xref: /freebsd/sys/ufs/ffs/ffs_softdep.c (revision 422d05da14fe063e5d187d81a328fa7b362d069f)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright 1998, 2000 Marshall Kirk McKusick.
5  * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org>
6  * All rights reserved.
7  *
8  * The soft updates code is derived from the appendix of a University
9  * of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
10  * "Soft Updates: A Solution to the Metadata Update Problem in File
11  * Systems", CSE-TR-254-95, August 1995).
12  *
13  * Further information about soft updates can be obtained from:
14  *
15  *	Marshall Kirk McKusick		http://www.mckusick.com/softdep/
16  *	1614 Oxford Street		mckusick@mckusick.com
17  *	Berkeley, CA 94709-1608		+1-510-843-9542
18  *	USA
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  * 1. Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  * 2. Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in the
28  *    documentation and/or other materials provided with the distribution.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
31  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
32  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
33  * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
34  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
35  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
36  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
37  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
38  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
39  * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40  *
41  *	from: @(#)ffs_softdep.c	9.59 (McKusick) 6/21/00
42  */
43 
44 #include <sys/cdefs.h>
45 __FBSDID("$FreeBSD$");
46 
47 #include "opt_ffs.h"
48 #include "opt_quota.h"
49 #include "opt_ddb.h"
50 
51 #include <sys/param.h>
52 #include <sys/kernel.h>
53 #include <sys/systm.h>
54 #include <sys/bio.h>
55 #include <sys/buf.h>
56 #include <sys/kdb.h>
57 #include <sys/kthread.h>
58 #include <sys/ktr.h>
59 #include <sys/limits.h>
60 #include <sys/lock.h>
61 #include <sys/malloc.h>
62 #include <sys/mount.h>
63 #include <sys/mutex.h>
64 #include <sys/namei.h>
65 #include <sys/priv.h>
66 #include <sys/proc.h>
67 #include <sys/racct.h>
68 #include <sys/rwlock.h>
69 #include <sys/stat.h>
70 #include <sys/sysctl.h>
71 #include <sys/syslog.h>
72 #include <sys/vnode.h>
73 #include <sys/conf.h>
74 
75 #include <ufs/ufs/dir.h>
76 #include <ufs/ufs/extattr.h>
77 #include <ufs/ufs/quota.h>
78 #include <ufs/ufs/inode.h>
79 #include <ufs/ufs/ufsmount.h>
80 #include <ufs/ffs/fs.h>
81 #include <ufs/ffs/softdep.h>
82 #include <ufs/ffs/ffs_extern.h>
83 #include <ufs/ufs/ufs_extern.h>
84 
85 #include <vm/vm.h>
86 #include <vm/vm_extern.h>
87 #include <vm/vm_object.h>
88 
89 #include <geom/geom.h>
90 
91 #include <ddb/ddb.h>
92 
93 #define	KTR_SUJ	0	/* Define to KTR_SPARE. */
94 
95 #ifndef SOFTUPDATES
96 
97 int
98 softdep_flushfiles(oldmnt, flags, td)
99 	struct mount *oldmnt;
100 	int flags;
101 	struct thread *td;
102 {
103 
104 	panic("softdep_flushfiles called");
105 }
106 
107 int
108 softdep_mount(devvp, mp, fs, cred)
109 	struct vnode *devvp;
110 	struct mount *mp;
111 	struct fs *fs;
112 	struct ucred *cred;
113 {
114 
115 	return (0);
116 }
117 
118 void
119 softdep_initialize()
120 {
121 
122 	return;
123 }
124 
125 void
126 softdep_uninitialize()
127 {
128 
129 	return;
130 }
131 
132 void
133 softdep_unmount(mp)
134 	struct mount *mp;
135 {
136 
137 	panic("softdep_unmount called");
138 }
139 
140 void
141 softdep_setup_sbupdate(ump, fs, bp)
142 	struct ufsmount *ump;
143 	struct fs *fs;
144 	struct buf *bp;
145 {
146 
147 	panic("softdep_setup_sbupdate called");
148 }
149 
150 void
151 softdep_setup_inomapdep(bp, ip, newinum, mode)
152 	struct buf *bp;
153 	struct inode *ip;
154 	ino_t newinum;
155 	int mode;
156 {
157 
158 	panic("softdep_setup_inomapdep called");
159 }
160 
161 void
162 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
163 	struct buf *bp;
164 	struct mount *mp;
165 	ufs2_daddr_t newblkno;
166 	int frags;
167 	int oldfrags;
168 {
169 
170 	panic("softdep_setup_blkmapdep called");
171 }
172 
173 void
174 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
175 	struct inode *ip;
176 	ufs_lbn_t lbn;
177 	ufs2_daddr_t newblkno;
178 	ufs2_daddr_t oldblkno;
179 	long newsize;
180 	long oldsize;
181 	struct buf *bp;
182 {
183 
184 	panic("softdep_setup_allocdirect called");
185 }
186 
187 void
188 softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
189 	struct inode *ip;
190 	ufs_lbn_t lbn;
191 	ufs2_daddr_t newblkno;
192 	ufs2_daddr_t oldblkno;
193 	long newsize;
194 	long oldsize;
195 	struct buf *bp;
196 {
197 
198 	panic("softdep_setup_allocext called");
199 }
200 
201 void
202 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
203 	struct inode *ip;
204 	ufs_lbn_t lbn;
205 	struct buf *bp;
206 	int ptrno;
207 	ufs2_daddr_t newblkno;
208 	ufs2_daddr_t oldblkno;
209 	struct buf *nbp;
210 {
211 
212 	panic("softdep_setup_allocindir_page called");
213 }
214 
215 void
216 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
217 	struct buf *nbp;
218 	struct inode *ip;
219 	struct buf *bp;
220 	int ptrno;
221 	ufs2_daddr_t newblkno;
222 {
223 
224 	panic("softdep_setup_allocindir_meta called");
225 }
226 
227 void
228 softdep_journal_freeblocks(ip, cred, length, flags)
229 	struct inode *ip;
230 	struct ucred *cred;
231 	off_t length;
232 	int flags;
233 {
234 
235 	panic("softdep_journal_freeblocks called");
236 }
237 
238 void
239 softdep_journal_fsync(ip)
240 	struct inode *ip;
241 {
242 
243 	panic("softdep_journal_fsync called");
244 }
245 
246 void
247 softdep_setup_freeblocks(ip, length, flags)
248 	struct inode *ip;
249 	off_t length;
250 	int flags;
251 {
252 
253 	panic("softdep_setup_freeblocks called");
254 }
255 
256 void
257 softdep_freefile(pvp, ino, mode)
258 		struct vnode *pvp;
259 		ino_t ino;
260 		int mode;
261 {
262 
263 	panic("softdep_freefile called");
264 }
265 
266 int
267 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
268 	struct buf *bp;
269 	struct inode *dp;
270 	off_t diroffset;
271 	ino_t newinum;
272 	struct buf *newdirbp;
273 	int isnewblk;
274 {
275 
276 	panic("softdep_setup_directory_add called");
277 }
278 
279 void
280 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
281 	struct buf *bp;
282 	struct inode *dp;
283 	caddr_t base;
284 	caddr_t oldloc;
285 	caddr_t newloc;
286 	int entrysize;
287 {
288 
289 	panic("softdep_change_directoryentry_offset called");
290 }
291 
292 void
293 softdep_setup_remove(bp, dp, ip, isrmdir)
294 	struct buf *bp;
295 	struct inode *dp;
296 	struct inode *ip;
297 	int isrmdir;
298 {
299 
300 	panic("softdep_setup_remove called");
301 }
302 
303 void
304 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
305 	struct buf *bp;
306 	struct inode *dp;
307 	struct inode *ip;
308 	ino_t newinum;
309 	int isrmdir;
310 {
311 
312 	panic("softdep_setup_directory_change called");
313 }
314 
315 void
316 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
317 	struct mount *mp;
318 	struct buf *bp;
319 	ufs2_daddr_t blkno;
320 	int frags;
321 	struct workhead *wkhd;
322 {
323 
324 	panic("%s called", __FUNCTION__);
325 }
326 
327 void
328 softdep_setup_inofree(mp, bp, ino, wkhd)
329 	struct mount *mp;
330 	struct buf *bp;
331 	ino_t ino;
332 	struct workhead *wkhd;
333 {
334 
335 	panic("%s called", __FUNCTION__);
336 }
337 
338 void
339 softdep_setup_unlink(dp, ip)
340 	struct inode *dp;
341 	struct inode *ip;
342 {
343 
344 	panic("%s called", __FUNCTION__);
345 }
346 
347 void
348 softdep_setup_link(dp, ip)
349 	struct inode *dp;
350 	struct inode *ip;
351 {
352 
353 	panic("%s called", __FUNCTION__);
354 }
355 
356 void
357 softdep_revert_link(dp, ip)
358 	struct inode *dp;
359 	struct inode *ip;
360 {
361 
362 	panic("%s called", __FUNCTION__);
363 }
364 
365 void
366 softdep_setup_rmdir(dp, ip)
367 	struct inode *dp;
368 	struct inode *ip;
369 {
370 
371 	panic("%s called", __FUNCTION__);
372 }
373 
374 void
375 softdep_revert_rmdir(dp, ip)
376 	struct inode *dp;
377 	struct inode *ip;
378 {
379 
380 	panic("%s called", __FUNCTION__);
381 }
382 
383 void
384 softdep_setup_create(dp, ip)
385 	struct inode *dp;
386 	struct inode *ip;
387 {
388 
389 	panic("%s called", __FUNCTION__);
390 }
391 
392 void
393 softdep_revert_create(dp, ip)
394 	struct inode *dp;
395 	struct inode *ip;
396 {
397 
398 	panic("%s called", __FUNCTION__);
399 }
400 
401 void
402 softdep_setup_mkdir(dp, ip)
403 	struct inode *dp;
404 	struct inode *ip;
405 {
406 
407 	panic("%s called", __FUNCTION__);
408 }
409 
410 void
411 softdep_revert_mkdir(dp, ip)
412 	struct inode *dp;
413 	struct inode *ip;
414 {
415 
416 	panic("%s called", __FUNCTION__);
417 }
418 
419 void
420 softdep_setup_dotdot_link(dp, ip)
421 	struct inode *dp;
422 	struct inode *ip;
423 {
424 
425 	panic("%s called", __FUNCTION__);
426 }
427 
428 int
429 softdep_prealloc(vp, waitok)
430 	struct vnode *vp;
431 	int waitok;
432 {
433 
434 	panic("%s called", __FUNCTION__);
435 }
436 
437 int
438 softdep_journal_lookup(mp, vpp)
439 	struct mount *mp;
440 	struct vnode **vpp;
441 {
442 
443 	return (ENOENT);
444 }
445 
446 void
447 softdep_change_linkcnt(ip)
448 	struct inode *ip;
449 {
450 
451 	panic("softdep_change_linkcnt called");
452 }
453 
454 void
455 softdep_load_inodeblock(ip)
456 	struct inode *ip;
457 {
458 
459 	panic("softdep_load_inodeblock called");
460 }
461 
462 void
463 softdep_update_inodeblock(ip, bp, waitfor)
464 	struct inode *ip;
465 	struct buf *bp;
466 	int waitfor;
467 {
468 
469 	panic("softdep_update_inodeblock called");
470 }
471 
472 int
473 softdep_fsync(vp)
474 	struct vnode *vp;	/* the "in_core" copy of the inode */
475 {
476 
477 	return (0);
478 }
479 
480 void
481 softdep_fsync_mountdev(vp)
482 	struct vnode *vp;
483 {
484 
485 	return;
486 }
487 
488 int
489 softdep_flushworklist(oldmnt, countp, td)
490 	struct mount *oldmnt;
491 	int *countp;
492 	struct thread *td;
493 {
494 
495 	*countp = 0;
496 	return (0);
497 }
498 
499 int
500 softdep_sync_metadata(struct vnode *vp)
501 {
502 
503 	panic("softdep_sync_metadata called");
504 }
505 
506 int
507 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
508 {
509 
510 	panic("softdep_sync_buf called");
511 }
512 
513 int
514 softdep_slowdown(vp)
515 	struct vnode *vp;
516 {
517 
518 	panic("softdep_slowdown called");
519 }
520 
521 int
522 softdep_request_cleanup(fs, vp, cred, resource)
523 	struct fs *fs;
524 	struct vnode *vp;
525 	struct ucred *cred;
526 	int resource;
527 {
528 
529 	return (0);
530 }
531 
532 int
533 softdep_check_suspend(struct mount *mp,
534 		      struct vnode *devvp,
535 		      int softdep_depcnt,
536 		      int softdep_accdepcnt,
537 		      int secondary_writes,
538 		      int secondary_accwrites)
539 {
540 	struct bufobj *bo;
541 	int error;
542 
543 	(void) softdep_depcnt,
544 	(void) softdep_accdepcnt;
545 
546 	bo = &devvp->v_bufobj;
547 	ASSERT_BO_WLOCKED(bo);
548 
549 	MNT_ILOCK(mp);
550 	while (mp->mnt_secondary_writes != 0) {
551 		BO_UNLOCK(bo);
552 		msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
553 		    (PUSER - 1) | PDROP, "secwr", 0);
554 		BO_LOCK(bo);
555 		MNT_ILOCK(mp);
556 	}
557 
558 	/*
559 	 * Reasons for needing more work before suspend:
560 	 * - Dirty buffers on devvp.
561 	 * - Secondary writes occurred after start of vnode sync loop
562 	 */
563 	error = 0;
564 	if (bo->bo_numoutput > 0 ||
565 	    bo->bo_dirty.bv_cnt > 0 ||
566 	    secondary_writes != 0 ||
567 	    mp->mnt_secondary_writes != 0 ||
568 	    secondary_accwrites != mp->mnt_secondary_accwrites)
569 		error = EAGAIN;
570 	BO_UNLOCK(bo);
571 	return (error);
572 }
573 
574 void
575 softdep_get_depcounts(struct mount *mp,
576 		      int *softdepactivep,
577 		      int *softdepactiveaccp)
578 {
579 	(void) mp;
580 	*softdepactivep = 0;
581 	*softdepactiveaccp = 0;
582 }
583 
584 void
585 softdep_buf_append(bp, wkhd)
586 	struct buf *bp;
587 	struct workhead *wkhd;
588 {
589 
590 	panic("softdep_buf_appendwork called");
591 }
592 
593 void
594 softdep_inode_append(ip, cred, wkhd)
595 	struct inode *ip;
596 	struct ucred *cred;
597 	struct workhead *wkhd;
598 {
599 
600 	panic("softdep_inode_appendwork called");
601 }
602 
603 void
604 softdep_freework(wkhd)
605 	struct workhead *wkhd;
606 {
607 
608 	panic("softdep_freework called");
609 }
610 
611 #else
612 
613 FEATURE(softupdates, "FFS soft-updates support");
614 
615 static SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW, 0,
616     "soft updates stats");
617 static SYSCTL_NODE(_debug_softdep, OID_AUTO, total, CTLFLAG_RW, 0,
618     "total dependencies allocated");
619 static SYSCTL_NODE(_debug_softdep, OID_AUTO, highuse, CTLFLAG_RW, 0,
620     "high use dependencies allocated");
621 static SYSCTL_NODE(_debug_softdep, OID_AUTO, current, CTLFLAG_RW, 0,
622     "current dependencies allocated");
623 static SYSCTL_NODE(_debug_softdep, OID_AUTO, write, CTLFLAG_RW, 0,
624     "current dependencies written");
625 
626 unsigned long dep_current[D_LAST + 1];
627 unsigned long dep_highuse[D_LAST + 1];
628 unsigned long dep_total[D_LAST + 1];
629 unsigned long dep_write[D_LAST + 1];
630 
631 #define	SOFTDEP_TYPE(type, str, long)					\
632     static MALLOC_DEFINE(M_ ## type, #str, long);			\
633     SYSCTL_ULONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD,	\
634 	&dep_total[D_ ## type], 0, "");					\
635     SYSCTL_ULONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD, 	\
636 	&dep_current[D_ ## type], 0, "");				\
637     SYSCTL_ULONG(_debug_softdep_highuse, OID_AUTO, str, CTLFLAG_RD, 	\
638 	&dep_highuse[D_ ## type], 0, "");				\
639     SYSCTL_ULONG(_debug_softdep_write, OID_AUTO, str, CTLFLAG_RD, 	\
640 	&dep_write[D_ ## type], 0, "");
641 
642 SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies");
643 SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies");
644 SOFTDEP_TYPE(BMSAFEMAP, bmsafemap,
645     "Block or frag allocated from cyl group map");
646 SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency");
647 SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode");
648 SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies");
649 SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block");
650 SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode");
651 SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode");
652 SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated");
653 SOFTDEP_TYPE(DIRADD, diradd, "New directory entry");
654 SOFTDEP_TYPE(MKDIR, mkdir, "New directory");
655 SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted");
656 SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block");
657 SOFTDEP_TYPE(FREEWORK, freework, "free an inode block");
658 SOFTDEP_TYPE(FREEDEP, freedep, "track a block free");
659 SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add");
660 SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove");
661 SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move");
662 SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block");
663 SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block");
664 SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag");
665 SOFTDEP_TYPE(JSEG, jseg, "Journal segment");
666 SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete");
667 SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency");
668 SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation");
669 SOFTDEP_TYPE(JFSYNC, jfsync, "Journal fsync complete");
670 
671 static MALLOC_DEFINE(M_SENTINEL, "sentinel", "Worklist sentinel");
672 
673 static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes");
674 static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations");
675 static MALLOC_DEFINE(M_MOUNTDATA, "softdep", "Softdep per-mount data");
676 
677 #define M_SOFTDEP_FLAGS	(M_WAITOK)
678 
679 /*
680  * translate from workitem type to memory type
681  * MUST match the defines above, such that memtype[D_XXX] == M_XXX
682  */
683 static struct malloc_type *memtype[] = {
684 	NULL,
685 	M_PAGEDEP,
686 	M_INODEDEP,
687 	M_BMSAFEMAP,
688 	M_NEWBLK,
689 	M_ALLOCDIRECT,
690 	M_INDIRDEP,
691 	M_ALLOCINDIR,
692 	M_FREEFRAG,
693 	M_FREEBLKS,
694 	M_FREEFILE,
695 	M_DIRADD,
696 	M_MKDIR,
697 	M_DIRREM,
698 	M_NEWDIRBLK,
699 	M_FREEWORK,
700 	M_FREEDEP,
701 	M_JADDREF,
702 	M_JREMREF,
703 	M_JMVREF,
704 	M_JNEWBLK,
705 	M_JFREEBLK,
706 	M_JFREEFRAG,
707 	M_JSEG,
708 	M_JSEGDEP,
709 	M_SBDEP,
710 	M_JTRUNC,
711 	M_JFSYNC,
712 	M_SENTINEL
713 };
714 
715 #define DtoM(type) (memtype[type])
716 
717 /*
718  * Names of malloc types.
719  */
720 #define TYPENAME(type)  \
721 	((unsigned)(type) <= D_LAST && (unsigned)(type) >= D_FIRST ? \
722 	memtype[type]->ks_shortdesc : "???")
723 /*
724  * End system adaptation definitions.
725  */
726 
727 #define	DOTDOT_OFFSET	offsetof(struct dirtemplate, dotdot_ino)
728 #define	DOT_OFFSET	offsetof(struct dirtemplate, dot_ino)
729 
730 /*
731  * Internal function prototypes.
732  */
733 static	void check_clear_deps(struct mount *);
734 static	void softdep_error(char *, int);
735 static	int softdep_process_worklist(struct mount *, int);
736 static	int softdep_waitidle(struct mount *, int);
737 static	void drain_output(struct vnode *);
738 static	struct buf *getdirtybuf(struct buf *, struct rwlock *, int);
739 static	int check_inodedep_free(struct inodedep *);
740 static	void clear_remove(struct mount *);
741 static	void clear_inodedeps(struct mount *);
742 static	void unlinked_inodedep(struct mount *, struct inodedep *);
743 static	void clear_unlinked_inodedep(struct inodedep *);
744 static	struct inodedep *first_unlinked_inodedep(struct ufsmount *);
745 static	int flush_pagedep_deps(struct vnode *, struct mount *,
746 	    struct diraddhd *);
747 static	int free_pagedep(struct pagedep *);
748 static	int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t);
749 static	int flush_inodedep_deps(struct vnode *, struct mount *, ino_t);
750 static	int flush_deplist(struct allocdirectlst *, int, int *);
751 static	int sync_cgs(struct mount *, int);
752 static	int handle_written_filepage(struct pagedep *, struct buf *, int);
753 static	int handle_written_sbdep(struct sbdep *, struct buf *);
754 static	void initiate_write_sbdep(struct sbdep *);
755 static	void diradd_inode_written(struct diradd *, struct inodedep *);
756 static	int handle_written_indirdep(struct indirdep *, struct buf *,
757 	    struct buf**, int);
758 static	int handle_written_inodeblock(struct inodedep *, struct buf *, int);
759 static	int jnewblk_rollforward(struct jnewblk *, struct fs *, struct cg *,
760 	    uint8_t *);
761 static	int handle_written_bmsafemap(struct bmsafemap *, struct buf *, int);
762 static	void handle_written_jaddref(struct jaddref *);
763 static	void handle_written_jremref(struct jremref *);
764 static	void handle_written_jseg(struct jseg *, struct buf *);
765 static	void handle_written_jnewblk(struct jnewblk *);
766 static	void handle_written_jblkdep(struct jblkdep *);
767 static	void handle_written_jfreefrag(struct jfreefrag *);
768 static	void complete_jseg(struct jseg *);
769 static	void complete_jsegs(struct jseg *);
770 static	void jseg_write(struct ufsmount *ump, struct jseg *, uint8_t *);
771 static	void jaddref_write(struct jaddref *, struct jseg *, uint8_t *);
772 static	void jremref_write(struct jremref *, struct jseg *, uint8_t *);
773 static	void jmvref_write(struct jmvref *, struct jseg *, uint8_t *);
774 static	void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *);
775 static	void jfsync_write(struct jfsync *, struct jseg *, uint8_t *data);
776 static	void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *);
777 static	void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *);
778 static	void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *);
779 static	inline void inoref_write(struct inoref *, struct jseg *,
780 	    struct jrefrec *);
781 static	void handle_allocdirect_partdone(struct allocdirect *,
782 	    struct workhead *);
783 static	struct jnewblk *cancel_newblk(struct newblk *, struct worklist *,
784 	    struct workhead *);
785 static	void indirdep_complete(struct indirdep *);
786 static	int indirblk_lookup(struct mount *, ufs2_daddr_t);
787 static	void indirblk_insert(struct freework *);
788 static	void indirblk_remove(struct freework *);
789 static	void handle_allocindir_partdone(struct allocindir *);
790 static	void initiate_write_filepage(struct pagedep *, struct buf *);
791 static	void initiate_write_indirdep(struct indirdep*, struct buf *);
792 static	void handle_written_mkdir(struct mkdir *, int);
793 static	int jnewblk_rollback(struct jnewblk *, struct fs *, struct cg *,
794 	    uint8_t *);
795 static	void initiate_write_bmsafemap(struct bmsafemap *, struct buf *);
796 static	void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *);
797 static	void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *);
798 static	void handle_workitem_freefile(struct freefile *);
799 static	int handle_workitem_remove(struct dirrem *, int);
800 static	struct dirrem *newdirrem(struct buf *, struct inode *,
801 	    struct inode *, int, struct dirrem **);
802 static	struct indirdep *indirdep_lookup(struct mount *, struct inode *,
803 	    struct buf *);
804 static	void cancel_indirdep(struct indirdep *, struct buf *,
805 	    struct freeblks *);
806 static	void free_indirdep(struct indirdep *);
807 static	void free_diradd(struct diradd *, struct workhead *);
808 static	void merge_diradd(struct inodedep *, struct diradd *);
809 static	void complete_diradd(struct diradd *);
810 static	struct diradd *diradd_lookup(struct pagedep *, int);
811 static	struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *,
812 	    struct jremref *);
813 static	struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *,
814 	    struct jremref *);
815 static	void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *,
816 	    struct jremref *, struct jremref *);
817 static	void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *,
818 	    struct jremref *);
819 static	void cancel_allocindir(struct allocindir *, struct buf *bp,
820 	    struct freeblks *, int);
821 static	int setup_trunc_indir(struct freeblks *, struct inode *,
822 	    ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t);
823 static	void complete_trunc_indir(struct freework *);
824 static	void trunc_indirdep(struct indirdep *, struct freeblks *, struct buf *,
825 	    int);
826 static	void complete_mkdir(struct mkdir *);
827 static	void free_newdirblk(struct newdirblk *);
828 static	void free_jremref(struct jremref *);
829 static	void free_jaddref(struct jaddref *);
830 static	void free_jsegdep(struct jsegdep *);
831 static	void free_jsegs(struct jblocks *);
832 static	void rele_jseg(struct jseg *);
833 static	void free_jseg(struct jseg *, struct jblocks *);
834 static	void free_jnewblk(struct jnewblk *);
835 static	void free_jblkdep(struct jblkdep *);
836 static	void free_jfreefrag(struct jfreefrag *);
837 static	void free_freedep(struct freedep *);
838 static	void journal_jremref(struct dirrem *, struct jremref *,
839 	    struct inodedep *);
840 static	void cancel_jnewblk(struct jnewblk *, struct workhead *);
841 static	int cancel_jaddref(struct jaddref *, struct inodedep *,
842 	    struct workhead *);
843 static	void cancel_jfreefrag(struct jfreefrag *);
844 static	inline void setup_freedirect(struct freeblks *, struct inode *,
845 	    int, int);
846 static	inline void setup_freeext(struct freeblks *, struct inode *, int, int);
847 static	inline void setup_freeindir(struct freeblks *, struct inode *, int,
848 	    ufs_lbn_t, int);
849 static	inline struct freeblks *newfreeblks(struct mount *, struct inode *);
850 static	void freeblks_free(struct ufsmount *, struct freeblks *, int);
851 static	void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t);
852 static	ufs2_daddr_t blkcount(struct fs *, ufs2_daddr_t, off_t);
853 static	int trunc_check_buf(struct buf *, int *, ufs_lbn_t, int, int);
854 static	void trunc_dependencies(struct inode *, struct freeblks *, ufs_lbn_t,
855 	    int, int);
856 static	void trunc_pages(struct inode *, off_t, ufs2_daddr_t, int);
857 static 	int cancel_pagedep(struct pagedep *, struct freeblks *, int);
858 static	int deallocate_dependencies(struct buf *, struct freeblks *, int);
859 static	void newblk_freefrag(struct newblk*);
860 static	void free_newblk(struct newblk *);
861 static	void cancel_allocdirect(struct allocdirectlst *,
862 	    struct allocdirect *, struct freeblks *);
863 static	int check_inode_unwritten(struct inodedep *);
864 static	int free_inodedep(struct inodedep *);
865 static	void freework_freeblock(struct freework *, u_long);
866 static	void freework_enqueue(struct freework *);
867 static	int handle_workitem_freeblocks(struct freeblks *, int);
868 static	int handle_complete_freeblocks(struct freeblks *, int);
869 static	void handle_workitem_indirblk(struct freework *);
870 static	void handle_written_freework(struct freework *);
871 static	void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *);
872 static	struct worklist *jnewblk_merge(struct worklist *, struct worklist *,
873 	    struct workhead *);
874 static	struct freefrag *setup_allocindir_phase2(struct buf *, struct inode *,
875 	    struct inodedep *, struct allocindir *, ufs_lbn_t);
876 static	struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t,
877 	    ufs2_daddr_t, ufs_lbn_t);
878 static	void handle_workitem_freefrag(struct freefrag *);
879 static	struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long,
880 	    ufs_lbn_t, u_long);
881 static	void allocdirect_merge(struct allocdirectlst *,
882 	    struct allocdirect *, struct allocdirect *);
883 static	struct freefrag *allocindir_merge(struct allocindir *,
884 	    struct allocindir *);
885 static	int bmsafemap_find(struct bmsafemap_hashhead *, int,
886 	    struct bmsafemap **);
887 static	struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *,
888 	    int cg, struct bmsafemap *);
889 static	int newblk_find(struct newblk_hashhead *, ufs2_daddr_t, int,
890 	    struct newblk **);
891 static	int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **);
892 static	int inodedep_find(struct inodedep_hashhead *, ino_t,
893 	    struct inodedep **);
894 static	int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **);
895 static	int pagedep_lookup(struct mount *, struct buf *bp, ino_t, ufs_lbn_t,
896 	    int, struct pagedep **);
897 static	int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t,
898 	    struct pagedep **);
899 static	void pause_timer(void *);
900 static	int request_cleanup(struct mount *, int);
901 static	int softdep_request_cleanup_flush(struct mount *, struct ufsmount *);
902 static	void schedule_cleanup(struct mount *);
903 static void softdep_ast_cleanup_proc(struct thread *);
904 static struct ufsmount *softdep_bp_to_mp(struct buf *bp);
905 static	int process_worklist_item(struct mount *, int, int);
906 static	void process_removes(struct vnode *);
907 static	void process_truncates(struct vnode *);
908 static	void jwork_move(struct workhead *, struct workhead *);
909 static	void jwork_insert(struct workhead *, struct jsegdep *);
910 static	void add_to_worklist(struct worklist *, int);
911 static	void wake_worklist(struct worklist *);
912 static	void wait_worklist(struct worklist *, char *);
913 static	void remove_from_worklist(struct worklist *);
914 static	void softdep_flush(void *);
915 static	void softdep_flushjournal(struct mount *);
916 static	int softdep_speedup(struct ufsmount *);
917 static	void worklist_speedup(struct mount *);
918 static	int journal_mount(struct mount *, struct fs *, struct ucred *);
919 static	void journal_unmount(struct ufsmount *);
920 static	int journal_space(struct ufsmount *, int);
921 static	void journal_suspend(struct ufsmount *);
922 static	int journal_unsuspend(struct ufsmount *ump);
923 static	void softdep_prelink(struct vnode *, struct vnode *);
924 static	void add_to_journal(struct worklist *);
925 static	void remove_from_journal(struct worklist *);
926 static	bool softdep_excess_items(struct ufsmount *, int);
927 static	void softdep_process_journal(struct mount *, struct worklist *, int);
928 static	struct jremref *newjremref(struct dirrem *, struct inode *,
929 	    struct inode *ip, off_t, nlink_t);
930 static	struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t,
931 	    uint16_t);
932 static	inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t,
933 	    uint16_t);
934 static	inline struct jsegdep *inoref_jseg(struct inoref *);
935 static	struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t);
936 static	struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t,
937 	    ufs2_daddr_t, int);
938 static	void adjust_newfreework(struct freeblks *, int);
939 static	struct jtrunc *newjtrunc(struct freeblks *, off_t, int);
940 static	void move_newblock_dep(struct jaddref *, struct inodedep *);
941 static	void cancel_jfreeblk(struct freeblks *, ufs2_daddr_t);
942 static	struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *,
943 	    ufs2_daddr_t, long, ufs_lbn_t);
944 static	struct freework *newfreework(struct ufsmount *, struct freeblks *,
945 	    struct freework *, ufs_lbn_t, ufs2_daddr_t, int, int, int);
946 static	int jwait(struct worklist *, int);
947 static	struct inodedep *inodedep_lookup_ip(struct inode *);
948 static	int bmsafemap_backgroundwrite(struct bmsafemap *, struct buf *);
949 static	struct freefile *handle_bufwait(struct inodedep *, struct workhead *);
950 static	void handle_jwork(struct workhead *);
951 static	struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *,
952 	    struct mkdir **);
953 static	struct jblocks *jblocks_create(void);
954 static	ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *);
955 static	void jblocks_free(struct jblocks *, struct mount *, int);
956 static	void jblocks_destroy(struct jblocks *);
957 static	void jblocks_add(struct jblocks *, ufs2_daddr_t, int);
958 
959 /*
960  * Exported softdep operations.
961  */
962 static	void softdep_disk_io_initiation(struct buf *);
963 static	void softdep_disk_write_complete(struct buf *);
964 static	void softdep_deallocate_dependencies(struct buf *);
965 static	int softdep_count_dependencies(struct buf *bp, int);
966 
967 /*
968  * Global lock over all of soft updates.
969  */
970 static struct mtx lk;
971 MTX_SYSINIT(softdep_lock, &lk, "global softdep", MTX_DEF);
972 
973 #define ACQUIRE_GBLLOCK(lk)	mtx_lock(lk)
974 #define FREE_GBLLOCK(lk)	mtx_unlock(lk)
975 #define GBLLOCK_OWNED(lk)	mtx_assert((lk), MA_OWNED)
976 
977 /*
978  * Per-filesystem soft-updates locking.
979  */
980 #define LOCK_PTR(ump)		(&(ump)->um_softdep->sd_fslock)
981 #define TRY_ACQUIRE_LOCK(ump)	rw_try_wlock(&(ump)->um_softdep->sd_fslock)
982 #define ACQUIRE_LOCK(ump)	rw_wlock(&(ump)->um_softdep->sd_fslock)
983 #define FREE_LOCK(ump)		rw_wunlock(&(ump)->um_softdep->sd_fslock)
984 #define LOCK_OWNED(ump)		rw_assert(&(ump)->um_softdep->sd_fslock, \
985 				    RA_WLOCKED)
986 
987 #define	BUF_AREC(bp)		lockallowrecurse(&(bp)->b_lock)
988 #define	BUF_NOREC(bp)		lockdisablerecurse(&(bp)->b_lock)
989 
990 /*
991  * Worklist queue management.
992  * These routines require that the lock be held.
993  */
994 #ifndef /* NOT */ INVARIANTS
995 #define WORKLIST_INSERT(head, item) do {	\
996 	(item)->wk_state |= ONWORKLIST;		\
997 	LIST_INSERT_HEAD(head, item, wk_list);	\
998 } while (0)
999 #define WORKLIST_REMOVE(item) do {		\
1000 	(item)->wk_state &= ~ONWORKLIST;	\
1001 	LIST_REMOVE(item, wk_list);		\
1002 } while (0)
1003 #define WORKLIST_INSERT_UNLOCKED	WORKLIST_INSERT
1004 #define WORKLIST_REMOVE_UNLOCKED	WORKLIST_REMOVE
1005 
1006 #else /* INVARIANTS */
1007 static	void worklist_insert(struct workhead *, struct worklist *, int,
1008 	const char *, int);
1009 static	void worklist_remove(struct worklist *, int, const char *, int);
1010 
1011 #define WORKLIST_INSERT(head, item) \
1012 	worklist_insert(head, item, 1, __func__, __LINE__)
1013 #define WORKLIST_INSERT_UNLOCKED(head, item)\
1014 	worklist_insert(head, item, 0, __func__, __LINE__)
1015 #define WORKLIST_REMOVE(item)\
1016 	worklist_remove(item, 1, __func__, __LINE__)
1017 #define WORKLIST_REMOVE_UNLOCKED(item)\
1018 	worklist_remove(item, 0, __func__, __LINE__)
1019 
1020 static void
1021 worklist_insert(head, item, locked, func, line)
1022 	struct workhead *head;
1023 	struct worklist *item;
1024 	int locked;
1025 	const char *func;
1026 	int line;
1027 {
1028 
1029 	if (locked)
1030 		LOCK_OWNED(VFSTOUFS(item->wk_mp));
1031 	if (item->wk_state & ONWORKLIST)
1032 		panic("worklist_insert: %p %s(0x%X) already on list, "
1033 		    "added in function %s at line %d",
1034 		    item, TYPENAME(item->wk_type), item->wk_state,
1035 		    item->wk_func, item->wk_line);
1036 	item->wk_state |= ONWORKLIST;
1037 	item->wk_func = func;
1038 	item->wk_line = line;
1039 	LIST_INSERT_HEAD(head, item, wk_list);
1040 }
1041 
1042 static void
1043 worklist_remove(item, locked, func, line)
1044 	struct worklist *item;
1045 	int locked;
1046 	const char *func;
1047 	int line;
1048 {
1049 
1050 	if (locked)
1051 		LOCK_OWNED(VFSTOUFS(item->wk_mp));
1052 	if ((item->wk_state & ONWORKLIST) == 0)
1053 		panic("worklist_remove: %p %s(0x%X) not on list, "
1054 		    "removed in function %s at line %d",
1055 		    item, TYPENAME(item->wk_type), item->wk_state,
1056 		    item->wk_func, item->wk_line);
1057 	item->wk_state &= ~ONWORKLIST;
1058 	item->wk_func = func;
1059 	item->wk_line = line;
1060 	LIST_REMOVE(item, wk_list);
1061 }
1062 #endif /* INVARIANTS */
1063 
1064 /*
1065  * Merge two jsegdeps keeping only the oldest one as newer references
1066  * can't be discarded until after older references.
1067  */
1068 static inline struct jsegdep *
1069 jsegdep_merge(struct jsegdep *one, struct jsegdep *two)
1070 {
1071 	struct jsegdep *swp;
1072 
1073 	if (two == NULL)
1074 		return (one);
1075 
1076 	if (one->jd_seg->js_seq > two->jd_seg->js_seq) {
1077 		swp = one;
1078 		one = two;
1079 		two = swp;
1080 	}
1081 	WORKLIST_REMOVE(&two->jd_list);
1082 	free_jsegdep(two);
1083 
1084 	return (one);
1085 }
1086 
1087 /*
1088  * If two freedeps are compatible free one to reduce list size.
1089  */
1090 static inline struct freedep *
1091 freedep_merge(struct freedep *one, struct freedep *two)
1092 {
1093 	if (two == NULL)
1094 		return (one);
1095 
1096 	if (one->fd_freework == two->fd_freework) {
1097 		WORKLIST_REMOVE(&two->fd_list);
1098 		free_freedep(two);
1099 	}
1100 	return (one);
1101 }
1102 
1103 /*
1104  * Move journal work from one list to another.  Duplicate freedeps and
1105  * jsegdeps are coalesced to keep the lists as small as possible.
1106  */
1107 static void
1108 jwork_move(dst, src)
1109 	struct workhead *dst;
1110 	struct workhead *src;
1111 {
1112 	struct freedep *freedep;
1113 	struct jsegdep *jsegdep;
1114 	struct worklist *wkn;
1115 	struct worklist *wk;
1116 
1117 	KASSERT(dst != src,
1118 	    ("jwork_move: dst == src"));
1119 	freedep = NULL;
1120 	jsegdep = NULL;
1121 	LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) {
1122 		if (wk->wk_type == D_JSEGDEP)
1123 			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1124 		else if (wk->wk_type == D_FREEDEP)
1125 			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1126 	}
1127 
1128 	while ((wk = LIST_FIRST(src)) != NULL) {
1129 		WORKLIST_REMOVE(wk);
1130 		WORKLIST_INSERT(dst, wk);
1131 		if (wk->wk_type == D_JSEGDEP) {
1132 			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1133 			continue;
1134 		}
1135 		if (wk->wk_type == D_FREEDEP)
1136 			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1137 	}
1138 }
1139 
1140 static void
1141 jwork_insert(dst, jsegdep)
1142 	struct workhead *dst;
1143 	struct jsegdep *jsegdep;
1144 {
1145 	struct jsegdep *jsegdepn;
1146 	struct worklist *wk;
1147 
1148 	LIST_FOREACH(wk, dst, wk_list)
1149 		if (wk->wk_type == D_JSEGDEP)
1150 			break;
1151 	if (wk == NULL) {
1152 		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1153 		return;
1154 	}
1155 	jsegdepn = WK_JSEGDEP(wk);
1156 	if (jsegdep->jd_seg->js_seq < jsegdepn->jd_seg->js_seq) {
1157 		WORKLIST_REMOVE(wk);
1158 		free_jsegdep(jsegdepn);
1159 		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1160 	} else
1161 		free_jsegdep(jsegdep);
1162 }
1163 
1164 /*
1165  * Routines for tracking and managing workitems.
1166  */
1167 static	void workitem_free(struct worklist *, int);
1168 static	void workitem_alloc(struct worklist *, int, struct mount *);
1169 static	void workitem_reassign(struct worklist *, int);
1170 
1171 #define	WORKITEM_FREE(item, type) \
1172 	workitem_free((struct worklist *)(item), (type))
1173 #define	WORKITEM_REASSIGN(item, type) \
1174 	workitem_reassign((struct worklist *)(item), (type))
1175 
1176 static void
1177 workitem_free(item, type)
1178 	struct worklist *item;
1179 	int type;
1180 {
1181 	struct ufsmount *ump;
1182 
1183 #ifdef INVARIANTS
1184 	if (item->wk_state & ONWORKLIST)
1185 		panic("workitem_free: %s(0x%X) still on list, "
1186 		    "added in function %s at line %d",
1187 		    TYPENAME(item->wk_type), item->wk_state,
1188 		    item->wk_func, item->wk_line);
1189 	if (item->wk_type != type && type != D_NEWBLK)
1190 		panic("workitem_free: type mismatch %s != %s",
1191 		    TYPENAME(item->wk_type), TYPENAME(type));
1192 #endif
1193 	if (item->wk_state & IOWAITING)
1194 		wakeup(item);
1195 	ump = VFSTOUFS(item->wk_mp);
1196 	LOCK_OWNED(ump);
1197 	KASSERT(ump->softdep_deps > 0,
1198 	    ("workitem_free: %s: softdep_deps going negative",
1199 	    ump->um_fs->fs_fsmnt));
1200 	if (--ump->softdep_deps == 0 && ump->softdep_req)
1201 		wakeup(&ump->softdep_deps);
1202 	KASSERT(dep_current[item->wk_type] > 0,
1203 	    ("workitem_free: %s: dep_current[%s] going negative",
1204 	    ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1205 	KASSERT(ump->softdep_curdeps[item->wk_type] > 0,
1206 	    ("workitem_free: %s: softdep_curdeps[%s] going negative",
1207 	    ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1208 	atomic_subtract_long(&dep_current[item->wk_type], 1);
1209 	ump->softdep_curdeps[item->wk_type] -= 1;
1210 	free(item, DtoM(type));
1211 }
1212 
1213 static void
1214 workitem_alloc(item, type, mp)
1215 	struct worklist *item;
1216 	int type;
1217 	struct mount *mp;
1218 {
1219 	struct ufsmount *ump;
1220 
1221 	item->wk_type = type;
1222 	item->wk_mp = mp;
1223 	item->wk_state = 0;
1224 
1225 	ump = VFSTOUFS(mp);
1226 	ACQUIRE_GBLLOCK(&lk);
1227 	dep_current[type]++;
1228 	if (dep_current[type] > dep_highuse[type])
1229 		dep_highuse[type] = dep_current[type];
1230 	dep_total[type]++;
1231 	FREE_GBLLOCK(&lk);
1232 	ACQUIRE_LOCK(ump);
1233 	ump->softdep_curdeps[type] += 1;
1234 	ump->softdep_deps++;
1235 	ump->softdep_accdeps++;
1236 	FREE_LOCK(ump);
1237 }
1238 
1239 static void
1240 workitem_reassign(item, newtype)
1241 	struct worklist *item;
1242 	int newtype;
1243 {
1244 	struct ufsmount *ump;
1245 
1246 	ump = VFSTOUFS(item->wk_mp);
1247 	LOCK_OWNED(ump);
1248 	KASSERT(ump->softdep_curdeps[item->wk_type] > 0,
1249 	    ("workitem_reassign: %s: softdep_curdeps[%s] going negative",
1250 	    VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1251 	ump->softdep_curdeps[item->wk_type] -= 1;
1252 	ump->softdep_curdeps[newtype] += 1;
1253 	KASSERT(dep_current[item->wk_type] > 0,
1254 	    ("workitem_reassign: %s: dep_current[%s] going negative",
1255 	    VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1256 	ACQUIRE_GBLLOCK(&lk);
1257 	dep_current[newtype]++;
1258 	dep_current[item->wk_type]--;
1259 	if (dep_current[newtype] > dep_highuse[newtype])
1260 		dep_highuse[newtype] = dep_current[newtype];
1261 	dep_total[newtype]++;
1262 	FREE_GBLLOCK(&lk);
1263 	item->wk_type = newtype;
1264 }
1265 
1266 /*
1267  * Workitem queue management
1268  */
1269 static int max_softdeps;	/* maximum number of structs before slowdown */
1270 static int tickdelay = 2;	/* number of ticks to pause during slowdown */
1271 static int proc_waiting;	/* tracks whether we have a timeout posted */
1272 static int *stat_countp;	/* statistic to count in proc_waiting timeout */
1273 static struct callout softdep_callout;
1274 static int req_clear_inodedeps;	/* syncer process flush some inodedeps */
1275 static int req_clear_remove;	/* syncer process flush some freeblks */
1276 static int softdep_flushcache = 0; /* Should we do BIO_FLUSH? */
1277 
1278 /*
1279  * runtime statistics
1280  */
1281 static int stat_flush_threads;	/* number of softdep flushing threads */
1282 static int stat_worklist_push;	/* number of worklist cleanups */
1283 static int stat_blk_limit_push;	/* number of times block limit neared */
1284 static int stat_ino_limit_push;	/* number of times inode limit neared */
1285 static int stat_blk_limit_hit;	/* number of times block slowdown imposed */
1286 static int stat_ino_limit_hit;	/* number of times inode slowdown imposed */
1287 static int stat_sync_limit_hit;	/* number of synchronous slowdowns imposed */
1288 static int stat_indir_blk_ptrs;	/* bufs redirtied as indir ptrs not written */
1289 static int stat_inode_bitmap;	/* bufs redirtied as inode bitmap not written */
1290 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
1291 static int stat_dir_entry;	/* bufs redirtied as dir entry cannot write */
1292 static int stat_jaddref;	/* bufs redirtied as ino bitmap can not write */
1293 static int stat_jnewblk;	/* bufs redirtied as blk bitmap can not write */
1294 static int stat_journal_min;	/* Times hit journal min threshold */
1295 static int stat_journal_low;	/* Times hit journal low threshold */
1296 static int stat_journal_wait;	/* Times blocked in jwait(). */
1297 static int stat_jwait_filepage;	/* Times blocked in jwait() for filepage. */
1298 static int stat_jwait_freeblks;	/* Times blocked in jwait() for freeblks. */
1299 static int stat_jwait_inode;	/* Times blocked in jwait() for inodes. */
1300 static int stat_jwait_newblk;	/* Times blocked in jwait() for newblks. */
1301 static int stat_cleanup_high_delay; /* Maximum cleanup delay (in ticks) */
1302 static int stat_cleanup_blkrequests; /* Number of block cleanup requests */
1303 static int stat_cleanup_inorequests; /* Number of inode cleanup requests */
1304 static int stat_cleanup_retries; /* Number of cleanups that needed to flush */
1305 static int stat_cleanup_failures; /* Number of cleanup requests that failed */
1306 static int stat_emptyjblocks; /* Number of potentially empty journal blocks */
1307 
1308 SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW,
1309     &max_softdeps, 0, "");
1310 SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW,
1311     &tickdelay, 0, "");
1312 SYSCTL_INT(_debug_softdep, OID_AUTO, flush_threads, CTLFLAG_RD,
1313     &stat_flush_threads, 0, "");
1314 SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push,
1315     CTLFLAG_RW | CTLFLAG_STATS, &stat_worklist_push, 0,"");
1316 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push,
1317     CTLFLAG_RW | CTLFLAG_STATS, &stat_blk_limit_push, 0,"");
1318 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push,
1319     CTLFLAG_RW | CTLFLAG_STATS, &stat_ino_limit_push, 0,"");
1320 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit,
1321     CTLFLAG_RW | CTLFLAG_STATS, &stat_blk_limit_hit, 0, "");
1322 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit,
1323     CTLFLAG_RW | CTLFLAG_STATS, &stat_ino_limit_hit, 0, "");
1324 SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit,
1325     CTLFLAG_RW | CTLFLAG_STATS, &stat_sync_limit_hit, 0, "");
1326 SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs,
1327     CTLFLAG_RW | CTLFLAG_STATS, &stat_indir_blk_ptrs, 0, "");
1328 SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap,
1329     CTLFLAG_RW | CTLFLAG_STATS, &stat_inode_bitmap, 0, "");
1330 SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs,
1331     CTLFLAG_RW | CTLFLAG_STATS, &stat_direct_blk_ptrs, 0, "");
1332 SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry,
1333     CTLFLAG_RW | CTLFLAG_STATS, &stat_dir_entry, 0, "");
1334 SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback,
1335     CTLFLAG_RW | CTLFLAG_STATS, &stat_jaddref, 0, "");
1336 SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback,
1337     CTLFLAG_RW | CTLFLAG_STATS, &stat_jnewblk, 0, "");
1338 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low,
1339     CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_low, 0, "");
1340 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min,
1341     CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_min, 0, "");
1342 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait,
1343     CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_wait, 0, "");
1344 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage,
1345     CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_filepage, 0, "");
1346 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks,
1347     CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_freeblks, 0, "");
1348 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode,
1349     CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_inode, 0, "");
1350 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk,
1351     CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_newblk, 0, "");
1352 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_blkrequests,
1353     CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_blkrequests, 0, "");
1354 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_inorequests,
1355     CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_inorequests, 0, "");
1356 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_high_delay,
1357     CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_high_delay, 0, "");
1358 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_retries,
1359     CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_retries, 0, "");
1360 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_failures,
1361     CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_failures, 0, "");
1362 
1363 SYSCTL_INT(_debug_softdep, OID_AUTO, flushcache, CTLFLAG_RW,
1364     &softdep_flushcache, 0, "");
1365 SYSCTL_INT(_debug_softdep, OID_AUTO, emptyjblocks, CTLFLAG_RD,
1366     &stat_emptyjblocks, 0, "");
1367 
1368 SYSCTL_DECL(_vfs_ffs);
1369 
1370 /* Whether to recompute the summary at mount time */
1371 static int compute_summary_at_mount = 0;
1372 SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW,
1373 	   &compute_summary_at_mount, 0, "Recompute summary at mount");
1374 static int print_threads = 0;
1375 SYSCTL_INT(_debug_softdep, OID_AUTO, print_threads, CTLFLAG_RW,
1376     &print_threads, 0, "Notify flusher thread start/stop");
1377 
1378 /* List of all filesystems mounted with soft updates */
1379 static TAILQ_HEAD(, mount_softdeps) softdepmounts;
1380 
1381 /*
1382  * This function cleans the worklist for a filesystem.
1383  * Each filesystem running with soft dependencies gets its own
1384  * thread to run in this function. The thread is started up in
1385  * softdep_mount and shutdown in softdep_unmount. They show up
1386  * as part of the kernel "bufdaemon" process whose process
1387  * entry is available in bufdaemonproc.
1388  */
1389 static int searchfailed;
1390 extern struct proc *bufdaemonproc;
1391 static void
1392 softdep_flush(addr)
1393 	void *addr;
1394 {
1395 	struct mount *mp;
1396 	struct thread *td;
1397 	struct ufsmount *ump;
1398 
1399 	td = curthread;
1400 	td->td_pflags |= TDP_NORUNNINGBUF;
1401 	mp = (struct mount *)addr;
1402 	ump = VFSTOUFS(mp);
1403 	atomic_add_int(&stat_flush_threads, 1);
1404 	ACQUIRE_LOCK(ump);
1405 	ump->softdep_flags &= ~FLUSH_STARTING;
1406 	wakeup(&ump->softdep_flushtd);
1407 	FREE_LOCK(ump);
1408 	if (print_threads) {
1409 		if (stat_flush_threads == 1)
1410 			printf("Running %s at pid %d\n", bufdaemonproc->p_comm,
1411 			    bufdaemonproc->p_pid);
1412 		printf("Start thread %s\n", td->td_name);
1413 	}
1414 	for (;;) {
1415 		while (softdep_process_worklist(mp, 0) > 0 ||
1416 		    (MOUNTEDSUJ(mp) &&
1417 		    VFSTOUFS(mp)->softdep_jblocks->jb_suspended))
1418 			kthread_suspend_check();
1419 		ACQUIRE_LOCK(ump);
1420 		if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
1421 			msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM,
1422 			    "sdflush", hz / 2);
1423 		ump->softdep_flags &= ~FLUSH_CLEANUP;
1424 		/*
1425 		 * Check to see if we are done and need to exit.
1426 		 */
1427 		if ((ump->softdep_flags & FLUSH_EXIT) == 0) {
1428 			FREE_LOCK(ump);
1429 			continue;
1430 		}
1431 		ump->softdep_flags &= ~FLUSH_EXIT;
1432 		FREE_LOCK(ump);
1433 		wakeup(&ump->softdep_flags);
1434 		if (print_threads)
1435 			printf("Stop thread %s: searchfailed %d, did cleanups %d\n", td->td_name, searchfailed, ump->um_softdep->sd_cleanups);
1436 		atomic_subtract_int(&stat_flush_threads, 1);
1437 		kthread_exit();
1438 		panic("kthread_exit failed\n");
1439 	}
1440 }
1441 
1442 static void
1443 worklist_speedup(mp)
1444 	struct mount *mp;
1445 {
1446 	struct ufsmount *ump;
1447 
1448 	ump = VFSTOUFS(mp);
1449 	LOCK_OWNED(ump);
1450 	if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
1451 		ump->softdep_flags |= FLUSH_CLEANUP;
1452 	wakeup(&ump->softdep_flushtd);
1453 }
1454 
1455 static int
1456 softdep_speedup(ump)
1457 	struct ufsmount *ump;
1458 {
1459 	struct ufsmount *altump;
1460 	struct mount_softdeps *sdp;
1461 
1462 	LOCK_OWNED(ump);
1463 	worklist_speedup(ump->um_mountp);
1464 	bd_speedup();
1465 	/*
1466 	 * If we have global shortages, then we need other
1467 	 * filesystems to help with the cleanup. Here we wakeup a
1468 	 * flusher thread for a filesystem that is over its fair
1469 	 * share of resources.
1470 	 */
1471 	if (req_clear_inodedeps || req_clear_remove) {
1472 		ACQUIRE_GBLLOCK(&lk);
1473 		TAILQ_FOREACH(sdp, &softdepmounts, sd_next) {
1474 			if ((altump = sdp->sd_ump) == ump)
1475 				continue;
1476 			if (((req_clear_inodedeps &&
1477 			    altump->softdep_curdeps[D_INODEDEP] >
1478 			    max_softdeps / stat_flush_threads) ||
1479 			    (req_clear_remove &&
1480 			    altump->softdep_curdeps[D_DIRREM] >
1481 			    (max_softdeps / 2) / stat_flush_threads)) &&
1482 			    TRY_ACQUIRE_LOCK(altump))
1483 				break;
1484 		}
1485 		if (sdp == NULL) {
1486 			searchfailed++;
1487 			FREE_GBLLOCK(&lk);
1488 		} else {
1489 			/*
1490 			 * Move to the end of the list so we pick a
1491 			 * different one on out next try.
1492 			 */
1493 			TAILQ_REMOVE(&softdepmounts, sdp, sd_next);
1494 			TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next);
1495 			FREE_GBLLOCK(&lk);
1496 			if ((altump->softdep_flags &
1497 			    (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
1498 				altump->softdep_flags |= FLUSH_CLEANUP;
1499 			altump->um_softdep->sd_cleanups++;
1500 			wakeup(&altump->softdep_flushtd);
1501 			FREE_LOCK(altump);
1502 		}
1503 	}
1504 	return (speedup_syncer());
1505 }
1506 
1507 /*
1508  * Add an item to the end of the work queue.
1509  * This routine requires that the lock be held.
1510  * This is the only routine that adds items to the list.
1511  * The following routine is the only one that removes items
1512  * and does so in order from first to last.
1513  */
1514 
1515 #define	WK_HEAD		0x0001	/* Add to HEAD. */
1516 #define	WK_NODELAY	0x0002	/* Process immediately. */
1517 
1518 static void
1519 add_to_worklist(wk, flags)
1520 	struct worklist *wk;
1521 	int flags;
1522 {
1523 	struct ufsmount *ump;
1524 
1525 	ump = VFSTOUFS(wk->wk_mp);
1526 	LOCK_OWNED(ump);
1527 	if (wk->wk_state & ONWORKLIST)
1528 		panic("add_to_worklist: %s(0x%X) already on list",
1529 		    TYPENAME(wk->wk_type), wk->wk_state);
1530 	wk->wk_state |= ONWORKLIST;
1531 	if (ump->softdep_on_worklist == 0) {
1532 		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1533 		ump->softdep_worklist_tail = wk;
1534 	} else if (flags & WK_HEAD) {
1535 		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1536 	} else {
1537 		LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list);
1538 		ump->softdep_worklist_tail = wk;
1539 	}
1540 	ump->softdep_on_worklist += 1;
1541 	if (flags & WK_NODELAY)
1542 		worklist_speedup(wk->wk_mp);
1543 }
1544 
1545 /*
1546  * Remove the item to be processed. If we are removing the last
1547  * item on the list, we need to recalculate the tail pointer.
1548  */
1549 static void
1550 remove_from_worklist(wk)
1551 	struct worklist *wk;
1552 {
1553 	struct ufsmount *ump;
1554 
1555 	ump = VFSTOUFS(wk->wk_mp);
1556 	if (ump->softdep_worklist_tail == wk)
1557 		ump->softdep_worklist_tail =
1558 		    (struct worklist *)wk->wk_list.le_prev;
1559 	WORKLIST_REMOVE(wk);
1560 	ump->softdep_on_worklist -= 1;
1561 }
1562 
1563 static void
1564 wake_worklist(wk)
1565 	struct worklist *wk;
1566 {
1567 	if (wk->wk_state & IOWAITING) {
1568 		wk->wk_state &= ~IOWAITING;
1569 		wakeup(wk);
1570 	}
1571 }
1572 
1573 static void
1574 wait_worklist(wk, wmesg)
1575 	struct worklist *wk;
1576 	char *wmesg;
1577 {
1578 	struct ufsmount *ump;
1579 
1580 	ump = VFSTOUFS(wk->wk_mp);
1581 	wk->wk_state |= IOWAITING;
1582 	msleep(wk, LOCK_PTR(ump), PVM, wmesg, 0);
1583 }
1584 
1585 /*
1586  * Process that runs once per second to handle items in the background queue.
1587  *
1588  * Note that we ensure that everything is done in the order in which they
1589  * appear in the queue. The code below depends on this property to ensure
1590  * that blocks of a file are freed before the inode itself is freed. This
1591  * ordering ensures that no new <vfsid, inum, lbn> triples will be generated
1592  * until all the old ones have been purged from the dependency lists.
1593  */
1594 static int
1595 softdep_process_worklist(mp, full)
1596 	struct mount *mp;
1597 	int full;
1598 {
1599 	int cnt, matchcnt;
1600 	struct ufsmount *ump;
1601 	long starttime;
1602 
1603 	KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp"));
1604 	if (MOUNTEDSOFTDEP(mp) == 0)
1605 		return (0);
1606 	matchcnt = 0;
1607 	ump = VFSTOUFS(mp);
1608 	ACQUIRE_LOCK(ump);
1609 	starttime = time_second;
1610 	softdep_process_journal(mp, NULL, full ? MNT_WAIT : 0);
1611 	check_clear_deps(mp);
1612 	while (ump->softdep_on_worklist > 0) {
1613 		if ((cnt = process_worklist_item(mp, 10, LK_NOWAIT)) == 0)
1614 			break;
1615 		else
1616 			matchcnt += cnt;
1617 		check_clear_deps(mp);
1618 		/*
1619 		 * We do not generally want to stop for buffer space, but if
1620 		 * we are really being a buffer hog, we will stop and wait.
1621 		 */
1622 		if (should_yield()) {
1623 			FREE_LOCK(ump);
1624 			kern_yield(PRI_USER);
1625 			bwillwrite();
1626 			ACQUIRE_LOCK(ump);
1627 		}
1628 		/*
1629 		 * Never allow processing to run for more than one
1630 		 * second. This gives the syncer thread the opportunity
1631 		 * to pause if appropriate.
1632 		 */
1633 		if (!full && starttime != time_second)
1634 			break;
1635 	}
1636 	if (full == 0)
1637 		journal_unsuspend(ump);
1638 	FREE_LOCK(ump);
1639 	return (matchcnt);
1640 }
1641 
1642 /*
1643  * Process all removes associated with a vnode if we are running out of
1644  * journal space.  Any other process which attempts to flush these will
1645  * be unable as we have the vnodes locked.
1646  */
1647 static void
1648 process_removes(vp)
1649 	struct vnode *vp;
1650 {
1651 	struct inodedep *inodedep;
1652 	struct dirrem *dirrem;
1653 	struct ufsmount *ump;
1654 	struct mount *mp;
1655 	ino_t inum;
1656 
1657 	mp = vp->v_mount;
1658 	ump = VFSTOUFS(mp);
1659 	LOCK_OWNED(ump);
1660 	inum = VTOI(vp)->i_number;
1661 	for (;;) {
1662 top:
1663 		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1664 			return;
1665 		LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext) {
1666 			/*
1667 			 * If another thread is trying to lock this vnode
1668 			 * it will fail but we must wait for it to do so
1669 			 * before we can proceed.
1670 			 */
1671 			if (dirrem->dm_state & INPROGRESS) {
1672 				wait_worklist(&dirrem->dm_list, "pwrwait");
1673 				goto top;
1674 			}
1675 			if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) ==
1676 			    (COMPLETE | ONWORKLIST))
1677 				break;
1678 		}
1679 		if (dirrem == NULL)
1680 			return;
1681 		remove_from_worklist(&dirrem->dm_list);
1682 		FREE_LOCK(ump);
1683 		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1684 			panic("process_removes: suspended filesystem");
1685 		handle_workitem_remove(dirrem, 0);
1686 		vn_finished_secondary_write(mp);
1687 		ACQUIRE_LOCK(ump);
1688 	}
1689 }
1690 
1691 /*
1692  * Process all truncations associated with a vnode if we are running out
1693  * of journal space.  This is called when the vnode lock is already held
1694  * and no other process can clear the truncation.  This function returns
1695  * a value greater than zero if it did any work.
1696  */
1697 static void
1698 process_truncates(vp)
1699 	struct vnode *vp;
1700 {
1701 	struct inodedep *inodedep;
1702 	struct freeblks *freeblks;
1703 	struct ufsmount *ump;
1704 	struct mount *mp;
1705 	ino_t inum;
1706 	int cgwait;
1707 
1708 	mp = vp->v_mount;
1709 	ump = VFSTOUFS(mp);
1710 	LOCK_OWNED(ump);
1711 	inum = VTOI(vp)->i_number;
1712 	for (;;) {
1713 		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1714 			return;
1715 		cgwait = 0;
1716 		TAILQ_FOREACH(freeblks, &inodedep->id_freeblklst, fb_next) {
1717 			/* Journal entries not yet written.  */
1718 			if (!LIST_EMPTY(&freeblks->fb_jblkdephd)) {
1719 				jwait(&LIST_FIRST(
1720 				    &freeblks->fb_jblkdephd)->jb_list,
1721 				    MNT_WAIT);
1722 				break;
1723 			}
1724 			/* Another thread is executing this item. */
1725 			if (freeblks->fb_state & INPROGRESS) {
1726 				wait_worklist(&freeblks->fb_list, "ptrwait");
1727 				break;
1728 			}
1729 			/* Freeblks is waiting on a inode write. */
1730 			if ((freeblks->fb_state & COMPLETE) == 0) {
1731 				FREE_LOCK(ump);
1732 				ffs_update(vp, 1);
1733 				ACQUIRE_LOCK(ump);
1734 				break;
1735 			}
1736 			if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST)) ==
1737 			    (ALLCOMPLETE | ONWORKLIST)) {
1738 				remove_from_worklist(&freeblks->fb_list);
1739 				freeblks->fb_state |= INPROGRESS;
1740 				FREE_LOCK(ump);
1741 				if (vn_start_secondary_write(NULL, &mp,
1742 				    V_NOWAIT))
1743 					panic("process_truncates: "
1744 					    "suspended filesystem");
1745 				handle_workitem_freeblocks(freeblks, 0);
1746 				vn_finished_secondary_write(mp);
1747 				ACQUIRE_LOCK(ump);
1748 				break;
1749 			}
1750 			if (freeblks->fb_cgwait)
1751 				cgwait++;
1752 		}
1753 		if (cgwait) {
1754 			FREE_LOCK(ump);
1755 			sync_cgs(mp, MNT_WAIT);
1756 			ffs_sync_snap(mp, MNT_WAIT);
1757 			ACQUIRE_LOCK(ump);
1758 			continue;
1759 		}
1760 		if (freeblks == NULL)
1761 			break;
1762 	}
1763 	return;
1764 }
1765 
1766 /*
1767  * Process one item on the worklist.
1768  */
1769 static int
1770 process_worklist_item(mp, target, flags)
1771 	struct mount *mp;
1772 	int target;
1773 	int flags;
1774 {
1775 	struct worklist sentinel;
1776 	struct worklist *wk;
1777 	struct ufsmount *ump;
1778 	int matchcnt;
1779 	int error;
1780 
1781 	KASSERT(mp != NULL, ("process_worklist_item: NULL mp"));
1782 	/*
1783 	 * If we are being called because of a process doing a
1784 	 * copy-on-write, then it is not safe to write as we may
1785 	 * recurse into the copy-on-write routine.
1786 	 */
1787 	if (curthread->td_pflags & TDP_COWINPROGRESS)
1788 		return (-1);
1789 	PHOLD(curproc);	/* Don't let the stack go away. */
1790 	ump = VFSTOUFS(mp);
1791 	LOCK_OWNED(ump);
1792 	matchcnt = 0;
1793 	sentinel.wk_mp = NULL;
1794 	sentinel.wk_type = D_SENTINEL;
1795 	LIST_INSERT_HEAD(&ump->softdep_workitem_pending, &sentinel, wk_list);
1796 	for (wk = LIST_NEXT(&sentinel, wk_list); wk != NULL;
1797 	    wk = LIST_NEXT(&sentinel, wk_list)) {
1798 		if (wk->wk_type == D_SENTINEL) {
1799 			LIST_REMOVE(&sentinel, wk_list);
1800 			LIST_INSERT_AFTER(wk, &sentinel, wk_list);
1801 			continue;
1802 		}
1803 		if (wk->wk_state & INPROGRESS)
1804 			panic("process_worklist_item: %p already in progress.",
1805 			    wk);
1806 		wk->wk_state |= INPROGRESS;
1807 		remove_from_worklist(wk);
1808 		FREE_LOCK(ump);
1809 		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1810 			panic("process_worklist_item: suspended filesystem");
1811 		switch (wk->wk_type) {
1812 		case D_DIRREM:
1813 			/* removal of a directory entry */
1814 			error = handle_workitem_remove(WK_DIRREM(wk), flags);
1815 			break;
1816 
1817 		case D_FREEBLKS:
1818 			/* releasing blocks and/or fragments from a file */
1819 			error = handle_workitem_freeblocks(WK_FREEBLKS(wk),
1820 			    flags);
1821 			break;
1822 
1823 		case D_FREEFRAG:
1824 			/* releasing a fragment when replaced as a file grows */
1825 			handle_workitem_freefrag(WK_FREEFRAG(wk));
1826 			error = 0;
1827 			break;
1828 
1829 		case D_FREEFILE:
1830 			/* releasing an inode when its link count drops to 0 */
1831 			handle_workitem_freefile(WK_FREEFILE(wk));
1832 			error = 0;
1833 			break;
1834 
1835 		default:
1836 			panic("%s_process_worklist: Unknown type %s",
1837 			    "softdep", TYPENAME(wk->wk_type));
1838 			/* NOTREACHED */
1839 		}
1840 		vn_finished_secondary_write(mp);
1841 		ACQUIRE_LOCK(ump);
1842 		if (error == 0) {
1843 			if (++matchcnt == target)
1844 				break;
1845 			continue;
1846 		}
1847 		/*
1848 		 * We have to retry the worklist item later.  Wake up any
1849 		 * waiters who may be able to complete it immediately and
1850 		 * add the item back to the head so we don't try to execute
1851 		 * it again.
1852 		 */
1853 		wk->wk_state &= ~INPROGRESS;
1854 		wake_worklist(wk);
1855 		add_to_worklist(wk, WK_HEAD);
1856 	}
1857 	/* Sentinal could've become the tail from remove_from_worklist. */
1858 	if (ump->softdep_worklist_tail == &sentinel)
1859 		ump->softdep_worklist_tail =
1860 		    (struct worklist *)sentinel.wk_list.le_prev;
1861 	LIST_REMOVE(&sentinel, wk_list);
1862 	PRELE(curproc);
1863 	return (matchcnt);
1864 }
1865 
1866 /*
1867  * Move dependencies from one buffer to another.
1868  */
1869 int
1870 softdep_move_dependencies(oldbp, newbp)
1871 	struct buf *oldbp;
1872 	struct buf *newbp;
1873 {
1874 	struct worklist *wk, *wktail;
1875 	struct ufsmount *ump;
1876 	int dirty;
1877 
1878 	if ((wk = LIST_FIRST(&oldbp->b_dep)) == NULL)
1879 		return (0);
1880 	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
1881 	    ("softdep_move_dependencies called on non-softdep filesystem"));
1882 	dirty = 0;
1883 	wktail = NULL;
1884 	ump = VFSTOUFS(wk->wk_mp);
1885 	ACQUIRE_LOCK(ump);
1886 	while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) {
1887 		LIST_REMOVE(wk, wk_list);
1888 		if (wk->wk_type == D_BMSAFEMAP &&
1889 		    bmsafemap_backgroundwrite(WK_BMSAFEMAP(wk), newbp))
1890 			dirty = 1;
1891 		if (wktail == NULL)
1892 			LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list);
1893 		else
1894 			LIST_INSERT_AFTER(wktail, wk, wk_list);
1895 		wktail = wk;
1896 	}
1897 	FREE_LOCK(ump);
1898 
1899 	return (dirty);
1900 }
1901 
1902 /*
1903  * Purge the work list of all items associated with a particular mount point.
1904  */
1905 int
1906 softdep_flushworklist(oldmnt, countp, td)
1907 	struct mount *oldmnt;
1908 	int *countp;
1909 	struct thread *td;
1910 {
1911 	struct vnode *devvp;
1912 	struct ufsmount *ump;
1913 	int count, error;
1914 
1915 	/*
1916 	 * Alternately flush the block device associated with the mount
1917 	 * point and process any dependencies that the flushing
1918 	 * creates. We continue until no more worklist dependencies
1919 	 * are found.
1920 	 */
1921 	*countp = 0;
1922 	error = 0;
1923 	ump = VFSTOUFS(oldmnt);
1924 	devvp = ump->um_devvp;
1925 	while ((count = softdep_process_worklist(oldmnt, 1)) > 0) {
1926 		*countp += count;
1927 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1928 		error = VOP_FSYNC(devvp, MNT_WAIT, td);
1929 		VOP_UNLOCK(devvp, 0);
1930 		if (error != 0)
1931 			break;
1932 	}
1933 	return (error);
1934 }
1935 
1936 #define	SU_WAITIDLE_RETRIES	20
1937 static int
1938 softdep_waitidle(struct mount *mp, int flags __unused)
1939 {
1940 	struct ufsmount *ump;
1941 	struct vnode *devvp;
1942 	struct thread *td;
1943 	int error, i;
1944 
1945 	ump = VFSTOUFS(mp);
1946 	devvp = ump->um_devvp;
1947 	td = curthread;
1948 	error = 0;
1949 	ACQUIRE_LOCK(ump);
1950 	for (i = 0; i < SU_WAITIDLE_RETRIES && ump->softdep_deps != 0; i++) {
1951 		ump->softdep_req = 1;
1952 		KASSERT((flags & FORCECLOSE) == 0 ||
1953 		    ump->softdep_on_worklist == 0,
1954 		    ("softdep_waitidle: work added after flush"));
1955 		msleep(&ump->softdep_deps, LOCK_PTR(ump), PVM | PDROP,
1956 		    "softdeps", 10 * hz);
1957 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1958 		error = VOP_FSYNC(devvp, MNT_WAIT, td);
1959 		VOP_UNLOCK(devvp, 0);
1960 		ACQUIRE_LOCK(ump);
1961 		if (error != 0)
1962 			break;
1963 	}
1964 	ump->softdep_req = 0;
1965 	if (i == SU_WAITIDLE_RETRIES && error == 0 && ump->softdep_deps != 0) {
1966 		error = EBUSY;
1967 		printf("softdep_waitidle: Failed to flush worklist for %p\n",
1968 		    mp);
1969 	}
1970 	FREE_LOCK(ump);
1971 	return (error);
1972 }
1973 
1974 /*
1975  * Flush all vnodes and worklist items associated with a specified mount point.
1976  */
1977 int
1978 softdep_flushfiles(oldmnt, flags, td)
1979 	struct mount *oldmnt;
1980 	int flags;
1981 	struct thread *td;
1982 {
1983 #ifdef QUOTA
1984 	struct ufsmount *ump;
1985 	int i;
1986 #endif
1987 	int error, early, depcount, loopcnt, retry_flush_count, retry;
1988 	int morework;
1989 
1990 	KASSERT(MOUNTEDSOFTDEP(oldmnt) != 0,
1991 	    ("softdep_flushfiles called on non-softdep filesystem"));
1992 	loopcnt = 10;
1993 	retry_flush_count = 3;
1994 retry_flush:
1995 	error = 0;
1996 
1997 	/*
1998 	 * Alternately flush the vnodes associated with the mount
1999 	 * point and process any dependencies that the flushing
2000 	 * creates. In theory, this loop can happen at most twice,
2001 	 * but we give it a few extra just to be sure.
2002 	 */
2003 	for (; loopcnt > 0; loopcnt--) {
2004 		/*
2005 		 * Do another flush in case any vnodes were brought in
2006 		 * as part of the cleanup operations.
2007 		 */
2008 		early = retry_flush_count == 1 || (oldmnt->mnt_kern_flag &
2009 		    MNTK_UNMOUNT) == 0 ? 0 : EARLYFLUSH;
2010 		if ((error = ffs_flushfiles(oldmnt, flags | early, td)) != 0)
2011 			break;
2012 		if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 ||
2013 		    depcount == 0)
2014 			break;
2015 	}
2016 	/*
2017 	 * If we are unmounting then it is an error to fail. If we
2018 	 * are simply trying to downgrade to read-only, then filesystem
2019 	 * activity can keep us busy forever, so we just fail with EBUSY.
2020 	 */
2021 	if (loopcnt == 0) {
2022 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT)
2023 			panic("softdep_flushfiles: looping");
2024 		error = EBUSY;
2025 	}
2026 	if (!error)
2027 		error = softdep_waitidle(oldmnt, flags);
2028 	if (!error) {
2029 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) {
2030 			retry = 0;
2031 			MNT_ILOCK(oldmnt);
2032 			morework = oldmnt->mnt_nvnodelistsize > 0;
2033 #ifdef QUOTA
2034 			ump = VFSTOUFS(oldmnt);
2035 			UFS_LOCK(ump);
2036 			for (i = 0; i < MAXQUOTAS; i++) {
2037 				if (ump->um_quotas[i] != NULLVP)
2038 					morework = 1;
2039 			}
2040 			UFS_UNLOCK(ump);
2041 #endif
2042 			if (morework) {
2043 				if (--retry_flush_count > 0) {
2044 					retry = 1;
2045 					loopcnt = 3;
2046 				} else
2047 					error = EBUSY;
2048 			}
2049 			MNT_IUNLOCK(oldmnt);
2050 			if (retry)
2051 				goto retry_flush;
2052 		}
2053 	}
2054 	return (error);
2055 }
2056 
2057 /*
2058  * Structure hashing.
2059  *
2060  * There are four types of structures that can be looked up:
2061  *	1) pagedep structures identified by mount point, inode number,
2062  *	   and logical block.
2063  *	2) inodedep structures identified by mount point and inode number.
2064  *	3) newblk structures identified by mount point and
2065  *	   physical block number.
2066  *	4) bmsafemap structures identified by mount point and
2067  *	   cylinder group number.
2068  *
2069  * The "pagedep" and "inodedep" dependency structures are hashed
2070  * separately from the file blocks and inodes to which they correspond.
2071  * This separation helps when the in-memory copy of an inode or
2072  * file block must be replaced. It also obviates the need to access
2073  * an inode or file page when simply updating (or de-allocating)
2074  * dependency structures. Lookup of newblk structures is needed to
2075  * find newly allocated blocks when trying to associate them with
2076  * their allocdirect or allocindir structure.
2077  *
2078  * The lookup routines optionally create and hash a new instance when
2079  * an existing entry is not found. The bmsafemap lookup routine always
2080  * allocates a new structure if an existing one is not found.
2081  */
2082 #define DEPALLOC	0x0001	/* allocate structure if lookup fails */
2083 
2084 /*
2085  * Structures and routines associated with pagedep caching.
2086  */
2087 #define	PAGEDEP_HASH(ump, inum, lbn) \
2088 	(&(ump)->pagedep_hashtbl[((inum) + (lbn)) & (ump)->pagedep_hash_size])
2089 
2090 static int
2091 pagedep_find(pagedephd, ino, lbn, pagedeppp)
2092 	struct pagedep_hashhead *pagedephd;
2093 	ino_t ino;
2094 	ufs_lbn_t lbn;
2095 	struct pagedep **pagedeppp;
2096 {
2097 	struct pagedep *pagedep;
2098 
2099 	LIST_FOREACH(pagedep, pagedephd, pd_hash) {
2100 		if (ino == pagedep->pd_ino && lbn == pagedep->pd_lbn) {
2101 			*pagedeppp = pagedep;
2102 			return (1);
2103 		}
2104 	}
2105 	*pagedeppp = NULL;
2106 	return (0);
2107 }
2108 /*
2109  * Look up a pagedep. Return 1 if found, 0 otherwise.
2110  * If not found, allocate if DEPALLOC flag is passed.
2111  * Found or allocated entry is returned in pagedeppp.
2112  */
2113 static int
2114 pagedep_lookup(mp, bp, ino, lbn, flags, pagedeppp)
2115 	struct mount *mp;
2116 	struct buf *bp;
2117 	ino_t ino;
2118 	ufs_lbn_t lbn;
2119 	int flags;
2120 	struct pagedep **pagedeppp;
2121 {
2122 	struct pagedep *pagedep;
2123 	struct pagedep_hashhead *pagedephd;
2124 	struct worklist *wk;
2125 	struct ufsmount *ump;
2126 	int ret;
2127 	int i;
2128 
2129 	ump = VFSTOUFS(mp);
2130 	LOCK_OWNED(ump);
2131 	if (bp) {
2132 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
2133 			if (wk->wk_type == D_PAGEDEP) {
2134 				*pagedeppp = WK_PAGEDEP(wk);
2135 				return (1);
2136 			}
2137 		}
2138 	}
2139 	pagedephd = PAGEDEP_HASH(ump, ino, lbn);
2140 	ret = pagedep_find(pagedephd, ino, lbn, pagedeppp);
2141 	if (ret) {
2142 		if (((*pagedeppp)->pd_state & ONWORKLIST) == 0 && bp)
2143 			WORKLIST_INSERT(&bp->b_dep, &(*pagedeppp)->pd_list);
2144 		return (1);
2145 	}
2146 	if ((flags & DEPALLOC) == 0)
2147 		return (0);
2148 	FREE_LOCK(ump);
2149 	pagedep = malloc(sizeof(struct pagedep),
2150 	    M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO);
2151 	workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp);
2152 	ACQUIRE_LOCK(ump);
2153 	ret = pagedep_find(pagedephd, ino, lbn, pagedeppp);
2154 	if (*pagedeppp) {
2155 		/*
2156 		 * This should never happen since we only create pagedeps
2157 		 * with the vnode lock held.  Could be an assert.
2158 		 */
2159 		WORKITEM_FREE(pagedep, D_PAGEDEP);
2160 		return (ret);
2161 	}
2162 	pagedep->pd_ino = ino;
2163 	pagedep->pd_lbn = lbn;
2164 	LIST_INIT(&pagedep->pd_dirremhd);
2165 	LIST_INIT(&pagedep->pd_pendinghd);
2166 	for (i = 0; i < DAHASHSZ; i++)
2167 		LIST_INIT(&pagedep->pd_diraddhd[i]);
2168 	LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
2169 	WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
2170 	*pagedeppp = pagedep;
2171 	return (0);
2172 }
2173 
2174 /*
2175  * Structures and routines associated with inodedep caching.
2176  */
2177 #define	INODEDEP_HASH(ump, inum) \
2178       (&(ump)->inodedep_hashtbl[(inum) & (ump)->inodedep_hash_size])
2179 
2180 static int
2181 inodedep_find(inodedephd, inum, inodedeppp)
2182 	struct inodedep_hashhead *inodedephd;
2183 	ino_t inum;
2184 	struct inodedep **inodedeppp;
2185 {
2186 	struct inodedep *inodedep;
2187 
2188 	LIST_FOREACH(inodedep, inodedephd, id_hash)
2189 		if (inum == inodedep->id_ino)
2190 			break;
2191 	if (inodedep) {
2192 		*inodedeppp = inodedep;
2193 		return (1);
2194 	}
2195 	*inodedeppp = NULL;
2196 
2197 	return (0);
2198 }
2199 /*
2200  * Look up an inodedep. Return 1 if found, 0 if not found.
2201  * If not found, allocate if DEPALLOC flag is passed.
2202  * Found or allocated entry is returned in inodedeppp.
2203  */
2204 static int
2205 inodedep_lookup(mp, inum, flags, inodedeppp)
2206 	struct mount *mp;
2207 	ino_t inum;
2208 	int flags;
2209 	struct inodedep **inodedeppp;
2210 {
2211 	struct inodedep *inodedep;
2212 	struct inodedep_hashhead *inodedephd;
2213 	struct ufsmount *ump;
2214 	struct fs *fs;
2215 
2216 	ump = VFSTOUFS(mp);
2217 	LOCK_OWNED(ump);
2218 	fs = ump->um_fs;
2219 	inodedephd = INODEDEP_HASH(ump, inum);
2220 
2221 	if (inodedep_find(inodedephd, inum, inodedeppp))
2222 		return (1);
2223 	if ((flags & DEPALLOC) == 0)
2224 		return (0);
2225 	/*
2226 	 * If the system is over its limit and our filesystem is
2227 	 * responsible for more than our share of that usage and
2228 	 * we are not in a rush, request some inodedep cleanup.
2229 	 */
2230 	if (softdep_excess_items(ump, D_INODEDEP))
2231 		schedule_cleanup(mp);
2232 	else
2233 		FREE_LOCK(ump);
2234 	inodedep = malloc(sizeof(struct inodedep),
2235 		M_INODEDEP, M_SOFTDEP_FLAGS);
2236 	workitem_alloc(&inodedep->id_list, D_INODEDEP, mp);
2237 	ACQUIRE_LOCK(ump);
2238 	if (inodedep_find(inodedephd, inum, inodedeppp)) {
2239 		WORKITEM_FREE(inodedep, D_INODEDEP);
2240 		return (1);
2241 	}
2242 	inodedep->id_fs = fs;
2243 	inodedep->id_ino = inum;
2244 	inodedep->id_state = ALLCOMPLETE;
2245 	inodedep->id_nlinkdelta = 0;
2246 	inodedep->id_savedino1 = NULL;
2247 	inodedep->id_savedsize = -1;
2248 	inodedep->id_savedextsize = -1;
2249 	inodedep->id_savednlink = -1;
2250 	inodedep->id_bmsafemap = NULL;
2251 	inodedep->id_mkdiradd = NULL;
2252 	LIST_INIT(&inodedep->id_dirremhd);
2253 	LIST_INIT(&inodedep->id_pendinghd);
2254 	LIST_INIT(&inodedep->id_inowait);
2255 	LIST_INIT(&inodedep->id_bufwait);
2256 	TAILQ_INIT(&inodedep->id_inoreflst);
2257 	TAILQ_INIT(&inodedep->id_inoupdt);
2258 	TAILQ_INIT(&inodedep->id_newinoupdt);
2259 	TAILQ_INIT(&inodedep->id_extupdt);
2260 	TAILQ_INIT(&inodedep->id_newextupdt);
2261 	TAILQ_INIT(&inodedep->id_freeblklst);
2262 	LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
2263 	*inodedeppp = inodedep;
2264 	return (0);
2265 }
2266 
2267 /*
2268  * Structures and routines associated with newblk caching.
2269  */
2270 #define	NEWBLK_HASH(ump, inum) \
2271 	(&(ump)->newblk_hashtbl[(inum) & (ump)->newblk_hash_size])
2272 
2273 static int
2274 newblk_find(newblkhd, newblkno, flags, newblkpp)
2275 	struct newblk_hashhead *newblkhd;
2276 	ufs2_daddr_t newblkno;
2277 	int flags;
2278 	struct newblk **newblkpp;
2279 {
2280 	struct newblk *newblk;
2281 
2282 	LIST_FOREACH(newblk, newblkhd, nb_hash) {
2283 		if (newblkno != newblk->nb_newblkno)
2284 			continue;
2285 		/*
2286 		 * If we're creating a new dependency don't match those that
2287 		 * have already been converted to allocdirects.  This is for
2288 		 * a frag extend.
2289 		 */
2290 		if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK)
2291 			continue;
2292 		break;
2293 	}
2294 	if (newblk) {
2295 		*newblkpp = newblk;
2296 		return (1);
2297 	}
2298 	*newblkpp = NULL;
2299 	return (0);
2300 }
2301 
2302 /*
2303  * Look up a newblk. Return 1 if found, 0 if not found.
2304  * If not found, allocate if DEPALLOC flag is passed.
2305  * Found or allocated entry is returned in newblkpp.
2306  */
2307 static int
2308 newblk_lookup(mp, newblkno, flags, newblkpp)
2309 	struct mount *mp;
2310 	ufs2_daddr_t newblkno;
2311 	int flags;
2312 	struct newblk **newblkpp;
2313 {
2314 	struct newblk *newblk;
2315 	struct newblk_hashhead *newblkhd;
2316 	struct ufsmount *ump;
2317 
2318 	ump = VFSTOUFS(mp);
2319 	LOCK_OWNED(ump);
2320 	newblkhd = NEWBLK_HASH(ump, newblkno);
2321 	if (newblk_find(newblkhd, newblkno, flags, newblkpp))
2322 		return (1);
2323 	if ((flags & DEPALLOC) == 0)
2324 		return (0);
2325 	if (softdep_excess_items(ump, D_NEWBLK) ||
2326 	    softdep_excess_items(ump, D_ALLOCDIRECT) ||
2327 	    softdep_excess_items(ump, D_ALLOCINDIR))
2328 		schedule_cleanup(mp);
2329 	else
2330 		FREE_LOCK(ump);
2331 	newblk = malloc(sizeof(union allblk), M_NEWBLK,
2332 	    M_SOFTDEP_FLAGS | M_ZERO);
2333 	workitem_alloc(&newblk->nb_list, D_NEWBLK, mp);
2334 	ACQUIRE_LOCK(ump);
2335 	if (newblk_find(newblkhd, newblkno, flags, newblkpp)) {
2336 		WORKITEM_FREE(newblk, D_NEWBLK);
2337 		return (1);
2338 	}
2339 	newblk->nb_freefrag = NULL;
2340 	LIST_INIT(&newblk->nb_indirdeps);
2341 	LIST_INIT(&newblk->nb_newdirblk);
2342 	LIST_INIT(&newblk->nb_jwork);
2343 	newblk->nb_state = ATTACHED;
2344 	newblk->nb_newblkno = newblkno;
2345 	LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
2346 	*newblkpp = newblk;
2347 	return (0);
2348 }
2349 
2350 /*
2351  * Structures and routines associated with freed indirect block caching.
2352  */
2353 #define	INDIR_HASH(ump, blkno) \
2354 	(&(ump)->indir_hashtbl[(blkno) & (ump)->indir_hash_size])
2355 
2356 /*
2357  * Lookup an indirect block in the indir hash table.  The freework is
2358  * removed and potentially freed.  The caller must do a blocking journal
2359  * write before writing to the blkno.
2360  */
2361 static int
2362 indirblk_lookup(mp, blkno)
2363 	struct mount *mp;
2364 	ufs2_daddr_t blkno;
2365 {
2366 	struct freework *freework;
2367 	struct indir_hashhead *wkhd;
2368 	struct ufsmount *ump;
2369 
2370 	ump = VFSTOUFS(mp);
2371 	wkhd = INDIR_HASH(ump, blkno);
2372 	TAILQ_FOREACH(freework, wkhd, fw_next) {
2373 		if (freework->fw_blkno != blkno)
2374 			continue;
2375 		indirblk_remove(freework);
2376 		return (1);
2377 	}
2378 	return (0);
2379 }
2380 
2381 /*
2382  * Insert an indirect block represented by freework into the indirblk
2383  * hash table so that it may prevent the block from being re-used prior
2384  * to the journal being written.
2385  */
2386 static void
2387 indirblk_insert(freework)
2388 	struct freework *freework;
2389 {
2390 	struct jblocks *jblocks;
2391 	struct jseg *jseg;
2392 	struct ufsmount *ump;
2393 
2394 	ump = VFSTOUFS(freework->fw_list.wk_mp);
2395 	jblocks = ump->softdep_jblocks;
2396 	jseg = TAILQ_LAST(&jblocks->jb_segs, jseglst);
2397 	if (jseg == NULL)
2398 		return;
2399 
2400 	LIST_INSERT_HEAD(&jseg->js_indirs, freework, fw_segs);
2401 	TAILQ_INSERT_HEAD(INDIR_HASH(ump, freework->fw_blkno), freework,
2402 	    fw_next);
2403 	freework->fw_state &= ~DEPCOMPLETE;
2404 }
2405 
2406 static void
2407 indirblk_remove(freework)
2408 	struct freework *freework;
2409 {
2410 	struct ufsmount *ump;
2411 
2412 	ump = VFSTOUFS(freework->fw_list.wk_mp);
2413 	LIST_REMOVE(freework, fw_segs);
2414 	TAILQ_REMOVE(INDIR_HASH(ump, freework->fw_blkno), freework, fw_next);
2415 	freework->fw_state |= DEPCOMPLETE;
2416 	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
2417 		WORKITEM_FREE(freework, D_FREEWORK);
2418 }
2419 
2420 /*
2421  * Executed during filesystem system initialization before
2422  * mounting any filesystems.
2423  */
2424 void
2425 softdep_initialize()
2426 {
2427 
2428 	TAILQ_INIT(&softdepmounts);
2429 #ifdef __LP64__
2430 	max_softdeps = desiredvnodes * 4;
2431 #else
2432 	max_softdeps = desiredvnodes * 2;
2433 #endif
2434 
2435 	/* initialise bioops hack */
2436 	bioops.io_start = softdep_disk_io_initiation;
2437 	bioops.io_complete = softdep_disk_write_complete;
2438 	bioops.io_deallocate = softdep_deallocate_dependencies;
2439 	bioops.io_countdeps = softdep_count_dependencies;
2440 	softdep_ast_cleanup = softdep_ast_cleanup_proc;
2441 
2442 	/* Initialize the callout with an mtx. */
2443 	callout_init_mtx(&softdep_callout, &lk, 0);
2444 }
2445 
2446 /*
2447  * Executed after all filesystems have been unmounted during
2448  * filesystem module unload.
2449  */
2450 void
2451 softdep_uninitialize()
2452 {
2453 
2454 	/* clear bioops hack */
2455 	bioops.io_start = NULL;
2456 	bioops.io_complete = NULL;
2457 	bioops.io_deallocate = NULL;
2458 	bioops.io_countdeps = NULL;
2459 	softdep_ast_cleanup = NULL;
2460 
2461 	callout_drain(&softdep_callout);
2462 }
2463 
2464 /*
2465  * Called at mount time to notify the dependency code that a
2466  * filesystem wishes to use it.
2467  */
2468 int
2469 softdep_mount(devvp, mp, fs, cred)
2470 	struct vnode *devvp;
2471 	struct mount *mp;
2472 	struct fs *fs;
2473 	struct ucred *cred;
2474 {
2475 	struct csum_total cstotal;
2476 	struct mount_softdeps *sdp;
2477 	struct ufsmount *ump;
2478 	struct cg *cgp;
2479 	struct buf *bp;
2480 	u_int cyl, i;
2481 	int error;
2482 
2483 	sdp = malloc(sizeof(struct mount_softdeps), M_MOUNTDATA,
2484 	    M_WAITOK | M_ZERO);
2485 	MNT_ILOCK(mp);
2486 	mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP;
2487 	if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) {
2488 		mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) |
2489 			MNTK_SOFTDEP | MNTK_NOASYNC;
2490 	}
2491 	ump = VFSTOUFS(mp);
2492 	ump->um_softdep = sdp;
2493 	MNT_IUNLOCK(mp);
2494 	rw_init(LOCK_PTR(ump), "per-fs softdep");
2495 	sdp->sd_ump = ump;
2496 	LIST_INIT(&ump->softdep_workitem_pending);
2497 	LIST_INIT(&ump->softdep_journal_pending);
2498 	TAILQ_INIT(&ump->softdep_unlinked);
2499 	LIST_INIT(&ump->softdep_dirtycg);
2500 	ump->softdep_worklist_tail = NULL;
2501 	ump->softdep_on_worklist = 0;
2502 	ump->softdep_deps = 0;
2503 	LIST_INIT(&ump->softdep_mkdirlisthd);
2504 	ump->pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP,
2505 	    &ump->pagedep_hash_size);
2506 	ump->pagedep_nextclean = 0;
2507 	ump->inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP,
2508 	    &ump->inodedep_hash_size);
2509 	ump->inodedep_nextclean = 0;
2510 	ump->newblk_hashtbl = hashinit(max_softdeps / 2,  M_NEWBLK,
2511 	    &ump->newblk_hash_size);
2512 	ump->bmsafemap_hashtbl = hashinit(1024, M_BMSAFEMAP,
2513 	    &ump->bmsafemap_hash_size);
2514 	i = 1 << (ffs(desiredvnodes / 10) - 1);
2515 	ump->indir_hashtbl = malloc(i * sizeof(struct indir_hashhead),
2516 	    M_FREEWORK, M_WAITOK);
2517 	ump->indir_hash_size = i - 1;
2518 	for (i = 0; i <= ump->indir_hash_size; i++)
2519 		TAILQ_INIT(&ump->indir_hashtbl[i]);
2520 	ACQUIRE_GBLLOCK(&lk);
2521 	TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next);
2522 	FREE_GBLLOCK(&lk);
2523 	if ((fs->fs_flags & FS_SUJ) &&
2524 	    (error = journal_mount(mp, fs, cred)) != 0) {
2525 		printf("Failed to start journal: %d\n", error);
2526 		softdep_unmount(mp);
2527 		return (error);
2528 	}
2529 	/*
2530 	 * Start our flushing thread in the bufdaemon process.
2531 	 */
2532 	ACQUIRE_LOCK(ump);
2533 	ump->softdep_flags |= FLUSH_STARTING;
2534 	FREE_LOCK(ump);
2535 	kproc_kthread_add(&softdep_flush, mp, &bufdaemonproc,
2536 	    &ump->softdep_flushtd, 0, 0, "softdepflush", "%s worker",
2537 	    mp->mnt_stat.f_mntonname);
2538 	ACQUIRE_LOCK(ump);
2539 	while ((ump->softdep_flags & FLUSH_STARTING) != 0) {
2540 		msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM, "sdstart",
2541 		    hz / 2);
2542 	}
2543 	FREE_LOCK(ump);
2544 	/*
2545 	 * When doing soft updates, the counters in the
2546 	 * superblock may have gotten out of sync. Recomputation
2547 	 * can take a long time and can be deferred for background
2548 	 * fsck.  However, the old behavior of scanning the cylinder
2549 	 * groups and recalculating them at mount time is available
2550 	 * by setting vfs.ffs.compute_summary_at_mount to one.
2551 	 */
2552 	if (compute_summary_at_mount == 0 || fs->fs_clean != 0)
2553 		return (0);
2554 	bzero(&cstotal, sizeof cstotal);
2555 	for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
2556 		if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)),
2557 		    fs->fs_cgsize, cred, &bp)) != 0) {
2558 			brelse(bp);
2559 			softdep_unmount(mp);
2560 			return (error);
2561 		}
2562 		cgp = (struct cg *)bp->b_data;
2563 		cstotal.cs_nffree += cgp->cg_cs.cs_nffree;
2564 		cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree;
2565 		cstotal.cs_nifree += cgp->cg_cs.cs_nifree;
2566 		cstotal.cs_ndir += cgp->cg_cs.cs_ndir;
2567 		fs->fs_cs(fs, cyl) = cgp->cg_cs;
2568 		brelse(bp);
2569 	}
2570 #ifdef INVARIANTS
2571 	if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
2572 		printf("%s: superblock summary recomputed\n", fs->fs_fsmnt);
2573 #endif
2574 	bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
2575 	return (0);
2576 }
2577 
2578 void
2579 softdep_unmount(mp)
2580 	struct mount *mp;
2581 {
2582 	struct ufsmount *ump;
2583 #ifdef INVARIANTS
2584 	int i;
2585 #endif
2586 
2587 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
2588 	    ("softdep_unmount called on non-softdep filesystem"));
2589 	ump = VFSTOUFS(mp);
2590 	MNT_ILOCK(mp);
2591 	mp->mnt_flag &= ~MNT_SOFTDEP;
2592 	if (MOUNTEDSUJ(mp) == 0) {
2593 		MNT_IUNLOCK(mp);
2594 	} else {
2595 		mp->mnt_flag &= ~MNT_SUJ;
2596 		MNT_IUNLOCK(mp);
2597 		journal_unmount(ump);
2598 	}
2599 	/*
2600 	 * Shut down our flushing thread. Check for NULL is if
2601 	 * softdep_mount errors out before the thread has been created.
2602 	 */
2603 	if (ump->softdep_flushtd != NULL) {
2604 		ACQUIRE_LOCK(ump);
2605 		ump->softdep_flags |= FLUSH_EXIT;
2606 		wakeup(&ump->softdep_flushtd);
2607 		msleep(&ump->softdep_flags, LOCK_PTR(ump), PVM | PDROP,
2608 		    "sdwait", 0);
2609 		KASSERT((ump->softdep_flags & FLUSH_EXIT) == 0,
2610 		    ("Thread shutdown failed"));
2611 	}
2612 	/*
2613 	 * Free up our resources.
2614 	 */
2615 	ACQUIRE_GBLLOCK(&lk);
2616 	TAILQ_REMOVE(&softdepmounts, ump->um_softdep, sd_next);
2617 	FREE_GBLLOCK(&lk);
2618 	rw_destroy(LOCK_PTR(ump));
2619 	hashdestroy(ump->pagedep_hashtbl, M_PAGEDEP, ump->pagedep_hash_size);
2620 	hashdestroy(ump->inodedep_hashtbl, M_INODEDEP, ump->inodedep_hash_size);
2621 	hashdestroy(ump->newblk_hashtbl, M_NEWBLK, ump->newblk_hash_size);
2622 	hashdestroy(ump->bmsafemap_hashtbl, M_BMSAFEMAP,
2623 	    ump->bmsafemap_hash_size);
2624 	free(ump->indir_hashtbl, M_FREEWORK);
2625 #ifdef INVARIANTS
2626 	for (i = 0; i <= D_LAST; i++)
2627 		KASSERT(ump->softdep_curdeps[i] == 0,
2628 		    ("Unmount %s: Dep type %s != 0 (%ld)", ump->um_fs->fs_fsmnt,
2629 		    TYPENAME(i), ump->softdep_curdeps[i]));
2630 #endif
2631 	free(ump->um_softdep, M_MOUNTDATA);
2632 }
2633 
2634 static struct jblocks *
2635 jblocks_create(void)
2636 {
2637 	struct jblocks *jblocks;
2638 
2639 	jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO);
2640 	TAILQ_INIT(&jblocks->jb_segs);
2641 	jblocks->jb_avail = 10;
2642 	jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2643 	    M_JBLOCKS, M_WAITOK | M_ZERO);
2644 
2645 	return (jblocks);
2646 }
2647 
2648 static ufs2_daddr_t
2649 jblocks_alloc(jblocks, bytes, actual)
2650 	struct jblocks *jblocks;
2651 	int bytes;
2652 	int *actual;
2653 {
2654 	ufs2_daddr_t daddr;
2655 	struct jextent *jext;
2656 	int freecnt;
2657 	int blocks;
2658 
2659 	blocks = bytes / DEV_BSIZE;
2660 	jext = &jblocks->jb_extent[jblocks->jb_head];
2661 	freecnt = jext->je_blocks - jblocks->jb_off;
2662 	if (freecnt == 0) {
2663 		jblocks->jb_off = 0;
2664 		if (++jblocks->jb_head > jblocks->jb_used)
2665 			jblocks->jb_head = 0;
2666 		jext = &jblocks->jb_extent[jblocks->jb_head];
2667 		freecnt = jext->je_blocks;
2668 	}
2669 	if (freecnt > blocks)
2670 		freecnt = blocks;
2671 	*actual = freecnt * DEV_BSIZE;
2672 	daddr = jext->je_daddr + jblocks->jb_off;
2673 	jblocks->jb_off += freecnt;
2674 	jblocks->jb_free -= freecnt;
2675 
2676 	return (daddr);
2677 }
2678 
2679 static void
2680 jblocks_free(jblocks, mp, bytes)
2681 	struct jblocks *jblocks;
2682 	struct mount *mp;
2683 	int bytes;
2684 {
2685 
2686 	LOCK_OWNED(VFSTOUFS(mp));
2687 	jblocks->jb_free += bytes / DEV_BSIZE;
2688 	if (jblocks->jb_suspended)
2689 		worklist_speedup(mp);
2690 	wakeup(jblocks);
2691 }
2692 
2693 static void
2694 jblocks_destroy(jblocks)
2695 	struct jblocks *jblocks;
2696 {
2697 
2698 	if (jblocks->jb_extent)
2699 		free(jblocks->jb_extent, M_JBLOCKS);
2700 	free(jblocks, M_JBLOCKS);
2701 }
2702 
2703 static void
2704 jblocks_add(jblocks, daddr, blocks)
2705 	struct jblocks *jblocks;
2706 	ufs2_daddr_t daddr;
2707 	int blocks;
2708 {
2709 	struct jextent *jext;
2710 
2711 	jblocks->jb_blocks += blocks;
2712 	jblocks->jb_free += blocks;
2713 	jext = &jblocks->jb_extent[jblocks->jb_used];
2714 	/* Adding the first block. */
2715 	if (jext->je_daddr == 0) {
2716 		jext->je_daddr = daddr;
2717 		jext->je_blocks = blocks;
2718 		return;
2719 	}
2720 	/* Extending the last extent. */
2721 	if (jext->je_daddr + jext->je_blocks == daddr) {
2722 		jext->je_blocks += blocks;
2723 		return;
2724 	}
2725 	/* Adding a new extent. */
2726 	if (++jblocks->jb_used == jblocks->jb_avail) {
2727 		jblocks->jb_avail *= 2;
2728 		jext = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2729 		    M_JBLOCKS, M_WAITOK | M_ZERO);
2730 		memcpy(jext, jblocks->jb_extent,
2731 		    sizeof(struct jextent) * jblocks->jb_used);
2732 		free(jblocks->jb_extent, M_JBLOCKS);
2733 		jblocks->jb_extent = jext;
2734 	}
2735 	jext = &jblocks->jb_extent[jblocks->jb_used];
2736 	jext->je_daddr = daddr;
2737 	jext->je_blocks = blocks;
2738 	return;
2739 }
2740 
2741 int
2742 softdep_journal_lookup(mp, vpp)
2743 	struct mount *mp;
2744 	struct vnode **vpp;
2745 {
2746 	struct componentname cnp;
2747 	struct vnode *dvp;
2748 	ino_t sujournal;
2749 	int error;
2750 
2751 	error = VFS_VGET(mp, UFS_ROOTINO, LK_EXCLUSIVE, &dvp);
2752 	if (error)
2753 		return (error);
2754 	bzero(&cnp, sizeof(cnp));
2755 	cnp.cn_nameiop = LOOKUP;
2756 	cnp.cn_flags = ISLASTCN;
2757 	cnp.cn_thread = curthread;
2758 	cnp.cn_cred = curthread->td_ucred;
2759 	cnp.cn_pnbuf = SUJ_FILE;
2760 	cnp.cn_nameptr = SUJ_FILE;
2761 	cnp.cn_namelen = strlen(SUJ_FILE);
2762 	error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal);
2763 	vput(dvp);
2764 	if (error != 0)
2765 		return (error);
2766 	error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp);
2767 	return (error);
2768 }
2769 
2770 /*
2771  * Open and verify the journal file.
2772  */
2773 static int
2774 journal_mount(mp, fs, cred)
2775 	struct mount *mp;
2776 	struct fs *fs;
2777 	struct ucred *cred;
2778 {
2779 	struct jblocks *jblocks;
2780 	struct ufsmount *ump;
2781 	struct vnode *vp;
2782 	struct inode *ip;
2783 	ufs2_daddr_t blkno;
2784 	int bcount;
2785 	int error;
2786 	int i;
2787 
2788 	ump = VFSTOUFS(mp);
2789 	ump->softdep_journal_tail = NULL;
2790 	ump->softdep_on_journal = 0;
2791 	ump->softdep_accdeps = 0;
2792 	ump->softdep_req = 0;
2793 	ump->softdep_jblocks = NULL;
2794 	error = softdep_journal_lookup(mp, &vp);
2795 	if (error != 0) {
2796 		printf("Failed to find journal.  Use tunefs to create one\n");
2797 		return (error);
2798 	}
2799 	ip = VTOI(vp);
2800 	if (ip->i_size < SUJ_MIN) {
2801 		error = ENOSPC;
2802 		goto out;
2803 	}
2804 	bcount = lblkno(fs, ip->i_size);	/* Only use whole blocks. */
2805 	jblocks = jblocks_create();
2806 	for (i = 0; i < bcount; i++) {
2807 		error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL);
2808 		if (error)
2809 			break;
2810 		jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag));
2811 	}
2812 	if (error) {
2813 		jblocks_destroy(jblocks);
2814 		goto out;
2815 	}
2816 	jblocks->jb_low = jblocks->jb_free / 3;	/* Reserve 33%. */
2817 	jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */
2818 	ump->softdep_jblocks = jblocks;
2819 out:
2820 	if (error == 0) {
2821 		MNT_ILOCK(mp);
2822 		mp->mnt_flag |= MNT_SUJ;
2823 		mp->mnt_flag &= ~MNT_SOFTDEP;
2824 		MNT_IUNLOCK(mp);
2825 		/*
2826 		 * Only validate the journal contents if the
2827 		 * filesystem is clean, otherwise we write the logs
2828 		 * but they'll never be used.  If the filesystem was
2829 		 * still dirty when we mounted it the journal is
2830 		 * invalid and a new journal can only be valid if it
2831 		 * starts from a clean mount.
2832 		 */
2833 		if (fs->fs_clean) {
2834 			DIP_SET(ip, i_modrev, fs->fs_mtime);
2835 			ip->i_flags |= IN_MODIFIED;
2836 			ffs_update(vp, 1);
2837 		}
2838 	}
2839 	vput(vp);
2840 	return (error);
2841 }
2842 
2843 static void
2844 journal_unmount(ump)
2845 	struct ufsmount *ump;
2846 {
2847 
2848 	if (ump->softdep_jblocks)
2849 		jblocks_destroy(ump->softdep_jblocks);
2850 	ump->softdep_jblocks = NULL;
2851 }
2852 
2853 /*
2854  * Called when a journal record is ready to be written.  Space is allocated
2855  * and the journal entry is created when the journal is flushed to stable
2856  * store.
2857  */
2858 static void
2859 add_to_journal(wk)
2860 	struct worklist *wk;
2861 {
2862 	struct ufsmount *ump;
2863 
2864 	ump = VFSTOUFS(wk->wk_mp);
2865 	LOCK_OWNED(ump);
2866 	if (wk->wk_state & ONWORKLIST)
2867 		panic("add_to_journal: %s(0x%X) already on list",
2868 		    TYPENAME(wk->wk_type), wk->wk_state);
2869 	wk->wk_state |= ONWORKLIST | DEPCOMPLETE;
2870 	if (LIST_EMPTY(&ump->softdep_journal_pending)) {
2871 		ump->softdep_jblocks->jb_age = ticks;
2872 		LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list);
2873 	} else
2874 		LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list);
2875 	ump->softdep_journal_tail = wk;
2876 	ump->softdep_on_journal += 1;
2877 }
2878 
2879 /*
2880  * Remove an arbitrary item for the journal worklist maintain the tail
2881  * pointer.  This happens when a new operation obviates the need to
2882  * journal an old operation.
2883  */
2884 static void
2885 remove_from_journal(wk)
2886 	struct worklist *wk;
2887 {
2888 	struct ufsmount *ump;
2889 
2890 	ump = VFSTOUFS(wk->wk_mp);
2891 	LOCK_OWNED(ump);
2892 #ifdef INVARIANTS
2893 	{
2894 		struct worklist *wkn;
2895 
2896 		LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list)
2897 			if (wkn == wk)
2898 				break;
2899 		if (wkn == NULL)
2900 			panic("remove_from_journal: %p is not in journal", wk);
2901 	}
2902 #endif
2903 	/*
2904 	 * We emulate a TAILQ to save space in most structures which do not
2905 	 * require TAILQ semantics.  Here we must update the tail position
2906 	 * when removing the tail which is not the final entry. This works
2907 	 * only if the worklist linkage are at the beginning of the structure.
2908 	 */
2909 	if (ump->softdep_journal_tail == wk)
2910 		ump->softdep_journal_tail =
2911 		    (struct worklist *)wk->wk_list.le_prev;
2912 	WORKLIST_REMOVE(wk);
2913 	ump->softdep_on_journal -= 1;
2914 }
2915 
2916 /*
2917  * Check for journal space as well as dependency limits so the prelink
2918  * code can throttle both journaled and non-journaled filesystems.
2919  * Threshold is 0 for low and 1 for min.
2920  */
2921 static int
2922 journal_space(ump, thresh)
2923 	struct ufsmount *ump;
2924 	int thresh;
2925 {
2926 	struct jblocks *jblocks;
2927 	int limit, avail;
2928 
2929 	jblocks = ump->softdep_jblocks;
2930 	if (jblocks == NULL)
2931 		return (1);
2932 	/*
2933 	 * We use a tighter restriction here to prevent request_cleanup()
2934 	 * running in threads from running into locks we currently hold.
2935 	 * We have to be over the limit and our filesystem has to be
2936 	 * responsible for more than our share of that usage.
2937 	 */
2938 	limit = (max_softdeps / 10) * 9;
2939 	if (dep_current[D_INODEDEP] > limit &&
2940 	    ump->softdep_curdeps[D_INODEDEP] > limit / stat_flush_threads)
2941 		return (0);
2942 	if (thresh)
2943 		thresh = jblocks->jb_min;
2944 	else
2945 		thresh = jblocks->jb_low;
2946 	avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE;
2947 	avail = jblocks->jb_free - avail;
2948 
2949 	return (avail > thresh);
2950 }
2951 
2952 static void
2953 journal_suspend(ump)
2954 	struct ufsmount *ump;
2955 {
2956 	struct jblocks *jblocks;
2957 	struct mount *mp;
2958 	bool set;
2959 
2960 	mp = UFSTOVFS(ump);
2961 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0)
2962 		return;
2963 
2964 	jblocks = ump->softdep_jblocks;
2965 	vfs_op_enter(mp);
2966 	set = false;
2967 	MNT_ILOCK(mp);
2968 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
2969 		stat_journal_min++;
2970 		mp->mnt_kern_flag |= MNTK_SUSPEND;
2971 		mp->mnt_susp_owner = ump->softdep_flushtd;
2972 		set = true;
2973 	}
2974 	jblocks->jb_suspended = 1;
2975 	MNT_IUNLOCK(mp);
2976 	if (!set)
2977 		vfs_op_exit(mp);
2978 }
2979 
2980 static int
2981 journal_unsuspend(struct ufsmount *ump)
2982 {
2983 	struct jblocks *jblocks;
2984 	struct mount *mp;
2985 
2986 	mp = UFSTOVFS(ump);
2987 	jblocks = ump->softdep_jblocks;
2988 
2989 	if (jblocks != NULL && jblocks->jb_suspended &&
2990 	    journal_space(ump, jblocks->jb_min)) {
2991 		jblocks->jb_suspended = 0;
2992 		FREE_LOCK(ump);
2993 		mp->mnt_susp_owner = curthread;
2994 		vfs_write_resume(mp, 0);
2995 		ACQUIRE_LOCK(ump);
2996 		return (1);
2997 	}
2998 	return (0);
2999 }
3000 
3001 /*
3002  * Called before any allocation function to be certain that there is
3003  * sufficient space in the journal prior to creating any new records.
3004  * Since in the case of block allocation we may have multiple locked
3005  * buffers at the time of the actual allocation we can not block
3006  * when the journal records are created.  Doing so would create a deadlock
3007  * if any of these buffers needed to be flushed to reclaim space.  Instead
3008  * we require a sufficiently large amount of available space such that
3009  * each thread in the system could have passed this allocation check and
3010  * still have sufficient free space.  With 20% of a minimum journal size
3011  * of 1MB we have 6553 records available.
3012  */
3013 int
3014 softdep_prealloc(vp, waitok)
3015 	struct vnode *vp;
3016 	int waitok;
3017 {
3018 	struct ufsmount *ump;
3019 
3020 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
3021 	    ("softdep_prealloc called on non-softdep filesystem"));
3022 	/*
3023 	 * Nothing to do if we are not running journaled soft updates.
3024 	 * If we currently hold the snapshot lock, we must avoid
3025 	 * handling other resources that could cause deadlock.  Do not
3026 	 * touch quotas vnode since it is typically recursed with
3027 	 * other vnode locks held.
3028 	 */
3029 	if (DOINGSUJ(vp) == 0 || IS_SNAPSHOT(VTOI(vp)) ||
3030 	    (vp->v_vflag & VV_SYSTEM) != 0)
3031 		return (0);
3032 	ump = VFSTOUFS(vp->v_mount);
3033 	ACQUIRE_LOCK(ump);
3034 	if (journal_space(ump, 0)) {
3035 		FREE_LOCK(ump);
3036 		return (0);
3037 	}
3038 	stat_journal_low++;
3039 	FREE_LOCK(ump);
3040 	if (waitok == MNT_NOWAIT)
3041 		return (ENOSPC);
3042 	/*
3043 	 * Attempt to sync this vnode once to flush any journal
3044 	 * work attached to it.
3045 	 */
3046 	if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0)
3047 		ffs_syncvnode(vp, waitok, 0);
3048 	ACQUIRE_LOCK(ump);
3049 	process_removes(vp);
3050 	process_truncates(vp);
3051 	if (journal_space(ump, 0) == 0) {
3052 		softdep_speedup(ump);
3053 		if (journal_space(ump, 1) == 0)
3054 			journal_suspend(ump);
3055 	}
3056 	FREE_LOCK(ump);
3057 
3058 	return (0);
3059 }
3060 
3061 /*
3062  * Before adjusting a link count on a vnode verify that we have sufficient
3063  * journal space.  If not, process operations that depend on the currently
3064  * locked pair of vnodes to try to flush space as the syncer, buf daemon,
3065  * and softdep flush threads can not acquire these locks to reclaim space.
3066  */
3067 static void
3068 softdep_prelink(dvp, vp)
3069 	struct vnode *dvp;
3070 	struct vnode *vp;
3071 {
3072 	struct ufsmount *ump;
3073 
3074 	ump = VFSTOUFS(dvp->v_mount);
3075 	LOCK_OWNED(ump);
3076 	/*
3077 	 * Nothing to do if we have sufficient journal space.
3078 	 * If we currently hold the snapshot lock, we must avoid
3079 	 * handling other resources that could cause deadlock.
3080 	 */
3081 	if (journal_space(ump, 0) || (vp && IS_SNAPSHOT(VTOI(vp))))
3082 		return;
3083 	stat_journal_low++;
3084 	FREE_LOCK(ump);
3085 	if (vp)
3086 		ffs_syncvnode(vp, MNT_NOWAIT, 0);
3087 	ffs_syncvnode(dvp, MNT_WAIT, 0);
3088 	ACQUIRE_LOCK(ump);
3089 	/* Process vp before dvp as it may create .. removes. */
3090 	if (vp) {
3091 		process_removes(vp);
3092 		process_truncates(vp);
3093 	}
3094 	process_removes(dvp);
3095 	process_truncates(dvp);
3096 	softdep_speedup(ump);
3097 	process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT);
3098 	if (journal_space(ump, 0) == 0) {
3099 		softdep_speedup(ump);
3100 		if (journal_space(ump, 1) == 0)
3101 			journal_suspend(ump);
3102 	}
3103 }
3104 
3105 static void
3106 jseg_write(ump, jseg, data)
3107 	struct ufsmount *ump;
3108 	struct jseg *jseg;
3109 	uint8_t *data;
3110 {
3111 	struct jsegrec *rec;
3112 
3113 	rec = (struct jsegrec *)data;
3114 	rec->jsr_seq = jseg->js_seq;
3115 	rec->jsr_oldest = jseg->js_oldseq;
3116 	rec->jsr_cnt = jseg->js_cnt;
3117 	rec->jsr_blocks = jseg->js_size / ump->um_devvp->v_bufobj.bo_bsize;
3118 	rec->jsr_crc = 0;
3119 	rec->jsr_time = ump->um_fs->fs_mtime;
3120 }
3121 
3122 static inline void
3123 inoref_write(inoref, jseg, rec)
3124 	struct inoref *inoref;
3125 	struct jseg *jseg;
3126 	struct jrefrec *rec;
3127 {
3128 
3129 	inoref->if_jsegdep->jd_seg = jseg;
3130 	rec->jr_ino = inoref->if_ino;
3131 	rec->jr_parent = inoref->if_parent;
3132 	rec->jr_nlink = inoref->if_nlink;
3133 	rec->jr_mode = inoref->if_mode;
3134 	rec->jr_diroff = inoref->if_diroff;
3135 }
3136 
3137 static void
3138 jaddref_write(jaddref, jseg, data)
3139 	struct jaddref *jaddref;
3140 	struct jseg *jseg;
3141 	uint8_t *data;
3142 {
3143 	struct jrefrec *rec;
3144 
3145 	rec = (struct jrefrec *)data;
3146 	rec->jr_op = JOP_ADDREF;
3147 	inoref_write(&jaddref->ja_ref, jseg, rec);
3148 }
3149 
3150 static void
3151 jremref_write(jremref, jseg, data)
3152 	struct jremref *jremref;
3153 	struct jseg *jseg;
3154 	uint8_t *data;
3155 {
3156 	struct jrefrec *rec;
3157 
3158 	rec = (struct jrefrec *)data;
3159 	rec->jr_op = JOP_REMREF;
3160 	inoref_write(&jremref->jr_ref, jseg, rec);
3161 }
3162 
3163 static void
3164 jmvref_write(jmvref, jseg, data)
3165 	struct jmvref *jmvref;
3166 	struct jseg *jseg;
3167 	uint8_t *data;
3168 {
3169 	struct jmvrec *rec;
3170 
3171 	rec = (struct jmvrec *)data;
3172 	rec->jm_op = JOP_MVREF;
3173 	rec->jm_ino = jmvref->jm_ino;
3174 	rec->jm_parent = jmvref->jm_parent;
3175 	rec->jm_oldoff = jmvref->jm_oldoff;
3176 	rec->jm_newoff = jmvref->jm_newoff;
3177 }
3178 
3179 static void
3180 jnewblk_write(jnewblk, jseg, data)
3181 	struct jnewblk *jnewblk;
3182 	struct jseg *jseg;
3183 	uint8_t *data;
3184 {
3185 	struct jblkrec *rec;
3186 
3187 	jnewblk->jn_jsegdep->jd_seg = jseg;
3188 	rec = (struct jblkrec *)data;
3189 	rec->jb_op = JOP_NEWBLK;
3190 	rec->jb_ino = jnewblk->jn_ino;
3191 	rec->jb_blkno = jnewblk->jn_blkno;
3192 	rec->jb_lbn = jnewblk->jn_lbn;
3193 	rec->jb_frags = jnewblk->jn_frags;
3194 	rec->jb_oldfrags = jnewblk->jn_oldfrags;
3195 }
3196 
3197 static void
3198 jfreeblk_write(jfreeblk, jseg, data)
3199 	struct jfreeblk *jfreeblk;
3200 	struct jseg *jseg;
3201 	uint8_t *data;
3202 {
3203 	struct jblkrec *rec;
3204 
3205 	jfreeblk->jf_dep.jb_jsegdep->jd_seg = jseg;
3206 	rec = (struct jblkrec *)data;
3207 	rec->jb_op = JOP_FREEBLK;
3208 	rec->jb_ino = jfreeblk->jf_ino;
3209 	rec->jb_blkno = jfreeblk->jf_blkno;
3210 	rec->jb_lbn = jfreeblk->jf_lbn;
3211 	rec->jb_frags = jfreeblk->jf_frags;
3212 	rec->jb_oldfrags = 0;
3213 }
3214 
3215 static void
3216 jfreefrag_write(jfreefrag, jseg, data)
3217 	struct jfreefrag *jfreefrag;
3218 	struct jseg *jseg;
3219 	uint8_t *data;
3220 {
3221 	struct jblkrec *rec;
3222 
3223 	jfreefrag->fr_jsegdep->jd_seg = jseg;
3224 	rec = (struct jblkrec *)data;
3225 	rec->jb_op = JOP_FREEBLK;
3226 	rec->jb_ino = jfreefrag->fr_ino;
3227 	rec->jb_blkno = jfreefrag->fr_blkno;
3228 	rec->jb_lbn = jfreefrag->fr_lbn;
3229 	rec->jb_frags = jfreefrag->fr_frags;
3230 	rec->jb_oldfrags = 0;
3231 }
3232 
3233 static void
3234 jtrunc_write(jtrunc, jseg, data)
3235 	struct jtrunc *jtrunc;
3236 	struct jseg *jseg;
3237 	uint8_t *data;
3238 {
3239 	struct jtrncrec *rec;
3240 
3241 	jtrunc->jt_dep.jb_jsegdep->jd_seg = jseg;
3242 	rec = (struct jtrncrec *)data;
3243 	rec->jt_op = JOP_TRUNC;
3244 	rec->jt_ino = jtrunc->jt_ino;
3245 	rec->jt_size = jtrunc->jt_size;
3246 	rec->jt_extsize = jtrunc->jt_extsize;
3247 }
3248 
3249 static void
3250 jfsync_write(jfsync, jseg, data)
3251 	struct jfsync *jfsync;
3252 	struct jseg *jseg;
3253 	uint8_t *data;
3254 {
3255 	struct jtrncrec *rec;
3256 
3257 	rec = (struct jtrncrec *)data;
3258 	rec->jt_op = JOP_SYNC;
3259 	rec->jt_ino = jfsync->jfs_ino;
3260 	rec->jt_size = jfsync->jfs_size;
3261 	rec->jt_extsize = jfsync->jfs_extsize;
3262 }
3263 
3264 static void
3265 softdep_flushjournal(mp)
3266 	struct mount *mp;
3267 {
3268 	struct jblocks *jblocks;
3269 	struct ufsmount *ump;
3270 
3271 	if (MOUNTEDSUJ(mp) == 0)
3272 		return;
3273 	ump = VFSTOUFS(mp);
3274 	jblocks = ump->softdep_jblocks;
3275 	ACQUIRE_LOCK(ump);
3276 	while (ump->softdep_on_journal) {
3277 		jblocks->jb_needseg = 1;
3278 		softdep_process_journal(mp, NULL, MNT_WAIT);
3279 	}
3280 	FREE_LOCK(ump);
3281 }
3282 
3283 static void softdep_synchronize_completed(struct bio *);
3284 static void softdep_synchronize(struct bio *, struct ufsmount *, void *);
3285 
3286 static void
3287 softdep_synchronize_completed(bp)
3288         struct bio *bp;
3289 {
3290 	struct jseg *oldest;
3291 	struct jseg *jseg;
3292 	struct ufsmount *ump;
3293 
3294 	/*
3295 	 * caller1 marks the last segment written before we issued the
3296 	 * synchronize cache.
3297 	 */
3298 	jseg = bp->bio_caller1;
3299 	if (jseg == NULL) {
3300 		g_destroy_bio(bp);
3301 		return;
3302 	}
3303 	ump = VFSTOUFS(jseg->js_list.wk_mp);
3304 	ACQUIRE_LOCK(ump);
3305 	oldest = NULL;
3306 	/*
3307 	 * Mark all the journal entries waiting on the synchronize cache
3308 	 * as completed so they may continue on.
3309 	 */
3310 	while (jseg != NULL && (jseg->js_state & COMPLETE) == 0) {
3311 		jseg->js_state |= COMPLETE;
3312 		oldest = jseg;
3313 		jseg = TAILQ_PREV(jseg, jseglst, js_next);
3314 	}
3315 	/*
3316 	 * Restart deferred journal entry processing from the oldest
3317 	 * completed jseg.
3318 	 */
3319 	if (oldest)
3320 		complete_jsegs(oldest);
3321 
3322 	FREE_LOCK(ump);
3323 	g_destroy_bio(bp);
3324 }
3325 
3326 /*
3327  * Send BIO_FLUSH/SYNCHRONIZE CACHE to the device to enforce write ordering
3328  * barriers.  The journal must be written prior to any blocks that depend
3329  * on it and the journal can not be released until the blocks have be
3330  * written.  This code handles both barriers simultaneously.
3331  */
3332 static void
3333 softdep_synchronize(bp, ump, caller1)
3334 	struct bio *bp;
3335 	struct ufsmount *ump;
3336 	void *caller1;
3337 {
3338 
3339 	bp->bio_cmd = BIO_FLUSH;
3340 	bp->bio_flags |= BIO_ORDERED;
3341 	bp->bio_data = NULL;
3342 	bp->bio_offset = ump->um_cp->provider->mediasize;
3343 	bp->bio_length = 0;
3344 	bp->bio_done = softdep_synchronize_completed;
3345 	bp->bio_caller1 = caller1;
3346 	g_io_request(bp, ump->um_cp);
3347 }
3348 
3349 /*
3350  * Flush some journal records to disk.
3351  */
3352 static void
3353 softdep_process_journal(mp, needwk, flags)
3354 	struct mount *mp;
3355 	struct worklist *needwk;
3356 	int flags;
3357 {
3358 	struct jblocks *jblocks;
3359 	struct ufsmount *ump;
3360 	struct worklist *wk;
3361 	struct jseg *jseg;
3362 	struct buf *bp;
3363 	struct bio *bio;
3364 	uint8_t *data;
3365 	struct fs *fs;
3366 	int shouldflush;
3367 	int segwritten;
3368 	int jrecmin;	/* Minimum records per block. */
3369 	int jrecmax;	/* Maximum records per block. */
3370 	int size;
3371 	int cnt;
3372 	int off;
3373 	int devbsize;
3374 
3375 	if (MOUNTEDSUJ(mp) == 0)
3376 		return;
3377 	shouldflush = softdep_flushcache;
3378 	bio = NULL;
3379 	jseg = NULL;
3380 	ump = VFSTOUFS(mp);
3381 	LOCK_OWNED(ump);
3382 	fs = ump->um_fs;
3383 	jblocks = ump->softdep_jblocks;
3384 	devbsize = ump->um_devvp->v_bufobj.bo_bsize;
3385 	/*
3386 	 * We write anywhere between a disk block and fs block.  The upper
3387 	 * bound is picked to prevent buffer cache fragmentation and limit
3388 	 * processing time per I/O.
3389 	 */
3390 	jrecmin = (devbsize / JREC_SIZE) - 1; /* -1 for seg header */
3391 	jrecmax = (fs->fs_bsize / devbsize) * jrecmin;
3392 	segwritten = 0;
3393 	for (;;) {
3394 		cnt = ump->softdep_on_journal;
3395 		/*
3396 		 * Criteria for writing a segment:
3397 		 * 1) We have a full block.
3398 		 * 2) We're called from jwait() and haven't found the
3399 		 *    journal item yet.
3400 		 * 3) Always write if needseg is set.
3401 		 * 4) If we are called from process_worklist and have
3402 		 *    not yet written anything we write a partial block
3403 		 *    to enforce a 1 second maximum latency on journal
3404 		 *    entries.
3405 		 */
3406 		if (cnt < (jrecmax - 1) && needwk == NULL &&
3407 		    jblocks->jb_needseg == 0 && (segwritten || cnt == 0))
3408 			break;
3409 		cnt++;
3410 		/*
3411 		 * Verify some free journal space.  softdep_prealloc() should
3412 		 * guarantee that we don't run out so this is indicative of
3413 		 * a problem with the flow control.  Try to recover
3414 		 * gracefully in any event.
3415 		 */
3416 		while (jblocks->jb_free == 0) {
3417 			if (flags != MNT_WAIT)
3418 				break;
3419 			printf("softdep: Out of journal space!\n");
3420 			softdep_speedup(ump);
3421 			msleep(jblocks, LOCK_PTR(ump), PRIBIO, "jblocks", hz);
3422 		}
3423 		FREE_LOCK(ump);
3424 		jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS);
3425 		workitem_alloc(&jseg->js_list, D_JSEG, mp);
3426 		LIST_INIT(&jseg->js_entries);
3427 		LIST_INIT(&jseg->js_indirs);
3428 		jseg->js_state = ATTACHED;
3429 		if (shouldflush == 0)
3430 			jseg->js_state |= COMPLETE;
3431 		else if (bio == NULL)
3432 			bio = g_alloc_bio();
3433 		jseg->js_jblocks = jblocks;
3434 		bp = geteblk(fs->fs_bsize, 0);
3435 		ACQUIRE_LOCK(ump);
3436 		/*
3437 		 * If there was a race while we were allocating the block
3438 		 * and jseg the entry we care about was likely written.
3439 		 * We bail out in both the WAIT and NOWAIT case and assume
3440 		 * the caller will loop if the entry it cares about is
3441 		 * not written.
3442 		 */
3443 		cnt = ump->softdep_on_journal;
3444 		if (cnt + jblocks->jb_needseg == 0 || jblocks->jb_free == 0) {
3445 			bp->b_flags |= B_INVAL | B_NOCACHE;
3446 			WORKITEM_FREE(jseg, D_JSEG);
3447 			FREE_LOCK(ump);
3448 			brelse(bp);
3449 			ACQUIRE_LOCK(ump);
3450 			break;
3451 		}
3452 		/*
3453 		 * Calculate the disk block size required for the available
3454 		 * records rounded to the min size.
3455 		 */
3456 		if (cnt == 0)
3457 			size = devbsize;
3458 		else if (cnt < jrecmax)
3459 			size = howmany(cnt, jrecmin) * devbsize;
3460 		else
3461 			size = fs->fs_bsize;
3462 		/*
3463 		 * Allocate a disk block for this journal data and account
3464 		 * for truncation of the requested size if enough contiguous
3465 		 * space was not available.
3466 		 */
3467 		bp->b_blkno = jblocks_alloc(jblocks, size, &size);
3468 		bp->b_lblkno = bp->b_blkno;
3469 		bp->b_offset = bp->b_blkno * DEV_BSIZE;
3470 		bp->b_bcount = size;
3471 		bp->b_flags &= ~B_INVAL;
3472 		bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY;
3473 		/*
3474 		 * Initialize our jseg with cnt records.  Assign the next
3475 		 * sequence number to it and link it in-order.
3476 		 */
3477 		cnt = MIN(cnt, (size / devbsize) * jrecmin);
3478 		jseg->js_buf = bp;
3479 		jseg->js_cnt = cnt;
3480 		jseg->js_refs = cnt + 1;	/* Self ref. */
3481 		jseg->js_size = size;
3482 		jseg->js_seq = jblocks->jb_nextseq++;
3483 		if (jblocks->jb_oldestseg == NULL)
3484 			jblocks->jb_oldestseg = jseg;
3485 		jseg->js_oldseq = jblocks->jb_oldestseg->js_seq;
3486 		TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next);
3487 		if (jblocks->jb_writeseg == NULL)
3488 			jblocks->jb_writeseg = jseg;
3489 		/*
3490 		 * Start filling in records from the pending list.
3491 		 */
3492 		data = bp->b_data;
3493 		off = 0;
3494 
3495 		/*
3496 		 * Always put a header on the first block.
3497 		 * XXX As with below, there might not be a chance to get
3498 		 * into the loop.  Ensure that something valid is written.
3499 		 */
3500 		jseg_write(ump, jseg, data);
3501 		off += JREC_SIZE;
3502 		data = bp->b_data + off;
3503 
3504 		/*
3505 		 * XXX Something is wrong here.  There's no work to do,
3506 		 * but we need to perform and I/O and allow it to complete
3507 		 * anyways.
3508 		 */
3509 		if (LIST_EMPTY(&ump->softdep_journal_pending))
3510 			stat_emptyjblocks++;
3511 
3512 		while ((wk = LIST_FIRST(&ump->softdep_journal_pending))
3513 		    != NULL) {
3514 			if (cnt == 0)
3515 				break;
3516 			/* Place a segment header on every device block. */
3517 			if ((off % devbsize) == 0) {
3518 				jseg_write(ump, jseg, data);
3519 				off += JREC_SIZE;
3520 				data = bp->b_data + off;
3521 			}
3522 			if (wk == needwk)
3523 				needwk = NULL;
3524 			remove_from_journal(wk);
3525 			wk->wk_state |= INPROGRESS;
3526 			WORKLIST_INSERT(&jseg->js_entries, wk);
3527 			switch (wk->wk_type) {
3528 			case D_JADDREF:
3529 				jaddref_write(WK_JADDREF(wk), jseg, data);
3530 				break;
3531 			case D_JREMREF:
3532 				jremref_write(WK_JREMREF(wk), jseg, data);
3533 				break;
3534 			case D_JMVREF:
3535 				jmvref_write(WK_JMVREF(wk), jseg, data);
3536 				break;
3537 			case D_JNEWBLK:
3538 				jnewblk_write(WK_JNEWBLK(wk), jseg, data);
3539 				break;
3540 			case D_JFREEBLK:
3541 				jfreeblk_write(WK_JFREEBLK(wk), jseg, data);
3542 				break;
3543 			case D_JFREEFRAG:
3544 				jfreefrag_write(WK_JFREEFRAG(wk), jseg, data);
3545 				break;
3546 			case D_JTRUNC:
3547 				jtrunc_write(WK_JTRUNC(wk), jseg, data);
3548 				break;
3549 			case D_JFSYNC:
3550 				jfsync_write(WK_JFSYNC(wk), jseg, data);
3551 				break;
3552 			default:
3553 				panic("process_journal: Unknown type %s",
3554 				    TYPENAME(wk->wk_type));
3555 				/* NOTREACHED */
3556 			}
3557 			off += JREC_SIZE;
3558 			data = bp->b_data + off;
3559 			cnt--;
3560 		}
3561 
3562 		/* Clear any remaining space so we don't leak kernel data */
3563 		if (size > off)
3564 			bzero(data, size - off);
3565 
3566 		/*
3567 		 * Write this one buffer and continue.
3568 		 */
3569 		segwritten = 1;
3570 		jblocks->jb_needseg = 0;
3571 		WORKLIST_INSERT(&bp->b_dep, &jseg->js_list);
3572 		FREE_LOCK(ump);
3573 		pbgetvp(ump->um_devvp, bp);
3574 		/*
3575 		 * We only do the blocking wait once we find the journal
3576 		 * entry we're looking for.
3577 		 */
3578 		if (needwk == NULL && flags == MNT_WAIT)
3579 			bwrite(bp);
3580 		else
3581 			bawrite(bp);
3582 		ACQUIRE_LOCK(ump);
3583 	}
3584 	/*
3585 	 * If we wrote a segment issue a synchronize cache so the journal
3586 	 * is reflected on disk before the data is written.  Since reclaiming
3587 	 * journal space also requires writing a journal record this
3588 	 * process also enforces a barrier before reclamation.
3589 	 */
3590 	if (segwritten && shouldflush) {
3591 		softdep_synchronize(bio, ump,
3592 		    TAILQ_LAST(&jblocks->jb_segs, jseglst));
3593 	} else if (bio)
3594 		g_destroy_bio(bio);
3595 	/*
3596 	 * If we've suspended the filesystem because we ran out of journal
3597 	 * space either try to sync it here to make some progress or
3598 	 * unsuspend it if we already have.
3599 	 */
3600 	if (flags == 0 && jblocks->jb_suspended) {
3601 		if (journal_unsuspend(ump))
3602 			return;
3603 		FREE_LOCK(ump);
3604 		VFS_SYNC(mp, MNT_NOWAIT);
3605 		ffs_sbupdate(ump, MNT_WAIT, 0);
3606 		ACQUIRE_LOCK(ump);
3607 	}
3608 }
3609 
3610 /*
3611  * Complete a jseg, allowing all dependencies awaiting journal writes
3612  * to proceed.  Each journal dependency also attaches a jsegdep to dependent
3613  * structures so that the journal segment can be freed to reclaim space.
3614  */
3615 static void
3616 complete_jseg(jseg)
3617 	struct jseg *jseg;
3618 {
3619 	struct worklist *wk;
3620 	struct jmvref *jmvref;
3621 #ifdef INVARIANTS
3622 	int i = 0;
3623 #endif
3624 
3625 	while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) {
3626 		WORKLIST_REMOVE(wk);
3627 		wk->wk_state &= ~INPROGRESS;
3628 		wk->wk_state |= COMPLETE;
3629 		KASSERT(i++ < jseg->js_cnt,
3630 		    ("handle_written_jseg: overflow %d >= %d",
3631 		    i - 1, jseg->js_cnt));
3632 		switch (wk->wk_type) {
3633 		case D_JADDREF:
3634 			handle_written_jaddref(WK_JADDREF(wk));
3635 			break;
3636 		case D_JREMREF:
3637 			handle_written_jremref(WK_JREMREF(wk));
3638 			break;
3639 		case D_JMVREF:
3640 			rele_jseg(jseg);	/* No jsegdep. */
3641 			jmvref = WK_JMVREF(wk);
3642 			LIST_REMOVE(jmvref, jm_deps);
3643 			if ((jmvref->jm_pagedep->pd_state & ONWORKLIST) == 0)
3644 				free_pagedep(jmvref->jm_pagedep);
3645 			WORKITEM_FREE(jmvref, D_JMVREF);
3646 			break;
3647 		case D_JNEWBLK:
3648 			handle_written_jnewblk(WK_JNEWBLK(wk));
3649 			break;
3650 		case D_JFREEBLK:
3651 			handle_written_jblkdep(&WK_JFREEBLK(wk)->jf_dep);
3652 			break;
3653 		case D_JTRUNC:
3654 			handle_written_jblkdep(&WK_JTRUNC(wk)->jt_dep);
3655 			break;
3656 		case D_JFSYNC:
3657 			rele_jseg(jseg);	/* No jsegdep. */
3658 			WORKITEM_FREE(wk, D_JFSYNC);
3659 			break;
3660 		case D_JFREEFRAG:
3661 			handle_written_jfreefrag(WK_JFREEFRAG(wk));
3662 			break;
3663 		default:
3664 			panic("handle_written_jseg: Unknown type %s",
3665 			    TYPENAME(wk->wk_type));
3666 			/* NOTREACHED */
3667 		}
3668 	}
3669 	/* Release the self reference so the structure may be freed. */
3670 	rele_jseg(jseg);
3671 }
3672 
3673 /*
3674  * Determine which jsegs are ready for completion processing.  Waits for
3675  * synchronize cache to complete as well as forcing in-order completion
3676  * of journal entries.
3677  */
3678 static void
3679 complete_jsegs(jseg)
3680 	struct jseg *jseg;
3681 {
3682 	struct jblocks *jblocks;
3683 	struct jseg *jsegn;
3684 
3685 	jblocks = jseg->js_jblocks;
3686 	/*
3687 	 * Don't allow out of order completions.  If this isn't the first
3688 	 * block wait for it to write before we're done.
3689 	 */
3690 	if (jseg != jblocks->jb_writeseg)
3691 		return;
3692 	/* Iterate through available jsegs processing their entries. */
3693 	while (jseg && (jseg->js_state & ALLCOMPLETE) == ALLCOMPLETE) {
3694 		jblocks->jb_oldestwrseq = jseg->js_oldseq;
3695 		jsegn = TAILQ_NEXT(jseg, js_next);
3696 		complete_jseg(jseg);
3697 		jseg = jsegn;
3698 	}
3699 	jblocks->jb_writeseg = jseg;
3700 	/*
3701 	 * Attempt to free jsegs now that oldestwrseq may have advanced.
3702 	 */
3703 	free_jsegs(jblocks);
3704 }
3705 
3706 /*
3707  * Mark a jseg as DEPCOMPLETE and throw away the buffer.  Attempt to handle
3708  * the final completions.
3709  */
3710 static void
3711 handle_written_jseg(jseg, bp)
3712 	struct jseg *jseg;
3713 	struct buf *bp;
3714 {
3715 
3716 	if (jseg->js_refs == 0)
3717 		panic("handle_written_jseg: No self-reference on %p", jseg);
3718 	jseg->js_state |= DEPCOMPLETE;
3719 	/*
3720 	 * We'll never need this buffer again, set flags so it will be
3721 	 * discarded.
3722 	 */
3723 	bp->b_flags |= B_INVAL | B_NOCACHE;
3724 	pbrelvp(bp);
3725 	complete_jsegs(jseg);
3726 }
3727 
3728 static inline struct jsegdep *
3729 inoref_jseg(inoref)
3730 	struct inoref *inoref;
3731 {
3732 	struct jsegdep *jsegdep;
3733 
3734 	jsegdep = inoref->if_jsegdep;
3735 	inoref->if_jsegdep = NULL;
3736 
3737 	return (jsegdep);
3738 }
3739 
3740 /*
3741  * Called once a jremref has made it to stable store.  The jremref is marked
3742  * complete and we attempt to free it.  Any pagedeps writes sleeping waiting
3743  * for the jremref to complete will be awoken by free_jremref.
3744  */
3745 static void
3746 handle_written_jremref(jremref)
3747 	struct jremref *jremref;
3748 {
3749 	struct inodedep *inodedep;
3750 	struct jsegdep *jsegdep;
3751 	struct dirrem *dirrem;
3752 
3753 	/* Grab the jsegdep. */
3754 	jsegdep = inoref_jseg(&jremref->jr_ref);
3755 	/*
3756 	 * Remove us from the inoref list.
3757 	 */
3758 	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino,
3759 	    0, &inodedep) == 0)
3760 		panic("handle_written_jremref: Lost inodedep");
3761 	TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
3762 	/*
3763 	 * Complete the dirrem.
3764 	 */
3765 	dirrem = jremref->jr_dirrem;
3766 	jremref->jr_dirrem = NULL;
3767 	LIST_REMOVE(jremref, jr_deps);
3768 	jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT;
3769 	jwork_insert(&dirrem->dm_jwork, jsegdep);
3770 	if (LIST_EMPTY(&dirrem->dm_jremrefhd) &&
3771 	    (dirrem->dm_state & COMPLETE) != 0)
3772 		add_to_worklist(&dirrem->dm_list, 0);
3773 	free_jremref(jremref);
3774 }
3775 
3776 /*
3777  * Called once a jaddref has made it to stable store.  The dependency is
3778  * marked complete and any dependent structures are added to the inode
3779  * bufwait list to be completed as soon as it is written.  If a bitmap write
3780  * depends on this entry we move the inode into the inodedephd of the
3781  * bmsafemap dependency and attempt to remove the jaddref from the bmsafemap.
3782  */
3783 static void
3784 handle_written_jaddref(jaddref)
3785 	struct jaddref *jaddref;
3786 {
3787 	struct jsegdep *jsegdep;
3788 	struct inodedep *inodedep;
3789 	struct diradd *diradd;
3790 	struct mkdir *mkdir;
3791 
3792 	/* Grab the jsegdep. */
3793 	jsegdep = inoref_jseg(&jaddref->ja_ref);
3794 	mkdir = NULL;
3795 	diradd = NULL;
3796 	if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
3797 	    0, &inodedep) == 0)
3798 		panic("handle_written_jaddref: Lost inodedep.");
3799 	if (jaddref->ja_diradd == NULL)
3800 		panic("handle_written_jaddref: No dependency");
3801 	if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) {
3802 		diradd = jaddref->ja_diradd;
3803 		WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list);
3804 	} else if (jaddref->ja_state & MKDIR_PARENT) {
3805 		mkdir = jaddref->ja_mkdir;
3806 		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list);
3807 	} else if (jaddref->ja_state & MKDIR_BODY)
3808 		mkdir = jaddref->ja_mkdir;
3809 	else
3810 		panic("handle_written_jaddref: Unknown dependency %p",
3811 		    jaddref->ja_diradd);
3812 	jaddref->ja_diradd = NULL;	/* also clears ja_mkdir */
3813 	/*
3814 	 * Remove us from the inode list.
3815 	 */
3816 	TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps);
3817 	/*
3818 	 * The mkdir may be waiting on the jaddref to clear before freeing.
3819 	 */
3820 	if (mkdir) {
3821 		KASSERT(mkdir->md_list.wk_type == D_MKDIR,
3822 		    ("handle_written_jaddref: Incorrect type for mkdir %s",
3823 		    TYPENAME(mkdir->md_list.wk_type)));
3824 		mkdir->md_jaddref = NULL;
3825 		diradd = mkdir->md_diradd;
3826 		mkdir->md_state |= DEPCOMPLETE;
3827 		complete_mkdir(mkdir);
3828 	}
3829 	jwork_insert(&diradd->da_jwork, jsegdep);
3830 	if (jaddref->ja_state & NEWBLOCK) {
3831 		inodedep->id_state |= ONDEPLIST;
3832 		LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd,
3833 		    inodedep, id_deps);
3834 	}
3835 	free_jaddref(jaddref);
3836 }
3837 
3838 /*
3839  * Called once a jnewblk journal is written.  The allocdirect or allocindir
3840  * is placed in the bmsafemap to await notification of a written bitmap.  If
3841  * the operation was canceled we add the segdep to the appropriate
3842  * dependency to free the journal space once the canceling operation
3843  * completes.
3844  */
3845 static void
3846 handle_written_jnewblk(jnewblk)
3847 	struct jnewblk *jnewblk;
3848 {
3849 	struct bmsafemap *bmsafemap;
3850 	struct freefrag *freefrag;
3851 	struct freework *freework;
3852 	struct jsegdep *jsegdep;
3853 	struct newblk *newblk;
3854 
3855 	/* Grab the jsegdep. */
3856 	jsegdep = jnewblk->jn_jsegdep;
3857 	jnewblk->jn_jsegdep = NULL;
3858 	if (jnewblk->jn_dep == NULL)
3859 		panic("handle_written_jnewblk: No dependency for the segdep.");
3860 	switch (jnewblk->jn_dep->wk_type) {
3861 	case D_NEWBLK:
3862 	case D_ALLOCDIRECT:
3863 	case D_ALLOCINDIR:
3864 		/*
3865 		 * Add the written block to the bmsafemap so it can
3866 		 * be notified when the bitmap is on disk.
3867 		 */
3868 		newblk = WK_NEWBLK(jnewblk->jn_dep);
3869 		newblk->nb_jnewblk = NULL;
3870 		if ((newblk->nb_state & GOINGAWAY) == 0) {
3871 			bmsafemap = newblk->nb_bmsafemap;
3872 			newblk->nb_state |= ONDEPLIST;
3873 			LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk,
3874 			    nb_deps);
3875 		}
3876 		jwork_insert(&newblk->nb_jwork, jsegdep);
3877 		break;
3878 	case D_FREEFRAG:
3879 		/*
3880 		 * A newblock being removed by a freefrag when replaced by
3881 		 * frag extension.
3882 		 */
3883 		freefrag = WK_FREEFRAG(jnewblk->jn_dep);
3884 		freefrag->ff_jdep = NULL;
3885 		jwork_insert(&freefrag->ff_jwork, jsegdep);
3886 		break;
3887 	case D_FREEWORK:
3888 		/*
3889 		 * A direct block was removed by truncate.
3890 		 */
3891 		freework = WK_FREEWORK(jnewblk->jn_dep);
3892 		freework->fw_jnewblk = NULL;
3893 		jwork_insert(&freework->fw_freeblks->fb_jwork, jsegdep);
3894 		break;
3895 	default:
3896 		panic("handle_written_jnewblk: Unknown type %d.",
3897 		    jnewblk->jn_dep->wk_type);
3898 	}
3899 	jnewblk->jn_dep = NULL;
3900 	free_jnewblk(jnewblk);
3901 }
3902 
3903 /*
3904  * Cancel a jfreefrag that won't be needed, probably due to colliding with
3905  * an in-flight allocation that has not yet been committed.  Divorce us
3906  * from the freefrag and mark it DEPCOMPLETE so that it may be added
3907  * to the worklist.
3908  */
3909 static void
3910 cancel_jfreefrag(jfreefrag)
3911 	struct jfreefrag *jfreefrag;
3912 {
3913 	struct freefrag *freefrag;
3914 
3915 	if (jfreefrag->fr_jsegdep) {
3916 		free_jsegdep(jfreefrag->fr_jsegdep);
3917 		jfreefrag->fr_jsegdep = NULL;
3918 	}
3919 	freefrag = jfreefrag->fr_freefrag;
3920 	jfreefrag->fr_freefrag = NULL;
3921 	free_jfreefrag(jfreefrag);
3922 	freefrag->ff_state |= DEPCOMPLETE;
3923 	CTR1(KTR_SUJ, "cancel_jfreefrag: blkno %jd", freefrag->ff_blkno);
3924 }
3925 
3926 /*
3927  * Free a jfreefrag when the parent freefrag is rendered obsolete.
3928  */
3929 static void
3930 free_jfreefrag(jfreefrag)
3931 	struct jfreefrag *jfreefrag;
3932 {
3933 
3934 	if (jfreefrag->fr_state & INPROGRESS)
3935 		WORKLIST_REMOVE(&jfreefrag->fr_list);
3936 	else if (jfreefrag->fr_state & ONWORKLIST)
3937 		remove_from_journal(&jfreefrag->fr_list);
3938 	if (jfreefrag->fr_freefrag != NULL)
3939 		panic("free_jfreefrag:  Still attached to a freefrag.");
3940 	WORKITEM_FREE(jfreefrag, D_JFREEFRAG);
3941 }
3942 
3943 /*
3944  * Called when the journal write for a jfreefrag completes.  The parent
3945  * freefrag is added to the worklist if this completes its dependencies.
3946  */
3947 static void
3948 handle_written_jfreefrag(jfreefrag)
3949 	struct jfreefrag *jfreefrag;
3950 {
3951 	struct jsegdep *jsegdep;
3952 	struct freefrag *freefrag;
3953 
3954 	/* Grab the jsegdep. */
3955 	jsegdep = jfreefrag->fr_jsegdep;
3956 	jfreefrag->fr_jsegdep = NULL;
3957 	freefrag = jfreefrag->fr_freefrag;
3958 	if (freefrag == NULL)
3959 		panic("handle_written_jfreefrag: No freefrag.");
3960 	freefrag->ff_state |= DEPCOMPLETE;
3961 	freefrag->ff_jdep = NULL;
3962 	jwork_insert(&freefrag->ff_jwork, jsegdep);
3963 	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
3964 		add_to_worklist(&freefrag->ff_list, 0);
3965 	jfreefrag->fr_freefrag = NULL;
3966 	free_jfreefrag(jfreefrag);
3967 }
3968 
3969 /*
3970  * Called when the journal write for a jfreeblk completes.  The jfreeblk
3971  * is removed from the freeblks list of pending journal writes and the
3972  * jsegdep is moved to the freeblks jwork to be completed when all blocks
3973  * have been reclaimed.
3974  */
3975 static void
3976 handle_written_jblkdep(jblkdep)
3977 	struct jblkdep *jblkdep;
3978 {
3979 	struct freeblks *freeblks;
3980 	struct jsegdep *jsegdep;
3981 
3982 	/* Grab the jsegdep. */
3983 	jsegdep = jblkdep->jb_jsegdep;
3984 	jblkdep->jb_jsegdep = NULL;
3985 	freeblks = jblkdep->jb_freeblks;
3986 	LIST_REMOVE(jblkdep, jb_deps);
3987 	jwork_insert(&freeblks->fb_jwork, jsegdep);
3988 	/*
3989 	 * If the freeblks is all journaled, we can add it to the worklist.
3990 	 */
3991 	if (LIST_EMPTY(&freeblks->fb_jblkdephd) &&
3992 	    (freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
3993 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
3994 
3995 	free_jblkdep(jblkdep);
3996 }
3997 
3998 static struct jsegdep *
3999 newjsegdep(struct worklist *wk)
4000 {
4001 	struct jsegdep *jsegdep;
4002 
4003 	jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS);
4004 	workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp);
4005 	jsegdep->jd_seg = NULL;
4006 
4007 	return (jsegdep);
4008 }
4009 
4010 static struct jmvref *
4011 newjmvref(dp, ino, oldoff, newoff)
4012 	struct inode *dp;
4013 	ino_t ino;
4014 	off_t oldoff;
4015 	off_t newoff;
4016 {
4017 	struct jmvref *jmvref;
4018 
4019 	jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS);
4020 	workitem_alloc(&jmvref->jm_list, D_JMVREF, ITOVFS(dp));
4021 	jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE;
4022 	jmvref->jm_parent = dp->i_number;
4023 	jmvref->jm_ino = ino;
4024 	jmvref->jm_oldoff = oldoff;
4025 	jmvref->jm_newoff = newoff;
4026 
4027 	return (jmvref);
4028 }
4029 
4030 /*
4031  * Allocate a new jremref that tracks the removal of ip from dp with the
4032  * directory entry offset of diroff.  Mark the entry as ATTACHED and
4033  * DEPCOMPLETE as we have all the information required for the journal write
4034  * and the directory has already been removed from the buffer.  The caller
4035  * is responsible for linking the jremref into the pagedep and adding it
4036  * to the journal to write.  The MKDIR_PARENT flag is set if we're doing
4037  * a DOTDOT addition so handle_workitem_remove() can properly assign
4038  * the jsegdep when we're done.
4039  */
4040 static struct jremref *
4041 newjremref(struct dirrem *dirrem, struct inode *dp, struct inode *ip,
4042     off_t diroff, nlink_t nlink)
4043 {
4044 	struct jremref *jremref;
4045 
4046 	jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS);
4047 	workitem_alloc(&jremref->jr_list, D_JREMREF, ITOVFS(dp));
4048 	jremref->jr_state = ATTACHED;
4049 	newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff,
4050 	   nlink, ip->i_mode);
4051 	jremref->jr_dirrem = dirrem;
4052 
4053 	return (jremref);
4054 }
4055 
4056 static inline void
4057 newinoref(struct inoref *inoref, ino_t ino, ino_t parent, off_t diroff,
4058     nlink_t nlink, uint16_t mode)
4059 {
4060 
4061 	inoref->if_jsegdep = newjsegdep(&inoref->if_list);
4062 	inoref->if_diroff = diroff;
4063 	inoref->if_ino = ino;
4064 	inoref->if_parent = parent;
4065 	inoref->if_nlink = nlink;
4066 	inoref->if_mode = mode;
4067 }
4068 
4069 /*
4070  * Allocate a new jaddref to track the addition of ino to dp at diroff.  The
4071  * directory offset may not be known until later.  The caller is responsible
4072  * adding the entry to the journal when this information is available.  nlink
4073  * should be the link count prior to the addition and mode is only required
4074  * to have the correct FMT.
4075  */
4076 static struct jaddref *
4077 newjaddref(struct inode *dp, ino_t ino, off_t diroff, int16_t nlink,
4078     uint16_t mode)
4079 {
4080 	struct jaddref *jaddref;
4081 
4082 	jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS);
4083 	workitem_alloc(&jaddref->ja_list, D_JADDREF, ITOVFS(dp));
4084 	jaddref->ja_state = ATTACHED;
4085 	jaddref->ja_mkdir = NULL;
4086 	newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode);
4087 
4088 	return (jaddref);
4089 }
4090 
4091 /*
4092  * Create a new free dependency for a freework.  The caller is responsible
4093  * for adjusting the reference count when it has the lock held.  The freedep
4094  * will track an outstanding bitmap write that will ultimately clear the
4095  * freework to continue.
4096  */
4097 static struct freedep *
4098 newfreedep(struct freework *freework)
4099 {
4100 	struct freedep *freedep;
4101 
4102 	freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS);
4103 	workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp);
4104 	freedep->fd_freework = freework;
4105 
4106 	return (freedep);
4107 }
4108 
4109 /*
4110  * Free a freedep structure once the buffer it is linked to is written.  If
4111  * this is the last reference to the freework schedule it for completion.
4112  */
4113 static void
4114 free_freedep(freedep)
4115 	struct freedep *freedep;
4116 {
4117 	struct freework *freework;
4118 
4119 	freework = freedep->fd_freework;
4120 	freework->fw_freeblks->fb_cgwait--;
4121 	if (--freework->fw_ref == 0)
4122 		freework_enqueue(freework);
4123 	WORKITEM_FREE(freedep, D_FREEDEP);
4124 }
4125 
4126 /*
4127  * Allocate a new freework structure that may be a level in an indirect
4128  * when parent is not NULL or a top level block when it is.  The top level
4129  * freework structures are allocated without the per-filesystem lock held
4130  * and before the freeblks is visible outside of softdep_setup_freeblocks().
4131  */
4132 static struct freework *
4133 newfreework(ump, freeblks, parent, lbn, nb, frags, off, journal)
4134 	struct ufsmount *ump;
4135 	struct freeblks *freeblks;
4136 	struct freework *parent;
4137 	ufs_lbn_t lbn;
4138 	ufs2_daddr_t nb;
4139 	int frags;
4140 	int off;
4141 	int journal;
4142 {
4143 	struct freework *freework;
4144 
4145 	freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS);
4146 	workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp);
4147 	freework->fw_state = ATTACHED;
4148 	freework->fw_jnewblk = NULL;
4149 	freework->fw_freeblks = freeblks;
4150 	freework->fw_parent = parent;
4151 	freework->fw_lbn = lbn;
4152 	freework->fw_blkno = nb;
4153 	freework->fw_frags = frags;
4154 	freework->fw_indir = NULL;
4155 	freework->fw_ref = (MOUNTEDSUJ(UFSTOVFS(ump)) == 0 ||
4156 	    lbn >= -UFS_NXADDR) ? 0 : NINDIR(ump->um_fs) + 1;
4157 	freework->fw_start = freework->fw_off = off;
4158 	if (journal)
4159 		newjfreeblk(freeblks, lbn, nb, frags);
4160 	if (parent == NULL) {
4161 		ACQUIRE_LOCK(ump);
4162 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
4163 		freeblks->fb_ref++;
4164 		FREE_LOCK(ump);
4165 	}
4166 
4167 	return (freework);
4168 }
4169 
4170 /*
4171  * Eliminate a jfreeblk for a block that does not need journaling.
4172  */
4173 static void
4174 cancel_jfreeblk(freeblks, blkno)
4175 	struct freeblks *freeblks;
4176 	ufs2_daddr_t blkno;
4177 {
4178 	struct jfreeblk *jfreeblk;
4179 	struct jblkdep *jblkdep;
4180 
4181 	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) {
4182 		if (jblkdep->jb_list.wk_type != D_JFREEBLK)
4183 			continue;
4184 		jfreeblk = WK_JFREEBLK(&jblkdep->jb_list);
4185 		if (jfreeblk->jf_blkno == blkno)
4186 			break;
4187 	}
4188 	if (jblkdep == NULL)
4189 		return;
4190 	CTR1(KTR_SUJ, "cancel_jfreeblk: blkno %jd", blkno);
4191 	free_jsegdep(jblkdep->jb_jsegdep);
4192 	LIST_REMOVE(jblkdep, jb_deps);
4193 	WORKITEM_FREE(jfreeblk, D_JFREEBLK);
4194 }
4195 
4196 /*
4197  * Allocate a new jfreeblk to journal top level block pointer when truncating
4198  * a file.  The caller must add this to the worklist when the per-filesystem
4199  * lock is held.
4200  */
4201 static struct jfreeblk *
4202 newjfreeblk(freeblks, lbn, blkno, frags)
4203 	struct freeblks *freeblks;
4204 	ufs_lbn_t lbn;
4205 	ufs2_daddr_t blkno;
4206 	int frags;
4207 {
4208 	struct jfreeblk *jfreeblk;
4209 
4210 	jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS);
4211 	workitem_alloc(&jfreeblk->jf_dep.jb_list, D_JFREEBLK,
4212 	    freeblks->fb_list.wk_mp);
4213 	jfreeblk->jf_dep.jb_jsegdep = newjsegdep(&jfreeblk->jf_dep.jb_list);
4214 	jfreeblk->jf_dep.jb_freeblks = freeblks;
4215 	jfreeblk->jf_ino = freeblks->fb_inum;
4216 	jfreeblk->jf_lbn = lbn;
4217 	jfreeblk->jf_blkno = blkno;
4218 	jfreeblk->jf_frags = frags;
4219 	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jfreeblk->jf_dep, jb_deps);
4220 
4221 	return (jfreeblk);
4222 }
4223 
4224 /*
4225  * The journal is only prepared to handle full-size block numbers, so we
4226  * have to adjust the record to reflect the change to a full-size block.
4227  * For example, suppose we have a block made up of fragments 8-15 and
4228  * want to free its last two fragments. We are given a request that says:
4229  *     FREEBLK ino=5, blkno=14, lbn=0, frags=2, oldfrags=0
4230  * where frags are the number of fragments to free and oldfrags are the
4231  * number of fragments to keep. To block align it, we have to change it to
4232  * have a valid full-size blkno, so it becomes:
4233  *     FREEBLK ino=5, blkno=8, lbn=0, frags=2, oldfrags=6
4234  */
4235 static void
4236 adjust_newfreework(freeblks, frag_offset)
4237 	struct freeblks *freeblks;
4238 	int frag_offset;
4239 {
4240 	struct jfreeblk *jfreeblk;
4241 
4242 	KASSERT((LIST_FIRST(&freeblks->fb_jblkdephd) != NULL &&
4243 	    LIST_FIRST(&freeblks->fb_jblkdephd)->jb_list.wk_type == D_JFREEBLK),
4244 	    ("adjust_newfreework: Missing freeblks dependency"));
4245 
4246 	jfreeblk = WK_JFREEBLK(LIST_FIRST(&freeblks->fb_jblkdephd));
4247 	jfreeblk->jf_blkno -= frag_offset;
4248 	jfreeblk->jf_frags += frag_offset;
4249 }
4250 
4251 /*
4252  * Allocate a new jtrunc to track a partial truncation.
4253  */
4254 static struct jtrunc *
4255 newjtrunc(freeblks, size, extsize)
4256 	struct freeblks *freeblks;
4257 	off_t size;
4258 	int extsize;
4259 {
4260 	struct jtrunc *jtrunc;
4261 
4262 	jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS);
4263 	workitem_alloc(&jtrunc->jt_dep.jb_list, D_JTRUNC,
4264 	    freeblks->fb_list.wk_mp);
4265 	jtrunc->jt_dep.jb_jsegdep = newjsegdep(&jtrunc->jt_dep.jb_list);
4266 	jtrunc->jt_dep.jb_freeblks = freeblks;
4267 	jtrunc->jt_ino = freeblks->fb_inum;
4268 	jtrunc->jt_size = size;
4269 	jtrunc->jt_extsize = extsize;
4270 	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jtrunc->jt_dep, jb_deps);
4271 
4272 	return (jtrunc);
4273 }
4274 
4275 /*
4276  * If we're canceling a new bitmap we have to search for another ref
4277  * to move into the bmsafemap dep.  This might be better expressed
4278  * with another structure.
4279  */
4280 static void
4281 move_newblock_dep(jaddref, inodedep)
4282 	struct jaddref *jaddref;
4283 	struct inodedep *inodedep;
4284 {
4285 	struct inoref *inoref;
4286 	struct jaddref *jaddrefn;
4287 
4288 	jaddrefn = NULL;
4289 	for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
4290 	    inoref = TAILQ_NEXT(inoref, if_deps)) {
4291 		if ((jaddref->ja_state & NEWBLOCK) &&
4292 		    inoref->if_list.wk_type == D_JADDREF) {
4293 			jaddrefn = (struct jaddref *)inoref;
4294 			break;
4295 		}
4296 	}
4297 	if (jaddrefn == NULL)
4298 		return;
4299 	jaddrefn->ja_state &= ~(ATTACHED | UNDONE);
4300 	jaddrefn->ja_state |= jaddref->ja_state &
4301 	    (ATTACHED | UNDONE | NEWBLOCK);
4302 	jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK);
4303 	jaddref->ja_state |= ATTACHED;
4304 	LIST_REMOVE(jaddref, ja_bmdeps);
4305 	LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn,
4306 	    ja_bmdeps);
4307 }
4308 
4309 /*
4310  * Cancel a jaddref either before it has been written or while it is being
4311  * written.  This happens when a link is removed before the add reaches
4312  * the disk.  The jaddref dependency is kept linked into the bmsafemap
4313  * and inode to prevent the link count or bitmap from reaching the disk
4314  * until handle_workitem_remove() re-adjusts the counts and bitmaps as
4315  * required.
4316  *
4317  * Returns 1 if the canceled addref requires journaling of the remove and
4318  * 0 otherwise.
4319  */
4320 static int
4321 cancel_jaddref(jaddref, inodedep, wkhd)
4322 	struct jaddref *jaddref;
4323 	struct inodedep *inodedep;
4324 	struct workhead *wkhd;
4325 {
4326 	struct inoref *inoref;
4327 	struct jsegdep *jsegdep;
4328 	int needsj;
4329 
4330 	KASSERT((jaddref->ja_state & COMPLETE) == 0,
4331 	    ("cancel_jaddref: Canceling complete jaddref"));
4332 	if (jaddref->ja_state & (INPROGRESS | COMPLETE))
4333 		needsj = 1;
4334 	else
4335 		needsj = 0;
4336 	if (inodedep == NULL)
4337 		if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
4338 		    0, &inodedep) == 0)
4339 			panic("cancel_jaddref: Lost inodedep");
4340 	/*
4341 	 * We must adjust the nlink of any reference operation that follows
4342 	 * us so that it is consistent with the in-memory reference.  This
4343 	 * ensures that inode nlink rollbacks always have the correct link.
4344 	 */
4345 	if (needsj == 0) {
4346 		for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
4347 		    inoref = TAILQ_NEXT(inoref, if_deps)) {
4348 			if (inoref->if_state & GOINGAWAY)
4349 				break;
4350 			inoref->if_nlink--;
4351 		}
4352 	}
4353 	jsegdep = inoref_jseg(&jaddref->ja_ref);
4354 	if (jaddref->ja_state & NEWBLOCK)
4355 		move_newblock_dep(jaddref, inodedep);
4356 	wake_worklist(&jaddref->ja_list);
4357 	jaddref->ja_mkdir = NULL;
4358 	if (jaddref->ja_state & INPROGRESS) {
4359 		jaddref->ja_state &= ~INPROGRESS;
4360 		WORKLIST_REMOVE(&jaddref->ja_list);
4361 		jwork_insert(wkhd, jsegdep);
4362 	} else {
4363 		free_jsegdep(jsegdep);
4364 		if (jaddref->ja_state & DEPCOMPLETE)
4365 			remove_from_journal(&jaddref->ja_list);
4366 	}
4367 	jaddref->ja_state |= (GOINGAWAY | DEPCOMPLETE);
4368 	/*
4369 	 * Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove
4370 	 * can arrange for them to be freed with the bitmap.  Otherwise we
4371 	 * no longer need this addref attached to the inoreflst and it
4372 	 * will incorrectly adjust nlink if we leave it.
4373 	 */
4374 	if ((jaddref->ja_state & NEWBLOCK) == 0) {
4375 		TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
4376 		    if_deps);
4377 		jaddref->ja_state |= COMPLETE;
4378 		free_jaddref(jaddref);
4379 		return (needsj);
4380 	}
4381 	/*
4382 	 * Leave the head of the list for jsegdeps for fast merging.
4383 	 */
4384 	if (LIST_FIRST(wkhd) != NULL) {
4385 		jaddref->ja_state |= ONWORKLIST;
4386 		LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list);
4387 	} else
4388 		WORKLIST_INSERT(wkhd, &jaddref->ja_list);
4389 
4390 	return (needsj);
4391 }
4392 
4393 /*
4394  * Attempt to free a jaddref structure when some work completes.  This
4395  * should only succeed once the entry is written and all dependencies have
4396  * been notified.
4397  */
4398 static void
4399 free_jaddref(jaddref)
4400 	struct jaddref *jaddref;
4401 {
4402 
4403 	if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE)
4404 		return;
4405 	if (jaddref->ja_ref.if_jsegdep)
4406 		panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n",
4407 		    jaddref, jaddref->ja_state);
4408 	if (jaddref->ja_state & NEWBLOCK)
4409 		LIST_REMOVE(jaddref, ja_bmdeps);
4410 	if (jaddref->ja_state & (INPROGRESS | ONWORKLIST))
4411 		panic("free_jaddref: Bad state %p(0x%X)",
4412 		    jaddref, jaddref->ja_state);
4413 	if (jaddref->ja_mkdir != NULL)
4414 		panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state);
4415 	WORKITEM_FREE(jaddref, D_JADDREF);
4416 }
4417 
4418 /*
4419  * Free a jremref structure once it has been written or discarded.
4420  */
4421 static void
4422 free_jremref(jremref)
4423 	struct jremref *jremref;
4424 {
4425 
4426 	if (jremref->jr_ref.if_jsegdep)
4427 		free_jsegdep(jremref->jr_ref.if_jsegdep);
4428 	if (jremref->jr_state & INPROGRESS)
4429 		panic("free_jremref: IO still pending");
4430 	WORKITEM_FREE(jremref, D_JREMREF);
4431 }
4432 
4433 /*
4434  * Free a jnewblk structure.
4435  */
4436 static void
4437 free_jnewblk(jnewblk)
4438 	struct jnewblk *jnewblk;
4439 {
4440 
4441 	if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE)
4442 		return;
4443 	LIST_REMOVE(jnewblk, jn_deps);
4444 	if (jnewblk->jn_dep != NULL)
4445 		panic("free_jnewblk: Dependency still attached.");
4446 	WORKITEM_FREE(jnewblk, D_JNEWBLK);
4447 }
4448 
4449 /*
4450  * Cancel a jnewblk which has been been made redundant by frag extension.
4451  */
4452 static void
4453 cancel_jnewblk(jnewblk, wkhd)
4454 	struct jnewblk *jnewblk;
4455 	struct workhead *wkhd;
4456 {
4457 	struct jsegdep *jsegdep;
4458 
4459 	CTR1(KTR_SUJ, "cancel_jnewblk: blkno %jd", jnewblk->jn_blkno);
4460 	jsegdep = jnewblk->jn_jsegdep;
4461 	if (jnewblk->jn_jsegdep == NULL || jnewblk->jn_dep == NULL)
4462 		panic("cancel_jnewblk: Invalid state");
4463 	jnewblk->jn_jsegdep  = NULL;
4464 	jnewblk->jn_dep = NULL;
4465 	jnewblk->jn_state |= GOINGAWAY;
4466 	if (jnewblk->jn_state & INPROGRESS) {
4467 		jnewblk->jn_state &= ~INPROGRESS;
4468 		WORKLIST_REMOVE(&jnewblk->jn_list);
4469 		jwork_insert(wkhd, jsegdep);
4470 	} else {
4471 		free_jsegdep(jsegdep);
4472 		remove_from_journal(&jnewblk->jn_list);
4473 	}
4474 	wake_worklist(&jnewblk->jn_list);
4475 	WORKLIST_INSERT(wkhd, &jnewblk->jn_list);
4476 }
4477 
4478 static void
4479 free_jblkdep(jblkdep)
4480 	struct jblkdep *jblkdep;
4481 {
4482 
4483 	if (jblkdep->jb_list.wk_type == D_JFREEBLK)
4484 		WORKITEM_FREE(jblkdep, D_JFREEBLK);
4485 	else if (jblkdep->jb_list.wk_type == D_JTRUNC)
4486 		WORKITEM_FREE(jblkdep, D_JTRUNC);
4487 	else
4488 		panic("free_jblkdep: Unexpected type %s",
4489 		    TYPENAME(jblkdep->jb_list.wk_type));
4490 }
4491 
4492 /*
4493  * Free a single jseg once it is no longer referenced in memory or on
4494  * disk.  Reclaim journal blocks and dependencies waiting for the segment
4495  * to disappear.
4496  */
4497 static void
4498 free_jseg(jseg, jblocks)
4499 	struct jseg *jseg;
4500 	struct jblocks *jblocks;
4501 {
4502 	struct freework *freework;
4503 
4504 	/*
4505 	 * Free freework structures that were lingering to indicate freed
4506 	 * indirect blocks that forced journal write ordering on reallocate.
4507 	 */
4508 	while ((freework = LIST_FIRST(&jseg->js_indirs)) != NULL)
4509 		indirblk_remove(freework);
4510 	if (jblocks->jb_oldestseg == jseg)
4511 		jblocks->jb_oldestseg = TAILQ_NEXT(jseg, js_next);
4512 	TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next);
4513 	jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size);
4514 	KASSERT(LIST_EMPTY(&jseg->js_entries),
4515 	    ("free_jseg: Freed jseg has valid entries."));
4516 	WORKITEM_FREE(jseg, D_JSEG);
4517 }
4518 
4519 /*
4520  * Free all jsegs that meet the criteria for being reclaimed and update
4521  * oldestseg.
4522  */
4523 static void
4524 free_jsegs(jblocks)
4525 	struct jblocks *jblocks;
4526 {
4527 	struct jseg *jseg;
4528 
4529 	/*
4530 	 * Free only those jsegs which have none allocated before them to
4531 	 * preserve the journal space ordering.
4532 	 */
4533 	while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) {
4534 		/*
4535 		 * Only reclaim space when nothing depends on this journal
4536 		 * set and another set has written that it is no longer
4537 		 * valid.
4538 		 */
4539 		if (jseg->js_refs != 0) {
4540 			jblocks->jb_oldestseg = jseg;
4541 			return;
4542 		}
4543 		if ((jseg->js_state & ALLCOMPLETE) != ALLCOMPLETE)
4544 			break;
4545 		if (jseg->js_seq > jblocks->jb_oldestwrseq)
4546 			break;
4547 		/*
4548 		 * We can free jsegs that didn't write entries when
4549 		 * oldestwrseq == js_seq.
4550 		 */
4551 		if (jseg->js_seq == jblocks->jb_oldestwrseq &&
4552 		    jseg->js_cnt != 0)
4553 			break;
4554 		free_jseg(jseg, jblocks);
4555 	}
4556 	/*
4557 	 * If we exited the loop above we still must discover the
4558 	 * oldest valid segment.
4559 	 */
4560 	if (jseg)
4561 		for (jseg = jblocks->jb_oldestseg; jseg != NULL;
4562 		     jseg = TAILQ_NEXT(jseg, js_next))
4563 			if (jseg->js_refs != 0)
4564 				break;
4565 	jblocks->jb_oldestseg = jseg;
4566 	/*
4567 	 * The journal has no valid records but some jsegs may still be
4568 	 * waiting on oldestwrseq to advance.  We force a small record
4569 	 * out to permit these lingering records to be reclaimed.
4570 	 */
4571 	if (jblocks->jb_oldestseg == NULL && !TAILQ_EMPTY(&jblocks->jb_segs))
4572 		jblocks->jb_needseg = 1;
4573 }
4574 
4575 /*
4576  * Release one reference to a jseg and free it if the count reaches 0.  This
4577  * should eventually reclaim journal space as well.
4578  */
4579 static void
4580 rele_jseg(jseg)
4581 	struct jseg *jseg;
4582 {
4583 
4584 	KASSERT(jseg->js_refs > 0,
4585 	    ("free_jseg: Invalid refcnt %d", jseg->js_refs));
4586 	if (--jseg->js_refs != 0)
4587 		return;
4588 	free_jsegs(jseg->js_jblocks);
4589 }
4590 
4591 /*
4592  * Release a jsegdep and decrement the jseg count.
4593  */
4594 static void
4595 free_jsegdep(jsegdep)
4596 	struct jsegdep *jsegdep;
4597 {
4598 
4599 	if (jsegdep->jd_seg)
4600 		rele_jseg(jsegdep->jd_seg);
4601 	WORKITEM_FREE(jsegdep, D_JSEGDEP);
4602 }
4603 
4604 /*
4605  * Wait for a journal item to make it to disk.  Initiate journal processing
4606  * if required.
4607  */
4608 static int
4609 jwait(wk, waitfor)
4610 	struct worklist *wk;
4611 	int waitfor;
4612 {
4613 
4614 	LOCK_OWNED(VFSTOUFS(wk->wk_mp));
4615 	/*
4616 	 * Blocking journal waits cause slow synchronous behavior.  Record
4617 	 * stats on the frequency of these blocking operations.
4618 	 */
4619 	if (waitfor == MNT_WAIT) {
4620 		stat_journal_wait++;
4621 		switch (wk->wk_type) {
4622 		case D_JREMREF:
4623 		case D_JMVREF:
4624 			stat_jwait_filepage++;
4625 			break;
4626 		case D_JTRUNC:
4627 		case D_JFREEBLK:
4628 			stat_jwait_freeblks++;
4629 			break;
4630 		case D_JNEWBLK:
4631 			stat_jwait_newblk++;
4632 			break;
4633 		case D_JADDREF:
4634 			stat_jwait_inode++;
4635 			break;
4636 		default:
4637 			break;
4638 		}
4639 	}
4640 	/*
4641 	 * If IO has not started we process the journal.  We can't mark the
4642 	 * worklist item as IOWAITING because we drop the lock while
4643 	 * processing the journal and the worklist entry may be freed after
4644 	 * this point.  The caller may call back in and re-issue the request.
4645 	 */
4646 	if ((wk->wk_state & INPROGRESS) == 0) {
4647 		softdep_process_journal(wk->wk_mp, wk, waitfor);
4648 		if (waitfor != MNT_WAIT)
4649 			return (EBUSY);
4650 		return (0);
4651 	}
4652 	if (waitfor != MNT_WAIT)
4653 		return (EBUSY);
4654 	wait_worklist(wk, "jwait");
4655 	return (0);
4656 }
4657 
4658 /*
4659  * Lookup an inodedep based on an inode pointer and set the nlinkdelta as
4660  * appropriate.  This is a convenience function to reduce duplicate code
4661  * for the setup and revert functions below.
4662  */
4663 static struct inodedep *
4664 inodedep_lookup_ip(ip)
4665 	struct inode *ip;
4666 {
4667 	struct inodedep *inodedep;
4668 
4669 	KASSERT(ip->i_nlink >= ip->i_effnlink,
4670 	    ("inodedep_lookup_ip: bad delta"));
4671 	(void) inodedep_lookup(ITOVFS(ip), ip->i_number, DEPALLOC,
4672 	    &inodedep);
4673 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
4674 	KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
4675 
4676 	return (inodedep);
4677 }
4678 
4679 /*
4680  * Called prior to creating a new inode and linking it to a directory.  The
4681  * jaddref structure must already be allocated by softdep_setup_inomapdep
4682  * and it is discovered here so we can initialize the mode and update
4683  * nlinkdelta.
4684  */
4685 void
4686 softdep_setup_create(dp, ip)
4687 	struct inode *dp;
4688 	struct inode *ip;
4689 {
4690 	struct inodedep *inodedep;
4691 	struct jaddref *jaddref;
4692 	struct vnode *dvp;
4693 
4694 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4695 	    ("softdep_setup_create called on non-softdep filesystem"));
4696 	KASSERT(ip->i_nlink == 1,
4697 	    ("softdep_setup_create: Invalid link count."));
4698 	dvp = ITOV(dp);
4699 	ACQUIRE_LOCK(ITOUMP(dp));
4700 	inodedep = inodedep_lookup_ip(ip);
4701 	if (DOINGSUJ(dvp)) {
4702 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4703 		    inoreflst);
4704 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
4705 		    ("softdep_setup_create: No addref structure present."));
4706 	}
4707 	softdep_prelink(dvp, NULL);
4708 	FREE_LOCK(ITOUMP(dp));
4709 }
4710 
4711 /*
4712  * Create a jaddref structure to track the addition of a DOTDOT link when
4713  * we are reparenting an inode as part of a rename.  This jaddref will be
4714  * found by softdep_setup_directory_change.  Adjusts nlinkdelta for
4715  * non-journaling softdep.
4716  */
4717 void
4718 softdep_setup_dotdot_link(dp, ip)
4719 	struct inode *dp;
4720 	struct inode *ip;
4721 {
4722 	struct inodedep *inodedep;
4723 	struct jaddref *jaddref;
4724 	struct vnode *dvp;
4725 
4726 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4727 	    ("softdep_setup_dotdot_link called on non-softdep filesystem"));
4728 	dvp = ITOV(dp);
4729 	jaddref = NULL;
4730 	/*
4731 	 * We don't set MKDIR_PARENT as this is not tied to a mkdir and
4732 	 * is used as a normal link would be.
4733 	 */
4734 	if (DOINGSUJ(dvp))
4735 		jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
4736 		    dp->i_effnlink - 1, dp->i_mode);
4737 	ACQUIRE_LOCK(ITOUMP(dp));
4738 	inodedep = inodedep_lookup_ip(dp);
4739 	if (jaddref)
4740 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4741 		    if_deps);
4742 	softdep_prelink(dvp, ITOV(ip));
4743 	FREE_LOCK(ITOUMP(dp));
4744 }
4745 
4746 /*
4747  * Create a jaddref structure to track a new link to an inode.  The directory
4748  * offset is not known until softdep_setup_directory_add or
4749  * softdep_setup_directory_change.  Adjusts nlinkdelta for non-journaling
4750  * softdep.
4751  */
4752 void
4753 softdep_setup_link(dp, ip)
4754 	struct inode *dp;
4755 	struct inode *ip;
4756 {
4757 	struct inodedep *inodedep;
4758 	struct jaddref *jaddref;
4759 	struct vnode *dvp;
4760 
4761 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4762 	    ("softdep_setup_link called on non-softdep filesystem"));
4763 	dvp = ITOV(dp);
4764 	jaddref = NULL;
4765 	if (DOINGSUJ(dvp))
4766 		jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1,
4767 		    ip->i_mode);
4768 	ACQUIRE_LOCK(ITOUMP(dp));
4769 	inodedep = inodedep_lookup_ip(ip);
4770 	if (jaddref)
4771 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4772 		    if_deps);
4773 	softdep_prelink(dvp, ITOV(ip));
4774 	FREE_LOCK(ITOUMP(dp));
4775 }
4776 
4777 /*
4778  * Called to create the jaddref structures to track . and .. references as
4779  * well as lookup and further initialize the incomplete jaddref created
4780  * by softdep_setup_inomapdep when the inode was allocated.  Adjusts
4781  * nlinkdelta for non-journaling softdep.
4782  */
4783 void
4784 softdep_setup_mkdir(dp, ip)
4785 	struct inode *dp;
4786 	struct inode *ip;
4787 {
4788 	struct inodedep *inodedep;
4789 	struct jaddref *dotdotaddref;
4790 	struct jaddref *dotaddref;
4791 	struct jaddref *jaddref;
4792 	struct vnode *dvp;
4793 
4794 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4795 	    ("softdep_setup_mkdir called on non-softdep filesystem"));
4796 	dvp = ITOV(dp);
4797 	dotaddref = dotdotaddref = NULL;
4798 	if (DOINGSUJ(dvp)) {
4799 		dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1,
4800 		    ip->i_mode);
4801 		dotaddref->ja_state |= MKDIR_BODY;
4802 		dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
4803 		    dp->i_effnlink - 1, dp->i_mode);
4804 		dotdotaddref->ja_state |= MKDIR_PARENT;
4805 	}
4806 	ACQUIRE_LOCK(ITOUMP(dp));
4807 	inodedep = inodedep_lookup_ip(ip);
4808 	if (DOINGSUJ(dvp)) {
4809 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4810 		    inoreflst);
4811 		KASSERT(jaddref != NULL,
4812 		    ("softdep_setup_mkdir: No addref structure present."));
4813 		KASSERT(jaddref->ja_parent == dp->i_number,
4814 		    ("softdep_setup_mkdir: bad parent %ju",
4815 		    (uintmax_t)jaddref->ja_parent));
4816 		TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref,
4817 		    if_deps);
4818 	}
4819 	inodedep = inodedep_lookup_ip(dp);
4820 	if (DOINGSUJ(dvp))
4821 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst,
4822 		    &dotdotaddref->ja_ref, if_deps);
4823 	softdep_prelink(ITOV(dp), NULL);
4824 	FREE_LOCK(ITOUMP(dp));
4825 }
4826 
4827 /*
4828  * Called to track nlinkdelta of the inode and parent directories prior to
4829  * unlinking a directory.
4830  */
4831 void
4832 softdep_setup_rmdir(dp, ip)
4833 	struct inode *dp;
4834 	struct inode *ip;
4835 {
4836 	struct vnode *dvp;
4837 
4838 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4839 	    ("softdep_setup_rmdir called on non-softdep filesystem"));
4840 	dvp = ITOV(dp);
4841 	ACQUIRE_LOCK(ITOUMP(dp));
4842 	(void) inodedep_lookup_ip(ip);
4843 	(void) inodedep_lookup_ip(dp);
4844 	softdep_prelink(dvp, ITOV(ip));
4845 	FREE_LOCK(ITOUMP(dp));
4846 }
4847 
4848 /*
4849  * Called to track nlinkdelta of the inode and parent directories prior to
4850  * unlink.
4851  */
4852 void
4853 softdep_setup_unlink(dp, ip)
4854 	struct inode *dp;
4855 	struct inode *ip;
4856 {
4857 	struct vnode *dvp;
4858 
4859 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4860 	    ("softdep_setup_unlink called on non-softdep filesystem"));
4861 	dvp = ITOV(dp);
4862 	ACQUIRE_LOCK(ITOUMP(dp));
4863 	(void) inodedep_lookup_ip(ip);
4864 	(void) inodedep_lookup_ip(dp);
4865 	softdep_prelink(dvp, ITOV(ip));
4866 	FREE_LOCK(ITOUMP(dp));
4867 }
4868 
4869 /*
4870  * Called to release the journal structures created by a failed non-directory
4871  * creation.  Adjusts nlinkdelta for non-journaling softdep.
4872  */
4873 void
4874 softdep_revert_create(dp, ip)
4875 	struct inode *dp;
4876 	struct inode *ip;
4877 {
4878 	struct inodedep *inodedep;
4879 	struct jaddref *jaddref;
4880 	struct vnode *dvp;
4881 
4882 	KASSERT(MOUNTEDSOFTDEP(ITOVFS((dp))) != 0,
4883 	    ("softdep_revert_create called on non-softdep filesystem"));
4884 	dvp = ITOV(dp);
4885 	ACQUIRE_LOCK(ITOUMP(dp));
4886 	inodedep = inodedep_lookup_ip(ip);
4887 	if (DOINGSUJ(dvp)) {
4888 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4889 		    inoreflst);
4890 		KASSERT(jaddref->ja_parent == dp->i_number,
4891 		    ("softdep_revert_create: addref parent mismatch"));
4892 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4893 	}
4894 	FREE_LOCK(ITOUMP(dp));
4895 }
4896 
4897 /*
4898  * Called to release the journal structures created by a failed link
4899  * addition.  Adjusts nlinkdelta for non-journaling softdep.
4900  */
4901 void
4902 softdep_revert_link(dp, ip)
4903 	struct inode *dp;
4904 	struct inode *ip;
4905 {
4906 	struct inodedep *inodedep;
4907 	struct jaddref *jaddref;
4908 	struct vnode *dvp;
4909 
4910 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4911 	    ("softdep_revert_link called on non-softdep filesystem"));
4912 	dvp = ITOV(dp);
4913 	ACQUIRE_LOCK(ITOUMP(dp));
4914 	inodedep = inodedep_lookup_ip(ip);
4915 	if (DOINGSUJ(dvp)) {
4916 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4917 		    inoreflst);
4918 		KASSERT(jaddref->ja_parent == dp->i_number,
4919 		    ("softdep_revert_link: addref parent mismatch"));
4920 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4921 	}
4922 	FREE_LOCK(ITOUMP(dp));
4923 }
4924 
4925 /*
4926  * Called to release the journal structures created by a failed mkdir
4927  * attempt.  Adjusts nlinkdelta for non-journaling softdep.
4928  */
4929 void
4930 softdep_revert_mkdir(dp, ip)
4931 	struct inode *dp;
4932 	struct inode *ip;
4933 {
4934 	struct inodedep *inodedep;
4935 	struct jaddref *jaddref;
4936 	struct jaddref *dotaddref;
4937 	struct vnode *dvp;
4938 
4939 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4940 	    ("softdep_revert_mkdir called on non-softdep filesystem"));
4941 	dvp = ITOV(dp);
4942 
4943 	ACQUIRE_LOCK(ITOUMP(dp));
4944 	inodedep = inodedep_lookup_ip(dp);
4945 	if (DOINGSUJ(dvp)) {
4946 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4947 		    inoreflst);
4948 		KASSERT(jaddref->ja_parent == ip->i_number,
4949 		    ("softdep_revert_mkdir: dotdot addref parent mismatch"));
4950 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4951 	}
4952 	inodedep = inodedep_lookup_ip(ip);
4953 	if (DOINGSUJ(dvp)) {
4954 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4955 		    inoreflst);
4956 		KASSERT(jaddref->ja_parent == dp->i_number,
4957 		    ("softdep_revert_mkdir: addref parent mismatch"));
4958 		dotaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
4959 		    inoreflst, if_deps);
4960 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4961 		KASSERT(dotaddref->ja_parent == ip->i_number,
4962 		    ("softdep_revert_mkdir: dot addref parent mismatch"));
4963 		cancel_jaddref(dotaddref, inodedep, &inodedep->id_inowait);
4964 	}
4965 	FREE_LOCK(ITOUMP(dp));
4966 }
4967 
4968 /*
4969  * Called to correct nlinkdelta after a failed rmdir.
4970  */
4971 void
4972 softdep_revert_rmdir(dp, ip)
4973 	struct inode *dp;
4974 	struct inode *ip;
4975 {
4976 
4977 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4978 	    ("softdep_revert_rmdir called on non-softdep filesystem"));
4979 	ACQUIRE_LOCK(ITOUMP(dp));
4980 	(void) inodedep_lookup_ip(ip);
4981 	(void) inodedep_lookup_ip(dp);
4982 	FREE_LOCK(ITOUMP(dp));
4983 }
4984 
4985 /*
4986  * Protecting the freemaps (or bitmaps).
4987  *
4988  * To eliminate the need to execute fsck before mounting a filesystem
4989  * after a power failure, one must (conservatively) guarantee that the
4990  * on-disk copy of the bitmaps never indicate that a live inode or block is
4991  * free.  So, when a block or inode is allocated, the bitmap should be
4992  * updated (on disk) before any new pointers.  When a block or inode is
4993  * freed, the bitmap should not be updated until all pointers have been
4994  * reset.  The latter dependency is handled by the delayed de-allocation
4995  * approach described below for block and inode de-allocation.  The former
4996  * dependency is handled by calling the following procedure when a block or
4997  * inode is allocated. When an inode is allocated an "inodedep" is created
4998  * with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
4999  * Each "inodedep" is also inserted into the hash indexing structure so
5000  * that any additional link additions can be made dependent on the inode
5001  * allocation.
5002  *
5003  * The ufs filesystem maintains a number of free block counts (e.g., per
5004  * cylinder group, per cylinder and per <cylinder, rotational position> pair)
5005  * in addition to the bitmaps.  These counts are used to improve efficiency
5006  * during allocation and therefore must be consistent with the bitmaps.
5007  * There is no convenient way to guarantee post-crash consistency of these
5008  * counts with simple update ordering, for two main reasons: (1) The counts
5009  * and bitmaps for a single cylinder group block are not in the same disk
5010  * sector.  If a disk write is interrupted (e.g., by power failure), one may
5011  * be written and the other not.  (2) Some of the counts are located in the
5012  * superblock rather than the cylinder group block. So, we focus our soft
5013  * updates implementation on protecting the bitmaps. When mounting a
5014  * filesystem, we recompute the auxiliary counts from the bitmaps.
5015  */
5016 
5017 /*
5018  * Called just after updating the cylinder group block to allocate an inode.
5019  */
5020 void
5021 softdep_setup_inomapdep(bp, ip, newinum, mode)
5022 	struct buf *bp;		/* buffer for cylgroup block with inode map */
5023 	struct inode *ip;	/* inode related to allocation */
5024 	ino_t newinum;		/* new inode number being allocated */
5025 	int mode;
5026 {
5027 	struct inodedep *inodedep;
5028 	struct bmsafemap *bmsafemap;
5029 	struct jaddref *jaddref;
5030 	struct mount *mp;
5031 	struct fs *fs;
5032 
5033 	mp = ITOVFS(ip);
5034 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5035 	    ("softdep_setup_inomapdep called on non-softdep filesystem"));
5036 	fs = VFSTOUFS(mp)->um_fs;
5037 	jaddref = NULL;
5038 
5039 	/*
5040 	 * Allocate the journal reference add structure so that the bitmap
5041 	 * can be dependent on it.
5042 	 */
5043 	if (MOUNTEDSUJ(mp)) {
5044 		jaddref = newjaddref(ip, newinum, 0, 0, mode);
5045 		jaddref->ja_state |= NEWBLOCK;
5046 	}
5047 
5048 	/*
5049 	 * Create a dependency for the newly allocated inode.
5050 	 * Panic if it already exists as something is seriously wrong.
5051 	 * Otherwise add it to the dependency list for the buffer holding
5052 	 * the cylinder group map from which it was allocated.
5053 	 *
5054 	 * We have to preallocate a bmsafemap entry in case it is needed
5055 	 * in bmsafemap_lookup since once we allocate the inodedep, we
5056 	 * have to finish initializing it before we can FREE_LOCK().
5057 	 * By preallocating, we avoid FREE_LOCK() while doing a malloc
5058 	 * in bmsafemap_lookup. We cannot call bmsafemap_lookup before
5059 	 * creating the inodedep as it can be freed during the time
5060 	 * that we FREE_LOCK() while allocating the inodedep. We must
5061 	 * call workitem_alloc() before entering the locked section as
5062 	 * it also acquires the lock and we must avoid trying doing so
5063 	 * recursively.
5064 	 */
5065 	bmsafemap = malloc(sizeof(struct bmsafemap),
5066 	    M_BMSAFEMAP, M_SOFTDEP_FLAGS);
5067 	workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
5068 	ACQUIRE_LOCK(ITOUMP(ip));
5069 	if ((inodedep_lookup(mp, newinum, DEPALLOC, &inodedep)))
5070 		panic("softdep_setup_inomapdep: dependency %p for new"
5071 		    "inode already exists", inodedep);
5072 	bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum), bmsafemap);
5073 	if (jaddref) {
5074 		LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps);
5075 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
5076 		    if_deps);
5077 	} else {
5078 		inodedep->id_state |= ONDEPLIST;
5079 		LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
5080 	}
5081 	inodedep->id_bmsafemap = bmsafemap;
5082 	inodedep->id_state &= ~DEPCOMPLETE;
5083 	FREE_LOCK(ITOUMP(ip));
5084 }
5085 
5086 /*
5087  * Called just after updating the cylinder group block to
5088  * allocate block or fragment.
5089  */
5090 void
5091 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
5092 	struct buf *bp;		/* buffer for cylgroup block with block map */
5093 	struct mount *mp;	/* filesystem doing allocation */
5094 	ufs2_daddr_t newblkno;	/* number of newly allocated block */
5095 	int frags;		/* Number of fragments. */
5096 	int oldfrags;		/* Previous number of fragments for extend. */
5097 {
5098 	struct newblk *newblk;
5099 	struct bmsafemap *bmsafemap;
5100 	struct jnewblk *jnewblk;
5101 	struct ufsmount *ump;
5102 	struct fs *fs;
5103 
5104 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5105 	    ("softdep_setup_blkmapdep called on non-softdep filesystem"));
5106 	ump = VFSTOUFS(mp);
5107 	fs = ump->um_fs;
5108 	jnewblk = NULL;
5109 	/*
5110 	 * Create a dependency for the newly allocated block.
5111 	 * Add it to the dependency list for the buffer holding
5112 	 * the cylinder group map from which it was allocated.
5113 	 */
5114 	if (MOUNTEDSUJ(mp)) {
5115 		jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS);
5116 		workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp);
5117 		jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list);
5118 		jnewblk->jn_state = ATTACHED;
5119 		jnewblk->jn_blkno = newblkno;
5120 		jnewblk->jn_frags = frags;
5121 		jnewblk->jn_oldfrags = oldfrags;
5122 #ifdef INVARIANTS
5123 		{
5124 			struct cg *cgp;
5125 			uint8_t *blksfree;
5126 			long bno;
5127 			int i;
5128 
5129 			cgp = (struct cg *)bp->b_data;
5130 			blksfree = cg_blksfree(cgp);
5131 			bno = dtogd(fs, jnewblk->jn_blkno);
5132 			for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags;
5133 			    i++) {
5134 				if (isset(blksfree, bno + i))
5135 					panic("softdep_setup_blkmapdep: "
5136 					    "free fragment %d from %d-%d "
5137 					    "state 0x%X dep %p", i,
5138 					    jnewblk->jn_oldfrags,
5139 					    jnewblk->jn_frags,
5140 					    jnewblk->jn_state,
5141 					    jnewblk->jn_dep);
5142 			}
5143 		}
5144 #endif
5145 	}
5146 
5147 	CTR3(KTR_SUJ,
5148 	    "softdep_setup_blkmapdep: blkno %jd frags %d oldfrags %d",
5149 	    newblkno, frags, oldfrags);
5150 	ACQUIRE_LOCK(ump);
5151 	if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0)
5152 		panic("softdep_setup_blkmapdep: found block");
5153 	newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp,
5154 	    dtog(fs, newblkno), NULL);
5155 	if (jnewblk) {
5156 		jnewblk->jn_dep = (struct worklist *)newblk;
5157 		LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps);
5158 	} else {
5159 		newblk->nb_state |= ONDEPLIST;
5160 		LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
5161 	}
5162 	newblk->nb_bmsafemap = bmsafemap;
5163 	newblk->nb_jnewblk = jnewblk;
5164 	FREE_LOCK(ump);
5165 }
5166 
5167 #define	BMSAFEMAP_HASH(ump, cg) \
5168       (&(ump)->bmsafemap_hashtbl[(cg) & (ump)->bmsafemap_hash_size])
5169 
5170 static int
5171 bmsafemap_find(bmsafemaphd, cg, bmsafemapp)
5172 	struct bmsafemap_hashhead *bmsafemaphd;
5173 	int cg;
5174 	struct bmsafemap **bmsafemapp;
5175 {
5176 	struct bmsafemap *bmsafemap;
5177 
5178 	LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash)
5179 		if (bmsafemap->sm_cg == cg)
5180 			break;
5181 	if (bmsafemap) {
5182 		*bmsafemapp = bmsafemap;
5183 		return (1);
5184 	}
5185 	*bmsafemapp = NULL;
5186 
5187 	return (0);
5188 }
5189 
5190 /*
5191  * Find the bmsafemap associated with a cylinder group buffer.
5192  * If none exists, create one. The buffer must be locked when
5193  * this routine is called and this routine must be called with
5194  * the softdep lock held. To avoid giving up the lock while
5195  * allocating a new bmsafemap, a preallocated bmsafemap may be
5196  * provided. If it is provided but not needed, it is freed.
5197  */
5198 static struct bmsafemap *
5199 bmsafemap_lookup(mp, bp, cg, newbmsafemap)
5200 	struct mount *mp;
5201 	struct buf *bp;
5202 	int cg;
5203 	struct bmsafemap *newbmsafemap;
5204 {
5205 	struct bmsafemap_hashhead *bmsafemaphd;
5206 	struct bmsafemap *bmsafemap, *collision;
5207 	struct worklist *wk;
5208 	struct ufsmount *ump;
5209 
5210 	ump = VFSTOUFS(mp);
5211 	LOCK_OWNED(ump);
5212 	KASSERT(bp != NULL, ("bmsafemap_lookup: missing buffer"));
5213 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5214 		if (wk->wk_type == D_BMSAFEMAP) {
5215 			if (newbmsafemap)
5216 				WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP);
5217 			return (WK_BMSAFEMAP(wk));
5218 		}
5219 	}
5220 	bmsafemaphd = BMSAFEMAP_HASH(ump, cg);
5221 	if (bmsafemap_find(bmsafemaphd, cg, &bmsafemap) == 1) {
5222 		if (newbmsafemap)
5223 			WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP);
5224 		return (bmsafemap);
5225 	}
5226 	if (newbmsafemap) {
5227 		bmsafemap = newbmsafemap;
5228 	} else {
5229 		FREE_LOCK(ump);
5230 		bmsafemap = malloc(sizeof(struct bmsafemap),
5231 			M_BMSAFEMAP, M_SOFTDEP_FLAGS);
5232 		workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
5233 		ACQUIRE_LOCK(ump);
5234 	}
5235 	bmsafemap->sm_buf = bp;
5236 	LIST_INIT(&bmsafemap->sm_inodedephd);
5237 	LIST_INIT(&bmsafemap->sm_inodedepwr);
5238 	LIST_INIT(&bmsafemap->sm_newblkhd);
5239 	LIST_INIT(&bmsafemap->sm_newblkwr);
5240 	LIST_INIT(&bmsafemap->sm_jaddrefhd);
5241 	LIST_INIT(&bmsafemap->sm_jnewblkhd);
5242 	LIST_INIT(&bmsafemap->sm_freehd);
5243 	LIST_INIT(&bmsafemap->sm_freewr);
5244 	if (bmsafemap_find(bmsafemaphd, cg, &collision) == 1) {
5245 		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
5246 		return (collision);
5247 	}
5248 	bmsafemap->sm_cg = cg;
5249 	LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash);
5250 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
5251 	WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list);
5252 	return (bmsafemap);
5253 }
5254 
5255 /*
5256  * Direct block allocation dependencies.
5257  *
5258  * When a new block is allocated, the corresponding disk locations must be
5259  * initialized (with zeros or new data) before the on-disk inode points to
5260  * them.  Also, the freemap from which the block was allocated must be
5261  * updated (on disk) before the inode's pointer. These two dependencies are
5262  * independent of each other and are needed for all file blocks and indirect
5263  * blocks that are pointed to directly by the inode.  Just before the
5264  * "in-core" version of the inode is updated with a newly allocated block
5265  * number, a procedure (below) is called to setup allocation dependency
5266  * structures.  These structures are removed when the corresponding
5267  * dependencies are satisfied or when the block allocation becomes obsolete
5268  * (i.e., the file is deleted, the block is de-allocated, or the block is a
5269  * fragment that gets upgraded).  All of these cases are handled in
5270  * procedures described later.
5271  *
5272  * When a file extension causes a fragment to be upgraded, either to a larger
5273  * fragment or to a full block, the on-disk location may change (if the
5274  * previous fragment could not simply be extended). In this case, the old
5275  * fragment must be de-allocated, but not until after the inode's pointer has
5276  * been updated. In most cases, this is handled by later procedures, which
5277  * will construct a "freefrag" structure to be added to the workitem queue
5278  * when the inode update is complete (or obsolete).  The main exception to
5279  * this is when an allocation occurs while a pending allocation dependency
5280  * (for the same block pointer) remains.  This case is handled in the main
5281  * allocation dependency setup procedure by immediately freeing the
5282  * unreferenced fragments.
5283  */
5284 void
5285 softdep_setup_allocdirect(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
5286 	struct inode *ip;	/* inode to which block is being added */
5287 	ufs_lbn_t off;		/* block pointer within inode */
5288 	ufs2_daddr_t newblkno;	/* disk block number being added */
5289 	ufs2_daddr_t oldblkno;	/* previous block number, 0 unless frag */
5290 	long newsize;		/* size of new block */
5291 	long oldsize;		/* size of new block */
5292 	struct buf *bp;		/* bp for allocated block */
5293 {
5294 	struct allocdirect *adp, *oldadp;
5295 	struct allocdirectlst *adphead;
5296 	struct freefrag *freefrag;
5297 	struct inodedep *inodedep;
5298 	struct pagedep *pagedep;
5299 	struct jnewblk *jnewblk;
5300 	struct newblk *newblk;
5301 	struct mount *mp;
5302 	ufs_lbn_t lbn;
5303 
5304 	lbn = bp->b_lblkno;
5305 	mp = ITOVFS(ip);
5306 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5307 	    ("softdep_setup_allocdirect called on non-softdep filesystem"));
5308 	if (oldblkno && oldblkno != newblkno)
5309 		/*
5310 		 * The usual case is that a smaller fragment that
5311 		 * was just allocated has been replaced with a bigger
5312 		 * fragment or a full-size block. If it is marked as
5313 		 * B_DELWRI, the current contents have not been written
5314 		 * to disk. It is possible that the block was written
5315 		 * earlier, but very uncommon. If the block has never
5316 		 * been written, there is no need to send a BIO_DELETE
5317 		 * for it when it is freed. The gain from avoiding the
5318 		 * TRIMs for the common case of unwritten blocks far
5319 		 * exceeds the cost of the write amplification for the
5320 		 * uncommon case of failing to send a TRIM for a block
5321 		 * that had been written.
5322 		 */
5323 		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn,
5324 		    (bp->b_flags & B_DELWRI) != 0 ? NOTRIM_KEY : SINGLETON_KEY);
5325 	else
5326 		freefrag = NULL;
5327 
5328 	CTR6(KTR_SUJ,
5329 	    "softdep_setup_allocdirect: ino %d blkno %jd oldblkno %jd "
5330 	    "off %jd newsize %ld oldsize %d",
5331 	    ip->i_number, newblkno, oldblkno, off, newsize, oldsize);
5332 	ACQUIRE_LOCK(ITOUMP(ip));
5333 	if (off >= UFS_NDADDR) {
5334 		if (lbn > 0)
5335 			panic("softdep_setup_allocdirect: bad lbn %jd, off %jd",
5336 			    lbn, off);
5337 		/* allocating an indirect block */
5338 		if (oldblkno != 0)
5339 			panic("softdep_setup_allocdirect: non-zero indir");
5340 	} else {
5341 		if (off != lbn)
5342 			panic("softdep_setup_allocdirect: lbn %jd != off %jd",
5343 			    lbn, off);
5344 		/*
5345 		 * Allocating a direct block.
5346 		 *
5347 		 * If we are allocating a directory block, then we must
5348 		 * allocate an associated pagedep to track additions and
5349 		 * deletions.
5350 		 */
5351 		if ((ip->i_mode & IFMT) == IFDIR)
5352 			pagedep_lookup(mp, bp, ip->i_number, off, DEPALLOC,
5353 			    &pagedep);
5354 	}
5355 	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
5356 		panic("softdep_setup_allocdirect: lost block");
5357 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5358 	    ("softdep_setup_allocdirect: newblk already initialized"));
5359 	/*
5360 	 * Convert the newblk to an allocdirect.
5361 	 */
5362 	WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT);
5363 	adp = (struct allocdirect *)newblk;
5364 	newblk->nb_freefrag = freefrag;
5365 	adp->ad_offset = off;
5366 	adp->ad_oldblkno = oldblkno;
5367 	adp->ad_newsize = newsize;
5368 	adp->ad_oldsize = oldsize;
5369 
5370 	/*
5371 	 * Finish initializing the journal.
5372 	 */
5373 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5374 		jnewblk->jn_ino = ip->i_number;
5375 		jnewblk->jn_lbn = lbn;
5376 		add_to_journal(&jnewblk->jn_list);
5377 	}
5378 	if (freefrag && freefrag->ff_jdep != NULL &&
5379 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5380 		add_to_journal(freefrag->ff_jdep);
5381 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
5382 	adp->ad_inodedep = inodedep;
5383 
5384 	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
5385 	/*
5386 	 * The list of allocdirects must be kept in sorted and ascending
5387 	 * order so that the rollback routines can quickly determine the
5388 	 * first uncommitted block (the size of the file stored on disk
5389 	 * ends at the end of the lowest committed fragment, or if there
5390 	 * are no fragments, at the end of the highest committed block).
5391 	 * Since files generally grow, the typical case is that the new
5392 	 * block is to be added at the end of the list. We speed this
5393 	 * special case by checking against the last allocdirect in the
5394 	 * list before laboriously traversing the list looking for the
5395 	 * insertion point.
5396 	 */
5397 	adphead = &inodedep->id_newinoupdt;
5398 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
5399 	if (oldadp == NULL || oldadp->ad_offset <= off) {
5400 		/* insert at end of list */
5401 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
5402 		if (oldadp != NULL && oldadp->ad_offset == off)
5403 			allocdirect_merge(adphead, adp, oldadp);
5404 		FREE_LOCK(ITOUMP(ip));
5405 		return;
5406 	}
5407 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
5408 		if (oldadp->ad_offset >= off)
5409 			break;
5410 	}
5411 	if (oldadp == NULL)
5412 		panic("softdep_setup_allocdirect: lost entry");
5413 	/* insert in middle of list */
5414 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5415 	if (oldadp->ad_offset == off)
5416 		allocdirect_merge(adphead, adp, oldadp);
5417 
5418 	FREE_LOCK(ITOUMP(ip));
5419 }
5420 
5421 /*
5422  * Merge a newer and older journal record to be stored either in a
5423  * newblock or freefrag.  This handles aggregating journal records for
5424  * fragment allocation into a second record as well as replacing a
5425  * journal free with an aborted journal allocation.  A segment for the
5426  * oldest record will be placed on wkhd if it has been written.  If not
5427  * the segment for the newer record will suffice.
5428  */
5429 static struct worklist *
5430 jnewblk_merge(new, old, wkhd)
5431 	struct worklist *new;
5432 	struct worklist *old;
5433 	struct workhead *wkhd;
5434 {
5435 	struct jnewblk *njnewblk;
5436 	struct jnewblk *jnewblk;
5437 
5438 	/* Handle NULLs to simplify callers. */
5439 	if (new == NULL)
5440 		return (old);
5441 	if (old == NULL)
5442 		return (new);
5443 	/* Replace a jfreefrag with a jnewblk. */
5444 	if (new->wk_type == D_JFREEFRAG) {
5445 		if (WK_JNEWBLK(old)->jn_blkno != WK_JFREEFRAG(new)->fr_blkno)
5446 			panic("jnewblk_merge: blkno mismatch: %p, %p",
5447 			    old, new);
5448 		cancel_jfreefrag(WK_JFREEFRAG(new));
5449 		return (old);
5450 	}
5451 	if (old->wk_type != D_JNEWBLK || new->wk_type != D_JNEWBLK)
5452 		panic("jnewblk_merge: Bad type: old %d new %d\n",
5453 		    old->wk_type, new->wk_type);
5454 	/*
5455 	 * Handle merging of two jnewblk records that describe
5456 	 * different sets of fragments in the same block.
5457 	 */
5458 	jnewblk = WK_JNEWBLK(old);
5459 	njnewblk = WK_JNEWBLK(new);
5460 	if (jnewblk->jn_blkno != njnewblk->jn_blkno)
5461 		panic("jnewblk_merge: Merging disparate blocks.");
5462 	/*
5463 	 * The record may be rolled back in the cg.
5464 	 */
5465 	if (jnewblk->jn_state & UNDONE) {
5466 		jnewblk->jn_state &= ~UNDONE;
5467 		njnewblk->jn_state |= UNDONE;
5468 		njnewblk->jn_state &= ~ATTACHED;
5469 	}
5470 	/*
5471 	 * We modify the newer addref and free the older so that if neither
5472 	 * has been written the most up-to-date copy will be on disk.  If
5473 	 * both have been written but rolled back we only temporarily need
5474 	 * one of them to fix the bits when the cg write completes.
5475 	 */
5476 	jnewblk->jn_state |= ATTACHED | COMPLETE;
5477 	njnewblk->jn_oldfrags = jnewblk->jn_oldfrags;
5478 	cancel_jnewblk(jnewblk, wkhd);
5479 	WORKLIST_REMOVE(&jnewblk->jn_list);
5480 	free_jnewblk(jnewblk);
5481 	return (new);
5482 }
5483 
5484 /*
5485  * Replace an old allocdirect dependency with a newer one.
5486  */
5487 static void
5488 allocdirect_merge(adphead, newadp, oldadp)
5489 	struct allocdirectlst *adphead;	/* head of list holding allocdirects */
5490 	struct allocdirect *newadp;	/* allocdirect being added */
5491 	struct allocdirect *oldadp;	/* existing allocdirect being checked */
5492 {
5493 	struct worklist *wk;
5494 	struct freefrag *freefrag;
5495 
5496 	freefrag = NULL;
5497 	LOCK_OWNED(VFSTOUFS(newadp->ad_list.wk_mp));
5498 	if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
5499 	    newadp->ad_oldsize != oldadp->ad_newsize ||
5500 	    newadp->ad_offset >= UFS_NDADDR)
5501 		panic("%s %jd != new %jd || old size %ld != new %ld",
5502 		    "allocdirect_merge: old blkno",
5503 		    (intmax_t)newadp->ad_oldblkno,
5504 		    (intmax_t)oldadp->ad_newblkno,
5505 		    newadp->ad_oldsize, oldadp->ad_newsize);
5506 	newadp->ad_oldblkno = oldadp->ad_oldblkno;
5507 	newadp->ad_oldsize = oldadp->ad_oldsize;
5508 	/*
5509 	 * If the old dependency had a fragment to free or had never
5510 	 * previously had a block allocated, then the new dependency
5511 	 * can immediately post its freefrag and adopt the old freefrag.
5512 	 * This action is done by swapping the freefrag dependencies.
5513 	 * The new dependency gains the old one's freefrag, and the
5514 	 * old one gets the new one and then immediately puts it on
5515 	 * the worklist when it is freed by free_newblk. It is
5516 	 * not possible to do this swap when the old dependency had a
5517 	 * non-zero size but no previous fragment to free. This condition
5518 	 * arises when the new block is an extension of the old block.
5519 	 * Here, the first part of the fragment allocated to the new
5520 	 * dependency is part of the block currently claimed on disk by
5521 	 * the old dependency, so cannot legitimately be freed until the
5522 	 * conditions for the new dependency are fulfilled.
5523 	 */
5524 	freefrag = newadp->ad_freefrag;
5525 	if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
5526 		newadp->ad_freefrag = oldadp->ad_freefrag;
5527 		oldadp->ad_freefrag = freefrag;
5528 	}
5529 	/*
5530 	 * If we are tracking a new directory-block allocation,
5531 	 * move it from the old allocdirect to the new allocdirect.
5532 	 */
5533 	if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) {
5534 		WORKLIST_REMOVE(wk);
5535 		if (!LIST_EMPTY(&oldadp->ad_newdirblk))
5536 			panic("allocdirect_merge: extra newdirblk");
5537 		WORKLIST_INSERT(&newadp->ad_newdirblk, wk);
5538 	}
5539 	TAILQ_REMOVE(adphead, oldadp, ad_next);
5540 	/*
5541 	 * We need to move any journal dependencies over to the freefrag
5542 	 * that releases this block if it exists.  Otherwise we are
5543 	 * extending an existing block and we'll wait until that is
5544 	 * complete to release the journal space and extend the
5545 	 * new journal to cover this old space as well.
5546 	 */
5547 	if (freefrag == NULL) {
5548 		if (oldadp->ad_newblkno != newadp->ad_newblkno)
5549 			panic("allocdirect_merge: %jd != %jd",
5550 			    oldadp->ad_newblkno, newadp->ad_newblkno);
5551 		newadp->ad_block.nb_jnewblk = (struct jnewblk *)
5552 		    jnewblk_merge(&newadp->ad_block.nb_jnewblk->jn_list,
5553 		    &oldadp->ad_block.nb_jnewblk->jn_list,
5554 		    &newadp->ad_block.nb_jwork);
5555 		oldadp->ad_block.nb_jnewblk = NULL;
5556 		cancel_newblk(&oldadp->ad_block, NULL,
5557 		    &newadp->ad_block.nb_jwork);
5558 	} else {
5559 		wk = (struct worklist *) cancel_newblk(&oldadp->ad_block,
5560 		    &freefrag->ff_list, &freefrag->ff_jwork);
5561 		freefrag->ff_jdep = jnewblk_merge(freefrag->ff_jdep, wk,
5562 		    &freefrag->ff_jwork);
5563 	}
5564 	free_newblk(&oldadp->ad_block);
5565 }
5566 
5567 /*
5568  * Allocate a jfreefrag structure to journal a single block free.
5569  */
5570 static struct jfreefrag *
5571 newjfreefrag(freefrag, ip, blkno, size, lbn)
5572 	struct freefrag *freefrag;
5573 	struct inode *ip;
5574 	ufs2_daddr_t blkno;
5575 	long size;
5576 	ufs_lbn_t lbn;
5577 {
5578 	struct jfreefrag *jfreefrag;
5579 	struct fs *fs;
5580 
5581 	fs = ITOFS(ip);
5582 	jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG,
5583 	    M_SOFTDEP_FLAGS);
5584 	workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, ITOVFS(ip));
5585 	jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list);
5586 	jfreefrag->fr_state = ATTACHED | DEPCOMPLETE;
5587 	jfreefrag->fr_ino = ip->i_number;
5588 	jfreefrag->fr_lbn = lbn;
5589 	jfreefrag->fr_blkno = blkno;
5590 	jfreefrag->fr_frags = numfrags(fs, size);
5591 	jfreefrag->fr_freefrag = freefrag;
5592 
5593 	return (jfreefrag);
5594 }
5595 
5596 /*
5597  * Allocate a new freefrag structure.
5598  */
5599 static struct freefrag *
5600 newfreefrag(ip, blkno, size, lbn, key)
5601 	struct inode *ip;
5602 	ufs2_daddr_t blkno;
5603 	long size;
5604 	ufs_lbn_t lbn;
5605 	u_long key;
5606 {
5607 	struct freefrag *freefrag;
5608 	struct ufsmount *ump;
5609 	struct fs *fs;
5610 
5611 	CTR4(KTR_SUJ, "newfreefrag: ino %d blkno %jd size %ld lbn %jd",
5612 	    ip->i_number, blkno, size, lbn);
5613 	ump = ITOUMP(ip);
5614 	fs = ump->um_fs;
5615 	if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
5616 		panic("newfreefrag: frag size");
5617 	freefrag = malloc(sizeof(struct freefrag),
5618 	    M_FREEFRAG, M_SOFTDEP_FLAGS);
5619 	workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ump));
5620 	freefrag->ff_state = ATTACHED;
5621 	LIST_INIT(&freefrag->ff_jwork);
5622 	freefrag->ff_inum = ip->i_number;
5623 	freefrag->ff_vtype = ITOV(ip)->v_type;
5624 	freefrag->ff_blkno = blkno;
5625 	freefrag->ff_fragsize = size;
5626 	freefrag->ff_key = key;
5627 
5628 	if (MOUNTEDSUJ(UFSTOVFS(ump))) {
5629 		freefrag->ff_jdep = (struct worklist *)
5630 		    newjfreefrag(freefrag, ip, blkno, size, lbn);
5631 	} else {
5632 		freefrag->ff_state |= DEPCOMPLETE;
5633 		freefrag->ff_jdep = NULL;
5634 	}
5635 
5636 	return (freefrag);
5637 }
5638 
5639 /*
5640  * This workitem de-allocates fragments that were replaced during
5641  * file block allocation.
5642  */
5643 static void
5644 handle_workitem_freefrag(freefrag)
5645 	struct freefrag *freefrag;
5646 {
5647 	struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp);
5648 	struct workhead wkhd;
5649 
5650 	CTR3(KTR_SUJ,
5651 	    "handle_workitem_freefrag: ino %d blkno %jd size %ld",
5652 	    freefrag->ff_inum, freefrag->ff_blkno, freefrag->ff_fragsize);
5653 	/*
5654 	 * It would be illegal to add new completion items to the
5655 	 * freefrag after it was schedule to be done so it must be
5656 	 * safe to modify the list head here.
5657 	 */
5658 	LIST_INIT(&wkhd);
5659 	ACQUIRE_LOCK(ump);
5660 	LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list);
5661 	/*
5662 	 * If the journal has not been written we must cancel it here.
5663 	 */
5664 	if (freefrag->ff_jdep) {
5665 		if (freefrag->ff_jdep->wk_type != D_JNEWBLK)
5666 			panic("handle_workitem_freefrag: Unexpected type %d\n",
5667 			    freefrag->ff_jdep->wk_type);
5668 		cancel_jnewblk(WK_JNEWBLK(freefrag->ff_jdep), &wkhd);
5669 	}
5670 	FREE_LOCK(ump);
5671 	ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno,
5672 	   freefrag->ff_fragsize, freefrag->ff_inum, freefrag->ff_vtype,
5673 	   &wkhd, freefrag->ff_key);
5674 	ACQUIRE_LOCK(ump);
5675 	WORKITEM_FREE(freefrag, D_FREEFRAG);
5676 	FREE_LOCK(ump);
5677 }
5678 
5679 /*
5680  * Set up a dependency structure for an external attributes data block.
5681  * This routine follows much of the structure of softdep_setup_allocdirect.
5682  * See the description of softdep_setup_allocdirect above for details.
5683  */
5684 void
5685 softdep_setup_allocext(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
5686 	struct inode *ip;
5687 	ufs_lbn_t off;
5688 	ufs2_daddr_t newblkno;
5689 	ufs2_daddr_t oldblkno;
5690 	long newsize;
5691 	long oldsize;
5692 	struct buf *bp;
5693 {
5694 	struct allocdirect *adp, *oldadp;
5695 	struct allocdirectlst *adphead;
5696 	struct freefrag *freefrag;
5697 	struct inodedep *inodedep;
5698 	struct jnewblk *jnewblk;
5699 	struct newblk *newblk;
5700 	struct mount *mp;
5701 	struct ufsmount *ump;
5702 	ufs_lbn_t lbn;
5703 
5704 	mp = ITOVFS(ip);
5705 	ump = VFSTOUFS(mp);
5706 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5707 	    ("softdep_setup_allocext called on non-softdep filesystem"));
5708 	KASSERT(off < UFS_NXADDR,
5709 	    ("softdep_setup_allocext: lbn %lld > UFS_NXADDR", (long long)off));
5710 
5711 	lbn = bp->b_lblkno;
5712 	if (oldblkno && oldblkno != newblkno)
5713 		/*
5714 		 * The usual case is that a smaller fragment that
5715 		 * was just allocated has been replaced with a bigger
5716 		 * fragment or a full-size block. If it is marked as
5717 		 * B_DELWRI, the current contents have not been written
5718 		 * to disk. It is possible that the block was written
5719 		 * earlier, but very uncommon. If the block has never
5720 		 * been written, there is no need to send a BIO_DELETE
5721 		 * for it when it is freed. The gain from avoiding the
5722 		 * TRIMs for the common case of unwritten blocks far
5723 		 * exceeds the cost of the write amplification for the
5724 		 * uncommon case of failing to send a TRIM for a block
5725 		 * that had been written.
5726 		 */
5727 		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn,
5728 		    (bp->b_flags & B_DELWRI) != 0 ? NOTRIM_KEY : SINGLETON_KEY);
5729 	else
5730 		freefrag = NULL;
5731 
5732 	ACQUIRE_LOCK(ump);
5733 	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
5734 		panic("softdep_setup_allocext: lost block");
5735 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5736 	    ("softdep_setup_allocext: newblk already initialized"));
5737 	/*
5738 	 * Convert the newblk to an allocdirect.
5739 	 */
5740 	WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT);
5741 	adp = (struct allocdirect *)newblk;
5742 	newblk->nb_freefrag = freefrag;
5743 	adp->ad_offset = off;
5744 	adp->ad_oldblkno = oldblkno;
5745 	adp->ad_newsize = newsize;
5746 	adp->ad_oldsize = oldsize;
5747 	adp->ad_state |=  EXTDATA;
5748 
5749 	/*
5750 	 * Finish initializing the journal.
5751 	 */
5752 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5753 		jnewblk->jn_ino = ip->i_number;
5754 		jnewblk->jn_lbn = lbn;
5755 		add_to_journal(&jnewblk->jn_list);
5756 	}
5757 	if (freefrag && freefrag->ff_jdep != NULL &&
5758 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5759 		add_to_journal(freefrag->ff_jdep);
5760 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
5761 	adp->ad_inodedep = inodedep;
5762 
5763 	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
5764 	/*
5765 	 * The list of allocdirects must be kept in sorted and ascending
5766 	 * order so that the rollback routines can quickly determine the
5767 	 * first uncommitted block (the size of the file stored on disk
5768 	 * ends at the end of the lowest committed fragment, or if there
5769 	 * are no fragments, at the end of the highest committed block).
5770 	 * Since files generally grow, the typical case is that the new
5771 	 * block is to be added at the end of the list. We speed this
5772 	 * special case by checking against the last allocdirect in the
5773 	 * list before laboriously traversing the list looking for the
5774 	 * insertion point.
5775 	 */
5776 	adphead = &inodedep->id_newextupdt;
5777 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
5778 	if (oldadp == NULL || oldadp->ad_offset <= off) {
5779 		/* insert at end of list */
5780 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
5781 		if (oldadp != NULL && oldadp->ad_offset == off)
5782 			allocdirect_merge(adphead, adp, oldadp);
5783 		FREE_LOCK(ump);
5784 		return;
5785 	}
5786 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
5787 		if (oldadp->ad_offset >= off)
5788 			break;
5789 	}
5790 	if (oldadp == NULL)
5791 		panic("softdep_setup_allocext: lost entry");
5792 	/* insert in middle of list */
5793 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5794 	if (oldadp->ad_offset == off)
5795 		allocdirect_merge(adphead, adp, oldadp);
5796 	FREE_LOCK(ump);
5797 }
5798 
5799 /*
5800  * Indirect block allocation dependencies.
5801  *
5802  * The same dependencies that exist for a direct block also exist when
5803  * a new block is allocated and pointed to by an entry in a block of
5804  * indirect pointers. The undo/redo states described above are also
5805  * used here. Because an indirect block contains many pointers that
5806  * may have dependencies, a second copy of the entire in-memory indirect
5807  * block is kept. The buffer cache copy is always completely up-to-date.
5808  * The second copy, which is used only as a source for disk writes,
5809  * contains only the safe pointers (i.e., those that have no remaining
5810  * update dependencies). The second copy is freed when all pointers
5811  * are safe. The cache is not allowed to replace indirect blocks with
5812  * pending update dependencies. If a buffer containing an indirect
5813  * block with dependencies is written, these routines will mark it
5814  * dirty again. It can only be successfully written once all the
5815  * dependencies are removed. The ffs_fsync routine in conjunction with
5816  * softdep_sync_metadata work together to get all the dependencies
5817  * removed so that a file can be successfully written to disk. Three
5818  * procedures are used when setting up indirect block pointer
5819  * dependencies. The division is necessary because of the organization
5820  * of the "balloc" routine and because of the distinction between file
5821  * pages and file metadata blocks.
5822  */
5823 
5824 /*
5825  * Allocate a new allocindir structure.
5826  */
5827 static struct allocindir *
5828 newallocindir(ip, ptrno, newblkno, oldblkno, lbn)
5829 	struct inode *ip;	/* inode for file being extended */
5830 	int ptrno;		/* offset of pointer in indirect block */
5831 	ufs2_daddr_t newblkno;	/* disk block number being added */
5832 	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
5833 	ufs_lbn_t lbn;
5834 {
5835 	struct newblk *newblk;
5836 	struct allocindir *aip;
5837 	struct freefrag *freefrag;
5838 	struct jnewblk *jnewblk;
5839 
5840 	if (oldblkno)
5841 		freefrag = newfreefrag(ip, oldblkno, ITOFS(ip)->fs_bsize, lbn,
5842 		    SINGLETON_KEY);
5843 	else
5844 		freefrag = NULL;
5845 	ACQUIRE_LOCK(ITOUMP(ip));
5846 	if (newblk_lookup(ITOVFS(ip), newblkno, 0, &newblk) == 0)
5847 		panic("new_allocindir: lost block");
5848 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5849 	    ("newallocindir: newblk already initialized"));
5850 	WORKITEM_REASSIGN(newblk, D_ALLOCINDIR);
5851 	newblk->nb_freefrag = freefrag;
5852 	aip = (struct allocindir *)newblk;
5853 	aip->ai_offset = ptrno;
5854 	aip->ai_oldblkno = oldblkno;
5855 	aip->ai_lbn = lbn;
5856 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5857 		jnewblk->jn_ino = ip->i_number;
5858 		jnewblk->jn_lbn = lbn;
5859 		add_to_journal(&jnewblk->jn_list);
5860 	}
5861 	if (freefrag && freefrag->ff_jdep != NULL &&
5862 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5863 		add_to_journal(freefrag->ff_jdep);
5864 	return (aip);
5865 }
5866 
5867 /*
5868  * Called just before setting an indirect block pointer
5869  * to a newly allocated file page.
5870  */
5871 void
5872 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
5873 	struct inode *ip;	/* inode for file being extended */
5874 	ufs_lbn_t lbn;		/* allocated block number within file */
5875 	struct buf *bp;		/* buffer with indirect blk referencing page */
5876 	int ptrno;		/* offset of pointer in indirect block */
5877 	ufs2_daddr_t newblkno;	/* disk block number being added */
5878 	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
5879 	struct buf *nbp;	/* buffer holding allocated page */
5880 {
5881 	struct inodedep *inodedep;
5882 	struct freefrag *freefrag;
5883 	struct allocindir *aip;
5884 	struct pagedep *pagedep;
5885 	struct mount *mp;
5886 	struct ufsmount *ump;
5887 
5888 	mp = ITOVFS(ip);
5889 	ump = VFSTOUFS(mp);
5890 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5891 	    ("softdep_setup_allocindir_page called on non-softdep filesystem"));
5892 	KASSERT(lbn == nbp->b_lblkno,
5893 	    ("softdep_setup_allocindir_page: lbn %jd != lblkno %jd",
5894 	    lbn, bp->b_lblkno));
5895 	CTR4(KTR_SUJ,
5896 	    "softdep_setup_allocindir_page: ino %d blkno %jd oldblkno %jd "
5897 	    "lbn %jd", ip->i_number, newblkno, oldblkno, lbn);
5898 	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page");
5899 	aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn);
5900 	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
5901 	/*
5902 	 * If we are allocating a directory page, then we must
5903 	 * allocate an associated pagedep to track additions and
5904 	 * deletions.
5905 	 */
5906 	if ((ip->i_mode & IFMT) == IFDIR)
5907 		pagedep_lookup(mp, nbp, ip->i_number, lbn, DEPALLOC, &pagedep);
5908 	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
5909 	freefrag = setup_allocindir_phase2(bp, ip, inodedep, aip, lbn);
5910 	FREE_LOCK(ump);
5911 	if (freefrag)
5912 		handle_workitem_freefrag(freefrag);
5913 }
5914 
5915 /*
5916  * Called just before setting an indirect block pointer to a
5917  * newly allocated indirect block.
5918  */
5919 void
5920 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
5921 	struct buf *nbp;	/* newly allocated indirect block */
5922 	struct inode *ip;	/* inode for file being extended */
5923 	struct buf *bp;		/* indirect block referencing allocated block */
5924 	int ptrno;		/* offset of pointer in indirect block */
5925 	ufs2_daddr_t newblkno;	/* disk block number being added */
5926 {
5927 	struct inodedep *inodedep;
5928 	struct allocindir *aip;
5929 	struct ufsmount *ump;
5930 	ufs_lbn_t lbn;
5931 
5932 	ump = ITOUMP(ip);
5933 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
5934 	    ("softdep_setup_allocindir_meta called on non-softdep filesystem"));
5935 	CTR3(KTR_SUJ,
5936 	    "softdep_setup_allocindir_meta: ino %d blkno %jd ptrno %d",
5937 	    ip->i_number, newblkno, ptrno);
5938 	lbn = nbp->b_lblkno;
5939 	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta");
5940 	aip = newallocindir(ip, ptrno, newblkno, 0, lbn);
5941 	inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep);
5942 	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
5943 	if (setup_allocindir_phase2(bp, ip, inodedep, aip, lbn))
5944 		panic("softdep_setup_allocindir_meta: Block already existed");
5945 	FREE_LOCK(ump);
5946 }
5947 
5948 static void
5949 indirdep_complete(indirdep)
5950 	struct indirdep *indirdep;
5951 {
5952 	struct allocindir *aip;
5953 
5954 	LIST_REMOVE(indirdep, ir_next);
5955 	indirdep->ir_state |= DEPCOMPLETE;
5956 
5957 	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) {
5958 		LIST_REMOVE(aip, ai_next);
5959 		free_newblk(&aip->ai_block);
5960 	}
5961 	/*
5962 	 * If this indirdep is not attached to a buf it was simply waiting
5963 	 * on completion to clear completehd.  free_indirdep() asserts
5964 	 * that nothing is dangling.
5965 	 */
5966 	if ((indirdep->ir_state & ONWORKLIST) == 0)
5967 		free_indirdep(indirdep);
5968 }
5969 
5970 static struct indirdep *
5971 indirdep_lookup(mp, ip, bp)
5972 	struct mount *mp;
5973 	struct inode *ip;
5974 	struct buf *bp;
5975 {
5976 	struct indirdep *indirdep, *newindirdep;
5977 	struct newblk *newblk;
5978 	struct ufsmount *ump;
5979 	struct worklist *wk;
5980 	struct fs *fs;
5981 	ufs2_daddr_t blkno;
5982 
5983 	ump = VFSTOUFS(mp);
5984 	LOCK_OWNED(ump);
5985 	indirdep = NULL;
5986 	newindirdep = NULL;
5987 	fs = ump->um_fs;
5988 	for (;;) {
5989 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5990 			if (wk->wk_type != D_INDIRDEP)
5991 				continue;
5992 			indirdep = WK_INDIRDEP(wk);
5993 			break;
5994 		}
5995 		/* Found on the buffer worklist, no new structure to free. */
5996 		if (indirdep != NULL && newindirdep == NULL)
5997 			return (indirdep);
5998 		if (indirdep != NULL && newindirdep != NULL)
5999 			panic("indirdep_lookup: simultaneous create");
6000 		/* None found on the buffer and a new structure is ready. */
6001 		if (indirdep == NULL && newindirdep != NULL)
6002 			break;
6003 		/* None found and no new structure available. */
6004 		FREE_LOCK(ump);
6005 		newindirdep = malloc(sizeof(struct indirdep),
6006 		    M_INDIRDEP, M_SOFTDEP_FLAGS);
6007 		workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp);
6008 		newindirdep->ir_state = ATTACHED;
6009 		if (I_IS_UFS1(ip))
6010 			newindirdep->ir_state |= UFS1FMT;
6011 		TAILQ_INIT(&newindirdep->ir_trunc);
6012 		newindirdep->ir_saveddata = NULL;
6013 		LIST_INIT(&newindirdep->ir_deplisthd);
6014 		LIST_INIT(&newindirdep->ir_donehd);
6015 		LIST_INIT(&newindirdep->ir_writehd);
6016 		LIST_INIT(&newindirdep->ir_completehd);
6017 		if (bp->b_blkno == bp->b_lblkno) {
6018 			ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp,
6019 			    NULL, NULL);
6020 			bp->b_blkno = blkno;
6021 		}
6022 		newindirdep->ir_freeblks = NULL;
6023 		newindirdep->ir_savebp =
6024 		    getblk(ump->um_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0);
6025 		newindirdep->ir_bp = bp;
6026 		BUF_KERNPROC(newindirdep->ir_savebp);
6027 		bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
6028 		ACQUIRE_LOCK(ump);
6029 	}
6030 	indirdep = newindirdep;
6031 	WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list);
6032 	/*
6033 	 * If the block is not yet allocated we don't set DEPCOMPLETE so
6034 	 * that we don't free dependencies until the pointers are valid.
6035 	 * This could search b_dep for D_ALLOCDIRECT/D_ALLOCINDIR rather
6036 	 * than using the hash.
6037 	 */
6038 	if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk))
6039 		LIST_INSERT_HEAD(&newblk->nb_indirdeps, indirdep, ir_next);
6040 	else
6041 		indirdep->ir_state |= DEPCOMPLETE;
6042 	return (indirdep);
6043 }
6044 
6045 /*
6046  * Called to finish the allocation of the "aip" allocated
6047  * by one of the two routines above.
6048  */
6049 static struct freefrag *
6050 setup_allocindir_phase2(bp, ip, inodedep, aip, lbn)
6051 	struct buf *bp;		/* in-memory copy of the indirect block */
6052 	struct inode *ip;	/* inode for file being extended */
6053 	struct inodedep *inodedep; /* Inodedep for ip */
6054 	struct allocindir *aip;	/* allocindir allocated by the above routines */
6055 	ufs_lbn_t lbn;		/* Logical block number for this block. */
6056 {
6057 	struct fs *fs;
6058 	struct indirdep *indirdep;
6059 	struct allocindir *oldaip;
6060 	struct freefrag *freefrag;
6061 	struct mount *mp;
6062 	struct ufsmount *ump;
6063 
6064 	mp = ITOVFS(ip);
6065 	ump = VFSTOUFS(mp);
6066 	LOCK_OWNED(ump);
6067 	fs = ump->um_fs;
6068 	if (bp->b_lblkno >= 0)
6069 		panic("setup_allocindir_phase2: not indir blk");
6070 	KASSERT(aip->ai_offset >= 0 && aip->ai_offset < NINDIR(fs),
6071 	    ("setup_allocindir_phase2: Bad offset %d", aip->ai_offset));
6072 	indirdep = indirdep_lookup(mp, ip, bp);
6073 	KASSERT(indirdep->ir_savebp != NULL,
6074 	    ("setup_allocindir_phase2 NULL ir_savebp"));
6075 	aip->ai_indirdep = indirdep;
6076 	/*
6077 	 * Check for an unwritten dependency for this indirect offset.  If
6078 	 * there is, merge the old dependency into the new one.  This happens
6079 	 * as a result of reallocblk only.
6080 	 */
6081 	freefrag = NULL;
6082 	if (aip->ai_oldblkno != 0) {
6083 		LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) {
6084 			if (oldaip->ai_offset == aip->ai_offset) {
6085 				freefrag = allocindir_merge(aip, oldaip);
6086 				goto done;
6087 			}
6088 		}
6089 		LIST_FOREACH(oldaip, &indirdep->ir_donehd, ai_next) {
6090 			if (oldaip->ai_offset == aip->ai_offset) {
6091 				freefrag = allocindir_merge(aip, oldaip);
6092 				goto done;
6093 			}
6094 		}
6095 	}
6096 done:
6097 	LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
6098 	return (freefrag);
6099 }
6100 
6101 /*
6102  * Merge two allocindirs which refer to the same block.  Move newblock
6103  * dependencies and setup the freefrags appropriately.
6104  */
6105 static struct freefrag *
6106 allocindir_merge(aip, oldaip)
6107 	struct allocindir *aip;
6108 	struct allocindir *oldaip;
6109 {
6110 	struct freefrag *freefrag;
6111 	struct worklist *wk;
6112 
6113 	if (oldaip->ai_newblkno != aip->ai_oldblkno)
6114 		panic("allocindir_merge: blkno");
6115 	aip->ai_oldblkno = oldaip->ai_oldblkno;
6116 	freefrag = aip->ai_freefrag;
6117 	aip->ai_freefrag = oldaip->ai_freefrag;
6118 	oldaip->ai_freefrag = NULL;
6119 	KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag"));
6120 	/*
6121 	 * If we are tracking a new directory-block allocation,
6122 	 * move it from the old allocindir to the new allocindir.
6123 	 */
6124 	if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) {
6125 		WORKLIST_REMOVE(wk);
6126 		if (!LIST_EMPTY(&oldaip->ai_newdirblk))
6127 			panic("allocindir_merge: extra newdirblk");
6128 		WORKLIST_INSERT(&aip->ai_newdirblk, wk);
6129 	}
6130 	/*
6131 	 * We can skip journaling for this freefrag and just complete
6132 	 * any pending journal work for the allocindir that is being
6133 	 * removed after the freefrag completes.
6134 	 */
6135 	if (freefrag->ff_jdep)
6136 		cancel_jfreefrag(WK_JFREEFRAG(freefrag->ff_jdep));
6137 	LIST_REMOVE(oldaip, ai_next);
6138 	freefrag->ff_jdep = (struct worklist *)cancel_newblk(&oldaip->ai_block,
6139 	    &freefrag->ff_list, &freefrag->ff_jwork);
6140 	free_newblk(&oldaip->ai_block);
6141 
6142 	return (freefrag);
6143 }
6144 
6145 static inline void
6146 setup_freedirect(freeblks, ip, i, needj)
6147 	struct freeblks *freeblks;
6148 	struct inode *ip;
6149 	int i;
6150 	int needj;
6151 {
6152 	struct ufsmount *ump;
6153 	ufs2_daddr_t blkno;
6154 	int frags;
6155 
6156 	blkno = DIP(ip, i_db[i]);
6157 	if (blkno == 0)
6158 		return;
6159 	DIP_SET(ip, i_db[i], 0);
6160 	ump = ITOUMP(ip);
6161 	frags = sblksize(ump->um_fs, ip->i_size, i);
6162 	frags = numfrags(ump->um_fs, frags);
6163 	newfreework(ump, freeblks, NULL, i, blkno, frags, 0, needj);
6164 }
6165 
6166 static inline void
6167 setup_freeext(freeblks, ip, i, needj)
6168 	struct freeblks *freeblks;
6169 	struct inode *ip;
6170 	int i;
6171 	int needj;
6172 {
6173 	struct ufsmount *ump;
6174 	ufs2_daddr_t blkno;
6175 	int frags;
6176 
6177 	blkno = ip->i_din2->di_extb[i];
6178 	if (blkno == 0)
6179 		return;
6180 	ip->i_din2->di_extb[i] = 0;
6181 	ump = ITOUMP(ip);
6182 	frags = sblksize(ump->um_fs, ip->i_din2->di_extsize, i);
6183 	frags = numfrags(ump->um_fs, frags);
6184 	newfreework(ump, freeblks, NULL, -1 - i, blkno, frags, 0, needj);
6185 }
6186 
6187 static inline void
6188 setup_freeindir(freeblks, ip, i, lbn, needj)
6189 	struct freeblks *freeblks;
6190 	struct inode *ip;
6191 	int i;
6192 	ufs_lbn_t lbn;
6193 	int needj;
6194 {
6195 	struct ufsmount *ump;
6196 	ufs2_daddr_t blkno;
6197 
6198 	blkno = DIP(ip, i_ib[i]);
6199 	if (blkno == 0)
6200 		return;
6201 	DIP_SET(ip, i_ib[i], 0);
6202 	ump = ITOUMP(ip);
6203 	newfreework(ump, freeblks, NULL, lbn, blkno, ump->um_fs->fs_frag,
6204 	    0, needj);
6205 }
6206 
6207 static inline struct freeblks *
6208 newfreeblks(mp, ip)
6209 	struct mount *mp;
6210 	struct inode *ip;
6211 {
6212 	struct freeblks *freeblks;
6213 
6214 	freeblks = malloc(sizeof(struct freeblks),
6215 		M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO);
6216 	workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp);
6217 	LIST_INIT(&freeblks->fb_jblkdephd);
6218 	LIST_INIT(&freeblks->fb_jwork);
6219 	freeblks->fb_ref = 0;
6220 	freeblks->fb_cgwait = 0;
6221 	freeblks->fb_state = ATTACHED;
6222 	freeblks->fb_uid = ip->i_uid;
6223 	freeblks->fb_inum = ip->i_number;
6224 	freeblks->fb_vtype = ITOV(ip)->v_type;
6225 	freeblks->fb_modrev = DIP(ip, i_modrev);
6226 	freeblks->fb_devvp = ITODEVVP(ip);
6227 	freeblks->fb_chkcnt = 0;
6228 	freeblks->fb_len = 0;
6229 
6230 	return (freeblks);
6231 }
6232 
6233 static void
6234 trunc_indirdep(indirdep, freeblks, bp, off)
6235 	struct indirdep *indirdep;
6236 	struct freeblks *freeblks;
6237 	struct buf *bp;
6238 	int off;
6239 {
6240 	struct allocindir *aip, *aipn;
6241 
6242 	/*
6243 	 * The first set of allocindirs won't be in savedbp.
6244 	 */
6245 	LIST_FOREACH_SAFE(aip, &indirdep->ir_deplisthd, ai_next, aipn)
6246 		if (aip->ai_offset > off)
6247 			cancel_allocindir(aip, bp, freeblks, 1);
6248 	LIST_FOREACH_SAFE(aip, &indirdep->ir_donehd, ai_next, aipn)
6249 		if (aip->ai_offset > off)
6250 			cancel_allocindir(aip, bp, freeblks, 1);
6251 	/*
6252 	 * These will exist in savedbp.
6253 	 */
6254 	LIST_FOREACH_SAFE(aip, &indirdep->ir_writehd, ai_next, aipn)
6255 		if (aip->ai_offset > off)
6256 			cancel_allocindir(aip, NULL, freeblks, 0);
6257 	LIST_FOREACH_SAFE(aip, &indirdep->ir_completehd, ai_next, aipn)
6258 		if (aip->ai_offset > off)
6259 			cancel_allocindir(aip, NULL, freeblks, 0);
6260 }
6261 
6262 /*
6263  * Follow the chain of indirects down to lastlbn creating a freework
6264  * structure for each.  This will be used to start indir_trunc() at
6265  * the right offset and create the journal records for the parrtial
6266  * truncation.  A second step will handle the truncated dependencies.
6267  */
6268 static int
6269 setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno)
6270 	struct freeblks *freeblks;
6271 	struct inode *ip;
6272 	ufs_lbn_t lbn;
6273 	ufs_lbn_t lastlbn;
6274 	ufs2_daddr_t blkno;
6275 {
6276 	struct indirdep *indirdep;
6277 	struct indirdep *indirn;
6278 	struct freework *freework;
6279 	struct newblk *newblk;
6280 	struct mount *mp;
6281 	struct ufsmount *ump;
6282 	struct buf *bp;
6283 	uint8_t *start;
6284 	uint8_t *end;
6285 	ufs_lbn_t lbnadd;
6286 	int level;
6287 	int error;
6288 	int off;
6289 
6290 
6291 	freework = NULL;
6292 	if (blkno == 0)
6293 		return (0);
6294 	mp = freeblks->fb_list.wk_mp;
6295 	ump = VFSTOUFS(mp);
6296 	/*
6297 	 * Here, calls to VOP_BMAP() will fail.  However, we already have
6298 	 * the on-disk address, so we just pass it to bread() instead of
6299 	 * having bread() attempt to calculate it using VOP_BMAP().
6300 	 */
6301 	error = breadn_flags(ITOV(ip), lbn, blkptrtodb(ump, blkno),
6302 	    (int)mp->mnt_stat.f_iosize, NULL, NULL, 0, NOCRED, 0, NULL, &bp);
6303 	if (error)
6304 		return (error);
6305 	level = lbn_level(lbn);
6306 	lbnadd = lbn_offset(ump->um_fs, level);
6307 	/*
6308 	 * Compute the offset of the last block we want to keep.  Store
6309 	 * in the freework the first block we want to completely free.
6310 	 */
6311 	off = (lastlbn - -(lbn + level)) / lbnadd;
6312 	if (off + 1 == NINDIR(ump->um_fs))
6313 		goto nowork;
6314 	freework = newfreework(ump, freeblks, NULL, lbn, blkno, 0, off + 1, 0);
6315 	/*
6316 	 * Link the freework into the indirdep.  This will prevent any new
6317 	 * allocations from proceeding until we are finished with the
6318 	 * truncate and the block is written.
6319 	 */
6320 	ACQUIRE_LOCK(ump);
6321 	indirdep = indirdep_lookup(mp, ip, bp);
6322 	if (indirdep->ir_freeblks)
6323 		panic("setup_trunc_indir: indirdep already truncated.");
6324 	TAILQ_INSERT_TAIL(&indirdep->ir_trunc, freework, fw_next);
6325 	freework->fw_indir = indirdep;
6326 	/*
6327 	 * Cancel any allocindirs that will not make it to disk.
6328 	 * We have to do this for all copies of the indirdep that
6329 	 * live on this newblk.
6330 	 */
6331 	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
6332 		if (newblk_lookup(mp, dbtofsb(ump->um_fs, bp->b_blkno), 0,
6333 		    &newblk) == 0)
6334 			panic("setup_trunc_indir: lost block");
6335 		LIST_FOREACH(indirn, &newblk->nb_indirdeps, ir_next)
6336 			trunc_indirdep(indirn, freeblks, bp, off);
6337 	} else
6338 		trunc_indirdep(indirdep, freeblks, bp, off);
6339 	FREE_LOCK(ump);
6340 	/*
6341 	 * Creation is protected by the buf lock. The saveddata is only
6342 	 * needed if a full truncation follows a partial truncation but it
6343 	 * is difficult to allocate in that case so we fetch it anyway.
6344 	 */
6345 	if (indirdep->ir_saveddata == NULL)
6346 		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
6347 		    M_SOFTDEP_FLAGS);
6348 nowork:
6349 	/* Fetch the blkno of the child and the zero start offset. */
6350 	if (I_IS_UFS1(ip)) {
6351 		blkno = ((ufs1_daddr_t *)bp->b_data)[off];
6352 		start = (uint8_t *)&((ufs1_daddr_t *)bp->b_data)[off+1];
6353 	} else {
6354 		blkno = ((ufs2_daddr_t *)bp->b_data)[off];
6355 		start = (uint8_t *)&((ufs2_daddr_t *)bp->b_data)[off+1];
6356 	}
6357 	if (freework) {
6358 		/* Zero the truncated pointers. */
6359 		end = bp->b_data + bp->b_bcount;
6360 		bzero(start, end - start);
6361 		bdwrite(bp);
6362 	} else
6363 		bqrelse(bp);
6364 	if (level == 0)
6365 		return (0);
6366 	lbn++; /* adjust level */
6367 	lbn -= (off * lbnadd);
6368 	return setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno);
6369 }
6370 
6371 /*
6372  * Complete the partial truncation of an indirect block setup by
6373  * setup_trunc_indir().  This zeros the truncated pointers in the saved
6374  * copy and writes them to disk before the freeblks is allowed to complete.
6375  */
6376 static void
6377 complete_trunc_indir(freework)
6378 	struct freework *freework;
6379 {
6380 	struct freework *fwn;
6381 	struct indirdep *indirdep;
6382 	struct ufsmount *ump;
6383 	struct buf *bp;
6384 	uintptr_t start;
6385 	int count;
6386 
6387 	ump = VFSTOUFS(freework->fw_list.wk_mp);
6388 	LOCK_OWNED(ump);
6389 	indirdep = freework->fw_indir;
6390 	for (;;) {
6391 		bp = indirdep->ir_bp;
6392 		/* See if the block was discarded. */
6393 		if (bp == NULL)
6394 			break;
6395 		/* Inline part of getdirtybuf().  We dont want bremfree. */
6396 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0)
6397 			break;
6398 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
6399 		    LOCK_PTR(ump)) == 0)
6400 			BUF_UNLOCK(bp);
6401 		ACQUIRE_LOCK(ump);
6402 	}
6403 	freework->fw_state |= DEPCOMPLETE;
6404 	TAILQ_REMOVE(&indirdep->ir_trunc, freework, fw_next);
6405 	/*
6406 	 * Zero the pointers in the saved copy.
6407 	 */
6408 	if (indirdep->ir_state & UFS1FMT)
6409 		start = sizeof(ufs1_daddr_t);
6410 	else
6411 		start = sizeof(ufs2_daddr_t);
6412 	start *= freework->fw_start;
6413 	count = indirdep->ir_savebp->b_bcount - start;
6414 	start += (uintptr_t)indirdep->ir_savebp->b_data;
6415 	bzero((char *)start, count);
6416 	/*
6417 	 * We need to start the next truncation in the list if it has not
6418 	 * been started yet.
6419 	 */
6420 	fwn = TAILQ_FIRST(&indirdep->ir_trunc);
6421 	if (fwn != NULL) {
6422 		if (fwn->fw_freeblks == indirdep->ir_freeblks)
6423 			TAILQ_REMOVE(&indirdep->ir_trunc, fwn, fw_next);
6424 		if ((fwn->fw_state & ONWORKLIST) == 0)
6425 			freework_enqueue(fwn);
6426 	}
6427 	/*
6428 	 * If bp is NULL the block was fully truncated, restore
6429 	 * the saved block list otherwise free it if it is no
6430 	 * longer needed.
6431 	 */
6432 	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
6433 		if (bp == NULL)
6434 			bcopy(indirdep->ir_saveddata,
6435 			    indirdep->ir_savebp->b_data,
6436 			    indirdep->ir_savebp->b_bcount);
6437 		free(indirdep->ir_saveddata, M_INDIRDEP);
6438 		indirdep->ir_saveddata = NULL;
6439 	}
6440 	/*
6441 	 * When bp is NULL there is a full truncation pending.  We
6442 	 * must wait for this full truncation to be journaled before
6443 	 * we can release this freework because the disk pointers will
6444 	 * never be written as zero.
6445 	 */
6446 	if (bp == NULL)  {
6447 		if (LIST_EMPTY(&indirdep->ir_freeblks->fb_jblkdephd))
6448 			handle_written_freework(freework);
6449 		else
6450 			WORKLIST_INSERT(&indirdep->ir_freeblks->fb_freeworkhd,
6451 			   &freework->fw_list);
6452 	} else {
6453 		/* Complete when the real copy is written. */
6454 		WORKLIST_INSERT(&bp->b_dep, &freework->fw_list);
6455 		BUF_UNLOCK(bp);
6456 	}
6457 }
6458 
6459 /*
6460  * Calculate the number of blocks we are going to release where datablocks
6461  * is the current total and length is the new file size.
6462  */
6463 static ufs2_daddr_t
6464 blkcount(fs, datablocks, length)
6465 	struct fs *fs;
6466 	ufs2_daddr_t datablocks;
6467 	off_t length;
6468 {
6469 	off_t totblks, numblks;
6470 
6471 	totblks = 0;
6472 	numblks = howmany(length, fs->fs_bsize);
6473 	if (numblks <= UFS_NDADDR) {
6474 		totblks = howmany(length, fs->fs_fsize);
6475 		goto out;
6476 	}
6477         totblks = blkstofrags(fs, numblks);
6478 	numblks -= UFS_NDADDR;
6479 	/*
6480 	 * Count all single, then double, then triple indirects required.
6481 	 * Subtracting one indirects worth of blocks for each pass
6482 	 * acknowledges one of each pointed to by the inode.
6483 	 */
6484 	for (;;) {
6485 		totblks += blkstofrags(fs, howmany(numblks, NINDIR(fs)));
6486 		numblks -= NINDIR(fs);
6487 		if (numblks <= 0)
6488 			break;
6489 		numblks = howmany(numblks, NINDIR(fs));
6490 	}
6491 out:
6492 	totblks = fsbtodb(fs, totblks);
6493 	/*
6494 	 * Handle sparse files.  We can't reclaim more blocks than the inode
6495 	 * references.  We will correct it later in handle_complete_freeblks()
6496 	 * when we know the real count.
6497 	 */
6498 	if (totblks > datablocks)
6499 		return (0);
6500 	return (datablocks - totblks);
6501 }
6502 
6503 /*
6504  * Handle freeblocks for journaled softupdate filesystems.
6505  *
6506  * Contrary to normal softupdates, we must preserve the block pointers in
6507  * indirects until their subordinates are free.  This is to avoid journaling
6508  * every block that is freed which may consume more space than the journal
6509  * itself.  The recovery program will see the free block journals at the
6510  * base of the truncated area and traverse them to reclaim space.  The
6511  * pointers in the inode may be cleared immediately after the journal
6512  * records are written because each direct and indirect pointer in the
6513  * inode is recorded in a journal.  This permits full truncation to proceed
6514  * asynchronously.  The write order is journal -> inode -> cgs -> indirects.
6515  *
6516  * The algorithm is as follows:
6517  * 1) Traverse the in-memory state and create journal entries to release
6518  *    the relevant blocks and full indirect trees.
6519  * 2) Traverse the indirect block chain adding partial truncation freework
6520  *    records to indirects in the path to lastlbn.  The freework will
6521  *    prevent new allocation dependencies from being satisfied in this
6522  *    indirect until the truncation completes.
6523  * 3) Read and lock the inode block, performing an update with the new size
6524  *    and pointers.  This prevents truncated data from becoming valid on
6525  *    disk through step 4.
6526  * 4) Reap unsatisfied dependencies that are beyond the truncated area,
6527  *    eliminate journal work for those records that do not require it.
6528  * 5) Schedule the journal records to be written followed by the inode block.
6529  * 6) Allocate any necessary frags for the end of file.
6530  * 7) Zero any partially truncated blocks.
6531  *
6532  * From this truncation proceeds asynchronously using the freework and
6533  * indir_trunc machinery.  The file will not be extended again into a
6534  * partially truncated indirect block until all work is completed but
6535  * the normal dependency mechanism ensures that it is rolled back/forward
6536  * as appropriate.  Further truncation may occur without delay and is
6537  * serialized in indir_trunc().
6538  */
6539 void
6540 softdep_journal_freeblocks(ip, cred, length, flags)
6541 	struct inode *ip;	/* The inode whose length is to be reduced */
6542 	struct ucred *cred;
6543 	off_t length;		/* The new length for the file */
6544 	int flags;		/* IO_EXT and/or IO_NORMAL */
6545 {
6546 	struct freeblks *freeblks, *fbn;
6547 	struct worklist *wk, *wkn;
6548 	struct inodedep *inodedep;
6549 	struct jblkdep *jblkdep;
6550 	struct allocdirect *adp, *adpn;
6551 	struct ufsmount *ump;
6552 	struct fs *fs;
6553 	struct buf *bp;
6554 	struct vnode *vp;
6555 	struct mount *mp;
6556 	ufs2_daddr_t extblocks, datablocks;
6557 	ufs_lbn_t tmpval, lbn, lastlbn;
6558 	int frags, lastoff, iboff, allocblock, needj, error, i;
6559 
6560 	ump = ITOUMP(ip);
6561 	mp = UFSTOVFS(ump);
6562 	fs = ump->um_fs;
6563 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
6564 	    ("softdep_journal_freeblocks called on non-softdep filesystem"));
6565 	vp = ITOV(ip);
6566 	needj = 1;
6567 	iboff = -1;
6568 	allocblock = 0;
6569 	extblocks = 0;
6570 	datablocks = 0;
6571 	frags = 0;
6572 	freeblks = newfreeblks(mp, ip);
6573 	ACQUIRE_LOCK(ump);
6574 	/*
6575 	 * If we're truncating a removed file that will never be written
6576 	 * we don't need to journal the block frees.  The canceled journals
6577 	 * for the allocations will suffice.
6578 	 */
6579 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6580 	if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED &&
6581 	    length == 0)
6582 		needj = 0;
6583 	CTR3(KTR_SUJ, "softdep_journal_freeblks: ip %d length %ld needj %d",
6584 	    ip->i_number, length, needj);
6585 	FREE_LOCK(ump);
6586 	/*
6587 	 * Calculate the lbn that we are truncating to.  This results in -1
6588 	 * if we're truncating the 0 bytes.  So it is the last lbn we want
6589 	 * to keep, not the first lbn we want to truncate.
6590 	 */
6591 	lastlbn = lblkno(fs, length + fs->fs_bsize - 1) - 1;
6592 	lastoff = blkoff(fs, length);
6593 	/*
6594 	 * Compute frags we are keeping in lastlbn.  0 means all.
6595 	 */
6596 	if (lastlbn >= 0 && lastlbn < UFS_NDADDR) {
6597 		frags = fragroundup(fs, lastoff);
6598 		/* adp offset of last valid allocdirect. */
6599 		iboff = lastlbn;
6600 	} else if (lastlbn > 0)
6601 		iboff = UFS_NDADDR;
6602 	if (fs->fs_magic == FS_UFS2_MAGIC)
6603 		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
6604 	/*
6605 	 * Handle normal data blocks and indirects.  This section saves
6606 	 * values used after the inode update to complete frag and indirect
6607 	 * truncation.
6608 	 */
6609 	if ((flags & IO_NORMAL) != 0) {
6610 		/*
6611 		 * Handle truncation of whole direct and indirect blocks.
6612 		 */
6613 		for (i = iboff + 1; i < UFS_NDADDR; i++)
6614 			setup_freedirect(freeblks, ip, i, needj);
6615 		for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR;
6616 		    i < UFS_NIADDR;
6617 		    i++, lbn += tmpval, tmpval *= NINDIR(fs)) {
6618 			/* Release a whole indirect tree. */
6619 			if (lbn > lastlbn) {
6620 				setup_freeindir(freeblks, ip, i, -lbn -i,
6621 				    needj);
6622 				continue;
6623 			}
6624 			iboff = i + UFS_NDADDR;
6625 			/*
6626 			 * Traverse partially truncated indirect tree.
6627 			 */
6628 			if (lbn <= lastlbn && lbn + tmpval - 1 > lastlbn)
6629 				setup_trunc_indir(freeblks, ip, -lbn - i,
6630 				    lastlbn, DIP(ip, i_ib[i]));
6631 		}
6632 		/*
6633 		 * Handle partial truncation to a frag boundary.
6634 		 */
6635 		if (frags) {
6636 			ufs2_daddr_t blkno;
6637 			long oldfrags;
6638 
6639 			oldfrags = blksize(fs, ip, lastlbn);
6640 			blkno = DIP(ip, i_db[lastlbn]);
6641 			if (blkno && oldfrags != frags) {
6642 				oldfrags -= frags;
6643 				oldfrags = numfrags(fs, oldfrags);
6644 				blkno += numfrags(fs, frags);
6645 				newfreework(ump, freeblks, NULL, lastlbn,
6646 				    blkno, oldfrags, 0, needj);
6647 				if (needj)
6648 					adjust_newfreework(freeblks,
6649 					    numfrags(fs, frags));
6650 			} else if (blkno == 0)
6651 				allocblock = 1;
6652 		}
6653 		/*
6654 		 * Add a journal record for partial truncate if we are
6655 		 * handling indirect blocks.  Non-indirects need no extra
6656 		 * journaling.
6657 		 */
6658 		if (length != 0 && lastlbn >= UFS_NDADDR) {
6659 			ip->i_flag |= IN_TRUNCATED;
6660 			newjtrunc(freeblks, length, 0);
6661 		}
6662 		ip->i_size = length;
6663 		DIP_SET(ip, i_size, ip->i_size);
6664 		datablocks = DIP(ip, i_blocks) - extblocks;
6665 		if (length != 0)
6666 			datablocks = blkcount(fs, datablocks, length);
6667 		freeblks->fb_len = length;
6668 	}
6669 	if ((flags & IO_EXT) != 0) {
6670 		for (i = 0; i < UFS_NXADDR; i++)
6671 			setup_freeext(freeblks, ip, i, needj);
6672 		ip->i_din2->di_extsize = 0;
6673 		datablocks += extblocks;
6674 	}
6675 #ifdef QUOTA
6676 	/* Reference the quotas in case the block count is wrong in the end. */
6677 	quotaref(vp, freeblks->fb_quota);
6678 	(void) chkdq(ip, -datablocks, NOCRED, FORCE);
6679 #endif
6680 	freeblks->fb_chkcnt = -datablocks;
6681 	UFS_LOCK(ump);
6682 	fs->fs_pendingblocks += datablocks;
6683 	UFS_UNLOCK(ump);
6684 	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
6685 	/*
6686 	 * Handle truncation of incomplete alloc direct dependencies.  We
6687 	 * hold the inode block locked to prevent incomplete dependencies
6688 	 * from reaching the disk while we are eliminating those that
6689 	 * have been truncated.  This is a partially inlined ffs_update().
6690 	 */
6691 	ufs_itimes(vp);
6692 	ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED);
6693 	error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
6694 	    (int)fs->fs_bsize, cred, &bp);
6695 	if (error) {
6696 		softdep_error("softdep_journal_freeblocks", error);
6697 		return;
6698 	}
6699 	if (bp->b_bufsize == fs->fs_bsize)
6700 		bp->b_flags |= B_CLUSTEROK;
6701 	softdep_update_inodeblock(ip, bp, 0);
6702 	if (ump->um_fstype == UFS1) {
6703 		*((struct ufs1_dinode *)bp->b_data +
6704 		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1;
6705 	} else {
6706 		ffs_update_dinode_ckhash(fs, ip->i_din2);
6707 		*((struct ufs2_dinode *)bp->b_data +
6708 		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2;
6709 	}
6710 	ACQUIRE_LOCK(ump);
6711 	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6712 	if ((inodedep->id_state & IOSTARTED) != 0)
6713 		panic("softdep_setup_freeblocks: inode busy");
6714 	/*
6715 	 * Add the freeblks structure to the list of operations that
6716 	 * must await the zero'ed inode being written to disk. If we
6717 	 * still have a bitmap dependency (needj), then the inode
6718 	 * has never been written to disk, so we can process the
6719 	 * freeblks below once we have deleted the dependencies.
6720 	 */
6721 	if (needj)
6722 		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
6723 	else
6724 		freeblks->fb_state |= COMPLETE;
6725 	if ((flags & IO_NORMAL) != 0) {
6726 		TAILQ_FOREACH_SAFE(adp, &inodedep->id_inoupdt, ad_next, adpn) {
6727 			if (adp->ad_offset > iboff)
6728 				cancel_allocdirect(&inodedep->id_inoupdt, adp,
6729 				    freeblks);
6730 			/*
6731 			 * Truncate the allocdirect.  We could eliminate
6732 			 * or modify journal records as well.
6733 			 */
6734 			else if (adp->ad_offset == iboff && frags)
6735 				adp->ad_newsize = frags;
6736 		}
6737 	}
6738 	if ((flags & IO_EXT) != 0)
6739 		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
6740 			cancel_allocdirect(&inodedep->id_extupdt, adp,
6741 			    freeblks);
6742 	/*
6743 	 * Scan the bufwait list for newblock dependencies that will never
6744 	 * make it to disk.
6745 	 */
6746 	LIST_FOREACH_SAFE(wk, &inodedep->id_bufwait, wk_list, wkn) {
6747 		if (wk->wk_type != D_ALLOCDIRECT)
6748 			continue;
6749 		adp = WK_ALLOCDIRECT(wk);
6750 		if (((flags & IO_NORMAL) != 0 && (adp->ad_offset > iboff)) ||
6751 		    ((flags & IO_EXT) != 0 && (adp->ad_state & EXTDATA))) {
6752 			cancel_jfreeblk(freeblks, adp->ad_newblkno);
6753 			cancel_newblk(WK_NEWBLK(wk), NULL, &freeblks->fb_jwork);
6754 			WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
6755 		}
6756 	}
6757 	/*
6758 	 * Add journal work.
6759 	 */
6760 	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps)
6761 		add_to_journal(&jblkdep->jb_list);
6762 	FREE_LOCK(ump);
6763 	bdwrite(bp);
6764 	/*
6765 	 * Truncate dependency structures beyond length.
6766 	 */
6767 	trunc_dependencies(ip, freeblks, lastlbn, frags, flags);
6768 	/*
6769 	 * This is only set when we need to allocate a fragment because
6770 	 * none existed at the end of a frag-sized file.  It handles only
6771 	 * allocating a new, zero filled block.
6772 	 */
6773 	if (allocblock) {
6774 		ip->i_size = length - lastoff;
6775 		DIP_SET(ip, i_size, ip->i_size);
6776 		error = UFS_BALLOC(vp, length - 1, 1, cred, BA_CLRBUF, &bp);
6777 		if (error != 0) {
6778 			softdep_error("softdep_journal_freeblks", error);
6779 			return;
6780 		}
6781 		ip->i_size = length;
6782 		DIP_SET(ip, i_size, length);
6783 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
6784 		allocbuf(bp, frags);
6785 		ffs_update(vp, 0);
6786 		bawrite(bp);
6787 	} else if (lastoff != 0 && vp->v_type != VDIR) {
6788 		int size;
6789 
6790 		/*
6791 		 * Zero the end of a truncated frag or block.
6792 		 */
6793 		size = sblksize(fs, length, lastlbn);
6794 		error = bread(vp, lastlbn, size, cred, &bp);
6795 		if (error) {
6796 			softdep_error("softdep_journal_freeblks", error);
6797 			return;
6798 		}
6799 		bzero((char *)bp->b_data + lastoff, size - lastoff);
6800 		bawrite(bp);
6801 
6802 	}
6803 	ACQUIRE_LOCK(ump);
6804 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6805 	TAILQ_INSERT_TAIL(&inodedep->id_freeblklst, freeblks, fb_next);
6806 	freeblks->fb_state |= DEPCOMPLETE | ONDEPLIST;
6807 	/*
6808 	 * We zero earlier truncations so they don't erroneously
6809 	 * update i_blocks.
6810 	 */
6811 	if (freeblks->fb_len == 0 && (flags & IO_NORMAL) != 0)
6812 		TAILQ_FOREACH(fbn, &inodedep->id_freeblklst, fb_next)
6813 			fbn->fb_len = 0;
6814 	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE &&
6815 	    LIST_EMPTY(&freeblks->fb_jblkdephd))
6816 		freeblks->fb_state |= INPROGRESS;
6817 	else
6818 		freeblks = NULL;
6819 	FREE_LOCK(ump);
6820 	if (freeblks)
6821 		handle_workitem_freeblocks(freeblks, 0);
6822 	trunc_pages(ip, length, extblocks, flags);
6823 
6824 }
6825 
6826 /*
6827  * Flush a JOP_SYNC to the journal.
6828  */
6829 void
6830 softdep_journal_fsync(ip)
6831 	struct inode *ip;
6832 {
6833 	struct jfsync *jfsync;
6834 	struct ufsmount *ump;
6835 
6836 	ump = ITOUMP(ip);
6837 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
6838 	    ("softdep_journal_fsync called on non-softdep filesystem"));
6839 	if ((ip->i_flag & IN_TRUNCATED) == 0)
6840 		return;
6841 	ip->i_flag &= ~IN_TRUNCATED;
6842 	jfsync = malloc(sizeof(*jfsync), M_JFSYNC, M_SOFTDEP_FLAGS | M_ZERO);
6843 	workitem_alloc(&jfsync->jfs_list, D_JFSYNC, UFSTOVFS(ump));
6844 	jfsync->jfs_size = ip->i_size;
6845 	jfsync->jfs_ino = ip->i_number;
6846 	ACQUIRE_LOCK(ump);
6847 	add_to_journal(&jfsync->jfs_list);
6848 	jwait(&jfsync->jfs_list, MNT_WAIT);
6849 	FREE_LOCK(ump);
6850 }
6851 
6852 /*
6853  * Block de-allocation dependencies.
6854  *
6855  * When blocks are de-allocated, the on-disk pointers must be nullified before
6856  * the blocks are made available for use by other files.  (The true
6857  * requirement is that old pointers must be nullified before new on-disk
6858  * pointers are set.  We chose this slightly more stringent requirement to
6859  * reduce complexity.) Our implementation handles this dependency by updating
6860  * the inode (or indirect block) appropriately but delaying the actual block
6861  * de-allocation (i.e., freemap and free space count manipulation) until
6862  * after the updated versions reach stable storage.  After the disk is
6863  * updated, the blocks can be safely de-allocated whenever it is convenient.
6864  * This implementation handles only the common case of reducing a file's
6865  * length to zero. Other cases are handled by the conventional synchronous
6866  * write approach.
6867  *
6868  * The ffs implementation with which we worked double-checks
6869  * the state of the block pointers and file size as it reduces
6870  * a file's length.  Some of this code is replicated here in our
6871  * soft updates implementation.  The freeblks->fb_chkcnt field is
6872  * used to transfer a part of this information to the procedure
6873  * that eventually de-allocates the blocks.
6874  *
6875  * This routine should be called from the routine that shortens
6876  * a file's length, before the inode's size or block pointers
6877  * are modified. It will save the block pointer information for
6878  * later release and zero the inode so that the calling routine
6879  * can release it.
6880  */
6881 void
6882 softdep_setup_freeblocks(ip, length, flags)
6883 	struct inode *ip;	/* The inode whose length is to be reduced */
6884 	off_t length;		/* The new length for the file */
6885 	int flags;		/* IO_EXT and/or IO_NORMAL */
6886 {
6887 	struct ufs1_dinode *dp1;
6888 	struct ufs2_dinode *dp2;
6889 	struct freeblks *freeblks;
6890 	struct inodedep *inodedep;
6891 	struct allocdirect *adp;
6892 	struct ufsmount *ump;
6893 	struct buf *bp;
6894 	struct fs *fs;
6895 	ufs2_daddr_t extblocks, datablocks;
6896 	struct mount *mp;
6897 	int i, delay, error;
6898 	ufs_lbn_t tmpval;
6899 	ufs_lbn_t lbn;
6900 
6901 	ump = ITOUMP(ip);
6902 	mp = UFSTOVFS(ump);
6903 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
6904 	    ("softdep_setup_freeblocks called on non-softdep filesystem"));
6905 	CTR2(KTR_SUJ, "softdep_setup_freeblks: ip %d length %ld",
6906 	    ip->i_number, length);
6907 	KASSERT(length == 0, ("softdep_setup_freeblocks: non-zero length"));
6908 	fs = ump->um_fs;
6909 	if ((error = bread(ump->um_devvp,
6910 	    fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
6911 	    (int)fs->fs_bsize, NOCRED, &bp)) != 0) {
6912 		brelse(bp);
6913 		softdep_error("softdep_setup_freeblocks", error);
6914 		return;
6915 	}
6916 	freeblks = newfreeblks(mp, ip);
6917 	extblocks = 0;
6918 	datablocks = 0;
6919 	if (fs->fs_magic == FS_UFS2_MAGIC)
6920 		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
6921 	if ((flags & IO_NORMAL) != 0) {
6922 		for (i = 0; i < UFS_NDADDR; i++)
6923 			setup_freedirect(freeblks, ip, i, 0);
6924 		for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR;
6925 		    i < UFS_NIADDR;
6926 		    i++, lbn += tmpval, tmpval *= NINDIR(fs))
6927 			setup_freeindir(freeblks, ip, i, -lbn -i, 0);
6928 		ip->i_size = 0;
6929 		DIP_SET(ip, i_size, 0);
6930 		datablocks = DIP(ip, i_blocks) - extblocks;
6931 	}
6932 	if ((flags & IO_EXT) != 0) {
6933 		for (i = 0; i < UFS_NXADDR; i++)
6934 			setup_freeext(freeblks, ip, i, 0);
6935 		ip->i_din2->di_extsize = 0;
6936 		datablocks += extblocks;
6937 	}
6938 #ifdef QUOTA
6939 	/* Reference the quotas in case the block count is wrong in the end. */
6940 	quotaref(ITOV(ip), freeblks->fb_quota);
6941 	(void) chkdq(ip, -datablocks, NOCRED, FORCE);
6942 #endif
6943 	freeblks->fb_chkcnt = -datablocks;
6944 	UFS_LOCK(ump);
6945 	fs->fs_pendingblocks += datablocks;
6946 	UFS_UNLOCK(ump);
6947 	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
6948 	/*
6949 	 * Push the zero'ed inode to its disk buffer so that we are free
6950 	 * to delete its dependencies below. Once the dependencies are gone
6951 	 * the buffer can be safely released.
6952 	 */
6953 	if (ump->um_fstype == UFS1) {
6954 		dp1 = ((struct ufs1_dinode *)bp->b_data +
6955 		    ino_to_fsbo(fs, ip->i_number));
6956 		ip->i_din1->di_freelink = dp1->di_freelink;
6957 		*dp1 = *ip->i_din1;
6958 	} else {
6959 		dp2 = ((struct ufs2_dinode *)bp->b_data +
6960 		    ino_to_fsbo(fs, ip->i_number));
6961 		ip->i_din2->di_freelink = dp2->di_freelink;
6962 		ffs_update_dinode_ckhash(fs, ip->i_din2);
6963 		*dp2 = *ip->i_din2;
6964 	}
6965 	/*
6966 	 * Find and eliminate any inode dependencies.
6967 	 */
6968 	ACQUIRE_LOCK(ump);
6969 	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6970 	if ((inodedep->id_state & IOSTARTED) != 0)
6971 		panic("softdep_setup_freeblocks: inode busy");
6972 	/*
6973 	 * Add the freeblks structure to the list of operations that
6974 	 * must await the zero'ed inode being written to disk. If we
6975 	 * still have a bitmap dependency (delay == 0), then the inode
6976 	 * has never been written to disk, so we can process the
6977 	 * freeblks below once we have deleted the dependencies.
6978 	 */
6979 	delay = (inodedep->id_state & DEPCOMPLETE);
6980 	if (delay)
6981 		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
6982 	else
6983 		freeblks->fb_state |= COMPLETE;
6984 	/*
6985 	 * Because the file length has been truncated to zero, any
6986 	 * pending block allocation dependency structures associated
6987 	 * with this inode are obsolete and can simply be de-allocated.
6988 	 * We must first merge the two dependency lists to get rid of
6989 	 * any duplicate freefrag structures, then purge the merged list.
6990 	 * If we still have a bitmap dependency, then the inode has never
6991 	 * been written to disk, so we can free any fragments without delay.
6992 	 */
6993 	if (flags & IO_NORMAL) {
6994 		merge_inode_lists(&inodedep->id_newinoupdt,
6995 		    &inodedep->id_inoupdt);
6996 		while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
6997 			cancel_allocdirect(&inodedep->id_inoupdt, adp,
6998 			    freeblks);
6999 	}
7000 	if (flags & IO_EXT) {
7001 		merge_inode_lists(&inodedep->id_newextupdt,
7002 		    &inodedep->id_extupdt);
7003 		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
7004 			cancel_allocdirect(&inodedep->id_extupdt, adp,
7005 			    freeblks);
7006 	}
7007 	FREE_LOCK(ump);
7008 	bdwrite(bp);
7009 	trunc_dependencies(ip, freeblks, -1, 0, flags);
7010 	ACQUIRE_LOCK(ump);
7011 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
7012 		(void) free_inodedep(inodedep);
7013 	freeblks->fb_state |= DEPCOMPLETE;
7014 	/*
7015 	 * If the inode with zeroed block pointers is now on disk
7016 	 * we can start freeing blocks.
7017 	 */
7018 	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
7019 		freeblks->fb_state |= INPROGRESS;
7020 	else
7021 		freeblks = NULL;
7022 	FREE_LOCK(ump);
7023 	if (freeblks)
7024 		handle_workitem_freeblocks(freeblks, 0);
7025 	trunc_pages(ip, length, extblocks, flags);
7026 }
7027 
7028 /*
7029  * Eliminate pages from the page cache that back parts of this inode and
7030  * adjust the vnode pager's idea of our size.  This prevents stale data
7031  * from hanging around in the page cache.
7032  */
7033 static void
7034 trunc_pages(ip, length, extblocks, flags)
7035 	struct inode *ip;
7036 	off_t length;
7037 	ufs2_daddr_t extblocks;
7038 	int flags;
7039 {
7040 	struct vnode *vp;
7041 	struct fs *fs;
7042 	ufs_lbn_t lbn;
7043 	off_t end, extend;
7044 
7045 	vp = ITOV(ip);
7046 	fs = ITOFS(ip);
7047 	extend = OFF_TO_IDX(lblktosize(fs, -extblocks));
7048 	if ((flags & IO_EXT) != 0)
7049 		vn_pages_remove(vp, extend, 0);
7050 	if ((flags & IO_NORMAL) == 0)
7051 		return;
7052 	BO_LOCK(&vp->v_bufobj);
7053 	drain_output(vp);
7054 	BO_UNLOCK(&vp->v_bufobj);
7055 	/*
7056 	 * The vnode pager eliminates file pages we eliminate indirects
7057 	 * below.
7058 	 */
7059 	vnode_pager_setsize(vp, length);
7060 	/*
7061 	 * Calculate the end based on the last indirect we want to keep.  If
7062 	 * the block extends into indirects we can just use the negative of
7063 	 * its lbn.  Doubles and triples exist at lower numbers so we must
7064 	 * be careful not to remove those, if they exist.  double and triple
7065 	 * indirect lbns do not overlap with others so it is not important
7066 	 * to verify how many levels are required.
7067 	 */
7068 	lbn = lblkno(fs, length);
7069 	if (lbn >= UFS_NDADDR) {
7070 		/* Calculate the virtual lbn of the triple indirect. */
7071 		lbn = -lbn - (UFS_NIADDR - 1);
7072 		end = OFF_TO_IDX(lblktosize(fs, lbn));
7073 	} else
7074 		end = extend;
7075 	vn_pages_remove(vp, OFF_TO_IDX(OFF_MAX), end);
7076 }
7077 
7078 /*
7079  * See if the buf bp is in the range eliminated by truncation.
7080  */
7081 static int
7082 trunc_check_buf(bp, blkoffp, lastlbn, lastoff, flags)
7083 	struct buf *bp;
7084 	int *blkoffp;
7085 	ufs_lbn_t lastlbn;
7086 	int lastoff;
7087 	int flags;
7088 {
7089 	ufs_lbn_t lbn;
7090 
7091 	*blkoffp = 0;
7092 	/* Only match ext/normal blocks as appropriate. */
7093 	if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) ||
7094 	    ((flags & IO_NORMAL) == 0 && (bp->b_xflags & BX_ALTDATA) == 0))
7095 		return (0);
7096 	/* ALTDATA is always a full truncation. */
7097 	if ((bp->b_xflags & BX_ALTDATA) != 0)
7098 		return (1);
7099 	/* -1 is full truncation. */
7100 	if (lastlbn == -1)
7101 		return (1);
7102 	/*
7103 	 * If this is a partial truncate we only want those
7104 	 * blocks and indirect blocks that cover the range
7105 	 * we're after.
7106 	 */
7107 	lbn = bp->b_lblkno;
7108 	if (lbn < 0)
7109 		lbn = -(lbn + lbn_level(lbn));
7110 	if (lbn < lastlbn)
7111 		return (0);
7112 	/* Here we only truncate lblkno if it's partial. */
7113 	if (lbn == lastlbn) {
7114 		if (lastoff == 0)
7115 			return (0);
7116 		*blkoffp = lastoff;
7117 	}
7118 	return (1);
7119 }
7120 
7121 /*
7122  * Eliminate any dependencies that exist in memory beyond lblkno:off
7123  */
7124 static void
7125 trunc_dependencies(ip, freeblks, lastlbn, lastoff, flags)
7126 	struct inode *ip;
7127 	struct freeblks *freeblks;
7128 	ufs_lbn_t lastlbn;
7129 	int lastoff;
7130 	int flags;
7131 {
7132 	struct bufobj *bo;
7133 	struct vnode *vp;
7134 	struct buf *bp;
7135 	int blkoff;
7136 
7137 	/*
7138 	 * We must wait for any I/O in progress to finish so that
7139 	 * all potential buffers on the dirty list will be visible.
7140 	 * Once they are all there, walk the list and get rid of
7141 	 * any dependencies.
7142 	 */
7143 	vp = ITOV(ip);
7144 	bo = &vp->v_bufobj;
7145 	BO_LOCK(bo);
7146 	drain_output(vp);
7147 	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
7148 		bp->b_vflags &= ~BV_SCANNED;
7149 restart:
7150 	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
7151 		if (bp->b_vflags & BV_SCANNED)
7152 			continue;
7153 		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
7154 			bp->b_vflags |= BV_SCANNED;
7155 			continue;
7156 		}
7157 		KASSERT(bp->b_bufobj == bo, ("Wrong object in buffer"));
7158 		if ((bp = getdirtybuf(bp, BO_LOCKPTR(bo), MNT_WAIT)) == NULL)
7159 			goto restart;
7160 		BO_UNLOCK(bo);
7161 		if (deallocate_dependencies(bp, freeblks, blkoff))
7162 			bqrelse(bp);
7163 		else
7164 			brelse(bp);
7165 		BO_LOCK(bo);
7166 		goto restart;
7167 	}
7168 	/*
7169 	 * Now do the work of vtruncbuf while also matching indirect blocks.
7170 	 */
7171 	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs)
7172 		bp->b_vflags &= ~BV_SCANNED;
7173 cleanrestart:
7174 	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) {
7175 		if (bp->b_vflags & BV_SCANNED)
7176 			continue;
7177 		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
7178 			bp->b_vflags |= BV_SCANNED;
7179 			continue;
7180 		}
7181 		if (BUF_LOCK(bp,
7182 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
7183 		    BO_LOCKPTR(bo)) == ENOLCK) {
7184 			BO_LOCK(bo);
7185 			goto cleanrestart;
7186 		}
7187 		bp->b_vflags |= BV_SCANNED;
7188 		bremfree(bp);
7189 		if (blkoff != 0) {
7190 			allocbuf(bp, blkoff);
7191 			bqrelse(bp);
7192 		} else {
7193 			bp->b_flags |= B_INVAL | B_NOCACHE | B_RELBUF;
7194 			brelse(bp);
7195 		}
7196 		BO_LOCK(bo);
7197 		goto cleanrestart;
7198 	}
7199 	drain_output(vp);
7200 	BO_UNLOCK(bo);
7201 }
7202 
7203 static int
7204 cancel_pagedep(pagedep, freeblks, blkoff)
7205 	struct pagedep *pagedep;
7206 	struct freeblks *freeblks;
7207 	int blkoff;
7208 {
7209 	struct jremref *jremref;
7210 	struct jmvref *jmvref;
7211 	struct dirrem *dirrem, *tmp;
7212 	int i;
7213 
7214 	/*
7215 	 * Copy any directory remove dependencies to the list
7216 	 * to be processed after the freeblks proceeds.  If
7217 	 * directory entry never made it to disk they
7218 	 * can be dumped directly onto the work list.
7219 	 */
7220 	LIST_FOREACH_SAFE(dirrem, &pagedep->pd_dirremhd, dm_next, tmp) {
7221 		/* Skip this directory removal if it is intended to remain. */
7222 		if (dirrem->dm_offset < blkoff)
7223 			continue;
7224 		/*
7225 		 * If there are any dirrems we wait for the journal write
7226 		 * to complete and then restart the buf scan as the lock
7227 		 * has been dropped.
7228 		 */
7229 		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) {
7230 			jwait(&jremref->jr_list, MNT_WAIT);
7231 			return (ERESTART);
7232 		}
7233 		LIST_REMOVE(dirrem, dm_next);
7234 		dirrem->dm_dirinum = pagedep->pd_ino;
7235 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &dirrem->dm_list);
7236 	}
7237 	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) {
7238 		jwait(&jmvref->jm_list, MNT_WAIT);
7239 		return (ERESTART);
7240 	}
7241 	/*
7242 	 * When we're partially truncating a pagedep we just want to flush
7243 	 * journal entries and return.  There can not be any adds in the
7244 	 * truncated portion of the directory and newblk must remain if
7245 	 * part of the block remains.
7246 	 */
7247 	if (blkoff != 0) {
7248 		struct diradd *dap;
7249 
7250 		LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
7251 			if (dap->da_offset > blkoff)
7252 				panic("cancel_pagedep: diradd %p off %d > %d",
7253 				    dap, dap->da_offset, blkoff);
7254 		for (i = 0; i < DAHASHSZ; i++)
7255 			LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist)
7256 				if (dap->da_offset > blkoff)
7257 					panic("cancel_pagedep: diradd %p off %d > %d",
7258 					    dap, dap->da_offset, blkoff);
7259 		return (0);
7260 	}
7261 	/*
7262 	 * There should be no directory add dependencies present
7263 	 * as the directory could not be truncated until all
7264 	 * children were removed.
7265 	 */
7266 	KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL,
7267 	    ("deallocate_dependencies: pendinghd != NULL"));
7268 	for (i = 0; i < DAHASHSZ; i++)
7269 		KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL,
7270 		    ("deallocate_dependencies: diraddhd != NULL"));
7271 	if ((pagedep->pd_state & NEWBLOCK) != 0)
7272 		free_newdirblk(pagedep->pd_newdirblk);
7273 	if (free_pagedep(pagedep) == 0)
7274 		panic("Failed to free pagedep %p", pagedep);
7275 	return (0);
7276 }
7277 
7278 /*
7279  * Reclaim any dependency structures from a buffer that is about to
7280  * be reallocated to a new vnode. The buffer must be locked, thus,
7281  * no I/O completion operations can occur while we are manipulating
7282  * its associated dependencies. The mutex is held so that other I/O's
7283  * associated with related dependencies do not occur.
7284  */
7285 static int
7286 deallocate_dependencies(bp, freeblks, off)
7287 	struct buf *bp;
7288 	struct freeblks *freeblks;
7289 	int off;
7290 {
7291 	struct indirdep *indirdep;
7292 	struct pagedep *pagedep;
7293 	struct worklist *wk, *wkn;
7294 	struct ufsmount *ump;
7295 
7296 	ump = softdep_bp_to_mp(bp);
7297 	if (ump == NULL)
7298 		goto done;
7299 	ACQUIRE_LOCK(ump);
7300 	LIST_FOREACH_SAFE(wk, &bp->b_dep, wk_list, wkn) {
7301 		switch (wk->wk_type) {
7302 		case D_INDIRDEP:
7303 			indirdep = WK_INDIRDEP(wk);
7304 			if (bp->b_lblkno >= 0 ||
7305 			    bp->b_blkno != indirdep->ir_savebp->b_lblkno)
7306 				panic("deallocate_dependencies: not indir");
7307 			cancel_indirdep(indirdep, bp, freeblks);
7308 			continue;
7309 
7310 		case D_PAGEDEP:
7311 			pagedep = WK_PAGEDEP(wk);
7312 			if (cancel_pagedep(pagedep, freeblks, off)) {
7313 				FREE_LOCK(ump);
7314 				return (ERESTART);
7315 			}
7316 			continue;
7317 
7318 		case D_ALLOCINDIR:
7319 			/*
7320 			 * Simply remove the allocindir, we'll find it via
7321 			 * the indirdep where we can clear pointers if
7322 			 * needed.
7323 			 */
7324 			WORKLIST_REMOVE(wk);
7325 			continue;
7326 
7327 		case D_FREEWORK:
7328 			/*
7329 			 * A truncation is waiting for the zero'd pointers
7330 			 * to be written.  It can be freed when the freeblks
7331 			 * is journaled.
7332 			 */
7333 			WORKLIST_REMOVE(wk);
7334 			wk->wk_state |= ONDEPLIST;
7335 			WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
7336 			break;
7337 
7338 		case D_ALLOCDIRECT:
7339 			if (off != 0)
7340 				continue;
7341 			/* FALLTHROUGH */
7342 		default:
7343 			panic("deallocate_dependencies: Unexpected type %s",
7344 			    TYPENAME(wk->wk_type));
7345 			/* NOTREACHED */
7346 		}
7347 	}
7348 	FREE_LOCK(ump);
7349 done:
7350 	/*
7351 	 * Don't throw away this buf, we were partially truncating and
7352 	 * some deps may always remain.
7353 	 */
7354 	if (off) {
7355 		allocbuf(bp, off);
7356 		bp->b_vflags |= BV_SCANNED;
7357 		return (EBUSY);
7358 	}
7359 	bp->b_flags |= B_INVAL | B_NOCACHE;
7360 
7361 	return (0);
7362 }
7363 
7364 /*
7365  * An allocdirect is being canceled due to a truncate.  We must make sure
7366  * the journal entry is released in concert with the blkfree that releases
7367  * the storage.  Completed journal entries must not be released until the
7368  * space is no longer pointed to by the inode or in the bitmap.
7369  */
7370 static void
7371 cancel_allocdirect(adphead, adp, freeblks)
7372 	struct allocdirectlst *adphead;
7373 	struct allocdirect *adp;
7374 	struct freeblks *freeblks;
7375 {
7376 	struct freework *freework;
7377 	struct newblk *newblk;
7378 	struct worklist *wk;
7379 
7380 	TAILQ_REMOVE(adphead, adp, ad_next);
7381 	newblk = (struct newblk *)adp;
7382 	freework = NULL;
7383 	/*
7384 	 * Find the correct freework structure.
7385 	 */
7386 	LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) {
7387 		if (wk->wk_type != D_FREEWORK)
7388 			continue;
7389 		freework = WK_FREEWORK(wk);
7390 		if (freework->fw_blkno == newblk->nb_newblkno)
7391 			break;
7392 	}
7393 	if (freework == NULL)
7394 		panic("cancel_allocdirect: Freework not found");
7395 	/*
7396 	 * If a newblk exists at all we still have the journal entry that
7397 	 * initiated the allocation so we do not need to journal the free.
7398 	 */
7399 	cancel_jfreeblk(freeblks, freework->fw_blkno);
7400 	/*
7401 	 * If the journal hasn't been written the jnewblk must be passed
7402 	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
7403 	 * this by linking the journal dependency into the freework to be
7404 	 * freed when freework_freeblock() is called.  If the journal has
7405 	 * been written we can simply reclaim the journal space when the
7406 	 * freeblks work is complete.
7407 	 */
7408 	freework->fw_jnewblk = cancel_newblk(newblk, &freework->fw_list,
7409 	    &freeblks->fb_jwork);
7410 	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
7411 }
7412 
7413 
7414 /*
7415  * Cancel a new block allocation.  May be an indirect or direct block.  We
7416  * remove it from various lists and return any journal record that needs to
7417  * be resolved by the caller.
7418  *
7419  * A special consideration is made for indirects which were never pointed
7420  * at on disk and will never be found once this block is released.
7421  */
7422 static struct jnewblk *
7423 cancel_newblk(newblk, wk, wkhd)
7424 	struct newblk *newblk;
7425 	struct worklist *wk;
7426 	struct workhead *wkhd;
7427 {
7428 	struct jnewblk *jnewblk;
7429 
7430 	CTR1(KTR_SUJ, "cancel_newblk: blkno %jd", newblk->nb_newblkno);
7431 
7432 	newblk->nb_state |= GOINGAWAY;
7433 	/*
7434 	 * Previously we traversed the completedhd on each indirdep
7435 	 * attached to this newblk to cancel them and gather journal
7436 	 * work.  Since we need only the oldest journal segment and
7437 	 * the lowest point on the tree will always have the oldest
7438 	 * journal segment we are free to release the segments
7439 	 * of any subordinates and may leave the indirdep list to
7440 	 * indirdep_complete() when this newblk is freed.
7441 	 */
7442 	if (newblk->nb_state & ONDEPLIST) {
7443 		newblk->nb_state &= ~ONDEPLIST;
7444 		LIST_REMOVE(newblk, nb_deps);
7445 	}
7446 	if (newblk->nb_state & ONWORKLIST)
7447 		WORKLIST_REMOVE(&newblk->nb_list);
7448 	/*
7449 	 * If the journal entry hasn't been written we save a pointer to
7450 	 * the dependency that frees it until it is written or the
7451 	 * superseding operation completes.
7452 	 */
7453 	jnewblk = newblk->nb_jnewblk;
7454 	if (jnewblk != NULL && wk != NULL) {
7455 		newblk->nb_jnewblk = NULL;
7456 		jnewblk->jn_dep = wk;
7457 	}
7458 	if (!LIST_EMPTY(&newblk->nb_jwork))
7459 		jwork_move(wkhd, &newblk->nb_jwork);
7460 	/*
7461 	 * When truncating we must free the newdirblk early to remove
7462 	 * the pagedep from the hash before returning.
7463 	 */
7464 	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7465 		free_newdirblk(WK_NEWDIRBLK(wk));
7466 	if (!LIST_EMPTY(&newblk->nb_newdirblk))
7467 		panic("cancel_newblk: extra newdirblk");
7468 
7469 	return (jnewblk);
7470 }
7471 
7472 /*
7473  * Schedule the freefrag associated with a newblk to be released once
7474  * the pointers are written and the previous block is no longer needed.
7475  */
7476 static void
7477 newblk_freefrag(newblk)
7478 	struct newblk *newblk;
7479 {
7480 	struct freefrag *freefrag;
7481 
7482 	if (newblk->nb_freefrag == NULL)
7483 		return;
7484 	freefrag = newblk->nb_freefrag;
7485 	newblk->nb_freefrag = NULL;
7486 	freefrag->ff_state |= COMPLETE;
7487 	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
7488 		add_to_worklist(&freefrag->ff_list, 0);
7489 }
7490 
7491 /*
7492  * Free a newblk. Generate a new freefrag work request if appropriate.
7493  * This must be called after the inode pointer and any direct block pointers
7494  * are valid or fully removed via truncate or frag extension.
7495  */
7496 static void
7497 free_newblk(newblk)
7498 	struct newblk *newblk;
7499 {
7500 	struct indirdep *indirdep;
7501 	struct worklist *wk;
7502 
7503 	KASSERT(newblk->nb_jnewblk == NULL,
7504 	    ("free_newblk: jnewblk %p still attached", newblk->nb_jnewblk));
7505 	KASSERT(newblk->nb_list.wk_type != D_NEWBLK,
7506 	    ("free_newblk: unclaimed newblk"));
7507 	LOCK_OWNED(VFSTOUFS(newblk->nb_list.wk_mp));
7508 	newblk_freefrag(newblk);
7509 	if (newblk->nb_state & ONDEPLIST)
7510 		LIST_REMOVE(newblk, nb_deps);
7511 	if (newblk->nb_state & ONWORKLIST)
7512 		WORKLIST_REMOVE(&newblk->nb_list);
7513 	LIST_REMOVE(newblk, nb_hash);
7514 	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7515 		free_newdirblk(WK_NEWDIRBLK(wk));
7516 	if (!LIST_EMPTY(&newblk->nb_newdirblk))
7517 		panic("free_newblk: extra newdirblk");
7518 	while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL)
7519 		indirdep_complete(indirdep);
7520 	handle_jwork(&newblk->nb_jwork);
7521 	WORKITEM_FREE(newblk, D_NEWBLK);
7522 }
7523 
7524 /*
7525  * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep.
7526  */
7527 static void
7528 free_newdirblk(newdirblk)
7529 	struct newdirblk *newdirblk;
7530 {
7531 	struct pagedep *pagedep;
7532 	struct diradd *dap;
7533 	struct worklist *wk;
7534 
7535 	LOCK_OWNED(VFSTOUFS(newdirblk->db_list.wk_mp));
7536 	WORKLIST_REMOVE(&newdirblk->db_list);
7537 	/*
7538 	 * If the pagedep is still linked onto the directory buffer
7539 	 * dependency chain, then some of the entries on the
7540 	 * pd_pendinghd list may not be committed to disk yet. In
7541 	 * this case, we will simply clear the NEWBLOCK flag and
7542 	 * let the pd_pendinghd list be processed when the pagedep
7543 	 * is next written. If the pagedep is no longer on the buffer
7544 	 * dependency chain, then all the entries on the pd_pending
7545 	 * list are committed to disk and we can free them here.
7546 	 */
7547 	pagedep = newdirblk->db_pagedep;
7548 	pagedep->pd_state &= ~NEWBLOCK;
7549 	if ((pagedep->pd_state & ONWORKLIST) == 0) {
7550 		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
7551 			free_diradd(dap, NULL);
7552 		/*
7553 		 * If no dependencies remain, the pagedep will be freed.
7554 		 */
7555 		free_pagedep(pagedep);
7556 	}
7557 	/* Should only ever be one item in the list. */
7558 	while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) {
7559 		WORKLIST_REMOVE(wk);
7560 		handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
7561 	}
7562 	WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
7563 }
7564 
7565 /*
7566  * Prepare an inode to be freed. The actual free operation is not
7567  * done until the zero'ed inode has been written to disk.
7568  */
7569 void
7570 softdep_freefile(pvp, ino, mode)
7571 	struct vnode *pvp;
7572 	ino_t ino;
7573 	int mode;
7574 {
7575 	struct inode *ip = VTOI(pvp);
7576 	struct inodedep *inodedep;
7577 	struct freefile *freefile;
7578 	struct freeblks *freeblks;
7579 	struct ufsmount *ump;
7580 
7581 	ump = ITOUMP(ip);
7582 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
7583 	    ("softdep_freefile called on non-softdep filesystem"));
7584 	/*
7585 	 * This sets up the inode de-allocation dependency.
7586 	 */
7587 	freefile = malloc(sizeof(struct freefile),
7588 		M_FREEFILE, M_SOFTDEP_FLAGS);
7589 	workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount);
7590 	freefile->fx_mode = mode;
7591 	freefile->fx_oldinum = ino;
7592 	freefile->fx_devvp = ump->um_devvp;
7593 	LIST_INIT(&freefile->fx_jwork);
7594 	UFS_LOCK(ump);
7595 	ump->um_fs->fs_pendinginodes += 1;
7596 	UFS_UNLOCK(ump);
7597 
7598 	/*
7599 	 * If the inodedep does not exist, then the zero'ed inode has
7600 	 * been written to disk. If the allocated inode has never been
7601 	 * written to disk, then the on-disk inode is zero'ed. In either
7602 	 * case we can free the file immediately.  If the journal was
7603 	 * canceled before being written the inode will never make it to
7604 	 * disk and we must send the canceled journal entrys to
7605 	 * ffs_freefile() to be cleared in conjunction with the bitmap.
7606 	 * Any blocks waiting on the inode to write can be safely freed
7607 	 * here as it will never been written.
7608 	 */
7609 	ACQUIRE_LOCK(ump);
7610 	inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
7611 	if (inodedep) {
7612 		/*
7613 		 * Clear out freeblks that no longer need to reference
7614 		 * this inode.
7615 		 */
7616 		while ((freeblks =
7617 		    TAILQ_FIRST(&inodedep->id_freeblklst)) != NULL) {
7618 			TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks,
7619 			    fb_next);
7620 			freeblks->fb_state &= ~ONDEPLIST;
7621 		}
7622 		/*
7623 		 * Remove this inode from the unlinked list.
7624 		 */
7625 		if (inodedep->id_state & UNLINKED) {
7626 			/*
7627 			 * Save the journal work to be freed with the bitmap
7628 			 * before we clear UNLINKED.  Otherwise it can be lost
7629 			 * if the inode block is written.
7630 			 */
7631 			handle_bufwait(inodedep, &freefile->fx_jwork);
7632 			clear_unlinked_inodedep(inodedep);
7633 			/*
7634 			 * Re-acquire inodedep as we've dropped the
7635 			 * per-filesystem lock in clear_unlinked_inodedep().
7636 			 */
7637 			inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
7638 		}
7639 	}
7640 	if (inodedep == NULL || check_inode_unwritten(inodedep)) {
7641 		FREE_LOCK(ump);
7642 		handle_workitem_freefile(freefile);
7643 		return;
7644 	}
7645 	if ((inodedep->id_state & DEPCOMPLETE) == 0)
7646 		inodedep->id_state |= GOINGAWAY;
7647 	WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
7648 	FREE_LOCK(ump);
7649 	if (ip->i_number == ino)
7650 		ip->i_flag |= IN_MODIFIED;
7651 }
7652 
7653 /*
7654  * Check to see if an inode has never been written to disk. If
7655  * so free the inodedep and return success, otherwise return failure.
7656  *
7657  * If we still have a bitmap dependency, then the inode has never
7658  * been written to disk. Drop the dependency as it is no longer
7659  * necessary since the inode is being deallocated. We set the
7660  * ALLCOMPLETE flags since the bitmap now properly shows that the
7661  * inode is not allocated. Even if the inode is actively being
7662  * written, it has been rolled back to its zero'ed state, so we
7663  * are ensured that a zero inode is what is on the disk. For short
7664  * lived files, this change will usually result in removing all the
7665  * dependencies from the inode so that it can be freed immediately.
7666  */
7667 static int
7668 check_inode_unwritten(inodedep)
7669 	struct inodedep *inodedep;
7670 {
7671 
7672 	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
7673 
7674 	if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 ||
7675 	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
7676 	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
7677 	    !LIST_EMPTY(&inodedep->id_bufwait) ||
7678 	    !LIST_EMPTY(&inodedep->id_inowait) ||
7679 	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
7680 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
7681 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
7682 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
7683 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
7684 	    !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
7685 	    inodedep->id_mkdiradd != NULL ||
7686 	    inodedep->id_nlinkdelta != 0)
7687 		return (0);
7688 	/*
7689 	 * Another process might be in initiate_write_inodeblock_ufs[12]
7690 	 * trying to allocate memory without holding "Softdep Lock".
7691 	 */
7692 	if ((inodedep->id_state & IOSTARTED) != 0 &&
7693 	    inodedep->id_savedino1 == NULL)
7694 		return (0);
7695 
7696 	if (inodedep->id_state & ONDEPLIST)
7697 		LIST_REMOVE(inodedep, id_deps);
7698 	inodedep->id_state &= ~ONDEPLIST;
7699 	inodedep->id_state |= ALLCOMPLETE;
7700 	inodedep->id_bmsafemap = NULL;
7701 	if (inodedep->id_state & ONWORKLIST)
7702 		WORKLIST_REMOVE(&inodedep->id_list);
7703 	if (inodedep->id_savedino1 != NULL) {
7704 		free(inodedep->id_savedino1, M_SAVEDINO);
7705 		inodedep->id_savedino1 = NULL;
7706 	}
7707 	if (free_inodedep(inodedep) == 0)
7708 		panic("check_inode_unwritten: busy inode");
7709 	return (1);
7710 }
7711 
7712 static int
7713 check_inodedep_free(inodedep)
7714 	struct inodedep *inodedep;
7715 {
7716 
7717 	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
7718 	if ((inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
7719 	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
7720 	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
7721 	    !LIST_EMPTY(&inodedep->id_bufwait) ||
7722 	    !LIST_EMPTY(&inodedep->id_inowait) ||
7723 	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
7724 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
7725 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
7726 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
7727 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
7728 	    !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
7729 	    inodedep->id_mkdiradd != NULL ||
7730 	    inodedep->id_nlinkdelta != 0 ||
7731 	    inodedep->id_savedino1 != NULL)
7732 		return (0);
7733 	return (1);
7734 }
7735 
7736 /*
7737  * Try to free an inodedep structure. Return 1 if it could be freed.
7738  */
7739 static int
7740 free_inodedep(inodedep)
7741 	struct inodedep *inodedep;
7742 {
7743 
7744 	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
7745 	if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 ||
7746 	    !check_inodedep_free(inodedep))
7747 		return (0);
7748 	if (inodedep->id_state & ONDEPLIST)
7749 		LIST_REMOVE(inodedep, id_deps);
7750 	LIST_REMOVE(inodedep, id_hash);
7751 	WORKITEM_FREE(inodedep, D_INODEDEP);
7752 	return (1);
7753 }
7754 
7755 /*
7756  * Free the block referenced by a freework structure.  The parent freeblks
7757  * structure is released and completed when the final cg bitmap reaches
7758  * the disk.  This routine may be freeing a jnewblk which never made it to
7759  * disk in which case we do not have to wait as the operation is undone
7760  * in memory immediately.
7761  */
7762 static void
7763 freework_freeblock(freework, key)
7764 	struct freework *freework;
7765 	u_long key;
7766 {
7767 	struct freeblks *freeblks;
7768 	struct jnewblk *jnewblk;
7769 	struct ufsmount *ump;
7770 	struct workhead wkhd;
7771 	struct fs *fs;
7772 	int bsize;
7773 	int needj;
7774 
7775 	ump = VFSTOUFS(freework->fw_list.wk_mp);
7776 	LOCK_OWNED(ump);
7777 	/*
7778 	 * Handle partial truncate separately.
7779 	 */
7780 	if (freework->fw_indir) {
7781 		complete_trunc_indir(freework);
7782 		return;
7783 	}
7784 	freeblks = freework->fw_freeblks;
7785 	fs = ump->um_fs;
7786 	needj = MOUNTEDSUJ(freeblks->fb_list.wk_mp) != 0;
7787 	bsize = lfragtosize(fs, freework->fw_frags);
7788 	LIST_INIT(&wkhd);
7789 	/*
7790 	 * DEPCOMPLETE is cleared in indirblk_insert() if the block lives
7791 	 * on the indirblk hashtable and prevents premature freeing.
7792 	 */
7793 	freework->fw_state |= DEPCOMPLETE;
7794 	/*
7795 	 * SUJ needs to wait for the segment referencing freed indirect
7796 	 * blocks to expire so that we know the checker will not confuse
7797 	 * a re-allocated indirect block with its old contents.
7798 	 */
7799 	if (needj && freework->fw_lbn <= -UFS_NDADDR)
7800 		indirblk_insert(freework);
7801 	/*
7802 	 * If we are canceling an existing jnewblk pass it to the free
7803 	 * routine, otherwise pass the freeblk which will ultimately
7804 	 * release the freeblks.  If we're not journaling, we can just
7805 	 * free the freeblks immediately.
7806 	 */
7807 	jnewblk = freework->fw_jnewblk;
7808 	if (jnewblk != NULL) {
7809 		cancel_jnewblk(jnewblk, &wkhd);
7810 		needj = 0;
7811 	} else if (needj) {
7812 		freework->fw_state |= DELAYEDFREE;
7813 		freeblks->fb_cgwait++;
7814 		WORKLIST_INSERT(&wkhd, &freework->fw_list);
7815 	}
7816 	FREE_LOCK(ump);
7817 	freeblks_free(ump, freeblks, btodb(bsize));
7818 	CTR4(KTR_SUJ,
7819 	    "freework_freeblock: ino %jd blkno %jd lbn %jd size %d",
7820 	    freeblks->fb_inum, freework->fw_blkno, freework->fw_lbn, bsize);
7821 	ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno, bsize,
7822 	    freeblks->fb_inum, freeblks->fb_vtype, &wkhd, key);
7823 	ACQUIRE_LOCK(ump);
7824 	/*
7825 	 * The jnewblk will be discarded and the bits in the map never
7826 	 * made it to disk.  We can immediately free the freeblk.
7827 	 */
7828 	if (needj == 0)
7829 		handle_written_freework(freework);
7830 }
7831 
7832 /*
7833  * We enqueue freework items that need processing back on the freeblks and
7834  * add the freeblks to the worklist.  This makes it easier to find all work
7835  * required to flush a truncation in process_truncates().
7836  */
7837 static void
7838 freework_enqueue(freework)
7839 	struct freework *freework;
7840 {
7841 	struct freeblks *freeblks;
7842 
7843 	freeblks = freework->fw_freeblks;
7844 	if ((freework->fw_state & INPROGRESS) == 0)
7845 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
7846 	if ((freeblks->fb_state &
7847 	    (ONWORKLIST | INPROGRESS | ALLCOMPLETE)) == ALLCOMPLETE &&
7848 	    LIST_EMPTY(&freeblks->fb_jblkdephd))
7849 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
7850 }
7851 
7852 /*
7853  * Start, continue, or finish the process of freeing an indirect block tree.
7854  * The free operation may be paused at any point with fw_off containing the
7855  * offset to restart from.  This enables us to implement some flow control
7856  * for large truncates which may fan out and generate a huge number of
7857  * dependencies.
7858  */
7859 static void
7860 handle_workitem_indirblk(freework)
7861 	struct freework *freework;
7862 {
7863 	struct freeblks *freeblks;
7864 	struct ufsmount *ump;
7865 	struct fs *fs;
7866 
7867 	freeblks = freework->fw_freeblks;
7868 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7869 	fs = ump->um_fs;
7870 	if (freework->fw_state & DEPCOMPLETE) {
7871 		handle_written_freework(freework);
7872 		return;
7873 	}
7874 	if (freework->fw_off == NINDIR(fs)) {
7875 		freework_freeblock(freework, SINGLETON_KEY);
7876 		return;
7877 	}
7878 	freework->fw_state |= INPROGRESS;
7879 	FREE_LOCK(ump);
7880 	indir_trunc(freework, fsbtodb(fs, freework->fw_blkno),
7881 	    freework->fw_lbn);
7882 	ACQUIRE_LOCK(ump);
7883 }
7884 
7885 /*
7886  * Called when a freework structure attached to a cg buf is written.  The
7887  * ref on either the parent or the freeblks structure is released and
7888  * the freeblks is added back to the worklist if there is more work to do.
7889  */
7890 static void
7891 handle_written_freework(freework)
7892 	struct freework *freework;
7893 {
7894 	struct freeblks *freeblks;
7895 	struct freework *parent;
7896 
7897 	freeblks = freework->fw_freeblks;
7898 	parent = freework->fw_parent;
7899 	if (freework->fw_state & DELAYEDFREE)
7900 		freeblks->fb_cgwait--;
7901 	freework->fw_state |= COMPLETE;
7902 	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
7903 		WORKITEM_FREE(freework, D_FREEWORK);
7904 	if (parent) {
7905 		if (--parent->fw_ref == 0)
7906 			freework_enqueue(parent);
7907 		return;
7908 	}
7909 	if (--freeblks->fb_ref != 0)
7910 		return;
7911 	if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST | INPROGRESS)) ==
7912 	    ALLCOMPLETE && LIST_EMPTY(&freeblks->fb_jblkdephd))
7913 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
7914 }
7915 
7916 /*
7917  * This workitem routine performs the block de-allocation.
7918  * The workitem is added to the pending list after the updated
7919  * inode block has been written to disk.  As mentioned above,
7920  * checks regarding the number of blocks de-allocated (compared
7921  * to the number of blocks allocated for the file) are also
7922  * performed in this function.
7923  */
7924 static int
7925 handle_workitem_freeblocks(freeblks, flags)
7926 	struct freeblks *freeblks;
7927 	int flags;
7928 {
7929 	struct freework *freework;
7930 	struct newblk *newblk;
7931 	struct allocindir *aip;
7932 	struct ufsmount *ump;
7933 	struct worklist *wk;
7934 	u_long key;
7935 
7936 	KASSERT(LIST_EMPTY(&freeblks->fb_jblkdephd),
7937 	    ("handle_workitem_freeblocks: Journal entries not written."));
7938 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7939 	key = ffs_blkrelease_start(ump, freeblks->fb_devvp, freeblks->fb_inum);
7940 	ACQUIRE_LOCK(ump);
7941 	while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) {
7942 		WORKLIST_REMOVE(wk);
7943 		switch (wk->wk_type) {
7944 		case D_DIRREM:
7945 			wk->wk_state |= COMPLETE;
7946 			add_to_worklist(wk, 0);
7947 			continue;
7948 
7949 		case D_ALLOCDIRECT:
7950 			free_newblk(WK_NEWBLK(wk));
7951 			continue;
7952 
7953 		case D_ALLOCINDIR:
7954 			aip = WK_ALLOCINDIR(wk);
7955 			freework = NULL;
7956 			if (aip->ai_state & DELAYEDFREE) {
7957 				FREE_LOCK(ump);
7958 				freework = newfreework(ump, freeblks, NULL,
7959 				    aip->ai_lbn, aip->ai_newblkno,
7960 				    ump->um_fs->fs_frag, 0, 0);
7961 				ACQUIRE_LOCK(ump);
7962 			}
7963 			newblk = WK_NEWBLK(wk);
7964 			if (newblk->nb_jnewblk) {
7965 				freework->fw_jnewblk = newblk->nb_jnewblk;
7966 				newblk->nb_jnewblk->jn_dep = &freework->fw_list;
7967 				newblk->nb_jnewblk = NULL;
7968 			}
7969 			free_newblk(newblk);
7970 			continue;
7971 
7972 		case D_FREEWORK:
7973 			freework = WK_FREEWORK(wk);
7974 			if (freework->fw_lbn <= -UFS_NDADDR)
7975 				handle_workitem_indirblk(freework);
7976 			else
7977 				freework_freeblock(freework, key);
7978 			continue;
7979 		default:
7980 			panic("handle_workitem_freeblocks: Unknown type %s",
7981 			    TYPENAME(wk->wk_type));
7982 		}
7983 	}
7984 	if (freeblks->fb_ref != 0) {
7985 		freeblks->fb_state &= ~INPROGRESS;
7986 		wake_worklist(&freeblks->fb_list);
7987 		freeblks = NULL;
7988 	}
7989 	FREE_LOCK(ump);
7990 	ffs_blkrelease_finish(ump, key);
7991 	if (freeblks)
7992 		return handle_complete_freeblocks(freeblks, flags);
7993 	return (0);
7994 }
7995 
7996 /*
7997  * Handle completion of block free via truncate.  This allows fs_pending
7998  * to track the actual free block count more closely than if we only updated
7999  * it at the end.  We must be careful to handle cases where the block count
8000  * on free was incorrect.
8001  */
8002 static void
8003 freeblks_free(ump, freeblks, blocks)
8004 	struct ufsmount *ump;
8005 	struct freeblks *freeblks;
8006 	int blocks;
8007 {
8008 	struct fs *fs;
8009 	ufs2_daddr_t remain;
8010 
8011 	UFS_LOCK(ump);
8012 	remain = -freeblks->fb_chkcnt;
8013 	freeblks->fb_chkcnt += blocks;
8014 	if (remain > 0) {
8015 		if (remain < blocks)
8016 			blocks = remain;
8017 		fs = ump->um_fs;
8018 		fs->fs_pendingblocks -= blocks;
8019 	}
8020 	UFS_UNLOCK(ump);
8021 }
8022 
8023 /*
8024  * Once all of the freework workitems are complete we can retire the
8025  * freeblocks dependency and any journal work awaiting completion.  This
8026  * can not be called until all other dependencies are stable on disk.
8027  */
8028 static int
8029 handle_complete_freeblocks(freeblks, flags)
8030 	struct freeblks *freeblks;
8031 	int flags;
8032 {
8033 	struct inodedep *inodedep;
8034 	struct inode *ip;
8035 	struct vnode *vp;
8036 	struct fs *fs;
8037 	struct ufsmount *ump;
8038 	ufs2_daddr_t spare;
8039 
8040 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
8041 	fs = ump->um_fs;
8042 	flags = LK_EXCLUSIVE | flags;
8043 	spare = freeblks->fb_chkcnt;
8044 
8045 	/*
8046 	 * If we did not release the expected number of blocks we may have
8047 	 * to adjust the inode block count here.  Only do so if it wasn't
8048 	 * a truncation to zero and the modrev still matches.
8049 	 */
8050 	if (spare && freeblks->fb_len != 0) {
8051 		if (ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_inum,
8052 		    flags, &vp, FFSV_FORCEINSMQ) != 0)
8053 			return (EBUSY);
8054 		ip = VTOI(vp);
8055 		if (ip->i_mode == 0) {
8056 			vgone(vp);
8057 		} else if (DIP(ip, i_modrev) == freeblks->fb_modrev) {
8058 			DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - spare);
8059 			ip->i_flag |= IN_CHANGE;
8060 			/*
8061 			 * We must wait so this happens before the
8062 			 * journal is reclaimed.
8063 			 */
8064 			ffs_update(vp, 1);
8065 		}
8066 		vput(vp);
8067 	}
8068 	if (spare < 0) {
8069 		UFS_LOCK(ump);
8070 		fs->fs_pendingblocks += spare;
8071 		UFS_UNLOCK(ump);
8072 	}
8073 #ifdef QUOTA
8074 	/* Handle spare. */
8075 	if (spare)
8076 		quotaadj(freeblks->fb_quota, ump, -spare);
8077 	quotarele(freeblks->fb_quota);
8078 #endif
8079 	ACQUIRE_LOCK(ump);
8080 	if (freeblks->fb_state & ONDEPLIST) {
8081 		inodedep_lookup(freeblks->fb_list.wk_mp, freeblks->fb_inum,
8082 		    0, &inodedep);
8083 		TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, fb_next);
8084 		freeblks->fb_state &= ~ONDEPLIST;
8085 		if (TAILQ_EMPTY(&inodedep->id_freeblklst))
8086 			free_inodedep(inodedep);
8087 	}
8088 	/*
8089 	 * All of the freeblock deps must be complete prior to this call
8090 	 * so it's now safe to complete earlier outstanding journal entries.
8091 	 */
8092 	handle_jwork(&freeblks->fb_jwork);
8093 	WORKITEM_FREE(freeblks, D_FREEBLKS);
8094 	FREE_LOCK(ump);
8095 	return (0);
8096 }
8097 
8098 /*
8099  * Release blocks associated with the freeblks and stored in the indirect
8100  * block dbn. If level is greater than SINGLE, the block is an indirect block
8101  * and recursive calls to indirtrunc must be used to cleanse other indirect
8102  * blocks.
8103  *
8104  * This handles partial and complete truncation of blocks.  Partial is noted
8105  * with goingaway == 0.  In this case the freework is completed after the
8106  * zero'd indirects are written to disk.  For full truncation the freework
8107  * is completed after the block is freed.
8108  */
8109 static void
8110 indir_trunc(freework, dbn, lbn)
8111 	struct freework *freework;
8112 	ufs2_daddr_t dbn;
8113 	ufs_lbn_t lbn;
8114 {
8115 	struct freework *nfreework;
8116 	struct workhead wkhd;
8117 	struct freeblks *freeblks;
8118 	struct buf *bp;
8119 	struct fs *fs;
8120 	struct indirdep *indirdep;
8121 	struct mount *mp;
8122 	struct ufsmount *ump;
8123 	ufs1_daddr_t *bap1;
8124 	ufs2_daddr_t nb, nnb, *bap2;
8125 	ufs_lbn_t lbnadd, nlbn;
8126 	u_long key;
8127 	int nblocks, ufs1fmt, freedblocks;
8128 	int goingaway, freedeps, needj, level, cnt, i;
8129 
8130 	freeblks = freework->fw_freeblks;
8131 	mp = freeblks->fb_list.wk_mp;
8132 	ump = VFSTOUFS(mp);
8133 	fs = ump->um_fs;
8134 	/*
8135 	 * Get buffer of block pointers to be freed.  There are three cases:
8136 	 *
8137 	 * 1) Partial truncate caches the indirdep pointer in the freework
8138 	 *    which provides us a back copy to the save bp which holds the
8139 	 *    pointers we want to clear.  When this completes the zero
8140 	 *    pointers are written to the real copy.
8141 	 * 2) The indirect is being completely truncated, cancel_indirdep()
8142 	 *    eliminated the real copy and placed the indirdep on the saved
8143 	 *    copy.  The indirdep and buf are discarded when this completes.
8144 	 * 3) The indirect was not in memory, we read a copy off of the disk
8145 	 *    using the devvp and drop and invalidate the buffer when we're
8146 	 *    done.
8147 	 */
8148 	goingaway = 1;
8149 	indirdep = NULL;
8150 	if (freework->fw_indir != NULL) {
8151 		goingaway = 0;
8152 		indirdep = freework->fw_indir;
8153 		bp = indirdep->ir_savebp;
8154 		if (bp == NULL || bp->b_blkno != dbn)
8155 			panic("indir_trunc: Bad saved buf %p blkno %jd",
8156 			    bp, (intmax_t)dbn);
8157 	} else if ((bp = incore(&freeblks->fb_devvp->v_bufobj, dbn)) != NULL) {
8158 		/*
8159 		 * The lock prevents the buf dep list from changing and
8160 	 	 * indirects on devvp should only ever have one dependency.
8161 		 */
8162 		indirdep = WK_INDIRDEP(LIST_FIRST(&bp->b_dep));
8163 		if (indirdep == NULL || (indirdep->ir_state & GOINGAWAY) == 0)
8164 			panic("indir_trunc: Bad indirdep %p from buf %p",
8165 			    indirdep, bp);
8166 	} else if (bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize,
8167 	    NOCRED, &bp) != 0) {
8168 		brelse(bp);
8169 		return;
8170 	}
8171 	ACQUIRE_LOCK(ump);
8172 	/* Protects against a race with complete_trunc_indir(). */
8173 	freework->fw_state &= ~INPROGRESS;
8174 	/*
8175 	 * If we have an indirdep we need to enforce the truncation order
8176 	 * and discard it when it is complete.
8177 	 */
8178 	if (indirdep) {
8179 		if (freework != TAILQ_FIRST(&indirdep->ir_trunc) &&
8180 		    !TAILQ_EMPTY(&indirdep->ir_trunc)) {
8181 			/*
8182 			 * Add the complete truncate to the list on the
8183 			 * indirdep to enforce in-order processing.
8184 			 */
8185 			if (freework->fw_indir == NULL)
8186 				TAILQ_INSERT_TAIL(&indirdep->ir_trunc,
8187 				    freework, fw_next);
8188 			FREE_LOCK(ump);
8189 			return;
8190 		}
8191 		/*
8192 		 * If we're goingaway, free the indirdep.  Otherwise it will
8193 		 * linger until the write completes.
8194 		 */
8195 		if (goingaway)
8196 			free_indirdep(indirdep);
8197 	}
8198 	FREE_LOCK(ump);
8199 	/* Initialize pointers depending on block size. */
8200 	if (ump->um_fstype == UFS1) {
8201 		bap1 = (ufs1_daddr_t *)bp->b_data;
8202 		nb = bap1[freework->fw_off];
8203 		ufs1fmt = 1;
8204 		bap2 = NULL;
8205 	} else {
8206 		bap2 = (ufs2_daddr_t *)bp->b_data;
8207 		nb = bap2[freework->fw_off];
8208 		ufs1fmt = 0;
8209 		bap1 = NULL;
8210 	}
8211 	level = lbn_level(lbn);
8212 	needj = MOUNTEDSUJ(UFSTOVFS(ump)) != 0;
8213 	lbnadd = lbn_offset(fs, level);
8214 	nblocks = btodb(fs->fs_bsize);
8215 	nfreework = freework;
8216 	freedeps = 0;
8217 	cnt = 0;
8218 	/*
8219 	 * Reclaim blocks.  Traverses into nested indirect levels and
8220 	 * arranges for the current level to be freed when subordinates
8221 	 * are free when journaling.
8222 	 */
8223 	key = ffs_blkrelease_start(ump, freeblks->fb_devvp, freeblks->fb_inum);
8224 	for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) {
8225 		if (UFS_CHECK_BLKNO(mp, freeblks->fb_inum, nb,
8226 		    fs->fs_bsize) != 0)
8227 			nb = 0;
8228 		if (i != NINDIR(fs) - 1) {
8229 			if (ufs1fmt)
8230 				nnb = bap1[i+1];
8231 			else
8232 				nnb = bap2[i+1];
8233 		} else
8234 			nnb = 0;
8235 		if (nb == 0)
8236 			continue;
8237 		cnt++;
8238 		if (level != 0) {
8239 			nlbn = (lbn + 1) - (i * lbnadd);
8240 			if (needj != 0) {
8241 				nfreework = newfreework(ump, freeblks, freework,
8242 				    nlbn, nb, fs->fs_frag, 0, 0);
8243 				freedeps++;
8244 			}
8245 			indir_trunc(nfreework, fsbtodb(fs, nb), nlbn);
8246 		} else {
8247 			struct freedep *freedep;
8248 
8249 			/*
8250 			 * Attempt to aggregate freedep dependencies for
8251 			 * all blocks being released to the same CG.
8252 			 */
8253 			LIST_INIT(&wkhd);
8254 			if (needj != 0 &&
8255 			    (nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) {
8256 				freedep = newfreedep(freework);
8257 				WORKLIST_INSERT_UNLOCKED(&wkhd,
8258 				    &freedep->fd_list);
8259 				freedeps++;
8260 			}
8261 			CTR3(KTR_SUJ,
8262 			    "indir_trunc: ino %jd blkno %jd size %d",
8263 			    freeblks->fb_inum, nb, fs->fs_bsize);
8264 			ffs_blkfree(ump, fs, freeblks->fb_devvp, nb,
8265 			    fs->fs_bsize, freeblks->fb_inum,
8266 			    freeblks->fb_vtype, &wkhd, key);
8267 		}
8268 	}
8269 	ffs_blkrelease_finish(ump, key);
8270 	if (goingaway) {
8271 		bp->b_flags |= B_INVAL | B_NOCACHE;
8272 		brelse(bp);
8273 	}
8274 	freedblocks = 0;
8275 	if (level == 0)
8276 		freedblocks = (nblocks * cnt);
8277 	if (needj == 0)
8278 		freedblocks += nblocks;
8279 	freeblks_free(ump, freeblks, freedblocks);
8280 	/*
8281 	 * If we are journaling set up the ref counts and offset so this
8282 	 * indirect can be completed when its children are free.
8283 	 */
8284 	if (needj) {
8285 		ACQUIRE_LOCK(ump);
8286 		freework->fw_off = i;
8287 		freework->fw_ref += freedeps;
8288 		freework->fw_ref -= NINDIR(fs) + 1;
8289 		if (level == 0)
8290 			freeblks->fb_cgwait += freedeps;
8291 		if (freework->fw_ref == 0)
8292 			freework_freeblock(freework, SINGLETON_KEY);
8293 		FREE_LOCK(ump);
8294 		return;
8295 	}
8296 	/*
8297 	 * If we're not journaling we can free the indirect now.
8298 	 */
8299 	dbn = dbtofsb(fs, dbn);
8300 	CTR3(KTR_SUJ,
8301 	    "indir_trunc 2: ino %jd blkno %jd size %d",
8302 	    freeblks->fb_inum, dbn, fs->fs_bsize);
8303 	ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize,
8304 	    freeblks->fb_inum, freeblks->fb_vtype, NULL, SINGLETON_KEY);
8305 	/* Non SUJ softdep does single-threaded truncations. */
8306 	if (freework->fw_blkno == dbn) {
8307 		freework->fw_state |= ALLCOMPLETE;
8308 		ACQUIRE_LOCK(ump);
8309 		handle_written_freework(freework);
8310 		FREE_LOCK(ump);
8311 	}
8312 	return;
8313 }
8314 
8315 /*
8316  * Cancel an allocindir when it is removed via truncation.  When bp is not
8317  * NULL the indirect never appeared on disk and is scheduled to be freed
8318  * independently of the indir so we can more easily track journal work.
8319  */
8320 static void
8321 cancel_allocindir(aip, bp, freeblks, trunc)
8322 	struct allocindir *aip;
8323 	struct buf *bp;
8324 	struct freeblks *freeblks;
8325 	int trunc;
8326 {
8327 	struct indirdep *indirdep;
8328 	struct freefrag *freefrag;
8329 	struct newblk *newblk;
8330 
8331 	newblk = (struct newblk *)aip;
8332 	LIST_REMOVE(aip, ai_next);
8333 	/*
8334 	 * We must eliminate the pointer in bp if it must be freed on its
8335 	 * own due to partial truncate or pending journal work.
8336 	 */
8337 	if (bp && (trunc || newblk->nb_jnewblk)) {
8338 		/*
8339 		 * Clear the pointer and mark the aip to be freed
8340 		 * directly if it never existed on disk.
8341 		 */
8342 		aip->ai_state |= DELAYEDFREE;
8343 		indirdep = aip->ai_indirdep;
8344 		if (indirdep->ir_state & UFS1FMT)
8345 			((ufs1_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
8346 		else
8347 			((ufs2_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
8348 	}
8349 	/*
8350 	 * When truncating the previous pointer will be freed via
8351 	 * savedbp.  Eliminate the freefrag which would dup free.
8352 	 */
8353 	if (trunc && (freefrag = newblk->nb_freefrag) != NULL) {
8354 		newblk->nb_freefrag = NULL;
8355 		if (freefrag->ff_jdep)
8356 			cancel_jfreefrag(
8357 			    WK_JFREEFRAG(freefrag->ff_jdep));
8358 		jwork_move(&freeblks->fb_jwork, &freefrag->ff_jwork);
8359 		WORKITEM_FREE(freefrag, D_FREEFRAG);
8360 	}
8361 	/*
8362 	 * If the journal hasn't been written the jnewblk must be passed
8363 	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
8364 	 * this by leaving the journal dependency on the newblk to be freed
8365 	 * when a freework is created in handle_workitem_freeblocks().
8366 	 */
8367 	cancel_newblk(newblk, NULL, &freeblks->fb_jwork);
8368 	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
8369 }
8370 
8371 /*
8372  * Create the mkdir dependencies for . and .. in a new directory.  Link them
8373  * in to a newdirblk so any subsequent additions are tracked properly.  The
8374  * caller is responsible for adding the mkdir1 dependency to the journal
8375  * and updating id_mkdiradd.  This function returns with the per-filesystem
8376  * lock held.
8377  */
8378 static struct mkdir *
8379 setup_newdir(dap, newinum, dinum, newdirbp, mkdirp)
8380 	struct diradd *dap;
8381 	ino_t newinum;
8382 	ino_t dinum;
8383 	struct buf *newdirbp;
8384 	struct mkdir **mkdirp;
8385 {
8386 	struct newblk *newblk;
8387 	struct pagedep *pagedep;
8388 	struct inodedep *inodedep;
8389 	struct newdirblk *newdirblk;
8390 	struct mkdir *mkdir1, *mkdir2;
8391 	struct worklist *wk;
8392 	struct jaddref *jaddref;
8393 	struct ufsmount *ump;
8394 	struct mount *mp;
8395 
8396 	mp = dap->da_list.wk_mp;
8397 	ump = VFSTOUFS(mp);
8398 	newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK,
8399 	    M_SOFTDEP_FLAGS);
8400 	workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
8401 	LIST_INIT(&newdirblk->db_mkdir);
8402 	mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
8403 	workitem_alloc(&mkdir1->md_list, D_MKDIR, mp);
8404 	mkdir1->md_state = ATTACHED | MKDIR_BODY;
8405 	mkdir1->md_diradd = dap;
8406 	mkdir1->md_jaddref = NULL;
8407 	mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
8408 	workitem_alloc(&mkdir2->md_list, D_MKDIR, mp);
8409 	mkdir2->md_state = ATTACHED | MKDIR_PARENT;
8410 	mkdir2->md_diradd = dap;
8411 	mkdir2->md_jaddref = NULL;
8412 	if (MOUNTEDSUJ(mp) == 0) {
8413 		mkdir1->md_state |= DEPCOMPLETE;
8414 		mkdir2->md_state |= DEPCOMPLETE;
8415 	}
8416 	/*
8417 	 * Dependency on "." and ".." being written to disk.
8418 	 */
8419 	mkdir1->md_buf = newdirbp;
8420 	ACQUIRE_LOCK(VFSTOUFS(mp));
8421 	LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir1, md_mkdirs);
8422 	/*
8423 	 * We must link the pagedep, allocdirect, and newdirblk for
8424 	 * the initial file page so the pointer to the new directory
8425 	 * is not written until the directory contents are live and
8426 	 * any subsequent additions are not marked live until the
8427 	 * block is reachable via the inode.
8428 	 */
8429 	if (pagedep_lookup(mp, newdirbp, newinum, 0, 0, &pagedep) == 0)
8430 		panic("setup_newdir: lost pagedep");
8431 	LIST_FOREACH(wk, &newdirbp->b_dep, wk_list)
8432 		if (wk->wk_type == D_ALLOCDIRECT)
8433 			break;
8434 	if (wk == NULL)
8435 		panic("setup_newdir: lost allocdirect");
8436 	if (pagedep->pd_state & NEWBLOCK)
8437 		panic("setup_newdir: NEWBLOCK already set");
8438 	newblk = WK_NEWBLK(wk);
8439 	pagedep->pd_state |= NEWBLOCK;
8440 	pagedep->pd_newdirblk = newdirblk;
8441 	newdirblk->db_pagedep = pagedep;
8442 	WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
8443 	WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list);
8444 	/*
8445 	 * Look up the inodedep for the parent directory so that we
8446 	 * can link mkdir2 into the pending dotdot jaddref or
8447 	 * the inode write if there is none.  If the inode is
8448 	 * ALLCOMPLETE and no jaddref is present all dependencies have
8449 	 * been satisfied and mkdir2 can be freed.
8450 	 */
8451 	inodedep_lookup(mp, dinum, 0, &inodedep);
8452 	if (MOUNTEDSUJ(mp)) {
8453 		if (inodedep == NULL)
8454 			panic("setup_newdir: Lost parent.");
8455 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8456 		    inoreflst);
8457 		KASSERT(jaddref != NULL && jaddref->ja_parent == newinum &&
8458 		    (jaddref->ja_state & MKDIR_PARENT),
8459 		    ("setup_newdir: bad dotdot jaddref %p", jaddref));
8460 		LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs);
8461 		mkdir2->md_jaddref = jaddref;
8462 		jaddref->ja_mkdir = mkdir2;
8463 	} else if (inodedep == NULL ||
8464 	    (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
8465 		dap->da_state &= ~MKDIR_PARENT;
8466 		WORKITEM_FREE(mkdir2, D_MKDIR);
8467 		mkdir2 = NULL;
8468 	} else {
8469 		LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs);
8470 		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir2->md_list);
8471 	}
8472 	*mkdirp = mkdir2;
8473 
8474 	return (mkdir1);
8475 }
8476 
8477 /*
8478  * Directory entry addition dependencies.
8479  *
8480  * When adding a new directory entry, the inode (with its incremented link
8481  * count) must be written to disk before the directory entry's pointer to it.
8482  * Also, if the inode is newly allocated, the corresponding freemap must be
8483  * updated (on disk) before the directory entry's pointer. These requirements
8484  * are met via undo/redo on the directory entry's pointer, which consists
8485  * simply of the inode number.
8486  *
8487  * As directory entries are added and deleted, the free space within a
8488  * directory block can become fragmented.  The ufs filesystem will compact
8489  * a fragmented directory block to make space for a new entry. When this
8490  * occurs, the offsets of previously added entries change. Any "diradd"
8491  * dependency structures corresponding to these entries must be updated with
8492  * the new offsets.
8493  */
8494 
8495 /*
8496  * This routine is called after the in-memory inode's link
8497  * count has been incremented, but before the directory entry's
8498  * pointer to the inode has been set.
8499  */
8500 int
8501 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
8502 	struct buf *bp;		/* buffer containing directory block */
8503 	struct inode *dp;	/* inode for directory */
8504 	off_t diroffset;	/* offset of new entry in directory */
8505 	ino_t newinum;		/* inode referenced by new directory entry */
8506 	struct buf *newdirbp;	/* non-NULL => contents of new mkdir */
8507 	int isnewblk;		/* entry is in a newly allocated block */
8508 {
8509 	int offset;		/* offset of new entry within directory block */
8510 	ufs_lbn_t lbn;		/* block in directory containing new entry */
8511 	struct fs *fs;
8512 	struct diradd *dap;
8513 	struct newblk *newblk;
8514 	struct pagedep *pagedep;
8515 	struct inodedep *inodedep;
8516 	struct newdirblk *newdirblk;
8517 	struct mkdir *mkdir1, *mkdir2;
8518 	struct jaddref *jaddref;
8519 	struct ufsmount *ump;
8520 	struct mount *mp;
8521 	int isindir;
8522 
8523 	mp = ITOVFS(dp);
8524 	ump = VFSTOUFS(mp);
8525 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
8526 	    ("softdep_setup_directory_add called on non-softdep filesystem"));
8527 	/*
8528 	 * Whiteouts have no dependencies.
8529 	 */
8530 	if (newinum == UFS_WINO) {
8531 		if (newdirbp != NULL)
8532 			bdwrite(newdirbp);
8533 		return (0);
8534 	}
8535 	jaddref = NULL;
8536 	mkdir1 = mkdir2 = NULL;
8537 	fs = ump->um_fs;
8538 	lbn = lblkno(fs, diroffset);
8539 	offset = blkoff(fs, diroffset);
8540 	dap = malloc(sizeof(struct diradd), M_DIRADD,
8541 		M_SOFTDEP_FLAGS|M_ZERO);
8542 	workitem_alloc(&dap->da_list, D_DIRADD, mp);
8543 	dap->da_offset = offset;
8544 	dap->da_newinum = newinum;
8545 	dap->da_state = ATTACHED;
8546 	LIST_INIT(&dap->da_jwork);
8547 	isindir = bp->b_lblkno >= UFS_NDADDR;
8548 	newdirblk = NULL;
8549 	if (isnewblk &&
8550 	    (isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) {
8551 		newdirblk = malloc(sizeof(struct newdirblk),
8552 		    M_NEWDIRBLK, M_SOFTDEP_FLAGS);
8553 		workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
8554 		LIST_INIT(&newdirblk->db_mkdir);
8555 	}
8556 	/*
8557 	 * If we're creating a new directory setup the dependencies and set
8558 	 * the dap state to wait for them.  Otherwise it's COMPLETE and
8559 	 * we can move on.
8560 	 */
8561 	if (newdirbp == NULL) {
8562 		dap->da_state |= DEPCOMPLETE;
8563 		ACQUIRE_LOCK(ump);
8564 	} else {
8565 		dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
8566 		mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp,
8567 		    &mkdir2);
8568 	}
8569 	/*
8570 	 * Link into parent directory pagedep to await its being written.
8571 	 */
8572 	pagedep_lookup(mp, bp, dp->i_number, lbn, DEPALLOC, &pagedep);
8573 #ifdef INVARIANTS
8574 	if (diradd_lookup(pagedep, offset) != NULL)
8575 		panic("softdep_setup_directory_add: %p already at off %d\n",
8576 		    diradd_lookup(pagedep, offset), offset);
8577 #endif
8578 	dap->da_pagedep = pagedep;
8579 	LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
8580 	    da_pdlist);
8581 	inodedep_lookup(mp, newinum, DEPALLOC, &inodedep);
8582 	/*
8583 	 * If we're journaling, link the diradd into the jaddref so it
8584 	 * may be completed after the journal entry is written.  Otherwise,
8585 	 * link the diradd into its inodedep.  If the inode is not yet
8586 	 * written place it on the bufwait list, otherwise do the post-inode
8587 	 * write processing to put it on the id_pendinghd list.
8588 	 */
8589 	if (MOUNTEDSUJ(mp)) {
8590 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8591 		    inoreflst);
8592 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
8593 		    ("softdep_setup_directory_add: bad jaddref %p", jaddref));
8594 		jaddref->ja_diroff = diroffset;
8595 		jaddref->ja_diradd = dap;
8596 		add_to_journal(&jaddref->ja_list);
8597 	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
8598 		diradd_inode_written(dap, inodedep);
8599 	else
8600 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
8601 	/*
8602 	 * Add the journal entries for . and .. links now that the primary
8603 	 * link is written.
8604 	 */
8605 	if (mkdir1 != NULL && MOUNTEDSUJ(mp)) {
8606 		jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
8607 		    inoreflst, if_deps);
8608 		KASSERT(jaddref != NULL &&
8609 		    jaddref->ja_ino == jaddref->ja_parent &&
8610 		    (jaddref->ja_state & MKDIR_BODY),
8611 		    ("softdep_setup_directory_add: bad dot jaddref %p",
8612 		    jaddref));
8613 		mkdir1->md_jaddref = jaddref;
8614 		jaddref->ja_mkdir = mkdir1;
8615 		/*
8616 		 * It is important that the dotdot journal entry
8617 		 * is added prior to the dot entry since dot writes
8618 		 * both the dot and dotdot links.  These both must
8619 		 * be added after the primary link for the journal
8620 		 * to remain consistent.
8621 		 */
8622 		add_to_journal(&mkdir2->md_jaddref->ja_list);
8623 		add_to_journal(&jaddref->ja_list);
8624 	}
8625 	/*
8626 	 * If we are adding a new directory remember this diradd so that if
8627 	 * we rename it we can keep the dot and dotdot dependencies.  If
8628 	 * we are adding a new name for an inode that has a mkdiradd we
8629 	 * must be in rename and we have to move the dot and dotdot
8630 	 * dependencies to this new name.  The old name is being orphaned
8631 	 * soon.
8632 	 */
8633 	if (mkdir1 != NULL) {
8634 		if (inodedep->id_mkdiradd != NULL)
8635 			panic("softdep_setup_directory_add: Existing mkdir");
8636 		inodedep->id_mkdiradd = dap;
8637 	} else if (inodedep->id_mkdiradd)
8638 		merge_diradd(inodedep, dap);
8639 	if (newdirblk != NULL) {
8640 		/*
8641 		 * There is nothing to do if we are already tracking
8642 		 * this block.
8643 		 */
8644 		if ((pagedep->pd_state & NEWBLOCK) != 0) {
8645 			WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
8646 			FREE_LOCK(ump);
8647 			return (0);
8648 		}
8649 		if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)
8650 		    == 0)
8651 			panic("softdep_setup_directory_add: lost entry");
8652 		WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
8653 		pagedep->pd_state |= NEWBLOCK;
8654 		pagedep->pd_newdirblk = newdirblk;
8655 		newdirblk->db_pagedep = pagedep;
8656 		FREE_LOCK(ump);
8657 		/*
8658 		 * If we extended into an indirect signal direnter to sync.
8659 		 */
8660 		if (isindir)
8661 			return (1);
8662 		return (0);
8663 	}
8664 	FREE_LOCK(ump);
8665 	return (0);
8666 }
8667 
8668 /*
8669  * This procedure is called to change the offset of a directory
8670  * entry when compacting a directory block which must be owned
8671  * exclusively by the caller. Note that the actual entry movement
8672  * must be done in this procedure to ensure that no I/O completions
8673  * occur while the move is in progress.
8674  */
8675 void
8676 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
8677 	struct buf *bp;		/* Buffer holding directory block. */
8678 	struct inode *dp;	/* inode for directory */
8679 	caddr_t base;		/* address of dp->i_offset */
8680 	caddr_t oldloc;		/* address of old directory location */
8681 	caddr_t newloc;		/* address of new directory location */
8682 	int entrysize;		/* size of directory entry */
8683 {
8684 	int offset, oldoffset, newoffset;
8685 	struct pagedep *pagedep;
8686 	struct jmvref *jmvref;
8687 	struct diradd *dap;
8688 	struct direct *de;
8689 	struct mount *mp;
8690 	struct ufsmount *ump;
8691 	ufs_lbn_t lbn;
8692 	int flags;
8693 
8694 	mp = ITOVFS(dp);
8695 	ump = VFSTOUFS(mp);
8696 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
8697 	    ("softdep_change_directoryentry_offset called on "
8698 	     "non-softdep filesystem"));
8699 	de = (struct direct *)oldloc;
8700 	jmvref = NULL;
8701 	flags = 0;
8702 	/*
8703 	 * Moves are always journaled as it would be too complex to
8704 	 * determine if any affected adds or removes are present in the
8705 	 * journal.
8706 	 */
8707 	if (MOUNTEDSUJ(mp)) {
8708 		flags = DEPALLOC;
8709 		jmvref = newjmvref(dp, de->d_ino,
8710 		    dp->i_offset + (oldloc - base),
8711 		    dp->i_offset + (newloc - base));
8712 	}
8713 	lbn = lblkno(ump->um_fs, dp->i_offset);
8714 	offset = blkoff(ump->um_fs, dp->i_offset);
8715 	oldoffset = offset + (oldloc - base);
8716 	newoffset = offset + (newloc - base);
8717 	ACQUIRE_LOCK(ump);
8718 	if (pagedep_lookup(mp, bp, dp->i_number, lbn, flags, &pagedep) == 0)
8719 		goto done;
8720 	dap = diradd_lookup(pagedep, oldoffset);
8721 	if (dap) {
8722 		dap->da_offset = newoffset;
8723 		newoffset = DIRADDHASH(newoffset);
8724 		oldoffset = DIRADDHASH(oldoffset);
8725 		if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE &&
8726 		    newoffset != oldoffset) {
8727 			LIST_REMOVE(dap, da_pdlist);
8728 			LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset],
8729 			    dap, da_pdlist);
8730 		}
8731 	}
8732 done:
8733 	if (jmvref) {
8734 		jmvref->jm_pagedep = pagedep;
8735 		LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps);
8736 		add_to_journal(&jmvref->jm_list);
8737 	}
8738 	bcopy(oldloc, newloc, entrysize);
8739 	FREE_LOCK(ump);
8740 }
8741 
8742 /*
8743  * Move the mkdir dependencies and journal work from one diradd to another
8744  * when renaming a directory.  The new name must depend on the mkdir deps
8745  * completing as the old name did.  Directories can only have one valid link
8746  * at a time so one must be canonical.
8747  */
8748 static void
8749 merge_diradd(inodedep, newdap)
8750 	struct inodedep *inodedep;
8751 	struct diradd *newdap;
8752 {
8753 	struct diradd *olddap;
8754 	struct mkdir *mkdir, *nextmd;
8755 	struct ufsmount *ump;
8756 	short state;
8757 
8758 	olddap = inodedep->id_mkdiradd;
8759 	inodedep->id_mkdiradd = newdap;
8760 	if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8761 		newdap->da_state &= ~DEPCOMPLETE;
8762 		ump = VFSTOUFS(inodedep->id_list.wk_mp);
8763 		for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
8764 		     mkdir = nextmd) {
8765 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
8766 			if (mkdir->md_diradd != olddap)
8767 				continue;
8768 			mkdir->md_diradd = newdap;
8769 			state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY);
8770 			newdap->da_state |= state;
8771 			olddap->da_state &= ~state;
8772 			if ((olddap->da_state &
8773 			    (MKDIR_PARENT | MKDIR_BODY)) == 0)
8774 				break;
8775 		}
8776 		if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
8777 			panic("merge_diradd: unfound ref");
8778 	}
8779 	/*
8780 	 * Any mkdir related journal items are not safe to be freed until
8781 	 * the new name is stable.
8782 	 */
8783 	jwork_move(&newdap->da_jwork, &olddap->da_jwork);
8784 	olddap->da_state |= DEPCOMPLETE;
8785 	complete_diradd(olddap);
8786 }
8787 
8788 /*
8789  * Move the diradd to the pending list when all diradd dependencies are
8790  * complete.
8791  */
8792 static void
8793 complete_diradd(dap)
8794 	struct diradd *dap;
8795 {
8796 	struct pagedep *pagedep;
8797 
8798 	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
8799 		if (dap->da_state & DIRCHG)
8800 			pagedep = dap->da_previous->dm_pagedep;
8801 		else
8802 			pagedep = dap->da_pagedep;
8803 		LIST_REMOVE(dap, da_pdlist);
8804 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
8805 	}
8806 }
8807 
8808 /*
8809  * Cancel a diradd when a dirrem overlaps with it.  We must cancel the journal
8810  * add entries and conditonally journal the remove.
8811  */
8812 static void
8813 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref)
8814 	struct diradd *dap;
8815 	struct dirrem *dirrem;
8816 	struct jremref *jremref;
8817 	struct jremref *dotremref;
8818 	struct jremref *dotdotremref;
8819 {
8820 	struct inodedep *inodedep;
8821 	struct jaddref *jaddref;
8822 	struct inoref *inoref;
8823 	struct ufsmount *ump;
8824 	struct mkdir *mkdir;
8825 
8826 	/*
8827 	 * If no remove references were allocated we're on a non-journaled
8828 	 * filesystem and can skip the cancel step.
8829 	 */
8830 	if (jremref == NULL) {
8831 		free_diradd(dap, NULL);
8832 		return;
8833 	}
8834 	/*
8835 	 * Cancel the primary name an free it if it does not require
8836 	 * journaling.
8837 	 */
8838 	if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum,
8839 	    0, &inodedep) != 0) {
8840 		/* Abort the addref that reference this diradd.  */
8841 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
8842 			if (inoref->if_list.wk_type != D_JADDREF)
8843 				continue;
8844 			jaddref = (struct jaddref *)inoref;
8845 			if (jaddref->ja_diradd != dap)
8846 				continue;
8847 			if (cancel_jaddref(jaddref, inodedep,
8848 			    &dirrem->dm_jwork) == 0) {
8849 				free_jremref(jremref);
8850 				jremref = NULL;
8851 			}
8852 			break;
8853 		}
8854 	}
8855 	/*
8856 	 * Cancel subordinate names and free them if they do not require
8857 	 * journaling.
8858 	 */
8859 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8860 		ump = VFSTOUFS(dap->da_list.wk_mp);
8861 		LIST_FOREACH(mkdir, &ump->softdep_mkdirlisthd, md_mkdirs) {
8862 			if (mkdir->md_diradd != dap)
8863 				continue;
8864 			if ((jaddref = mkdir->md_jaddref) == NULL)
8865 				continue;
8866 			mkdir->md_jaddref = NULL;
8867 			if (mkdir->md_state & MKDIR_PARENT) {
8868 				if (cancel_jaddref(jaddref, NULL,
8869 				    &dirrem->dm_jwork) == 0) {
8870 					free_jremref(dotdotremref);
8871 					dotdotremref = NULL;
8872 				}
8873 			} else {
8874 				if (cancel_jaddref(jaddref, inodedep,
8875 				    &dirrem->dm_jwork) == 0) {
8876 					free_jremref(dotremref);
8877 					dotremref = NULL;
8878 				}
8879 			}
8880 		}
8881 	}
8882 
8883 	if (jremref)
8884 		journal_jremref(dirrem, jremref, inodedep);
8885 	if (dotremref)
8886 		journal_jremref(dirrem, dotremref, inodedep);
8887 	if (dotdotremref)
8888 		journal_jremref(dirrem, dotdotremref, NULL);
8889 	jwork_move(&dirrem->dm_jwork, &dap->da_jwork);
8890 	free_diradd(dap, &dirrem->dm_jwork);
8891 }
8892 
8893 /*
8894  * Free a diradd dependency structure.
8895  */
8896 static void
8897 free_diradd(dap, wkhd)
8898 	struct diradd *dap;
8899 	struct workhead *wkhd;
8900 {
8901 	struct dirrem *dirrem;
8902 	struct pagedep *pagedep;
8903 	struct inodedep *inodedep;
8904 	struct mkdir *mkdir, *nextmd;
8905 	struct ufsmount *ump;
8906 
8907 	ump = VFSTOUFS(dap->da_list.wk_mp);
8908 	LOCK_OWNED(ump);
8909 	LIST_REMOVE(dap, da_pdlist);
8910 	if (dap->da_state & ONWORKLIST)
8911 		WORKLIST_REMOVE(&dap->da_list);
8912 	if ((dap->da_state & DIRCHG) == 0) {
8913 		pagedep = dap->da_pagedep;
8914 	} else {
8915 		dirrem = dap->da_previous;
8916 		pagedep = dirrem->dm_pagedep;
8917 		dirrem->dm_dirinum = pagedep->pd_ino;
8918 		dirrem->dm_state |= COMPLETE;
8919 		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
8920 			add_to_worklist(&dirrem->dm_list, 0);
8921 	}
8922 	if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum,
8923 	    0, &inodedep) != 0)
8924 		if (inodedep->id_mkdiradd == dap)
8925 			inodedep->id_mkdiradd = NULL;
8926 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8927 		for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
8928 		     mkdir = nextmd) {
8929 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
8930 			if (mkdir->md_diradd != dap)
8931 				continue;
8932 			dap->da_state &=
8933 			    ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
8934 			LIST_REMOVE(mkdir, md_mkdirs);
8935 			if (mkdir->md_state & ONWORKLIST)
8936 				WORKLIST_REMOVE(&mkdir->md_list);
8937 			if (mkdir->md_jaddref != NULL)
8938 				panic("free_diradd: Unexpected jaddref");
8939 			WORKITEM_FREE(mkdir, D_MKDIR);
8940 			if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
8941 				break;
8942 		}
8943 		if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
8944 			panic("free_diradd: unfound ref");
8945 	}
8946 	if (inodedep)
8947 		free_inodedep(inodedep);
8948 	/*
8949 	 * Free any journal segments waiting for the directory write.
8950 	 */
8951 	handle_jwork(&dap->da_jwork);
8952 	WORKITEM_FREE(dap, D_DIRADD);
8953 }
8954 
8955 /*
8956  * Directory entry removal dependencies.
8957  *
8958  * When removing a directory entry, the entry's inode pointer must be
8959  * zero'ed on disk before the corresponding inode's link count is decremented
8960  * (possibly freeing the inode for re-use). This dependency is handled by
8961  * updating the directory entry but delaying the inode count reduction until
8962  * after the directory block has been written to disk. After this point, the
8963  * inode count can be decremented whenever it is convenient.
8964  */
8965 
8966 /*
8967  * This routine should be called immediately after removing
8968  * a directory entry.  The inode's link count should not be
8969  * decremented by the calling procedure -- the soft updates
8970  * code will do this task when it is safe.
8971  */
8972 void
8973 softdep_setup_remove(bp, dp, ip, isrmdir)
8974 	struct buf *bp;		/* buffer containing directory block */
8975 	struct inode *dp;	/* inode for the directory being modified */
8976 	struct inode *ip;	/* inode for directory entry being removed */
8977 	int isrmdir;		/* indicates if doing RMDIR */
8978 {
8979 	struct dirrem *dirrem, *prevdirrem;
8980 	struct inodedep *inodedep;
8981 	struct ufsmount *ump;
8982 	int direct;
8983 
8984 	ump = ITOUMP(ip);
8985 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
8986 	    ("softdep_setup_remove called on non-softdep filesystem"));
8987 	/*
8988 	 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK.  We want
8989 	 * newdirrem() to setup the full directory remove which requires
8990 	 * isrmdir > 1.
8991 	 */
8992 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
8993 	/*
8994 	 * Add the dirrem to the inodedep's pending remove list for quick
8995 	 * discovery later.
8996 	 */
8997 	if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0)
8998 		panic("softdep_setup_remove: Lost inodedep.");
8999 	KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
9000 	dirrem->dm_state |= ONDEPLIST;
9001 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9002 
9003 	/*
9004 	 * If the COMPLETE flag is clear, then there were no active
9005 	 * entries and we want to roll back to a zeroed entry until
9006 	 * the new inode is committed to disk. If the COMPLETE flag is
9007 	 * set then we have deleted an entry that never made it to
9008 	 * disk. If the entry we deleted resulted from a name change,
9009 	 * then the old name still resides on disk. We cannot delete
9010 	 * its inode (returned to us in prevdirrem) until the zeroed
9011 	 * directory entry gets to disk. The new inode has never been
9012 	 * referenced on the disk, so can be deleted immediately.
9013 	 */
9014 	if ((dirrem->dm_state & COMPLETE) == 0) {
9015 		LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
9016 		    dm_next);
9017 		FREE_LOCK(ump);
9018 	} else {
9019 		if (prevdirrem != NULL)
9020 			LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd,
9021 			    prevdirrem, dm_next);
9022 		dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
9023 		direct = LIST_EMPTY(&dirrem->dm_jremrefhd);
9024 		FREE_LOCK(ump);
9025 		if (direct)
9026 			handle_workitem_remove(dirrem, 0);
9027 	}
9028 }
9029 
9030 /*
9031  * Check for an entry matching 'offset' on both the pd_dirraddhd list and the
9032  * pd_pendinghd list of a pagedep.
9033  */
9034 static struct diradd *
9035 diradd_lookup(pagedep, offset)
9036 	struct pagedep *pagedep;
9037 	int offset;
9038 {
9039 	struct diradd *dap;
9040 
9041 	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist)
9042 		if (dap->da_offset == offset)
9043 			return (dap);
9044 	LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
9045 		if (dap->da_offset == offset)
9046 			return (dap);
9047 	return (NULL);
9048 }
9049 
9050 /*
9051  * Search for a .. diradd dependency in a directory that is being removed.
9052  * If the directory was renamed to a new parent we have a diradd rather
9053  * than a mkdir for the .. entry.  We need to cancel it now before
9054  * it is found in truncate().
9055  */
9056 static struct jremref *
9057 cancel_diradd_dotdot(ip, dirrem, jremref)
9058 	struct inode *ip;
9059 	struct dirrem *dirrem;
9060 	struct jremref *jremref;
9061 {
9062 	struct pagedep *pagedep;
9063 	struct diradd *dap;
9064 	struct worklist *wk;
9065 
9066 	if (pagedep_lookup(ITOVFS(ip), NULL, ip->i_number, 0, 0, &pagedep) == 0)
9067 		return (jremref);
9068 	dap = diradd_lookup(pagedep, DOTDOT_OFFSET);
9069 	if (dap == NULL)
9070 		return (jremref);
9071 	cancel_diradd(dap, dirrem, jremref, NULL, NULL);
9072 	/*
9073 	 * Mark any journal work as belonging to the parent so it is freed
9074 	 * with the .. reference.
9075 	 */
9076 	LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
9077 		wk->wk_state |= MKDIR_PARENT;
9078 	return (NULL);
9079 }
9080 
9081 /*
9082  * Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to
9083  * replace it with a dirrem/diradd pair as a result of re-parenting a
9084  * directory.  This ensures that we don't simultaneously have a mkdir and
9085  * a diradd for the same .. entry.
9086  */
9087 static struct jremref *
9088 cancel_mkdir_dotdot(ip, dirrem, jremref)
9089 	struct inode *ip;
9090 	struct dirrem *dirrem;
9091 	struct jremref *jremref;
9092 {
9093 	struct inodedep *inodedep;
9094 	struct jaddref *jaddref;
9095 	struct ufsmount *ump;
9096 	struct mkdir *mkdir;
9097 	struct diradd *dap;
9098 	struct mount *mp;
9099 
9100 	mp = ITOVFS(ip);
9101 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
9102 		return (jremref);
9103 	dap = inodedep->id_mkdiradd;
9104 	if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0)
9105 		return (jremref);
9106 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
9107 	for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
9108 	    mkdir = LIST_NEXT(mkdir, md_mkdirs))
9109 		if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT)
9110 			break;
9111 	if (mkdir == NULL)
9112 		panic("cancel_mkdir_dotdot: Unable to find mkdir\n");
9113 	if ((jaddref = mkdir->md_jaddref) != NULL) {
9114 		mkdir->md_jaddref = NULL;
9115 		jaddref->ja_state &= ~MKDIR_PARENT;
9116 		if (inodedep_lookup(mp, jaddref->ja_ino, 0, &inodedep) == 0)
9117 			panic("cancel_mkdir_dotdot: Lost parent inodedep");
9118 		if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) {
9119 			journal_jremref(dirrem, jremref, inodedep);
9120 			jremref = NULL;
9121 		}
9122 	}
9123 	if (mkdir->md_state & ONWORKLIST)
9124 		WORKLIST_REMOVE(&mkdir->md_list);
9125 	mkdir->md_state |= ALLCOMPLETE;
9126 	complete_mkdir(mkdir);
9127 	return (jremref);
9128 }
9129 
9130 static void
9131 journal_jremref(dirrem, jremref, inodedep)
9132 	struct dirrem *dirrem;
9133 	struct jremref *jremref;
9134 	struct inodedep *inodedep;
9135 {
9136 
9137 	if (inodedep == NULL)
9138 		if (inodedep_lookup(jremref->jr_list.wk_mp,
9139 		    jremref->jr_ref.if_ino, 0, &inodedep) == 0)
9140 			panic("journal_jremref: Lost inodedep");
9141 	LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps);
9142 	TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
9143 	add_to_journal(&jremref->jr_list);
9144 }
9145 
9146 static void
9147 dirrem_journal(dirrem, jremref, dotremref, dotdotremref)
9148 	struct dirrem *dirrem;
9149 	struct jremref *jremref;
9150 	struct jremref *dotremref;
9151 	struct jremref *dotdotremref;
9152 {
9153 	struct inodedep *inodedep;
9154 
9155 
9156 	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0,
9157 	    &inodedep) == 0)
9158 		panic("dirrem_journal: Lost inodedep");
9159 	journal_jremref(dirrem, jremref, inodedep);
9160 	if (dotremref)
9161 		journal_jremref(dirrem, dotremref, inodedep);
9162 	if (dotdotremref)
9163 		journal_jremref(dirrem, dotdotremref, NULL);
9164 }
9165 
9166 /*
9167  * Allocate a new dirrem if appropriate and return it along with
9168  * its associated pagedep. Called without a lock, returns with lock.
9169  */
9170 static struct dirrem *
9171 newdirrem(bp, dp, ip, isrmdir, prevdirremp)
9172 	struct buf *bp;		/* buffer containing directory block */
9173 	struct inode *dp;	/* inode for the directory being modified */
9174 	struct inode *ip;	/* inode for directory entry being removed */
9175 	int isrmdir;		/* indicates if doing RMDIR */
9176 	struct dirrem **prevdirremp; /* previously referenced inode, if any */
9177 {
9178 	int offset;
9179 	ufs_lbn_t lbn;
9180 	struct diradd *dap;
9181 	struct dirrem *dirrem;
9182 	struct pagedep *pagedep;
9183 	struct jremref *jremref;
9184 	struct jremref *dotremref;
9185 	struct jremref *dotdotremref;
9186 	struct vnode *dvp;
9187 	struct ufsmount *ump;
9188 
9189 	/*
9190 	 * Whiteouts have no deletion dependencies.
9191 	 */
9192 	if (ip == NULL)
9193 		panic("newdirrem: whiteout");
9194 	dvp = ITOV(dp);
9195 	ump = ITOUMP(dp);
9196 
9197 	/*
9198 	 * If the system is over its limit and our filesystem is
9199 	 * responsible for more than our share of that usage and
9200 	 * we are not a snapshot, request some inodedep cleanup.
9201 	 * Limiting the number of dirrem structures will also limit
9202 	 * the number of freefile and freeblks structures.
9203 	 */
9204 	ACQUIRE_LOCK(ump);
9205 	if (!IS_SNAPSHOT(ip) && softdep_excess_items(ump, D_DIRREM))
9206 		schedule_cleanup(UFSTOVFS(ump));
9207 	else
9208 		FREE_LOCK(ump);
9209 	dirrem = malloc(sizeof(struct dirrem), M_DIRREM, M_SOFTDEP_FLAGS |
9210 	    M_ZERO);
9211 	workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount);
9212 	LIST_INIT(&dirrem->dm_jremrefhd);
9213 	LIST_INIT(&dirrem->dm_jwork);
9214 	dirrem->dm_state = isrmdir ? RMDIR : 0;
9215 	dirrem->dm_oldinum = ip->i_number;
9216 	*prevdirremp = NULL;
9217 	/*
9218 	 * Allocate remove reference structures to track journal write
9219 	 * dependencies.  We will always have one for the link and
9220 	 * when doing directories we will always have one more for dot.
9221 	 * When renaming a directory we skip the dotdot link change so
9222 	 * this is not needed.
9223 	 */
9224 	jremref = dotremref = dotdotremref = NULL;
9225 	if (DOINGSUJ(dvp)) {
9226 		if (isrmdir) {
9227 			jremref = newjremref(dirrem, dp, ip, dp->i_offset,
9228 			    ip->i_effnlink + 2);
9229 			dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET,
9230 			    ip->i_effnlink + 1);
9231 			dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET,
9232 			    dp->i_effnlink + 1);
9233 			dotdotremref->jr_state |= MKDIR_PARENT;
9234 		} else
9235 			jremref = newjremref(dirrem, dp, ip, dp->i_offset,
9236 			    ip->i_effnlink + 1);
9237 	}
9238 	ACQUIRE_LOCK(ump);
9239 	lbn = lblkno(ump->um_fs, dp->i_offset);
9240 	offset = blkoff(ump->um_fs, dp->i_offset);
9241 	pagedep_lookup(UFSTOVFS(ump), bp, dp->i_number, lbn, DEPALLOC,
9242 	    &pagedep);
9243 	dirrem->dm_pagedep = pagedep;
9244 	dirrem->dm_offset = offset;
9245 	/*
9246 	 * If we're renaming a .. link to a new directory, cancel any
9247 	 * existing MKDIR_PARENT mkdir.  If it has already been canceled
9248 	 * the jremref is preserved for any potential diradd in this
9249 	 * location.  This can not coincide with a rmdir.
9250 	 */
9251 	if (dp->i_offset == DOTDOT_OFFSET) {
9252 		if (isrmdir)
9253 			panic("newdirrem: .. directory change during remove?");
9254 		jremref = cancel_mkdir_dotdot(dp, dirrem, jremref);
9255 	}
9256 	/*
9257 	 * If we're removing a directory search for the .. dependency now and
9258 	 * cancel it.  Any pending journal work will be added to the dirrem
9259 	 * to be completed when the workitem remove completes.
9260 	 */
9261 	if (isrmdir)
9262 		dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref);
9263 	/*
9264 	 * Check for a diradd dependency for the same directory entry.
9265 	 * If present, then both dependencies become obsolete and can
9266 	 * be de-allocated.
9267 	 */
9268 	dap = diradd_lookup(pagedep, offset);
9269 	if (dap == NULL) {
9270 		/*
9271 		 * Link the jremref structures into the dirrem so they are
9272 		 * written prior to the pagedep.
9273 		 */
9274 		if (jremref)
9275 			dirrem_journal(dirrem, jremref, dotremref,
9276 			    dotdotremref);
9277 		return (dirrem);
9278 	}
9279 	/*
9280 	 * Must be ATTACHED at this point.
9281 	 */
9282 	if ((dap->da_state & ATTACHED) == 0)
9283 		panic("newdirrem: not ATTACHED");
9284 	if (dap->da_newinum != ip->i_number)
9285 		panic("newdirrem: inum %ju should be %ju",
9286 		    (uintmax_t)ip->i_number, (uintmax_t)dap->da_newinum);
9287 	/*
9288 	 * If we are deleting a changed name that never made it to disk,
9289 	 * then return the dirrem describing the previous inode (which
9290 	 * represents the inode currently referenced from this entry on disk).
9291 	 */
9292 	if ((dap->da_state & DIRCHG) != 0) {
9293 		*prevdirremp = dap->da_previous;
9294 		dap->da_state &= ~DIRCHG;
9295 		dap->da_pagedep = pagedep;
9296 	}
9297 	/*
9298 	 * We are deleting an entry that never made it to disk.
9299 	 * Mark it COMPLETE so we can delete its inode immediately.
9300 	 */
9301 	dirrem->dm_state |= COMPLETE;
9302 	cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref);
9303 #ifdef INVARIANTS
9304 	if (isrmdir == 0) {
9305 		struct worklist *wk;
9306 
9307 		LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
9308 			if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT))
9309 				panic("bad wk %p (0x%X)\n", wk, wk->wk_state);
9310 	}
9311 #endif
9312 
9313 	return (dirrem);
9314 }
9315 
9316 /*
9317  * Directory entry change dependencies.
9318  *
9319  * Changing an existing directory entry requires that an add operation
9320  * be completed first followed by a deletion. The semantics for the addition
9321  * are identical to the description of adding a new entry above except
9322  * that the rollback is to the old inode number rather than zero. Once
9323  * the addition dependency is completed, the removal is done as described
9324  * in the removal routine above.
9325  */
9326 
9327 /*
9328  * This routine should be called immediately after changing
9329  * a directory entry.  The inode's link count should not be
9330  * decremented by the calling procedure -- the soft updates
9331  * code will perform this task when it is safe.
9332  */
9333 void
9334 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
9335 	struct buf *bp;		/* buffer containing directory block */
9336 	struct inode *dp;	/* inode for the directory being modified */
9337 	struct inode *ip;	/* inode for directory entry being removed */
9338 	ino_t newinum;		/* new inode number for changed entry */
9339 	int isrmdir;		/* indicates if doing RMDIR */
9340 {
9341 	int offset;
9342 	struct diradd *dap = NULL;
9343 	struct dirrem *dirrem, *prevdirrem;
9344 	struct pagedep *pagedep;
9345 	struct inodedep *inodedep;
9346 	struct jaddref *jaddref;
9347 	struct mount *mp;
9348 	struct ufsmount *ump;
9349 
9350 	mp = ITOVFS(dp);
9351 	ump = VFSTOUFS(mp);
9352 	offset = blkoff(ump->um_fs, dp->i_offset);
9353 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
9354 	   ("softdep_setup_directory_change called on non-softdep filesystem"));
9355 
9356 	/*
9357 	 * Whiteouts do not need diradd dependencies.
9358 	 */
9359 	if (newinum != UFS_WINO) {
9360 		dap = malloc(sizeof(struct diradd),
9361 		    M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO);
9362 		workitem_alloc(&dap->da_list, D_DIRADD, mp);
9363 		dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
9364 		dap->da_offset = offset;
9365 		dap->da_newinum = newinum;
9366 		LIST_INIT(&dap->da_jwork);
9367 	}
9368 
9369 	/*
9370 	 * Allocate a new dirrem and ACQUIRE_LOCK.
9371 	 */
9372 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
9373 	pagedep = dirrem->dm_pagedep;
9374 	/*
9375 	 * The possible values for isrmdir:
9376 	 *	0 - non-directory file rename
9377 	 *	1 - directory rename within same directory
9378 	 *   inum - directory rename to new directory of given inode number
9379 	 * When renaming to a new directory, we are both deleting and
9380 	 * creating a new directory entry, so the link count on the new
9381 	 * directory should not change. Thus we do not need the followup
9382 	 * dirrem which is usually done in handle_workitem_remove. We set
9383 	 * the DIRCHG flag to tell handle_workitem_remove to skip the
9384 	 * followup dirrem.
9385 	 */
9386 	if (isrmdir > 1)
9387 		dirrem->dm_state |= DIRCHG;
9388 
9389 	/*
9390 	 * Whiteouts have no additional dependencies,
9391 	 * so just put the dirrem on the correct list.
9392 	 */
9393 	if (newinum == UFS_WINO) {
9394 		if ((dirrem->dm_state & COMPLETE) == 0) {
9395 			LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
9396 			    dm_next);
9397 		} else {
9398 			dirrem->dm_dirinum = pagedep->pd_ino;
9399 			if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9400 				add_to_worklist(&dirrem->dm_list, 0);
9401 		}
9402 		FREE_LOCK(ump);
9403 		return;
9404 	}
9405 	/*
9406 	 * Add the dirrem to the inodedep's pending remove list for quick
9407 	 * discovery later.  A valid nlinkdelta ensures that this lookup
9408 	 * will not fail.
9409 	 */
9410 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
9411 		panic("softdep_setup_directory_change: Lost inodedep.");
9412 	dirrem->dm_state |= ONDEPLIST;
9413 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9414 
9415 	/*
9416 	 * If the COMPLETE flag is clear, then there were no active
9417 	 * entries and we want to roll back to the previous inode until
9418 	 * the new inode is committed to disk. If the COMPLETE flag is
9419 	 * set, then we have deleted an entry that never made it to disk.
9420 	 * If the entry we deleted resulted from a name change, then the old
9421 	 * inode reference still resides on disk. Any rollback that we do
9422 	 * needs to be to that old inode (returned to us in prevdirrem). If
9423 	 * the entry we deleted resulted from a create, then there is
9424 	 * no entry on the disk, so we want to roll back to zero rather
9425 	 * than the uncommitted inode. In either of the COMPLETE cases we
9426 	 * want to immediately free the unwritten and unreferenced inode.
9427 	 */
9428 	if ((dirrem->dm_state & COMPLETE) == 0) {
9429 		dap->da_previous = dirrem;
9430 	} else {
9431 		if (prevdirrem != NULL) {
9432 			dap->da_previous = prevdirrem;
9433 		} else {
9434 			dap->da_state &= ~DIRCHG;
9435 			dap->da_pagedep = pagedep;
9436 		}
9437 		dirrem->dm_dirinum = pagedep->pd_ino;
9438 		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9439 			add_to_worklist(&dirrem->dm_list, 0);
9440 	}
9441 	/*
9442 	 * Lookup the jaddref for this journal entry.  We must finish
9443 	 * initializing it and make the diradd write dependent on it.
9444 	 * If we're not journaling, put it on the id_bufwait list if the
9445 	 * inode is not yet written. If it is written, do the post-inode
9446 	 * write processing to put it on the id_pendinghd list.
9447 	 */
9448 	inodedep_lookup(mp, newinum, DEPALLOC, &inodedep);
9449 	if (MOUNTEDSUJ(mp)) {
9450 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
9451 		    inoreflst);
9452 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
9453 		    ("softdep_setup_directory_change: bad jaddref %p",
9454 		    jaddref));
9455 		jaddref->ja_diroff = dp->i_offset;
9456 		jaddref->ja_diradd = dap;
9457 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
9458 		    dap, da_pdlist);
9459 		add_to_journal(&jaddref->ja_list);
9460 	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
9461 		dap->da_state |= COMPLETE;
9462 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
9463 		WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
9464 	} else {
9465 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
9466 		    dap, da_pdlist);
9467 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
9468 	}
9469 	/*
9470 	 * If we're making a new name for a directory that has not been
9471 	 * committed when need to move the dot and dotdot references to
9472 	 * this new name.
9473 	 */
9474 	if (inodedep->id_mkdiradd && dp->i_offset != DOTDOT_OFFSET)
9475 		merge_diradd(inodedep, dap);
9476 	FREE_LOCK(ump);
9477 }
9478 
9479 /*
9480  * Called whenever the link count on an inode is changed.
9481  * It creates an inode dependency so that the new reference(s)
9482  * to the inode cannot be committed to disk until the updated
9483  * inode has been written.
9484  */
9485 void
9486 softdep_change_linkcnt(ip)
9487 	struct inode *ip;	/* the inode with the increased link count */
9488 {
9489 	struct inodedep *inodedep;
9490 	struct ufsmount *ump;
9491 
9492 	ump = ITOUMP(ip);
9493 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
9494 	    ("softdep_change_linkcnt called on non-softdep filesystem"));
9495 	ACQUIRE_LOCK(ump);
9496 	inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep);
9497 	if (ip->i_nlink < ip->i_effnlink)
9498 		panic("softdep_change_linkcnt: bad delta");
9499 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9500 	FREE_LOCK(ump);
9501 }
9502 
9503 /*
9504  * Attach a sbdep dependency to the superblock buf so that we can keep
9505  * track of the head of the linked list of referenced but unlinked inodes.
9506  */
9507 void
9508 softdep_setup_sbupdate(ump, fs, bp)
9509 	struct ufsmount *ump;
9510 	struct fs *fs;
9511 	struct buf *bp;
9512 {
9513 	struct sbdep *sbdep;
9514 	struct worklist *wk;
9515 
9516 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
9517 	    ("softdep_setup_sbupdate called on non-softdep filesystem"));
9518 	LIST_FOREACH(wk, &bp->b_dep, wk_list)
9519 		if (wk->wk_type == D_SBDEP)
9520 			break;
9521 	if (wk != NULL)
9522 		return;
9523 	sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS);
9524 	workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump));
9525 	sbdep->sb_fs = fs;
9526 	sbdep->sb_ump = ump;
9527 	ACQUIRE_LOCK(ump);
9528 	WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list);
9529 	FREE_LOCK(ump);
9530 }
9531 
9532 /*
9533  * Return the first unlinked inodedep which is ready to be the head of the
9534  * list.  The inodedep and all those after it must have valid next pointers.
9535  */
9536 static struct inodedep *
9537 first_unlinked_inodedep(ump)
9538 	struct ufsmount *ump;
9539 {
9540 	struct inodedep *inodedep;
9541 	struct inodedep *idp;
9542 
9543 	LOCK_OWNED(ump);
9544 	for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst);
9545 	    inodedep; inodedep = idp) {
9546 		if ((inodedep->id_state & UNLINKNEXT) == 0)
9547 			return (NULL);
9548 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9549 		if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0)
9550 			break;
9551 		if ((inodedep->id_state & UNLINKPREV) == 0)
9552 			break;
9553 	}
9554 	return (inodedep);
9555 }
9556 
9557 /*
9558  * Set the sujfree unlinked head pointer prior to writing a superblock.
9559  */
9560 static void
9561 initiate_write_sbdep(sbdep)
9562 	struct sbdep *sbdep;
9563 {
9564 	struct inodedep *inodedep;
9565 	struct fs *bpfs;
9566 	struct fs *fs;
9567 
9568 	bpfs = sbdep->sb_fs;
9569 	fs = sbdep->sb_ump->um_fs;
9570 	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9571 	if (inodedep) {
9572 		fs->fs_sujfree = inodedep->id_ino;
9573 		inodedep->id_state |= UNLINKPREV;
9574 	} else
9575 		fs->fs_sujfree = 0;
9576 	bpfs->fs_sujfree = fs->fs_sujfree;
9577 	/*
9578 	 * Because we have made changes to the superblock, we need to
9579 	 * recompute its check-hash.
9580 	 */
9581 	bpfs->fs_ckhash = ffs_calc_sbhash(bpfs);
9582 }
9583 
9584 /*
9585  * After a superblock is written determine whether it must be written again
9586  * due to a changing unlinked list head.
9587  */
9588 static int
9589 handle_written_sbdep(sbdep, bp)
9590 	struct sbdep *sbdep;
9591 	struct buf *bp;
9592 {
9593 	struct inodedep *inodedep;
9594 	struct fs *fs;
9595 
9596 	LOCK_OWNED(sbdep->sb_ump);
9597 	fs = sbdep->sb_fs;
9598 	/*
9599 	 * If the superblock doesn't match the in-memory list start over.
9600 	 */
9601 	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9602 	if ((inodedep && fs->fs_sujfree != inodedep->id_ino) ||
9603 	    (inodedep == NULL && fs->fs_sujfree != 0)) {
9604 		bdirty(bp);
9605 		return (1);
9606 	}
9607 	WORKITEM_FREE(sbdep, D_SBDEP);
9608 	if (fs->fs_sujfree == 0)
9609 		return (0);
9610 	/*
9611 	 * Now that we have a record of this inode in stable store allow it
9612 	 * to be written to free up pending work.  Inodes may see a lot of
9613 	 * write activity after they are unlinked which we must not hold up.
9614 	 */
9615 	for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) {
9616 		if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS)
9617 			panic("handle_written_sbdep: Bad inodedep %p (0x%X)",
9618 			    inodedep, inodedep->id_state);
9619 		if (inodedep->id_state & UNLINKONLIST)
9620 			break;
9621 		inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST;
9622 	}
9623 
9624 	return (0);
9625 }
9626 
9627 /*
9628  * Mark an inodedep as unlinked and insert it into the in-memory unlinked list.
9629  */
9630 static void
9631 unlinked_inodedep(mp, inodedep)
9632 	struct mount *mp;
9633 	struct inodedep *inodedep;
9634 {
9635 	struct ufsmount *ump;
9636 
9637 	ump = VFSTOUFS(mp);
9638 	LOCK_OWNED(ump);
9639 	if (MOUNTEDSUJ(mp) == 0)
9640 		return;
9641 	ump->um_fs->fs_fmod = 1;
9642 	if (inodedep->id_state & UNLINKED)
9643 		panic("unlinked_inodedep: %p already unlinked\n", inodedep);
9644 	inodedep->id_state |= UNLINKED;
9645 	TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked);
9646 }
9647 
9648 /*
9649  * Remove an inodedep from the unlinked inodedep list.  This may require
9650  * disk writes if the inode has made it that far.
9651  */
9652 static void
9653 clear_unlinked_inodedep(inodedep)
9654 	struct inodedep *inodedep;
9655 {
9656 	struct ufs2_dinode *dip;
9657 	struct ufsmount *ump;
9658 	struct inodedep *idp;
9659 	struct inodedep *idn;
9660 	struct fs *fs, *bpfs;
9661 	struct buf *bp;
9662 	ino_t ino;
9663 	ino_t nino;
9664 	ino_t pino;
9665 	int error;
9666 
9667 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
9668 	fs = ump->um_fs;
9669 	ino = inodedep->id_ino;
9670 	error = 0;
9671 	for (;;) {
9672 		LOCK_OWNED(ump);
9673 		KASSERT((inodedep->id_state & UNLINKED) != 0,
9674 		    ("clear_unlinked_inodedep: inodedep %p not unlinked",
9675 		    inodedep));
9676 		/*
9677 		 * If nothing has yet been written simply remove us from
9678 		 * the in memory list and return.  This is the most common
9679 		 * case where handle_workitem_remove() loses the final
9680 		 * reference.
9681 		 */
9682 		if ((inodedep->id_state & UNLINKLINKS) == 0)
9683 			break;
9684 		/*
9685 		 * If we have a NEXT pointer and no PREV pointer we can simply
9686 		 * clear NEXT's PREV and remove ourselves from the list.  Be
9687 		 * careful not to clear PREV if the superblock points at
9688 		 * next as well.
9689 		 */
9690 		idn = TAILQ_NEXT(inodedep, id_unlinked);
9691 		if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) {
9692 			if (idn && fs->fs_sujfree != idn->id_ino)
9693 				idn->id_state &= ~UNLINKPREV;
9694 			break;
9695 		}
9696 		/*
9697 		 * Here we have an inodedep which is actually linked into
9698 		 * the list.  We must remove it by forcing a write to the
9699 		 * link before us, whether it be the superblock or an inode.
9700 		 * Unfortunately the list may change while we're waiting
9701 		 * on the buf lock for either resource so we must loop until
9702 		 * we lock the right one.  If both the superblock and an
9703 		 * inode point to this inode we must clear the inode first
9704 		 * followed by the superblock.
9705 		 */
9706 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9707 		pino = 0;
9708 		if (idp && (idp->id_state & UNLINKNEXT))
9709 			pino = idp->id_ino;
9710 		FREE_LOCK(ump);
9711 		if (pino == 0) {
9712 			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
9713 			    (int)fs->fs_sbsize, 0, 0, 0);
9714 		} else {
9715 			error = bread(ump->um_devvp,
9716 			    fsbtodb(fs, ino_to_fsba(fs, pino)),
9717 			    (int)fs->fs_bsize, NOCRED, &bp);
9718 			if (error)
9719 				brelse(bp);
9720 		}
9721 		ACQUIRE_LOCK(ump);
9722 		if (error)
9723 			break;
9724 		/* If the list has changed restart the loop. */
9725 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9726 		nino = 0;
9727 		if (idp && (idp->id_state & UNLINKNEXT))
9728 			nino = idp->id_ino;
9729 		if (nino != pino ||
9730 		    (inodedep->id_state & UNLINKPREV) != UNLINKPREV) {
9731 			FREE_LOCK(ump);
9732 			brelse(bp);
9733 			ACQUIRE_LOCK(ump);
9734 			continue;
9735 		}
9736 		nino = 0;
9737 		idn = TAILQ_NEXT(inodedep, id_unlinked);
9738 		if (idn)
9739 			nino = idn->id_ino;
9740 		/*
9741 		 * Remove us from the in memory list.  After this we cannot
9742 		 * access the inodedep.
9743 		 */
9744 		KASSERT((inodedep->id_state & UNLINKED) != 0,
9745 		    ("clear_unlinked_inodedep: inodedep %p not unlinked",
9746 		    inodedep));
9747 		inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
9748 		TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
9749 		FREE_LOCK(ump);
9750 		/*
9751 		 * The predecessor's next pointer is manually updated here
9752 		 * so that the NEXT flag is never cleared for an element
9753 		 * that is in the list.
9754 		 */
9755 		if (pino == 0) {
9756 			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
9757 			bpfs = (struct fs *)bp->b_data;
9758 			ffs_oldfscompat_write(bpfs, ump);
9759 			softdep_setup_sbupdate(ump, bpfs, bp);
9760 			/*
9761 			 * Because we may have made changes to the superblock,
9762 			 * we need to recompute its check-hash.
9763 			 */
9764 			bpfs->fs_ckhash = ffs_calc_sbhash(bpfs);
9765 		} else if (fs->fs_magic == FS_UFS1_MAGIC) {
9766 			((struct ufs1_dinode *)bp->b_data +
9767 			    ino_to_fsbo(fs, pino))->di_freelink = nino;
9768 		} else {
9769 			dip = (struct ufs2_dinode *)bp->b_data +
9770 			    ino_to_fsbo(fs, pino);
9771 			dip->di_freelink = nino;
9772 			ffs_update_dinode_ckhash(fs, dip);
9773 		}
9774 		/*
9775 		 * If the bwrite fails we have no recourse to recover.  The
9776 		 * filesystem is corrupted already.
9777 		 */
9778 		bwrite(bp);
9779 		ACQUIRE_LOCK(ump);
9780 		/*
9781 		 * If the superblock pointer still needs to be cleared force
9782 		 * a write here.
9783 		 */
9784 		if (fs->fs_sujfree == ino) {
9785 			FREE_LOCK(ump);
9786 			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
9787 			    (int)fs->fs_sbsize, 0, 0, 0);
9788 			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
9789 			bpfs = (struct fs *)bp->b_data;
9790 			ffs_oldfscompat_write(bpfs, ump);
9791 			softdep_setup_sbupdate(ump, bpfs, bp);
9792 			/*
9793 			 * Because we may have made changes to the superblock,
9794 			 * we need to recompute its check-hash.
9795 			 */
9796 			bpfs->fs_ckhash = ffs_calc_sbhash(bpfs);
9797 			bwrite(bp);
9798 			ACQUIRE_LOCK(ump);
9799 		}
9800 
9801 		if (fs->fs_sujfree != ino)
9802 			return;
9803 		panic("clear_unlinked_inodedep: Failed to clear free head");
9804 	}
9805 	if (inodedep->id_ino == fs->fs_sujfree)
9806 		panic("clear_unlinked_inodedep: Freeing head of free list");
9807 	inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
9808 	TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
9809 	return;
9810 }
9811 
9812 /*
9813  * This workitem decrements the inode's link count.
9814  * If the link count reaches zero, the file is removed.
9815  */
9816 static int
9817 handle_workitem_remove(dirrem, flags)
9818 	struct dirrem *dirrem;
9819 	int flags;
9820 {
9821 	struct inodedep *inodedep;
9822 	struct workhead dotdotwk;
9823 	struct worklist *wk;
9824 	struct ufsmount *ump;
9825 	struct mount *mp;
9826 	struct vnode *vp;
9827 	struct inode *ip;
9828 	ino_t oldinum;
9829 
9830 	if (dirrem->dm_state & ONWORKLIST)
9831 		panic("handle_workitem_remove: dirrem %p still on worklist",
9832 		    dirrem);
9833 	oldinum = dirrem->dm_oldinum;
9834 	mp = dirrem->dm_list.wk_mp;
9835 	ump = VFSTOUFS(mp);
9836 	flags |= LK_EXCLUSIVE;
9837 	if (ffs_vgetf(mp, oldinum, flags, &vp, FFSV_FORCEINSMQ) != 0)
9838 		return (EBUSY);
9839 	ip = VTOI(vp);
9840 	MPASS(ip->i_mode != 0);
9841 	ACQUIRE_LOCK(ump);
9842 	if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0)
9843 		panic("handle_workitem_remove: lost inodedep");
9844 	if (dirrem->dm_state & ONDEPLIST)
9845 		LIST_REMOVE(dirrem, dm_inonext);
9846 	KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
9847 	    ("handle_workitem_remove:  Journal entries not written."));
9848 
9849 	/*
9850 	 * Move all dependencies waiting on the remove to complete
9851 	 * from the dirrem to the inode inowait list to be completed
9852 	 * after the inode has been updated and written to disk.  Any
9853 	 * marked MKDIR_PARENT are saved to be completed when the .. ref
9854 	 * is removed.
9855 	 */
9856 	LIST_INIT(&dotdotwk);
9857 	while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) {
9858 		WORKLIST_REMOVE(wk);
9859 		if (wk->wk_state & MKDIR_PARENT) {
9860 			wk->wk_state &= ~MKDIR_PARENT;
9861 			WORKLIST_INSERT(&dotdotwk, wk);
9862 			continue;
9863 		}
9864 		WORKLIST_INSERT(&inodedep->id_inowait, wk);
9865 	}
9866 	LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list);
9867 	/*
9868 	 * Normal file deletion.
9869 	 */
9870 	if ((dirrem->dm_state & RMDIR) == 0) {
9871 		ip->i_nlink--;
9872 		KASSERT(ip->i_nlink >= 0, ("handle_workitem_remove: file ino "
9873 		    "%ju negative i_nlink %d", (intmax_t)ip->i_number,
9874 		    ip->i_nlink));
9875 		DIP_SET(ip, i_nlink, ip->i_nlink);
9876 		ip->i_flag |= IN_CHANGE;
9877 		if (ip->i_nlink < ip->i_effnlink)
9878 			panic("handle_workitem_remove: bad file delta");
9879 		if (ip->i_nlink == 0)
9880 			unlinked_inodedep(mp, inodedep);
9881 		inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9882 		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
9883 		    ("handle_workitem_remove: worklist not empty. %s",
9884 		    TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type)));
9885 		WORKITEM_FREE(dirrem, D_DIRREM);
9886 		FREE_LOCK(ump);
9887 		goto out;
9888 	}
9889 	/*
9890 	 * Directory deletion. Decrement reference count for both the
9891 	 * just deleted parent directory entry and the reference for ".".
9892 	 * Arrange to have the reference count on the parent decremented
9893 	 * to account for the loss of "..".
9894 	 */
9895 	ip->i_nlink -= 2;
9896 	KASSERT(ip->i_nlink >= 0, ("handle_workitem_remove: directory ino "
9897 	    "%ju negative i_nlink %d", (intmax_t)ip->i_number, ip->i_nlink));
9898 	DIP_SET(ip, i_nlink, ip->i_nlink);
9899 	ip->i_flag |= IN_CHANGE;
9900 	if (ip->i_nlink < ip->i_effnlink)
9901 		panic("handle_workitem_remove: bad dir delta");
9902 	if (ip->i_nlink == 0)
9903 		unlinked_inodedep(mp, inodedep);
9904 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9905 	/*
9906 	 * Rename a directory to a new parent. Since, we are both deleting
9907 	 * and creating a new directory entry, the link count on the new
9908 	 * directory should not change. Thus we skip the followup dirrem.
9909 	 */
9910 	if (dirrem->dm_state & DIRCHG) {
9911 		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
9912 		    ("handle_workitem_remove: DIRCHG and worklist not empty."));
9913 		WORKITEM_FREE(dirrem, D_DIRREM);
9914 		FREE_LOCK(ump);
9915 		goto out;
9916 	}
9917 	dirrem->dm_state = ONDEPLIST;
9918 	dirrem->dm_oldinum = dirrem->dm_dirinum;
9919 	/*
9920 	 * Place the dirrem on the parent's diremhd list.
9921 	 */
9922 	if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0)
9923 		panic("handle_workitem_remove: lost dir inodedep");
9924 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9925 	/*
9926 	 * If the allocated inode has never been written to disk, then
9927 	 * the on-disk inode is zero'ed and we can remove the file
9928 	 * immediately.  When journaling if the inode has been marked
9929 	 * unlinked and not DEPCOMPLETE we know it can never be written.
9930 	 */
9931 	inodedep_lookup(mp, oldinum, 0, &inodedep);
9932 	if (inodedep == NULL ||
9933 	    (inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED ||
9934 	    check_inode_unwritten(inodedep)) {
9935 		FREE_LOCK(ump);
9936 		vput(vp);
9937 		return handle_workitem_remove(dirrem, flags);
9938 	}
9939 	WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
9940 	FREE_LOCK(ump);
9941 	ip->i_flag |= IN_CHANGE;
9942 out:
9943 	ffs_update(vp, 0);
9944 	vput(vp);
9945 	return (0);
9946 }
9947 
9948 /*
9949  * Inode de-allocation dependencies.
9950  *
9951  * When an inode's link count is reduced to zero, it can be de-allocated. We
9952  * found it convenient to postpone de-allocation until after the inode is
9953  * written to disk with its new link count (zero).  At this point, all of the
9954  * on-disk inode's block pointers are nullified and, with careful dependency
9955  * list ordering, all dependencies related to the inode will be satisfied and
9956  * the corresponding dependency structures de-allocated.  So, if/when the
9957  * inode is reused, there will be no mixing of old dependencies with new
9958  * ones.  This artificial dependency is set up by the block de-allocation
9959  * procedure above (softdep_setup_freeblocks) and completed by the
9960  * following procedure.
9961  */
9962 static void
9963 handle_workitem_freefile(freefile)
9964 	struct freefile *freefile;
9965 {
9966 	struct workhead wkhd;
9967 	struct fs *fs;
9968 	struct ufsmount *ump;
9969 	int error;
9970 #ifdef INVARIANTS
9971 	struct inodedep *idp;
9972 #endif
9973 
9974 	ump = VFSTOUFS(freefile->fx_list.wk_mp);
9975 	fs = ump->um_fs;
9976 #ifdef INVARIANTS
9977 	ACQUIRE_LOCK(ump);
9978 	error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp);
9979 	FREE_LOCK(ump);
9980 	if (error)
9981 		panic("handle_workitem_freefile: inodedep %p survived", idp);
9982 #endif
9983 	UFS_LOCK(ump);
9984 	fs->fs_pendinginodes -= 1;
9985 	UFS_UNLOCK(ump);
9986 	LIST_INIT(&wkhd);
9987 	LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list);
9988 	if ((error = ffs_freefile(ump, fs, freefile->fx_devvp,
9989 	    freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0)
9990 		softdep_error("handle_workitem_freefile", error);
9991 	ACQUIRE_LOCK(ump);
9992 	WORKITEM_FREE(freefile, D_FREEFILE);
9993 	FREE_LOCK(ump);
9994 }
9995 
9996 
9997 /*
9998  * Helper function which unlinks marker element from work list and returns
9999  * the next element on the list.
10000  */
10001 static __inline struct worklist *
10002 markernext(struct worklist *marker)
10003 {
10004 	struct worklist *next;
10005 
10006 	next = LIST_NEXT(marker, wk_list);
10007 	LIST_REMOVE(marker, wk_list);
10008 	return next;
10009 }
10010 
10011 /*
10012  * Disk writes.
10013  *
10014  * The dependency structures constructed above are most actively used when file
10015  * system blocks are written to disk.  No constraints are placed on when a
10016  * block can be written, but unsatisfied update dependencies are made safe by
10017  * modifying (or replacing) the source memory for the duration of the disk
10018  * write.  When the disk write completes, the memory block is again brought
10019  * up-to-date.
10020  *
10021  * In-core inode structure reclamation.
10022  *
10023  * Because there are a finite number of "in-core" inode structures, they are
10024  * reused regularly.  By transferring all inode-related dependencies to the
10025  * in-memory inode block and indexing them separately (via "inodedep"s), we
10026  * can allow "in-core" inode structures to be reused at any time and avoid
10027  * any increase in contention.
10028  *
10029  * Called just before entering the device driver to initiate a new disk I/O.
10030  * The buffer must be locked, thus, no I/O completion operations can occur
10031  * while we are manipulating its associated dependencies.
10032  */
10033 static void
10034 softdep_disk_io_initiation(bp)
10035 	struct buf *bp;		/* structure describing disk write to occur */
10036 {
10037 	struct worklist *wk;
10038 	struct worklist marker;
10039 	struct inodedep *inodedep;
10040 	struct freeblks *freeblks;
10041 	struct jblkdep *jblkdep;
10042 	struct newblk *newblk;
10043 	struct ufsmount *ump;
10044 
10045 	/*
10046 	 * We only care about write operations. There should never
10047 	 * be dependencies for reads.
10048 	 */
10049 	if (bp->b_iocmd != BIO_WRITE)
10050 		panic("softdep_disk_io_initiation: not write");
10051 
10052 	if (bp->b_vflags & BV_BKGRDINPROG)
10053 		panic("softdep_disk_io_initiation: Writing buffer with "
10054 		    "background write in progress: %p", bp);
10055 
10056 	ump = softdep_bp_to_mp(bp);
10057 	if (ump == NULL)
10058 		return;
10059 
10060 	marker.wk_type = D_LAST + 1;	/* Not a normal workitem */
10061 	PHOLD(curproc);			/* Don't swap out kernel stack */
10062 	ACQUIRE_LOCK(ump);
10063 	/*
10064 	 * Do any necessary pre-I/O processing.
10065 	 */
10066 	for (wk = LIST_FIRST(&bp->b_dep); wk != NULL;
10067 	     wk = markernext(&marker)) {
10068 		LIST_INSERT_AFTER(wk, &marker, wk_list);
10069 		switch (wk->wk_type) {
10070 
10071 		case D_PAGEDEP:
10072 			initiate_write_filepage(WK_PAGEDEP(wk), bp);
10073 			continue;
10074 
10075 		case D_INODEDEP:
10076 			inodedep = WK_INODEDEP(wk);
10077 			if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC)
10078 				initiate_write_inodeblock_ufs1(inodedep, bp);
10079 			else
10080 				initiate_write_inodeblock_ufs2(inodedep, bp);
10081 			continue;
10082 
10083 		case D_INDIRDEP:
10084 			initiate_write_indirdep(WK_INDIRDEP(wk), bp);
10085 			continue;
10086 
10087 		case D_BMSAFEMAP:
10088 			initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp);
10089 			continue;
10090 
10091 		case D_JSEG:
10092 			WK_JSEG(wk)->js_buf = NULL;
10093 			continue;
10094 
10095 		case D_FREEBLKS:
10096 			freeblks = WK_FREEBLKS(wk);
10097 			jblkdep = LIST_FIRST(&freeblks->fb_jblkdephd);
10098 			/*
10099 			 * We have to wait for the freeblks to be journaled
10100 			 * before we can write an inodeblock with updated
10101 			 * pointers.  Be careful to arrange the marker so
10102 			 * we revisit the freeblks if it's not removed by
10103 			 * the first jwait().
10104 			 */
10105 			if (jblkdep != NULL) {
10106 				LIST_REMOVE(&marker, wk_list);
10107 				LIST_INSERT_BEFORE(wk, &marker, wk_list);
10108 				jwait(&jblkdep->jb_list, MNT_WAIT);
10109 			}
10110 			continue;
10111 		case D_ALLOCDIRECT:
10112 		case D_ALLOCINDIR:
10113 			/*
10114 			 * We have to wait for the jnewblk to be journaled
10115 			 * before we can write to a block if the contents
10116 			 * may be confused with an earlier file's indirect
10117 			 * at recovery time.  Handle the marker as described
10118 			 * above.
10119 			 */
10120 			newblk = WK_NEWBLK(wk);
10121 			if (newblk->nb_jnewblk != NULL &&
10122 			    indirblk_lookup(newblk->nb_list.wk_mp,
10123 			    newblk->nb_newblkno)) {
10124 				LIST_REMOVE(&marker, wk_list);
10125 				LIST_INSERT_BEFORE(wk, &marker, wk_list);
10126 				jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
10127 			}
10128 			continue;
10129 
10130 		case D_SBDEP:
10131 			initiate_write_sbdep(WK_SBDEP(wk));
10132 			continue;
10133 
10134 		case D_MKDIR:
10135 		case D_FREEWORK:
10136 		case D_FREEDEP:
10137 		case D_JSEGDEP:
10138 			continue;
10139 
10140 		default:
10141 			panic("handle_disk_io_initiation: Unexpected type %s",
10142 			    TYPENAME(wk->wk_type));
10143 			/* NOTREACHED */
10144 		}
10145 	}
10146 	FREE_LOCK(ump);
10147 	PRELE(curproc);			/* Allow swapout of kernel stack */
10148 }
10149 
10150 /*
10151  * Called from within the procedure above to deal with unsatisfied
10152  * allocation dependencies in a directory. The buffer must be locked,
10153  * thus, no I/O completion operations can occur while we are
10154  * manipulating its associated dependencies.
10155  */
10156 static void
10157 initiate_write_filepage(pagedep, bp)
10158 	struct pagedep *pagedep;
10159 	struct buf *bp;
10160 {
10161 	struct jremref *jremref;
10162 	struct jmvref *jmvref;
10163 	struct dirrem *dirrem;
10164 	struct diradd *dap;
10165 	struct direct *ep;
10166 	int i;
10167 
10168 	if (pagedep->pd_state & IOSTARTED) {
10169 		/*
10170 		 * This can only happen if there is a driver that does not
10171 		 * understand chaining. Here biodone will reissue the call
10172 		 * to strategy for the incomplete buffers.
10173 		 */
10174 		printf("initiate_write_filepage: already started\n");
10175 		return;
10176 	}
10177 	pagedep->pd_state |= IOSTARTED;
10178 	/*
10179 	 * Wait for all journal remove dependencies to hit the disk.
10180 	 * We can not allow any potentially conflicting directory adds
10181 	 * to be visible before removes and rollback is too difficult.
10182 	 * The per-filesystem lock may be dropped and re-acquired, however
10183 	 * we hold the buf locked so the dependency can not go away.
10184 	 */
10185 	LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next)
10186 		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL)
10187 			jwait(&jremref->jr_list, MNT_WAIT);
10188 	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL)
10189 		jwait(&jmvref->jm_list, MNT_WAIT);
10190 	for (i = 0; i < DAHASHSZ; i++) {
10191 		LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
10192 			ep = (struct direct *)
10193 			    ((char *)bp->b_data + dap->da_offset);
10194 			if (ep->d_ino != dap->da_newinum)
10195 				panic("%s: dir inum %ju != new %ju",
10196 				    "initiate_write_filepage",
10197 				    (uintmax_t)ep->d_ino,
10198 				    (uintmax_t)dap->da_newinum);
10199 			if (dap->da_state & DIRCHG)
10200 				ep->d_ino = dap->da_previous->dm_oldinum;
10201 			else
10202 				ep->d_ino = 0;
10203 			dap->da_state &= ~ATTACHED;
10204 			dap->da_state |= UNDONE;
10205 		}
10206 	}
10207 }
10208 
10209 /*
10210  * Version of initiate_write_inodeblock that handles UFS1 dinodes.
10211  * Note that any bug fixes made to this routine must be done in the
10212  * version found below.
10213  *
10214  * Called from within the procedure above to deal with unsatisfied
10215  * allocation dependencies in an inodeblock. The buffer must be
10216  * locked, thus, no I/O completion operations can occur while we
10217  * are manipulating its associated dependencies.
10218  */
10219 static void
10220 initiate_write_inodeblock_ufs1(inodedep, bp)
10221 	struct inodedep *inodedep;
10222 	struct buf *bp;			/* The inode block */
10223 {
10224 	struct allocdirect *adp, *lastadp;
10225 	struct ufs1_dinode *dp;
10226 	struct ufs1_dinode *sip;
10227 	struct inoref *inoref;
10228 	struct ufsmount *ump;
10229 	struct fs *fs;
10230 	ufs_lbn_t i;
10231 #ifdef INVARIANTS
10232 	ufs_lbn_t prevlbn = 0;
10233 #endif
10234 	int deplist;
10235 
10236 	if (inodedep->id_state & IOSTARTED)
10237 		panic("initiate_write_inodeblock_ufs1: already started");
10238 	inodedep->id_state |= IOSTARTED;
10239 	fs = inodedep->id_fs;
10240 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
10241 	LOCK_OWNED(ump);
10242 	dp = (struct ufs1_dinode *)bp->b_data +
10243 	    ino_to_fsbo(fs, inodedep->id_ino);
10244 
10245 	/*
10246 	 * If we're on the unlinked list but have not yet written our
10247 	 * next pointer initialize it here.
10248 	 */
10249 	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
10250 		struct inodedep *inon;
10251 
10252 		inon = TAILQ_NEXT(inodedep, id_unlinked);
10253 		dp->di_freelink = inon ? inon->id_ino : 0;
10254 	}
10255 	/*
10256 	 * If the bitmap is not yet written, then the allocated
10257 	 * inode cannot be written to disk.
10258 	 */
10259 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
10260 		if (inodedep->id_savedino1 != NULL)
10261 			panic("initiate_write_inodeblock_ufs1: I/O underway");
10262 		FREE_LOCK(ump);
10263 		sip = malloc(sizeof(struct ufs1_dinode),
10264 		    M_SAVEDINO, M_SOFTDEP_FLAGS);
10265 		ACQUIRE_LOCK(ump);
10266 		inodedep->id_savedino1 = sip;
10267 		*inodedep->id_savedino1 = *dp;
10268 		bzero((caddr_t)dp, sizeof(struct ufs1_dinode));
10269 		dp->di_gen = inodedep->id_savedino1->di_gen;
10270 		dp->di_freelink = inodedep->id_savedino1->di_freelink;
10271 		return;
10272 	}
10273 	/*
10274 	 * If no dependencies, then there is nothing to roll back.
10275 	 */
10276 	inodedep->id_savedsize = dp->di_size;
10277 	inodedep->id_savedextsize = 0;
10278 	inodedep->id_savednlink = dp->di_nlink;
10279 	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
10280 	    TAILQ_EMPTY(&inodedep->id_inoreflst))
10281 		return;
10282 	/*
10283 	 * Revert the link count to that of the first unwritten journal entry.
10284 	 */
10285 	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
10286 	if (inoref)
10287 		dp->di_nlink = inoref->if_nlink;
10288 	/*
10289 	 * Set the dependencies to busy.
10290 	 */
10291 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10292 	     adp = TAILQ_NEXT(adp, ad_next)) {
10293 #ifdef INVARIANTS
10294 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10295 			panic("softdep_write_inodeblock: lbn order");
10296 		prevlbn = adp->ad_offset;
10297 		if (adp->ad_offset < UFS_NDADDR &&
10298 		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
10299 			panic("initiate_write_inodeblock_ufs1: "
10300 			    "direct pointer #%jd mismatch %d != %jd",
10301 			    (intmax_t)adp->ad_offset,
10302 			    dp->di_db[adp->ad_offset],
10303 			    (intmax_t)adp->ad_newblkno);
10304 		if (adp->ad_offset >= UFS_NDADDR &&
10305 		    dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno)
10306 			panic("initiate_write_inodeblock_ufs1: "
10307 			    "indirect pointer #%jd mismatch %d != %jd",
10308 			    (intmax_t)adp->ad_offset - UFS_NDADDR,
10309 			    dp->di_ib[adp->ad_offset - UFS_NDADDR],
10310 			    (intmax_t)adp->ad_newblkno);
10311 		deplist |= 1 << adp->ad_offset;
10312 		if ((adp->ad_state & ATTACHED) == 0)
10313 			panic("initiate_write_inodeblock_ufs1: "
10314 			    "Unknown state 0x%x", adp->ad_state);
10315 #endif /* INVARIANTS */
10316 		adp->ad_state &= ~ATTACHED;
10317 		adp->ad_state |= UNDONE;
10318 	}
10319 	/*
10320 	 * The on-disk inode cannot claim to be any larger than the last
10321 	 * fragment that has been written. Otherwise, the on-disk inode
10322 	 * might have fragments that were not the last block in the file
10323 	 * which would corrupt the filesystem.
10324 	 */
10325 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10326 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10327 		if (adp->ad_offset >= UFS_NDADDR)
10328 			break;
10329 		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
10330 		/* keep going until hitting a rollback to a frag */
10331 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10332 			continue;
10333 		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10334 		for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) {
10335 #ifdef INVARIANTS
10336 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
10337 				panic("initiate_write_inodeblock_ufs1: "
10338 				    "lost dep1");
10339 #endif /* INVARIANTS */
10340 			dp->di_db[i] = 0;
10341 		}
10342 		for (i = 0; i < UFS_NIADDR; i++) {
10343 #ifdef INVARIANTS
10344 			if (dp->di_ib[i] != 0 &&
10345 			    (deplist & ((1 << UFS_NDADDR) << i)) == 0)
10346 				panic("initiate_write_inodeblock_ufs1: "
10347 				    "lost dep2");
10348 #endif /* INVARIANTS */
10349 			dp->di_ib[i] = 0;
10350 		}
10351 		return;
10352 	}
10353 	/*
10354 	 * If we have zero'ed out the last allocated block of the file,
10355 	 * roll back the size to the last currently allocated block.
10356 	 * We know that this last allocated block is a full-sized as
10357 	 * we already checked for fragments in the loop above.
10358 	 */
10359 	if (lastadp != NULL &&
10360 	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10361 		for (i = lastadp->ad_offset; i >= 0; i--)
10362 			if (dp->di_db[i] != 0)
10363 				break;
10364 		dp->di_size = (i + 1) * fs->fs_bsize;
10365 	}
10366 	/*
10367 	 * The only dependencies are for indirect blocks.
10368 	 *
10369 	 * The file size for indirect block additions is not guaranteed.
10370 	 * Such a guarantee would be non-trivial to achieve. The conventional
10371 	 * synchronous write implementation also does not make this guarantee.
10372 	 * Fsck should catch and fix discrepancies. Arguably, the file size
10373 	 * can be over-estimated without destroying integrity when the file
10374 	 * moves into the indirect blocks (i.e., is large). If we want to
10375 	 * postpone fsck, we are stuck with this argument.
10376 	 */
10377 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
10378 		dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0;
10379 }
10380 
10381 /*
10382  * Version of initiate_write_inodeblock that handles UFS2 dinodes.
10383  * Note that any bug fixes made to this routine must be done in the
10384  * version found above.
10385  *
10386  * Called from within the procedure above to deal with unsatisfied
10387  * allocation dependencies in an inodeblock. The buffer must be
10388  * locked, thus, no I/O completion operations can occur while we
10389  * are manipulating its associated dependencies.
10390  */
10391 static void
10392 initiate_write_inodeblock_ufs2(inodedep, bp)
10393 	struct inodedep *inodedep;
10394 	struct buf *bp;			/* The inode block */
10395 {
10396 	struct allocdirect *adp, *lastadp;
10397 	struct ufs2_dinode *dp;
10398 	struct ufs2_dinode *sip;
10399 	struct inoref *inoref;
10400 	struct ufsmount *ump;
10401 	struct fs *fs;
10402 	ufs_lbn_t i;
10403 #ifdef INVARIANTS
10404 	ufs_lbn_t prevlbn = 0;
10405 #endif
10406 	int deplist;
10407 
10408 	if (inodedep->id_state & IOSTARTED)
10409 		panic("initiate_write_inodeblock_ufs2: already started");
10410 	inodedep->id_state |= IOSTARTED;
10411 	fs = inodedep->id_fs;
10412 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
10413 	LOCK_OWNED(ump);
10414 	dp = (struct ufs2_dinode *)bp->b_data +
10415 	    ino_to_fsbo(fs, inodedep->id_ino);
10416 
10417 	/*
10418 	 * If we're on the unlinked list but have not yet written our
10419 	 * next pointer initialize it here.
10420 	 */
10421 	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
10422 		struct inodedep *inon;
10423 
10424 		inon = TAILQ_NEXT(inodedep, id_unlinked);
10425 		dp->di_freelink = inon ? inon->id_ino : 0;
10426 		ffs_update_dinode_ckhash(fs, dp);
10427 	}
10428 	/*
10429 	 * If the bitmap is not yet written, then the allocated
10430 	 * inode cannot be written to disk.
10431 	 */
10432 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
10433 		if (inodedep->id_savedino2 != NULL)
10434 			panic("initiate_write_inodeblock_ufs2: I/O underway");
10435 		FREE_LOCK(ump);
10436 		sip = malloc(sizeof(struct ufs2_dinode),
10437 		    M_SAVEDINO, M_SOFTDEP_FLAGS);
10438 		ACQUIRE_LOCK(ump);
10439 		inodedep->id_savedino2 = sip;
10440 		*inodedep->id_savedino2 = *dp;
10441 		bzero((caddr_t)dp, sizeof(struct ufs2_dinode));
10442 		dp->di_gen = inodedep->id_savedino2->di_gen;
10443 		dp->di_freelink = inodedep->id_savedino2->di_freelink;
10444 		return;
10445 	}
10446 	/*
10447 	 * If no dependencies, then there is nothing to roll back.
10448 	 */
10449 	inodedep->id_savedsize = dp->di_size;
10450 	inodedep->id_savedextsize = dp->di_extsize;
10451 	inodedep->id_savednlink = dp->di_nlink;
10452 	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
10453 	    TAILQ_EMPTY(&inodedep->id_extupdt) &&
10454 	    TAILQ_EMPTY(&inodedep->id_inoreflst))
10455 		return;
10456 	/*
10457 	 * Revert the link count to that of the first unwritten journal entry.
10458 	 */
10459 	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
10460 	if (inoref)
10461 		dp->di_nlink = inoref->if_nlink;
10462 
10463 	/*
10464 	 * Set the ext data dependencies to busy.
10465 	 */
10466 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
10467 	     adp = TAILQ_NEXT(adp, ad_next)) {
10468 #ifdef INVARIANTS
10469 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10470 			panic("initiate_write_inodeblock_ufs2: lbn order");
10471 		prevlbn = adp->ad_offset;
10472 		if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno)
10473 			panic("initiate_write_inodeblock_ufs2: "
10474 			    "ext pointer #%jd mismatch %jd != %jd",
10475 			    (intmax_t)adp->ad_offset,
10476 			    (intmax_t)dp->di_extb[adp->ad_offset],
10477 			    (intmax_t)adp->ad_newblkno);
10478 		deplist |= 1 << adp->ad_offset;
10479 		if ((adp->ad_state & ATTACHED) == 0)
10480 			panic("initiate_write_inodeblock_ufs2: Unknown "
10481 			    "state 0x%x", adp->ad_state);
10482 #endif /* INVARIANTS */
10483 		adp->ad_state &= ~ATTACHED;
10484 		adp->ad_state |= UNDONE;
10485 	}
10486 	/*
10487 	 * The on-disk inode cannot claim to be any larger than the last
10488 	 * fragment that has been written. Otherwise, the on-disk inode
10489 	 * might have fragments that were not the last block in the ext
10490 	 * data which would corrupt the filesystem.
10491 	 */
10492 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
10493 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10494 		dp->di_extb[adp->ad_offset] = adp->ad_oldblkno;
10495 		/* keep going until hitting a rollback to a frag */
10496 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10497 			continue;
10498 		dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10499 		for (i = adp->ad_offset + 1; i < UFS_NXADDR; i++) {
10500 #ifdef INVARIANTS
10501 			if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0)
10502 				panic("initiate_write_inodeblock_ufs2: "
10503 				    "lost dep1");
10504 #endif /* INVARIANTS */
10505 			dp->di_extb[i] = 0;
10506 		}
10507 		lastadp = NULL;
10508 		break;
10509 	}
10510 	/*
10511 	 * If we have zero'ed out the last allocated block of the ext
10512 	 * data, roll back the size to the last currently allocated block.
10513 	 * We know that this last allocated block is a full-sized as
10514 	 * we already checked for fragments in the loop above.
10515 	 */
10516 	if (lastadp != NULL &&
10517 	    dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10518 		for (i = lastadp->ad_offset; i >= 0; i--)
10519 			if (dp->di_extb[i] != 0)
10520 				break;
10521 		dp->di_extsize = (i + 1) * fs->fs_bsize;
10522 	}
10523 	/*
10524 	 * Set the file data dependencies to busy.
10525 	 */
10526 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10527 	     adp = TAILQ_NEXT(adp, ad_next)) {
10528 #ifdef INVARIANTS
10529 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10530 			panic("softdep_write_inodeblock: lbn order");
10531 		if ((adp->ad_state & ATTACHED) == 0)
10532 			panic("inodedep %p and adp %p not attached", inodedep, adp);
10533 		prevlbn = adp->ad_offset;
10534 		if (adp->ad_offset < UFS_NDADDR &&
10535 		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
10536 			panic("initiate_write_inodeblock_ufs2: "
10537 			    "direct pointer #%jd mismatch %jd != %jd",
10538 			    (intmax_t)adp->ad_offset,
10539 			    (intmax_t)dp->di_db[adp->ad_offset],
10540 			    (intmax_t)adp->ad_newblkno);
10541 		if (adp->ad_offset >= UFS_NDADDR &&
10542 		    dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno)
10543 			panic("initiate_write_inodeblock_ufs2: "
10544 			    "indirect pointer #%jd mismatch %jd != %jd",
10545 			    (intmax_t)adp->ad_offset - UFS_NDADDR,
10546 			    (intmax_t)dp->di_ib[adp->ad_offset - UFS_NDADDR],
10547 			    (intmax_t)adp->ad_newblkno);
10548 		deplist |= 1 << adp->ad_offset;
10549 		if ((adp->ad_state & ATTACHED) == 0)
10550 			panic("initiate_write_inodeblock_ufs2: Unknown "
10551 			     "state 0x%x", adp->ad_state);
10552 #endif /* INVARIANTS */
10553 		adp->ad_state &= ~ATTACHED;
10554 		adp->ad_state |= UNDONE;
10555 	}
10556 	/*
10557 	 * The on-disk inode cannot claim to be any larger than the last
10558 	 * fragment that has been written. Otherwise, the on-disk inode
10559 	 * might have fragments that were not the last block in the file
10560 	 * which would corrupt the filesystem.
10561 	 */
10562 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10563 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10564 		if (adp->ad_offset >= UFS_NDADDR)
10565 			break;
10566 		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
10567 		/* keep going until hitting a rollback to a frag */
10568 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10569 			continue;
10570 		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10571 		for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) {
10572 #ifdef INVARIANTS
10573 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
10574 				panic("initiate_write_inodeblock_ufs2: "
10575 				    "lost dep2");
10576 #endif /* INVARIANTS */
10577 			dp->di_db[i] = 0;
10578 		}
10579 		for (i = 0; i < UFS_NIADDR; i++) {
10580 #ifdef INVARIANTS
10581 			if (dp->di_ib[i] != 0 &&
10582 			    (deplist & ((1 << UFS_NDADDR) << i)) == 0)
10583 				panic("initiate_write_inodeblock_ufs2: "
10584 				    "lost dep3");
10585 #endif /* INVARIANTS */
10586 			dp->di_ib[i] = 0;
10587 		}
10588 		ffs_update_dinode_ckhash(fs, dp);
10589 		return;
10590 	}
10591 	/*
10592 	 * If we have zero'ed out the last allocated block of the file,
10593 	 * roll back the size to the last currently allocated block.
10594 	 * We know that this last allocated block is a full-sized as
10595 	 * we already checked for fragments in the loop above.
10596 	 */
10597 	if (lastadp != NULL &&
10598 	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10599 		for (i = lastadp->ad_offset; i >= 0; i--)
10600 			if (dp->di_db[i] != 0)
10601 				break;
10602 		dp->di_size = (i + 1) * fs->fs_bsize;
10603 	}
10604 	/*
10605 	 * The only dependencies are for indirect blocks.
10606 	 *
10607 	 * The file size for indirect block additions is not guaranteed.
10608 	 * Such a guarantee would be non-trivial to achieve. The conventional
10609 	 * synchronous write implementation also does not make this guarantee.
10610 	 * Fsck should catch and fix discrepancies. Arguably, the file size
10611 	 * can be over-estimated without destroying integrity when the file
10612 	 * moves into the indirect blocks (i.e., is large). If we want to
10613 	 * postpone fsck, we are stuck with this argument.
10614 	 */
10615 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
10616 		dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0;
10617 	ffs_update_dinode_ckhash(fs, dp);
10618 }
10619 
10620 /*
10621  * Cancel an indirdep as a result of truncation.  Release all of the
10622  * children allocindirs and place their journal work on the appropriate
10623  * list.
10624  */
10625 static void
10626 cancel_indirdep(indirdep, bp, freeblks)
10627 	struct indirdep *indirdep;
10628 	struct buf *bp;
10629 	struct freeblks *freeblks;
10630 {
10631 	struct allocindir *aip;
10632 
10633 	/*
10634 	 * None of the indirect pointers will ever be visible,
10635 	 * so they can simply be tossed. GOINGAWAY ensures
10636 	 * that allocated pointers will be saved in the buffer
10637 	 * cache until they are freed. Note that they will
10638 	 * only be able to be found by their physical address
10639 	 * since the inode mapping the logical address will
10640 	 * be gone. The save buffer used for the safe copy
10641 	 * was allocated in setup_allocindir_phase2 using
10642 	 * the physical address so it could be used for this
10643 	 * purpose. Hence we swap the safe copy with the real
10644 	 * copy, allowing the safe copy to be freed and holding
10645 	 * on to the real copy for later use in indir_trunc.
10646 	 */
10647 	if (indirdep->ir_state & GOINGAWAY)
10648 		panic("cancel_indirdep: already gone");
10649 	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
10650 		indirdep->ir_state |= DEPCOMPLETE;
10651 		LIST_REMOVE(indirdep, ir_next);
10652 	}
10653 	indirdep->ir_state |= GOINGAWAY;
10654 	/*
10655 	 * Pass in bp for blocks still have journal writes
10656 	 * pending so we can cancel them on their own.
10657 	 */
10658 	while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != NULL)
10659 		cancel_allocindir(aip, bp, freeblks, 0);
10660 	while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL)
10661 		cancel_allocindir(aip, NULL, freeblks, 0);
10662 	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL)
10663 		cancel_allocindir(aip, NULL, freeblks, 0);
10664 	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL)
10665 		cancel_allocindir(aip, NULL, freeblks, 0);
10666 	/*
10667 	 * If there are pending partial truncations we need to keep the
10668 	 * old block copy around until they complete.  This is because
10669 	 * the current b_data is not a perfect superset of the available
10670 	 * blocks.
10671 	 */
10672 	if (TAILQ_EMPTY(&indirdep->ir_trunc))
10673 		bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount);
10674 	else
10675 		bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
10676 	WORKLIST_REMOVE(&indirdep->ir_list);
10677 	WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list);
10678 	indirdep->ir_bp = NULL;
10679 	indirdep->ir_freeblks = freeblks;
10680 }
10681 
10682 /*
10683  * Free an indirdep once it no longer has new pointers to track.
10684  */
10685 static void
10686 free_indirdep(indirdep)
10687 	struct indirdep *indirdep;
10688 {
10689 
10690 	KASSERT(TAILQ_EMPTY(&indirdep->ir_trunc),
10691 	    ("free_indirdep: Indir trunc list not empty."));
10692 	KASSERT(LIST_EMPTY(&indirdep->ir_completehd),
10693 	    ("free_indirdep: Complete head not empty."));
10694 	KASSERT(LIST_EMPTY(&indirdep->ir_writehd),
10695 	    ("free_indirdep: write head not empty."));
10696 	KASSERT(LIST_EMPTY(&indirdep->ir_donehd),
10697 	    ("free_indirdep: done head not empty."));
10698 	KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd),
10699 	    ("free_indirdep: deplist head not empty."));
10700 	KASSERT((indirdep->ir_state & DEPCOMPLETE),
10701 	    ("free_indirdep: %p still on newblk list.", indirdep));
10702 	KASSERT(indirdep->ir_saveddata == NULL,
10703 	    ("free_indirdep: %p still has saved data.", indirdep));
10704 	if (indirdep->ir_state & ONWORKLIST)
10705 		WORKLIST_REMOVE(&indirdep->ir_list);
10706 	WORKITEM_FREE(indirdep, D_INDIRDEP);
10707 }
10708 
10709 /*
10710  * Called before a write to an indirdep.  This routine is responsible for
10711  * rolling back pointers to a safe state which includes only those
10712  * allocindirs which have been completed.
10713  */
10714 static void
10715 initiate_write_indirdep(indirdep, bp)
10716 	struct indirdep *indirdep;
10717 	struct buf *bp;
10718 {
10719 	struct ufsmount *ump;
10720 
10721 	indirdep->ir_state |= IOSTARTED;
10722 	if (indirdep->ir_state & GOINGAWAY)
10723 		panic("disk_io_initiation: indirdep gone");
10724 	/*
10725 	 * If there are no remaining dependencies, this will be writing
10726 	 * the real pointers.
10727 	 */
10728 	if (LIST_EMPTY(&indirdep->ir_deplisthd) &&
10729 	    TAILQ_EMPTY(&indirdep->ir_trunc))
10730 		return;
10731 	/*
10732 	 * Replace up-to-date version with safe version.
10733 	 */
10734 	if (indirdep->ir_saveddata == NULL) {
10735 		ump = VFSTOUFS(indirdep->ir_list.wk_mp);
10736 		LOCK_OWNED(ump);
10737 		FREE_LOCK(ump);
10738 		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
10739 		    M_SOFTDEP_FLAGS);
10740 		ACQUIRE_LOCK(ump);
10741 	}
10742 	indirdep->ir_state &= ~ATTACHED;
10743 	indirdep->ir_state |= UNDONE;
10744 	bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
10745 	bcopy(indirdep->ir_savebp->b_data, bp->b_data,
10746 	    bp->b_bcount);
10747 }
10748 
10749 /*
10750  * Called when an inode has been cleared in a cg bitmap.  This finally
10751  * eliminates any canceled jaddrefs
10752  */
10753 void
10754 softdep_setup_inofree(mp, bp, ino, wkhd)
10755 	struct mount *mp;
10756 	struct buf *bp;
10757 	ino_t ino;
10758 	struct workhead *wkhd;
10759 {
10760 	struct worklist *wk, *wkn;
10761 	struct inodedep *inodedep;
10762 	struct ufsmount *ump;
10763 	uint8_t *inosused;
10764 	struct cg *cgp;
10765 	struct fs *fs;
10766 
10767 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
10768 	    ("softdep_setup_inofree called on non-softdep filesystem"));
10769 	ump = VFSTOUFS(mp);
10770 	ACQUIRE_LOCK(ump);
10771 	fs = ump->um_fs;
10772 	cgp = (struct cg *)bp->b_data;
10773 	inosused = cg_inosused(cgp);
10774 	if (isset(inosused, ino % fs->fs_ipg))
10775 		panic("softdep_setup_inofree: inode %ju not freed.",
10776 		    (uintmax_t)ino);
10777 	if (inodedep_lookup(mp, ino, 0, &inodedep))
10778 		panic("softdep_setup_inofree: ino %ju has existing inodedep %p",
10779 		    (uintmax_t)ino, inodedep);
10780 	if (wkhd) {
10781 		LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) {
10782 			if (wk->wk_type != D_JADDREF)
10783 				continue;
10784 			WORKLIST_REMOVE(wk);
10785 			/*
10786 			 * We can free immediately even if the jaddref
10787 			 * isn't attached in a background write as now
10788 			 * the bitmaps are reconciled.
10789 			 */
10790 			wk->wk_state |= COMPLETE | ATTACHED;
10791 			free_jaddref(WK_JADDREF(wk));
10792 		}
10793 		jwork_move(&bp->b_dep, wkhd);
10794 	}
10795 	FREE_LOCK(ump);
10796 }
10797 
10798 /*
10799  * Called via ffs_blkfree() after a set of frags has been cleared from a cg
10800  * map.  Any dependencies waiting for the write to clear are added to the
10801  * buf's list and any jnewblks that are being canceled are discarded
10802  * immediately.
10803  */
10804 void
10805 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
10806 	struct mount *mp;
10807 	struct buf *bp;
10808 	ufs2_daddr_t blkno;
10809 	int frags;
10810 	struct workhead *wkhd;
10811 {
10812 	struct bmsafemap *bmsafemap;
10813 	struct jnewblk *jnewblk;
10814 	struct ufsmount *ump;
10815 	struct worklist *wk;
10816 	struct fs *fs;
10817 #ifdef INVARIANTS
10818 	uint8_t *blksfree;
10819 	struct cg *cgp;
10820 	ufs2_daddr_t jstart;
10821 	ufs2_daddr_t jend;
10822 	ufs2_daddr_t end;
10823 	long bno;
10824 	int i;
10825 #endif
10826 
10827 	CTR3(KTR_SUJ,
10828 	    "softdep_setup_blkfree: blkno %jd frags %d wk head %p",
10829 	    blkno, frags, wkhd);
10830 
10831 	ump = VFSTOUFS(mp);
10832 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
10833 	    ("softdep_setup_blkfree called on non-softdep filesystem"));
10834 	ACQUIRE_LOCK(ump);
10835 	/* Lookup the bmsafemap so we track when it is dirty. */
10836 	fs = ump->um_fs;
10837 	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
10838 	/*
10839 	 * Detach any jnewblks which have been canceled.  They must linger
10840 	 * until the bitmap is cleared again by ffs_blkfree() to prevent
10841 	 * an unjournaled allocation from hitting the disk.
10842 	 */
10843 	if (wkhd) {
10844 		while ((wk = LIST_FIRST(wkhd)) != NULL) {
10845 			CTR2(KTR_SUJ,
10846 			    "softdep_setup_blkfree: blkno %jd wk type %d",
10847 			    blkno, wk->wk_type);
10848 			WORKLIST_REMOVE(wk);
10849 			if (wk->wk_type != D_JNEWBLK) {
10850 				WORKLIST_INSERT(&bmsafemap->sm_freehd, wk);
10851 				continue;
10852 			}
10853 			jnewblk = WK_JNEWBLK(wk);
10854 			KASSERT(jnewblk->jn_state & GOINGAWAY,
10855 			    ("softdep_setup_blkfree: jnewblk not canceled."));
10856 #ifdef INVARIANTS
10857 			/*
10858 			 * Assert that this block is free in the bitmap
10859 			 * before we discard the jnewblk.
10860 			 */
10861 			cgp = (struct cg *)bp->b_data;
10862 			blksfree = cg_blksfree(cgp);
10863 			bno = dtogd(fs, jnewblk->jn_blkno);
10864 			for (i = jnewblk->jn_oldfrags;
10865 			    i < jnewblk->jn_frags; i++) {
10866 				if (isset(blksfree, bno + i))
10867 					continue;
10868 				panic("softdep_setup_blkfree: not free");
10869 			}
10870 #endif
10871 			/*
10872 			 * Even if it's not attached we can free immediately
10873 			 * as the new bitmap is correct.
10874 			 */
10875 			wk->wk_state |= COMPLETE | ATTACHED;
10876 			free_jnewblk(jnewblk);
10877 		}
10878 	}
10879 
10880 #ifdef INVARIANTS
10881 	/*
10882 	 * Assert that we are not freeing a block which has an outstanding
10883 	 * allocation dependency.
10884 	 */
10885 	fs = VFSTOUFS(mp)->um_fs;
10886 	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
10887 	end = blkno + frags;
10888 	LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
10889 		/*
10890 		 * Don't match against blocks that will be freed when the
10891 		 * background write is done.
10892 		 */
10893 		if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) ==
10894 		    (COMPLETE | DEPCOMPLETE))
10895 			continue;
10896 		jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags;
10897 		jend = jnewblk->jn_blkno + jnewblk->jn_frags;
10898 		if ((blkno >= jstart && blkno < jend) ||
10899 		    (end > jstart && end <= jend)) {
10900 			printf("state 0x%X %jd - %d %d dep %p\n",
10901 			    jnewblk->jn_state, jnewblk->jn_blkno,
10902 			    jnewblk->jn_oldfrags, jnewblk->jn_frags,
10903 			    jnewblk->jn_dep);
10904 			panic("softdep_setup_blkfree: "
10905 			    "%jd-%jd(%d) overlaps with %jd-%jd",
10906 			    blkno, end, frags, jstart, jend);
10907 		}
10908 	}
10909 #endif
10910 	FREE_LOCK(ump);
10911 }
10912 
10913 /*
10914  * Revert a block allocation when the journal record that describes it
10915  * is not yet written.
10916  */
10917 static int
10918 jnewblk_rollback(jnewblk, fs, cgp, blksfree)
10919 	struct jnewblk *jnewblk;
10920 	struct fs *fs;
10921 	struct cg *cgp;
10922 	uint8_t *blksfree;
10923 {
10924 	ufs1_daddr_t fragno;
10925 	long cgbno, bbase;
10926 	int frags, blk;
10927 	int i;
10928 
10929 	frags = 0;
10930 	cgbno = dtogd(fs, jnewblk->jn_blkno);
10931 	/*
10932 	 * We have to test which frags need to be rolled back.  We may
10933 	 * be operating on a stale copy when doing background writes.
10934 	 */
10935 	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++)
10936 		if (isclr(blksfree, cgbno + i))
10937 			frags++;
10938 	if (frags == 0)
10939 		return (0);
10940 	/*
10941 	 * This is mostly ffs_blkfree() sans some validation and
10942 	 * superblock updates.
10943 	 */
10944 	if (frags == fs->fs_frag) {
10945 		fragno = fragstoblks(fs, cgbno);
10946 		ffs_setblock(fs, blksfree, fragno);
10947 		ffs_clusteracct(fs, cgp, fragno, 1);
10948 		cgp->cg_cs.cs_nbfree++;
10949 	} else {
10950 		cgbno += jnewblk->jn_oldfrags;
10951 		bbase = cgbno - fragnum(fs, cgbno);
10952 		/* Decrement the old frags.  */
10953 		blk = blkmap(fs, blksfree, bbase);
10954 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
10955 		/* Deallocate the fragment */
10956 		for (i = 0; i < frags; i++)
10957 			setbit(blksfree, cgbno + i);
10958 		cgp->cg_cs.cs_nffree += frags;
10959 		/* Add back in counts associated with the new frags */
10960 		blk = blkmap(fs, blksfree, bbase);
10961 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
10962 		/* If a complete block has been reassembled, account for it. */
10963 		fragno = fragstoblks(fs, bbase);
10964 		if (ffs_isblock(fs, blksfree, fragno)) {
10965 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
10966 			ffs_clusteracct(fs, cgp, fragno, 1);
10967 			cgp->cg_cs.cs_nbfree++;
10968 		}
10969 	}
10970 	stat_jnewblk++;
10971 	jnewblk->jn_state &= ~ATTACHED;
10972 	jnewblk->jn_state |= UNDONE;
10973 
10974 	return (frags);
10975 }
10976 
10977 static void
10978 initiate_write_bmsafemap(bmsafemap, bp)
10979 	struct bmsafemap *bmsafemap;
10980 	struct buf *bp;			/* The cg block. */
10981 {
10982 	struct jaddref *jaddref;
10983 	struct jnewblk *jnewblk;
10984 	uint8_t *inosused;
10985 	uint8_t *blksfree;
10986 	struct cg *cgp;
10987 	struct fs *fs;
10988 	ino_t ino;
10989 
10990 	/*
10991 	 * If this is a background write, we did this at the time that
10992 	 * the copy was made, so do not need to do it again.
10993 	 */
10994 	if (bmsafemap->sm_state & IOSTARTED)
10995 		return;
10996 	bmsafemap->sm_state |= IOSTARTED;
10997 	/*
10998 	 * Clear any inode allocations which are pending journal writes.
10999 	 */
11000 	if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) {
11001 		cgp = (struct cg *)bp->b_data;
11002 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11003 		inosused = cg_inosused(cgp);
11004 		LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) {
11005 			ino = jaddref->ja_ino % fs->fs_ipg;
11006 			if (isset(inosused, ino)) {
11007 				if ((jaddref->ja_mode & IFMT) == IFDIR)
11008 					cgp->cg_cs.cs_ndir--;
11009 				cgp->cg_cs.cs_nifree++;
11010 				clrbit(inosused, ino);
11011 				jaddref->ja_state &= ~ATTACHED;
11012 				jaddref->ja_state |= UNDONE;
11013 				stat_jaddref++;
11014 			} else
11015 				panic("initiate_write_bmsafemap: inode %ju "
11016 				    "marked free", (uintmax_t)jaddref->ja_ino);
11017 		}
11018 	}
11019 	/*
11020 	 * Clear any block allocations which are pending journal writes.
11021 	 */
11022 	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
11023 		cgp = (struct cg *)bp->b_data;
11024 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11025 		blksfree = cg_blksfree(cgp);
11026 		LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
11027 			if (jnewblk_rollback(jnewblk, fs, cgp, blksfree))
11028 				continue;
11029 			panic("initiate_write_bmsafemap: block %jd "
11030 			    "marked free", jnewblk->jn_blkno);
11031 		}
11032 	}
11033 	/*
11034 	 * Move allocation lists to the written lists so they can be
11035 	 * cleared once the block write is complete.
11036 	 */
11037 	LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr,
11038 	    inodedep, id_deps);
11039 	LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr,
11040 	    newblk, nb_deps);
11041 	LIST_SWAP(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, worklist,
11042 	    wk_list);
11043 }
11044 
11045 /*
11046  * This routine is called during the completion interrupt
11047  * service routine for a disk write (from the procedure called
11048  * by the device driver to inform the filesystem caches of
11049  * a request completion).  It should be called early in this
11050  * procedure, before the block is made available to other
11051  * processes or other routines are called.
11052  *
11053  */
11054 static void
11055 softdep_disk_write_complete(bp)
11056 	struct buf *bp;		/* describes the completed disk write */
11057 {
11058 	struct worklist *wk;
11059 	struct worklist *owk;
11060 	struct ufsmount *ump;
11061 	struct workhead reattach;
11062 	struct freeblks *freeblks;
11063 	struct buf *sbp;
11064 
11065 	ump = softdep_bp_to_mp(bp);
11066 	KASSERT(LIST_EMPTY(&bp->b_dep) || ump != NULL,
11067 	    ("softdep_disk_write_complete: softdep_bp_to_mp returned NULL "
11068 	     "with outstanding dependencies for buffer %p", bp));
11069 	if (ump == NULL)
11070 		return;
11071 	/*
11072 	 * If an error occurred while doing the write, then the data
11073 	 * has not hit the disk and the dependencies cannot be processed.
11074 	 * But we do have to go through and roll forward any dependencies
11075 	 * that were rolled back before the disk write.
11076 	 */
11077 	sbp = NULL;
11078 	ACQUIRE_LOCK(ump);
11079 	if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0) {
11080 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
11081 			switch (wk->wk_type) {
11082 
11083 			case D_PAGEDEP:
11084 				handle_written_filepage(WK_PAGEDEP(wk), bp, 0);
11085 				continue;
11086 
11087 			case D_INODEDEP:
11088 				handle_written_inodeblock(WK_INODEDEP(wk),
11089 				    bp, 0);
11090 				continue;
11091 
11092 			case D_BMSAFEMAP:
11093 				handle_written_bmsafemap(WK_BMSAFEMAP(wk),
11094 				    bp, 0);
11095 				continue;
11096 
11097 			case D_INDIRDEP:
11098 				handle_written_indirdep(WK_INDIRDEP(wk),
11099 				    bp, &sbp, 0);
11100 				continue;
11101 			default:
11102 				/* nothing to roll forward */
11103 				continue;
11104 			}
11105 		}
11106 		FREE_LOCK(ump);
11107 		if (sbp)
11108 			brelse(sbp);
11109 		return;
11110 	}
11111 	LIST_INIT(&reattach);
11112 
11113 	/*
11114 	 * Ump SU lock must not be released anywhere in this code segment.
11115 	 */
11116 	owk = NULL;
11117 	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
11118 		WORKLIST_REMOVE(wk);
11119 		atomic_add_long(&dep_write[wk->wk_type], 1);
11120 		if (wk == owk)
11121 			panic("duplicate worklist: %p\n", wk);
11122 		owk = wk;
11123 		switch (wk->wk_type) {
11124 
11125 		case D_PAGEDEP:
11126 			if (handle_written_filepage(WK_PAGEDEP(wk), bp,
11127 			    WRITESUCCEEDED))
11128 				WORKLIST_INSERT(&reattach, wk);
11129 			continue;
11130 
11131 		case D_INODEDEP:
11132 			if (handle_written_inodeblock(WK_INODEDEP(wk), bp,
11133 			    WRITESUCCEEDED))
11134 				WORKLIST_INSERT(&reattach, wk);
11135 			continue;
11136 
11137 		case D_BMSAFEMAP:
11138 			if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp,
11139 			    WRITESUCCEEDED))
11140 				WORKLIST_INSERT(&reattach, wk);
11141 			continue;
11142 
11143 		case D_MKDIR:
11144 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
11145 			continue;
11146 
11147 		case D_ALLOCDIRECT:
11148 			wk->wk_state |= COMPLETE;
11149 			handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL);
11150 			continue;
11151 
11152 		case D_ALLOCINDIR:
11153 			wk->wk_state |= COMPLETE;
11154 			handle_allocindir_partdone(WK_ALLOCINDIR(wk));
11155 			continue;
11156 
11157 		case D_INDIRDEP:
11158 			if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp,
11159 			    WRITESUCCEEDED))
11160 				WORKLIST_INSERT(&reattach, wk);
11161 			continue;
11162 
11163 		case D_FREEBLKS:
11164 			wk->wk_state |= COMPLETE;
11165 			freeblks = WK_FREEBLKS(wk);
11166 			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE &&
11167 			    LIST_EMPTY(&freeblks->fb_jblkdephd))
11168 				add_to_worklist(wk, WK_NODELAY);
11169 			continue;
11170 
11171 		case D_FREEWORK:
11172 			handle_written_freework(WK_FREEWORK(wk));
11173 			break;
11174 
11175 		case D_JSEGDEP:
11176 			free_jsegdep(WK_JSEGDEP(wk));
11177 			continue;
11178 
11179 		case D_JSEG:
11180 			handle_written_jseg(WK_JSEG(wk), bp);
11181 			continue;
11182 
11183 		case D_SBDEP:
11184 			if (handle_written_sbdep(WK_SBDEP(wk), bp))
11185 				WORKLIST_INSERT(&reattach, wk);
11186 			continue;
11187 
11188 		case D_FREEDEP:
11189 			free_freedep(WK_FREEDEP(wk));
11190 			continue;
11191 
11192 		default:
11193 			panic("handle_disk_write_complete: Unknown type %s",
11194 			    TYPENAME(wk->wk_type));
11195 			/* NOTREACHED */
11196 		}
11197 	}
11198 	/*
11199 	 * Reattach any requests that must be redone.
11200 	 */
11201 	while ((wk = LIST_FIRST(&reattach)) != NULL) {
11202 		WORKLIST_REMOVE(wk);
11203 		WORKLIST_INSERT(&bp->b_dep, wk);
11204 	}
11205 	FREE_LOCK(ump);
11206 	if (sbp)
11207 		brelse(sbp);
11208 }
11209 
11210 /*
11211  * Called from within softdep_disk_write_complete above.
11212  */
11213 static void
11214 handle_allocdirect_partdone(adp, wkhd)
11215 	struct allocdirect *adp;	/* the completed allocdirect */
11216 	struct workhead *wkhd;		/* Work to do when inode is writtne. */
11217 {
11218 	struct allocdirectlst *listhead;
11219 	struct allocdirect *listadp;
11220 	struct inodedep *inodedep;
11221 	long bsize;
11222 
11223 	LOCK_OWNED(VFSTOUFS(adp->ad_block.nb_list.wk_mp));
11224 	if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
11225 		return;
11226 	/*
11227 	 * The on-disk inode cannot claim to be any larger than the last
11228 	 * fragment that has been written. Otherwise, the on-disk inode
11229 	 * might have fragments that were not the last block in the file
11230 	 * which would corrupt the filesystem. Thus, we cannot free any
11231 	 * allocdirects after one whose ad_oldblkno claims a fragment as
11232 	 * these blocks must be rolled back to zero before writing the inode.
11233 	 * We check the currently active set of allocdirects in id_inoupdt
11234 	 * or id_extupdt as appropriate.
11235 	 */
11236 	inodedep = adp->ad_inodedep;
11237 	bsize = inodedep->id_fs->fs_bsize;
11238 	if (adp->ad_state & EXTDATA)
11239 		listhead = &inodedep->id_extupdt;
11240 	else
11241 		listhead = &inodedep->id_inoupdt;
11242 	TAILQ_FOREACH(listadp, listhead, ad_next) {
11243 		/* found our block */
11244 		if (listadp == adp)
11245 			break;
11246 		/* continue if ad_oldlbn is not a fragment */
11247 		if (listadp->ad_oldsize == 0 ||
11248 		    listadp->ad_oldsize == bsize)
11249 			continue;
11250 		/* hit a fragment */
11251 		return;
11252 	}
11253 	/*
11254 	 * If we have reached the end of the current list without
11255 	 * finding the just finished dependency, then it must be
11256 	 * on the future dependency list. Future dependencies cannot
11257 	 * be freed until they are moved to the current list.
11258 	 */
11259 	if (listadp == NULL) {
11260 #ifdef INVARIANTS
11261 		if (adp->ad_state & EXTDATA)
11262 			listhead = &inodedep->id_newextupdt;
11263 		else
11264 			listhead = &inodedep->id_newinoupdt;
11265 		TAILQ_FOREACH(listadp, listhead, ad_next)
11266 			/* found our block */
11267 			if (listadp == adp)
11268 				break;
11269 		if (listadp == NULL)
11270 			panic("handle_allocdirect_partdone: lost dep");
11271 #endif /* INVARIANTS */
11272 		return;
11273 	}
11274 	/*
11275 	 * If we have found the just finished dependency, then queue
11276 	 * it along with anything that follows it that is complete.
11277 	 * Since the pointer has not yet been written in the inode
11278 	 * as the dependency prevents it, place the allocdirect on the
11279 	 * bufwait list where it will be freed once the pointer is
11280 	 * valid.
11281 	 */
11282 	if (wkhd == NULL)
11283 		wkhd = &inodedep->id_bufwait;
11284 	for (; adp; adp = listadp) {
11285 		listadp = TAILQ_NEXT(adp, ad_next);
11286 		if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
11287 			return;
11288 		TAILQ_REMOVE(listhead, adp, ad_next);
11289 		WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list);
11290 	}
11291 }
11292 
11293 /*
11294  * Called from within softdep_disk_write_complete above.  This routine
11295  * completes successfully written allocindirs.
11296  */
11297 static void
11298 handle_allocindir_partdone(aip)
11299 	struct allocindir *aip;		/* the completed allocindir */
11300 {
11301 	struct indirdep *indirdep;
11302 
11303 	if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
11304 		return;
11305 	indirdep = aip->ai_indirdep;
11306 	LIST_REMOVE(aip, ai_next);
11307 	/*
11308 	 * Don't set a pointer while the buffer is undergoing IO or while
11309 	 * we have active truncations.
11310 	 */
11311 	if (indirdep->ir_state & UNDONE || !TAILQ_EMPTY(&indirdep->ir_trunc)) {
11312 		LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
11313 		return;
11314 	}
11315 	if (indirdep->ir_state & UFS1FMT)
11316 		((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
11317 		    aip->ai_newblkno;
11318 	else
11319 		((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
11320 		    aip->ai_newblkno;
11321 	/*
11322 	 * Await the pointer write before freeing the allocindir.
11323 	 */
11324 	LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next);
11325 }
11326 
11327 /*
11328  * Release segments held on a jwork list.
11329  */
11330 static void
11331 handle_jwork(wkhd)
11332 	struct workhead *wkhd;
11333 {
11334 	struct worklist *wk;
11335 
11336 	while ((wk = LIST_FIRST(wkhd)) != NULL) {
11337 		WORKLIST_REMOVE(wk);
11338 		switch (wk->wk_type) {
11339 		case D_JSEGDEP:
11340 			free_jsegdep(WK_JSEGDEP(wk));
11341 			continue;
11342 		case D_FREEDEP:
11343 			free_freedep(WK_FREEDEP(wk));
11344 			continue;
11345 		case D_FREEFRAG:
11346 			rele_jseg(WK_JSEG(WK_FREEFRAG(wk)->ff_jdep));
11347 			WORKITEM_FREE(wk, D_FREEFRAG);
11348 			continue;
11349 		case D_FREEWORK:
11350 			handle_written_freework(WK_FREEWORK(wk));
11351 			continue;
11352 		default:
11353 			panic("handle_jwork: Unknown type %s\n",
11354 			    TYPENAME(wk->wk_type));
11355 		}
11356 	}
11357 }
11358 
11359 /*
11360  * Handle the bufwait list on an inode when it is safe to release items
11361  * held there.  This normally happens after an inode block is written but
11362  * may be delayed and handled later if there are pending journal items that
11363  * are not yet safe to be released.
11364  */
11365 static struct freefile *
11366 handle_bufwait(inodedep, refhd)
11367 	struct inodedep *inodedep;
11368 	struct workhead *refhd;
11369 {
11370 	struct jaddref *jaddref;
11371 	struct freefile *freefile;
11372 	struct worklist *wk;
11373 
11374 	freefile = NULL;
11375 	while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
11376 		WORKLIST_REMOVE(wk);
11377 		switch (wk->wk_type) {
11378 		case D_FREEFILE:
11379 			/*
11380 			 * We defer adding freefile to the worklist
11381 			 * until all other additions have been made to
11382 			 * ensure that it will be done after all the
11383 			 * old blocks have been freed.
11384 			 */
11385 			if (freefile != NULL)
11386 				panic("handle_bufwait: freefile");
11387 			freefile = WK_FREEFILE(wk);
11388 			continue;
11389 
11390 		case D_MKDIR:
11391 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
11392 			continue;
11393 
11394 		case D_DIRADD:
11395 			diradd_inode_written(WK_DIRADD(wk), inodedep);
11396 			continue;
11397 
11398 		case D_FREEFRAG:
11399 			wk->wk_state |= COMPLETE;
11400 			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE)
11401 				add_to_worklist(wk, 0);
11402 			continue;
11403 
11404 		case D_DIRREM:
11405 			wk->wk_state |= COMPLETE;
11406 			add_to_worklist(wk, 0);
11407 			continue;
11408 
11409 		case D_ALLOCDIRECT:
11410 		case D_ALLOCINDIR:
11411 			free_newblk(WK_NEWBLK(wk));
11412 			continue;
11413 
11414 		case D_JNEWBLK:
11415 			wk->wk_state |= COMPLETE;
11416 			free_jnewblk(WK_JNEWBLK(wk));
11417 			continue;
11418 
11419 		/*
11420 		 * Save freed journal segments and add references on
11421 		 * the supplied list which will delay their release
11422 		 * until the cg bitmap is cleared on disk.
11423 		 */
11424 		case D_JSEGDEP:
11425 			if (refhd == NULL)
11426 				free_jsegdep(WK_JSEGDEP(wk));
11427 			else
11428 				WORKLIST_INSERT(refhd, wk);
11429 			continue;
11430 
11431 		case D_JADDREF:
11432 			jaddref = WK_JADDREF(wk);
11433 			TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
11434 			    if_deps);
11435 			/*
11436 			 * Transfer any jaddrefs to the list to be freed with
11437 			 * the bitmap if we're handling a removed file.
11438 			 */
11439 			if (refhd == NULL) {
11440 				wk->wk_state |= COMPLETE;
11441 				free_jaddref(jaddref);
11442 			} else
11443 				WORKLIST_INSERT(refhd, wk);
11444 			continue;
11445 
11446 		default:
11447 			panic("handle_bufwait: Unknown type %p(%s)",
11448 			    wk, TYPENAME(wk->wk_type));
11449 			/* NOTREACHED */
11450 		}
11451 	}
11452 	return (freefile);
11453 }
11454 /*
11455  * Called from within softdep_disk_write_complete above to restore
11456  * in-memory inode block contents to their most up-to-date state. Note
11457  * that this routine is always called from interrupt level with further
11458  * interrupts from this device blocked.
11459  *
11460  * If the write did not succeed, we will do all the roll-forward
11461  * operations, but we will not take the actions that will allow its
11462  * dependencies to be processed.
11463  */
11464 static int
11465 handle_written_inodeblock(inodedep, bp, flags)
11466 	struct inodedep *inodedep;
11467 	struct buf *bp;		/* buffer containing the inode block */
11468 	int flags;
11469 {
11470 	struct freefile *freefile;
11471 	struct allocdirect *adp, *nextadp;
11472 	struct ufs1_dinode *dp1 = NULL;
11473 	struct ufs2_dinode *dp2 = NULL;
11474 	struct workhead wkhd;
11475 	int hadchanges, fstype;
11476 	ino_t freelink;
11477 
11478 	LIST_INIT(&wkhd);
11479 	hadchanges = 0;
11480 	freefile = NULL;
11481 	if ((inodedep->id_state & IOSTARTED) == 0)
11482 		panic("handle_written_inodeblock: not started");
11483 	inodedep->id_state &= ~IOSTARTED;
11484 	if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) {
11485 		fstype = UFS1;
11486 		dp1 = (struct ufs1_dinode *)bp->b_data +
11487 		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
11488 		freelink = dp1->di_freelink;
11489 	} else {
11490 		fstype = UFS2;
11491 		dp2 = (struct ufs2_dinode *)bp->b_data +
11492 		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
11493 		freelink = dp2->di_freelink;
11494 	}
11495 	/*
11496 	 * Leave this inodeblock dirty until it's in the list.
11497 	 */
11498 	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED &&
11499 	    (flags & WRITESUCCEEDED)) {
11500 		struct inodedep *inon;
11501 
11502 		inon = TAILQ_NEXT(inodedep, id_unlinked);
11503 		if ((inon == NULL && freelink == 0) ||
11504 		    (inon && inon->id_ino == freelink)) {
11505 			if (inon)
11506 				inon->id_state |= UNLINKPREV;
11507 			inodedep->id_state |= UNLINKNEXT;
11508 		}
11509 		hadchanges = 1;
11510 	}
11511 	/*
11512 	 * If we had to rollback the inode allocation because of
11513 	 * bitmaps being incomplete, then simply restore it.
11514 	 * Keep the block dirty so that it will not be reclaimed until
11515 	 * all associated dependencies have been cleared and the
11516 	 * corresponding updates written to disk.
11517 	 */
11518 	if (inodedep->id_savedino1 != NULL) {
11519 		hadchanges = 1;
11520 		if (fstype == UFS1)
11521 			*dp1 = *inodedep->id_savedino1;
11522 		else
11523 			*dp2 = *inodedep->id_savedino2;
11524 		free(inodedep->id_savedino1, M_SAVEDINO);
11525 		inodedep->id_savedino1 = NULL;
11526 		if ((bp->b_flags & B_DELWRI) == 0)
11527 			stat_inode_bitmap++;
11528 		bdirty(bp);
11529 		/*
11530 		 * If the inode is clear here and GOINGAWAY it will never
11531 		 * be written.  Process the bufwait and clear any pending
11532 		 * work which may include the freefile.
11533 		 */
11534 		if (inodedep->id_state & GOINGAWAY)
11535 			goto bufwait;
11536 		return (1);
11537 	}
11538 	if (flags & WRITESUCCEEDED)
11539 		inodedep->id_state |= COMPLETE;
11540 	/*
11541 	 * Roll forward anything that had to be rolled back before
11542 	 * the inode could be updated.
11543 	 */
11544 	for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
11545 		nextadp = TAILQ_NEXT(adp, ad_next);
11546 		if (adp->ad_state & ATTACHED)
11547 			panic("handle_written_inodeblock: new entry");
11548 		if (fstype == UFS1) {
11549 			if (adp->ad_offset < UFS_NDADDR) {
11550 				if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno)
11551 					panic("%s %s #%jd mismatch %d != %jd",
11552 					    "handle_written_inodeblock:",
11553 					    "direct pointer",
11554 					    (intmax_t)adp->ad_offset,
11555 					    dp1->di_db[adp->ad_offset],
11556 					    (intmax_t)adp->ad_oldblkno);
11557 				dp1->di_db[adp->ad_offset] = adp->ad_newblkno;
11558 			} else {
11559 				if (dp1->di_ib[adp->ad_offset - UFS_NDADDR] !=
11560 				    0)
11561 					panic("%s: %s #%jd allocated as %d",
11562 					    "handle_written_inodeblock",
11563 					    "indirect pointer",
11564 					    (intmax_t)adp->ad_offset -
11565 					    UFS_NDADDR,
11566 					    dp1->di_ib[adp->ad_offset -
11567 					    UFS_NDADDR]);
11568 				dp1->di_ib[adp->ad_offset - UFS_NDADDR] =
11569 				    adp->ad_newblkno;
11570 			}
11571 		} else {
11572 			if (adp->ad_offset < UFS_NDADDR) {
11573 				if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno)
11574 					panic("%s: %s #%jd %s %jd != %jd",
11575 					    "handle_written_inodeblock",
11576 					    "direct pointer",
11577 					    (intmax_t)adp->ad_offset, "mismatch",
11578 					    (intmax_t)dp2->di_db[adp->ad_offset],
11579 					    (intmax_t)adp->ad_oldblkno);
11580 				dp2->di_db[adp->ad_offset] = adp->ad_newblkno;
11581 			} else {
11582 				if (dp2->di_ib[adp->ad_offset - UFS_NDADDR] !=
11583 				    0)
11584 					panic("%s: %s #%jd allocated as %jd",
11585 					    "handle_written_inodeblock",
11586 					    "indirect pointer",
11587 					    (intmax_t)adp->ad_offset -
11588 					    UFS_NDADDR,
11589 					    (intmax_t)
11590 					    dp2->di_ib[adp->ad_offset -
11591 					    UFS_NDADDR]);
11592 				dp2->di_ib[adp->ad_offset - UFS_NDADDR] =
11593 				    adp->ad_newblkno;
11594 			}
11595 		}
11596 		adp->ad_state &= ~UNDONE;
11597 		adp->ad_state |= ATTACHED;
11598 		hadchanges = 1;
11599 	}
11600 	for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) {
11601 		nextadp = TAILQ_NEXT(adp, ad_next);
11602 		if (adp->ad_state & ATTACHED)
11603 			panic("handle_written_inodeblock: new entry");
11604 		if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno)
11605 			panic("%s: direct pointers #%jd %s %jd != %jd",
11606 			    "handle_written_inodeblock",
11607 			    (intmax_t)adp->ad_offset, "mismatch",
11608 			    (intmax_t)dp2->di_extb[adp->ad_offset],
11609 			    (intmax_t)adp->ad_oldblkno);
11610 		dp2->di_extb[adp->ad_offset] = adp->ad_newblkno;
11611 		adp->ad_state &= ~UNDONE;
11612 		adp->ad_state |= ATTACHED;
11613 		hadchanges = 1;
11614 	}
11615 	if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
11616 		stat_direct_blk_ptrs++;
11617 	/*
11618 	 * Reset the file size to its most up-to-date value.
11619 	 */
11620 	if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1)
11621 		panic("handle_written_inodeblock: bad size");
11622 	if (inodedep->id_savednlink > UFS_LINK_MAX)
11623 		panic("handle_written_inodeblock: Invalid link count "
11624 		    "%jd for inodedep %p", (uintmax_t)inodedep->id_savednlink,
11625 		    inodedep);
11626 	if (fstype == UFS1) {
11627 		if (dp1->di_nlink != inodedep->id_savednlink) {
11628 			dp1->di_nlink = inodedep->id_savednlink;
11629 			hadchanges = 1;
11630 		}
11631 		if (dp1->di_size != inodedep->id_savedsize) {
11632 			dp1->di_size = inodedep->id_savedsize;
11633 			hadchanges = 1;
11634 		}
11635 	} else {
11636 		if (dp2->di_nlink != inodedep->id_savednlink) {
11637 			dp2->di_nlink = inodedep->id_savednlink;
11638 			hadchanges = 1;
11639 		}
11640 		if (dp2->di_size != inodedep->id_savedsize) {
11641 			dp2->di_size = inodedep->id_savedsize;
11642 			hadchanges = 1;
11643 		}
11644 		if (dp2->di_extsize != inodedep->id_savedextsize) {
11645 			dp2->di_extsize = inodedep->id_savedextsize;
11646 			hadchanges = 1;
11647 		}
11648 	}
11649 	inodedep->id_savedsize = -1;
11650 	inodedep->id_savedextsize = -1;
11651 	inodedep->id_savednlink = -1;
11652 	/*
11653 	 * If there were any rollbacks in the inode block, then it must be
11654 	 * marked dirty so that its will eventually get written back in
11655 	 * its correct form.
11656 	 */
11657 	if (hadchanges) {
11658 		if (fstype == UFS2)
11659 			ffs_update_dinode_ckhash(inodedep->id_fs, dp2);
11660 		bdirty(bp);
11661 	}
11662 bufwait:
11663 	/*
11664 	 * If the write did not succeed, we have done all the roll-forward
11665 	 * operations, but we cannot take the actions that will allow its
11666 	 * dependencies to be processed.
11667 	 */
11668 	if ((flags & WRITESUCCEEDED) == 0)
11669 		return (hadchanges);
11670 	/*
11671 	 * Process any allocdirects that completed during the update.
11672 	 */
11673 	if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
11674 		handle_allocdirect_partdone(adp, &wkhd);
11675 	if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
11676 		handle_allocdirect_partdone(adp, &wkhd);
11677 	/*
11678 	 * Process deallocations that were held pending until the
11679 	 * inode had been written to disk. Freeing of the inode
11680 	 * is delayed until after all blocks have been freed to
11681 	 * avoid creation of new <vfsid, inum, lbn> triples
11682 	 * before the old ones have been deleted.  Completely
11683 	 * unlinked inodes are not processed until the unlinked
11684 	 * inode list is written or the last reference is removed.
11685 	 */
11686 	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) {
11687 		freefile = handle_bufwait(inodedep, NULL);
11688 		if (freefile && !LIST_EMPTY(&wkhd)) {
11689 			WORKLIST_INSERT(&wkhd, &freefile->fx_list);
11690 			freefile = NULL;
11691 		}
11692 	}
11693 	/*
11694 	 * Move rolled forward dependency completions to the bufwait list
11695 	 * now that those that were already written have been processed.
11696 	 */
11697 	if (!LIST_EMPTY(&wkhd) && hadchanges == 0)
11698 		panic("handle_written_inodeblock: bufwait but no changes");
11699 	jwork_move(&inodedep->id_bufwait, &wkhd);
11700 
11701 	if (freefile != NULL) {
11702 		/*
11703 		 * If the inode is goingaway it was never written.  Fake up
11704 		 * the state here so free_inodedep() can succeed.
11705 		 */
11706 		if (inodedep->id_state & GOINGAWAY)
11707 			inodedep->id_state |= COMPLETE | DEPCOMPLETE;
11708 		if (free_inodedep(inodedep) == 0)
11709 			panic("handle_written_inodeblock: live inodedep %p",
11710 			    inodedep);
11711 		add_to_worklist(&freefile->fx_list, 0);
11712 		return (0);
11713 	}
11714 
11715 	/*
11716 	 * If no outstanding dependencies, free it.
11717 	 */
11718 	if (free_inodedep(inodedep) ||
11719 	    (TAILQ_FIRST(&inodedep->id_inoreflst) == 0 &&
11720 	     TAILQ_FIRST(&inodedep->id_inoupdt) == 0 &&
11721 	     TAILQ_FIRST(&inodedep->id_extupdt) == 0 &&
11722 	     LIST_FIRST(&inodedep->id_bufwait) == 0))
11723 		return (0);
11724 	return (hadchanges);
11725 }
11726 
11727 /*
11728  * Perform needed roll-forwards and kick off any dependencies that
11729  * can now be processed.
11730  *
11731  * If the write did not succeed, we will do all the roll-forward
11732  * operations, but we will not take the actions that will allow its
11733  * dependencies to be processed.
11734  */
11735 static int
11736 handle_written_indirdep(indirdep, bp, bpp, flags)
11737 	struct indirdep *indirdep;
11738 	struct buf *bp;
11739 	struct buf **bpp;
11740 	int flags;
11741 {
11742 	struct allocindir *aip;
11743 	struct buf *sbp;
11744 	int chgs;
11745 
11746 	if (indirdep->ir_state & GOINGAWAY)
11747 		panic("handle_written_indirdep: indirdep gone");
11748 	if ((indirdep->ir_state & IOSTARTED) == 0)
11749 		panic("handle_written_indirdep: IO not started");
11750 	chgs = 0;
11751 	/*
11752 	 * If there were rollbacks revert them here.
11753 	 */
11754 	if (indirdep->ir_saveddata) {
11755 		bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount);
11756 		if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
11757 			free(indirdep->ir_saveddata, M_INDIRDEP);
11758 			indirdep->ir_saveddata = NULL;
11759 		}
11760 		chgs = 1;
11761 	}
11762 	indirdep->ir_state &= ~(UNDONE | IOSTARTED);
11763 	indirdep->ir_state |= ATTACHED;
11764 	/*
11765 	 * If the write did not succeed, we have done all the roll-forward
11766 	 * operations, but we cannot take the actions that will allow its
11767 	 * dependencies to be processed.
11768 	 */
11769 	if ((flags & WRITESUCCEEDED) == 0) {
11770 		stat_indir_blk_ptrs++;
11771 		bdirty(bp);
11772 		return (1);
11773 	}
11774 	/*
11775 	 * Move allocindirs with written pointers to the completehd if
11776 	 * the indirdep's pointer is not yet written.  Otherwise
11777 	 * free them here.
11778 	 */
11779 	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL) {
11780 		LIST_REMOVE(aip, ai_next);
11781 		if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
11782 			LIST_INSERT_HEAD(&indirdep->ir_completehd, aip,
11783 			    ai_next);
11784 			newblk_freefrag(&aip->ai_block);
11785 			continue;
11786 		}
11787 		free_newblk(&aip->ai_block);
11788 	}
11789 	/*
11790 	 * Move allocindirs that have finished dependency processing from
11791 	 * the done list to the write list after updating the pointers.
11792 	 */
11793 	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
11794 		while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL) {
11795 			handle_allocindir_partdone(aip);
11796 			if (aip == LIST_FIRST(&indirdep->ir_donehd))
11797 				panic("disk_write_complete: not gone");
11798 			chgs = 1;
11799 		}
11800 	}
11801 	/*
11802 	 * Preserve the indirdep if there were any changes or if it is not
11803 	 * yet valid on disk.
11804 	 */
11805 	if (chgs) {
11806 		stat_indir_blk_ptrs++;
11807 		bdirty(bp);
11808 		return (1);
11809 	}
11810 	/*
11811 	 * If there were no changes we can discard the savedbp and detach
11812 	 * ourselves from the buf.  We are only carrying completed pointers
11813 	 * in this case.
11814 	 */
11815 	sbp = indirdep->ir_savebp;
11816 	sbp->b_flags |= B_INVAL | B_NOCACHE;
11817 	indirdep->ir_savebp = NULL;
11818 	indirdep->ir_bp = NULL;
11819 	if (*bpp != NULL)
11820 		panic("handle_written_indirdep: bp already exists.");
11821 	*bpp = sbp;
11822 	/*
11823 	 * The indirdep may not be freed until its parent points at it.
11824 	 */
11825 	if (indirdep->ir_state & DEPCOMPLETE)
11826 		free_indirdep(indirdep);
11827 
11828 	return (0);
11829 }
11830 
11831 /*
11832  * Process a diradd entry after its dependent inode has been written.
11833  */
11834 static void
11835 diradd_inode_written(dap, inodedep)
11836 	struct diradd *dap;
11837 	struct inodedep *inodedep;
11838 {
11839 
11840 	LOCK_OWNED(VFSTOUFS(dap->da_list.wk_mp));
11841 	dap->da_state |= COMPLETE;
11842 	complete_diradd(dap);
11843 	WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
11844 }
11845 
11846 /*
11847  * Returns true if the bmsafemap will have rollbacks when written.  Must only
11848  * be called with the per-filesystem lock and the buf lock on the cg held.
11849  */
11850 static int
11851 bmsafemap_backgroundwrite(bmsafemap, bp)
11852 	struct bmsafemap *bmsafemap;
11853 	struct buf *bp;
11854 {
11855 	int dirty;
11856 
11857 	LOCK_OWNED(VFSTOUFS(bmsafemap->sm_list.wk_mp));
11858 	dirty = !LIST_EMPTY(&bmsafemap->sm_jaddrefhd) |
11859 	    !LIST_EMPTY(&bmsafemap->sm_jnewblkhd);
11860 	/*
11861 	 * If we're initiating a background write we need to process the
11862 	 * rollbacks as they exist now, not as they exist when IO starts.
11863 	 * No other consumers will look at the contents of the shadowed
11864 	 * buf so this is safe to do here.
11865 	 */
11866 	if (bp->b_xflags & BX_BKGRDMARKER)
11867 		initiate_write_bmsafemap(bmsafemap, bp);
11868 
11869 	return (dirty);
11870 }
11871 
11872 /*
11873  * Re-apply an allocation when a cg write is complete.
11874  */
11875 static int
11876 jnewblk_rollforward(jnewblk, fs, cgp, blksfree)
11877 	struct jnewblk *jnewblk;
11878 	struct fs *fs;
11879 	struct cg *cgp;
11880 	uint8_t *blksfree;
11881 {
11882 	ufs1_daddr_t fragno;
11883 	ufs2_daddr_t blkno;
11884 	long cgbno, bbase;
11885 	int frags, blk;
11886 	int i;
11887 
11888 	frags = 0;
11889 	cgbno = dtogd(fs, jnewblk->jn_blkno);
11890 	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) {
11891 		if (isclr(blksfree, cgbno + i))
11892 			panic("jnewblk_rollforward: re-allocated fragment");
11893 		frags++;
11894 	}
11895 	if (frags == fs->fs_frag) {
11896 		blkno = fragstoblks(fs, cgbno);
11897 		ffs_clrblock(fs, blksfree, (long)blkno);
11898 		ffs_clusteracct(fs, cgp, blkno, -1);
11899 		cgp->cg_cs.cs_nbfree--;
11900 	} else {
11901 		bbase = cgbno - fragnum(fs, cgbno);
11902 		cgbno += jnewblk->jn_oldfrags;
11903                 /* If a complete block had been reassembled, account for it. */
11904 		fragno = fragstoblks(fs, bbase);
11905 		if (ffs_isblock(fs, blksfree, fragno)) {
11906 			cgp->cg_cs.cs_nffree += fs->fs_frag;
11907 			ffs_clusteracct(fs, cgp, fragno, -1);
11908 			cgp->cg_cs.cs_nbfree--;
11909 		}
11910 		/* Decrement the old frags.  */
11911 		blk = blkmap(fs, blksfree, bbase);
11912 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
11913 		/* Allocate the fragment */
11914 		for (i = 0; i < frags; i++)
11915 			clrbit(blksfree, cgbno + i);
11916 		cgp->cg_cs.cs_nffree -= frags;
11917 		/* Add back in counts associated with the new frags */
11918 		blk = blkmap(fs, blksfree, bbase);
11919 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
11920 	}
11921 	return (frags);
11922 }
11923 
11924 /*
11925  * Complete a write to a bmsafemap structure.  Roll forward any bitmap
11926  * changes if it's not a background write.  Set all written dependencies
11927  * to DEPCOMPLETE and free the structure if possible.
11928  *
11929  * If the write did not succeed, we will do all the roll-forward
11930  * operations, but we will not take the actions that will allow its
11931  * dependencies to be processed.
11932  */
11933 static int
11934 handle_written_bmsafemap(bmsafemap, bp, flags)
11935 	struct bmsafemap *bmsafemap;
11936 	struct buf *bp;
11937 	int flags;
11938 {
11939 	struct newblk *newblk;
11940 	struct inodedep *inodedep;
11941 	struct jaddref *jaddref, *jatmp;
11942 	struct jnewblk *jnewblk, *jntmp;
11943 	struct ufsmount *ump;
11944 	uint8_t *inosused;
11945 	uint8_t *blksfree;
11946 	struct cg *cgp;
11947 	struct fs *fs;
11948 	ino_t ino;
11949 	int foreground;
11950 	int chgs;
11951 
11952 	if ((bmsafemap->sm_state & IOSTARTED) == 0)
11953 		panic("handle_written_bmsafemap: Not started\n");
11954 	ump = VFSTOUFS(bmsafemap->sm_list.wk_mp);
11955 	chgs = 0;
11956 	bmsafemap->sm_state &= ~IOSTARTED;
11957 	foreground = (bp->b_xflags & BX_BKGRDMARKER) == 0;
11958 	/*
11959 	 * If write was successful, release journal work that was waiting
11960 	 * on the write. Otherwise move the work back.
11961 	 */
11962 	if (flags & WRITESUCCEEDED)
11963 		handle_jwork(&bmsafemap->sm_freewr);
11964 	else
11965 		LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr,
11966 		    worklist, wk_list);
11967 
11968 	/*
11969 	 * Restore unwritten inode allocation pending jaddref writes.
11970 	 */
11971 	if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) {
11972 		cgp = (struct cg *)bp->b_data;
11973 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11974 		inosused = cg_inosused(cgp);
11975 		LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd,
11976 		    ja_bmdeps, jatmp) {
11977 			if ((jaddref->ja_state & UNDONE) == 0)
11978 				continue;
11979 			ino = jaddref->ja_ino % fs->fs_ipg;
11980 			if (isset(inosused, ino))
11981 				panic("handle_written_bmsafemap: "
11982 				    "re-allocated inode");
11983 			/* Do the roll-forward only if it's a real copy. */
11984 			if (foreground) {
11985 				if ((jaddref->ja_mode & IFMT) == IFDIR)
11986 					cgp->cg_cs.cs_ndir++;
11987 				cgp->cg_cs.cs_nifree--;
11988 				setbit(inosused, ino);
11989 				chgs = 1;
11990 			}
11991 			jaddref->ja_state &= ~UNDONE;
11992 			jaddref->ja_state |= ATTACHED;
11993 			free_jaddref(jaddref);
11994 		}
11995 	}
11996 	/*
11997 	 * Restore any block allocations which are pending journal writes.
11998 	 */
11999 	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
12000 		cgp = (struct cg *)bp->b_data;
12001 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
12002 		blksfree = cg_blksfree(cgp);
12003 		LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps,
12004 		    jntmp) {
12005 			if ((jnewblk->jn_state & UNDONE) == 0)
12006 				continue;
12007 			/* Do the roll-forward only if it's a real copy. */
12008 			if (foreground &&
12009 			    jnewblk_rollforward(jnewblk, fs, cgp, blksfree))
12010 				chgs = 1;
12011 			jnewblk->jn_state &= ~(UNDONE | NEWBLOCK);
12012 			jnewblk->jn_state |= ATTACHED;
12013 			free_jnewblk(jnewblk);
12014 		}
12015 	}
12016 	/*
12017 	 * If the write did not succeed, we have done all the roll-forward
12018 	 * operations, but we cannot take the actions that will allow its
12019 	 * dependencies to be processed.
12020 	 */
12021 	if ((flags & WRITESUCCEEDED) == 0) {
12022 		LIST_CONCAT(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr,
12023 		    newblk, nb_deps);
12024 		LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr,
12025 		    worklist, wk_list);
12026 		if (foreground)
12027 			bdirty(bp);
12028 		return (1);
12029 	}
12030 	while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) {
12031 		newblk->nb_state |= DEPCOMPLETE;
12032 		newblk->nb_state &= ~ONDEPLIST;
12033 		newblk->nb_bmsafemap = NULL;
12034 		LIST_REMOVE(newblk, nb_deps);
12035 		if (newblk->nb_list.wk_type == D_ALLOCDIRECT)
12036 			handle_allocdirect_partdone(
12037 			    WK_ALLOCDIRECT(&newblk->nb_list), NULL);
12038 		else if (newblk->nb_list.wk_type == D_ALLOCINDIR)
12039 			handle_allocindir_partdone(
12040 			    WK_ALLOCINDIR(&newblk->nb_list));
12041 		else if (newblk->nb_list.wk_type != D_NEWBLK)
12042 			panic("handle_written_bmsafemap: Unexpected type: %s",
12043 			    TYPENAME(newblk->nb_list.wk_type));
12044 	}
12045 	while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) {
12046 		inodedep->id_state |= DEPCOMPLETE;
12047 		inodedep->id_state &= ~ONDEPLIST;
12048 		LIST_REMOVE(inodedep, id_deps);
12049 		inodedep->id_bmsafemap = NULL;
12050 	}
12051 	LIST_REMOVE(bmsafemap, sm_next);
12052 	if (chgs == 0 && LIST_EMPTY(&bmsafemap->sm_jaddrefhd) &&
12053 	    LIST_EMPTY(&bmsafemap->sm_jnewblkhd) &&
12054 	    LIST_EMPTY(&bmsafemap->sm_newblkhd) &&
12055 	    LIST_EMPTY(&bmsafemap->sm_inodedephd) &&
12056 	    LIST_EMPTY(&bmsafemap->sm_freehd)) {
12057 		LIST_REMOVE(bmsafemap, sm_hash);
12058 		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
12059 		return (0);
12060 	}
12061 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
12062 	if (foreground)
12063 		bdirty(bp);
12064 	return (1);
12065 }
12066 
12067 /*
12068  * Try to free a mkdir dependency.
12069  */
12070 static void
12071 complete_mkdir(mkdir)
12072 	struct mkdir *mkdir;
12073 {
12074 	struct diradd *dap;
12075 
12076 	if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE)
12077 		return;
12078 	LIST_REMOVE(mkdir, md_mkdirs);
12079 	dap = mkdir->md_diradd;
12080 	dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
12081 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) {
12082 		dap->da_state |= DEPCOMPLETE;
12083 		complete_diradd(dap);
12084 	}
12085 	WORKITEM_FREE(mkdir, D_MKDIR);
12086 }
12087 
12088 /*
12089  * Handle the completion of a mkdir dependency.
12090  */
12091 static void
12092 handle_written_mkdir(mkdir, type)
12093 	struct mkdir *mkdir;
12094 	int type;
12095 {
12096 
12097 	if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type)
12098 		panic("handle_written_mkdir: bad type");
12099 	mkdir->md_state |= COMPLETE;
12100 	complete_mkdir(mkdir);
12101 }
12102 
12103 static int
12104 free_pagedep(pagedep)
12105 	struct pagedep *pagedep;
12106 {
12107 	int i;
12108 
12109 	if (pagedep->pd_state & NEWBLOCK)
12110 		return (0);
12111 	if (!LIST_EMPTY(&pagedep->pd_dirremhd))
12112 		return (0);
12113 	for (i = 0; i < DAHASHSZ; i++)
12114 		if (!LIST_EMPTY(&pagedep->pd_diraddhd[i]))
12115 			return (0);
12116 	if (!LIST_EMPTY(&pagedep->pd_pendinghd))
12117 		return (0);
12118 	if (!LIST_EMPTY(&pagedep->pd_jmvrefhd))
12119 		return (0);
12120 	if (pagedep->pd_state & ONWORKLIST)
12121 		WORKLIST_REMOVE(&pagedep->pd_list);
12122 	LIST_REMOVE(pagedep, pd_hash);
12123 	WORKITEM_FREE(pagedep, D_PAGEDEP);
12124 
12125 	return (1);
12126 }
12127 
12128 /*
12129  * Called from within softdep_disk_write_complete above.
12130  * A write operation was just completed. Removed inodes can
12131  * now be freed and associated block pointers may be committed.
12132  * Note that this routine is always called from interrupt level
12133  * with further interrupts from this device blocked.
12134  *
12135  * If the write did not succeed, we will do all the roll-forward
12136  * operations, but we will not take the actions that will allow its
12137  * dependencies to be processed.
12138  */
12139 static int
12140 handle_written_filepage(pagedep, bp, flags)
12141 	struct pagedep *pagedep;
12142 	struct buf *bp;		/* buffer containing the written page */
12143 	int flags;
12144 {
12145 	struct dirrem *dirrem;
12146 	struct diradd *dap, *nextdap;
12147 	struct direct *ep;
12148 	int i, chgs;
12149 
12150 	if ((pagedep->pd_state & IOSTARTED) == 0)
12151 		panic("handle_written_filepage: not started");
12152 	pagedep->pd_state &= ~IOSTARTED;
12153 	if ((flags & WRITESUCCEEDED) == 0)
12154 		goto rollforward;
12155 	/*
12156 	 * Process any directory removals that have been committed.
12157 	 */
12158 	while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
12159 		LIST_REMOVE(dirrem, dm_next);
12160 		dirrem->dm_state |= COMPLETE;
12161 		dirrem->dm_dirinum = pagedep->pd_ino;
12162 		KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
12163 		    ("handle_written_filepage: Journal entries not written."));
12164 		add_to_worklist(&dirrem->dm_list, 0);
12165 	}
12166 	/*
12167 	 * Free any directory additions that have been committed.
12168 	 * If it is a newly allocated block, we have to wait until
12169 	 * the on-disk directory inode claims the new block.
12170 	 */
12171 	if ((pagedep->pd_state & NEWBLOCK) == 0)
12172 		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
12173 			free_diradd(dap, NULL);
12174 rollforward:
12175 	/*
12176 	 * Uncommitted directory entries must be restored.
12177 	 */
12178 	for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
12179 		for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
12180 		     dap = nextdap) {
12181 			nextdap = LIST_NEXT(dap, da_pdlist);
12182 			if (dap->da_state & ATTACHED)
12183 				panic("handle_written_filepage: attached");
12184 			ep = (struct direct *)
12185 			    ((char *)bp->b_data + dap->da_offset);
12186 			ep->d_ino = dap->da_newinum;
12187 			dap->da_state &= ~UNDONE;
12188 			dap->da_state |= ATTACHED;
12189 			chgs = 1;
12190 			/*
12191 			 * If the inode referenced by the directory has
12192 			 * been written out, then the dependency can be
12193 			 * moved to the pending list.
12194 			 */
12195 			if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
12196 				LIST_REMOVE(dap, da_pdlist);
12197 				LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
12198 				    da_pdlist);
12199 			}
12200 		}
12201 	}
12202 	/*
12203 	 * If there were any rollbacks in the directory, then it must be
12204 	 * marked dirty so that its will eventually get written back in
12205 	 * its correct form.
12206 	 */
12207 	if (chgs || (flags & WRITESUCCEEDED) == 0) {
12208 		if ((bp->b_flags & B_DELWRI) == 0)
12209 			stat_dir_entry++;
12210 		bdirty(bp);
12211 		return (1);
12212 	}
12213 	/*
12214 	 * If we are not waiting for a new directory block to be
12215 	 * claimed by its inode, then the pagedep will be freed.
12216 	 * Otherwise it will remain to track any new entries on
12217 	 * the page in case they are fsync'ed.
12218 	 */
12219 	free_pagedep(pagedep);
12220 	return (0);
12221 }
12222 
12223 /*
12224  * Writing back in-core inode structures.
12225  *
12226  * The filesystem only accesses an inode's contents when it occupies an
12227  * "in-core" inode structure.  These "in-core" structures are separate from
12228  * the page frames used to cache inode blocks.  Only the latter are
12229  * transferred to/from the disk.  So, when the updated contents of the
12230  * "in-core" inode structure are copied to the corresponding in-memory inode
12231  * block, the dependencies are also transferred.  The following procedure is
12232  * called when copying a dirty "in-core" inode to a cached inode block.
12233  */
12234 
12235 /*
12236  * Called when an inode is loaded from disk. If the effective link count
12237  * differed from the actual link count when it was last flushed, then we
12238  * need to ensure that the correct effective link count is put back.
12239  */
12240 void
12241 softdep_load_inodeblock(ip)
12242 	struct inode *ip;	/* the "in_core" copy of the inode */
12243 {
12244 	struct inodedep *inodedep;
12245 	struct ufsmount *ump;
12246 
12247 	ump = ITOUMP(ip);
12248 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
12249 	    ("softdep_load_inodeblock called on non-softdep filesystem"));
12250 	/*
12251 	 * Check for alternate nlink count.
12252 	 */
12253 	ip->i_effnlink = ip->i_nlink;
12254 	ACQUIRE_LOCK(ump);
12255 	if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0) {
12256 		FREE_LOCK(ump);
12257 		return;
12258 	}
12259 	ip->i_effnlink -= inodedep->id_nlinkdelta;
12260 	KASSERT(ip->i_effnlink >= 0,
12261 	    ("softdep_load_inodeblock: negative i_effnlink"));
12262 	FREE_LOCK(ump);
12263 }
12264 
12265 /*
12266  * This routine is called just before the "in-core" inode
12267  * information is to be copied to the in-memory inode block.
12268  * Recall that an inode block contains several inodes. If
12269  * the force flag is set, then the dependencies will be
12270  * cleared so that the update can always be made. Note that
12271  * the buffer is locked when this routine is called, so we
12272  * will never be in the middle of writing the inode block
12273  * to disk.
12274  */
12275 void
12276 softdep_update_inodeblock(ip, bp, waitfor)
12277 	struct inode *ip;	/* the "in_core" copy of the inode */
12278 	struct buf *bp;		/* the buffer containing the inode block */
12279 	int waitfor;		/* nonzero => update must be allowed */
12280 {
12281 	struct inodedep *inodedep;
12282 	struct inoref *inoref;
12283 	struct ufsmount *ump;
12284 	struct worklist *wk;
12285 	struct mount *mp;
12286 	struct buf *ibp;
12287 	struct fs *fs;
12288 	int error;
12289 
12290 	ump = ITOUMP(ip);
12291 	mp = UFSTOVFS(ump);
12292 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
12293 	    ("softdep_update_inodeblock called on non-softdep filesystem"));
12294 	fs = ump->um_fs;
12295 	/*
12296 	 * Preserve the freelink that is on disk.  clear_unlinked_inodedep()
12297 	 * does not have access to the in-core ip so must write directly into
12298 	 * the inode block buffer when setting freelink.
12299 	 */
12300 	if (fs->fs_magic == FS_UFS1_MAGIC)
12301 		DIP_SET(ip, i_freelink, ((struct ufs1_dinode *)bp->b_data +
12302 		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
12303 	else
12304 		DIP_SET(ip, i_freelink, ((struct ufs2_dinode *)bp->b_data +
12305 		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
12306 	/*
12307 	 * If the effective link count is not equal to the actual link
12308 	 * count, then we must track the difference in an inodedep while
12309 	 * the inode is (potentially) tossed out of the cache. Otherwise,
12310 	 * if there is no existing inodedep, then there are no dependencies
12311 	 * to track.
12312 	 */
12313 	ACQUIRE_LOCK(ump);
12314 again:
12315 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
12316 		FREE_LOCK(ump);
12317 		if (ip->i_effnlink != ip->i_nlink)
12318 			panic("softdep_update_inodeblock: bad link count");
12319 		return;
12320 	}
12321 	if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink)
12322 		panic("softdep_update_inodeblock: bad delta");
12323 	/*
12324 	 * If we're flushing all dependencies we must also move any waiting
12325 	 * for journal writes onto the bufwait list prior to I/O.
12326 	 */
12327 	if (waitfor) {
12328 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12329 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12330 			    == DEPCOMPLETE) {
12331 				jwait(&inoref->if_list, MNT_WAIT);
12332 				goto again;
12333 			}
12334 		}
12335 	}
12336 	/*
12337 	 * Changes have been initiated. Anything depending on these
12338 	 * changes cannot occur until this inode has been written.
12339 	 */
12340 	inodedep->id_state &= ~COMPLETE;
12341 	if ((inodedep->id_state & ONWORKLIST) == 0)
12342 		WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list);
12343 	/*
12344 	 * Any new dependencies associated with the incore inode must
12345 	 * now be moved to the list associated with the buffer holding
12346 	 * the in-memory copy of the inode. Once merged process any
12347 	 * allocdirects that are completed by the merger.
12348 	 */
12349 	merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt);
12350 	if (!TAILQ_EMPTY(&inodedep->id_inoupdt))
12351 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt),
12352 		    NULL);
12353 	merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt);
12354 	if (!TAILQ_EMPTY(&inodedep->id_extupdt))
12355 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt),
12356 		    NULL);
12357 	/*
12358 	 * Now that the inode has been pushed into the buffer, the
12359 	 * operations dependent on the inode being written to disk
12360 	 * can be moved to the id_bufwait so that they will be
12361 	 * processed when the buffer I/O completes.
12362 	 */
12363 	while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
12364 		WORKLIST_REMOVE(wk);
12365 		WORKLIST_INSERT(&inodedep->id_bufwait, wk);
12366 	}
12367 	/*
12368 	 * Newly allocated inodes cannot be written until the bitmap
12369 	 * that allocates them have been written (indicated by
12370 	 * DEPCOMPLETE being set in id_state). If we are doing a
12371 	 * forced sync (e.g., an fsync on a file), we force the bitmap
12372 	 * to be written so that the update can be done.
12373 	 */
12374 	if (waitfor == 0) {
12375 		FREE_LOCK(ump);
12376 		return;
12377 	}
12378 retry:
12379 	if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) {
12380 		FREE_LOCK(ump);
12381 		return;
12382 	}
12383 	ibp = inodedep->id_bmsafemap->sm_buf;
12384 	ibp = getdirtybuf(ibp, LOCK_PTR(ump), MNT_WAIT);
12385 	if (ibp == NULL) {
12386 		/*
12387 		 * If ibp came back as NULL, the dependency could have been
12388 		 * freed while we slept.  Look it up again, and check to see
12389 		 * that it has completed.
12390 		 */
12391 		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
12392 			goto retry;
12393 		FREE_LOCK(ump);
12394 		return;
12395 	}
12396 	FREE_LOCK(ump);
12397 	if ((error = bwrite(ibp)) != 0)
12398 		softdep_error("softdep_update_inodeblock: bwrite", error);
12399 }
12400 
12401 /*
12402  * Merge the a new inode dependency list (such as id_newinoupdt) into an
12403  * old inode dependency list (such as id_inoupdt).
12404  */
12405 static void
12406 merge_inode_lists(newlisthead, oldlisthead)
12407 	struct allocdirectlst *newlisthead;
12408 	struct allocdirectlst *oldlisthead;
12409 {
12410 	struct allocdirect *listadp, *newadp;
12411 
12412 	newadp = TAILQ_FIRST(newlisthead);
12413 	if (newadp != NULL)
12414 		LOCK_OWNED(VFSTOUFS(newadp->ad_block.nb_list.wk_mp));
12415 	for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) {
12416 		if (listadp->ad_offset < newadp->ad_offset) {
12417 			listadp = TAILQ_NEXT(listadp, ad_next);
12418 			continue;
12419 		}
12420 		TAILQ_REMOVE(newlisthead, newadp, ad_next);
12421 		TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
12422 		if (listadp->ad_offset == newadp->ad_offset) {
12423 			allocdirect_merge(oldlisthead, newadp,
12424 			    listadp);
12425 			listadp = newadp;
12426 		}
12427 		newadp = TAILQ_FIRST(newlisthead);
12428 	}
12429 	while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) {
12430 		TAILQ_REMOVE(newlisthead, newadp, ad_next);
12431 		TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next);
12432 	}
12433 }
12434 
12435 /*
12436  * If we are doing an fsync, then we must ensure that any directory
12437  * entries for the inode have been written after the inode gets to disk.
12438  */
12439 int
12440 softdep_fsync(vp)
12441 	struct vnode *vp;	/* the "in_core" copy of the inode */
12442 {
12443 	struct inodedep *inodedep;
12444 	struct pagedep *pagedep;
12445 	struct inoref *inoref;
12446 	struct ufsmount *ump;
12447 	struct worklist *wk;
12448 	struct diradd *dap;
12449 	struct mount *mp;
12450 	struct vnode *pvp;
12451 	struct inode *ip;
12452 	struct buf *bp;
12453 	struct fs *fs;
12454 	struct thread *td = curthread;
12455 	int error, flushparent, pagedep_new_block;
12456 	ino_t parentino;
12457 	ufs_lbn_t lbn;
12458 
12459 	ip = VTOI(vp);
12460 	mp = vp->v_mount;
12461 	ump = VFSTOUFS(mp);
12462 	fs = ump->um_fs;
12463 	if (MOUNTEDSOFTDEP(mp) == 0)
12464 		return (0);
12465 	ACQUIRE_LOCK(ump);
12466 restart:
12467 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
12468 		FREE_LOCK(ump);
12469 		return (0);
12470 	}
12471 	TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12472 		if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12473 		    == DEPCOMPLETE) {
12474 			jwait(&inoref->if_list, MNT_WAIT);
12475 			goto restart;
12476 		}
12477 	}
12478 	if (!LIST_EMPTY(&inodedep->id_inowait) ||
12479 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
12480 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
12481 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
12482 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt))
12483 		panic("softdep_fsync: pending ops %p", inodedep);
12484 	for (error = 0, flushparent = 0; ; ) {
12485 		if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
12486 			break;
12487 		if (wk->wk_type != D_DIRADD)
12488 			panic("softdep_fsync: Unexpected type %s",
12489 			    TYPENAME(wk->wk_type));
12490 		dap = WK_DIRADD(wk);
12491 		/*
12492 		 * Flush our parent if this directory entry has a MKDIR_PARENT
12493 		 * dependency or is contained in a newly allocated block.
12494 		 */
12495 		if (dap->da_state & DIRCHG)
12496 			pagedep = dap->da_previous->dm_pagedep;
12497 		else
12498 			pagedep = dap->da_pagedep;
12499 		parentino = pagedep->pd_ino;
12500 		lbn = pagedep->pd_lbn;
12501 		if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE)
12502 			panic("softdep_fsync: dirty");
12503 		if ((dap->da_state & MKDIR_PARENT) ||
12504 		    (pagedep->pd_state & NEWBLOCK))
12505 			flushparent = 1;
12506 		else
12507 			flushparent = 0;
12508 		/*
12509 		 * If we are being fsync'ed as part of vgone'ing this vnode,
12510 		 * then we will not be able to release and recover the
12511 		 * vnode below, so we just have to give up on writing its
12512 		 * directory entry out. It will eventually be written, just
12513 		 * not now, but then the user was not asking to have it
12514 		 * written, so we are not breaking any promises.
12515 		 */
12516 		if (VN_IS_DOOMED(vp))
12517 			break;
12518 		/*
12519 		 * We prevent deadlock by always fetching inodes from the
12520 		 * root, moving down the directory tree. Thus, when fetching
12521 		 * our parent directory, we first try to get the lock. If
12522 		 * that fails, we must unlock ourselves before requesting
12523 		 * the lock on our parent. See the comment in ufs_lookup
12524 		 * for details on possible races.
12525 		 */
12526 		FREE_LOCK(ump);
12527 		if (ffs_vgetf(mp, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp,
12528 		    FFSV_FORCEINSMQ)) {
12529 			/*
12530 			 * Unmount cannot proceed after unlock because
12531 			 * caller must have called vn_start_write().
12532 			 */
12533 			VOP_UNLOCK(vp, 0);
12534 			error = ffs_vgetf(mp, parentino, LK_EXCLUSIVE,
12535 			    &pvp, FFSV_FORCEINSMQ);
12536 			MPASS(VTOI(pvp)->i_mode != 0);
12537 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
12538 			if (VN_IS_DOOMED(vp)) {
12539 				if (error == 0)
12540 					vput(pvp);
12541 				error = ENOENT;
12542 			}
12543 			if (error != 0)
12544 				return (error);
12545 		}
12546 		/*
12547 		 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps
12548 		 * that are contained in direct blocks will be resolved by
12549 		 * doing a ffs_update. Pagedeps contained in indirect blocks
12550 		 * may require a complete sync'ing of the directory. So, we
12551 		 * try the cheap and fast ffs_update first, and if that fails,
12552 		 * then we do the slower ffs_syncvnode of the directory.
12553 		 */
12554 		if (flushparent) {
12555 			int locked;
12556 
12557 			if ((error = ffs_update(pvp, 1)) != 0) {
12558 				vput(pvp);
12559 				return (error);
12560 			}
12561 			ACQUIRE_LOCK(ump);
12562 			locked = 1;
12563 			if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) {
12564 				if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) {
12565 					if (wk->wk_type != D_DIRADD)
12566 						panic("softdep_fsync: Unexpected type %s",
12567 						      TYPENAME(wk->wk_type));
12568 					dap = WK_DIRADD(wk);
12569 					if (dap->da_state & DIRCHG)
12570 						pagedep = dap->da_previous->dm_pagedep;
12571 					else
12572 						pagedep = dap->da_pagedep;
12573 					pagedep_new_block = pagedep->pd_state & NEWBLOCK;
12574 					FREE_LOCK(ump);
12575 					locked = 0;
12576 					if (pagedep_new_block && (error =
12577 					    ffs_syncvnode(pvp, MNT_WAIT, 0))) {
12578 						vput(pvp);
12579 						return (error);
12580 					}
12581 				}
12582 			}
12583 			if (locked)
12584 				FREE_LOCK(ump);
12585 		}
12586 		/*
12587 		 * Flush directory page containing the inode's name.
12588 		 */
12589 		error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred,
12590 		    &bp);
12591 		if (error == 0)
12592 			error = bwrite(bp);
12593 		else
12594 			brelse(bp);
12595 		vput(pvp);
12596 		if (error != 0)
12597 			return (error);
12598 		ACQUIRE_LOCK(ump);
12599 		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
12600 			break;
12601 	}
12602 	FREE_LOCK(ump);
12603 	return (0);
12604 }
12605 
12606 /*
12607  * Flush all the dirty bitmaps associated with the block device
12608  * before flushing the rest of the dirty blocks so as to reduce
12609  * the number of dependencies that will have to be rolled back.
12610  *
12611  * XXX Unused?
12612  */
12613 void
12614 softdep_fsync_mountdev(vp)
12615 	struct vnode *vp;
12616 {
12617 	struct buf *bp, *nbp;
12618 	struct worklist *wk;
12619 	struct bufobj *bo;
12620 
12621 	if (!vn_isdisk(vp, NULL))
12622 		panic("softdep_fsync_mountdev: vnode not a disk");
12623 	bo = &vp->v_bufobj;
12624 restart:
12625 	BO_LOCK(bo);
12626 	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
12627 		/*
12628 		 * If it is already scheduled, skip to the next buffer.
12629 		 */
12630 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
12631 			continue;
12632 
12633 		if ((bp->b_flags & B_DELWRI) == 0)
12634 			panic("softdep_fsync_mountdev: not dirty");
12635 		/*
12636 		 * We are only interested in bitmaps with outstanding
12637 		 * dependencies.
12638 		 */
12639 		if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
12640 		    wk->wk_type != D_BMSAFEMAP ||
12641 		    (bp->b_vflags & BV_BKGRDINPROG)) {
12642 			BUF_UNLOCK(bp);
12643 			continue;
12644 		}
12645 		BO_UNLOCK(bo);
12646 		bremfree(bp);
12647 		(void) bawrite(bp);
12648 		goto restart;
12649 	}
12650 	drain_output(vp);
12651 	BO_UNLOCK(bo);
12652 }
12653 
12654 /*
12655  * Sync all cylinder groups that were dirty at the time this function is
12656  * called.  Newly dirtied cgs will be inserted before the sentinel.  This
12657  * is used to flush freedep activity that may be holding up writes to a
12658  * indirect block.
12659  */
12660 static int
12661 sync_cgs(mp, waitfor)
12662 	struct mount *mp;
12663 	int waitfor;
12664 {
12665 	struct bmsafemap *bmsafemap;
12666 	struct bmsafemap *sentinel;
12667 	struct ufsmount *ump;
12668 	struct buf *bp;
12669 	int error;
12670 
12671 	sentinel = malloc(sizeof(*sentinel), M_BMSAFEMAP, M_ZERO | M_WAITOK);
12672 	sentinel->sm_cg = -1;
12673 	ump = VFSTOUFS(mp);
12674 	error = 0;
12675 	ACQUIRE_LOCK(ump);
12676 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, sentinel, sm_next);
12677 	for (bmsafemap = LIST_NEXT(sentinel, sm_next); bmsafemap != NULL;
12678 	    bmsafemap = LIST_NEXT(sentinel, sm_next)) {
12679 		/* Skip sentinels and cgs with no work to release. */
12680 		if (bmsafemap->sm_cg == -1 ||
12681 		    (LIST_EMPTY(&bmsafemap->sm_freehd) &&
12682 		    LIST_EMPTY(&bmsafemap->sm_freewr))) {
12683 			LIST_REMOVE(sentinel, sm_next);
12684 			LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next);
12685 			continue;
12686 		}
12687 		/*
12688 		 * If we don't get the lock and we're waiting try again, if
12689 		 * not move on to the next buf and try to sync it.
12690 		 */
12691 		bp = getdirtybuf(bmsafemap->sm_buf, LOCK_PTR(ump), waitfor);
12692 		if (bp == NULL && waitfor == MNT_WAIT)
12693 			continue;
12694 		LIST_REMOVE(sentinel, sm_next);
12695 		LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next);
12696 		if (bp == NULL)
12697 			continue;
12698 		FREE_LOCK(ump);
12699 		if (waitfor == MNT_NOWAIT)
12700 			bawrite(bp);
12701 		else
12702 			error = bwrite(bp);
12703 		ACQUIRE_LOCK(ump);
12704 		if (error)
12705 			break;
12706 	}
12707 	LIST_REMOVE(sentinel, sm_next);
12708 	FREE_LOCK(ump);
12709 	free(sentinel, M_BMSAFEMAP);
12710 	return (error);
12711 }
12712 
12713 /*
12714  * This routine is called when we are trying to synchronously flush a
12715  * file. This routine must eliminate any filesystem metadata dependencies
12716  * so that the syncing routine can succeed.
12717  */
12718 int
12719 softdep_sync_metadata(struct vnode *vp)
12720 {
12721 	struct inode *ip;
12722 	int error;
12723 
12724 	ip = VTOI(vp);
12725 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
12726 	    ("softdep_sync_metadata called on non-softdep filesystem"));
12727 	/*
12728 	 * Ensure that any direct block dependencies have been cleared,
12729 	 * truncations are started, and inode references are journaled.
12730 	 */
12731 	ACQUIRE_LOCK(VFSTOUFS(vp->v_mount));
12732 	/*
12733 	 * Write all journal records to prevent rollbacks on devvp.
12734 	 */
12735 	if (vp->v_type == VCHR)
12736 		softdep_flushjournal(vp->v_mount);
12737 	error = flush_inodedep_deps(vp, vp->v_mount, ip->i_number);
12738 	/*
12739 	 * Ensure that all truncates are written so we won't find deps on
12740 	 * indirect blocks.
12741 	 */
12742 	process_truncates(vp);
12743 	FREE_LOCK(VFSTOUFS(vp->v_mount));
12744 
12745 	return (error);
12746 }
12747 
12748 /*
12749  * This routine is called when we are attempting to sync a buf with
12750  * dependencies.  If waitfor is MNT_NOWAIT it attempts to schedule any
12751  * other IO it can but returns EBUSY if the buffer is not yet able to
12752  * be written.  Dependencies which will not cause rollbacks will always
12753  * return 0.
12754  */
12755 int
12756 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
12757 {
12758 	struct indirdep *indirdep;
12759 	struct pagedep *pagedep;
12760 	struct allocindir *aip;
12761 	struct newblk *newblk;
12762 	struct ufsmount *ump;
12763 	struct buf *nbp;
12764 	struct worklist *wk;
12765 	int i, error;
12766 
12767 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
12768 	    ("softdep_sync_buf called on non-softdep filesystem"));
12769 	/*
12770 	 * For VCHR we just don't want to force flush any dependencies that
12771 	 * will cause rollbacks.
12772 	 */
12773 	if (vp->v_type == VCHR) {
12774 		if (waitfor == MNT_NOWAIT && softdep_count_dependencies(bp, 0))
12775 			return (EBUSY);
12776 		return (0);
12777 	}
12778 	ump = VFSTOUFS(vp->v_mount);
12779 	ACQUIRE_LOCK(ump);
12780 	/*
12781 	 * As we hold the buffer locked, none of its dependencies
12782 	 * will disappear.
12783 	 */
12784 	error = 0;
12785 top:
12786 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
12787 		switch (wk->wk_type) {
12788 
12789 		case D_ALLOCDIRECT:
12790 		case D_ALLOCINDIR:
12791 			newblk = WK_NEWBLK(wk);
12792 			if (newblk->nb_jnewblk != NULL) {
12793 				if (waitfor == MNT_NOWAIT) {
12794 					error = EBUSY;
12795 					goto out_unlock;
12796 				}
12797 				jwait(&newblk->nb_jnewblk->jn_list, waitfor);
12798 				goto top;
12799 			}
12800 			if (newblk->nb_state & DEPCOMPLETE ||
12801 			    waitfor == MNT_NOWAIT)
12802 				continue;
12803 			nbp = newblk->nb_bmsafemap->sm_buf;
12804 			nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor);
12805 			if (nbp == NULL)
12806 				goto top;
12807 			FREE_LOCK(ump);
12808 			if ((error = bwrite(nbp)) != 0)
12809 				goto out;
12810 			ACQUIRE_LOCK(ump);
12811 			continue;
12812 
12813 		case D_INDIRDEP:
12814 			indirdep = WK_INDIRDEP(wk);
12815 			if (waitfor == MNT_NOWAIT) {
12816 				if (!TAILQ_EMPTY(&indirdep->ir_trunc) ||
12817 				    !LIST_EMPTY(&indirdep->ir_deplisthd)) {
12818 					error = EBUSY;
12819 					goto out_unlock;
12820 				}
12821 			}
12822 			if (!TAILQ_EMPTY(&indirdep->ir_trunc))
12823 				panic("softdep_sync_buf: truncation pending.");
12824 		restart:
12825 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
12826 				newblk = (struct newblk *)aip;
12827 				if (newblk->nb_jnewblk != NULL) {
12828 					jwait(&newblk->nb_jnewblk->jn_list,
12829 					    waitfor);
12830 					goto restart;
12831 				}
12832 				if (newblk->nb_state & DEPCOMPLETE)
12833 					continue;
12834 				nbp = newblk->nb_bmsafemap->sm_buf;
12835 				nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor);
12836 				if (nbp == NULL)
12837 					goto restart;
12838 				FREE_LOCK(ump);
12839 				if ((error = bwrite(nbp)) != 0)
12840 					goto out;
12841 				ACQUIRE_LOCK(ump);
12842 				goto restart;
12843 			}
12844 			continue;
12845 
12846 		case D_PAGEDEP:
12847 			/*
12848 			 * Only flush directory entries in synchronous passes.
12849 			 */
12850 			if (waitfor != MNT_WAIT) {
12851 				error = EBUSY;
12852 				goto out_unlock;
12853 			}
12854 			/*
12855 			 * While syncing snapshots, we must allow recursive
12856 			 * lookups.
12857 			 */
12858 			BUF_AREC(bp);
12859 			/*
12860 			 * We are trying to sync a directory that may
12861 			 * have dependencies on both its own metadata
12862 			 * and/or dependencies on the inodes of any
12863 			 * recently allocated files. We walk its diradd
12864 			 * lists pushing out the associated inode.
12865 			 */
12866 			pagedep = WK_PAGEDEP(wk);
12867 			for (i = 0; i < DAHASHSZ; i++) {
12868 				if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0)
12869 					continue;
12870 				if ((error = flush_pagedep_deps(vp, wk->wk_mp,
12871 				    &pagedep->pd_diraddhd[i]))) {
12872 					BUF_NOREC(bp);
12873 					goto out_unlock;
12874 				}
12875 			}
12876 			BUF_NOREC(bp);
12877 			continue;
12878 
12879 		case D_FREEWORK:
12880 		case D_FREEDEP:
12881 		case D_JSEGDEP:
12882 		case D_JNEWBLK:
12883 			continue;
12884 
12885 		default:
12886 			panic("softdep_sync_buf: Unknown type %s",
12887 			    TYPENAME(wk->wk_type));
12888 			/* NOTREACHED */
12889 		}
12890 	}
12891 out_unlock:
12892 	FREE_LOCK(ump);
12893 out:
12894 	return (error);
12895 }
12896 
12897 /*
12898  * Flush the dependencies associated with an inodedep.
12899  */
12900 static int
12901 flush_inodedep_deps(vp, mp, ino)
12902 	struct vnode *vp;
12903 	struct mount *mp;
12904 	ino_t ino;
12905 {
12906 	struct inodedep *inodedep;
12907 	struct inoref *inoref;
12908 	struct ufsmount *ump;
12909 	int error, waitfor;
12910 
12911 	/*
12912 	 * This work is done in two passes. The first pass grabs most
12913 	 * of the buffers and begins asynchronously writing them. The
12914 	 * only way to wait for these asynchronous writes is to sleep
12915 	 * on the filesystem vnode which may stay busy for a long time
12916 	 * if the filesystem is active. So, instead, we make a second
12917 	 * pass over the dependencies blocking on each write. In the
12918 	 * usual case we will be blocking against a write that we
12919 	 * initiated, so when it is done the dependency will have been
12920 	 * resolved. Thus the second pass is expected to end quickly.
12921 	 * We give a brief window at the top of the loop to allow
12922 	 * any pending I/O to complete.
12923 	 */
12924 	ump = VFSTOUFS(mp);
12925 	LOCK_OWNED(ump);
12926 	for (error = 0, waitfor = MNT_NOWAIT; ; ) {
12927 		if (error)
12928 			return (error);
12929 		FREE_LOCK(ump);
12930 		ACQUIRE_LOCK(ump);
12931 restart:
12932 		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
12933 			return (0);
12934 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12935 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12936 			    == DEPCOMPLETE) {
12937 				jwait(&inoref->if_list, MNT_WAIT);
12938 				goto restart;
12939 			}
12940 		}
12941 		if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) ||
12942 		    flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) ||
12943 		    flush_deplist(&inodedep->id_extupdt, waitfor, &error) ||
12944 		    flush_deplist(&inodedep->id_newextupdt, waitfor, &error))
12945 			continue;
12946 		/*
12947 		 * If pass2, we are done, otherwise do pass 2.
12948 		 */
12949 		if (waitfor == MNT_WAIT)
12950 			break;
12951 		waitfor = MNT_WAIT;
12952 	}
12953 	/*
12954 	 * Try freeing inodedep in case all dependencies have been removed.
12955 	 */
12956 	if (inodedep_lookup(mp, ino, 0, &inodedep) != 0)
12957 		(void) free_inodedep(inodedep);
12958 	return (0);
12959 }
12960 
12961 /*
12962  * Flush an inode dependency list.
12963  */
12964 static int
12965 flush_deplist(listhead, waitfor, errorp)
12966 	struct allocdirectlst *listhead;
12967 	int waitfor;
12968 	int *errorp;
12969 {
12970 	struct allocdirect *adp;
12971 	struct newblk *newblk;
12972 	struct ufsmount *ump;
12973 	struct buf *bp;
12974 
12975 	if ((adp = TAILQ_FIRST(listhead)) == NULL)
12976 		return (0);
12977 	ump = VFSTOUFS(adp->ad_list.wk_mp);
12978 	LOCK_OWNED(ump);
12979 	TAILQ_FOREACH(adp, listhead, ad_next) {
12980 		newblk = (struct newblk *)adp;
12981 		if (newblk->nb_jnewblk != NULL) {
12982 			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
12983 			return (1);
12984 		}
12985 		if (newblk->nb_state & DEPCOMPLETE)
12986 			continue;
12987 		bp = newblk->nb_bmsafemap->sm_buf;
12988 		bp = getdirtybuf(bp, LOCK_PTR(ump), waitfor);
12989 		if (bp == NULL) {
12990 			if (waitfor == MNT_NOWAIT)
12991 				continue;
12992 			return (1);
12993 		}
12994 		FREE_LOCK(ump);
12995 		if (waitfor == MNT_NOWAIT)
12996 			bawrite(bp);
12997 		else
12998 			*errorp = bwrite(bp);
12999 		ACQUIRE_LOCK(ump);
13000 		return (1);
13001 	}
13002 	return (0);
13003 }
13004 
13005 /*
13006  * Flush dependencies associated with an allocdirect block.
13007  */
13008 static int
13009 flush_newblk_dep(vp, mp, lbn)
13010 	struct vnode *vp;
13011 	struct mount *mp;
13012 	ufs_lbn_t lbn;
13013 {
13014 	struct newblk *newblk;
13015 	struct ufsmount *ump;
13016 	struct bufobj *bo;
13017 	struct inode *ip;
13018 	struct buf *bp;
13019 	ufs2_daddr_t blkno;
13020 	int error;
13021 
13022 	error = 0;
13023 	bo = &vp->v_bufobj;
13024 	ip = VTOI(vp);
13025 	blkno = DIP(ip, i_db[lbn]);
13026 	if (blkno == 0)
13027 		panic("flush_newblk_dep: Missing block");
13028 	ump = VFSTOUFS(mp);
13029 	ACQUIRE_LOCK(ump);
13030 	/*
13031 	 * Loop until all dependencies related to this block are satisfied.
13032 	 * We must be careful to restart after each sleep in case a write
13033 	 * completes some part of this process for us.
13034 	 */
13035 	for (;;) {
13036 		if (newblk_lookup(mp, blkno, 0, &newblk) == 0) {
13037 			FREE_LOCK(ump);
13038 			break;
13039 		}
13040 		if (newblk->nb_list.wk_type != D_ALLOCDIRECT)
13041 			panic("flush_newblk_dep: Bad newblk %p", newblk);
13042 		/*
13043 		 * Flush the journal.
13044 		 */
13045 		if (newblk->nb_jnewblk != NULL) {
13046 			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
13047 			continue;
13048 		}
13049 		/*
13050 		 * Write the bitmap dependency.
13051 		 */
13052 		if ((newblk->nb_state & DEPCOMPLETE) == 0) {
13053 			bp = newblk->nb_bmsafemap->sm_buf;
13054 			bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT);
13055 			if (bp == NULL)
13056 				continue;
13057 			FREE_LOCK(ump);
13058 			error = bwrite(bp);
13059 			if (error)
13060 				break;
13061 			ACQUIRE_LOCK(ump);
13062 			continue;
13063 		}
13064 		/*
13065 		 * Write the buffer.
13066 		 */
13067 		FREE_LOCK(ump);
13068 		BO_LOCK(bo);
13069 		bp = gbincore(bo, lbn);
13070 		if (bp != NULL) {
13071 			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
13072 			    LK_INTERLOCK, BO_LOCKPTR(bo));
13073 			if (error == ENOLCK) {
13074 				ACQUIRE_LOCK(ump);
13075 				error = 0;
13076 				continue; /* Slept, retry */
13077 			}
13078 			if (error != 0)
13079 				break;	/* Failed */
13080 			if (bp->b_flags & B_DELWRI) {
13081 				bremfree(bp);
13082 				error = bwrite(bp);
13083 				if (error)
13084 					break;
13085 			} else
13086 				BUF_UNLOCK(bp);
13087 		} else
13088 			BO_UNLOCK(bo);
13089 		/*
13090 		 * We have to wait for the direct pointers to
13091 		 * point at the newdirblk before the dependency
13092 		 * will go away.
13093 		 */
13094 		error = ffs_update(vp, 1);
13095 		if (error)
13096 			break;
13097 		ACQUIRE_LOCK(ump);
13098 	}
13099 	return (error);
13100 }
13101 
13102 /*
13103  * Eliminate a pagedep dependency by flushing out all its diradd dependencies.
13104  */
13105 static int
13106 flush_pagedep_deps(pvp, mp, diraddhdp)
13107 	struct vnode *pvp;
13108 	struct mount *mp;
13109 	struct diraddhd *diraddhdp;
13110 {
13111 	struct inodedep *inodedep;
13112 	struct inoref *inoref;
13113 	struct ufsmount *ump;
13114 	struct diradd *dap;
13115 	struct vnode *vp;
13116 	int error = 0;
13117 	struct buf *bp;
13118 	ino_t inum;
13119 	struct diraddhd unfinished;
13120 
13121 	LIST_INIT(&unfinished);
13122 	ump = VFSTOUFS(mp);
13123 	LOCK_OWNED(ump);
13124 restart:
13125 	while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
13126 		/*
13127 		 * Flush ourselves if this directory entry
13128 		 * has a MKDIR_PARENT dependency.
13129 		 */
13130 		if (dap->da_state & MKDIR_PARENT) {
13131 			FREE_LOCK(ump);
13132 			if ((error = ffs_update(pvp, 1)) != 0)
13133 				break;
13134 			ACQUIRE_LOCK(ump);
13135 			/*
13136 			 * If that cleared dependencies, go on to next.
13137 			 */
13138 			if (dap != LIST_FIRST(diraddhdp))
13139 				continue;
13140 			/*
13141 			 * All MKDIR_PARENT dependencies and all the
13142 			 * NEWBLOCK pagedeps that are contained in direct
13143 			 * blocks were resolved by doing above ffs_update.
13144 			 * Pagedeps contained in indirect blocks may
13145 			 * require a complete sync'ing of the directory.
13146 			 * We are in the midst of doing a complete sync,
13147 			 * so if they are not resolved in this pass we
13148 			 * defer them for now as they will be sync'ed by
13149 			 * our caller shortly.
13150 			 */
13151 			LIST_REMOVE(dap, da_pdlist);
13152 			LIST_INSERT_HEAD(&unfinished, dap, da_pdlist);
13153 			continue;
13154 		}
13155 		/*
13156 		 * A newly allocated directory must have its "." and
13157 		 * ".." entries written out before its name can be
13158 		 * committed in its parent.
13159 		 */
13160 		inum = dap->da_newinum;
13161 		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
13162 			panic("flush_pagedep_deps: lost inode1");
13163 		/*
13164 		 * Wait for any pending journal adds to complete so we don't
13165 		 * cause rollbacks while syncing.
13166 		 */
13167 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
13168 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
13169 			    == DEPCOMPLETE) {
13170 				jwait(&inoref->if_list, MNT_WAIT);
13171 				goto restart;
13172 			}
13173 		}
13174 		if (dap->da_state & MKDIR_BODY) {
13175 			FREE_LOCK(ump);
13176 			if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
13177 			    FFSV_FORCEINSMQ)))
13178 				break;
13179 			MPASS(VTOI(vp)->i_mode != 0);
13180 			error = flush_newblk_dep(vp, mp, 0);
13181 			/*
13182 			 * If we still have the dependency we might need to
13183 			 * update the vnode to sync the new link count to
13184 			 * disk.
13185 			 */
13186 			if (error == 0 && dap == LIST_FIRST(diraddhdp))
13187 				error = ffs_update(vp, 1);
13188 			vput(vp);
13189 			if (error != 0)
13190 				break;
13191 			ACQUIRE_LOCK(ump);
13192 			/*
13193 			 * If that cleared dependencies, go on to next.
13194 			 */
13195 			if (dap != LIST_FIRST(diraddhdp))
13196 				continue;
13197 			if (dap->da_state & MKDIR_BODY) {
13198 				inodedep_lookup(UFSTOVFS(ump), inum, 0,
13199 				    &inodedep);
13200 				panic("flush_pagedep_deps: MKDIR_BODY "
13201 				    "inodedep %p dap %p vp %p",
13202 				    inodedep, dap, vp);
13203 			}
13204 		}
13205 		/*
13206 		 * Flush the inode on which the directory entry depends.
13207 		 * Having accounted for MKDIR_PARENT and MKDIR_BODY above,
13208 		 * the only remaining dependency is that the updated inode
13209 		 * count must get pushed to disk. The inode has already
13210 		 * been pushed into its inode buffer (via VOP_UPDATE) at
13211 		 * the time of the reference count change. So we need only
13212 		 * locate that buffer, ensure that there will be no rollback
13213 		 * caused by a bitmap dependency, then write the inode buffer.
13214 		 */
13215 retry:
13216 		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
13217 			panic("flush_pagedep_deps: lost inode");
13218 		/*
13219 		 * If the inode still has bitmap dependencies,
13220 		 * push them to disk.
13221 		 */
13222 		if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) {
13223 			bp = inodedep->id_bmsafemap->sm_buf;
13224 			bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT);
13225 			if (bp == NULL)
13226 				goto retry;
13227 			FREE_LOCK(ump);
13228 			if ((error = bwrite(bp)) != 0)
13229 				break;
13230 			ACQUIRE_LOCK(ump);
13231 			if (dap != LIST_FIRST(diraddhdp))
13232 				continue;
13233 		}
13234 		/*
13235 		 * If the inode is still sitting in a buffer waiting
13236 		 * to be written or waiting for the link count to be
13237 		 * adjusted update it here to flush it to disk.
13238 		 */
13239 		if (dap == LIST_FIRST(diraddhdp)) {
13240 			FREE_LOCK(ump);
13241 			if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
13242 			    FFSV_FORCEINSMQ)))
13243 				break;
13244 			MPASS(VTOI(vp)->i_mode != 0);
13245 			error = ffs_update(vp, 1);
13246 			vput(vp);
13247 			if (error)
13248 				break;
13249 			ACQUIRE_LOCK(ump);
13250 		}
13251 		/*
13252 		 * If we have failed to get rid of all the dependencies
13253 		 * then something is seriously wrong.
13254 		 */
13255 		if (dap == LIST_FIRST(diraddhdp)) {
13256 			inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep);
13257 			panic("flush_pagedep_deps: failed to flush "
13258 			    "inodedep %p ino %ju dap %p",
13259 			    inodedep, (uintmax_t)inum, dap);
13260 		}
13261 	}
13262 	if (error)
13263 		ACQUIRE_LOCK(ump);
13264 	while ((dap = LIST_FIRST(&unfinished)) != NULL) {
13265 		LIST_REMOVE(dap, da_pdlist);
13266 		LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist);
13267 	}
13268 	return (error);
13269 }
13270 
13271 /*
13272  * A large burst of file addition or deletion activity can drive the
13273  * memory load excessively high. First attempt to slow things down
13274  * using the techniques below. If that fails, this routine requests
13275  * the offending operations to fall back to running synchronously
13276  * until the memory load returns to a reasonable level.
13277  */
13278 int
13279 softdep_slowdown(vp)
13280 	struct vnode *vp;
13281 {
13282 	struct ufsmount *ump;
13283 	int jlow;
13284 	int max_softdeps_hard;
13285 
13286 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
13287 	    ("softdep_slowdown called on non-softdep filesystem"));
13288 	ump = VFSTOUFS(vp->v_mount);
13289 	ACQUIRE_LOCK(ump);
13290 	jlow = 0;
13291 	/*
13292 	 * Check for journal space if needed.
13293 	 */
13294 	if (DOINGSUJ(vp)) {
13295 		if (journal_space(ump, 0) == 0)
13296 			jlow = 1;
13297 	}
13298 	/*
13299 	 * If the system is under its limits and our filesystem is
13300 	 * not responsible for more than our share of the usage and
13301 	 * we are not low on journal space, then no need to slow down.
13302 	 */
13303 	max_softdeps_hard = max_softdeps * 11 / 10;
13304 	if (dep_current[D_DIRREM] < max_softdeps_hard / 2 &&
13305 	    dep_current[D_INODEDEP] < max_softdeps_hard &&
13306 	    dep_current[D_INDIRDEP] < max_softdeps_hard / 1000 &&
13307 	    dep_current[D_FREEBLKS] < max_softdeps_hard && jlow == 0 &&
13308 	    ump->softdep_curdeps[D_DIRREM] <
13309 	    (max_softdeps_hard / 2) / stat_flush_threads &&
13310 	    ump->softdep_curdeps[D_INODEDEP] <
13311 	    max_softdeps_hard / stat_flush_threads &&
13312 	    ump->softdep_curdeps[D_INDIRDEP] <
13313 	    (max_softdeps_hard / 1000) / stat_flush_threads &&
13314 	    ump->softdep_curdeps[D_FREEBLKS] <
13315 	    max_softdeps_hard / stat_flush_threads) {
13316 		FREE_LOCK(ump);
13317   		return (0);
13318 	}
13319 	/*
13320 	 * If the journal is low or our filesystem is over its limit
13321 	 * then speedup the cleanup.
13322 	 */
13323 	if (ump->softdep_curdeps[D_INDIRDEP] <
13324 	    (max_softdeps_hard / 1000) / stat_flush_threads || jlow)
13325 		softdep_speedup(ump);
13326 	stat_sync_limit_hit += 1;
13327 	FREE_LOCK(ump);
13328 	/*
13329 	 * We only slow down the rate at which new dependencies are
13330 	 * generated if we are not using journaling. With journaling,
13331 	 * the cleanup should always be sufficient to keep things
13332 	 * under control.
13333 	 */
13334 	if (DOINGSUJ(vp))
13335 		return (0);
13336 	return (1);
13337 }
13338 
13339 /*
13340  * Called by the allocation routines when they are about to fail
13341  * in the hope that we can free up the requested resource (inodes
13342  * or disk space).
13343  *
13344  * First check to see if the work list has anything on it. If it has,
13345  * clean up entries until we successfully free the requested resource.
13346  * Because this process holds inodes locked, we cannot handle any remove
13347  * requests that might block on a locked inode as that could lead to
13348  * deadlock. If the worklist yields none of the requested resource,
13349  * start syncing out vnodes to free up the needed space.
13350  */
13351 int
13352 softdep_request_cleanup(fs, vp, cred, resource)
13353 	struct fs *fs;
13354 	struct vnode *vp;
13355 	struct ucred *cred;
13356 	int resource;
13357 {
13358 	struct ufsmount *ump;
13359 	struct mount *mp;
13360 	long starttime;
13361 	size_t resid;
13362 	ufs2_daddr_t needed;
13363 	int error, failed_vnode;
13364 
13365 	/*
13366 	 * If we are being called because of a process doing a
13367 	 * copy-on-write, then it is not safe to process any
13368 	 * worklist items as we will recurse into the copyonwrite
13369 	 * routine.  This will result in an incoherent snapshot.
13370 	 * If the vnode that we hold is a snapshot, we must avoid
13371 	 * handling other resources that could cause deadlock.
13372 	 */
13373 	if ((curthread->td_pflags & TDP_COWINPROGRESS) || IS_SNAPSHOT(VTOI(vp)))
13374 		return (0);
13375 
13376 	if (resource == FLUSH_BLOCKS_WAIT)
13377 		stat_cleanup_blkrequests += 1;
13378 	else
13379 		stat_cleanup_inorequests += 1;
13380 
13381 	mp = vp->v_mount;
13382 	ump = VFSTOUFS(mp);
13383 	mtx_assert(UFS_MTX(ump), MA_OWNED);
13384 	UFS_UNLOCK(ump);
13385 	error = ffs_update(vp, 1);
13386 	if (error != 0 || MOUNTEDSOFTDEP(mp) == 0) {
13387 		UFS_LOCK(ump);
13388 		return (0);
13389 	}
13390 	/*
13391 	 * If we are in need of resources, start by cleaning up
13392 	 * any block removals associated with our inode.
13393 	 */
13394 	ACQUIRE_LOCK(ump);
13395 	process_removes(vp);
13396 	process_truncates(vp);
13397 	FREE_LOCK(ump);
13398 	/*
13399 	 * Now clean up at least as many resources as we will need.
13400 	 *
13401 	 * When requested to clean up inodes, the number that are needed
13402 	 * is set by the number of simultaneous writers (mnt_writeopcount)
13403 	 * plus a bit of slop (2) in case some more writers show up while
13404 	 * we are cleaning.
13405 	 *
13406 	 * When requested to free up space, the amount of space that
13407 	 * we need is enough blocks to allocate a full-sized segment
13408 	 * (fs_contigsumsize). The number of such segments that will
13409 	 * be needed is set by the number of simultaneous writers
13410 	 * (mnt_writeopcount) plus a bit of slop (2) in case some more
13411 	 * writers show up while we are cleaning.
13412 	 *
13413 	 * Additionally, if we are unpriviledged and allocating space,
13414 	 * we need to ensure that we clean up enough blocks to get the
13415 	 * needed number of blocks over the threshold of the minimum
13416 	 * number of blocks required to be kept free by the filesystem
13417 	 * (fs_minfree).
13418 	 */
13419 	if (resource == FLUSH_INODES_WAIT) {
13420 		needed = vfs_mount_fetch_counter(vp->v_mount,
13421 		    MNT_COUNT_WRITEOPCOUNT) + 2;
13422 	} else if (resource == FLUSH_BLOCKS_WAIT) {
13423 		needed = (vfs_mount_fetch_counter(vp->v_mount,
13424 		    MNT_COUNT_WRITEOPCOUNT) + 2) * fs->fs_contigsumsize;
13425 		if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE))
13426 			needed += fragstoblks(fs,
13427 			    roundup((fs->fs_dsize * fs->fs_minfree / 100) -
13428 			    fs->fs_cstotal.cs_nffree, fs->fs_frag));
13429 	} else {
13430 		printf("softdep_request_cleanup: Unknown resource type %d\n",
13431 		    resource);
13432 		UFS_LOCK(ump);
13433 		return (0);
13434 	}
13435 	starttime = time_second;
13436 retry:
13437 	if (resource == FLUSH_BLOCKS_WAIT &&
13438 	    fs->fs_cstotal.cs_nbfree <= needed)
13439 		g_io_speedup(needed * fs->fs_bsize, BIO_SPEEDUP_TRIM, &resid,
13440 		    ump->um_cp);
13441 	if ((resource == FLUSH_BLOCKS_WAIT && ump->softdep_on_worklist > 0 &&
13442 	    fs->fs_cstotal.cs_nbfree <= needed) ||
13443 	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
13444 	    fs->fs_cstotal.cs_nifree <= needed)) {
13445 		ACQUIRE_LOCK(ump);
13446 		if (ump->softdep_on_worklist > 0 &&
13447 		    process_worklist_item(UFSTOVFS(ump),
13448 		    ump->softdep_on_worklist, LK_NOWAIT) != 0)
13449 			stat_worklist_push += 1;
13450 		FREE_LOCK(ump);
13451 	}
13452 	/*
13453 	 * If we still need resources and there are no more worklist
13454 	 * entries to process to obtain them, we have to start flushing
13455 	 * the dirty vnodes to force the release of additional requests
13456 	 * to the worklist that we can then process to reap addition
13457 	 * resources. We walk the vnodes associated with the mount point
13458 	 * until we get the needed worklist requests that we can reap.
13459 	 *
13460 	 * If there are several threads all needing to clean the same
13461 	 * mount point, only one is allowed to walk the mount list.
13462 	 * When several threads all try to walk the same mount list,
13463 	 * they end up competing with each other and often end up in
13464 	 * livelock. This approach ensures that forward progress is
13465 	 * made at the cost of occational ENOSPC errors being returned
13466 	 * that might otherwise have been avoided.
13467 	 */
13468 	error = 1;
13469 	if ((resource == FLUSH_BLOCKS_WAIT &&
13470 	     fs->fs_cstotal.cs_nbfree <= needed) ||
13471 	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
13472 	     fs->fs_cstotal.cs_nifree <= needed)) {
13473 		ACQUIRE_LOCK(ump);
13474 		if ((ump->um_softdep->sd_flags & FLUSH_RC_ACTIVE) == 0) {
13475 			ump->um_softdep->sd_flags |= FLUSH_RC_ACTIVE;
13476 			FREE_LOCK(ump);
13477 			failed_vnode = softdep_request_cleanup_flush(mp, ump);
13478 			ACQUIRE_LOCK(ump);
13479 			ump->um_softdep->sd_flags &= ~FLUSH_RC_ACTIVE;
13480 			FREE_LOCK(ump);
13481 			if (ump->softdep_on_worklist > 0) {
13482 				stat_cleanup_retries += 1;
13483 				if (!failed_vnode)
13484 					goto retry;
13485 			}
13486 		} else {
13487 			FREE_LOCK(ump);
13488 			error = 0;
13489 		}
13490 		stat_cleanup_failures += 1;
13491 	}
13492 	if (time_second - starttime > stat_cleanup_high_delay)
13493 		stat_cleanup_high_delay = time_second - starttime;
13494 	UFS_LOCK(ump);
13495 	return (error);
13496 }
13497 
13498 /*
13499  * Scan the vnodes for the specified mount point flushing out any
13500  * vnodes that can be locked without waiting. Finally, try to flush
13501  * the device associated with the mount point if it can be locked
13502  * without waiting.
13503  *
13504  * We return 0 if we were able to lock every vnode in our scan.
13505  * If we had to skip one or more vnodes, we return 1.
13506  */
13507 static int
13508 softdep_request_cleanup_flush(mp, ump)
13509 	struct mount *mp;
13510 	struct ufsmount *ump;
13511 {
13512 	struct thread *td;
13513 	struct vnode *lvp, *mvp;
13514 	int failed_vnode;
13515 
13516 	failed_vnode = 0;
13517 	td = curthread;
13518 	MNT_VNODE_FOREACH_ALL(lvp, mp, mvp) {
13519 		if (TAILQ_FIRST(&lvp->v_bufobj.bo_dirty.bv_hd) == 0) {
13520 			VI_UNLOCK(lvp);
13521 			continue;
13522 		}
13523 		if (vget(lvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT,
13524 		    td) != 0) {
13525 			failed_vnode = 1;
13526 			continue;
13527 		}
13528 		if (lvp->v_vflag & VV_NOSYNC) {	/* unlinked */
13529 			vput(lvp);
13530 			continue;
13531 		}
13532 		(void) ffs_syncvnode(lvp, MNT_NOWAIT, 0);
13533 		vput(lvp);
13534 	}
13535 	lvp = ump->um_devvp;
13536 	if (vn_lock(lvp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
13537 		VOP_FSYNC(lvp, MNT_NOWAIT, td);
13538 		VOP_UNLOCK(lvp, 0);
13539 	}
13540 	return (failed_vnode);
13541 }
13542 
13543 static bool
13544 softdep_excess_items(struct ufsmount *ump, int item)
13545 {
13546 
13547 	KASSERT(item >= 0 && item < D_LAST, ("item %d", item));
13548 	return (dep_current[item] > max_softdeps &&
13549 	    ump->softdep_curdeps[item] > max_softdeps /
13550 	    stat_flush_threads);
13551 }
13552 
13553 static void
13554 schedule_cleanup(struct mount *mp)
13555 {
13556 	struct ufsmount *ump;
13557 	struct thread *td;
13558 
13559 	ump = VFSTOUFS(mp);
13560 	LOCK_OWNED(ump);
13561 	FREE_LOCK(ump);
13562 	td = curthread;
13563 	if ((td->td_pflags & TDP_KTHREAD) != 0 &&
13564 	    (td->td_proc->p_flag2 & P2_AST_SU) == 0) {
13565 		/*
13566 		 * No ast is delivered to kernel threads, so nobody
13567 		 * would deref the mp.  Some kernel threads
13568 		 * explicitely check for AST, e.g. NFS daemon does
13569 		 * this in the serving loop.
13570 		 */
13571 		return;
13572 	}
13573 	if (td->td_su != NULL)
13574 		vfs_rel(td->td_su);
13575 	vfs_ref(mp);
13576 	td->td_su = mp;
13577 	thread_lock(td);
13578 	td->td_flags |= TDF_ASTPENDING;
13579 	thread_unlock(td);
13580 }
13581 
13582 static void
13583 softdep_ast_cleanup_proc(struct thread *td)
13584 {
13585 	struct mount *mp;
13586 	struct ufsmount *ump;
13587 	int error;
13588 	bool req;
13589 
13590 	while ((mp = td->td_su) != NULL) {
13591 		td->td_su = NULL;
13592 		error = vfs_busy(mp, MBF_NOWAIT);
13593 		vfs_rel(mp);
13594 		if (error != 0)
13595 			return;
13596 		if (ffs_own_mount(mp) && MOUNTEDSOFTDEP(mp)) {
13597 			ump = VFSTOUFS(mp);
13598 			for (;;) {
13599 				req = false;
13600 				ACQUIRE_LOCK(ump);
13601 				if (softdep_excess_items(ump, D_INODEDEP)) {
13602 					req = true;
13603 					request_cleanup(mp, FLUSH_INODES);
13604 				}
13605 				if (softdep_excess_items(ump, D_DIRREM)) {
13606 					req = true;
13607 					request_cleanup(mp, FLUSH_BLOCKS);
13608 				}
13609 				FREE_LOCK(ump);
13610 				if (softdep_excess_items(ump, D_NEWBLK) ||
13611 				    softdep_excess_items(ump, D_ALLOCDIRECT) ||
13612 				    softdep_excess_items(ump, D_ALLOCINDIR)) {
13613 					error = vn_start_write(NULL, &mp,
13614 					    V_WAIT);
13615 					if (error == 0) {
13616 						req = true;
13617 						VFS_SYNC(mp, MNT_WAIT);
13618 						vn_finished_write(mp);
13619 					}
13620 				}
13621 				if ((td->td_pflags & TDP_KTHREAD) != 0 || !req)
13622 					break;
13623 			}
13624 		}
13625 		vfs_unbusy(mp);
13626 	}
13627 	if ((mp = td->td_su) != NULL) {
13628 		td->td_su = NULL;
13629 		vfs_rel(mp);
13630 	}
13631 }
13632 
13633 /*
13634  * If memory utilization has gotten too high, deliberately slow things
13635  * down and speed up the I/O processing.
13636  */
13637 static int
13638 request_cleanup(mp, resource)
13639 	struct mount *mp;
13640 	int resource;
13641 {
13642 	struct thread *td = curthread;
13643 	struct ufsmount *ump;
13644 
13645 	ump = VFSTOUFS(mp);
13646 	LOCK_OWNED(ump);
13647 	/*
13648 	 * We never hold up the filesystem syncer or buf daemon.
13649 	 */
13650 	if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF))
13651 		return (0);
13652 	/*
13653 	 * First check to see if the work list has gotten backlogged.
13654 	 * If it has, co-opt this process to help clean up two entries.
13655 	 * Because this process may hold inodes locked, we cannot
13656 	 * handle any remove requests that might block on a locked
13657 	 * inode as that could lead to deadlock.  We set TDP_SOFTDEP
13658 	 * to avoid recursively processing the worklist.
13659 	 */
13660 	if (ump->softdep_on_worklist > max_softdeps / 10) {
13661 		td->td_pflags |= TDP_SOFTDEP;
13662 		process_worklist_item(mp, 2, LK_NOWAIT);
13663 		td->td_pflags &= ~TDP_SOFTDEP;
13664 		stat_worklist_push += 2;
13665 		return(1);
13666 	}
13667 	/*
13668 	 * Next, we attempt to speed up the syncer process. If that
13669 	 * is successful, then we allow the process to continue.
13670 	 */
13671 	if (softdep_speedup(ump) &&
13672 	    resource != FLUSH_BLOCKS_WAIT &&
13673 	    resource != FLUSH_INODES_WAIT)
13674 		return(0);
13675 	/*
13676 	 * If we are resource constrained on inode dependencies, try
13677 	 * flushing some dirty inodes. Otherwise, we are constrained
13678 	 * by file deletions, so try accelerating flushes of directories
13679 	 * with removal dependencies. We would like to do the cleanup
13680 	 * here, but we probably hold an inode locked at this point and
13681 	 * that might deadlock against one that we try to clean. So,
13682 	 * the best that we can do is request the syncer daemon to do
13683 	 * the cleanup for us.
13684 	 */
13685 	switch (resource) {
13686 
13687 	case FLUSH_INODES:
13688 	case FLUSH_INODES_WAIT:
13689 		ACQUIRE_GBLLOCK(&lk);
13690 		stat_ino_limit_push += 1;
13691 		req_clear_inodedeps += 1;
13692 		FREE_GBLLOCK(&lk);
13693 		stat_countp = &stat_ino_limit_hit;
13694 		break;
13695 
13696 	case FLUSH_BLOCKS:
13697 	case FLUSH_BLOCKS_WAIT:
13698 		ACQUIRE_GBLLOCK(&lk);
13699 		stat_blk_limit_push += 1;
13700 		req_clear_remove += 1;
13701 		FREE_GBLLOCK(&lk);
13702 		stat_countp = &stat_blk_limit_hit;
13703 		break;
13704 
13705 	default:
13706 		panic("request_cleanup: unknown type");
13707 	}
13708 	/*
13709 	 * Hopefully the syncer daemon will catch up and awaken us.
13710 	 * We wait at most tickdelay before proceeding in any case.
13711 	 */
13712 	ACQUIRE_GBLLOCK(&lk);
13713 	FREE_LOCK(ump);
13714 	proc_waiting += 1;
13715 	if (callout_pending(&softdep_callout) == FALSE)
13716 		callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2,
13717 		    pause_timer, 0);
13718 
13719 	if ((td->td_pflags & TDP_KTHREAD) == 0)
13720 		msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0);
13721 	proc_waiting -= 1;
13722 	FREE_GBLLOCK(&lk);
13723 	ACQUIRE_LOCK(ump);
13724 	return (1);
13725 }
13726 
13727 /*
13728  * Awaken processes pausing in request_cleanup and clear proc_waiting
13729  * to indicate that there is no longer a timer running. Pause_timer
13730  * will be called with the global softdep mutex (&lk) locked.
13731  */
13732 static void
13733 pause_timer(arg)
13734 	void *arg;
13735 {
13736 
13737 	GBLLOCK_OWNED(&lk);
13738 	/*
13739 	 * The callout_ API has acquired mtx and will hold it around this
13740 	 * function call.
13741 	 */
13742 	*stat_countp += proc_waiting;
13743 	wakeup(&proc_waiting);
13744 }
13745 
13746 /*
13747  * If requested, try removing inode or removal dependencies.
13748  */
13749 static void
13750 check_clear_deps(mp)
13751 	struct mount *mp;
13752 {
13753 	struct ufsmount *ump;
13754 	size_t resid;
13755 
13756 	/*
13757 	 * Tell the lower layers that any TRIM or WRITE transactions
13758 	 * that have been delayed for performance reasons should
13759 	 * proceed to help alleviate the shortage faster.
13760 	 */
13761 	ump = VFSTOUFS(mp);
13762 	FREE_LOCK(ump);
13763 	g_io_speedup(0, BIO_SPEEDUP_TRIM | BIO_SPEEDUP_WRITE, &resid, ump->um_cp);
13764 	ACQUIRE_LOCK(ump);
13765 
13766 
13767 	/*
13768 	 * If we are suspended, it may be because of our using
13769 	 * too many inodedeps, so help clear them out.
13770 	 */
13771 	if (MOUNTEDSUJ(mp) && VFSTOUFS(mp)->softdep_jblocks->jb_suspended)
13772 		clear_inodedeps(mp);
13773 
13774 	/*
13775 	 * General requests for cleanup of backed up dependencies
13776 	 */
13777 	ACQUIRE_GBLLOCK(&lk);
13778 	if (req_clear_inodedeps) {
13779 		req_clear_inodedeps -= 1;
13780 		FREE_GBLLOCK(&lk);
13781 		clear_inodedeps(mp);
13782 		ACQUIRE_GBLLOCK(&lk);
13783 		wakeup(&proc_waiting);
13784 	}
13785 	if (req_clear_remove) {
13786 		req_clear_remove -= 1;
13787 		FREE_GBLLOCK(&lk);
13788 		clear_remove(mp);
13789 		ACQUIRE_GBLLOCK(&lk);
13790 		wakeup(&proc_waiting);
13791 	}
13792 	FREE_GBLLOCK(&lk);
13793 }
13794 
13795 /*
13796  * Flush out a directory with at least one removal dependency in an effort to
13797  * reduce the number of dirrem, freefile, and freeblks dependency structures.
13798  */
13799 static void
13800 clear_remove(mp)
13801 	struct mount *mp;
13802 {
13803 	struct pagedep_hashhead *pagedephd;
13804 	struct pagedep *pagedep;
13805 	struct ufsmount *ump;
13806 	struct vnode *vp;
13807 	struct bufobj *bo;
13808 	int error, cnt;
13809 	ino_t ino;
13810 
13811 	ump = VFSTOUFS(mp);
13812 	LOCK_OWNED(ump);
13813 
13814 	for (cnt = 0; cnt <= ump->pagedep_hash_size; cnt++) {
13815 		pagedephd = &ump->pagedep_hashtbl[ump->pagedep_nextclean++];
13816 		if (ump->pagedep_nextclean > ump->pagedep_hash_size)
13817 			ump->pagedep_nextclean = 0;
13818 		LIST_FOREACH(pagedep, pagedephd, pd_hash) {
13819 			if (LIST_EMPTY(&pagedep->pd_dirremhd))
13820 				continue;
13821 			ino = pagedep->pd_ino;
13822 			if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
13823 				continue;
13824 			FREE_LOCK(ump);
13825 
13826 			/*
13827 			 * Let unmount clear deps
13828 			 */
13829 			error = vfs_busy(mp, MBF_NOWAIT);
13830 			if (error != 0)
13831 				goto finish_write;
13832 			error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
13833 			     FFSV_FORCEINSMQ);
13834 			vfs_unbusy(mp);
13835 			if (error != 0) {
13836 				softdep_error("clear_remove: vget", error);
13837 				goto finish_write;
13838 			}
13839 			MPASS(VTOI(vp)->i_mode != 0);
13840 			if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
13841 				softdep_error("clear_remove: fsync", error);
13842 			bo = &vp->v_bufobj;
13843 			BO_LOCK(bo);
13844 			drain_output(vp);
13845 			BO_UNLOCK(bo);
13846 			vput(vp);
13847 		finish_write:
13848 			vn_finished_write(mp);
13849 			ACQUIRE_LOCK(ump);
13850 			return;
13851 		}
13852 	}
13853 }
13854 
13855 /*
13856  * Clear out a block of dirty inodes in an effort to reduce
13857  * the number of inodedep dependency structures.
13858  */
13859 static void
13860 clear_inodedeps(mp)
13861 	struct mount *mp;
13862 {
13863 	struct inodedep_hashhead *inodedephd;
13864 	struct inodedep *inodedep;
13865 	struct ufsmount *ump;
13866 	struct vnode *vp;
13867 	struct fs *fs;
13868 	int error, cnt;
13869 	ino_t firstino, lastino, ino;
13870 
13871 	ump = VFSTOUFS(mp);
13872 	fs = ump->um_fs;
13873 	LOCK_OWNED(ump);
13874 	/*
13875 	 * Pick a random inode dependency to be cleared.
13876 	 * We will then gather up all the inodes in its block
13877 	 * that have dependencies and flush them out.
13878 	 */
13879 	for (cnt = 0; cnt <= ump->inodedep_hash_size; cnt++) {
13880 		inodedephd = &ump->inodedep_hashtbl[ump->inodedep_nextclean++];
13881 		if (ump->inodedep_nextclean > ump->inodedep_hash_size)
13882 			ump->inodedep_nextclean = 0;
13883 		if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
13884 			break;
13885 	}
13886 	if (inodedep == NULL)
13887 		return;
13888 	/*
13889 	 * Find the last inode in the block with dependencies.
13890 	 */
13891 	firstino = rounddown2(inodedep->id_ino, INOPB(fs));
13892 	for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
13893 		if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0)
13894 			break;
13895 	/*
13896 	 * Asynchronously push all but the last inode with dependencies.
13897 	 * Synchronously push the last inode with dependencies to ensure
13898 	 * that the inode block gets written to free up the inodedeps.
13899 	 */
13900 	for (ino = firstino; ino <= lastino; ino++) {
13901 		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
13902 			continue;
13903 		if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
13904 			continue;
13905 		FREE_LOCK(ump);
13906 		error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */
13907 		if (error != 0) {
13908 			vn_finished_write(mp);
13909 			ACQUIRE_LOCK(ump);
13910 			return;
13911 		}
13912 		if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
13913 		    FFSV_FORCEINSMQ)) != 0) {
13914 			softdep_error("clear_inodedeps: vget", error);
13915 			vfs_unbusy(mp);
13916 			vn_finished_write(mp);
13917 			ACQUIRE_LOCK(ump);
13918 			return;
13919 		}
13920 		vfs_unbusy(mp);
13921 		if (VTOI(vp)->i_mode == 0) {
13922 			vgone(vp);
13923 		} else if (ino == lastino) {
13924 			if ((error = ffs_syncvnode(vp, MNT_WAIT, 0)))
13925 				softdep_error("clear_inodedeps: fsync1", error);
13926 		} else {
13927 			if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
13928 				softdep_error("clear_inodedeps: fsync2", error);
13929 			BO_LOCK(&vp->v_bufobj);
13930 			drain_output(vp);
13931 			BO_UNLOCK(&vp->v_bufobj);
13932 		}
13933 		vput(vp);
13934 		vn_finished_write(mp);
13935 		ACQUIRE_LOCK(ump);
13936 	}
13937 }
13938 
13939 void
13940 softdep_buf_append(bp, wkhd)
13941 	struct buf *bp;
13942 	struct workhead *wkhd;
13943 {
13944 	struct worklist *wk;
13945 	struct ufsmount *ump;
13946 
13947 	if ((wk = LIST_FIRST(wkhd)) == NULL)
13948 		return;
13949 	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
13950 	    ("softdep_buf_append called on non-softdep filesystem"));
13951 	ump = VFSTOUFS(wk->wk_mp);
13952 	ACQUIRE_LOCK(ump);
13953 	while ((wk = LIST_FIRST(wkhd)) != NULL) {
13954 		WORKLIST_REMOVE(wk);
13955 		WORKLIST_INSERT(&bp->b_dep, wk);
13956 	}
13957 	FREE_LOCK(ump);
13958 
13959 }
13960 
13961 void
13962 softdep_inode_append(ip, cred, wkhd)
13963 	struct inode *ip;
13964 	struct ucred *cred;
13965 	struct workhead *wkhd;
13966 {
13967 	struct buf *bp;
13968 	struct fs *fs;
13969 	struct ufsmount *ump;
13970 	int error;
13971 
13972 	ump = ITOUMP(ip);
13973 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
13974 	    ("softdep_inode_append called on non-softdep filesystem"));
13975 	fs = ump->um_fs;
13976 	error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
13977 	    (int)fs->fs_bsize, cred, &bp);
13978 	if (error) {
13979 		bqrelse(bp);
13980 		softdep_freework(wkhd);
13981 		return;
13982 	}
13983 	softdep_buf_append(bp, wkhd);
13984 	bqrelse(bp);
13985 }
13986 
13987 void
13988 softdep_freework(wkhd)
13989 	struct workhead *wkhd;
13990 {
13991 	struct worklist *wk;
13992 	struct ufsmount *ump;
13993 
13994 	if ((wk = LIST_FIRST(wkhd)) == NULL)
13995 		return;
13996 	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
13997 	    ("softdep_freework called on non-softdep filesystem"));
13998 	ump = VFSTOUFS(wk->wk_mp);
13999 	ACQUIRE_LOCK(ump);
14000 	handle_jwork(wkhd);
14001 	FREE_LOCK(ump);
14002 }
14003 
14004 static struct ufsmount *
14005 softdep_bp_to_mp(bp)
14006 	struct buf *bp;
14007 {
14008 	struct mount *mp;
14009 	struct vnode *vp;
14010 
14011 	if (LIST_EMPTY(&bp->b_dep))
14012 		return (NULL);
14013 	vp = bp->b_vp;
14014 	KASSERT(vp != NULL,
14015 	    ("%s, buffer with dependencies lacks vnode", __func__));
14016 
14017 	/*
14018 	 * The ump mount point is stable after we get a correct
14019 	 * pointer, since bp is locked and this prevents unmount from
14020 	 * proceeding.  But to get to it, we cannot dereference bp->b_dep
14021 	 * head wk_mp, because we do not yet own SU ump lock and
14022 	 * workitem might be freed while dereferenced.
14023 	 */
14024 retry:
14025 	switch (vp->v_type) {
14026 	case VCHR:
14027 		VI_LOCK(vp);
14028 		mp = vp->v_type == VCHR ? vp->v_rdev->si_mountpt : NULL;
14029 		VI_UNLOCK(vp);
14030 		if (mp == NULL)
14031 			goto retry;
14032 		break;
14033 	case VREG:
14034 	case VDIR:
14035 	case VLNK:
14036 	case VFIFO:
14037 	case VSOCK:
14038 		mp = vp->v_mount;
14039 		break;
14040 	case VBLK:
14041 		vn_printf(vp, "softdep_bp_to_mp: unexpected block device\n");
14042 		/* FALLTHROUGH */
14043 	case VNON:
14044 	case VBAD:
14045 	case VMARKER:
14046 		mp = NULL;
14047 		break;
14048 	default:
14049 		vn_printf(vp, "unknown vnode type");
14050 		mp = NULL;
14051 		break;
14052 	}
14053 	return (VFSTOUFS(mp));
14054 }
14055 
14056 /*
14057  * Function to determine if the buffer has outstanding dependencies
14058  * that will cause a roll-back if the buffer is written. If wantcount
14059  * is set, return number of dependencies, otherwise just yes or no.
14060  */
14061 static int
14062 softdep_count_dependencies(bp, wantcount)
14063 	struct buf *bp;
14064 	int wantcount;
14065 {
14066 	struct worklist *wk;
14067 	struct ufsmount *ump;
14068 	struct bmsafemap *bmsafemap;
14069 	struct freework *freework;
14070 	struct inodedep *inodedep;
14071 	struct indirdep *indirdep;
14072 	struct freeblks *freeblks;
14073 	struct allocindir *aip;
14074 	struct pagedep *pagedep;
14075 	struct dirrem *dirrem;
14076 	struct newblk *newblk;
14077 	struct mkdir *mkdir;
14078 	struct diradd *dap;
14079 	int i, retval;
14080 
14081 	ump = softdep_bp_to_mp(bp);
14082 	if (ump == NULL)
14083 		return (0);
14084 	retval = 0;
14085 	ACQUIRE_LOCK(ump);
14086 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
14087 		switch (wk->wk_type) {
14088 
14089 		case D_INODEDEP:
14090 			inodedep = WK_INODEDEP(wk);
14091 			if ((inodedep->id_state & DEPCOMPLETE) == 0) {
14092 				/* bitmap allocation dependency */
14093 				retval += 1;
14094 				if (!wantcount)
14095 					goto out;
14096 			}
14097 			if (TAILQ_FIRST(&inodedep->id_inoupdt)) {
14098 				/* direct block pointer dependency */
14099 				retval += 1;
14100 				if (!wantcount)
14101 					goto out;
14102 			}
14103 			if (TAILQ_FIRST(&inodedep->id_extupdt)) {
14104 				/* direct block pointer dependency */
14105 				retval += 1;
14106 				if (!wantcount)
14107 					goto out;
14108 			}
14109 			if (TAILQ_FIRST(&inodedep->id_inoreflst)) {
14110 				/* Add reference dependency. */
14111 				retval += 1;
14112 				if (!wantcount)
14113 					goto out;
14114 			}
14115 			continue;
14116 
14117 		case D_INDIRDEP:
14118 			indirdep = WK_INDIRDEP(wk);
14119 
14120 			TAILQ_FOREACH(freework, &indirdep->ir_trunc, fw_next) {
14121 				/* indirect truncation dependency */
14122 				retval += 1;
14123 				if (!wantcount)
14124 					goto out;
14125 			}
14126 
14127 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
14128 				/* indirect block pointer dependency */
14129 				retval += 1;
14130 				if (!wantcount)
14131 					goto out;
14132 			}
14133 			continue;
14134 
14135 		case D_PAGEDEP:
14136 			pagedep = WK_PAGEDEP(wk);
14137 			LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
14138 				if (LIST_FIRST(&dirrem->dm_jremrefhd)) {
14139 					/* Journal remove ref dependency. */
14140 					retval += 1;
14141 					if (!wantcount)
14142 						goto out;
14143 				}
14144 			}
14145 			for (i = 0; i < DAHASHSZ; i++) {
14146 
14147 				LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
14148 					/* directory entry dependency */
14149 					retval += 1;
14150 					if (!wantcount)
14151 						goto out;
14152 				}
14153 			}
14154 			continue;
14155 
14156 		case D_BMSAFEMAP:
14157 			bmsafemap = WK_BMSAFEMAP(wk);
14158 			if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) {
14159 				/* Add reference dependency. */
14160 				retval += 1;
14161 				if (!wantcount)
14162 					goto out;
14163 			}
14164 			if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) {
14165 				/* Allocate block dependency. */
14166 				retval += 1;
14167 				if (!wantcount)
14168 					goto out;
14169 			}
14170 			continue;
14171 
14172 		case D_FREEBLKS:
14173 			freeblks = WK_FREEBLKS(wk);
14174 			if (LIST_FIRST(&freeblks->fb_jblkdephd)) {
14175 				/* Freeblk journal dependency. */
14176 				retval += 1;
14177 				if (!wantcount)
14178 					goto out;
14179 			}
14180 			continue;
14181 
14182 		case D_ALLOCDIRECT:
14183 		case D_ALLOCINDIR:
14184 			newblk = WK_NEWBLK(wk);
14185 			if (newblk->nb_jnewblk) {
14186 				/* Journal allocate dependency. */
14187 				retval += 1;
14188 				if (!wantcount)
14189 					goto out;
14190 			}
14191 			continue;
14192 
14193 		case D_MKDIR:
14194 			mkdir = WK_MKDIR(wk);
14195 			if (mkdir->md_jaddref) {
14196 				/* Journal reference dependency. */
14197 				retval += 1;
14198 				if (!wantcount)
14199 					goto out;
14200 			}
14201 			continue;
14202 
14203 		case D_FREEWORK:
14204 		case D_FREEDEP:
14205 		case D_JSEGDEP:
14206 		case D_JSEG:
14207 		case D_SBDEP:
14208 			/* never a dependency on these blocks */
14209 			continue;
14210 
14211 		default:
14212 			panic("softdep_count_dependencies: Unexpected type %s",
14213 			    TYPENAME(wk->wk_type));
14214 			/* NOTREACHED */
14215 		}
14216 	}
14217 out:
14218 	FREE_LOCK(ump);
14219 	return (retval);
14220 }
14221 
14222 /*
14223  * Acquire exclusive access to a buffer.
14224  * Must be called with a locked mtx parameter.
14225  * Return acquired buffer or NULL on failure.
14226  */
14227 static struct buf *
14228 getdirtybuf(bp, lock, waitfor)
14229 	struct buf *bp;
14230 	struct rwlock *lock;
14231 	int waitfor;
14232 {
14233 	int error;
14234 
14235 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) {
14236 		if (waitfor != MNT_WAIT)
14237 			return (NULL);
14238 		error = BUF_LOCK(bp,
14239 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, lock);
14240 		/*
14241 		 * Even if we successfully acquire bp here, we have dropped
14242 		 * lock, which may violates our guarantee.
14243 		 */
14244 		if (error == 0)
14245 			BUF_UNLOCK(bp);
14246 		else if (error != ENOLCK)
14247 			panic("getdirtybuf: inconsistent lock: %d", error);
14248 		rw_wlock(lock);
14249 		return (NULL);
14250 	}
14251 	if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
14252 		if (lock != BO_LOCKPTR(bp->b_bufobj) && waitfor == MNT_WAIT) {
14253 			rw_wunlock(lock);
14254 			BO_LOCK(bp->b_bufobj);
14255 			BUF_UNLOCK(bp);
14256 			if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
14257 				bp->b_vflags |= BV_BKGRDWAIT;
14258 				msleep(&bp->b_xflags, BO_LOCKPTR(bp->b_bufobj),
14259 				       PRIBIO | PDROP, "getbuf", 0);
14260 			} else
14261 				BO_UNLOCK(bp->b_bufobj);
14262 			rw_wlock(lock);
14263 			return (NULL);
14264 		}
14265 		BUF_UNLOCK(bp);
14266 		if (waitfor != MNT_WAIT)
14267 			return (NULL);
14268 #ifdef DEBUG_VFS_LOCKS
14269 		if (bp->b_vp->v_type != VCHR)
14270 			ASSERT_BO_WLOCKED(bp->b_bufobj);
14271 #endif
14272 		bp->b_vflags |= BV_BKGRDWAIT;
14273 		rw_sleep(&bp->b_xflags, lock, PRIBIO, "getbuf", 0);
14274 		return (NULL);
14275 	}
14276 	if ((bp->b_flags & B_DELWRI) == 0) {
14277 		BUF_UNLOCK(bp);
14278 		return (NULL);
14279 	}
14280 	bremfree(bp);
14281 	return (bp);
14282 }
14283 
14284 
14285 /*
14286  * Check if it is safe to suspend the file system now.  On entry,
14287  * the vnode interlock for devvp should be held.  Return 0 with
14288  * the mount interlock held if the file system can be suspended now,
14289  * otherwise return EAGAIN with the mount interlock held.
14290  */
14291 int
14292 softdep_check_suspend(struct mount *mp,
14293 		      struct vnode *devvp,
14294 		      int softdep_depcnt,
14295 		      int softdep_accdepcnt,
14296 		      int secondary_writes,
14297 		      int secondary_accwrites)
14298 {
14299 	struct bufobj *bo;
14300 	struct ufsmount *ump;
14301 	struct inodedep *inodedep;
14302 	int error, unlinked;
14303 
14304 	bo = &devvp->v_bufobj;
14305 	ASSERT_BO_WLOCKED(bo);
14306 
14307 	/*
14308 	 * If we are not running with soft updates, then we need only
14309 	 * deal with secondary writes as we try to suspend.
14310 	 */
14311 	if (MOUNTEDSOFTDEP(mp) == 0) {
14312 		MNT_ILOCK(mp);
14313 		while (mp->mnt_secondary_writes != 0) {
14314 			BO_UNLOCK(bo);
14315 			msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
14316 			    (PUSER - 1) | PDROP, "secwr", 0);
14317 			BO_LOCK(bo);
14318 			MNT_ILOCK(mp);
14319 		}
14320 
14321 		/*
14322 		 * Reasons for needing more work before suspend:
14323 		 * - Dirty buffers on devvp.
14324 		 * - Secondary writes occurred after start of vnode sync loop
14325 		 */
14326 		error = 0;
14327 		if (bo->bo_numoutput > 0 ||
14328 		    bo->bo_dirty.bv_cnt > 0 ||
14329 		    secondary_writes != 0 ||
14330 		    mp->mnt_secondary_writes != 0 ||
14331 		    secondary_accwrites != mp->mnt_secondary_accwrites)
14332 			error = EAGAIN;
14333 		BO_UNLOCK(bo);
14334 		return (error);
14335 	}
14336 
14337 	/*
14338 	 * If we are running with soft updates, then we need to coordinate
14339 	 * with them as we try to suspend.
14340 	 */
14341 	ump = VFSTOUFS(mp);
14342 	for (;;) {
14343 		if (!TRY_ACQUIRE_LOCK(ump)) {
14344 			BO_UNLOCK(bo);
14345 			ACQUIRE_LOCK(ump);
14346 			FREE_LOCK(ump);
14347 			BO_LOCK(bo);
14348 			continue;
14349 		}
14350 		MNT_ILOCK(mp);
14351 		if (mp->mnt_secondary_writes != 0) {
14352 			FREE_LOCK(ump);
14353 			BO_UNLOCK(bo);
14354 			msleep(&mp->mnt_secondary_writes,
14355 			       MNT_MTX(mp),
14356 			       (PUSER - 1) | PDROP, "secwr", 0);
14357 			BO_LOCK(bo);
14358 			continue;
14359 		}
14360 		break;
14361 	}
14362 
14363 	unlinked = 0;
14364 	if (MOUNTEDSUJ(mp)) {
14365 		for (inodedep = TAILQ_FIRST(&ump->softdep_unlinked);
14366 		    inodedep != NULL;
14367 		    inodedep = TAILQ_NEXT(inodedep, id_unlinked)) {
14368 			if ((inodedep->id_state & (UNLINKED | UNLINKLINKS |
14369 			    UNLINKONLIST)) != (UNLINKED | UNLINKLINKS |
14370 			    UNLINKONLIST) ||
14371 			    !check_inodedep_free(inodedep))
14372 				continue;
14373 			unlinked++;
14374 		}
14375 	}
14376 
14377 	/*
14378 	 * Reasons for needing more work before suspend:
14379 	 * - Dirty buffers on devvp.
14380 	 * - Softdep activity occurred after start of vnode sync loop
14381 	 * - Secondary writes occurred after start of vnode sync loop
14382 	 */
14383 	error = 0;
14384 	if (bo->bo_numoutput > 0 ||
14385 	    bo->bo_dirty.bv_cnt > 0 ||
14386 	    softdep_depcnt != unlinked ||
14387 	    ump->softdep_deps != unlinked ||
14388 	    softdep_accdepcnt != ump->softdep_accdeps ||
14389 	    secondary_writes != 0 ||
14390 	    mp->mnt_secondary_writes != 0 ||
14391 	    secondary_accwrites != mp->mnt_secondary_accwrites)
14392 		error = EAGAIN;
14393 	FREE_LOCK(ump);
14394 	BO_UNLOCK(bo);
14395 	return (error);
14396 }
14397 
14398 
14399 /*
14400  * Get the number of dependency structures for the file system, both
14401  * the current number and the total number allocated.  These will
14402  * later be used to detect that softdep processing has occurred.
14403  */
14404 void
14405 softdep_get_depcounts(struct mount *mp,
14406 		      int *softdep_depsp,
14407 		      int *softdep_accdepsp)
14408 {
14409 	struct ufsmount *ump;
14410 
14411 	if (MOUNTEDSOFTDEP(mp) == 0) {
14412 		*softdep_depsp = 0;
14413 		*softdep_accdepsp = 0;
14414 		return;
14415 	}
14416 	ump = VFSTOUFS(mp);
14417 	ACQUIRE_LOCK(ump);
14418 	*softdep_depsp = ump->softdep_deps;
14419 	*softdep_accdepsp = ump->softdep_accdeps;
14420 	FREE_LOCK(ump);
14421 }
14422 
14423 /*
14424  * Wait for pending output on a vnode to complete.
14425  */
14426 static void
14427 drain_output(vp)
14428 	struct vnode *vp;
14429 {
14430 
14431 	ASSERT_VOP_LOCKED(vp, "drain_output");
14432 	(void)bufobj_wwait(&vp->v_bufobj, 0, 0);
14433 }
14434 
14435 /*
14436  * Called whenever a buffer that is being invalidated or reallocated
14437  * contains dependencies. This should only happen if an I/O error has
14438  * occurred. The routine is called with the buffer locked.
14439  */
14440 static void
14441 softdep_deallocate_dependencies(bp)
14442 	struct buf *bp;
14443 {
14444 
14445 	if ((bp->b_ioflags & BIO_ERROR) == 0)
14446 		panic("softdep_deallocate_dependencies: dangling deps");
14447 	if (bp->b_vp != NULL && bp->b_vp->v_mount != NULL)
14448 		softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error);
14449 	else
14450 		printf("softdep_deallocate_dependencies: "
14451 		    "got error %d while accessing filesystem\n", bp->b_error);
14452 	if (bp->b_error != ENXIO)
14453 		panic("softdep_deallocate_dependencies: unrecovered I/O error");
14454 }
14455 
14456 /*
14457  * Function to handle asynchronous write errors in the filesystem.
14458  */
14459 static void
14460 softdep_error(func, error)
14461 	char *func;
14462 	int error;
14463 {
14464 
14465 	/* XXX should do something better! */
14466 	printf("%s: got error %d while accessing filesystem\n", func, error);
14467 }
14468 
14469 #ifdef DDB
14470 
14471 /* exported to ffs_vfsops.c */
14472 extern void db_print_ffs(struct ufsmount *ump);
14473 void
14474 db_print_ffs(struct ufsmount *ump)
14475 {
14476 	db_printf("mp %p (%s) devvp %p\n", ump->um_mountp,
14477 	    ump->um_mountp->mnt_stat.f_mntonname, ump->um_devvp);
14478 	db_printf("    fs %p su_wl %d su_deps %d su_req %d\n",
14479 	    ump->um_fs, ump->softdep_on_worklist,
14480 	    ump->softdep_deps, ump->softdep_req);
14481 }
14482 
14483 static void
14484 worklist_print(struct worklist *wk, int verbose)
14485 {
14486 
14487 	if (!verbose) {
14488 		db_printf("%s: %p state 0x%b\n", TYPENAME(wk->wk_type), wk,
14489 		    (u_int)wk->wk_state, PRINT_SOFTDEP_FLAGS);
14490 		return;
14491 	}
14492 	db_printf("worklist: %p type %s state 0x%b next %p\n    ", wk,
14493 	    TYPENAME(wk->wk_type), (u_int)wk->wk_state, PRINT_SOFTDEP_FLAGS,
14494 	    LIST_NEXT(wk, wk_list));
14495 	db_print_ffs(VFSTOUFS(wk->wk_mp));
14496 }
14497 
14498 static void
14499 inodedep_print(struct inodedep *inodedep, int verbose)
14500 {
14501 
14502 	worklist_print(&inodedep->id_list, 0);
14503 	db_printf("    fs %p ino %jd inoblk %jd delta %jd nlink %jd\n",
14504 	    inodedep->id_fs,
14505 	    (intmax_t)inodedep->id_ino,
14506 	    (intmax_t)fsbtodb(inodedep->id_fs,
14507 	        ino_to_fsba(inodedep->id_fs, inodedep->id_ino)),
14508 	    (intmax_t)inodedep->id_nlinkdelta,
14509 	    (intmax_t)inodedep->id_savednlink);
14510 
14511 	if (verbose == 0)
14512 		return;
14513 
14514 	db_printf("    bmsafemap %p, mkdiradd %p, inoreflst %p\n",
14515 	    inodedep->id_bmsafemap,
14516 	    inodedep->id_mkdiradd,
14517 	    TAILQ_FIRST(&inodedep->id_inoreflst));
14518 	db_printf("    dirremhd %p, pendinghd %p, bufwait %p\n",
14519 	    LIST_FIRST(&inodedep->id_dirremhd),
14520 	    LIST_FIRST(&inodedep->id_pendinghd),
14521 	    LIST_FIRST(&inodedep->id_bufwait));
14522 	db_printf("    inowait %p, inoupdt %p, newinoupdt %p\n",
14523 	    LIST_FIRST(&inodedep->id_inowait),
14524 	    TAILQ_FIRST(&inodedep->id_inoupdt),
14525 	    TAILQ_FIRST(&inodedep->id_newinoupdt));
14526 	db_printf("    extupdt %p, newextupdt %p, freeblklst %p\n",
14527 	    TAILQ_FIRST(&inodedep->id_extupdt),
14528 	    TAILQ_FIRST(&inodedep->id_newextupdt),
14529 	    TAILQ_FIRST(&inodedep->id_freeblklst));
14530 	db_printf("    saveino %p, savedsize %jd, savedextsize %jd\n",
14531 	    inodedep->id_savedino1,
14532 	    (intmax_t)inodedep->id_savedsize,
14533 	    (intmax_t)inodedep->id_savedextsize);
14534 }
14535 
14536 static void
14537 newblk_print(struct newblk *nbp)
14538 {
14539 
14540 	worklist_print(&nbp->nb_list, 0);
14541 	db_printf("    newblkno %jd\n", (intmax_t)nbp->nb_newblkno);
14542 	db_printf("    jnewblk %p, bmsafemap %p, freefrag %p\n",
14543 	    &nbp->nb_jnewblk,
14544 	    &nbp->nb_bmsafemap,
14545 	    &nbp->nb_freefrag);
14546 	db_printf("    indirdeps %p, newdirblk %p, jwork %p\n",
14547 	    LIST_FIRST(&nbp->nb_indirdeps),
14548 	    LIST_FIRST(&nbp->nb_newdirblk),
14549 	    LIST_FIRST(&nbp->nb_jwork));
14550 }
14551 
14552 static void
14553 allocdirect_print(struct allocdirect *adp)
14554 {
14555 
14556 	newblk_print(&adp->ad_block);
14557 	db_printf("    oldblkno %jd, oldsize %ld, newsize %ld\n",
14558 	    adp->ad_oldblkno, adp->ad_oldsize, adp->ad_newsize);
14559 	db_printf("    offset %d, inodedep %p\n",
14560 	    adp->ad_offset, adp->ad_inodedep);
14561 }
14562 
14563 static void
14564 allocindir_print(struct allocindir *aip)
14565 {
14566 
14567 	newblk_print(&aip->ai_block);
14568 	db_printf("    oldblkno %jd, lbn %jd\n",
14569 	    (intmax_t)aip->ai_oldblkno, (intmax_t)aip->ai_lbn);
14570 	db_printf("    offset %d, indirdep %p\n",
14571 	    aip->ai_offset, aip->ai_indirdep);
14572 }
14573 
14574 static void
14575 mkdir_print(struct mkdir *mkdir)
14576 {
14577 
14578 	worklist_print(&mkdir->md_list, 0);
14579 	db_printf("    diradd %p, jaddref %p, buf %p\n",
14580 		mkdir->md_diradd, mkdir->md_jaddref, mkdir->md_buf);
14581 }
14582 
14583 DB_SHOW_COMMAND(sd_inodedep, db_show_sd_inodedep)
14584 {
14585 
14586 	if (have_addr == 0) {
14587 		db_printf("inodedep address required\n");
14588 		return;
14589 	}
14590 	inodedep_print((struct inodedep*)addr, 1);
14591 }
14592 
14593 DB_SHOW_COMMAND(sd_allinodedeps, db_show_sd_allinodedeps)
14594 {
14595 	struct inodedep_hashhead *inodedephd;
14596 	struct inodedep *inodedep;
14597 	struct ufsmount *ump;
14598 	int cnt;
14599 
14600 	if (have_addr == 0) {
14601 		db_printf("ufsmount address required\n");
14602 		return;
14603 	}
14604 	ump = (struct ufsmount *)addr;
14605 	for (cnt = 0; cnt < ump->inodedep_hash_size; cnt++) {
14606 		inodedephd = &ump->inodedep_hashtbl[cnt];
14607 		LIST_FOREACH(inodedep, inodedephd, id_hash) {
14608 			inodedep_print(inodedep, 0);
14609 		}
14610 	}
14611 }
14612 
14613 DB_SHOW_COMMAND(sd_worklist, db_show_sd_worklist)
14614 {
14615 
14616 	if (have_addr == 0) {
14617 		db_printf("worklist address required\n");
14618 		return;
14619 	}
14620 	worklist_print((struct worklist *)addr, 1);
14621 }
14622 
14623 DB_SHOW_COMMAND(sd_workhead, db_show_sd_workhead)
14624 {
14625 	struct worklist *wk;
14626 	struct workhead *wkhd;
14627 
14628 	if (have_addr == 0) {
14629 		db_printf("worklist address required "
14630 		    "(for example value in bp->b_dep)\n");
14631 		return;
14632 	}
14633 	/*
14634 	 * We often do not have the address of the worklist head but
14635 	 * instead a pointer to its first entry (e.g., we have the
14636 	 * contents of bp->b_dep rather than &bp->b_dep). But the back
14637 	 * pointer of bp->b_dep will point at the head of the list, so
14638 	 * we cheat and use that instead. If we are in the middle of
14639 	 * a list we will still get the same result, so nothing
14640 	 * unexpected will result.
14641 	 */
14642 	wk = (struct worklist *)addr;
14643 	if (wk == NULL)
14644 		return;
14645 	wkhd = (struct workhead *)wk->wk_list.le_prev;
14646 	LIST_FOREACH(wk, wkhd, wk_list) {
14647 		switch(wk->wk_type) {
14648 		case D_INODEDEP:
14649 			inodedep_print(WK_INODEDEP(wk), 0);
14650 			continue;
14651 		case D_ALLOCDIRECT:
14652 			allocdirect_print(WK_ALLOCDIRECT(wk));
14653 			continue;
14654 		case D_ALLOCINDIR:
14655 			allocindir_print(WK_ALLOCINDIR(wk));
14656 			continue;
14657 		case D_MKDIR:
14658 			mkdir_print(WK_MKDIR(wk));
14659 			continue;
14660 		default:
14661 			worklist_print(wk, 0);
14662 			continue;
14663 		}
14664 	}
14665 }
14666 
14667 DB_SHOW_COMMAND(sd_mkdir, db_show_sd_mkdir)
14668 {
14669 	if (have_addr == 0) {
14670 		db_printf("mkdir address required\n");
14671 		return;
14672 	}
14673 	mkdir_print((struct mkdir *)addr);
14674 }
14675 
14676 DB_SHOW_COMMAND(sd_mkdir_list, db_show_sd_mkdir_list)
14677 {
14678 	struct mkdirlist *mkdirlisthd;
14679 	struct mkdir *mkdir;
14680 
14681 	if (have_addr == 0) {
14682 		db_printf("mkdir listhead address required\n");
14683 		return;
14684 	}
14685 	mkdirlisthd = (struct mkdirlist *)addr;
14686 	LIST_FOREACH(mkdir, mkdirlisthd, md_mkdirs) {
14687 		mkdir_print(mkdir);
14688 		if (mkdir->md_diradd != NULL) {
14689 			db_printf("    ");
14690 			worklist_print(&mkdir->md_diradd->da_list, 0);
14691 		}
14692 		if (mkdir->md_jaddref != NULL) {
14693 			db_printf("    ");
14694 			worklist_print(&mkdir->md_jaddref->ja_list, 0);
14695 		}
14696 	}
14697 }
14698 
14699 DB_SHOW_COMMAND(sd_allocdirect, db_show_sd_allocdirect)
14700 {
14701 	if (have_addr == 0) {
14702 		db_printf("allocdirect address required\n");
14703 		return;
14704 	}
14705 	allocdirect_print((struct allocdirect *)addr);
14706 }
14707 
14708 DB_SHOW_COMMAND(sd_allocindir, db_show_sd_allocindir)
14709 {
14710 	if (have_addr == 0) {
14711 		db_printf("allocindir address required\n");
14712 		return;
14713 	}
14714 	allocindir_print((struct allocindir *)addr);
14715 }
14716 
14717 #endif /* DDB */
14718 
14719 #endif /* SOFTUPDATES */
14720