	 * This work is done in two passes. The first pass grabs most
12836 	 * of the buffers and begins asynchronously writing them. The
12837 	 * only way to wait for these asynchronous writes is to sleep
12838 	 * on the filesystem vnode which may stay busy for a long time
12839 	 * if the filesystem is active. So, instead, we make a second
12840 	 * pass over the dependencies blocking on each write. In the
12841 	 * usual case we will be blocking against a write that we
12842 	 * initiated, so when it is done the dependency will have been
12843 	 * resolved. Thus the second pass is expected to end quickly.
12844 	 * We give a brief window at the top of the loop to allow
12845 	 * any pending I/O to complete.
12846 	 */
12847 	ump = VFSTOUFS(mp);
12848 	LOCK_OWNED(ump);
12849 	for (error = 0, waitfor = MNT_NOWAIT; ; ) {
12850 		if (error)
12851 			return (error);
12852 		FREE_LOCK(ump);
12853 		ACQUIRE_LOCK(ump);
12854 restart:
12855 		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
12856 			return (0);
12857 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12858 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12859 			    == DEPCOMPLETE) {
12860 				jwait(&inoref->if_list, MNT_WAIT);
12861 				goto restart;
12862 			}
12863 		}
12864 		if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) ||
12865 		    flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) ||
12866 		    flush_deplist(&inodedep->id_extupdt, waitfor, &error) ||
12867 		    flush_deplist(&inodedep->id_newextupdt, waitfor, &error))
12868 			continue;
12869 		/*
12870 		 * If pass2, we are done, otherwise do pass 2.
12871 		 */
12872 		if (waitfor == MNT_WAIT)
12873 			break;
12874 		waitfor = MNT_WAIT;
12875 	}
12876 	/*
12877 	 * Try freeing inodedep in case all dependencies have been removed.
12878 	 */
12879 	if (inodedep_lookup(mp, ino, 0, &inodedep) != 0)
12880 		(void) free_inodedep(inodedep);
12881 	return (0);
12882 }
12883 
12884 /*
12885  * Flush an inode dependency list.
12886  * Called with splbio blocked.
12887  */
12888 static int
12889 flush_deplist(listhead, waitfor, errorp)
12890 	struct allocdirectlst *listhead;
12891 	int waitfor;
12892 	int *errorp;
12893 {
12894 	struct allocdirect *adp;
12895 	struct newblk *newblk;
12896 	struct ufsmount *ump;
12897 	struct buf *bp;
12898 
12899 	if ((adp = TAILQ_FIRST(listhead)) == NULL)
12900 		return (0);
12901 	ump = VFSTOUFS(adp->ad_list.wk_mp);
12902 	LOCK_OWNED(ump);
12903 	TAILQ_FOREACH(adp, listhead, ad_next) {
12904 		newblk = (struct newblk *)adp;
12905 		if (newblk->nb_jnewblk != NULL) {
12906 			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
12907 			return (1);
12908 		}
12909 		if (newblk->nb_state & DEPCOMPLETE)
12910 			continue;
12911 		bp = newblk->nb_bmsafemap->sm_buf;
12912 		bp = getdirtybuf(bp, LOCK_PTR(ump), waitfor);
12913 		if (bp == NULL) {
12914 			if (waitfor == MNT_NOWAIT)
12915 				continue;
12916 			return (1);
12917 		}
12918 		FREE_LOCK(ump);
12919 		if (waitfor == MNT_NOWAIT)
12920 			bawrite(bp);
12921 		else
12922 			*errorp = bwrite(bp);
12923 		ACQUIRE_LOCK(ump);
12924 		return (1);
12925 	}
12926 	return (0);
12927 }
12928 
12929 /*
12930  * Flush dependencies associated with an allocdirect block.
12931  */
12932 static int
12933 flush_newblk_dep(vp, mp, lbn)
12934 	struct vnode *vp;
12935 	struct mount *mp;
12936 	ufs_lbn_t lbn;
12937 {
12938 	struct newblk *newblk;
12939 	struct ufsmount *ump;
12940 	struct bufobj *bo;
12941 	struct inode *ip;
12942 	struct buf *bp;
12943 	ufs2_daddr_t blkno;
12944 	int error;
12945 
12946 	error = 0;
12947 	bo = &vp->v_bufobj;
12948 	ip = VTOI(vp);
12949 	blkno = DIP(ip, i_db[lbn]);
12950 	if (blkno == 0)
12951 		panic("flush_newblk_dep: Missing block");
12952 	ump = VFSTOUFS(mp);
12953 	ACQUIRE_LOCK(ump);
12954 	/*
12955 	 * Loop until all dependencies related to this block are satisfied.
12956 	 * We must be careful to restart after each sleep in case a write
12957 	 * completes some part of this process for us.
12958 	 */
12959 	for (;;) {
12960 		if (newblk_lookup(mp, blkno, 0, &newblk) == 0) {
12961 			FREE_LOCK(ump);
12962 			break;
12963 		}
12964 		if (newblk->nb_list.wk_type != D_ALLOCDIRECT)
12965 			panic("flush_newblk_dep: Bad newblk %p", newblk);
12966 		/*
12967 		 * Flush the journal.
12968 		 */
12969 		if (newblk->nb_jnewblk != NULL) {
12970 			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
12971 			continue;
12972 		}
12973 		/*
12974 		 * Write the bitmap dependency.
12975 		 */
12976 		if ((newblk->nb_state & DEPCOMPLETE) == 0) {
12977 			bp = newblk->nb_bmsafemap->sm_buf;
12978 			bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT);
12979 			if (bp == NULL)
12980 				continue;
12981 			FREE_LOCK(ump);
12982 			error = bwrite(bp);
12983 			if (error)
12984 				break;
12985 			ACQUIRE_LOCK(ump);
12986 			continue;
12987 		}
12988 		/*
12989 		 * Write the buffer.
12990 		 */
12991 		FREE_LOCK(ump);
12992 		BO_LOCK(bo);
12993 		bp = gbincore(bo, lbn);
12994 		if (bp != NULL) {
12995 			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
12996 			    LK_INTERLOCK, BO_LOCKPTR(bo));
12997 			if (error == ENOLCK) {
12998 				ACQUIRE_LOCK(ump);
12999 				error = 0;
13000 				continue; /* Slept, retry */
13001 			}
13002 			if (error != 0)
13003 				break;	/* Failed */
13004 			if (bp->b_flags & B_DELWRI) {
13005 				bremfree(bp);
13006 				error = bwrite(bp);
13007 				if (error)
13008 					break;
13009 			} else
13010 				BUF_UNLOCK(bp);
13011 		} else
13012 			BO_UNLOCK(bo);
13013 		/*
13014 		 * We have to wait for the direct pointers to
13015 		 * point at the newdirblk before the dependency
13016 		 * will go away.
13017 		 */
13018 		error = ffs_update(vp, 1);
13019 		if (error)
13020 			break;
13021 		ACQUIRE_LOCK(ump);
13022 	}
13023 	return (error);
13024 }
13025 
13026 /*
13027  * Eliminate a pagedep dependency by flushing out all its diradd dependencies.
13028  * Called with splbio blocked.
13029  */
13030 static int
13031 flush_pagedep_deps(pvp, mp, diraddhdp)
13032 	struct vnode *pvp;
13033 	struct mount *mp;
13034 	struct diraddhd *diraddhdp;
13035 {
13036 	struct inodedep *inodedep;
13037 	struct inoref *inoref;
13038 	struct ufsmount *ump;
13039 	struct diradd *dap;
13040 	struct vnode *vp;
13041 	int error = 0;
13042 	struct buf *bp;
13043 	ino_t inum;
13044 	struct diraddhd unfinished;
13045 
13046 	LIST_INIT(&unfinished);
13047 	ump = VFSTOUFS(mp);
13048 	LOCK_OWNED(ump);
13049 restart:
13050 	while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
13051 		/*
13052 		 * Flush ourselves if this directory entry
13053 		 * has a MKDIR_PARENT dependency.
13054 		 */
13055 		if (dap->da_state & MKDIR_PARENT) {
13056 			FREE_LOCK(ump);
13057 			if ((error = ffs_update(pvp, 1)) != 0)
13058 				break;
13059 			ACQUIRE_LOCK(ump);
13060 			/*
13061 			 * If that cleared dependencies, go on to next.
13062 			 */
13063 			if (dap != LIST_FIRST(diraddhdp))
13064 				continue;
13065 			/*
13066 			 * All MKDIR_PARENT dependencies and all the
13067 			 * NEWBLOCK pagedeps that are contained in direct
13068 			 * blocks were resolved by doing above ffs_update.
13069 			 * Pagedeps contained in indirect blocks may
13070 			 * require a complete sync'ing of the directory.
13071 			 * We are in the midst of doing a complete sync,
13072 			 * so if they are not resolved in this pass we
13073 			 * defer them for now as they will be sync'ed by
13074 			 * our caller shortly.
13075 			 */
13076 			LIST_REMOVE(dap, da_pdlist);
13077 			LIST_INSERT_HEAD(&unfinished, dap, da_pdlist);
13078 			continue;
13079 		}
13080 		/*
13081 		 * A newly allocated directory must have its "." and
13082 		 * ".." entries written out before its name can be
13083 		 * committed in its parent.
13084 		 */
13085 		inum = dap->da_newinum;
13086 		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
13087 			panic("flush_pagedep_deps: lost inode1");
13088 		/*
13089 		 * Wait for any pending journal adds to complete so we don't
13090 		 * cause rollbacks while syncing.
13091 		 */
13092 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
13093 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
13094 			    == DEPCOMPLETE) {
13095 				jwait(&inoref->if_list, MNT_WAIT);
13096 				goto restart;
13097 			}
13098 		}
13099 		if (dap->da_state & MKDIR_BODY) {
13100 			FREE_LOCK(ump);
13101 			if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
13102 			    FFSV_FORCEINSMQ)))
13103 				break;
13104 			error = flush_newblk_dep(vp, mp, 0);
13105 			/*
13106 			 * If we still have the dependency we might need to
13107 			 * update the vnode to sync the new link count to
13108 			 * disk.
13109 			 */
13110 			if (error == 0 && dap == LIST_FIRST(diraddhdp))
13111 				error = ffs_update(vp, 1);
13112 			vput(vp);
13113 			if (error != 0)
13114 				break;
13115 			ACQUIRE_LOCK(ump);
13116 			/*
13117 			 * If that cleared dependencies, go on to next.
13118 			 */
13119 			if (dap != LIST_FIRST(diraddhdp))
13120 				continue;
13121 			if (dap->da_state & MKDIR_BODY) {
13122 				inodedep_lookup(UFSTOVFS(ump), inum, 0,
13123 				    &inodedep);
13124 				panic("flush_pagedep_deps: MKDIR_BODY "
13125 				    "inodedep %p dap %p vp %p",
13126 				    inodedep, dap, vp);
13127 			}
13128 		}
13129 		/*
13130 		 * Flush the inode on which the directory entry depends.
13131 		 * Having accounted for MKDIR_PARENT and MKDIR_BODY above,
13132 		 * the only remaining dependency is that the updated inode
13133 		 * count must get pushed to disk. The inode has already
13134 		 * been pushed into its inode buffer (via VOP_UPDATE) at
13135 		 * the time of the reference count change. So we need only
13136 		 * locate that buffer, ensure that there will be no rollback
13137 		 * caused by a bitmap dependency, then write the inode buffer.
13138 		 */
13139 retry:
13140 		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
13141 			panic("flush_pagedep_deps: lost inode");
13142 		/*
13143 		 * If the inode still has bitmap dependencies,
13144 		 * push them to disk.
13145 		 */
13146 		if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) {
13147 			bp = inodedep->id_bmsafemap->sm_buf;
13148 			bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT);
13149 			if (bp == NULL)
13150 				goto retry;
13151 			FREE_LOCK(ump);
13152 			if ((error = bwrite(bp)) != 0)
13153 				break;
13154 			ACQUIRE_LOCK(ump);
13155 			if (dap != LIST_FIRST(diraddhdp))
13156 				continue;
13157 		}
13158 		/*
13159 		 * If the inode is still sitting in a buffer waiting
13160 		 * to be written or waiting for the link count to be
13161 		 * adjusted update it here to flush it to disk.
13162 		 */
13163 		if (dap == LIST_FIRST(diraddhdp)) {
13164 			FREE_LOCK(ump);
13165 			if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
13166 			    FFSV_FORCEINSMQ)))
13167 				break;
13168 			error = ffs_update(vp, 1);
13169 			vput(vp);
13170 			if (error)
13171 				break;
13172 			ACQUIRE_LOCK(ump);
13173 		}
13174 		/*
13175 		 * If we have failed to get rid of all the dependencies
13176 		 * then something is seriously wrong.
13177 		 */
13178 		if (dap == LIST_FIRST(diraddhdp)) {
13179 			inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep);
13180 			panic("flush_pagedep_deps: failed to flush "
13181 			    "inodedep %p ino %ju dap %p",
13182 			    inodedep, (uintmax_t)inum, dap);
13183 		}
13184 	}
13185 	if (error)
13186 		ACQUIRE_LOCK(ump);
13187 	while ((dap = LIST_FIRST(&unfinished)) != NULL) {
13188 		LIST_REMOVE(dap, da_pdlist);
13189 		LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist);
13190 	}
13191 	return (error);
13192 }
13193 
13194 /*
13195  * A large burst of file addition or deletion activity can drive the
13196  * memory load excessively high. First attempt to slow things down
13197  * using the techniques below. If that fails, this routine requests
13198  * the offending operations to fall back to running synchronously
13199  * until the memory load returns to a reasonable level.
13200  */
13201 int
13202 softdep_slowdown(vp)
13203 	struct vnode *vp;
13204 {
13205 	struct ufsmount *ump;
13206 	int jlow;
13207 	int max_softdeps_hard;
13208 
13209 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
13210 	    ("softdep_slowdown called on non-softdep filesystem"));
13211 	ump = VFSTOUFS(vp->v_mount);
13212 	ACQUIRE_LOCK(ump);
13213 	jlow = 0;
13214 	/*
13215 	 * Check for journal space if needed.
13216 	 */
13217 	if (DOINGSUJ(vp)) {
13218 		if (journal_space(ump, 0) == 0)
13219 			jlow = 1;
13220 	}
13221 	/*
13222 	 * If the system is under its limits and our filesystem is
13223 	 * not responsible for more than our share of the usage and
13224 	 * we are not low on journal space, then no need to slow down.
13225 	 */
13226 	max_softdeps_hard = max_softdeps * 11 / 10;
13227 	if (dep_current[D_DIRREM] < max_softdeps_hard / 2 &&
13228 	    dep_current[D_INODEDEP] < max_softdeps_hard &&
13229 	    dep_current[D_INDIRDEP] < max_softdeps_hard / 1000 &&
13230 	    dep_current[D_FREEBLKS] < max_softdeps_hard && jlow == 0 &&
13231 	    ump->softdep_curdeps[D_DIRREM] <
13232 	    (max_softdeps_hard / 2) / stat_flush_threads &&
13233 	    ump->softdep_curdeps[D_INODEDEP] <
13234 	    max_softdeps_hard / stat_flush_threads &&
13235 	    ump->softdep_curdeps[D_INDIRDEP] <
13236 	    (max_softdeps_hard / 1000) / stat_flush_threads &&
13237 	    ump->softdep_curdeps[D_FREEBLKS] <
13238 	    max_softdeps_hard / stat_flush_threads) {
13239 		FREE_LOCK(ump);
13240   		return (0);
13241 	}
13242 	/*
13243 	 * If the journal is low or our filesystem is over its limit
13244 	 * then speedup the cleanup.
13245 	 */
13246 	if (ump->softdep_curdeps[D_INDIRDEP] <
13247 	    (max_softdeps_hard / 1000) / stat_flush_threads || jlow)
13248 		softdep_speedup(ump);
13249 	stat_sync_limit_hit += 1;
13250 	FREE_LOCK(ump);
13251 	/*
13252 	 * We only slow down the rate at which new dependencies are
13253 	 * generated if we are not using journaling. With journaling,
13254 	 * the cleanup should always be sufficient to keep things
13255 	 * under control.
13256 	 */
13257 	if (DOINGSUJ(vp))
13258 		return (0);
13259 	return (1);
13260 }
13261 
13262 /*
13263  * Called by the allocation routines when they are about to fail
13264  * in the hope that we can free up the requested resource (inodes
13265  * or disk space).
13266  *
13267  * First check to see if the work list has anything on it. If it has,
13268  * clean up entries until we successfully free the requested resource.
13269  * Because this process holds inodes locked, we cannot handle any remove
13270  * requests that might block on a locked inode as that could lead to
13271  * deadlock. If the worklist yields none of the requested resource,
13272  * start syncing out vnodes to free up the needed space.
13273  */
13274 int
13275 softdep_request_cleanup(fs, vp, cred, resource)
13276 	struct fs *fs;
13277 	struct vnode *vp;
13278 	struct ucred *cred;
13279 	int resource;
13280 {
13281 	struct ufsmount *ump;
13282 	struct mount *mp;
13283 	long starttime;
13284 	ufs2_daddr_t needed;
13285 	int error, failed_vnode;
13286 
13287 	/*
13288 	 * If we are being called because of a process doing a
13289 	 * copy-on-write, then it is not safe to process any
13290 	 * worklist items as we will recurse into the copyonwrite
13291 	 * routine.  This will result in an incoherent snapshot.
13292 	 * If the vnode that we hold is a snapshot, we must avoid
13293 	 * handling other resources that could cause deadlock.
13294 	 */
13295 	if ((curthread->td_pflags & TDP_COWINPROGRESS) || IS_SNAPSHOT(VTOI(vp)))
13296 		return (0);
13297 
13298 	if (resource == FLUSH_BLOCKS_WAIT)
13299 		stat_cleanup_blkrequests += 1;
13300 	else
13301 		stat_cleanup_inorequests += 1;
13302 
13303 	mp = vp->v_mount;
13304 	ump = VFSTOUFS(mp);
13305 	mtx_assert(UFS_MTX(ump), MA_OWNED);
13306 	UFS_UNLOCK(ump);
13307 	error = ffs_update(vp, 1);
13308 	if (error != 0 || MOUNTEDSOFTDEP(mp) == 0) {
13309 		UFS_LOCK(ump);
13310 		return (0);
13311 	}
13312 	/*
13313 	 * If we are in need of resources, start by cleaning up
13314 	 * any block removals associated with our inode.
13315 	 */
13316 	ACQUIRE_LOCK(ump);
13317 	process_removes(vp);
13318 	process_truncates(vp);
13319 	FREE_LOCK(ump);
13320 	/*
13321 	 * Now clean up at least as many resources as we will need.
13322 	 *
13323 	 * When requested to clean up inodes, the number that are needed
13324 	 * is set by the number of simultaneous writers (mnt_writeopcount)
13325 	 * plus a bit of slop (2) in case some more writers show up while
13326 	 * we are cleaning.
13327 	 *
13328 	 * When requested to free up space, the amount of space that
13329 	 * we need is enough blocks to allocate a full-sized segment
13330 	 * (fs_contigsumsize). The number of such segments that will
13331 	 * be needed is set by the number of simultaneous writers
13332 	 * (mnt_writeopcount) plus a bit of slop (2) in case some more
13333 	 * writers show up while we are cleaning.
13334 	 *
13335 	 * Additionally, if we are unpriviledged and allocating space,
13336 	 * we need to ensure that we clean up enough blocks to get the
13337 	 * needed number of blocks over the threshold of the minimum
13338 	 * number of blocks required to be kept free by the filesystem
13339 	 * (fs_minfree).
13340 	 */
13341 	if (resource == FLUSH_INODES_WAIT) {
13342 		needed = vp->v_mount->mnt_writeopcount + 2;
13343 	} else if (resource == FLUSH_BLOCKS_WAIT) {
13344 		needed = (vp->v_mount->mnt_writeopcount + 2) *
13345 		    fs->fs_contigsumsize;
13346 		if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0))
13347 			needed += fragstoblks(fs,
13348 			    roundup((fs->fs_dsize * fs->fs_minfree / 100) -
13349 			    fs->fs_cstotal.cs_nffree, fs->fs_frag));
13350 	} else {
13351 		UFS_LOCK(ump);
13352 		printf("softdep_request_cleanup: Unknown resource type %d\n",
13353 		    resource);
13354 		return (0);
13355 	}
13356 	starttime = time_second;
13357 retry:
13358 	if ((resource == FLUSH_BLOCKS_WAIT && ump->softdep_on_worklist > 0 &&
13359 	    fs->fs_cstotal.cs_nbfree <= needed) ||
13360 	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
13361 	    fs->fs_cstotal.cs_nifree <= needed)) {
13362 		ACQUIRE_LOCK(ump);
13363 		if (ump->softdep_on_worklist > 0 &&
13364 		    process_worklist_item(UFSTOVFS(ump),
13365 		    ump->softdep_on_worklist, LK_NOWAIT) != 0)
13366 			stat_worklist_push += 1;
13367 		FREE_LOCK(ump);
13368 	}
13369 	/*
13370 	 * If we still need resources and there are no more worklist
13371 	 * entries to process to obtain them, we have to start flushing
13372 	 * the dirty vnodes to force the release of additional requests
13373 	 * to the worklist that we can then process to reap addition
13374 	 * resources. We walk the vnodes associated with the mount point
13375 	 * until we get the needed worklist requests that we can reap.
13376 	 *
13377 	 * If there are several threads all needing to clean the same
13378 	 * mount point, only one is allowed to walk the mount list.
13379 	 * When several threads all try to walk the same mount list,
13380 	 * they end up competing with each other and often end up in
13381 	 * livelock. This approach ensures that forward progress is
13382 	 * made at the cost of occational ENOSPC errors being returned
13383 	 * that might otherwise have been avoided.
13384 	 */
13385 	error = 1;
13386 	if ((resource == FLUSH_BLOCKS_WAIT &&
13387 	     fs->fs_cstotal.cs_nbfree <= needed) ||
13388 	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
13389 	     fs->fs_cstotal.cs_nifree <= needed)) {
13390 		ACQUIRE_LOCK(ump);
13391 		if ((ump->um_softdep->sd_flags & FLUSH_RC_ACTIVE) == 0) {
13392 			ump->um_softdep->sd_flags |= FLUSH_RC_ACTIVE;
13393 			FREE_LOCK(ump);
13394 			failed_vnode = softdep_request_cleanup_flush(mp, ump);
13395 			ACQUIRE_LOCK(ump);
13396 			ump->um_softdep->sd_flags &= ~FLUSH_RC_ACTIVE;
13397 			FREE_LOCK(ump);
13398 			if (ump->softdep_on_worklist > 0) {
13399 				stat_cleanup_retries += 1;
13400 				if (!failed_vnode)
13401 					goto retry;
13402 			}
13403 		} else {
13404 			FREE_LOCK(ump);
13405 			error = 0;
13406 		}
13407 		stat_cleanup_failures += 1;
13408 	}
13409 	if (time_second - starttime > stat_cleanup_high_delay)
13410 		stat_cleanup_high_delay = time_second - starttime;
13411 	UFS_LOCK(ump);
13412 	return (error);
13413 }
13414 
13415 /*
13416  * Scan the vnodes for the specified mount point flushing out any
13417  * vnodes that can be locked without waiting. Finally, try to flush
13418  * the device associated with the mount point if it can be locked
13419  * without waiting.
13420  *
13421  * We return 0 if we were able to lock every vnode in our scan.
13422  * If we had to skip one or more vnodes, we return 1.
13423  */
13424 static int
13425 softdep_request_cleanup_flush(mp, ump)
13426 	struct mount *mp;
13427 	struct ufsmount *ump;
13428 {
13429 	struct thread *td;
13430 	struct vnode *lvp, *mvp;
13431 	int failed_vnode;
13432 
13433 	failed_vnode = 0;
13434 	td = curthread;
13435 	MNT_VNODE_FOREACH_ALL(lvp, mp, mvp) {
13436 		if (TAILQ_FIRST(&lvp->v_bufobj.bo_dirty.bv_hd) == 0) {
13437 			VI_UNLOCK(lvp);
13438 			continue;
13439 		}
13440 		if (vget(lvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT,
13441 		    td) != 0) {
13442 			failed_vnode = 1;
13443 			continue;
13444 		}
13445 		if (lvp->v_vflag & VV_NOSYNC) {	/* unlinked */
13446 			vput(lvp);
13447 			continue;
13448 		}
13449 		(void) ffs_syncvnode(lvp, MNT_NOWAIT, 0);
13450 		vput(lvp);
13451 	}
13452 	lvp = ump->um_devvp;
13453 	if (vn_lock(lvp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
13454 		VOP_FSYNC(lvp, MNT_NOWAIT, td);
13455 		VOP_UNLOCK(lvp, 0);
13456 	}
13457 	return (failed_vnode);
13458 }
13459 
13460 static bool
13461 softdep_excess_items(struct ufsmount *ump, int item)
13462 {
13463 
13464 	KASSERT(item >= 0 && item < D_LAST, ("item %d", item));
13465 	return (dep_current[item] > max_softdeps &&
13466 	    ump->softdep_curdeps[item] > max_softdeps /
13467 	    stat_flush_threads);
13468 }
13469 
13470 static void
13471 schedule_cleanup(struct mount *mp)
13472 {
13473 	struct ufsmount *ump;
13474 	struct thread *td;
13475 
13476 	ump = VFSTOUFS(mp);
13477 	LOCK_OWNED(ump);
13478 	FREE_LOCK(ump);
13479 	td = curthread;
13480 	if ((td->td_pflags & TDP_KTHREAD) != 0 &&
13481 	    (td->td_proc->p_flag2 & P2_AST_SU) == 0) {
13482 		/*
13483 		 * No ast is delivered to kernel threads, so nobody
13484 		 * would deref the mp.  Some kernel threads
13485 		 * explicitely check for AST, e.g. NFS daemon does
13486 		 * this in the serving loop.
13487 		 */
13488 		return;
13489 	}
13490 	if (td->td_su != NULL)
13491 		vfs_rel(td->td_su);
13492 	vfs_ref(mp);
13493 	td->td_su = mp;
13494 	thread_lock(td);
13495 	td->td_flags |= TDF_ASTPENDING;
13496 	thread_unlock(td);
13497 }
13498 
13499 static void
13500 softdep_ast_cleanup_proc(struct thread *td)
13501 {
13502 	struct mount *mp;
13503 	struct ufsmount *ump;
13504 	int error;
13505 	bool req;
13506 
13507 	while ((mp = td->td_su) != NULL) {
13508 		td->td_su = NULL;
13509 		error = vfs_busy(mp, MBF_NOWAIT);
13510 		vfs_rel(mp);
13511 		if (error != 0)
13512 			return;
13513 		if (ffs_own_mount(mp) && MOUNTEDSOFTDEP(mp)) {
13514 			ump = VFSTOUFS(mp);
13515 			for (;;) {
13516 				req = false;
13517 				ACQUIRE_LOCK(ump);
13518 				if (softdep_excess_items(ump, D_INODEDEP)) {
13519 					req = true;
13520 					request_cleanup(mp, FLUSH_INODES);
13521 				}
13522 				if (softdep_excess_items(ump, D_DIRREM)) {
13523 					req = true;
13524 					request_cleanup(mp, FLUSH_BLOCKS);
13525 				}
13526 				FREE_LOCK(ump);
13527 				if (softdep_excess_items(ump, D_NEWBLK) ||
13528 				    softdep_excess_items(ump, D_ALLOCDIRECT) ||
13529 				    softdep_excess_items(ump, D_ALLOCINDIR)) {
13530 					error = vn_start_write(NULL, &mp,
13531 					    V_WAIT);
13532 					if (error == 0) {
13533 						req = true;
13534 						VFS_SYNC(mp, MNT_WAIT);
13535 						vn_finished_write(mp);
13536 					}
13537 				}
13538 				if ((td->td_pflags & TDP_KTHREAD) != 0 || !req)
13539 					break;
13540 			}
13541 		}
13542 		vfs_unbusy(mp);
13543 	}
13544 	if ((mp = td->td_su) != NULL) {
13545 		td->td_su = NULL;
13546 		vfs_rel(mp);
13547 	}
13548 }
13549 
13550 /*
13551  * If memory utilization has gotten too high, deliberately slow things
13552  * down and speed up the I/O processing.
13553  */
13554 static int
13555 request_cleanup(mp, resource)
13556 	struct mount *mp;
13557 	int resource;
13558 {
13559 	struct thread *td = curthread;
13560 	struct ufsmount *ump;
13561 
13562 	ump = VFSTOUFS(mp);
13563 	LOCK_OWNED(ump);
13564 	/*
13565 	 * We never hold up the filesystem syncer or buf daemon.
13566 	 */
13567 	if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF))
13568 		return (0);
13569 	/*
13570 	 * First check to see if the work list has gotten backlogged.
13571 	 * If it has, co-opt this process to help clean up two entries.
13572 	 * Because this process may hold inodes locked, we cannot
13573 	 * handle any remove requests that might block on a locked
13574 	 * inode as that could lead to deadlock.  We set TDP_SOFTDEP
13575 	 * to avoid recursively processing the worklist.
13576 	 */
13577 	if (ump->softdep_on_worklist > max_softdeps / 10) {
13578 		td->td_pflags |= TDP_SOFTDEP;
13579 		process_worklist_item(mp, 2, LK_NOWAIT);
13580 		td->td_pflags &= ~TDP_SOFTDEP;
13581 		stat_worklist_push += 2;
13582 		return(1);
13583 	}
13584 	/*
13585 	 * Next, we attempt to speed up the syncer process. If that
13586 	 * is successful, then we allow the process to continue.
13587 	 */
13588 	if (softdep_speedup(ump) &&
13589 	    resource != FLUSH_BLOCKS_WAIT &&
13590 	    resource != FLUSH_INODES_WAIT)
13591 		return(0);
13592 	/*
13593 	 * If we are resource constrained on inode dependencies, try
13594 	 * flushing some dirty inodes. Otherwise, we are constrained
13595 	 * by file deletions, so try accelerating flushes of directories
13596 	 * with removal dependencies. We would like to do the cleanup
13597 	 * here, but we probably hold an inode locked at this point and
13598 	 * that might deadlock against one that we try to clean. So,
13599 	 * the best that we can do is request the syncer daemon to do
13600 	 * the cleanup for us.
13601 	 */
13602 	switch (resource) {
13603 
13604 	case FLUSH_INODES:
13605 	case FLUSH_INODES_WAIT:
13606 		ACQUIRE_GBLLOCK(&lk);
13607 		stat_ino_limit_push += 1;
13608 		req_clear_inodedeps += 1;
13609 		FREE_GBLLOCK(&lk);
13610 		stat_countp = &stat_ino_limit_hit;
13611 		break;
13612 
13613 	case FLUSH_BLOCKS:
13614 	case FLUSH_BLOCKS_WAIT:
13615 		ACQUIRE_GBLLOCK(&lk);
13616 		stat_blk_limit_push += 1;
13617 		req_clear_remove += 1;
13618 		FREE_GBLLOCK(&lk);
13619 		stat_countp = &stat_blk_limit_hit;
13620 		break;
13621 
13622 	default:
13623 		panic("request_cleanup: unknown type");
13624 	}
13625 	/*
13626 	 * Hopefully the syncer daemon will catch up and awaken us.
13627 	 * We wait at most tickdelay before proceeding in any case.
13628 	 */
13629 	ACQUIRE_GBLLOCK(&lk);
13630 	FREE_LOCK(ump);
13631 	proc_waiting += 1;
13632 	if (callout_pending(&softdep_callout) == FALSE)
13633 		callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2,
13634 		    pause_timer, 0);
13635 
13636 	if ((td->td_pflags & TDP_KTHREAD) == 0)
13637 		msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0);
13638 	proc_waiting -= 1;
13639 	FREE_GBLLOCK(&lk);
13640 	ACQUIRE_LOCK(ump);
13641 	return (1);
13642 }
13643 
13644 /*
13645  * Awaken processes pausing in request_cleanup and clear proc_waiting
13646  * to indicate that there is no longer a timer running. Pause_timer
13647  * will be called with the global softdep mutex (&lk) locked.
13648  */
13649 static void
13650 pause_timer(arg)
13651 	void *arg;
13652 {
13653 
13654 	GBLLOCK_OWNED(&lk);
13655 	/*
13656 	 * The callout_ API has acquired mtx and will hold it around this
13657 	 * function call.
13658 	 */
13659 	*stat_countp += proc_waiting;
13660 	wakeup(&proc_waiting);
13661 }
13662 
13663 /*
13664  * If requested, try removing inode or removal dependencies.
13665  */
13666 static void
13667 check_clear_deps(mp)
13668 	struct mount *mp;
13669 {
13670 
13671 	/*
13672 	 * If we are suspended, it may be because of our using
13673 	 * too many inodedeps, so help clear them out.
13674 	 */
13675 	if (MOUNTEDSUJ(mp) && VFSTOUFS(mp)->softdep_jblocks->jb_suspended)
13676 		clear_inodedeps(mp);
13677 	/*
13678 	 * General requests for cleanup of backed up dependencies
13679 	 */
13680 	ACQUIRE_GBLLOCK(&lk);
13681 	if (req_clear_inodedeps) {
13682 		req_clear_inodedeps -= 1;
13683 		FREE_GBLLOCK(&lk);
13684 		clear_inodedeps(mp);
13685 		ACQUIRE_GBLLOCK(&lk);
13686 		wakeup(&proc_waiting);
13687 	}
13688 	if (req_clear_remove) {
13689 		req_clear_remove -= 1;
13690 		FREE_GBLLOCK(&lk);
13691 		clear_remove(mp);
13692 		ACQUIRE_GBLLOCK(&lk);
13693 		wakeup(&proc_waiting);
13694 	}
13695 	FREE_GBLLOCK(&lk);
13696 }
13697 
13698 /*
13699  * Flush out a directory with at least one removal dependency in an effort to
13700  * reduce the number of dirrem, freefile, and freeblks dependency structures.
13701  */
13702 static void
13703 clear_remove(mp)
13704 	struct mount *mp;
13705 {
13706 	struct pagedep_hashhead *pagedephd;
13707 	struct pagedep *pagedep;
13708 	struct ufsmount *ump;
13709 	struct vnode *vp;
13710 	struct bufobj *bo;
13711 	int error, cnt;
13712 	ino_t ino;
13713 
13714 	ump = VFSTOUFS(mp);
13715 	LOCK_OWNED(ump);
13716 
13717 	for (cnt = 0; cnt <= ump->pagedep_hash_size; cnt++) {
13718 		pagedephd = &ump->pagedep_hashtbl[ump->pagedep_nextclean++];
13719 		if (ump->pagedep_nextclean > ump->pagedep_hash_size)
13720 			ump->pagedep_nextclean = 0;
13721 		LIST_FOREACH(pagedep, pagedephd, pd_hash) {
13722 			if (LIST_EMPTY(&pagedep->pd_dirremhd))
13723 				continue;
13724 			ino = pagedep->pd_ino;
13725 			if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
13726 				continue;
13727 			FREE_LOCK(ump);
13728 
13729 			/*
13730 			 * Let unmount clear deps
13731 			 */
13732 			error = vfs_busy(mp, MBF_NOWAIT);
13733 			if (error != 0)
13734 				goto finish_write;
13735 			error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
13736 			     FFSV_FORCEINSMQ);
13737 			vfs_unbusy(mp);
13738 			if (error != 0) {
13739 				softdep_error("clear_remove: vget", error);
13740 				goto finish_write;
13741 			}
13742 			if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
13743 				softdep_error("clear_remove: fsync", error);
13744 			bo = &vp->v_bufobj;
13745 			BO_LOCK(bo);
13746 			drain_output(vp);
13747 			BO_UNLOCK(bo);
13748 			vput(vp);
13749 		finish_write:
13750 			vn_finished_write(mp);
13751 			ACQUIRE_LOCK(ump);
13752 			return;
13753 		}
13754 	}
13755 }
13756 
13757 /*
13758  * Clear out a block of dirty inodes in an effort to reduce
13759  * the number of inodedep dependency structures.
13760  */
13761 static void
13762 clear_inodedeps(mp)
13763 	struct mount *mp;
13764 {
13765 	struct inodedep_hashhead *inodedephd;
13766 	struct inodedep *inodedep;
13767 	struct ufsmount *ump;
13768 	struct vnode *vp;
13769 	struct fs *fs;
13770 	int error, cnt;
13771 	ino_t firstino, lastino, ino;
13772 
13773 	ump = VFSTOUFS(mp);
13774 	fs = ump->um_fs;
13775 	LOCK_OWNED(ump);
13776 	/*
13777 	 * Pick a random inode dependency to be cleared.
13778 	 * We will then gather up all the inodes in its block
13779 	 * that have dependencies and flush them out.
13780 	 */
13781 	for (cnt = 0; cnt <= ump->inodedep_hash_size; cnt++) {
13782 		inodedephd = &ump->inodedep_hashtbl[ump->inodedep_nextclean++];
13783 		if (ump->inodedep_nextclean > ump->inodedep_hash_size)
13784 			ump->inodedep_nextclean = 0;
13785 		if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
13786 			break;
13787 	}
13788 	if (inodedep == NULL)
13789 		return;
13790 	/*
13791 	 * Find the last inode in the block with dependencies.
13792 	 */
13793 	firstino = rounddown2(inodedep->id_ino, INOPB(fs));
13794 	for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
13795 		if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0)
13796 			break;
13797 	/*
13798 	 * Asynchronously push all but the last inode with dependencies.
13799 	 * Synchronously push the last inode with dependencies to ensure
13800 	 * that the inode block gets written to free up the inodedeps.
13801 	 */
13802 	for (ino = firstino; ino <= lastino; ino++) {
13803 		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
13804 			continue;
13805 		if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
13806 			continue;
13807 		FREE_LOCK(ump);
13808 		error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */
13809 		if (error != 0) {
13810 			vn_finished_write(mp);
13811 			ACQUIRE_LOCK(ump);
13812 			return;
13813 		}
13814 		if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
13815 		    FFSV_FORCEINSMQ)) != 0) {
13816 			softdep_error("clear_inodedeps: vget", error);
13817 			vfs_unbusy(mp);
13818 			vn_finished_write(mp);
13819 			ACQUIRE_LOCK(ump);
13820 			return;
13821 		}
13822 		vfs_unbusy(mp);
13823 		if (ino == lastino) {
13824 			if ((error = ffs_syncvnode(vp, MNT_WAIT, 0)))
13825 				softdep_error("clear_inodedeps: fsync1", error);
13826 		} else {
13827 			if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
13828 				softdep_error("clear_inodedeps: fsync2", error);
13829 			BO_LOCK(&vp->v_bufobj);
13830 			drain_output(vp);
13831 			BO_UNLOCK(&vp->v_bufobj);
13832 		}
13833 		vput(vp);
13834 		vn_finished_write(mp);
13835 		ACQUIRE_LOCK(ump);
13836 	}
13837 }
13838 
13839 void
13840 softdep_buf_append(bp, wkhd)
13841 	struct buf *bp;
13842 	struct workhead *wkhd;
13843 {
13844 	struct worklist *wk;
13845 	struct ufsmount *ump;
13846 
13847 	if ((wk = LIST_FIRST(wkhd)) == NULL)
13848 		return;
13849 	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
13850 	    ("softdep_buf_append called on non-softdep filesystem"));
13851 	ump = VFSTOUFS(wk->wk_mp);
13852 	ACQUIRE_LOCK(ump);
13853 	while ((wk = LIST_FIRST(wkhd)) != NULL) {
13854 		WORKLIST_REMOVE(wk);
13855 		WORKLIST_INSERT(&bp->b_dep, wk);
13856 	}
13857 	FREE_LOCK(ump);
13858 
13859 }
13860 
13861 void
13862 softdep_inode_append(ip, cred, wkhd)
13863 	struct inode *ip;
13864 	struct ucred *cred;
13865 	struct workhead *wkhd;
13866 {
13867 	struct buf *bp;
13868 	struct fs *fs;
13869 	struct ufsmount *ump;
13870 	int error;
13871 
13872 	ump = ITOUMP(ip);
13873 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
13874 	    ("softdep_inode_append called on non-softdep filesystem"));
13875 	fs = ump->um_fs;
13876 	error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
13877 	    (int)fs->fs_bsize, cred, &bp);
13878 	if (error) {
13879 		bqrelse(bp);
13880 		softdep_freework(wkhd);
13881 		return;
13882 	}
13883 	softdep_buf_append(bp, wkhd);
13884 	bqrelse(bp);
13885 }
13886 
13887 void
13888 softdep_freework(wkhd)
13889 	struct workhead *wkhd;
13890 {
13891 	struct worklist *wk;
13892 	struct ufsmount *ump;
13893 
13894 	if ((wk = LIST_FIRST(wkhd)) == NULL)
13895 		return;
13896 	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
13897 	    ("softdep_freework called on non-softdep filesystem"));
13898 	ump = VFSTOUFS(wk->wk_mp);
13899 	ACQUIRE_LOCK(ump);
13900 	handle_jwork(wkhd);
13901 	FREE_LOCK(ump);
13902 }
13903 
13904 static struct ufsmount *
13905 softdep_bp_to_mp(bp)
13906 	struct buf *bp;
13907 {
13908 	struct mount *mp;
13909 	struct vnode *vp;
13910 
13911 	if (LIST_EMPTY(&bp->b_dep))
13912 		return (NULL);
13913 	vp = bp->b_vp;
13914 
13915 	/*
13916 	 * The ump mount point is stable after we get a correct
13917 	 * pointer, since bp is locked and this prevents unmount from
13918 	 * proceeding.  But to get to it, we cannot dereference bp->b_dep
13919 	 * head wk_mp, because we do not yet own SU ump lock and
13920 	 * workitem might be freed while dereferenced.
13921 	 */
13922 retry:
13923 	if (vp->v_type == VCHR) {
13924 		VI_LOCK(vp);
13925 		mp = vp->v_type == VCHR ? vp->v_rdev->si_mountpt : NULL;
13926 		VI_UNLOCK(vp);
13927 		if (mp == NULL)
13928 			goto retry;
13929 	} else if (vp->v_type == VREG || vp->v_type == VDIR ||
13930 	    vp->v_type == VLNK) {
13931 		mp = vp->v_mount;
13932 	} else {
13933 		return (NULL);
13934 	}
13935 	return (VFSTOUFS(mp));
13936 }
13937 
13938 /*
13939  * Function to determine if the buffer has outstanding dependencies
13940  * that will cause a roll-back if the buffer is written. If wantcount
13941  * is set, return number of dependencies, otherwise just yes or no.
13942  */
13943 static int
13944 softdep_count_dependencies(bp, wantcount)
13945 	struct buf *bp;
13946 	int wantcount;
13947 {
13948 	struct worklist *wk;
13949 	struct ufsmount *ump;
13950 	struct bmsafemap *bmsafemap;
13951 	struct freework *freework;
13952 	struct inodedep *inodedep;
13953 	struct indirdep *indirdep;
13954 	struct freeblks *freeblks;
13955 	struct allocindir *aip;
13956 	struct pagedep *pagedep;
13957 	struct dirrem *dirrem;
13958 	struct newblk *newblk;
13959 	struct mkdir *mkdir;
13960 	struct diradd *dap;
13961 	int i, retval;
13962 
13963 	ump = softdep_bp_to_mp(bp);
13964 	if (ump == NULL)
13965 		return (0);
13966 	retval = 0;
13967 	ACQUIRE_LOCK(ump);
13968 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
13969 		switch (wk->wk_type) {
13970 
13971 		case D_INODEDEP:
13972 			inodedep = WK_INODEDEP(wk);
13973 			if ((inodedep->id_state & DEPCOMPLETE) == 0) {
13974 				/* bitmap allocation dependency */
13975 				retval += 1;
13976 				if (!wantcount)
13977 					goto out;
13978 			}
13979 			if (TAILQ_FIRST(&inodedep->id_inoupdt)) {
13980 				/* direct block pointer dependency */
13981 				retval += 1;
13982 				if (!wantcount)
13983 					goto out;
13984 			}
13985 			if (TAILQ_FIRST(&inodedep->id_extupdt)) {
13986 				/* direct block pointer dependency */
13987 				retval += 1;
13988 				if (!wantcount)
13989 					goto out;
13990 			}
13991 			if (TAILQ_FIRST(&inodedep->id_inoreflst)) {
13992 				/* Add reference dependency. */
13993 				retval += 1;
13994 				if (!wantcount)
13995 					goto out;
13996 			}
13997 			continue;
13998 
13999 		case D_INDIRDEP:
14000 			indirdep = WK_INDIRDEP(wk);
14001 
14002 			TAILQ_FOREACH(freework, &indirdep->ir_trunc, fw_next) {
14003 				/* indirect truncation dependency */
14004 				retval += 1;
14005 				if (!wantcount)
14006 					goto out;
14007 			}
14008 
14009 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
14010 				/* indirect block pointer dependency */
14011 				retval += 1;
14012 				if (!wantcount)
14013 					goto out;
14014 			}
14015 			continue;
14016 
14017 		case D_PAGEDEP:
14018 			pagedep = WK_PAGEDEP(wk);
14019 			LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
14020 				if (LIST_FIRST(&dirrem->dm_jremrefhd)) {
14021 					/* Journal remove ref dependency. */
14022 					retval += 1;
14023 					if (!wantcount)
14024 						goto out;
14025 				}
14026 			}
14027 			for (i = 0; i < DAHASHSZ; i++) {
14028 
14029 				LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
14030 					/* directory entry dependency */
14031 					retval += 1;
14032 					if (!wantcount)
14033 						goto out;
14034 				}
14035 			}
14036 			continue;
14037 
14038 		case D_BMSAFEMAP:
14039 			bmsafemap = WK_BMSAFEMAP(wk);
14040 			if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) {
14041 				/* Add reference dependency. */
14042 				retval += 1;
14043 				if (!wantcount)
14044 					goto out;
14045 			}
14046 			if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) {
14047 				/* Allocate block dependency. */
14048 				retval += 1;
14049 				if (!wantcount)
14050 					goto out;
14051 			}
14052 			continue;
14053 
14054 		case D_FREEBLKS:
14055 			freeblks = WK_FREEBLKS(wk);
14056 			if (LIST_FIRST(&freeblks->fb_jblkdephd)) {
14057 				/* Freeblk journal dependency. */
14058 				retval += 1;
14059 				if (!wantcount)
14060 					goto out;
14061 			}
14062 			continue;
14063 
14064 		case D_ALLOCDIRECT:
14065 		case D_ALLOCINDIR:
14066 			newblk = WK_NEWBLK(wk);
14067 			if (newblk->nb_jnewblk) {
14068 				/* Journal allocate dependency. */
14069 				retval += 1;
14070 				if (!wantcount)
14071 					goto out;
14072 			}
14073 			continue;
14074 
14075 		case D_MKDIR:
14076 			mkdir = WK_MKDIR(wk);
14077 			if (mkdir->md_jaddref) {
14078 				/* Journal reference dependency. */
14079 				retval += 1;
14080 				if (!wantcount)
14081 					goto out;
14082 			}
14083 			continue;
14084 
14085 		case D_FREEWORK:
14086 		case D_FREEDEP:
14087 		case D_JSEGDEP:
14088 		case D_JSEG:
14089 		case D_SBDEP:
14090 			/* never a dependency on these blocks */
14091 			continue;
14092 
14093 		default:
14094 			panic("softdep_count_dependencies: Unexpected type %s",
14095 			    TYPENAME(wk->wk_type));
14096 			/* NOTREACHED */
14097 		}
14098 	}
14099 out:
14100 	FREE_LOCK(ump);
14101 	return (retval);
14102 }
14103 
14104 /*
14105  * Acquire exclusive access to a buffer.
14106  * Must be called with a locked mtx parameter.
14107  * Return acquired buffer or NULL on failure.
14108  */
14109 static struct buf *
14110 getdirtybuf(bp, lock, waitfor)
14111 	struct buf *bp;
14112 	struct rwlock *lock;
14113 	int waitfor;
14114 {
14115 	int error;
14116 
14117 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) {
14118 		if (waitfor != MNT_WAIT)
14119 			return (NULL);
14120 		error = BUF_LOCK(bp,
14121 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, lock);
14122 		/*
14123 		 * Even if we successfully acquire bp here, we have dropped
14124 		 * lock, which may violates our guarantee.
14125 		 */
14126 		if (error == 0)
14127 			BUF_UNLOCK(bp);
14128 		else if (error != ENOLCK)
14129 			panic("getdirtybuf: inconsistent lock: %d", error);
14130 		rw_wlock(lock);
14131 		return (NULL);
14132 	}
14133 	if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
14134 		if (lock != BO_LOCKPTR(bp->b_bufobj) && waitfor == MNT_WAIT) {
14135 			rw_wunlock(lock);
14136 			BO_LOCK(bp->b_bufobj);
14137 			BUF_UNLOCK(bp);
14138 			if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
14139 				bp->b_vflags |= BV_BKGRDWAIT;
14140 				msleep(&bp->b_xflags, BO_LOCKPTR(bp->b_bufobj),
14141 				       PRIBIO | PDROP, "getbuf", 0);
14142 			} else
14143 				BO_UNLOCK(bp->b_bufobj);
14144 			rw_wlock(lock);
14145 			return (NULL);
14146 		}
14147 		BUF_UNLOCK(bp);
14148 		if (waitfor != MNT_WAIT)
14149 			return (NULL);
14150 #ifdef DEBUG_VFS_LOCKS
14151 		if (bp->b_vp->v_type != VCHR)
14152 			ASSERT_BO_WLOCKED(bp->b_bufobj);
14153 #endif
14154 		bp->b_vflags |= BV_BKGRDWAIT;
14155 		rw_sleep(&bp->b_xflags, lock, PRIBIO, "getbuf", 0);
14156 		return (NULL);
14157 	}
14158 	if ((bp->b_flags & B_DELWRI) == 0) {
14159 		BUF_UNLOCK(bp);
14160 		return (NULL);
14161 	}
14162 	bremfree(bp);
14163 	return (bp);
14164 }
14165 
14166 
14167 /*
14168  * Check if it is safe to suspend the file system now.  On entry,
14169  * the vnode interlock for devvp should be held.  Return 0 with
14170  * the mount interlock held if the file system can be suspended now,
14171  * otherwise return EAGAIN with the mount interlock held.
14172  */
14173 int
14174 softdep_check_suspend(struct mount *mp,
14175 		      struct vnode *devvp,
14176 		      int softdep_depcnt,
14177 		      int softdep_accdepcnt,
14178 		      int secondary_writes,
14179 		      int secondary_accwrites)
14180 {
14181 	struct bufobj *bo;
14182 	struct ufsmount *ump;
14183 	struct inodedep *inodedep;
14184 	int error, unlinked;
14185 
14186 	bo = &devvp->v_bufobj;
14187 	ASSERT_BO_WLOCKED(bo);
14188 
14189 	/*
14190 	 * If we are not running with soft updates, then we need only
14191 	 * deal with secondary writes as we try to suspend.
14192 	 */
14193 	if (MOUNTEDSOFTDEP(mp) == 0) {
14194 		MNT_ILOCK(mp);
14195 		while (mp->mnt_secondary_writes != 0) {
14196 			BO_UNLOCK(bo);
14197 			msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
14198 			    (PUSER - 1) | PDROP, "secwr", 0);
14199 			BO_LOCK(bo);
14200 			MNT_ILOCK(mp);
14201 		}
14202 
14203 		/*
14204 		 * Reasons for needing more work before suspend:
14205 		 * - Dirty buffers on devvp.
14206 		 * - Secondary writes occurred after start of vnode sync loop
14207 		 */
14208 		error = 0;
14209 		if (bo->bo_numoutput > 0 ||
14210 		    bo->bo_dirty.bv_cnt > 0 ||
14211 		    secondary_writes != 0 ||
14212 		    mp->mnt_secondary_writes != 0 ||
14213 		    secondary_accwrites != mp->mnt_secondary_accwrites)
14214 			error = EAGAIN;
14215 		BO_UNLOCK(bo);
14216 		return (error);
14217 	}
14218 
14219 	/*
14220 	 * If we are running with soft updates, then we need to coordinate
14221 	 * with them as we try to suspend.
14222 	 */
14223 	ump = VFSTOUFS(mp);
14224 	for (;;) {
14225 		if (!TRY_ACQUIRE_LOCK(ump)) {
14226 			BO_UNLOCK(bo);
14227 			ACQUIRE_LOCK(ump);
14228 			FREE_LOCK(ump);
14229 			BO_LOCK(bo);
14230 			continue;
14231 		}
14232 		MNT_ILOCK(mp);
14233 		if (mp->mnt_secondary_writes != 0) {
14234 			FREE_LOCK(ump);
14235 			BO_UNLOCK(bo);
14236 			msleep(&mp->mnt_secondary_writes,
14237 			       MNT_MTX(mp),
14238 			       (PUSER - 1) | PDROP, "secwr", 0);
14239 			BO_LOCK(bo);
14240 			continue;
14241 		}
14242 		break;
14243 	}
14244 
14245 	unlinked = 0;
14246 	if (MOUNTEDSUJ(mp)) {
14247 		for (inodedep = TAILQ_FIRST(&ump->softdep_unlinked);
14248 		    inodedep != NULL;
14249 		    inodedep = TAILQ_NEXT(inodedep, id_unlinked)) {
14250 			if ((inodedep->id_state & (UNLINKED | UNLINKLINKS |
14251 			    UNLINKONLIST)) != (UNLINKED | UNLINKLINKS |
14252 			    UNLINKONLIST) ||
14253 			    !check_inodedep_free(inodedep))
14254 				continue;
14255 			unlinked++;
14256 		}
14257 	}
14258 
14259 	/*
14260 	 * Reasons for needing more work before suspend:
14261 	 * - Dirty buffers on devvp.
14262 	 * - Softdep activity occurred after start of vnode sync loop
14263 	 * - Secondary writes occurred after start of vnode sync loop
14264 	 */
14265 	error = 0;
14266 	if (bo->bo_numoutput > 0 ||
14267 	    bo->bo_dirty.bv_cnt > 0 ||
14268 	    softdep_depcnt != unlinked ||
14269 	    ump->softdep_deps != unlinked ||
14270 	    softdep_accdepcnt != ump->softdep_accdeps ||
14271 	    secondary_writes != 0 ||
14272 	    mp->mnt_secondary_writes != 0 ||
14273 	    secondary_accwrites != mp->mnt_secondary_accwrites)
14274 		error = EAGAIN;
14275 	FREE_LOCK(ump);
14276 	BO_UNLOCK(bo);
14277 	return (error);
14278 }
14279 
14280 
14281 /*
14282  * Get the number of dependency structures for the file system, both
14283  * the current number and the total number allocated.  These will
14284  * later be used to detect that softdep processing has occurred.
14285  */
14286 void
14287 softdep_get_depcounts(struct mount *mp,
14288 		      int *softdep_depsp,
14289 		      int *softdep_accdepsp)
14290 {
14291 	struct ufsmount *ump;
14292 
14293 	if (MOUNTEDSOFTDEP(mp) == 0) {
14294 		*softdep_depsp = 0;
14295 		*softdep_accdepsp = 0;
14296 		return;
14297 	}
14298 	ump = VFSTOUFS(mp);
14299 	ACQUIRE_LOCK(ump);
14300 	*softdep_depsp = ump->softdep_deps;
14301 	*softdep_accdepsp = ump->softdep_accdeps;
14302 	FREE_LOCK(ump);
14303 }
14304 
14305 /*
14306  * Wait for pending output on a vnode to complete.
14307  */
14308 static void
14309 drain_output(vp)
14310 	struct vnode *vp;
14311 {
14312 
14313 	ASSERT_VOP_LOCKED(vp, "drain_output");
14314 	(void)bufobj_wwait(&vp->v_bufobj, 0, 0);
14315 }
14316 
14317 /*
14318  * Called whenever a buffer that is being invalidated or reallocated
14319  * contains dependencies. This should only happen if an I/O error has
14320  * occurred. The routine is called with the buffer locked.
14321  */
14322 static void
14323 softdep_deallocate_dependencies(bp)
14324 	struct buf *bp;
14325 {
14326 
14327 	if ((bp->b_ioflags & BIO_ERROR) == 0)
14328 		panic("softdep_deallocate_dependencies: dangling deps");
14329 	if (bp->b_vp != NULL && bp->b_vp->v_mount != NULL)
14330 		softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error);
14331 	else
14332 		printf("softdep_deallocate_dependencies: "
14333 		    "got error %d while accessing filesystem\n", bp->b_error);
14334 	if (bp->b_error != ENXIO)
14335 		panic("softdep_deallocate_dependencies: unrecovered I/O error");
14336 }
14337 
14338 /*
14339  * Function to handle asynchronous write errors in the filesystem.
14340  */
14341 static void
14342 softdep_error(func, error)
14343 	char *func;
14344 	int error;
14345 {
14346 
14347 	/* XXX should do something better! */
14348 	printf("%s: got error %d while accessing filesystem\n", func, error);
14349 }
14350 
14351 #ifdef DDB
14352 
14353 static void
14354 inodedep_print(struct inodedep *inodedep, int verbose)
14355 {
14356 	db_printf("%p fs %p st %x ino %jd inoblk %jd delta %jd nlink %jd"
14357 	    " saveino %p\n",
14358 	    inodedep, inodedep->id_fs, inodedep->id_state,
14359 	    (intmax_t)inodedep->id_ino,
14360 	    (intmax_t)fsbtodb(inodedep->id_fs,
14361 	    ino_to_fsba(inodedep->id_fs, inodedep->id_ino)),
14362 	    (intmax_t)inodedep->id_nlinkdelta,
14363 	    (intmax_t)inodedep->id_savednlink,
14364 	    inodedep->id_savedino1);
14365 
14366 	if (verbose == 0)
14367 		return;
14368 
14369 	db_printf("\tpendinghd %p, bufwait %p, inowait %p, inoreflst %p, "
14370 	    "mkdiradd %p\n",
14371 	    LIST_FIRST(&inodedep->id_pendinghd),
14372 	    LIST_FIRST(&inodedep->id_bufwait),
14373 	    LIST_FIRST(&inodedep->id_inowait),
14374 	    TAILQ_FIRST(&inodedep->id_inoreflst),
14375 	    inodedep->id_mkdiradd);
14376 	db_printf("\tinoupdt %p, newinoupdt %p, extupdt %p, newextupdt %p\n",
14377 	    TAILQ_FIRST(&inodedep->id_inoupdt),
14378 	    TAILQ_FIRST(&inodedep->id_newinoupdt),
14379 	    TAILQ_FIRST(&inodedep->id_extupdt),
14380 	    TAILQ_FIRST(&inodedep->id_newextupdt));
14381 }
14382 
14383 DB_SHOW_COMMAND(inodedep, db_show_inodedep)
14384 {
14385 
14386 	if (have_addr == 0) {
14387 		db_printf("Address required\n");
14388 		return;
14389 	}
14390 	inodedep_print((struct inodedep*)addr, 1);
14391 }
14392 
14393 DB_SHOW_COMMAND(inodedeps, db_show_inodedeps)
14394 {
14395 	struct inodedep_hashhead *inodedephd;
14396 	struct inodedep *inodedep;
14397 	struct ufsmount *ump;
14398 	int cnt;
14399 
14400 	if (have_addr == 0) {
14401 		db_printf("Address required\n");
14402 		return;
14403 	}
14404 	ump = (struct ufsmount *)addr;
14405 	for (cnt = 0; cnt < ump->inodedep_hash_size; cnt++) {
14406 		inodedephd = &ump->inodedep_hashtbl[cnt];
14407 		LIST_FOREACH(inodedep, inodedephd, id_hash) {
14408 			inodedep_print(inodedep, 0);
14409 		}
14410 	}
14411 }
14412 
14413 DB_SHOW_COMMAND(worklist, db_show_worklist)
14414 {
14415 	struct worklist *wk;
14416 
14417 	if (have_addr == 0) {
14418 		db_printf("Address required\n");
14419 		return;
14420 	}
14421 	wk = (struct worklist *)addr;
14422 	printf("worklist: %p type %s state 0x%X\n",
14423 	    wk, TYPENAME(wk->wk_type), wk->wk_state);
14424 }
14425 
14426 DB_SHOW_COMMAND(workhead, db_show_workhead)
14427 {
14428 	struct workhead *wkhd;
14429 	struct worklist *wk;
14430 	int i;
14431 
14432 	if (have_addr == 0) {
14433 		db_printf("Address required\n");
14434 		return;
14435 	}
14436 	wkhd = (struct workhead *)addr;
14437 	wk = LIST_FIRST(wkhd);
14438 	for (i = 0; i < 100 && wk != NULL; i++, wk = LIST_NEXT(wk, wk_list))
14439 		db_printf("worklist: %p type %s state 0x%X",
14440 		    wk, TYPENAME(wk->wk_type), wk->wk_state);
14441 	if (i == 100)
14442 		db_printf("workhead overflow");
14443 	printf("\n");
14444 }
14445 
14446 
14447 DB_SHOW_COMMAND(mkdirs, db_show_mkdirs)
14448 {
14449 	struct mkdirlist *mkdirlisthd;
14450 	struct jaddref *jaddref;
14451 	struct diradd *diradd;
14452 	struct mkdir *mkdir;
14453 
14454 	if (have_addr == 0) {
14455 		db_printf("Address required\n");
14456 		return;
14457 	}
14458 	mkdirlisthd = (struct mkdirlist *)addr;
14459 	LIST_FOREACH(mkdir, mkdirlisthd, md_mkdirs) {
14460 		diradd = mkdir->md_diradd;
14461 		db_printf("mkdir: %p state 0x%X dap %p state 0x%X",
14462 		    mkdir, mkdir->md_state, diradd, diradd->da_state);
14463 		if ((jaddref = mkdir->md_jaddref) != NULL)
14464 			db_printf(" jaddref %p jaddref state 0x%X",
14465 			    jaddref, jaddref->ja_state);
14466 		db_printf("\n");
14467 	}
14468 }
14469 
14470 /* exported to ffs_vfsops.c */
14471 extern void db_print_ffs(struct ufsmount *ump);
14472 void
14473 db_print_ffs(struct ufsmount *ump)
14474 {
14475 	db_printf("mp %p %s devvp %p fs %p su_wl %d su_deps %d su_req %d\n",
14476 	    ump->um_mountp, ump->um_mountp->mnt_stat.f_mntonname,
14477 	    ump->um_devvp, ump->um_fs, ump->softdep_on_worklist,
14478 	    ump->softdep_deps, ump->softdep_req);
14479 }
14480 
14481 #endif /* DDB */
14482 
14483 #endif /* SOFTUPDATES */
14484