1 /*- 2 * Copyright 1998, 2000 Marshall Kirk McKusick. 3 * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org> 4 * All rights reserved. 5 * 6 * The soft updates code is derived from the appendix of a University 7 * of Michigan technical report (Gregory R. Ganger and Yale N. Patt, 8 * "Soft Updates: A Solution to the Metadata Update Problem in File 9 * Systems", CSE-TR-254-95, August 1995). 10 * 11 * Further information about soft updates can be obtained from: 12 * 13 * Marshall Kirk McKusick http://www.mckusick.com/softdep/ 14 * 1614 Oxford Street mckusick@mckusick.com 15 * Berkeley, CA 94709-1608 +1-510-843-9542 16 * USA 17 * 18 * Redistribution and use in source and binary forms, with or without 19 * modification, are permitted provided that the following conditions 20 * are met: 21 * 22 * 1. Redistributions of source code must retain the above copyright 23 * notice, this list of conditions and the following disclaimer. 24 * 2. Redistributions in binary form must reproduce the above copyright 25 * notice, this list of conditions and the following disclaimer in the 26 * documentation and/or other materials provided with the distribution. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 29 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 31 * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, 32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 34 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 37 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 38 * 39 * from: @(#)ffs_softdep.c 9.59 (McKusick) 6/21/00 40 */ 41 42 #include <sys/cdefs.h> 43 __FBSDID("$FreeBSD$"); 44 45 #include "opt_ffs.h" 46 #include "opt_quota.h" 47 #include "opt_ddb.h" 48 49 /* 50 * For now we want the safety net that the DEBUG flag provides. 51 */ 52 #ifndef DEBUG 53 #define DEBUG 54 #endif 55 56 #include <sys/param.h> 57 #include <sys/kernel.h> 58 #include <sys/systm.h> 59 #include <sys/bio.h> 60 #include <sys/buf.h> 61 #include <sys/kdb.h> 62 #include <sys/kthread.h> 63 #include <sys/ktr.h> 64 #include <sys/limits.h> 65 #include <sys/lock.h> 66 #include <sys/malloc.h> 67 #include <sys/mount.h> 68 #include <sys/mutex.h> 69 #include <sys/namei.h> 70 #include <sys/priv.h> 71 #include <sys/proc.h> 72 #include <sys/rwlock.h> 73 #include <sys/stat.h> 74 #include <sys/sysctl.h> 75 #include <sys/syslog.h> 76 #include <sys/vnode.h> 77 #include <sys/conf.h> 78 79 #include <ufs/ufs/dir.h> 80 #include <ufs/ufs/extattr.h> 81 #include <ufs/ufs/quota.h> 82 #include <ufs/ufs/inode.h> 83 #include <ufs/ufs/ufsmount.h> 84 #include <ufs/ffs/fs.h> 85 #include <ufs/ffs/softdep.h> 86 #include <ufs/ffs/ffs_extern.h> 87 #include <ufs/ufs/ufs_extern.h> 88 89 #include <vm/vm.h> 90 #include <vm/vm_extern.h> 91 #include <vm/vm_object.h> 92 93 #include <geom/geom.h> 94 95 #include <ddb/ddb.h> 96 97 #define KTR_SUJ 0 /* Define to KTR_SPARE. */ 98 99 #ifndef SOFTUPDATES 100 101 int 102 softdep_flushfiles(oldmnt, flags, td) 103 struct mount *oldmnt; 104 int flags; 105 struct thread *td; 106 { 107 108 panic("softdep_flushfiles called"); 109 } 110 111 int 112 softdep_mount(devvp, mp, fs, cred) 113 struct vnode *devvp; 114 struct mount *mp; 115 struct fs *fs; 116 struct ucred *cred; 117 { 118 119 return (0); 120 } 121 122 void 123 softdep_initialize() 124 { 125 126 return; 127 } 128 129 void 130 softdep_uninitialize() 131 { 132 133 return; 134 } 135 136 void 137 softdep_unmount(mp) 138 struct mount *mp; 139 { 140 141 panic("softdep_unmount called"); 142 } 143 144 void 145 softdep_setup_sbupdate(ump, fs, bp) 146 struct ufsmount *ump; 147 struct fs *fs; 148 struct buf *bp; 149 { 150 151 panic("softdep_setup_sbupdate called"); 152 } 153 154 void 155 softdep_setup_inomapdep(bp, ip, newinum, mode) 156 struct buf *bp; 157 struct inode *ip; 158 ino_t newinum; 159 int mode; 160 { 161 162 panic("softdep_setup_inomapdep called"); 163 } 164 165 void 166 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags) 167 struct buf *bp; 168 struct mount *mp; 169 ufs2_daddr_t newblkno; 170 int frags; 171 int oldfrags; 172 { 173 174 panic("softdep_setup_blkmapdep called"); 175 } 176 177 void 178 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 179 struct inode *ip; 180 ufs_lbn_t lbn; 181 ufs2_daddr_t newblkno; 182 ufs2_daddr_t oldblkno; 183 long newsize; 184 long oldsize; 185 struct buf *bp; 186 { 187 188 panic("softdep_setup_allocdirect called"); 189 } 190 191 void 192 softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 193 struct inode *ip; 194 ufs_lbn_t lbn; 195 ufs2_daddr_t newblkno; 196 ufs2_daddr_t oldblkno; 197 long newsize; 198 long oldsize; 199 struct buf *bp; 200 { 201 202 panic("softdep_setup_allocext called"); 203 } 204 205 void 206 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 207 struct inode *ip; 208 ufs_lbn_t lbn; 209 struct buf *bp; 210 int ptrno; 211 ufs2_daddr_t newblkno; 212 ufs2_daddr_t oldblkno; 213 struct buf *nbp; 214 { 215 216 panic("softdep_setup_allocindir_page called"); 217 } 218 219 void 220 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 221 struct buf *nbp; 222 struct inode *ip; 223 struct buf *bp; 224 int ptrno; 225 ufs2_daddr_t newblkno; 226 { 227 228 panic("softdep_setup_allocindir_meta called"); 229 } 230 231 void 232 softdep_journal_freeblocks(ip, cred, length, flags) 233 struct inode *ip; 234 struct ucred *cred; 235 off_t length; 236 int flags; 237 { 238 239 panic("softdep_journal_freeblocks called"); 240 } 241 242 void 243 softdep_journal_fsync(ip) 244 struct inode *ip; 245 { 246 247 panic("softdep_journal_fsync called"); 248 } 249 250 void 251 softdep_setup_freeblocks(ip, length, flags) 252 struct inode *ip; 253 off_t length; 254 int flags; 255 { 256 257 panic("softdep_setup_freeblocks called"); 258 } 259 260 void 261 softdep_freefile(pvp, ino, mode) 262 struct vnode *pvp; 263 ino_t ino; 264 int mode; 265 { 266 267 panic("softdep_freefile called"); 268 } 269 270 int 271 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk) 272 struct buf *bp; 273 struct inode *dp; 274 off_t diroffset; 275 ino_t newinum; 276 struct buf *newdirbp; 277 int isnewblk; 278 { 279 280 panic("softdep_setup_directory_add called"); 281 } 282 283 void 284 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize) 285 struct buf *bp; 286 struct inode *dp; 287 caddr_t base; 288 caddr_t oldloc; 289 caddr_t newloc; 290 int entrysize; 291 { 292 293 panic("softdep_change_directoryentry_offset called"); 294 } 295 296 void 297 softdep_setup_remove(bp, dp, ip, isrmdir) 298 struct buf *bp; 299 struct inode *dp; 300 struct inode *ip; 301 int isrmdir; 302 { 303 304 panic("softdep_setup_remove called"); 305 } 306 307 void 308 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 309 struct buf *bp; 310 struct inode *dp; 311 struct inode *ip; 312 ino_t newinum; 313 int isrmdir; 314 { 315 316 panic("softdep_setup_directory_change called"); 317 } 318 319 void 320 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd) 321 struct mount *mp; 322 struct buf *bp; 323 ufs2_daddr_t blkno; 324 int frags; 325 struct workhead *wkhd; 326 { 327 328 panic("%s called", __FUNCTION__); 329 } 330 331 void 332 softdep_setup_inofree(mp, bp, ino, wkhd) 333 struct mount *mp; 334 struct buf *bp; 335 ino_t ino; 336 struct workhead *wkhd; 337 { 338 339 panic("%s called", __FUNCTION__); 340 } 341 342 void 343 softdep_setup_unlink(dp, ip) 344 struct inode *dp; 345 struct inode *ip; 346 { 347 348 panic("%s called", __FUNCTION__); 349 } 350 351 void 352 softdep_setup_link(dp, ip) 353 struct inode *dp; 354 struct inode *ip; 355 { 356 357 panic("%s called", __FUNCTION__); 358 } 359 360 void 361 softdep_revert_link(dp, ip) 362 struct inode *dp; 363 struct inode *ip; 364 { 365 366 panic("%s called", __FUNCTION__); 367 } 368 369 void 370 softdep_setup_rmdir(dp, ip) 371 struct inode *dp; 372 struct inode *ip; 373 { 374 375 panic("%s called", __FUNCTION__); 376 } 377 378 void 379 softdep_revert_rmdir(dp, ip) 380 struct inode *dp; 381 struct inode *ip; 382 { 383 384 panic("%s called", __FUNCTION__); 385 } 386 387 void 388 softdep_setup_create(dp, ip) 389 struct inode *dp; 390 struct inode *ip; 391 { 392 393 panic("%s called", __FUNCTION__); 394 } 395 396 void 397 softdep_revert_create(dp, ip) 398 struct inode *dp; 399 struct inode *ip; 400 { 401 402 panic("%s called", __FUNCTION__); 403 } 404 405 void 406 softdep_setup_mkdir(dp, ip) 407 struct inode *dp; 408 struct inode *ip; 409 { 410 411 panic("%s called", __FUNCTION__); 412 } 413 414 void 415 softdep_revert_mkdir(dp, ip) 416 struct inode *dp; 417 struct inode *ip; 418 { 419 420 panic("%s called", __FUNCTION__); 421 } 422 423 void 424 softdep_setup_dotdot_link(dp, ip) 425 struct inode *dp; 426 struct inode *ip; 427 { 428 429 panic("%s called", __FUNCTION__); 430 } 431 432 int 433 softdep_prealloc(vp, waitok) 434 struct vnode *vp; 435 int waitok; 436 { 437 438 panic("%s called", __FUNCTION__); 439 } 440 441 int 442 softdep_journal_lookup(mp, vpp) 443 struct mount *mp; 444 struct vnode **vpp; 445 { 446 447 return (ENOENT); 448 } 449 450 void 451 softdep_change_linkcnt(ip) 452 struct inode *ip; 453 { 454 455 panic("softdep_change_linkcnt called"); 456 } 457 458 void 459 softdep_load_inodeblock(ip) 460 struct inode *ip; 461 { 462 463 panic("softdep_load_inodeblock called"); 464 } 465 466 void 467 softdep_update_inodeblock(ip, bp, waitfor) 468 struct inode *ip; 469 struct buf *bp; 470 int waitfor; 471 { 472 473 panic("softdep_update_inodeblock called"); 474 } 475 476 int 477 softdep_fsync(vp) 478 struct vnode *vp; /* the "in_core" copy of the inode */ 479 { 480 481 return (0); 482 } 483 484 void 485 softdep_fsync_mountdev(vp) 486 struct vnode *vp; 487 { 488 489 return; 490 } 491 492 int 493 softdep_flushworklist(oldmnt, countp, td) 494 struct mount *oldmnt; 495 int *countp; 496 struct thread *td; 497 { 498 499 *countp = 0; 500 return (0); 501 } 502 503 int 504 softdep_sync_metadata(struct vnode *vp) 505 { 506 507 panic("softdep_sync_metadata called"); 508 } 509 510 int 511 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor) 512 { 513 514 panic("softdep_sync_buf called"); 515 } 516 517 int 518 softdep_slowdown(vp) 519 struct vnode *vp; 520 { 521 522 panic("softdep_slowdown called"); 523 } 524 525 int 526 softdep_request_cleanup(fs, vp, cred, resource) 527 struct fs *fs; 528 struct vnode *vp; 529 struct ucred *cred; 530 int resource; 531 { 532 533 return (0); 534 } 535 536 int 537 softdep_check_suspend(struct mount *mp, 538 struct vnode *devvp, 539 int softdep_depcnt, 540 int softdep_accdepcnt, 541 int secondary_writes, 542 int secondary_accwrites) 543 { 544 struct bufobj *bo; 545 int error; 546 547 (void) softdep_depcnt, 548 (void) softdep_accdepcnt; 549 550 bo = &devvp->v_bufobj; 551 ASSERT_BO_WLOCKED(bo); 552 553 MNT_ILOCK(mp); 554 while (mp->mnt_secondary_writes != 0) { 555 BO_UNLOCK(bo); 556 msleep(&mp->mnt_secondary_writes, MNT_MTX(mp), 557 (PUSER - 1) | PDROP, "secwr", 0); 558 BO_LOCK(bo); 559 MNT_ILOCK(mp); 560 } 561 562 /* 563 * Reasons for needing more work before suspend: 564 * - Dirty buffers on devvp. 565 * - Secondary writes occurred after start of vnode sync loop 566 */ 567 error = 0; 568 if (bo->bo_numoutput > 0 || 569 bo->bo_dirty.bv_cnt > 0 || 570 secondary_writes != 0 || 571 mp->mnt_secondary_writes != 0 || 572 secondary_accwrites != mp->mnt_secondary_accwrites) 573 error = EAGAIN; 574 BO_UNLOCK(bo); 575 return (error); 576 } 577 578 void 579 softdep_get_depcounts(struct mount *mp, 580 int *softdepactivep, 581 int *softdepactiveaccp) 582 { 583 (void) mp; 584 *softdepactivep = 0; 585 *softdepactiveaccp = 0; 586 } 587 588 void 589 softdep_buf_append(bp, wkhd) 590 struct buf *bp; 591 struct workhead *wkhd; 592 { 593 594 panic("softdep_buf_appendwork called"); 595 } 596 597 void 598 softdep_inode_append(ip, cred, wkhd) 599 struct inode *ip; 600 struct ucred *cred; 601 struct workhead *wkhd; 602 { 603 604 panic("softdep_inode_appendwork called"); 605 } 606 607 void 608 softdep_freework(wkhd) 609 struct workhead *wkhd; 610 { 611 612 panic("softdep_freework called"); 613 } 614 615 #else 616 617 FEATURE(softupdates, "FFS soft-updates support"); 618 619 static SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW, 0, 620 "soft updates stats"); 621 static SYSCTL_NODE(_debug_softdep, OID_AUTO, total, CTLFLAG_RW, 0, 622 "total dependencies allocated"); 623 static SYSCTL_NODE(_debug_softdep, OID_AUTO, highuse, CTLFLAG_RW, 0, 624 "high use dependencies allocated"); 625 static SYSCTL_NODE(_debug_softdep, OID_AUTO, current, CTLFLAG_RW, 0, 626 "current dependencies allocated"); 627 static SYSCTL_NODE(_debug_softdep, OID_AUTO, write, CTLFLAG_RW, 0, 628 "current dependencies written"); 629 630 unsigned long dep_current[D_LAST + 1]; 631 unsigned long dep_highuse[D_LAST + 1]; 632 unsigned long dep_total[D_LAST + 1]; 633 unsigned long dep_write[D_LAST + 1]; 634 635 #define SOFTDEP_TYPE(type, str, long) \ 636 static MALLOC_DEFINE(M_ ## type, #str, long); \ 637 SYSCTL_ULONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD, \ 638 &dep_total[D_ ## type], 0, ""); \ 639 SYSCTL_ULONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD, \ 640 &dep_current[D_ ## type], 0, ""); \ 641 SYSCTL_ULONG(_debug_softdep_highuse, OID_AUTO, str, CTLFLAG_RD, \ 642 &dep_highuse[D_ ## type], 0, ""); \ 643 SYSCTL_ULONG(_debug_softdep_write, OID_AUTO, str, CTLFLAG_RD, \ 644 &dep_write[D_ ## type], 0, ""); 645 646 SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies"); 647 SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies"); 648 SOFTDEP_TYPE(BMSAFEMAP, bmsafemap, 649 "Block or frag allocated from cyl group map"); 650 SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency"); 651 SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode"); 652 SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies"); 653 SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block"); 654 SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode"); 655 SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode"); 656 SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated"); 657 SOFTDEP_TYPE(DIRADD, diradd, "New directory entry"); 658 SOFTDEP_TYPE(MKDIR, mkdir, "New directory"); 659 SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted"); 660 SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block"); 661 SOFTDEP_TYPE(FREEWORK, freework, "free an inode block"); 662 SOFTDEP_TYPE(FREEDEP, freedep, "track a block free"); 663 SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add"); 664 SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove"); 665 SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move"); 666 SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block"); 667 SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block"); 668 SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag"); 669 SOFTDEP_TYPE(JSEG, jseg, "Journal segment"); 670 SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete"); 671 SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency"); 672 SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation"); 673 SOFTDEP_TYPE(JFSYNC, jfsync, "Journal fsync complete"); 674 675 static MALLOC_DEFINE(M_SENTINEL, "sentinel", "Worklist sentinel"); 676 677 static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes"); 678 static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations"); 679 static MALLOC_DEFINE(M_MOUNTDATA, "softdep", "Softdep per-mount data"); 680 681 #define M_SOFTDEP_FLAGS (M_WAITOK) 682 683 /* 684 * translate from workitem type to memory type 685 * MUST match the defines above, such that memtype[D_XXX] == M_XXX 686 */ 687 static struct malloc_type *memtype[] = { 688 M_PAGEDEP, 689 M_INODEDEP, 690 M_BMSAFEMAP, 691 M_NEWBLK, 692 M_ALLOCDIRECT, 693 M_INDIRDEP, 694 M_ALLOCINDIR, 695 M_FREEFRAG, 696 M_FREEBLKS, 697 M_FREEFILE, 698 M_DIRADD, 699 M_MKDIR, 700 M_DIRREM, 701 M_NEWDIRBLK, 702 M_FREEWORK, 703 M_FREEDEP, 704 M_JADDREF, 705 M_JREMREF, 706 M_JMVREF, 707 M_JNEWBLK, 708 M_JFREEBLK, 709 M_JFREEFRAG, 710 M_JSEG, 711 M_JSEGDEP, 712 M_SBDEP, 713 M_JTRUNC, 714 M_JFSYNC, 715 M_SENTINEL 716 }; 717 718 #define DtoM(type) (memtype[type]) 719 720 /* 721 * Names of malloc types. 722 */ 723 #define TYPENAME(type) \ 724 ((unsigned)(type) <= D_LAST ? memtype[type]->ks_shortdesc : "???") 725 /* 726 * End system adaptation definitions. 727 */ 728 729 #define DOTDOT_OFFSET offsetof(struct dirtemplate, dotdot_ino) 730 #define DOT_OFFSET offsetof(struct dirtemplate, dot_ino) 731 732 /* 733 * Internal function prototypes. 734 */ 735 static void check_clear_deps(struct mount *); 736 static void softdep_error(char *, int); 737 static int softdep_process_worklist(struct mount *, int); 738 static int softdep_waitidle(struct mount *); 739 static void drain_output(struct vnode *); 740 static struct buf *getdirtybuf(struct buf *, struct rwlock *, int); 741 static void clear_remove(struct mount *); 742 static void clear_inodedeps(struct mount *); 743 static void unlinked_inodedep(struct mount *, struct inodedep *); 744 static void clear_unlinked_inodedep(struct inodedep *); 745 static struct inodedep *first_unlinked_inodedep(struct ufsmount *); 746 static int flush_pagedep_deps(struct vnode *, struct mount *, 747 struct diraddhd *); 748 static int free_pagedep(struct pagedep *); 749 static int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t); 750 static int flush_inodedep_deps(struct vnode *, struct mount *, ino_t); 751 static int flush_deplist(struct allocdirectlst *, int, int *); 752 static int sync_cgs(struct mount *, int); 753 static int handle_written_filepage(struct pagedep *, struct buf *); 754 static int handle_written_sbdep(struct sbdep *, struct buf *); 755 static void initiate_write_sbdep(struct sbdep *); 756 static void diradd_inode_written(struct diradd *, struct inodedep *); 757 static int handle_written_indirdep(struct indirdep *, struct buf *, 758 struct buf**); 759 static int handle_written_inodeblock(struct inodedep *, struct buf *); 760 static int jnewblk_rollforward(struct jnewblk *, struct fs *, struct cg *, 761 uint8_t *); 762 static int handle_written_bmsafemap(struct bmsafemap *, struct buf *); 763 static void handle_written_jaddref(struct jaddref *); 764 static void handle_written_jremref(struct jremref *); 765 static void handle_written_jseg(struct jseg *, struct buf *); 766 static void handle_written_jnewblk(struct jnewblk *); 767 static void handle_written_jblkdep(struct jblkdep *); 768 static void handle_written_jfreefrag(struct jfreefrag *); 769 static void complete_jseg(struct jseg *); 770 static void complete_jsegs(struct jseg *); 771 static void jseg_write(struct ufsmount *ump, struct jseg *, uint8_t *); 772 static void jaddref_write(struct jaddref *, struct jseg *, uint8_t *); 773 static void jremref_write(struct jremref *, struct jseg *, uint8_t *); 774 static void jmvref_write(struct jmvref *, struct jseg *, uint8_t *); 775 static void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *); 776 static void jfsync_write(struct jfsync *, struct jseg *, uint8_t *data); 777 static void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *); 778 static void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *); 779 static void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *); 780 static inline void inoref_write(struct inoref *, struct jseg *, 781 struct jrefrec *); 782 static void handle_allocdirect_partdone(struct allocdirect *, 783 struct workhead *); 784 static struct jnewblk *cancel_newblk(struct newblk *, struct worklist *, 785 struct workhead *); 786 static void indirdep_complete(struct indirdep *); 787 static int indirblk_lookup(struct mount *, ufs2_daddr_t); 788 static void indirblk_insert(struct freework *); 789 static void indirblk_remove(struct freework *); 790 static void handle_allocindir_partdone(struct allocindir *); 791 static void initiate_write_filepage(struct pagedep *, struct buf *); 792 static void initiate_write_indirdep(struct indirdep*, struct buf *); 793 static void handle_written_mkdir(struct mkdir *, int); 794 static int jnewblk_rollback(struct jnewblk *, struct fs *, struct cg *, 795 uint8_t *); 796 static void initiate_write_bmsafemap(struct bmsafemap *, struct buf *); 797 static void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *); 798 static void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *); 799 static void handle_workitem_freefile(struct freefile *); 800 static int handle_workitem_remove(struct dirrem *, int); 801 static struct dirrem *newdirrem(struct buf *, struct inode *, 802 struct inode *, int, struct dirrem **); 803 static struct indirdep *indirdep_lookup(struct mount *, struct inode *, 804 struct buf *); 805 static void cancel_indirdep(struct indirdep *, struct buf *, 806 struct freeblks *); 807 static void free_indirdep(struct indirdep *); 808 static void free_diradd(struct diradd *, struct workhead *); 809 static void merge_diradd(struct inodedep *, struct diradd *); 810 static void complete_diradd(struct diradd *); 811 static struct diradd *diradd_lookup(struct pagedep *, int); 812 static struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *, 813 struct jremref *); 814 static struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *, 815 struct jremref *); 816 static void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *, 817 struct jremref *, struct jremref *); 818 static void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *, 819 struct jremref *); 820 static void cancel_allocindir(struct allocindir *, struct buf *bp, 821 struct freeblks *, int); 822 static int setup_trunc_indir(struct freeblks *, struct inode *, 823 ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t); 824 static void complete_trunc_indir(struct freework *); 825 static void trunc_indirdep(struct indirdep *, struct freeblks *, struct buf *, 826 int); 827 static void complete_mkdir(struct mkdir *); 828 static void free_newdirblk(struct newdirblk *); 829 static void free_jremref(struct jremref *); 830 static void free_jaddref(struct jaddref *); 831 static void free_jsegdep(struct jsegdep *); 832 static void free_jsegs(struct jblocks *); 833 static void rele_jseg(struct jseg *); 834 static void free_jseg(struct jseg *, struct jblocks *); 835 static void free_jnewblk(struct jnewblk *); 836 static void free_jblkdep(struct jblkdep *); 837 static void free_jfreefrag(struct jfreefrag *); 838 static void free_freedep(struct freedep *); 839 static void journal_jremref(struct dirrem *, struct jremref *, 840 struct inodedep *); 841 static void cancel_jnewblk(struct jnewblk *, struct workhead *); 842 static int cancel_jaddref(struct jaddref *, struct inodedep *, 843 struct workhead *); 844 static void cancel_jfreefrag(struct jfreefrag *); 845 static inline void setup_freedirect(struct freeblks *, struct inode *, 846 int, int); 847 static inline void setup_freeext(struct freeblks *, struct inode *, int, int); 848 static inline void setup_freeindir(struct freeblks *, struct inode *, int, 849 ufs_lbn_t, int); 850 static inline struct freeblks *newfreeblks(struct mount *, struct inode *); 851 static void freeblks_free(struct ufsmount *, struct freeblks *, int); 852 static void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t); 853 static ufs2_daddr_t blkcount(struct fs *, ufs2_daddr_t, off_t); 854 static int trunc_check_buf(struct buf *, int *, ufs_lbn_t, int, int); 855 static void trunc_dependencies(struct inode *, struct freeblks *, ufs_lbn_t, 856 int, int); 857 static void trunc_pages(struct inode *, off_t, ufs2_daddr_t, int); 858 static int cancel_pagedep(struct pagedep *, struct freeblks *, int); 859 static int deallocate_dependencies(struct buf *, struct freeblks *, int); 860 static void newblk_freefrag(struct newblk*); 861 static void free_newblk(struct newblk *); 862 static void cancel_allocdirect(struct allocdirectlst *, 863 struct allocdirect *, struct freeblks *); 864 static int check_inode_unwritten(struct inodedep *); 865 static int free_inodedep(struct inodedep *); 866 static void freework_freeblock(struct freework *); 867 static void freework_enqueue(struct freework *); 868 static int handle_workitem_freeblocks(struct freeblks *, int); 869 static int handle_complete_freeblocks(struct freeblks *, int); 870 static void handle_workitem_indirblk(struct freework *); 871 static void handle_written_freework(struct freework *); 872 static void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *); 873 static struct worklist *jnewblk_merge(struct worklist *, struct worklist *, 874 struct workhead *); 875 static struct freefrag *setup_allocindir_phase2(struct buf *, struct inode *, 876 struct inodedep *, struct allocindir *, ufs_lbn_t); 877 static struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t, 878 ufs2_daddr_t, ufs_lbn_t); 879 static void handle_workitem_freefrag(struct freefrag *); 880 static struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long, 881 ufs_lbn_t); 882 static void allocdirect_merge(struct allocdirectlst *, 883 struct allocdirect *, struct allocdirect *); 884 static struct freefrag *allocindir_merge(struct allocindir *, 885 struct allocindir *); 886 static int bmsafemap_find(struct bmsafemap_hashhead *, int, 887 struct bmsafemap **); 888 static struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *, 889 int cg, struct bmsafemap *); 890 static int newblk_find(struct newblk_hashhead *, ufs2_daddr_t, int, 891 struct newblk **); 892 static int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **); 893 static int inodedep_find(struct inodedep_hashhead *, ino_t, 894 struct inodedep **); 895 static int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **); 896 static int pagedep_lookup(struct mount *, struct buf *bp, ino_t, ufs_lbn_t, 897 int, struct pagedep **); 898 static int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t, 899 struct pagedep **); 900 static void pause_timer(void *); 901 static int request_cleanup(struct mount *, int); 902 static int process_worklist_item(struct mount *, int, int); 903 static void process_removes(struct vnode *); 904 static void process_truncates(struct vnode *); 905 static void jwork_move(struct workhead *, struct workhead *); 906 static void jwork_insert(struct workhead *, struct jsegdep *); 907 static void add_to_worklist(struct worklist *, int); 908 static void wake_worklist(struct worklist *); 909 static void wait_worklist(struct worklist *, char *); 910 static void remove_from_worklist(struct worklist *); 911 static void softdep_flush(void *); 912 static void softdep_flushjournal(struct mount *); 913 static int softdep_speedup(struct ufsmount *); 914 static void worklist_speedup(struct mount *); 915 static int journal_mount(struct mount *, struct fs *, struct ucred *); 916 static void journal_unmount(struct ufsmount *); 917 static int journal_space(struct ufsmount *, int); 918 static void journal_suspend(struct ufsmount *); 919 static int journal_unsuspend(struct ufsmount *ump); 920 static void softdep_prelink(struct vnode *, struct vnode *); 921 static void add_to_journal(struct worklist *); 922 static void remove_from_journal(struct worklist *); 923 static void softdep_process_journal(struct mount *, struct worklist *, int); 924 static struct jremref *newjremref(struct dirrem *, struct inode *, 925 struct inode *ip, off_t, nlink_t); 926 static struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t, 927 uint16_t); 928 static inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t, 929 uint16_t); 930 static inline struct jsegdep *inoref_jseg(struct inoref *); 931 static struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t); 932 static struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t, 933 ufs2_daddr_t, int); 934 static void adjust_newfreework(struct freeblks *, int); 935 static struct jtrunc *newjtrunc(struct freeblks *, off_t, int); 936 static void move_newblock_dep(struct jaddref *, struct inodedep *); 937 static void cancel_jfreeblk(struct freeblks *, ufs2_daddr_t); 938 static struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *, 939 ufs2_daddr_t, long, ufs_lbn_t); 940 static struct freework *newfreework(struct ufsmount *, struct freeblks *, 941 struct freework *, ufs_lbn_t, ufs2_daddr_t, int, int, int); 942 static int jwait(struct worklist *, int); 943 static struct inodedep *inodedep_lookup_ip(struct inode *); 944 static int bmsafemap_backgroundwrite(struct bmsafemap *, struct buf *); 945 static struct freefile *handle_bufwait(struct inodedep *, struct workhead *); 946 static void handle_jwork(struct workhead *); 947 static struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *, 948 struct mkdir **); 949 static struct jblocks *jblocks_create(void); 950 static ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *); 951 static void jblocks_free(struct jblocks *, struct mount *, int); 952 static void jblocks_destroy(struct jblocks *); 953 static void jblocks_add(struct jblocks *, ufs2_daddr_t, int); 954 955 /* 956 * Exported softdep operations. 957 */ 958 static void softdep_disk_io_initiation(struct buf *); 959 static void softdep_disk_write_complete(struct buf *); 960 static void softdep_deallocate_dependencies(struct buf *); 961 static int softdep_count_dependencies(struct buf *bp, int); 962 963 /* 964 * Global lock over all of soft updates. 965 */ 966 static struct mtx lk; 967 MTX_SYSINIT(softdep_lock, &lk, "Global Softdep Lock", MTX_DEF); 968 969 #define ACQUIRE_GBLLOCK(lk) mtx_lock(lk) 970 #define FREE_GBLLOCK(lk) mtx_unlock(lk) 971 #define GBLLOCK_OWNED(lk) mtx_assert((lk), MA_OWNED) 972 973 /* 974 * Per-filesystem soft-updates locking. 975 */ 976 #define LOCK_PTR(ump) (&(ump)->um_softdep->sd_fslock) 977 #define TRY_ACQUIRE_LOCK(ump) rw_try_wlock(&(ump)->um_softdep->sd_fslock) 978 #define ACQUIRE_LOCK(ump) rw_wlock(&(ump)->um_softdep->sd_fslock) 979 #define FREE_LOCK(ump) rw_wunlock(&(ump)->um_softdep->sd_fslock) 980 #define LOCK_OWNED(ump) rw_assert(&(ump)->um_softdep->sd_fslock, \ 981 RA_WLOCKED) 982 983 #define BUF_AREC(bp) lockallowrecurse(&(bp)->b_lock) 984 #define BUF_NOREC(bp) lockdisablerecurse(&(bp)->b_lock) 985 986 /* 987 * Worklist queue management. 988 * These routines require that the lock be held. 989 */ 990 #ifndef /* NOT */ DEBUG 991 #define WORKLIST_INSERT(head, item) do { \ 992 (item)->wk_state |= ONWORKLIST; \ 993 LIST_INSERT_HEAD(head, item, wk_list); \ 994 } while (0) 995 #define WORKLIST_REMOVE(item) do { \ 996 (item)->wk_state &= ~ONWORKLIST; \ 997 LIST_REMOVE(item, wk_list); \ 998 } while (0) 999 #define WORKLIST_INSERT_UNLOCKED WORKLIST_INSERT 1000 #define WORKLIST_REMOVE_UNLOCKED WORKLIST_REMOVE 1001 1002 #else /* DEBUG */ 1003 static void worklist_insert(struct workhead *, struct worklist *, int); 1004 static void worklist_remove(struct worklist *, int); 1005 1006 #define WORKLIST_INSERT(head, item) worklist_insert(head, item, 1) 1007 #define WORKLIST_INSERT_UNLOCKED(head, item) worklist_insert(head, item, 0) 1008 #define WORKLIST_REMOVE(item) worklist_remove(item, 1) 1009 #define WORKLIST_REMOVE_UNLOCKED(item) worklist_remove(item, 0) 1010 1011 static void 1012 worklist_insert(head, item, locked) 1013 struct workhead *head; 1014 struct worklist *item; 1015 int locked; 1016 { 1017 1018 if (locked) 1019 LOCK_OWNED(VFSTOUFS(item->wk_mp)); 1020 if (item->wk_state & ONWORKLIST) 1021 panic("worklist_insert: %p %s(0x%X) already on list", 1022 item, TYPENAME(item->wk_type), item->wk_state); 1023 item->wk_state |= ONWORKLIST; 1024 LIST_INSERT_HEAD(head, item, wk_list); 1025 } 1026 1027 static void 1028 worklist_remove(item, locked) 1029 struct worklist *item; 1030 int locked; 1031 { 1032 1033 if (locked) 1034 LOCK_OWNED(VFSTOUFS(item->wk_mp)); 1035 if ((item->wk_state & ONWORKLIST) == 0) 1036 panic("worklist_remove: %p %s(0x%X) not on list", 1037 item, TYPENAME(item->wk_type), item->wk_state); 1038 item->wk_state &= ~ONWORKLIST; 1039 LIST_REMOVE(item, wk_list); 1040 } 1041 #endif /* DEBUG */ 1042 1043 /* 1044 * Merge two jsegdeps keeping only the oldest one as newer references 1045 * can't be discarded until after older references. 1046 */ 1047 static inline struct jsegdep * 1048 jsegdep_merge(struct jsegdep *one, struct jsegdep *two) 1049 { 1050 struct jsegdep *swp; 1051 1052 if (two == NULL) 1053 return (one); 1054 1055 if (one->jd_seg->js_seq > two->jd_seg->js_seq) { 1056 swp = one; 1057 one = two; 1058 two = swp; 1059 } 1060 WORKLIST_REMOVE(&two->jd_list); 1061 free_jsegdep(two); 1062 1063 return (one); 1064 } 1065 1066 /* 1067 * If two freedeps are compatible free one to reduce list size. 1068 */ 1069 static inline struct freedep * 1070 freedep_merge(struct freedep *one, struct freedep *two) 1071 { 1072 if (two == NULL) 1073 return (one); 1074 1075 if (one->fd_freework == two->fd_freework) { 1076 WORKLIST_REMOVE(&two->fd_list); 1077 free_freedep(two); 1078 } 1079 return (one); 1080 } 1081 1082 /* 1083 * Move journal work from one list to another. Duplicate freedeps and 1084 * jsegdeps are coalesced to keep the lists as small as possible. 1085 */ 1086 static void 1087 jwork_move(dst, src) 1088 struct workhead *dst; 1089 struct workhead *src; 1090 { 1091 struct freedep *freedep; 1092 struct jsegdep *jsegdep; 1093 struct worklist *wkn; 1094 struct worklist *wk; 1095 1096 KASSERT(dst != src, 1097 ("jwork_move: dst == src")); 1098 freedep = NULL; 1099 jsegdep = NULL; 1100 LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) { 1101 if (wk->wk_type == D_JSEGDEP) 1102 jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep); 1103 else if (wk->wk_type == D_FREEDEP) 1104 freedep = freedep_merge(WK_FREEDEP(wk), freedep); 1105 } 1106 1107 while ((wk = LIST_FIRST(src)) != NULL) { 1108 WORKLIST_REMOVE(wk); 1109 WORKLIST_INSERT(dst, wk); 1110 if (wk->wk_type == D_JSEGDEP) { 1111 jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep); 1112 continue; 1113 } 1114 if (wk->wk_type == D_FREEDEP) 1115 freedep = freedep_merge(WK_FREEDEP(wk), freedep); 1116 } 1117 } 1118 1119 static void 1120 jwork_insert(dst, jsegdep) 1121 struct workhead *dst; 1122 struct jsegdep *jsegdep; 1123 { 1124 struct jsegdep *jsegdepn; 1125 struct worklist *wk; 1126 1127 LIST_FOREACH(wk, dst, wk_list) 1128 if (wk->wk_type == D_JSEGDEP) 1129 break; 1130 if (wk == NULL) { 1131 WORKLIST_INSERT(dst, &jsegdep->jd_list); 1132 return; 1133 } 1134 jsegdepn = WK_JSEGDEP(wk); 1135 if (jsegdep->jd_seg->js_seq < jsegdepn->jd_seg->js_seq) { 1136 WORKLIST_REMOVE(wk); 1137 free_jsegdep(jsegdepn); 1138 WORKLIST_INSERT(dst, &jsegdep->jd_list); 1139 } else 1140 free_jsegdep(jsegdep); 1141 } 1142 1143 /* 1144 * Routines for tracking and managing workitems. 1145 */ 1146 static void workitem_free(struct worklist *, int); 1147 static void workitem_alloc(struct worklist *, int, struct mount *); 1148 static void workitem_reassign(struct worklist *, int); 1149 1150 #define WORKITEM_FREE(item, type) \ 1151 workitem_free((struct worklist *)(item), (type)) 1152 #define WORKITEM_REASSIGN(item, type) \ 1153 workitem_reassign((struct worklist *)(item), (type)) 1154 1155 static void 1156 workitem_free(item, type) 1157 struct worklist *item; 1158 int type; 1159 { 1160 struct ufsmount *ump; 1161 1162 #ifdef DEBUG 1163 if (item->wk_state & ONWORKLIST) 1164 panic("workitem_free: %s(0x%X) still on list", 1165 TYPENAME(item->wk_type), item->wk_state); 1166 if (item->wk_type != type && type != D_NEWBLK) 1167 panic("workitem_free: type mismatch %s != %s", 1168 TYPENAME(item->wk_type), TYPENAME(type)); 1169 #endif 1170 if (item->wk_state & IOWAITING) 1171 wakeup(item); 1172 ump = VFSTOUFS(item->wk_mp); 1173 LOCK_OWNED(ump); 1174 KASSERT(ump->softdep_deps > 0, 1175 ("workitem_free: %s: softdep_deps going negative", 1176 ump->um_fs->fs_fsmnt)); 1177 if (--ump->softdep_deps == 0 && ump->softdep_req) 1178 wakeup(&ump->softdep_deps); 1179 KASSERT(dep_current[item->wk_type] > 0, 1180 ("workitem_free: %s: dep_current[%s] going negative", 1181 ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1182 KASSERT(ump->softdep_curdeps[item->wk_type] > 0, 1183 ("workitem_free: %s: softdep_curdeps[%s] going negative", 1184 ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1185 atomic_subtract_long(&dep_current[item->wk_type], 1); 1186 ump->softdep_curdeps[item->wk_type] -= 1; 1187 free(item, DtoM(type)); 1188 } 1189 1190 static void 1191 workitem_alloc(item, type, mp) 1192 struct worklist *item; 1193 int type; 1194 struct mount *mp; 1195 { 1196 struct ufsmount *ump; 1197 1198 item->wk_type = type; 1199 item->wk_mp = mp; 1200 item->wk_state = 0; 1201 1202 ump = VFSTOUFS(mp); 1203 ACQUIRE_GBLLOCK(&lk); 1204 dep_current[type]++; 1205 if (dep_current[type] > dep_highuse[type]) 1206 dep_highuse[type] = dep_current[type]; 1207 dep_total[type]++; 1208 FREE_GBLLOCK(&lk); 1209 ACQUIRE_LOCK(ump); 1210 ump->softdep_curdeps[type] += 1; 1211 ump->softdep_deps++; 1212 ump->softdep_accdeps++; 1213 FREE_LOCK(ump); 1214 } 1215 1216 static void 1217 workitem_reassign(item, newtype) 1218 struct worklist *item; 1219 int newtype; 1220 { 1221 struct ufsmount *ump; 1222 1223 ump = VFSTOUFS(item->wk_mp); 1224 LOCK_OWNED(ump); 1225 KASSERT(ump->softdep_curdeps[item->wk_type] > 0, 1226 ("workitem_reassign: %s: softdep_curdeps[%s] going negative", 1227 VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1228 ump->softdep_curdeps[item->wk_type] -= 1; 1229 ump->softdep_curdeps[newtype] += 1; 1230 KASSERT(dep_current[item->wk_type] > 0, 1231 ("workitem_reassign: %s: dep_current[%s] going negative", 1232 VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1233 ACQUIRE_GBLLOCK(&lk); 1234 dep_current[newtype]++; 1235 dep_current[item->wk_type]--; 1236 if (dep_current[newtype] > dep_highuse[newtype]) 1237 dep_highuse[newtype] = dep_current[newtype]; 1238 dep_total[newtype]++; 1239 FREE_GBLLOCK(&lk); 1240 item->wk_type = newtype; 1241 } 1242 1243 /* 1244 * Workitem queue management 1245 */ 1246 static int max_softdeps; /* maximum number of structs before slowdown */ 1247 static int tickdelay = 2; /* number of ticks to pause during slowdown */ 1248 static int proc_waiting; /* tracks whether we have a timeout posted */ 1249 static int *stat_countp; /* statistic to count in proc_waiting timeout */ 1250 static struct callout softdep_callout; 1251 static int req_clear_inodedeps; /* syncer process flush some inodedeps */ 1252 static int req_clear_remove; /* syncer process flush some freeblks */ 1253 static int softdep_flushcache = 0; /* Should we do BIO_FLUSH? */ 1254 1255 /* 1256 * runtime statistics 1257 */ 1258 static int stat_flush_threads; /* number of softdep flushing threads */ 1259 static int stat_worklist_push; /* number of worklist cleanups */ 1260 static int stat_blk_limit_push; /* number of times block limit neared */ 1261 static int stat_ino_limit_push; /* number of times inode limit neared */ 1262 static int stat_blk_limit_hit; /* number of times block slowdown imposed */ 1263 static int stat_ino_limit_hit; /* number of times inode slowdown imposed */ 1264 static int stat_sync_limit_hit; /* number of synchronous slowdowns imposed */ 1265 static int stat_indir_blk_ptrs; /* bufs redirtied as indir ptrs not written */ 1266 static int stat_inode_bitmap; /* bufs redirtied as inode bitmap not written */ 1267 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */ 1268 static int stat_dir_entry; /* bufs redirtied as dir entry cannot write */ 1269 static int stat_jaddref; /* bufs redirtied as ino bitmap can not write */ 1270 static int stat_jnewblk; /* bufs redirtied as blk bitmap can not write */ 1271 static int stat_journal_min; /* Times hit journal min threshold */ 1272 static int stat_journal_low; /* Times hit journal low threshold */ 1273 static int stat_journal_wait; /* Times blocked in jwait(). */ 1274 static int stat_jwait_filepage; /* Times blocked in jwait() for filepage. */ 1275 static int stat_jwait_freeblks; /* Times blocked in jwait() for freeblks. */ 1276 static int stat_jwait_inode; /* Times blocked in jwait() for inodes. */ 1277 static int stat_jwait_newblk; /* Times blocked in jwait() for newblks. */ 1278 static int stat_cleanup_high_delay; /* Maximum cleanup delay (in ticks) */ 1279 static int stat_cleanup_blkrequests; /* Number of block cleanup requests */ 1280 static int stat_cleanup_inorequests; /* Number of inode cleanup requests */ 1281 static int stat_cleanup_retries; /* Number of cleanups that needed to flush */ 1282 static int stat_cleanup_failures; /* Number of cleanup requests that failed */ 1283 static int stat_emptyjblocks; /* Number of potentially empty journal blocks */ 1284 1285 SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW, 1286 &max_softdeps, 0, ""); 1287 SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW, 1288 &tickdelay, 0, ""); 1289 SYSCTL_INT(_debug_softdep, OID_AUTO, flush_threads, CTLFLAG_RD, 1290 &stat_flush_threads, 0, ""); 1291 SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push, CTLFLAG_RW, 1292 &stat_worklist_push, 0,""); 1293 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push, CTLFLAG_RW, 1294 &stat_blk_limit_push, 0,""); 1295 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push, CTLFLAG_RW, 1296 &stat_ino_limit_push, 0,""); 1297 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit, CTLFLAG_RW, 1298 &stat_blk_limit_hit, 0, ""); 1299 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit, CTLFLAG_RW, 1300 &stat_ino_limit_hit, 0, ""); 1301 SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit, CTLFLAG_RW, 1302 &stat_sync_limit_hit, 0, ""); 1303 SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW, 1304 &stat_indir_blk_ptrs, 0, ""); 1305 SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap, CTLFLAG_RW, 1306 &stat_inode_bitmap, 0, ""); 1307 SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW, 1308 &stat_direct_blk_ptrs, 0, ""); 1309 SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry, CTLFLAG_RW, 1310 &stat_dir_entry, 0, ""); 1311 SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback, CTLFLAG_RW, 1312 &stat_jaddref, 0, ""); 1313 SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback, CTLFLAG_RW, 1314 &stat_jnewblk, 0, ""); 1315 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low, CTLFLAG_RW, 1316 &stat_journal_low, 0, ""); 1317 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min, CTLFLAG_RW, 1318 &stat_journal_min, 0, ""); 1319 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait, CTLFLAG_RW, 1320 &stat_journal_wait, 0, ""); 1321 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage, CTLFLAG_RW, 1322 &stat_jwait_filepage, 0, ""); 1323 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks, CTLFLAG_RW, 1324 &stat_jwait_freeblks, 0, ""); 1325 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode, CTLFLAG_RW, 1326 &stat_jwait_inode, 0, ""); 1327 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk, CTLFLAG_RW, 1328 &stat_jwait_newblk, 0, ""); 1329 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_blkrequests, CTLFLAG_RW, 1330 &stat_cleanup_blkrequests, 0, ""); 1331 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_inorequests, CTLFLAG_RW, 1332 &stat_cleanup_inorequests, 0, ""); 1333 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_high_delay, CTLFLAG_RW, 1334 &stat_cleanup_high_delay, 0, ""); 1335 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_retries, CTLFLAG_RW, 1336 &stat_cleanup_retries, 0, ""); 1337 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_failures, CTLFLAG_RW, 1338 &stat_cleanup_failures, 0, ""); 1339 SYSCTL_INT(_debug_softdep, OID_AUTO, flushcache, CTLFLAG_RW, 1340 &softdep_flushcache, 0, ""); 1341 SYSCTL_INT(_debug_softdep, OID_AUTO, emptyjblocks, CTLFLAG_RD, 1342 &stat_emptyjblocks, 0, ""); 1343 1344 SYSCTL_DECL(_vfs_ffs); 1345 1346 /* Whether to recompute the summary at mount time */ 1347 static int compute_summary_at_mount = 0; 1348 SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW, 1349 &compute_summary_at_mount, 0, "Recompute summary at mount"); 1350 static int print_threads = 0; 1351 SYSCTL_INT(_debug_softdep, OID_AUTO, print_threads, CTLFLAG_RW, 1352 &print_threads, 0, "Notify flusher thread start/stop"); 1353 1354 /* List of all filesystems mounted with soft updates */ 1355 static TAILQ_HEAD(, mount_softdeps) softdepmounts; 1356 1357 /* 1358 * This function cleans the worklist for a filesystem. 1359 * Each filesystem running with soft dependencies gets its own 1360 * thread to run in this function. The thread is started up in 1361 * softdep_mount and shutdown in softdep_unmount. They show up 1362 * as part of the kernel "bufdaemon" process whose process 1363 * entry is available in bufdaemonproc. 1364 */ 1365 static int searchfailed; 1366 extern struct proc *bufdaemonproc; 1367 static void 1368 softdep_flush(addr) 1369 void *addr; 1370 { 1371 struct mount *mp; 1372 struct thread *td; 1373 struct ufsmount *ump; 1374 1375 td = curthread; 1376 td->td_pflags |= TDP_NORUNNINGBUF; 1377 mp = (struct mount *)addr; 1378 ump = VFSTOUFS(mp); 1379 atomic_add_int(&stat_flush_threads, 1); 1380 if (print_threads) { 1381 if (stat_flush_threads == 1) 1382 printf("Running %s at pid %d\n", bufdaemonproc->p_comm, 1383 bufdaemonproc->p_pid); 1384 printf("Start thread %s\n", td->td_name); 1385 } 1386 for (;;) { 1387 while (softdep_process_worklist(mp, 0) > 0 || 1388 (MOUNTEDSUJ(mp) && 1389 VFSTOUFS(mp)->softdep_jblocks->jb_suspended)) 1390 kthread_suspend_check(); 1391 ACQUIRE_LOCK(ump); 1392 if ((ump->softdep_flags & FLUSH_CLEANUP) == 0) 1393 msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM, 1394 "sdflush", hz / 2); 1395 ump->softdep_flags &= ~FLUSH_CLEANUP; 1396 /* 1397 * Check to see if we are done and need to exit. 1398 */ 1399 if ((ump->softdep_flags & FLUSH_EXIT) == 0) { 1400 FREE_LOCK(ump); 1401 continue; 1402 } 1403 ump->softdep_flags &= ~FLUSH_EXIT; 1404 FREE_LOCK(ump); 1405 wakeup(&ump->softdep_flags); 1406 if (print_threads) 1407 printf("Stop thread %s: searchfailed %d, did cleanups %d\n", td->td_name, searchfailed, ump->um_softdep->sd_cleanups); 1408 atomic_subtract_int(&stat_flush_threads, 1); 1409 kthread_exit(); 1410 panic("kthread_exit failed\n"); 1411 } 1412 } 1413 1414 static void 1415 worklist_speedup(mp) 1416 struct mount *mp; 1417 { 1418 struct ufsmount *ump; 1419 1420 ump = VFSTOUFS(mp); 1421 LOCK_OWNED(ump); 1422 if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) { 1423 ump->softdep_flags |= FLUSH_CLEANUP; 1424 if (ump->softdep_flushtd->td_wchan == &ump->softdep_flushtd) 1425 wakeup(&ump->softdep_flushtd); 1426 } 1427 } 1428 1429 static int 1430 softdep_speedup(ump) 1431 struct ufsmount *ump; 1432 { 1433 struct ufsmount *altump; 1434 struct mount_softdeps *sdp; 1435 1436 LOCK_OWNED(ump); 1437 worklist_speedup(ump->um_mountp); 1438 bd_speedup(); 1439 /* 1440 * If we have global shortages, then we need other 1441 * filesystems to help with the cleanup. Here we wakeup a 1442 * flusher thread for a filesystem that is over its fair 1443 * share of resources. 1444 */ 1445 if (req_clear_inodedeps || req_clear_remove) { 1446 ACQUIRE_GBLLOCK(&lk); 1447 TAILQ_FOREACH(sdp, &softdepmounts, sd_next) { 1448 if ((altump = sdp->sd_ump) == ump) 1449 continue; 1450 if (((req_clear_inodedeps && 1451 altump->softdep_curdeps[D_INODEDEP] > 1452 max_softdeps / stat_flush_threads) || 1453 (req_clear_remove && 1454 altump->softdep_curdeps[D_DIRREM] > 1455 (max_softdeps / 2) / stat_flush_threads)) && 1456 TRY_ACQUIRE_LOCK(altump)) 1457 break; 1458 } 1459 if (sdp == NULL) { 1460 searchfailed++; 1461 FREE_GBLLOCK(&lk); 1462 } else { 1463 /* 1464 * Move to the end of the list so we pick a 1465 * different one on out next try. 1466 */ 1467 TAILQ_REMOVE(&softdepmounts, sdp, sd_next); 1468 TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next); 1469 FREE_GBLLOCK(&lk); 1470 if ((altump->softdep_flags & 1471 (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) { 1472 altump->softdep_flags |= FLUSH_CLEANUP; 1473 altump->um_softdep->sd_cleanups++; 1474 if (altump->softdep_flushtd->td_wchan == 1475 &altump->softdep_flushtd) { 1476 wakeup(&altump->softdep_flushtd); 1477 } 1478 } 1479 FREE_LOCK(altump); 1480 } 1481 } 1482 return (speedup_syncer()); 1483 } 1484 1485 /* 1486 * Add an item to the end of the work queue. 1487 * This routine requires that the lock be held. 1488 * This is the only routine that adds items to the list. 1489 * The following routine is the only one that removes items 1490 * and does so in order from first to last. 1491 */ 1492 1493 #define WK_HEAD 0x0001 /* Add to HEAD. */ 1494 #define WK_NODELAY 0x0002 /* Process immediately. */ 1495 1496 static void 1497 add_to_worklist(wk, flags) 1498 struct worklist *wk; 1499 int flags; 1500 { 1501 struct ufsmount *ump; 1502 1503 ump = VFSTOUFS(wk->wk_mp); 1504 LOCK_OWNED(ump); 1505 if (wk->wk_state & ONWORKLIST) 1506 panic("add_to_worklist: %s(0x%X) already on list", 1507 TYPENAME(wk->wk_type), wk->wk_state); 1508 wk->wk_state |= ONWORKLIST; 1509 if (ump->softdep_on_worklist == 0) { 1510 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list); 1511 ump->softdep_worklist_tail = wk; 1512 } else if (flags & WK_HEAD) { 1513 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list); 1514 } else { 1515 LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list); 1516 ump->softdep_worklist_tail = wk; 1517 } 1518 ump->softdep_on_worklist += 1; 1519 if (flags & WK_NODELAY) 1520 worklist_speedup(wk->wk_mp); 1521 } 1522 1523 /* 1524 * Remove the item to be processed. If we are removing the last 1525 * item on the list, we need to recalculate the tail pointer. 1526 */ 1527 static void 1528 remove_from_worklist(wk) 1529 struct worklist *wk; 1530 { 1531 struct ufsmount *ump; 1532 1533 ump = VFSTOUFS(wk->wk_mp); 1534 WORKLIST_REMOVE(wk); 1535 if (ump->softdep_worklist_tail == wk) 1536 ump->softdep_worklist_tail = 1537 (struct worklist *)wk->wk_list.le_prev; 1538 ump->softdep_on_worklist -= 1; 1539 } 1540 1541 static void 1542 wake_worklist(wk) 1543 struct worklist *wk; 1544 { 1545 if (wk->wk_state & IOWAITING) { 1546 wk->wk_state &= ~IOWAITING; 1547 wakeup(wk); 1548 } 1549 } 1550 1551 static void 1552 wait_worklist(wk, wmesg) 1553 struct worklist *wk; 1554 char *wmesg; 1555 { 1556 struct ufsmount *ump; 1557 1558 ump = VFSTOUFS(wk->wk_mp); 1559 wk->wk_state |= IOWAITING; 1560 msleep(wk, LOCK_PTR(ump), PVM, wmesg, 0); 1561 } 1562 1563 /* 1564 * Process that runs once per second to handle items in the background queue. 1565 * 1566 * Note that we ensure that everything is done in the order in which they 1567 * appear in the queue. The code below depends on this property to ensure 1568 * that blocks of a file are freed before the inode itself is freed. This 1569 * ordering ensures that no new <vfsid, inum, lbn> triples will be generated 1570 * until all the old ones have been purged from the dependency lists. 1571 */ 1572 static int 1573 softdep_process_worklist(mp, full) 1574 struct mount *mp; 1575 int full; 1576 { 1577 int cnt, matchcnt; 1578 struct ufsmount *ump; 1579 long starttime; 1580 1581 KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp")); 1582 if (MOUNTEDSOFTDEP(mp) == 0) 1583 return (0); 1584 matchcnt = 0; 1585 ump = VFSTOUFS(mp); 1586 ACQUIRE_LOCK(ump); 1587 starttime = time_second; 1588 softdep_process_journal(mp, NULL, full ? MNT_WAIT : 0); 1589 check_clear_deps(mp); 1590 while (ump->softdep_on_worklist > 0) { 1591 if ((cnt = process_worklist_item(mp, 10, LK_NOWAIT)) == 0) 1592 break; 1593 else 1594 matchcnt += cnt; 1595 check_clear_deps(mp); 1596 /* 1597 * We do not generally want to stop for buffer space, but if 1598 * we are really being a buffer hog, we will stop and wait. 1599 */ 1600 if (should_yield()) { 1601 FREE_LOCK(ump); 1602 kern_yield(PRI_USER); 1603 bwillwrite(); 1604 ACQUIRE_LOCK(ump); 1605 } 1606 /* 1607 * Never allow processing to run for more than one 1608 * second. This gives the syncer thread the opportunity 1609 * to pause if appropriate. 1610 */ 1611 if (!full && starttime != time_second) 1612 break; 1613 } 1614 if (full == 0) 1615 journal_unsuspend(ump); 1616 FREE_LOCK(ump); 1617 return (matchcnt); 1618 } 1619 1620 /* 1621 * Process all removes associated with a vnode if we are running out of 1622 * journal space. Any other process which attempts to flush these will 1623 * be unable as we have the vnodes locked. 1624 */ 1625 static void 1626 process_removes(vp) 1627 struct vnode *vp; 1628 { 1629 struct inodedep *inodedep; 1630 struct dirrem *dirrem; 1631 struct ufsmount *ump; 1632 struct mount *mp; 1633 ino_t inum; 1634 1635 mp = vp->v_mount; 1636 ump = VFSTOUFS(mp); 1637 LOCK_OWNED(ump); 1638 inum = VTOI(vp)->i_number; 1639 for (;;) { 1640 top: 1641 if (inodedep_lookup(mp, inum, 0, &inodedep) == 0) 1642 return; 1643 LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext) { 1644 /* 1645 * If another thread is trying to lock this vnode 1646 * it will fail but we must wait for it to do so 1647 * before we can proceed. 1648 */ 1649 if (dirrem->dm_state & INPROGRESS) { 1650 wait_worklist(&dirrem->dm_list, "pwrwait"); 1651 goto top; 1652 } 1653 if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) == 1654 (COMPLETE | ONWORKLIST)) 1655 break; 1656 } 1657 if (dirrem == NULL) 1658 return; 1659 remove_from_worklist(&dirrem->dm_list); 1660 FREE_LOCK(ump); 1661 if (vn_start_secondary_write(NULL, &mp, V_NOWAIT)) 1662 panic("process_removes: suspended filesystem"); 1663 handle_workitem_remove(dirrem, 0); 1664 vn_finished_secondary_write(mp); 1665 ACQUIRE_LOCK(ump); 1666 } 1667 } 1668 1669 /* 1670 * Process all truncations associated with a vnode if we are running out 1671 * of journal space. This is called when the vnode lock is already held 1672 * and no other process can clear the truncation. This function returns 1673 * a value greater than zero if it did any work. 1674 */ 1675 static void 1676 process_truncates(vp) 1677 struct vnode *vp; 1678 { 1679 struct inodedep *inodedep; 1680 struct freeblks *freeblks; 1681 struct ufsmount *ump; 1682 struct mount *mp; 1683 ino_t inum; 1684 int cgwait; 1685 1686 mp = vp->v_mount; 1687 ump = VFSTOUFS(mp); 1688 LOCK_OWNED(ump); 1689 inum = VTOI(vp)->i_number; 1690 for (;;) { 1691 if (inodedep_lookup(mp, inum, 0, &inodedep) == 0) 1692 return; 1693 cgwait = 0; 1694 TAILQ_FOREACH(freeblks, &inodedep->id_freeblklst, fb_next) { 1695 /* Journal entries not yet written. */ 1696 if (!LIST_EMPTY(&freeblks->fb_jblkdephd)) { 1697 jwait(&LIST_FIRST( 1698 &freeblks->fb_jblkdephd)->jb_list, 1699 MNT_WAIT); 1700 break; 1701 } 1702 /* Another thread is executing this item. */ 1703 if (freeblks->fb_state & INPROGRESS) { 1704 wait_worklist(&freeblks->fb_list, "ptrwait"); 1705 break; 1706 } 1707 /* Freeblks is waiting on a inode write. */ 1708 if ((freeblks->fb_state & COMPLETE) == 0) { 1709 FREE_LOCK(ump); 1710 ffs_update(vp, 1); 1711 ACQUIRE_LOCK(ump); 1712 break; 1713 } 1714 if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST)) == 1715 (ALLCOMPLETE | ONWORKLIST)) { 1716 remove_from_worklist(&freeblks->fb_list); 1717 freeblks->fb_state |= INPROGRESS; 1718 FREE_LOCK(ump); 1719 if (vn_start_secondary_write(NULL, &mp, 1720 V_NOWAIT)) 1721 panic("process_truncates: " 1722 "suspended filesystem"); 1723 handle_workitem_freeblocks(freeblks, 0); 1724 vn_finished_secondary_write(mp); 1725 ACQUIRE_LOCK(ump); 1726 break; 1727 } 1728 if (freeblks->fb_cgwait) 1729 cgwait++; 1730 } 1731 if (cgwait) { 1732 FREE_LOCK(ump); 1733 sync_cgs(mp, MNT_WAIT); 1734 ffs_sync_snap(mp, MNT_WAIT); 1735 ACQUIRE_LOCK(ump); 1736 continue; 1737 } 1738 if (freeblks == NULL) 1739 break; 1740 } 1741 return; 1742 } 1743 1744 /* 1745 * Process one item on the worklist. 1746 */ 1747 static int 1748 process_worklist_item(mp, target, flags) 1749 struct mount *mp; 1750 int target; 1751 int flags; 1752 { 1753 struct worklist sentinel; 1754 struct worklist *wk; 1755 struct ufsmount *ump; 1756 int matchcnt; 1757 int error; 1758 1759 KASSERT(mp != NULL, ("process_worklist_item: NULL mp")); 1760 /* 1761 * If we are being called because of a process doing a 1762 * copy-on-write, then it is not safe to write as we may 1763 * recurse into the copy-on-write routine. 1764 */ 1765 if (curthread->td_pflags & TDP_COWINPROGRESS) 1766 return (-1); 1767 PHOLD(curproc); /* Don't let the stack go away. */ 1768 ump = VFSTOUFS(mp); 1769 LOCK_OWNED(ump); 1770 matchcnt = 0; 1771 sentinel.wk_mp = NULL; 1772 sentinel.wk_type = D_SENTINEL; 1773 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, &sentinel, wk_list); 1774 for (wk = LIST_NEXT(&sentinel, wk_list); wk != NULL; 1775 wk = LIST_NEXT(&sentinel, wk_list)) { 1776 if (wk->wk_type == D_SENTINEL) { 1777 LIST_REMOVE(&sentinel, wk_list); 1778 LIST_INSERT_AFTER(wk, &sentinel, wk_list); 1779 continue; 1780 } 1781 if (wk->wk_state & INPROGRESS) 1782 panic("process_worklist_item: %p already in progress.", 1783 wk); 1784 wk->wk_state |= INPROGRESS; 1785 remove_from_worklist(wk); 1786 FREE_LOCK(ump); 1787 if (vn_start_secondary_write(NULL, &mp, V_NOWAIT)) 1788 panic("process_worklist_item: suspended filesystem"); 1789 switch (wk->wk_type) { 1790 case D_DIRREM: 1791 /* removal of a directory entry */ 1792 error = handle_workitem_remove(WK_DIRREM(wk), flags); 1793 break; 1794 1795 case D_FREEBLKS: 1796 /* releasing blocks and/or fragments from a file */ 1797 error = handle_workitem_freeblocks(WK_FREEBLKS(wk), 1798 flags); 1799 break; 1800 1801 case D_FREEFRAG: 1802 /* releasing a fragment when replaced as a file grows */ 1803 handle_workitem_freefrag(WK_FREEFRAG(wk)); 1804 error = 0; 1805 break; 1806 1807 case D_FREEFILE: 1808 /* releasing an inode when its link count drops to 0 */ 1809 handle_workitem_freefile(WK_FREEFILE(wk)); 1810 error = 0; 1811 break; 1812 1813 default: 1814 panic("%s_process_worklist: Unknown type %s", 1815 "softdep", TYPENAME(wk->wk_type)); 1816 /* NOTREACHED */ 1817 } 1818 vn_finished_secondary_write(mp); 1819 ACQUIRE_LOCK(ump); 1820 if (error == 0) { 1821 if (++matchcnt == target) 1822 break; 1823 continue; 1824 } 1825 /* 1826 * We have to retry the worklist item later. Wake up any 1827 * waiters who may be able to complete it immediately and 1828 * add the item back to the head so we don't try to execute 1829 * it again. 1830 */ 1831 wk->wk_state &= ~INPROGRESS; 1832 wake_worklist(wk); 1833 add_to_worklist(wk, WK_HEAD); 1834 } 1835 LIST_REMOVE(&sentinel, wk_list); 1836 /* Sentinal could've become the tail from remove_from_worklist. */ 1837 if (ump->softdep_worklist_tail == &sentinel) 1838 ump->softdep_worklist_tail = 1839 (struct worklist *)sentinel.wk_list.le_prev; 1840 PRELE(curproc); 1841 return (matchcnt); 1842 } 1843 1844 /* 1845 * Move dependencies from one buffer to another. 1846 */ 1847 int 1848 softdep_move_dependencies(oldbp, newbp) 1849 struct buf *oldbp; 1850 struct buf *newbp; 1851 { 1852 struct worklist *wk, *wktail; 1853 struct ufsmount *ump; 1854 int dirty; 1855 1856 if ((wk = LIST_FIRST(&oldbp->b_dep)) == NULL) 1857 return (0); 1858 KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, 1859 ("softdep_move_dependencies called on non-softdep filesystem")); 1860 dirty = 0; 1861 wktail = NULL; 1862 ump = VFSTOUFS(wk->wk_mp); 1863 ACQUIRE_LOCK(ump); 1864 while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) { 1865 LIST_REMOVE(wk, wk_list); 1866 if (wk->wk_type == D_BMSAFEMAP && 1867 bmsafemap_backgroundwrite(WK_BMSAFEMAP(wk), newbp)) 1868 dirty = 1; 1869 if (wktail == 0) 1870 LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list); 1871 else 1872 LIST_INSERT_AFTER(wktail, wk, wk_list); 1873 wktail = wk; 1874 } 1875 FREE_LOCK(ump); 1876 1877 return (dirty); 1878 } 1879 1880 /* 1881 * Purge the work list of all items associated with a particular mount point. 1882 */ 1883 int 1884 softdep_flushworklist(oldmnt, countp, td) 1885 struct mount *oldmnt; 1886 int *countp; 1887 struct thread *td; 1888 { 1889 struct vnode *devvp; 1890 int count, error = 0; 1891 struct ufsmount *ump; 1892 1893 /* 1894 * Alternately flush the block device associated with the mount 1895 * point and process any dependencies that the flushing 1896 * creates. We continue until no more worklist dependencies 1897 * are found. 1898 */ 1899 *countp = 0; 1900 ump = VFSTOUFS(oldmnt); 1901 devvp = ump->um_devvp; 1902 while ((count = softdep_process_worklist(oldmnt, 1)) > 0) { 1903 *countp += count; 1904 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 1905 error = VOP_FSYNC(devvp, MNT_WAIT, td); 1906 VOP_UNLOCK(devvp, 0); 1907 if (error) 1908 break; 1909 } 1910 return (error); 1911 } 1912 1913 static int 1914 softdep_waitidle(struct mount *mp) 1915 { 1916 struct ufsmount *ump; 1917 int error; 1918 int i; 1919 1920 ump = VFSTOUFS(mp); 1921 ACQUIRE_LOCK(ump); 1922 for (i = 0; i < 10 && ump->softdep_deps; i++) { 1923 ump->softdep_req = 1; 1924 if (ump->softdep_on_worklist) 1925 panic("softdep_waitidle: work added after flush."); 1926 msleep(&ump->softdep_deps, LOCK_PTR(ump), PVM, "softdeps", 1); 1927 } 1928 ump->softdep_req = 0; 1929 FREE_LOCK(ump); 1930 error = 0; 1931 if (i == 10) { 1932 error = EBUSY; 1933 printf("softdep_waitidle: Failed to flush worklist for %p\n", 1934 mp); 1935 } 1936 1937 return (error); 1938 } 1939 1940 /* 1941 * Flush all vnodes and worklist items associated with a specified mount point. 1942 */ 1943 int 1944 softdep_flushfiles(oldmnt, flags, td) 1945 struct mount *oldmnt; 1946 int flags; 1947 struct thread *td; 1948 { 1949 #ifdef QUOTA 1950 struct ufsmount *ump; 1951 int i; 1952 #endif 1953 int error, early, depcount, loopcnt, retry_flush_count, retry; 1954 int morework; 1955 1956 KASSERT(MOUNTEDSOFTDEP(oldmnt) != 0, 1957 ("softdep_flushfiles called on non-softdep filesystem")); 1958 loopcnt = 10; 1959 retry_flush_count = 3; 1960 retry_flush: 1961 error = 0; 1962 1963 /* 1964 * Alternately flush the vnodes associated with the mount 1965 * point and process any dependencies that the flushing 1966 * creates. In theory, this loop can happen at most twice, 1967 * but we give it a few extra just to be sure. 1968 */ 1969 for (; loopcnt > 0; loopcnt--) { 1970 /* 1971 * Do another flush in case any vnodes were brought in 1972 * as part of the cleanup operations. 1973 */ 1974 early = retry_flush_count == 1 || (oldmnt->mnt_kern_flag & 1975 MNTK_UNMOUNT) == 0 ? 0 : EARLYFLUSH; 1976 if ((error = ffs_flushfiles(oldmnt, flags | early, td)) != 0) 1977 break; 1978 if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 || 1979 depcount == 0) 1980 break; 1981 } 1982 /* 1983 * If we are unmounting then it is an error to fail. If we 1984 * are simply trying to downgrade to read-only, then filesystem 1985 * activity can keep us busy forever, so we just fail with EBUSY. 1986 */ 1987 if (loopcnt == 0) { 1988 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) 1989 panic("softdep_flushfiles: looping"); 1990 error = EBUSY; 1991 } 1992 if (!error) 1993 error = softdep_waitidle(oldmnt); 1994 if (!error) { 1995 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) { 1996 retry = 0; 1997 MNT_ILOCK(oldmnt); 1998 KASSERT((oldmnt->mnt_kern_flag & MNTK_NOINSMNTQ) != 0, 1999 ("softdep_flushfiles: !MNTK_NOINSMNTQ")); 2000 morework = oldmnt->mnt_nvnodelistsize > 0; 2001 #ifdef QUOTA 2002 ump = VFSTOUFS(oldmnt); 2003 UFS_LOCK(ump); 2004 for (i = 0; i < MAXQUOTAS; i++) { 2005 if (ump->um_quotas[i] != NULLVP) 2006 morework = 1; 2007 } 2008 UFS_UNLOCK(ump); 2009 #endif 2010 if (morework) { 2011 if (--retry_flush_count > 0) { 2012 retry = 1; 2013 loopcnt = 3; 2014 } else 2015 error = EBUSY; 2016 } 2017 MNT_IUNLOCK(oldmnt); 2018 if (retry) 2019 goto retry_flush; 2020 } 2021 } 2022 return (error); 2023 } 2024 2025 /* 2026 * Structure hashing. 2027 * 2028 * There are four types of structures that can be looked up: 2029 * 1) pagedep structures identified by mount point, inode number, 2030 * and logical block. 2031 * 2) inodedep structures identified by mount point and inode number. 2032 * 3) newblk structures identified by mount point and 2033 * physical block number. 2034 * 4) bmsafemap structures identified by mount point and 2035 * cylinder group number. 2036 * 2037 * The "pagedep" and "inodedep" dependency structures are hashed 2038 * separately from the file blocks and inodes to which they correspond. 2039 * This separation helps when the in-memory copy of an inode or 2040 * file block must be replaced. It also obviates the need to access 2041 * an inode or file page when simply updating (or de-allocating) 2042 * dependency structures. Lookup of newblk structures is needed to 2043 * find newly allocated blocks when trying to associate them with 2044 * their allocdirect or allocindir structure. 2045 * 2046 * The lookup routines optionally create and hash a new instance when 2047 * an existing entry is not found. The bmsafemap lookup routine always 2048 * allocates a new structure if an existing one is not found. 2049 */ 2050 #define DEPALLOC 0x0001 /* allocate structure if lookup fails */ 2051 #define NODELAY 0x0002 /* cannot do background work */ 2052 2053 /* 2054 * Structures and routines associated with pagedep caching. 2055 */ 2056 #define PAGEDEP_HASH(ump, inum, lbn) \ 2057 (&(ump)->pagedep_hashtbl[((inum) + (lbn)) & (ump)->pagedep_hash_size]) 2058 2059 static int 2060 pagedep_find(pagedephd, ino, lbn, pagedeppp) 2061 struct pagedep_hashhead *pagedephd; 2062 ino_t ino; 2063 ufs_lbn_t lbn; 2064 struct pagedep **pagedeppp; 2065 { 2066 struct pagedep *pagedep; 2067 2068 LIST_FOREACH(pagedep, pagedephd, pd_hash) { 2069 if (ino == pagedep->pd_ino && lbn == pagedep->pd_lbn) { 2070 *pagedeppp = pagedep; 2071 return (1); 2072 } 2073 } 2074 *pagedeppp = NULL; 2075 return (0); 2076 } 2077 /* 2078 * Look up a pagedep. Return 1 if found, 0 otherwise. 2079 * If not found, allocate if DEPALLOC flag is passed. 2080 * Found or allocated entry is returned in pagedeppp. 2081 * This routine must be called with splbio interrupts blocked. 2082 */ 2083 static int 2084 pagedep_lookup(mp, bp, ino, lbn, flags, pagedeppp) 2085 struct mount *mp; 2086 struct buf *bp; 2087 ino_t ino; 2088 ufs_lbn_t lbn; 2089 int flags; 2090 struct pagedep **pagedeppp; 2091 { 2092 struct pagedep *pagedep; 2093 struct pagedep_hashhead *pagedephd; 2094 struct worklist *wk; 2095 struct ufsmount *ump; 2096 int ret; 2097 int i; 2098 2099 ump = VFSTOUFS(mp); 2100 LOCK_OWNED(ump); 2101 if (bp) { 2102 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 2103 if (wk->wk_type == D_PAGEDEP) { 2104 *pagedeppp = WK_PAGEDEP(wk); 2105 return (1); 2106 } 2107 } 2108 } 2109 pagedephd = PAGEDEP_HASH(ump, ino, lbn); 2110 ret = pagedep_find(pagedephd, ino, lbn, pagedeppp); 2111 if (ret) { 2112 if (((*pagedeppp)->pd_state & ONWORKLIST) == 0 && bp) 2113 WORKLIST_INSERT(&bp->b_dep, &(*pagedeppp)->pd_list); 2114 return (1); 2115 } 2116 if ((flags & DEPALLOC) == 0) 2117 return (0); 2118 FREE_LOCK(ump); 2119 pagedep = malloc(sizeof(struct pagedep), 2120 M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO); 2121 workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp); 2122 ACQUIRE_LOCK(ump); 2123 ret = pagedep_find(pagedephd, ino, lbn, pagedeppp); 2124 if (*pagedeppp) { 2125 /* 2126 * This should never happen since we only create pagedeps 2127 * with the vnode lock held. Could be an assert. 2128 */ 2129 WORKITEM_FREE(pagedep, D_PAGEDEP); 2130 return (ret); 2131 } 2132 pagedep->pd_ino = ino; 2133 pagedep->pd_lbn = lbn; 2134 LIST_INIT(&pagedep->pd_dirremhd); 2135 LIST_INIT(&pagedep->pd_pendinghd); 2136 for (i = 0; i < DAHASHSZ; i++) 2137 LIST_INIT(&pagedep->pd_diraddhd[i]); 2138 LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash); 2139 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 2140 *pagedeppp = pagedep; 2141 return (0); 2142 } 2143 2144 /* 2145 * Structures and routines associated with inodedep caching. 2146 */ 2147 #define INODEDEP_HASH(ump, inum) \ 2148 (&(ump)->inodedep_hashtbl[(inum) & (ump)->inodedep_hash_size]) 2149 2150 static int 2151 inodedep_find(inodedephd, inum, inodedeppp) 2152 struct inodedep_hashhead *inodedephd; 2153 ino_t inum; 2154 struct inodedep **inodedeppp; 2155 { 2156 struct inodedep *inodedep; 2157 2158 LIST_FOREACH(inodedep, inodedephd, id_hash) 2159 if (inum == inodedep->id_ino) 2160 break; 2161 if (inodedep) { 2162 *inodedeppp = inodedep; 2163 return (1); 2164 } 2165 *inodedeppp = NULL; 2166 2167 return (0); 2168 } 2169 /* 2170 * Look up an inodedep. Return 1 if found, 0 if not found. 2171 * If not found, allocate if DEPALLOC flag is passed. 2172 * Found or allocated entry is returned in inodedeppp. 2173 * This routine must be called with splbio interrupts blocked. 2174 */ 2175 static int 2176 inodedep_lookup(mp, inum, flags, inodedeppp) 2177 struct mount *mp; 2178 ino_t inum; 2179 int flags; 2180 struct inodedep **inodedeppp; 2181 { 2182 struct inodedep *inodedep; 2183 struct inodedep_hashhead *inodedephd; 2184 struct ufsmount *ump; 2185 struct fs *fs; 2186 2187 ump = VFSTOUFS(mp); 2188 LOCK_OWNED(ump); 2189 fs = ump->um_fs; 2190 inodedephd = INODEDEP_HASH(ump, inum); 2191 2192 if (inodedep_find(inodedephd, inum, inodedeppp)) 2193 return (1); 2194 if ((flags & DEPALLOC) == 0) 2195 return (0); 2196 /* 2197 * If the system is over its limit and our filesystem is 2198 * responsible for more than our share of that usage and 2199 * we are not in a rush, request some inodedep cleanup. 2200 */ 2201 while (dep_current[D_INODEDEP] > max_softdeps && 2202 (flags & NODELAY) == 0 && 2203 ump->softdep_curdeps[D_INODEDEP] > 2204 max_softdeps / stat_flush_threads) 2205 request_cleanup(mp, FLUSH_INODES); 2206 FREE_LOCK(ump); 2207 inodedep = malloc(sizeof(struct inodedep), 2208 M_INODEDEP, M_SOFTDEP_FLAGS); 2209 workitem_alloc(&inodedep->id_list, D_INODEDEP, mp); 2210 ACQUIRE_LOCK(ump); 2211 if (inodedep_find(inodedephd, inum, inodedeppp)) { 2212 WORKITEM_FREE(inodedep, D_INODEDEP); 2213 return (1); 2214 } 2215 inodedep->id_fs = fs; 2216 inodedep->id_ino = inum; 2217 inodedep->id_state = ALLCOMPLETE; 2218 inodedep->id_nlinkdelta = 0; 2219 inodedep->id_savedino1 = NULL; 2220 inodedep->id_savedsize = -1; 2221 inodedep->id_savedextsize = -1; 2222 inodedep->id_savednlink = -1; 2223 inodedep->id_bmsafemap = NULL; 2224 inodedep->id_mkdiradd = NULL; 2225 LIST_INIT(&inodedep->id_dirremhd); 2226 LIST_INIT(&inodedep->id_pendinghd); 2227 LIST_INIT(&inodedep->id_inowait); 2228 LIST_INIT(&inodedep->id_bufwait); 2229 TAILQ_INIT(&inodedep->id_inoreflst); 2230 TAILQ_INIT(&inodedep->id_inoupdt); 2231 TAILQ_INIT(&inodedep->id_newinoupdt); 2232 TAILQ_INIT(&inodedep->id_extupdt); 2233 TAILQ_INIT(&inodedep->id_newextupdt); 2234 TAILQ_INIT(&inodedep->id_freeblklst); 2235 LIST_INSERT_HEAD(inodedephd, inodedep, id_hash); 2236 *inodedeppp = inodedep; 2237 return (0); 2238 } 2239 2240 /* 2241 * Structures and routines associated with newblk caching. 2242 */ 2243 #define NEWBLK_HASH(ump, inum) \ 2244 (&(ump)->newblk_hashtbl[(inum) & (ump)->newblk_hash_size]) 2245 2246 static int 2247 newblk_find(newblkhd, newblkno, flags, newblkpp) 2248 struct newblk_hashhead *newblkhd; 2249 ufs2_daddr_t newblkno; 2250 int flags; 2251 struct newblk **newblkpp; 2252 { 2253 struct newblk *newblk; 2254 2255 LIST_FOREACH(newblk, newblkhd, nb_hash) { 2256 if (newblkno != newblk->nb_newblkno) 2257 continue; 2258 /* 2259 * If we're creating a new dependency don't match those that 2260 * have already been converted to allocdirects. This is for 2261 * a frag extend. 2262 */ 2263 if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK) 2264 continue; 2265 break; 2266 } 2267 if (newblk) { 2268 *newblkpp = newblk; 2269 return (1); 2270 } 2271 *newblkpp = NULL; 2272 return (0); 2273 } 2274 2275 /* 2276 * Look up a newblk. Return 1 if found, 0 if not found. 2277 * If not found, allocate if DEPALLOC flag is passed. 2278 * Found or allocated entry is returned in newblkpp. 2279 */ 2280 static int 2281 newblk_lookup(mp, newblkno, flags, newblkpp) 2282 struct mount *mp; 2283 ufs2_daddr_t newblkno; 2284 int flags; 2285 struct newblk **newblkpp; 2286 { 2287 struct newblk *newblk; 2288 struct newblk_hashhead *newblkhd; 2289 struct ufsmount *ump; 2290 2291 ump = VFSTOUFS(mp); 2292 LOCK_OWNED(ump); 2293 newblkhd = NEWBLK_HASH(ump, newblkno); 2294 if (newblk_find(newblkhd, newblkno, flags, newblkpp)) 2295 return (1); 2296 if ((flags & DEPALLOC) == 0) 2297 return (0); 2298 FREE_LOCK(ump); 2299 newblk = malloc(sizeof(union allblk), M_NEWBLK, 2300 M_SOFTDEP_FLAGS | M_ZERO); 2301 workitem_alloc(&newblk->nb_list, D_NEWBLK, mp); 2302 ACQUIRE_LOCK(ump); 2303 if (newblk_find(newblkhd, newblkno, flags, newblkpp)) { 2304 WORKITEM_FREE(newblk, D_NEWBLK); 2305 return (1); 2306 } 2307 newblk->nb_freefrag = NULL; 2308 LIST_INIT(&newblk->nb_indirdeps); 2309 LIST_INIT(&newblk->nb_newdirblk); 2310 LIST_INIT(&newblk->nb_jwork); 2311 newblk->nb_state = ATTACHED; 2312 newblk->nb_newblkno = newblkno; 2313 LIST_INSERT_HEAD(newblkhd, newblk, nb_hash); 2314 *newblkpp = newblk; 2315 return (0); 2316 } 2317 2318 /* 2319 * Structures and routines associated with freed indirect block caching. 2320 */ 2321 #define INDIR_HASH(ump, blkno) \ 2322 (&(ump)->indir_hashtbl[(blkno) & (ump)->indir_hash_size]) 2323 2324 /* 2325 * Lookup an indirect block in the indir hash table. The freework is 2326 * removed and potentially freed. The caller must do a blocking journal 2327 * write before writing to the blkno. 2328 */ 2329 static int 2330 indirblk_lookup(mp, blkno) 2331 struct mount *mp; 2332 ufs2_daddr_t blkno; 2333 { 2334 struct freework *freework; 2335 struct indir_hashhead *wkhd; 2336 struct ufsmount *ump; 2337 2338 ump = VFSTOUFS(mp); 2339 wkhd = INDIR_HASH(ump, blkno); 2340 TAILQ_FOREACH(freework, wkhd, fw_next) { 2341 if (freework->fw_blkno != blkno) 2342 continue; 2343 indirblk_remove(freework); 2344 return (1); 2345 } 2346 return (0); 2347 } 2348 2349 /* 2350 * Insert an indirect block represented by freework into the indirblk 2351 * hash table so that it may prevent the block from being re-used prior 2352 * to the journal being written. 2353 */ 2354 static void 2355 indirblk_insert(freework) 2356 struct freework *freework; 2357 { 2358 struct jblocks *jblocks; 2359 struct jseg *jseg; 2360 struct ufsmount *ump; 2361 2362 ump = VFSTOUFS(freework->fw_list.wk_mp); 2363 jblocks = ump->softdep_jblocks; 2364 jseg = TAILQ_LAST(&jblocks->jb_segs, jseglst); 2365 if (jseg == NULL) 2366 return; 2367 2368 LIST_INSERT_HEAD(&jseg->js_indirs, freework, fw_segs); 2369 TAILQ_INSERT_HEAD(INDIR_HASH(ump, freework->fw_blkno), freework, 2370 fw_next); 2371 freework->fw_state &= ~DEPCOMPLETE; 2372 } 2373 2374 static void 2375 indirblk_remove(freework) 2376 struct freework *freework; 2377 { 2378 struct ufsmount *ump; 2379 2380 ump = VFSTOUFS(freework->fw_list.wk_mp); 2381 LIST_REMOVE(freework, fw_segs); 2382 TAILQ_REMOVE(INDIR_HASH(ump, freework->fw_blkno), freework, fw_next); 2383 freework->fw_state |= DEPCOMPLETE; 2384 if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE) 2385 WORKITEM_FREE(freework, D_FREEWORK); 2386 } 2387 2388 /* 2389 * Executed during filesystem system initialization before 2390 * mounting any filesystems. 2391 */ 2392 void 2393 softdep_initialize() 2394 { 2395 2396 TAILQ_INIT(&softdepmounts); 2397 max_softdeps = desiredvnodes * 4; 2398 2399 /* initialise bioops hack */ 2400 bioops.io_start = softdep_disk_io_initiation; 2401 bioops.io_complete = softdep_disk_write_complete; 2402 bioops.io_deallocate = softdep_deallocate_dependencies; 2403 bioops.io_countdeps = softdep_count_dependencies; 2404 2405 /* Initialize the callout with an mtx. */ 2406 callout_init_mtx(&softdep_callout, &lk, 0); 2407 } 2408 2409 /* 2410 * Executed after all filesystems have been unmounted during 2411 * filesystem module unload. 2412 */ 2413 void 2414 softdep_uninitialize() 2415 { 2416 2417 /* clear bioops hack */ 2418 bioops.io_start = NULL; 2419 bioops.io_complete = NULL; 2420 bioops.io_deallocate = NULL; 2421 bioops.io_countdeps = NULL; 2422 2423 callout_drain(&softdep_callout); 2424 } 2425 2426 /* 2427 * Called at mount time to notify the dependency code that a 2428 * filesystem wishes to use it. 2429 */ 2430 int 2431 softdep_mount(devvp, mp, fs, cred) 2432 struct vnode *devvp; 2433 struct mount *mp; 2434 struct fs *fs; 2435 struct ucred *cred; 2436 { 2437 struct csum_total cstotal; 2438 struct mount_softdeps *sdp; 2439 struct ufsmount *ump; 2440 struct cg *cgp; 2441 struct buf *bp; 2442 int i, error, cyl; 2443 2444 sdp = malloc(sizeof(struct mount_softdeps), M_MOUNTDATA, 2445 M_WAITOK | M_ZERO); 2446 MNT_ILOCK(mp); 2447 mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP; 2448 if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) { 2449 mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) | 2450 MNTK_SOFTDEP | MNTK_NOASYNC; 2451 } 2452 ump = VFSTOUFS(mp); 2453 ump->um_softdep = sdp; 2454 MNT_IUNLOCK(mp); 2455 rw_init(LOCK_PTR(ump), "Per-Filesystem Softdep Lock"); 2456 sdp->sd_ump = ump; 2457 LIST_INIT(&ump->softdep_workitem_pending); 2458 LIST_INIT(&ump->softdep_journal_pending); 2459 TAILQ_INIT(&ump->softdep_unlinked); 2460 LIST_INIT(&ump->softdep_dirtycg); 2461 ump->softdep_worklist_tail = NULL; 2462 ump->softdep_on_worklist = 0; 2463 ump->softdep_deps = 0; 2464 LIST_INIT(&ump->softdep_mkdirlisthd); 2465 ump->pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP, 2466 &ump->pagedep_hash_size); 2467 ump->pagedep_nextclean = 0; 2468 ump->inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, 2469 &ump->inodedep_hash_size); 2470 ump->inodedep_nextclean = 0; 2471 ump->newblk_hashtbl = hashinit(max_softdeps / 2, M_NEWBLK, 2472 &ump->newblk_hash_size); 2473 ump->bmsafemap_hashtbl = hashinit(1024, M_BMSAFEMAP, 2474 &ump->bmsafemap_hash_size); 2475 i = 1 << (ffs(desiredvnodes / 10) - 1); 2476 ump->indir_hashtbl = malloc(i * sizeof(struct indir_hashhead), 2477 M_FREEWORK, M_WAITOK); 2478 ump->indir_hash_size = i - 1; 2479 for (i = 0; i <= ump->indir_hash_size; i++) 2480 TAILQ_INIT(&ump->indir_hashtbl[i]); 2481 ACQUIRE_GBLLOCK(&lk); 2482 TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next); 2483 FREE_GBLLOCK(&lk); 2484 if ((fs->fs_flags & FS_SUJ) && 2485 (error = journal_mount(mp, fs, cred)) != 0) { 2486 printf("Failed to start journal: %d\n", error); 2487 softdep_unmount(mp); 2488 return (error); 2489 } 2490 /* 2491 * Start our flushing thread in the bufdaemon process. 2492 */ 2493 kproc_kthread_add(&softdep_flush, mp, &bufdaemonproc, 2494 &ump->softdep_flushtd, 0, 0, "softdepflush", "%s worker", 2495 mp->mnt_stat.f_mntonname); 2496 /* 2497 * When doing soft updates, the counters in the 2498 * superblock may have gotten out of sync. Recomputation 2499 * can take a long time and can be deferred for background 2500 * fsck. However, the old behavior of scanning the cylinder 2501 * groups and recalculating them at mount time is available 2502 * by setting vfs.ffs.compute_summary_at_mount to one. 2503 */ 2504 if (compute_summary_at_mount == 0 || fs->fs_clean != 0) 2505 return (0); 2506 bzero(&cstotal, sizeof cstotal); 2507 for (cyl = 0; cyl < fs->fs_ncg; cyl++) { 2508 if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)), 2509 fs->fs_cgsize, cred, &bp)) != 0) { 2510 brelse(bp); 2511 softdep_unmount(mp); 2512 return (error); 2513 } 2514 cgp = (struct cg *)bp->b_data; 2515 cstotal.cs_nffree += cgp->cg_cs.cs_nffree; 2516 cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree; 2517 cstotal.cs_nifree += cgp->cg_cs.cs_nifree; 2518 cstotal.cs_ndir += cgp->cg_cs.cs_ndir; 2519 fs->fs_cs(fs, cyl) = cgp->cg_cs; 2520 brelse(bp); 2521 } 2522 #ifdef DEBUG 2523 if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal)) 2524 printf("%s: superblock summary recomputed\n", fs->fs_fsmnt); 2525 #endif 2526 bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal); 2527 return (0); 2528 } 2529 2530 void 2531 softdep_unmount(mp) 2532 struct mount *mp; 2533 { 2534 struct ufsmount *ump; 2535 #ifdef INVARIANTS 2536 int i; 2537 #endif 2538 2539 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 2540 ("softdep_unmount called on non-softdep filesystem")); 2541 ump = VFSTOUFS(mp); 2542 MNT_ILOCK(mp); 2543 mp->mnt_flag &= ~MNT_SOFTDEP; 2544 if (MOUNTEDSUJ(mp) == 0) { 2545 MNT_IUNLOCK(mp); 2546 } else { 2547 mp->mnt_flag &= ~MNT_SUJ; 2548 MNT_IUNLOCK(mp); 2549 journal_unmount(ump); 2550 } 2551 /* 2552 * Shut down our flushing thread. Check for NULL is if 2553 * softdep_mount errors out before the thread has been created. 2554 */ 2555 if (ump->softdep_flushtd != NULL) { 2556 ACQUIRE_LOCK(ump); 2557 ump->softdep_flags |= FLUSH_EXIT; 2558 wakeup(&ump->softdep_flushtd); 2559 msleep(&ump->softdep_flags, LOCK_PTR(ump), PVM | PDROP, 2560 "sdwait", 0); 2561 KASSERT((ump->softdep_flags & FLUSH_EXIT) == 0, 2562 ("Thread shutdown failed")); 2563 } 2564 /* 2565 * Free up our resources. 2566 */ 2567 ACQUIRE_GBLLOCK(&lk); 2568 TAILQ_REMOVE(&softdepmounts, ump->um_softdep, sd_next); 2569 FREE_GBLLOCK(&lk); 2570 rw_destroy(LOCK_PTR(ump)); 2571 hashdestroy(ump->pagedep_hashtbl, M_PAGEDEP, ump->pagedep_hash_size); 2572 hashdestroy(ump->inodedep_hashtbl, M_INODEDEP, ump->inodedep_hash_size); 2573 hashdestroy(ump->newblk_hashtbl, M_NEWBLK, ump->newblk_hash_size); 2574 hashdestroy(ump->bmsafemap_hashtbl, M_BMSAFEMAP, 2575 ump->bmsafemap_hash_size); 2576 free(ump->indir_hashtbl, M_FREEWORK); 2577 #ifdef INVARIANTS 2578 for (i = 0; i <= D_LAST; i++) 2579 KASSERT(ump->softdep_curdeps[i] == 0, 2580 ("Unmount %s: Dep type %s != 0 (%ld)", ump->um_fs->fs_fsmnt, 2581 TYPENAME(i), ump->softdep_curdeps[i])); 2582 #endif 2583 free(ump->um_softdep, M_MOUNTDATA); 2584 } 2585 2586 static struct jblocks * 2587 jblocks_create(void) 2588 { 2589 struct jblocks *jblocks; 2590 2591 jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO); 2592 TAILQ_INIT(&jblocks->jb_segs); 2593 jblocks->jb_avail = 10; 2594 jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail, 2595 M_JBLOCKS, M_WAITOK | M_ZERO); 2596 2597 return (jblocks); 2598 } 2599 2600 static ufs2_daddr_t 2601 jblocks_alloc(jblocks, bytes, actual) 2602 struct jblocks *jblocks; 2603 int bytes; 2604 int *actual; 2605 { 2606 ufs2_daddr_t daddr; 2607 struct jextent *jext; 2608 int freecnt; 2609 int blocks; 2610 2611 blocks = bytes / DEV_BSIZE; 2612 jext = &jblocks->jb_extent[jblocks->jb_head]; 2613 freecnt = jext->je_blocks - jblocks->jb_off; 2614 if (freecnt == 0) { 2615 jblocks->jb_off = 0; 2616 if (++jblocks->jb_head > jblocks->jb_used) 2617 jblocks->jb_head = 0; 2618 jext = &jblocks->jb_extent[jblocks->jb_head]; 2619 freecnt = jext->je_blocks; 2620 } 2621 if (freecnt > blocks) 2622 freecnt = blocks; 2623 *actual = freecnt * DEV_BSIZE; 2624 daddr = jext->je_daddr + jblocks->jb_off; 2625 jblocks->jb_off += freecnt; 2626 jblocks->jb_free -= freecnt; 2627 2628 return (daddr); 2629 } 2630 2631 static void 2632 jblocks_free(jblocks, mp, bytes) 2633 struct jblocks *jblocks; 2634 struct mount *mp; 2635 int bytes; 2636 { 2637 2638 LOCK_OWNED(VFSTOUFS(mp)); 2639 jblocks->jb_free += bytes / DEV_BSIZE; 2640 if (jblocks->jb_suspended) 2641 worklist_speedup(mp); 2642 wakeup(jblocks); 2643 } 2644 2645 static void 2646 jblocks_destroy(jblocks) 2647 struct jblocks *jblocks; 2648 { 2649 2650 if (jblocks->jb_extent) 2651 free(jblocks->jb_extent, M_JBLOCKS); 2652 free(jblocks, M_JBLOCKS); 2653 } 2654 2655 static void 2656 jblocks_add(jblocks, daddr, blocks) 2657 struct jblocks *jblocks; 2658 ufs2_daddr_t daddr; 2659 int blocks; 2660 { 2661 struct jextent *jext; 2662 2663 jblocks->jb_blocks += blocks; 2664 jblocks->jb_free += blocks; 2665 jext = &jblocks->jb_extent[jblocks->jb_used]; 2666 /* Adding the first block. */ 2667 if (jext->je_daddr == 0) { 2668 jext->je_daddr = daddr; 2669 jext->je_blocks = blocks; 2670 return; 2671 } 2672 /* Extending the last extent. */ 2673 if (jext->je_daddr + jext->je_blocks == daddr) { 2674 jext->je_blocks += blocks; 2675 return; 2676 } 2677 /* Adding a new extent. */ 2678 if (++jblocks->jb_used == jblocks->jb_avail) { 2679 jblocks->jb_avail *= 2; 2680 jext = malloc(sizeof(struct jextent) * jblocks->jb_avail, 2681 M_JBLOCKS, M_WAITOK | M_ZERO); 2682 memcpy(jext, jblocks->jb_extent, 2683 sizeof(struct jextent) * jblocks->jb_used); 2684 free(jblocks->jb_extent, M_JBLOCKS); 2685 jblocks->jb_extent = jext; 2686 } 2687 jext = &jblocks->jb_extent[jblocks->jb_used]; 2688 jext->je_daddr = daddr; 2689 jext->je_blocks = blocks; 2690 return; 2691 } 2692 2693 int 2694 softdep_journal_lookup(mp, vpp) 2695 struct mount *mp; 2696 struct vnode **vpp; 2697 { 2698 struct componentname cnp; 2699 struct vnode *dvp; 2700 ino_t sujournal; 2701 int error; 2702 2703 error = VFS_VGET(mp, ROOTINO, LK_EXCLUSIVE, &dvp); 2704 if (error) 2705 return (error); 2706 bzero(&cnp, sizeof(cnp)); 2707 cnp.cn_nameiop = LOOKUP; 2708 cnp.cn_flags = ISLASTCN; 2709 cnp.cn_thread = curthread; 2710 cnp.cn_cred = curthread->td_ucred; 2711 cnp.cn_pnbuf = SUJ_FILE; 2712 cnp.cn_nameptr = SUJ_FILE; 2713 cnp.cn_namelen = strlen(SUJ_FILE); 2714 error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal); 2715 vput(dvp); 2716 if (error != 0) 2717 return (error); 2718 error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp); 2719 return (error); 2720 } 2721 2722 /* 2723 * Open and verify the journal file. 2724 */ 2725 static int 2726 journal_mount(mp, fs, cred) 2727 struct mount *mp; 2728 struct fs *fs; 2729 struct ucred *cred; 2730 { 2731 struct jblocks *jblocks; 2732 struct ufsmount *ump; 2733 struct vnode *vp; 2734 struct inode *ip; 2735 ufs2_daddr_t blkno; 2736 int bcount; 2737 int error; 2738 int i; 2739 2740 ump = VFSTOUFS(mp); 2741 ump->softdep_journal_tail = NULL; 2742 ump->softdep_on_journal = 0; 2743 ump->softdep_accdeps = 0; 2744 ump->softdep_req = 0; 2745 ump->softdep_jblocks = NULL; 2746 error = softdep_journal_lookup(mp, &vp); 2747 if (error != 0) { 2748 printf("Failed to find journal. Use tunefs to create one\n"); 2749 return (error); 2750 } 2751 ip = VTOI(vp); 2752 if (ip->i_size < SUJ_MIN) { 2753 error = ENOSPC; 2754 goto out; 2755 } 2756 bcount = lblkno(fs, ip->i_size); /* Only use whole blocks. */ 2757 jblocks = jblocks_create(); 2758 for (i = 0; i < bcount; i++) { 2759 error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL); 2760 if (error) 2761 break; 2762 jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag)); 2763 } 2764 if (error) { 2765 jblocks_destroy(jblocks); 2766 goto out; 2767 } 2768 jblocks->jb_low = jblocks->jb_free / 3; /* Reserve 33%. */ 2769 jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */ 2770 ump->softdep_jblocks = jblocks; 2771 out: 2772 if (error == 0) { 2773 MNT_ILOCK(mp); 2774 mp->mnt_flag |= MNT_SUJ; 2775 mp->mnt_flag &= ~MNT_SOFTDEP; 2776 MNT_IUNLOCK(mp); 2777 /* 2778 * Only validate the journal contents if the 2779 * filesystem is clean, otherwise we write the logs 2780 * but they'll never be used. If the filesystem was 2781 * still dirty when we mounted it the journal is 2782 * invalid and a new journal can only be valid if it 2783 * starts from a clean mount. 2784 */ 2785 if (fs->fs_clean) { 2786 DIP_SET(ip, i_modrev, fs->fs_mtime); 2787 ip->i_flags |= IN_MODIFIED; 2788 ffs_update(vp, 1); 2789 } 2790 } 2791 vput(vp); 2792 return (error); 2793 } 2794 2795 static void 2796 journal_unmount(ump) 2797 struct ufsmount *ump; 2798 { 2799 2800 if (ump->softdep_jblocks) 2801 jblocks_destroy(ump->softdep_jblocks); 2802 ump->softdep_jblocks = NULL; 2803 } 2804 2805 /* 2806 * Called when a journal record is ready to be written. Space is allocated 2807 * and the journal entry is created when the journal is flushed to stable 2808 * store. 2809 */ 2810 static void 2811 add_to_journal(wk) 2812 struct worklist *wk; 2813 { 2814 struct ufsmount *ump; 2815 2816 ump = VFSTOUFS(wk->wk_mp); 2817 LOCK_OWNED(ump); 2818 if (wk->wk_state & ONWORKLIST) 2819 panic("add_to_journal: %s(0x%X) already on list", 2820 TYPENAME(wk->wk_type), wk->wk_state); 2821 wk->wk_state |= ONWORKLIST | DEPCOMPLETE; 2822 if (LIST_EMPTY(&ump->softdep_journal_pending)) { 2823 ump->softdep_jblocks->jb_age = ticks; 2824 LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list); 2825 } else 2826 LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list); 2827 ump->softdep_journal_tail = wk; 2828 ump->softdep_on_journal += 1; 2829 } 2830 2831 /* 2832 * Remove an arbitrary item for the journal worklist maintain the tail 2833 * pointer. This happens when a new operation obviates the need to 2834 * journal an old operation. 2835 */ 2836 static void 2837 remove_from_journal(wk) 2838 struct worklist *wk; 2839 { 2840 struct ufsmount *ump; 2841 2842 ump = VFSTOUFS(wk->wk_mp); 2843 LOCK_OWNED(ump); 2844 #ifdef SUJ_DEBUG 2845 { 2846 struct worklist *wkn; 2847 2848 LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list) 2849 if (wkn == wk) 2850 break; 2851 if (wkn == NULL) 2852 panic("remove_from_journal: %p is not in journal", wk); 2853 } 2854 #endif 2855 /* 2856 * We emulate a TAILQ to save space in most structures which do not 2857 * require TAILQ semantics. Here we must update the tail position 2858 * when removing the tail which is not the final entry. This works 2859 * only if the worklist linkage are at the beginning of the structure. 2860 */ 2861 if (ump->softdep_journal_tail == wk) 2862 ump->softdep_journal_tail = 2863 (struct worklist *)wk->wk_list.le_prev; 2864 2865 WORKLIST_REMOVE(wk); 2866 ump->softdep_on_journal -= 1; 2867 } 2868 2869 /* 2870 * Check for journal space as well as dependency limits so the prelink 2871 * code can throttle both journaled and non-journaled filesystems. 2872 * Threshold is 0 for low and 1 for min. 2873 */ 2874 static int 2875 journal_space(ump, thresh) 2876 struct ufsmount *ump; 2877 int thresh; 2878 { 2879 struct jblocks *jblocks; 2880 int limit, avail; 2881 2882 jblocks = ump->softdep_jblocks; 2883 if (jblocks == NULL) 2884 return (1); 2885 /* 2886 * We use a tighter restriction here to prevent request_cleanup() 2887 * running in threads from running into locks we currently hold. 2888 * We have to be over the limit and our filesystem has to be 2889 * responsible for more than our share of that usage. 2890 */ 2891 limit = (max_softdeps / 10) * 9; 2892 if (dep_current[D_INODEDEP] > limit && 2893 ump->softdep_curdeps[D_INODEDEP] > limit / stat_flush_threads) 2894 return (0); 2895 if (thresh) 2896 thresh = jblocks->jb_min; 2897 else 2898 thresh = jblocks->jb_low; 2899 avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE; 2900 avail = jblocks->jb_free - avail; 2901 2902 return (avail > thresh); 2903 } 2904 2905 static void 2906 journal_suspend(ump) 2907 struct ufsmount *ump; 2908 { 2909 struct jblocks *jblocks; 2910 struct mount *mp; 2911 2912 mp = UFSTOVFS(ump); 2913 jblocks = ump->softdep_jblocks; 2914 MNT_ILOCK(mp); 2915 if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) { 2916 stat_journal_min++; 2917 mp->mnt_kern_flag |= MNTK_SUSPEND; 2918 mp->mnt_susp_owner = ump->softdep_flushtd; 2919 } 2920 jblocks->jb_suspended = 1; 2921 MNT_IUNLOCK(mp); 2922 } 2923 2924 static int 2925 journal_unsuspend(struct ufsmount *ump) 2926 { 2927 struct jblocks *jblocks; 2928 struct mount *mp; 2929 2930 mp = UFSTOVFS(ump); 2931 jblocks = ump->softdep_jblocks; 2932 2933 if (jblocks != NULL && jblocks->jb_suspended && 2934 journal_space(ump, jblocks->jb_min)) { 2935 jblocks->jb_suspended = 0; 2936 FREE_LOCK(ump); 2937 mp->mnt_susp_owner = curthread; 2938 vfs_write_resume(mp, 0); 2939 ACQUIRE_LOCK(ump); 2940 return (1); 2941 } 2942 return (0); 2943 } 2944 2945 /* 2946 * Called before any allocation function to be certain that there is 2947 * sufficient space in the journal prior to creating any new records. 2948 * Since in the case of block allocation we may have multiple locked 2949 * buffers at the time of the actual allocation we can not block 2950 * when the journal records are created. Doing so would create a deadlock 2951 * if any of these buffers needed to be flushed to reclaim space. Instead 2952 * we require a sufficiently large amount of available space such that 2953 * each thread in the system could have passed this allocation check and 2954 * still have sufficient free space. With 20% of a minimum journal size 2955 * of 1MB we have 6553 records available. 2956 */ 2957 int 2958 softdep_prealloc(vp, waitok) 2959 struct vnode *vp; 2960 int waitok; 2961 { 2962 struct ufsmount *ump; 2963 2964 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 2965 ("softdep_prealloc called on non-softdep filesystem")); 2966 /* 2967 * Nothing to do if we are not running journaled soft updates. 2968 * If we currently hold the snapshot lock, we must avoid handling 2969 * other resources that could cause deadlock. 2970 */ 2971 if (DOINGSUJ(vp) == 0 || IS_SNAPSHOT(VTOI(vp))) 2972 return (0); 2973 ump = VFSTOUFS(vp->v_mount); 2974 ACQUIRE_LOCK(ump); 2975 if (journal_space(ump, 0)) { 2976 FREE_LOCK(ump); 2977 return (0); 2978 } 2979 stat_journal_low++; 2980 FREE_LOCK(ump); 2981 if (waitok == MNT_NOWAIT) 2982 return (ENOSPC); 2983 /* 2984 * Attempt to sync this vnode once to flush any journal 2985 * work attached to it. 2986 */ 2987 if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0) 2988 ffs_syncvnode(vp, waitok, 0); 2989 ACQUIRE_LOCK(ump); 2990 process_removes(vp); 2991 process_truncates(vp); 2992 if (journal_space(ump, 0) == 0) { 2993 softdep_speedup(ump); 2994 if (journal_space(ump, 1) == 0) 2995 journal_suspend(ump); 2996 } 2997 FREE_LOCK(ump); 2998 2999 return (0); 3000 } 3001 3002 /* 3003 * Before adjusting a link count on a vnode verify that we have sufficient 3004 * journal space. If not, process operations that depend on the currently 3005 * locked pair of vnodes to try to flush space as the syncer, buf daemon, 3006 * and softdep flush threads can not acquire these locks to reclaim space. 3007 */ 3008 static void 3009 softdep_prelink(dvp, vp) 3010 struct vnode *dvp; 3011 struct vnode *vp; 3012 { 3013 struct ufsmount *ump; 3014 3015 ump = VFSTOUFS(dvp->v_mount); 3016 LOCK_OWNED(ump); 3017 /* 3018 * Nothing to do if we have sufficient journal space. 3019 * If we currently hold the snapshot lock, we must avoid 3020 * handling other resources that could cause deadlock. 3021 */ 3022 if (journal_space(ump, 0) || (vp && IS_SNAPSHOT(VTOI(vp)))) 3023 return; 3024 stat_journal_low++; 3025 FREE_LOCK(ump); 3026 if (vp) 3027 ffs_syncvnode(vp, MNT_NOWAIT, 0); 3028 ffs_syncvnode(dvp, MNT_WAIT, 0); 3029 ACQUIRE_LOCK(ump); 3030 /* Process vp before dvp as it may create .. removes. */ 3031 if (vp) { 3032 process_removes(vp); 3033 process_truncates(vp); 3034 } 3035 process_removes(dvp); 3036 process_truncates(dvp); 3037 softdep_speedup(ump); 3038 process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT); 3039 if (journal_space(ump, 0) == 0) { 3040 softdep_speedup(ump); 3041 if (journal_space(ump, 1) == 0) 3042 journal_suspend(ump); 3043 } 3044 } 3045 3046 static void 3047 jseg_write(ump, jseg, data) 3048 struct ufsmount *ump; 3049 struct jseg *jseg; 3050 uint8_t *data; 3051 { 3052 struct jsegrec *rec; 3053 3054 rec = (struct jsegrec *)data; 3055 rec->jsr_seq = jseg->js_seq; 3056 rec->jsr_oldest = jseg->js_oldseq; 3057 rec->jsr_cnt = jseg->js_cnt; 3058 rec->jsr_blocks = jseg->js_size / ump->um_devvp->v_bufobj.bo_bsize; 3059 rec->jsr_crc = 0; 3060 rec->jsr_time = ump->um_fs->fs_mtime; 3061 } 3062 3063 static inline void 3064 inoref_write(inoref, jseg, rec) 3065 struct inoref *inoref; 3066 struct jseg *jseg; 3067 struct jrefrec *rec; 3068 { 3069 3070 inoref->if_jsegdep->jd_seg = jseg; 3071 rec->jr_ino = inoref->if_ino; 3072 rec->jr_parent = inoref->if_parent; 3073 rec->jr_nlink = inoref->if_nlink; 3074 rec->jr_mode = inoref->if_mode; 3075 rec->jr_diroff = inoref->if_diroff; 3076 } 3077 3078 static void 3079 jaddref_write(jaddref, jseg, data) 3080 struct jaddref *jaddref; 3081 struct jseg *jseg; 3082 uint8_t *data; 3083 { 3084 struct jrefrec *rec; 3085 3086 rec = (struct jrefrec *)data; 3087 rec->jr_op = JOP_ADDREF; 3088 inoref_write(&jaddref->ja_ref, jseg, rec); 3089 } 3090 3091 static void 3092 jremref_write(jremref, jseg, data) 3093 struct jremref *jremref; 3094 struct jseg *jseg; 3095 uint8_t *data; 3096 { 3097 struct jrefrec *rec; 3098 3099 rec = (struct jrefrec *)data; 3100 rec->jr_op = JOP_REMREF; 3101 inoref_write(&jremref->jr_ref, jseg, rec); 3102 } 3103 3104 static void 3105 jmvref_write(jmvref, jseg, data) 3106 struct jmvref *jmvref; 3107 struct jseg *jseg; 3108 uint8_t *data; 3109 { 3110 struct jmvrec *rec; 3111 3112 rec = (struct jmvrec *)data; 3113 rec->jm_op = JOP_MVREF; 3114 rec->jm_ino = jmvref->jm_ino; 3115 rec->jm_parent = jmvref->jm_parent; 3116 rec->jm_oldoff = jmvref->jm_oldoff; 3117 rec->jm_newoff = jmvref->jm_newoff; 3118 } 3119 3120 static void 3121 jnewblk_write(jnewblk, jseg, data) 3122 struct jnewblk *jnewblk; 3123 struct jseg *jseg; 3124 uint8_t *data; 3125 { 3126 struct jblkrec *rec; 3127 3128 jnewblk->jn_jsegdep->jd_seg = jseg; 3129 rec = (struct jblkrec *)data; 3130 rec->jb_op = JOP_NEWBLK; 3131 rec->jb_ino = jnewblk->jn_ino; 3132 rec->jb_blkno = jnewblk->jn_blkno; 3133 rec->jb_lbn = jnewblk->jn_lbn; 3134 rec->jb_frags = jnewblk->jn_frags; 3135 rec->jb_oldfrags = jnewblk->jn_oldfrags; 3136 } 3137 3138 static void 3139 jfreeblk_write(jfreeblk, jseg, data) 3140 struct jfreeblk *jfreeblk; 3141 struct jseg *jseg; 3142 uint8_t *data; 3143 { 3144 struct jblkrec *rec; 3145 3146 jfreeblk->jf_dep.jb_jsegdep->jd_seg = jseg; 3147 rec = (struct jblkrec *)data; 3148 rec->jb_op = JOP_FREEBLK; 3149 rec->jb_ino = jfreeblk->jf_ino; 3150 rec->jb_blkno = jfreeblk->jf_blkno; 3151 rec->jb_lbn = jfreeblk->jf_lbn; 3152 rec->jb_frags = jfreeblk->jf_frags; 3153 rec->jb_oldfrags = 0; 3154 } 3155 3156 static void 3157 jfreefrag_write(jfreefrag, jseg, data) 3158 struct jfreefrag *jfreefrag; 3159 struct jseg *jseg; 3160 uint8_t *data; 3161 { 3162 struct jblkrec *rec; 3163 3164 jfreefrag->fr_jsegdep->jd_seg = jseg; 3165 rec = (struct jblkrec *)data; 3166 rec->jb_op = JOP_FREEBLK; 3167 rec->jb_ino = jfreefrag->fr_ino; 3168 rec->jb_blkno = jfreefrag->fr_blkno; 3169 rec->jb_lbn = jfreefrag->fr_lbn; 3170 rec->jb_frags = jfreefrag->fr_frags; 3171 rec->jb_oldfrags = 0; 3172 } 3173 3174 static void 3175 jtrunc_write(jtrunc, jseg, data) 3176 struct jtrunc *jtrunc; 3177 struct jseg *jseg; 3178 uint8_t *data; 3179 { 3180 struct jtrncrec *rec; 3181 3182 jtrunc->jt_dep.jb_jsegdep->jd_seg = jseg; 3183 rec = (struct jtrncrec *)data; 3184 rec->jt_op = JOP_TRUNC; 3185 rec->jt_ino = jtrunc->jt_ino; 3186 rec->jt_size = jtrunc->jt_size; 3187 rec->jt_extsize = jtrunc->jt_extsize; 3188 } 3189 3190 static void 3191 jfsync_write(jfsync, jseg, data) 3192 struct jfsync *jfsync; 3193 struct jseg *jseg; 3194 uint8_t *data; 3195 { 3196 struct jtrncrec *rec; 3197 3198 rec = (struct jtrncrec *)data; 3199 rec->jt_op = JOP_SYNC; 3200 rec->jt_ino = jfsync->jfs_ino; 3201 rec->jt_size = jfsync->jfs_size; 3202 rec->jt_extsize = jfsync->jfs_extsize; 3203 } 3204 3205 static void 3206 softdep_flushjournal(mp) 3207 struct mount *mp; 3208 { 3209 struct jblocks *jblocks; 3210 struct ufsmount *ump; 3211 3212 if (MOUNTEDSUJ(mp) == 0) 3213 return; 3214 ump = VFSTOUFS(mp); 3215 jblocks = ump->softdep_jblocks; 3216 ACQUIRE_LOCK(ump); 3217 while (ump->softdep_on_journal) { 3218 jblocks->jb_needseg = 1; 3219 softdep_process_journal(mp, NULL, MNT_WAIT); 3220 } 3221 FREE_LOCK(ump); 3222 } 3223 3224 static void softdep_synchronize_completed(struct bio *); 3225 static void softdep_synchronize(struct bio *, struct ufsmount *, void *); 3226 3227 static void 3228 softdep_synchronize_completed(bp) 3229 struct bio *bp; 3230 { 3231 struct jseg *oldest; 3232 struct jseg *jseg; 3233 struct ufsmount *ump; 3234 3235 /* 3236 * caller1 marks the last segment written before we issued the 3237 * synchronize cache. 3238 */ 3239 jseg = bp->bio_caller1; 3240 if (jseg == NULL) { 3241 g_destroy_bio(bp); 3242 return; 3243 } 3244 ump = VFSTOUFS(jseg->js_list.wk_mp); 3245 ACQUIRE_LOCK(ump); 3246 oldest = NULL; 3247 /* 3248 * Mark all the journal entries waiting on the synchronize cache 3249 * as completed so they may continue on. 3250 */ 3251 while (jseg != NULL && (jseg->js_state & COMPLETE) == 0) { 3252 jseg->js_state |= COMPLETE; 3253 oldest = jseg; 3254 jseg = TAILQ_PREV(jseg, jseglst, js_next); 3255 } 3256 /* 3257 * Restart deferred journal entry processing from the oldest 3258 * completed jseg. 3259 */ 3260 if (oldest) 3261 complete_jsegs(oldest); 3262 3263 FREE_LOCK(ump); 3264 g_destroy_bio(bp); 3265 } 3266 3267 /* 3268 * Send BIO_FLUSH/SYNCHRONIZE CACHE to the device to enforce write ordering 3269 * barriers. The journal must be written prior to any blocks that depend 3270 * on it and the journal can not be released until the blocks have be 3271 * written. This code handles both barriers simultaneously. 3272 */ 3273 static void 3274 softdep_synchronize(bp, ump, caller1) 3275 struct bio *bp; 3276 struct ufsmount *ump; 3277 void *caller1; 3278 { 3279 3280 bp->bio_cmd = BIO_FLUSH; 3281 bp->bio_flags |= BIO_ORDERED; 3282 bp->bio_data = NULL; 3283 bp->bio_offset = ump->um_cp->provider->mediasize; 3284 bp->bio_length = 0; 3285 bp->bio_done = softdep_synchronize_completed; 3286 bp->bio_caller1 = caller1; 3287 g_io_request(bp, 3288 (struct g_consumer *)ump->um_devvp->v_bufobj.bo_private); 3289 } 3290 3291 /* 3292 * Flush some journal records to disk. 3293 */ 3294 static void 3295 softdep_process_journal(mp, needwk, flags) 3296 struct mount *mp; 3297 struct worklist *needwk; 3298 int flags; 3299 { 3300 struct jblocks *jblocks; 3301 struct ufsmount *ump; 3302 struct worklist *wk; 3303 struct jseg *jseg; 3304 struct buf *bp; 3305 struct bio *bio; 3306 uint8_t *data; 3307 struct fs *fs; 3308 int shouldflush; 3309 int segwritten; 3310 int jrecmin; /* Minimum records per block. */ 3311 int jrecmax; /* Maximum records per block. */ 3312 int size; 3313 int cnt; 3314 int off; 3315 int devbsize; 3316 3317 if (MOUNTEDSUJ(mp) == 0) 3318 return; 3319 shouldflush = softdep_flushcache; 3320 bio = NULL; 3321 jseg = NULL; 3322 ump = VFSTOUFS(mp); 3323 LOCK_OWNED(ump); 3324 fs = ump->um_fs; 3325 jblocks = ump->softdep_jblocks; 3326 devbsize = ump->um_devvp->v_bufobj.bo_bsize; 3327 /* 3328 * We write anywhere between a disk block and fs block. The upper 3329 * bound is picked to prevent buffer cache fragmentation and limit 3330 * processing time per I/O. 3331 */ 3332 jrecmin = (devbsize / JREC_SIZE) - 1; /* -1 for seg header */ 3333 jrecmax = (fs->fs_bsize / devbsize) * jrecmin; 3334 segwritten = 0; 3335 for (;;) { 3336 cnt = ump->softdep_on_journal; 3337 /* 3338 * Criteria for writing a segment: 3339 * 1) We have a full block. 3340 * 2) We're called from jwait() and haven't found the 3341 * journal item yet. 3342 * 3) Always write if needseg is set. 3343 * 4) If we are called from process_worklist and have 3344 * not yet written anything we write a partial block 3345 * to enforce a 1 second maximum latency on journal 3346 * entries. 3347 */ 3348 if (cnt < (jrecmax - 1) && needwk == NULL && 3349 jblocks->jb_needseg == 0 && (segwritten || cnt == 0)) 3350 break; 3351 cnt++; 3352 /* 3353 * Verify some free journal space. softdep_prealloc() should 3354 * guarantee that we don't run out so this is indicative of 3355 * a problem with the flow control. Try to recover 3356 * gracefully in any event. 3357 */ 3358 while (jblocks->jb_free == 0) { 3359 if (flags != MNT_WAIT) 3360 break; 3361 printf("softdep: Out of journal space!\n"); 3362 softdep_speedup(ump); 3363 msleep(jblocks, LOCK_PTR(ump), PRIBIO, "jblocks", hz); 3364 } 3365 FREE_LOCK(ump); 3366 jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS); 3367 workitem_alloc(&jseg->js_list, D_JSEG, mp); 3368 LIST_INIT(&jseg->js_entries); 3369 LIST_INIT(&jseg->js_indirs); 3370 jseg->js_state = ATTACHED; 3371 if (shouldflush == 0) 3372 jseg->js_state |= COMPLETE; 3373 else if (bio == NULL) 3374 bio = g_alloc_bio(); 3375 jseg->js_jblocks = jblocks; 3376 bp = geteblk(fs->fs_bsize, 0); 3377 ACQUIRE_LOCK(ump); 3378 /* 3379 * If there was a race while we were allocating the block 3380 * and jseg the entry we care about was likely written. 3381 * We bail out in both the WAIT and NOWAIT case and assume 3382 * the caller will loop if the entry it cares about is 3383 * not written. 3384 */ 3385 cnt = ump->softdep_on_journal; 3386 if (cnt + jblocks->jb_needseg == 0 || jblocks->jb_free == 0) { 3387 bp->b_flags |= B_INVAL | B_NOCACHE; 3388 WORKITEM_FREE(jseg, D_JSEG); 3389 FREE_LOCK(ump); 3390 brelse(bp); 3391 ACQUIRE_LOCK(ump); 3392 break; 3393 } 3394 /* 3395 * Calculate the disk block size required for the available 3396 * records rounded to the min size. 3397 */ 3398 if (cnt == 0) 3399 size = devbsize; 3400 else if (cnt < jrecmax) 3401 size = howmany(cnt, jrecmin) * devbsize; 3402 else 3403 size = fs->fs_bsize; 3404 /* 3405 * Allocate a disk block for this journal data and account 3406 * for truncation of the requested size if enough contiguous 3407 * space was not available. 3408 */ 3409 bp->b_blkno = jblocks_alloc(jblocks, size, &size); 3410 bp->b_lblkno = bp->b_blkno; 3411 bp->b_offset = bp->b_blkno * DEV_BSIZE; 3412 bp->b_bcount = size; 3413 bp->b_flags &= ~B_INVAL; 3414 bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY; 3415 /* 3416 * Initialize our jseg with cnt records. Assign the next 3417 * sequence number to it and link it in-order. 3418 */ 3419 cnt = MIN(cnt, (size / devbsize) * jrecmin); 3420 jseg->js_buf = bp; 3421 jseg->js_cnt = cnt; 3422 jseg->js_refs = cnt + 1; /* Self ref. */ 3423 jseg->js_size = size; 3424 jseg->js_seq = jblocks->jb_nextseq++; 3425 if (jblocks->jb_oldestseg == NULL) 3426 jblocks->jb_oldestseg = jseg; 3427 jseg->js_oldseq = jblocks->jb_oldestseg->js_seq; 3428 TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next); 3429 if (jblocks->jb_writeseg == NULL) 3430 jblocks->jb_writeseg = jseg; 3431 /* 3432 * Start filling in records from the pending list. 3433 */ 3434 data = bp->b_data; 3435 off = 0; 3436 3437 /* 3438 * Always put a header on the first block. 3439 * XXX As with below, there might not be a chance to get 3440 * into the loop. Ensure that something valid is written. 3441 */ 3442 jseg_write(ump, jseg, data); 3443 off += JREC_SIZE; 3444 data = bp->b_data + off; 3445 3446 /* 3447 * XXX Something is wrong here. There's no work to do, 3448 * but we need to perform and I/O and allow it to complete 3449 * anyways. 3450 */ 3451 if (LIST_EMPTY(&ump->softdep_journal_pending)) 3452 stat_emptyjblocks++; 3453 3454 while ((wk = LIST_FIRST(&ump->softdep_journal_pending)) 3455 != NULL) { 3456 if (cnt == 0) 3457 break; 3458 /* Place a segment header on every device block. */ 3459 if ((off % devbsize) == 0) { 3460 jseg_write(ump, jseg, data); 3461 off += JREC_SIZE; 3462 data = bp->b_data + off; 3463 } 3464 if (wk == needwk) 3465 needwk = NULL; 3466 remove_from_journal(wk); 3467 wk->wk_state |= INPROGRESS; 3468 WORKLIST_INSERT(&jseg->js_entries, wk); 3469 switch (wk->wk_type) { 3470 case D_JADDREF: 3471 jaddref_write(WK_JADDREF(wk), jseg, data); 3472 break; 3473 case D_JREMREF: 3474 jremref_write(WK_JREMREF(wk), jseg, data); 3475 break; 3476 case D_JMVREF: 3477 jmvref_write(WK_JMVREF(wk), jseg, data); 3478 break; 3479 case D_JNEWBLK: 3480 jnewblk_write(WK_JNEWBLK(wk), jseg, data); 3481 break; 3482 case D_JFREEBLK: 3483 jfreeblk_write(WK_JFREEBLK(wk), jseg, data); 3484 break; 3485 case D_JFREEFRAG: 3486 jfreefrag_write(WK_JFREEFRAG(wk), jseg, data); 3487 break; 3488 case D_JTRUNC: 3489 jtrunc_write(WK_JTRUNC(wk), jseg, data); 3490 break; 3491 case D_JFSYNC: 3492 jfsync_write(WK_JFSYNC(wk), jseg, data); 3493 break; 3494 default: 3495 panic("process_journal: Unknown type %s", 3496 TYPENAME(wk->wk_type)); 3497 /* NOTREACHED */ 3498 } 3499 off += JREC_SIZE; 3500 data = bp->b_data + off; 3501 cnt--; 3502 } 3503 3504 /* Clear any remaining space so we don't leak kernel data */ 3505 if (size > off) 3506 bzero(data, size - off); 3507 3508 /* 3509 * Write this one buffer and continue. 3510 */ 3511 segwritten = 1; 3512 jblocks->jb_needseg = 0; 3513 WORKLIST_INSERT(&bp->b_dep, &jseg->js_list); 3514 FREE_LOCK(ump); 3515 pbgetvp(ump->um_devvp, bp); 3516 /* 3517 * We only do the blocking wait once we find the journal 3518 * entry we're looking for. 3519 */ 3520 if (needwk == NULL && flags == MNT_WAIT) 3521 bwrite(bp); 3522 else 3523 bawrite(bp); 3524 ACQUIRE_LOCK(ump); 3525 } 3526 /* 3527 * If we wrote a segment issue a synchronize cache so the journal 3528 * is reflected on disk before the data is written. Since reclaiming 3529 * journal space also requires writing a journal record this 3530 * process also enforces a barrier before reclamation. 3531 */ 3532 if (segwritten && shouldflush) { 3533 softdep_synchronize(bio, ump, 3534 TAILQ_LAST(&jblocks->jb_segs, jseglst)); 3535 } else if (bio) 3536 g_destroy_bio(bio); 3537 /* 3538 * If we've suspended the filesystem because we ran out of journal 3539 * space either try to sync it here to make some progress or 3540 * unsuspend it if we already have. 3541 */ 3542 if (flags == 0 && jblocks->jb_suspended) { 3543 if (journal_unsuspend(ump)) 3544 return; 3545 FREE_LOCK(ump); 3546 VFS_SYNC(mp, MNT_NOWAIT); 3547 ffs_sbupdate(ump, MNT_WAIT, 0); 3548 ACQUIRE_LOCK(ump); 3549 } 3550 } 3551 3552 /* 3553 * Complete a jseg, allowing all dependencies awaiting journal writes 3554 * to proceed. Each journal dependency also attaches a jsegdep to dependent 3555 * structures so that the journal segment can be freed to reclaim space. 3556 */ 3557 static void 3558 complete_jseg(jseg) 3559 struct jseg *jseg; 3560 { 3561 struct worklist *wk; 3562 struct jmvref *jmvref; 3563 int waiting; 3564 #ifdef INVARIANTS 3565 int i = 0; 3566 #endif 3567 3568 while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) { 3569 WORKLIST_REMOVE(wk); 3570 waiting = wk->wk_state & IOWAITING; 3571 wk->wk_state &= ~(INPROGRESS | IOWAITING); 3572 wk->wk_state |= COMPLETE; 3573 KASSERT(i++ < jseg->js_cnt, 3574 ("handle_written_jseg: overflow %d >= %d", 3575 i - 1, jseg->js_cnt)); 3576 switch (wk->wk_type) { 3577 case D_JADDREF: 3578 handle_written_jaddref(WK_JADDREF(wk)); 3579 break; 3580 case D_JREMREF: 3581 handle_written_jremref(WK_JREMREF(wk)); 3582 break; 3583 case D_JMVREF: 3584 rele_jseg(jseg); /* No jsegdep. */ 3585 jmvref = WK_JMVREF(wk); 3586 LIST_REMOVE(jmvref, jm_deps); 3587 if ((jmvref->jm_pagedep->pd_state & ONWORKLIST) == 0) 3588 free_pagedep(jmvref->jm_pagedep); 3589 WORKITEM_FREE(jmvref, D_JMVREF); 3590 break; 3591 case D_JNEWBLK: 3592 handle_written_jnewblk(WK_JNEWBLK(wk)); 3593 break; 3594 case D_JFREEBLK: 3595 handle_written_jblkdep(&WK_JFREEBLK(wk)->jf_dep); 3596 break; 3597 case D_JTRUNC: 3598 handle_written_jblkdep(&WK_JTRUNC(wk)->jt_dep); 3599 break; 3600 case D_JFSYNC: 3601 rele_jseg(jseg); /* No jsegdep. */ 3602 WORKITEM_FREE(wk, D_JFSYNC); 3603 break; 3604 case D_JFREEFRAG: 3605 handle_written_jfreefrag(WK_JFREEFRAG(wk)); 3606 break; 3607 default: 3608 panic("handle_written_jseg: Unknown type %s", 3609 TYPENAME(wk->wk_type)); 3610 /* NOTREACHED */ 3611 } 3612 if (waiting) 3613 wakeup(wk); 3614 } 3615 /* Release the self reference so the structure may be freed. */ 3616 rele_jseg(jseg); 3617 } 3618 3619 /* 3620 * Determine which jsegs are ready for completion processing. Waits for 3621 * synchronize cache to complete as well as forcing in-order completion 3622 * of journal entries. 3623 */ 3624 static void 3625 complete_jsegs(jseg) 3626 struct jseg *jseg; 3627 { 3628 struct jblocks *jblocks; 3629 struct jseg *jsegn; 3630 3631 jblocks = jseg->js_jblocks; 3632 /* 3633 * Don't allow out of order completions. If this isn't the first 3634 * block wait for it to write before we're done. 3635 */ 3636 if (jseg != jblocks->jb_writeseg) 3637 return; 3638 /* Iterate through available jsegs processing their entries. */ 3639 while (jseg && (jseg->js_state & ALLCOMPLETE) == ALLCOMPLETE) { 3640 jblocks->jb_oldestwrseq = jseg->js_oldseq; 3641 jsegn = TAILQ_NEXT(jseg, js_next); 3642 complete_jseg(jseg); 3643 jseg = jsegn; 3644 } 3645 jblocks->jb_writeseg = jseg; 3646 /* 3647 * Attempt to free jsegs now that oldestwrseq may have advanced. 3648 */ 3649 free_jsegs(jblocks); 3650 } 3651 3652 /* 3653 * Mark a jseg as DEPCOMPLETE and throw away the buffer. Attempt to handle 3654 * the final completions. 3655 */ 3656 static void 3657 handle_written_jseg(jseg, bp) 3658 struct jseg *jseg; 3659 struct buf *bp; 3660 { 3661 3662 if (jseg->js_refs == 0) 3663 panic("handle_written_jseg: No self-reference on %p", jseg); 3664 jseg->js_state |= DEPCOMPLETE; 3665 /* 3666 * We'll never need this buffer again, set flags so it will be 3667 * discarded. 3668 */ 3669 bp->b_flags |= B_INVAL | B_NOCACHE; 3670 pbrelvp(bp); 3671 complete_jsegs(jseg); 3672 } 3673 3674 static inline struct jsegdep * 3675 inoref_jseg(inoref) 3676 struct inoref *inoref; 3677 { 3678 struct jsegdep *jsegdep; 3679 3680 jsegdep = inoref->if_jsegdep; 3681 inoref->if_jsegdep = NULL; 3682 3683 return (jsegdep); 3684 } 3685 3686 /* 3687 * Called once a jremref has made it to stable store. The jremref is marked 3688 * complete and we attempt to free it. Any pagedeps writes sleeping waiting 3689 * for the jremref to complete will be awoken by free_jremref. 3690 */ 3691 static void 3692 handle_written_jremref(jremref) 3693 struct jremref *jremref; 3694 { 3695 struct inodedep *inodedep; 3696 struct jsegdep *jsegdep; 3697 struct dirrem *dirrem; 3698 3699 /* Grab the jsegdep. */ 3700 jsegdep = inoref_jseg(&jremref->jr_ref); 3701 /* 3702 * Remove us from the inoref list. 3703 */ 3704 if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 3705 0, &inodedep) == 0) 3706 panic("handle_written_jremref: Lost inodedep"); 3707 TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps); 3708 /* 3709 * Complete the dirrem. 3710 */ 3711 dirrem = jremref->jr_dirrem; 3712 jremref->jr_dirrem = NULL; 3713 LIST_REMOVE(jremref, jr_deps); 3714 jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT; 3715 jwork_insert(&dirrem->dm_jwork, jsegdep); 3716 if (LIST_EMPTY(&dirrem->dm_jremrefhd) && 3717 (dirrem->dm_state & COMPLETE) != 0) 3718 add_to_worklist(&dirrem->dm_list, 0); 3719 free_jremref(jremref); 3720 } 3721 3722 /* 3723 * Called once a jaddref has made it to stable store. The dependency is 3724 * marked complete and any dependent structures are added to the inode 3725 * bufwait list to be completed as soon as it is written. If a bitmap write 3726 * depends on this entry we move the inode into the inodedephd of the 3727 * bmsafemap dependency and attempt to remove the jaddref from the bmsafemap. 3728 */ 3729 static void 3730 handle_written_jaddref(jaddref) 3731 struct jaddref *jaddref; 3732 { 3733 struct jsegdep *jsegdep; 3734 struct inodedep *inodedep; 3735 struct diradd *diradd; 3736 struct mkdir *mkdir; 3737 3738 /* Grab the jsegdep. */ 3739 jsegdep = inoref_jseg(&jaddref->ja_ref); 3740 mkdir = NULL; 3741 diradd = NULL; 3742 if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino, 3743 0, &inodedep) == 0) 3744 panic("handle_written_jaddref: Lost inodedep."); 3745 if (jaddref->ja_diradd == NULL) 3746 panic("handle_written_jaddref: No dependency"); 3747 if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) { 3748 diradd = jaddref->ja_diradd; 3749 WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list); 3750 } else if (jaddref->ja_state & MKDIR_PARENT) { 3751 mkdir = jaddref->ja_mkdir; 3752 WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list); 3753 } else if (jaddref->ja_state & MKDIR_BODY) 3754 mkdir = jaddref->ja_mkdir; 3755 else 3756 panic("handle_written_jaddref: Unknown dependency %p", 3757 jaddref->ja_diradd); 3758 jaddref->ja_diradd = NULL; /* also clears ja_mkdir */ 3759 /* 3760 * Remove us from the inode list. 3761 */ 3762 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps); 3763 /* 3764 * The mkdir may be waiting on the jaddref to clear before freeing. 3765 */ 3766 if (mkdir) { 3767 KASSERT(mkdir->md_list.wk_type == D_MKDIR, 3768 ("handle_written_jaddref: Incorrect type for mkdir %s", 3769 TYPENAME(mkdir->md_list.wk_type))); 3770 mkdir->md_jaddref = NULL; 3771 diradd = mkdir->md_diradd; 3772 mkdir->md_state |= DEPCOMPLETE; 3773 complete_mkdir(mkdir); 3774 } 3775 jwork_insert(&diradd->da_jwork, jsegdep); 3776 if (jaddref->ja_state & NEWBLOCK) { 3777 inodedep->id_state |= ONDEPLIST; 3778 LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd, 3779 inodedep, id_deps); 3780 } 3781 free_jaddref(jaddref); 3782 } 3783 3784 /* 3785 * Called once a jnewblk journal is written. The allocdirect or allocindir 3786 * is placed in the bmsafemap to await notification of a written bitmap. If 3787 * the operation was canceled we add the segdep to the appropriate 3788 * dependency to free the journal space once the canceling operation 3789 * completes. 3790 */ 3791 static void 3792 handle_written_jnewblk(jnewblk) 3793 struct jnewblk *jnewblk; 3794 { 3795 struct bmsafemap *bmsafemap; 3796 struct freefrag *freefrag; 3797 struct freework *freework; 3798 struct jsegdep *jsegdep; 3799 struct newblk *newblk; 3800 3801 /* Grab the jsegdep. */ 3802 jsegdep = jnewblk->jn_jsegdep; 3803 jnewblk->jn_jsegdep = NULL; 3804 if (jnewblk->jn_dep == NULL) 3805 panic("handle_written_jnewblk: No dependency for the segdep."); 3806 switch (jnewblk->jn_dep->wk_type) { 3807 case D_NEWBLK: 3808 case D_ALLOCDIRECT: 3809 case D_ALLOCINDIR: 3810 /* 3811 * Add the written block to the bmsafemap so it can 3812 * be notified when the bitmap is on disk. 3813 */ 3814 newblk = WK_NEWBLK(jnewblk->jn_dep); 3815 newblk->nb_jnewblk = NULL; 3816 if ((newblk->nb_state & GOINGAWAY) == 0) { 3817 bmsafemap = newblk->nb_bmsafemap; 3818 newblk->nb_state |= ONDEPLIST; 3819 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, 3820 nb_deps); 3821 } 3822 jwork_insert(&newblk->nb_jwork, jsegdep); 3823 break; 3824 case D_FREEFRAG: 3825 /* 3826 * A newblock being removed by a freefrag when replaced by 3827 * frag extension. 3828 */ 3829 freefrag = WK_FREEFRAG(jnewblk->jn_dep); 3830 freefrag->ff_jdep = NULL; 3831 jwork_insert(&freefrag->ff_jwork, jsegdep); 3832 break; 3833 case D_FREEWORK: 3834 /* 3835 * A direct block was removed by truncate. 3836 */ 3837 freework = WK_FREEWORK(jnewblk->jn_dep); 3838 freework->fw_jnewblk = NULL; 3839 jwork_insert(&freework->fw_freeblks->fb_jwork, jsegdep); 3840 break; 3841 default: 3842 panic("handle_written_jnewblk: Unknown type %d.", 3843 jnewblk->jn_dep->wk_type); 3844 } 3845 jnewblk->jn_dep = NULL; 3846 free_jnewblk(jnewblk); 3847 } 3848 3849 /* 3850 * Cancel a jfreefrag that won't be needed, probably due to colliding with 3851 * an in-flight allocation that has not yet been committed. Divorce us 3852 * from the freefrag and mark it DEPCOMPLETE so that it may be added 3853 * to the worklist. 3854 */ 3855 static void 3856 cancel_jfreefrag(jfreefrag) 3857 struct jfreefrag *jfreefrag; 3858 { 3859 struct freefrag *freefrag; 3860 3861 if (jfreefrag->fr_jsegdep) { 3862 free_jsegdep(jfreefrag->fr_jsegdep); 3863 jfreefrag->fr_jsegdep = NULL; 3864 } 3865 freefrag = jfreefrag->fr_freefrag; 3866 jfreefrag->fr_freefrag = NULL; 3867 free_jfreefrag(jfreefrag); 3868 freefrag->ff_state |= DEPCOMPLETE; 3869 CTR1(KTR_SUJ, "cancel_jfreefrag: blkno %jd", freefrag->ff_blkno); 3870 } 3871 3872 /* 3873 * Free a jfreefrag when the parent freefrag is rendered obsolete. 3874 */ 3875 static void 3876 free_jfreefrag(jfreefrag) 3877 struct jfreefrag *jfreefrag; 3878 { 3879 3880 if (jfreefrag->fr_state & INPROGRESS) 3881 WORKLIST_REMOVE(&jfreefrag->fr_list); 3882 else if (jfreefrag->fr_state & ONWORKLIST) 3883 remove_from_journal(&jfreefrag->fr_list); 3884 if (jfreefrag->fr_freefrag != NULL) 3885 panic("free_jfreefrag: Still attached to a freefrag."); 3886 WORKITEM_FREE(jfreefrag, D_JFREEFRAG); 3887 } 3888 3889 /* 3890 * Called when the journal write for a jfreefrag completes. The parent 3891 * freefrag is added to the worklist if this completes its dependencies. 3892 */ 3893 static void 3894 handle_written_jfreefrag(jfreefrag) 3895 struct jfreefrag *jfreefrag; 3896 { 3897 struct jsegdep *jsegdep; 3898 struct freefrag *freefrag; 3899 3900 /* Grab the jsegdep. */ 3901 jsegdep = jfreefrag->fr_jsegdep; 3902 jfreefrag->fr_jsegdep = NULL; 3903 freefrag = jfreefrag->fr_freefrag; 3904 if (freefrag == NULL) 3905 panic("handle_written_jfreefrag: No freefrag."); 3906 freefrag->ff_state |= DEPCOMPLETE; 3907 freefrag->ff_jdep = NULL; 3908 jwork_insert(&freefrag->ff_jwork, jsegdep); 3909 if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE) 3910 add_to_worklist(&freefrag->ff_list, 0); 3911 jfreefrag->fr_freefrag = NULL; 3912 free_jfreefrag(jfreefrag); 3913 } 3914 3915 /* 3916 * Called when the journal write for a jfreeblk completes. The jfreeblk 3917 * is removed from the freeblks list of pending journal writes and the 3918 * jsegdep is moved to the freeblks jwork to be completed when all blocks 3919 * have been reclaimed. 3920 */ 3921 static void 3922 handle_written_jblkdep(jblkdep) 3923 struct jblkdep *jblkdep; 3924 { 3925 struct freeblks *freeblks; 3926 struct jsegdep *jsegdep; 3927 3928 /* Grab the jsegdep. */ 3929 jsegdep = jblkdep->jb_jsegdep; 3930 jblkdep->jb_jsegdep = NULL; 3931 freeblks = jblkdep->jb_freeblks; 3932 LIST_REMOVE(jblkdep, jb_deps); 3933 jwork_insert(&freeblks->fb_jwork, jsegdep); 3934 /* 3935 * If the freeblks is all journaled, we can add it to the worklist. 3936 */ 3937 if (LIST_EMPTY(&freeblks->fb_jblkdephd) && 3938 (freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE) 3939 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 3940 3941 free_jblkdep(jblkdep); 3942 } 3943 3944 static struct jsegdep * 3945 newjsegdep(struct worklist *wk) 3946 { 3947 struct jsegdep *jsegdep; 3948 3949 jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS); 3950 workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp); 3951 jsegdep->jd_seg = NULL; 3952 3953 return (jsegdep); 3954 } 3955 3956 static struct jmvref * 3957 newjmvref(dp, ino, oldoff, newoff) 3958 struct inode *dp; 3959 ino_t ino; 3960 off_t oldoff; 3961 off_t newoff; 3962 { 3963 struct jmvref *jmvref; 3964 3965 jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS); 3966 workitem_alloc(&jmvref->jm_list, D_JMVREF, UFSTOVFS(dp->i_ump)); 3967 jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE; 3968 jmvref->jm_parent = dp->i_number; 3969 jmvref->jm_ino = ino; 3970 jmvref->jm_oldoff = oldoff; 3971 jmvref->jm_newoff = newoff; 3972 3973 return (jmvref); 3974 } 3975 3976 /* 3977 * Allocate a new jremref that tracks the removal of ip from dp with the 3978 * directory entry offset of diroff. Mark the entry as ATTACHED and 3979 * DEPCOMPLETE as we have all the information required for the journal write 3980 * and the directory has already been removed from the buffer. The caller 3981 * is responsible for linking the jremref into the pagedep and adding it 3982 * to the journal to write. The MKDIR_PARENT flag is set if we're doing 3983 * a DOTDOT addition so handle_workitem_remove() can properly assign 3984 * the jsegdep when we're done. 3985 */ 3986 static struct jremref * 3987 newjremref(struct dirrem *dirrem, struct inode *dp, struct inode *ip, 3988 off_t diroff, nlink_t nlink) 3989 { 3990 struct jremref *jremref; 3991 3992 jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS); 3993 workitem_alloc(&jremref->jr_list, D_JREMREF, UFSTOVFS(dp->i_ump)); 3994 jremref->jr_state = ATTACHED; 3995 newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff, 3996 nlink, ip->i_mode); 3997 jremref->jr_dirrem = dirrem; 3998 3999 return (jremref); 4000 } 4001 4002 static inline void 4003 newinoref(struct inoref *inoref, ino_t ino, ino_t parent, off_t diroff, 4004 nlink_t nlink, uint16_t mode) 4005 { 4006 4007 inoref->if_jsegdep = newjsegdep(&inoref->if_list); 4008 inoref->if_diroff = diroff; 4009 inoref->if_ino = ino; 4010 inoref->if_parent = parent; 4011 inoref->if_nlink = nlink; 4012 inoref->if_mode = mode; 4013 } 4014 4015 /* 4016 * Allocate a new jaddref to track the addition of ino to dp at diroff. The 4017 * directory offset may not be known until later. The caller is responsible 4018 * adding the entry to the journal when this information is available. nlink 4019 * should be the link count prior to the addition and mode is only required 4020 * to have the correct FMT. 4021 */ 4022 static struct jaddref * 4023 newjaddref(struct inode *dp, ino_t ino, off_t diroff, int16_t nlink, 4024 uint16_t mode) 4025 { 4026 struct jaddref *jaddref; 4027 4028 jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS); 4029 workitem_alloc(&jaddref->ja_list, D_JADDREF, UFSTOVFS(dp->i_ump)); 4030 jaddref->ja_state = ATTACHED; 4031 jaddref->ja_mkdir = NULL; 4032 newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode); 4033 4034 return (jaddref); 4035 } 4036 4037 /* 4038 * Create a new free dependency for a freework. The caller is responsible 4039 * for adjusting the reference count when it has the lock held. The freedep 4040 * will track an outstanding bitmap write that will ultimately clear the 4041 * freework to continue. 4042 */ 4043 static struct freedep * 4044 newfreedep(struct freework *freework) 4045 { 4046 struct freedep *freedep; 4047 4048 freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS); 4049 workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp); 4050 freedep->fd_freework = freework; 4051 4052 return (freedep); 4053 } 4054 4055 /* 4056 * Free a freedep structure once the buffer it is linked to is written. If 4057 * this is the last reference to the freework schedule it for completion. 4058 */ 4059 static void 4060 free_freedep(freedep) 4061 struct freedep *freedep; 4062 { 4063 struct freework *freework; 4064 4065 freework = freedep->fd_freework; 4066 freework->fw_freeblks->fb_cgwait--; 4067 if (--freework->fw_ref == 0) 4068 freework_enqueue(freework); 4069 WORKITEM_FREE(freedep, D_FREEDEP); 4070 } 4071 4072 /* 4073 * Allocate a new freework structure that may be a level in an indirect 4074 * when parent is not NULL or a top level block when it is. The top level 4075 * freework structures are allocated without the per-filesystem lock held 4076 * and before the freeblks is visible outside of softdep_setup_freeblocks(). 4077 */ 4078 static struct freework * 4079 newfreework(ump, freeblks, parent, lbn, nb, frags, off, journal) 4080 struct ufsmount *ump; 4081 struct freeblks *freeblks; 4082 struct freework *parent; 4083 ufs_lbn_t lbn; 4084 ufs2_daddr_t nb; 4085 int frags; 4086 int off; 4087 int journal; 4088 { 4089 struct freework *freework; 4090 4091 freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS); 4092 workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp); 4093 freework->fw_state = ATTACHED; 4094 freework->fw_jnewblk = NULL; 4095 freework->fw_freeblks = freeblks; 4096 freework->fw_parent = parent; 4097 freework->fw_lbn = lbn; 4098 freework->fw_blkno = nb; 4099 freework->fw_frags = frags; 4100 freework->fw_indir = NULL; 4101 freework->fw_ref = (MOUNTEDSUJ(UFSTOVFS(ump)) == 0 || lbn >= -NXADDR) 4102 ? 0 : NINDIR(ump->um_fs) + 1; 4103 freework->fw_start = freework->fw_off = off; 4104 if (journal) 4105 newjfreeblk(freeblks, lbn, nb, frags); 4106 if (parent == NULL) { 4107 ACQUIRE_LOCK(ump); 4108 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list); 4109 freeblks->fb_ref++; 4110 FREE_LOCK(ump); 4111 } 4112 4113 return (freework); 4114 } 4115 4116 /* 4117 * Eliminate a jfreeblk for a block that does not need journaling. 4118 */ 4119 static void 4120 cancel_jfreeblk(freeblks, blkno) 4121 struct freeblks *freeblks; 4122 ufs2_daddr_t blkno; 4123 { 4124 struct jfreeblk *jfreeblk; 4125 struct jblkdep *jblkdep; 4126 4127 LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) { 4128 if (jblkdep->jb_list.wk_type != D_JFREEBLK) 4129 continue; 4130 jfreeblk = WK_JFREEBLK(&jblkdep->jb_list); 4131 if (jfreeblk->jf_blkno == blkno) 4132 break; 4133 } 4134 if (jblkdep == NULL) 4135 return; 4136 CTR1(KTR_SUJ, "cancel_jfreeblk: blkno %jd", blkno); 4137 free_jsegdep(jblkdep->jb_jsegdep); 4138 LIST_REMOVE(jblkdep, jb_deps); 4139 WORKITEM_FREE(jfreeblk, D_JFREEBLK); 4140 } 4141 4142 /* 4143 * Allocate a new jfreeblk to journal top level block pointer when truncating 4144 * a file. The caller must add this to the worklist when the per-filesystem 4145 * lock is held. 4146 */ 4147 static struct jfreeblk * 4148 newjfreeblk(freeblks, lbn, blkno, frags) 4149 struct freeblks *freeblks; 4150 ufs_lbn_t lbn; 4151 ufs2_daddr_t blkno; 4152 int frags; 4153 { 4154 struct jfreeblk *jfreeblk; 4155 4156 jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS); 4157 workitem_alloc(&jfreeblk->jf_dep.jb_list, D_JFREEBLK, 4158 freeblks->fb_list.wk_mp); 4159 jfreeblk->jf_dep.jb_jsegdep = newjsegdep(&jfreeblk->jf_dep.jb_list); 4160 jfreeblk->jf_dep.jb_freeblks = freeblks; 4161 jfreeblk->jf_ino = freeblks->fb_inum; 4162 jfreeblk->jf_lbn = lbn; 4163 jfreeblk->jf_blkno = blkno; 4164 jfreeblk->jf_frags = frags; 4165 LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jfreeblk->jf_dep, jb_deps); 4166 4167 return (jfreeblk); 4168 } 4169 4170 /* 4171 * The journal is only prepared to handle full-size block numbers, so we 4172 * have to adjust the record to reflect the change to a full-size block. 4173 * For example, suppose we have a block made up of fragments 8-15 and 4174 * want to free its last two fragments. We are given a request that says: 4175 * FREEBLK ino=5, blkno=14, lbn=0, frags=2, oldfrags=0 4176 * where frags are the number of fragments to free and oldfrags are the 4177 * number of fragments to keep. To block align it, we have to change it to 4178 * have a valid full-size blkno, so it becomes: 4179 * FREEBLK ino=5, blkno=8, lbn=0, frags=2, oldfrags=6 4180 */ 4181 static void 4182 adjust_newfreework(freeblks, frag_offset) 4183 struct freeblks *freeblks; 4184 int frag_offset; 4185 { 4186 struct jfreeblk *jfreeblk; 4187 4188 KASSERT((LIST_FIRST(&freeblks->fb_jblkdephd) != NULL && 4189 LIST_FIRST(&freeblks->fb_jblkdephd)->jb_list.wk_type == D_JFREEBLK), 4190 ("adjust_newfreework: Missing freeblks dependency")); 4191 4192 jfreeblk = WK_JFREEBLK(LIST_FIRST(&freeblks->fb_jblkdephd)); 4193 jfreeblk->jf_blkno -= frag_offset; 4194 jfreeblk->jf_frags += frag_offset; 4195 } 4196 4197 /* 4198 * Allocate a new jtrunc to track a partial truncation. 4199 */ 4200 static struct jtrunc * 4201 newjtrunc(freeblks, size, extsize) 4202 struct freeblks *freeblks; 4203 off_t size; 4204 int extsize; 4205 { 4206 struct jtrunc *jtrunc; 4207 4208 jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS); 4209 workitem_alloc(&jtrunc->jt_dep.jb_list, D_JTRUNC, 4210 freeblks->fb_list.wk_mp); 4211 jtrunc->jt_dep.jb_jsegdep = newjsegdep(&jtrunc->jt_dep.jb_list); 4212 jtrunc->jt_dep.jb_freeblks = freeblks; 4213 jtrunc->jt_ino = freeblks->fb_inum; 4214 jtrunc->jt_size = size; 4215 jtrunc->jt_extsize = extsize; 4216 LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jtrunc->jt_dep, jb_deps); 4217 4218 return (jtrunc); 4219 } 4220 4221 /* 4222 * If we're canceling a new bitmap we have to search for another ref 4223 * to move into the bmsafemap dep. This might be better expressed 4224 * with another structure. 4225 */ 4226 static void 4227 move_newblock_dep(jaddref, inodedep) 4228 struct jaddref *jaddref; 4229 struct inodedep *inodedep; 4230 { 4231 struct inoref *inoref; 4232 struct jaddref *jaddrefn; 4233 4234 jaddrefn = NULL; 4235 for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref; 4236 inoref = TAILQ_NEXT(inoref, if_deps)) { 4237 if ((jaddref->ja_state & NEWBLOCK) && 4238 inoref->if_list.wk_type == D_JADDREF) { 4239 jaddrefn = (struct jaddref *)inoref; 4240 break; 4241 } 4242 } 4243 if (jaddrefn == NULL) 4244 return; 4245 jaddrefn->ja_state &= ~(ATTACHED | UNDONE); 4246 jaddrefn->ja_state |= jaddref->ja_state & 4247 (ATTACHED | UNDONE | NEWBLOCK); 4248 jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK); 4249 jaddref->ja_state |= ATTACHED; 4250 LIST_REMOVE(jaddref, ja_bmdeps); 4251 LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn, 4252 ja_bmdeps); 4253 } 4254 4255 /* 4256 * Cancel a jaddref either before it has been written or while it is being 4257 * written. This happens when a link is removed before the add reaches 4258 * the disk. The jaddref dependency is kept linked into the bmsafemap 4259 * and inode to prevent the link count or bitmap from reaching the disk 4260 * until handle_workitem_remove() re-adjusts the counts and bitmaps as 4261 * required. 4262 * 4263 * Returns 1 if the canceled addref requires journaling of the remove and 4264 * 0 otherwise. 4265 */ 4266 static int 4267 cancel_jaddref(jaddref, inodedep, wkhd) 4268 struct jaddref *jaddref; 4269 struct inodedep *inodedep; 4270 struct workhead *wkhd; 4271 { 4272 struct inoref *inoref; 4273 struct jsegdep *jsegdep; 4274 int needsj; 4275 4276 KASSERT((jaddref->ja_state & COMPLETE) == 0, 4277 ("cancel_jaddref: Canceling complete jaddref")); 4278 if (jaddref->ja_state & (INPROGRESS | COMPLETE)) 4279 needsj = 1; 4280 else 4281 needsj = 0; 4282 if (inodedep == NULL) 4283 if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino, 4284 0, &inodedep) == 0) 4285 panic("cancel_jaddref: Lost inodedep"); 4286 /* 4287 * We must adjust the nlink of any reference operation that follows 4288 * us so that it is consistent with the in-memory reference. This 4289 * ensures that inode nlink rollbacks always have the correct link. 4290 */ 4291 if (needsj == 0) { 4292 for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref; 4293 inoref = TAILQ_NEXT(inoref, if_deps)) { 4294 if (inoref->if_state & GOINGAWAY) 4295 break; 4296 inoref->if_nlink--; 4297 } 4298 } 4299 jsegdep = inoref_jseg(&jaddref->ja_ref); 4300 if (jaddref->ja_state & NEWBLOCK) 4301 move_newblock_dep(jaddref, inodedep); 4302 wake_worklist(&jaddref->ja_list); 4303 jaddref->ja_mkdir = NULL; 4304 if (jaddref->ja_state & INPROGRESS) { 4305 jaddref->ja_state &= ~INPROGRESS; 4306 WORKLIST_REMOVE(&jaddref->ja_list); 4307 jwork_insert(wkhd, jsegdep); 4308 } else { 4309 free_jsegdep(jsegdep); 4310 if (jaddref->ja_state & DEPCOMPLETE) 4311 remove_from_journal(&jaddref->ja_list); 4312 } 4313 jaddref->ja_state |= (GOINGAWAY | DEPCOMPLETE); 4314 /* 4315 * Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove 4316 * can arrange for them to be freed with the bitmap. Otherwise we 4317 * no longer need this addref attached to the inoreflst and it 4318 * will incorrectly adjust nlink if we leave it. 4319 */ 4320 if ((jaddref->ja_state & NEWBLOCK) == 0) { 4321 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, 4322 if_deps); 4323 jaddref->ja_state |= COMPLETE; 4324 free_jaddref(jaddref); 4325 return (needsj); 4326 } 4327 /* 4328 * Leave the head of the list for jsegdeps for fast merging. 4329 */ 4330 if (LIST_FIRST(wkhd) != NULL) { 4331 jaddref->ja_state |= ONWORKLIST; 4332 LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list); 4333 } else 4334 WORKLIST_INSERT(wkhd, &jaddref->ja_list); 4335 4336 return (needsj); 4337 } 4338 4339 /* 4340 * Attempt to free a jaddref structure when some work completes. This 4341 * should only succeed once the entry is written and all dependencies have 4342 * been notified. 4343 */ 4344 static void 4345 free_jaddref(jaddref) 4346 struct jaddref *jaddref; 4347 { 4348 4349 if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE) 4350 return; 4351 if (jaddref->ja_ref.if_jsegdep) 4352 panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n", 4353 jaddref, jaddref->ja_state); 4354 if (jaddref->ja_state & NEWBLOCK) 4355 LIST_REMOVE(jaddref, ja_bmdeps); 4356 if (jaddref->ja_state & (INPROGRESS | ONWORKLIST)) 4357 panic("free_jaddref: Bad state %p(0x%X)", 4358 jaddref, jaddref->ja_state); 4359 if (jaddref->ja_mkdir != NULL) 4360 panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state); 4361 WORKITEM_FREE(jaddref, D_JADDREF); 4362 } 4363 4364 /* 4365 * Free a jremref structure once it has been written or discarded. 4366 */ 4367 static void 4368 free_jremref(jremref) 4369 struct jremref *jremref; 4370 { 4371 4372 if (jremref->jr_ref.if_jsegdep) 4373 free_jsegdep(jremref->jr_ref.if_jsegdep); 4374 if (jremref->jr_state & INPROGRESS) 4375 panic("free_jremref: IO still pending"); 4376 WORKITEM_FREE(jremref, D_JREMREF); 4377 } 4378 4379 /* 4380 * Free a jnewblk structure. 4381 */ 4382 static void 4383 free_jnewblk(jnewblk) 4384 struct jnewblk *jnewblk; 4385 { 4386 4387 if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE) 4388 return; 4389 LIST_REMOVE(jnewblk, jn_deps); 4390 if (jnewblk->jn_dep != NULL) 4391 panic("free_jnewblk: Dependency still attached."); 4392 WORKITEM_FREE(jnewblk, D_JNEWBLK); 4393 } 4394 4395 /* 4396 * Cancel a jnewblk which has been been made redundant by frag extension. 4397 */ 4398 static void 4399 cancel_jnewblk(jnewblk, wkhd) 4400 struct jnewblk *jnewblk; 4401 struct workhead *wkhd; 4402 { 4403 struct jsegdep *jsegdep; 4404 4405 CTR1(KTR_SUJ, "cancel_jnewblk: blkno %jd", jnewblk->jn_blkno); 4406 jsegdep = jnewblk->jn_jsegdep; 4407 if (jnewblk->jn_jsegdep == NULL || jnewblk->jn_dep == NULL) 4408 panic("cancel_jnewblk: Invalid state"); 4409 jnewblk->jn_jsegdep = NULL; 4410 jnewblk->jn_dep = NULL; 4411 jnewblk->jn_state |= GOINGAWAY; 4412 if (jnewblk->jn_state & INPROGRESS) { 4413 jnewblk->jn_state &= ~INPROGRESS; 4414 WORKLIST_REMOVE(&jnewblk->jn_list); 4415 jwork_insert(wkhd, jsegdep); 4416 } else { 4417 free_jsegdep(jsegdep); 4418 remove_from_journal(&jnewblk->jn_list); 4419 } 4420 wake_worklist(&jnewblk->jn_list); 4421 WORKLIST_INSERT(wkhd, &jnewblk->jn_list); 4422 } 4423 4424 static void 4425 free_jblkdep(jblkdep) 4426 struct jblkdep *jblkdep; 4427 { 4428 4429 if (jblkdep->jb_list.wk_type == D_JFREEBLK) 4430 WORKITEM_FREE(jblkdep, D_JFREEBLK); 4431 else if (jblkdep->jb_list.wk_type == D_JTRUNC) 4432 WORKITEM_FREE(jblkdep, D_JTRUNC); 4433 else 4434 panic("free_jblkdep: Unexpected type %s", 4435 TYPENAME(jblkdep->jb_list.wk_type)); 4436 } 4437 4438 /* 4439 * Free a single jseg once it is no longer referenced in memory or on 4440 * disk. Reclaim journal blocks and dependencies waiting for the segment 4441 * to disappear. 4442 */ 4443 static void 4444 free_jseg(jseg, jblocks) 4445 struct jseg *jseg; 4446 struct jblocks *jblocks; 4447 { 4448 struct freework *freework; 4449 4450 /* 4451 * Free freework structures that were lingering to indicate freed 4452 * indirect blocks that forced journal write ordering on reallocate. 4453 */ 4454 while ((freework = LIST_FIRST(&jseg->js_indirs)) != NULL) 4455 indirblk_remove(freework); 4456 if (jblocks->jb_oldestseg == jseg) 4457 jblocks->jb_oldestseg = TAILQ_NEXT(jseg, js_next); 4458 TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next); 4459 jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size); 4460 KASSERT(LIST_EMPTY(&jseg->js_entries), 4461 ("free_jseg: Freed jseg has valid entries.")); 4462 WORKITEM_FREE(jseg, D_JSEG); 4463 } 4464 4465 /* 4466 * Free all jsegs that meet the criteria for being reclaimed and update 4467 * oldestseg. 4468 */ 4469 static void 4470 free_jsegs(jblocks) 4471 struct jblocks *jblocks; 4472 { 4473 struct jseg *jseg; 4474 4475 /* 4476 * Free only those jsegs which have none allocated before them to 4477 * preserve the journal space ordering. 4478 */ 4479 while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) { 4480 /* 4481 * Only reclaim space when nothing depends on this journal 4482 * set and another set has written that it is no longer 4483 * valid. 4484 */ 4485 if (jseg->js_refs != 0) { 4486 jblocks->jb_oldestseg = jseg; 4487 return; 4488 } 4489 if ((jseg->js_state & ALLCOMPLETE) != ALLCOMPLETE) 4490 break; 4491 if (jseg->js_seq > jblocks->jb_oldestwrseq) 4492 break; 4493 /* 4494 * We can free jsegs that didn't write entries when 4495 * oldestwrseq == js_seq. 4496 */ 4497 if (jseg->js_seq == jblocks->jb_oldestwrseq && 4498 jseg->js_cnt != 0) 4499 break; 4500 free_jseg(jseg, jblocks); 4501 } 4502 /* 4503 * If we exited the loop above we still must discover the 4504 * oldest valid segment. 4505 */ 4506 if (jseg) 4507 for (jseg = jblocks->jb_oldestseg; jseg != NULL; 4508 jseg = TAILQ_NEXT(jseg, js_next)) 4509 if (jseg->js_refs != 0) 4510 break; 4511 jblocks->jb_oldestseg = jseg; 4512 /* 4513 * The journal has no valid records but some jsegs may still be 4514 * waiting on oldestwrseq to advance. We force a small record 4515 * out to permit these lingering records to be reclaimed. 4516 */ 4517 if (jblocks->jb_oldestseg == NULL && !TAILQ_EMPTY(&jblocks->jb_segs)) 4518 jblocks->jb_needseg = 1; 4519 } 4520 4521 /* 4522 * Release one reference to a jseg and free it if the count reaches 0. This 4523 * should eventually reclaim journal space as well. 4524 */ 4525 static void 4526 rele_jseg(jseg) 4527 struct jseg *jseg; 4528 { 4529 4530 KASSERT(jseg->js_refs > 0, 4531 ("free_jseg: Invalid refcnt %d", jseg->js_refs)); 4532 if (--jseg->js_refs != 0) 4533 return; 4534 free_jsegs(jseg->js_jblocks); 4535 } 4536 4537 /* 4538 * Release a jsegdep and decrement the jseg count. 4539 */ 4540 static void 4541 free_jsegdep(jsegdep) 4542 struct jsegdep *jsegdep; 4543 { 4544 4545 if (jsegdep->jd_seg) 4546 rele_jseg(jsegdep->jd_seg); 4547 WORKITEM_FREE(jsegdep, D_JSEGDEP); 4548 } 4549 4550 /* 4551 * Wait for a journal item to make it to disk. Initiate journal processing 4552 * if required. 4553 */ 4554 static int 4555 jwait(wk, waitfor) 4556 struct worklist *wk; 4557 int waitfor; 4558 { 4559 4560 LOCK_OWNED(VFSTOUFS(wk->wk_mp)); 4561 /* 4562 * Blocking journal waits cause slow synchronous behavior. Record 4563 * stats on the frequency of these blocking operations. 4564 */ 4565 if (waitfor == MNT_WAIT) { 4566 stat_journal_wait++; 4567 switch (wk->wk_type) { 4568 case D_JREMREF: 4569 case D_JMVREF: 4570 stat_jwait_filepage++; 4571 break; 4572 case D_JTRUNC: 4573 case D_JFREEBLK: 4574 stat_jwait_freeblks++; 4575 break; 4576 case D_JNEWBLK: 4577 stat_jwait_newblk++; 4578 break; 4579 case D_JADDREF: 4580 stat_jwait_inode++; 4581 break; 4582 default: 4583 break; 4584 } 4585 } 4586 /* 4587 * If IO has not started we process the journal. We can't mark the 4588 * worklist item as IOWAITING because we drop the lock while 4589 * processing the journal and the worklist entry may be freed after 4590 * this point. The caller may call back in and re-issue the request. 4591 */ 4592 if ((wk->wk_state & INPROGRESS) == 0) { 4593 softdep_process_journal(wk->wk_mp, wk, waitfor); 4594 if (waitfor != MNT_WAIT) 4595 return (EBUSY); 4596 return (0); 4597 } 4598 if (waitfor != MNT_WAIT) 4599 return (EBUSY); 4600 wait_worklist(wk, "jwait"); 4601 return (0); 4602 } 4603 4604 /* 4605 * Lookup an inodedep based on an inode pointer and set the nlinkdelta as 4606 * appropriate. This is a convenience function to reduce duplicate code 4607 * for the setup and revert functions below. 4608 */ 4609 static struct inodedep * 4610 inodedep_lookup_ip(ip) 4611 struct inode *ip; 4612 { 4613 struct inodedep *inodedep; 4614 int dflags; 4615 4616 KASSERT(ip->i_nlink >= ip->i_effnlink, 4617 ("inodedep_lookup_ip: bad delta")); 4618 dflags = DEPALLOC; 4619 if (IS_SNAPSHOT(ip)) 4620 dflags |= NODELAY; 4621 (void) inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, dflags, 4622 &inodedep); 4623 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 4624 KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked")); 4625 4626 return (inodedep); 4627 } 4628 4629 /* 4630 * Called prior to creating a new inode and linking it to a directory. The 4631 * jaddref structure must already be allocated by softdep_setup_inomapdep 4632 * and it is discovered here so we can initialize the mode and update 4633 * nlinkdelta. 4634 */ 4635 void 4636 softdep_setup_create(dp, ip) 4637 struct inode *dp; 4638 struct inode *ip; 4639 { 4640 struct inodedep *inodedep; 4641 struct jaddref *jaddref; 4642 struct vnode *dvp; 4643 4644 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0, 4645 ("softdep_setup_create called on non-softdep filesystem")); 4646 KASSERT(ip->i_nlink == 1, 4647 ("softdep_setup_create: Invalid link count.")); 4648 dvp = ITOV(dp); 4649 ACQUIRE_LOCK(dp->i_ump); 4650 inodedep = inodedep_lookup_ip(ip); 4651 if (DOINGSUJ(dvp)) { 4652 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4653 inoreflst); 4654 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 4655 ("softdep_setup_create: No addref structure present.")); 4656 } 4657 softdep_prelink(dvp, NULL); 4658 FREE_LOCK(dp->i_ump); 4659 } 4660 4661 /* 4662 * Create a jaddref structure to track the addition of a DOTDOT link when 4663 * we are reparenting an inode as part of a rename. This jaddref will be 4664 * found by softdep_setup_directory_change. Adjusts nlinkdelta for 4665 * non-journaling softdep. 4666 */ 4667 void 4668 softdep_setup_dotdot_link(dp, ip) 4669 struct inode *dp; 4670 struct inode *ip; 4671 { 4672 struct inodedep *inodedep; 4673 struct jaddref *jaddref; 4674 struct vnode *dvp; 4675 struct vnode *vp; 4676 4677 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0, 4678 ("softdep_setup_dotdot_link called on non-softdep filesystem")); 4679 dvp = ITOV(dp); 4680 vp = ITOV(ip); 4681 jaddref = NULL; 4682 /* 4683 * We don't set MKDIR_PARENT as this is not tied to a mkdir and 4684 * is used as a normal link would be. 4685 */ 4686 if (DOINGSUJ(dvp)) 4687 jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET, 4688 dp->i_effnlink - 1, dp->i_mode); 4689 ACQUIRE_LOCK(dp->i_ump); 4690 inodedep = inodedep_lookup_ip(dp); 4691 if (jaddref) 4692 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 4693 if_deps); 4694 softdep_prelink(dvp, ITOV(ip)); 4695 FREE_LOCK(dp->i_ump); 4696 } 4697 4698 /* 4699 * Create a jaddref structure to track a new link to an inode. The directory 4700 * offset is not known until softdep_setup_directory_add or 4701 * softdep_setup_directory_change. Adjusts nlinkdelta for non-journaling 4702 * softdep. 4703 */ 4704 void 4705 softdep_setup_link(dp, ip) 4706 struct inode *dp; 4707 struct inode *ip; 4708 { 4709 struct inodedep *inodedep; 4710 struct jaddref *jaddref; 4711 struct vnode *dvp; 4712 4713 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0, 4714 ("softdep_setup_link called on non-softdep filesystem")); 4715 dvp = ITOV(dp); 4716 jaddref = NULL; 4717 if (DOINGSUJ(dvp)) 4718 jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1, 4719 ip->i_mode); 4720 ACQUIRE_LOCK(dp->i_ump); 4721 inodedep = inodedep_lookup_ip(ip); 4722 if (jaddref) 4723 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 4724 if_deps); 4725 softdep_prelink(dvp, ITOV(ip)); 4726 FREE_LOCK(dp->i_ump); 4727 } 4728 4729 /* 4730 * Called to create the jaddref structures to track . and .. references as 4731 * well as lookup and further initialize the incomplete jaddref created 4732 * by softdep_setup_inomapdep when the inode was allocated. Adjusts 4733 * nlinkdelta for non-journaling softdep. 4734 */ 4735 void 4736 softdep_setup_mkdir(dp, ip) 4737 struct inode *dp; 4738 struct inode *ip; 4739 { 4740 struct inodedep *inodedep; 4741 struct jaddref *dotdotaddref; 4742 struct jaddref *dotaddref; 4743 struct jaddref *jaddref; 4744 struct vnode *dvp; 4745 4746 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0, 4747 ("softdep_setup_mkdir called on non-softdep filesystem")); 4748 dvp = ITOV(dp); 4749 dotaddref = dotdotaddref = NULL; 4750 if (DOINGSUJ(dvp)) { 4751 dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1, 4752 ip->i_mode); 4753 dotaddref->ja_state |= MKDIR_BODY; 4754 dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET, 4755 dp->i_effnlink - 1, dp->i_mode); 4756 dotdotaddref->ja_state |= MKDIR_PARENT; 4757 } 4758 ACQUIRE_LOCK(dp->i_ump); 4759 inodedep = inodedep_lookup_ip(ip); 4760 if (DOINGSUJ(dvp)) { 4761 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4762 inoreflst); 4763 KASSERT(jaddref != NULL, 4764 ("softdep_setup_mkdir: No addref structure present.")); 4765 KASSERT(jaddref->ja_parent == dp->i_number, 4766 ("softdep_setup_mkdir: bad parent %ju", 4767 (uintmax_t)jaddref->ja_parent)); 4768 TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref, 4769 if_deps); 4770 } 4771 inodedep = inodedep_lookup_ip(dp); 4772 if (DOINGSUJ(dvp)) 4773 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, 4774 &dotdotaddref->ja_ref, if_deps); 4775 softdep_prelink(ITOV(dp), NULL); 4776 FREE_LOCK(dp->i_ump); 4777 } 4778 4779 /* 4780 * Called to track nlinkdelta of the inode and parent directories prior to 4781 * unlinking a directory. 4782 */ 4783 void 4784 softdep_setup_rmdir(dp, ip) 4785 struct inode *dp; 4786 struct inode *ip; 4787 { 4788 struct vnode *dvp; 4789 4790 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0, 4791 ("softdep_setup_rmdir called on non-softdep filesystem")); 4792 dvp = ITOV(dp); 4793 ACQUIRE_LOCK(dp->i_ump); 4794 (void) inodedep_lookup_ip(ip); 4795 (void) inodedep_lookup_ip(dp); 4796 softdep_prelink(dvp, ITOV(ip)); 4797 FREE_LOCK(dp->i_ump); 4798 } 4799 4800 /* 4801 * Called to track nlinkdelta of the inode and parent directories prior to 4802 * unlink. 4803 */ 4804 void 4805 softdep_setup_unlink(dp, ip) 4806 struct inode *dp; 4807 struct inode *ip; 4808 { 4809 struct vnode *dvp; 4810 4811 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0, 4812 ("softdep_setup_unlink called on non-softdep filesystem")); 4813 dvp = ITOV(dp); 4814 ACQUIRE_LOCK(dp->i_ump); 4815 (void) inodedep_lookup_ip(ip); 4816 (void) inodedep_lookup_ip(dp); 4817 softdep_prelink(dvp, ITOV(ip)); 4818 FREE_LOCK(dp->i_ump); 4819 } 4820 4821 /* 4822 * Called to release the journal structures created by a failed non-directory 4823 * creation. Adjusts nlinkdelta for non-journaling softdep. 4824 */ 4825 void 4826 softdep_revert_create(dp, ip) 4827 struct inode *dp; 4828 struct inode *ip; 4829 { 4830 struct inodedep *inodedep; 4831 struct jaddref *jaddref; 4832 struct vnode *dvp; 4833 4834 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0, 4835 ("softdep_revert_create called on non-softdep filesystem")); 4836 dvp = ITOV(dp); 4837 ACQUIRE_LOCK(dp->i_ump); 4838 inodedep = inodedep_lookup_ip(ip); 4839 if (DOINGSUJ(dvp)) { 4840 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4841 inoreflst); 4842 KASSERT(jaddref->ja_parent == dp->i_number, 4843 ("softdep_revert_create: addref parent mismatch")); 4844 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4845 } 4846 FREE_LOCK(dp->i_ump); 4847 } 4848 4849 /* 4850 * Called to release the journal structures created by a failed link 4851 * addition. Adjusts nlinkdelta for non-journaling softdep. 4852 */ 4853 void 4854 softdep_revert_link(dp, ip) 4855 struct inode *dp; 4856 struct inode *ip; 4857 { 4858 struct inodedep *inodedep; 4859 struct jaddref *jaddref; 4860 struct vnode *dvp; 4861 4862 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0, 4863 ("softdep_revert_link called on non-softdep filesystem")); 4864 dvp = ITOV(dp); 4865 ACQUIRE_LOCK(dp->i_ump); 4866 inodedep = inodedep_lookup_ip(ip); 4867 if (DOINGSUJ(dvp)) { 4868 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4869 inoreflst); 4870 KASSERT(jaddref->ja_parent == dp->i_number, 4871 ("softdep_revert_link: addref parent mismatch")); 4872 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4873 } 4874 FREE_LOCK(dp->i_ump); 4875 } 4876 4877 /* 4878 * Called to release the journal structures created by a failed mkdir 4879 * attempt. Adjusts nlinkdelta for non-journaling softdep. 4880 */ 4881 void 4882 softdep_revert_mkdir(dp, ip) 4883 struct inode *dp; 4884 struct inode *ip; 4885 { 4886 struct inodedep *inodedep; 4887 struct jaddref *jaddref; 4888 struct jaddref *dotaddref; 4889 struct vnode *dvp; 4890 4891 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0, 4892 ("softdep_revert_mkdir called on non-softdep filesystem")); 4893 dvp = ITOV(dp); 4894 4895 ACQUIRE_LOCK(dp->i_ump); 4896 inodedep = inodedep_lookup_ip(dp); 4897 if (DOINGSUJ(dvp)) { 4898 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4899 inoreflst); 4900 KASSERT(jaddref->ja_parent == ip->i_number, 4901 ("softdep_revert_mkdir: dotdot addref parent mismatch")); 4902 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4903 } 4904 inodedep = inodedep_lookup_ip(ip); 4905 if (DOINGSUJ(dvp)) { 4906 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4907 inoreflst); 4908 KASSERT(jaddref->ja_parent == dp->i_number, 4909 ("softdep_revert_mkdir: addref parent mismatch")); 4910 dotaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref, 4911 inoreflst, if_deps); 4912 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4913 KASSERT(dotaddref->ja_parent == ip->i_number, 4914 ("softdep_revert_mkdir: dot addref parent mismatch")); 4915 cancel_jaddref(dotaddref, inodedep, &inodedep->id_inowait); 4916 } 4917 FREE_LOCK(dp->i_ump); 4918 } 4919 4920 /* 4921 * Called to correct nlinkdelta after a failed rmdir. 4922 */ 4923 void 4924 softdep_revert_rmdir(dp, ip) 4925 struct inode *dp; 4926 struct inode *ip; 4927 { 4928 4929 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0, 4930 ("softdep_revert_rmdir called on non-softdep filesystem")); 4931 ACQUIRE_LOCK(dp->i_ump); 4932 (void) inodedep_lookup_ip(ip); 4933 (void) inodedep_lookup_ip(dp); 4934 FREE_LOCK(dp->i_ump); 4935 } 4936 4937 /* 4938 * Protecting the freemaps (or bitmaps). 4939 * 4940 * To eliminate the need to execute fsck before mounting a filesystem 4941 * after a power failure, one must (conservatively) guarantee that the 4942 * on-disk copy of the bitmaps never indicate that a live inode or block is 4943 * free. So, when a block or inode is allocated, the bitmap should be 4944 * updated (on disk) before any new pointers. When a block or inode is 4945 * freed, the bitmap should not be updated until all pointers have been 4946 * reset. The latter dependency is handled by the delayed de-allocation 4947 * approach described below for block and inode de-allocation. The former 4948 * dependency is handled by calling the following procedure when a block or 4949 * inode is allocated. When an inode is allocated an "inodedep" is created 4950 * with its DEPCOMPLETE flag cleared until its bitmap is written to disk. 4951 * Each "inodedep" is also inserted into the hash indexing structure so 4952 * that any additional link additions can be made dependent on the inode 4953 * allocation. 4954 * 4955 * The ufs filesystem maintains a number of free block counts (e.g., per 4956 * cylinder group, per cylinder and per <cylinder, rotational position> pair) 4957 * in addition to the bitmaps. These counts are used to improve efficiency 4958 * during allocation and therefore must be consistent with the bitmaps. 4959 * There is no convenient way to guarantee post-crash consistency of these 4960 * counts with simple update ordering, for two main reasons: (1) The counts 4961 * and bitmaps for a single cylinder group block are not in the same disk 4962 * sector. If a disk write is interrupted (e.g., by power failure), one may 4963 * be written and the other not. (2) Some of the counts are located in the 4964 * superblock rather than the cylinder group block. So, we focus our soft 4965 * updates implementation on protecting the bitmaps. When mounting a 4966 * filesystem, we recompute the auxiliary counts from the bitmaps. 4967 */ 4968 4969 /* 4970 * Called just after updating the cylinder group block to allocate an inode. 4971 */ 4972 void 4973 softdep_setup_inomapdep(bp, ip, newinum, mode) 4974 struct buf *bp; /* buffer for cylgroup block with inode map */ 4975 struct inode *ip; /* inode related to allocation */ 4976 ino_t newinum; /* new inode number being allocated */ 4977 int mode; 4978 { 4979 struct inodedep *inodedep; 4980 struct bmsafemap *bmsafemap; 4981 struct jaddref *jaddref; 4982 struct mount *mp; 4983 struct fs *fs; 4984 4985 mp = UFSTOVFS(ip->i_ump); 4986 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 4987 ("softdep_setup_inomapdep called on non-softdep filesystem")); 4988 fs = ip->i_ump->um_fs; 4989 jaddref = NULL; 4990 4991 /* 4992 * Allocate the journal reference add structure so that the bitmap 4993 * can be dependent on it. 4994 */ 4995 if (MOUNTEDSUJ(mp)) { 4996 jaddref = newjaddref(ip, newinum, 0, 0, mode); 4997 jaddref->ja_state |= NEWBLOCK; 4998 } 4999 5000 /* 5001 * Create a dependency for the newly allocated inode. 5002 * Panic if it already exists as something is seriously wrong. 5003 * Otherwise add it to the dependency list for the buffer holding 5004 * the cylinder group map from which it was allocated. 5005 * 5006 * We have to preallocate a bmsafemap entry in case it is needed 5007 * in bmsafemap_lookup since once we allocate the inodedep, we 5008 * have to finish initializing it before we can FREE_LOCK(). 5009 * By preallocating, we avoid FREE_LOCK() while doing a malloc 5010 * in bmsafemap_lookup. We cannot call bmsafemap_lookup before 5011 * creating the inodedep as it can be freed during the time 5012 * that we FREE_LOCK() while allocating the inodedep. We must 5013 * call workitem_alloc() before entering the locked section as 5014 * it also acquires the lock and we must avoid trying doing so 5015 * recursively. 5016 */ 5017 bmsafemap = malloc(sizeof(struct bmsafemap), 5018 M_BMSAFEMAP, M_SOFTDEP_FLAGS); 5019 workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp); 5020 ACQUIRE_LOCK(ip->i_ump); 5021 if ((inodedep_lookup(mp, newinum, DEPALLOC | NODELAY, &inodedep))) 5022 panic("softdep_setup_inomapdep: dependency %p for new" 5023 "inode already exists", inodedep); 5024 bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum), bmsafemap); 5025 if (jaddref) { 5026 LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps); 5027 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 5028 if_deps); 5029 } else { 5030 inodedep->id_state |= ONDEPLIST; 5031 LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps); 5032 } 5033 inodedep->id_bmsafemap = bmsafemap; 5034 inodedep->id_state &= ~DEPCOMPLETE; 5035 FREE_LOCK(ip->i_ump); 5036 } 5037 5038 /* 5039 * Called just after updating the cylinder group block to 5040 * allocate block or fragment. 5041 */ 5042 void 5043 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags) 5044 struct buf *bp; /* buffer for cylgroup block with block map */ 5045 struct mount *mp; /* filesystem doing allocation */ 5046 ufs2_daddr_t newblkno; /* number of newly allocated block */ 5047 int frags; /* Number of fragments. */ 5048 int oldfrags; /* Previous number of fragments for extend. */ 5049 { 5050 struct newblk *newblk; 5051 struct bmsafemap *bmsafemap; 5052 struct jnewblk *jnewblk; 5053 struct ufsmount *ump; 5054 struct fs *fs; 5055 5056 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5057 ("softdep_setup_blkmapdep called on non-softdep filesystem")); 5058 ump = VFSTOUFS(mp); 5059 fs = ump->um_fs; 5060 jnewblk = NULL; 5061 /* 5062 * Create a dependency for the newly allocated block. 5063 * Add it to the dependency list for the buffer holding 5064 * the cylinder group map from which it was allocated. 5065 */ 5066 if (MOUNTEDSUJ(mp)) { 5067 jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS); 5068 workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp); 5069 jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list); 5070 jnewblk->jn_state = ATTACHED; 5071 jnewblk->jn_blkno = newblkno; 5072 jnewblk->jn_frags = frags; 5073 jnewblk->jn_oldfrags = oldfrags; 5074 #ifdef SUJ_DEBUG 5075 { 5076 struct cg *cgp; 5077 uint8_t *blksfree; 5078 long bno; 5079 int i; 5080 5081 cgp = (struct cg *)bp->b_data; 5082 blksfree = cg_blksfree(cgp); 5083 bno = dtogd(fs, jnewblk->jn_blkno); 5084 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; 5085 i++) { 5086 if (isset(blksfree, bno + i)) 5087 panic("softdep_setup_blkmapdep: " 5088 "free fragment %d from %d-%d " 5089 "state 0x%X dep %p", i, 5090 jnewblk->jn_oldfrags, 5091 jnewblk->jn_frags, 5092 jnewblk->jn_state, 5093 jnewblk->jn_dep); 5094 } 5095 } 5096 #endif 5097 } 5098 5099 CTR3(KTR_SUJ, 5100 "softdep_setup_blkmapdep: blkno %jd frags %d oldfrags %d", 5101 newblkno, frags, oldfrags); 5102 ACQUIRE_LOCK(ump); 5103 if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0) 5104 panic("softdep_setup_blkmapdep: found block"); 5105 newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp, 5106 dtog(fs, newblkno), NULL); 5107 if (jnewblk) { 5108 jnewblk->jn_dep = (struct worklist *)newblk; 5109 LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps); 5110 } else { 5111 newblk->nb_state |= ONDEPLIST; 5112 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps); 5113 } 5114 newblk->nb_bmsafemap = bmsafemap; 5115 newblk->nb_jnewblk = jnewblk; 5116 FREE_LOCK(ump); 5117 } 5118 5119 #define BMSAFEMAP_HASH(ump, cg) \ 5120 (&(ump)->bmsafemap_hashtbl[(cg) & (ump)->bmsafemap_hash_size]) 5121 5122 static int 5123 bmsafemap_find(bmsafemaphd, cg, bmsafemapp) 5124 struct bmsafemap_hashhead *bmsafemaphd; 5125 int cg; 5126 struct bmsafemap **bmsafemapp; 5127 { 5128 struct bmsafemap *bmsafemap; 5129 5130 LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash) 5131 if (bmsafemap->sm_cg == cg) 5132 break; 5133 if (bmsafemap) { 5134 *bmsafemapp = bmsafemap; 5135 return (1); 5136 } 5137 *bmsafemapp = NULL; 5138 5139 return (0); 5140 } 5141 5142 /* 5143 * Find the bmsafemap associated with a cylinder group buffer. 5144 * If none exists, create one. The buffer must be locked when 5145 * this routine is called and this routine must be called with 5146 * the softdep lock held. To avoid giving up the lock while 5147 * allocating a new bmsafemap, a preallocated bmsafemap may be 5148 * provided. If it is provided but not needed, it is freed. 5149 */ 5150 static struct bmsafemap * 5151 bmsafemap_lookup(mp, bp, cg, newbmsafemap) 5152 struct mount *mp; 5153 struct buf *bp; 5154 int cg; 5155 struct bmsafemap *newbmsafemap; 5156 { 5157 struct bmsafemap_hashhead *bmsafemaphd; 5158 struct bmsafemap *bmsafemap, *collision; 5159 struct worklist *wk; 5160 struct ufsmount *ump; 5161 5162 ump = VFSTOUFS(mp); 5163 LOCK_OWNED(ump); 5164 KASSERT(bp != NULL, ("bmsafemap_lookup: missing buffer")); 5165 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 5166 if (wk->wk_type == D_BMSAFEMAP) { 5167 if (newbmsafemap) 5168 WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP); 5169 return (WK_BMSAFEMAP(wk)); 5170 } 5171 } 5172 bmsafemaphd = BMSAFEMAP_HASH(ump, cg); 5173 if (bmsafemap_find(bmsafemaphd, cg, &bmsafemap) == 1) { 5174 if (newbmsafemap) 5175 WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP); 5176 return (bmsafemap); 5177 } 5178 if (newbmsafemap) { 5179 bmsafemap = newbmsafemap; 5180 } else { 5181 FREE_LOCK(ump); 5182 bmsafemap = malloc(sizeof(struct bmsafemap), 5183 M_BMSAFEMAP, M_SOFTDEP_FLAGS); 5184 workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp); 5185 ACQUIRE_LOCK(ump); 5186 } 5187 bmsafemap->sm_buf = bp; 5188 LIST_INIT(&bmsafemap->sm_inodedephd); 5189 LIST_INIT(&bmsafemap->sm_inodedepwr); 5190 LIST_INIT(&bmsafemap->sm_newblkhd); 5191 LIST_INIT(&bmsafemap->sm_newblkwr); 5192 LIST_INIT(&bmsafemap->sm_jaddrefhd); 5193 LIST_INIT(&bmsafemap->sm_jnewblkhd); 5194 LIST_INIT(&bmsafemap->sm_freehd); 5195 LIST_INIT(&bmsafemap->sm_freewr); 5196 if (bmsafemap_find(bmsafemaphd, cg, &collision) == 1) { 5197 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); 5198 return (collision); 5199 } 5200 bmsafemap->sm_cg = cg; 5201 LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash); 5202 LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next); 5203 WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list); 5204 return (bmsafemap); 5205 } 5206 5207 /* 5208 * Direct block allocation dependencies. 5209 * 5210 * When a new block is allocated, the corresponding disk locations must be 5211 * initialized (with zeros or new data) before the on-disk inode points to 5212 * them. Also, the freemap from which the block was allocated must be 5213 * updated (on disk) before the inode's pointer. These two dependencies are 5214 * independent of each other and are needed for all file blocks and indirect 5215 * blocks that are pointed to directly by the inode. Just before the 5216 * "in-core" version of the inode is updated with a newly allocated block 5217 * number, a procedure (below) is called to setup allocation dependency 5218 * structures. These structures are removed when the corresponding 5219 * dependencies are satisfied or when the block allocation becomes obsolete 5220 * (i.e., the file is deleted, the block is de-allocated, or the block is a 5221 * fragment that gets upgraded). All of these cases are handled in 5222 * procedures described later. 5223 * 5224 * When a file extension causes a fragment to be upgraded, either to a larger 5225 * fragment or to a full block, the on-disk location may change (if the 5226 * previous fragment could not simply be extended). In this case, the old 5227 * fragment must be de-allocated, but not until after the inode's pointer has 5228 * been updated. In most cases, this is handled by later procedures, which 5229 * will construct a "freefrag" structure to be added to the workitem queue 5230 * when the inode update is complete (or obsolete). The main exception to 5231 * this is when an allocation occurs while a pending allocation dependency 5232 * (for the same block pointer) remains. This case is handled in the main 5233 * allocation dependency setup procedure by immediately freeing the 5234 * unreferenced fragments. 5235 */ 5236 void 5237 softdep_setup_allocdirect(ip, off, newblkno, oldblkno, newsize, oldsize, bp) 5238 struct inode *ip; /* inode to which block is being added */ 5239 ufs_lbn_t off; /* block pointer within inode */ 5240 ufs2_daddr_t newblkno; /* disk block number being added */ 5241 ufs2_daddr_t oldblkno; /* previous block number, 0 unless frag */ 5242 long newsize; /* size of new block */ 5243 long oldsize; /* size of new block */ 5244 struct buf *bp; /* bp for allocated block */ 5245 { 5246 struct allocdirect *adp, *oldadp; 5247 struct allocdirectlst *adphead; 5248 struct freefrag *freefrag; 5249 struct inodedep *inodedep; 5250 struct pagedep *pagedep; 5251 struct jnewblk *jnewblk; 5252 struct newblk *newblk; 5253 struct mount *mp; 5254 ufs_lbn_t lbn; 5255 5256 lbn = bp->b_lblkno; 5257 mp = UFSTOVFS(ip->i_ump); 5258 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5259 ("softdep_setup_allocdirect called on non-softdep filesystem")); 5260 if (oldblkno && oldblkno != newblkno) 5261 freefrag = newfreefrag(ip, oldblkno, oldsize, lbn); 5262 else 5263 freefrag = NULL; 5264 5265 CTR6(KTR_SUJ, 5266 "softdep_setup_allocdirect: ino %d blkno %jd oldblkno %jd " 5267 "off %jd newsize %ld oldsize %d", 5268 ip->i_number, newblkno, oldblkno, off, newsize, oldsize); 5269 ACQUIRE_LOCK(ip->i_ump); 5270 if (off >= NDADDR) { 5271 if (lbn > 0) 5272 panic("softdep_setup_allocdirect: bad lbn %jd, off %jd", 5273 lbn, off); 5274 /* allocating an indirect block */ 5275 if (oldblkno != 0) 5276 panic("softdep_setup_allocdirect: non-zero indir"); 5277 } else { 5278 if (off != lbn) 5279 panic("softdep_setup_allocdirect: lbn %jd != off %jd", 5280 lbn, off); 5281 /* 5282 * Allocating a direct block. 5283 * 5284 * If we are allocating a directory block, then we must 5285 * allocate an associated pagedep to track additions and 5286 * deletions. 5287 */ 5288 if ((ip->i_mode & IFMT) == IFDIR) 5289 pagedep_lookup(mp, bp, ip->i_number, off, DEPALLOC, 5290 &pagedep); 5291 } 5292 if (newblk_lookup(mp, newblkno, 0, &newblk) == 0) 5293 panic("softdep_setup_allocdirect: lost block"); 5294 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 5295 ("softdep_setup_allocdirect: newblk already initialized")); 5296 /* 5297 * Convert the newblk to an allocdirect. 5298 */ 5299 WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT); 5300 adp = (struct allocdirect *)newblk; 5301 newblk->nb_freefrag = freefrag; 5302 adp->ad_offset = off; 5303 adp->ad_oldblkno = oldblkno; 5304 adp->ad_newsize = newsize; 5305 adp->ad_oldsize = oldsize; 5306 5307 /* 5308 * Finish initializing the journal. 5309 */ 5310 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 5311 jnewblk->jn_ino = ip->i_number; 5312 jnewblk->jn_lbn = lbn; 5313 add_to_journal(&jnewblk->jn_list); 5314 } 5315 if (freefrag && freefrag->ff_jdep != NULL && 5316 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 5317 add_to_journal(freefrag->ff_jdep); 5318 inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep); 5319 adp->ad_inodedep = inodedep; 5320 5321 WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list); 5322 /* 5323 * The list of allocdirects must be kept in sorted and ascending 5324 * order so that the rollback routines can quickly determine the 5325 * first uncommitted block (the size of the file stored on disk 5326 * ends at the end of the lowest committed fragment, or if there 5327 * are no fragments, at the end of the highest committed block). 5328 * Since files generally grow, the typical case is that the new 5329 * block is to be added at the end of the list. We speed this 5330 * special case by checking against the last allocdirect in the 5331 * list before laboriously traversing the list looking for the 5332 * insertion point. 5333 */ 5334 adphead = &inodedep->id_newinoupdt; 5335 oldadp = TAILQ_LAST(adphead, allocdirectlst); 5336 if (oldadp == NULL || oldadp->ad_offset <= off) { 5337 /* insert at end of list */ 5338 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 5339 if (oldadp != NULL && oldadp->ad_offset == off) 5340 allocdirect_merge(adphead, adp, oldadp); 5341 FREE_LOCK(ip->i_ump); 5342 return; 5343 } 5344 TAILQ_FOREACH(oldadp, adphead, ad_next) { 5345 if (oldadp->ad_offset >= off) 5346 break; 5347 } 5348 if (oldadp == NULL) 5349 panic("softdep_setup_allocdirect: lost entry"); 5350 /* insert in middle of list */ 5351 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 5352 if (oldadp->ad_offset == off) 5353 allocdirect_merge(adphead, adp, oldadp); 5354 5355 FREE_LOCK(ip->i_ump); 5356 } 5357 5358 /* 5359 * Merge a newer and older journal record to be stored either in a 5360 * newblock or freefrag. This handles aggregating journal records for 5361 * fragment allocation into a second record as well as replacing a 5362 * journal free with an aborted journal allocation. A segment for the 5363 * oldest record will be placed on wkhd if it has been written. If not 5364 * the segment for the newer record will suffice. 5365 */ 5366 static struct worklist * 5367 jnewblk_merge(new, old, wkhd) 5368 struct worklist *new; 5369 struct worklist *old; 5370 struct workhead *wkhd; 5371 { 5372 struct jnewblk *njnewblk; 5373 struct jnewblk *jnewblk; 5374 5375 /* Handle NULLs to simplify callers. */ 5376 if (new == NULL) 5377 return (old); 5378 if (old == NULL) 5379 return (new); 5380 /* Replace a jfreefrag with a jnewblk. */ 5381 if (new->wk_type == D_JFREEFRAG) { 5382 if (WK_JNEWBLK(old)->jn_blkno != WK_JFREEFRAG(new)->fr_blkno) 5383 panic("jnewblk_merge: blkno mismatch: %p, %p", 5384 old, new); 5385 cancel_jfreefrag(WK_JFREEFRAG(new)); 5386 return (old); 5387 } 5388 if (old->wk_type != D_JNEWBLK || new->wk_type != D_JNEWBLK) 5389 panic("jnewblk_merge: Bad type: old %d new %d\n", 5390 old->wk_type, new->wk_type); 5391 /* 5392 * Handle merging of two jnewblk records that describe 5393 * different sets of fragments in the same block. 5394 */ 5395 jnewblk = WK_JNEWBLK(old); 5396 njnewblk = WK_JNEWBLK(new); 5397 if (jnewblk->jn_blkno != njnewblk->jn_blkno) 5398 panic("jnewblk_merge: Merging disparate blocks."); 5399 /* 5400 * The record may be rolled back in the cg. 5401 */ 5402 if (jnewblk->jn_state & UNDONE) { 5403 jnewblk->jn_state &= ~UNDONE; 5404 njnewblk->jn_state |= UNDONE; 5405 njnewblk->jn_state &= ~ATTACHED; 5406 } 5407 /* 5408 * We modify the newer addref and free the older so that if neither 5409 * has been written the most up-to-date copy will be on disk. If 5410 * both have been written but rolled back we only temporarily need 5411 * one of them to fix the bits when the cg write completes. 5412 */ 5413 jnewblk->jn_state |= ATTACHED | COMPLETE; 5414 njnewblk->jn_oldfrags = jnewblk->jn_oldfrags; 5415 cancel_jnewblk(jnewblk, wkhd); 5416 WORKLIST_REMOVE(&jnewblk->jn_list); 5417 free_jnewblk(jnewblk); 5418 return (new); 5419 } 5420 5421 /* 5422 * Replace an old allocdirect dependency with a newer one. 5423 * This routine must be called with splbio interrupts blocked. 5424 */ 5425 static void 5426 allocdirect_merge(adphead, newadp, oldadp) 5427 struct allocdirectlst *adphead; /* head of list holding allocdirects */ 5428 struct allocdirect *newadp; /* allocdirect being added */ 5429 struct allocdirect *oldadp; /* existing allocdirect being checked */ 5430 { 5431 struct worklist *wk; 5432 struct freefrag *freefrag; 5433 5434 freefrag = NULL; 5435 LOCK_OWNED(VFSTOUFS(newadp->ad_list.wk_mp)); 5436 if (newadp->ad_oldblkno != oldadp->ad_newblkno || 5437 newadp->ad_oldsize != oldadp->ad_newsize || 5438 newadp->ad_offset >= NDADDR) 5439 panic("%s %jd != new %jd || old size %ld != new %ld", 5440 "allocdirect_merge: old blkno", 5441 (intmax_t)newadp->ad_oldblkno, 5442 (intmax_t)oldadp->ad_newblkno, 5443 newadp->ad_oldsize, oldadp->ad_newsize); 5444 newadp->ad_oldblkno = oldadp->ad_oldblkno; 5445 newadp->ad_oldsize = oldadp->ad_oldsize; 5446 /* 5447 * If the old dependency had a fragment to free or had never 5448 * previously had a block allocated, then the new dependency 5449 * can immediately post its freefrag and adopt the old freefrag. 5450 * This action is done by swapping the freefrag dependencies. 5451 * The new dependency gains the old one's freefrag, and the 5452 * old one gets the new one and then immediately puts it on 5453 * the worklist when it is freed by free_newblk. It is 5454 * not possible to do this swap when the old dependency had a 5455 * non-zero size but no previous fragment to free. This condition 5456 * arises when the new block is an extension of the old block. 5457 * Here, the first part of the fragment allocated to the new 5458 * dependency is part of the block currently claimed on disk by 5459 * the old dependency, so cannot legitimately be freed until the 5460 * conditions for the new dependency are fulfilled. 5461 */ 5462 freefrag = newadp->ad_freefrag; 5463 if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) { 5464 newadp->ad_freefrag = oldadp->ad_freefrag; 5465 oldadp->ad_freefrag = freefrag; 5466 } 5467 /* 5468 * If we are tracking a new directory-block allocation, 5469 * move it from the old allocdirect to the new allocdirect. 5470 */ 5471 if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) { 5472 WORKLIST_REMOVE(wk); 5473 if (!LIST_EMPTY(&oldadp->ad_newdirblk)) 5474 panic("allocdirect_merge: extra newdirblk"); 5475 WORKLIST_INSERT(&newadp->ad_newdirblk, wk); 5476 } 5477 TAILQ_REMOVE(adphead, oldadp, ad_next); 5478 /* 5479 * We need to move any journal dependencies over to the freefrag 5480 * that releases this block if it exists. Otherwise we are 5481 * extending an existing block and we'll wait until that is 5482 * complete to release the journal space and extend the 5483 * new journal to cover this old space as well. 5484 */ 5485 if (freefrag == NULL) { 5486 if (oldadp->ad_newblkno != newadp->ad_newblkno) 5487 panic("allocdirect_merge: %jd != %jd", 5488 oldadp->ad_newblkno, newadp->ad_newblkno); 5489 newadp->ad_block.nb_jnewblk = (struct jnewblk *) 5490 jnewblk_merge(&newadp->ad_block.nb_jnewblk->jn_list, 5491 &oldadp->ad_block.nb_jnewblk->jn_list, 5492 &newadp->ad_block.nb_jwork); 5493 oldadp->ad_block.nb_jnewblk = NULL; 5494 cancel_newblk(&oldadp->ad_block, NULL, 5495 &newadp->ad_block.nb_jwork); 5496 } else { 5497 wk = (struct worklist *) cancel_newblk(&oldadp->ad_block, 5498 &freefrag->ff_list, &freefrag->ff_jwork); 5499 freefrag->ff_jdep = jnewblk_merge(freefrag->ff_jdep, wk, 5500 &freefrag->ff_jwork); 5501 } 5502 free_newblk(&oldadp->ad_block); 5503 } 5504 5505 /* 5506 * Allocate a jfreefrag structure to journal a single block free. 5507 */ 5508 static struct jfreefrag * 5509 newjfreefrag(freefrag, ip, blkno, size, lbn) 5510 struct freefrag *freefrag; 5511 struct inode *ip; 5512 ufs2_daddr_t blkno; 5513 long size; 5514 ufs_lbn_t lbn; 5515 { 5516 struct jfreefrag *jfreefrag; 5517 struct fs *fs; 5518 5519 fs = ip->i_fs; 5520 jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG, 5521 M_SOFTDEP_FLAGS); 5522 workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, UFSTOVFS(ip->i_ump)); 5523 jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list); 5524 jfreefrag->fr_state = ATTACHED | DEPCOMPLETE; 5525 jfreefrag->fr_ino = ip->i_number; 5526 jfreefrag->fr_lbn = lbn; 5527 jfreefrag->fr_blkno = blkno; 5528 jfreefrag->fr_frags = numfrags(fs, size); 5529 jfreefrag->fr_freefrag = freefrag; 5530 5531 return (jfreefrag); 5532 } 5533 5534 /* 5535 * Allocate a new freefrag structure. 5536 */ 5537 static struct freefrag * 5538 newfreefrag(ip, blkno, size, lbn) 5539 struct inode *ip; 5540 ufs2_daddr_t blkno; 5541 long size; 5542 ufs_lbn_t lbn; 5543 { 5544 struct freefrag *freefrag; 5545 struct fs *fs; 5546 5547 CTR4(KTR_SUJ, "newfreefrag: ino %d blkno %jd size %ld lbn %jd", 5548 ip->i_number, blkno, size, lbn); 5549 fs = ip->i_fs; 5550 if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag) 5551 panic("newfreefrag: frag size"); 5552 freefrag = malloc(sizeof(struct freefrag), 5553 M_FREEFRAG, M_SOFTDEP_FLAGS); 5554 workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ip->i_ump)); 5555 freefrag->ff_state = ATTACHED; 5556 LIST_INIT(&freefrag->ff_jwork); 5557 freefrag->ff_inum = ip->i_number; 5558 freefrag->ff_vtype = ITOV(ip)->v_type; 5559 freefrag->ff_blkno = blkno; 5560 freefrag->ff_fragsize = size; 5561 5562 if (MOUNTEDSUJ(UFSTOVFS(ip->i_ump))) { 5563 freefrag->ff_jdep = (struct worklist *) 5564 newjfreefrag(freefrag, ip, blkno, size, lbn); 5565 } else { 5566 freefrag->ff_state |= DEPCOMPLETE; 5567 freefrag->ff_jdep = NULL; 5568 } 5569 5570 return (freefrag); 5571 } 5572 5573 /* 5574 * This workitem de-allocates fragments that were replaced during 5575 * file block allocation. 5576 */ 5577 static void 5578 handle_workitem_freefrag(freefrag) 5579 struct freefrag *freefrag; 5580 { 5581 struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp); 5582 struct workhead wkhd; 5583 5584 CTR3(KTR_SUJ, 5585 "handle_workitem_freefrag: ino %d blkno %jd size %ld", 5586 freefrag->ff_inum, freefrag->ff_blkno, freefrag->ff_fragsize); 5587 /* 5588 * It would be illegal to add new completion items to the 5589 * freefrag after it was schedule to be done so it must be 5590 * safe to modify the list head here. 5591 */ 5592 LIST_INIT(&wkhd); 5593 ACQUIRE_LOCK(ump); 5594 LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list); 5595 /* 5596 * If the journal has not been written we must cancel it here. 5597 */ 5598 if (freefrag->ff_jdep) { 5599 if (freefrag->ff_jdep->wk_type != D_JNEWBLK) 5600 panic("handle_workitem_freefrag: Unexpected type %d\n", 5601 freefrag->ff_jdep->wk_type); 5602 cancel_jnewblk(WK_JNEWBLK(freefrag->ff_jdep), &wkhd); 5603 } 5604 FREE_LOCK(ump); 5605 ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno, 5606 freefrag->ff_fragsize, freefrag->ff_inum, freefrag->ff_vtype, &wkhd); 5607 ACQUIRE_LOCK(ump); 5608 WORKITEM_FREE(freefrag, D_FREEFRAG); 5609 FREE_LOCK(ump); 5610 } 5611 5612 /* 5613 * Set up a dependency structure for an external attributes data block. 5614 * This routine follows much of the structure of softdep_setup_allocdirect. 5615 * See the description of softdep_setup_allocdirect above for details. 5616 */ 5617 void 5618 softdep_setup_allocext(ip, off, newblkno, oldblkno, newsize, oldsize, bp) 5619 struct inode *ip; 5620 ufs_lbn_t off; 5621 ufs2_daddr_t newblkno; 5622 ufs2_daddr_t oldblkno; 5623 long newsize; 5624 long oldsize; 5625 struct buf *bp; 5626 { 5627 struct allocdirect *adp, *oldadp; 5628 struct allocdirectlst *adphead; 5629 struct freefrag *freefrag; 5630 struct inodedep *inodedep; 5631 struct jnewblk *jnewblk; 5632 struct newblk *newblk; 5633 struct mount *mp; 5634 ufs_lbn_t lbn; 5635 5636 mp = UFSTOVFS(ip->i_ump); 5637 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5638 ("softdep_setup_allocext called on non-softdep filesystem")); 5639 KASSERT(off < NXADDR, ("softdep_setup_allocext: lbn %lld > NXADDR", 5640 (long long)off)); 5641 5642 lbn = bp->b_lblkno; 5643 if (oldblkno && oldblkno != newblkno) 5644 freefrag = newfreefrag(ip, oldblkno, oldsize, lbn); 5645 else 5646 freefrag = NULL; 5647 5648 ACQUIRE_LOCK(ip->i_ump); 5649 if (newblk_lookup(mp, newblkno, 0, &newblk) == 0) 5650 panic("softdep_setup_allocext: lost block"); 5651 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 5652 ("softdep_setup_allocext: newblk already initialized")); 5653 /* 5654 * Convert the newblk to an allocdirect. 5655 */ 5656 WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT); 5657 adp = (struct allocdirect *)newblk; 5658 newblk->nb_freefrag = freefrag; 5659 adp->ad_offset = off; 5660 adp->ad_oldblkno = oldblkno; 5661 adp->ad_newsize = newsize; 5662 adp->ad_oldsize = oldsize; 5663 adp->ad_state |= EXTDATA; 5664 5665 /* 5666 * Finish initializing the journal. 5667 */ 5668 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 5669 jnewblk->jn_ino = ip->i_number; 5670 jnewblk->jn_lbn = lbn; 5671 add_to_journal(&jnewblk->jn_list); 5672 } 5673 if (freefrag && freefrag->ff_jdep != NULL && 5674 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 5675 add_to_journal(freefrag->ff_jdep); 5676 inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep); 5677 adp->ad_inodedep = inodedep; 5678 5679 WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list); 5680 /* 5681 * The list of allocdirects must be kept in sorted and ascending 5682 * order so that the rollback routines can quickly determine the 5683 * first uncommitted block (the size of the file stored on disk 5684 * ends at the end of the lowest committed fragment, or if there 5685 * are no fragments, at the end of the highest committed block). 5686 * Since files generally grow, the typical case is that the new 5687 * block is to be added at the end of the list. We speed this 5688 * special case by checking against the last allocdirect in the 5689 * list before laboriously traversing the list looking for the 5690 * insertion point. 5691 */ 5692 adphead = &inodedep->id_newextupdt; 5693 oldadp = TAILQ_LAST(adphead, allocdirectlst); 5694 if (oldadp == NULL || oldadp->ad_offset <= off) { 5695 /* insert at end of list */ 5696 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 5697 if (oldadp != NULL && oldadp->ad_offset == off) 5698 allocdirect_merge(adphead, adp, oldadp); 5699 FREE_LOCK(ip->i_ump); 5700 return; 5701 } 5702 TAILQ_FOREACH(oldadp, adphead, ad_next) { 5703 if (oldadp->ad_offset >= off) 5704 break; 5705 } 5706 if (oldadp == NULL) 5707 panic("softdep_setup_allocext: lost entry"); 5708 /* insert in middle of list */ 5709 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 5710 if (oldadp->ad_offset == off) 5711 allocdirect_merge(adphead, adp, oldadp); 5712 FREE_LOCK(ip->i_ump); 5713 } 5714 5715 /* 5716 * Indirect block allocation dependencies. 5717 * 5718 * The same dependencies that exist for a direct block also exist when 5719 * a new block is allocated and pointed to by an entry in a block of 5720 * indirect pointers. The undo/redo states described above are also 5721 * used here. Because an indirect block contains many pointers that 5722 * may have dependencies, a second copy of the entire in-memory indirect 5723 * block is kept. The buffer cache copy is always completely up-to-date. 5724 * The second copy, which is used only as a source for disk writes, 5725 * contains only the safe pointers (i.e., those that have no remaining 5726 * update dependencies). The second copy is freed when all pointers 5727 * are safe. The cache is not allowed to replace indirect blocks with 5728 * pending update dependencies. If a buffer containing an indirect 5729 * block with dependencies is written, these routines will mark it 5730 * dirty again. It can only be successfully written once all the 5731 * dependencies are removed. The ffs_fsync routine in conjunction with 5732 * softdep_sync_metadata work together to get all the dependencies 5733 * removed so that a file can be successfully written to disk. Three 5734 * procedures are used when setting up indirect block pointer 5735 * dependencies. The division is necessary because of the organization 5736 * of the "balloc" routine and because of the distinction between file 5737 * pages and file metadata blocks. 5738 */ 5739 5740 /* 5741 * Allocate a new allocindir structure. 5742 */ 5743 static struct allocindir * 5744 newallocindir(ip, ptrno, newblkno, oldblkno, lbn) 5745 struct inode *ip; /* inode for file being extended */ 5746 int ptrno; /* offset of pointer in indirect block */ 5747 ufs2_daddr_t newblkno; /* disk block number being added */ 5748 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 5749 ufs_lbn_t lbn; 5750 { 5751 struct newblk *newblk; 5752 struct allocindir *aip; 5753 struct freefrag *freefrag; 5754 struct jnewblk *jnewblk; 5755 5756 if (oldblkno) 5757 freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize, lbn); 5758 else 5759 freefrag = NULL; 5760 ACQUIRE_LOCK(ip->i_ump); 5761 if (newblk_lookup(UFSTOVFS(ip->i_ump), newblkno, 0, &newblk) == 0) 5762 panic("new_allocindir: lost block"); 5763 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 5764 ("newallocindir: newblk already initialized")); 5765 WORKITEM_REASSIGN(newblk, D_ALLOCINDIR); 5766 newblk->nb_freefrag = freefrag; 5767 aip = (struct allocindir *)newblk; 5768 aip->ai_offset = ptrno; 5769 aip->ai_oldblkno = oldblkno; 5770 aip->ai_lbn = lbn; 5771 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 5772 jnewblk->jn_ino = ip->i_number; 5773 jnewblk->jn_lbn = lbn; 5774 add_to_journal(&jnewblk->jn_list); 5775 } 5776 if (freefrag && freefrag->ff_jdep != NULL && 5777 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 5778 add_to_journal(freefrag->ff_jdep); 5779 return (aip); 5780 } 5781 5782 /* 5783 * Called just before setting an indirect block pointer 5784 * to a newly allocated file page. 5785 */ 5786 void 5787 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 5788 struct inode *ip; /* inode for file being extended */ 5789 ufs_lbn_t lbn; /* allocated block number within file */ 5790 struct buf *bp; /* buffer with indirect blk referencing page */ 5791 int ptrno; /* offset of pointer in indirect block */ 5792 ufs2_daddr_t newblkno; /* disk block number being added */ 5793 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 5794 struct buf *nbp; /* buffer holding allocated page */ 5795 { 5796 struct inodedep *inodedep; 5797 struct freefrag *freefrag; 5798 struct allocindir *aip; 5799 struct pagedep *pagedep; 5800 struct mount *mp; 5801 int dflags; 5802 5803 mp = UFSTOVFS(ip->i_ump); 5804 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5805 ("softdep_setup_allocindir_page called on non-softdep filesystem")); 5806 KASSERT(lbn == nbp->b_lblkno, 5807 ("softdep_setup_allocindir_page: lbn %jd != lblkno %jd", 5808 lbn, bp->b_lblkno)); 5809 CTR4(KTR_SUJ, 5810 "softdep_setup_allocindir_page: ino %d blkno %jd oldblkno %jd " 5811 "lbn %jd", ip->i_number, newblkno, oldblkno, lbn); 5812 ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page"); 5813 aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn); 5814 dflags = DEPALLOC; 5815 if (IS_SNAPSHOT(ip)) 5816 dflags |= NODELAY; 5817 (void) inodedep_lookup(mp, ip->i_number, dflags, &inodedep); 5818 /* 5819 * If we are allocating a directory page, then we must 5820 * allocate an associated pagedep to track additions and 5821 * deletions. 5822 */ 5823 if ((ip->i_mode & IFMT) == IFDIR) 5824 pagedep_lookup(mp, nbp, ip->i_number, lbn, DEPALLOC, &pagedep); 5825 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list); 5826 freefrag = setup_allocindir_phase2(bp, ip, inodedep, aip, lbn); 5827 FREE_LOCK(ip->i_ump); 5828 if (freefrag) 5829 handle_workitem_freefrag(freefrag); 5830 } 5831 5832 /* 5833 * Called just before setting an indirect block pointer to a 5834 * newly allocated indirect block. 5835 */ 5836 void 5837 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 5838 struct buf *nbp; /* newly allocated indirect block */ 5839 struct inode *ip; /* inode for file being extended */ 5840 struct buf *bp; /* indirect block referencing allocated block */ 5841 int ptrno; /* offset of pointer in indirect block */ 5842 ufs2_daddr_t newblkno; /* disk block number being added */ 5843 { 5844 struct inodedep *inodedep; 5845 struct allocindir *aip; 5846 ufs_lbn_t lbn; 5847 int dflags; 5848 5849 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0, 5850 ("softdep_setup_allocindir_meta called on non-softdep filesystem")); 5851 CTR3(KTR_SUJ, 5852 "softdep_setup_allocindir_meta: ino %d blkno %jd ptrno %d", 5853 ip->i_number, newblkno, ptrno); 5854 lbn = nbp->b_lblkno; 5855 ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta"); 5856 aip = newallocindir(ip, ptrno, newblkno, 0, lbn); 5857 dflags = DEPALLOC; 5858 if (IS_SNAPSHOT(ip)) 5859 dflags |= NODELAY; 5860 inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, dflags, &inodedep); 5861 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list); 5862 if (setup_allocindir_phase2(bp, ip, inodedep, aip, lbn)) 5863 panic("softdep_setup_allocindir_meta: Block already existed"); 5864 FREE_LOCK(ip->i_ump); 5865 } 5866 5867 static void 5868 indirdep_complete(indirdep) 5869 struct indirdep *indirdep; 5870 { 5871 struct allocindir *aip; 5872 5873 LIST_REMOVE(indirdep, ir_next); 5874 indirdep->ir_state |= DEPCOMPLETE; 5875 5876 while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) { 5877 LIST_REMOVE(aip, ai_next); 5878 free_newblk(&aip->ai_block); 5879 } 5880 /* 5881 * If this indirdep is not attached to a buf it was simply waiting 5882 * on completion to clear completehd. free_indirdep() asserts 5883 * that nothing is dangling. 5884 */ 5885 if ((indirdep->ir_state & ONWORKLIST) == 0) 5886 free_indirdep(indirdep); 5887 } 5888 5889 static struct indirdep * 5890 indirdep_lookup(mp, ip, bp) 5891 struct mount *mp; 5892 struct inode *ip; 5893 struct buf *bp; 5894 { 5895 struct indirdep *indirdep, *newindirdep; 5896 struct newblk *newblk; 5897 struct ufsmount *ump; 5898 struct worklist *wk; 5899 struct fs *fs; 5900 ufs2_daddr_t blkno; 5901 5902 ump = VFSTOUFS(mp); 5903 LOCK_OWNED(ump); 5904 indirdep = NULL; 5905 newindirdep = NULL; 5906 fs = ip->i_fs; 5907 for (;;) { 5908 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 5909 if (wk->wk_type != D_INDIRDEP) 5910 continue; 5911 indirdep = WK_INDIRDEP(wk); 5912 break; 5913 } 5914 /* Found on the buffer worklist, no new structure to free. */ 5915 if (indirdep != NULL && newindirdep == NULL) 5916 return (indirdep); 5917 if (indirdep != NULL && newindirdep != NULL) 5918 panic("indirdep_lookup: simultaneous create"); 5919 /* None found on the buffer and a new structure is ready. */ 5920 if (indirdep == NULL && newindirdep != NULL) 5921 break; 5922 /* None found and no new structure available. */ 5923 FREE_LOCK(ump); 5924 newindirdep = malloc(sizeof(struct indirdep), 5925 M_INDIRDEP, M_SOFTDEP_FLAGS); 5926 workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp); 5927 newindirdep->ir_state = ATTACHED; 5928 if (ip->i_ump->um_fstype == UFS1) 5929 newindirdep->ir_state |= UFS1FMT; 5930 TAILQ_INIT(&newindirdep->ir_trunc); 5931 newindirdep->ir_saveddata = NULL; 5932 LIST_INIT(&newindirdep->ir_deplisthd); 5933 LIST_INIT(&newindirdep->ir_donehd); 5934 LIST_INIT(&newindirdep->ir_writehd); 5935 LIST_INIT(&newindirdep->ir_completehd); 5936 if (bp->b_blkno == bp->b_lblkno) { 5937 ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp, 5938 NULL, NULL); 5939 bp->b_blkno = blkno; 5940 } 5941 newindirdep->ir_freeblks = NULL; 5942 newindirdep->ir_savebp = 5943 getblk(ip->i_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0); 5944 newindirdep->ir_bp = bp; 5945 BUF_KERNPROC(newindirdep->ir_savebp); 5946 bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount); 5947 ACQUIRE_LOCK(ump); 5948 } 5949 indirdep = newindirdep; 5950 WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list); 5951 /* 5952 * If the block is not yet allocated we don't set DEPCOMPLETE so 5953 * that we don't free dependencies until the pointers are valid. 5954 * This could search b_dep for D_ALLOCDIRECT/D_ALLOCINDIR rather 5955 * than using the hash. 5956 */ 5957 if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)) 5958 LIST_INSERT_HEAD(&newblk->nb_indirdeps, indirdep, ir_next); 5959 else 5960 indirdep->ir_state |= DEPCOMPLETE; 5961 return (indirdep); 5962 } 5963 5964 /* 5965 * Called to finish the allocation of the "aip" allocated 5966 * by one of the two routines above. 5967 */ 5968 static struct freefrag * 5969 setup_allocindir_phase2(bp, ip, inodedep, aip, lbn) 5970 struct buf *bp; /* in-memory copy of the indirect block */ 5971 struct inode *ip; /* inode for file being extended */ 5972 struct inodedep *inodedep; /* Inodedep for ip */ 5973 struct allocindir *aip; /* allocindir allocated by the above routines */ 5974 ufs_lbn_t lbn; /* Logical block number for this block. */ 5975 { 5976 struct fs *fs; 5977 struct indirdep *indirdep; 5978 struct allocindir *oldaip; 5979 struct freefrag *freefrag; 5980 struct mount *mp; 5981 5982 LOCK_OWNED(ip->i_ump); 5983 mp = UFSTOVFS(ip->i_ump); 5984 fs = ip->i_fs; 5985 if (bp->b_lblkno >= 0) 5986 panic("setup_allocindir_phase2: not indir blk"); 5987 KASSERT(aip->ai_offset >= 0 && aip->ai_offset < NINDIR(fs), 5988 ("setup_allocindir_phase2: Bad offset %d", aip->ai_offset)); 5989 indirdep = indirdep_lookup(mp, ip, bp); 5990 KASSERT(indirdep->ir_savebp != NULL, 5991 ("setup_allocindir_phase2 NULL ir_savebp")); 5992 aip->ai_indirdep = indirdep; 5993 /* 5994 * Check for an unwritten dependency for this indirect offset. If 5995 * there is, merge the old dependency into the new one. This happens 5996 * as a result of reallocblk only. 5997 */ 5998 freefrag = NULL; 5999 if (aip->ai_oldblkno != 0) { 6000 LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) { 6001 if (oldaip->ai_offset == aip->ai_offset) { 6002 freefrag = allocindir_merge(aip, oldaip); 6003 goto done; 6004 } 6005 } 6006 LIST_FOREACH(oldaip, &indirdep->ir_donehd, ai_next) { 6007 if (oldaip->ai_offset == aip->ai_offset) { 6008 freefrag = allocindir_merge(aip, oldaip); 6009 goto done; 6010 } 6011 } 6012 } 6013 done: 6014 LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next); 6015 return (freefrag); 6016 } 6017 6018 /* 6019 * Merge two allocindirs which refer to the same block. Move newblock 6020 * dependencies and setup the freefrags appropriately. 6021 */ 6022 static struct freefrag * 6023 allocindir_merge(aip, oldaip) 6024 struct allocindir *aip; 6025 struct allocindir *oldaip; 6026 { 6027 struct freefrag *freefrag; 6028 struct worklist *wk; 6029 6030 if (oldaip->ai_newblkno != aip->ai_oldblkno) 6031 panic("allocindir_merge: blkno"); 6032 aip->ai_oldblkno = oldaip->ai_oldblkno; 6033 freefrag = aip->ai_freefrag; 6034 aip->ai_freefrag = oldaip->ai_freefrag; 6035 oldaip->ai_freefrag = NULL; 6036 KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag")); 6037 /* 6038 * If we are tracking a new directory-block allocation, 6039 * move it from the old allocindir to the new allocindir. 6040 */ 6041 if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) { 6042 WORKLIST_REMOVE(wk); 6043 if (!LIST_EMPTY(&oldaip->ai_newdirblk)) 6044 panic("allocindir_merge: extra newdirblk"); 6045 WORKLIST_INSERT(&aip->ai_newdirblk, wk); 6046 } 6047 /* 6048 * We can skip journaling for this freefrag and just complete 6049 * any pending journal work for the allocindir that is being 6050 * removed after the freefrag completes. 6051 */ 6052 if (freefrag->ff_jdep) 6053 cancel_jfreefrag(WK_JFREEFRAG(freefrag->ff_jdep)); 6054 LIST_REMOVE(oldaip, ai_next); 6055 freefrag->ff_jdep = (struct worklist *)cancel_newblk(&oldaip->ai_block, 6056 &freefrag->ff_list, &freefrag->ff_jwork); 6057 free_newblk(&oldaip->ai_block); 6058 6059 return (freefrag); 6060 } 6061 6062 static inline void 6063 setup_freedirect(freeblks, ip, i, needj) 6064 struct freeblks *freeblks; 6065 struct inode *ip; 6066 int i; 6067 int needj; 6068 { 6069 ufs2_daddr_t blkno; 6070 int frags; 6071 6072 blkno = DIP(ip, i_db[i]); 6073 if (blkno == 0) 6074 return; 6075 DIP_SET(ip, i_db[i], 0); 6076 frags = sblksize(ip->i_fs, ip->i_size, i); 6077 frags = numfrags(ip->i_fs, frags); 6078 newfreework(ip->i_ump, freeblks, NULL, i, blkno, frags, 0, needj); 6079 } 6080 6081 static inline void 6082 setup_freeext(freeblks, ip, i, needj) 6083 struct freeblks *freeblks; 6084 struct inode *ip; 6085 int i; 6086 int needj; 6087 { 6088 ufs2_daddr_t blkno; 6089 int frags; 6090 6091 blkno = ip->i_din2->di_extb[i]; 6092 if (blkno == 0) 6093 return; 6094 ip->i_din2->di_extb[i] = 0; 6095 frags = sblksize(ip->i_fs, ip->i_din2->di_extsize, i); 6096 frags = numfrags(ip->i_fs, frags); 6097 newfreework(ip->i_ump, freeblks, NULL, -1 - i, blkno, frags, 0, needj); 6098 } 6099 6100 static inline void 6101 setup_freeindir(freeblks, ip, i, lbn, needj) 6102 struct freeblks *freeblks; 6103 struct inode *ip; 6104 int i; 6105 ufs_lbn_t lbn; 6106 int needj; 6107 { 6108 ufs2_daddr_t blkno; 6109 6110 blkno = DIP(ip, i_ib[i]); 6111 if (blkno == 0) 6112 return; 6113 DIP_SET(ip, i_ib[i], 0); 6114 newfreework(ip->i_ump, freeblks, NULL, lbn, blkno, ip->i_fs->fs_frag, 6115 0, needj); 6116 } 6117 6118 static inline struct freeblks * 6119 newfreeblks(mp, ip) 6120 struct mount *mp; 6121 struct inode *ip; 6122 { 6123 struct freeblks *freeblks; 6124 6125 freeblks = malloc(sizeof(struct freeblks), 6126 M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO); 6127 workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp); 6128 LIST_INIT(&freeblks->fb_jblkdephd); 6129 LIST_INIT(&freeblks->fb_jwork); 6130 freeblks->fb_ref = 0; 6131 freeblks->fb_cgwait = 0; 6132 freeblks->fb_state = ATTACHED; 6133 freeblks->fb_uid = ip->i_uid; 6134 freeblks->fb_inum = ip->i_number; 6135 freeblks->fb_vtype = ITOV(ip)->v_type; 6136 freeblks->fb_modrev = DIP(ip, i_modrev); 6137 freeblks->fb_devvp = ip->i_devvp; 6138 freeblks->fb_chkcnt = 0; 6139 freeblks->fb_len = 0; 6140 6141 return (freeblks); 6142 } 6143 6144 static void 6145 trunc_indirdep(indirdep, freeblks, bp, off) 6146 struct indirdep *indirdep; 6147 struct freeblks *freeblks; 6148 struct buf *bp; 6149 int off; 6150 { 6151 struct allocindir *aip, *aipn; 6152 6153 /* 6154 * The first set of allocindirs won't be in savedbp. 6155 */ 6156 LIST_FOREACH_SAFE(aip, &indirdep->ir_deplisthd, ai_next, aipn) 6157 if (aip->ai_offset > off) 6158 cancel_allocindir(aip, bp, freeblks, 1); 6159 LIST_FOREACH_SAFE(aip, &indirdep->ir_donehd, ai_next, aipn) 6160 if (aip->ai_offset > off) 6161 cancel_allocindir(aip, bp, freeblks, 1); 6162 /* 6163 * These will exist in savedbp. 6164 */ 6165 LIST_FOREACH_SAFE(aip, &indirdep->ir_writehd, ai_next, aipn) 6166 if (aip->ai_offset > off) 6167 cancel_allocindir(aip, NULL, freeblks, 0); 6168 LIST_FOREACH_SAFE(aip, &indirdep->ir_completehd, ai_next, aipn) 6169 if (aip->ai_offset > off) 6170 cancel_allocindir(aip, NULL, freeblks, 0); 6171 } 6172 6173 /* 6174 * Follow the chain of indirects down to lastlbn creating a freework 6175 * structure for each. This will be used to start indir_trunc() at 6176 * the right offset and create the journal records for the parrtial 6177 * truncation. A second step will handle the truncated dependencies. 6178 */ 6179 static int 6180 setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno) 6181 struct freeblks *freeblks; 6182 struct inode *ip; 6183 ufs_lbn_t lbn; 6184 ufs_lbn_t lastlbn; 6185 ufs2_daddr_t blkno; 6186 { 6187 struct indirdep *indirdep; 6188 struct indirdep *indirn; 6189 struct freework *freework; 6190 struct newblk *newblk; 6191 struct mount *mp; 6192 struct buf *bp; 6193 uint8_t *start; 6194 uint8_t *end; 6195 ufs_lbn_t lbnadd; 6196 int level; 6197 int error; 6198 int off; 6199 6200 6201 freework = NULL; 6202 if (blkno == 0) 6203 return (0); 6204 mp = freeblks->fb_list.wk_mp; 6205 bp = getblk(ITOV(ip), lbn, mp->mnt_stat.f_iosize, 0, 0, 0); 6206 if ((bp->b_flags & B_CACHE) == 0) { 6207 bp->b_blkno = blkptrtodb(VFSTOUFS(mp), blkno); 6208 bp->b_iocmd = BIO_READ; 6209 bp->b_flags &= ~B_INVAL; 6210 bp->b_ioflags &= ~BIO_ERROR; 6211 vfs_busy_pages(bp, 0); 6212 bp->b_iooffset = dbtob(bp->b_blkno); 6213 bstrategy(bp); 6214 curthread->td_ru.ru_inblock++; 6215 error = bufwait(bp); 6216 if (error) { 6217 brelse(bp); 6218 return (error); 6219 } 6220 } 6221 level = lbn_level(lbn); 6222 lbnadd = lbn_offset(ip->i_fs, level); 6223 /* 6224 * Compute the offset of the last block we want to keep. Store 6225 * in the freework the first block we want to completely free. 6226 */ 6227 off = (lastlbn - -(lbn + level)) / lbnadd; 6228 if (off + 1 == NINDIR(ip->i_fs)) 6229 goto nowork; 6230 freework = newfreework(ip->i_ump, freeblks, NULL, lbn, blkno, 0, off+1, 6231 0); 6232 /* 6233 * Link the freework into the indirdep. This will prevent any new 6234 * allocations from proceeding until we are finished with the 6235 * truncate and the block is written. 6236 */ 6237 ACQUIRE_LOCK(ip->i_ump); 6238 indirdep = indirdep_lookup(mp, ip, bp); 6239 if (indirdep->ir_freeblks) 6240 panic("setup_trunc_indir: indirdep already truncated."); 6241 TAILQ_INSERT_TAIL(&indirdep->ir_trunc, freework, fw_next); 6242 freework->fw_indir = indirdep; 6243 /* 6244 * Cancel any allocindirs that will not make it to disk. 6245 * We have to do this for all copies of the indirdep that 6246 * live on this newblk. 6247 */ 6248 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 6249 newblk_lookup(mp, dbtofsb(ip->i_fs, bp->b_blkno), 0, &newblk); 6250 LIST_FOREACH(indirn, &newblk->nb_indirdeps, ir_next) 6251 trunc_indirdep(indirn, freeblks, bp, off); 6252 } else 6253 trunc_indirdep(indirdep, freeblks, bp, off); 6254 FREE_LOCK(ip->i_ump); 6255 /* 6256 * Creation is protected by the buf lock. The saveddata is only 6257 * needed if a full truncation follows a partial truncation but it 6258 * is difficult to allocate in that case so we fetch it anyway. 6259 */ 6260 if (indirdep->ir_saveddata == NULL) 6261 indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP, 6262 M_SOFTDEP_FLAGS); 6263 nowork: 6264 /* Fetch the blkno of the child and the zero start offset. */ 6265 if (ip->i_ump->um_fstype == UFS1) { 6266 blkno = ((ufs1_daddr_t *)bp->b_data)[off]; 6267 start = (uint8_t *)&((ufs1_daddr_t *)bp->b_data)[off+1]; 6268 } else { 6269 blkno = ((ufs2_daddr_t *)bp->b_data)[off]; 6270 start = (uint8_t *)&((ufs2_daddr_t *)bp->b_data)[off+1]; 6271 } 6272 if (freework) { 6273 /* Zero the truncated pointers. */ 6274 end = bp->b_data + bp->b_bcount; 6275 bzero(start, end - start); 6276 bdwrite(bp); 6277 } else 6278 bqrelse(bp); 6279 if (level == 0) 6280 return (0); 6281 lbn++; /* adjust level */ 6282 lbn -= (off * lbnadd); 6283 return setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno); 6284 } 6285 6286 /* 6287 * Complete the partial truncation of an indirect block setup by 6288 * setup_trunc_indir(). This zeros the truncated pointers in the saved 6289 * copy and writes them to disk before the freeblks is allowed to complete. 6290 */ 6291 static void 6292 complete_trunc_indir(freework) 6293 struct freework *freework; 6294 { 6295 struct freework *fwn; 6296 struct indirdep *indirdep; 6297 struct ufsmount *ump; 6298 struct buf *bp; 6299 uintptr_t start; 6300 int count; 6301 6302 ump = VFSTOUFS(freework->fw_list.wk_mp); 6303 LOCK_OWNED(ump); 6304 indirdep = freework->fw_indir; 6305 for (;;) { 6306 bp = indirdep->ir_bp; 6307 /* See if the block was discarded. */ 6308 if (bp == NULL) 6309 break; 6310 /* Inline part of getdirtybuf(). We dont want bremfree. */ 6311 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0) 6312 break; 6313 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 6314 LOCK_PTR(ump)) == 0) 6315 BUF_UNLOCK(bp); 6316 ACQUIRE_LOCK(ump); 6317 } 6318 freework->fw_state |= DEPCOMPLETE; 6319 TAILQ_REMOVE(&indirdep->ir_trunc, freework, fw_next); 6320 /* 6321 * Zero the pointers in the saved copy. 6322 */ 6323 if (indirdep->ir_state & UFS1FMT) 6324 start = sizeof(ufs1_daddr_t); 6325 else 6326 start = sizeof(ufs2_daddr_t); 6327 start *= freework->fw_start; 6328 count = indirdep->ir_savebp->b_bcount - start; 6329 start += (uintptr_t)indirdep->ir_savebp->b_data; 6330 bzero((char *)start, count); 6331 /* 6332 * We need to start the next truncation in the list if it has not 6333 * been started yet. 6334 */ 6335 fwn = TAILQ_FIRST(&indirdep->ir_trunc); 6336 if (fwn != NULL) { 6337 if (fwn->fw_freeblks == indirdep->ir_freeblks) 6338 TAILQ_REMOVE(&indirdep->ir_trunc, fwn, fw_next); 6339 if ((fwn->fw_state & ONWORKLIST) == 0) 6340 freework_enqueue(fwn); 6341 } 6342 /* 6343 * If bp is NULL the block was fully truncated, restore 6344 * the saved block list otherwise free it if it is no 6345 * longer needed. 6346 */ 6347 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 6348 if (bp == NULL) 6349 bcopy(indirdep->ir_saveddata, 6350 indirdep->ir_savebp->b_data, 6351 indirdep->ir_savebp->b_bcount); 6352 free(indirdep->ir_saveddata, M_INDIRDEP); 6353 indirdep->ir_saveddata = NULL; 6354 } 6355 /* 6356 * When bp is NULL there is a full truncation pending. We 6357 * must wait for this full truncation to be journaled before 6358 * we can release this freework because the disk pointers will 6359 * never be written as zero. 6360 */ 6361 if (bp == NULL) { 6362 if (LIST_EMPTY(&indirdep->ir_freeblks->fb_jblkdephd)) 6363 handle_written_freework(freework); 6364 else 6365 WORKLIST_INSERT(&indirdep->ir_freeblks->fb_freeworkhd, 6366 &freework->fw_list); 6367 } else { 6368 /* Complete when the real copy is written. */ 6369 WORKLIST_INSERT(&bp->b_dep, &freework->fw_list); 6370 BUF_UNLOCK(bp); 6371 } 6372 } 6373 6374 /* 6375 * Calculate the number of blocks we are going to release where datablocks 6376 * is the current total and length is the new file size. 6377 */ 6378 static ufs2_daddr_t 6379 blkcount(fs, datablocks, length) 6380 struct fs *fs; 6381 ufs2_daddr_t datablocks; 6382 off_t length; 6383 { 6384 off_t totblks, numblks; 6385 6386 totblks = 0; 6387 numblks = howmany(length, fs->fs_bsize); 6388 if (numblks <= NDADDR) { 6389 totblks = howmany(length, fs->fs_fsize); 6390 goto out; 6391 } 6392 totblks = blkstofrags(fs, numblks); 6393 numblks -= NDADDR; 6394 /* 6395 * Count all single, then double, then triple indirects required. 6396 * Subtracting one indirects worth of blocks for each pass 6397 * acknowledges one of each pointed to by the inode. 6398 */ 6399 for (;;) { 6400 totblks += blkstofrags(fs, howmany(numblks, NINDIR(fs))); 6401 numblks -= NINDIR(fs); 6402 if (numblks <= 0) 6403 break; 6404 numblks = howmany(numblks, NINDIR(fs)); 6405 } 6406 out: 6407 totblks = fsbtodb(fs, totblks); 6408 /* 6409 * Handle sparse files. We can't reclaim more blocks than the inode 6410 * references. We will correct it later in handle_complete_freeblks() 6411 * when we know the real count. 6412 */ 6413 if (totblks > datablocks) 6414 return (0); 6415 return (datablocks - totblks); 6416 } 6417 6418 /* 6419 * Handle freeblocks for journaled softupdate filesystems. 6420 * 6421 * Contrary to normal softupdates, we must preserve the block pointers in 6422 * indirects until their subordinates are free. This is to avoid journaling 6423 * every block that is freed which may consume more space than the journal 6424 * itself. The recovery program will see the free block journals at the 6425 * base of the truncated area and traverse them to reclaim space. The 6426 * pointers in the inode may be cleared immediately after the journal 6427 * records are written because each direct and indirect pointer in the 6428 * inode is recorded in a journal. This permits full truncation to proceed 6429 * asynchronously. The write order is journal -> inode -> cgs -> indirects. 6430 * 6431 * The algorithm is as follows: 6432 * 1) Traverse the in-memory state and create journal entries to release 6433 * the relevant blocks and full indirect trees. 6434 * 2) Traverse the indirect block chain adding partial truncation freework 6435 * records to indirects in the path to lastlbn. The freework will 6436 * prevent new allocation dependencies from being satisfied in this 6437 * indirect until the truncation completes. 6438 * 3) Read and lock the inode block, performing an update with the new size 6439 * and pointers. This prevents truncated data from becoming valid on 6440 * disk through step 4. 6441 * 4) Reap unsatisfied dependencies that are beyond the truncated area, 6442 * eliminate journal work for those records that do not require it. 6443 * 5) Schedule the journal records to be written followed by the inode block. 6444 * 6) Allocate any necessary frags for the end of file. 6445 * 7) Zero any partially truncated blocks. 6446 * 6447 * From this truncation proceeds asynchronously using the freework and 6448 * indir_trunc machinery. The file will not be extended again into a 6449 * partially truncated indirect block until all work is completed but 6450 * the normal dependency mechanism ensures that it is rolled back/forward 6451 * as appropriate. Further truncation may occur without delay and is 6452 * serialized in indir_trunc(). 6453 */ 6454 void 6455 softdep_journal_freeblocks(ip, cred, length, flags) 6456 struct inode *ip; /* The inode whose length is to be reduced */ 6457 struct ucred *cred; 6458 off_t length; /* The new length for the file */ 6459 int flags; /* IO_EXT and/or IO_NORMAL */ 6460 { 6461 struct freeblks *freeblks, *fbn; 6462 struct worklist *wk, *wkn; 6463 struct inodedep *inodedep; 6464 struct jblkdep *jblkdep; 6465 struct allocdirect *adp, *adpn; 6466 struct ufsmount *ump; 6467 struct fs *fs; 6468 struct buf *bp; 6469 struct vnode *vp; 6470 struct mount *mp; 6471 ufs2_daddr_t extblocks, datablocks; 6472 ufs_lbn_t tmpval, lbn, lastlbn; 6473 int frags, lastoff, iboff, allocblock, needj, dflags, error, i; 6474 6475 fs = ip->i_fs; 6476 ump = ip->i_ump; 6477 mp = UFSTOVFS(ump); 6478 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 6479 ("softdep_journal_freeblocks called on non-softdep filesystem")); 6480 vp = ITOV(ip); 6481 needj = 1; 6482 iboff = -1; 6483 allocblock = 0; 6484 extblocks = 0; 6485 datablocks = 0; 6486 frags = 0; 6487 freeblks = newfreeblks(mp, ip); 6488 ACQUIRE_LOCK(ump); 6489 /* 6490 * If we're truncating a removed file that will never be written 6491 * we don't need to journal the block frees. The canceled journals 6492 * for the allocations will suffice. 6493 */ 6494 dflags = DEPALLOC; 6495 if (IS_SNAPSHOT(ip)) 6496 dflags |= NODELAY; 6497 inodedep_lookup(mp, ip->i_number, dflags, &inodedep); 6498 if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED && 6499 length == 0) 6500 needj = 0; 6501 CTR3(KTR_SUJ, "softdep_journal_freeblks: ip %d length %ld needj %d", 6502 ip->i_number, length, needj); 6503 FREE_LOCK(ump); 6504 /* 6505 * Calculate the lbn that we are truncating to. This results in -1 6506 * if we're truncating the 0 bytes. So it is the last lbn we want 6507 * to keep, not the first lbn we want to truncate. 6508 */ 6509 lastlbn = lblkno(fs, length + fs->fs_bsize - 1) - 1; 6510 lastoff = blkoff(fs, length); 6511 /* 6512 * Compute frags we are keeping in lastlbn. 0 means all. 6513 */ 6514 if (lastlbn >= 0 && lastlbn < NDADDR) { 6515 frags = fragroundup(fs, lastoff); 6516 /* adp offset of last valid allocdirect. */ 6517 iboff = lastlbn; 6518 } else if (lastlbn > 0) 6519 iboff = NDADDR; 6520 if (fs->fs_magic == FS_UFS2_MAGIC) 6521 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 6522 /* 6523 * Handle normal data blocks and indirects. This section saves 6524 * values used after the inode update to complete frag and indirect 6525 * truncation. 6526 */ 6527 if ((flags & IO_NORMAL) != 0) { 6528 /* 6529 * Handle truncation of whole direct and indirect blocks. 6530 */ 6531 for (i = iboff + 1; i < NDADDR; i++) 6532 setup_freedirect(freeblks, ip, i, needj); 6533 for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR; 6534 i++, lbn += tmpval, tmpval *= NINDIR(fs)) { 6535 /* Release a whole indirect tree. */ 6536 if (lbn > lastlbn) { 6537 setup_freeindir(freeblks, ip, i, -lbn -i, 6538 needj); 6539 continue; 6540 } 6541 iboff = i + NDADDR; 6542 /* 6543 * Traverse partially truncated indirect tree. 6544 */ 6545 if (lbn <= lastlbn && lbn + tmpval - 1 > lastlbn) 6546 setup_trunc_indir(freeblks, ip, -lbn - i, 6547 lastlbn, DIP(ip, i_ib[i])); 6548 } 6549 /* 6550 * Handle partial truncation to a frag boundary. 6551 */ 6552 if (frags) { 6553 ufs2_daddr_t blkno; 6554 long oldfrags; 6555 6556 oldfrags = blksize(fs, ip, lastlbn); 6557 blkno = DIP(ip, i_db[lastlbn]); 6558 if (blkno && oldfrags != frags) { 6559 oldfrags -= frags; 6560 oldfrags = numfrags(ip->i_fs, oldfrags); 6561 blkno += numfrags(ip->i_fs, frags); 6562 newfreework(ump, freeblks, NULL, lastlbn, 6563 blkno, oldfrags, 0, needj); 6564 if (needj) 6565 adjust_newfreework(freeblks, 6566 numfrags(ip->i_fs, frags)); 6567 } else if (blkno == 0) 6568 allocblock = 1; 6569 } 6570 /* 6571 * Add a journal record for partial truncate if we are 6572 * handling indirect blocks. Non-indirects need no extra 6573 * journaling. 6574 */ 6575 if (length != 0 && lastlbn >= NDADDR) { 6576 ip->i_flag |= IN_TRUNCATED; 6577 newjtrunc(freeblks, length, 0); 6578 } 6579 ip->i_size = length; 6580 DIP_SET(ip, i_size, ip->i_size); 6581 datablocks = DIP(ip, i_blocks) - extblocks; 6582 if (length != 0) 6583 datablocks = blkcount(ip->i_fs, datablocks, length); 6584 freeblks->fb_len = length; 6585 } 6586 if ((flags & IO_EXT) != 0) { 6587 for (i = 0; i < NXADDR; i++) 6588 setup_freeext(freeblks, ip, i, needj); 6589 ip->i_din2->di_extsize = 0; 6590 datablocks += extblocks; 6591 } 6592 #ifdef QUOTA 6593 /* Reference the quotas in case the block count is wrong in the end. */ 6594 quotaref(vp, freeblks->fb_quota); 6595 (void) chkdq(ip, -datablocks, NOCRED, 0); 6596 #endif 6597 freeblks->fb_chkcnt = -datablocks; 6598 UFS_LOCK(ump); 6599 fs->fs_pendingblocks += datablocks; 6600 UFS_UNLOCK(ump); 6601 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks); 6602 /* 6603 * Handle truncation of incomplete alloc direct dependencies. We 6604 * hold the inode block locked to prevent incomplete dependencies 6605 * from reaching the disk while we are eliminating those that 6606 * have been truncated. This is a partially inlined ffs_update(). 6607 */ 6608 ufs_itimes(vp); 6609 ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED); 6610 error = bread(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 6611 (int)fs->fs_bsize, cred, &bp); 6612 if (error) { 6613 brelse(bp); 6614 softdep_error("softdep_journal_freeblocks", error); 6615 return; 6616 } 6617 if (bp->b_bufsize == fs->fs_bsize) 6618 bp->b_flags |= B_CLUSTEROK; 6619 softdep_update_inodeblock(ip, bp, 0); 6620 if (ump->um_fstype == UFS1) 6621 *((struct ufs1_dinode *)bp->b_data + 6622 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1; 6623 else 6624 *((struct ufs2_dinode *)bp->b_data + 6625 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2; 6626 ACQUIRE_LOCK(ump); 6627 (void) inodedep_lookup(mp, ip->i_number, dflags, &inodedep); 6628 if ((inodedep->id_state & IOSTARTED) != 0) 6629 panic("softdep_setup_freeblocks: inode busy"); 6630 /* 6631 * Add the freeblks structure to the list of operations that 6632 * must await the zero'ed inode being written to disk. If we 6633 * still have a bitmap dependency (needj), then the inode 6634 * has never been written to disk, so we can process the 6635 * freeblks below once we have deleted the dependencies. 6636 */ 6637 if (needj) 6638 WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list); 6639 else 6640 freeblks->fb_state |= COMPLETE; 6641 if ((flags & IO_NORMAL) != 0) { 6642 TAILQ_FOREACH_SAFE(adp, &inodedep->id_inoupdt, ad_next, adpn) { 6643 if (adp->ad_offset > iboff) 6644 cancel_allocdirect(&inodedep->id_inoupdt, adp, 6645 freeblks); 6646 /* 6647 * Truncate the allocdirect. We could eliminate 6648 * or modify journal records as well. 6649 */ 6650 else if (adp->ad_offset == iboff && frags) 6651 adp->ad_newsize = frags; 6652 } 6653 } 6654 if ((flags & IO_EXT) != 0) 6655 while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0) 6656 cancel_allocdirect(&inodedep->id_extupdt, adp, 6657 freeblks); 6658 /* 6659 * Scan the bufwait list for newblock dependencies that will never 6660 * make it to disk. 6661 */ 6662 LIST_FOREACH_SAFE(wk, &inodedep->id_bufwait, wk_list, wkn) { 6663 if (wk->wk_type != D_ALLOCDIRECT) 6664 continue; 6665 adp = WK_ALLOCDIRECT(wk); 6666 if (((flags & IO_NORMAL) != 0 && (adp->ad_offset > iboff)) || 6667 ((flags & IO_EXT) != 0 && (adp->ad_state & EXTDATA))) { 6668 cancel_jfreeblk(freeblks, adp->ad_newblkno); 6669 cancel_newblk(WK_NEWBLK(wk), NULL, &freeblks->fb_jwork); 6670 WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk); 6671 } 6672 } 6673 /* 6674 * Add journal work. 6675 */ 6676 LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) 6677 add_to_journal(&jblkdep->jb_list); 6678 FREE_LOCK(ump); 6679 bdwrite(bp); 6680 /* 6681 * Truncate dependency structures beyond length. 6682 */ 6683 trunc_dependencies(ip, freeblks, lastlbn, frags, flags); 6684 /* 6685 * This is only set when we need to allocate a fragment because 6686 * none existed at the end of a frag-sized file. It handles only 6687 * allocating a new, zero filled block. 6688 */ 6689 if (allocblock) { 6690 ip->i_size = length - lastoff; 6691 DIP_SET(ip, i_size, ip->i_size); 6692 error = UFS_BALLOC(vp, length - 1, 1, cred, BA_CLRBUF, &bp); 6693 if (error != 0) { 6694 softdep_error("softdep_journal_freeblks", error); 6695 return; 6696 } 6697 ip->i_size = length; 6698 DIP_SET(ip, i_size, length); 6699 ip->i_flag |= IN_CHANGE | IN_UPDATE; 6700 allocbuf(bp, frags); 6701 ffs_update(vp, 0); 6702 bawrite(bp); 6703 } else if (lastoff != 0 && vp->v_type != VDIR) { 6704 int size; 6705 6706 /* 6707 * Zero the end of a truncated frag or block. 6708 */ 6709 size = sblksize(fs, length, lastlbn); 6710 error = bread(vp, lastlbn, size, cred, &bp); 6711 if (error) { 6712 softdep_error("softdep_journal_freeblks", error); 6713 return; 6714 } 6715 bzero((char *)bp->b_data + lastoff, size - lastoff); 6716 bawrite(bp); 6717 6718 } 6719 ACQUIRE_LOCK(ump); 6720 inodedep_lookup(mp, ip->i_number, dflags, &inodedep); 6721 TAILQ_INSERT_TAIL(&inodedep->id_freeblklst, freeblks, fb_next); 6722 freeblks->fb_state |= DEPCOMPLETE | ONDEPLIST; 6723 /* 6724 * We zero earlier truncations so they don't erroneously 6725 * update i_blocks. 6726 */ 6727 if (freeblks->fb_len == 0 && (flags & IO_NORMAL) != 0) 6728 TAILQ_FOREACH(fbn, &inodedep->id_freeblklst, fb_next) 6729 fbn->fb_len = 0; 6730 if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE && 6731 LIST_EMPTY(&freeblks->fb_jblkdephd)) 6732 freeblks->fb_state |= INPROGRESS; 6733 else 6734 freeblks = NULL; 6735 FREE_LOCK(ump); 6736 if (freeblks) 6737 handle_workitem_freeblocks(freeblks, 0); 6738 trunc_pages(ip, length, extblocks, flags); 6739 6740 } 6741 6742 /* 6743 * Flush a JOP_SYNC to the journal. 6744 */ 6745 void 6746 softdep_journal_fsync(ip) 6747 struct inode *ip; 6748 { 6749 struct jfsync *jfsync; 6750 6751 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0, 6752 ("softdep_journal_fsync called on non-softdep filesystem")); 6753 if ((ip->i_flag & IN_TRUNCATED) == 0) 6754 return; 6755 ip->i_flag &= ~IN_TRUNCATED; 6756 jfsync = malloc(sizeof(*jfsync), M_JFSYNC, M_SOFTDEP_FLAGS | M_ZERO); 6757 workitem_alloc(&jfsync->jfs_list, D_JFSYNC, UFSTOVFS(ip->i_ump)); 6758 jfsync->jfs_size = ip->i_size; 6759 jfsync->jfs_ino = ip->i_number; 6760 ACQUIRE_LOCK(ip->i_ump); 6761 add_to_journal(&jfsync->jfs_list); 6762 jwait(&jfsync->jfs_list, MNT_WAIT); 6763 FREE_LOCK(ip->i_ump); 6764 } 6765 6766 /* 6767 * Block de-allocation dependencies. 6768 * 6769 * When blocks are de-allocated, the on-disk pointers must be nullified before 6770 * the blocks are made available for use by other files. (The true 6771 * requirement is that old pointers must be nullified before new on-disk 6772 * pointers are set. We chose this slightly more stringent requirement to 6773 * reduce complexity.) Our implementation handles this dependency by updating 6774 * the inode (or indirect block) appropriately but delaying the actual block 6775 * de-allocation (i.e., freemap and free space count manipulation) until 6776 * after the updated versions reach stable storage. After the disk is 6777 * updated, the blocks can be safely de-allocated whenever it is convenient. 6778 * This implementation handles only the common case of reducing a file's 6779 * length to zero. Other cases are handled by the conventional synchronous 6780 * write approach. 6781 * 6782 * The ffs implementation with which we worked double-checks 6783 * the state of the block pointers and file size as it reduces 6784 * a file's length. Some of this code is replicated here in our 6785 * soft updates implementation. The freeblks->fb_chkcnt field is 6786 * used to transfer a part of this information to the procedure 6787 * that eventually de-allocates the blocks. 6788 * 6789 * This routine should be called from the routine that shortens 6790 * a file's length, before the inode's size or block pointers 6791 * are modified. It will save the block pointer information for 6792 * later release and zero the inode so that the calling routine 6793 * can release it. 6794 */ 6795 void 6796 softdep_setup_freeblocks(ip, length, flags) 6797 struct inode *ip; /* The inode whose length is to be reduced */ 6798 off_t length; /* The new length for the file */ 6799 int flags; /* IO_EXT and/or IO_NORMAL */ 6800 { 6801 struct ufs1_dinode *dp1; 6802 struct ufs2_dinode *dp2; 6803 struct freeblks *freeblks; 6804 struct inodedep *inodedep; 6805 struct allocdirect *adp; 6806 struct ufsmount *ump; 6807 struct buf *bp; 6808 struct fs *fs; 6809 ufs2_daddr_t extblocks, datablocks; 6810 struct mount *mp; 6811 int i, delay, error, dflags; 6812 ufs_lbn_t tmpval; 6813 ufs_lbn_t lbn; 6814 6815 ump = ip->i_ump; 6816 mp = UFSTOVFS(ump); 6817 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 6818 ("softdep_setup_freeblocks called on non-softdep filesystem")); 6819 CTR2(KTR_SUJ, "softdep_setup_freeblks: ip %d length %ld", 6820 ip->i_number, length); 6821 KASSERT(length == 0, ("softdep_setup_freeblocks: non-zero length")); 6822 fs = ip->i_fs; 6823 freeblks = newfreeblks(mp, ip); 6824 extblocks = 0; 6825 datablocks = 0; 6826 if (fs->fs_magic == FS_UFS2_MAGIC) 6827 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 6828 if ((flags & IO_NORMAL) != 0) { 6829 for (i = 0; i < NDADDR; i++) 6830 setup_freedirect(freeblks, ip, i, 0); 6831 for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR; 6832 i++, lbn += tmpval, tmpval *= NINDIR(fs)) 6833 setup_freeindir(freeblks, ip, i, -lbn -i, 0); 6834 ip->i_size = 0; 6835 DIP_SET(ip, i_size, 0); 6836 datablocks = DIP(ip, i_blocks) - extblocks; 6837 } 6838 if ((flags & IO_EXT) != 0) { 6839 for (i = 0; i < NXADDR; i++) 6840 setup_freeext(freeblks, ip, i, 0); 6841 ip->i_din2->di_extsize = 0; 6842 datablocks += extblocks; 6843 } 6844 #ifdef QUOTA 6845 /* Reference the quotas in case the block count is wrong in the end. */ 6846 quotaref(ITOV(ip), freeblks->fb_quota); 6847 (void) chkdq(ip, -datablocks, NOCRED, 0); 6848 #endif 6849 freeblks->fb_chkcnt = -datablocks; 6850 UFS_LOCK(ump); 6851 fs->fs_pendingblocks += datablocks; 6852 UFS_UNLOCK(ump); 6853 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks); 6854 /* 6855 * Push the zero'ed inode to to its disk buffer so that we are free 6856 * to delete its dependencies below. Once the dependencies are gone 6857 * the buffer can be safely released. 6858 */ 6859 if ((error = bread(ip->i_devvp, 6860 fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 6861 (int)fs->fs_bsize, NOCRED, &bp)) != 0) { 6862 brelse(bp); 6863 softdep_error("softdep_setup_freeblocks", error); 6864 } 6865 if (ump->um_fstype == UFS1) { 6866 dp1 = ((struct ufs1_dinode *)bp->b_data + 6867 ino_to_fsbo(fs, ip->i_number)); 6868 ip->i_din1->di_freelink = dp1->di_freelink; 6869 *dp1 = *ip->i_din1; 6870 } else { 6871 dp2 = ((struct ufs2_dinode *)bp->b_data + 6872 ino_to_fsbo(fs, ip->i_number)); 6873 ip->i_din2->di_freelink = dp2->di_freelink; 6874 *dp2 = *ip->i_din2; 6875 } 6876 /* 6877 * Find and eliminate any inode dependencies. 6878 */ 6879 ACQUIRE_LOCK(ump); 6880 dflags = DEPALLOC; 6881 if (IS_SNAPSHOT(ip)) 6882 dflags |= NODELAY; 6883 (void) inodedep_lookup(mp, ip->i_number, dflags, &inodedep); 6884 if ((inodedep->id_state & IOSTARTED) != 0) 6885 panic("softdep_setup_freeblocks: inode busy"); 6886 /* 6887 * Add the freeblks structure to the list of operations that 6888 * must await the zero'ed inode being written to disk. If we 6889 * still have a bitmap dependency (delay == 0), then the inode 6890 * has never been written to disk, so we can process the 6891 * freeblks below once we have deleted the dependencies. 6892 */ 6893 delay = (inodedep->id_state & DEPCOMPLETE); 6894 if (delay) 6895 WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list); 6896 else 6897 freeblks->fb_state |= COMPLETE; 6898 /* 6899 * Because the file length has been truncated to zero, any 6900 * pending block allocation dependency structures associated 6901 * with this inode are obsolete and can simply be de-allocated. 6902 * We must first merge the two dependency lists to get rid of 6903 * any duplicate freefrag structures, then purge the merged list. 6904 * If we still have a bitmap dependency, then the inode has never 6905 * been written to disk, so we can free any fragments without delay. 6906 */ 6907 if (flags & IO_NORMAL) { 6908 merge_inode_lists(&inodedep->id_newinoupdt, 6909 &inodedep->id_inoupdt); 6910 while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != 0) 6911 cancel_allocdirect(&inodedep->id_inoupdt, adp, 6912 freeblks); 6913 } 6914 if (flags & IO_EXT) { 6915 merge_inode_lists(&inodedep->id_newextupdt, 6916 &inodedep->id_extupdt); 6917 while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0) 6918 cancel_allocdirect(&inodedep->id_extupdt, adp, 6919 freeblks); 6920 } 6921 FREE_LOCK(ump); 6922 bdwrite(bp); 6923 trunc_dependencies(ip, freeblks, -1, 0, flags); 6924 ACQUIRE_LOCK(ump); 6925 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) 6926 (void) free_inodedep(inodedep); 6927 freeblks->fb_state |= DEPCOMPLETE; 6928 /* 6929 * If the inode with zeroed block pointers is now on disk 6930 * we can start freeing blocks. 6931 */ 6932 if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE) 6933 freeblks->fb_state |= INPROGRESS; 6934 else 6935 freeblks = NULL; 6936 FREE_LOCK(ump); 6937 if (freeblks) 6938 handle_workitem_freeblocks(freeblks, 0); 6939 trunc_pages(ip, length, extblocks, flags); 6940 } 6941 6942 /* 6943 * Eliminate pages from the page cache that back parts of this inode and 6944 * adjust the vnode pager's idea of our size. This prevents stale data 6945 * from hanging around in the page cache. 6946 */ 6947 static void 6948 trunc_pages(ip, length, extblocks, flags) 6949 struct inode *ip; 6950 off_t length; 6951 ufs2_daddr_t extblocks; 6952 int flags; 6953 { 6954 struct vnode *vp; 6955 struct fs *fs; 6956 ufs_lbn_t lbn; 6957 off_t end, extend; 6958 6959 vp = ITOV(ip); 6960 fs = ip->i_fs; 6961 extend = OFF_TO_IDX(lblktosize(fs, -extblocks)); 6962 if ((flags & IO_EXT) != 0) 6963 vn_pages_remove(vp, extend, 0); 6964 if ((flags & IO_NORMAL) == 0) 6965 return; 6966 BO_LOCK(&vp->v_bufobj); 6967 drain_output(vp); 6968 BO_UNLOCK(&vp->v_bufobj); 6969 /* 6970 * The vnode pager eliminates file pages we eliminate indirects 6971 * below. 6972 */ 6973 vnode_pager_setsize(vp, length); 6974 /* 6975 * Calculate the end based on the last indirect we want to keep. If 6976 * the block extends into indirects we can just use the negative of 6977 * its lbn. Doubles and triples exist at lower numbers so we must 6978 * be careful not to remove those, if they exist. double and triple 6979 * indirect lbns do not overlap with others so it is not important 6980 * to verify how many levels are required. 6981 */ 6982 lbn = lblkno(fs, length); 6983 if (lbn >= NDADDR) { 6984 /* Calculate the virtual lbn of the triple indirect. */ 6985 lbn = -lbn - (NIADDR - 1); 6986 end = OFF_TO_IDX(lblktosize(fs, lbn)); 6987 } else 6988 end = extend; 6989 vn_pages_remove(vp, OFF_TO_IDX(OFF_MAX), end); 6990 } 6991 6992 /* 6993 * See if the buf bp is in the range eliminated by truncation. 6994 */ 6995 static int 6996 trunc_check_buf(bp, blkoffp, lastlbn, lastoff, flags) 6997 struct buf *bp; 6998 int *blkoffp; 6999 ufs_lbn_t lastlbn; 7000 int lastoff; 7001 int flags; 7002 { 7003 ufs_lbn_t lbn; 7004 7005 *blkoffp = 0; 7006 /* Only match ext/normal blocks as appropriate. */ 7007 if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) || 7008 ((flags & IO_NORMAL) == 0 && (bp->b_xflags & BX_ALTDATA) == 0)) 7009 return (0); 7010 /* ALTDATA is always a full truncation. */ 7011 if ((bp->b_xflags & BX_ALTDATA) != 0) 7012 return (1); 7013 /* -1 is full truncation. */ 7014 if (lastlbn == -1) 7015 return (1); 7016 /* 7017 * If this is a partial truncate we only want those 7018 * blocks and indirect blocks that cover the range 7019 * we're after. 7020 */ 7021 lbn = bp->b_lblkno; 7022 if (lbn < 0) 7023 lbn = -(lbn + lbn_level(lbn)); 7024 if (lbn < lastlbn) 7025 return (0); 7026 /* Here we only truncate lblkno if it's partial. */ 7027 if (lbn == lastlbn) { 7028 if (lastoff == 0) 7029 return (0); 7030 *blkoffp = lastoff; 7031 } 7032 return (1); 7033 } 7034 7035 /* 7036 * Eliminate any dependencies that exist in memory beyond lblkno:off 7037 */ 7038 static void 7039 trunc_dependencies(ip, freeblks, lastlbn, lastoff, flags) 7040 struct inode *ip; 7041 struct freeblks *freeblks; 7042 ufs_lbn_t lastlbn; 7043 int lastoff; 7044 int flags; 7045 { 7046 struct bufobj *bo; 7047 struct vnode *vp; 7048 struct buf *bp; 7049 struct fs *fs; 7050 int blkoff; 7051 7052 /* 7053 * We must wait for any I/O in progress to finish so that 7054 * all potential buffers on the dirty list will be visible. 7055 * Once they are all there, walk the list and get rid of 7056 * any dependencies. 7057 */ 7058 fs = ip->i_fs; 7059 vp = ITOV(ip); 7060 bo = &vp->v_bufobj; 7061 BO_LOCK(bo); 7062 drain_output(vp); 7063 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) 7064 bp->b_vflags &= ~BV_SCANNED; 7065 restart: 7066 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) { 7067 if (bp->b_vflags & BV_SCANNED) 7068 continue; 7069 if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) { 7070 bp->b_vflags |= BV_SCANNED; 7071 continue; 7072 } 7073 KASSERT(bp->b_bufobj == bo, ("Wrong object in buffer")); 7074 if ((bp = getdirtybuf(bp, BO_LOCKPTR(bo), MNT_WAIT)) == NULL) 7075 goto restart; 7076 BO_UNLOCK(bo); 7077 if (deallocate_dependencies(bp, freeblks, blkoff)) 7078 bqrelse(bp); 7079 else 7080 brelse(bp); 7081 BO_LOCK(bo); 7082 goto restart; 7083 } 7084 /* 7085 * Now do the work of vtruncbuf while also matching indirect blocks. 7086 */ 7087 TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) 7088 bp->b_vflags &= ~BV_SCANNED; 7089 cleanrestart: 7090 TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) { 7091 if (bp->b_vflags & BV_SCANNED) 7092 continue; 7093 if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) { 7094 bp->b_vflags |= BV_SCANNED; 7095 continue; 7096 } 7097 if (BUF_LOCK(bp, 7098 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 7099 BO_LOCKPTR(bo)) == ENOLCK) { 7100 BO_LOCK(bo); 7101 goto cleanrestart; 7102 } 7103 bp->b_vflags |= BV_SCANNED; 7104 bremfree(bp); 7105 if (blkoff != 0) { 7106 allocbuf(bp, blkoff); 7107 bqrelse(bp); 7108 } else { 7109 bp->b_flags |= B_INVAL | B_NOCACHE | B_RELBUF; 7110 brelse(bp); 7111 } 7112 BO_LOCK(bo); 7113 goto cleanrestart; 7114 } 7115 drain_output(vp); 7116 BO_UNLOCK(bo); 7117 } 7118 7119 static int 7120 cancel_pagedep(pagedep, freeblks, blkoff) 7121 struct pagedep *pagedep; 7122 struct freeblks *freeblks; 7123 int blkoff; 7124 { 7125 struct jremref *jremref; 7126 struct jmvref *jmvref; 7127 struct dirrem *dirrem, *tmp; 7128 int i; 7129 7130 /* 7131 * Copy any directory remove dependencies to the list 7132 * to be processed after the freeblks proceeds. If 7133 * directory entry never made it to disk they 7134 * can be dumped directly onto the work list. 7135 */ 7136 LIST_FOREACH_SAFE(dirrem, &pagedep->pd_dirremhd, dm_next, tmp) { 7137 /* Skip this directory removal if it is intended to remain. */ 7138 if (dirrem->dm_offset < blkoff) 7139 continue; 7140 /* 7141 * If there are any dirrems we wait for the journal write 7142 * to complete and then restart the buf scan as the lock 7143 * has been dropped. 7144 */ 7145 while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) { 7146 jwait(&jremref->jr_list, MNT_WAIT); 7147 return (ERESTART); 7148 } 7149 LIST_REMOVE(dirrem, dm_next); 7150 dirrem->dm_dirinum = pagedep->pd_ino; 7151 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &dirrem->dm_list); 7152 } 7153 while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) { 7154 jwait(&jmvref->jm_list, MNT_WAIT); 7155 return (ERESTART); 7156 } 7157 /* 7158 * When we're partially truncating a pagedep we just want to flush 7159 * journal entries and return. There can not be any adds in the 7160 * truncated portion of the directory and newblk must remain if 7161 * part of the block remains. 7162 */ 7163 if (blkoff != 0) { 7164 struct diradd *dap; 7165 7166 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) 7167 if (dap->da_offset > blkoff) 7168 panic("cancel_pagedep: diradd %p off %d > %d", 7169 dap, dap->da_offset, blkoff); 7170 for (i = 0; i < DAHASHSZ; i++) 7171 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) 7172 if (dap->da_offset > blkoff) 7173 panic("cancel_pagedep: diradd %p off %d > %d", 7174 dap, dap->da_offset, blkoff); 7175 return (0); 7176 } 7177 /* 7178 * There should be no directory add dependencies present 7179 * as the directory could not be truncated until all 7180 * children were removed. 7181 */ 7182 KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL, 7183 ("deallocate_dependencies: pendinghd != NULL")); 7184 for (i = 0; i < DAHASHSZ; i++) 7185 KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL, 7186 ("deallocate_dependencies: diraddhd != NULL")); 7187 if ((pagedep->pd_state & NEWBLOCK) != 0) 7188 free_newdirblk(pagedep->pd_newdirblk); 7189 if (free_pagedep(pagedep) == 0) 7190 panic("Failed to free pagedep %p", pagedep); 7191 return (0); 7192 } 7193 7194 /* 7195 * Reclaim any dependency structures from a buffer that is about to 7196 * be reallocated to a new vnode. The buffer must be locked, thus, 7197 * no I/O completion operations can occur while we are manipulating 7198 * its associated dependencies. The mutex is held so that other I/O's 7199 * associated with related dependencies do not occur. 7200 */ 7201 static int 7202 deallocate_dependencies(bp, freeblks, off) 7203 struct buf *bp; 7204 struct freeblks *freeblks; 7205 int off; 7206 { 7207 struct indirdep *indirdep; 7208 struct pagedep *pagedep; 7209 struct allocdirect *adp; 7210 struct worklist *wk, *wkn; 7211 struct ufsmount *ump; 7212 7213 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL) 7214 goto done; 7215 ump = VFSTOUFS(wk->wk_mp); 7216 ACQUIRE_LOCK(ump); 7217 LIST_FOREACH_SAFE(wk, &bp->b_dep, wk_list, wkn) { 7218 switch (wk->wk_type) { 7219 case D_INDIRDEP: 7220 indirdep = WK_INDIRDEP(wk); 7221 if (bp->b_lblkno >= 0 || 7222 bp->b_blkno != indirdep->ir_savebp->b_lblkno) 7223 panic("deallocate_dependencies: not indir"); 7224 cancel_indirdep(indirdep, bp, freeblks); 7225 continue; 7226 7227 case D_PAGEDEP: 7228 pagedep = WK_PAGEDEP(wk); 7229 if (cancel_pagedep(pagedep, freeblks, off)) { 7230 FREE_LOCK(ump); 7231 return (ERESTART); 7232 } 7233 continue; 7234 7235 case D_ALLOCINDIR: 7236 /* 7237 * Simply remove the allocindir, we'll find it via 7238 * the indirdep where we can clear pointers if 7239 * needed. 7240 */ 7241 WORKLIST_REMOVE(wk); 7242 continue; 7243 7244 case D_FREEWORK: 7245 /* 7246 * A truncation is waiting for the zero'd pointers 7247 * to be written. It can be freed when the freeblks 7248 * is journaled. 7249 */ 7250 WORKLIST_REMOVE(wk); 7251 wk->wk_state |= ONDEPLIST; 7252 WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk); 7253 break; 7254 7255 case D_ALLOCDIRECT: 7256 adp = WK_ALLOCDIRECT(wk); 7257 if (off != 0) 7258 continue; 7259 /* FALLTHROUGH */ 7260 default: 7261 panic("deallocate_dependencies: Unexpected type %s", 7262 TYPENAME(wk->wk_type)); 7263 /* NOTREACHED */ 7264 } 7265 } 7266 FREE_LOCK(ump); 7267 done: 7268 /* 7269 * Don't throw away this buf, we were partially truncating and 7270 * some deps may always remain. 7271 */ 7272 if (off) { 7273 allocbuf(bp, off); 7274 bp->b_vflags |= BV_SCANNED; 7275 return (EBUSY); 7276 } 7277 bp->b_flags |= B_INVAL | B_NOCACHE; 7278 7279 return (0); 7280 } 7281 7282 /* 7283 * An allocdirect is being canceled due to a truncate. We must make sure 7284 * the journal entry is released in concert with the blkfree that releases 7285 * the storage. Completed journal entries must not be released until the 7286 * space is no longer pointed to by the inode or in the bitmap. 7287 */ 7288 static void 7289 cancel_allocdirect(adphead, adp, freeblks) 7290 struct allocdirectlst *adphead; 7291 struct allocdirect *adp; 7292 struct freeblks *freeblks; 7293 { 7294 struct freework *freework; 7295 struct newblk *newblk; 7296 struct worklist *wk; 7297 7298 TAILQ_REMOVE(adphead, adp, ad_next); 7299 newblk = (struct newblk *)adp; 7300 freework = NULL; 7301 /* 7302 * Find the correct freework structure. 7303 */ 7304 LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) { 7305 if (wk->wk_type != D_FREEWORK) 7306 continue; 7307 freework = WK_FREEWORK(wk); 7308 if (freework->fw_blkno == newblk->nb_newblkno) 7309 break; 7310 } 7311 if (freework == NULL) 7312 panic("cancel_allocdirect: Freework not found"); 7313 /* 7314 * If a newblk exists at all we still have the journal entry that 7315 * initiated the allocation so we do not need to journal the free. 7316 */ 7317 cancel_jfreeblk(freeblks, freework->fw_blkno); 7318 /* 7319 * If the journal hasn't been written the jnewblk must be passed 7320 * to the call to ffs_blkfree that reclaims the space. We accomplish 7321 * this by linking the journal dependency into the freework to be 7322 * freed when freework_freeblock() is called. If the journal has 7323 * been written we can simply reclaim the journal space when the 7324 * freeblks work is complete. 7325 */ 7326 freework->fw_jnewblk = cancel_newblk(newblk, &freework->fw_list, 7327 &freeblks->fb_jwork); 7328 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list); 7329 } 7330 7331 7332 /* 7333 * Cancel a new block allocation. May be an indirect or direct block. We 7334 * remove it from various lists and return any journal record that needs to 7335 * be resolved by the caller. 7336 * 7337 * A special consideration is made for indirects which were never pointed 7338 * at on disk and will never be found once this block is released. 7339 */ 7340 static struct jnewblk * 7341 cancel_newblk(newblk, wk, wkhd) 7342 struct newblk *newblk; 7343 struct worklist *wk; 7344 struct workhead *wkhd; 7345 { 7346 struct jnewblk *jnewblk; 7347 7348 CTR1(KTR_SUJ, "cancel_newblk: blkno %jd", newblk->nb_newblkno); 7349 7350 newblk->nb_state |= GOINGAWAY; 7351 /* 7352 * Previously we traversed the completedhd on each indirdep 7353 * attached to this newblk to cancel them and gather journal 7354 * work. Since we need only the oldest journal segment and 7355 * the lowest point on the tree will always have the oldest 7356 * journal segment we are free to release the segments 7357 * of any subordinates and may leave the indirdep list to 7358 * indirdep_complete() when this newblk is freed. 7359 */ 7360 if (newblk->nb_state & ONDEPLIST) { 7361 newblk->nb_state &= ~ONDEPLIST; 7362 LIST_REMOVE(newblk, nb_deps); 7363 } 7364 if (newblk->nb_state & ONWORKLIST) 7365 WORKLIST_REMOVE(&newblk->nb_list); 7366 /* 7367 * If the journal entry hasn't been written we save a pointer to 7368 * the dependency that frees it until it is written or the 7369 * superseding operation completes. 7370 */ 7371 jnewblk = newblk->nb_jnewblk; 7372 if (jnewblk != NULL && wk != NULL) { 7373 newblk->nb_jnewblk = NULL; 7374 jnewblk->jn_dep = wk; 7375 } 7376 if (!LIST_EMPTY(&newblk->nb_jwork)) 7377 jwork_move(wkhd, &newblk->nb_jwork); 7378 /* 7379 * When truncating we must free the newdirblk early to remove 7380 * the pagedep from the hash before returning. 7381 */ 7382 if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL) 7383 free_newdirblk(WK_NEWDIRBLK(wk)); 7384 if (!LIST_EMPTY(&newblk->nb_newdirblk)) 7385 panic("cancel_newblk: extra newdirblk"); 7386 7387 return (jnewblk); 7388 } 7389 7390 /* 7391 * Schedule the freefrag associated with a newblk to be released once 7392 * the pointers are written and the previous block is no longer needed. 7393 */ 7394 static void 7395 newblk_freefrag(newblk) 7396 struct newblk *newblk; 7397 { 7398 struct freefrag *freefrag; 7399 7400 if (newblk->nb_freefrag == NULL) 7401 return; 7402 freefrag = newblk->nb_freefrag; 7403 newblk->nb_freefrag = NULL; 7404 freefrag->ff_state |= COMPLETE; 7405 if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE) 7406 add_to_worklist(&freefrag->ff_list, 0); 7407 } 7408 7409 /* 7410 * Free a newblk. Generate a new freefrag work request if appropriate. 7411 * This must be called after the inode pointer and any direct block pointers 7412 * are valid or fully removed via truncate or frag extension. 7413 */ 7414 static void 7415 free_newblk(newblk) 7416 struct newblk *newblk; 7417 { 7418 struct indirdep *indirdep; 7419 struct worklist *wk; 7420 7421 KASSERT(newblk->nb_jnewblk == NULL, 7422 ("free_newblk: jnewblk %p still attached", newblk->nb_jnewblk)); 7423 KASSERT(newblk->nb_list.wk_type != D_NEWBLK, 7424 ("free_newblk: unclaimed newblk")); 7425 LOCK_OWNED(VFSTOUFS(newblk->nb_list.wk_mp)); 7426 newblk_freefrag(newblk); 7427 if (newblk->nb_state & ONDEPLIST) 7428 LIST_REMOVE(newblk, nb_deps); 7429 if (newblk->nb_state & ONWORKLIST) 7430 WORKLIST_REMOVE(&newblk->nb_list); 7431 LIST_REMOVE(newblk, nb_hash); 7432 if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL) 7433 free_newdirblk(WK_NEWDIRBLK(wk)); 7434 if (!LIST_EMPTY(&newblk->nb_newdirblk)) 7435 panic("free_newblk: extra newdirblk"); 7436 while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL) 7437 indirdep_complete(indirdep); 7438 handle_jwork(&newblk->nb_jwork); 7439 WORKITEM_FREE(newblk, D_NEWBLK); 7440 } 7441 7442 /* 7443 * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep. 7444 * This routine must be called with splbio interrupts blocked. 7445 */ 7446 static void 7447 free_newdirblk(newdirblk) 7448 struct newdirblk *newdirblk; 7449 { 7450 struct pagedep *pagedep; 7451 struct diradd *dap; 7452 struct worklist *wk; 7453 7454 LOCK_OWNED(VFSTOUFS(newdirblk->db_list.wk_mp)); 7455 WORKLIST_REMOVE(&newdirblk->db_list); 7456 /* 7457 * If the pagedep is still linked onto the directory buffer 7458 * dependency chain, then some of the entries on the 7459 * pd_pendinghd list may not be committed to disk yet. In 7460 * this case, we will simply clear the NEWBLOCK flag and 7461 * let the pd_pendinghd list be processed when the pagedep 7462 * is next written. If the pagedep is no longer on the buffer 7463 * dependency chain, then all the entries on the pd_pending 7464 * list are committed to disk and we can free them here. 7465 */ 7466 pagedep = newdirblk->db_pagedep; 7467 pagedep->pd_state &= ~NEWBLOCK; 7468 if ((pagedep->pd_state & ONWORKLIST) == 0) { 7469 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 7470 free_diradd(dap, NULL); 7471 /* 7472 * If no dependencies remain, the pagedep will be freed. 7473 */ 7474 free_pagedep(pagedep); 7475 } 7476 /* Should only ever be one item in the list. */ 7477 while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) { 7478 WORKLIST_REMOVE(wk); 7479 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); 7480 } 7481 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 7482 } 7483 7484 /* 7485 * Prepare an inode to be freed. The actual free operation is not 7486 * done until the zero'ed inode has been written to disk. 7487 */ 7488 void 7489 softdep_freefile(pvp, ino, mode) 7490 struct vnode *pvp; 7491 ino_t ino; 7492 int mode; 7493 { 7494 struct inode *ip = VTOI(pvp); 7495 struct inodedep *inodedep; 7496 struct freefile *freefile; 7497 struct freeblks *freeblks; 7498 struct ufsmount *ump; 7499 7500 ump = ip->i_ump; 7501 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 7502 ("softdep_freefile called on non-softdep filesystem")); 7503 /* 7504 * This sets up the inode de-allocation dependency. 7505 */ 7506 freefile = malloc(sizeof(struct freefile), 7507 M_FREEFILE, M_SOFTDEP_FLAGS); 7508 workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount); 7509 freefile->fx_mode = mode; 7510 freefile->fx_oldinum = ino; 7511 freefile->fx_devvp = ip->i_devvp; 7512 LIST_INIT(&freefile->fx_jwork); 7513 UFS_LOCK(ump); 7514 ip->i_fs->fs_pendinginodes += 1; 7515 UFS_UNLOCK(ump); 7516 7517 /* 7518 * If the inodedep does not exist, then the zero'ed inode has 7519 * been written to disk. If the allocated inode has never been 7520 * written to disk, then the on-disk inode is zero'ed. In either 7521 * case we can free the file immediately. If the journal was 7522 * canceled before being written the inode will never make it to 7523 * disk and we must send the canceled journal entrys to 7524 * ffs_freefile() to be cleared in conjunction with the bitmap. 7525 * Any blocks waiting on the inode to write can be safely freed 7526 * here as it will never been written. 7527 */ 7528 ACQUIRE_LOCK(ump); 7529 inodedep_lookup(pvp->v_mount, ino, 0, &inodedep); 7530 if (inodedep) { 7531 /* 7532 * Clear out freeblks that no longer need to reference 7533 * this inode. 7534 */ 7535 while ((freeblks = 7536 TAILQ_FIRST(&inodedep->id_freeblklst)) != NULL) { 7537 TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, 7538 fb_next); 7539 freeblks->fb_state &= ~ONDEPLIST; 7540 } 7541 /* 7542 * Remove this inode from the unlinked list. 7543 */ 7544 if (inodedep->id_state & UNLINKED) { 7545 /* 7546 * Save the journal work to be freed with the bitmap 7547 * before we clear UNLINKED. Otherwise it can be lost 7548 * if the inode block is written. 7549 */ 7550 handle_bufwait(inodedep, &freefile->fx_jwork); 7551 clear_unlinked_inodedep(inodedep); 7552 /* 7553 * Re-acquire inodedep as we've dropped the 7554 * per-filesystem lock in clear_unlinked_inodedep(). 7555 */ 7556 inodedep_lookup(pvp->v_mount, ino, 0, &inodedep); 7557 } 7558 } 7559 if (inodedep == NULL || check_inode_unwritten(inodedep)) { 7560 FREE_LOCK(ump); 7561 handle_workitem_freefile(freefile); 7562 return; 7563 } 7564 if ((inodedep->id_state & DEPCOMPLETE) == 0) 7565 inodedep->id_state |= GOINGAWAY; 7566 WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list); 7567 FREE_LOCK(ump); 7568 if (ip->i_number == ino) 7569 ip->i_flag |= IN_MODIFIED; 7570 } 7571 7572 /* 7573 * Check to see if an inode has never been written to disk. If 7574 * so free the inodedep and return success, otherwise return failure. 7575 * This routine must be called with splbio interrupts blocked. 7576 * 7577 * If we still have a bitmap dependency, then the inode has never 7578 * been written to disk. Drop the dependency as it is no longer 7579 * necessary since the inode is being deallocated. We set the 7580 * ALLCOMPLETE flags since the bitmap now properly shows that the 7581 * inode is not allocated. Even if the inode is actively being 7582 * written, it has been rolled back to its zero'ed state, so we 7583 * are ensured that a zero inode is what is on the disk. For short 7584 * lived files, this change will usually result in removing all the 7585 * dependencies from the inode so that it can be freed immediately. 7586 */ 7587 static int 7588 check_inode_unwritten(inodedep) 7589 struct inodedep *inodedep; 7590 { 7591 7592 LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp)); 7593 7594 if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 || 7595 !LIST_EMPTY(&inodedep->id_dirremhd) || 7596 !LIST_EMPTY(&inodedep->id_pendinghd) || 7597 !LIST_EMPTY(&inodedep->id_bufwait) || 7598 !LIST_EMPTY(&inodedep->id_inowait) || 7599 !TAILQ_EMPTY(&inodedep->id_inoreflst) || 7600 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 7601 !TAILQ_EMPTY(&inodedep->id_newinoupdt) || 7602 !TAILQ_EMPTY(&inodedep->id_extupdt) || 7603 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 7604 !TAILQ_EMPTY(&inodedep->id_freeblklst) || 7605 inodedep->id_mkdiradd != NULL || 7606 inodedep->id_nlinkdelta != 0) 7607 return (0); 7608 /* 7609 * Another process might be in initiate_write_inodeblock_ufs[12] 7610 * trying to allocate memory without holding "Softdep Lock". 7611 */ 7612 if ((inodedep->id_state & IOSTARTED) != 0 && 7613 inodedep->id_savedino1 == NULL) 7614 return (0); 7615 7616 if (inodedep->id_state & ONDEPLIST) 7617 LIST_REMOVE(inodedep, id_deps); 7618 inodedep->id_state &= ~ONDEPLIST; 7619 inodedep->id_state |= ALLCOMPLETE; 7620 inodedep->id_bmsafemap = NULL; 7621 if (inodedep->id_state & ONWORKLIST) 7622 WORKLIST_REMOVE(&inodedep->id_list); 7623 if (inodedep->id_savedino1 != NULL) { 7624 free(inodedep->id_savedino1, M_SAVEDINO); 7625 inodedep->id_savedino1 = NULL; 7626 } 7627 if (free_inodedep(inodedep) == 0) 7628 panic("check_inode_unwritten: busy inode"); 7629 return (1); 7630 } 7631 7632 /* 7633 * Try to free an inodedep structure. Return 1 if it could be freed. 7634 */ 7635 static int 7636 free_inodedep(inodedep) 7637 struct inodedep *inodedep; 7638 { 7639 7640 LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp)); 7641 if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 || 7642 (inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE || 7643 !LIST_EMPTY(&inodedep->id_dirremhd) || 7644 !LIST_EMPTY(&inodedep->id_pendinghd) || 7645 !LIST_EMPTY(&inodedep->id_bufwait) || 7646 !LIST_EMPTY(&inodedep->id_inowait) || 7647 !TAILQ_EMPTY(&inodedep->id_inoreflst) || 7648 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 7649 !TAILQ_EMPTY(&inodedep->id_newinoupdt) || 7650 !TAILQ_EMPTY(&inodedep->id_extupdt) || 7651 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 7652 !TAILQ_EMPTY(&inodedep->id_freeblklst) || 7653 inodedep->id_mkdiradd != NULL || 7654 inodedep->id_nlinkdelta != 0 || 7655 inodedep->id_savedino1 != NULL) 7656 return (0); 7657 if (inodedep->id_state & ONDEPLIST) 7658 LIST_REMOVE(inodedep, id_deps); 7659 LIST_REMOVE(inodedep, id_hash); 7660 WORKITEM_FREE(inodedep, D_INODEDEP); 7661 return (1); 7662 } 7663 7664 /* 7665 * Free the block referenced by a freework structure. The parent freeblks 7666 * structure is released and completed when the final cg bitmap reaches 7667 * the disk. This routine may be freeing a jnewblk which never made it to 7668 * disk in which case we do not have to wait as the operation is undone 7669 * in memory immediately. 7670 */ 7671 static void 7672 freework_freeblock(freework) 7673 struct freework *freework; 7674 { 7675 struct freeblks *freeblks; 7676 struct jnewblk *jnewblk; 7677 struct ufsmount *ump; 7678 struct workhead wkhd; 7679 struct fs *fs; 7680 int bsize; 7681 int needj; 7682 7683 ump = VFSTOUFS(freework->fw_list.wk_mp); 7684 LOCK_OWNED(ump); 7685 /* 7686 * Handle partial truncate separately. 7687 */ 7688 if (freework->fw_indir) { 7689 complete_trunc_indir(freework); 7690 return; 7691 } 7692 freeblks = freework->fw_freeblks; 7693 fs = ump->um_fs; 7694 needj = MOUNTEDSUJ(freeblks->fb_list.wk_mp) != 0; 7695 bsize = lfragtosize(fs, freework->fw_frags); 7696 LIST_INIT(&wkhd); 7697 /* 7698 * DEPCOMPLETE is cleared in indirblk_insert() if the block lives 7699 * on the indirblk hashtable and prevents premature freeing. 7700 */ 7701 freework->fw_state |= DEPCOMPLETE; 7702 /* 7703 * SUJ needs to wait for the segment referencing freed indirect 7704 * blocks to expire so that we know the checker will not confuse 7705 * a re-allocated indirect block with its old contents. 7706 */ 7707 if (needj && freework->fw_lbn <= -NDADDR) 7708 indirblk_insert(freework); 7709 /* 7710 * If we are canceling an existing jnewblk pass it to the free 7711 * routine, otherwise pass the freeblk which will ultimately 7712 * release the freeblks. If we're not journaling, we can just 7713 * free the freeblks immediately. 7714 */ 7715 jnewblk = freework->fw_jnewblk; 7716 if (jnewblk != NULL) { 7717 cancel_jnewblk(jnewblk, &wkhd); 7718 needj = 0; 7719 } else if (needj) { 7720 freework->fw_state |= DELAYEDFREE; 7721 freeblks->fb_cgwait++; 7722 WORKLIST_INSERT(&wkhd, &freework->fw_list); 7723 } 7724 FREE_LOCK(ump); 7725 freeblks_free(ump, freeblks, btodb(bsize)); 7726 CTR4(KTR_SUJ, 7727 "freework_freeblock: ino %d blkno %jd lbn %jd size %ld", 7728 freeblks->fb_inum, freework->fw_blkno, freework->fw_lbn, bsize); 7729 ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno, bsize, 7730 freeblks->fb_inum, freeblks->fb_vtype, &wkhd); 7731 ACQUIRE_LOCK(ump); 7732 /* 7733 * The jnewblk will be discarded and the bits in the map never 7734 * made it to disk. We can immediately free the freeblk. 7735 */ 7736 if (needj == 0) 7737 handle_written_freework(freework); 7738 } 7739 7740 /* 7741 * We enqueue freework items that need processing back on the freeblks and 7742 * add the freeblks to the worklist. This makes it easier to find all work 7743 * required to flush a truncation in process_truncates(). 7744 */ 7745 static void 7746 freework_enqueue(freework) 7747 struct freework *freework; 7748 { 7749 struct freeblks *freeblks; 7750 7751 freeblks = freework->fw_freeblks; 7752 if ((freework->fw_state & INPROGRESS) == 0) 7753 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list); 7754 if ((freeblks->fb_state & 7755 (ONWORKLIST | INPROGRESS | ALLCOMPLETE)) == ALLCOMPLETE && 7756 LIST_EMPTY(&freeblks->fb_jblkdephd)) 7757 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 7758 } 7759 7760 /* 7761 * Start, continue, or finish the process of freeing an indirect block tree. 7762 * The free operation may be paused at any point with fw_off containing the 7763 * offset to restart from. This enables us to implement some flow control 7764 * for large truncates which may fan out and generate a huge number of 7765 * dependencies. 7766 */ 7767 static void 7768 handle_workitem_indirblk(freework) 7769 struct freework *freework; 7770 { 7771 struct freeblks *freeblks; 7772 struct ufsmount *ump; 7773 struct fs *fs; 7774 7775 freeblks = freework->fw_freeblks; 7776 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 7777 fs = ump->um_fs; 7778 if (freework->fw_state & DEPCOMPLETE) { 7779 handle_written_freework(freework); 7780 return; 7781 } 7782 if (freework->fw_off == NINDIR(fs)) { 7783 freework_freeblock(freework); 7784 return; 7785 } 7786 freework->fw_state |= INPROGRESS; 7787 FREE_LOCK(ump); 7788 indir_trunc(freework, fsbtodb(fs, freework->fw_blkno), 7789 freework->fw_lbn); 7790 ACQUIRE_LOCK(ump); 7791 } 7792 7793 /* 7794 * Called when a freework structure attached to a cg buf is written. The 7795 * ref on either the parent or the freeblks structure is released and 7796 * the freeblks is added back to the worklist if there is more work to do. 7797 */ 7798 static void 7799 handle_written_freework(freework) 7800 struct freework *freework; 7801 { 7802 struct freeblks *freeblks; 7803 struct freework *parent; 7804 7805 freeblks = freework->fw_freeblks; 7806 parent = freework->fw_parent; 7807 if (freework->fw_state & DELAYEDFREE) 7808 freeblks->fb_cgwait--; 7809 freework->fw_state |= COMPLETE; 7810 if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE) 7811 WORKITEM_FREE(freework, D_FREEWORK); 7812 if (parent) { 7813 if (--parent->fw_ref == 0) 7814 freework_enqueue(parent); 7815 return; 7816 } 7817 if (--freeblks->fb_ref != 0) 7818 return; 7819 if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST | INPROGRESS)) == 7820 ALLCOMPLETE && LIST_EMPTY(&freeblks->fb_jblkdephd)) 7821 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 7822 } 7823 7824 /* 7825 * This workitem routine performs the block de-allocation. 7826 * The workitem is added to the pending list after the updated 7827 * inode block has been written to disk. As mentioned above, 7828 * checks regarding the number of blocks de-allocated (compared 7829 * to the number of blocks allocated for the file) are also 7830 * performed in this function. 7831 */ 7832 static int 7833 handle_workitem_freeblocks(freeblks, flags) 7834 struct freeblks *freeblks; 7835 int flags; 7836 { 7837 struct freework *freework; 7838 struct newblk *newblk; 7839 struct allocindir *aip; 7840 struct ufsmount *ump; 7841 struct worklist *wk; 7842 7843 KASSERT(LIST_EMPTY(&freeblks->fb_jblkdephd), 7844 ("handle_workitem_freeblocks: Journal entries not written.")); 7845 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 7846 ACQUIRE_LOCK(ump); 7847 while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) { 7848 WORKLIST_REMOVE(wk); 7849 switch (wk->wk_type) { 7850 case D_DIRREM: 7851 wk->wk_state |= COMPLETE; 7852 add_to_worklist(wk, 0); 7853 continue; 7854 7855 case D_ALLOCDIRECT: 7856 free_newblk(WK_NEWBLK(wk)); 7857 continue; 7858 7859 case D_ALLOCINDIR: 7860 aip = WK_ALLOCINDIR(wk); 7861 freework = NULL; 7862 if (aip->ai_state & DELAYEDFREE) { 7863 FREE_LOCK(ump); 7864 freework = newfreework(ump, freeblks, NULL, 7865 aip->ai_lbn, aip->ai_newblkno, 7866 ump->um_fs->fs_frag, 0, 0); 7867 ACQUIRE_LOCK(ump); 7868 } 7869 newblk = WK_NEWBLK(wk); 7870 if (newblk->nb_jnewblk) { 7871 freework->fw_jnewblk = newblk->nb_jnewblk; 7872 newblk->nb_jnewblk->jn_dep = &freework->fw_list; 7873 newblk->nb_jnewblk = NULL; 7874 } 7875 free_newblk(newblk); 7876 continue; 7877 7878 case D_FREEWORK: 7879 freework = WK_FREEWORK(wk); 7880 if (freework->fw_lbn <= -NDADDR) 7881 handle_workitem_indirblk(freework); 7882 else 7883 freework_freeblock(freework); 7884 continue; 7885 default: 7886 panic("handle_workitem_freeblocks: Unknown type %s", 7887 TYPENAME(wk->wk_type)); 7888 } 7889 } 7890 if (freeblks->fb_ref != 0) { 7891 freeblks->fb_state &= ~INPROGRESS; 7892 wake_worklist(&freeblks->fb_list); 7893 freeblks = NULL; 7894 } 7895 FREE_LOCK(ump); 7896 if (freeblks) 7897 return handle_complete_freeblocks(freeblks, flags); 7898 return (0); 7899 } 7900 7901 /* 7902 * Handle completion of block free via truncate. This allows fs_pending 7903 * to track the actual free block count more closely than if we only updated 7904 * it at the end. We must be careful to handle cases where the block count 7905 * on free was incorrect. 7906 */ 7907 static void 7908 freeblks_free(ump, freeblks, blocks) 7909 struct ufsmount *ump; 7910 struct freeblks *freeblks; 7911 int blocks; 7912 { 7913 struct fs *fs; 7914 ufs2_daddr_t remain; 7915 7916 UFS_LOCK(ump); 7917 remain = -freeblks->fb_chkcnt; 7918 freeblks->fb_chkcnt += blocks; 7919 if (remain > 0) { 7920 if (remain < blocks) 7921 blocks = remain; 7922 fs = ump->um_fs; 7923 fs->fs_pendingblocks -= blocks; 7924 } 7925 UFS_UNLOCK(ump); 7926 } 7927 7928 /* 7929 * Once all of the freework workitems are complete we can retire the 7930 * freeblocks dependency and any journal work awaiting completion. This 7931 * can not be called until all other dependencies are stable on disk. 7932 */ 7933 static int 7934 handle_complete_freeblocks(freeblks, flags) 7935 struct freeblks *freeblks; 7936 int flags; 7937 { 7938 struct inodedep *inodedep; 7939 struct inode *ip; 7940 struct vnode *vp; 7941 struct fs *fs; 7942 struct ufsmount *ump; 7943 ufs2_daddr_t spare; 7944 7945 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 7946 fs = ump->um_fs; 7947 flags = LK_EXCLUSIVE | flags; 7948 spare = freeblks->fb_chkcnt; 7949 7950 /* 7951 * If we did not release the expected number of blocks we may have 7952 * to adjust the inode block count here. Only do so if it wasn't 7953 * a truncation to zero and the modrev still matches. 7954 */ 7955 if (spare && freeblks->fb_len != 0) { 7956 if (ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_inum, 7957 flags, &vp, FFSV_FORCEINSMQ) != 0) 7958 return (EBUSY); 7959 ip = VTOI(vp); 7960 if (DIP(ip, i_modrev) == freeblks->fb_modrev) { 7961 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - spare); 7962 ip->i_flag |= IN_CHANGE; 7963 /* 7964 * We must wait so this happens before the 7965 * journal is reclaimed. 7966 */ 7967 ffs_update(vp, 1); 7968 } 7969 vput(vp); 7970 } 7971 if (spare < 0) { 7972 UFS_LOCK(ump); 7973 fs->fs_pendingblocks += spare; 7974 UFS_UNLOCK(ump); 7975 } 7976 #ifdef QUOTA 7977 /* Handle spare. */ 7978 if (spare) 7979 quotaadj(freeblks->fb_quota, ump, -spare); 7980 quotarele(freeblks->fb_quota); 7981 #endif 7982 ACQUIRE_LOCK(ump); 7983 if (freeblks->fb_state & ONDEPLIST) { 7984 inodedep_lookup(freeblks->fb_list.wk_mp, freeblks->fb_inum, 7985 0, &inodedep); 7986 TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, fb_next); 7987 freeblks->fb_state &= ~ONDEPLIST; 7988 if (TAILQ_EMPTY(&inodedep->id_freeblklst)) 7989 free_inodedep(inodedep); 7990 } 7991 /* 7992 * All of the freeblock deps must be complete prior to this call 7993 * so it's now safe to complete earlier outstanding journal entries. 7994 */ 7995 handle_jwork(&freeblks->fb_jwork); 7996 WORKITEM_FREE(freeblks, D_FREEBLKS); 7997 FREE_LOCK(ump); 7998 return (0); 7999 } 8000 8001 /* 8002 * Release blocks associated with the freeblks and stored in the indirect 8003 * block dbn. If level is greater than SINGLE, the block is an indirect block 8004 * and recursive calls to indirtrunc must be used to cleanse other indirect 8005 * blocks. 8006 * 8007 * This handles partial and complete truncation of blocks. Partial is noted 8008 * with goingaway == 0. In this case the freework is completed after the 8009 * zero'd indirects are written to disk. For full truncation the freework 8010 * is completed after the block is freed. 8011 */ 8012 static void 8013 indir_trunc(freework, dbn, lbn) 8014 struct freework *freework; 8015 ufs2_daddr_t dbn; 8016 ufs_lbn_t lbn; 8017 { 8018 struct freework *nfreework; 8019 struct workhead wkhd; 8020 struct freeblks *freeblks; 8021 struct buf *bp; 8022 struct fs *fs; 8023 struct indirdep *indirdep; 8024 struct ufsmount *ump; 8025 ufs1_daddr_t *bap1 = 0; 8026 ufs2_daddr_t nb, nnb, *bap2 = 0; 8027 ufs_lbn_t lbnadd, nlbn; 8028 int i, nblocks, ufs1fmt; 8029 int freedblocks; 8030 int goingaway; 8031 int freedeps; 8032 int needj; 8033 int level; 8034 int cnt; 8035 8036 freeblks = freework->fw_freeblks; 8037 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 8038 fs = ump->um_fs; 8039 /* 8040 * Get buffer of block pointers to be freed. There are three cases: 8041 * 8042 * 1) Partial truncate caches the indirdep pointer in the freework 8043 * which provides us a back copy to the save bp which holds the 8044 * pointers we want to clear. When this completes the zero 8045 * pointers are written to the real copy. 8046 * 2) The indirect is being completely truncated, cancel_indirdep() 8047 * eliminated the real copy and placed the indirdep on the saved 8048 * copy. The indirdep and buf are discarded when this completes. 8049 * 3) The indirect was not in memory, we read a copy off of the disk 8050 * using the devvp and drop and invalidate the buffer when we're 8051 * done. 8052 */ 8053 goingaway = 1; 8054 indirdep = NULL; 8055 if (freework->fw_indir != NULL) { 8056 goingaway = 0; 8057 indirdep = freework->fw_indir; 8058 bp = indirdep->ir_savebp; 8059 if (bp == NULL || bp->b_blkno != dbn) 8060 panic("indir_trunc: Bad saved buf %p blkno %jd", 8061 bp, (intmax_t)dbn); 8062 } else if ((bp = incore(&freeblks->fb_devvp->v_bufobj, dbn)) != NULL) { 8063 /* 8064 * The lock prevents the buf dep list from changing and 8065 * indirects on devvp should only ever have one dependency. 8066 */ 8067 indirdep = WK_INDIRDEP(LIST_FIRST(&bp->b_dep)); 8068 if (indirdep == NULL || (indirdep->ir_state & GOINGAWAY) == 0) 8069 panic("indir_trunc: Bad indirdep %p from buf %p", 8070 indirdep, bp); 8071 } else if (bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize, 8072 NOCRED, &bp) != 0) { 8073 brelse(bp); 8074 return; 8075 } 8076 ACQUIRE_LOCK(ump); 8077 /* Protects against a race with complete_trunc_indir(). */ 8078 freework->fw_state &= ~INPROGRESS; 8079 /* 8080 * If we have an indirdep we need to enforce the truncation order 8081 * and discard it when it is complete. 8082 */ 8083 if (indirdep) { 8084 if (freework != TAILQ_FIRST(&indirdep->ir_trunc) && 8085 !TAILQ_EMPTY(&indirdep->ir_trunc)) { 8086 /* 8087 * Add the complete truncate to the list on the 8088 * indirdep to enforce in-order processing. 8089 */ 8090 if (freework->fw_indir == NULL) 8091 TAILQ_INSERT_TAIL(&indirdep->ir_trunc, 8092 freework, fw_next); 8093 FREE_LOCK(ump); 8094 return; 8095 } 8096 /* 8097 * If we're goingaway, free the indirdep. Otherwise it will 8098 * linger until the write completes. 8099 */ 8100 if (goingaway) 8101 free_indirdep(indirdep); 8102 } 8103 FREE_LOCK(ump); 8104 /* Initialize pointers depending on block size. */ 8105 if (ump->um_fstype == UFS1) { 8106 bap1 = (ufs1_daddr_t *)bp->b_data; 8107 nb = bap1[freework->fw_off]; 8108 ufs1fmt = 1; 8109 } else { 8110 bap2 = (ufs2_daddr_t *)bp->b_data; 8111 nb = bap2[freework->fw_off]; 8112 ufs1fmt = 0; 8113 } 8114 level = lbn_level(lbn); 8115 needj = MOUNTEDSUJ(UFSTOVFS(ump)) != 0; 8116 lbnadd = lbn_offset(fs, level); 8117 nblocks = btodb(fs->fs_bsize); 8118 nfreework = freework; 8119 freedeps = 0; 8120 cnt = 0; 8121 /* 8122 * Reclaim blocks. Traverses into nested indirect levels and 8123 * arranges for the current level to be freed when subordinates 8124 * are free when journaling. 8125 */ 8126 for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) { 8127 if (i != NINDIR(fs) - 1) { 8128 if (ufs1fmt) 8129 nnb = bap1[i+1]; 8130 else 8131 nnb = bap2[i+1]; 8132 } else 8133 nnb = 0; 8134 if (nb == 0) 8135 continue; 8136 cnt++; 8137 if (level != 0) { 8138 nlbn = (lbn + 1) - (i * lbnadd); 8139 if (needj != 0) { 8140 nfreework = newfreework(ump, freeblks, freework, 8141 nlbn, nb, fs->fs_frag, 0, 0); 8142 freedeps++; 8143 } 8144 indir_trunc(nfreework, fsbtodb(fs, nb), nlbn); 8145 } else { 8146 struct freedep *freedep; 8147 8148 /* 8149 * Attempt to aggregate freedep dependencies for 8150 * all blocks being released to the same CG. 8151 */ 8152 LIST_INIT(&wkhd); 8153 if (needj != 0 && 8154 (nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) { 8155 freedep = newfreedep(freework); 8156 WORKLIST_INSERT_UNLOCKED(&wkhd, 8157 &freedep->fd_list); 8158 freedeps++; 8159 } 8160 CTR3(KTR_SUJ, 8161 "indir_trunc: ino %d blkno %jd size %ld", 8162 freeblks->fb_inum, nb, fs->fs_bsize); 8163 ffs_blkfree(ump, fs, freeblks->fb_devvp, nb, 8164 fs->fs_bsize, freeblks->fb_inum, 8165 freeblks->fb_vtype, &wkhd); 8166 } 8167 } 8168 if (goingaway) { 8169 bp->b_flags |= B_INVAL | B_NOCACHE; 8170 brelse(bp); 8171 } 8172 freedblocks = 0; 8173 if (level == 0) 8174 freedblocks = (nblocks * cnt); 8175 if (needj == 0) 8176 freedblocks += nblocks; 8177 freeblks_free(ump, freeblks, freedblocks); 8178 /* 8179 * If we are journaling set up the ref counts and offset so this 8180 * indirect can be completed when its children are free. 8181 */ 8182 if (needj) { 8183 ACQUIRE_LOCK(ump); 8184 freework->fw_off = i; 8185 freework->fw_ref += freedeps; 8186 freework->fw_ref -= NINDIR(fs) + 1; 8187 if (level == 0) 8188 freeblks->fb_cgwait += freedeps; 8189 if (freework->fw_ref == 0) 8190 freework_freeblock(freework); 8191 FREE_LOCK(ump); 8192 return; 8193 } 8194 /* 8195 * If we're not journaling we can free the indirect now. 8196 */ 8197 dbn = dbtofsb(fs, dbn); 8198 CTR3(KTR_SUJ, 8199 "indir_trunc 2: ino %d blkno %jd size %ld", 8200 freeblks->fb_inum, dbn, fs->fs_bsize); 8201 ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize, 8202 freeblks->fb_inum, freeblks->fb_vtype, NULL); 8203 /* Non SUJ softdep does single-threaded truncations. */ 8204 if (freework->fw_blkno == dbn) { 8205 freework->fw_state |= ALLCOMPLETE; 8206 ACQUIRE_LOCK(ump); 8207 handle_written_freework(freework); 8208 FREE_LOCK(ump); 8209 } 8210 return; 8211 } 8212 8213 /* 8214 * Cancel an allocindir when it is removed via truncation. When bp is not 8215 * NULL the indirect never appeared on disk and is scheduled to be freed 8216 * independently of the indir so we can more easily track journal work. 8217 */ 8218 static void 8219 cancel_allocindir(aip, bp, freeblks, trunc) 8220 struct allocindir *aip; 8221 struct buf *bp; 8222 struct freeblks *freeblks; 8223 int trunc; 8224 { 8225 struct indirdep *indirdep; 8226 struct freefrag *freefrag; 8227 struct newblk *newblk; 8228 8229 newblk = (struct newblk *)aip; 8230 LIST_REMOVE(aip, ai_next); 8231 /* 8232 * We must eliminate the pointer in bp if it must be freed on its 8233 * own due to partial truncate or pending journal work. 8234 */ 8235 if (bp && (trunc || newblk->nb_jnewblk)) { 8236 /* 8237 * Clear the pointer and mark the aip to be freed 8238 * directly if it never existed on disk. 8239 */ 8240 aip->ai_state |= DELAYEDFREE; 8241 indirdep = aip->ai_indirdep; 8242 if (indirdep->ir_state & UFS1FMT) 8243 ((ufs1_daddr_t *)bp->b_data)[aip->ai_offset] = 0; 8244 else 8245 ((ufs2_daddr_t *)bp->b_data)[aip->ai_offset] = 0; 8246 } 8247 /* 8248 * When truncating the previous pointer will be freed via 8249 * savedbp. Eliminate the freefrag which would dup free. 8250 */ 8251 if (trunc && (freefrag = newblk->nb_freefrag) != NULL) { 8252 newblk->nb_freefrag = NULL; 8253 if (freefrag->ff_jdep) 8254 cancel_jfreefrag( 8255 WK_JFREEFRAG(freefrag->ff_jdep)); 8256 jwork_move(&freeblks->fb_jwork, &freefrag->ff_jwork); 8257 WORKITEM_FREE(freefrag, D_FREEFRAG); 8258 } 8259 /* 8260 * If the journal hasn't been written the jnewblk must be passed 8261 * to the call to ffs_blkfree that reclaims the space. We accomplish 8262 * this by leaving the journal dependency on the newblk to be freed 8263 * when a freework is created in handle_workitem_freeblocks(). 8264 */ 8265 cancel_newblk(newblk, NULL, &freeblks->fb_jwork); 8266 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list); 8267 } 8268 8269 /* 8270 * Create the mkdir dependencies for . and .. in a new directory. Link them 8271 * in to a newdirblk so any subsequent additions are tracked properly. The 8272 * caller is responsible for adding the mkdir1 dependency to the journal 8273 * and updating id_mkdiradd. This function returns with the per-filesystem 8274 * lock held. 8275 */ 8276 static struct mkdir * 8277 setup_newdir(dap, newinum, dinum, newdirbp, mkdirp) 8278 struct diradd *dap; 8279 ino_t newinum; 8280 ino_t dinum; 8281 struct buf *newdirbp; 8282 struct mkdir **mkdirp; 8283 { 8284 struct newblk *newblk; 8285 struct pagedep *pagedep; 8286 struct inodedep *inodedep; 8287 struct newdirblk *newdirblk = 0; 8288 struct mkdir *mkdir1, *mkdir2; 8289 struct worklist *wk; 8290 struct jaddref *jaddref; 8291 struct ufsmount *ump; 8292 struct mount *mp; 8293 8294 mp = dap->da_list.wk_mp; 8295 ump = VFSTOUFS(mp); 8296 newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK, 8297 M_SOFTDEP_FLAGS); 8298 workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp); 8299 LIST_INIT(&newdirblk->db_mkdir); 8300 mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS); 8301 workitem_alloc(&mkdir1->md_list, D_MKDIR, mp); 8302 mkdir1->md_state = ATTACHED | MKDIR_BODY; 8303 mkdir1->md_diradd = dap; 8304 mkdir1->md_jaddref = NULL; 8305 mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS); 8306 workitem_alloc(&mkdir2->md_list, D_MKDIR, mp); 8307 mkdir2->md_state = ATTACHED | MKDIR_PARENT; 8308 mkdir2->md_diradd = dap; 8309 mkdir2->md_jaddref = NULL; 8310 if (MOUNTEDSUJ(mp) == 0) { 8311 mkdir1->md_state |= DEPCOMPLETE; 8312 mkdir2->md_state |= DEPCOMPLETE; 8313 } 8314 /* 8315 * Dependency on "." and ".." being written to disk. 8316 */ 8317 mkdir1->md_buf = newdirbp; 8318 ACQUIRE_LOCK(VFSTOUFS(mp)); 8319 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir1, md_mkdirs); 8320 /* 8321 * We must link the pagedep, allocdirect, and newdirblk for 8322 * the initial file page so the pointer to the new directory 8323 * is not written until the directory contents are live and 8324 * any subsequent additions are not marked live until the 8325 * block is reachable via the inode. 8326 */ 8327 if (pagedep_lookup(mp, newdirbp, newinum, 0, 0, &pagedep) == 0) 8328 panic("setup_newdir: lost pagedep"); 8329 LIST_FOREACH(wk, &newdirbp->b_dep, wk_list) 8330 if (wk->wk_type == D_ALLOCDIRECT) 8331 break; 8332 if (wk == NULL) 8333 panic("setup_newdir: lost allocdirect"); 8334 if (pagedep->pd_state & NEWBLOCK) 8335 panic("setup_newdir: NEWBLOCK already set"); 8336 newblk = WK_NEWBLK(wk); 8337 pagedep->pd_state |= NEWBLOCK; 8338 pagedep->pd_newdirblk = newdirblk; 8339 newdirblk->db_pagedep = pagedep; 8340 WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list); 8341 WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list); 8342 /* 8343 * Look up the inodedep for the parent directory so that we 8344 * can link mkdir2 into the pending dotdot jaddref or 8345 * the inode write if there is none. If the inode is 8346 * ALLCOMPLETE and no jaddref is present all dependencies have 8347 * been satisfied and mkdir2 can be freed. 8348 */ 8349 inodedep_lookup(mp, dinum, 0, &inodedep); 8350 if (MOUNTEDSUJ(mp)) { 8351 if (inodedep == NULL) 8352 panic("setup_newdir: Lost parent."); 8353 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 8354 inoreflst); 8355 KASSERT(jaddref != NULL && jaddref->ja_parent == newinum && 8356 (jaddref->ja_state & MKDIR_PARENT), 8357 ("setup_newdir: bad dotdot jaddref %p", jaddref)); 8358 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs); 8359 mkdir2->md_jaddref = jaddref; 8360 jaddref->ja_mkdir = mkdir2; 8361 } else if (inodedep == NULL || 8362 (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 8363 dap->da_state &= ~MKDIR_PARENT; 8364 WORKITEM_FREE(mkdir2, D_MKDIR); 8365 mkdir2 = NULL; 8366 } else { 8367 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs); 8368 WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir2->md_list); 8369 } 8370 *mkdirp = mkdir2; 8371 8372 return (mkdir1); 8373 } 8374 8375 /* 8376 * Directory entry addition dependencies. 8377 * 8378 * When adding a new directory entry, the inode (with its incremented link 8379 * count) must be written to disk before the directory entry's pointer to it. 8380 * Also, if the inode is newly allocated, the corresponding freemap must be 8381 * updated (on disk) before the directory entry's pointer. These requirements 8382 * are met via undo/redo on the directory entry's pointer, which consists 8383 * simply of the inode number. 8384 * 8385 * As directory entries are added and deleted, the free space within a 8386 * directory block can become fragmented. The ufs filesystem will compact 8387 * a fragmented directory block to make space for a new entry. When this 8388 * occurs, the offsets of previously added entries change. Any "diradd" 8389 * dependency structures corresponding to these entries must be updated with 8390 * the new offsets. 8391 */ 8392 8393 /* 8394 * This routine is called after the in-memory inode's link 8395 * count has been incremented, but before the directory entry's 8396 * pointer to the inode has been set. 8397 */ 8398 int 8399 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk) 8400 struct buf *bp; /* buffer containing directory block */ 8401 struct inode *dp; /* inode for directory */ 8402 off_t diroffset; /* offset of new entry in directory */ 8403 ino_t newinum; /* inode referenced by new directory entry */ 8404 struct buf *newdirbp; /* non-NULL => contents of new mkdir */ 8405 int isnewblk; /* entry is in a newly allocated block */ 8406 { 8407 int offset; /* offset of new entry within directory block */ 8408 ufs_lbn_t lbn; /* block in directory containing new entry */ 8409 struct fs *fs; 8410 struct diradd *dap; 8411 struct newblk *newblk; 8412 struct pagedep *pagedep; 8413 struct inodedep *inodedep; 8414 struct newdirblk *newdirblk = 0; 8415 struct mkdir *mkdir1, *mkdir2; 8416 struct jaddref *jaddref; 8417 struct ufsmount *ump; 8418 struct mount *mp; 8419 int isindir; 8420 8421 ump = dp->i_ump; 8422 mp = UFSTOVFS(ump); 8423 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 8424 ("softdep_setup_directory_add called on non-softdep filesystem")); 8425 /* 8426 * Whiteouts have no dependencies. 8427 */ 8428 if (newinum == WINO) { 8429 if (newdirbp != NULL) 8430 bdwrite(newdirbp); 8431 return (0); 8432 } 8433 jaddref = NULL; 8434 mkdir1 = mkdir2 = NULL; 8435 fs = dp->i_fs; 8436 lbn = lblkno(fs, diroffset); 8437 offset = blkoff(fs, diroffset); 8438 dap = malloc(sizeof(struct diradd), M_DIRADD, 8439 M_SOFTDEP_FLAGS|M_ZERO); 8440 workitem_alloc(&dap->da_list, D_DIRADD, mp); 8441 dap->da_offset = offset; 8442 dap->da_newinum = newinum; 8443 dap->da_state = ATTACHED; 8444 LIST_INIT(&dap->da_jwork); 8445 isindir = bp->b_lblkno >= NDADDR; 8446 if (isnewblk && 8447 (isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) { 8448 newdirblk = malloc(sizeof(struct newdirblk), 8449 M_NEWDIRBLK, M_SOFTDEP_FLAGS); 8450 workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp); 8451 LIST_INIT(&newdirblk->db_mkdir); 8452 } 8453 /* 8454 * If we're creating a new directory setup the dependencies and set 8455 * the dap state to wait for them. Otherwise it's COMPLETE and 8456 * we can move on. 8457 */ 8458 if (newdirbp == NULL) { 8459 dap->da_state |= DEPCOMPLETE; 8460 ACQUIRE_LOCK(ump); 8461 } else { 8462 dap->da_state |= MKDIR_BODY | MKDIR_PARENT; 8463 mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp, 8464 &mkdir2); 8465 } 8466 /* 8467 * Link into parent directory pagedep to await its being written. 8468 */ 8469 pagedep_lookup(mp, bp, dp->i_number, lbn, DEPALLOC, &pagedep); 8470 #ifdef DEBUG 8471 if (diradd_lookup(pagedep, offset) != NULL) 8472 panic("softdep_setup_directory_add: %p already at off %d\n", 8473 diradd_lookup(pagedep, offset), offset); 8474 #endif 8475 dap->da_pagedep = pagedep; 8476 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap, 8477 da_pdlist); 8478 inodedep_lookup(mp, newinum, DEPALLOC | NODELAY, &inodedep); 8479 /* 8480 * If we're journaling, link the diradd into the jaddref so it 8481 * may be completed after the journal entry is written. Otherwise, 8482 * link the diradd into its inodedep. If the inode is not yet 8483 * written place it on the bufwait list, otherwise do the post-inode 8484 * write processing to put it on the id_pendinghd list. 8485 */ 8486 if (MOUNTEDSUJ(mp)) { 8487 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 8488 inoreflst); 8489 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 8490 ("softdep_setup_directory_add: bad jaddref %p", jaddref)); 8491 jaddref->ja_diroff = diroffset; 8492 jaddref->ja_diradd = dap; 8493 add_to_journal(&jaddref->ja_list); 8494 } else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) 8495 diradd_inode_written(dap, inodedep); 8496 else 8497 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 8498 /* 8499 * Add the journal entries for . and .. links now that the primary 8500 * link is written. 8501 */ 8502 if (mkdir1 != NULL && MOUNTEDSUJ(mp)) { 8503 jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref, 8504 inoreflst, if_deps); 8505 KASSERT(jaddref != NULL && 8506 jaddref->ja_ino == jaddref->ja_parent && 8507 (jaddref->ja_state & MKDIR_BODY), 8508 ("softdep_setup_directory_add: bad dot jaddref %p", 8509 jaddref)); 8510 mkdir1->md_jaddref = jaddref; 8511 jaddref->ja_mkdir = mkdir1; 8512 /* 8513 * It is important that the dotdot journal entry 8514 * is added prior to the dot entry since dot writes 8515 * both the dot and dotdot links. These both must 8516 * be added after the primary link for the journal 8517 * to remain consistent. 8518 */ 8519 add_to_journal(&mkdir2->md_jaddref->ja_list); 8520 add_to_journal(&jaddref->ja_list); 8521 } 8522 /* 8523 * If we are adding a new directory remember this diradd so that if 8524 * we rename it we can keep the dot and dotdot dependencies. If 8525 * we are adding a new name for an inode that has a mkdiradd we 8526 * must be in rename and we have to move the dot and dotdot 8527 * dependencies to this new name. The old name is being orphaned 8528 * soon. 8529 */ 8530 if (mkdir1 != NULL) { 8531 if (inodedep->id_mkdiradd != NULL) 8532 panic("softdep_setup_directory_add: Existing mkdir"); 8533 inodedep->id_mkdiradd = dap; 8534 } else if (inodedep->id_mkdiradd) 8535 merge_diradd(inodedep, dap); 8536 if (newdirblk) { 8537 /* 8538 * There is nothing to do if we are already tracking 8539 * this block. 8540 */ 8541 if ((pagedep->pd_state & NEWBLOCK) != 0) { 8542 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 8543 FREE_LOCK(ump); 8544 return (0); 8545 } 8546 if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk) 8547 == 0) 8548 panic("softdep_setup_directory_add: lost entry"); 8549 WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list); 8550 pagedep->pd_state |= NEWBLOCK; 8551 pagedep->pd_newdirblk = newdirblk; 8552 newdirblk->db_pagedep = pagedep; 8553 FREE_LOCK(ump); 8554 /* 8555 * If we extended into an indirect signal direnter to sync. 8556 */ 8557 if (isindir) 8558 return (1); 8559 return (0); 8560 } 8561 FREE_LOCK(ump); 8562 return (0); 8563 } 8564 8565 /* 8566 * This procedure is called to change the offset of a directory 8567 * entry when compacting a directory block which must be owned 8568 * exclusively by the caller. Note that the actual entry movement 8569 * must be done in this procedure to ensure that no I/O completions 8570 * occur while the move is in progress. 8571 */ 8572 void 8573 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize) 8574 struct buf *bp; /* Buffer holding directory block. */ 8575 struct inode *dp; /* inode for directory */ 8576 caddr_t base; /* address of dp->i_offset */ 8577 caddr_t oldloc; /* address of old directory location */ 8578 caddr_t newloc; /* address of new directory location */ 8579 int entrysize; /* size of directory entry */ 8580 { 8581 int offset, oldoffset, newoffset; 8582 struct pagedep *pagedep; 8583 struct jmvref *jmvref; 8584 struct diradd *dap; 8585 struct direct *de; 8586 struct mount *mp; 8587 ufs_lbn_t lbn; 8588 int flags; 8589 8590 mp = UFSTOVFS(dp->i_ump); 8591 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 8592 ("softdep_change_directoryentry_offset called on " 8593 "non-softdep filesystem")); 8594 de = (struct direct *)oldloc; 8595 jmvref = NULL; 8596 flags = 0; 8597 /* 8598 * Moves are always journaled as it would be too complex to 8599 * determine if any affected adds or removes are present in the 8600 * journal. 8601 */ 8602 if (MOUNTEDSUJ(mp)) { 8603 flags = DEPALLOC; 8604 jmvref = newjmvref(dp, de->d_ino, 8605 dp->i_offset + (oldloc - base), 8606 dp->i_offset + (newloc - base)); 8607 } 8608 lbn = lblkno(dp->i_fs, dp->i_offset); 8609 offset = blkoff(dp->i_fs, dp->i_offset); 8610 oldoffset = offset + (oldloc - base); 8611 newoffset = offset + (newloc - base); 8612 ACQUIRE_LOCK(dp->i_ump); 8613 if (pagedep_lookup(mp, bp, dp->i_number, lbn, flags, &pagedep) == 0) 8614 goto done; 8615 dap = diradd_lookup(pagedep, oldoffset); 8616 if (dap) { 8617 dap->da_offset = newoffset; 8618 newoffset = DIRADDHASH(newoffset); 8619 oldoffset = DIRADDHASH(oldoffset); 8620 if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE && 8621 newoffset != oldoffset) { 8622 LIST_REMOVE(dap, da_pdlist); 8623 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset], 8624 dap, da_pdlist); 8625 } 8626 } 8627 done: 8628 if (jmvref) { 8629 jmvref->jm_pagedep = pagedep; 8630 LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps); 8631 add_to_journal(&jmvref->jm_list); 8632 } 8633 bcopy(oldloc, newloc, entrysize); 8634 FREE_LOCK(dp->i_ump); 8635 } 8636 8637 /* 8638 * Move the mkdir dependencies and journal work from one diradd to another 8639 * when renaming a directory. The new name must depend on the mkdir deps 8640 * completing as the old name did. Directories can only have one valid link 8641 * at a time so one must be canonical. 8642 */ 8643 static void 8644 merge_diradd(inodedep, newdap) 8645 struct inodedep *inodedep; 8646 struct diradd *newdap; 8647 { 8648 struct diradd *olddap; 8649 struct mkdir *mkdir, *nextmd; 8650 struct ufsmount *ump; 8651 short state; 8652 8653 olddap = inodedep->id_mkdiradd; 8654 inodedep->id_mkdiradd = newdap; 8655 if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 8656 newdap->da_state &= ~DEPCOMPLETE; 8657 ump = VFSTOUFS(inodedep->id_list.wk_mp); 8658 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; 8659 mkdir = nextmd) { 8660 nextmd = LIST_NEXT(mkdir, md_mkdirs); 8661 if (mkdir->md_diradd != olddap) 8662 continue; 8663 mkdir->md_diradd = newdap; 8664 state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY); 8665 newdap->da_state |= state; 8666 olddap->da_state &= ~state; 8667 if ((olddap->da_state & 8668 (MKDIR_PARENT | MKDIR_BODY)) == 0) 8669 break; 8670 } 8671 if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) 8672 panic("merge_diradd: unfound ref"); 8673 } 8674 /* 8675 * Any mkdir related journal items are not safe to be freed until 8676 * the new name is stable. 8677 */ 8678 jwork_move(&newdap->da_jwork, &olddap->da_jwork); 8679 olddap->da_state |= DEPCOMPLETE; 8680 complete_diradd(olddap); 8681 } 8682 8683 /* 8684 * Move the diradd to the pending list when all diradd dependencies are 8685 * complete. 8686 */ 8687 static void 8688 complete_diradd(dap) 8689 struct diradd *dap; 8690 { 8691 struct pagedep *pagedep; 8692 8693 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 8694 if (dap->da_state & DIRCHG) 8695 pagedep = dap->da_previous->dm_pagedep; 8696 else 8697 pagedep = dap->da_pagedep; 8698 LIST_REMOVE(dap, da_pdlist); 8699 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 8700 } 8701 } 8702 8703 /* 8704 * Cancel a diradd when a dirrem overlaps with it. We must cancel the journal 8705 * add entries and conditonally journal the remove. 8706 */ 8707 static void 8708 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref) 8709 struct diradd *dap; 8710 struct dirrem *dirrem; 8711 struct jremref *jremref; 8712 struct jremref *dotremref; 8713 struct jremref *dotdotremref; 8714 { 8715 struct inodedep *inodedep; 8716 struct jaddref *jaddref; 8717 struct inoref *inoref; 8718 struct ufsmount *ump; 8719 struct mkdir *mkdir; 8720 8721 /* 8722 * If no remove references were allocated we're on a non-journaled 8723 * filesystem and can skip the cancel step. 8724 */ 8725 if (jremref == NULL) { 8726 free_diradd(dap, NULL); 8727 return; 8728 } 8729 /* 8730 * Cancel the primary name an free it if it does not require 8731 * journaling. 8732 */ 8733 if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum, 8734 0, &inodedep) != 0) { 8735 /* Abort the addref that reference this diradd. */ 8736 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 8737 if (inoref->if_list.wk_type != D_JADDREF) 8738 continue; 8739 jaddref = (struct jaddref *)inoref; 8740 if (jaddref->ja_diradd != dap) 8741 continue; 8742 if (cancel_jaddref(jaddref, inodedep, 8743 &dirrem->dm_jwork) == 0) { 8744 free_jremref(jremref); 8745 jremref = NULL; 8746 } 8747 break; 8748 } 8749 } 8750 /* 8751 * Cancel subordinate names and free them if they do not require 8752 * journaling. 8753 */ 8754 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 8755 ump = VFSTOUFS(dap->da_list.wk_mp); 8756 LIST_FOREACH(mkdir, &ump->softdep_mkdirlisthd, md_mkdirs) { 8757 if (mkdir->md_diradd != dap) 8758 continue; 8759 if ((jaddref = mkdir->md_jaddref) == NULL) 8760 continue; 8761 mkdir->md_jaddref = NULL; 8762 if (mkdir->md_state & MKDIR_PARENT) { 8763 if (cancel_jaddref(jaddref, NULL, 8764 &dirrem->dm_jwork) == 0) { 8765 free_jremref(dotdotremref); 8766 dotdotremref = NULL; 8767 } 8768 } else { 8769 if (cancel_jaddref(jaddref, inodedep, 8770 &dirrem->dm_jwork) == 0) { 8771 free_jremref(dotremref); 8772 dotremref = NULL; 8773 } 8774 } 8775 } 8776 } 8777 8778 if (jremref) 8779 journal_jremref(dirrem, jremref, inodedep); 8780 if (dotremref) 8781 journal_jremref(dirrem, dotremref, inodedep); 8782 if (dotdotremref) 8783 journal_jremref(dirrem, dotdotremref, NULL); 8784 jwork_move(&dirrem->dm_jwork, &dap->da_jwork); 8785 free_diradd(dap, &dirrem->dm_jwork); 8786 } 8787 8788 /* 8789 * Free a diradd dependency structure. This routine must be called 8790 * with splbio interrupts blocked. 8791 */ 8792 static void 8793 free_diradd(dap, wkhd) 8794 struct diradd *dap; 8795 struct workhead *wkhd; 8796 { 8797 struct dirrem *dirrem; 8798 struct pagedep *pagedep; 8799 struct inodedep *inodedep; 8800 struct mkdir *mkdir, *nextmd; 8801 struct ufsmount *ump; 8802 8803 ump = VFSTOUFS(dap->da_list.wk_mp); 8804 LOCK_OWNED(ump); 8805 LIST_REMOVE(dap, da_pdlist); 8806 if (dap->da_state & ONWORKLIST) 8807 WORKLIST_REMOVE(&dap->da_list); 8808 if ((dap->da_state & DIRCHG) == 0) { 8809 pagedep = dap->da_pagedep; 8810 } else { 8811 dirrem = dap->da_previous; 8812 pagedep = dirrem->dm_pagedep; 8813 dirrem->dm_dirinum = pagedep->pd_ino; 8814 dirrem->dm_state |= COMPLETE; 8815 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 8816 add_to_worklist(&dirrem->dm_list, 0); 8817 } 8818 if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum, 8819 0, &inodedep) != 0) 8820 if (inodedep->id_mkdiradd == dap) 8821 inodedep->id_mkdiradd = NULL; 8822 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 8823 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; 8824 mkdir = nextmd) { 8825 nextmd = LIST_NEXT(mkdir, md_mkdirs); 8826 if (mkdir->md_diradd != dap) 8827 continue; 8828 dap->da_state &= 8829 ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)); 8830 LIST_REMOVE(mkdir, md_mkdirs); 8831 if (mkdir->md_state & ONWORKLIST) 8832 WORKLIST_REMOVE(&mkdir->md_list); 8833 if (mkdir->md_jaddref != NULL) 8834 panic("free_diradd: Unexpected jaddref"); 8835 WORKITEM_FREE(mkdir, D_MKDIR); 8836 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) 8837 break; 8838 } 8839 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) 8840 panic("free_diradd: unfound ref"); 8841 } 8842 if (inodedep) 8843 free_inodedep(inodedep); 8844 /* 8845 * Free any journal segments waiting for the directory write. 8846 */ 8847 handle_jwork(&dap->da_jwork); 8848 WORKITEM_FREE(dap, D_DIRADD); 8849 } 8850 8851 /* 8852 * Directory entry removal dependencies. 8853 * 8854 * When removing a directory entry, the entry's inode pointer must be 8855 * zero'ed on disk before the corresponding inode's link count is decremented 8856 * (possibly freeing the inode for re-use). This dependency is handled by 8857 * updating the directory entry but delaying the inode count reduction until 8858 * after the directory block has been written to disk. After this point, the 8859 * inode count can be decremented whenever it is convenient. 8860 */ 8861 8862 /* 8863 * This routine should be called immediately after removing 8864 * a directory entry. The inode's link count should not be 8865 * decremented by the calling procedure -- the soft updates 8866 * code will do this task when it is safe. 8867 */ 8868 void 8869 softdep_setup_remove(bp, dp, ip, isrmdir) 8870 struct buf *bp; /* buffer containing directory block */ 8871 struct inode *dp; /* inode for the directory being modified */ 8872 struct inode *ip; /* inode for directory entry being removed */ 8873 int isrmdir; /* indicates if doing RMDIR */ 8874 { 8875 struct dirrem *dirrem, *prevdirrem; 8876 struct inodedep *inodedep; 8877 int direct; 8878 8879 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0, 8880 ("softdep_setup_remove called on non-softdep filesystem")); 8881 /* 8882 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK. We want 8883 * newdirrem() to setup the full directory remove which requires 8884 * isrmdir > 1. 8885 */ 8886 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 8887 /* 8888 * Add the dirrem to the inodedep's pending remove list for quick 8889 * discovery later. 8890 */ 8891 if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0, 8892 &inodedep) == 0) 8893 panic("softdep_setup_remove: Lost inodedep."); 8894 KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked")); 8895 dirrem->dm_state |= ONDEPLIST; 8896 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 8897 8898 /* 8899 * If the COMPLETE flag is clear, then there were no active 8900 * entries and we want to roll back to a zeroed entry until 8901 * the new inode is committed to disk. If the COMPLETE flag is 8902 * set then we have deleted an entry that never made it to 8903 * disk. If the entry we deleted resulted from a name change, 8904 * then the old name still resides on disk. We cannot delete 8905 * its inode (returned to us in prevdirrem) until the zeroed 8906 * directory entry gets to disk. The new inode has never been 8907 * referenced on the disk, so can be deleted immediately. 8908 */ 8909 if ((dirrem->dm_state & COMPLETE) == 0) { 8910 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem, 8911 dm_next); 8912 FREE_LOCK(ip->i_ump); 8913 } else { 8914 if (prevdirrem != NULL) 8915 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, 8916 prevdirrem, dm_next); 8917 dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino; 8918 direct = LIST_EMPTY(&dirrem->dm_jremrefhd); 8919 FREE_LOCK(ip->i_ump); 8920 if (direct) 8921 handle_workitem_remove(dirrem, 0); 8922 } 8923 } 8924 8925 /* 8926 * Check for an entry matching 'offset' on both the pd_dirraddhd list and the 8927 * pd_pendinghd list of a pagedep. 8928 */ 8929 static struct diradd * 8930 diradd_lookup(pagedep, offset) 8931 struct pagedep *pagedep; 8932 int offset; 8933 { 8934 struct diradd *dap; 8935 8936 LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist) 8937 if (dap->da_offset == offset) 8938 return (dap); 8939 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) 8940 if (dap->da_offset == offset) 8941 return (dap); 8942 return (NULL); 8943 } 8944 8945 /* 8946 * Search for a .. diradd dependency in a directory that is being removed. 8947 * If the directory was renamed to a new parent we have a diradd rather 8948 * than a mkdir for the .. entry. We need to cancel it now before 8949 * it is found in truncate(). 8950 */ 8951 static struct jremref * 8952 cancel_diradd_dotdot(ip, dirrem, jremref) 8953 struct inode *ip; 8954 struct dirrem *dirrem; 8955 struct jremref *jremref; 8956 { 8957 struct pagedep *pagedep; 8958 struct diradd *dap; 8959 struct worklist *wk; 8960 8961 if (pagedep_lookup(UFSTOVFS(ip->i_ump), NULL, ip->i_number, 0, 0, 8962 &pagedep) == 0) 8963 return (jremref); 8964 dap = diradd_lookup(pagedep, DOTDOT_OFFSET); 8965 if (dap == NULL) 8966 return (jremref); 8967 cancel_diradd(dap, dirrem, jremref, NULL, NULL); 8968 /* 8969 * Mark any journal work as belonging to the parent so it is freed 8970 * with the .. reference. 8971 */ 8972 LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list) 8973 wk->wk_state |= MKDIR_PARENT; 8974 return (NULL); 8975 } 8976 8977 /* 8978 * Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to 8979 * replace it with a dirrem/diradd pair as a result of re-parenting a 8980 * directory. This ensures that we don't simultaneously have a mkdir and 8981 * a diradd for the same .. entry. 8982 */ 8983 static struct jremref * 8984 cancel_mkdir_dotdot(ip, dirrem, jremref) 8985 struct inode *ip; 8986 struct dirrem *dirrem; 8987 struct jremref *jremref; 8988 { 8989 struct inodedep *inodedep; 8990 struct jaddref *jaddref; 8991 struct ufsmount *ump; 8992 struct mkdir *mkdir; 8993 struct diradd *dap; 8994 8995 if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0, 8996 &inodedep) == 0) 8997 return (jremref); 8998 dap = inodedep->id_mkdiradd; 8999 if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0) 9000 return (jremref); 9001 ump = VFSTOUFS(inodedep->id_list.wk_mp); 9002 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; 9003 mkdir = LIST_NEXT(mkdir, md_mkdirs)) 9004 if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT) 9005 break; 9006 if (mkdir == NULL) 9007 panic("cancel_mkdir_dotdot: Unable to find mkdir\n"); 9008 if ((jaddref = mkdir->md_jaddref) != NULL) { 9009 mkdir->md_jaddref = NULL; 9010 jaddref->ja_state &= ~MKDIR_PARENT; 9011 if (inodedep_lookup(UFSTOVFS(ip->i_ump), jaddref->ja_ino, 0, 9012 &inodedep) == 0) 9013 panic("cancel_mkdir_dotdot: Lost parent inodedep"); 9014 if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) { 9015 journal_jremref(dirrem, jremref, inodedep); 9016 jremref = NULL; 9017 } 9018 } 9019 if (mkdir->md_state & ONWORKLIST) 9020 WORKLIST_REMOVE(&mkdir->md_list); 9021 mkdir->md_state |= ALLCOMPLETE; 9022 complete_mkdir(mkdir); 9023 return (jremref); 9024 } 9025 9026 static void 9027 journal_jremref(dirrem, jremref, inodedep) 9028 struct dirrem *dirrem; 9029 struct jremref *jremref; 9030 struct inodedep *inodedep; 9031 { 9032 9033 if (inodedep == NULL) 9034 if (inodedep_lookup(jremref->jr_list.wk_mp, 9035 jremref->jr_ref.if_ino, 0, &inodedep) == 0) 9036 panic("journal_jremref: Lost inodedep"); 9037 LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps); 9038 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps); 9039 add_to_journal(&jremref->jr_list); 9040 } 9041 9042 static void 9043 dirrem_journal(dirrem, jremref, dotremref, dotdotremref) 9044 struct dirrem *dirrem; 9045 struct jremref *jremref; 9046 struct jremref *dotremref; 9047 struct jremref *dotdotremref; 9048 { 9049 struct inodedep *inodedep; 9050 9051 9052 if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0, 9053 &inodedep) == 0) 9054 panic("dirrem_journal: Lost inodedep"); 9055 journal_jremref(dirrem, jremref, inodedep); 9056 if (dotremref) 9057 journal_jremref(dirrem, dotremref, inodedep); 9058 if (dotdotremref) 9059 journal_jremref(dirrem, dotdotremref, NULL); 9060 } 9061 9062 /* 9063 * Allocate a new dirrem if appropriate and return it along with 9064 * its associated pagedep. Called without a lock, returns with lock. 9065 */ 9066 static struct dirrem * 9067 newdirrem(bp, dp, ip, isrmdir, prevdirremp) 9068 struct buf *bp; /* buffer containing directory block */ 9069 struct inode *dp; /* inode for the directory being modified */ 9070 struct inode *ip; /* inode for directory entry being removed */ 9071 int isrmdir; /* indicates if doing RMDIR */ 9072 struct dirrem **prevdirremp; /* previously referenced inode, if any */ 9073 { 9074 int offset; 9075 ufs_lbn_t lbn; 9076 struct diradd *dap; 9077 struct dirrem *dirrem; 9078 struct pagedep *pagedep; 9079 struct jremref *jremref; 9080 struct jremref *dotremref; 9081 struct jremref *dotdotremref; 9082 struct vnode *dvp; 9083 9084 /* 9085 * Whiteouts have no deletion dependencies. 9086 */ 9087 if (ip == NULL) 9088 panic("newdirrem: whiteout"); 9089 dvp = ITOV(dp); 9090 /* 9091 * If the system is over its limit and our filesystem is 9092 * responsible for more than our share of that usage and 9093 * we are not a snapshot, request some inodedep cleanup. 9094 * Limiting the number of dirrem structures will also limit 9095 * the number of freefile and freeblks structures. 9096 */ 9097 ACQUIRE_LOCK(ip->i_ump); 9098 while (!IS_SNAPSHOT(ip) && dep_current[D_DIRREM] > max_softdeps / 2 && 9099 ip->i_ump->softdep_curdeps[D_DIRREM] > 9100 (max_softdeps / 2) / stat_flush_threads) 9101 (void) request_cleanup(ITOV(dp)->v_mount, FLUSH_BLOCKS); 9102 FREE_LOCK(ip->i_ump); 9103 dirrem = malloc(sizeof(struct dirrem), 9104 M_DIRREM, M_SOFTDEP_FLAGS|M_ZERO); 9105 workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount); 9106 LIST_INIT(&dirrem->dm_jremrefhd); 9107 LIST_INIT(&dirrem->dm_jwork); 9108 dirrem->dm_state = isrmdir ? RMDIR : 0; 9109 dirrem->dm_oldinum = ip->i_number; 9110 *prevdirremp = NULL; 9111 /* 9112 * Allocate remove reference structures to track journal write 9113 * dependencies. We will always have one for the link and 9114 * when doing directories we will always have one more for dot. 9115 * When renaming a directory we skip the dotdot link change so 9116 * this is not needed. 9117 */ 9118 jremref = dotremref = dotdotremref = NULL; 9119 if (DOINGSUJ(dvp)) { 9120 if (isrmdir) { 9121 jremref = newjremref(dirrem, dp, ip, dp->i_offset, 9122 ip->i_effnlink + 2); 9123 dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET, 9124 ip->i_effnlink + 1); 9125 dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET, 9126 dp->i_effnlink + 1); 9127 dotdotremref->jr_state |= MKDIR_PARENT; 9128 } else 9129 jremref = newjremref(dirrem, dp, ip, dp->i_offset, 9130 ip->i_effnlink + 1); 9131 } 9132 ACQUIRE_LOCK(ip->i_ump); 9133 lbn = lblkno(dp->i_fs, dp->i_offset); 9134 offset = blkoff(dp->i_fs, dp->i_offset); 9135 pagedep_lookup(UFSTOVFS(dp->i_ump), bp, dp->i_number, lbn, DEPALLOC, 9136 &pagedep); 9137 dirrem->dm_pagedep = pagedep; 9138 dirrem->dm_offset = offset; 9139 /* 9140 * If we're renaming a .. link to a new directory, cancel any 9141 * existing MKDIR_PARENT mkdir. If it has already been canceled 9142 * the jremref is preserved for any potential diradd in this 9143 * location. This can not coincide with a rmdir. 9144 */ 9145 if (dp->i_offset == DOTDOT_OFFSET) { 9146 if (isrmdir) 9147 panic("newdirrem: .. directory change during remove?"); 9148 jremref = cancel_mkdir_dotdot(dp, dirrem, jremref); 9149 } 9150 /* 9151 * If we're removing a directory search for the .. dependency now and 9152 * cancel it. Any pending journal work will be added to the dirrem 9153 * to be completed when the workitem remove completes. 9154 */ 9155 if (isrmdir) 9156 dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref); 9157 /* 9158 * Check for a diradd dependency for the same directory entry. 9159 * If present, then both dependencies become obsolete and can 9160 * be de-allocated. 9161 */ 9162 dap = diradd_lookup(pagedep, offset); 9163 if (dap == NULL) { 9164 /* 9165 * Link the jremref structures into the dirrem so they are 9166 * written prior to the pagedep. 9167 */ 9168 if (jremref) 9169 dirrem_journal(dirrem, jremref, dotremref, 9170 dotdotremref); 9171 return (dirrem); 9172 } 9173 /* 9174 * Must be ATTACHED at this point. 9175 */ 9176 if ((dap->da_state & ATTACHED) == 0) 9177 panic("newdirrem: not ATTACHED"); 9178 if (dap->da_newinum != ip->i_number) 9179 panic("newdirrem: inum %ju should be %ju", 9180 (uintmax_t)ip->i_number, (uintmax_t)dap->da_newinum); 9181 /* 9182 * If we are deleting a changed name that never made it to disk, 9183 * then return the dirrem describing the previous inode (which 9184 * represents the inode currently referenced from this entry on disk). 9185 */ 9186 if ((dap->da_state & DIRCHG) != 0) { 9187 *prevdirremp = dap->da_previous; 9188 dap->da_state &= ~DIRCHG; 9189 dap->da_pagedep = pagedep; 9190 } 9191 /* 9192 * We are deleting an entry that never made it to disk. 9193 * Mark it COMPLETE so we can delete its inode immediately. 9194 */ 9195 dirrem->dm_state |= COMPLETE; 9196 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref); 9197 #ifdef SUJ_DEBUG 9198 if (isrmdir == 0) { 9199 struct worklist *wk; 9200 9201 LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list) 9202 if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT)) 9203 panic("bad wk %p (0x%X)\n", wk, wk->wk_state); 9204 } 9205 #endif 9206 9207 return (dirrem); 9208 } 9209 9210 /* 9211 * Directory entry change dependencies. 9212 * 9213 * Changing an existing directory entry requires that an add operation 9214 * be completed first followed by a deletion. The semantics for the addition 9215 * are identical to the description of adding a new entry above except 9216 * that the rollback is to the old inode number rather than zero. Once 9217 * the addition dependency is completed, the removal is done as described 9218 * in the removal routine above. 9219 */ 9220 9221 /* 9222 * This routine should be called immediately after changing 9223 * a directory entry. The inode's link count should not be 9224 * decremented by the calling procedure -- the soft updates 9225 * code will perform this task when it is safe. 9226 */ 9227 void 9228 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 9229 struct buf *bp; /* buffer containing directory block */ 9230 struct inode *dp; /* inode for the directory being modified */ 9231 struct inode *ip; /* inode for directory entry being removed */ 9232 ino_t newinum; /* new inode number for changed entry */ 9233 int isrmdir; /* indicates if doing RMDIR */ 9234 { 9235 int offset; 9236 struct diradd *dap = NULL; 9237 struct dirrem *dirrem, *prevdirrem; 9238 struct pagedep *pagedep; 9239 struct inodedep *inodedep; 9240 struct jaddref *jaddref; 9241 struct mount *mp; 9242 9243 offset = blkoff(dp->i_fs, dp->i_offset); 9244 mp = UFSTOVFS(dp->i_ump); 9245 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 9246 ("softdep_setup_directory_change called on non-softdep filesystem")); 9247 9248 /* 9249 * Whiteouts do not need diradd dependencies. 9250 */ 9251 if (newinum != WINO) { 9252 dap = malloc(sizeof(struct diradd), 9253 M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO); 9254 workitem_alloc(&dap->da_list, D_DIRADD, mp); 9255 dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE; 9256 dap->da_offset = offset; 9257 dap->da_newinum = newinum; 9258 LIST_INIT(&dap->da_jwork); 9259 } 9260 9261 /* 9262 * Allocate a new dirrem and ACQUIRE_LOCK. 9263 */ 9264 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 9265 pagedep = dirrem->dm_pagedep; 9266 /* 9267 * The possible values for isrmdir: 9268 * 0 - non-directory file rename 9269 * 1 - directory rename within same directory 9270 * inum - directory rename to new directory of given inode number 9271 * When renaming to a new directory, we are both deleting and 9272 * creating a new directory entry, so the link count on the new 9273 * directory should not change. Thus we do not need the followup 9274 * dirrem which is usually done in handle_workitem_remove. We set 9275 * the DIRCHG flag to tell handle_workitem_remove to skip the 9276 * followup dirrem. 9277 */ 9278 if (isrmdir > 1) 9279 dirrem->dm_state |= DIRCHG; 9280 9281 /* 9282 * Whiteouts have no additional dependencies, 9283 * so just put the dirrem on the correct list. 9284 */ 9285 if (newinum == WINO) { 9286 if ((dirrem->dm_state & COMPLETE) == 0) { 9287 LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem, 9288 dm_next); 9289 } else { 9290 dirrem->dm_dirinum = pagedep->pd_ino; 9291 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 9292 add_to_worklist(&dirrem->dm_list, 0); 9293 } 9294 FREE_LOCK(dp->i_ump); 9295 return; 9296 } 9297 /* 9298 * Add the dirrem to the inodedep's pending remove list for quick 9299 * discovery later. A valid nlinkdelta ensures that this lookup 9300 * will not fail. 9301 */ 9302 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 9303 panic("softdep_setup_directory_change: Lost inodedep."); 9304 dirrem->dm_state |= ONDEPLIST; 9305 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 9306 9307 /* 9308 * If the COMPLETE flag is clear, then there were no active 9309 * entries and we want to roll back to the previous inode until 9310 * the new inode is committed to disk. If the COMPLETE flag is 9311 * set, then we have deleted an entry that never made it to disk. 9312 * If the entry we deleted resulted from a name change, then the old 9313 * inode reference still resides on disk. Any rollback that we do 9314 * needs to be to that old inode (returned to us in prevdirrem). If 9315 * the entry we deleted resulted from a create, then there is 9316 * no entry on the disk, so we want to roll back to zero rather 9317 * than the uncommitted inode. In either of the COMPLETE cases we 9318 * want to immediately free the unwritten and unreferenced inode. 9319 */ 9320 if ((dirrem->dm_state & COMPLETE) == 0) { 9321 dap->da_previous = dirrem; 9322 } else { 9323 if (prevdirrem != NULL) { 9324 dap->da_previous = prevdirrem; 9325 } else { 9326 dap->da_state &= ~DIRCHG; 9327 dap->da_pagedep = pagedep; 9328 } 9329 dirrem->dm_dirinum = pagedep->pd_ino; 9330 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 9331 add_to_worklist(&dirrem->dm_list, 0); 9332 } 9333 /* 9334 * Lookup the jaddref for this journal entry. We must finish 9335 * initializing it and make the diradd write dependent on it. 9336 * If we're not journaling, put it on the id_bufwait list if the 9337 * inode is not yet written. If it is written, do the post-inode 9338 * write processing to put it on the id_pendinghd list. 9339 */ 9340 inodedep_lookup(mp, newinum, DEPALLOC | NODELAY, &inodedep); 9341 if (MOUNTEDSUJ(mp)) { 9342 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 9343 inoreflst); 9344 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 9345 ("softdep_setup_directory_change: bad jaddref %p", 9346 jaddref)); 9347 jaddref->ja_diroff = dp->i_offset; 9348 jaddref->ja_diradd = dap; 9349 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], 9350 dap, da_pdlist); 9351 add_to_journal(&jaddref->ja_list); 9352 } else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 9353 dap->da_state |= COMPLETE; 9354 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 9355 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 9356 } else { 9357 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], 9358 dap, da_pdlist); 9359 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 9360 } 9361 /* 9362 * If we're making a new name for a directory that has not been 9363 * committed when need to move the dot and dotdot references to 9364 * this new name. 9365 */ 9366 if (inodedep->id_mkdiradd && dp->i_offset != DOTDOT_OFFSET) 9367 merge_diradd(inodedep, dap); 9368 FREE_LOCK(dp->i_ump); 9369 } 9370 9371 /* 9372 * Called whenever the link count on an inode is changed. 9373 * It creates an inode dependency so that the new reference(s) 9374 * to the inode cannot be committed to disk until the updated 9375 * inode has been written. 9376 */ 9377 void 9378 softdep_change_linkcnt(ip) 9379 struct inode *ip; /* the inode with the increased link count */ 9380 { 9381 struct inodedep *inodedep; 9382 int dflags; 9383 9384 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0, 9385 ("softdep_change_linkcnt called on non-softdep filesystem")); 9386 ACQUIRE_LOCK(ip->i_ump); 9387 dflags = DEPALLOC; 9388 if (IS_SNAPSHOT(ip)) 9389 dflags |= NODELAY; 9390 inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, dflags, &inodedep); 9391 if (ip->i_nlink < ip->i_effnlink) 9392 panic("softdep_change_linkcnt: bad delta"); 9393 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 9394 FREE_LOCK(ip->i_ump); 9395 } 9396 9397 /* 9398 * Attach a sbdep dependency to the superblock buf so that we can keep 9399 * track of the head of the linked list of referenced but unlinked inodes. 9400 */ 9401 void 9402 softdep_setup_sbupdate(ump, fs, bp) 9403 struct ufsmount *ump; 9404 struct fs *fs; 9405 struct buf *bp; 9406 { 9407 struct sbdep *sbdep; 9408 struct worklist *wk; 9409 9410 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 9411 ("softdep_setup_sbupdate called on non-softdep filesystem")); 9412 LIST_FOREACH(wk, &bp->b_dep, wk_list) 9413 if (wk->wk_type == D_SBDEP) 9414 break; 9415 if (wk != NULL) 9416 return; 9417 sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS); 9418 workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump)); 9419 sbdep->sb_fs = fs; 9420 sbdep->sb_ump = ump; 9421 ACQUIRE_LOCK(ump); 9422 WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list); 9423 FREE_LOCK(ump); 9424 } 9425 9426 /* 9427 * Return the first unlinked inodedep which is ready to be the head of the 9428 * list. The inodedep and all those after it must have valid next pointers. 9429 */ 9430 static struct inodedep * 9431 first_unlinked_inodedep(ump) 9432 struct ufsmount *ump; 9433 { 9434 struct inodedep *inodedep; 9435 struct inodedep *idp; 9436 9437 LOCK_OWNED(ump); 9438 for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst); 9439 inodedep; inodedep = idp) { 9440 if ((inodedep->id_state & UNLINKNEXT) == 0) 9441 return (NULL); 9442 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 9443 if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0) 9444 break; 9445 if ((inodedep->id_state & UNLINKPREV) == 0) 9446 break; 9447 } 9448 return (inodedep); 9449 } 9450 9451 /* 9452 * Set the sujfree unlinked head pointer prior to writing a superblock. 9453 */ 9454 static void 9455 initiate_write_sbdep(sbdep) 9456 struct sbdep *sbdep; 9457 { 9458 struct inodedep *inodedep; 9459 struct fs *bpfs; 9460 struct fs *fs; 9461 9462 bpfs = sbdep->sb_fs; 9463 fs = sbdep->sb_ump->um_fs; 9464 inodedep = first_unlinked_inodedep(sbdep->sb_ump); 9465 if (inodedep) { 9466 fs->fs_sujfree = inodedep->id_ino; 9467 inodedep->id_state |= UNLINKPREV; 9468 } else 9469 fs->fs_sujfree = 0; 9470 bpfs->fs_sujfree = fs->fs_sujfree; 9471 } 9472 9473 /* 9474 * After a superblock is written determine whether it must be written again 9475 * due to a changing unlinked list head. 9476 */ 9477 static int 9478 handle_written_sbdep(sbdep, bp) 9479 struct sbdep *sbdep; 9480 struct buf *bp; 9481 { 9482 struct inodedep *inodedep; 9483 struct mount *mp; 9484 struct fs *fs; 9485 9486 LOCK_OWNED(sbdep->sb_ump); 9487 fs = sbdep->sb_fs; 9488 mp = UFSTOVFS(sbdep->sb_ump); 9489 /* 9490 * If the superblock doesn't match the in-memory list start over. 9491 */ 9492 inodedep = first_unlinked_inodedep(sbdep->sb_ump); 9493 if ((inodedep && fs->fs_sujfree != inodedep->id_ino) || 9494 (inodedep == NULL && fs->fs_sujfree != 0)) { 9495 bdirty(bp); 9496 return (1); 9497 } 9498 WORKITEM_FREE(sbdep, D_SBDEP); 9499 if (fs->fs_sujfree == 0) 9500 return (0); 9501 /* 9502 * Now that we have a record of this inode in stable store allow it 9503 * to be written to free up pending work. Inodes may see a lot of 9504 * write activity after they are unlinked which we must not hold up. 9505 */ 9506 for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) { 9507 if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS) 9508 panic("handle_written_sbdep: Bad inodedep %p (0x%X)", 9509 inodedep, inodedep->id_state); 9510 if (inodedep->id_state & UNLINKONLIST) 9511 break; 9512 inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST; 9513 } 9514 9515 return (0); 9516 } 9517 9518 /* 9519 * Mark an inodedep as unlinked and insert it into the in-memory unlinked list. 9520 */ 9521 static void 9522 unlinked_inodedep(mp, inodedep) 9523 struct mount *mp; 9524 struct inodedep *inodedep; 9525 { 9526 struct ufsmount *ump; 9527 9528 ump = VFSTOUFS(mp); 9529 LOCK_OWNED(ump); 9530 if (MOUNTEDSUJ(mp) == 0) 9531 return; 9532 ump->um_fs->fs_fmod = 1; 9533 if (inodedep->id_state & UNLINKED) 9534 panic("unlinked_inodedep: %p already unlinked\n", inodedep); 9535 inodedep->id_state |= UNLINKED; 9536 TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked); 9537 } 9538 9539 /* 9540 * Remove an inodedep from the unlinked inodedep list. This may require 9541 * disk writes if the inode has made it that far. 9542 */ 9543 static void 9544 clear_unlinked_inodedep(inodedep) 9545 struct inodedep *inodedep; 9546 { 9547 struct ufsmount *ump; 9548 struct inodedep *idp; 9549 struct inodedep *idn; 9550 struct fs *fs; 9551 struct buf *bp; 9552 ino_t ino; 9553 ino_t nino; 9554 ino_t pino; 9555 int error; 9556 9557 ump = VFSTOUFS(inodedep->id_list.wk_mp); 9558 fs = ump->um_fs; 9559 ino = inodedep->id_ino; 9560 error = 0; 9561 for (;;) { 9562 LOCK_OWNED(ump); 9563 KASSERT((inodedep->id_state & UNLINKED) != 0, 9564 ("clear_unlinked_inodedep: inodedep %p not unlinked", 9565 inodedep)); 9566 /* 9567 * If nothing has yet been written simply remove us from 9568 * the in memory list and return. This is the most common 9569 * case where handle_workitem_remove() loses the final 9570 * reference. 9571 */ 9572 if ((inodedep->id_state & UNLINKLINKS) == 0) 9573 break; 9574 /* 9575 * If we have a NEXT pointer and no PREV pointer we can simply 9576 * clear NEXT's PREV and remove ourselves from the list. Be 9577 * careful not to clear PREV if the superblock points at 9578 * next as well. 9579 */ 9580 idn = TAILQ_NEXT(inodedep, id_unlinked); 9581 if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) { 9582 if (idn && fs->fs_sujfree != idn->id_ino) 9583 idn->id_state &= ~UNLINKPREV; 9584 break; 9585 } 9586 /* 9587 * Here we have an inodedep which is actually linked into 9588 * the list. We must remove it by forcing a write to the 9589 * link before us, whether it be the superblock or an inode. 9590 * Unfortunately the list may change while we're waiting 9591 * on the buf lock for either resource so we must loop until 9592 * we lock the right one. If both the superblock and an 9593 * inode point to this inode we must clear the inode first 9594 * followed by the superblock. 9595 */ 9596 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 9597 pino = 0; 9598 if (idp && (idp->id_state & UNLINKNEXT)) 9599 pino = idp->id_ino; 9600 FREE_LOCK(ump); 9601 if (pino == 0) { 9602 bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc), 9603 (int)fs->fs_sbsize, 0, 0, 0); 9604 } else { 9605 error = bread(ump->um_devvp, 9606 fsbtodb(fs, ino_to_fsba(fs, pino)), 9607 (int)fs->fs_bsize, NOCRED, &bp); 9608 if (error) 9609 brelse(bp); 9610 } 9611 ACQUIRE_LOCK(ump); 9612 if (error) 9613 break; 9614 /* If the list has changed restart the loop. */ 9615 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 9616 nino = 0; 9617 if (idp && (idp->id_state & UNLINKNEXT)) 9618 nino = idp->id_ino; 9619 if (nino != pino || 9620 (inodedep->id_state & UNLINKPREV) != UNLINKPREV) { 9621 FREE_LOCK(ump); 9622 brelse(bp); 9623 ACQUIRE_LOCK(ump); 9624 continue; 9625 } 9626 nino = 0; 9627 idn = TAILQ_NEXT(inodedep, id_unlinked); 9628 if (idn) 9629 nino = idn->id_ino; 9630 /* 9631 * Remove us from the in memory list. After this we cannot 9632 * access the inodedep. 9633 */ 9634 KASSERT((inodedep->id_state & UNLINKED) != 0, 9635 ("clear_unlinked_inodedep: inodedep %p not unlinked", 9636 inodedep)); 9637 inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST); 9638 TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked); 9639 FREE_LOCK(ump); 9640 /* 9641 * The predecessor's next pointer is manually updated here 9642 * so that the NEXT flag is never cleared for an element 9643 * that is in the list. 9644 */ 9645 if (pino == 0) { 9646 bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize); 9647 ffs_oldfscompat_write((struct fs *)bp->b_data, ump); 9648 softdep_setup_sbupdate(ump, (struct fs *)bp->b_data, 9649 bp); 9650 } else if (fs->fs_magic == FS_UFS1_MAGIC) 9651 ((struct ufs1_dinode *)bp->b_data + 9652 ino_to_fsbo(fs, pino))->di_freelink = nino; 9653 else 9654 ((struct ufs2_dinode *)bp->b_data + 9655 ino_to_fsbo(fs, pino))->di_freelink = nino; 9656 /* 9657 * If the bwrite fails we have no recourse to recover. The 9658 * filesystem is corrupted already. 9659 */ 9660 bwrite(bp); 9661 ACQUIRE_LOCK(ump); 9662 /* 9663 * If the superblock pointer still needs to be cleared force 9664 * a write here. 9665 */ 9666 if (fs->fs_sujfree == ino) { 9667 FREE_LOCK(ump); 9668 bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc), 9669 (int)fs->fs_sbsize, 0, 0, 0); 9670 bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize); 9671 ffs_oldfscompat_write((struct fs *)bp->b_data, ump); 9672 softdep_setup_sbupdate(ump, (struct fs *)bp->b_data, 9673 bp); 9674 bwrite(bp); 9675 ACQUIRE_LOCK(ump); 9676 } 9677 9678 if (fs->fs_sujfree != ino) 9679 return; 9680 panic("clear_unlinked_inodedep: Failed to clear free head"); 9681 } 9682 if (inodedep->id_ino == fs->fs_sujfree) 9683 panic("clear_unlinked_inodedep: Freeing head of free list"); 9684 inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST); 9685 TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked); 9686 return; 9687 } 9688 9689 /* 9690 * This workitem decrements the inode's link count. 9691 * If the link count reaches zero, the file is removed. 9692 */ 9693 static int 9694 handle_workitem_remove(dirrem, flags) 9695 struct dirrem *dirrem; 9696 int flags; 9697 { 9698 struct inodedep *inodedep; 9699 struct workhead dotdotwk; 9700 struct worklist *wk; 9701 struct ufsmount *ump; 9702 struct mount *mp; 9703 struct vnode *vp; 9704 struct inode *ip; 9705 ino_t oldinum; 9706 9707 if (dirrem->dm_state & ONWORKLIST) 9708 panic("handle_workitem_remove: dirrem %p still on worklist", 9709 dirrem); 9710 oldinum = dirrem->dm_oldinum; 9711 mp = dirrem->dm_list.wk_mp; 9712 ump = VFSTOUFS(mp); 9713 flags |= LK_EXCLUSIVE; 9714 if (ffs_vgetf(mp, oldinum, flags, &vp, FFSV_FORCEINSMQ) != 0) 9715 return (EBUSY); 9716 ip = VTOI(vp); 9717 ACQUIRE_LOCK(ump); 9718 if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0) 9719 panic("handle_workitem_remove: lost inodedep"); 9720 if (dirrem->dm_state & ONDEPLIST) 9721 LIST_REMOVE(dirrem, dm_inonext); 9722 KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd), 9723 ("handle_workitem_remove: Journal entries not written.")); 9724 9725 /* 9726 * Move all dependencies waiting on the remove to complete 9727 * from the dirrem to the inode inowait list to be completed 9728 * after the inode has been updated and written to disk. Any 9729 * marked MKDIR_PARENT are saved to be completed when the .. ref 9730 * is removed. 9731 */ 9732 LIST_INIT(&dotdotwk); 9733 while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) { 9734 WORKLIST_REMOVE(wk); 9735 if (wk->wk_state & MKDIR_PARENT) { 9736 wk->wk_state &= ~MKDIR_PARENT; 9737 WORKLIST_INSERT(&dotdotwk, wk); 9738 continue; 9739 } 9740 WORKLIST_INSERT(&inodedep->id_inowait, wk); 9741 } 9742 LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list); 9743 /* 9744 * Normal file deletion. 9745 */ 9746 if ((dirrem->dm_state & RMDIR) == 0) { 9747 ip->i_nlink--; 9748 DIP_SET(ip, i_nlink, ip->i_nlink); 9749 ip->i_flag |= IN_CHANGE; 9750 if (ip->i_nlink < ip->i_effnlink) 9751 panic("handle_workitem_remove: bad file delta"); 9752 if (ip->i_nlink == 0) 9753 unlinked_inodedep(mp, inodedep); 9754 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 9755 KASSERT(LIST_EMPTY(&dirrem->dm_jwork), 9756 ("handle_workitem_remove: worklist not empty. %s", 9757 TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type))); 9758 WORKITEM_FREE(dirrem, D_DIRREM); 9759 FREE_LOCK(ump); 9760 goto out; 9761 } 9762 /* 9763 * Directory deletion. Decrement reference count for both the 9764 * just deleted parent directory entry and the reference for ".". 9765 * Arrange to have the reference count on the parent decremented 9766 * to account for the loss of "..". 9767 */ 9768 ip->i_nlink -= 2; 9769 DIP_SET(ip, i_nlink, ip->i_nlink); 9770 ip->i_flag |= IN_CHANGE; 9771 if (ip->i_nlink < ip->i_effnlink) 9772 panic("handle_workitem_remove: bad dir delta"); 9773 if (ip->i_nlink == 0) 9774 unlinked_inodedep(mp, inodedep); 9775 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 9776 /* 9777 * Rename a directory to a new parent. Since, we are both deleting 9778 * and creating a new directory entry, the link count on the new 9779 * directory should not change. Thus we skip the followup dirrem. 9780 */ 9781 if (dirrem->dm_state & DIRCHG) { 9782 KASSERT(LIST_EMPTY(&dirrem->dm_jwork), 9783 ("handle_workitem_remove: DIRCHG and worklist not empty.")); 9784 WORKITEM_FREE(dirrem, D_DIRREM); 9785 FREE_LOCK(ump); 9786 goto out; 9787 } 9788 dirrem->dm_state = ONDEPLIST; 9789 dirrem->dm_oldinum = dirrem->dm_dirinum; 9790 /* 9791 * Place the dirrem on the parent's diremhd list. 9792 */ 9793 if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0) 9794 panic("handle_workitem_remove: lost dir inodedep"); 9795 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 9796 /* 9797 * If the allocated inode has never been written to disk, then 9798 * the on-disk inode is zero'ed and we can remove the file 9799 * immediately. When journaling if the inode has been marked 9800 * unlinked and not DEPCOMPLETE we know it can never be written. 9801 */ 9802 inodedep_lookup(mp, oldinum, 0, &inodedep); 9803 if (inodedep == NULL || 9804 (inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED || 9805 check_inode_unwritten(inodedep)) { 9806 FREE_LOCK(ump); 9807 vput(vp); 9808 return handle_workitem_remove(dirrem, flags); 9809 } 9810 WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list); 9811 FREE_LOCK(ump); 9812 ip->i_flag |= IN_CHANGE; 9813 out: 9814 ffs_update(vp, 0); 9815 vput(vp); 9816 return (0); 9817 } 9818 9819 /* 9820 * Inode de-allocation dependencies. 9821 * 9822 * When an inode's link count is reduced to zero, it can be de-allocated. We 9823 * found it convenient to postpone de-allocation until after the inode is 9824 * written to disk with its new link count (zero). At this point, all of the 9825 * on-disk inode's block pointers are nullified and, with careful dependency 9826 * list ordering, all dependencies related to the inode will be satisfied and 9827 * the corresponding dependency structures de-allocated. So, if/when the 9828 * inode is reused, there will be no mixing of old dependencies with new 9829 * ones. This artificial dependency is set up by the block de-allocation 9830 * procedure above (softdep_setup_freeblocks) and completed by the 9831 * following procedure. 9832 */ 9833 static void 9834 handle_workitem_freefile(freefile) 9835 struct freefile *freefile; 9836 { 9837 struct workhead wkhd; 9838 struct fs *fs; 9839 struct inodedep *idp; 9840 struct ufsmount *ump; 9841 int error; 9842 9843 ump = VFSTOUFS(freefile->fx_list.wk_mp); 9844 fs = ump->um_fs; 9845 #ifdef DEBUG 9846 ACQUIRE_LOCK(ump); 9847 error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp); 9848 FREE_LOCK(ump); 9849 if (error) 9850 panic("handle_workitem_freefile: inodedep %p survived", idp); 9851 #endif 9852 UFS_LOCK(ump); 9853 fs->fs_pendinginodes -= 1; 9854 UFS_UNLOCK(ump); 9855 LIST_INIT(&wkhd); 9856 LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list); 9857 if ((error = ffs_freefile(ump, fs, freefile->fx_devvp, 9858 freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0) 9859 softdep_error("handle_workitem_freefile", error); 9860 ACQUIRE_LOCK(ump); 9861 WORKITEM_FREE(freefile, D_FREEFILE); 9862 FREE_LOCK(ump); 9863 } 9864 9865 9866 /* 9867 * Helper function which unlinks marker element from work list and returns 9868 * the next element on the list. 9869 */ 9870 static __inline struct worklist * 9871 markernext(struct worklist *marker) 9872 { 9873 struct worklist *next; 9874 9875 next = LIST_NEXT(marker, wk_list); 9876 LIST_REMOVE(marker, wk_list); 9877 return next; 9878 } 9879 9880 /* 9881 * Disk writes. 9882 * 9883 * The dependency structures constructed above are most actively used when file 9884 * system blocks are written to disk. No constraints are placed on when a 9885 * block can be written, but unsatisfied update dependencies are made safe by 9886 * modifying (or replacing) the source memory for the duration of the disk 9887 * write. When the disk write completes, the memory block is again brought 9888 * up-to-date. 9889 * 9890 * In-core inode structure reclamation. 9891 * 9892 * Because there are a finite number of "in-core" inode structures, they are 9893 * reused regularly. By transferring all inode-related dependencies to the 9894 * in-memory inode block and indexing them separately (via "inodedep"s), we 9895 * can allow "in-core" inode structures to be reused at any time and avoid 9896 * any increase in contention. 9897 * 9898 * Called just before entering the device driver to initiate a new disk I/O. 9899 * The buffer must be locked, thus, no I/O completion operations can occur 9900 * while we are manipulating its associated dependencies. 9901 */ 9902 static void 9903 softdep_disk_io_initiation(bp) 9904 struct buf *bp; /* structure describing disk write to occur */ 9905 { 9906 struct worklist *wk; 9907 struct worklist marker; 9908 struct inodedep *inodedep; 9909 struct freeblks *freeblks; 9910 struct jblkdep *jblkdep; 9911 struct newblk *newblk; 9912 struct ufsmount *ump; 9913 9914 /* 9915 * We only care about write operations. There should never 9916 * be dependencies for reads. 9917 */ 9918 if (bp->b_iocmd != BIO_WRITE) 9919 panic("softdep_disk_io_initiation: not write"); 9920 9921 if (bp->b_vflags & BV_BKGRDINPROG) 9922 panic("softdep_disk_io_initiation: Writing buffer with " 9923 "background write in progress: %p", bp); 9924 9925 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL) 9926 return; 9927 ump = VFSTOUFS(wk->wk_mp); 9928 9929 marker.wk_type = D_LAST + 1; /* Not a normal workitem */ 9930 PHOLD(curproc); /* Don't swap out kernel stack */ 9931 ACQUIRE_LOCK(ump); 9932 /* 9933 * Do any necessary pre-I/O processing. 9934 */ 9935 for (wk = LIST_FIRST(&bp->b_dep); wk != NULL; 9936 wk = markernext(&marker)) { 9937 LIST_INSERT_AFTER(wk, &marker, wk_list); 9938 switch (wk->wk_type) { 9939 9940 case D_PAGEDEP: 9941 initiate_write_filepage(WK_PAGEDEP(wk), bp); 9942 continue; 9943 9944 case D_INODEDEP: 9945 inodedep = WK_INODEDEP(wk); 9946 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) 9947 initiate_write_inodeblock_ufs1(inodedep, bp); 9948 else 9949 initiate_write_inodeblock_ufs2(inodedep, bp); 9950 continue; 9951 9952 case D_INDIRDEP: 9953 initiate_write_indirdep(WK_INDIRDEP(wk), bp); 9954 continue; 9955 9956 case D_BMSAFEMAP: 9957 initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp); 9958 continue; 9959 9960 case D_JSEG: 9961 WK_JSEG(wk)->js_buf = NULL; 9962 continue; 9963 9964 case D_FREEBLKS: 9965 freeblks = WK_FREEBLKS(wk); 9966 jblkdep = LIST_FIRST(&freeblks->fb_jblkdephd); 9967 /* 9968 * We have to wait for the freeblks to be journaled 9969 * before we can write an inodeblock with updated 9970 * pointers. Be careful to arrange the marker so 9971 * we revisit the freeblks if it's not removed by 9972 * the first jwait(). 9973 */ 9974 if (jblkdep != NULL) { 9975 LIST_REMOVE(&marker, wk_list); 9976 LIST_INSERT_BEFORE(wk, &marker, wk_list); 9977 jwait(&jblkdep->jb_list, MNT_WAIT); 9978 } 9979 continue; 9980 case D_ALLOCDIRECT: 9981 case D_ALLOCINDIR: 9982 /* 9983 * We have to wait for the jnewblk to be journaled 9984 * before we can write to a block if the contents 9985 * may be confused with an earlier file's indirect 9986 * at recovery time. Handle the marker as described 9987 * above. 9988 */ 9989 newblk = WK_NEWBLK(wk); 9990 if (newblk->nb_jnewblk != NULL && 9991 indirblk_lookup(newblk->nb_list.wk_mp, 9992 newblk->nb_newblkno)) { 9993 LIST_REMOVE(&marker, wk_list); 9994 LIST_INSERT_BEFORE(wk, &marker, wk_list); 9995 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 9996 } 9997 continue; 9998 9999 case D_SBDEP: 10000 initiate_write_sbdep(WK_SBDEP(wk)); 10001 continue; 10002 10003 case D_MKDIR: 10004 case D_FREEWORK: 10005 case D_FREEDEP: 10006 case D_JSEGDEP: 10007 continue; 10008 10009 default: 10010 panic("handle_disk_io_initiation: Unexpected type %s", 10011 TYPENAME(wk->wk_type)); 10012 /* NOTREACHED */ 10013 } 10014 } 10015 FREE_LOCK(ump); 10016 PRELE(curproc); /* Allow swapout of kernel stack */ 10017 } 10018 10019 /* 10020 * Called from within the procedure above to deal with unsatisfied 10021 * allocation dependencies in a directory. The buffer must be locked, 10022 * thus, no I/O completion operations can occur while we are 10023 * manipulating its associated dependencies. 10024 */ 10025 static void 10026 initiate_write_filepage(pagedep, bp) 10027 struct pagedep *pagedep; 10028 struct buf *bp; 10029 { 10030 struct jremref *jremref; 10031 struct jmvref *jmvref; 10032 struct dirrem *dirrem; 10033 struct diradd *dap; 10034 struct direct *ep; 10035 int i; 10036 10037 if (pagedep->pd_state & IOSTARTED) { 10038 /* 10039 * This can only happen if there is a driver that does not 10040 * understand chaining. Here biodone will reissue the call 10041 * to strategy for the incomplete buffers. 10042 */ 10043 printf("initiate_write_filepage: already started\n"); 10044 return; 10045 } 10046 pagedep->pd_state |= IOSTARTED; 10047 /* 10048 * Wait for all journal remove dependencies to hit the disk. 10049 * We can not allow any potentially conflicting directory adds 10050 * to be visible before removes and rollback is too difficult. 10051 * The per-filesystem lock may be dropped and re-acquired, however 10052 * we hold the buf locked so the dependency can not go away. 10053 */ 10054 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) 10055 while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) 10056 jwait(&jremref->jr_list, MNT_WAIT); 10057 while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) 10058 jwait(&jmvref->jm_list, MNT_WAIT); 10059 for (i = 0; i < DAHASHSZ; i++) { 10060 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 10061 ep = (struct direct *) 10062 ((char *)bp->b_data + dap->da_offset); 10063 if (ep->d_ino != dap->da_newinum) 10064 panic("%s: dir inum %ju != new %ju", 10065 "initiate_write_filepage", 10066 (uintmax_t)ep->d_ino, 10067 (uintmax_t)dap->da_newinum); 10068 if (dap->da_state & DIRCHG) 10069 ep->d_ino = dap->da_previous->dm_oldinum; 10070 else 10071 ep->d_ino = 0; 10072 dap->da_state &= ~ATTACHED; 10073 dap->da_state |= UNDONE; 10074 } 10075 } 10076 } 10077 10078 /* 10079 * Version of initiate_write_inodeblock that handles UFS1 dinodes. 10080 * Note that any bug fixes made to this routine must be done in the 10081 * version found below. 10082 * 10083 * Called from within the procedure above to deal with unsatisfied 10084 * allocation dependencies in an inodeblock. The buffer must be 10085 * locked, thus, no I/O completion operations can occur while we 10086 * are manipulating its associated dependencies. 10087 */ 10088 static void 10089 initiate_write_inodeblock_ufs1(inodedep, bp) 10090 struct inodedep *inodedep; 10091 struct buf *bp; /* The inode block */ 10092 { 10093 struct allocdirect *adp, *lastadp; 10094 struct ufs1_dinode *dp; 10095 struct ufs1_dinode *sip; 10096 struct inoref *inoref; 10097 struct ufsmount *ump; 10098 struct fs *fs; 10099 ufs_lbn_t i; 10100 #ifdef INVARIANTS 10101 ufs_lbn_t prevlbn = 0; 10102 #endif 10103 int deplist; 10104 10105 if (inodedep->id_state & IOSTARTED) 10106 panic("initiate_write_inodeblock_ufs1: already started"); 10107 inodedep->id_state |= IOSTARTED; 10108 fs = inodedep->id_fs; 10109 ump = VFSTOUFS(inodedep->id_list.wk_mp); 10110 LOCK_OWNED(ump); 10111 dp = (struct ufs1_dinode *)bp->b_data + 10112 ino_to_fsbo(fs, inodedep->id_ino); 10113 10114 /* 10115 * If we're on the unlinked list but have not yet written our 10116 * next pointer initialize it here. 10117 */ 10118 if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) { 10119 struct inodedep *inon; 10120 10121 inon = TAILQ_NEXT(inodedep, id_unlinked); 10122 dp->di_freelink = inon ? inon->id_ino : 0; 10123 } 10124 /* 10125 * If the bitmap is not yet written, then the allocated 10126 * inode cannot be written to disk. 10127 */ 10128 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 10129 if (inodedep->id_savedino1 != NULL) 10130 panic("initiate_write_inodeblock_ufs1: I/O underway"); 10131 FREE_LOCK(ump); 10132 sip = malloc(sizeof(struct ufs1_dinode), 10133 M_SAVEDINO, M_SOFTDEP_FLAGS); 10134 ACQUIRE_LOCK(ump); 10135 inodedep->id_savedino1 = sip; 10136 *inodedep->id_savedino1 = *dp; 10137 bzero((caddr_t)dp, sizeof(struct ufs1_dinode)); 10138 dp->di_gen = inodedep->id_savedino1->di_gen; 10139 dp->di_freelink = inodedep->id_savedino1->di_freelink; 10140 return; 10141 } 10142 /* 10143 * If no dependencies, then there is nothing to roll back. 10144 */ 10145 inodedep->id_savedsize = dp->di_size; 10146 inodedep->id_savedextsize = 0; 10147 inodedep->id_savednlink = dp->di_nlink; 10148 if (TAILQ_EMPTY(&inodedep->id_inoupdt) && 10149 TAILQ_EMPTY(&inodedep->id_inoreflst)) 10150 return; 10151 /* 10152 * Revert the link count to that of the first unwritten journal entry. 10153 */ 10154 inoref = TAILQ_FIRST(&inodedep->id_inoreflst); 10155 if (inoref) 10156 dp->di_nlink = inoref->if_nlink; 10157 /* 10158 * Set the dependencies to busy. 10159 */ 10160 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10161 adp = TAILQ_NEXT(adp, ad_next)) { 10162 #ifdef INVARIANTS 10163 if (deplist != 0 && prevlbn >= adp->ad_offset) 10164 panic("softdep_write_inodeblock: lbn order"); 10165 prevlbn = adp->ad_offset; 10166 if (adp->ad_offset < NDADDR && 10167 dp->di_db[adp->ad_offset] != adp->ad_newblkno) 10168 panic("%s: direct pointer #%jd mismatch %d != %jd", 10169 "softdep_write_inodeblock", 10170 (intmax_t)adp->ad_offset, 10171 dp->di_db[adp->ad_offset], 10172 (intmax_t)adp->ad_newblkno); 10173 if (adp->ad_offset >= NDADDR && 10174 dp->di_ib[adp->ad_offset - NDADDR] != adp->ad_newblkno) 10175 panic("%s: indirect pointer #%jd mismatch %d != %jd", 10176 "softdep_write_inodeblock", 10177 (intmax_t)adp->ad_offset - NDADDR, 10178 dp->di_ib[adp->ad_offset - NDADDR], 10179 (intmax_t)adp->ad_newblkno); 10180 deplist |= 1 << adp->ad_offset; 10181 if ((adp->ad_state & ATTACHED) == 0) 10182 panic("softdep_write_inodeblock: Unknown state 0x%x", 10183 adp->ad_state); 10184 #endif /* INVARIANTS */ 10185 adp->ad_state &= ~ATTACHED; 10186 adp->ad_state |= UNDONE; 10187 } 10188 /* 10189 * The on-disk inode cannot claim to be any larger than the last 10190 * fragment that has been written. Otherwise, the on-disk inode 10191 * might have fragments that were not the last block in the file 10192 * which would corrupt the filesystem. 10193 */ 10194 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10195 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10196 if (adp->ad_offset >= NDADDR) 10197 break; 10198 dp->di_db[adp->ad_offset] = adp->ad_oldblkno; 10199 /* keep going until hitting a rollback to a frag */ 10200 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10201 continue; 10202 dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10203 for (i = adp->ad_offset + 1; i < NDADDR; i++) { 10204 #ifdef INVARIANTS 10205 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) 10206 panic("softdep_write_inodeblock: lost dep1"); 10207 #endif /* INVARIANTS */ 10208 dp->di_db[i] = 0; 10209 } 10210 for (i = 0; i < NIADDR; i++) { 10211 #ifdef INVARIANTS 10212 if (dp->di_ib[i] != 0 && 10213 (deplist & ((1 << NDADDR) << i)) == 0) 10214 panic("softdep_write_inodeblock: lost dep2"); 10215 #endif /* INVARIANTS */ 10216 dp->di_ib[i] = 0; 10217 } 10218 return; 10219 } 10220 /* 10221 * If we have zero'ed out the last allocated block of the file, 10222 * roll back the size to the last currently allocated block. 10223 * We know that this last allocated block is a full-sized as 10224 * we already checked for fragments in the loop above. 10225 */ 10226 if (lastadp != NULL && 10227 dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10228 for (i = lastadp->ad_offset; i >= 0; i--) 10229 if (dp->di_db[i] != 0) 10230 break; 10231 dp->di_size = (i + 1) * fs->fs_bsize; 10232 } 10233 /* 10234 * The only dependencies are for indirect blocks. 10235 * 10236 * The file size for indirect block additions is not guaranteed. 10237 * Such a guarantee would be non-trivial to achieve. The conventional 10238 * synchronous write implementation also does not make this guarantee. 10239 * Fsck should catch and fix discrepancies. Arguably, the file size 10240 * can be over-estimated without destroying integrity when the file 10241 * moves into the indirect blocks (i.e., is large). If we want to 10242 * postpone fsck, we are stuck with this argument. 10243 */ 10244 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 10245 dp->di_ib[adp->ad_offset - NDADDR] = 0; 10246 } 10247 10248 /* 10249 * Version of initiate_write_inodeblock that handles UFS2 dinodes. 10250 * Note that any bug fixes made to this routine must be done in the 10251 * version found above. 10252 * 10253 * Called from within the procedure above to deal with unsatisfied 10254 * allocation dependencies in an inodeblock. The buffer must be 10255 * locked, thus, no I/O completion operations can occur while we 10256 * are manipulating its associated dependencies. 10257 */ 10258 static void 10259 initiate_write_inodeblock_ufs2(inodedep, bp) 10260 struct inodedep *inodedep; 10261 struct buf *bp; /* The inode block */ 10262 { 10263 struct allocdirect *adp, *lastadp; 10264 struct ufs2_dinode *dp; 10265 struct ufs2_dinode *sip; 10266 struct inoref *inoref; 10267 struct ufsmount *ump; 10268 struct fs *fs; 10269 ufs_lbn_t i; 10270 #ifdef INVARIANTS 10271 ufs_lbn_t prevlbn = 0; 10272 #endif 10273 int deplist; 10274 10275 if (inodedep->id_state & IOSTARTED) 10276 panic("initiate_write_inodeblock_ufs2: already started"); 10277 inodedep->id_state |= IOSTARTED; 10278 fs = inodedep->id_fs; 10279 ump = VFSTOUFS(inodedep->id_list.wk_mp); 10280 LOCK_OWNED(ump); 10281 dp = (struct ufs2_dinode *)bp->b_data + 10282 ino_to_fsbo(fs, inodedep->id_ino); 10283 10284 /* 10285 * If we're on the unlinked list but have not yet written our 10286 * next pointer initialize it here. 10287 */ 10288 if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) { 10289 struct inodedep *inon; 10290 10291 inon = TAILQ_NEXT(inodedep, id_unlinked); 10292 dp->di_freelink = inon ? inon->id_ino : 0; 10293 } 10294 /* 10295 * If the bitmap is not yet written, then the allocated 10296 * inode cannot be written to disk. 10297 */ 10298 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 10299 if (inodedep->id_savedino2 != NULL) 10300 panic("initiate_write_inodeblock_ufs2: I/O underway"); 10301 FREE_LOCK(ump); 10302 sip = malloc(sizeof(struct ufs2_dinode), 10303 M_SAVEDINO, M_SOFTDEP_FLAGS); 10304 ACQUIRE_LOCK(ump); 10305 inodedep->id_savedino2 = sip; 10306 *inodedep->id_savedino2 = *dp; 10307 bzero((caddr_t)dp, sizeof(struct ufs2_dinode)); 10308 dp->di_gen = inodedep->id_savedino2->di_gen; 10309 dp->di_freelink = inodedep->id_savedino2->di_freelink; 10310 return; 10311 } 10312 /* 10313 * If no dependencies, then there is nothing to roll back. 10314 */ 10315 inodedep->id_savedsize = dp->di_size; 10316 inodedep->id_savedextsize = dp->di_extsize; 10317 inodedep->id_savednlink = dp->di_nlink; 10318 if (TAILQ_EMPTY(&inodedep->id_inoupdt) && 10319 TAILQ_EMPTY(&inodedep->id_extupdt) && 10320 TAILQ_EMPTY(&inodedep->id_inoreflst)) 10321 return; 10322 /* 10323 * Revert the link count to that of the first unwritten journal entry. 10324 */ 10325 inoref = TAILQ_FIRST(&inodedep->id_inoreflst); 10326 if (inoref) 10327 dp->di_nlink = inoref->if_nlink; 10328 10329 /* 10330 * Set the ext data dependencies to busy. 10331 */ 10332 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 10333 adp = TAILQ_NEXT(adp, ad_next)) { 10334 #ifdef INVARIANTS 10335 if (deplist != 0 && prevlbn >= adp->ad_offset) 10336 panic("softdep_write_inodeblock: lbn order"); 10337 prevlbn = adp->ad_offset; 10338 if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno) 10339 panic("%s: direct pointer #%jd mismatch %jd != %jd", 10340 "softdep_write_inodeblock", 10341 (intmax_t)adp->ad_offset, 10342 (intmax_t)dp->di_extb[adp->ad_offset], 10343 (intmax_t)adp->ad_newblkno); 10344 deplist |= 1 << adp->ad_offset; 10345 if ((adp->ad_state & ATTACHED) == 0) 10346 panic("softdep_write_inodeblock: Unknown state 0x%x", 10347 adp->ad_state); 10348 #endif /* INVARIANTS */ 10349 adp->ad_state &= ~ATTACHED; 10350 adp->ad_state |= UNDONE; 10351 } 10352 /* 10353 * The on-disk inode cannot claim to be any larger than the last 10354 * fragment that has been written. Otherwise, the on-disk inode 10355 * might have fragments that were not the last block in the ext 10356 * data which would corrupt the filesystem. 10357 */ 10358 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 10359 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10360 dp->di_extb[adp->ad_offset] = adp->ad_oldblkno; 10361 /* keep going until hitting a rollback to a frag */ 10362 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10363 continue; 10364 dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10365 for (i = adp->ad_offset + 1; i < NXADDR; i++) { 10366 #ifdef INVARIANTS 10367 if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0) 10368 panic("softdep_write_inodeblock: lost dep1"); 10369 #endif /* INVARIANTS */ 10370 dp->di_extb[i] = 0; 10371 } 10372 lastadp = NULL; 10373 break; 10374 } 10375 /* 10376 * If we have zero'ed out the last allocated block of the ext 10377 * data, roll back the size to the last currently allocated block. 10378 * We know that this last allocated block is a full-sized as 10379 * we already checked for fragments in the loop above. 10380 */ 10381 if (lastadp != NULL && 10382 dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10383 for (i = lastadp->ad_offset; i >= 0; i--) 10384 if (dp->di_extb[i] != 0) 10385 break; 10386 dp->di_extsize = (i + 1) * fs->fs_bsize; 10387 } 10388 /* 10389 * Set the file data dependencies to busy. 10390 */ 10391 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10392 adp = TAILQ_NEXT(adp, ad_next)) { 10393 #ifdef INVARIANTS 10394 if (deplist != 0 && prevlbn >= adp->ad_offset) 10395 panic("softdep_write_inodeblock: lbn order"); 10396 if ((adp->ad_state & ATTACHED) == 0) 10397 panic("inodedep %p and adp %p not attached", inodedep, adp); 10398 prevlbn = adp->ad_offset; 10399 if (adp->ad_offset < NDADDR && 10400 dp->di_db[adp->ad_offset] != adp->ad_newblkno) 10401 panic("%s: direct pointer #%jd mismatch %jd != %jd", 10402 "softdep_write_inodeblock", 10403 (intmax_t)adp->ad_offset, 10404 (intmax_t)dp->di_db[adp->ad_offset], 10405 (intmax_t)adp->ad_newblkno); 10406 if (adp->ad_offset >= NDADDR && 10407 dp->di_ib[adp->ad_offset - NDADDR] != adp->ad_newblkno) 10408 panic("%s indirect pointer #%jd mismatch %jd != %jd", 10409 "softdep_write_inodeblock:", 10410 (intmax_t)adp->ad_offset - NDADDR, 10411 (intmax_t)dp->di_ib[adp->ad_offset - NDADDR], 10412 (intmax_t)adp->ad_newblkno); 10413 deplist |= 1 << adp->ad_offset; 10414 if ((adp->ad_state & ATTACHED) == 0) 10415 panic("softdep_write_inodeblock: Unknown state 0x%x", 10416 adp->ad_state); 10417 #endif /* INVARIANTS */ 10418 adp->ad_state &= ~ATTACHED; 10419 adp->ad_state |= UNDONE; 10420 } 10421 /* 10422 * The on-disk inode cannot claim to be any larger than the last 10423 * fragment that has been written. Otherwise, the on-disk inode 10424 * might have fragments that were not the last block in the file 10425 * which would corrupt the filesystem. 10426 */ 10427 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10428 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10429 if (adp->ad_offset >= NDADDR) 10430 break; 10431 dp->di_db[adp->ad_offset] = adp->ad_oldblkno; 10432 /* keep going until hitting a rollback to a frag */ 10433 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10434 continue; 10435 dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10436 for (i = adp->ad_offset + 1; i < NDADDR; i++) { 10437 #ifdef INVARIANTS 10438 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) 10439 panic("softdep_write_inodeblock: lost dep2"); 10440 #endif /* INVARIANTS */ 10441 dp->di_db[i] = 0; 10442 } 10443 for (i = 0; i < NIADDR; i++) { 10444 #ifdef INVARIANTS 10445 if (dp->di_ib[i] != 0 && 10446 (deplist & ((1 << NDADDR) << i)) == 0) 10447 panic("softdep_write_inodeblock: lost dep3"); 10448 #endif /* INVARIANTS */ 10449 dp->di_ib[i] = 0; 10450 } 10451 return; 10452 } 10453 /* 10454 * If we have zero'ed out the last allocated block of the file, 10455 * roll back the size to the last currently allocated block. 10456 * We know that this last allocated block is a full-sized as 10457 * we already checked for fragments in the loop above. 10458 */ 10459 if (lastadp != NULL && 10460 dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10461 for (i = lastadp->ad_offset; i >= 0; i--) 10462 if (dp->di_db[i] != 0) 10463 break; 10464 dp->di_size = (i + 1) * fs->fs_bsize; 10465 } 10466 /* 10467 * The only dependencies are for indirect blocks. 10468 * 10469 * The file size for indirect block additions is not guaranteed. 10470 * Such a guarantee would be non-trivial to achieve. The conventional 10471 * synchronous write implementation also does not make this guarantee. 10472 * Fsck should catch and fix discrepancies. Arguably, the file size 10473 * can be over-estimated without destroying integrity when the file 10474 * moves into the indirect blocks (i.e., is large). If we want to 10475 * postpone fsck, we are stuck with this argument. 10476 */ 10477 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 10478 dp->di_ib[adp->ad_offset - NDADDR] = 0; 10479 } 10480 10481 /* 10482 * Cancel an indirdep as a result of truncation. Release all of the 10483 * children allocindirs and place their journal work on the appropriate 10484 * list. 10485 */ 10486 static void 10487 cancel_indirdep(indirdep, bp, freeblks) 10488 struct indirdep *indirdep; 10489 struct buf *bp; 10490 struct freeblks *freeblks; 10491 { 10492 struct allocindir *aip; 10493 10494 /* 10495 * None of the indirect pointers will ever be visible, 10496 * so they can simply be tossed. GOINGAWAY ensures 10497 * that allocated pointers will be saved in the buffer 10498 * cache until they are freed. Note that they will 10499 * only be able to be found by their physical address 10500 * since the inode mapping the logical address will 10501 * be gone. The save buffer used for the safe copy 10502 * was allocated in setup_allocindir_phase2 using 10503 * the physical address so it could be used for this 10504 * purpose. Hence we swap the safe copy with the real 10505 * copy, allowing the safe copy to be freed and holding 10506 * on to the real copy for later use in indir_trunc. 10507 */ 10508 if (indirdep->ir_state & GOINGAWAY) 10509 panic("cancel_indirdep: already gone"); 10510 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 10511 indirdep->ir_state |= DEPCOMPLETE; 10512 LIST_REMOVE(indirdep, ir_next); 10513 } 10514 indirdep->ir_state |= GOINGAWAY; 10515 /* 10516 * Pass in bp for blocks still have journal writes 10517 * pending so we can cancel them on their own. 10518 */ 10519 while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != 0) 10520 cancel_allocindir(aip, bp, freeblks, 0); 10521 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) 10522 cancel_allocindir(aip, NULL, freeblks, 0); 10523 while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != 0) 10524 cancel_allocindir(aip, NULL, freeblks, 0); 10525 while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != 0) 10526 cancel_allocindir(aip, NULL, freeblks, 0); 10527 /* 10528 * If there are pending partial truncations we need to keep the 10529 * old block copy around until they complete. This is because 10530 * the current b_data is not a perfect superset of the available 10531 * blocks. 10532 */ 10533 if (TAILQ_EMPTY(&indirdep->ir_trunc)) 10534 bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount); 10535 else 10536 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); 10537 WORKLIST_REMOVE(&indirdep->ir_list); 10538 WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list); 10539 indirdep->ir_bp = NULL; 10540 indirdep->ir_freeblks = freeblks; 10541 } 10542 10543 /* 10544 * Free an indirdep once it no longer has new pointers to track. 10545 */ 10546 static void 10547 free_indirdep(indirdep) 10548 struct indirdep *indirdep; 10549 { 10550 10551 KASSERT(TAILQ_EMPTY(&indirdep->ir_trunc), 10552 ("free_indirdep: Indir trunc list not empty.")); 10553 KASSERT(LIST_EMPTY(&indirdep->ir_completehd), 10554 ("free_indirdep: Complete head not empty.")); 10555 KASSERT(LIST_EMPTY(&indirdep->ir_writehd), 10556 ("free_indirdep: write head not empty.")); 10557 KASSERT(LIST_EMPTY(&indirdep->ir_donehd), 10558 ("free_indirdep: done head not empty.")); 10559 KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd), 10560 ("free_indirdep: deplist head not empty.")); 10561 KASSERT((indirdep->ir_state & DEPCOMPLETE), 10562 ("free_indirdep: %p still on newblk list.", indirdep)); 10563 KASSERT(indirdep->ir_saveddata == NULL, 10564 ("free_indirdep: %p still has saved data.", indirdep)); 10565 if (indirdep->ir_state & ONWORKLIST) 10566 WORKLIST_REMOVE(&indirdep->ir_list); 10567 WORKITEM_FREE(indirdep, D_INDIRDEP); 10568 } 10569 10570 /* 10571 * Called before a write to an indirdep. This routine is responsible for 10572 * rolling back pointers to a safe state which includes only those 10573 * allocindirs which have been completed. 10574 */ 10575 static void 10576 initiate_write_indirdep(indirdep, bp) 10577 struct indirdep *indirdep; 10578 struct buf *bp; 10579 { 10580 struct ufsmount *ump; 10581 10582 indirdep->ir_state |= IOSTARTED; 10583 if (indirdep->ir_state & GOINGAWAY) 10584 panic("disk_io_initiation: indirdep gone"); 10585 /* 10586 * If there are no remaining dependencies, this will be writing 10587 * the real pointers. 10588 */ 10589 if (LIST_EMPTY(&indirdep->ir_deplisthd) && 10590 TAILQ_EMPTY(&indirdep->ir_trunc)) 10591 return; 10592 /* 10593 * Replace up-to-date version with safe version. 10594 */ 10595 if (indirdep->ir_saveddata == NULL) { 10596 ump = VFSTOUFS(indirdep->ir_list.wk_mp); 10597 LOCK_OWNED(ump); 10598 FREE_LOCK(ump); 10599 indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP, 10600 M_SOFTDEP_FLAGS); 10601 ACQUIRE_LOCK(ump); 10602 } 10603 indirdep->ir_state &= ~ATTACHED; 10604 indirdep->ir_state |= UNDONE; 10605 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); 10606 bcopy(indirdep->ir_savebp->b_data, bp->b_data, 10607 bp->b_bcount); 10608 } 10609 10610 /* 10611 * Called when an inode has been cleared in a cg bitmap. This finally 10612 * eliminates any canceled jaddrefs 10613 */ 10614 void 10615 softdep_setup_inofree(mp, bp, ino, wkhd) 10616 struct mount *mp; 10617 struct buf *bp; 10618 ino_t ino; 10619 struct workhead *wkhd; 10620 { 10621 struct worklist *wk, *wkn; 10622 struct inodedep *inodedep; 10623 struct ufsmount *ump; 10624 uint8_t *inosused; 10625 struct cg *cgp; 10626 struct fs *fs; 10627 10628 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 10629 ("softdep_setup_inofree called on non-softdep filesystem")); 10630 ump = VFSTOUFS(mp); 10631 ACQUIRE_LOCK(ump); 10632 fs = ump->um_fs; 10633 cgp = (struct cg *)bp->b_data; 10634 inosused = cg_inosused(cgp); 10635 if (isset(inosused, ino % fs->fs_ipg)) 10636 panic("softdep_setup_inofree: inode %ju not freed.", 10637 (uintmax_t)ino); 10638 if (inodedep_lookup(mp, ino, 0, &inodedep)) 10639 panic("softdep_setup_inofree: ino %ju has existing inodedep %p", 10640 (uintmax_t)ino, inodedep); 10641 if (wkhd) { 10642 LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) { 10643 if (wk->wk_type != D_JADDREF) 10644 continue; 10645 WORKLIST_REMOVE(wk); 10646 /* 10647 * We can free immediately even if the jaddref 10648 * isn't attached in a background write as now 10649 * the bitmaps are reconciled. 10650 */ 10651 wk->wk_state |= COMPLETE | ATTACHED; 10652 free_jaddref(WK_JADDREF(wk)); 10653 } 10654 jwork_move(&bp->b_dep, wkhd); 10655 } 10656 FREE_LOCK(ump); 10657 } 10658 10659 10660 /* 10661 * Called via ffs_blkfree() after a set of frags has been cleared from a cg 10662 * map. Any dependencies waiting for the write to clear are added to the 10663 * buf's list and any jnewblks that are being canceled are discarded 10664 * immediately. 10665 */ 10666 void 10667 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd) 10668 struct mount *mp; 10669 struct buf *bp; 10670 ufs2_daddr_t blkno; 10671 int frags; 10672 struct workhead *wkhd; 10673 { 10674 struct bmsafemap *bmsafemap; 10675 struct jnewblk *jnewblk; 10676 struct ufsmount *ump; 10677 struct worklist *wk; 10678 struct fs *fs; 10679 #ifdef SUJ_DEBUG 10680 uint8_t *blksfree; 10681 struct cg *cgp; 10682 ufs2_daddr_t jstart; 10683 ufs2_daddr_t jend; 10684 ufs2_daddr_t end; 10685 long bno; 10686 int i; 10687 #endif 10688 10689 CTR3(KTR_SUJ, 10690 "softdep_setup_blkfree: blkno %jd frags %d wk head %p", 10691 blkno, frags, wkhd); 10692 10693 ump = VFSTOUFS(mp); 10694 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 10695 ("softdep_setup_blkfree called on non-softdep filesystem")); 10696 ACQUIRE_LOCK(ump); 10697 /* Lookup the bmsafemap so we track when it is dirty. */ 10698 fs = ump->um_fs; 10699 bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL); 10700 /* 10701 * Detach any jnewblks which have been canceled. They must linger 10702 * until the bitmap is cleared again by ffs_blkfree() to prevent 10703 * an unjournaled allocation from hitting the disk. 10704 */ 10705 if (wkhd) { 10706 while ((wk = LIST_FIRST(wkhd)) != NULL) { 10707 CTR2(KTR_SUJ, 10708 "softdep_setup_blkfree: blkno %jd wk type %d", 10709 blkno, wk->wk_type); 10710 WORKLIST_REMOVE(wk); 10711 if (wk->wk_type != D_JNEWBLK) { 10712 WORKLIST_INSERT(&bmsafemap->sm_freehd, wk); 10713 continue; 10714 } 10715 jnewblk = WK_JNEWBLK(wk); 10716 KASSERT(jnewblk->jn_state & GOINGAWAY, 10717 ("softdep_setup_blkfree: jnewblk not canceled.")); 10718 #ifdef SUJ_DEBUG 10719 /* 10720 * Assert that this block is free in the bitmap 10721 * before we discard the jnewblk. 10722 */ 10723 cgp = (struct cg *)bp->b_data; 10724 blksfree = cg_blksfree(cgp); 10725 bno = dtogd(fs, jnewblk->jn_blkno); 10726 for (i = jnewblk->jn_oldfrags; 10727 i < jnewblk->jn_frags; i++) { 10728 if (isset(blksfree, bno + i)) 10729 continue; 10730 panic("softdep_setup_blkfree: not free"); 10731 } 10732 #endif 10733 /* 10734 * Even if it's not attached we can free immediately 10735 * as the new bitmap is correct. 10736 */ 10737 wk->wk_state |= COMPLETE | ATTACHED; 10738 free_jnewblk(jnewblk); 10739 } 10740 } 10741 10742 #ifdef SUJ_DEBUG 10743 /* 10744 * Assert that we are not freeing a block which has an outstanding 10745 * allocation dependency. 10746 */ 10747 fs = VFSTOUFS(mp)->um_fs; 10748 bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL); 10749 end = blkno + frags; 10750 LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) { 10751 /* 10752 * Don't match against blocks that will be freed when the 10753 * background write is done. 10754 */ 10755 if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) == 10756 (COMPLETE | DEPCOMPLETE)) 10757 continue; 10758 jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags; 10759 jend = jnewblk->jn_blkno + jnewblk->jn_frags; 10760 if ((blkno >= jstart && blkno < jend) || 10761 (end > jstart && end <= jend)) { 10762 printf("state 0x%X %jd - %d %d dep %p\n", 10763 jnewblk->jn_state, jnewblk->jn_blkno, 10764 jnewblk->jn_oldfrags, jnewblk->jn_frags, 10765 jnewblk->jn_dep); 10766 panic("softdep_setup_blkfree: " 10767 "%jd-%jd(%d) overlaps with %jd-%jd", 10768 blkno, end, frags, jstart, jend); 10769 } 10770 } 10771 #endif 10772 FREE_LOCK(ump); 10773 } 10774 10775 /* 10776 * Revert a block allocation when the journal record that describes it 10777 * is not yet written. 10778 */ 10779 static int 10780 jnewblk_rollback(jnewblk, fs, cgp, blksfree) 10781 struct jnewblk *jnewblk; 10782 struct fs *fs; 10783 struct cg *cgp; 10784 uint8_t *blksfree; 10785 { 10786 ufs1_daddr_t fragno; 10787 long cgbno, bbase; 10788 int frags, blk; 10789 int i; 10790 10791 frags = 0; 10792 cgbno = dtogd(fs, jnewblk->jn_blkno); 10793 /* 10794 * We have to test which frags need to be rolled back. We may 10795 * be operating on a stale copy when doing background writes. 10796 */ 10797 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) 10798 if (isclr(blksfree, cgbno + i)) 10799 frags++; 10800 if (frags == 0) 10801 return (0); 10802 /* 10803 * This is mostly ffs_blkfree() sans some validation and 10804 * superblock updates. 10805 */ 10806 if (frags == fs->fs_frag) { 10807 fragno = fragstoblks(fs, cgbno); 10808 ffs_setblock(fs, blksfree, fragno); 10809 ffs_clusteracct(fs, cgp, fragno, 1); 10810 cgp->cg_cs.cs_nbfree++; 10811 } else { 10812 cgbno += jnewblk->jn_oldfrags; 10813 bbase = cgbno - fragnum(fs, cgbno); 10814 /* Decrement the old frags. */ 10815 blk = blkmap(fs, blksfree, bbase); 10816 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 10817 /* Deallocate the fragment */ 10818 for (i = 0; i < frags; i++) 10819 setbit(blksfree, cgbno + i); 10820 cgp->cg_cs.cs_nffree += frags; 10821 /* Add back in counts associated with the new frags */ 10822 blk = blkmap(fs, blksfree, bbase); 10823 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 10824 /* If a complete block has been reassembled, account for it. */ 10825 fragno = fragstoblks(fs, bbase); 10826 if (ffs_isblock(fs, blksfree, fragno)) { 10827 cgp->cg_cs.cs_nffree -= fs->fs_frag; 10828 ffs_clusteracct(fs, cgp, fragno, 1); 10829 cgp->cg_cs.cs_nbfree++; 10830 } 10831 } 10832 stat_jnewblk++; 10833 jnewblk->jn_state &= ~ATTACHED; 10834 jnewblk->jn_state |= UNDONE; 10835 10836 return (frags); 10837 } 10838 10839 static void 10840 initiate_write_bmsafemap(bmsafemap, bp) 10841 struct bmsafemap *bmsafemap; 10842 struct buf *bp; /* The cg block. */ 10843 { 10844 struct jaddref *jaddref; 10845 struct jnewblk *jnewblk; 10846 uint8_t *inosused; 10847 uint8_t *blksfree; 10848 struct cg *cgp; 10849 struct fs *fs; 10850 ino_t ino; 10851 10852 if (bmsafemap->sm_state & IOSTARTED) 10853 return; 10854 bmsafemap->sm_state |= IOSTARTED; 10855 /* 10856 * Clear any inode allocations which are pending journal writes. 10857 */ 10858 if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) { 10859 cgp = (struct cg *)bp->b_data; 10860 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 10861 inosused = cg_inosused(cgp); 10862 LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) { 10863 ino = jaddref->ja_ino % fs->fs_ipg; 10864 if (isset(inosused, ino)) { 10865 if ((jaddref->ja_mode & IFMT) == IFDIR) 10866 cgp->cg_cs.cs_ndir--; 10867 cgp->cg_cs.cs_nifree++; 10868 clrbit(inosused, ino); 10869 jaddref->ja_state &= ~ATTACHED; 10870 jaddref->ja_state |= UNDONE; 10871 stat_jaddref++; 10872 } else 10873 panic("initiate_write_bmsafemap: inode %ju " 10874 "marked free", (uintmax_t)jaddref->ja_ino); 10875 } 10876 } 10877 /* 10878 * Clear any block allocations which are pending journal writes. 10879 */ 10880 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) { 10881 cgp = (struct cg *)bp->b_data; 10882 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 10883 blksfree = cg_blksfree(cgp); 10884 LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) { 10885 if (jnewblk_rollback(jnewblk, fs, cgp, blksfree)) 10886 continue; 10887 panic("initiate_write_bmsafemap: block %jd " 10888 "marked free", jnewblk->jn_blkno); 10889 } 10890 } 10891 /* 10892 * Move allocation lists to the written lists so they can be 10893 * cleared once the block write is complete. 10894 */ 10895 LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr, 10896 inodedep, id_deps); 10897 LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr, 10898 newblk, nb_deps); 10899 LIST_SWAP(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, worklist, 10900 wk_list); 10901 } 10902 10903 /* 10904 * This routine is called during the completion interrupt 10905 * service routine for a disk write (from the procedure called 10906 * by the device driver to inform the filesystem caches of 10907 * a request completion). It should be called early in this 10908 * procedure, before the block is made available to other 10909 * processes or other routines are called. 10910 * 10911 */ 10912 static void 10913 softdep_disk_write_complete(bp) 10914 struct buf *bp; /* describes the completed disk write */ 10915 { 10916 struct worklist *wk; 10917 struct worklist *owk; 10918 struct ufsmount *ump; 10919 struct workhead reattach; 10920 struct freeblks *freeblks; 10921 struct buf *sbp; 10922 10923 /* 10924 * If an error occurred while doing the write, then the data 10925 * has not hit the disk and the dependencies cannot be unrolled. 10926 */ 10927 if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0) 10928 return; 10929 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL) 10930 return; 10931 ump = VFSTOUFS(wk->wk_mp); 10932 LIST_INIT(&reattach); 10933 /* 10934 * This lock must not be released anywhere in this code segment. 10935 */ 10936 sbp = NULL; 10937 owk = NULL; 10938 ACQUIRE_LOCK(ump); 10939 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) { 10940 WORKLIST_REMOVE(wk); 10941 atomic_add_long(&dep_write[wk->wk_type], 1); 10942 if (wk == owk) 10943 panic("duplicate worklist: %p\n", wk); 10944 owk = wk; 10945 switch (wk->wk_type) { 10946 10947 case D_PAGEDEP: 10948 if (handle_written_filepage(WK_PAGEDEP(wk), bp)) 10949 WORKLIST_INSERT(&reattach, wk); 10950 continue; 10951 10952 case D_INODEDEP: 10953 if (handle_written_inodeblock(WK_INODEDEP(wk), bp)) 10954 WORKLIST_INSERT(&reattach, wk); 10955 continue; 10956 10957 case D_BMSAFEMAP: 10958 if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp)) 10959 WORKLIST_INSERT(&reattach, wk); 10960 continue; 10961 10962 case D_MKDIR: 10963 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); 10964 continue; 10965 10966 case D_ALLOCDIRECT: 10967 wk->wk_state |= COMPLETE; 10968 handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL); 10969 continue; 10970 10971 case D_ALLOCINDIR: 10972 wk->wk_state |= COMPLETE; 10973 handle_allocindir_partdone(WK_ALLOCINDIR(wk)); 10974 continue; 10975 10976 case D_INDIRDEP: 10977 if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp)) 10978 WORKLIST_INSERT(&reattach, wk); 10979 continue; 10980 10981 case D_FREEBLKS: 10982 wk->wk_state |= COMPLETE; 10983 freeblks = WK_FREEBLKS(wk); 10984 if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE && 10985 LIST_EMPTY(&freeblks->fb_jblkdephd)) 10986 add_to_worklist(wk, WK_NODELAY); 10987 continue; 10988 10989 case D_FREEWORK: 10990 handle_written_freework(WK_FREEWORK(wk)); 10991 break; 10992 10993 case D_JSEGDEP: 10994 free_jsegdep(WK_JSEGDEP(wk)); 10995 continue; 10996 10997 case D_JSEG: 10998 handle_written_jseg(WK_JSEG(wk), bp); 10999 continue; 11000 11001 case D_SBDEP: 11002 if (handle_written_sbdep(WK_SBDEP(wk), bp)) 11003 WORKLIST_INSERT(&reattach, wk); 11004 continue; 11005 11006 case D_FREEDEP: 11007 free_freedep(WK_FREEDEP(wk)); 11008 continue; 11009 11010 default: 11011 panic("handle_disk_write_complete: Unknown type %s", 11012 TYPENAME(wk->wk_type)); 11013 /* NOTREACHED */ 11014 } 11015 } 11016 /* 11017 * Reattach any requests that must be redone. 11018 */ 11019 while ((wk = LIST_FIRST(&reattach)) != NULL) { 11020 WORKLIST_REMOVE(wk); 11021 WORKLIST_INSERT(&bp->b_dep, wk); 11022 } 11023 FREE_LOCK(ump); 11024 if (sbp) 11025 brelse(sbp); 11026 } 11027 11028 /* 11029 * Called from within softdep_disk_write_complete above. Note that 11030 * this routine is always called from interrupt level with further 11031 * splbio interrupts blocked. 11032 */ 11033 static void 11034 handle_allocdirect_partdone(adp, wkhd) 11035 struct allocdirect *adp; /* the completed allocdirect */ 11036 struct workhead *wkhd; /* Work to do when inode is writtne. */ 11037 { 11038 struct allocdirectlst *listhead; 11039 struct allocdirect *listadp; 11040 struct inodedep *inodedep; 11041 long bsize; 11042 11043 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 11044 return; 11045 /* 11046 * The on-disk inode cannot claim to be any larger than the last 11047 * fragment that has been written. Otherwise, the on-disk inode 11048 * might have fragments that were not the last block in the file 11049 * which would corrupt the filesystem. Thus, we cannot free any 11050 * allocdirects after one whose ad_oldblkno claims a fragment as 11051 * these blocks must be rolled back to zero before writing the inode. 11052 * We check the currently active set of allocdirects in id_inoupdt 11053 * or id_extupdt as appropriate. 11054 */ 11055 inodedep = adp->ad_inodedep; 11056 bsize = inodedep->id_fs->fs_bsize; 11057 if (adp->ad_state & EXTDATA) 11058 listhead = &inodedep->id_extupdt; 11059 else 11060 listhead = &inodedep->id_inoupdt; 11061 TAILQ_FOREACH(listadp, listhead, ad_next) { 11062 /* found our block */ 11063 if (listadp == adp) 11064 break; 11065 /* continue if ad_oldlbn is not a fragment */ 11066 if (listadp->ad_oldsize == 0 || 11067 listadp->ad_oldsize == bsize) 11068 continue; 11069 /* hit a fragment */ 11070 return; 11071 } 11072 /* 11073 * If we have reached the end of the current list without 11074 * finding the just finished dependency, then it must be 11075 * on the future dependency list. Future dependencies cannot 11076 * be freed until they are moved to the current list. 11077 */ 11078 if (listadp == NULL) { 11079 #ifdef DEBUG 11080 if (adp->ad_state & EXTDATA) 11081 listhead = &inodedep->id_newextupdt; 11082 else 11083 listhead = &inodedep->id_newinoupdt; 11084 TAILQ_FOREACH(listadp, listhead, ad_next) 11085 /* found our block */ 11086 if (listadp == adp) 11087 break; 11088 if (listadp == NULL) 11089 panic("handle_allocdirect_partdone: lost dep"); 11090 #endif /* DEBUG */ 11091 return; 11092 } 11093 /* 11094 * If we have found the just finished dependency, then queue 11095 * it along with anything that follows it that is complete. 11096 * Since the pointer has not yet been written in the inode 11097 * as the dependency prevents it, place the allocdirect on the 11098 * bufwait list where it will be freed once the pointer is 11099 * valid. 11100 */ 11101 if (wkhd == NULL) 11102 wkhd = &inodedep->id_bufwait; 11103 for (; adp; adp = listadp) { 11104 listadp = TAILQ_NEXT(adp, ad_next); 11105 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 11106 return; 11107 TAILQ_REMOVE(listhead, adp, ad_next); 11108 WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list); 11109 } 11110 } 11111 11112 /* 11113 * Called from within softdep_disk_write_complete above. This routine 11114 * completes successfully written allocindirs. 11115 */ 11116 static void 11117 handle_allocindir_partdone(aip) 11118 struct allocindir *aip; /* the completed allocindir */ 11119 { 11120 struct indirdep *indirdep; 11121 11122 if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE) 11123 return; 11124 indirdep = aip->ai_indirdep; 11125 LIST_REMOVE(aip, ai_next); 11126 /* 11127 * Don't set a pointer while the buffer is undergoing IO or while 11128 * we have active truncations. 11129 */ 11130 if (indirdep->ir_state & UNDONE || !TAILQ_EMPTY(&indirdep->ir_trunc)) { 11131 LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next); 11132 return; 11133 } 11134 if (indirdep->ir_state & UFS1FMT) 11135 ((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 11136 aip->ai_newblkno; 11137 else 11138 ((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 11139 aip->ai_newblkno; 11140 /* 11141 * Await the pointer write before freeing the allocindir. 11142 */ 11143 LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next); 11144 } 11145 11146 /* 11147 * Release segments held on a jwork list. 11148 */ 11149 static void 11150 handle_jwork(wkhd) 11151 struct workhead *wkhd; 11152 { 11153 struct worklist *wk; 11154 11155 while ((wk = LIST_FIRST(wkhd)) != NULL) { 11156 WORKLIST_REMOVE(wk); 11157 switch (wk->wk_type) { 11158 case D_JSEGDEP: 11159 free_jsegdep(WK_JSEGDEP(wk)); 11160 continue; 11161 case D_FREEDEP: 11162 free_freedep(WK_FREEDEP(wk)); 11163 continue; 11164 case D_FREEFRAG: 11165 rele_jseg(WK_JSEG(WK_FREEFRAG(wk)->ff_jdep)); 11166 WORKITEM_FREE(wk, D_FREEFRAG); 11167 continue; 11168 case D_FREEWORK: 11169 handle_written_freework(WK_FREEWORK(wk)); 11170 continue; 11171 default: 11172 panic("handle_jwork: Unknown type %s\n", 11173 TYPENAME(wk->wk_type)); 11174 } 11175 } 11176 } 11177 11178 /* 11179 * Handle the bufwait list on an inode when it is safe to release items 11180 * held there. This normally happens after an inode block is written but 11181 * may be delayed and handled later if there are pending journal items that 11182 * are not yet safe to be released. 11183 */ 11184 static struct freefile * 11185 handle_bufwait(inodedep, refhd) 11186 struct inodedep *inodedep; 11187 struct workhead *refhd; 11188 { 11189 struct jaddref *jaddref; 11190 struct freefile *freefile; 11191 struct worklist *wk; 11192 11193 freefile = NULL; 11194 while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) { 11195 WORKLIST_REMOVE(wk); 11196 switch (wk->wk_type) { 11197 case D_FREEFILE: 11198 /* 11199 * We defer adding freefile to the worklist 11200 * until all other additions have been made to 11201 * ensure that it will be done after all the 11202 * old blocks have been freed. 11203 */ 11204 if (freefile != NULL) 11205 panic("handle_bufwait: freefile"); 11206 freefile = WK_FREEFILE(wk); 11207 continue; 11208 11209 case D_MKDIR: 11210 handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT); 11211 continue; 11212 11213 case D_DIRADD: 11214 diradd_inode_written(WK_DIRADD(wk), inodedep); 11215 continue; 11216 11217 case D_FREEFRAG: 11218 wk->wk_state |= COMPLETE; 11219 if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE) 11220 add_to_worklist(wk, 0); 11221 continue; 11222 11223 case D_DIRREM: 11224 wk->wk_state |= COMPLETE; 11225 add_to_worklist(wk, 0); 11226 continue; 11227 11228 case D_ALLOCDIRECT: 11229 case D_ALLOCINDIR: 11230 free_newblk(WK_NEWBLK(wk)); 11231 continue; 11232 11233 case D_JNEWBLK: 11234 wk->wk_state |= COMPLETE; 11235 free_jnewblk(WK_JNEWBLK(wk)); 11236 continue; 11237 11238 /* 11239 * Save freed journal segments and add references on 11240 * the supplied list which will delay their release 11241 * until the cg bitmap is cleared on disk. 11242 */ 11243 case D_JSEGDEP: 11244 if (refhd == NULL) 11245 free_jsegdep(WK_JSEGDEP(wk)); 11246 else 11247 WORKLIST_INSERT(refhd, wk); 11248 continue; 11249 11250 case D_JADDREF: 11251 jaddref = WK_JADDREF(wk); 11252 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, 11253 if_deps); 11254 /* 11255 * Transfer any jaddrefs to the list to be freed with 11256 * the bitmap if we're handling a removed file. 11257 */ 11258 if (refhd == NULL) { 11259 wk->wk_state |= COMPLETE; 11260 free_jaddref(jaddref); 11261 } else 11262 WORKLIST_INSERT(refhd, wk); 11263 continue; 11264 11265 default: 11266 panic("handle_bufwait: Unknown type %p(%s)", 11267 wk, TYPENAME(wk->wk_type)); 11268 /* NOTREACHED */ 11269 } 11270 } 11271 return (freefile); 11272 } 11273 /* 11274 * Called from within softdep_disk_write_complete above to restore 11275 * in-memory inode block contents to their most up-to-date state. Note 11276 * that this routine is always called from interrupt level with further 11277 * splbio interrupts blocked. 11278 */ 11279 static int 11280 handle_written_inodeblock(inodedep, bp) 11281 struct inodedep *inodedep; 11282 struct buf *bp; /* buffer containing the inode block */ 11283 { 11284 struct freefile *freefile; 11285 struct allocdirect *adp, *nextadp; 11286 struct ufs1_dinode *dp1 = NULL; 11287 struct ufs2_dinode *dp2 = NULL; 11288 struct workhead wkhd; 11289 int hadchanges, fstype; 11290 ino_t freelink; 11291 11292 LIST_INIT(&wkhd); 11293 hadchanges = 0; 11294 freefile = NULL; 11295 if ((inodedep->id_state & IOSTARTED) == 0) 11296 panic("handle_written_inodeblock: not started"); 11297 inodedep->id_state &= ~IOSTARTED; 11298 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) { 11299 fstype = UFS1; 11300 dp1 = (struct ufs1_dinode *)bp->b_data + 11301 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 11302 freelink = dp1->di_freelink; 11303 } else { 11304 fstype = UFS2; 11305 dp2 = (struct ufs2_dinode *)bp->b_data + 11306 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 11307 freelink = dp2->di_freelink; 11308 } 11309 /* 11310 * Leave this inodeblock dirty until it's in the list. 11311 */ 11312 if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED) { 11313 struct inodedep *inon; 11314 11315 inon = TAILQ_NEXT(inodedep, id_unlinked); 11316 if ((inon == NULL && freelink == 0) || 11317 (inon && inon->id_ino == freelink)) { 11318 if (inon) 11319 inon->id_state |= UNLINKPREV; 11320 inodedep->id_state |= UNLINKNEXT; 11321 } 11322 hadchanges = 1; 11323 } 11324 /* 11325 * If we had to rollback the inode allocation because of 11326 * bitmaps being incomplete, then simply restore it. 11327 * Keep the block dirty so that it will not be reclaimed until 11328 * all associated dependencies have been cleared and the 11329 * corresponding updates written to disk. 11330 */ 11331 if (inodedep->id_savedino1 != NULL) { 11332 hadchanges = 1; 11333 if (fstype == UFS1) 11334 *dp1 = *inodedep->id_savedino1; 11335 else 11336 *dp2 = *inodedep->id_savedino2; 11337 free(inodedep->id_savedino1, M_SAVEDINO); 11338 inodedep->id_savedino1 = NULL; 11339 if ((bp->b_flags & B_DELWRI) == 0) 11340 stat_inode_bitmap++; 11341 bdirty(bp); 11342 /* 11343 * If the inode is clear here and GOINGAWAY it will never 11344 * be written. Process the bufwait and clear any pending 11345 * work which may include the freefile. 11346 */ 11347 if (inodedep->id_state & GOINGAWAY) 11348 goto bufwait; 11349 return (1); 11350 } 11351 inodedep->id_state |= COMPLETE; 11352 /* 11353 * Roll forward anything that had to be rolled back before 11354 * the inode could be updated. 11355 */ 11356 for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) { 11357 nextadp = TAILQ_NEXT(adp, ad_next); 11358 if (adp->ad_state & ATTACHED) 11359 panic("handle_written_inodeblock: new entry"); 11360 if (fstype == UFS1) { 11361 if (adp->ad_offset < NDADDR) { 11362 if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno) 11363 panic("%s %s #%jd mismatch %d != %jd", 11364 "handle_written_inodeblock:", 11365 "direct pointer", 11366 (intmax_t)adp->ad_offset, 11367 dp1->di_db[adp->ad_offset], 11368 (intmax_t)adp->ad_oldblkno); 11369 dp1->di_db[adp->ad_offset] = adp->ad_newblkno; 11370 } else { 11371 if (dp1->di_ib[adp->ad_offset - NDADDR] != 0) 11372 panic("%s: %s #%jd allocated as %d", 11373 "handle_written_inodeblock", 11374 "indirect pointer", 11375 (intmax_t)adp->ad_offset - NDADDR, 11376 dp1->di_ib[adp->ad_offset - NDADDR]); 11377 dp1->di_ib[adp->ad_offset - NDADDR] = 11378 adp->ad_newblkno; 11379 } 11380 } else { 11381 if (adp->ad_offset < NDADDR) { 11382 if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno) 11383 panic("%s: %s #%jd %s %jd != %jd", 11384 "handle_written_inodeblock", 11385 "direct pointer", 11386 (intmax_t)adp->ad_offset, "mismatch", 11387 (intmax_t)dp2->di_db[adp->ad_offset], 11388 (intmax_t)adp->ad_oldblkno); 11389 dp2->di_db[adp->ad_offset] = adp->ad_newblkno; 11390 } else { 11391 if (dp2->di_ib[adp->ad_offset - NDADDR] != 0) 11392 panic("%s: %s #%jd allocated as %jd", 11393 "handle_written_inodeblock", 11394 "indirect pointer", 11395 (intmax_t)adp->ad_offset - NDADDR, 11396 (intmax_t) 11397 dp2->di_ib[adp->ad_offset - NDADDR]); 11398 dp2->di_ib[adp->ad_offset - NDADDR] = 11399 adp->ad_newblkno; 11400 } 11401 } 11402 adp->ad_state &= ~UNDONE; 11403 adp->ad_state |= ATTACHED; 11404 hadchanges = 1; 11405 } 11406 for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) { 11407 nextadp = TAILQ_NEXT(adp, ad_next); 11408 if (adp->ad_state & ATTACHED) 11409 panic("handle_written_inodeblock: new entry"); 11410 if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno) 11411 panic("%s: direct pointers #%jd %s %jd != %jd", 11412 "handle_written_inodeblock", 11413 (intmax_t)adp->ad_offset, "mismatch", 11414 (intmax_t)dp2->di_extb[adp->ad_offset], 11415 (intmax_t)adp->ad_oldblkno); 11416 dp2->di_extb[adp->ad_offset] = adp->ad_newblkno; 11417 adp->ad_state &= ~UNDONE; 11418 adp->ad_state |= ATTACHED; 11419 hadchanges = 1; 11420 } 11421 if (hadchanges && (bp->b_flags & B_DELWRI) == 0) 11422 stat_direct_blk_ptrs++; 11423 /* 11424 * Reset the file size to its most up-to-date value. 11425 */ 11426 if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1) 11427 panic("handle_written_inodeblock: bad size"); 11428 if (inodedep->id_savednlink > LINK_MAX) 11429 panic("handle_written_inodeblock: Invalid link count " 11430 "%d for inodedep %p", inodedep->id_savednlink, inodedep); 11431 if (fstype == UFS1) { 11432 if (dp1->di_nlink != inodedep->id_savednlink) { 11433 dp1->di_nlink = inodedep->id_savednlink; 11434 hadchanges = 1; 11435 } 11436 if (dp1->di_size != inodedep->id_savedsize) { 11437 dp1->di_size = inodedep->id_savedsize; 11438 hadchanges = 1; 11439 } 11440 } else { 11441 if (dp2->di_nlink != inodedep->id_savednlink) { 11442 dp2->di_nlink = inodedep->id_savednlink; 11443 hadchanges = 1; 11444 } 11445 if (dp2->di_size != inodedep->id_savedsize) { 11446 dp2->di_size = inodedep->id_savedsize; 11447 hadchanges = 1; 11448 } 11449 if (dp2->di_extsize != inodedep->id_savedextsize) { 11450 dp2->di_extsize = inodedep->id_savedextsize; 11451 hadchanges = 1; 11452 } 11453 } 11454 inodedep->id_savedsize = -1; 11455 inodedep->id_savedextsize = -1; 11456 inodedep->id_savednlink = -1; 11457 /* 11458 * If there were any rollbacks in the inode block, then it must be 11459 * marked dirty so that its will eventually get written back in 11460 * its correct form. 11461 */ 11462 if (hadchanges) 11463 bdirty(bp); 11464 bufwait: 11465 /* 11466 * Process any allocdirects that completed during the update. 11467 */ 11468 if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL) 11469 handle_allocdirect_partdone(adp, &wkhd); 11470 if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 11471 handle_allocdirect_partdone(adp, &wkhd); 11472 /* 11473 * Process deallocations that were held pending until the 11474 * inode had been written to disk. Freeing of the inode 11475 * is delayed until after all blocks have been freed to 11476 * avoid creation of new <vfsid, inum, lbn> triples 11477 * before the old ones have been deleted. Completely 11478 * unlinked inodes are not processed until the unlinked 11479 * inode list is written or the last reference is removed. 11480 */ 11481 if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) { 11482 freefile = handle_bufwait(inodedep, NULL); 11483 if (freefile && !LIST_EMPTY(&wkhd)) { 11484 WORKLIST_INSERT(&wkhd, &freefile->fx_list); 11485 freefile = NULL; 11486 } 11487 } 11488 /* 11489 * Move rolled forward dependency completions to the bufwait list 11490 * now that those that were already written have been processed. 11491 */ 11492 if (!LIST_EMPTY(&wkhd) && hadchanges == 0) 11493 panic("handle_written_inodeblock: bufwait but no changes"); 11494 jwork_move(&inodedep->id_bufwait, &wkhd); 11495 11496 if (freefile != NULL) { 11497 /* 11498 * If the inode is goingaway it was never written. Fake up 11499 * the state here so free_inodedep() can succeed. 11500 */ 11501 if (inodedep->id_state & GOINGAWAY) 11502 inodedep->id_state |= COMPLETE | DEPCOMPLETE; 11503 if (free_inodedep(inodedep) == 0) 11504 panic("handle_written_inodeblock: live inodedep %p", 11505 inodedep); 11506 add_to_worklist(&freefile->fx_list, 0); 11507 return (0); 11508 } 11509 11510 /* 11511 * If no outstanding dependencies, free it. 11512 */ 11513 if (free_inodedep(inodedep) || 11514 (TAILQ_FIRST(&inodedep->id_inoreflst) == 0 && 11515 TAILQ_FIRST(&inodedep->id_inoupdt) == 0 && 11516 TAILQ_FIRST(&inodedep->id_extupdt) == 0 && 11517 LIST_FIRST(&inodedep->id_bufwait) == 0)) 11518 return (0); 11519 return (hadchanges); 11520 } 11521 11522 static int 11523 handle_written_indirdep(indirdep, bp, bpp) 11524 struct indirdep *indirdep; 11525 struct buf *bp; 11526 struct buf **bpp; 11527 { 11528 struct allocindir *aip; 11529 struct buf *sbp; 11530 int chgs; 11531 11532 if (indirdep->ir_state & GOINGAWAY) 11533 panic("handle_written_indirdep: indirdep gone"); 11534 if ((indirdep->ir_state & IOSTARTED) == 0) 11535 panic("handle_written_indirdep: IO not started"); 11536 chgs = 0; 11537 /* 11538 * If there were rollbacks revert them here. 11539 */ 11540 if (indirdep->ir_saveddata) { 11541 bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount); 11542 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 11543 free(indirdep->ir_saveddata, M_INDIRDEP); 11544 indirdep->ir_saveddata = NULL; 11545 } 11546 chgs = 1; 11547 } 11548 indirdep->ir_state &= ~(UNDONE | IOSTARTED); 11549 indirdep->ir_state |= ATTACHED; 11550 /* 11551 * Move allocindirs with written pointers to the completehd if 11552 * the indirdep's pointer is not yet written. Otherwise 11553 * free them here. 11554 */ 11555 while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != 0) { 11556 LIST_REMOVE(aip, ai_next); 11557 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 11558 LIST_INSERT_HEAD(&indirdep->ir_completehd, aip, 11559 ai_next); 11560 newblk_freefrag(&aip->ai_block); 11561 continue; 11562 } 11563 free_newblk(&aip->ai_block); 11564 } 11565 /* 11566 * Move allocindirs that have finished dependency processing from 11567 * the done list to the write list after updating the pointers. 11568 */ 11569 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 11570 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) { 11571 handle_allocindir_partdone(aip); 11572 if (aip == LIST_FIRST(&indirdep->ir_donehd)) 11573 panic("disk_write_complete: not gone"); 11574 chgs = 1; 11575 } 11576 } 11577 /* 11578 * Preserve the indirdep if there were any changes or if it is not 11579 * yet valid on disk. 11580 */ 11581 if (chgs) { 11582 stat_indir_blk_ptrs++; 11583 bdirty(bp); 11584 return (1); 11585 } 11586 /* 11587 * If there were no changes we can discard the savedbp and detach 11588 * ourselves from the buf. We are only carrying completed pointers 11589 * in this case. 11590 */ 11591 sbp = indirdep->ir_savebp; 11592 sbp->b_flags |= B_INVAL | B_NOCACHE; 11593 indirdep->ir_savebp = NULL; 11594 indirdep->ir_bp = NULL; 11595 if (*bpp != NULL) 11596 panic("handle_written_indirdep: bp already exists."); 11597 *bpp = sbp; 11598 /* 11599 * The indirdep may not be freed until its parent points at it. 11600 */ 11601 if (indirdep->ir_state & DEPCOMPLETE) 11602 free_indirdep(indirdep); 11603 11604 return (0); 11605 } 11606 11607 /* 11608 * Process a diradd entry after its dependent inode has been written. 11609 * This routine must be called with splbio interrupts blocked. 11610 */ 11611 static void 11612 diradd_inode_written(dap, inodedep) 11613 struct diradd *dap; 11614 struct inodedep *inodedep; 11615 { 11616 11617 dap->da_state |= COMPLETE; 11618 complete_diradd(dap); 11619 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 11620 } 11621 11622 /* 11623 * Returns true if the bmsafemap will have rollbacks when written. Must only 11624 * be called with the per-filesystem lock and the buf lock on the cg held. 11625 */ 11626 static int 11627 bmsafemap_backgroundwrite(bmsafemap, bp) 11628 struct bmsafemap *bmsafemap; 11629 struct buf *bp; 11630 { 11631 int dirty; 11632 11633 LOCK_OWNED(VFSTOUFS(bmsafemap->sm_list.wk_mp)); 11634 dirty = !LIST_EMPTY(&bmsafemap->sm_jaddrefhd) | 11635 !LIST_EMPTY(&bmsafemap->sm_jnewblkhd); 11636 /* 11637 * If we're initiating a background write we need to process the 11638 * rollbacks as they exist now, not as they exist when IO starts. 11639 * No other consumers will look at the contents of the shadowed 11640 * buf so this is safe to do here. 11641 */ 11642 if (bp->b_xflags & BX_BKGRDMARKER) 11643 initiate_write_bmsafemap(bmsafemap, bp); 11644 11645 return (dirty); 11646 } 11647 11648 /* 11649 * Re-apply an allocation when a cg write is complete. 11650 */ 11651 static int 11652 jnewblk_rollforward(jnewblk, fs, cgp, blksfree) 11653 struct jnewblk *jnewblk; 11654 struct fs *fs; 11655 struct cg *cgp; 11656 uint8_t *blksfree; 11657 { 11658 ufs1_daddr_t fragno; 11659 ufs2_daddr_t blkno; 11660 long cgbno, bbase; 11661 int frags, blk; 11662 int i; 11663 11664 frags = 0; 11665 cgbno = dtogd(fs, jnewblk->jn_blkno); 11666 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) { 11667 if (isclr(blksfree, cgbno + i)) 11668 panic("jnewblk_rollforward: re-allocated fragment"); 11669 frags++; 11670 } 11671 if (frags == fs->fs_frag) { 11672 blkno = fragstoblks(fs, cgbno); 11673 ffs_clrblock(fs, blksfree, (long)blkno); 11674 ffs_clusteracct(fs, cgp, blkno, -1); 11675 cgp->cg_cs.cs_nbfree--; 11676 } else { 11677 bbase = cgbno - fragnum(fs, cgbno); 11678 cgbno += jnewblk->jn_oldfrags; 11679 /* If a complete block had been reassembled, account for it. */ 11680 fragno = fragstoblks(fs, bbase); 11681 if (ffs_isblock(fs, blksfree, fragno)) { 11682 cgp->cg_cs.cs_nffree += fs->fs_frag; 11683 ffs_clusteracct(fs, cgp, fragno, -1); 11684 cgp->cg_cs.cs_nbfree--; 11685 } 11686 /* Decrement the old frags. */ 11687 blk = blkmap(fs, blksfree, bbase); 11688 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 11689 /* Allocate the fragment */ 11690 for (i = 0; i < frags; i++) 11691 clrbit(blksfree, cgbno + i); 11692 cgp->cg_cs.cs_nffree -= frags; 11693 /* Add back in counts associated with the new frags */ 11694 blk = blkmap(fs, blksfree, bbase); 11695 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 11696 } 11697 return (frags); 11698 } 11699 11700 /* 11701 * Complete a write to a bmsafemap structure. Roll forward any bitmap 11702 * changes if it's not a background write. Set all written dependencies 11703 * to DEPCOMPLETE and free the structure if possible. 11704 */ 11705 static int 11706 handle_written_bmsafemap(bmsafemap, bp) 11707 struct bmsafemap *bmsafemap; 11708 struct buf *bp; 11709 { 11710 struct newblk *newblk; 11711 struct inodedep *inodedep; 11712 struct jaddref *jaddref, *jatmp; 11713 struct jnewblk *jnewblk, *jntmp; 11714 struct ufsmount *ump; 11715 uint8_t *inosused; 11716 uint8_t *blksfree; 11717 struct cg *cgp; 11718 struct fs *fs; 11719 ino_t ino; 11720 int foreground; 11721 int chgs; 11722 11723 if ((bmsafemap->sm_state & IOSTARTED) == 0) 11724 panic("initiate_write_bmsafemap: Not started\n"); 11725 ump = VFSTOUFS(bmsafemap->sm_list.wk_mp); 11726 chgs = 0; 11727 bmsafemap->sm_state &= ~IOSTARTED; 11728 foreground = (bp->b_xflags & BX_BKGRDMARKER) == 0; 11729 /* 11730 * Release journal work that was waiting on the write. 11731 */ 11732 handle_jwork(&bmsafemap->sm_freewr); 11733 11734 /* 11735 * Restore unwritten inode allocation pending jaddref writes. 11736 */ 11737 if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) { 11738 cgp = (struct cg *)bp->b_data; 11739 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 11740 inosused = cg_inosused(cgp); 11741 LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd, 11742 ja_bmdeps, jatmp) { 11743 if ((jaddref->ja_state & UNDONE) == 0) 11744 continue; 11745 ino = jaddref->ja_ino % fs->fs_ipg; 11746 if (isset(inosused, ino)) 11747 panic("handle_written_bmsafemap: " 11748 "re-allocated inode"); 11749 /* Do the roll-forward only if it's a real copy. */ 11750 if (foreground) { 11751 if ((jaddref->ja_mode & IFMT) == IFDIR) 11752 cgp->cg_cs.cs_ndir++; 11753 cgp->cg_cs.cs_nifree--; 11754 setbit(inosused, ino); 11755 chgs = 1; 11756 } 11757 jaddref->ja_state &= ~UNDONE; 11758 jaddref->ja_state |= ATTACHED; 11759 free_jaddref(jaddref); 11760 } 11761 } 11762 /* 11763 * Restore any block allocations which are pending journal writes. 11764 */ 11765 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) { 11766 cgp = (struct cg *)bp->b_data; 11767 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 11768 blksfree = cg_blksfree(cgp); 11769 LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps, 11770 jntmp) { 11771 if ((jnewblk->jn_state & UNDONE) == 0) 11772 continue; 11773 /* Do the roll-forward only if it's a real copy. */ 11774 if (foreground && 11775 jnewblk_rollforward(jnewblk, fs, cgp, blksfree)) 11776 chgs = 1; 11777 jnewblk->jn_state &= ~(UNDONE | NEWBLOCK); 11778 jnewblk->jn_state |= ATTACHED; 11779 free_jnewblk(jnewblk); 11780 } 11781 } 11782 while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) { 11783 newblk->nb_state |= DEPCOMPLETE; 11784 newblk->nb_state &= ~ONDEPLIST; 11785 newblk->nb_bmsafemap = NULL; 11786 LIST_REMOVE(newblk, nb_deps); 11787 if (newblk->nb_list.wk_type == D_ALLOCDIRECT) 11788 handle_allocdirect_partdone( 11789 WK_ALLOCDIRECT(&newblk->nb_list), NULL); 11790 else if (newblk->nb_list.wk_type == D_ALLOCINDIR) 11791 handle_allocindir_partdone( 11792 WK_ALLOCINDIR(&newblk->nb_list)); 11793 else if (newblk->nb_list.wk_type != D_NEWBLK) 11794 panic("handle_written_bmsafemap: Unexpected type: %s", 11795 TYPENAME(newblk->nb_list.wk_type)); 11796 } 11797 while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) { 11798 inodedep->id_state |= DEPCOMPLETE; 11799 inodedep->id_state &= ~ONDEPLIST; 11800 LIST_REMOVE(inodedep, id_deps); 11801 inodedep->id_bmsafemap = NULL; 11802 } 11803 LIST_REMOVE(bmsafemap, sm_next); 11804 if (chgs == 0 && LIST_EMPTY(&bmsafemap->sm_jaddrefhd) && 11805 LIST_EMPTY(&bmsafemap->sm_jnewblkhd) && 11806 LIST_EMPTY(&bmsafemap->sm_newblkhd) && 11807 LIST_EMPTY(&bmsafemap->sm_inodedephd) && 11808 LIST_EMPTY(&bmsafemap->sm_freehd)) { 11809 LIST_REMOVE(bmsafemap, sm_hash); 11810 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); 11811 return (0); 11812 } 11813 LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next); 11814 if (foreground) 11815 bdirty(bp); 11816 return (1); 11817 } 11818 11819 /* 11820 * Try to free a mkdir dependency. 11821 */ 11822 static void 11823 complete_mkdir(mkdir) 11824 struct mkdir *mkdir; 11825 { 11826 struct diradd *dap; 11827 11828 if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE) 11829 return; 11830 LIST_REMOVE(mkdir, md_mkdirs); 11831 dap = mkdir->md_diradd; 11832 dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)); 11833 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) { 11834 dap->da_state |= DEPCOMPLETE; 11835 complete_diradd(dap); 11836 } 11837 WORKITEM_FREE(mkdir, D_MKDIR); 11838 } 11839 11840 /* 11841 * Handle the completion of a mkdir dependency. 11842 */ 11843 static void 11844 handle_written_mkdir(mkdir, type) 11845 struct mkdir *mkdir; 11846 int type; 11847 { 11848 11849 if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type) 11850 panic("handle_written_mkdir: bad type"); 11851 mkdir->md_state |= COMPLETE; 11852 complete_mkdir(mkdir); 11853 } 11854 11855 static int 11856 free_pagedep(pagedep) 11857 struct pagedep *pagedep; 11858 { 11859 int i; 11860 11861 if (pagedep->pd_state & NEWBLOCK) 11862 return (0); 11863 if (!LIST_EMPTY(&pagedep->pd_dirremhd)) 11864 return (0); 11865 for (i = 0; i < DAHASHSZ; i++) 11866 if (!LIST_EMPTY(&pagedep->pd_diraddhd[i])) 11867 return (0); 11868 if (!LIST_EMPTY(&pagedep->pd_pendinghd)) 11869 return (0); 11870 if (!LIST_EMPTY(&pagedep->pd_jmvrefhd)) 11871 return (0); 11872 if (pagedep->pd_state & ONWORKLIST) 11873 WORKLIST_REMOVE(&pagedep->pd_list); 11874 LIST_REMOVE(pagedep, pd_hash); 11875 WORKITEM_FREE(pagedep, D_PAGEDEP); 11876 11877 return (1); 11878 } 11879 11880 /* 11881 * Called from within softdep_disk_write_complete above. 11882 * A write operation was just completed. Removed inodes can 11883 * now be freed and associated block pointers may be committed. 11884 * Note that this routine is always called from interrupt level 11885 * with further splbio interrupts blocked. 11886 */ 11887 static int 11888 handle_written_filepage(pagedep, bp) 11889 struct pagedep *pagedep; 11890 struct buf *bp; /* buffer containing the written page */ 11891 { 11892 struct dirrem *dirrem; 11893 struct diradd *dap, *nextdap; 11894 struct direct *ep; 11895 int i, chgs; 11896 11897 if ((pagedep->pd_state & IOSTARTED) == 0) 11898 panic("handle_written_filepage: not started"); 11899 pagedep->pd_state &= ~IOSTARTED; 11900 /* 11901 * Process any directory removals that have been committed. 11902 */ 11903 while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) { 11904 LIST_REMOVE(dirrem, dm_next); 11905 dirrem->dm_state |= COMPLETE; 11906 dirrem->dm_dirinum = pagedep->pd_ino; 11907 KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd), 11908 ("handle_written_filepage: Journal entries not written.")); 11909 add_to_worklist(&dirrem->dm_list, 0); 11910 } 11911 /* 11912 * Free any directory additions that have been committed. 11913 * If it is a newly allocated block, we have to wait until 11914 * the on-disk directory inode claims the new block. 11915 */ 11916 if ((pagedep->pd_state & NEWBLOCK) == 0) 11917 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 11918 free_diradd(dap, NULL); 11919 /* 11920 * Uncommitted directory entries must be restored. 11921 */ 11922 for (chgs = 0, i = 0; i < DAHASHSZ; i++) { 11923 for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap; 11924 dap = nextdap) { 11925 nextdap = LIST_NEXT(dap, da_pdlist); 11926 if (dap->da_state & ATTACHED) 11927 panic("handle_written_filepage: attached"); 11928 ep = (struct direct *) 11929 ((char *)bp->b_data + dap->da_offset); 11930 ep->d_ino = dap->da_newinum; 11931 dap->da_state &= ~UNDONE; 11932 dap->da_state |= ATTACHED; 11933 chgs = 1; 11934 /* 11935 * If the inode referenced by the directory has 11936 * been written out, then the dependency can be 11937 * moved to the pending list. 11938 */ 11939 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 11940 LIST_REMOVE(dap, da_pdlist); 11941 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, 11942 da_pdlist); 11943 } 11944 } 11945 } 11946 /* 11947 * If there were any rollbacks in the directory, then it must be 11948 * marked dirty so that its will eventually get written back in 11949 * its correct form. 11950 */ 11951 if (chgs) { 11952 if ((bp->b_flags & B_DELWRI) == 0) 11953 stat_dir_entry++; 11954 bdirty(bp); 11955 return (1); 11956 } 11957 /* 11958 * If we are not waiting for a new directory block to be 11959 * claimed by its inode, then the pagedep will be freed. 11960 * Otherwise it will remain to track any new entries on 11961 * the page in case they are fsync'ed. 11962 */ 11963 free_pagedep(pagedep); 11964 return (0); 11965 } 11966 11967 /* 11968 * Writing back in-core inode structures. 11969 * 11970 * The filesystem only accesses an inode's contents when it occupies an 11971 * "in-core" inode structure. These "in-core" structures are separate from 11972 * the page frames used to cache inode blocks. Only the latter are 11973 * transferred to/from the disk. So, when the updated contents of the 11974 * "in-core" inode structure are copied to the corresponding in-memory inode 11975 * block, the dependencies are also transferred. The following procedure is 11976 * called when copying a dirty "in-core" inode to a cached inode block. 11977 */ 11978 11979 /* 11980 * Called when an inode is loaded from disk. If the effective link count 11981 * differed from the actual link count when it was last flushed, then we 11982 * need to ensure that the correct effective link count is put back. 11983 */ 11984 void 11985 softdep_load_inodeblock(ip) 11986 struct inode *ip; /* the "in_core" copy of the inode */ 11987 { 11988 struct inodedep *inodedep; 11989 11990 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0, 11991 ("softdep_load_inodeblock called on non-softdep filesystem")); 11992 /* 11993 * Check for alternate nlink count. 11994 */ 11995 ip->i_effnlink = ip->i_nlink; 11996 ACQUIRE_LOCK(ip->i_ump); 11997 if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0, 11998 &inodedep) == 0) { 11999 FREE_LOCK(ip->i_ump); 12000 return; 12001 } 12002 ip->i_effnlink -= inodedep->id_nlinkdelta; 12003 FREE_LOCK(ip->i_ump); 12004 } 12005 12006 /* 12007 * This routine is called just before the "in-core" inode 12008 * information is to be copied to the in-memory inode block. 12009 * Recall that an inode block contains several inodes. If 12010 * the force flag is set, then the dependencies will be 12011 * cleared so that the update can always be made. Note that 12012 * the buffer is locked when this routine is called, so we 12013 * will never be in the middle of writing the inode block 12014 * to disk. 12015 */ 12016 void 12017 softdep_update_inodeblock(ip, bp, waitfor) 12018 struct inode *ip; /* the "in_core" copy of the inode */ 12019 struct buf *bp; /* the buffer containing the inode block */ 12020 int waitfor; /* nonzero => update must be allowed */ 12021 { 12022 struct inodedep *inodedep; 12023 struct inoref *inoref; 12024 struct ufsmount *ump; 12025 struct worklist *wk; 12026 struct mount *mp; 12027 struct buf *ibp; 12028 struct fs *fs; 12029 int error; 12030 12031 ump = ip->i_ump; 12032 mp = UFSTOVFS(ump); 12033 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 12034 ("softdep_update_inodeblock called on non-softdep filesystem")); 12035 fs = ip->i_fs; 12036 /* 12037 * Preserve the freelink that is on disk. clear_unlinked_inodedep() 12038 * does not have access to the in-core ip so must write directly into 12039 * the inode block buffer when setting freelink. 12040 */ 12041 if (fs->fs_magic == FS_UFS1_MAGIC) 12042 DIP_SET(ip, i_freelink, ((struct ufs1_dinode *)bp->b_data + 12043 ino_to_fsbo(fs, ip->i_number))->di_freelink); 12044 else 12045 DIP_SET(ip, i_freelink, ((struct ufs2_dinode *)bp->b_data + 12046 ino_to_fsbo(fs, ip->i_number))->di_freelink); 12047 /* 12048 * If the effective link count is not equal to the actual link 12049 * count, then we must track the difference in an inodedep while 12050 * the inode is (potentially) tossed out of the cache. Otherwise, 12051 * if there is no existing inodedep, then there are no dependencies 12052 * to track. 12053 */ 12054 ACQUIRE_LOCK(ump); 12055 again: 12056 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) { 12057 FREE_LOCK(ump); 12058 if (ip->i_effnlink != ip->i_nlink) 12059 panic("softdep_update_inodeblock: bad link count"); 12060 return; 12061 } 12062 if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink) 12063 panic("softdep_update_inodeblock: bad delta"); 12064 /* 12065 * If we're flushing all dependencies we must also move any waiting 12066 * for journal writes onto the bufwait list prior to I/O. 12067 */ 12068 if (waitfor) { 12069 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 12070 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 12071 == DEPCOMPLETE) { 12072 jwait(&inoref->if_list, MNT_WAIT); 12073 goto again; 12074 } 12075 } 12076 } 12077 /* 12078 * Changes have been initiated. Anything depending on these 12079 * changes cannot occur until this inode has been written. 12080 */ 12081 inodedep->id_state &= ~COMPLETE; 12082 if ((inodedep->id_state & ONWORKLIST) == 0) 12083 WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list); 12084 /* 12085 * Any new dependencies associated with the incore inode must 12086 * now be moved to the list associated with the buffer holding 12087 * the in-memory copy of the inode. Once merged process any 12088 * allocdirects that are completed by the merger. 12089 */ 12090 merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt); 12091 if (!TAILQ_EMPTY(&inodedep->id_inoupdt)) 12092 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt), 12093 NULL); 12094 merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt); 12095 if (!TAILQ_EMPTY(&inodedep->id_extupdt)) 12096 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt), 12097 NULL); 12098 /* 12099 * Now that the inode has been pushed into the buffer, the 12100 * operations dependent on the inode being written to disk 12101 * can be moved to the id_bufwait so that they will be 12102 * processed when the buffer I/O completes. 12103 */ 12104 while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) { 12105 WORKLIST_REMOVE(wk); 12106 WORKLIST_INSERT(&inodedep->id_bufwait, wk); 12107 } 12108 /* 12109 * Newly allocated inodes cannot be written until the bitmap 12110 * that allocates them have been written (indicated by 12111 * DEPCOMPLETE being set in id_state). If we are doing a 12112 * forced sync (e.g., an fsync on a file), we force the bitmap 12113 * to be written so that the update can be done. 12114 */ 12115 if (waitfor == 0) { 12116 FREE_LOCK(ump); 12117 return; 12118 } 12119 retry: 12120 if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) { 12121 FREE_LOCK(ump); 12122 return; 12123 } 12124 ibp = inodedep->id_bmsafemap->sm_buf; 12125 ibp = getdirtybuf(ibp, LOCK_PTR(ump), MNT_WAIT); 12126 if (ibp == NULL) { 12127 /* 12128 * If ibp came back as NULL, the dependency could have been 12129 * freed while we slept. Look it up again, and check to see 12130 * that it has completed. 12131 */ 12132 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) 12133 goto retry; 12134 FREE_LOCK(ump); 12135 return; 12136 } 12137 FREE_LOCK(ump); 12138 if ((error = bwrite(ibp)) != 0) 12139 softdep_error("softdep_update_inodeblock: bwrite", error); 12140 } 12141 12142 /* 12143 * Merge the a new inode dependency list (such as id_newinoupdt) into an 12144 * old inode dependency list (such as id_inoupdt). This routine must be 12145 * called with splbio interrupts blocked. 12146 */ 12147 static void 12148 merge_inode_lists(newlisthead, oldlisthead) 12149 struct allocdirectlst *newlisthead; 12150 struct allocdirectlst *oldlisthead; 12151 { 12152 struct allocdirect *listadp, *newadp; 12153 12154 newadp = TAILQ_FIRST(newlisthead); 12155 for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) { 12156 if (listadp->ad_offset < newadp->ad_offset) { 12157 listadp = TAILQ_NEXT(listadp, ad_next); 12158 continue; 12159 } 12160 TAILQ_REMOVE(newlisthead, newadp, ad_next); 12161 TAILQ_INSERT_BEFORE(listadp, newadp, ad_next); 12162 if (listadp->ad_offset == newadp->ad_offset) { 12163 allocdirect_merge(oldlisthead, newadp, 12164 listadp); 12165 listadp = newadp; 12166 } 12167 newadp = TAILQ_FIRST(newlisthead); 12168 } 12169 while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) { 12170 TAILQ_REMOVE(newlisthead, newadp, ad_next); 12171 TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next); 12172 } 12173 } 12174 12175 /* 12176 * If we are doing an fsync, then we must ensure that any directory 12177 * entries for the inode have been written after the inode gets to disk. 12178 */ 12179 int 12180 softdep_fsync(vp) 12181 struct vnode *vp; /* the "in_core" copy of the inode */ 12182 { 12183 struct inodedep *inodedep; 12184 struct pagedep *pagedep; 12185 struct inoref *inoref; 12186 struct ufsmount *ump; 12187 struct worklist *wk; 12188 struct diradd *dap; 12189 struct mount *mp; 12190 struct vnode *pvp; 12191 struct inode *ip; 12192 struct buf *bp; 12193 struct fs *fs; 12194 struct thread *td = curthread; 12195 int error, flushparent, pagedep_new_block; 12196 ino_t parentino; 12197 ufs_lbn_t lbn; 12198 12199 ip = VTOI(vp); 12200 fs = ip->i_fs; 12201 ump = ip->i_ump; 12202 mp = vp->v_mount; 12203 if (MOUNTEDSOFTDEP(mp) == 0) 12204 return (0); 12205 ACQUIRE_LOCK(ump); 12206 restart: 12207 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) { 12208 FREE_LOCK(ump); 12209 return (0); 12210 } 12211 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 12212 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 12213 == DEPCOMPLETE) { 12214 jwait(&inoref->if_list, MNT_WAIT); 12215 goto restart; 12216 } 12217 } 12218 if (!LIST_EMPTY(&inodedep->id_inowait) || 12219 !TAILQ_EMPTY(&inodedep->id_extupdt) || 12220 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 12221 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 12222 !TAILQ_EMPTY(&inodedep->id_newinoupdt)) 12223 panic("softdep_fsync: pending ops %p", inodedep); 12224 for (error = 0, flushparent = 0; ; ) { 12225 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL) 12226 break; 12227 if (wk->wk_type != D_DIRADD) 12228 panic("softdep_fsync: Unexpected type %s", 12229 TYPENAME(wk->wk_type)); 12230 dap = WK_DIRADD(wk); 12231 /* 12232 * Flush our parent if this directory entry has a MKDIR_PARENT 12233 * dependency or is contained in a newly allocated block. 12234 */ 12235 if (dap->da_state & DIRCHG) 12236 pagedep = dap->da_previous->dm_pagedep; 12237 else 12238 pagedep = dap->da_pagedep; 12239 parentino = pagedep->pd_ino; 12240 lbn = pagedep->pd_lbn; 12241 if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE) 12242 panic("softdep_fsync: dirty"); 12243 if ((dap->da_state & MKDIR_PARENT) || 12244 (pagedep->pd_state & NEWBLOCK)) 12245 flushparent = 1; 12246 else 12247 flushparent = 0; 12248 /* 12249 * If we are being fsync'ed as part of vgone'ing this vnode, 12250 * then we will not be able to release and recover the 12251 * vnode below, so we just have to give up on writing its 12252 * directory entry out. It will eventually be written, just 12253 * not now, but then the user was not asking to have it 12254 * written, so we are not breaking any promises. 12255 */ 12256 if (vp->v_iflag & VI_DOOMED) 12257 break; 12258 /* 12259 * We prevent deadlock by always fetching inodes from the 12260 * root, moving down the directory tree. Thus, when fetching 12261 * our parent directory, we first try to get the lock. If 12262 * that fails, we must unlock ourselves before requesting 12263 * the lock on our parent. See the comment in ufs_lookup 12264 * for details on possible races. 12265 */ 12266 FREE_LOCK(ump); 12267 if (ffs_vgetf(mp, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp, 12268 FFSV_FORCEINSMQ)) { 12269 error = vfs_busy(mp, MBF_NOWAIT); 12270 if (error != 0) { 12271 vfs_ref(mp); 12272 VOP_UNLOCK(vp, 0); 12273 error = vfs_busy(mp, 0); 12274 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 12275 vfs_rel(mp); 12276 if (error != 0) 12277 return (ENOENT); 12278 if (vp->v_iflag & VI_DOOMED) { 12279 vfs_unbusy(mp); 12280 return (ENOENT); 12281 } 12282 } 12283 VOP_UNLOCK(vp, 0); 12284 error = ffs_vgetf(mp, parentino, LK_EXCLUSIVE, 12285 &pvp, FFSV_FORCEINSMQ); 12286 vfs_unbusy(mp); 12287 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 12288 if (vp->v_iflag & VI_DOOMED) { 12289 if (error == 0) 12290 vput(pvp); 12291 error = ENOENT; 12292 } 12293 if (error != 0) 12294 return (error); 12295 } 12296 /* 12297 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps 12298 * that are contained in direct blocks will be resolved by 12299 * doing a ffs_update. Pagedeps contained in indirect blocks 12300 * may require a complete sync'ing of the directory. So, we 12301 * try the cheap and fast ffs_update first, and if that fails, 12302 * then we do the slower ffs_syncvnode of the directory. 12303 */ 12304 if (flushparent) { 12305 int locked; 12306 12307 if ((error = ffs_update(pvp, 1)) != 0) { 12308 vput(pvp); 12309 return (error); 12310 } 12311 ACQUIRE_LOCK(ump); 12312 locked = 1; 12313 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) { 12314 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) { 12315 if (wk->wk_type != D_DIRADD) 12316 panic("softdep_fsync: Unexpected type %s", 12317 TYPENAME(wk->wk_type)); 12318 dap = WK_DIRADD(wk); 12319 if (dap->da_state & DIRCHG) 12320 pagedep = dap->da_previous->dm_pagedep; 12321 else 12322 pagedep = dap->da_pagedep; 12323 pagedep_new_block = pagedep->pd_state & NEWBLOCK; 12324 FREE_LOCK(ump); 12325 locked = 0; 12326 if (pagedep_new_block && (error = 12327 ffs_syncvnode(pvp, MNT_WAIT, 0))) { 12328 vput(pvp); 12329 return (error); 12330 } 12331 } 12332 } 12333 if (locked) 12334 FREE_LOCK(ump); 12335 } 12336 /* 12337 * Flush directory page containing the inode's name. 12338 */ 12339 error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred, 12340 &bp); 12341 if (error == 0) 12342 error = bwrite(bp); 12343 else 12344 brelse(bp); 12345 vput(pvp); 12346 if (error != 0) 12347 return (error); 12348 ACQUIRE_LOCK(ump); 12349 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 12350 break; 12351 } 12352 FREE_LOCK(ump); 12353 return (0); 12354 } 12355 12356 /* 12357 * Flush all the dirty bitmaps associated with the block device 12358 * before flushing the rest of the dirty blocks so as to reduce 12359 * the number of dependencies that will have to be rolled back. 12360 * 12361 * XXX Unused? 12362 */ 12363 void 12364 softdep_fsync_mountdev(vp) 12365 struct vnode *vp; 12366 { 12367 struct buf *bp, *nbp; 12368 struct worklist *wk; 12369 struct bufobj *bo; 12370 12371 if (!vn_isdisk(vp, NULL)) 12372 panic("softdep_fsync_mountdev: vnode not a disk"); 12373 bo = &vp->v_bufobj; 12374 restart: 12375 BO_LOCK(bo); 12376 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 12377 /* 12378 * If it is already scheduled, skip to the next buffer. 12379 */ 12380 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) 12381 continue; 12382 12383 if ((bp->b_flags & B_DELWRI) == 0) 12384 panic("softdep_fsync_mountdev: not dirty"); 12385 /* 12386 * We are only interested in bitmaps with outstanding 12387 * dependencies. 12388 */ 12389 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL || 12390 wk->wk_type != D_BMSAFEMAP || 12391 (bp->b_vflags & BV_BKGRDINPROG)) { 12392 BUF_UNLOCK(bp); 12393 continue; 12394 } 12395 BO_UNLOCK(bo); 12396 bremfree(bp); 12397 (void) bawrite(bp); 12398 goto restart; 12399 } 12400 drain_output(vp); 12401 BO_UNLOCK(bo); 12402 } 12403 12404 /* 12405 * Sync all cylinder groups that were dirty at the time this function is 12406 * called. Newly dirtied cgs will be inserted before the sentinel. This 12407 * is used to flush freedep activity that may be holding up writes to a 12408 * indirect block. 12409 */ 12410 static int 12411 sync_cgs(mp, waitfor) 12412 struct mount *mp; 12413 int waitfor; 12414 { 12415 struct bmsafemap *bmsafemap; 12416 struct bmsafemap *sentinel; 12417 struct ufsmount *ump; 12418 struct buf *bp; 12419 int error; 12420 12421 sentinel = malloc(sizeof(*sentinel), M_BMSAFEMAP, M_ZERO | M_WAITOK); 12422 sentinel->sm_cg = -1; 12423 ump = VFSTOUFS(mp); 12424 error = 0; 12425 ACQUIRE_LOCK(ump); 12426 LIST_INSERT_HEAD(&ump->softdep_dirtycg, sentinel, sm_next); 12427 for (bmsafemap = LIST_NEXT(sentinel, sm_next); bmsafemap != NULL; 12428 bmsafemap = LIST_NEXT(sentinel, sm_next)) { 12429 /* Skip sentinels and cgs with no work to release. */ 12430 if (bmsafemap->sm_cg == -1 || 12431 (LIST_EMPTY(&bmsafemap->sm_freehd) && 12432 LIST_EMPTY(&bmsafemap->sm_freewr))) { 12433 LIST_REMOVE(sentinel, sm_next); 12434 LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next); 12435 continue; 12436 } 12437 /* 12438 * If we don't get the lock and we're waiting try again, if 12439 * not move on to the next buf and try to sync it. 12440 */ 12441 bp = getdirtybuf(bmsafemap->sm_buf, LOCK_PTR(ump), waitfor); 12442 if (bp == NULL && waitfor == MNT_WAIT) 12443 continue; 12444 LIST_REMOVE(sentinel, sm_next); 12445 LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next); 12446 if (bp == NULL) 12447 continue; 12448 FREE_LOCK(ump); 12449 if (waitfor == MNT_NOWAIT) 12450 bawrite(bp); 12451 else 12452 error = bwrite(bp); 12453 ACQUIRE_LOCK(ump); 12454 if (error) 12455 break; 12456 } 12457 LIST_REMOVE(sentinel, sm_next); 12458 FREE_LOCK(ump); 12459 free(sentinel, M_BMSAFEMAP); 12460 return (error); 12461 } 12462 12463 /* 12464 * This routine is called when we are trying to synchronously flush a 12465 * file. This routine must eliminate any filesystem metadata dependencies 12466 * so that the syncing routine can succeed. 12467 */ 12468 int 12469 softdep_sync_metadata(struct vnode *vp) 12470 { 12471 struct inode *ip; 12472 int error; 12473 12474 ip = VTOI(vp); 12475 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0, 12476 ("softdep_sync_metadata called on non-softdep filesystem")); 12477 /* 12478 * Ensure that any direct block dependencies have been cleared, 12479 * truncations are started, and inode references are journaled. 12480 */ 12481 ACQUIRE_LOCK(ip->i_ump); 12482 /* 12483 * Write all journal records to prevent rollbacks on devvp. 12484 */ 12485 if (vp->v_type == VCHR) 12486 softdep_flushjournal(vp->v_mount); 12487 error = flush_inodedep_deps(vp, vp->v_mount, ip->i_number); 12488 /* 12489 * Ensure that all truncates are written so we won't find deps on 12490 * indirect blocks. 12491 */ 12492 process_truncates(vp); 12493 FREE_LOCK(ip->i_ump); 12494 12495 return (error); 12496 } 12497 12498 /* 12499 * This routine is called when we are attempting to sync a buf with 12500 * dependencies. If waitfor is MNT_NOWAIT it attempts to schedule any 12501 * other IO it can but returns EBUSY if the buffer is not yet able to 12502 * be written. Dependencies which will not cause rollbacks will always 12503 * return 0. 12504 */ 12505 int 12506 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor) 12507 { 12508 struct indirdep *indirdep; 12509 struct pagedep *pagedep; 12510 struct allocindir *aip; 12511 struct newblk *newblk; 12512 struct ufsmount *ump; 12513 struct buf *nbp; 12514 struct worklist *wk; 12515 int i, error; 12516 12517 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 12518 ("softdep_sync_buf called on non-softdep filesystem")); 12519 /* 12520 * For VCHR we just don't want to force flush any dependencies that 12521 * will cause rollbacks. 12522 */ 12523 if (vp->v_type == VCHR) { 12524 if (waitfor == MNT_NOWAIT && softdep_count_dependencies(bp, 0)) 12525 return (EBUSY); 12526 return (0); 12527 } 12528 ump = VTOI(vp)->i_ump; 12529 ACQUIRE_LOCK(ump); 12530 /* 12531 * As we hold the buffer locked, none of its dependencies 12532 * will disappear. 12533 */ 12534 error = 0; 12535 top: 12536 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 12537 switch (wk->wk_type) { 12538 12539 case D_ALLOCDIRECT: 12540 case D_ALLOCINDIR: 12541 newblk = WK_NEWBLK(wk); 12542 if (newblk->nb_jnewblk != NULL) { 12543 if (waitfor == MNT_NOWAIT) { 12544 error = EBUSY; 12545 goto out_unlock; 12546 } 12547 jwait(&newblk->nb_jnewblk->jn_list, waitfor); 12548 goto top; 12549 } 12550 if (newblk->nb_state & DEPCOMPLETE || 12551 waitfor == MNT_NOWAIT) 12552 continue; 12553 nbp = newblk->nb_bmsafemap->sm_buf; 12554 nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor); 12555 if (nbp == NULL) 12556 goto top; 12557 FREE_LOCK(ump); 12558 if ((error = bwrite(nbp)) != 0) 12559 goto out; 12560 ACQUIRE_LOCK(ump); 12561 continue; 12562 12563 case D_INDIRDEP: 12564 indirdep = WK_INDIRDEP(wk); 12565 if (waitfor == MNT_NOWAIT) { 12566 if (!TAILQ_EMPTY(&indirdep->ir_trunc) || 12567 !LIST_EMPTY(&indirdep->ir_deplisthd)) { 12568 error = EBUSY; 12569 goto out_unlock; 12570 } 12571 } 12572 if (!TAILQ_EMPTY(&indirdep->ir_trunc)) 12573 panic("softdep_sync_buf: truncation pending."); 12574 restart: 12575 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) { 12576 newblk = (struct newblk *)aip; 12577 if (newblk->nb_jnewblk != NULL) { 12578 jwait(&newblk->nb_jnewblk->jn_list, 12579 waitfor); 12580 goto restart; 12581 } 12582 if (newblk->nb_state & DEPCOMPLETE) 12583 continue; 12584 nbp = newblk->nb_bmsafemap->sm_buf; 12585 nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor); 12586 if (nbp == NULL) 12587 goto restart; 12588 FREE_LOCK(ump); 12589 if ((error = bwrite(nbp)) != 0) 12590 goto out; 12591 ACQUIRE_LOCK(ump); 12592 goto restart; 12593 } 12594 continue; 12595 12596 case D_PAGEDEP: 12597 /* 12598 * Only flush directory entries in synchronous passes. 12599 */ 12600 if (waitfor != MNT_WAIT) { 12601 error = EBUSY; 12602 goto out_unlock; 12603 } 12604 /* 12605 * While syncing snapshots, we must allow recursive 12606 * lookups. 12607 */ 12608 BUF_AREC(bp); 12609 /* 12610 * We are trying to sync a directory that may 12611 * have dependencies on both its own metadata 12612 * and/or dependencies on the inodes of any 12613 * recently allocated files. We walk its diradd 12614 * lists pushing out the associated inode. 12615 */ 12616 pagedep = WK_PAGEDEP(wk); 12617 for (i = 0; i < DAHASHSZ; i++) { 12618 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0) 12619 continue; 12620 if ((error = flush_pagedep_deps(vp, wk->wk_mp, 12621 &pagedep->pd_diraddhd[i]))) { 12622 BUF_NOREC(bp); 12623 goto out_unlock; 12624 } 12625 } 12626 BUF_NOREC(bp); 12627 continue; 12628 12629 case D_FREEWORK: 12630 case D_FREEDEP: 12631 case D_JSEGDEP: 12632 case D_JNEWBLK: 12633 continue; 12634 12635 default: 12636 panic("softdep_sync_buf: Unknown type %s", 12637 TYPENAME(wk->wk_type)); 12638 /* NOTREACHED */ 12639 } 12640 } 12641 out_unlock: 12642 FREE_LOCK(ump); 12643 out: 12644 return (error); 12645 } 12646 12647 /* 12648 * Flush the dependencies associated with an inodedep. 12649 * Called with splbio blocked. 12650 */ 12651 static int 12652 flush_inodedep_deps(vp, mp, ino) 12653 struct vnode *vp; 12654 struct mount *mp; 12655 ino_t ino; 12656 { 12657 struct inodedep *inodedep; 12658 struct inoref *inoref; 12659 struct ufsmount *ump; 12660 int error, waitfor; 12661 12662 /* 12663 * This work is done in two passes. The first pass grabs most 12664 * of the buffers and begins asynchronously writing them. The 12665 * only way to wait for these asynchronous writes is to sleep 12666 * on the filesystem vnode which may stay busy for a long time 12667 * if the filesystem is active. So, instead, we make a second 12668 * pass over the dependencies blocking on each write. In the 12669 * usual case we will be blocking against a write that we 12670 * initiated, so when it is done the dependency will have been 12671 * resolved. Thus the second pass is expected to end quickly. 12672 * We give a brief window at the top of the loop to allow 12673 * any pending I/O to complete. 12674 */ 12675 ump = VFSTOUFS(mp); 12676 LOCK_OWNED(ump); 12677 for (error = 0, waitfor = MNT_NOWAIT; ; ) { 12678 if (error) 12679 return (error); 12680 FREE_LOCK(ump); 12681 ACQUIRE_LOCK(ump); 12682 restart: 12683 if (inodedep_lookup(mp, ino, 0, &inodedep) == 0) 12684 return (0); 12685 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 12686 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 12687 == DEPCOMPLETE) { 12688 jwait(&inoref->if_list, MNT_WAIT); 12689 goto restart; 12690 } 12691 } 12692 if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) || 12693 flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) || 12694 flush_deplist(&inodedep->id_extupdt, waitfor, &error) || 12695 flush_deplist(&inodedep->id_newextupdt, waitfor, &error)) 12696 continue; 12697 /* 12698 * If pass2, we are done, otherwise do pass 2. 12699 */ 12700 if (waitfor == MNT_WAIT) 12701 break; 12702 waitfor = MNT_WAIT; 12703 } 12704 /* 12705 * Try freeing inodedep in case all dependencies have been removed. 12706 */ 12707 if (inodedep_lookup(mp, ino, 0, &inodedep) != 0) 12708 (void) free_inodedep(inodedep); 12709 return (0); 12710 } 12711 12712 /* 12713 * Flush an inode dependency list. 12714 * Called with splbio blocked. 12715 */ 12716 static int 12717 flush_deplist(listhead, waitfor, errorp) 12718 struct allocdirectlst *listhead; 12719 int waitfor; 12720 int *errorp; 12721 { 12722 struct allocdirect *adp; 12723 struct newblk *newblk; 12724 struct ufsmount *ump; 12725 struct buf *bp; 12726 12727 if ((adp = TAILQ_FIRST(listhead)) == NULL) 12728 return (0); 12729 ump = VFSTOUFS(adp->ad_list.wk_mp); 12730 LOCK_OWNED(ump); 12731 TAILQ_FOREACH(adp, listhead, ad_next) { 12732 newblk = (struct newblk *)adp; 12733 if (newblk->nb_jnewblk != NULL) { 12734 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 12735 return (1); 12736 } 12737 if (newblk->nb_state & DEPCOMPLETE) 12738 continue; 12739 bp = newblk->nb_bmsafemap->sm_buf; 12740 bp = getdirtybuf(bp, LOCK_PTR(ump), waitfor); 12741 if (bp == NULL) { 12742 if (waitfor == MNT_NOWAIT) 12743 continue; 12744 return (1); 12745 } 12746 FREE_LOCK(ump); 12747 if (waitfor == MNT_NOWAIT) 12748 bawrite(bp); 12749 else 12750 *errorp = bwrite(bp); 12751 ACQUIRE_LOCK(ump); 12752 return (1); 12753 } 12754 return (0); 12755 } 12756 12757 /* 12758 * Flush dependencies associated with an allocdirect block. 12759 */ 12760 static int 12761 flush_newblk_dep(vp, mp, lbn) 12762 struct vnode *vp; 12763 struct mount *mp; 12764 ufs_lbn_t lbn; 12765 { 12766 struct newblk *newblk; 12767 struct ufsmount *ump; 12768 struct bufobj *bo; 12769 struct inode *ip; 12770 struct buf *bp; 12771 ufs2_daddr_t blkno; 12772 int error; 12773 12774 error = 0; 12775 bo = &vp->v_bufobj; 12776 ip = VTOI(vp); 12777 blkno = DIP(ip, i_db[lbn]); 12778 if (blkno == 0) 12779 panic("flush_newblk_dep: Missing block"); 12780 ump = VFSTOUFS(mp); 12781 ACQUIRE_LOCK(ump); 12782 /* 12783 * Loop until all dependencies related to this block are satisfied. 12784 * We must be careful to restart after each sleep in case a write 12785 * completes some part of this process for us. 12786 */ 12787 for (;;) { 12788 if (newblk_lookup(mp, blkno, 0, &newblk) == 0) { 12789 FREE_LOCK(ump); 12790 break; 12791 } 12792 if (newblk->nb_list.wk_type != D_ALLOCDIRECT) 12793 panic("flush_newblk_deps: Bad newblk %p", newblk); 12794 /* 12795 * Flush the journal. 12796 */ 12797 if (newblk->nb_jnewblk != NULL) { 12798 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 12799 continue; 12800 } 12801 /* 12802 * Write the bitmap dependency. 12803 */ 12804 if ((newblk->nb_state & DEPCOMPLETE) == 0) { 12805 bp = newblk->nb_bmsafemap->sm_buf; 12806 bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT); 12807 if (bp == NULL) 12808 continue; 12809 FREE_LOCK(ump); 12810 error = bwrite(bp); 12811 if (error) 12812 break; 12813 ACQUIRE_LOCK(ump); 12814 continue; 12815 } 12816 /* 12817 * Write the buffer. 12818 */ 12819 FREE_LOCK(ump); 12820 BO_LOCK(bo); 12821 bp = gbincore(bo, lbn); 12822 if (bp != NULL) { 12823 error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | 12824 LK_INTERLOCK, BO_LOCKPTR(bo)); 12825 if (error == ENOLCK) { 12826 ACQUIRE_LOCK(ump); 12827 continue; /* Slept, retry */ 12828 } 12829 if (error != 0) 12830 break; /* Failed */ 12831 if (bp->b_flags & B_DELWRI) { 12832 bremfree(bp); 12833 error = bwrite(bp); 12834 if (error) 12835 break; 12836 } else 12837 BUF_UNLOCK(bp); 12838 } else 12839 BO_UNLOCK(bo); 12840 /* 12841 * We have to wait for the direct pointers to 12842 * point at the newdirblk before the dependency 12843 * will go away. 12844 */ 12845 error = ffs_update(vp, 1); 12846 if (error) 12847 break; 12848 ACQUIRE_LOCK(ump); 12849 } 12850 return (error); 12851 } 12852 12853 /* 12854 * Eliminate a pagedep dependency by flushing out all its diradd dependencies. 12855 * Called with splbio blocked. 12856 */ 12857 static int 12858 flush_pagedep_deps(pvp, mp, diraddhdp) 12859 struct vnode *pvp; 12860 struct mount *mp; 12861 struct diraddhd *diraddhdp; 12862 { 12863 struct inodedep *inodedep; 12864 struct inoref *inoref; 12865 struct ufsmount *ump; 12866 struct diradd *dap; 12867 struct vnode *vp; 12868 int error = 0; 12869 struct buf *bp; 12870 ino_t inum; 12871 struct diraddhd unfinished; 12872 12873 LIST_INIT(&unfinished); 12874 ump = VFSTOUFS(mp); 12875 LOCK_OWNED(ump); 12876 restart: 12877 while ((dap = LIST_FIRST(diraddhdp)) != NULL) { 12878 /* 12879 * Flush ourselves if this directory entry 12880 * has a MKDIR_PARENT dependency. 12881 */ 12882 if (dap->da_state & MKDIR_PARENT) { 12883 FREE_LOCK(ump); 12884 if ((error = ffs_update(pvp, 1)) != 0) 12885 break; 12886 ACQUIRE_LOCK(ump); 12887 /* 12888 * If that cleared dependencies, go on to next. 12889 */ 12890 if (dap != LIST_FIRST(diraddhdp)) 12891 continue; 12892 /* 12893 * All MKDIR_PARENT dependencies and all the 12894 * NEWBLOCK pagedeps that are contained in direct 12895 * blocks were resolved by doing above ffs_update. 12896 * Pagedeps contained in indirect blocks may 12897 * require a complete sync'ing of the directory. 12898 * We are in the midst of doing a complete sync, 12899 * so if they are not resolved in this pass we 12900 * defer them for now as they will be sync'ed by 12901 * our caller shortly. 12902 */ 12903 LIST_REMOVE(dap, da_pdlist); 12904 LIST_INSERT_HEAD(&unfinished, dap, da_pdlist); 12905 continue; 12906 } 12907 /* 12908 * A newly allocated directory must have its "." and 12909 * ".." entries written out before its name can be 12910 * committed in its parent. 12911 */ 12912 inum = dap->da_newinum; 12913 if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0) 12914 panic("flush_pagedep_deps: lost inode1"); 12915 /* 12916 * Wait for any pending journal adds to complete so we don't 12917 * cause rollbacks while syncing. 12918 */ 12919 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 12920 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 12921 == DEPCOMPLETE) { 12922 jwait(&inoref->if_list, MNT_WAIT); 12923 goto restart; 12924 } 12925 } 12926 if (dap->da_state & MKDIR_BODY) { 12927 FREE_LOCK(ump); 12928 if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp, 12929 FFSV_FORCEINSMQ))) 12930 break; 12931 error = flush_newblk_dep(vp, mp, 0); 12932 /* 12933 * If we still have the dependency we might need to 12934 * update the vnode to sync the new link count to 12935 * disk. 12936 */ 12937 if (error == 0 && dap == LIST_FIRST(diraddhdp)) 12938 error = ffs_update(vp, 1); 12939 vput(vp); 12940 if (error != 0) 12941 break; 12942 ACQUIRE_LOCK(ump); 12943 /* 12944 * If that cleared dependencies, go on to next. 12945 */ 12946 if (dap != LIST_FIRST(diraddhdp)) 12947 continue; 12948 if (dap->da_state & MKDIR_BODY) { 12949 inodedep_lookup(UFSTOVFS(ump), inum, 0, 12950 &inodedep); 12951 panic("flush_pagedep_deps: MKDIR_BODY " 12952 "inodedep %p dap %p vp %p", 12953 inodedep, dap, vp); 12954 } 12955 } 12956 /* 12957 * Flush the inode on which the directory entry depends. 12958 * Having accounted for MKDIR_PARENT and MKDIR_BODY above, 12959 * the only remaining dependency is that the updated inode 12960 * count must get pushed to disk. The inode has already 12961 * been pushed into its inode buffer (via VOP_UPDATE) at 12962 * the time of the reference count change. So we need only 12963 * locate that buffer, ensure that there will be no rollback 12964 * caused by a bitmap dependency, then write the inode buffer. 12965 */ 12966 retry: 12967 if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0) 12968 panic("flush_pagedep_deps: lost inode"); 12969 /* 12970 * If the inode still has bitmap dependencies, 12971 * push them to disk. 12972 */ 12973 if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) { 12974 bp = inodedep->id_bmsafemap->sm_buf; 12975 bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT); 12976 if (bp == NULL) 12977 goto retry; 12978 FREE_LOCK(ump); 12979 if ((error = bwrite(bp)) != 0) 12980 break; 12981 ACQUIRE_LOCK(ump); 12982 if (dap != LIST_FIRST(diraddhdp)) 12983 continue; 12984 } 12985 /* 12986 * If the inode is still sitting in a buffer waiting 12987 * to be written or waiting for the link count to be 12988 * adjusted update it here to flush it to disk. 12989 */ 12990 if (dap == LIST_FIRST(diraddhdp)) { 12991 FREE_LOCK(ump); 12992 if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp, 12993 FFSV_FORCEINSMQ))) 12994 break; 12995 error = ffs_update(vp, 1); 12996 vput(vp); 12997 if (error) 12998 break; 12999 ACQUIRE_LOCK(ump); 13000 } 13001 /* 13002 * If we have failed to get rid of all the dependencies 13003 * then something is seriously wrong. 13004 */ 13005 if (dap == LIST_FIRST(diraddhdp)) { 13006 inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep); 13007 panic("flush_pagedep_deps: failed to flush " 13008 "inodedep %p ino %ju dap %p", 13009 inodedep, (uintmax_t)inum, dap); 13010 } 13011 } 13012 if (error) 13013 ACQUIRE_LOCK(ump); 13014 while ((dap = LIST_FIRST(&unfinished)) != NULL) { 13015 LIST_REMOVE(dap, da_pdlist); 13016 LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist); 13017 } 13018 return (error); 13019 } 13020 13021 /* 13022 * A large burst of file addition or deletion activity can drive the 13023 * memory load excessively high. First attempt to slow things down 13024 * using the techniques below. If that fails, this routine requests 13025 * the offending operations to fall back to running synchronously 13026 * until the memory load returns to a reasonable level. 13027 */ 13028 int 13029 softdep_slowdown(vp) 13030 struct vnode *vp; 13031 { 13032 struct ufsmount *ump; 13033 int jlow; 13034 int max_softdeps_hard; 13035 13036 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 13037 ("softdep_slowdown called on non-softdep filesystem")); 13038 ump = VFSTOUFS(vp->v_mount); 13039 ACQUIRE_LOCK(ump); 13040 jlow = 0; 13041 /* 13042 * Check for journal space if needed. 13043 */ 13044 if (DOINGSUJ(vp)) { 13045 if (journal_space(ump, 0) == 0) 13046 jlow = 1; 13047 } 13048 /* 13049 * If the system is under its limits and our filesystem is 13050 * not responsible for more than our share of the usage and 13051 * we are not low on journal space, then no need to slow down. 13052 */ 13053 max_softdeps_hard = max_softdeps * 11 / 10; 13054 if (dep_current[D_DIRREM] < max_softdeps_hard / 2 && 13055 dep_current[D_INODEDEP] < max_softdeps_hard && 13056 dep_current[D_INDIRDEP] < max_softdeps_hard / 1000 && 13057 dep_current[D_FREEBLKS] < max_softdeps_hard && jlow == 0 && 13058 ump->softdep_curdeps[D_DIRREM] < 13059 (max_softdeps_hard / 2) / stat_flush_threads && 13060 ump->softdep_curdeps[D_INODEDEP] < 13061 max_softdeps_hard / stat_flush_threads && 13062 ump->softdep_curdeps[D_INDIRDEP] < 13063 (max_softdeps_hard / 1000) / stat_flush_threads && 13064 ump->softdep_curdeps[D_FREEBLKS] < 13065 max_softdeps_hard / stat_flush_threads) { 13066 FREE_LOCK(ump); 13067 return (0); 13068 } 13069 /* 13070 * If the journal is low or our filesystem is over its limit 13071 * then speedup the cleanup. 13072 */ 13073 if (ump->softdep_curdeps[D_INDIRDEP] < 13074 (max_softdeps_hard / 1000) / stat_flush_threads || jlow) 13075 softdep_speedup(ump); 13076 stat_sync_limit_hit += 1; 13077 FREE_LOCK(ump); 13078 /* 13079 * We only slow down the rate at which new dependencies are 13080 * generated if we are not using journaling. With journaling, 13081 * the cleanup should always be sufficient to keep things 13082 * under control. 13083 */ 13084 if (DOINGSUJ(vp)) 13085 return (0); 13086 return (1); 13087 } 13088 13089 /* 13090 * Called by the allocation routines when they are about to fail 13091 * in the hope that we can free up the requested resource (inodes 13092 * or disk space). 13093 * 13094 * First check to see if the work list has anything on it. If it has, 13095 * clean up entries until we successfully free the requested resource. 13096 * Because this process holds inodes locked, we cannot handle any remove 13097 * requests that might block on a locked inode as that could lead to 13098 * deadlock. If the worklist yields none of the requested resource, 13099 * start syncing out vnodes to free up the needed space. 13100 */ 13101 int 13102 softdep_request_cleanup(fs, vp, cred, resource) 13103 struct fs *fs; 13104 struct vnode *vp; 13105 struct ucred *cred; 13106 int resource; 13107 { 13108 struct ufsmount *ump; 13109 struct mount *mp; 13110 struct vnode *lvp, *mvp; 13111 long starttime; 13112 ufs2_daddr_t needed; 13113 int error; 13114 13115 /* 13116 * If we are being called because of a process doing a 13117 * copy-on-write, then it is not safe to process any 13118 * worklist items as we will recurse into the copyonwrite 13119 * routine. This will result in an incoherent snapshot. 13120 * If the vnode that we hold is a snapshot, we must avoid 13121 * handling other resources that could cause deadlock. 13122 */ 13123 if ((curthread->td_pflags & TDP_COWINPROGRESS) || IS_SNAPSHOT(VTOI(vp))) 13124 return (0); 13125 13126 if (resource == FLUSH_BLOCKS_WAIT) 13127 stat_cleanup_blkrequests += 1; 13128 else 13129 stat_cleanup_inorequests += 1; 13130 13131 mp = vp->v_mount; 13132 ump = VFSTOUFS(mp); 13133 mtx_assert(UFS_MTX(ump), MA_OWNED); 13134 UFS_UNLOCK(ump); 13135 error = ffs_update(vp, 1); 13136 if (error != 0 || MOUNTEDSOFTDEP(mp) == 0) { 13137 UFS_LOCK(ump); 13138 return (0); 13139 } 13140 /* 13141 * If we are in need of resources, start by cleaning up 13142 * any block removals associated with our inode. 13143 */ 13144 ACQUIRE_LOCK(ump); 13145 process_removes(vp); 13146 process_truncates(vp); 13147 FREE_LOCK(ump); 13148 /* 13149 * Now clean up at least as many resources as we will need. 13150 * 13151 * When requested to clean up inodes, the number that are needed 13152 * is set by the number of simultaneous writers (mnt_writeopcount) 13153 * plus a bit of slop (2) in case some more writers show up while 13154 * we are cleaning. 13155 * 13156 * When requested to free up space, the amount of space that 13157 * we need is enough blocks to allocate a full-sized segment 13158 * (fs_contigsumsize). The number of such segments that will 13159 * be needed is set by the number of simultaneous writers 13160 * (mnt_writeopcount) plus a bit of slop (2) in case some more 13161 * writers show up while we are cleaning. 13162 * 13163 * Additionally, if we are unpriviledged and allocating space, 13164 * we need to ensure that we clean up enough blocks to get the 13165 * needed number of blocks over the threshhold of the minimum 13166 * number of blocks required to be kept free by the filesystem 13167 * (fs_minfree). 13168 */ 13169 if (resource == FLUSH_INODES_WAIT) { 13170 needed = vp->v_mount->mnt_writeopcount + 2; 13171 } else if (resource == FLUSH_BLOCKS_WAIT) { 13172 needed = (vp->v_mount->mnt_writeopcount + 2) * 13173 fs->fs_contigsumsize; 13174 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0)) 13175 needed += fragstoblks(fs, 13176 roundup((fs->fs_dsize * fs->fs_minfree / 100) - 13177 fs->fs_cstotal.cs_nffree, fs->fs_frag)); 13178 } else { 13179 UFS_LOCK(ump); 13180 printf("softdep_request_cleanup: Unknown resource type %d\n", 13181 resource); 13182 return (0); 13183 } 13184 starttime = time_second; 13185 retry: 13186 if ((resource == FLUSH_BLOCKS_WAIT && ump->softdep_on_worklist > 0 && 13187 fs->fs_cstotal.cs_nbfree <= needed) || 13188 (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 && 13189 fs->fs_cstotal.cs_nifree <= needed)) { 13190 ACQUIRE_LOCK(ump); 13191 if (ump->softdep_on_worklist > 0 && 13192 process_worklist_item(UFSTOVFS(ump), 13193 ump->softdep_on_worklist, LK_NOWAIT) != 0) 13194 stat_worklist_push += 1; 13195 FREE_LOCK(ump); 13196 } 13197 /* 13198 * If we still need resources and there are no more worklist 13199 * entries to process to obtain them, we have to start flushing 13200 * the dirty vnodes to force the release of additional requests 13201 * to the worklist that we can then process to reap addition 13202 * resources. We walk the vnodes associated with the mount point 13203 * until we get the needed worklist requests that we can reap. 13204 */ 13205 if ((resource == FLUSH_BLOCKS_WAIT && 13206 fs->fs_cstotal.cs_nbfree <= needed) || 13207 (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 && 13208 fs->fs_cstotal.cs_nifree <= needed)) { 13209 MNT_VNODE_FOREACH_ALL(lvp, mp, mvp) { 13210 if (TAILQ_FIRST(&lvp->v_bufobj.bo_dirty.bv_hd) == 0) { 13211 VI_UNLOCK(lvp); 13212 continue; 13213 } 13214 if (vget(lvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT, 13215 curthread)) 13216 continue; 13217 if (lvp->v_vflag & VV_NOSYNC) { /* unlinked */ 13218 vput(lvp); 13219 continue; 13220 } 13221 (void) ffs_syncvnode(lvp, MNT_NOWAIT, 0); 13222 vput(lvp); 13223 } 13224 lvp = ump->um_devvp; 13225 if (vn_lock(lvp, LK_EXCLUSIVE | LK_NOWAIT) == 0) { 13226 VOP_FSYNC(lvp, MNT_NOWAIT, curthread); 13227 VOP_UNLOCK(lvp, 0); 13228 } 13229 if (ump->softdep_on_worklist > 0) { 13230 stat_cleanup_retries += 1; 13231 goto retry; 13232 } 13233 stat_cleanup_failures += 1; 13234 } 13235 if (time_second - starttime > stat_cleanup_high_delay) 13236 stat_cleanup_high_delay = time_second - starttime; 13237 UFS_LOCK(ump); 13238 return (1); 13239 } 13240 13241 /* 13242 * If memory utilization has gotten too high, deliberately slow things 13243 * down and speed up the I/O processing. 13244 */ 13245 static int 13246 request_cleanup(mp, resource) 13247 struct mount *mp; 13248 int resource; 13249 { 13250 struct thread *td = curthread; 13251 struct ufsmount *ump; 13252 13253 ump = VFSTOUFS(mp); 13254 LOCK_OWNED(ump); 13255 /* 13256 * We never hold up the filesystem syncer or buf daemon. 13257 */ 13258 if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF)) 13259 return (0); 13260 /* 13261 * First check to see if the work list has gotten backlogged. 13262 * If it has, co-opt this process to help clean up two entries. 13263 * Because this process may hold inodes locked, we cannot 13264 * handle any remove requests that might block on a locked 13265 * inode as that could lead to deadlock. We set TDP_SOFTDEP 13266 * to avoid recursively processing the worklist. 13267 */ 13268 if (ump->softdep_on_worklist > max_softdeps / 10) { 13269 td->td_pflags |= TDP_SOFTDEP; 13270 process_worklist_item(mp, 2, LK_NOWAIT); 13271 td->td_pflags &= ~TDP_SOFTDEP; 13272 stat_worklist_push += 2; 13273 return(1); 13274 } 13275 /* 13276 * Next, we attempt to speed up the syncer process. If that 13277 * is successful, then we allow the process to continue. 13278 */ 13279 if (softdep_speedup(ump) && 13280 resource != FLUSH_BLOCKS_WAIT && 13281 resource != FLUSH_INODES_WAIT) 13282 return(0); 13283 /* 13284 * If we are resource constrained on inode dependencies, try 13285 * flushing some dirty inodes. Otherwise, we are constrained 13286 * by file deletions, so try accelerating flushes of directories 13287 * with removal dependencies. We would like to do the cleanup 13288 * here, but we probably hold an inode locked at this point and 13289 * that might deadlock against one that we try to clean. So, 13290 * the best that we can do is request the syncer daemon to do 13291 * the cleanup for us. 13292 */ 13293 switch (resource) { 13294 13295 case FLUSH_INODES: 13296 case FLUSH_INODES_WAIT: 13297 ACQUIRE_GBLLOCK(&lk); 13298 stat_ino_limit_push += 1; 13299 req_clear_inodedeps += 1; 13300 FREE_GBLLOCK(&lk); 13301 stat_countp = &stat_ino_limit_hit; 13302 break; 13303 13304 case FLUSH_BLOCKS: 13305 case FLUSH_BLOCKS_WAIT: 13306 ACQUIRE_GBLLOCK(&lk); 13307 stat_blk_limit_push += 1; 13308 req_clear_remove += 1; 13309 FREE_GBLLOCK(&lk); 13310 stat_countp = &stat_blk_limit_hit; 13311 break; 13312 13313 default: 13314 panic("request_cleanup: unknown type"); 13315 } 13316 /* 13317 * Hopefully the syncer daemon will catch up and awaken us. 13318 * We wait at most tickdelay before proceeding in any case. 13319 */ 13320 ACQUIRE_GBLLOCK(&lk); 13321 FREE_LOCK(ump); 13322 proc_waiting += 1; 13323 if (callout_pending(&softdep_callout) == FALSE) 13324 callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2, 13325 pause_timer, 0); 13326 13327 msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0); 13328 proc_waiting -= 1; 13329 FREE_GBLLOCK(&lk); 13330 ACQUIRE_LOCK(ump); 13331 return (1); 13332 } 13333 13334 /* 13335 * Awaken processes pausing in request_cleanup and clear proc_waiting 13336 * to indicate that there is no longer a timer running. Pause_timer 13337 * will be called with the global softdep mutex (&lk) locked. 13338 */ 13339 static void 13340 pause_timer(arg) 13341 void *arg; 13342 { 13343 13344 GBLLOCK_OWNED(&lk); 13345 /* 13346 * The callout_ API has acquired mtx and will hold it around this 13347 * function call. 13348 */ 13349 *stat_countp += proc_waiting; 13350 wakeup(&proc_waiting); 13351 } 13352 13353 /* 13354 * If requested, try removing inode or removal dependencies. 13355 */ 13356 static void 13357 check_clear_deps(mp) 13358 struct mount *mp; 13359 { 13360 13361 /* 13362 * If we are suspended, it may be because of our using 13363 * too many inodedeps, so help clear them out. 13364 */ 13365 if (MOUNTEDSUJ(mp) && VFSTOUFS(mp)->softdep_jblocks->jb_suspended) 13366 clear_inodedeps(mp); 13367 /* 13368 * General requests for cleanup of backed up dependencies 13369 */ 13370 ACQUIRE_GBLLOCK(&lk); 13371 if (req_clear_inodedeps) { 13372 req_clear_inodedeps -= 1; 13373 FREE_GBLLOCK(&lk); 13374 clear_inodedeps(mp); 13375 ACQUIRE_GBLLOCK(&lk); 13376 wakeup(&proc_waiting); 13377 } 13378 if (req_clear_remove) { 13379 req_clear_remove -= 1; 13380 FREE_GBLLOCK(&lk); 13381 clear_remove(mp); 13382 ACQUIRE_GBLLOCK(&lk); 13383 wakeup(&proc_waiting); 13384 } 13385 FREE_GBLLOCK(&lk); 13386 } 13387 13388 /* 13389 * Flush out a directory with at least one removal dependency in an effort to 13390 * reduce the number of dirrem, freefile, and freeblks dependency structures. 13391 */ 13392 static void 13393 clear_remove(mp) 13394 struct mount *mp; 13395 { 13396 struct pagedep_hashhead *pagedephd; 13397 struct pagedep *pagedep; 13398 struct ufsmount *ump; 13399 struct vnode *vp; 13400 struct bufobj *bo; 13401 int error, cnt; 13402 ino_t ino; 13403 13404 ump = VFSTOUFS(mp); 13405 LOCK_OWNED(ump); 13406 13407 for (cnt = 0; cnt <= ump->pagedep_hash_size; cnt++) { 13408 pagedephd = &ump->pagedep_hashtbl[ump->pagedep_nextclean++]; 13409 if (ump->pagedep_nextclean > ump->pagedep_hash_size) 13410 ump->pagedep_nextclean = 0; 13411 LIST_FOREACH(pagedep, pagedephd, pd_hash) { 13412 if (LIST_EMPTY(&pagedep->pd_dirremhd)) 13413 continue; 13414 ino = pagedep->pd_ino; 13415 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 13416 continue; 13417 FREE_LOCK(ump); 13418 13419 /* 13420 * Let unmount clear deps 13421 */ 13422 error = vfs_busy(mp, MBF_NOWAIT); 13423 if (error != 0) 13424 goto finish_write; 13425 error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp, 13426 FFSV_FORCEINSMQ); 13427 vfs_unbusy(mp); 13428 if (error != 0) { 13429 softdep_error("clear_remove: vget", error); 13430 goto finish_write; 13431 } 13432 if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0))) 13433 softdep_error("clear_remove: fsync", error); 13434 bo = &vp->v_bufobj; 13435 BO_LOCK(bo); 13436 drain_output(vp); 13437 BO_UNLOCK(bo); 13438 vput(vp); 13439 finish_write: 13440 vn_finished_write(mp); 13441 ACQUIRE_LOCK(ump); 13442 return; 13443 } 13444 } 13445 } 13446 13447 /* 13448 * Clear out a block of dirty inodes in an effort to reduce 13449 * the number of inodedep dependency structures. 13450 */ 13451 static void 13452 clear_inodedeps(mp) 13453 struct mount *mp; 13454 { 13455 struct inodedep_hashhead *inodedephd; 13456 struct inodedep *inodedep; 13457 struct ufsmount *ump; 13458 struct vnode *vp; 13459 struct fs *fs; 13460 int error, cnt; 13461 ino_t firstino, lastino, ino; 13462 13463 ump = VFSTOUFS(mp); 13464 fs = ump->um_fs; 13465 LOCK_OWNED(ump); 13466 /* 13467 * Pick a random inode dependency to be cleared. 13468 * We will then gather up all the inodes in its block 13469 * that have dependencies and flush them out. 13470 */ 13471 for (cnt = 0; cnt <= ump->inodedep_hash_size; cnt++) { 13472 inodedephd = &ump->inodedep_hashtbl[ump->inodedep_nextclean++]; 13473 if (ump->inodedep_nextclean > ump->inodedep_hash_size) 13474 ump->inodedep_nextclean = 0; 13475 if ((inodedep = LIST_FIRST(inodedephd)) != NULL) 13476 break; 13477 } 13478 if (inodedep == NULL) 13479 return; 13480 /* 13481 * Find the last inode in the block with dependencies. 13482 */ 13483 firstino = inodedep->id_ino & ~(INOPB(fs) - 1); 13484 for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--) 13485 if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0) 13486 break; 13487 /* 13488 * Asynchronously push all but the last inode with dependencies. 13489 * Synchronously push the last inode with dependencies to ensure 13490 * that the inode block gets written to free up the inodedeps. 13491 */ 13492 for (ino = firstino; ino <= lastino; ino++) { 13493 if (inodedep_lookup(mp, ino, 0, &inodedep) == 0) 13494 continue; 13495 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 13496 continue; 13497 FREE_LOCK(ump); 13498 error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */ 13499 if (error != 0) { 13500 vn_finished_write(mp); 13501 ACQUIRE_LOCK(ump); 13502 return; 13503 } 13504 if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp, 13505 FFSV_FORCEINSMQ)) != 0) { 13506 softdep_error("clear_inodedeps: vget", error); 13507 vfs_unbusy(mp); 13508 vn_finished_write(mp); 13509 ACQUIRE_LOCK(ump); 13510 return; 13511 } 13512 vfs_unbusy(mp); 13513 if (ino == lastino) { 13514 if ((error = ffs_syncvnode(vp, MNT_WAIT, 0))) 13515 softdep_error("clear_inodedeps: fsync1", error); 13516 } else { 13517 if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0))) 13518 softdep_error("clear_inodedeps: fsync2", error); 13519 BO_LOCK(&vp->v_bufobj); 13520 drain_output(vp); 13521 BO_UNLOCK(&vp->v_bufobj); 13522 } 13523 vput(vp); 13524 vn_finished_write(mp); 13525 ACQUIRE_LOCK(ump); 13526 } 13527 } 13528 13529 void 13530 softdep_buf_append(bp, wkhd) 13531 struct buf *bp; 13532 struct workhead *wkhd; 13533 { 13534 struct worklist *wk; 13535 struct ufsmount *ump; 13536 13537 if ((wk = LIST_FIRST(wkhd)) == NULL) 13538 return; 13539 KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, 13540 ("softdep_buf_append called on non-softdep filesystem")); 13541 ump = VFSTOUFS(wk->wk_mp); 13542 ACQUIRE_LOCK(ump); 13543 while ((wk = LIST_FIRST(wkhd)) != NULL) { 13544 WORKLIST_REMOVE(wk); 13545 WORKLIST_INSERT(&bp->b_dep, wk); 13546 } 13547 FREE_LOCK(ump); 13548 13549 } 13550 13551 void 13552 softdep_inode_append(ip, cred, wkhd) 13553 struct inode *ip; 13554 struct ucred *cred; 13555 struct workhead *wkhd; 13556 { 13557 struct buf *bp; 13558 struct fs *fs; 13559 int error; 13560 13561 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0, 13562 ("softdep_inode_append called on non-softdep filesystem")); 13563 fs = ip->i_fs; 13564 error = bread(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 13565 (int)fs->fs_bsize, cred, &bp); 13566 if (error) { 13567 bqrelse(bp); 13568 softdep_freework(wkhd); 13569 return; 13570 } 13571 softdep_buf_append(bp, wkhd); 13572 bqrelse(bp); 13573 } 13574 13575 void 13576 softdep_freework(wkhd) 13577 struct workhead *wkhd; 13578 { 13579 struct worklist *wk; 13580 struct ufsmount *ump; 13581 13582 if ((wk = LIST_FIRST(wkhd)) == NULL) 13583 return; 13584 KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, 13585 ("softdep_freework called on non-softdep filesystem")); 13586 ump = VFSTOUFS(wk->wk_mp); 13587 ACQUIRE_LOCK(ump); 13588 handle_jwork(wkhd); 13589 FREE_LOCK(ump); 13590 } 13591 13592 /* 13593 * Function to determine if the buffer has outstanding dependencies 13594 * that will cause a roll-back if the buffer is written. If wantcount 13595 * is set, return number of dependencies, otherwise just yes or no. 13596 */ 13597 static int 13598 softdep_count_dependencies(bp, wantcount) 13599 struct buf *bp; 13600 int wantcount; 13601 { 13602 struct worklist *wk; 13603 struct ufsmount *ump; 13604 struct bmsafemap *bmsafemap; 13605 struct freework *freework; 13606 struct inodedep *inodedep; 13607 struct indirdep *indirdep; 13608 struct freeblks *freeblks; 13609 struct allocindir *aip; 13610 struct pagedep *pagedep; 13611 struct dirrem *dirrem; 13612 struct newblk *newblk; 13613 struct mkdir *mkdir; 13614 struct diradd *dap; 13615 int i, retval; 13616 13617 retval = 0; 13618 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL) 13619 return (0); 13620 ump = VFSTOUFS(wk->wk_mp); 13621 ACQUIRE_LOCK(ump); 13622 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 13623 switch (wk->wk_type) { 13624 13625 case D_INODEDEP: 13626 inodedep = WK_INODEDEP(wk); 13627 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 13628 /* bitmap allocation dependency */ 13629 retval += 1; 13630 if (!wantcount) 13631 goto out; 13632 } 13633 if (TAILQ_FIRST(&inodedep->id_inoupdt)) { 13634 /* direct block pointer dependency */ 13635 retval += 1; 13636 if (!wantcount) 13637 goto out; 13638 } 13639 if (TAILQ_FIRST(&inodedep->id_extupdt)) { 13640 /* direct block pointer dependency */ 13641 retval += 1; 13642 if (!wantcount) 13643 goto out; 13644 } 13645 if (TAILQ_FIRST(&inodedep->id_inoreflst)) { 13646 /* Add reference dependency. */ 13647 retval += 1; 13648 if (!wantcount) 13649 goto out; 13650 } 13651 continue; 13652 13653 case D_INDIRDEP: 13654 indirdep = WK_INDIRDEP(wk); 13655 13656 TAILQ_FOREACH(freework, &indirdep->ir_trunc, fw_next) { 13657 /* indirect truncation dependency */ 13658 retval += 1; 13659 if (!wantcount) 13660 goto out; 13661 } 13662 13663 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) { 13664 /* indirect block pointer dependency */ 13665 retval += 1; 13666 if (!wantcount) 13667 goto out; 13668 } 13669 continue; 13670 13671 case D_PAGEDEP: 13672 pagedep = WK_PAGEDEP(wk); 13673 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) { 13674 if (LIST_FIRST(&dirrem->dm_jremrefhd)) { 13675 /* Journal remove ref dependency. */ 13676 retval += 1; 13677 if (!wantcount) 13678 goto out; 13679 } 13680 } 13681 for (i = 0; i < DAHASHSZ; i++) { 13682 13683 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 13684 /* directory entry dependency */ 13685 retval += 1; 13686 if (!wantcount) 13687 goto out; 13688 } 13689 } 13690 continue; 13691 13692 case D_BMSAFEMAP: 13693 bmsafemap = WK_BMSAFEMAP(wk); 13694 if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) { 13695 /* Add reference dependency. */ 13696 retval += 1; 13697 if (!wantcount) 13698 goto out; 13699 } 13700 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) { 13701 /* Allocate block dependency. */ 13702 retval += 1; 13703 if (!wantcount) 13704 goto out; 13705 } 13706 continue; 13707 13708 case D_FREEBLKS: 13709 freeblks = WK_FREEBLKS(wk); 13710 if (LIST_FIRST(&freeblks->fb_jblkdephd)) { 13711 /* Freeblk journal dependency. */ 13712 retval += 1; 13713 if (!wantcount) 13714 goto out; 13715 } 13716 continue; 13717 13718 case D_ALLOCDIRECT: 13719 case D_ALLOCINDIR: 13720 newblk = WK_NEWBLK(wk); 13721 if (newblk->nb_jnewblk) { 13722 /* Journal allocate dependency. */ 13723 retval += 1; 13724 if (!wantcount) 13725 goto out; 13726 } 13727 continue; 13728 13729 case D_MKDIR: 13730 mkdir = WK_MKDIR(wk); 13731 if (mkdir->md_jaddref) { 13732 /* Journal reference dependency. */ 13733 retval += 1; 13734 if (!wantcount) 13735 goto out; 13736 } 13737 continue; 13738 13739 case D_FREEWORK: 13740 case D_FREEDEP: 13741 case D_JSEGDEP: 13742 case D_JSEG: 13743 case D_SBDEP: 13744 /* never a dependency on these blocks */ 13745 continue; 13746 13747 default: 13748 panic("softdep_count_dependencies: Unexpected type %s", 13749 TYPENAME(wk->wk_type)); 13750 /* NOTREACHED */ 13751 } 13752 } 13753 out: 13754 FREE_LOCK(ump); 13755 return retval; 13756 } 13757 13758 /* 13759 * Acquire exclusive access to a buffer. 13760 * Must be called with a locked mtx parameter. 13761 * Return acquired buffer or NULL on failure. 13762 */ 13763 static struct buf * 13764 getdirtybuf(bp, lock, waitfor) 13765 struct buf *bp; 13766 struct rwlock *lock; 13767 int waitfor; 13768 { 13769 int error; 13770 13771 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) { 13772 if (waitfor != MNT_WAIT) 13773 return (NULL); 13774 error = BUF_LOCK(bp, 13775 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, lock); 13776 /* 13777 * Even if we sucessfully acquire bp here, we have dropped 13778 * lock, which may violates our guarantee. 13779 */ 13780 if (error == 0) 13781 BUF_UNLOCK(bp); 13782 else if (error != ENOLCK) 13783 panic("getdirtybuf: inconsistent lock: %d", error); 13784 rw_wlock(lock); 13785 return (NULL); 13786 } 13787 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) { 13788 if (lock != BO_LOCKPTR(bp->b_bufobj) && waitfor == MNT_WAIT) { 13789 rw_wunlock(lock); 13790 BO_LOCK(bp->b_bufobj); 13791 BUF_UNLOCK(bp); 13792 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) { 13793 bp->b_vflags |= BV_BKGRDWAIT; 13794 msleep(&bp->b_xflags, BO_LOCKPTR(bp->b_bufobj), 13795 PRIBIO | PDROP, "getbuf", 0); 13796 } else 13797 BO_UNLOCK(bp->b_bufobj); 13798 rw_wlock(lock); 13799 return (NULL); 13800 } 13801 BUF_UNLOCK(bp); 13802 if (waitfor != MNT_WAIT) 13803 return (NULL); 13804 /* 13805 * The lock argument must be bp->b_vp's mutex in 13806 * this case. 13807 */ 13808 #ifdef DEBUG_VFS_LOCKS 13809 if (bp->b_vp->v_type != VCHR) 13810 ASSERT_BO_WLOCKED(bp->b_bufobj); 13811 #endif 13812 bp->b_vflags |= BV_BKGRDWAIT; 13813 rw_sleep(&bp->b_xflags, lock, PRIBIO, "getbuf", 0); 13814 return (NULL); 13815 } 13816 if ((bp->b_flags & B_DELWRI) == 0) { 13817 BUF_UNLOCK(bp); 13818 return (NULL); 13819 } 13820 bremfree(bp); 13821 return (bp); 13822 } 13823 13824 13825 /* 13826 * Check if it is safe to suspend the file system now. On entry, 13827 * the vnode interlock for devvp should be held. Return 0 with 13828 * the mount interlock held if the file system can be suspended now, 13829 * otherwise return EAGAIN with the mount interlock held. 13830 */ 13831 int 13832 softdep_check_suspend(struct mount *mp, 13833 struct vnode *devvp, 13834 int softdep_depcnt, 13835 int softdep_accdepcnt, 13836 int secondary_writes, 13837 int secondary_accwrites) 13838 { 13839 struct bufobj *bo; 13840 struct ufsmount *ump; 13841 int error; 13842 13843 bo = &devvp->v_bufobj; 13844 ASSERT_BO_WLOCKED(bo); 13845 13846 /* 13847 * If we are not running with soft updates, then we need only 13848 * deal with secondary writes as we try to suspend. 13849 */ 13850 if (MOUNTEDSOFTDEP(mp) == 0) { 13851 MNT_ILOCK(mp); 13852 while (mp->mnt_secondary_writes != 0) { 13853 BO_UNLOCK(bo); 13854 msleep(&mp->mnt_secondary_writes, MNT_MTX(mp), 13855 (PUSER - 1) | PDROP, "secwr", 0); 13856 BO_LOCK(bo); 13857 MNT_ILOCK(mp); 13858 } 13859 13860 /* 13861 * Reasons for needing more work before suspend: 13862 * - Dirty buffers on devvp. 13863 * - Secondary writes occurred after start of vnode sync loop 13864 */ 13865 error = 0; 13866 if (bo->bo_numoutput > 0 || 13867 bo->bo_dirty.bv_cnt > 0 || 13868 secondary_writes != 0 || 13869 mp->mnt_secondary_writes != 0 || 13870 secondary_accwrites != mp->mnt_secondary_accwrites) 13871 error = EAGAIN; 13872 BO_UNLOCK(bo); 13873 return (error); 13874 } 13875 13876 /* 13877 * If we are running with soft updates, then we need to coordinate 13878 * with them as we try to suspend. 13879 */ 13880 ump = VFSTOUFS(mp); 13881 for (;;) { 13882 if (!TRY_ACQUIRE_LOCK(ump)) { 13883 BO_UNLOCK(bo); 13884 ACQUIRE_LOCK(ump); 13885 FREE_LOCK(ump); 13886 BO_LOCK(bo); 13887 continue; 13888 } 13889 MNT_ILOCK(mp); 13890 if (mp->mnt_secondary_writes != 0) { 13891 FREE_LOCK(ump); 13892 BO_UNLOCK(bo); 13893 msleep(&mp->mnt_secondary_writes, 13894 MNT_MTX(mp), 13895 (PUSER - 1) | PDROP, "secwr", 0); 13896 BO_LOCK(bo); 13897 continue; 13898 } 13899 break; 13900 } 13901 13902 /* 13903 * Reasons for needing more work before suspend: 13904 * - Dirty buffers on devvp. 13905 * - Softdep activity occurred after start of vnode sync loop 13906 * - Secondary writes occurred after start of vnode sync loop 13907 */ 13908 error = 0; 13909 if (bo->bo_numoutput > 0 || 13910 bo->bo_dirty.bv_cnt > 0 || 13911 softdep_depcnt != 0 || 13912 ump->softdep_deps != 0 || 13913 softdep_accdepcnt != ump->softdep_accdeps || 13914 secondary_writes != 0 || 13915 mp->mnt_secondary_writes != 0 || 13916 secondary_accwrites != mp->mnt_secondary_accwrites) 13917 error = EAGAIN; 13918 FREE_LOCK(ump); 13919 BO_UNLOCK(bo); 13920 return (error); 13921 } 13922 13923 13924 /* 13925 * Get the number of dependency structures for the file system, both 13926 * the current number and the total number allocated. These will 13927 * later be used to detect that softdep processing has occurred. 13928 */ 13929 void 13930 softdep_get_depcounts(struct mount *mp, 13931 int *softdep_depsp, 13932 int *softdep_accdepsp) 13933 { 13934 struct ufsmount *ump; 13935 13936 if (MOUNTEDSOFTDEP(mp) == 0) { 13937 *softdep_depsp = 0; 13938 *softdep_accdepsp = 0; 13939 return; 13940 } 13941 ump = VFSTOUFS(mp); 13942 ACQUIRE_LOCK(ump); 13943 *softdep_depsp = ump->softdep_deps; 13944 *softdep_accdepsp = ump->softdep_accdeps; 13945 FREE_LOCK(ump); 13946 } 13947 13948 /* 13949 * Wait for pending output on a vnode to complete. 13950 * Must be called with vnode lock and interlock locked. 13951 * 13952 * XXX: Should just be a call to bufobj_wwait(). 13953 */ 13954 static void 13955 drain_output(vp) 13956 struct vnode *vp; 13957 { 13958 struct bufobj *bo; 13959 13960 bo = &vp->v_bufobj; 13961 ASSERT_VOP_LOCKED(vp, "drain_output"); 13962 ASSERT_BO_WLOCKED(bo); 13963 13964 while (bo->bo_numoutput) { 13965 bo->bo_flag |= BO_WWAIT; 13966 msleep((caddr_t)&bo->bo_numoutput, 13967 BO_LOCKPTR(bo), PRIBIO + 1, "drainvp", 0); 13968 } 13969 } 13970 13971 /* 13972 * Called whenever a buffer that is being invalidated or reallocated 13973 * contains dependencies. This should only happen if an I/O error has 13974 * occurred. The routine is called with the buffer locked. 13975 */ 13976 static void 13977 softdep_deallocate_dependencies(bp) 13978 struct buf *bp; 13979 { 13980 13981 if ((bp->b_ioflags & BIO_ERROR) == 0) 13982 panic("softdep_deallocate_dependencies: dangling deps"); 13983 if (bp->b_vp != NULL && bp->b_vp->v_mount != NULL) 13984 softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error); 13985 else 13986 printf("softdep_deallocate_dependencies: " 13987 "got error %d while accessing filesystem\n", bp->b_error); 13988 if (bp->b_error != ENXIO) 13989 panic("softdep_deallocate_dependencies: unrecovered I/O error"); 13990 } 13991 13992 /* 13993 * Function to handle asynchronous write errors in the filesystem. 13994 */ 13995 static void 13996 softdep_error(func, error) 13997 char *func; 13998 int error; 13999 { 14000 14001 /* XXX should do something better! */ 14002 printf("%s: got error %d while accessing filesystem\n", func, error); 14003 } 14004 14005 #ifdef DDB 14006 14007 static void 14008 inodedep_print(struct inodedep *inodedep, int verbose) 14009 { 14010 db_printf("%p fs %p st %x ino %jd inoblk %jd delta %d nlink %d" 14011 " saveino %p\n", 14012 inodedep, inodedep->id_fs, inodedep->id_state, 14013 (intmax_t)inodedep->id_ino, 14014 (intmax_t)fsbtodb(inodedep->id_fs, 14015 ino_to_fsba(inodedep->id_fs, inodedep->id_ino)), 14016 inodedep->id_nlinkdelta, inodedep->id_savednlink, 14017 inodedep->id_savedino1); 14018 14019 if (verbose == 0) 14020 return; 14021 14022 db_printf("\tpendinghd %p, bufwait %p, inowait %p, inoreflst %p, " 14023 "mkdiradd %p\n", 14024 LIST_FIRST(&inodedep->id_pendinghd), 14025 LIST_FIRST(&inodedep->id_bufwait), 14026 LIST_FIRST(&inodedep->id_inowait), 14027 TAILQ_FIRST(&inodedep->id_inoreflst), 14028 inodedep->id_mkdiradd); 14029 db_printf("\tinoupdt %p, newinoupdt %p, extupdt %p, newextupdt %p\n", 14030 TAILQ_FIRST(&inodedep->id_inoupdt), 14031 TAILQ_FIRST(&inodedep->id_newinoupdt), 14032 TAILQ_FIRST(&inodedep->id_extupdt), 14033 TAILQ_FIRST(&inodedep->id_newextupdt)); 14034 } 14035 14036 DB_SHOW_COMMAND(inodedep, db_show_inodedep) 14037 { 14038 14039 if (have_addr == 0) { 14040 db_printf("Address required\n"); 14041 return; 14042 } 14043 inodedep_print((struct inodedep*)addr, 1); 14044 } 14045 14046 DB_SHOW_COMMAND(inodedeps, db_show_inodedeps) 14047 { 14048 struct inodedep_hashhead *inodedephd; 14049 struct inodedep *inodedep; 14050 struct ufsmount *ump; 14051 int cnt; 14052 14053 if (have_addr == 0) { 14054 db_printf("Address required\n"); 14055 return; 14056 } 14057 ump = (struct ufsmount *)addr; 14058 for (cnt = 0; cnt < ump->inodedep_hash_size; cnt++) { 14059 inodedephd = &ump->inodedep_hashtbl[cnt]; 14060 LIST_FOREACH(inodedep, inodedephd, id_hash) { 14061 inodedep_print(inodedep, 0); 14062 } 14063 } 14064 } 14065 14066 DB_SHOW_COMMAND(worklist, db_show_worklist) 14067 { 14068 struct worklist *wk; 14069 14070 if (have_addr == 0) { 14071 db_printf("Address required\n"); 14072 return; 14073 } 14074 wk = (struct worklist *)addr; 14075 printf("worklist: %p type %s state 0x%X\n", 14076 wk, TYPENAME(wk->wk_type), wk->wk_state); 14077 } 14078 14079 DB_SHOW_COMMAND(workhead, db_show_workhead) 14080 { 14081 struct workhead *wkhd; 14082 struct worklist *wk; 14083 int i; 14084 14085 if (have_addr == 0) { 14086 db_printf("Address required\n"); 14087 return; 14088 } 14089 wkhd = (struct workhead *)addr; 14090 wk = LIST_FIRST(wkhd); 14091 for (i = 0; i < 100 && wk != NULL; i++, wk = LIST_NEXT(wk, wk_list)) 14092 db_printf("worklist: %p type %s state 0x%X", 14093 wk, TYPENAME(wk->wk_type), wk->wk_state); 14094 if (i == 100) 14095 db_printf("workhead overflow"); 14096 printf("\n"); 14097 } 14098 14099 14100 DB_SHOW_COMMAND(mkdirs, db_show_mkdirs) 14101 { 14102 struct mkdirlist *mkdirlisthd; 14103 struct jaddref *jaddref; 14104 struct diradd *diradd; 14105 struct mkdir *mkdir; 14106 14107 if (have_addr == 0) { 14108 db_printf("Address required\n"); 14109 return; 14110 } 14111 mkdirlisthd = (struct mkdirlist *)addr; 14112 LIST_FOREACH(mkdir, mkdirlisthd, md_mkdirs) { 14113 diradd = mkdir->md_diradd; 14114 db_printf("mkdir: %p state 0x%X dap %p state 0x%X", 14115 mkdir, mkdir->md_state, diradd, diradd->da_state); 14116 if ((jaddref = mkdir->md_jaddref) != NULL) 14117 db_printf(" jaddref %p jaddref state 0x%X", 14118 jaddref, jaddref->ja_state); 14119 db_printf("\n"); 14120 } 14121 } 14122 14123 /* exported to ffs_vfsops.c */ 14124 extern void db_print_ffs(struct ufsmount *ump); 14125 void 14126 db_print_ffs(struct ufsmount *ump) 14127 { 14128 db_printf("mp %p %s devvp %p fs %p su_wl %d su_deps %d su_req %d\n", 14129 ump->um_mountp, ump->um_mountp->mnt_stat.f_mntonname, 14130 ump->um_devvp, ump->um_fs, ump->softdep_on_worklist, 14131 ump->softdep_deps, ump->softdep_req); 14132 } 14133 14134 #endif /* DDB */ 14135 14136 #endif /* SOFTUPDATES */ 14137