xref: /freebsd/sys/ufs/ffs/ffs_softdep.c (revision 370e009188ba90c3290b1479aa06ec98b66e140a)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright 1998, 2000 Marshall Kirk McKusick.
5  * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org>
6  * All rights reserved.
7  *
8  * The soft updates code is derived from the appendix of a University
9  * of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
10  * "Soft Updates: A Solution to the Metadata Update Problem in File
11  * Systems", CSE-TR-254-95, August 1995).
12  *
13  * Further information about soft updates can be obtained from:
14  *
15  *	Marshall Kirk McKusick		http://www.mckusick.com/softdep/
16  *	1614 Oxford Street		mckusick@mckusick.com
17  *	Berkeley, CA 94709-1608		+1-510-843-9542
18  *	USA
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  * 1. Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  * 2. Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in the
28  *    documentation and/or other materials provided with the distribution.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
31  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
32  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
33  * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
34  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
35  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
36  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
37  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
38  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
39  * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40  *
41  *	from: @(#)ffs_softdep.c	9.59 (McKusick) 6/21/00
42  */
43 
44 #include <sys/cdefs.h>
45 __FBSDID("$FreeBSD$");
46 
47 #include "opt_ffs.h"
48 #include "opt_quota.h"
49 #include "opt_ddb.h"
50 
51 #include <sys/param.h>
52 #include <sys/kernel.h>
53 #include <sys/systm.h>
54 #include <sys/bio.h>
55 #include <sys/buf.h>
56 #include <sys/kdb.h>
57 #include <sys/kthread.h>
58 #include <sys/ktr.h>
59 #include <sys/limits.h>
60 #include <sys/lock.h>
61 #include <sys/malloc.h>
62 #include <sys/mount.h>
63 #include <sys/mutex.h>
64 #include <sys/namei.h>
65 #include <sys/priv.h>
66 #include <sys/proc.h>
67 #include <sys/racct.h>
68 #include <sys/rwlock.h>
69 #include <sys/stat.h>
70 #include <sys/sysctl.h>
71 #include <sys/syslog.h>
72 #include <sys/vnode.h>
73 #include <sys/conf.h>
74 
75 #include <ufs/ufs/dir.h>
76 #include <ufs/ufs/extattr.h>
77 #include <ufs/ufs/quota.h>
78 #include <ufs/ufs/inode.h>
79 #include <ufs/ufs/ufsmount.h>
80 #include <ufs/ffs/fs.h>
81 #include <ufs/ffs/softdep.h>
82 #include <ufs/ffs/ffs_extern.h>
83 #include <ufs/ufs/ufs_extern.h>
84 
85 #include <vm/vm.h>
86 #include <vm/vm_extern.h>
87 #include <vm/vm_object.h>
88 
89 #include <geom/geom.h>
90 #include <geom/geom_vfs.h>
91 
92 #include <ddb/ddb.h>
93 
94 #define	KTR_SUJ	0	/* Define to KTR_SPARE. */
95 
96 #ifndef SOFTUPDATES
97 
98 int
99 softdep_flushfiles(struct mount *oldmnt,
100 	int flags,
101 	struct thread *td)
102 {
103 
104 	panic("softdep_flushfiles called");
105 }
106 
107 int
108 softdep_mount(struct vnode *devvp,
109 	struct mount *mp,
110 	struct fs *fs,
111 	struct ucred *cred)
112 {
113 
114 	return (0);
115 }
116 
117 void
118 softdep_initialize(void)
119 {
120 
121 	return;
122 }
123 
124 void
125 softdep_uninitialize(void)
126 {
127 
128 	return;
129 }
130 
131 void
132 softdep_unmount(struct mount *mp)
133 {
134 
135 	panic("softdep_unmount called");
136 }
137 
138 void
139 softdep_setup_sbupdate(struct ufsmount *ump,
140 	struct fs *fs,
141 	struct buf *bp)
142 {
143 
144 	panic("softdep_setup_sbupdate called");
145 }
146 
147 void
148 softdep_setup_inomapdep(struct buf *bp,
149 	struct inode *ip,
150 	ino_t newinum,
151 	int mode)
152 {
153 
154 	panic("softdep_setup_inomapdep called");
155 }
156 
157 void
158 softdep_setup_blkmapdep(struct buf *bp,
159 	struct mount *mp,
160 	ufs2_daddr_t newblkno,
161 	int frags,
162 	int oldfrags)
163 {
164 
165 	panic("softdep_setup_blkmapdep called");
166 }
167 
168 void
169 softdep_setup_allocdirect(struct inode *ip,
170 	ufs_lbn_t lbn,
171 	ufs2_daddr_t newblkno,
172 	ufs2_daddr_t oldblkno,
173 	long newsize,
174 	long oldsize,
175 	struct buf *bp)
176 {
177 
178 	panic("softdep_setup_allocdirect called");
179 }
180 
181 void
182 softdep_setup_allocext(struct inode *ip,
183 	ufs_lbn_t lbn,
184 	ufs2_daddr_t newblkno,
185 	ufs2_daddr_t oldblkno,
186 	long newsize,
187 	long oldsize,
188 	struct buf *bp)
189 {
190 
191 	panic("softdep_setup_allocext called");
192 }
193 
194 void
195 softdep_setup_allocindir_page(struct inode *ip,
196 	ufs_lbn_t lbn,
197 	struct buf *bp,
198 	int ptrno,
199 	ufs2_daddr_t newblkno,
200 	ufs2_daddr_t oldblkno,
201 	struct buf *nbp)
202 {
203 
204 	panic("softdep_setup_allocindir_page called");
205 }
206 
207 void
208 softdep_setup_allocindir_meta(struct buf *nbp,
209 	struct inode *ip,
210 	struct buf *bp,
211 	int ptrno,
212 	ufs2_daddr_t newblkno)
213 {
214 
215 	panic("softdep_setup_allocindir_meta called");
216 }
217 
218 void
219 softdep_journal_freeblocks(struct inode *ip,
220 	struct ucred *cred,
221 	off_t length,
222 	int flags)
223 {
224 
225 	panic("softdep_journal_freeblocks called");
226 }
227 
228 void
229 softdep_journal_fsync(struct inode *ip)
230 {
231 
232 	panic("softdep_journal_fsync called");
233 }
234 
235 void
236 softdep_setup_freeblocks(struct inode *ip,
237 	off_t length,
238 	int flags)
239 {
240 
241 	panic("softdep_setup_freeblocks called");
242 }
243 
244 void
245 softdep_freefile(struct vnode *pvp,
246 		ino_t ino,
247 		int mode)
248 {
249 
250 	panic("softdep_freefile called");
251 }
252 
253 int
254 softdep_setup_directory_add(struct buf *bp,
255 	struct inode *dp,
256 	off_t diroffset,
257 	ino_t newinum,
258 	struct buf *newdirbp,
259 	int isnewblk)
260 {
261 
262 	panic("softdep_setup_directory_add called");
263 }
264 
265 void
266 softdep_change_directoryentry_offset(struct buf *bp,
267 	struct inode *dp,
268 	caddr_t base,
269 	caddr_t oldloc,
270 	caddr_t newloc,
271 	int entrysize)
272 {
273 
274 	panic("softdep_change_directoryentry_offset called");
275 }
276 
277 void
278 softdep_setup_remove(struct buf *bp,
279 	struct inode *dp,
280 	struct inode *ip,
281 	int isrmdir)
282 {
283 
284 	panic("softdep_setup_remove called");
285 }
286 
287 void
288 softdep_setup_directory_change(struct buf *bp,
289 	struct inode *dp,
290 	struct inode *ip,
291 	ino_t newinum,
292 	int isrmdir)
293 {
294 
295 	panic("softdep_setup_directory_change called");
296 }
297 
298 void
299 softdep_setup_blkfree(struct mount *mp,
300 	struct buf *bp,
301 	ufs2_daddr_t blkno,
302 	int frags,
303 	struct workhead *wkhd)
304 {
305 
306 	panic("%s called", __FUNCTION__);
307 }
308 
309 void
310 softdep_setup_inofree(struct mount *mp,
311 	struct buf *bp,
312 	ino_t ino,
313 	struct workhead *wkhd)
314 {
315 
316 	panic("%s called", __FUNCTION__);
317 }
318 
319 void
320 softdep_setup_unlink(struct inode *dp, struct inode *ip)
321 {
322 
323 	panic("%s called", __FUNCTION__);
324 }
325 
326 void
327 softdep_setup_link(struct inode *dp, struct inode *ip)
328 {
329 
330 	panic("%s called", __FUNCTION__);
331 }
332 
333 void
334 softdep_revert_link(struct inode *dp, struct inode *ip)
335 {
336 
337 	panic("%s called", __FUNCTION__);
338 }
339 
340 void
341 softdep_setup_rmdir(struct inode *dp, struct inode *ip)
342 {
343 
344 	panic("%s called", __FUNCTION__);
345 }
346 
347 void
348 softdep_revert_rmdir(struct inode *dp, struct inode *ip)
349 {
350 
351 	panic("%s called", __FUNCTION__);
352 }
353 
354 void
355 softdep_setup_create(struct inode *dp, struct inode *ip)
356 {
357 
358 	panic("%s called", __FUNCTION__);
359 }
360 
361 void
362 softdep_revert_create(struct inode *dp, struct inode *ip)
363 {
364 
365 	panic("%s called", __FUNCTION__);
366 }
367 
368 void
369 softdep_setup_mkdir(struct inode *dp, struct inode *ip)
370 {
371 
372 	panic("%s called", __FUNCTION__);
373 }
374 
375 void
376 softdep_revert_mkdir(struct inode *dp, struct inode *ip)
377 {
378 
379 	panic("%s called", __FUNCTION__);
380 }
381 
382 void
383 softdep_setup_dotdot_link(struct inode *dp, struct inode *ip)
384 {
385 
386 	panic("%s called", __FUNCTION__);
387 }
388 
389 int
390 softdep_prealloc(struct vnode *vp, int waitok)
391 {
392 
393 	panic("%s called", __FUNCTION__);
394 }
395 
396 int
397 softdep_journal_lookup(struct mount *mp, struct vnode **vpp)
398 {
399 
400 	return (ENOENT);
401 }
402 
403 void
404 softdep_change_linkcnt(struct inode *ip)
405 {
406 
407 	panic("softdep_change_linkcnt called");
408 }
409 
410 void
411 softdep_load_inodeblock(struct inode *ip)
412 {
413 
414 	panic("softdep_load_inodeblock called");
415 }
416 
417 void
418 softdep_update_inodeblock(struct inode *ip,
419 	struct buf *bp,
420 	int waitfor)
421 {
422 
423 	panic("softdep_update_inodeblock called");
424 }
425 
426 int
427 softdep_fsync(struct vnode *vp)	/* the "in_core" copy of the inode */
428 {
429 
430 	return (0);
431 }
432 
433 void
434 softdep_fsync_mountdev(struct vnode *vp)
435 {
436 
437 	return;
438 }
439 
440 int
441 softdep_flushworklist(struct mount *oldmnt,
442 	int *countp,
443 	struct thread *td)
444 {
445 
446 	*countp = 0;
447 	return (0);
448 }
449 
450 int
451 softdep_sync_metadata(struct vnode *vp)
452 {
453 
454 	panic("softdep_sync_metadata called");
455 }
456 
457 int
458 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
459 {
460 
461 	panic("softdep_sync_buf called");
462 }
463 
464 int
465 softdep_slowdown(struct vnode *vp)
466 {
467 
468 	panic("softdep_slowdown called");
469 }
470 
471 int
472 softdep_request_cleanup(struct fs *fs,
473 	struct vnode *vp,
474 	struct ucred *cred,
475 	int resource)
476 {
477 
478 	return (0);
479 }
480 
481 int
482 softdep_check_suspend(struct mount *mp,
483 		      struct vnode *devvp,
484 		      int softdep_depcnt,
485 		      int softdep_accdepcnt,
486 		      int secondary_writes,
487 		      int secondary_accwrites)
488 {
489 	struct bufobj *bo;
490 	int error;
491 
492 	(void) softdep_depcnt,
493 	(void) softdep_accdepcnt;
494 
495 	bo = &devvp->v_bufobj;
496 	ASSERT_BO_WLOCKED(bo);
497 
498 	MNT_ILOCK(mp);
499 	while (mp->mnt_secondary_writes != 0) {
500 		BO_UNLOCK(bo);
501 		msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
502 		    (PUSER - 1) | PDROP, "secwr", 0);
503 		BO_LOCK(bo);
504 		MNT_ILOCK(mp);
505 	}
506 
507 	/*
508 	 * Reasons for needing more work before suspend:
509 	 * - Dirty buffers on devvp.
510 	 * - Secondary writes occurred after start of vnode sync loop
511 	 */
512 	error = 0;
513 	if (bo->bo_numoutput > 0 ||
514 	    bo->bo_dirty.bv_cnt > 0 ||
515 	    secondary_writes != 0 ||
516 	    mp->mnt_secondary_writes != 0 ||
517 	    secondary_accwrites != mp->mnt_secondary_accwrites)
518 		error = EAGAIN;
519 	BO_UNLOCK(bo);
520 	return (error);
521 }
522 
523 void
524 softdep_get_depcounts(struct mount *mp,
525 		      int *softdepactivep,
526 		      int *softdepactiveaccp)
527 {
528 	(void) mp;
529 	*softdepactivep = 0;
530 	*softdepactiveaccp = 0;
531 }
532 
533 void
534 softdep_buf_append(struct buf *bp, struct workhead *wkhd)
535 {
536 
537 	panic("softdep_buf_appendwork called");
538 }
539 
540 void
541 softdep_inode_append(struct inode *ip,
542 	struct ucred *cred,
543 	struct workhead *wkhd)
544 {
545 
546 	panic("softdep_inode_appendwork called");
547 }
548 
549 void
550 softdep_freework(struct workhead *wkhd)
551 {
552 
553 	panic("softdep_freework called");
554 }
555 
556 int
557 softdep_prerename(struct vnode *fdvp,
558 	struct vnode *fvp,
559 	struct vnode *tdvp,
560 	struct vnode *tvp)
561 {
562 
563 	panic("softdep_prerename called");
564 }
565 
566 int
567 softdep_prelink(struct vnode *dvp,
568 	struct vnode *vp,
569 	struct componentname *cnp)
570 {
571 
572 	panic("softdep_prelink called");
573 }
574 
575 #else
576 
577 FEATURE(softupdates, "FFS soft-updates support");
578 
579 static SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
580     "soft updates stats");
581 static SYSCTL_NODE(_debug_softdep, OID_AUTO, total,
582     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
583     "total dependencies allocated");
584 static SYSCTL_NODE(_debug_softdep, OID_AUTO, highuse,
585     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
586     "high use dependencies allocated");
587 static SYSCTL_NODE(_debug_softdep, OID_AUTO, current,
588     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
589     "current dependencies allocated");
590 static SYSCTL_NODE(_debug_softdep, OID_AUTO, write,
591     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
592     "current dependencies written");
593 
594 unsigned long dep_current[D_LAST + 1];
595 unsigned long dep_highuse[D_LAST + 1];
596 unsigned long dep_total[D_LAST + 1];
597 unsigned long dep_write[D_LAST + 1];
598 
599 #define	SOFTDEP_TYPE(type, str, long)					\
600     static MALLOC_DEFINE(M_ ## type, #str, long);			\
601     SYSCTL_ULONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD,	\
602 	&dep_total[D_ ## type], 0, "");					\
603     SYSCTL_ULONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD, 	\
604 	&dep_current[D_ ## type], 0, "");				\
605     SYSCTL_ULONG(_debug_softdep_highuse, OID_AUTO, str, CTLFLAG_RD, 	\
606 	&dep_highuse[D_ ## type], 0, "");				\
607     SYSCTL_ULONG(_debug_softdep_write, OID_AUTO, str, CTLFLAG_RD, 	\
608 	&dep_write[D_ ## type], 0, "");
609 
610 SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies");
611 SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies");
612 SOFTDEP_TYPE(BMSAFEMAP, bmsafemap,
613     "Block or frag allocated from cyl group map");
614 SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency");
615 SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode");
616 SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies");
617 SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block");
618 SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode");
619 SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode");
620 SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated");
621 SOFTDEP_TYPE(DIRADD, diradd, "New directory entry");
622 SOFTDEP_TYPE(MKDIR, mkdir, "New directory");
623 SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted");
624 SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block");
625 SOFTDEP_TYPE(FREEWORK, freework, "free an inode block");
626 SOFTDEP_TYPE(FREEDEP, freedep, "track a block free");
627 SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add");
628 SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove");
629 SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move");
630 SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block");
631 SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block");
632 SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag");
633 SOFTDEP_TYPE(JSEG, jseg, "Journal segment");
634 SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete");
635 SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency");
636 SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation");
637 SOFTDEP_TYPE(JFSYNC, jfsync, "Journal fsync complete");
638 
639 static MALLOC_DEFINE(M_SENTINEL, "sentinel", "Worklist sentinel");
640 
641 static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes");
642 static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations");
643 static MALLOC_DEFINE(M_MOUNTDATA, "softdep", "Softdep per-mount data");
644 
645 #define M_SOFTDEP_FLAGS	(M_WAITOK)
646 
647 /*
648  * translate from workitem type to memory type
649  * MUST match the defines above, such that memtype[D_XXX] == M_XXX
650  */
651 static struct malloc_type *memtype[] = {
652 	NULL,
653 	M_PAGEDEP,
654 	M_INODEDEP,
655 	M_BMSAFEMAP,
656 	M_NEWBLK,
657 	M_ALLOCDIRECT,
658 	M_INDIRDEP,
659 	M_ALLOCINDIR,
660 	M_FREEFRAG,
661 	M_FREEBLKS,
662 	M_FREEFILE,
663 	M_DIRADD,
664 	M_MKDIR,
665 	M_DIRREM,
666 	M_NEWDIRBLK,
667 	M_FREEWORK,
668 	M_FREEDEP,
669 	M_JADDREF,
670 	M_JREMREF,
671 	M_JMVREF,
672 	M_JNEWBLK,
673 	M_JFREEBLK,
674 	M_JFREEFRAG,
675 	M_JSEG,
676 	M_JSEGDEP,
677 	M_SBDEP,
678 	M_JTRUNC,
679 	M_JFSYNC,
680 	M_SENTINEL
681 };
682 
683 #define DtoM(type) (memtype[type])
684 
685 /*
686  * Names of malloc types.
687  */
688 #define TYPENAME(type)  \
689 	((unsigned)(type) <= D_LAST && (unsigned)(type) >= D_FIRST ? \
690 	memtype[type]->ks_shortdesc : "???")
691 /*
692  * End system adaptation definitions.
693  */
694 
695 #define	DOTDOT_OFFSET	offsetof(struct dirtemplate, dotdot_ino)
696 #define	DOT_OFFSET	offsetof(struct dirtemplate, dot_ino)
697 
698 /*
699  * Internal function prototypes.
700  */
701 static	void check_clear_deps(struct mount *);
702 static	void softdep_error(char *, int);
703 static	int softdep_prerename_vnode(struct ufsmount *, struct vnode *);
704 static	int softdep_process_worklist(struct mount *, int);
705 static	int softdep_waitidle(struct mount *, int);
706 static	void drain_output(struct vnode *);
707 static	struct buf *getdirtybuf(struct buf *, struct rwlock *, int);
708 static	int check_inodedep_free(struct inodedep *);
709 static	void clear_remove(struct mount *);
710 static	void clear_inodedeps(struct mount *);
711 static	void unlinked_inodedep(struct mount *, struct inodedep *);
712 static	void clear_unlinked_inodedep(struct inodedep *);
713 static	struct inodedep *first_unlinked_inodedep(struct ufsmount *);
714 static	int flush_pagedep_deps(struct vnode *, struct mount *,
715 	    struct diraddhd *, struct buf *);
716 static	int free_pagedep(struct pagedep *);
717 static	int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t);
718 static	int flush_inodedep_deps(struct vnode *, struct mount *, ino_t);
719 static	int flush_deplist(struct allocdirectlst *, int, int *);
720 static	int sync_cgs(struct mount *, int);
721 static	int handle_written_filepage(struct pagedep *, struct buf *, int);
722 static	int handle_written_sbdep(struct sbdep *, struct buf *);
723 static	void initiate_write_sbdep(struct sbdep *);
724 static	void diradd_inode_written(struct diradd *, struct inodedep *);
725 static	int handle_written_indirdep(struct indirdep *, struct buf *,
726 	    struct buf**, int);
727 static	int handle_written_inodeblock(struct inodedep *, struct buf *, int);
728 static	int jnewblk_rollforward(struct jnewblk *, struct fs *, struct cg *,
729 	    uint8_t *);
730 static	int handle_written_bmsafemap(struct bmsafemap *, struct buf *, int);
731 static	void handle_written_jaddref(struct jaddref *);
732 static	void handle_written_jremref(struct jremref *);
733 static	void handle_written_jseg(struct jseg *, struct buf *);
734 static	void handle_written_jnewblk(struct jnewblk *);
735 static	void handle_written_jblkdep(struct jblkdep *);
736 static	void handle_written_jfreefrag(struct jfreefrag *);
737 static	void complete_jseg(struct jseg *);
738 static	void complete_jsegs(struct jseg *);
739 static	void jseg_write(struct ufsmount *ump, struct jseg *, uint8_t *);
740 static	void jaddref_write(struct jaddref *, struct jseg *, uint8_t *);
741 static	void jremref_write(struct jremref *, struct jseg *, uint8_t *);
742 static	void jmvref_write(struct jmvref *, struct jseg *, uint8_t *);
743 static	void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *);
744 static	void jfsync_write(struct jfsync *, struct jseg *, uint8_t *data);
745 static	void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *);
746 static	void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *);
747 static	void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *);
748 static	inline void inoref_write(struct inoref *, struct jseg *,
749 	    struct jrefrec *);
750 static	void handle_allocdirect_partdone(struct allocdirect *,
751 	    struct workhead *);
752 static	struct jnewblk *cancel_newblk(struct newblk *, struct worklist *,
753 	    struct workhead *);
754 static	void indirdep_complete(struct indirdep *);
755 static	int indirblk_lookup(struct mount *, ufs2_daddr_t);
756 static	void indirblk_insert(struct freework *);
757 static	void indirblk_remove(struct freework *);
758 static	void handle_allocindir_partdone(struct allocindir *);
759 static	void initiate_write_filepage(struct pagedep *, struct buf *);
760 static	void initiate_write_indirdep(struct indirdep*, struct buf *);
761 static	void handle_written_mkdir(struct mkdir *, int);
762 static	int jnewblk_rollback(struct jnewblk *, struct fs *, struct cg *,
763 	    uint8_t *);
764 static	void initiate_write_bmsafemap(struct bmsafemap *, struct buf *);
765 static	void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *);
766 static	void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *);
767 static	void handle_workitem_freefile(struct freefile *);
768 static	int handle_workitem_remove(struct dirrem *, int);
769 static	struct dirrem *newdirrem(struct buf *, struct inode *,
770 	    struct inode *, int, struct dirrem **);
771 static	struct indirdep *indirdep_lookup(struct mount *, struct inode *,
772 	    struct buf *);
773 static	void cancel_indirdep(struct indirdep *, struct buf *,
774 	    struct freeblks *);
775 static	void free_indirdep(struct indirdep *);
776 static	void free_diradd(struct diradd *, struct workhead *);
777 static	void merge_diradd(struct inodedep *, struct diradd *);
778 static	void complete_diradd(struct diradd *);
779 static	struct diradd *diradd_lookup(struct pagedep *, int);
780 static	struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *,
781 	    struct jremref *);
782 static	struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *,
783 	    struct jremref *);
784 static	void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *,
785 	    struct jremref *, struct jremref *);
786 static	void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *,
787 	    struct jremref *);
788 static	void cancel_allocindir(struct allocindir *, struct buf *bp,
789 	    struct freeblks *, int);
790 static	int setup_trunc_indir(struct freeblks *, struct inode *,
791 	    ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t);
792 static	void complete_trunc_indir(struct freework *);
793 static	void trunc_indirdep(struct indirdep *, struct freeblks *, struct buf *,
794 	    int);
795 static	void complete_mkdir(struct mkdir *);
796 static	void free_newdirblk(struct newdirblk *);
797 static	void free_jremref(struct jremref *);
798 static	void free_jaddref(struct jaddref *);
799 static	void free_jsegdep(struct jsegdep *);
800 static	void free_jsegs(struct jblocks *);
801 static	void rele_jseg(struct jseg *);
802 static	void free_jseg(struct jseg *, struct jblocks *);
803 static	void free_jnewblk(struct jnewblk *);
804 static	void free_jblkdep(struct jblkdep *);
805 static	void free_jfreefrag(struct jfreefrag *);
806 static	void free_freedep(struct freedep *);
807 static	void journal_jremref(struct dirrem *, struct jremref *,
808 	    struct inodedep *);
809 static	void cancel_jnewblk(struct jnewblk *, struct workhead *);
810 static	int cancel_jaddref(struct jaddref *, struct inodedep *,
811 	    struct workhead *);
812 static	void cancel_jfreefrag(struct jfreefrag *);
813 static	inline void setup_freedirect(struct freeblks *, struct inode *,
814 	    int, int);
815 static	inline void setup_freeext(struct freeblks *, struct inode *, int, int);
816 static	inline void setup_freeindir(struct freeblks *, struct inode *, int,
817 	    ufs_lbn_t, int);
818 static	inline struct freeblks *newfreeblks(struct mount *, struct inode *);
819 static	void freeblks_free(struct ufsmount *, struct freeblks *, int);
820 static	void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t);
821 static	ufs2_daddr_t blkcount(struct fs *, ufs2_daddr_t, off_t);
822 static	int trunc_check_buf(struct buf *, int *, ufs_lbn_t, int, int);
823 static	void trunc_dependencies(struct inode *, struct freeblks *, ufs_lbn_t,
824 	    int, int);
825 static	void trunc_pages(struct inode *, off_t, ufs2_daddr_t, int);
826 static 	int cancel_pagedep(struct pagedep *, struct freeblks *, int);
827 static	int deallocate_dependencies(struct buf *, struct freeblks *, int);
828 static	void newblk_freefrag(struct newblk*);
829 static	void free_newblk(struct newblk *);
830 static	void cancel_allocdirect(struct allocdirectlst *,
831 	    struct allocdirect *, struct freeblks *);
832 static	int check_inode_unwritten(struct inodedep *);
833 static	int free_inodedep(struct inodedep *);
834 static	void freework_freeblock(struct freework *, u_long);
835 static	void freework_enqueue(struct freework *);
836 static	int handle_workitem_freeblocks(struct freeblks *, int);
837 static	int handle_complete_freeblocks(struct freeblks *, int);
838 static	void handle_workitem_indirblk(struct freework *);
839 static	void handle_written_freework(struct freework *);
840 static	void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *);
841 static	struct worklist *jnewblk_merge(struct worklist *, struct worklist *,
842 	    struct workhead *);
843 static	struct freefrag *setup_allocindir_phase2(struct buf *, struct inode *,
844 	    struct inodedep *, struct allocindir *, ufs_lbn_t);
845 static	struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t,
846 	    ufs2_daddr_t, ufs_lbn_t);
847 static	void handle_workitem_freefrag(struct freefrag *);
848 static	struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long,
849 	    ufs_lbn_t, u_long);
850 static	void allocdirect_merge(struct allocdirectlst *,
851 	    struct allocdirect *, struct allocdirect *);
852 static	struct freefrag *allocindir_merge(struct allocindir *,
853 	    struct allocindir *);
854 static	int bmsafemap_find(struct bmsafemap_hashhead *, int,
855 	    struct bmsafemap **);
856 static	struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *,
857 	    int cg, struct bmsafemap *);
858 static	int newblk_find(struct newblk_hashhead *, ufs2_daddr_t, int,
859 	    struct newblk **);
860 static	int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **);
861 static	int inodedep_find(struct inodedep_hashhead *, ino_t,
862 	    struct inodedep **);
863 static	int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **);
864 static	int pagedep_lookup(struct mount *, struct buf *bp, ino_t, ufs_lbn_t,
865 	    int, struct pagedep **);
866 static	int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t,
867 	    struct pagedep **);
868 static	void pause_timer(void *);
869 static	int request_cleanup(struct mount *, int);
870 static	int softdep_request_cleanup_flush(struct mount *, struct ufsmount *);
871 static	void schedule_cleanup(struct mount *);
872 static void softdep_ast_cleanup_proc(struct thread *, int);
873 static struct ufsmount *softdep_bp_to_mp(struct buf *bp);
874 static	int process_worklist_item(struct mount *, int, int);
875 static	void process_removes(struct vnode *);
876 static	void process_truncates(struct vnode *);
877 static	void jwork_move(struct workhead *, struct workhead *);
878 static	void jwork_insert(struct workhead *, struct jsegdep *);
879 static	void add_to_worklist(struct worklist *, int);
880 static	void wake_worklist(struct worklist *);
881 static	void wait_worklist(struct worklist *, char *);
882 static	void remove_from_worklist(struct worklist *);
883 static	void softdep_flush(void *);
884 static	void softdep_flushjournal(struct mount *);
885 static	int softdep_speedup(struct ufsmount *);
886 static	void worklist_speedup(struct mount *);
887 static	int journal_mount(struct mount *, struct fs *, struct ucred *);
888 static	void journal_unmount(struct ufsmount *);
889 static	int journal_space(struct ufsmount *, int);
890 static	void journal_suspend(struct ufsmount *);
891 static	int journal_unsuspend(struct ufsmount *ump);
892 static	void add_to_journal(struct worklist *);
893 static	void remove_from_journal(struct worklist *);
894 static	bool softdep_excess_items(struct ufsmount *, int);
895 static	void softdep_process_journal(struct mount *, struct worklist *, int);
896 static	struct jremref *newjremref(struct dirrem *, struct inode *,
897 	    struct inode *ip, off_t, nlink_t);
898 static	struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t,
899 	    uint16_t);
900 static	inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t,
901 	    uint16_t);
902 static	inline struct jsegdep *inoref_jseg(struct inoref *);
903 static	struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t);
904 static	struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t,
905 	    ufs2_daddr_t, int);
906 static	void adjust_newfreework(struct freeblks *, int);
907 static	struct jtrunc *newjtrunc(struct freeblks *, off_t, int);
908 static	void move_newblock_dep(struct jaddref *, struct inodedep *);
909 static	void cancel_jfreeblk(struct freeblks *, ufs2_daddr_t);
910 static	struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *,
911 	    ufs2_daddr_t, long, ufs_lbn_t);
912 static	struct freework *newfreework(struct ufsmount *, struct freeblks *,
913 	    struct freework *, ufs_lbn_t, ufs2_daddr_t, int, int, int);
914 static	int jwait(struct worklist *, int);
915 static	struct inodedep *inodedep_lookup_ip(struct inode *);
916 static	int bmsafemap_backgroundwrite(struct bmsafemap *, struct buf *);
917 static	struct freefile *handle_bufwait(struct inodedep *, struct workhead *);
918 static	void handle_jwork(struct workhead *);
919 static	struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *,
920 	    struct mkdir **);
921 static	struct jblocks *jblocks_create(void);
922 static	ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *);
923 static	void jblocks_free(struct jblocks *, struct mount *, int);
924 static	void jblocks_destroy(struct jblocks *);
925 static	void jblocks_add(struct jblocks *, ufs2_daddr_t, int);
926 
927 /*
928  * Exported softdep operations.
929  */
930 static	void softdep_disk_io_initiation(struct buf *);
931 static	void softdep_disk_write_complete(struct buf *);
932 static	void softdep_deallocate_dependencies(struct buf *);
933 static	int softdep_count_dependencies(struct buf *bp, int);
934 
935 /*
936  * Global lock over all of soft updates.
937  */
938 static struct mtx lk;
939 MTX_SYSINIT(softdep_lock, &lk, "global softdep", MTX_DEF);
940 
941 #define ACQUIRE_GBLLOCK(lk)	mtx_lock(lk)
942 #define FREE_GBLLOCK(lk)	mtx_unlock(lk)
943 #define GBLLOCK_OWNED(lk)	mtx_assert((lk), MA_OWNED)
944 
945 /*
946  * Per-filesystem soft-updates locking.
947  */
948 #define LOCK_PTR(ump)		(&(ump)->um_softdep->sd_fslock)
949 #define TRY_ACQUIRE_LOCK(ump)	rw_try_wlock(&(ump)->um_softdep->sd_fslock)
950 #define ACQUIRE_LOCK(ump)	rw_wlock(&(ump)->um_softdep->sd_fslock)
951 #define FREE_LOCK(ump)		rw_wunlock(&(ump)->um_softdep->sd_fslock)
952 #define LOCK_OWNED(ump)		rw_assert(&(ump)->um_softdep->sd_fslock, \
953 				    RA_WLOCKED)
954 
955 #define	BUF_AREC(bp)		lockallowrecurse(&(bp)->b_lock)
956 #define	BUF_NOREC(bp)		lockdisablerecurse(&(bp)->b_lock)
957 
958 /*
959  * Worklist queue management.
960  * These routines require that the lock be held.
961  */
962 #ifndef /* NOT */ INVARIANTS
963 #define WORKLIST_INSERT(head, item) do {	\
964 	(item)->wk_state |= ONWORKLIST;		\
965 	LIST_INSERT_HEAD(head, item, wk_list);	\
966 } while (0)
967 #define WORKLIST_REMOVE(item) do {		\
968 	(item)->wk_state &= ~ONWORKLIST;	\
969 	LIST_REMOVE(item, wk_list);		\
970 } while (0)
971 #define WORKLIST_INSERT_UNLOCKED	WORKLIST_INSERT
972 #define WORKLIST_REMOVE_UNLOCKED	WORKLIST_REMOVE
973 
974 #else /* INVARIANTS */
975 static	void worklist_insert(struct workhead *, struct worklist *, int,
976 	const char *, int);
977 static	void worklist_remove(struct worklist *, int, const char *, int);
978 
979 #define WORKLIST_INSERT(head, item) \
980 	worklist_insert(head, item, 1, __func__, __LINE__)
981 #define WORKLIST_INSERT_UNLOCKED(head, item)\
982 	worklist_insert(head, item, 0, __func__, __LINE__)
983 #define WORKLIST_REMOVE(item)\
984 	worklist_remove(item, 1, __func__, __LINE__)
985 #define WORKLIST_REMOVE_UNLOCKED(item)\
986 	worklist_remove(item, 0, __func__, __LINE__)
987 
988 static void
989 worklist_insert(struct workhead *head,
990 	struct worklist *item,
991 	int locked,
992 	const char *func,
993 	int line)
994 {
995 
996 	if (locked)
997 		LOCK_OWNED(VFSTOUFS(item->wk_mp));
998 	if (item->wk_state & ONWORKLIST)
999 		panic("worklist_insert: %p %s(0x%X) already on list, "
1000 		    "added in function %s at line %d",
1001 		    item, TYPENAME(item->wk_type), item->wk_state,
1002 		    item->wk_func, item->wk_line);
1003 	item->wk_state |= ONWORKLIST;
1004 	item->wk_func = func;
1005 	item->wk_line = line;
1006 	LIST_INSERT_HEAD(head, item, wk_list);
1007 }
1008 
1009 static void
1010 worklist_remove(struct worklist *item,
1011 	int locked,
1012 	const char *func,
1013 	int line)
1014 {
1015 
1016 	if (locked)
1017 		LOCK_OWNED(VFSTOUFS(item->wk_mp));
1018 	if ((item->wk_state & ONWORKLIST) == 0)
1019 		panic("worklist_remove: %p %s(0x%X) not on list, "
1020 		    "removed in function %s at line %d",
1021 		    item, TYPENAME(item->wk_type), item->wk_state,
1022 		    item->wk_func, item->wk_line);
1023 	item->wk_state &= ~ONWORKLIST;
1024 	item->wk_func = func;
1025 	item->wk_line = line;
1026 	LIST_REMOVE(item, wk_list);
1027 }
1028 #endif /* INVARIANTS */
1029 
1030 /*
1031  * Merge two jsegdeps keeping only the oldest one as newer references
1032  * can't be discarded until after older references.
1033  */
1034 static inline struct jsegdep *
1035 jsegdep_merge(struct jsegdep *one, struct jsegdep *two)
1036 {
1037 	struct jsegdep *swp;
1038 
1039 	if (two == NULL)
1040 		return (one);
1041 
1042 	if (one->jd_seg->js_seq > two->jd_seg->js_seq) {
1043 		swp = one;
1044 		one = two;
1045 		two = swp;
1046 	}
1047 	WORKLIST_REMOVE(&two->jd_list);
1048 	free_jsegdep(two);
1049 
1050 	return (one);
1051 }
1052 
1053 /*
1054  * If two freedeps are compatible free one to reduce list size.
1055  */
1056 static inline struct freedep *
1057 freedep_merge(struct freedep *one, struct freedep *two)
1058 {
1059 	if (two == NULL)
1060 		return (one);
1061 
1062 	if (one->fd_freework == two->fd_freework) {
1063 		WORKLIST_REMOVE(&two->fd_list);
1064 		free_freedep(two);
1065 	}
1066 	return (one);
1067 }
1068 
1069 /*
1070  * Move journal work from one list to another.  Duplicate freedeps and
1071  * jsegdeps are coalesced to keep the lists as small as possible.
1072  */
1073 static void
1074 jwork_move(struct workhead *dst, struct workhead *src)
1075 {
1076 	struct freedep *freedep;
1077 	struct jsegdep *jsegdep;
1078 	struct worklist *wkn;
1079 	struct worklist *wk;
1080 
1081 	KASSERT(dst != src,
1082 	    ("jwork_move: dst == src"));
1083 	freedep = NULL;
1084 	jsegdep = NULL;
1085 	LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) {
1086 		if (wk->wk_type == D_JSEGDEP)
1087 			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1088 		else if (wk->wk_type == D_FREEDEP)
1089 			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1090 	}
1091 
1092 	while ((wk = LIST_FIRST(src)) != NULL) {
1093 		WORKLIST_REMOVE(wk);
1094 		WORKLIST_INSERT(dst, wk);
1095 		if (wk->wk_type == D_JSEGDEP) {
1096 			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1097 			continue;
1098 		}
1099 		if (wk->wk_type == D_FREEDEP)
1100 			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1101 	}
1102 }
1103 
1104 static void
1105 jwork_insert(struct workhead *dst, struct jsegdep *jsegdep)
1106 {
1107 	struct jsegdep *jsegdepn;
1108 	struct worklist *wk;
1109 
1110 	LIST_FOREACH(wk, dst, wk_list)
1111 		if (wk->wk_type == D_JSEGDEP)
1112 			break;
1113 	if (wk == NULL) {
1114 		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1115 		return;
1116 	}
1117 	jsegdepn = WK_JSEGDEP(wk);
1118 	if (jsegdep->jd_seg->js_seq < jsegdepn->jd_seg->js_seq) {
1119 		WORKLIST_REMOVE(wk);
1120 		free_jsegdep(jsegdepn);
1121 		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1122 	} else
1123 		free_jsegdep(jsegdep);
1124 }
1125 
1126 /*
1127  * Routines for tracking and managing workitems.
1128  */
1129 static	void workitem_free(struct worklist *, int);
1130 static	void workitem_alloc(struct worklist *, int, struct mount *);
1131 static	void workitem_reassign(struct worklist *, int);
1132 
1133 #define	WORKITEM_FREE(item, type) \
1134 	workitem_free((struct worklist *)(item), (type))
1135 #define	WORKITEM_REASSIGN(item, type) \
1136 	workitem_reassign((struct worklist *)(item), (type))
1137 
1138 static void
1139 workitem_free(struct worklist *item, int type)
1140 {
1141 	struct ufsmount *ump;
1142 
1143 #ifdef INVARIANTS
1144 	if (item->wk_state & ONWORKLIST)
1145 		panic("workitem_free: %s(0x%X) still on list, "
1146 		    "added in function %s at line %d",
1147 		    TYPENAME(item->wk_type), item->wk_state,
1148 		    item->wk_func, item->wk_line);
1149 	if (item->wk_type != type && type != D_NEWBLK)
1150 		panic("workitem_free: type mismatch %s != %s",
1151 		    TYPENAME(item->wk_type), TYPENAME(type));
1152 #endif
1153 	if (item->wk_state & IOWAITING)
1154 		wakeup(item);
1155 	ump = VFSTOUFS(item->wk_mp);
1156 	LOCK_OWNED(ump);
1157 	KASSERT(ump->softdep_deps > 0,
1158 	    ("workitem_free: %s: softdep_deps going negative",
1159 	    ump->um_fs->fs_fsmnt));
1160 	if (--ump->softdep_deps == 0 && ump->softdep_req)
1161 		wakeup(&ump->softdep_deps);
1162 	KASSERT(dep_current[item->wk_type] > 0,
1163 	    ("workitem_free: %s: dep_current[%s] going negative",
1164 	    ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1165 	KASSERT(ump->softdep_curdeps[item->wk_type] > 0,
1166 	    ("workitem_free: %s: softdep_curdeps[%s] going negative",
1167 	    ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1168 	atomic_subtract_long(&dep_current[item->wk_type], 1);
1169 	ump->softdep_curdeps[item->wk_type] -= 1;
1170 	LIST_REMOVE(item, wk_all);
1171 	free(item, DtoM(type));
1172 }
1173 
1174 static void
1175 workitem_alloc(struct worklist *item,
1176 	int type,
1177 	struct mount *mp)
1178 {
1179 	struct ufsmount *ump;
1180 
1181 	item->wk_type = type;
1182 	item->wk_mp = mp;
1183 	item->wk_state = 0;
1184 
1185 	ump = VFSTOUFS(mp);
1186 	ACQUIRE_GBLLOCK(&lk);
1187 	dep_current[type]++;
1188 	if (dep_current[type] > dep_highuse[type])
1189 		dep_highuse[type] = dep_current[type];
1190 	dep_total[type]++;
1191 	FREE_GBLLOCK(&lk);
1192 	ACQUIRE_LOCK(ump);
1193 	ump->softdep_curdeps[type] += 1;
1194 	ump->softdep_deps++;
1195 	ump->softdep_accdeps++;
1196 	LIST_INSERT_HEAD(&ump->softdep_alldeps[type], item, wk_all);
1197 	FREE_LOCK(ump);
1198 }
1199 
1200 static void
1201 workitem_reassign(struct worklist *item, int newtype)
1202 {
1203 	struct ufsmount *ump;
1204 
1205 	ump = VFSTOUFS(item->wk_mp);
1206 	LOCK_OWNED(ump);
1207 	KASSERT(ump->softdep_curdeps[item->wk_type] > 0,
1208 	    ("workitem_reassign: %s: softdep_curdeps[%s] going negative",
1209 	    VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1210 	ump->softdep_curdeps[item->wk_type] -= 1;
1211 	ump->softdep_curdeps[newtype] += 1;
1212 	KASSERT(dep_current[item->wk_type] > 0,
1213 	    ("workitem_reassign: %s: dep_current[%s] going negative",
1214 	    VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1215 	ACQUIRE_GBLLOCK(&lk);
1216 	dep_current[newtype]++;
1217 	dep_current[item->wk_type]--;
1218 	if (dep_current[newtype] > dep_highuse[newtype])
1219 		dep_highuse[newtype] = dep_current[newtype];
1220 	dep_total[newtype]++;
1221 	FREE_GBLLOCK(&lk);
1222 	item->wk_type = newtype;
1223 	LIST_REMOVE(item, wk_all);
1224 	LIST_INSERT_HEAD(&ump->softdep_alldeps[newtype], item, wk_all);
1225 }
1226 
1227 /*
1228  * Workitem queue management
1229  */
1230 static int max_softdeps;	/* maximum number of structs before slowdown */
1231 static int tickdelay = 2;	/* number of ticks to pause during slowdown */
1232 static int proc_waiting;	/* tracks whether we have a timeout posted */
1233 static int *stat_countp;	/* statistic to count in proc_waiting timeout */
1234 static struct callout softdep_callout;
1235 static int req_clear_inodedeps;	/* syncer process flush some inodedeps */
1236 static int req_clear_remove;	/* syncer process flush some freeblks */
1237 static int softdep_flushcache = 0; /* Should we do BIO_FLUSH? */
1238 
1239 /*
1240  * runtime statistics
1241  */
1242 static int stat_flush_threads;	/* number of softdep flushing threads */
1243 static int stat_worklist_push;	/* number of worklist cleanups */
1244 static int stat_delayed_inact;	/* number of delayed inactivation cleanups */
1245 static int stat_blk_limit_push;	/* number of times block limit neared */
1246 static int stat_ino_limit_push;	/* number of times inode limit neared */
1247 static int stat_blk_limit_hit;	/* number of times block slowdown imposed */
1248 static int stat_ino_limit_hit;	/* number of times inode slowdown imposed */
1249 static int stat_sync_limit_hit;	/* number of synchronous slowdowns imposed */
1250 static int stat_indir_blk_ptrs;	/* bufs redirtied as indir ptrs not written */
1251 static int stat_inode_bitmap;	/* bufs redirtied as inode bitmap not written */
1252 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
1253 static int stat_dir_entry;	/* bufs redirtied as dir entry cannot write */
1254 static int stat_jaddref;	/* bufs redirtied as ino bitmap can not write */
1255 static int stat_jnewblk;	/* bufs redirtied as blk bitmap can not write */
1256 static int stat_journal_min;	/* Times hit journal min threshold */
1257 static int stat_journal_low;	/* Times hit journal low threshold */
1258 static int stat_journal_wait;	/* Times blocked in jwait(). */
1259 static int stat_jwait_filepage;	/* Times blocked in jwait() for filepage. */
1260 static int stat_jwait_freeblks;	/* Times blocked in jwait() for freeblks. */
1261 static int stat_jwait_inode;	/* Times blocked in jwait() for inodes. */
1262 static int stat_jwait_newblk;	/* Times blocked in jwait() for newblks. */
1263 static int stat_cleanup_high_delay; /* Maximum cleanup delay (in ticks) */
1264 static int stat_cleanup_blkrequests; /* Number of block cleanup requests */
1265 static int stat_cleanup_inorequests; /* Number of inode cleanup requests */
1266 static int stat_cleanup_retries; /* Number of cleanups that needed to flush */
1267 static int stat_cleanup_failures; /* Number of cleanup requests that failed */
1268 static int stat_emptyjblocks; /* Number of potentially empty journal blocks */
1269 
1270 SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW,
1271     &max_softdeps, 0, "");
1272 SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW,
1273     &tickdelay, 0, "");
1274 SYSCTL_INT(_debug_softdep, OID_AUTO, flush_threads, CTLFLAG_RD,
1275     &stat_flush_threads, 0, "");
1276 SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push,
1277     CTLFLAG_RW | CTLFLAG_STATS, &stat_worklist_push, 0,"");
1278 SYSCTL_INT(_debug_softdep, OID_AUTO, delayed_inactivations, CTLFLAG_RD,
1279     &stat_delayed_inact, 0, "");
1280 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push,
1281     CTLFLAG_RW | CTLFLAG_STATS, &stat_blk_limit_push, 0,"");
1282 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push,
1283     CTLFLAG_RW | CTLFLAG_STATS, &stat_ino_limit_push, 0,"");
1284 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit,
1285     CTLFLAG_RW | CTLFLAG_STATS, &stat_blk_limit_hit, 0, "");
1286 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit,
1287     CTLFLAG_RW | CTLFLAG_STATS, &stat_ino_limit_hit, 0, "");
1288 SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit,
1289     CTLFLAG_RW | CTLFLAG_STATS, &stat_sync_limit_hit, 0, "");
1290 SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs,
1291     CTLFLAG_RW | CTLFLAG_STATS, &stat_indir_blk_ptrs, 0, "");
1292 SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap,
1293     CTLFLAG_RW | CTLFLAG_STATS, &stat_inode_bitmap, 0, "");
1294 SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs,
1295     CTLFLAG_RW | CTLFLAG_STATS, &stat_direct_blk_ptrs, 0, "");
1296 SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry,
1297     CTLFLAG_RW | CTLFLAG_STATS, &stat_dir_entry, 0, "");
1298 SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback,
1299     CTLFLAG_RW | CTLFLAG_STATS, &stat_jaddref, 0, "");
1300 SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback,
1301     CTLFLAG_RW | CTLFLAG_STATS, &stat_jnewblk, 0, "");
1302 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low,
1303     CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_low, 0, "");
1304 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min,
1305     CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_min, 0, "");
1306 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait,
1307     CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_wait, 0, "");
1308 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage,
1309     CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_filepage, 0, "");
1310 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks,
1311     CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_freeblks, 0, "");
1312 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode,
1313     CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_inode, 0, "");
1314 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk,
1315     CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_newblk, 0, "");
1316 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_blkrequests,
1317     CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_blkrequests, 0, "");
1318 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_inorequests,
1319     CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_inorequests, 0, "");
1320 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_high_delay,
1321     CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_high_delay, 0, "");
1322 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_retries,
1323     CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_retries, 0, "");
1324 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_failures,
1325     CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_failures, 0, "");
1326 
1327 SYSCTL_INT(_debug_softdep, OID_AUTO, flushcache, CTLFLAG_RW,
1328     &softdep_flushcache, 0, "");
1329 SYSCTL_INT(_debug_softdep, OID_AUTO, emptyjblocks, CTLFLAG_RD,
1330     &stat_emptyjblocks, 0, "");
1331 
1332 SYSCTL_DECL(_vfs_ffs);
1333 
1334 /* Whether to recompute the summary at mount time */
1335 static int compute_summary_at_mount = 0;
1336 SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW,
1337 	   &compute_summary_at_mount, 0, "Recompute summary at mount");
1338 static int print_threads = 0;
1339 SYSCTL_INT(_debug_softdep, OID_AUTO, print_threads, CTLFLAG_RW,
1340     &print_threads, 0, "Notify flusher thread start/stop");
1341 
1342 /* List of all filesystems mounted with soft updates */
1343 static TAILQ_HEAD(, mount_softdeps) softdepmounts;
1344 
1345 static void
1346 get_parent_vp_unlock_bp(struct mount *mp,
1347 	struct buf *bp,
1348 	struct diraddhd *diraddhdp,
1349 	struct diraddhd *unfinishedp)
1350 {
1351 	struct diradd *dap;
1352 
1353 	/*
1354 	 * Requeue unfinished dependencies before
1355 	 * unlocking buffer, which could make
1356 	 * diraddhdp invalid.
1357 	 */
1358 	ACQUIRE_LOCK(VFSTOUFS(mp));
1359 	while ((dap = LIST_FIRST(unfinishedp)) != NULL) {
1360 		LIST_REMOVE(dap, da_pdlist);
1361 		LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist);
1362 	}
1363 	FREE_LOCK(VFSTOUFS(mp));
1364 
1365 	bp->b_vflags &= ~BV_SCANNED;
1366 	BUF_NOREC(bp);
1367 	BUF_UNLOCK(bp);
1368 }
1369 
1370 /*
1371  * This function fetches inode inum on mount point mp.  We already
1372  * hold a locked vnode vp, and might have a locked buffer bp belonging
1373  * to vp.
1374 
1375  * We must not block on acquiring the new inode lock as we will get
1376  * into a lock-order reversal with the buffer lock and possibly get a
1377  * deadlock.  Thus if we cannot instantiate the requested vnode
1378  * without sleeping on its lock, we must unlock the vnode and the
1379  * buffer before doing a blocking on the vnode lock.  We return
1380  * ERELOOKUP if we have had to unlock either the vnode or the buffer so
1381  * that the caller can reassess its state.
1382  *
1383  * Top-level VFS code (for syscalls and other consumers, e.g. callers
1384  * of VOP_FSYNC() in syncer) check for ERELOOKUP and restart at safe
1385  * point.
1386  *
1387  * Since callers expect to operate on fully constructed vnode, we also
1388  * recheck v_data after relock, and return ENOENT if NULL.
1389  *
1390  * If unlocking bp, we must unroll dequeueing its unfinished
1391  * dependencies, and clear scan flag, before unlocking.  If unlocking
1392  * vp while it is under deactivation, we re-queue deactivation.
1393  */
1394 static int
1395 get_parent_vp(struct vnode *vp,
1396 	struct mount *mp,
1397 	ino_t inum,
1398 	struct buf *bp,
1399 	struct diraddhd *diraddhdp,
1400 	struct diraddhd *unfinishedp,
1401 	struct vnode **rvp)
1402 {
1403 	struct vnode *pvp;
1404 	int error;
1405 	bool bplocked;
1406 
1407 	ASSERT_VOP_ELOCKED(vp, "child vnode must be locked");
1408 	for (bplocked = true, pvp = NULL;;) {
1409 		error = ffs_vgetf(mp, inum, LK_EXCLUSIVE | LK_NOWAIT, &pvp,
1410 		    FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP);
1411 		if (error == 0) {
1412 			/*
1413 			 * Since we could have unlocked vp, the inode
1414 			 * number could no longer indicate a
1415 			 * constructed node.  In this case, we must
1416 			 * restart the syscall.
1417 			 */
1418 			if (VTOI(pvp)->i_mode == 0 || !bplocked) {
1419 				if (bp != NULL && bplocked)
1420 					get_parent_vp_unlock_bp(mp, bp,
1421 					    diraddhdp, unfinishedp);
1422 				if (VTOI(pvp)->i_mode == 0)
1423 					vgone(pvp);
1424 				error = ERELOOKUP;
1425 				goto out2;
1426 			}
1427 			goto out1;
1428 		}
1429 		if (bp != NULL && bplocked) {
1430 			get_parent_vp_unlock_bp(mp, bp, diraddhdp, unfinishedp);
1431 			bplocked = false;
1432 		}
1433 
1434 		/*
1435 		 * Do not drop vnode lock while inactivating during
1436 		 * vunref.  This would result in leaks of the VI flags
1437 		 * and reclaiming of non-truncated vnode.  Instead,
1438 		 * re-schedule inactivation hoping that we would be
1439 		 * able to sync inode later.
1440 		 */
1441 		if ((vp->v_iflag & VI_DOINGINACT) != 0 &&
1442 		    (vp->v_vflag & VV_UNREF) != 0) {
1443 			VI_LOCK(vp);
1444 			vp->v_iflag |= VI_OWEINACT;
1445 			VI_UNLOCK(vp);
1446 			return (ERELOOKUP);
1447 		}
1448 
1449 		VOP_UNLOCK(vp);
1450 		error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &pvp,
1451 		    FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP);
1452 		if (error != 0) {
1453 			MPASS(error != ERELOOKUP);
1454 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1455 			break;
1456 		}
1457 		if (VTOI(pvp)->i_mode == 0) {
1458 			vgone(pvp);
1459 			vput(pvp);
1460 			pvp = NULL;
1461 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1462 			error = ERELOOKUP;
1463 			break;
1464 		}
1465 		error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT);
1466 		if (error == 0)
1467 			break;
1468 		vput(pvp);
1469 		pvp = NULL;
1470 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1471 		if (vp->v_data == NULL) {
1472 			error = ENOENT;
1473 			break;
1474 		}
1475 	}
1476 	if (bp != NULL) {
1477 		MPASS(!bplocked);
1478 		error = ERELOOKUP;
1479 	}
1480 out2:
1481 	if (error != 0 && pvp != NULL) {
1482 		vput(pvp);
1483 		pvp = NULL;
1484 	}
1485 out1:
1486 	*rvp = pvp;
1487 	ASSERT_VOP_ELOCKED(vp, "child vnode must be locked on return");
1488 	return (error);
1489 }
1490 
1491 /*
1492  * This function cleans the worklist for a filesystem.
1493  * Each filesystem running with soft dependencies gets its own
1494  * thread to run in this function. The thread is started up in
1495  * softdep_mount and shutdown in softdep_unmount. They show up
1496  * as part of the kernel "bufdaemon" process whose process
1497  * entry is available in bufdaemonproc.
1498  */
1499 static int searchfailed;
1500 extern struct proc *bufdaemonproc;
1501 static void
1502 softdep_flush(void *addr)
1503 {
1504 	struct mount *mp;
1505 	struct thread *td;
1506 	struct ufsmount *ump;
1507 	int cleanups;
1508 
1509 	td = curthread;
1510 	td->td_pflags |= TDP_NORUNNINGBUF;
1511 	mp = (struct mount *)addr;
1512 	ump = VFSTOUFS(mp);
1513 	atomic_add_int(&stat_flush_threads, 1);
1514 	ACQUIRE_LOCK(ump);
1515 	ump->softdep_flags &= ~FLUSH_STARTING;
1516 	wakeup(&ump->softdep_flushtd);
1517 	FREE_LOCK(ump);
1518 	if (print_threads) {
1519 		if (stat_flush_threads == 1)
1520 			printf("Running %s at pid %d\n", bufdaemonproc->p_comm,
1521 			    bufdaemonproc->p_pid);
1522 		printf("Start thread %s\n", td->td_name);
1523 	}
1524 	for (;;) {
1525 		while (softdep_process_worklist(mp, 0) > 0 ||
1526 		    (MOUNTEDSUJ(mp) &&
1527 		    VFSTOUFS(mp)->softdep_jblocks->jb_suspended))
1528 			kthread_suspend_check();
1529 		ACQUIRE_LOCK(ump);
1530 		if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
1531 			msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM,
1532 			    "sdflush", hz / 2);
1533 		ump->softdep_flags &= ~FLUSH_CLEANUP;
1534 		/*
1535 		 * Check to see if we are done and need to exit.
1536 		 */
1537 		if ((ump->softdep_flags & FLUSH_EXIT) == 0) {
1538 			FREE_LOCK(ump);
1539 			continue;
1540 		}
1541 		ump->softdep_flags &= ~FLUSH_EXIT;
1542 		cleanups = ump->um_softdep->sd_cleanups;
1543 		FREE_LOCK(ump);
1544 		wakeup(&ump->softdep_flags);
1545 		if (print_threads) {
1546 			printf("Stop thread %s: searchfailed %d, "
1547 			    "did cleanups %d\n",
1548 			    td->td_name, searchfailed, cleanups);
1549 		}
1550 		atomic_subtract_int(&stat_flush_threads, 1);
1551 		kthread_exit();
1552 		panic("kthread_exit failed\n");
1553 	}
1554 }
1555 
1556 static void
1557 worklist_speedup(struct mount *mp)
1558 {
1559 	struct ufsmount *ump;
1560 
1561 	ump = VFSTOUFS(mp);
1562 	LOCK_OWNED(ump);
1563 	if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
1564 		ump->softdep_flags |= FLUSH_CLEANUP;
1565 	wakeup(&ump->softdep_flushtd);
1566 }
1567 
1568 static void
1569 softdep_send_speedup(struct ufsmount *ump,
1570 	off_t shortage,
1571 	u_int flags)
1572 {
1573 	struct buf *bp;
1574 
1575 	if ((ump->um_flags & UM_CANSPEEDUP) == 0)
1576 		return;
1577 
1578 	bp = malloc(sizeof(*bp), M_TRIM, M_WAITOK | M_ZERO);
1579 	bp->b_iocmd = BIO_SPEEDUP;
1580 	bp->b_ioflags = flags;
1581 	bp->b_bcount = omin(shortage, LONG_MAX);
1582 	g_vfs_strategy(ump->um_bo, bp);
1583 	bufwait(bp);
1584 	free(bp, M_TRIM);
1585 }
1586 
1587 static int
1588 softdep_speedup(struct ufsmount *ump)
1589 {
1590 	struct ufsmount *altump;
1591 	struct mount_softdeps *sdp;
1592 
1593 	LOCK_OWNED(ump);
1594 	worklist_speedup(ump->um_mountp);
1595 	bd_speedup();
1596 	/*
1597 	 * If we have global shortages, then we need other
1598 	 * filesystems to help with the cleanup. Here we wakeup a
1599 	 * flusher thread for a filesystem that is over its fair
1600 	 * share of resources.
1601 	 */
1602 	if (req_clear_inodedeps || req_clear_remove) {
1603 		ACQUIRE_GBLLOCK(&lk);
1604 		TAILQ_FOREACH(sdp, &softdepmounts, sd_next) {
1605 			if ((altump = sdp->sd_ump) == ump)
1606 				continue;
1607 			if (((req_clear_inodedeps &&
1608 			    altump->softdep_curdeps[D_INODEDEP] >
1609 			    max_softdeps / stat_flush_threads) ||
1610 			    (req_clear_remove &&
1611 			    altump->softdep_curdeps[D_DIRREM] >
1612 			    (max_softdeps / 2) / stat_flush_threads)) &&
1613 			    TRY_ACQUIRE_LOCK(altump))
1614 				break;
1615 		}
1616 		if (sdp == NULL) {
1617 			searchfailed++;
1618 			FREE_GBLLOCK(&lk);
1619 		} else {
1620 			/*
1621 			 * Move to the end of the list so we pick a
1622 			 * different one on out next try.
1623 			 */
1624 			TAILQ_REMOVE(&softdepmounts, sdp, sd_next);
1625 			TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next);
1626 			FREE_GBLLOCK(&lk);
1627 			if ((altump->softdep_flags &
1628 			    (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
1629 				altump->softdep_flags |= FLUSH_CLEANUP;
1630 			altump->um_softdep->sd_cleanups++;
1631 			wakeup(&altump->softdep_flushtd);
1632 			FREE_LOCK(altump);
1633 		}
1634 	}
1635 	return (speedup_syncer());
1636 }
1637 
1638 /*
1639  * Add an item to the end of the work queue.
1640  * This routine requires that the lock be held.
1641  * This is the only routine that adds items to the list.
1642  * The following routine is the only one that removes items
1643  * and does so in order from first to last.
1644  */
1645 
1646 #define	WK_HEAD		0x0001	/* Add to HEAD. */
1647 #define	WK_NODELAY	0x0002	/* Process immediately. */
1648 
1649 static void
1650 add_to_worklist(struct worklist *wk, int flags)
1651 {
1652 	struct ufsmount *ump;
1653 
1654 	ump = VFSTOUFS(wk->wk_mp);
1655 	LOCK_OWNED(ump);
1656 	if (wk->wk_state & ONWORKLIST)
1657 		panic("add_to_worklist: %s(0x%X) already on list",
1658 		    TYPENAME(wk->wk_type), wk->wk_state);
1659 	wk->wk_state |= ONWORKLIST;
1660 	if (ump->softdep_on_worklist == 0) {
1661 		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1662 		ump->softdep_worklist_tail = wk;
1663 	} else if (flags & WK_HEAD) {
1664 		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1665 	} else {
1666 		LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list);
1667 		ump->softdep_worklist_tail = wk;
1668 	}
1669 	ump->softdep_on_worklist += 1;
1670 	if (flags & WK_NODELAY)
1671 		worklist_speedup(wk->wk_mp);
1672 }
1673 
1674 /*
1675  * Remove the item to be processed. If we are removing the last
1676  * item on the list, we need to recalculate the tail pointer.
1677  */
1678 static void
1679 remove_from_worklist(struct worklist *wk)
1680 {
1681 	struct ufsmount *ump;
1682 
1683 	ump = VFSTOUFS(wk->wk_mp);
1684 	if (ump->softdep_worklist_tail == wk)
1685 		ump->softdep_worklist_tail =
1686 		    (struct worklist *)wk->wk_list.le_prev;
1687 	WORKLIST_REMOVE(wk);
1688 	ump->softdep_on_worklist -= 1;
1689 }
1690 
1691 static void
1692 wake_worklist(struct worklist *wk)
1693 {
1694 	if (wk->wk_state & IOWAITING) {
1695 		wk->wk_state &= ~IOWAITING;
1696 		wakeup(wk);
1697 	}
1698 }
1699 
1700 static void
1701 wait_worklist(struct worklist *wk, char *wmesg)
1702 {
1703 	struct ufsmount *ump;
1704 
1705 	ump = VFSTOUFS(wk->wk_mp);
1706 	wk->wk_state |= IOWAITING;
1707 	msleep(wk, LOCK_PTR(ump), PVM, wmesg, 0);
1708 }
1709 
1710 /*
1711  * Process that runs once per second to handle items in the background queue.
1712  *
1713  * Note that we ensure that everything is done in the order in which they
1714  * appear in the queue. The code below depends on this property to ensure
1715  * that blocks of a file are freed before the inode itself is freed. This
1716  * ordering ensures that no new <vfsid, inum, lbn> triples will be generated
1717  * until all the old ones have been purged from the dependency lists.
1718  */
1719 static int
1720 softdep_process_worklist(struct mount *mp, int full)
1721 {
1722 	int cnt, matchcnt;
1723 	struct ufsmount *ump;
1724 	long starttime;
1725 
1726 	KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp"));
1727 	ump = VFSTOUFS(mp);
1728 	if (ump->um_softdep == NULL)
1729 		return (0);
1730 	matchcnt = 0;
1731 	ACQUIRE_LOCK(ump);
1732 	starttime = time_second;
1733 	softdep_process_journal(mp, NULL, full ? MNT_WAIT : 0);
1734 	check_clear_deps(mp);
1735 	while (ump->softdep_on_worklist > 0) {
1736 		if ((cnt = process_worklist_item(mp, 10, LK_NOWAIT)) == 0)
1737 			break;
1738 		else
1739 			matchcnt += cnt;
1740 		check_clear_deps(mp);
1741 		/*
1742 		 * We do not generally want to stop for buffer space, but if
1743 		 * we are really being a buffer hog, we will stop and wait.
1744 		 */
1745 		if (should_yield()) {
1746 			FREE_LOCK(ump);
1747 			kern_yield(PRI_USER);
1748 			bwillwrite();
1749 			ACQUIRE_LOCK(ump);
1750 		}
1751 		/*
1752 		 * Never allow processing to run for more than one
1753 		 * second. This gives the syncer thread the opportunity
1754 		 * to pause if appropriate.
1755 		 */
1756 		if (!full && starttime != time_second)
1757 			break;
1758 	}
1759 	if (full == 0)
1760 		journal_unsuspend(ump);
1761 	FREE_LOCK(ump);
1762 	return (matchcnt);
1763 }
1764 
1765 /*
1766  * Process all removes associated with a vnode if we are running out of
1767  * journal space.  Any other process which attempts to flush these will
1768  * be unable as we have the vnodes locked.
1769  */
1770 static void
1771 process_removes(struct vnode *vp)
1772 {
1773 	struct inodedep *inodedep;
1774 	struct dirrem *dirrem;
1775 	struct ufsmount *ump;
1776 	struct mount *mp;
1777 	ino_t inum;
1778 
1779 	mp = vp->v_mount;
1780 	ump = VFSTOUFS(mp);
1781 	LOCK_OWNED(ump);
1782 	inum = VTOI(vp)->i_number;
1783 	for (;;) {
1784 top:
1785 		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1786 			return;
1787 		LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext) {
1788 			/*
1789 			 * If another thread is trying to lock this vnode
1790 			 * it will fail but we must wait for it to do so
1791 			 * before we can proceed.
1792 			 */
1793 			if (dirrem->dm_state & INPROGRESS) {
1794 				wait_worklist(&dirrem->dm_list, "pwrwait");
1795 				goto top;
1796 			}
1797 			if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) ==
1798 			    (COMPLETE | ONWORKLIST))
1799 				break;
1800 		}
1801 		if (dirrem == NULL)
1802 			return;
1803 		remove_from_worklist(&dirrem->dm_list);
1804 		FREE_LOCK(ump);
1805 		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1806 			panic("process_removes: suspended filesystem");
1807 		handle_workitem_remove(dirrem, 0);
1808 		vn_finished_secondary_write(mp);
1809 		ACQUIRE_LOCK(ump);
1810 	}
1811 }
1812 
1813 /*
1814  * Process all truncations associated with a vnode if we are running out
1815  * of journal space.  This is called when the vnode lock is already held
1816  * and no other process can clear the truncation.  This function returns
1817  * a value greater than zero if it did any work.
1818  */
1819 static void
1820 process_truncates(struct vnode *vp)
1821 {
1822 	struct inodedep *inodedep;
1823 	struct freeblks *freeblks;
1824 	struct ufsmount *ump;
1825 	struct mount *mp;
1826 	ino_t inum;
1827 	int cgwait;
1828 
1829 	mp = vp->v_mount;
1830 	ump = VFSTOUFS(mp);
1831 	LOCK_OWNED(ump);
1832 	inum = VTOI(vp)->i_number;
1833 	for (;;) {
1834 		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1835 			return;
1836 		cgwait = 0;
1837 		TAILQ_FOREACH(freeblks, &inodedep->id_freeblklst, fb_next) {
1838 			/* Journal entries not yet written.  */
1839 			if (!LIST_EMPTY(&freeblks->fb_jblkdephd)) {
1840 				jwait(&LIST_FIRST(
1841 				    &freeblks->fb_jblkdephd)->jb_list,
1842 				    MNT_WAIT);
1843 				break;
1844 			}
1845 			/* Another thread is executing this item. */
1846 			if (freeblks->fb_state & INPROGRESS) {
1847 				wait_worklist(&freeblks->fb_list, "ptrwait");
1848 				break;
1849 			}
1850 			/* Freeblks is waiting on a inode write. */
1851 			if ((freeblks->fb_state & COMPLETE) == 0) {
1852 				FREE_LOCK(ump);
1853 				ffs_update(vp, 1);
1854 				ACQUIRE_LOCK(ump);
1855 				break;
1856 			}
1857 			if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST)) ==
1858 			    (ALLCOMPLETE | ONWORKLIST)) {
1859 				remove_from_worklist(&freeblks->fb_list);
1860 				freeblks->fb_state |= INPROGRESS;
1861 				FREE_LOCK(ump);
1862 				if (vn_start_secondary_write(NULL, &mp,
1863 				    V_NOWAIT))
1864 					panic("process_truncates: "
1865 					    "suspended filesystem");
1866 				handle_workitem_freeblocks(freeblks, 0);
1867 				vn_finished_secondary_write(mp);
1868 				ACQUIRE_LOCK(ump);
1869 				break;
1870 			}
1871 			if (freeblks->fb_cgwait)
1872 				cgwait++;
1873 		}
1874 		if (cgwait) {
1875 			FREE_LOCK(ump);
1876 			sync_cgs(mp, MNT_WAIT);
1877 			ffs_sync_snap(mp, MNT_WAIT);
1878 			ACQUIRE_LOCK(ump);
1879 			continue;
1880 		}
1881 		if (freeblks == NULL)
1882 			break;
1883 	}
1884 	return;
1885 }
1886 
1887 /*
1888  * Process one item on the worklist.
1889  */
1890 static int
1891 process_worklist_item(struct mount *mp,
1892 	int target,
1893 	int flags)
1894 {
1895 	struct worklist sentinel;
1896 	struct worklist *wk;
1897 	struct ufsmount *ump;
1898 	int matchcnt;
1899 	int error;
1900 
1901 	KASSERT(mp != NULL, ("process_worklist_item: NULL mp"));
1902 	/*
1903 	 * If we are being called because of a process doing a
1904 	 * copy-on-write, then it is not safe to write as we may
1905 	 * recurse into the copy-on-write routine.
1906 	 */
1907 	if (curthread->td_pflags & TDP_COWINPROGRESS)
1908 		return (-1);
1909 	PHOLD(curproc);	/* Don't let the stack go away. */
1910 	ump = VFSTOUFS(mp);
1911 	LOCK_OWNED(ump);
1912 	matchcnt = 0;
1913 	sentinel.wk_mp = NULL;
1914 	sentinel.wk_type = D_SENTINEL;
1915 	LIST_INSERT_HEAD(&ump->softdep_workitem_pending, &sentinel, wk_list);
1916 	for (wk = LIST_NEXT(&sentinel, wk_list); wk != NULL;
1917 	    wk = LIST_NEXT(&sentinel, wk_list)) {
1918 		if (wk->wk_type == D_SENTINEL) {
1919 			LIST_REMOVE(&sentinel, wk_list);
1920 			LIST_INSERT_AFTER(wk, &sentinel, wk_list);
1921 			continue;
1922 		}
1923 		if (wk->wk_state & INPROGRESS)
1924 			panic("process_worklist_item: %p already in progress.",
1925 			    wk);
1926 		wk->wk_state |= INPROGRESS;
1927 		remove_from_worklist(wk);
1928 		FREE_LOCK(ump);
1929 		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1930 			panic("process_worklist_item: suspended filesystem");
1931 		switch (wk->wk_type) {
1932 		case D_DIRREM:
1933 			/* removal of a directory entry */
1934 			error = handle_workitem_remove(WK_DIRREM(wk), flags);
1935 			break;
1936 
1937 		case D_FREEBLKS:
1938 			/* releasing blocks and/or fragments from a file */
1939 			error = handle_workitem_freeblocks(WK_FREEBLKS(wk),
1940 			    flags);
1941 			break;
1942 
1943 		case D_FREEFRAG:
1944 			/* releasing a fragment when replaced as a file grows */
1945 			handle_workitem_freefrag(WK_FREEFRAG(wk));
1946 			error = 0;
1947 			break;
1948 
1949 		case D_FREEFILE:
1950 			/* releasing an inode when its link count drops to 0 */
1951 			handle_workitem_freefile(WK_FREEFILE(wk));
1952 			error = 0;
1953 			break;
1954 
1955 		default:
1956 			panic("%s_process_worklist: Unknown type %s",
1957 			    "softdep", TYPENAME(wk->wk_type));
1958 			/* NOTREACHED */
1959 		}
1960 		vn_finished_secondary_write(mp);
1961 		ACQUIRE_LOCK(ump);
1962 		if (error == 0) {
1963 			if (++matchcnt == target)
1964 				break;
1965 			continue;
1966 		}
1967 		/*
1968 		 * We have to retry the worklist item later.  Wake up any
1969 		 * waiters who may be able to complete it immediately and
1970 		 * add the item back to the head so we don't try to execute
1971 		 * it again.
1972 		 */
1973 		wk->wk_state &= ~INPROGRESS;
1974 		wake_worklist(wk);
1975 		add_to_worklist(wk, WK_HEAD);
1976 	}
1977 	/* Sentinal could've become the tail from remove_from_worklist. */
1978 	if (ump->softdep_worklist_tail == &sentinel)
1979 		ump->softdep_worklist_tail =
1980 		    (struct worklist *)sentinel.wk_list.le_prev;
1981 	LIST_REMOVE(&sentinel, wk_list);
1982 	PRELE(curproc);
1983 	return (matchcnt);
1984 }
1985 
1986 /*
1987  * Move dependencies from one buffer to another.
1988  */
1989 int
1990 softdep_move_dependencies(struct buf *oldbp, struct buf *newbp)
1991 {
1992 	struct worklist *wk, *wktail;
1993 	struct ufsmount *ump;
1994 	int dirty;
1995 
1996 	if ((wk = LIST_FIRST(&oldbp->b_dep)) == NULL)
1997 		return (0);
1998 	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
1999 	    ("softdep_move_dependencies called on non-softdep filesystem"));
2000 	dirty = 0;
2001 	wktail = NULL;
2002 	ump = VFSTOUFS(wk->wk_mp);
2003 	ACQUIRE_LOCK(ump);
2004 	while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) {
2005 		LIST_REMOVE(wk, wk_list);
2006 		if (wk->wk_type == D_BMSAFEMAP &&
2007 		    bmsafemap_backgroundwrite(WK_BMSAFEMAP(wk), newbp))
2008 			dirty = 1;
2009 		if (wktail == NULL)
2010 			LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list);
2011 		else
2012 			LIST_INSERT_AFTER(wktail, wk, wk_list);
2013 		wktail = wk;
2014 	}
2015 	FREE_LOCK(ump);
2016 
2017 	return (dirty);
2018 }
2019 
2020 /*
2021  * Purge the work list of all items associated with a particular mount point.
2022  */
2023 int
2024 softdep_flushworklist(struct mount *oldmnt,
2025 	int *countp,
2026 	struct thread *td)
2027 {
2028 	struct vnode *devvp;
2029 	struct ufsmount *ump;
2030 	int count, error;
2031 
2032 	/*
2033 	 * Alternately flush the block device associated with the mount
2034 	 * point and process any dependencies that the flushing
2035 	 * creates. We continue until no more worklist dependencies
2036 	 * are found.
2037 	 */
2038 	*countp = 0;
2039 	error = 0;
2040 	ump = VFSTOUFS(oldmnt);
2041 	devvp = ump->um_devvp;
2042 	while ((count = softdep_process_worklist(oldmnt, 1)) > 0) {
2043 		*countp += count;
2044 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
2045 		error = VOP_FSYNC(devvp, MNT_WAIT, td);
2046 		VOP_UNLOCK(devvp);
2047 		if (error != 0)
2048 			break;
2049 	}
2050 	return (error);
2051 }
2052 
2053 #define	SU_WAITIDLE_RETRIES	20
2054 static int
2055 softdep_waitidle(struct mount *mp, int flags __unused)
2056 {
2057 	struct ufsmount *ump;
2058 	struct vnode *devvp;
2059 	struct thread *td;
2060 	int error, i;
2061 
2062 	ump = VFSTOUFS(mp);
2063 	KASSERT(ump->um_softdep != NULL,
2064 	    ("softdep_waitidle called on non-softdep filesystem"));
2065 	devvp = ump->um_devvp;
2066 	td = curthread;
2067 	error = 0;
2068 	ACQUIRE_LOCK(ump);
2069 	for (i = 0; i < SU_WAITIDLE_RETRIES && ump->softdep_deps != 0; i++) {
2070 		ump->softdep_req = 1;
2071 		KASSERT((flags & FORCECLOSE) == 0 ||
2072 		    ump->softdep_on_worklist == 0,
2073 		    ("softdep_waitidle: work added after flush"));
2074 		msleep(&ump->softdep_deps, LOCK_PTR(ump), PVM | PDROP,
2075 		    "softdeps", 10 * hz);
2076 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
2077 		error = VOP_FSYNC(devvp, MNT_WAIT, td);
2078 		VOP_UNLOCK(devvp);
2079 		ACQUIRE_LOCK(ump);
2080 		if (error != 0)
2081 			break;
2082 	}
2083 	ump->softdep_req = 0;
2084 	if (i == SU_WAITIDLE_RETRIES && error == 0 && ump->softdep_deps != 0) {
2085 		error = EBUSY;
2086 		printf("softdep_waitidle: Failed to flush worklist for %p\n",
2087 		    mp);
2088 	}
2089 	FREE_LOCK(ump);
2090 	return (error);
2091 }
2092 
2093 /*
2094  * Flush all vnodes and worklist items associated with a specified mount point.
2095  */
2096 int
2097 softdep_flushfiles(struct mount *oldmnt,
2098 	int flags,
2099 	struct thread *td)
2100 {
2101 	struct ufsmount *ump __unused;
2102 #ifdef QUOTA
2103 	int i;
2104 #endif
2105 	int error, early, depcount, loopcnt, retry_flush_count, retry;
2106 	int morework;
2107 
2108 	ump = VFSTOUFS(oldmnt);
2109 	KASSERT(ump->um_softdep != NULL,
2110 	    ("softdep_flushfiles called on non-softdep filesystem"));
2111 	loopcnt = 10;
2112 	retry_flush_count = 3;
2113 retry_flush:
2114 	error = 0;
2115 
2116 	/*
2117 	 * Alternately flush the vnodes associated with the mount
2118 	 * point and process any dependencies that the flushing
2119 	 * creates. In theory, this loop can happen at most twice,
2120 	 * but we give it a few extra just to be sure.
2121 	 */
2122 	for (; loopcnt > 0; loopcnt--) {
2123 		/*
2124 		 * Do another flush in case any vnodes were brought in
2125 		 * as part of the cleanup operations.
2126 		 */
2127 		early = retry_flush_count == 1 || (oldmnt->mnt_kern_flag &
2128 		    MNTK_UNMOUNT) == 0 ? 0 : EARLYFLUSH;
2129 		if ((error = ffs_flushfiles(oldmnt, flags | early, td)) != 0)
2130 			break;
2131 		if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 ||
2132 		    depcount == 0)
2133 			break;
2134 	}
2135 	/*
2136 	 * If we are unmounting then it is an error to fail. If we
2137 	 * are simply trying to downgrade to read-only, then filesystem
2138 	 * activity can keep us busy forever, so we just fail with EBUSY.
2139 	 */
2140 	if (loopcnt == 0) {
2141 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT)
2142 			panic("softdep_flushfiles: looping");
2143 		error = EBUSY;
2144 	}
2145 	if (!error)
2146 		error = softdep_waitidle(oldmnt, flags);
2147 	if (!error) {
2148 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) {
2149 			retry = 0;
2150 			MNT_ILOCK(oldmnt);
2151 			morework = oldmnt->mnt_nvnodelistsize > 0;
2152 #ifdef QUOTA
2153 			UFS_LOCK(ump);
2154 			for (i = 0; i < MAXQUOTAS; i++) {
2155 				if (ump->um_quotas[i] != NULLVP)
2156 					morework = 1;
2157 			}
2158 			UFS_UNLOCK(ump);
2159 #endif
2160 			if (morework) {
2161 				if (--retry_flush_count > 0) {
2162 					retry = 1;
2163 					loopcnt = 3;
2164 				} else
2165 					error = EBUSY;
2166 			}
2167 			MNT_IUNLOCK(oldmnt);
2168 			if (retry)
2169 				goto retry_flush;
2170 		}
2171 	}
2172 	return (error);
2173 }
2174 
2175 /*
2176  * Structure hashing.
2177  *
2178  * There are four types of structures that can be looked up:
2179  *	1) pagedep structures identified by mount point, inode number,
2180  *	   and logical block.
2181  *	2) inodedep structures identified by mount point and inode number.
2182  *	3) newblk structures identified by mount point and
2183  *	   physical block number.
2184  *	4) bmsafemap structures identified by mount point and
2185  *	   cylinder group number.
2186  *
2187  * The "pagedep" and "inodedep" dependency structures are hashed
2188  * separately from the file blocks and inodes to which they correspond.
2189  * This separation helps when the in-memory copy of an inode or
2190  * file block must be replaced. It also obviates the need to access
2191  * an inode or file page when simply updating (or de-allocating)
2192  * dependency structures. Lookup of newblk structures is needed to
2193  * find newly allocated blocks when trying to associate them with
2194  * their allocdirect or allocindir structure.
2195  *
2196  * The lookup routines optionally create and hash a new instance when
2197  * an existing entry is not found. The bmsafemap lookup routine always
2198  * allocates a new structure if an existing one is not found.
2199  */
2200 #define DEPALLOC	0x0001	/* allocate structure if lookup fails */
2201 
2202 /*
2203  * Structures and routines associated with pagedep caching.
2204  */
2205 #define	PAGEDEP_HASH(ump, inum, lbn) \
2206 	(&(ump)->pagedep_hashtbl[((inum) + (lbn)) & (ump)->pagedep_hash_size])
2207 
2208 static int
2209 pagedep_find(struct pagedep_hashhead *pagedephd,
2210 	ino_t ino,
2211 	ufs_lbn_t lbn,
2212 	struct pagedep **pagedeppp)
2213 {
2214 	struct pagedep *pagedep;
2215 
2216 	LIST_FOREACH(pagedep, pagedephd, pd_hash) {
2217 		if (ino == pagedep->pd_ino && lbn == pagedep->pd_lbn) {
2218 			*pagedeppp = pagedep;
2219 			return (1);
2220 		}
2221 	}
2222 	*pagedeppp = NULL;
2223 	return (0);
2224 }
2225 /*
2226  * Look up a pagedep. Return 1 if found, 0 otherwise.
2227  * If not found, allocate if DEPALLOC flag is passed.
2228  * Found or allocated entry is returned in pagedeppp.
2229  */
2230 static int
2231 pagedep_lookup(struct mount *mp,
2232 	struct buf *bp,
2233 	ino_t ino,
2234 	ufs_lbn_t lbn,
2235 	int flags,
2236 	struct pagedep **pagedeppp)
2237 {
2238 	struct pagedep *pagedep;
2239 	struct pagedep_hashhead *pagedephd;
2240 	struct worklist *wk;
2241 	struct ufsmount *ump;
2242 	int ret;
2243 	int i;
2244 
2245 	ump = VFSTOUFS(mp);
2246 	LOCK_OWNED(ump);
2247 	if (bp) {
2248 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
2249 			if (wk->wk_type == D_PAGEDEP) {
2250 				*pagedeppp = WK_PAGEDEP(wk);
2251 				return (1);
2252 			}
2253 		}
2254 	}
2255 	pagedephd = PAGEDEP_HASH(ump, ino, lbn);
2256 	ret = pagedep_find(pagedephd, ino, lbn, pagedeppp);
2257 	if (ret) {
2258 		if (((*pagedeppp)->pd_state & ONWORKLIST) == 0 && bp)
2259 			WORKLIST_INSERT(&bp->b_dep, &(*pagedeppp)->pd_list);
2260 		return (1);
2261 	}
2262 	if ((flags & DEPALLOC) == 0)
2263 		return (0);
2264 	FREE_LOCK(ump);
2265 	pagedep = malloc(sizeof(struct pagedep),
2266 	    M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO);
2267 	workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp);
2268 	ACQUIRE_LOCK(ump);
2269 	ret = pagedep_find(pagedephd, ino, lbn, pagedeppp);
2270 	if (*pagedeppp) {
2271 		/*
2272 		 * This should never happen since we only create pagedeps
2273 		 * with the vnode lock held.  Could be an assert.
2274 		 */
2275 		WORKITEM_FREE(pagedep, D_PAGEDEP);
2276 		return (ret);
2277 	}
2278 	pagedep->pd_ino = ino;
2279 	pagedep->pd_lbn = lbn;
2280 	LIST_INIT(&pagedep->pd_dirremhd);
2281 	LIST_INIT(&pagedep->pd_pendinghd);
2282 	for (i = 0; i < DAHASHSZ; i++)
2283 		LIST_INIT(&pagedep->pd_diraddhd[i]);
2284 	LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
2285 	WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
2286 	*pagedeppp = pagedep;
2287 	return (0);
2288 }
2289 
2290 /*
2291  * Structures and routines associated with inodedep caching.
2292  */
2293 #define	INODEDEP_HASH(ump, inum) \
2294       (&(ump)->inodedep_hashtbl[(inum) & (ump)->inodedep_hash_size])
2295 
2296 static int
2297 inodedep_find(struct inodedep_hashhead *inodedephd,
2298 	ino_t inum,
2299 	struct inodedep **inodedeppp)
2300 {
2301 	struct inodedep *inodedep;
2302 
2303 	LIST_FOREACH(inodedep, inodedephd, id_hash)
2304 		if (inum == inodedep->id_ino)
2305 			break;
2306 	if (inodedep) {
2307 		*inodedeppp = inodedep;
2308 		return (1);
2309 	}
2310 	*inodedeppp = NULL;
2311 
2312 	return (0);
2313 }
2314 /*
2315  * Look up an inodedep. Return 1 if found, 0 if not found.
2316  * If not found, allocate if DEPALLOC flag is passed.
2317  * Found or allocated entry is returned in inodedeppp.
2318  */
2319 static int
2320 inodedep_lookup(struct mount *mp,
2321 	ino_t inum,
2322 	int flags,
2323 	struct inodedep **inodedeppp)
2324 {
2325 	struct inodedep *inodedep;
2326 	struct inodedep_hashhead *inodedephd;
2327 	struct ufsmount *ump;
2328 	struct fs *fs;
2329 
2330 	ump = VFSTOUFS(mp);
2331 	LOCK_OWNED(ump);
2332 	fs = ump->um_fs;
2333 	inodedephd = INODEDEP_HASH(ump, inum);
2334 
2335 	if (inodedep_find(inodedephd, inum, inodedeppp))
2336 		return (1);
2337 	if ((flags & DEPALLOC) == 0)
2338 		return (0);
2339 	/*
2340 	 * If the system is over its limit and our filesystem is
2341 	 * responsible for more than our share of that usage and
2342 	 * we are not in a rush, request some inodedep cleanup.
2343 	 */
2344 	if (softdep_excess_items(ump, D_INODEDEP))
2345 		schedule_cleanup(mp);
2346 	else
2347 		FREE_LOCK(ump);
2348 	inodedep = malloc(sizeof(struct inodedep),
2349 		M_INODEDEP, M_SOFTDEP_FLAGS);
2350 	workitem_alloc(&inodedep->id_list, D_INODEDEP, mp);
2351 	ACQUIRE_LOCK(ump);
2352 	if (inodedep_find(inodedephd, inum, inodedeppp)) {
2353 		WORKITEM_FREE(inodedep, D_INODEDEP);
2354 		return (1);
2355 	}
2356 	inodedep->id_fs = fs;
2357 	inodedep->id_ino = inum;
2358 	inodedep->id_state = ALLCOMPLETE;
2359 	inodedep->id_nlinkdelta = 0;
2360 	inodedep->id_nlinkwrote = -1;
2361 	inodedep->id_savedino1 = NULL;
2362 	inodedep->id_savedsize = -1;
2363 	inodedep->id_savedextsize = -1;
2364 	inodedep->id_savednlink = -1;
2365 	inodedep->id_bmsafemap = NULL;
2366 	inodedep->id_mkdiradd = NULL;
2367 	LIST_INIT(&inodedep->id_dirremhd);
2368 	LIST_INIT(&inodedep->id_pendinghd);
2369 	LIST_INIT(&inodedep->id_inowait);
2370 	LIST_INIT(&inodedep->id_bufwait);
2371 	TAILQ_INIT(&inodedep->id_inoreflst);
2372 	TAILQ_INIT(&inodedep->id_inoupdt);
2373 	TAILQ_INIT(&inodedep->id_newinoupdt);
2374 	TAILQ_INIT(&inodedep->id_extupdt);
2375 	TAILQ_INIT(&inodedep->id_newextupdt);
2376 	TAILQ_INIT(&inodedep->id_freeblklst);
2377 	LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
2378 	*inodedeppp = inodedep;
2379 	return (0);
2380 }
2381 
2382 /*
2383  * Structures and routines associated with newblk caching.
2384  */
2385 #define	NEWBLK_HASH(ump, inum) \
2386 	(&(ump)->newblk_hashtbl[(inum) & (ump)->newblk_hash_size])
2387 
2388 static int
2389 newblk_find(struct newblk_hashhead *newblkhd,
2390 	ufs2_daddr_t newblkno,
2391 	int flags,
2392 	struct newblk **newblkpp)
2393 {
2394 	struct newblk *newblk;
2395 
2396 	LIST_FOREACH(newblk, newblkhd, nb_hash) {
2397 		if (newblkno != newblk->nb_newblkno)
2398 			continue;
2399 		/*
2400 		 * If we're creating a new dependency don't match those that
2401 		 * have already been converted to allocdirects.  This is for
2402 		 * a frag extend.
2403 		 */
2404 		if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK)
2405 			continue;
2406 		break;
2407 	}
2408 	if (newblk) {
2409 		*newblkpp = newblk;
2410 		return (1);
2411 	}
2412 	*newblkpp = NULL;
2413 	return (0);
2414 }
2415 
2416 /*
2417  * Look up a newblk. Return 1 if found, 0 if not found.
2418  * If not found, allocate if DEPALLOC flag is passed.
2419  * Found or allocated entry is returned in newblkpp.
2420  */
2421 static int
2422 newblk_lookup(struct mount *mp,
2423 	ufs2_daddr_t newblkno,
2424 	int flags,
2425 	struct newblk **newblkpp)
2426 {
2427 	struct newblk *newblk;
2428 	struct newblk_hashhead *newblkhd;
2429 	struct ufsmount *ump;
2430 
2431 	ump = VFSTOUFS(mp);
2432 	LOCK_OWNED(ump);
2433 	newblkhd = NEWBLK_HASH(ump, newblkno);
2434 	if (newblk_find(newblkhd, newblkno, flags, newblkpp))
2435 		return (1);
2436 	if ((flags & DEPALLOC) == 0)
2437 		return (0);
2438 	if (softdep_excess_items(ump, D_NEWBLK) ||
2439 	    softdep_excess_items(ump, D_ALLOCDIRECT) ||
2440 	    softdep_excess_items(ump, D_ALLOCINDIR))
2441 		schedule_cleanup(mp);
2442 	else
2443 		FREE_LOCK(ump);
2444 	newblk = malloc(sizeof(union allblk), M_NEWBLK,
2445 	    M_SOFTDEP_FLAGS | M_ZERO);
2446 	workitem_alloc(&newblk->nb_list, D_NEWBLK, mp);
2447 	ACQUIRE_LOCK(ump);
2448 	if (newblk_find(newblkhd, newblkno, flags, newblkpp)) {
2449 		WORKITEM_FREE(newblk, D_NEWBLK);
2450 		return (1);
2451 	}
2452 	newblk->nb_freefrag = NULL;
2453 	LIST_INIT(&newblk->nb_indirdeps);
2454 	LIST_INIT(&newblk->nb_newdirblk);
2455 	LIST_INIT(&newblk->nb_jwork);
2456 	newblk->nb_state = ATTACHED;
2457 	newblk->nb_newblkno = newblkno;
2458 	LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
2459 	*newblkpp = newblk;
2460 	return (0);
2461 }
2462 
2463 /*
2464  * Structures and routines associated with freed indirect block caching.
2465  */
2466 #define	INDIR_HASH(ump, blkno) \
2467 	(&(ump)->indir_hashtbl[(blkno) & (ump)->indir_hash_size])
2468 
2469 /*
2470  * Lookup an indirect block in the indir hash table.  The freework is
2471  * removed and potentially freed.  The caller must do a blocking journal
2472  * write before writing to the blkno.
2473  */
2474 static int
2475 indirblk_lookup(struct mount *mp, ufs2_daddr_t blkno)
2476 {
2477 	struct freework *freework;
2478 	struct indir_hashhead *wkhd;
2479 	struct ufsmount *ump;
2480 
2481 	ump = VFSTOUFS(mp);
2482 	wkhd = INDIR_HASH(ump, blkno);
2483 	TAILQ_FOREACH(freework, wkhd, fw_next) {
2484 		if (freework->fw_blkno != blkno)
2485 			continue;
2486 		indirblk_remove(freework);
2487 		return (1);
2488 	}
2489 	return (0);
2490 }
2491 
2492 /*
2493  * Insert an indirect block represented by freework into the indirblk
2494  * hash table so that it may prevent the block from being re-used prior
2495  * to the journal being written.
2496  */
2497 static void
2498 indirblk_insert(struct freework *freework)
2499 {
2500 	struct jblocks *jblocks;
2501 	struct jseg *jseg;
2502 	struct ufsmount *ump;
2503 
2504 	ump = VFSTOUFS(freework->fw_list.wk_mp);
2505 	jblocks = ump->softdep_jblocks;
2506 	jseg = TAILQ_LAST(&jblocks->jb_segs, jseglst);
2507 	if (jseg == NULL)
2508 		return;
2509 
2510 	LIST_INSERT_HEAD(&jseg->js_indirs, freework, fw_segs);
2511 	TAILQ_INSERT_HEAD(INDIR_HASH(ump, freework->fw_blkno), freework,
2512 	    fw_next);
2513 	freework->fw_state &= ~DEPCOMPLETE;
2514 }
2515 
2516 static void
2517 indirblk_remove(struct freework *freework)
2518 {
2519 	struct ufsmount *ump;
2520 
2521 	ump = VFSTOUFS(freework->fw_list.wk_mp);
2522 	LIST_REMOVE(freework, fw_segs);
2523 	TAILQ_REMOVE(INDIR_HASH(ump, freework->fw_blkno), freework, fw_next);
2524 	freework->fw_state |= DEPCOMPLETE;
2525 	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
2526 		WORKITEM_FREE(freework, D_FREEWORK);
2527 }
2528 
2529 /*
2530  * Executed during filesystem system initialization before
2531  * mounting any filesystems.
2532  */
2533 void
2534 softdep_initialize(void)
2535 {
2536 
2537 	TAILQ_INIT(&softdepmounts);
2538 #ifdef __LP64__
2539 	max_softdeps = desiredvnodes * 4;
2540 #else
2541 	max_softdeps = desiredvnodes * 2;
2542 #endif
2543 
2544 	/* initialise bioops hack */
2545 	bioops.io_start = softdep_disk_io_initiation;
2546 	bioops.io_complete = softdep_disk_write_complete;
2547 	bioops.io_deallocate = softdep_deallocate_dependencies;
2548 	bioops.io_countdeps = softdep_count_dependencies;
2549 	ast_register(TDA_UFS, ASTR_KCLEAR | ASTR_ASTF_REQUIRED, 0,
2550 	    softdep_ast_cleanup_proc);
2551 
2552 	/* Initialize the callout with an mtx. */
2553 	callout_init_mtx(&softdep_callout, &lk, 0);
2554 }
2555 
2556 /*
2557  * Executed after all filesystems have been unmounted during
2558  * filesystem module unload.
2559  */
2560 void
2561 softdep_uninitialize(void)
2562 {
2563 
2564 	/* clear bioops hack */
2565 	bioops.io_start = NULL;
2566 	bioops.io_complete = NULL;
2567 	bioops.io_deallocate = NULL;
2568 	bioops.io_countdeps = NULL;
2569 	ast_deregister(TDA_UFS);
2570 
2571 	callout_drain(&softdep_callout);
2572 }
2573 
2574 /*
2575  * Called at mount time to notify the dependency code that a
2576  * filesystem wishes to use it.
2577  */
2578 int
2579 softdep_mount(struct vnode *devvp,
2580 	struct mount *mp,
2581 	struct fs *fs,
2582 	struct ucred *cred)
2583 {
2584 	struct csum_total cstotal;
2585 	struct mount_softdeps *sdp;
2586 	struct ufsmount *ump;
2587 	struct cg *cgp;
2588 	struct buf *bp;
2589 	u_int cyl, i;
2590 	int error;
2591 
2592 	ump = VFSTOUFS(mp);
2593 
2594 	sdp = malloc(sizeof(struct mount_softdeps), M_MOUNTDATA,
2595 	    M_WAITOK | M_ZERO);
2596 	rw_init(&sdp->sd_fslock, "SUrw");
2597 	sdp->sd_ump = ump;
2598 	LIST_INIT(&sdp->sd_workitem_pending);
2599 	LIST_INIT(&sdp->sd_journal_pending);
2600 	TAILQ_INIT(&sdp->sd_unlinked);
2601 	LIST_INIT(&sdp->sd_dirtycg);
2602 	sdp->sd_worklist_tail = NULL;
2603 	sdp->sd_on_worklist = 0;
2604 	sdp->sd_deps = 0;
2605 	LIST_INIT(&sdp->sd_mkdirlisthd);
2606 	sdp->sd_pdhash = hashinit(desiredvnodes / 5, M_PAGEDEP,
2607 	    &sdp->sd_pdhashsize);
2608 	sdp->sd_pdnextclean = 0;
2609 	sdp->sd_idhash = hashinit(desiredvnodes, M_INODEDEP,
2610 	    &sdp->sd_idhashsize);
2611 	sdp->sd_idnextclean = 0;
2612 	sdp->sd_newblkhash = hashinit(max_softdeps / 2,  M_NEWBLK,
2613 	    &sdp->sd_newblkhashsize);
2614 	sdp->sd_bmhash = hashinit(1024, M_BMSAFEMAP, &sdp->sd_bmhashsize);
2615 	i = 1 << (ffs(desiredvnodes / 10) - 1);
2616 	sdp->sd_indirhash = malloc(i * sizeof(struct indir_hashhead),
2617 	    M_FREEWORK, M_WAITOK);
2618 	sdp->sd_indirhashsize = i - 1;
2619 	for (i = 0; i <= sdp->sd_indirhashsize; i++)
2620 		TAILQ_INIT(&sdp->sd_indirhash[i]);
2621 	for (i = 0; i <= D_LAST; i++)
2622 		LIST_INIT(&sdp->sd_alldeps[i]);
2623 	ACQUIRE_GBLLOCK(&lk);
2624 	TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next);
2625 	FREE_GBLLOCK(&lk);
2626 
2627 	ump->um_softdep = sdp;
2628 	MNT_ILOCK(mp);
2629 	mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP;
2630 	if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) {
2631 		mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) |
2632 		    MNTK_SOFTDEP | MNTK_NOASYNC;
2633 	}
2634 	MNT_IUNLOCK(mp);
2635 
2636 	if ((fs->fs_flags & FS_SUJ) &&
2637 	    (error = journal_mount(mp, fs, cred)) != 0) {
2638 		printf("Failed to start journal: %d\n", error);
2639 		softdep_unmount(mp);
2640 		return (error);
2641 	}
2642 	/*
2643 	 * Start our flushing thread in the bufdaemon process.
2644 	 */
2645 	ACQUIRE_LOCK(ump);
2646 	ump->softdep_flags |= FLUSH_STARTING;
2647 	FREE_LOCK(ump);
2648 	kproc_kthread_add(&softdep_flush, mp, &bufdaemonproc,
2649 	    &ump->softdep_flushtd, 0, 0, "softdepflush", "%s worker",
2650 	    mp->mnt_stat.f_mntonname);
2651 	ACQUIRE_LOCK(ump);
2652 	while ((ump->softdep_flags & FLUSH_STARTING) != 0) {
2653 		msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM, "sdstart",
2654 		    hz / 2);
2655 	}
2656 	FREE_LOCK(ump);
2657 	/*
2658 	 * When doing soft updates, the counters in the
2659 	 * superblock may have gotten out of sync. Recomputation
2660 	 * can take a long time and can be deferred for background
2661 	 * fsck.  However, the old behavior of scanning the cylinder
2662 	 * groups and recalculating them at mount time is available
2663 	 * by setting vfs.ffs.compute_summary_at_mount to one.
2664 	 */
2665 	if (compute_summary_at_mount == 0 || fs->fs_clean != 0)
2666 		return (0);
2667 	bzero(&cstotal, sizeof cstotal);
2668 	for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
2669 		if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)),
2670 		    fs->fs_cgsize, cred, &bp)) != 0) {
2671 			brelse(bp);
2672 			softdep_unmount(mp);
2673 			return (error);
2674 		}
2675 		cgp = (struct cg *)bp->b_data;
2676 		cstotal.cs_nffree += cgp->cg_cs.cs_nffree;
2677 		cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree;
2678 		cstotal.cs_nifree += cgp->cg_cs.cs_nifree;
2679 		cstotal.cs_ndir += cgp->cg_cs.cs_ndir;
2680 		fs->fs_cs(fs, cyl) = cgp->cg_cs;
2681 		brelse(bp);
2682 	}
2683 #ifdef INVARIANTS
2684 	if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
2685 		printf("%s: superblock summary recomputed\n", fs->fs_fsmnt);
2686 #endif
2687 	bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
2688 	return (0);
2689 }
2690 
2691 void
2692 softdep_unmount(struct mount *mp)
2693 {
2694 	struct ufsmount *ump;
2695 	struct mount_softdeps *ums;
2696 
2697 	ump = VFSTOUFS(mp);
2698 	KASSERT(ump->um_softdep != NULL,
2699 	    ("softdep_unmount called on non-softdep filesystem"));
2700 	MNT_ILOCK(mp);
2701 	mp->mnt_flag &= ~MNT_SOFTDEP;
2702 	if ((mp->mnt_flag & MNT_SUJ) == 0) {
2703 		MNT_IUNLOCK(mp);
2704 	} else {
2705 		mp->mnt_flag &= ~MNT_SUJ;
2706 		MNT_IUNLOCK(mp);
2707 		journal_unmount(ump);
2708 	}
2709 	/*
2710 	 * Shut down our flushing thread. Check for NULL is if
2711 	 * softdep_mount errors out before the thread has been created.
2712 	 */
2713 	if (ump->softdep_flushtd != NULL) {
2714 		ACQUIRE_LOCK(ump);
2715 		ump->softdep_flags |= FLUSH_EXIT;
2716 		wakeup(&ump->softdep_flushtd);
2717 		while ((ump->softdep_flags & FLUSH_EXIT) != 0) {
2718 			msleep(&ump->softdep_flags, LOCK_PTR(ump), PVM,
2719 			    "sdwait", 0);
2720 		}
2721 		KASSERT((ump->softdep_flags & FLUSH_EXIT) == 0,
2722 		    ("Thread shutdown failed"));
2723 		FREE_LOCK(ump);
2724 	}
2725 
2726 	/*
2727 	 * We are no longer have softdep structure attached to ump.
2728 	 */
2729 	ums = ump->um_softdep;
2730 	ACQUIRE_GBLLOCK(&lk);
2731 	TAILQ_REMOVE(&softdepmounts, ums, sd_next);
2732 	FREE_GBLLOCK(&lk);
2733 	ump->um_softdep = NULL;
2734 
2735 	KASSERT(ums->sd_on_journal == 0,
2736 	    ("ump %p ums %p on_journal %d", ump, ums, ums->sd_on_journal));
2737 	KASSERT(ums->sd_on_worklist == 0,
2738 	    ("ump %p ums %p on_worklist %d", ump, ums, ums->sd_on_worklist));
2739 	KASSERT(ums->sd_deps == 0,
2740 	    ("ump %p ums %p deps %d", ump, ums, ums->sd_deps));
2741 
2742 	/*
2743 	 * Free up our resources.
2744 	 */
2745 	rw_destroy(&ums->sd_fslock);
2746 	hashdestroy(ums->sd_pdhash, M_PAGEDEP, ums->sd_pdhashsize);
2747 	hashdestroy(ums->sd_idhash, M_INODEDEP, ums->sd_idhashsize);
2748 	hashdestroy(ums->sd_newblkhash, M_NEWBLK, ums->sd_newblkhashsize);
2749 	hashdestroy(ums->sd_bmhash, M_BMSAFEMAP, ums->sd_bmhashsize);
2750 	free(ums->sd_indirhash, M_FREEWORK);
2751 #ifdef INVARIANTS
2752 	for (int i = 0; i <= D_LAST; i++) {
2753 		KASSERT(ums->sd_curdeps[i] == 0,
2754 		    ("Unmount %s: Dep type %s != 0 (%ld)", ump->um_fs->fs_fsmnt,
2755 		    TYPENAME(i), ums->sd_curdeps[i]));
2756 		KASSERT(LIST_EMPTY(&ums->sd_alldeps[i]),
2757 		    ("Unmount %s: Dep type %s not empty (%p)",
2758 		    ump->um_fs->fs_fsmnt,
2759 		    TYPENAME(i), LIST_FIRST(&ums->sd_alldeps[i])));
2760 	}
2761 #endif
2762 	free(ums, M_MOUNTDATA);
2763 }
2764 
2765 static struct jblocks *
2766 jblocks_create(void)
2767 {
2768 	struct jblocks *jblocks;
2769 
2770 	jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO);
2771 	TAILQ_INIT(&jblocks->jb_segs);
2772 	jblocks->jb_avail = 10;
2773 	jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2774 	    M_JBLOCKS, M_WAITOK | M_ZERO);
2775 
2776 	return (jblocks);
2777 }
2778 
2779 static ufs2_daddr_t
2780 jblocks_alloc(struct jblocks *jblocks,
2781 	int bytes,
2782 	int *actual)
2783 {
2784 	ufs2_daddr_t daddr;
2785 	struct jextent *jext;
2786 	int freecnt;
2787 	int blocks;
2788 
2789 	blocks = bytes / DEV_BSIZE;
2790 	jext = &jblocks->jb_extent[jblocks->jb_head];
2791 	freecnt = jext->je_blocks - jblocks->jb_off;
2792 	if (freecnt == 0) {
2793 		jblocks->jb_off = 0;
2794 		if (++jblocks->jb_head > jblocks->jb_used)
2795 			jblocks->jb_head = 0;
2796 		jext = &jblocks->jb_extent[jblocks->jb_head];
2797 		freecnt = jext->je_blocks;
2798 	}
2799 	if (freecnt > blocks)
2800 		freecnt = blocks;
2801 	*actual = freecnt * DEV_BSIZE;
2802 	daddr = jext->je_daddr + jblocks->jb_off;
2803 	jblocks->jb_off += freecnt;
2804 	jblocks->jb_free -= freecnt;
2805 
2806 	return (daddr);
2807 }
2808 
2809 static void
2810 jblocks_free(struct jblocks *jblocks,
2811 	struct mount *mp,
2812 	int bytes)
2813 {
2814 
2815 	LOCK_OWNED(VFSTOUFS(mp));
2816 	jblocks->jb_free += bytes / DEV_BSIZE;
2817 	if (jblocks->jb_suspended)
2818 		worklist_speedup(mp);
2819 	wakeup(jblocks);
2820 }
2821 
2822 static void
2823 jblocks_destroy(struct jblocks *jblocks)
2824 {
2825 
2826 	if (jblocks->jb_extent)
2827 		free(jblocks->jb_extent, M_JBLOCKS);
2828 	free(jblocks, M_JBLOCKS);
2829 }
2830 
2831 static void
2832 jblocks_add(struct jblocks *jblocks,
2833 	ufs2_daddr_t daddr,
2834 	int blocks)
2835 {
2836 	struct jextent *jext;
2837 
2838 	jblocks->jb_blocks += blocks;
2839 	jblocks->jb_free += blocks;
2840 	jext = &jblocks->jb_extent[jblocks->jb_used];
2841 	/* Adding the first block. */
2842 	if (jext->je_daddr == 0) {
2843 		jext->je_daddr = daddr;
2844 		jext->je_blocks = blocks;
2845 		return;
2846 	}
2847 	/* Extending the last extent. */
2848 	if (jext->je_daddr + jext->je_blocks == daddr) {
2849 		jext->je_blocks += blocks;
2850 		return;
2851 	}
2852 	/* Adding a new extent. */
2853 	if (++jblocks->jb_used == jblocks->jb_avail) {
2854 		jblocks->jb_avail *= 2;
2855 		jext = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2856 		    M_JBLOCKS, M_WAITOK | M_ZERO);
2857 		memcpy(jext, jblocks->jb_extent,
2858 		    sizeof(struct jextent) * jblocks->jb_used);
2859 		free(jblocks->jb_extent, M_JBLOCKS);
2860 		jblocks->jb_extent = jext;
2861 	}
2862 	jext = &jblocks->jb_extent[jblocks->jb_used];
2863 	jext->je_daddr = daddr;
2864 	jext->je_blocks = blocks;
2865 	return;
2866 }
2867 
2868 int
2869 softdep_journal_lookup(struct mount *mp, struct vnode **vpp)
2870 {
2871 	struct componentname cnp;
2872 	struct vnode *dvp;
2873 	ino_t sujournal;
2874 	int error;
2875 
2876 	error = VFS_VGET(mp, UFS_ROOTINO, LK_EXCLUSIVE, &dvp);
2877 	if (error)
2878 		return (error);
2879 	bzero(&cnp, sizeof(cnp));
2880 	cnp.cn_nameiop = LOOKUP;
2881 	cnp.cn_flags = ISLASTCN;
2882 	cnp.cn_cred = curthread->td_ucred;
2883 	cnp.cn_pnbuf = SUJ_FILE;
2884 	cnp.cn_nameptr = SUJ_FILE;
2885 	cnp.cn_namelen = strlen(SUJ_FILE);
2886 	error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal);
2887 	vput(dvp);
2888 	if (error != 0)
2889 		return (error);
2890 	error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp);
2891 	return (error);
2892 }
2893 
2894 /*
2895  * Open and verify the journal file.
2896  */
2897 static int
2898 journal_mount(struct mount *mp,
2899 	struct fs *fs,
2900 	struct ucred *cred)
2901 {
2902 	struct jblocks *jblocks;
2903 	struct ufsmount *ump;
2904 	struct vnode *vp;
2905 	struct inode *ip;
2906 	ufs2_daddr_t blkno;
2907 	int bcount;
2908 	int error;
2909 	int i;
2910 
2911 	ump = VFSTOUFS(mp);
2912 	ump->softdep_journal_tail = NULL;
2913 	ump->softdep_on_journal = 0;
2914 	ump->softdep_accdeps = 0;
2915 	ump->softdep_req = 0;
2916 	ump->softdep_jblocks = NULL;
2917 	error = softdep_journal_lookup(mp, &vp);
2918 	if (error != 0) {
2919 		printf("Failed to find journal.  Use tunefs to create one\n");
2920 		return (error);
2921 	}
2922 	ip = VTOI(vp);
2923 	if (ip->i_size < SUJ_MIN) {
2924 		error = ENOSPC;
2925 		goto out;
2926 	}
2927 	bcount = lblkno(fs, ip->i_size);	/* Only use whole blocks. */
2928 	jblocks = jblocks_create();
2929 	for (i = 0; i < bcount; i++) {
2930 		error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL);
2931 		if (error)
2932 			break;
2933 		jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag));
2934 	}
2935 	if (error) {
2936 		jblocks_destroy(jblocks);
2937 		goto out;
2938 	}
2939 	jblocks->jb_low = jblocks->jb_free / 3;	/* Reserve 33%. */
2940 	jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */
2941 	ump->softdep_jblocks = jblocks;
2942 
2943 	MNT_ILOCK(mp);
2944 	mp->mnt_flag |= MNT_SUJ;
2945 	MNT_IUNLOCK(mp);
2946 
2947 	/*
2948 	 * Only validate the journal contents if the
2949 	 * filesystem is clean, otherwise we write the logs
2950 	 * but they'll never be used.  If the filesystem was
2951 	 * still dirty when we mounted it the journal is
2952 	 * invalid and a new journal can only be valid if it
2953 	 * starts from a clean mount.
2954 	 */
2955 	if (fs->fs_clean) {
2956 		DIP_SET(ip, i_modrev, fs->fs_mtime);
2957 		ip->i_flags |= IN_MODIFIED;
2958 		ffs_update(vp, 1);
2959 	}
2960 out:
2961 	vput(vp);
2962 	return (error);
2963 }
2964 
2965 static void
2966 journal_unmount(struct ufsmount *ump)
2967 {
2968 
2969 	if (ump->softdep_jblocks)
2970 		jblocks_destroy(ump->softdep_jblocks);
2971 	ump->softdep_jblocks = NULL;
2972 }
2973 
2974 /*
2975  * Called when a journal record is ready to be written.  Space is allocated
2976  * and the journal entry is created when the journal is flushed to stable
2977  * store.
2978  */
2979 static void
2980 add_to_journal(struct worklist *wk)
2981 {
2982 	struct ufsmount *ump;
2983 
2984 	ump = VFSTOUFS(wk->wk_mp);
2985 	LOCK_OWNED(ump);
2986 	if (wk->wk_state & ONWORKLIST)
2987 		panic("add_to_journal: %s(0x%X) already on list",
2988 		    TYPENAME(wk->wk_type), wk->wk_state);
2989 	wk->wk_state |= ONWORKLIST | DEPCOMPLETE;
2990 	if (LIST_EMPTY(&ump->softdep_journal_pending)) {
2991 		ump->softdep_jblocks->jb_age = ticks;
2992 		LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list);
2993 	} else
2994 		LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list);
2995 	ump->softdep_journal_tail = wk;
2996 	ump->softdep_on_journal += 1;
2997 }
2998 
2999 /*
3000  * Remove an arbitrary item for the journal worklist maintain the tail
3001  * pointer.  This happens when a new operation obviates the need to
3002  * journal an old operation.
3003  */
3004 static void
3005 remove_from_journal(struct worklist *wk)
3006 {
3007 	struct ufsmount *ump;
3008 
3009 	ump = VFSTOUFS(wk->wk_mp);
3010 	LOCK_OWNED(ump);
3011 #ifdef INVARIANTS
3012 	{
3013 		struct worklist *wkn;
3014 
3015 		LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list)
3016 			if (wkn == wk)
3017 				break;
3018 		if (wkn == NULL)
3019 			panic("remove_from_journal: %p is not in journal", wk);
3020 	}
3021 #endif
3022 	/*
3023 	 * We emulate a TAILQ to save space in most structures which do not
3024 	 * require TAILQ semantics.  Here we must update the tail position
3025 	 * when removing the tail which is not the final entry. This works
3026 	 * only if the worklist linkage are at the beginning of the structure.
3027 	 */
3028 	if (ump->softdep_journal_tail == wk)
3029 		ump->softdep_journal_tail =
3030 		    (struct worklist *)wk->wk_list.le_prev;
3031 	WORKLIST_REMOVE(wk);
3032 	ump->softdep_on_journal -= 1;
3033 }
3034 
3035 /*
3036  * Check for journal space as well as dependency limits so the prelink
3037  * code can throttle both journaled and non-journaled filesystems.
3038  * Threshold is 0 for low and 1 for min.
3039  */
3040 static int
3041 journal_space(struct ufsmount *ump, int thresh)
3042 {
3043 	struct jblocks *jblocks;
3044 	int limit, avail;
3045 
3046 	jblocks = ump->softdep_jblocks;
3047 	if (jblocks == NULL)
3048 		return (1);
3049 	/*
3050 	 * We use a tighter restriction here to prevent request_cleanup()
3051 	 * running in threads from running into locks we currently hold.
3052 	 * We have to be over the limit and our filesystem has to be
3053 	 * responsible for more than our share of that usage.
3054 	 */
3055 	limit = (max_softdeps / 10) * 9;
3056 	if (dep_current[D_INODEDEP] > limit &&
3057 	    ump->softdep_curdeps[D_INODEDEP] > limit / stat_flush_threads)
3058 		return (0);
3059 	if (thresh)
3060 		thresh = jblocks->jb_min;
3061 	else
3062 		thresh = jblocks->jb_low;
3063 	avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE;
3064 	avail = jblocks->jb_free - avail;
3065 
3066 	return (avail > thresh);
3067 }
3068 
3069 static void
3070 journal_suspend(struct ufsmount *ump)
3071 {
3072 	struct jblocks *jblocks;
3073 	struct mount *mp;
3074 	bool set;
3075 
3076 	mp = UFSTOVFS(ump);
3077 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0)
3078 		return;
3079 
3080 	jblocks = ump->softdep_jblocks;
3081 	vfs_op_enter(mp);
3082 	set = false;
3083 	MNT_ILOCK(mp);
3084 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
3085 		stat_journal_min++;
3086 		mp->mnt_kern_flag |= MNTK_SUSPEND;
3087 		mp->mnt_susp_owner = ump->softdep_flushtd;
3088 		set = true;
3089 	}
3090 	jblocks->jb_suspended = 1;
3091 	MNT_IUNLOCK(mp);
3092 	if (!set)
3093 		vfs_op_exit(mp);
3094 }
3095 
3096 static int
3097 journal_unsuspend(struct ufsmount *ump)
3098 {
3099 	struct jblocks *jblocks;
3100 	struct mount *mp;
3101 
3102 	mp = UFSTOVFS(ump);
3103 	jblocks = ump->softdep_jblocks;
3104 
3105 	if (jblocks != NULL && jblocks->jb_suspended &&
3106 	    journal_space(ump, jblocks->jb_min)) {
3107 		jblocks->jb_suspended = 0;
3108 		FREE_LOCK(ump);
3109 		mp->mnt_susp_owner = curthread;
3110 		vfs_write_resume(mp, 0);
3111 		ACQUIRE_LOCK(ump);
3112 		return (1);
3113 	}
3114 	return (0);
3115 }
3116 
3117 static void
3118 journal_check_space(struct ufsmount *ump)
3119 {
3120 	struct mount *mp;
3121 
3122 	LOCK_OWNED(ump);
3123 
3124 	if (journal_space(ump, 0) == 0) {
3125 		softdep_speedup(ump);
3126 		mp = UFSTOVFS(ump);
3127 		FREE_LOCK(ump);
3128 		VFS_SYNC(mp, MNT_NOWAIT);
3129 		ffs_sbupdate(ump, MNT_WAIT, 0);
3130 		ACQUIRE_LOCK(ump);
3131 		if (journal_space(ump, 1) == 0)
3132 			journal_suspend(ump);
3133 	}
3134 }
3135 
3136 /*
3137  * Called before any allocation function to be certain that there is
3138  * sufficient space in the journal prior to creating any new records.
3139  * Since in the case of block allocation we may have multiple locked
3140  * buffers at the time of the actual allocation we can not block
3141  * when the journal records are created.  Doing so would create a deadlock
3142  * if any of these buffers needed to be flushed to reclaim space.  Instead
3143  * we require a sufficiently large amount of available space such that
3144  * each thread in the system could have passed this allocation check and
3145  * still have sufficient free space.  With 20% of a minimum journal size
3146  * of 1MB we have 6553 records available.
3147  */
3148 int
3149 softdep_prealloc(struct vnode *vp, int waitok)
3150 {
3151 	struct ufsmount *ump;
3152 
3153 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
3154 	    ("softdep_prealloc called on non-softdep filesystem"));
3155 	/*
3156 	 * Nothing to do if we are not running journaled soft updates.
3157 	 * If we currently hold the snapshot lock, we must avoid
3158 	 * handling other resources that could cause deadlock.  Do not
3159 	 * touch quotas vnode since it is typically recursed with
3160 	 * other vnode locks held.
3161 	 */
3162 	if (DOINGSUJ(vp) == 0 || IS_SNAPSHOT(VTOI(vp)) ||
3163 	    (vp->v_vflag & VV_SYSTEM) != 0)
3164 		return (0);
3165 	ump = VFSTOUFS(vp->v_mount);
3166 	ACQUIRE_LOCK(ump);
3167 	if (journal_space(ump, 0)) {
3168 		FREE_LOCK(ump);
3169 		return (0);
3170 	}
3171 	stat_journal_low++;
3172 	FREE_LOCK(ump);
3173 	if (waitok == MNT_NOWAIT)
3174 		return (ENOSPC);
3175 	/*
3176 	 * Attempt to sync this vnode once to flush any journal
3177 	 * work attached to it.
3178 	 */
3179 	if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0)
3180 		ffs_syncvnode(vp, waitok, 0);
3181 	ACQUIRE_LOCK(ump);
3182 	process_removes(vp);
3183 	process_truncates(vp);
3184 	journal_check_space(ump);
3185 	FREE_LOCK(ump);
3186 
3187 	return (0);
3188 }
3189 
3190 /*
3191  * Try hard to sync all data and metadata for the vnode, and workitems
3192  * flushing which might conflict with the vnode lock.  This is a
3193  * helper for softdep_prerename().
3194  */
3195 static int
3196 softdep_prerename_vnode(struct ufsmount *ump, struct vnode *vp)
3197 {
3198 	int error;
3199 
3200 	ASSERT_VOP_ELOCKED(vp, "prehandle");
3201 	if (vp->v_data == NULL)
3202 		return (0);
3203 	error = VOP_FSYNC(vp, MNT_WAIT, curthread);
3204 	if (error != 0)
3205 		return (error);
3206 	ACQUIRE_LOCK(ump);
3207 	process_removes(vp);
3208 	process_truncates(vp);
3209 	FREE_LOCK(ump);
3210 	return (0);
3211 }
3212 
3213 /*
3214  * Must be called from VOP_RENAME() after all vnodes are locked.
3215  * Ensures that there is enough journal space for rename.  It is
3216  * sufficiently different from softdep_prelink() by having to handle
3217  * four vnodes.
3218  */
3219 int
3220 softdep_prerename(struct vnode *fdvp,
3221 	struct vnode *fvp,
3222 	struct vnode *tdvp,
3223 	struct vnode *tvp)
3224 {
3225 	struct ufsmount *ump;
3226 	int error;
3227 
3228 	ump = VFSTOUFS(fdvp->v_mount);
3229 
3230 	if (journal_space(ump, 0))
3231 		return (0);
3232 
3233 	VOP_UNLOCK(tdvp);
3234 	VOP_UNLOCK(fvp);
3235 	if (tvp != NULL && tvp != tdvp)
3236 		VOP_UNLOCK(tvp);
3237 
3238 	error = softdep_prerename_vnode(ump, fdvp);
3239 	VOP_UNLOCK(fdvp);
3240 	if (error != 0)
3241 		return (error);
3242 
3243 	VOP_LOCK(fvp, LK_EXCLUSIVE | LK_RETRY);
3244 	error = softdep_prerename_vnode(ump, fvp);
3245 	VOP_UNLOCK(fvp);
3246 	if (error != 0)
3247 		return (error);
3248 
3249 	if (tdvp != fdvp) {
3250 		VOP_LOCK(tdvp, LK_EXCLUSIVE | LK_RETRY);
3251 		error = softdep_prerename_vnode(ump, tdvp);
3252 		VOP_UNLOCK(tdvp);
3253 		if (error != 0)
3254 			return (error);
3255 	}
3256 
3257 	if (tvp != fvp && tvp != NULL) {
3258 		VOP_LOCK(tvp, LK_EXCLUSIVE | LK_RETRY);
3259 		error = softdep_prerename_vnode(ump, tvp);
3260 		VOP_UNLOCK(tvp);
3261 		if (error != 0)
3262 			return (error);
3263 	}
3264 
3265 	ACQUIRE_LOCK(ump);
3266 	softdep_speedup(ump);
3267 	process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT);
3268 	journal_check_space(ump);
3269 	FREE_LOCK(ump);
3270 	return (ERELOOKUP);
3271 }
3272 
3273 /*
3274  * Before adjusting a link count on a vnode verify that we have sufficient
3275  * journal space.  If not, process operations that depend on the currently
3276  * locked pair of vnodes to try to flush space as the syncer, buf daemon,
3277  * and softdep flush threads can not acquire these locks to reclaim space.
3278  *
3279  * Returns 0 if all owned locks are still valid and were not dropped
3280  * in the process, in other case it returns either an error from sync,
3281  * or ERELOOKUP if any of the locks were re-acquired.  In the later
3282  * case, the state of the vnodes cannot be relied upon and our VFS
3283  * syscall must be restarted at top level from the lookup.
3284  */
3285 int
3286 softdep_prelink(struct vnode *dvp,
3287 	struct vnode *vp,
3288 	struct componentname *cnp)
3289 {
3290 	struct ufsmount *ump;
3291 	struct nameidata *ndp;
3292 
3293 	ASSERT_VOP_ELOCKED(dvp, "prelink dvp");
3294 	if (vp != NULL)
3295 		ASSERT_VOP_ELOCKED(vp, "prelink vp");
3296 	ump = VFSTOUFS(dvp->v_mount);
3297 
3298 	/*
3299 	 * Nothing to do if we have sufficient journal space.  We skip
3300 	 * flushing when vp is a snapshot to avoid deadlock where
3301 	 * another thread is trying to update the inodeblock for dvp
3302 	 * and is waiting on snaplk that vp holds.
3303 	 */
3304 	if (journal_space(ump, 0) || (vp != NULL && IS_SNAPSHOT(VTOI(vp))))
3305 		return (0);
3306 
3307 	/*
3308 	 * Check if the journal space consumption can in theory be
3309 	 * accounted on dvp and vp.  If the vnodes metadata was not
3310 	 * changed comparing with the previous round-trip into
3311 	 * softdep_prelink(), as indicated by the seqc generation
3312 	 * recorded in the nameidata, then there is no point in
3313 	 * starting the sync.
3314 	 */
3315 	ndp = __containerof(cnp, struct nameidata, ni_cnd);
3316 	if (!seqc_in_modify(ndp->ni_dvp_seqc) &&
3317 	    vn_seqc_consistent(dvp, ndp->ni_dvp_seqc) &&
3318 	    (vp == NULL || (!seqc_in_modify(ndp->ni_vp_seqc) &&
3319 	    vn_seqc_consistent(vp, ndp->ni_vp_seqc))))
3320 		return (0);
3321 
3322 	stat_journal_low++;
3323 	if (vp != NULL) {
3324 		VOP_UNLOCK(dvp);
3325 		ffs_syncvnode(vp, MNT_NOWAIT, 0);
3326 		vn_lock_pair(dvp, false, vp, true);
3327 		if (dvp->v_data == NULL)
3328 			goto out;
3329 	}
3330 	if (vp != NULL)
3331 		VOP_UNLOCK(vp);
3332 	ffs_syncvnode(dvp, MNT_WAIT, 0);
3333 	/* Process vp before dvp as it may create .. removes. */
3334 	if (vp != NULL) {
3335 		VOP_UNLOCK(dvp);
3336 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3337 		if (vp->v_data == NULL) {
3338 			vn_lock_pair(dvp, false, vp, true);
3339 			goto out;
3340 		}
3341 		ACQUIRE_LOCK(ump);
3342 		process_removes(vp);
3343 		process_truncates(vp);
3344 		FREE_LOCK(ump);
3345 		VOP_UNLOCK(vp);
3346 		vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY);
3347 		if (dvp->v_data == NULL) {
3348 			vn_lock_pair(dvp, true, vp, false);
3349 			goto out;
3350 		}
3351 	}
3352 
3353 	ACQUIRE_LOCK(ump);
3354 	process_removes(dvp);
3355 	process_truncates(dvp);
3356 	VOP_UNLOCK(dvp);
3357 	softdep_speedup(ump);
3358 
3359 	process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT);
3360 	journal_check_space(ump);
3361 	FREE_LOCK(ump);
3362 
3363 	vn_lock_pair(dvp, false, vp, false);
3364 out:
3365 	ndp->ni_dvp_seqc = vn_seqc_read_any(dvp);
3366 	if (vp != NULL)
3367 		ndp->ni_vp_seqc = vn_seqc_read_any(vp);
3368 	return (ERELOOKUP);
3369 }
3370 
3371 static void
3372 jseg_write(struct ufsmount *ump,
3373 	struct jseg *jseg,
3374 	uint8_t *data)
3375 {
3376 	struct jsegrec *rec;
3377 
3378 	rec = (struct jsegrec *)data;
3379 	rec->jsr_seq = jseg->js_seq;
3380 	rec->jsr_oldest = jseg->js_oldseq;
3381 	rec->jsr_cnt = jseg->js_cnt;
3382 	rec->jsr_blocks = jseg->js_size / ump->um_devvp->v_bufobj.bo_bsize;
3383 	rec->jsr_crc = 0;
3384 	rec->jsr_time = ump->um_fs->fs_mtime;
3385 }
3386 
3387 static inline void
3388 inoref_write(struct inoref *inoref,
3389 	struct jseg *jseg,
3390 	struct jrefrec *rec)
3391 {
3392 
3393 	inoref->if_jsegdep->jd_seg = jseg;
3394 	rec->jr_ino = inoref->if_ino;
3395 	rec->jr_parent = inoref->if_parent;
3396 	rec->jr_nlink = inoref->if_nlink;
3397 	rec->jr_mode = inoref->if_mode;
3398 	rec->jr_diroff = inoref->if_diroff;
3399 }
3400 
3401 static void
3402 jaddref_write(struct jaddref *jaddref,
3403 	struct jseg *jseg,
3404 	uint8_t *data)
3405 {
3406 	struct jrefrec *rec;
3407 
3408 	rec = (struct jrefrec *)data;
3409 	rec->jr_op = JOP_ADDREF;
3410 	inoref_write(&jaddref->ja_ref, jseg, rec);
3411 }
3412 
3413 static void
3414 jremref_write(struct jremref *jremref,
3415 	struct jseg *jseg,
3416 	uint8_t *data)
3417 {
3418 	struct jrefrec *rec;
3419 
3420 	rec = (struct jrefrec *)data;
3421 	rec->jr_op = JOP_REMREF;
3422 	inoref_write(&jremref->jr_ref, jseg, rec);
3423 }
3424 
3425 static void
3426 jmvref_write(struct jmvref *jmvref,
3427 	struct jseg *jseg,
3428 	uint8_t *data)
3429 {
3430 	struct jmvrec *rec;
3431 
3432 	rec = (struct jmvrec *)data;
3433 	rec->jm_op = JOP_MVREF;
3434 	rec->jm_ino = jmvref->jm_ino;
3435 	rec->jm_parent = jmvref->jm_parent;
3436 	rec->jm_oldoff = jmvref->jm_oldoff;
3437 	rec->jm_newoff = jmvref->jm_newoff;
3438 }
3439 
3440 static void
3441 jnewblk_write(struct jnewblk *jnewblk,
3442 	struct jseg *jseg,
3443 	uint8_t *data)
3444 {
3445 	struct jblkrec *rec;
3446 
3447 	jnewblk->jn_jsegdep->jd_seg = jseg;
3448 	rec = (struct jblkrec *)data;
3449 	rec->jb_op = JOP_NEWBLK;
3450 	rec->jb_ino = jnewblk->jn_ino;
3451 	rec->jb_blkno = jnewblk->jn_blkno;
3452 	rec->jb_lbn = jnewblk->jn_lbn;
3453 	rec->jb_frags = jnewblk->jn_frags;
3454 	rec->jb_oldfrags = jnewblk->jn_oldfrags;
3455 }
3456 
3457 static void
3458 jfreeblk_write(struct jfreeblk *jfreeblk,
3459 	struct jseg *jseg,
3460 	uint8_t *data)
3461 {
3462 	struct jblkrec *rec;
3463 
3464 	jfreeblk->jf_dep.jb_jsegdep->jd_seg = jseg;
3465 	rec = (struct jblkrec *)data;
3466 	rec->jb_op = JOP_FREEBLK;
3467 	rec->jb_ino = jfreeblk->jf_ino;
3468 	rec->jb_blkno = jfreeblk->jf_blkno;
3469 	rec->jb_lbn = jfreeblk->jf_lbn;
3470 	rec->jb_frags = jfreeblk->jf_frags;
3471 	rec->jb_oldfrags = 0;
3472 }
3473 
3474 static void
3475 jfreefrag_write(struct jfreefrag *jfreefrag,
3476 	struct jseg *jseg,
3477 	uint8_t *data)
3478 {
3479 	struct jblkrec *rec;
3480 
3481 	jfreefrag->fr_jsegdep->jd_seg = jseg;
3482 	rec = (struct jblkrec *)data;
3483 	rec->jb_op = JOP_FREEBLK;
3484 	rec->jb_ino = jfreefrag->fr_ino;
3485 	rec->jb_blkno = jfreefrag->fr_blkno;
3486 	rec->jb_lbn = jfreefrag->fr_lbn;
3487 	rec->jb_frags = jfreefrag->fr_frags;
3488 	rec->jb_oldfrags = 0;
3489 }
3490 
3491 static void
3492 jtrunc_write(struct jtrunc *jtrunc,
3493 	struct jseg *jseg,
3494 	uint8_t *data)
3495 {
3496 	struct jtrncrec *rec;
3497 
3498 	jtrunc->jt_dep.jb_jsegdep->jd_seg = jseg;
3499 	rec = (struct jtrncrec *)data;
3500 	rec->jt_op = JOP_TRUNC;
3501 	rec->jt_ino = jtrunc->jt_ino;
3502 	rec->jt_size = jtrunc->jt_size;
3503 	rec->jt_extsize = jtrunc->jt_extsize;
3504 }
3505 
3506 static void
3507 jfsync_write(struct jfsync *jfsync,
3508 	struct jseg *jseg,
3509 	uint8_t *data)
3510 {
3511 	struct jtrncrec *rec;
3512 
3513 	rec = (struct jtrncrec *)data;
3514 	rec->jt_op = JOP_SYNC;
3515 	rec->jt_ino = jfsync->jfs_ino;
3516 	rec->jt_size = jfsync->jfs_size;
3517 	rec->jt_extsize = jfsync->jfs_extsize;
3518 }
3519 
3520 static void
3521 softdep_flushjournal(struct mount *mp)
3522 {
3523 	struct jblocks *jblocks;
3524 	struct ufsmount *ump;
3525 
3526 	if (MOUNTEDSUJ(mp) == 0)
3527 		return;
3528 	ump = VFSTOUFS(mp);
3529 	jblocks = ump->softdep_jblocks;
3530 	ACQUIRE_LOCK(ump);
3531 	while (ump->softdep_on_journal) {
3532 		jblocks->jb_needseg = 1;
3533 		softdep_process_journal(mp, NULL, MNT_WAIT);
3534 	}
3535 	FREE_LOCK(ump);
3536 }
3537 
3538 static void softdep_synchronize_completed(struct bio *);
3539 static void softdep_synchronize(struct bio *, struct ufsmount *, void *);
3540 
3541 static void
3542 softdep_synchronize_completed(struct bio *bp)
3543 {
3544 	struct jseg *oldest;
3545 	struct jseg *jseg;
3546 	struct ufsmount *ump;
3547 
3548 	/*
3549 	 * caller1 marks the last segment written before we issued the
3550 	 * synchronize cache.
3551 	 */
3552 	jseg = bp->bio_caller1;
3553 	if (jseg == NULL) {
3554 		g_destroy_bio(bp);
3555 		return;
3556 	}
3557 	ump = VFSTOUFS(jseg->js_list.wk_mp);
3558 	ACQUIRE_LOCK(ump);
3559 	oldest = NULL;
3560 	/*
3561 	 * Mark all the journal entries waiting on the synchronize cache
3562 	 * as completed so they may continue on.
3563 	 */
3564 	while (jseg != NULL && (jseg->js_state & COMPLETE) == 0) {
3565 		jseg->js_state |= COMPLETE;
3566 		oldest = jseg;
3567 		jseg = TAILQ_PREV(jseg, jseglst, js_next);
3568 	}
3569 	/*
3570 	 * Restart deferred journal entry processing from the oldest
3571 	 * completed jseg.
3572 	 */
3573 	if (oldest)
3574 		complete_jsegs(oldest);
3575 
3576 	FREE_LOCK(ump);
3577 	g_destroy_bio(bp);
3578 }
3579 
3580 /*
3581  * Send BIO_FLUSH/SYNCHRONIZE CACHE to the device to enforce write ordering
3582  * barriers.  The journal must be written prior to any blocks that depend
3583  * on it and the journal can not be released until the blocks have be
3584  * written.  This code handles both barriers simultaneously.
3585  */
3586 static void
3587 softdep_synchronize(struct bio *bp,
3588 	struct ufsmount *ump,
3589 	void *caller1)
3590 {
3591 
3592 	bp->bio_cmd = BIO_FLUSH;
3593 	bp->bio_flags |= BIO_ORDERED;
3594 	bp->bio_data = NULL;
3595 	bp->bio_offset = ump->um_cp->provider->mediasize;
3596 	bp->bio_length = 0;
3597 	bp->bio_done = softdep_synchronize_completed;
3598 	bp->bio_caller1 = caller1;
3599 	g_io_request(bp, ump->um_cp);
3600 }
3601 
3602 /*
3603  * Flush some journal records to disk.
3604  */
3605 static void
3606 softdep_process_journal(struct mount *mp,
3607 	struct worklist *needwk,
3608 	int flags)
3609 {
3610 	struct jblocks *jblocks;
3611 	struct ufsmount *ump;
3612 	struct worklist *wk;
3613 	struct jseg *jseg;
3614 	struct buf *bp;
3615 	struct bio *bio;
3616 	uint8_t *data;
3617 	struct fs *fs;
3618 	int shouldflush;
3619 	int segwritten;
3620 	int jrecmin;	/* Minimum records per block. */
3621 	int jrecmax;	/* Maximum records per block. */
3622 	int size;
3623 	int cnt;
3624 	int off;
3625 	int devbsize;
3626 
3627 	ump = VFSTOUFS(mp);
3628 	if (ump->um_softdep == NULL || ump->um_softdep->sd_jblocks == NULL)
3629 		return;
3630 	shouldflush = softdep_flushcache;
3631 	bio = NULL;
3632 	jseg = NULL;
3633 	LOCK_OWNED(ump);
3634 	fs = ump->um_fs;
3635 	jblocks = ump->softdep_jblocks;
3636 	devbsize = ump->um_devvp->v_bufobj.bo_bsize;
3637 	/*
3638 	 * We write anywhere between a disk block and fs block.  The upper
3639 	 * bound is picked to prevent buffer cache fragmentation and limit
3640 	 * processing time per I/O.
3641 	 */
3642 	jrecmin = (devbsize / JREC_SIZE) - 1; /* -1 for seg header */
3643 	jrecmax = (fs->fs_bsize / devbsize) * jrecmin;
3644 	segwritten = 0;
3645 	for (;;) {
3646 		cnt = ump->softdep_on_journal;
3647 		/*
3648 		 * Criteria for writing a segment:
3649 		 * 1) We have a full block.
3650 		 * 2) We're called from jwait() and haven't found the
3651 		 *    journal item yet.
3652 		 * 3) Always write if needseg is set.
3653 		 * 4) If we are called from process_worklist and have
3654 		 *    not yet written anything we write a partial block
3655 		 *    to enforce a 1 second maximum latency on journal
3656 		 *    entries.
3657 		 */
3658 		if (cnt < (jrecmax - 1) && needwk == NULL &&
3659 		    jblocks->jb_needseg == 0 && (segwritten || cnt == 0))
3660 			break;
3661 		cnt++;
3662 		/*
3663 		 * Verify some free journal space.  softdep_prealloc() should
3664 		 * guarantee that we don't run out so this is indicative of
3665 		 * a problem with the flow control.  Try to recover
3666 		 * gracefully in any event.
3667 		 */
3668 		while (jblocks->jb_free == 0) {
3669 			if (flags != MNT_WAIT)
3670 				break;
3671 			printf("softdep: Out of journal space!\n");
3672 			softdep_speedup(ump);
3673 			msleep(jblocks, LOCK_PTR(ump), PRIBIO, "jblocks", hz);
3674 		}
3675 		FREE_LOCK(ump);
3676 		jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS);
3677 		workitem_alloc(&jseg->js_list, D_JSEG, mp);
3678 		LIST_INIT(&jseg->js_entries);
3679 		LIST_INIT(&jseg->js_indirs);
3680 		jseg->js_state = ATTACHED;
3681 		if (shouldflush == 0)
3682 			jseg->js_state |= COMPLETE;
3683 		else if (bio == NULL)
3684 			bio = g_alloc_bio();
3685 		jseg->js_jblocks = jblocks;
3686 		bp = geteblk(fs->fs_bsize, 0);
3687 		ACQUIRE_LOCK(ump);
3688 		/*
3689 		 * If there was a race while we were allocating the block
3690 		 * and jseg the entry we care about was likely written.
3691 		 * We bail out in both the WAIT and NOWAIT case and assume
3692 		 * the caller will loop if the entry it cares about is
3693 		 * not written.
3694 		 */
3695 		cnt = ump->softdep_on_journal;
3696 		if (cnt + jblocks->jb_needseg == 0 || jblocks->jb_free == 0) {
3697 			bp->b_flags |= B_INVAL | B_NOCACHE;
3698 			WORKITEM_FREE(jseg, D_JSEG);
3699 			FREE_LOCK(ump);
3700 			brelse(bp);
3701 			ACQUIRE_LOCK(ump);
3702 			break;
3703 		}
3704 		/*
3705 		 * Calculate the disk block size required for the available
3706 		 * records rounded to the min size.
3707 		 */
3708 		if (cnt == 0)
3709 			size = devbsize;
3710 		else if (cnt < jrecmax)
3711 			size = howmany(cnt, jrecmin) * devbsize;
3712 		else
3713 			size = fs->fs_bsize;
3714 		/*
3715 		 * Allocate a disk block for this journal data and account
3716 		 * for truncation of the requested size if enough contiguous
3717 		 * space was not available.
3718 		 */
3719 		bp->b_blkno = jblocks_alloc(jblocks, size, &size);
3720 		bp->b_lblkno = bp->b_blkno;
3721 		bp->b_offset = bp->b_blkno * DEV_BSIZE;
3722 		bp->b_bcount = size;
3723 		bp->b_flags &= ~B_INVAL;
3724 		bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY;
3725 		/*
3726 		 * Initialize our jseg with cnt records.  Assign the next
3727 		 * sequence number to it and link it in-order.
3728 		 */
3729 		cnt = MIN(cnt, (size / devbsize) * jrecmin);
3730 		jseg->js_buf = bp;
3731 		jseg->js_cnt = cnt;
3732 		jseg->js_refs = cnt + 1;	/* Self ref. */
3733 		jseg->js_size = size;
3734 		jseg->js_seq = jblocks->jb_nextseq++;
3735 		if (jblocks->jb_oldestseg == NULL)
3736 			jblocks->jb_oldestseg = jseg;
3737 		jseg->js_oldseq = jblocks->jb_oldestseg->js_seq;
3738 		TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next);
3739 		if (jblocks->jb_writeseg == NULL)
3740 			jblocks->jb_writeseg = jseg;
3741 		/*
3742 		 * Start filling in records from the pending list.
3743 		 */
3744 		data = bp->b_data;
3745 		off = 0;
3746 
3747 		/*
3748 		 * Always put a header on the first block.
3749 		 * XXX As with below, there might not be a chance to get
3750 		 * into the loop.  Ensure that something valid is written.
3751 		 */
3752 		jseg_write(ump, jseg, data);
3753 		off += JREC_SIZE;
3754 		data = bp->b_data + off;
3755 
3756 		/*
3757 		 * XXX Something is wrong here.  There's no work to do,
3758 		 * but we need to perform and I/O and allow it to complete
3759 		 * anyways.
3760 		 */
3761 		if (LIST_EMPTY(&ump->softdep_journal_pending))
3762 			stat_emptyjblocks++;
3763 
3764 		while ((wk = LIST_FIRST(&ump->softdep_journal_pending))
3765 		    != NULL) {
3766 			if (cnt == 0)
3767 				break;
3768 			/* Place a segment header on every device block. */
3769 			if ((off % devbsize) == 0) {
3770 				jseg_write(ump, jseg, data);
3771 				off += JREC_SIZE;
3772 				data = bp->b_data + off;
3773 			}
3774 			if (wk == needwk)
3775 				needwk = NULL;
3776 			remove_from_journal(wk);
3777 			wk->wk_state |= INPROGRESS;
3778 			WORKLIST_INSERT(&jseg->js_entries, wk);
3779 			switch (wk->wk_type) {
3780 			case D_JADDREF:
3781 				jaddref_write(WK_JADDREF(wk), jseg, data);
3782 				break;
3783 			case D_JREMREF:
3784 				jremref_write(WK_JREMREF(wk), jseg, data);
3785 				break;
3786 			case D_JMVREF:
3787 				jmvref_write(WK_JMVREF(wk), jseg, data);
3788 				break;
3789 			case D_JNEWBLK:
3790 				jnewblk_write(WK_JNEWBLK(wk), jseg, data);
3791 				break;
3792 			case D_JFREEBLK:
3793 				jfreeblk_write(WK_JFREEBLK(wk), jseg, data);
3794 				break;
3795 			case D_JFREEFRAG:
3796 				jfreefrag_write(WK_JFREEFRAG(wk), jseg, data);
3797 				break;
3798 			case D_JTRUNC:
3799 				jtrunc_write(WK_JTRUNC(wk), jseg, data);
3800 				break;
3801 			case D_JFSYNC:
3802 				jfsync_write(WK_JFSYNC(wk), jseg, data);
3803 				break;
3804 			default:
3805 				panic("process_journal: Unknown type %s",
3806 				    TYPENAME(wk->wk_type));
3807 				/* NOTREACHED */
3808 			}
3809 			off += JREC_SIZE;
3810 			data = bp->b_data + off;
3811 			cnt--;
3812 		}
3813 
3814 		/* Clear any remaining space so we don't leak kernel data */
3815 		if (size > off)
3816 			bzero(data, size - off);
3817 
3818 		/*
3819 		 * Write this one buffer and continue.
3820 		 */
3821 		segwritten = 1;
3822 		jblocks->jb_needseg = 0;
3823 		WORKLIST_INSERT(&bp->b_dep, &jseg->js_list);
3824 		FREE_LOCK(ump);
3825 		bp->b_xflags |= BX_CVTENXIO;
3826 		pbgetvp(ump->um_devvp, bp);
3827 		/*
3828 		 * We only do the blocking wait once we find the journal
3829 		 * entry we're looking for.
3830 		 */
3831 		if (needwk == NULL && flags == MNT_WAIT)
3832 			bwrite(bp);
3833 		else
3834 			bawrite(bp);
3835 		ACQUIRE_LOCK(ump);
3836 	}
3837 	/*
3838 	 * If we wrote a segment issue a synchronize cache so the journal
3839 	 * is reflected on disk before the data is written.  Since reclaiming
3840 	 * journal space also requires writing a journal record this
3841 	 * process also enforces a barrier before reclamation.
3842 	 */
3843 	if (segwritten && shouldflush) {
3844 		softdep_synchronize(bio, ump,
3845 		    TAILQ_LAST(&jblocks->jb_segs, jseglst));
3846 	} else if (bio)
3847 		g_destroy_bio(bio);
3848 	/*
3849 	 * If we've suspended the filesystem because we ran out of journal
3850 	 * space either try to sync it here to make some progress or
3851 	 * unsuspend it if we already have.
3852 	 */
3853 	if (flags == 0 && jblocks->jb_suspended) {
3854 		if (journal_unsuspend(ump))
3855 			return;
3856 		FREE_LOCK(ump);
3857 		VFS_SYNC(mp, MNT_NOWAIT);
3858 		ffs_sbupdate(ump, MNT_WAIT, 0);
3859 		ACQUIRE_LOCK(ump);
3860 	}
3861 }
3862 
3863 /*
3864  * Complete a jseg, allowing all dependencies awaiting journal writes
3865  * to proceed.  Each journal dependency also attaches a jsegdep to dependent
3866  * structures so that the journal segment can be freed to reclaim space.
3867  */
3868 static void
3869 complete_jseg(struct jseg *jseg)
3870 {
3871 	struct worklist *wk;
3872 	struct jmvref *jmvref;
3873 #ifdef INVARIANTS
3874 	int i = 0;
3875 #endif
3876 
3877 	while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) {
3878 		WORKLIST_REMOVE(wk);
3879 		wk->wk_state &= ~INPROGRESS;
3880 		wk->wk_state |= COMPLETE;
3881 		KASSERT(i++ < jseg->js_cnt,
3882 		    ("handle_written_jseg: overflow %d >= %d",
3883 		    i - 1, jseg->js_cnt));
3884 		switch (wk->wk_type) {
3885 		case D_JADDREF:
3886 			handle_written_jaddref(WK_JADDREF(wk));
3887 			break;
3888 		case D_JREMREF:
3889 			handle_written_jremref(WK_JREMREF(wk));
3890 			break;
3891 		case D_JMVREF:
3892 			rele_jseg(jseg);	/* No jsegdep. */
3893 			jmvref = WK_JMVREF(wk);
3894 			LIST_REMOVE(jmvref, jm_deps);
3895 			if ((jmvref->jm_pagedep->pd_state & ONWORKLIST) == 0)
3896 				free_pagedep(jmvref->jm_pagedep);
3897 			WORKITEM_FREE(jmvref, D_JMVREF);
3898 			break;
3899 		case D_JNEWBLK:
3900 			handle_written_jnewblk(WK_JNEWBLK(wk));
3901 			break;
3902 		case D_JFREEBLK:
3903 			handle_written_jblkdep(&WK_JFREEBLK(wk)->jf_dep);
3904 			break;
3905 		case D_JTRUNC:
3906 			handle_written_jblkdep(&WK_JTRUNC(wk)->jt_dep);
3907 			break;
3908 		case D_JFSYNC:
3909 			rele_jseg(jseg);	/* No jsegdep. */
3910 			WORKITEM_FREE(wk, D_JFSYNC);
3911 			break;
3912 		case D_JFREEFRAG:
3913 			handle_written_jfreefrag(WK_JFREEFRAG(wk));
3914 			break;
3915 		default:
3916 			panic("handle_written_jseg: Unknown type %s",
3917 			    TYPENAME(wk->wk_type));
3918 			/* NOTREACHED */
3919 		}
3920 	}
3921 	/* Release the self reference so the structure may be freed. */
3922 	rele_jseg(jseg);
3923 }
3924 
3925 /*
3926  * Determine which jsegs are ready for completion processing.  Waits for
3927  * synchronize cache to complete as well as forcing in-order completion
3928  * of journal entries.
3929  */
3930 static void
3931 complete_jsegs(struct jseg *jseg)
3932 {
3933 	struct jblocks *jblocks;
3934 	struct jseg *jsegn;
3935 
3936 	jblocks = jseg->js_jblocks;
3937 	/*
3938 	 * Don't allow out of order completions.  If this isn't the first
3939 	 * block wait for it to write before we're done.
3940 	 */
3941 	if (jseg != jblocks->jb_writeseg)
3942 		return;
3943 	/* Iterate through available jsegs processing their entries. */
3944 	while (jseg && (jseg->js_state & ALLCOMPLETE) == ALLCOMPLETE) {
3945 		jblocks->jb_oldestwrseq = jseg->js_oldseq;
3946 		jsegn = TAILQ_NEXT(jseg, js_next);
3947 		complete_jseg(jseg);
3948 		jseg = jsegn;
3949 	}
3950 	jblocks->jb_writeseg = jseg;
3951 	/*
3952 	 * Attempt to free jsegs now that oldestwrseq may have advanced.
3953 	 */
3954 	free_jsegs(jblocks);
3955 }
3956 
3957 /*
3958  * Mark a jseg as DEPCOMPLETE and throw away the buffer.  Attempt to handle
3959  * the final completions.
3960  */
3961 static void
3962 handle_written_jseg(struct jseg *jseg, struct buf *bp)
3963 {
3964 
3965 	if (jseg->js_refs == 0)
3966 		panic("handle_written_jseg: No self-reference on %p", jseg);
3967 	jseg->js_state |= DEPCOMPLETE;
3968 	/*
3969 	 * We'll never need this buffer again, set flags so it will be
3970 	 * discarded.
3971 	 */
3972 	bp->b_flags |= B_INVAL | B_NOCACHE;
3973 	pbrelvp(bp);
3974 	complete_jsegs(jseg);
3975 }
3976 
3977 static inline struct jsegdep *
3978 inoref_jseg(struct inoref *inoref)
3979 {
3980 	struct jsegdep *jsegdep;
3981 
3982 	jsegdep = inoref->if_jsegdep;
3983 	inoref->if_jsegdep = NULL;
3984 
3985 	return (jsegdep);
3986 }
3987 
3988 /*
3989  * Called once a jremref has made it to stable store.  The jremref is marked
3990  * complete and we attempt to free it.  Any pagedeps writes sleeping waiting
3991  * for the jremref to complete will be awoken by free_jremref.
3992  */
3993 static void
3994 handle_written_jremref(struct jremref *jremref)
3995 {
3996 	struct inodedep *inodedep;
3997 	struct jsegdep *jsegdep;
3998 	struct dirrem *dirrem;
3999 
4000 	/* Grab the jsegdep. */
4001 	jsegdep = inoref_jseg(&jremref->jr_ref);
4002 	/*
4003 	 * Remove us from the inoref list.
4004 	 */
4005 	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino,
4006 	    0, &inodedep) == 0)
4007 		panic("handle_written_jremref: Lost inodedep");
4008 	TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
4009 	/*
4010 	 * Complete the dirrem.
4011 	 */
4012 	dirrem = jremref->jr_dirrem;
4013 	jremref->jr_dirrem = NULL;
4014 	LIST_REMOVE(jremref, jr_deps);
4015 	jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT;
4016 	jwork_insert(&dirrem->dm_jwork, jsegdep);
4017 	if (LIST_EMPTY(&dirrem->dm_jremrefhd) &&
4018 	    (dirrem->dm_state & COMPLETE) != 0)
4019 		add_to_worklist(&dirrem->dm_list, 0);
4020 	free_jremref(jremref);
4021 }
4022 
4023 /*
4024  * Called once a jaddref has made it to stable store.  The dependency is
4025  * marked complete and any dependent structures are added to the inode
4026  * bufwait list to be completed as soon as it is written.  If a bitmap write
4027  * depends on this entry we move the inode into the inodedephd of the
4028  * bmsafemap dependency and attempt to remove the jaddref from the bmsafemap.
4029  */
4030 static void
4031 handle_written_jaddref(struct jaddref *jaddref)
4032 {
4033 	struct jsegdep *jsegdep;
4034 	struct inodedep *inodedep;
4035 	struct diradd *diradd;
4036 	struct mkdir *mkdir;
4037 
4038 	/* Grab the jsegdep. */
4039 	jsegdep = inoref_jseg(&jaddref->ja_ref);
4040 	mkdir = NULL;
4041 	diradd = NULL;
4042 	if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
4043 	    0, &inodedep) == 0)
4044 		panic("handle_written_jaddref: Lost inodedep.");
4045 	if (jaddref->ja_diradd == NULL)
4046 		panic("handle_written_jaddref: No dependency");
4047 	if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) {
4048 		diradd = jaddref->ja_diradd;
4049 		WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list);
4050 	} else if (jaddref->ja_state & MKDIR_PARENT) {
4051 		mkdir = jaddref->ja_mkdir;
4052 		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list);
4053 	} else if (jaddref->ja_state & MKDIR_BODY)
4054 		mkdir = jaddref->ja_mkdir;
4055 	else
4056 		panic("handle_written_jaddref: Unknown dependency %p",
4057 		    jaddref->ja_diradd);
4058 	jaddref->ja_diradd = NULL;	/* also clears ja_mkdir */
4059 	/*
4060 	 * Remove us from the inode list.
4061 	 */
4062 	TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps);
4063 	/*
4064 	 * The mkdir may be waiting on the jaddref to clear before freeing.
4065 	 */
4066 	if (mkdir) {
4067 		KASSERT(mkdir->md_list.wk_type == D_MKDIR,
4068 		    ("handle_written_jaddref: Incorrect type for mkdir %s",
4069 		    TYPENAME(mkdir->md_list.wk_type)));
4070 		mkdir->md_jaddref = NULL;
4071 		diradd = mkdir->md_diradd;
4072 		mkdir->md_state |= DEPCOMPLETE;
4073 		complete_mkdir(mkdir);
4074 	}
4075 	jwork_insert(&diradd->da_jwork, jsegdep);
4076 	if (jaddref->ja_state & NEWBLOCK) {
4077 		inodedep->id_state |= ONDEPLIST;
4078 		LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd,
4079 		    inodedep, id_deps);
4080 	}
4081 	free_jaddref(jaddref);
4082 }
4083 
4084 /*
4085  * Called once a jnewblk journal is written.  The allocdirect or allocindir
4086  * is placed in the bmsafemap to await notification of a written bitmap.  If
4087  * the operation was canceled we add the segdep to the appropriate
4088  * dependency to free the journal space once the canceling operation
4089  * completes.
4090  */
4091 static void
4092 handle_written_jnewblk(struct jnewblk *jnewblk)
4093 {
4094 	struct bmsafemap *bmsafemap;
4095 	struct freefrag *freefrag;
4096 	struct freework *freework;
4097 	struct jsegdep *jsegdep;
4098 	struct newblk *newblk;
4099 
4100 	/* Grab the jsegdep. */
4101 	jsegdep = jnewblk->jn_jsegdep;
4102 	jnewblk->jn_jsegdep = NULL;
4103 	if (jnewblk->jn_dep == NULL)
4104 		panic("handle_written_jnewblk: No dependency for the segdep.");
4105 	switch (jnewblk->jn_dep->wk_type) {
4106 	case D_NEWBLK:
4107 	case D_ALLOCDIRECT:
4108 	case D_ALLOCINDIR:
4109 		/*
4110 		 * Add the written block to the bmsafemap so it can
4111 		 * be notified when the bitmap is on disk.
4112 		 */
4113 		newblk = WK_NEWBLK(jnewblk->jn_dep);
4114 		newblk->nb_jnewblk = NULL;
4115 		if ((newblk->nb_state & GOINGAWAY) == 0) {
4116 			bmsafemap = newblk->nb_bmsafemap;
4117 			newblk->nb_state |= ONDEPLIST;
4118 			LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk,
4119 			    nb_deps);
4120 		}
4121 		jwork_insert(&newblk->nb_jwork, jsegdep);
4122 		break;
4123 	case D_FREEFRAG:
4124 		/*
4125 		 * A newblock being removed by a freefrag when replaced by
4126 		 * frag extension.
4127 		 */
4128 		freefrag = WK_FREEFRAG(jnewblk->jn_dep);
4129 		freefrag->ff_jdep = NULL;
4130 		jwork_insert(&freefrag->ff_jwork, jsegdep);
4131 		break;
4132 	case D_FREEWORK:
4133 		/*
4134 		 * A direct block was removed by truncate.
4135 		 */
4136 		freework = WK_FREEWORK(jnewblk->jn_dep);
4137 		freework->fw_jnewblk = NULL;
4138 		jwork_insert(&freework->fw_freeblks->fb_jwork, jsegdep);
4139 		break;
4140 	default:
4141 		panic("handle_written_jnewblk: Unknown type %d.",
4142 		    jnewblk->jn_dep->wk_type);
4143 	}
4144 	jnewblk->jn_dep = NULL;
4145 	free_jnewblk(jnewblk);
4146 }
4147 
4148 /*
4149  * Cancel a jfreefrag that won't be needed, probably due to colliding with
4150  * an in-flight allocation that has not yet been committed.  Divorce us
4151  * from the freefrag and mark it DEPCOMPLETE so that it may be added
4152  * to the worklist.
4153  */
4154 static void
4155 cancel_jfreefrag(struct jfreefrag *jfreefrag)
4156 {
4157 	struct freefrag *freefrag;
4158 
4159 	if (jfreefrag->fr_jsegdep) {
4160 		free_jsegdep(jfreefrag->fr_jsegdep);
4161 		jfreefrag->fr_jsegdep = NULL;
4162 	}
4163 	freefrag = jfreefrag->fr_freefrag;
4164 	jfreefrag->fr_freefrag = NULL;
4165 	free_jfreefrag(jfreefrag);
4166 	freefrag->ff_state |= DEPCOMPLETE;
4167 	CTR1(KTR_SUJ, "cancel_jfreefrag: blkno %jd", freefrag->ff_blkno);
4168 }
4169 
4170 /*
4171  * Free a jfreefrag when the parent freefrag is rendered obsolete.
4172  */
4173 static void
4174 free_jfreefrag(struct jfreefrag *jfreefrag)
4175 {
4176 
4177 	if (jfreefrag->fr_state & INPROGRESS)
4178 		WORKLIST_REMOVE(&jfreefrag->fr_list);
4179 	else if (jfreefrag->fr_state & ONWORKLIST)
4180 		remove_from_journal(&jfreefrag->fr_list);
4181 	if (jfreefrag->fr_freefrag != NULL)
4182 		panic("free_jfreefrag:  Still attached to a freefrag.");
4183 	WORKITEM_FREE(jfreefrag, D_JFREEFRAG);
4184 }
4185 
4186 /*
4187  * Called when the journal write for a jfreefrag completes.  The parent
4188  * freefrag is added to the worklist if this completes its dependencies.
4189  */
4190 static void
4191 handle_written_jfreefrag(struct jfreefrag *jfreefrag)
4192 {
4193 	struct jsegdep *jsegdep;
4194 	struct freefrag *freefrag;
4195 
4196 	/* Grab the jsegdep. */
4197 	jsegdep = jfreefrag->fr_jsegdep;
4198 	jfreefrag->fr_jsegdep = NULL;
4199 	freefrag = jfreefrag->fr_freefrag;
4200 	if (freefrag == NULL)
4201 		panic("handle_written_jfreefrag: No freefrag.");
4202 	freefrag->ff_state |= DEPCOMPLETE;
4203 	freefrag->ff_jdep = NULL;
4204 	jwork_insert(&freefrag->ff_jwork, jsegdep);
4205 	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
4206 		add_to_worklist(&freefrag->ff_list, 0);
4207 	jfreefrag->fr_freefrag = NULL;
4208 	free_jfreefrag(jfreefrag);
4209 }
4210 
4211 /*
4212  * Called when the journal write for a jfreeblk completes.  The jfreeblk
4213  * is removed from the freeblks list of pending journal writes and the
4214  * jsegdep is moved to the freeblks jwork to be completed when all blocks
4215  * have been reclaimed.
4216  */
4217 static void
4218 handle_written_jblkdep(struct jblkdep *jblkdep)
4219 {
4220 	struct freeblks *freeblks;
4221 	struct jsegdep *jsegdep;
4222 
4223 	/* Grab the jsegdep. */
4224 	jsegdep = jblkdep->jb_jsegdep;
4225 	jblkdep->jb_jsegdep = NULL;
4226 	freeblks = jblkdep->jb_freeblks;
4227 	LIST_REMOVE(jblkdep, jb_deps);
4228 	jwork_insert(&freeblks->fb_jwork, jsegdep);
4229 	/*
4230 	 * If the freeblks is all journaled, we can add it to the worklist.
4231 	 */
4232 	if (LIST_EMPTY(&freeblks->fb_jblkdephd) &&
4233 	    (freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
4234 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
4235 
4236 	free_jblkdep(jblkdep);
4237 }
4238 
4239 static struct jsegdep *
4240 newjsegdep(struct worklist *wk)
4241 {
4242 	struct jsegdep *jsegdep;
4243 
4244 	jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS);
4245 	workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp);
4246 	jsegdep->jd_seg = NULL;
4247 
4248 	return (jsegdep);
4249 }
4250 
4251 static struct jmvref *
4252 newjmvref(struct inode *dp,
4253 	ino_t ino,
4254 	off_t oldoff,
4255 	off_t newoff)
4256 {
4257 	struct jmvref *jmvref;
4258 
4259 	jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS);
4260 	workitem_alloc(&jmvref->jm_list, D_JMVREF, ITOVFS(dp));
4261 	jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE;
4262 	jmvref->jm_parent = dp->i_number;
4263 	jmvref->jm_ino = ino;
4264 	jmvref->jm_oldoff = oldoff;
4265 	jmvref->jm_newoff = newoff;
4266 
4267 	return (jmvref);
4268 }
4269 
4270 /*
4271  * Allocate a new jremref that tracks the removal of ip from dp with the
4272  * directory entry offset of diroff.  Mark the entry as ATTACHED and
4273  * DEPCOMPLETE as we have all the information required for the journal write
4274  * and the directory has already been removed from the buffer.  The caller
4275  * is responsible for linking the jremref into the pagedep and adding it
4276  * to the journal to write.  The MKDIR_PARENT flag is set if we're doing
4277  * a DOTDOT addition so handle_workitem_remove() can properly assign
4278  * the jsegdep when we're done.
4279  */
4280 static struct jremref *
4281 newjremref(struct dirrem *dirrem,
4282 	struct inode *dp,
4283 	struct inode *ip,
4284 	off_t diroff,
4285 	nlink_t nlink)
4286 {
4287 	struct jremref *jremref;
4288 
4289 	jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS);
4290 	workitem_alloc(&jremref->jr_list, D_JREMREF, ITOVFS(dp));
4291 	jremref->jr_state = ATTACHED;
4292 	newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff,
4293 	   nlink, ip->i_mode);
4294 	jremref->jr_dirrem = dirrem;
4295 
4296 	return (jremref);
4297 }
4298 
4299 static inline void
4300 newinoref(struct inoref *inoref,
4301 	ino_t ino,
4302 	ino_t parent,
4303 	off_t diroff,
4304 	nlink_t nlink,
4305 	uint16_t mode)
4306 {
4307 
4308 	inoref->if_jsegdep = newjsegdep(&inoref->if_list);
4309 	inoref->if_diroff = diroff;
4310 	inoref->if_ino = ino;
4311 	inoref->if_parent = parent;
4312 	inoref->if_nlink = nlink;
4313 	inoref->if_mode = mode;
4314 }
4315 
4316 /*
4317  * Allocate a new jaddref to track the addition of ino to dp at diroff.  The
4318  * directory offset may not be known until later.  The caller is responsible
4319  * adding the entry to the journal when this information is available.  nlink
4320  * should be the link count prior to the addition and mode is only required
4321  * to have the correct FMT.
4322  */
4323 static struct jaddref *
4324 newjaddref(struct inode *dp,
4325 	ino_t ino,
4326 	off_t diroff,
4327 	int16_t nlink,
4328 	uint16_t mode)
4329 {
4330 	struct jaddref *jaddref;
4331 
4332 	jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS);
4333 	workitem_alloc(&jaddref->ja_list, D_JADDREF, ITOVFS(dp));
4334 	jaddref->ja_state = ATTACHED;
4335 	jaddref->ja_mkdir = NULL;
4336 	newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode);
4337 
4338 	return (jaddref);
4339 }
4340 
4341 /*
4342  * Create a new free dependency for a freework.  The caller is responsible
4343  * for adjusting the reference count when it has the lock held.  The freedep
4344  * will track an outstanding bitmap write that will ultimately clear the
4345  * freework to continue.
4346  */
4347 static struct freedep *
4348 newfreedep(struct freework *freework)
4349 {
4350 	struct freedep *freedep;
4351 
4352 	freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS);
4353 	workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp);
4354 	freedep->fd_freework = freework;
4355 
4356 	return (freedep);
4357 }
4358 
4359 /*
4360  * Free a freedep structure once the buffer it is linked to is written.  If
4361  * this is the last reference to the freework schedule it for completion.
4362  */
4363 static void
4364 free_freedep(struct freedep *freedep)
4365 {
4366 	struct freework *freework;
4367 
4368 	freework = freedep->fd_freework;
4369 	freework->fw_freeblks->fb_cgwait--;
4370 	if (--freework->fw_ref == 0)
4371 		freework_enqueue(freework);
4372 	WORKITEM_FREE(freedep, D_FREEDEP);
4373 }
4374 
4375 /*
4376  * Allocate a new freework structure that may be a level in an indirect
4377  * when parent is not NULL or a top level block when it is.  The top level
4378  * freework structures are allocated without the per-filesystem lock held
4379  * and before the freeblks is visible outside of softdep_setup_freeblocks().
4380  */
4381 static struct freework *
4382 newfreework(struct ufsmount *ump,
4383 	struct freeblks *freeblks,
4384 	struct freework *parent,
4385 	ufs_lbn_t lbn,
4386 	ufs2_daddr_t nb,
4387 	int frags,
4388 	int off,
4389 	int journal)
4390 {
4391 	struct freework *freework;
4392 
4393 	freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS);
4394 	workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp);
4395 	freework->fw_state = ATTACHED;
4396 	freework->fw_jnewblk = NULL;
4397 	freework->fw_freeblks = freeblks;
4398 	freework->fw_parent = parent;
4399 	freework->fw_lbn = lbn;
4400 	freework->fw_blkno = nb;
4401 	freework->fw_frags = frags;
4402 	freework->fw_indir = NULL;
4403 	freework->fw_ref = (MOUNTEDSUJ(UFSTOVFS(ump)) == 0 ||
4404 	    lbn >= -UFS_NXADDR) ? 0 : NINDIR(ump->um_fs) + 1;
4405 	freework->fw_start = freework->fw_off = off;
4406 	if (journal)
4407 		newjfreeblk(freeblks, lbn, nb, frags);
4408 	if (parent == NULL) {
4409 		ACQUIRE_LOCK(ump);
4410 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
4411 		freeblks->fb_ref++;
4412 		FREE_LOCK(ump);
4413 	}
4414 
4415 	return (freework);
4416 }
4417 
4418 /*
4419  * Eliminate a jfreeblk for a block that does not need journaling.
4420  */
4421 static void
4422 cancel_jfreeblk(struct freeblks *freeblks, ufs2_daddr_t blkno)
4423 {
4424 	struct jfreeblk *jfreeblk;
4425 	struct jblkdep *jblkdep;
4426 
4427 	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) {
4428 		if (jblkdep->jb_list.wk_type != D_JFREEBLK)
4429 			continue;
4430 		jfreeblk = WK_JFREEBLK(&jblkdep->jb_list);
4431 		if (jfreeblk->jf_blkno == blkno)
4432 			break;
4433 	}
4434 	if (jblkdep == NULL)
4435 		return;
4436 	CTR1(KTR_SUJ, "cancel_jfreeblk: blkno %jd", blkno);
4437 	free_jsegdep(jblkdep->jb_jsegdep);
4438 	LIST_REMOVE(jblkdep, jb_deps);
4439 	WORKITEM_FREE(jfreeblk, D_JFREEBLK);
4440 }
4441 
4442 /*
4443  * Allocate a new jfreeblk to journal top level block pointer when truncating
4444  * a file.  The caller must add this to the worklist when the per-filesystem
4445  * lock is held.
4446  */
4447 static struct jfreeblk *
4448 newjfreeblk(struct freeblks *freeblks,
4449 	ufs_lbn_t lbn,
4450 	ufs2_daddr_t blkno,
4451 	int frags)
4452 {
4453 	struct jfreeblk *jfreeblk;
4454 
4455 	jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS);
4456 	workitem_alloc(&jfreeblk->jf_dep.jb_list, D_JFREEBLK,
4457 	    freeblks->fb_list.wk_mp);
4458 	jfreeblk->jf_dep.jb_jsegdep = newjsegdep(&jfreeblk->jf_dep.jb_list);
4459 	jfreeblk->jf_dep.jb_freeblks = freeblks;
4460 	jfreeblk->jf_ino = freeblks->fb_inum;
4461 	jfreeblk->jf_lbn = lbn;
4462 	jfreeblk->jf_blkno = blkno;
4463 	jfreeblk->jf_frags = frags;
4464 	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jfreeblk->jf_dep, jb_deps);
4465 
4466 	return (jfreeblk);
4467 }
4468 
4469 /*
4470  * The journal is only prepared to handle full-size block numbers, so we
4471  * have to adjust the record to reflect the change to a full-size block.
4472  * For example, suppose we have a block made up of fragments 8-15 and
4473  * want to free its last two fragments. We are given a request that says:
4474  *     FREEBLK ino=5, blkno=14, lbn=0, frags=2, oldfrags=0
4475  * where frags are the number of fragments to free and oldfrags are the
4476  * number of fragments to keep. To block align it, we have to change it to
4477  * have a valid full-size blkno, so it becomes:
4478  *     FREEBLK ino=5, blkno=8, lbn=0, frags=2, oldfrags=6
4479  */
4480 static void
4481 adjust_newfreework(struct freeblks *freeblks, int frag_offset)
4482 {
4483 	struct jfreeblk *jfreeblk;
4484 
4485 	KASSERT((LIST_FIRST(&freeblks->fb_jblkdephd) != NULL &&
4486 	    LIST_FIRST(&freeblks->fb_jblkdephd)->jb_list.wk_type == D_JFREEBLK),
4487 	    ("adjust_newfreework: Missing freeblks dependency"));
4488 
4489 	jfreeblk = WK_JFREEBLK(LIST_FIRST(&freeblks->fb_jblkdephd));
4490 	jfreeblk->jf_blkno -= frag_offset;
4491 	jfreeblk->jf_frags += frag_offset;
4492 }
4493 
4494 /*
4495  * Allocate a new jtrunc to track a partial truncation.
4496  */
4497 static struct jtrunc *
4498 newjtrunc(struct freeblks *freeblks,
4499 	off_t size,
4500 	int extsize)
4501 {
4502 	struct jtrunc *jtrunc;
4503 
4504 	jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS);
4505 	workitem_alloc(&jtrunc->jt_dep.jb_list, D_JTRUNC,
4506 	    freeblks->fb_list.wk_mp);
4507 	jtrunc->jt_dep.jb_jsegdep = newjsegdep(&jtrunc->jt_dep.jb_list);
4508 	jtrunc->jt_dep.jb_freeblks = freeblks;
4509 	jtrunc->jt_ino = freeblks->fb_inum;
4510 	jtrunc->jt_size = size;
4511 	jtrunc->jt_extsize = extsize;
4512 	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jtrunc->jt_dep, jb_deps);
4513 
4514 	return (jtrunc);
4515 }
4516 
4517 /*
4518  * If we're canceling a new bitmap we have to search for another ref
4519  * to move into the bmsafemap dep.  This might be better expressed
4520  * with another structure.
4521  */
4522 static void
4523 move_newblock_dep(struct jaddref *jaddref, struct inodedep *inodedep)
4524 {
4525 	struct inoref *inoref;
4526 	struct jaddref *jaddrefn;
4527 
4528 	jaddrefn = NULL;
4529 	for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
4530 	    inoref = TAILQ_NEXT(inoref, if_deps)) {
4531 		if ((jaddref->ja_state & NEWBLOCK) &&
4532 		    inoref->if_list.wk_type == D_JADDREF) {
4533 			jaddrefn = (struct jaddref *)inoref;
4534 			break;
4535 		}
4536 	}
4537 	if (jaddrefn == NULL)
4538 		return;
4539 	jaddrefn->ja_state &= ~(ATTACHED | UNDONE);
4540 	jaddrefn->ja_state |= jaddref->ja_state &
4541 	    (ATTACHED | UNDONE | NEWBLOCK);
4542 	jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK);
4543 	jaddref->ja_state |= ATTACHED;
4544 	LIST_REMOVE(jaddref, ja_bmdeps);
4545 	LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn,
4546 	    ja_bmdeps);
4547 }
4548 
4549 /*
4550  * Cancel a jaddref either before it has been written or while it is being
4551  * written.  This happens when a link is removed before the add reaches
4552  * the disk.  The jaddref dependency is kept linked into the bmsafemap
4553  * and inode to prevent the link count or bitmap from reaching the disk
4554  * until handle_workitem_remove() re-adjusts the counts and bitmaps as
4555  * required.
4556  *
4557  * Returns 1 if the canceled addref requires journaling of the remove and
4558  * 0 otherwise.
4559  */
4560 static int
4561 cancel_jaddref(struct jaddref *jaddref,
4562 	struct inodedep *inodedep,
4563 	struct workhead *wkhd)
4564 {
4565 	struct inoref *inoref;
4566 	struct jsegdep *jsegdep;
4567 	int needsj;
4568 
4569 	KASSERT((jaddref->ja_state & COMPLETE) == 0,
4570 	    ("cancel_jaddref: Canceling complete jaddref"));
4571 	if (jaddref->ja_state & (INPROGRESS | COMPLETE))
4572 		needsj = 1;
4573 	else
4574 		needsj = 0;
4575 	if (inodedep == NULL)
4576 		if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
4577 		    0, &inodedep) == 0)
4578 			panic("cancel_jaddref: Lost inodedep");
4579 	/*
4580 	 * We must adjust the nlink of any reference operation that follows
4581 	 * us so that it is consistent with the in-memory reference.  This
4582 	 * ensures that inode nlink rollbacks always have the correct link.
4583 	 */
4584 	if (needsj == 0) {
4585 		for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
4586 		    inoref = TAILQ_NEXT(inoref, if_deps)) {
4587 			if (inoref->if_state & GOINGAWAY)
4588 				break;
4589 			inoref->if_nlink--;
4590 		}
4591 	}
4592 	jsegdep = inoref_jseg(&jaddref->ja_ref);
4593 	if (jaddref->ja_state & NEWBLOCK)
4594 		move_newblock_dep(jaddref, inodedep);
4595 	wake_worklist(&jaddref->ja_list);
4596 	jaddref->ja_mkdir = NULL;
4597 	if (jaddref->ja_state & INPROGRESS) {
4598 		jaddref->ja_state &= ~INPROGRESS;
4599 		WORKLIST_REMOVE(&jaddref->ja_list);
4600 		jwork_insert(wkhd, jsegdep);
4601 	} else {
4602 		free_jsegdep(jsegdep);
4603 		if (jaddref->ja_state & DEPCOMPLETE)
4604 			remove_from_journal(&jaddref->ja_list);
4605 	}
4606 	jaddref->ja_state |= (GOINGAWAY | DEPCOMPLETE);
4607 	/*
4608 	 * Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove
4609 	 * can arrange for them to be freed with the bitmap.  Otherwise we
4610 	 * no longer need this addref attached to the inoreflst and it
4611 	 * will incorrectly adjust nlink if we leave it.
4612 	 */
4613 	if ((jaddref->ja_state & NEWBLOCK) == 0) {
4614 		TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
4615 		    if_deps);
4616 		jaddref->ja_state |= COMPLETE;
4617 		free_jaddref(jaddref);
4618 		return (needsj);
4619 	}
4620 	/*
4621 	 * Leave the head of the list for jsegdeps for fast merging.
4622 	 */
4623 	if (LIST_FIRST(wkhd) != NULL) {
4624 		jaddref->ja_state |= ONWORKLIST;
4625 		LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list);
4626 	} else
4627 		WORKLIST_INSERT(wkhd, &jaddref->ja_list);
4628 
4629 	return (needsj);
4630 }
4631 
4632 /*
4633  * Attempt to free a jaddref structure when some work completes.  This
4634  * should only succeed once the entry is written and all dependencies have
4635  * been notified.
4636  */
4637 static void
4638 free_jaddref(struct jaddref *jaddref)
4639 {
4640 
4641 	if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE)
4642 		return;
4643 	if (jaddref->ja_ref.if_jsegdep)
4644 		panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n",
4645 		    jaddref, jaddref->ja_state);
4646 	if (jaddref->ja_state & NEWBLOCK)
4647 		LIST_REMOVE(jaddref, ja_bmdeps);
4648 	if (jaddref->ja_state & (INPROGRESS | ONWORKLIST))
4649 		panic("free_jaddref: Bad state %p(0x%X)",
4650 		    jaddref, jaddref->ja_state);
4651 	if (jaddref->ja_mkdir != NULL)
4652 		panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state);
4653 	WORKITEM_FREE(jaddref, D_JADDREF);
4654 }
4655 
4656 /*
4657  * Free a jremref structure once it has been written or discarded.
4658  */
4659 static void
4660 free_jremref(struct jremref *jremref)
4661 {
4662 
4663 	if (jremref->jr_ref.if_jsegdep)
4664 		free_jsegdep(jremref->jr_ref.if_jsegdep);
4665 	if (jremref->jr_state & INPROGRESS)
4666 		panic("free_jremref: IO still pending");
4667 	WORKITEM_FREE(jremref, D_JREMREF);
4668 }
4669 
4670 /*
4671  * Free a jnewblk structure.
4672  */
4673 static void
4674 free_jnewblk(struct jnewblk *jnewblk)
4675 {
4676 
4677 	if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE)
4678 		return;
4679 	LIST_REMOVE(jnewblk, jn_deps);
4680 	if (jnewblk->jn_dep != NULL)
4681 		panic("free_jnewblk: Dependency still attached.");
4682 	WORKITEM_FREE(jnewblk, D_JNEWBLK);
4683 }
4684 
4685 /*
4686  * Cancel a jnewblk which has been been made redundant by frag extension.
4687  */
4688 static void
4689 cancel_jnewblk(struct jnewblk *jnewblk, struct workhead *wkhd)
4690 {
4691 	struct jsegdep *jsegdep;
4692 
4693 	CTR1(KTR_SUJ, "cancel_jnewblk: blkno %jd", jnewblk->jn_blkno);
4694 	jsegdep = jnewblk->jn_jsegdep;
4695 	if (jnewblk->jn_jsegdep == NULL || jnewblk->jn_dep == NULL)
4696 		panic("cancel_jnewblk: Invalid state");
4697 	jnewblk->jn_jsegdep  = NULL;
4698 	jnewblk->jn_dep = NULL;
4699 	jnewblk->jn_state |= GOINGAWAY;
4700 	if (jnewblk->jn_state & INPROGRESS) {
4701 		jnewblk->jn_state &= ~INPROGRESS;
4702 		WORKLIST_REMOVE(&jnewblk->jn_list);
4703 		jwork_insert(wkhd, jsegdep);
4704 	} else {
4705 		free_jsegdep(jsegdep);
4706 		remove_from_journal(&jnewblk->jn_list);
4707 	}
4708 	wake_worklist(&jnewblk->jn_list);
4709 	WORKLIST_INSERT(wkhd, &jnewblk->jn_list);
4710 }
4711 
4712 static void
4713 free_jblkdep(struct jblkdep *jblkdep)
4714 {
4715 
4716 	if (jblkdep->jb_list.wk_type == D_JFREEBLK)
4717 		WORKITEM_FREE(jblkdep, D_JFREEBLK);
4718 	else if (jblkdep->jb_list.wk_type == D_JTRUNC)
4719 		WORKITEM_FREE(jblkdep, D_JTRUNC);
4720 	else
4721 		panic("free_jblkdep: Unexpected type %s",
4722 		    TYPENAME(jblkdep->jb_list.wk_type));
4723 }
4724 
4725 /*
4726  * Free a single jseg once it is no longer referenced in memory or on
4727  * disk.  Reclaim journal blocks and dependencies waiting for the segment
4728  * to disappear.
4729  */
4730 static void
4731 free_jseg(struct jseg *jseg, struct jblocks *jblocks)
4732 {
4733 	struct freework *freework;
4734 
4735 	/*
4736 	 * Free freework structures that were lingering to indicate freed
4737 	 * indirect blocks that forced journal write ordering on reallocate.
4738 	 */
4739 	while ((freework = LIST_FIRST(&jseg->js_indirs)) != NULL)
4740 		indirblk_remove(freework);
4741 	if (jblocks->jb_oldestseg == jseg)
4742 		jblocks->jb_oldestseg = TAILQ_NEXT(jseg, js_next);
4743 	TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next);
4744 	jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size);
4745 	KASSERT(LIST_EMPTY(&jseg->js_entries),
4746 	    ("free_jseg: Freed jseg has valid entries."));
4747 	WORKITEM_FREE(jseg, D_JSEG);
4748 }
4749 
4750 /*
4751  * Free all jsegs that meet the criteria for being reclaimed and update
4752  * oldestseg.
4753  */
4754 static void
4755 free_jsegs(struct jblocks *jblocks)
4756 {
4757 	struct jseg *jseg;
4758 
4759 	/*
4760 	 * Free only those jsegs which have none allocated before them to
4761 	 * preserve the journal space ordering.
4762 	 */
4763 	while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) {
4764 		/*
4765 		 * Only reclaim space when nothing depends on this journal
4766 		 * set and another set has written that it is no longer
4767 		 * valid.
4768 		 */
4769 		if (jseg->js_refs != 0) {
4770 			jblocks->jb_oldestseg = jseg;
4771 			return;
4772 		}
4773 		if ((jseg->js_state & ALLCOMPLETE) != ALLCOMPLETE)
4774 			break;
4775 		if (jseg->js_seq > jblocks->jb_oldestwrseq)
4776 			break;
4777 		/*
4778 		 * We can free jsegs that didn't write entries when
4779 		 * oldestwrseq == js_seq.
4780 		 */
4781 		if (jseg->js_seq == jblocks->jb_oldestwrseq &&
4782 		    jseg->js_cnt != 0)
4783 			break;
4784 		free_jseg(jseg, jblocks);
4785 	}
4786 	/*
4787 	 * If we exited the loop above we still must discover the
4788 	 * oldest valid segment.
4789 	 */
4790 	if (jseg)
4791 		for (jseg = jblocks->jb_oldestseg; jseg != NULL;
4792 		     jseg = TAILQ_NEXT(jseg, js_next))
4793 			if (jseg->js_refs != 0)
4794 				break;
4795 	jblocks->jb_oldestseg = jseg;
4796 	/*
4797 	 * The journal has no valid records but some jsegs may still be
4798 	 * waiting on oldestwrseq to advance.  We force a small record
4799 	 * out to permit these lingering records to be reclaimed.
4800 	 */
4801 	if (jblocks->jb_oldestseg == NULL && !TAILQ_EMPTY(&jblocks->jb_segs))
4802 		jblocks->jb_needseg = 1;
4803 }
4804 
4805 /*
4806  * Release one reference to a jseg and free it if the count reaches 0.  This
4807  * should eventually reclaim journal space as well.
4808  */
4809 static void
4810 rele_jseg(struct jseg *jseg)
4811 {
4812 
4813 	KASSERT(jseg->js_refs > 0,
4814 	    ("free_jseg: Invalid refcnt %d", jseg->js_refs));
4815 	if (--jseg->js_refs != 0)
4816 		return;
4817 	free_jsegs(jseg->js_jblocks);
4818 }
4819 
4820 /*
4821  * Release a jsegdep and decrement the jseg count.
4822  */
4823 static void
4824 free_jsegdep(struct jsegdep *jsegdep)
4825 {
4826 
4827 	if (jsegdep->jd_seg)
4828 		rele_jseg(jsegdep->jd_seg);
4829 	WORKITEM_FREE(jsegdep, D_JSEGDEP);
4830 }
4831 
4832 /*
4833  * Wait for a journal item to make it to disk.  Initiate journal processing
4834  * if required.
4835  */
4836 static int
4837 jwait(struct worklist *wk, int waitfor)
4838 {
4839 
4840 	LOCK_OWNED(VFSTOUFS(wk->wk_mp));
4841 	/*
4842 	 * Blocking journal waits cause slow synchronous behavior.  Record
4843 	 * stats on the frequency of these blocking operations.
4844 	 */
4845 	if (waitfor == MNT_WAIT) {
4846 		stat_journal_wait++;
4847 		switch (wk->wk_type) {
4848 		case D_JREMREF:
4849 		case D_JMVREF:
4850 			stat_jwait_filepage++;
4851 			break;
4852 		case D_JTRUNC:
4853 		case D_JFREEBLK:
4854 			stat_jwait_freeblks++;
4855 			break;
4856 		case D_JNEWBLK:
4857 			stat_jwait_newblk++;
4858 			break;
4859 		case D_JADDREF:
4860 			stat_jwait_inode++;
4861 			break;
4862 		default:
4863 			break;
4864 		}
4865 	}
4866 	/*
4867 	 * If IO has not started we process the journal.  We can't mark the
4868 	 * worklist item as IOWAITING because we drop the lock while
4869 	 * processing the journal and the worklist entry may be freed after
4870 	 * this point.  The caller may call back in and re-issue the request.
4871 	 */
4872 	if ((wk->wk_state & INPROGRESS) == 0) {
4873 		softdep_process_journal(wk->wk_mp, wk, waitfor);
4874 		if (waitfor != MNT_WAIT)
4875 			return (EBUSY);
4876 		return (0);
4877 	}
4878 	if (waitfor != MNT_WAIT)
4879 		return (EBUSY);
4880 	wait_worklist(wk, "jwait");
4881 	return (0);
4882 }
4883 
4884 /*
4885  * Lookup an inodedep based on an inode pointer and set the nlinkdelta as
4886  * appropriate.  This is a convenience function to reduce duplicate code
4887  * for the setup and revert functions below.
4888  */
4889 static struct inodedep *
4890 inodedep_lookup_ip(struct inode *ip)
4891 {
4892 	struct inodedep *inodedep;
4893 
4894 	KASSERT(ip->i_nlink >= ip->i_effnlink,
4895 	    ("inodedep_lookup_ip: bad delta"));
4896 	(void) inodedep_lookup(ITOVFS(ip), ip->i_number, DEPALLOC,
4897 	    &inodedep);
4898 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
4899 	KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
4900 
4901 	return (inodedep);
4902 }
4903 
4904 /*
4905  * Called prior to creating a new inode and linking it to a directory.  The
4906  * jaddref structure must already be allocated by softdep_setup_inomapdep
4907  * and it is discovered here so we can initialize the mode and update
4908  * nlinkdelta.
4909  */
4910 void
4911 softdep_setup_create(struct inode *dp, struct inode *ip)
4912 {
4913 	struct inodedep *inodedep;
4914 	struct jaddref *jaddref __diagused;
4915 	struct vnode *dvp;
4916 
4917 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4918 	    ("softdep_setup_create called on non-softdep filesystem"));
4919 	KASSERT(ip->i_nlink == 1,
4920 	    ("softdep_setup_create: Invalid link count."));
4921 	dvp = ITOV(dp);
4922 	ACQUIRE_LOCK(ITOUMP(dp));
4923 	inodedep = inodedep_lookup_ip(ip);
4924 	if (DOINGSUJ(dvp)) {
4925 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4926 		    inoreflst);
4927 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
4928 		    ("softdep_setup_create: No addref structure present."));
4929 	}
4930 	FREE_LOCK(ITOUMP(dp));
4931 }
4932 
4933 /*
4934  * Create a jaddref structure to track the addition of a DOTDOT link when
4935  * we are reparenting an inode as part of a rename.  This jaddref will be
4936  * found by softdep_setup_directory_change.  Adjusts nlinkdelta for
4937  * non-journaling softdep.
4938  */
4939 void
4940 softdep_setup_dotdot_link(struct inode *dp, struct inode *ip)
4941 {
4942 	struct inodedep *inodedep;
4943 	struct jaddref *jaddref;
4944 	struct vnode *dvp;
4945 
4946 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4947 	    ("softdep_setup_dotdot_link called on non-softdep filesystem"));
4948 	dvp = ITOV(dp);
4949 	jaddref = NULL;
4950 	/*
4951 	 * We don't set MKDIR_PARENT as this is not tied to a mkdir and
4952 	 * is used as a normal link would be.
4953 	 */
4954 	if (DOINGSUJ(dvp))
4955 		jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
4956 		    dp->i_effnlink - 1, dp->i_mode);
4957 	ACQUIRE_LOCK(ITOUMP(dp));
4958 	inodedep = inodedep_lookup_ip(dp);
4959 	if (jaddref)
4960 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4961 		    if_deps);
4962 	FREE_LOCK(ITOUMP(dp));
4963 }
4964 
4965 /*
4966  * Create a jaddref structure to track a new link to an inode.  The directory
4967  * offset is not known until softdep_setup_directory_add or
4968  * softdep_setup_directory_change.  Adjusts nlinkdelta for non-journaling
4969  * softdep.
4970  */
4971 void
4972 softdep_setup_link(struct inode *dp, struct inode *ip)
4973 {
4974 	struct inodedep *inodedep;
4975 	struct jaddref *jaddref;
4976 	struct vnode *dvp;
4977 
4978 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4979 	    ("softdep_setup_link called on non-softdep filesystem"));
4980 	dvp = ITOV(dp);
4981 	jaddref = NULL;
4982 	if (DOINGSUJ(dvp))
4983 		jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1,
4984 		    ip->i_mode);
4985 	ACQUIRE_LOCK(ITOUMP(dp));
4986 	inodedep = inodedep_lookup_ip(ip);
4987 	if (jaddref)
4988 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4989 		    if_deps);
4990 	FREE_LOCK(ITOUMP(dp));
4991 }
4992 
4993 /*
4994  * Called to create the jaddref structures to track . and .. references as
4995  * well as lookup and further initialize the incomplete jaddref created
4996  * by softdep_setup_inomapdep when the inode was allocated.  Adjusts
4997  * nlinkdelta for non-journaling softdep.
4998  */
4999 void
5000 softdep_setup_mkdir(struct inode *dp, struct inode *ip)
5001 {
5002 	struct inodedep *inodedep;
5003 	struct jaddref *dotdotaddref;
5004 	struct jaddref *dotaddref;
5005 	struct jaddref *jaddref;
5006 	struct vnode *dvp;
5007 
5008 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
5009 	    ("softdep_setup_mkdir called on non-softdep filesystem"));
5010 	dvp = ITOV(dp);
5011 	dotaddref = dotdotaddref = NULL;
5012 	if (DOINGSUJ(dvp)) {
5013 		dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1,
5014 		    ip->i_mode);
5015 		dotaddref->ja_state |= MKDIR_BODY;
5016 		dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
5017 		    dp->i_effnlink - 1, dp->i_mode);
5018 		dotdotaddref->ja_state |= MKDIR_PARENT;
5019 	}
5020 	ACQUIRE_LOCK(ITOUMP(dp));
5021 	inodedep = inodedep_lookup_ip(ip);
5022 	if (DOINGSUJ(dvp)) {
5023 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
5024 		    inoreflst);
5025 		KASSERT(jaddref != NULL,
5026 		    ("softdep_setup_mkdir: No addref structure present."));
5027 		KASSERT(jaddref->ja_parent == dp->i_number,
5028 		    ("softdep_setup_mkdir: bad parent %ju",
5029 		    (uintmax_t)jaddref->ja_parent));
5030 		TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref,
5031 		    if_deps);
5032 	}
5033 	inodedep = inodedep_lookup_ip(dp);
5034 	if (DOINGSUJ(dvp))
5035 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst,
5036 		    &dotdotaddref->ja_ref, if_deps);
5037 	FREE_LOCK(ITOUMP(dp));
5038 }
5039 
5040 /*
5041  * Called to track nlinkdelta of the inode and parent directories prior to
5042  * unlinking a directory.
5043  */
5044 void
5045 softdep_setup_rmdir(struct inode *dp, struct inode *ip)
5046 {
5047 
5048 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
5049 	    ("softdep_setup_rmdir called on non-softdep filesystem"));
5050 	ACQUIRE_LOCK(ITOUMP(dp));
5051 	(void) inodedep_lookup_ip(ip);
5052 	(void) inodedep_lookup_ip(dp);
5053 	FREE_LOCK(ITOUMP(dp));
5054 }
5055 
5056 /*
5057  * Called to track nlinkdelta of the inode and parent directories prior to
5058  * unlink.
5059  */
5060 void
5061 softdep_setup_unlink(struct inode *dp, struct inode *ip)
5062 {
5063 
5064 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
5065 	    ("softdep_setup_unlink called on non-softdep filesystem"));
5066 	ACQUIRE_LOCK(ITOUMP(dp));
5067 	(void) inodedep_lookup_ip(ip);
5068 	(void) inodedep_lookup_ip(dp);
5069 	FREE_LOCK(ITOUMP(dp));
5070 }
5071 
5072 /*
5073  * Called to release the journal structures created by a failed non-directory
5074  * creation.  Adjusts nlinkdelta for non-journaling softdep.
5075  */
5076 void
5077 softdep_revert_create(struct inode *dp, struct inode *ip)
5078 {
5079 	struct inodedep *inodedep;
5080 	struct jaddref *jaddref;
5081 	struct vnode *dvp;
5082 
5083 	KASSERT(MOUNTEDSOFTDEP(ITOVFS((dp))) != 0,
5084 	    ("softdep_revert_create called on non-softdep filesystem"));
5085 	dvp = ITOV(dp);
5086 	ACQUIRE_LOCK(ITOUMP(dp));
5087 	inodedep = inodedep_lookup_ip(ip);
5088 	if (DOINGSUJ(dvp)) {
5089 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
5090 		    inoreflst);
5091 		KASSERT(jaddref->ja_parent == dp->i_number,
5092 		    ("softdep_revert_create: addref parent mismatch"));
5093 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
5094 	}
5095 	FREE_LOCK(ITOUMP(dp));
5096 }
5097 
5098 /*
5099  * Called to release the journal structures created by a failed link
5100  * addition.  Adjusts nlinkdelta for non-journaling softdep.
5101  */
5102 void
5103 softdep_revert_link(struct inode *dp, struct inode *ip)
5104 {
5105 	struct inodedep *inodedep;
5106 	struct jaddref *jaddref;
5107 	struct vnode *dvp;
5108 
5109 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
5110 	    ("softdep_revert_link called on non-softdep filesystem"));
5111 	dvp = ITOV(dp);
5112 	ACQUIRE_LOCK(ITOUMP(dp));
5113 	inodedep = inodedep_lookup_ip(ip);
5114 	if (DOINGSUJ(dvp)) {
5115 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
5116 		    inoreflst);
5117 		KASSERT(jaddref->ja_parent == dp->i_number,
5118 		    ("softdep_revert_link: addref parent mismatch"));
5119 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
5120 	}
5121 	FREE_LOCK(ITOUMP(dp));
5122 }
5123 
5124 /*
5125  * Called to release the journal structures created by a failed mkdir
5126  * attempt.  Adjusts nlinkdelta for non-journaling softdep.
5127  */
5128 void
5129 softdep_revert_mkdir(struct inode *dp, struct inode *ip)
5130 {
5131 	struct inodedep *inodedep;
5132 	struct jaddref *jaddref;
5133 	struct jaddref *dotaddref;
5134 	struct vnode *dvp;
5135 
5136 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
5137 	    ("softdep_revert_mkdir called on non-softdep filesystem"));
5138 	dvp = ITOV(dp);
5139 
5140 	ACQUIRE_LOCK(ITOUMP(dp));
5141 	inodedep = inodedep_lookup_ip(dp);
5142 	if (DOINGSUJ(dvp)) {
5143 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
5144 		    inoreflst);
5145 		KASSERT(jaddref->ja_parent == ip->i_number,
5146 		    ("softdep_revert_mkdir: dotdot addref parent mismatch"));
5147 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
5148 	}
5149 	inodedep = inodedep_lookup_ip(ip);
5150 	if (DOINGSUJ(dvp)) {
5151 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
5152 		    inoreflst);
5153 		KASSERT(jaddref->ja_parent == dp->i_number,
5154 		    ("softdep_revert_mkdir: addref parent mismatch"));
5155 		dotaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
5156 		    inoreflst, if_deps);
5157 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
5158 		KASSERT(dotaddref->ja_parent == ip->i_number,
5159 		    ("softdep_revert_mkdir: dot addref parent mismatch"));
5160 		cancel_jaddref(dotaddref, inodedep, &inodedep->id_inowait);
5161 	}
5162 	FREE_LOCK(ITOUMP(dp));
5163 }
5164 
5165 /*
5166  * Called to correct nlinkdelta after a failed rmdir.
5167  */
5168 void
5169 softdep_revert_rmdir(struct inode *dp, struct inode *ip)
5170 {
5171 
5172 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
5173 	    ("softdep_revert_rmdir called on non-softdep filesystem"));
5174 	ACQUIRE_LOCK(ITOUMP(dp));
5175 	(void) inodedep_lookup_ip(ip);
5176 	(void) inodedep_lookup_ip(dp);
5177 	FREE_LOCK(ITOUMP(dp));
5178 }
5179 
5180 /*
5181  * Protecting the freemaps (or bitmaps).
5182  *
5183  * To eliminate the need to execute fsck before mounting a filesystem
5184  * after a power failure, one must (conservatively) guarantee that the
5185  * on-disk copy of the bitmaps never indicate that a live inode or block is
5186  * free.  So, when a block or inode is allocated, the bitmap should be
5187  * updated (on disk) before any new pointers.  When a block or inode is
5188  * freed, the bitmap should not be updated until all pointers have been
5189  * reset.  The latter dependency is handled by the delayed de-allocation
5190  * approach described below for block and inode de-allocation.  The former
5191  * dependency is handled by calling the following procedure when a block or
5192  * inode is allocated. When an inode is allocated an "inodedep" is created
5193  * with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
5194  * Each "inodedep" is also inserted into the hash indexing structure so
5195  * that any additional link additions can be made dependent on the inode
5196  * allocation.
5197  *
5198  * The ufs filesystem maintains a number of free block counts (e.g., per
5199  * cylinder group, per cylinder and per <cylinder, rotational position> pair)
5200  * in addition to the bitmaps.  These counts are used to improve efficiency
5201  * during allocation and therefore must be consistent with the bitmaps.
5202  * There is no convenient way to guarantee post-crash consistency of these
5203  * counts with simple update ordering, for two main reasons: (1) The counts
5204  * and bitmaps for a single cylinder group block are not in the same disk
5205  * sector.  If a disk write is interrupted (e.g., by power failure), one may
5206  * be written and the other not.  (2) Some of the counts are located in the
5207  * superblock rather than the cylinder group block. So, we focus our soft
5208  * updates implementation on protecting the bitmaps. When mounting a
5209  * filesystem, we recompute the auxiliary counts from the bitmaps.
5210  */
5211 
5212 /*
5213  * Called just after updating the cylinder group block to allocate an inode.
5214  */
5215 void
5216 softdep_setup_inomapdep(
5217 	struct buf *bp,		/* buffer for cylgroup block with inode map */
5218 	struct inode *ip,	/* inode related to allocation */
5219 	ino_t newinum,		/* new inode number being allocated */
5220 	int mode)
5221 {
5222 	struct inodedep *inodedep;
5223 	struct bmsafemap *bmsafemap;
5224 	struct jaddref *jaddref;
5225 	struct mount *mp;
5226 	struct fs *fs;
5227 
5228 	mp = ITOVFS(ip);
5229 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5230 	    ("softdep_setup_inomapdep called on non-softdep filesystem"));
5231 	fs = VFSTOUFS(mp)->um_fs;
5232 	jaddref = NULL;
5233 
5234 	/*
5235 	 * Allocate the journal reference add structure so that the bitmap
5236 	 * can be dependent on it.
5237 	 */
5238 	if (MOUNTEDSUJ(mp)) {
5239 		jaddref = newjaddref(ip, newinum, 0, 0, mode);
5240 		jaddref->ja_state |= NEWBLOCK;
5241 	}
5242 
5243 	/*
5244 	 * Create a dependency for the newly allocated inode.
5245 	 * Panic if it already exists as something is seriously wrong.
5246 	 * Otherwise add it to the dependency list for the buffer holding
5247 	 * the cylinder group map from which it was allocated.
5248 	 *
5249 	 * We have to preallocate a bmsafemap entry in case it is needed
5250 	 * in bmsafemap_lookup since once we allocate the inodedep, we
5251 	 * have to finish initializing it before we can FREE_LOCK().
5252 	 * By preallocating, we avoid FREE_LOCK() while doing a malloc
5253 	 * in bmsafemap_lookup. We cannot call bmsafemap_lookup before
5254 	 * creating the inodedep as it can be freed during the time
5255 	 * that we FREE_LOCK() while allocating the inodedep. We must
5256 	 * call workitem_alloc() before entering the locked section as
5257 	 * it also acquires the lock and we must avoid trying doing so
5258 	 * recursively.
5259 	 */
5260 	bmsafemap = malloc(sizeof(struct bmsafemap),
5261 	    M_BMSAFEMAP, M_SOFTDEP_FLAGS);
5262 	workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
5263 	ACQUIRE_LOCK(ITOUMP(ip));
5264 	if ((inodedep_lookup(mp, newinum, DEPALLOC, &inodedep)))
5265 		panic("softdep_setup_inomapdep: dependency %p for new"
5266 		    "inode already exists", inodedep);
5267 	bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum), bmsafemap);
5268 	if (jaddref) {
5269 		LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps);
5270 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
5271 		    if_deps);
5272 	} else {
5273 		inodedep->id_state |= ONDEPLIST;
5274 		LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
5275 	}
5276 	inodedep->id_bmsafemap = bmsafemap;
5277 	inodedep->id_state &= ~DEPCOMPLETE;
5278 	FREE_LOCK(ITOUMP(ip));
5279 }
5280 
5281 /*
5282  * Called just after updating the cylinder group block to
5283  * allocate block or fragment.
5284  */
5285 void
5286 softdep_setup_blkmapdep(
5287 	struct buf *bp,		/* buffer for cylgroup block with block map */
5288 	struct mount *mp,	/* filesystem doing allocation */
5289 	ufs2_daddr_t newblkno,	/* number of newly allocated block */
5290 	int frags,		/* Number of fragments. */
5291 	int oldfrags)		/* Previous number of fragments for extend. */
5292 {
5293 	struct newblk *newblk;
5294 	struct bmsafemap *bmsafemap;
5295 	struct jnewblk *jnewblk;
5296 	struct ufsmount *ump;
5297 	struct fs *fs;
5298 
5299 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5300 	    ("softdep_setup_blkmapdep called on non-softdep filesystem"));
5301 	ump = VFSTOUFS(mp);
5302 	fs = ump->um_fs;
5303 	jnewblk = NULL;
5304 	/*
5305 	 * Create a dependency for the newly allocated block.
5306 	 * Add it to the dependency list for the buffer holding
5307 	 * the cylinder group map from which it was allocated.
5308 	 */
5309 	if (MOUNTEDSUJ(mp)) {
5310 		jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS);
5311 		workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp);
5312 		jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list);
5313 		jnewblk->jn_state = ATTACHED;
5314 		jnewblk->jn_blkno = newblkno;
5315 		jnewblk->jn_frags = frags;
5316 		jnewblk->jn_oldfrags = oldfrags;
5317 #ifdef INVARIANTS
5318 		{
5319 			struct cg *cgp;
5320 			uint8_t *blksfree;
5321 			long bno;
5322 			int i;
5323 
5324 			cgp = (struct cg *)bp->b_data;
5325 			blksfree = cg_blksfree(cgp);
5326 			bno = dtogd(fs, jnewblk->jn_blkno);
5327 			for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags;
5328 			    i++) {
5329 				if (isset(blksfree, bno + i))
5330 					panic("softdep_setup_blkmapdep: "
5331 					    "free fragment %d from %d-%d "
5332 					    "state 0x%X dep %p", i,
5333 					    jnewblk->jn_oldfrags,
5334 					    jnewblk->jn_frags,
5335 					    jnewblk->jn_state,
5336 					    jnewblk->jn_dep);
5337 			}
5338 		}
5339 #endif
5340 	}
5341 
5342 	CTR3(KTR_SUJ,
5343 	    "softdep_setup_blkmapdep: blkno %jd frags %d oldfrags %d",
5344 	    newblkno, frags, oldfrags);
5345 	ACQUIRE_LOCK(ump);
5346 	if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0)
5347 		panic("softdep_setup_blkmapdep: found block");
5348 	newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp,
5349 	    dtog(fs, newblkno), NULL);
5350 	if (jnewblk) {
5351 		jnewblk->jn_dep = (struct worklist *)newblk;
5352 		LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps);
5353 	} else {
5354 		newblk->nb_state |= ONDEPLIST;
5355 		LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
5356 	}
5357 	newblk->nb_bmsafemap = bmsafemap;
5358 	newblk->nb_jnewblk = jnewblk;
5359 	FREE_LOCK(ump);
5360 }
5361 
5362 #define	BMSAFEMAP_HASH(ump, cg) \
5363       (&(ump)->bmsafemap_hashtbl[(cg) & (ump)->bmsafemap_hash_size])
5364 
5365 static int
5366 bmsafemap_find(
5367 	struct bmsafemap_hashhead *bmsafemaphd,
5368 	int cg,
5369 	struct bmsafemap **bmsafemapp)
5370 {
5371 	struct bmsafemap *bmsafemap;
5372 
5373 	LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash)
5374 		if (bmsafemap->sm_cg == cg)
5375 			break;
5376 	if (bmsafemap) {
5377 		*bmsafemapp = bmsafemap;
5378 		return (1);
5379 	}
5380 	*bmsafemapp = NULL;
5381 
5382 	return (0);
5383 }
5384 
5385 /*
5386  * Find the bmsafemap associated with a cylinder group buffer.
5387  * If none exists, create one. The buffer must be locked when
5388  * this routine is called and this routine must be called with
5389  * the softdep lock held. To avoid giving up the lock while
5390  * allocating a new bmsafemap, a preallocated bmsafemap may be
5391  * provided. If it is provided but not needed, it is freed.
5392  */
5393 static struct bmsafemap *
5394 bmsafemap_lookup(struct mount *mp,
5395 	struct buf *bp,
5396 	int cg,
5397 	struct bmsafemap *newbmsafemap)
5398 {
5399 	struct bmsafemap_hashhead *bmsafemaphd;
5400 	struct bmsafemap *bmsafemap, *collision;
5401 	struct worklist *wk;
5402 	struct ufsmount *ump;
5403 
5404 	ump = VFSTOUFS(mp);
5405 	LOCK_OWNED(ump);
5406 	KASSERT(bp != NULL, ("bmsafemap_lookup: missing buffer"));
5407 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5408 		if (wk->wk_type == D_BMSAFEMAP) {
5409 			if (newbmsafemap)
5410 				WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP);
5411 			return (WK_BMSAFEMAP(wk));
5412 		}
5413 	}
5414 	bmsafemaphd = BMSAFEMAP_HASH(ump, cg);
5415 	if (bmsafemap_find(bmsafemaphd, cg, &bmsafemap) == 1) {
5416 		if (newbmsafemap)
5417 			WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP);
5418 		return (bmsafemap);
5419 	}
5420 	if (newbmsafemap) {
5421 		bmsafemap = newbmsafemap;
5422 	} else {
5423 		FREE_LOCK(ump);
5424 		bmsafemap = malloc(sizeof(struct bmsafemap),
5425 			M_BMSAFEMAP, M_SOFTDEP_FLAGS);
5426 		workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
5427 		ACQUIRE_LOCK(ump);
5428 	}
5429 	bmsafemap->sm_buf = bp;
5430 	LIST_INIT(&bmsafemap->sm_inodedephd);
5431 	LIST_INIT(&bmsafemap->sm_inodedepwr);
5432 	LIST_INIT(&bmsafemap->sm_newblkhd);
5433 	LIST_INIT(&bmsafemap->sm_newblkwr);
5434 	LIST_INIT(&bmsafemap->sm_jaddrefhd);
5435 	LIST_INIT(&bmsafemap->sm_jnewblkhd);
5436 	LIST_INIT(&bmsafemap->sm_freehd);
5437 	LIST_INIT(&bmsafemap->sm_freewr);
5438 	if (bmsafemap_find(bmsafemaphd, cg, &collision) == 1) {
5439 		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
5440 		return (collision);
5441 	}
5442 	bmsafemap->sm_cg = cg;
5443 	LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash);
5444 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
5445 	WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list);
5446 	return (bmsafemap);
5447 }
5448 
5449 /*
5450  * Direct block allocation dependencies.
5451  *
5452  * When a new block is allocated, the corresponding disk locations must be
5453  * initialized (with zeros or new data) before the on-disk inode points to
5454  * them.  Also, the freemap from which the block was allocated must be
5455  * updated (on disk) before the inode's pointer. These two dependencies are
5456  * independent of each other and are needed for all file blocks and indirect
5457  * blocks that are pointed to directly by the inode.  Just before the
5458  * "in-core" version of the inode is updated with a newly allocated block
5459  * number, a procedure (below) is called to setup allocation dependency
5460  * structures.  These structures are removed when the corresponding
5461  * dependencies are satisfied or when the block allocation becomes obsolete
5462  * (i.e., the file is deleted, the block is de-allocated, or the block is a
5463  * fragment that gets upgraded).  All of these cases are handled in
5464  * procedures described later.
5465  *
5466  * When a file extension causes a fragment to be upgraded, either to a larger
5467  * fragment or to a full block, the on-disk location may change (if the
5468  * previous fragment could not simply be extended). In this case, the old
5469  * fragment must be de-allocated, but not until after the inode's pointer has
5470  * been updated. In most cases, this is handled by later procedures, which
5471  * will construct a "freefrag" structure to be added to the workitem queue
5472  * when the inode update is complete (or obsolete).  The main exception to
5473  * this is when an allocation occurs while a pending allocation dependency
5474  * (for the same block pointer) remains.  This case is handled in the main
5475  * allocation dependency setup procedure by immediately freeing the
5476  * unreferenced fragments.
5477  */
5478 void
5479 softdep_setup_allocdirect(
5480 	struct inode *ip,	/* inode to which block is being added */
5481 	ufs_lbn_t off,		/* block pointer within inode */
5482 	ufs2_daddr_t newblkno,	/* disk block number being added */
5483 	ufs2_daddr_t oldblkno,	/* previous block number, 0 unless frag */
5484 	long newsize,		/* size of new block */
5485 	long oldsize,		/* size of new block */
5486 	struct buf *bp)		/* bp for allocated block */
5487 {
5488 	struct allocdirect *adp, *oldadp;
5489 	struct allocdirectlst *adphead;
5490 	struct freefrag *freefrag;
5491 	struct inodedep *inodedep;
5492 	struct pagedep *pagedep;
5493 	struct jnewblk *jnewblk;
5494 	struct newblk *newblk;
5495 	struct mount *mp;
5496 	ufs_lbn_t lbn;
5497 
5498 	lbn = bp->b_lblkno;
5499 	mp = ITOVFS(ip);
5500 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5501 	    ("softdep_setup_allocdirect called on non-softdep filesystem"));
5502 	if (oldblkno && oldblkno != newblkno)
5503 		/*
5504 		 * The usual case is that a smaller fragment that
5505 		 * was just allocated has been replaced with a bigger
5506 		 * fragment or a full-size block. If it is marked as
5507 		 * B_DELWRI, the current contents have not been written
5508 		 * to disk. It is possible that the block was written
5509 		 * earlier, but very uncommon. If the block has never
5510 		 * been written, there is no need to send a BIO_DELETE
5511 		 * for it when it is freed. The gain from avoiding the
5512 		 * TRIMs for the common case of unwritten blocks far
5513 		 * exceeds the cost of the write amplification for the
5514 		 * uncommon case of failing to send a TRIM for a block
5515 		 * that had been written.
5516 		 */
5517 		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn,
5518 		    (bp->b_flags & B_DELWRI) != 0 ? NOTRIM_KEY : SINGLETON_KEY);
5519 	else
5520 		freefrag = NULL;
5521 
5522 	CTR6(KTR_SUJ,
5523 	    "softdep_setup_allocdirect: ino %d blkno %jd oldblkno %jd "
5524 	    "off %jd newsize %ld oldsize %d",
5525 	    ip->i_number, newblkno, oldblkno, off, newsize, oldsize);
5526 	ACQUIRE_LOCK(ITOUMP(ip));
5527 	if (off >= UFS_NDADDR) {
5528 		if (lbn > 0)
5529 			panic("softdep_setup_allocdirect: bad lbn %jd, off %jd",
5530 			    lbn, off);
5531 		/* allocating an indirect block */
5532 		if (oldblkno != 0)
5533 			panic("softdep_setup_allocdirect: non-zero indir");
5534 	} else {
5535 		if (off != lbn)
5536 			panic("softdep_setup_allocdirect: lbn %jd != off %jd",
5537 			    lbn, off);
5538 		/*
5539 		 * Allocating a direct block.
5540 		 *
5541 		 * If we are allocating a directory block, then we must
5542 		 * allocate an associated pagedep to track additions and
5543 		 * deletions.
5544 		 */
5545 		if ((ip->i_mode & IFMT) == IFDIR)
5546 			pagedep_lookup(mp, bp, ip->i_number, off, DEPALLOC,
5547 			    &pagedep);
5548 	}
5549 	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
5550 		panic("softdep_setup_allocdirect: lost block");
5551 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5552 	    ("softdep_setup_allocdirect: newblk already initialized"));
5553 	/*
5554 	 * Convert the newblk to an allocdirect.
5555 	 */
5556 	WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT);
5557 	adp = (struct allocdirect *)newblk;
5558 	newblk->nb_freefrag = freefrag;
5559 	adp->ad_offset = off;
5560 	adp->ad_oldblkno = oldblkno;
5561 	adp->ad_newsize = newsize;
5562 	adp->ad_oldsize = oldsize;
5563 
5564 	/*
5565 	 * Finish initializing the journal.
5566 	 */
5567 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5568 		jnewblk->jn_ino = ip->i_number;
5569 		jnewblk->jn_lbn = lbn;
5570 		add_to_journal(&jnewblk->jn_list);
5571 	}
5572 	if (freefrag && freefrag->ff_jdep != NULL &&
5573 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5574 		add_to_journal(freefrag->ff_jdep);
5575 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
5576 	adp->ad_inodedep = inodedep;
5577 
5578 	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
5579 	/*
5580 	 * The list of allocdirects must be kept in sorted and ascending
5581 	 * order so that the rollback routines can quickly determine the
5582 	 * first uncommitted block (the size of the file stored on disk
5583 	 * ends at the end of the lowest committed fragment, or if there
5584 	 * are no fragments, at the end of the highest committed block).
5585 	 * Since files generally grow, the typical case is that the new
5586 	 * block is to be added at the end of the list. We speed this
5587 	 * special case by checking against the last allocdirect in the
5588 	 * list before laboriously traversing the list looking for the
5589 	 * insertion point.
5590 	 */
5591 	adphead = &inodedep->id_newinoupdt;
5592 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
5593 	if (oldadp == NULL || oldadp->ad_offset <= off) {
5594 		/* insert at end of list */
5595 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
5596 		if (oldadp != NULL && oldadp->ad_offset == off)
5597 			allocdirect_merge(adphead, adp, oldadp);
5598 		FREE_LOCK(ITOUMP(ip));
5599 		return;
5600 	}
5601 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
5602 		if (oldadp->ad_offset >= off)
5603 			break;
5604 	}
5605 	if (oldadp == NULL)
5606 		panic("softdep_setup_allocdirect: lost entry");
5607 	/* insert in middle of list */
5608 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5609 	if (oldadp->ad_offset == off)
5610 		allocdirect_merge(adphead, adp, oldadp);
5611 
5612 	FREE_LOCK(ITOUMP(ip));
5613 }
5614 
5615 /*
5616  * Merge a newer and older journal record to be stored either in a
5617  * newblock or freefrag.  This handles aggregating journal records for
5618  * fragment allocation into a second record as well as replacing a
5619  * journal free with an aborted journal allocation.  A segment for the
5620  * oldest record will be placed on wkhd if it has been written.  If not
5621  * the segment for the newer record will suffice.
5622  */
5623 static struct worklist *
5624 jnewblk_merge(struct worklist *new,
5625 	struct worklist *old,
5626 	struct workhead *wkhd)
5627 {
5628 	struct jnewblk *njnewblk;
5629 	struct jnewblk *jnewblk;
5630 
5631 	/* Handle NULLs to simplify callers. */
5632 	if (new == NULL)
5633 		return (old);
5634 	if (old == NULL)
5635 		return (new);
5636 	/* Replace a jfreefrag with a jnewblk. */
5637 	if (new->wk_type == D_JFREEFRAG) {
5638 		if (WK_JNEWBLK(old)->jn_blkno != WK_JFREEFRAG(new)->fr_blkno)
5639 			panic("jnewblk_merge: blkno mismatch: %p, %p",
5640 			    old, new);
5641 		cancel_jfreefrag(WK_JFREEFRAG(new));
5642 		return (old);
5643 	}
5644 	if (old->wk_type != D_JNEWBLK || new->wk_type != D_JNEWBLK)
5645 		panic("jnewblk_merge: Bad type: old %d new %d\n",
5646 		    old->wk_type, new->wk_type);
5647 	/*
5648 	 * Handle merging of two jnewblk records that describe
5649 	 * different sets of fragments in the same block.
5650 	 */
5651 	jnewblk = WK_JNEWBLK(old);
5652 	njnewblk = WK_JNEWBLK(new);
5653 	if (jnewblk->jn_blkno != njnewblk->jn_blkno)
5654 		panic("jnewblk_merge: Merging disparate blocks.");
5655 	/*
5656 	 * The record may be rolled back in the cg.
5657 	 */
5658 	if (jnewblk->jn_state & UNDONE) {
5659 		jnewblk->jn_state &= ~UNDONE;
5660 		njnewblk->jn_state |= UNDONE;
5661 		njnewblk->jn_state &= ~ATTACHED;
5662 	}
5663 	/*
5664 	 * We modify the newer addref and free the older so that if neither
5665 	 * has been written the most up-to-date copy will be on disk.  If
5666 	 * both have been written but rolled back we only temporarily need
5667 	 * one of them to fix the bits when the cg write completes.
5668 	 */
5669 	jnewblk->jn_state |= ATTACHED | COMPLETE;
5670 	njnewblk->jn_oldfrags = jnewblk->jn_oldfrags;
5671 	cancel_jnewblk(jnewblk, wkhd);
5672 	WORKLIST_REMOVE(&jnewblk->jn_list);
5673 	free_jnewblk(jnewblk);
5674 	return (new);
5675 }
5676 
5677 /*
5678  * Replace an old allocdirect dependency with a newer one.
5679  */
5680 static void
5681 allocdirect_merge(
5682 	struct allocdirectlst *adphead,	/* head of list holding allocdirects */
5683 	struct allocdirect *newadp,	/* allocdirect being added */
5684 	struct allocdirect *oldadp)	/* existing allocdirect being checked */
5685 {
5686 	struct worklist *wk;
5687 	struct freefrag *freefrag;
5688 
5689 	freefrag = NULL;
5690 	LOCK_OWNED(VFSTOUFS(newadp->ad_list.wk_mp));
5691 	if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
5692 	    newadp->ad_oldsize != oldadp->ad_newsize ||
5693 	    newadp->ad_offset >= UFS_NDADDR)
5694 		panic("%s %jd != new %jd || old size %ld != new %ld",
5695 		    "allocdirect_merge: old blkno",
5696 		    (intmax_t)newadp->ad_oldblkno,
5697 		    (intmax_t)oldadp->ad_newblkno,
5698 		    newadp->ad_oldsize, oldadp->ad_newsize);
5699 	newadp->ad_oldblkno = oldadp->ad_oldblkno;
5700 	newadp->ad_oldsize = oldadp->ad_oldsize;
5701 	/*
5702 	 * If the old dependency had a fragment to free or had never
5703 	 * previously had a block allocated, then the new dependency
5704 	 * can immediately post its freefrag and adopt the old freefrag.
5705 	 * This action is done by swapping the freefrag dependencies.
5706 	 * The new dependency gains the old one's freefrag, and the
5707 	 * old one gets the new one and then immediately puts it on
5708 	 * the worklist when it is freed by free_newblk. It is
5709 	 * not possible to do this swap when the old dependency had a
5710 	 * non-zero size but no previous fragment to free. This condition
5711 	 * arises when the new block is an extension of the old block.
5712 	 * Here, the first part of the fragment allocated to the new
5713 	 * dependency is part of the block currently claimed on disk by
5714 	 * the old dependency, so cannot legitimately be freed until the
5715 	 * conditions for the new dependency are fulfilled.
5716 	 */
5717 	freefrag = newadp->ad_freefrag;
5718 	if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
5719 		newadp->ad_freefrag = oldadp->ad_freefrag;
5720 		oldadp->ad_freefrag = freefrag;
5721 	}
5722 	/*
5723 	 * If we are tracking a new directory-block allocation,
5724 	 * move it from the old allocdirect to the new allocdirect.
5725 	 */
5726 	if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) {
5727 		WORKLIST_REMOVE(wk);
5728 		if (!LIST_EMPTY(&oldadp->ad_newdirblk))
5729 			panic("allocdirect_merge: extra newdirblk");
5730 		WORKLIST_INSERT(&newadp->ad_newdirblk, wk);
5731 	}
5732 	TAILQ_REMOVE(adphead, oldadp, ad_next);
5733 	/*
5734 	 * We need to move any journal dependencies over to the freefrag
5735 	 * that releases this block if it exists.  Otherwise we are
5736 	 * extending an existing block and we'll wait until that is
5737 	 * complete to release the journal space and extend the
5738 	 * new journal to cover this old space as well.
5739 	 */
5740 	if (freefrag == NULL) {
5741 		if (oldadp->ad_newblkno != newadp->ad_newblkno)
5742 			panic("allocdirect_merge: %jd != %jd",
5743 			    oldadp->ad_newblkno, newadp->ad_newblkno);
5744 		newadp->ad_block.nb_jnewblk = (struct jnewblk *)
5745 		    jnewblk_merge(&newadp->ad_block.nb_jnewblk->jn_list,
5746 		    &oldadp->ad_block.nb_jnewblk->jn_list,
5747 		    &newadp->ad_block.nb_jwork);
5748 		oldadp->ad_block.nb_jnewblk = NULL;
5749 		cancel_newblk(&oldadp->ad_block, NULL,
5750 		    &newadp->ad_block.nb_jwork);
5751 	} else {
5752 		wk = (struct worklist *) cancel_newblk(&oldadp->ad_block,
5753 		    &freefrag->ff_list, &freefrag->ff_jwork);
5754 		freefrag->ff_jdep = jnewblk_merge(freefrag->ff_jdep, wk,
5755 		    &freefrag->ff_jwork);
5756 	}
5757 	free_newblk(&oldadp->ad_block);
5758 }
5759 
5760 /*
5761  * Allocate a jfreefrag structure to journal a single block free.
5762  */
5763 static struct jfreefrag *
5764 newjfreefrag(struct freefrag *freefrag,
5765 	struct inode *ip,
5766 	ufs2_daddr_t blkno,
5767 	long size,
5768 	ufs_lbn_t lbn)
5769 {
5770 	struct jfreefrag *jfreefrag;
5771 	struct fs *fs;
5772 
5773 	fs = ITOFS(ip);
5774 	jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG,
5775 	    M_SOFTDEP_FLAGS);
5776 	workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, ITOVFS(ip));
5777 	jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list);
5778 	jfreefrag->fr_state = ATTACHED | DEPCOMPLETE;
5779 	jfreefrag->fr_ino = ip->i_number;
5780 	jfreefrag->fr_lbn = lbn;
5781 	jfreefrag->fr_blkno = blkno;
5782 	jfreefrag->fr_frags = numfrags(fs, size);
5783 	jfreefrag->fr_freefrag = freefrag;
5784 
5785 	return (jfreefrag);
5786 }
5787 
5788 /*
5789  * Allocate a new freefrag structure.
5790  */
5791 static struct freefrag *
5792 newfreefrag(struct inode *ip,
5793 	ufs2_daddr_t blkno,
5794 	long size,
5795 	ufs_lbn_t lbn,
5796 	u_long key)
5797 {
5798 	struct freefrag *freefrag;
5799 	struct ufsmount *ump;
5800 	struct fs *fs;
5801 
5802 	CTR4(KTR_SUJ, "newfreefrag: ino %d blkno %jd size %ld lbn %jd",
5803 	    ip->i_number, blkno, size, lbn);
5804 	ump = ITOUMP(ip);
5805 	fs = ump->um_fs;
5806 	if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
5807 		panic("newfreefrag: frag size");
5808 	freefrag = malloc(sizeof(struct freefrag),
5809 	    M_FREEFRAG, M_SOFTDEP_FLAGS);
5810 	workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ump));
5811 	freefrag->ff_state = ATTACHED;
5812 	LIST_INIT(&freefrag->ff_jwork);
5813 	freefrag->ff_inum = ip->i_number;
5814 	freefrag->ff_vtype = ITOV(ip)->v_type;
5815 	freefrag->ff_blkno = blkno;
5816 	freefrag->ff_fragsize = size;
5817 	freefrag->ff_key = key;
5818 
5819 	if (MOUNTEDSUJ(UFSTOVFS(ump))) {
5820 		freefrag->ff_jdep = (struct worklist *)
5821 		    newjfreefrag(freefrag, ip, blkno, size, lbn);
5822 	} else {
5823 		freefrag->ff_state |= DEPCOMPLETE;
5824 		freefrag->ff_jdep = NULL;
5825 	}
5826 
5827 	return (freefrag);
5828 }
5829 
5830 /*
5831  * This workitem de-allocates fragments that were replaced during
5832  * file block allocation.
5833  */
5834 static void
5835 handle_workitem_freefrag(struct freefrag *freefrag)
5836 {
5837 	struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp);
5838 	struct workhead wkhd;
5839 
5840 	CTR3(KTR_SUJ,
5841 	    "handle_workitem_freefrag: ino %d blkno %jd size %ld",
5842 	    freefrag->ff_inum, freefrag->ff_blkno, freefrag->ff_fragsize);
5843 	/*
5844 	 * It would be illegal to add new completion items to the
5845 	 * freefrag after it was schedule to be done so it must be
5846 	 * safe to modify the list head here.
5847 	 */
5848 	LIST_INIT(&wkhd);
5849 	ACQUIRE_LOCK(ump);
5850 	LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list);
5851 	/*
5852 	 * If the journal has not been written we must cancel it here.
5853 	 */
5854 	if (freefrag->ff_jdep) {
5855 		if (freefrag->ff_jdep->wk_type != D_JNEWBLK)
5856 			panic("handle_workitem_freefrag: Unexpected type %d\n",
5857 			    freefrag->ff_jdep->wk_type);
5858 		cancel_jnewblk(WK_JNEWBLK(freefrag->ff_jdep), &wkhd);
5859 	}
5860 	FREE_LOCK(ump);
5861 	ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno,
5862 	   freefrag->ff_fragsize, freefrag->ff_inum, freefrag->ff_vtype,
5863 	   &wkhd, freefrag->ff_key);
5864 	ACQUIRE_LOCK(ump);
5865 	WORKITEM_FREE(freefrag, D_FREEFRAG);
5866 	FREE_LOCK(ump);
5867 }
5868 
5869 /*
5870  * Set up a dependency structure for an external attributes data block.
5871  * This routine follows much of the structure of softdep_setup_allocdirect.
5872  * See the description of softdep_setup_allocdirect above for details.
5873  */
5874 void
5875 softdep_setup_allocext(
5876 	struct inode *ip,
5877 	ufs_lbn_t off,
5878 	ufs2_daddr_t newblkno,
5879 	ufs2_daddr_t oldblkno,
5880 	long newsize,
5881 	long oldsize,
5882 	struct buf *bp)
5883 {
5884 	struct allocdirect *adp, *oldadp;
5885 	struct allocdirectlst *adphead;
5886 	struct freefrag *freefrag;
5887 	struct inodedep *inodedep;
5888 	struct jnewblk *jnewblk;
5889 	struct newblk *newblk;
5890 	struct mount *mp;
5891 	struct ufsmount *ump;
5892 	ufs_lbn_t lbn;
5893 
5894 	mp = ITOVFS(ip);
5895 	ump = VFSTOUFS(mp);
5896 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5897 	    ("softdep_setup_allocext called on non-softdep filesystem"));
5898 	KASSERT(off < UFS_NXADDR,
5899 	    ("softdep_setup_allocext: lbn %lld > UFS_NXADDR", (long long)off));
5900 
5901 	lbn = bp->b_lblkno;
5902 	if (oldblkno && oldblkno != newblkno)
5903 		/*
5904 		 * The usual case is that a smaller fragment that
5905 		 * was just allocated has been replaced with a bigger
5906 		 * fragment or a full-size block. If it is marked as
5907 		 * B_DELWRI, the current contents have not been written
5908 		 * to disk. It is possible that the block was written
5909 		 * earlier, but very uncommon. If the block has never
5910 		 * been written, there is no need to send a BIO_DELETE
5911 		 * for it when it is freed. The gain from avoiding the
5912 		 * TRIMs for the common case of unwritten blocks far
5913 		 * exceeds the cost of the write amplification for the
5914 		 * uncommon case of failing to send a TRIM for a block
5915 		 * that had been written.
5916 		 */
5917 		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn,
5918 		    (bp->b_flags & B_DELWRI) != 0 ? NOTRIM_KEY : SINGLETON_KEY);
5919 	else
5920 		freefrag = NULL;
5921 
5922 	ACQUIRE_LOCK(ump);
5923 	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
5924 		panic("softdep_setup_allocext: lost block");
5925 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5926 	    ("softdep_setup_allocext: newblk already initialized"));
5927 	/*
5928 	 * Convert the newblk to an allocdirect.
5929 	 */
5930 	WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT);
5931 	adp = (struct allocdirect *)newblk;
5932 	newblk->nb_freefrag = freefrag;
5933 	adp->ad_offset = off;
5934 	adp->ad_oldblkno = oldblkno;
5935 	adp->ad_newsize = newsize;
5936 	adp->ad_oldsize = oldsize;
5937 	adp->ad_state |=  EXTDATA;
5938 
5939 	/*
5940 	 * Finish initializing the journal.
5941 	 */
5942 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5943 		jnewblk->jn_ino = ip->i_number;
5944 		jnewblk->jn_lbn = lbn;
5945 		add_to_journal(&jnewblk->jn_list);
5946 	}
5947 	if (freefrag && freefrag->ff_jdep != NULL &&
5948 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5949 		add_to_journal(freefrag->ff_jdep);
5950 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
5951 	adp->ad_inodedep = inodedep;
5952 
5953 	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
5954 	/*
5955 	 * The list of allocdirects must be kept in sorted and ascending
5956 	 * order so that the rollback routines can quickly determine the
5957 	 * first uncommitted block (the size of the file stored on disk
5958 	 * ends at the end of the lowest committed fragment, or if there
5959 	 * are no fragments, at the end of the highest committed block).
5960 	 * Since files generally grow, the typical case is that the new
5961 	 * block is to be added at the end of the list. We speed this
5962 	 * special case by checking against the last allocdirect in the
5963 	 * list before laboriously traversing the list looking for the
5964 	 * insertion point.
5965 	 */
5966 	adphead = &inodedep->id_newextupdt;
5967 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
5968 	if (oldadp == NULL || oldadp->ad_offset <= off) {
5969 		/* insert at end of list */
5970 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
5971 		if (oldadp != NULL && oldadp->ad_offset == off)
5972 			allocdirect_merge(adphead, adp, oldadp);
5973 		FREE_LOCK(ump);
5974 		return;
5975 	}
5976 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
5977 		if (oldadp->ad_offset >= off)
5978 			break;
5979 	}
5980 	if (oldadp == NULL)
5981 		panic("softdep_setup_allocext: lost entry");
5982 	/* insert in middle of list */
5983 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5984 	if (oldadp->ad_offset == off)
5985 		allocdirect_merge(adphead, adp, oldadp);
5986 	FREE_LOCK(ump);
5987 }
5988 
5989 /*
5990  * Indirect block allocation dependencies.
5991  *
5992  * The same dependencies that exist for a direct block also exist when
5993  * a new block is allocated and pointed to by an entry in a block of
5994  * indirect pointers. The undo/redo states described above are also
5995  * used here. Because an indirect block contains many pointers that
5996  * may have dependencies, a second copy of the entire in-memory indirect
5997  * block is kept. The buffer cache copy is always completely up-to-date.
5998  * The second copy, which is used only as a source for disk writes,
5999  * contains only the safe pointers (i.e., those that have no remaining
6000  * update dependencies). The second copy is freed when all pointers
6001  * are safe. The cache is not allowed to replace indirect blocks with
6002  * pending update dependencies. If a buffer containing an indirect
6003  * block with dependencies is written, these routines will mark it
6004  * dirty again. It can only be successfully written once all the
6005  * dependencies are removed. The ffs_fsync routine in conjunction with
6006  * softdep_sync_metadata work together to get all the dependencies
6007  * removed so that a file can be successfully written to disk. Three
6008  * procedures are used when setting up indirect block pointer
6009  * dependencies. The division is necessary because of the organization
6010  * of the "balloc" routine and because of the distinction between file
6011  * pages and file metadata blocks.
6012  */
6013 
6014 /*
6015  * Allocate a new allocindir structure.
6016  */
6017 static struct allocindir *
6018 newallocindir(
6019 	struct inode *ip,	/* inode for file being extended */
6020 	int ptrno,		/* offset of pointer in indirect block */
6021 	ufs2_daddr_t newblkno,	/* disk block number being added */
6022 	ufs2_daddr_t oldblkno,	/* previous block number, 0 if none */
6023 	ufs_lbn_t lbn)
6024 {
6025 	struct newblk *newblk;
6026 	struct allocindir *aip;
6027 	struct freefrag *freefrag;
6028 	struct jnewblk *jnewblk;
6029 
6030 	if (oldblkno)
6031 		freefrag = newfreefrag(ip, oldblkno, ITOFS(ip)->fs_bsize, lbn,
6032 		    SINGLETON_KEY);
6033 	else
6034 		freefrag = NULL;
6035 	ACQUIRE_LOCK(ITOUMP(ip));
6036 	if (newblk_lookup(ITOVFS(ip), newblkno, 0, &newblk) == 0)
6037 		panic("new_allocindir: lost block");
6038 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
6039 	    ("newallocindir: newblk already initialized"));
6040 	WORKITEM_REASSIGN(newblk, D_ALLOCINDIR);
6041 	newblk->nb_freefrag = freefrag;
6042 	aip = (struct allocindir *)newblk;
6043 	aip->ai_offset = ptrno;
6044 	aip->ai_oldblkno = oldblkno;
6045 	aip->ai_lbn = lbn;
6046 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
6047 		jnewblk->jn_ino = ip->i_number;
6048 		jnewblk->jn_lbn = lbn;
6049 		add_to_journal(&jnewblk->jn_list);
6050 	}
6051 	if (freefrag && freefrag->ff_jdep != NULL &&
6052 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
6053 		add_to_journal(freefrag->ff_jdep);
6054 	return (aip);
6055 }
6056 
6057 /*
6058  * Called just before setting an indirect block pointer
6059  * to a newly allocated file page.
6060  */
6061 void
6062 softdep_setup_allocindir_page(
6063 	struct inode *ip,	/* inode for file being extended */
6064 	ufs_lbn_t lbn,		/* allocated block number within file */
6065 	struct buf *bp,		/* buffer with indirect blk referencing page */
6066 	int ptrno,		/* offset of pointer in indirect block */
6067 	ufs2_daddr_t newblkno,	/* disk block number being added */
6068 	ufs2_daddr_t oldblkno,	/* previous block number, 0 if none */
6069 	struct buf *nbp)	/* buffer holding allocated page */
6070 {
6071 	struct inodedep *inodedep;
6072 	struct freefrag *freefrag;
6073 	struct allocindir *aip;
6074 	struct pagedep *pagedep;
6075 	struct mount *mp;
6076 	struct ufsmount *ump;
6077 
6078 	mp = ITOVFS(ip);
6079 	ump = VFSTOUFS(mp);
6080 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
6081 	    ("softdep_setup_allocindir_page called on non-softdep filesystem"));
6082 	KASSERT(lbn == nbp->b_lblkno,
6083 	    ("softdep_setup_allocindir_page: lbn %jd != lblkno %jd",
6084 	    lbn, bp->b_lblkno));
6085 	CTR4(KTR_SUJ,
6086 	    "softdep_setup_allocindir_page: ino %d blkno %jd oldblkno %jd "
6087 	    "lbn %jd", ip->i_number, newblkno, oldblkno, lbn);
6088 	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page");
6089 	aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn);
6090 	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6091 	/*
6092 	 * If we are allocating a directory page, then we must
6093 	 * allocate an associated pagedep to track additions and
6094 	 * deletions.
6095 	 */
6096 	if ((ip->i_mode & IFMT) == IFDIR)
6097 		pagedep_lookup(mp, nbp, ip->i_number, lbn, DEPALLOC, &pagedep);
6098 	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
6099 	freefrag = setup_allocindir_phase2(bp, ip, inodedep, aip, lbn);
6100 	FREE_LOCK(ump);
6101 	if (freefrag)
6102 		handle_workitem_freefrag(freefrag);
6103 }
6104 
6105 /*
6106  * Called just before setting an indirect block pointer to a
6107  * newly allocated indirect block.
6108  */
6109 void
6110 softdep_setup_allocindir_meta(
6111 	struct buf *nbp,	/* newly allocated indirect block */
6112 	struct inode *ip,	/* inode for file being extended */
6113 	struct buf *bp,		/* indirect block referencing allocated block */
6114 	int ptrno,		/* offset of pointer in indirect block */
6115 	ufs2_daddr_t newblkno)	/* disk block number being added */
6116 {
6117 	struct inodedep *inodedep;
6118 	struct allocindir *aip;
6119 	struct ufsmount *ump;
6120 	ufs_lbn_t lbn;
6121 
6122 	ump = ITOUMP(ip);
6123 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
6124 	    ("softdep_setup_allocindir_meta called on non-softdep filesystem"));
6125 	CTR3(KTR_SUJ,
6126 	    "softdep_setup_allocindir_meta: ino %d blkno %jd ptrno %d",
6127 	    ip->i_number, newblkno, ptrno);
6128 	lbn = nbp->b_lblkno;
6129 	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta");
6130 	aip = newallocindir(ip, ptrno, newblkno, 0, lbn);
6131 	inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep);
6132 	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
6133 	if (setup_allocindir_phase2(bp, ip, inodedep, aip, lbn))
6134 		panic("softdep_setup_allocindir_meta: Block already existed");
6135 	FREE_LOCK(ump);
6136 }
6137 
6138 static void
6139 indirdep_complete(struct indirdep *indirdep)
6140 {
6141 	struct allocindir *aip;
6142 
6143 	LIST_REMOVE(indirdep, ir_next);
6144 	indirdep->ir_state |= DEPCOMPLETE;
6145 
6146 	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) {
6147 		LIST_REMOVE(aip, ai_next);
6148 		free_newblk(&aip->ai_block);
6149 	}
6150 	/*
6151 	 * If this indirdep is not attached to a buf it was simply waiting
6152 	 * on completion to clear completehd.  free_indirdep() asserts
6153 	 * that nothing is dangling.
6154 	 */
6155 	if ((indirdep->ir_state & ONWORKLIST) == 0)
6156 		free_indirdep(indirdep);
6157 }
6158 
6159 static struct indirdep *
6160 indirdep_lookup(struct mount *mp,
6161 	struct inode *ip,
6162 	struct buf *bp)
6163 {
6164 	struct indirdep *indirdep, *newindirdep;
6165 	struct newblk *newblk;
6166 	struct ufsmount *ump;
6167 	struct worklist *wk;
6168 	struct fs *fs;
6169 	ufs2_daddr_t blkno;
6170 
6171 	ump = VFSTOUFS(mp);
6172 	LOCK_OWNED(ump);
6173 	indirdep = NULL;
6174 	newindirdep = NULL;
6175 	fs = ump->um_fs;
6176 	for (;;) {
6177 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
6178 			if (wk->wk_type != D_INDIRDEP)
6179 				continue;
6180 			indirdep = WK_INDIRDEP(wk);
6181 			break;
6182 		}
6183 		/* Found on the buffer worklist, no new structure to free. */
6184 		if (indirdep != NULL && newindirdep == NULL)
6185 			return (indirdep);
6186 		if (indirdep != NULL && newindirdep != NULL)
6187 			panic("indirdep_lookup: simultaneous create");
6188 		/* None found on the buffer and a new structure is ready. */
6189 		if (indirdep == NULL && newindirdep != NULL)
6190 			break;
6191 		/* None found and no new structure available. */
6192 		FREE_LOCK(ump);
6193 		newindirdep = malloc(sizeof(struct indirdep),
6194 		    M_INDIRDEP, M_SOFTDEP_FLAGS);
6195 		workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp);
6196 		newindirdep->ir_state = ATTACHED;
6197 		if (I_IS_UFS1(ip))
6198 			newindirdep->ir_state |= UFS1FMT;
6199 		TAILQ_INIT(&newindirdep->ir_trunc);
6200 		newindirdep->ir_saveddata = NULL;
6201 		LIST_INIT(&newindirdep->ir_deplisthd);
6202 		LIST_INIT(&newindirdep->ir_donehd);
6203 		LIST_INIT(&newindirdep->ir_writehd);
6204 		LIST_INIT(&newindirdep->ir_completehd);
6205 		if (bp->b_blkno == bp->b_lblkno) {
6206 			ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp,
6207 			    NULL, NULL);
6208 			bp->b_blkno = blkno;
6209 		}
6210 		newindirdep->ir_freeblks = NULL;
6211 		newindirdep->ir_savebp =
6212 		    getblk(ump->um_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0);
6213 		newindirdep->ir_bp = bp;
6214 		BUF_KERNPROC(newindirdep->ir_savebp);
6215 		bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
6216 		ACQUIRE_LOCK(ump);
6217 	}
6218 	indirdep = newindirdep;
6219 	WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list);
6220 	/*
6221 	 * If the block is not yet allocated we don't set DEPCOMPLETE so
6222 	 * that we don't free dependencies until the pointers are valid.
6223 	 * This could search b_dep for D_ALLOCDIRECT/D_ALLOCINDIR rather
6224 	 * than using the hash.
6225 	 */
6226 	if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk))
6227 		LIST_INSERT_HEAD(&newblk->nb_indirdeps, indirdep, ir_next);
6228 	else
6229 		indirdep->ir_state |= DEPCOMPLETE;
6230 	return (indirdep);
6231 }
6232 
6233 /*
6234  * Called to finish the allocation of the "aip" allocated
6235  * by one of the two routines above.
6236  */
6237 static struct freefrag *
6238 setup_allocindir_phase2(
6239 	struct buf *bp,		/* in-memory copy of the indirect block */
6240 	struct inode *ip,	/* inode for file being extended */
6241 	struct inodedep *inodedep, /* Inodedep for ip */
6242 	struct allocindir *aip,	/* allocindir allocated by the above routines */
6243 	ufs_lbn_t lbn)		/* Logical block number for this block. */
6244 {
6245 	struct fs *fs __diagused;
6246 	struct indirdep *indirdep;
6247 	struct allocindir *oldaip;
6248 	struct freefrag *freefrag;
6249 	struct mount *mp;
6250 	struct ufsmount *ump;
6251 
6252 	mp = ITOVFS(ip);
6253 	ump = VFSTOUFS(mp);
6254 	LOCK_OWNED(ump);
6255 	fs = ump->um_fs;
6256 	if (bp->b_lblkno >= 0)
6257 		panic("setup_allocindir_phase2: not indir blk");
6258 	KASSERT(aip->ai_offset >= 0 && aip->ai_offset < NINDIR(fs),
6259 	    ("setup_allocindir_phase2: Bad offset %d", aip->ai_offset));
6260 	indirdep = indirdep_lookup(mp, ip, bp);
6261 	KASSERT(indirdep->ir_savebp != NULL,
6262 	    ("setup_allocindir_phase2 NULL ir_savebp"));
6263 	aip->ai_indirdep = indirdep;
6264 	/*
6265 	 * Check for an unwritten dependency for this indirect offset.  If
6266 	 * there is, merge the old dependency into the new one.  This happens
6267 	 * as a result of reallocblk only.
6268 	 */
6269 	freefrag = NULL;
6270 	if (aip->ai_oldblkno != 0) {
6271 		LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) {
6272 			if (oldaip->ai_offset == aip->ai_offset) {
6273 				freefrag = allocindir_merge(aip, oldaip);
6274 				goto done;
6275 			}
6276 		}
6277 		LIST_FOREACH(oldaip, &indirdep->ir_donehd, ai_next) {
6278 			if (oldaip->ai_offset == aip->ai_offset) {
6279 				freefrag = allocindir_merge(aip, oldaip);
6280 				goto done;
6281 			}
6282 		}
6283 	}
6284 done:
6285 	LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
6286 	return (freefrag);
6287 }
6288 
6289 /*
6290  * Merge two allocindirs which refer to the same block.  Move newblock
6291  * dependencies and setup the freefrags appropriately.
6292  */
6293 static struct freefrag *
6294 allocindir_merge(
6295 	struct allocindir *aip,
6296 	struct allocindir *oldaip)
6297 {
6298 	struct freefrag *freefrag;
6299 	struct worklist *wk;
6300 
6301 	if (oldaip->ai_newblkno != aip->ai_oldblkno)
6302 		panic("allocindir_merge: blkno");
6303 	aip->ai_oldblkno = oldaip->ai_oldblkno;
6304 	freefrag = aip->ai_freefrag;
6305 	aip->ai_freefrag = oldaip->ai_freefrag;
6306 	oldaip->ai_freefrag = NULL;
6307 	KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag"));
6308 	/*
6309 	 * If we are tracking a new directory-block allocation,
6310 	 * move it from the old allocindir to the new allocindir.
6311 	 */
6312 	if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) {
6313 		WORKLIST_REMOVE(wk);
6314 		if (!LIST_EMPTY(&oldaip->ai_newdirblk))
6315 			panic("allocindir_merge: extra newdirblk");
6316 		WORKLIST_INSERT(&aip->ai_newdirblk, wk);
6317 	}
6318 	/*
6319 	 * We can skip journaling for this freefrag and just complete
6320 	 * any pending journal work for the allocindir that is being
6321 	 * removed after the freefrag completes.
6322 	 */
6323 	if (freefrag->ff_jdep)
6324 		cancel_jfreefrag(WK_JFREEFRAG(freefrag->ff_jdep));
6325 	LIST_REMOVE(oldaip, ai_next);
6326 	freefrag->ff_jdep = (struct worklist *)cancel_newblk(&oldaip->ai_block,
6327 	    &freefrag->ff_list, &freefrag->ff_jwork);
6328 	free_newblk(&oldaip->ai_block);
6329 
6330 	return (freefrag);
6331 }
6332 
6333 static inline void
6334 setup_freedirect(
6335 	struct freeblks *freeblks,
6336 	struct inode *ip,
6337 	int i,
6338 	int needj)
6339 {
6340 	struct ufsmount *ump;
6341 	ufs2_daddr_t blkno;
6342 	int frags;
6343 
6344 	blkno = DIP(ip, i_db[i]);
6345 	if (blkno == 0)
6346 		return;
6347 	DIP_SET(ip, i_db[i], 0);
6348 	ump = ITOUMP(ip);
6349 	frags = sblksize(ump->um_fs, ip->i_size, i);
6350 	frags = numfrags(ump->um_fs, frags);
6351 	newfreework(ump, freeblks, NULL, i, blkno, frags, 0, needj);
6352 }
6353 
6354 static inline void
6355 setup_freeext(
6356 	struct freeblks *freeblks,
6357 	struct inode *ip,
6358 	int i,
6359 	int needj)
6360 {
6361 	struct ufsmount *ump;
6362 	ufs2_daddr_t blkno;
6363 	int frags;
6364 
6365 	blkno = ip->i_din2->di_extb[i];
6366 	if (blkno == 0)
6367 		return;
6368 	ip->i_din2->di_extb[i] = 0;
6369 	ump = ITOUMP(ip);
6370 	frags = sblksize(ump->um_fs, ip->i_din2->di_extsize, i);
6371 	frags = numfrags(ump->um_fs, frags);
6372 	newfreework(ump, freeblks, NULL, -1 - i, blkno, frags, 0, needj);
6373 }
6374 
6375 static inline void
6376 setup_freeindir(
6377 	struct freeblks *freeblks,
6378 	struct inode *ip,
6379 	int i,
6380 	ufs_lbn_t lbn,
6381 	int needj)
6382 {
6383 	struct ufsmount *ump;
6384 	ufs2_daddr_t blkno;
6385 
6386 	blkno = DIP(ip, i_ib[i]);
6387 	if (blkno == 0)
6388 		return;
6389 	DIP_SET(ip, i_ib[i], 0);
6390 	ump = ITOUMP(ip);
6391 	newfreework(ump, freeblks, NULL, lbn, blkno, ump->um_fs->fs_frag,
6392 	    0, needj);
6393 }
6394 
6395 static inline struct freeblks *
6396 newfreeblks(struct mount *mp, struct inode *ip)
6397 {
6398 	struct freeblks *freeblks;
6399 
6400 	freeblks = malloc(sizeof(struct freeblks),
6401 		M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO);
6402 	workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp);
6403 	LIST_INIT(&freeblks->fb_jblkdephd);
6404 	LIST_INIT(&freeblks->fb_jwork);
6405 	freeblks->fb_ref = 0;
6406 	freeblks->fb_cgwait = 0;
6407 	freeblks->fb_state = ATTACHED;
6408 	freeblks->fb_uid = ip->i_uid;
6409 	freeblks->fb_inum = ip->i_number;
6410 	freeblks->fb_vtype = ITOV(ip)->v_type;
6411 	freeblks->fb_modrev = DIP(ip, i_modrev);
6412 	freeblks->fb_devvp = ITODEVVP(ip);
6413 	freeblks->fb_chkcnt = 0;
6414 	freeblks->fb_len = 0;
6415 
6416 	return (freeblks);
6417 }
6418 
6419 static void
6420 trunc_indirdep(
6421 	struct indirdep *indirdep,
6422 	struct freeblks *freeblks,
6423 	struct buf *bp,
6424 	int off)
6425 {
6426 	struct allocindir *aip, *aipn;
6427 
6428 	/*
6429 	 * The first set of allocindirs won't be in savedbp.
6430 	 */
6431 	LIST_FOREACH_SAFE(aip, &indirdep->ir_deplisthd, ai_next, aipn)
6432 		if (aip->ai_offset > off)
6433 			cancel_allocindir(aip, bp, freeblks, 1);
6434 	LIST_FOREACH_SAFE(aip, &indirdep->ir_donehd, ai_next, aipn)
6435 		if (aip->ai_offset > off)
6436 			cancel_allocindir(aip, bp, freeblks, 1);
6437 	/*
6438 	 * These will exist in savedbp.
6439 	 */
6440 	LIST_FOREACH_SAFE(aip, &indirdep->ir_writehd, ai_next, aipn)
6441 		if (aip->ai_offset > off)
6442 			cancel_allocindir(aip, NULL, freeblks, 0);
6443 	LIST_FOREACH_SAFE(aip, &indirdep->ir_completehd, ai_next, aipn)
6444 		if (aip->ai_offset > off)
6445 			cancel_allocindir(aip, NULL, freeblks, 0);
6446 }
6447 
6448 /*
6449  * Follow the chain of indirects down to lastlbn creating a freework
6450  * structure for each.  This will be used to start indir_trunc() at
6451  * the right offset and create the journal records for the parrtial
6452  * truncation.  A second step will handle the truncated dependencies.
6453  */
6454 static int
6455 setup_trunc_indir(
6456 	struct freeblks *freeblks,
6457 	struct inode *ip,
6458 	ufs_lbn_t lbn,
6459 	ufs_lbn_t lastlbn,
6460 	ufs2_daddr_t blkno)
6461 {
6462 	struct indirdep *indirdep;
6463 	struct indirdep *indirn;
6464 	struct freework *freework;
6465 	struct newblk *newblk;
6466 	struct mount *mp;
6467 	struct ufsmount *ump;
6468 	struct buf *bp;
6469 	uint8_t *start;
6470 	uint8_t *end;
6471 	ufs_lbn_t lbnadd;
6472 	int level;
6473 	int error;
6474 	int off;
6475 
6476 	freework = NULL;
6477 	if (blkno == 0)
6478 		return (0);
6479 	mp = freeblks->fb_list.wk_mp;
6480 	ump = VFSTOUFS(mp);
6481 	/*
6482 	 * Here, calls to VOP_BMAP() will fail.  However, we already have
6483 	 * the on-disk address, so we just pass it to bread() instead of
6484 	 * having bread() attempt to calculate it using VOP_BMAP().
6485 	 */
6486 	error = ffs_breadz(ump, ITOV(ip), lbn, blkptrtodb(ump, blkno),
6487 	    (int)mp->mnt_stat.f_iosize, NULL, NULL, 0, NOCRED, 0, NULL, &bp);
6488 	if (error)
6489 		return (error);
6490 	level = lbn_level(lbn);
6491 	lbnadd = lbn_offset(ump->um_fs, level);
6492 	/*
6493 	 * Compute the offset of the last block we want to keep.  Store
6494 	 * in the freework the first block we want to completely free.
6495 	 */
6496 	off = (lastlbn - -(lbn + level)) / lbnadd;
6497 	if (off + 1 == NINDIR(ump->um_fs))
6498 		goto nowork;
6499 	freework = newfreework(ump, freeblks, NULL, lbn, blkno, 0, off + 1, 0);
6500 	/*
6501 	 * Link the freework into the indirdep.  This will prevent any new
6502 	 * allocations from proceeding until we are finished with the
6503 	 * truncate and the block is written.
6504 	 */
6505 	ACQUIRE_LOCK(ump);
6506 	indirdep = indirdep_lookup(mp, ip, bp);
6507 	if (indirdep->ir_freeblks)
6508 		panic("setup_trunc_indir: indirdep already truncated.");
6509 	TAILQ_INSERT_TAIL(&indirdep->ir_trunc, freework, fw_next);
6510 	freework->fw_indir = indirdep;
6511 	/*
6512 	 * Cancel any allocindirs that will not make it to disk.
6513 	 * We have to do this for all copies of the indirdep that
6514 	 * live on this newblk.
6515 	 */
6516 	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
6517 		if (newblk_lookup(mp, dbtofsb(ump->um_fs, bp->b_blkno), 0,
6518 		    &newblk) == 0)
6519 			panic("setup_trunc_indir: lost block");
6520 		LIST_FOREACH(indirn, &newblk->nb_indirdeps, ir_next)
6521 			trunc_indirdep(indirn, freeblks, bp, off);
6522 	} else
6523 		trunc_indirdep(indirdep, freeblks, bp, off);
6524 	FREE_LOCK(ump);
6525 	/*
6526 	 * Creation is protected by the buf lock. The saveddata is only
6527 	 * needed if a full truncation follows a partial truncation but it
6528 	 * is difficult to allocate in that case so we fetch it anyway.
6529 	 */
6530 	if (indirdep->ir_saveddata == NULL)
6531 		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
6532 		    M_SOFTDEP_FLAGS);
6533 nowork:
6534 	/* Fetch the blkno of the child and the zero start offset. */
6535 	if (I_IS_UFS1(ip)) {
6536 		blkno = ((ufs1_daddr_t *)bp->b_data)[off];
6537 		start = (uint8_t *)&((ufs1_daddr_t *)bp->b_data)[off+1];
6538 	} else {
6539 		blkno = ((ufs2_daddr_t *)bp->b_data)[off];
6540 		start = (uint8_t *)&((ufs2_daddr_t *)bp->b_data)[off+1];
6541 	}
6542 	if (freework) {
6543 		/* Zero the truncated pointers. */
6544 		end = bp->b_data + bp->b_bcount;
6545 		bzero(start, end - start);
6546 		bdwrite(bp);
6547 	} else
6548 		bqrelse(bp);
6549 	if (level == 0)
6550 		return (0);
6551 	lbn++; /* adjust level */
6552 	lbn -= (off * lbnadd);
6553 	return setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno);
6554 }
6555 
6556 /*
6557  * Complete the partial truncation of an indirect block setup by
6558  * setup_trunc_indir().  This zeros the truncated pointers in the saved
6559  * copy and writes them to disk before the freeblks is allowed to complete.
6560  */
6561 static void
6562 complete_trunc_indir(struct freework *freework)
6563 {
6564 	struct freework *fwn;
6565 	struct indirdep *indirdep;
6566 	struct ufsmount *ump;
6567 	struct buf *bp;
6568 	uintptr_t start;
6569 	int count;
6570 
6571 	ump = VFSTOUFS(freework->fw_list.wk_mp);
6572 	LOCK_OWNED(ump);
6573 	indirdep = freework->fw_indir;
6574 	for (;;) {
6575 		bp = indirdep->ir_bp;
6576 		/* See if the block was discarded. */
6577 		if (bp == NULL)
6578 			break;
6579 		/* Inline part of getdirtybuf().  We dont want bremfree. */
6580 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0)
6581 			break;
6582 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
6583 		    LOCK_PTR(ump)) == 0)
6584 			BUF_UNLOCK(bp);
6585 		ACQUIRE_LOCK(ump);
6586 	}
6587 	freework->fw_state |= DEPCOMPLETE;
6588 	TAILQ_REMOVE(&indirdep->ir_trunc, freework, fw_next);
6589 	/*
6590 	 * Zero the pointers in the saved copy.
6591 	 */
6592 	if (indirdep->ir_state & UFS1FMT)
6593 		start = sizeof(ufs1_daddr_t);
6594 	else
6595 		start = sizeof(ufs2_daddr_t);
6596 	start *= freework->fw_start;
6597 	count = indirdep->ir_savebp->b_bcount - start;
6598 	start += (uintptr_t)indirdep->ir_savebp->b_data;
6599 	bzero((char *)start, count);
6600 	/*
6601 	 * We need to start the next truncation in the list if it has not
6602 	 * been started yet.
6603 	 */
6604 	fwn = TAILQ_FIRST(&indirdep->ir_trunc);
6605 	if (fwn != NULL) {
6606 		if (fwn->fw_freeblks == indirdep->ir_freeblks)
6607 			TAILQ_REMOVE(&indirdep->ir_trunc, fwn, fw_next);
6608 		if ((fwn->fw_state & ONWORKLIST) == 0)
6609 			freework_enqueue(fwn);
6610 	}
6611 	/*
6612 	 * If bp is NULL the block was fully truncated, restore
6613 	 * the saved block list otherwise free it if it is no
6614 	 * longer needed.
6615 	 */
6616 	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
6617 		if (bp == NULL)
6618 			bcopy(indirdep->ir_saveddata,
6619 			    indirdep->ir_savebp->b_data,
6620 			    indirdep->ir_savebp->b_bcount);
6621 		free(indirdep->ir_saveddata, M_INDIRDEP);
6622 		indirdep->ir_saveddata = NULL;
6623 	}
6624 	/*
6625 	 * When bp is NULL there is a full truncation pending.  We
6626 	 * must wait for this full truncation to be journaled before
6627 	 * we can release this freework because the disk pointers will
6628 	 * never be written as zero.
6629 	 */
6630 	if (bp == NULL)  {
6631 		if (LIST_EMPTY(&indirdep->ir_freeblks->fb_jblkdephd))
6632 			handle_written_freework(freework);
6633 		else
6634 			WORKLIST_INSERT(&indirdep->ir_freeblks->fb_freeworkhd,
6635 			   &freework->fw_list);
6636 		if (fwn == NULL) {
6637 			freework->fw_indir = (void *)0x0000deadbeef0000;
6638 			bp = indirdep->ir_savebp;
6639 			indirdep->ir_savebp = NULL;
6640 			free_indirdep(indirdep);
6641 			FREE_LOCK(ump);
6642 			brelse(bp);
6643 			ACQUIRE_LOCK(ump);
6644 		}
6645 	} else {
6646 		/* Complete when the real copy is written. */
6647 		WORKLIST_INSERT(&bp->b_dep, &freework->fw_list);
6648 		BUF_UNLOCK(bp);
6649 	}
6650 }
6651 
6652 /*
6653  * Calculate the number of blocks we are going to release where datablocks
6654  * is the current total and length is the new file size.
6655  */
6656 static ufs2_daddr_t
6657 blkcount(struct fs *fs,
6658 	ufs2_daddr_t datablocks,
6659 	off_t length)
6660 {
6661 	off_t totblks, numblks;
6662 
6663 	totblks = 0;
6664 	numblks = howmany(length, fs->fs_bsize);
6665 	if (numblks <= UFS_NDADDR) {
6666 		totblks = howmany(length, fs->fs_fsize);
6667 		goto out;
6668 	}
6669         totblks = blkstofrags(fs, numblks);
6670 	numblks -= UFS_NDADDR;
6671 	/*
6672 	 * Count all single, then double, then triple indirects required.
6673 	 * Subtracting one indirects worth of blocks for each pass
6674 	 * acknowledges one of each pointed to by the inode.
6675 	 */
6676 	for (;;) {
6677 		totblks += blkstofrags(fs, howmany(numblks, NINDIR(fs)));
6678 		numblks -= NINDIR(fs);
6679 		if (numblks <= 0)
6680 			break;
6681 		numblks = howmany(numblks, NINDIR(fs));
6682 	}
6683 out:
6684 	totblks = fsbtodb(fs, totblks);
6685 	/*
6686 	 * Handle sparse files.  We can't reclaim more blocks than the inode
6687 	 * references.  We will correct it later in handle_complete_freeblks()
6688 	 * when we know the real count.
6689 	 */
6690 	if (totblks > datablocks)
6691 		return (0);
6692 	return (datablocks - totblks);
6693 }
6694 
6695 /*
6696  * Handle freeblocks for journaled softupdate filesystems.
6697  *
6698  * Contrary to normal softupdates, we must preserve the block pointers in
6699  * indirects until their subordinates are free.  This is to avoid journaling
6700  * every block that is freed which may consume more space than the journal
6701  * itself.  The recovery program will see the free block journals at the
6702  * base of the truncated area and traverse them to reclaim space.  The
6703  * pointers in the inode may be cleared immediately after the journal
6704  * records are written because each direct and indirect pointer in the
6705  * inode is recorded in a journal.  This permits full truncation to proceed
6706  * asynchronously.  The write order is journal -> inode -> cgs -> indirects.
6707  *
6708  * The algorithm is as follows:
6709  * 1) Traverse the in-memory state and create journal entries to release
6710  *    the relevant blocks and full indirect trees.
6711  * 2) Traverse the indirect block chain adding partial truncation freework
6712  *    records to indirects in the path to lastlbn.  The freework will
6713  *    prevent new allocation dependencies from being satisfied in this
6714  *    indirect until the truncation completes.
6715  * 3) Read and lock the inode block, performing an update with the new size
6716  *    and pointers.  This prevents truncated data from becoming valid on
6717  *    disk through step 4.
6718  * 4) Reap unsatisfied dependencies that are beyond the truncated area,
6719  *    eliminate journal work for those records that do not require it.
6720  * 5) Schedule the journal records to be written followed by the inode block.
6721  * 6) Allocate any necessary frags for the end of file.
6722  * 7) Zero any partially truncated blocks.
6723  *
6724  * From this truncation proceeds asynchronously using the freework and
6725  * indir_trunc machinery.  The file will not be extended again into a
6726  * partially truncated indirect block until all work is completed but
6727  * the normal dependency mechanism ensures that it is rolled back/forward
6728  * as appropriate.  Further truncation may occur without delay and is
6729  * serialized in indir_trunc().
6730  */
6731 void
6732 softdep_journal_freeblocks(
6733 	struct inode *ip,	/* The inode whose length is to be reduced */
6734 	struct ucred *cred,
6735 	off_t length,		/* The new length for the file */
6736 	int flags)		/* IO_EXT and/or IO_NORMAL */
6737 {
6738 	struct freeblks *freeblks, *fbn;
6739 	struct worklist *wk, *wkn;
6740 	struct inodedep *inodedep;
6741 	struct jblkdep *jblkdep;
6742 	struct allocdirect *adp, *adpn;
6743 	struct ufsmount *ump;
6744 	struct fs *fs;
6745 	struct buf *bp;
6746 	struct vnode *vp;
6747 	struct mount *mp;
6748 	daddr_t dbn;
6749 	ufs2_daddr_t extblocks, datablocks;
6750 	ufs_lbn_t tmpval, lbn, lastlbn;
6751 	int frags, lastoff, iboff, allocblock, needj, error, i;
6752 
6753 	ump = ITOUMP(ip);
6754 	mp = UFSTOVFS(ump);
6755 	fs = ump->um_fs;
6756 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
6757 	    ("softdep_journal_freeblocks called on non-softdep filesystem"));
6758 	vp = ITOV(ip);
6759 	needj = 1;
6760 	iboff = -1;
6761 	allocblock = 0;
6762 	extblocks = 0;
6763 	datablocks = 0;
6764 	frags = 0;
6765 	freeblks = newfreeblks(mp, ip);
6766 	ACQUIRE_LOCK(ump);
6767 	/*
6768 	 * If we're truncating a removed file that will never be written
6769 	 * we don't need to journal the block frees.  The canceled journals
6770 	 * for the allocations will suffice.
6771 	 */
6772 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6773 	if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED &&
6774 	    length == 0)
6775 		needj = 0;
6776 	CTR3(KTR_SUJ, "softdep_journal_freeblks: ip %d length %ld needj %d",
6777 	    ip->i_number, length, needj);
6778 	FREE_LOCK(ump);
6779 	/*
6780 	 * Calculate the lbn that we are truncating to.  This results in -1
6781 	 * if we're truncating the 0 bytes.  So it is the last lbn we want
6782 	 * to keep, not the first lbn we want to truncate.
6783 	 */
6784 	lastlbn = lblkno(fs, length + fs->fs_bsize - 1) - 1;
6785 	lastoff = blkoff(fs, length);
6786 	/*
6787 	 * Compute frags we are keeping in lastlbn.  0 means all.
6788 	 */
6789 	if (lastlbn >= 0 && lastlbn < UFS_NDADDR) {
6790 		frags = fragroundup(fs, lastoff);
6791 		/* adp offset of last valid allocdirect. */
6792 		iboff = lastlbn;
6793 	} else if (lastlbn > 0)
6794 		iboff = UFS_NDADDR;
6795 	if (fs->fs_magic == FS_UFS2_MAGIC)
6796 		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
6797 	/*
6798 	 * Handle normal data blocks and indirects.  This section saves
6799 	 * values used after the inode update to complete frag and indirect
6800 	 * truncation.
6801 	 */
6802 	if ((flags & IO_NORMAL) != 0) {
6803 		/*
6804 		 * Handle truncation of whole direct and indirect blocks.
6805 		 */
6806 		for (i = iboff + 1; i < UFS_NDADDR; i++)
6807 			setup_freedirect(freeblks, ip, i, needj);
6808 		for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR;
6809 		    i < UFS_NIADDR;
6810 		    i++, lbn += tmpval, tmpval *= NINDIR(fs)) {
6811 			/* Release a whole indirect tree. */
6812 			if (lbn > lastlbn) {
6813 				setup_freeindir(freeblks, ip, i, -lbn -i,
6814 				    needj);
6815 				continue;
6816 			}
6817 			iboff = i + UFS_NDADDR;
6818 			/*
6819 			 * Traverse partially truncated indirect tree.
6820 			 */
6821 			if (lbn <= lastlbn && lbn + tmpval - 1 > lastlbn)
6822 				setup_trunc_indir(freeblks, ip, -lbn - i,
6823 				    lastlbn, DIP(ip, i_ib[i]));
6824 		}
6825 		/*
6826 		 * Handle partial truncation to a frag boundary.
6827 		 */
6828 		if (frags) {
6829 			ufs2_daddr_t blkno;
6830 			long oldfrags;
6831 
6832 			oldfrags = blksize(fs, ip, lastlbn);
6833 			blkno = DIP(ip, i_db[lastlbn]);
6834 			if (blkno && oldfrags != frags) {
6835 				oldfrags -= frags;
6836 				oldfrags = numfrags(fs, oldfrags);
6837 				blkno += numfrags(fs, frags);
6838 				newfreework(ump, freeblks, NULL, lastlbn,
6839 				    blkno, oldfrags, 0, needj);
6840 				if (needj)
6841 					adjust_newfreework(freeblks,
6842 					    numfrags(fs, frags));
6843 			} else if (blkno == 0)
6844 				allocblock = 1;
6845 		}
6846 		/*
6847 		 * Add a journal record for partial truncate if we are
6848 		 * handling indirect blocks.  Non-indirects need no extra
6849 		 * journaling.
6850 		 */
6851 		if (length != 0 && lastlbn >= UFS_NDADDR) {
6852 			UFS_INODE_SET_FLAG(ip, IN_TRUNCATED);
6853 			newjtrunc(freeblks, length, 0);
6854 		}
6855 		ip->i_size = length;
6856 		DIP_SET(ip, i_size, ip->i_size);
6857 		UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE);
6858 		datablocks = DIP(ip, i_blocks) - extblocks;
6859 		if (length != 0)
6860 			datablocks = blkcount(fs, datablocks, length);
6861 		freeblks->fb_len = length;
6862 	}
6863 	if ((flags & IO_EXT) != 0) {
6864 		for (i = 0; i < UFS_NXADDR; i++)
6865 			setup_freeext(freeblks, ip, i, needj);
6866 		ip->i_din2->di_extsize = 0;
6867 		datablocks += extblocks;
6868 		UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE);
6869 	}
6870 #ifdef QUOTA
6871 	/* Reference the quotas in case the block count is wrong in the end. */
6872 	quotaref(vp, freeblks->fb_quota);
6873 	(void) chkdq(ip, -datablocks, NOCRED, FORCE);
6874 #endif
6875 	freeblks->fb_chkcnt = -datablocks;
6876 	UFS_LOCK(ump);
6877 	fs->fs_pendingblocks += datablocks;
6878 	UFS_UNLOCK(ump);
6879 	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
6880 	/*
6881 	 * Handle truncation of incomplete alloc direct dependencies.  We
6882 	 * hold the inode block locked to prevent incomplete dependencies
6883 	 * from reaching the disk while we are eliminating those that
6884 	 * have been truncated.  This is a partially inlined ffs_update().
6885 	 */
6886 	ufs_itimes(vp);
6887 	ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED);
6888 	dbn = fsbtodb(fs, ino_to_fsba(fs, ip->i_number));
6889 	error = ffs_breadz(ump, ump->um_devvp, dbn, dbn, (int)fs->fs_bsize,
6890 	    NULL, NULL, 0, cred, 0, NULL, &bp);
6891 	if (error) {
6892 		softdep_error("softdep_journal_freeblocks", error);
6893 		return;
6894 	}
6895 	if (bp->b_bufsize == fs->fs_bsize)
6896 		bp->b_flags |= B_CLUSTEROK;
6897 	softdep_update_inodeblock(ip, bp, 0);
6898 	if (ump->um_fstype == UFS1) {
6899 		*((struct ufs1_dinode *)bp->b_data +
6900 		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1;
6901 	} else {
6902 		ffs_update_dinode_ckhash(fs, ip->i_din2);
6903 		*((struct ufs2_dinode *)bp->b_data +
6904 		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2;
6905 	}
6906 	ACQUIRE_LOCK(ump);
6907 	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6908 	if ((inodedep->id_state & IOSTARTED) != 0)
6909 		panic("softdep_setup_freeblocks: inode busy");
6910 	/*
6911 	 * Add the freeblks structure to the list of operations that
6912 	 * must await the zero'ed inode being written to disk. If we
6913 	 * still have a bitmap dependency (needj), then the inode
6914 	 * has never been written to disk, so we can process the
6915 	 * freeblks below once we have deleted the dependencies.
6916 	 */
6917 	if (needj)
6918 		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
6919 	else
6920 		freeblks->fb_state |= COMPLETE;
6921 	if ((flags & IO_NORMAL) != 0) {
6922 		TAILQ_FOREACH_SAFE(adp, &inodedep->id_inoupdt, ad_next, adpn) {
6923 			if (adp->ad_offset > iboff)
6924 				cancel_allocdirect(&inodedep->id_inoupdt, adp,
6925 				    freeblks);
6926 			/*
6927 			 * Truncate the allocdirect.  We could eliminate
6928 			 * or modify journal records as well.
6929 			 */
6930 			else if (adp->ad_offset == iboff && frags)
6931 				adp->ad_newsize = frags;
6932 		}
6933 	}
6934 	if ((flags & IO_EXT) != 0)
6935 		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
6936 			cancel_allocdirect(&inodedep->id_extupdt, adp,
6937 			    freeblks);
6938 	/*
6939 	 * Scan the bufwait list for newblock dependencies that will never
6940 	 * make it to disk.
6941 	 */
6942 	LIST_FOREACH_SAFE(wk, &inodedep->id_bufwait, wk_list, wkn) {
6943 		if (wk->wk_type != D_ALLOCDIRECT)
6944 			continue;
6945 		adp = WK_ALLOCDIRECT(wk);
6946 		if (((flags & IO_NORMAL) != 0 && (adp->ad_offset > iboff)) ||
6947 		    ((flags & IO_EXT) != 0 && (adp->ad_state & EXTDATA))) {
6948 			cancel_jfreeblk(freeblks, adp->ad_newblkno);
6949 			cancel_newblk(WK_NEWBLK(wk), NULL, &freeblks->fb_jwork);
6950 			WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
6951 		}
6952 	}
6953 	/*
6954 	 * Add journal work.
6955 	 */
6956 	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps)
6957 		add_to_journal(&jblkdep->jb_list);
6958 	FREE_LOCK(ump);
6959 	bdwrite(bp);
6960 	/*
6961 	 * Truncate dependency structures beyond length.
6962 	 */
6963 	trunc_dependencies(ip, freeblks, lastlbn, frags, flags);
6964 	/*
6965 	 * This is only set when we need to allocate a fragment because
6966 	 * none existed at the end of a frag-sized file.  It handles only
6967 	 * allocating a new, zero filled block.
6968 	 */
6969 	if (allocblock) {
6970 		ip->i_size = length - lastoff;
6971 		DIP_SET(ip, i_size, ip->i_size);
6972 		error = UFS_BALLOC(vp, length - 1, 1, cred, BA_CLRBUF, &bp);
6973 		if (error != 0) {
6974 			softdep_error("softdep_journal_freeblks", error);
6975 			return;
6976 		}
6977 		ip->i_size = length;
6978 		DIP_SET(ip, i_size, length);
6979 		UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE);
6980 		allocbuf(bp, frags);
6981 		ffs_update(vp, 0);
6982 		bawrite(bp);
6983 	} else if (lastoff != 0 && vp->v_type != VDIR) {
6984 		int size;
6985 
6986 		/*
6987 		 * Zero the end of a truncated frag or block.
6988 		 */
6989 		size = sblksize(fs, length, lastlbn);
6990 		error = bread(vp, lastlbn, size, cred, &bp);
6991 		if (error == 0) {
6992 			bzero((char *)bp->b_data + lastoff, size - lastoff);
6993 			bawrite(bp);
6994 		} else if (!ffs_fsfail_cleanup(ump, error)) {
6995 			softdep_error("softdep_journal_freeblks", error);
6996 			return;
6997 		}
6998 	}
6999 	ACQUIRE_LOCK(ump);
7000 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
7001 	TAILQ_INSERT_TAIL(&inodedep->id_freeblklst, freeblks, fb_next);
7002 	freeblks->fb_state |= DEPCOMPLETE | ONDEPLIST;
7003 	/*
7004 	 * We zero earlier truncations so they don't erroneously
7005 	 * update i_blocks.
7006 	 */
7007 	if (freeblks->fb_len == 0 && (flags & IO_NORMAL) != 0)
7008 		TAILQ_FOREACH(fbn, &inodedep->id_freeblklst, fb_next)
7009 			fbn->fb_len = 0;
7010 	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE &&
7011 	    LIST_EMPTY(&freeblks->fb_jblkdephd))
7012 		freeblks->fb_state |= INPROGRESS;
7013 	else
7014 		freeblks = NULL;
7015 	FREE_LOCK(ump);
7016 	if (freeblks)
7017 		handle_workitem_freeblocks(freeblks, 0);
7018 	trunc_pages(ip, length, extblocks, flags);
7019 
7020 }
7021 
7022 /*
7023  * Flush a JOP_SYNC to the journal.
7024  */
7025 void
7026 softdep_journal_fsync(struct inode *ip)
7027 {
7028 	struct jfsync *jfsync;
7029 	struct ufsmount *ump;
7030 
7031 	ump = ITOUMP(ip);
7032 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
7033 	    ("softdep_journal_fsync called on non-softdep filesystem"));
7034 	if ((ip->i_flag & IN_TRUNCATED) == 0)
7035 		return;
7036 	ip->i_flag &= ~IN_TRUNCATED;
7037 	jfsync = malloc(sizeof(*jfsync), M_JFSYNC, M_SOFTDEP_FLAGS | M_ZERO);
7038 	workitem_alloc(&jfsync->jfs_list, D_JFSYNC, UFSTOVFS(ump));
7039 	jfsync->jfs_size = ip->i_size;
7040 	jfsync->jfs_ino = ip->i_number;
7041 	ACQUIRE_LOCK(ump);
7042 	add_to_journal(&jfsync->jfs_list);
7043 	jwait(&jfsync->jfs_list, MNT_WAIT);
7044 	FREE_LOCK(ump);
7045 }
7046 
7047 /*
7048  * Block de-allocation dependencies.
7049  *
7050  * When blocks are de-allocated, the on-disk pointers must be nullified before
7051  * the blocks are made available for use by other files.  (The true
7052  * requirement is that old pointers must be nullified before new on-disk
7053  * pointers are set.  We chose this slightly more stringent requirement to
7054  * reduce complexity.) Our implementation handles this dependency by updating
7055  * the inode (or indirect block) appropriately but delaying the actual block
7056  * de-allocation (i.e., freemap and free space count manipulation) until
7057  * after the updated versions reach stable storage.  After the disk is
7058  * updated, the blocks can be safely de-allocated whenever it is convenient.
7059  * This implementation handles only the common case of reducing a file's
7060  * length to zero. Other cases are handled by the conventional synchronous
7061  * write approach.
7062  *
7063  * The ffs implementation with which we worked double-checks
7064  * the state of the block pointers and file size as it reduces
7065  * a file's length.  Some of this code is replicated here in our
7066  * soft updates implementation.  The freeblks->fb_chkcnt field is
7067  * used to transfer a part of this information to the procedure
7068  * that eventually de-allocates the blocks.
7069  *
7070  * This routine should be called from the routine that shortens
7071  * a file's length, before the inode's size or block pointers
7072  * are modified. It will save the block pointer information for
7073  * later release and zero the inode so that the calling routine
7074  * can release it.
7075  */
7076 void
7077 softdep_setup_freeblocks(
7078 	struct inode *ip,	/* The inode whose length is to be reduced */
7079 	off_t length,		/* The new length for the file */
7080 	int flags)		/* IO_EXT and/or IO_NORMAL */
7081 {
7082 	struct ufs1_dinode *dp1;
7083 	struct ufs2_dinode *dp2;
7084 	struct freeblks *freeblks;
7085 	struct inodedep *inodedep;
7086 	struct allocdirect *adp;
7087 	struct ufsmount *ump;
7088 	struct buf *bp;
7089 	struct fs *fs;
7090 	ufs2_daddr_t extblocks, datablocks;
7091 	struct mount *mp;
7092 	int i, delay, error;
7093 	ufs_lbn_t tmpval;
7094 	ufs_lbn_t lbn;
7095 
7096 	ump = ITOUMP(ip);
7097 	mp = UFSTOVFS(ump);
7098 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
7099 	    ("softdep_setup_freeblocks called on non-softdep filesystem"));
7100 	CTR2(KTR_SUJ, "softdep_setup_freeblks: ip %d length %ld",
7101 	    ip->i_number, length);
7102 	KASSERT(length == 0, ("softdep_setup_freeblocks: non-zero length"));
7103 	fs = ump->um_fs;
7104 	if ((error = bread(ump->um_devvp,
7105 	    fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
7106 	    (int)fs->fs_bsize, NOCRED, &bp)) != 0) {
7107 		if (!ffs_fsfail_cleanup(ump, error))
7108 			softdep_error("softdep_setup_freeblocks", error);
7109 		return;
7110 	}
7111 	freeblks = newfreeblks(mp, ip);
7112 	extblocks = 0;
7113 	datablocks = 0;
7114 	if (fs->fs_magic == FS_UFS2_MAGIC)
7115 		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
7116 	if ((flags & IO_NORMAL) != 0) {
7117 		for (i = 0; i < UFS_NDADDR; i++)
7118 			setup_freedirect(freeblks, ip, i, 0);
7119 		for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR;
7120 		    i < UFS_NIADDR;
7121 		    i++, lbn += tmpval, tmpval *= NINDIR(fs))
7122 			setup_freeindir(freeblks, ip, i, -lbn -i, 0);
7123 		ip->i_size = 0;
7124 		DIP_SET(ip, i_size, 0);
7125 		UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE);
7126 		datablocks = DIP(ip, i_blocks) - extblocks;
7127 	}
7128 	if ((flags & IO_EXT) != 0) {
7129 		for (i = 0; i < UFS_NXADDR; i++)
7130 			setup_freeext(freeblks, ip, i, 0);
7131 		ip->i_din2->di_extsize = 0;
7132 		datablocks += extblocks;
7133 		UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE);
7134 	}
7135 #ifdef QUOTA
7136 	/* Reference the quotas in case the block count is wrong in the end. */
7137 	quotaref(ITOV(ip), freeblks->fb_quota);
7138 	(void) chkdq(ip, -datablocks, NOCRED, FORCE);
7139 #endif
7140 	freeblks->fb_chkcnt = -datablocks;
7141 	UFS_LOCK(ump);
7142 	fs->fs_pendingblocks += datablocks;
7143 	UFS_UNLOCK(ump);
7144 	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
7145 	/*
7146 	 * Push the zero'ed inode to its disk buffer so that we are free
7147 	 * to delete its dependencies below. Once the dependencies are gone
7148 	 * the buffer can be safely released.
7149 	 */
7150 	if (ump->um_fstype == UFS1) {
7151 		dp1 = ((struct ufs1_dinode *)bp->b_data +
7152 		    ino_to_fsbo(fs, ip->i_number));
7153 		ip->i_din1->di_freelink = dp1->di_freelink;
7154 		*dp1 = *ip->i_din1;
7155 	} else {
7156 		dp2 = ((struct ufs2_dinode *)bp->b_data +
7157 		    ino_to_fsbo(fs, ip->i_number));
7158 		ip->i_din2->di_freelink = dp2->di_freelink;
7159 		ffs_update_dinode_ckhash(fs, ip->i_din2);
7160 		*dp2 = *ip->i_din2;
7161 	}
7162 	/*
7163 	 * Find and eliminate any inode dependencies.
7164 	 */
7165 	ACQUIRE_LOCK(ump);
7166 	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
7167 	if ((inodedep->id_state & IOSTARTED) != 0)
7168 		panic("softdep_setup_freeblocks: inode busy");
7169 	/*
7170 	 * Add the freeblks structure to the list of operations that
7171 	 * must await the zero'ed inode being written to disk. If we
7172 	 * still have a bitmap dependency (delay == 0), then the inode
7173 	 * has never been written to disk, so we can process the
7174 	 * freeblks below once we have deleted the dependencies.
7175 	 */
7176 	delay = (inodedep->id_state & DEPCOMPLETE);
7177 	if (delay)
7178 		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
7179 	else
7180 		freeblks->fb_state |= COMPLETE;
7181 	/*
7182 	 * Because the file length has been truncated to zero, any
7183 	 * pending block allocation dependency structures associated
7184 	 * with this inode are obsolete and can simply be de-allocated.
7185 	 * We must first merge the two dependency lists to get rid of
7186 	 * any duplicate freefrag structures, then purge the merged list.
7187 	 * If we still have a bitmap dependency, then the inode has never
7188 	 * been written to disk, so we can free any fragments without delay.
7189 	 */
7190 	if (flags & IO_NORMAL) {
7191 		merge_inode_lists(&inodedep->id_newinoupdt,
7192 		    &inodedep->id_inoupdt);
7193 		while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
7194 			cancel_allocdirect(&inodedep->id_inoupdt, adp,
7195 			    freeblks);
7196 	}
7197 	if (flags & IO_EXT) {
7198 		merge_inode_lists(&inodedep->id_newextupdt,
7199 		    &inodedep->id_extupdt);
7200 		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
7201 			cancel_allocdirect(&inodedep->id_extupdt, adp,
7202 			    freeblks);
7203 	}
7204 	FREE_LOCK(ump);
7205 	bdwrite(bp);
7206 	trunc_dependencies(ip, freeblks, -1, 0, flags);
7207 	ACQUIRE_LOCK(ump);
7208 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
7209 		(void) free_inodedep(inodedep);
7210 	freeblks->fb_state |= DEPCOMPLETE;
7211 	/*
7212 	 * If the inode with zeroed block pointers is now on disk
7213 	 * we can start freeing blocks.
7214 	 */
7215 	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
7216 		freeblks->fb_state |= INPROGRESS;
7217 	else
7218 		freeblks = NULL;
7219 	FREE_LOCK(ump);
7220 	if (freeblks)
7221 		handle_workitem_freeblocks(freeblks, 0);
7222 	trunc_pages(ip, length, extblocks, flags);
7223 }
7224 
7225 /*
7226  * Eliminate pages from the page cache that back parts of this inode and
7227  * adjust the vnode pager's idea of our size.  This prevents stale data
7228  * from hanging around in the page cache.
7229  */
7230 static void
7231 trunc_pages(
7232 	struct inode *ip,
7233 	off_t length,
7234 	ufs2_daddr_t extblocks,
7235 	int flags)
7236 {
7237 	struct vnode *vp;
7238 	struct fs *fs;
7239 	ufs_lbn_t lbn;
7240 	off_t end, extend;
7241 
7242 	vp = ITOV(ip);
7243 	fs = ITOFS(ip);
7244 	extend = OFF_TO_IDX(lblktosize(fs, -extblocks));
7245 	if ((flags & IO_EXT) != 0)
7246 		vn_pages_remove(vp, extend, 0);
7247 	if ((flags & IO_NORMAL) == 0)
7248 		return;
7249 	BO_LOCK(&vp->v_bufobj);
7250 	drain_output(vp);
7251 	BO_UNLOCK(&vp->v_bufobj);
7252 	/*
7253 	 * The vnode pager eliminates file pages we eliminate indirects
7254 	 * below.
7255 	 */
7256 	vnode_pager_setsize(vp, length);
7257 	/*
7258 	 * Calculate the end based on the last indirect we want to keep.  If
7259 	 * the block extends into indirects we can just use the negative of
7260 	 * its lbn.  Doubles and triples exist at lower numbers so we must
7261 	 * be careful not to remove those, if they exist.  double and triple
7262 	 * indirect lbns do not overlap with others so it is not important
7263 	 * to verify how many levels are required.
7264 	 */
7265 	lbn = lblkno(fs, length);
7266 	if (lbn >= UFS_NDADDR) {
7267 		/* Calculate the virtual lbn of the triple indirect. */
7268 		lbn = -lbn - (UFS_NIADDR - 1);
7269 		end = OFF_TO_IDX(lblktosize(fs, lbn));
7270 	} else
7271 		end = extend;
7272 	vn_pages_remove(vp, OFF_TO_IDX(OFF_MAX), end);
7273 }
7274 
7275 /*
7276  * See if the buf bp is in the range eliminated by truncation.
7277  */
7278 static int
7279 trunc_check_buf(
7280 	struct buf *bp,
7281 	int *blkoffp,
7282 	ufs_lbn_t lastlbn,
7283 	int lastoff,
7284 	int flags)
7285 {
7286 	ufs_lbn_t lbn;
7287 
7288 	*blkoffp = 0;
7289 	/* Only match ext/normal blocks as appropriate. */
7290 	if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) ||
7291 	    ((flags & IO_NORMAL) == 0 && (bp->b_xflags & BX_ALTDATA) == 0))
7292 		return (0);
7293 	/* ALTDATA is always a full truncation. */
7294 	if ((bp->b_xflags & BX_ALTDATA) != 0)
7295 		return (1);
7296 	/* -1 is full truncation. */
7297 	if (lastlbn == -1)
7298 		return (1);
7299 	/*
7300 	 * If this is a partial truncate we only want those
7301 	 * blocks and indirect blocks that cover the range
7302 	 * we're after.
7303 	 */
7304 	lbn = bp->b_lblkno;
7305 	if (lbn < 0)
7306 		lbn = -(lbn + lbn_level(lbn));
7307 	if (lbn < lastlbn)
7308 		return (0);
7309 	/* Here we only truncate lblkno if it's partial. */
7310 	if (lbn == lastlbn) {
7311 		if (lastoff == 0)
7312 			return (0);
7313 		*blkoffp = lastoff;
7314 	}
7315 	return (1);
7316 }
7317 
7318 /*
7319  * Eliminate any dependencies that exist in memory beyond lblkno:off
7320  */
7321 static void
7322 trunc_dependencies(
7323 	struct inode *ip,
7324 	struct freeblks *freeblks,
7325 	ufs_lbn_t lastlbn,
7326 	int lastoff,
7327 	int flags)
7328 {
7329 	struct bufobj *bo;
7330 	struct vnode *vp;
7331 	struct buf *bp;
7332 	int blkoff;
7333 
7334 	/*
7335 	 * We must wait for any I/O in progress to finish so that
7336 	 * all potential buffers on the dirty list will be visible.
7337 	 * Once they are all there, walk the list and get rid of
7338 	 * any dependencies.
7339 	 */
7340 	vp = ITOV(ip);
7341 	bo = &vp->v_bufobj;
7342 	BO_LOCK(bo);
7343 	drain_output(vp);
7344 	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
7345 		bp->b_vflags &= ~BV_SCANNED;
7346 restart:
7347 	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
7348 		if (bp->b_vflags & BV_SCANNED)
7349 			continue;
7350 		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
7351 			bp->b_vflags |= BV_SCANNED;
7352 			continue;
7353 		}
7354 		KASSERT(bp->b_bufobj == bo, ("Wrong object in buffer"));
7355 		if ((bp = getdirtybuf(bp, BO_LOCKPTR(bo), MNT_WAIT)) == NULL)
7356 			goto restart;
7357 		BO_UNLOCK(bo);
7358 		if (deallocate_dependencies(bp, freeblks, blkoff))
7359 			bqrelse(bp);
7360 		else
7361 			brelse(bp);
7362 		BO_LOCK(bo);
7363 		goto restart;
7364 	}
7365 	/*
7366 	 * Now do the work of vtruncbuf while also matching indirect blocks.
7367 	 */
7368 	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs)
7369 		bp->b_vflags &= ~BV_SCANNED;
7370 cleanrestart:
7371 	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) {
7372 		if (bp->b_vflags & BV_SCANNED)
7373 			continue;
7374 		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
7375 			bp->b_vflags |= BV_SCANNED;
7376 			continue;
7377 		}
7378 		if (BUF_LOCK(bp,
7379 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
7380 		    BO_LOCKPTR(bo)) == ENOLCK) {
7381 			BO_LOCK(bo);
7382 			goto cleanrestart;
7383 		}
7384 		BO_LOCK(bo);
7385 		bp->b_vflags |= BV_SCANNED;
7386 		BO_UNLOCK(bo);
7387 		bremfree(bp);
7388 		if (blkoff != 0) {
7389 			allocbuf(bp, blkoff);
7390 			bqrelse(bp);
7391 		} else {
7392 			bp->b_flags |= B_INVAL | B_NOCACHE | B_RELBUF;
7393 			brelse(bp);
7394 		}
7395 		BO_LOCK(bo);
7396 		goto cleanrestart;
7397 	}
7398 	drain_output(vp);
7399 	BO_UNLOCK(bo);
7400 }
7401 
7402 static int
7403 cancel_pagedep(
7404 	struct pagedep *pagedep,
7405 	struct freeblks *freeblks,
7406 	int blkoff)
7407 {
7408 	struct jremref *jremref;
7409 	struct jmvref *jmvref;
7410 	struct dirrem *dirrem, *tmp;
7411 	int i;
7412 
7413 	/*
7414 	 * Copy any directory remove dependencies to the list
7415 	 * to be processed after the freeblks proceeds.  If
7416 	 * directory entry never made it to disk they
7417 	 * can be dumped directly onto the work list.
7418 	 */
7419 	LIST_FOREACH_SAFE(dirrem, &pagedep->pd_dirremhd, dm_next, tmp) {
7420 		/* Skip this directory removal if it is intended to remain. */
7421 		if (dirrem->dm_offset < blkoff)
7422 			continue;
7423 		/*
7424 		 * If there are any dirrems we wait for the journal write
7425 		 * to complete and then restart the buf scan as the lock
7426 		 * has been dropped.
7427 		 */
7428 		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) {
7429 			jwait(&jremref->jr_list, MNT_WAIT);
7430 			return (ERESTART);
7431 		}
7432 		LIST_REMOVE(dirrem, dm_next);
7433 		dirrem->dm_dirinum = pagedep->pd_ino;
7434 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &dirrem->dm_list);
7435 	}
7436 	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) {
7437 		jwait(&jmvref->jm_list, MNT_WAIT);
7438 		return (ERESTART);
7439 	}
7440 	/*
7441 	 * When we're partially truncating a pagedep we just want to flush
7442 	 * journal entries and return.  There can not be any adds in the
7443 	 * truncated portion of the directory and newblk must remain if
7444 	 * part of the block remains.
7445 	 */
7446 	if (blkoff != 0) {
7447 		struct diradd *dap;
7448 
7449 		LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
7450 			if (dap->da_offset > blkoff)
7451 				panic("cancel_pagedep: diradd %p off %d > %d",
7452 				    dap, dap->da_offset, blkoff);
7453 		for (i = 0; i < DAHASHSZ; i++)
7454 			LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist)
7455 				if (dap->da_offset > blkoff)
7456 					panic("cancel_pagedep: diradd %p off %d > %d",
7457 					    dap, dap->da_offset, blkoff);
7458 		return (0);
7459 	}
7460 	/*
7461 	 * There should be no directory add dependencies present
7462 	 * as the directory could not be truncated until all
7463 	 * children were removed.
7464 	 */
7465 	KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL,
7466 	    ("deallocate_dependencies: pendinghd != NULL"));
7467 	for (i = 0; i < DAHASHSZ; i++)
7468 		KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL,
7469 		    ("deallocate_dependencies: diraddhd != NULL"));
7470 	if ((pagedep->pd_state & NEWBLOCK) != 0)
7471 		free_newdirblk(pagedep->pd_newdirblk);
7472 	if (free_pagedep(pagedep) == 0)
7473 		panic("Failed to free pagedep %p", pagedep);
7474 	return (0);
7475 }
7476 
7477 /*
7478  * Reclaim any dependency structures from a buffer that is about to
7479  * be reallocated to a new vnode. The buffer must be locked, thus,
7480  * no I/O completion operations can occur while we are manipulating
7481  * its associated dependencies. The mutex is held so that other I/O's
7482  * associated with related dependencies do not occur.
7483  */
7484 static int
7485 deallocate_dependencies(
7486 	struct buf *bp,
7487 	struct freeblks *freeblks,
7488 	int off)
7489 {
7490 	struct indirdep *indirdep;
7491 	struct pagedep *pagedep;
7492 	struct worklist *wk, *wkn;
7493 	struct ufsmount *ump;
7494 
7495 	ump = softdep_bp_to_mp(bp);
7496 	if (ump == NULL)
7497 		goto done;
7498 	ACQUIRE_LOCK(ump);
7499 	LIST_FOREACH_SAFE(wk, &bp->b_dep, wk_list, wkn) {
7500 		switch (wk->wk_type) {
7501 		case D_INDIRDEP:
7502 			indirdep = WK_INDIRDEP(wk);
7503 			if (bp->b_lblkno >= 0 ||
7504 			    bp->b_blkno != indirdep->ir_savebp->b_lblkno)
7505 				panic("deallocate_dependencies: not indir");
7506 			cancel_indirdep(indirdep, bp, freeblks);
7507 			continue;
7508 
7509 		case D_PAGEDEP:
7510 			pagedep = WK_PAGEDEP(wk);
7511 			if (cancel_pagedep(pagedep, freeblks, off)) {
7512 				FREE_LOCK(ump);
7513 				return (ERESTART);
7514 			}
7515 			continue;
7516 
7517 		case D_ALLOCINDIR:
7518 			/*
7519 			 * Simply remove the allocindir, we'll find it via
7520 			 * the indirdep where we can clear pointers if
7521 			 * needed.
7522 			 */
7523 			WORKLIST_REMOVE(wk);
7524 			continue;
7525 
7526 		case D_FREEWORK:
7527 			/*
7528 			 * A truncation is waiting for the zero'd pointers
7529 			 * to be written.  It can be freed when the freeblks
7530 			 * is journaled.
7531 			 */
7532 			WORKLIST_REMOVE(wk);
7533 			wk->wk_state |= ONDEPLIST;
7534 			WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
7535 			break;
7536 
7537 		case D_ALLOCDIRECT:
7538 			if (off != 0)
7539 				continue;
7540 			/* FALLTHROUGH */
7541 		default:
7542 			panic("deallocate_dependencies: Unexpected type %s",
7543 			    TYPENAME(wk->wk_type));
7544 			/* NOTREACHED */
7545 		}
7546 	}
7547 	FREE_LOCK(ump);
7548 done:
7549 	/*
7550 	 * Don't throw away this buf, we were partially truncating and
7551 	 * some deps may always remain.
7552 	 */
7553 	if (off) {
7554 		allocbuf(bp, off);
7555 		bp->b_vflags |= BV_SCANNED;
7556 		return (EBUSY);
7557 	}
7558 	bp->b_flags |= B_INVAL | B_NOCACHE;
7559 
7560 	return (0);
7561 }
7562 
7563 /*
7564  * An allocdirect is being canceled due to a truncate.  We must make sure
7565  * the journal entry is released in concert with the blkfree that releases
7566  * the storage.  Completed journal entries must not be released until the
7567  * space is no longer pointed to by the inode or in the bitmap.
7568  */
7569 static void
7570 cancel_allocdirect(
7571 	struct allocdirectlst *adphead,
7572 	struct allocdirect *adp,
7573 	struct freeblks *freeblks)
7574 {
7575 	struct freework *freework;
7576 	struct newblk *newblk;
7577 	struct worklist *wk;
7578 
7579 	TAILQ_REMOVE(adphead, adp, ad_next);
7580 	newblk = (struct newblk *)adp;
7581 	freework = NULL;
7582 	/*
7583 	 * Find the correct freework structure.
7584 	 */
7585 	LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) {
7586 		if (wk->wk_type != D_FREEWORK)
7587 			continue;
7588 		freework = WK_FREEWORK(wk);
7589 		if (freework->fw_blkno == newblk->nb_newblkno)
7590 			break;
7591 	}
7592 	if (freework == NULL)
7593 		panic("cancel_allocdirect: Freework not found");
7594 	/*
7595 	 * If a newblk exists at all we still have the journal entry that
7596 	 * initiated the allocation so we do not need to journal the free.
7597 	 */
7598 	cancel_jfreeblk(freeblks, freework->fw_blkno);
7599 	/*
7600 	 * If the journal hasn't been written the jnewblk must be passed
7601 	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
7602 	 * this by linking the journal dependency into the freework to be
7603 	 * freed when freework_freeblock() is called.  If the journal has
7604 	 * been written we can simply reclaim the journal space when the
7605 	 * freeblks work is complete.
7606 	 */
7607 	freework->fw_jnewblk = cancel_newblk(newblk, &freework->fw_list,
7608 	    &freeblks->fb_jwork);
7609 	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
7610 }
7611 
7612 /*
7613  * Cancel a new block allocation.  May be an indirect or direct block.  We
7614  * remove it from various lists and return any journal record that needs to
7615  * be resolved by the caller.
7616  *
7617  * A special consideration is made for indirects which were never pointed
7618  * at on disk and will never be found once this block is released.
7619  */
7620 static struct jnewblk *
7621 cancel_newblk(
7622 	struct newblk *newblk,
7623 	struct worklist *wk,
7624 	struct workhead *wkhd)
7625 {
7626 	struct jnewblk *jnewblk;
7627 
7628 	CTR1(KTR_SUJ, "cancel_newblk: blkno %jd", newblk->nb_newblkno);
7629 
7630 	newblk->nb_state |= GOINGAWAY;
7631 	/*
7632 	 * Previously we traversed the completedhd on each indirdep
7633 	 * attached to this newblk to cancel them and gather journal
7634 	 * work.  Since we need only the oldest journal segment and
7635 	 * the lowest point on the tree will always have the oldest
7636 	 * journal segment we are free to release the segments
7637 	 * of any subordinates and may leave the indirdep list to
7638 	 * indirdep_complete() when this newblk is freed.
7639 	 */
7640 	if (newblk->nb_state & ONDEPLIST) {
7641 		newblk->nb_state &= ~ONDEPLIST;
7642 		LIST_REMOVE(newblk, nb_deps);
7643 	}
7644 	if (newblk->nb_state & ONWORKLIST)
7645 		WORKLIST_REMOVE(&newblk->nb_list);
7646 	/*
7647 	 * If the journal entry hasn't been written we save a pointer to
7648 	 * the dependency that frees it until it is written or the
7649 	 * superseding operation completes.
7650 	 */
7651 	jnewblk = newblk->nb_jnewblk;
7652 	if (jnewblk != NULL && wk != NULL) {
7653 		newblk->nb_jnewblk = NULL;
7654 		jnewblk->jn_dep = wk;
7655 	}
7656 	if (!LIST_EMPTY(&newblk->nb_jwork))
7657 		jwork_move(wkhd, &newblk->nb_jwork);
7658 	/*
7659 	 * When truncating we must free the newdirblk early to remove
7660 	 * the pagedep from the hash before returning.
7661 	 */
7662 	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7663 		free_newdirblk(WK_NEWDIRBLK(wk));
7664 	if (!LIST_EMPTY(&newblk->nb_newdirblk))
7665 		panic("cancel_newblk: extra newdirblk");
7666 
7667 	return (jnewblk);
7668 }
7669 
7670 /*
7671  * Schedule the freefrag associated with a newblk to be released once
7672  * the pointers are written and the previous block is no longer needed.
7673  */
7674 static void
7675 newblk_freefrag(struct newblk *newblk)
7676 {
7677 	struct freefrag *freefrag;
7678 
7679 	if (newblk->nb_freefrag == NULL)
7680 		return;
7681 	freefrag = newblk->nb_freefrag;
7682 	newblk->nb_freefrag = NULL;
7683 	freefrag->ff_state |= COMPLETE;
7684 	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
7685 		add_to_worklist(&freefrag->ff_list, 0);
7686 }
7687 
7688 /*
7689  * Free a newblk. Generate a new freefrag work request if appropriate.
7690  * This must be called after the inode pointer and any direct block pointers
7691  * are valid or fully removed via truncate or frag extension.
7692  */
7693 static void
7694 free_newblk(struct newblk *newblk)
7695 {
7696 	struct indirdep *indirdep;
7697 	struct worklist *wk;
7698 
7699 	KASSERT(newblk->nb_jnewblk == NULL,
7700 	    ("free_newblk: jnewblk %p still attached", newblk->nb_jnewblk));
7701 	KASSERT(newblk->nb_list.wk_type != D_NEWBLK,
7702 	    ("free_newblk: unclaimed newblk"));
7703 	LOCK_OWNED(VFSTOUFS(newblk->nb_list.wk_mp));
7704 	newblk_freefrag(newblk);
7705 	if (newblk->nb_state & ONDEPLIST)
7706 		LIST_REMOVE(newblk, nb_deps);
7707 	if (newblk->nb_state & ONWORKLIST)
7708 		WORKLIST_REMOVE(&newblk->nb_list);
7709 	LIST_REMOVE(newblk, nb_hash);
7710 	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7711 		free_newdirblk(WK_NEWDIRBLK(wk));
7712 	if (!LIST_EMPTY(&newblk->nb_newdirblk))
7713 		panic("free_newblk: extra newdirblk");
7714 	while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL)
7715 		indirdep_complete(indirdep);
7716 	handle_jwork(&newblk->nb_jwork);
7717 	WORKITEM_FREE(newblk, D_NEWBLK);
7718 }
7719 
7720 /*
7721  * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep.
7722  */
7723 static void
7724 free_newdirblk(struct newdirblk *newdirblk)
7725 {
7726 	struct pagedep *pagedep;
7727 	struct diradd *dap;
7728 	struct worklist *wk;
7729 
7730 	LOCK_OWNED(VFSTOUFS(newdirblk->db_list.wk_mp));
7731 	WORKLIST_REMOVE(&newdirblk->db_list);
7732 	/*
7733 	 * If the pagedep is still linked onto the directory buffer
7734 	 * dependency chain, then some of the entries on the
7735 	 * pd_pendinghd list may not be committed to disk yet. In
7736 	 * this case, we will simply clear the NEWBLOCK flag and
7737 	 * let the pd_pendinghd list be processed when the pagedep
7738 	 * is next written. If the pagedep is no longer on the buffer
7739 	 * dependency chain, then all the entries on the pd_pending
7740 	 * list are committed to disk and we can free them here.
7741 	 */
7742 	pagedep = newdirblk->db_pagedep;
7743 	pagedep->pd_state &= ~NEWBLOCK;
7744 	if ((pagedep->pd_state & ONWORKLIST) == 0) {
7745 		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
7746 			free_diradd(dap, NULL);
7747 		/*
7748 		 * If no dependencies remain, the pagedep will be freed.
7749 		 */
7750 		free_pagedep(pagedep);
7751 	}
7752 	/* Should only ever be one item in the list. */
7753 	while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) {
7754 		WORKLIST_REMOVE(wk);
7755 		handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
7756 	}
7757 	WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
7758 }
7759 
7760 /*
7761  * Prepare an inode to be freed. The actual free operation is not
7762  * done until the zero'ed inode has been written to disk.
7763  */
7764 void
7765 softdep_freefile(
7766 	struct vnode *pvp,
7767 	ino_t ino,
7768 	int mode)
7769 {
7770 	struct inode *ip = VTOI(pvp);
7771 	struct inodedep *inodedep;
7772 	struct freefile *freefile;
7773 	struct freeblks *freeblks;
7774 	struct ufsmount *ump;
7775 
7776 	ump = ITOUMP(ip);
7777 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
7778 	    ("softdep_freefile called on non-softdep filesystem"));
7779 	/*
7780 	 * This sets up the inode de-allocation dependency.
7781 	 */
7782 	freefile = malloc(sizeof(struct freefile),
7783 		M_FREEFILE, M_SOFTDEP_FLAGS);
7784 	workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount);
7785 	freefile->fx_mode = mode;
7786 	freefile->fx_oldinum = ino;
7787 	freefile->fx_devvp = ump->um_devvp;
7788 	LIST_INIT(&freefile->fx_jwork);
7789 	UFS_LOCK(ump);
7790 	ump->um_fs->fs_pendinginodes += 1;
7791 	UFS_UNLOCK(ump);
7792 
7793 	/*
7794 	 * If the inodedep does not exist, then the zero'ed inode has
7795 	 * been written to disk. If the allocated inode has never been
7796 	 * written to disk, then the on-disk inode is zero'ed. In either
7797 	 * case we can free the file immediately.  If the journal was
7798 	 * canceled before being written the inode will never make it to
7799 	 * disk and we must send the canceled journal entrys to
7800 	 * ffs_freefile() to be cleared in conjunction with the bitmap.
7801 	 * Any blocks waiting on the inode to write can be safely freed
7802 	 * here as it will never been written.
7803 	 */
7804 	ACQUIRE_LOCK(ump);
7805 	inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
7806 	if (inodedep) {
7807 		/*
7808 		 * Clear out freeblks that no longer need to reference
7809 		 * this inode.
7810 		 */
7811 		while ((freeblks =
7812 		    TAILQ_FIRST(&inodedep->id_freeblklst)) != NULL) {
7813 			TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks,
7814 			    fb_next);
7815 			freeblks->fb_state &= ~ONDEPLIST;
7816 		}
7817 		/*
7818 		 * Remove this inode from the unlinked list.
7819 		 */
7820 		if (inodedep->id_state & UNLINKED) {
7821 			/*
7822 			 * Save the journal work to be freed with the bitmap
7823 			 * before we clear UNLINKED.  Otherwise it can be lost
7824 			 * if the inode block is written.
7825 			 */
7826 			handle_bufwait(inodedep, &freefile->fx_jwork);
7827 			clear_unlinked_inodedep(inodedep);
7828 			/*
7829 			 * Re-acquire inodedep as we've dropped the
7830 			 * per-filesystem lock in clear_unlinked_inodedep().
7831 			 */
7832 			inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
7833 		}
7834 	}
7835 	if (inodedep == NULL || check_inode_unwritten(inodedep)) {
7836 		FREE_LOCK(ump);
7837 		handle_workitem_freefile(freefile);
7838 		return;
7839 	}
7840 	if ((inodedep->id_state & DEPCOMPLETE) == 0)
7841 		inodedep->id_state |= GOINGAWAY;
7842 	WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
7843 	FREE_LOCK(ump);
7844 	if (ip->i_number == ino)
7845 		UFS_INODE_SET_FLAG(ip, IN_MODIFIED);
7846 }
7847 
7848 /*
7849  * Check to see if an inode has never been written to disk. If
7850  * so free the inodedep and return success, otherwise return failure.
7851  *
7852  * If we still have a bitmap dependency, then the inode has never
7853  * been written to disk. Drop the dependency as it is no longer
7854  * necessary since the inode is being deallocated. We set the
7855  * ALLCOMPLETE flags since the bitmap now properly shows that the
7856  * inode is not allocated. Even if the inode is actively being
7857  * written, it has been rolled back to its zero'ed state, so we
7858  * are ensured that a zero inode is what is on the disk. For short
7859  * lived files, this change will usually result in removing all the
7860  * dependencies from the inode so that it can be freed immediately.
7861  */
7862 static int
7863 check_inode_unwritten(struct inodedep *inodedep)
7864 {
7865 
7866 	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
7867 
7868 	if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 ||
7869 	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
7870 	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
7871 	    !LIST_EMPTY(&inodedep->id_bufwait) ||
7872 	    !LIST_EMPTY(&inodedep->id_inowait) ||
7873 	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
7874 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
7875 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
7876 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
7877 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
7878 	    !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
7879 	    inodedep->id_mkdiradd != NULL ||
7880 	    inodedep->id_nlinkdelta != 0)
7881 		return (0);
7882 	/*
7883 	 * Another process might be in initiate_write_inodeblock_ufs[12]
7884 	 * trying to allocate memory without holding "Softdep Lock".
7885 	 */
7886 	if ((inodedep->id_state & IOSTARTED) != 0 &&
7887 	    inodedep->id_savedino1 == NULL)
7888 		return (0);
7889 
7890 	if (inodedep->id_state & ONDEPLIST)
7891 		LIST_REMOVE(inodedep, id_deps);
7892 	inodedep->id_state &= ~ONDEPLIST;
7893 	inodedep->id_state |= ALLCOMPLETE;
7894 	inodedep->id_bmsafemap = NULL;
7895 	if (inodedep->id_state & ONWORKLIST)
7896 		WORKLIST_REMOVE(&inodedep->id_list);
7897 	if (inodedep->id_savedino1 != NULL) {
7898 		free(inodedep->id_savedino1, M_SAVEDINO);
7899 		inodedep->id_savedino1 = NULL;
7900 	}
7901 	if (free_inodedep(inodedep) == 0)
7902 		panic("check_inode_unwritten: busy inode");
7903 	return (1);
7904 }
7905 
7906 static int
7907 check_inodedep_free(struct inodedep *inodedep)
7908 {
7909 
7910 	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
7911 	if ((inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
7912 	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
7913 	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
7914 	    !LIST_EMPTY(&inodedep->id_bufwait) ||
7915 	    !LIST_EMPTY(&inodedep->id_inowait) ||
7916 	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
7917 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
7918 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
7919 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
7920 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
7921 	    !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
7922 	    inodedep->id_mkdiradd != NULL ||
7923 	    inodedep->id_nlinkdelta != 0 ||
7924 	    inodedep->id_savedino1 != NULL)
7925 		return (0);
7926 	return (1);
7927 }
7928 
7929 /*
7930  * Try to free an inodedep structure. Return 1 if it could be freed.
7931  */
7932 static int
7933 free_inodedep(struct inodedep *inodedep)
7934 {
7935 
7936 	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
7937 	if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 ||
7938 	    !check_inodedep_free(inodedep))
7939 		return (0);
7940 	if (inodedep->id_state & ONDEPLIST)
7941 		LIST_REMOVE(inodedep, id_deps);
7942 	LIST_REMOVE(inodedep, id_hash);
7943 	WORKITEM_FREE(inodedep, D_INODEDEP);
7944 	return (1);
7945 }
7946 
7947 /*
7948  * Free the block referenced by a freework structure.  The parent freeblks
7949  * structure is released and completed when the final cg bitmap reaches
7950  * the disk.  This routine may be freeing a jnewblk which never made it to
7951  * disk in which case we do not have to wait as the operation is undone
7952  * in memory immediately.
7953  */
7954 static void
7955 freework_freeblock(struct freework *freework, u_long key)
7956 {
7957 	struct freeblks *freeblks;
7958 	struct jnewblk *jnewblk;
7959 	struct ufsmount *ump;
7960 	struct workhead wkhd;
7961 	struct fs *fs;
7962 	int bsize;
7963 	int needj;
7964 
7965 	ump = VFSTOUFS(freework->fw_list.wk_mp);
7966 	LOCK_OWNED(ump);
7967 	/*
7968 	 * Handle partial truncate separately.
7969 	 */
7970 	if (freework->fw_indir) {
7971 		complete_trunc_indir(freework);
7972 		return;
7973 	}
7974 	freeblks = freework->fw_freeblks;
7975 	fs = ump->um_fs;
7976 	needj = MOUNTEDSUJ(freeblks->fb_list.wk_mp) != 0;
7977 	bsize = lfragtosize(fs, freework->fw_frags);
7978 	LIST_INIT(&wkhd);
7979 	/*
7980 	 * DEPCOMPLETE is cleared in indirblk_insert() if the block lives
7981 	 * on the indirblk hashtable and prevents premature freeing.
7982 	 */
7983 	freework->fw_state |= DEPCOMPLETE;
7984 	/*
7985 	 * SUJ needs to wait for the segment referencing freed indirect
7986 	 * blocks to expire so that we know the checker will not confuse
7987 	 * a re-allocated indirect block with its old contents.
7988 	 */
7989 	if (needj && freework->fw_lbn <= -UFS_NDADDR)
7990 		indirblk_insert(freework);
7991 	/*
7992 	 * If we are canceling an existing jnewblk pass it to the free
7993 	 * routine, otherwise pass the freeblk which will ultimately
7994 	 * release the freeblks.  If we're not journaling, we can just
7995 	 * free the freeblks immediately.
7996 	 */
7997 	jnewblk = freework->fw_jnewblk;
7998 	if (jnewblk != NULL) {
7999 		cancel_jnewblk(jnewblk, &wkhd);
8000 		needj = 0;
8001 	} else if (needj) {
8002 		freework->fw_state |= DELAYEDFREE;
8003 		freeblks->fb_cgwait++;
8004 		WORKLIST_INSERT(&wkhd, &freework->fw_list);
8005 	}
8006 	FREE_LOCK(ump);
8007 	freeblks_free(ump, freeblks, btodb(bsize));
8008 	CTR4(KTR_SUJ,
8009 	    "freework_freeblock: ino %jd blkno %jd lbn %jd size %d",
8010 	    freeblks->fb_inum, freework->fw_blkno, freework->fw_lbn, bsize);
8011 	ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno, bsize,
8012 	    freeblks->fb_inum, freeblks->fb_vtype, &wkhd, key);
8013 	ACQUIRE_LOCK(ump);
8014 	/*
8015 	 * The jnewblk will be discarded and the bits in the map never
8016 	 * made it to disk.  We can immediately free the freeblk.
8017 	 */
8018 	if (needj == 0)
8019 		handle_written_freework(freework);
8020 }
8021 
8022 /*
8023  * We enqueue freework items that need processing back on the freeblks and
8024  * add the freeblks to the worklist.  This makes it easier to find all work
8025  * required to flush a truncation in process_truncates().
8026  */
8027 static void
8028 freework_enqueue(struct freework *freework)
8029 {
8030 	struct freeblks *freeblks;
8031 
8032 	freeblks = freework->fw_freeblks;
8033 	if ((freework->fw_state & INPROGRESS) == 0)
8034 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
8035 	if ((freeblks->fb_state &
8036 	    (ONWORKLIST | INPROGRESS | ALLCOMPLETE)) == ALLCOMPLETE &&
8037 	    LIST_EMPTY(&freeblks->fb_jblkdephd))
8038 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
8039 }
8040 
8041 /*
8042  * Start, continue, or finish the process of freeing an indirect block tree.
8043  * The free operation may be paused at any point with fw_off containing the
8044  * offset to restart from.  This enables us to implement some flow control
8045  * for large truncates which may fan out and generate a huge number of
8046  * dependencies.
8047  */
8048 static void
8049 handle_workitem_indirblk(struct freework *freework)
8050 {
8051 	struct freeblks *freeblks;
8052 	struct ufsmount *ump;
8053 	struct fs *fs;
8054 
8055 	freeblks = freework->fw_freeblks;
8056 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
8057 	fs = ump->um_fs;
8058 	if (freework->fw_state & DEPCOMPLETE) {
8059 		handle_written_freework(freework);
8060 		return;
8061 	}
8062 	if (freework->fw_off == NINDIR(fs)) {
8063 		freework_freeblock(freework, SINGLETON_KEY);
8064 		return;
8065 	}
8066 	freework->fw_state |= INPROGRESS;
8067 	FREE_LOCK(ump);
8068 	indir_trunc(freework, fsbtodb(fs, freework->fw_blkno),
8069 	    freework->fw_lbn);
8070 	ACQUIRE_LOCK(ump);
8071 }
8072 
8073 /*
8074  * Called when a freework structure attached to a cg buf is written.  The
8075  * ref on either the parent or the freeblks structure is released and
8076  * the freeblks is added back to the worklist if there is more work to do.
8077  */
8078 static void
8079 handle_written_freework(struct freework *freework)
8080 {
8081 	struct freeblks *freeblks;
8082 	struct freework *parent;
8083 
8084 	freeblks = freework->fw_freeblks;
8085 	parent = freework->fw_parent;
8086 	if (freework->fw_state & DELAYEDFREE)
8087 		freeblks->fb_cgwait--;
8088 	freework->fw_state |= COMPLETE;
8089 	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
8090 		WORKITEM_FREE(freework, D_FREEWORK);
8091 	if (parent) {
8092 		if (--parent->fw_ref == 0)
8093 			freework_enqueue(parent);
8094 		return;
8095 	}
8096 	if (--freeblks->fb_ref != 0)
8097 		return;
8098 	if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST | INPROGRESS)) ==
8099 	    ALLCOMPLETE && LIST_EMPTY(&freeblks->fb_jblkdephd))
8100 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
8101 }
8102 
8103 /*
8104  * This workitem routine performs the block de-allocation.
8105  * The workitem is added to the pending list after the updated
8106  * inode block has been written to disk.  As mentioned above,
8107  * checks regarding the number of blocks de-allocated (compared
8108  * to the number of blocks allocated for the file) are also
8109  * performed in this function.
8110  */
8111 static int
8112 handle_workitem_freeblocks(struct freeblks *freeblks, int flags)
8113 {
8114 	struct freework *freework;
8115 	struct newblk *newblk;
8116 	struct allocindir *aip;
8117 	struct ufsmount *ump;
8118 	struct worklist *wk;
8119 	u_long key;
8120 
8121 	KASSERT(LIST_EMPTY(&freeblks->fb_jblkdephd),
8122 	    ("handle_workitem_freeblocks: Journal entries not written."));
8123 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
8124 	key = ffs_blkrelease_start(ump, freeblks->fb_devvp, freeblks->fb_inum);
8125 	ACQUIRE_LOCK(ump);
8126 	while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) {
8127 		WORKLIST_REMOVE(wk);
8128 		switch (wk->wk_type) {
8129 		case D_DIRREM:
8130 			wk->wk_state |= COMPLETE;
8131 			add_to_worklist(wk, 0);
8132 			continue;
8133 
8134 		case D_ALLOCDIRECT:
8135 			free_newblk(WK_NEWBLK(wk));
8136 			continue;
8137 
8138 		case D_ALLOCINDIR:
8139 			aip = WK_ALLOCINDIR(wk);
8140 			freework = NULL;
8141 			if (aip->ai_state & DELAYEDFREE) {
8142 				FREE_LOCK(ump);
8143 				freework = newfreework(ump, freeblks, NULL,
8144 				    aip->ai_lbn, aip->ai_newblkno,
8145 				    ump->um_fs->fs_frag, 0, 0);
8146 				ACQUIRE_LOCK(ump);
8147 			}
8148 			newblk = WK_NEWBLK(wk);
8149 			if (newblk->nb_jnewblk) {
8150 				freework->fw_jnewblk = newblk->nb_jnewblk;
8151 				newblk->nb_jnewblk->jn_dep = &freework->fw_list;
8152 				newblk->nb_jnewblk = NULL;
8153 			}
8154 			free_newblk(newblk);
8155 			continue;
8156 
8157 		case D_FREEWORK:
8158 			freework = WK_FREEWORK(wk);
8159 			if (freework->fw_lbn <= -UFS_NDADDR)
8160 				handle_workitem_indirblk(freework);
8161 			else
8162 				freework_freeblock(freework, key);
8163 			continue;
8164 		default:
8165 			panic("handle_workitem_freeblocks: Unknown type %s",
8166 			    TYPENAME(wk->wk_type));
8167 		}
8168 	}
8169 	if (freeblks->fb_ref != 0) {
8170 		freeblks->fb_state &= ~INPROGRESS;
8171 		wake_worklist(&freeblks->fb_list);
8172 		freeblks = NULL;
8173 	}
8174 	FREE_LOCK(ump);
8175 	ffs_blkrelease_finish(ump, key);
8176 	if (freeblks)
8177 		return handle_complete_freeblocks(freeblks, flags);
8178 	return (0);
8179 }
8180 
8181 /*
8182  * Handle completion of block free via truncate.  This allows fs_pending
8183  * to track the actual free block count more closely than if we only updated
8184  * it at the end.  We must be careful to handle cases where the block count
8185  * on free was incorrect.
8186  */
8187 static void
8188 freeblks_free(struct ufsmount *ump,
8189 	struct freeblks *freeblks,
8190 	int blocks)
8191 {
8192 	struct fs *fs;
8193 	ufs2_daddr_t remain;
8194 
8195 	UFS_LOCK(ump);
8196 	remain = -freeblks->fb_chkcnt;
8197 	freeblks->fb_chkcnt += blocks;
8198 	if (remain > 0) {
8199 		if (remain < blocks)
8200 			blocks = remain;
8201 		fs = ump->um_fs;
8202 		fs->fs_pendingblocks -= blocks;
8203 	}
8204 	UFS_UNLOCK(ump);
8205 }
8206 
8207 /*
8208  * Once all of the freework workitems are complete we can retire the
8209  * freeblocks dependency and any journal work awaiting completion.  This
8210  * can not be called until all other dependencies are stable on disk.
8211  */
8212 static int
8213 handle_complete_freeblocks(struct freeblks *freeblks, int flags)
8214 {
8215 	struct inodedep *inodedep;
8216 	struct inode *ip;
8217 	struct vnode *vp;
8218 	struct fs *fs;
8219 	struct ufsmount *ump;
8220 	ufs2_daddr_t spare;
8221 
8222 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
8223 	fs = ump->um_fs;
8224 	flags = LK_EXCLUSIVE | flags;
8225 	spare = freeblks->fb_chkcnt;
8226 
8227 	/*
8228 	 * If we did not release the expected number of blocks we may have
8229 	 * to adjust the inode block count here.  Only do so if it wasn't
8230 	 * a truncation to zero and the modrev still matches.
8231 	 */
8232 	if (spare && freeblks->fb_len != 0) {
8233 		if (ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_inum,
8234 		    flags, &vp, FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP) != 0)
8235 			return (EBUSY);
8236 		ip = VTOI(vp);
8237 		if (ip->i_mode == 0) {
8238 			vgone(vp);
8239 		} else if (DIP(ip, i_modrev) == freeblks->fb_modrev) {
8240 			DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - spare);
8241 			UFS_INODE_SET_FLAG(ip, IN_CHANGE);
8242 			/*
8243 			 * We must wait so this happens before the
8244 			 * journal is reclaimed.
8245 			 */
8246 			ffs_update(vp, 1);
8247 		}
8248 		vput(vp);
8249 	}
8250 	if (spare < 0) {
8251 		UFS_LOCK(ump);
8252 		fs->fs_pendingblocks += spare;
8253 		UFS_UNLOCK(ump);
8254 	}
8255 #ifdef QUOTA
8256 	/* Handle spare. */
8257 	if (spare)
8258 		quotaadj(freeblks->fb_quota, ump, -spare);
8259 	quotarele(freeblks->fb_quota);
8260 #endif
8261 	ACQUIRE_LOCK(ump);
8262 	if (freeblks->fb_state & ONDEPLIST) {
8263 		inodedep_lookup(freeblks->fb_list.wk_mp, freeblks->fb_inum,
8264 		    0, &inodedep);
8265 		TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, fb_next);
8266 		freeblks->fb_state &= ~ONDEPLIST;
8267 		if (TAILQ_EMPTY(&inodedep->id_freeblklst))
8268 			free_inodedep(inodedep);
8269 	}
8270 	/*
8271 	 * All of the freeblock deps must be complete prior to this call
8272 	 * so it's now safe to complete earlier outstanding journal entries.
8273 	 */
8274 	handle_jwork(&freeblks->fb_jwork);
8275 	WORKITEM_FREE(freeblks, D_FREEBLKS);
8276 	FREE_LOCK(ump);
8277 	return (0);
8278 }
8279 
8280 /*
8281  * Release blocks associated with the freeblks and stored in the indirect
8282  * block dbn. If level is greater than SINGLE, the block is an indirect block
8283  * and recursive calls to indirtrunc must be used to cleanse other indirect
8284  * blocks.
8285  *
8286  * This handles partial and complete truncation of blocks.  Partial is noted
8287  * with goingaway == 0.  In this case the freework is completed after the
8288  * zero'd indirects are written to disk.  For full truncation the freework
8289  * is completed after the block is freed.
8290  */
8291 static void
8292 indir_trunc(struct freework *freework,
8293 	ufs2_daddr_t dbn,
8294 	ufs_lbn_t lbn)
8295 {
8296 	struct freework *nfreework;
8297 	struct workhead wkhd;
8298 	struct freeblks *freeblks;
8299 	struct buf *bp;
8300 	struct fs *fs;
8301 	struct indirdep *indirdep;
8302 	struct mount *mp;
8303 	struct ufsmount *ump;
8304 	ufs1_daddr_t *bap1;
8305 	ufs2_daddr_t nb, nnb, *bap2;
8306 	ufs_lbn_t lbnadd, nlbn;
8307 	u_long key;
8308 	int nblocks, ufs1fmt, freedblocks;
8309 	int goingaway, freedeps, needj, level, cnt, i, error;
8310 
8311 	freeblks = freework->fw_freeblks;
8312 	mp = freeblks->fb_list.wk_mp;
8313 	ump = VFSTOUFS(mp);
8314 	fs = ump->um_fs;
8315 	/*
8316 	 * Get buffer of block pointers to be freed.  There are three cases:
8317 	 *
8318 	 * 1) Partial truncate caches the indirdep pointer in the freework
8319 	 *    which provides us a back copy to the save bp which holds the
8320 	 *    pointers we want to clear.  When this completes the zero
8321 	 *    pointers are written to the real copy.
8322 	 * 2) The indirect is being completely truncated, cancel_indirdep()
8323 	 *    eliminated the real copy and placed the indirdep on the saved
8324 	 *    copy.  The indirdep and buf are discarded when this completes.
8325 	 * 3) The indirect was not in memory, we read a copy off of the disk
8326 	 *    using the devvp and drop and invalidate the buffer when we're
8327 	 *    done.
8328 	 */
8329 	goingaway = 1;
8330 	indirdep = NULL;
8331 	if (freework->fw_indir != NULL) {
8332 		goingaway = 0;
8333 		indirdep = freework->fw_indir;
8334 		bp = indirdep->ir_savebp;
8335 		if (bp == NULL || bp->b_blkno != dbn)
8336 			panic("indir_trunc: Bad saved buf %p blkno %jd",
8337 			    bp, (intmax_t)dbn);
8338 	} else if ((bp = incore(&freeblks->fb_devvp->v_bufobj, dbn)) != NULL) {
8339 		/*
8340 		 * The lock prevents the buf dep list from changing and
8341 	 	 * indirects on devvp should only ever have one dependency.
8342 		 */
8343 		indirdep = WK_INDIRDEP(LIST_FIRST(&bp->b_dep));
8344 		if (indirdep == NULL || (indirdep->ir_state & GOINGAWAY) == 0)
8345 			panic("indir_trunc: Bad indirdep %p from buf %p",
8346 			    indirdep, bp);
8347 	} else {
8348 		error = ffs_breadz(ump, freeblks->fb_devvp, dbn, dbn,
8349 		    (int)fs->fs_bsize, NULL, NULL, 0, NOCRED, 0, NULL, &bp);
8350 		if (error)
8351 			return;
8352 	}
8353 	ACQUIRE_LOCK(ump);
8354 	/* Protects against a race with complete_trunc_indir(). */
8355 	freework->fw_state &= ~INPROGRESS;
8356 	/*
8357 	 * If we have an indirdep we need to enforce the truncation order
8358 	 * and discard it when it is complete.
8359 	 */
8360 	if (indirdep) {
8361 		if (freework != TAILQ_FIRST(&indirdep->ir_trunc) &&
8362 		    !TAILQ_EMPTY(&indirdep->ir_trunc)) {
8363 			/*
8364 			 * Add the complete truncate to the list on the
8365 			 * indirdep to enforce in-order processing.
8366 			 */
8367 			if (freework->fw_indir == NULL)
8368 				TAILQ_INSERT_TAIL(&indirdep->ir_trunc,
8369 				    freework, fw_next);
8370 			FREE_LOCK(ump);
8371 			return;
8372 		}
8373 		/*
8374 		 * If we're goingaway, free the indirdep.  Otherwise it will
8375 		 * linger until the write completes.
8376 		 */
8377 		if (goingaway) {
8378 			KASSERT(indirdep->ir_savebp == bp,
8379 			    ("indir_trunc: losing ir_savebp %p",
8380 			    indirdep->ir_savebp));
8381 			indirdep->ir_savebp = NULL;
8382 			free_indirdep(indirdep);
8383 		}
8384 	}
8385 	FREE_LOCK(ump);
8386 	/* Initialize pointers depending on block size. */
8387 	if (ump->um_fstype == UFS1) {
8388 		bap1 = (ufs1_daddr_t *)bp->b_data;
8389 		nb = bap1[freework->fw_off];
8390 		ufs1fmt = 1;
8391 		bap2 = NULL;
8392 	} else {
8393 		bap2 = (ufs2_daddr_t *)bp->b_data;
8394 		nb = bap2[freework->fw_off];
8395 		ufs1fmt = 0;
8396 		bap1 = NULL;
8397 	}
8398 	level = lbn_level(lbn);
8399 	needj = MOUNTEDSUJ(UFSTOVFS(ump)) != 0;
8400 	lbnadd = lbn_offset(fs, level);
8401 	nblocks = btodb(fs->fs_bsize);
8402 	nfreework = freework;
8403 	freedeps = 0;
8404 	cnt = 0;
8405 	/*
8406 	 * Reclaim blocks.  Traverses into nested indirect levels and
8407 	 * arranges for the current level to be freed when subordinates
8408 	 * are free when journaling.
8409 	 */
8410 	key = ffs_blkrelease_start(ump, freeblks->fb_devvp, freeblks->fb_inum);
8411 	for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) {
8412 		if (UFS_CHECK_BLKNO(mp, freeblks->fb_inum, nb,
8413 		    fs->fs_bsize) != 0)
8414 			nb = 0;
8415 		if (i != NINDIR(fs) - 1) {
8416 			if (ufs1fmt)
8417 				nnb = bap1[i+1];
8418 			else
8419 				nnb = bap2[i+1];
8420 		} else
8421 			nnb = 0;
8422 		if (nb == 0)
8423 			continue;
8424 		cnt++;
8425 		if (level != 0) {
8426 			nlbn = (lbn + 1) - (i * lbnadd);
8427 			if (needj != 0) {
8428 				nfreework = newfreework(ump, freeblks, freework,
8429 				    nlbn, nb, fs->fs_frag, 0, 0);
8430 				freedeps++;
8431 			}
8432 			indir_trunc(nfreework, fsbtodb(fs, nb), nlbn);
8433 		} else {
8434 			struct freedep *freedep;
8435 
8436 			/*
8437 			 * Attempt to aggregate freedep dependencies for
8438 			 * all blocks being released to the same CG.
8439 			 */
8440 			LIST_INIT(&wkhd);
8441 			if (needj != 0 &&
8442 			    (nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) {
8443 				freedep = newfreedep(freework);
8444 				WORKLIST_INSERT_UNLOCKED(&wkhd,
8445 				    &freedep->fd_list);
8446 				freedeps++;
8447 			}
8448 			CTR3(KTR_SUJ,
8449 			    "indir_trunc: ino %jd blkno %jd size %d",
8450 			    freeblks->fb_inum, nb, fs->fs_bsize);
8451 			ffs_blkfree(ump, fs, freeblks->fb_devvp, nb,
8452 			    fs->fs_bsize, freeblks->fb_inum,
8453 			    freeblks->fb_vtype, &wkhd, key);
8454 		}
8455 	}
8456 	ffs_blkrelease_finish(ump, key);
8457 	if (goingaway) {
8458 		bp->b_flags |= B_INVAL | B_NOCACHE;
8459 		brelse(bp);
8460 	}
8461 	freedblocks = 0;
8462 	if (level == 0)
8463 		freedblocks = (nblocks * cnt);
8464 	if (needj == 0)
8465 		freedblocks += nblocks;
8466 	freeblks_free(ump, freeblks, freedblocks);
8467 	/*
8468 	 * If we are journaling set up the ref counts and offset so this
8469 	 * indirect can be completed when its children are free.
8470 	 */
8471 	if (needj) {
8472 		ACQUIRE_LOCK(ump);
8473 		freework->fw_off = i;
8474 		freework->fw_ref += freedeps;
8475 		freework->fw_ref -= NINDIR(fs) + 1;
8476 		if (level == 0)
8477 			freeblks->fb_cgwait += freedeps;
8478 		if (freework->fw_ref == 0)
8479 			freework_freeblock(freework, SINGLETON_KEY);
8480 		FREE_LOCK(ump);
8481 		return;
8482 	}
8483 	/*
8484 	 * If we're not journaling we can free the indirect now.
8485 	 */
8486 	dbn = dbtofsb(fs, dbn);
8487 	CTR3(KTR_SUJ,
8488 	    "indir_trunc 2: ino %jd blkno %jd size %d",
8489 	    freeblks->fb_inum, dbn, fs->fs_bsize);
8490 	ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize,
8491 	    freeblks->fb_inum, freeblks->fb_vtype, NULL, SINGLETON_KEY);
8492 	/* Non SUJ softdep does single-threaded truncations. */
8493 	if (freework->fw_blkno == dbn) {
8494 		freework->fw_state |= ALLCOMPLETE;
8495 		ACQUIRE_LOCK(ump);
8496 		handle_written_freework(freework);
8497 		FREE_LOCK(ump);
8498 	}
8499 	return;
8500 }
8501 
8502 /*
8503  * Cancel an allocindir when it is removed via truncation.  When bp is not
8504  * NULL the indirect never appeared on disk and is scheduled to be freed
8505  * independently of the indir so we can more easily track journal work.
8506  */
8507 static void
8508 cancel_allocindir(
8509 	struct allocindir *aip,
8510 	struct buf *bp,
8511 	struct freeblks *freeblks,
8512 	int trunc)
8513 {
8514 	struct indirdep *indirdep;
8515 	struct freefrag *freefrag;
8516 	struct newblk *newblk;
8517 
8518 	newblk = (struct newblk *)aip;
8519 	LIST_REMOVE(aip, ai_next);
8520 	/*
8521 	 * We must eliminate the pointer in bp if it must be freed on its
8522 	 * own due to partial truncate or pending journal work.
8523 	 */
8524 	if (bp && (trunc || newblk->nb_jnewblk)) {
8525 		/*
8526 		 * Clear the pointer and mark the aip to be freed
8527 		 * directly if it never existed on disk.
8528 		 */
8529 		aip->ai_state |= DELAYEDFREE;
8530 		indirdep = aip->ai_indirdep;
8531 		if (indirdep->ir_state & UFS1FMT)
8532 			((ufs1_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
8533 		else
8534 			((ufs2_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
8535 	}
8536 	/*
8537 	 * When truncating the previous pointer will be freed via
8538 	 * savedbp.  Eliminate the freefrag which would dup free.
8539 	 */
8540 	if (trunc && (freefrag = newblk->nb_freefrag) != NULL) {
8541 		newblk->nb_freefrag = NULL;
8542 		if (freefrag->ff_jdep)
8543 			cancel_jfreefrag(
8544 			    WK_JFREEFRAG(freefrag->ff_jdep));
8545 		jwork_move(&freeblks->fb_jwork, &freefrag->ff_jwork);
8546 		WORKITEM_FREE(freefrag, D_FREEFRAG);
8547 	}
8548 	/*
8549 	 * If the journal hasn't been written the jnewblk must be passed
8550 	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
8551 	 * this by leaving the journal dependency on the newblk to be freed
8552 	 * when a freework is created in handle_workitem_freeblocks().
8553 	 */
8554 	cancel_newblk(newblk, NULL, &freeblks->fb_jwork);
8555 	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
8556 }
8557 
8558 /*
8559  * Create the mkdir dependencies for . and .. in a new directory.  Link them
8560  * in to a newdirblk so any subsequent additions are tracked properly.  The
8561  * caller is responsible for adding the mkdir1 dependency to the journal
8562  * and updating id_mkdiradd.  This function returns with the per-filesystem
8563  * lock held.
8564  */
8565 static struct mkdir *
8566 setup_newdir(
8567 	struct diradd *dap,
8568 	ino_t newinum,
8569 	ino_t dinum,
8570 	struct buf *newdirbp,
8571 	struct mkdir **mkdirp)
8572 {
8573 	struct newblk *newblk;
8574 	struct pagedep *pagedep;
8575 	struct inodedep *inodedep;
8576 	struct newdirblk *newdirblk;
8577 	struct mkdir *mkdir1, *mkdir2;
8578 	struct worklist *wk;
8579 	struct jaddref *jaddref;
8580 	struct ufsmount *ump;
8581 	struct mount *mp;
8582 
8583 	mp = dap->da_list.wk_mp;
8584 	ump = VFSTOUFS(mp);
8585 	newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK,
8586 	    M_SOFTDEP_FLAGS);
8587 	workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
8588 	LIST_INIT(&newdirblk->db_mkdir);
8589 	mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
8590 	workitem_alloc(&mkdir1->md_list, D_MKDIR, mp);
8591 	mkdir1->md_state = ATTACHED | MKDIR_BODY;
8592 	mkdir1->md_diradd = dap;
8593 	mkdir1->md_jaddref = NULL;
8594 	mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
8595 	workitem_alloc(&mkdir2->md_list, D_MKDIR, mp);
8596 	mkdir2->md_state = ATTACHED | MKDIR_PARENT;
8597 	mkdir2->md_diradd = dap;
8598 	mkdir2->md_jaddref = NULL;
8599 	if (MOUNTEDSUJ(mp) == 0) {
8600 		mkdir1->md_state |= DEPCOMPLETE;
8601 		mkdir2->md_state |= DEPCOMPLETE;
8602 	}
8603 	/*
8604 	 * Dependency on "." and ".." being written to disk.
8605 	 */
8606 	mkdir1->md_buf = newdirbp;
8607 	ACQUIRE_LOCK(VFSTOUFS(mp));
8608 	LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir1, md_mkdirs);
8609 	/*
8610 	 * We must link the pagedep, allocdirect, and newdirblk for
8611 	 * the initial file page so the pointer to the new directory
8612 	 * is not written until the directory contents are live and
8613 	 * any subsequent additions are not marked live until the
8614 	 * block is reachable via the inode.
8615 	 */
8616 	if (pagedep_lookup(mp, newdirbp, newinum, 0, 0, &pagedep) == 0)
8617 		panic("setup_newdir: lost pagedep");
8618 	LIST_FOREACH(wk, &newdirbp->b_dep, wk_list)
8619 		if (wk->wk_type == D_ALLOCDIRECT)
8620 			break;
8621 	if (wk == NULL)
8622 		panic("setup_newdir: lost allocdirect");
8623 	if (pagedep->pd_state & NEWBLOCK)
8624 		panic("setup_newdir: NEWBLOCK already set");
8625 	newblk = WK_NEWBLK(wk);
8626 	pagedep->pd_state |= NEWBLOCK;
8627 	pagedep->pd_newdirblk = newdirblk;
8628 	newdirblk->db_pagedep = pagedep;
8629 	WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
8630 	WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list);
8631 	/*
8632 	 * Look up the inodedep for the parent directory so that we
8633 	 * can link mkdir2 into the pending dotdot jaddref or
8634 	 * the inode write if there is none.  If the inode is
8635 	 * ALLCOMPLETE and no jaddref is present all dependencies have
8636 	 * been satisfied and mkdir2 can be freed.
8637 	 */
8638 	inodedep_lookup(mp, dinum, 0, &inodedep);
8639 	if (MOUNTEDSUJ(mp)) {
8640 		if (inodedep == NULL)
8641 			panic("setup_newdir: Lost parent.");
8642 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8643 		    inoreflst);
8644 		KASSERT(jaddref != NULL && jaddref->ja_parent == newinum &&
8645 		    (jaddref->ja_state & MKDIR_PARENT),
8646 		    ("setup_newdir: bad dotdot jaddref %p", jaddref));
8647 		LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs);
8648 		mkdir2->md_jaddref = jaddref;
8649 		jaddref->ja_mkdir = mkdir2;
8650 	} else if (inodedep == NULL ||
8651 	    (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
8652 		dap->da_state &= ~MKDIR_PARENT;
8653 		WORKITEM_FREE(mkdir2, D_MKDIR);
8654 		mkdir2 = NULL;
8655 	} else {
8656 		LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs);
8657 		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir2->md_list);
8658 	}
8659 	*mkdirp = mkdir2;
8660 
8661 	return (mkdir1);
8662 }
8663 
8664 /*
8665  * Directory entry addition dependencies.
8666  *
8667  * When adding a new directory entry, the inode (with its incremented link
8668  * count) must be written to disk before the directory entry's pointer to it.
8669  * Also, if the inode is newly allocated, the corresponding freemap must be
8670  * updated (on disk) before the directory entry's pointer. These requirements
8671  * are met via undo/redo on the directory entry's pointer, which consists
8672  * simply of the inode number.
8673  *
8674  * As directory entries are added and deleted, the free space within a
8675  * directory block can become fragmented.  The ufs filesystem will compact
8676  * a fragmented directory block to make space for a new entry. When this
8677  * occurs, the offsets of previously added entries change. Any "diradd"
8678  * dependency structures corresponding to these entries must be updated with
8679  * the new offsets.
8680  */
8681 
8682 /*
8683  * This routine is called after the in-memory inode's link
8684  * count has been incremented, but before the directory entry's
8685  * pointer to the inode has been set.
8686  */
8687 int
8688 softdep_setup_directory_add(
8689 	struct buf *bp,		/* buffer containing directory block */
8690 	struct inode *dp,	/* inode for directory */
8691 	off_t diroffset,	/* offset of new entry in directory */
8692 	ino_t newinum,		/* inode referenced by new directory entry */
8693 	struct buf *newdirbp,	/* non-NULL => contents of new mkdir */
8694 	int isnewblk)		/* entry is in a newly allocated block */
8695 {
8696 	int offset;		/* offset of new entry within directory block */
8697 	ufs_lbn_t lbn;		/* block in directory containing new entry */
8698 	struct fs *fs;
8699 	struct diradd *dap;
8700 	struct newblk *newblk;
8701 	struct pagedep *pagedep;
8702 	struct inodedep *inodedep;
8703 	struct newdirblk *newdirblk;
8704 	struct mkdir *mkdir1, *mkdir2;
8705 	struct jaddref *jaddref;
8706 	struct ufsmount *ump;
8707 	struct mount *mp;
8708 	int isindir;
8709 
8710 	mp = ITOVFS(dp);
8711 	ump = VFSTOUFS(mp);
8712 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
8713 	    ("softdep_setup_directory_add called on non-softdep filesystem"));
8714 	/*
8715 	 * Whiteouts have no dependencies.
8716 	 */
8717 	if (newinum == UFS_WINO) {
8718 		if (newdirbp != NULL)
8719 			bdwrite(newdirbp);
8720 		return (0);
8721 	}
8722 	jaddref = NULL;
8723 	mkdir1 = mkdir2 = NULL;
8724 	fs = ump->um_fs;
8725 	lbn = lblkno(fs, diroffset);
8726 	offset = blkoff(fs, diroffset);
8727 	dap = malloc(sizeof(struct diradd), M_DIRADD,
8728 		M_SOFTDEP_FLAGS|M_ZERO);
8729 	workitem_alloc(&dap->da_list, D_DIRADD, mp);
8730 	dap->da_offset = offset;
8731 	dap->da_newinum = newinum;
8732 	dap->da_state = ATTACHED;
8733 	LIST_INIT(&dap->da_jwork);
8734 	isindir = bp->b_lblkno >= UFS_NDADDR;
8735 	newdirblk = NULL;
8736 	if (isnewblk &&
8737 	    (isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) {
8738 		newdirblk = malloc(sizeof(struct newdirblk),
8739 		    M_NEWDIRBLK, M_SOFTDEP_FLAGS);
8740 		workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
8741 		LIST_INIT(&newdirblk->db_mkdir);
8742 	}
8743 	/*
8744 	 * If we're creating a new directory setup the dependencies and set
8745 	 * the dap state to wait for them.  Otherwise it's COMPLETE and
8746 	 * we can move on.
8747 	 */
8748 	if (newdirbp == NULL) {
8749 		dap->da_state |= DEPCOMPLETE;
8750 		ACQUIRE_LOCK(ump);
8751 	} else {
8752 		dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
8753 		mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp,
8754 		    &mkdir2);
8755 	}
8756 	/*
8757 	 * Link into parent directory pagedep to await its being written.
8758 	 */
8759 	pagedep_lookup(mp, bp, dp->i_number, lbn, DEPALLOC, &pagedep);
8760 #ifdef INVARIANTS
8761 	if (diradd_lookup(pagedep, offset) != NULL)
8762 		panic("softdep_setup_directory_add: %p already at off %d\n",
8763 		    diradd_lookup(pagedep, offset), offset);
8764 #endif
8765 	dap->da_pagedep = pagedep;
8766 	LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
8767 	    da_pdlist);
8768 	inodedep_lookup(mp, newinum, DEPALLOC, &inodedep);
8769 	/*
8770 	 * If we're journaling, link the diradd into the jaddref so it
8771 	 * may be completed after the journal entry is written.  Otherwise,
8772 	 * link the diradd into its inodedep.  If the inode is not yet
8773 	 * written place it on the bufwait list, otherwise do the post-inode
8774 	 * write processing to put it on the id_pendinghd list.
8775 	 */
8776 	if (MOUNTEDSUJ(mp)) {
8777 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8778 		    inoreflst);
8779 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
8780 		    ("softdep_setup_directory_add: bad jaddref %p", jaddref));
8781 		jaddref->ja_diroff = diroffset;
8782 		jaddref->ja_diradd = dap;
8783 		add_to_journal(&jaddref->ja_list);
8784 	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
8785 		diradd_inode_written(dap, inodedep);
8786 	else
8787 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
8788 	/*
8789 	 * Add the journal entries for . and .. links now that the primary
8790 	 * link is written.
8791 	 */
8792 	if (mkdir1 != NULL && MOUNTEDSUJ(mp)) {
8793 		jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
8794 		    inoreflst, if_deps);
8795 		KASSERT(jaddref != NULL &&
8796 		    jaddref->ja_ino == jaddref->ja_parent &&
8797 		    (jaddref->ja_state & MKDIR_BODY),
8798 		    ("softdep_setup_directory_add: bad dot jaddref %p",
8799 		    jaddref));
8800 		mkdir1->md_jaddref = jaddref;
8801 		jaddref->ja_mkdir = mkdir1;
8802 		/*
8803 		 * It is important that the dotdot journal entry
8804 		 * is added prior to the dot entry since dot writes
8805 		 * both the dot and dotdot links.  These both must
8806 		 * be added after the primary link for the journal
8807 		 * to remain consistent.
8808 		 */
8809 		add_to_journal(&mkdir2->md_jaddref->ja_list);
8810 		add_to_journal(&jaddref->ja_list);
8811 	}
8812 	/*
8813 	 * If we are adding a new directory remember this diradd so that if
8814 	 * we rename it we can keep the dot and dotdot dependencies.  If
8815 	 * we are adding a new name for an inode that has a mkdiradd we
8816 	 * must be in rename and we have to move the dot and dotdot
8817 	 * dependencies to this new name.  The old name is being orphaned
8818 	 * soon.
8819 	 */
8820 	if (mkdir1 != NULL) {
8821 		if (inodedep->id_mkdiradd != NULL)
8822 			panic("softdep_setup_directory_add: Existing mkdir");
8823 		inodedep->id_mkdiradd = dap;
8824 	} else if (inodedep->id_mkdiradd)
8825 		merge_diradd(inodedep, dap);
8826 	if (newdirblk != NULL) {
8827 		/*
8828 		 * There is nothing to do if we are already tracking
8829 		 * this block.
8830 		 */
8831 		if ((pagedep->pd_state & NEWBLOCK) != 0) {
8832 			WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
8833 			FREE_LOCK(ump);
8834 			return (0);
8835 		}
8836 		if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)
8837 		    == 0)
8838 			panic("softdep_setup_directory_add: lost entry");
8839 		WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
8840 		pagedep->pd_state |= NEWBLOCK;
8841 		pagedep->pd_newdirblk = newdirblk;
8842 		newdirblk->db_pagedep = pagedep;
8843 		FREE_LOCK(ump);
8844 		/*
8845 		 * If we extended into an indirect signal direnter to sync.
8846 		 */
8847 		if (isindir)
8848 			return (1);
8849 		return (0);
8850 	}
8851 	FREE_LOCK(ump);
8852 	return (0);
8853 }
8854 
8855 /*
8856  * This procedure is called to change the offset of a directory
8857  * entry when compacting a directory block which must be owned
8858  * exclusively by the caller. Note that the actual entry movement
8859  * must be done in this procedure to ensure that no I/O completions
8860  * occur while the move is in progress.
8861  */
8862 void
8863 softdep_change_directoryentry_offset(
8864 	struct buf *bp,		/* Buffer holding directory block. */
8865 	struct inode *dp,	/* inode for directory */
8866 	caddr_t base,		/* address of dp->i_offset */
8867 	caddr_t oldloc,		/* address of old directory location */
8868 	caddr_t newloc,		/* address of new directory location */
8869 	int entrysize)		/* size of directory entry */
8870 {
8871 	int offset, oldoffset, newoffset;
8872 	struct pagedep *pagedep;
8873 	struct jmvref *jmvref;
8874 	struct diradd *dap;
8875 	struct direct *de;
8876 	struct mount *mp;
8877 	struct ufsmount *ump;
8878 	ufs_lbn_t lbn;
8879 	int flags;
8880 
8881 	mp = ITOVFS(dp);
8882 	ump = VFSTOUFS(mp);
8883 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
8884 	    ("softdep_change_directoryentry_offset called on "
8885 	     "non-softdep filesystem"));
8886 	de = (struct direct *)oldloc;
8887 	jmvref = NULL;
8888 	flags = 0;
8889 	/*
8890 	 * Moves are always journaled as it would be too complex to
8891 	 * determine if any affected adds or removes are present in the
8892 	 * journal.
8893 	 */
8894 	if (MOUNTEDSUJ(mp)) {
8895 		flags = DEPALLOC;
8896 		jmvref = newjmvref(dp, de->d_ino,
8897 		    I_OFFSET(dp) + (oldloc - base),
8898 		    I_OFFSET(dp) + (newloc - base));
8899 	}
8900 	lbn = lblkno(ump->um_fs, I_OFFSET(dp));
8901 	offset = blkoff(ump->um_fs, I_OFFSET(dp));
8902 	oldoffset = offset + (oldloc - base);
8903 	newoffset = offset + (newloc - base);
8904 	ACQUIRE_LOCK(ump);
8905 	if (pagedep_lookup(mp, bp, dp->i_number, lbn, flags, &pagedep) == 0)
8906 		goto done;
8907 	dap = diradd_lookup(pagedep, oldoffset);
8908 	if (dap) {
8909 		dap->da_offset = newoffset;
8910 		newoffset = DIRADDHASH(newoffset);
8911 		oldoffset = DIRADDHASH(oldoffset);
8912 		if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE &&
8913 		    newoffset != oldoffset) {
8914 			LIST_REMOVE(dap, da_pdlist);
8915 			LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset],
8916 			    dap, da_pdlist);
8917 		}
8918 	}
8919 done:
8920 	if (jmvref) {
8921 		jmvref->jm_pagedep = pagedep;
8922 		LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps);
8923 		add_to_journal(&jmvref->jm_list);
8924 	}
8925 	bcopy(oldloc, newloc, entrysize);
8926 	FREE_LOCK(ump);
8927 }
8928 
8929 /*
8930  * Move the mkdir dependencies and journal work from one diradd to another
8931  * when renaming a directory.  The new name must depend on the mkdir deps
8932  * completing as the old name did.  Directories can only have one valid link
8933  * at a time so one must be canonical.
8934  */
8935 static void
8936 merge_diradd(struct inodedep *inodedep, struct diradd *newdap)
8937 {
8938 	struct diradd *olddap;
8939 	struct mkdir *mkdir, *nextmd;
8940 	struct ufsmount *ump;
8941 	short state;
8942 
8943 	olddap = inodedep->id_mkdiradd;
8944 	inodedep->id_mkdiradd = newdap;
8945 	if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8946 		newdap->da_state &= ~DEPCOMPLETE;
8947 		ump = VFSTOUFS(inodedep->id_list.wk_mp);
8948 		for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
8949 		     mkdir = nextmd) {
8950 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
8951 			if (mkdir->md_diradd != olddap)
8952 				continue;
8953 			mkdir->md_diradd = newdap;
8954 			state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY);
8955 			newdap->da_state |= state;
8956 			olddap->da_state &= ~state;
8957 			if ((olddap->da_state &
8958 			    (MKDIR_PARENT | MKDIR_BODY)) == 0)
8959 				break;
8960 		}
8961 		if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
8962 			panic("merge_diradd: unfound ref");
8963 	}
8964 	/*
8965 	 * Any mkdir related journal items are not safe to be freed until
8966 	 * the new name is stable.
8967 	 */
8968 	jwork_move(&newdap->da_jwork, &olddap->da_jwork);
8969 	olddap->da_state |= DEPCOMPLETE;
8970 	complete_diradd(olddap);
8971 }
8972 
8973 /*
8974  * Move the diradd to the pending list when all diradd dependencies are
8975  * complete.
8976  */
8977 static void
8978 complete_diradd(struct diradd *dap)
8979 {
8980 	struct pagedep *pagedep;
8981 
8982 	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
8983 		if (dap->da_state & DIRCHG)
8984 			pagedep = dap->da_previous->dm_pagedep;
8985 		else
8986 			pagedep = dap->da_pagedep;
8987 		LIST_REMOVE(dap, da_pdlist);
8988 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
8989 	}
8990 }
8991 
8992 /*
8993  * Cancel a diradd when a dirrem overlaps with it.  We must cancel the journal
8994  * add entries and conditionally journal the remove.
8995  */
8996 static void
8997 cancel_diradd(
8998 	struct diradd *dap,
8999 	struct dirrem *dirrem,
9000 	struct jremref *jremref,
9001 	struct jremref *dotremref,
9002 	struct jremref *dotdotremref)
9003 {
9004 	struct inodedep *inodedep;
9005 	struct jaddref *jaddref;
9006 	struct inoref *inoref;
9007 	struct ufsmount *ump;
9008 	struct mkdir *mkdir;
9009 
9010 	/*
9011 	 * If no remove references were allocated we're on a non-journaled
9012 	 * filesystem and can skip the cancel step.
9013 	 */
9014 	if (jremref == NULL) {
9015 		free_diradd(dap, NULL);
9016 		return;
9017 	}
9018 	/*
9019 	 * Cancel the primary name an free it if it does not require
9020 	 * journaling.
9021 	 */
9022 	if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum,
9023 	    0, &inodedep) != 0) {
9024 		/* Abort the addref that reference this diradd.  */
9025 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
9026 			if (inoref->if_list.wk_type != D_JADDREF)
9027 				continue;
9028 			jaddref = (struct jaddref *)inoref;
9029 			if (jaddref->ja_diradd != dap)
9030 				continue;
9031 			if (cancel_jaddref(jaddref, inodedep,
9032 			    &dirrem->dm_jwork) == 0) {
9033 				free_jremref(jremref);
9034 				jremref = NULL;
9035 			}
9036 			break;
9037 		}
9038 	}
9039 	/*
9040 	 * Cancel subordinate names and free them if they do not require
9041 	 * journaling.
9042 	 */
9043 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
9044 		ump = VFSTOUFS(dap->da_list.wk_mp);
9045 		LIST_FOREACH(mkdir, &ump->softdep_mkdirlisthd, md_mkdirs) {
9046 			if (mkdir->md_diradd != dap)
9047 				continue;
9048 			if ((jaddref = mkdir->md_jaddref) == NULL)
9049 				continue;
9050 			mkdir->md_jaddref = NULL;
9051 			if (mkdir->md_state & MKDIR_PARENT) {
9052 				if (cancel_jaddref(jaddref, NULL,
9053 				    &dirrem->dm_jwork) == 0) {
9054 					free_jremref(dotdotremref);
9055 					dotdotremref = NULL;
9056 				}
9057 			} else {
9058 				if (cancel_jaddref(jaddref, inodedep,
9059 				    &dirrem->dm_jwork) == 0) {
9060 					free_jremref(dotremref);
9061 					dotremref = NULL;
9062 				}
9063 			}
9064 		}
9065 	}
9066 
9067 	if (jremref)
9068 		journal_jremref(dirrem, jremref, inodedep);
9069 	if (dotremref)
9070 		journal_jremref(dirrem, dotremref, inodedep);
9071 	if (dotdotremref)
9072 		journal_jremref(dirrem, dotdotremref, NULL);
9073 	jwork_move(&dirrem->dm_jwork, &dap->da_jwork);
9074 	free_diradd(dap, &dirrem->dm_jwork);
9075 }
9076 
9077 /*
9078  * Free a diradd dependency structure.
9079  */
9080 static void
9081 free_diradd(struct diradd *dap, struct workhead *wkhd)
9082 {
9083 	struct dirrem *dirrem;
9084 	struct pagedep *pagedep;
9085 	struct inodedep *inodedep;
9086 	struct mkdir *mkdir, *nextmd;
9087 	struct ufsmount *ump;
9088 
9089 	ump = VFSTOUFS(dap->da_list.wk_mp);
9090 	LOCK_OWNED(ump);
9091 	LIST_REMOVE(dap, da_pdlist);
9092 	if (dap->da_state & ONWORKLIST)
9093 		WORKLIST_REMOVE(&dap->da_list);
9094 	if ((dap->da_state & DIRCHG) == 0) {
9095 		pagedep = dap->da_pagedep;
9096 	} else {
9097 		dirrem = dap->da_previous;
9098 		pagedep = dirrem->dm_pagedep;
9099 		dirrem->dm_dirinum = pagedep->pd_ino;
9100 		dirrem->dm_state |= COMPLETE;
9101 		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9102 			add_to_worklist(&dirrem->dm_list, 0);
9103 	}
9104 	if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum,
9105 	    0, &inodedep) != 0)
9106 		if (inodedep->id_mkdiradd == dap)
9107 			inodedep->id_mkdiradd = NULL;
9108 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
9109 		for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
9110 		     mkdir = nextmd) {
9111 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
9112 			if (mkdir->md_diradd != dap)
9113 				continue;
9114 			dap->da_state &=
9115 			    ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
9116 			LIST_REMOVE(mkdir, md_mkdirs);
9117 			if (mkdir->md_state & ONWORKLIST)
9118 				WORKLIST_REMOVE(&mkdir->md_list);
9119 			if (mkdir->md_jaddref != NULL)
9120 				panic("free_diradd: Unexpected jaddref");
9121 			WORKITEM_FREE(mkdir, D_MKDIR);
9122 			if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
9123 				break;
9124 		}
9125 		if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
9126 			panic("free_diradd: unfound ref");
9127 	}
9128 	if (inodedep)
9129 		free_inodedep(inodedep);
9130 	/*
9131 	 * Free any journal segments waiting for the directory write.
9132 	 */
9133 	handle_jwork(&dap->da_jwork);
9134 	WORKITEM_FREE(dap, D_DIRADD);
9135 }
9136 
9137 /*
9138  * Directory entry removal dependencies.
9139  *
9140  * When removing a directory entry, the entry's inode pointer must be
9141  * zero'ed on disk before the corresponding inode's link count is decremented
9142  * (possibly freeing the inode for re-use). This dependency is handled by
9143  * updating the directory entry but delaying the inode count reduction until
9144  * after the directory block has been written to disk. After this point, the
9145  * inode count can be decremented whenever it is convenient.
9146  */
9147 
9148 /*
9149  * This routine should be called immediately after removing
9150  * a directory entry.  The inode's link count should not be
9151  * decremented by the calling procedure -- the soft updates
9152  * code will do this task when it is safe.
9153  */
9154 void
9155 softdep_setup_remove(
9156 	struct buf *bp,		/* buffer containing directory block */
9157 	struct inode *dp,	/* inode for the directory being modified */
9158 	struct inode *ip,	/* inode for directory entry being removed */
9159 	int isrmdir)		/* indicates if doing RMDIR */
9160 {
9161 	struct dirrem *dirrem, *prevdirrem;
9162 	struct inodedep *inodedep;
9163 	struct ufsmount *ump;
9164 	int direct;
9165 
9166 	ump = ITOUMP(ip);
9167 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
9168 	    ("softdep_setup_remove called on non-softdep filesystem"));
9169 	/*
9170 	 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK.  We want
9171 	 * newdirrem() to setup the full directory remove which requires
9172 	 * isrmdir > 1.
9173 	 */
9174 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
9175 	/*
9176 	 * Add the dirrem to the inodedep's pending remove list for quick
9177 	 * discovery later.
9178 	 */
9179 	if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0)
9180 		panic("softdep_setup_remove: Lost inodedep.");
9181 	KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
9182 	dirrem->dm_state |= ONDEPLIST;
9183 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9184 
9185 	/*
9186 	 * If the COMPLETE flag is clear, then there were no active
9187 	 * entries and we want to roll back to a zeroed entry until
9188 	 * the new inode is committed to disk. If the COMPLETE flag is
9189 	 * set then we have deleted an entry that never made it to
9190 	 * disk. If the entry we deleted resulted from a name change,
9191 	 * then the old name still resides on disk. We cannot delete
9192 	 * its inode (returned to us in prevdirrem) until the zeroed
9193 	 * directory entry gets to disk. The new inode has never been
9194 	 * referenced on the disk, so can be deleted immediately.
9195 	 */
9196 	if ((dirrem->dm_state & COMPLETE) == 0) {
9197 		LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
9198 		    dm_next);
9199 		FREE_LOCK(ump);
9200 	} else {
9201 		if (prevdirrem != NULL)
9202 			LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd,
9203 			    prevdirrem, dm_next);
9204 		dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
9205 		direct = LIST_EMPTY(&dirrem->dm_jremrefhd);
9206 		FREE_LOCK(ump);
9207 		if (direct)
9208 			handle_workitem_remove(dirrem, 0);
9209 	}
9210 }
9211 
9212 /*
9213  * Check for an entry matching 'offset' on both the pd_dirraddhd list and the
9214  * pd_pendinghd list of a pagedep.
9215  */
9216 static struct diradd *
9217 diradd_lookup(struct pagedep *pagedep, int offset)
9218 {
9219 	struct diradd *dap;
9220 
9221 	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist)
9222 		if (dap->da_offset == offset)
9223 			return (dap);
9224 	LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
9225 		if (dap->da_offset == offset)
9226 			return (dap);
9227 	return (NULL);
9228 }
9229 
9230 /*
9231  * Search for a .. diradd dependency in a directory that is being removed.
9232  * If the directory was renamed to a new parent we have a diradd rather
9233  * than a mkdir for the .. entry.  We need to cancel it now before
9234  * it is found in truncate().
9235  */
9236 static struct jremref *
9237 cancel_diradd_dotdot(struct inode *ip,
9238 	struct dirrem *dirrem,
9239 	struct jremref *jremref)
9240 {
9241 	struct pagedep *pagedep;
9242 	struct diradd *dap;
9243 	struct worklist *wk;
9244 
9245 	if (pagedep_lookup(ITOVFS(ip), NULL, ip->i_number, 0, 0, &pagedep) == 0)
9246 		return (jremref);
9247 	dap = diradd_lookup(pagedep, DOTDOT_OFFSET);
9248 	if (dap == NULL)
9249 		return (jremref);
9250 	cancel_diradd(dap, dirrem, jremref, NULL, NULL);
9251 	/*
9252 	 * Mark any journal work as belonging to the parent so it is freed
9253 	 * with the .. reference.
9254 	 */
9255 	LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
9256 		wk->wk_state |= MKDIR_PARENT;
9257 	return (NULL);
9258 }
9259 
9260 /*
9261  * Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to
9262  * replace it with a dirrem/diradd pair as a result of re-parenting a
9263  * directory.  This ensures that we don't simultaneously have a mkdir and
9264  * a diradd for the same .. entry.
9265  */
9266 static struct jremref *
9267 cancel_mkdir_dotdot(struct inode *ip,
9268 	struct dirrem *dirrem,
9269 	struct jremref *jremref)
9270 {
9271 	struct inodedep *inodedep;
9272 	struct jaddref *jaddref;
9273 	struct ufsmount *ump;
9274 	struct mkdir *mkdir;
9275 	struct diradd *dap;
9276 	struct mount *mp;
9277 
9278 	mp = ITOVFS(ip);
9279 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
9280 		return (jremref);
9281 	dap = inodedep->id_mkdiradd;
9282 	if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0)
9283 		return (jremref);
9284 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
9285 	for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
9286 	    mkdir = LIST_NEXT(mkdir, md_mkdirs))
9287 		if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT)
9288 			break;
9289 	if (mkdir == NULL)
9290 		panic("cancel_mkdir_dotdot: Unable to find mkdir\n");
9291 	if ((jaddref = mkdir->md_jaddref) != NULL) {
9292 		mkdir->md_jaddref = NULL;
9293 		jaddref->ja_state &= ~MKDIR_PARENT;
9294 		if (inodedep_lookup(mp, jaddref->ja_ino, 0, &inodedep) == 0)
9295 			panic("cancel_mkdir_dotdot: Lost parent inodedep");
9296 		if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) {
9297 			journal_jremref(dirrem, jremref, inodedep);
9298 			jremref = NULL;
9299 		}
9300 	}
9301 	if (mkdir->md_state & ONWORKLIST)
9302 		WORKLIST_REMOVE(&mkdir->md_list);
9303 	mkdir->md_state |= ALLCOMPLETE;
9304 	complete_mkdir(mkdir);
9305 	return (jremref);
9306 }
9307 
9308 static void
9309 journal_jremref(struct dirrem *dirrem,
9310 	struct jremref *jremref,
9311 	struct inodedep *inodedep)
9312 {
9313 
9314 	if (inodedep == NULL)
9315 		if (inodedep_lookup(jremref->jr_list.wk_mp,
9316 		    jremref->jr_ref.if_ino, 0, &inodedep) == 0)
9317 			panic("journal_jremref: Lost inodedep");
9318 	LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps);
9319 	TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
9320 	add_to_journal(&jremref->jr_list);
9321 }
9322 
9323 static void
9324 dirrem_journal(
9325 	struct dirrem *dirrem,
9326 	struct jremref *jremref,
9327 	struct jremref *dotremref,
9328 	struct jremref *dotdotremref)
9329 {
9330 	struct inodedep *inodedep;
9331 
9332 	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0,
9333 	    &inodedep) == 0)
9334 		panic("dirrem_journal: Lost inodedep");
9335 	journal_jremref(dirrem, jremref, inodedep);
9336 	if (dotremref)
9337 		journal_jremref(dirrem, dotremref, inodedep);
9338 	if (dotdotremref)
9339 		journal_jremref(dirrem, dotdotremref, NULL);
9340 }
9341 
9342 /*
9343  * Allocate a new dirrem if appropriate and return it along with
9344  * its associated pagedep. Called without a lock, returns with lock.
9345  */
9346 static struct dirrem *
9347 newdirrem(
9348 	struct buf *bp,		/* buffer containing directory block */
9349 	struct inode *dp,	/* inode for the directory being modified */
9350 	struct inode *ip,	/* inode for directory entry being removed */
9351 	int isrmdir,		/* indicates if doing RMDIR */
9352 	struct dirrem **prevdirremp) /* previously referenced inode, if any */
9353 {
9354 	int offset;
9355 	ufs_lbn_t lbn;
9356 	struct diradd *dap;
9357 	struct dirrem *dirrem;
9358 	struct pagedep *pagedep;
9359 	struct jremref *jremref;
9360 	struct jremref *dotremref;
9361 	struct jremref *dotdotremref;
9362 	struct vnode *dvp;
9363 	struct ufsmount *ump;
9364 
9365 	/*
9366 	 * Whiteouts have no deletion dependencies.
9367 	 */
9368 	if (ip == NULL)
9369 		panic("newdirrem: whiteout");
9370 	dvp = ITOV(dp);
9371 	ump = ITOUMP(dp);
9372 
9373 	/*
9374 	 * If the system is over its limit and our filesystem is
9375 	 * responsible for more than our share of that usage and
9376 	 * we are not a snapshot, request some inodedep cleanup.
9377 	 * Limiting the number of dirrem structures will also limit
9378 	 * the number of freefile and freeblks structures.
9379 	 */
9380 	ACQUIRE_LOCK(ump);
9381 	if (!IS_SNAPSHOT(ip) && softdep_excess_items(ump, D_DIRREM))
9382 		schedule_cleanup(UFSTOVFS(ump));
9383 	else
9384 		FREE_LOCK(ump);
9385 	dirrem = malloc(sizeof(struct dirrem), M_DIRREM, M_SOFTDEP_FLAGS |
9386 	    M_ZERO);
9387 	workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount);
9388 	LIST_INIT(&dirrem->dm_jremrefhd);
9389 	LIST_INIT(&dirrem->dm_jwork);
9390 	dirrem->dm_state = isrmdir ? RMDIR : 0;
9391 	dirrem->dm_oldinum = ip->i_number;
9392 	*prevdirremp = NULL;
9393 	/*
9394 	 * Allocate remove reference structures to track journal write
9395 	 * dependencies.  We will always have one for the link and
9396 	 * when doing directories we will always have one more for dot.
9397 	 * When renaming a directory we skip the dotdot link change so
9398 	 * this is not needed.
9399 	 */
9400 	jremref = dotremref = dotdotremref = NULL;
9401 	if (DOINGSUJ(dvp)) {
9402 		if (isrmdir) {
9403 			jremref = newjremref(dirrem, dp, ip, I_OFFSET(dp),
9404 			    ip->i_effnlink + 2);
9405 			dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET,
9406 			    ip->i_effnlink + 1);
9407 			dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET,
9408 			    dp->i_effnlink + 1);
9409 			dotdotremref->jr_state |= MKDIR_PARENT;
9410 		} else
9411 			jremref = newjremref(dirrem, dp, ip, I_OFFSET(dp),
9412 			    ip->i_effnlink + 1);
9413 	}
9414 	ACQUIRE_LOCK(ump);
9415 	lbn = lblkno(ump->um_fs, I_OFFSET(dp));
9416 	offset = blkoff(ump->um_fs, I_OFFSET(dp));
9417 	pagedep_lookup(UFSTOVFS(ump), bp, dp->i_number, lbn, DEPALLOC,
9418 	    &pagedep);
9419 	dirrem->dm_pagedep = pagedep;
9420 	dirrem->dm_offset = offset;
9421 	/*
9422 	 * If we're renaming a .. link to a new directory, cancel any
9423 	 * existing MKDIR_PARENT mkdir.  If it has already been canceled
9424 	 * the jremref is preserved for any potential diradd in this
9425 	 * location.  This can not coincide with a rmdir.
9426 	 */
9427 	if (I_OFFSET(dp) == DOTDOT_OFFSET) {
9428 		if (isrmdir)
9429 			panic("newdirrem: .. directory change during remove?");
9430 		jremref = cancel_mkdir_dotdot(dp, dirrem, jremref);
9431 	}
9432 	/*
9433 	 * If we're removing a directory search for the .. dependency now and
9434 	 * cancel it.  Any pending journal work will be added to the dirrem
9435 	 * to be completed when the workitem remove completes.
9436 	 */
9437 	if (isrmdir)
9438 		dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref);
9439 	/*
9440 	 * Check for a diradd dependency for the same directory entry.
9441 	 * If present, then both dependencies become obsolete and can
9442 	 * be de-allocated.
9443 	 */
9444 	dap = diradd_lookup(pagedep, offset);
9445 	if (dap == NULL) {
9446 		/*
9447 		 * Link the jremref structures into the dirrem so they are
9448 		 * written prior to the pagedep.
9449 		 */
9450 		if (jremref)
9451 			dirrem_journal(dirrem, jremref, dotremref,
9452 			    dotdotremref);
9453 		return (dirrem);
9454 	}
9455 	/*
9456 	 * Must be ATTACHED at this point.
9457 	 */
9458 	if ((dap->da_state & ATTACHED) == 0)
9459 		panic("newdirrem: not ATTACHED");
9460 	if (dap->da_newinum != ip->i_number)
9461 		panic("newdirrem: inum %ju should be %ju",
9462 		    (uintmax_t)ip->i_number, (uintmax_t)dap->da_newinum);
9463 	/*
9464 	 * If we are deleting a changed name that never made it to disk,
9465 	 * then return the dirrem describing the previous inode (which
9466 	 * represents the inode currently referenced from this entry on disk).
9467 	 */
9468 	if ((dap->da_state & DIRCHG) != 0) {
9469 		*prevdirremp = dap->da_previous;
9470 		dap->da_state &= ~DIRCHG;
9471 		dap->da_pagedep = pagedep;
9472 	}
9473 	/*
9474 	 * We are deleting an entry that never made it to disk.
9475 	 * Mark it COMPLETE so we can delete its inode immediately.
9476 	 */
9477 	dirrem->dm_state |= COMPLETE;
9478 	cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref);
9479 #ifdef INVARIANTS
9480 	if (isrmdir == 0) {
9481 		struct worklist *wk;
9482 
9483 		LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
9484 			if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT))
9485 				panic("bad wk %p (0x%X)\n", wk, wk->wk_state);
9486 	}
9487 #endif
9488 
9489 	return (dirrem);
9490 }
9491 
9492 /*
9493  * Directory entry change dependencies.
9494  *
9495  * Changing an existing directory entry requires that an add operation
9496  * be completed first followed by a deletion. The semantics for the addition
9497  * are identical to the description of adding a new entry above except
9498  * that the rollback is to the old inode number rather than zero. Once
9499  * the addition dependency is completed, the removal is done as described
9500  * in the removal routine above.
9501  */
9502 
9503 /*
9504  * This routine should be called immediately after changing
9505  * a directory entry.  The inode's link count should not be
9506  * decremented by the calling procedure -- the soft updates
9507  * code will perform this task when it is safe.
9508  */
9509 void
9510 softdep_setup_directory_change(
9511 	struct buf *bp,		/* buffer containing directory block */
9512 	struct inode *dp,	/* inode for the directory being modified */
9513 	struct inode *ip,	/* inode for directory entry being removed */
9514 	ino_t newinum,		/* new inode number for changed entry */
9515 	int isrmdir)		/* indicates if doing RMDIR */
9516 {
9517 	int offset;
9518 	struct diradd *dap = NULL;
9519 	struct dirrem *dirrem, *prevdirrem;
9520 	struct pagedep *pagedep;
9521 	struct inodedep *inodedep;
9522 	struct jaddref *jaddref;
9523 	struct mount *mp;
9524 	struct ufsmount *ump;
9525 
9526 	mp = ITOVFS(dp);
9527 	ump = VFSTOUFS(mp);
9528 	offset = blkoff(ump->um_fs, I_OFFSET(dp));
9529 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
9530 	   ("softdep_setup_directory_change called on non-softdep filesystem"));
9531 
9532 	/*
9533 	 * Whiteouts do not need diradd dependencies.
9534 	 */
9535 	if (newinum != UFS_WINO) {
9536 		dap = malloc(sizeof(struct diradd),
9537 		    M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO);
9538 		workitem_alloc(&dap->da_list, D_DIRADD, mp);
9539 		dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
9540 		dap->da_offset = offset;
9541 		dap->da_newinum = newinum;
9542 		LIST_INIT(&dap->da_jwork);
9543 	}
9544 
9545 	/*
9546 	 * Allocate a new dirrem and ACQUIRE_LOCK.
9547 	 */
9548 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
9549 	pagedep = dirrem->dm_pagedep;
9550 	/*
9551 	 * The possible values for isrmdir:
9552 	 *	0 - non-directory file rename
9553 	 *	1 - directory rename within same directory
9554 	 *   inum - directory rename to new directory of given inode number
9555 	 * When renaming to a new directory, we are both deleting and
9556 	 * creating a new directory entry, so the link count on the new
9557 	 * directory should not change. Thus we do not need the followup
9558 	 * dirrem which is usually done in handle_workitem_remove. We set
9559 	 * the DIRCHG flag to tell handle_workitem_remove to skip the
9560 	 * followup dirrem.
9561 	 */
9562 	if (isrmdir > 1)
9563 		dirrem->dm_state |= DIRCHG;
9564 
9565 	/*
9566 	 * Whiteouts have no additional dependencies,
9567 	 * so just put the dirrem on the correct list.
9568 	 */
9569 	if (newinum == UFS_WINO) {
9570 		if ((dirrem->dm_state & COMPLETE) == 0) {
9571 			LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
9572 			    dm_next);
9573 		} else {
9574 			dirrem->dm_dirinum = pagedep->pd_ino;
9575 			if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9576 				add_to_worklist(&dirrem->dm_list, 0);
9577 		}
9578 		FREE_LOCK(ump);
9579 		return;
9580 	}
9581 	/*
9582 	 * Add the dirrem to the inodedep's pending remove list for quick
9583 	 * discovery later.  A valid nlinkdelta ensures that this lookup
9584 	 * will not fail.
9585 	 */
9586 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
9587 		panic("softdep_setup_directory_change: Lost inodedep.");
9588 	dirrem->dm_state |= ONDEPLIST;
9589 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9590 
9591 	/*
9592 	 * If the COMPLETE flag is clear, then there were no active
9593 	 * entries and we want to roll back to the previous inode until
9594 	 * the new inode is committed to disk. If the COMPLETE flag is
9595 	 * set, then we have deleted an entry that never made it to disk.
9596 	 * If the entry we deleted resulted from a name change, then the old
9597 	 * inode reference still resides on disk. Any rollback that we do
9598 	 * needs to be to that old inode (returned to us in prevdirrem). If
9599 	 * the entry we deleted resulted from a create, then there is
9600 	 * no entry on the disk, so we want to roll back to zero rather
9601 	 * than the uncommitted inode. In either of the COMPLETE cases we
9602 	 * want to immediately free the unwritten and unreferenced inode.
9603 	 */
9604 	if ((dirrem->dm_state & COMPLETE) == 0) {
9605 		dap->da_previous = dirrem;
9606 	} else {
9607 		if (prevdirrem != NULL) {
9608 			dap->da_previous = prevdirrem;
9609 		} else {
9610 			dap->da_state &= ~DIRCHG;
9611 			dap->da_pagedep = pagedep;
9612 		}
9613 		dirrem->dm_dirinum = pagedep->pd_ino;
9614 		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9615 			add_to_worklist(&dirrem->dm_list, 0);
9616 	}
9617 	/*
9618 	 * Lookup the jaddref for this journal entry.  We must finish
9619 	 * initializing it and make the diradd write dependent on it.
9620 	 * If we're not journaling, put it on the id_bufwait list if the
9621 	 * inode is not yet written. If it is written, do the post-inode
9622 	 * write processing to put it on the id_pendinghd list.
9623 	 */
9624 	inodedep_lookup(mp, newinum, DEPALLOC, &inodedep);
9625 	if (MOUNTEDSUJ(mp)) {
9626 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
9627 		    inoreflst);
9628 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
9629 		    ("softdep_setup_directory_change: bad jaddref %p",
9630 		    jaddref));
9631 		jaddref->ja_diroff = I_OFFSET(dp);
9632 		jaddref->ja_diradd = dap;
9633 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
9634 		    dap, da_pdlist);
9635 		add_to_journal(&jaddref->ja_list);
9636 	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
9637 		dap->da_state |= COMPLETE;
9638 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
9639 		WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
9640 	} else {
9641 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
9642 		    dap, da_pdlist);
9643 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
9644 	}
9645 	/*
9646 	 * If we're making a new name for a directory that has not been
9647 	 * committed when need to move the dot and dotdot references to
9648 	 * this new name.
9649 	 */
9650 	if (inodedep->id_mkdiradd && I_OFFSET(dp) != DOTDOT_OFFSET)
9651 		merge_diradd(inodedep, dap);
9652 	FREE_LOCK(ump);
9653 }
9654 
9655 /*
9656  * Called whenever the link count on an inode is changed.
9657  * It creates an inode dependency so that the new reference(s)
9658  * to the inode cannot be committed to disk until the updated
9659  * inode has been written.
9660  */
9661 void
9662 softdep_change_linkcnt(
9663 	struct inode *ip)	/* the inode with the increased link count */
9664 {
9665 	struct inodedep *inodedep;
9666 	struct ufsmount *ump;
9667 
9668 	ump = ITOUMP(ip);
9669 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
9670 	    ("softdep_change_linkcnt called on non-softdep filesystem"));
9671 	ACQUIRE_LOCK(ump);
9672 	inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep);
9673 	if (ip->i_nlink < ip->i_effnlink)
9674 		panic("softdep_change_linkcnt: bad delta");
9675 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9676 	FREE_LOCK(ump);
9677 }
9678 
9679 /*
9680  * Attach a sbdep dependency to the superblock buf so that we can keep
9681  * track of the head of the linked list of referenced but unlinked inodes.
9682  */
9683 void
9684 softdep_setup_sbupdate(
9685 	struct ufsmount *ump,
9686 	struct fs *fs,
9687 	struct buf *bp)
9688 {
9689 	struct sbdep *sbdep;
9690 	struct worklist *wk;
9691 
9692 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
9693 	    ("softdep_setup_sbupdate called on non-softdep filesystem"));
9694 	LIST_FOREACH(wk, &bp->b_dep, wk_list)
9695 		if (wk->wk_type == D_SBDEP)
9696 			break;
9697 	if (wk != NULL)
9698 		return;
9699 	sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS);
9700 	workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump));
9701 	sbdep->sb_fs = fs;
9702 	sbdep->sb_ump = ump;
9703 	ACQUIRE_LOCK(ump);
9704 	WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list);
9705 	FREE_LOCK(ump);
9706 }
9707 
9708 /*
9709  * Return the first unlinked inodedep which is ready to be the head of the
9710  * list.  The inodedep and all those after it must have valid next pointers.
9711  */
9712 static struct inodedep *
9713 first_unlinked_inodedep(struct ufsmount *ump)
9714 {
9715 	struct inodedep *inodedep;
9716 	struct inodedep *idp;
9717 
9718 	LOCK_OWNED(ump);
9719 	for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst);
9720 	    inodedep; inodedep = idp) {
9721 		if ((inodedep->id_state & UNLINKNEXT) == 0)
9722 			return (NULL);
9723 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9724 		if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0)
9725 			break;
9726 		if ((inodedep->id_state & UNLINKPREV) == 0)
9727 			break;
9728 	}
9729 	return (inodedep);
9730 }
9731 
9732 /*
9733  * Set the sujfree unlinked head pointer prior to writing a superblock.
9734  */
9735 static void
9736 initiate_write_sbdep(struct sbdep *sbdep)
9737 {
9738 	struct inodedep *inodedep;
9739 	struct fs *bpfs;
9740 	struct fs *fs;
9741 
9742 	bpfs = sbdep->sb_fs;
9743 	fs = sbdep->sb_ump->um_fs;
9744 	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9745 	if (inodedep) {
9746 		fs->fs_sujfree = inodedep->id_ino;
9747 		inodedep->id_state |= UNLINKPREV;
9748 	} else
9749 		fs->fs_sujfree = 0;
9750 	bpfs->fs_sujfree = fs->fs_sujfree;
9751 	/*
9752 	 * Because we have made changes to the superblock, we need to
9753 	 * recompute its check-hash.
9754 	 */
9755 	bpfs->fs_ckhash = ffs_calc_sbhash(bpfs);
9756 }
9757 
9758 /*
9759  * After a superblock is written determine whether it must be written again
9760  * due to a changing unlinked list head.
9761  */
9762 static int
9763 handle_written_sbdep(struct sbdep *sbdep, struct buf *bp)
9764 {
9765 	struct inodedep *inodedep;
9766 	struct fs *fs;
9767 
9768 	LOCK_OWNED(sbdep->sb_ump);
9769 	fs = sbdep->sb_fs;
9770 	/*
9771 	 * If the superblock doesn't match the in-memory list start over.
9772 	 */
9773 	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9774 	if ((inodedep && fs->fs_sujfree != inodedep->id_ino) ||
9775 	    (inodedep == NULL && fs->fs_sujfree != 0)) {
9776 		bdirty(bp);
9777 		return (1);
9778 	}
9779 	WORKITEM_FREE(sbdep, D_SBDEP);
9780 	if (fs->fs_sujfree == 0)
9781 		return (0);
9782 	/*
9783 	 * Now that we have a record of this inode in stable store allow it
9784 	 * to be written to free up pending work.  Inodes may see a lot of
9785 	 * write activity after they are unlinked which we must not hold up.
9786 	 */
9787 	for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) {
9788 		if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS)
9789 			panic("handle_written_sbdep: Bad inodedep %p (0x%X)",
9790 			    inodedep, inodedep->id_state);
9791 		if (inodedep->id_state & UNLINKONLIST)
9792 			break;
9793 		inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST;
9794 	}
9795 
9796 	return (0);
9797 }
9798 
9799 /*
9800  * Mark an inodedep as unlinked and insert it into the in-memory unlinked list.
9801  */
9802 static void
9803 unlinked_inodedep( struct mount *mp, struct inodedep *inodedep)
9804 {
9805 	struct ufsmount *ump;
9806 
9807 	ump = VFSTOUFS(mp);
9808 	LOCK_OWNED(ump);
9809 	if (MOUNTEDSUJ(mp) == 0)
9810 		return;
9811 	ump->um_fs->fs_fmod = 1;
9812 	if (inodedep->id_state & UNLINKED)
9813 		panic("unlinked_inodedep: %p already unlinked\n", inodedep);
9814 	inodedep->id_state |= UNLINKED;
9815 	TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked);
9816 }
9817 
9818 /*
9819  * Remove an inodedep from the unlinked inodedep list.  This may require
9820  * disk writes if the inode has made it that far.
9821  */
9822 static void
9823 clear_unlinked_inodedep( struct inodedep *inodedep)
9824 {
9825 	struct ufs2_dinode *dip;
9826 	struct ufsmount *ump;
9827 	struct inodedep *idp;
9828 	struct inodedep *idn;
9829 	struct fs *fs, *bpfs;
9830 	struct buf *bp;
9831 	daddr_t dbn;
9832 	ino_t ino;
9833 	ino_t nino;
9834 	ino_t pino;
9835 	int error;
9836 
9837 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
9838 	fs = ump->um_fs;
9839 	ino = inodedep->id_ino;
9840 	error = 0;
9841 	for (;;) {
9842 		LOCK_OWNED(ump);
9843 		KASSERT((inodedep->id_state & UNLINKED) != 0,
9844 		    ("clear_unlinked_inodedep: inodedep %p not unlinked",
9845 		    inodedep));
9846 		/*
9847 		 * If nothing has yet been written simply remove us from
9848 		 * the in memory list and return.  This is the most common
9849 		 * case where handle_workitem_remove() loses the final
9850 		 * reference.
9851 		 */
9852 		if ((inodedep->id_state & UNLINKLINKS) == 0)
9853 			break;
9854 		/*
9855 		 * If we have a NEXT pointer and no PREV pointer we can simply
9856 		 * clear NEXT's PREV and remove ourselves from the list.  Be
9857 		 * careful not to clear PREV if the superblock points at
9858 		 * next as well.
9859 		 */
9860 		idn = TAILQ_NEXT(inodedep, id_unlinked);
9861 		if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) {
9862 			if (idn && fs->fs_sujfree != idn->id_ino)
9863 				idn->id_state &= ~UNLINKPREV;
9864 			break;
9865 		}
9866 		/*
9867 		 * Here we have an inodedep which is actually linked into
9868 		 * the list.  We must remove it by forcing a write to the
9869 		 * link before us, whether it be the superblock or an inode.
9870 		 * Unfortunately the list may change while we're waiting
9871 		 * on the buf lock for either resource so we must loop until
9872 		 * we lock the right one.  If both the superblock and an
9873 		 * inode point to this inode we must clear the inode first
9874 		 * followed by the superblock.
9875 		 */
9876 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9877 		pino = 0;
9878 		if (idp && (idp->id_state & UNLINKNEXT))
9879 			pino = idp->id_ino;
9880 		FREE_LOCK(ump);
9881 		if (pino == 0) {
9882 			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
9883 			    (int)fs->fs_sbsize, 0, 0, 0);
9884 		} else {
9885 			dbn = fsbtodb(fs, ino_to_fsba(fs, pino));
9886 			error = ffs_breadz(ump, ump->um_devvp, dbn, dbn,
9887 			    (int)fs->fs_bsize, NULL, NULL, 0, NOCRED, 0, NULL,
9888 			    &bp);
9889 		}
9890 		ACQUIRE_LOCK(ump);
9891 		if (error)
9892 			break;
9893 		/* If the list has changed restart the loop. */
9894 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9895 		nino = 0;
9896 		if (idp && (idp->id_state & UNLINKNEXT))
9897 			nino = idp->id_ino;
9898 		if (nino != pino ||
9899 		    (inodedep->id_state & UNLINKPREV) != UNLINKPREV) {
9900 			FREE_LOCK(ump);
9901 			brelse(bp);
9902 			ACQUIRE_LOCK(ump);
9903 			continue;
9904 		}
9905 		nino = 0;
9906 		idn = TAILQ_NEXT(inodedep, id_unlinked);
9907 		if (idn)
9908 			nino = idn->id_ino;
9909 		/*
9910 		 * Remove us from the in memory list.  After this we cannot
9911 		 * access the inodedep.
9912 		 */
9913 		KASSERT((inodedep->id_state & UNLINKED) != 0,
9914 		    ("clear_unlinked_inodedep: inodedep %p not unlinked",
9915 		    inodedep));
9916 		inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
9917 		TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
9918 		FREE_LOCK(ump);
9919 		/*
9920 		 * The predecessor's next pointer is manually updated here
9921 		 * so that the NEXT flag is never cleared for an element
9922 		 * that is in the list.
9923 		 */
9924 		if (pino == 0) {
9925 			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
9926 			bpfs = (struct fs *)bp->b_data;
9927 			ffs_oldfscompat_write(bpfs, ump);
9928 			softdep_setup_sbupdate(ump, bpfs, bp);
9929 			/*
9930 			 * Because we may have made changes to the superblock,
9931 			 * we need to recompute its check-hash.
9932 			 */
9933 			bpfs->fs_ckhash = ffs_calc_sbhash(bpfs);
9934 		} else if (fs->fs_magic == FS_UFS1_MAGIC) {
9935 			((struct ufs1_dinode *)bp->b_data +
9936 			    ino_to_fsbo(fs, pino))->di_freelink = nino;
9937 		} else {
9938 			dip = (struct ufs2_dinode *)bp->b_data +
9939 			    ino_to_fsbo(fs, pino);
9940 			dip->di_freelink = nino;
9941 			ffs_update_dinode_ckhash(fs, dip);
9942 		}
9943 		/*
9944 		 * If the bwrite fails we have no recourse to recover.  The
9945 		 * filesystem is corrupted already.
9946 		 */
9947 		bwrite(bp);
9948 		ACQUIRE_LOCK(ump);
9949 		/*
9950 		 * If the superblock pointer still needs to be cleared force
9951 		 * a write here.
9952 		 */
9953 		if (fs->fs_sujfree == ino) {
9954 			FREE_LOCK(ump);
9955 			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
9956 			    (int)fs->fs_sbsize, 0, 0, 0);
9957 			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
9958 			bpfs = (struct fs *)bp->b_data;
9959 			ffs_oldfscompat_write(bpfs, ump);
9960 			softdep_setup_sbupdate(ump, bpfs, bp);
9961 			/*
9962 			 * Because we may have made changes to the superblock,
9963 			 * we need to recompute its check-hash.
9964 			 */
9965 			bpfs->fs_ckhash = ffs_calc_sbhash(bpfs);
9966 			bwrite(bp);
9967 			ACQUIRE_LOCK(ump);
9968 		}
9969 
9970 		if (fs->fs_sujfree != ino)
9971 			return;
9972 		panic("clear_unlinked_inodedep: Failed to clear free head");
9973 	}
9974 	if (inodedep->id_ino == fs->fs_sujfree)
9975 		panic("clear_unlinked_inodedep: Freeing head of free list");
9976 	inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
9977 	TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
9978 	return;
9979 }
9980 
9981 /*
9982  * This workitem decrements the inode's link count.
9983  * If the link count reaches zero, the file is removed.
9984  */
9985 static int
9986 handle_workitem_remove(struct dirrem *dirrem, int flags)
9987 {
9988 	struct inodedep *inodedep;
9989 	struct workhead dotdotwk;
9990 	struct worklist *wk;
9991 	struct ufsmount *ump;
9992 	struct mount *mp;
9993 	struct vnode *vp;
9994 	struct inode *ip;
9995 	ino_t oldinum;
9996 
9997 	if (dirrem->dm_state & ONWORKLIST)
9998 		panic("handle_workitem_remove: dirrem %p still on worklist",
9999 		    dirrem);
10000 	oldinum = dirrem->dm_oldinum;
10001 	mp = dirrem->dm_list.wk_mp;
10002 	ump = VFSTOUFS(mp);
10003 	flags |= LK_EXCLUSIVE;
10004 	if (ffs_vgetf(mp, oldinum, flags, &vp, FFSV_FORCEINSMQ |
10005 	    FFSV_FORCEINODEDEP) != 0)
10006 		return (EBUSY);
10007 	ip = VTOI(vp);
10008 	MPASS(ip->i_mode != 0);
10009 	ACQUIRE_LOCK(ump);
10010 	if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0)
10011 		panic("handle_workitem_remove: lost inodedep");
10012 	if (dirrem->dm_state & ONDEPLIST)
10013 		LIST_REMOVE(dirrem, dm_inonext);
10014 	KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
10015 	    ("handle_workitem_remove:  Journal entries not written."));
10016 
10017 	/*
10018 	 * Move all dependencies waiting on the remove to complete
10019 	 * from the dirrem to the inode inowait list to be completed
10020 	 * after the inode has been updated and written to disk.
10021 	 *
10022 	 * Any marked MKDIR_PARENT are saved to be completed when the
10023 	 * dotdot ref is removed unless DIRCHG is specified.  For
10024 	 * directory change operations there will be no further
10025 	 * directory writes and the jsegdeps need to be moved along
10026 	 * with the rest to be completed when the inode is free or
10027 	 * stable in the inode free list.
10028 	 */
10029 	LIST_INIT(&dotdotwk);
10030 	while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) {
10031 		WORKLIST_REMOVE(wk);
10032 		if ((dirrem->dm_state & DIRCHG) == 0 &&
10033 		    wk->wk_state & MKDIR_PARENT) {
10034 			wk->wk_state &= ~MKDIR_PARENT;
10035 			WORKLIST_INSERT(&dotdotwk, wk);
10036 			continue;
10037 		}
10038 		WORKLIST_INSERT(&inodedep->id_inowait, wk);
10039 	}
10040 	LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list);
10041 	/*
10042 	 * Normal file deletion.
10043 	 */
10044 	if ((dirrem->dm_state & RMDIR) == 0) {
10045 		ip->i_nlink--;
10046 		KASSERT(ip->i_nlink >= 0, ("handle_workitem_remove: file ino "
10047 		    "%ju negative i_nlink %d", (intmax_t)ip->i_number,
10048 		    ip->i_nlink));
10049 		DIP_SET(ip, i_nlink, ip->i_nlink);
10050 		UFS_INODE_SET_FLAG(ip, IN_CHANGE);
10051 		if (ip->i_nlink < ip->i_effnlink)
10052 			panic("handle_workitem_remove: bad file delta");
10053 		if (ip->i_nlink == 0)
10054 			unlinked_inodedep(mp, inodedep);
10055 		inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
10056 		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
10057 		    ("handle_workitem_remove: worklist not empty. %s",
10058 		    TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type)));
10059 		WORKITEM_FREE(dirrem, D_DIRREM);
10060 		FREE_LOCK(ump);
10061 		goto out;
10062 	}
10063 	/*
10064 	 * Directory deletion. Decrement reference count for both the
10065 	 * just deleted parent directory entry and the reference for ".".
10066 	 * Arrange to have the reference count on the parent decremented
10067 	 * to account for the loss of "..".
10068 	 */
10069 	ip->i_nlink -= 2;
10070 	KASSERT(ip->i_nlink >= 0, ("handle_workitem_remove: directory ino "
10071 	    "%ju negative i_nlink %d", (intmax_t)ip->i_number, ip->i_nlink));
10072 	DIP_SET(ip, i_nlink, ip->i_nlink);
10073 	UFS_INODE_SET_FLAG(ip, IN_CHANGE);
10074 	if (ip->i_nlink < ip->i_effnlink)
10075 		panic("handle_workitem_remove: bad dir delta");
10076 	if (ip->i_nlink == 0)
10077 		unlinked_inodedep(mp, inodedep);
10078 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
10079 	/*
10080 	 * Rename a directory to a new parent. Since, we are both deleting
10081 	 * and creating a new directory entry, the link count on the new
10082 	 * directory should not change. Thus we skip the followup dirrem.
10083 	 */
10084 	if (dirrem->dm_state & DIRCHG) {
10085 		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
10086 		    ("handle_workitem_remove: DIRCHG and worklist not empty."));
10087 		WORKITEM_FREE(dirrem, D_DIRREM);
10088 		FREE_LOCK(ump);
10089 		goto out;
10090 	}
10091 	dirrem->dm_state = ONDEPLIST;
10092 	dirrem->dm_oldinum = dirrem->dm_dirinum;
10093 	/*
10094 	 * Place the dirrem on the parent's diremhd list.
10095 	 */
10096 	if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0)
10097 		panic("handle_workitem_remove: lost dir inodedep");
10098 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
10099 	/*
10100 	 * If the allocated inode has never been written to disk, then
10101 	 * the on-disk inode is zero'ed and we can remove the file
10102 	 * immediately.  When journaling if the inode has been marked
10103 	 * unlinked and not DEPCOMPLETE we know it can never be written.
10104 	 */
10105 	inodedep_lookup(mp, oldinum, 0, &inodedep);
10106 	if (inodedep == NULL ||
10107 	    (inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED ||
10108 	    check_inode_unwritten(inodedep)) {
10109 		FREE_LOCK(ump);
10110 		vput(vp);
10111 		return handle_workitem_remove(dirrem, flags);
10112 	}
10113 	WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
10114 	FREE_LOCK(ump);
10115 	UFS_INODE_SET_FLAG(ip, IN_CHANGE);
10116 out:
10117 	ffs_update(vp, 0);
10118 	vput(vp);
10119 	return (0);
10120 }
10121 
10122 /*
10123  * Inode de-allocation dependencies.
10124  *
10125  * When an inode's link count is reduced to zero, it can be de-allocated. We
10126  * found it convenient to postpone de-allocation until after the inode is
10127  * written to disk with its new link count (zero).  At this point, all of the
10128  * on-disk inode's block pointers are nullified and, with careful dependency
10129  * list ordering, all dependencies related to the inode will be satisfied and
10130  * the corresponding dependency structures de-allocated.  So, if/when the
10131  * inode is reused, there will be no mixing of old dependencies with new
10132  * ones.  This artificial dependency is set up by the block de-allocation
10133  * procedure above (softdep_setup_freeblocks) and completed by the
10134  * following procedure.
10135  */
10136 static void
10137 handle_workitem_freefile(struct freefile *freefile)
10138 {
10139 	struct workhead wkhd;
10140 	struct fs *fs;
10141 	struct ufsmount *ump;
10142 	int error;
10143 #ifdef INVARIANTS
10144 	struct inodedep *idp;
10145 #endif
10146 
10147 	ump = VFSTOUFS(freefile->fx_list.wk_mp);
10148 	fs = ump->um_fs;
10149 #ifdef INVARIANTS
10150 	ACQUIRE_LOCK(ump);
10151 	error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp);
10152 	FREE_LOCK(ump);
10153 	if (error)
10154 		panic("handle_workitem_freefile: inodedep %p survived", idp);
10155 #endif
10156 	UFS_LOCK(ump);
10157 	fs->fs_pendinginodes -= 1;
10158 	UFS_UNLOCK(ump);
10159 	LIST_INIT(&wkhd);
10160 	LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list);
10161 	if ((error = ffs_freefile(ump, fs, freefile->fx_devvp,
10162 	    freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0)
10163 		softdep_error("handle_workitem_freefile", error);
10164 	ACQUIRE_LOCK(ump);
10165 	WORKITEM_FREE(freefile, D_FREEFILE);
10166 	FREE_LOCK(ump);
10167 }
10168 
10169 /*
10170  * Helper function which unlinks marker element from work list and returns
10171  * the next element on the list.
10172  */
10173 static __inline struct worklist *
10174 markernext(struct worklist *marker)
10175 {
10176 	struct worklist *next;
10177 
10178 	next = LIST_NEXT(marker, wk_list);
10179 	LIST_REMOVE(marker, wk_list);
10180 	return next;
10181 }
10182 
10183 /*
10184  * Disk writes.
10185  *
10186  * The dependency structures constructed above are most actively used when file
10187  * system blocks are written to disk.  No constraints are placed on when a
10188  * block can be written, but unsatisfied update dependencies are made safe by
10189  * modifying (or replacing) the source memory for the duration of the disk
10190  * write.  When the disk write completes, the memory block is again brought
10191  * up-to-date.
10192  *
10193  * In-core inode structure reclamation.
10194  *
10195  * Because there are a finite number of "in-core" inode structures, they are
10196  * reused regularly.  By transferring all inode-related dependencies to the
10197  * in-memory inode block and indexing them separately (via "inodedep"s), we
10198  * can allow "in-core" inode structures to be reused at any time and avoid
10199  * any increase in contention.
10200  *
10201  * Called just before entering the device driver to initiate a new disk I/O.
10202  * The buffer must be locked, thus, no I/O completion operations can occur
10203  * while we are manipulating its associated dependencies.
10204  */
10205 static void
10206 softdep_disk_io_initiation(
10207 	struct buf *bp)		/* structure describing disk write to occur */
10208 {
10209 	struct worklist *wk;
10210 	struct worklist marker;
10211 	struct inodedep *inodedep;
10212 	struct freeblks *freeblks;
10213 	struct jblkdep *jblkdep;
10214 	struct newblk *newblk;
10215 	struct ufsmount *ump;
10216 
10217 	/*
10218 	 * We only care about write operations. There should never
10219 	 * be dependencies for reads.
10220 	 */
10221 	if (bp->b_iocmd != BIO_WRITE)
10222 		panic("softdep_disk_io_initiation: not write");
10223 
10224 	if (bp->b_vflags & BV_BKGRDINPROG)
10225 		panic("softdep_disk_io_initiation: Writing buffer with "
10226 		    "background write in progress: %p", bp);
10227 
10228 	ump = softdep_bp_to_mp(bp);
10229 	if (ump == NULL)
10230 		return;
10231 
10232 	marker.wk_type = D_LAST + 1;	/* Not a normal workitem */
10233 	PHOLD(curproc);			/* Don't swap out kernel stack */
10234 	ACQUIRE_LOCK(ump);
10235 	/*
10236 	 * Do any necessary pre-I/O processing.
10237 	 */
10238 	for (wk = LIST_FIRST(&bp->b_dep); wk != NULL;
10239 	     wk = markernext(&marker)) {
10240 		LIST_INSERT_AFTER(wk, &marker, wk_list);
10241 		switch (wk->wk_type) {
10242 		case D_PAGEDEP:
10243 			initiate_write_filepage(WK_PAGEDEP(wk), bp);
10244 			continue;
10245 
10246 		case D_INODEDEP:
10247 			inodedep = WK_INODEDEP(wk);
10248 			if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC)
10249 				initiate_write_inodeblock_ufs1(inodedep, bp);
10250 			else
10251 				initiate_write_inodeblock_ufs2(inodedep, bp);
10252 			continue;
10253 
10254 		case D_INDIRDEP:
10255 			initiate_write_indirdep(WK_INDIRDEP(wk), bp);
10256 			continue;
10257 
10258 		case D_BMSAFEMAP:
10259 			initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp);
10260 			continue;
10261 
10262 		case D_JSEG:
10263 			WK_JSEG(wk)->js_buf = NULL;
10264 			continue;
10265 
10266 		case D_FREEBLKS:
10267 			freeblks = WK_FREEBLKS(wk);
10268 			jblkdep = LIST_FIRST(&freeblks->fb_jblkdephd);
10269 			/*
10270 			 * We have to wait for the freeblks to be journaled
10271 			 * before we can write an inodeblock with updated
10272 			 * pointers.  Be careful to arrange the marker so
10273 			 * we revisit the freeblks if it's not removed by
10274 			 * the first jwait().
10275 			 */
10276 			if (jblkdep != NULL) {
10277 				LIST_REMOVE(&marker, wk_list);
10278 				LIST_INSERT_BEFORE(wk, &marker, wk_list);
10279 				jwait(&jblkdep->jb_list, MNT_WAIT);
10280 			}
10281 			continue;
10282 		case D_ALLOCDIRECT:
10283 		case D_ALLOCINDIR:
10284 			/*
10285 			 * We have to wait for the jnewblk to be journaled
10286 			 * before we can write to a block if the contents
10287 			 * may be confused with an earlier file's indirect
10288 			 * at recovery time.  Handle the marker as described
10289 			 * above.
10290 			 */
10291 			newblk = WK_NEWBLK(wk);
10292 			if (newblk->nb_jnewblk != NULL &&
10293 			    indirblk_lookup(newblk->nb_list.wk_mp,
10294 			    newblk->nb_newblkno)) {
10295 				LIST_REMOVE(&marker, wk_list);
10296 				LIST_INSERT_BEFORE(wk, &marker, wk_list);
10297 				jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
10298 			}
10299 			continue;
10300 
10301 		case D_SBDEP:
10302 			initiate_write_sbdep(WK_SBDEP(wk));
10303 			continue;
10304 
10305 		case D_MKDIR:
10306 		case D_FREEWORK:
10307 		case D_FREEDEP:
10308 		case D_JSEGDEP:
10309 			continue;
10310 
10311 		default:
10312 			panic("handle_disk_io_initiation: Unexpected type %s",
10313 			    TYPENAME(wk->wk_type));
10314 			/* NOTREACHED */
10315 		}
10316 	}
10317 	FREE_LOCK(ump);
10318 	PRELE(curproc);			/* Allow swapout of kernel stack */
10319 }
10320 
10321 /*
10322  * Called from within the procedure above to deal with unsatisfied
10323  * allocation dependencies in a directory. The buffer must be locked,
10324  * thus, no I/O completion operations can occur while we are
10325  * manipulating its associated dependencies.
10326  */
10327 static void
10328 initiate_write_filepage(struct pagedep *pagedep, struct buf *bp)
10329 {
10330 	struct jremref *jremref;
10331 	struct jmvref *jmvref;
10332 	struct dirrem *dirrem;
10333 	struct diradd *dap;
10334 	struct direct *ep;
10335 	int i;
10336 
10337 	if (pagedep->pd_state & IOSTARTED) {
10338 		/*
10339 		 * This can only happen if there is a driver that does not
10340 		 * understand chaining. Here biodone will reissue the call
10341 		 * to strategy for the incomplete buffers.
10342 		 */
10343 		printf("initiate_write_filepage: already started\n");
10344 		return;
10345 	}
10346 	pagedep->pd_state |= IOSTARTED;
10347 	/*
10348 	 * Wait for all journal remove dependencies to hit the disk.
10349 	 * We can not allow any potentially conflicting directory adds
10350 	 * to be visible before removes and rollback is too difficult.
10351 	 * The per-filesystem lock may be dropped and re-acquired, however
10352 	 * we hold the buf locked so the dependency can not go away.
10353 	 */
10354 	LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next)
10355 		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL)
10356 			jwait(&jremref->jr_list, MNT_WAIT);
10357 	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL)
10358 		jwait(&jmvref->jm_list, MNT_WAIT);
10359 	for (i = 0; i < DAHASHSZ; i++) {
10360 		LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
10361 			ep = (struct direct *)
10362 			    ((char *)bp->b_data + dap->da_offset);
10363 			if (ep->d_ino != dap->da_newinum)
10364 				panic("%s: dir inum %ju != new %ju",
10365 				    "initiate_write_filepage",
10366 				    (uintmax_t)ep->d_ino,
10367 				    (uintmax_t)dap->da_newinum);
10368 			if (dap->da_state & DIRCHG)
10369 				ep->d_ino = dap->da_previous->dm_oldinum;
10370 			else
10371 				ep->d_ino = 0;
10372 			dap->da_state &= ~ATTACHED;
10373 			dap->da_state |= UNDONE;
10374 		}
10375 	}
10376 }
10377 
10378 /*
10379  * Version of initiate_write_inodeblock that handles UFS1 dinodes.
10380  * Note that any bug fixes made to this routine must be done in the
10381  * version found below.
10382  *
10383  * Called from within the procedure above to deal with unsatisfied
10384  * allocation dependencies in an inodeblock. The buffer must be
10385  * locked, thus, no I/O completion operations can occur while we
10386  * are manipulating its associated dependencies.
10387  */
10388 static void
10389 initiate_write_inodeblock_ufs1(
10390 	struct inodedep *inodedep,
10391 	struct buf *bp)			/* The inode block */
10392 {
10393 	struct allocdirect *adp, *lastadp;
10394 	struct ufs1_dinode *dp;
10395 	struct ufs1_dinode *sip;
10396 	struct inoref *inoref;
10397 	struct ufsmount *ump;
10398 	struct fs *fs;
10399 	ufs_lbn_t i;
10400 #ifdef INVARIANTS
10401 	ufs_lbn_t prevlbn = 0;
10402 #endif
10403 	int deplist __diagused;
10404 
10405 	if (inodedep->id_state & IOSTARTED)
10406 		panic("initiate_write_inodeblock_ufs1: already started");
10407 	inodedep->id_state |= IOSTARTED;
10408 	fs = inodedep->id_fs;
10409 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
10410 	LOCK_OWNED(ump);
10411 	dp = (struct ufs1_dinode *)bp->b_data +
10412 	    ino_to_fsbo(fs, inodedep->id_ino);
10413 
10414 	/*
10415 	 * If we're on the unlinked list but have not yet written our
10416 	 * next pointer initialize it here.
10417 	 */
10418 	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
10419 		struct inodedep *inon;
10420 
10421 		inon = TAILQ_NEXT(inodedep, id_unlinked);
10422 		dp->di_freelink = inon ? inon->id_ino : 0;
10423 	}
10424 	/*
10425 	 * If the bitmap is not yet written, then the allocated
10426 	 * inode cannot be written to disk.
10427 	 */
10428 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
10429 		if (inodedep->id_savedino1 != NULL)
10430 			panic("initiate_write_inodeblock_ufs1: I/O underway");
10431 		FREE_LOCK(ump);
10432 		sip = malloc(sizeof(struct ufs1_dinode),
10433 		    M_SAVEDINO, M_SOFTDEP_FLAGS);
10434 		ACQUIRE_LOCK(ump);
10435 		inodedep->id_savedino1 = sip;
10436 		*inodedep->id_savedino1 = *dp;
10437 		bzero((caddr_t)dp, sizeof(struct ufs1_dinode));
10438 		dp->di_gen = inodedep->id_savedino1->di_gen;
10439 		dp->di_freelink = inodedep->id_savedino1->di_freelink;
10440 		return;
10441 	}
10442 	/*
10443 	 * If no dependencies, then there is nothing to roll back.
10444 	 */
10445 	inodedep->id_savedsize = dp->di_size;
10446 	inodedep->id_savedextsize = 0;
10447 	inodedep->id_savednlink = dp->di_nlink;
10448 	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
10449 	    TAILQ_EMPTY(&inodedep->id_inoreflst))
10450 		return;
10451 	/*
10452 	 * Revert the link count to that of the first unwritten journal entry.
10453 	 */
10454 	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
10455 	if (inoref)
10456 		dp->di_nlink = inoref->if_nlink;
10457 	/*
10458 	 * Set the dependencies to busy.
10459 	 */
10460 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10461 	     adp = TAILQ_NEXT(adp, ad_next)) {
10462 #ifdef INVARIANTS
10463 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10464 			panic("softdep_write_inodeblock: lbn order");
10465 		prevlbn = adp->ad_offset;
10466 		if (adp->ad_offset < UFS_NDADDR &&
10467 		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
10468 			panic("initiate_write_inodeblock_ufs1: "
10469 			    "direct pointer #%jd mismatch %d != %jd",
10470 			    (intmax_t)adp->ad_offset,
10471 			    dp->di_db[adp->ad_offset],
10472 			    (intmax_t)adp->ad_newblkno);
10473 		if (adp->ad_offset >= UFS_NDADDR &&
10474 		    dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno)
10475 			panic("initiate_write_inodeblock_ufs1: "
10476 			    "indirect pointer #%jd mismatch %d != %jd",
10477 			    (intmax_t)adp->ad_offset - UFS_NDADDR,
10478 			    dp->di_ib[adp->ad_offset - UFS_NDADDR],
10479 			    (intmax_t)adp->ad_newblkno);
10480 		deplist |= 1 << adp->ad_offset;
10481 		if ((adp->ad_state & ATTACHED) == 0)
10482 			panic("initiate_write_inodeblock_ufs1: "
10483 			    "Unknown state 0x%x", adp->ad_state);
10484 #endif /* INVARIANTS */
10485 		adp->ad_state &= ~ATTACHED;
10486 		adp->ad_state |= UNDONE;
10487 	}
10488 	/*
10489 	 * The on-disk inode cannot claim to be any larger than the last
10490 	 * fragment that has been written. Otherwise, the on-disk inode
10491 	 * might have fragments that were not the last block in the file
10492 	 * which would corrupt the filesystem.
10493 	 */
10494 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10495 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10496 		if (adp->ad_offset >= UFS_NDADDR)
10497 			break;
10498 		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
10499 		/* keep going until hitting a rollback to a frag */
10500 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10501 			continue;
10502 		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10503 		for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) {
10504 #ifdef INVARIANTS
10505 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
10506 				panic("initiate_write_inodeblock_ufs1: "
10507 				    "lost dep1");
10508 #endif /* INVARIANTS */
10509 			dp->di_db[i] = 0;
10510 		}
10511 		for (i = 0; i < UFS_NIADDR; i++) {
10512 #ifdef INVARIANTS
10513 			if (dp->di_ib[i] != 0 &&
10514 			    (deplist & ((1 << UFS_NDADDR) << i)) == 0)
10515 				panic("initiate_write_inodeblock_ufs1: "
10516 				    "lost dep2");
10517 #endif /* INVARIANTS */
10518 			dp->di_ib[i] = 0;
10519 		}
10520 		return;
10521 	}
10522 	/*
10523 	 * If we have zero'ed out the last allocated block of the file,
10524 	 * roll back the size to the last currently allocated block.
10525 	 * We know that this last allocated block is a full-sized as
10526 	 * we already checked for fragments in the loop above.
10527 	 */
10528 	if (lastadp != NULL &&
10529 	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10530 		for (i = lastadp->ad_offset; i >= 0; i--)
10531 			if (dp->di_db[i] != 0)
10532 				break;
10533 		dp->di_size = (i + 1) * fs->fs_bsize;
10534 	}
10535 	/*
10536 	 * The only dependencies are for indirect blocks.
10537 	 *
10538 	 * The file size for indirect block additions is not guaranteed.
10539 	 * Such a guarantee would be non-trivial to achieve. The conventional
10540 	 * synchronous write implementation also does not make this guarantee.
10541 	 * Fsck should catch and fix discrepancies. Arguably, the file size
10542 	 * can be over-estimated without destroying integrity when the file
10543 	 * moves into the indirect blocks (i.e., is large). If we want to
10544 	 * postpone fsck, we are stuck with this argument.
10545 	 */
10546 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
10547 		dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0;
10548 }
10549 
10550 /*
10551  * Version of initiate_write_inodeblock that handles UFS2 dinodes.
10552  * Note that any bug fixes made to this routine must be done in the
10553  * version found above.
10554  *
10555  * Called from within the procedure above to deal with unsatisfied
10556  * allocation dependencies in an inodeblock. The buffer must be
10557  * locked, thus, no I/O completion operations can occur while we
10558  * are manipulating its associated dependencies.
10559  */
10560 static void
10561 initiate_write_inodeblock_ufs2(
10562 	struct inodedep *inodedep,
10563 	struct buf *bp)			/* The inode block */
10564 {
10565 	struct allocdirect *adp, *lastadp;
10566 	struct ufs2_dinode *dp;
10567 	struct ufs2_dinode *sip;
10568 	struct inoref *inoref;
10569 	struct ufsmount *ump;
10570 	struct fs *fs;
10571 	ufs_lbn_t i;
10572 #ifdef INVARIANTS
10573 	ufs_lbn_t prevlbn = 0;
10574 #endif
10575 	int deplist __diagused;
10576 
10577 	if (inodedep->id_state & IOSTARTED)
10578 		panic("initiate_write_inodeblock_ufs2: already started");
10579 	inodedep->id_state |= IOSTARTED;
10580 	fs = inodedep->id_fs;
10581 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
10582 	LOCK_OWNED(ump);
10583 	dp = (struct ufs2_dinode *)bp->b_data +
10584 	    ino_to_fsbo(fs, inodedep->id_ino);
10585 
10586 	/*
10587 	 * If we're on the unlinked list but have not yet written our
10588 	 * next pointer initialize it here.
10589 	 */
10590 	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
10591 		struct inodedep *inon;
10592 
10593 		inon = TAILQ_NEXT(inodedep, id_unlinked);
10594 		dp->di_freelink = inon ? inon->id_ino : 0;
10595 		ffs_update_dinode_ckhash(fs, dp);
10596 	}
10597 	/*
10598 	 * If the bitmap is not yet written, then the allocated
10599 	 * inode cannot be written to disk.
10600 	 */
10601 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
10602 		if (inodedep->id_savedino2 != NULL)
10603 			panic("initiate_write_inodeblock_ufs2: I/O underway");
10604 		FREE_LOCK(ump);
10605 		sip = malloc(sizeof(struct ufs2_dinode),
10606 		    M_SAVEDINO, M_SOFTDEP_FLAGS);
10607 		ACQUIRE_LOCK(ump);
10608 		inodedep->id_savedino2 = sip;
10609 		*inodedep->id_savedino2 = *dp;
10610 		bzero((caddr_t)dp, sizeof(struct ufs2_dinode));
10611 		dp->di_gen = inodedep->id_savedino2->di_gen;
10612 		dp->di_freelink = inodedep->id_savedino2->di_freelink;
10613 		return;
10614 	}
10615 	/*
10616 	 * If no dependencies, then there is nothing to roll back.
10617 	 */
10618 	inodedep->id_savedsize = dp->di_size;
10619 	inodedep->id_savedextsize = dp->di_extsize;
10620 	inodedep->id_savednlink = dp->di_nlink;
10621 	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
10622 	    TAILQ_EMPTY(&inodedep->id_extupdt) &&
10623 	    TAILQ_EMPTY(&inodedep->id_inoreflst))
10624 		return;
10625 	/*
10626 	 * Revert the link count to that of the first unwritten journal entry.
10627 	 */
10628 	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
10629 	if (inoref)
10630 		dp->di_nlink = inoref->if_nlink;
10631 
10632 	/*
10633 	 * Set the ext data dependencies to busy.
10634 	 */
10635 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
10636 	     adp = TAILQ_NEXT(adp, ad_next)) {
10637 #ifdef INVARIANTS
10638 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10639 			panic("initiate_write_inodeblock_ufs2: lbn order");
10640 		prevlbn = adp->ad_offset;
10641 		if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno)
10642 			panic("initiate_write_inodeblock_ufs2: "
10643 			    "ext pointer #%jd mismatch %jd != %jd",
10644 			    (intmax_t)adp->ad_offset,
10645 			    (intmax_t)dp->di_extb[adp->ad_offset],
10646 			    (intmax_t)adp->ad_newblkno);
10647 		deplist |= 1 << adp->ad_offset;
10648 		if ((adp->ad_state & ATTACHED) == 0)
10649 			panic("initiate_write_inodeblock_ufs2: Unknown "
10650 			    "state 0x%x", adp->ad_state);
10651 #endif /* INVARIANTS */
10652 		adp->ad_state &= ~ATTACHED;
10653 		adp->ad_state |= UNDONE;
10654 	}
10655 	/*
10656 	 * The on-disk inode cannot claim to be any larger than the last
10657 	 * fragment that has been written. Otherwise, the on-disk inode
10658 	 * might have fragments that were not the last block in the ext
10659 	 * data which would corrupt the filesystem.
10660 	 */
10661 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
10662 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10663 		dp->di_extb[adp->ad_offset] = adp->ad_oldblkno;
10664 		/* keep going until hitting a rollback to a frag */
10665 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10666 			continue;
10667 		dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10668 		for (i = adp->ad_offset + 1; i < UFS_NXADDR; i++) {
10669 #ifdef INVARIANTS
10670 			if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0)
10671 				panic("initiate_write_inodeblock_ufs2: "
10672 				    "lost dep1");
10673 #endif /* INVARIANTS */
10674 			dp->di_extb[i] = 0;
10675 		}
10676 		lastadp = NULL;
10677 		break;
10678 	}
10679 	/*
10680 	 * If we have zero'ed out the last allocated block of the ext
10681 	 * data, roll back the size to the last currently allocated block.
10682 	 * We know that this last allocated block is a full-sized as
10683 	 * we already checked for fragments in the loop above.
10684 	 */
10685 	if (lastadp != NULL &&
10686 	    dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10687 		for (i = lastadp->ad_offset; i >= 0; i--)
10688 			if (dp->di_extb[i] != 0)
10689 				break;
10690 		dp->di_extsize = (i + 1) * fs->fs_bsize;
10691 	}
10692 	/*
10693 	 * Set the file data dependencies to busy.
10694 	 */
10695 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10696 	     adp = TAILQ_NEXT(adp, ad_next)) {
10697 #ifdef INVARIANTS
10698 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10699 			panic("softdep_write_inodeblock: lbn order");
10700 		if ((adp->ad_state & ATTACHED) == 0)
10701 			panic("inodedep %p and adp %p not attached", inodedep, adp);
10702 		prevlbn = adp->ad_offset;
10703 		if (!ffs_fsfail_cleanup(ump, 0) &&
10704 		    adp->ad_offset < UFS_NDADDR &&
10705 		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
10706 			panic("initiate_write_inodeblock_ufs2: "
10707 			    "direct pointer #%jd mismatch %jd != %jd",
10708 			    (intmax_t)adp->ad_offset,
10709 			    (intmax_t)dp->di_db[adp->ad_offset],
10710 			    (intmax_t)adp->ad_newblkno);
10711 		if (!ffs_fsfail_cleanup(ump, 0) &&
10712 		    adp->ad_offset >= UFS_NDADDR &&
10713 		    dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno)
10714 			panic("initiate_write_inodeblock_ufs2: "
10715 			    "indirect pointer #%jd mismatch %jd != %jd",
10716 			    (intmax_t)adp->ad_offset - UFS_NDADDR,
10717 			    (intmax_t)dp->di_ib[adp->ad_offset - UFS_NDADDR],
10718 			    (intmax_t)adp->ad_newblkno);
10719 		deplist |= 1 << adp->ad_offset;
10720 		if ((adp->ad_state & ATTACHED) == 0)
10721 			panic("initiate_write_inodeblock_ufs2: Unknown "
10722 			     "state 0x%x", adp->ad_state);
10723 #endif /* INVARIANTS */
10724 		adp->ad_state &= ~ATTACHED;
10725 		adp->ad_state |= UNDONE;
10726 	}
10727 	/*
10728 	 * The on-disk inode cannot claim to be any larger than the last
10729 	 * fragment that has been written. Otherwise, the on-disk inode
10730 	 * might have fragments that were not the last block in the file
10731 	 * which would corrupt the filesystem.
10732 	 */
10733 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10734 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10735 		if (adp->ad_offset >= UFS_NDADDR)
10736 			break;
10737 		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
10738 		/* keep going until hitting a rollback to a frag */
10739 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10740 			continue;
10741 		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10742 		for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) {
10743 #ifdef INVARIANTS
10744 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
10745 				panic("initiate_write_inodeblock_ufs2: "
10746 				    "lost dep2");
10747 #endif /* INVARIANTS */
10748 			dp->di_db[i] = 0;
10749 		}
10750 		for (i = 0; i < UFS_NIADDR; i++) {
10751 #ifdef INVARIANTS
10752 			if (dp->di_ib[i] != 0 &&
10753 			    (deplist & ((1 << UFS_NDADDR) << i)) == 0)
10754 				panic("initiate_write_inodeblock_ufs2: "
10755 				    "lost dep3");
10756 #endif /* INVARIANTS */
10757 			dp->di_ib[i] = 0;
10758 		}
10759 		ffs_update_dinode_ckhash(fs, dp);
10760 		return;
10761 	}
10762 	/*
10763 	 * If we have zero'ed out the last allocated block of the file,
10764 	 * roll back the size to the last currently allocated block.
10765 	 * We know that this last allocated block is a full-sized as
10766 	 * we already checked for fragments in the loop above.
10767 	 */
10768 	if (lastadp != NULL &&
10769 	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10770 		for (i = lastadp->ad_offset; i >= 0; i--)
10771 			if (dp->di_db[i] != 0)
10772 				break;
10773 		dp->di_size = (i + 1) * fs->fs_bsize;
10774 	}
10775 	/*
10776 	 * The only dependencies are for indirect blocks.
10777 	 *
10778 	 * The file size for indirect block additions is not guaranteed.
10779 	 * Such a guarantee would be non-trivial to achieve. The conventional
10780 	 * synchronous write implementation also does not make this guarantee.
10781 	 * Fsck should catch and fix discrepancies. Arguably, the file size
10782 	 * can be over-estimated without destroying integrity when the file
10783 	 * moves into the indirect blocks (i.e., is large). If we want to
10784 	 * postpone fsck, we are stuck with this argument.
10785 	 */
10786 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
10787 		dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0;
10788 	ffs_update_dinode_ckhash(fs, dp);
10789 }
10790 
10791 /*
10792  * Cancel an indirdep as a result of truncation.  Release all of the
10793  * children allocindirs and place their journal work on the appropriate
10794  * list.
10795  */
10796 static void
10797 cancel_indirdep(
10798 	struct indirdep *indirdep,
10799 	struct buf *bp,
10800 	struct freeblks *freeblks)
10801 {
10802 	struct allocindir *aip;
10803 
10804 	/*
10805 	 * None of the indirect pointers will ever be visible,
10806 	 * so they can simply be tossed. GOINGAWAY ensures
10807 	 * that allocated pointers will be saved in the buffer
10808 	 * cache until they are freed. Note that they will
10809 	 * only be able to be found by their physical address
10810 	 * since the inode mapping the logical address will
10811 	 * be gone. The save buffer used for the safe copy
10812 	 * was allocated in setup_allocindir_phase2 using
10813 	 * the physical address so it could be used for this
10814 	 * purpose. Hence we swap the safe copy with the real
10815 	 * copy, allowing the safe copy to be freed and holding
10816 	 * on to the real copy for later use in indir_trunc.
10817 	 */
10818 	if (indirdep->ir_state & GOINGAWAY)
10819 		panic("cancel_indirdep: already gone");
10820 	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
10821 		indirdep->ir_state |= DEPCOMPLETE;
10822 		LIST_REMOVE(indirdep, ir_next);
10823 	}
10824 	indirdep->ir_state |= GOINGAWAY;
10825 	/*
10826 	 * Pass in bp for blocks still have journal writes
10827 	 * pending so we can cancel them on their own.
10828 	 */
10829 	while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != NULL)
10830 		cancel_allocindir(aip, bp, freeblks, 0);
10831 	while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL)
10832 		cancel_allocindir(aip, NULL, freeblks, 0);
10833 	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL)
10834 		cancel_allocindir(aip, NULL, freeblks, 0);
10835 	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL)
10836 		cancel_allocindir(aip, NULL, freeblks, 0);
10837 	/*
10838 	 * If there are pending partial truncations we need to keep the
10839 	 * old block copy around until they complete.  This is because
10840 	 * the current b_data is not a perfect superset of the available
10841 	 * blocks.
10842 	 */
10843 	if (TAILQ_EMPTY(&indirdep->ir_trunc))
10844 		bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount);
10845 	else
10846 		bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
10847 	WORKLIST_REMOVE(&indirdep->ir_list);
10848 	WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list);
10849 	indirdep->ir_bp = NULL;
10850 	indirdep->ir_freeblks = freeblks;
10851 }
10852 
10853 /*
10854  * Free an indirdep once it no longer has new pointers to track.
10855  */
10856 static void
10857 free_indirdep(struct indirdep *indirdep)
10858 {
10859 
10860 	KASSERT(TAILQ_EMPTY(&indirdep->ir_trunc),
10861 	    ("free_indirdep: Indir trunc list not empty."));
10862 	KASSERT(LIST_EMPTY(&indirdep->ir_completehd),
10863 	    ("free_indirdep: Complete head not empty."));
10864 	KASSERT(LIST_EMPTY(&indirdep->ir_writehd),
10865 	    ("free_indirdep: write head not empty."));
10866 	KASSERT(LIST_EMPTY(&indirdep->ir_donehd),
10867 	    ("free_indirdep: done head not empty."));
10868 	KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd),
10869 	    ("free_indirdep: deplist head not empty."));
10870 	KASSERT((indirdep->ir_state & DEPCOMPLETE),
10871 	    ("free_indirdep: %p still on newblk list.", indirdep));
10872 	KASSERT(indirdep->ir_saveddata == NULL,
10873 	    ("free_indirdep: %p still has saved data.", indirdep));
10874 	KASSERT(indirdep->ir_savebp == NULL,
10875 	    ("free_indirdep: %p still has savebp buffer.", indirdep));
10876 	if (indirdep->ir_state & ONWORKLIST)
10877 		WORKLIST_REMOVE(&indirdep->ir_list);
10878 	WORKITEM_FREE(indirdep, D_INDIRDEP);
10879 }
10880 
10881 /*
10882  * Called before a write to an indirdep.  This routine is responsible for
10883  * rolling back pointers to a safe state which includes only those
10884  * allocindirs which have been completed.
10885  */
10886 static void
10887 initiate_write_indirdep(struct indirdep *indirdep, struct buf *bp)
10888 {
10889 	struct ufsmount *ump;
10890 
10891 	indirdep->ir_state |= IOSTARTED;
10892 	if (indirdep->ir_state & GOINGAWAY)
10893 		panic("disk_io_initiation: indirdep gone");
10894 	/*
10895 	 * If there are no remaining dependencies, this will be writing
10896 	 * the real pointers.
10897 	 */
10898 	if (LIST_EMPTY(&indirdep->ir_deplisthd) &&
10899 	    TAILQ_EMPTY(&indirdep->ir_trunc))
10900 		return;
10901 	/*
10902 	 * Replace up-to-date version with safe version.
10903 	 */
10904 	if (indirdep->ir_saveddata == NULL) {
10905 		ump = VFSTOUFS(indirdep->ir_list.wk_mp);
10906 		LOCK_OWNED(ump);
10907 		FREE_LOCK(ump);
10908 		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
10909 		    M_SOFTDEP_FLAGS);
10910 		ACQUIRE_LOCK(ump);
10911 	}
10912 	indirdep->ir_state &= ~ATTACHED;
10913 	indirdep->ir_state |= UNDONE;
10914 	bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
10915 	bcopy(indirdep->ir_savebp->b_data, bp->b_data,
10916 	    bp->b_bcount);
10917 }
10918 
10919 /*
10920  * Called when an inode has been cleared in a cg bitmap.  This finally
10921  * eliminates any canceled jaddrefs
10922  */
10923 void
10924 softdep_setup_inofree(struct mount *mp,
10925 	struct buf *bp,
10926 	ino_t ino,
10927 	struct workhead *wkhd)
10928 {
10929 	struct worklist *wk, *wkn;
10930 	struct inodedep *inodedep;
10931 	struct ufsmount *ump;
10932 	uint8_t *inosused;
10933 	struct cg *cgp;
10934 	struct fs *fs;
10935 
10936 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
10937 	    ("softdep_setup_inofree called on non-softdep filesystem"));
10938 	ump = VFSTOUFS(mp);
10939 	ACQUIRE_LOCK(ump);
10940 	if (!ffs_fsfail_cleanup(ump, 0)) {
10941 		fs = ump->um_fs;
10942 		cgp = (struct cg *)bp->b_data;
10943 		inosused = cg_inosused(cgp);
10944 		if (isset(inosused, ino % fs->fs_ipg))
10945 			panic("softdep_setup_inofree: inode %ju not freed.",
10946 			    (uintmax_t)ino);
10947 	}
10948 	if (inodedep_lookup(mp, ino, 0, &inodedep))
10949 		panic("softdep_setup_inofree: ino %ju has existing inodedep %p",
10950 		    (uintmax_t)ino, inodedep);
10951 	if (wkhd) {
10952 		LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) {
10953 			if (wk->wk_type != D_JADDREF)
10954 				continue;
10955 			WORKLIST_REMOVE(wk);
10956 			/*
10957 			 * We can free immediately even if the jaddref
10958 			 * isn't attached in a background write as now
10959 			 * the bitmaps are reconciled.
10960 			 */
10961 			wk->wk_state |= COMPLETE | ATTACHED;
10962 			free_jaddref(WK_JADDREF(wk));
10963 		}
10964 		jwork_move(&bp->b_dep, wkhd);
10965 	}
10966 	FREE_LOCK(ump);
10967 }
10968 
10969 /*
10970  * Called via ffs_blkfree() after a set of frags has been cleared from a cg
10971  * map.  Any dependencies waiting for the write to clear are added to the
10972  * buf's list and any jnewblks that are being canceled are discarded
10973  * immediately.
10974  */
10975 void
10976 softdep_setup_blkfree(
10977 	struct mount *mp,
10978 	struct buf *bp,
10979 	ufs2_daddr_t blkno,
10980 	int frags,
10981 	struct workhead *wkhd)
10982 {
10983 	struct bmsafemap *bmsafemap;
10984 	struct jnewblk *jnewblk;
10985 	struct ufsmount *ump;
10986 	struct worklist *wk;
10987 	struct fs *fs;
10988 #ifdef INVARIANTS
10989 	uint8_t *blksfree;
10990 	struct cg *cgp;
10991 	ufs2_daddr_t jstart;
10992 	ufs2_daddr_t jend;
10993 	ufs2_daddr_t end;
10994 	long bno;
10995 	int i;
10996 #endif
10997 
10998 	CTR3(KTR_SUJ,
10999 	    "softdep_setup_blkfree: blkno %jd frags %d wk head %p",
11000 	    blkno, frags, wkhd);
11001 
11002 	ump = VFSTOUFS(mp);
11003 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
11004 	    ("softdep_setup_blkfree called on non-softdep filesystem"));
11005 	ACQUIRE_LOCK(ump);
11006 	/* Lookup the bmsafemap so we track when it is dirty. */
11007 	fs = ump->um_fs;
11008 	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
11009 	/*
11010 	 * Detach any jnewblks which have been canceled.  They must linger
11011 	 * until the bitmap is cleared again by ffs_blkfree() to prevent
11012 	 * an unjournaled allocation from hitting the disk.
11013 	 */
11014 	if (wkhd) {
11015 		while ((wk = LIST_FIRST(wkhd)) != NULL) {
11016 			CTR2(KTR_SUJ,
11017 			    "softdep_setup_blkfree: blkno %jd wk type %d",
11018 			    blkno, wk->wk_type);
11019 			WORKLIST_REMOVE(wk);
11020 			if (wk->wk_type != D_JNEWBLK) {
11021 				WORKLIST_INSERT(&bmsafemap->sm_freehd, wk);
11022 				continue;
11023 			}
11024 			jnewblk = WK_JNEWBLK(wk);
11025 			KASSERT(jnewblk->jn_state & GOINGAWAY,
11026 			    ("softdep_setup_blkfree: jnewblk not canceled."));
11027 #ifdef INVARIANTS
11028 			/*
11029 			 * Assert that this block is free in the bitmap
11030 			 * before we discard the jnewblk.
11031 			 */
11032 			cgp = (struct cg *)bp->b_data;
11033 			blksfree = cg_blksfree(cgp);
11034 			bno = dtogd(fs, jnewblk->jn_blkno);
11035 			for (i = jnewblk->jn_oldfrags;
11036 			    i < jnewblk->jn_frags; i++) {
11037 				if (isset(blksfree, bno + i))
11038 					continue;
11039 				panic("softdep_setup_blkfree: not free");
11040 			}
11041 #endif
11042 			/*
11043 			 * Even if it's not attached we can free immediately
11044 			 * as the new bitmap is correct.
11045 			 */
11046 			wk->wk_state |= COMPLETE | ATTACHED;
11047 			free_jnewblk(jnewblk);
11048 		}
11049 	}
11050 
11051 #ifdef INVARIANTS
11052 	/*
11053 	 * Assert that we are not freeing a block which has an outstanding
11054 	 * allocation dependency.
11055 	 */
11056 	fs = VFSTOUFS(mp)->um_fs;
11057 	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
11058 	end = blkno + frags;
11059 	LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
11060 		/*
11061 		 * Don't match against blocks that will be freed when the
11062 		 * background write is done.
11063 		 */
11064 		if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) ==
11065 		    (COMPLETE | DEPCOMPLETE))
11066 			continue;
11067 		jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags;
11068 		jend = jnewblk->jn_blkno + jnewblk->jn_frags;
11069 		if ((blkno >= jstart && blkno < jend) ||
11070 		    (end > jstart && end <= jend)) {
11071 			printf("state 0x%X %jd - %d %d dep %p\n",
11072 			    jnewblk->jn_state, jnewblk->jn_blkno,
11073 			    jnewblk->jn_oldfrags, jnewblk->jn_frags,
11074 			    jnewblk->jn_dep);
11075 			panic("softdep_setup_blkfree: "
11076 			    "%jd-%jd(%d) overlaps with %jd-%jd",
11077 			    blkno, end, frags, jstart, jend);
11078 		}
11079 	}
11080 #endif
11081 	FREE_LOCK(ump);
11082 }
11083 
11084 /*
11085  * Revert a block allocation when the journal record that describes it
11086  * is not yet written.
11087  */
11088 static int
11089 jnewblk_rollback(
11090 	struct jnewblk *jnewblk,
11091 	struct fs *fs,
11092 	struct cg *cgp,
11093 	uint8_t *blksfree)
11094 {
11095 	ufs1_daddr_t fragno;
11096 	long cgbno, bbase;
11097 	int frags, blk;
11098 	int i;
11099 
11100 	frags = 0;
11101 	cgbno = dtogd(fs, jnewblk->jn_blkno);
11102 	/*
11103 	 * We have to test which frags need to be rolled back.  We may
11104 	 * be operating on a stale copy when doing background writes.
11105 	 */
11106 	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++)
11107 		if (isclr(blksfree, cgbno + i))
11108 			frags++;
11109 	if (frags == 0)
11110 		return (0);
11111 	/*
11112 	 * This is mostly ffs_blkfree() sans some validation and
11113 	 * superblock updates.
11114 	 */
11115 	if (frags == fs->fs_frag) {
11116 		fragno = fragstoblks(fs, cgbno);
11117 		ffs_setblock(fs, blksfree, fragno);
11118 		ffs_clusteracct(fs, cgp, fragno, 1);
11119 		cgp->cg_cs.cs_nbfree++;
11120 	} else {
11121 		cgbno += jnewblk->jn_oldfrags;
11122 		bbase = cgbno - fragnum(fs, cgbno);
11123 		/* Decrement the old frags.  */
11124 		blk = blkmap(fs, blksfree, bbase);
11125 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
11126 		/* Deallocate the fragment */
11127 		for (i = 0; i < frags; i++)
11128 			setbit(blksfree, cgbno + i);
11129 		cgp->cg_cs.cs_nffree += frags;
11130 		/* Add back in counts associated with the new frags */
11131 		blk = blkmap(fs, blksfree, bbase);
11132 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
11133 		/* If a complete block has been reassembled, account for it. */
11134 		fragno = fragstoblks(fs, bbase);
11135 		if (ffs_isblock(fs, blksfree, fragno)) {
11136 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
11137 			ffs_clusteracct(fs, cgp, fragno, 1);
11138 			cgp->cg_cs.cs_nbfree++;
11139 		}
11140 	}
11141 	stat_jnewblk++;
11142 	jnewblk->jn_state &= ~ATTACHED;
11143 	jnewblk->jn_state |= UNDONE;
11144 
11145 	return (frags);
11146 }
11147 
11148 static void
11149 initiate_write_bmsafemap(
11150 	struct bmsafemap *bmsafemap,
11151 	struct buf *bp)			/* The cg block. */
11152 {
11153 	struct jaddref *jaddref;
11154 	struct jnewblk *jnewblk;
11155 	uint8_t *inosused;
11156 	uint8_t *blksfree;
11157 	struct cg *cgp;
11158 	struct fs *fs;
11159 	ino_t ino;
11160 
11161 	/*
11162 	 * If this is a background write, we did this at the time that
11163 	 * the copy was made, so do not need to do it again.
11164 	 */
11165 	if (bmsafemap->sm_state & IOSTARTED)
11166 		return;
11167 	bmsafemap->sm_state |= IOSTARTED;
11168 	/*
11169 	 * Clear any inode allocations which are pending journal writes.
11170 	 */
11171 	if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) {
11172 		cgp = (struct cg *)bp->b_data;
11173 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11174 		inosused = cg_inosused(cgp);
11175 		LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) {
11176 			ino = jaddref->ja_ino % fs->fs_ipg;
11177 			if (isset(inosused, ino)) {
11178 				if ((jaddref->ja_mode & IFMT) == IFDIR)
11179 					cgp->cg_cs.cs_ndir--;
11180 				cgp->cg_cs.cs_nifree++;
11181 				clrbit(inosused, ino);
11182 				jaddref->ja_state &= ~ATTACHED;
11183 				jaddref->ja_state |= UNDONE;
11184 				stat_jaddref++;
11185 			} else
11186 				panic("initiate_write_bmsafemap: inode %ju "
11187 				    "marked free", (uintmax_t)jaddref->ja_ino);
11188 		}
11189 	}
11190 	/*
11191 	 * Clear any block allocations which are pending journal writes.
11192 	 */
11193 	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
11194 		cgp = (struct cg *)bp->b_data;
11195 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11196 		blksfree = cg_blksfree(cgp);
11197 		LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
11198 			if (jnewblk_rollback(jnewblk, fs, cgp, blksfree))
11199 				continue;
11200 			panic("initiate_write_bmsafemap: block %jd "
11201 			    "marked free", jnewblk->jn_blkno);
11202 		}
11203 	}
11204 	/*
11205 	 * Move allocation lists to the written lists so they can be
11206 	 * cleared once the block write is complete.
11207 	 */
11208 	LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr,
11209 	    inodedep, id_deps);
11210 	LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr,
11211 	    newblk, nb_deps);
11212 	LIST_SWAP(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, worklist,
11213 	    wk_list);
11214 }
11215 
11216 void
11217 softdep_handle_error(struct buf *bp)
11218 {
11219 	struct ufsmount *ump;
11220 
11221 	ump = softdep_bp_to_mp(bp);
11222 	if (ump == NULL)
11223 		return;
11224 
11225 	if (ffs_fsfail_cleanup(ump, bp->b_error)) {
11226 		/*
11227 		 * No future writes will succeed, so the on-disk image is safe.
11228 		 * Pretend that this write succeeded so that the softdep state
11229 		 * will be cleaned up naturally.
11230 		 */
11231 		bp->b_ioflags &= ~BIO_ERROR;
11232 		bp->b_error = 0;
11233 	}
11234 }
11235 
11236 /*
11237  * This routine is called during the completion interrupt
11238  * service routine for a disk write (from the procedure called
11239  * by the device driver to inform the filesystem caches of
11240  * a request completion).  It should be called early in this
11241  * procedure, before the block is made available to other
11242  * processes or other routines are called.
11243  *
11244  */
11245 static void
11246 softdep_disk_write_complete(
11247 	struct buf *bp)		/* describes the completed disk write */
11248 {
11249 	struct worklist *wk;
11250 	struct worklist *owk;
11251 	struct ufsmount *ump;
11252 	struct workhead reattach;
11253 	struct freeblks *freeblks;
11254 	struct buf *sbp;
11255 
11256 	ump = softdep_bp_to_mp(bp);
11257 	KASSERT(LIST_EMPTY(&bp->b_dep) || ump != NULL,
11258 	    ("softdep_disk_write_complete: softdep_bp_to_mp returned NULL "
11259 	     "with outstanding dependencies for buffer %p", bp));
11260 	if (ump == NULL)
11261 		return;
11262 	if ((bp->b_ioflags & BIO_ERROR) != 0)
11263 		softdep_handle_error(bp);
11264 	/*
11265 	 * If an error occurred while doing the write, then the data
11266 	 * has not hit the disk and the dependencies cannot be processed.
11267 	 * But we do have to go through and roll forward any dependencies
11268 	 * that were rolled back before the disk write.
11269 	 */
11270 	sbp = NULL;
11271 	ACQUIRE_LOCK(ump);
11272 	if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0) {
11273 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
11274 			switch (wk->wk_type) {
11275 			case D_PAGEDEP:
11276 				handle_written_filepage(WK_PAGEDEP(wk), bp, 0);
11277 				continue;
11278 
11279 			case D_INODEDEP:
11280 				handle_written_inodeblock(WK_INODEDEP(wk),
11281 				    bp, 0);
11282 				continue;
11283 
11284 			case D_BMSAFEMAP:
11285 				handle_written_bmsafemap(WK_BMSAFEMAP(wk),
11286 				    bp, 0);
11287 				continue;
11288 
11289 			case D_INDIRDEP:
11290 				handle_written_indirdep(WK_INDIRDEP(wk),
11291 				    bp, &sbp, 0);
11292 				continue;
11293 			default:
11294 				/* nothing to roll forward */
11295 				continue;
11296 			}
11297 		}
11298 		FREE_LOCK(ump);
11299 		if (sbp)
11300 			brelse(sbp);
11301 		return;
11302 	}
11303 	LIST_INIT(&reattach);
11304 
11305 	/*
11306 	 * Ump SU lock must not be released anywhere in this code segment.
11307 	 */
11308 	owk = NULL;
11309 	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
11310 		WORKLIST_REMOVE(wk);
11311 		atomic_add_long(&dep_write[wk->wk_type], 1);
11312 		if (wk == owk)
11313 			panic("duplicate worklist: %p\n", wk);
11314 		owk = wk;
11315 		switch (wk->wk_type) {
11316 		case D_PAGEDEP:
11317 			if (handle_written_filepage(WK_PAGEDEP(wk), bp,
11318 			    WRITESUCCEEDED))
11319 				WORKLIST_INSERT(&reattach, wk);
11320 			continue;
11321 
11322 		case D_INODEDEP:
11323 			if (handle_written_inodeblock(WK_INODEDEP(wk), bp,
11324 			    WRITESUCCEEDED))
11325 				WORKLIST_INSERT(&reattach, wk);
11326 			continue;
11327 
11328 		case D_BMSAFEMAP:
11329 			if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp,
11330 			    WRITESUCCEEDED))
11331 				WORKLIST_INSERT(&reattach, wk);
11332 			continue;
11333 
11334 		case D_MKDIR:
11335 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
11336 			continue;
11337 
11338 		case D_ALLOCDIRECT:
11339 			wk->wk_state |= COMPLETE;
11340 			handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL);
11341 			continue;
11342 
11343 		case D_ALLOCINDIR:
11344 			wk->wk_state |= COMPLETE;
11345 			handle_allocindir_partdone(WK_ALLOCINDIR(wk));
11346 			continue;
11347 
11348 		case D_INDIRDEP:
11349 			if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp,
11350 			    WRITESUCCEEDED))
11351 				WORKLIST_INSERT(&reattach, wk);
11352 			continue;
11353 
11354 		case D_FREEBLKS:
11355 			wk->wk_state |= COMPLETE;
11356 			freeblks = WK_FREEBLKS(wk);
11357 			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE &&
11358 			    LIST_EMPTY(&freeblks->fb_jblkdephd))
11359 				add_to_worklist(wk, WK_NODELAY);
11360 			continue;
11361 
11362 		case D_FREEWORK:
11363 			handle_written_freework(WK_FREEWORK(wk));
11364 			break;
11365 
11366 		case D_JSEGDEP:
11367 			free_jsegdep(WK_JSEGDEP(wk));
11368 			continue;
11369 
11370 		case D_JSEG:
11371 			handle_written_jseg(WK_JSEG(wk), bp);
11372 			continue;
11373 
11374 		case D_SBDEP:
11375 			if (handle_written_sbdep(WK_SBDEP(wk), bp))
11376 				WORKLIST_INSERT(&reattach, wk);
11377 			continue;
11378 
11379 		case D_FREEDEP:
11380 			free_freedep(WK_FREEDEP(wk));
11381 			continue;
11382 
11383 		default:
11384 			panic("handle_disk_write_complete: Unknown type %s",
11385 			    TYPENAME(wk->wk_type));
11386 			/* NOTREACHED */
11387 		}
11388 	}
11389 	/*
11390 	 * Reattach any requests that must be redone.
11391 	 */
11392 	while ((wk = LIST_FIRST(&reattach)) != NULL) {
11393 		WORKLIST_REMOVE(wk);
11394 		WORKLIST_INSERT(&bp->b_dep, wk);
11395 	}
11396 	FREE_LOCK(ump);
11397 	if (sbp)
11398 		brelse(sbp);
11399 }
11400 
11401 /*
11402  * Called from within softdep_disk_write_complete above.
11403  */
11404 static void
11405 handle_allocdirect_partdone(
11406 	struct allocdirect *adp,	/* the completed allocdirect */
11407 	struct workhead *wkhd)		/* Work to do when inode is writtne. */
11408 {
11409 	struct allocdirectlst *listhead;
11410 	struct allocdirect *listadp;
11411 	struct inodedep *inodedep;
11412 	long bsize;
11413 
11414 	LOCK_OWNED(VFSTOUFS(adp->ad_block.nb_list.wk_mp));
11415 	if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
11416 		return;
11417 	/*
11418 	 * The on-disk inode cannot claim to be any larger than the last
11419 	 * fragment that has been written. Otherwise, the on-disk inode
11420 	 * might have fragments that were not the last block in the file
11421 	 * which would corrupt the filesystem. Thus, we cannot free any
11422 	 * allocdirects after one whose ad_oldblkno claims a fragment as
11423 	 * these blocks must be rolled back to zero before writing the inode.
11424 	 * We check the currently active set of allocdirects in id_inoupdt
11425 	 * or id_extupdt as appropriate.
11426 	 */
11427 	inodedep = adp->ad_inodedep;
11428 	bsize = inodedep->id_fs->fs_bsize;
11429 	if (adp->ad_state & EXTDATA)
11430 		listhead = &inodedep->id_extupdt;
11431 	else
11432 		listhead = &inodedep->id_inoupdt;
11433 	TAILQ_FOREACH(listadp, listhead, ad_next) {
11434 		/* found our block */
11435 		if (listadp == adp)
11436 			break;
11437 		/* continue if ad_oldlbn is not a fragment */
11438 		if (listadp->ad_oldsize == 0 ||
11439 		    listadp->ad_oldsize == bsize)
11440 			continue;
11441 		/* hit a fragment */
11442 		return;
11443 	}
11444 	/*
11445 	 * If we have reached the end of the current list without
11446 	 * finding the just finished dependency, then it must be
11447 	 * on the future dependency list. Future dependencies cannot
11448 	 * be freed until they are moved to the current list.
11449 	 */
11450 	if (listadp == NULL) {
11451 #ifdef INVARIANTS
11452 		if (adp->ad_state & EXTDATA)
11453 			listhead = &inodedep->id_newextupdt;
11454 		else
11455 			listhead = &inodedep->id_newinoupdt;
11456 		TAILQ_FOREACH(listadp, listhead, ad_next)
11457 			/* found our block */
11458 			if (listadp == adp)
11459 				break;
11460 		if (listadp == NULL)
11461 			panic("handle_allocdirect_partdone: lost dep");
11462 #endif /* INVARIANTS */
11463 		return;
11464 	}
11465 	/*
11466 	 * If we have found the just finished dependency, then queue
11467 	 * it along with anything that follows it that is complete.
11468 	 * Since the pointer has not yet been written in the inode
11469 	 * as the dependency prevents it, place the allocdirect on the
11470 	 * bufwait list where it will be freed once the pointer is
11471 	 * valid.
11472 	 */
11473 	if (wkhd == NULL)
11474 		wkhd = &inodedep->id_bufwait;
11475 	for (; adp; adp = listadp) {
11476 		listadp = TAILQ_NEXT(adp, ad_next);
11477 		if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
11478 			return;
11479 		TAILQ_REMOVE(listhead, adp, ad_next);
11480 		WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list);
11481 	}
11482 }
11483 
11484 /*
11485  * Called from within softdep_disk_write_complete above.  This routine
11486  * completes successfully written allocindirs.
11487  */
11488 static void
11489 handle_allocindir_partdone(
11490 	struct allocindir *aip)		/* the completed allocindir */
11491 {
11492 	struct indirdep *indirdep;
11493 
11494 	if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
11495 		return;
11496 	indirdep = aip->ai_indirdep;
11497 	LIST_REMOVE(aip, ai_next);
11498 	/*
11499 	 * Don't set a pointer while the buffer is undergoing IO or while
11500 	 * we have active truncations.
11501 	 */
11502 	if (indirdep->ir_state & UNDONE || !TAILQ_EMPTY(&indirdep->ir_trunc)) {
11503 		LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
11504 		return;
11505 	}
11506 	if (indirdep->ir_state & UFS1FMT)
11507 		((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
11508 		    aip->ai_newblkno;
11509 	else
11510 		((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
11511 		    aip->ai_newblkno;
11512 	/*
11513 	 * Await the pointer write before freeing the allocindir.
11514 	 */
11515 	LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next);
11516 }
11517 
11518 /*
11519  * Release segments held on a jwork list.
11520  */
11521 static void
11522 handle_jwork(struct workhead *wkhd)
11523 {
11524 	struct worklist *wk;
11525 
11526 	while ((wk = LIST_FIRST(wkhd)) != NULL) {
11527 		WORKLIST_REMOVE(wk);
11528 		switch (wk->wk_type) {
11529 		case D_JSEGDEP:
11530 			free_jsegdep(WK_JSEGDEP(wk));
11531 			continue;
11532 		case D_FREEDEP:
11533 			free_freedep(WK_FREEDEP(wk));
11534 			continue;
11535 		case D_FREEFRAG:
11536 			rele_jseg(WK_JSEG(WK_FREEFRAG(wk)->ff_jdep));
11537 			WORKITEM_FREE(wk, D_FREEFRAG);
11538 			continue;
11539 		case D_FREEWORK:
11540 			handle_written_freework(WK_FREEWORK(wk));
11541 			continue;
11542 		default:
11543 			panic("handle_jwork: Unknown type %s\n",
11544 			    TYPENAME(wk->wk_type));
11545 		}
11546 	}
11547 }
11548 
11549 /*
11550  * Handle the bufwait list on an inode when it is safe to release items
11551  * held there.  This normally happens after an inode block is written but
11552  * may be delayed and handled later if there are pending journal items that
11553  * are not yet safe to be released.
11554  */
11555 static struct freefile *
11556 handle_bufwait(
11557 	struct inodedep *inodedep,
11558 	struct workhead *refhd)
11559 {
11560 	struct jaddref *jaddref;
11561 	struct freefile *freefile;
11562 	struct worklist *wk;
11563 
11564 	freefile = NULL;
11565 	while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
11566 		WORKLIST_REMOVE(wk);
11567 		switch (wk->wk_type) {
11568 		case D_FREEFILE:
11569 			/*
11570 			 * We defer adding freefile to the worklist
11571 			 * until all other additions have been made to
11572 			 * ensure that it will be done after all the
11573 			 * old blocks have been freed.
11574 			 */
11575 			if (freefile != NULL)
11576 				panic("handle_bufwait: freefile");
11577 			freefile = WK_FREEFILE(wk);
11578 			continue;
11579 
11580 		case D_MKDIR:
11581 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
11582 			continue;
11583 
11584 		case D_DIRADD:
11585 			diradd_inode_written(WK_DIRADD(wk), inodedep);
11586 			continue;
11587 
11588 		case D_FREEFRAG:
11589 			wk->wk_state |= COMPLETE;
11590 			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE)
11591 				add_to_worklist(wk, 0);
11592 			continue;
11593 
11594 		case D_DIRREM:
11595 			wk->wk_state |= COMPLETE;
11596 			add_to_worklist(wk, 0);
11597 			continue;
11598 
11599 		case D_ALLOCDIRECT:
11600 		case D_ALLOCINDIR:
11601 			free_newblk(WK_NEWBLK(wk));
11602 			continue;
11603 
11604 		case D_JNEWBLK:
11605 			wk->wk_state |= COMPLETE;
11606 			free_jnewblk(WK_JNEWBLK(wk));
11607 			continue;
11608 
11609 		/*
11610 		 * Save freed journal segments and add references on
11611 		 * the supplied list which will delay their release
11612 		 * until the cg bitmap is cleared on disk.
11613 		 */
11614 		case D_JSEGDEP:
11615 			if (refhd == NULL)
11616 				free_jsegdep(WK_JSEGDEP(wk));
11617 			else
11618 				WORKLIST_INSERT(refhd, wk);
11619 			continue;
11620 
11621 		case D_JADDREF:
11622 			jaddref = WK_JADDREF(wk);
11623 			TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
11624 			    if_deps);
11625 			/*
11626 			 * Transfer any jaddrefs to the list to be freed with
11627 			 * the bitmap if we're handling a removed file.
11628 			 */
11629 			if (refhd == NULL) {
11630 				wk->wk_state |= COMPLETE;
11631 				free_jaddref(jaddref);
11632 			} else
11633 				WORKLIST_INSERT(refhd, wk);
11634 			continue;
11635 
11636 		default:
11637 			panic("handle_bufwait: Unknown type %p(%s)",
11638 			    wk, TYPENAME(wk->wk_type));
11639 			/* NOTREACHED */
11640 		}
11641 	}
11642 	return (freefile);
11643 }
11644 /*
11645  * Called from within softdep_disk_write_complete above to restore
11646  * in-memory inode block contents to their most up-to-date state. Note
11647  * that this routine is always called from interrupt level with further
11648  * interrupts from this device blocked.
11649  *
11650  * If the write did not succeed, we will do all the roll-forward
11651  * operations, but we will not take the actions that will allow its
11652  * dependencies to be processed.
11653  */
11654 static int
11655 handle_written_inodeblock(
11656 	struct inodedep *inodedep,
11657 	struct buf *bp,		/* buffer containing the inode block */
11658 	int flags)
11659 {
11660 	struct freefile *freefile;
11661 	struct allocdirect *adp, *nextadp;
11662 	struct ufs1_dinode *dp1 = NULL;
11663 	struct ufs2_dinode *dp2 = NULL;
11664 	struct workhead wkhd;
11665 	int hadchanges, fstype;
11666 	ino_t freelink;
11667 
11668 	LIST_INIT(&wkhd);
11669 	hadchanges = 0;
11670 	freefile = NULL;
11671 	if ((inodedep->id_state & IOSTARTED) == 0)
11672 		panic("handle_written_inodeblock: not started");
11673 	inodedep->id_state &= ~IOSTARTED;
11674 	if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) {
11675 		fstype = UFS1;
11676 		dp1 = (struct ufs1_dinode *)bp->b_data +
11677 		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
11678 		freelink = dp1->di_freelink;
11679 	} else {
11680 		fstype = UFS2;
11681 		dp2 = (struct ufs2_dinode *)bp->b_data +
11682 		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
11683 		freelink = dp2->di_freelink;
11684 	}
11685 	/*
11686 	 * Leave this inodeblock dirty until it's in the list.
11687 	 */
11688 	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED &&
11689 	    (flags & WRITESUCCEEDED)) {
11690 		struct inodedep *inon;
11691 
11692 		inon = TAILQ_NEXT(inodedep, id_unlinked);
11693 		if ((inon == NULL && freelink == 0) ||
11694 		    (inon && inon->id_ino == freelink)) {
11695 			if (inon)
11696 				inon->id_state |= UNLINKPREV;
11697 			inodedep->id_state |= UNLINKNEXT;
11698 		}
11699 		hadchanges = 1;
11700 	}
11701 	/*
11702 	 * If we had to rollback the inode allocation because of
11703 	 * bitmaps being incomplete, then simply restore it.
11704 	 * Keep the block dirty so that it will not be reclaimed until
11705 	 * all associated dependencies have been cleared and the
11706 	 * corresponding updates written to disk.
11707 	 */
11708 	if (inodedep->id_savedino1 != NULL) {
11709 		hadchanges = 1;
11710 		if (fstype == UFS1)
11711 			*dp1 = *inodedep->id_savedino1;
11712 		else
11713 			*dp2 = *inodedep->id_savedino2;
11714 		free(inodedep->id_savedino1, M_SAVEDINO);
11715 		inodedep->id_savedino1 = NULL;
11716 		if ((bp->b_flags & B_DELWRI) == 0)
11717 			stat_inode_bitmap++;
11718 		bdirty(bp);
11719 		/*
11720 		 * If the inode is clear here and GOINGAWAY it will never
11721 		 * be written.  Process the bufwait and clear any pending
11722 		 * work which may include the freefile.
11723 		 */
11724 		if (inodedep->id_state & GOINGAWAY)
11725 			goto bufwait;
11726 		return (1);
11727 	}
11728 	if (flags & WRITESUCCEEDED)
11729 		inodedep->id_state |= COMPLETE;
11730 	/*
11731 	 * Roll forward anything that had to be rolled back before
11732 	 * the inode could be updated.
11733 	 */
11734 	for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
11735 		nextadp = TAILQ_NEXT(adp, ad_next);
11736 		if (adp->ad_state & ATTACHED)
11737 			panic("handle_written_inodeblock: new entry");
11738 		if (fstype == UFS1) {
11739 			if (adp->ad_offset < UFS_NDADDR) {
11740 				if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno)
11741 					panic("%s %s #%jd mismatch %d != %jd",
11742 					    "handle_written_inodeblock:",
11743 					    "direct pointer",
11744 					    (intmax_t)adp->ad_offset,
11745 					    dp1->di_db[adp->ad_offset],
11746 					    (intmax_t)adp->ad_oldblkno);
11747 				dp1->di_db[adp->ad_offset] = adp->ad_newblkno;
11748 			} else {
11749 				if (dp1->di_ib[adp->ad_offset - UFS_NDADDR] !=
11750 				    0)
11751 					panic("%s: %s #%jd allocated as %d",
11752 					    "handle_written_inodeblock",
11753 					    "indirect pointer",
11754 					    (intmax_t)adp->ad_offset -
11755 					    UFS_NDADDR,
11756 					    dp1->di_ib[adp->ad_offset -
11757 					    UFS_NDADDR]);
11758 				dp1->di_ib[adp->ad_offset - UFS_NDADDR] =
11759 				    adp->ad_newblkno;
11760 			}
11761 		} else {
11762 			if (adp->ad_offset < UFS_NDADDR) {
11763 				if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno)
11764 					panic("%s: %s #%jd %s %jd != %jd",
11765 					    "handle_written_inodeblock",
11766 					    "direct pointer",
11767 					    (intmax_t)adp->ad_offset, "mismatch",
11768 					    (intmax_t)dp2->di_db[adp->ad_offset],
11769 					    (intmax_t)adp->ad_oldblkno);
11770 				dp2->di_db[adp->ad_offset] = adp->ad_newblkno;
11771 			} else {
11772 				if (dp2->di_ib[adp->ad_offset - UFS_NDADDR] !=
11773 				    0)
11774 					panic("%s: %s #%jd allocated as %jd",
11775 					    "handle_written_inodeblock",
11776 					    "indirect pointer",
11777 					    (intmax_t)adp->ad_offset -
11778 					    UFS_NDADDR,
11779 					    (intmax_t)
11780 					    dp2->di_ib[adp->ad_offset -
11781 					    UFS_NDADDR]);
11782 				dp2->di_ib[adp->ad_offset - UFS_NDADDR] =
11783 				    adp->ad_newblkno;
11784 			}
11785 		}
11786 		adp->ad_state &= ~UNDONE;
11787 		adp->ad_state |= ATTACHED;
11788 		hadchanges = 1;
11789 	}
11790 	for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) {
11791 		nextadp = TAILQ_NEXT(adp, ad_next);
11792 		if (adp->ad_state & ATTACHED)
11793 			panic("handle_written_inodeblock: new entry");
11794 		if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno)
11795 			panic("%s: direct pointers #%jd %s %jd != %jd",
11796 			    "handle_written_inodeblock",
11797 			    (intmax_t)adp->ad_offset, "mismatch",
11798 			    (intmax_t)dp2->di_extb[adp->ad_offset],
11799 			    (intmax_t)adp->ad_oldblkno);
11800 		dp2->di_extb[adp->ad_offset] = adp->ad_newblkno;
11801 		adp->ad_state &= ~UNDONE;
11802 		adp->ad_state |= ATTACHED;
11803 		hadchanges = 1;
11804 	}
11805 	if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
11806 		stat_direct_blk_ptrs++;
11807 	/*
11808 	 * Reset the file size to its most up-to-date value.
11809 	 */
11810 	if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1)
11811 		panic("handle_written_inodeblock: bad size");
11812 	if (inodedep->id_savednlink > UFS_LINK_MAX)
11813 		panic("handle_written_inodeblock: Invalid link count "
11814 		    "%jd for inodedep %p", (uintmax_t)inodedep->id_savednlink,
11815 		    inodedep);
11816 	if (fstype == UFS1) {
11817 		if (dp1->di_nlink != inodedep->id_savednlink) {
11818 			dp1->di_nlink = inodedep->id_savednlink;
11819 			hadchanges = 1;
11820 		}
11821 		if (dp1->di_size != inodedep->id_savedsize) {
11822 			dp1->di_size = inodedep->id_savedsize;
11823 			hadchanges = 1;
11824 		}
11825 	} else {
11826 		if (dp2->di_nlink != inodedep->id_savednlink) {
11827 			dp2->di_nlink = inodedep->id_savednlink;
11828 			hadchanges = 1;
11829 		}
11830 		if (dp2->di_size != inodedep->id_savedsize) {
11831 			dp2->di_size = inodedep->id_savedsize;
11832 			hadchanges = 1;
11833 		}
11834 		if (dp2->di_extsize != inodedep->id_savedextsize) {
11835 			dp2->di_extsize = inodedep->id_savedextsize;
11836 			hadchanges = 1;
11837 		}
11838 	}
11839 	inodedep->id_savedsize = -1;
11840 	inodedep->id_savedextsize = -1;
11841 	inodedep->id_savednlink = -1;
11842 	/*
11843 	 * If there were any rollbacks in the inode block, then it must be
11844 	 * marked dirty so that its will eventually get written back in
11845 	 * its correct form.
11846 	 */
11847 	if (hadchanges) {
11848 		if (fstype == UFS2)
11849 			ffs_update_dinode_ckhash(inodedep->id_fs, dp2);
11850 		bdirty(bp);
11851 	}
11852 bufwait:
11853 	/*
11854 	 * If the write did not succeed, we have done all the roll-forward
11855 	 * operations, but we cannot take the actions that will allow its
11856 	 * dependencies to be processed.
11857 	 */
11858 	if ((flags & WRITESUCCEEDED) == 0)
11859 		return (hadchanges);
11860 	/*
11861 	 * Process any allocdirects that completed during the update.
11862 	 */
11863 	if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
11864 		handle_allocdirect_partdone(adp, &wkhd);
11865 	if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
11866 		handle_allocdirect_partdone(adp, &wkhd);
11867 	/*
11868 	 * Process deallocations that were held pending until the
11869 	 * inode had been written to disk. Freeing of the inode
11870 	 * is delayed until after all blocks have been freed to
11871 	 * avoid creation of new <vfsid, inum, lbn> triples
11872 	 * before the old ones have been deleted.  Completely
11873 	 * unlinked inodes are not processed until the unlinked
11874 	 * inode list is written or the last reference is removed.
11875 	 */
11876 	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) {
11877 		freefile = handle_bufwait(inodedep, NULL);
11878 		if (freefile && !LIST_EMPTY(&wkhd)) {
11879 			WORKLIST_INSERT(&wkhd, &freefile->fx_list);
11880 			freefile = NULL;
11881 		}
11882 	}
11883 	/*
11884 	 * Move rolled forward dependency completions to the bufwait list
11885 	 * now that those that were already written have been processed.
11886 	 */
11887 	if (!LIST_EMPTY(&wkhd) && hadchanges == 0)
11888 		panic("handle_written_inodeblock: bufwait but no changes");
11889 	jwork_move(&inodedep->id_bufwait, &wkhd);
11890 
11891 	if (freefile != NULL) {
11892 		/*
11893 		 * If the inode is goingaway it was never written.  Fake up
11894 		 * the state here so free_inodedep() can succeed.
11895 		 */
11896 		if (inodedep->id_state & GOINGAWAY)
11897 			inodedep->id_state |= COMPLETE | DEPCOMPLETE;
11898 		if (free_inodedep(inodedep) == 0)
11899 			panic("handle_written_inodeblock: live inodedep %p",
11900 			    inodedep);
11901 		add_to_worklist(&freefile->fx_list, 0);
11902 		return (0);
11903 	}
11904 
11905 	/*
11906 	 * If no outstanding dependencies, free it.
11907 	 */
11908 	if (free_inodedep(inodedep) ||
11909 	    (TAILQ_FIRST(&inodedep->id_inoreflst) == 0 &&
11910 	     TAILQ_FIRST(&inodedep->id_inoupdt) == 0 &&
11911 	     TAILQ_FIRST(&inodedep->id_extupdt) == 0 &&
11912 	     LIST_FIRST(&inodedep->id_bufwait) == 0))
11913 		return (0);
11914 	return (hadchanges);
11915 }
11916 
11917 /*
11918  * Perform needed roll-forwards and kick off any dependencies that
11919  * can now be processed.
11920  *
11921  * If the write did not succeed, we will do all the roll-forward
11922  * operations, but we will not take the actions that will allow its
11923  * dependencies to be processed.
11924  */
11925 static int
11926 handle_written_indirdep(
11927 	struct indirdep *indirdep,
11928 	struct buf *bp,
11929 	struct buf **bpp,
11930 	int flags)
11931 {
11932 	struct allocindir *aip;
11933 	struct buf *sbp;
11934 	int chgs;
11935 
11936 	if (indirdep->ir_state & GOINGAWAY)
11937 		panic("handle_written_indirdep: indirdep gone");
11938 	if ((indirdep->ir_state & IOSTARTED) == 0)
11939 		panic("handle_written_indirdep: IO not started");
11940 	chgs = 0;
11941 	/*
11942 	 * If there were rollbacks revert them here.
11943 	 */
11944 	if (indirdep->ir_saveddata) {
11945 		bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount);
11946 		if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
11947 			free(indirdep->ir_saveddata, M_INDIRDEP);
11948 			indirdep->ir_saveddata = NULL;
11949 		}
11950 		chgs = 1;
11951 	}
11952 	indirdep->ir_state &= ~(UNDONE | IOSTARTED);
11953 	indirdep->ir_state |= ATTACHED;
11954 	/*
11955 	 * If the write did not succeed, we have done all the roll-forward
11956 	 * operations, but we cannot take the actions that will allow its
11957 	 * dependencies to be processed.
11958 	 */
11959 	if ((flags & WRITESUCCEEDED) == 0) {
11960 		stat_indir_blk_ptrs++;
11961 		bdirty(bp);
11962 		return (1);
11963 	}
11964 	/*
11965 	 * Move allocindirs with written pointers to the completehd if
11966 	 * the indirdep's pointer is not yet written.  Otherwise
11967 	 * free them here.
11968 	 */
11969 	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL) {
11970 		LIST_REMOVE(aip, ai_next);
11971 		if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
11972 			LIST_INSERT_HEAD(&indirdep->ir_completehd, aip,
11973 			    ai_next);
11974 			newblk_freefrag(&aip->ai_block);
11975 			continue;
11976 		}
11977 		free_newblk(&aip->ai_block);
11978 	}
11979 	/*
11980 	 * Move allocindirs that have finished dependency processing from
11981 	 * the done list to the write list after updating the pointers.
11982 	 */
11983 	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
11984 		while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL) {
11985 			handle_allocindir_partdone(aip);
11986 			if (aip == LIST_FIRST(&indirdep->ir_donehd))
11987 				panic("disk_write_complete: not gone");
11988 			chgs = 1;
11989 		}
11990 	}
11991 	/*
11992 	 * Preserve the indirdep if there were any changes or if it is not
11993 	 * yet valid on disk.
11994 	 */
11995 	if (chgs) {
11996 		stat_indir_blk_ptrs++;
11997 		bdirty(bp);
11998 		return (1);
11999 	}
12000 	/*
12001 	 * If there were no changes we can discard the savedbp and detach
12002 	 * ourselves from the buf.  We are only carrying completed pointers
12003 	 * in this case.
12004 	 */
12005 	sbp = indirdep->ir_savebp;
12006 	sbp->b_flags |= B_INVAL | B_NOCACHE;
12007 	indirdep->ir_savebp = NULL;
12008 	indirdep->ir_bp = NULL;
12009 	if (*bpp != NULL)
12010 		panic("handle_written_indirdep: bp already exists.");
12011 	*bpp = sbp;
12012 	/*
12013 	 * The indirdep may not be freed until its parent points at it.
12014 	 */
12015 	if (indirdep->ir_state & DEPCOMPLETE)
12016 		free_indirdep(indirdep);
12017 
12018 	return (0);
12019 }
12020 
12021 /*
12022  * Process a diradd entry after its dependent inode has been written.
12023  */
12024 static void
12025 diradd_inode_written(
12026 	struct diradd *dap,
12027 	struct inodedep *inodedep)
12028 {
12029 
12030 	LOCK_OWNED(VFSTOUFS(dap->da_list.wk_mp));
12031 	dap->da_state |= COMPLETE;
12032 	complete_diradd(dap);
12033 	WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
12034 }
12035 
12036 /*
12037  * Returns true if the bmsafemap will have rollbacks when written.  Must only
12038  * be called with the per-filesystem lock and the buf lock on the cg held.
12039  */
12040 static int
12041 bmsafemap_backgroundwrite(
12042 	struct bmsafemap *bmsafemap,
12043 	struct buf *bp)
12044 {
12045 	int dirty;
12046 
12047 	LOCK_OWNED(VFSTOUFS(bmsafemap->sm_list.wk_mp));
12048 	dirty = !LIST_EMPTY(&bmsafemap->sm_jaddrefhd) |
12049 	    !LIST_EMPTY(&bmsafemap->sm_jnewblkhd);
12050 	/*
12051 	 * If we're initiating a background write we need to process the
12052 	 * rollbacks as they exist now, not as they exist when IO starts.
12053 	 * No other consumers will look at the contents of the shadowed
12054 	 * buf so this is safe to do here.
12055 	 */
12056 	if (bp->b_xflags & BX_BKGRDMARKER)
12057 		initiate_write_bmsafemap(bmsafemap, bp);
12058 
12059 	return (dirty);
12060 }
12061 
12062 /*
12063  * Re-apply an allocation when a cg write is complete.
12064  */
12065 static int
12066 jnewblk_rollforward(
12067 	struct jnewblk *jnewblk,
12068 	struct fs *fs,
12069 	struct cg *cgp,
12070 	uint8_t *blksfree)
12071 {
12072 	ufs1_daddr_t fragno;
12073 	ufs2_daddr_t blkno;
12074 	long cgbno, bbase;
12075 	int frags, blk;
12076 	int i;
12077 
12078 	frags = 0;
12079 	cgbno = dtogd(fs, jnewblk->jn_blkno);
12080 	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) {
12081 		if (isclr(blksfree, cgbno + i))
12082 			panic("jnewblk_rollforward: re-allocated fragment");
12083 		frags++;
12084 	}
12085 	if (frags == fs->fs_frag) {
12086 		blkno = fragstoblks(fs, cgbno);
12087 		ffs_clrblock(fs, blksfree, (long)blkno);
12088 		ffs_clusteracct(fs, cgp, blkno, -1);
12089 		cgp->cg_cs.cs_nbfree--;
12090 	} else {
12091 		bbase = cgbno - fragnum(fs, cgbno);
12092 		cgbno += jnewblk->jn_oldfrags;
12093                 /* If a complete block had been reassembled, account for it. */
12094 		fragno = fragstoblks(fs, bbase);
12095 		if (ffs_isblock(fs, blksfree, fragno)) {
12096 			cgp->cg_cs.cs_nffree += fs->fs_frag;
12097 			ffs_clusteracct(fs, cgp, fragno, -1);
12098 			cgp->cg_cs.cs_nbfree--;
12099 		}
12100 		/* Decrement the old frags.  */
12101 		blk = blkmap(fs, blksfree, bbase);
12102 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
12103 		/* Allocate the fragment */
12104 		for (i = 0; i < frags; i++)
12105 			clrbit(blksfree, cgbno + i);
12106 		cgp->cg_cs.cs_nffree -= frags;
12107 		/* Add back in counts associated with the new frags */
12108 		blk = blkmap(fs, blksfree, bbase);
12109 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
12110 	}
12111 	return (frags);
12112 }
12113 
12114 /*
12115  * Complete a write to a bmsafemap structure.  Roll forward any bitmap
12116  * changes if it's not a background write.  Set all written dependencies
12117  * to DEPCOMPLETE and free the structure if possible.
12118  *
12119  * If the write did not succeed, we will do all the roll-forward
12120  * operations, but we will not take the actions that will allow its
12121  * dependencies to be processed.
12122  */
12123 static int
12124 handle_written_bmsafemap(
12125 	struct bmsafemap *bmsafemap,
12126 	struct buf *bp,
12127 	int flags)
12128 {
12129 	struct newblk *newblk;
12130 	struct inodedep *inodedep;
12131 	struct jaddref *jaddref, *jatmp;
12132 	struct jnewblk *jnewblk, *jntmp;
12133 	struct ufsmount *ump;
12134 	uint8_t *inosused;
12135 	uint8_t *blksfree;
12136 	struct cg *cgp;
12137 	struct fs *fs;
12138 	ino_t ino;
12139 	int foreground;
12140 	int chgs;
12141 
12142 	if ((bmsafemap->sm_state & IOSTARTED) == 0)
12143 		panic("handle_written_bmsafemap: Not started\n");
12144 	ump = VFSTOUFS(bmsafemap->sm_list.wk_mp);
12145 	chgs = 0;
12146 	bmsafemap->sm_state &= ~IOSTARTED;
12147 	foreground = (bp->b_xflags & BX_BKGRDMARKER) == 0;
12148 	/*
12149 	 * If write was successful, release journal work that was waiting
12150 	 * on the write. Otherwise move the work back.
12151 	 */
12152 	if (flags & WRITESUCCEEDED)
12153 		handle_jwork(&bmsafemap->sm_freewr);
12154 	else
12155 		LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr,
12156 		    worklist, wk_list);
12157 
12158 	/*
12159 	 * Restore unwritten inode allocation pending jaddref writes.
12160 	 */
12161 	if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) {
12162 		cgp = (struct cg *)bp->b_data;
12163 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
12164 		inosused = cg_inosused(cgp);
12165 		LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd,
12166 		    ja_bmdeps, jatmp) {
12167 			if ((jaddref->ja_state & UNDONE) == 0)
12168 				continue;
12169 			ino = jaddref->ja_ino % fs->fs_ipg;
12170 			if (isset(inosused, ino))
12171 				panic("handle_written_bmsafemap: "
12172 				    "re-allocated inode");
12173 			/* Do the roll-forward only if it's a real copy. */
12174 			if (foreground) {
12175 				if ((jaddref->ja_mode & IFMT) == IFDIR)
12176 					cgp->cg_cs.cs_ndir++;
12177 				cgp->cg_cs.cs_nifree--;
12178 				setbit(inosused, ino);
12179 				chgs = 1;
12180 			}
12181 			jaddref->ja_state &= ~UNDONE;
12182 			jaddref->ja_state |= ATTACHED;
12183 			free_jaddref(jaddref);
12184 		}
12185 	}
12186 	/*
12187 	 * Restore any block allocations which are pending journal writes.
12188 	 */
12189 	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
12190 		cgp = (struct cg *)bp->b_data;
12191 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
12192 		blksfree = cg_blksfree(cgp);
12193 		LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps,
12194 		    jntmp) {
12195 			if ((jnewblk->jn_state & UNDONE) == 0)
12196 				continue;
12197 			/* Do the roll-forward only if it's a real copy. */
12198 			if (foreground &&
12199 			    jnewblk_rollforward(jnewblk, fs, cgp, blksfree))
12200 				chgs = 1;
12201 			jnewblk->jn_state &= ~(UNDONE | NEWBLOCK);
12202 			jnewblk->jn_state |= ATTACHED;
12203 			free_jnewblk(jnewblk);
12204 		}
12205 	}
12206 	/*
12207 	 * If the write did not succeed, we have done all the roll-forward
12208 	 * operations, but we cannot take the actions that will allow its
12209 	 * dependencies to be processed.
12210 	 */
12211 	if ((flags & WRITESUCCEEDED) == 0) {
12212 		LIST_CONCAT(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr,
12213 		    newblk, nb_deps);
12214 		LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr,
12215 		    worklist, wk_list);
12216 		if (foreground)
12217 			bdirty(bp);
12218 		return (1);
12219 	}
12220 	while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) {
12221 		newblk->nb_state |= DEPCOMPLETE;
12222 		newblk->nb_state &= ~ONDEPLIST;
12223 		newblk->nb_bmsafemap = NULL;
12224 		LIST_REMOVE(newblk, nb_deps);
12225 		if (newblk->nb_list.wk_type == D_ALLOCDIRECT)
12226 			handle_allocdirect_partdone(
12227 			    WK_ALLOCDIRECT(&newblk->nb_list), NULL);
12228 		else if (newblk->nb_list.wk_type == D_ALLOCINDIR)
12229 			handle_allocindir_partdone(
12230 			    WK_ALLOCINDIR(&newblk->nb_list));
12231 		else if (newblk->nb_list.wk_type != D_NEWBLK)
12232 			panic("handle_written_bmsafemap: Unexpected type: %s",
12233 			    TYPENAME(newblk->nb_list.wk_type));
12234 	}
12235 	while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) {
12236 		inodedep->id_state |= DEPCOMPLETE;
12237 		inodedep->id_state &= ~ONDEPLIST;
12238 		LIST_REMOVE(inodedep, id_deps);
12239 		inodedep->id_bmsafemap = NULL;
12240 	}
12241 	LIST_REMOVE(bmsafemap, sm_next);
12242 	if (chgs == 0 && LIST_EMPTY(&bmsafemap->sm_jaddrefhd) &&
12243 	    LIST_EMPTY(&bmsafemap->sm_jnewblkhd) &&
12244 	    LIST_EMPTY(&bmsafemap->sm_newblkhd) &&
12245 	    LIST_EMPTY(&bmsafemap->sm_inodedephd) &&
12246 	    LIST_EMPTY(&bmsafemap->sm_freehd)) {
12247 		LIST_REMOVE(bmsafemap, sm_hash);
12248 		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
12249 		return (0);
12250 	}
12251 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
12252 	if (foreground)
12253 		bdirty(bp);
12254 	return (1);
12255 }
12256 
12257 /*
12258  * Try to free a mkdir dependency.
12259  */
12260 static void
12261 complete_mkdir(struct mkdir *mkdir)
12262 {
12263 	struct diradd *dap;
12264 
12265 	if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE)
12266 		return;
12267 	LIST_REMOVE(mkdir, md_mkdirs);
12268 	dap = mkdir->md_diradd;
12269 	dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
12270 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) {
12271 		dap->da_state |= DEPCOMPLETE;
12272 		complete_diradd(dap);
12273 	}
12274 	WORKITEM_FREE(mkdir, D_MKDIR);
12275 }
12276 
12277 /*
12278  * Handle the completion of a mkdir dependency.
12279  */
12280 static void
12281 handle_written_mkdir(struct mkdir *mkdir, int type)
12282 {
12283 
12284 	if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type)
12285 		panic("handle_written_mkdir: bad type");
12286 	mkdir->md_state |= COMPLETE;
12287 	complete_mkdir(mkdir);
12288 }
12289 
12290 static int
12291 free_pagedep(struct pagedep *pagedep)
12292 {
12293 	int i;
12294 
12295 	if (pagedep->pd_state & NEWBLOCK)
12296 		return (0);
12297 	if (!LIST_EMPTY(&pagedep->pd_dirremhd))
12298 		return (0);
12299 	for (i = 0; i < DAHASHSZ; i++)
12300 		if (!LIST_EMPTY(&pagedep->pd_diraddhd[i]))
12301 			return (0);
12302 	if (!LIST_EMPTY(&pagedep->pd_pendinghd))
12303 		return (0);
12304 	if (!LIST_EMPTY(&pagedep->pd_jmvrefhd))
12305 		return (0);
12306 	if (pagedep->pd_state & ONWORKLIST)
12307 		WORKLIST_REMOVE(&pagedep->pd_list);
12308 	LIST_REMOVE(pagedep, pd_hash);
12309 	WORKITEM_FREE(pagedep, D_PAGEDEP);
12310 
12311 	return (1);
12312 }
12313 
12314 /*
12315  * Called from within softdep_disk_write_complete above.
12316  * A write operation was just completed. Removed inodes can
12317  * now be freed and associated block pointers may be committed.
12318  * Note that this routine is always called from interrupt level
12319  * with further interrupts from this device blocked.
12320  *
12321  * If the write did not succeed, we will do all the roll-forward
12322  * operations, but we will not take the actions that will allow its
12323  * dependencies to be processed.
12324  */
12325 static int
12326 handle_written_filepage(
12327 	struct pagedep *pagedep,
12328 	struct buf *bp,		/* buffer containing the written page */
12329 	int flags)
12330 {
12331 	struct dirrem *dirrem;
12332 	struct diradd *dap, *nextdap;
12333 	struct direct *ep;
12334 	int i, chgs;
12335 
12336 	if ((pagedep->pd_state & IOSTARTED) == 0)
12337 		panic("handle_written_filepage: not started");
12338 	pagedep->pd_state &= ~IOSTARTED;
12339 	if ((flags & WRITESUCCEEDED) == 0)
12340 		goto rollforward;
12341 	/*
12342 	 * Process any directory removals that have been committed.
12343 	 */
12344 	while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
12345 		LIST_REMOVE(dirrem, dm_next);
12346 		dirrem->dm_state |= COMPLETE;
12347 		dirrem->dm_dirinum = pagedep->pd_ino;
12348 		KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
12349 		    ("handle_written_filepage: Journal entries not written."));
12350 		add_to_worklist(&dirrem->dm_list, 0);
12351 	}
12352 	/*
12353 	 * Free any directory additions that have been committed.
12354 	 * If it is a newly allocated block, we have to wait until
12355 	 * the on-disk directory inode claims the new block.
12356 	 */
12357 	if ((pagedep->pd_state & NEWBLOCK) == 0)
12358 		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
12359 			free_diradd(dap, NULL);
12360 rollforward:
12361 	/*
12362 	 * Uncommitted directory entries must be restored.
12363 	 */
12364 	for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
12365 		for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
12366 		     dap = nextdap) {
12367 			nextdap = LIST_NEXT(dap, da_pdlist);
12368 			if (dap->da_state & ATTACHED)
12369 				panic("handle_written_filepage: attached");
12370 			ep = (struct direct *)
12371 			    ((char *)bp->b_data + dap->da_offset);
12372 			ep->d_ino = dap->da_newinum;
12373 			dap->da_state &= ~UNDONE;
12374 			dap->da_state |= ATTACHED;
12375 			chgs = 1;
12376 			/*
12377 			 * If the inode referenced by the directory has
12378 			 * been written out, then the dependency can be
12379 			 * moved to the pending list.
12380 			 */
12381 			if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
12382 				LIST_REMOVE(dap, da_pdlist);
12383 				LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
12384 				    da_pdlist);
12385 			}
12386 		}
12387 	}
12388 	/*
12389 	 * If there were any rollbacks in the directory, then it must be
12390 	 * marked dirty so that its will eventually get written back in
12391 	 * its correct form.
12392 	 */
12393 	if (chgs || (flags & WRITESUCCEEDED) == 0) {
12394 		if ((bp->b_flags & B_DELWRI) == 0)
12395 			stat_dir_entry++;
12396 		bdirty(bp);
12397 		return (1);
12398 	}
12399 	/*
12400 	 * If we are not waiting for a new directory block to be
12401 	 * claimed by its inode, then the pagedep will be freed.
12402 	 * Otherwise it will remain to track any new entries on
12403 	 * the page in case they are fsync'ed.
12404 	 */
12405 	free_pagedep(pagedep);
12406 	return (0);
12407 }
12408 
12409 /*
12410  * Writing back in-core inode structures.
12411  *
12412  * The filesystem only accesses an inode's contents when it occupies an
12413  * "in-core" inode structure.  These "in-core" structures are separate from
12414  * the page frames used to cache inode blocks.  Only the latter are
12415  * transferred to/from the disk.  So, when the updated contents of the
12416  * "in-core" inode structure are copied to the corresponding in-memory inode
12417  * block, the dependencies are also transferred.  The following procedure is
12418  * called when copying a dirty "in-core" inode to a cached inode block.
12419  */
12420 
12421 /*
12422  * Called when an inode is loaded from disk. If the effective link count
12423  * differed from the actual link count when it was last flushed, then we
12424  * need to ensure that the correct effective link count is put back.
12425  */
12426 void
12427 softdep_load_inodeblock(
12428 	struct inode *ip)	/* the "in_core" copy of the inode */
12429 {
12430 	struct inodedep *inodedep;
12431 	struct ufsmount *ump;
12432 
12433 	ump = ITOUMP(ip);
12434 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
12435 	    ("softdep_load_inodeblock called on non-softdep filesystem"));
12436 	/*
12437 	 * Check for alternate nlink count.
12438 	 */
12439 	ip->i_effnlink = ip->i_nlink;
12440 	ACQUIRE_LOCK(ump);
12441 	if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0) {
12442 		FREE_LOCK(ump);
12443 		return;
12444 	}
12445 	if (ip->i_nlink != inodedep->id_nlinkwrote &&
12446 	    inodedep->id_nlinkwrote != -1) {
12447 		KASSERT(ip->i_nlink == 0 &&
12448 		    (ump->um_flags & UM_FSFAIL_CLEANUP) != 0,
12449 		    ("read bad i_nlink value"));
12450 		ip->i_effnlink = ip->i_nlink = inodedep->id_nlinkwrote;
12451 	}
12452 	ip->i_effnlink -= inodedep->id_nlinkdelta;
12453 	KASSERT(ip->i_effnlink >= 0,
12454 	    ("softdep_load_inodeblock: negative i_effnlink"));
12455 	FREE_LOCK(ump);
12456 }
12457 
12458 /*
12459  * This routine is called just before the "in-core" inode
12460  * information is to be copied to the in-memory inode block.
12461  * Recall that an inode block contains several inodes. If
12462  * the force flag is set, then the dependencies will be
12463  * cleared so that the update can always be made. Note that
12464  * the buffer is locked when this routine is called, so we
12465  * will never be in the middle of writing the inode block
12466  * to disk.
12467  */
12468 void
12469 softdep_update_inodeblock(
12470 	struct inode *ip,	/* the "in_core" copy of the inode */
12471 	struct buf *bp,		/* the buffer containing the inode block */
12472 	int waitfor)		/* nonzero => update must be allowed */
12473 {
12474 	struct inodedep *inodedep;
12475 	struct inoref *inoref;
12476 	struct ufsmount *ump;
12477 	struct worklist *wk;
12478 	struct mount *mp;
12479 	struct buf *ibp;
12480 	struct fs *fs;
12481 	int error;
12482 
12483 	ump = ITOUMP(ip);
12484 	mp = UFSTOVFS(ump);
12485 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
12486 	    ("softdep_update_inodeblock called on non-softdep filesystem"));
12487 	fs = ump->um_fs;
12488 	/*
12489 	 * Preserve the freelink that is on disk.  clear_unlinked_inodedep()
12490 	 * does not have access to the in-core ip so must write directly into
12491 	 * the inode block buffer when setting freelink.
12492 	 */
12493 	if (fs->fs_magic == FS_UFS1_MAGIC)
12494 		DIP_SET(ip, i_freelink, ((struct ufs1_dinode *)bp->b_data +
12495 		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
12496 	else
12497 		DIP_SET(ip, i_freelink, ((struct ufs2_dinode *)bp->b_data +
12498 		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
12499 	/*
12500 	 * If the effective link count is not equal to the actual link
12501 	 * count, then we must track the difference in an inodedep while
12502 	 * the inode is (potentially) tossed out of the cache. Otherwise,
12503 	 * if there is no existing inodedep, then there are no dependencies
12504 	 * to track.
12505 	 */
12506 	ACQUIRE_LOCK(ump);
12507 again:
12508 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
12509 		FREE_LOCK(ump);
12510 		if (ip->i_effnlink != ip->i_nlink)
12511 			panic("softdep_update_inodeblock: bad link count");
12512 		return;
12513 	}
12514 	KASSERT(ip->i_nlink >= inodedep->id_nlinkdelta,
12515 	    ("softdep_update_inodeblock inconsistent ip %p i_nlink %d "
12516 	    "inodedep %p id_nlinkdelta %jd",
12517 	    ip, ip->i_nlink, inodedep, (intmax_t)inodedep->id_nlinkdelta));
12518 	inodedep->id_nlinkwrote = ip->i_nlink;
12519 	if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink)
12520 		panic("softdep_update_inodeblock: bad delta");
12521 	/*
12522 	 * If we're flushing all dependencies we must also move any waiting
12523 	 * for journal writes onto the bufwait list prior to I/O.
12524 	 */
12525 	if (waitfor) {
12526 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12527 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12528 			    == DEPCOMPLETE) {
12529 				jwait(&inoref->if_list, MNT_WAIT);
12530 				goto again;
12531 			}
12532 		}
12533 	}
12534 	/*
12535 	 * Changes have been initiated. Anything depending on these
12536 	 * changes cannot occur until this inode has been written.
12537 	 */
12538 	inodedep->id_state &= ~COMPLETE;
12539 	if ((inodedep->id_state & ONWORKLIST) == 0)
12540 		WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list);
12541 	/*
12542 	 * Any new dependencies associated with the incore inode must
12543 	 * now be moved to the list associated with the buffer holding
12544 	 * the in-memory copy of the inode. Once merged process any
12545 	 * allocdirects that are completed by the merger.
12546 	 */
12547 	merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt);
12548 	if (!TAILQ_EMPTY(&inodedep->id_inoupdt))
12549 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt),
12550 		    NULL);
12551 	merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt);
12552 	if (!TAILQ_EMPTY(&inodedep->id_extupdt))
12553 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt),
12554 		    NULL);
12555 	/*
12556 	 * Now that the inode has been pushed into the buffer, the
12557 	 * operations dependent on the inode being written to disk
12558 	 * can be moved to the id_bufwait so that they will be
12559 	 * processed when the buffer I/O completes.
12560 	 */
12561 	while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
12562 		WORKLIST_REMOVE(wk);
12563 		WORKLIST_INSERT(&inodedep->id_bufwait, wk);
12564 	}
12565 	/*
12566 	 * Newly allocated inodes cannot be written until the bitmap
12567 	 * that allocates them have been written (indicated by
12568 	 * DEPCOMPLETE being set in id_state). If we are doing a
12569 	 * forced sync (e.g., an fsync on a file), we force the bitmap
12570 	 * to be written so that the update can be done.
12571 	 */
12572 	if (waitfor == 0) {
12573 		FREE_LOCK(ump);
12574 		return;
12575 	}
12576 retry:
12577 	if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) {
12578 		FREE_LOCK(ump);
12579 		return;
12580 	}
12581 	ibp = inodedep->id_bmsafemap->sm_buf;
12582 	ibp = getdirtybuf(ibp, LOCK_PTR(ump), MNT_WAIT);
12583 	if (ibp == NULL) {
12584 		/*
12585 		 * If ibp came back as NULL, the dependency could have been
12586 		 * freed while we slept.  Look it up again, and check to see
12587 		 * that it has completed.
12588 		 */
12589 		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
12590 			goto retry;
12591 		FREE_LOCK(ump);
12592 		return;
12593 	}
12594 	FREE_LOCK(ump);
12595 	if ((error = bwrite(ibp)) != 0)
12596 		softdep_error("softdep_update_inodeblock: bwrite", error);
12597 }
12598 
12599 /*
12600  * Merge the a new inode dependency list (such as id_newinoupdt) into an
12601  * old inode dependency list (such as id_inoupdt).
12602  */
12603 static void
12604 merge_inode_lists(
12605 	struct allocdirectlst *newlisthead,
12606 	struct allocdirectlst *oldlisthead)
12607 {
12608 	struct allocdirect *listadp, *newadp;
12609 
12610 	newadp = TAILQ_FIRST(newlisthead);
12611 	if (newadp != NULL)
12612 		LOCK_OWNED(VFSTOUFS(newadp->ad_block.nb_list.wk_mp));
12613 	for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) {
12614 		if (listadp->ad_offset < newadp->ad_offset) {
12615 			listadp = TAILQ_NEXT(listadp, ad_next);
12616 			continue;
12617 		}
12618 		TAILQ_REMOVE(newlisthead, newadp, ad_next);
12619 		TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
12620 		if (listadp->ad_offset == newadp->ad_offset) {
12621 			allocdirect_merge(oldlisthead, newadp,
12622 			    listadp);
12623 			listadp = newadp;
12624 		}
12625 		newadp = TAILQ_FIRST(newlisthead);
12626 	}
12627 	while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) {
12628 		TAILQ_REMOVE(newlisthead, newadp, ad_next);
12629 		TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next);
12630 	}
12631 }
12632 
12633 /*
12634  * If we are doing an fsync, then we must ensure that any directory
12635  * entries for the inode have been written after the inode gets to disk.
12636  */
12637 int
12638 softdep_fsync(
12639 	struct vnode *vp)	/* the "in_core" copy of the inode */
12640 {
12641 	struct inodedep *inodedep;
12642 	struct pagedep *pagedep;
12643 	struct inoref *inoref;
12644 	struct ufsmount *ump;
12645 	struct worklist *wk;
12646 	struct diradd *dap;
12647 	struct mount *mp;
12648 	struct vnode *pvp;
12649 	struct inode *ip;
12650 	struct buf *bp;
12651 	struct fs *fs;
12652 	struct thread *td = curthread;
12653 	int error, flushparent, pagedep_new_block;
12654 	ino_t parentino;
12655 	ufs_lbn_t lbn;
12656 
12657 	ip = VTOI(vp);
12658 	mp = vp->v_mount;
12659 	ump = VFSTOUFS(mp);
12660 	fs = ump->um_fs;
12661 	if (MOUNTEDSOFTDEP(mp) == 0)
12662 		return (0);
12663 	ACQUIRE_LOCK(ump);
12664 restart:
12665 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
12666 		FREE_LOCK(ump);
12667 		return (0);
12668 	}
12669 	TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12670 		if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12671 		    == DEPCOMPLETE) {
12672 			jwait(&inoref->if_list, MNT_WAIT);
12673 			goto restart;
12674 		}
12675 	}
12676 	if (!LIST_EMPTY(&inodedep->id_inowait) ||
12677 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
12678 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
12679 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
12680 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt))
12681 		panic("softdep_fsync: pending ops %p", inodedep);
12682 	for (error = 0, flushparent = 0; ; ) {
12683 		if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
12684 			break;
12685 		if (wk->wk_type != D_DIRADD)
12686 			panic("softdep_fsync: Unexpected type %s",
12687 			    TYPENAME(wk->wk_type));
12688 		dap = WK_DIRADD(wk);
12689 		/*
12690 		 * Flush our parent if this directory entry has a MKDIR_PARENT
12691 		 * dependency or is contained in a newly allocated block.
12692 		 */
12693 		if (dap->da_state & DIRCHG)
12694 			pagedep = dap->da_previous->dm_pagedep;
12695 		else
12696 			pagedep = dap->da_pagedep;
12697 		parentino = pagedep->pd_ino;
12698 		lbn = pagedep->pd_lbn;
12699 		if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE)
12700 			panic("softdep_fsync: dirty");
12701 		if ((dap->da_state & MKDIR_PARENT) ||
12702 		    (pagedep->pd_state & NEWBLOCK))
12703 			flushparent = 1;
12704 		else
12705 			flushparent = 0;
12706 		/*
12707 		 * If we are being fsync'ed as part of vgone'ing this vnode,
12708 		 * then we will not be able to release and recover the
12709 		 * vnode below, so we just have to give up on writing its
12710 		 * directory entry out. It will eventually be written, just
12711 		 * not now, but then the user was not asking to have it
12712 		 * written, so we are not breaking any promises.
12713 		 */
12714 		if (VN_IS_DOOMED(vp))
12715 			break;
12716 		/*
12717 		 * We prevent deadlock by always fetching inodes from the
12718 		 * root, moving down the directory tree. Thus, when fetching
12719 		 * our parent directory, we first try to get the lock. If
12720 		 * that fails, we must unlock ourselves before requesting
12721 		 * the lock on our parent. See the comment in ufs_lookup
12722 		 * for details on possible races.
12723 		 */
12724 		FREE_LOCK(ump);
12725 		error = get_parent_vp(vp, mp, parentino, NULL, NULL, NULL,
12726 		    &pvp);
12727 		if (error == ERELOOKUP)
12728 			error = 0;
12729 		if (error != 0)
12730 			return (error);
12731 		/*
12732 		 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps
12733 		 * that are contained in direct blocks will be resolved by
12734 		 * doing a ffs_update. Pagedeps contained in indirect blocks
12735 		 * may require a complete sync'ing of the directory. So, we
12736 		 * try the cheap and fast ffs_update first, and if that fails,
12737 		 * then we do the slower ffs_syncvnode of the directory.
12738 		 */
12739 		if (flushparent) {
12740 			int locked;
12741 
12742 			if ((error = ffs_update(pvp, 1)) != 0) {
12743 				vput(pvp);
12744 				return (error);
12745 			}
12746 			ACQUIRE_LOCK(ump);
12747 			locked = 1;
12748 			if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) {
12749 				if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) {
12750 					if (wk->wk_type != D_DIRADD)
12751 						panic("softdep_fsync: Unexpected type %s",
12752 						      TYPENAME(wk->wk_type));
12753 					dap = WK_DIRADD(wk);
12754 					if (dap->da_state & DIRCHG)
12755 						pagedep = dap->da_previous->dm_pagedep;
12756 					else
12757 						pagedep = dap->da_pagedep;
12758 					pagedep_new_block = pagedep->pd_state & NEWBLOCK;
12759 					FREE_LOCK(ump);
12760 					locked = 0;
12761 					if (pagedep_new_block) {
12762 						VOP_UNLOCK(vp);
12763 						error = ffs_syncvnode(pvp,
12764 						    MNT_WAIT, 0);
12765 						if (error == 0)
12766 							error = ERELOOKUP;
12767 						vput(pvp);
12768 						vn_lock(vp, LK_EXCLUSIVE |
12769 						    LK_RETRY);
12770 						return (error);
12771 					}
12772 				}
12773 			}
12774 			if (locked)
12775 				FREE_LOCK(ump);
12776 		}
12777 		/*
12778 		 * Flush directory page containing the inode's name.
12779 		 */
12780 		error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred,
12781 		    &bp);
12782 		if (error == 0)
12783 			error = bwrite(bp);
12784 		else
12785 			brelse(bp);
12786 		vput(pvp);
12787 		if (!ffs_fsfail_cleanup(ump, error))
12788 			return (error);
12789 		ACQUIRE_LOCK(ump);
12790 		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
12791 			break;
12792 	}
12793 	FREE_LOCK(ump);
12794 	return (0);
12795 }
12796 
12797 /*
12798  * Flush all the dirty bitmaps associated with the block device
12799  * before flushing the rest of the dirty blocks so as to reduce
12800  * the number of dependencies that will have to be rolled back.
12801  *
12802  * XXX Unused?
12803  */
12804 void
12805 softdep_fsync_mountdev(struct vnode *vp)
12806 {
12807 	struct buf *bp, *nbp;
12808 	struct worklist *wk;
12809 	struct bufobj *bo;
12810 
12811 	if (!vn_isdisk(vp))
12812 		panic("softdep_fsync_mountdev: vnode not a disk");
12813 	bo = &vp->v_bufobj;
12814 restart:
12815 	BO_LOCK(bo);
12816 	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
12817 		/*
12818 		 * If it is already scheduled, skip to the next buffer.
12819 		 */
12820 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
12821 			continue;
12822 
12823 		if ((bp->b_flags & B_DELWRI) == 0)
12824 			panic("softdep_fsync_mountdev: not dirty");
12825 		/*
12826 		 * We are only interested in bitmaps with outstanding
12827 		 * dependencies.
12828 		 */
12829 		if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
12830 		    wk->wk_type != D_BMSAFEMAP ||
12831 		    (bp->b_vflags & BV_BKGRDINPROG)) {
12832 			BUF_UNLOCK(bp);
12833 			continue;
12834 		}
12835 		BO_UNLOCK(bo);
12836 		bremfree(bp);
12837 		(void) bawrite(bp);
12838 		goto restart;
12839 	}
12840 	drain_output(vp);
12841 	BO_UNLOCK(bo);
12842 }
12843 
12844 /*
12845  * Sync all cylinder groups that were dirty at the time this function is
12846  * called.  Newly dirtied cgs will be inserted before the sentinel.  This
12847  * is used to flush freedep activity that may be holding up writes to a
12848  * indirect block.
12849  */
12850 static int
12851 sync_cgs(struct mount *mp, int waitfor)
12852 {
12853 	struct bmsafemap *bmsafemap;
12854 	struct bmsafemap *sentinel;
12855 	struct ufsmount *ump;
12856 	struct buf *bp;
12857 	int error;
12858 
12859 	sentinel = malloc(sizeof(*sentinel), M_BMSAFEMAP, M_ZERO | M_WAITOK);
12860 	sentinel->sm_cg = -1;
12861 	ump = VFSTOUFS(mp);
12862 	error = 0;
12863 	ACQUIRE_LOCK(ump);
12864 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, sentinel, sm_next);
12865 	for (bmsafemap = LIST_NEXT(sentinel, sm_next); bmsafemap != NULL;
12866 	    bmsafemap = LIST_NEXT(sentinel, sm_next)) {
12867 		/* Skip sentinels and cgs with no work to release. */
12868 		if (bmsafemap->sm_cg == -1 ||
12869 		    (LIST_EMPTY(&bmsafemap->sm_freehd) &&
12870 		    LIST_EMPTY(&bmsafemap->sm_freewr))) {
12871 			LIST_REMOVE(sentinel, sm_next);
12872 			LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next);
12873 			continue;
12874 		}
12875 		/*
12876 		 * If we don't get the lock and we're waiting try again, if
12877 		 * not move on to the next buf and try to sync it.
12878 		 */
12879 		bp = getdirtybuf(bmsafemap->sm_buf, LOCK_PTR(ump), waitfor);
12880 		if (bp == NULL && waitfor == MNT_WAIT)
12881 			continue;
12882 		LIST_REMOVE(sentinel, sm_next);
12883 		LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next);
12884 		if (bp == NULL)
12885 			continue;
12886 		FREE_LOCK(ump);
12887 		if (waitfor == MNT_NOWAIT)
12888 			bawrite(bp);
12889 		else
12890 			error = bwrite(bp);
12891 		ACQUIRE_LOCK(ump);
12892 		if (error)
12893 			break;
12894 	}
12895 	LIST_REMOVE(sentinel, sm_next);
12896 	FREE_LOCK(ump);
12897 	free(sentinel, M_BMSAFEMAP);
12898 	return (error);
12899 }
12900 
12901 /*
12902  * This routine is called when we are trying to synchronously flush a
12903  * file. This routine must eliminate any filesystem metadata dependencies
12904  * so that the syncing routine can succeed.
12905  */
12906 int
12907 softdep_sync_metadata(struct vnode *vp)
12908 {
12909 	struct inode *ip;
12910 	int error;
12911 
12912 	ip = VTOI(vp);
12913 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
12914 	    ("softdep_sync_metadata called on non-softdep filesystem"));
12915 	/*
12916 	 * Ensure that any direct block dependencies have been cleared,
12917 	 * truncations are started, and inode references are journaled.
12918 	 */
12919 	ACQUIRE_LOCK(VFSTOUFS(vp->v_mount));
12920 	/*
12921 	 * Write all journal records to prevent rollbacks on devvp.
12922 	 */
12923 	if (vp->v_type == VCHR)
12924 		softdep_flushjournal(vp->v_mount);
12925 	error = flush_inodedep_deps(vp, vp->v_mount, ip->i_number);
12926 	/*
12927 	 * Ensure that all truncates are written so we won't find deps on
12928 	 * indirect blocks.
12929 	 */
12930 	process_truncates(vp);
12931 	FREE_LOCK(VFSTOUFS(vp->v_mount));
12932 
12933 	return (error);
12934 }
12935 
12936 /*
12937  * This routine is called when we are attempting to sync a buf with
12938  * dependencies.  If waitfor is MNT_NOWAIT it attempts to schedule any
12939  * other IO it can but returns EBUSY if the buffer is not yet able to
12940  * be written.  Dependencies which will not cause rollbacks will always
12941  * return 0.
12942  */
12943 int
12944 softdep_sync_buf(struct vnode *vp,
12945 	struct buf *bp,
12946 	int waitfor)
12947 {
12948 	struct indirdep *indirdep;
12949 	struct pagedep *pagedep;
12950 	struct allocindir *aip;
12951 	struct newblk *newblk;
12952 	struct ufsmount *ump;
12953 	struct buf *nbp;
12954 	struct worklist *wk;
12955 	int i, error;
12956 
12957 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
12958 	    ("softdep_sync_buf called on non-softdep filesystem"));
12959 	/*
12960 	 * For VCHR we just don't want to force flush any dependencies that
12961 	 * will cause rollbacks.
12962 	 */
12963 	if (vp->v_type == VCHR) {
12964 		if (waitfor == MNT_NOWAIT && softdep_count_dependencies(bp, 0))
12965 			return (EBUSY);
12966 		return (0);
12967 	}
12968 	ump = VFSTOUFS(vp->v_mount);
12969 	ACQUIRE_LOCK(ump);
12970 	/*
12971 	 * As we hold the buffer locked, none of its dependencies
12972 	 * will disappear.
12973 	 */
12974 	error = 0;
12975 top:
12976 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
12977 		switch (wk->wk_type) {
12978 		case D_ALLOCDIRECT:
12979 		case D_ALLOCINDIR:
12980 			newblk = WK_NEWBLK(wk);
12981 			if (newblk->nb_jnewblk != NULL) {
12982 				if (waitfor == MNT_NOWAIT) {
12983 					error = EBUSY;
12984 					goto out_unlock;
12985 				}
12986 				jwait(&newblk->nb_jnewblk->jn_list, waitfor);
12987 				goto top;
12988 			}
12989 			if (newblk->nb_state & DEPCOMPLETE ||
12990 			    waitfor == MNT_NOWAIT)
12991 				continue;
12992 			nbp = newblk->nb_bmsafemap->sm_buf;
12993 			nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor);
12994 			if (nbp == NULL)
12995 				goto top;
12996 			FREE_LOCK(ump);
12997 			if ((error = bwrite(nbp)) != 0)
12998 				goto out;
12999 			ACQUIRE_LOCK(ump);
13000 			continue;
13001 
13002 		case D_INDIRDEP:
13003 			indirdep = WK_INDIRDEP(wk);
13004 			if (waitfor == MNT_NOWAIT) {
13005 				if (!TAILQ_EMPTY(&indirdep->ir_trunc) ||
13006 				    !LIST_EMPTY(&indirdep->ir_deplisthd)) {
13007 					error = EBUSY;
13008 					goto out_unlock;
13009 				}
13010 			}
13011 			if (!TAILQ_EMPTY(&indirdep->ir_trunc))
13012 				panic("softdep_sync_buf: truncation pending.");
13013 		restart:
13014 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
13015 				newblk = (struct newblk *)aip;
13016 				if (newblk->nb_jnewblk != NULL) {
13017 					jwait(&newblk->nb_jnewblk->jn_list,
13018 					    waitfor);
13019 					goto restart;
13020 				}
13021 				if (newblk->nb_state & DEPCOMPLETE)
13022 					continue;
13023 				nbp = newblk->nb_bmsafemap->sm_buf;
13024 				nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor);
13025 				if (nbp == NULL)
13026 					goto restart;
13027 				FREE_LOCK(ump);
13028 				if ((error = bwrite(nbp)) != 0)
13029 					goto out;
13030 				ACQUIRE_LOCK(ump);
13031 				goto restart;
13032 			}
13033 			continue;
13034 
13035 		case D_PAGEDEP:
13036 			/*
13037 			 * Only flush directory entries in synchronous passes.
13038 			 */
13039 			if (waitfor != MNT_WAIT) {
13040 				error = EBUSY;
13041 				goto out_unlock;
13042 			}
13043 			/*
13044 			 * While syncing snapshots, we must allow recursive
13045 			 * lookups.
13046 			 */
13047 			BUF_AREC(bp);
13048 			/*
13049 			 * We are trying to sync a directory that may
13050 			 * have dependencies on both its own metadata
13051 			 * and/or dependencies on the inodes of any
13052 			 * recently allocated files. We walk its diradd
13053 			 * lists pushing out the associated inode.
13054 			 */
13055 			pagedep = WK_PAGEDEP(wk);
13056 			for (i = 0; i < DAHASHSZ; i++) {
13057 				if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0)
13058 					continue;
13059 				error = flush_pagedep_deps(vp, wk->wk_mp,
13060 				    &pagedep->pd_diraddhd[i], bp);
13061 				if (error != 0) {
13062 					if (error != ERELOOKUP)
13063 						BUF_NOREC(bp);
13064 					goto out_unlock;
13065 				}
13066 			}
13067 			BUF_NOREC(bp);
13068 			continue;
13069 
13070 		case D_FREEWORK:
13071 		case D_FREEDEP:
13072 		case D_JSEGDEP:
13073 		case D_JNEWBLK:
13074 			continue;
13075 
13076 		default:
13077 			panic("softdep_sync_buf: Unknown type %s",
13078 			    TYPENAME(wk->wk_type));
13079 			/* NOTREACHED */
13080 		}
13081 	}
13082 out_unlock:
13083 	FREE_LOCK(ump);
13084 out:
13085 	return (error);
13086 }
13087 
13088 /*
13089  * Flush the dependencies associated with an inodedep.
13090  */
13091 static int
13092 flush_inodedep_deps(
13093 	struct vnode *vp,
13094 	struct mount *mp,
13095 	ino_t ino)
13096 {
13097 	struct inodedep *inodedep;
13098 	struct inoref *inoref;
13099 	struct ufsmount *ump;
13100 	int error, waitfor;
13101 
13102 	/*
13103 	 * This work is done in two passes. The first pass grabs most
13104 	 * of the buffers and begins asynchronously writing them. The
13105 	 * only way to wait for these asynchronous writes is to sleep
13106 	 * on the filesystem vnode which may stay busy for a long time
13107 	 * if the filesystem is active. So, instead, we make a second
13108 	 * pass over the dependencies blocking on each write. In the
13109 	 * usual case we will be blocking against a write that we
13110 	 * initiated, so when it is done the dependency will have been
13111 	 * resolved. Thus the second pass is expected to end quickly.
13112 	 * We give a brief window at the top of the loop to allow
13113 	 * any pending I/O to complete.
13114 	 */
13115 	ump = VFSTOUFS(mp);
13116 	LOCK_OWNED(ump);
13117 	for (error = 0, waitfor = MNT_NOWAIT; ; ) {
13118 		if (error)
13119 			return (error);
13120 		FREE_LOCK(ump);
13121 		ACQUIRE_LOCK(ump);
13122 restart:
13123 		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
13124 			return (0);
13125 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
13126 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
13127 			    == DEPCOMPLETE) {
13128 				jwait(&inoref->if_list, MNT_WAIT);
13129 				goto restart;
13130 			}
13131 		}
13132 		if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) ||
13133 		    flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) ||
13134 		    flush_deplist(&inodedep->id_extupdt, waitfor, &error) ||
13135 		    flush_deplist(&inodedep->id_newextupdt, waitfor, &error))
13136 			continue;
13137 		/*
13138 		 * If pass2, we are done, otherwise do pass 2.
13139 		 */
13140 		if (waitfor == MNT_WAIT)
13141 			break;
13142 		waitfor = MNT_WAIT;
13143 	}
13144 	/*
13145 	 * Try freeing inodedep in case all dependencies have been removed.
13146 	 */
13147 	if (inodedep_lookup(mp, ino, 0, &inodedep) != 0)
13148 		(void) free_inodedep(inodedep);
13149 	return (0);
13150 }
13151 
13152 /*
13153  * Flush an inode dependency list.
13154  */
13155 static int
13156 flush_deplist(
13157 	struct allocdirectlst *listhead,
13158 	int waitfor,
13159 	int *errorp)
13160 {
13161 	struct allocdirect *adp;
13162 	struct newblk *newblk;
13163 	struct ufsmount *ump;
13164 	struct buf *bp;
13165 
13166 	if ((adp = TAILQ_FIRST(listhead)) == NULL)
13167 		return (0);
13168 	ump = VFSTOUFS(adp->ad_list.wk_mp);
13169 	LOCK_OWNED(ump);
13170 	TAILQ_FOREACH(adp, listhead, ad_next) {
13171 		newblk = (struct newblk *)adp;
13172 		if (newblk->nb_jnewblk != NULL) {
13173 			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
13174 			return (1);
13175 		}
13176 		if (newblk->nb_state & DEPCOMPLETE)
13177 			continue;
13178 		bp = newblk->nb_bmsafemap->sm_buf;
13179 		bp = getdirtybuf(bp, LOCK_PTR(ump), waitfor);
13180 		if (bp == NULL) {
13181 			if (waitfor == MNT_NOWAIT)
13182 				continue;
13183 			return (1);
13184 		}
13185 		FREE_LOCK(ump);
13186 		if (waitfor == MNT_NOWAIT)
13187 			bawrite(bp);
13188 		else
13189 			*errorp = bwrite(bp);
13190 		ACQUIRE_LOCK(ump);
13191 		return (1);
13192 	}
13193 	return (0);
13194 }
13195 
13196 /*
13197  * Flush dependencies associated with an allocdirect block.
13198  */
13199 static int
13200 flush_newblk_dep(
13201 	struct vnode *vp,
13202 	struct mount *mp,
13203 	ufs_lbn_t lbn)
13204 {
13205 	struct newblk *newblk;
13206 	struct ufsmount *ump;
13207 	struct bufobj *bo;
13208 	struct inode *ip;
13209 	struct buf *bp;
13210 	ufs2_daddr_t blkno;
13211 	int error;
13212 
13213 	error = 0;
13214 	bo = &vp->v_bufobj;
13215 	ip = VTOI(vp);
13216 	blkno = DIP(ip, i_db[lbn]);
13217 	if (blkno == 0)
13218 		panic("flush_newblk_dep: Missing block");
13219 	ump = VFSTOUFS(mp);
13220 	ACQUIRE_LOCK(ump);
13221 	/*
13222 	 * Loop until all dependencies related to this block are satisfied.
13223 	 * We must be careful to restart after each sleep in case a write
13224 	 * completes some part of this process for us.
13225 	 */
13226 	for (;;) {
13227 		if (newblk_lookup(mp, blkno, 0, &newblk) == 0) {
13228 			FREE_LOCK(ump);
13229 			break;
13230 		}
13231 		if (newblk->nb_list.wk_type != D_ALLOCDIRECT)
13232 			panic("flush_newblk_dep: Bad newblk %p", newblk);
13233 		/*
13234 		 * Flush the journal.
13235 		 */
13236 		if (newblk->nb_jnewblk != NULL) {
13237 			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
13238 			continue;
13239 		}
13240 		/*
13241 		 * Write the bitmap dependency.
13242 		 */
13243 		if ((newblk->nb_state & DEPCOMPLETE) == 0) {
13244 			bp = newblk->nb_bmsafemap->sm_buf;
13245 			bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT);
13246 			if (bp == NULL)
13247 				continue;
13248 			FREE_LOCK(ump);
13249 			error = bwrite(bp);
13250 			if (error)
13251 				break;
13252 			ACQUIRE_LOCK(ump);
13253 			continue;
13254 		}
13255 		/*
13256 		 * Write the buffer.
13257 		 */
13258 		FREE_LOCK(ump);
13259 		BO_LOCK(bo);
13260 		bp = gbincore(bo, lbn);
13261 		if (bp != NULL) {
13262 			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
13263 			    LK_INTERLOCK, BO_LOCKPTR(bo));
13264 			if (error == ENOLCK) {
13265 				ACQUIRE_LOCK(ump);
13266 				error = 0;
13267 				continue; /* Slept, retry */
13268 			}
13269 			if (error != 0)
13270 				break;	/* Failed */
13271 			if (bp->b_flags & B_DELWRI) {
13272 				bremfree(bp);
13273 				error = bwrite(bp);
13274 				if (error)
13275 					break;
13276 			} else
13277 				BUF_UNLOCK(bp);
13278 		} else
13279 			BO_UNLOCK(bo);
13280 		/*
13281 		 * We have to wait for the direct pointers to
13282 		 * point at the newdirblk before the dependency
13283 		 * will go away.
13284 		 */
13285 		error = ffs_update(vp, 1);
13286 		if (error)
13287 			break;
13288 		ACQUIRE_LOCK(ump);
13289 	}
13290 	return (error);
13291 }
13292 
13293 /*
13294  * Eliminate a pagedep dependency by flushing out all its diradd dependencies.
13295  */
13296 static int
13297 flush_pagedep_deps(
13298 	struct vnode *pvp,
13299 	struct mount *mp,
13300 	struct diraddhd *diraddhdp,
13301 	struct buf *locked_bp)
13302 {
13303 	struct inodedep *inodedep;
13304 	struct inoref *inoref;
13305 	struct ufsmount *ump;
13306 	struct diradd *dap;
13307 	struct vnode *vp;
13308 	int error = 0;
13309 	struct buf *bp;
13310 	ino_t inum;
13311 	struct diraddhd unfinished;
13312 
13313 	LIST_INIT(&unfinished);
13314 	ump = VFSTOUFS(mp);
13315 	LOCK_OWNED(ump);
13316 restart:
13317 	while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
13318 		/*
13319 		 * Flush ourselves if this directory entry
13320 		 * has a MKDIR_PARENT dependency.
13321 		 */
13322 		if (dap->da_state & MKDIR_PARENT) {
13323 			FREE_LOCK(ump);
13324 			if ((error = ffs_update(pvp, 1)) != 0)
13325 				break;
13326 			ACQUIRE_LOCK(ump);
13327 			/*
13328 			 * If that cleared dependencies, go on to next.
13329 			 */
13330 			if (dap != LIST_FIRST(diraddhdp))
13331 				continue;
13332 			/*
13333 			 * All MKDIR_PARENT dependencies and all the
13334 			 * NEWBLOCK pagedeps that are contained in direct
13335 			 * blocks were resolved by doing above ffs_update.
13336 			 * Pagedeps contained in indirect blocks may
13337 			 * require a complete sync'ing of the directory.
13338 			 * We are in the midst of doing a complete sync,
13339 			 * so if they are not resolved in this pass we
13340 			 * defer them for now as they will be sync'ed by
13341 			 * our caller shortly.
13342 			 */
13343 			LIST_REMOVE(dap, da_pdlist);
13344 			LIST_INSERT_HEAD(&unfinished, dap, da_pdlist);
13345 			continue;
13346 		}
13347 		/*
13348 		 * A newly allocated directory must have its "." and
13349 		 * ".." entries written out before its name can be
13350 		 * committed in its parent.
13351 		 */
13352 		inum = dap->da_newinum;
13353 		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
13354 			panic("flush_pagedep_deps: lost inode1");
13355 		/*
13356 		 * Wait for any pending journal adds to complete so we don't
13357 		 * cause rollbacks while syncing.
13358 		 */
13359 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
13360 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
13361 			    == DEPCOMPLETE) {
13362 				jwait(&inoref->if_list, MNT_WAIT);
13363 				goto restart;
13364 			}
13365 		}
13366 		if (dap->da_state & MKDIR_BODY) {
13367 			FREE_LOCK(ump);
13368 			error = get_parent_vp(pvp, mp, inum, locked_bp,
13369 			    diraddhdp, &unfinished, &vp);
13370 			if (error != 0)
13371 				break;
13372 			error = flush_newblk_dep(vp, mp, 0);
13373 			/*
13374 			 * If we still have the dependency we might need to
13375 			 * update the vnode to sync the new link count to
13376 			 * disk.
13377 			 */
13378 			if (error == 0 && dap == LIST_FIRST(diraddhdp))
13379 				error = ffs_update(vp, 1);
13380 			vput(vp);
13381 			if (error != 0)
13382 				break;
13383 			ACQUIRE_LOCK(ump);
13384 			/*
13385 			 * If that cleared dependencies, go on to next.
13386 			 */
13387 			if (dap != LIST_FIRST(diraddhdp))
13388 				continue;
13389 			if (dap->da_state & MKDIR_BODY) {
13390 				inodedep_lookup(UFSTOVFS(ump), inum, 0,
13391 				    &inodedep);
13392 				panic("flush_pagedep_deps: MKDIR_BODY "
13393 				    "inodedep %p dap %p vp %p",
13394 				    inodedep, dap, vp);
13395 			}
13396 		}
13397 		/*
13398 		 * Flush the inode on which the directory entry depends.
13399 		 * Having accounted for MKDIR_PARENT and MKDIR_BODY above,
13400 		 * the only remaining dependency is that the updated inode
13401 		 * count must get pushed to disk. The inode has already
13402 		 * been pushed into its inode buffer (via VOP_UPDATE) at
13403 		 * the time of the reference count change. So we need only
13404 		 * locate that buffer, ensure that there will be no rollback
13405 		 * caused by a bitmap dependency, then write the inode buffer.
13406 		 */
13407 retry:
13408 		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
13409 			panic("flush_pagedep_deps: lost inode");
13410 		/*
13411 		 * If the inode still has bitmap dependencies,
13412 		 * push them to disk.
13413 		 */
13414 		if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) {
13415 			bp = inodedep->id_bmsafemap->sm_buf;
13416 			bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT);
13417 			if (bp == NULL)
13418 				goto retry;
13419 			FREE_LOCK(ump);
13420 			if ((error = bwrite(bp)) != 0)
13421 				break;
13422 			ACQUIRE_LOCK(ump);
13423 			if (dap != LIST_FIRST(diraddhdp))
13424 				continue;
13425 		}
13426 		/*
13427 		 * If the inode is still sitting in a buffer waiting
13428 		 * to be written or waiting for the link count to be
13429 		 * adjusted update it here to flush it to disk.
13430 		 */
13431 		if (dap == LIST_FIRST(diraddhdp)) {
13432 			FREE_LOCK(ump);
13433 			error = get_parent_vp(pvp, mp, inum, locked_bp,
13434 			    diraddhdp, &unfinished, &vp);
13435 			if (error != 0)
13436 				break;
13437 			error = ffs_update(vp, 1);
13438 			vput(vp);
13439 			if (error)
13440 				break;
13441 			ACQUIRE_LOCK(ump);
13442 		}
13443 		/*
13444 		 * If we have failed to get rid of all the dependencies
13445 		 * then something is seriously wrong.
13446 		 */
13447 		if (dap == LIST_FIRST(diraddhdp)) {
13448 			inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep);
13449 			panic("flush_pagedep_deps: failed to flush "
13450 			    "inodedep %p ino %ju dap %p",
13451 			    inodedep, (uintmax_t)inum, dap);
13452 		}
13453 	}
13454 	if (error)
13455 		ACQUIRE_LOCK(ump);
13456 	while ((dap = LIST_FIRST(&unfinished)) != NULL) {
13457 		LIST_REMOVE(dap, da_pdlist);
13458 		LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist);
13459 	}
13460 	return (error);
13461 }
13462 
13463 /*
13464  * A large burst of file addition or deletion activity can drive the
13465  * memory load excessively high. First attempt to slow things down
13466  * using the techniques below. If that fails, this routine requests
13467  * the offending operations to fall back to running synchronously
13468  * until the memory load returns to a reasonable level.
13469  */
13470 int
13471 softdep_slowdown(struct vnode *vp)
13472 {
13473 	struct ufsmount *ump;
13474 	int jlow;
13475 	int max_softdeps_hard;
13476 
13477 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
13478 	    ("softdep_slowdown called on non-softdep filesystem"));
13479 	ump = VFSTOUFS(vp->v_mount);
13480 	ACQUIRE_LOCK(ump);
13481 	jlow = 0;
13482 	/*
13483 	 * Check for journal space if needed.
13484 	 */
13485 	if (DOINGSUJ(vp)) {
13486 		if (journal_space(ump, 0) == 0)
13487 			jlow = 1;
13488 	}
13489 	/*
13490 	 * If the system is under its limits and our filesystem is
13491 	 * not responsible for more than our share of the usage and
13492 	 * we are not low on journal space, then no need to slow down.
13493 	 */
13494 	max_softdeps_hard = max_softdeps * 11 / 10;
13495 	if (dep_current[D_DIRREM] < max_softdeps_hard / 2 &&
13496 	    dep_current[D_INODEDEP] < max_softdeps_hard &&
13497 	    dep_current[D_INDIRDEP] < max_softdeps_hard / 1000 &&
13498 	    dep_current[D_FREEBLKS] < max_softdeps_hard && jlow == 0 &&
13499 	    ump->softdep_curdeps[D_DIRREM] <
13500 	    (max_softdeps_hard / 2) / stat_flush_threads &&
13501 	    ump->softdep_curdeps[D_INODEDEP] <
13502 	    max_softdeps_hard / stat_flush_threads &&
13503 	    ump->softdep_curdeps[D_INDIRDEP] <
13504 	    (max_softdeps_hard / 1000) / stat_flush_threads &&
13505 	    ump->softdep_curdeps[D_FREEBLKS] <
13506 	    max_softdeps_hard / stat_flush_threads) {
13507 		FREE_LOCK(ump);
13508   		return (0);
13509 	}
13510 	/*
13511 	 * If the journal is low or our filesystem is over its limit
13512 	 * then speedup the cleanup.
13513 	 */
13514 	if (ump->softdep_curdeps[D_INDIRDEP] <
13515 	    (max_softdeps_hard / 1000) / stat_flush_threads || jlow)
13516 		softdep_speedup(ump);
13517 	stat_sync_limit_hit += 1;
13518 	FREE_LOCK(ump);
13519 	/*
13520 	 * We only slow down the rate at which new dependencies are
13521 	 * generated if we are not using journaling. With journaling,
13522 	 * the cleanup should always be sufficient to keep things
13523 	 * under control.
13524 	 */
13525 	if (DOINGSUJ(vp))
13526 		return (0);
13527 	return (1);
13528 }
13529 
13530 static int
13531 softdep_request_cleanup_filter(struct vnode *vp, void *arg __unused)
13532 {
13533 	return ((vp->v_iflag & VI_OWEINACT) != 0 && vp->v_usecount == 0 &&
13534 	    ((vp->v_vflag & VV_NOSYNC) != 0 || VTOI(vp)->i_effnlink == 0));
13535 }
13536 
13537 static void
13538 softdep_request_cleanup_inactivate(struct mount *mp)
13539 {
13540 	struct vnode *vp, *mvp;
13541 	int error;
13542 
13543 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, softdep_request_cleanup_filter,
13544 	    NULL) {
13545 		vholdl(vp);
13546 		vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK | LK_RETRY);
13547 		VI_LOCK(vp);
13548 		if (IS_UFS(vp) && vp->v_usecount == 0) {
13549 			while ((vp->v_iflag & VI_OWEINACT) != 0) {
13550 				error = vinactive(vp);
13551 				if (error != 0 && error != ERELOOKUP)
13552 					break;
13553 			}
13554 			atomic_add_int(&stat_delayed_inact, 1);
13555 		}
13556 		VOP_UNLOCK(vp);
13557 		vdropl(vp);
13558 	}
13559 }
13560 
13561 /*
13562  * Called by the allocation routines when they are about to fail
13563  * in the hope that we can free up the requested resource (inodes
13564  * or disk space).
13565  *
13566  * First check to see if the work list has anything on it. If it has,
13567  * clean up entries until we successfully free the requested resource.
13568  * Because this process holds inodes locked, we cannot handle any remove
13569  * requests that might block on a locked inode as that could lead to
13570  * deadlock. If the worklist yields none of the requested resource,
13571  * start syncing out vnodes to free up the needed space.
13572  */
13573 int
13574 softdep_request_cleanup(
13575 	struct fs *fs,
13576 	struct vnode *vp,
13577 	struct ucred *cred,
13578 	int resource)
13579 {
13580 	struct ufsmount *ump;
13581 	struct mount *mp;
13582 	long starttime;
13583 	ufs2_daddr_t needed;
13584 	int error, failed_vnode;
13585 
13586 	/*
13587 	 * If we are being called because of a process doing a
13588 	 * copy-on-write, then it is not safe to process any
13589 	 * worklist items as we will recurse into the copyonwrite
13590 	 * routine.  This will result in an incoherent snapshot.
13591 	 * If the vnode that we hold is a snapshot, we must avoid
13592 	 * handling other resources that could cause deadlock.
13593 	 */
13594 	if ((curthread->td_pflags & TDP_COWINPROGRESS) || IS_SNAPSHOT(VTOI(vp)))
13595 		return (0);
13596 
13597 	if (resource == FLUSH_BLOCKS_WAIT)
13598 		stat_cleanup_blkrequests += 1;
13599 	else
13600 		stat_cleanup_inorequests += 1;
13601 
13602 	mp = vp->v_mount;
13603 	ump = VFSTOUFS(mp);
13604 	mtx_assert(UFS_MTX(ump), MA_OWNED);
13605 	UFS_UNLOCK(ump);
13606 	error = ffs_update(vp, 1);
13607 	if (error != 0 || MOUNTEDSOFTDEP(mp) == 0) {
13608 		UFS_LOCK(ump);
13609 		return (0);
13610 	}
13611 	/*
13612 	 * If we are in need of resources, start by cleaning up
13613 	 * any block removals associated with our inode.
13614 	 */
13615 	ACQUIRE_LOCK(ump);
13616 	process_removes(vp);
13617 	process_truncates(vp);
13618 	FREE_LOCK(ump);
13619 	/*
13620 	 * Now clean up at least as many resources as we will need.
13621 	 *
13622 	 * When requested to clean up inodes, the number that are needed
13623 	 * is set by the number of simultaneous writers (mnt_writeopcount)
13624 	 * plus a bit of slop (2) in case some more writers show up while
13625 	 * we are cleaning.
13626 	 *
13627 	 * When requested to free up space, the amount of space that
13628 	 * we need is enough blocks to allocate a full-sized segment
13629 	 * (fs_contigsumsize). The number of such segments that will
13630 	 * be needed is set by the number of simultaneous writers
13631 	 * (mnt_writeopcount) plus a bit of slop (2) in case some more
13632 	 * writers show up while we are cleaning.
13633 	 *
13634 	 * Additionally, if we are unpriviledged and allocating space,
13635 	 * we need to ensure that we clean up enough blocks to get the
13636 	 * needed number of blocks over the threshold of the minimum
13637 	 * number of blocks required to be kept free by the filesystem
13638 	 * (fs_minfree).
13639 	 */
13640 	if (resource == FLUSH_INODES_WAIT) {
13641 		needed = vfs_mount_fetch_counter(vp->v_mount,
13642 		    MNT_COUNT_WRITEOPCOUNT) + 2;
13643 	} else if (resource == FLUSH_BLOCKS_WAIT) {
13644 		needed = (vfs_mount_fetch_counter(vp->v_mount,
13645 		    MNT_COUNT_WRITEOPCOUNT) + 2) * fs->fs_contigsumsize;
13646 		if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE))
13647 			needed += fragstoblks(fs,
13648 			    roundup((fs->fs_dsize * fs->fs_minfree / 100) -
13649 			    fs->fs_cstotal.cs_nffree, fs->fs_frag));
13650 	} else {
13651 		printf("softdep_request_cleanup: Unknown resource type %d\n",
13652 		    resource);
13653 		UFS_LOCK(ump);
13654 		return (0);
13655 	}
13656 	starttime = time_second;
13657 retry:
13658 	if (resource == FLUSH_BLOCKS_WAIT &&
13659 	    fs->fs_cstotal.cs_nbfree <= needed)
13660 		softdep_send_speedup(ump, needed * fs->fs_bsize,
13661 		    BIO_SPEEDUP_TRIM);
13662 	if ((resource == FLUSH_BLOCKS_WAIT && ump->softdep_on_worklist > 0 &&
13663 	    fs->fs_cstotal.cs_nbfree <= needed) ||
13664 	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
13665 	    fs->fs_cstotal.cs_nifree <= needed)) {
13666 		ACQUIRE_LOCK(ump);
13667 		if (ump->softdep_on_worklist > 0 &&
13668 		    process_worklist_item(UFSTOVFS(ump),
13669 		    ump->softdep_on_worklist, LK_NOWAIT) != 0)
13670 			stat_worklist_push += 1;
13671 		FREE_LOCK(ump);
13672 	}
13673 
13674 	/*
13675 	 * Check that there are vnodes pending inactivation.  As they
13676 	 * have been unlinked, inactivating them will free up their
13677 	 * inodes.
13678 	 */
13679 	ACQUIRE_LOCK(ump);
13680 	if (resource == FLUSH_INODES_WAIT &&
13681 	    fs->fs_cstotal.cs_nifree <= needed &&
13682 	    fs->fs_pendinginodes <= needed) {
13683 		if ((ump->um_softdep->sd_flags & FLUSH_DI_ACTIVE) == 0) {
13684 			ump->um_softdep->sd_flags |= FLUSH_DI_ACTIVE;
13685 			FREE_LOCK(ump);
13686 			softdep_request_cleanup_inactivate(mp);
13687 			ACQUIRE_LOCK(ump);
13688 			ump->um_softdep->sd_flags &= ~FLUSH_DI_ACTIVE;
13689 			wakeup(&ump->um_softdep->sd_flags);
13690 		} else {
13691 			while ((ump->um_softdep->sd_flags &
13692 			    FLUSH_DI_ACTIVE) != 0) {
13693 				msleep(&ump->um_softdep->sd_flags,
13694 				    LOCK_PTR(ump), PVM, "ffsvina", hz);
13695 			}
13696 		}
13697 	}
13698 	FREE_LOCK(ump);
13699 
13700 	/*
13701 	 * If we still need resources and there are no more worklist
13702 	 * entries to process to obtain them, we have to start flushing
13703 	 * the dirty vnodes to force the release of additional requests
13704 	 * to the worklist that we can then process to reap addition
13705 	 * resources. We walk the vnodes associated with the mount point
13706 	 * until we get the needed worklist requests that we can reap.
13707 	 *
13708 	 * If there are several threads all needing to clean the same
13709 	 * mount point, only one is allowed to walk the mount list.
13710 	 * When several threads all try to walk the same mount list,
13711 	 * they end up competing with each other and often end up in
13712 	 * livelock. This approach ensures that forward progress is
13713 	 * made at the cost of occational ENOSPC errors being returned
13714 	 * that might otherwise have been avoided.
13715 	 */
13716 	error = 1;
13717 	if ((resource == FLUSH_BLOCKS_WAIT &&
13718 	     fs->fs_cstotal.cs_nbfree <= needed) ||
13719 	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
13720 	     fs->fs_cstotal.cs_nifree <= needed)) {
13721 		ACQUIRE_LOCK(ump);
13722 		if ((ump->um_softdep->sd_flags & FLUSH_RC_ACTIVE) == 0) {
13723 			ump->um_softdep->sd_flags |= FLUSH_RC_ACTIVE;
13724 			FREE_LOCK(ump);
13725 			failed_vnode = softdep_request_cleanup_flush(mp, ump);
13726 			ACQUIRE_LOCK(ump);
13727 			ump->um_softdep->sd_flags &= ~FLUSH_RC_ACTIVE;
13728 			wakeup(&ump->um_softdep->sd_flags);
13729 			FREE_LOCK(ump);
13730 			if (ump->softdep_on_worklist > 0) {
13731 				stat_cleanup_retries += 1;
13732 				if (!failed_vnode)
13733 					goto retry;
13734 			}
13735 		} else {
13736 			while ((ump->um_softdep->sd_flags &
13737 			    FLUSH_RC_ACTIVE) != 0) {
13738 				msleep(&ump->um_softdep->sd_flags,
13739 				    LOCK_PTR(ump), PVM, "ffsrca", hz);
13740 			}
13741 			FREE_LOCK(ump);
13742 			error = 0;
13743 		}
13744 		stat_cleanup_failures += 1;
13745 	}
13746 	if (time_second - starttime > stat_cleanup_high_delay)
13747 		stat_cleanup_high_delay = time_second - starttime;
13748 	UFS_LOCK(ump);
13749 	return (error);
13750 }
13751 
13752 /*
13753  * Scan the vnodes for the specified mount point flushing out any
13754  * vnodes that can be locked without waiting. Finally, try to flush
13755  * the device associated with the mount point if it can be locked
13756  * without waiting.
13757  *
13758  * We return 0 if we were able to lock every vnode in our scan.
13759  * If we had to skip one or more vnodes, we return 1.
13760  */
13761 static int
13762 softdep_request_cleanup_flush(struct mount *mp, struct ufsmount *ump)
13763 {
13764 	struct thread *td;
13765 	struct vnode *lvp, *mvp;
13766 	int failed_vnode;
13767 
13768 	failed_vnode = 0;
13769 	td = curthread;
13770 	MNT_VNODE_FOREACH_ALL(lvp, mp, mvp) {
13771 		if (TAILQ_FIRST(&lvp->v_bufobj.bo_dirty.bv_hd) == 0) {
13772 			VI_UNLOCK(lvp);
13773 			continue;
13774 		}
13775 		if (vget(lvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT) != 0) {
13776 			failed_vnode = 1;
13777 			continue;
13778 		}
13779 		if (lvp->v_vflag & VV_NOSYNC) {	/* unlinked */
13780 			vput(lvp);
13781 			continue;
13782 		}
13783 		(void) ffs_syncvnode(lvp, MNT_NOWAIT, 0);
13784 		vput(lvp);
13785 	}
13786 	lvp = ump->um_devvp;
13787 	if (vn_lock(lvp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
13788 		VOP_FSYNC(lvp, MNT_NOWAIT, td);
13789 		VOP_UNLOCK(lvp);
13790 	}
13791 	return (failed_vnode);
13792 }
13793 
13794 static bool
13795 softdep_excess_items(struct ufsmount *ump, int item)
13796 {
13797 
13798 	KASSERT(item >= 0 && item < D_LAST, ("item %d", item));
13799 	return (dep_current[item] > max_softdeps &&
13800 	    ump->softdep_curdeps[item] > max_softdeps /
13801 	    stat_flush_threads);
13802 }
13803 
13804 static void
13805 schedule_cleanup(struct mount *mp)
13806 {
13807 	struct ufsmount *ump;
13808 	struct thread *td;
13809 
13810 	ump = VFSTOUFS(mp);
13811 	LOCK_OWNED(ump);
13812 	FREE_LOCK(ump);
13813 	td = curthread;
13814 	if ((td->td_pflags & TDP_KTHREAD) != 0 &&
13815 	    (td->td_proc->p_flag2 & P2_AST_SU) == 0) {
13816 		/*
13817 		 * No ast is delivered to kernel threads, so nobody
13818 		 * would deref the mp.  Some kernel threads
13819 		 * explicitly check for AST, e.g. NFS daemon does
13820 		 * this in the serving loop.
13821 		 */
13822 		return;
13823 	}
13824 	if (td->td_su != NULL)
13825 		vfs_rel(td->td_su);
13826 	vfs_ref(mp);
13827 	td->td_su = mp;
13828 	ast_sched(td, TDA_UFS);
13829 }
13830 
13831 static void
13832 softdep_ast_cleanup_proc(struct thread *td, int ast __unused)
13833 {
13834 	struct mount *mp;
13835 	struct ufsmount *ump;
13836 	int error;
13837 	bool req;
13838 
13839 	while ((mp = td->td_su) != NULL) {
13840 		td->td_su = NULL;
13841 		error = vfs_busy(mp, MBF_NOWAIT);
13842 		vfs_rel(mp);
13843 		if (error != 0)
13844 			return;
13845 		if (ffs_own_mount(mp) && MOUNTEDSOFTDEP(mp)) {
13846 			ump = VFSTOUFS(mp);
13847 			for (;;) {
13848 				req = false;
13849 				ACQUIRE_LOCK(ump);
13850 				if (softdep_excess_items(ump, D_INODEDEP)) {
13851 					req = true;
13852 					request_cleanup(mp, FLUSH_INODES);
13853 				}
13854 				if (softdep_excess_items(ump, D_DIRREM)) {
13855 					req = true;
13856 					request_cleanup(mp, FLUSH_BLOCKS);
13857 				}
13858 				FREE_LOCK(ump);
13859 				if (softdep_excess_items(ump, D_NEWBLK) ||
13860 				    softdep_excess_items(ump, D_ALLOCDIRECT) ||
13861 				    softdep_excess_items(ump, D_ALLOCINDIR)) {
13862 					error = vn_start_write(NULL, &mp,
13863 					    V_WAIT);
13864 					if (error == 0) {
13865 						req = true;
13866 						VFS_SYNC(mp, MNT_WAIT);
13867 						vn_finished_write(mp);
13868 					}
13869 				}
13870 				if ((td->td_pflags & TDP_KTHREAD) != 0 || !req)
13871 					break;
13872 			}
13873 		}
13874 		vfs_unbusy(mp);
13875 	}
13876 	if ((mp = td->td_su) != NULL) {
13877 		td->td_su = NULL;
13878 		vfs_rel(mp);
13879 	}
13880 }
13881 
13882 /*
13883  * If memory utilization has gotten too high, deliberately slow things
13884  * down and speed up the I/O processing.
13885  */
13886 static int
13887 request_cleanup(struct mount *mp, int resource)
13888 {
13889 	struct thread *td = curthread;
13890 	struct ufsmount *ump;
13891 
13892 	ump = VFSTOUFS(mp);
13893 	LOCK_OWNED(ump);
13894 	/*
13895 	 * We never hold up the filesystem syncer or buf daemon.
13896 	 */
13897 	if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF))
13898 		return (0);
13899 	/*
13900 	 * First check to see if the work list has gotten backlogged.
13901 	 * If it has, co-opt this process to help clean up two entries.
13902 	 * Because this process may hold inodes locked, we cannot
13903 	 * handle any remove requests that might block on a locked
13904 	 * inode as that could lead to deadlock.  We set TDP_SOFTDEP
13905 	 * to avoid recursively processing the worklist.
13906 	 */
13907 	if (ump->softdep_on_worklist > max_softdeps / 10) {
13908 		td->td_pflags |= TDP_SOFTDEP;
13909 		process_worklist_item(mp, 2, LK_NOWAIT);
13910 		td->td_pflags &= ~TDP_SOFTDEP;
13911 		stat_worklist_push += 2;
13912 		return(1);
13913 	}
13914 	/*
13915 	 * Next, we attempt to speed up the syncer process. If that
13916 	 * is successful, then we allow the process to continue.
13917 	 */
13918 	if (softdep_speedup(ump) &&
13919 	    resource != FLUSH_BLOCKS_WAIT &&
13920 	    resource != FLUSH_INODES_WAIT)
13921 		return(0);
13922 	/*
13923 	 * If we are resource constrained on inode dependencies, try
13924 	 * flushing some dirty inodes. Otherwise, we are constrained
13925 	 * by file deletions, so try accelerating flushes of directories
13926 	 * with removal dependencies. We would like to do the cleanup
13927 	 * here, but we probably hold an inode locked at this point and
13928 	 * that might deadlock against one that we try to clean. So,
13929 	 * the best that we can do is request the syncer daemon to do
13930 	 * the cleanup for us.
13931 	 */
13932 	switch (resource) {
13933 	case FLUSH_INODES:
13934 	case FLUSH_INODES_WAIT:
13935 		ACQUIRE_GBLLOCK(&lk);
13936 		stat_ino_limit_push += 1;
13937 		req_clear_inodedeps += 1;
13938 		FREE_GBLLOCK(&lk);
13939 		stat_countp = &stat_ino_limit_hit;
13940 		break;
13941 
13942 	case FLUSH_BLOCKS:
13943 	case FLUSH_BLOCKS_WAIT:
13944 		ACQUIRE_GBLLOCK(&lk);
13945 		stat_blk_limit_push += 1;
13946 		req_clear_remove += 1;
13947 		FREE_GBLLOCK(&lk);
13948 		stat_countp = &stat_blk_limit_hit;
13949 		break;
13950 
13951 	default:
13952 		panic("request_cleanup: unknown type");
13953 	}
13954 	/*
13955 	 * Hopefully the syncer daemon will catch up and awaken us.
13956 	 * We wait at most tickdelay before proceeding in any case.
13957 	 */
13958 	ACQUIRE_GBLLOCK(&lk);
13959 	FREE_LOCK(ump);
13960 	proc_waiting += 1;
13961 	if (callout_pending(&softdep_callout) == FALSE)
13962 		callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2,
13963 		    pause_timer, 0);
13964 
13965 	if ((td->td_pflags & TDP_KTHREAD) == 0)
13966 		msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0);
13967 	proc_waiting -= 1;
13968 	FREE_GBLLOCK(&lk);
13969 	ACQUIRE_LOCK(ump);
13970 	return (1);
13971 }
13972 
13973 /*
13974  * Awaken processes pausing in request_cleanup and clear proc_waiting
13975  * to indicate that there is no longer a timer running. Pause_timer
13976  * will be called with the global softdep mutex (&lk) locked.
13977  */
13978 static void
13979 pause_timer(void *arg)
13980 {
13981 
13982 	GBLLOCK_OWNED(&lk);
13983 	/*
13984 	 * The callout_ API has acquired mtx and will hold it around this
13985 	 * function call.
13986 	 */
13987 	*stat_countp += proc_waiting;
13988 	wakeup(&proc_waiting);
13989 }
13990 
13991 /*
13992  * If requested, try removing inode or removal dependencies.
13993  */
13994 static void
13995 check_clear_deps(struct mount *mp)
13996 {
13997 	struct ufsmount *ump;
13998 	bool suj_susp;
13999 
14000 	/*
14001 	 * Tell the lower layers that any TRIM or WRITE transactions that have
14002 	 * been delayed for performance reasons should proceed to help alleviate
14003 	 * the shortage faster. The race between checking req_* and the softdep
14004 	 * mutex (lk) is fine since this is an advisory operation that at most
14005 	 * causes deferred work to be done sooner.
14006 	 */
14007 	ump = VFSTOUFS(mp);
14008 	suj_susp = ump->um_softdep->sd_jblocks != NULL &&
14009 	    ump->softdep_jblocks->jb_suspended;
14010 	if (req_clear_remove || req_clear_inodedeps || suj_susp) {
14011 		FREE_LOCK(ump);
14012 		softdep_send_speedup(ump, 0, BIO_SPEEDUP_TRIM | BIO_SPEEDUP_WRITE);
14013 		ACQUIRE_LOCK(ump);
14014 	}
14015 
14016 	/*
14017 	 * If we are suspended, it may be because of our using
14018 	 * too many inodedeps, so help clear them out.
14019 	 */
14020 	if (suj_susp)
14021 		clear_inodedeps(mp);
14022 
14023 	/*
14024 	 * General requests for cleanup of backed up dependencies
14025 	 */
14026 	ACQUIRE_GBLLOCK(&lk);
14027 	if (req_clear_inodedeps) {
14028 		req_clear_inodedeps -= 1;
14029 		FREE_GBLLOCK(&lk);
14030 		clear_inodedeps(mp);
14031 		ACQUIRE_GBLLOCK(&lk);
14032 		wakeup(&proc_waiting);
14033 	}
14034 	if (req_clear_remove) {
14035 		req_clear_remove -= 1;
14036 		FREE_GBLLOCK(&lk);
14037 		clear_remove(mp);
14038 		ACQUIRE_GBLLOCK(&lk);
14039 		wakeup(&proc_waiting);
14040 	}
14041 	FREE_GBLLOCK(&lk);
14042 }
14043 
14044 /*
14045  * Flush out a directory with at least one removal dependency in an effort to
14046  * reduce the number of dirrem, freefile, and freeblks dependency structures.
14047  */
14048 static void
14049 clear_remove(struct mount *mp)
14050 {
14051 	struct pagedep_hashhead *pagedephd;
14052 	struct pagedep *pagedep;
14053 	struct ufsmount *ump;
14054 	struct vnode *vp;
14055 	struct bufobj *bo;
14056 	int error, cnt;
14057 	ino_t ino;
14058 
14059 	ump = VFSTOUFS(mp);
14060 	LOCK_OWNED(ump);
14061 
14062 	for (cnt = 0; cnt <= ump->pagedep_hash_size; cnt++) {
14063 		pagedephd = &ump->pagedep_hashtbl[ump->pagedep_nextclean++];
14064 		if (ump->pagedep_nextclean > ump->pagedep_hash_size)
14065 			ump->pagedep_nextclean = 0;
14066 		LIST_FOREACH(pagedep, pagedephd, pd_hash) {
14067 			if (LIST_EMPTY(&pagedep->pd_dirremhd))
14068 				continue;
14069 			ino = pagedep->pd_ino;
14070 			if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
14071 				continue;
14072 			FREE_LOCK(ump);
14073 
14074 			/*
14075 			 * Let unmount clear deps
14076 			 */
14077 			error = vfs_busy(mp, MBF_NOWAIT);
14078 			if (error != 0)
14079 				goto finish_write;
14080 			error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
14081 			     FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP);
14082 			vfs_unbusy(mp);
14083 			if (error != 0) {
14084 				softdep_error("clear_remove: vget", error);
14085 				goto finish_write;
14086 			}
14087 			MPASS(VTOI(vp)->i_mode != 0);
14088 			if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
14089 				softdep_error("clear_remove: fsync", error);
14090 			bo = &vp->v_bufobj;
14091 			BO_LOCK(bo);
14092 			drain_output(vp);
14093 			BO_UNLOCK(bo);
14094 			vput(vp);
14095 		finish_write:
14096 			vn_finished_write(mp);
14097 			ACQUIRE_LOCK(ump);
14098 			return;
14099 		}
14100 	}
14101 }
14102 
14103 /*
14104  * Clear out a block of dirty inodes in an effort to reduce
14105  * the number of inodedep dependency structures.
14106  */
14107 static void
14108 clear_inodedeps(struct mount *mp)
14109 {
14110 	struct inodedep_hashhead *inodedephd;
14111 	struct inodedep *inodedep;
14112 	struct ufsmount *ump;
14113 	struct vnode *vp;
14114 	struct fs *fs;
14115 	int error, cnt;
14116 	ino_t firstino, lastino, ino;
14117 
14118 	ump = VFSTOUFS(mp);
14119 	fs = ump->um_fs;
14120 	LOCK_OWNED(ump);
14121 	/*
14122 	 * Pick a random inode dependency to be cleared.
14123 	 * We will then gather up all the inodes in its block
14124 	 * that have dependencies and flush them out.
14125 	 */
14126 	for (cnt = 0; cnt <= ump->inodedep_hash_size; cnt++) {
14127 		inodedephd = &ump->inodedep_hashtbl[ump->inodedep_nextclean++];
14128 		if (ump->inodedep_nextclean > ump->inodedep_hash_size)
14129 			ump->inodedep_nextclean = 0;
14130 		if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
14131 			break;
14132 	}
14133 	if (inodedep == NULL)
14134 		return;
14135 	/*
14136 	 * Find the last inode in the block with dependencies.
14137 	 */
14138 	firstino = rounddown2(inodedep->id_ino, INOPB(fs));
14139 	for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
14140 		if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0)
14141 			break;
14142 	/*
14143 	 * Asynchronously push all but the last inode with dependencies.
14144 	 * Synchronously push the last inode with dependencies to ensure
14145 	 * that the inode block gets written to free up the inodedeps.
14146 	 */
14147 	for (ino = firstino; ino <= lastino; ino++) {
14148 		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
14149 			continue;
14150 		if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
14151 			continue;
14152 		FREE_LOCK(ump);
14153 		error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */
14154 		if (error != 0) {
14155 			vn_finished_write(mp);
14156 			ACQUIRE_LOCK(ump);
14157 			return;
14158 		}
14159 		if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
14160 		    FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP)) != 0) {
14161 			softdep_error("clear_inodedeps: vget", error);
14162 			vfs_unbusy(mp);
14163 			vn_finished_write(mp);
14164 			ACQUIRE_LOCK(ump);
14165 			return;
14166 		}
14167 		vfs_unbusy(mp);
14168 		if (VTOI(vp)->i_mode == 0) {
14169 			vgone(vp);
14170 		} else if (ino == lastino) {
14171 			do {
14172 				error = ffs_syncvnode(vp, MNT_WAIT, 0);
14173 			} while (error == ERELOOKUP);
14174 			if (error != 0)
14175 				softdep_error("clear_inodedeps: fsync1", error);
14176 		} else {
14177 			if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
14178 				softdep_error("clear_inodedeps: fsync2", error);
14179 			BO_LOCK(&vp->v_bufobj);
14180 			drain_output(vp);
14181 			BO_UNLOCK(&vp->v_bufobj);
14182 		}
14183 		vput(vp);
14184 		vn_finished_write(mp);
14185 		ACQUIRE_LOCK(ump);
14186 	}
14187 }
14188 
14189 void
14190 softdep_buf_append(struct buf *bp, struct workhead *wkhd)
14191 {
14192 	struct worklist *wk;
14193 	struct ufsmount *ump;
14194 
14195 	if ((wk = LIST_FIRST(wkhd)) == NULL)
14196 		return;
14197 	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
14198 	    ("softdep_buf_append called on non-softdep filesystem"));
14199 	ump = VFSTOUFS(wk->wk_mp);
14200 	ACQUIRE_LOCK(ump);
14201 	while ((wk = LIST_FIRST(wkhd)) != NULL) {
14202 		WORKLIST_REMOVE(wk);
14203 		WORKLIST_INSERT(&bp->b_dep, wk);
14204 	}
14205 	FREE_LOCK(ump);
14206 
14207 }
14208 
14209 void
14210 softdep_inode_append(
14211 	struct inode *ip,
14212 	struct ucred *cred,
14213 	struct workhead *wkhd)
14214 {
14215 	struct buf *bp;
14216 	struct fs *fs;
14217 	struct ufsmount *ump;
14218 	int error;
14219 
14220 	ump = ITOUMP(ip);
14221 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
14222 	    ("softdep_inode_append called on non-softdep filesystem"));
14223 	fs = ump->um_fs;
14224 	error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
14225 	    (int)fs->fs_bsize, cred, &bp);
14226 	if (error) {
14227 		bqrelse(bp);
14228 		softdep_freework(wkhd);
14229 		return;
14230 	}
14231 	softdep_buf_append(bp, wkhd);
14232 	bqrelse(bp);
14233 }
14234 
14235 void
14236 softdep_freework(struct workhead *wkhd)
14237 {
14238 	struct worklist *wk;
14239 	struct ufsmount *ump;
14240 
14241 	if ((wk = LIST_FIRST(wkhd)) == NULL)
14242 		return;
14243 	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
14244 	    ("softdep_freework called on non-softdep filesystem"));
14245 	ump = VFSTOUFS(wk->wk_mp);
14246 	ACQUIRE_LOCK(ump);
14247 	handle_jwork(wkhd);
14248 	FREE_LOCK(ump);
14249 }
14250 
14251 static struct ufsmount *
14252 softdep_bp_to_mp(struct buf *bp)
14253 {
14254 	struct mount *mp;
14255 	struct vnode *vp;
14256 
14257 	if (LIST_EMPTY(&bp->b_dep))
14258 		return (NULL);
14259 	vp = bp->b_vp;
14260 	KASSERT(vp != NULL,
14261 	    ("%s, buffer with dependencies lacks vnode", __func__));
14262 
14263 	/*
14264 	 * The ump mount point is stable after we get a correct
14265 	 * pointer, since bp is locked and this prevents unmount from
14266 	 * proceeding.  But to get to it, we cannot dereference bp->b_dep
14267 	 * head wk_mp, because we do not yet own SU ump lock and
14268 	 * workitem might be freed while dereferenced.
14269 	 */
14270 retry:
14271 	switch (vp->v_type) {
14272 	case VCHR:
14273 		VI_LOCK(vp);
14274 		mp = vp->v_type == VCHR ? vp->v_rdev->si_mountpt : NULL;
14275 		VI_UNLOCK(vp);
14276 		if (mp == NULL)
14277 			goto retry;
14278 		break;
14279 	case VREG:
14280 	case VDIR:
14281 	case VLNK:
14282 	case VFIFO:
14283 	case VSOCK:
14284 		mp = vp->v_mount;
14285 		break;
14286 	case VBLK:
14287 		vn_printf(vp, "softdep_bp_to_mp: unexpected block device\n");
14288 		/* FALLTHROUGH */
14289 	case VNON:
14290 	case VBAD:
14291 	case VMARKER:
14292 		mp = NULL;
14293 		break;
14294 	default:
14295 		vn_printf(vp, "unknown vnode type");
14296 		mp = NULL;
14297 		break;
14298 	}
14299 	return (VFSTOUFS(mp));
14300 }
14301 
14302 /*
14303  * Function to determine if the buffer has outstanding dependencies
14304  * that will cause a roll-back if the buffer is written. If wantcount
14305  * is set, return number of dependencies, otherwise just yes or no.
14306  */
14307 static int
14308 softdep_count_dependencies(struct buf *bp, int wantcount)
14309 {
14310 	struct worklist *wk;
14311 	struct ufsmount *ump;
14312 	struct bmsafemap *bmsafemap;
14313 	struct freework *freework;
14314 	struct inodedep *inodedep;
14315 	struct indirdep *indirdep;
14316 	struct freeblks *freeblks;
14317 	struct allocindir *aip;
14318 	struct pagedep *pagedep;
14319 	struct dirrem *dirrem;
14320 	struct newblk *newblk;
14321 	struct mkdir *mkdir;
14322 	struct diradd *dap;
14323 	int i, retval;
14324 
14325 	ump = softdep_bp_to_mp(bp);
14326 	if (ump == NULL)
14327 		return (0);
14328 	retval = 0;
14329 	ACQUIRE_LOCK(ump);
14330 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
14331 		switch (wk->wk_type) {
14332 		case D_INODEDEP:
14333 			inodedep = WK_INODEDEP(wk);
14334 			if ((inodedep->id_state & DEPCOMPLETE) == 0) {
14335 				/* bitmap allocation dependency */
14336 				retval += 1;
14337 				if (!wantcount)
14338 					goto out;
14339 			}
14340 			if (TAILQ_FIRST(&inodedep->id_inoupdt)) {
14341 				/* direct block pointer dependency */
14342 				retval += 1;
14343 				if (!wantcount)
14344 					goto out;
14345 			}
14346 			if (TAILQ_FIRST(&inodedep->id_extupdt)) {
14347 				/* direct block pointer dependency */
14348 				retval += 1;
14349 				if (!wantcount)
14350 					goto out;
14351 			}
14352 			if (TAILQ_FIRST(&inodedep->id_inoreflst)) {
14353 				/* Add reference dependency. */
14354 				retval += 1;
14355 				if (!wantcount)
14356 					goto out;
14357 			}
14358 			continue;
14359 
14360 		case D_INDIRDEP:
14361 			indirdep = WK_INDIRDEP(wk);
14362 
14363 			TAILQ_FOREACH(freework, &indirdep->ir_trunc, fw_next) {
14364 				/* indirect truncation dependency */
14365 				retval += 1;
14366 				if (!wantcount)
14367 					goto out;
14368 			}
14369 
14370 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
14371 				/* indirect block pointer dependency */
14372 				retval += 1;
14373 				if (!wantcount)
14374 					goto out;
14375 			}
14376 			continue;
14377 
14378 		case D_PAGEDEP:
14379 			pagedep = WK_PAGEDEP(wk);
14380 			LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
14381 				if (LIST_FIRST(&dirrem->dm_jremrefhd)) {
14382 					/* Journal remove ref dependency. */
14383 					retval += 1;
14384 					if (!wantcount)
14385 						goto out;
14386 				}
14387 			}
14388 			for (i = 0; i < DAHASHSZ; i++) {
14389 				LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
14390 					/* directory entry dependency */
14391 					retval += 1;
14392 					if (!wantcount)
14393 						goto out;
14394 				}
14395 			}
14396 			continue;
14397 
14398 		case D_BMSAFEMAP:
14399 			bmsafemap = WK_BMSAFEMAP(wk);
14400 			if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) {
14401 				/* Add reference dependency. */
14402 				retval += 1;
14403 				if (!wantcount)
14404 					goto out;
14405 			}
14406 			if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) {
14407 				/* Allocate block dependency. */
14408 				retval += 1;
14409 				if (!wantcount)
14410 					goto out;
14411 			}
14412 			continue;
14413 
14414 		case D_FREEBLKS:
14415 			freeblks = WK_FREEBLKS(wk);
14416 			if (LIST_FIRST(&freeblks->fb_jblkdephd)) {
14417 				/* Freeblk journal dependency. */
14418 				retval += 1;
14419 				if (!wantcount)
14420 					goto out;
14421 			}
14422 			continue;
14423 
14424 		case D_ALLOCDIRECT:
14425 		case D_ALLOCINDIR:
14426 			newblk = WK_NEWBLK(wk);
14427 			if (newblk->nb_jnewblk) {
14428 				/* Journal allocate dependency. */
14429 				retval += 1;
14430 				if (!wantcount)
14431 					goto out;
14432 			}
14433 			continue;
14434 
14435 		case D_MKDIR:
14436 			mkdir = WK_MKDIR(wk);
14437 			if (mkdir->md_jaddref) {
14438 				/* Journal reference dependency. */
14439 				retval += 1;
14440 				if (!wantcount)
14441 					goto out;
14442 			}
14443 			continue;
14444 
14445 		case D_FREEWORK:
14446 		case D_FREEDEP:
14447 		case D_JSEGDEP:
14448 		case D_JSEG:
14449 		case D_SBDEP:
14450 			/* never a dependency on these blocks */
14451 			continue;
14452 
14453 		default:
14454 			panic("softdep_count_dependencies: Unexpected type %s",
14455 			    TYPENAME(wk->wk_type));
14456 			/* NOTREACHED */
14457 		}
14458 	}
14459 out:
14460 	FREE_LOCK(ump);
14461 	return (retval);
14462 }
14463 
14464 /*
14465  * Acquire exclusive access to a buffer.
14466  * Must be called with a locked mtx parameter.
14467  * Return acquired buffer or NULL on failure.
14468  */
14469 static struct buf *
14470 getdirtybuf(struct buf *bp,
14471 	struct rwlock *lock,
14472 	int waitfor)
14473 {
14474 	int error;
14475 
14476 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) {
14477 		if (waitfor != MNT_WAIT)
14478 			return (NULL);
14479 		error = BUF_LOCK(bp,
14480 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, lock);
14481 		/*
14482 		 * Even if we successfully acquire bp here, we have dropped
14483 		 * lock, which may violates our guarantee.
14484 		 */
14485 		if (error == 0)
14486 			BUF_UNLOCK(bp);
14487 		else if (error != ENOLCK)
14488 			panic("getdirtybuf: inconsistent lock: %d", error);
14489 		rw_wlock(lock);
14490 		return (NULL);
14491 	}
14492 	if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
14493 		if (lock != BO_LOCKPTR(bp->b_bufobj) && waitfor == MNT_WAIT) {
14494 			rw_wunlock(lock);
14495 			BO_LOCK(bp->b_bufobj);
14496 			BUF_UNLOCK(bp);
14497 			if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
14498 				bp->b_vflags |= BV_BKGRDWAIT;
14499 				msleep(&bp->b_xflags, BO_LOCKPTR(bp->b_bufobj),
14500 				       PRIBIO | PDROP, "getbuf", 0);
14501 			} else
14502 				BO_UNLOCK(bp->b_bufobj);
14503 			rw_wlock(lock);
14504 			return (NULL);
14505 		}
14506 		BUF_UNLOCK(bp);
14507 		if (waitfor != MNT_WAIT)
14508 			return (NULL);
14509 #ifdef DEBUG_VFS_LOCKS
14510 		if (bp->b_vp->v_type != VCHR)
14511 			ASSERT_BO_WLOCKED(bp->b_bufobj);
14512 #endif
14513 		bp->b_vflags |= BV_BKGRDWAIT;
14514 		rw_sleep(&bp->b_xflags, lock, PRIBIO, "getbuf", 0);
14515 		return (NULL);
14516 	}
14517 	if ((bp->b_flags & B_DELWRI) == 0) {
14518 		BUF_UNLOCK(bp);
14519 		return (NULL);
14520 	}
14521 	bremfree(bp);
14522 	return (bp);
14523 }
14524 
14525 /*
14526  * Check if it is safe to suspend the file system now.  On entry,
14527  * the vnode interlock for devvp should be held.  Return 0 with
14528  * the mount interlock held if the file system can be suspended now,
14529  * otherwise return EAGAIN with the mount interlock held.
14530  */
14531 int
14532 softdep_check_suspend(struct mount *mp,
14533 		      struct vnode *devvp,
14534 		      int softdep_depcnt,
14535 		      int softdep_accdepcnt,
14536 		      int secondary_writes,
14537 		      int secondary_accwrites)
14538 {
14539 	struct buf *bp;
14540 	struct bufobj *bo;
14541 	struct ufsmount *ump;
14542 	struct inodedep *inodedep;
14543 	struct indirdep *indirdep;
14544 	struct worklist *wk, *nextwk;
14545 	int error, unlinked;
14546 
14547 	bo = &devvp->v_bufobj;
14548 	ASSERT_BO_WLOCKED(bo);
14549 
14550 	/*
14551 	 * If we are not running with soft updates, then we need only
14552 	 * deal with secondary writes as we try to suspend.
14553 	 */
14554 	if (MOUNTEDSOFTDEP(mp) == 0) {
14555 		MNT_ILOCK(mp);
14556 		while (mp->mnt_secondary_writes != 0) {
14557 			BO_UNLOCK(bo);
14558 			msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
14559 			    (PUSER - 1) | PDROP, "secwr", 0);
14560 			BO_LOCK(bo);
14561 			MNT_ILOCK(mp);
14562 		}
14563 
14564 		/*
14565 		 * Reasons for needing more work before suspend:
14566 		 * - Dirty buffers on devvp.
14567 		 * - Secondary writes occurred after start of vnode sync loop
14568 		 */
14569 		error = 0;
14570 		if (bo->bo_numoutput > 0 ||
14571 		    bo->bo_dirty.bv_cnt > 0 ||
14572 		    secondary_writes != 0 ||
14573 		    mp->mnt_secondary_writes != 0 ||
14574 		    secondary_accwrites != mp->mnt_secondary_accwrites)
14575 			error = EAGAIN;
14576 		BO_UNLOCK(bo);
14577 		return (error);
14578 	}
14579 
14580 	/*
14581 	 * If we are running with soft updates, then we need to coordinate
14582 	 * with them as we try to suspend.
14583 	 */
14584 	ump = VFSTOUFS(mp);
14585 	for (;;) {
14586 		if (!TRY_ACQUIRE_LOCK(ump)) {
14587 			BO_UNLOCK(bo);
14588 			ACQUIRE_LOCK(ump);
14589 			FREE_LOCK(ump);
14590 			BO_LOCK(bo);
14591 			continue;
14592 		}
14593 		MNT_ILOCK(mp);
14594 		if (mp->mnt_secondary_writes != 0) {
14595 			FREE_LOCK(ump);
14596 			BO_UNLOCK(bo);
14597 			msleep(&mp->mnt_secondary_writes,
14598 			       MNT_MTX(mp),
14599 			       (PUSER - 1) | PDROP, "secwr", 0);
14600 			BO_LOCK(bo);
14601 			continue;
14602 		}
14603 		break;
14604 	}
14605 
14606 	unlinked = 0;
14607 	if (MOUNTEDSUJ(mp)) {
14608 		for (inodedep = TAILQ_FIRST(&ump->softdep_unlinked);
14609 		    inodedep != NULL;
14610 		    inodedep = TAILQ_NEXT(inodedep, id_unlinked)) {
14611 			if ((inodedep->id_state & (UNLINKED | UNLINKLINKS |
14612 			    UNLINKONLIST)) != (UNLINKED | UNLINKLINKS |
14613 			    UNLINKONLIST) ||
14614 			    !check_inodedep_free(inodedep))
14615 				continue;
14616 			unlinked++;
14617 		}
14618 	}
14619 
14620 	/*
14621 	 * XXX Check for orphaned indirdep dependency structures.
14622 	 *
14623 	 * During forcible unmount after a disk failure there is a
14624 	 * bug that causes one or more indirdep dependency structures
14625 	 * to fail to be deallocated. We check for them here and clean
14626 	 * them up so that the unmount can succeed.
14627 	 */
14628 	if ((ump->um_flags & UM_FSFAIL_CLEANUP) != 0 && ump->softdep_deps > 0 &&
14629 	    ump->softdep_deps == ump->softdep_curdeps[D_INDIRDEP]) {
14630 		LIST_FOREACH_SAFE(wk, &ump->softdep_alldeps[D_INDIRDEP],
14631 		    wk_all, nextwk) {
14632 			indirdep = WK_INDIRDEP(wk);
14633 			if ((indirdep->ir_state & (GOINGAWAY | DEPCOMPLETE)) !=
14634 			    (GOINGAWAY | DEPCOMPLETE) ||
14635 			    !TAILQ_EMPTY(&indirdep->ir_trunc) ||
14636 			    !LIST_EMPTY(&indirdep->ir_completehd) ||
14637 			    !LIST_EMPTY(&indirdep->ir_writehd) ||
14638 			    !LIST_EMPTY(&indirdep->ir_donehd) ||
14639 			    !LIST_EMPTY(&indirdep->ir_deplisthd) ||
14640 			    indirdep->ir_saveddata != NULL ||
14641 			    indirdep->ir_savebp == NULL) {
14642 				printf("%s: skipping orphaned indirdep %p\n",
14643 				    __FUNCTION__, indirdep);
14644 				continue;
14645 			}
14646 			printf("%s: freeing orphaned indirdep %p\n",
14647 			    __FUNCTION__, indirdep);
14648 			bp = indirdep->ir_savebp;
14649 			indirdep->ir_savebp = NULL;
14650 			free_indirdep(indirdep);
14651 			FREE_LOCK(ump);
14652 			brelse(bp);
14653 			while (!TRY_ACQUIRE_LOCK(ump)) {
14654 				BO_UNLOCK(bo);
14655 				ACQUIRE_LOCK(ump);
14656 				FREE_LOCK(ump);
14657 				BO_LOCK(bo);
14658 			}
14659 		}
14660 	}
14661 
14662 	/*
14663 	 * Reasons for needing more work before suspend:
14664 	 * - Dirty buffers on devvp.
14665 	 * - Dependency structures still exist
14666 	 * - Softdep activity occurred after start of vnode sync loop
14667 	 * - Secondary writes occurred after start of vnode sync loop
14668 	 */
14669 	error = 0;
14670 	if (bo->bo_numoutput > 0 ||
14671 	    bo->bo_dirty.bv_cnt > 0 ||
14672 	    softdep_depcnt != unlinked ||
14673 	    ump->softdep_deps != unlinked ||
14674 	    softdep_accdepcnt != ump->softdep_accdeps ||
14675 	    secondary_writes != 0 ||
14676 	    mp->mnt_secondary_writes != 0 ||
14677 	    secondary_accwrites != mp->mnt_secondary_accwrites)
14678 		error = EAGAIN;
14679 	FREE_LOCK(ump);
14680 	BO_UNLOCK(bo);
14681 	return (error);
14682 }
14683 
14684 /*
14685  * Get the number of dependency structures for the file system, both
14686  * the current number and the total number allocated.  These will
14687  * later be used to detect that softdep processing has occurred.
14688  */
14689 void
14690 softdep_get_depcounts(struct mount *mp,
14691 		      int *softdep_depsp,
14692 		      int *softdep_accdepsp)
14693 {
14694 	struct ufsmount *ump;
14695 
14696 	if (MOUNTEDSOFTDEP(mp) == 0) {
14697 		*softdep_depsp = 0;
14698 		*softdep_accdepsp = 0;
14699 		return;
14700 	}
14701 	ump = VFSTOUFS(mp);
14702 	ACQUIRE_LOCK(ump);
14703 	*softdep_depsp = ump->softdep_deps;
14704 	*softdep_accdepsp = ump->softdep_accdeps;
14705 	FREE_LOCK(ump);
14706 }
14707 
14708 /*
14709  * Wait for pending output on a vnode to complete.
14710  */
14711 static void
14712 drain_output(struct vnode *vp)
14713 {
14714 
14715 	ASSERT_VOP_LOCKED(vp, "drain_output");
14716 	(void)bufobj_wwait(&vp->v_bufobj, 0, 0);
14717 }
14718 
14719 /*
14720  * Called whenever a buffer that is being invalidated or reallocated
14721  * contains dependencies. This should only happen if an I/O error has
14722  * occurred. The routine is called with the buffer locked.
14723  */
14724 static void
14725 softdep_deallocate_dependencies(struct buf *bp)
14726 {
14727 
14728 	if ((bp->b_ioflags & BIO_ERROR) == 0)
14729 		panic("softdep_deallocate_dependencies: dangling deps");
14730 	if (bp->b_vp != NULL && bp->b_vp->v_mount != NULL)
14731 		softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error);
14732 	else
14733 		printf("softdep_deallocate_dependencies: "
14734 		    "got error %d while accessing filesystem\n", bp->b_error);
14735 	if (bp->b_error != ENXIO)
14736 		panic("softdep_deallocate_dependencies: unrecovered I/O error");
14737 }
14738 
14739 /*
14740  * Function to handle asynchronous write errors in the filesystem.
14741  */
14742 static void
14743 softdep_error(char *func, int error)
14744 {
14745 
14746 	/* XXX should do something better! */
14747 	printf("%s: got error %d while accessing filesystem\n", func, error);
14748 }
14749 
14750 #ifdef DDB
14751 
14752 /* exported to ffs_vfsops.c */
14753 extern void db_print_ffs(struct ufsmount *ump);
14754 void
14755 db_print_ffs(struct ufsmount *ump)
14756 {
14757 	db_printf("mp %p (%s) devvp %p\n", ump->um_mountp,
14758 	    ump->um_mountp->mnt_stat.f_mntonname, ump->um_devvp);
14759 	db_printf("    fs %p ", ump->um_fs);
14760 
14761 	if (ump->um_softdep != NULL) {
14762 		db_printf("su_wl %d su_deps %d su_req %d\n",
14763 		    ump->softdep_on_worklist, ump->softdep_deps,
14764 		    ump->softdep_req);
14765 	} else {
14766 		db_printf("su disabled\n");
14767 	}
14768 }
14769 
14770 static void
14771 worklist_print(struct worklist *wk, int verbose)
14772 {
14773 
14774 	if (!verbose) {
14775 		db_printf("%s: %p state 0x%b\n", TYPENAME(wk->wk_type), wk,
14776 		    (u_int)wk->wk_state, PRINT_SOFTDEP_FLAGS);
14777 		return;
14778 	}
14779 	db_printf("worklist: %p type %s state 0x%b next %p\n    ", wk,
14780 	    TYPENAME(wk->wk_type), (u_int)wk->wk_state, PRINT_SOFTDEP_FLAGS,
14781 	    LIST_NEXT(wk, wk_list));
14782 	db_print_ffs(VFSTOUFS(wk->wk_mp));
14783 }
14784 
14785 static void
14786 inodedep_print(struct inodedep *inodedep, int verbose)
14787 {
14788 
14789 	worklist_print(&inodedep->id_list, 0);
14790 	db_printf("    fs %p ino %jd inoblk %jd delta %jd nlink %jd\n",
14791 	    inodedep->id_fs,
14792 	    (intmax_t)inodedep->id_ino,
14793 	    (intmax_t)fsbtodb(inodedep->id_fs,
14794 	        ino_to_fsba(inodedep->id_fs, inodedep->id_ino)),
14795 	    (intmax_t)inodedep->id_nlinkdelta,
14796 	    (intmax_t)inodedep->id_savednlink);
14797 
14798 	if (verbose == 0)
14799 		return;
14800 
14801 	db_printf("    bmsafemap %p, mkdiradd %p, inoreflst %p\n",
14802 	    inodedep->id_bmsafemap,
14803 	    inodedep->id_mkdiradd,
14804 	    TAILQ_FIRST(&inodedep->id_inoreflst));
14805 	db_printf("    dirremhd %p, pendinghd %p, bufwait %p\n",
14806 	    LIST_FIRST(&inodedep->id_dirremhd),
14807 	    LIST_FIRST(&inodedep->id_pendinghd),
14808 	    LIST_FIRST(&inodedep->id_bufwait));
14809 	db_printf("    inowait %p, inoupdt %p, newinoupdt %p\n",
14810 	    LIST_FIRST(&inodedep->id_inowait),
14811 	    TAILQ_FIRST(&inodedep->id_inoupdt),
14812 	    TAILQ_FIRST(&inodedep->id_newinoupdt));
14813 	db_printf("    extupdt %p, newextupdt %p, freeblklst %p\n",
14814 	    TAILQ_FIRST(&inodedep->id_extupdt),
14815 	    TAILQ_FIRST(&inodedep->id_newextupdt),
14816 	    TAILQ_FIRST(&inodedep->id_freeblklst));
14817 	db_printf("    saveino %p, savedsize %jd, savedextsize %jd\n",
14818 	    inodedep->id_savedino1,
14819 	    (intmax_t)inodedep->id_savedsize,
14820 	    (intmax_t)inodedep->id_savedextsize);
14821 }
14822 
14823 static void
14824 newblk_print(struct newblk *nbp)
14825 {
14826 
14827 	worklist_print(&nbp->nb_list, 0);
14828 	db_printf("    newblkno %jd\n", (intmax_t)nbp->nb_newblkno);
14829 	db_printf("    jnewblk %p, bmsafemap %p, freefrag %p\n",
14830 	    &nbp->nb_jnewblk,
14831 	    &nbp->nb_bmsafemap,
14832 	    &nbp->nb_freefrag);
14833 	db_printf("    indirdeps %p, newdirblk %p, jwork %p\n",
14834 	    LIST_FIRST(&nbp->nb_indirdeps),
14835 	    LIST_FIRST(&nbp->nb_newdirblk),
14836 	    LIST_FIRST(&nbp->nb_jwork));
14837 }
14838 
14839 static void
14840 allocdirect_print(struct allocdirect *adp)
14841 {
14842 
14843 	newblk_print(&adp->ad_block);
14844 	db_printf("    oldblkno %jd, oldsize %ld, newsize %ld\n",
14845 	    adp->ad_oldblkno, adp->ad_oldsize, adp->ad_newsize);
14846 	db_printf("    offset %d, inodedep %p\n",
14847 	    adp->ad_offset, adp->ad_inodedep);
14848 }
14849 
14850 static void
14851 allocindir_print(struct allocindir *aip)
14852 {
14853 
14854 	newblk_print(&aip->ai_block);
14855 	db_printf("    oldblkno %jd, lbn %jd\n",
14856 	    (intmax_t)aip->ai_oldblkno, (intmax_t)aip->ai_lbn);
14857 	db_printf("    offset %d, indirdep %p\n",
14858 	    aip->ai_offset, aip->ai_indirdep);
14859 }
14860 
14861 static void
14862 mkdir_print(struct mkdir *mkdir)
14863 {
14864 
14865 	worklist_print(&mkdir->md_list, 0);
14866 	db_printf("    diradd %p, jaddref %p, buf %p\n",
14867 		mkdir->md_diradd, mkdir->md_jaddref, mkdir->md_buf);
14868 }
14869 
14870 DB_SHOW_COMMAND(sd_inodedep, db_show_sd_inodedep)
14871 {
14872 
14873 	if (have_addr == 0) {
14874 		db_printf("inodedep address required\n");
14875 		return;
14876 	}
14877 	inodedep_print((struct inodedep*)addr, 1);
14878 }
14879 
14880 DB_SHOW_COMMAND(sd_allinodedeps, db_show_sd_allinodedeps)
14881 {
14882 	struct inodedep_hashhead *inodedephd;
14883 	struct inodedep *inodedep;
14884 	struct ufsmount *ump;
14885 	int cnt;
14886 
14887 	if (have_addr == 0) {
14888 		db_printf("ufsmount address required\n");
14889 		return;
14890 	}
14891 	ump = (struct ufsmount *)addr;
14892 	for (cnt = 0; cnt < ump->inodedep_hash_size; cnt++) {
14893 		inodedephd = &ump->inodedep_hashtbl[cnt];
14894 		LIST_FOREACH(inodedep, inodedephd, id_hash) {
14895 			inodedep_print(inodedep, 0);
14896 		}
14897 	}
14898 }
14899 
14900 DB_SHOW_COMMAND(sd_worklist, db_show_sd_worklist)
14901 {
14902 
14903 	if (have_addr == 0) {
14904 		db_printf("worklist address required\n");
14905 		return;
14906 	}
14907 	worklist_print((struct worklist *)addr, 1);
14908 }
14909 
14910 DB_SHOW_COMMAND(sd_workhead, db_show_sd_workhead)
14911 {
14912 	struct worklist *wk;
14913 	struct workhead *wkhd;
14914 
14915 	if (have_addr == 0) {
14916 		db_printf("worklist address required "
14917 		    "(for example value in bp->b_dep)\n");
14918 		return;
14919 	}
14920 	/*
14921 	 * We often do not have the address of the worklist head but
14922 	 * instead a pointer to its first entry (e.g., we have the
14923 	 * contents of bp->b_dep rather than &bp->b_dep). But the back
14924 	 * pointer of bp->b_dep will point at the head of the list, so
14925 	 * we cheat and use that instead. If we are in the middle of
14926 	 * a list we will still get the same result, so nothing
14927 	 * unexpected will result.
14928 	 */
14929 	wk = (struct worklist *)addr;
14930 	if (wk == NULL)
14931 		return;
14932 	wkhd = (struct workhead *)wk->wk_list.le_prev;
14933 	LIST_FOREACH(wk, wkhd, wk_list) {
14934 		switch(wk->wk_type) {
14935 		case D_INODEDEP:
14936 			inodedep_print(WK_INODEDEP(wk), 0);
14937 			continue;
14938 		case D_ALLOCDIRECT:
14939 			allocdirect_print(WK_ALLOCDIRECT(wk));
14940 			continue;
14941 		case D_ALLOCINDIR:
14942 			allocindir_print(WK_ALLOCINDIR(wk));
14943 			continue;
14944 		case D_MKDIR:
14945 			mkdir_print(WK_MKDIR(wk));
14946 			continue;
14947 		default:
14948 			worklist_print(wk, 0);
14949 			continue;
14950 		}
14951 	}
14952 }
14953 
14954 DB_SHOW_COMMAND(sd_mkdir, db_show_sd_mkdir)
14955 {
14956 	if (have_addr == 0) {
14957 		db_printf("mkdir address required\n");
14958 		return;
14959 	}
14960 	mkdir_print((struct mkdir *)addr);
14961 }
14962 
14963 DB_SHOW_COMMAND(sd_mkdir_list, db_show_sd_mkdir_list)
14964 {
14965 	struct mkdirlist *mkdirlisthd;
14966 	struct mkdir *mkdir;
14967 
14968 	if (have_addr == 0) {
14969 		db_printf("mkdir listhead address required\n");
14970 		return;
14971 	}
14972 	mkdirlisthd = (struct mkdirlist *)addr;
14973 	LIST_FOREACH(mkdir, mkdirlisthd, md_mkdirs) {
14974 		mkdir_print(mkdir);
14975 		if (mkdir->md_diradd != NULL) {
14976 			db_printf("    ");
14977 			worklist_print(&mkdir->md_diradd->da_list, 0);
14978 		}
14979 		if (mkdir->md_jaddref != NULL) {
14980 			db_printf("    ");
14981 			worklist_print(&mkdir->md_jaddref->ja_list, 0);
14982 		}
14983 	}
14984 }
14985 
14986 DB_SHOW_COMMAND(sd_allocdirect, db_show_sd_allocdirect)
14987 {
14988 	if (have_addr == 0) {
14989 		db_printf("allocdirect address required\n");
14990 		return;
14991 	}
14992 	allocdirect_print((struct allocdirect *)addr);
14993 }
14994 
14995 DB_SHOW_COMMAND(sd_allocindir, db_show_sd_allocindir)
14996 {
14997 	if (have_addr == 0) {
14998 		db_printf("allocindir address required\n");
14999 		return;
15000 	}
15001 	allocindir_print((struct allocindir *)addr);
15002 }
15003 
15004 #endif /* DDB */
15005 
15006 #endif /* SOFTUPDATES */
15007