xref: /freebsd/sys/ufs/ffs/ffs_softdep.c (revision 40a8ac8f62b535d30349faf28cf47106b7041b83)
1 /*-
2  * Copyright 1998, 2000 Marshall Kirk McKusick.
3  * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org>
4  * All rights reserved.
5  *
6  * The soft updates code is derived from the appendix of a University
7  * of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
8  * "Soft Updates: A Solution to the Metadata Update Problem in File
9  * Systems", CSE-TR-254-95, August 1995).
10  *
11  * Further information about soft updates can be obtained from:
12  *
13  *	Marshall Kirk McKusick		http://www.mckusick.com/softdep/
14  *	1614 Oxford Street		mckusick@mckusick.com
15  *	Berkeley, CA 94709-1608		+1-510-843-9542
16  *	USA
17  *
18  * Redistribution and use in source and binary forms, with or without
19  * modification, are permitted provided that the following conditions
20  * are met:
21  *
22  * 1. Redistributions of source code must retain the above copyright
23  *    notice, this list of conditions and the following disclaimer.
24  * 2. Redistributions in binary form must reproduce the above copyright
25  *    notice, this list of conditions and the following disclaimer in the
26  *    documentation and/or other materials provided with the distribution.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
29  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
31  * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
32  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
33  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
34  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
35  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37  * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38  *
39  *	from: @(#)ffs_softdep.c	9.59 (McKusick) 6/21/00
40  */
41 
42 #include <sys/cdefs.h>
43 __FBSDID("$FreeBSD$");
44 
45 #include "opt_ffs.h"
46 #include "opt_quota.h"
47 #include "opt_ddb.h"
48 
49 /*
50  * For now we want the safety net that the DEBUG flag provides.
51  */
52 #ifndef DEBUG
53 #define DEBUG
54 #endif
55 
56 #include <sys/param.h>
57 #include <sys/kernel.h>
58 #include <sys/systm.h>
59 #include <sys/bio.h>
60 #include <sys/buf.h>
61 #include <sys/kdb.h>
62 #include <sys/kthread.h>
63 #include <sys/ktr.h>
64 #include <sys/limits.h>
65 #include <sys/lock.h>
66 #include <sys/malloc.h>
67 #include <sys/mount.h>
68 #include <sys/mutex.h>
69 #include <sys/namei.h>
70 #include <sys/priv.h>
71 #include <sys/proc.h>
72 #include <sys/rwlock.h>
73 #include <sys/stat.h>
74 #include <sys/sysctl.h>
75 #include <sys/syslog.h>
76 #include <sys/vnode.h>
77 #include <sys/conf.h>
78 
79 #include <ufs/ufs/dir.h>
80 #include <ufs/ufs/extattr.h>
81 #include <ufs/ufs/quota.h>
82 #include <ufs/ufs/inode.h>
83 #include <ufs/ufs/ufsmount.h>
84 #include <ufs/ffs/fs.h>
85 #include <ufs/ffs/softdep.h>
86 #include <ufs/ffs/ffs_extern.h>
87 #include <ufs/ufs/ufs_extern.h>
88 
89 #include <vm/vm.h>
90 #include <vm/vm_extern.h>
91 #include <vm/vm_object.h>
92 
93 #include <geom/geom.h>
94 
95 #include <ddb/ddb.h>
96 
97 #define	KTR_SUJ	0	/* Define to KTR_SPARE. */
98 
99 #ifndef SOFTUPDATES
100 
101 int
102 softdep_flushfiles(oldmnt, flags, td)
103 	struct mount *oldmnt;
104 	int flags;
105 	struct thread *td;
106 {
107 
108 	panic("softdep_flushfiles called");
109 }
110 
111 int
112 softdep_mount(devvp, mp, fs, cred)
113 	struct vnode *devvp;
114 	struct mount *mp;
115 	struct fs *fs;
116 	struct ucred *cred;
117 {
118 
119 	return (0);
120 }
121 
122 void
123 softdep_initialize()
124 {
125 
126 	return;
127 }
128 
129 void
130 softdep_uninitialize()
131 {
132 
133 	return;
134 }
135 
136 void
137 softdep_unmount(mp)
138 	struct mount *mp;
139 {
140 
141 	panic("softdep_unmount called");
142 }
143 
144 void
145 softdep_setup_sbupdate(ump, fs, bp)
146 	struct ufsmount *ump;
147 	struct fs *fs;
148 	struct buf *bp;
149 {
150 
151 	panic("softdep_setup_sbupdate called");
152 }
153 
154 void
155 softdep_setup_inomapdep(bp, ip, newinum, mode)
156 	struct buf *bp;
157 	struct inode *ip;
158 	ino_t newinum;
159 	int mode;
160 {
161 
162 	panic("softdep_setup_inomapdep called");
163 }
164 
165 void
166 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
167 	struct buf *bp;
168 	struct mount *mp;
169 	ufs2_daddr_t newblkno;
170 	int frags;
171 	int oldfrags;
172 {
173 
174 	panic("softdep_setup_blkmapdep called");
175 }
176 
177 void
178 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
179 	struct inode *ip;
180 	ufs_lbn_t lbn;
181 	ufs2_daddr_t newblkno;
182 	ufs2_daddr_t oldblkno;
183 	long newsize;
184 	long oldsize;
185 	struct buf *bp;
186 {
187 
188 	panic("softdep_setup_allocdirect called");
189 }
190 
191 void
192 softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
193 	struct inode *ip;
194 	ufs_lbn_t lbn;
195 	ufs2_daddr_t newblkno;
196 	ufs2_daddr_t oldblkno;
197 	long newsize;
198 	long oldsize;
199 	struct buf *bp;
200 {
201 
202 	panic("softdep_setup_allocext called");
203 }
204 
205 void
206 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
207 	struct inode *ip;
208 	ufs_lbn_t lbn;
209 	struct buf *bp;
210 	int ptrno;
211 	ufs2_daddr_t newblkno;
212 	ufs2_daddr_t oldblkno;
213 	struct buf *nbp;
214 {
215 
216 	panic("softdep_setup_allocindir_page called");
217 }
218 
219 void
220 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
221 	struct buf *nbp;
222 	struct inode *ip;
223 	struct buf *bp;
224 	int ptrno;
225 	ufs2_daddr_t newblkno;
226 {
227 
228 	panic("softdep_setup_allocindir_meta called");
229 }
230 
231 void
232 softdep_journal_freeblocks(ip, cred, length, flags)
233 	struct inode *ip;
234 	struct ucred *cred;
235 	off_t length;
236 	int flags;
237 {
238 
239 	panic("softdep_journal_freeblocks called");
240 }
241 
242 void
243 softdep_journal_fsync(ip)
244 	struct inode *ip;
245 {
246 
247 	panic("softdep_journal_fsync called");
248 }
249 
250 void
251 softdep_setup_freeblocks(ip, length, flags)
252 	struct inode *ip;
253 	off_t length;
254 	int flags;
255 {
256 
257 	panic("softdep_setup_freeblocks called");
258 }
259 
260 void
261 softdep_freefile(pvp, ino, mode)
262 		struct vnode *pvp;
263 		ino_t ino;
264 		int mode;
265 {
266 
267 	panic("softdep_freefile called");
268 }
269 
270 int
271 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
272 	struct buf *bp;
273 	struct inode *dp;
274 	off_t diroffset;
275 	ino_t newinum;
276 	struct buf *newdirbp;
277 	int isnewblk;
278 {
279 
280 	panic("softdep_setup_directory_add called");
281 }
282 
283 void
284 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
285 	struct buf *bp;
286 	struct inode *dp;
287 	caddr_t base;
288 	caddr_t oldloc;
289 	caddr_t newloc;
290 	int entrysize;
291 {
292 
293 	panic("softdep_change_directoryentry_offset called");
294 }
295 
296 void
297 softdep_setup_remove(bp, dp, ip, isrmdir)
298 	struct buf *bp;
299 	struct inode *dp;
300 	struct inode *ip;
301 	int isrmdir;
302 {
303 
304 	panic("softdep_setup_remove called");
305 }
306 
307 void
308 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
309 	struct buf *bp;
310 	struct inode *dp;
311 	struct inode *ip;
312 	ino_t newinum;
313 	int isrmdir;
314 {
315 
316 	panic("softdep_setup_directory_change called");
317 }
318 
319 void
320 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
321 	struct mount *mp;
322 	struct buf *bp;
323 	ufs2_daddr_t blkno;
324 	int frags;
325 	struct workhead *wkhd;
326 {
327 
328 	panic("%s called", __FUNCTION__);
329 }
330 
331 void
332 softdep_setup_inofree(mp, bp, ino, wkhd)
333 	struct mount *mp;
334 	struct buf *bp;
335 	ino_t ino;
336 	struct workhead *wkhd;
337 {
338 
339 	panic("%s called", __FUNCTION__);
340 }
341 
342 void
343 softdep_setup_unlink(dp, ip)
344 	struct inode *dp;
345 	struct inode *ip;
346 {
347 
348 	panic("%s called", __FUNCTION__);
349 }
350 
351 void
352 softdep_setup_link(dp, ip)
353 	struct inode *dp;
354 	struct inode *ip;
355 {
356 
357 	panic("%s called", __FUNCTION__);
358 }
359 
360 void
361 softdep_revert_link(dp, ip)
362 	struct inode *dp;
363 	struct inode *ip;
364 {
365 
366 	panic("%s called", __FUNCTION__);
367 }
368 
369 void
370 softdep_setup_rmdir(dp, ip)
371 	struct inode *dp;
372 	struct inode *ip;
373 {
374 
375 	panic("%s called", __FUNCTION__);
376 }
377 
378 void
379 softdep_revert_rmdir(dp, ip)
380 	struct inode *dp;
381 	struct inode *ip;
382 {
383 
384 	panic("%s called", __FUNCTION__);
385 }
386 
387 void
388 softdep_setup_create(dp, ip)
389 	struct inode *dp;
390 	struct inode *ip;
391 {
392 
393 	panic("%s called", __FUNCTION__);
394 }
395 
396 void
397 softdep_revert_create(dp, ip)
398 	struct inode *dp;
399 	struct inode *ip;
400 {
401 
402 	panic("%s called", __FUNCTION__);
403 }
404 
405 void
406 softdep_setup_mkdir(dp, ip)
407 	struct inode *dp;
408 	struct inode *ip;
409 {
410 
411 	panic("%s called", __FUNCTION__);
412 }
413 
414 void
415 softdep_revert_mkdir(dp, ip)
416 	struct inode *dp;
417 	struct inode *ip;
418 {
419 
420 	panic("%s called", __FUNCTION__);
421 }
422 
423 void
424 softdep_setup_dotdot_link(dp, ip)
425 	struct inode *dp;
426 	struct inode *ip;
427 {
428 
429 	panic("%s called", __FUNCTION__);
430 }
431 
432 int
433 softdep_prealloc(vp, waitok)
434 	struct vnode *vp;
435 	int waitok;
436 {
437 
438 	panic("%s called", __FUNCTION__);
439 }
440 
441 int
442 softdep_journal_lookup(mp, vpp)
443 	struct mount *mp;
444 	struct vnode **vpp;
445 {
446 
447 	return (ENOENT);
448 }
449 
450 void
451 softdep_change_linkcnt(ip)
452 	struct inode *ip;
453 {
454 
455 	panic("softdep_change_linkcnt called");
456 }
457 
458 void
459 softdep_load_inodeblock(ip)
460 	struct inode *ip;
461 {
462 
463 	panic("softdep_load_inodeblock called");
464 }
465 
466 void
467 softdep_update_inodeblock(ip, bp, waitfor)
468 	struct inode *ip;
469 	struct buf *bp;
470 	int waitfor;
471 {
472 
473 	panic("softdep_update_inodeblock called");
474 }
475 
476 int
477 softdep_fsync(vp)
478 	struct vnode *vp;	/* the "in_core" copy of the inode */
479 {
480 
481 	return (0);
482 }
483 
484 void
485 softdep_fsync_mountdev(vp)
486 	struct vnode *vp;
487 {
488 
489 	return;
490 }
491 
492 int
493 softdep_flushworklist(oldmnt, countp, td)
494 	struct mount *oldmnt;
495 	int *countp;
496 	struct thread *td;
497 {
498 
499 	*countp = 0;
500 	return (0);
501 }
502 
503 int
504 softdep_sync_metadata(struct vnode *vp)
505 {
506 
507 	panic("softdep_sync_metadata called");
508 }
509 
510 int
511 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
512 {
513 
514 	panic("softdep_sync_buf called");
515 }
516 
517 int
518 softdep_slowdown(vp)
519 	struct vnode *vp;
520 {
521 
522 	panic("softdep_slowdown called");
523 }
524 
525 int
526 softdep_request_cleanup(fs, vp, cred, resource)
527 	struct fs *fs;
528 	struct vnode *vp;
529 	struct ucred *cred;
530 	int resource;
531 {
532 
533 	return (0);
534 }
535 
536 int
537 softdep_check_suspend(struct mount *mp,
538 		      struct vnode *devvp,
539 		      int softdep_depcnt,
540 		      int softdep_accdepcnt,
541 		      int secondary_writes,
542 		      int secondary_accwrites)
543 {
544 	struct bufobj *bo;
545 	int error;
546 
547 	(void) softdep_depcnt,
548 	(void) softdep_accdepcnt;
549 
550 	bo = &devvp->v_bufobj;
551 	ASSERT_BO_WLOCKED(bo);
552 
553 	MNT_ILOCK(mp);
554 	while (mp->mnt_secondary_writes != 0) {
555 		BO_UNLOCK(bo);
556 		msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
557 		    (PUSER - 1) | PDROP, "secwr", 0);
558 		BO_LOCK(bo);
559 		MNT_ILOCK(mp);
560 	}
561 
562 	/*
563 	 * Reasons for needing more work before suspend:
564 	 * - Dirty buffers on devvp.
565 	 * - Secondary writes occurred after start of vnode sync loop
566 	 */
567 	error = 0;
568 	if (bo->bo_numoutput > 0 ||
569 	    bo->bo_dirty.bv_cnt > 0 ||
570 	    secondary_writes != 0 ||
571 	    mp->mnt_secondary_writes != 0 ||
572 	    secondary_accwrites != mp->mnt_secondary_accwrites)
573 		error = EAGAIN;
574 	BO_UNLOCK(bo);
575 	return (error);
576 }
577 
578 void
579 softdep_get_depcounts(struct mount *mp,
580 		      int *softdepactivep,
581 		      int *softdepactiveaccp)
582 {
583 	(void) mp;
584 	*softdepactivep = 0;
585 	*softdepactiveaccp = 0;
586 }
587 
588 void
589 softdep_buf_append(bp, wkhd)
590 	struct buf *bp;
591 	struct workhead *wkhd;
592 {
593 
594 	panic("softdep_buf_appendwork called");
595 }
596 
597 void
598 softdep_inode_append(ip, cred, wkhd)
599 	struct inode *ip;
600 	struct ucred *cred;
601 	struct workhead *wkhd;
602 {
603 
604 	panic("softdep_inode_appendwork called");
605 }
606 
607 void
608 softdep_freework(wkhd)
609 	struct workhead *wkhd;
610 {
611 
612 	panic("softdep_freework called");
613 }
614 
615 #else
616 
617 FEATURE(softupdates, "FFS soft-updates support");
618 
619 static SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW, 0,
620     "soft updates stats");
621 static SYSCTL_NODE(_debug_softdep, OID_AUTO, total, CTLFLAG_RW, 0,
622     "total dependencies allocated");
623 static SYSCTL_NODE(_debug_softdep, OID_AUTO, highuse, CTLFLAG_RW, 0,
624     "high use dependencies allocated");
625 static SYSCTL_NODE(_debug_softdep, OID_AUTO, current, CTLFLAG_RW, 0,
626     "current dependencies allocated");
627 static SYSCTL_NODE(_debug_softdep, OID_AUTO, write, CTLFLAG_RW, 0,
628     "current dependencies written");
629 
630 unsigned long dep_current[D_LAST + 1];
631 unsigned long dep_highuse[D_LAST + 1];
632 unsigned long dep_total[D_LAST + 1];
633 unsigned long dep_write[D_LAST + 1];
634 
635 #define	SOFTDEP_TYPE(type, str, long)					\
636     static MALLOC_DEFINE(M_ ## type, #str, long);			\
637     SYSCTL_ULONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD,	\
638 	&dep_total[D_ ## type], 0, "");					\
639     SYSCTL_ULONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD, 	\
640 	&dep_current[D_ ## type], 0, "");				\
641     SYSCTL_ULONG(_debug_softdep_highuse, OID_AUTO, str, CTLFLAG_RD, 	\
642 	&dep_highuse[D_ ## type], 0, "");				\
643     SYSCTL_ULONG(_debug_softdep_write, OID_AUTO, str, CTLFLAG_RD, 	\
644 	&dep_write[D_ ## type], 0, "");
645 
646 SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies");
647 SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies");
648 SOFTDEP_TYPE(BMSAFEMAP, bmsafemap,
649     "Block or frag allocated from cyl group map");
650 SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency");
651 SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode");
652 SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies");
653 SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block");
654 SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode");
655 SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode");
656 SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated");
657 SOFTDEP_TYPE(DIRADD, diradd, "New directory entry");
658 SOFTDEP_TYPE(MKDIR, mkdir, "New directory");
659 SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted");
660 SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block");
661 SOFTDEP_TYPE(FREEWORK, freework, "free an inode block");
662 SOFTDEP_TYPE(FREEDEP, freedep, "track a block free");
663 SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add");
664 SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove");
665 SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move");
666 SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block");
667 SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block");
668 SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag");
669 SOFTDEP_TYPE(JSEG, jseg, "Journal segment");
670 SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete");
671 SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency");
672 SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation");
673 SOFTDEP_TYPE(JFSYNC, jfsync, "Journal fsync complete");
674 
675 static MALLOC_DEFINE(M_SENTINEL, "sentinel", "Worklist sentinel");
676 
677 static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes");
678 static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations");
679 static MALLOC_DEFINE(M_MOUNTDATA, "softdep", "Softdep per-mount data");
680 
681 #define M_SOFTDEP_FLAGS	(M_WAITOK)
682 
683 /*
684  * translate from workitem type to memory type
685  * MUST match the defines above, such that memtype[D_XXX] == M_XXX
686  */
687 static struct malloc_type *memtype[] = {
688 	M_PAGEDEP,
689 	M_INODEDEP,
690 	M_BMSAFEMAP,
691 	M_NEWBLK,
692 	M_ALLOCDIRECT,
693 	M_INDIRDEP,
694 	M_ALLOCINDIR,
695 	M_FREEFRAG,
696 	M_FREEBLKS,
697 	M_FREEFILE,
698 	M_DIRADD,
699 	M_MKDIR,
700 	M_DIRREM,
701 	M_NEWDIRBLK,
702 	M_FREEWORK,
703 	M_FREEDEP,
704 	M_JADDREF,
705 	M_JREMREF,
706 	M_JMVREF,
707 	M_JNEWBLK,
708 	M_JFREEBLK,
709 	M_JFREEFRAG,
710 	M_JSEG,
711 	M_JSEGDEP,
712 	M_SBDEP,
713 	M_JTRUNC,
714 	M_JFSYNC,
715 	M_SENTINEL
716 };
717 
718 #define DtoM(type) (memtype[type])
719 
720 /*
721  * Names of malloc types.
722  */
723 #define TYPENAME(type)  \
724 	((unsigned)(type) <= D_LAST ? memtype[type]->ks_shortdesc : "???")
725 /*
726  * End system adaptation definitions.
727  */
728 
729 #define	DOTDOT_OFFSET	offsetof(struct dirtemplate, dotdot_ino)
730 #define	DOT_OFFSET	offsetof(struct dirtemplate, dot_ino)
731 
732 /*
733  * Internal function prototypes.
734  */
735 static	void check_clear_deps(struct mount *);
736 static	void softdep_error(char *, int);
737 static	int softdep_process_worklist(struct mount *, int);
738 static	int softdep_waitidle(struct mount *);
739 static	void drain_output(struct vnode *);
740 static	struct buf *getdirtybuf(struct buf *, struct rwlock *, int);
741 static	void clear_remove(struct mount *);
742 static	void clear_inodedeps(struct mount *);
743 static	void unlinked_inodedep(struct mount *, struct inodedep *);
744 static	void clear_unlinked_inodedep(struct inodedep *);
745 static	struct inodedep *first_unlinked_inodedep(struct ufsmount *);
746 static	int flush_pagedep_deps(struct vnode *, struct mount *,
747 	    struct diraddhd *);
748 static	int free_pagedep(struct pagedep *);
749 static	int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t);
750 static	int flush_inodedep_deps(struct vnode *, struct mount *, ino_t);
751 static	int flush_deplist(struct allocdirectlst *, int, int *);
752 static	int sync_cgs(struct mount *, int);
753 static	int handle_written_filepage(struct pagedep *, struct buf *);
754 static	int handle_written_sbdep(struct sbdep *, struct buf *);
755 static	void initiate_write_sbdep(struct sbdep *);
756 static	void diradd_inode_written(struct diradd *, struct inodedep *);
757 static	int handle_written_indirdep(struct indirdep *, struct buf *,
758 	    struct buf**);
759 static	int handle_written_inodeblock(struct inodedep *, struct buf *);
760 static	int jnewblk_rollforward(struct jnewblk *, struct fs *, struct cg *,
761 	    uint8_t *);
762 static	int handle_written_bmsafemap(struct bmsafemap *, struct buf *);
763 static	void handle_written_jaddref(struct jaddref *);
764 static	void handle_written_jremref(struct jremref *);
765 static	void handle_written_jseg(struct jseg *, struct buf *);
766 static	void handle_written_jnewblk(struct jnewblk *);
767 static	void handle_written_jblkdep(struct jblkdep *);
768 static	void handle_written_jfreefrag(struct jfreefrag *);
769 static	void complete_jseg(struct jseg *);
770 static	void complete_jsegs(struct jseg *);
771 static	void jseg_write(struct ufsmount *ump, struct jseg *, uint8_t *);
772 static	void jaddref_write(struct jaddref *, struct jseg *, uint8_t *);
773 static	void jremref_write(struct jremref *, struct jseg *, uint8_t *);
774 static	void jmvref_write(struct jmvref *, struct jseg *, uint8_t *);
775 static	void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *);
776 static	void jfsync_write(struct jfsync *, struct jseg *, uint8_t *data);
777 static	void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *);
778 static	void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *);
779 static	void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *);
780 static	inline void inoref_write(struct inoref *, struct jseg *,
781 	    struct jrefrec *);
782 static	void handle_allocdirect_partdone(struct allocdirect *,
783 	    struct workhead *);
784 static	struct jnewblk *cancel_newblk(struct newblk *, struct worklist *,
785 	    struct workhead *);
786 static	void indirdep_complete(struct indirdep *);
787 static	int indirblk_lookup(struct mount *, ufs2_daddr_t);
788 static	void indirblk_insert(struct freework *);
789 static	void indirblk_remove(struct freework *);
790 static	void handle_allocindir_partdone(struct allocindir *);
791 static	void initiate_write_filepage(struct pagedep *, struct buf *);
792 static	void initiate_write_indirdep(struct indirdep*, struct buf *);
793 static	void handle_written_mkdir(struct mkdir *, int);
794 static	int jnewblk_rollback(struct jnewblk *, struct fs *, struct cg *,
795 	    uint8_t *);
796 static	void initiate_write_bmsafemap(struct bmsafemap *, struct buf *);
797 static	void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *);
798 static	void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *);
799 static	void handle_workitem_freefile(struct freefile *);
800 static	int handle_workitem_remove(struct dirrem *, int);
801 static	struct dirrem *newdirrem(struct buf *, struct inode *,
802 	    struct inode *, int, struct dirrem **);
803 static	struct indirdep *indirdep_lookup(struct mount *, struct inode *,
804 	    struct buf *);
805 static	void cancel_indirdep(struct indirdep *, struct buf *,
806 	    struct freeblks *);
807 static	void free_indirdep(struct indirdep *);
808 static	void free_diradd(struct diradd *, struct workhead *);
809 static	void merge_diradd(struct inodedep *, struct diradd *);
810 static	void complete_diradd(struct diradd *);
811 static	struct diradd *diradd_lookup(struct pagedep *, int);
812 static	struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *,
813 	    struct jremref *);
814 static	struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *,
815 	    struct jremref *);
816 static	void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *,
817 	    struct jremref *, struct jremref *);
818 static	void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *,
819 	    struct jremref *);
820 static	void cancel_allocindir(struct allocindir *, struct buf *bp,
821 	    struct freeblks *, int);
822 static	int setup_trunc_indir(struct freeblks *, struct inode *,
823 	    ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t);
824 static	void complete_trunc_indir(struct freework *);
825 static	void trunc_indirdep(struct indirdep *, struct freeblks *, struct buf *,
826 	    int);
827 static	void complete_mkdir(struct mkdir *);
828 static	void free_newdirblk(struct newdirblk *);
829 static	void free_jremref(struct jremref *);
830 static	void free_jaddref(struct jaddref *);
831 static	void free_jsegdep(struct jsegdep *);
832 static	void free_jsegs(struct jblocks *);
833 static	void rele_jseg(struct jseg *);
834 static	void free_jseg(struct jseg *, struct jblocks *);
835 static	void free_jnewblk(struct jnewblk *);
836 static	void free_jblkdep(struct jblkdep *);
837 static	void free_jfreefrag(struct jfreefrag *);
838 static	void free_freedep(struct freedep *);
839 static	void journal_jremref(struct dirrem *, struct jremref *,
840 	    struct inodedep *);
841 static	void cancel_jnewblk(struct jnewblk *, struct workhead *);
842 static	int cancel_jaddref(struct jaddref *, struct inodedep *,
843 	    struct workhead *);
844 static	void cancel_jfreefrag(struct jfreefrag *);
845 static	inline void setup_freedirect(struct freeblks *, struct inode *,
846 	    int, int);
847 static	inline void setup_freeext(struct freeblks *, struct inode *, int, int);
848 static	inline void setup_freeindir(struct freeblks *, struct inode *, int,
849 	    ufs_lbn_t, int);
850 static	inline struct freeblks *newfreeblks(struct mount *, struct inode *);
851 static	void freeblks_free(struct ufsmount *, struct freeblks *, int);
852 static	void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t);
853 static	ufs2_daddr_t blkcount(struct fs *, ufs2_daddr_t, off_t);
854 static	int trunc_check_buf(struct buf *, int *, ufs_lbn_t, int, int);
855 static	void trunc_dependencies(struct inode *, struct freeblks *, ufs_lbn_t,
856 	    int, int);
857 static	void trunc_pages(struct inode *, off_t, ufs2_daddr_t, int);
858 static 	int cancel_pagedep(struct pagedep *, struct freeblks *, int);
859 static	int deallocate_dependencies(struct buf *, struct freeblks *, int);
860 static	void newblk_freefrag(struct newblk*);
861 static	void free_newblk(struct newblk *);
862 static	void cancel_allocdirect(struct allocdirectlst *,
863 	    struct allocdirect *, struct freeblks *);
864 static	int check_inode_unwritten(struct inodedep *);
865 static	int free_inodedep(struct inodedep *);
866 static	void freework_freeblock(struct freework *);
867 static	void freework_enqueue(struct freework *);
868 static	int handle_workitem_freeblocks(struct freeblks *, int);
869 static	int handle_complete_freeblocks(struct freeblks *, int);
870 static	void handle_workitem_indirblk(struct freework *);
871 static	void handle_written_freework(struct freework *);
872 static	void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *);
873 static	struct worklist *jnewblk_merge(struct worklist *, struct worklist *,
874 	    struct workhead *);
875 static	struct freefrag *setup_allocindir_phase2(struct buf *, struct inode *,
876 	    struct inodedep *, struct allocindir *, ufs_lbn_t);
877 static	struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t,
878 	    ufs2_daddr_t, ufs_lbn_t);
879 static	void handle_workitem_freefrag(struct freefrag *);
880 static	struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long,
881 	    ufs_lbn_t);
882 static	void allocdirect_merge(struct allocdirectlst *,
883 	    struct allocdirect *, struct allocdirect *);
884 static	struct freefrag *allocindir_merge(struct allocindir *,
885 	    struct allocindir *);
886 static	int bmsafemap_find(struct bmsafemap_hashhead *, int,
887 	    struct bmsafemap **);
888 static	struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *,
889 	    int cg, struct bmsafemap *);
890 static	int newblk_find(struct newblk_hashhead *, ufs2_daddr_t, int,
891 	    struct newblk **);
892 static	int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **);
893 static	int inodedep_find(struct inodedep_hashhead *, ino_t,
894 	    struct inodedep **);
895 static	int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **);
896 static	int pagedep_lookup(struct mount *, struct buf *bp, ino_t, ufs_lbn_t,
897 	    int, struct pagedep **);
898 static	int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t,
899 	    struct pagedep **);
900 static	void pause_timer(void *);
901 static	int request_cleanup(struct mount *, int);
902 static	int process_worklist_item(struct mount *, int, int);
903 static	void process_removes(struct vnode *);
904 static	void process_truncates(struct vnode *);
905 static	void jwork_move(struct workhead *, struct workhead *);
906 static	void jwork_insert(struct workhead *, struct jsegdep *);
907 static	void add_to_worklist(struct worklist *, int);
908 static	void wake_worklist(struct worklist *);
909 static	void wait_worklist(struct worklist *, char *);
910 static	void remove_from_worklist(struct worklist *);
911 static	void softdep_flush(void *);
912 static	void softdep_flushjournal(struct mount *);
913 static	int softdep_speedup(struct ufsmount *);
914 static	void worklist_speedup(struct mount *);
915 static	int journal_mount(struct mount *, struct fs *, struct ucred *);
916 static	void journal_unmount(struct ufsmount *);
917 static	int journal_space(struct ufsmount *, int);
918 static	void journal_suspend(struct ufsmount *);
919 static	int journal_unsuspend(struct ufsmount *ump);
920 static	void softdep_prelink(struct vnode *, struct vnode *);
921 static	void add_to_journal(struct worklist *);
922 static	void remove_from_journal(struct worklist *);
923 static	void softdep_process_journal(struct mount *, struct worklist *, int);
924 static	struct jremref *newjremref(struct dirrem *, struct inode *,
925 	    struct inode *ip, off_t, nlink_t);
926 static	struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t,
927 	    uint16_t);
928 static	inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t,
929 	    uint16_t);
930 static	inline struct jsegdep *inoref_jseg(struct inoref *);
931 static	struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t);
932 static	struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t,
933 	    ufs2_daddr_t, int);
934 static	void adjust_newfreework(struct freeblks *, int);
935 static	struct jtrunc *newjtrunc(struct freeblks *, off_t, int);
936 static	void move_newblock_dep(struct jaddref *, struct inodedep *);
937 static	void cancel_jfreeblk(struct freeblks *, ufs2_daddr_t);
938 static	struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *,
939 	    ufs2_daddr_t, long, ufs_lbn_t);
940 static	struct freework *newfreework(struct ufsmount *, struct freeblks *,
941 	    struct freework *, ufs_lbn_t, ufs2_daddr_t, int, int, int);
942 static	int jwait(struct worklist *, int);
943 static	struct inodedep *inodedep_lookup_ip(struct inode *);
944 static	int bmsafemap_backgroundwrite(struct bmsafemap *, struct buf *);
945 static	struct freefile *handle_bufwait(struct inodedep *, struct workhead *);
946 static	void handle_jwork(struct workhead *);
947 static	struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *,
948 	    struct mkdir **);
949 static	struct jblocks *jblocks_create(void);
950 static	ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *);
951 static	void jblocks_free(struct jblocks *, struct mount *, int);
952 static	void jblocks_destroy(struct jblocks *);
953 static	void jblocks_add(struct jblocks *, ufs2_daddr_t, int);
954 
955 /*
956  * Exported softdep operations.
957  */
958 static	void softdep_disk_io_initiation(struct buf *);
959 static	void softdep_disk_write_complete(struct buf *);
960 static	void softdep_deallocate_dependencies(struct buf *);
961 static	int softdep_count_dependencies(struct buf *bp, int);
962 
963 /*
964  * Global lock over all of soft updates.
965  */
966 static struct mtx lk;
967 MTX_SYSINIT(softdep_lock, &lk, "Global Softdep Lock", MTX_DEF);
968 
969 #define ACQUIRE_GBLLOCK(lk)	mtx_lock(lk)
970 #define FREE_GBLLOCK(lk)	mtx_unlock(lk)
971 #define GBLLOCK_OWNED(lk)	mtx_assert((lk), MA_OWNED)
972 
973 /*
974  * Per-filesystem soft-updates locking.
975  */
976 #define LOCK_PTR(ump)		(&(ump)->um_softdep->sd_fslock)
977 #define TRY_ACQUIRE_LOCK(ump)	rw_try_wlock(&(ump)->um_softdep->sd_fslock)
978 #define ACQUIRE_LOCK(ump)	rw_wlock(&(ump)->um_softdep->sd_fslock)
979 #define FREE_LOCK(ump)		rw_wunlock(&(ump)->um_softdep->sd_fslock)
980 #define LOCK_OWNED(ump)		rw_assert(&(ump)->um_softdep->sd_fslock, \
981 				    RA_WLOCKED)
982 
983 #define	BUF_AREC(bp)		lockallowrecurse(&(bp)->b_lock)
984 #define	BUF_NOREC(bp)		lockdisablerecurse(&(bp)->b_lock)
985 
986 /*
987  * Worklist queue management.
988  * These routines require that the lock be held.
989  */
990 #ifndef /* NOT */ DEBUG
991 #define WORKLIST_INSERT(head, item) do {	\
992 	(item)->wk_state |= ONWORKLIST;		\
993 	LIST_INSERT_HEAD(head, item, wk_list);	\
994 } while (0)
995 #define WORKLIST_REMOVE(item) do {		\
996 	(item)->wk_state &= ~ONWORKLIST;	\
997 	LIST_REMOVE(item, wk_list);		\
998 } while (0)
999 #define WORKLIST_INSERT_UNLOCKED	WORKLIST_INSERT
1000 #define WORKLIST_REMOVE_UNLOCKED	WORKLIST_REMOVE
1001 
1002 #else /* DEBUG */
1003 static	void worklist_insert(struct workhead *, struct worklist *, int);
1004 static	void worklist_remove(struct worklist *, int);
1005 
1006 #define WORKLIST_INSERT(head, item) worklist_insert(head, item, 1)
1007 #define WORKLIST_INSERT_UNLOCKED(head, item) worklist_insert(head, item, 0)
1008 #define WORKLIST_REMOVE(item) worklist_remove(item, 1)
1009 #define WORKLIST_REMOVE_UNLOCKED(item) worklist_remove(item, 0)
1010 
1011 static void
1012 worklist_insert(head, item, locked)
1013 	struct workhead *head;
1014 	struct worklist *item;
1015 	int locked;
1016 {
1017 
1018 	if (locked)
1019 		LOCK_OWNED(VFSTOUFS(item->wk_mp));
1020 	if (item->wk_state & ONWORKLIST)
1021 		panic("worklist_insert: %p %s(0x%X) already on list",
1022 		    item, TYPENAME(item->wk_type), item->wk_state);
1023 	item->wk_state |= ONWORKLIST;
1024 	LIST_INSERT_HEAD(head, item, wk_list);
1025 }
1026 
1027 static void
1028 worklist_remove(item, locked)
1029 	struct worklist *item;
1030 	int locked;
1031 {
1032 
1033 	if (locked)
1034 		LOCK_OWNED(VFSTOUFS(item->wk_mp));
1035 	if ((item->wk_state & ONWORKLIST) == 0)
1036 		panic("worklist_remove: %p %s(0x%X) not on list",
1037 		    item, TYPENAME(item->wk_type), item->wk_state);
1038 	item->wk_state &= ~ONWORKLIST;
1039 	LIST_REMOVE(item, wk_list);
1040 }
1041 #endif /* DEBUG */
1042 
1043 /*
1044  * Merge two jsegdeps keeping only the oldest one as newer references
1045  * can't be discarded until after older references.
1046  */
1047 static inline struct jsegdep *
1048 jsegdep_merge(struct jsegdep *one, struct jsegdep *two)
1049 {
1050 	struct jsegdep *swp;
1051 
1052 	if (two == NULL)
1053 		return (one);
1054 
1055 	if (one->jd_seg->js_seq > two->jd_seg->js_seq) {
1056 		swp = one;
1057 		one = two;
1058 		two = swp;
1059 	}
1060 	WORKLIST_REMOVE(&two->jd_list);
1061 	free_jsegdep(two);
1062 
1063 	return (one);
1064 }
1065 
1066 /*
1067  * If two freedeps are compatible free one to reduce list size.
1068  */
1069 static inline struct freedep *
1070 freedep_merge(struct freedep *one, struct freedep *two)
1071 {
1072 	if (two == NULL)
1073 		return (one);
1074 
1075 	if (one->fd_freework == two->fd_freework) {
1076 		WORKLIST_REMOVE(&two->fd_list);
1077 		free_freedep(two);
1078 	}
1079 	return (one);
1080 }
1081 
1082 /*
1083  * Move journal work from one list to another.  Duplicate freedeps and
1084  * jsegdeps are coalesced to keep the lists as small as possible.
1085  */
1086 static void
1087 jwork_move(dst, src)
1088 	struct workhead *dst;
1089 	struct workhead *src;
1090 {
1091 	struct freedep *freedep;
1092 	struct jsegdep *jsegdep;
1093 	struct worklist *wkn;
1094 	struct worklist *wk;
1095 
1096 	KASSERT(dst != src,
1097 	    ("jwork_move: dst == src"));
1098 	freedep = NULL;
1099 	jsegdep = NULL;
1100 	LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) {
1101 		if (wk->wk_type == D_JSEGDEP)
1102 			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1103 		else if (wk->wk_type == D_FREEDEP)
1104 			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1105 	}
1106 
1107 	while ((wk = LIST_FIRST(src)) != NULL) {
1108 		WORKLIST_REMOVE(wk);
1109 		WORKLIST_INSERT(dst, wk);
1110 		if (wk->wk_type == D_JSEGDEP) {
1111 			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1112 			continue;
1113 		}
1114 		if (wk->wk_type == D_FREEDEP)
1115 			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1116 	}
1117 }
1118 
1119 static void
1120 jwork_insert(dst, jsegdep)
1121 	struct workhead *dst;
1122 	struct jsegdep *jsegdep;
1123 {
1124 	struct jsegdep *jsegdepn;
1125 	struct worklist *wk;
1126 
1127 	LIST_FOREACH(wk, dst, wk_list)
1128 		if (wk->wk_type == D_JSEGDEP)
1129 			break;
1130 	if (wk == NULL) {
1131 		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1132 		return;
1133 	}
1134 	jsegdepn = WK_JSEGDEP(wk);
1135 	if (jsegdep->jd_seg->js_seq < jsegdepn->jd_seg->js_seq) {
1136 		WORKLIST_REMOVE(wk);
1137 		free_jsegdep(jsegdepn);
1138 		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1139 	} else
1140 		free_jsegdep(jsegdep);
1141 }
1142 
1143 /*
1144  * Routines for tracking and managing workitems.
1145  */
1146 static	void workitem_free(struct worklist *, int);
1147 static	void workitem_alloc(struct worklist *, int, struct mount *);
1148 static	void workitem_reassign(struct worklist *, int);
1149 
1150 #define	WORKITEM_FREE(item, type) \
1151 	workitem_free((struct worklist *)(item), (type))
1152 #define	WORKITEM_REASSIGN(item, type) \
1153 	workitem_reassign((struct worklist *)(item), (type))
1154 
1155 static void
1156 workitem_free(item, type)
1157 	struct worklist *item;
1158 	int type;
1159 {
1160 	struct ufsmount *ump;
1161 
1162 #ifdef DEBUG
1163 	if (item->wk_state & ONWORKLIST)
1164 		panic("workitem_free: %s(0x%X) still on list",
1165 		    TYPENAME(item->wk_type), item->wk_state);
1166 	if (item->wk_type != type && type != D_NEWBLK)
1167 		panic("workitem_free: type mismatch %s != %s",
1168 		    TYPENAME(item->wk_type), TYPENAME(type));
1169 #endif
1170 	if (item->wk_state & IOWAITING)
1171 		wakeup(item);
1172 	ump = VFSTOUFS(item->wk_mp);
1173 	LOCK_OWNED(ump);
1174 	KASSERT(ump->softdep_deps > 0,
1175 	    ("workitem_free: %s: softdep_deps going negative",
1176 	    ump->um_fs->fs_fsmnt));
1177 	if (--ump->softdep_deps == 0 && ump->softdep_req)
1178 		wakeup(&ump->softdep_deps);
1179 	KASSERT(dep_current[item->wk_type] > 0,
1180 	    ("workitem_free: %s: dep_current[%s] going negative",
1181 	    ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1182 	KASSERT(ump->softdep_curdeps[item->wk_type] > 0,
1183 	    ("workitem_free: %s: softdep_curdeps[%s] going negative",
1184 	    ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1185 	atomic_subtract_long(&dep_current[item->wk_type], 1);
1186 	ump->softdep_curdeps[item->wk_type] -= 1;
1187 	free(item, DtoM(type));
1188 }
1189 
1190 static void
1191 workitem_alloc(item, type, mp)
1192 	struct worklist *item;
1193 	int type;
1194 	struct mount *mp;
1195 {
1196 	struct ufsmount *ump;
1197 
1198 	item->wk_type = type;
1199 	item->wk_mp = mp;
1200 	item->wk_state = 0;
1201 
1202 	ump = VFSTOUFS(mp);
1203 	ACQUIRE_GBLLOCK(&lk);
1204 	dep_current[type]++;
1205 	if (dep_current[type] > dep_highuse[type])
1206 		dep_highuse[type] = dep_current[type];
1207 	dep_total[type]++;
1208 	FREE_GBLLOCK(&lk);
1209 	ACQUIRE_LOCK(ump);
1210 	ump->softdep_curdeps[type] += 1;
1211 	ump->softdep_deps++;
1212 	ump->softdep_accdeps++;
1213 	FREE_LOCK(ump);
1214 }
1215 
1216 static void
1217 workitem_reassign(item, newtype)
1218 	struct worklist *item;
1219 	int newtype;
1220 {
1221 	struct ufsmount *ump;
1222 
1223 	ump = VFSTOUFS(item->wk_mp);
1224 	LOCK_OWNED(ump);
1225 	KASSERT(ump->softdep_curdeps[item->wk_type] > 0,
1226 	    ("workitem_reassign: %s: softdep_curdeps[%s] going negative",
1227 	    VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1228 	ump->softdep_curdeps[item->wk_type] -= 1;
1229 	ump->softdep_curdeps[newtype] += 1;
1230 	KASSERT(dep_current[item->wk_type] > 0,
1231 	    ("workitem_reassign: %s: dep_current[%s] going negative",
1232 	    VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1233 	ACQUIRE_GBLLOCK(&lk);
1234 	dep_current[newtype]++;
1235 	dep_current[item->wk_type]--;
1236 	if (dep_current[newtype] > dep_highuse[newtype])
1237 		dep_highuse[newtype] = dep_current[newtype];
1238 	dep_total[newtype]++;
1239 	FREE_GBLLOCK(&lk);
1240 	item->wk_type = newtype;
1241 }
1242 
1243 /*
1244  * Workitem queue management
1245  */
1246 static int max_softdeps;	/* maximum number of structs before slowdown */
1247 static int tickdelay = 2;	/* number of ticks to pause during slowdown */
1248 static int proc_waiting;	/* tracks whether we have a timeout posted */
1249 static int *stat_countp;	/* statistic to count in proc_waiting timeout */
1250 static struct callout softdep_callout;
1251 static int req_clear_inodedeps;	/* syncer process flush some inodedeps */
1252 static int req_clear_remove;	/* syncer process flush some freeblks */
1253 static int softdep_flushcache = 0; /* Should we do BIO_FLUSH? */
1254 
1255 /*
1256  * runtime statistics
1257  */
1258 static int stat_flush_threads;	/* number of softdep flushing threads */
1259 static int stat_worklist_push;	/* number of worklist cleanups */
1260 static int stat_blk_limit_push;	/* number of times block limit neared */
1261 static int stat_ino_limit_push;	/* number of times inode limit neared */
1262 static int stat_blk_limit_hit;	/* number of times block slowdown imposed */
1263 static int stat_ino_limit_hit;	/* number of times inode slowdown imposed */
1264 static int stat_sync_limit_hit;	/* number of synchronous slowdowns imposed */
1265 static int stat_indir_blk_ptrs;	/* bufs redirtied as indir ptrs not written */
1266 static int stat_inode_bitmap;	/* bufs redirtied as inode bitmap not written */
1267 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
1268 static int stat_dir_entry;	/* bufs redirtied as dir entry cannot write */
1269 static int stat_jaddref;	/* bufs redirtied as ino bitmap can not write */
1270 static int stat_jnewblk;	/* bufs redirtied as blk bitmap can not write */
1271 static int stat_journal_min;	/* Times hit journal min threshold */
1272 static int stat_journal_low;	/* Times hit journal low threshold */
1273 static int stat_journal_wait;	/* Times blocked in jwait(). */
1274 static int stat_jwait_filepage;	/* Times blocked in jwait() for filepage. */
1275 static int stat_jwait_freeblks;	/* Times blocked in jwait() for freeblks. */
1276 static int stat_jwait_inode;	/* Times blocked in jwait() for inodes. */
1277 static int stat_jwait_newblk;	/* Times blocked in jwait() for newblks. */
1278 static int stat_cleanup_high_delay; /* Maximum cleanup delay (in ticks) */
1279 static int stat_cleanup_blkrequests; /* Number of block cleanup requests */
1280 static int stat_cleanup_inorequests; /* Number of inode cleanup requests */
1281 static int stat_cleanup_retries; /* Number of cleanups that needed to flush */
1282 static int stat_cleanup_failures; /* Number of cleanup requests that failed */
1283 static int stat_emptyjblocks; /* Number of potentially empty journal blocks */
1284 
1285 SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW,
1286     &max_softdeps, 0, "");
1287 SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW,
1288     &tickdelay, 0, "");
1289 SYSCTL_INT(_debug_softdep, OID_AUTO, flush_threads, CTLFLAG_RD,
1290     &stat_flush_threads, 0, "");
1291 SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push, CTLFLAG_RW,
1292     &stat_worklist_push, 0,"");
1293 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push, CTLFLAG_RW,
1294     &stat_blk_limit_push, 0,"");
1295 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push, CTLFLAG_RW,
1296     &stat_ino_limit_push, 0,"");
1297 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit, CTLFLAG_RW,
1298     &stat_blk_limit_hit, 0, "");
1299 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit, CTLFLAG_RW,
1300     &stat_ino_limit_hit, 0, "");
1301 SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit, CTLFLAG_RW,
1302     &stat_sync_limit_hit, 0, "");
1303 SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW,
1304     &stat_indir_blk_ptrs, 0, "");
1305 SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap, CTLFLAG_RW,
1306     &stat_inode_bitmap, 0, "");
1307 SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW,
1308     &stat_direct_blk_ptrs, 0, "");
1309 SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry, CTLFLAG_RW,
1310     &stat_dir_entry, 0, "");
1311 SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback, CTLFLAG_RW,
1312     &stat_jaddref, 0, "");
1313 SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback, CTLFLAG_RW,
1314     &stat_jnewblk, 0, "");
1315 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low, CTLFLAG_RW,
1316     &stat_journal_low, 0, "");
1317 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min, CTLFLAG_RW,
1318     &stat_journal_min, 0, "");
1319 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait, CTLFLAG_RW,
1320     &stat_journal_wait, 0, "");
1321 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage, CTLFLAG_RW,
1322     &stat_jwait_filepage, 0, "");
1323 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks, CTLFLAG_RW,
1324     &stat_jwait_freeblks, 0, "");
1325 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode, CTLFLAG_RW,
1326     &stat_jwait_inode, 0, "");
1327 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk, CTLFLAG_RW,
1328     &stat_jwait_newblk, 0, "");
1329 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_blkrequests, CTLFLAG_RW,
1330     &stat_cleanup_blkrequests, 0, "");
1331 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_inorequests, CTLFLAG_RW,
1332     &stat_cleanup_inorequests, 0, "");
1333 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_high_delay, CTLFLAG_RW,
1334     &stat_cleanup_high_delay, 0, "");
1335 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_retries, CTLFLAG_RW,
1336     &stat_cleanup_retries, 0, "");
1337 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_failures, CTLFLAG_RW,
1338     &stat_cleanup_failures, 0, "");
1339 SYSCTL_INT(_debug_softdep, OID_AUTO, flushcache, CTLFLAG_RW,
1340     &softdep_flushcache, 0, "");
1341 SYSCTL_INT(_debug_softdep, OID_AUTO, emptyjblocks, CTLFLAG_RD,
1342     &stat_emptyjblocks, 0, "");
1343 
1344 SYSCTL_DECL(_vfs_ffs);
1345 
1346 /* Whether to recompute the summary at mount time */
1347 static int compute_summary_at_mount = 0;
1348 SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW,
1349 	   &compute_summary_at_mount, 0, "Recompute summary at mount");
1350 static int print_threads = 0;
1351 SYSCTL_INT(_debug_softdep, OID_AUTO, print_threads, CTLFLAG_RW,
1352     &print_threads, 0, "Notify flusher thread start/stop");
1353 
1354 /* List of all filesystems mounted with soft updates */
1355 static TAILQ_HEAD(, mount_softdeps) softdepmounts;
1356 
1357 /*
1358  * This function cleans the worklist for a filesystem.
1359  * Each filesystem running with soft dependencies gets its own
1360  * thread to run in this function. The thread is started up in
1361  * softdep_mount and shutdown in softdep_unmount. They show up
1362  * as part of the kernel "bufdaemon" process whose process
1363  * entry is available in bufdaemonproc.
1364  */
1365 static int searchfailed;
1366 extern struct proc *bufdaemonproc;
1367 static void
1368 softdep_flush(addr)
1369 	void *addr;
1370 {
1371 	struct mount *mp;
1372 	struct thread *td;
1373 	struct ufsmount *ump;
1374 
1375 	td = curthread;
1376 	td->td_pflags |= TDP_NORUNNINGBUF;
1377 	mp = (struct mount *)addr;
1378 	ump = VFSTOUFS(mp);
1379 	atomic_add_int(&stat_flush_threads, 1);
1380 	if (print_threads) {
1381 		if (stat_flush_threads == 1)
1382 			printf("Running %s at pid %d\n", bufdaemonproc->p_comm,
1383 			    bufdaemonproc->p_pid);
1384 		printf("Start thread %s\n", td->td_name);
1385 	}
1386 	for (;;) {
1387 		while (softdep_process_worklist(mp, 0) > 0 ||
1388 		    (MOUNTEDSUJ(mp) &&
1389 		    VFSTOUFS(mp)->softdep_jblocks->jb_suspended))
1390 			kthread_suspend_check();
1391 		ACQUIRE_LOCK(ump);
1392 		if ((ump->softdep_flags & FLUSH_CLEANUP) == 0)
1393 			msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM,
1394 			    "sdflush", hz / 2);
1395 		ump->softdep_flags &= ~FLUSH_CLEANUP;
1396 		/*
1397 		 * Check to see if we are done and need to exit.
1398 		 */
1399 		if ((ump->softdep_flags & FLUSH_EXIT) == 0) {
1400 			FREE_LOCK(ump);
1401 			continue;
1402 		}
1403 		ump->softdep_flags &= ~FLUSH_EXIT;
1404 		FREE_LOCK(ump);
1405 		wakeup(&ump->softdep_flags);
1406 		if (print_threads)
1407 			printf("Stop thread %s: searchfailed %d, did cleanups %d\n", td->td_name, searchfailed, ump->um_softdep->sd_cleanups);
1408 		atomic_subtract_int(&stat_flush_threads, 1);
1409 		kthread_exit();
1410 		panic("kthread_exit failed\n");
1411 	}
1412 }
1413 
1414 static void
1415 worklist_speedup(mp)
1416 	struct mount *mp;
1417 {
1418 	struct ufsmount *ump;
1419 
1420 	ump = VFSTOUFS(mp);
1421 	LOCK_OWNED(ump);
1422 	if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) {
1423 		ump->softdep_flags |= FLUSH_CLEANUP;
1424 		if (ump->softdep_flushtd->td_wchan == &ump->softdep_flushtd)
1425 			wakeup(&ump->softdep_flushtd);
1426 	}
1427 }
1428 
1429 static int
1430 softdep_speedup(ump)
1431 	struct ufsmount *ump;
1432 {
1433 	struct ufsmount *altump;
1434 	struct mount_softdeps *sdp;
1435 
1436 	LOCK_OWNED(ump);
1437 	worklist_speedup(ump->um_mountp);
1438 	bd_speedup();
1439 	/*
1440 	 * If we have global shortages, then we need other
1441 	 * filesystems to help with the cleanup. Here we wakeup a
1442 	 * flusher thread for a filesystem that is over its fair
1443 	 * share of resources.
1444 	 */
1445 	if (req_clear_inodedeps || req_clear_remove) {
1446 		ACQUIRE_GBLLOCK(&lk);
1447 		TAILQ_FOREACH(sdp, &softdepmounts, sd_next) {
1448 			if ((altump = sdp->sd_ump) == ump)
1449 				continue;
1450 			if (((req_clear_inodedeps &&
1451 			    altump->softdep_curdeps[D_INODEDEP] >
1452 			    max_softdeps / stat_flush_threads) ||
1453 			    (req_clear_remove &&
1454 			    altump->softdep_curdeps[D_DIRREM] >
1455 			    (max_softdeps / 2) / stat_flush_threads)) &&
1456 			    TRY_ACQUIRE_LOCK(altump))
1457 				break;
1458 		}
1459 		if (sdp == NULL) {
1460 			searchfailed++;
1461 			FREE_GBLLOCK(&lk);
1462 		} else {
1463 			/*
1464 			 * Move to the end of the list so we pick a
1465 			 * different one on out next try.
1466 			 */
1467 			TAILQ_REMOVE(&softdepmounts, sdp, sd_next);
1468 			TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next);
1469 			FREE_GBLLOCK(&lk);
1470 			if ((altump->softdep_flags &
1471 			    (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) {
1472 				altump->softdep_flags |= FLUSH_CLEANUP;
1473 				altump->um_softdep->sd_cleanups++;
1474 				if (altump->softdep_flushtd->td_wchan ==
1475 				    &altump->softdep_flushtd) {
1476 					wakeup(&altump->softdep_flushtd);
1477 				}
1478 			}
1479 			FREE_LOCK(altump);
1480 		}
1481 	}
1482 	return (speedup_syncer());
1483 }
1484 
1485 /*
1486  * Add an item to the end of the work queue.
1487  * This routine requires that the lock be held.
1488  * This is the only routine that adds items to the list.
1489  * The following routine is the only one that removes items
1490  * and does so in order from first to last.
1491  */
1492 
1493 #define	WK_HEAD		0x0001	/* Add to HEAD. */
1494 #define	WK_NODELAY	0x0002	/* Process immediately. */
1495 
1496 static void
1497 add_to_worklist(wk, flags)
1498 	struct worklist *wk;
1499 	int flags;
1500 {
1501 	struct ufsmount *ump;
1502 
1503 	ump = VFSTOUFS(wk->wk_mp);
1504 	LOCK_OWNED(ump);
1505 	if (wk->wk_state & ONWORKLIST)
1506 		panic("add_to_worklist: %s(0x%X) already on list",
1507 		    TYPENAME(wk->wk_type), wk->wk_state);
1508 	wk->wk_state |= ONWORKLIST;
1509 	if (ump->softdep_on_worklist == 0) {
1510 		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1511 		ump->softdep_worklist_tail = wk;
1512 	} else if (flags & WK_HEAD) {
1513 		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1514 	} else {
1515 		LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list);
1516 		ump->softdep_worklist_tail = wk;
1517 	}
1518 	ump->softdep_on_worklist += 1;
1519 	if (flags & WK_NODELAY)
1520 		worklist_speedup(wk->wk_mp);
1521 }
1522 
1523 /*
1524  * Remove the item to be processed. If we are removing the last
1525  * item on the list, we need to recalculate the tail pointer.
1526  */
1527 static void
1528 remove_from_worklist(wk)
1529 	struct worklist *wk;
1530 {
1531 	struct ufsmount *ump;
1532 
1533 	ump = VFSTOUFS(wk->wk_mp);
1534 	WORKLIST_REMOVE(wk);
1535 	if (ump->softdep_worklist_tail == wk)
1536 		ump->softdep_worklist_tail =
1537 		    (struct worklist *)wk->wk_list.le_prev;
1538 	ump->softdep_on_worklist -= 1;
1539 }
1540 
1541 static void
1542 wake_worklist(wk)
1543 	struct worklist *wk;
1544 {
1545 	if (wk->wk_state & IOWAITING) {
1546 		wk->wk_state &= ~IOWAITING;
1547 		wakeup(wk);
1548 	}
1549 }
1550 
1551 static void
1552 wait_worklist(wk, wmesg)
1553 	struct worklist *wk;
1554 	char *wmesg;
1555 {
1556 	struct ufsmount *ump;
1557 
1558 	ump = VFSTOUFS(wk->wk_mp);
1559 	wk->wk_state |= IOWAITING;
1560 	msleep(wk, LOCK_PTR(ump), PVM, wmesg, 0);
1561 }
1562 
1563 /*
1564  * Process that runs once per second to handle items in the background queue.
1565  *
1566  * Note that we ensure that everything is done in the order in which they
1567  * appear in the queue. The code below depends on this property to ensure
1568  * that blocks of a file are freed before the inode itself is freed. This
1569  * ordering ensures that no new <vfsid, inum, lbn> triples will be generated
1570  * until all the old ones have been purged from the dependency lists.
1571  */
1572 static int
1573 softdep_process_worklist(mp, full)
1574 	struct mount *mp;
1575 	int full;
1576 {
1577 	int cnt, matchcnt;
1578 	struct ufsmount *ump;
1579 	long starttime;
1580 
1581 	KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp"));
1582 	if (MOUNTEDSOFTDEP(mp) == 0)
1583 		return (0);
1584 	matchcnt = 0;
1585 	ump = VFSTOUFS(mp);
1586 	ACQUIRE_LOCK(ump);
1587 	starttime = time_second;
1588 	softdep_process_journal(mp, NULL, full ? MNT_WAIT : 0);
1589 	check_clear_deps(mp);
1590 	while (ump->softdep_on_worklist > 0) {
1591 		if ((cnt = process_worklist_item(mp, 10, LK_NOWAIT)) == 0)
1592 			break;
1593 		else
1594 			matchcnt += cnt;
1595 		check_clear_deps(mp);
1596 		/*
1597 		 * We do not generally want to stop for buffer space, but if
1598 		 * we are really being a buffer hog, we will stop and wait.
1599 		 */
1600 		if (should_yield()) {
1601 			FREE_LOCK(ump);
1602 			kern_yield(PRI_USER);
1603 			bwillwrite();
1604 			ACQUIRE_LOCK(ump);
1605 		}
1606 		/*
1607 		 * Never allow processing to run for more than one
1608 		 * second. This gives the syncer thread the opportunity
1609 		 * to pause if appropriate.
1610 		 */
1611 		if (!full && starttime != time_second)
1612 			break;
1613 	}
1614 	if (full == 0)
1615 		journal_unsuspend(ump);
1616 	FREE_LOCK(ump);
1617 	return (matchcnt);
1618 }
1619 
1620 /*
1621  * Process all removes associated with a vnode if we are running out of
1622  * journal space.  Any other process which attempts to flush these will
1623  * be unable as we have the vnodes locked.
1624  */
1625 static void
1626 process_removes(vp)
1627 	struct vnode *vp;
1628 {
1629 	struct inodedep *inodedep;
1630 	struct dirrem *dirrem;
1631 	struct ufsmount *ump;
1632 	struct mount *mp;
1633 	ino_t inum;
1634 
1635 	mp = vp->v_mount;
1636 	ump = VFSTOUFS(mp);
1637 	LOCK_OWNED(ump);
1638 	inum = VTOI(vp)->i_number;
1639 	for (;;) {
1640 top:
1641 		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1642 			return;
1643 		LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext) {
1644 			/*
1645 			 * If another thread is trying to lock this vnode
1646 			 * it will fail but we must wait for it to do so
1647 			 * before we can proceed.
1648 			 */
1649 			if (dirrem->dm_state & INPROGRESS) {
1650 				wait_worklist(&dirrem->dm_list, "pwrwait");
1651 				goto top;
1652 			}
1653 			if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) ==
1654 			    (COMPLETE | ONWORKLIST))
1655 				break;
1656 		}
1657 		if (dirrem == NULL)
1658 			return;
1659 		remove_from_worklist(&dirrem->dm_list);
1660 		FREE_LOCK(ump);
1661 		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1662 			panic("process_removes: suspended filesystem");
1663 		handle_workitem_remove(dirrem, 0);
1664 		vn_finished_secondary_write(mp);
1665 		ACQUIRE_LOCK(ump);
1666 	}
1667 }
1668 
1669 /*
1670  * Process all truncations associated with a vnode if we are running out
1671  * of journal space.  This is called when the vnode lock is already held
1672  * and no other process can clear the truncation.  This function returns
1673  * a value greater than zero if it did any work.
1674  */
1675 static void
1676 process_truncates(vp)
1677 	struct vnode *vp;
1678 {
1679 	struct inodedep *inodedep;
1680 	struct freeblks *freeblks;
1681 	struct ufsmount *ump;
1682 	struct mount *mp;
1683 	ino_t inum;
1684 	int cgwait;
1685 
1686 	mp = vp->v_mount;
1687 	ump = VFSTOUFS(mp);
1688 	LOCK_OWNED(ump);
1689 	inum = VTOI(vp)->i_number;
1690 	for (;;) {
1691 		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1692 			return;
1693 		cgwait = 0;
1694 		TAILQ_FOREACH(freeblks, &inodedep->id_freeblklst, fb_next) {
1695 			/* Journal entries not yet written.  */
1696 			if (!LIST_EMPTY(&freeblks->fb_jblkdephd)) {
1697 				jwait(&LIST_FIRST(
1698 				    &freeblks->fb_jblkdephd)->jb_list,
1699 				    MNT_WAIT);
1700 				break;
1701 			}
1702 			/* Another thread is executing this item. */
1703 			if (freeblks->fb_state & INPROGRESS) {
1704 				wait_worklist(&freeblks->fb_list, "ptrwait");
1705 				break;
1706 			}
1707 			/* Freeblks is waiting on a inode write. */
1708 			if ((freeblks->fb_state & COMPLETE) == 0) {
1709 				FREE_LOCK(ump);
1710 				ffs_update(vp, 1);
1711 				ACQUIRE_LOCK(ump);
1712 				break;
1713 			}
1714 			if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST)) ==
1715 			    (ALLCOMPLETE | ONWORKLIST)) {
1716 				remove_from_worklist(&freeblks->fb_list);
1717 				freeblks->fb_state |= INPROGRESS;
1718 				FREE_LOCK(ump);
1719 				if (vn_start_secondary_write(NULL, &mp,
1720 				    V_NOWAIT))
1721 					panic("process_truncates: "
1722 					    "suspended filesystem");
1723 				handle_workitem_freeblocks(freeblks, 0);
1724 				vn_finished_secondary_write(mp);
1725 				ACQUIRE_LOCK(ump);
1726 				break;
1727 			}
1728 			if (freeblks->fb_cgwait)
1729 				cgwait++;
1730 		}
1731 		if (cgwait) {
1732 			FREE_LOCK(ump);
1733 			sync_cgs(mp, MNT_WAIT);
1734 			ffs_sync_snap(mp, MNT_WAIT);
1735 			ACQUIRE_LOCK(ump);
1736 			continue;
1737 		}
1738 		if (freeblks == NULL)
1739 			break;
1740 	}
1741 	return;
1742 }
1743 
1744 /*
1745  * Process one item on the worklist.
1746  */
1747 static int
1748 process_worklist_item(mp, target, flags)
1749 	struct mount *mp;
1750 	int target;
1751 	int flags;
1752 {
1753 	struct worklist sentinel;
1754 	struct worklist *wk;
1755 	struct ufsmount *ump;
1756 	int matchcnt;
1757 	int error;
1758 
1759 	KASSERT(mp != NULL, ("process_worklist_item: NULL mp"));
1760 	/*
1761 	 * If we are being called because of a process doing a
1762 	 * copy-on-write, then it is not safe to write as we may
1763 	 * recurse into the copy-on-write routine.
1764 	 */
1765 	if (curthread->td_pflags & TDP_COWINPROGRESS)
1766 		return (-1);
1767 	PHOLD(curproc);	/* Don't let the stack go away. */
1768 	ump = VFSTOUFS(mp);
1769 	LOCK_OWNED(ump);
1770 	matchcnt = 0;
1771 	sentinel.wk_mp = NULL;
1772 	sentinel.wk_type = D_SENTINEL;
1773 	LIST_INSERT_HEAD(&ump->softdep_workitem_pending, &sentinel, wk_list);
1774 	for (wk = LIST_NEXT(&sentinel, wk_list); wk != NULL;
1775 	    wk = LIST_NEXT(&sentinel, wk_list)) {
1776 		if (wk->wk_type == D_SENTINEL) {
1777 			LIST_REMOVE(&sentinel, wk_list);
1778 			LIST_INSERT_AFTER(wk, &sentinel, wk_list);
1779 			continue;
1780 		}
1781 		if (wk->wk_state & INPROGRESS)
1782 			panic("process_worklist_item: %p already in progress.",
1783 			    wk);
1784 		wk->wk_state |= INPROGRESS;
1785 		remove_from_worklist(wk);
1786 		FREE_LOCK(ump);
1787 		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1788 			panic("process_worklist_item: suspended filesystem");
1789 		switch (wk->wk_type) {
1790 		case D_DIRREM:
1791 			/* removal of a directory entry */
1792 			error = handle_workitem_remove(WK_DIRREM(wk), flags);
1793 			break;
1794 
1795 		case D_FREEBLKS:
1796 			/* releasing blocks and/or fragments from a file */
1797 			error = handle_workitem_freeblocks(WK_FREEBLKS(wk),
1798 			    flags);
1799 			break;
1800 
1801 		case D_FREEFRAG:
1802 			/* releasing a fragment when replaced as a file grows */
1803 			handle_workitem_freefrag(WK_FREEFRAG(wk));
1804 			error = 0;
1805 			break;
1806 
1807 		case D_FREEFILE:
1808 			/* releasing an inode when its link count drops to 0 */
1809 			handle_workitem_freefile(WK_FREEFILE(wk));
1810 			error = 0;
1811 			break;
1812 
1813 		default:
1814 			panic("%s_process_worklist: Unknown type %s",
1815 			    "softdep", TYPENAME(wk->wk_type));
1816 			/* NOTREACHED */
1817 		}
1818 		vn_finished_secondary_write(mp);
1819 		ACQUIRE_LOCK(ump);
1820 		if (error == 0) {
1821 			if (++matchcnt == target)
1822 				break;
1823 			continue;
1824 		}
1825 		/*
1826 		 * We have to retry the worklist item later.  Wake up any
1827 		 * waiters who may be able to complete it immediately and
1828 		 * add the item back to the head so we don't try to execute
1829 		 * it again.
1830 		 */
1831 		wk->wk_state &= ~INPROGRESS;
1832 		wake_worklist(wk);
1833 		add_to_worklist(wk, WK_HEAD);
1834 	}
1835 	LIST_REMOVE(&sentinel, wk_list);
1836 	/* Sentinal could've become the tail from remove_from_worklist. */
1837 	if (ump->softdep_worklist_tail == &sentinel)
1838 		ump->softdep_worklist_tail =
1839 		    (struct worklist *)sentinel.wk_list.le_prev;
1840 	PRELE(curproc);
1841 	return (matchcnt);
1842 }
1843 
1844 /*
1845  * Move dependencies from one buffer to another.
1846  */
1847 int
1848 softdep_move_dependencies(oldbp, newbp)
1849 	struct buf *oldbp;
1850 	struct buf *newbp;
1851 {
1852 	struct worklist *wk, *wktail;
1853 	struct ufsmount *ump;
1854 	int dirty;
1855 
1856 	if ((wk = LIST_FIRST(&oldbp->b_dep)) == NULL)
1857 		return (0);
1858 	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
1859 	    ("softdep_move_dependencies called on non-softdep filesystem"));
1860 	dirty = 0;
1861 	wktail = NULL;
1862 	ump = VFSTOUFS(wk->wk_mp);
1863 	ACQUIRE_LOCK(ump);
1864 	while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) {
1865 		LIST_REMOVE(wk, wk_list);
1866 		if (wk->wk_type == D_BMSAFEMAP &&
1867 		    bmsafemap_backgroundwrite(WK_BMSAFEMAP(wk), newbp))
1868 			dirty = 1;
1869 		if (wktail == 0)
1870 			LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list);
1871 		else
1872 			LIST_INSERT_AFTER(wktail, wk, wk_list);
1873 		wktail = wk;
1874 	}
1875 	FREE_LOCK(ump);
1876 
1877 	return (dirty);
1878 }
1879 
1880 /*
1881  * Purge the work list of all items associated with a particular mount point.
1882  */
1883 int
1884 softdep_flushworklist(oldmnt, countp, td)
1885 	struct mount *oldmnt;
1886 	int *countp;
1887 	struct thread *td;
1888 {
1889 	struct vnode *devvp;
1890 	int count, error = 0;
1891 	struct ufsmount *ump;
1892 
1893 	/*
1894 	 * Alternately flush the block device associated with the mount
1895 	 * point and process any dependencies that the flushing
1896 	 * creates. We continue until no more worklist dependencies
1897 	 * are found.
1898 	 */
1899 	*countp = 0;
1900 	ump = VFSTOUFS(oldmnt);
1901 	devvp = ump->um_devvp;
1902 	while ((count = softdep_process_worklist(oldmnt, 1)) > 0) {
1903 		*countp += count;
1904 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1905 		error = VOP_FSYNC(devvp, MNT_WAIT, td);
1906 		VOP_UNLOCK(devvp, 0);
1907 		if (error)
1908 			break;
1909 	}
1910 	return (error);
1911 }
1912 
1913 static int
1914 softdep_waitidle(struct mount *mp)
1915 {
1916 	struct ufsmount *ump;
1917 	int error;
1918 	int i;
1919 
1920 	ump = VFSTOUFS(mp);
1921 	ACQUIRE_LOCK(ump);
1922 	for (i = 0; i < 10 && ump->softdep_deps; i++) {
1923 		ump->softdep_req = 1;
1924 		if (ump->softdep_on_worklist)
1925 			panic("softdep_waitidle: work added after flush.");
1926 		msleep(&ump->softdep_deps, LOCK_PTR(ump), PVM, "softdeps", 1);
1927 	}
1928 	ump->softdep_req = 0;
1929 	FREE_LOCK(ump);
1930 	error = 0;
1931 	if (i == 10) {
1932 		error = EBUSY;
1933 		printf("softdep_waitidle: Failed to flush worklist for %p\n",
1934 		    mp);
1935 	}
1936 
1937 	return (error);
1938 }
1939 
1940 /*
1941  * Flush all vnodes and worklist items associated with a specified mount point.
1942  */
1943 int
1944 softdep_flushfiles(oldmnt, flags, td)
1945 	struct mount *oldmnt;
1946 	int flags;
1947 	struct thread *td;
1948 {
1949 #ifdef QUOTA
1950 	struct ufsmount *ump;
1951 	int i;
1952 #endif
1953 	int error, early, depcount, loopcnt, retry_flush_count, retry;
1954 	int morework;
1955 
1956 	KASSERT(MOUNTEDSOFTDEP(oldmnt) != 0,
1957 	    ("softdep_flushfiles called on non-softdep filesystem"));
1958 	loopcnt = 10;
1959 	retry_flush_count = 3;
1960 retry_flush:
1961 	error = 0;
1962 
1963 	/*
1964 	 * Alternately flush the vnodes associated with the mount
1965 	 * point and process any dependencies that the flushing
1966 	 * creates. In theory, this loop can happen at most twice,
1967 	 * but we give it a few extra just to be sure.
1968 	 */
1969 	for (; loopcnt > 0; loopcnt--) {
1970 		/*
1971 		 * Do another flush in case any vnodes were brought in
1972 		 * as part of the cleanup operations.
1973 		 */
1974 		early = retry_flush_count == 1 || (oldmnt->mnt_kern_flag &
1975 		    MNTK_UNMOUNT) == 0 ? 0 : EARLYFLUSH;
1976 		if ((error = ffs_flushfiles(oldmnt, flags | early, td)) != 0)
1977 			break;
1978 		if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 ||
1979 		    depcount == 0)
1980 			break;
1981 	}
1982 	/*
1983 	 * If we are unmounting then it is an error to fail. If we
1984 	 * are simply trying to downgrade to read-only, then filesystem
1985 	 * activity can keep us busy forever, so we just fail with EBUSY.
1986 	 */
1987 	if (loopcnt == 0) {
1988 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT)
1989 			panic("softdep_flushfiles: looping");
1990 		error = EBUSY;
1991 	}
1992 	if (!error)
1993 		error = softdep_waitidle(oldmnt);
1994 	if (!error) {
1995 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) {
1996 			retry = 0;
1997 			MNT_ILOCK(oldmnt);
1998 			KASSERT((oldmnt->mnt_kern_flag & MNTK_NOINSMNTQ) != 0,
1999 			    ("softdep_flushfiles: !MNTK_NOINSMNTQ"));
2000 			morework = oldmnt->mnt_nvnodelistsize > 0;
2001 #ifdef QUOTA
2002 			ump = VFSTOUFS(oldmnt);
2003 			UFS_LOCK(ump);
2004 			for (i = 0; i < MAXQUOTAS; i++) {
2005 				if (ump->um_quotas[i] != NULLVP)
2006 					morework = 1;
2007 			}
2008 			UFS_UNLOCK(ump);
2009 #endif
2010 			if (morework) {
2011 				if (--retry_flush_count > 0) {
2012 					retry = 1;
2013 					loopcnt = 3;
2014 				} else
2015 					error = EBUSY;
2016 			}
2017 			MNT_IUNLOCK(oldmnt);
2018 			if (retry)
2019 				goto retry_flush;
2020 		}
2021 	}
2022 	return (error);
2023 }
2024 
2025 /*
2026  * Structure hashing.
2027  *
2028  * There are four types of structures that can be looked up:
2029  *	1) pagedep structures identified by mount point, inode number,
2030  *	   and logical block.
2031  *	2) inodedep structures identified by mount point and inode number.
2032  *	3) newblk structures identified by mount point and
2033  *	   physical block number.
2034  *	4) bmsafemap structures identified by mount point and
2035  *	   cylinder group number.
2036  *
2037  * The "pagedep" and "inodedep" dependency structures are hashed
2038  * separately from the file blocks and inodes to which they correspond.
2039  * This separation helps when the in-memory copy of an inode or
2040  * file block must be replaced. It also obviates the need to access
2041  * an inode or file page when simply updating (or de-allocating)
2042  * dependency structures. Lookup of newblk structures is needed to
2043  * find newly allocated blocks when trying to associate them with
2044  * their allocdirect or allocindir structure.
2045  *
2046  * The lookup routines optionally create and hash a new instance when
2047  * an existing entry is not found. The bmsafemap lookup routine always
2048  * allocates a new structure if an existing one is not found.
2049  */
2050 #define DEPALLOC	0x0001	/* allocate structure if lookup fails */
2051 #define NODELAY		0x0002	/* cannot do background work */
2052 
2053 /*
2054  * Structures and routines associated with pagedep caching.
2055  */
2056 #define	PAGEDEP_HASH(ump, inum, lbn) \
2057 	(&(ump)->pagedep_hashtbl[((inum) + (lbn)) & (ump)->pagedep_hash_size])
2058 
2059 static int
2060 pagedep_find(pagedephd, ino, lbn, pagedeppp)
2061 	struct pagedep_hashhead *pagedephd;
2062 	ino_t ino;
2063 	ufs_lbn_t lbn;
2064 	struct pagedep **pagedeppp;
2065 {
2066 	struct pagedep *pagedep;
2067 
2068 	LIST_FOREACH(pagedep, pagedephd, pd_hash) {
2069 		if (ino == pagedep->pd_ino && lbn == pagedep->pd_lbn) {
2070 			*pagedeppp = pagedep;
2071 			return (1);
2072 		}
2073 	}
2074 	*pagedeppp = NULL;
2075 	return (0);
2076 }
2077 /*
2078  * Look up a pagedep. Return 1 if found, 0 otherwise.
2079  * If not found, allocate if DEPALLOC flag is passed.
2080  * Found or allocated entry is returned in pagedeppp.
2081  * This routine must be called with splbio interrupts blocked.
2082  */
2083 static int
2084 pagedep_lookup(mp, bp, ino, lbn, flags, pagedeppp)
2085 	struct mount *mp;
2086 	struct buf *bp;
2087 	ino_t ino;
2088 	ufs_lbn_t lbn;
2089 	int flags;
2090 	struct pagedep **pagedeppp;
2091 {
2092 	struct pagedep *pagedep;
2093 	struct pagedep_hashhead *pagedephd;
2094 	struct worklist *wk;
2095 	struct ufsmount *ump;
2096 	int ret;
2097 	int i;
2098 
2099 	ump = VFSTOUFS(mp);
2100 	LOCK_OWNED(ump);
2101 	if (bp) {
2102 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
2103 			if (wk->wk_type == D_PAGEDEP) {
2104 				*pagedeppp = WK_PAGEDEP(wk);
2105 				return (1);
2106 			}
2107 		}
2108 	}
2109 	pagedephd = PAGEDEP_HASH(ump, ino, lbn);
2110 	ret = pagedep_find(pagedephd, ino, lbn, pagedeppp);
2111 	if (ret) {
2112 		if (((*pagedeppp)->pd_state & ONWORKLIST) == 0 && bp)
2113 			WORKLIST_INSERT(&bp->b_dep, &(*pagedeppp)->pd_list);
2114 		return (1);
2115 	}
2116 	if ((flags & DEPALLOC) == 0)
2117 		return (0);
2118 	FREE_LOCK(ump);
2119 	pagedep = malloc(sizeof(struct pagedep),
2120 	    M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO);
2121 	workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp);
2122 	ACQUIRE_LOCK(ump);
2123 	ret = pagedep_find(pagedephd, ino, lbn, pagedeppp);
2124 	if (*pagedeppp) {
2125 		/*
2126 		 * This should never happen since we only create pagedeps
2127 		 * with the vnode lock held.  Could be an assert.
2128 		 */
2129 		WORKITEM_FREE(pagedep, D_PAGEDEP);
2130 		return (ret);
2131 	}
2132 	pagedep->pd_ino = ino;
2133 	pagedep->pd_lbn = lbn;
2134 	LIST_INIT(&pagedep->pd_dirremhd);
2135 	LIST_INIT(&pagedep->pd_pendinghd);
2136 	for (i = 0; i < DAHASHSZ; i++)
2137 		LIST_INIT(&pagedep->pd_diraddhd[i]);
2138 	LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
2139 	WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
2140 	*pagedeppp = pagedep;
2141 	return (0);
2142 }
2143 
2144 /*
2145  * Structures and routines associated with inodedep caching.
2146  */
2147 #define	INODEDEP_HASH(ump, inum) \
2148       (&(ump)->inodedep_hashtbl[(inum) & (ump)->inodedep_hash_size])
2149 
2150 static int
2151 inodedep_find(inodedephd, inum, inodedeppp)
2152 	struct inodedep_hashhead *inodedephd;
2153 	ino_t inum;
2154 	struct inodedep **inodedeppp;
2155 {
2156 	struct inodedep *inodedep;
2157 
2158 	LIST_FOREACH(inodedep, inodedephd, id_hash)
2159 		if (inum == inodedep->id_ino)
2160 			break;
2161 	if (inodedep) {
2162 		*inodedeppp = inodedep;
2163 		return (1);
2164 	}
2165 	*inodedeppp = NULL;
2166 
2167 	return (0);
2168 }
2169 /*
2170  * Look up an inodedep. Return 1 if found, 0 if not found.
2171  * If not found, allocate if DEPALLOC flag is passed.
2172  * Found or allocated entry is returned in inodedeppp.
2173  * This routine must be called with splbio interrupts blocked.
2174  */
2175 static int
2176 inodedep_lookup(mp, inum, flags, inodedeppp)
2177 	struct mount *mp;
2178 	ino_t inum;
2179 	int flags;
2180 	struct inodedep **inodedeppp;
2181 {
2182 	struct inodedep *inodedep;
2183 	struct inodedep_hashhead *inodedephd;
2184 	struct ufsmount *ump;
2185 	struct fs *fs;
2186 
2187 	ump = VFSTOUFS(mp);
2188 	LOCK_OWNED(ump);
2189 	fs = ump->um_fs;
2190 	inodedephd = INODEDEP_HASH(ump, inum);
2191 
2192 	if (inodedep_find(inodedephd, inum, inodedeppp))
2193 		return (1);
2194 	if ((flags & DEPALLOC) == 0)
2195 		return (0);
2196 	/*
2197 	 * If the system is over its limit and our filesystem is
2198 	 * responsible for more than our share of that usage and
2199 	 * we are not in a rush, request some inodedep cleanup.
2200 	 */
2201 	while (dep_current[D_INODEDEP] > max_softdeps &&
2202 	    (flags & NODELAY) == 0 &&
2203 	    ump->softdep_curdeps[D_INODEDEP] >
2204 	    max_softdeps / stat_flush_threads)
2205 		request_cleanup(mp, FLUSH_INODES);
2206 	FREE_LOCK(ump);
2207 	inodedep = malloc(sizeof(struct inodedep),
2208 		M_INODEDEP, M_SOFTDEP_FLAGS);
2209 	workitem_alloc(&inodedep->id_list, D_INODEDEP, mp);
2210 	ACQUIRE_LOCK(ump);
2211 	if (inodedep_find(inodedephd, inum, inodedeppp)) {
2212 		WORKITEM_FREE(inodedep, D_INODEDEP);
2213 		return (1);
2214 	}
2215 	inodedep->id_fs = fs;
2216 	inodedep->id_ino = inum;
2217 	inodedep->id_state = ALLCOMPLETE;
2218 	inodedep->id_nlinkdelta = 0;
2219 	inodedep->id_savedino1 = NULL;
2220 	inodedep->id_savedsize = -1;
2221 	inodedep->id_savedextsize = -1;
2222 	inodedep->id_savednlink = -1;
2223 	inodedep->id_bmsafemap = NULL;
2224 	inodedep->id_mkdiradd = NULL;
2225 	LIST_INIT(&inodedep->id_dirremhd);
2226 	LIST_INIT(&inodedep->id_pendinghd);
2227 	LIST_INIT(&inodedep->id_inowait);
2228 	LIST_INIT(&inodedep->id_bufwait);
2229 	TAILQ_INIT(&inodedep->id_inoreflst);
2230 	TAILQ_INIT(&inodedep->id_inoupdt);
2231 	TAILQ_INIT(&inodedep->id_newinoupdt);
2232 	TAILQ_INIT(&inodedep->id_extupdt);
2233 	TAILQ_INIT(&inodedep->id_newextupdt);
2234 	TAILQ_INIT(&inodedep->id_freeblklst);
2235 	LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
2236 	*inodedeppp = inodedep;
2237 	return (0);
2238 }
2239 
2240 /*
2241  * Structures and routines associated with newblk caching.
2242  */
2243 #define	NEWBLK_HASH(ump, inum) \
2244 	(&(ump)->newblk_hashtbl[(inum) & (ump)->newblk_hash_size])
2245 
2246 static int
2247 newblk_find(newblkhd, newblkno, flags, newblkpp)
2248 	struct newblk_hashhead *newblkhd;
2249 	ufs2_daddr_t newblkno;
2250 	int flags;
2251 	struct newblk **newblkpp;
2252 {
2253 	struct newblk *newblk;
2254 
2255 	LIST_FOREACH(newblk, newblkhd, nb_hash) {
2256 		if (newblkno != newblk->nb_newblkno)
2257 			continue;
2258 		/*
2259 		 * If we're creating a new dependency don't match those that
2260 		 * have already been converted to allocdirects.  This is for
2261 		 * a frag extend.
2262 		 */
2263 		if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK)
2264 			continue;
2265 		break;
2266 	}
2267 	if (newblk) {
2268 		*newblkpp = newblk;
2269 		return (1);
2270 	}
2271 	*newblkpp = NULL;
2272 	return (0);
2273 }
2274 
2275 /*
2276  * Look up a newblk. Return 1 if found, 0 if not found.
2277  * If not found, allocate if DEPALLOC flag is passed.
2278  * Found or allocated entry is returned in newblkpp.
2279  */
2280 static int
2281 newblk_lookup(mp, newblkno, flags, newblkpp)
2282 	struct mount *mp;
2283 	ufs2_daddr_t newblkno;
2284 	int flags;
2285 	struct newblk **newblkpp;
2286 {
2287 	struct newblk *newblk;
2288 	struct newblk_hashhead *newblkhd;
2289 	struct ufsmount *ump;
2290 
2291 	ump = VFSTOUFS(mp);
2292 	LOCK_OWNED(ump);
2293 	newblkhd = NEWBLK_HASH(ump, newblkno);
2294 	if (newblk_find(newblkhd, newblkno, flags, newblkpp))
2295 		return (1);
2296 	if ((flags & DEPALLOC) == 0)
2297 		return (0);
2298 	FREE_LOCK(ump);
2299 	newblk = malloc(sizeof(union allblk), M_NEWBLK,
2300 	    M_SOFTDEP_FLAGS | M_ZERO);
2301 	workitem_alloc(&newblk->nb_list, D_NEWBLK, mp);
2302 	ACQUIRE_LOCK(ump);
2303 	if (newblk_find(newblkhd, newblkno, flags, newblkpp)) {
2304 		WORKITEM_FREE(newblk, D_NEWBLK);
2305 		return (1);
2306 	}
2307 	newblk->nb_freefrag = NULL;
2308 	LIST_INIT(&newblk->nb_indirdeps);
2309 	LIST_INIT(&newblk->nb_newdirblk);
2310 	LIST_INIT(&newblk->nb_jwork);
2311 	newblk->nb_state = ATTACHED;
2312 	newblk->nb_newblkno = newblkno;
2313 	LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
2314 	*newblkpp = newblk;
2315 	return (0);
2316 }
2317 
2318 /*
2319  * Structures and routines associated with freed indirect block caching.
2320  */
2321 #define	INDIR_HASH(ump, blkno) \
2322 	(&(ump)->indir_hashtbl[(blkno) & (ump)->indir_hash_size])
2323 
2324 /*
2325  * Lookup an indirect block in the indir hash table.  The freework is
2326  * removed and potentially freed.  The caller must do a blocking journal
2327  * write before writing to the blkno.
2328  */
2329 static int
2330 indirblk_lookup(mp, blkno)
2331 	struct mount *mp;
2332 	ufs2_daddr_t blkno;
2333 {
2334 	struct freework *freework;
2335 	struct indir_hashhead *wkhd;
2336 	struct ufsmount *ump;
2337 
2338 	ump = VFSTOUFS(mp);
2339 	wkhd = INDIR_HASH(ump, blkno);
2340 	TAILQ_FOREACH(freework, wkhd, fw_next) {
2341 		if (freework->fw_blkno != blkno)
2342 			continue;
2343 		indirblk_remove(freework);
2344 		return (1);
2345 	}
2346 	return (0);
2347 }
2348 
2349 /*
2350  * Insert an indirect block represented by freework into the indirblk
2351  * hash table so that it may prevent the block from being re-used prior
2352  * to the journal being written.
2353  */
2354 static void
2355 indirblk_insert(freework)
2356 	struct freework *freework;
2357 {
2358 	struct jblocks *jblocks;
2359 	struct jseg *jseg;
2360 	struct ufsmount *ump;
2361 
2362 	ump = VFSTOUFS(freework->fw_list.wk_mp);
2363 	jblocks = ump->softdep_jblocks;
2364 	jseg = TAILQ_LAST(&jblocks->jb_segs, jseglst);
2365 	if (jseg == NULL)
2366 		return;
2367 
2368 	LIST_INSERT_HEAD(&jseg->js_indirs, freework, fw_segs);
2369 	TAILQ_INSERT_HEAD(INDIR_HASH(ump, freework->fw_blkno), freework,
2370 	    fw_next);
2371 	freework->fw_state &= ~DEPCOMPLETE;
2372 }
2373 
2374 static void
2375 indirblk_remove(freework)
2376 	struct freework *freework;
2377 {
2378 	struct ufsmount *ump;
2379 
2380 	ump = VFSTOUFS(freework->fw_list.wk_mp);
2381 	LIST_REMOVE(freework, fw_segs);
2382 	TAILQ_REMOVE(INDIR_HASH(ump, freework->fw_blkno), freework, fw_next);
2383 	freework->fw_state |= DEPCOMPLETE;
2384 	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
2385 		WORKITEM_FREE(freework, D_FREEWORK);
2386 }
2387 
2388 /*
2389  * Executed during filesystem system initialization before
2390  * mounting any filesystems.
2391  */
2392 void
2393 softdep_initialize()
2394 {
2395 
2396 	TAILQ_INIT(&softdepmounts);
2397 	max_softdeps = desiredvnodes * 4;
2398 
2399 	/* initialise bioops hack */
2400 	bioops.io_start = softdep_disk_io_initiation;
2401 	bioops.io_complete = softdep_disk_write_complete;
2402 	bioops.io_deallocate = softdep_deallocate_dependencies;
2403 	bioops.io_countdeps = softdep_count_dependencies;
2404 
2405 	/* Initialize the callout with an mtx. */
2406 	callout_init_mtx(&softdep_callout, &lk, 0);
2407 }
2408 
2409 /*
2410  * Executed after all filesystems have been unmounted during
2411  * filesystem module unload.
2412  */
2413 void
2414 softdep_uninitialize()
2415 {
2416 
2417 	/* clear bioops hack */
2418 	bioops.io_start = NULL;
2419 	bioops.io_complete = NULL;
2420 	bioops.io_deallocate = NULL;
2421 	bioops.io_countdeps = NULL;
2422 
2423 	callout_drain(&softdep_callout);
2424 }
2425 
2426 /*
2427  * Called at mount time to notify the dependency code that a
2428  * filesystem wishes to use it.
2429  */
2430 int
2431 softdep_mount(devvp, mp, fs, cred)
2432 	struct vnode *devvp;
2433 	struct mount *mp;
2434 	struct fs *fs;
2435 	struct ucred *cred;
2436 {
2437 	struct csum_total cstotal;
2438 	struct mount_softdeps *sdp;
2439 	struct ufsmount *ump;
2440 	struct cg *cgp;
2441 	struct buf *bp;
2442 	int i, error, cyl;
2443 
2444 	sdp = malloc(sizeof(struct mount_softdeps), M_MOUNTDATA,
2445 	    M_WAITOK | M_ZERO);
2446 	MNT_ILOCK(mp);
2447 	mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP;
2448 	if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) {
2449 		mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) |
2450 			MNTK_SOFTDEP | MNTK_NOASYNC;
2451 	}
2452 	ump = VFSTOUFS(mp);
2453 	ump->um_softdep = sdp;
2454 	MNT_IUNLOCK(mp);
2455 	rw_init(LOCK_PTR(ump), "Per-Filesystem Softdep Lock");
2456 	sdp->sd_ump = ump;
2457 	LIST_INIT(&ump->softdep_workitem_pending);
2458 	LIST_INIT(&ump->softdep_journal_pending);
2459 	TAILQ_INIT(&ump->softdep_unlinked);
2460 	LIST_INIT(&ump->softdep_dirtycg);
2461 	ump->softdep_worklist_tail = NULL;
2462 	ump->softdep_on_worklist = 0;
2463 	ump->softdep_deps = 0;
2464 	LIST_INIT(&ump->softdep_mkdirlisthd);
2465 	ump->pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP,
2466 	    &ump->pagedep_hash_size);
2467 	ump->pagedep_nextclean = 0;
2468 	ump->inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP,
2469 	    &ump->inodedep_hash_size);
2470 	ump->inodedep_nextclean = 0;
2471 	ump->newblk_hashtbl = hashinit(max_softdeps / 2,  M_NEWBLK,
2472 	    &ump->newblk_hash_size);
2473 	ump->bmsafemap_hashtbl = hashinit(1024, M_BMSAFEMAP,
2474 	    &ump->bmsafemap_hash_size);
2475 	i = 1 << (ffs(desiredvnodes / 10) - 1);
2476 	ump->indir_hashtbl = malloc(i * sizeof(struct indir_hashhead),
2477 	    M_FREEWORK, M_WAITOK);
2478 	ump->indir_hash_size = i - 1;
2479 	for (i = 0; i <= ump->indir_hash_size; i++)
2480 		TAILQ_INIT(&ump->indir_hashtbl[i]);
2481 	ACQUIRE_GBLLOCK(&lk);
2482 	TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next);
2483 	FREE_GBLLOCK(&lk);
2484 	if ((fs->fs_flags & FS_SUJ) &&
2485 	    (error = journal_mount(mp, fs, cred)) != 0) {
2486 		printf("Failed to start journal: %d\n", error);
2487 		softdep_unmount(mp);
2488 		return (error);
2489 	}
2490 	/*
2491 	 * Start our flushing thread in the bufdaemon process.
2492 	 */
2493 	kproc_kthread_add(&softdep_flush, mp, &bufdaemonproc,
2494 	    &ump->softdep_flushtd, 0, 0, "softdepflush", "%s worker",
2495 	    mp->mnt_stat.f_mntonname);
2496 	/*
2497 	 * When doing soft updates, the counters in the
2498 	 * superblock may have gotten out of sync. Recomputation
2499 	 * can take a long time and can be deferred for background
2500 	 * fsck.  However, the old behavior of scanning the cylinder
2501 	 * groups and recalculating them at mount time is available
2502 	 * by setting vfs.ffs.compute_summary_at_mount to one.
2503 	 */
2504 	if (compute_summary_at_mount == 0 || fs->fs_clean != 0)
2505 		return (0);
2506 	bzero(&cstotal, sizeof cstotal);
2507 	for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
2508 		if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)),
2509 		    fs->fs_cgsize, cred, &bp)) != 0) {
2510 			brelse(bp);
2511 			softdep_unmount(mp);
2512 			return (error);
2513 		}
2514 		cgp = (struct cg *)bp->b_data;
2515 		cstotal.cs_nffree += cgp->cg_cs.cs_nffree;
2516 		cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree;
2517 		cstotal.cs_nifree += cgp->cg_cs.cs_nifree;
2518 		cstotal.cs_ndir += cgp->cg_cs.cs_ndir;
2519 		fs->fs_cs(fs, cyl) = cgp->cg_cs;
2520 		brelse(bp);
2521 	}
2522 #ifdef DEBUG
2523 	if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
2524 		printf("%s: superblock summary recomputed\n", fs->fs_fsmnt);
2525 #endif
2526 	bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
2527 	return (0);
2528 }
2529 
2530 void
2531 softdep_unmount(mp)
2532 	struct mount *mp;
2533 {
2534 	struct ufsmount *ump;
2535 #ifdef INVARIANTS
2536 	int i;
2537 #endif
2538 
2539 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
2540 	    ("softdep_unmount called on non-softdep filesystem"));
2541 	ump = VFSTOUFS(mp);
2542 	MNT_ILOCK(mp);
2543 	mp->mnt_flag &= ~MNT_SOFTDEP;
2544 	if (MOUNTEDSUJ(mp) == 0) {
2545 		MNT_IUNLOCK(mp);
2546 	} else {
2547 		mp->mnt_flag &= ~MNT_SUJ;
2548 		MNT_IUNLOCK(mp);
2549 		journal_unmount(ump);
2550 	}
2551 	/*
2552 	 * Shut down our flushing thread. Check for NULL is if
2553 	 * softdep_mount errors out before the thread has been created.
2554 	 */
2555 	if (ump->softdep_flushtd != NULL) {
2556 		ACQUIRE_LOCK(ump);
2557 		ump->softdep_flags |= FLUSH_EXIT;
2558 		wakeup(&ump->softdep_flushtd);
2559 		msleep(&ump->softdep_flags, LOCK_PTR(ump), PVM | PDROP,
2560 		    "sdwait", 0);
2561 		KASSERT((ump->softdep_flags & FLUSH_EXIT) == 0,
2562 		    ("Thread shutdown failed"));
2563 	}
2564 	/*
2565 	 * Free up our resources.
2566 	 */
2567 	ACQUIRE_GBLLOCK(&lk);
2568 	TAILQ_REMOVE(&softdepmounts, ump->um_softdep, sd_next);
2569 	FREE_GBLLOCK(&lk);
2570 	rw_destroy(LOCK_PTR(ump));
2571 	hashdestroy(ump->pagedep_hashtbl, M_PAGEDEP, ump->pagedep_hash_size);
2572 	hashdestroy(ump->inodedep_hashtbl, M_INODEDEP, ump->inodedep_hash_size);
2573 	hashdestroy(ump->newblk_hashtbl, M_NEWBLK, ump->newblk_hash_size);
2574 	hashdestroy(ump->bmsafemap_hashtbl, M_BMSAFEMAP,
2575 	    ump->bmsafemap_hash_size);
2576 	free(ump->indir_hashtbl, M_FREEWORK);
2577 #ifdef INVARIANTS
2578 	for (i = 0; i <= D_LAST; i++)
2579 		KASSERT(ump->softdep_curdeps[i] == 0,
2580 		    ("Unmount %s: Dep type %s != 0 (%ld)", ump->um_fs->fs_fsmnt,
2581 		    TYPENAME(i), ump->softdep_curdeps[i]));
2582 #endif
2583 	free(ump->um_softdep, M_MOUNTDATA);
2584 }
2585 
2586 static struct jblocks *
2587 jblocks_create(void)
2588 {
2589 	struct jblocks *jblocks;
2590 
2591 	jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO);
2592 	TAILQ_INIT(&jblocks->jb_segs);
2593 	jblocks->jb_avail = 10;
2594 	jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2595 	    M_JBLOCKS, M_WAITOK | M_ZERO);
2596 
2597 	return (jblocks);
2598 }
2599 
2600 static ufs2_daddr_t
2601 jblocks_alloc(jblocks, bytes, actual)
2602 	struct jblocks *jblocks;
2603 	int bytes;
2604 	int *actual;
2605 {
2606 	ufs2_daddr_t daddr;
2607 	struct jextent *jext;
2608 	int freecnt;
2609 	int blocks;
2610 
2611 	blocks = bytes / DEV_BSIZE;
2612 	jext = &jblocks->jb_extent[jblocks->jb_head];
2613 	freecnt = jext->je_blocks - jblocks->jb_off;
2614 	if (freecnt == 0) {
2615 		jblocks->jb_off = 0;
2616 		if (++jblocks->jb_head > jblocks->jb_used)
2617 			jblocks->jb_head = 0;
2618 		jext = &jblocks->jb_extent[jblocks->jb_head];
2619 		freecnt = jext->je_blocks;
2620 	}
2621 	if (freecnt > blocks)
2622 		freecnt = blocks;
2623 	*actual = freecnt * DEV_BSIZE;
2624 	daddr = jext->je_daddr + jblocks->jb_off;
2625 	jblocks->jb_off += freecnt;
2626 	jblocks->jb_free -= freecnt;
2627 
2628 	return (daddr);
2629 }
2630 
2631 static void
2632 jblocks_free(jblocks, mp, bytes)
2633 	struct jblocks *jblocks;
2634 	struct mount *mp;
2635 	int bytes;
2636 {
2637 
2638 	LOCK_OWNED(VFSTOUFS(mp));
2639 	jblocks->jb_free += bytes / DEV_BSIZE;
2640 	if (jblocks->jb_suspended)
2641 		worklist_speedup(mp);
2642 	wakeup(jblocks);
2643 }
2644 
2645 static void
2646 jblocks_destroy(jblocks)
2647 	struct jblocks *jblocks;
2648 {
2649 
2650 	if (jblocks->jb_extent)
2651 		free(jblocks->jb_extent, M_JBLOCKS);
2652 	free(jblocks, M_JBLOCKS);
2653 }
2654 
2655 static void
2656 jblocks_add(jblocks, daddr, blocks)
2657 	struct jblocks *jblocks;
2658 	ufs2_daddr_t daddr;
2659 	int blocks;
2660 {
2661 	struct jextent *jext;
2662 
2663 	jblocks->jb_blocks += blocks;
2664 	jblocks->jb_free += blocks;
2665 	jext = &jblocks->jb_extent[jblocks->jb_used];
2666 	/* Adding the first block. */
2667 	if (jext->je_daddr == 0) {
2668 		jext->je_daddr = daddr;
2669 		jext->je_blocks = blocks;
2670 		return;
2671 	}
2672 	/* Extending the last extent. */
2673 	if (jext->je_daddr + jext->je_blocks == daddr) {
2674 		jext->je_blocks += blocks;
2675 		return;
2676 	}
2677 	/* Adding a new extent. */
2678 	if (++jblocks->jb_used == jblocks->jb_avail) {
2679 		jblocks->jb_avail *= 2;
2680 		jext = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2681 		    M_JBLOCKS, M_WAITOK | M_ZERO);
2682 		memcpy(jext, jblocks->jb_extent,
2683 		    sizeof(struct jextent) * jblocks->jb_used);
2684 		free(jblocks->jb_extent, M_JBLOCKS);
2685 		jblocks->jb_extent = jext;
2686 	}
2687 	jext = &jblocks->jb_extent[jblocks->jb_used];
2688 	jext->je_daddr = daddr;
2689 	jext->je_blocks = blocks;
2690 	return;
2691 }
2692 
2693 int
2694 softdep_journal_lookup(mp, vpp)
2695 	struct mount *mp;
2696 	struct vnode **vpp;
2697 {
2698 	struct componentname cnp;
2699 	struct vnode *dvp;
2700 	ino_t sujournal;
2701 	int error;
2702 
2703 	error = VFS_VGET(mp, ROOTINO, LK_EXCLUSIVE, &dvp);
2704 	if (error)
2705 		return (error);
2706 	bzero(&cnp, sizeof(cnp));
2707 	cnp.cn_nameiop = LOOKUP;
2708 	cnp.cn_flags = ISLASTCN;
2709 	cnp.cn_thread = curthread;
2710 	cnp.cn_cred = curthread->td_ucred;
2711 	cnp.cn_pnbuf = SUJ_FILE;
2712 	cnp.cn_nameptr = SUJ_FILE;
2713 	cnp.cn_namelen = strlen(SUJ_FILE);
2714 	error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal);
2715 	vput(dvp);
2716 	if (error != 0)
2717 		return (error);
2718 	error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp);
2719 	return (error);
2720 }
2721 
2722 /*
2723  * Open and verify the journal file.
2724  */
2725 static int
2726 journal_mount(mp, fs, cred)
2727 	struct mount *mp;
2728 	struct fs *fs;
2729 	struct ucred *cred;
2730 {
2731 	struct jblocks *jblocks;
2732 	struct ufsmount *ump;
2733 	struct vnode *vp;
2734 	struct inode *ip;
2735 	ufs2_daddr_t blkno;
2736 	int bcount;
2737 	int error;
2738 	int i;
2739 
2740 	ump = VFSTOUFS(mp);
2741 	ump->softdep_journal_tail = NULL;
2742 	ump->softdep_on_journal = 0;
2743 	ump->softdep_accdeps = 0;
2744 	ump->softdep_req = 0;
2745 	ump->softdep_jblocks = NULL;
2746 	error = softdep_journal_lookup(mp, &vp);
2747 	if (error != 0) {
2748 		printf("Failed to find journal.  Use tunefs to create one\n");
2749 		return (error);
2750 	}
2751 	ip = VTOI(vp);
2752 	if (ip->i_size < SUJ_MIN) {
2753 		error = ENOSPC;
2754 		goto out;
2755 	}
2756 	bcount = lblkno(fs, ip->i_size);	/* Only use whole blocks. */
2757 	jblocks = jblocks_create();
2758 	for (i = 0; i < bcount; i++) {
2759 		error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL);
2760 		if (error)
2761 			break;
2762 		jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag));
2763 	}
2764 	if (error) {
2765 		jblocks_destroy(jblocks);
2766 		goto out;
2767 	}
2768 	jblocks->jb_low = jblocks->jb_free / 3;	/* Reserve 33%. */
2769 	jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */
2770 	ump->softdep_jblocks = jblocks;
2771 out:
2772 	if (error == 0) {
2773 		MNT_ILOCK(mp);
2774 		mp->mnt_flag |= MNT_SUJ;
2775 		mp->mnt_flag &= ~MNT_SOFTDEP;
2776 		MNT_IUNLOCK(mp);
2777 		/*
2778 		 * Only validate the journal contents if the
2779 		 * filesystem is clean, otherwise we write the logs
2780 		 * but they'll never be used.  If the filesystem was
2781 		 * still dirty when we mounted it the journal is
2782 		 * invalid and a new journal can only be valid if it
2783 		 * starts from a clean mount.
2784 		 */
2785 		if (fs->fs_clean) {
2786 			DIP_SET(ip, i_modrev, fs->fs_mtime);
2787 			ip->i_flags |= IN_MODIFIED;
2788 			ffs_update(vp, 1);
2789 		}
2790 	}
2791 	vput(vp);
2792 	return (error);
2793 }
2794 
2795 static void
2796 journal_unmount(ump)
2797 	struct ufsmount *ump;
2798 {
2799 
2800 	if (ump->softdep_jblocks)
2801 		jblocks_destroy(ump->softdep_jblocks);
2802 	ump->softdep_jblocks = NULL;
2803 }
2804 
2805 /*
2806  * Called when a journal record is ready to be written.  Space is allocated
2807  * and the journal entry is created when the journal is flushed to stable
2808  * store.
2809  */
2810 static void
2811 add_to_journal(wk)
2812 	struct worklist *wk;
2813 {
2814 	struct ufsmount *ump;
2815 
2816 	ump = VFSTOUFS(wk->wk_mp);
2817 	LOCK_OWNED(ump);
2818 	if (wk->wk_state & ONWORKLIST)
2819 		panic("add_to_journal: %s(0x%X) already on list",
2820 		    TYPENAME(wk->wk_type), wk->wk_state);
2821 	wk->wk_state |= ONWORKLIST | DEPCOMPLETE;
2822 	if (LIST_EMPTY(&ump->softdep_journal_pending)) {
2823 		ump->softdep_jblocks->jb_age = ticks;
2824 		LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list);
2825 	} else
2826 		LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list);
2827 	ump->softdep_journal_tail = wk;
2828 	ump->softdep_on_journal += 1;
2829 }
2830 
2831 /*
2832  * Remove an arbitrary item for the journal worklist maintain the tail
2833  * pointer.  This happens when a new operation obviates the need to
2834  * journal an old operation.
2835  */
2836 static void
2837 remove_from_journal(wk)
2838 	struct worklist *wk;
2839 {
2840 	struct ufsmount *ump;
2841 
2842 	ump = VFSTOUFS(wk->wk_mp);
2843 	LOCK_OWNED(ump);
2844 #ifdef SUJ_DEBUG
2845 	{
2846 		struct worklist *wkn;
2847 
2848 		LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list)
2849 			if (wkn == wk)
2850 				break;
2851 		if (wkn == NULL)
2852 			panic("remove_from_journal: %p is not in journal", wk);
2853 	}
2854 #endif
2855 	/*
2856 	 * We emulate a TAILQ to save space in most structures which do not
2857 	 * require TAILQ semantics.  Here we must update the tail position
2858 	 * when removing the tail which is not the final entry. This works
2859 	 * only if the worklist linkage are at the beginning of the structure.
2860 	 */
2861 	if (ump->softdep_journal_tail == wk)
2862 		ump->softdep_journal_tail =
2863 		    (struct worklist *)wk->wk_list.le_prev;
2864 
2865 	WORKLIST_REMOVE(wk);
2866 	ump->softdep_on_journal -= 1;
2867 }
2868 
2869 /*
2870  * Check for journal space as well as dependency limits so the prelink
2871  * code can throttle both journaled and non-journaled filesystems.
2872  * Threshold is 0 for low and 1 for min.
2873  */
2874 static int
2875 journal_space(ump, thresh)
2876 	struct ufsmount *ump;
2877 	int thresh;
2878 {
2879 	struct jblocks *jblocks;
2880 	int limit, avail;
2881 
2882 	jblocks = ump->softdep_jblocks;
2883 	if (jblocks == NULL)
2884 		return (1);
2885 	/*
2886 	 * We use a tighter restriction here to prevent request_cleanup()
2887 	 * running in threads from running into locks we currently hold.
2888 	 * We have to be over the limit and our filesystem has to be
2889 	 * responsible for more than our share of that usage.
2890 	 */
2891 	limit = (max_softdeps / 10) * 9;
2892 	if (dep_current[D_INODEDEP] > limit &&
2893 	    ump->softdep_curdeps[D_INODEDEP] > limit / stat_flush_threads)
2894 		return (0);
2895 	if (thresh)
2896 		thresh = jblocks->jb_min;
2897 	else
2898 		thresh = jblocks->jb_low;
2899 	avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE;
2900 	avail = jblocks->jb_free - avail;
2901 
2902 	return (avail > thresh);
2903 }
2904 
2905 static void
2906 journal_suspend(ump)
2907 	struct ufsmount *ump;
2908 {
2909 	struct jblocks *jblocks;
2910 	struct mount *mp;
2911 
2912 	mp = UFSTOVFS(ump);
2913 	jblocks = ump->softdep_jblocks;
2914 	MNT_ILOCK(mp);
2915 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
2916 		stat_journal_min++;
2917 		mp->mnt_kern_flag |= MNTK_SUSPEND;
2918 		mp->mnt_susp_owner = ump->softdep_flushtd;
2919 	}
2920 	jblocks->jb_suspended = 1;
2921 	MNT_IUNLOCK(mp);
2922 }
2923 
2924 static int
2925 journal_unsuspend(struct ufsmount *ump)
2926 {
2927 	struct jblocks *jblocks;
2928 	struct mount *mp;
2929 
2930 	mp = UFSTOVFS(ump);
2931 	jblocks = ump->softdep_jblocks;
2932 
2933 	if (jblocks != NULL && jblocks->jb_suspended &&
2934 	    journal_space(ump, jblocks->jb_min)) {
2935 		jblocks->jb_suspended = 0;
2936 		FREE_LOCK(ump);
2937 		mp->mnt_susp_owner = curthread;
2938 		vfs_write_resume(mp, 0);
2939 		ACQUIRE_LOCK(ump);
2940 		return (1);
2941 	}
2942 	return (0);
2943 }
2944 
2945 /*
2946  * Called before any allocation function to be certain that there is
2947  * sufficient space in the journal prior to creating any new records.
2948  * Since in the case of block allocation we may have multiple locked
2949  * buffers at the time of the actual allocation we can not block
2950  * when the journal records are created.  Doing so would create a deadlock
2951  * if any of these buffers needed to be flushed to reclaim space.  Instead
2952  * we require a sufficiently large amount of available space such that
2953  * each thread in the system could have passed this allocation check and
2954  * still have sufficient free space.  With 20% of a minimum journal size
2955  * of 1MB we have 6553 records available.
2956  */
2957 int
2958 softdep_prealloc(vp, waitok)
2959 	struct vnode *vp;
2960 	int waitok;
2961 {
2962 	struct ufsmount *ump;
2963 
2964 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
2965 	    ("softdep_prealloc called on non-softdep filesystem"));
2966 	/*
2967 	 * Nothing to do if we are not running journaled soft updates.
2968 	 * If we currently hold the snapshot lock, we must avoid handling
2969 	 * other resources that could cause deadlock.
2970 	 */
2971 	if (DOINGSUJ(vp) == 0 || IS_SNAPSHOT(VTOI(vp)))
2972 		return (0);
2973 	ump = VFSTOUFS(vp->v_mount);
2974 	ACQUIRE_LOCK(ump);
2975 	if (journal_space(ump, 0)) {
2976 		FREE_LOCK(ump);
2977 		return (0);
2978 	}
2979 	stat_journal_low++;
2980 	FREE_LOCK(ump);
2981 	if (waitok == MNT_NOWAIT)
2982 		return (ENOSPC);
2983 	/*
2984 	 * Attempt to sync this vnode once to flush any journal
2985 	 * work attached to it.
2986 	 */
2987 	if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0)
2988 		ffs_syncvnode(vp, waitok, 0);
2989 	ACQUIRE_LOCK(ump);
2990 	process_removes(vp);
2991 	process_truncates(vp);
2992 	if (journal_space(ump, 0) == 0) {
2993 		softdep_speedup(ump);
2994 		if (journal_space(ump, 1) == 0)
2995 			journal_suspend(ump);
2996 	}
2997 	FREE_LOCK(ump);
2998 
2999 	return (0);
3000 }
3001 
3002 /*
3003  * Before adjusting a link count on a vnode verify that we have sufficient
3004  * journal space.  If not, process operations that depend on the currently
3005  * locked pair of vnodes to try to flush space as the syncer, buf daemon,
3006  * and softdep flush threads can not acquire these locks to reclaim space.
3007  */
3008 static void
3009 softdep_prelink(dvp, vp)
3010 	struct vnode *dvp;
3011 	struct vnode *vp;
3012 {
3013 	struct ufsmount *ump;
3014 
3015 	ump = VFSTOUFS(dvp->v_mount);
3016 	LOCK_OWNED(ump);
3017 	/*
3018 	 * Nothing to do if we have sufficient journal space.
3019 	 * If we currently hold the snapshot lock, we must avoid
3020 	 * handling other resources that could cause deadlock.
3021 	 */
3022 	if (journal_space(ump, 0) || (vp && IS_SNAPSHOT(VTOI(vp))))
3023 		return;
3024 	stat_journal_low++;
3025 	FREE_LOCK(ump);
3026 	if (vp)
3027 		ffs_syncvnode(vp, MNT_NOWAIT, 0);
3028 	ffs_syncvnode(dvp, MNT_WAIT, 0);
3029 	ACQUIRE_LOCK(ump);
3030 	/* Process vp before dvp as it may create .. removes. */
3031 	if (vp) {
3032 		process_removes(vp);
3033 		process_truncates(vp);
3034 	}
3035 	process_removes(dvp);
3036 	process_truncates(dvp);
3037 	softdep_speedup(ump);
3038 	process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT);
3039 	if (journal_space(ump, 0) == 0) {
3040 		softdep_speedup(ump);
3041 		if (journal_space(ump, 1) == 0)
3042 			journal_suspend(ump);
3043 	}
3044 }
3045 
3046 static void
3047 jseg_write(ump, jseg, data)
3048 	struct ufsmount *ump;
3049 	struct jseg *jseg;
3050 	uint8_t *data;
3051 {
3052 	struct jsegrec *rec;
3053 
3054 	rec = (struct jsegrec *)data;
3055 	rec->jsr_seq = jseg->js_seq;
3056 	rec->jsr_oldest = jseg->js_oldseq;
3057 	rec->jsr_cnt = jseg->js_cnt;
3058 	rec->jsr_blocks = jseg->js_size / ump->um_devvp->v_bufobj.bo_bsize;
3059 	rec->jsr_crc = 0;
3060 	rec->jsr_time = ump->um_fs->fs_mtime;
3061 }
3062 
3063 static inline void
3064 inoref_write(inoref, jseg, rec)
3065 	struct inoref *inoref;
3066 	struct jseg *jseg;
3067 	struct jrefrec *rec;
3068 {
3069 
3070 	inoref->if_jsegdep->jd_seg = jseg;
3071 	rec->jr_ino = inoref->if_ino;
3072 	rec->jr_parent = inoref->if_parent;
3073 	rec->jr_nlink = inoref->if_nlink;
3074 	rec->jr_mode = inoref->if_mode;
3075 	rec->jr_diroff = inoref->if_diroff;
3076 }
3077 
3078 static void
3079 jaddref_write(jaddref, jseg, data)
3080 	struct jaddref *jaddref;
3081 	struct jseg *jseg;
3082 	uint8_t *data;
3083 {
3084 	struct jrefrec *rec;
3085 
3086 	rec = (struct jrefrec *)data;
3087 	rec->jr_op = JOP_ADDREF;
3088 	inoref_write(&jaddref->ja_ref, jseg, rec);
3089 }
3090 
3091 static void
3092 jremref_write(jremref, jseg, data)
3093 	struct jremref *jremref;
3094 	struct jseg *jseg;
3095 	uint8_t *data;
3096 {
3097 	struct jrefrec *rec;
3098 
3099 	rec = (struct jrefrec *)data;
3100 	rec->jr_op = JOP_REMREF;
3101 	inoref_write(&jremref->jr_ref, jseg, rec);
3102 }
3103 
3104 static void
3105 jmvref_write(jmvref, jseg, data)
3106 	struct jmvref *jmvref;
3107 	struct jseg *jseg;
3108 	uint8_t *data;
3109 {
3110 	struct jmvrec *rec;
3111 
3112 	rec = (struct jmvrec *)data;
3113 	rec->jm_op = JOP_MVREF;
3114 	rec->jm_ino = jmvref->jm_ino;
3115 	rec->jm_parent = jmvref->jm_parent;
3116 	rec->jm_oldoff = jmvref->jm_oldoff;
3117 	rec->jm_newoff = jmvref->jm_newoff;
3118 }
3119 
3120 static void
3121 jnewblk_write(jnewblk, jseg, data)
3122 	struct jnewblk *jnewblk;
3123 	struct jseg *jseg;
3124 	uint8_t *data;
3125 {
3126 	struct jblkrec *rec;
3127 
3128 	jnewblk->jn_jsegdep->jd_seg = jseg;
3129 	rec = (struct jblkrec *)data;
3130 	rec->jb_op = JOP_NEWBLK;
3131 	rec->jb_ino = jnewblk->jn_ino;
3132 	rec->jb_blkno = jnewblk->jn_blkno;
3133 	rec->jb_lbn = jnewblk->jn_lbn;
3134 	rec->jb_frags = jnewblk->jn_frags;
3135 	rec->jb_oldfrags = jnewblk->jn_oldfrags;
3136 }
3137 
3138 static void
3139 jfreeblk_write(jfreeblk, jseg, data)
3140 	struct jfreeblk *jfreeblk;
3141 	struct jseg *jseg;
3142 	uint8_t *data;
3143 {
3144 	struct jblkrec *rec;
3145 
3146 	jfreeblk->jf_dep.jb_jsegdep->jd_seg = jseg;
3147 	rec = (struct jblkrec *)data;
3148 	rec->jb_op = JOP_FREEBLK;
3149 	rec->jb_ino = jfreeblk->jf_ino;
3150 	rec->jb_blkno = jfreeblk->jf_blkno;
3151 	rec->jb_lbn = jfreeblk->jf_lbn;
3152 	rec->jb_frags = jfreeblk->jf_frags;
3153 	rec->jb_oldfrags = 0;
3154 }
3155 
3156 static void
3157 jfreefrag_write(jfreefrag, jseg, data)
3158 	struct jfreefrag *jfreefrag;
3159 	struct jseg *jseg;
3160 	uint8_t *data;
3161 {
3162 	struct jblkrec *rec;
3163 
3164 	jfreefrag->fr_jsegdep->jd_seg = jseg;
3165 	rec = (struct jblkrec *)data;
3166 	rec->jb_op = JOP_FREEBLK;
3167 	rec->jb_ino = jfreefrag->fr_ino;
3168 	rec->jb_blkno = jfreefrag->fr_blkno;
3169 	rec->jb_lbn = jfreefrag->fr_lbn;
3170 	rec->jb_frags = jfreefrag->fr_frags;
3171 	rec->jb_oldfrags = 0;
3172 }
3173 
3174 static void
3175 jtrunc_write(jtrunc, jseg, data)
3176 	struct jtrunc *jtrunc;
3177 	struct jseg *jseg;
3178 	uint8_t *data;
3179 {
3180 	struct jtrncrec *rec;
3181 
3182 	jtrunc->jt_dep.jb_jsegdep->jd_seg = jseg;
3183 	rec = (struct jtrncrec *)data;
3184 	rec->jt_op = JOP_TRUNC;
3185 	rec->jt_ino = jtrunc->jt_ino;
3186 	rec->jt_size = jtrunc->jt_size;
3187 	rec->jt_extsize = jtrunc->jt_extsize;
3188 }
3189 
3190 static void
3191 jfsync_write(jfsync, jseg, data)
3192 	struct jfsync *jfsync;
3193 	struct jseg *jseg;
3194 	uint8_t *data;
3195 {
3196 	struct jtrncrec *rec;
3197 
3198 	rec = (struct jtrncrec *)data;
3199 	rec->jt_op = JOP_SYNC;
3200 	rec->jt_ino = jfsync->jfs_ino;
3201 	rec->jt_size = jfsync->jfs_size;
3202 	rec->jt_extsize = jfsync->jfs_extsize;
3203 }
3204 
3205 static void
3206 softdep_flushjournal(mp)
3207 	struct mount *mp;
3208 {
3209 	struct jblocks *jblocks;
3210 	struct ufsmount *ump;
3211 
3212 	if (MOUNTEDSUJ(mp) == 0)
3213 		return;
3214 	ump = VFSTOUFS(mp);
3215 	jblocks = ump->softdep_jblocks;
3216 	ACQUIRE_LOCK(ump);
3217 	while (ump->softdep_on_journal) {
3218 		jblocks->jb_needseg = 1;
3219 		softdep_process_journal(mp, NULL, MNT_WAIT);
3220 	}
3221 	FREE_LOCK(ump);
3222 }
3223 
3224 static void softdep_synchronize_completed(struct bio *);
3225 static void softdep_synchronize(struct bio *, struct ufsmount *, void *);
3226 
3227 static void
3228 softdep_synchronize_completed(bp)
3229         struct bio *bp;
3230 {
3231 	struct jseg *oldest;
3232 	struct jseg *jseg;
3233 	struct ufsmount *ump;
3234 
3235 	/*
3236 	 * caller1 marks the last segment written before we issued the
3237 	 * synchronize cache.
3238 	 */
3239 	jseg = bp->bio_caller1;
3240 	if (jseg == NULL) {
3241 		g_destroy_bio(bp);
3242 		return;
3243 	}
3244 	ump = VFSTOUFS(jseg->js_list.wk_mp);
3245 	ACQUIRE_LOCK(ump);
3246 	oldest = NULL;
3247 	/*
3248 	 * Mark all the journal entries waiting on the synchronize cache
3249 	 * as completed so they may continue on.
3250 	 */
3251 	while (jseg != NULL && (jseg->js_state & COMPLETE) == 0) {
3252 		jseg->js_state |= COMPLETE;
3253 		oldest = jseg;
3254 		jseg = TAILQ_PREV(jseg, jseglst, js_next);
3255 	}
3256 	/*
3257 	 * Restart deferred journal entry processing from the oldest
3258 	 * completed jseg.
3259 	 */
3260 	if (oldest)
3261 		complete_jsegs(oldest);
3262 
3263 	FREE_LOCK(ump);
3264 	g_destroy_bio(bp);
3265 }
3266 
3267 /*
3268  * Send BIO_FLUSH/SYNCHRONIZE CACHE to the device to enforce write ordering
3269  * barriers.  The journal must be written prior to any blocks that depend
3270  * on it and the journal can not be released until the blocks have be
3271  * written.  This code handles both barriers simultaneously.
3272  */
3273 static void
3274 softdep_synchronize(bp, ump, caller1)
3275 	struct bio *bp;
3276 	struct ufsmount *ump;
3277 	void *caller1;
3278 {
3279 
3280 	bp->bio_cmd = BIO_FLUSH;
3281 	bp->bio_flags |= BIO_ORDERED;
3282 	bp->bio_data = NULL;
3283 	bp->bio_offset = ump->um_cp->provider->mediasize;
3284 	bp->bio_length = 0;
3285 	bp->bio_done = softdep_synchronize_completed;
3286 	bp->bio_caller1 = caller1;
3287 	g_io_request(bp,
3288 	    (struct g_consumer *)ump->um_devvp->v_bufobj.bo_private);
3289 }
3290 
3291 /*
3292  * Flush some journal records to disk.
3293  */
3294 static void
3295 softdep_process_journal(mp, needwk, flags)
3296 	struct mount *mp;
3297 	struct worklist *needwk;
3298 	int flags;
3299 {
3300 	struct jblocks *jblocks;
3301 	struct ufsmount *ump;
3302 	struct worklist *wk;
3303 	struct jseg *jseg;
3304 	struct buf *bp;
3305 	struct bio *bio;
3306 	uint8_t *data;
3307 	struct fs *fs;
3308 	int shouldflush;
3309 	int segwritten;
3310 	int jrecmin;	/* Minimum records per block. */
3311 	int jrecmax;	/* Maximum records per block. */
3312 	int size;
3313 	int cnt;
3314 	int off;
3315 	int devbsize;
3316 
3317 	if (MOUNTEDSUJ(mp) == 0)
3318 		return;
3319 	shouldflush = softdep_flushcache;
3320 	bio = NULL;
3321 	jseg = NULL;
3322 	ump = VFSTOUFS(mp);
3323 	LOCK_OWNED(ump);
3324 	fs = ump->um_fs;
3325 	jblocks = ump->softdep_jblocks;
3326 	devbsize = ump->um_devvp->v_bufobj.bo_bsize;
3327 	/*
3328 	 * We write anywhere between a disk block and fs block.  The upper
3329 	 * bound is picked to prevent buffer cache fragmentation and limit
3330 	 * processing time per I/O.
3331 	 */
3332 	jrecmin = (devbsize / JREC_SIZE) - 1; /* -1 for seg header */
3333 	jrecmax = (fs->fs_bsize / devbsize) * jrecmin;
3334 	segwritten = 0;
3335 	for (;;) {
3336 		cnt = ump->softdep_on_journal;
3337 		/*
3338 		 * Criteria for writing a segment:
3339 		 * 1) We have a full block.
3340 		 * 2) We're called from jwait() and haven't found the
3341 		 *    journal item yet.
3342 		 * 3) Always write if needseg is set.
3343 		 * 4) If we are called from process_worklist and have
3344 		 *    not yet written anything we write a partial block
3345 		 *    to enforce a 1 second maximum latency on journal
3346 		 *    entries.
3347 		 */
3348 		if (cnt < (jrecmax - 1) && needwk == NULL &&
3349 		    jblocks->jb_needseg == 0 && (segwritten || cnt == 0))
3350 			break;
3351 		cnt++;
3352 		/*
3353 		 * Verify some free journal space.  softdep_prealloc() should
3354 		 * guarantee that we don't run out so this is indicative of
3355 		 * a problem with the flow control.  Try to recover
3356 		 * gracefully in any event.
3357 		 */
3358 		while (jblocks->jb_free == 0) {
3359 			if (flags != MNT_WAIT)
3360 				break;
3361 			printf("softdep: Out of journal space!\n");
3362 			softdep_speedup(ump);
3363 			msleep(jblocks, LOCK_PTR(ump), PRIBIO, "jblocks", hz);
3364 		}
3365 		FREE_LOCK(ump);
3366 		jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS);
3367 		workitem_alloc(&jseg->js_list, D_JSEG, mp);
3368 		LIST_INIT(&jseg->js_entries);
3369 		LIST_INIT(&jseg->js_indirs);
3370 		jseg->js_state = ATTACHED;
3371 		if (shouldflush == 0)
3372 			jseg->js_state |= COMPLETE;
3373 		else if (bio == NULL)
3374 			bio = g_alloc_bio();
3375 		jseg->js_jblocks = jblocks;
3376 		bp = geteblk(fs->fs_bsize, 0);
3377 		ACQUIRE_LOCK(ump);
3378 		/*
3379 		 * If there was a race while we were allocating the block
3380 		 * and jseg the entry we care about was likely written.
3381 		 * We bail out in both the WAIT and NOWAIT case and assume
3382 		 * the caller will loop if the entry it cares about is
3383 		 * not written.
3384 		 */
3385 		cnt = ump->softdep_on_journal;
3386 		if (cnt + jblocks->jb_needseg == 0 || jblocks->jb_free == 0) {
3387 			bp->b_flags |= B_INVAL | B_NOCACHE;
3388 			WORKITEM_FREE(jseg, D_JSEG);
3389 			FREE_LOCK(ump);
3390 			brelse(bp);
3391 			ACQUIRE_LOCK(ump);
3392 			break;
3393 		}
3394 		/*
3395 		 * Calculate the disk block size required for the available
3396 		 * records rounded to the min size.
3397 		 */
3398 		if (cnt == 0)
3399 			size = devbsize;
3400 		else if (cnt < jrecmax)
3401 			size = howmany(cnt, jrecmin) * devbsize;
3402 		else
3403 			size = fs->fs_bsize;
3404 		/*
3405 		 * Allocate a disk block for this journal data and account
3406 		 * for truncation of the requested size if enough contiguous
3407 		 * space was not available.
3408 		 */
3409 		bp->b_blkno = jblocks_alloc(jblocks, size, &size);
3410 		bp->b_lblkno = bp->b_blkno;
3411 		bp->b_offset = bp->b_blkno * DEV_BSIZE;
3412 		bp->b_bcount = size;
3413 		bp->b_flags &= ~B_INVAL;
3414 		bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY;
3415 		/*
3416 		 * Initialize our jseg with cnt records.  Assign the next
3417 		 * sequence number to it and link it in-order.
3418 		 */
3419 		cnt = MIN(cnt, (size / devbsize) * jrecmin);
3420 		jseg->js_buf = bp;
3421 		jseg->js_cnt = cnt;
3422 		jseg->js_refs = cnt + 1;	/* Self ref. */
3423 		jseg->js_size = size;
3424 		jseg->js_seq = jblocks->jb_nextseq++;
3425 		if (jblocks->jb_oldestseg == NULL)
3426 			jblocks->jb_oldestseg = jseg;
3427 		jseg->js_oldseq = jblocks->jb_oldestseg->js_seq;
3428 		TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next);
3429 		if (jblocks->jb_writeseg == NULL)
3430 			jblocks->jb_writeseg = jseg;
3431 		/*
3432 		 * Start filling in records from the pending list.
3433 		 */
3434 		data = bp->b_data;
3435 		off = 0;
3436 
3437 		/*
3438 		 * Always put a header on the first block.
3439 		 * XXX As with below, there might not be a chance to get
3440 		 * into the loop.  Ensure that something valid is written.
3441 		 */
3442 		jseg_write(ump, jseg, data);
3443 		off += JREC_SIZE;
3444 		data = bp->b_data + off;
3445 
3446 		/*
3447 		 * XXX Something is wrong here.  There's no work to do,
3448 		 * but we need to perform and I/O and allow it to complete
3449 		 * anyways.
3450 		 */
3451 		if (LIST_EMPTY(&ump->softdep_journal_pending))
3452 			stat_emptyjblocks++;
3453 
3454 		while ((wk = LIST_FIRST(&ump->softdep_journal_pending))
3455 		    != NULL) {
3456 			if (cnt == 0)
3457 				break;
3458 			/* Place a segment header on every device block. */
3459 			if ((off % devbsize) == 0) {
3460 				jseg_write(ump, jseg, data);
3461 				off += JREC_SIZE;
3462 				data = bp->b_data + off;
3463 			}
3464 			if (wk == needwk)
3465 				needwk = NULL;
3466 			remove_from_journal(wk);
3467 			wk->wk_state |= INPROGRESS;
3468 			WORKLIST_INSERT(&jseg->js_entries, wk);
3469 			switch (wk->wk_type) {
3470 			case D_JADDREF:
3471 				jaddref_write(WK_JADDREF(wk), jseg, data);
3472 				break;
3473 			case D_JREMREF:
3474 				jremref_write(WK_JREMREF(wk), jseg, data);
3475 				break;
3476 			case D_JMVREF:
3477 				jmvref_write(WK_JMVREF(wk), jseg, data);
3478 				break;
3479 			case D_JNEWBLK:
3480 				jnewblk_write(WK_JNEWBLK(wk), jseg, data);
3481 				break;
3482 			case D_JFREEBLK:
3483 				jfreeblk_write(WK_JFREEBLK(wk), jseg, data);
3484 				break;
3485 			case D_JFREEFRAG:
3486 				jfreefrag_write(WK_JFREEFRAG(wk), jseg, data);
3487 				break;
3488 			case D_JTRUNC:
3489 				jtrunc_write(WK_JTRUNC(wk), jseg, data);
3490 				break;
3491 			case D_JFSYNC:
3492 				jfsync_write(WK_JFSYNC(wk), jseg, data);
3493 				break;
3494 			default:
3495 				panic("process_journal: Unknown type %s",
3496 				    TYPENAME(wk->wk_type));
3497 				/* NOTREACHED */
3498 			}
3499 			off += JREC_SIZE;
3500 			data = bp->b_data + off;
3501 			cnt--;
3502 		}
3503 
3504 		/* Clear any remaining space so we don't leak kernel data */
3505 		if (size > off)
3506 			bzero(data, size - off);
3507 
3508 		/*
3509 		 * Write this one buffer and continue.
3510 		 */
3511 		segwritten = 1;
3512 		jblocks->jb_needseg = 0;
3513 		WORKLIST_INSERT(&bp->b_dep, &jseg->js_list);
3514 		FREE_LOCK(ump);
3515 		pbgetvp(ump->um_devvp, bp);
3516 		/*
3517 		 * We only do the blocking wait once we find the journal
3518 		 * entry we're looking for.
3519 		 */
3520 		if (needwk == NULL && flags == MNT_WAIT)
3521 			bwrite(bp);
3522 		else
3523 			bawrite(bp);
3524 		ACQUIRE_LOCK(ump);
3525 	}
3526 	/*
3527 	 * If we wrote a segment issue a synchronize cache so the journal
3528 	 * is reflected on disk before the data is written.  Since reclaiming
3529 	 * journal space also requires writing a journal record this
3530 	 * process also enforces a barrier before reclamation.
3531 	 */
3532 	if (segwritten && shouldflush) {
3533 		softdep_synchronize(bio, ump,
3534 		    TAILQ_LAST(&jblocks->jb_segs, jseglst));
3535 	} else if (bio)
3536 		g_destroy_bio(bio);
3537 	/*
3538 	 * If we've suspended the filesystem because we ran out of journal
3539 	 * space either try to sync it here to make some progress or
3540 	 * unsuspend it if we already have.
3541 	 */
3542 	if (flags == 0 && jblocks->jb_suspended) {
3543 		if (journal_unsuspend(ump))
3544 			return;
3545 		FREE_LOCK(ump);
3546 		VFS_SYNC(mp, MNT_NOWAIT);
3547 		ffs_sbupdate(ump, MNT_WAIT, 0);
3548 		ACQUIRE_LOCK(ump);
3549 	}
3550 }
3551 
3552 /*
3553  * Complete a jseg, allowing all dependencies awaiting journal writes
3554  * to proceed.  Each journal dependency also attaches a jsegdep to dependent
3555  * structures so that the journal segment can be freed to reclaim space.
3556  */
3557 static void
3558 complete_jseg(jseg)
3559 	struct jseg *jseg;
3560 {
3561 	struct worklist *wk;
3562 	struct jmvref *jmvref;
3563 	int waiting;
3564 #ifdef INVARIANTS
3565 	int i = 0;
3566 #endif
3567 
3568 	while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) {
3569 		WORKLIST_REMOVE(wk);
3570 		waiting = wk->wk_state & IOWAITING;
3571 		wk->wk_state &= ~(INPROGRESS | IOWAITING);
3572 		wk->wk_state |= COMPLETE;
3573 		KASSERT(i++ < jseg->js_cnt,
3574 		    ("handle_written_jseg: overflow %d >= %d",
3575 		    i - 1, jseg->js_cnt));
3576 		switch (wk->wk_type) {
3577 		case D_JADDREF:
3578 			handle_written_jaddref(WK_JADDREF(wk));
3579 			break;
3580 		case D_JREMREF:
3581 			handle_written_jremref(WK_JREMREF(wk));
3582 			break;
3583 		case D_JMVREF:
3584 			rele_jseg(jseg);	/* No jsegdep. */
3585 			jmvref = WK_JMVREF(wk);
3586 			LIST_REMOVE(jmvref, jm_deps);
3587 			if ((jmvref->jm_pagedep->pd_state & ONWORKLIST) == 0)
3588 				free_pagedep(jmvref->jm_pagedep);
3589 			WORKITEM_FREE(jmvref, D_JMVREF);
3590 			break;
3591 		case D_JNEWBLK:
3592 			handle_written_jnewblk(WK_JNEWBLK(wk));
3593 			break;
3594 		case D_JFREEBLK:
3595 			handle_written_jblkdep(&WK_JFREEBLK(wk)->jf_dep);
3596 			break;
3597 		case D_JTRUNC:
3598 			handle_written_jblkdep(&WK_JTRUNC(wk)->jt_dep);
3599 			break;
3600 		case D_JFSYNC:
3601 			rele_jseg(jseg);	/* No jsegdep. */
3602 			WORKITEM_FREE(wk, D_JFSYNC);
3603 			break;
3604 		case D_JFREEFRAG:
3605 			handle_written_jfreefrag(WK_JFREEFRAG(wk));
3606 			break;
3607 		default:
3608 			panic("handle_written_jseg: Unknown type %s",
3609 			    TYPENAME(wk->wk_type));
3610 			/* NOTREACHED */
3611 		}
3612 		if (waiting)
3613 			wakeup(wk);
3614 	}
3615 	/* Release the self reference so the structure may be freed. */
3616 	rele_jseg(jseg);
3617 }
3618 
3619 /*
3620  * Determine which jsegs are ready for completion processing.  Waits for
3621  * synchronize cache to complete as well as forcing in-order completion
3622  * of journal entries.
3623  */
3624 static void
3625 complete_jsegs(jseg)
3626 	struct jseg *jseg;
3627 {
3628 	struct jblocks *jblocks;
3629 	struct jseg *jsegn;
3630 
3631 	jblocks = jseg->js_jblocks;
3632 	/*
3633 	 * Don't allow out of order completions.  If this isn't the first
3634 	 * block wait for it to write before we're done.
3635 	 */
3636 	if (jseg != jblocks->jb_writeseg)
3637 		return;
3638 	/* Iterate through available jsegs processing their entries. */
3639 	while (jseg && (jseg->js_state & ALLCOMPLETE) == ALLCOMPLETE) {
3640 		jblocks->jb_oldestwrseq = jseg->js_oldseq;
3641 		jsegn = TAILQ_NEXT(jseg, js_next);
3642 		complete_jseg(jseg);
3643 		jseg = jsegn;
3644 	}
3645 	jblocks->jb_writeseg = jseg;
3646 	/*
3647 	 * Attempt to free jsegs now that oldestwrseq may have advanced.
3648 	 */
3649 	free_jsegs(jblocks);
3650 }
3651 
3652 /*
3653  * Mark a jseg as DEPCOMPLETE and throw away the buffer.  Attempt to handle
3654  * the final completions.
3655  */
3656 static void
3657 handle_written_jseg(jseg, bp)
3658 	struct jseg *jseg;
3659 	struct buf *bp;
3660 {
3661 
3662 	if (jseg->js_refs == 0)
3663 		panic("handle_written_jseg: No self-reference on %p", jseg);
3664 	jseg->js_state |= DEPCOMPLETE;
3665 	/*
3666 	 * We'll never need this buffer again, set flags so it will be
3667 	 * discarded.
3668 	 */
3669 	bp->b_flags |= B_INVAL | B_NOCACHE;
3670 	pbrelvp(bp);
3671 	complete_jsegs(jseg);
3672 }
3673 
3674 static inline struct jsegdep *
3675 inoref_jseg(inoref)
3676 	struct inoref *inoref;
3677 {
3678 	struct jsegdep *jsegdep;
3679 
3680 	jsegdep = inoref->if_jsegdep;
3681 	inoref->if_jsegdep = NULL;
3682 
3683 	return (jsegdep);
3684 }
3685 
3686 /*
3687  * Called once a jremref has made it to stable store.  The jremref is marked
3688  * complete and we attempt to free it.  Any pagedeps writes sleeping waiting
3689  * for the jremref to complete will be awoken by free_jremref.
3690  */
3691 static void
3692 handle_written_jremref(jremref)
3693 	struct jremref *jremref;
3694 {
3695 	struct inodedep *inodedep;
3696 	struct jsegdep *jsegdep;
3697 	struct dirrem *dirrem;
3698 
3699 	/* Grab the jsegdep. */
3700 	jsegdep = inoref_jseg(&jremref->jr_ref);
3701 	/*
3702 	 * Remove us from the inoref list.
3703 	 */
3704 	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino,
3705 	    0, &inodedep) == 0)
3706 		panic("handle_written_jremref: Lost inodedep");
3707 	TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
3708 	/*
3709 	 * Complete the dirrem.
3710 	 */
3711 	dirrem = jremref->jr_dirrem;
3712 	jremref->jr_dirrem = NULL;
3713 	LIST_REMOVE(jremref, jr_deps);
3714 	jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT;
3715 	jwork_insert(&dirrem->dm_jwork, jsegdep);
3716 	if (LIST_EMPTY(&dirrem->dm_jremrefhd) &&
3717 	    (dirrem->dm_state & COMPLETE) != 0)
3718 		add_to_worklist(&dirrem->dm_list, 0);
3719 	free_jremref(jremref);
3720 }
3721 
3722 /*
3723  * Called once a jaddref has made it to stable store.  The dependency is
3724  * marked complete and any dependent structures are added to the inode
3725  * bufwait list to be completed as soon as it is written.  If a bitmap write
3726  * depends on this entry we move the inode into the inodedephd of the
3727  * bmsafemap dependency and attempt to remove the jaddref from the bmsafemap.
3728  */
3729 static void
3730 handle_written_jaddref(jaddref)
3731 	struct jaddref *jaddref;
3732 {
3733 	struct jsegdep *jsegdep;
3734 	struct inodedep *inodedep;
3735 	struct diradd *diradd;
3736 	struct mkdir *mkdir;
3737 
3738 	/* Grab the jsegdep. */
3739 	jsegdep = inoref_jseg(&jaddref->ja_ref);
3740 	mkdir = NULL;
3741 	diradd = NULL;
3742 	if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
3743 	    0, &inodedep) == 0)
3744 		panic("handle_written_jaddref: Lost inodedep.");
3745 	if (jaddref->ja_diradd == NULL)
3746 		panic("handle_written_jaddref: No dependency");
3747 	if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) {
3748 		diradd = jaddref->ja_diradd;
3749 		WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list);
3750 	} else if (jaddref->ja_state & MKDIR_PARENT) {
3751 		mkdir = jaddref->ja_mkdir;
3752 		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list);
3753 	} else if (jaddref->ja_state & MKDIR_BODY)
3754 		mkdir = jaddref->ja_mkdir;
3755 	else
3756 		panic("handle_written_jaddref: Unknown dependency %p",
3757 		    jaddref->ja_diradd);
3758 	jaddref->ja_diradd = NULL;	/* also clears ja_mkdir */
3759 	/*
3760 	 * Remove us from the inode list.
3761 	 */
3762 	TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps);
3763 	/*
3764 	 * The mkdir may be waiting on the jaddref to clear before freeing.
3765 	 */
3766 	if (mkdir) {
3767 		KASSERT(mkdir->md_list.wk_type == D_MKDIR,
3768 		    ("handle_written_jaddref: Incorrect type for mkdir %s",
3769 		    TYPENAME(mkdir->md_list.wk_type)));
3770 		mkdir->md_jaddref = NULL;
3771 		diradd = mkdir->md_diradd;
3772 		mkdir->md_state |= DEPCOMPLETE;
3773 		complete_mkdir(mkdir);
3774 	}
3775 	jwork_insert(&diradd->da_jwork, jsegdep);
3776 	if (jaddref->ja_state & NEWBLOCK) {
3777 		inodedep->id_state |= ONDEPLIST;
3778 		LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd,
3779 		    inodedep, id_deps);
3780 	}
3781 	free_jaddref(jaddref);
3782 }
3783 
3784 /*
3785  * Called once a jnewblk journal is written.  The allocdirect or allocindir
3786  * is placed in the bmsafemap to await notification of a written bitmap.  If
3787  * the operation was canceled we add the segdep to the appropriate
3788  * dependency to free the journal space once the canceling operation
3789  * completes.
3790  */
3791 static void
3792 handle_written_jnewblk(jnewblk)
3793 	struct jnewblk *jnewblk;
3794 {
3795 	struct bmsafemap *bmsafemap;
3796 	struct freefrag *freefrag;
3797 	struct freework *freework;
3798 	struct jsegdep *jsegdep;
3799 	struct newblk *newblk;
3800 
3801 	/* Grab the jsegdep. */
3802 	jsegdep = jnewblk->jn_jsegdep;
3803 	jnewblk->jn_jsegdep = NULL;
3804 	if (jnewblk->jn_dep == NULL)
3805 		panic("handle_written_jnewblk: No dependency for the segdep.");
3806 	switch (jnewblk->jn_dep->wk_type) {
3807 	case D_NEWBLK:
3808 	case D_ALLOCDIRECT:
3809 	case D_ALLOCINDIR:
3810 		/*
3811 		 * Add the written block to the bmsafemap so it can
3812 		 * be notified when the bitmap is on disk.
3813 		 */
3814 		newblk = WK_NEWBLK(jnewblk->jn_dep);
3815 		newblk->nb_jnewblk = NULL;
3816 		if ((newblk->nb_state & GOINGAWAY) == 0) {
3817 			bmsafemap = newblk->nb_bmsafemap;
3818 			newblk->nb_state |= ONDEPLIST;
3819 			LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk,
3820 			    nb_deps);
3821 		}
3822 		jwork_insert(&newblk->nb_jwork, jsegdep);
3823 		break;
3824 	case D_FREEFRAG:
3825 		/*
3826 		 * A newblock being removed by a freefrag when replaced by
3827 		 * frag extension.
3828 		 */
3829 		freefrag = WK_FREEFRAG(jnewblk->jn_dep);
3830 		freefrag->ff_jdep = NULL;
3831 		jwork_insert(&freefrag->ff_jwork, jsegdep);
3832 		break;
3833 	case D_FREEWORK:
3834 		/*
3835 		 * A direct block was removed by truncate.
3836 		 */
3837 		freework = WK_FREEWORK(jnewblk->jn_dep);
3838 		freework->fw_jnewblk = NULL;
3839 		jwork_insert(&freework->fw_freeblks->fb_jwork, jsegdep);
3840 		break;
3841 	default:
3842 		panic("handle_written_jnewblk: Unknown type %d.",
3843 		    jnewblk->jn_dep->wk_type);
3844 	}
3845 	jnewblk->jn_dep = NULL;
3846 	free_jnewblk(jnewblk);
3847 }
3848 
3849 /*
3850  * Cancel a jfreefrag that won't be needed, probably due to colliding with
3851  * an in-flight allocation that has not yet been committed.  Divorce us
3852  * from the freefrag and mark it DEPCOMPLETE so that it may be added
3853  * to the worklist.
3854  */
3855 static void
3856 cancel_jfreefrag(jfreefrag)
3857 	struct jfreefrag *jfreefrag;
3858 {
3859 	struct freefrag *freefrag;
3860 
3861 	if (jfreefrag->fr_jsegdep) {
3862 		free_jsegdep(jfreefrag->fr_jsegdep);
3863 		jfreefrag->fr_jsegdep = NULL;
3864 	}
3865 	freefrag = jfreefrag->fr_freefrag;
3866 	jfreefrag->fr_freefrag = NULL;
3867 	free_jfreefrag(jfreefrag);
3868 	freefrag->ff_state |= DEPCOMPLETE;
3869 	CTR1(KTR_SUJ, "cancel_jfreefrag: blkno %jd", freefrag->ff_blkno);
3870 }
3871 
3872 /*
3873  * Free a jfreefrag when the parent freefrag is rendered obsolete.
3874  */
3875 static void
3876 free_jfreefrag(jfreefrag)
3877 	struct jfreefrag *jfreefrag;
3878 {
3879 
3880 	if (jfreefrag->fr_state & INPROGRESS)
3881 		WORKLIST_REMOVE(&jfreefrag->fr_list);
3882 	else if (jfreefrag->fr_state & ONWORKLIST)
3883 		remove_from_journal(&jfreefrag->fr_list);
3884 	if (jfreefrag->fr_freefrag != NULL)
3885 		panic("free_jfreefrag:  Still attached to a freefrag.");
3886 	WORKITEM_FREE(jfreefrag, D_JFREEFRAG);
3887 }
3888 
3889 /*
3890  * Called when the journal write for a jfreefrag completes.  The parent
3891  * freefrag is added to the worklist if this completes its dependencies.
3892  */
3893 static void
3894 handle_written_jfreefrag(jfreefrag)
3895 	struct jfreefrag *jfreefrag;
3896 {
3897 	struct jsegdep *jsegdep;
3898 	struct freefrag *freefrag;
3899 
3900 	/* Grab the jsegdep. */
3901 	jsegdep = jfreefrag->fr_jsegdep;
3902 	jfreefrag->fr_jsegdep = NULL;
3903 	freefrag = jfreefrag->fr_freefrag;
3904 	if (freefrag == NULL)
3905 		panic("handle_written_jfreefrag: No freefrag.");
3906 	freefrag->ff_state |= DEPCOMPLETE;
3907 	freefrag->ff_jdep = NULL;
3908 	jwork_insert(&freefrag->ff_jwork, jsegdep);
3909 	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
3910 		add_to_worklist(&freefrag->ff_list, 0);
3911 	jfreefrag->fr_freefrag = NULL;
3912 	free_jfreefrag(jfreefrag);
3913 }
3914 
3915 /*
3916  * Called when the journal write for a jfreeblk completes.  The jfreeblk
3917  * is removed from the freeblks list of pending journal writes and the
3918  * jsegdep is moved to the freeblks jwork to be completed when all blocks
3919  * have been reclaimed.
3920  */
3921 static void
3922 handle_written_jblkdep(jblkdep)
3923 	struct jblkdep *jblkdep;
3924 {
3925 	struct freeblks *freeblks;
3926 	struct jsegdep *jsegdep;
3927 
3928 	/* Grab the jsegdep. */
3929 	jsegdep = jblkdep->jb_jsegdep;
3930 	jblkdep->jb_jsegdep = NULL;
3931 	freeblks = jblkdep->jb_freeblks;
3932 	LIST_REMOVE(jblkdep, jb_deps);
3933 	jwork_insert(&freeblks->fb_jwork, jsegdep);
3934 	/*
3935 	 * If the freeblks is all journaled, we can add it to the worklist.
3936 	 */
3937 	if (LIST_EMPTY(&freeblks->fb_jblkdephd) &&
3938 	    (freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
3939 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
3940 
3941 	free_jblkdep(jblkdep);
3942 }
3943 
3944 static struct jsegdep *
3945 newjsegdep(struct worklist *wk)
3946 {
3947 	struct jsegdep *jsegdep;
3948 
3949 	jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS);
3950 	workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp);
3951 	jsegdep->jd_seg = NULL;
3952 
3953 	return (jsegdep);
3954 }
3955 
3956 static struct jmvref *
3957 newjmvref(dp, ino, oldoff, newoff)
3958 	struct inode *dp;
3959 	ino_t ino;
3960 	off_t oldoff;
3961 	off_t newoff;
3962 {
3963 	struct jmvref *jmvref;
3964 
3965 	jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS);
3966 	workitem_alloc(&jmvref->jm_list, D_JMVREF, UFSTOVFS(dp->i_ump));
3967 	jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE;
3968 	jmvref->jm_parent = dp->i_number;
3969 	jmvref->jm_ino = ino;
3970 	jmvref->jm_oldoff = oldoff;
3971 	jmvref->jm_newoff = newoff;
3972 
3973 	return (jmvref);
3974 }
3975 
3976 /*
3977  * Allocate a new jremref that tracks the removal of ip from dp with the
3978  * directory entry offset of diroff.  Mark the entry as ATTACHED and
3979  * DEPCOMPLETE as we have all the information required for the journal write
3980  * and the directory has already been removed from the buffer.  The caller
3981  * is responsible for linking the jremref into the pagedep and adding it
3982  * to the journal to write.  The MKDIR_PARENT flag is set if we're doing
3983  * a DOTDOT addition so handle_workitem_remove() can properly assign
3984  * the jsegdep when we're done.
3985  */
3986 static struct jremref *
3987 newjremref(struct dirrem *dirrem, struct inode *dp, struct inode *ip,
3988     off_t diroff, nlink_t nlink)
3989 {
3990 	struct jremref *jremref;
3991 
3992 	jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS);
3993 	workitem_alloc(&jremref->jr_list, D_JREMREF, UFSTOVFS(dp->i_ump));
3994 	jremref->jr_state = ATTACHED;
3995 	newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff,
3996 	   nlink, ip->i_mode);
3997 	jremref->jr_dirrem = dirrem;
3998 
3999 	return (jremref);
4000 }
4001 
4002 static inline void
4003 newinoref(struct inoref *inoref, ino_t ino, ino_t parent, off_t diroff,
4004     nlink_t nlink, uint16_t mode)
4005 {
4006 
4007 	inoref->if_jsegdep = newjsegdep(&inoref->if_list);
4008 	inoref->if_diroff = diroff;
4009 	inoref->if_ino = ino;
4010 	inoref->if_parent = parent;
4011 	inoref->if_nlink = nlink;
4012 	inoref->if_mode = mode;
4013 }
4014 
4015 /*
4016  * Allocate a new jaddref to track the addition of ino to dp at diroff.  The
4017  * directory offset may not be known until later.  The caller is responsible
4018  * adding the entry to the journal when this information is available.  nlink
4019  * should be the link count prior to the addition and mode is only required
4020  * to have the correct FMT.
4021  */
4022 static struct jaddref *
4023 newjaddref(struct inode *dp, ino_t ino, off_t diroff, int16_t nlink,
4024     uint16_t mode)
4025 {
4026 	struct jaddref *jaddref;
4027 
4028 	jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS);
4029 	workitem_alloc(&jaddref->ja_list, D_JADDREF, UFSTOVFS(dp->i_ump));
4030 	jaddref->ja_state = ATTACHED;
4031 	jaddref->ja_mkdir = NULL;
4032 	newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode);
4033 
4034 	return (jaddref);
4035 }
4036 
4037 /*
4038  * Create a new free dependency for a freework.  The caller is responsible
4039  * for adjusting the reference count when it has the lock held.  The freedep
4040  * will track an outstanding bitmap write that will ultimately clear the
4041  * freework to continue.
4042  */
4043 static struct freedep *
4044 newfreedep(struct freework *freework)
4045 {
4046 	struct freedep *freedep;
4047 
4048 	freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS);
4049 	workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp);
4050 	freedep->fd_freework = freework;
4051 
4052 	return (freedep);
4053 }
4054 
4055 /*
4056  * Free a freedep structure once the buffer it is linked to is written.  If
4057  * this is the last reference to the freework schedule it for completion.
4058  */
4059 static void
4060 free_freedep(freedep)
4061 	struct freedep *freedep;
4062 {
4063 	struct freework *freework;
4064 
4065 	freework = freedep->fd_freework;
4066 	freework->fw_freeblks->fb_cgwait--;
4067 	if (--freework->fw_ref == 0)
4068 		freework_enqueue(freework);
4069 	WORKITEM_FREE(freedep, D_FREEDEP);
4070 }
4071 
4072 /*
4073  * Allocate a new freework structure that may be a level in an indirect
4074  * when parent is not NULL or a top level block when it is.  The top level
4075  * freework structures are allocated without the per-filesystem lock held
4076  * and before the freeblks is visible outside of softdep_setup_freeblocks().
4077  */
4078 static struct freework *
4079 newfreework(ump, freeblks, parent, lbn, nb, frags, off, journal)
4080 	struct ufsmount *ump;
4081 	struct freeblks *freeblks;
4082 	struct freework *parent;
4083 	ufs_lbn_t lbn;
4084 	ufs2_daddr_t nb;
4085 	int frags;
4086 	int off;
4087 	int journal;
4088 {
4089 	struct freework *freework;
4090 
4091 	freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS);
4092 	workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp);
4093 	freework->fw_state = ATTACHED;
4094 	freework->fw_jnewblk = NULL;
4095 	freework->fw_freeblks = freeblks;
4096 	freework->fw_parent = parent;
4097 	freework->fw_lbn = lbn;
4098 	freework->fw_blkno = nb;
4099 	freework->fw_frags = frags;
4100 	freework->fw_indir = NULL;
4101 	freework->fw_ref = (MOUNTEDSUJ(UFSTOVFS(ump)) == 0 || lbn >= -NXADDR)
4102 		? 0 : NINDIR(ump->um_fs) + 1;
4103 	freework->fw_start = freework->fw_off = off;
4104 	if (journal)
4105 		newjfreeblk(freeblks, lbn, nb, frags);
4106 	if (parent == NULL) {
4107 		ACQUIRE_LOCK(ump);
4108 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
4109 		freeblks->fb_ref++;
4110 		FREE_LOCK(ump);
4111 	}
4112 
4113 	return (freework);
4114 }
4115 
4116 /*
4117  * Eliminate a jfreeblk for a block that does not need journaling.
4118  */
4119 static void
4120 cancel_jfreeblk(freeblks, blkno)
4121 	struct freeblks *freeblks;
4122 	ufs2_daddr_t blkno;
4123 {
4124 	struct jfreeblk *jfreeblk;
4125 	struct jblkdep *jblkdep;
4126 
4127 	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) {
4128 		if (jblkdep->jb_list.wk_type != D_JFREEBLK)
4129 			continue;
4130 		jfreeblk = WK_JFREEBLK(&jblkdep->jb_list);
4131 		if (jfreeblk->jf_blkno == blkno)
4132 			break;
4133 	}
4134 	if (jblkdep == NULL)
4135 		return;
4136 	CTR1(KTR_SUJ, "cancel_jfreeblk: blkno %jd", blkno);
4137 	free_jsegdep(jblkdep->jb_jsegdep);
4138 	LIST_REMOVE(jblkdep, jb_deps);
4139 	WORKITEM_FREE(jfreeblk, D_JFREEBLK);
4140 }
4141 
4142 /*
4143  * Allocate a new jfreeblk to journal top level block pointer when truncating
4144  * a file.  The caller must add this to the worklist when the per-filesystem
4145  * lock is held.
4146  */
4147 static struct jfreeblk *
4148 newjfreeblk(freeblks, lbn, blkno, frags)
4149 	struct freeblks *freeblks;
4150 	ufs_lbn_t lbn;
4151 	ufs2_daddr_t blkno;
4152 	int frags;
4153 {
4154 	struct jfreeblk *jfreeblk;
4155 
4156 	jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS);
4157 	workitem_alloc(&jfreeblk->jf_dep.jb_list, D_JFREEBLK,
4158 	    freeblks->fb_list.wk_mp);
4159 	jfreeblk->jf_dep.jb_jsegdep = newjsegdep(&jfreeblk->jf_dep.jb_list);
4160 	jfreeblk->jf_dep.jb_freeblks = freeblks;
4161 	jfreeblk->jf_ino = freeblks->fb_inum;
4162 	jfreeblk->jf_lbn = lbn;
4163 	jfreeblk->jf_blkno = blkno;
4164 	jfreeblk->jf_frags = frags;
4165 	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jfreeblk->jf_dep, jb_deps);
4166 
4167 	return (jfreeblk);
4168 }
4169 
4170 /*
4171  * The journal is only prepared to handle full-size block numbers, so we
4172  * have to adjust the record to reflect the change to a full-size block.
4173  * For example, suppose we have a block made up of fragments 8-15 and
4174  * want to free its last two fragments. We are given a request that says:
4175  *     FREEBLK ino=5, blkno=14, lbn=0, frags=2, oldfrags=0
4176  * where frags are the number of fragments to free and oldfrags are the
4177  * number of fragments to keep. To block align it, we have to change it to
4178  * have a valid full-size blkno, so it becomes:
4179  *     FREEBLK ino=5, blkno=8, lbn=0, frags=2, oldfrags=6
4180  */
4181 static void
4182 adjust_newfreework(freeblks, frag_offset)
4183 	struct freeblks *freeblks;
4184 	int frag_offset;
4185 {
4186 	struct jfreeblk *jfreeblk;
4187 
4188 	KASSERT((LIST_FIRST(&freeblks->fb_jblkdephd) != NULL &&
4189 	    LIST_FIRST(&freeblks->fb_jblkdephd)->jb_list.wk_type == D_JFREEBLK),
4190 	    ("adjust_newfreework: Missing freeblks dependency"));
4191 
4192 	jfreeblk = WK_JFREEBLK(LIST_FIRST(&freeblks->fb_jblkdephd));
4193 	jfreeblk->jf_blkno -= frag_offset;
4194 	jfreeblk->jf_frags += frag_offset;
4195 }
4196 
4197 /*
4198  * Allocate a new jtrunc to track a partial truncation.
4199  */
4200 static struct jtrunc *
4201 newjtrunc(freeblks, size, extsize)
4202 	struct freeblks *freeblks;
4203 	off_t size;
4204 	int extsize;
4205 {
4206 	struct jtrunc *jtrunc;
4207 
4208 	jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS);
4209 	workitem_alloc(&jtrunc->jt_dep.jb_list, D_JTRUNC,
4210 	    freeblks->fb_list.wk_mp);
4211 	jtrunc->jt_dep.jb_jsegdep = newjsegdep(&jtrunc->jt_dep.jb_list);
4212 	jtrunc->jt_dep.jb_freeblks = freeblks;
4213 	jtrunc->jt_ino = freeblks->fb_inum;
4214 	jtrunc->jt_size = size;
4215 	jtrunc->jt_extsize = extsize;
4216 	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jtrunc->jt_dep, jb_deps);
4217 
4218 	return (jtrunc);
4219 }
4220 
4221 /*
4222  * If we're canceling a new bitmap we have to search for another ref
4223  * to move into the bmsafemap dep.  This might be better expressed
4224  * with another structure.
4225  */
4226 static void
4227 move_newblock_dep(jaddref, inodedep)
4228 	struct jaddref *jaddref;
4229 	struct inodedep *inodedep;
4230 {
4231 	struct inoref *inoref;
4232 	struct jaddref *jaddrefn;
4233 
4234 	jaddrefn = NULL;
4235 	for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
4236 	    inoref = TAILQ_NEXT(inoref, if_deps)) {
4237 		if ((jaddref->ja_state & NEWBLOCK) &&
4238 		    inoref->if_list.wk_type == D_JADDREF) {
4239 			jaddrefn = (struct jaddref *)inoref;
4240 			break;
4241 		}
4242 	}
4243 	if (jaddrefn == NULL)
4244 		return;
4245 	jaddrefn->ja_state &= ~(ATTACHED | UNDONE);
4246 	jaddrefn->ja_state |= jaddref->ja_state &
4247 	    (ATTACHED | UNDONE | NEWBLOCK);
4248 	jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK);
4249 	jaddref->ja_state |= ATTACHED;
4250 	LIST_REMOVE(jaddref, ja_bmdeps);
4251 	LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn,
4252 	    ja_bmdeps);
4253 }
4254 
4255 /*
4256  * Cancel a jaddref either before it has been written or while it is being
4257  * written.  This happens when a link is removed before the add reaches
4258  * the disk.  The jaddref dependency is kept linked into the bmsafemap
4259  * and inode to prevent the link count or bitmap from reaching the disk
4260  * until handle_workitem_remove() re-adjusts the counts and bitmaps as
4261  * required.
4262  *
4263  * Returns 1 if the canceled addref requires journaling of the remove and
4264  * 0 otherwise.
4265  */
4266 static int
4267 cancel_jaddref(jaddref, inodedep, wkhd)
4268 	struct jaddref *jaddref;
4269 	struct inodedep *inodedep;
4270 	struct workhead *wkhd;
4271 {
4272 	struct inoref *inoref;
4273 	struct jsegdep *jsegdep;
4274 	int needsj;
4275 
4276 	KASSERT((jaddref->ja_state & COMPLETE) == 0,
4277 	    ("cancel_jaddref: Canceling complete jaddref"));
4278 	if (jaddref->ja_state & (INPROGRESS | COMPLETE))
4279 		needsj = 1;
4280 	else
4281 		needsj = 0;
4282 	if (inodedep == NULL)
4283 		if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
4284 		    0, &inodedep) == 0)
4285 			panic("cancel_jaddref: Lost inodedep");
4286 	/*
4287 	 * We must adjust the nlink of any reference operation that follows
4288 	 * us so that it is consistent with the in-memory reference.  This
4289 	 * ensures that inode nlink rollbacks always have the correct link.
4290 	 */
4291 	if (needsj == 0) {
4292 		for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
4293 		    inoref = TAILQ_NEXT(inoref, if_deps)) {
4294 			if (inoref->if_state & GOINGAWAY)
4295 				break;
4296 			inoref->if_nlink--;
4297 		}
4298 	}
4299 	jsegdep = inoref_jseg(&jaddref->ja_ref);
4300 	if (jaddref->ja_state & NEWBLOCK)
4301 		move_newblock_dep(jaddref, inodedep);
4302 	wake_worklist(&jaddref->ja_list);
4303 	jaddref->ja_mkdir = NULL;
4304 	if (jaddref->ja_state & INPROGRESS) {
4305 		jaddref->ja_state &= ~INPROGRESS;
4306 		WORKLIST_REMOVE(&jaddref->ja_list);
4307 		jwork_insert(wkhd, jsegdep);
4308 	} else {
4309 		free_jsegdep(jsegdep);
4310 		if (jaddref->ja_state & DEPCOMPLETE)
4311 			remove_from_journal(&jaddref->ja_list);
4312 	}
4313 	jaddref->ja_state |= (GOINGAWAY | DEPCOMPLETE);
4314 	/*
4315 	 * Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove
4316 	 * can arrange for them to be freed with the bitmap.  Otherwise we
4317 	 * no longer need this addref attached to the inoreflst and it
4318 	 * will incorrectly adjust nlink if we leave it.
4319 	 */
4320 	if ((jaddref->ja_state & NEWBLOCK) == 0) {
4321 		TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
4322 		    if_deps);
4323 		jaddref->ja_state |= COMPLETE;
4324 		free_jaddref(jaddref);
4325 		return (needsj);
4326 	}
4327 	/*
4328 	 * Leave the head of the list for jsegdeps for fast merging.
4329 	 */
4330 	if (LIST_FIRST(wkhd) != NULL) {
4331 		jaddref->ja_state |= ONWORKLIST;
4332 		LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list);
4333 	} else
4334 		WORKLIST_INSERT(wkhd, &jaddref->ja_list);
4335 
4336 	return (needsj);
4337 }
4338 
4339 /*
4340  * Attempt to free a jaddref structure when some work completes.  This
4341  * should only succeed once the entry is written and all dependencies have
4342  * been notified.
4343  */
4344 static void
4345 free_jaddref(jaddref)
4346 	struct jaddref *jaddref;
4347 {
4348 
4349 	if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE)
4350 		return;
4351 	if (jaddref->ja_ref.if_jsegdep)
4352 		panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n",
4353 		    jaddref, jaddref->ja_state);
4354 	if (jaddref->ja_state & NEWBLOCK)
4355 		LIST_REMOVE(jaddref, ja_bmdeps);
4356 	if (jaddref->ja_state & (INPROGRESS | ONWORKLIST))
4357 		panic("free_jaddref: Bad state %p(0x%X)",
4358 		    jaddref, jaddref->ja_state);
4359 	if (jaddref->ja_mkdir != NULL)
4360 		panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state);
4361 	WORKITEM_FREE(jaddref, D_JADDREF);
4362 }
4363 
4364 /*
4365  * Free a jremref structure once it has been written or discarded.
4366  */
4367 static void
4368 free_jremref(jremref)
4369 	struct jremref *jremref;
4370 {
4371 
4372 	if (jremref->jr_ref.if_jsegdep)
4373 		free_jsegdep(jremref->jr_ref.if_jsegdep);
4374 	if (jremref->jr_state & INPROGRESS)
4375 		panic("free_jremref: IO still pending");
4376 	WORKITEM_FREE(jremref, D_JREMREF);
4377 }
4378 
4379 /*
4380  * Free a jnewblk structure.
4381  */
4382 static void
4383 free_jnewblk(jnewblk)
4384 	struct jnewblk *jnewblk;
4385 {
4386 
4387 	if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE)
4388 		return;
4389 	LIST_REMOVE(jnewblk, jn_deps);
4390 	if (jnewblk->jn_dep != NULL)
4391 		panic("free_jnewblk: Dependency still attached.");
4392 	WORKITEM_FREE(jnewblk, D_JNEWBLK);
4393 }
4394 
4395 /*
4396  * Cancel a jnewblk which has been been made redundant by frag extension.
4397  */
4398 static void
4399 cancel_jnewblk(jnewblk, wkhd)
4400 	struct jnewblk *jnewblk;
4401 	struct workhead *wkhd;
4402 {
4403 	struct jsegdep *jsegdep;
4404 
4405 	CTR1(KTR_SUJ, "cancel_jnewblk: blkno %jd", jnewblk->jn_blkno);
4406 	jsegdep = jnewblk->jn_jsegdep;
4407 	if (jnewblk->jn_jsegdep == NULL || jnewblk->jn_dep == NULL)
4408 		panic("cancel_jnewblk: Invalid state");
4409 	jnewblk->jn_jsegdep  = NULL;
4410 	jnewblk->jn_dep = NULL;
4411 	jnewblk->jn_state |= GOINGAWAY;
4412 	if (jnewblk->jn_state & INPROGRESS) {
4413 		jnewblk->jn_state &= ~INPROGRESS;
4414 		WORKLIST_REMOVE(&jnewblk->jn_list);
4415 		jwork_insert(wkhd, jsegdep);
4416 	} else {
4417 		free_jsegdep(jsegdep);
4418 		remove_from_journal(&jnewblk->jn_list);
4419 	}
4420 	wake_worklist(&jnewblk->jn_list);
4421 	WORKLIST_INSERT(wkhd, &jnewblk->jn_list);
4422 }
4423 
4424 static void
4425 free_jblkdep(jblkdep)
4426 	struct jblkdep *jblkdep;
4427 {
4428 
4429 	if (jblkdep->jb_list.wk_type == D_JFREEBLK)
4430 		WORKITEM_FREE(jblkdep, D_JFREEBLK);
4431 	else if (jblkdep->jb_list.wk_type == D_JTRUNC)
4432 		WORKITEM_FREE(jblkdep, D_JTRUNC);
4433 	else
4434 		panic("free_jblkdep: Unexpected type %s",
4435 		    TYPENAME(jblkdep->jb_list.wk_type));
4436 }
4437 
4438 /*
4439  * Free a single jseg once it is no longer referenced in memory or on
4440  * disk.  Reclaim journal blocks and dependencies waiting for the segment
4441  * to disappear.
4442  */
4443 static void
4444 free_jseg(jseg, jblocks)
4445 	struct jseg *jseg;
4446 	struct jblocks *jblocks;
4447 {
4448 	struct freework *freework;
4449 
4450 	/*
4451 	 * Free freework structures that were lingering to indicate freed
4452 	 * indirect blocks that forced journal write ordering on reallocate.
4453 	 */
4454 	while ((freework = LIST_FIRST(&jseg->js_indirs)) != NULL)
4455 		indirblk_remove(freework);
4456 	if (jblocks->jb_oldestseg == jseg)
4457 		jblocks->jb_oldestseg = TAILQ_NEXT(jseg, js_next);
4458 	TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next);
4459 	jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size);
4460 	KASSERT(LIST_EMPTY(&jseg->js_entries),
4461 	    ("free_jseg: Freed jseg has valid entries."));
4462 	WORKITEM_FREE(jseg, D_JSEG);
4463 }
4464 
4465 /*
4466  * Free all jsegs that meet the criteria for being reclaimed and update
4467  * oldestseg.
4468  */
4469 static void
4470 free_jsegs(jblocks)
4471 	struct jblocks *jblocks;
4472 {
4473 	struct jseg *jseg;
4474 
4475 	/*
4476 	 * Free only those jsegs which have none allocated before them to
4477 	 * preserve the journal space ordering.
4478 	 */
4479 	while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) {
4480 		/*
4481 		 * Only reclaim space when nothing depends on this journal
4482 		 * set and another set has written that it is no longer
4483 		 * valid.
4484 		 */
4485 		if (jseg->js_refs != 0) {
4486 			jblocks->jb_oldestseg = jseg;
4487 			return;
4488 		}
4489 		if ((jseg->js_state & ALLCOMPLETE) != ALLCOMPLETE)
4490 			break;
4491 		if (jseg->js_seq > jblocks->jb_oldestwrseq)
4492 			break;
4493 		/*
4494 		 * We can free jsegs that didn't write entries when
4495 		 * oldestwrseq == js_seq.
4496 		 */
4497 		if (jseg->js_seq == jblocks->jb_oldestwrseq &&
4498 		    jseg->js_cnt != 0)
4499 			break;
4500 		free_jseg(jseg, jblocks);
4501 	}
4502 	/*
4503 	 * If we exited the loop above we still must discover the
4504 	 * oldest valid segment.
4505 	 */
4506 	if (jseg)
4507 		for (jseg = jblocks->jb_oldestseg; jseg != NULL;
4508 		     jseg = TAILQ_NEXT(jseg, js_next))
4509 			if (jseg->js_refs != 0)
4510 				break;
4511 	jblocks->jb_oldestseg = jseg;
4512 	/*
4513 	 * The journal has no valid records but some jsegs may still be
4514 	 * waiting on oldestwrseq to advance.  We force a small record
4515 	 * out to permit these lingering records to be reclaimed.
4516 	 */
4517 	if (jblocks->jb_oldestseg == NULL && !TAILQ_EMPTY(&jblocks->jb_segs))
4518 		jblocks->jb_needseg = 1;
4519 }
4520 
4521 /*
4522  * Release one reference to a jseg and free it if the count reaches 0.  This
4523  * should eventually reclaim journal space as well.
4524  */
4525 static void
4526 rele_jseg(jseg)
4527 	struct jseg *jseg;
4528 {
4529 
4530 	KASSERT(jseg->js_refs > 0,
4531 	    ("free_jseg: Invalid refcnt %d", jseg->js_refs));
4532 	if (--jseg->js_refs != 0)
4533 		return;
4534 	free_jsegs(jseg->js_jblocks);
4535 }
4536 
4537 /*
4538  * Release a jsegdep and decrement the jseg count.
4539  */
4540 static void
4541 free_jsegdep(jsegdep)
4542 	struct jsegdep *jsegdep;
4543 {
4544 
4545 	if (jsegdep->jd_seg)
4546 		rele_jseg(jsegdep->jd_seg);
4547 	WORKITEM_FREE(jsegdep, D_JSEGDEP);
4548 }
4549 
4550 /*
4551  * Wait for a journal item to make it to disk.  Initiate journal processing
4552  * if required.
4553  */
4554 static int
4555 jwait(wk, waitfor)
4556 	struct worklist *wk;
4557 	int waitfor;
4558 {
4559 
4560 	LOCK_OWNED(VFSTOUFS(wk->wk_mp));
4561 	/*
4562 	 * Blocking journal waits cause slow synchronous behavior.  Record
4563 	 * stats on the frequency of these blocking operations.
4564 	 */
4565 	if (waitfor == MNT_WAIT) {
4566 		stat_journal_wait++;
4567 		switch (wk->wk_type) {
4568 		case D_JREMREF:
4569 		case D_JMVREF:
4570 			stat_jwait_filepage++;
4571 			break;
4572 		case D_JTRUNC:
4573 		case D_JFREEBLK:
4574 			stat_jwait_freeblks++;
4575 			break;
4576 		case D_JNEWBLK:
4577 			stat_jwait_newblk++;
4578 			break;
4579 		case D_JADDREF:
4580 			stat_jwait_inode++;
4581 			break;
4582 		default:
4583 			break;
4584 		}
4585 	}
4586 	/*
4587 	 * If IO has not started we process the journal.  We can't mark the
4588 	 * worklist item as IOWAITING because we drop the lock while
4589 	 * processing the journal and the worklist entry may be freed after
4590 	 * this point.  The caller may call back in and re-issue the request.
4591 	 */
4592 	if ((wk->wk_state & INPROGRESS) == 0) {
4593 		softdep_process_journal(wk->wk_mp, wk, waitfor);
4594 		if (waitfor != MNT_WAIT)
4595 			return (EBUSY);
4596 		return (0);
4597 	}
4598 	if (waitfor != MNT_WAIT)
4599 		return (EBUSY);
4600 	wait_worklist(wk, "jwait");
4601 	return (0);
4602 }
4603 
4604 /*
4605  * Lookup an inodedep based on an inode pointer and set the nlinkdelta as
4606  * appropriate.  This is a convenience function to reduce duplicate code
4607  * for the setup and revert functions below.
4608  */
4609 static struct inodedep *
4610 inodedep_lookup_ip(ip)
4611 	struct inode *ip;
4612 {
4613 	struct inodedep *inodedep;
4614 	int dflags;
4615 
4616 	KASSERT(ip->i_nlink >= ip->i_effnlink,
4617 	    ("inodedep_lookup_ip: bad delta"));
4618 	dflags = DEPALLOC;
4619 	if (IS_SNAPSHOT(ip))
4620 		dflags |= NODELAY;
4621 	(void) inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, dflags,
4622 	    &inodedep);
4623 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
4624 	KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
4625 
4626 	return (inodedep);
4627 }
4628 
4629 /*
4630  * Called prior to creating a new inode and linking it to a directory.  The
4631  * jaddref structure must already be allocated by softdep_setup_inomapdep
4632  * and it is discovered here so we can initialize the mode and update
4633  * nlinkdelta.
4634  */
4635 void
4636 softdep_setup_create(dp, ip)
4637 	struct inode *dp;
4638 	struct inode *ip;
4639 {
4640 	struct inodedep *inodedep;
4641 	struct jaddref *jaddref;
4642 	struct vnode *dvp;
4643 
4644 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4645 	    ("softdep_setup_create called on non-softdep filesystem"));
4646 	KASSERT(ip->i_nlink == 1,
4647 	    ("softdep_setup_create: Invalid link count."));
4648 	dvp = ITOV(dp);
4649 	ACQUIRE_LOCK(dp->i_ump);
4650 	inodedep = inodedep_lookup_ip(ip);
4651 	if (DOINGSUJ(dvp)) {
4652 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4653 		    inoreflst);
4654 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
4655 		    ("softdep_setup_create: No addref structure present."));
4656 	}
4657 	softdep_prelink(dvp, NULL);
4658 	FREE_LOCK(dp->i_ump);
4659 }
4660 
4661 /*
4662  * Create a jaddref structure to track the addition of a DOTDOT link when
4663  * we are reparenting an inode as part of a rename.  This jaddref will be
4664  * found by softdep_setup_directory_change.  Adjusts nlinkdelta for
4665  * non-journaling softdep.
4666  */
4667 void
4668 softdep_setup_dotdot_link(dp, ip)
4669 	struct inode *dp;
4670 	struct inode *ip;
4671 {
4672 	struct inodedep *inodedep;
4673 	struct jaddref *jaddref;
4674 	struct vnode *dvp;
4675 	struct vnode *vp;
4676 
4677 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4678 	    ("softdep_setup_dotdot_link called on non-softdep filesystem"));
4679 	dvp = ITOV(dp);
4680 	vp = ITOV(ip);
4681 	jaddref = NULL;
4682 	/*
4683 	 * We don't set MKDIR_PARENT as this is not tied to a mkdir and
4684 	 * is used as a normal link would be.
4685 	 */
4686 	if (DOINGSUJ(dvp))
4687 		jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
4688 		    dp->i_effnlink - 1, dp->i_mode);
4689 	ACQUIRE_LOCK(dp->i_ump);
4690 	inodedep = inodedep_lookup_ip(dp);
4691 	if (jaddref)
4692 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4693 		    if_deps);
4694 	softdep_prelink(dvp, ITOV(ip));
4695 	FREE_LOCK(dp->i_ump);
4696 }
4697 
4698 /*
4699  * Create a jaddref structure to track a new link to an inode.  The directory
4700  * offset is not known until softdep_setup_directory_add or
4701  * softdep_setup_directory_change.  Adjusts nlinkdelta for non-journaling
4702  * softdep.
4703  */
4704 void
4705 softdep_setup_link(dp, ip)
4706 	struct inode *dp;
4707 	struct inode *ip;
4708 {
4709 	struct inodedep *inodedep;
4710 	struct jaddref *jaddref;
4711 	struct vnode *dvp;
4712 
4713 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4714 	    ("softdep_setup_link called on non-softdep filesystem"));
4715 	dvp = ITOV(dp);
4716 	jaddref = NULL;
4717 	if (DOINGSUJ(dvp))
4718 		jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1,
4719 		    ip->i_mode);
4720 	ACQUIRE_LOCK(dp->i_ump);
4721 	inodedep = inodedep_lookup_ip(ip);
4722 	if (jaddref)
4723 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4724 		    if_deps);
4725 	softdep_prelink(dvp, ITOV(ip));
4726 	FREE_LOCK(dp->i_ump);
4727 }
4728 
4729 /*
4730  * Called to create the jaddref structures to track . and .. references as
4731  * well as lookup and further initialize the incomplete jaddref created
4732  * by softdep_setup_inomapdep when the inode was allocated.  Adjusts
4733  * nlinkdelta for non-journaling softdep.
4734  */
4735 void
4736 softdep_setup_mkdir(dp, ip)
4737 	struct inode *dp;
4738 	struct inode *ip;
4739 {
4740 	struct inodedep *inodedep;
4741 	struct jaddref *dotdotaddref;
4742 	struct jaddref *dotaddref;
4743 	struct jaddref *jaddref;
4744 	struct vnode *dvp;
4745 
4746 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4747 	    ("softdep_setup_mkdir called on non-softdep filesystem"));
4748 	dvp = ITOV(dp);
4749 	dotaddref = dotdotaddref = NULL;
4750 	if (DOINGSUJ(dvp)) {
4751 		dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1,
4752 		    ip->i_mode);
4753 		dotaddref->ja_state |= MKDIR_BODY;
4754 		dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
4755 		    dp->i_effnlink - 1, dp->i_mode);
4756 		dotdotaddref->ja_state |= MKDIR_PARENT;
4757 	}
4758 	ACQUIRE_LOCK(dp->i_ump);
4759 	inodedep = inodedep_lookup_ip(ip);
4760 	if (DOINGSUJ(dvp)) {
4761 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4762 		    inoreflst);
4763 		KASSERT(jaddref != NULL,
4764 		    ("softdep_setup_mkdir: No addref structure present."));
4765 		KASSERT(jaddref->ja_parent == dp->i_number,
4766 		    ("softdep_setup_mkdir: bad parent %ju",
4767 		    (uintmax_t)jaddref->ja_parent));
4768 		TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref,
4769 		    if_deps);
4770 	}
4771 	inodedep = inodedep_lookup_ip(dp);
4772 	if (DOINGSUJ(dvp))
4773 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst,
4774 		    &dotdotaddref->ja_ref, if_deps);
4775 	softdep_prelink(ITOV(dp), NULL);
4776 	FREE_LOCK(dp->i_ump);
4777 }
4778 
4779 /*
4780  * Called to track nlinkdelta of the inode and parent directories prior to
4781  * unlinking a directory.
4782  */
4783 void
4784 softdep_setup_rmdir(dp, ip)
4785 	struct inode *dp;
4786 	struct inode *ip;
4787 {
4788 	struct vnode *dvp;
4789 
4790 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4791 	    ("softdep_setup_rmdir called on non-softdep filesystem"));
4792 	dvp = ITOV(dp);
4793 	ACQUIRE_LOCK(dp->i_ump);
4794 	(void) inodedep_lookup_ip(ip);
4795 	(void) inodedep_lookup_ip(dp);
4796 	softdep_prelink(dvp, ITOV(ip));
4797 	FREE_LOCK(dp->i_ump);
4798 }
4799 
4800 /*
4801  * Called to track nlinkdelta of the inode and parent directories prior to
4802  * unlink.
4803  */
4804 void
4805 softdep_setup_unlink(dp, ip)
4806 	struct inode *dp;
4807 	struct inode *ip;
4808 {
4809 	struct vnode *dvp;
4810 
4811 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4812 	    ("softdep_setup_unlink called on non-softdep filesystem"));
4813 	dvp = ITOV(dp);
4814 	ACQUIRE_LOCK(dp->i_ump);
4815 	(void) inodedep_lookup_ip(ip);
4816 	(void) inodedep_lookup_ip(dp);
4817 	softdep_prelink(dvp, ITOV(ip));
4818 	FREE_LOCK(dp->i_ump);
4819 }
4820 
4821 /*
4822  * Called to release the journal structures created by a failed non-directory
4823  * creation.  Adjusts nlinkdelta for non-journaling softdep.
4824  */
4825 void
4826 softdep_revert_create(dp, ip)
4827 	struct inode *dp;
4828 	struct inode *ip;
4829 {
4830 	struct inodedep *inodedep;
4831 	struct jaddref *jaddref;
4832 	struct vnode *dvp;
4833 
4834 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4835 	    ("softdep_revert_create called on non-softdep filesystem"));
4836 	dvp = ITOV(dp);
4837 	ACQUIRE_LOCK(dp->i_ump);
4838 	inodedep = inodedep_lookup_ip(ip);
4839 	if (DOINGSUJ(dvp)) {
4840 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4841 		    inoreflst);
4842 		KASSERT(jaddref->ja_parent == dp->i_number,
4843 		    ("softdep_revert_create: addref parent mismatch"));
4844 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4845 	}
4846 	FREE_LOCK(dp->i_ump);
4847 }
4848 
4849 /*
4850  * Called to release the journal structures created by a failed link
4851  * addition.  Adjusts nlinkdelta for non-journaling softdep.
4852  */
4853 void
4854 softdep_revert_link(dp, ip)
4855 	struct inode *dp;
4856 	struct inode *ip;
4857 {
4858 	struct inodedep *inodedep;
4859 	struct jaddref *jaddref;
4860 	struct vnode *dvp;
4861 
4862 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4863 	    ("softdep_revert_link called on non-softdep filesystem"));
4864 	dvp = ITOV(dp);
4865 	ACQUIRE_LOCK(dp->i_ump);
4866 	inodedep = inodedep_lookup_ip(ip);
4867 	if (DOINGSUJ(dvp)) {
4868 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4869 		    inoreflst);
4870 		KASSERT(jaddref->ja_parent == dp->i_number,
4871 		    ("softdep_revert_link: addref parent mismatch"));
4872 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4873 	}
4874 	FREE_LOCK(dp->i_ump);
4875 }
4876 
4877 /*
4878  * Called to release the journal structures created by a failed mkdir
4879  * attempt.  Adjusts nlinkdelta for non-journaling softdep.
4880  */
4881 void
4882 softdep_revert_mkdir(dp, ip)
4883 	struct inode *dp;
4884 	struct inode *ip;
4885 {
4886 	struct inodedep *inodedep;
4887 	struct jaddref *jaddref;
4888 	struct jaddref *dotaddref;
4889 	struct vnode *dvp;
4890 
4891 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4892 	    ("softdep_revert_mkdir called on non-softdep filesystem"));
4893 	dvp = ITOV(dp);
4894 
4895 	ACQUIRE_LOCK(dp->i_ump);
4896 	inodedep = inodedep_lookup_ip(dp);
4897 	if (DOINGSUJ(dvp)) {
4898 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4899 		    inoreflst);
4900 		KASSERT(jaddref->ja_parent == ip->i_number,
4901 		    ("softdep_revert_mkdir: dotdot addref parent mismatch"));
4902 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4903 	}
4904 	inodedep = inodedep_lookup_ip(ip);
4905 	if (DOINGSUJ(dvp)) {
4906 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4907 		    inoreflst);
4908 		KASSERT(jaddref->ja_parent == dp->i_number,
4909 		    ("softdep_revert_mkdir: addref parent mismatch"));
4910 		dotaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
4911 		    inoreflst, if_deps);
4912 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4913 		KASSERT(dotaddref->ja_parent == ip->i_number,
4914 		    ("softdep_revert_mkdir: dot addref parent mismatch"));
4915 		cancel_jaddref(dotaddref, inodedep, &inodedep->id_inowait);
4916 	}
4917 	FREE_LOCK(dp->i_ump);
4918 }
4919 
4920 /*
4921  * Called to correct nlinkdelta after a failed rmdir.
4922  */
4923 void
4924 softdep_revert_rmdir(dp, ip)
4925 	struct inode *dp;
4926 	struct inode *ip;
4927 {
4928 
4929 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4930 	    ("softdep_revert_rmdir called on non-softdep filesystem"));
4931 	ACQUIRE_LOCK(dp->i_ump);
4932 	(void) inodedep_lookup_ip(ip);
4933 	(void) inodedep_lookup_ip(dp);
4934 	FREE_LOCK(dp->i_ump);
4935 }
4936 
4937 /*
4938  * Protecting the freemaps (or bitmaps).
4939  *
4940  * To eliminate the need to execute fsck before mounting a filesystem
4941  * after a power failure, one must (conservatively) guarantee that the
4942  * on-disk copy of the bitmaps never indicate that a live inode or block is
4943  * free.  So, when a block or inode is allocated, the bitmap should be
4944  * updated (on disk) before any new pointers.  When a block or inode is
4945  * freed, the bitmap should not be updated until all pointers have been
4946  * reset.  The latter dependency is handled by the delayed de-allocation
4947  * approach described below for block and inode de-allocation.  The former
4948  * dependency is handled by calling the following procedure when a block or
4949  * inode is allocated. When an inode is allocated an "inodedep" is created
4950  * with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
4951  * Each "inodedep" is also inserted into the hash indexing structure so
4952  * that any additional link additions can be made dependent on the inode
4953  * allocation.
4954  *
4955  * The ufs filesystem maintains a number of free block counts (e.g., per
4956  * cylinder group, per cylinder and per <cylinder, rotational position> pair)
4957  * in addition to the bitmaps.  These counts are used to improve efficiency
4958  * during allocation and therefore must be consistent with the bitmaps.
4959  * There is no convenient way to guarantee post-crash consistency of these
4960  * counts with simple update ordering, for two main reasons: (1) The counts
4961  * and bitmaps for a single cylinder group block are not in the same disk
4962  * sector.  If a disk write is interrupted (e.g., by power failure), one may
4963  * be written and the other not.  (2) Some of the counts are located in the
4964  * superblock rather than the cylinder group block. So, we focus our soft
4965  * updates implementation on protecting the bitmaps. When mounting a
4966  * filesystem, we recompute the auxiliary counts from the bitmaps.
4967  */
4968 
4969 /*
4970  * Called just after updating the cylinder group block to allocate an inode.
4971  */
4972 void
4973 softdep_setup_inomapdep(bp, ip, newinum, mode)
4974 	struct buf *bp;		/* buffer for cylgroup block with inode map */
4975 	struct inode *ip;	/* inode related to allocation */
4976 	ino_t newinum;		/* new inode number being allocated */
4977 	int mode;
4978 {
4979 	struct inodedep *inodedep;
4980 	struct bmsafemap *bmsafemap;
4981 	struct jaddref *jaddref;
4982 	struct mount *mp;
4983 	struct fs *fs;
4984 
4985 	mp = UFSTOVFS(ip->i_ump);
4986 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
4987 	    ("softdep_setup_inomapdep called on non-softdep filesystem"));
4988 	fs = ip->i_ump->um_fs;
4989 	jaddref = NULL;
4990 
4991 	/*
4992 	 * Allocate the journal reference add structure so that the bitmap
4993 	 * can be dependent on it.
4994 	 */
4995 	if (MOUNTEDSUJ(mp)) {
4996 		jaddref = newjaddref(ip, newinum, 0, 0, mode);
4997 		jaddref->ja_state |= NEWBLOCK;
4998 	}
4999 
5000 	/*
5001 	 * Create a dependency for the newly allocated inode.
5002 	 * Panic if it already exists as something is seriously wrong.
5003 	 * Otherwise add it to the dependency list for the buffer holding
5004 	 * the cylinder group map from which it was allocated.
5005 	 *
5006 	 * We have to preallocate a bmsafemap entry in case it is needed
5007 	 * in bmsafemap_lookup since once we allocate the inodedep, we
5008 	 * have to finish initializing it before we can FREE_LOCK().
5009 	 * By preallocating, we avoid FREE_LOCK() while doing a malloc
5010 	 * in bmsafemap_lookup. We cannot call bmsafemap_lookup before
5011 	 * creating the inodedep as it can be freed during the time
5012 	 * that we FREE_LOCK() while allocating the inodedep. We must
5013 	 * call workitem_alloc() before entering the locked section as
5014 	 * it also acquires the lock and we must avoid trying doing so
5015 	 * recursively.
5016 	 */
5017 	bmsafemap = malloc(sizeof(struct bmsafemap),
5018 	    M_BMSAFEMAP, M_SOFTDEP_FLAGS);
5019 	workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
5020 	ACQUIRE_LOCK(ip->i_ump);
5021 	if ((inodedep_lookup(mp, newinum, DEPALLOC | NODELAY, &inodedep)))
5022 		panic("softdep_setup_inomapdep: dependency %p for new"
5023 		    "inode already exists", inodedep);
5024 	bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum), bmsafemap);
5025 	if (jaddref) {
5026 		LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps);
5027 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
5028 		    if_deps);
5029 	} else {
5030 		inodedep->id_state |= ONDEPLIST;
5031 		LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
5032 	}
5033 	inodedep->id_bmsafemap = bmsafemap;
5034 	inodedep->id_state &= ~DEPCOMPLETE;
5035 	FREE_LOCK(ip->i_ump);
5036 }
5037 
5038 /*
5039  * Called just after updating the cylinder group block to
5040  * allocate block or fragment.
5041  */
5042 void
5043 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
5044 	struct buf *bp;		/* buffer for cylgroup block with block map */
5045 	struct mount *mp;	/* filesystem doing allocation */
5046 	ufs2_daddr_t newblkno;	/* number of newly allocated block */
5047 	int frags;		/* Number of fragments. */
5048 	int oldfrags;		/* Previous number of fragments for extend. */
5049 {
5050 	struct newblk *newblk;
5051 	struct bmsafemap *bmsafemap;
5052 	struct jnewblk *jnewblk;
5053 	struct ufsmount *ump;
5054 	struct fs *fs;
5055 
5056 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5057 	    ("softdep_setup_blkmapdep called on non-softdep filesystem"));
5058 	ump = VFSTOUFS(mp);
5059 	fs = ump->um_fs;
5060 	jnewblk = NULL;
5061 	/*
5062 	 * Create a dependency for the newly allocated block.
5063 	 * Add it to the dependency list for the buffer holding
5064 	 * the cylinder group map from which it was allocated.
5065 	 */
5066 	if (MOUNTEDSUJ(mp)) {
5067 		jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS);
5068 		workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp);
5069 		jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list);
5070 		jnewblk->jn_state = ATTACHED;
5071 		jnewblk->jn_blkno = newblkno;
5072 		jnewblk->jn_frags = frags;
5073 		jnewblk->jn_oldfrags = oldfrags;
5074 #ifdef SUJ_DEBUG
5075 		{
5076 			struct cg *cgp;
5077 			uint8_t *blksfree;
5078 			long bno;
5079 			int i;
5080 
5081 			cgp = (struct cg *)bp->b_data;
5082 			blksfree = cg_blksfree(cgp);
5083 			bno = dtogd(fs, jnewblk->jn_blkno);
5084 			for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags;
5085 			    i++) {
5086 				if (isset(blksfree, bno + i))
5087 					panic("softdep_setup_blkmapdep: "
5088 					    "free fragment %d from %d-%d "
5089 					    "state 0x%X dep %p", i,
5090 					    jnewblk->jn_oldfrags,
5091 					    jnewblk->jn_frags,
5092 					    jnewblk->jn_state,
5093 					    jnewblk->jn_dep);
5094 			}
5095 		}
5096 #endif
5097 	}
5098 
5099 	CTR3(KTR_SUJ,
5100 	    "softdep_setup_blkmapdep: blkno %jd frags %d oldfrags %d",
5101 	    newblkno, frags, oldfrags);
5102 	ACQUIRE_LOCK(ump);
5103 	if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0)
5104 		panic("softdep_setup_blkmapdep: found block");
5105 	newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp,
5106 	    dtog(fs, newblkno), NULL);
5107 	if (jnewblk) {
5108 		jnewblk->jn_dep = (struct worklist *)newblk;
5109 		LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps);
5110 	} else {
5111 		newblk->nb_state |= ONDEPLIST;
5112 		LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
5113 	}
5114 	newblk->nb_bmsafemap = bmsafemap;
5115 	newblk->nb_jnewblk = jnewblk;
5116 	FREE_LOCK(ump);
5117 }
5118 
5119 #define	BMSAFEMAP_HASH(ump, cg) \
5120       (&(ump)->bmsafemap_hashtbl[(cg) & (ump)->bmsafemap_hash_size])
5121 
5122 static int
5123 bmsafemap_find(bmsafemaphd, cg, bmsafemapp)
5124 	struct bmsafemap_hashhead *bmsafemaphd;
5125 	int cg;
5126 	struct bmsafemap **bmsafemapp;
5127 {
5128 	struct bmsafemap *bmsafemap;
5129 
5130 	LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash)
5131 		if (bmsafemap->sm_cg == cg)
5132 			break;
5133 	if (bmsafemap) {
5134 		*bmsafemapp = bmsafemap;
5135 		return (1);
5136 	}
5137 	*bmsafemapp = NULL;
5138 
5139 	return (0);
5140 }
5141 
5142 /*
5143  * Find the bmsafemap associated with a cylinder group buffer.
5144  * If none exists, create one. The buffer must be locked when
5145  * this routine is called and this routine must be called with
5146  * the softdep lock held. To avoid giving up the lock while
5147  * allocating a new bmsafemap, a preallocated bmsafemap may be
5148  * provided. If it is provided but not needed, it is freed.
5149  */
5150 static struct bmsafemap *
5151 bmsafemap_lookup(mp, bp, cg, newbmsafemap)
5152 	struct mount *mp;
5153 	struct buf *bp;
5154 	int cg;
5155 	struct bmsafemap *newbmsafemap;
5156 {
5157 	struct bmsafemap_hashhead *bmsafemaphd;
5158 	struct bmsafemap *bmsafemap, *collision;
5159 	struct worklist *wk;
5160 	struct ufsmount *ump;
5161 
5162 	ump = VFSTOUFS(mp);
5163 	LOCK_OWNED(ump);
5164 	KASSERT(bp != NULL, ("bmsafemap_lookup: missing buffer"));
5165 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5166 		if (wk->wk_type == D_BMSAFEMAP) {
5167 			if (newbmsafemap)
5168 				WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP);
5169 			return (WK_BMSAFEMAP(wk));
5170 		}
5171 	}
5172 	bmsafemaphd = BMSAFEMAP_HASH(ump, cg);
5173 	if (bmsafemap_find(bmsafemaphd, cg, &bmsafemap) == 1) {
5174 		if (newbmsafemap)
5175 			WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP);
5176 		return (bmsafemap);
5177 	}
5178 	if (newbmsafemap) {
5179 		bmsafemap = newbmsafemap;
5180 	} else {
5181 		FREE_LOCK(ump);
5182 		bmsafemap = malloc(sizeof(struct bmsafemap),
5183 			M_BMSAFEMAP, M_SOFTDEP_FLAGS);
5184 		workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
5185 		ACQUIRE_LOCK(ump);
5186 	}
5187 	bmsafemap->sm_buf = bp;
5188 	LIST_INIT(&bmsafemap->sm_inodedephd);
5189 	LIST_INIT(&bmsafemap->sm_inodedepwr);
5190 	LIST_INIT(&bmsafemap->sm_newblkhd);
5191 	LIST_INIT(&bmsafemap->sm_newblkwr);
5192 	LIST_INIT(&bmsafemap->sm_jaddrefhd);
5193 	LIST_INIT(&bmsafemap->sm_jnewblkhd);
5194 	LIST_INIT(&bmsafemap->sm_freehd);
5195 	LIST_INIT(&bmsafemap->sm_freewr);
5196 	if (bmsafemap_find(bmsafemaphd, cg, &collision) == 1) {
5197 		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
5198 		return (collision);
5199 	}
5200 	bmsafemap->sm_cg = cg;
5201 	LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash);
5202 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
5203 	WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list);
5204 	return (bmsafemap);
5205 }
5206 
5207 /*
5208  * Direct block allocation dependencies.
5209  *
5210  * When a new block is allocated, the corresponding disk locations must be
5211  * initialized (with zeros or new data) before the on-disk inode points to
5212  * them.  Also, the freemap from which the block was allocated must be
5213  * updated (on disk) before the inode's pointer. These two dependencies are
5214  * independent of each other and are needed for all file blocks and indirect
5215  * blocks that are pointed to directly by the inode.  Just before the
5216  * "in-core" version of the inode is updated with a newly allocated block
5217  * number, a procedure (below) is called to setup allocation dependency
5218  * structures.  These structures are removed when the corresponding
5219  * dependencies are satisfied or when the block allocation becomes obsolete
5220  * (i.e., the file is deleted, the block is de-allocated, or the block is a
5221  * fragment that gets upgraded).  All of these cases are handled in
5222  * procedures described later.
5223  *
5224  * When a file extension causes a fragment to be upgraded, either to a larger
5225  * fragment or to a full block, the on-disk location may change (if the
5226  * previous fragment could not simply be extended). In this case, the old
5227  * fragment must be de-allocated, but not until after the inode's pointer has
5228  * been updated. In most cases, this is handled by later procedures, which
5229  * will construct a "freefrag" structure to be added to the workitem queue
5230  * when the inode update is complete (or obsolete).  The main exception to
5231  * this is when an allocation occurs while a pending allocation dependency
5232  * (for the same block pointer) remains.  This case is handled in the main
5233  * allocation dependency setup procedure by immediately freeing the
5234  * unreferenced fragments.
5235  */
5236 void
5237 softdep_setup_allocdirect(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
5238 	struct inode *ip;	/* inode to which block is being added */
5239 	ufs_lbn_t off;		/* block pointer within inode */
5240 	ufs2_daddr_t newblkno;	/* disk block number being added */
5241 	ufs2_daddr_t oldblkno;	/* previous block number, 0 unless frag */
5242 	long newsize;		/* size of new block */
5243 	long oldsize;		/* size of new block */
5244 	struct buf *bp;		/* bp for allocated block */
5245 {
5246 	struct allocdirect *adp, *oldadp;
5247 	struct allocdirectlst *adphead;
5248 	struct freefrag *freefrag;
5249 	struct inodedep *inodedep;
5250 	struct pagedep *pagedep;
5251 	struct jnewblk *jnewblk;
5252 	struct newblk *newblk;
5253 	struct mount *mp;
5254 	ufs_lbn_t lbn;
5255 
5256 	lbn = bp->b_lblkno;
5257 	mp = UFSTOVFS(ip->i_ump);
5258 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5259 	    ("softdep_setup_allocdirect called on non-softdep filesystem"));
5260 	if (oldblkno && oldblkno != newblkno)
5261 		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn);
5262 	else
5263 		freefrag = NULL;
5264 
5265 	CTR6(KTR_SUJ,
5266 	    "softdep_setup_allocdirect: ino %d blkno %jd oldblkno %jd "
5267 	    "off %jd newsize %ld oldsize %d",
5268 	    ip->i_number, newblkno, oldblkno, off, newsize, oldsize);
5269 	ACQUIRE_LOCK(ip->i_ump);
5270 	if (off >= NDADDR) {
5271 		if (lbn > 0)
5272 			panic("softdep_setup_allocdirect: bad lbn %jd, off %jd",
5273 			    lbn, off);
5274 		/* allocating an indirect block */
5275 		if (oldblkno != 0)
5276 			panic("softdep_setup_allocdirect: non-zero indir");
5277 	} else {
5278 		if (off != lbn)
5279 			panic("softdep_setup_allocdirect: lbn %jd != off %jd",
5280 			    lbn, off);
5281 		/*
5282 		 * Allocating a direct block.
5283 		 *
5284 		 * If we are allocating a directory block, then we must
5285 		 * allocate an associated pagedep to track additions and
5286 		 * deletions.
5287 		 */
5288 		if ((ip->i_mode & IFMT) == IFDIR)
5289 			pagedep_lookup(mp, bp, ip->i_number, off, DEPALLOC,
5290 			    &pagedep);
5291 	}
5292 	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
5293 		panic("softdep_setup_allocdirect: lost block");
5294 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5295 	    ("softdep_setup_allocdirect: newblk already initialized"));
5296 	/*
5297 	 * Convert the newblk to an allocdirect.
5298 	 */
5299 	WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT);
5300 	adp = (struct allocdirect *)newblk;
5301 	newblk->nb_freefrag = freefrag;
5302 	adp->ad_offset = off;
5303 	adp->ad_oldblkno = oldblkno;
5304 	adp->ad_newsize = newsize;
5305 	adp->ad_oldsize = oldsize;
5306 
5307 	/*
5308 	 * Finish initializing the journal.
5309 	 */
5310 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5311 		jnewblk->jn_ino = ip->i_number;
5312 		jnewblk->jn_lbn = lbn;
5313 		add_to_journal(&jnewblk->jn_list);
5314 	}
5315 	if (freefrag && freefrag->ff_jdep != NULL &&
5316 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5317 		add_to_journal(freefrag->ff_jdep);
5318 	inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep);
5319 	adp->ad_inodedep = inodedep;
5320 
5321 	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
5322 	/*
5323 	 * The list of allocdirects must be kept in sorted and ascending
5324 	 * order so that the rollback routines can quickly determine the
5325 	 * first uncommitted block (the size of the file stored on disk
5326 	 * ends at the end of the lowest committed fragment, or if there
5327 	 * are no fragments, at the end of the highest committed block).
5328 	 * Since files generally grow, the typical case is that the new
5329 	 * block is to be added at the end of the list. We speed this
5330 	 * special case by checking against the last allocdirect in the
5331 	 * list before laboriously traversing the list looking for the
5332 	 * insertion point.
5333 	 */
5334 	adphead = &inodedep->id_newinoupdt;
5335 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
5336 	if (oldadp == NULL || oldadp->ad_offset <= off) {
5337 		/* insert at end of list */
5338 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
5339 		if (oldadp != NULL && oldadp->ad_offset == off)
5340 			allocdirect_merge(adphead, adp, oldadp);
5341 		FREE_LOCK(ip->i_ump);
5342 		return;
5343 	}
5344 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
5345 		if (oldadp->ad_offset >= off)
5346 			break;
5347 	}
5348 	if (oldadp == NULL)
5349 		panic("softdep_setup_allocdirect: lost entry");
5350 	/* insert in middle of list */
5351 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5352 	if (oldadp->ad_offset == off)
5353 		allocdirect_merge(adphead, adp, oldadp);
5354 
5355 	FREE_LOCK(ip->i_ump);
5356 }
5357 
5358 /*
5359  * Merge a newer and older journal record to be stored either in a
5360  * newblock or freefrag.  This handles aggregating journal records for
5361  * fragment allocation into a second record as well as replacing a
5362  * journal free with an aborted journal allocation.  A segment for the
5363  * oldest record will be placed on wkhd if it has been written.  If not
5364  * the segment for the newer record will suffice.
5365  */
5366 static struct worklist *
5367 jnewblk_merge(new, old, wkhd)
5368 	struct worklist *new;
5369 	struct worklist *old;
5370 	struct workhead *wkhd;
5371 {
5372 	struct jnewblk *njnewblk;
5373 	struct jnewblk *jnewblk;
5374 
5375 	/* Handle NULLs to simplify callers. */
5376 	if (new == NULL)
5377 		return (old);
5378 	if (old == NULL)
5379 		return (new);
5380 	/* Replace a jfreefrag with a jnewblk. */
5381 	if (new->wk_type == D_JFREEFRAG) {
5382 		if (WK_JNEWBLK(old)->jn_blkno != WK_JFREEFRAG(new)->fr_blkno)
5383 			panic("jnewblk_merge: blkno mismatch: %p, %p",
5384 			    old, new);
5385 		cancel_jfreefrag(WK_JFREEFRAG(new));
5386 		return (old);
5387 	}
5388 	if (old->wk_type != D_JNEWBLK || new->wk_type != D_JNEWBLK)
5389 		panic("jnewblk_merge: Bad type: old %d new %d\n",
5390 		    old->wk_type, new->wk_type);
5391 	/*
5392 	 * Handle merging of two jnewblk records that describe
5393 	 * different sets of fragments in the same block.
5394 	 */
5395 	jnewblk = WK_JNEWBLK(old);
5396 	njnewblk = WK_JNEWBLK(new);
5397 	if (jnewblk->jn_blkno != njnewblk->jn_blkno)
5398 		panic("jnewblk_merge: Merging disparate blocks.");
5399 	/*
5400 	 * The record may be rolled back in the cg.
5401 	 */
5402 	if (jnewblk->jn_state & UNDONE) {
5403 		jnewblk->jn_state &= ~UNDONE;
5404 		njnewblk->jn_state |= UNDONE;
5405 		njnewblk->jn_state &= ~ATTACHED;
5406 	}
5407 	/*
5408 	 * We modify the newer addref and free the older so that if neither
5409 	 * has been written the most up-to-date copy will be on disk.  If
5410 	 * both have been written but rolled back we only temporarily need
5411 	 * one of them to fix the bits when the cg write completes.
5412 	 */
5413 	jnewblk->jn_state |= ATTACHED | COMPLETE;
5414 	njnewblk->jn_oldfrags = jnewblk->jn_oldfrags;
5415 	cancel_jnewblk(jnewblk, wkhd);
5416 	WORKLIST_REMOVE(&jnewblk->jn_list);
5417 	free_jnewblk(jnewblk);
5418 	return (new);
5419 }
5420 
5421 /*
5422  * Replace an old allocdirect dependency with a newer one.
5423  * This routine must be called with splbio interrupts blocked.
5424  */
5425 static void
5426 allocdirect_merge(adphead, newadp, oldadp)
5427 	struct allocdirectlst *adphead;	/* head of list holding allocdirects */
5428 	struct allocdirect *newadp;	/* allocdirect being added */
5429 	struct allocdirect *oldadp;	/* existing allocdirect being checked */
5430 {
5431 	struct worklist *wk;
5432 	struct freefrag *freefrag;
5433 
5434 	freefrag = NULL;
5435 	LOCK_OWNED(VFSTOUFS(newadp->ad_list.wk_mp));
5436 	if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
5437 	    newadp->ad_oldsize != oldadp->ad_newsize ||
5438 	    newadp->ad_offset >= NDADDR)
5439 		panic("%s %jd != new %jd || old size %ld != new %ld",
5440 		    "allocdirect_merge: old blkno",
5441 		    (intmax_t)newadp->ad_oldblkno,
5442 		    (intmax_t)oldadp->ad_newblkno,
5443 		    newadp->ad_oldsize, oldadp->ad_newsize);
5444 	newadp->ad_oldblkno = oldadp->ad_oldblkno;
5445 	newadp->ad_oldsize = oldadp->ad_oldsize;
5446 	/*
5447 	 * If the old dependency had a fragment to free or had never
5448 	 * previously had a block allocated, then the new dependency
5449 	 * can immediately post its freefrag and adopt the old freefrag.
5450 	 * This action is done by swapping the freefrag dependencies.
5451 	 * The new dependency gains the old one's freefrag, and the
5452 	 * old one gets the new one and then immediately puts it on
5453 	 * the worklist when it is freed by free_newblk. It is
5454 	 * not possible to do this swap when the old dependency had a
5455 	 * non-zero size but no previous fragment to free. This condition
5456 	 * arises when the new block is an extension of the old block.
5457 	 * Here, the first part of the fragment allocated to the new
5458 	 * dependency is part of the block currently claimed on disk by
5459 	 * the old dependency, so cannot legitimately be freed until the
5460 	 * conditions for the new dependency are fulfilled.
5461 	 */
5462 	freefrag = newadp->ad_freefrag;
5463 	if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
5464 		newadp->ad_freefrag = oldadp->ad_freefrag;
5465 		oldadp->ad_freefrag = freefrag;
5466 	}
5467 	/*
5468 	 * If we are tracking a new directory-block allocation,
5469 	 * move it from the old allocdirect to the new allocdirect.
5470 	 */
5471 	if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) {
5472 		WORKLIST_REMOVE(wk);
5473 		if (!LIST_EMPTY(&oldadp->ad_newdirblk))
5474 			panic("allocdirect_merge: extra newdirblk");
5475 		WORKLIST_INSERT(&newadp->ad_newdirblk, wk);
5476 	}
5477 	TAILQ_REMOVE(adphead, oldadp, ad_next);
5478 	/*
5479 	 * We need to move any journal dependencies over to the freefrag
5480 	 * that releases this block if it exists.  Otherwise we are
5481 	 * extending an existing block and we'll wait until that is
5482 	 * complete to release the journal space and extend the
5483 	 * new journal to cover this old space as well.
5484 	 */
5485 	if (freefrag == NULL) {
5486 		if (oldadp->ad_newblkno != newadp->ad_newblkno)
5487 			panic("allocdirect_merge: %jd != %jd",
5488 			    oldadp->ad_newblkno, newadp->ad_newblkno);
5489 		newadp->ad_block.nb_jnewblk = (struct jnewblk *)
5490 		    jnewblk_merge(&newadp->ad_block.nb_jnewblk->jn_list,
5491 		    &oldadp->ad_block.nb_jnewblk->jn_list,
5492 		    &newadp->ad_block.nb_jwork);
5493 		oldadp->ad_block.nb_jnewblk = NULL;
5494 		cancel_newblk(&oldadp->ad_block, NULL,
5495 		    &newadp->ad_block.nb_jwork);
5496 	} else {
5497 		wk = (struct worklist *) cancel_newblk(&oldadp->ad_block,
5498 		    &freefrag->ff_list, &freefrag->ff_jwork);
5499 		freefrag->ff_jdep = jnewblk_merge(freefrag->ff_jdep, wk,
5500 		    &freefrag->ff_jwork);
5501 	}
5502 	free_newblk(&oldadp->ad_block);
5503 }
5504 
5505 /*
5506  * Allocate a jfreefrag structure to journal a single block free.
5507  */
5508 static struct jfreefrag *
5509 newjfreefrag(freefrag, ip, blkno, size, lbn)
5510 	struct freefrag *freefrag;
5511 	struct inode *ip;
5512 	ufs2_daddr_t blkno;
5513 	long size;
5514 	ufs_lbn_t lbn;
5515 {
5516 	struct jfreefrag *jfreefrag;
5517 	struct fs *fs;
5518 
5519 	fs = ip->i_fs;
5520 	jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG,
5521 	    M_SOFTDEP_FLAGS);
5522 	workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, UFSTOVFS(ip->i_ump));
5523 	jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list);
5524 	jfreefrag->fr_state = ATTACHED | DEPCOMPLETE;
5525 	jfreefrag->fr_ino = ip->i_number;
5526 	jfreefrag->fr_lbn = lbn;
5527 	jfreefrag->fr_blkno = blkno;
5528 	jfreefrag->fr_frags = numfrags(fs, size);
5529 	jfreefrag->fr_freefrag = freefrag;
5530 
5531 	return (jfreefrag);
5532 }
5533 
5534 /*
5535  * Allocate a new freefrag structure.
5536  */
5537 static struct freefrag *
5538 newfreefrag(ip, blkno, size, lbn)
5539 	struct inode *ip;
5540 	ufs2_daddr_t blkno;
5541 	long size;
5542 	ufs_lbn_t lbn;
5543 {
5544 	struct freefrag *freefrag;
5545 	struct fs *fs;
5546 
5547 	CTR4(KTR_SUJ, "newfreefrag: ino %d blkno %jd size %ld lbn %jd",
5548 	    ip->i_number, blkno, size, lbn);
5549 	fs = ip->i_fs;
5550 	if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
5551 		panic("newfreefrag: frag size");
5552 	freefrag = malloc(sizeof(struct freefrag),
5553 	    M_FREEFRAG, M_SOFTDEP_FLAGS);
5554 	workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ip->i_ump));
5555 	freefrag->ff_state = ATTACHED;
5556 	LIST_INIT(&freefrag->ff_jwork);
5557 	freefrag->ff_inum = ip->i_number;
5558 	freefrag->ff_vtype = ITOV(ip)->v_type;
5559 	freefrag->ff_blkno = blkno;
5560 	freefrag->ff_fragsize = size;
5561 
5562 	if (MOUNTEDSUJ(UFSTOVFS(ip->i_ump))) {
5563 		freefrag->ff_jdep = (struct worklist *)
5564 		    newjfreefrag(freefrag, ip, blkno, size, lbn);
5565 	} else {
5566 		freefrag->ff_state |= DEPCOMPLETE;
5567 		freefrag->ff_jdep = NULL;
5568 	}
5569 
5570 	return (freefrag);
5571 }
5572 
5573 /*
5574  * This workitem de-allocates fragments that were replaced during
5575  * file block allocation.
5576  */
5577 static void
5578 handle_workitem_freefrag(freefrag)
5579 	struct freefrag *freefrag;
5580 {
5581 	struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp);
5582 	struct workhead wkhd;
5583 
5584 	CTR3(KTR_SUJ,
5585 	    "handle_workitem_freefrag: ino %d blkno %jd size %ld",
5586 	    freefrag->ff_inum, freefrag->ff_blkno, freefrag->ff_fragsize);
5587 	/*
5588 	 * It would be illegal to add new completion items to the
5589 	 * freefrag after it was schedule to be done so it must be
5590 	 * safe to modify the list head here.
5591 	 */
5592 	LIST_INIT(&wkhd);
5593 	ACQUIRE_LOCK(ump);
5594 	LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list);
5595 	/*
5596 	 * If the journal has not been written we must cancel it here.
5597 	 */
5598 	if (freefrag->ff_jdep) {
5599 		if (freefrag->ff_jdep->wk_type != D_JNEWBLK)
5600 			panic("handle_workitem_freefrag: Unexpected type %d\n",
5601 			    freefrag->ff_jdep->wk_type);
5602 		cancel_jnewblk(WK_JNEWBLK(freefrag->ff_jdep), &wkhd);
5603 	}
5604 	FREE_LOCK(ump);
5605 	ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno,
5606 	   freefrag->ff_fragsize, freefrag->ff_inum, freefrag->ff_vtype, &wkhd);
5607 	ACQUIRE_LOCK(ump);
5608 	WORKITEM_FREE(freefrag, D_FREEFRAG);
5609 	FREE_LOCK(ump);
5610 }
5611 
5612 /*
5613  * Set up a dependency structure for an external attributes data block.
5614  * This routine follows much of the structure of softdep_setup_allocdirect.
5615  * See the description of softdep_setup_allocdirect above for details.
5616  */
5617 void
5618 softdep_setup_allocext(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
5619 	struct inode *ip;
5620 	ufs_lbn_t off;
5621 	ufs2_daddr_t newblkno;
5622 	ufs2_daddr_t oldblkno;
5623 	long newsize;
5624 	long oldsize;
5625 	struct buf *bp;
5626 {
5627 	struct allocdirect *adp, *oldadp;
5628 	struct allocdirectlst *adphead;
5629 	struct freefrag *freefrag;
5630 	struct inodedep *inodedep;
5631 	struct jnewblk *jnewblk;
5632 	struct newblk *newblk;
5633 	struct mount *mp;
5634 	ufs_lbn_t lbn;
5635 
5636 	mp = UFSTOVFS(ip->i_ump);
5637 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5638 	    ("softdep_setup_allocext called on non-softdep filesystem"));
5639 	KASSERT(off < NXADDR, ("softdep_setup_allocext: lbn %lld > NXADDR",
5640 		    (long long)off));
5641 
5642 	lbn = bp->b_lblkno;
5643 	if (oldblkno && oldblkno != newblkno)
5644 		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn);
5645 	else
5646 		freefrag = NULL;
5647 
5648 	ACQUIRE_LOCK(ip->i_ump);
5649 	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
5650 		panic("softdep_setup_allocext: lost block");
5651 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5652 	    ("softdep_setup_allocext: newblk already initialized"));
5653 	/*
5654 	 * Convert the newblk to an allocdirect.
5655 	 */
5656 	WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT);
5657 	adp = (struct allocdirect *)newblk;
5658 	newblk->nb_freefrag = freefrag;
5659 	adp->ad_offset = off;
5660 	adp->ad_oldblkno = oldblkno;
5661 	adp->ad_newsize = newsize;
5662 	adp->ad_oldsize = oldsize;
5663 	adp->ad_state |=  EXTDATA;
5664 
5665 	/*
5666 	 * Finish initializing the journal.
5667 	 */
5668 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5669 		jnewblk->jn_ino = ip->i_number;
5670 		jnewblk->jn_lbn = lbn;
5671 		add_to_journal(&jnewblk->jn_list);
5672 	}
5673 	if (freefrag && freefrag->ff_jdep != NULL &&
5674 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5675 		add_to_journal(freefrag->ff_jdep);
5676 	inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep);
5677 	adp->ad_inodedep = inodedep;
5678 
5679 	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
5680 	/*
5681 	 * The list of allocdirects must be kept in sorted and ascending
5682 	 * order so that the rollback routines can quickly determine the
5683 	 * first uncommitted block (the size of the file stored on disk
5684 	 * ends at the end of the lowest committed fragment, or if there
5685 	 * are no fragments, at the end of the highest committed block).
5686 	 * Since files generally grow, the typical case is that the new
5687 	 * block is to be added at the end of the list. We speed this
5688 	 * special case by checking against the last allocdirect in the
5689 	 * list before laboriously traversing the list looking for the
5690 	 * insertion point.
5691 	 */
5692 	adphead = &inodedep->id_newextupdt;
5693 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
5694 	if (oldadp == NULL || oldadp->ad_offset <= off) {
5695 		/* insert at end of list */
5696 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
5697 		if (oldadp != NULL && oldadp->ad_offset == off)
5698 			allocdirect_merge(adphead, adp, oldadp);
5699 		FREE_LOCK(ip->i_ump);
5700 		return;
5701 	}
5702 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
5703 		if (oldadp->ad_offset >= off)
5704 			break;
5705 	}
5706 	if (oldadp == NULL)
5707 		panic("softdep_setup_allocext: lost entry");
5708 	/* insert in middle of list */
5709 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5710 	if (oldadp->ad_offset == off)
5711 		allocdirect_merge(adphead, adp, oldadp);
5712 	FREE_LOCK(ip->i_ump);
5713 }
5714 
5715 /*
5716  * Indirect block allocation dependencies.
5717  *
5718  * The same dependencies that exist for a direct block also exist when
5719  * a new block is allocated and pointed to by an entry in a block of
5720  * indirect pointers. The undo/redo states described above are also
5721  * used here. Because an indirect block contains many pointers that
5722  * may have dependencies, a second copy of the entire in-memory indirect
5723  * block is kept. The buffer cache copy is always completely up-to-date.
5724  * The second copy, which is used only as a source for disk writes,
5725  * contains only the safe pointers (i.e., those that have no remaining
5726  * update dependencies). The second copy is freed when all pointers
5727  * are safe. The cache is not allowed to replace indirect blocks with
5728  * pending update dependencies. If a buffer containing an indirect
5729  * block with dependencies is written, these routines will mark it
5730  * dirty again. It can only be successfully written once all the
5731  * dependencies are removed. The ffs_fsync routine in conjunction with
5732  * softdep_sync_metadata work together to get all the dependencies
5733  * removed so that a file can be successfully written to disk. Three
5734  * procedures are used when setting up indirect block pointer
5735  * dependencies. The division is necessary because of the organization
5736  * of the "balloc" routine and because of the distinction between file
5737  * pages and file metadata blocks.
5738  */
5739 
5740 /*
5741  * Allocate a new allocindir structure.
5742  */
5743 static struct allocindir *
5744 newallocindir(ip, ptrno, newblkno, oldblkno, lbn)
5745 	struct inode *ip;	/* inode for file being extended */
5746 	int ptrno;		/* offset of pointer in indirect block */
5747 	ufs2_daddr_t newblkno;	/* disk block number being added */
5748 	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
5749 	ufs_lbn_t lbn;
5750 {
5751 	struct newblk *newblk;
5752 	struct allocindir *aip;
5753 	struct freefrag *freefrag;
5754 	struct jnewblk *jnewblk;
5755 
5756 	if (oldblkno)
5757 		freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize, lbn);
5758 	else
5759 		freefrag = NULL;
5760 	ACQUIRE_LOCK(ip->i_ump);
5761 	if (newblk_lookup(UFSTOVFS(ip->i_ump), newblkno, 0, &newblk) == 0)
5762 		panic("new_allocindir: lost block");
5763 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5764 	    ("newallocindir: newblk already initialized"));
5765 	WORKITEM_REASSIGN(newblk, D_ALLOCINDIR);
5766 	newblk->nb_freefrag = freefrag;
5767 	aip = (struct allocindir *)newblk;
5768 	aip->ai_offset = ptrno;
5769 	aip->ai_oldblkno = oldblkno;
5770 	aip->ai_lbn = lbn;
5771 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5772 		jnewblk->jn_ino = ip->i_number;
5773 		jnewblk->jn_lbn = lbn;
5774 		add_to_journal(&jnewblk->jn_list);
5775 	}
5776 	if (freefrag && freefrag->ff_jdep != NULL &&
5777 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5778 		add_to_journal(freefrag->ff_jdep);
5779 	return (aip);
5780 }
5781 
5782 /*
5783  * Called just before setting an indirect block pointer
5784  * to a newly allocated file page.
5785  */
5786 void
5787 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
5788 	struct inode *ip;	/* inode for file being extended */
5789 	ufs_lbn_t lbn;		/* allocated block number within file */
5790 	struct buf *bp;		/* buffer with indirect blk referencing page */
5791 	int ptrno;		/* offset of pointer in indirect block */
5792 	ufs2_daddr_t newblkno;	/* disk block number being added */
5793 	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
5794 	struct buf *nbp;	/* buffer holding allocated page */
5795 {
5796 	struct inodedep *inodedep;
5797 	struct freefrag *freefrag;
5798 	struct allocindir *aip;
5799 	struct pagedep *pagedep;
5800 	struct mount *mp;
5801 	int dflags;
5802 
5803 	mp = UFSTOVFS(ip->i_ump);
5804 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5805 	    ("softdep_setup_allocindir_page called on non-softdep filesystem"));
5806 	KASSERT(lbn == nbp->b_lblkno,
5807 	    ("softdep_setup_allocindir_page: lbn %jd != lblkno %jd",
5808 	    lbn, bp->b_lblkno));
5809 	CTR4(KTR_SUJ,
5810 	    "softdep_setup_allocindir_page: ino %d blkno %jd oldblkno %jd "
5811 	    "lbn %jd", ip->i_number, newblkno, oldblkno, lbn);
5812 	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page");
5813 	aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn);
5814 	dflags = DEPALLOC;
5815 	if (IS_SNAPSHOT(ip))
5816 		dflags |= NODELAY;
5817 	(void) inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
5818 	/*
5819 	 * If we are allocating a directory page, then we must
5820 	 * allocate an associated pagedep to track additions and
5821 	 * deletions.
5822 	 */
5823 	if ((ip->i_mode & IFMT) == IFDIR)
5824 		pagedep_lookup(mp, nbp, ip->i_number, lbn, DEPALLOC, &pagedep);
5825 	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
5826 	freefrag = setup_allocindir_phase2(bp, ip, inodedep, aip, lbn);
5827 	FREE_LOCK(ip->i_ump);
5828 	if (freefrag)
5829 		handle_workitem_freefrag(freefrag);
5830 }
5831 
5832 /*
5833  * Called just before setting an indirect block pointer to a
5834  * newly allocated indirect block.
5835  */
5836 void
5837 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
5838 	struct buf *nbp;	/* newly allocated indirect block */
5839 	struct inode *ip;	/* inode for file being extended */
5840 	struct buf *bp;		/* indirect block referencing allocated block */
5841 	int ptrno;		/* offset of pointer in indirect block */
5842 	ufs2_daddr_t newblkno;	/* disk block number being added */
5843 {
5844 	struct inodedep *inodedep;
5845 	struct allocindir *aip;
5846 	ufs_lbn_t lbn;
5847 	int dflags;
5848 
5849 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
5850 	    ("softdep_setup_allocindir_meta called on non-softdep filesystem"));
5851 	CTR3(KTR_SUJ,
5852 	    "softdep_setup_allocindir_meta: ino %d blkno %jd ptrno %d",
5853 	    ip->i_number, newblkno, ptrno);
5854 	lbn = nbp->b_lblkno;
5855 	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta");
5856 	aip = newallocindir(ip, ptrno, newblkno, 0, lbn);
5857 	dflags = DEPALLOC;
5858 	if (IS_SNAPSHOT(ip))
5859 		dflags |= NODELAY;
5860 	inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, dflags, &inodedep);
5861 	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
5862 	if (setup_allocindir_phase2(bp, ip, inodedep, aip, lbn))
5863 		panic("softdep_setup_allocindir_meta: Block already existed");
5864 	FREE_LOCK(ip->i_ump);
5865 }
5866 
5867 static void
5868 indirdep_complete(indirdep)
5869 	struct indirdep *indirdep;
5870 {
5871 	struct allocindir *aip;
5872 
5873 	LIST_REMOVE(indirdep, ir_next);
5874 	indirdep->ir_state |= DEPCOMPLETE;
5875 
5876 	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) {
5877 		LIST_REMOVE(aip, ai_next);
5878 		free_newblk(&aip->ai_block);
5879 	}
5880 	/*
5881 	 * If this indirdep is not attached to a buf it was simply waiting
5882 	 * on completion to clear completehd.  free_indirdep() asserts
5883 	 * that nothing is dangling.
5884 	 */
5885 	if ((indirdep->ir_state & ONWORKLIST) == 0)
5886 		free_indirdep(indirdep);
5887 }
5888 
5889 static struct indirdep *
5890 indirdep_lookup(mp, ip, bp)
5891 	struct mount *mp;
5892 	struct inode *ip;
5893 	struct buf *bp;
5894 {
5895 	struct indirdep *indirdep, *newindirdep;
5896 	struct newblk *newblk;
5897 	struct ufsmount *ump;
5898 	struct worklist *wk;
5899 	struct fs *fs;
5900 	ufs2_daddr_t blkno;
5901 
5902 	ump = VFSTOUFS(mp);
5903 	LOCK_OWNED(ump);
5904 	indirdep = NULL;
5905 	newindirdep = NULL;
5906 	fs = ip->i_fs;
5907 	for (;;) {
5908 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5909 			if (wk->wk_type != D_INDIRDEP)
5910 				continue;
5911 			indirdep = WK_INDIRDEP(wk);
5912 			break;
5913 		}
5914 		/* Found on the buffer worklist, no new structure to free. */
5915 		if (indirdep != NULL && newindirdep == NULL)
5916 			return (indirdep);
5917 		if (indirdep != NULL && newindirdep != NULL)
5918 			panic("indirdep_lookup: simultaneous create");
5919 		/* None found on the buffer and a new structure is ready. */
5920 		if (indirdep == NULL && newindirdep != NULL)
5921 			break;
5922 		/* None found and no new structure available. */
5923 		FREE_LOCK(ump);
5924 		newindirdep = malloc(sizeof(struct indirdep),
5925 		    M_INDIRDEP, M_SOFTDEP_FLAGS);
5926 		workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp);
5927 		newindirdep->ir_state = ATTACHED;
5928 		if (ip->i_ump->um_fstype == UFS1)
5929 			newindirdep->ir_state |= UFS1FMT;
5930 		TAILQ_INIT(&newindirdep->ir_trunc);
5931 		newindirdep->ir_saveddata = NULL;
5932 		LIST_INIT(&newindirdep->ir_deplisthd);
5933 		LIST_INIT(&newindirdep->ir_donehd);
5934 		LIST_INIT(&newindirdep->ir_writehd);
5935 		LIST_INIT(&newindirdep->ir_completehd);
5936 		if (bp->b_blkno == bp->b_lblkno) {
5937 			ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp,
5938 			    NULL, NULL);
5939 			bp->b_blkno = blkno;
5940 		}
5941 		newindirdep->ir_freeblks = NULL;
5942 		newindirdep->ir_savebp =
5943 		    getblk(ip->i_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0);
5944 		newindirdep->ir_bp = bp;
5945 		BUF_KERNPROC(newindirdep->ir_savebp);
5946 		bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
5947 		ACQUIRE_LOCK(ump);
5948 	}
5949 	indirdep = newindirdep;
5950 	WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list);
5951 	/*
5952 	 * If the block is not yet allocated we don't set DEPCOMPLETE so
5953 	 * that we don't free dependencies until the pointers are valid.
5954 	 * This could search b_dep for D_ALLOCDIRECT/D_ALLOCINDIR rather
5955 	 * than using the hash.
5956 	 */
5957 	if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk))
5958 		LIST_INSERT_HEAD(&newblk->nb_indirdeps, indirdep, ir_next);
5959 	else
5960 		indirdep->ir_state |= DEPCOMPLETE;
5961 	return (indirdep);
5962 }
5963 
5964 /*
5965  * Called to finish the allocation of the "aip" allocated
5966  * by one of the two routines above.
5967  */
5968 static struct freefrag *
5969 setup_allocindir_phase2(bp, ip, inodedep, aip, lbn)
5970 	struct buf *bp;		/* in-memory copy of the indirect block */
5971 	struct inode *ip;	/* inode for file being extended */
5972 	struct inodedep *inodedep; /* Inodedep for ip */
5973 	struct allocindir *aip;	/* allocindir allocated by the above routines */
5974 	ufs_lbn_t lbn;		/* Logical block number for this block. */
5975 {
5976 	struct fs *fs;
5977 	struct indirdep *indirdep;
5978 	struct allocindir *oldaip;
5979 	struct freefrag *freefrag;
5980 	struct mount *mp;
5981 
5982 	LOCK_OWNED(ip->i_ump);
5983 	mp = UFSTOVFS(ip->i_ump);
5984 	fs = ip->i_fs;
5985 	if (bp->b_lblkno >= 0)
5986 		panic("setup_allocindir_phase2: not indir blk");
5987 	KASSERT(aip->ai_offset >= 0 && aip->ai_offset < NINDIR(fs),
5988 	    ("setup_allocindir_phase2: Bad offset %d", aip->ai_offset));
5989 	indirdep = indirdep_lookup(mp, ip, bp);
5990 	KASSERT(indirdep->ir_savebp != NULL,
5991 	    ("setup_allocindir_phase2 NULL ir_savebp"));
5992 	aip->ai_indirdep = indirdep;
5993 	/*
5994 	 * Check for an unwritten dependency for this indirect offset.  If
5995 	 * there is, merge the old dependency into the new one.  This happens
5996 	 * as a result of reallocblk only.
5997 	 */
5998 	freefrag = NULL;
5999 	if (aip->ai_oldblkno != 0) {
6000 		LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) {
6001 			if (oldaip->ai_offset == aip->ai_offset) {
6002 				freefrag = allocindir_merge(aip, oldaip);
6003 				goto done;
6004 			}
6005 		}
6006 		LIST_FOREACH(oldaip, &indirdep->ir_donehd, ai_next) {
6007 			if (oldaip->ai_offset == aip->ai_offset) {
6008 				freefrag = allocindir_merge(aip, oldaip);
6009 				goto done;
6010 			}
6011 		}
6012 	}
6013 done:
6014 	LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
6015 	return (freefrag);
6016 }
6017 
6018 /*
6019  * Merge two allocindirs which refer to the same block.  Move newblock
6020  * dependencies and setup the freefrags appropriately.
6021  */
6022 static struct freefrag *
6023 allocindir_merge(aip, oldaip)
6024 	struct allocindir *aip;
6025 	struct allocindir *oldaip;
6026 {
6027 	struct freefrag *freefrag;
6028 	struct worklist *wk;
6029 
6030 	if (oldaip->ai_newblkno != aip->ai_oldblkno)
6031 		panic("allocindir_merge: blkno");
6032 	aip->ai_oldblkno = oldaip->ai_oldblkno;
6033 	freefrag = aip->ai_freefrag;
6034 	aip->ai_freefrag = oldaip->ai_freefrag;
6035 	oldaip->ai_freefrag = NULL;
6036 	KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag"));
6037 	/*
6038 	 * If we are tracking a new directory-block allocation,
6039 	 * move it from the old allocindir to the new allocindir.
6040 	 */
6041 	if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) {
6042 		WORKLIST_REMOVE(wk);
6043 		if (!LIST_EMPTY(&oldaip->ai_newdirblk))
6044 			panic("allocindir_merge: extra newdirblk");
6045 		WORKLIST_INSERT(&aip->ai_newdirblk, wk);
6046 	}
6047 	/*
6048 	 * We can skip journaling for this freefrag and just complete
6049 	 * any pending journal work for the allocindir that is being
6050 	 * removed after the freefrag completes.
6051 	 */
6052 	if (freefrag->ff_jdep)
6053 		cancel_jfreefrag(WK_JFREEFRAG(freefrag->ff_jdep));
6054 	LIST_REMOVE(oldaip, ai_next);
6055 	freefrag->ff_jdep = (struct worklist *)cancel_newblk(&oldaip->ai_block,
6056 	    &freefrag->ff_list, &freefrag->ff_jwork);
6057 	free_newblk(&oldaip->ai_block);
6058 
6059 	return (freefrag);
6060 }
6061 
6062 static inline void
6063 setup_freedirect(freeblks, ip, i, needj)
6064 	struct freeblks *freeblks;
6065 	struct inode *ip;
6066 	int i;
6067 	int needj;
6068 {
6069 	ufs2_daddr_t blkno;
6070 	int frags;
6071 
6072 	blkno = DIP(ip, i_db[i]);
6073 	if (blkno == 0)
6074 		return;
6075 	DIP_SET(ip, i_db[i], 0);
6076 	frags = sblksize(ip->i_fs, ip->i_size, i);
6077 	frags = numfrags(ip->i_fs, frags);
6078 	newfreework(ip->i_ump, freeblks, NULL, i, blkno, frags, 0, needj);
6079 }
6080 
6081 static inline void
6082 setup_freeext(freeblks, ip, i, needj)
6083 	struct freeblks *freeblks;
6084 	struct inode *ip;
6085 	int i;
6086 	int needj;
6087 {
6088 	ufs2_daddr_t blkno;
6089 	int frags;
6090 
6091 	blkno = ip->i_din2->di_extb[i];
6092 	if (blkno == 0)
6093 		return;
6094 	ip->i_din2->di_extb[i] = 0;
6095 	frags = sblksize(ip->i_fs, ip->i_din2->di_extsize, i);
6096 	frags = numfrags(ip->i_fs, frags);
6097 	newfreework(ip->i_ump, freeblks, NULL, -1 - i, blkno, frags, 0, needj);
6098 }
6099 
6100 static inline void
6101 setup_freeindir(freeblks, ip, i, lbn, needj)
6102 	struct freeblks *freeblks;
6103 	struct inode *ip;
6104 	int i;
6105 	ufs_lbn_t lbn;
6106 	int needj;
6107 {
6108 	ufs2_daddr_t blkno;
6109 
6110 	blkno = DIP(ip, i_ib[i]);
6111 	if (blkno == 0)
6112 		return;
6113 	DIP_SET(ip, i_ib[i], 0);
6114 	newfreework(ip->i_ump, freeblks, NULL, lbn, blkno, ip->i_fs->fs_frag,
6115 	    0, needj);
6116 }
6117 
6118 static inline struct freeblks *
6119 newfreeblks(mp, ip)
6120 	struct mount *mp;
6121 	struct inode *ip;
6122 {
6123 	struct freeblks *freeblks;
6124 
6125 	freeblks = malloc(sizeof(struct freeblks),
6126 		M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO);
6127 	workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp);
6128 	LIST_INIT(&freeblks->fb_jblkdephd);
6129 	LIST_INIT(&freeblks->fb_jwork);
6130 	freeblks->fb_ref = 0;
6131 	freeblks->fb_cgwait = 0;
6132 	freeblks->fb_state = ATTACHED;
6133 	freeblks->fb_uid = ip->i_uid;
6134 	freeblks->fb_inum = ip->i_number;
6135 	freeblks->fb_vtype = ITOV(ip)->v_type;
6136 	freeblks->fb_modrev = DIP(ip, i_modrev);
6137 	freeblks->fb_devvp = ip->i_devvp;
6138 	freeblks->fb_chkcnt = 0;
6139 	freeblks->fb_len = 0;
6140 
6141 	return (freeblks);
6142 }
6143 
6144 static void
6145 trunc_indirdep(indirdep, freeblks, bp, off)
6146 	struct indirdep *indirdep;
6147 	struct freeblks *freeblks;
6148 	struct buf *bp;
6149 	int off;
6150 {
6151 	struct allocindir *aip, *aipn;
6152 
6153 	/*
6154 	 * The first set of allocindirs won't be in savedbp.
6155 	 */
6156 	LIST_FOREACH_SAFE(aip, &indirdep->ir_deplisthd, ai_next, aipn)
6157 		if (aip->ai_offset > off)
6158 			cancel_allocindir(aip, bp, freeblks, 1);
6159 	LIST_FOREACH_SAFE(aip, &indirdep->ir_donehd, ai_next, aipn)
6160 		if (aip->ai_offset > off)
6161 			cancel_allocindir(aip, bp, freeblks, 1);
6162 	/*
6163 	 * These will exist in savedbp.
6164 	 */
6165 	LIST_FOREACH_SAFE(aip, &indirdep->ir_writehd, ai_next, aipn)
6166 		if (aip->ai_offset > off)
6167 			cancel_allocindir(aip, NULL, freeblks, 0);
6168 	LIST_FOREACH_SAFE(aip, &indirdep->ir_completehd, ai_next, aipn)
6169 		if (aip->ai_offset > off)
6170 			cancel_allocindir(aip, NULL, freeblks, 0);
6171 }
6172 
6173 /*
6174  * Follow the chain of indirects down to lastlbn creating a freework
6175  * structure for each.  This will be used to start indir_trunc() at
6176  * the right offset and create the journal records for the parrtial
6177  * truncation.  A second step will handle the truncated dependencies.
6178  */
6179 static int
6180 setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno)
6181 	struct freeblks *freeblks;
6182 	struct inode *ip;
6183 	ufs_lbn_t lbn;
6184 	ufs_lbn_t lastlbn;
6185 	ufs2_daddr_t blkno;
6186 {
6187 	struct indirdep *indirdep;
6188 	struct indirdep *indirn;
6189 	struct freework *freework;
6190 	struct newblk *newblk;
6191 	struct mount *mp;
6192 	struct buf *bp;
6193 	uint8_t *start;
6194 	uint8_t *end;
6195 	ufs_lbn_t lbnadd;
6196 	int level;
6197 	int error;
6198 	int off;
6199 
6200 
6201 	freework = NULL;
6202 	if (blkno == 0)
6203 		return (0);
6204 	mp = freeblks->fb_list.wk_mp;
6205 	bp = getblk(ITOV(ip), lbn, mp->mnt_stat.f_iosize, 0, 0, 0);
6206 	if ((bp->b_flags & B_CACHE) == 0) {
6207 		bp->b_blkno = blkptrtodb(VFSTOUFS(mp), blkno);
6208 		bp->b_iocmd = BIO_READ;
6209 		bp->b_flags &= ~B_INVAL;
6210 		bp->b_ioflags &= ~BIO_ERROR;
6211 		vfs_busy_pages(bp, 0);
6212 		bp->b_iooffset = dbtob(bp->b_blkno);
6213 		bstrategy(bp);
6214 		curthread->td_ru.ru_inblock++;
6215 		error = bufwait(bp);
6216 		if (error) {
6217 			brelse(bp);
6218 			return (error);
6219 		}
6220 	}
6221 	level = lbn_level(lbn);
6222 	lbnadd = lbn_offset(ip->i_fs, level);
6223 	/*
6224 	 * Compute the offset of the last block we want to keep.  Store
6225 	 * in the freework the first block we want to completely free.
6226 	 */
6227 	off = (lastlbn - -(lbn + level)) / lbnadd;
6228 	if (off + 1 == NINDIR(ip->i_fs))
6229 		goto nowork;
6230 	freework = newfreework(ip->i_ump, freeblks, NULL, lbn, blkno, 0, off+1,
6231 	    0);
6232 	/*
6233 	 * Link the freework into the indirdep.  This will prevent any new
6234 	 * allocations from proceeding until we are finished with the
6235 	 * truncate and the block is written.
6236 	 */
6237 	ACQUIRE_LOCK(ip->i_ump);
6238 	indirdep = indirdep_lookup(mp, ip, bp);
6239 	if (indirdep->ir_freeblks)
6240 		panic("setup_trunc_indir: indirdep already truncated.");
6241 	TAILQ_INSERT_TAIL(&indirdep->ir_trunc, freework, fw_next);
6242 	freework->fw_indir = indirdep;
6243 	/*
6244 	 * Cancel any allocindirs that will not make it to disk.
6245 	 * We have to do this for all copies of the indirdep that
6246 	 * live on this newblk.
6247 	 */
6248 	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
6249 		newblk_lookup(mp, dbtofsb(ip->i_fs, bp->b_blkno), 0, &newblk);
6250 		LIST_FOREACH(indirn, &newblk->nb_indirdeps, ir_next)
6251 			trunc_indirdep(indirn, freeblks, bp, off);
6252 	} else
6253 		trunc_indirdep(indirdep, freeblks, bp, off);
6254 	FREE_LOCK(ip->i_ump);
6255 	/*
6256 	 * Creation is protected by the buf lock. The saveddata is only
6257 	 * needed if a full truncation follows a partial truncation but it
6258 	 * is difficult to allocate in that case so we fetch it anyway.
6259 	 */
6260 	if (indirdep->ir_saveddata == NULL)
6261 		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
6262 		    M_SOFTDEP_FLAGS);
6263 nowork:
6264 	/* Fetch the blkno of the child and the zero start offset. */
6265 	if (ip->i_ump->um_fstype == UFS1) {
6266 		blkno = ((ufs1_daddr_t *)bp->b_data)[off];
6267 		start = (uint8_t *)&((ufs1_daddr_t *)bp->b_data)[off+1];
6268 	} else {
6269 		blkno = ((ufs2_daddr_t *)bp->b_data)[off];
6270 		start = (uint8_t *)&((ufs2_daddr_t *)bp->b_data)[off+1];
6271 	}
6272 	if (freework) {
6273 		/* Zero the truncated pointers. */
6274 		end = bp->b_data + bp->b_bcount;
6275 		bzero(start, end - start);
6276 		bdwrite(bp);
6277 	} else
6278 		bqrelse(bp);
6279 	if (level == 0)
6280 		return (0);
6281 	lbn++; /* adjust level */
6282 	lbn -= (off * lbnadd);
6283 	return setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno);
6284 }
6285 
6286 /*
6287  * Complete the partial truncation of an indirect block setup by
6288  * setup_trunc_indir().  This zeros the truncated pointers in the saved
6289  * copy and writes them to disk before the freeblks is allowed to complete.
6290  */
6291 static void
6292 complete_trunc_indir(freework)
6293 	struct freework *freework;
6294 {
6295 	struct freework *fwn;
6296 	struct indirdep *indirdep;
6297 	struct ufsmount *ump;
6298 	struct buf *bp;
6299 	uintptr_t start;
6300 	int count;
6301 
6302 	ump = VFSTOUFS(freework->fw_list.wk_mp);
6303 	LOCK_OWNED(ump);
6304 	indirdep = freework->fw_indir;
6305 	for (;;) {
6306 		bp = indirdep->ir_bp;
6307 		/* See if the block was discarded. */
6308 		if (bp == NULL)
6309 			break;
6310 		/* Inline part of getdirtybuf().  We dont want bremfree. */
6311 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0)
6312 			break;
6313 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
6314 		    LOCK_PTR(ump)) == 0)
6315 			BUF_UNLOCK(bp);
6316 		ACQUIRE_LOCK(ump);
6317 	}
6318 	freework->fw_state |= DEPCOMPLETE;
6319 	TAILQ_REMOVE(&indirdep->ir_trunc, freework, fw_next);
6320 	/*
6321 	 * Zero the pointers in the saved copy.
6322 	 */
6323 	if (indirdep->ir_state & UFS1FMT)
6324 		start = sizeof(ufs1_daddr_t);
6325 	else
6326 		start = sizeof(ufs2_daddr_t);
6327 	start *= freework->fw_start;
6328 	count = indirdep->ir_savebp->b_bcount - start;
6329 	start += (uintptr_t)indirdep->ir_savebp->b_data;
6330 	bzero((char *)start, count);
6331 	/*
6332 	 * We need to start the next truncation in the list if it has not
6333 	 * been started yet.
6334 	 */
6335 	fwn = TAILQ_FIRST(&indirdep->ir_trunc);
6336 	if (fwn != NULL) {
6337 		if (fwn->fw_freeblks == indirdep->ir_freeblks)
6338 			TAILQ_REMOVE(&indirdep->ir_trunc, fwn, fw_next);
6339 		if ((fwn->fw_state & ONWORKLIST) == 0)
6340 			freework_enqueue(fwn);
6341 	}
6342 	/*
6343 	 * If bp is NULL the block was fully truncated, restore
6344 	 * the saved block list otherwise free it if it is no
6345 	 * longer needed.
6346 	 */
6347 	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
6348 		if (bp == NULL)
6349 			bcopy(indirdep->ir_saveddata,
6350 			    indirdep->ir_savebp->b_data,
6351 			    indirdep->ir_savebp->b_bcount);
6352 		free(indirdep->ir_saveddata, M_INDIRDEP);
6353 		indirdep->ir_saveddata = NULL;
6354 	}
6355 	/*
6356 	 * When bp is NULL there is a full truncation pending.  We
6357 	 * must wait for this full truncation to be journaled before
6358 	 * we can release this freework because the disk pointers will
6359 	 * never be written as zero.
6360 	 */
6361 	if (bp == NULL)  {
6362 		if (LIST_EMPTY(&indirdep->ir_freeblks->fb_jblkdephd))
6363 			handle_written_freework(freework);
6364 		else
6365 			WORKLIST_INSERT(&indirdep->ir_freeblks->fb_freeworkhd,
6366 			   &freework->fw_list);
6367 	} else {
6368 		/* Complete when the real copy is written. */
6369 		WORKLIST_INSERT(&bp->b_dep, &freework->fw_list);
6370 		BUF_UNLOCK(bp);
6371 	}
6372 }
6373 
6374 /*
6375  * Calculate the number of blocks we are going to release where datablocks
6376  * is the current total and length is the new file size.
6377  */
6378 static ufs2_daddr_t
6379 blkcount(fs, datablocks, length)
6380 	struct fs *fs;
6381 	ufs2_daddr_t datablocks;
6382 	off_t length;
6383 {
6384 	off_t totblks, numblks;
6385 
6386 	totblks = 0;
6387 	numblks = howmany(length, fs->fs_bsize);
6388 	if (numblks <= NDADDR) {
6389 		totblks = howmany(length, fs->fs_fsize);
6390 		goto out;
6391 	}
6392         totblks = blkstofrags(fs, numblks);
6393 	numblks -= NDADDR;
6394 	/*
6395 	 * Count all single, then double, then triple indirects required.
6396 	 * Subtracting one indirects worth of blocks for each pass
6397 	 * acknowledges one of each pointed to by the inode.
6398 	 */
6399 	for (;;) {
6400 		totblks += blkstofrags(fs, howmany(numblks, NINDIR(fs)));
6401 		numblks -= NINDIR(fs);
6402 		if (numblks <= 0)
6403 			break;
6404 		numblks = howmany(numblks, NINDIR(fs));
6405 	}
6406 out:
6407 	totblks = fsbtodb(fs, totblks);
6408 	/*
6409 	 * Handle sparse files.  We can't reclaim more blocks than the inode
6410 	 * references.  We will correct it later in handle_complete_freeblks()
6411 	 * when we know the real count.
6412 	 */
6413 	if (totblks > datablocks)
6414 		return (0);
6415 	return (datablocks - totblks);
6416 }
6417 
6418 /*
6419  * Handle freeblocks for journaled softupdate filesystems.
6420  *
6421  * Contrary to normal softupdates, we must preserve the block pointers in
6422  * indirects until their subordinates are free.  This is to avoid journaling
6423  * every block that is freed which may consume more space than the journal
6424  * itself.  The recovery program will see the free block journals at the
6425  * base of the truncated area and traverse them to reclaim space.  The
6426  * pointers in the inode may be cleared immediately after the journal
6427  * records are written because each direct and indirect pointer in the
6428  * inode is recorded in a journal.  This permits full truncation to proceed
6429  * asynchronously.  The write order is journal -> inode -> cgs -> indirects.
6430  *
6431  * The algorithm is as follows:
6432  * 1) Traverse the in-memory state and create journal entries to release
6433  *    the relevant blocks and full indirect trees.
6434  * 2) Traverse the indirect block chain adding partial truncation freework
6435  *    records to indirects in the path to lastlbn.  The freework will
6436  *    prevent new allocation dependencies from being satisfied in this
6437  *    indirect until the truncation completes.
6438  * 3) Read and lock the inode block, performing an update with the new size
6439  *    and pointers.  This prevents truncated data from becoming valid on
6440  *    disk through step 4.
6441  * 4) Reap unsatisfied dependencies that are beyond the truncated area,
6442  *    eliminate journal work for those records that do not require it.
6443  * 5) Schedule the journal records to be written followed by the inode block.
6444  * 6) Allocate any necessary frags for the end of file.
6445  * 7) Zero any partially truncated blocks.
6446  *
6447  * From this truncation proceeds asynchronously using the freework and
6448  * indir_trunc machinery.  The file will not be extended again into a
6449  * partially truncated indirect block until all work is completed but
6450  * the normal dependency mechanism ensures that it is rolled back/forward
6451  * as appropriate.  Further truncation may occur without delay and is
6452  * serialized in indir_trunc().
6453  */
6454 void
6455 softdep_journal_freeblocks(ip, cred, length, flags)
6456 	struct inode *ip;	/* The inode whose length is to be reduced */
6457 	struct ucred *cred;
6458 	off_t length;		/* The new length for the file */
6459 	int flags;		/* IO_EXT and/or IO_NORMAL */
6460 {
6461 	struct freeblks *freeblks, *fbn;
6462 	struct worklist *wk, *wkn;
6463 	struct inodedep *inodedep;
6464 	struct jblkdep *jblkdep;
6465 	struct allocdirect *adp, *adpn;
6466 	struct ufsmount *ump;
6467 	struct fs *fs;
6468 	struct buf *bp;
6469 	struct vnode *vp;
6470 	struct mount *mp;
6471 	ufs2_daddr_t extblocks, datablocks;
6472 	ufs_lbn_t tmpval, lbn, lastlbn;
6473 	int frags, lastoff, iboff, allocblock, needj, dflags, error, i;
6474 
6475 	fs = ip->i_fs;
6476 	ump = ip->i_ump;
6477 	mp = UFSTOVFS(ump);
6478 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
6479 	    ("softdep_journal_freeblocks called on non-softdep filesystem"));
6480 	vp = ITOV(ip);
6481 	needj = 1;
6482 	iboff = -1;
6483 	allocblock = 0;
6484 	extblocks = 0;
6485 	datablocks = 0;
6486 	frags = 0;
6487 	freeblks = newfreeblks(mp, ip);
6488 	ACQUIRE_LOCK(ump);
6489 	/*
6490 	 * If we're truncating a removed file that will never be written
6491 	 * we don't need to journal the block frees.  The canceled journals
6492 	 * for the allocations will suffice.
6493 	 */
6494 	dflags = DEPALLOC;
6495 	if (IS_SNAPSHOT(ip))
6496 		dflags |= NODELAY;
6497 	inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
6498 	if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED &&
6499 	    length == 0)
6500 		needj = 0;
6501 	CTR3(KTR_SUJ, "softdep_journal_freeblks: ip %d length %ld needj %d",
6502 	    ip->i_number, length, needj);
6503 	FREE_LOCK(ump);
6504 	/*
6505 	 * Calculate the lbn that we are truncating to.  This results in -1
6506 	 * if we're truncating the 0 bytes.  So it is the last lbn we want
6507 	 * to keep, not the first lbn we want to truncate.
6508 	 */
6509 	lastlbn = lblkno(fs, length + fs->fs_bsize - 1) - 1;
6510 	lastoff = blkoff(fs, length);
6511 	/*
6512 	 * Compute frags we are keeping in lastlbn.  0 means all.
6513 	 */
6514 	if (lastlbn >= 0 && lastlbn < NDADDR) {
6515 		frags = fragroundup(fs, lastoff);
6516 		/* adp offset of last valid allocdirect. */
6517 		iboff = lastlbn;
6518 	} else if (lastlbn > 0)
6519 		iboff = NDADDR;
6520 	if (fs->fs_magic == FS_UFS2_MAGIC)
6521 		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
6522 	/*
6523 	 * Handle normal data blocks and indirects.  This section saves
6524 	 * values used after the inode update to complete frag and indirect
6525 	 * truncation.
6526 	 */
6527 	if ((flags & IO_NORMAL) != 0) {
6528 		/*
6529 		 * Handle truncation of whole direct and indirect blocks.
6530 		 */
6531 		for (i = iboff + 1; i < NDADDR; i++)
6532 			setup_freedirect(freeblks, ip, i, needj);
6533 		for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR;
6534 		    i++, lbn += tmpval, tmpval *= NINDIR(fs)) {
6535 			/* Release a whole indirect tree. */
6536 			if (lbn > lastlbn) {
6537 				setup_freeindir(freeblks, ip, i, -lbn -i,
6538 				    needj);
6539 				continue;
6540 			}
6541 			iboff = i + NDADDR;
6542 			/*
6543 			 * Traverse partially truncated indirect tree.
6544 			 */
6545 			if (lbn <= lastlbn && lbn + tmpval - 1 > lastlbn)
6546 				setup_trunc_indir(freeblks, ip, -lbn - i,
6547 				    lastlbn, DIP(ip, i_ib[i]));
6548 		}
6549 		/*
6550 		 * Handle partial truncation to a frag boundary.
6551 		 */
6552 		if (frags) {
6553 			ufs2_daddr_t blkno;
6554 			long oldfrags;
6555 
6556 			oldfrags = blksize(fs, ip, lastlbn);
6557 			blkno = DIP(ip, i_db[lastlbn]);
6558 			if (blkno && oldfrags != frags) {
6559 				oldfrags -= frags;
6560 				oldfrags = numfrags(ip->i_fs, oldfrags);
6561 				blkno += numfrags(ip->i_fs, frags);
6562 				newfreework(ump, freeblks, NULL, lastlbn,
6563 				    blkno, oldfrags, 0, needj);
6564 				if (needj)
6565 					adjust_newfreework(freeblks,
6566 					    numfrags(ip->i_fs, frags));
6567 			} else if (blkno == 0)
6568 				allocblock = 1;
6569 		}
6570 		/*
6571 		 * Add a journal record for partial truncate if we are
6572 		 * handling indirect blocks.  Non-indirects need no extra
6573 		 * journaling.
6574 		 */
6575 		if (length != 0 && lastlbn >= NDADDR) {
6576 			ip->i_flag |= IN_TRUNCATED;
6577 			newjtrunc(freeblks, length, 0);
6578 		}
6579 		ip->i_size = length;
6580 		DIP_SET(ip, i_size, ip->i_size);
6581 		datablocks = DIP(ip, i_blocks) - extblocks;
6582 		if (length != 0)
6583 			datablocks = blkcount(ip->i_fs, datablocks, length);
6584 		freeblks->fb_len = length;
6585 	}
6586 	if ((flags & IO_EXT) != 0) {
6587 		for (i = 0; i < NXADDR; i++)
6588 			setup_freeext(freeblks, ip, i, needj);
6589 		ip->i_din2->di_extsize = 0;
6590 		datablocks += extblocks;
6591 	}
6592 #ifdef QUOTA
6593 	/* Reference the quotas in case the block count is wrong in the end. */
6594 	quotaref(vp, freeblks->fb_quota);
6595 	(void) chkdq(ip, -datablocks, NOCRED, 0);
6596 #endif
6597 	freeblks->fb_chkcnt = -datablocks;
6598 	UFS_LOCK(ump);
6599 	fs->fs_pendingblocks += datablocks;
6600 	UFS_UNLOCK(ump);
6601 	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
6602 	/*
6603 	 * Handle truncation of incomplete alloc direct dependencies.  We
6604 	 * hold the inode block locked to prevent incomplete dependencies
6605 	 * from reaching the disk while we are eliminating those that
6606 	 * have been truncated.  This is a partially inlined ffs_update().
6607 	 */
6608 	ufs_itimes(vp);
6609 	ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED);
6610 	error = bread(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
6611 	    (int)fs->fs_bsize, cred, &bp);
6612 	if (error) {
6613 		brelse(bp);
6614 		softdep_error("softdep_journal_freeblocks", error);
6615 		return;
6616 	}
6617 	if (bp->b_bufsize == fs->fs_bsize)
6618 		bp->b_flags |= B_CLUSTEROK;
6619 	softdep_update_inodeblock(ip, bp, 0);
6620 	if (ump->um_fstype == UFS1)
6621 		*((struct ufs1_dinode *)bp->b_data +
6622 		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1;
6623 	else
6624 		*((struct ufs2_dinode *)bp->b_data +
6625 		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2;
6626 	ACQUIRE_LOCK(ump);
6627 	(void) inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
6628 	if ((inodedep->id_state & IOSTARTED) != 0)
6629 		panic("softdep_setup_freeblocks: inode busy");
6630 	/*
6631 	 * Add the freeblks structure to the list of operations that
6632 	 * must await the zero'ed inode being written to disk. If we
6633 	 * still have a bitmap dependency (needj), then the inode
6634 	 * has never been written to disk, so we can process the
6635 	 * freeblks below once we have deleted the dependencies.
6636 	 */
6637 	if (needj)
6638 		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
6639 	else
6640 		freeblks->fb_state |= COMPLETE;
6641 	if ((flags & IO_NORMAL) != 0) {
6642 		TAILQ_FOREACH_SAFE(adp, &inodedep->id_inoupdt, ad_next, adpn) {
6643 			if (adp->ad_offset > iboff)
6644 				cancel_allocdirect(&inodedep->id_inoupdt, adp,
6645 				    freeblks);
6646 			/*
6647 			 * Truncate the allocdirect.  We could eliminate
6648 			 * or modify journal records as well.
6649 			 */
6650 			else if (adp->ad_offset == iboff && frags)
6651 				adp->ad_newsize = frags;
6652 		}
6653 	}
6654 	if ((flags & IO_EXT) != 0)
6655 		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0)
6656 			cancel_allocdirect(&inodedep->id_extupdt, adp,
6657 			    freeblks);
6658 	/*
6659 	 * Scan the bufwait list for newblock dependencies that will never
6660 	 * make it to disk.
6661 	 */
6662 	LIST_FOREACH_SAFE(wk, &inodedep->id_bufwait, wk_list, wkn) {
6663 		if (wk->wk_type != D_ALLOCDIRECT)
6664 			continue;
6665 		adp = WK_ALLOCDIRECT(wk);
6666 		if (((flags & IO_NORMAL) != 0 && (adp->ad_offset > iboff)) ||
6667 		    ((flags & IO_EXT) != 0 && (adp->ad_state & EXTDATA))) {
6668 			cancel_jfreeblk(freeblks, adp->ad_newblkno);
6669 			cancel_newblk(WK_NEWBLK(wk), NULL, &freeblks->fb_jwork);
6670 			WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
6671 		}
6672 	}
6673 	/*
6674 	 * Add journal work.
6675 	 */
6676 	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps)
6677 		add_to_journal(&jblkdep->jb_list);
6678 	FREE_LOCK(ump);
6679 	bdwrite(bp);
6680 	/*
6681 	 * Truncate dependency structures beyond length.
6682 	 */
6683 	trunc_dependencies(ip, freeblks, lastlbn, frags, flags);
6684 	/*
6685 	 * This is only set when we need to allocate a fragment because
6686 	 * none existed at the end of a frag-sized file.  It handles only
6687 	 * allocating a new, zero filled block.
6688 	 */
6689 	if (allocblock) {
6690 		ip->i_size = length - lastoff;
6691 		DIP_SET(ip, i_size, ip->i_size);
6692 		error = UFS_BALLOC(vp, length - 1, 1, cred, BA_CLRBUF, &bp);
6693 		if (error != 0) {
6694 			softdep_error("softdep_journal_freeblks", error);
6695 			return;
6696 		}
6697 		ip->i_size = length;
6698 		DIP_SET(ip, i_size, length);
6699 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
6700 		allocbuf(bp, frags);
6701 		ffs_update(vp, 0);
6702 		bawrite(bp);
6703 	} else if (lastoff != 0 && vp->v_type != VDIR) {
6704 		int size;
6705 
6706 		/*
6707 		 * Zero the end of a truncated frag or block.
6708 		 */
6709 		size = sblksize(fs, length, lastlbn);
6710 		error = bread(vp, lastlbn, size, cred, &bp);
6711 		if (error) {
6712 			softdep_error("softdep_journal_freeblks", error);
6713 			return;
6714 		}
6715 		bzero((char *)bp->b_data + lastoff, size - lastoff);
6716 		bawrite(bp);
6717 
6718 	}
6719 	ACQUIRE_LOCK(ump);
6720 	inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
6721 	TAILQ_INSERT_TAIL(&inodedep->id_freeblklst, freeblks, fb_next);
6722 	freeblks->fb_state |= DEPCOMPLETE | ONDEPLIST;
6723 	/*
6724 	 * We zero earlier truncations so they don't erroneously
6725 	 * update i_blocks.
6726 	 */
6727 	if (freeblks->fb_len == 0 && (flags & IO_NORMAL) != 0)
6728 		TAILQ_FOREACH(fbn, &inodedep->id_freeblklst, fb_next)
6729 			fbn->fb_len = 0;
6730 	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE &&
6731 	    LIST_EMPTY(&freeblks->fb_jblkdephd))
6732 		freeblks->fb_state |= INPROGRESS;
6733 	else
6734 		freeblks = NULL;
6735 	FREE_LOCK(ump);
6736 	if (freeblks)
6737 		handle_workitem_freeblocks(freeblks, 0);
6738 	trunc_pages(ip, length, extblocks, flags);
6739 
6740 }
6741 
6742 /*
6743  * Flush a JOP_SYNC to the journal.
6744  */
6745 void
6746 softdep_journal_fsync(ip)
6747 	struct inode *ip;
6748 {
6749 	struct jfsync *jfsync;
6750 
6751 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
6752 	    ("softdep_journal_fsync called on non-softdep filesystem"));
6753 	if ((ip->i_flag & IN_TRUNCATED) == 0)
6754 		return;
6755 	ip->i_flag &= ~IN_TRUNCATED;
6756 	jfsync = malloc(sizeof(*jfsync), M_JFSYNC, M_SOFTDEP_FLAGS | M_ZERO);
6757 	workitem_alloc(&jfsync->jfs_list, D_JFSYNC, UFSTOVFS(ip->i_ump));
6758 	jfsync->jfs_size = ip->i_size;
6759 	jfsync->jfs_ino = ip->i_number;
6760 	ACQUIRE_LOCK(ip->i_ump);
6761 	add_to_journal(&jfsync->jfs_list);
6762 	jwait(&jfsync->jfs_list, MNT_WAIT);
6763 	FREE_LOCK(ip->i_ump);
6764 }
6765 
6766 /*
6767  * Block de-allocation dependencies.
6768  *
6769  * When blocks are de-allocated, the on-disk pointers must be nullified before
6770  * the blocks are made available for use by other files.  (The true
6771  * requirement is that old pointers must be nullified before new on-disk
6772  * pointers are set.  We chose this slightly more stringent requirement to
6773  * reduce complexity.) Our implementation handles this dependency by updating
6774  * the inode (or indirect block) appropriately but delaying the actual block
6775  * de-allocation (i.e., freemap and free space count manipulation) until
6776  * after the updated versions reach stable storage.  After the disk is
6777  * updated, the blocks can be safely de-allocated whenever it is convenient.
6778  * This implementation handles only the common case of reducing a file's
6779  * length to zero. Other cases are handled by the conventional synchronous
6780  * write approach.
6781  *
6782  * The ffs implementation with which we worked double-checks
6783  * the state of the block pointers and file size as it reduces
6784  * a file's length.  Some of this code is replicated here in our
6785  * soft updates implementation.  The freeblks->fb_chkcnt field is
6786  * used to transfer a part of this information to the procedure
6787  * that eventually de-allocates the blocks.
6788  *
6789  * This routine should be called from the routine that shortens
6790  * a file's length, before the inode's size or block pointers
6791  * are modified. It will save the block pointer information for
6792  * later release and zero the inode so that the calling routine
6793  * can release it.
6794  */
6795 void
6796 softdep_setup_freeblocks(ip, length, flags)
6797 	struct inode *ip;	/* The inode whose length is to be reduced */
6798 	off_t length;		/* The new length for the file */
6799 	int flags;		/* IO_EXT and/or IO_NORMAL */
6800 {
6801 	struct ufs1_dinode *dp1;
6802 	struct ufs2_dinode *dp2;
6803 	struct freeblks *freeblks;
6804 	struct inodedep *inodedep;
6805 	struct allocdirect *adp;
6806 	struct ufsmount *ump;
6807 	struct buf *bp;
6808 	struct fs *fs;
6809 	ufs2_daddr_t extblocks, datablocks;
6810 	struct mount *mp;
6811 	int i, delay, error, dflags;
6812 	ufs_lbn_t tmpval;
6813 	ufs_lbn_t lbn;
6814 
6815 	ump = ip->i_ump;
6816 	mp = UFSTOVFS(ump);
6817 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
6818 	    ("softdep_setup_freeblocks called on non-softdep filesystem"));
6819 	CTR2(KTR_SUJ, "softdep_setup_freeblks: ip %d length %ld",
6820 	    ip->i_number, length);
6821 	KASSERT(length == 0, ("softdep_setup_freeblocks: non-zero length"));
6822 	fs = ip->i_fs;
6823 	freeblks = newfreeblks(mp, ip);
6824 	extblocks = 0;
6825 	datablocks = 0;
6826 	if (fs->fs_magic == FS_UFS2_MAGIC)
6827 		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
6828 	if ((flags & IO_NORMAL) != 0) {
6829 		for (i = 0; i < NDADDR; i++)
6830 			setup_freedirect(freeblks, ip, i, 0);
6831 		for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR;
6832 		    i++, lbn += tmpval, tmpval *= NINDIR(fs))
6833 			setup_freeindir(freeblks, ip, i, -lbn -i, 0);
6834 		ip->i_size = 0;
6835 		DIP_SET(ip, i_size, 0);
6836 		datablocks = DIP(ip, i_blocks) - extblocks;
6837 	}
6838 	if ((flags & IO_EXT) != 0) {
6839 		for (i = 0; i < NXADDR; i++)
6840 			setup_freeext(freeblks, ip, i, 0);
6841 		ip->i_din2->di_extsize = 0;
6842 		datablocks += extblocks;
6843 	}
6844 #ifdef QUOTA
6845 	/* Reference the quotas in case the block count is wrong in the end. */
6846 	quotaref(ITOV(ip), freeblks->fb_quota);
6847 	(void) chkdq(ip, -datablocks, NOCRED, 0);
6848 #endif
6849 	freeblks->fb_chkcnt = -datablocks;
6850 	UFS_LOCK(ump);
6851 	fs->fs_pendingblocks += datablocks;
6852 	UFS_UNLOCK(ump);
6853 	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
6854 	/*
6855 	 * Push the zero'ed inode to to its disk buffer so that we are free
6856 	 * to delete its dependencies below. Once the dependencies are gone
6857 	 * the buffer can be safely released.
6858 	 */
6859 	if ((error = bread(ip->i_devvp,
6860 	    fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
6861 	    (int)fs->fs_bsize, NOCRED, &bp)) != 0) {
6862 		brelse(bp);
6863 		softdep_error("softdep_setup_freeblocks", error);
6864 	}
6865 	if (ump->um_fstype == UFS1) {
6866 		dp1 = ((struct ufs1_dinode *)bp->b_data +
6867 		    ino_to_fsbo(fs, ip->i_number));
6868 		ip->i_din1->di_freelink = dp1->di_freelink;
6869 		*dp1 = *ip->i_din1;
6870 	} else {
6871 		dp2 = ((struct ufs2_dinode *)bp->b_data +
6872 		    ino_to_fsbo(fs, ip->i_number));
6873 		ip->i_din2->di_freelink = dp2->di_freelink;
6874 		*dp2 = *ip->i_din2;
6875 	}
6876 	/*
6877 	 * Find and eliminate any inode dependencies.
6878 	 */
6879 	ACQUIRE_LOCK(ump);
6880 	dflags = DEPALLOC;
6881 	if (IS_SNAPSHOT(ip))
6882 		dflags |= NODELAY;
6883 	(void) inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
6884 	if ((inodedep->id_state & IOSTARTED) != 0)
6885 		panic("softdep_setup_freeblocks: inode busy");
6886 	/*
6887 	 * Add the freeblks structure to the list of operations that
6888 	 * must await the zero'ed inode being written to disk. If we
6889 	 * still have a bitmap dependency (delay == 0), then the inode
6890 	 * has never been written to disk, so we can process the
6891 	 * freeblks below once we have deleted the dependencies.
6892 	 */
6893 	delay = (inodedep->id_state & DEPCOMPLETE);
6894 	if (delay)
6895 		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
6896 	else
6897 		freeblks->fb_state |= COMPLETE;
6898 	/*
6899 	 * Because the file length has been truncated to zero, any
6900 	 * pending block allocation dependency structures associated
6901 	 * with this inode are obsolete and can simply be de-allocated.
6902 	 * We must first merge the two dependency lists to get rid of
6903 	 * any duplicate freefrag structures, then purge the merged list.
6904 	 * If we still have a bitmap dependency, then the inode has never
6905 	 * been written to disk, so we can free any fragments without delay.
6906 	 */
6907 	if (flags & IO_NORMAL) {
6908 		merge_inode_lists(&inodedep->id_newinoupdt,
6909 		    &inodedep->id_inoupdt);
6910 		while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != 0)
6911 			cancel_allocdirect(&inodedep->id_inoupdt, adp,
6912 			    freeblks);
6913 	}
6914 	if (flags & IO_EXT) {
6915 		merge_inode_lists(&inodedep->id_newextupdt,
6916 		    &inodedep->id_extupdt);
6917 		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0)
6918 			cancel_allocdirect(&inodedep->id_extupdt, adp,
6919 			    freeblks);
6920 	}
6921 	FREE_LOCK(ump);
6922 	bdwrite(bp);
6923 	trunc_dependencies(ip, freeblks, -1, 0, flags);
6924 	ACQUIRE_LOCK(ump);
6925 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
6926 		(void) free_inodedep(inodedep);
6927 	freeblks->fb_state |= DEPCOMPLETE;
6928 	/*
6929 	 * If the inode with zeroed block pointers is now on disk
6930 	 * we can start freeing blocks.
6931 	 */
6932 	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
6933 		freeblks->fb_state |= INPROGRESS;
6934 	else
6935 		freeblks = NULL;
6936 	FREE_LOCK(ump);
6937 	if (freeblks)
6938 		handle_workitem_freeblocks(freeblks, 0);
6939 	trunc_pages(ip, length, extblocks, flags);
6940 }
6941 
6942 /*
6943  * Eliminate pages from the page cache that back parts of this inode and
6944  * adjust the vnode pager's idea of our size.  This prevents stale data
6945  * from hanging around in the page cache.
6946  */
6947 static void
6948 trunc_pages(ip, length, extblocks, flags)
6949 	struct inode *ip;
6950 	off_t length;
6951 	ufs2_daddr_t extblocks;
6952 	int flags;
6953 {
6954 	struct vnode *vp;
6955 	struct fs *fs;
6956 	ufs_lbn_t lbn;
6957 	off_t end, extend;
6958 
6959 	vp = ITOV(ip);
6960 	fs = ip->i_fs;
6961 	extend = OFF_TO_IDX(lblktosize(fs, -extblocks));
6962 	if ((flags & IO_EXT) != 0)
6963 		vn_pages_remove(vp, extend, 0);
6964 	if ((flags & IO_NORMAL) == 0)
6965 		return;
6966 	BO_LOCK(&vp->v_bufobj);
6967 	drain_output(vp);
6968 	BO_UNLOCK(&vp->v_bufobj);
6969 	/*
6970 	 * The vnode pager eliminates file pages we eliminate indirects
6971 	 * below.
6972 	 */
6973 	vnode_pager_setsize(vp, length);
6974 	/*
6975 	 * Calculate the end based on the last indirect we want to keep.  If
6976 	 * the block extends into indirects we can just use the negative of
6977 	 * its lbn.  Doubles and triples exist at lower numbers so we must
6978 	 * be careful not to remove those, if they exist.  double and triple
6979 	 * indirect lbns do not overlap with others so it is not important
6980 	 * to verify how many levels are required.
6981 	 */
6982 	lbn = lblkno(fs, length);
6983 	if (lbn >= NDADDR) {
6984 		/* Calculate the virtual lbn of the triple indirect. */
6985 		lbn = -lbn - (NIADDR - 1);
6986 		end = OFF_TO_IDX(lblktosize(fs, lbn));
6987 	} else
6988 		end = extend;
6989 	vn_pages_remove(vp, OFF_TO_IDX(OFF_MAX), end);
6990 }
6991 
6992 /*
6993  * See if the buf bp is in the range eliminated by truncation.
6994  */
6995 static int
6996 trunc_check_buf(bp, blkoffp, lastlbn, lastoff, flags)
6997 	struct buf *bp;
6998 	int *blkoffp;
6999 	ufs_lbn_t lastlbn;
7000 	int lastoff;
7001 	int flags;
7002 {
7003 	ufs_lbn_t lbn;
7004 
7005 	*blkoffp = 0;
7006 	/* Only match ext/normal blocks as appropriate. */
7007 	if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) ||
7008 	    ((flags & IO_NORMAL) == 0 && (bp->b_xflags & BX_ALTDATA) == 0))
7009 		return (0);
7010 	/* ALTDATA is always a full truncation. */
7011 	if ((bp->b_xflags & BX_ALTDATA) != 0)
7012 		return (1);
7013 	/* -1 is full truncation. */
7014 	if (lastlbn == -1)
7015 		return (1);
7016 	/*
7017 	 * If this is a partial truncate we only want those
7018 	 * blocks and indirect blocks that cover the range
7019 	 * we're after.
7020 	 */
7021 	lbn = bp->b_lblkno;
7022 	if (lbn < 0)
7023 		lbn = -(lbn + lbn_level(lbn));
7024 	if (lbn < lastlbn)
7025 		return (0);
7026 	/* Here we only truncate lblkno if it's partial. */
7027 	if (lbn == lastlbn) {
7028 		if (lastoff == 0)
7029 			return (0);
7030 		*blkoffp = lastoff;
7031 	}
7032 	return (1);
7033 }
7034 
7035 /*
7036  * Eliminate any dependencies that exist in memory beyond lblkno:off
7037  */
7038 static void
7039 trunc_dependencies(ip, freeblks, lastlbn, lastoff, flags)
7040 	struct inode *ip;
7041 	struct freeblks *freeblks;
7042 	ufs_lbn_t lastlbn;
7043 	int lastoff;
7044 	int flags;
7045 {
7046 	struct bufobj *bo;
7047 	struct vnode *vp;
7048 	struct buf *bp;
7049 	struct fs *fs;
7050 	int blkoff;
7051 
7052 	/*
7053 	 * We must wait for any I/O in progress to finish so that
7054 	 * all potential buffers on the dirty list will be visible.
7055 	 * Once they are all there, walk the list and get rid of
7056 	 * any dependencies.
7057 	 */
7058 	fs = ip->i_fs;
7059 	vp = ITOV(ip);
7060 	bo = &vp->v_bufobj;
7061 	BO_LOCK(bo);
7062 	drain_output(vp);
7063 	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
7064 		bp->b_vflags &= ~BV_SCANNED;
7065 restart:
7066 	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
7067 		if (bp->b_vflags & BV_SCANNED)
7068 			continue;
7069 		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
7070 			bp->b_vflags |= BV_SCANNED;
7071 			continue;
7072 		}
7073 		KASSERT(bp->b_bufobj == bo, ("Wrong object in buffer"));
7074 		if ((bp = getdirtybuf(bp, BO_LOCKPTR(bo), MNT_WAIT)) == NULL)
7075 			goto restart;
7076 		BO_UNLOCK(bo);
7077 		if (deallocate_dependencies(bp, freeblks, blkoff))
7078 			bqrelse(bp);
7079 		else
7080 			brelse(bp);
7081 		BO_LOCK(bo);
7082 		goto restart;
7083 	}
7084 	/*
7085 	 * Now do the work of vtruncbuf while also matching indirect blocks.
7086 	 */
7087 	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs)
7088 		bp->b_vflags &= ~BV_SCANNED;
7089 cleanrestart:
7090 	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) {
7091 		if (bp->b_vflags & BV_SCANNED)
7092 			continue;
7093 		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
7094 			bp->b_vflags |= BV_SCANNED;
7095 			continue;
7096 		}
7097 		if (BUF_LOCK(bp,
7098 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
7099 		    BO_LOCKPTR(bo)) == ENOLCK) {
7100 			BO_LOCK(bo);
7101 			goto cleanrestart;
7102 		}
7103 		bp->b_vflags |= BV_SCANNED;
7104 		bremfree(bp);
7105 		if (blkoff != 0) {
7106 			allocbuf(bp, blkoff);
7107 			bqrelse(bp);
7108 		} else {
7109 			bp->b_flags |= B_INVAL | B_NOCACHE | B_RELBUF;
7110 			brelse(bp);
7111 		}
7112 		BO_LOCK(bo);
7113 		goto cleanrestart;
7114 	}
7115 	drain_output(vp);
7116 	BO_UNLOCK(bo);
7117 }
7118 
7119 static int
7120 cancel_pagedep(pagedep, freeblks, blkoff)
7121 	struct pagedep *pagedep;
7122 	struct freeblks *freeblks;
7123 	int blkoff;
7124 {
7125 	struct jremref *jremref;
7126 	struct jmvref *jmvref;
7127 	struct dirrem *dirrem, *tmp;
7128 	int i;
7129 
7130 	/*
7131 	 * Copy any directory remove dependencies to the list
7132 	 * to be processed after the freeblks proceeds.  If
7133 	 * directory entry never made it to disk they
7134 	 * can be dumped directly onto the work list.
7135 	 */
7136 	LIST_FOREACH_SAFE(dirrem, &pagedep->pd_dirremhd, dm_next, tmp) {
7137 		/* Skip this directory removal if it is intended to remain. */
7138 		if (dirrem->dm_offset < blkoff)
7139 			continue;
7140 		/*
7141 		 * If there are any dirrems we wait for the journal write
7142 		 * to complete and then restart the buf scan as the lock
7143 		 * has been dropped.
7144 		 */
7145 		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) {
7146 			jwait(&jremref->jr_list, MNT_WAIT);
7147 			return (ERESTART);
7148 		}
7149 		LIST_REMOVE(dirrem, dm_next);
7150 		dirrem->dm_dirinum = pagedep->pd_ino;
7151 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &dirrem->dm_list);
7152 	}
7153 	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) {
7154 		jwait(&jmvref->jm_list, MNT_WAIT);
7155 		return (ERESTART);
7156 	}
7157 	/*
7158 	 * When we're partially truncating a pagedep we just want to flush
7159 	 * journal entries and return.  There can not be any adds in the
7160 	 * truncated portion of the directory and newblk must remain if
7161 	 * part of the block remains.
7162 	 */
7163 	if (blkoff != 0) {
7164 		struct diradd *dap;
7165 
7166 		LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
7167 			if (dap->da_offset > blkoff)
7168 				panic("cancel_pagedep: diradd %p off %d > %d",
7169 				    dap, dap->da_offset, blkoff);
7170 		for (i = 0; i < DAHASHSZ; i++)
7171 			LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist)
7172 				if (dap->da_offset > blkoff)
7173 					panic("cancel_pagedep: diradd %p off %d > %d",
7174 					    dap, dap->da_offset, blkoff);
7175 		return (0);
7176 	}
7177 	/*
7178 	 * There should be no directory add dependencies present
7179 	 * as the directory could not be truncated until all
7180 	 * children were removed.
7181 	 */
7182 	KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL,
7183 	    ("deallocate_dependencies: pendinghd != NULL"));
7184 	for (i = 0; i < DAHASHSZ; i++)
7185 		KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL,
7186 		    ("deallocate_dependencies: diraddhd != NULL"));
7187 	if ((pagedep->pd_state & NEWBLOCK) != 0)
7188 		free_newdirblk(pagedep->pd_newdirblk);
7189 	if (free_pagedep(pagedep) == 0)
7190 		panic("Failed to free pagedep %p", pagedep);
7191 	return (0);
7192 }
7193 
7194 /*
7195  * Reclaim any dependency structures from a buffer that is about to
7196  * be reallocated to a new vnode. The buffer must be locked, thus,
7197  * no I/O completion operations can occur while we are manipulating
7198  * its associated dependencies. The mutex is held so that other I/O's
7199  * associated with related dependencies do not occur.
7200  */
7201 static int
7202 deallocate_dependencies(bp, freeblks, off)
7203 	struct buf *bp;
7204 	struct freeblks *freeblks;
7205 	int off;
7206 {
7207 	struct indirdep *indirdep;
7208 	struct pagedep *pagedep;
7209 	struct allocdirect *adp;
7210 	struct worklist *wk, *wkn;
7211 	struct ufsmount *ump;
7212 
7213 	if ((wk = LIST_FIRST(&bp->b_dep)) == NULL)
7214 		goto done;
7215 	ump = VFSTOUFS(wk->wk_mp);
7216 	ACQUIRE_LOCK(ump);
7217 	LIST_FOREACH_SAFE(wk, &bp->b_dep, wk_list, wkn) {
7218 		switch (wk->wk_type) {
7219 		case D_INDIRDEP:
7220 			indirdep = WK_INDIRDEP(wk);
7221 			if (bp->b_lblkno >= 0 ||
7222 			    bp->b_blkno != indirdep->ir_savebp->b_lblkno)
7223 				panic("deallocate_dependencies: not indir");
7224 			cancel_indirdep(indirdep, bp, freeblks);
7225 			continue;
7226 
7227 		case D_PAGEDEP:
7228 			pagedep = WK_PAGEDEP(wk);
7229 			if (cancel_pagedep(pagedep, freeblks, off)) {
7230 				FREE_LOCK(ump);
7231 				return (ERESTART);
7232 			}
7233 			continue;
7234 
7235 		case D_ALLOCINDIR:
7236 			/*
7237 			 * Simply remove the allocindir, we'll find it via
7238 			 * the indirdep where we can clear pointers if
7239 			 * needed.
7240 			 */
7241 			WORKLIST_REMOVE(wk);
7242 			continue;
7243 
7244 		case D_FREEWORK:
7245 			/*
7246 			 * A truncation is waiting for the zero'd pointers
7247 			 * to be written.  It can be freed when the freeblks
7248 			 * is journaled.
7249 			 */
7250 			WORKLIST_REMOVE(wk);
7251 			wk->wk_state |= ONDEPLIST;
7252 			WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
7253 			break;
7254 
7255 		case D_ALLOCDIRECT:
7256 			adp = WK_ALLOCDIRECT(wk);
7257 			if (off != 0)
7258 				continue;
7259 			/* FALLTHROUGH */
7260 		default:
7261 			panic("deallocate_dependencies: Unexpected type %s",
7262 			    TYPENAME(wk->wk_type));
7263 			/* NOTREACHED */
7264 		}
7265 	}
7266 	FREE_LOCK(ump);
7267 done:
7268 	/*
7269 	 * Don't throw away this buf, we were partially truncating and
7270 	 * some deps may always remain.
7271 	 */
7272 	if (off) {
7273 		allocbuf(bp, off);
7274 		bp->b_vflags |= BV_SCANNED;
7275 		return (EBUSY);
7276 	}
7277 	bp->b_flags |= B_INVAL | B_NOCACHE;
7278 
7279 	return (0);
7280 }
7281 
7282 /*
7283  * An allocdirect is being canceled due to a truncate.  We must make sure
7284  * the journal entry is released in concert with the blkfree that releases
7285  * the storage.  Completed journal entries must not be released until the
7286  * space is no longer pointed to by the inode or in the bitmap.
7287  */
7288 static void
7289 cancel_allocdirect(adphead, adp, freeblks)
7290 	struct allocdirectlst *adphead;
7291 	struct allocdirect *adp;
7292 	struct freeblks *freeblks;
7293 {
7294 	struct freework *freework;
7295 	struct newblk *newblk;
7296 	struct worklist *wk;
7297 
7298 	TAILQ_REMOVE(adphead, adp, ad_next);
7299 	newblk = (struct newblk *)adp;
7300 	freework = NULL;
7301 	/*
7302 	 * Find the correct freework structure.
7303 	 */
7304 	LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) {
7305 		if (wk->wk_type != D_FREEWORK)
7306 			continue;
7307 		freework = WK_FREEWORK(wk);
7308 		if (freework->fw_blkno == newblk->nb_newblkno)
7309 			break;
7310 	}
7311 	if (freework == NULL)
7312 		panic("cancel_allocdirect: Freework not found");
7313 	/*
7314 	 * If a newblk exists at all we still have the journal entry that
7315 	 * initiated the allocation so we do not need to journal the free.
7316 	 */
7317 	cancel_jfreeblk(freeblks, freework->fw_blkno);
7318 	/*
7319 	 * If the journal hasn't been written the jnewblk must be passed
7320 	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
7321 	 * this by linking the journal dependency into the freework to be
7322 	 * freed when freework_freeblock() is called.  If the journal has
7323 	 * been written we can simply reclaim the journal space when the
7324 	 * freeblks work is complete.
7325 	 */
7326 	freework->fw_jnewblk = cancel_newblk(newblk, &freework->fw_list,
7327 	    &freeblks->fb_jwork);
7328 	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
7329 }
7330 
7331 
7332 /*
7333  * Cancel a new block allocation.  May be an indirect or direct block.  We
7334  * remove it from various lists and return any journal record that needs to
7335  * be resolved by the caller.
7336  *
7337  * A special consideration is made for indirects which were never pointed
7338  * at on disk and will never be found once this block is released.
7339  */
7340 static struct jnewblk *
7341 cancel_newblk(newblk, wk, wkhd)
7342 	struct newblk *newblk;
7343 	struct worklist *wk;
7344 	struct workhead *wkhd;
7345 {
7346 	struct jnewblk *jnewblk;
7347 
7348 	CTR1(KTR_SUJ, "cancel_newblk: blkno %jd", newblk->nb_newblkno);
7349 
7350 	newblk->nb_state |= GOINGAWAY;
7351 	/*
7352 	 * Previously we traversed the completedhd on each indirdep
7353 	 * attached to this newblk to cancel them and gather journal
7354 	 * work.  Since we need only the oldest journal segment and
7355 	 * the lowest point on the tree will always have the oldest
7356 	 * journal segment we are free to release the segments
7357 	 * of any subordinates and may leave the indirdep list to
7358 	 * indirdep_complete() when this newblk is freed.
7359 	 */
7360 	if (newblk->nb_state & ONDEPLIST) {
7361 		newblk->nb_state &= ~ONDEPLIST;
7362 		LIST_REMOVE(newblk, nb_deps);
7363 	}
7364 	if (newblk->nb_state & ONWORKLIST)
7365 		WORKLIST_REMOVE(&newblk->nb_list);
7366 	/*
7367 	 * If the journal entry hasn't been written we save a pointer to
7368 	 * the dependency that frees it until it is written or the
7369 	 * superseding operation completes.
7370 	 */
7371 	jnewblk = newblk->nb_jnewblk;
7372 	if (jnewblk != NULL && wk != NULL) {
7373 		newblk->nb_jnewblk = NULL;
7374 		jnewblk->jn_dep = wk;
7375 	}
7376 	if (!LIST_EMPTY(&newblk->nb_jwork))
7377 		jwork_move(wkhd, &newblk->nb_jwork);
7378 	/*
7379 	 * When truncating we must free the newdirblk early to remove
7380 	 * the pagedep from the hash before returning.
7381 	 */
7382 	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7383 		free_newdirblk(WK_NEWDIRBLK(wk));
7384 	if (!LIST_EMPTY(&newblk->nb_newdirblk))
7385 		panic("cancel_newblk: extra newdirblk");
7386 
7387 	return (jnewblk);
7388 }
7389 
7390 /*
7391  * Schedule the freefrag associated with a newblk to be released once
7392  * the pointers are written and the previous block is no longer needed.
7393  */
7394 static void
7395 newblk_freefrag(newblk)
7396 	struct newblk *newblk;
7397 {
7398 	struct freefrag *freefrag;
7399 
7400 	if (newblk->nb_freefrag == NULL)
7401 		return;
7402 	freefrag = newblk->nb_freefrag;
7403 	newblk->nb_freefrag = NULL;
7404 	freefrag->ff_state |= COMPLETE;
7405 	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
7406 		add_to_worklist(&freefrag->ff_list, 0);
7407 }
7408 
7409 /*
7410  * Free a newblk. Generate a new freefrag work request if appropriate.
7411  * This must be called after the inode pointer and any direct block pointers
7412  * are valid or fully removed via truncate or frag extension.
7413  */
7414 static void
7415 free_newblk(newblk)
7416 	struct newblk *newblk;
7417 {
7418 	struct indirdep *indirdep;
7419 	struct worklist *wk;
7420 
7421 	KASSERT(newblk->nb_jnewblk == NULL,
7422 	    ("free_newblk: jnewblk %p still attached", newblk->nb_jnewblk));
7423 	KASSERT(newblk->nb_list.wk_type != D_NEWBLK,
7424 	    ("free_newblk: unclaimed newblk"));
7425 	LOCK_OWNED(VFSTOUFS(newblk->nb_list.wk_mp));
7426 	newblk_freefrag(newblk);
7427 	if (newblk->nb_state & ONDEPLIST)
7428 		LIST_REMOVE(newblk, nb_deps);
7429 	if (newblk->nb_state & ONWORKLIST)
7430 		WORKLIST_REMOVE(&newblk->nb_list);
7431 	LIST_REMOVE(newblk, nb_hash);
7432 	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7433 		free_newdirblk(WK_NEWDIRBLK(wk));
7434 	if (!LIST_EMPTY(&newblk->nb_newdirblk))
7435 		panic("free_newblk: extra newdirblk");
7436 	while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL)
7437 		indirdep_complete(indirdep);
7438 	handle_jwork(&newblk->nb_jwork);
7439 	WORKITEM_FREE(newblk, D_NEWBLK);
7440 }
7441 
7442 /*
7443  * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep.
7444  * This routine must be called with splbio interrupts blocked.
7445  */
7446 static void
7447 free_newdirblk(newdirblk)
7448 	struct newdirblk *newdirblk;
7449 {
7450 	struct pagedep *pagedep;
7451 	struct diradd *dap;
7452 	struct worklist *wk;
7453 
7454 	LOCK_OWNED(VFSTOUFS(newdirblk->db_list.wk_mp));
7455 	WORKLIST_REMOVE(&newdirblk->db_list);
7456 	/*
7457 	 * If the pagedep is still linked onto the directory buffer
7458 	 * dependency chain, then some of the entries on the
7459 	 * pd_pendinghd list may not be committed to disk yet. In
7460 	 * this case, we will simply clear the NEWBLOCK flag and
7461 	 * let the pd_pendinghd list be processed when the pagedep
7462 	 * is next written. If the pagedep is no longer on the buffer
7463 	 * dependency chain, then all the entries on the pd_pending
7464 	 * list are committed to disk and we can free them here.
7465 	 */
7466 	pagedep = newdirblk->db_pagedep;
7467 	pagedep->pd_state &= ~NEWBLOCK;
7468 	if ((pagedep->pd_state & ONWORKLIST) == 0) {
7469 		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
7470 			free_diradd(dap, NULL);
7471 		/*
7472 		 * If no dependencies remain, the pagedep will be freed.
7473 		 */
7474 		free_pagedep(pagedep);
7475 	}
7476 	/* Should only ever be one item in the list. */
7477 	while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) {
7478 		WORKLIST_REMOVE(wk);
7479 		handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
7480 	}
7481 	WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
7482 }
7483 
7484 /*
7485  * Prepare an inode to be freed. The actual free operation is not
7486  * done until the zero'ed inode has been written to disk.
7487  */
7488 void
7489 softdep_freefile(pvp, ino, mode)
7490 	struct vnode *pvp;
7491 	ino_t ino;
7492 	int mode;
7493 {
7494 	struct inode *ip = VTOI(pvp);
7495 	struct inodedep *inodedep;
7496 	struct freefile *freefile;
7497 	struct freeblks *freeblks;
7498 	struct ufsmount *ump;
7499 
7500 	ump = ip->i_ump;
7501 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
7502 	    ("softdep_freefile called on non-softdep filesystem"));
7503 	/*
7504 	 * This sets up the inode de-allocation dependency.
7505 	 */
7506 	freefile = malloc(sizeof(struct freefile),
7507 		M_FREEFILE, M_SOFTDEP_FLAGS);
7508 	workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount);
7509 	freefile->fx_mode = mode;
7510 	freefile->fx_oldinum = ino;
7511 	freefile->fx_devvp = ip->i_devvp;
7512 	LIST_INIT(&freefile->fx_jwork);
7513 	UFS_LOCK(ump);
7514 	ip->i_fs->fs_pendinginodes += 1;
7515 	UFS_UNLOCK(ump);
7516 
7517 	/*
7518 	 * If the inodedep does not exist, then the zero'ed inode has
7519 	 * been written to disk. If the allocated inode has never been
7520 	 * written to disk, then the on-disk inode is zero'ed. In either
7521 	 * case we can free the file immediately.  If the journal was
7522 	 * canceled before being written the inode will never make it to
7523 	 * disk and we must send the canceled journal entrys to
7524 	 * ffs_freefile() to be cleared in conjunction with the bitmap.
7525 	 * Any blocks waiting on the inode to write can be safely freed
7526 	 * here as it will never been written.
7527 	 */
7528 	ACQUIRE_LOCK(ump);
7529 	inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
7530 	if (inodedep) {
7531 		/*
7532 		 * Clear out freeblks that no longer need to reference
7533 		 * this inode.
7534 		 */
7535 		while ((freeblks =
7536 		    TAILQ_FIRST(&inodedep->id_freeblklst)) != NULL) {
7537 			TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks,
7538 			    fb_next);
7539 			freeblks->fb_state &= ~ONDEPLIST;
7540 		}
7541 		/*
7542 		 * Remove this inode from the unlinked list.
7543 		 */
7544 		if (inodedep->id_state & UNLINKED) {
7545 			/*
7546 			 * Save the journal work to be freed with the bitmap
7547 			 * before we clear UNLINKED.  Otherwise it can be lost
7548 			 * if the inode block is written.
7549 			 */
7550 			handle_bufwait(inodedep, &freefile->fx_jwork);
7551 			clear_unlinked_inodedep(inodedep);
7552 			/*
7553 			 * Re-acquire inodedep as we've dropped the
7554 			 * per-filesystem lock in clear_unlinked_inodedep().
7555 			 */
7556 			inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
7557 		}
7558 	}
7559 	if (inodedep == NULL || check_inode_unwritten(inodedep)) {
7560 		FREE_LOCK(ump);
7561 		handle_workitem_freefile(freefile);
7562 		return;
7563 	}
7564 	if ((inodedep->id_state & DEPCOMPLETE) == 0)
7565 		inodedep->id_state |= GOINGAWAY;
7566 	WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
7567 	FREE_LOCK(ump);
7568 	if (ip->i_number == ino)
7569 		ip->i_flag |= IN_MODIFIED;
7570 }
7571 
7572 /*
7573  * Check to see if an inode has never been written to disk. If
7574  * so free the inodedep and return success, otherwise return failure.
7575  * This routine must be called with splbio interrupts blocked.
7576  *
7577  * If we still have a bitmap dependency, then the inode has never
7578  * been written to disk. Drop the dependency as it is no longer
7579  * necessary since the inode is being deallocated. We set the
7580  * ALLCOMPLETE flags since the bitmap now properly shows that the
7581  * inode is not allocated. Even if the inode is actively being
7582  * written, it has been rolled back to its zero'ed state, so we
7583  * are ensured that a zero inode is what is on the disk. For short
7584  * lived files, this change will usually result in removing all the
7585  * dependencies from the inode so that it can be freed immediately.
7586  */
7587 static int
7588 check_inode_unwritten(inodedep)
7589 	struct inodedep *inodedep;
7590 {
7591 
7592 	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
7593 
7594 	if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 ||
7595 	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
7596 	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
7597 	    !LIST_EMPTY(&inodedep->id_bufwait) ||
7598 	    !LIST_EMPTY(&inodedep->id_inowait) ||
7599 	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
7600 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
7601 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
7602 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
7603 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
7604 	    !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
7605 	    inodedep->id_mkdiradd != NULL ||
7606 	    inodedep->id_nlinkdelta != 0)
7607 		return (0);
7608 	/*
7609 	 * Another process might be in initiate_write_inodeblock_ufs[12]
7610 	 * trying to allocate memory without holding "Softdep Lock".
7611 	 */
7612 	if ((inodedep->id_state & IOSTARTED) != 0 &&
7613 	    inodedep->id_savedino1 == NULL)
7614 		return (0);
7615 
7616 	if (inodedep->id_state & ONDEPLIST)
7617 		LIST_REMOVE(inodedep, id_deps);
7618 	inodedep->id_state &= ~ONDEPLIST;
7619 	inodedep->id_state |= ALLCOMPLETE;
7620 	inodedep->id_bmsafemap = NULL;
7621 	if (inodedep->id_state & ONWORKLIST)
7622 		WORKLIST_REMOVE(&inodedep->id_list);
7623 	if (inodedep->id_savedino1 != NULL) {
7624 		free(inodedep->id_savedino1, M_SAVEDINO);
7625 		inodedep->id_savedino1 = NULL;
7626 	}
7627 	if (free_inodedep(inodedep) == 0)
7628 		panic("check_inode_unwritten: busy inode");
7629 	return (1);
7630 }
7631 
7632 /*
7633  * Try to free an inodedep structure. Return 1 if it could be freed.
7634  */
7635 static int
7636 free_inodedep(inodedep)
7637 	struct inodedep *inodedep;
7638 {
7639 
7640 	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
7641 	if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 ||
7642 	    (inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
7643 	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
7644 	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
7645 	    !LIST_EMPTY(&inodedep->id_bufwait) ||
7646 	    !LIST_EMPTY(&inodedep->id_inowait) ||
7647 	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
7648 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
7649 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
7650 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
7651 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
7652 	    !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
7653 	    inodedep->id_mkdiradd != NULL ||
7654 	    inodedep->id_nlinkdelta != 0 ||
7655 	    inodedep->id_savedino1 != NULL)
7656 		return (0);
7657 	if (inodedep->id_state & ONDEPLIST)
7658 		LIST_REMOVE(inodedep, id_deps);
7659 	LIST_REMOVE(inodedep, id_hash);
7660 	WORKITEM_FREE(inodedep, D_INODEDEP);
7661 	return (1);
7662 }
7663 
7664 /*
7665  * Free the block referenced by a freework structure.  The parent freeblks
7666  * structure is released and completed when the final cg bitmap reaches
7667  * the disk.  This routine may be freeing a jnewblk which never made it to
7668  * disk in which case we do not have to wait as the operation is undone
7669  * in memory immediately.
7670  */
7671 static void
7672 freework_freeblock(freework)
7673 	struct freework *freework;
7674 {
7675 	struct freeblks *freeblks;
7676 	struct jnewblk *jnewblk;
7677 	struct ufsmount *ump;
7678 	struct workhead wkhd;
7679 	struct fs *fs;
7680 	int bsize;
7681 	int needj;
7682 
7683 	ump = VFSTOUFS(freework->fw_list.wk_mp);
7684 	LOCK_OWNED(ump);
7685 	/*
7686 	 * Handle partial truncate separately.
7687 	 */
7688 	if (freework->fw_indir) {
7689 		complete_trunc_indir(freework);
7690 		return;
7691 	}
7692 	freeblks = freework->fw_freeblks;
7693 	fs = ump->um_fs;
7694 	needj = MOUNTEDSUJ(freeblks->fb_list.wk_mp) != 0;
7695 	bsize = lfragtosize(fs, freework->fw_frags);
7696 	LIST_INIT(&wkhd);
7697 	/*
7698 	 * DEPCOMPLETE is cleared in indirblk_insert() if the block lives
7699 	 * on the indirblk hashtable and prevents premature freeing.
7700 	 */
7701 	freework->fw_state |= DEPCOMPLETE;
7702 	/*
7703 	 * SUJ needs to wait for the segment referencing freed indirect
7704 	 * blocks to expire so that we know the checker will not confuse
7705 	 * a re-allocated indirect block with its old contents.
7706 	 */
7707 	if (needj && freework->fw_lbn <= -NDADDR)
7708 		indirblk_insert(freework);
7709 	/*
7710 	 * If we are canceling an existing jnewblk pass it to the free
7711 	 * routine, otherwise pass the freeblk which will ultimately
7712 	 * release the freeblks.  If we're not journaling, we can just
7713 	 * free the freeblks immediately.
7714 	 */
7715 	jnewblk = freework->fw_jnewblk;
7716 	if (jnewblk != NULL) {
7717 		cancel_jnewblk(jnewblk, &wkhd);
7718 		needj = 0;
7719 	} else if (needj) {
7720 		freework->fw_state |= DELAYEDFREE;
7721 		freeblks->fb_cgwait++;
7722 		WORKLIST_INSERT(&wkhd, &freework->fw_list);
7723 	}
7724 	FREE_LOCK(ump);
7725 	freeblks_free(ump, freeblks, btodb(bsize));
7726 	CTR4(KTR_SUJ,
7727 	    "freework_freeblock: ino %d blkno %jd lbn %jd size %ld",
7728 	    freeblks->fb_inum, freework->fw_blkno, freework->fw_lbn, bsize);
7729 	ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno, bsize,
7730 	    freeblks->fb_inum, freeblks->fb_vtype, &wkhd);
7731 	ACQUIRE_LOCK(ump);
7732 	/*
7733 	 * The jnewblk will be discarded and the bits in the map never
7734 	 * made it to disk.  We can immediately free the freeblk.
7735 	 */
7736 	if (needj == 0)
7737 		handle_written_freework(freework);
7738 }
7739 
7740 /*
7741  * We enqueue freework items that need processing back on the freeblks and
7742  * add the freeblks to the worklist.  This makes it easier to find all work
7743  * required to flush a truncation in process_truncates().
7744  */
7745 static void
7746 freework_enqueue(freework)
7747 	struct freework *freework;
7748 {
7749 	struct freeblks *freeblks;
7750 
7751 	freeblks = freework->fw_freeblks;
7752 	if ((freework->fw_state & INPROGRESS) == 0)
7753 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
7754 	if ((freeblks->fb_state &
7755 	    (ONWORKLIST | INPROGRESS | ALLCOMPLETE)) == ALLCOMPLETE &&
7756 	    LIST_EMPTY(&freeblks->fb_jblkdephd))
7757 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
7758 }
7759 
7760 /*
7761  * Start, continue, or finish the process of freeing an indirect block tree.
7762  * The free operation may be paused at any point with fw_off containing the
7763  * offset to restart from.  This enables us to implement some flow control
7764  * for large truncates which may fan out and generate a huge number of
7765  * dependencies.
7766  */
7767 static void
7768 handle_workitem_indirblk(freework)
7769 	struct freework *freework;
7770 {
7771 	struct freeblks *freeblks;
7772 	struct ufsmount *ump;
7773 	struct fs *fs;
7774 
7775 	freeblks = freework->fw_freeblks;
7776 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7777 	fs = ump->um_fs;
7778 	if (freework->fw_state & DEPCOMPLETE) {
7779 		handle_written_freework(freework);
7780 		return;
7781 	}
7782 	if (freework->fw_off == NINDIR(fs)) {
7783 		freework_freeblock(freework);
7784 		return;
7785 	}
7786 	freework->fw_state |= INPROGRESS;
7787 	FREE_LOCK(ump);
7788 	indir_trunc(freework, fsbtodb(fs, freework->fw_blkno),
7789 	    freework->fw_lbn);
7790 	ACQUIRE_LOCK(ump);
7791 }
7792 
7793 /*
7794  * Called when a freework structure attached to a cg buf is written.  The
7795  * ref on either the parent or the freeblks structure is released and
7796  * the freeblks is added back to the worklist if there is more work to do.
7797  */
7798 static void
7799 handle_written_freework(freework)
7800 	struct freework *freework;
7801 {
7802 	struct freeblks *freeblks;
7803 	struct freework *parent;
7804 
7805 	freeblks = freework->fw_freeblks;
7806 	parent = freework->fw_parent;
7807 	if (freework->fw_state & DELAYEDFREE)
7808 		freeblks->fb_cgwait--;
7809 	freework->fw_state |= COMPLETE;
7810 	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
7811 		WORKITEM_FREE(freework, D_FREEWORK);
7812 	if (parent) {
7813 		if (--parent->fw_ref == 0)
7814 			freework_enqueue(parent);
7815 		return;
7816 	}
7817 	if (--freeblks->fb_ref != 0)
7818 		return;
7819 	if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST | INPROGRESS)) ==
7820 	    ALLCOMPLETE && LIST_EMPTY(&freeblks->fb_jblkdephd))
7821 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
7822 }
7823 
7824 /*
7825  * This workitem routine performs the block de-allocation.
7826  * The workitem is added to the pending list after the updated
7827  * inode block has been written to disk.  As mentioned above,
7828  * checks regarding the number of blocks de-allocated (compared
7829  * to the number of blocks allocated for the file) are also
7830  * performed in this function.
7831  */
7832 static int
7833 handle_workitem_freeblocks(freeblks, flags)
7834 	struct freeblks *freeblks;
7835 	int flags;
7836 {
7837 	struct freework *freework;
7838 	struct newblk *newblk;
7839 	struct allocindir *aip;
7840 	struct ufsmount *ump;
7841 	struct worklist *wk;
7842 
7843 	KASSERT(LIST_EMPTY(&freeblks->fb_jblkdephd),
7844 	    ("handle_workitem_freeblocks: Journal entries not written."));
7845 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7846 	ACQUIRE_LOCK(ump);
7847 	while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) {
7848 		WORKLIST_REMOVE(wk);
7849 		switch (wk->wk_type) {
7850 		case D_DIRREM:
7851 			wk->wk_state |= COMPLETE;
7852 			add_to_worklist(wk, 0);
7853 			continue;
7854 
7855 		case D_ALLOCDIRECT:
7856 			free_newblk(WK_NEWBLK(wk));
7857 			continue;
7858 
7859 		case D_ALLOCINDIR:
7860 			aip = WK_ALLOCINDIR(wk);
7861 			freework = NULL;
7862 			if (aip->ai_state & DELAYEDFREE) {
7863 				FREE_LOCK(ump);
7864 				freework = newfreework(ump, freeblks, NULL,
7865 				    aip->ai_lbn, aip->ai_newblkno,
7866 				    ump->um_fs->fs_frag, 0, 0);
7867 				ACQUIRE_LOCK(ump);
7868 			}
7869 			newblk = WK_NEWBLK(wk);
7870 			if (newblk->nb_jnewblk) {
7871 				freework->fw_jnewblk = newblk->nb_jnewblk;
7872 				newblk->nb_jnewblk->jn_dep = &freework->fw_list;
7873 				newblk->nb_jnewblk = NULL;
7874 			}
7875 			free_newblk(newblk);
7876 			continue;
7877 
7878 		case D_FREEWORK:
7879 			freework = WK_FREEWORK(wk);
7880 			if (freework->fw_lbn <= -NDADDR)
7881 				handle_workitem_indirblk(freework);
7882 			else
7883 				freework_freeblock(freework);
7884 			continue;
7885 		default:
7886 			panic("handle_workitem_freeblocks: Unknown type %s",
7887 			    TYPENAME(wk->wk_type));
7888 		}
7889 	}
7890 	if (freeblks->fb_ref != 0) {
7891 		freeblks->fb_state &= ~INPROGRESS;
7892 		wake_worklist(&freeblks->fb_list);
7893 		freeblks = NULL;
7894 	}
7895 	FREE_LOCK(ump);
7896 	if (freeblks)
7897 		return handle_complete_freeblocks(freeblks, flags);
7898 	return (0);
7899 }
7900 
7901 /*
7902  * Handle completion of block free via truncate.  This allows fs_pending
7903  * to track the actual free block count more closely than if we only updated
7904  * it at the end.  We must be careful to handle cases where the block count
7905  * on free was incorrect.
7906  */
7907 static void
7908 freeblks_free(ump, freeblks, blocks)
7909 	struct ufsmount *ump;
7910 	struct freeblks *freeblks;
7911 	int blocks;
7912 {
7913 	struct fs *fs;
7914 	ufs2_daddr_t remain;
7915 
7916 	UFS_LOCK(ump);
7917 	remain = -freeblks->fb_chkcnt;
7918 	freeblks->fb_chkcnt += blocks;
7919 	if (remain > 0) {
7920 		if (remain < blocks)
7921 			blocks = remain;
7922 		fs = ump->um_fs;
7923 		fs->fs_pendingblocks -= blocks;
7924 	}
7925 	UFS_UNLOCK(ump);
7926 }
7927 
7928 /*
7929  * Once all of the freework workitems are complete we can retire the
7930  * freeblocks dependency and any journal work awaiting completion.  This
7931  * can not be called until all other dependencies are stable on disk.
7932  */
7933 static int
7934 handle_complete_freeblocks(freeblks, flags)
7935 	struct freeblks *freeblks;
7936 	int flags;
7937 {
7938 	struct inodedep *inodedep;
7939 	struct inode *ip;
7940 	struct vnode *vp;
7941 	struct fs *fs;
7942 	struct ufsmount *ump;
7943 	ufs2_daddr_t spare;
7944 
7945 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7946 	fs = ump->um_fs;
7947 	flags = LK_EXCLUSIVE | flags;
7948 	spare = freeblks->fb_chkcnt;
7949 
7950 	/*
7951 	 * If we did not release the expected number of blocks we may have
7952 	 * to adjust the inode block count here.  Only do so if it wasn't
7953 	 * a truncation to zero and the modrev still matches.
7954 	 */
7955 	if (spare && freeblks->fb_len != 0) {
7956 		if (ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_inum,
7957 		    flags, &vp, FFSV_FORCEINSMQ) != 0)
7958 			return (EBUSY);
7959 		ip = VTOI(vp);
7960 		if (DIP(ip, i_modrev) == freeblks->fb_modrev) {
7961 			DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - spare);
7962 			ip->i_flag |= IN_CHANGE;
7963 			/*
7964 			 * We must wait so this happens before the
7965 			 * journal is reclaimed.
7966 			 */
7967 			ffs_update(vp, 1);
7968 		}
7969 		vput(vp);
7970 	}
7971 	if (spare < 0) {
7972 		UFS_LOCK(ump);
7973 		fs->fs_pendingblocks += spare;
7974 		UFS_UNLOCK(ump);
7975 	}
7976 #ifdef QUOTA
7977 	/* Handle spare. */
7978 	if (spare)
7979 		quotaadj(freeblks->fb_quota, ump, -spare);
7980 	quotarele(freeblks->fb_quota);
7981 #endif
7982 	ACQUIRE_LOCK(ump);
7983 	if (freeblks->fb_state & ONDEPLIST) {
7984 		inodedep_lookup(freeblks->fb_list.wk_mp, freeblks->fb_inum,
7985 		    0, &inodedep);
7986 		TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, fb_next);
7987 		freeblks->fb_state &= ~ONDEPLIST;
7988 		if (TAILQ_EMPTY(&inodedep->id_freeblklst))
7989 			free_inodedep(inodedep);
7990 	}
7991 	/*
7992 	 * All of the freeblock deps must be complete prior to this call
7993 	 * so it's now safe to complete earlier outstanding journal entries.
7994 	 */
7995 	handle_jwork(&freeblks->fb_jwork);
7996 	WORKITEM_FREE(freeblks, D_FREEBLKS);
7997 	FREE_LOCK(ump);
7998 	return (0);
7999 }
8000 
8001 /*
8002  * Release blocks associated with the freeblks and stored in the indirect
8003  * block dbn. If level is greater than SINGLE, the block is an indirect block
8004  * and recursive calls to indirtrunc must be used to cleanse other indirect
8005  * blocks.
8006  *
8007  * This handles partial and complete truncation of blocks.  Partial is noted
8008  * with goingaway == 0.  In this case the freework is completed after the
8009  * zero'd indirects are written to disk.  For full truncation the freework
8010  * is completed after the block is freed.
8011  */
8012 static void
8013 indir_trunc(freework, dbn, lbn)
8014 	struct freework *freework;
8015 	ufs2_daddr_t dbn;
8016 	ufs_lbn_t lbn;
8017 {
8018 	struct freework *nfreework;
8019 	struct workhead wkhd;
8020 	struct freeblks *freeblks;
8021 	struct buf *bp;
8022 	struct fs *fs;
8023 	struct indirdep *indirdep;
8024 	struct ufsmount *ump;
8025 	ufs1_daddr_t *bap1 = 0;
8026 	ufs2_daddr_t nb, nnb, *bap2 = 0;
8027 	ufs_lbn_t lbnadd, nlbn;
8028 	int i, nblocks, ufs1fmt;
8029 	int freedblocks;
8030 	int goingaway;
8031 	int freedeps;
8032 	int needj;
8033 	int level;
8034 	int cnt;
8035 
8036 	freeblks = freework->fw_freeblks;
8037 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
8038 	fs = ump->um_fs;
8039 	/*
8040 	 * Get buffer of block pointers to be freed.  There are three cases:
8041 	 *
8042 	 * 1) Partial truncate caches the indirdep pointer in the freework
8043 	 *    which provides us a back copy to the save bp which holds the
8044 	 *    pointers we want to clear.  When this completes the zero
8045 	 *    pointers are written to the real copy.
8046 	 * 2) The indirect is being completely truncated, cancel_indirdep()
8047 	 *    eliminated the real copy and placed the indirdep on the saved
8048 	 *    copy.  The indirdep and buf are discarded when this completes.
8049 	 * 3) The indirect was not in memory, we read a copy off of the disk
8050 	 *    using the devvp and drop and invalidate the buffer when we're
8051 	 *    done.
8052 	 */
8053 	goingaway = 1;
8054 	indirdep = NULL;
8055 	if (freework->fw_indir != NULL) {
8056 		goingaway = 0;
8057 		indirdep = freework->fw_indir;
8058 		bp = indirdep->ir_savebp;
8059 		if (bp == NULL || bp->b_blkno != dbn)
8060 			panic("indir_trunc: Bad saved buf %p blkno %jd",
8061 			    bp, (intmax_t)dbn);
8062 	} else if ((bp = incore(&freeblks->fb_devvp->v_bufobj, dbn)) != NULL) {
8063 		/*
8064 		 * The lock prevents the buf dep list from changing and
8065 	 	 * indirects on devvp should only ever have one dependency.
8066 		 */
8067 		indirdep = WK_INDIRDEP(LIST_FIRST(&bp->b_dep));
8068 		if (indirdep == NULL || (indirdep->ir_state & GOINGAWAY) == 0)
8069 			panic("indir_trunc: Bad indirdep %p from buf %p",
8070 			    indirdep, bp);
8071 	} else if (bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize,
8072 	    NOCRED, &bp) != 0) {
8073 		brelse(bp);
8074 		return;
8075 	}
8076 	ACQUIRE_LOCK(ump);
8077 	/* Protects against a race with complete_trunc_indir(). */
8078 	freework->fw_state &= ~INPROGRESS;
8079 	/*
8080 	 * If we have an indirdep we need to enforce the truncation order
8081 	 * and discard it when it is complete.
8082 	 */
8083 	if (indirdep) {
8084 		if (freework != TAILQ_FIRST(&indirdep->ir_trunc) &&
8085 		    !TAILQ_EMPTY(&indirdep->ir_trunc)) {
8086 			/*
8087 			 * Add the complete truncate to the list on the
8088 			 * indirdep to enforce in-order processing.
8089 			 */
8090 			if (freework->fw_indir == NULL)
8091 				TAILQ_INSERT_TAIL(&indirdep->ir_trunc,
8092 				    freework, fw_next);
8093 			FREE_LOCK(ump);
8094 			return;
8095 		}
8096 		/*
8097 		 * If we're goingaway, free the indirdep.  Otherwise it will
8098 		 * linger until the write completes.
8099 		 */
8100 		if (goingaway)
8101 			free_indirdep(indirdep);
8102 	}
8103 	FREE_LOCK(ump);
8104 	/* Initialize pointers depending on block size. */
8105 	if (ump->um_fstype == UFS1) {
8106 		bap1 = (ufs1_daddr_t *)bp->b_data;
8107 		nb = bap1[freework->fw_off];
8108 		ufs1fmt = 1;
8109 	} else {
8110 		bap2 = (ufs2_daddr_t *)bp->b_data;
8111 		nb = bap2[freework->fw_off];
8112 		ufs1fmt = 0;
8113 	}
8114 	level = lbn_level(lbn);
8115 	needj = MOUNTEDSUJ(UFSTOVFS(ump)) != 0;
8116 	lbnadd = lbn_offset(fs, level);
8117 	nblocks = btodb(fs->fs_bsize);
8118 	nfreework = freework;
8119 	freedeps = 0;
8120 	cnt = 0;
8121 	/*
8122 	 * Reclaim blocks.  Traverses into nested indirect levels and
8123 	 * arranges for the current level to be freed when subordinates
8124 	 * are free when journaling.
8125 	 */
8126 	for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) {
8127 		if (i != NINDIR(fs) - 1) {
8128 			if (ufs1fmt)
8129 				nnb = bap1[i+1];
8130 			else
8131 				nnb = bap2[i+1];
8132 		} else
8133 			nnb = 0;
8134 		if (nb == 0)
8135 			continue;
8136 		cnt++;
8137 		if (level != 0) {
8138 			nlbn = (lbn + 1) - (i * lbnadd);
8139 			if (needj != 0) {
8140 				nfreework = newfreework(ump, freeblks, freework,
8141 				    nlbn, nb, fs->fs_frag, 0, 0);
8142 				freedeps++;
8143 			}
8144 			indir_trunc(nfreework, fsbtodb(fs, nb), nlbn);
8145 		} else {
8146 			struct freedep *freedep;
8147 
8148 			/*
8149 			 * Attempt to aggregate freedep dependencies for
8150 			 * all blocks being released to the same CG.
8151 			 */
8152 			LIST_INIT(&wkhd);
8153 			if (needj != 0 &&
8154 			    (nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) {
8155 				freedep = newfreedep(freework);
8156 				WORKLIST_INSERT_UNLOCKED(&wkhd,
8157 				    &freedep->fd_list);
8158 				freedeps++;
8159 			}
8160 			CTR3(KTR_SUJ,
8161 			    "indir_trunc: ino %d blkno %jd size %ld",
8162 			    freeblks->fb_inum, nb, fs->fs_bsize);
8163 			ffs_blkfree(ump, fs, freeblks->fb_devvp, nb,
8164 			    fs->fs_bsize, freeblks->fb_inum,
8165 			    freeblks->fb_vtype, &wkhd);
8166 		}
8167 	}
8168 	if (goingaway) {
8169 		bp->b_flags |= B_INVAL | B_NOCACHE;
8170 		brelse(bp);
8171 	}
8172 	freedblocks = 0;
8173 	if (level == 0)
8174 		freedblocks = (nblocks * cnt);
8175 	if (needj == 0)
8176 		freedblocks += nblocks;
8177 	freeblks_free(ump, freeblks, freedblocks);
8178 	/*
8179 	 * If we are journaling set up the ref counts and offset so this
8180 	 * indirect can be completed when its children are free.
8181 	 */
8182 	if (needj) {
8183 		ACQUIRE_LOCK(ump);
8184 		freework->fw_off = i;
8185 		freework->fw_ref += freedeps;
8186 		freework->fw_ref -= NINDIR(fs) + 1;
8187 		if (level == 0)
8188 			freeblks->fb_cgwait += freedeps;
8189 		if (freework->fw_ref == 0)
8190 			freework_freeblock(freework);
8191 		FREE_LOCK(ump);
8192 		return;
8193 	}
8194 	/*
8195 	 * If we're not journaling we can free the indirect now.
8196 	 */
8197 	dbn = dbtofsb(fs, dbn);
8198 	CTR3(KTR_SUJ,
8199 	    "indir_trunc 2: ino %d blkno %jd size %ld",
8200 	    freeblks->fb_inum, dbn, fs->fs_bsize);
8201 	ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize,
8202 	    freeblks->fb_inum, freeblks->fb_vtype, NULL);
8203 	/* Non SUJ softdep does single-threaded truncations. */
8204 	if (freework->fw_blkno == dbn) {
8205 		freework->fw_state |= ALLCOMPLETE;
8206 		ACQUIRE_LOCK(ump);
8207 		handle_written_freework(freework);
8208 		FREE_LOCK(ump);
8209 	}
8210 	return;
8211 }
8212 
8213 /*
8214  * Cancel an allocindir when it is removed via truncation.  When bp is not
8215  * NULL the indirect never appeared on disk and is scheduled to be freed
8216  * independently of the indir so we can more easily track journal work.
8217  */
8218 static void
8219 cancel_allocindir(aip, bp, freeblks, trunc)
8220 	struct allocindir *aip;
8221 	struct buf *bp;
8222 	struct freeblks *freeblks;
8223 	int trunc;
8224 {
8225 	struct indirdep *indirdep;
8226 	struct freefrag *freefrag;
8227 	struct newblk *newblk;
8228 
8229 	newblk = (struct newblk *)aip;
8230 	LIST_REMOVE(aip, ai_next);
8231 	/*
8232 	 * We must eliminate the pointer in bp if it must be freed on its
8233 	 * own due to partial truncate or pending journal work.
8234 	 */
8235 	if (bp && (trunc || newblk->nb_jnewblk)) {
8236 		/*
8237 		 * Clear the pointer and mark the aip to be freed
8238 		 * directly if it never existed on disk.
8239 		 */
8240 		aip->ai_state |= DELAYEDFREE;
8241 		indirdep = aip->ai_indirdep;
8242 		if (indirdep->ir_state & UFS1FMT)
8243 			((ufs1_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
8244 		else
8245 			((ufs2_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
8246 	}
8247 	/*
8248 	 * When truncating the previous pointer will be freed via
8249 	 * savedbp.  Eliminate the freefrag which would dup free.
8250 	 */
8251 	if (trunc && (freefrag = newblk->nb_freefrag) != NULL) {
8252 		newblk->nb_freefrag = NULL;
8253 		if (freefrag->ff_jdep)
8254 			cancel_jfreefrag(
8255 			    WK_JFREEFRAG(freefrag->ff_jdep));
8256 		jwork_move(&freeblks->fb_jwork, &freefrag->ff_jwork);
8257 		WORKITEM_FREE(freefrag, D_FREEFRAG);
8258 	}
8259 	/*
8260 	 * If the journal hasn't been written the jnewblk must be passed
8261 	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
8262 	 * this by leaving the journal dependency on the newblk to be freed
8263 	 * when a freework is created in handle_workitem_freeblocks().
8264 	 */
8265 	cancel_newblk(newblk, NULL, &freeblks->fb_jwork);
8266 	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
8267 }
8268 
8269 /*
8270  * Create the mkdir dependencies for . and .. in a new directory.  Link them
8271  * in to a newdirblk so any subsequent additions are tracked properly.  The
8272  * caller is responsible for adding the mkdir1 dependency to the journal
8273  * and updating id_mkdiradd.  This function returns with the per-filesystem
8274  * lock held.
8275  */
8276 static struct mkdir *
8277 setup_newdir(dap, newinum, dinum, newdirbp, mkdirp)
8278 	struct diradd *dap;
8279 	ino_t newinum;
8280 	ino_t dinum;
8281 	struct buf *newdirbp;
8282 	struct mkdir **mkdirp;
8283 {
8284 	struct newblk *newblk;
8285 	struct pagedep *pagedep;
8286 	struct inodedep *inodedep;
8287 	struct newdirblk *newdirblk = 0;
8288 	struct mkdir *mkdir1, *mkdir2;
8289 	struct worklist *wk;
8290 	struct jaddref *jaddref;
8291 	struct ufsmount *ump;
8292 	struct mount *mp;
8293 
8294 	mp = dap->da_list.wk_mp;
8295 	ump = VFSTOUFS(mp);
8296 	newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK,
8297 	    M_SOFTDEP_FLAGS);
8298 	workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
8299 	LIST_INIT(&newdirblk->db_mkdir);
8300 	mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
8301 	workitem_alloc(&mkdir1->md_list, D_MKDIR, mp);
8302 	mkdir1->md_state = ATTACHED | MKDIR_BODY;
8303 	mkdir1->md_diradd = dap;
8304 	mkdir1->md_jaddref = NULL;
8305 	mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
8306 	workitem_alloc(&mkdir2->md_list, D_MKDIR, mp);
8307 	mkdir2->md_state = ATTACHED | MKDIR_PARENT;
8308 	mkdir2->md_diradd = dap;
8309 	mkdir2->md_jaddref = NULL;
8310 	if (MOUNTEDSUJ(mp) == 0) {
8311 		mkdir1->md_state |= DEPCOMPLETE;
8312 		mkdir2->md_state |= DEPCOMPLETE;
8313 	}
8314 	/*
8315 	 * Dependency on "." and ".." being written to disk.
8316 	 */
8317 	mkdir1->md_buf = newdirbp;
8318 	ACQUIRE_LOCK(VFSTOUFS(mp));
8319 	LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir1, md_mkdirs);
8320 	/*
8321 	 * We must link the pagedep, allocdirect, and newdirblk for
8322 	 * the initial file page so the pointer to the new directory
8323 	 * is not written until the directory contents are live and
8324 	 * any subsequent additions are not marked live until the
8325 	 * block is reachable via the inode.
8326 	 */
8327 	if (pagedep_lookup(mp, newdirbp, newinum, 0, 0, &pagedep) == 0)
8328 		panic("setup_newdir: lost pagedep");
8329 	LIST_FOREACH(wk, &newdirbp->b_dep, wk_list)
8330 		if (wk->wk_type == D_ALLOCDIRECT)
8331 			break;
8332 	if (wk == NULL)
8333 		panic("setup_newdir: lost allocdirect");
8334 	if (pagedep->pd_state & NEWBLOCK)
8335 		panic("setup_newdir: NEWBLOCK already set");
8336 	newblk = WK_NEWBLK(wk);
8337 	pagedep->pd_state |= NEWBLOCK;
8338 	pagedep->pd_newdirblk = newdirblk;
8339 	newdirblk->db_pagedep = pagedep;
8340 	WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
8341 	WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list);
8342 	/*
8343 	 * Look up the inodedep for the parent directory so that we
8344 	 * can link mkdir2 into the pending dotdot jaddref or
8345 	 * the inode write if there is none.  If the inode is
8346 	 * ALLCOMPLETE and no jaddref is present all dependencies have
8347 	 * been satisfied and mkdir2 can be freed.
8348 	 */
8349 	inodedep_lookup(mp, dinum, 0, &inodedep);
8350 	if (MOUNTEDSUJ(mp)) {
8351 		if (inodedep == NULL)
8352 			panic("setup_newdir: Lost parent.");
8353 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8354 		    inoreflst);
8355 		KASSERT(jaddref != NULL && jaddref->ja_parent == newinum &&
8356 		    (jaddref->ja_state & MKDIR_PARENT),
8357 		    ("setup_newdir: bad dotdot jaddref %p", jaddref));
8358 		LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs);
8359 		mkdir2->md_jaddref = jaddref;
8360 		jaddref->ja_mkdir = mkdir2;
8361 	} else if (inodedep == NULL ||
8362 	    (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
8363 		dap->da_state &= ~MKDIR_PARENT;
8364 		WORKITEM_FREE(mkdir2, D_MKDIR);
8365 		mkdir2 = NULL;
8366 	} else {
8367 		LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs);
8368 		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir2->md_list);
8369 	}
8370 	*mkdirp = mkdir2;
8371 
8372 	return (mkdir1);
8373 }
8374 
8375 /*
8376  * Directory entry addition dependencies.
8377  *
8378  * When adding a new directory entry, the inode (with its incremented link
8379  * count) must be written to disk before the directory entry's pointer to it.
8380  * Also, if the inode is newly allocated, the corresponding freemap must be
8381  * updated (on disk) before the directory entry's pointer. These requirements
8382  * are met via undo/redo on the directory entry's pointer, which consists
8383  * simply of the inode number.
8384  *
8385  * As directory entries are added and deleted, the free space within a
8386  * directory block can become fragmented.  The ufs filesystem will compact
8387  * a fragmented directory block to make space for a new entry. When this
8388  * occurs, the offsets of previously added entries change. Any "diradd"
8389  * dependency structures corresponding to these entries must be updated with
8390  * the new offsets.
8391  */
8392 
8393 /*
8394  * This routine is called after the in-memory inode's link
8395  * count has been incremented, but before the directory entry's
8396  * pointer to the inode has been set.
8397  */
8398 int
8399 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
8400 	struct buf *bp;		/* buffer containing directory block */
8401 	struct inode *dp;	/* inode for directory */
8402 	off_t diroffset;	/* offset of new entry in directory */
8403 	ino_t newinum;		/* inode referenced by new directory entry */
8404 	struct buf *newdirbp;	/* non-NULL => contents of new mkdir */
8405 	int isnewblk;		/* entry is in a newly allocated block */
8406 {
8407 	int offset;		/* offset of new entry within directory block */
8408 	ufs_lbn_t lbn;		/* block in directory containing new entry */
8409 	struct fs *fs;
8410 	struct diradd *dap;
8411 	struct newblk *newblk;
8412 	struct pagedep *pagedep;
8413 	struct inodedep *inodedep;
8414 	struct newdirblk *newdirblk = 0;
8415 	struct mkdir *mkdir1, *mkdir2;
8416 	struct jaddref *jaddref;
8417 	struct ufsmount *ump;
8418 	struct mount *mp;
8419 	int isindir;
8420 
8421 	ump = dp->i_ump;
8422 	mp = UFSTOVFS(ump);
8423 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
8424 	    ("softdep_setup_directory_add called on non-softdep filesystem"));
8425 	/*
8426 	 * Whiteouts have no dependencies.
8427 	 */
8428 	if (newinum == WINO) {
8429 		if (newdirbp != NULL)
8430 			bdwrite(newdirbp);
8431 		return (0);
8432 	}
8433 	jaddref = NULL;
8434 	mkdir1 = mkdir2 = NULL;
8435 	fs = dp->i_fs;
8436 	lbn = lblkno(fs, diroffset);
8437 	offset = blkoff(fs, diroffset);
8438 	dap = malloc(sizeof(struct diradd), M_DIRADD,
8439 		M_SOFTDEP_FLAGS|M_ZERO);
8440 	workitem_alloc(&dap->da_list, D_DIRADD, mp);
8441 	dap->da_offset = offset;
8442 	dap->da_newinum = newinum;
8443 	dap->da_state = ATTACHED;
8444 	LIST_INIT(&dap->da_jwork);
8445 	isindir = bp->b_lblkno >= NDADDR;
8446 	if (isnewblk &&
8447 	    (isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) {
8448 		newdirblk = malloc(sizeof(struct newdirblk),
8449 		    M_NEWDIRBLK, M_SOFTDEP_FLAGS);
8450 		workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
8451 		LIST_INIT(&newdirblk->db_mkdir);
8452 	}
8453 	/*
8454 	 * If we're creating a new directory setup the dependencies and set
8455 	 * the dap state to wait for them.  Otherwise it's COMPLETE and
8456 	 * we can move on.
8457 	 */
8458 	if (newdirbp == NULL) {
8459 		dap->da_state |= DEPCOMPLETE;
8460 		ACQUIRE_LOCK(ump);
8461 	} else {
8462 		dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
8463 		mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp,
8464 		    &mkdir2);
8465 	}
8466 	/*
8467 	 * Link into parent directory pagedep to await its being written.
8468 	 */
8469 	pagedep_lookup(mp, bp, dp->i_number, lbn, DEPALLOC, &pagedep);
8470 #ifdef DEBUG
8471 	if (diradd_lookup(pagedep, offset) != NULL)
8472 		panic("softdep_setup_directory_add: %p already at off %d\n",
8473 		    diradd_lookup(pagedep, offset), offset);
8474 #endif
8475 	dap->da_pagedep = pagedep;
8476 	LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
8477 	    da_pdlist);
8478 	inodedep_lookup(mp, newinum, DEPALLOC | NODELAY, &inodedep);
8479 	/*
8480 	 * If we're journaling, link the diradd into the jaddref so it
8481 	 * may be completed after the journal entry is written.  Otherwise,
8482 	 * link the diradd into its inodedep.  If the inode is not yet
8483 	 * written place it on the bufwait list, otherwise do the post-inode
8484 	 * write processing to put it on the id_pendinghd list.
8485 	 */
8486 	if (MOUNTEDSUJ(mp)) {
8487 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8488 		    inoreflst);
8489 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
8490 		    ("softdep_setup_directory_add: bad jaddref %p", jaddref));
8491 		jaddref->ja_diroff = diroffset;
8492 		jaddref->ja_diradd = dap;
8493 		add_to_journal(&jaddref->ja_list);
8494 	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
8495 		diradd_inode_written(dap, inodedep);
8496 	else
8497 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
8498 	/*
8499 	 * Add the journal entries for . and .. links now that the primary
8500 	 * link is written.
8501 	 */
8502 	if (mkdir1 != NULL && MOUNTEDSUJ(mp)) {
8503 		jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
8504 		    inoreflst, if_deps);
8505 		KASSERT(jaddref != NULL &&
8506 		    jaddref->ja_ino == jaddref->ja_parent &&
8507 		    (jaddref->ja_state & MKDIR_BODY),
8508 		    ("softdep_setup_directory_add: bad dot jaddref %p",
8509 		    jaddref));
8510 		mkdir1->md_jaddref = jaddref;
8511 		jaddref->ja_mkdir = mkdir1;
8512 		/*
8513 		 * It is important that the dotdot journal entry
8514 		 * is added prior to the dot entry since dot writes
8515 		 * both the dot and dotdot links.  These both must
8516 		 * be added after the primary link for the journal
8517 		 * to remain consistent.
8518 		 */
8519 		add_to_journal(&mkdir2->md_jaddref->ja_list);
8520 		add_to_journal(&jaddref->ja_list);
8521 	}
8522 	/*
8523 	 * If we are adding a new directory remember this diradd so that if
8524 	 * we rename it we can keep the dot and dotdot dependencies.  If
8525 	 * we are adding a new name for an inode that has a mkdiradd we
8526 	 * must be in rename and we have to move the dot and dotdot
8527 	 * dependencies to this new name.  The old name is being orphaned
8528 	 * soon.
8529 	 */
8530 	if (mkdir1 != NULL) {
8531 		if (inodedep->id_mkdiradd != NULL)
8532 			panic("softdep_setup_directory_add: Existing mkdir");
8533 		inodedep->id_mkdiradd = dap;
8534 	} else if (inodedep->id_mkdiradd)
8535 		merge_diradd(inodedep, dap);
8536 	if (newdirblk) {
8537 		/*
8538 		 * There is nothing to do if we are already tracking
8539 		 * this block.
8540 		 */
8541 		if ((pagedep->pd_state & NEWBLOCK) != 0) {
8542 			WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
8543 			FREE_LOCK(ump);
8544 			return (0);
8545 		}
8546 		if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)
8547 		    == 0)
8548 			panic("softdep_setup_directory_add: lost entry");
8549 		WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
8550 		pagedep->pd_state |= NEWBLOCK;
8551 		pagedep->pd_newdirblk = newdirblk;
8552 		newdirblk->db_pagedep = pagedep;
8553 		FREE_LOCK(ump);
8554 		/*
8555 		 * If we extended into an indirect signal direnter to sync.
8556 		 */
8557 		if (isindir)
8558 			return (1);
8559 		return (0);
8560 	}
8561 	FREE_LOCK(ump);
8562 	return (0);
8563 }
8564 
8565 /*
8566  * This procedure is called to change the offset of a directory
8567  * entry when compacting a directory block which must be owned
8568  * exclusively by the caller. Note that the actual entry movement
8569  * must be done in this procedure to ensure that no I/O completions
8570  * occur while the move is in progress.
8571  */
8572 void
8573 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
8574 	struct buf *bp;		/* Buffer holding directory block. */
8575 	struct inode *dp;	/* inode for directory */
8576 	caddr_t base;		/* address of dp->i_offset */
8577 	caddr_t oldloc;		/* address of old directory location */
8578 	caddr_t newloc;		/* address of new directory location */
8579 	int entrysize;		/* size of directory entry */
8580 {
8581 	int offset, oldoffset, newoffset;
8582 	struct pagedep *pagedep;
8583 	struct jmvref *jmvref;
8584 	struct diradd *dap;
8585 	struct direct *de;
8586 	struct mount *mp;
8587 	ufs_lbn_t lbn;
8588 	int flags;
8589 
8590 	mp = UFSTOVFS(dp->i_ump);
8591 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
8592 	    ("softdep_change_directoryentry_offset called on "
8593 	     "non-softdep filesystem"));
8594 	de = (struct direct *)oldloc;
8595 	jmvref = NULL;
8596 	flags = 0;
8597 	/*
8598 	 * Moves are always journaled as it would be too complex to
8599 	 * determine if any affected adds or removes are present in the
8600 	 * journal.
8601 	 */
8602 	if (MOUNTEDSUJ(mp)) {
8603 		flags = DEPALLOC;
8604 		jmvref = newjmvref(dp, de->d_ino,
8605 		    dp->i_offset + (oldloc - base),
8606 		    dp->i_offset + (newloc - base));
8607 	}
8608 	lbn = lblkno(dp->i_fs, dp->i_offset);
8609 	offset = blkoff(dp->i_fs, dp->i_offset);
8610 	oldoffset = offset + (oldloc - base);
8611 	newoffset = offset + (newloc - base);
8612 	ACQUIRE_LOCK(dp->i_ump);
8613 	if (pagedep_lookup(mp, bp, dp->i_number, lbn, flags, &pagedep) == 0)
8614 		goto done;
8615 	dap = diradd_lookup(pagedep, oldoffset);
8616 	if (dap) {
8617 		dap->da_offset = newoffset;
8618 		newoffset = DIRADDHASH(newoffset);
8619 		oldoffset = DIRADDHASH(oldoffset);
8620 		if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE &&
8621 		    newoffset != oldoffset) {
8622 			LIST_REMOVE(dap, da_pdlist);
8623 			LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset],
8624 			    dap, da_pdlist);
8625 		}
8626 	}
8627 done:
8628 	if (jmvref) {
8629 		jmvref->jm_pagedep = pagedep;
8630 		LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps);
8631 		add_to_journal(&jmvref->jm_list);
8632 	}
8633 	bcopy(oldloc, newloc, entrysize);
8634 	FREE_LOCK(dp->i_ump);
8635 }
8636 
8637 /*
8638  * Move the mkdir dependencies and journal work from one diradd to another
8639  * when renaming a directory.  The new name must depend on the mkdir deps
8640  * completing as the old name did.  Directories can only have one valid link
8641  * at a time so one must be canonical.
8642  */
8643 static void
8644 merge_diradd(inodedep, newdap)
8645 	struct inodedep *inodedep;
8646 	struct diradd *newdap;
8647 {
8648 	struct diradd *olddap;
8649 	struct mkdir *mkdir, *nextmd;
8650 	struct ufsmount *ump;
8651 	short state;
8652 
8653 	olddap = inodedep->id_mkdiradd;
8654 	inodedep->id_mkdiradd = newdap;
8655 	if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8656 		newdap->da_state &= ~DEPCOMPLETE;
8657 		ump = VFSTOUFS(inodedep->id_list.wk_mp);
8658 		for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
8659 		     mkdir = nextmd) {
8660 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
8661 			if (mkdir->md_diradd != olddap)
8662 				continue;
8663 			mkdir->md_diradd = newdap;
8664 			state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY);
8665 			newdap->da_state |= state;
8666 			olddap->da_state &= ~state;
8667 			if ((olddap->da_state &
8668 			    (MKDIR_PARENT | MKDIR_BODY)) == 0)
8669 				break;
8670 		}
8671 		if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
8672 			panic("merge_diradd: unfound ref");
8673 	}
8674 	/*
8675 	 * Any mkdir related journal items are not safe to be freed until
8676 	 * the new name is stable.
8677 	 */
8678 	jwork_move(&newdap->da_jwork, &olddap->da_jwork);
8679 	olddap->da_state |= DEPCOMPLETE;
8680 	complete_diradd(olddap);
8681 }
8682 
8683 /*
8684  * Move the diradd to the pending list when all diradd dependencies are
8685  * complete.
8686  */
8687 static void
8688 complete_diradd(dap)
8689 	struct diradd *dap;
8690 {
8691 	struct pagedep *pagedep;
8692 
8693 	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
8694 		if (dap->da_state & DIRCHG)
8695 			pagedep = dap->da_previous->dm_pagedep;
8696 		else
8697 			pagedep = dap->da_pagedep;
8698 		LIST_REMOVE(dap, da_pdlist);
8699 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
8700 	}
8701 }
8702 
8703 /*
8704  * Cancel a diradd when a dirrem overlaps with it.  We must cancel the journal
8705  * add entries and conditonally journal the remove.
8706  */
8707 static void
8708 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref)
8709 	struct diradd *dap;
8710 	struct dirrem *dirrem;
8711 	struct jremref *jremref;
8712 	struct jremref *dotremref;
8713 	struct jremref *dotdotremref;
8714 {
8715 	struct inodedep *inodedep;
8716 	struct jaddref *jaddref;
8717 	struct inoref *inoref;
8718 	struct ufsmount *ump;
8719 	struct mkdir *mkdir;
8720 
8721 	/*
8722 	 * If no remove references were allocated we're on a non-journaled
8723 	 * filesystem and can skip the cancel step.
8724 	 */
8725 	if (jremref == NULL) {
8726 		free_diradd(dap, NULL);
8727 		return;
8728 	}
8729 	/*
8730 	 * Cancel the primary name an free it if it does not require
8731 	 * journaling.
8732 	 */
8733 	if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum,
8734 	    0, &inodedep) != 0) {
8735 		/* Abort the addref that reference this diradd.  */
8736 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
8737 			if (inoref->if_list.wk_type != D_JADDREF)
8738 				continue;
8739 			jaddref = (struct jaddref *)inoref;
8740 			if (jaddref->ja_diradd != dap)
8741 				continue;
8742 			if (cancel_jaddref(jaddref, inodedep,
8743 			    &dirrem->dm_jwork) == 0) {
8744 				free_jremref(jremref);
8745 				jremref = NULL;
8746 			}
8747 			break;
8748 		}
8749 	}
8750 	/*
8751 	 * Cancel subordinate names and free them if they do not require
8752 	 * journaling.
8753 	 */
8754 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8755 		ump = VFSTOUFS(dap->da_list.wk_mp);
8756 		LIST_FOREACH(mkdir, &ump->softdep_mkdirlisthd, md_mkdirs) {
8757 			if (mkdir->md_diradd != dap)
8758 				continue;
8759 			if ((jaddref = mkdir->md_jaddref) == NULL)
8760 				continue;
8761 			mkdir->md_jaddref = NULL;
8762 			if (mkdir->md_state & MKDIR_PARENT) {
8763 				if (cancel_jaddref(jaddref, NULL,
8764 				    &dirrem->dm_jwork) == 0) {
8765 					free_jremref(dotdotremref);
8766 					dotdotremref = NULL;
8767 				}
8768 			} else {
8769 				if (cancel_jaddref(jaddref, inodedep,
8770 				    &dirrem->dm_jwork) == 0) {
8771 					free_jremref(dotremref);
8772 					dotremref = NULL;
8773 				}
8774 			}
8775 		}
8776 	}
8777 
8778 	if (jremref)
8779 		journal_jremref(dirrem, jremref, inodedep);
8780 	if (dotremref)
8781 		journal_jremref(dirrem, dotremref, inodedep);
8782 	if (dotdotremref)
8783 		journal_jremref(dirrem, dotdotremref, NULL);
8784 	jwork_move(&dirrem->dm_jwork, &dap->da_jwork);
8785 	free_diradd(dap, &dirrem->dm_jwork);
8786 }
8787 
8788 /*
8789  * Free a diradd dependency structure. This routine must be called
8790  * with splbio interrupts blocked.
8791  */
8792 static void
8793 free_diradd(dap, wkhd)
8794 	struct diradd *dap;
8795 	struct workhead *wkhd;
8796 {
8797 	struct dirrem *dirrem;
8798 	struct pagedep *pagedep;
8799 	struct inodedep *inodedep;
8800 	struct mkdir *mkdir, *nextmd;
8801 	struct ufsmount *ump;
8802 
8803 	ump = VFSTOUFS(dap->da_list.wk_mp);
8804 	LOCK_OWNED(ump);
8805 	LIST_REMOVE(dap, da_pdlist);
8806 	if (dap->da_state & ONWORKLIST)
8807 		WORKLIST_REMOVE(&dap->da_list);
8808 	if ((dap->da_state & DIRCHG) == 0) {
8809 		pagedep = dap->da_pagedep;
8810 	} else {
8811 		dirrem = dap->da_previous;
8812 		pagedep = dirrem->dm_pagedep;
8813 		dirrem->dm_dirinum = pagedep->pd_ino;
8814 		dirrem->dm_state |= COMPLETE;
8815 		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
8816 			add_to_worklist(&dirrem->dm_list, 0);
8817 	}
8818 	if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum,
8819 	    0, &inodedep) != 0)
8820 		if (inodedep->id_mkdiradd == dap)
8821 			inodedep->id_mkdiradd = NULL;
8822 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8823 		for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
8824 		     mkdir = nextmd) {
8825 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
8826 			if (mkdir->md_diradd != dap)
8827 				continue;
8828 			dap->da_state &=
8829 			    ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
8830 			LIST_REMOVE(mkdir, md_mkdirs);
8831 			if (mkdir->md_state & ONWORKLIST)
8832 				WORKLIST_REMOVE(&mkdir->md_list);
8833 			if (mkdir->md_jaddref != NULL)
8834 				panic("free_diradd: Unexpected jaddref");
8835 			WORKITEM_FREE(mkdir, D_MKDIR);
8836 			if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
8837 				break;
8838 		}
8839 		if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
8840 			panic("free_diradd: unfound ref");
8841 	}
8842 	if (inodedep)
8843 		free_inodedep(inodedep);
8844 	/*
8845 	 * Free any journal segments waiting for the directory write.
8846 	 */
8847 	handle_jwork(&dap->da_jwork);
8848 	WORKITEM_FREE(dap, D_DIRADD);
8849 }
8850 
8851 /*
8852  * Directory entry removal dependencies.
8853  *
8854  * When removing a directory entry, the entry's inode pointer must be
8855  * zero'ed on disk before the corresponding inode's link count is decremented
8856  * (possibly freeing the inode for re-use). This dependency is handled by
8857  * updating the directory entry but delaying the inode count reduction until
8858  * after the directory block has been written to disk. After this point, the
8859  * inode count can be decremented whenever it is convenient.
8860  */
8861 
8862 /*
8863  * This routine should be called immediately after removing
8864  * a directory entry.  The inode's link count should not be
8865  * decremented by the calling procedure -- the soft updates
8866  * code will do this task when it is safe.
8867  */
8868 void
8869 softdep_setup_remove(bp, dp, ip, isrmdir)
8870 	struct buf *bp;		/* buffer containing directory block */
8871 	struct inode *dp;	/* inode for the directory being modified */
8872 	struct inode *ip;	/* inode for directory entry being removed */
8873 	int isrmdir;		/* indicates if doing RMDIR */
8874 {
8875 	struct dirrem *dirrem, *prevdirrem;
8876 	struct inodedep *inodedep;
8877 	int direct;
8878 
8879 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
8880 	    ("softdep_setup_remove called on non-softdep filesystem"));
8881 	/*
8882 	 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK.  We want
8883 	 * newdirrem() to setup the full directory remove which requires
8884 	 * isrmdir > 1.
8885 	 */
8886 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
8887 	/*
8888 	 * Add the dirrem to the inodedep's pending remove list for quick
8889 	 * discovery later.
8890 	 */
8891 	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
8892 	    &inodedep) == 0)
8893 		panic("softdep_setup_remove: Lost inodedep.");
8894 	KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
8895 	dirrem->dm_state |= ONDEPLIST;
8896 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
8897 
8898 	/*
8899 	 * If the COMPLETE flag is clear, then there were no active
8900 	 * entries and we want to roll back to a zeroed entry until
8901 	 * the new inode is committed to disk. If the COMPLETE flag is
8902 	 * set then we have deleted an entry that never made it to
8903 	 * disk. If the entry we deleted resulted from a name change,
8904 	 * then the old name still resides on disk. We cannot delete
8905 	 * its inode (returned to us in prevdirrem) until the zeroed
8906 	 * directory entry gets to disk. The new inode has never been
8907 	 * referenced on the disk, so can be deleted immediately.
8908 	 */
8909 	if ((dirrem->dm_state & COMPLETE) == 0) {
8910 		LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
8911 		    dm_next);
8912 		FREE_LOCK(ip->i_ump);
8913 	} else {
8914 		if (prevdirrem != NULL)
8915 			LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd,
8916 			    prevdirrem, dm_next);
8917 		dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
8918 		direct = LIST_EMPTY(&dirrem->dm_jremrefhd);
8919 		FREE_LOCK(ip->i_ump);
8920 		if (direct)
8921 			handle_workitem_remove(dirrem, 0);
8922 	}
8923 }
8924 
8925 /*
8926  * Check for an entry matching 'offset' on both the pd_dirraddhd list and the
8927  * pd_pendinghd list of a pagedep.
8928  */
8929 static struct diradd *
8930 diradd_lookup(pagedep, offset)
8931 	struct pagedep *pagedep;
8932 	int offset;
8933 {
8934 	struct diradd *dap;
8935 
8936 	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist)
8937 		if (dap->da_offset == offset)
8938 			return (dap);
8939 	LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
8940 		if (dap->da_offset == offset)
8941 			return (dap);
8942 	return (NULL);
8943 }
8944 
8945 /*
8946  * Search for a .. diradd dependency in a directory that is being removed.
8947  * If the directory was renamed to a new parent we have a diradd rather
8948  * than a mkdir for the .. entry.  We need to cancel it now before
8949  * it is found in truncate().
8950  */
8951 static struct jremref *
8952 cancel_diradd_dotdot(ip, dirrem, jremref)
8953 	struct inode *ip;
8954 	struct dirrem *dirrem;
8955 	struct jremref *jremref;
8956 {
8957 	struct pagedep *pagedep;
8958 	struct diradd *dap;
8959 	struct worklist *wk;
8960 
8961 	if (pagedep_lookup(UFSTOVFS(ip->i_ump), NULL, ip->i_number, 0, 0,
8962 	    &pagedep) == 0)
8963 		return (jremref);
8964 	dap = diradd_lookup(pagedep, DOTDOT_OFFSET);
8965 	if (dap == NULL)
8966 		return (jremref);
8967 	cancel_diradd(dap, dirrem, jremref, NULL, NULL);
8968 	/*
8969 	 * Mark any journal work as belonging to the parent so it is freed
8970 	 * with the .. reference.
8971 	 */
8972 	LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
8973 		wk->wk_state |= MKDIR_PARENT;
8974 	return (NULL);
8975 }
8976 
8977 /*
8978  * Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to
8979  * replace it with a dirrem/diradd pair as a result of re-parenting a
8980  * directory.  This ensures that we don't simultaneously have a mkdir and
8981  * a diradd for the same .. entry.
8982  */
8983 static struct jremref *
8984 cancel_mkdir_dotdot(ip, dirrem, jremref)
8985 	struct inode *ip;
8986 	struct dirrem *dirrem;
8987 	struct jremref *jremref;
8988 {
8989 	struct inodedep *inodedep;
8990 	struct jaddref *jaddref;
8991 	struct ufsmount *ump;
8992 	struct mkdir *mkdir;
8993 	struct diradd *dap;
8994 
8995 	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
8996 	    &inodedep) == 0)
8997 		return (jremref);
8998 	dap = inodedep->id_mkdiradd;
8999 	if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0)
9000 		return (jremref);
9001 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
9002 	for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
9003 	    mkdir = LIST_NEXT(mkdir, md_mkdirs))
9004 		if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT)
9005 			break;
9006 	if (mkdir == NULL)
9007 		panic("cancel_mkdir_dotdot: Unable to find mkdir\n");
9008 	if ((jaddref = mkdir->md_jaddref) != NULL) {
9009 		mkdir->md_jaddref = NULL;
9010 		jaddref->ja_state &= ~MKDIR_PARENT;
9011 		if (inodedep_lookup(UFSTOVFS(ip->i_ump), jaddref->ja_ino, 0,
9012 		    &inodedep) == 0)
9013 			panic("cancel_mkdir_dotdot: Lost parent inodedep");
9014 		if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) {
9015 			journal_jremref(dirrem, jremref, inodedep);
9016 			jremref = NULL;
9017 		}
9018 	}
9019 	if (mkdir->md_state & ONWORKLIST)
9020 		WORKLIST_REMOVE(&mkdir->md_list);
9021 	mkdir->md_state |= ALLCOMPLETE;
9022 	complete_mkdir(mkdir);
9023 	return (jremref);
9024 }
9025 
9026 static void
9027 journal_jremref(dirrem, jremref, inodedep)
9028 	struct dirrem *dirrem;
9029 	struct jremref *jremref;
9030 	struct inodedep *inodedep;
9031 {
9032 
9033 	if (inodedep == NULL)
9034 		if (inodedep_lookup(jremref->jr_list.wk_mp,
9035 		    jremref->jr_ref.if_ino, 0, &inodedep) == 0)
9036 			panic("journal_jremref: Lost inodedep");
9037 	LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps);
9038 	TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
9039 	add_to_journal(&jremref->jr_list);
9040 }
9041 
9042 static void
9043 dirrem_journal(dirrem, jremref, dotremref, dotdotremref)
9044 	struct dirrem *dirrem;
9045 	struct jremref *jremref;
9046 	struct jremref *dotremref;
9047 	struct jremref *dotdotremref;
9048 {
9049 	struct inodedep *inodedep;
9050 
9051 
9052 	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0,
9053 	    &inodedep) == 0)
9054 		panic("dirrem_journal: Lost inodedep");
9055 	journal_jremref(dirrem, jremref, inodedep);
9056 	if (dotremref)
9057 		journal_jremref(dirrem, dotremref, inodedep);
9058 	if (dotdotremref)
9059 		journal_jremref(dirrem, dotdotremref, NULL);
9060 }
9061 
9062 /*
9063  * Allocate a new dirrem if appropriate and return it along with
9064  * its associated pagedep. Called without a lock, returns with lock.
9065  */
9066 static struct dirrem *
9067 newdirrem(bp, dp, ip, isrmdir, prevdirremp)
9068 	struct buf *bp;		/* buffer containing directory block */
9069 	struct inode *dp;	/* inode for the directory being modified */
9070 	struct inode *ip;	/* inode for directory entry being removed */
9071 	int isrmdir;		/* indicates if doing RMDIR */
9072 	struct dirrem **prevdirremp; /* previously referenced inode, if any */
9073 {
9074 	int offset;
9075 	ufs_lbn_t lbn;
9076 	struct diradd *dap;
9077 	struct dirrem *dirrem;
9078 	struct pagedep *pagedep;
9079 	struct jremref *jremref;
9080 	struct jremref *dotremref;
9081 	struct jremref *dotdotremref;
9082 	struct vnode *dvp;
9083 
9084 	/*
9085 	 * Whiteouts have no deletion dependencies.
9086 	 */
9087 	if (ip == NULL)
9088 		panic("newdirrem: whiteout");
9089 	dvp = ITOV(dp);
9090 	/*
9091 	 * If the system is over its limit and our filesystem is
9092 	 * responsible for more than our share of that usage and
9093 	 * we are not a snapshot, request some inodedep cleanup.
9094 	 * Limiting the number of dirrem structures will also limit
9095 	 * the number of freefile and freeblks structures.
9096 	 */
9097 	ACQUIRE_LOCK(ip->i_ump);
9098 	while (!IS_SNAPSHOT(ip) && dep_current[D_DIRREM] > max_softdeps / 2 &&
9099 	    ip->i_ump->softdep_curdeps[D_DIRREM] >
9100 	    (max_softdeps / 2) / stat_flush_threads)
9101 		(void) request_cleanup(ITOV(dp)->v_mount, FLUSH_BLOCKS);
9102 	FREE_LOCK(ip->i_ump);
9103 	dirrem = malloc(sizeof(struct dirrem),
9104 		M_DIRREM, M_SOFTDEP_FLAGS|M_ZERO);
9105 	workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount);
9106 	LIST_INIT(&dirrem->dm_jremrefhd);
9107 	LIST_INIT(&dirrem->dm_jwork);
9108 	dirrem->dm_state = isrmdir ? RMDIR : 0;
9109 	dirrem->dm_oldinum = ip->i_number;
9110 	*prevdirremp = NULL;
9111 	/*
9112 	 * Allocate remove reference structures to track journal write
9113 	 * dependencies.  We will always have one for the link and
9114 	 * when doing directories we will always have one more for dot.
9115 	 * When renaming a directory we skip the dotdot link change so
9116 	 * this is not needed.
9117 	 */
9118 	jremref = dotremref = dotdotremref = NULL;
9119 	if (DOINGSUJ(dvp)) {
9120 		if (isrmdir) {
9121 			jremref = newjremref(dirrem, dp, ip, dp->i_offset,
9122 			    ip->i_effnlink + 2);
9123 			dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET,
9124 			    ip->i_effnlink + 1);
9125 			dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET,
9126 			    dp->i_effnlink + 1);
9127 			dotdotremref->jr_state |= MKDIR_PARENT;
9128 		} else
9129 			jremref = newjremref(dirrem, dp, ip, dp->i_offset,
9130 			    ip->i_effnlink + 1);
9131 	}
9132 	ACQUIRE_LOCK(ip->i_ump);
9133 	lbn = lblkno(dp->i_fs, dp->i_offset);
9134 	offset = blkoff(dp->i_fs, dp->i_offset);
9135 	pagedep_lookup(UFSTOVFS(dp->i_ump), bp, dp->i_number, lbn, DEPALLOC,
9136 	    &pagedep);
9137 	dirrem->dm_pagedep = pagedep;
9138 	dirrem->dm_offset = offset;
9139 	/*
9140 	 * If we're renaming a .. link to a new directory, cancel any
9141 	 * existing MKDIR_PARENT mkdir.  If it has already been canceled
9142 	 * the jremref is preserved for any potential diradd in this
9143 	 * location.  This can not coincide with a rmdir.
9144 	 */
9145 	if (dp->i_offset == DOTDOT_OFFSET) {
9146 		if (isrmdir)
9147 			panic("newdirrem: .. directory change during remove?");
9148 		jremref = cancel_mkdir_dotdot(dp, dirrem, jremref);
9149 	}
9150 	/*
9151 	 * If we're removing a directory search for the .. dependency now and
9152 	 * cancel it.  Any pending journal work will be added to the dirrem
9153 	 * to be completed when the workitem remove completes.
9154 	 */
9155 	if (isrmdir)
9156 		dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref);
9157 	/*
9158 	 * Check for a diradd dependency for the same directory entry.
9159 	 * If present, then both dependencies become obsolete and can
9160 	 * be de-allocated.
9161 	 */
9162 	dap = diradd_lookup(pagedep, offset);
9163 	if (dap == NULL) {
9164 		/*
9165 		 * Link the jremref structures into the dirrem so they are
9166 		 * written prior to the pagedep.
9167 		 */
9168 		if (jremref)
9169 			dirrem_journal(dirrem, jremref, dotremref,
9170 			    dotdotremref);
9171 		return (dirrem);
9172 	}
9173 	/*
9174 	 * Must be ATTACHED at this point.
9175 	 */
9176 	if ((dap->da_state & ATTACHED) == 0)
9177 		panic("newdirrem: not ATTACHED");
9178 	if (dap->da_newinum != ip->i_number)
9179 		panic("newdirrem: inum %ju should be %ju",
9180 		    (uintmax_t)ip->i_number, (uintmax_t)dap->da_newinum);
9181 	/*
9182 	 * If we are deleting a changed name that never made it to disk,
9183 	 * then return the dirrem describing the previous inode (which
9184 	 * represents the inode currently referenced from this entry on disk).
9185 	 */
9186 	if ((dap->da_state & DIRCHG) != 0) {
9187 		*prevdirremp = dap->da_previous;
9188 		dap->da_state &= ~DIRCHG;
9189 		dap->da_pagedep = pagedep;
9190 	}
9191 	/*
9192 	 * We are deleting an entry that never made it to disk.
9193 	 * Mark it COMPLETE so we can delete its inode immediately.
9194 	 */
9195 	dirrem->dm_state |= COMPLETE;
9196 	cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref);
9197 #ifdef SUJ_DEBUG
9198 	if (isrmdir == 0) {
9199 		struct worklist *wk;
9200 
9201 		LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
9202 			if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT))
9203 				panic("bad wk %p (0x%X)\n", wk, wk->wk_state);
9204 	}
9205 #endif
9206 
9207 	return (dirrem);
9208 }
9209 
9210 /*
9211  * Directory entry change dependencies.
9212  *
9213  * Changing an existing directory entry requires that an add operation
9214  * be completed first followed by a deletion. The semantics for the addition
9215  * are identical to the description of adding a new entry above except
9216  * that the rollback is to the old inode number rather than zero. Once
9217  * the addition dependency is completed, the removal is done as described
9218  * in the removal routine above.
9219  */
9220 
9221 /*
9222  * This routine should be called immediately after changing
9223  * a directory entry.  The inode's link count should not be
9224  * decremented by the calling procedure -- the soft updates
9225  * code will perform this task when it is safe.
9226  */
9227 void
9228 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
9229 	struct buf *bp;		/* buffer containing directory block */
9230 	struct inode *dp;	/* inode for the directory being modified */
9231 	struct inode *ip;	/* inode for directory entry being removed */
9232 	ino_t newinum;		/* new inode number for changed entry */
9233 	int isrmdir;		/* indicates if doing RMDIR */
9234 {
9235 	int offset;
9236 	struct diradd *dap = NULL;
9237 	struct dirrem *dirrem, *prevdirrem;
9238 	struct pagedep *pagedep;
9239 	struct inodedep *inodedep;
9240 	struct jaddref *jaddref;
9241 	struct mount *mp;
9242 
9243 	offset = blkoff(dp->i_fs, dp->i_offset);
9244 	mp = UFSTOVFS(dp->i_ump);
9245 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
9246 	   ("softdep_setup_directory_change called on non-softdep filesystem"));
9247 
9248 	/*
9249 	 * Whiteouts do not need diradd dependencies.
9250 	 */
9251 	if (newinum != WINO) {
9252 		dap = malloc(sizeof(struct diradd),
9253 		    M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO);
9254 		workitem_alloc(&dap->da_list, D_DIRADD, mp);
9255 		dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
9256 		dap->da_offset = offset;
9257 		dap->da_newinum = newinum;
9258 		LIST_INIT(&dap->da_jwork);
9259 	}
9260 
9261 	/*
9262 	 * Allocate a new dirrem and ACQUIRE_LOCK.
9263 	 */
9264 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
9265 	pagedep = dirrem->dm_pagedep;
9266 	/*
9267 	 * The possible values for isrmdir:
9268 	 *	0 - non-directory file rename
9269 	 *	1 - directory rename within same directory
9270 	 *   inum - directory rename to new directory of given inode number
9271 	 * When renaming to a new directory, we are both deleting and
9272 	 * creating a new directory entry, so the link count on the new
9273 	 * directory should not change. Thus we do not need the followup
9274 	 * dirrem which is usually done in handle_workitem_remove. We set
9275 	 * the DIRCHG flag to tell handle_workitem_remove to skip the
9276 	 * followup dirrem.
9277 	 */
9278 	if (isrmdir > 1)
9279 		dirrem->dm_state |= DIRCHG;
9280 
9281 	/*
9282 	 * Whiteouts have no additional dependencies,
9283 	 * so just put the dirrem on the correct list.
9284 	 */
9285 	if (newinum == WINO) {
9286 		if ((dirrem->dm_state & COMPLETE) == 0) {
9287 			LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
9288 			    dm_next);
9289 		} else {
9290 			dirrem->dm_dirinum = pagedep->pd_ino;
9291 			if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9292 				add_to_worklist(&dirrem->dm_list, 0);
9293 		}
9294 		FREE_LOCK(dp->i_ump);
9295 		return;
9296 	}
9297 	/*
9298 	 * Add the dirrem to the inodedep's pending remove list for quick
9299 	 * discovery later.  A valid nlinkdelta ensures that this lookup
9300 	 * will not fail.
9301 	 */
9302 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
9303 		panic("softdep_setup_directory_change: Lost inodedep.");
9304 	dirrem->dm_state |= ONDEPLIST;
9305 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9306 
9307 	/*
9308 	 * If the COMPLETE flag is clear, then there were no active
9309 	 * entries and we want to roll back to the previous inode until
9310 	 * the new inode is committed to disk. If the COMPLETE flag is
9311 	 * set, then we have deleted an entry that never made it to disk.
9312 	 * If the entry we deleted resulted from a name change, then the old
9313 	 * inode reference still resides on disk. Any rollback that we do
9314 	 * needs to be to that old inode (returned to us in prevdirrem). If
9315 	 * the entry we deleted resulted from a create, then there is
9316 	 * no entry on the disk, so we want to roll back to zero rather
9317 	 * than the uncommitted inode. In either of the COMPLETE cases we
9318 	 * want to immediately free the unwritten and unreferenced inode.
9319 	 */
9320 	if ((dirrem->dm_state & COMPLETE) == 0) {
9321 		dap->da_previous = dirrem;
9322 	} else {
9323 		if (prevdirrem != NULL) {
9324 			dap->da_previous = prevdirrem;
9325 		} else {
9326 			dap->da_state &= ~DIRCHG;
9327 			dap->da_pagedep = pagedep;
9328 		}
9329 		dirrem->dm_dirinum = pagedep->pd_ino;
9330 		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9331 			add_to_worklist(&dirrem->dm_list, 0);
9332 	}
9333 	/*
9334 	 * Lookup the jaddref for this journal entry.  We must finish
9335 	 * initializing it and make the diradd write dependent on it.
9336 	 * If we're not journaling, put it on the id_bufwait list if the
9337 	 * inode is not yet written. If it is written, do the post-inode
9338 	 * write processing to put it on the id_pendinghd list.
9339 	 */
9340 	inodedep_lookup(mp, newinum, DEPALLOC | NODELAY, &inodedep);
9341 	if (MOUNTEDSUJ(mp)) {
9342 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
9343 		    inoreflst);
9344 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
9345 		    ("softdep_setup_directory_change: bad jaddref %p",
9346 		    jaddref));
9347 		jaddref->ja_diroff = dp->i_offset;
9348 		jaddref->ja_diradd = dap;
9349 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
9350 		    dap, da_pdlist);
9351 		add_to_journal(&jaddref->ja_list);
9352 	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
9353 		dap->da_state |= COMPLETE;
9354 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
9355 		WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
9356 	} else {
9357 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
9358 		    dap, da_pdlist);
9359 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
9360 	}
9361 	/*
9362 	 * If we're making a new name for a directory that has not been
9363 	 * committed when need to move the dot and dotdot references to
9364 	 * this new name.
9365 	 */
9366 	if (inodedep->id_mkdiradd && dp->i_offset != DOTDOT_OFFSET)
9367 		merge_diradd(inodedep, dap);
9368 	FREE_LOCK(dp->i_ump);
9369 }
9370 
9371 /*
9372  * Called whenever the link count on an inode is changed.
9373  * It creates an inode dependency so that the new reference(s)
9374  * to the inode cannot be committed to disk until the updated
9375  * inode has been written.
9376  */
9377 void
9378 softdep_change_linkcnt(ip)
9379 	struct inode *ip;	/* the inode with the increased link count */
9380 {
9381 	struct inodedep *inodedep;
9382 	int dflags;
9383 
9384 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
9385 	    ("softdep_change_linkcnt called on non-softdep filesystem"));
9386 	ACQUIRE_LOCK(ip->i_ump);
9387 	dflags = DEPALLOC;
9388 	if (IS_SNAPSHOT(ip))
9389 		dflags |= NODELAY;
9390 	inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, dflags, &inodedep);
9391 	if (ip->i_nlink < ip->i_effnlink)
9392 		panic("softdep_change_linkcnt: bad delta");
9393 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9394 	FREE_LOCK(ip->i_ump);
9395 }
9396 
9397 /*
9398  * Attach a sbdep dependency to the superblock buf so that we can keep
9399  * track of the head of the linked list of referenced but unlinked inodes.
9400  */
9401 void
9402 softdep_setup_sbupdate(ump, fs, bp)
9403 	struct ufsmount *ump;
9404 	struct fs *fs;
9405 	struct buf *bp;
9406 {
9407 	struct sbdep *sbdep;
9408 	struct worklist *wk;
9409 
9410 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
9411 	    ("softdep_setup_sbupdate called on non-softdep filesystem"));
9412 	LIST_FOREACH(wk, &bp->b_dep, wk_list)
9413 		if (wk->wk_type == D_SBDEP)
9414 			break;
9415 	if (wk != NULL)
9416 		return;
9417 	sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS);
9418 	workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump));
9419 	sbdep->sb_fs = fs;
9420 	sbdep->sb_ump = ump;
9421 	ACQUIRE_LOCK(ump);
9422 	WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list);
9423 	FREE_LOCK(ump);
9424 }
9425 
9426 /*
9427  * Return the first unlinked inodedep which is ready to be the head of the
9428  * list.  The inodedep and all those after it must have valid next pointers.
9429  */
9430 static struct inodedep *
9431 first_unlinked_inodedep(ump)
9432 	struct ufsmount *ump;
9433 {
9434 	struct inodedep *inodedep;
9435 	struct inodedep *idp;
9436 
9437 	LOCK_OWNED(ump);
9438 	for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst);
9439 	    inodedep; inodedep = idp) {
9440 		if ((inodedep->id_state & UNLINKNEXT) == 0)
9441 			return (NULL);
9442 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9443 		if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0)
9444 			break;
9445 		if ((inodedep->id_state & UNLINKPREV) == 0)
9446 			break;
9447 	}
9448 	return (inodedep);
9449 }
9450 
9451 /*
9452  * Set the sujfree unlinked head pointer prior to writing a superblock.
9453  */
9454 static void
9455 initiate_write_sbdep(sbdep)
9456 	struct sbdep *sbdep;
9457 {
9458 	struct inodedep *inodedep;
9459 	struct fs *bpfs;
9460 	struct fs *fs;
9461 
9462 	bpfs = sbdep->sb_fs;
9463 	fs = sbdep->sb_ump->um_fs;
9464 	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9465 	if (inodedep) {
9466 		fs->fs_sujfree = inodedep->id_ino;
9467 		inodedep->id_state |= UNLINKPREV;
9468 	} else
9469 		fs->fs_sujfree = 0;
9470 	bpfs->fs_sujfree = fs->fs_sujfree;
9471 }
9472 
9473 /*
9474  * After a superblock is written determine whether it must be written again
9475  * due to a changing unlinked list head.
9476  */
9477 static int
9478 handle_written_sbdep(sbdep, bp)
9479 	struct sbdep *sbdep;
9480 	struct buf *bp;
9481 {
9482 	struct inodedep *inodedep;
9483 	struct mount *mp;
9484 	struct fs *fs;
9485 
9486 	LOCK_OWNED(sbdep->sb_ump);
9487 	fs = sbdep->sb_fs;
9488 	mp = UFSTOVFS(sbdep->sb_ump);
9489 	/*
9490 	 * If the superblock doesn't match the in-memory list start over.
9491 	 */
9492 	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9493 	if ((inodedep && fs->fs_sujfree != inodedep->id_ino) ||
9494 	    (inodedep == NULL && fs->fs_sujfree != 0)) {
9495 		bdirty(bp);
9496 		return (1);
9497 	}
9498 	WORKITEM_FREE(sbdep, D_SBDEP);
9499 	if (fs->fs_sujfree == 0)
9500 		return (0);
9501 	/*
9502 	 * Now that we have a record of this inode in stable store allow it
9503 	 * to be written to free up pending work.  Inodes may see a lot of
9504 	 * write activity after they are unlinked which we must not hold up.
9505 	 */
9506 	for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) {
9507 		if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS)
9508 			panic("handle_written_sbdep: Bad inodedep %p (0x%X)",
9509 			    inodedep, inodedep->id_state);
9510 		if (inodedep->id_state & UNLINKONLIST)
9511 			break;
9512 		inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST;
9513 	}
9514 
9515 	return (0);
9516 }
9517 
9518 /*
9519  * Mark an inodedep as unlinked and insert it into the in-memory unlinked list.
9520  */
9521 static void
9522 unlinked_inodedep(mp, inodedep)
9523 	struct mount *mp;
9524 	struct inodedep *inodedep;
9525 {
9526 	struct ufsmount *ump;
9527 
9528 	ump = VFSTOUFS(mp);
9529 	LOCK_OWNED(ump);
9530 	if (MOUNTEDSUJ(mp) == 0)
9531 		return;
9532 	ump->um_fs->fs_fmod = 1;
9533 	if (inodedep->id_state & UNLINKED)
9534 		panic("unlinked_inodedep: %p already unlinked\n", inodedep);
9535 	inodedep->id_state |= UNLINKED;
9536 	TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked);
9537 }
9538 
9539 /*
9540  * Remove an inodedep from the unlinked inodedep list.  This may require
9541  * disk writes if the inode has made it that far.
9542  */
9543 static void
9544 clear_unlinked_inodedep(inodedep)
9545 	struct inodedep *inodedep;
9546 {
9547 	struct ufsmount *ump;
9548 	struct inodedep *idp;
9549 	struct inodedep *idn;
9550 	struct fs *fs;
9551 	struct buf *bp;
9552 	ino_t ino;
9553 	ino_t nino;
9554 	ino_t pino;
9555 	int error;
9556 
9557 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
9558 	fs = ump->um_fs;
9559 	ino = inodedep->id_ino;
9560 	error = 0;
9561 	for (;;) {
9562 		LOCK_OWNED(ump);
9563 		KASSERT((inodedep->id_state & UNLINKED) != 0,
9564 		    ("clear_unlinked_inodedep: inodedep %p not unlinked",
9565 		    inodedep));
9566 		/*
9567 		 * If nothing has yet been written simply remove us from
9568 		 * the in memory list and return.  This is the most common
9569 		 * case where handle_workitem_remove() loses the final
9570 		 * reference.
9571 		 */
9572 		if ((inodedep->id_state & UNLINKLINKS) == 0)
9573 			break;
9574 		/*
9575 		 * If we have a NEXT pointer and no PREV pointer we can simply
9576 		 * clear NEXT's PREV and remove ourselves from the list.  Be
9577 		 * careful not to clear PREV if the superblock points at
9578 		 * next as well.
9579 		 */
9580 		idn = TAILQ_NEXT(inodedep, id_unlinked);
9581 		if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) {
9582 			if (idn && fs->fs_sujfree != idn->id_ino)
9583 				idn->id_state &= ~UNLINKPREV;
9584 			break;
9585 		}
9586 		/*
9587 		 * Here we have an inodedep which is actually linked into
9588 		 * the list.  We must remove it by forcing a write to the
9589 		 * link before us, whether it be the superblock or an inode.
9590 		 * Unfortunately the list may change while we're waiting
9591 		 * on the buf lock for either resource so we must loop until
9592 		 * we lock the right one.  If both the superblock and an
9593 		 * inode point to this inode we must clear the inode first
9594 		 * followed by the superblock.
9595 		 */
9596 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9597 		pino = 0;
9598 		if (idp && (idp->id_state & UNLINKNEXT))
9599 			pino = idp->id_ino;
9600 		FREE_LOCK(ump);
9601 		if (pino == 0) {
9602 			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
9603 			    (int)fs->fs_sbsize, 0, 0, 0);
9604 		} else {
9605 			error = bread(ump->um_devvp,
9606 			    fsbtodb(fs, ino_to_fsba(fs, pino)),
9607 			    (int)fs->fs_bsize, NOCRED, &bp);
9608 			if (error)
9609 				brelse(bp);
9610 		}
9611 		ACQUIRE_LOCK(ump);
9612 		if (error)
9613 			break;
9614 		/* If the list has changed restart the loop. */
9615 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9616 		nino = 0;
9617 		if (idp && (idp->id_state & UNLINKNEXT))
9618 			nino = idp->id_ino;
9619 		if (nino != pino ||
9620 		    (inodedep->id_state & UNLINKPREV) != UNLINKPREV) {
9621 			FREE_LOCK(ump);
9622 			brelse(bp);
9623 			ACQUIRE_LOCK(ump);
9624 			continue;
9625 		}
9626 		nino = 0;
9627 		idn = TAILQ_NEXT(inodedep, id_unlinked);
9628 		if (idn)
9629 			nino = idn->id_ino;
9630 		/*
9631 		 * Remove us from the in memory list.  After this we cannot
9632 		 * access the inodedep.
9633 		 */
9634 		KASSERT((inodedep->id_state & UNLINKED) != 0,
9635 		    ("clear_unlinked_inodedep: inodedep %p not unlinked",
9636 		    inodedep));
9637 		inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
9638 		TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
9639 		FREE_LOCK(ump);
9640 		/*
9641 		 * The predecessor's next pointer is manually updated here
9642 		 * so that the NEXT flag is never cleared for an element
9643 		 * that is in the list.
9644 		 */
9645 		if (pino == 0) {
9646 			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
9647 			ffs_oldfscompat_write((struct fs *)bp->b_data, ump);
9648 			softdep_setup_sbupdate(ump, (struct fs *)bp->b_data,
9649 			    bp);
9650 		} else if (fs->fs_magic == FS_UFS1_MAGIC)
9651 			((struct ufs1_dinode *)bp->b_data +
9652 			    ino_to_fsbo(fs, pino))->di_freelink = nino;
9653 		else
9654 			((struct ufs2_dinode *)bp->b_data +
9655 			    ino_to_fsbo(fs, pino))->di_freelink = nino;
9656 		/*
9657 		 * If the bwrite fails we have no recourse to recover.  The
9658 		 * filesystem is corrupted already.
9659 		 */
9660 		bwrite(bp);
9661 		ACQUIRE_LOCK(ump);
9662 		/*
9663 		 * If the superblock pointer still needs to be cleared force
9664 		 * a write here.
9665 		 */
9666 		if (fs->fs_sujfree == ino) {
9667 			FREE_LOCK(ump);
9668 			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
9669 			    (int)fs->fs_sbsize, 0, 0, 0);
9670 			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
9671 			ffs_oldfscompat_write((struct fs *)bp->b_data, ump);
9672 			softdep_setup_sbupdate(ump, (struct fs *)bp->b_data,
9673 			    bp);
9674 			bwrite(bp);
9675 			ACQUIRE_LOCK(ump);
9676 		}
9677 
9678 		if (fs->fs_sujfree != ino)
9679 			return;
9680 		panic("clear_unlinked_inodedep: Failed to clear free head");
9681 	}
9682 	if (inodedep->id_ino == fs->fs_sujfree)
9683 		panic("clear_unlinked_inodedep: Freeing head of free list");
9684 	inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
9685 	TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
9686 	return;
9687 }
9688 
9689 /*
9690  * This workitem decrements the inode's link count.
9691  * If the link count reaches zero, the file is removed.
9692  */
9693 static int
9694 handle_workitem_remove(dirrem, flags)
9695 	struct dirrem *dirrem;
9696 	int flags;
9697 {
9698 	struct inodedep *inodedep;
9699 	struct workhead dotdotwk;
9700 	struct worklist *wk;
9701 	struct ufsmount *ump;
9702 	struct mount *mp;
9703 	struct vnode *vp;
9704 	struct inode *ip;
9705 	ino_t oldinum;
9706 
9707 	if (dirrem->dm_state & ONWORKLIST)
9708 		panic("handle_workitem_remove: dirrem %p still on worklist",
9709 		    dirrem);
9710 	oldinum = dirrem->dm_oldinum;
9711 	mp = dirrem->dm_list.wk_mp;
9712 	ump = VFSTOUFS(mp);
9713 	flags |= LK_EXCLUSIVE;
9714 	if (ffs_vgetf(mp, oldinum, flags, &vp, FFSV_FORCEINSMQ) != 0)
9715 		return (EBUSY);
9716 	ip = VTOI(vp);
9717 	ACQUIRE_LOCK(ump);
9718 	if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0)
9719 		panic("handle_workitem_remove: lost inodedep");
9720 	if (dirrem->dm_state & ONDEPLIST)
9721 		LIST_REMOVE(dirrem, dm_inonext);
9722 	KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
9723 	    ("handle_workitem_remove:  Journal entries not written."));
9724 
9725 	/*
9726 	 * Move all dependencies waiting on the remove to complete
9727 	 * from the dirrem to the inode inowait list to be completed
9728 	 * after the inode has been updated and written to disk.  Any
9729 	 * marked MKDIR_PARENT are saved to be completed when the .. ref
9730 	 * is removed.
9731 	 */
9732 	LIST_INIT(&dotdotwk);
9733 	while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) {
9734 		WORKLIST_REMOVE(wk);
9735 		if (wk->wk_state & MKDIR_PARENT) {
9736 			wk->wk_state &= ~MKDIR_PARENT;
9737 			WORKLIST_INSERT(&dotdotwk, wk);
9738 			continue;
9739 		}
9740 		WORKLIST_INSERT(&inodedep->id_inowait, wk);
9741 	}
9742 	LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list);
9743 	/*
9744 	 * Normal file deletion.
9745 	 */
9746 	if ((dirrem->dm_state & RMDIR) == 0) {
9747 		ip->i_nlink--;
9748 		DIP_SET(ip, i_nlink, ip->i_nlink);
9749 		ip->i_flag |= IN_CHANGE;
9750 		if (ip->i_nlink < ip->i_effnlink)
9751 			panic("handle_workitem_remove: bad file delta");
9752 		if (ip->i_nlink == 0)
9753 			unlinked_inodedep(mp, inodedep);
9754 		inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9755 		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
9756 		    ("handle_workitem_remove: worklist not empty. %s",
9757 		    TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type)));
9758 		WORKITEM_FREE(dirrem, D_DIRREM);
9759 		FREE_LOCK(ump);
9760 		goto out;
9761 	}
9762 	/*
9763 	 * Directory deletion. Decrement reference count for both the
9764 	 * just deleted parent directory entry and the reference for ".".
9765 	 * Arrange to have the reference count on the parent decremented
9766 	 * to account for the loss of "..".
9767 	 */
9768 	ip->i_nlink -= 2;
9769 	DIP_SET(ip, i_nlink, ip->i_nlink);
9770 	ip->i_flag |= IN_CHANGE;
9771 	if (ip->i_nlink < ip->i_effnlink)
9772 		panic("handle_workitem_remove: bad dir delta");
9773 	if (ip->i_nlink == 0)
9774 		unlinked_inodedep(mp, inodedep);
9775 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9776 	/*
9777 	 * Rename a directory to a new parent. Since, we are both deleting
9778 	 * and creating a new directory entry, the link count on the new
9779 	 * directory should not change. Thus we skip the followup dirrem.
9780 	 */
9781 	if (dirrem->dm_state & DIRCHG) {
9782 		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
9783 		    ("handle_workitem_remove: DIRCHG and worklist not empty."));
9784 		WORKITEM_FREE(dirrem, D_DIRREM);
9785 		FREE_LOCK(ump);
9786 		goto out;
9787 	}
9788 	dirrem->dm_state = ONDEPLIST;
9789 	dirrem->dm_oldinum = dirrem->dm_dirinum;
9790 	/*
9791 	 * Place the dirrem on the parent's diremhd list.
9792 	 */
9793 	if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0)
9794 		panic("handle_workitem_remove: lost dir inodedep");
9795 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9796 	/*
9797 	 * If the allocated inode has never been written to disk, then
9798 	 * the on-disk inode is zero'ed and we can remove the file
9799 	 * immediately.  When journaling if the inode has been marked
9800 	 * unlinked and not DEPCOMPLETE we know it can never be written.
9801 	 */
9802 	inodedep_lookup(mp, oldinum, 0, &inodedep);
9803 	if (inodedep == NULL ||
9804 	    (inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED ||
9805 	    check_inode_unwritten(inodedep)) {
9806 		FREE_LOCK(ump);
9807 		vput(vp);
9808 		return handle_workitem_remove(dirrem, flags);
9809 	}
9810 	WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
9811 	FREE_LOCK(ump);
9812 	ip->i_flag |= IN_CHANGE;
9813 out:
9814 	ffs_update(vp, 0);
9815 	vput(vp);
9816 	return (0);
9817 }
9818 
9819 /*
9820  * Inode de-allocation dependencies.
9821  *
9822  * When an inode's link count is reduced to zero, it can be de-allocated. We
9823  * found it convenient to postpone de-allocation until after the inode is
9824  * written to disk with its new link count (zero).  At this point, all of the
9825  * on-disk inode's block pointers are nullified and, with careful dependency
9826  * list ordering, all dependencies related to the inode will be satisfied and
9827  * the corresponding dependency structures de-allocated.  So, if/when the
9828  * inode is reused, there will be no mixing of old dependencies with new
9829  * ones.  This artificial dependency is set up by the block de-allocation
9830  * procedure above (softdep_setup_freeblocks) and completed by the
9831  * following procedure.
9832  */
9833 static void
9834 handle_workitem_freefile(freefile)
9835 	struct freefile *freefile;
9836 {
9837 	struct workhead wkhd;
9838 	struct fs *fs;
9839 	struct inodedep *idp;
9840 	struct ufsmount *ump;
9841 	int error;
9842 
9843 	ump = VFSTOUFS(freefile->fx_list.wk_mp);
9844 	fs = ump->um_fs;
9845 #ifdef DEBUG
9846 	ACQUIRE_LOCK(ump);
9847 	error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp);
9848 	FREE_LOCK(ump);
9849 	if (error)
9850 		panic("handle_workitem_freefile: inodedep %p survived", idp);
9851 #endif
9852 	UFS_LOCK(ump);
9853 	fs->fs_pendinginodes -= 1;
9854 	UFS_UNLOCK(ump);
9855 	LIST_INIT(&wkhd);
9856 	LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list);
9857 	if ((error = ffs_freefile(ump, fs, freefile->fx_devvp,
9858 	    freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0)
9859 		softdep_error("handle_workitem_freefile", error);
9860 	ACQUIRE_LOCK(ump);
9861 	WORKITEM_FREE(freefile, D_FREEFILE);
9862 	FREE_LOCK(ump);
9863 }
9864 
9865 
9866 /*
9867  * Helper function which unlinks marker element from work list and returns
9868  * the next element on the list.
9869  */
9870 static __inline struct worklist *
9871 markernext(struct worklist *marker)
9872 {
9873 	struct worklist *next;
9874 
9875 	next = LIST_NEXT(marker, wk_list);
9876 	LIST_REMOVE(marker, wk_list);
9877 	return next;
9878 }
9879 
9880 /*
9881  * Disk writes.
9882  *
9883  * The dependency structures constructed above are most actively used when file
9884  * system blocks are written to disk.  No constraints are placed on when a
9885  * block can be written, but unsatisfied update dependencies are made safe by
9886  * modifying (or replacing) the source memory for the duration of the disk
9887  * write.  When the disk write completes, the memory block is again brought
9888  * up-to-date.
9889  *
9890  * In-core inode structure reclamation.
9891  *
9892  * Because there are a finite number of "in-core" inode structures, they are
9893  * reused regularly.  By transferring all inode-related dependencies to the
9894  * in-memory inode block and indexing them separately (via "inodedep"s), we
9895  * can allow "in-core" inode structures to be reused at any time and avoid
9896  * any increase in contention.
9897  *
9898  * Called just before entering the device driver to initiate a new disk I/O.
9899  * The buffer must be locked, thus, no I/O completion operations can occur
9900  * while we are manipulating its associated dependencies.
9901  */
9902 static void
9903 softdep_disk_io_initiation(bp)
9904 	struct buf *bp;		/* structure describing disk write to occur */
9905 {
9906 	struct worklist *wk;
9907 	struct worklist marker;
9908 	struct inodedep *inodedep;
9909 	struct freeblks *freeblks;
9910 	struct jblkdep *jblkdep;
9911 	struct newblk *newblk;
9912 	struct ufsmount *ump;
9913 
9914 	/*
9915 	 * We only care about write operations. There should never
9916 	 * be dependencies for reads.
9917 	 */
9918 	if (bp->b_iocmd != BIO_WRITE)
9919 		panic("softdep_disk_io_initiation: not write");
9920 
9921 	if (bp->b_vflags & BV_BKGRDINPROG)
9922 		panic("softdep_disk_io_initiation: Writing buffer with "
9923 		    "background write in progress: %p", bp);
9924 
9925 	if ((wk = LIST_FIRST(&bp->b_dep)) == NULL)
9926 		return;
9927 	ump = VFSTOUFS(wk->wk_mp);
9928 
9929 	marker.wk_type = D_LAST + 1;	/* Not a normal workitem */
9930 	PHOLD(curproc);			/* Don't swap out kernel stack */
9931 	ACQUIRE_LOCK(ump);
9932 	/*
9933 	 * Do any necessary pre-I/O processing.
9934 	 */
9935 	for (wk = LIST_FIRST(&bp->b_dep); wk != NULL;
9936 	     wk = markernext(&marker)) {
9937 		LIST_INSERT_AFTER(wk, &marker, wk_list);
9938 		switch (wk->wk_type) {
9939 
9940 		case D_PAGEDEP:
9941 			initiate_write_filepage(WK_PAGEDEP(wk), bp);
9942 			continue;
9943 
9944 		case D_INODEDEP:
9945 			inodedep = WK_INODEDEP(wk);
9946 			if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC)
9947 				initiate_write_inodeblock_ufs1(inodedep, bp);
9948 			else
9949 				initiate_write_inodeblock_ufs2(inodedep, bp);
9950 			continue;
9951 
9952 		case D_INDIRDEP:
9953 			initiate_write_indirdep(WK_INDIRDEP(wk), bp);
9954 			continue;
9955 
9956 		case D_BMSAFEMAP:
9957 			initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp);
9958 			continue;
9959 
9960 		case D_JSEG:
9961 			WK_JSEG(wk)->js_buf = NULL;
9962 			continue;
9963 
9964 		case D_FREEBLKS:
9965 			freeblks = WK_FREEBLKS(wk);
9966 			jblkdep = LIST_FIRST(&freeblks->fb_jblkdephd);
9967 			/*
9968 			 * We have to wait for the freeblks to be journaled
9969 			 * before we can write an inodeblock with updated
9970 			 * pointers.  Be careful to arrange the marker so
9971 			 * we revisit the freeblks if it's not removed by
9972 			 * the first jwait().
9973 			 */
9974 			if (jblkdep != NULL) {
9975 				LIST_REMOVE(&marker, wk_list);
9976 				LIST_INSERT_BEFORE(wk, &marker, wk_list);
9977 				jwait(&jblkdep->jb_list, MNT_WAIT);
9978 			}
9979 			continue;
9980 		case D_ALLOCDIRECT:
9981 		case D_ALLOCINDIR:
9982 			/*
9983 			 * We have to wait for the jnewblk to be journaled
9984 			 * before we can write to a block if the contents
9985 			 * may be confused with an earlier file's indirect
9986 			 * at recovery time.  Handle the marker as described
9987 			 * above.
9988 			 */
9989 			newblk = WK_NEWBLK(wk);
9990 			if (newblk->nb_jnewblk != NULL &&
9991 			    indirblk_lookup(newblk->nb_list.wk_mp,
9992 			    newblk->nb_newblkno)) {
9993 				LIST_REMOVE(&marker, wk_list);
9994 				LIST_INSERT_BEFORE(wk, &marker, wk_list);
9995 				jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
9996 			}
9997 			continue;
9998 
9999 		case D_SBDEP:
10000 			initiate_write_sbdep(WK_SBDEP(wk));
10001 			continue;
10002 
10003 		case D_MKDIR:
10004 		case D_FREEWORK:
10005 		case D_FREEDEP:
10006 		case D_JSEGDEP:
10007 			continue;
10008 
10009 		default:
10010 			panic("handle_disk_io_initiation: Unexpected type %s",
10011 			    TYPENAME(wk->wk_type));
10012 			/* NOTREACHED */
10013 		}
10014 	}
10015 	FREE_LOCK(ump);
10016 	PRELE(curproc);			/* Allow swapout of kernel stack */
10017 }
10018 
10019 /*
10020  * Called from within the procedure above to deal with unsatisfied
10021  * allocation dependencies in a directory. The buffer must be locked,
10022  * thus, no I/O completion operations can occur while we are
10023  * manipulating its associated dependencies.
10024  */
10025 static void
10026 initiate_write_filepage(pagedep, bp)
10027 	struct pagedep *pagedep;
10028 	struct buf *bp;
10029 {
10030 	struct jremref *jremref;
10031 	struct jmvref *jmvref;
10032 	struct dirrem *dirrem;
10033 	struct diradd *dap;
10034 	struct direct *ep;
10035 	int i;
10036 
10037 	if (pagedep->pd_state & IOSTARTED) {
10038 		/*
10039 		 * This can only happen if there is a driver that does not
10040 		 * understand chaining. Here biodone will reissue the call
10041 		 * to strategy for the incomplete buffers.
10042 		 */
10043 		printf("initiate_write_filepage: already started\n");
10044 		return;
10045 	}
10046 	pagedep->pd_state |= IOSTARTED;
10047 	/*
10048 	 * Wait for all journal remove dependencies to hit the disk.
10049 	 * We can not allow any potentially conflicting directory adds
10050 	 * to be visible before removes and rollback is too difficult.
10051 	 * The per-filesystem lock may be dropped and re-acquired, however
10052 	 * we hold the buf locked so the dependency can not go away.
10053 	 */
10054 	LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next)
10055 		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL)
10056 			jwait(&jremref->jr_list, MNT_WAIT);
10057 	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL)
10058 		jwait(&jmvref->jm_list, MNT_WAIT);
10059 	for (i = 0; i < DAHASHSZ; i++) {
10060 		LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
10061 			ep = (struct direct *)
10062 			    ((char *)bp->b_data + dap->da_offset);
10063 			if (ep->d_ino != dap->da_newinum)
10064 				panic("%s: dir inum %ju != new %ju",
10065 				    "initiate_write_filepage",
10066 				    (uintmax_t)ep->d_ino,
10067 				    (uintmax_t)dap->da_newinum);
10068 			if (dap->da_state & DIRCHG)
10069 				ep->d_ino = dap->da_previous->dm_oldinum;
10070 			else
10071 				ep->d_ino = 0;
10072 			dap->da_state &= ~ATTACHED;
10073 			dap->da_state |= UNDONE;
10074 		}
10075 	}
10076 }
10077 
10078 /*
10079  * Version of initiate_write_inodeblock that handles UFS1 dinodes.
10080  * Note that any bug fixes made to this routine must be done in the
10081  * version found below.
10082  *
10083  * Called from within the procedure above to deal with unsatisfied
10084  * allocation dependencies in an inodeblock. The buffer must be
10085  * locked, thus, no I/O completion operations can occur while we
10086  * are manipulating its associated dependencies.
10087  */
10088 static void
10089 initiate_write_inodeblock_ufs1(inodedep, bp)
10090 	struct inodedep *inodedep;
10091 	struct buf *bp;			/* The inode block */
10092 {
10093 	struct allocdirect *adp, *lastadp;
10094 	struct ufs1_dinode *dp;
10095 	struct ufs1_dinode *sip;
10096 	struct inoref *inoref;
10097 	struct ufsmount *ump;
10098 	struct fs *fs;
10099 	ufs_lbn_t i;
10100 #ifdef INVARIANTS
10101 	ufs_lbn_t prevlbn = 0;
10102 #endif
10103 	int deplist;
10104 
10105 	if (inodedep->id_state & IOSTARTED)
10106 		panic("initiate_write_inodeblock_ufs1: already started");
10107 	inodedep->id_state |= IOSTARTED;
10108 	fs = inodedep->id_fs;
10109 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
10110 	LOCK_OWNED(ump);
10111 	dp = (struct ufs1_dinode *)bp->b_data +
10112 	    ino_to_fsbo(fs, inodedep->id_ino);
10113 
10114 	/*
10115 	 * If we're on the unlinked list but have not yet written our
10116 	 * next pointer initialize it here.
10117 	 */
10118 	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
10119 		struct inodedep *inon;
10120 
10121 		inon = TAILQ_NEXT(inodedep, id_unlinked);
10122 		dp->di_freelink = inon ? inon->id_ino : 0;
10123 	}
10124 	/*
10125 	 * If the bitmap is not yet written, then the allocated
10126 	 * inode cannot be written to disk.
10127 	 */
10128 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
10129 		if (inodedep->id_savedino1 != NULL)
10130 			panic("initiate_write_inodeblock_ufs1: I/O underway");
10131 		FREE_LOCK(ump);
10132 		sip = malloc(sizeof(struct ufs1_dinode),
10133 		    M_SAVEDINO, M_SOFTDEP_FLAGS);
10134 		ACQUIRE_LOCK(ump);
10135 		inodedep->id_savedino1 = sip;
10136 		*inodedep->id_savedino1 = *dp;
10137 		bzero((caddr_t)dp, sizeof(struct ufs1_dinode));
10138 		dp->di_gen = inodedep->id_savedino1->di_gen;
10139 		dp->di_freelink = inodedep->id_savedino1->di_freelink;
10140 		return;
10141 	}
10142 	/*
10143 	 * If no dependencies, then there is nothing to roll back.
10144 	 */
10145 	inodedep->id_savedsize = dp->di_size;
10146 	inodedep->id_savedextsize = 0;
10147 	inodedep->id_savednlink = dp->di_nlink;
10148 	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
10149 	    TAILQ_EMPTY(&inodedep->id_inoreflst))
10150 		return;
10151 	/*
10152 	 * Revert the link count to that of the first unwritten journal entry.
10153 	 */
10154 	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
10155 	if (inoref)
10156 		dp->di_nlink = inoref->if_nlink;
10157 	/*
10158 	 * Set the dependencies to busy.
10159 	 */
10160 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10161 	     adp = TAILQ_NEXT(adp, ad_next)) {
10162 #ifdef INVARIANTS
10163 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10164 			panic("softdep_write_inodeblock: lbn order");
10165 		prevlbn = adp->ad_offset;
10166 		if (adp->ad_offset < NDADDR &&
10167 		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
10168 			panic("%s: direct pointer #%jd mismatch %d != %jd",
10169 			    "softdep_write_inodeblock",
10170 			    (intmax_t)adp->ad_offset,
10171 			    dp->di_db[adp->ad_offset],
10172 			    (intmax_t)adp->ad_newblkno);
10173 		if (adp->ad_offset >= NDADDR &&
10174 		    dp->di_ib[adp->ad_offset - NDADDR] != adp->ad_newblkno)
10175 			panic("%s: indirect pointer #%jd mismatch %d != %jd",
10176 			    "softdep_write_inodeblock",
10177 			    (intmax_t)adp->ad_offset - NDADDR,
10178 			    dp->di_ib[adp->ad_offset - NDADDR],
10179 			    (intmax_t)adp->ad_newblkno);
10180 		deplist |= 1 << adp->ad_offset;
10181 		if ((adp->ad_state & ATTACHED) == 0)
10182 			panic("softdep_write_inodeblock: Unknown state 0x%x",
10183 			    adp->ad_state);
10184 #endif /* INVARIANTS */
10185 		adp->ad_state &= ~ATTACHED;
10186 		adp->ad_state |= UNDONE;
10187 	}
10188 	/*
10189 	 * The on-disk inode cannot claim to be any larger than the last
10190 	 * fragment that has been written. Otherwise, the on-disk inode
10191 	 * might have fragments that were not the last block in the file
10192 	 * which would corrupt the filesystem.
10193 	 */
10194 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10195 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10196 		if (adp->ad_offset >= NDADDR)
10197 			break;
10198 		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
10199 		/* keep going until hitting a rollback to a frag */
10200 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10201 			continue;
10202 		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10203 		for (i = adp->ad_offset + 1; i < NDADDR; i++) {
10204 #ifdef INVARIANTS
10205 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
10206 				panic("softdep_write_inodeblock: lost dep1");
10207 #endif /* INVARIANTS */
10208 			dp->di_db[i] = 0;
10209 		}
10210 		for (i = 0; i < NIADDR; i++) {
10211 #ifdef INVARIANTS
10212 			if (dp->di_ib[i] != 0 &&
10213 			    (deplist & ((1 << NDADDR) << i)) == 0)
10214 				panic("softdep_write_inodeblock: lost dep2");
10215 #endif /* INVARIANTS */
10216 			dp->di_ib[i] = 0;
10217 		}
10218 		return;
10219 	}
10220 	/*
10221 	 * If we have zero'ed out the last allocated block of the file,
10222 	 * roll back the size to the last currently allocated block.
10223 	 * We know that this last allocated block is a full-sized as
10224 	 * we already checked for fragments in the loop above.
10225 	 */
10226 	if (lastadp != NULL &&
10227 	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10228 		for (i = lastadp->ad_offset; i >= 0; i--)
10229 			if (dp->di_db[i] != 0)
10230 				break;
10231 		dp->di_size = (i + 1) * fs->fs_bsize;
10232 	}
10233 	/*
10234 	 * The only dependencies are for indirect blocks.
10235 	 *
10236 	 * The file size for indirect block additions is not guaranteed.
10237 	 * Such a guarantee would be non-trivial to achieve. The conventional
10238 	 * synchronous write implementation also does not make this guarantee.
10239 	 * Fsck should catch and fix discrepancies. Arguably, the file size
10240 	 * can be over-estimated without destroying integrity when the file
10241 	 * moves into the indirect blocks (i.e., is large). If we want to
10242 	 * postpone fsck, we are stuck with this argument.
10243 	 */
10244 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
10245 		dp->di_ib[adp->ad_offset - NDADDR] = 0;
10246 }
10247 
10248 /*
10249  * Version of initiate_write_inodeblock that handles UFS2 dinodes.
10250  * Note that any bug fixes made to this routine must be done in the
10251  * version found above.
10252  *
10253  * Called from within the procedure above to deal with unsatisfied
10254  * allocation dependencies in an inodeblock. The buffer must be
10255  * locked, thus, no I/O completion operations can occur while we
10256  * are manipulating its associated dependencies.
10257  */
10258 static void
10259 initiate_write_inodeblock_ufs2(inodedep, bp)
10260 	struct inodedep *inodedep;
10261 	struct buf *bp;			/* The inode block */
10262 {
10263 	struct allocdirect *adp, *lastadp;
10264 	struct ufs2_dinode *dp;
10265 	struct ufs2_dinode *sip;
10266 	struct inoref *inoref;
10267 	struct ufsmount *ump;
10268 	struct fs *fs;
10269 	ufs_lbn_t i;
10270 #ifdef INVARIANTS
10271 	ufs_lbn_t prevlbn = 0;
10272 #endif
10273 	int deplist;
10274 
10275 	if (inodedep->id_state & IOSTARTED)
10276 		panic("initiate_write_inodeblock_ufs2: already started");
10277 	inodedep->id_state |= IOSTARTED;
10278 	fs = inodedep->id_fs;
10279 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
10280 	LOCK_OWNED(ump);
10281 	dp = (struct ufs2_dinode *)bp->b_data +
10282 	    ino_to_fsbo(fs, inodedep->id_ino);
10283 
10284 	/*
10285 	 * If we're on the unlinked list but have not yet written our
10286 	 * next pointer initialize it here.
10287 	 */
10288 	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
10289 		struct inodedep *inon;
10290 
10291 		inon = TAILQ_NEXT(inodedep, id_unlinked);
10292 		dp->di_freelink = inon ? inon->id_ino : 0;
10293 	}
10294 	/*
10295 	 * If the bitmap is not yet written, then the allocated
10296 	 * inode cannot be written to disk.
10297 	 */
10298 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
10299 		if (inodedep->id_savedino2 != NULL)
10300 			panic("initiate_write_inodeblock_ufs2: I/O underway");
10301 		FREE_LOCK(ump);
10302 		sip = malloc(sizeof(struct ufs2_dinode),
10303 		    M_SAVEDINO, M_SOFTDEP_FLAGS);
10304 		ACQUIRE_LOCK(ump);
10305 		inodedep->id_savedino2 = sip;
10306 		*inodedep->id_savedino2 = *dp;
10307 		bzero((caddr_t)dp, sizeof(struct ufs2_dinode));
10308 		dp->di_gen = inodedep->id_savedino2->di_gen;
10309 		dp->di_freelink = inodedep->id_savedino2->di_freelink;
10310 		return;
10311 	}
10312 	/*
10313 	 * If no dependencies, then there is nothing to roll back.
10314 	 */
10315 	inodedep->id_savedsize = dp->di_size;
10316 	inodedep->id_savedextsize = dp->di_extsize;
10317 	inodedep->id_savednlink = dp->di_nlink;
10318 	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
10319 	    TAILQ_EMPTY(&inodedep->id_extupdt) &&
10320 	    TAILQ_EMPTY(&inodedep->id_inoreflst))
10321 		return;
10322 	/*
10323 	 * Revert the link count to that of the first unwritten journal entry.
10324 	 */
10325 	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
10326 	if (inoref)
10327 		dp->di_nlink = inoref->if_nlink;
10328 
10329 	/*
10330 	 * Set the ext data dependencies to busy.
10331 	 */
10332 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
10333 	     adp = TAILQ_NEXT(adp, ad_next)) {
10334 #ifdef INVARIANTS
10335 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10336 			panic("softdep_write_inodeblock: lbn order");
10337 		prevlbn = adp->ad_offset;
10338 		if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno)
10339 			panic("%s: direct pointer #%jd mismatch %jd != %jd",
10340 			    "softdep_write_inodeblock",
10341 			    (intmax_t)adp->ad_offset,
10342 			    (intmax_t)dp->di_extb[adp->ad_offset],
10343 			    (intmax_t)adp->ad_newblkno);
10344 		deplist |= 1 << adp->ad_offset;
10345 		if ((adp->ad_state & ATTACHED) == 0)
10346 			panic("softdep_write_inodeblock: Unknown state 0x%x",
10347 			    adp->ad_state);
10348 #endif /* INVARIANTS */
10349 		adp->ad_state &= ~ATTACHED;
10350 		adp->ad_state |= UNDONE;
10351 	}
10352 	/*
10353 	 * The on-disk inode cannot claim to be any larger than the last
10354 	 * fragment that has been written. Otherwise, the on-disk inode
10355 	 * might have fragments that were not the last block in the ext
10356 	 * data which would corrupt the filesystem.
10357 	 */
10358 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
10359 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10360 		dp->di_extb[adp->ad_offset] = adp->ad_oldblkno;
10361 		/* keep going until hitting a rollback to a frag */
10362 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10363 			continue;
10364 		dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10365 		for (i = adp->ad_offset + 1; i < NXADDR; i++) {
10366 #ifdef INVARIANTS
10367 			if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0)
10368 				panic("softdep_write_inodeblock: lost dep1");
10369 #endif /* INVARIANTS */
10370 			dp->di_extb[i] = 0;
10371 		}
10372 		lastadp = NULL;
10373 		break;
10374 	}
10375 	/*
10376 	 * If we have zero'ed out the last allocated block of the ext
10377 	 * data, roll back the size to the last currently allocated block.
10378 	 * We know that this last allocated block is a full-sized as
10379 	 * we already checked for fragments in the loop above.
10380 	 */
10381 	if (lastadp != NULL &&
10382 	    dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10383 		for (i = lastadp->ad_offset; i >= 0; i--)
10384 			if (dp->di_extb[i] != 0)
10385 				break;
10386 		dp->di_extsize = (i + 1) * fs->fs_bsize;
10387 	}
10388 	/*
10389 	 * Set the file data dependencies to busy.
10390 	 */
10391 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10392 	     adp = TAILQ_NEXT(adp, ad_next)) {
10393 #ifdef INVARIANTS
10394 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10395 			panic("softdep_write_inodeblock: lbn order");
10396 		if ((adp->ad_state & ATTACHED) == 0)
10397 			panic("inodedep %p and adp %p not attached", inodedep, adp);
10398 		prevlbn = adp->ad_offset;
10399 		if (adp->ad_offset < NDADDR &&
10400 		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
10401 			panic("%s: direct pointer #%jd mismatch %jd != %jd",
10402 			    "softdep_write_inodeblock",
10403 			    (intmax_t)adp->ad_offset,
10404 			    (intmax_t)dp->di_db[adp->ad_offset],
10405 			    (intmax_t)adp->ad_newblkno);
10406 		if (adp->ad_offset >= NDADDR &&
10407 		    dp->di_ib[adp->ad_offset - NDADDR] != adp->ad_newblkno)
10408 			panic("%s indirect pointer #%jd mismatch %jd != %jd",
10409 			    "softdep_write_inodeblock:",
10410 			    (intmax_t)adp->ad_offset - NDADDR,
10411 			    (intmax_t)dp->di_ib[adp->ad_offset - NDADDR],
10412 			    (intmax_t)adp->ad_newblkno);
10413 		deplist |= 1 << adp->ad_offset;
10414 		if ((adp->ad_state & ATTACHED) == 0)
10415 			panic("softdep_write_inodeblock: Unknown state 0x%x",
10416 			    adp->ad_state);
10417 #endif /* INVARIANTS */
10418 		adp->ad_state &= ~ATTACHED;
10419 		adp->ad_state |= UNDONE;
10420 	}
10421 	/*
10422 	 * The on-disk inode cannot claim to be any larger than the last
10423 	 * fragment that has been written. Otherwise, the on-disk inode
10424 	 * might have fragments that were not the last block in the file
10425 	 * which would corrupt the filesystem.
10426 	 */
10427 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10428 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10429 		if (adp->ad_offset >= NDADDR)
10430 			break;
10431 		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
10432 		/* keep going until hitting a rollback to a frag */
10433 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10434 			continue;
10435 		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10436 		for (i = adp->ad_offset + 1; i < NDADDR; i++) {
10437 #ifdef INVARIANTS
10438 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
10439 				panic("softdep_write_inodeblock: lost dep2");
10440 #endif /* INVARIANTS */
10441 			dp->di_db[i] = 0;
10442 		}
10443 		for (i = 0; i < NIADDR; i++) {
10444 #ifdef INVARIANTS
10445 			if (dp->di_ib[i] != 0 &&
10446 			    (deplist & ((1 << NDADDR) << i)) == 0)
10447 				panic("softdep_write_inodeblock: lost dep3");
10448 #endif /* INVARIANTS */
10449 			dp->di_ib[i] = 0;
10450 		}
10451 		return;
10452 	}
10453 	/*
10454 	 * If we have zero'ed out the last allocated block of the file,
10455 	 * roll back the size to the last currently allocated block.
10456 	 * We know that this last allocated block is a full-sized as
10457 	 * we already checked for fragments in the loop above.
10458 	 */
10459 	if (lastadp != NULL &&
10460 	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10461 		for (i = lastadp->ad_offset; i >= 0; i--)
10462 			if (dp->di_db[i] != 0)
10463 				break;
10464 		dp->di_size = (i + 1) * fs->fs_bsize;
10465 	}
10466 	/*
10467 	 * The only dependencies are for indirect blocks.
10468 	 *
10469 	 * The file size for indirect block additions is not guaranteed.
10470 	 * Such a guarantee would be non-trivial to achieve. The conventional
10471 	 * synchronous write implementation also does not make this guarantee.
10472 	 * Fsck should catch and fix discrepancies. Arguably, the file size
10473 	 * can be over-estimated without destroying integrity when the file
10474 	 * moves into the indirect blocks (i.e., is large). If we want to
10475 	 * postpone fsck, we are stuck with this argument.
10476 	 */
10477 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
10478 		dp->di_ib[adp->ad_offset - NDADDR] = 0;
10479 }
10480 
10481 /*
10482  * Cancel an indirdep as a result of truncation.  Release all of the
10483  * children allocindirs and place their journal work on the appropriate
10484  * list.
10485  */
10486 static void
10487 cancel_indirdep(indirdep, bp, freeblks)
10488 	struct indirdep *indirdep;
10489 	struct buf *bp;
10490 	struct freeblks *freeblks;
10491 {
10492 	struct allocindir *aip;
10493 
10494 	/*
10495 	 * None of the indirect pointers will ever be visible,
10496 	 * so they can simply be tossed. GOINGAWAY ensures
10497 	 * that allocated pointers will be saved in the buffer
10498 	 * cache until they are freed. Note that they will
10499 	 * only be able to be found by their physical address
10500 	 * since the inode mapping the logical address will
10501 	 * be gone. The save buffer used for the safe copy
10502 	 * was allocated in setup_allocindir_phase2 using
10503 	 * the physical address so it could be used for this
10504 	 * purpose. Hence we swap the safe copy with the real
10505 	 * copy, allowing the safe copy to be freed and holding
10506 	 * on to the real copy for later use in indir_trunc.
10507 	 */
10508 	if (indirdep->ir_state & GOINGAWAY)
10509 		panic("cancel_indirdep: already gone");
10510 	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
10511 		indirdep->ir_state |= DEPCOMPLETE;
10512 		LIST_REMOVE(indirdep, ir_next);
10513 	}
10514 	indirdep->ir_state |= GOINGAWAY;
10515 	/*
10516 	 * Pass in bp for blocks still have journal writes
10517 	 * pending so we can cancel them on their own.
10518 	 */
10519 	while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != 0)
10520 		cancel_allocindir(aip, bp, freeblks, 0);
10521 	while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0)
10522 		cancel_allocindir(aip, NULL, freeblks, 0);
10523 	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != 0)
10524 		cancel_allocindir(aip, NULL, freeblks, 0);
10525 	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != 0)
10526 		cancel_allocindir(aip, NULL, freeblks, 0);
10527 	/*
10528 	 * If there are pending partial truncations we need to keep the
10529 	 * old block copy around until they complete.  This is because
10530 	 * the current b_data is not a perfect superset of the available
10531 	 * blocks.
10532 	 */
10533 	if (TAILQ_EMPTY(&indirdep->ir_trunc))
10534 		bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount);
10535 	else
10536 		bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
10537 	WORKLIST_REMOVE(&indirdep->ir_list);
10538 	WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list);
10539 	indirdep->ir_bp = NULL;
10540 	indirdep->ir_freeblks = freeblks;
10541 }
10542 
10543 /*
10544  * Free an indirdep once it no longer has new pointers to track.
10545  */
10546 static void
10547 free_indirdep(indirdep)
10548 	struct indirdep *indirdep;
10549 {
10550 
10551 	KASSERT(TAILQ_EMPTY(&indirdep->ir_trunc),
10552 	    ("free_indirdep: Indir trunc list not empty."));
10553 	KASSERT(LIST_EMPTY(&indirdep->ir_completehd),
10554 	    ("free_indirdep: Complete head not empty."));
10555 	KASSERT(LIST_EMPTY(&indirdep->ir_writehd),
10556 	    ("free_indirdep: write head not empty."));
10557 	KASSERT(LIST_EMPTY(&indirdep->ir_donehd),
10558 	    ("free_indirdep: done head not empty."));
10559 	KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd),
10560 	    ("free_indirdep: deplist head not empty."));
10561 	KASSERT((indirdep->ir_state & DEPCOMPLETE),
10562 	    ("free_indirdep: %p still on newblk list.", indirdep));
10563 	KASSERT(indirdep->ir_saveddata == NULL,
10564 	    ("free_indirdep: %p still has saved data.", indirdep));
10565 	if (indirdep->ir_state & ONWORKLIST)
10566 		WORKLIST_REMOVE(&indirdep->ir_list);
10567 	WORKITEM_FREE(indirdep, D_INDIRDEP);
10568 }
10569 
10570 /*
10571  * Called before a write to an indirdep.  This routine is responsible for
10572  * rolling back pointers to a safe state which includes only those
10573  * allocindirs which have been completed.
10574  */
10575 static void
10576 initiate_write_indirdep(indirdep, bp)
10577 	struct indirdep *indirdep;
10578 	struct buf *bp;
10579 {
10580 	struct ufsmount *ump;
10581 
10582 	indirdep->ir_state |= IOSTARTED;
10583 	if (indirdep->ir_state & GOINGAWAY)
10584 		panic("disk_io_initiation: indirdep gone");
10585 	/*
10586 	 * If there are no remaining dependencies, this will be writing
10587 	 * the real pointers.
10588 	 */
10589 	if (LIST_EMPTY(&indirdep->ir_deplisthd) &&
10590 	    TAILQ_EMPTY(&indirdep->ir_trunc))
10591 		return;
10592 	/*
10593 	 * Replace up-to-date version with safe version.
10594 	 */
10595 	if (indirdep->ir_saveddata == NULL) {
10596 		ump = VFSTOUFS(indirdep->ir_list.wk_mp);
10597 		LOCK_OWNED(ump);
10598 		FREE_LOCK(ump);
10599 		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
10600 		    M_SOFTDEP_FLAGS);
10601 		ACQUIRE_LOCK(ump);
10602 	}
10603 	indirdep->ir_state &= ~ATTACHED;
10604 	indirdep->ir_state |= UNDONE;
10605 	bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
10606 	bcopy(indirdep->ir_savebp->b_data, bp->b_data,
10607 	    bp->b_bcount);
10608 }
10609 
10610 /*
10611  * Called when an inode has been cleared in a cg bitmap.  This finally
10612  * eliminates any canceled jaddrefs
10613  */
10614 void
10615 softdep_setup_inofree(mp, bp, ino, wkhd)
10616 	struct mount *mp;
10617 	struct buf *bp;
10618 	ino_t ino;
10619 	struct workhead *wkhd;
10620 {
10621 	struct worklist *wk, *wkn;
10622 	struct inodedep *inodedep;
10623 	struct ufsmount *ump;
10624 	uint8_t *inosused;
10625 	struct cg *cgp;
10626 	struct fs *fs;
10627 
10628 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
10629 	    ("softdep_setup_inofree called on non-softdep filesystem"));
10630 	ump = VFSTOUFS(mp);
10631 	ACQUIRE_LOCK(ump);
10632 	fs = ump->um_fs;
10633 	cgp = (struct cg *)bp->b_data;
10634 	inosused = cg_inosused(cgp);
10635 	if (isset(inosused, ino % fs->fs_ipg))
10636 		panic("softdep_setup_inofree: inode %ju not freed.",
10637 		    (uintmax_t)ino);
10638 	if (inodedep_lookup(mp, ino, 0, &inodedep))
10639 		panic("softdep_setup_inofree: ino %ju has existing inodedep %p",
10640 		    (uintmax_t)ino, inodedep);
10641 	if (wkhd) {
10642 		LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) {
10643 			if (wk->wk_type != D_JADDREF)
10644 				continue;
10645 			WORKLIST_REMOVE(wk);
10646 			/*
10647 			 * We can free immediately even if the jaddref
10648 			 * isn't attached in a background write as now
10649 			 * the bitmaps are reconciled.
10650 			 */
10651 			wk->wk_state |= COMPLETE | ATTACHED;
10652 			free_jaddref(WK_JADDREF(wk));
10653 		}
10654 		jwork_move(&bp->b_dep, wkhd);
10655 	}
10656 	FREE_LOCK(ump);
10657 }
10658 
10659 
10660 /*
10661  * Called via ffs_blkfree() after a set of frags has been cleared from a cg
10662  * map.  Any dependencies waiting for the write to clear are added to the
10663  * buf's list and any jnewblks that are being canceled are discarded
10664  * immediately.
10665  */
10666 void
10667 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
10668 	struct mount *mp;
10669 	struct buf *bp;
10670 	ufs2_daddr_t blkno;
10671 	int frags;
10672 	struct workhead *wkhd;
10673 {
10674 	struct bmsafemap *bmsafemap;
10675 	struct jnewblk *jnewblk;
10676 	struct ufsmount *ump;
10677 	struct worklist *wk;
10678 	struct fs *fs;
10679 #ifdef SUJ_DEBUG
10680 	uint8_t *blksfree;
10681 	struct cg *cgp;
10682 	ufs2_daddr_t jstart;
10683 	ufs2_daddr_t jend;
10684 	ufs2_daddr_t end;
10685 	long bno;
10686 	int i;
10687 #endif
10688 
10689 	CTR3(KTR_SUJ,
10690 	    "softdep_setup_blkfree: blkno %jd frags %d wk head %p",
10691 	    blkno, frags, wkhd);
10692 
10693 	ump = VFSTOUFS(mp);
10694 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
10695 	    ("softdep_setup_blkfree called on non-softdep filesystem"));
10696 	ACQUIRE_LOCK(ump);
10697 	/* Lookup the bmsafemap so we track when it is dirty. */
10698 	fs = ump->um_fs;
10699 	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
10700 	/*
10701 	 * Detach any jnewblks which have been canceled.  They must linger
10702 	 * until the bitmap is cleared again by ffs_blkfree() to prevent
10703 	 * an unjournaled allocation from hitting the disk.
10704 	 */
10705 	if (wkhd) {
10706 		while ((wk = LIST_FIRST(wkhd)) != NULL) {
10707 			CTR2(KTR_SUJ,
10708 			    "softdep_setup_blkfree: blkno %jd wk type %d",
10709 			    blkno, wk->wk_type);
10710 			WORKLIST_REMOVE(wk);
10711 			if (wk->wk_type != D_JNEWBLK) {
10712 				WORKLIST_INSERT(&bmsafemap->sm_freehd, wk);
10713 				continue;
10714 			}
10715 			jnewblk = WK_JNEWBLK(wk);
10716 			KASSERT(jnewblk->jn_state & GOINGAWAY,
10717 			    ("softdep_setup_blkfree: jnewblk not canceled."));
10718 #ifdef SUJ_DEBUG
10719 			/*
10720 			 * Assert that this block is free in the bitmap
10721 			 * before we discard the jnewblk.
10722 			 */
10723 			cgp = (struct cg *)bp->b_data;
10724 			blksfree = cg_blksfree(cgp);
10725 			bno = dtogd(fs, jnewblk->jn_blkno);
10726 			for (i = jnewblk->jn_oldfrags;
10727 			    i < jnewblk->jn_frags; i++) {
10728 				if (isset(blksfree, bno + i))
10729 					continue;
10730 				panic("softdep_setup_blkfree: not free");
10731 			}
10732 #endif
10733 			/*
10734 			 * Even if it's not attached we can free immediately
10735 			 * as the new bitmap is correct.
10736 			 */
10737 			wk->wk_state |= COMPLETE | ATTACHED;
10738 			free_jnewblk(jnewblk);
10739 		}
10740 	}
10741 
10742 #ifdef SUJ_DEBUG
10743 	/*
10744 	 * Assert that we are not freeing a block which has an outstanding
10745 	 * allocation dependency.
10746 	 */
10747 	fs = VFSTOUFS(mp)->um_fs;
10748 	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
10749 	end = blkno + frags;
10750 	LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
10751 		/*
10752 		 * Don't match against blocks that will be freed when the
10753 		 * background write is done.
10754 		 */
10755 		if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) ==
10756 		    (COMPLETE | DEPCOMPLETE))
10757 			continue;
10758 		jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags;
10759 		jend = jnewblk->jn_blkno + jnewblk->jn_frags;
10760 		if ((blkno >= jstart && blkno < jend) ||
10761 		    (end > jstart && end <= jend)) {
10762 			printf("state 0x%X %jd - %d %d dep %p\n",
10763 			    jnewblk->jn_state, jnewblk->jn_blkno,
10764 			    jnewblk->jn_oldfrags, jnewblk->jn_frags,
10765 			    jnewblk->jn_dep);
10766 			panic("softdep_setup_blkfree: "
10767 			    "%jd-%jd(%d) overlaps with %jd-%jd",
10768 			    blkno, end, frags, jstart, jend);
10769 		}
10770 	}
10771 #endif
10772 	FREE_LOCK(ump);
10773 }
10774 
10775 /*
10776  * Revert a block allocation when the journal record that describes it
10777  * is not yet written.
10778  */
10779 static int
10780 jnewblk_rollback(jnewblk, fs, cgp, blksfree)
10781 	struct jnewblk *jnewblk;
10782 	struct fs *fs;
10783 	struct cg *cgp;
10784 	uint8_t *blksfree;
10785 {
10786 	ufs1_daddr_t fragno;
10787 	long cgbno, bbase;
10788 	int frags, blk;
10789 	int i;
10790 
10791 	frags = 0;
10792 	cgbno = dtogd(fs, jnewblk->jn_blkno);
10793 	/*
10794 	 * We have to test which frags need to be rolled back.  We may
10795 	 * be operating on a stale copy when doing background writes.
10796 	 */
10797 	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++)
10798 		if (isclr(blksfree, cgbno + i))
10799 			frags++;
10800 	if (frags == 0)
10801 		return (0);
10802 	/*
10803 	 * This is mostly ffs_blkfree() sans some validation and
10804 	 * superblock updates.
10805 	 */
10806 	if (frags == fs->fs_frag) {
10807 		fragno = fragstoblks(fs, cgbno);
10808 		ffs_setblock(fs, blksfree, fragno);
10809 		ffs_clusteracct(fs, cgp, fragno, 1);
10810 		cgp->cg_cs.cs_nbfree++;
10811 	} else {
10812 		cgbno += jnewblk->jn_oldfrags;
10813 		bbase = cgbno - fragnum(fs, cgbno);
10814 		/* Decrement the old frags.  */
10815 		blk = blkmap(fs, blksfree, bbase);
10816 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
10817 		/* Deallocate the fragment */
10818 		for (i = 0; i < frags; i++)
10819 			setbit(blksfree, cgbno + i);
10820 		cgp->cg_cs.cs_nffree += frags;
10821 		/* Add back in counts associated with the new frags */
10822 		blk = blkmap(fs, blksfree, bbase);
10823 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
10824 		/* If a complete block has been reassembled, account for it. */
10825 		fragno = fragstoblks(fs, bbase);
10826 		if (ffs_isblock(fs, blksfree, fragno)) {
10827 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
10828 			ffs_clusteracct(fs, cgp, fragno, 1);
10829 			cgp->cg_cs.cs_nbfree++;
10830 		}
10831 	}
10832 	stat_jnewblk++;
10833 	jnewblk->jn_state &= ~ATTACHED;
10834 	jnewblk->jn_state |= UNDONE;
10835 
10836 	return (frags);
10837 }
10838 
10839 static void
10840 initiate_write_bmsafemap(bmsafemap, bp)
10841 	struct bmsafemap *bmsafemap;
10842 	struct buf *bp;			/* The cg block. */
10843 {
10844 	struct jaddref *jaddref;
10845 	struct jnewblk *jnewblk;
10846 	uint8_t *inosused;
10847 	uint8_t *blksfree;
10848 	struct cg *cgp;
10849 	struct fs *fs;
10850 	ino_t ino;
10851 
10852 	if (bmsafemap->sm_state & IOSTARTED)
10853 		return;
10854 	bmsafemap->sm_state |= IOSTARTED;
10855 	/*
10856 	 * Clear any inode allocations which are pending journal writes.
10857 	 */
10858 	if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) {
10859 		cgp = (struct cg *)bp->b_data;
10860 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
10861 		inosused = cg_inosused(cgp);
10862 		LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) {
10863 			ino = jaddref->ja_ino % fs->fs_ipg;
10864 			if (isset(inosused, ino)) {
10865 				if ((jaddref->ja_mode & IFMT) == IFDIR)
10866 					cgp->cg_cs.cs_ndir--;
10867 				cgp->cg_cs.cs_nifree++;
10868 				clrbit(inosused, ino);
10869 				jaddref->ja_state &= ~ATTACHED;
10870 				jaddref->ja_state |= UNDONE;
10871 				stat_jaddref++;
10872 			} else
10873 				panic("initiate_write_bmsafemap: inode %ju "
10874 				    "marked free", (uintmax_t)jaddref->ja_ino);
10875 		}
10876 	}
10877 	/*
10878 	 * Clear any block allocations which are pending journal writes.
10879 	 */
10880 	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
10881 		cgp = (struct cg *)bp->b_data;
10882 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
10883 		blksfree = cg_blksfree(cgp);
10884 		LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
10885 			if (jnewblk_rollback(jnewblk, fs, cgp, blksfree))
10886 				continue;
10887 			panic("initiate_write_bmsafemap: block %jd "
10888 			    "marked free", jnewblk->jn_blkno);
10889 		}
10890 	}
10891 	/*
10892 	 * Move allocation lists to the written lists so they can be
10893 	 * cleared once the block write is complete.
10894 	 */
10895 	LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr,
10896 	    inodedep, id_deps);
10897 	LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr,
10898 	    newblk, nb_deps);
10899 	LIST_SWAP(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, worklist,
10900 	    wk_list);
10901 }
10902 
10903 /*
10904  * This routine is called during the completion interrupt
10905  * service routine for a disk write (from the procedure called
10906  * by the device driver to inform the filesystem caches of
10907  * a request completion).  It should be called early in this
10908  * procedure, before the block is made available to other
10909  * processes or other routines are called.
10910  *
10911  */
10912 static void
10913 softdep_disk_write_complete(bp)
10914 	struct buf *bp;		/* describes the completed disk write */
10915 {
10916 	struct worklist *wk;
10917 	struct worklist *owk;
10918 	struct ufsmount *ump;
10919 	struct workhead reattach;
10920 	struct freeblks *freeblks;
10921 	struct buf *sbp;
10922 
10923 	/*
10924 	 * If an error occurred while doing the write, then the data
10925 	 * has not hit the disk and the dependencies cannot be unrolled.
10926 	 */
10927 	if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0)
10928 		return;
10929 	if ((wk = LIST_FIRST(&bp->b_dep)) == NULL)
10930 		return;
10931 	ump = VFSTOUFS(wk->wk_mp);
10932 	LIST_INIT(&reattach);
10933 	/*
10934 	 * This lock must not be released anywhere in this code segment.
10935 	 */
10936 	sbp = NULL;
10937 	owk = NULL;
10938 	ACQUIRE_LOCK(ump);
10939 	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
10940 		WORKLIST_REMOVE(wk);
10941 		atomic_add_long(&dep_write[wk->wk_type], 1);
10942 		if (wk == owk)
10943 			panic("duplicate worklist: %p\n", wk);
10944 		owk = wk;
10945 		switch (wk->wk_type) {
10946 
10947 		case D_PAGEDEP:
10948 			if (handle_written_filepage(WK_PAGEDEP(wk), bp))
10949 				WORKLIST_INSERT(&reattach, wk);
10950 			continue;
10951 
10952 		case D_INODEDEP:
10953 			if (handle_written_inodeblock(WK_INODEDEP(wk), bp))
10954 				WORKLIST_INSERT(&reattach, wk);
10955 			continue;
10956 
10957 		case D_BMSAFEMAP:
10958 			if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp))
10959 				WORKLIST_INSERT(&reattach, wk);
10960 			continue;
10961 
10962 		case D_MKDIR:
10963 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
10964 			continue;
10965 
10966 		case D_ALLOCDIRECT:
10967 			wk->wk_state |= COMPLETE;
10968 			handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL);
10969 			continue;
10970 
10971 		case D_ALLOCINDIR:
10972 			wk->wk_state |= COMPLETE;
10973 			handle_allocindir_partdone(WK_ALLOCINDIR(wk));
10974 			continue;
10975 
10976 		case D_INDIRDEP:
10977 			if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp))
10978 				WORKLIST_INSERT(&reattach, wk);
10979 			continue;
10980 
10981 		case D_FREEBLKS:
10982 			wk->wk_state |= COMPLETE;
10983 			freeblks = WK_FREEBLKS(wk);
10984 			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE &&
10985 			    LIST_EMPTY(&freeblks->fb_jblkdephd))
10986 				add_to_worklist(wk, WK_NODELAY);
10987 			continue;
10988 
10989 		case D_FREEWORK:
10990 			handle_written_freework(WK_FREEWORK(wk));
10991 			break;
10992 
10993 		case D_JSEGDEP:
10994 			free_jsegdep(WK_JSEGDEP(wk));
10995 			continue;
10996 
10997 		case D_JSEG:
10998 			handle_written_jseg(WK_JSEG(wk), bp);
10999 			continue;
11000 
11001 		case D_SBDEP:
11002 			if (handle_written_sbdep(WK_SBDEP(wk), bp))
11003 				WORKLIST_INSERT(&reattach, wk);
11004 			continue;
11005 
11006 		case D_FREEDEP:
11007 			free_freedep(WK_FREEDEP(wk));
11008 			continue;
11009 
11010 		default:
11011 			panic("handle_disk_write_complete: Unknown type %s",
11012 			    TYPENAME(wk->wk_type));
11013 			/* NOTREACHED */
11014 		}
11015 	}
11016 	/*
11017 	 * Reattach any requests that must be redone.
11018 	 */
11019 	while ((wk = LIST_FIRST(&reattach)) != NULL) {
11020 		WORKLIST_REMOVE(wk);
11021 		WORKLIST_INSERT(&bp->b_dep, wk);
11022 	}
11023 	FREE_LOCK(ump);
11024 	if (sbp)
11025 		brelse(sbp);
11026 }
11027 
11028 /*
11029  * Called from within softdep_disk_write_complete above. Note that
11030  * this routine is always called from interrupt level with further
11031  * splbio interrupts blocked.
11032  */
11033 static void
11034 handle_allocdirect_partdone(adp, wkhd)
11035 	struct allocdirect *adp;	/* the completed allocdirect */
11036 	struct workhead *wkhd;		/* Work to do when inode is writtne. */
11037 {
11038 	struct allocdirectlst *listhead;
11039 	struct allocdirect *listadp;
11040 	struct inodedep *inodedep;
11041 	long bsize;
11042 
11043 	if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
11044 		return;
11045 	/*
11046 	 * The on-disk inode cannot claim to be any larger than the last
11047 	 * fragment that has been written. Otherwise, the on-disk inode
11048 	 * might have fragments that were not the last block in the file
11049 	 * which would corrupt the filesystem. Thus, we cannot free any
11050 	 * allocdirects after one whose ad_oldblkno claims a fragment as
11051 	 * these blocks must be rolled back to zero before writing the inode.
11052 	 * We check the currently active set of allocdirects in id_inoupdt
11053 	 * or id_extupdt as appropriate.
11054 	 */
11055 	inodedep = adp->ad_inodedep;
11056 	bsize = inodedep->id_fs->fs_bsize;
11057 	if (adp->ad_state & EXTDATA)
11058 		listhead = &inodedep->id_extupdt;
11059 	else
11060 		listhead = &inodedep->id_inoupdt;
11061 	TAILQ_FOREACH(listadp, listhead, ad_next) {
11062 		/* found our block */
11063 		if (listadp == adp)
11064 			break;
11065 		/* continue if ad_oldlbn is not a fragment */
11066 		if (listadp->ad_oldsize == 0 ||
11067 		    listadp->ad_oldsize == bsize)
11068 			continue;
11069 		/* hit a fragment */
11070 		return;
11071 	}
11072 	/*
11073 	 * If we have reached the end of the current list without
11074 	 * finding the just finished dependency, then it must be
11075 	 * on the future dependency list. Future dependencies cannot
11076 	 * be freed until they are moved to the current list.
11077 	 */
11078 	if (listadp == NULL) {
11079 #ifdef DEBUG
11080 		if (adp->ad_state & EXTDATA)
11081 			listhead = &inodedep->id_newextupdt;
11082 		else
11083 			listhead = &inodedep->id_newinoupdt;
11084 		TAILQ_FOREACH(listadp, listhead, ad_next)
11085 			/* found our block */
11086 			if (listadp == adp)
11087 				break;
11088 		if (listadp == NULL)
11089 			panic("handle_allocdirect_partdone: lost dep");
11090 #endif /* DEBUG */
11091 		return;
11092 	}
11093 	/*
11094 	 * If we have found the just finished dependency, then queue
11095 	 * it along with anything that follows it that is complete.
11096 	 * Since the pointer has not yet been written in the inode
11097 	 * as the dependency prevents it, place the allocdirect on the
11098 	 * bufwait list where it will be freed once the pointer is
11099 	 * valid.
11100 	 */
11101 	if (wkhd == NULL)
11102 		wkhd = &inodedep->id_bufwait;
11103 	for (; adp; adp = listadp) {
11104 		listadp = TAILQ_NEXT(adp, ad_next);
11105 		if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
11106 			return;
11107 		TAILQ_REMOVE(listhead, adp, ad_next);
11108 		WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list);
11109 	}
11110 }
11111 
11112 /*
11113  * Called from within softdep_disk_write_complete above.  This routine
11114  * completes successfully written allocindirs.
11115  */
11116 static void
11117 handle_allocindir_partdone(aip)
11118 	struct allocindir *aip;		/* the completed allocindir */
11119 {
11120 	struct indirdep *indirdep;
11121 
11122 	if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
11123 		return;
11124 	indirdep = aip->ai_indirdep;
11125 	LIST_REMOVE(aip, ai_next);
11126 	/*
11127 	 * Don't set a pointer while the buffer is undergoing IO or while
11128 	 * we have active truncations.
11129 	 */
11130 	if (indirdep->ir_state & UNDONE || !TAILQ_EMPTY(&indirdep->ir_trunc)) {
11131 		LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
11132 		return;
11133 	}
11134 	if (indirdep->ir_state & UFS1FMT)
11135 		((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
11136 		    aip->ai_newblkno;
11137 	else
11138 		((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
11139 		    aip->ai_newblkno;
11140 	/*
11141 	 * Await the pointer write before freeing the allocindir.
11142 	 */
11143 	LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next);
11144 }
11145 
11146 /*
11147  * Release segments held on a jwork list.
11148  */
11149 static void
11150 handle_jwork(wkhd)
11151 	struct workhead *wkhd;
11152 {
11153 	struct worklist *wk;
11154 
11155 	while ((wk = LIST_FIRST(wkhd)) != NULL) {
11156 		WORKLIST_REMOVE(wk);
11157 		switch (wk->wk_type) {
11158 		case D_JSEGDEP:
11159 			free_jsegdep(WK_JSEGDEP(wk));
11160 			continue;
11161 		case D_FREEDEP:
11162 			free_freedep(WK_FREEDEP(wk));
11163 			continue;
11164 		case D_FREEFRAG:
11165 			rele_jseg(WK_JSEG(WK_FREEFRAG(wk)->ff_jdep));
11166 			WORKITEM_FREE(wk, D_FREEFRAG);
11167 			continue;
11168 		case D_FREEWORK:
11169 			handle_written_freework(WK_FREEWORK(wk));
11170 			continue;
11171 		default:
11172 			panic("handle_jwork: Unknown type %s\n",
11173 			    TYPENAME(wk->wk_type));
11174 		}
11175 	}
11176 }
11177 
11178 /*
11179  * Handle the bufwait list on an inode when it is safe to release items
11180  * held there.  This normally happens after an inode block is written but
11181  * may be delayed and handled later if there are pending journal items that
11182  * are not yet safe to be released.
11183  */
11184 static struct freefile *
11185 handle_bufwait(inodedep, refhd)
11186 	struct inodedep *inodedep;
11187 	struct workhead *refhd;
11188 {
11189 	struct jaddref *jaddref;
11190 	struct freefile *freefile;
11191 	struct worklist *wk;
11192 
11193 	freefile = NULL;
11194 	while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
11195 		WORKLIST_REMOVE(wk);
11196 		switch (wk->wk_type) {
11197 		case D_FREEFILE:
11198 			/*
11199 			 * We defer adding freefile to the worklist
11200 			 * until all other additions have been made to
11201 			 * ensure that it will be done after all the
11202 			 * old blocks have been freed.
11203 			 */
11204 			if (freefile != NULL)
11205 				panic("handle_bufwait: freefile");
11206 			freefile = WK_FREEFILE(wk);
11207 			continue;
11208 
11209 		case D_MKDIR:
11210 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
11211 			continue;
11212 
11213 		case D_DIRADD:
11214 			diradd_inode_written(WK_DIRADD(wk), inodedep);
11215 			continue;
11216 
11217 		case D_FREEFRAG:
11218 			wk->wk_state |= COMPLETE;
11219 			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE)
11220 				add_to_worklist(wk, 0);
11221 			continue;
11222 
11223 		case D_DIRREM:
11224 			wk->wk_state |= COMPLETE;
11225 			add_to_worklist(wk, 0);
11226 			continue;
11227 
11228 		case D_ALLOCDIRECT:
11229 		case D_ALLOCINDIR:
11230 			free_newblk(WK_NEWBLK(wk));
11231 			continue;
11232 
11233 		case D_JNEWBLK:
11234 			wk->wk_state |= COMPLETE;
11235 			free_jnewblk(WK_JNEWBLK(wk));
11236 			continue;
11237 
11238 		/*
11239 		 * Save freed journal segments and add references on
11240 		 * the supplied list which will delay their release
11241 		 * until the cg bitmap is cleared on disk.
11242 		 */
11243 		case D_JSEGDEP:
11244 			if (refhd == NULL)
11245 				free_jsegdep(WK_JSEGDEP(wk));
11246 			else
11247 				WORKLIST_INSERT(refhd, wk);
11248 			continue;
11249 
11250 		case D_JADDREF:
11251 			jaddref = WK_JADDREF(wk);
11252 			TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
11253 			    if_deps);
11254 			/*
11255 			 * Transfer any jaddrefs to the list to be freed with
11256 			 * the bitmap if we're handling a removed file.
11257 			 */
11258 			if (refhd == NULL) {
11259 				wk->wk_state |= COMPLETE;
11260 				free_jaddref(jaddref);
11261 			} else
11262 				WORKLIST_INSERT(refhd, wk);
11263 			continue;
11264 
11265 		default:
11266 			panic("handle_bufwait: Unknown type %p(%s)",
11267 			    wk, TYPENAME(wk->wk_type));
11268 			/* NOTREACHED */
11269 		}
11270 	}
11271 	return (freefile);
11272 }
11273 /*
11274  * Called from within softdep_disk_write_complete above to restore
11275  * in-memory inode block contents to their most up-to-date state. Note
11276  * that this routine is always called from interrupt level with further
11277  * splbio interrupts blocked.
11278  */
11279 static int
11280 handle_written_inodeblock(inodedep, bp)
11281 	struct inodedep *inodedep;
11282 	struct buf *bp;		/* buffer containing the inode block */
11283 {
11284 	struct freefile *freefile;
11285 	struct allocdirect *adp, *nextadp;
11286 	struct ufs1_dinode *dp1 = NULL;
11287 	struct ufs2_dinode *dp2 = NULL;
11288 	struct workhead wkhd;
11289 	int hadchanges, fstype;
11290 	ino_t freelink;
11291 
11292 	LIST_INIT(&wkhd);
11293 	hadchanges = 0;
11294 	freefile = NULL;
11295 	if ((inodedep->id_state & IOSTARTED) == 0)
11296 		panic("handle_written_inodeblock: not started");
11297 	inodedep->id_state &= ~IOSTARTED;
11298 	if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) {
11299 		fstype = UFS1;
11300 		dp1 = (struct ufs1_dinode *)bp->b_data +
11301 		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
11302 		freelink = dp1->di_freelink;
11303 	} else {
11304 		fstype = UFS2;
11305 		dp2 = (struct ufs2_dinode *)bp->b_data +
11306 		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
11307 		freelink = dp2->di_freelink;
11308 	}
11309 	/*
11310 	 * Leave this inodeblock dirty until it's in the list.
11311 	 */
11312 	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED) {
11313 		struct inodedep *inon;
11314 
11315 		inon = TAILQ_NEXT(inodedep, id_unlinked);
11316 		if ((inon == NULL && freelink == 0) ||
11317 		    (inon && inon->id_ino == freelink)) {
11318 			if (inon)
11319 				inon->id_state |= UNLINKPREV;
11320 			inodedep->id_state |= UNLINKNEXT;
11321 		}
11322 		hadchanges = 1;
11323 	}
11324 	/*
11325 	 * If we had to rollback the inode allocation because of
11326 	 * bitmaps being incomplete, then simply restore it.
11327 	 * Keep the block dirty so that it will not be reclaimed until
11328 	 * all associated dependencies have been cleared and the
11329 	 * corresponding updates written to disk.
11330 	 */
11331 	if (inodedep->id_savedino1 != NULL) {
11332 		hadchanges = 1;
11333 		if (fstype == UFS1)
11334 			*dp1 = *inodedep->id_savedino1;
11335 		else
11336 			*dp2 = *inodedep->id_savedino2;
11337 		free(inodedep->id_savedino1, M_SAVEDINO);
11338 		inodedep->id_savedino1 = NULL;
11339 		if ((bp->b_flags & B_DELWRI) == 0)
11340 			stat_inode_bitmap++;
11341 		bdirty(bp);
11342 		/*
11343 		 * If the inode is clear here and GOINGAWAY it will never
11344 		 * be written.  Process the bufwait and clear any pending
11345 		 * work which may include the freefile.
11346 		 */
11347 		if (inodedep->id_state & GOINGAWAY)
11348 			goto bufwait;
11349 		return (1);
11350 	}
11351 	inodedep->id_state |= COMPLETE;
11352 	/*
11353 	 * Roll forward anything that had to be rolled back before
11354 	 * the inode could be updated.
11355 	 */
11356 	for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
11357 		nextadp = TAILQ_NEXT(adp, ad_next);
11358 		if (adp->ad_state & ATTACHED)
11359 			panic("handle_written_inodeblock: new entry");
11360 		if (fstype == UFS1) {
11361 			if (adp->ad_offset < NDADDR) {
11362 				if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno)
11363 					panic("%s %s #%jd mismatch %d != %jd",
11364 					    "handle_written_inodeblock:",
11365 					    "direct pointer",
11366 					    (intmax_t)adp->ad_offset,
11367 					    dp1->di_db[adp->ad_offset],
11368 					    (intmax_t)adp->ad_oldblkno);
11369 				dp1->di_db[adp->ad_offset] = adp->ad_newblkno;
11370 			} else {
11371 				if (dp1->di_ib[adp->ad_offset - NDADDR] != 0)
11372 					panic("%s: %s #%jd allocated as %d",
11373 					    "handle_written_inodeblock",
11374 					    "indirect pointer",
11375 					    (intmax_t)adp->ad_offset - NDADDR,
11376 					    dp1->di_ib[adp->ad_offset - NDADDR]);
11377 				dp1->di_ib[adp->ad_offset - NDADDR] =
11378 				    adp->ad_newblkno;
11379 			}
11380 		} else {
11381 			if (adp->ad_offset < NDADDR) {
11382 				if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno)
11383 					panic("%s: %s #%jd %s %jd != %jd",
11384 					    "handle_written_inodeblock",
11385 					    "direct pointer",
11386 					    (intmax_t)adp->ad_offset, "mismatch",
11387 					    (intmax_t)dp2->di_db[adp->ad_offset],
11388 					    (intmax_t)adp->ad_oldblkno);
11389 				dp2->di_db[adp->ad_offset] = adp->ad_newblkno;
11390 			} else {
11391 				if (dp2->di_ib[adp->ad_offset - NDADDR] != 0)
11392 					panic("%s: %s #%jd allocated as %jd",
11393 					    "handle_written_inodeblock",
11394 					    "indirect pointer",
11395 					    (intmax_t)adp->ad_offset - NDADDR,
11396 					    (intmax_t)
11397 					    dp2->di_ib[adp->ad_offset - NDADDR]);
11398 				dp2->di_ib[adp->ad_offset - NDADDR] =
11399 				    adp->ad_newblkno;
11400 			}
11401 		}
11402 		adp->ad_state &= ~UNDONE;
11403 		adp->ad_state |= ATTACHED;
11404 		hadchanges = 1;
11405 	}
11406 	for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) {
11407 		nextadp = TAILQ_NEXT(adp, ad_next);
11408 		if (adp->ad_state & ATTACHED)
11409 			panic("handle_written_inodeblock: new entry");
11410 		if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno)
11411 			panic("%s: direct pointers #%jd %s %jd != %jd",
11412 			    "handle_written_inodeblock",
11413 			    (intmax_t)adp->ad_offset, "mismatch",
11414 			    (intmax_t)dp2->di_extb[adp->ad_offset],
11415 			    (intmax_t)adp->ad_oldblkno);
11416 		dp2->di_extb[adp->ad_offset] = adp->ad_newblkno;
11417 		adp->ad_state &= ~UNDONE;
11418 		adp->ad_state |= ATTACHED;
11419 		hadchanges = 1;
11420 	}
11421 	if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
11422 		stat_direct_blk_ptrs++;
11423 	/*
11424 	 * Reset the file size to its most up-to-date value.
11425 	 */
11426 	if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1)
11427 		panic("handle_written_inodeblock: bad size");
11428 	if (inodedep->id_savednlink > LINK_MAX)
11429 		panic("handle_written_inodeblock: Invalid link count "
11430 		    "%d for inodedep %p", inodedep->id_savednlink, inodedep);
11431 	if (fstype == UFS1) {
11432 		if (dp1->di_nlink != inodedep->id_savednlink) {
11433 			dp1->di_nlink = inodedep->id_savednlink;
11434 			hadchanges = 1;
11435 		}
11436 		if (dp1->di_size != inodedep->id_savedsize) {
11437 			dp1->di_size = inodedep->id_savedsize;
11438 			hadchanges = 1;
11439 		}
11440 	} else {
11441 		if (dp2->di_nlink != inodedep->id_savednlink) {
11442 			dp2->di_nlink = inodedep->id_savednlink;
11443 			hadchanges = 1;
11444 		}
11445 		if (dp2->di_size != inodedep->id_savedsize) {
11446 			dp2->di_size = inodedep->id_savedsize;
11447 			hadchanges = 1;
11448 		}
11449 		if (dp2->di_extsize != inodedep->id_savedextsize) {
11450 			dp2->di_extsize = inodedep->id_savedextsize;
11451 			hadchanges = 1;
11452 		}
11453 	}
11454 	inodedep->id_savedsize = -1;
11455 	inodedep->id_savedextsize = -1;
11456 	inodedep->id_savednlink = -1;
11457 	/*
11458 	 * If there were any rollbacks in the inode block, then it must be
11459 	 * marked dirty so that its will eventually get written back in
11460 	 * its correct form.
11461 	 */
11462 	if (hadchanges)
11463 		bdirty(bp);
11464 bufwait:
11465 	/*
11466 	 * Process any allocdirects that completed during the update.
11467 	 */
11468 	if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
11469 		handle_allocdirect_partdone(adp, &wkhd);
11470 	if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
11471 		handle_allocdirect_partdone(adp, &wkhd);
11472 	/*
11473 	 * Process deallocations that were held pending until the
11474 	 * inode had been written to disk. Freeing of the inode
11475 	 * is delayed until after all blocks have been freed to
11476 	 * avoid creation of new <vfsid, inum, lbn> triples
11477 	 * before the old ones have been deleted.  Completely
11478 	 * unlinked inodes are not processed until the unlinked
11479 	 * inode list is written or the last reference is removed.
11480 	 */
11481 	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) {
11482 		freefile = handle_bufwait(inodedep, NULL);
11483 		if (freefile && !LIST_EMPTY(&wkhd)) {
11484 			WORKLIST_INSERT(&wkhd, &freefile->fx_list);
11485 			freefile = NULL;
11486 		}
11487 	}
11488 	/*
11489 	 * Move rolled forward dependency completions to the bufwait list
11490 	 * now that those that were already written have been processed.
11491 	 */
11492 	if (!LIST_EMPTY(&wkhd) && hadchanges == 0)
11493 		panic("handle_written_inodeblock: bufwait but no changes");
11494 	jwork_move(&inodedep->id_bufwait, &wkhd);
11495 
11496 	if (freefile != NULL) {
11497 		/*
11498 		 * If the inode is goingaway it was never written.  Fake up
11499 		 * the state here so free_inodedep() can succeed.
11500 		 */
11501 		if (inodedep->id_state & GOINGAWAY)
11502 			inodedep->id_state |= COMPLETE | DEPCOMPLETE;
11503 		if (free_inodedep(inodedep) == 0)
11504 			panic("handle_written_inodeblock: live inodedep %p",
11505 			    inodedep);
11506 		add_to_worklist(&freefile->fx_list, 0);
11507 		return (0);
11508 	}
11509 
11510 	/*
11511 	 * If no outstanding dependencies, free it.
11512 	 */
11513 	if (free_inodedep(inodedep) ||
11514 	    (TAILQ_FIRST(&inodedep->id_inoreflst) == 0 &&
11515 	     TAILQ_FIRST(&inodedep->id_inoupdt) == 0 &&
11516 	     TAILQ_FIRST(&inodedep->id_extupdt) == 0 &&
11517 	     LIST_FIRST(&inodedep->id_bufwait) == 0))
11518 		return (0);
11519 	return (hadchanges);
11520 }
11521 
11522 static int
11523 handle_written_indirdep(indirdep, bp, bpp)
11524 	struct indirdep *indirdep;
11525 	struct buf *bp;
11526 	struct buf **bpp;
11527 {
11528 	struct allocindir *aip;
11529 	struct buf *sbp;
11530 	int chgs;
11531 
11532 	if (indirdep->ir_state & GOINGAWAY)
11533 		panic("handle_written_indirdep: indirdep gone");
11534 	if ((indirdep->ir_state & IOSTARTED) == 0)
11535 		panic("handle_written_indirdep: IO not started");
11536 	chgs = 0;
11537 	/*
11538 	 * If there were rollbacks revert them here.
11539 	 */
11540 	if (indirdep->ir_saveddata) {
11541 		bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount);
11542 		if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
11543 			free(indirdep->ir_saveddata, M_INDIRDEP);
11544 			indirdep->ir_saveddata = NULL;
11545 		}
11546 		chgs = 1;
11547 	}
11548 	indirdep->ir_state &= ~(UNDONE | IOSTARTED);
11549 	indirdep->ir_state |= ATTACHED;
11550 	/*
11551 	 * Move allocindirs with written pointers to the completehd if
11552 	 * the indirdep's pointer is not yet written.  Otherwise
11553 	 * free them here.
11554 	 */
11555 	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != 0) {
11556 		LIST_REMOVE(aip, ai_next);
11557 		if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
11558 			LIST_INSERT_HEAD(&indirdep->ir_completehd, aip,
11559 			    ai_next);
11560 			newblk_freefrag(&aip->ai_block);
11561 			continue;
11562 		}
11563 		free_newblk(&aip->ai_block);
11564 	}
11565 	/*
11566 	 * Move allocindirs that have finished dependency processing from
11567 	 * the done list to the write list after updating the pointers.
11568 	 */
11569 	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
11570 		while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) {
11571 			handle_allocindir_partdone(aip);
11572 			if (aip == LIST_FIRST(&indirdep->ir_donehd))
11573 				panic("disk_write_complete: not gone");
11574 			chgs = 1;
11575 		}
11576 	}
11577 	/*
11578 	 * Preserve the indirdep if there were any changes or if it is not
11579 	 * yet valid on disk.
11580 	 */
11581 	if (chgs) {
11582 		stat_indir_blk_ptrs++;
11583 		bdirty(bp);
11584 		return (1);
11585 	}
11586 	/*
11587 	 * If there were no changes we can discard the savedbp and detach
11588 	 * ourselves from the buf.  We are only carrying completed pointers
11589 	 * in this case.
11590 	 */
11591 	sbp = indirdep->ir_savebp;
11592 	sbp->b_flags |= B_INVAL | B_NOCACHE;
11593 	indirdep->ir_savebp = NULL;
11594 	indirdep->ir_bp = NULL;
11595 	if (*bpp != NULL)
11596 		panic("handle_written_indirdep: bp already exists.");
11597 	*bpp = sbp;
11598 	/*
11599 	 * The indirdep may not be freed until its parent points at it.
11600 	 */
11601 	if (indirdep->ir_state & DEPCOMPLETE)
11602 		free_indirdep(indirdep);
11603 
11604 	return (0);
11605 }
11606 
11607 /*
11608  * Process a diradd entry after its dependent inode has been written.
11609  * This routine must be called with splbio interrupts blocked.
11610  */
11611 static void
11612 diradd_inode_written(dap, inodedep)
11613 	struct diradd *dap;
11614 	struct inodedep *inodedep;
11615 {
11616 
11617 	dap->da_state |= COMPLETE;
11618 	complete_diradd(dap);
11619 	WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
11620 }
11621 
11622 /*
11623  * Returns true if the bmsafemap will have rollbacks when written.  Must only
11624  * be called with the per-filesystem lock and the buf lock on the cg held.
11625  */
11626 static int
11627 bmsafemap_backgroundwrite(bmsafemap, bp)
11628 	struct bmsafemap *bmsafemap;
11629 	struct buf *bp;
11630 {
11631 	int dirty;
11632 
11633 	LOCK_OWNED(VFSTOUFS(bmsafemap->sm_list.wk_mp));
11634 	dirty = !LIST_EMPTY(&bmsafemap->sm_jaddrefhd) |
11635 	    !LIST_EMPTY(&bmsafemap->sm_jnewblkhd);
11636 	/*
11637 	 * If we're initiating a background write we need to process the
11638 	 * rollbacks as they exist now, not as they exist when IO starts.
11639 	 * No other consumers will look at the contents of the shadowed
11640 	 * buf so this is safe to do here.
11641 	 */
11642 	if (bp->b_xflags & BX_BKGRDMARKER)
11643 		initiate_write_bmsafemap(bmsafemap, bp);
11644 
11645 	return (dirty);
11646 }
11647 
11648 /*
11649  * Re-apply an allocation when a cg write is complete.
11650  */
11651 static int
11652 jnewblk_rollforward(jnewblk, fs, cgp, blksfree)
11653 	struct jnewblk *jnewblk;
11654 	struct fs *fs;
11655 	struct cg *cgp;
11656 	uint8_t *blksfree;
11657 {
11658 	ufs1_daddr_t fragno;
11659 	ufs2_daddr_t blkno;
11660 	long cgbno, bbase;
11661 	int frags, blk;
11662 	int i;
11663 
11664 	frags = 0;
11665 	cgbno = dtogd(fs, jnewblk->jn_blkno);
11666 	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) {
11667 		if (isclr(blksfree, cgbno + i))
11668 			panic("jnewblk_rollforward: re-allocated fragment");
11669 		frags++;
11670 	}
11671 	if (frags == fs->fs_frag) {
11672 		blkno = fragstoblks(fs, cgbno);
11673 		ffs_clrblock(fs, blksfree, (long)blkno);
11674 		ffs_clusteracct(fs, cgp, blkno, -1);
11675 		cgp->cg_cs.cs_nbfree--;
11676 	} else {
11677 		bbase = cgbno - fragnum(fs, cgbno);
11678 		cgbno += jnewblk->jn_oldfrags;
11679                 /* If a complete block had been reassembled, account for it. */
11680 		fragno = fragstoblks(fs, bbase);
11681 		if (ffs_isblock(fs, blksfree, fragno)) {
11682 			cgp->cg_cs.cs_nffree += fs->fs_frag;
11683 			ffs_clusteracct(fs, cgp, fragno, -1);
11684 			cgp->cg_cs.cs_nbfree--;
11685 		}
11686 		/* Decrement the old frags.  */
11687 		blk = blkmap(fs, blksfree, bbase);
11688 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
11689 		/* Allocate the fragment */
11690 		for (i = 0; i < frags; i++)
11691 			clrbit(blksfree, cgbno + i);
11692 		cgp->cg_cs.cs_nffree -= frags;
11693 		/* Add back in counts associated with the new frags */
11694 		blk = blkmap(fs, blksfree, bbase);
11695 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
11696 	}
11697 	return (frags);
11698 }
11699 
11700 /*
11701  * Complete a write to a bmsafemap structure.  Roll forward any bitmap
11702  * changes if it's not a background write.  Set all written dependencies
11703  * to DEPCOMPLETE and free the structure if possible.
11704  */
11705 static int
11706 handle_written_bmsafemap(bmsafemap, bp)
11707 	struct bmsafemap *bmsafemap;
11708 	struct buf *bp;
11709 {
11710 	struct newblk *newblk;
11711 	struct inodedep *inodedep;
11712 	struct jaddref *jaddref, *jatmp;
11713 	struct jnewblk *jnewblk, *jntmp;
11714 	struct ufsmount *ump;
11715 	uint8_t *inosused;
11716 	uint8_t *blksfree;
11717 	struct cg *cgp;
11718 	struct fs *fs;
11719 	ino_t ino;
11720 	int foreground;
11721 	int chgs;
11722 
11723 	if ((bmsafemap->sm_state & IOSTARTED) == 0)
11724 		panic("initiate_write_bmsafemap: Not started\n");
11725 	ump = VFSTOUFS(bmsafemap->sm_list.wk_mp);
11726 	chgs = 0;
11727 	bmsafemap->sm_state &= ~IOSTARTED;
11728 	foreground = (bp->b_xflags & BX_BKGRDMARKER) == 0;
11729 	/*
11730 	 * Release journal work that was waiting on the write.
11731 	 */
11732 	handle_jwork(&bmsafemap->sm_freewr);
11733 
11734 	/*
11735 	 * Restore unwritten inode allocation pending jaddref writes.
11736 	 */
11737 	if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) {
11738 		cgp = (struct cg *)bp->b_data;
11739 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11740 		inosused = cg_inosused(cgp);
11741 		LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd,
11742 		    ja_bmdeps, jatmp) {
11743 			if ((jaddref->ja_state & UNDONE) == 0)
11744 				continue;
11745 			ino = jaddref->ja_ino % fs->fs_ipg;
11746 			if (isset(inosused, ino))
11747 				panic("handle_written_bmsafemap: "
11748 				    "re-allocated inode");
11749 			/* Do the roll-forward only if it's a real copy. */
11750 			if (foreground) {
11751 				if ((jaddref->ja_mode & IFMT) == IFDIR)
11752 					cgp->cg_cs.cs_ndir++;
11753 				cgp->cg_cs.cs_nifree--;
11754 				setbit(inosused, ino);
11755 				chgs = 1;
11756 			}
11757 			jaddref->ja_state &= ~UNDONE;
11758 			jaddref->ja_state |= ATTACHED;
11759 			free_jaddref(jaddref);
11760 		}
11761 	}
11762 	/*
11763 	 * Restore any block allocations which are pending journal writes.
11764 	 */
11765 	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
11766 		cgp = (struct cg *)bp->b_data;
11767 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11768 		blksfree = cg_blksfree(cgp);
11769 		LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps,
11770 		    jntmp) {
11771 			if ((jnewblk->jn_state & UNDONE) == 0)
11772 				continue;
11773 			/* Do the roll-forward only if it's a real copy. */
11774 			if (foreground &&
11775 			    jnewblk_rollforward(jnewblk, fs, cgp, blksfree))
11776 				chgs = 1;
11777 			jnewblk->jn_state &= ~(UNDONE | NEWBLOCK);
11778 			jnewblk->jn_state |= ATTACHED;
11779 			free_jnewblk(jnewblk);
11780 		}
11781 	}
11782 	while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) {
11783 		newblk->nb_state |= DEPCOMPLETE;
11784 		newblk->nb_state &= ~ONDEPLIST;
11785 		newblk->nb_bmsafemap = NULL;
11786 		LIST_REMOVE(newblk, nb_deps);
11787 		if (newblk->nb_list.wk_type == D_ALLOCDIRECT)
11788 			handle_allocdirect_partdone(
11789 			    WK_ALLOCDIRECT(&newblk->nb_list), NULL);
11790 		else if (newblk->nb_list.wk_type == D_ALLOCINDIR)
11791 			handle_allocindir_partdone(
11792 			    WK_ALLOCINDIR(&newblk->nb_list));
11793 		else if (newblk->nb_list.wk_type != D_NEWBLK)
11794 			panic("handle_written_bmsafemap: Unexpected type: %s",
11795 			    TYPENAME(newblk->nb_list.wk_type));
11796 	}
11797 	while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) {
11798 		inodedep->id_state |= DEPCOMPLETE;
11799 		inodedep->id_state &= ~ONDEPLIST;
11800 		LIST_REMOVE(inodedep, id_deps);
11801 		inodedep->id_bmsafemap = NULL;
11802 	}
11803 	LIST_REMOVE(bmsafemap, sm_next);
11804 	if (chgs == 0 && LIST_EMPTY(&bmsafemap->sm_jaddrefhd) &&
11805 	    LIST_EMPTY(&bmsafemap->sm_jnewblkhd) &&
11806 	    LIST_EMPTY(&bmsafemap->sm_newblkhd) &&
11807 	    LIST_EMPTY(&bmsafemap->sm_inodedephd) &&
11808 	    LIST_EMPTY(&bmsafemap->sm_freehd)) {
11809 		LIST_REMOVE(bmsafemap, sm_hash);
11810 		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
11811 		return (0);
11812 	}
11813 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
11814 	if (foreground)
11815 		bdirty(bp);
11816 	return (1);
11817 }
11818 
11819 /*
11820  * Try to free a mkdir dependency.
11821  */
11822 static void
11823 complete_mkdir(mkdir)
11824 	struct mkdir *mkdir;
11825 {
11826 	struct diradd *dap;
11827 
11828 	if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE)
11829 		return;
11830 	LIST_REMOVE(mkdir, md_mkdirs);
11831 	dap = mkdir->md_diradd;
11832 	dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
11833 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) {
11834 		dap->da_state |= DEPCOMPLETE;
11835 		complete_diradd(dap);
11836 	}
11837 	WORKITEM_FREE(mkdir, D_MKDIR);
11838 }
11839 
11840 /*
11841  * Handle the completion of a mkdir dependency.
11842  */
11843 static void
11844 handle_written_mkdir(mkdir, type)
11845 	struct mkdir *mkdir;
11846 	int type;
11847 {
11848 
11849 	if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type)
11850 		panic("handle_written_mkdir: bad type");
11851 	mkdir->md_state |= COMPLETE;
11852 	complete_mkdir(mkdir);
11853 }
11854 
11855 static int
11856 free_pagedep(pagedep)
11857 	struct pagedep *pagedep;
11858 {
11859 	int i;
11860 
11861 	if (pagedep->pd_state & NEWBLOCK)
11862 		return (0);
11863 	if (!LIST_EMPTY(&pagedep->pd_dirremhd))
11864 		return (0);
11865 	for (i = 0; i < DAHASHSZ; i++)
11866 		if (!LIST_EMPTY(&pagedep->pd_diraddhd[i]))
11867 			return (0);
11868 	if (!LIST_EMPTY(&pagedep->pd_pendinghd))
11869 		return (0);
11870 	if (!LIST_EMPTY(&pagedep->pd_jmvrefhd))
11871 		return (0);
11872 	if (pagedep->pd_state & ONWORKLIST)
11873 		WORKLIST_REMOVE(&pagedep->pd_list);
11874 	LIST_REMOVE(pagedep, pd_hash);
11875 	WORKITEM_FREE(pagedep, D_PAGEDEP);
11876 
11877 	return (1);
11878 }
11879 
11880 /*
11881  * Called from within softdep_disk_write_complete above.
11882  * A write operation was just completed. Removed inodes can
11883  * now be freed and associated block pointers may be committed.
11884  * Note that this routine is always called from interrupt level
11885  * with further splbio interrupts blocked.
11886  */
11887 static int
11888 handle_written_filepage(pagedep, bp)
11889 	struct pagedep *pagedep;
11890 	struct buf *bp;		/* buffer containing the written page */
11891 {
11892 	struct dirrem *dirrem;
11893 	struct diradd *dap, *nextdap;
11894 	struct direct *ep;
11895 	int i, chgs;
11896 
11897 	if ((pagedep->pd_state & IOSTARTED) == 0)
11898 		panic("handle_written_filepage: not started");
11899 	pagedep->pd_state &= ~IOSTARTED;
11900 	/*
11901 	 * Process any directory removals that have been committed.
11902 	 */
11903 	while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
11904 		LIST_REMOVE(dirrem, dm_next);
11905 		dirrem->dm_state |= COMPLETE;
11906 		dirrem->dm_dirinum = pagedep->pd_ino;
11907 		KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
11908 		    ("handle_written_filepage: Journal entries not written."));
11909 		add_to_worklist(&dirrem->dm_list, 0);
11910 	}
11911 	/*
11912 	 * Free any directory additions that have been committed.
11913 	 * If it is a newly allocated block, we have to wait until
11914 	 * the on-disk directory inode claims the new block.
11915 	 */
11916 	if ((pagedep->pd_state & NEWBLOCK) == 0)
11917 		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
11918 			free_diradd(dap, NULL);
11919 	/*
11920 	 * Uncommitted directory entries must be restored.
11921 	 */
11922 	for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
11923 		for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
11924 		     dap = nextdap) {
11925 			nextdap = LIST_NEXT(dap, da_pdlist);
11926 			if (dap->da_state & ATTACHED)
11927 				panic("handle_written_filepage: attached");
11928 			ep = (struct direct *)
11929 			    ((char *)bp->b_data + dap->da_offset);
11930 			ep->d_ino = dap->da_newinum;
11931 			dap->da_state &= ~UNDONE;
11932 			dap->da_state |= ATTACHED;
11933 			chgs = 1;
11934 			/*
11935 			 * If the inode referenced by the directory has
11936 			 * been written out, then the dependency can be
11937 			 * moved to the pending list.
11938 			 */
11939 			if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
11940 				LIST_REMOVE(dap, da_pdlist);
11941 				LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
11942 				    da_pdlist);
11943 			}
11944 		}
11945 	}
11946 	/*
11947 	 * If there were any rollbacks in the directory, then it must be
11948 	 * marked dirty so that its will eventually get written back in
11949 	 * its correct form.
11950 	 */
11951 	if (chgs) {
11952 		if ((bp->b_flags & B_DELWRI) == 0)
11953 			stat_dir_entry++;
11954 		bdirty(bp);
11955 		return (1);
11956 	}
11957 	/*
11958 	 * If we are not waiting for a new directory block to be
11959 	 * claimed by its inode, then the pagedep will be freed.
11960 	 * Otherwise it will remain to track any new entries on
11961 	 * the page in case they are fsync'ed.
11962 	 */
11963 	free_pagedep(pagedep);
11964 	return (0);
11965 }
11966 
11967 /*
11968  * Writing back in-core inode structures.
11969  *
11970  * The filesystem only accesses an inode's contents when it occupies an
11971  * "in-core" inode structure.  These "in-core" structures are separate from
11972  * the page frames used to cache inode blocks.  Only the latter are
11973  * transferred to/from the disk.  So, when the updated contents of the
11974  * "in-core" inode structure are copied to the corresponding in-memory inode
11975  * block, the dependencies are also transferred.  The following procedure is
11976  * called when copying a dirty "in-core" inode to a cached inode block.
11977  */
11978 
11979 /*
11980  * Called when an inode is loaded from disk. If the effective link count
11981  * differed from the actual link count when it was last flushed, then we
11982  * need to ensure that the correct effective link count is put back.
11983  */
11984 void
11985 softdep_load_inodeblock(ip)
11986 	struct inode *ip;	/* the "in_core" copy of the inode */
11987 {
11988 	struct inodedep *inodedep;
11989 
11990 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
11991 	    ("softdep_load_inodeblock called on non-softdep filesystem"));
11992 	/*
11993 	 * Check for alternate nlink count.
11994 	 */
11995 	ip->i_effnlink = ip->i_nlink;
11996 	ACQUIRE_LOCK(ip->i_ump);
11997 	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
11998 	    &inodedep) == 0) {
11999 		FREE_LOCK(ip->i_ump);
12000 		return;
12001 	}
12002 	ip->i_effnlink -= inodedep->id_nlinkdelta;
12003 	FREE_LOCK(ip->i_ump);
12004 }
12005 
12006 /*
12007  * This routine is called just before the "in-core" inode
12008  * information is to be copied to the in-memory inode block.
12009  * Recall that an inode block contains several inodes. If
12010  * the force flag is set, then the dependencies will be
12011  * cleared so that the update can always be made. Note that
12012  * the buffer is locked when this routine is called, so we
12013  * will never be in the middle of writing the inode block
12014  * to disk.
12015  */
12016 void
12017 softdep_update_inodeblock(ip, bp, waitfor)
12018 	struct inode *ip;	/* the "in_core" copy of the inode */
12019 	struct buf *bp;		/* the buffer containing the inode block */
12020 	int waitfor;		/* nonzero => update must be allowed */
12021 {
12022 	struct inodedep *inodedep;
12023 	struct inoref *inoref;
12024 	struct ufsmount *ump;
12025 	struct worklist *wk;
12026 	struct mount *mp;
12027 	struct buf *ibp;
12028 	struct fs *fs;
12029 	int error;
12030 
12031 	ump = ip->i_ump;
12032 	mp = UFSTOVFS(ump);
12033 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
12034 	    ("softdep_update_inodeblock called on non-softdep filesystem"));
12035 	fs = ip->i_fs;
12036 	/*
12037 	 * Preserve the freelink that is on disk.  clear_unlinked_inodedep()
12038 	 * does not have access to the in-core ip so must write directly into
12039 	 * the inode block buffer when setting freelink.
12040 	 */
12041 	if (fs->fs_magic == FS_UFS1_MAGIC)
12042 		DIP_SET(ip, i_freelink, ((struct ufs1_dinode *)bp->b_data +
12043 		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
12044 	else
12045 		DIP_SET(ip, i_freelink, ((struct ufs2_dinode *)bp->b_data +
12046 		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
12047 	/*
12048 	 * If the effective link count is not equal to the actual link
12049 	 * count, then we must track the difference in an inodedep while
12050 	 * the inode is (potentially) tossed out of the cache. Otherwise,
12051 	 * if there is no existing inodedep, then there are no dependencies
12052 	 * to track.
12053 	 */
12054 	ACQUIRE_LOCK(ump);
12055 again:
12056 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
12057 		FREE_LOCK(ump);
12058 		if (ip->i_effnlink != ip->i_nlink)
12059 			panic("softdep_update_inodeblock: bad link count");
12060 		return;
12061 	}
12062 	if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink)
12063 		panic("softdep_update_inodeblock: bad delta");
12064 	/*
12065 	 * If we're flushing all dependencies we must also move any waiting
12066 	 * for journal writes onto the bufwait list prior to I/O.
12067 	 */
12068 	if (waitfor) {
12069 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12070 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12071 			    == DEPCOMPLETE) {
12072 				jwait(&inoref->if_list, MNT_WAIT);
12073 				goto again;
12074 			}
12075 		}
12076 	}
12077 	/*
12078 	 * Changes have been initiated. Anything depending on these
12079 	 * changes cannot occur until this inode has been written.
12080 	 */
12081 	inodedep->id_state &= ~COMPLETE;
12082 	if ((inodedep->id_state & ONWORKLIST) == 0)
12083 		WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list);
12084 	/*
12085 	 * Any new dependencies associated with the incore inode must
12086 	 * now be moved to the list associated with the buffer holding
12087 	 * the in-memory copy of the inode. Once merged process any
12088 	 * allocdirects that are completed by the merger.
12089 	 */
12090 	merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt);
12091 	if (!TAILQ_EMPTY(&inodedep->id_inoupdt))
12092 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt),
12093 		    NULL);
12094 	merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt);
12095 	if (!TAILQ_EMPTY(&inodedep->id_extupdt))
12096 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt),
12097 		    NULL);
12098 	/*
12099 	 * Now that the inode has been pushed into the buffer, the
12100 	 * operations dependent on the inode being written to disk
12101 	 * can be moved to the id_bufwait so that they will be
12102 	 * processed when the buffer I/O completes.
12103 	 */
12104 	while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
12105 		WORKLIST_REMOVE(wk);
12106 		WORKLIST_INSERT(&inodedep->id_bufwait, wk);
12107 	}
12108 	/*
12109 	 * Newly allocated inodes cannot be written until the bitmap
12110 	 * that allocates them have been written (indicated by
12111 	 * DEPCOMPLETE being set in id_state). If we are doing a
12112 	 * forced sync (e.g., an fsync on a file), we force the bitmap
12113 	 * to be written so that the update can be done.
12114 	 */
12115 	if (waitfor == 0) {
12116 		FREE_LOCK(ump);
12117 		return;
12118 	}
12119 retry:
12120 	if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) {
12121 		FREE_LOCK(ump);
12122 		return;
12123 	}
12124 	ibp = inodedep->id_bmsafemap->sm_buf;
12125 	ibp = getdirtybuf(ibp, LOCK_PTR(ump), MNT_WAIT);
12126 	if (ibp == NULL) {
12127 		/*
12128 		 * If ibp came back as NULL, the dependency could have been
12129 		 * freed while we slept.  Look it up again, and check to see
12130 		 * that it has completed.
12131 		 */
12132 		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
12133 			goto retry;
12134 		FREE_LOCK(ump);
12135 		return;
12136 	}
12137 	FREE_LOCK(ump);
12138 	if ((error = bwrite(ibp)) != 0)
12139 		softdep_error("softdep_update_inodeblock: bwrite", error);
12140 }
12141 
12142 /*
12143  * Merge the a new inode dependency list (such as id_newinoupdt) into an
12144  * old inode dependency list (such as id_inoupdt). This routine must be
12145  * called with splbio interrupts blocked.
12146  */
12147 static void
12148 merge_inode_lists(newlisthead, oldlisthead)
12149 	struct allocdirectlst *newlisthead;
12150 	struct allocdirectlst *oldlisthead;
12151 {
12152 	struct allocdirect *listadp, *newadp;
12153 
12154 	newadp = TAILQ_FIRST(newlisthead);
12155 	for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) {
12156 		if (listadp->ad_offset < newadp->ad_offset) {
12157 			listadp = TAILQ_NEXT(listadp, ad_next);
12158 			continue;
12159 		}
12160 		TAILQ_REMOVE(newlisthead, newadp, ad_next);
12161 		TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
12162 		if (listadp->ad_offset == newadp->ad_offset) {
12163 			allocdirect_merge(oldlisthead, newadp,
12164 			    listadp);
12165 			listadp = newadp;
12166 		}
12167 		newadp = TAILQ_FIRST(newlisthead);
12168 	}
12169 	while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) {
12170 		TAILQ_REMOVE(newlisthead, newadp, ad_next);
12171 		TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next);
12172 	}
12173 }
12174 
12175 /*
12176  * If we are doing an fsync, then we must ensure that any directory
12177  * entries for the inode have been written after the inode gets to disk.
12178  */
12179 int
12180 softdep_fsync(vp)
12181 	struct vnode *vp;	/* the "in_core" copy of the inode */
12182 {
12183 	struct inodedep *inodedep;
12184 	struct pagedep *pagedep;
12185 	struct inoref *inoref;
12186 	struct ufsmount *ump;
12187 	struct worklist *wk;
12188 	struct diradd *dap;
12189 	struct mount *mp;
12190 	struct vnode *pvp;
12191 	struct inode *ip;
12192 	struct buf *bp;
12193 	struct fs *fs;
12194 	struct thread *td = curthread;
12195 	int error, flushparent, pagedep_new_block;
12196 	ino_t parentino;
12197 	ufs_lbn_t lbn;
12198 
12199 	ip = VTOI(vp);
12200 	fs = ip->i_fs;
12201 	ump = ip->i_ump;
12202 	mp = vp->v_mount;
12203 	if (MOUNTEDSOFTDEP(mp) == 0)
12204 		return (0);
12205 	ACQUIRE_LOCK(ump);
12206 restart:
12207 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
12208 		FREE_LOCK(ump);
12209 		return (0);
12210 	}
12211 	TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12212 		if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12213 		    == DEPCOMPLETE) {
12214 			jwait(&inoref->if_list, MNT_WAIT);
12215 			goto restart;
12216 		}
12217 	}
12218 	if (!LIST_EMPTY(&inodedep->id_inowait) ||
12219 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
12220 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
12221 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
12222 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt))
12223 		panic("softdep_fsync: pending ops %p", inodedep);
12224 	for (error = 0, flushparent = 0; ; ) {
12225 		if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
12226 			break;
12227 		if (wk->wk_type != D_DIRADD)
12228 			panic("softdep_fsync: Unexpected type %s",
12229 			    TYPENAME(wk->wk_type));
12230 		dap = WK_DIRADD(wk);
12231 		/*
12232 		 * Flush our parent if this directory entry has a MKDIR_PARENT
12233 		 * dependency or is contained in a newly allocated block.
12234 		 */
12235 		if (dap->da_state & DIRCHG)
12236 			pagedep = dap->da_previous->dm_pagedep;
12237 		else
12238 			pagedep = dap->da_pagedep;
12239 		parentino = pagedep->pd_ino;
12240 		lbn = pagedep->pd_lbn;
12241 		if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE)
12242 			panic("softdep_fsync: dirty");
12243 		if ((dap->da_state & MKDIR_PARENT) ||
12244 		    (pagedep->pd_state & NEWBLOCK))
12245 			flushparent = 1;
12246 		else
12247 			flushparent = 0;
12248 		/*
12249 		 * If we are being fsync'ed as part of vgone'ing this vnode,
12250 		 * then we will not be able to release and recover the
12251 		 * vnode below, so we just have to give up on writing its
12252 		 * directory entry out. It will eventually be written, just
12253 		 * not now, but then the user was not asking to have it
12254 		 * written, so we are not breaking any promises.
12255 		 */
12256 		if (vp->v_iflag & VI_DOOMED)
12257 			break;
12258 		/*
12259 		 * We prevent deadlock by always fetching inodes from the
12260 		 * root, moving down the directory tree. Thus, when fetching
12261 		 * our parent directory, we first try to get the lock. If
12262 		 * that fails, we must unlock ourselves before requesting
12263 		 * the lock on our parent. See the comment in ufs_lookup
12264 		 * for details on possible races.
12265 		 */
12266 		FREE_LOCK(ump);
12267 		if (ffs_vgetf(mp, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp,
12268 		    FFSV_FORCEINSMQ)) {
12269 			error = vfs_busy(mp, MBF_NOWAIT);
12270 			if (error != 0) {
12271 				vfs_ref(mp);
12272 				VOP_UNLOCK(vp, 0);
12273 				error = vfs_busy(mp, 0);
12274 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
12275 				vfs_rel(mp);
12276 				if (error != 0)
12277 					return (ENOENT);
12278 				if (vp->v_iflag & VI_DOOMED) {
12279 					vfs_unbusy(mp);
12280 					return (ENOENT);
12281 				}
12282 			}
12283 			VOP_UNLOCK(vp, 0);
12284 			error = ffs_vgetf(mp, parentino, LK_EXCLUSIVE,
12285 			    &pvp, FFSV_FORCEINSMQ);
12286 			vfs_unbusy(mp);
12287 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
12288 			if (vp->v_iflag & VI_DOOMED) {
12289 				if (error == 0)
12290 					vput(pvp);
12291 				error = ENOENT;
12292 			}
12293 			if (error != 0)
12294 				return (error);
12295 		}
12296 		/*
12297 		 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps
12298 		 * that are contained in direct blocks will be resolved by
12299 		 * doing a ffs_update. Pagedeps contained in indirect blocks
12300 		 * may require a complete sync'ing of the directory. So, we
12301 		 * try the cheap and fast ffs_update first, and if that fails,
12302 		 * then we do the slower ffs_syncvnode of the directory.
12303 		 */
12304 		if (flushparent) {
12305 			int locked;
12306 
12307 			if ((error = ffs_update(pvp, 1)) != 0) {
12308 				vput(pvp);
12309 				return (error);
12310 			}
12311 			ACQUIRE_LOCK(ump);
12312 			locked = 1;
12313 			if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) {
12314 				if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) {
12315 					if (wk->wk_type != D_DIRADD)
12316 						panic("softdep_fsync: Unexpected type %s",
12317 						      TYPENAME(wk->wk_type));
12318 					dap = WK_DIRADD(wk);
12319 					if (dap->da_state & DIRCHG)
12320 						pagedep = dap->da_previous->dm_pagedep;
12321 					else
12322 						pagedep = dap->da_pagedep;
12323 					pagedep_new_block = pagedep->pd_state & NEWBLOCK;
12324 					FREE_LOCK(ump);
12325 					locked = 0;
12326 					if (pagedep_new_block && (error =
12327 					    ffs_syncvnode(pvp, MNT_WAIT, 0))) {
12328 						vput(pvp);
12329 						return (error);
12330 					}
12331 				}
12332 			}
12333 			if (locked)
12334 				FREE_LOCK(ump);
12335 		}
12336 		/*
12337 		 * Flush directory page containing the inode's name.
12338 		 */
12339 		error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred,
12340 		    &bp);
12341 		if (error == 0)
12342 			error = bwrite(bp);
12343 		else
12344 			brelse(bp);
12345 		vput(pvp);
12346 		if (error != 0)
12347 			return (error);
12348 		ACQUIRE_LOCK(ump);
12349 		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
12350 			break;
12351 	}
12352 	FREE_LOCK(ump);
12353 	return (0);
12354 }
12355 
12356 /*
12357  * Flush all the dirty bitmaps associated with the block device
12358  * before flushing the rest of the dirty blocks so as to reduce
12359  * the number of dependencies that will have to be rolled back.
12360  *
12361  * XXX Unused?
12362  */
12363 void
12364 softdep_fsync_mountdev(vp)
12365 	struct vnode *vp;
12366 {
12367 	struct buf *bp, *nbp;
12368 	struct worklist *wk;
12369 	struct bufobj *bo;
12370 
12371 	if (!vn_isdisk(vp, NULL))
12372 		panic("softdep_fsync_mountdev: vnode not a disk");
12373 	bo = &vp->v_bufobj;
12374 restart:
12375 	BO_LOCK(bo);
12376 	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
12377 		/*
12378 		 * If it is already scheduled, skip to the next buffer.
12379 		 */
12380 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
12381 			continue;
12382 
12383 		if ((bp->b_flags & B_DELWRI) == 0)
12384 			panic("softdep_fsync_mountdev: not dirty");
12385 		/*
12386 		 * We are only interested in bitmaps with outstanding
12387 		 * dependencies.
12388 		 */
12389 		if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
12390 		    wk->wk_type != D_BMSAFEMAP ||
12391 		    (bp->b_vflags & BV_BKGRDINPROG)) {
12392 			BUF_UNLOCK(bp);
12393 			continue;
12394 		}
12395 		BO_UNLOCK(bo);
12396 		bremfree(bp);
12397 		(void) bawrite(bp);
12398 		goto restart;
12399 	}
12400 	drain_output(vp);
12401 	BO_UNLOCK(bo);
12402 }
12403 
12404 /*
12405  * Sync all cylinder groups that were dirty at the time this function is
12406  * called.  Newly dirtied cgs will be inserted before the sentinel.  This
12407  * is used to flush freedep activity that may be holding up writes to a
12408  * indirect block.
12409  */
12410 static int
12411 sync_cgs(mp, waitfor)
12412 	struct mount *mp;
12413 	int waitfor;
12414 {
12415 	struct bmsafemap *bmsafemap;
12416 	struct bmsafemap *sentinel;
12417 	struct ufsmount *ump;
12418 	struct buf *bp;
12419 	int error;
12420 
12421 	sentinel = malloc(sizeof(*sentinel), M_BMSAFEMAP, M_ZERO | M_WAITOK);
12422 	sentinel->sm_cg = -1;
12423 	ump = VFSTOUFS(mp);
12424 	error = 0;
12425 	ACQUIRE_LOCK(ump);
12426 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, sentinel, sm_next);
12427 	for (bmsafemap = LIST_NEXT(sentinel, sm_next); bmsafemap != NULL;
12428 	    bmsafemap = LIST_NEXT(sentinel, sm_next)) {
12429 		/* Skip sentinels and cgs with no work to release. */
12430 		if (bmsafemap->sm_cg == -1 ||
12431 		    (LIST_EMPTY(&bmsafemap->sm_freehd) &&
12432 		    LIST_EMPTY(&bmsafemap->sm_freewr))) {
12433 			LIST_REMOVE(sentinel, sm_next);
12434 			LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next);
12435 			continue;
12436 		}
12437 		/*
12438 		 * If we don't get the lock and we're waiting try again, if
12439 		 * not move on to the next buf and try to sync it.
12440 		 */
12441 		bp = getdirtybuf(bmsafemap->sm_buf, LOCK_PTR(ump), waitfor);
12442 		if (bp == NULL && waitfor == MNT_WAIT)
12443 			continue;
12444 		LIST_REMOVE(sentinel, sm_next);
12445 		LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next);
12446 		if (bp == NULL)
12447 			continue;
12448 		FREE_LOCK(ump);
12449 		if (waitfor == MNT_NOWAIT)
12450 			bawrite(bp);
12451 		else
12452 			error = bwrite(bp);
12453 		ACQUIRE_LOCK(ump);
12454 		if (error)
12455 			break;
12456 	}
12457 	LIST_REMOVE(sentinel, sm_next);
12458 	FREE_LOCK(ump);
12459 	free(sentinel, M_BMSAFEMAP);
12460 	return (error);
12461 }
12462 
12463 /*
12464  * This routine is called when we are trying to synchronously flush a
12465  * file. This routine must eliminate any filesystem metadata dependencies
12466  * so that the syncing routine can succeed.
12467  */
12468 int
12469 softdep_sync_metadata(struct vnode *vp)
12470 {
12471 	struct inode *ip;
12472 	int error;
12473 
12474 	ip = VTOI(vp);
12475 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
12476 	    ("softdep_sync_metadata called on non-softdep filesystem"));
12477 	/*
12478 	 * Ensure that any direct block dependencies have been cleared,
12479 	 * truncations are started, and inode references are journaled.
12480 	 */
12481 	ACQUIRE_LOCK(ip->i_ump);
12482 	/*
12483 	 * Write all journal records to prevent rollbacks on devvp.
12484 	 */
12485 	if (vp->v_type == VCHR)
12486 		softdep_flushjournal(vp->v_mount);
12487 	error = flush_inodedep_deps(vp, vp->v_mount, ip->i_number);
12488 	/*
12489 	 * Ensure that all truncates are written so we won't find deps on
12490 	 * indirect blocks.
12491 	 */
12492 	process_truncates(vp);
12493 	FREE_LOCK(ip->i_ump);
12494 
12495 	return (error);
12496 }
12497 
12498 /*
12499  * This routine is called when we are attempting to sync a buf with
12500  * dependencies.  If waitfor is MNT_NOWAIT it attempts to schedule any
12501  * other IO it can but returns EBUSY if the buffer is not yet able to
12502  * be written.  Dependencies which will not cause rollbacks will always
12503  * return 0.
12504  */
12505 int
12506 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
12507 {
12508 	struct indirdep *indirdep;
12509 	struct pagedep *pagedep;
12510 	struct allocindir *aip;
12511 	struct newblk *newblk;
12512 	struct ufsmount *ump;
12513 	struct buf *nbp;
12514 	struct worklist *wk;
12515 	int i, error;
12516 
12517 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
12518 	    ("softdep_sync_buf called on non-softdep filesystem"));
12519 	/*
12520 	 * For VCHR we just don't want to force flush any dependencies that
12521 	 * will cause rollbacks.
12522 	 */
12523 	if (vp->v_type == VCHR) {
12524 		if (waitfor == MNT_NOWAIT && softdep_count_dependencies(bp, 0))
12525 			return (EBUSY);
12526 		return (0);
12527 	}
12528 	ump = VTOI(vp)->i_ump;
12529 	ACQUIRE_LOCK(ump);
12530 	/*
12531 	 * As we hold the buffer locked, none of its dependencies
12532 	 * will disappear.
12533 	 */
12534 	error = 0;
12535 top:
12536 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
12537 		switch (wk->wk_type) {
12538 
12539 		case D_ALLOCDIRECT:
12540 		case D_ALLOCINDIR:
12541 			newblk = WK_NEWBLK(wk);
12542 			if (newblk->nb_jnewblk != NULL) {
12543 				if (waitfor == MNT_NOWAIT) {
12544 					error = EBUSY;
12545 					goto out_unlock;
12546 				}
12547 				jwait(&newblk->nb_jnewblk->jn_list, waitfor);
12548 				goto top;
12549 			}
12550 			if (newblk->nb_state & DEPCOMPLETE ||
12551 			    waitfor == MNT_NOWAIT)
12552 				continue;
12553 			nbp = newblk->nb_bmsafemap->sm_buf;
12554 			nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor);
12555 			if (nbp == NULL)
12556 				goto top;
12557 			FREE_LOCK(ump);
12558 			if ((error = bwrite(nbp)) != 0)
12559 				goto out;
12560 			ACQUIRE_LOCK(ump);
12561 			continue;
12562 
12563 		case D_INDIRDEP:
12564 			indirdep = WK_INDIRDEP(wk);
12565 			if (waitfor == MNT_NOWAIT) {
12566 				if (!TAILQ_EMPTY(&indirdep->ir_trunc) ||
12567 				    !LIST_EMPTY(&indirdep->ir_deplisthd)) {
12568 					error = EBUSY;
12569 					goto out_unlock;
12570 				}
12571 			}
12572 			if (!TAILQ_EMPTY(&indirdep->ir_trunc))
12573 				panic("softdep_sync_buf: truncation pending.");
12574 		restart:
12575 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
12576 				newblk = (struct newblk *)aip;
12577 				if (newblk->nb_jnewblk != NULL) {
12578 					jwait(&newblk->nb_jnewblk->jn_list,
12579 					    waitfor);
12580 					goto restart;
12581 				}
12582 				if (newblk->nb_state & DEPCOMPLETE)
12583 					continue;
12584 				nbp = newblk->nb_bmsafemap->sm_buf;
12585 				nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor);
12586 				if (nbp == NULL)
12587 					goto restart;
12588 				FREE_LOCK(ump);
12589 				if ((error = bwrite(nbp)) != 0)
12590 					goto out;
12591 				ACQUIRE_LOCK(ump);
12592 				goto restart;
12593 			}
12594 			continue;
12595 
12596 		case D_PAGEDEP:
12597 			/*
12598 			 * Only flush directory entries in synchronous passes.
12599 			 */
12600 			if (waitfor != MNT_WAIT) {
12601 				error = EBUSY;
12602 				goto out_unlock;
12603 			}
12604 			/*
12605 			 * While syncing snapshots, we must allow recursive
12606 			 * lookups.
12607 			 */
12608 			BUF_AREC(bp);
12609 			/*
12610 			 * We are trying to sync a directory that may
12611 			 * have dependencies on both its own metadata
12612 			 * and/or dependencies on the inodes of any
12613 			 * recently allocated files. We walk its diradd
12614 			 * lists pushing out the associated inode.
12615 			 */
12616 			pagedep = WK_PAGEDEP(wk);
12617 			for (i = 0; i < DAHASHSZ; i++) {
12618 				if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0)
12619 					continue;
12620 				if ((error = flush_pagedep_deps(vp, wk->wk_mp,
12621 				    &pagedep->pd_diraddhd[i]))) {
12622 					BUF_NOREC(bp);
12623 					goto out_unlock;
12624 				}
12625 			}
12626 			BUF_NOREC(bp);
12627 			continue;
12628 
12629 		case D_FREEWORK:
12630 		case D_FREEDEP:
12631 		case D_JSEGDEP:
12632 		case D_JNEWBLK:
12633 			continue;
12634 
12635 		default:
12636 			panic("softdep_sync_buf: Unknown type %s",
12637 			    TYPENAME(wk->wk_type));
12638 			/* NOTREACHED */
12639 		}
12640 	}
12641 out_unlock:
12642 	FREE_LOCK(ump);
12643 out:
12644 	return (error);
12645 }
12646 
12647 /*
12648  * Flush the dependencies associated with an inodedep.
12649  * Called with splbio blocked.
12650  */
12651 static int
12652 flush_inodedep_deps(vp, mp, ino)
12653 	struct vnode *vp;
12654 	struct mount *mp;
12655 	ino_t ino;
12656 {
12657 	struct inodedep *inodedep;
12658 	struct inoref *inoref;
12659 	struct ufsmount *ump;
12660 	int error, waitfor;
12661 
12662 	/*
12663 	 * This work is done in two passes. The first pass grabs most
12664 	 * of the buffers and begins asynchronously writing them. The
12665 	 * only way to wait for these asynchronous writes is to sleep
12666 	 * on the filesystem vnode which may stay busy for a long time
12667 	 * if the filesystem is active. So, instead, we make a second
12668 	 * pass over the dependencies blocking on each write. In the
12669 	 * usual case we will be blocking against a write that we
12670 	 * initiated, so when it is done the dependency will have been
12671 	 * resolved. Thus the second pass is expected to end quickly.
12672 	 * We give a brief window at the top of the loop to allow
12673 	 * any pending I/O to complete.
12674 	 */
12675 	ump = VFSTOUFS(mp);
12676 	LOCK_OWNED(ump);
12677 	for (error = 0, waitfor = MNT_NOWAIT; ; ) {
12678 		if (error)
12679 			return (error);
12680 		FREE_LOCK(ump);
12681 		ACQUIRE_LOCK(ump);
12682 restart:
12683 		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
12684 			return (0);
12685 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12686 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12687 			    == DEPCOMPLETE) {
12688 				jwait(&inoref->if_list, MNT_WAIT);
12689 				goto restart;
12690 			}
12691 		}
12692 		if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) ||
12693 		    flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) ||
12694 		    flush_deplist(&inodedep->id_extupdt, waitfor, &error) ||
12695 		    flush_deplist(&inodedep->id_newextupdt, waitfor, &error))
12696 			continue;
12697 		/*
12698 		 * If pass2, we are done, otherwise do pass 2.
12699 		 */
12700 		if (waitfor == MNT_WAIT)
12701 			break;
12702 		waitfor = MNT_WAIT;
12703 	}
12704 	/*
12705 	 * Try freeing inodedep in case all dependencies have been removed.
12706 	 */
12707 	if (inodedep_lookup(mp, ino, 0, &inodedep) != 0)
12708 		(void) free_inodedep(inodedep);
12709 	return (0);
12710 }
12711 
12712 /*
12713  * Flush an inode dependency list.
12714  * Called with splbio blocked.
12715  */
12716 static int
12717 flush_deplist(listhead, waitfor, errorp)
12718 	struct allocdirectlst *listhead;
12719 	int waitfor;
12720 	int *errorp;
12721 {
12722 	struct allocdirect *adp;
12723 	struct newblk *newblk;
12724 	struct ufsmount *ump;
12725 	struct buf *bp;
12726 
12727 	if ((adp = TAILQ_FIRST(listhead)) == NULL)
12728 		return (0);
12729 	ump = VFSTOUFS(adp->ad_list.wk_mp);
12730 	LOCK_OWNED(ump);
12731 	TAILQ_FOREACH(adp, listhead, ad_next) {
12732 		newblk = (struct newblk *)adp;
12733 		if (newblk->nb_jnewblk != NULL) {
12734 			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
12735 			return (1);
12736 		}
12737 		if (newblk->nb_state & DEPCOMPLETE)
12738 			continue;
12739 		bp = newblk->nb_bmsafemap->sm_buf;
12740 		bp = getdirtybuf(bp, LOCK_PTR(ump), waitfor);
12741 		if (bp == NULL) {
12742 			if (waitfor == MNT_NOWAIT)
12743 				continue;
12744 			return (1);
12745 		}
12746 		FREE_LOCK(ump);
12747 		if (waitfor == MNT_NOWAIT)
12748 			bawrite(bp);
12749 		else
12750 			*errorp = bwrite(bp);
12751 		ACQUIRE_LOCK(ump);
12752 		return (1);
12753 	}
12754 	return (0);
12755 }
12756 
12757 /*
12758  * Flush dependencies associated with an allocdirect block.
12759  */
12760 static int
12761 flush_newblk_dep(vp, mp, lbn)
12762 	struct vnode *vp;
12763 	struct mount *mp;
12764 	ufs_lbn_t lbn;
12765 {
12766 	struct newblk *newblk;
12767 	struct ufsmount *ump;
12768 	struct bufobj *bo;
12769 	struct inode *ip;
12770 	struct buf *bp;
12771 	ufs2_daddr_t blkno;
12772 	int error;
12773 
12774 	error = 0;
12775 	bo = &vp->v_bufobj;
12776 	ip = VTOI(vp);
12777 	blkno = DIP(ip, i_db[lbn]);
12778 	if (blkno == 0)
12779 		panic("flush_newblk_dep: Missing block");
12780 	ump = VFSTOUFS(mp);
12781 	ACQUIRE_LOCK(ump);
12782 	/*
12783 	 * Loop until all dependencies related to this block are satisfied.
12784 	 * We must be careful to restart after each sleep in case a write
12785 	 * completes some part of this process for us.
12786 	 */
12787 	for (;;) {
12788 		if (newblk_lookup(mp, blkno, 0, &newblk) == 0) {
12789 			FREE_LOCK(ump);
12790 			break;
12791 		}
12792 		if (newblk->nb_list.wk_type != D_ALLOCDIRECT)
12793 			panic("flush_newblk_deps: Bad newblk %p", newblk);
12794 		/*
12795 		 * Flush the journal.
12796 		 */
12797 		if (newblk->nb_jnewblk != NULL) {
12798 			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
12799 			continue;
12800 		}
12801 		/*
12802 		 * Write the bitmap dependency.
12803 		 */
12804 		if ((newblk->nb_state & DEPCOMPLETE) == 0) {
12805 			bp = newblk->nb_bmsafemap->sm_buf;
12806 			bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT);
12807 			if (bp == NULL)
12808 				continue;
12809 			FREE_LOCK(ump);
12810 			error = bwrite(bp);
12811 			if (error)
12812 				break;
12813 			ACQUIRE_LOCK(ump);
12814 			continue;
12815 		}
12816 		/*
12817 		 * Write the buffer.
12818 		 */
12819 		FREE_LOCK(ump);
12820 		BO_LOCK(bo);
12821 		bp = gbincore(bo, lbn);
12822 		if (bp != NULL) {
12823 			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
12824 			    LK_INTERLOCK, BO_LOCKPTR(bo));
12825 			if (error == ENOLCK) {
12826 				ACQUIRE_LOCK(ump);
12827 				continue; /* Slept, retry */
12828 			}
12829 			if (error != 0)
12830 				break;	/* Failed */
12831 			if (bp->b_flags & B_DELWRI) {
12832 				bremfree(bp);
12833 				error = bwrite(bp);
12834 				if (error)
12835 					break;
12836 			} else
12837 				BUF_UNLOCK(bp);
12838 		} else
12839 			BO_UNLOCK(bo);
12840 		/*
12841 		 * We have to wait for the direct pointers to
12842 		 * point at the newdirblk before the dependency
12843 		 * will go away.
12844 		 */
12845 		error = ffs_update(vp, 1);
12846 		if (error)
12847 			break;
12848 		ACQUIRE_LOCK(ump);
12849 	}
12850 	return (error);
12851 }
12852 
12853 /*
12854  * Eliminate a pagedep dependency by flushing out all its diradd dependencies.
12855  * Called with splbio blocked.
12856  */
12857 static int
12858 flush_pagedep_deps(pvp, mp, diraddhdp)
12859 	struct vnode *pvp;
12860 	struct mount *mp;
12861 	struct diraddhd *diraddhdp;
12862 {
12863 	struct inodedep *inodedep;
12864 	struct inoref *inoref;
12865 	struct ufsmount *ump;
12866 	struct diradd *dap;
12867 	struct vnode *vp;
12868 	int error = 0;
12869 	struct buf *bp;
12870 	ino_t inum;
12871 	struct diraddhd unfinished;
12872 
12873 	LIST_INIT(&unfinished);
12874 	ump = VFSTOUFS(mp);
12875 	LOCK_OWNED(ump);
12876 restart:
12877 	while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
12878 		/*
12879 		 * Flush ourselves if this directory entry
12880 		 * has a MKDIR_PARENT dependency.
12881 		 */
12882 		if (dap->da_state & MKDIR_PARENT) {
12883 			FREE_LOCK(ump);
12884 			if ((error = ffs_update(pvp, 1)) != 0)
12885 				break;
12886 			ACQUIRE_LOCK(ump);
12887 			/*
12888 			 * If that cleared dependencies, go on to next.
12889 			 */
12890 			if (dap != LIST_FIRST(diraddhdp))
12891 				continue;
12892 			/*
12893 			 * All MKDIR_PARENT dependencies and all the
12894 			 * NEWBLOCK pagedeps that are contained in direct
12895 			 * blocks were resolved by doing above ffs_update.
12896 			 * Pagedeps contained in indirect blocks may
12897 			 * require a complete sync'ing of the directory.
12898 			 * We are in the midst of doing a complete sync,
12899 			 * so if they are not resolved in this pass we
12900 			 * defer them for now as they will be sync'ed by
12901 			 * our caller shortly.
12902 			 */
12903 			LIST_REMOVE(dap, da_pdlist);
12904 			LIST_INSERT_HEAD(&unfinished, dap, da_pdlist);
12905 			continue;
12906 		}
12907 		/*
12908 		 * A newly allocated directory must have its "." and
12909 		 * ".." entries written out before its name can be
12910 		 * committed in its parent.
12911 		 */
12912 		inum = dap->da_newinum;
12913 		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
12914 			panic("flush_pagedep_deps: lost inode1");
12915 		/*
12916 		 * Wait for any pending journal adds to complete so we don't
12917 		 * cause rollbacks while syncing.
12918 		 */
12919 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12920 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12921 			    == DEPCOMPLETE) {
12922 				jwait(&inoref->if_list, MNT_WAIT);
12923 				goto restart;
12924 			}
12925 		}
12926 		if (dap->da_state & MKDIR_BODY) {
12927 			FREE_LOCK(ump);
12928 			if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
12929 			    FFSV_FORCEINSMQ)))
12930 				break;
12931 			error = flush_newblk_dep(vp, mp, 0);
12932 			/*
12933 			 * If we still have the dependency we might need to
12934 			 * update the vnode to sync the new link count to
12935 			 * disk.
12936 			 */
12937 			if (error == 0 && dap == LIST_FIRST(diraddhdp))
12938 				error = ffs_update(vp, 1);
12939 			vput(vp);
12940 			if (error != 0)
12941 				break;
12942 			ACQUIRE_LOCK(ump);
12943 			/*
12944 			 * If that cleared dependencies, go on to next.
12945 			 */
12946 			if (dap != LIST_FIRST(diraddhdp))
12947 				continue;
12948 			if (dap->da_state & MKDIR_BODY) {
12949 				inodedep_lookup(UFSTOVFS(ump), inum, 0,
12950 				    &inodedep);
12951 				panic("flush_pagedep_deps: MKDIR_BODY "
12952 				    "inodedep %p dap %p vp %p",
12953 				    inodedep, dap, vp);
12954 			}
12955 		}
12956 		/*
12957 		 * Flush the inode on which the directory entry depends.
12958 		 * Having accounted for MKDIR_PARENT and MKDIR_BODY above,
12959 		 * the only remaining dependency is that the updated inode
12960 		 * count must get pushed to disk. The inode has already
12961 		 * been pushed into its inode buffer (via VOP_UPDATE) at
12962 		 * the time of the reference count change. So we need only
12963 		 * locate that buffer, ensure that there will be no rollback
12964 		 * caused by a bitmap dependency, then write the inode buffer.
12965 		 */
12966 retry:
12967 		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
12968 			panic("flush_pagedep_deps: lost inode");
12969 		/*
12970 		 * If the inode still has bitmap dependencies,
12971 		 * push them to disk.
12972 		 */
12973 		if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) {
12974 			bp = inodedep->id_bmsafemap->sm_buf;
12975 			bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT);
12976 			if (bp == NULL)
12977 				goto retry;
12978 			FREE_LOCK(ump);
12979 			if ((error = bwrite(bp)) != 0)
12980 				break;
12981 			ACQUIRE_LOCK(ump);
12982 			if (dap != LIST_FIRST(diraddhdp))
12983 				continue;
12984 		}
12985 		/*
12986 		 * If the inode is still sitting in a buffer waiting
12987 		 * to be written or waiting for the link count to be
12988 		 * adjusted update it here to flush it to disk.
12989 		 */
12990 		if (dap == LIST_FIRST(diraddhdp)) {
12991 			FREE_LOCK(ump);
12992 			if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
12993 			    FFSV_FORCEINSMQ)))
12994 				break;
12995 			error = ffs_update(vp, 1);
12996 			vput(vp);
12997 			if (error)
12998 				break;
12999 			ACQUIRE_LOCK(ump);
13000 		}
13001 		/*
13002 		 * If we have failed to get rid of all the dependencies
13003 		 * then something is seriously wrong.
13004 		 */
13005 		if (dap == LIST_FIRST(diraddhdp)) {
13006 			inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep);
13007 			panic("flush_pagedep_deps: failed to flush "
13008 			    "inodedep %p ino %ju dap %p",
13009 			    inodedep, (uintmax_t)inum, dap);
13010 		}
13011 	}
13012 	if (error)
13013 		ACQUIRE_LOCK(ump);
13014 	while ((dap = LIST_FIRST(&unfinished)) != NULL) {
13015 		LIST_REMOVE(dap, da_pdlist);
13016 		LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist);
13017 	}
13018 	return (error);
13019 }
13020 
13021 /*
13022  * A large burst of file addition or deletion activity can drive the
13023  * memory load excessively high. First attempt to slow things down
13024  * using the techniques below. If that fails, this routine requests
13025  * the offending operations to fall back to running synchronously
13026  * until the memory load returns to a reasonable level.
13027  */
13028 int
13029 softdep_slowdown(vp)
13030 	struct vnode *vp;
13031 {
13032 	struct ufsmount *ump;
13033 	int jlow;
13034 	int max_softdeps_hard;
13035 
13036 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
13037 	    ("softdep_slowdown called on non-softdep filesystem"));
13038 	ump = VFSTOUFS(vp->v_mount);
13039 	ACQUIRE_LOCK(ump);
13040 	jlow = 0;
13041 	/*
13042 	 * Check for journal space if needed.
13043 	 */
13044 	if (DOINGSUJ(vp)) {
13045 		if (journal_space(ump, 0) == 0)
13046 			jlow = 1;
13047 	}
13048 	/*
13049 	 * If the system is under its limits and our filesystem is
13050 	 * not responsible for more than our share of the usage and
13051 	 * we are not low on journal space, then no need to slow down.
13052 	 */
13053 	max_softdeps_hard = max_softdeps * 11 / 10;
13054 	if (dep_current[D_DIRREM] < max_softdeps_hard / 2 &&
13055 	    dep_current[D_INODEDEP] < max_softdeps_hard &&
13056 	    dep_current[D_INDIRDEP] < max_softdeps_hard / 1000 &&
13057 	    dep_current[D_FREEBLKS] < max_softdeps_hard && jlow == 0 &&
13058 	    ump->softdep_curdeps[D_DIRREM] <
13059 	    (max_softdeps_hard / 2) / stat_flush_threads &&
13060 	    ump->softdep_curdeps[D_INODEDEP] <
13061 	    max_softdeps_hard / stat_flush_threads &&
13062 	    ump->softdep_curdeps[D_INDIRDEP] <
13063 	    (max_softdeps_hard / 1000) / stat_flush_threads &&
13064 	    ump->softdep_curdeps[D_FREEBLKS] <
13065 	    max_softdeps_hard / stat_flush_threads) {
13066 		FREE_LOCK(ump);
13067   		return (0);
13068 	}
13069 	/*
13070 	 * If the journal is low or our filesystem is over its limit
13071 	 * then speedup the cleanup.
13072 	 */
13073 	if (ump->softdep_curdeps[D_INDIRDEP] <
13074 	    (max_softdeps_hard / 1000) / stat_flush_threads || jlow)
13075 		softdep_speedup(ump);
13076 	stat_sync_limit_hit += 1;
13077 	FREE_LOCK(ump);
13078 	/*
13079 	 * We only slow down the rate at which new dependencies are
13080 	 * generated if we are not using journaling. With journaling,
13081 	 * the cleanup should always be sufficient to keep things
13082 	 * under control.
13083 	 */
13084 	if (DOINGSUJ(vp))
13085 		return (0);
13086 	return (1);
13087 }
13088 
13089 /*
13090  * Called by the allocation routines when they are about to fail
13091  * in the hope that we can free up the requested resource (inodes
13092  * or disk space).
13093  *
13094  * First check to see if the work list has anything on it. If it has,
13095  * clean up entries until we successfully free the requested resource.
13096  * Because this process holds inodes locked, we cannot handle any remove
13097  * requests that might block on a locked inode as that could lead to
13098  * deadlock. If the worklist yields none of the requested resource,
13099  * start syncing out vnodes to free up the needed space.
13100  */
13101 int
13102 softdep_request_cleanup(fs, vp, cred, resource)
13103 	struct fs *fs;
13104 	struct vnode *vp;
13105 	struct ucred *cred;
13106 	int resource;
13107 {
13108 	struct ufsmount *ump;
13109 	struct mount *mp;
13110 	struct vnode *lvp, *mvp;
13111 	long starttime;
13112 	ufs2_daddr_t needed;
13113 	int error;
13114 
13115 	/*
13116 	 * If we are being called because of a process doing a
13117 	 * copy-on-write, then it is not safe to process any
13118 	 * worklist items as we will recurse into the copyonwrite
13119 	 * routine.  This will result in an incoherent snapshot.
13120 	 * If the vnode that we hold is a snapshot, we must avoid
13121 	 * handling other resources that could cause deadlock.
13122 	 */
13123 	if ((curthread->td_pflags & TDP_COWINPROGRESS) || IS_SNAPSHOT(VTOI(vp)))
13124 		return (0);
13125 
13126 	if (resource == FLUSH_BLOCKS_WAIT)
13127 		stat_cleanup_blkrequests += 1;
13128 	else
13129 		stat_cleanup_inorequests += 1;
13130 
13131 	mp = vp->v_mount;
13132 	ump = VFSTOUFS(mp);
13133 	mtx_assert(UFS_MTX(ump), MA_OWNED);
13134 	UFS_UNLOCK(ump);
13135 	error = ffs_update(vp, 1);
13136 	if (error != 0 || MOUNTEDSOFTDEP(mp) == 0) {
13137 		UFS_LOCK(ump);
13138 		return (0);
13139 	}
13140 	/*
13141 	 * If we are in need of resources, start by cleaning up
13142 	 * any block removals associated with our inode.
13143 	 */
13144 	ACQUIRE_LOCK(ump);
13145 	process_removes(vp);
13146 	process_truncates(vp);
13147 	FREE_LOCK(ump);
13148 	/*
13149 	 * Now clean up at least as many resources as we will need.
13150 	 *
13151 	 * When requested to clean up inodes, the number that are needed
13152 	 * is set by the number of simultaneous writers (mnt_writeopcount)
13153 	 * plus a bit of slop (2) in case some more writers show up while
13154 	 * we are cleaning.
13155 	 *
13156 	 * When requested to free up space, the amount of space that
13157 	 * we need is enough blocks to allocate a full-sized segment
13158 	 * (fs_contigsumsize). The number of such segments that will
13159 	 * be needed is set by the number of simultaneous writers
13160 	 * (mnt_writeopcount) plus a bit of slop (2) in case some more
13161 	 * writers show up while we are cleaning.
13162 	 *
13163 	 * Additionally, if we are unpriviledged and allocating space,
13164 	 * we need to ensure that we clean up enough blocks to get the
13165 	 * needed number of blocks over the threshhold of the minimum
13166 	 * number of blocks required to be kept free by the filesystem
13167 	 * (fs_minfree).
13168 	 */
13169 	if (resource == FLUSH_INODES_WAIT) {
13170 		needed = vp->v_mount->mnt_writeopcount + 2;
13171 	} else if (resource == FLUSH_BLOCKS_WAIT) {
13172 		needed = (vp->v_mount->mnt_writeopcount + 2) *
13173 		    fs->fs_contigsumsize;
13174 		if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0))
13175 			needed += fragstoblks(fs,
13176 			    roundup((fs->fs_dsize * fs->fs_minfree / 100) -
13177 			    fs->fs_cstotal.cs_nffree, fs->fs_frag));
13178 	} else {
13179 		UFS_LOCK(ump);
13180 		printf("softdep_request_cleanup: Unknown resource type %d\n",
13181 		    resource);
13182 		return (0);
13183 	}
13184 	starttime = time_second;
13185 retry:
13186 	if ((resource == FLUSH_BLOCKS_WAIT && ump->softdep_on_worklist > 0 &&
13187 	    fs->fs_cstotal.cs_nbfree <= needed) ||
13188 	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
13189 	    fs->fs_cstotal.cs_nifree <= needed)) {
13190 		ACQUIRE_LOCK(ump);
13191 		if (ump->softdep_on_worklist > 0 &&
13192 		    process_worklist_item(UFSTOVFS(ump),
13193 		    ump->softdep_on_worklist, LK_NOWAIT) != 0)
13194 			stat_worklist_push += 1;
13195 		FREE_LOCK(ump);
13196 	}
13197 	/*
13198 	 * If we still need resources and there are no more worklist
13199 	 * entries to process to obtain them, we have to start flushing
13200 	 * the dirty vnodes to force the release of additional requests
13201 	 * to the worklist that we can then process to reap addition
13202 	 * resources. We walk the vnodes associated with the mount point
13203 	 * until we get the needed worklist requests that we can reap.
13204 	 */
13205 	if ((resource == FLUSH_BLOCKS_WAIT &&
13206 	     fs->fs_cstotal.cs_nbfree <= needed) ||
13207 	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
13208 	     fs->fs_cstotal.cs_nifree <= needed)) {
13209 		MNT_VNODE_FOREACH_ALL(lvp, mp, mvp) {
13210 			if (TAILQ_FIRST(&lvp->v_bufobj.bo_dirty.bv_hd) == 0) {
13211 				VI_UNLOCK(lvp);
13212 				continue;
13213 			}
13214 			if (vget(lvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT,
13215 			    curthread))
13216 				continue;
13217 			if (lvp->v_vflag & VV_NOSYNC) {	/* unlinked */
13218 				vput(lvp);
13219 				continue;
13220 			}
13221 			(void) ffs_syncvnode(lvp, MNT_NOWAIT, 0);
13222 			vput(lvp);
13223 		}
13224 		lvp = ump->um_devvp;
13225 		if (vn_lock(lvp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
13226 			VOP_FSYNC(lvp, MNT_NOWAIT, curthread);
13227 			VOP_UNLOCK(lvp, 0);
13228 		}
13229 		if (ump->softdep_on_worklist > 0) {
13230 			stat_cleanup_retries += 1;
13231 			goto retry;
13232 		}
13233 		stat_cleanup_failures += 1;
13234 	}
13235 	if (time_second - starttime > stat_cleanup_high_delay)
13236 		stat_cleanup_high_delay = time_second - starttime;
13237 	UFS_LOCK(ump);
13238 	return (1);
13239 }
13240 
13241 /*
13242  * If memory utilization has gotten too high, deliberately slow things
13243  * down and speed up the I/O processing.
13244  */
13245 static int
13246 request_cleanup(mp, resource)
13247 	struct mount *mp;
13248 	int resource;
13249 {
13250 	struct thread *td = curthread;
13251 	struct ufsmount *ump;
13252 
13253 	ump = VFSTOUFS(mp);
13254 	LOCK_OWNED(ump);
13255 	/*
13256 	 * We never hold up the filesystem syncer or buf daemon.
13257 	 */
13258 	if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF))
13259 		return (0);
13260 	/*
13261 	 * First check to see if the work list has gotten backlogged.
13262 	 * If it has, co-opt this process to help clean up two entries.
13263 	 * Because this process may hold inodes locked, we cannot
13264 	 * handle any remove requests that might block on a locked
13265 	 * inode as that could lead to deadlock.  We set TDP_SOFTDEP
13266 	 * to avoid recursively processing the worklist.
13267 	 */
13268 	if (ump->softdep_on_worklist > max_softdeps / 10) {
13269 		td->td_pflags |= TDP_SOFTDEP;
13270 		process_worklist_item(mp, 2, LK_NOWAIT);
13271 		td->td_pflags &= ~TDP_SOFTDEP;
13272 		stat_worklist_push += 2;
13273 		return(1);
13274 	}
13275 	/*
13276 	 * Next, we attempt to speed up the syncer process. If that
13277 	 * is successful, then we allow the process to continue.
13278 	 */
13279 	if (softdep_speedup(ump) &&
13280 	    resource != FLUSH_BLOCKS_WAIT &&
13281 	    resource != FLUSH_INODES_WAIT)
13282 		return(0);
13283 	/*
13284 	 * If we are resource constrained on inode dependencies, try
13285 	 * flushing some dirty inodes. Otherwise, we are constrained
13286 	 * by file deletions, so try accelerating flushes of directories
13287 	 * with removal dependencies. We would like to do the cleanup
13288 	 * here, but we probably hold an inode locked at this point and
13289 	 * that might deadlock against one that we try to clean. So,
13290 	 * the best that we can do is request the syncer daemon to do
13291 	 * the cleanup for us.
13292 	 */
13293 	switch (resource) {
13294 
13295 	case FLUSH_INODES:
13296 	case FLUSH_INODES_WAIT:
13297 		ACQUIRE_GBLLOCK(&lk);
13298 		stat_ino_limit_push += 1;
13299 		req_clear_inodedeps += 1;
13300 		FREE_GBLLOCK(&lk);
13301 		stat_countp = &stat_ino_limit_hit;
13302 		break;
13303 
13304 	case FLUSH_BLOCKS:
13305 	case FLUSH_BLOCKS_WAIT:
13306 		ACQUIRE_GBLLOCK(&lk);
13307 		stat_blk_limit_push += 1;
13308 		req_clear_remove += 1;
13309 		FREE_GBLLOCK(&lk);
13310 		stat_countp = &stat_blk_limit_hit;
13311 		break;
13312 
13313 	default:
13314 		panic("request_cleanup: unknown type");
13315 	}
13316 	/*
13317 	 * Hopefully the syncer daemon will catch up and awaken us.
13318 	 * We wait at most tickdelay before proceeding in any case.
13319 	 */
13320 	ACQUIRE_GBLLOCK(&lk);
13321 	FREE_LOCK(ump);
13322 	proc_waiting += 1;
13323 	if (callout_pending(&softdep_callout) == FALSE)
13324 		callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2,
13325 		    pause_timer, 0);
13326 
13327 	msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0);
13328 	proc_waiting -= 1;
13329 	FREE_GBLLOCK(&lk);
13330 	ACQUIRE_LOCK(ump);
13331 	return (1);
13332 }
13333 
13334 /*
13335  * Awaken processes pausing in request_cleanup and clear proc_waiting
13336  * to indicate that there is no longer a timer running. Pause_timer
13337  * will be called with the global softdep mutex (&lk) locked.
13338  */
13339 static void
13340 pause_timer(arg)
13341 	void *arg;
13342 {
13343 
13344 	GBLLOCK_OWNED(&lk);
13345 	/*
13346 	 * The callout_ API has acquired mtx and will hold it around this
13347 	 * function call.
13348 	 */
13349 	*stat_countp += proc_waiting;
13350 	wakeup(&proc_waiting);
13351 }
13352 
13353 /*
13354  * If requested, try removing inode or removal dependencies.
13355  */
13356 static void
13357 check_clear_deps(mp)
13358 	struct mount *mp;
13359 {
13360 
13361 	/*
13362 	 * If we are suspended, it may be because of our using
13363 	 * too many inodedeps, so help clear them out.
13364 	 */
13365 	if (MOUNTEDSUJ(mp) && VFSTOUFS(mp)->softdep_jblocks->jb_suspended)
13366 		clear_inodedeps(mp);
13367 	/*
13368 	 * General requests for cleanup of backed up dependencies
13369 	 */
13370 	ACQUIRE_GBLLOCK(&lk);
13371 	if (req_clear_inodedeps) {
13372 		req_clear_inodedeps -= 1;
13373 		FREE_GBLLOCK(&lk);
13374 		clear_inodedeps(mp);
13375 		ACQUIRE_GBLLOCK(&lk);
13376 		wakeup(&proc_waiting);
13377 	}
13378 	if (req_clear_remove) {
13379 		req_clear_remove -= 1;
13380 		FREE_GBLLOCK(&lk);
13381 		clear_remove(mp);
13382 		ACQUIRE_GBLLOCK(&lk);
13383 		wakeup(&proc_waiting);
13384 	}
13385 	FREE_GBLLOCK(&lk);
13386 }
13387 
13388 /*
13389  * Flush out a directory with at least one removal dependency in an effort to
13390  * reduce the number of dirrem, freefile, and freeblks dependency structures.
13391  */
13392 static void
13393 clear_remove(mp)
13394 	struct mount *mp;
13395 {
13396 	struct pagedep_hashhead *pagedephd;
13397 	struct pagedep *pagedep;
13398 	struct ufsmount *ump;
13399 	struct vnode *vp;
13400 	struct bufobj *bo;
13401 	int error, cnt;
13402 	ino_t ino;
13403 
13404 	ump = VFSTOUFS(mp);
13405 	LOCK_OWNED(ump);
13406 
13407 	for (cnt = 0; cnt <= ump->pagedep_hash_size; cnt++) {
13408 		pagedephd = &ump->pagedep_hashtbl[ump->pagedep_nextclean++];
13409 		if (ump->pagedep_nextclean > ump->pagedep_hash_size)
13410 			ump->pagedep_nextclean = 0;
13411 		LIST_FOREACH(pagedep, pagedephd, pd_hash) {
13412 			if (LIST_EMPTY(&pagedep->pd_dirremhd))
13413 				continue;
13414 			ino = pagedep->pd_ino;
13415 			if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
13416 				continue;
13417 			FREE_LOCK(ump);
13418 
13419 			/*
13420 			 * Let unmount clear deps
13421 			 */
13422 			error = vfs_busy(mp, MBF_NOWAIT);
13423 			if (error != 0)
13424 				goto finish_write;
13425 			error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
13426 			     FFSV_FORCEINSMQ);
13427 			vfs_unbusy(mp);
13428 			if (error != 0) {
13429 				softdep_error("clear_remove: vget", error);
13430 				goto finish_write;
13431 			}
13432 			if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
13433 				softdep_error("clear_remove: fsync", error);
13434 			bo = &vp->v_bufobj;
13435 			BO_LOCK(bo);
13436 			drain_output(vp);
13437 			BO_UNLOCK(bo);
13438 			vput(vp);
13439 		finish_write:
13440 			vn_finished_write(mp);
13441 			ACQUIRE_LOCK(ump);
13442 			return;
13443 		}
13444 	}
13445 }
13446 
13447 /*
13448  * Clear out a block of dirty inodes in an effort to reduce
13449  * the number of inodedep dependency structures.
13450  */
13451 static void
13452 clear_inodedeps(mp)
13453 	struct mount *mp;
13454 {
13455 	struct inodedep_hashhead *inodedephd;
13456 	struct inodedep *inodedep;
13457 	struct ufsmount *ump;
13458 	struct vnode *vp;
13459 	struct fs *fs;
13460 	int error, cnt;
13461 	ino_t firstino, lastino, ino;
13462 
13463 	ump = VFSTOUFS(mp);
13464 	fs = ump->um_fs;
13465 	LOCK_OWNED(ump);
13466 	/*
13467 	 * Pick a random inode dependency to be cleared.
13468 	 * We will then gather up all the inodes in its block
13469 	 * that have dependencies and flush them out.
13470 	 */
13471 	for (cnt = 0; cnt <= ump->inodedep_hash_size; cnt++) {
13472 		inodedephd = &ump->inodedep_hashtbl[ump->inodedep_nextclean++];
13473 		if (ump->inodedep_nextclean > ump->inodedep_hash_size)
13474 			ump->inodedep_nextclean = 0;
13475 		if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
13476 			break;
13477 	}
13478 	if (inodedep == NULL)
13479 		return;
13480 	/*
13481 	 * Find the last inode in the block with dependencies.
13482 	 */
13483 	firstino = inodedep->id_ino & ~(INOPB(fs) - 1);
13484 	for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
13485 		if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0)
13486 			break;
13487 	/*
13488 	 * Asynchronously push all but the last inode with dependencies.
13489 	 * Synchronously push the last inode with dependencies to ensure
13490 	 * that the inode block gets written to free up the inodedeps.
13491 	 */
13492 	for (ino = firstino; ino <= lastino; ino++) {
13493 		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
13494 			continue;
13495 		if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
13496 			continue;
13497 		FREE_LOCK(ump);
13498 		error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */
13499 		if (error != 0) {
13500 			vn_finished_write(mp);
13501 			ACQUIRE_LOCK(ump);
13502 			return;
13503 		}
13504 		if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
13505 		    FFSV_FORCEINSMQ)) != 0) {
13506 			softdep_error("clear_inodedeps: vget", error);
13507 			vfs_unbusy(mp);
13508 			vn_finished_write(mp);
13509 			ACQUIRE_LOCK(ump);
13510 			return;
13511 		}
13512 		vfs_unbusy(mp);
13513 		if (ino == lastino) {
13514 			if ((error = ffs_syncvnode(vp, MNT_WAIT, 0)))
13515 				softdep_error("clear_inodedeps: fsync1", error);
13516 		} else {
13517 			if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
13518 				softdep_error("clear_inodedeps: fsync2", error);
13519 			BO_LOCK(&vp->v_bufobj);
13520 			drain_output(vp);
13521 			BO_UNLOCK(&vp->v_bufobj);
13522 		}
13523 		vput(vp);
13524 		vn_finished_write(mp);
13525 		ACQUIRE_LOCK(ump);
13526 	}
13527 }
13528 
13529 void
13530 softdep_buf_append(bp, wkhd)
13531 	struct buf *bp;
13532 	struct workhead *wkhd;
13533 {
13534 	struct worklist *wk;
13535 	struct ufsmount *ump;
13536 
13537 	if ((wk = LIST_FIRST(wkhd)) == NULL)
13538 		return;
13539 	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
13540 	    ("softdep_buf_append called on non-softdep filesystem"));
13541 	ump = VFSTOUFS(wk->wk_mp);
13542 	ACQUIRE_LOCK(ump);
13543 	while ((wk = LIST_FIRST(wkhd)) != NULL) {
13544 		WORKLIST_REMOVE(wk);
13545 		WORKLIST_INSERT(&bp->b_dep, wk);
13546 	}
13547 	FREE_LOCK(ump);
13548 
13549 }
13550 
13551 void
13552 softdep_inode_append(ip, cred, wkhd)
13553 	struct inode *ip;
13554 	struct ucred *cred;
13555 	struct workhead *wkhd;
13556 {
13557 	struct buf *bp;
13558 	struct fs *fs;
13559 	int error;
13560 
13561 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
13562 	    ("softdep_inode_append called on non-softdep filesystem"));
13563 	fs = ip->i_fs;
13564 	error = bread(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
13565 	    (int)fs->fs_bsize, cred, &bp);
13566 	if (error) {
13567 		bqrelse(bp);
13568 		softdep_freework(wkhd);
13569 		return;
13570 	}
13571 	softdep_buf_append(bp, wkhd);
13572 	bqrelse(bp);
13573 }
13574 
13575 void
13576 softdep_freework(wkhd)
13577 	struct workhead *wkhd;
13578 {
13579 	struct worklist *wk;
13580 	struct ufsmount *ump;
13581 
13582 	if ((wk = LIST_FIRST(wkhd)) == NULL)
13583 		return;
13584 	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
13585 	    ("softdep_freework called on non-softdep filesystem"));
13586 	ump = VFSTOUFS(wk->wk_mp);
13587 	ACQUIRE_LOCK(ump);
13588 	handle_jwork(wkhd);
13589 	FREE_LOCK(ump);
13590 }
13591 
13592 /*
13593  * Function to determine if the buffer has outstanding dependencies
13594  * that will cause a roll-back if the buffer is written. If wantcount
13595  * is set, return number of dependencies, otherwise just yes or no.
13596  */
13597 static int
13598 softdep_count_dependencies(bp, wantcount)
13599 	struct buf *bp;
13600 	int wantcount;
13601 {
13602 	struct worklist *wk;
13603 	struct ufsmount *ump;
13604 	struct bmsafemap *bmsafemap;
13605 	struct freework *freework;
13606 	struct inodedep *inodedep;
13607 	struct indirdep *indirdep;
13608 	struct freeblks *freeblks;
13609 	struct allocindir *aip;
13610 	struct pagedep *pagedep;
13611 	struct dirrem *dirrem;
13612 	struct newblk *newblk;
13613 	struct mkdir *mkdir;
13614 	struct diradd *dap;
13615 	int i, retval;
13616 
13617 	retval = 0;
13618 	if ((wk = LIST_FIRST(&bp->b_dep)) == NULL)
13619 		return (0);
13620 	ump = VFSTOUFS(wk->wk_mp);
13621 	ACQUIRE_LOCK(ump);
13622 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
13623 		switch (wk->wk_type) {
13624 
13625 		case D_INODEDEP:
13626 			inodedep = WK_INODEDEP(wk);
13627 			if ((inodedep->id_state & DEPCOMPLETE) == 0) {
13628 				/* bitmap allocation dependency */
13629 				retval += 1;
13630 				if (!wantcount)
13631 					goto out;
13632 			}
13633 			if (TAILQ_FIRST(&inodedep->id_inoupdt)) {
13634 				/* direct block pointer dependency */
13635 				retval += 1;
13636 				if (!wantcount)
13637 					goto out;
13638 			}
13639 			if (TAILQ_FIRST(&inodedep->id_extupdt)) {
13640 				/* direct block pointer dependency */
13641 				retval += 1;
13642 				if (!wantcount)
13643 					goto out;
13644 			}
13645 			if (TAILQ_FIRST(&inodedep->id_inoreflst)) {
13646 				/* Add reference dependency. */
13647 				retval += 1;
13648 				if (!wantcount)
13649 					goto out;
13650 			}
13651 			continue;
13652 
13653 		case D_INDIRDEP:
13654 			indirdep = WK_INDIRDEP(wk);
13655 
13656 			TAILQ_FOREACH(freework, &indirdep->ir_trunc, fw_next) {
13657 				/* indirect truncation dependency */
13658 				retval += 1;
13659 				if (!wantcount)
13660 					goto out;
13661 			}
13662 
13663 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
13664 				/* indirect block pointer dependency */
13665 				retval += 1;
13666 				if (!wantcount)
13667 					goto out;
13668 			}
13669 			continue;
13670 
13671 		case D_PAGEDEP:
13672 			pagedep = WK_PAGEDEP(wk);
13673 			LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
13674 				if (LIST_FIRST(&dirrem->dm_jremrefhd)) {
13675 					/* Journal remove ref dependency. */
13676 					retval += 1;
13677 					if (!wantcount)
13678 						goto out;
13679 				}
13680 			}
13681 			for (i = 0; i < DAHASHSZ; i++) {
13682 
13683 				LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
13684 					/* directory entry dependency */
13685 					retval += 1;
13686 					if (!wantcount)
13687 						goto out;
13688 				}
13689 			}
13690 			continue;
13691 
13692 		case D_BMSAFEMAP:
13693 			bmsafemap = WK_BMSAFEMAP(wk);
13694 			if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) {
13695 				/* Add reference dependency. */
13696 				retval += 1;
13697 				if (!wantcount)
13698 					goto out;
13699 			}
13700 			if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) {
13701 				/* Allocate block dependency. */
13702 				retval += 1;
13703 				if (!wantcount)
13704 					goto out;
13705 			}
13706 			continue;
13707 
13708 		case D_FREEBLKS:
13709 			freeblks = WK_FREEBLKS(wk);
13710 			if (LIST_FIRST(&freeblks->fb_jblkdephd)) {
13711 				/* Freeblk journal dependency. */
13712 				retval += 1;
13713 				if (!wantcount)
13714 					goto out;
13715 			}
13716 			continue;
13717 
13718 		case D_ALLOCDIRECT:
13719 		case D_ALLOCINDIR:
13720 			newblk = WK_NEWBLK(wk);
13721 			if (newblk->nb_jnewblk) {
13722 				/* Journal allocate dependency. */
13723 				retval += 1;
13724 				if (!wantcount)
13725 					goto out;
13726 			}
13727 			continue;
13728 
13729 		case D_MKDIR:
13730 			mkdir = WK_MKDIR(wk);
13731 			if (mkdir->md_jaddref) {
13732 				/* Journal reference dependency. */
13733 				retval += 1;
13734 				if (!wantcount)
13735 					goto out;
13736 			}
13737 			continue;
13738 
13739 		case D_FREEWORK:
13740 		case D_FREEDEP:
13741 		case D_JSEGDEP:
13742 		case D_JSEG:
13743 		case D_SBDEP:
13744 			/* never a dependency on these blocks */
13745 			continue;
13746 
13747 		default:
13748 			panic("softdep_count_dependencies: Unexpected type %s",
13749 			    TYPENAME(wk->wk_type));
13750 			/* NOTREACHED */
13751 		}
13752 	}
13753 out:
13754 	FREE_LOCK(ump);
13755 	return retval;
13756 }
13757 
13758 /*
13759  * Acquire exclusive access to a buffer.
13760  * Must be called with a locked mtx parameter.
13761  * Return acquired buffer or NULL on failure.
13762  */
13763 static struct buf *
13764 getdirtybuf(bp, lock, waitfor)
13765 	struct buf *bp;
13766 	struct rwlock *lock;
13767 	int waitfor;
13768 {
13769 	int error;
13770 
13771 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) {
13772 		if (waitfor != MNT_WAIT)
13773 			return (NULL);
13774 		error = BUF_LOCK(bp,
13775 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, lock);
13776 		/*
13777 		 * Even if we sucessfully acquire bp here, we have dropped
13778 		 * lock, which may violates our guarantee.
13779 		 */
13780 		if (error == 0)
13781 			BUF_UNLOCK(bp);
13782 		else if (error != ENOLCK)
13783 			panic("getdirtybuf: inconsistent lock: %d", error);
13784 		rw_wlock(lock);
13785 		return (NULL);
13786 	}
13787 	if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
13788 		if (lock != BO_LOCKPTR(bp->b_bufobj) && waitfor == MNT_WAIT) {
13789 			rw_wunlock(lock);
13790 			BO_LOCK(bp->b_bufobj);
13791 			BUF_UNLOCK(bp);
13792 			if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
13793 				bp->b_vflags |= BV_BKGRDWAIT;
13794 				msleep(&bp->b_xflags, BO_LOCKPTR(bp->b_bufobj),
13795 				       PRIBIO | PDROP, "getbuf", 0);
13796 			} else
13797 				BO_UNLOCK(bp->b_bufobj);
13798 			rw_wlock(lock);
13799 			return (NULL);
13800 		}
13801 		BUF_UNLOCK(bp);
13802 		if (waitfor != MNT_WAIT)
13803 			return (NULL);
13804 		/*
13805 		 * The lock argument must be bp->b_vp's mutex in
13806 		 * this case.
13807 		 */
13808 #ifdef	DEBUG_VFS_LOCKS
13809 		if (bp->b_vp->v_type != VCHR)
13810 			ASSERT_BO_WLOCKED(bp->b_bufobj);
13811 #endif
13812 		bp->b_vflags |= BV_BKGRDWAIT;
13813 		rw_sleep(&bp->b_xflags, lock, PRIBIO, "getbuf", 0);
13814 		return (NULL);
13815 	}
13816 	if ((bp->b_flags & B_DELWRI) == 0) {
13817 		BUF_UNLOCK(bp);
13818 		return (NULL);
13819 	}
13820 	bremfree(bp);
13821 	return (bp);
13822 }
13823 
13824 
13825 /*
13826  * Check if it is safe to suspend the file system now.  On entry,
13827  * the vnode interlock for devvp should be held.  Return 0 with
13828  * the mount interlock held if the file system can be suspended now,
13829  * otherwise return EAGAIN with the mount interlock held.
13830  */
13831 int
13832 softdep_check_suspend(struct mount *mp,
13833 		      struct vnode *devvp,
13834 		      int softdep_depcnt,
13835 		      int softdep_accdepcnt,
13836 		      int secondary_writes,
13837 		      int secondary_accwrites)
13838 {
13839 	struct bufobj *bo;
13840 	struct ufsmount *ump;
13841 	int error;
13842 
13843 	bo = &devvp->v_bufobj;
13844 	ASSERT_BO_WLOCKED(bo);
13845 
13846 	/*
13847 	 * If we are not running with soft updates, then we need only
13848 	 * deal with secondary writes as we try to suspend.
13849 	 */
13850 	if (MOUNTEDSOFTDEP(mp) == 0) {
13851 		MNT_ILOCK(mp);
13852 		while (mp->mnt_secondary_writes != 0) {
13853 			BO_UNLOCK(bo);
13854 			msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
13855 			    (PUSER - 1) | PDROP, "secwr", 0);
13856 			BO_LOCK(bo);
13857 			MNT_ILOCK(mp);
13858 		}
13859 
13860 		/*
13861 		 * Reasons for needing more work before suspend:
13862 		 * - Dirty buffers on devvp.
13863 		 * - Secondary writes occurred after start of vnode sync loop
13864 		 */
13865 		error = 0;
13866 		if (bo->bo_numoutput > 0 ||
13867 		    bo->bo_dirty.bv_cnt > 0 ||
13868 		    secondary_writes != 0 ||
13869 		    mp->mnt_secondary_writes != 0 ||
13870 		    secondary_accwrites != mp->mnt_secondary_accwrites)
13871 			error = EAGAIN;
13872 		BO_UNLOCK(bo);
13873 		return (error);
13874 	}
13875 
13876 	/*
13877 	 * If we are running with soft updates, then we need to coordinate
13878 	 * with them as we try to suspend.
13879 	 */
13880 	ump = VFSTOUFS(mp);
13881 	for (;;) {
13882 		if (!TRY_ACQUIRE_LOCK(ump)) {
13883 			BO_UNLOCK(bo);
13884 			ACQUIRE_LOCK(ump);
13885 			FREE_LOCK(ump);
13886 			BO_LOCK(bo);
13887 			continue;
13888 		}
13889 		MNT_ILOCK(mp);
13890 		if (mp->mnt_secondary_writes != 0) {
13891 			FREE_LOCK(ump);
13892 			BO_UNLOCK(bo);
13893 			msleep(&mp->mnt_secondary_writes,
13894 			       MNT_MTX(mp),
13895 			       (PUSER - 1) | PDROP, "secwr", 0);
13896 			BO_LOCK(bo);
13897 			continue;
13898 		}
13899 		break;
13900 	}
13901 
13902 	/*
13903 	 * Reasons for needing more work before suspend:
13904 	 * - Dirty buffers on devvp.
13905 	 * - Softdep activity occurred after start of vnode sync loop
13906 	 * - Secondary writes occurred after start of vnode sync loop
13907 	 */
13908 	error = 0;
13909 	if (bo->bo_numoutput > 0 ||
13910 	    bo->bo_dirty.bv_cnt > 0 ||
13911 	    softdep_depcnt != 0 ||
13912 	    ump->softdep_deps != 0 ||
13913 	    softdep_accdepcnt != ump->softdep_accdeps ||
13914 	    secondary_writes != 0 ||
13915 	    mp->mnt_secondary_writes != 0 ||
13916 	    secondary_accwrites != mp->mnt_secondary_accwrites)
13917 		error = EAGAIN;
13918 	FREE_LOCK(ump);
13919 	BO_UNLOCK(bo);
13920 	return (error);
13921 }
13922 
13923 
13924 /*
13925  * Get the number of dependency structures for the file system, both
13926  * the current number and the total number allocated.  These will
13927  * later be used to detect that softdep processing has occurred.
13928  */
13929 void
13930 softdep_get_depcounts(struct mount *mp,
13931 		      int *softdep_depsp,
13932 		      int *softdep_accdepsp)
13933 {
13934 	struct ufsmount *ump;
13935 
13936 	if (MOUNTEDSOFTDEP(mp) == 0) {
13937 		*softdep_depsp = 0;
13938 		*softdep_accdepsp = 0;
13939 		return;
13940 	}
13941 	ump = VFSTOUFS(mp);
13942 	ACQUIRE_LOCK(ump);
13943 	*softdep_depsp = ump->softdep_deps;
13944 	*softdep_accdepsp = ump->softdep_accdeps;
13945 	FREE_LOCK(ump);
13946 }
13947 
13948 /*
13949  * Wait for pending output on a vnode to complete.
13950  * Must be called with vnode lock and interlock locked.
13951  *
13952  * XXX: Should just be a call to bufobj_wwait().
13953  */
13954 static void
13955 drain_output(vp)
13956 	struct vnode *vp;
13957 {
13958 	struct bufobj *bo;
13959 
13960 	bo = &vp->v_bufobj;
13961 	ASSERT_VOP_LOCKED(vp, "drain_output");
13962 	ASSERT_BO_WLOCKED(bo);
13963 
13964 	while (bo->bo_numoutput) {
13965 		bo->bo_flag |= BO_WWAIT;
13966 		msleep((caddr_t)&bo->bo_numoutput,
13967 		    BO_LOCKPTR(bo), PRIBIO + 1, "drainvp", 0);
13968 	}
13969 }
13970 
13971 /*
13972  * Called whenever a buffer that is being invalidated or reallocated
13973  * contains dependencies. This should only happen if an I/O error has
13974  * occurred. The routine is called with the buffer locked.
13975  */
13976 static void
13977 softdep_deallocate_dependencies(bp)
13978 	struct buf *bp;
13979 {
13980 
13981 	if ((bp->b_ioflags & BIO_ERROR) == 0)
13982 		panic("softdep_deallocate_dependencies: dangling deps");
13983 	if (bp->b_vp != NULL && bp->b_vp->v_mount != NULL)
13984 		softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error);
13985 	else
13986 		printf("softdep_deallocate_dependencies: "
13987 		    "got error %d while accessing filesystem\n", bp->b_error);
13988 	if (bp->b_error != ENXIO)
13989 		panic("softdep_deallocate_dependencies: unrecovered I/O error");
13990 }
13991 
13992 /*
13993  * Function to handle asynchronous write errors in the filesystem.
13994  */
13995 static void
13996 softdep_error(func, error)
13997 	char *func;
13998 	int error;
13999 {
14000 
14001 	/* XXX should do something better! */
14002 	printf("%s: got error %d while accessing filesystem\n", func, error);
14003 }
14004 
14005 #ifdef DDB
14006 
14007 static void
14008 inodedep_print(struct inodedep *inodedep, int verbose)
14009 {
14010 	db_printf("%p fs %p st %x ino %jd inoblk %jd delta %d nlink %d"
14011 	    " saveino %p\n",
14012 	    inodedep, inodedep->id_fs, inodedep->id_state,
14013 	    (intmax_t)inodedep->id_ino,
14014 	    (intmax_t)fsbtodb(inodedep->id_fs,
14015 	    ino_to_fsba(inodedep->id_fs, inodedep->id_ino)),
14016 	    inodedep->id_nlinkdelta, inodedep->id_savednlink,
14017 	    inodedep->id_savedino1);
14018 
14019 	if (verbose == 0)
14020 		return;
14021 
14022 	db_printf("\tpendinghd %p, bufwait %p, inowait %p, inoreflst %p, "
14023 	    "mkdiradd %p\n",
14024 	    LIST_FIRST(&inodedep->id_pendinghd),
14025 	    LIST_FIRST(&inodedep->id_bufwait),
14026 	    LIST_FIRST(&inodedep->id_inowait),
14027 	    TAILQ_FIRST(&inodedep->id_inoreflst),
14028 	    inodedep->id_mkdiradd);
14029 	db_printf("\tinoupdt %p, newinoupdt %p, extupdt %p, newextupdt %p\n",
14030 	    TAILQ_FIRST(&inodedep->id_inoupdt),
14031 	    TAILQ_FIRST(&inodedep->id_newinoupdt),
14032 	    TAILQ_FIRST(&inodedep->id_extupdt),
14033 	    TAILQ_FIRST(&inodedep->id_newextupdt));
14034 }
14035 
14036 DB_SHOW_COMMAND(inodedep, db_show_inodedep)
14037 {
14038 
14039 	if (have_addr == 0) {
14040 		db_printf("Address required\n");
14041 		return;
14042 	}
14043 	inodedep_print((struct inodedep*)addr, 1);
14044 }
14045 
14046 DB_SHOW_COMMAND(inodedeps, db_show_inodedeps)
14047 {
14048 	struct inodedep_hashhead *inodedephd;
14049 	struct inodedep *inodedep;
14050 	struct ufsmount *ump;
14051 	int cnt;
14052 
14053 	if (have_addr == 0) {
14054 		db_printf("Address required\n");
14055 		return;
14056 	}
14057 	ump = (struct ufsmount *)addr;
14058 	for (cnt = 0; cnt < ump->inodedep_hash_size; cnt++) {
14059 		inodedephd = &ump->inodedep_hashtbl[cnt];
14060 		LIST_FOREACH(inodedep, inodedephd, id_hash) {
14061 			inodedep_print(inodedep, 0);
14062 		}
14063 	}
14064 }
14065 
14066 DB_SHOW_COMMAND(worklist, db_show_worklist)
14067 {
14068 	struct worklist *wk;
14069 
14070 	if (have_addr == 0) {
14071 		db_printf("Address required\n");
14072 		return;
14073 	}
14074 	wk = (struct worklist *)addr;
14075 	printf("worklist: %p type %s state 0x%X\n",
14076 	    wk, TYPENAME(wk->wk_type), wk->wk_state);
14077 }
14078 
14079 DB_SHOW_COMMAND(workhead, db_show_workhead)
14080 {
14081 	struct workhead *wkhd;
14082 	struct worklist *wk;
14083 	int i;
14084 
14085 	if (have_addr == 0) {
14086 		db_printf("Address required\n");
14087 		return;
14088 	}
14089 	wkhd = (struct workhead *)addr;
14090 	wk = LIST_FIRST(wkhd);
14091 	for (i = 0; i < 100 && wk != NULL; i++, wk = LIST_NEXT(wk, wk_list))
14092 		db_printf("worklist: %p type %s state 0x%X",
14093 		    wk, TYPENAME(wk->wk_type), wk->wk_state);
14094 	if (i == 100)
14095 		db_printf("workhead overflow");
14096 	printf("\n");
14097 }
14098 
14099 
14100 DB_SHOW_COMMAND(mkdirs, db_show_mkdirs)
14101 {
14102 	struct mkdirlist *mkdirlisthd;
14103 	struct jaddref *jaddref;
14104 	struct diradd *diradd;
14105 	struct mkdir *mkdir;
14106 
14107 	if (have_addr == 0) {
14108 		db_printf("Address required\n");
14109 		return;
14110 	}
14111 	mkdirlisthd = (struct mkdirlist *)addr;
14112 	LIST_FOREACH(mkdir, mkdirlisthd, md_mkdirs) {
14113 		diradd = mkdir->md_diradd;
14114 		db_printf("mkdir: %p state 0x%X dap %p state 0x%X",
14115 		    mkdir, mkdir->md_state, diradd, diradd->da_state);
14116 		if ((jaddref = mkdir->md_jaddref) != NULL)
14117 			db_printf(" jaddref %p jaddref state 0x%X",
14118 			    jaddref, jaddref->ja_state);
14119 		db_printf("\n");
14120 	}
14121 }
14122 
14123 /* exported to ffs_vfsops.c */
14124 extern void db_print_ffs(struct ufsmount *ump);
14125 void
14126 db_print_ffs(struct ufsmount *ump)
14127 {
14128 	db_printf("mp %p %s devvp %p fs %p su_wl %d su_deps %d su_req %d\n",
14129 	    ump->um_mountp, ump->um_mountp->mnt_stat.f_mntonname,
14130 	    ump->um_devvp, ump->um_fs, ump->softdep_on_worklist,
14131 	    ump->softdep_deps, ump->softdep_req);
14132 }
14133 
14134 #endif /* DDB */
14135 
14136 #endif /* SOFTUPDATES */
14137