xref: /freebsd/sys/ufs/ffs/ffs_softdep.c (revision 357378bbdedf24ce2b90e9bd831af4a9db3ec70a)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright 1998, 2000 Marshall Kirk McKusick.
5  * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org>
6  * All rights reserved.
7  *
8  * The soft updates code is derived from the appendix of a University
9  * of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
10  * "Soft Updates: A Solution to the Metadata Update Problem in File
11  * Systems", CSE-TR-254-95, August 1995).
12  *
13  * Further information about soft updates can be obtained from:
14  *
15  *	Marshall Kirk McKusick		http://www.mckusick.com/softdep/
16  *	1614 Oxford Street		mckusick@mckusick.com
17  *	Berkeley, CA 94709-1608		+1-510-843-9542
18  *	USA
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  * 1. Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  * 2. Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in the
28  *    documentation and/or other materials provided with the distribution.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
31  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
32  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
33  * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
34  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
35  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
36  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
37  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
38  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
39  * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40  */
41 
42 #include <sys/cdefs.h>
43 #include "opt_ffs.h"
44 #include "opt_quota.h"
45 #include "opt_ddb.h"
46 
47 #include <sys/param.h>
48 #include <sys/kernel.h>
49 #include <sys/systm.h>
50 #include <sys/bio.h>
51 #include <sys/buf.h>
52 #include <sys/kdb.h>
53 #include <sys/kthread.h>
54 #include <sys/ktr.h>
55 #include <sys/limits.h>
56 #include <sys/lock.h>
57 #include <sys/malloc.h>
58 #include <sys/mount.h>
59 #include <sys/mutex.h>
60 #include <sys/namei.h>
61 #include <sys/priv.h>
62 #include <sys/proc.h>
63 #include <sys/racct.h>
64 #include <sys/rwlock.h>
65 #include <sys/stat.h>
66 #include <sys/sysctl.h>
67 #include <sys/syslog.h>
68 #include <sys/vnode.h>
69 #include <sys/conf.h>
70 
71 #include <ufs/ufs/dir.h>
72 #include <ufs/ufs/extattr.h>
73 #include <ufs/ufs/quota.h>
74 #include <ufs/ufs/inode.h>
75 #include <ufs/ufs/ufsmount.h>
76 #include <ufs/ffs/fs.h>
77 #include <ufs/ffs/softdep.h>
78 #include <ufs/ffs/ffs_extern.h>
79 #include <ufs/ufs/ufs_extern.h>
80 
81 #include <vm/vm.h>
82 #include <vm/vm_extern.h>
83 #include <vm/vm_object.h>
84 
85 #include <geom/geom.h>
86 #include <geom/geom_vfs.h>
87 
88 #include <ddb/ddb.h>
89 
90 #define	KTR_SUJ	0	/* Define to KTR_SPARE. */
91 
92 #ifndef SOFTUPDATES
93 
94 int
95 softdep_flushfiles(struct mount *oldmnt,
96 	int flags,
97 	struct thread *td)
98 {
99 
100 	panic("softdep_flushfiles called");
101 }
102 
103 int
104 softdep_mount(struct vnode *devvp,
105 	struct mount *mp,
106 	struct fs *fs,
107 	struct ucred *cred)
108 {
109 
110 	return (0);
111 }
112 
113 void
114 softdep_initialize(void)
115 {
116 
117 	return;
118 }
119 
120 void
121 softdep_uninitialize(void)
122 {
123 
124 	return;
125 }
126 
127 void
128 softdep_unmount(struct mount *mp)
129 {
130 
131 	panic("softdep_unmount called");
132 }
133 
134 void
135 softdep_setup_sbupdate(struct ufsmount *ump,
136 	struct fs *fs,
137 	struct buf *bp)
138 {
139 
140 	panic("softdep_setup_sbupdate called");
141 }
142 
143 void
144 softdep_setup_inomapdep(struct buf *bp,
145 	struct inode *ip,
146 	ino_t newinum,
147 	int mode)
148 {
149 
150 	panic("softdep_setup_inomapdep called");
151 }
152 
153 void
154 softdep_setup_blkmapdep(struct buf *bp,
155 	struct mount *mp,
156 	ufs2_daddr_t newblkno,
157 	int frags,
158 	int oldfrags)
159 {
160 
161 	panic("softdep_setup_blkmapdep called");
162 }
163 
164 void
165 softdep_setup_allocdirect(struct inode *ip,
166 	ufs_lbn_t lbn,
167 	ufs2_daddr_t newblkno,
168 	ufs2_daddr_t oldblkno,
169 	long newsize,
170 	long oldsize,
171 	struct buf *bp)
172 {
173 
174 	panic("softdep_setup_allocdirect called");
175 }
176 
177 void
178 softdep_setup_allocext(struct inode *ip,
179 	ufs_lbn_t lbn,
180 	ufs2_daddr_t newblkno,
181 	ufs2_daddr_t oldblkno,
182 	long newsize,
183 	long oldsize,
184 	struct buf *bp)
185 {
186 
187 	panic("softdep_setup_allocext called");
188 }
189 
190 void
191 softdep_setup_allocindir_page(struct inode *ip,
192 	ufs_lbn_t lbn,
193 	struct buf *bp,
194 	int ptrno,
195 	ufs2_daddr_t newblkno,
196 	ufs2_daddr_t oldblkno,
197 	struct buf *nbp)
198 {
199 
200 	panic("softdep_setup_allocindir_page called");
201 }
202 
203 void
204 softdep_setup_allocindir_meta(struct buf *nbp,
205 	struct inode *ip,
206 	struct buf *bp,
207 	int ptrno,
208 	ufs2_daddr_t newblkno)
209 {
210 
211 	panic("softdep_setup_allocindir_meta called");
212 }
213 
214 void
215 softdep_journal_freeblocks(struct inode *ip,
216 	struct ucred *cred,
217 	off_t length,
218 	int flags)
219 {
220 
221 	panic("softdep_journal_freeblocks called");
222 }
223 
224 void
225 softdep_journal_fsync(struct inode *ip)
226 {
227 
228 	panic("softdep_journal_fsync called");
229 }
230 
231 void
232 softdep_setup_freeblocks(struct inode *ip,
233 	off_t length,
234 	int flags)
235 {
236 
237 	panic("softdep_setup_freeblocks called");
238 }
239 
240 void
241 softdep_freefile(struct vnode *pvp,
242 		ino_t ino,
243 		int mode)
244 {
245 
246 	panic("softdep_freefile called");
247 }
248 
249 int
250 softdep_setup_directory_add(struct buf *bp,
251 	struct inode *dp,
252 	off_t diroffset,
253 	ino_t newinum,
254 	struct buf *newdirbp,
255 	int isnewblk)
256 {
257 
258 	panic("softdep_setup_directory_add called");
259 }
260 
261 void
262 softdep_change_directoryentry_offset(struct buf *bp,
263 	struct inode *dp,
264 	caddr_t base,
265 	caddr_t oldloc,
266 	caddr_t newloc,
267 	int entrysize)
268 {
269 
270 	panic("softdep_change_directoryentry_offset called");
271 }
272 
273 void
274 softdep_setup_remove(struct buf *bp,
275 	struct inode *dp,
276 	struct inode *ip,
277 	int isrmdir)
278 {
279 
280 	panic("softdep_setup_remove called");
281 }
282 
283 void
284 softdep_setup_directory_change(struct buf *bp,
285 	struct inode *dp,
286 	struct inode *ip,
287 	ino_t newinum,
288 	int isrmdir)
289 {
290 
291 	panic("softdep_setup_directory_change called");
292 }
293 
294 void
295 softdep_setup_blkfree(struct mount *mp,
296 	struct buf *bp,
297 	ufs2_daddr_t blkno,
298 	int frags,
299 	struct workhead *wkhd,
300 	bool doingrecovery)
301 {
302 
303 	panic("%s called", __FUNCTION__);
304 }
305 
306 void
307 softdep_setup_inofree(struct mount *mp,
308 	struct buf *bp,
309 	ino_t ino,
310 	struct workhead *wkhd,
311 	bool doingrecovery)
312 {
313 
314 	panic("%s called", __FUNCTION__);
315 }
316 
317 void
318 softdep_setup_unlink(struct inode *dp, struct inode *ip)
319 {
320 
321 	panic("%s called", __FUNCTION__);
322 }
323 
324 void
325 softdep_setup_link(struct inode *dp, struct inode *ip)
326 {
327 
328 	panic("%s called", __FUNCTION__);
329 }
330 
331 void
332 softdep_revert_link(struct inode *dp, struct inode *ip)
333 {
334 
335 	panic("%s called", __FUNCTION__);
336 }
337 
338 void
339 softdep_setup_rmdir(struct inode *dp, struct inode *ip)
340 {
341 
342 	panic("%s called", __FUNCTION__);
343 }
344 
345 void
346 softdep_revert_rmdir(struct inode *dp, struct inode *ip)
347 {
348 
349 	panic("%s called", __FUNCTION__);
350 }
351 
352 void
353 softdep_setup_create(struct inode *dp, struct inode *ip)
354 {
355 
356 	panic("%s called", __FUNCTION__);
357 }
358 
359 void
360 softdep_revert_create(struct inode *dp, struct inode *ip)
361 {
362 
363 	panic("%s called", __FUNCTION__);
364 }
365 
366 void
367 softdep_setup_mkdir(struct inode *dp, struct inode *ip)
368 {
369 
370 	panic("%s called", __FUNCTION__);
371 }
372 
373 void
374 softdep_revert_mkdir(struct inode *dp, struct inode *ip)
375 {
376 
377 	panic("%s called", __FUNCTION__);
378 }
379 
380 void
381 softdep_setup_dotdot_link(struct inode *dp, struct inode *ip)
382 {
383 
384 	panic("%s called", __FUNCTION__);
385 }
386 
387 int
388 softdep_prealloc(struct vnode *vp, int waitok)
389 {
390 
391 	panic("%s called", __FUNCTION__);
392 }
393 
394 int
395 softdep_journal_lookup(struct mount *mp, struct vnode **vpp)
396 {
397 
398 	return (ENOENT);
399 }
400 
401 void
402 softdep_change_linkcnt(struct inode *ip)
403 {
404 
405 	panic("softdep_change_linkcnt called");
406 }
407 
408 void
409 softdep_load_inodeblock(struct inode *ip)
410 {
411 
412 	panic("softdep_load_inodeblock called");
413 }
414 
415 void
416 softdep_update_inodeblock(struct inode *ip,
417 	struct buf *bp,
418 	int waitfor)
419 {
420 
421 	panic("softdep_update_inodeblock called");
422 }
423 
424 int
425 softdep_fsync(struct vnode *vp)	/* the "in_core" copy of the inode */
426 {
427 
428 	return (0);
429 }
430 
431 void
432 softdep_fsync_mountdev(struct vnode *vp)
433 {
434 
435 	return;
436 }
437 
438 int
439 softdep_flushworklist(struct mount *oldmnt,
440 	int *countp,
441 	struct thread *td)
442 {
443 
444 	*countp = 0;
445 	return (0);
446 }
447 
448 int
449 softdep_sync_metadata(struct vnode *vp)
450 {
451 
452 	panic("softdep_sync_metadata called");
453 }
454 
455 int
456 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
457 {
458 
459 	panic("softdep_sync_buf called");
460 }
461 
462 int
463 softdep_slowdown(struct vnode *vp)
464 {
465 
466 	panic("softdep_slowdown called");
467 }
468 
469 int
470 softdep_request_cleanup(struct fs *fs,
471 	struct vnode *vp,
472 	struct ucred *cred,
473 	int resource)
474 {
475 
476 	return (0);
477 }
478 
479 int
480 softdep_check_suspend(struct mount *mp,
481 		      struct vnode *devvp,
482 		      int softdep_depcnt,
483 		      int softdep_accdepcnt,
484 		      int secondary_writes,
485 		      int secondary_accwrites)
486 {
487 	struct bufobj *bo;
488 	int error;
489 
490 	(void) softdep_depcnt,
491 	(void) softdep_accdepcnt;
492 
493 	bo = &devvp->v_bufobj;
494 	ASSERT_BO_WLOCKED(bo);
495 
496 	MNT_ILOCK(mp);
497 	while (mp->mnt_secondary_writes != 0) {
498 		BO_UNLOCK(bo);
499 		msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
500 		    (PUSER - 1) | PDROP, "secwr", 0);
501 		BO_LOCK(bo);
502 		MNT_ILOCK(mp);
503 	}
504 
505 	/*
506 	 * Reasons for needing more work before suspend:
507 	 * - Dirty buffers on devvp.
508 	 * - Secondary writes occurred after start of vnode sync loop
509 	 */
510 	error = 0;
511 	if (bo->bo_numoutput > 0 ||
512 	    bo->bo_dirty.bv_cnt > 0 ||
513 	    secondary_writes != 0 ||
514 	    mp->mnt_secondary_writes != 0 ||
515 	    secondary_accwrites != mp->mnt_secondary_accwrites)
516 		error = EAGAIN;
517 	BO_UNLOCK(bo);
518 	return (error);
519 }
520 
521 void
522 softdep_get_depcounts(struct mount *mp,
523 		      int *softdepactivep,
524 		      int *softdepactiveaccp)
525 {
526 	(void) mp;
527 	*softdepactivep = 0;
528 	*softdepactiveaccp = 0;
529 }
530 
531 void
532 softdep_buf_append(struct buf *bp, struct workhead *wkhd)
533 {
534 
535 	panic("softdep_buf_appendwork called");
536 }
537 
538 void
539 softdep_inode_append(struct inode *ip,
540 	struct ucred *cred,
541 	struct workhead *wkhd)
542 {
543 
544 	panic("softdep_inode_appendwork called");
545 }
546 
547 void
548 softdep_freework(struct workhead *wkhd)
549 {
550 
551 	panic("softdep_freework called");
552 }
553 
554 int
555 softdep_prerename(struct vnode *fdvp,
556 	struct vnode *fvp,
557 	struct vnode *tdvp,
558 	struct vnode *tvp)
559 {
560 
561 	panic("softdep_prerename called");
562 }
563 
564 int
565 softdep_prelink(struct vnode *dvp,
566 	struct vnode *vp,
567 	struct componentname *cnp)
568 {
569 
570 	panic("softdep_prelink called");
571 }
572 
573 #else
574 
575 FEATURE(softupdates, "FFS soft-updates support");
576 
577 static SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
578     "soft updates stats");
579 static SYSCTL_NODE(_debug_softdep, OID_AUTO, total,
580     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
581     "total dependencies allocated");
582 static SYSCTL_NODE(_debug_softdep, OID_AUTO, highuse,
583     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
584     "high use dependencies allocated");
585 static SYSCTL_NODE(_debug_softdep, OID_AUTO, current,
586     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
587     "current dependencies allocated");
588 static SYSCTL_NODE(_debug_softdep, OID_AUTO, write,
589     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
590     "current dependencies written");
591 
592 unsigned long dep_current[D_LAST + 1];
593 unsigned long dep_highuse[D_LAST + 1];
594 unsigned long dep_total[D_LAST + 1];
595 unsigned long dep_write[D_LAST + 1];
596 
597 #define	SOFTDEP_TYPE(type, str, long)					\
598     static MALLOC_DEFINE(M_ ## type, #str, long);			\
599     SYSCTL_ULONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD,	\
600 	&dep_total[D_ ## type], 0, "");					\
601     SYSCTL_ULONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD, 	\
602 	&dep_current[D_ ## type], 0, "");				\
603     SYSCTL_ULONG(_debug_softdep_highuse, OID_AUTO, str, CTLFLAG_RD, 	\
604 	&dep_highuse[D_ ## type], 0, "");				\
605     SYSCTL_ULONG(_debug_softdep_write, OID_AUTO, str, CTLFLAG_RD, 	\
606 	&dep_write[D_ ## type], 0, "");
607 
608 SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies");
609 SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies");
610 SOFTDEP_TYPE(BMSAFEMAP, bmsafemap,
611     "Block or frag allocated from cyl group map");
612 SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency");
613 SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode");
614 SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies");
615 SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block");
616 SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode");
617 SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode");
618 SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated");
619 SOFTDEP_TYPE(DIRADD, diradd, "New directory entry");
620 SOFTDEP_TYPE(MKDIR, mkdir, "New directory");
621 SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted");
622 SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block");
623 SOFTDEP_TYPE(FREEWORK, freework, "free an inode block");
624 SOFTDEP_TYPE(FREEDEP, freedep, "track a block free");
625 SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add");
626 SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove");
627 SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move");
628 SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block");
629 SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block");
630 SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag");
631 SOFTDEP_TYPE(JSEG, jseg, "Journal segment");
632 SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete");
633 SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency");
634 SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation");
635 SOFTDEP_TYPE(JFSYNC, jfsync, "Journal fsync complete");
636 
637 static MALLOC_DEFINE(M_SENTINEL, "sentinel", "Worklist sentinel");
638 
639 static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes");
640 static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations");
641 static MALLOC_DEFINE(M_MOUNTDATA, "softdep", "Softdep per-mount data");
642 
643 #define M_SOFTDEP_FLAGS	(M_WAITOK)
644 
645 /*
646  * translate from workitem type to memory type
647  * MUST match the defines above, such that memtype[D_XXX] == M_XXX
648  */
649 static struct malloc_type *memtype[] = {
650 	NULL,
651 	M_PAGEDEP,
652 	M_INODEDEP,
653 	M_BMSAFEMAP,
654 	M_NEWBLK,
655 	M_ALLOCDIRECT,
656 	M_INDIRDEP,
657 	M_ALLOCINDIR,
658 	M_FREEFRAG,
659 	M_FREEBLKS,
660 	M_FREEFILE,
661 	M_DIRADD,
662 	M_MKDIR,
663 	M_DIRREM,
664 	M_NEWDIRBLK,
665 	M_FREEWORK,
666 	M_FREEDEP,
667 	M_JADDREF,
668 	M_JREMREF,
669 	M_JMVREF,
670 	M_JNEWBLK,
671 	M_JFREEBLK,
672 	M_JFREEFRAG,
673 	M_JSEG,
674 	M_JSEGDEP,
675 	M_SBDEP,
676 	M_JTRUNC,
677 	M_JFSYNC,
678 	M_SENTINEL
679 };
680 
681 #define DtoM(type) (memtype[type])
682 
683 /*
684  * Names of malloc types.
685  */
686 #define TYPENAME(type)  \
687 	((unsigned)(type) <= D_LAST && (unsigned)(type) >= D_FIRST ? \
688 	memtype[type]->ks_shortdesc : "???")
689 /*
690  * End system adaptation definitions.
691  */
692 
693 #define	DOTDOT_OFFSET	offsetof(struct dirtemplate, dotdot_ino)
694 #define	DOT_OFFSET	offsetof(struct dirtemplate, dot_ino)
695 
696 /*
697  * Internal function prototypes.
698  */
699 static	void check_clear_deps(struct mount *);
700 static	void softdep_error(char *, int);
701 static	int softdep_prerename_vnode(struct ufsmount *, struct vnode *);
702 static	int softdep_process_worklist(struct mount *, int);
703 static	int softdep_waitidle(struct mount *, int);
704 static	void drain_output(struct vnode *);
705 static	struct buf *getdirtybuf(struct buf *, struct rwlock *, int);
706 static	int check_inodedep_free(struct inodedep *);
707 static	void clear_remove(struct mount *);
708 static	void clear_inodedeps(struct mount *);
709 static	void unlinked_inodedep(struct mount *, struct inodedep *);
710 static	void clear_unlinked_inodedep(struct inodedep *);
711 static	struct inodedep *first_unlinked_inodedep(struct ufsmount *);
712 static	int flush_pagedep_deps(struct vnode *, struct mount *,
713 	    struct diraddhd *, struct buf *);
714 static	int free_pagedep(struct pagedep *);
715 static	int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t);
716 static	int flush_inodedep_deps(struct vnode *, struct mount *, ino_t);
717 static	int flush_deplist(struct allocdirectlst *, int, int *);
718 static	int sync_cgs(struct mount *, int);
719 static	int handle_written_filepage(struct pagedep *, struct buf *, int);
720 static	int handle_written_sbdep(struct sbdep *, struct buf *);
721 static	void initiate_write_sbdep(struct sbdep *);
722 static	void diradd_inode_written(struct diradd *, struct inodedep *);
723 static	int handle_written_indirdep(struct indirdep *, struct buf *,
724 	    struct buf**, int);
725 static	int handle_written_inodeblock(struct inodedep *, struct buf *, int);
726 static	int jnewblk_rollforward(struct jnewblk *, struct fs *, struct cg *,
727 	    uint8_t *);
728 static	int handle_written_bmsafemap(struct bmsafemap *, struct buf *, int);
729 static	void handle_written_jaddref(struct jaddref *);
730 static	void handle_written_jremref(struct jremref *);
731 static	void handle_written_jseg(struct jseg *, struct buf *);
732 static	void handle_written_jnewblk(struct jnewblk *);
733 static	void handle_written_jblkdep(struct jblkdep *);
734 static	void handle_written_jfreefrag(struct jfreefrag *);
735 static	void complete_jseg(struct jseg *);
736 static	void complete_jsegs(struct jseg *);
737 static	void jseg_write(struct ufsmount *ump, struct jseg *, uint8_t *);
738 static	void jaddref_write(struct jaddref *, struct jseg *, uint8_t *);
739 static	void jremref_write(struct jremref *, struct jseg *, uint8_t *);
740 static	void jmvref_write(struct jmvref *, struct jseg *, uint8_t *);
741 static	void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *);
742 static	void jfsync_write(struct jfsync *, struct jseg *, uint8_t *data);
743 static	void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *);
744 static	void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *);
745 static	void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *);
746 static	inline void inoref_write(struct inoref *, struct jseg *,
747 	    struct jrefrec *);
748 static	void handle_allocdirect_partdone(struct allocdirect *,
749 	    struct workhead *);
750 static	struct jnewblk *cancel_newblk(struct newblk *, struct worklist *,
751 	    struct workhead *);
752 static	void indirdep_complete(struct indirdep *);
753 static	int indirblk_lookup(struct mount *, ufs2_daddr_t);
754 static	void indirblk_insert(struct freework *);
755 static	void indirblk_remove(struct freework *);
756 static	void handle_allocindir_partdone(struct allocindir *);
757 static	void initiate_write_filepage(struct pagedep *, struct buf *);
758 static	void initiate_write_indirdep(struct indirdep*, struct buf *);
759 static	void handle_written_mkdir(struct mkdir *, int);
760 static	int jnewblk_rollback(struct jnewblk *, struct fs *, struct cg *,
761 	    uint8_t *);
762 static	void initiate_write_bmsafemap(struct bmsafemap *, struct buf *);
763 static	void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *);
764 static	void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *);
765 static	void handle_workitem_freefile(struct freefile *);
766 static	int handle_workitem_remove(struct dirrem *, int);
767 static	struct dirrem *newdirrem(struct buf *, struct inode *,
768 	    struct inode *, int, struct dirrem **);
769 static	struct indirdep *indirdep_lookup(struct mount *, struct inode *,
770 	    struct buf *);
771 static	void cancel_indirdep(struct indirdep *, struct buf *,
772 	    struct freeblks *);
773 static	void free_indirdep(struct indirdep *);
774 static	void free_diradd(struct diradd *, struct workhead *);
775 static	void merge_diradd(struct inodedep *, struct diradd *);
776 static	void complete_diradd(struct diradd *);
777 static	struct diradd *diradd_lookup(struct pagedep *, int);
778 static	struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *,
779 	    struct jremref *);
780 static	struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *,
781 	    struct jremref *);
782 static	void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *,
783 	    struct jremref *, struct jremref *);
784 static	void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *,
785 	    struct jremref *);
786 static	void cancel_allocindir(struct allocindir *, struct buf *bp,
787 	    struct freeblks *, int);
788 static	int setup_trunc_indir(struct freeblks *, struct inode *,
789 	    ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t);
790 static	void complete_trunc_indir(struct freework *);
791 static	void trunc_indirdep(struct indirdep *, struct freeblks *, struct buf *,
792 	    int);
793 static	void complete_mkdir(struct mkdir *);
794 static	void free_newdirblk(struct newdirblk *);
795 static	void free_jremref(struct jremref *);
796 static	void free_jaddref(struct jaddref *);
797 static	void free_jsegdep(struct jsegdep *);
798 static	void free_jsegs(struct jblocks *);
799 static	void rele_jseg(struct jseg *);
800 static	void free_jseg(struct jseg *, struct jblocks *);
801 static	void free_jnewblk(struct jnewblk *);
802 static	void free_jblkdep(struct jblkdep *);
803 static	void free_jfreefrag(struct jfreefrag *);
804 static	void free_freedep(struct freedep *);
805 static	void journal_jremref(struct dirrem *, struct jremref *,
806 	    struct inodedep *);
807 static	void cancel_jnewblk(struct jnewblk *, struct workhead *);
808 static	int cancel_jaddref(struct jaddref *, struct inodedep *,
809 	    struct workhead *);
810 static	void cancel_jfreefrag(struct jfreefrag *);
811 static	inline void setup_freedirect(struct freeblks *, struct inode *,
812 	    int, int);
813 static	inline void setup_freeext(struct freeblks *, struct inode *, int, int);
814 static	inline void setup_freeindir(struct freeblks *, struct inode *, int,
815 	    ufs_lbn_t, int);
816 static	inline struct freeblks *newfreeblks(struct mount *, struct inode *);
817 static	void freeblks_free(struct ufsmount *, struct freeblks *, int);
818 static	void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t);
819 static	ufs2_daddr_t blkcount(struct fs *, ufs2_daddr_t, off_t);
820 static	int trunc_check_buf(struct buf *, int *, ufs_lbn_t, int, int);
821 static	void trunc_dependencies(struct inode *, struct freeblks *, ufs_lbn_t,
822 	    int, int);
823 static	void trunc_pages(struct inode *, off_t, ufs2_daddr_t, int);
824 static 	int cancel_pagedep(struct pagedep *, struct freeblks *, int);
825 static	int deallocate_dependencies(struct buf *, struct freeblks *, int);
826 static	void newblk_freefrag(struct newblk*);
827 static	void free_newblk(struct newblk *);
828 static	void cancel_allocdirect(struct allocdirectlst *,
829 	    struct allocdirect *, struct freeblks *);
830 static	int check_inode_unwritten(struct inodedep *);
831 static	int free_inodedep(struct inodedep *);
832 static	void freework_freeblock(struct freework *, uint64_t);
833 static	void freework_enqueue(struct freework *);
834 static	int handle_workitem_freeblocks(struct freeblks *, int);
835 static	int handle_complete_freeblocks(struct freeblks *, int);
836 static	void handle_workitem_indirblk(struct freework *);
837 static	void handle_written_freework(struct freework *);
838 static	void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *);
839 static	struct worklist *jnewblk_merge(struct worklist *, struct worklist *,
840 	    struct workhead *);
841 static	struct freefrag *setup_allocindir_phase2(struct buf *, struct inode *,
842 	    struct inodedep *, struct allocindir *, ufs_lbn_t);
843 static	struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t,
844 	    ufs2_daddr_t, ufs_lbn_t);
845 static	void handle_workitem_freefrag(struct freefrag *);
846 static	struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long,
847 	    ufs_lbn_t, uint64_t);
848 static	void allocdirect_merge(struct allocdirectlst *,
849 	    struct allocdirect *, struct allocdirect *);
850 static	struct freefrag *allocindir_merge(struct allocindir *,
851 	    struct allocindir *);
852 static	int bmsafemap_find(struct bmsafemap_hashhead *, int,
853 	    struct bmsafemap **);
854 static	struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *,
855 	    int cg, struct bmsafemap *);
856 static	int newblk_find(struct newblk_hashhead *, ufs2_daddr_t, int,
857 	    struct newblk **);
858 static	int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **);
859 static	int inodedep_find(struct inodedep_hashhead *, ino_t,
860 	    struct inodedep **);
861 static	int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **);
862 static	int pagedep_lookup(struct mount *, struct buf *bp, ino_t, ufs_lbn_t,
863 	    int, struct pagedep **);
864 static	int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t,
865 	    struct pagedep **);
866 static	void pause_timer(void *);
867 static	int request_cleanup(struct mount *, int);
868 static	int softdep_request_cleanup_flush(struct mount *, struct ufsmount *);
869 static	void schedule_cleanup(struct mount *);
870 static void softdep_ast_cleanup_proc(struct thread *, int);
871 static struct ufsmount *softdep_bp_to_mp(struct buf *bp);
872 static	int process_worklist_item(struct mount *, int, int);
873 static	void process_removes(struct vnode *);
874 static	void process_truncates(struct vnode *);
875 static	void jwork_move(struct workhead *, struct workhead *);
876 static	void jwork_insert(struct workhead *, struct jsegdep *);
877 static	void add_to_worklist(struct worklist *, int);
878 static	void wake_worklist(struct worklist *);
879 static	void wait_worklist(struct worklist *, char *);
880 static	void remove_from_worklist(struct worklist *);
881 static	void softdep_flush(void *);
882 static	void softdep_flushjournal(struct mount *);
883 static	int softdep_speedup(struct ufsmount *);
884 static	void worklist_speedup(struct mount *);
885 static	int journal_mount(struct mount *, struct fs *, struct ucred *);
886 static	void journal_unmount(struct ufsmount *);
887 static	int journal_space(struct ufsmount *, int);
888 static	void journal_suspend(struct ufsmount *);
889 static	int journal_unsuspend(struct ufsmount *ump);
890 static	void add_to_journal(struct worklist *);
891 static	void remove_from_journal(struct worklist *);
892 static	bool softdep_excess_items(struct ufsmount *, int);
893 static	void softdep_process_journal(struct mount *, struct worklist *, int);
894 static	struct jremref *newjremref(struct dirrem *, struct inode *,
895 	    struct inode *ip, off_t, nlink_t);
896 static	struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t,
897 	    uint16_t);
898 static	inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t,
899 	    uint16_t);
900 static	inline struct jsegdep *inoref_jseg(struct inoref *);
901 static	struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t);
902 static	struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t,
903 	    ufs2_daddr_t, int);
904 static	void adjust_newfreework(struct freeblks *, int);
905 static	struct jtrunc *newjtrunc(struct freeblks *, off_t, int);
906 static	void move_newblock_dep(struct jaddref *, struct inodedep *);
907 static	void cancel_jfreeblk(struct freeblks *, ufs2_daddr_t);
908 static	struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *,
909 	    ufs2_daddr_t, long, ufs_lbn_t);
910 static	struct freework *newfreework(struct ufsmount *, struct freeblks *,
911 	    struct freework *, ufs_lbn_t, ufs2_daddr_t, int, int, int);
912 static	int jwait(struct worklist *, int);
913 static	struct inodedep *inodedep_lookup_ip(struct inode *);
914 static	int bmsafemap_backgroundwrite(struct bmsafemap *, struct buf *);
915 static	struct freefile *handle_bufwait(struct inodedep *, struct workhead *);
916 static	void handle_jwork(struct workhead *);
917 static	struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *,
918 	    struct mkdir **);
919 static	struct jblocks *jblocks_create(void);
920 static	ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *);
921 static	void jblocks_free(struct jblocks *, struct mount *, int);
922 static	void jblocks_destroy(struct jblocks *);
923 static	void jblocks_add(struct jblocks *, ufs2_daddr_t, int);
924 
925 /*
926  * Exported softdep operations.
927  */
928 static	void softdep_disk_io_initiation(struct buf *);
929 static	void softdep_disk_write_complete(struct buf *);
930 static	void softdep_deallocate_dependencies(struct buf *);
931 static	int softdep_count_dependencies(struct buf *bp, int);
932 
933 /*
934  * Global lock over all of soft updates.
935  */
936 static struct mtx lk;
937 MTX_SYSINIT(softdep_lock, &lk, "global softdep", MTX_DEF);
938 
939 #define ACQUIRE_GBLLOCK(lk)	mtx_lock(lk)
940 #define FREE_GBLLOCK(lk)	mtx_unlock(lk)
941 #define GBLLOCK_OWNED(lk)	mtx_assert((lk), MA_OWNED)
942 
943 /*
944  * Per-filesystem soft-updates locking.
945  */
946 #define LOCK_PTR(ump)		(&(ump)->um_softdep->sd_fslock)
947 #define TRY_ACQUIRE_LOCK(ump)	rw_try_wlock(&(ump)->um_softdep->sd_fslock)
948 #define ACQUIRE_LOCK(ump)	rw_wlock(&(ump)->um_softdep->sd_fslock)
949 #define FREE_LOCK(ump)		rw_wunlock(&(ump)->um_softdep->sd_fslock)
950 #define LOCK_OWNED(ump)		rw_assert(&(ump)->um_softdep->sd_fslock, \
951 				    RA_WLOCKED)
952 
953 #define	BUF_AREC(bp)		lockallowrecurse(&(bp)->b_lock)
954 #define	BUF_NOREC(bp)		lockdisablerecurse(&(bp)->b_lock)
955 
956 /*
957  * Worklist queue management.
958  * These routines require that the lock be held.
959  */
960 #ifndef /* NOT */ INVARIANTS
961 #define WORKLIST_INSERT(head, item) do {	\
962 	(item)->wk_state |= ONWORKLIST;		\
963 	LIST_INSERT_HEAD(head, item, wk_list);	\
964 } while (0)
965 #define WORKLIST_REMOVE(item) do {		\
966 	(item)->wk_state &= ~ONWORKLIST;	\
967 	LIST_REMOVE(item, wk_list);		\
968 } while (0)
969 #define WORKLIST_INSERT_UNLOCKED	WORKLIST_INSERT
970 #define WORKLIST_REMOVE_UNLOCKED	WORKLIST_REMOVE
971 
972 #else /* INVARIANTS */
973 static	void worklist_insert(struct workhead *, struct worklist *, int,
974 	const char *, int);
975 static	void worklist_remove(struct worklist *, int, const char *, int);
976 
977 #define WORKLIST_INSERT(head, item) \
978 	worklist_insert(head, item, 1, __func__, __LINE__)
979 #define WORKLIST_INSERT_UNLOCKED(head, item)\
980 	worklist_insert(head, item, 0, __func__, __LINE__)
981 #define WORKLIST_REMOVE(item)\
982 	worklist_remove(item, 1, __func__, __LINE__)
983 #define WORKLIST_REMOVE_UNLOCKED(item)\
984 	worklist_remove(item, 0, __func__, __LINE__)
985 
986 static void
987 worklist_insert(struct workhead *head,
988 	struct worklist *item,
989 	int locked,
990 	const char *func,
991 	int line)
992 {
993 
994 	if (locked)
995 		LOCK_OWNED(VFSTOUFS(item->wk_mp));
996 	if (item->wk_state & ONWORKLIST)
997 		panic("worklist_insert: %p %s(0x%X) already on list, "
998 		    "added in function %s at line %d",
999 		    item, TYPENAME(item->wk_type), item->wk_state,
1000 		    item->wk_func, item->wk_line);
1001 	item->wk_state |= ONWORKLIST;
1002 	item->wk_func = func;
1003 	item->wk_line = line;
1004 	LIST_INSERT_HEAD(head, item, wk_list);
1005 }
1006 
1007 static void
1008 worklist_remove(struct worklist *item,
1009 	int locked,
1010 	const char *func,
1011 	int line)
1012 {
1013 
1014 	if (locked)
1015 		LOCK_OWNED(VFSTOUFS(item->wk_mp));
1016 	if ((item->wk_state & ONWORKLIST) == 0)
1017 		panic("worklist_remove: %p %s(0x%X) not on list, "
1018 		    "removed in function %s at line %d",
1019 		    item, TYPENAME(item->wk_type), item->wk_state,
1020 		    item->wk_func, item->wk_line);
1021 	item->wk_state &= ~ONWORKLIST;
1022 	item->wk_func = func;
1023 	item->wk_line = line;
1024 	LIST_REMOVE(item, wk_list);
1025 }
1026 #endif /* INVARIANTS */
1027 
1028 /*
1029  * Merge two jsegdeps keeping only the oldest one as newer references
1030  * can't be discarded until after older references.
1031  */
1032 static inline struct jsegdep *
1033 jsegdep_merge(struct jsegdep *one, struct jsegdep *two)
1034 {
1035 	struct jsegdep *swp;
1036 
1037 	if (two == NULL)
1038 		return (one);
1039 
1040 	if (one->jd_seg->js_seq > two->jd_seg->js_seq) {
1041 		swp = one;
1042 		one = two;
1043 		two = swp;
1044 	}
1045 	WORKLIST_REMOVE(&two->jd_list);
1046 	free_jsegdep(two);
1047 
1048 	return (one);
1049 }
1050 
1051 /*
1052  * If two freedeps are compatible free one to reduce list size.
1053  */
1054 static inline struct freedep *
1055 freedep_merge(struct freedep *one, struct freedep *two)
1056 {
1057 	if (two == NULL)
1058 		return (one);
1059 
1060 	if (one->fd_freework == two->fd_freework) {
1061 		WORKLIST_REMOVE(&two->fd_list);
1062 		free_freedep(two);
1063 	}
1064 	return (one);
1065 }
1066 
1067 /*
1068  * Move journal work from one list to another.  Duplicate freedeps and
1069  * jsegdeps are coalesced to keep the lists as small as possible.
1070  */
1071 static void
1072 jwork_move(struct workhead *dst, struct workhead *src)
1073 {
1074 	struct freedep *freedep;
1075 	struct jsegdep *jsegdep;
1076 	struct worklist *wkn;
1077 	struct worklist *wk;
1078 
1079 	KASSERT(dst != src,
1080 	    ("jwork_move: dst == src"));
1081 	freedep = NULL;
1082 	jsegdep = NULL;
1083 	LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) {
1084 		if (wk->wk_type == D_JSEGDEP)
1085 			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1086 		else if (wk->wk_type == D_FREEDEP)
1087 			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1088 	}
1089 
1090 	while ((wk = LIST_FIRST(src)) != NULL) {
1091 		WORKLIST_REMOVE(wk);
1092 		WORKLIST_INSERT(dst, wk);
1093 		if (wk->wk_type == D_JSEGDEP) {
1094 			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1095 			continue;
1096 		}
1097 		if (wk->wk_type == D_FREEDEP)
1098 			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1099 	}
1100 }
1101 
1102 static void
1103 jwork_insert(struct workhead *dst, struct jsegdep *jsegdep)
1104 {
1105 	struct jsegdep *jsegdepn;
1106 	struct worklist *wk;
1107 
1108 	LIST_FOREACH(wk, dst, wk_list)
1109 		if (wk->wk_type == D_JSEGDEP)
1110 			break;
1111 	if (wk == NULL) {
1112 		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1113 		return;
1114 	}
1115 	jsegdepn = WK_JSEGDEP(wk);
1116 	if (jsegdep->jd_seg->js_seq < jsegdepn->jd_seg->js_seq) {
1117 		WORKLIST_REMOVE(wk);
1118 		free_jsegdep(jsegdepn);
1119 		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1120 	} else
1121 		free_jsegdep(jsegdep);
1122 }
1123 
1124 /*
1125  * Routines for tracking and managing workitems.
1126  */
1127 static	void workitem_free(struct worklist *, int);
1128 static	void workitem_alloc(struct worklist *, int, struct mount *);
1129 static	void workitem_reassign(struct worklist *, int);
1130 
1131 #define	WORKITEM_FREE(item, type) \
1132 	workitem_free((struct worklist *)(item), (type))
1133 #define	WORKITEM_REASSIGN(item, type) \
1134 	workitem_reassign((struct worklist *)(item), (type))
1135 
1136 static void
1137 workitem_free(struct worklist *item, int type)
1138 {
1139 	struct ufsmount *ump;
1140 
1141 #ifdef INVARIANTS
1142 	if (item->wk_state & ONWORKLIST)
1143 		panic("workitem_free: %s(0x%X) still on list, "
1144 		    "added in function %s at line %d",
1145 		    TYPENAME(item->wk_type), item->wk_state,
1146 		    item->wk_func, item->wk_line);
1147 	if (item->wk_type != type && type != D_NEWBLK)
1148 		panic("workitem_free: type mismatch %s != %s",
1149 		    TYPENAME(item->wk_type), TYPENAME(type));
1150 #endif
1151 	if (item->wk_state & IOWAITING)
1152 		wakeup(item);
1153 	ump = VFSTOUFS(item->wk_mp);
1154 	LOCK_OWNED(ump);
1155 	KASSERT(ump->softdep_deps > 0,
1156 	    ("workitem_free: %s: softdep_deps going negative",
1157 	    ump->um_fs->fs_fsmnt));
1158 	if (--ump->softdep_deps == 0 && ump->softdep_req)
1159 		wakeup(&ump->softdep_deps);
1160 	KASSERT(dep_current[item->wk_type] > 0,
1161 	    ("workitem_free: %s: dep_current[%s] going negative",
1162 	    ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1163 	KASSERT(ump->softdep_curdeps[item->wk_type] > 0,
1164 	    ("workitem_free: %s: softdep_curdeps[%s] going negative",
1165 	    ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1166 	atomic_subtract_long(&dep_current[item->wk_type], 1);
1167 	ump->softdep_curdeps[item->wk_type] -= 1;
1168 	LIST_REMOVE(item, wk_all);
1169 	free(item, DtoM(type));
1170 }
1171 
1172 static void
1173 workitem_alloc(struct worklist *item,
1174 	int type,
1175 	struct mount *mp)
1176 {
1177 	struct ufsmount *ump;
1178 
1179 	item->wk_type = type;
1180 	item->wk_mp = mp;
1181 	item->wk_state = 0;
1182 
1183 	ump = VFSTOUFS(mp);
1184 	ACQUIRE_GBLLOCK(&lk);
1185 	dep_current[type]++;
1186 	if (dep_current[type] > dep_highuse[type])
1187 		dep_highuse[type] = dep_current[type];
1188 	dep_total[type]++;
1189 	FREE_GBLLOCK(&lk);
1190 	ACQUIRE_LOCK(ump);
1191 	ump->softdep_curdeps[type] += 1;
1192 	ump->softdep_deps++;
1193 	ump->softdep_accdeps++;
1194 	LIST_INSERT_HEAD(&ump->softdep_alldeps[type], item, wk_all);
1195 	FREE_LOCK(ump);
1196 }
1197 
1198 static void
1199 workitem_reassign(struct worklist *item, int newtype)
1200 {
1201 	struct ufsmount *ump;
1202 
1203 	ump = VFSTOUFS(item->wk_mp);
1204 	LOCK_OWNED(ump);
1205 	KASSERT(ump->softdep_curdeps[item->wk_type] > 0,
1206 	    ("workitem_reassign: %s: softdep_curdeps[%s] going negative",
1207 	    VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1208 	ump->softdep_curdeps[item->wk_type] -= 1;
1209 	ump->softdep_curdeps[newtype] += 1;
1210 	KASSERT(dep_current[item->wk_type] > 0,
1211 	    ("workitem_reassign: %s: dep_current[%s] going negative",
1212 	    VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1213 	ACQUIRE_GBLLOCK(&lk);
1214 	dep_current[newtype]++;
1215 	dep_current[item->wk_type]--;
1216 	if (dep_current[newtype] > dep_highuse[newtype])
1217 		dep_highuse[newtype] = dep_current[newtype];
1218 	dep_total[newtype]++;
1219 	FREE_GBLLOCK(&lk);
1220 	item->wk_type = newtype;
1221 	LIST_REMOVE(item, wk_all);
1222 	LIST_INSERT_HEAD(&ump->softdep_alldeps[newtype], item, wk_all);
1223 }
1224 
1225 /*
1226  * Workitem queue management
1227  */
1228 static int max_softdeps;	/* maximum number of structs before slowdown */
1229 static int tickdelay = 2;	/* number of ticks to pause during slowdown */
1230 static int proc_waiting;	/* tracks whether we have a timeout posted */
1231 static int *stat_countp;	/* statistic to count in proc_waiting timeout */
1232 static struct callout softdep_callout;
1233 static int req_clear_inodedeps;	/* syncer process flush some inodedeps */
1234 static int req_clear_remove;	/* syncer process flush some freeblks */
1235 static int softdep_flushcache = 0; /* Should we do BIO_FLUSH? */
1236 
1237 /*
1238  * runtime statistics
1239  */
1240 static int stat_flush_threads;	/* number of softdep flushing threads */
1241 static int stat_worklist_push;	/* number of worklist cleanups */
1242 static int stat_delayed_inact;	/* number of delayed inactivation cleanups */
1243 static int stat_blk_limit_push;	/* number of times block limit neared */
1244 static int stat_ino_limit_push;	/* number of times inode limit neared */
1245 static int stat_blk_limit_hit;	/* number of times block slowdown imposed */
1246 static int stat_ino_limit_hit;	/* number of times inode slowdown imposed */
1247 static int stat_sync_limit_hit;	/* number of synchronous slowdowns imposed */
1248 static int stat_indir_blk_ptrs;	/* bufs redirtied as indir ptrs not written */
1249 static int stat_inode_bitmap;	/* bufs redirtied as inode bitmap not written */
1250 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
1251 static int stat_dir_entry;	/* bufs redirtied as dir entry cannot write */
1252 static int stat_jaddref;	/* bufs redirtied as ino bitmap can not write */
1253 static int stat_jnewblk;	/* bufs redirtied as blk bitmap can not write */
1254 static int stat_journal_min;	/* Times hit journal min threshold */
1255 static int stat_journal_low;	/* Times hit journal low threshold */
1256 static int stat_journal_wait;	/* Times blocked in jwait(). */
1257 static int stat_jwait_filepage;	/* Times blocked in jwait() for filepage. */
1258 static int stat_jwait_freeblks;	/* Times blocked in jwait() for freeblks. */
1259 static int stat_jwait_inode;	/* Times blocked in jwait() for inodes. */
1260 static int stat_jwait_newblk;	/* Times blocked in jwait() for newblks. */
1261 static int stat_cleanup_high_delay; /* Maximum cleanup delay (in ticks) */
1262 static int stat_cleanup_blkrequests; /* Number of block cleanup requests */
1263 static int stat_cleanup_inorequests; /* Number of inode cleanup requests */
1264 static int stat_cleanup_retries; /* Number of cleanups that needed to flush */
1265 static int stat_cleanup_failures; /* Number of cleanup requests that failed */
1266 static int stat_emptyjblocks; /* Number of potentially empty journal blocks */
1267 
1268 SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW,
1269     &max_softdeps, 0, "");
1270 SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW,
1271     &tickdelay, 0, "");
1272 SYSCTL_INT(_debug_softdep, OID_AUTO, flush_threads, CTLFLAG_RD,
1273     &stat_flush_threads, 0, "");
1274 SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push,
1275     CTLFLAG_RW | CTLFLAG_STATS, &stat_worklist_push, 0,"");
1276 SYSCTL_INT(_debug_softdep, OID_AUTO, delayed_inactivations, CTLFLAG_RD,
1277     &stat_delayed_inact, 0, "");
1278 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push,
1279     CTLFLAG_RW | CTLFLAG_STATS, &stat_blk_limit_push, 0,"");
1280 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push,
1281     CTLFLAG_RW | CTLFLAG_STATS, &stat_ino_limit_push, 0,"");
1282 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit,
1283     CTLFLAG_RW | CTLFLAG_STATS, &stat_blk_limit_hit, 0, "");
1284 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit,
1285     CTLFLAG_RW | CTLFLAG_STATS, &stat_ino_limit_hit, 0, "");
1286 SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit,
1287     CTLFLAG_RW | CTLFLAG_STATS, &stat_sync_limit_hit, 0, "");
1288 SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs,
1289     CTLFLAG_RW | CTLFLAG_STATS, &stat_indir_blk_ptrs, 0, "");
1290 SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap,
1291     CTLFLAG_RW | CTLFLAG_STATS, &stat_inode_bitmap, 0, "");
1292 SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs,
1293     CTLFLAG_RW | CTLFLAG_STATS, &stat_direct_blk_ptrs, 0, "");
1294 SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry,
1295     CTLFLAG_RW | CTLFLAG_STATS, &stat_dir_entry, 0, "");
1296 SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback,
1297     CTLFLAG_RW | CTLFLAG_STATS, &stat_jaddref, 0, "");
1298 SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback,
1299     CTLFLAG_RW | CTLFLAG_STATS, &stat_jnewblk, 0, "");
1300 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low,
1301     CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_low, 0, "");
1302 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min,
1303     CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_min, 0, "");
1304 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait,
1305     CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_wait, 0, "");
1306 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage,
1307     CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_filepage, 0, "");
1308 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks,
1309     CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_freeblks, 0, "");
1310 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode,
1311     CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_inode, 0, "");
1312 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk,
1313     CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_newblk, 0, "");
1314 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_blkrequests,
1315     CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_blkrequests, 0, "");
1316 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_inorequests,
1317     CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_inorequests, 0, "");
1318 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_high_delay,
1319     CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_high_delay, 0, "");
1320 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_retries,
1321     CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_retries, 0, "");
1322 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_failures,
1323     CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_failures, 0, "");
1324 
1325 SYSCTL_INT(_debug_softdep, OID_AUTO, flushcache, CTLFLAG_RW,
1326     &softdep_flushcache, 0, "");
1327 SYSCTL_INT(_debug_softdep, OID_AUTO, emptyjblocks, CTLFLAG_RD,
1328     &stat_emptyjblocks, 0, "");
1329 
1330 SYSCTL_DECL(_vfs_ffs);
1331 
1332 /* Whether to recompute the summary at mount time */
1333 static int compute_summary_at_mount = 0;
1334 SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW,
1335 	   &compute_summary_at_mount, 0, "Recompute summary at mount");
1336 static int print_threads = 0;
1337 SYSCTL_INT(_debug_softdep, OID_AUTO, print_threads, CTLFLAG_RW,
1338     &print_threads, 0, "Notify flusher thread start/stop");
1339 
1340 /* List of all filesystems mounted with soft updates */
1341 static TAILQ_HEAD(, mount_softdeps) softdepmounts;
1342 
1343 static void
1344 get_parent_vp_unlock_bp(struct mount *mp,
1345 	struct buf *bp,
1346 	struct diraddhd *diraddhdp,
1347 	struct diraddhd *unfinishedp)
1348 {
1349 	struct diradd *dap;
1350 
1351 	/*
1352 	 * Requeue unfinished dependencies before
1353 	 * unlocking buffer, which could make
1354 	 * diraddhdp invalid.
1355 	 */
1356 	ACQUIRE_LOCK(VFSTOUFS(mp));
1357 	while ((dap = LIST_FIRST(unfinishedp)) != NULL) {
1358 		LIST_REMOVE(dap, da_pdlist);
1359 		LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist);
1360 	}
1361 	FREE_LOCK(VFSTOUFS(mp));
1362 
1363 	bp->b_vflags &= ~BV_SCANNED;
1364 	BUF_NOREC(bp);
1365 	BUF_UNLOCK(bp);
1366 }
1367 
1368 /*
1369  * This function fetches inode inum on mount point mp.  We already
1370  * hold a locked vnode vp, and might have a locked buffer bp belonging
1371  * to vp.
1372 
1373  * We must not block on acquiring the new inode lock as we will get
1374  * into a lock-order reversal with the buffer lock and possibly get a
1375  * deadlock.  Thus if we cannot instantiate the requested vnode
1376  * without sleeping on its lock, we must unlock the vnode and the
1377  * buffer before doing a blocking on the vnode lock.  We return
1378  * ERELOOKUP if we have had to unlock either the vnode or the buffer so
1379  * that the caller can reassess its state.
1380  *
1381  * Top-level VFS code (for syscalls and other consumers, e.g. callers
1382  * of VOP_FSYNC() in syncer) check for ERELOOKUP and restart at safe
1383  * point.
1384  *
1385  * Since callers expect to operate on fully constructed vnode, we also
1386  * recheck v_data after relock, and return ENOENT if NULL.
1387  *
1388  * If unlocking bp, we must unroll dequeueing its unfinished
1389  * dependencies, and clear scan flag, before unlocking.  If unlocking
1390  * vp while it is under deactivation, we re-queue deactivation.
1391  */
1392 static int
1393 get_parent_vp(struct vnode *vp,
1394 	struct mount *mp,
1395 	ino_t inum,
1396 	struct buf *bp,
1397 	struct diraddhd *diraddhdp,
1398 	struct diraddhd *unfinishedp,
1399 	struct vnode **rvp)
1400 {
1401 	struct vnode *pvp;
1402 	int error;
1403 	bool bplocked;
1404 
1405 	ASSERT_VOP_ELOCKED(vp, "child vnode must be locked");
1406 	for (bplocked = true, pvp = NULL;;) {
1407 		error = ffs_vgetf(mp, inum, LK_EXCLUSIVE | LK_NOWAIT, &pvp,
1408 		    FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP);
1409 		if (error == 0) {
1410 			/*
1411 			 * Since we could have unlocked vp, the inode
1412 			 * number could no longer indicate a
1413 			 * constructed node.  In this case, we must
1414 			 * restart the syscall.
1415 			 */
1416 			if (VTOI(pvp)->i_mode == 0 || !bplocked) {
1417 				if (bp != NULL && bplocked)
1418 					get_parent_vp_unlock_bp(mp, bp,
1419 					    diraddhdp, unfinishedp);
1420 				if (VTOI(pvp)->i_mode == 0)
1421 					vgone(pvp);
1422 				error = ERELOOKUP;
1423 				goto out2;
1424 			}
1425 			goto out1;
1426 		}
1427 		if (bp != NULL && bplocked) {
1428 			get_parent_vp_unlock_bp(mp, bp, diraddhdp, unfinishedp);
1429 			bplocked = false;
1430 		}
1431 
1432 		/*
1433 		 * Do not drop vnode lock while inactivating during
1434 		 * vunref.  This would result in leaks of the VI flags
1435 		 * and reclaiming of non-truncated vnode.  Instead,
1436 		 * re-schedule inactivation hoping that we would be
1437 		 * able to sync inode later.
1438 		 */
1439 		if ((vp->v_iflag & VI_DOINGINACT) != 0 &&
1440 		    (vp->v_vflag & VV_UNREF) != 0) {
1441 			VI_LOCK(vp);
1442 			vp->v_iflag |= VI_OWEINACT;
1443 			VI_UNLOCK(vp);
1444 			return (ERELOOKUP);
1445 		}
1446 
1447 		VOP_UNLOCK(vp);
1448 		error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &pvp,
1449 		    FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP);
1450 		if (error != 0) {
1451 			MPASS(error != ERELOOKUP);
1452 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1453 			break;
1454 		}
1455 		if (VTOI(pvp)->i_mode == 0) {
1456 			vgone(pvp);
1457 			vput(pvp);
1458 			pvp = NULL;
1459 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1460 			error = ERELOOKUP;
1461 			break;
1462 		}
1463 		error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT);
1464 		if (error == 0)
1465 			break;
1466 		vput(pvp);
1467 		pvp = NULL;
1468 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1469 		if (vp->v_data == NULL) {
1470 			error = ENOENT;
1471 			break;
1472 		}
1473 	}
1474 	if (bp != NULL) {
1475 		MPASS(!bplocked);
1476 		error = ERELOOKUP;
1477 	}
1478 out2:
1479 	if (error != 0 && pvp != NULL) {
1480 		vput(pvp);
1481 		pvp = NULL;
1482 	}
1483 out1:
1484 	*rvp = pvp;
1485 	ASSERT_VOP_ELOCKED(vp, "child vnode must be locked on return");
1486 	return (error);
1487 }
1488 
1489 /*
1490  * This function cleans the worklist for a filesystem.
1491  * Each filesystem running with soft dependencies gets its own
1492  * thread to run in this function. The thread is started up in
1493  * softdep_mount and shutdown in softdep_unmount. They show up
1494  * as part of the kernel "bufdaemon" process whose process
1495  * entry is available in bufdaemonproc.
1496  */
1497 static int searchfailed;
1498 extern struct proc *bufdaemonproc;
1499 static void
1500 softdep_flush(void *addr)
1501 {
1502 	struct mount *mp;
1503 	struct thread *td;
1504 	struct ufsmount *ump;
1505 	int cleanups;
1506 
1507 	td = curthread;
1508 	td->td_pflags |= TDP_NORUNNINGBUF;
1509 	mp = (struct mount *)addr;
1510 	ump = VFSTOUFS(mp);
1511 	atomic_add_int(&stat_flush_threads, 1);
1512 	ACQUIRE_LOCK(ump);
1513 	ump->softdep_flags &= ~FLUSH_STARTING;
1514 	wakeup(&ump->softdep_flushtd);
1515 	FREE_LOCK(ump);
1516 	if (print_threads) {
1517 		if (stat_flush_threads == 1)
1518 			printf("Running %s at pid %d\n", bufdaemonproc->p_comm,
1519 			    bufdaemonproc->p_pid);
1520 		printf("Start thread %s\n", td->td_name);
1521 	}
1522 	for (;;) {
1523 		while (softdep_process_worklist(mp, 0) > 0 ||
1524 		    (MOUNTEDSUJ(mp) &&
1525 		    VFSTOUFS(mp)->softdep_jblocks->jb_suspended))
1526 			kthread_suspend_check();
1527 		ACQUIRE_LOCK(ump);
1528 		if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
1529 			msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM,
1530 			    "sdflush", hz / 2);
1531 		ump->softdep_flags &= ~FLUSH_CLEANUP;
1532 		/*
1533 		 * Check to see if we are done and need to exit.
1534 		 */
1535 		if ((ump->softdep_flags & FLUSH_EXIT) == 0) {
1536 			FREE_LOCK(ump);
1537 			continue;
1538 		}
1539 		ump->softdep_flags &= ~FLUSH_EXIT;
1540 		cleanups = ump->um_softdep->sd_cleanups;
1541 		FREE_LOCK(ump);
1542 		wakeup(&ump->softdep_flags);
1543 		if (print_threads) {
1544 			printf("Stop thread %s: searchfailed %d, "
1545 			    "did cleanups %d\n",
1546 			    td->td_name, searchfailed, cleanups);
1547 		}
1548 		atomic_subtract_int(&stat_flush_threads, 1);
1549 		kthread_exit();
1550 		panic("kthread_exit failed\n");
1551 	}
1552 }
1553 
1554 static void
1555 worklist_speedup(struct mount *mp)
1556 {
1557 	struct ufsmount *ump;
1558 
1559 	ump = VFSTOUFS(mp);
1560 	LOCK_OWNED(ump);
1561 	if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
1562 		ump->softdep_flags |= FLUSH_CLEANUP;
1563 	wakeup(&ump->softdep_flushtd);
1564 }
1565 
1566 static void
1567 softdep_send_speedup(struct ufsmount *ump,
1568 	off_t shortage,
1569 	uint64_t flags)
1570 {
1571 	struct buf *bp;
1572 
1573 	if ((ump->um_flags & UM_CANSPEEDUP) == 0)
1574 		return;
1575 
1576 	bp = malloc(sizeof(*bp), M_TRIM, M_WAITOK | M_ZERO);
1577 	bp->b_iocmd = BIO_SPEEDUP;
1578 	bp->b_ioflags = flags;
1579 	bp->b_bcount = omin(shortage, LONG_MAX);
1580 	g_vfs_strategy(ump->um_bo, bp);
1581 	bufwait(bp);
1582 	free(bp, M_TRIM);
1583 }
1584 
1585 static int
1586 softdep_speedup(struct ufsmount *ump)
1587 {
1588 	struct ufsmount *altump;
1589 	struct mount_softdeps *sdp;
1590 
1591 	LOCK_OWNED(ump);
1592 	worklist_speedup(ump->um_mountp);
1593 	bd_speedup();
1594 	/*
1595 	 * If we have global shortages, then we need other
1596 	 * filesystems to help with the cleanup. Here we wakeup a
1597 	 * flusher thread for a filesystem that is over its fair
1598 	 * share of resources.
1599 	 */
1600 	if (req_clear_inodedeps || req_clear_remove) {
1601 		ACQUIRE_GBLLOCK(&lk);
1602 		TAILQ_FOREACH(sdp, &softdepmounts, sd_next) {
1603 			if ((altump = sdp->sd_ump) == ump)
1604 				continue;
1605 			if (((req_clear_inodedeps &&
1606 			    altump->softdep_curdeps[D_INODEDEP] >
1607 			    max_softdeps / stat_flush_threads) ||
1608 			    (req_clear_remove &&
1609 			    altump->softdep_curdeps[D_DIRREM] >
1610 			    (max_softdeps / 2) / stat_flush_threads)) &&
1611 			    TRY_ACQUIRE_LOCK(altump))
1612 				break;
1613 		}
1614 		if (sdp == NULL) {
1615 			searchfailed++;
1616 			FREE_GBLLOCK(&lk);
1617 		} else {
1618 			/*
1619 			 * Move to the end of the list so we pick a
1620 			 * different one on out next try.
1621 			 */
1622 			TAILQ_REMOVE(&softdepmounts, sdp, sd_next);
1623 			TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next);
1624 			FREE_GBLLOCK(&lk);
1625 			if ((altump->softdep_flags &
1626 			    (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
1627 				altump->softdep_flags |= FLUSH_CLEANUP;
1628 			altump->um_softdep->sd_cleanups++;
1629 			wakeup(&altump->softdep_flushtd);
1630 			FREE_LOCK(altump);
1631 		}
1632 	}
1633 	return (speedup_syncer());
1634 }
1635 
1636 /*
1637  * Add an item to the end of the work queue.
1638  * This routine requires that the lock be held.
1639  * This is the only routine that adds items to the list.
1640  * The following routine is the only one that removes items
1641  * and does so in order from first to last.
1642  */
1643 
1644 #define	WK_HEAD		0x0001	/* Add to HEAD. */
1645 #define	WK_NODELAY	0x0002	/* Process immediately. */
1646 
1647 static void
1648 add_to_worklist(struct worklist *wk, int flags)
1649 {
1650 	struct ufsmount *ump;
1651 
1652 	ump = VFSTOUFS(wk->wk_mp);
1653 	LOCK_OWNED(ump);
1654 	if (wk->wk_state & ONWORKLIST)
1655 		panic("add_to_worklist: %s(0x%X) already on list",
1656 		    TYPENAME(wk->wk_type), wk->wk_state);
1657 	wk->wk_state |= ONWORKLIST;
1658 	if (ump->softdep_on_worklist == 0) {
1659 		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1660 		ump->softdep_worklist_tail = wk;
1661 	} else if (flags & WK_HEAD) {
1662 		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1663 	} else {
1664 		LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list);
1665 		ump->softdep_worklist_tail = wk;
1666 	}
1667 	ump->softdep_on_worklist += 1;
1668 	if (flags & WK_NODELAY)
1669 		worklist_speedup(wk->wk_mp);
1670 }
1671 
1672 /*
1673  * Remove the item to be processed. If we are removing the last
1674  * item on the list, we need to recalculate the tail pointer.
1675  */
1676 static void
1677 remove_from_worklist(struct worklist *wk)
1678 {
1679 	struct ufsmount *ump;
1680 
1681 	ump = VFSTOUFS(wk->wk_mp);
1682 	if (ump->softdep_worklist_tail == wk)
1683 		ump->softdep_worklist_tail =
1684 		    (struct worklist *)wk->wk_list.le_prev;
1685 	WORKLIST_REMOVE(wk);
1686 	ump->softdep_on_worklist -= 1;
1687 }
1688 
1689 static void
1690 wake_worklist(struct worklist *wk)
1691 {
1692 	if (wk->wk_state & IOWAITING) {
1693 		wk->wk_state &= ~IOWAITING;
1694 		wakeup(wk);
1695 	}
1696 }
1697 
1698 static void
1699 wait_worklist(struct worklist *wk, char *wmesg)
1700 {
1701 	struct ufsmount *ump;
1702 
1703 	ump = VFSTOUFS(wk->wk_mp);
1704 	wk->wk_state |= IOWAITING;
1705 	msleep(wk, LOCK_PTR(ump), PVM, wmesg, 0);
1706 }
1707 
1708 /*
1709  * Process that runs once per second to handle items in the background queue.
1710  *
1711  * Note that we ensure that everything is done in the order in which they
1712  * appear in the queue. The code below depends on this property to ensure
1713  * that blocks of a file are freed before the inode itself is freed. This
1714  * ordering ensures that no new <vfsid, inum, lbn> triples will be generated
1715  * until all the old ones have been purged from the dependency lists.
1716  */
1717 static int
1718 softdep_process_worklist(struct mount *mp, int full)
1719 {
1720 	int cnt, matchcnt;
1721 	struct ufsmount *ump;
1722 	long starttime;
1723 
1724 	KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp"));
1725 	ump = VFSTOUFS(mp);
1726 	if (ump->um_softdep == NULL)
1727 		return (0);
1728 	matchcnt = 0;
1729 	ACQUIRE_LOCK(ump);
1730 	starttime = time_second;
1731 	softdep_process_journal(mp, NULL, full ? MNT_WAIT : 0);
1732 	check_clear_deps(mp);
1733 	while (ump->softdep_on_worklist > 0) {
1734 		if ((cnt = process_worklist_item(mp, 10, LK_NOWAIT)) == 0)
1735 			break;
1736 		else
1737 			matchcnt += cnt;
1738 		check_clear_deps(mp);
1739 		/*
1740 		 * We do not generally want to stop for buffer space, but if
1741 		 * we are really being a buffer hog, we will stop and wait.
1742 		 */
1743 		if (should_yield()) {
1744 			FREE_LOCK(ump);
1745 			kern_yield(PRI_USER);
1746 			bwillwrite();
1747 			ACQUIRE_LOCK(ump);
1748 		}
1749 		/*
1750 		 * Never allow processing to run for more than one
1751 		 * second. This gives the syncer thread the opportunity
1752 		 * to pause if appropriate.
1753 		 */
1754 		if (!full && starttime != time_second)
1755 			break;
1756 	}
1757 	if (full == 0)
1758 		journal_unsuspend(ump);
1759 	FREE_LOCK(ump);
1760 	return (matchcnt);
1761 }
1762 
1763 /*
1764  * Process all removes associated with a vnode if we are running out of
1765  * journal space.  Any other process which attempts to flush these will
1766  * be unable as we have the vnodes locked.
1767  */
1768 static void
1769 process_removes(struct vnode *vp)
1770 {
1771 	struct inodedep *inodedep;
1772 	struct dirrem *dirrem;
1773 	struct ufsmount *ump;
1774 	struct mount *mp;
1775 	ino_t inum;
1776 
1777 	mp = vp->v_mount;
1778 	ump = VFSTOUFS(mp);
1779 	LOCK_OWNED(ump);
1780 	inum = VTOI(vp)->i_number;
1781 	for (;;) {
1782 top:
1783 		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1784 			return;
1785 		LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext) {
1786 			/*
1787 			 * If another thread is trying to lock this vnode
1788 			 * it will fail but we must wait for it to do so
1789 			 * before we can proceed.
1790 			 */
1791 			if (dirrem->dm_state & INPROGRESS) {
1792 				wait_worklist(&dirrem->dm_list, "pwrwait");
1793 				goto top;
1794 			}
1795 			if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) ==
1796 			    (COMPLETE | ONWORKLIST))
1797 				break;
1798 		}
1799 		if (dirrem == NULL)
1800 			return;
1801 		remove_from_worklist(&dirrem->dm_list);
1802 		FREE_LOCK(ump);
1803 		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1804 			panic("process_removes: suspended filesystem");
1805 		handle_workitem_remove(dirrem, 0);
1806 		vn_finished_secondary_write(mp);
1807 		ACQUIRE_LOCK(ump);
1808 	}
1809 }
1810 
1811 /*
1812  * Process all truncations associated with a vnode if we are running out
1813  * of journal space.  This is called when the vnode lock is already held
1814  * and no other process can clear the truncation.  This function returns
1815  * a value greater than zero if it did any work.
1816  */
1817 static void
1818 process_truncates(struct vnode *vp)
1819 {
1820 	struct inodedep *inodedep;
1821 	struct freeblks *freeblks;
1822 	struct ufsmount *ump;
1823 	struct mount *mp;
1824 	ino_t inum;
1825 	int cgwait;
1826 
1827 	mp = vp->v_mount;
1828 	ump = VFSTOUFS(mp);
1829 	LOCK_OWNED(ump);
1830 	inum = VTOI(vp)->i_number;
1831 	for (;;) {
1832 		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1833 			return;
1834 		cgwait = 0;
1835 		TAILQ_FOREACH(freeblks, &inodedep->id_freeblklst, fb_next) {
1836 			/* Journal entries not yet written.  */
1837 			if (!LIST_EMPTY(&freeblks->fb_jblkdephd)) {
1838 				jwait(&LIST_FIRST(
1839 				    &freeblks->fb_jblkdephd)->jb_list,
1840 				    MNT_WAIT);
1841 				break;
1842 			}
1843 			/* Another thread is executing this item. */
1844 			if (freeblks->fb_state & INPROGRESS) {
1845 				wait_worklist(&freeblks->fb_list, "ptrwait");
1846 				break;
1847 			}
1848 			/* Freeblks is waiting on a inode write. */
1849 			if ((freeblks->fb_state & COMPLETE) == 0) {
1850 				FREE_LOCK(ump);
1851 				ffs_update(vp, 1);
1852 				ACQUIRE_LOCK(ump);
1853 				break;
1854 			}
1855 			if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST)) ==
1856 			    (ALLCOMPLETE | ONWORKLIST)) {
1857 				remove_from_worklist(&freeblks->fb_list);
1858 				freeblks->fb_state |= INPROGRESS;
1859 				FREE_LOCK(ump);
1860 				if (vn_start_secondary_write(NULL, &mp,
1861 				    V_NOWAIT))
1862 					panic("process_truncates: "
1863 					    "suspended filesystem");
1864 				handle_workitem_freeblocks(freeblks, 0);
1865 				vn_finished_secondary_write(mp);
1866 				ACQUIRE_LOCK(ump);
1867 				break;
1868 			}
1869 			if (freeblks->fb_cgwait)
1870 				cgwait++;
1871 		}
1872 		if (cgwait) {
1873 			FREE_LOCK(ump);
1874 			sync_cgs(mp, MNT_WAIT);
1875 			ffs_sync_snap(mp, MNT_WAIT);
1876 			ACQUIRE_LOCK(ump);
1877 			continue;
1878 		}
1879 		if (freeblks == NULL)
1880 			break;
1881 	}
1882 	return;
1883 }
1884 
1885 /*
1886  * Process one item on the worklist.
1887  */
1888 static int
1889 process_worklist_item(struct mount *mp,
1890 	int target,
1891 	int flags)
1892 {
1893 	struct worklist sentinel;
1894 	struct worklist *wk;
1895 	struct ufsmount *ump;
1896 	int matchcnt;
1897 	int error;
1898 
1899 	KASSERT(mp != NULL, ("process_worklist_item: NULL mp"));
1900 	/*
1901 	 * If we are being called because of a process doing a
1902 	 * copy-on-write, then it is not safe to write as we may
1903 	 * recurse into the copy-on-write routine.
1904 	 */
1905 	if (curthread->td_pflags & TDP_COWINPROGRESS)
1906 		return (-1);
1907 	ump = VFSTOUFS(mp);
1908 	LOCK_OWNED(ump);
1909 	matchcnt = 0;
1910 	sentinel.wk_mp = NULL;
1911 	sentinel.wk_type = D_SENTINEL;
1912 	LIST_INSERT_HEAD(&ump->softdep_workitem_pending, &sentinel, wk_list);
1913 	for (wk = LIST_NEXT(&sentinel, wk_list); wk != NULL;
1914 	    wk = LIST_NEXT(&sentinel, wk_list)) {
1915 		if (wk->wk_type == D_SENTINEL) {
1916 			LIST_REMOVE(&sentinel, wk_list);
1917 			LIST_INSERT_AFTER(wk, &sentinel, wk_list);
1918 			continue;
1919 		}
1920 		if (wk->wk_state & INPROGRESS)
1921 			panic("process_worklist_item: %p already in progress.",
1922 			    wk);
1923 		wk->wk_state |= INPROGRESS;
1924 		remove_from_worklist(wk);
1925 		FREE_LOCK(ump);
1926 		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1927 			panic("process_worklist_item: suspended filesystem");
1928 		switch (wk->wk_type) {
1929 		case D_DIRREM:
1930 			/* removal of a directory entry */
1931 			error = handle_workitem_remove(WK_DIRREM(wk), flags);
1932 			break;
1933 
1934 		case D_FREEBLKS:
1935 			/* releasing blocks and/or fragments from a file */
1936 			error = handle_workitem_freeblocks(WK_FREEBLKS(wk),
1937 			    flags);
1938 			break;
1939 
1940 		case D_FREEFRAG:
1941 			/* releasing a fragment when replaced as a file grows */
1942 			handle_workitem_freefrag(WK_FREEFRAG(wk));
1943 			error = 0;
1944 			break;
1945 
1946 		case D_FREEFILE:
1947 			/* releasing an inode when its link count drops to 0 */
1948 			handle_workitem_freefile(WK_FREEFILE(wk));
1949 			error = 0;
1950 			break;
1951 
1952 		default:
1953 			panic("%s_process_worklist: Unknown type %s",
1954 			    "softdep", TYPENAME(wk->wk_type));
1955 			/* NOTREACHED */
1956 		}
1957 		vn_finished_secondary_write(mp);
1958 		ACQUIRE_LOCK(ump);
1959 		if (error == 0) {
1960 			if (++matchcnt == target)
1961 				break;
1962 			continue;
1963 		}
1964 		/*
1965 		 * We have to retry the worklist item later.  Wake up any
1966 		 * waiters who may be able to complete it immediately and
1967 		 * add the item back to the head so we don't try to execute
1968 		 * it again.
1969 		 */
1970 		wk->wk_state &= ~INPROGRESS;
1971 		wake_worklist(wk);
1972 		add_to_worklist(wk, WK_HEAD);
1973 	}
1974 	/* Sentinal could've become the tail from remove_from_worklist. */
1975 	if (ump->softdep_worklist_tail == &sentinel)
1976 		ump->softdep_worklist_tail =
1977 		    (struct worklist *)sentinel.wk_list.le_prev;
1978 	LIST_REMOVE(&sentinel, wk_list);
1979 	return (matchcnt);
1980 }
1981 
1982 /*
1983  * Move dependencies from one buffer to another.
1984  */
1985 int
1986 softdep_move_dependencies(struct buf *oldbp, struct buf *newbp)
1987 {
1988 	struct worklist *wk, *wktail;
1989 	struct ufsmount *ump;
1990 	int dirty;
1991 
1992 	if ((wk = LIST_FIRST(&oldbp->b_dep)) == NULL)
1993 		return (0);
1994 	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
1995 	    ("softdep_move_dependencies called on non-softdep filesystem"));
1996 	dirty = 0;
1997 	wktail = NULL;
1998 	ump = VFSTOUFS(wk->wk_mp);
1999 	ACQUIRE_LOCK(ump);
2000 	while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) {
2001 		LIST_REMOVE(wk, wk_list);
2002 		if (wk->wk_type == D_BMSAFEMAP &&
2003 		    bmsafemap_backgroundwrite(WK_BMSAFEMAP(wk), newbp))
2004 			dirty = 1;
2005 		if (wktail == NULL)
2006 			LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list);
2007 		else
2008 			LIST_INSERT_AFTER(wktail, wk, wk_list);
2009 		wktail = wk;
2010 	}
2011 	FREE_LOCK(ump);
2012 
2013 	return (dirty);
2014 }
2015 
2016 /*
2017  * Purge the work list of all items associated with a particular mount point.
2018  */
2019 int
2020 softdep_flushworklist(struct mount *oldmnt,
2021 	int *countp,
2022 	struct thread *td)
2023 {
2024 	struct vnode *devvp;
2025 	struct ufsmount *ump;
2026 	int count, error;
2027 
2028 	/*
2029 	 * Alternately flush the block device associated with the mount
2030 	 * point and process any dependencies that the flushing
2031 	 * creates. We continue until no more worklist dependencies
2032 	 * are found.
2033 	 */
2034 	*countp = 0;
2035 	error = 0;
2036 	ump = VFSTOUFS(oldmnt);
2037 	devvp = ump->um_devvp;
2038 	while ((count = softdep_process_worklist(oldmnt, 1)) > 0) {
2039 		*countp += count;
2040 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
2041 		error = VOP_FSYNC(devvp, MNT_WAIT, td);
2042 		VOP_UNLOCK(devvp);
2043 		if (error != 0)
2044 			break;
2045 	}
2046 	return (error);
2047 }
2048 
2049 #define	SU_WAITIDLE_RETRIES	20
2050 static int
2051 softdep_waitidle(struct mount *mp, int flags __unused)
2052 {
2053 	struct ufsmount *ump;
2054 	struct vnode *devvp;
2055 	struct thread *td;
2056 	int error, i;
2057 
2058 	ump = VFSTOUFS(mp);
2059 	KASSERT(ump->um_softdep != NULL,
2060 	    ("softdep_waitidle called on non-softdep filesystem"));
2061 	devvp = ump->um_devvp;
2062 	td = curthread;
2063 	error = 0;
2064 	ACQUIRE_LOCK(ump);
2065 	for (i = 0; i < SU_WAITIDLE_RETRIES && ump->softdep_deps != 0; i++) {
2066 		ump->softdep_req = 1;
2067 		KASSERT((flags & FORCECLOSE) == 0 ||
2068 		    ump->softdep_on_worklist == 0,
2069 		    ("softdep_waitidle: work added after flush"));
2070 		msleep(&ump->softdep_deps, LOCK_PTR(ump), PVM | PDROP,
2071 		    "softdeps", 10 * hz);
2072 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
2073 		error = VOP_FSYNC(devvp, MNT_WAIT, td);
2074 		VOP_UNLOCK(devvp);
2075 		ACQUIRE_LOCK(ump);
2076 		if (error != 0)
2077 			break;
2078 	}
2079 	ump->softdep_req = 0;
2080 	if (i == SU_WAITIDLE_RETRIES && error == 0 && ump->softdep_deps != 0) {
2081 		error = EBUSY;
2082 		printf("softdep_waitidle: Failed to flush worklist for %p\n",
2083 		    mp);
2084 	}
2085 	FREE_LOCK(ump);
2086 	return (error);
2087 }
2088 
2089 /*
2090  * Flush all vnodes and worklist items associated with a specified mount point.
2091  */
2092 int
2093 softdep_flushfiles(struct mount *oldmnt,
2094 	int flags,
2095 	struct thread *td)
2096 {
2097 	struct ufsmount *ump __unused;
2098 #ifdef QUOTA
2099 	int i;
2100 #endif
2101 	int error, early, depcount, loopcnt, retry_flush_count, retry;
2102 	int morework;
2103 
2104 	ump = VFSTOUFS(oldmnt);
2105 	KASSERT(ump->um_softdep != NULL,
2106 	    ("softdep_flushfiles called on non-softdep filesystem"));
2107 	loopcnt = 10;
2108 	retry_flush_count = 3;
2109 retry_flush:
2110 	error = 0;
2111 
2112 	/*
2113 	 * Alternately flush the vnodes associated with the mount
2114 	 * point and process any dependencies that the flushing
2115 	 * creates. In theory, this loop can happen at most twice,
2116 	 * but we give it a few extra just to be sure.
2117 	 */
2118 	for (; loopcnt > 0; loopcnt--) {
2119 		/*
2120 		 * Do another flush in case any vnodes were brought in
2121 		 * as part of the cleanup operations.
2122 		 */
2123 		early = retry_flush_count == 1 || (oldmnt->mnt_kern_flag &
2124 		    MNTK_UNMOUNT) == 0 ? 0 : EARLYFLUSH;
2125 		if ((error = ffs_flushfiles(oldmnt, flags | early, td)) != 0)
2126 			break;
2127 		if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 ||
2128 		    depcount == 0)
2129 			break;
2130 	}
2131 	/*
2132 	 * If we are unmounting then it is an error to fail. If we
2133 	 * are simply trying to downgrade to read-only, then filesystem
2134 	 * activity can keep us busy forever, so we just fail with EBUSY.
2135 	 */
2136 	if (loopcnt == 0) {
2137 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT)
2138 			panic("softdep_flushfiles: looping");
2139 		error = EBUSY;
2140 	}
2141 	if (!error)
2142 		error = softdep_waitidle(oldmnt, flags);
2143 	if (!error) {
2144 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) {
2145 			retry = 0;
2146 			MNT_ILOCK(oldmnt);
2147 			morework = oldmnt->mnt_nvnodelistsize > 0;
2148 #ifdef QUOTA
2149 			UFS_LOCK(ump);
2150 			for (i = 0; i < MAXQUOTAS; i++) {
2151 				if (ump->um_quotas[i] != NULLVP)
2152 					morework = 1;
2153 			}
2154 			UFS_UNLOCK(ump);
2155 #endif
2156 			if (morework) {
2157 				if (--retry_flush_count > 0) {
2158 					retry = 1;
2159 					loopcnt = 3;
2160 				} else
2161 					error = EBUSY;
2162 			}
2163 			MNT_IUNLOCK(oldmnt);
2164 			if (retry)
2165 				goto retry_flush;
2166 		}
2167 	}
2168 	return (error);
2169 }
2170 
2171 /*
2172  * Structure hashing.
2173  *
2174  * There are four types of structures that can be looked up:
2175  *	1) pagedep structures identified by mount point, inode number,
2176  *	   and logical block.
2177  *	2) inodedep structures identified by mount point and inode number.
2178  *	3) newblk structures identified by mount point and
2179  *	   physical block number.
2180  *	4) bmsafemap structures identified by mount point and
2181  *	   cylinder group number.
2182  *
2183  * The "pagedep" and "inodedep" dependency structures are hashed
2184  * separately from the file blocks and inodes to which they correspond.
2185  * This separation helps when the in-memory copy of an inode or
2186  * file block must be replaced. It also obviates the need to access
2187  * an inode or file page when simply updating (or de-allocating)
2188  * dependency structures. Lookup of newblk structures is needed to
2189  * find newly allocated blocks when trying to associate them with
2190  * their allocdirect or allocindir structure.
2191  *
2192  * The lookup routines optionally create and hash a new instance when
2193  * an existing entry is not found. The bmsafemap lookup routine always
2194  * allocates a new structure if an existing one is not found.
2195  */
2196 #define DEPALLOC	0x0001	/* allocate structure if lookup fails */
2197 
2198 /*
2199  * Structures and routines associated with pagedep caching.
2200  */
2201 #define	PAGEDEP_HASH(ump, inum, lbn) \
2202 	(&(ump)->pagedep_hashtbl[((inum) + (lbn)) & (ump)->pagedep_hash_size])
2203 
2204 static int
2205 pagedep_find(struct pagedep_hashhead *pagedephd,
2206 	ino_t ino,
2207 	ufs_lbn_t lbn,
2208 	struct pagedep **pagedeppp)
2209 {
2210 	struct pagedep *pagedep;
2211 
2212 	LIST_FOREACH(pagedep, pagedephd, pd_hash) {
2213 		if (ino == pagedep->pd_ino && lbn == pagedep->pd_lbn) {
2214 			*pagedeppp = pagedep;
2215 			return (1);
2216 		}
2217 	}
2218 	*pagedeppp = NULL;
2219 	return (0);
2220 }
2221 /*
2222  * Look up a pagedep. Return 1 if found, 0 otherwise.
2223  * If not found, allocate if DEPALLOC flag is passed.
2224  * Found or allocated entry is returned in pagedeppp.
2225  */
2226 static int
2227 pagedep_lookup(struct mount *mp,
2228 	struct buf *bp,
2229 	ino_t ino,
2230 	ufs_lbn_t lbn,
2231 	int flags,
2232 	struct pagedep **pagedeppp)
2233 {
2234 	struct pagedep *pagedep;
2235 	struct pagedep_hashhead *pagedephd;
2236 	struct worklist *wk;
2237 	struct ufsmount *ump;
2238 	int ret;
2239 	int i;
2240 
2241 	ump = VFSTOUFS(mp);
2242 	LOCK_OWNED(ump);
2243 	if (bp) {
2244 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
2245 			if (wk->wk_type == D_PAGEDEP) {
2246 				*pagedeppp = WK_PAGEDEP(wk);
2247 				return (1);
2248 			}
2249 		}
2250 	}
2251 	pagedephd = PAGEDEP_HASH(ump, ino, lbn);
2252 	ret = pagedep_find(pagedephd, ino, lbn, pagedeppp);
2253 	if (ret) {
2254 		if (((*pagedeppp)->pd_state & ONWORKLIST) == 0 && bp)
2255 			WORKLIST_INSERT(&bp->b_dep, &(*pagedeppp)->pd_list);
2256 		return (1);
2257 	}
2258 	if ((flags & DEPALLOC) == 0)
2259 		return (0);
2260 	FREE_LOCK(ump);
2261 	pagedep = malloc(sizeof(struct pagedep),
2262 	    M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO);
2263 	workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp);
2264 	ACQUIRE_LOCK(ump);
2265 	ret = pagedep_find(pagedephd, ino, lbn, pagedeppp);
2266 	if (*pagedeppp) {
2267 		/*
2268 		 * This should never happen since we only create pagedeps
2269 		 * with the vnode lock held.  Could be an assert.
2270 		 */
2271 		WORKITEM_FREE(pagedep, D_PAGEDEP);
2272 		return (ret);
2273 	}
2274 	pagedep->pd_ino = ino;
2275 	pagedep->pd_lbn = lbn;
2276 	LIST_INIT(&pagedep->pd_dirremhd);
2277 	LIST_INIT(&pagedep->pd_pendinghd);
2278 	for (i = 0; i < DAHASHSZ; i++)
2279 		LIST_INIT(&pagedep->pd_diraddhd[i]);
2280 	LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
2281 	WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
2282 	*pagedeppp = pagedep;
2283 	return (0);
2284 }
2285 
2286 /*
2287  * Structures and routines associated with inodedep caching.
2288  */
2289 #define	INODEDEP_HASH(ump, inum) \
2290       (&(ump)->inodedep_hashtbl[(inum) & (ump)->inodedep_hash_size])
2291 
2292 static int
2293 inodedep_find(struct inodedep_hashhead *inodedephd,
2294 	ino_t inum,
2295 	struct inodedep **inodedeppp)
2296 {
2297 	struct inodedep *inodedep;
2298 
2299 	LIST_FOREACH(inodedep, inodedephd, id_hash)
2300 		if (inum == inodedep->id_ino)
2301 			break;
2302 	if (inodedep) {
2303 		*inodedeppp = inodedep;
2304 		return (1);
2305 	}
2306 	*inodedeppp = NULL;
2307 
2308 	return (0);
2309 }
2310 /*
2311  * Look up an inodedep. Return 1 if found, 0 if not found.
2312  * If not found, allocate if DEPALLOC flag is passed.
2313  * Found or allocated entry is returned in inodedeppp.
2314  */
2315 static int
2316 inodedep_lookup(struct mount *mp,
2317 	ino_t inum,
2318 	int flags,
2319 	struct inodedep **inodedeppp)
2320 {
2321 	struct inodedep *inodedep;
2322 	struct inodedep_hashhead *inodedephd;
2323 	struct ufsmount *ump;
2324 	struct fs *fs;
2325 
2326 	ump = VFSTOUFS(mp);
2327 	LOCK_OWNED(ump);
2328 	fs = ump->um_fs;
2329 	inodedephd = INODEDEP_HASH(ump, inum);
2330 
2331 	if (inodedep_find(inodedephd, inum, inodedeppp))
2332 		return (1);
2333 	if ((flags & DEPALLOC) == 0)
2334 		return (0);
2335 	/*
2336 	 * If the system is over its limit and our filesystem is
2337 	 * responsible for more than our share of that usage and
2338 	 * we are not in a rush, request some inodedep cleanup.
2339 	 */
2340 	if (softdep_excess_items(ump, D_INODEDEP))
2341 		schedule_cleanup(mp);
2342 	else
2343 		FREE_LOCK(ump);
2344 	inodedep = malloc(sizeof(struct inodedep),
2345 		M_INODEDEP, M_SOFTDEP_FLAGS);
2346 	workitem_alloc(&inodedep->id_list, D_INODEDEP, mp);
2347 	ACQUIRE_LOCK(ump);
2348 	if (inodedep_find(inodedephd, inum, inodedeppp)) {
2349 		WORKITEM_FREE(inodedep, D_INODEDEP);
2350 		return (1);
2351 	}
2352 	inodedep->id_fs = fs;
2353 	inodedep->id_ino = inum;
2354 	inodedep->id_state = ALLCOMPLETE;
2355 	inodedep->id_nlinkdelta = 0;
2356 	inodedep->id_nlinkwrote = -1;
2357 	inodedep->id_savedino1 = NULL;
2358 	inodedep->id_savedsize = -1;
2359 	inodedep->id_savedextsize = -1;
2360 	inodedep->id_savednlink = -1;
2361 	inodedep->id_bmsafemap = NULL;
2362 	inodedep->id_mkdiradd = NULL;
2363 	LIST_INIT(&inodedep->id_dirremhd);
2364 	LIST_INIT(&inodedep->id_pendinghd);
2365 	LIST_INIT(&inodedep->id_inowait);
2366 	LIST_INIT(&inodedep->id_bufwait);
2367 	TAILQ_INIT(&inodedep->id_inoreflst);
2368 	TAILQ_INIT(&inodedep->id_inoupdt);
2369 	TAILQ_INIT(&inodedep->id_newinoupdt);
2370 	TAILQ_INIT(&inodedep->id_extupdt);
2371 	TAILQ_INIT(&inodedep->id_newextupdt);
2372 	TAILQ_INIT(&inodedep->id_freeblklst);
2373 	LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
2374 	*inodedeppp = inodedep;
2375 	return (0);
2376 }
2377 
2378 /*
2379  * Structures and routines associated with newblk caching.
2380  */
2381 #define	NEWBLK_HASH(ump, inum) \
2382 	(&(ump)->newblk_hashtbl[(inum) & (ump)->newblk_hash_size])
2383 
2384 static int
2385 newblk_find(struct newblk_hashhead *newblkhd,
2386 	ufs2_daddr_t newblkno,
2387 	int flags,
2388 	struct newblk **newblkpp)
2389 {
2390 	struct newblk *newblk;
2391 
2392 	LIST_FOREACH(newblk, newblkhd, nb_hash) {
2393 		if (newblkno != newblk->nb_newblkno)
2394 			continue;
2395 		/*
2396 		 * If we're creating a new dependency don't match those that
2397 		 * have already been converted to allocdirects.  This is for
2398 		 * a frag extend.
2399 		 */
2400 		if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK)
2401 			continue;
2402 		break;
2403 	}
2404 	if (newblk) {
2405 		*newblkpp = newblk;
2406 		return (1);
2407 	}
2408 	*newblkpp = NULL;
2409 	return (0);
2410 }
2411 
2412 /*
2413  * Look up a newblk. Return 1 if found, 0 if not found.
2414  * If not found, allocate if DEPALLOC flag is passed.
2415  * Found or allocated entry is returned in newblkpp.
2416  */
2417 static int
2418 newblk_lookup(struct mount *mp,
2419 	ufs2_daddr_t newblkno,
2420 	int flags,
2421 	struct newblk **newblkpp)
2422 {
2423 	struct newblk *newblk;
2424 	struct newblk_hashhead *newblkhd;
2425 	struct ufsmount *ump;
2426 
2427 	ump = VFSTOUFS(mp);
2428 	LOCK_OWNED(ump);
2429 	newblkhd = NEWBLK_HASH(ump, newblkno);
2430 	if (newblk_find(newblkhd, newblkno, flags, newblkpp))
2431 		return (1);
2432 	if ((flags & DEPALLOC) == 0)
2433 		return (0);
2434 	if (softdep_excess_items(ump, D_NEWBLK) ||
2435 	    softdep_excess_items(ump, D_ALLOCDIRECT) ||
2436 	    softdep_excess_items(ump, D_ALLOCINDIR))
2437 		schedule_cleanup(mp);
2438 	else
2439 		FREE_LOCK(ump);
2440 	newblk = malloc(sizeof(union allblk), M_NEWBLK,
2441 	    M_SOFTDEP_FLAGS | M_ZERO);
2442 	workitem_alloc(&newblk->nb_list, D_NEWBLK, mp);
2443 	ACQUIRE_LOCK(ump);
2444 	if (newblk_find(newblkhd, newblkno, flags, newblkpp)) {
2445 		WORKITEM_FREE(newblk, D_NEWBLK);
2446 		return (1);
2447 	}
2448 	newblk->nb_freefrag = NULL;
2449 	LIST_INIT(&newblk->nb_indirdeps);
2450 	LIST_INIT(&newblk->nb_newdirblk);
2451 	LIST_INIT(&newblk->nb_jwork);
2452 	newblk->nb_state = ATTACHED;
2453 	newblk->nb_newblkno = newblkno;
2454 	LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
2455 	*newblkpp = newblk;
2456 	return (0);
2457 }
2458 
2459 /*
2460  * Structures and routines associated with freed indirect block caching.
2461  */
2462 #define	INDIR_HASH(ump, blkno) \
2463 	(&(ump)->indir_hashtbl[(blkno) & (ump)->indir_hash_size])
2464 
2465 /*
2466  * Lookup an indirect block in the indir hash table.  The freework is
2467  * removed and potentially freed.  The caller must do a blocking journal
2468  * write before writing to the blkno.
2469  */
2470 static int
2471 indirblk_lookup(struct mount *mp, ufs2_daddr_t blkno)
2472 {
2473 	struct freework *freework;
2474 	struct indir_hashhead *wkhd;
2475 	struct ufsmount *ump;
2476 
2477 	ump = VFSTOUFS(mp);
2478 	wkhd = INDIR_HASH(ump, blkno);
2479 	TAILQ_FOREACH(freework, wkhd, fw_next) {
2480 		if (freework->fw_blkno != blkno)
2481 			continue;
2482 		indirblk_remove(freework);
2483 		return (1);
2484 	}
2485 	return (0);
2486 }
2487 
2488 /*
2489  * Insert an indirect block represented by freework into the indirblk
2490  * hash table so that it may prevent the block from being re-used prior
2491  * to the journal being written.
2492  */
2493 static void
2494 indirblk_insert(struct freework *freework)
2495 {
2496 	struct jblocks *jblocks;
2497 	struct jseg *jseg;
2498 	struct ufsmount *ump;
2499 
2500 	ump = VFSTOUFS(freework->fw_list.wk_mp);
2501 	jblocks = ump->softdep_jblocks;
2502 	jseg = TAILQ_LAST(&jblocks->jb_segs, jseglst);
2503 	if (jseg == NULL)
2504 		return;
2505 
2506 	LIST_INSERT_HEAD(&jseg->js_indirs, freework, fw_segs);
2507 	TAILQ_INSERT_HEAD(INDIR_HASH(ump, freework->fw_blkno), freework,
2508 	    fw_next);
2509 	freework->fw_state &= ~DEPCOMPLETE;
2510 }
2511 
2512 static void
2513 indirblk_remove(struct freework *freework)
2514 {
2515 	struct ufsmount *ump;
2516 
2517 	ump = VFSTOUFS(freework->fw_list.wk_mp);
2518 	LIST_REMOVE(freework, fw_segs);
2519 	TAILQ_REMOVE(INDIR_HASH(ump, freework->fw_blkno), freework, fw_next);
2520 	freework->fw_state |= DEPCOMPLETE;
2521 	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
2522 		WORKITEM_FREE(freework, D_FREEWORK);
2523 }
2524 
2525 /*
2526  * Executed during filesystem system initialization before
2527  * mounting any filesystems.
2528  */
2529 void
2530 softdep_initialize(void)
2531 {
2532 
2533 	TAILQ_INIT(&softdepmounts);
2534 #ifdef __LP64__
2535 	max_softdeps = desiredvnodes * 4;
2536 #else
2537 	max_softdeps = desiredvnodes * 2;
2538 #endif
2539 
2540 	/* initialise bioops hack */
2541 	bioops.io_start = softdep_disk_io_initiation;
2542 	bioops.io_complete = softdep_disk_write_complete;
2543 	bioops.io_deallocate = softdep_deallocate_dependencies;
2544 	bioops.io_countdeps = softdep_count_dependencies;
2545 	ast_register(TDA_UFS, ASTR_KCLEAR | ASTR_ASTF_REQUIRED, 0,
2546 	    softdep_ast_cleanup_proc);
2547 
2548 	/* Initialize the callout with an mtx. */
2549 	callout_init_mtx(&softdep_callout, &lk, 0);
2550 }
2551 
2552 /*
2553  * Executed after all filesystems have been unmounted during
2554  * filesystem module unload.
2555  */
2556 void
2557 softdep_uninitialize(void)
2558 {
2559 
2560 	/* clear bioops hack */
2561 	bioops.io_start = NULL;
2562 	bioops.io_complete = NULL;
2563 	bioops.io_deallocate = NULL;
2564 	bioops.io_countdeps = NULL;
2565 	ast_deregister(TDA_UFS);
2566 
2567 	callout_drain(&softdep_callout);
2568 }
2569 
2570 /*
2571  * Called at mount time to notify the dependency code that a
2572  * filesystem wishes to use it.
2573  */
2574 int
2575 softdep_mount(struct vnode *devvp,
2576 	struct mount *mp,
2577 	struct fs *fs,
2578 	struct ucred *cred)
2579 {
2580 	struct csum_total cstotal;
2581 	struct mount_softdeps *sdp;
2582 	struct ufsmount *ump;
2583 	struct cg *cgp;
2584 	struct buf *bp;
2585 	uint64_t cyl, i;
2586 	int error;
2587 
2588 	ump = VFSTOUFS(mp);
2589 
2590 	sdp = malloc(sizeof(struct mount_softdeps), M_MOUNTDATA,
2591 	    M_WAITOK | M_ZERO);
2592 	rw_init(&sdp->sd_fslock, "SUrw");
2593 	sdp->sd_ump = ump;
2594 	LIST_INIT(&sdp->sd_workitem_pending);
2595 	LIST_INIT(&sdp->sd_journal_pending);
2596 	TAILQ_INIT(&sdp->sd_unlinked);
2597 	LIST_INIT(&sdp->sd_dirtycg);
2598 	sdp->sd_worklist_tail = NULL;
2599 	sdp->sd_on_worklist = 0;
2600 	sdp->sd_deps = 0;
2601 	LIST_INIT(&sdp->sd_mkdirlisthd);
2602 	sdp->sd_pdhash = hashinit(desiredvnodes / 5, M_PAGEDEP,
2603 	    &sdp->sd_pdhashsize);
2604 	sdp->sd_pdnextclean = 0;
2605 	sdp->sd_idhash = hashinit(desiredvnodes, M_INODEDEP,
2606 	    &sdp->sd_idhashsize);
2607 	sdp->sd_idnextclean = 0;
2608 	sdp->sd_newblkhash = hashinit(max_softdeps / 2,  M_NEWBLK,
2609 	    &sdp->sd_newblkhashsize);
2610 	sdp->sd_bmhash = hashinit(1024, M_BMSAFEMAP, &sdp->sd_bmhashsize);
2611 	i = 1 << (ffs(desiredvnodes / 10) - 1);
2612 	sdp->sd_indirhash = malloc(i * sizeof(struct indir_hashhead),
2613 	    M_FREEWORK, M_WAITOK);
2614 	sdp->sd_indirhashsize = i - 1;
2615 	for (i = 0; i <= sdp->sd_indirhashsize; i++)
2616 		TAILQ_INIT(&sdp->sd_indirhash[i]);
2617 	for (i = 0; i <= D_LAST; i++)
2618 		LIST_INIT(&sdp->sd_alldeps[i]);
2619 	ACQUIRE_GBLLOCK(&lk);
2620 	TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next);
2621 	FREE_GBLLOCK(&lk);
2622 
2623 	ump->um_softdep = sdp;
2624 	MNT_ILOCK(mp);
2625 	mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP;
2626 	if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) {
2627 		mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) |
2628 		    MNTK_SOFTDEP | MNTK_NOASYNC;
2629 	}
2630 	MNT_IUNLOCK(mp);
2631 
2632 	if ((fs->fs_flags & FS_SUJ) &&
2633 	    (error = journal_mount(mp, fs, cred)) != 0) {
2634 		printf("Failed to start journal: %d\n", error);
2635 		softdep_unmount(mp);
2636 		return (error);
2637 	}
2638 	/*
2639 	 * Start our flushing thread in the bufdaemon process.
2640 	 */
2641 	ACQUIRE_LOCK(ump);
2642 	ump->softdep_flags |= FLUSH_STARTING;
2643 	FREE_LOCK(ump);
2644 	kproc_kthread_add(&softdep_flush, mp, &bufdaemonproc,
2645 	    &ump->softdep_flushtd, 0, 0, "softdepflush", "%s worker",
2646 	    mp->mnt_stat.f_mntonname);
2647 	ACQUIRE_LOCK(ump);
2648 	while ((ump->softdep_flags & FLUSH_STARTING) != 0) {
2649 		msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM, "sdstart",
2650 		    hz / 2);
2651 	}
2652 	FREE_LOCK(ump);
2653 	/*
2654 	 * When doing soft updates, the counters in the
2655 	 * superblock may have gotten out of sync. Recomputation
2656 	 * can take a long time and can be deferred for background
2657 	 * fsck.  However, the old behavior of scanning the cylinder
2658 	 * groups and recalculating them at mount time is available
2659 	 * by setting vfs.ffs.compute_summary_at_mount to one.
2660 	 */
2661 	if (compute_summary_at_mount == 0 || fs->fs_clean != 0)
2662 		return (0);
2663 	bzero(&cstotal, sizeof cstotal);
2664 	for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
2665 		if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)),
2666 		    fs->fs_cgsize, cred, &bp)) != 0) {
2667 			brelse(bp);
2668 			softdep_unmount(mp);
2669 			return (error);
2670 		}
2671 		cgp = (struct cg *)bp->b_data;
2672 		cstotal.cs_nffree += cgp->cg_cs.cs_nffree;
2673 		cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree;
2674 		cstotal.cs_nifree += cgp->cg_cs.cs_nifree;
2675 		cstotal.cs_ndir += cgp->cg_cs.cs_ndir;
2676 		fs->fs_cs(fs, cyl) = cgp->cg_cs;
2677 		brelse(bp);
2678 	}
2679 #ifdef INVARIANTS
2680 	if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
2681 		printf("%s: superblock summary recomputed\n", fs->fs_fsmnt);
2682 #endif
2683 	bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
2684 	return (0);
2685 }
2686 
2687 void
2688 softdep_unmount(struct mount *mp)
2689 {
2690 	struct ufsmount *ump;
2691 	struct mount_softdeps *ums;
2692 
2693 	ump = VFSTOUFS(mp);
2694 	KASSERT(ump->um_softdep != NULL,
2695 	    ("softdep_unmount called on non-softdep filesystem"));
2696 	MNT_ILOCK(mp);
2697 	mp->mnt_flag &= ~MNT_SOFTDEP;
2698 	if ((mp->mnt_flag & MNT_SUJ) == 0) {
2699 		MNT_IUNLOCK(mp);
2700 	} else {
2701 		mp->mnt_flag &= ~MNT_SUJ;
2702 		MNT_IUNLOCK(mp);
2703 		journal_unmount(ump);
2704 	}
2705 	/*
2706 	 * Shut down our flushing thread. Check for NULL is if
2707 	 * softdep_mount errors out before the thread has been created.
2708 	 */
2709 	if (ump->softdep_flushtd != NULL) {
2710 		ACQUIRE_LOCK(ump);
2711 		ump->softdep_flags |= FLUSH_EXIT;
2712 		wakeup(&ump->softdep_flushtd);
2713 		while ((ump->softdep_flags & FLUSH_EXIT) != 0) {
2714 			msleep(&ump->softdep_flags, LOCK_PTR(ump), PVM,
2715 			    "sdwait", 0);
2716 		}
2717 		KASSERT((ump->softdep_flags & FLUSH_EXIT) == 0,
2718 		    ("Thread shutdown failed"));
2719 		FREE_LOCK(ump);
2720 	}
2721 
2722 	/*
2723 	 * We are no longer have softdep structure attached to ump.
2724 	 */
2725 	ums = ump->um_softdep;
2726 	ACQUIRE_GBLLOCK(&lk);
2727 	TAILQ_REMOVE(&softdepmounts, ums, sd_next);
2728 	FREE_GBLLOCK(&lk);
2729 	ump->um_softdep = NULL;
2730 
2731 	KASSERT(ums->sd_on_journal == 0,
2732 	    ("ump %p ums %p on_journal %d", ump, ums, ums->sd_on_journal));
2733 	KASSERT(ums->sd_on_worklist == 0,
2734 	    ("ump %p ums %p on_worklist %d", ump, ums, ums->sd_on_worklist));
2735 	KASSERT(ums->sd_deps == 0,
2736 	    ("ump %p ums %p deps %d", ump, ums, ums->sd_deps));
2737 
2738 	/*
2739 	 * Free up our resources.
2740 	 */
2741 	rw_destroy(&ums->sd_fslock);
2742 	hashdestroy(ums->sd_pdhash, M_PAGEDEP, ums->sd_pdhashsize);
2743 	hashdestroy(ums->sd_idhash, M_INODEDEP, ums->sd_idhashsize);
2744 	hashdestroy(ums->sd_newblkhash, M_NEWBLK, ums->sd_newblkhashsize);
2745 	hashdestroy(ums->sd_bmhash, M_BMSAFEMAP, ums->sd_bmhashsize);
2746 	free(ums->sd_indirhash, M_FREEWORK);
2747 #ifdef INVARIANTS
2748 	for (int i = 0; i <= D_LAST; i++) {
2749 		KASSERT(ums->sd_curdeps[i] == 0,
2750 		    ("Unmount %s: Dep type %s != 0 (%jd)", ump->um_fs->fs_fsmnt,
2751 		    TYPENAME(i), (intmax_t)ums->sd_curdeps[i]));
2752 		KASSERT(LIST_EMPTY(&ums->sd_alldeps[i]),
2753 		    ("Unmount %s: Dep type %s not empty (%p)",
2754 		    ump->um_fs->fs_fsmnt,
2755 		    TYPENAME(i), LIST_FIRST(&ums->sd_alldeps[i])));
2756 	}
2757 #endif
2758 	free(ums, M_MOUNTDATA);
2759 }
2760 
2761 static struct jblocks *
2762 jblocks_create(void)
2763 {
2764 	struct jblocks *jblocks;
2765 
2766 	jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO);
2767 	TAILQ_INIT(&jblocks->jb_segs);
2768 	jblocks->jb_avail = 10;
2769 	jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2770 	    M_JBLOCKS, M_WAITOK | M_ZERO);
2771 
2772 	return (jblocks);
2773 }
2774 
2775 static ufs2_daddr_t
2776 jblocks_alloc(struct jblocks *jblocks,
2777 	int bytes,
2778 	int *actual)
2779 {
2780 	ufs2_daddr_t daddr;
2781 	struct jextent *jext;
2782 	int freecnt;
2783 	int blocks;
2784 
2785 	blocks = bytes / DEV_BSIZE;
2786 	jext = &jblocks->jb_extent[jblocks->jb_head];
2787 	freecnt = jext->je_blocks - jblocks->jb_off;
2788 	if (freecnt == 0) {
2789 		jblocks->jb_off = 0;
2790 		if (++jblocks->jb_head > jblocks->jb_used)
2791 			jblocks->jb_head = 0;
2792 		jext = &jblocks->jb_extent[jblocks->jb_head];
2793 		freecnt = jext->je_blocks;
2794 	}
2795 	if (freecnt > blocks)
2796 		freecnt = blocks;
2797 	*actual = freecnt * DEV_BSIZE;
2798 	daddr = jext->je_daddr + jblocks->jb_off;
2799 	jblocks->jb_off += freecnt;
2800 	jblocks->jb_free -= freecnt;
2801 
2802 	return (daddr);
2803 }
2804 
2805 static void
2806 jblocks_free(struct jblocks *jblocks,
2807 	struct mount *mp,
2808 	int bytes)
2809 {
2810 
2811 	LOCK_OWNED(VFSTOUFS(mp));
2812 	jblocks->jb_free += bytes / DEV_BSIZE;
2813 	if (jblocks->jb_suspended)
2814 		worklist_speedup(mp);
2815 	wakeup(jblocks);
2816 }
2817 
2818 static void
2819 jblocks_destroy(struct jblocks *jblocks)
2820 {
2821 
2822 	if (jblocks->jb_extent)
2823 		free(jblocks->jb_extent, M_JBLOCKS);
2824 	free(jblocks, M_JBLOCKS);
2825 }
2826 
2827 static void
2828 jblocks_add(struct jblocks *jblocks,
2829 	ufs2_daddr_t daddr,
2830 	int blocks)
2831 {
2832 	struct jextent *jext;
2833 
2834 	jblocks->jb_blocks += blocks;
2835 	jblocks->jb_free += blocks;
2836 	jext = &jblocks->jb_extent[jblocks->jb_used];
2837 	/* Adding the first block. */
2838 	if (jext->je_daddr == 0) {
2839 		jext->je_daddr = daddr;
2840 		jext->je_blocks = blocks;
2841 		return;
2842 	}
2843 	/* Extending the last extent. */
2844 	if (jext->je_daddr + jext->je_blocks == daddr) {
2845 		jext->je_blocks += blocks;
2846 		return;
2847 	}
2848 	/* Adding a new extent. */
2849 	if (++jblocks->jb_used == jblocks->jb_avail) {
2850 		jblocks->jb_avail *= 2;
2851 		jext = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2852 		    M_JBLOCKS, M_WAITOK | M_ZERO);
2853 		memcpy(jext, jblocks->jb_extent,
2854 		    sizeof(struct jextent) * jblocks->jb_used);
2855 		free(jblocks->jb_extent, M_JBLOCKS);
2856 		jblocks->jb_extent = jext;
2857 	}
2858 	jext = &jblocks->jb_extent[jblocks->jb_used];
2859 	jext->je_daddr = daddr;
2860 	jext->je_blocks = blocks;
2861 	return;
2862 }
2863 
2864 int
2865 softdep_journal_lookup(struct mount *mp, struct vnode **vpp)
2866 {
2867 	struct componentname cnp;
2868 	struct vnode *dvp;
2869 	ino_t sujournal;
2870 	int error;
2871 
2872 	error = VFS_VGET(mp, UFS_ROOTINO, LK_EXCLUSIVE, &dvp);
2873 	if (error)
2874 		return (error);
2875 	bzero(&cnp, sizeof(cnp));
2876 	cnp.cn_nameiop = LOOKUP;
2877 	cnp.cn_flags = ISLASTCN;
2878 	cnp.cn_cred = curthread->td_ucred;
2879 	cnp.cn_pnbuf = SUJ_FILE;
2880 	cnp.cn_nameptr = SUJ_FILE;
2881 	cnp.cn_namelen = strlen(SUJ_FILE);
2882 	error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal);
2883 	vput(dvp);
2884 	if (error != 0)
2885 		return (error);
2886 	error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp);
2887 	return (error);
2888 }
2889 
2890 /*
2891  * Open and verify the journal file.
2892  */
2893 static int
2894 journal_mount(struct mount *mp,
2895 	struct fs *fs,
2896 	struct ucred *cred)
2897 {
2898 	struct jblocks *jblocks;
2899 	struct ufsmount *ump;
2900 	struct vnode *vp;
2901 	struct inode *ip;
2902 	ufs2_daddr_t blkno;
2903 	int bcount;
2904 	int error;
2905 	int i;
2906 
2907 	ump = VFSTOUFS(mp);
2908 	ump->softdep_journal_tail = NULL;
2909 	ump->softdep_on_journal = 0;
2910 	ump->softdep_accdeps = 0;
2911 	ump->softdep_req = 0;
2912 	ump->softdep_jblocks = NULL;
2913 	error = softdep_journal_lookup(mp, &vp);
2914 	if (error != 0) {
2915 		printf("Failed to find journal.  Use tunefs to create one\n");
2916 		return (error);
2917 	}
2918 	ip = VTOI(vp);
2919 	if (ip->i_size < SUJ_MIN) {
2920 		error = ENOSPC;
2921 		goto out;
2922 	}
2923 	bcount = lblkno(fs, ip->i_size);	/* Only use whole blocks. */
2924 	jblocks = jblocks_create();
2925 	for (i = 0; i < bcount; i++) {
2926 		error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL);
2927 		if (error)
2928 			break;
2929 		jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag));
2930 	}
2931 	if (error) {
2932 		jblocks_destroy(jblocks);
2933 		goto out;
2934 	}
2935 	jblocks->jb_low = jblocks->jb_free / 3;	/* Reserve 33%. */
2936 	jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */
2937 	ump->softdep_jblocks = jblocks;
2938 
2939 	MNT_ILOCK(mp);
2940 	mp->mnt_flag |= MNT_SUJ;
2941 	MNT_IUNLOCK(mp);
2942 
2943 	/*
2944 	 * Only validate the journal contents if the
2945 	 * filesystem is clean, otherwise we write the logs
2946 	 * but they'll never be used.  If the filesystem was
2947 	 * still dirty when we mounted it the journal is
2948 	 * invalid and a new journal can only be valid if it
2949 	 * starts from a clean mount.
2950 	 */
2951 	if (fs->fs_clean) {
2952 		DIP_SET(ip, i_modrev, fs->fs_mtime);
2953 		ip->i_flags |= IN_MODIFIED;
2954 		ffs_update(vp, 1);
2955 	}
2956 out:
2957 	vput(vp);
2958 	return (error);
2959 }
2960 
2961 static void
2962 journal_unmount(struct ufsmount *ump)
2963 {
2964 
2965 	if (ump->softdep_jblocks)
2966 		jblocks_destroy(ump->softdep_jblocks);
2967 	ump->softdep_jblocks = NULL;
2968 }
2969 
2970 /*
2971  * Called when a journal record is ready to be written.  Space is allocated
2972  * and the journal entry is created when the journal is flushed to stable
2973  * store.
2974  */
2975 static void
2976 add_to_journal(struct worklist *wk)
2977 {
2978 	struct ufsmount *ump;
2979 
2980 	ump = VFSTOUFS(wk->wk_mp);
2981 	LOCK_OWNED(ump);
2982 	if (wk->wk_state & ONWORKLIST)
2983 		panic("add_to_journal: %s(0x%X) already on list",
2984 		    TYPENAME(wk->wk_type), wk->wk_state);
2985 	wk->wk_state |= ONWORKLIST | DEPCOMPLETE;
2986 	if (LIST_EMPTY(&ump->softdep_journal_pending)) {
2987 		ump->softdep_jblocks->jb_age = ticks;
2988 		LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list);
2989 	} else
2990 		LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list);
2991 	ump->softdep_journal_tail = wk;
2992 	ump->softdep_on_journal += 1;
2993 }
2994 
2995 /*
2996  * Remove an arbitrary item for the journal worklist maintain the tail
2997  * pointer.  This happens when a new operation obviates the need to
2998  * journal an old operation.
2999  */
3000 static void
3001 remove_from_journal(struct worklist *wk)
3002 {
3003 	struct ufsmount *ump;
3004 
3005 	ump = VFSTOUFS(wk->wk_mp);
3006 	LOCK_OWNED(ump);
3007 #ifdef INVARIANTS
3008 	{
3009 		struct worklist *wkn;
3010 
3011 		LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list)
3012 			if (wkn == wk)
3013 				break;
3014 		if (wkn == NULL)
3015 			panic("remove_from_journal: %p is not in journal", wk);
3016 	}
3017 #endif
3018 	/*
3019 	 * We emulate a TAILQ to save space in most structures which do not
3020 	 * require TAILQ semantics.  Here we must update the tail position
3021 	 * when removing the tail which is not the final entry. This works
3022 	 * only if the worklist linkage are at the beginning of the structure.
3023 	 */
3024 	if (ump->softdep_journal_tail == wk)
3025 		ump->softdep_journal_tail =
3026 		    (struct worklist *)wk->wk_list.le_prev;
3027 	WORKLIST_REMOVE(wk);
3028 	ump->softdep_on_journal -= 1;
3029 }
3030 
3031 /*
3032  * Check for journal space as well as dependency limits so the prelink
3033  * code can throttle both journaled and non-journaled filesystems.
3034  * Threshold is 0 for low and 1 for min.
3035  */
3036 static int
3037 journal_space(struct ufsmount *ump, int thresh)
3038 {
3039 	struct jblocks *jblocks;
3040 	int limit, avail;
3041 
3042 	jblocks = ump->softdep_jblocks;
3043 	if (jblocks == NULL)
3044 		return (1);
3045 	/*
3046 	 * We use a tighter restriction here to prevent request_cleanup()
3047 	 * running in threads from running into locks we currently hold.
3048 	 * We have to be over the limit and our filesystem has to be
3049 	 * responsible for more than our share of that usage.
3050 	 */
3051 	limit = (max_softdeps / 10) * 9;
3052 	if (dep_current[D_INODEDEP] > limit &&
3053 	    ump->softdep_curdeps[D_INODEDEP] > limit / stat_flush_threads)
3054 		return (0);
3055 	if (thresh)
3056 		thresh = jblocks->jb_min;
3057 	else
3058 		thresh = jblocks->jb_low;
3059 	avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE;
3060 	avail = jblocks->jb_free - avail;
3061 
3062 	return (avail > thresh);
3063 }
3064 
3065 static void
3066 journal_suspend(struct ufsmount *ump)
3067 {
3068 	struct jblocks *jblocks;
3069 	struct mount *mp;
3070 	bool set;
3071 
3072 	mp = UFSTOVFS(ump);
3073 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0)
3074 		return;
3075 
3076 	jblocks = ump->softdep_jblocks;
3077 	vfs_op_enter(mp);
3078 	set = false;
3079 	MNT_ILOCK(mp);
3080 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
3081 		stat_journal_min++;
3082 		mp->mnt_kern_flag |= MNTK_SUSPEND;
3083 		mp->mnt_susp_owner = ump->softdep_flushtd;
3084 		set = true;
3085 	}
3086 	jblocks->jb_suspended = 1;
3087 	MNT_IUNLOCK(mp);
3088 	if (!set)
3089 		vfs_op_exit(mp);
3090 }
3091 
3092 static int
3093 journal_unsuspend(struct ufsmount *ump)
3094 {
3095 	struct jblocks *jblocks;
3096 	struct mount *mp;
3097 
3098 	mp = UFSTOVFS(ump);
3099 	jblocks = ump->softdep_jblocks;
3100 
3101 	if (jblocks != NULL && jblocks->jb_suspended &&
3102 	    journal_space(ump, jblocks->jb_min)) {
3103 		jblocks->jb_suspended = 0;
3104 		FREE_LOCK(ump);
3105 		mp->mnt_susp_owner = curthread;
3106 		vfs_write_resume(mp, 0);
3107 		ACQUIRE_LOCK(ump);
3108 		return (1);
3109 	}
3110 	return (0);
3111 }
3112 
3113 static void
3114 journal_check_space(struct ufsmount *ump)
3115 {
3116 	struct mount *mp;
3117 
3118 	LOCK_OWNED(ump);
3119 
3120 	if (journal_space(ump, 0) == 0) {
3121 		softdep_speedup(ump);
3122 		mp = UFSTOVFS(ump);
3123 		FREE_LOCK(ump);
3124 		VFS_SYNC(mp, MNT_NOWAIT);
3125 		ffs_sbupdate(ump, MNT_WAIT, 0);
3126 		ACQUIRE_LOCK(ump);
3127 		if (journal_space(ump, 1) == 0)
3128 			journal_suspend(ump);
3129 	}
3130 }
3131 
3132 /*
3133  * Called before any allocation function to be certain that there is
3134  * sufficient space in the journal prior to creating any new records.
3135  * Since in the case of block allocation we may have multiple locked
3136  * buffers at the time of the actual allocation we can not block
3137  * when the journal records are created.  Doing so would create a deadlock
3138  * if any of these buffers needed to be flushed to reclaim space.  Instead
3139  * we require a sufficiently large amount of available space such that
3140  * each thread in the system could have passed this allocation check and
3141  * still have sufficient free space.  With 20% of a minimum journal size
3142  * of 1MB we have 6553 records available.
3143  */
3144 int
3145 softdep_prealloc(struct vnode *vp, int waitok)
3146 {
3147 	struct ufsmount *ump;
3148 
3149 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
3150 	    ("softdep_prealloc called on non-softdep filesystem"));
3151 	/*
3152 	 * Nothing to do if we are not running journaled soft updates.
3153 	 * If we currently hold the snapshot lock, we must avoid
3154 	 * handling other resources that could cause deadlock.  Do not
3155 	 * touch quotas vnode since it is typically recursed with
3156 	 * other vnode locks held.
3157 	 */
3158 	if (DOINGSUJ(vp) == 0 || IS_SNAPSHOT(VTOI(vp)) ||
3159 	    (vp->v_vflag & VV_SYSTEM) != 0)
3160 		return (0);
3161 	ump = VFSTOUFS(vp->v_mount);
3162 	ACQUIRE_LOCK(ump);
3163 	if (journal_space(ump, 0)) {
3164 		FREE_LOCK(ump);
3165 		return (0);
3166 	}
3167 	stat_journal_low++;
3168 	FREE_LOCK(ump);
3169 	if (waitok == MNT_NOWAIT)
3170 		return (ENOSPC);
3171 	/*
3172 	 * Attempt to sync this vnode once to flush any journal
3173 	 * work attached to it.
3174 	 */
3175 	if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0)
3176 		ffs_syncvnode(vp, waitok, 0);
3177 	ACQUIRE_LOCK(ump);
3178 	process_removes(vp);
3179 	process_truncates(vp);
3180 	journal_check_space(ump);
3181 	FREE_LOCK(ump);
3182 
3183 	return (0);
3184 }
3185 
3186 /*
3187  * Try hard to sync all data and metadata for the vnode, and workitems
3188  * flushing which might conflict with the vnode lock.  This is a
3189  * helper for softdep_prerename().
3190  */
3191 static int
3192 softdep_prerename_vnode(struct ufsmount *ump, struct vnode *vp)
3193 {
3194 	int error;
3195 
3196 	ASSERT_VOP_ELOCKED(vp, "prehandle");
3197 	if (vp->v_data == NULL)
3198 		return (0);
3199 	error = VOP_FSYNC(vp, MNT_WAIT, curthread);
3200 	if (error != 0)
3201 		return (error);
3202 	ACQUIRE_LOCK(ump);
3203 	process_removes(vp);
3204 	process_truncates(vp);
3205 	FREE_LOCK(ump);
3206 	return (0);
3207 }
3208 
3209 /*
3210  * Must be called from VOP_RENAME() after all vnodes are locked.
3211  * Ensures that there is enough journal space for rename.  It is
3212  * sufficiently different from softdep_prelink() by having to handle
3213  * four vnodes.
3214  */
3215 int
3216 softdep_prerename(struct vnode *fdvp,
3217 	struct vnode *fvp,
3218 	struct vnode *tdvp,
3219 	struct vnode *tvp)
3220 {
3221 	struct ufsmount *ump;
3222 	int error;
3223 
3224 	ump = VFSTOUFS(fdvp->v_mount);
3225 
3226 	if (journal_space(ump, 0))
3227 		return (0);
3228 
3229 	VOP_UNLOCK(tdvp);
3230 	VOP_UNLOCK(fvp);
3231 	if (tvp != NULL && tvp != tdvp)
3232 		VOP_UNLOCK(tvp);
3233 
3234 	error = softdep_prerename_vnode(ump, fdvp);
3235 	VOP_UNLOCK(fdvp);
3236 	if (error != 0)
3237 		return (error);
3238 
3239 	VOP_LOCK(fvp, LK_EXCLUSIVE | LK_RETRY);
3240 	error = softdep_prerename_vnode(ump, fvp);
3241 	VOP_UNLOCK(fvp);
3242 	if (error != 0)
3243 		return (error);
3244 
3245 	if (tdvp != fdvp) {
3246 		VOP_LOCK(tdvp, LK_EXCLUSIVE | LK_RETRY);
3247 		error = softdep_prerename_vnode(ump, tdvp);
3248 		VOP_UNLOCK(tdvp);
3249 		if (error != 0)
3250 			return (error);
3251 	}
3252 
3253 	if (tvp != fvp && tvp != NULL) {
3254 		VOP_LOCK(tvp, LK_EXCLUSIVE | LK_RETRY);
3255 		error = softdep_prerename_vnode(ump, tvp);
3256 		VOP_UNLOCK(tvp);
3257 		if (error != 0)
3258 			return (error);
3259 	}
3260 
3261 	ACQUIRE_LOCK(ump);
3262 	softdep_speedup(ump);
3263 	process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT);
3264 	journal_check_space(ump);
3265 	FREE_LOCK(ump);
3266 	return (ERELOOKUP);
3267 }
3268 
3269 /*
3270  * Before adjusting a link count on a vnode verify that we have sufficient
3271  * journal space.  If not, process operations that depend on the currently
3272  * locked pair of vnodes to try to flush space as the syncer, buf daemon,
3273  * and softdep flush threads can not acquire these locks to reclaim space.
3274  *
3275  * Returns 0 if all owned locks are still valid and were not dropped
3276  * in the process, in other case it returns either an error from sync,
3277  * or ERELOOKUP if any of the locks were re-acquired.  In the later
3278  * case, the state of the vnodes cannot be relied upon and our VFS
3279  * syscall must be restarted at top level from the lookup.
3280  */
3281 int
3282 softdep_prelink(struct vnode *dvp,
3283 	struct vnode *vp,
3284 	struct componentname *cnp)
3285 {
3286 	struct ufsmount *ump;
3287 	struct nameidata *ndp;
3288 
3289 	ASSERT_VOP_ELOCKED(dvp, "prelink dvp");
3290 	if (vp != NULL)
3291 		ASSERT_VOP_ELOCKED(vp, "prelink vp");
3292 	ump = VFSTOUFS(dvp->v_mount);
3293 
3294 	/*
3295 	 * Nothing to do if we have sufficient journal space.  We skip
3296 	 * flushing when vp is a snapshot to avoid deadlock where
3297 	 * another thread is trying to update the inodeblock for dvp
3298 	 * and is waiting on snaplk that vp holds.
3299 	 */
3300 	if (journal_space(ump, 0) || (vp != NULL && IS_SNAPSHOT(VTOI(vp))))
3301 		return (0);
3302 
3303 	/*
3304 	 * Check if the journal space consumption can in theory be
3305 	 * accounted on dvp and vp.  If the vnodes metadata was not
3306 	 * changed comparing with the previous round-trip into
3307 	 * softdep_prelink(), as indicated by the seqc generation
3308 	 * recorded in the nameidata, then there is no point in
3309 	 * starting the sync.
3310 	 */
3311 	ndp = __containerof(cnp, struct nameidata, ni_cnd);
3312 	if (!seqc_in_modify(ndp->ni_dvp_seqc) &&
3313 	    vn_seqc_consistent(dvp, ndp->ni_dvp_seqc) &&
3314 	    (vp == NULL || (!seqc_in_modify(ndp->ni_vp_seqc) &&
3315 	    vn_seqc_consistent(vp, ndp->ni_vp_seqc))))
3316 		return (0);
3317 
3318 	stat_journal_low++;
3319 	if (vp != NULL) {
3320 		VOP_UNLOCK(dvp);
3321 		ffs_syncvnode(vp, MNT_NOWAIT, 0);
3322 		vn_lock_pair(dvp, false, LK_EXCLUSIVE, vp, true, LK_EXCLUSIVE);
3323 		if (dvp->v_data == NULL)
3324 			goto out;
3325 	}
3326 	if (vp != NULL)
3327 		VOP_UNLOCK(vp);
3328 	ffs_syncvnode(dvp, MNT_WAIT, 0);
3329 	/* Process vp before dvp as it may create .. removes. */
3330 	if (vp != NULL) {
3331 		VOP_UNLOCK(dvp);
3332 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3333 		if (vp->v_data == NULL) {
3334 			vn_lock_pair(dvp, false, LK_EXCLUSIVE, vp, true,
3335 			    LK_EXCLUSIVE);
3336 			goto out;
3337 		}
3338 		ACQUIRE_LOCK(ump);
3339 		process_removes(vp);
3340 		process_truncates(vp);
3341 		FREE_LOCK(ump);
3342 		VOP_UNLOCK(vp);
3343 		vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY);
3344 		if (dvp->v_data == NULL) {
3345 			vn_lock_pair(dvp, true, LK_EXCLUSIVE, vp, false,
3346 			    LK_EXCLUSIVE);
3347 			goto out;
3348 		}
3349 	}
3350 
3351 	ACQUIRE_LOCK(ump);
3352 	process_removes(dvp);
3353 	process_truncates(dvp);
3354 	VOP_UNLOCK(dvp);
3355 	softdep_speedup(ump);
3356 
3357 	process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT);
3358 	journal_check_space(ump);
3359 	FREE_LOCK(ump);
3360 
3361 	vn_lock_pair(dvp, false, LK_EXCLUSIVE, vp, false, LK_EXCLUSIVE);
3362 out:
3363 	ndp->ni_dvp_seqc = vn_seqc_read_any(dvp);
3364 	if (vp != NULL)
3365 		ndp->ni_vp_seqc = vn_seqc_read_any(vp);
3366 	return (ERELOOKUP);
3367 }
3368 
3369 static void
3370 jseg_write(struct ufsmount *ump,
3371 	struct jseg *jseg,
3372 	uint8_t *data)
3373 {
3374 	struct jsegrec *rec;
3375 
3376 	rec = (struct jsegrec *)data;
3377 	rec->jsr_seq = jseg->js_seq;
3378 	rec->jsr_oldest = jseg->js_oldseq;
3379 	rec->jsr_cnt = jseg->js_cnt;
3380 	rec->jsr_blocks = jseg->js_size / ump->um_devvp->v_bufobj.bo_bsize;
3381 	rec->jsr_crc = 0;
3382 	rec->jsr_time = ump->um_fs->fs_mtime;
3383 }
3384 
3385 static inline void
3386 inoref_write(struct inoref *inoref,
3387 	struct jseg *jseg,
3388 	struct jrefrec *rec)
3389 {
3390 
3391 	inoref->if_jsegdep->jd_seg = jseg;
3392 	rec->jr_ino = inoref->if_ino;
3393 	rec->jr_parent = inoref->if_parent;
3394 	rec->jr_nlink = inoref->if_nlink;
3395 	rec->jr_mode = inoref->if_mode;
3396 	rec->jr_diroff = inoref->if_diroff;
3397 }
3398 
3399 static void
3400 jaddref_write(struct jaddref *jaddref,
3401 	struct jseg *jseg,
3402 	uint8_t *data)
3403 {
3404 	struct jrefrec *rec;
3405 
3406 	rec = (struct jrefrec *)data;
3407 	rec->jr_op = JOP_ADDREF;
3408 	inoref_write(&jaddref->ja_ref, jseg, rec);
3409 }
3410 
3411 static void
3412 jremref_write(struct jremref *jremref,
3413 	struct jseg *jseg,
3414 	uint8_t *data)
3415 {
3416 	struct jrefrec *rec;
3417 
3418 	rec = (struct jrefrec *)data;
3419 	rec->jr_op = JOP_REMREF;
3420 	inoref_write(&jremref->jr_ref, jseg, rec);
3421 }
3422 
3423 static void
3424 jmvref_write(struct jmvref *jmvref,
3425 	struct jseg *jseg,
3426 	uint8_t *data)
3427 {
3428 	struct jmvrec *rec;
3429 
3430 	rec = (struct jmvrec *)data;
3431 	rec->jm_op = JOP_MVREF;
3432 	rec->jm_ino = jmvref->jm_ino;
3433 	rec->jm_parent = jmvref->jm_parent;
3434 	rec->jm_oldoff = jmvref->jm_oldoff;
3435 	rec->jm_newoff = jmvref->jm_newoff;
3436 }
3437 
3438 static void
3439 jnewblk_write(struct jnewblk *jnewblk,
3440 	struct jseg *jseg,
3441 	uint8_t *data)
3442 {
3443 	struct jblkrec *rec;
3444 
3445 	jnewblk->jn_jsegdep->jd_seg = jseg;
3446 	rec = (struct jblkrec *)data;
3447 	rec->jb_op = JOP_NEWBLK;
3448 	rec->jb_ino = jnewblk->jn_ino;
3449 	rec->jb_blkno = jnewblk->jn_blkno;
3450 	rec->jb_lbn = jnewblk->jn_lbn;
3451 	rec->jb_frags = jnewblk->jn_frags;
3452 	rec->jb_oldfrags = jnewblk->jn_oldfrags;
3453 }
3454 
3455 static void
3456 jfreeblk_write(struct jfreeblk *jfreeblk,
3457 	struct jseg *jseg,
3458 	uint8_t *data)
3459 {
3460 	struct jblkrec *rec;
3461 
3462 	jfreeblk->jf_dep.jb_jsegdep->jd_seg = jseg;
3463 	rec = (struct jblkrec *)data;
3464 	rec->jb_op = JOP_FREEBLK;
3465 	rec->jb_ino = jfreeblk->jf_ino;
3466 	rec->jb_blkno = jfreeblk->jf_blkno;
3467 	rec->jb_lbn = jfreeblk->jf_lbn;
3468 	rec->jb_frags = jfreeblk->jf_frags;
3469 	rec->jb_oldfrags = 0;
3470 }
3471 
3472 static void
3473 jfreefrag_write(struct jfreefrag *jfreefrag,
3474 	struct jseg *jseg,
3475 	uint8_t *data)
3476 {
3477 	struct jblkrec *rec;
3478 
3479 	jfreefrag->fr_jsegdep->jd_seg = jseg;
3480 	rec = (struct jblkrec *)data;
3481 	rec->jb_op = JOP_FREEBLK;
3482 	rec->jb_ino = jfreefrag->fr_ino;
3483 	rec->jb_blkno = jfreefrag->fr_blkno;
3484 	rec->jb_lbn = jfreefrag->fr_lbn;
3485 	rec->jb_frags = jfreefrag->fr_frags;
3486 	rec->jb_oldfrags = 0;
3487 }
3488 
3489 static void
3490 jtrunc_write(struct jtrunc *jtrunc,
3491 	struct jseg *jseg,
3492 	uint8_t *data)
3493 {
3494 	struct jtrncrec *rec;
3495 
3496 	jtrunc->jt_dep.jb_jsegdep->jd_seg = jseg;
3497 	rec = (struct jtrncrec *)data;
3498 	rec->jt_op = JOP_TRUNC;
3499 	rec->jt_ino = jtrunc->jt_ino;
3500 	rec->jt_size = jtrunc->jt_size;
3501 	rec->jt_extsize = jtrunc->jt_extsize;
3502 }
3503 
3504 static void
3505 jfsync_write(struct jfsync *jfsync,
3506 	struct jseg *jseg,
3507 	uint8_t *data)
3508 {
3509 	struct jtrncrec *rec;
3510 
3511 	rec = (struct jtrncrec *)data;
3512 	rec->jt_op = JOP_SYNC;
3513 	rec->jt_ino = jfsync->jfs_ino;
3514 	rec->jt_size = jfsync->jfs_size;
3515 	rec->jt_extsize = jfsync->jfs_extsize;
3516 }
3517 
3518 static void
3519 softdep_flushjournal(struct mount *mp)
3520 {
3521 	struct jblocks *jblocks;
3522 	struct ufsmount *ump;
3523 
3524 	if (MOUNTEDSUJ(mp) == 0)
3525 		return;
3526 	ump = VFSTOUFS(mp);
3527 	jblocks = ump->softdep_jblocks;
3528 	ACQUIRE_LOCK(ump);
3529 	while (ump->softdep_on_journal) {
3530 		jblocks->jb_needseg = 1;
3531 		softdep_process_journal(mp, NULL, MNT_WAIT);
3532 	}
3533 	FREE_LOCK(ump);
3534 }
3535 
3536 static void softdep_synchronize_completed(struct bio *);
3537 static void softdep_synchronize(struct bio *, struct ufsmount *, void *);
3538 
3539 static void
3540 softdep_synchronize_completed(struct bio *bp)
3541 {
3542 	struct jseg *oldest;
3543 	struct jseg *jseg;
3544 	struct ufsmount *ump;
3545 
3546 	/*
3547 	 * caller1 marks the last segment written before we issued the
3548 	 * synchronize cache.
3549 	 */
3550 	jseg = bp->bio_caller1;
3551 	if (jseg == NULL) {
3552 		g_destroy_bio(bp);
3553 		return;
3554 	}
3555 	ump = VFSTOUFS(jseg->js_list.wk_mp);
3556 	ACQUIRE_LOCK(ump);
3557 	oldest = NULL;
3558 	/*
3559 	 * Mark all the journal entries waiting on the synchronize cache
3560 	 * as completed so they may continue on.
3561 	 */
3562 	while (jseg != NULL && (jseg->js_state & COMPLETE) == 0) {
3563 		jseg->js_state |= COMPLETE;
3564 		oldest = jseg;
3565 		jseg = TAILQ_PREV(jseg, jseglst, js_next);
3566 	}
3567 	/*
3568 	 * Restart deferred journal entry processing from the oldest
3569 	 * completed jseg.
3570 	 */
3571 	if (oldest)
3572 		complete_jsegs(oldest);
3573 
3574 	FREE_LOCK(ump);
3575 	g_destroy_bio(bp);
3576 }
3577 
3578 /*
3579  * Send BIO_FLUSH/SYNCHRONIZE CACHE to the device to enforce write ordering
3580  * barriers.  The journal must be written prior to any blocks that depend
3581  * on it and the journal can not be released until the blocks have be
3582  * written.  This code handles both barriers simultaneously.
3583  */
3584 static void
3585 softdep_synchronize(struct bio *bp,
3586 	struct ufsmount *ump,
3587 	void *caller1)
3588 {
3589 
3590 	bp->bio_cmd = BIO_FLUSH;
3591 	bp->bio_flags |= BIO_ORDERED;
3592 	bp->bio_data = NULL;
3593 	bp->bio_offset = ump->um_cp->provider->mediasize;
3594 	bp->bio_length = 0;
3595 	bp->bio_done = softdep_synchronize_completed;
3596 	bp->bio_caller1 = caller1;
3597 	g_io_request(bp, ump->um_cp);
3598 }
3599 
3600 /*
3601  * Flush some journal records to disk.
3602  */
3603 static void
3604 softdep_process_journal(struct mount *mp,
3605 	struct worklist *needwk,
3606 	int flags)
3607 {
3608 	struct jblocks *jblocks;
3609 	struct ufsmount *ump;
3610 	struct worklist *wk;
3611 	struct jseg *jseg;
3612 	struct buf *bp;
3613 	struct bio *bio;
3614 	uint8_t *data;
3615 	struct fs *fs;
3616 	int shouldflush;
3617 	int segwritten;
3618 	int jrecmin;	/* Minimum records per block. */
3619 	int jrecmax;	/* Maximum records per block. */
3620 	int size;
3621 	int cnt;
3622 	int off;
3623 	int devbsize;
3624 
3625 	ump = VFSTOUFS(mp);
3626 	if (ump->um_softdep == NULL || ump->um_softdep->sd_jblocks == NULL)
3627 		return;
3628 	shouldflush = softdep_flushcache;
3629 	bio = NULL;
3630 	jseg = NULL;
3631 	LOCK_OWNED(ump);
3632 	fs = ump->um_fs;
3633 	jblocks = ump->softdep_jblocks;
3634 	devbsize = ump->um_devvp->v_bufobj.bo_bsize;
3635 	/*
3636 	 * We write anywhere between a disk block and fs block.  The upper
3637 	 * bound is picked to prevent buffer cache fragmentation and limit
3638 	 * processing time per I/O.
3639 	 */
3640 	jrecmin = (devbsize / JREC_SIZE) - 1; /* -1 for seg header */
3641 	jrecmax = (fs->fs_bsize / devbsize) * jrecmin;
3642 	segwritten = 0;
3643 	for (;;) {
3644 		cnt = ump->softdep_on_journal;
3645 		/*
3646 		 * Criteria for writing a segment:
3647 		 * 1) We have a full block.
3648 		 * 2) We're called from jwait() and haven't found the
3649 		 *    journal item yet.
3650 		 * 3) Always write if needseg is set.
3651 		 * 4) If we are called from process_worklist and have
3652 		 *    not yet written anything we write a partial block
3653 		 *    to enforce a 1 second maximum latency on journal
3654 		 *    entries.
3655 		 */
3656 		if (cnt < (jrecmax - 1) && needwk == NULL &&
3657 		    jblocks->jb_needseg == 0 && (segwritten || cnt == 0))
3658 			break;
3659 		cnt++;
3660 		/*
3661 		 * Verify some free journal space.  softdep_prealloc() should
3662 		 * guarantee that we don't run out so this is indicative of
3663 		 * a problem with the flow control.  Try to recover
3664 		 * gracefully in any event.
3665 		 */
3666 		while (jblocks->jb_free == 0) {
3667 			if (flags != MNT_WAIT)
3668 				break;
3669 			printf("softdep: Out of journal space!\n");
3670 			softdep_speedup(ump);
3671 			msleep(jblocks, LOCK_PTR(ump), PRIBIO, "jblocks", hz);
3672 		}
3673 		FREE_LOCK(ump);
3674 		jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS);
3675 		workitem_alloc(&jseg->js_list, D_JSEG, mp);
3676 		LIST_INIT(&jseg->js_entries);
3677 		LIST_INIT(&jseg->js_indirs);
3678 		jseg->js_state = ATTACHED;
3679 		if (shouldflush == 0)
3680 			jseg->js_state |= COMPLETE;
3681 		else if (bio == NULL)
3682 			bio = g_alloc_bio();
3683 		jseg->js_jblocks = jblocks;
3684 		bp = geteblk(fs->fs_bsize, 0);
3685 		ACQUIRE_LOCK(ump);
3686 		/*
3687 		 * If there was a race while we were allocating the block
3688 		 * and jseg the entry we care about was likely written.
3689 		 * We bail out in both the WAIT and NOWAIT case and assume
3690 		 * the caller will loop if the entry it cares about is
3691 		 * not written.
3692 		 */
3693 		cnt = ump->softdep_on_journal;
3694 		if (cnt + jblocks->jb_needseg == 0 || jblocks->jb_free == 0) {
3695 			bp->b_flags |= B_INVAL | B_NOCACHE;
3696 			WORKITEM_FREE(jseg, D_JSEG);
3697 			FREE_LOCK(ump);
3698 			brelse(bp);
3699 			ACQUIRE_LOCK(ump);
3700 			break;
3701 		}
3702 		/*
3703 		 * Calculate the disk block size required for the available
3704 		 * records rounded to the min size.
3705 		 */
3706 		if (cnt == 0)
3707 			size = devbsize;
3708 		else if (cnt < jrecmax)
3709 			size = howmany(cnt, jrecmin) * devbsize;
3710 		else
3711 			size = fs->fs_bsize;
3712 		/*
3713 		 * Allocate a disk block for this journal data and account
3714 		 * for truncation of the requested size if enough contiguous
3715 		 * space was not available.
3716 		 */
3717 		bp->b_blkno = jblocks_alloc(jblocks, size, &size);
3718 		bp->b_lblkno = bp->b_blkno;
3719 		bp->b_offset = bp->b_blkno * DEV_BSIZE;
3720 		bp->b_bcount = size;
3721 		bp->b_flags &= ~B_INVAL;
3722 		bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY;
3723 		/*
3724 		 * Initialize our jseg with cnt records.  Assign the next
3725 		 * sequence number to it and link it in-order.
3726 		 */
3727 		cnt = MIN(cnt, (size / devbsize) * jrecmin);
3728 		jseg->js_buf = bp;
3729 		jseg->js_cnt = cnt;
3730 		jseg->js_refs = cnt + 1;	/* Self ref. */
3731 		jseg->js_size = size;
3732 		jseg->js_seq = jblocks->jb_nextseq++;
3733 		if (jblocks->jb_oldestseg == NULL)
3734 			jblocks->jb_oldestseg = jseg;
3735 		jseg->js_oldseq = jblocks->jb_oldestseg->js_seq;
3736 		TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next);
3737 		if (jblocks->jb_writeseg == NULL)
3738 			jblocks->jb_writeseg = jseg;
3739 		/*
3740 		 * Start filling in records from the pending list.
3741 		 */
3742 		data = bp->b_data;
3743 		off = 0;
3744 
3745 		/*
3746 		 * Always put a header on the first block.
3747 		 * XXX As with below, there might not be a chance to get
3748 		 * into the loop.  Ensure that something valid is written.
3749 		 */
3750 		jseg_write(ump, jseg, data);
3751 		off += JREC_SIZE;
3752 		data = bp->b_data + off;
3753 
3754 		/*
3755 		 * XXX Something is wrong here.  There's no work to do,
3756 		 * but we need to perform and I/O and allow it to complete
3757 		 * anyways.
3758 		 */
3759 		if (LIST_EMPTY(&ump->softdep_journal_pending))
3760 			stat_emptyjblocks++;
3761 
3762 		while ((wk = LIST_FIRST(&ump->softdep_journal_pending))
3763 		    != NULL) {
3764 			if (cnt == 0)
3765 				break;
3766 			/* Place a segment header on every device block. */
3767 			if ((off % devbsize) == 0) {
3768 				jseg_write(ump, jseg, data);
3769 				off += JREC_SIZE;
3770 				data = bp->b_data + off;
3771 			}
3772 			if (wk == needwk)
3773 				needwk = NULL;
3774 			remove_from_journal(wk);
3775 			wk->wk_state |= INPROGRESS;
3776 			WORKLIST_INSERT(&jseg->js_entries, wk);
3777 			switch (wk->wk_type) {
3778 			case D_JADDREF:
3779 				jaddref_write(WK_JADDREF(wk), jseg, data);
3780 				break;
3781 			case D_JREMREF:
3782 				jremref_write(WK_JREMREF(wk), jseg, data);
3783 				break;
3784 			case D_JMVREF:
3785 				jmvref_write(WK_JMVREF(wk), jseg, data);
3786 				break;
3787 			case D_JNEWBLK:
3788 				jnewblk_write(WK_JNEWBLK(wk), jseg, data);
3789 				break;
3790 			case D_JFREEBLK:
3791 				jfreeblk_write(WK_JFREEBLK(wk), jseg, data);
3792 				break;
3793 			case D_JFREEFRAG:
3794 				jfreefrag_write(WK_JFREEFRAG(wk), jseg, data);
3795 				break;
3796 			case D_JTRUNC:
3797 				jtrunc_write(WK_JTRUNC(wk), jseg, data);
3798 				break;
3799 			case D_JFSYNC:
3800 				jfsync_write(WK_JFSYNC(wk), jseg, data);
3801 				break;
3802 			default:
3803 				panic("process_journal: Unknown type %s",
3804 				    TYPENAME(wk->wk_type));
3805 				/* NOTREACHED */
3806 			}
3807 			off += JREC_SIZE;
3808 			data = bp->b_data + off;
3809 			cnt--;
3810 		}
3811 
3812 		/* Clear any remaining space so we don't leak kernel data */
3813 		if (size > off)
3814 			bzero(data, size - off);
3815 
3816 		/*
3817 		 * Write this one buffer and continue.
3818 		 */
3819 		segwritten = 1;
3820 		jblocks->jb_needseg = 0;
3821 		WORKLIST_INSERT(&bp->b_dep, &jseg->js_list);
3822 		FREE_LOCK(ump);
3823 		bp->b_xflags |= BX_CVTENXIO;
3824 		pbgetvp(ump->um_devvp, bp);
3825 		/*
3826 		 * We only do the blocking wait once we find the journal
3827 		 * entry we're looking for.
3828 		 */
3829 		if (needwk == NULL && flags == MNT_WAIT)
3830 			bwrite(bp);
3831 		else
3832 			bawrite(bp);
3833 		ACQUIRE_LOCK(ump);
3834 	}
3835 	/*
3836 	 * If we wrote a segment issue a synchronize cache so the journal
3837 	 * is reflected on disk before the data is written.  Since reclaiming
3838 	 * journal space also requires writing a journal record this
3839 	 * process also enforces a barrier before reclamation.
3840 	 */
3841 	if (segwritten && shouldflush) {
3842 		softdep_synchronize(bio, ump,
3843 		    TAILQ_LAST(&jblocks->jb_segs, jseglst));
3844 	} else if (bio)
3845 		g_destroy_bio(bio);
3846 	/*
3847 	 * If we've suspended the filesystem because we ran out of journal
3848 	 * space either try to sync it here to make some progress or
3849 	 * unsuspend it if we already have.
3850 	 */
3851 	if (flags == 0 && jblocks->jb_suspended) {
3852 		if (journal_unsuspend(ump))
3853 			return;
3854 		FREE_LOCK(ump);
3855 		VFS_SYNC(mp, MNT_NOWAIT);
3856 		ffs_sbupdate(ump, MNT_WAIT, 0);
3857 		ACQUIRE_LOCK(ump);
3858 	}
3859 }
3860 
3861 /*
3862  * Complete a jseg, allowing all dependencies awaiting journal writes
3863  * to proceed.  Each journal dependency also attaches a jsegdep to dependent
3864  * structures so that the journal segment can be freed to reclaim space.
3865  */
3866 static void
3867 complete_jseg(struct jseg *jseg)
3868 {
3869 	struct worklist *wk;
3870 	struct jmvref *jmvref;
3871 #ifdef INVARIANTS
3872 	int i = 0;
3873 #endif
3874 
3875 	while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) {
3876 		WORKLIST_REMOVE(wk);
3877 		wk->wk_state &= ~INPROGRESS;
3878 		wk->wk_state |= COMPLETE;
3879 		KASSERT(i++ < jseg->js_cnt,
3880 		    ("handle_written_jseg: overflow %d >= %d",
3881 		    i - 1, jseg->js_cnt));
3882 		switch (wk->wk_type) {
3883 		case D_JADDREF:
3884 			handle_written_jaddref(WK_JADDREF(wk));
3885 			break;
3886 		case D_JREMREF:
3887 			handle_written_jremref(WK_JREMREF(wk));
3888 			break;
3889 		case D_JMVREF:
3890 			rele_jseg(jseg);	/* No jsegdep. */
3891 			jmvref = WK_JMVREF(wk);
3892 			LIST_REMOVE(jmvref, jm_deps);
3893 			if ((jmvref->jm_pagedep->pd_state & ONWORKLIST) == 0)
3894 				free_pagedep(jmvref->jm_pagedep);
3895 			WORKITEM_FREE(jmvref, D_JMVREF);
3896 			break;
3897 		case D_JNEWBLK:
3898 			handle_written_jnewblk(WK_JNEWBLK(wk));
3899 			break;
3900 		case D_JFREEBLK:
3901 			handle_written_jblkdep(&WK_JFREEBLK(wk)->jf_dep);
3902 			break;
3903 		case D_JTRUNC:
3904 			handle_written_jblkdep(&WK_JTRUNC(wk)->jt_dep);
3905 			break;
3906 		case D_JFSYNC:
3907 			rele_jseg(jseg);	/* No jsegdep. */
3908 			WORKITEM_FREE(wk, D_JFSYNC);
3909 			break;
3910 		case D_JFREEFRAG:
3911 			handle_written_jfreefrag(WK_JFREEFRAG(wk));
3912 			break;
3913 		default:
3914 			panic("handle_written_jseg: Unknown type %s",
3915 			    TYPENAME(wk->wk_type));
3916 			/* NOTREACHED */
3917 		}
3918 	}
3919 	/* Release the self reference so the structure may be freed. */
3920 	rele_jseg(jseg);
3921 }
3922 
3923 /*
3924  * Determine which jsegs are ready for completion processing.  Waits for
3925  * synchronize cache to complete as well as forcing in-order completion
3926  * of journal entries.
3927  */
3928 static void
3929 complete_jsegs(struct jseg *jseg)
3930 {
3931 	struct jblocks *jblocks;
3932 	struct jseg *jsegn;
3933 
3934 	jblocks = jseg->js_jblocks;
3935 	/*
3936 	 * Don't allow out of order completions.  If this isn't the first
3937 	 * block wait for it to write before we're done.
3938 	 */
3939 	if (jseg != jblocks->jb_writeseg)
3940 		return;
3941 	/* Iterate through available jsegs processing their entries. */
3942 	while (jseg && (jseg->js_state & ALLCOMPLETE) == ALLCOMPLETE) {
3943 		jblocks->jb_oldestwrseq = jseg->js_oldseq;
3944 		jsegn = TAILQ_NEXT(jseg, js_next);
3945 		complete_jseg(jseg);
3946 		jseg = jsegn;
3947 	}
3948 	jblocks->jb_writeseg = jseg;
3949 	/*
3950 	 * Attempt to free jsegs now that oldestwrseq may have advanced.
3951 	 */
3952 	free_jsegs(jblocks);
3953 }
3954 
3955 /*
3956  * Mark a jseg as DEPCOMPLETE and throw away the buffer.  Attempt to handle
3957  * the final completions.
3958  */
3959 static void
3960 handle_written_jseg(struct jseg *jseg, struct buf *bp)
3961 {
3962 
3963 	if (jseg->js_refs == 0)
3964 		panic("handle_written_jseg: No self-reference on %p", jseg);
3965 	jseg->js_state |= DEPCOMPLETE;
3966 	/*
3967 	 * We'll never need this buffer again, set flags so it will be
3968 	 * discarded.
3969 	 */
3970 	bp->b_flags |= B_INVAL | B_NOCACHE;
3971 	pbrelvp(bp);
3972 	complete_jsegs(jseg);
3973 }
3974 
3975 static inline struct jsegdep *
3976 inoref_jseg(struct inoref *inoref)
3977 {
3978 	struct jsegdep *jsegdep;
3979 
3980 	jsegdep = inoref->if_jsegdep;
3981 	inoref->if_jsegdep = NULL;
3982 
3983 	return (jsegdep);
3984 }
3985 
3986 /*
3987  * Called once a jremref has made it to stable store.  The jremref is marked
3988  * complete and we attempt to free it.  Any pagedeps writes sleeping waiting
3989  * for the jremref to complete will be awoken by free_jremref.
3990  */
3991 static void
3992 handle_written_jremref(struct jremref *jremref)
3993 {
3994 	struct inodedep *inodedep;
3995 	struct jsegdep *jsegdep;
3996 	struct dirrem *dirrem;
3997 
3998 	/* Grab the jsegdep. */
3999 	jsegdep = inoref_jseg(&jremref->jr_ref);
4000 	/*
4001 	 * Remove us from the inoref list.
4002 	 */
4003 	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino,
4004 	    0, &inodedep) == 0)
4005 		panic("handle_written_jremref: Lost inodedep");
4006 	TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
4007 	/*
4008 	 * Complete the dirrem.
4009 	 */
4010 	dirrem = jremref->jr_dirrem;
4011 	jremref->jr_dirrem = NULL;
4012 	LIST_REMOVE(jremref, jr_deps);
4013 	jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT;
4014 	jwork_insert(&dirrem->dm_jwork, jsegdep);
4015 	if (LIST_EMPTY(&dirrem->dm_jremrefhd) &&
4016 	    (dirrem->dm_state & COMPLETE) != 0)
4017 		add_to_worklist(&dirrem->dm_list, 0);
4018 	free_jremref(jremref);
4019 }
4020 
4021 /*
4022  * Called once a jaddref has made it to stable store.  The dependency is
4023  * marked complete and any dependent structures are added to the inode
4024  * bufwait list to be completed as soon as it is written.  If a bitmap write
4025  * depends on this entry we move the inode into the inodedephd of the
4026  * bmsafemap dependency and attempt to remove the jaddref from the bmsafemap.
4027  */
4028 static void
4029 handle_written_jaddref(struct jaddref *jaddref)
4030 {
4031 	struct jsegdep *jsegdep;
4032 	struct inodedep *inodedep;
4033 	struct diradd *diradd;
4034 	struct mkdir *mkdir;
4035 
4036 	/* Grab the jsegdep. */
4037 	jsegdep = inoref_jseg(&jaddref->ja_ref);
4038 	mkdir = NULL;
4039 	diradd = NULL;
4040 	if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
4041 	    0, &inodedep) == 0)
4042 		panic("handle_written_jaddref: Lost inodedep.");
4043 	if (jaddref->ja_diradd == NULL)
4044 		panic("handle_written_jaddref: No dependency");
4045 	if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) {
4046 		diradd = jaddref->ja_diradd;
4047 		WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list);
4048 	} else if (jaddref->ja_state & MKDIR_PARENT) {
4049 		mkdir = jaddref->ja_mkdir;
4050 		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list);
4051 	} else if (jaddref->ja_state & MKDIR_BODY)
4052 		mkdir = jaddref->ja_mkdir;
4053 	else
4054 		panic("handle_written_jaddref: Unknown dependency %p",
4055 		    jaddref->ja_diradd);
4056 	jaddref->ja_diradd = NULL;	/* also clears ja_mkdir */
4057 	/*
4058 	 * Remove us from the inode list.
4059 	 */
4060 	TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps);
4061 	/*
4062 	 * The mkdir may be waiting on the jaddref to clear before freeing.
4063 	 */
4064 	if (mkdir) {
4065 		KASSERT(mkdir->md_list.wk_type == D_MKDIR,
4066 		    ("handle_written_jaddref: Incorrect type for mkdir %s",
4067 		    TYPENAME(mkdir->md_list.wk_type)));
4068 		mkdir->md_jaddref = NULL;
4069 		diradd = mkdir->md_diradd;
4070 		mkdir->md_state |= DEPCOMPLETE;
4071 		complete_mkdir(mkdir);
4072 	}
4073 	jwork_insert(&diradd->da_jwork, jsegdep);
4074 	if (jaddref->ja_state & NEWBLOCK) {
4075 		inodedep->id_state |= ONDEPLIST;
4076 		LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd,
4077 		    inodedep, id_deps);
4078 	}
4079 	free_jaddref(jaddref);
4080 }
4081 
4082 /*
4083  * Called once a jnewblk journal is written.  The allocdirect or allocindir
4084  * is placed in the bmsafemap to await notification of a written bitmap.  If
4085  * the operation was canceled we add the segdep to the appropriate
4086  * dependency to free the journal space once the canceling operation
4087  * completes.
4088  */
4089 static void
4090 handle_written_jnewblk(struct jnewblk *jnewblk)
4091 {
4092 	struct bmsafemap *bmsafemap;
4093 	struct freefrag *freefrag;
4094 	struct freework *freework;
4095 	struct jsegdep *jsegdep;
4096 	struct newblk *newblk;
4097 
4098 	/* Grab the jsegdep. */
4099 	jsegdep = jnewblk->jn_jsegdep;
4100 	jnewblk->jn_jsegdep = NULL;
4101 	if (jnewblk->jn_dep == NULL)
4102 		panic("handle_written_jnewblk: No dependency for the segdep.");
4103 	switch (jnewblk->jn_dep->wk_type) {
4104 	case D_NEWBLK:
4105 	case D_ALLOCDIRECT:
4106 	case D_ALLOCINDIR:
4107 		/*
4108 		 * Add the written block to the bmsafemap so it can
4109 		 * be notified when the bitmap is on disk.
4110 		 */
4111 		newblk = WK_NEWBLK(jnewblk->jn_dep);
4112 		newblk->nb_jnewblk = NULL;
4113 		if ((newblk->nb_state & GOINGAWAY) == 0) {
4114 			bmsafemap = newblk->nb_bmsafemap;
4115 			newblk->nb_state |= ONDEPLIST;
4116 			LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk,
4117 			    nb_deps);
4118 		}
4119 		jwork_insert(&newblk->nb_jwork, jsegdep);
4120 		break;
4121 	case D_FREEFRAG:
4122 		/*
4123 		 * A newblock being removed by a freefrag when replaced by
4124 		 * frag extension.
4125 		 */
4126 		freefrag = WK_FREEFRAG(jnewblk->jn_dep);
4127 		freefrag->ff_jdep = NULL;
4128 		jwork_insert(&freefrag->ff_jwork, jsegdep);
4129 		break;
4130 	case D_FREEWORK:
4131 		/*
4132 		 * A direct block was removed by truncate.
4133 		 */
4134 		freework = WK_FREEWORK(jnewblk->jn_dep);
4135 		freework->fw_jnewblk = NULL;
4136 		jwork_insert(&freework->fw_freeblks->fb_jwork, jsegdep);
4137 		break;
4138 	default:
4139 		panic("handle_written_jnewblk: Unknown type %d.",
4140 		    jnewblk->jn_dep->wk_type);
4141 	}
4142 	jnewblk->jn_dep = NULL;
4143 	free_jnewblk(jnewblk);
4144 }
4145 
4146 /*
4147  * Cancel a jfreefrag that won't be needed, probably due to colliding with
4148  * an in-flight allocation that has not yet been committed.  Divorce us
4149  * from the freefrag and mark it DEPCOMPLETE so that it may be added
4150  * to the worklist.
4151  */
4152 static void
4153 cancel_jfreefrag(struct jfreefrag *jfreefrag)
4154 {
4155 	struct freefrag *freefrag;
4156 
4157 	if (jfreefrag->fr_jsegdep) {
4158 		free_jsegdep(jfreefrag->fr_jsegdep);
4159 		jfreefrag->fr_jsegdep = NULL;
4160 	}
4161 	freefrag = jfreefrag->fr_freefrag;
4162 	jfreefrag->fr_freefrag = NULL;
4163 	free_jfreefrag(jfreefrag);
4164 	freefrag->ff_state |= DEPCOMPLETE;
4165 	CTR1(KTR_SUJ, "cancel_jfreefrag: blkno %jd", freefrag->ff_blkno);
4166 }
4167 
4168 /*
4169  * Free a jfreefrag when the parent freefrag is rendered obsolete.
4170  */
4171 static void
4172 free_jfreefrag(struct jfreefrag *jfreefrag)
4173 {
4174 
4175 	if (jfreefrag->fr_state & INPROGRESS)
4176 		WORKLIST_REMOVE(&jfreefrag->fr_list);
4177 	else if (jfreefrag->fr_state & ONWORKLIST)
4178 		remove_from_journal(&jfreefrag->fr_list);
4179 	if (jfreefrag->fr_freefrag != NULL)
4180 		panic("free_jfreefrag:  Still attached to a freefrag.");
4181 	WORKITEM_FREE(jfreefrag, D_JFREEFRAG);
4182 }
4183 
4184 /*
4185  * Called when the journal write for a jfreefrag completes.  The parent
4186  * freefrag is added to the worklist if this completes its dependencies.
4187  */
4188 static void
4189 handle_written_jfreefrag(struct jfreefrag *jfreefrag)
4190 {
4191 	struct jsegdep *jsegdep;
4192 	struct freefrag *freefrag;
4193 
4194 	/* Grab the jsegdep. */
4195 	jsegdep = jfreefrag->fr_jsegdep;
4196 	jfreefrag->fr_jsegdep = NULL;
4197 	freefrag = jfreefrag->fr_freefrag;
4198 	if (freefrag == NULL)
4199 		panic("handle_written_jfreefrag: No freefrag.");
4200 	freefrag->ff_state |= DEPCOMPLETE;
4201 	freefrag->ff_jdep = NULL;
4202 	jwork_insert(&freefrag->ff_jwork, jsegdep);
4203 	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
4204 		add_to_worklist(&freefrag->ff_list, 0);
4205 	jfreefrag->fr_freefrag = NULL;
4206 	free_jfreefrag(jfreefrag);
4207 }
4208 
4209 /*
4210  * Called when the journal write for a jfreeblk completes.  The jfreeblk
4211  * is removed from the freeblks list of pending journal writes and the
4212  * jsegdep is moved to the freeblks jwork to be completed when all blocks
4213  * have been reclaimed.
4214  */
4215 static void
4216 handle_written_jblkdep(struct jblkdep *jblkdep)
4217 {
4218 	struct freeblks *freeblks;
4219 	struct jsegdep *jsegdep;
4220 
4221 	/* Grab the jsegdep. */
4222 	jsegdep = jblkdep->jb_jsegdep;
4223 	jblkdep->jb_jsegdep = NULL;
4224 	freeblks = jblkdep->jb_freeblks;
4225 	LIST_REMOVE(jblkdep, jb_deps);
4226 	jwork_insert(&freeblks->fb_jwork, jsegdep);
4227 	/*
4228 	 * If the freeblks is all journaled, we can add it to the worklist.
4229 	 */
4230 	if (LIST_EMPTY(&freeblks->fb_jblkdephd) &&
4231 	    (freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
4232 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
4233 
4234 	free_jblkdep(jblkdep);
4235 }
4236 
4237 static struct jsegdep *
4238 newjsegdep(struct worklist *wk)
4239 {
4240 	struct jsegdep *jsegdep;
4241 
4242 	jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS);
4243 	workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp);
4244 	jsegdep->jd_seg = NULL;
4245 
4246 	return (jsegdep);
4247 }
4248 
4249 static struct jmvref *
4250 newjmvref(struct inode *dp,
4251 	ino_t ino,
4252 	off_t oldoff,
4253 	off_t newoff)
4254 {
4255 	struct jmvref *jmvref;
4256 
4257 	jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS);
4258 	workitem_alloc(&jmvref->jm_list, D_JMVREF, ITOVFS(dp));
4259 	jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE;
4260 	jmvref->jm_parent = dp->i_number;
4261 	jmvref->jm_ino = ino;
4262 	jmvref->jm_oldoff = oldoff;
4263 	jmvref->jm_newoff = newoff;
4264 
4265 	return (jmvref);
4266 }
4267 
4268 /*
4269  * Allocate a new jremref that tracks the removal of ip from dp with the
4270  * directory entry offset of diroff.  Mark the entry as ATTACHED and
4271  * DEPCOMPLETE as we have all the information required for the journal write
4272  * and the directory has already been removed from the buffer.  The caller
4273  * is responsible for linking the jremref into the pagedep and adding it
4274  * to the journal to write.  The MKDIR_PARENT flag is set if we're doing
4275  * a DOTDOT addition so handle_workitem_remove() can properly assign
4276  * the jsegdep when we're done.
4277  */
4278 static struct jremref *
4279 newjremref(struct dirrem *dirrem,
4280 	struct inode *dp,
4281 	struct inode *ip,
4282 	off_t diroff,
4283 	nlink_t nlink)
4284 {
4285 	struct jremref *jremref;
4286 
4287 	jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS);
4288 	workitem_alloc(&jremref->jr_list, D_JREMREF, ITOVFS(dp));
4289 	jremref->jr_state = ATTACHED;
4290 	newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff,
4291 	   nlink, ip->i_mode);
4292 	jremref->jr_dirrem = dirrem;
4293 
4294 	return (jremref);
4295 }
4296 
4297 static inline void
4298 newinoref(struct inoref *inoref,
4299 	ino_t ino,
4300 	ino_t parent,
4301 	off_t diroff,
4302 	nlink_t nlink,
4303 	uint16_t mode)
4304 {
4305 
4306 	inoref->if_jsegdep = newjsegdep(&inoref->if_list);
4307 	inoref->if_diroff = diroff;
4308 	inoref->if_ino = ino;
4309 	inoref->if_parent = parent;
4310 	inoref->if_nlink = nlink;
4311 	inoref->if_mode = mode;
4312 }
4313 
4314 /*
4315  * Allocate a new jaddref to track the addition of ino to dp at diroff.  The
4316  * directory offset may not be known until later.  The caller is responsible
4317  * adding the entry to the journal when this information is available.  nlink
4318  * should be the link count prior to the addition and mode is only required
4319  * to have the correct FMT.
4320  */
4321 static struct jaddref *
4322 newjaddref(struct inode *dp,
4323 	ino_t ino,
4324 	off_t diroff,
4325 	int16_t nlink,
4326 	uint16_t mode)
4327 {
4328 	struct jaddref *jaddref;
4329 
4330 	jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS);
4331 	workitem_alloc(&jaddref->ja_list, D_JADDREF, ITOVFS(dp));
4332 	jaddref->ja_state = ATTACHED;
4333 	jaddref->ja_mkdir = NULL;
4334 	newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode);
4335 
4336 	return (jaddref);
4337 }
4338 
4339 /*
4340  * Create a new free dependency for a freework.  The caller is responsible
4341  * for adjusting the reference count when it has the lock held.  The freedep
4342  * will track an outstanding bitmap write that will ultimately clear the
4343  * freework to continue.
4344  */
4345 static struct freedep *
4346 newfreedep(struct freework *freework)
4347 {
4348 	struct freedep *freedep;
4349 
4350 	freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS);
4351 	workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp);
4352 	freedep->fd_freework = freework;
4353 
4354 	return (freedep);
4355 }
4356 
4357 /*
4358  * Free a freedep structure once the buffer it is linked to is written.  If
4359  * this is the last reference to the freework schedule it for completion.
4360  */
4361 static void
4362 free_freedep(struct freedep *freedep)
4363 {
4364 	struct freework *freework;
4365 
4366 	freework = freedep->fd_freework;
4367 	freework->fw_freeblks->fb_cgwait--;
4368 	if (--freework->fw_ref == 0)
4369 		freework_enqueue(freework);
4370 	WORKITEM_FREE(freedep, D_FREEDEP);
4371 }
4372 
4373 /*
4374  * Allocate a new freework structure that may be a level in an indirect
4375  * when parent is not NULL or a top level block when it is.  The top level
4376  * freework structures are allocated without the per-filesystem lock held
4377  * and before the freeblks is visible outside of softdep_setup_freeblocks().
4378  */
4379 static struct freework *
4380 newfreework(struct ufsmount *ump,
4381 	struct freeblks *freeblks,
4382 	struct freework *parent,
4383 	ufs_lbn_t lbn,
4384 	ufs2_daddr_t nb,
4385 	int frags,
4386 	int off,
4387 	int journal)
4388 {
4389 	struct freework *freework;
4390 
4391 	freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS);
4392 	workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp);
4393 	freework->fw_state = ATTACHED;
4394 	freework->fw_jnewblk = NULL;
4395 	freework->fw_freeblks = freeblks;
4396 	freework->fw_parent = parent;
4397 	freework->fw_lbn = lbn;
4398 	freework->fw_blkno = nb;
4399 	freework->fw_frags = frags;
4400 	freework->fw_indir = NULL;
4401 	freework->fw_ref = (MOUNTEDSUJ(UFSTOVFS(ump)) == 0 ||
4402 	    lbn >= -UFS_NXADDR) ? 0 : NINDIR(ump->um_fs) + 1;
4403 	freework->fw_start = freework->fw_off = off;
4404 	if (journal)
4405 		newjfreeblk(freeblks, lbn, nb, frags);
4406 	if (parent == NULL) {
4407 		ACQUIRE_LOCK(ump);
4408 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
4409 		freeblks->fb_ref++;
4410 		FREE_LOCK(ump);
4411 	}
4412 
4413 	return (freework);
4414 }
4415 
4416 /*
4417  * Eliminate a jfreeblk for a block that does not need journaling.
4418  */
4419 static void
4420 cancel_jfreeblk(struct freeblks *freeblks, ufs2_daddr_t blkno)
4421 {
4422 	struct jfreeblk *jfreeblk;
4423 	struct jblkdep *jblkdep;
4424 
4425 	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) {
4426 		if (jblkdep->jb_list.wk_type != D_JFREEBLK)
4427 			continue;
4428 		jfreeblk = WK_JFREEBLK(&jblkdep->jb_list);
4429 		if (jfreeblk->jf_blkno == blkno)
4430 			break;
4431 	}
4432 	if (jblkdep == NULL)
4433 		return;
4434 	CTR1(KTR_SUJ, "cancel_jfreeblk: blkno %jd", blkno);
4435 	free_jsegdep(jblkdep->jb_jsegdep);
4436 	LIST_REMOVE(jblkdep, jb_deps);
4437 	WORKITEM_FREE(jfreeblk, D_JFREEBLK);
4438 }
4439 
4440 /*
4441  * Allocate a new jfreeblk to journal top level block pointer when truncating
4442  * a file.  The caller must add this to the worklist when the per-filesystem
4443  * lock is held.
4444  */
4445 static struct jfreeblk *
4446 newjfreeblk(struct freeblks *freeblks,
4447 	ufs_lbn_t lbn,
4448 	ufs2_daddr_t blkno,
4449 	int frags)
4450 {
4451 	struct jfreeblk *jfreeblk;
4452 
4453 	jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS);
4454 	workitem_alloc(&jfreeblk->jf_dep.jb_list, D_JFREEBLK,
4455 	    freeblks->fb_list.wk_mp);
4456 	jfreeblk->jf_dep.jb_jsegdep = newjsegdep(&jfreeblk->jf_dep.jb_list);
4457 	jfreeblk->jf_dep.jb_freeblks = freeblks;
4458 	jfreeblk->jf_ino = freeblks->fb_inum;
4459 	jfreeblk->jf_lbn = lbn;
4460 	jfreeblk->jf_blkno = blkno;
4461 	jfreeblk->jf_frags = frags;
4462 	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jfreeblk->jf_dep, jb_deps);
4463 
4464 	return (jfreeblk);
4465 }
4466 
4467 /*
4468  * The journal is only prepared to handle full-size block numbers, so we
4469  * have to adjust the record to reflect the change to a full-size block.
4470  * For example, suppose we have a block made up of fragments 8-15 and
4471  * want to free its last two fragments. We are given a request that says:
4472  *     FREEBLK ino=5, blkno=14, lbn=0, frags=2, oldfrags=0
4473  * where frags are the number of fragments to free and oldfrags are the
4474  * number of fragments to keep. To block align it, we have to change it to
4475  * have a valid full-size blkno, so it becomes:
4476  *     FREEBLK ino=5, blkno=8, lbn=0, frags=2, oldfrags=6
4477  */
4478 static void
4479 adjust_newfreework(struct freeblks *freeblks, int frag_offset)
4480 {
4481 	struct jfreeblk *jfreeblk;
4482 
4483 	KASSERT((LIST_FIRST(&freeblks->fb_jblkdephd) != NULL &&
4484 	    LIST_FIRST(&freeblks->fb_jblkdephd)->jb_list.wk_type == D_JFREEBLK),
4485 	    ("adjust_newfreework: Missing freeblks dependency"));
4486 
4487 	jfreeblk = WK_JFREEBLK(LIST_FIRST(&freeblks->fb_jblkdephd));
4488 	jfreeblk->jf_blkno -= frag_offset;
4489 	jfreeblk->jf_frags += frag_offset;
4490 }
4491 
4492 /*
4493  * Allocate a new jtrunc to track a partial truncation.
4494  */
4495 static struct jtrunc *
4496 newjtrunc(struct freeblks *freeblks,
4497 	off_t size,
4498 	int extsize)
4499 {
4500 	struct jtrunc *jtrunc;
4501 
4502 	jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS);
4503 	workitem_alloc(&jtrunc->jt_dep.jb_list, D_JTRUNC,
4504 	    freeblks->fb_list.wk_mp);
4505 	jtrunc->jt_dep.jb_jsegdep = newjsegdep(&jtrunc->jt_dep.jb_list);
4506 	jtrunc->jt_dep.jb_freeblks = freeblks;
4507 	jtrunc->jt_ino = freeblks->fb_inum;
4508 	jtrunc->jt_size = size;
4509 	jtrunc->jt_extsize = extsize;
4510 	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jtrunc->jt_dep, jb_deps);
4511 
4512 	return (jtrunc);
4513 }
4514 
4515 /*
4516  * If we're canceling a new bitmap we have to search for another ref
4517  * to move into the bmsafemap dep.  This might be better expressed
4518  * with another structure.
4519  */
4520 static void
4521 move_newblock_dep(struct jaddref *jaddref, struct inodedep *inodedep)
4522 {
4523 	struct inoref *inoref;
4524 	struct jaddref *jaddrefn;
4525 
4526 	jaddrefn = NULL;
4527 	for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
4528 	    inoref = TAILQ_NEXT(inoref, if_deps)) {
4529 		if ((jaddref->ja_state & NEWBLOCK) &&
4530 		    inoref->if_list.wk_type == D_JADDREF) {
4531 			jaddrefn = (struct jaddref *)inoref;
4532 			break;
4533 		}
4534 	}
4535 	if (jaddrefn == NULL)
4536 		return;
4537 	jaddrefn->ja_state &= ~(ATTACHED | UNDONE);
4538 	jaddrefn->ja_state |= jaddref->ja_state &
4539 	    (ATTACHED | UNDONE | NEWBLOCK);
4540 	jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK);
4541 	jaddref->ja_state |= ATTACHED;
4542 	LIST_REMOVE(jaddref, ja_bmdeps);
4543 	LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn,
4544 	    ja_bmdeps);
4545 }
4546 
4547 /*
4548  * Cancel a jaddref either before it has been written or while it is being
4549  * written.  This happens when a link is removed before the add reaches
4550  * the disk.  The jaddref dependency is kept linked into the bmsafemap
4551  * and inode to prevent the link count or bitmap from reaching the disk
4552  * until handle_workitem_remove() re-adjusts the counts and bitmaps as
4553  * required.
4554  *
4555  * Returns 1 if the canceled addref requires journaling of the remove and
4556  * 0 otherwise.
4557  */
4558 static int
4559 cancel_jaddref(struct jaddref *jaddref,
4560 	struct inodedep *inodedep,
4561 	struct workhead *wkhd)
4562 {
4563 	struct inoref *inoref;
4564 	struct jsegdep *jsegdep;
4565 	int needsj;
4566 
4567 	KASSERT((jaddref->ja_state & COMPLETE) == 0,
4568 	    ("cancel_jaddref: Canceling complete jaddref"));
4569 	if (jaddref->ja_state & (INPROGRESS | COMPLETE))
4570 		needsj = 1;
4571 	else
4572 		needsj = 0;
4573 	if (inodedep == NULL)
4574 		if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
4575 		    0, &inodedep) == 0)
4576 			panic("cancel_jaddref: Lost inodedep");
4577 	/*
4578 	 * We must adjust the nlink of any reference operation that follows
4579 	 * us so that it is consistent with the in-memory reference.  This
4580 	 * ensures that inode nlink rollbacks always have the correct link.
4581 	 */
4582 	if (needsj == 0) {
4583 		for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
4584 		    inoref = TAILQ_NEXT(inoref, if_deps)) {
4585 			if (inoref->if_state & GOINGAWAY)
4586 				break;
4587 			inoref->if_nlink--;
4588 		}
4589 	}
4590 	jsegdep = inoref_jseg(&jaddref->ja_ref);
4591 	if (jaddref->ja_state & NEWBLOCK)
4592 		move_newblock_dep(jaddref, inodedep);
4593 	wake_worklist(&jaddref->ja_list);
4594 	jaddref->ja_mkdir = NULL;
4595 	if (jaddref->ja_state & INPROGRESS) {
4596 		jaddref->ja_state &= ~INPROGRESS;
4597 		WORKLIST_REMOVE(&jaddref->ja_list);
4598 		jwork_insert(wkhd, jsegdep);
4599 	} else {
4600 		free_jsegdep(jsegdep);
4601 		if (jaddref->ja_state & DEPCOMPLETE)
4602 			remove_from_journal(&jaddref->ja_list);
4603 	}
4604 	jaddref->ja_state |= (GOINGAWAY | DEPCOMPLETE);
4605 	/*
4606 	 * Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove
4607 	 * can arrange for them to be freed with the bitmap.  Otherwise we
4608 	 * no longer need this addref attached to the inoreflst and it
4609 	 * will incorrectly adjust nlink if we leave it.
4610 	 */
4611 	if ((jaddref->ja_state & NEWBLOCK) == 0) {
4612 		TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
4613 		    if_deps);
4614 		jaddref->ja_state |= COMPLETE;
4615 		free_jaddref(jaddref);
4616 		return (needsj);
4617 	}
4618 	/*
4619 	 * Leave the head of the list for jsegdeps for fast merging.
4620 	 */
4621 	if (LIST_FIRST(wkhd) != NULL) {
4622 		jaddref->ja_state |= ONWORKLIST;
4623 		LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list);
4624 	} else
4625 		WORKLIST_INSERT(wkhd, &jaddref->ja_list);
4626 
4627 	return (needsj);
4628 }
4629 
4630 /*
4631  * Attempt to free a jaddref structure when some work completes.  This
4632  * should only succeed once the entry is written and all dependencies have
4633  * been notified.
4634  */
4635 static void
4636 free_jaddref(struct jaddref *jaddref)
4637 {
4638 
4639 	if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE)
4640 		return;
4641 	if (jaddref->ja_ref.if_jsegdep)
4642 		panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n",
4643 		    jaddref, jaddref->ja_state);
4644 	if (jaddref->ja_state & NEWBLOCK)
4645 		LIST_REMOVE(jaddref, ja_bmdeps);
4646 	if (jaddref->ja_state & (INPROGRESS | ONWORKLIST))
4647 		panic("free_jaddref: Bad state %p(0x%X)",
4648 		    jaddref, jaddref->ja_state);
4649 	if (jaddref->ja_mkdir != NULL)
4650 		panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state);
4651 	WORKITEM_FREE(jaddref, D_JADDREF);
4652 }
4653 
4654 /*
4655  * Free a jremref structure once it has been written or discarded.
4656  */
4657 static void
4658 free_jremref(struct jremref *jremref)
4659 {
4660 
4661 	if (jremref->jr_ref.if_jsegdep)
4662 		free_jsegdep(jremref->jr_ref.if_jsegdep);
4663 	if (jremref->jr_state & INPROGRESS)
4664 		panic("free_jremref: IO still pending");
4665 	WORKITEM_FREE(jremref, D_JREMREF);
4666 }
4667 
4668 /*
4669  * Free a jnewblk structure.
4670  */
4671 static void
4672 free_jnewblk(struct jnewblk *jnewblk)
4673 {
4674 
4675 	if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE)
4676 		return;
4677 	LIST_REMOVE(jnewblk, jn_deps);
4678 	if (jnewblk->jn_dep != NULL)
4679 		panic("free_jnewblk: Dependency still attached.");
4680 	WORKITEM_FREE(jnewblk, D_JNEWBLK);
4681 }
4682 
4683 /*
4684  * Cancel a jnewblk which has been been made redundant by frag extension.
4685  */
4686 static void
4687 cancel_jnewblk(struct jnewblk *jnewblk, struct workhead *wkhd)
4688 {
4689 	struct jsegdep *jsegdep;
4690 
4691 	CTR1(KTR_SUJ, "cancel_jnewblk: blkno %jd", jnewblk->jn_blkno);
4692 	jsegdep = jnewblk->jn_jsegdep;
4693 	if (jnewblk->jn_jsegdep == NULL || jnewblk->jn_dep == NULL)
4694 		panic("cancel_jnewblk: Invalid state");
4695 	jnewblk->jn_jsegdep  = NULL;
4696 	jnewblk->jn_dep = NULL;
4697 	jnewblk->jn_state |= GOINGAWAY;
4698 	if (jnewblk->jn_state & INPROGRESS) {
4699 		jnewblk->jn_state &= ~INPROGRESS;
4700 		WORKLIST_REMOVE(&jnewblk->jn_list);
4701 		jwork_insert(wkhd, jsegdep);
4702 	} else {
4703 		free_jsegdep(jsegdep);
4704 		remove_from_journal(&jnewblk->jn_list);
4705 	}
4706 	wake_worklist(&jnewblk->jn_list);
4707 	WORKLIST_INSERT(wkhd, &jnewblk->jn_list);
4708 }
4709 
4710 static void
4711 free_jblkdep(struct jblkdep *jblkdep)
4712 {
4713 
4714 	if (jblkdep->jb_list.wk_type == D_JFREEBLK)
4715 		WORKITEM_FREE(jblkdep, D_JFREEBLK);
4716 	else if (jblkdep->jb_list.wk_type == D_JTRUNC)
4717 		WORKITEM_FREE(jblkdep, D_JTRUNC);
4718 	else
4719 		panic("free_jblkdep: Unexpected type %s",
4720 		    TYPENAME(jblkdep->jb_list.wk_type));
4721 }
4722 
4723 /*
4724  * Free a single jseg once it is no longer referenced in memory or on
4725  * disk.  Reclaim journal blocks and dependencies waiting for the segment
4726  * to disappear.
4727  */
4728 static void
4729 free_jseg(struct jseg *jseg, struct jblocks *jblocks)
4730 {
4731 	struct freework *freework;
4732 
4733 	/*
4734 	 * Free freework structures that were lingering to indicate freed
4735 	 * indirect blocks that forced journal write ordering on reallocate.
4736 	 */
4737 	while ((freework = LIST_FIRST(&jseg->js_indirs)) != NULL)
4738 		indirblk_remove(freework);
4739 	if (jblocks->jb_oldestseg == jseg)
4740 		jblocks->jb_oldestseg = TAILQ_NEXT(jseg, js_next);
4741 	TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next);
4742 	jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size);
4743 	KASSERT(LIST_EMPTY(&jseg->js_entries),
4744 	    ("free_jseg: Freed jseg has valid entries."));
4745 	WORKITEM_FREE(jseg, D_JSEG);
4746 }
4747 
4748 /*
4749  * Free all jsegs that meet the criteria for being reclaimed and update
4750  * oldestseg.
4751  */
4752 static void
4753 free_jsegs(struct jblocks *jblocks)
4754 {
4755 	struct jseg *jseg;
4756 
4757 	/*
4758 	 * Free only those jsegs which have none allocated before them to
4759 	 * preserve the journal space ordering.
4760 	 */
4761 	while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) {
4762 		/*
4763 		 * Only reclaim space when nothing depends on this journal
4764 		 * set and another set has written that it is no longer
4765 		 * valid.
4766 		 */
4767 		if (jseg->js_refs != 0) {
4768 			jblocks->jb_oldestseg = jseg;
4769 			return;
4770 		}
4771 		if ((jseg->js_state & ALLCOMPLETE) != ALLCOMPLETE)
4772 			break;
4773 		if (jseg->js_seq > jblocks->jb_oldestwrseq)
4774 			break;
4775 		/*
4776 		 * We can free jsegs that didn't write entries when
4777 		 * oldestwrseq == js_seq.
4778 		 */
4779 		if (jseg->js_seq == jblocks->jb_oldestwrseq &&
4780 		    jseg->js_cnt != 0)
4781 			break;
4782 		free_jseg(jseg, jblocks);
4783 	}
4784 	/*
4785 	 * If we exited the loop above we still must discover the
4786 	 * oldest valid segment.
4787 	 */
4788 	if (jseg)
4789 		for (jseg = jblocks->jb_oldestseg; jseg != NULL;
4790 		     jseg = TAILQ_NEXT(jseg, js_next))
4791 			if (jseg->js_refs != 0)
4792 				break;
4793 	jblocks->jb_oldestseg = jseg;
4794 	/*
4795 	 * The journal has no valid records but some jsegs may still be
4796 	 * waiting on oldestwrseq to advance.  We force a small record
4797 	 * out to permit these lingering records to be reclaimed.
4798 	 */
4799 	if (jblocks->jb_oldestseg == NULL && !TAILQ_EMPTY(&jblocks->jb_segs))
4800 		jblocks->jb_needseg = 1;
4801 }
4802 
4803 /*
4804  * Release one reference to a jseg and free it if the count reaches 0.  This
4805  * should eventually reclaim journal space as well.
4806  */
4807 static void
4808 rele_jseg(struct jseg *jseg)
4809 {
4810 
4811 	KASSERT(jseg->js_refs > 0,
4812 	    ("free_jseg: Invalid refcnt %d", jseg->js_refs));
4813 	if (--jseg->js_refs != 0)
4814 		return;
4815 	free_jsegs(jseg->js_jblocks);
4816 }
4817 
4818 /*
4819  * Release a jsegdep and decrement the jseg count.
4820  */
4821 static void
4822 free_jsegdep(struct jsegdep *jsegdep)
4823 {
4824 
4825 	if (jsegdep->jd_seg)
4826 		rele_jseg(jsegdep->jd_seg);
4827 	WORKITEM_FREE(jsegdep, D_JSEGDEP);
4828 }
4829 
4830 /*
4831  * Wait for a journal item to make it to disk.  Initiate journal processing
4832  * if required.
4833  */
4834 static int
4835 jwait(struct worklist *wk, int waitfor)
4836 {
4837 
4838 	LOCK_OWNED(VFSTOUFS(wk->wk_mp));
4839 	/*
4840 	 * Blocking journal waits cause slow synchronous behavior.  Record
4841 	 * stats on the frequency of these blocking operations.
4842 	 */
4843 	if (waitfor == MNT_WAIT) {
4844 		stat_journal_wait++;
4845 		switch (wk->wk_type) {
4846 		case D_JREMREF:
4847 		case D_JMVREF:
4848 			stat_jwait_filepage++;
4849 			break;
4850 		case D_JTRUNC:
4851 		case D_JFREEBLK:
4852 			stat_jwait_freeblks++;
4853 			break;
4854 		case D_JNEWBLK:
4855 			stat_jwait_newblk++;
4856 			break;
4857 		case D_JADDREF:
4858 			stat_jwait_inode++;
4859 			break;
4860 		default:
4861 			break;
4862 		}
4863 	}
4864 	/*
4865 	 * If IO has not started we process the journal.  We can't mark the
4866 	 * worklist item as IOWAITING because we drop the lock while
4867 	 * processing the journal and the worklist entry may be freed after
4868 	 * this point.  The caller may call back in and re-issue the request.
4869 	 */
4870 	if ((wk->wk_state & INPROGRESS) == 0) {
4871 		softdep_process_journal(wk->wk_mp, wk, waitfor);
4872 		if (waitfor != MNT_WAIT)
4873 			return (EBUSY);
4874 		return (0);
4875 	}
4876 	if (waitfor != MNT_WAIT)
4877 		return (EBUSY);
4878 	wait_worklist(wk, "jwait");
4879 	return (0);
4880 }
4881 
4882 /*
4883  * Lookup an inodedep based on an inode pointer and set the nlinkdelta as
4884  * appropriate.  This is a convenience function to reduce duplicate code
4885  * for the setup and revert functions below.
4886  */
4887 static struct inodedep *
4888 inodedep_lookup_ip(struct inode *ip)
4889 {
4890 	struct inodedep *inodedep;
4891 
4892 	KASSERT(ip->i_nlink >= ip->i_effnlink,
4893 	    ("inodedep_lookup_ip: bad delta"));
4894 	(void) inodedep_lookup(ITOVFS(ip), ip->i_number, DEPALLOC,
4895 	    &inodedep);
4896 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
4897 	KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
4898 
4899 	return (inodedep);
4900 }
4901 
4902 /*
4903  * Called prior to creating a new inode and linking it to a directory.  The
4904  * jaddref structure must already be allocated by softdep_setup_inomapdep
4905  * and it is discovered here so we can initialize the mode and update
4906  * nlinkdelta.
4907  */
4908 void
4909 softdep_setup_create(struct inode *dp, struct inode *ip)
4910 {
4911 	struct inodedep *inodedep;
4912 	struct jaddref *jaddref __diagused;
4913 	struct vnode *dvp;
4914 
4915 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4916 	    ("softdep_setup_create called on non-softdep filesystem"));
4917 	KASSERT(ip->i_nlink == 1,
4918 	    ("softdep_setup_create: Invalid link count."));
4919 	dvp = ITOV(dp);
4920 	ACQUIRE_LOCK(ITOUMP(dp));
4921 	inodedep = inodedep_lookup_ip(ip);
4922 	if (DOINGSUJ(dvp)) {
4923 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4924 		    inoreflst);
4925 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
4926 		    ("softdep_setup_create: No addref structure present."));
4927 	}
4928 	FREE_LOCK(ITOUMP(dp));
4929 }
4930 
4931 /*
4932  * Create a jaddref structure to track the addition of a DOTDOT link when
4933  * we are reparenting an inode as part of a rename.  This jaddref will be
4934  * found by softdep_setup_directory_change.  Adjusts nlinkdelta for
4935  * non-journaling softdep.
4936  */
4937 void
4938 softdep_setup_dotdot_link(struct inode *dp, struct inode *ip)
4939 {
4940 	struct inodedep *inodedep;
4941 	struct jaddref *jaddref;
4942 	struct vnode *dvp;
4943 
4944 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4945 	    ("softdep_setup_dotdot_link called on non-softdep filesystem"));
4946 	dvp = ITOV(dp);
4947 	jaddref = NULL;
4948 	/*
4949 	 * We don't set MKDIR_PARENT as this is not tied to a mkdir and
4950 	 * is used as a normal link would be.
4951 	 */
4952 	if (DOINGSUJ(dvp))
4953 		jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
4954 		    dp->i_effnlink - 1, dp->i_mode);
4955 	ACQUIRE_LOCK(ITOUMP(dp));
4956 	inodedep = inodedep_lookup_ip(dp);
4957 	if (jaddref)
4958 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4959 		    if_deps);
4960 	FREE_LOCK(ITOUMP(dp));
4961 }
4962 
4963 /*
4964  * Create a jaddref structure to track a new link to an inode.  The directory
4965  * offset is not known until softdep_setup_directory_add or
4966  * softdep_setup_directory_change.  Adjusts nlinkdelta for non-journaling
4967  * softdep.
4968  */
4969 void
4970 softdep_setup_link(struct inode *dp, struct inode *ip)
4971 {
4972 	struct inodedep *inodedep;
4973 	struct jaddref *jaddref;
4974 	struct vnode *dvp;
4975 
4976 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4977 	    ("softdep_setup_link called on non-softdep filesystem"));
4978 	dvp = ITOV(dp);
4979 	jaddref = NULL;
4980 	if (DOINGSUJ(dvp))
4981 		jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1,
4982 		    ip->i_mode);
4983 	ACQUIRE_LOCK(ITOUMP(dp));
4984 	inodedep = inodedep_lookup_ip(ip);
4985 	if (jaddref)
4986 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4987 		    if_deps);
4988 	FREE_LOCK(ITOUMP(dp));
4989 }
4990 
4991 /*
4992  * Called to create the jaddref structures to track . and .. references as
4993  * well as lookup and further initialize the incomplete jaddref created
4994  * by softdep_setup_inomapdep when the inode was allocated.  Adjusts
4995  * nlinkdelta for non-journaling softdep.
4996  */
4997 void
4998 softdep_setup_mkdir(struct inode *dp, struct inode *ip)
4999 {
5000 	struct inodedep *inodedep;
5001 	struct jaddref *dotdotaddref;
5002 	struct jaddref *dotaddref;
5003 	struct jaddref *jaddref;
5004 	struct vnode *dvp;
5005 
5006 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
5007 	    ("softdep_setup_mkdir called on non-softdep filesystem"));
5008 	dvp = ITOV(dp);
5009 	dotaddref = dotdotaddref = NULL;
5010 	if (DOINGSUJ(dvp)) {
5011 		dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1,
5012 		    ip->i_mode);
5013 		dotaddref->ja_state |= MKDIR_BODY;
5014 		dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
5015 		    dp->i_effnlink - 1, dp->i_mode);
5016 		dotdotaddref->ja_state |= MKDIR_PARENT;
5017 	}
5018 	ACQUIRE_LOCK(ITOUMP(dp));
5019 	inodedep = inodedep_lookup_ip(ip);
5020 	if (DOINGSUJ(dvp)) {
5021 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
5022 		    inoreflst);
5023 		KASSERT(jaddref != NULL,
5024 		    ("softdep_setup_mkdir: No addref structure present."));
5025 		KASSERT(jaddref->ja_parent == dp->i_number,
5026 		    ("softdep_setup_mkdir: bad parent %ju",
5027 		    (uintmax_t)jaddref->ja_parent));
5028 		TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref,
5029 		    if_deps);
5030 	}
5031 	inodedep = inodedep_lookup_ip(dp);
5032 	if (DOINGSUJ(dvp))
5033 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst,
5034 		    &dotdotaddref->ja_ref, if_deps);
5035 	FREE_LOCK(ITOUMP(dp));
5036 }
5037 
5038 /*
5039  * Called to track nlinkdelta of the inode and parent directories prior to
5040  * unlinking a directory.
5041  */
5042 void
5043 softdep_setup_rmdir(struct inode *dp, struct inode *ip)
5044 {
5045 
5046 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
5047 	    ("softdep_setup_rmdir called on non-softdep filesystem"));
5048 	ACQUIRE_LOCK(ITOUMP(dp));
5049 	(void) inodedep_lookup_ip(ip);
5050 	(void) inodedep_lookup_ip(dp);
5051 	FREE_LOCK(ITOUMP(dp));
5052 }
5053 
5054 /*
5055  * Called to track nlinkdelta of the inode and parent directories prior to
5056  * unlink.
5057  */
5058 void
5059 softdep_setup_unlink(struct inode *dp, struct inode *ip)
5060 {
5061 
5062 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
5063 	    ("softdep_setup_unlink called on non-softdep filesystem"));
5064 	ACQUIRE_LOCK(ITOUMP(dp));
5065 	(void) inodedep_lookup_ip(ip);
5066 	(void) inodedep_lookup_ip(dp);
5067 	FREE_LOCK(ITOUMP(dp));
5068 }
5069 
5070 /*
5071  * Called to release the journal structures created by a failed non-directory
5072  * creation.  Adjusts nlinkdelta for non-journaling softdep.
5073  */
5074 void
5075 softdep_revert_create(struct inode *dp, struct inode *ip)
5076 {
5077 	struct inodedep *inodedep;
5078 	struct jaddref *jaddref;
5079 	struct vnode *dvp;
5080 
5081 	KASSERT(MOUNTEDSOFTDEP(ITOVFS((dp))) != 0,
5082 	    ("softdep_revert_create called on non-softdep filesystem"));
5083 	dvp = ITOV(dp);
5084 	ACQUIRE_LOCK(ITOUMP(dp));
5085 	inodedep = inodedep_lookup_ip(ip);
5086 	if (DOINGSUJ(dvp)) {
5087 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
5088 		    inoreflst);
5089 		KASSERT(jaddref->ja_parent == dp->i_number,
5090 		    ("softdep_revert_create: addref parent mismatch"));
5091 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
5092 	}
5093 	FREE_LOCK(ITOUMP(dp));
5094 }
5095 
5096 /*
5097  * Called to release the journal structures created by a failed link
5098  * addition.  Adjusts nlinkdelta for non-journaling softdep.
5099  */
5100 void
5101 softdep_revert_link(struct inode *dp, struct inode *ip)
5102 {
5103 	struct inodedep *inodedep;
5104 	struct jaddref *jaddref;
5105 	struct vnode *dvp;
5106 
5107 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
5108 	    ("softdep_revert_link called on non-softdep filesystem"));
5109 	dvp = ITOV(dp);
5110 	ACQUIRE_LOCK(ITOUMP(dp));
5111 	inodedep = inodedep_lookup_ip(ip);
5112 	if (DOINGSUJ(dvp)) {
5113 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
5114 		    inoreflst);
5115 		KASSERT(jaddref->ja_parent == dp->i_number,
5116 		    ("softdep_revert_link: addref parent mismatch"));
5117 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
5118 	}
5119 	FREE_LOCK(ITOUMP(dp));
5120 }
5121 
5122 /*
5123  * Called to release the journal structures created by a failed mkdir
5124  * attempt.  Adjusts nlinkdelta for non-journaling softdep.
5125  */
5126 void
5127 softdep_revert_mkdir(struct inode *dp, struct inode *ip)
5128 {
5129 	struct inodedep *inodedep;
5130 	struct jaddref *jaddref;
5131 	struct jaddref *dotaddref;
5132 	struct vnode *dvp;
5133 
5134 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
5135 	    ("softdep_revert_mkdir called on non-softdep filesystem"));
5136 	dvp = ITOV(dp);
5137 
5138 	ACQUIRE_LOCK(ITOUMP(dp));
5139 	inodedep = inodedep_lookup_ip(dp);
5140 	if (DOINGSUJ(dvp)) {
5141 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
5142 		    inoreflst);
5143 		KASSERT(jaddref->ja_parent == ip->i_number,
5144 		    ("softdep_revert_mkdir: dotdot addref parent mismatch"));
5145 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
5146 	}
5147 	inodedep = inodedep_lookup_ip(ip);
5148 	if (DOINGSUJ(dvp)) {
5149 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
5150 		    inoreflst);
5151 		KASSERT(jaddref->ja_parent == dp->i_number,
5152 		    ("softdep_revert_mkdir: addref parent mismatch"));
5153 		dotaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
5154 		    inoreflst, if_deps);
5155 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
5156 		KASSERT(dotaddref->ja_parent == ip->i_number,
5157 		    ("softdep_revert_mkdir: dot addref parent mismatch"));
5158 		cancel_jaddref(dotaddref, inodedep, &inodedep->id_inowait);
5159 	}
5160 	FREE_LOCK(ITOUMP(dp));
5161 }
5162 
5163 /*
5164  * Called to correct nlinkdelta after a failed rmdir.
5165  */
5166 void
5167 softdep_revert_rmdir(struct inode *dp, struct inode *ip)
5168 {
5169 
5170 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
5171 	    ("softdep_revert_rmdir called on non-softdep filesystem"));
5172 	ACQUIRE_LOCK(ITOUMP(dp));
5173 	(void) inodedep_lookup_ip(ip);
5174 	(void) inodedep_lookup_ip(dp);
5175 	FREE_LOCK(ITOUMP(dp));
5176 }
5177 
5178 /*
5179  * Protecting the freemaps (or bitmaps).
5180  *
5181  * To eliminate the need to execute fsck before mounting a filesystem
5182  * after a power failure, one must (conservatively) guarantee that the
5183  * on-disk copy of the bitmaps never indicate that a live inode or block is
5184  * free.  So, when a block or inode is allocated, the bitmap should be
5185  * updated (on disk) before any new pointers.  When a block or inode is
5186  * freed, the bitmap should not be updated until all pointers have been
5187  * reset.  The latter dependency is handled by the delayed de-allocation
5188  * approach described below for block and inode de-allocation.  The former
5189  * dependency is handled by calling the following procedure when a block or
5190  * inode is allocated. When an inode is allocated an "inodedep" is created
5191  * with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
5192  * Each "inodedep" is also inserted into the hash indexing structure so
5193  * that any additional link additions can be made dependent on the inode
5194  * allocation.
5195  *
5196  * The ufs filesystem maintains a number of free block counts (e.g., per
5197  * cylinder group, per cylinder and per <cylinder, rotational position> pair)
5198  * in addition to the bitmaps.  These counts are used to improve efficiency
5199  * during allocation and therefore must be consistent with the bitmaps.
5200  * There is no convenient way to guarantee post-crash consistency of these
5201  * counts with simple update ordering, for two main reasons: (1) The counts
5202  * and bitmaps for a single cylinder group block are not in the same disk
5203  * sector.  If a disk write is interrupted (e.g., by power failure), one may
5204  * be written and the other not.  (2) Some of the counts are located in the
5205  * superblock rather than the cylinder group block. So, we focus our soft
5206  * updates implementation on protecting the bitmaps. When mounting a
5207  * filesystem, we recompute the auxiliary counts from the bitmaps.
5208  */
5209 
5210 /*
5211  * Called just after updating the cylinder group block to allocate an inode.
5212  */
5213 void
5214 softdep_setup_inomapdep(
5215 	struct buf *bp,		/* buffer for cylgroup block with inode map */
5216 	struct inode *ip,	/* inode related to allocation */
5217 	ino_t newinum,		/* new inode number being allocated */
5218 	int mode)
5219 {
5220 	struct inodedep *inodedep;
5221 	struct bmsafemap *bmsafemap;
5222 	struct jaddref *jaddref;
5223 	struct mount *mp;
5224 	struct fs *fs;
5225 
5226 	mp = ITOVFS(ip);
5227 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5228 	    ("softdep_setup_inomapdep called on non-softdep filesystem"));
5229 	fs = VFSTOUFS(mp)->um_fs;
5230 	jaddref = NULL;
5231 
5232 	/*
5233 	 * Allocate the journal reference add structure so that the bitmap
5234 	 * can be dependent on it.
5235 	 */
5236 	if (MOUNTEDSUJ(mp)) {
5237 		jaddref = newjaddref(ip, newinum, 0, 0, mode);
5238 		jaddref->ja_state |= NEWBLOCK;
5239 	}
5240 
5241 	/*
5242 	 * Create a dependency for the newly allocated inode.
5243 	 * Panic if it already exists as something is seriously wrong.
5244 	 * Otherwise add it to the dependency list for the buffer holding
5245 	 * the cylinder group map from which it was allocated.
5246 	 *
5247 	 * We have to preallocate a bmsafemap entry in case it is needed
5248 	 * in bmsafemap_lookup since once we allocate the inodedep, we
5249 	 * have to finish initializing it before we can FREE_LOCK().
5250 	 * By preallocating, we avoid FREE_LOCK() while doing a malloc
5251 	 * in bmsafemap_lookup. We cannot call bmsafemap_lookup before
5252 	 * creating the inodedep as it can be freed during the time
5253 	 * that we FREE_LOCK() while allocating the inodedep. We must
5254 	 * call workitem_alloc() before entering the locked section as
5255 	 * it also acquires the lock and we must avoid trying doing so
5256 	 * recursively.
5257 	 */
5258 	bmsafemap = malloc(sizeof(struct bmsafemap),
5259 	    M_BMSAFEMAP, M_SOFTDEP_FLAGS);
5260 	workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
5261 	ACQUIRE_LOCK(ITOUMP(ip));
5262 	if ((inodedep_lookup(mp, newinum, DEPALLOC, &inodedep)))
5263 		panic("softdep_setup_inomapdep: dependency %p for new"
5264 		    "inode already exists", inodedep);
5265 	bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum), bmsafemap);
5266 	if (jaddref) {
5267 		LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps);
5268 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
5269 		    if_deps);
5270 	} else {
5271 		inodedep->id_state |= ONDEPLIST;
5272 		LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
5273 	}
5274 	inodedep->id_bmsafemap = bmsafemap;
5275 	inodedep->id_state &= ~DEPCOMPLETE;
5276 	FREE_LOCK(ITOUMP(ip));
5277 }
5278 
5279 /*
5280  * Called just after updating the cylinder group block to
5281  * allocate block or fragment.
5282  */
5283 void
5284 softdep_setup_blkmapdep(
5285 	struct buf *bp,		/* buffer for cylgroup block with block map */
5286 	struct mount *mp,	/* filesystem doing allocation */
5287 	ufs2_daddr_t newblkno,	/* number of newly allocated block */
5288 	int frags,		/* Number of fragments. */
5289 	int oldfrags)		/* Previous number of fragments for extend. */
5290 {
5291 	struct newblk *newblk;
5292 	struct bmsafemap *bmsafemap;
5293 	struct jnewblk *jnewblk;
5294 	struct ufsmount *ump;
5295 	struct fs *fs;
5296 
5297 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5298 	    ("softdep_setup_blkmapdep called on non-softdep filesystem"));
5299 	ump = VFSTOUFS(mp);
5300 	fs = ump->um_fs;
5301 	jnewblk = NULL;
5302 	/*
5303 	 * Create a dependency for the newly allocated block.
5304 	 * Add it to the dependency list for the buffer holding
5305 	 * the cylinder group map from which it was allocated.
5306 	 */
5307 	if (MOUNTEDSUJ(mp)) {
5308 		jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS);
5309 		workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp);
5310 		jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list);
5311 		jnewblk->jn_state = ATTACHED;
5312 		jnewblk->jn_blkno = newblkno;
5313 		jnewblk->jn_frags = frags;
5314 		jnewblk->jn_oldfrags = oldfrags;
5315 #ifdef INVARIANTS
5316 		{
5317 			struct cg *cgp;
5318 			uint8_t *blksfree;
5319 			long bno;
5320 			int i;
5321 
5322 			cgp = (struct cg *)bp->b_data;
5323 			blksfree = cg_blksfree(cgp);
5324 			bno = dtogd(fs, jnewblk->jn_blkno);
5325 			for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags;
5326 			    i++) {
5327 				if (isset(blksfree, bno + i))
5328 					panic("softdep_setup_blkmapdep: "
5329 					    "free fragment %d from %d-%d "
5330 					    "state 0x%X dep %p", i,
5331 					    jnewblk->jn_oldfrags,
5332 					    jnewblk->jn_frags,
5333 					    jnewblk->jn_state,
5334 					    jnewblk->jn_dep);
5335 			}
5336 		}
5337 #endif
5338 	}
5339 
5340 	CTR3(KTR_SUJ,
5341 	    "softdep_setup_blkmapdep: blkno %jd frags %d oldfrags %d",
5342 	    newblkno, frags, oldfrags);
5343 	ACQUIRE_LOCK(ump);
5344 	if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0)
5345 		panic("softdep_setup_blkmapdep: found block");
5346 	newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp,
5347 	    dtog(fs, newblkno), NULL);
5348 	if (jnewblk) {
5349 		jnewblk->jn_dep = (struct worklist *)newblk;
5350 		LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps);
5351 	} else {
5352 		newblk->nb_state |= ONDEPLIST;
5353 		LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
5354 	}
5355 	newblk->nb_bmsafemap = bmsafemap;
5356 	newblk->nb_jnewblk = jnewblk;
5357 	FREE_LOCK(ump);
5358 }
5359 
5360 #define	BMSAFEMAP_HASH(ump, cg) \
5361       (&(ump)->bmsafemap_hashtbl[(cg) & (ump)->bmsafemap_hash_size])
5362 
5363 static int
5364 bmsafemap_find(
5365 	struct bmsafemap_hashhead *bmsafemaphd,
5366 	int cg,
5367 	struct bmsafemap **bmsafemapp)
5368 {
5369 	struct bmsafemap *bmsafemap;
5370 
5371 	LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash)
5372 		if (bmsafemap->sm_cg == cg)
5373 			break;
5374 	if (bmsafemap) {
5375 		*bmsafemapp = bmsafemap;
5376 		return (1);
5377 	}
5378 	*bmsafemapp = NULL;
5379 
5380 	return (0);
5381 }
5382 
5383 /*
5384  * Find the bmsafemap associated with a cylinder group buffer.
5385  * If none exists, create one. The buffer must be locked when
5386  * this routine is called and this routine must be called with
5387  * the softdep lock held. To avoid giving up the lock while
5388  * allocating a new bmsafemap, a preallocated bmsafemap may be
5389  * provided. If it is provided but not needed, it is freed.
5390  */
5391 static struct bmsafemap *
5392 bmsafemap_lookup(struct mount *mp,
5393 	struct buf *bp,
5394 	int cg,
5395 	struct bmsafemap *newbmsafemap)
5396 {
5397 	struct bmsafemap_hashhead *bmsafemaphd;
5398 	struct bmsafemap *bmsafemap, *collision;
5399 	struct worklist *wk;
5400 	struct ufsmount *ump;
5401 
5402 	ump = VFSTOUFS(mp);
5403 	LOCK_OWNED(ump);
5404 	KASSERT(bp != NULL, ("bmsafemap_lookup: missing buffer"));
5405 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5406 		if (wk->wk_type == D_BMSAFEMAP) {
5407 			if (newbmsafemap)
5408 				WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP);
5409 			return (WK_BMSAFEMAP(wk));
5410 		}
5411 	}
5412 	bmsafemaphd = BMSAFEMAP_HASH(ump, cg);
5413 	if (bmsafemap_find(bmsafemaphd, cg, &bmsafemap) == 1) {
5414 		if (newbmsafemap)
5415 			WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP);
5416 		return (bmsafemap);
5417 	}
5418 	if (newbmsafemap) {
5419 		bmsafemap = newbmsafemap;
5420 	} else {
5421 		FREE_LOCK(ump);
5422 		bmsafemap = malloc(sizeof(struct bmsafemap),
5423 			M_BMSAFEMAP, M_SOFTDEP_FLAGS);
5424 		workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
5425 		ACQUIRE_LOCK(ump);
5426 	}
5427 	bmsafemap->sm_buf = bp;
5428 	LIST_INIT(&bmsafemap->sm_inodedephd);
5429 	LIST_INIT(&bmsafemap->sm_inodedepwr);
5430 	LIST_INIT(&bmsafemap->sm_newblkhd);
5431 	LIST_INIT(&bmsafemap->sm_newblkwr);
5432 	LIST_INIT(&bmsafemap->sm_jaddrefhd);
5433 	LIST_INIT(&bmsafemap->sm_jnewblkhd);
5434 	LIST_INIT(&bmsafemap->sm_freehd);
5435 	LIST_INIT(&bmsafemap->sm_freewr);
5436 	if (bmsafemap_find(bmsafemaphd, cg, &collision) == 1) {
5437 		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
5438 		return (collision);
5439 	}
5440 	bmsafemap->sm_cg = cg;
5441 	LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash);
5442 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
5443 	WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list);
5444 	return (bmsafemap);
5445 }
5446 
5447 /*
5448  * Direct block allocation dependencies.
5449  *
5450  * When a new block is allocated, the corresponding disk locations must be
5451  * initialized (with zeros or new data) before the on-disk inode points to
5452  * them.  Also, the freemap from which the block was allocated must be
5453  * updated (on disk) before the inode's pointer. These two dependencies are
5454  * independent of each other and are needed for all file blocks and indirect
5455  * blocks that are pointed to directly by the inode.  Just before the
5456  * "in-core" version of the inode is updated with a newly allocated block
5457  * number, a procedure (below) is called to setup allocation dependency
5458  * structures.  These structures are removed when the corresponding
5459  * dependencies are satisfied or when the block allocation becomes obsolete
5460  * (i.e., the file is deleted, the block is de-allocated, or the block is a
5461  * fragment that gets upgraded).  All of these cases are handled in
5462  * procedures described later.
5463  *
5464  * When a file extension causes a fragment to be upgraded, either to a larger
5465  * fragment or to a full block, the on-disk location may change (if the
5466  * previous fragment could not simply be extended). In this case, the old
5467  * fragment must be de-allocated, but not until after the inode's pointer has
5468  * been updated. In most cases, this is handled by later procedures, which
5469  * will construct a "freefrag" structure to be added to the workitem queue
5470  * when the inode update is complete (or obsolete).  The main exception to
5471  * this is when an allocation occurs while a pending allocation dependency
5472  * (for the same block pointer) remains.  This case is handled in the main
5473  * allocation dependency setup procedure by immediately freeing the
5474  * unreferenced fragments.
5475  */
5476 void
5477 softdep_setup_allocdirect(
5478 	struct inode *ip,	/* inode to which block is being added */
5479 	ufs_lbn_t off,		/* block pointer within inode */
5480 	ufs2_daddr_t newblkno,	/* disk block number being added */
5481 	ufs2_daddr_t oldblkno,	/* previous block number, 0 unless frag */
5482 	long newsize,		/* size of new block */
5483 	long oldsize,		/* size of new block */
5484 	struct buf *bp)		/* bp for allocated block */
5485 {
5486 	struct allocdirect *adp, *oldadp;
5487 	struct allocdirectlst *adphead;
5488 	struct freefrag *freefrag;
5489 	struct inodedep *inodedep;
5490 	struct pagedep *pagedep;
5491 	struct jnewblk *jnewblk;
5492 	struct newblk *newblk;
5493 	struct mount *mp;
5494 	ufs_lbn_t lbn;
5495 
5496 	lbn = bp->b_lblkno;
5497 	mp = ITOVFS(ip);
5498 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5499 	    ("softdep_setup_allocdirect called on non-softdep filesystem"));
5500 	if (oldblkno && oldblkno != newblkno)
5501 		/*
5502 		 * The usual case is that a smaller fragment that
5503 		 * was just allocated has been replaced with a bigger
5504 		 * fragment or a full-size block. If it is marked as
5505 		 * B_DELWRI, the current contents have not been written
5506 		 * to disk. It is possible that the block was written
5507 		 * earlier, but very uncommon. If the block has never
5508 		 * been written, there is no need to send a BIO_DELETE
5509 		 * for it when it is freed. The gain from avoiding the
5510 		 * TRIMs for the common case of unwritten blocks far
5511 		 * exceeds the cost of the write amplification for the
5512 		 * uncommon case of failing to send a TRIM for a block
5513 		 * that had been written.
5514 		 */
5515 		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn,
5516 		    (bp->b_flags & B_DELWRI) != 0 ? NOTRIM_KEY : SINGLETON_KEY);
5517 	else
5518 		freefrag = NULL;
5519 
5520 	CTR6(KTR_SUJ,
5521 	    "softdep_setup_allocdirect: ino %d blkno %jd oldblkno %jd "
5522 	    "off %jd newsize %ld oldsize %d",
5523 	    ip->i_number, newblkno, oldblkno, off, newsize, oldsize);
5524 	ACQUIRE_LOCK(ITOUMP(ip));
5525 	if (off >= UFS_NDADDR) {
5526 		if (lbn > 0)
5527 			panic("softdep_setup_allocdirect: bad lbn %jd, off %jd",
5528 			    lbn, off);
5529 		/* allocating an indirect block */
5530 		if (oldblkno != 0)
5531 			panic("softdep_setup_allocdirect: non-zero indir");
5532 	} else {
5533 		if (off != lbn)
5534 			panic("softdep_setup_allocdirect: lbn %jd != off %jd",
5535 			    lbn, off);
5536 		/*
5537 		 * Allocating a direct block.
5538 		 *
5539 		 * If we are allocating a directory block, then we must
5540 		 * allocate an associated pagedep to track additions and
5541 		 * deletions.
5542 		 */
5543 		if ((ip->i_mode & IFMT) == IFDIR)
5544 			pagedep_lookup(mp, bp, ip->i_number, off, DEPALLOC,
5545 			    &pagedep);
5546 	}
5547 	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
5548 		panic("softdep_setup_allocdirect: lost block");
5549 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5550 	    ("softdep_setup_allocdirect: newblk already initialized"));
5551 	/*
5552 	 * Convert the newblk to an allocdirect.
5553 	 */
5554 	WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT);
5555 	adp = (struct allocdirect *)newblk;
5556 	newblk->nb_freefrag = freefrag;
5557 	adp->ad_offset = off;
5558 	adp->ad_oldblkno = oldblkno;
5559 	adp->ad_newsize = newsize;
5560 	adp->ad_oldsize = oldsize;
5561 
5562 	/*
5563 	 * Finish initializing the journal.
5564 	 */
5565 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5566 		jnewblk->jn_ino = ip->i_number;
5567 		jnewblk->jn_lbn = lbn;
5568 		add_to_journal(&jnewblk->jn_list);
5569 	}
5570 	if (freefrag && freefrag->ff_jdep != NULL &&
5571 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5572 		add_to_journal(freefrag->ff_jdep);
5573 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
5574 	adp->ad_inodedep = inodedep;
5575 
5576 	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
5577 	/*
5578 	 * The list of allocdirects must be kept in sorted and ascending
5579 	 * order so that the rollback routines can quickly determine the
5580 	 * first uncommitted block (the size of the file stored on disk
5581 	 * ends at the end of the lowest committed fragment, or if there
5582 	 * are no fragments, at the end of the highest committed block).
5583 	 * Since files generally grow, the typical case is that the new
5584 	 * block is to be added at the end of the list. We speed this
5585 	 * special case by checking against the last allocdirect in the
5586 	 * list before laboriously traversing the list looking for the
5587 	 * insertion point.
5588 	 */
5589 	adphead = &inodedep->id_newinoupdt;
5590 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
5591 	if (oldadp == NULL || oldadp->ad_offset <= off) {
5592 		/* insert at end of list */
5593 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
5594 		if (oldadp != NULL && oldadp->ad_offset == off)
5595 			allocdirect_merge(adphead, adp, oldadp);
5596 		FREE_LOCK(ITOUMP(ip));
5597 		return;
5598 	}
5599 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
5600 		if (oldadp->ad_offset >= off)
5601 			break;
5602 	}
5603 	if (oldadp == NULL)
5604 		panic("softdep_setup_allocdirect: lost entry");
5605 	/* insert in middle of list */
5606 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5607 	if (oldadp->ad_offset == off)
5608 		allocdirect_merge(adphead, adp, oldadp);
5609 
5610 	FREE_LOCK(ITOUMP(ip));
5611 }
5612 
5613 /*
5614  * Merge a newer and older journal record to be stored either in a
5615  * newblock or freefrag.  This handles aggregating journal records for
5616  * fragment allocation into a second record as well as replacing a
5617  * journal free with an aborted journal allocation.  A segment for the
5618  * oldest record will be placed on wkhd if it has been written.  If not
5619  * the segment for the newer record will suffice.
5620  */
5621 static struct worklist *
5622 jnewblk_merge(struct worklist *new,
5623 	struct worklist *old,
5624 	struct workhead *wkhd)
5625 {
5626 	struct jnewblk *njnewblk;
5627 	struct jnewblk *jnewblk;
5628 
5629 	/* Handle NULLs to simplify callers. */
5630 	if (new == NULL)
5631 		return (old);
5632 	if (old == NULL)
5633 		return (new);
5634 	/* Replace a jfreefrag with a jnewblk. */
5635 	if (new->wk_type == D_JFREEFRAG) {
5636 		if (WK_JNEWBLK(old)->jn_blkno != WK_JFREEFRAG(new)->fr_blkno)
5637 			panic("jnewblk_merge: blkno mismatch: %p, %p",
5638 			    old, new);
5639 		cancel_jfreefrag(WK_JFREEFRAG(new));
5640 		return (old);
5641 	}
5642 	if (old->wk_type != D_JNEWBLK || new->wk_type != D_JNEWBLK)
5643 		panic("jnewblk_merge: Bad type: old %d new %d\n",
5644 		    old->wk_type, new->wk_type);
5645 	/*
5646 	 * Handle merging of two jnewblk records that describe
5647 	 * different sets of fragments in the same block.
5648 	 */
5649 	jnewblk = WK_JNEWBLK(old);
5650 	njnewblk = WK_JNEWBLK(new);
5651 	if (jnewblk->jn_blkno != njnewblk->jn_blkno)
5652 		panic("jnewblk_merge: Merging disparate blocks.");
5653 	/*
5654 	 * The record may be rolled back in the cg.
5655 	 */
5656 	if (jnewblk->jn_state & UNDONE) {
5657 		jnewblk->jn_state &= ~UNDONE;
5658 		njnewblk->jn_state |= UNDONE;
5659 		njnewblk->jn_state &= ~ATTACHED;
5660 	}
5661 	/*
5662 	 * We modify the newer addref and free the older so that if neither
5663 	 * has been written the most up-to-date copy will be on disk.  If
5664 	 * both have been written but rolled back we only temporarily need
5665 	 * one of them to fix the bits when the cg write completes.
5666 	 */
5667 	jnewblk->jn_state |= ATTACHED | COMPLETE;
5668 	njnewblk->jn_oldfrags = jnewblk->jn_oldfrags;
5669 	cancel_jnewblk(jnewblk, wkhd);
5670 	WORKLIST_REMOVE(&jnewblk->jn_list);
5671 	free_jnewblk(jnewblk);
5672 	return (new);
5673 }
5674 
5675 /*
5676  * Replace an old allocdirect dependency with a newer one.
5677  */
5678 static void
5679 allocdirect_merge(
5680 	struct allocdirectlst *adphead,	/* head of list holding allocdirects */
5681 	struct allocdirect *newadp,	/* allocdirect being added */
5682 	struct allocdirect *oldadp)	/* existing allocdirect being checked */
5683 {
5684 	struct worklist *wk;
5685 	struct freefrag *freefrag;
5686 
5687 	freefrag = NULL;
5688 	LOCK_OWNED(VFSTOUFS(newadp->ad_list.wk_mp));
5689 	if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
5690 	    newadp->ad_oldsize != oldadp->ad_newsize ||
5691 	    newadp->ad_offset >= UFS_NDADDR)
5692 		panic("%s %jd != new %jd || old size %ld != new %ld",
5693 		    "allocdirect_merge: old blkno",
5694 		    (intmax_t)newadp->ad_oldblkno,
5695 		    (intmax_t)oldadp->ad_newblkno,
5696 		    newadp->ad_oldsize, oldadp->ad_newsize);
5697 	newadp->ad_oldblkno = oldadp->ad_oldblkno;
5698 	newadp->ad_oldsize = oldadp->ad_oldsize;
5699 	/*
5700 	 * If the old dependency had a fragment to free or had never
5701 	 * previously had a block allocated, then the new dependency
5702 	 * can immediately post its freefrag and adopt the old freefrag.
5703 	 * This action is done by swapping the freefrag dependencies.
5704 	 * The new dependency gains the old one's freefrag, and the
5705 	 * old one gets the new one and then immediately puts it on
5706 	 * the worklist when it is freed by free_newblk. It is
5707 	 * not possible to do this swap when the old dependency had a
5708 	 * non-zero size but no previous fragment to free. This condition
5709 	 * arises when the new block is an extension of the old block.
5710 	 * Here, the first part of the fragment allocated to the new
5711 	 * dependency is part of the block currently claimed on disk by
5712 	 * the old dependency, so cannot legitimately be freed until the
5713 	 * conditions for the new dependency are fulfilled.
5714 	 */
5715 	freefrag = newadp->ad_freefrag;
5716 	if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
5717 		newadp->ad_freefrag = oldadp->ad_freefrag;
5718 		oldadp->ad_freefrag = freefrag;
5719 	}
5720 	/*
5721 	 * If we are tracking a new directory-block allocation,
5722 	 * move it from the old allocdirect to the new allocdirect.
5723 	 */
5724 	if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) {
5725 		WORKLIST_REMOVE(wk);
5726 		if (!LIST_EMPTY(&oldadp->ad_newdirblk))
5727 			panic("allocdirect_merge: extra newdirblk");
5728 		WORKLIST_INSERT(&newadp->ad_newdirblk, wk);
5729 	}
5730 	TAILQ_REMOVE(adphead, oldadp, ad_next);
5731 	/*
5732 	 * We need to move any journal dependencies over to the freefrag
5733 	 * that releases this block if it exists.  Otherwise we are
5734 	 * extending an existing block and we'll wait until that is
5735 	 * complete to release the journal space and extend the
5736 	 * new journal to cover this old space as well.
5737 	 */
5738 	if (freefrag == NULL) {
5739 		if (oldadp->ad_newblkno != newadp->ad_newblkno)
5740 			panic("allocdirect_merge: %jd != %jd",
5741 			    oldadp->ad_newblkno, newadp->ad_newblkno);
5742 		newadp->ad_block.nb_jnewblk = (struct jnewblk *)
5743 		    jnewblk_merge(&newadp->ad_block.nb_jnewblk->jn_list,
5744 		    &oldadp->ad_block.nb_jnewblk->jn_list,
5745 		    &newadp->ad_block.nb_jwork);
5746 		oldadp->ad_block.nb_jnewblk = NULL;
5747 		cancel_newblk(&oldadp->ad_block, NULL,
5748 		    &newadp->ad_block.nb_jwork);
5749 	} else {
5750 		wk = (struct worklist *) cancel_newblk(&oldadp->ad_block,
5751 		    &freefrag->ff_list, &freefrag->ff_jwork);
5752 		freefrag->ff_jdep = jnewblk_merge(freefrag->ff_jdep, wk,
5753 		    &freefrag->ff_jwork);
5754 	}
5755 	free_newblk(&oldadp->ad_block);
5756 }
5757 
5758 /*
5759  * Allocate a jfreefrag structure to journal a single block free.
5760  */
5761 static struct jfreefrag *
5762 newjfreefrag(struct freefrag *freefrag,
5763 	struct inode *ip,
5764 	ufs2_daddr_t blkno,
5765 	long size,
5766 	ufs_lbn_t lbn)
5767 {
5768 	struct jfreefrag *jfreefrag;
5769 	struct fs *fs;
5770 
5771 	fs = ITOFS(ip);
5772 	jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG,
5773 	    M_SOFTDEP_FLAGS);
5774 	workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, ITOVFS(ip));
5775 	jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list);
5776 	jfreefrag->fr_state = ATTACHED | DEPCOMPLETE;
5777 	jfreefrag->fr_ino = ip->i_number;
5778 	jfreefrag->fr_lbn = lbn;
5779 	jfreefrag->fr_blkno = blkno;
5780 	jfreefrag->fr_frags = numfrags(fs, size);
5781 	jfreefrag->fr_freefrag = freefrag;
5782 
5783 	return (jfreefrag);
5784 }
5785 
5786 /*
5787  * Allocate a new freefrag structure.
5788  */
5789 static struct freefrag *
5790 newfreefrag(struct inode *ip,
5791 	ufs2_daddr_t blkno,
5792 	long size,
5793 	ufs_lbn_t lbn,
5794 	uint64_t key)
5795 {
5796 	struct freefrag *freefrag;
5797 	struct ufsmount *ump;
5798 	struct fs *fs;
5799 
5800 	CTR4(KTR_SUJ, "newfreefrag: ino %d blkno %jd size %ld lbn %jd",
5801 	    ip->i_number, blkno, size, lbn);
5802 	ump = ITOUMP(ip);
5803 	fs = ump->um_fs;
5804 	if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
5805 		panic("newfreefrag: frag size");
5806 	freefrag = malloc(sizeof(struct freefrag),
5807 	    M_FREEFRAG, M_SOFTDEP_FLAGS);
5808 	workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ump));
5809 	freefrag->ff_state = ATTACHED;
5810 	LIST_INIT(&freefrag->ff_jwork);
5811 	freefrag->ff_inum = ip->i_number;
5812 	freefrag->ff_vtype = ITOV(ip)->v_type;
5813 	freefrag->ff_blkno = blkno;
5814 	freefrag->ff_fragsize = size;
5815 	freefrag->ff_key = key;
5816 
5817 	if (MOUNTEDSUJ(UFSTOVFS(ump))) {
5818 		freefrag->ff_jdep = (struct worklist *)
5819 		    newjfreefrag(freefrag, ip, blkno, size, lbn);
5820 	} else {
5821 		freefrag->ff_state |= DEPCOMPLETE;
5822 		freefrag->ff_jdep = NULL;
5823 	}
5824 
5825 	return (freefrag);
5826 }
5827 
5828 /*
5829  * This workitem de-allocates fragments that were replaced during
5830  * file block allocation.
5831  */
5832 static void
5833 handle_workitem_freefrag(struct freefrag *freefrag)
5834 {
5835 	struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp);
5836 	struct workhead wkhd;
5837 
5838 	CTR3(KTR_SUJ,
5839 	    "handle_workitem_freefrag: ino %d blkno %jd size %ld",
5840 	    freefrag->ff_inum, freefrag->ff_blkno, freefrag->ff_fragsize);
5841 	/*
5842 	 * It would be illegal to add new completion items to the
5843 	 * freefrag after it was schedule to be done so it must be
5844 	 * safe to modify the list head here.
5845 	 */
5846 	LIST_INIT(&wkhd);
5847 	ACQUIRE_LOCK(ump);
5848 	LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list);
5849 	/*
5850 	 * If the journal has not been written we must cancel it here.
5851 	 */
5852 	if (freefrag->ff_jdep) {
5853 		if (freefrag->ff_jdep->wk_type != D_JNEWBLK)
5854 			panic("handle_workitem_freefrag: Unexpected type %d\n",
5855 			    freefrag->ff_jdep->wk_type);
5856 		cancel_jnewblk(WK_JNEWBLK(freefrag->ff_jdep), &wkhd);
5857 	}
5858 	FREE_LOCK(ump);
5859 	ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno,
5860 	   freefrag->ff_fragsize, freefrag->ff_inum, freefrag->ff_vtype,
5861 	   &wkhd, freefrag->ff_key);
5862 	ACQUIRE_LOCK(ump);
5863 	WORKITEM_FREE(freefrag, D_FREEFRAG);
5864 	FREE_LOCK(ump);
5865 }
5866 
5867 /*
5868  * Set up a dependency structure for an external attributes data block.
5869  * This routine follows much of the structure of softdep_setup_allocdirect.
5870  * See the description of softdep_setup_allocdirect above for details.
5871  */
5872 void
5873 softdep_setup_allocext(
5874 	struct inode *ip,
5875 	ufs_lbn_t off,
5876 	ufs2_daddr_t newblkno,
5877 	ufs2_daddr_t oldblkno,
5878 	long newsize,
5879 	long oldsize,
5880 	struct buf *bp)
5881 {
5882 	struct allocdirect *adp, *oldadp;
5883 	struct allocdirectlst *adphead;
5884 	struct freefrag *freefrag;
5885 	struct inodedep *inodedep;
5886 	struct jnewblk *jnewblk;
5887 	struct newblk *newblk;
5888 	struct mount *mp;
5889 	struct ufsmount *ump;
5890 	ufs_lbn_t lbn;
5891 
5892 	mp = ITOVFS(ip);
5893 	ump = VFSTOUFS(mp);
5894 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5895 	    ("softdep_setup_allocext called on non-softdep filesystem"));
5896 	KASSERT(off < UFS_NXADDR,
5897 	    ("softdep_setup_allocext: lbn %lld > UFS_NXADDR", (long long)off));
5898 
5899 	lbn = bp->b_lblkno;
5900 	if (oldblkno && oldblkno != newblkno)
5901 		/*
5902 		 * The usual case is that a smaller fragment that
5903 		 * was just allocated has been replaced with a bigger
5904 		 * fragment or a full-size block. If it is marked as
5905 		 * B_DELWRI, the current contents have not been written
5906 		 * to disk. It is possible that the block was written
5907 		 * earlier, but very uncommon. If the block has never
5908 		 * been written, there is no need to send a BIO_DELETE
5909 		 * for it when it is freed. The gain from avoiding the
5910 		 * TRIMs for the common case of unwritten blocks far
5911 		 * exceeds the cost of the write amplification for the
5912 		 * uncommon case of failing to send a TRIM for a block
5913 		 * that had been written.
5914 		 */
5915 		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn,
5916 		    (bp->b_flags & B_DELWRI) != 0 ? NOTRIM_KEY : SINGLETON_KEY);
5917 	else
5918 		freefrag = NULL;
5919 
5920 	ACQUIRE_LOCK(ump);
5921 	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
5922 		panic("softdep_setup_allocext: lost block");
5923 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5924 	    ("softdep_setup_allocext: newblk already initialized"));
5925 	/*
5926 	 * Convert the newblk to an allocdirect.
5927 	 */
5928 	WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT);
5929 	adp = (struct allocdirect *)newblk;
5930 	newblk->nb_freefrag = freefrag;
5931 	adp->ad_offset = off;
5932 	adp->ad_oldblkno = oldblkno;
5933 	adp->ad_newsize = newsize;
5934 	adp->ad_oldsize = oldsize;
5935 	adp->ad_state |=  EXTDATA;
5936 
5937 	/*
5938 	 * Finish initializing the journal.
5939 	 */
5940 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5941 		jnewblk->jn_ino = ip->i_number;
5942 		jnewblk->jn_lbn = lbn;
5943 		add_to_journal(&jnewblk->jn_list);
5944 	}
5945 	if (freefrag && freefrag->ff_jdep != NULL &&
5946 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5947 		add_to_journal(freefrag->ff_jdep);
5948 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
5949 	adp->ad_inodedep = inodedep;
5950 
5951 	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
5952 	/*
5953 	 * The list of allocdirects must be kept in sorted and ascending
5954 	 * order so that the rollback routines can quickly determine the
5955 	 * first uncommitted block (the size of the file stored on disk
5956 	 * ends at the end of the lowest committed fragment, or if there
5957 	 * are no fragments, at the end of the highest committed block).
5958 	 * Since files generally grow, the typical case is that the new
5959 	 * block is to be added at the end of the list. We speed this
5960 	 * special case by checking against the last allocdirect in the
5961 	 * list before laboriously traversing the list looking for the
5962 	 * insertion point.
5963 	 */
5964 	adphead = &inodedep->id_newextupdt;
5965 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
5966 	if (oldadp == NULL || oldadp->ad_offset <= off) {
5967 		/* insert at end of list */
5968 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
5969 		if (oldadp != NULL && oldadp->ad_offset == off)
5970 			allocdirect_merge(adphead, adp, oldadp);
5971 		FREE_LOCK(ump);
5972 		return;
5973 	}
5974 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
5975 		if (oldadp->ad_offset >= off)
5976 			break;
5977 	}
5978 	if (oldadp == NULL)
5979 		panic("softdep_setup_allocext: lost entry");
5980 	/* insert in middle of list */
5981 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5982 	if (oldadp->ad_offset == off)
5983 		allocdirect_merge(adphead, adp, oldadp);
5984 	FREE_LOCK(ump);
5985 }
5986 
5987 /*
5988  * Indirect block allocation dependencies.
5989  *
5990  * The same dependencies that exist for a direct block also exist when
5991  * a new block is allocated and pointed to by an entry in a block of
5992  * indirect pointers. The undo/redo states described above are also
5993  * used here. Because an indirect block contains many pointers that
5994  * may have dependencies, a second copy of the entire in-memory indirect
5995  * block is kept. The buffer cache copy is always completely up-to-date.
5996  * The second copy, which is used only as a source for disk writes,
5997  * contains only the safe pointers (i.e., those that have no remaining
5998  * update dependencies). The second copy is freed when all pointers
5999  * are safe. The cache is not allowed to replace indirect blocks with
6000  * pending update dependencies. If a buffer containing an indirect
6001  * block with dependencies is written, these routines will mark it
6002  * dirty again. It can only be successfully written once all the
6003  * dependencies are removed. The ffs_fsync routine in conjunction with
6004  * softdep_sync_metadata work together to get all the dependencies
6005  * removed so that a file can be successfully written to disk. Three
6006  * procedures are used when setting up indirect block pointer
6007  * dependencies. The division is necessary because of the organization
6008  * of the "balloc" routine and because of the distinction between file
6009  * pages and file metadata blocks.
6010  */
6011 
6012 /*
6013  * Allocate a new allocindir structure.
6014  */
6015 static struct allocindir *
6016 newallocindir(
6017 	struct inode *ip,	/* inode for file being extended */
6018 	int ptrno,		/* offset of pointer in indirect block */
6019 	ufs2_daddr_t newblkno,	/* disk block number being added */
6020 	ufs2_daddr_t oldblkno,	/* previous block number, 0 if none */
6021 	ufs_lbn_t lbn)
6022 {
6023 	struct newblk *newblk;
6024 	struct allocindir *aip;
6025 	struct freefrag *freefrag;
6026 	struct jnewblk *jnewblk;
6027 
6028 	if (oldblkno)
6029 		freefrag = newfreefrag(ip, oldblkno, ITOFS(ip)->fs_bsize, lbn,
6030 		    SINGLETON_KEY);
6031 	else
6032 		freefrag = NULL;
6033 	ACQUIRE_LOCK(ITOUMP(ip));
6034 	if (newblk_lookup(ITOVFS(ip), newblkno, 0, &newblk) == 0)
6035 		panic("new_allocindir: lost block");
6036 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
6037 	    ("newallocindir: newblk already initialized"));
6038 	WORKITEM_REASSIGN(newblk, D_ALLOCINDIR);
6039 	newblk->nb_freefrag = freefrag;
6040 	aip = (struct allocindir *)newblk;
6041 	aip->ai_offset = ptrno;
6042 	aip->ai_oldblkno = oldblkno;
6043 	aip->ai_lbn = lbn;
6044 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
6045 		jnewblk->jn_ino = ip->i_number;
6046 		jnewblk->jn_lbn = lbn;
6047 		add_to_journal(&jnewblk->jn_list);
6048 	}
6049 	if (freefrag && freefrag->ff_jdep != NULL &&
6050 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
6051 		add_to_journal(freefrag->ff_jdep);
6052 	return (aip);
6053 }
6054 
6055 /*
6056  * Called just before setting an indirect block pointer
6057  * to a newly allocated file page.
6058  */
6059 void
6060 softdep_setup_allocindir_page(
6061 	struct inode *ip,	/* inode for file being extended */
6062 	ufs_lbn_t lbn,		/* allocated block number within file */
6063 	struct buf *bp,		/* buffer with indirect blk referencing page */
6064 	int ptrno,		/* offset of pointer in indirect block */
6065 	ufs2_daddr_t newblkno,	/* disk block number being added */
6066 	ufs2_daddr_t oldblkno,	/* previous block number, 0 if none */
6067 	struct buf *nbp)	/* buffer holding allocated page */
6068 {
6069 	struct inodedep *inodedep;
6070 	struct freefrag *freefrag;
6071 	struct allocindir *aip;
6072 	struct pagedep *pagedep;
6073 	struct mount *mp;
6074 	struct ufsmount *ump;
6075 
6076 	mp = ITOVFS(ip);
6077 	ump = VFSTOUFS(mp);
6078 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
6079 	    ("softdep_setup_allocindir_page called on non-softdep filesystem"));
6080 	KASSERT(lbn == nbp->b_lblkno,
6081 	    ("softdep_setup_allocindir_page: lbn %jd != lblkno %jd",
6082 	    lbn, bp->b_lblkno));
6083 	CTR4(KTR_SUJ,
6084 	    "softdep_setup_allocindir_page: ino %d blkno %jd oldblkno %jd "
6085 	    "lbn %jd", ip->i_number, newblkno, oldblkno, lbn);
6086 	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page");
6087 	aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn);
6088 	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6089 	/*
6090 	 * If we are allocating a directory page, then we must
6091 	 * allocate an associated pagedep to track additions and
6092 	 * deletions.
6093 	 */
6094 	if ((ip->i_mode & IFMT) == IFDIR)
6095 		pagedep_lookup(mp, nbp, ip->i_number, lbn, DEPALLOC, &pagedep);
6096 	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
6097 	freefrag = setup_allocindir_phase2(bp, ip, inodedep, aip, lbn);
6098 	FREE_LOCK(ump);
6099 	if (freefrag)
6100 		handle_workitem_freefrag(freefrag);
6101 }
6102 
6103 /*
6104  * Called just before setting an indirect block pointer to a
6105  * newly allocated indirect block.
6106  */
6107 void
6108 softdep_setup_allocindir_meta(
6109 	struct buf *nbp,	/* newly allocated indirect block */
6110 	struct inode *ip,	/* inode for file being extended */
6111 	struct buf *bp,		/* indirect block referencing allocated block */
6112 	int ptrno,		/* offset of pointer in indirect block */
6113 	ufs2_daddr_t newblkno)	/* disk block number being added */
6114 {
6115 	struct inodedep *inodedep;
6116 	struct allocindir *aip;
6117 	struct ufsmount *ump;
6118 	ufs_lbn_t lbn;
6119 
6120 	ump = ITOUMP(ip);
6121 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
6122 	    ("softdep_setup_allocindir_meta called on non-softdep filesystem"));
6123 	CTR3(KTR_SUJ,
6124 	    "softdep_setup_allocindir_meta: ino %d blkno %jd ptrno %d",
6125 	    ip->i_number, newblkno, ptrno);
6126 	lbn = nbp->b_lblkno;
6127 	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta");
6128 	aip = newallocindir(ip, ptrno, newblkno, 0, lbn);
6129 	inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep);
6130 	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
6131 	if (setup_allocindir_phase2(bp, ip, inodedep, aip, lbn))
6132 		panic("softdep_setup_allocindir_meta: Block already existed");
6133 	FREE_LOCK(ump);
6134 }
6135 
6136 static void
6137 indirdep_complete(struct indirdep *indirdep)
6138 {
6139 	struct allocindir *aip;
6140 
6141 	LIST_REMOVE(indirdep, ir_next);
6142 	indirdep->ir_state |= DEPCOMPLETE;
6143 
6144 	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) {
6145 		LIST_REMOVE(aip, ai_next);
6146 		free_newblk(&aip->ai_block);
6147 	}
6148 	/*
6149 	 * If this indirdep is not attached to a buf it was simply waiting
6150 	 * on completion to clear completehd.  free_indirdep() asserts
6151 	 * that nothing is dangling.
6152 	 */
6153 	if ((indirdep->ir_state & ONWORKLIST) == 0)
6154 		free_indirdep(indirdep);
6155 }
6156 
6157 static struct indirdep *
6158 indirdep_lookup(struct mount *mp,
6159 	struct inode *ip,
6160 	struct buf *bp)
6161 {
6162 	struct indirdep *indirdep, *newindirdep;
6163 	struct newblk *newblk;
6164 	struct ufsmount *ump;
6165 	struct worklist *wk;
6166 	struct fs *fs;
6167 	ufs2_daddr_t blkno;
6168 
6169 	ump = VFSTOUFS(mp);
6170 	LOCK_OWNED(ump);
6171 	indirdep = NULL;
6172 	newindirdep = NULL;
6173 	fs = ump->um_fs;
6174 	for (;;) {
6175 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
6176 			if (wk->wk_type != D_INDIRDEP)
6177 				continue;
6178 			indirdep = WK_INDIRDEP(wk);
6179 			break;
6180 		}
6181 		/* Found on the buffer worklist, no new structure to free. */
6182 		if (indirdep != NULL && newindirdep == NULL)
6183 			return (indirdep);
6184 		if (indirdep != NULL && newindirdep != NULL)
6185 			panic("indirdep_lookup: simultaneous create");
6186 		/* None found on the buffer and a new structure is ready. */
6187 		if (indirdep == NULL && newindirdep != NULL)
6188 			break;
6189 		/* None found and no new structure available. */
6190 		FREE_LOCK(ump);
6191 		newindirdep = malloc(sizeof(struct indirdep),
6192 		    M_INDIRDEP, M_SOFTDEP_FLAGS);
6193 		workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp);
6194 		newindirdep->ir_state = ATTACHED;
6195 		if (I_IS_UFS1(ip))
6196 			newindirdep->ir_state |= UFS1FMT;
6197 		TAILQ_INIT(&newindirdep->ir_trunc);
6198 		newindirdep->ir_saveddata = NULL;
6199 		LIST_INIT(&newindirdep->ir_deplisthd);
6200 		LIST_INIT(&newindirdep->ir_donehd);
6201 		LIST_INIT(&newindirdep->ir_writehd);
6202 		LIST_INIT(&newindirdep->ir_completehd);
6203 		if (bp->b_blkno == bp->b_lblkno) {
6204 			ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp,
6205 			    NULL, NULL);
6206 			bp->b_blkno = blkno;
6207 		}
6208 		newindirdep->ir_freeblks = NULL;
6209 		newindirdep->ir_savebp =
6210 		    getblk(ump->um_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0);
6211 		newindirdep->ir_bp = bp;
6212 		BUF_KERNPROC(newindirdep->ir_savebp);
6213 		bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
6214 		ACQUIRE_LOCK(ump);
6215 	}
6216 	indirdep = newindirdep;
6217 	WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list);
6218 	/*
6219 	 * If the block is not yet allocated we don't set DEPCOMPLETE so
6220 	 * that we don't free dependencies until the pointers are valid.
6221 	 * This could search b_dep for D_ALLOCDIRECT/D_ALLOCINDIR rather
6222 	 * than using the hash.
6223 	 */
6224 	if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk))
6225 		LIST_INSERT_HEAD(&newblk->nb_indirdeps, indirdep, ir_next);
6226 	else
6227 		indirdep->ir_state |= DEPCOMPLETE;
6228 	return (indirdep);
6229 }
6230 
6231 /*
6232  * Called to finish the allocation of the "aip" allocated
6233  * by one of the two routines above.
6234  */
6235 static struct freefrag *
6236 setup_allocindir_phase2(
6237 	struct buf *bp,		/* in-memory copy of the indirect block */
6238 	struct inode *ip,	/* inode for file being extended */
6239 	struct inodedep *inodedep, /* Inodedep for ip */
6240 	struct allocindir *aip,	/* allocindir allocated by the above routines */
6241 	ufs_lbn_t lbn)		/* Logical block number for this block. */
6242 {
6243 	struct fs *fs __diagused;
6244 	struct indirdep *indirdep;
6245 	struct allocindir *oldaip;
6246 	struct freefrag *freefrag;
6247 	struct mount *mp;
6248 	struct ufsmount *ump;
6249 
6250 	mp = ITOVFS(ip);
6251 	ump = VFSTOUFS(mp);
6252 	LOCK_OWNED(ump);
6253 	fs = ump->um_fs;
6254 	if (bp->b_lblkno >= 0)
6255 		panic("setup_allocindir_phase2: not indir blk");
6256 	KASSERT(aip->ai_offset >= 0 && aip->ai_offset < NINDIR(fs),
6257 	    ("setup_allocindir_phase2: Bad offset %d", aip->ai_offset));
6258 	indirdep = indirdep_lookup(mp, ip, bp);
6259 	KASSERT(indirdep->ir_savebp != NULL,
6260 	    ("setup_allocindir_phase2 NULL ir_savebp"));
6261 	aip->ai_indirdep = indirdep;
6262 	/*
6263 	 * Check for an unwritten dependency for this indirect offset.  If
6264 	 * there is, merge the old dependency into the new one.  This happens
6265 	 * as a result of reallocblk only.
6266 	 */
6267 	freefrag = NULL;
6268 	if (aip->ai_oldblkno != 0) {
6269 		LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) {
6270 			if (oldaip->ai_offset == aip->ai_offset) {
6271 				freefrag = allocindir_merge(aip, oldaip);
6272 				goto done;
6273 			}
6274 		}
6275 		LIST_FOREACH(oldaip, &indirdep->ir_donehd, ai_next) {
6276 			if (oldaip->ai_offset == aip->ai_offset) {
6277 				freefrag = allocindir_merge(aip, oldaip);
6278 				goto done;
6279 			}
6280 		}
6281 	}
6282 done:
6283 	LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
6284 	return (freefrag);
6285 }
6286 
6287 /*
6288  * Merge two allocindirs which refer to the same block.  Move newblock
6289  * dependencies and setup the freefrags appropriately.
6290  */
6291 static struct freefrag *
6292 allocindir_merge(
6293 	struct allocindir *aip,
6294 	struct allocindir *oldaip)
6295 {
6296 	struct freefrag *freefrag;
6297 	struct worklist *wk;
6298 
6299 	if (oldaip->ai_newblkno != aip->ai_oldblkno)
6300 		panic("allocindir_merge: blkno");
6301 	aip->ai_oldblkno = oldaip->ai_oldblkno;
6302 	freefrag = aip->ai_freefrag;
6303 	aip->ai_freefrag = oldaip->ai_freefrag;
6304 	oldaip->ai_freefrag = NULL;
6305 	KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag"));
6306 	/*
6307 	 * If we are tracking a new directory-block allocation,
6308 	 * move it from the old allocindir to the new allocindir.
6309 	 */
6310 	if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) {
6311 		WORKLIST_REMOVE(wk);
6312 		if (!LIST_EMPTY(&oldaip->ai_newdirblk))
6313 			panic("allocindir_merge: extra newdirblk");
6314 		WORKLIST_INSERT(&aip->ai_newdirblk, wk);
6315 	}
6316 	/*
6317 	 * We can skip journaling for this freefrag and just complete
6318 	 * any pending journal work for the allocindir that is being
6319 	 * removed after the freefrag completes.
6320 	 */
6321 	if (freefrag->ff_jdep)
6322 		cancel_jfreefrag(WK_JFREEFRAG(freefrag->ff_jdep));
6323 	LIST_REMOVE(oldaip, ai_next);
6324 	freefrag->ff_jdep = (struct worklist *)cancel_newblk(&oldaip->ai_block,
6325 	    &freefrag->ff_list, &freefrag->ff_jwork);
6326 	free_newblk(&oldaip->ai_block);
6327 
6328 	return (freefrag);
6329 }
6330 
6331 static inline void
6332 setup_freedirect(
6333 	struct freeblks *freeblks,
6334 	struct inode *ip,
6335 	int i,
6336 	int needj)
6337 {
6338 	struct ufsmount *ump;
6339 	ufs2_daddr_t blkno;
6340 	int frags;
6341 
6342 	blkno = DIP(ip, i_db[i]);
6343 	if (blkno == 0)
6344 		return;
6345 	DIP_SET(ip, i_db[i], 0);
6346 	ump = ITOUMP(ip);
6347 	frags = sblksize(ump->um_fs, ip->i_size, i);
6348 	frags = numfrags(ump->um_fs, frags);
6349 	newfreework(ump, freeblks, NULL, i, blkno, frags, 0, needj);
6350 }
6351 
6352 static inline void
6353 setup_freeext(
6354 	struct freeblks *freeblks,
6355 	struct inode *ip,
6356 	int i,
6357 	int needj)
6358 {
6359 	struct ufsmount *ump;
6360 	ufs2_daddr_t blkno;
6361 	int frags;
6362 
6363 	blkno = ip->i_din2->di_extb[i];
6364 	if (blkno == 0)
6365 		return;
6366 	ip->i_din2->di_extb[i] = 0;
6367 	ump = ITOUMP(ip);
6368 	frags = sblksize(ump->um_fs, ip->i_din2->di_extsize, i);
6369 	frags = numfrags(ump->um_fs, frags);
6370 	newfreework(ump, freeblks, NULL, -1 - i, blkno, frags, 0, needj);
6371 }
6372 
6373 static inline void
6374 setup_freeindir(
6375 	struct freeblks *freeblks,
6376 	struct inode *ip,
6377 	int i,
6378 	ufs_lbn_t lbn,
6379 	int needj)
6380 {
6381 	struct ufsmount *ump;
6382 	ufs2_daddr_t blkno;
6383 
6384 	blkno = DIP(ip, i_ib[i]);
6385 	if (blkno == 0)
6386 		return;
6387 	DIP_SET(ip, i_ib[i], 0);
6388 	ump = ITOUMP(ip);
6389 	newfreework(ump, freeblks, NULL, lbn, blkno, ump->um_fs->fs_frag,
6390 	    0, needj);
6391 }
6392 
6393 static inline struct freeblks *
6394 newfreeblks(struct mount *mp, struct inode *ip)
6395 {
6396 	struct freeblks *freeblks;
6397 
6398 	freeblks = malloc(sizeof(struct freeblks),
6399 		M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO);
6400 	workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp);
6401 	LIST_INIT(&freeblks->fb_jblkdephd);
6402 	LIST_INIT(&freeblks->fb_jwork);
6403 	freeblks->fb_ref = 0;
6404 	freeblks->fb_cgwait = 0;
6405 	freeblks->fb_state = ATTACHED;
6406 	freeblks->fb_uid = ip->i_uid;
6407 	freeblks->fb_inum = ip->i_number;
6408 	freeblks->fb_vtype = ITOV(ip)->v_type;
6409 	freeblks->fb_modrev = DIP(ip, i_modrev);
6410 	freeblks->fb_devvp = ITODEVVP(ip);
6411 	freeblks->fb_chkcnt = 0;
6412 	freeblks->fb_len = 0;
6413 
6414 	return (freeblks);
6415 }
6416 
6417 static void
6418 trunc_indirdep(
6419 	struct indirdep *indirdep,
6420 	struct freeblks *freeblks,
6421 	struct buf *bp,
6422 	int off)
6423 {
6424 	struct allocindir *aip, *aipn;
6425 
6426 	/*
6427 	 * The first set of allocindirs won't be in savedbp.
6428 	 */
6429 	LIST_FOREACH_SAFE(aip, &indirdep->ir_deplisthd, ai_next, aipn)
6430 		if (aip->ai_offset > off)
6431 			cancel_allocindir(aip, bp, freeblks, 1);
6432 	LIST_FOREACH_SAFE(aip, &indirdep->ir_donehd, ai_next, aipn)
6433 		if (aip->ai_offset > off)
6434 			cancel_allocindir(aip, bp, freeblks, 1);
6435 	/*
6436 	 * These will exist in savedbp.
6437 	 */
6438 	LIST_FOREACH_SAFE(aip, &indirdep->ir_writehd, ai_next, aipn)
6439 		if (aip->ai_offset > off)
6440 			cancel_allocindir(aip, NULL, freeblks, 0);
6441 	LIST_FOREACH_SAFE(aip, &indirdep->ir_completehd, ai_next, aipn)
6442 		if (aip->ai_offset > off)
6443 			cancel_allocindir(aip, NULL, freeblks, 0);
6444 }
6445 
6446 /*
6447  * Follow the chain of indirects down to lastlbn creating a freework
6448  * structure for each.  This will be used to start indir_trunc() at
6449  * the right offset and create the journal records for the parrtial
6450  * truncation.  A second step will handle the truncated dependencies.
6451  */
6452 static int
6453 setup_trunc_indir(
6454 	struct freeblks *freeblks,
6455 	struct inode *ip,
6456 	ufs_lbn_t lbn,
6457 	ufs_lbn_t lastlbn,
6458 	ufs2_daddr_t blkno)
6459 {
6460 	struct indirdep *indirdep;
6461 	struct indirdep *indirn;
6462 	struct freework *freework;
6463 	struct newblk *newblk;
6464 	struct mount *mp;
6465 	struct ufsmount *ump;
6466 	struct buf *bp;
6467 	uint8_t *start;
6468 	uint8_t *end;
6469 	ufs_lbn_t lbnadd;
6470 	int level;
6471 	int error;
6472 	int off;
6473 
6474 	freework = NULL;
6475 	if (blkno == 0)
6476 		return (0);
6477 	mp = freeblks->fb_list.wk_mp;
6478 	ump = VFSTOUFS(mp);
6479 	/*
6480 	 * Here, calls to VOP_BMAP() will fail.  However, we already have
6481 	 * the on-disk address, so we just pass it to bread() instead of
6482 	 * having bread() attempt to calculate it using VOP_BMAP().
6483 	 */
6484 	error = ffs_breadz(ump, ITOV(ip), lbn, blkptrtodb(ump, blkno),
6485 	    (int)mp->mnt_stat.f_iosize, NULL, NULL, 0, NOCRED, 0, NULL, &bp);
6486 	if (error)
6487 		return (error);
6488 	level = lbn_level(lbn);
6489 	lbnadd = lbn_offset(ump->um_fs, level);
6490 	/*
6491 	 * Compute the offset of the last block we want to keep.  Store
6492 	 * in the freework the first block we want to completely free.
6493 	 */
6494 	off = (lastlbn - -(lbn + level)) / lbnadd;
6495 	if (off + 1 == NINDIR(ump->um_fs))
6496 		goto nowork;
6497 	freework = newfreework(ump, freeblks, NULL, lbn, blkno, 0, off + 1, 0);
6498 	/*
6499 	 * Link the freework into the indirdep.  This will prevent any new
6500 	 * allocations from proceeding until we are finished with the
6501 	 * truncate and the block is written.
6502 	 */
6503 	ACQUIRE_LOCK(ump);
6504 	indirdep = indirdep_lookup(mp, ip, bp);
6505 	if (indirdep->ir_freeblks)
6506 		panic("setup_trunc_indir: indirdep already truncated.");
6507 	TAILQ_INSERT_TAIL(&indirdep->ir_trunc, freework, fw_next);
6508 	freework->fw_indir = indirdep;
6509 	/*
6510 	 * Cancel any allocindirs that will not make it to disk.
6511 	 * We have to do this for all copies of the indirdep that
6512 	 * live on this newblk.
6513 	 */
6514 	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
6515 		if (newblk_lookup(mp, dbtofsb(ump->um_fs, bp->b_blkno), 0,
6516 		    &newblk) == 0)
6517 			panic("setup_trunc_indir: lost block");
6518 		LIST_FOREACH(indirn, &newblk->nb_indirdeps, ir_next)
6519 			trunc_indirdep(indirn, freeblks, bp, off);
6520 	} else
6521 		trunc_indirdep(indirdep, freeblks, bp, off);
6522 	FREE_LOCK(ump);
6523 	/*
6524 	 * Creation is protected by the buf lock. The saveddata is only
6525 	 * needed if a full truncation follows a partial truncation but it
6526 	 * is difficult to allocate in that case so we fetch it anyway.
6527 	 */
6528 	if (indirdep->ir_saveddata == NULL)
6529 		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
6530 		    M_SOFTDEP_FLAGS);
6531 nowork:
6532 	/* Fetch the blkno of the child and the zero start offset. */
6533 	if (I_IS_UFS1(ip)) {
6534 		blkno = ((ufs1_daddr_t *)bp->b_data)[off];
6535 		start = (uint8_t *)&((ufs1_daddr_t *)bp->b_data)[off+1];
6536 	} else {
6537 		blkno = ((ufs2_daddr_t *)bp->b_data)[off];
6538 		start = (uint8_t *)&((ufs2_daddr_t *)bp->b_data)[off+1];
6539 	}
6540 	if (freework) {
6541 		/* Zero the truncated pointers. */
6542 		end = bp->b_data + bp->b_bcount;
6543 		bzero(start, end - start);
6544 		bdwrite(bp);
6545 	} else
6546 		bqrelse(bp);
6547 	if (level == 0)
6548 		return (0);
6549 	lbn++; /* adjust level */
6550 	lbn -= (off * lbnadd);
6551 	return setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno);
6552 }
6553 
6554 /*
6555  * Complete the partial truncation of an indirect block setup by
6556  * setup_trunc_indir().  This zeros the truncated pointers in the saved
6557  * copy and writes them to disk before the freeblks is allowed to complete.
6558  */
6559 static void
6560 complete_trunc_indir(struct freework *freework)
6561 {
6562 	struct freework *fwn;
6563 	struct indirdep *indirdep;
6564 	struct ufsmount *ump;
6565 	struct buf *bp;
6566 	uintptr_t start;
6567 	int count;
6568 
6569 	ump = VFSTOUFS(freework->fw_list.wk_mp);
6570 	LOCK_OWNED(ump);
6571 	indirdep = freework->fw_indir;
6572 	for (;;) {
6573 		bp = indirdep->ir_bp;
6574 		/* See if the block was discarded. */
6575 		if (bp == NULL)
6576 			break;
6577 		/* Inline part of getdirtybuf().  We dont want bremfree. */
6578 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0)
6579 			break;
6580 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
6581 		    LOCK_PTR(ump)) == 0)
6582 			BUF_UNLOCK(bp);
6583 		ACQUIRE_LOCK(ump);
6584 	}
6585 	freework->fw_state |= DEPCOMPLETE;
6586 	TAILQ_REMOVE(&indirdep->ir_trunc, freework, fw_next);
6587 	/*
6588 	 * Zero the pointers in the saved copy.
6589 	 */
6590 	if (indirdep->ir_state & UFS1FMT)
6591 		start = sizeof(ufs1_daddr_t);
6592 	else
6593 		start = sizeof(ufs2_daddr_t);
6594 	start *= freework->fw_start;
6595 	count = indirdep->ir_savebp->b_bcount - start;
6596 	start += (uintptr_t)indirdep->ir_savebp->b_data;
6597 	bzero((char *)start, count);
6598 	/*
6599 	 * We need to start the next truncation in the list if it has not
6600 	 * been started yet.
6601 	 */
6602 	fwn = TAILQ_FIRST(&indirdep->ir_trunc);
6603 	if (fwn != NULL) {
6604 		if (fwn->fw_freeblks == indirdep->ir_freeblks)
6605 			TAILQ_REMOVE(&indirdep->ir_trunc, fwn, fw_next);
6606 		if ((fwn->fw_state & ONWORKLIST) == 0)
6607 			freework_enqueue(fwn);
6608 	}
6609 	/*
6610 	 * If bp is NULL the block was fully truncated, restore
6611 	 * the saved block list otherwise free it if it is no
6612 	 * longer needed.
6613 	 */
6614 	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
6615 		if (bp == NULL)
6616 			bcopy(indirdep->ir_saveddata,
6617 			    indirdep->ir_savebp->b_data,
6618 			    indirdep->ir_savebp->b_bcount);
6619 		free(indirdep->ir_saveddata, M_INDIRDEP);
6620 		indirdep->ir_saveddata = NULL;
6621 	}
6622 	/*
6623 	 * When bp is NULL there is a full truncation pending.  We
6624 	 * must wait for this full truncation to be journaled before
6625 	 * we can release this freework because the disk pointers will
6626 	 * never be written as zero.
6627 	 */
6628 	if (bp == NULL)  {
6629 		if (LIST_EMPTY(&indirdep->ir_freeblks->fb_jblkdephd))
6630 			handle_written_freework(freework);
6631 		else
6632 			WORKLIST_INSERT(&indirdep->ir_freeblks->fb_freeworkhd,
6633 			   &freework->fw_list);
6634 		if (fwn == NULL) {
6635 			freework->fw_indir = (void *)0x0000deadbeef0000;
6636 			bp = indirdep->ir_savebp;
6637 			indirdep->ir_savebp = NULL;
6638 			free_indirdep(indirdep);
6639 			FREE_LOCK(ump);
6640 			brelse(bp);
6641 			ACQUIRE_LOCK(ump);
6642 		}
6643 	} else {
6644 		/* Complete when the real copy is written. */
6645 		WORKLIST_INSERT(&bp->b_dep, &freework->fw_list);
6646 		BUF_UNLOCK(bp);
6647 	}
6648 }
6649 
6650 /*
6651  * Calculate the number of blocks we are going to release where datablocks
6652  * is the current total and length is the new file size.
6653  */
6654 static ufs2_daddr_t
6655 blkcount(struct fs *fs,
6656 	ufs2_daddr_t datablocks,
6657 	off_t length)
6658 {
6659 	off_t totblks, numblks;
6660 
6661 	totblks = 0;
6662 	numblks = howmany(length, fs->fs_bsize);
6663 	if (numblks <= UFS_NDADDR) {
6664 		totblks = howmany(length, fs->fs_fsize);
6665 		goto out;
6666 	}
6667         totblks = blkstofrags(fs, numblks);
6668 	numblks -= UFS_NDADDR;
6669 	/*
6670 	 * Count all single, then double, then triple indirects required.
6671 	 * Subtracting one indirects worth of blocks for each pass
6672 	 * acknowledges one of each pointed to by the inode.
6673 	 */
6674 	for (;;) {
6675 		totblks += blkstofrags(fs, howmany(numblks, NINDIR(fs)));
6676 		numblks -= NINDIR(fs);
6677 		if (numblks <= 0)
6678 			break;
6679 		numblks = howmany(numblks, NINDIR(fs));
6680 	}
6681 out:
6682 	totblks = fsbtodb(fs, totblks);
6683 	/*
6684 	 * Handle sparse files.  We can't reclaim more blocks than the inode
6685 	 * references.  We will correct it later in handle_complete_freeblks()
6686 	 * when we know the real count.
6687 	 */
6688 	if (totblks > datablocks)
6689 		return (0);
6690 	return (datablocks - totblks);
6691 }
6692 
6693 /*
6694  * Handle freeblocks for journaled softupdate filesystems.
6695  *
6696  * Contrary to normal softupdates, we must preserve the block pointers in
6697  * indirects until their subordinates are free.  This is to avoid journaling
6698  * every block that is freed which may consume more space than the journal
6699  * itself.  The recovery program will see the free block journals at the
6700  * base of the truncated area and traverse them to reclaim space.  The
6701  * pointers in the inode may be cleared immediately after the journal
6702  * records are written because each direct and indirect pointer in the
6703  * inode is recorded in a journal.  This permits full truncation to proceed
6704  * asynchronously.  The write order is journal -> inode -> cgs -> indirects.
6705  *
6706  * The algorithm is as follows:
6707  * 1) Traverse the in-memory state and create journal entries to release
6708  *    the relevant blocks and full indirect trees.
6709  * 2) Traverse the indirect block chain adding partial truncation freework
6710  *    records to indirects in the path to lastlbn.  The freework will
6711  *    prevent new allocation dependencies from being satisfied in this
6712  *    indirect until the truncation completes.
6713  * 3) Read and lock the inode block, performing an update with the new size
6714  *    and pointers.  This prevents truncated data from becoming valid on
6715  *    disk through step 4.
6716  * 4) Reap unsatisfied dependencies that are beyond the truncated area,
6717  *    eliminate journal work for those records that do not require it.
6718  * 5) Schedule the journal records to be written followed by the inode block.
6719  * 6) Allocate any necessary frags for the end of file.
6720  * 7) Zero any partially truncated blocks.
6721  *
6722  * From this truncation proceeds asynchronously using the freework and
6723  * indir_trunc machinery.  The file will not be extended again into a
6724  * partially truncated indirect block until all work is completed but
6725  * the normal dependency mechanism ensures that it is rolled back/forward
6726  * as appropriate.  Further truncation may occur without delay and is
6727  * serialized in indir_trunc().
6728  */
6729 void
6730 softdep_journal_freeblocks(
6731 	struct inode *ip,	/* The inode whose length is to be reduced */
6732 	struct ucred *cred,
6733 	off_t length,		/* The new length for the file */
6734 	int flags)		/* IO_EXT and/or IO_NORMAL */
6735 {
6736 	struct freeblks *freeblks, *fbn;
6737 	struct worklist *wk, *wkn;
6738 	struct inodedep *inodedep;
6739 	struct jblkdep *jblkdep;
6740 	struct allocdirect *adp, *adpn;
6741 	struct ufsmount *ump;
6742 	struct fs *fs;
6743 	struct buf *bp;
6744 	struct vnode *vp;
6745 	struct mount *mp;
6746 	daddr_t dbn;
6747 	ufs2_daddr_t extblocks, datablocks;
6748 	ufs_lbn_t tmpval, lbn, lastlbn;
6749 	int frags, lastoff, iboff, allocblock, needj, error, i;
6750 
6751 	ump = ITOUMP(ip);
6752 	mp = UFSTOVFS(ump);
6753 	fs = ump->um_fs;
6754 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
6755 	    ("softdep_journal_freeblocks called on non-softdep filesystem"));
6756 	vp = ITOV(ip);
6757 	needj = 1;
6758 	iboff = -1;
6759 	allocblock = 0;
6760 	extblocks = 0;
6761 	datablocks = 0;
6762 	frags = 0;
6763 	freeblks = newfreeblks(mp, ip);
6764 	ACQUIRE_LOCK(ump);
6765 	/*
6766 	 * If we're truncating a removed file that will never be written
6767 	 * we don't need to journal the block frees.  The canceled journals
6768 	 * for the allocations will suffice.
6769 	 */
6770 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6771 	if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED &&
6772 	    length == 0)
6773 		needj = 0;
6774 	CTR3(KTR_SUJ, "softdep_journal_freeblks: ip %d length %ld needj %d",
6775 	    ip->i_number, length, needj);
6776 	FREE_LOCK(ump);
6777 	/*
6778 	 * Calculate the lbn that we are truncating to.  This results in -1
6779 	 * if we're truncating the 0 bytes.  So it is the last lbn we want
6780 	 * to keep, not the first lbn we want to truncate.
6781 	 */
6782 	lastlbn = lblkno(fs, length + fs->fs_bsize - 1) - 1;
6783 	lastoff = blkoff(fs, length);
6784 	/*
6785 	 * Compute frags we are keeping in lastlbn.  0 means all.
6786 	 */
6787 	if (lastlbn >= 0 && lastlbn < UFS_NDADDR) {
6788 		frags = fragroundup(fs, lastoff);
6789 		/* adp offset of last valid allocdirect. */
6790 		iboff = lastlbn;
6791 	} else if (lastlbn > 0)
6792 		iboff = UFS_NDADDR;
6793 	if (fs->fs_magic == FS_UFS2_MAGIC)
6794 		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
6795 	/*
6796 	 * Handle normal data blocks and indirects.  This section saves
6797 	 * values used after the inode update to complete frag and indirect
6798 	 * truncation.
6799 	 */
6800 	if ((flags & IO_NORMAL) != 0) {
6801 		/*
6802 		 * Handle truncation of whole direct and indirect blocks.
6803 		 */
6804 		for (i = iboff + 1; i < UFS_NDADDR; i++)
6805 			setup_freedirect(freeblks, ip, i, needj);
6806 		for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR;
6807 		    i < UFS_NIADDR;
6808 		    i++, lbn += tmpval, tmpval *= NINDIR(fs)) {
6809 			/* Release a whole indirect tree. */
6810 			if (lbn > lastlbn) {
6811 				setup_freeindir(freeblks, ip, i, -lbn -i,
6812 				    needj);
6813 				continue;
6814 			}
6815 			iboff = i + UFS_NDADDR;
6816 			/*
6817 			 * Traverse partially truncated indirect tree.
6818 			 */
6819 			if (lbn <= lastlbn && lbn + tmpval - 1 > lastlbn)
6820 				setup_trunc_indir(freeblks, ip, -lbn - i,
6821 				    lastlbn, DIP(ip, i_ib[i]));
6822 		}
6823 		/*
6824 		 * Handle partial truncation to a frag boundary.
6825 		 */
6826 		if (frags) {
6827 			ufs2_daddr_t blkno;
6828 			long oldfrags;
6829 
6830 			oldfrags = blksize(fs, ip, lastlbn);
6831 			blkno = DIP(ip, i_db[lastlbn]);
6832 			if (blkno && oldfrags != frags) {
6833 				oldfrags -= frags;
6834 				oldfrags = numfrags(fs, oldfrags);
6835 				blkno += numfrags(fs, frags);
6836 				newfreework(ump, freeblks, NULL, lastlbn,
6837 				    blkno, oldfrags, 0, needj);
6838 				if (needj)
6839 					adjust_newfreework(freeblks,
6840 					    numfrags(fs, frags));
6841 			} else if (blkno == 0)
6842 				allocblock = 1;
6843 		}
6844 		/*
6845 		 * Add a journal record for partial truncate if we are
6846 		 * handling indirect blocks.  Non-indirects need no extra
6847 		 * journaling.
6848 		 */
6849 		if (length != 0 && lastlbn >= UFS_NDADDR) {
6850 			UFS_INODE_SET_FLAG(ip, IN_TRUNCATED);
6851 			newjtrunc(freeblks, length, 0);
6852 		}
6853 		ip->i_size = length;
6854 		DIP_SET(ip, i_size, ip->i_size);
6855 		UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE);
6856 		datablocks = DIP(ip, i_blocks) - extblocks;
6857 		if (length != 0)
6858 			datablocks = blkcount(fs, datablocks, length);
6859 		freeblks->fb_len = length;
6860 	}
6861 	if ((flags & IO_EXT) != 0) {
6862 		for (i = 0; i < UFS_NXADDR; i++)
6863 			setup_freeext(freeblks, ip, i, needj);
6864 		ip->i_din2->di_extsize = 0;
6865 		datablocks += extblocks;
6866 		UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE);
6867 	}
6868 #ifdef QUOTA
6869 	/* Reference the quotas in case the block count is wrong in the end. */
6870 	quotaref(vp, freeblks->fb_quota);
6871 	(void) chkdq(ip, -datablocks, NOCRED, FORCE);
6872 #endif
6873 	freeblks->fb_chkcnt = -datablocks;
6874 	UFS_LOCK(ump);
6875 	fs->fs_pendingblocks += datablocks;
6876 	UFS_UNLOCK(ump);
6877 	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
6878 	/*
6879 	 * Handle truncation of incomplete alloc direct dependencies.  We
6880 	 * hold the inode block locked to prevent incomplete dependencies
6881 	 * from reaching the disk while we are eliminating those that
6882 	 * have been truncated.  This is a partially inlined ffs_update().
6883 	 */
6884 	ufs_itimes(vp);
6885 	ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED);
6886 	dbn = fsbtodb(fs, ino_to_fsba(fs, ip->i_number));
6887 	error = ffs_breadz(ump, ump->um_devvp, dbn, dbn, (int)fs->fs_bsize,
6888 	    NULL, NULL, 0, cred, 0, NULL, &bp);
6889 	if (error) {
6890 		softdep_error("softdep_journal_freeblocks", error);
6891 		return;
6892 	}
6893 	if (bp->b_bufsize == fs->fs_bsize)
6894 		bp->b_flags |= B_CLUSTEROK;
6895 	softdep_update_inodeblock(ip, bp, 0);
6896 	if (ump->um_fstype == UFS1) {
6897 		*((struct ufs1_dinode *)bp->b_data +
6898 		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1;
6899 	} else {
6900 		ffs_update_dinode_ckhash(fs, ip->i_din2);
6901 		*((struct ufs2_dinode *)bp->b_data +
6902 		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2;
6903 	}
6904 	ACQUIRE_LOCK(ump);
6905 	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6906 	if ((inodedep->id_state & IOSTARTED) != 0)
6907 		panic("softdep_setup_freeblocks: inode busy");
6908 	/*
6909 	 * Add the freeblks structure to the list of operations that
6910 	 * must await the zero'ed inode being written to disk. If we
6911 	 * still have a bitmap dependency (needj), then the inode
6912 	 * has never been written to disk, so we can process the
6913 	 * freeblks below once we have deleted the dependencies.
6914 	 */
6915 	if (needj)
6916 		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
6917 	else
6918 		freeblks->fb_state |= COMPLETE;
6919 	if ((flags & IO_NORMAL) != 0) {
6920 		TAILQ_FOREACH_SAFE(adp, &inodedep->id_inoupdt, ad_next, adpn) {
6921 			if (adp->ad_offset > iboff)
6922 				cancel_allocdirect(&inodedep->id_inoupdt, adp,
6923 				    freeblks);
6924 			/*
6925 			 * Truncate the allocdirect.  We could eliminate
6926 			 * or modify journal records as well.
6927 			 */
6928 			else if (adp->ad_offset == iboff && frags)
6929 				adp->ad_newsize = frags;
6930 		}
6931 	}
6932 	if ((flags & IO_EXT) != 0)
6933 		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
6934 			cancel_allocdirect(&inodedep->id_extupdt, adp,
6935 			    freeblks);
6936 	/*
6937 	 * Scan the bufwait list for newblock dependencies that will never
6938 	 * make it to disk.
6939 	 */
6940 	LIST_FOREACH_SAFE(wk, &inodedep->id_bufwait, wk_list, wkn) {
6941 		if (wk->wk_type != D_ALLOCDIRECT)
6942 			continue;
6943 		adp = WK_ALLOCDIRECT(wk);
6944 		if (((flags & IO_NORMAL) != 0 && (adp->ad_offset > iboff)) ||
6945 		    ((flags & IO_EXT) != 0 && (adp->ad_state & EXTDATA))) {
6946 			cancel_jfreeblk(freeblks, adp->ad_newblkno);
6947 			cancel_newblk(WK_NEWBLK(wk), NULL, &freeblks->fb_jwork);
6948 			WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
6949 		}
6950 	}
6951 	/*
6952 	 * Add journal work.
6953 	 */
6954 	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps)
6955 		add_to_journal(&jblkdep->jb_list);
6956 	FREE_LOCK(ump);
6957 	bdwrite(bp);
6958 	/*
6959 	 * Truncate dependency structures beyond length.
6960 	 */
6961 	trunc_dependencies(ip, freeblks, lastlbn, frags, flags);
6962 	/*
6963 	 * This is only set when we need to allocate a fragment because
6964 	 * none existed at the end of a frag-sized file.  It handles only
6965 	 * allocating a new, zero filled block.
6966 	 */
6967 	if (allocblock) {
6968 		ip->i_size = length - lastoff;
6969 		DIP_SET(ip, i_size, ip->i_size);
6970 		error = UFS_BALLOC(vp, length - 1, 1, cred, BA_CLRBUF, &bp);
6971 		if (error != 0) {
6972 			softdep_error("softdep_journal_freeblks", error);
6973 			return;
6974 		}
6975 		ip->i_size = length;
6976 		DIP_SET(ip, i_size, length);
6977 		UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE);
6978 		allocbuf(bp, frags);
6979 		ffs_update(vp, 0);
6980 		bawrite(bp);
6981 	} else if (lastoff != 0 && vp->v_type != VDIR) {
6982 		int size;
6983 
6984 		/*
6985 		 * Zero the end of a truncated frag or block.
6986 		 */
6987 		size = sblksize(fs, length, lastlbn);
6988 		error = bread(vp, lastlbn, size, cred, &bp);
6989 		if (error == 0) {
6990 			bzero((char *)bp->b_data + lastoff, size - lastoff);
6991 			bawrite(bp);
6992 		} else if (!ffs_fsfail_cleanup(ump, error)) {
6993 			softdep_error("softdep_journal_freeblks", error);
6994 			return;
6995 		}
6996 	}
6997 	ACQUIRE_LOCK(ump);
6998 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6999 	TAILQ_INSERT_TAIL(&inodedep->id_freeblklst, freeblks, fb_next);
7000 	freeblks->fb_state |= DEPCOMPLETE | ONDEPLIST;
7001 	/*
7002 	 * We zero earlier truncations so they don't erroneously
7003 	 * update i_blocks.
7004 	 */
7005 	if (freeblks->fb_len == 0 && (flags & IO_NORMAL) != 0)
7006 		TAILQ_FOREACH(fbn, &inodedep->id_freeblklst, fb_next)
7007 			fbn->fb_len = 0;
7008 	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE &&
7009 	    LIST_EMPTY(&freeblks->fb_jblkdephd))
7010 		freeblks->fb_state |= INPROGRESS;
7011 	else
7012 		freeblks = NULL;
7013 	FREE_LOCK(ump);
7014 	if (freeblks)
7015 		handle_workitem_freeblocks(freeblks, 0);
7016 	trunc_pages(ip, length, extblocks, flags);
7017 
7018 }
7019 
7020 /*
7021  * Flush a JOP_SYNC to the journal.
7022  */
7023 void
7024 softdep_journal_fsync(struct inode *ip)
7025 {
7026 	struct jfsync *jfsync;
7027 	struct ufsmount *ump;
7028 
7029 	ump = ITOUMP(ip);
7030 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
7031 	    ("softdep_journal_fsync called on non-softdep filesystem"));
7032 	if ((ip->i_flag & IN_TRUNCATED) == 0)
7033 		return;
7034 	ip->i_flag &= ~IN_TRUNCATED;
7035 	jfsync = malloc(sizeof(*jfsync), M_JFSYNC, M_SOFTDEP_FLAGS | M_ZERO);
7036 	workitem_alloc(&jfsync->jfs_list, D_JFSYNC, UFSTOVFS(ump));
7037 	jfsync->jfs_size = ip->i_size;
7038 	jfsync->jfs_ino = ip->i_number;
7039 	ACQUIRE_LOCK(ump);
7040 	add_to_journal(&jfsync->jfs_list);
7041 	jwait(&jfsync->jfs_list, MNT_WAIT);
7042 	FREE_LOCK(ump);
7043 }
7044 
7045 /*
7046  * Block de-allocation dependencies.
7047  *
7048  * When blocks are de-allocated, the on-disk pointers must be nullified before
7049  * the blocks are made available for use by other files.  (The true
7050  * requirement is that old pointers must be nullified before new on-disk
7051  * pointers are set.  We chose this slightly more stringent requirement to
7052  * reduce complexity.) Our implementation handles this dependency by updating
7053  * the inode (or indirect block) appropriately but delaying the actual block
7054  * de-allocation (i.e., freemap and free space count manipulation) until
7055  * after the updated versions reach stable storage.  After the disk is
7056  * updated, the blocks can be safely de-allocated whenever it is convenient.
7057  * This implementation handles only the common case of reducing a file's
7058  * length to zero. Other cases are handled by the conventional synchronous
7059  * write approach.
7060  *
7061  * The ffs implementation with which we worked double-checks
7062  * the state of the block pointers and file size as it reduces
7063  * a file's length.  Some of this code is replicated here in our
7064  * soft updates implementation.  The freeblks->fb_chkcnt field is
7065  * used to transfer a part of this information to the procedure
7066  * that eventually de-allocates the blocks.
7067  *
7068  * This routine should be called from the routine that shortens
7069  * a file's length, before the inode's size or block pointers
7070  * are modified. It will save the block pointer information for
7071  * later release and zero the inode so that the calling routine
7072  * can release it.
7073  */
7074 void
7075 softdep_setup_freeblocks(
7076 	struct inode *ip,	/* The inode whose length is to be reduced */
7077 	off_t length,		/* The new length for the file */
7078 	int flags)		/* IO_EXT and/or IO_NORMAL */
7079 {
7080 	struct ufs1_dinode *dp1;
7081 	struct ufs2_dinode *dp2;
7082 	struct freeblks *freeblks;
7083 	struct inodedep *inodedep;
7084 	struct allocdirect *adp;
7085 	struct ufsmount *ump;
7086 	struct buf *bp;
7087 	struct fs *fs;
7088 	ufs2_daddr_t extblocks, datablocks;
7089 	struct mount *mp;
7090 	int i, delay, error;
7091 	ufs_lbn_t tmpval;
7092 	ufs_lbn_t lbn;
7093 
7094 	ump = ITOUMP(ip);
7095 	mp = UFSTOVFS(ump);
7096 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
7097 	    ("softdep_setup_freeblocks called on non-softdep filesystem"));
7098 	CTR2(KTR_SUJ, "softdep_setup_freeblks: ip %d length %ld",
7099 	    ip->i_number, length);
7100 	KASSERT(length == 0, ("softdep_setup_freeblocks: non-zero length"));
7101 	fs = ump->um_fs;
7102 	if ((error = bread(ump->um_devvp,
7103 	    fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
7104 	    (int)fs->fs_bsize, NOCRED, &bp)) != 0) {
7105 		if (!ffs_fsfail_cleanup(ump, error))
7106 			softdep_error("softdep_setup_freeblocks", error);
7107 		return;
7108 	}
7109 	freeblks = newfreeblks(mp, ip);
7110 	extblocks = 0;
7111 	datablocks = 0;
7112 	if (fs->fs_magic == FS_UFS2_MAGIC)
7113 		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
7114 	if ((flags & IO_NORMAL) != 0) {
7115 		for (i = 0; i < UFS_NDADDR; i++)
7116 			setup_freedirect(freeblks, ip, i, 0);
7117 		for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR;
7118 		    i < UFS_NIADDR;
7119 		    i++, lbn += tmpval, tmpval *= NINDIR(fs))
7120 			setup_freeindir(freeblks, ip, i, -lbn -i, 0);
7121 		ip->i_size = 0;
7122 		DIP_SET(ip, i_size, 0);
7123 		UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE);
7124 		datablocks = DIP(ip, i_blocks) - extblocks;
7125 	}
7126 	if ((flags & IO_EXT) != 0) {
7127 		for (i = 0; i < UFS_NXADDR; i++)
7128 			setup_freeext(freeblks, ip, i, 0);
7129 		ip->i_din2->di_extsize = 0;
7130 		datablocks += extblocks;
7131 		UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE);
7132 	}
7133 #ifdef QUOTA
7134 	/* Reference the quotas in case the block count is wrong in the end. */
7135 	quotaref(ITOV(ip), freeblks->fb_quota);
7136 	(void) chkdq(ip, -datablocks, NOCRED, FORCE);
7137 #endif
7138 	freeblks->fb_chkcnt = -datablocks;
7139 	UFS_LOCK(ump);
7140 	fs->fs_pendingblocks += datablocks;
7141 	UFS_UNLOCK(ump);
7142 	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
7143 	/*
7144 	 * Push the zero'ed inode to its disk buffer so that we are free
7145 	 * to delete its dependencies below. Once the dependencies are gone
7146 	 * the buffer can be safely released.
7147 	 */
7148 	if (ump->um_fstype == UFS1) {
7149 		dp1 = ((struct ufs1_dinode *)bp->b_data +
7150 		    ino_to_fsbo(fs, ip->i_number));
7151 		ip->i_din1->di_freelink = dp1->di_freelink;
7152 		*dp1 = *ip->i_din1;
7153 	} else {
7154 		dp2 = ((struct ufs2_dinode *)bp->b_data +
7155 		    ino_to_fsbo(fs, ip->i_number));
7156 		ip->i_din2->di_freelink = dp2->di_freelink;
7157 		ffs_update_dinode_ckhash(fs, ip->i_din2);
7158 		*dp2 = *ip->i_din2;
7159 	}
7160 	/*
7161 	 * Find and eliminate any inode dependencies.
7162 	 */
7163 	ACQUIRE_LOCK(ump);
7164 	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
7165 	if ((inodedep->id_state & IOSTARTED) != 0)
7166 		panic("softdep_setup_freeblocks: inode busy");
7167 	/*
7168 	 * Add the freeblks structure to the list of operations that
7169 	 * must await the zero'ed inode being written to disk. If we
7170 	 * still have a bitmap dependency (delay == 0), then the inode
7171 	 * has never been written to disk, so we can process the
7172 	 * freeblks below once we have deleted the dependencies.
7173 	 */
7174 	delay = (inodedep->id_state & DEPCOMPLETE);
7175 	if (delay)
7176 		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
7177 	else
7178 		freeblks->fb_state |= COMPLETE;
7179 	/*
7180 	 * Because the file length has been truncated to zero, any
7181 	 * pending block allocation dependency structures associated
7182 	 * with this inode are obsolete and can simply be de-allocated.
7183 	 * We must first merge the two dependency lists to get rid of
7184 	 * any duplicate freefrag structures, then purge the merged list.
7185 	 * If we still have a bitmap dependency, then the inode has never
7186 	 * been written to disk, so we can free any fragments without delay.
7187 	 */
7188 	if (flags & IO_NORMAL) {
7189 		merge_inode_lists(&inodedep->id_newinoupdt,
7190 		    &inodedep->id_inoupdt);
7191 		while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
7192 			cancel_allocdirect(&inodedep->id_inoupdt, adp,
7193 			    freeblks);
7194 	}
7195 	if (flags & IO_EXT) {
7196 		merge_inode_lists(&inodedep->id_newextupdt,
7197 		    &inodedep->id_extupdt);
7198 		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
7199 			cancel_allocdirect(&inodedep->id_extupdt, adp,
7200 			    freeblks);
7201 	}
7202 	FREE_LOCK(ump);
7203 	bdwrite(bp);
7204 	trunc_dependencies(ip, freeblks, -1, 0, flags);
7205 	ACQUIRE_LOCK(ump);
7206 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
7207 		(void) free_inodedep(inodedep);
7208 	freeblks->fb_state |= DEPCOMPLETE;
7209 	/*
7210 	 * If the inode with zeroed block pointers is now on disk
7211 	 * we can start freeing blocks.
7212 	 */
7213 	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
7214 		freeblks->fb_state |= INPROGRESS;
7215 	else
7216 		freeblks = NULL;
7217 	FREE_LOCK(ump);
7218 	if (freeblks)
7219 		handle_workitem_freeblocks(freeblks, 0);
7220 	trunc_pages(ip, length, extblocks, flags);
7221 }
7222 
7223 /*
7224  * Eliminate pages from the page cache that back parts of this inode and
7225  * adjust the vnode pager's idea of our size.  This prevents stale data
7226  * from hanging around in the page cache.
7227  */
7228 static void
7229 trunc_pages(
7230 	struct inode *ip,
7231 	off_t length,
7232 	ufs2_daddr_t extblocks,
7233 	int flags)
7234 {
7235 	struct vnode *vp;
7236 	struct fs *fs;
7237 	ufs_lbn_t lbn;
7238 	off_t end, extend;
7239 
7240 	vp = ITOV(ip);
7241 	fs = ITOFS(ip);
7242 	extend = OFF_TO_IDX(lblktosize(fs, -extblocks));
7243 	if ((flags & IO_EXT) != 0)
7244 		vn_pages_remove(vp, extend, 0);
7245 	if ((flags & IO_NORMAL) == 0)
7246 		return;
7247 	BO_LOCK(&vp->v_bufobj);
7248 	drain_output(vp);
7249 	BO_UNLOCK(&vp->v_bufobj);
7250 	/*
7251 	 * The vnode pager eliminates file pages we eliminate indirects
7252 	 * below.
7253 	 */
7254 	vnode_pager_setsize(vp, length);
7255 	/*
7256 	 * Calculate the end based on the last indirect we want to keep.  If
7257 	 * the block extends into indirects we can just use the negative of
7258 	 * its lbn.  Doubles and triples exist at lower numbers so we must
7259 	 * be careful not to remove those, if they exist.  double and triple
7260 	 * indirect lbns do not overlap with others so it is not important
7261 	 * to verify how many levels are required.
7262 	 */
7263 	lbn = lblkno(fs, length);
7264 	if (lbn >= UFS_NDADDR) {
7265 		/* Calculate the virtual lbn of the triple indirect. */
7266 		lbn = -lbn - (UFS_NIADDR - 1);
7267 		end = OFF_TO_IDX(lblktosize(fs, lbn));
7268 	} else
7269 		end = extend;
7270 	vn_pages_remove(vp, OFF_TO_IDX(OFF_MAX), end);
7271 }
7272 
7273 /*
7274  * See if the buf bp is in the range eliminated by truncation.
7275  */
7276 static int
7277 trunc_check_buf(
7278 	struct buf *bp,
7279 	int *blkoffp,
7280 	ufs_lbn_t lastlbn,
7281 	int lastoff,
7282 	int flags)
7283 {
7284 	ufs_lbn_t lbn;
7285 
7286 	*blkoffp = 0;
7287 	/* Only match ext/normal blocks as appropriate. */
7288 	if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) ||
7289 	    ((flags & IO_NORMAL) == 0 && (bp->b_xflags & BX_ALTDATA) == 0))
7290 		return (0);
7291 	/* ALTDATA is always a full truncation. */
7292 	if ((bp->b_xflags & BX_ALTDATA) != 0)
7293 		return (1);
7294 	/* -1 is full truncation. */
7295 	if (lastlbn == -1)
7296 		return (1);
7297 	/*
7298 	 * If this is a partial truncate we only want those
7299 	 * blocks and indirect blocks that cover the range
7300 	 * we're after.
7301 	 */
7302 	lbn = bp->b_lblkno;
7303 	if (lbn < 0)
7304 		lbn = -(lbn + lbn_level(lbn));
7305 	if (lbn < lastlbn)
7306 		return (0);
7307 	/* Here we only truncate lblkno if it's partial. */
7308 	if (lbn == lastlbn) {
7309 		if (lastoff == 0)
7310 			return (0);
7311 		*blkoffp = lastoff;
7312 	}
7313 	return (1);
7314 }
7315 
7316 /*
7317  * Eliminate any dependencies that exist in memory beyond lblkno:off
7318  */
7319 static void
7320 trunc_dependencies(
7321 	struct inode *ip,
7322 	struct freeblks *freeblks,
7323 	ufs_lbn_t lastlbn,
7324 	int lastoff,
7325 	int flags)
7326 {
7327 	struct bufobj *bo;
7328 	struct vnode *vp;
7329 	struct buf *bp;
7330 	int blkoff;
7331 
7332 	/*
7333 	 * We must wait for any I/O in progress to finish so that
7334 	 * all potential buffers on the dirty list will be visible.
7335 	 * Once they are all there, walk the list and get rid of
7336 	 * any dependencies.
7337 	 */
7338 	vp = ITOV(ip);
7339 	bo = &vp->v_bufobj;
7340 	BO_LOCK(bo);
7341 	drain_output(vp);
7342 	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
7343 		bp->b_vflags &= ~BV_SCANNED;
7344 restart:
7345 	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
7346 		if (bp->b_vflags & BV_SCANNED)
7347 			continue;
7348 		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
7349 			bp->b_vflags |= BV_SCANNED;
7350 			continue;
7351 		}
7352 		KASSERT(bp->b_bufobj == bo, ("Wrong object in buffer"));
7353 		if ((bp = getdirtybuf(bp, BO_LOCKPTR(bo), MNT_WAIT)) == NULL)
7354 			goto restart;
7355 		BO_UNLOCK(bo);
7356 		if (deallocate_dependencies(bp, freeblks, blkoff))
7357 			bqrelse(bp);
7358 		else
7359 			brelse(bp);
7360 		BO_LOCK(bo);
7361 		goto restart;
7362 	}
7363 	/*
7364 	 * Now do the work of vtruncbuf while also matching indirect blocks.
7365 	 */
7366 	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs)
7367 		bp->b_vflags &= ~BV_SCANNED;
7368 cleanrestart:
7369 	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) {
7370 		if (bp->b_vflags & BV_SCANNED)
7371 			continue;
7372 		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
7373 			bp->b_vflags |= BV_SCANNED;
7374 			continue;
7375 		}
7376 		if (BUF_LOCK(bp,
7377 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
7378 		    BO_LOCKPTR(bo)) == ENOLCK) {
7379 			BO_LOCK(bo);
7380 			goto cleanrestart;
7381 		}
7382 		BO_LOCK(bo);
7383 		bp->b_vflags |= BV_SCANNED;
7384 		BO_UNLOCK(bo);
7385 		bremfree(bp);
7386 		if (blkoff != 0) {
7387 			allocbuf(bp, blkoff);
7388 			bqrelse(bp);
7389 		} else {
7390 			bp->b_flags |= B_INVAL | B_NOCACHE | B_RELBUF;
7391 			brelse(bp);
7392 		}
7393 		BO_LOCK(bo);
7394 		goto cleanrestart;
7395 	}
7396 	drain_output(vp);
7397 	BO_UNLOCK(bo);
7398 }
7399 
7400 static int
7401 cancel_pagedep(
7402 	struct pagedep *pagedep,
7403 	struct freeblks *freeblks,
7404 	int blkoff)
7405 {
7406 	struct jremref *jremref;
7407 	struct jmvref *jmvref;
7408 	struct dirrem *dirrem, *tmp;
7409 	int i;
7410 
7411 	/*
7412 	 * Copy any directory remove dependencies to the list
7413 	 * to be processed after the freeblks proceeds.  If
7414 	 * directory entry never made it to disk they
7415 	 * can be dumped directly onto the work list.
7416 	 */
7417 	LIST_FOREACH_SAFE(dirrem, &pagedep->pd_dirremhd, dm_next, tmp) {
7418 		/* Skip this directory removal if it is intended to remain. */
7419 		if (dirrem->dm_offset < blkoff)
7420 			continue;
7421 		/*
7422 		 * If there are any dirrems we wait for the journal write
7423 		 * to complete and then restart the buf scan as the lock
7424 		 * has been dropped.
7425 		 */
7426 		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) {
7427 			jwait(&jremref->jr_list, MNT_WAIT);
7428 			return (ERESTART);
7429 		}
7430 		LIST_REMOVE(dirrem, dm_next);
7431 		dirrem->dm_dirinum = pagedep->pd_ino;
7432 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &dirrem->dm_list);
7433 	}
7434 	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) {
7435 		jwait(&jmvref->jm_list, MNT_WAIT);
7436 		return (ERESTART);
7437 	}
7438 	/*
7439 	 * When we're partially truncating a pagedep we just want to flush
7440 	 * journal entries and return.  There can not be any adds in the
7441 	 * truncated portion of the directory and newblk must remain if
7442 	 * part of the block remains.
7443 	 */
7444 	if (blkoff != 0) {
7445 		struct diradd *dap;
7446 
7447 		LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
7448 			if (dap->da_offset > blkoff)
7449 				panic("cancel_pagedep: diradd %p off %d > %d",
7450 				    dap, dap->da_offset, blkoff);
7451 		for (i = 0; i < DAHASHSZ; i++)
7452 			LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist)
7453 				if (dap->da_offset > blkoff)
7454 					panic("cancel_pagedep: diradd %p off %d > %d",
7455 					    dap, dap->da_offset, blkoff);
7456 		return (0);
7457 	}
7458 	/*
7459 	 * There should be no directory add dependencies present
7460 	 * as the directory could not be truncated until all
7461 	 * children were removed.
7462 	 */
7463 	KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL,
7464 	    ("deallocate_dependencies: pendinghd != NULL"));
7465 	for (i = 0; i < DAHASHSZ; i++)
7466 		KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL,
7467 		    ("deallocate_dependencies: diraddhd != NULL"));
7468 	if ((pagedep->pd_state & NEWBLOCK) != 0)
7469 		free_newdirblk(pagedep->pd_newdirblk);
7470 	if (free_pagedep(pagedep) == 0)
7471 		panic("Failed to free pagedep %p", pagedep);
7472 	return (0);
7473 }
7474 
7475 /*
7476  * Reclaim any dependency structures from a buffer that is about to
7477  * be reallocated to a new vnode. The buffer must be locked, thus,
7478  * no I/O completion operations can occur while we are manipulating
7479  * its associated dependencies. The mutex is held so that other I/O's
7480  * associated with related dependencies do not occur.
7481  */
7482 static int
7483 deallocate_dependencies(
7484 	struct buf *bp,
7485 	struct freeblks *freeblks,
7486 	int off)
7487 {
7488 	struct indirdep *indirdep;
7489 	struct pagedep *pagedep;
7490 	struct worklist *wk, *wkn;
7491 	struct ufsmount *ump;
7492 
7493 	ump = softdep_bp_to_mp(bp);
7494 	if (ump == NULL)
7495 		goto done;
7496 	ACQUIRE_LOCK(ump);
7497 	LIST_FOREACH_SAFE(wk, &bp->b_dep, wk_list, wkn) {
7498 		switch (wk->wk_type) {
7499 		case D_INDIRDEP:
7500 			indirdep = WK_INDIRDEP(wk);
7501 			if (bp->b_lblkno >= 0 ||
7502 			    bp->b_blkno != indirdep->ir_savebp->b_lblkno)
7503 				panic("deallocate_dependencies: not indir");
7504 			cancel_indirdep(indirdep, bp, freeblks);
7505 			continue;
7506 
7507 		case D_PAGEDEP:
7508 			pagedep = WK_PAGEDEP(wk);
7509 			if (cancel_pagedep(pagedep, freeblks, off)) {
7510 				FREE_LOCK(ump);
7511 				return (ERESTART);
7512 			}
7513 			continue;
7514 
7515 		case D_ALLOCINDIR:
7516 			/*
7517 			 * Simply remove the allocindir, we'll find it via
7518 			 * the indirdep where we can clear pointers if
7519 			 * needed.
7520 			 */
7521 			WORKLIST_REMOVE(wk);
7522 			continue;
7523 
7524 		case D_FREEWORK:
7525 			/*
7526 			 * A truncation is waiting for the zero'd pointers
7527 			 * to be written.  It can be freed when the freeblks
7528 			 * is journaled.
7529 			 */
7530 			WORKLIST_REMOVE(wk);
7531 			wk->wk_state |= ONDEPLIST;
7532 			WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
7533 			break;
7534 
7535 		case D_ALLOCDIRECT:
7536 			if (off != 0)
7537 				continue;
7538 			/* FALLTHROUGH */
7539 		default:
7540 			panic("deallocate_dependencies: Unexpected type %s",
7541 			    TYPENAME(wk->wk_type));
7542 			/* NOTREACHED */
7543 		}
7544 	}
7545 	FREE_LOCK(ump);
7546 done:
7547 	/*
7548 	 * Don't throw away this buf, we were partially truncating and
7549 	 * some deps may always remain.
7550 	 */
7551 	if (off) {
7552 		allocbuf(bp, off);
7553 		bp->b_vflags |= BV_SCANNED;
7554 		return (EBUSY);
7555 	}
7556 	bp->b_flags |= B_INVAL | B_NOCACHE;
7557 
7558 	return (0);
7559 }
7560 
7561 /*
7562  * An allocdirect is being canceled due to a truncate.  We must make sure
7563  * the journal entry is released in concert with the blkfree that releases
7564  * the storage.  Completed journal entries must not be released until the
7565  * space is no longer pointed to by the inode or in the bitmap.
7566  */
7567 static void
7568 cancel_allocdirect(
7569 	struct allocdirectlst *adphead,
7570 	struct allocdirect *adp,
7571 	struct freeblks *freeblks)
7572 {
7573 	struct freework *freework;
7574 	struct newblk *newblk;
7575 	struct worklist *wk;
7576 
7577 	TAILQ_REMOVE(adphead, adp, ad_next);
7578 	newblk = (struct newblk *)adp;
7579 	freework = NULL;
7580 	/*
7581 	 * Find the correct freework structure.
7582 	 */
7583 	LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) {
7584 		if (wk->wk_type != D_FREEWORK)
7585 			continue;
7586 		freework = WK_FREEWORK(wk);
7587 		if (freework->fw_blkno == newblk->nb_newblkno)
7588 			break;
7589 	}
7590 	if (freework == NULL)
7591 		panic("cancel_allocdirect: Freework not found");
7592 	/*
7593 	 * If a newblk exists at all we still have the journal entry that
7594 	 * initiated the allocation so we do not need to journal the free.
7595 	 */
7596 	cancel_jfreeblk(freeblks, freework->fw_blkno);
7597 	/*
7598 	 * If the journal hasn't been written the jnewblk must be passed
7599 	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
7600 	 * this by linking the journal dependency into the freework to be
7601 	 * freed when freework_freeblock() is called.  If the journal has
7602 	 * been written we can simply reclaim the journal space when the
7603 	 * freeblks work is complete.
7604 	 */
7605 	freework->fw_jnewblk = cancel_newblk(newblk, &freework->fw_list,
7606 	    &freeblks->fb_jwork);
7607 	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
7608 }
7609 
7610 /*
7611  * Cancel a new block allocation.  May be an indirect or direct block.  We
7612  * remove it from various lists and return any journal record that needs to
7613  * be resolved by the caller.
7614  *
7615  * A special consideration is made for indirects which were never pointed
7616  * at on disk and will never be found once this block is released.
7617  */
7618 static struct jnewblk *
7619 cancel_newblk(
7620 	struct newblk *newblk,
7621 	struct worklist *wk,
7622 	struct workhead *wkhd)
7623 {
7624 	struct jnewblk *jnewblk;
7625 
7626 	CTR1(KTR_SUJ, "cancel_newblk: blkno %jd", newblk->nb_newblkno);
7627 
7628 	newblk->nb_state |= GOINGAWAY;
7629 	/*
7630 	 * Previously we traversed the completedhd on each indirdep
7631 	 * attached to this newblk to cancel them and gather journal
7632 	 * work.  Since we need only the oldest journal segment and
7633 	 * the lowest point on the tree will always have the oldest
7634 	 * journal segment we are free to release the segments
7635 	 * of any subordinates and may leave the indirdep list to
7636 	 * indirdep_complete() when this newblk is freed.
7637 	 */
7638 	if (newblk->nb_state & ONDEPLIST) {
7639 		newblk->nb_state &= ~ONDEPLIST;
7640 		LIST_REMOVE(newblk, nb_deps);
7641 	}
7642 	if (newblk->nb_state & ONWORKLIST)
7643 		WORKLIST_REMOVE(&newblk->nb_list);
7644 	/*
7645 	 * If the journal entry hasn't been written we save a pointer to
7646 	 * the dependency that frees it until it is written or the
7647 	 * superseding operation completes.
7648 	 */
7649 	jnewblk = newblk->nb_jnewblk;
7650 	if (jnewblk != NULL && wk != NULL) {
7651 		newblk->nb_jnewblk = NULL;
7652 		jnewblk->jn_dep = wk;
7653 	}
7654 	if (!LIST_EMPTY(&newblk->nb_jwork))
7655 		jwork_move(wkhd, &newblk->nb_jwork);
7656 	/*
7657 	 * When truncating we must free the newdirblk early to remove
7658 	 * the pagedep from the hash before returning.
7659 	 */
7660 	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7661 		free_newdirblk(WK_NEWDIRBLK(wk));
7662 	if (!LIST_EMPTY(&newblk->nb_newdirblk))
7663 		panic("cancel_newblk: extra newdirblk");
7664 
7665 	return (jnewblk);
7666 }
7667 
7668 /*
7669  * Schedule the freefrag associated with a newblk to be released once
7670  * the pointers are written and the previous block is no longer needed.
7671  */
7672 static void
7673 newblk_freefrag(struct newblk *newblk)
7674 {
7675 	struct freefrag *freefrag;
7676 
7677 	if (newblk->nb_freefrag == NULL)
7678 		return;
7679 	freefrag = newblk->nb_freefrag;
7680 	newblk->nb_freefrag = NULL;
7681 	freefrag->ff_state |= COMPLETE;
7682 	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
7683 		add_to_worklist(&freefrag->ff_list, 0);
7684 }
7685 
7686 /*
7687  * Free a newblk. Generate a new freefrag work request if appropriate.
7688  * This must be called after the inode pointer and any direct block pointers
7689  * are valid or fully removed via truncate or frag extension.
7690  */
7691 static void
7692 free_newblk(struct newblk *newblk)
7693 {
7694 	struct indirdep *indirdep;
7695 	struct worklist *wk;
7696 
7697 	KASSERT(newblk->nb_jnewblk == NULL,
7698 	    ("free_newblk: jnewblk %p still attached", newblk->nb_jnewblk));
7699 	KASSERT(newblk->nb_list.wk_type != D_NEWBLK,
7700 	    ("free_newblk: unclaimed newblk"));
7701 	LOCK_OWNED(VFSTOUFS(newblk->nb_list.wk_mp));
7702 	newblk_freefrag(newblk);
7703 	if (newblk->nb_state & ONDEPLIST)
7704 		LIST_REMOVE(newblk, nb_deps);
7705 	if (newblk->nb_state & ONWORKLIST)
7706 		WORKLIST_REMOVE(&newblk->nb_list);
7707 	LIST_REMOVE(newblk, nb_hash);
7708 	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7709 		free_newdirblk(WK_NEWDIRBLK(wk));
7710 	if (!LIST_EMPTY(&newblk->nb_newdirblk))
7711 		panic("free_newblk: extra newdirblk");
7712 	while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL)
7713 		indirdep_complete(indirdep);
7714 	handle_jwork(&newblk->nb_jwork);
7715 	WORKITEM_FREE(newblk, D_NEWBLK);
7716 }
7717 
7718 /*
7719  * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep.
7720  */
7721 static void
7722 free_newdirblk(struct newdirblk *newdirblk)
7723 {
7724 	struct pagedep *pagedep;
7725 	struct diradd *dap;
7726 	struct worklist *wk;
7727 
7728 	LOCK_OWNED(VFSTOUFS(newdirblk->db_list.wk_mp));
7729 	WORKLIST_REMOVE(&newdirblk->db_list);
7730 	/*
7731 	 * If the pagedep is still linked onto the directory buffer
7732 	 * dependency chain, then some of the entries on the
7733 	 * pd_pendinghd list may not be committed to disk yet. In
7734 	 * this case, we will simply clear the NEWBLOCK flag and
7735 	 * let the pd_pendinghd list be processed when the pagedep
7736 	 * is next written. If the pagedep is no longer on the buffer
7737 	 * dependency chain, then all the entries on the pd_pending
7738 	 * list are committed to disk and we can free them here.
7739 	 */
7740 	pagedep = newdirblk->db_pagedep;
7741 	pagedep->pd_state &= ~NEWBLOCK;
7742 	if ((pagedep->pd_state & ONWORKLIST) == 0) {
7743 		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
7744 			free_diradd(dap, NULL);
7745 		/*
7746 		 * If no dependencies remain, the pagedep will be freed.
7747 		 */
7748 		free_pagedep(pagedep);
7749 	}
7750 	/* Should only ever be one item in the list. */
7751 	while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) {
7752 		WORKLIST_REMOVE(wk);
7753 		handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
7754 	}
7755 	WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
7756 }
7757 
7758 /*
7759  * Prepare an inode to be freed. The actual free operation is not
7760  * done until the zero'ed inode has been written to disk.
7761  */
7762 void
7763 softdep_freefile(
7764 	struct vnode *pvp,
7765 	ino_t ino,
7766 	int mode)
7767 {
7768 	struct inode *ip = VTOI(pvp);
7769 	struct inodedep *inodedep;
7770 	struct freefile *freefile;
7771 	struct freeblks *freeblks;
7772 	struct ufsmount *ump;
7773 
7774 	ump = ITOUMP(ip);
7775 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
7776 	    ("softdep_freefile called on non-softdep filesystem"));
7777 	/*
7778 	 * This sets up the inode de-allocation dependency.
7779 	 */
7780 	freefile = malloc(sizeof(struct freefile),
7781 		M_FREEFILE, M_SOFTDEP_FLAGS);
7782 	workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount);
7783 	freefile->fx_mode = mode;
7784 	freefile->fx_oldinum = ino;
7785 	freefile->fx_devvp = ump->um_devvp;
7786 	LIST_INIT(&freefile->fx_jwork);
7787 	UFS_LOCK(ump);
7788 	ump->um_fs->fs_pendinginodes += 1;
7789 	UFS_UNLOCK(ump);
7790 
7791 	/*
7792 	 * If the inodedep does not exist, then the zero'ed inode has
7793 	 * been written to disk. If the allocated inode has never been
7794 	 * written to disk, then the on-disk inode is zero'ed. In either
7795 	 * case we can free the file immediately.  If the journal was
7796 	 * canceled before being written the inode will never make it to
7797 	 * disk and we must send the canceled journal entrys to
7798 	 * ffs_freefile() to be cleared in conjunction with the bitmap.
7799 	 * Any blocks waiting on the inode to write can be safely freed
7800 	 * here as it will never been written.
7801 	 */
7802 	ACQUIRE_LOCK(ump);
7803 	inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
7804 	if (inodedep) {
7805 		/*
7806 		 * Clear out freeblks that no longer need to reference
7807 		 * this inode.
7808 		 */
7809 		while ((freeblks =
7810 		    TAILQ_FIRST(&inodedep->id_freeblklst)) != NULL) {
7811 			TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks,
7812 			    fb_next);
7813 			freeblks->fb_state &= ~ONDEPLIST;
7814 		}
7815 		/*
7816 		 * Remove this inode from the unlinked list.
7817 		 */
7818 		if (inodedep->id_state & UNLINKED) {
7819 			/*
7820 			 * Save the journal work to be freed with the bitmap
7821 			 * before we clear UNLINKED.  Otherwise it can be lost
7822 			 * if the inode block is written.
7823 			 */
7824 			handle_bufwait(inodedep, &freefile->fx_jwork);
7825 			clear_unlinked_inodedep(inodedep);
7826 			/*
7827 			 * Re-acquire inodedep as we've dropped the
7828 			 * per-filesystem lock in clear_unlinked_inodedep().
7829 			 */
7830 			inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
7831 		}
7832 	}
7833 	if (inodedep == NULL || check_inode_unwritten(inodedep)) {
7834 		FREE_LOCK(ump);
7835 		handle_workitem_freefile(freefile);
7836 		return;
7837 	}
7838 	if ((inodedep->id_state & DEPCOMPLETE) == 0)
7839 		inodedep->id_state |= GOINGAWAY;
7840 	WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
7841 	FREE_LOCK(ump);
7842 	if (ip->i_number == ino)
7843 		UFS_INODE_SET_FLAG(ip, IN_MODIFIED);
7844 }
7845 
7846 /*
7847  * Check to see if an inode has never been written to disk. If
7848  * so free the inodedep and return success, otherwise return failure.
7849  *
7850  * If we still have a bitmap dependency, then the inode has never
7851  * been written to disk. Drop the dependency as it is no longer
7852  * necessary since the inode is being deallocated. We set the
7853  * ALLCOMPLETE flags since the bitmap now properly shows that the
7854  * inode is not allocated. Even if the inode is actively being
7855  * written, it has been rolled back to its zero'ed state, so we
7856  * are ensured that a zero inode is what is on the disk. For short
7857  * lived files, this change will usually result in removing all the
7858  * dependencies from the inode so that it can be freed immediately.
7859  */
7860 static int
7861 check_inode_unwritten(struct inodedep *inodedep)
7862 {
7863 
7864 	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
7865 
7866 	if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 ||
7867 	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
7868 	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
7869 	    !LIST_EMPTY(&inodedep->id_bufwait) ||
7870 	    !LIST_EMPTY(&inodedep->id_inowait) ||
7871 	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
7872 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
7873 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
7874 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
7875 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
7876 	    !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
7877 	    inodedep->id_mkdiradd != NULL ||
7878 	    inodedep->id_nlinkdelta != 0)
7879 		return (0);
7880 	/*
7881 	 * Another process might be in initiate_write_inodeblock_ufs[12]
7882 	 * trying to allocate memory without holding "Softdep Lock".
7883 	 */
7884 	if ((inodedep->id_state & IOSTARTED) != 0 &&
7885 	    inodedep->id_savedino1 == NULL)
7886 		return (0);
7887 
7888 	if (inodedep->id_state & ONDEPLIST)
7889 		LIST_REMOVE(inodedep, id_deps);
7890 	inodedep->id_state &= ~ONDEPLIST;
7891 	inodedep->id_state |= ALLCOMPLETE;
7892 	inodedep->id_bmsafemap = NULL;
7893 	if (inodedep->id_state & ONWORKLIST)
7894 		WORKLIST_REMOVE(&inodedep->id_list);
7895 	if (inodedep->id_savedino1 != NULL) {
7896 		free(inodedep->id_savedino1, M_SAVEDINO);
7897 		inodedep->id_savedino1 = NULL;
7898 	}
7899 	if (free_inodedep(inodedep) == 0)
7900 		panic("check_inode_unwritten: busy inode");
7901 	return (1);
7902 }
7903 
7904 static int
7905 check_inodedep_free(struct inodedep *inodedep)
7906 {
7907 
7908 	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
7909 	if ((inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
7910 	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
7911 	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
7912 	    !LIST_EMPTY(&inodedep->id_bufwait) ||
7913 	    !LIST_EMPTY(&inodedep->id_inowait) ||
7914 	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
7915 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
7916 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
7917 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
7918 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
7919 	    !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
7920 	    inodedep->id_mkdiradd != NULL ||
7921 	    inodedep->id_nlinkdelta != 0 ||
7922 	    inodedep->id_savedino1 != NULL)
7923 		return (0);
7924 	return (1);
7925 }
7926 
7927 /*
7928  * Try to free an inodedep structure. Return 1 if it could be freed.
7929  */
7930 static int
7931 free_inodedep(struct inodedep *inodedep)
7932 {
7933 
7934 	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
7935 	if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 ||
7936 	    !check_inodedep_free(inodedep))
7937 		return (0);
7938 	if (inodedep->id_state & ONDEPLIST)
7939 		LIST_REMOVE(inodedep, id_deps);
7940 	LIST_REMOVE(inodedep, id_hash);
7941 	WORKITEM_FREE(inodedep, D_INODEDEP);
7942 	return (1);
7943 }
7944 
7945 /*
7946  * Free the block referenced by a freework structure.  The parent freeblks
7947  * structure is released and completed when the final cg bitmap reaches
7948  * the disk.  This routine may be freeing a jnewblk which never made it to
7949  * disk in which case we do not have to wait as the operation is undone
7950  * in memory immediately.
7951  */
7952 static void
7953 freework_freeblock(struct freework *freework, uint64_t key)
7954 {
7955 	struct freeblks *freeblks;
7956 	struct jnewblk *jnewblk;
7957 	struct ufsmount *ump;
7958 	struct workhead wkhd;
7959 	struct fs *fs;
7960 	int bsize;
7961 	int needj;
7962 
7963 	ump = VFSTOUFS(freework->fw_list.wk_mp);
7964 	LOCK_OWNED(ump);
7965 	/*
7966 	 * Handle partial truncate separately.
7967 	 */
7968 	if (freework->fw_indir) {
7969 		complete_trunc_indir(freework);
7970 		return;
7971 	}
7972 	freeblks = freework->fw_freeblks;
7973 	fs = ump->um_fs;
7974 	needj = MOUNTEDSUJ(freeblks->fb_list.wk_mp) != 0;
7975 	bsize = lfragtosize(fs, freework->fw_frags);
7976 	LIST_INIT(&wkhd);
7977 	/*
7978 	 * DEPCOMPLETE is cleared in indirblk_insert() if the block lives
7979 	 * on the indirblk hashtable and prevents premature freeing.
7980 	 */
7981 	freework->fw_state |= DEPCOMPLETE;
7982 	/*
7983 	 * SUJ needs to wait for the segment referencing freed indirect
7984 	 * blocks to expire so that we know the checker will not confuse
7985 	 * a re-allocated indirect block with its old contents.
7986 	 */
7987 	if (needj && freework->fw_lbn <= -UFS_NDADDR)
7988 		indirblk_insert(freework);
7989 	/*
7990 	 * If we are canceling an existing jnewblk pass it to the free
7991 	 * routine, otherwise pass the freeblk which will ultimately
7992 	 * release the freeblks.  If we're not journaling, we can just
7993 	 * free the freeblks immediately.
7994 	 */
7995 	jnewblk = freework->fw_jnewblk;
7996 	if (jnewblk != NULL) {
7997 		cancel_jnewblk(jnewblk, &wkhd);
7998 		needj = 0;
7999 	} else if (needj) {
8000 		freework->fw_state |= DELAYEDFREE;
8001 		freeblks->fb_cgwait++;
8002 		WORKLIST_INSERT(&wkhd, &freework->fw_list);
8003 	}
8004 	FREE_LOCK(ump);
8005 	freeblks_free(ump, freeblks, btodb(bsize));
8006 	CTR4(KTR_SUJ,
8007 	    "freework_freeblock: ino %jd blkno %jd lbn %jd size %d",
8008 	    freeblks->fb_inum, freework->fw_blkno, freework->fw_lbn, bsize);
8009 	ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno, bsize,
8010 	    freeblks->fb_inum, freeblks->fb_vtype, &wkhd, key);
8011 	ACQUIRE_LOCK(ump);
8012 	/*
8013 	 * The jnewblk will be discarded and the bits in the map never
8014 	 * made it to disk.  We can immediately free the freeblk.
8015 	 */
8016 	if (needj == 0)
8017 		handle_written_freework(freework);
8018 }
8019 
8020 /*
8021  * We enqueue freework items that need processing back on the freeblks and
8022  * add the freeblks to the worklist.  This makes it easier to find all work
8023  * required to flush a truncation in process_truncates().
8024  */
8025 static void
8026 freework_enqueue(struct freework *freework)
8027 {
8028 	struct freeblks *freeblks;
8029 
8030 	freeblks = freework->fw_freeblks;
8031 	if ((freework->fw_state & INPROGRESS) == 0)
8032 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
8033 	if ((freeblks->fb_state &
8034 	    (ONWORKLIST | INPROGRESS | ALLCOMPLETE)) == ALLCOMPLETE &&
8035 	    LIST_EMPTY(&freeblks->fb_jblkdephd))
8036 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
8037 }
8038 
8039 /*
8040  * Start, continue, or finish the process of freeing an indirect block tree.
8041  * The free operation may be paused at any point with fw_off containing the
8042  * offset to restart from.  This enables us to implement some flow control
8043  * for large truncates which may fan out and generate a huge number of
8044  * dependencies.
8045  */
8046 static void
8047 handle_workitem_indirblk(struct freework *freework)
8048 {
8049 	struct freeblks *freeblks;
8050 	struct ufsmount *ump;
8051 	struct fs *fs;
8052 
8053 	freeblks = freework->fw_freeblks;
8054 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
8055 	fs = ump->um_fs;
8056 	if (freework->fw_state & DEPCOMPLETE) {
8057 		handle_written_freework(freework);
8058 		return;
8059 	}
8060 	if (freework->fw_off == NINDIR(fs)) {
8061 		freework_freeblock(freework, SINGLETON_KEY);
8062 		return;
8063 	}
8064 	freework->fw_state |= INPROGRESS;
8065 	FREE_LOCK(ump);
8066 	indir_trunc(freework, fsbtodb(fs, freework->fw_blkno),
8067 	    freework->fw_lbn);
8068 	ACQUIRE_LOCK(ump);
8069 }
8070 
8071 /*
8072  * Called when a freework structure attached to a cg buf is written.  The
8073  * ref on either the parent or the freeblks structure is released and
8074  * the freeblks is added back to the worklist if there is more work to do.
8075  */
8076 static void
8077 handle_written_freework(struct freework *freework)
8078 {
8079 	struct freeblks *freeblks;
8080 	struct freework *parent;
8081 
8082 	freeblks = freework->fw_freeblks;
8083 	parent = freework->fw_parent;
8084 	if (freework->fw_state & DELAYEDFREE)
8085 		freeblks->fb_cgwait--;
8086 	freework->fw_state |= COMPLETE;
8087 	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
8088 		WORKITEM_FREE(freework, D_FREEWORK);
8089 	if (parent) {
8090 		if (--parent->fw_ref == 0)
8091 			freework_enqueue(parent);
8092 		return;
8093 	}
8094 	if (--freeblks->fb_ref != 0)
8095 		return;
8096 	if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST | INPROGRESS)) ==
8097 	    ALLCOMPLETE && LIST_EMPTY(&freeblks->fb_jblkdephd))
8098 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
8099 }
8100 
8101 /*
8102  * This workitem routine performs the block de-allocation.
8103  * The workitem is added to the pending list after the updated
8104  * inode block has been written to disk.  As mentioned above,
8105  * checks regarding the number of blocks de-allocated (compared
8106  * to the number of blocks allocated for the file) are also
8107  * performed in this function.
8108  */
8109 static int
8110 handle_workitem_freeblocks(struct freeblks *freeblks, int flags)
8111 {
8112 	struct freework *freework;
8113 	struct newblk *newblk;
8114 	struct allocindir *aip;
8115 	struct ufsmount *ump;
8116 	struct worklist *wk;
8117 	uint64_t key;
8118 
8119 	KASSERT(LIST_EMPTY(&freeblks->fb_jblkdephd),
8120 	    ("handle_workitem_freeblocks: Journal entries not written."));
8121 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
8122 	key = ffs_blkrelease_start(ump, freeblks->fb_devvp, freeblks->fb_inum);
8123 	ACQUIRE_LOCK(ump);
8124 	while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) {
8125 		WORKLIST_REMOVE(wk);
8126 		switch (wk->wk_type) {
8127 		case D_DIRREM:
8128 			wk->wk_state |= COMPLETE;
8129 			add_to_worklist(wk, 0);
8130 			continue;
8131 
8132 		case D_ALLOCDIRECT:
8133 			free_newblk(WK_NEWBLK(wk));
8134 			continue;
8135 
8136 		case D_ALLOCINDIR:
8137 			aip = WK_ALLOCINDIR(wk);
8138 			freework = NULL;
8139 			if (aip->ai_state & DELAYEDFREE) {
8140 				FREE_LOCK(ump);
8141 				freework = newfreework(ump, freeblks, NULL,
8142 				    aip->ai_lbn, aip->ai_newblkno,
8143 				    ump->um_fs->fs_frag, 0, 0);
8144 				ACQUIRE_LOCK(ump);
8145 			}
8146 			newblk = WK_NEWBLK(wk);
8147 			if (newblk->nb_jnewblk) {
8148 				freework->fw_jnewblk = newblk->nb_jnewblk;
8149 				newblk->nb_jnewblk->jn_dep = &freework->fw_list;
8150 				newblk->nb_jnewblk = NULL;
8151 			}
8152 			free_newblk(newblk);
8153 			continue;
8154 
8155 		case D_FREEWORK:
8156 			freework = WK_FREEWORK(wk);
8157 			if (freework->fw_lbn <= -UFS_NDADDR)
8158 				handle_workitem_indirblk(freework);
8159 			else
8160 				freework_freeblock(freework, key);
8161 			continue;
8162 		default:
8163 			panic("handle_workitem_freeblocks: Unknown type %s",
8164 			    TYPENAME(wk->wk_type));
8165 		}
8166 	}
8167 	if (freeblks->fb_ref != 0) {
8168 		freeblks->fb_state &= ~INPROGRESS;
8169 		wake_worklist(&freeblks->fb_list);
8170 		freeblks = NULL;
8171 	}
8172 	FREE_LOCK(ump);
8173 	ffs_blkrelease_finish(ump, key);
8174 	if (freeblks)
8175 		return handle_complete_freeblocks(freeblks, flags);
8176 	return (0);
8177 }
8178 
8179 /*
8180  * Handle completion of block free via truncate.  This allows fs_pending
8181  * to track the actual free block count more closely than if we only updated
8182  * it at the end.  We must be careful to handle cases where the block count
8183  * on free was incorrect.
8184  */
8185 static void
8186 freeblks_free(struct ufsmount *ump,
8187 	struct freeblks *freeblks,
8188 	int blocks)
8189 {
8190 	struct fs *fs;
8191 	ufs2_daddr_t remain;
8192 
8193 	UFS_LOCK(ump);
8194 	remain = -freeblks->fb_chkcnt;
8195 	freeblks->fb_chkcnt += blocks;
8196 	if (remain > 0) {
8197 		if (remain < blocks)
8198 			blocks = remain;
8199 		fs = ump->um_fs;
8200 		fs->fs_pendingblocks -= blocks;
8201 	}
8202 	UFS_UNLOCK(ump);
8203 }
8204 
8205 /*
8206  * Once all of the freework workitems are complete we can retire the
8207  * freeblocks dependency and any journal work awaiting completion.  This
8208  * can not be called until all other dependencies are stable on disk.
8209  */
8210 static int
8211 handle_complete_freeblocks(struct freeblks *freeblks, int flags)
8212 {
8213 	struct inodedep *inodedep;
8214 	struct inode *ip;
8215 	struct vnode *vp;
8216 	struct fs *fs;
8217 	struct ufsmount *ump;
8218 	ufs2_daddr_t spare;
8219 
8220 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
8221 	fs = ump->um_fs;
8222 	flags = LK_EXCLUSIVE | flags;
8223 	spare = freeblks->fb_chkcnt;
8224 
8225 	/*
8226 	 * If we did not release the expected number of blocks we may have
8227 	 * to adjust the inode block count here.  Only do so if it wasn't
8228 	 * a truncation to zero and the modrev still matches.
8229 	 */
8230 	if (spare && freeblks->fb_len != 0) {
8231 		if (ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_inum,
8232 		    flags, &vp, FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP) != 0)
8233 			return (EBUSY);
8234 		ip = VTOI(vp);
8235 		if (ip->i_mode == 0) {
8236 			vgone(vp);
8237 		} else if (DIP(ip, i_modrev) == freeblks->fb_modrev) {
8238 			DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - spare);
8239 			UFS_INODE_SET_FLAG(ip, IN_CHANGE);
8240 			/*
8241 			 * We must wait so this happens before the
8242 			 * journal is reclaimed.
8243 			 */
8244 			ffs_update(vp, 1);
8245 		}
8246 		vput(vp);
8247 	}
8248 	if (spare < 0) {
8249 		UFS_LOCK(ump);
8250 		fs->fs_pendingblocks += spare;
8251 		UFS_UNLOCK(ump);
8252 	}
8253 #ifdef QUOTA
8254 	/* Handle spare. */
8255 	if (spare)
8256 		quotaadj(freeblks->fb_quota, ump, -spare);
8257 	quotarele(freeblks->fb_quota);
8258 #endif
8259 	ACQUIRE_LOCK(ump);
8260 	if (freeblks->fb_state & ONDEPLIST) {
8261 		inodedep_lookup(freeblks->fb_list.wk_mp, freeblks->fb_inum,
8262 		    0, &inodedep);
8263 		TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, fb_next);
8264 		freeblks->fb_state &= ~ONDEPLIST;
8265 		if (TAILQ_EMPTY(&inodedep->id_freeblklst))
8266 			free_inodedep(inodedep);
8267 	}
8268 	/*
8269 	 * All of the freeblock deps must be complete prior to this call
8270 	 * so it's now safe to complete earlier outstanding journal entries.
8271 	 */
8272 	handle_jwork(&freeblks->fb_jwork);
8273 	WORKITEM_FREE(freeblks, D_FREEBLKS);
8274 	FREE_LOCK(ump);
8275 	return (0);
8276 }
8277 
8278 /*
8279  * Release blocks associated with the freeblks and stored in the indirect
8280  * block dbn. If level is greater than SINGLE, the block is an indirect block
8281  * and recursive calls to indirtrunc must be used to cleanse other indirect
8282  * blocks.
8283  *
8284  * This handles partial and complete truncation of blocks.  Partial is noted
8285  * with goingaway == 0.  In this case the freework is completed after the
8286  * zero'd indirects are written to disk.  For full truncation the freework
8287  * is completed after the block is freed.
8288  */
8289 static void
8290 indir_trunc(struct freework *freework,
8291 	ufs2_daddr_t dbn,
8292 	ufs_lbn_t lbn)
8293 {
8294 	struct freework *nfreework;
8295 	struct workhead wkhd;
8296 	struct freeblks *freeblks;
8297 	struct buf *bp;
8298 	struct fs *fs;
8299 	struct indirdep *indirdep;
8300 	struct mount *mp;
8301 	struct ufsmount *ump;
8302 	ufs1_daddr_t *bap1;
8303 	ufs2_daddr_t nb, nnb, *bap2;
8304 	ufs_lbn_t lbnadd, nlbn;
8305 	uint64_t key;
8306 	int nblocks, ufs1fmt, freedblocks;
8307 	int goingaway, freedeps, needj, level, cnt, i, error;
8308 
8309 	freeblks = freework->fw_freeblks;
8310 	mp = freeblks->fb_list.wk_mp;
8311 	ump = VFSTOUFS(mp);
8312 	fs = ump->um_fs;
8313 	/*
8314 	 * Get buffer of block pointers to be freed.  There are three cases:
8315 	 *
8316 	 * 1) Partial truncate caches the indirdep pointer in the freework
8317 	 *    which provides us a back copy to the save bp which holds the
8318 	 *    pointers we want to clear.  When this completes the zero
8319 	 *    pointers are written to the real copy.
8320 	 * 2) The indirect is being completely truncated, cancel_indirdep()
8321 	 *    eliminated the real copy and placed the indirdep on the saved
8322 	 *    copy.  The indirdep and buf are discarded when this completes.
8323 	 * 3) The indirect was not in memory, we read a copy off of the disk
8324 	 *    using the devvp and drop and invalidate the buffer when we're
8325 	 *    done.
8326 	 */
8327 	goingaway = 1;
8328 	indirdep = NULL;
8329 	if (freework->fw_indir != NULL) {
8330 		goingaway = 0;
8331 		indirdep = freework->fw_indir;
8332 		bp = indirdep->ir_savebp;
8333 		if (bp == NULL || bp->b_blkno != dbn)
8334 			panic("indir_trunc: Bad saved buf %p blkno %jd",
8335 			    bp, (intmax_t)dbn);
8336 	} else if ((bp = incore(&freeblks->fb_devvp->v_bufobj, dbn)) != NULL) {
8337 		/*
8338 		 * The lock prevents the buf dep list from changing and
8339 	 	 * indirects on devvp should only ever have one dependency.
8340 		 */
8341 		indirdep = WK_INDIRDEP(LIST_FIRST(&bp->b_dep));
8342 		if (indirdep == NULL || (indirdep->ir_state & GOINGAWAY) == 0)
8343 			panic("indir_trunc: Bad indirdep %p from buf %p",
8344 			    indirdep, bp);
8345 	} else {
8346 		error = ffs_breadz(ump, freeblks->fb_devvp, dbn, dbn,
8347 		    (int)fs->fs_bsize, NULL, NULL, 0, NOCRED, 0, NULL, &bp);
8348 		if (error)
8349 			return;
8350 	}
8351 	ACQUIRE_LOCK(ump);
8352 	/* Protects against a race with complete_trunc_indir(). */
8353 	freework->fw_state &= ~INPROGRESS;
8354 	/*
8355 	 * If we have an indirdep we need to enforce the truncation order
8356 	 * and discard it when it is complete.
8357 	 */
8358 	if (indirdep) {
8359 		if (freework != TAILQ_FIRST(&indirdep->ir_trunc) &&
8360 		    !TAILQ_EMPTY(&indirdep->ir_trunc)) {
8361 			/*
8362 			 * Add the complete truncate to the list on the
8363 			 * indirdep to enforce in-order processing.
8364 			 */
8365 			if (freework->fw_indir == NULL)
8366 				TAILQ_INSERT_TAIL(&indirdep->ir_trunc,
8367 				    freework, fw_next);
8368 			FREE_LOCK(ump);
8369 			return;
8370 		}
8371 		/*
8372 		 * If we're goingaway, free the indirdep.  Otherwise it will
8373 		 * linger until the write completes.
8374 		 */
8375 		if (goingaway) {
8376 			KASSERT(indirdep->ir_savebp == bp,
8377 			    ("indir_trunc: losing ir_savebp %p",
8378 			    indirdep->ir_savebp));
8379 			indirdep->ir_savebp = NULL;
8380 			free_indirdep(indirdep);
8381 		}
8382 	}
8383 	FREE_LOCK(ump);
8384 	/* Initialize pointers depending on block size. */
8385 	if (ump->um_fstype == UFS1) {
8386 		bap1 = (ufs1_daddr_t *)bp->b_data;
8387 		nb = bap1[freework->fw_off];
8388 		ufs1fmt = 1;
8389 		bap2 = NULL;
8390 	} else {
8391 		bap2 = (ufs2_daddr_t *)bp->b_data;
8392 		nb = bap2[freework->fw_off];
8393 		ufs1fmt = 0;
8394 		bap1 = NULL;
8395 	}
8396 	level = lbn_level(lbn);
8397 	needj = MOUNTEDSUJ(UFSTOVFS(ump)) != 0;
8398 	lbnadd = lbn_offset(fs, level);
8399 	nblocks = btodb(fs->fs_bsize);
8400 	nfreework = freework;
8401 	freedeps = 0;
8402 	cnt = 0;
8403 	/*
8404 	 * Reclaim blocks.  Traverses into nested indirect levels and
8405 	 * arranges for the current level to be freed when subordinates
8406 	 * are free when journaling.
8407 	 */
8408 	key = ffs_blkrelease_start(ump, freeblks->fb_devvp, freeblks->fb_inum);
8409 	for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) {
8410 		if (UFS_CHECK_BLKNO(mp, freeblks->fb_inum, nb,
8411 		    fs->fs_bsize) != 0)
8412 			nb = 0;
8413 		if (i != NINDIR(fs) - 1) {
8414 			if (ufs1fmt)
8415 				nnb = bap1[i+1];
8416 			else
8417 				nnb = bap2[i+1];
8418 		} else
8419 			nnb = 0;
8420 		if (nb == 0)
8421 			continue;
8422 		cnt++;
8423 		if (level != 0) {
8424 			nlbn = (lbn + 1) - (i * lbnadd);
8425 			if (needj != 0) {
8426 				nfreework = newfreework(ump, freeblks, freework,
8427 				    nlbn, nb, fs->fs_frag, 0, 0);
8428 				freedeps++;
8429 			}
8430 			indir_trunc(nfreework, fsbtodb(fs, nb), nlbn);
8431 		} else {
8432 			struct freedep *freedep;
8433 
8434 			/*
8435 			 * Attempt to aggregate freedep dependencies for
8436 			 * all blocks being released to the same CG.
8437 			 */
8438 			LIST_INIT(&wkhd);
8439 			if (needj != 0 &&
8440 			    (nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) {
8441 				freedep = newfreedep(freework);
8442 				WORKLIST_INSERT_UNLOCKED(&wkhd,
8443 				    &freedep->fd_list);
8444 				freedeps++;
8445 			}
8446 			CTR3(KTR_SUJ,
8447 			    "indir_trunc: ino %jd blkno %jd size %d",
8448 			    freeblks->fb_inum, nb, fs->fs_bsize);
8449 			ffs_blkfree(ump, fs, freeblks->fb_devvp, nb,
8450 			    fs->fs_bsize, freeblks->fb_inum,
8451 			    freeblks->fb_vtype, &wkhd, key);
8452 		}
8453 	}
8454 	ffs_blkrelease_finish(ump, key);
8455 	if (goingaway) {
8456 		bp->b_flags |= B_INVAL | B_NOCACHE;
8457 		brelse(bp);
8458 	}
8459 	freedblocks = 0;
8460 	if (level == 0)
8461 		freedblocks = (nblocks * cnt);
8462 	if (needj == 0)
8463 		freedblocks += nblocks;
8464 	freeblks_free(ump, freeblks, freedblocks);
8465 	/*
8466 	 * If we are journaling set up the ref counts and offset so this
8467 	 * indirect can be completed when its children are free.
8468 	 */
8469 	if (needj) {
8470 		ACQUIRE_LOCK(ump);
8471 		freework->fw_off = i;
8472 		freework->fw_ref += freedeps;
8473 		freework->fw_ref -= NINDIR(fs) + 1;
8474 		if (level == 0)
8475 			freeblks->fb_cgwait += freedeps;
8476 		if (freework->fw_ref == 0)
8477 			freework_freeblock(freework, SINGLETON_KEY);
8478 		FREE_LOCK(ump);
8479 		return;
8480 	}
8481 	/*
8482 	 * If we're not journaling we can free the indirect now.
8483 	 */
8484 	dbn = dbtofsb(fs, dbn);
8485 	CTR3(KTR_SUJ,
8486 	    "indir_trunc 2: ino %jd blkno %jd size %d",
8487 	    freeblks->fb_inum, dbn, fs->fs_bsize);
8488 	ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize,
8489 	    freeblks->fb_inum, freeblks->fb_vtype, NULL, SINGLETON_KEY);
8490 	/* Non SUJ softdep does single-threaded truncations. */
8491 	if (freework->fw_blkno == dbn) {
8492 		freework->fw_state |= ALLCOMPLETE;
8493 		ACQUIRE_LOCK(ump);
8494 		handle_written_freework(freework);
8495 		FREE_LOCK(ump);
8496 	}
8497 	return;
8498 }
8499 
8500 /*
8501  * Cancel an allocindir when it is removed via truncation.  When bp is not
8502  * NULL the indirect never appeared on disk and is scheduled to be freed
8503  * independently of the indir so we can more easily track journal work.
8504  */
8505 static void
8506 cancel_allocindir(
8507 	struct allocindir *aip,
8508 	struct buf *bp,
8509 	struct freeblks *freeblks,
8510 	int trunc)
8511 {
8512 	struct indirdep *indirdep;
8513 	struct freefrag *freefrag;
8514 	struct newblk *newblk;
8515 
8516 	newblk = (struct newblk *)aip;
8517 	LIST_REMOVE(aip, ai_next);
8518 	/*
8519 	 * We must eliminate the pointer in bp if it must be freed on its
8520 	 * own due to partial truncate or pending journal work.
8521 	 */
8522 	if (bp && (trunc || newblk->nb_jnewblk)) {
8523 		/*
8524 		 * Clear the pointer and mark the aip to be freed
8525 		 * directly if it never existed on disk.
8526 		 */
8527 		aip->ai_state |= DELAYEDFREE;
8528 		indirdep = aip->ai_indirdep;
8529 		if (indirdep->ir_state & UFS1FMT)
8530 			((ufs1_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
8531 		else
8532 			((ufs2_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
8533 	}
8534 	/*
8535 	 * When truncating the previous pointer will be freed via
8536 	 * savedbp.  Eliminate the freefrag which would dup free.
8537 	 */
8538 	if (trunc && (freefrag = newblk->nb_freefrag) != NULL) {
8539 		newblk->nb_freefrag = NULL;
8540 		if (freefrag->ff_jdep)
8541 			cancel_jfreefrag(
8542 			    WK_JFREEFRAG(freefrag->ff_jdep));
8543 		jwork_move(&freeblks->fb_jwork, &freefrag->ff_jwork);
8544 		WORKITEM_FREE(freefrag, D_FREEFRAG);
8545 	}
8546 	/*
8547 	 * If the journal hasn't been written the jnewblk must be passed
8548 	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
8549 	 * this by leaving the journal dependency on the newblk to be freed
8550 	 * when a freework is created in handle_workitem_freeblocks().
8551 	 */
8552 	cancel_newblk(newblk, NULL, &freeblks->fb_jwork);
8553 	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
8554 }
8555 
8556 /*
8557  * Create the mkdir dependencies for . and .. in a new directory.  Link them
8558  * in to a newdirblk so any subsequent additions are tracked properly.  The
8559  * caller is responsible for adding the mkdir1 dependency to the journal
8560  * and updating id_mkdiradd.  This function returns with the per-filesystem
8561  * lock held.
8562  */
8563 static struct mkdir *
8564 setup_newdir(
8565 	struct diradd *dap,
8566 	ino_t newinum,
8567 	ino_t dinum,
8568 	struct buf *newdirbp,
8569 	struct mkdir **mkdirp)
8570 {
8571 	struct newblk *newblk;
8572 	struct pagedep *pagedep;
8573 	struct inodedep *inodedep;
8574 	struct newdirblk *newdirblk;
8575 	struct mkdir *mkdir1, *mkdir2;
8576 	struct worklist *wk;
8577 	struct jaddref *jaddref;
8578 	struct ufsmount *ump;
8579 	struct mount *mp;
8580 
8581 	mp = dap->da_list.wk_mp;
8582 	ump = VFSTOUFS(mp);
8583 	newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK,
8584 	    M_SOFTDEP_FLAGS);
8585 	workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
8586 	LIST_INIT(&newdirblk->db_mkdir);
8587 	mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
8588 	workitem_alloc(&mkdir1->md_list, D_MKDIR, mp);
8589 	mkdir1->md_state = ATTACHED | MKDIR_BODY;
8590 	mkdir1->md_diradd = dap;
8591 	mkdir1->md_jaddref = NULL;
8592 	mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
8593 	workitem_alloc(&mkdir2->md_list, D_MKDIR, mp);
8594 	mkdir2->md_state = ATTACHED | MKDIR_PARENT;
8595 	mkdir2->md_diradd = dap;
8596 	mkdir2->md_jaddref = NULL;
8597 	if (MOUNTEDSUJ(mp) == 0) {
8598 		mkdir1->md_state |= DEPCOMPLETE;
8599 		mkdir2->md_state |= DEPCOMPLETE;
8600 	}
8601 	/*
8602 	 * Dependency on "." and ".." being written to disk.
8603 	 */
8604 	mkdir1->md_buf = newdirbp;
8605 	ACQUIRE_LOCK(VFSTOUFS(mp));
8606 	LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir1, md_mkdirs);
8607 	/*
8608 	 * We must link the pagedep, allocdirect, and newdirblk for
8609 	 * the initial file page so the pointer to the new directory
8610 	 * is not written until the directory contents are live and
8611 	 * any subsequent additions are not marked live until the
8612 	 * block is reachable via the inode.
8613 	 */
8614 	if (pagedep_lookup(mp, newdirbp, newinum, 0, 0, &pagedep) == 0)
8615 		panic("setup_newdir: lost pagedep");
8616 	LIST_FOREACH(wk, &newdirbp->b_dep, wk_list)
8617 		if (wk->wk_type == D_ALLOCDIRECT)
8618 			break;
8619 	if (wk == NULL)
8620 		panic("setup_newdir: lost allocdirect");
8621 	if (pagedep->pd_state & NEWBLOCK)
8622 		panic("setup_newdir: NEWBLOCK already set");
8623 	newblk = WK_NEWBLK(wk);
8624 	pagedep->pd_state |= NEWBLOCK;
8625 	pagedep->pd_newdirblk = newdirblk;
8626 	newdirblk->db_pagedep = pagedep;
8627 	WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
8628 	WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list);
8629 	/*
8630 	 * Look up the inodedep for the parent directory so that we
8631 	 * can link mkdir2 into the pending dotdot jaddref or
8632 	 * the inode write if there is none.  If the inode is
8633 	 * ALLCOMPLETE and no jaddref is present all dependencies have
8634 	 * been satisfied and mkdir2 can be freed.
8635 	 */
8636 	inodedep_lookup(mp, dinum, 0, &inodedep);
8637 	if (MOUNTEDSUJ(mp)) {
8638 		if (inodedep == NULL)
8639 			panic("setup_newdir: Lost parent.");
8640 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8641 		    inoreflst);
8642 		KASSERT(jaddref != NULL && jaddref->ja_parent == newinum &&
8643 		    (jaddref->ja_state & MKDIR_PARENT),
8644 		    ("setup_newdir: bad dotdot jaddref %p", jaddref));
8645 		LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs);
8646 		mkdir2->md_jaddref = jaddref;
8647 		jaddref->ja_mkdir = mkdir2;
8648 	} else if (inodedep == NULL ||
8649 	    (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
8650 		dap->da_state &= ~MKDIR_PARENT;
8651 		WORKITEM_FREE(mkdir2, D_MKDIR);
8652 		mkdir2 = NULL;
8653 	} else {
8654 		LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs);
8655 		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir2->md_list);
8656 	}
8657 	*mkdirp = mkdir2;
8658 
8659 	return (mkdir1);
8660 }
8661 
8662 /*
8663  * Directory entry addition dependencies.
8664  *
8665  * When adding a new directory entry, the inode (with its incremented link
8666  * count) must be written to disk before the directory entry's pointer to it.
8667  * Also, if the inode is newly allocated, the corresponding freemap must be
8668  * updated (on disk) before the directory entry's pointer. These requirements
8669  * are met via undo/redo on the directory entry's pointer, which consists
8670  * simply of the inode number.
8671  *
8672  * As directory entries are added and deleted, the free space within a
8673  * directory block can become fragmented.  The ufs filesystem will compact
8674  * a fragmented directory block to make space for a new entry. When this
8675  * occurs, the offsets of previously added entries change. Any "diradd"
8676  * dependency structures corresponding to these entries must be updated with
8677  * the new offsets.
8678  */
8679 
8680 /*
8681  * This routine is called after the in-memory inode's link
8682  * count has been incremented, but before the directory entry's
8683  * pointer to the inode has been set.
8684  */
8685 int
8686 softdep_setup_directory_add(
8687 	struct buf *bp,		/* buffer containing directory block */
8688 	struct inode *dp,	/* inode for directory */
8689 	off_t diroffset,	/* offset of new entry in directory */
8690 	ino_t newinum,		/* inode referenced by new directory entry */
8691 	struct buf *newdirbp,	/* non-NULL => contents of new mkdir */
8692 	int isnewblk)		/* entry is in a newly allocated block */
8693 {
8694 	int offset;		/* offset of new entry within directory block */
8695 	ufs_lbn_t lbn;		/* block in directory containing new entry */
8696 	struct fs *fs;
8697 	struct diradd *dap;
8698 	struct newblk *newblk;
8699 	struct pagedep *pagedep;
8700 	struct inodedep *inodedep;
8701 	struct newdirblk *newdirblk;
8702 	struct mkdir *mkdir1, *mkdir2;
8703 	struct jaddref *jaddref;
8704 	struct ufsmount *ump;
8705 	struct mount *mp;
8706 	int isindir;
8707 
8708 	mp = ITOVFS(dp);
8709 	ump = VFSTOUFS(mp);
8710 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
8711 	    ("softdep_setup_directory_add called on non-softdep filesystem"));
8712 	/*
8713 	 * Whiteouts have no dependencies.
8714 	 */
8715 	if (newinum == UFS_WINO) {
8716 		if (newdirbp != NULL)
8717 			bdwrite(newdirbp);
8718 		return (0);
8719 	}
8720 	jaddref = NULL;
8721 	mkdir1 = mkdir2 = NULL;
8722 	fs = ump->um_fs;
8723 	lbn = lblkno(fs, diroffset);
8724 	offset = blkoff(fs, diroffset);
8725 	dap = malloc(sizeof(struct diradd), M_DIRADD,
8726 		M_SOFTDEP_FLAGS|M_ZERO);
8727 	workitem_alloc(&dap->da_list, D_DIRADD, mp);
8728 	dap->da_offset = offset;
8729 	dap->da_newinum = newinum;
8730 	dap->da_state = ATTACHED;
8731 	LIST_INIT(&dap->da_jwork);
8732 	isindir = bp->b_lblkno >= UFS_NDADDR;
8733 	newdirblk = NULL;
8734 	if (isnewblk &&
8735 	    (isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) {
8736 		newdirblk = malloc(sizeof(struct newdirblk),
8737 		    M_NEWDIRBLK, M_SOFTDEP_FLAGS);
8738 		workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
8739 		LIST_INIT(&newdirblk->db_mkdir);
8740 	}
8741 	/*
8742 	 * If we're creating a new directory setup the dependencies and set
8743 	 * the dap state to wait for them.  Otherwise it's COMPLETE and
8744 	 * we can move on.
8745 	 */
8746 	if (newdirbp == NULL) {
8747 		dap->da_state |= DEPCOMPLETE;
8748 		ACQUIRE_LOCK(ump);
8749 	} else {
8750 		dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
8751 		mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp,
8752 		    &mkdir2);
8753 	}
8754 	/*
8755 	 * Link into parent directory pagedep to await its being written.
8756 	 */
8757 	pagedep_lookup(mp, bp, dp->i_number, lbn, DEPALLOC, &pagedep);
8758 #ifdef INVARIANTS
8759 	if (diradd_lookup(pagedep, offset) != NULL)
8760 		panic("softdep_setup_directory_add: %p already at off %d\n",
8761 		    diradd_lookup(pagedep, offset), offset);
8762 #endif
8763 	dap->da_pagedep = pagedep;
8764 	LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
8765 	    da_pdlist);
8766 	inodedep_lookup(mp, newinum, DEPALLOC, &inodedep);
8767 	/*
8768 	 * If we're journaling, link the diradd into the jaddref so it
8769 	 * may be completed after the journal entry is written.  Otherwise,
8770 	 * link the diradd into its inodedep.  If the inode is not yet
8771 	 * written place it on the bufwait list, otherwise do the post-inode
8772 	 * write processing to put it on the id_pendinghd list.
8773 	 */
8774 	if (MOUNTEDSUJ(mp)) {
8775 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8776 		    inoreflst);
8777 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
8778 		    ("softdep_setup_directory_add: bad jaddref %p", jaddref));
8779 		jaddref->ja_diroff = diroffset;
8780 		jaddref->ja_diradd = dap;
8781 		add_to_journal(&jaddref->ja_list);
8782 	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
8783 		diradd_inode_written(dap, inodedep);
8784 	else
8785 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
8786 	/*
8787 	 * Add the journal entries for . and .. links now that the primary
8788 	 * link is written.
8789 	 */
8790 	if (mkdir1 != NULL && MOUNTEDSUJ(mp)) {
8791 		jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
8792 		    inoreflst, if_deps);
8793 		KASSERT(jaddref != NULL &&
8794 		    jaddref->ja_ino == jaddref->ja_parent &&
8795 		    (jaddref->ja_state & MKDIR_BODY),
8796 		    ("softdep_setup_directory_add: bad dot jaddref %p",
8797 		    jaddref));
8798 		mkdir1->md_jaddref = jaddref;
8799 		jaddref->ja_mkdir = mkdir1;
8800 		/*
8801 		 * It is important that the dotdot journal entry
8802 		 * is added prior to the dot entry since dot writes
8803 		 * both the dot and dotdot links.  These both must
8804 		 * be added after the primary link for the journal
8805 		 * to remain consistent.
8806 		 */
8807 		add_to_journal(&mkdir2->md_jaddref->ja_list);
8808 		add_to_journal(&jaddref->ja_list);
8809 	}
8810 	/*
8811 	 * If we are adding a new directory remember this diradd so that if
8812 	 * we rename it we can keep the dot and dotdot dependencies.  If
8813 	 * we are adding a new name for an inode that has a mkdiradd we
8814 	 * must be in rename and we have to move the dot and dotdot
8815 	 * dependencies to this new name.  The old name is being orphaned
8816 	 * soon.
8817 	 */
8818 	if (mkdir1 != NULL) {
8819 		if (inodedep->id_mkdiradd != NULL)
8820 			panic("softdep_setup_directory_add: Existing mkdir");
8821 		inodedep->id_mkdiradd = dap;
8822 	} else if (inodedep->id_mkdiradd)
8823 		merge_diradd(inodedep, dap);
8824 	if (newdirblk != NULL) {
8825 		/*
8826 		 * There is nothing to do if we are already tracking
8827 		 * this block.
8828 		 */
8829 		if ((pagedep->pd_state & NEWBLOCK) != 0) {
8830 			WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
8831 			FREE_LOCK(ump);
8832 			return (0);
8833 		}
8834 		if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)
8835 		    == 0)
8836 			panic("softdep_setup_directory_add: lost entry");
8837 		WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
8838 		pagedep->pd_state |= NEWBLOCK;
8839 		pagedep->pd_newdirblk = newdirblk;
8840 		newdirblk->db_pagedep = pagedep;
8841 		FREE_LOCK(ump);
8842 		/*
8843 		 * If we extended into an indirect signal direnter to sync.
8844 		 */
8845 		if (isindir)
8846 			return (1);
8847 		return (0);
8848 	}
8849 	FREE_LOCK(ump);
8850 	return (0);
8851 }
8852 
8853 /*
8854  * This procedure is called to change the offset of a directory
8855  * entry when compacting a directory block which must be owned
8856  * exclusively by the caller. Note that the actual entry movement
8857  * must be done in this procedure to ensure that no I/O completions
8858  * occur while the move is in progress.
8859  */
8860 void
8861 softdep_change_directoryentry_offset(
8862 	struct buf *bp,		/* Buffer holding directory block. */
8863 	struct inode *dp,	/* inode for directory */
8864 	caddr_t base,		/* address of dp->i_offset */
8865 	caddr_t oldloc,		/* address of old directory location */
8866 	caddr_t newloc,		/* address of new directory location */
8867 	int entrysize)		/* size of directory entry */
8868 {
8869 	int offset, oldoffset, newoffset;
8870 	struct pagedep *pagedep;
8871 	struct jmvref *jmvref;
8872 	struct diradd *dap;
8873 	struct direct *de;
8874 	struct mount *mp;
8875 	struct ufsmount *ump;
8876 	ufs_lbn_t lbn;
8877 	int flags;
8878 
8879 	mp = ITOVFS(dp);
8880 	ump = VFSTOUFS(mp);
8881 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
8882 	    ("softdep_change_directoryentry_offset called on "
8883 	     "non-softdep filesystem"));
8884 	de = (struct direct *)oldloc;
8885 	jmvref = NULL;
8886 	flags = 0;
8887 	/*
8888 	 * Moves are always journaled as it would be too complex to
8889 	 * determine if any affected adds or removes are present in the
8890 	 * journal.
8891 	 */
8892 	if (MOUNTEDSUJ(mp)) {
8893 		flags = DEPALLOC;
8894 		jmvref = newjmvref(dp, de->d_ino,
8895 		    I_OFFSET(dp) + (oldloc - base),
8896 		    I_OFFSET(dp) + (newloc - base));
8897 	}
8898 	lbn = lblkno(ump->um_fs, I_OFFSET(dp));
8899 	offset = blkoff(ump->um_fs, I_OFFSET(dp));
8900 	oldoffset = offset + (oldloc - base);
8901 	newoffset = offset + (newloc - base);
8902 	ACQUIRE_LOCK(ump);
8903 	if (pagedep_lookup(mp, bp, dp->i_number, lbn, flags, &pagedep) == 0)
8904 		goto done;
8905 	dap = diradd_lookup(pagedep, oldoffset);
8906 	if (dap) {
8907 		dap->da_offset = newoffset;
8908 		newoffset = DIRADDHASH(newoffset);
8909 		oldoffset = DIRADDHASH(oldoffset);
8910 		if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE &&
8911 		    newoffset != oldoffset) {
8912 			LIST_REMOVE(dap, da_pdlist);
8913 			LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset],
8914 			    dap, da_pdlist);
8915 		}
8916 	}
8917 done:
8918 	if (jmvref) {
8919 		jmvref->jm_pagedep = pagedep;
8920 		LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps);
8921 		add_to_journal(&jmvref->jm_list);
8922 	}
8923 	bcopy(oldloc, newloc, entrysize);
8924 	FREE_LOCK(ump);
8925 }
8926 
8927 /*
8928  * Move the mkdir dependencies and journal work from one diradd to another
8929  * when renaming a directory.  The new name must depend on the mkdir deps
8930  * completing as the old name did.  Directories can only have one valid link
8931  * at a time so one must be canonical.
8932  */
8933 static void
8934 merge_diradd(struct inodedep *inodedep, struct diradd *newdap)
8935 {
8936 	struct diradd *olddap;
8937 	struct mkdir *mkdir, *nextmd;
8938 	struct ufsmount *ump;
8939 	short state;
8940 
8941 	olddap = inodedep->id_mkdiradd;
8942 	inodedep->id_mkdiradd = newdap;
8943 	if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8944 		newdap->da_state &= ~DEPCOMPLETE;
8945 		ump = VFSTOUFS(inodedep->id_list.wk_mp);
8946 		for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
8947 		     mkdir = nextmd) {
8948 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
8949 			if (mkdir->md_diradd != olddap)
8950 				continue;
8951 			mkdir->md_diradd = newdap;
8952 			state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY);
8953 			newdap->da_state |= state;
8954 			olddap->da_state &= ~state;
8955 			if ((olddap->da_state &
8956 			    (MKDIR_PARENT | MKDIR_BODY)) == 0)
8957 				break;
8958 		}
8959 		if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
8960 			panic("merge_diradd: unfound ref");
8961 	}
8962 	/*
8963 	 * Any mkdir related journal items are not safe to be freed until
8964 	 * the new name is stable.
8965 	 */
8966 	jwork_move(&newdap->da_jwork, &olddap->da_jwork);
8967 	olddap->da_state |= DEPCOMPLETE;
8968 	complete_diradd(olddap);
8969 }
8970 
8971 /*
8972  * Move the diradd to the pending list when all diradd dependencies are
8973  * complete.
8974  */
8975 static void
8976 complete_diradd(struct diradd *dap)
8977 {
8978 	struct pagedep *pagedep;
8979 
8980 	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
8981 		if (dap->da_state & DIRCHG)
8982 			pagedep = dap->da_previous->dm_pagedep;
8983 		else
8984 			pagedep = dap->da_pagedep;
8985 		LIST_REMOVE(dap, da_pdlist);
8986 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
8987 	}
8988 }
8989 
8990 /*
8991  * Cancel a diradd when a dirrem overlaps with it.  We must cancel the journal
8992  * add entries and conditionally journal the remove.
8993  */
8994 static void
8995 cancel_diradd(
8996 	struct diradd *dap,
8997 	struct dirrem *dirrem,
8998 	struct jremref *jremref,
8999 	struct jremref *dotremref,
9000 	struct jremref *dotdotremref)
9001 {
9002 	struct inodedep *inodedep;
9003 	struct jaddref *jaddref;
9004 	struct inoref *inoref;
9005 	struct ufsmount *ump;
9006 	struct mkdir *mkdir;
9007 
9008 	/*
9009 	 * If no remove references were allocated we're on a non-journaled
9010 	 * filesystem and can skip the cancel step.
9011 	 */
9012 	if (jremref == NULL) {
9013 		free_diradd(dap, NULL);
9014 		return;
9015 	}
9016 	/*
9017 	 * Cancel the primary name an free it if it does not require
9018 	 * journaling.
9019 	 */
9020 	if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum,
9021 	    0, &inodedep) != 0) {
9022 		/* Abort the addref that reference this diradd.  */
9023 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
9024 			if (inoref->if_list.wk_type != D_JADDREF)
9025 				continue;
9026 			jaddref = (struct jaddref *)inoref;
9027 			if (jaddref->ja_diradd != dap)
9028 				continue;
9029 			if (cancel_jaddref(jaddref, inodedep,
9030 			    &dirrem->dm_jwork) == 0) {
9031 				free_jremref(jremref);
9032 				jremref = NULL;
9033 			}
9034 			break;
9035 		}
9036 	}
9037 	/*
9038 	 * Cancel subordinate names and free them if they do not require
9039 	 * journaling.
9040 	 */
9041 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
9042 		ump = VFSTOUFS(dap->da_list.wk_mp);
9043 		LIST_FOREACH(mkdir, &ump->softdep_mkdirlisthd, md_mkdirs) {
9044 			if (mkdir->md_diradd != dap)
9045 				continue;
9046 			if ((jaddref = mkdir->md_jaddref) == NULL)
9047 				continue;
9048 			mkdir->md_jaddref = NULL;
9049 			if (mkdir->md_state & MKDIR_PARENT) {
9050 				if (cancel_jaddref(jaddref, NULL,
9051 				    &dirrem->dm_jwork) == 0) {
9052 					free_jremref(dotdotremref);
9053 					dotdotremref = NULL;
9054 				}
9055 			} else {
9056 				if (cancel_jaddref(jaddref, inodedep,
9057 				    &dirrem->dm_jwork) == 0) {
9058 					free_jremref(dotremref);
9059 					dotremref = NULL;
9060 				}
9061 			}
9062 		}
9063 	}
9064 
9065 	if (jremref)
9066 		journal_jremref(dirrem, jremref, inodedep);
9067 	if (dotremref)
9068 		journal_jremref(dirrem, dotremref, inodedep);
9069 	if (dotdotremref)
9070 		journal_jremref(dirrem, dotdotremref, NULL);
9071 	jwork_move(&dirrem->dm_jwork, &dap->da_jwork);
9072 	free_diradd(dap, &dirrem->dm_jwork);
9073 }
9074 
9075 /*
9076  * Free a diradd dependency structure.
9077  */
9078 static void
9079 free_diradd(struct diradd *dap, struct workhead *wkhd)
9080 {
9081 	struct dirrem *dirrem;
9082 	struct pagedep *pagedep;
9083 	struct inodedep *inodedep;
9084 	struct mkdir *mkdir, *nextmd;
9085 	struct ufsmount *ump;
9086 
9087 	ump = VFSTOUFS(dap->da_list.wk_mp);
9088 	LOCK_OWNED(ump);
9089 	LIST_REMOVE(dap, da_pdlist);
9090 	if (dap->da_state & ONWORKLIST)
9091 		WORKLIST_REMOVE(&dap->da_list);
9092 	if ((dap->da_state & DIRCHG) == 0) {
9093 		pagedep = dap->da_pagedep;
9094 	} else {
9095 		dirrem = dap->da_previous;
9096 		pagedep = dirrem->dm_pagedep;
9097 		dirrem->dm_dirinum = pagedep->pd_ino;
9098 		dirrem->dm_state |= COMPLETE;
9099 		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9100 			add_to_worklist(&dirrem->dm_list, 0);
9101 	}
9102 	if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum,
9103 	    0, &inodedep) != 0)
9104 		if (inodedep->id_mkdiradd == dap)
9105 			inodedep->id_mkdiradd = NULL;
9106 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
9107 		for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
9108 		     mkdir = nextmd) {
9109 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
9110 			if (mkdir->md_diradd != dap)
9111 				continue;
9112 			dap->da_state &=
9113 			    ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
9114 			LIST_REMOVE(mkdir, md_mkdirs);
9115 			if (mkdir->md_state & ONWORKLIST)
9116 				WORKLIST_REMOVE(&mkdir->md_list);
9117 			if (mkdir->md_jaddref != NULL)
9118 				panic("free_diradd: Unexpected jaddref");
9119 			WORKITEM_FREE(mkdir, D_MKDIR);
9120 			if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
9121 				break;
9122 		}
9123 		if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
9124 			panic("free_diradd: unfound ref");
9125 	}
9126 	if (inodedep)
9127 		free_inodedep(inodedep);
9128 	/*
9129 	 * Free any journal segments waiting for the directory write.
9130 	 */
9131 	handle_jwork(&dap->da_jwork);
9132 	WORKITEM_FREE(dap, D_DIRADD);
9133 }
9134 
9135 /*
9136  * Directory entry removal dependencies.
9137  *
9138  * When removing a directory entry, the entry's inode pointer must be
9139  * zero'ed on disk before the corresponding inode's link count is decremented
9140  * (possibly freeing the inode for re-use). This dependency is handled by
9141  * updating the directory entry but delaying the inode count reduction until
9142  * after the directory block has been written to disk. After this point, the
9143  * inode count can be decremented whenever it is convenient.
9144  */
9145 
9146 /*
9147  * This routine should be called immediately after removing
9148  * a directory entry.  The inode's link count should not be
9149  * decremented by the calling procedure -- the soft updates
9150  * code will do this task when it is safe.
9151  */
9152 void
9153 softdep_setup_remove(
9154 	struct buf *bp,		/* buffer containing directory block */
9155 	struct inode *dp,	/* inode for the directory being modified */
9156 	struct inode *ip,	/* inode for directory entry being removed */
9157 	int isrmdir)		/* indicates if doing RMDIR */
9158 {
9159 	struct dirrem *dirrem, *prevdirrem;
9160 	struct inodedep *inodedep;
9161 	struct ufsmount *ump;
9162 	int direct;
9163 
9164 	ump = ITOUMP(ip);
9165 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
9166 	    ("softdep_setup_remove called on non-softdep filesystem"));
9167 	/*
9168 	 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK.  We want
9169 	 * newdirrem() to setup the full directory remove which requires
9170 	 * isrmdir > 1.
9171 	 */
9172 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
9173 	/*
9174 	 * Add the dirrem to the inodedep's pending remove list for quick
9175 	 * discovery later.
9176 	 */
9177 	if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0)
9178 		panic("softdep_setup_remove: Lost inodedep.");
9179 	KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
9180 	dirrem->dm_state |= ONDEPLIST;
9181 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9182 
9183 	/*
9184 	 * If the COMPLETE flag is clear, then there were no active
9185 	 * entries and we want to roll back to a zeroed entry until
9186 	 * the new inode is committed to disk. If the COMPLETE flag is
9187 	 * set then we have deleted an entry that never made it to
9188 	 * disk. If the entry we deleted resulted from a name change,
9189 	 * then the old name still resides on disk. We cannot delete
9190 	 * its inode (returned to us in prevdirrem) until the zeroed
9191 	 * directory entry gets to disk. The new inode has never been
9192 	 * referenced on the disk, so can be deleted immediately.
9193 	 */
9194 	if ((dirrem->dm_state & COMPLETE) == 0) {
9195 		LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
9196 		    dm_next);
9197 		FREE_LOCK(ump);
9198 	} else {
9199 		if (prevdirrem != NULL)
9200 			LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd,
9201 			    prevdirrem, dm_next);
9202 		dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
9203 		direct = LIST_EMPTY(&dirrem->dm_jremrefhd);
9204 		FREE_LOCK(ump);
9205 		if (direct)
9206 			handle_workitem_remove(dirrem, 0);
9207 	}
9208 }
9209 
9210 /*
9211  * Check for an entry matching 'offset' on both the pd_dirraddhd list and the
9212  * pd_pendinghd list of a pagedep.
9213  */
9214 static struct diradd *
9215 diradd_lookup(struct pagedep *pagedep, int offset)
9216 {
9217 	struct diradd *dap;
9218 
9219 	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist)
9220 		if (dap->da_offset == offset)
9221 			return (dap);
9222 	LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
9223 		if (dap->da_offset == offset)
9224 			return (dap);
9225 	return (NULL);
9226 }
9227 
9228 /*
9229  * Search for a .. diradd dependency in a directory that is being removed.
9230  * If the directory was renamed to a new parent we have a diradd rather
9231  * than a mkdir for the .. entry.  We need to cancel it now before
9232  * it is found in truncate().
9233  */
9234 static struct jremref *
9235 cancel_diradd_dotdot(struct inode *ip,
9236 	struct dirrem *dirrem,
9237 	struct jremref *jremref)
9238 {
9239 	struct pagedep *pagedep;
9240 	struct diradd *dap;
9241 	struct worklist *wk;
9242 
9243 	if (pagedep_lookup(ITOVFS(ip), NULL, ip->i_number, 0, 0, &pagedep) == 0)
9244 		return (jremref);
9245 	dap = diradd_lookup(pagedep, DOTDOT_OFFSET);
9246 	if (dap == NULL)
9247 		return (jremref);
9248 	cancel_diradd(dap, dirrem, jremref, NULL, NULL);
9249 	/*
9250 	 * Mark any journal work as belonging to the parent so it is freed
9251 	 * with the .. reference.
9252 	 */
9253 	LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
9254 		wk->wk_state |= MKDIR_PARENT;
9255 	return (NULL);
9256 }
9257 
9258 /*
9259  * Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to
9260  * replace it with a dirrem/diradd pair as a result of re-parenting a
9261  * directory.  This ensures that we don't simultaneously have a mkdir and
9262  * a diradd for the same .. entry.
9263  */
9264 static struct jremref *
9265 cancel_mkdir_dotdot(struct inode *ip,
9266 	struct dirrem *dirrem,
9267 	struct jremref *jremref)
9268 {
9269 	struct inodedep *inodedep;
9270 	struct jaddref *jaddref;
9271 	struct ufsmount *ump;
9272 	struct mkdir *mkdir;
9273 	struct diradd *dap;
9274 	struct mount *mp;
9275 
9276 	mp = ITOVFS(ip);
9277 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
9278 		return (jremref);
9279 	dap = inodedep->id_mkdiradd;
9280 	if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0)
9281 		return (jremref);
9282 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
9283 	for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
9284 	    mkdir = LIST_NEXT(mkdir, md_mkdirs))
9285 		if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT)
9286 			break;
9287 	if (mkdir == NULL)
9288 		panic("cancel_mkdir_dotdot: Unable to find mkdir\n");
9289 	if ((jaddref = mkdir->md_jaddref) != NULL) {
9290 		mkdir->md_jaddref = NULL;
9291 		jaddref->ja_state &= ~MKDIR_PARENT;
9292 		if (inodedep_lookup(mp, jaddref->ja_ino, 0, &inodedep) == 0)
9293 			panic("cancel_mkdir_dotdot: Lost parent inodedep");
9294 		if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) {
9295 			journal_jremref(dirrem, jremref, inodedep);
9296 			jremref = NULL;
9297 		}
9298 	}
9299 	if (mkdir->md_state & ONWORKLIST)
9300 		WORKLIST_REMOVE(&mkdir->md_list);
9301 	mkdir->md_state |= ALLCOMPLETE;
9302 	complete_mkdir(mkdir);
9303 	return (jremref);
9304 }
9305 
9306 static void
9307 journal_jremref(struct dirrem *dirrem,
9308 	struct jremref *jremref,
9309 	struct inodedep *inodedep)
9310 {
9311 
9312 	if (inodedep == NULL)
9313 		if (inodedep_lookup(jremref->jr_list.wk_mp,
9314 		    jremref->jr_ref.if_ino, 0, &inodedep) == 0)
9315 			panic("journal_jremref: Lost inodedep");
9316 	LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps);
9317 	TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
9318 	add_to_journal(&jremref->jr_list);
9319 }
9320 
9321 static void
9322 dirrem_journal(
9323 	struct dirrem *dirrem,
9324 	struct jremref *jremref,
9325 	struct jremref *dotremref,
9326 	struct jremref *dotdotremref)
9327 {
9328 	struct inodedep *inodedep;
9329 
9330 	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0,
9331 	    &inodedep) == 0)
9332 		panic("dirrem_journal: Lost inodedep");
9333 	journal_jremref(dirrem, jremref, inodedep);
9334 	if (dotremref)
9335 		journal_jremref(dirrem, dotremref, inodedep);
9336 	if (dotdotremref)
9337 		journal_jremref(dirrem, dotdotremref, NULL);
9338 }
9339 
9340 /*
9341  * Allocate a new dirrem if appropriate and return it along with
9342  * its associated pagedep. Called without a lock, returns with lock.
9343  */
9344 static struct dirrem *
9345 newdirrem(
9346 	struct buf *bp,		/* buffer containing directory block */
9347 	struct inode *dp,	/* inode for the directory being modified */
9348 	struct inode *ip,	/* inode for directory entry being removed */
9349 	int isrmdir,		/* indicates if doing RMDIR */
9350 	struct dirrem **prevdirremp) /* previously referenced inode, if any */
9351 {
9352 	int offset;
9353 	ufs_lbn_t lbn;
9354 	struct diradd *dap;
9355 	struct dirrem *dirrem;
9356 	struct pagedep *pagedep;
9357 	struct jremref *jremref;
9358 	struct jremref *dotremref;
9359 	struct jremref *dotdotremref;
9360 	struct vnode *dvp;
9361 	struct ufsmount *ump;
9362 
9363 	/*
9364 	 * Whiteouts have no deletion dependencies.
9365 	 */
9366 	if (ip == NULL)
9367 		panic("newdirrem: whiteout");
9368 	dvp = ITOV(dp);
9369 	ump = ITOUMP(dp);
9370 
9371 	/*
9372 	 * If the system is over its limit and our filesystem is
9373 	 * responsible for more than our share of that usage and
9374 	 * we are not a snapshot, request some inodedep cleanup.
9375 	 * Limiting the number of dirrem structures will also limit
9376 	 * the number of freefile and freeblks structures.
9377 	 */
9378 	ACQUIRE_LOCK(ump);
9379 	if (!IS_SNAPSHOT(ip) && softdep_excess_items(ump, D_DIRREM))
9380 		schedule_cleanup(UFSTOVFS(ump));
9381 	else
9382 		FREE_LOCK(ump);
9383 	dirrem = malloc(sizeof(struct dirrem), M_DIRREM, M_SOFTDEP_FLAGS |
9384 	    M_ZERO);
9385 	workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount);
9386 	LIST_INIT(&dirrem->dm_jremrefhd);
9387 	LIST_INIT(&dirrem->dm_jwork);
9388 	dirrem->dm_state = isrmdir ? RMDIR : 0;
9389 	dirrem->dm_oldinum = ip->i_number;
9390 	*prevdirremp = NULL;
9391 	/*
9392 	 * Allocate remove reference structures to track journal write
9393 	 * dependencies.  We will always have one for the link and
9394 	 * when doing directories we will always have one more for dot.
9395 	 * When renaming a directory we skip the dotdot link change so
9396 	 * this is not needed.
9397 	 */
9398 	jremref = dotremref = dotdotremref = NULL;
9399 	if (DOINGSUJ(dvp)) {
9400 		if (isrmdir) {
9401 			jremref = newjremref(dirrem, dp, ip, I_OFFSET(dp),
9402 			    ip->i_effnlink + 2);
9403 			dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET,
9404 			    ip->i_effnlink + 1);
9405 			dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET,
9406 			    dp->i_effnlink + 1);
9407 			dotdotremref->jr_state |= MKDIR_PARENT;
9408 		} else
9409 			jremref = newjremref(dirrem, dp, ip, I_OFFSET(dp),
9410 			    ip->i_effnlink + 1);
9411 	}
9412 	ACQUIRE_LOCK(ump);
9413 	lbn = lblkno(ump->um_fs, I_OFFSET(dp));
9414 	offset = blkoff(ump->um_fs, I_OFFSET(dp));
9415 	pagedep_lookup(UFSTOVFS(ump), bp, dp->i_number, lbn, DEPALLOC,
9416 	    &pagedep);
9417 	dirrem->dm_pagedep = pagedep;
9418 	dirrem->dm_offset = offset;
9419 	/*
9420 	 * If we're renaming a .. link to a new directory, cancel any
9421 	 * existing MKDIR_PARENT mkdir.  If it has already been canceled
9422 	 * the jremref is preserved for any potential diradd in this
9423 	 * location.  This can not coincide with a rmdir.
9424 	 */
9425 	if (I_OFFSET(dp) == DOTDOT_OFFSET) {
9426 		if (isrmdir)
9427 			panic("newdirrem: .. directory change during remove?");
9428 		jremref = cancel_mkdir_dotdot(dp, dirrem, jremref);
9429 	}
9430 	/*
9431 	 * If we're removing a directory search for the .. dependency now and
9432 	 * cancel it.  Any pending journal work will be added to the dirrem
9433 	 * to be completed when the workitem remove completes.
9434 	 */
9435 	if (isrmdir)
9436 		dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref);
9437 	/*
9438 	 * Check for a diradd dependency for the same directory entry.
9439 	 * If present, then both dependencies become obsolete and can
9440 	 * be de-allocated.
9441 	 */
9442 	dap = diradd_lookup(pagedep, offset);
9443 	if (dap == NULL) {
9444 		/*
9445 		 * Link the jremref structures into the dirrem so they are
9446 		 * written prior to the pagedep.
9447 		 */
9448 		if (jremref)
9449 			dirrem_journal(dirrem, jremref, dotremref,
9450 			    dotdotremref);
9451 		return (dirrem);
9452 	}
9453 	/*
9454 	 * Must be ATTACHED at this point.
9455 	 */
9456 	if ((dap->da_state & ATTACHED) == 0)
9457 		panic("newdirrem: not ATTACHED");
9458 	if (dap->da_newinum != ip->i_number)
9459 		panic("newdirrem: inum %ju should be %ju",
9460 		    (uintmax_t)ip->i_number, (uintmax_t)dap->da_newinum);
9461 	/*
9462 	 * If we are deleting a changed name that never made it to disk,
9463 	 * then return the dirrem describing the previous inode (which
9464 	 * represents the inode currently referenced from this entry on disk).
9465 	 */
9466 	if ((dap->da_state & DIRCHG) != 0) {
9467 		*prevdirremp = dap->da_previous;
9468 		dap->da_state &= ~DIRCHG;
9469 		dap->da_pagedep = pagedep;
9470 	}
9471 	/*
9472 	 * We are deleting an entry that never made it to disk.
9473 	 * Mark it COMPLETE so we can delete its inode immediately.
9474 	 */
9475 	dirrem->dm_state |= COMPLETE;
9476 	cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref);
9477 #ifdef INVARIANTS
9478 	if (isrmdir == 0) {
9479 		struct worklist *wk;
9480 
9481 		LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
9482 			if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT))
9483 				panic("bad wk %p (0x%X)\n", wk, wk->wk_state);
9484 	}
9485 #endif
9486 
9487 	return (dirrem);
9488 }
9489 
9490 /*
9491  * Directory entry change dependencies.
9492  *
9493  * Changing an existing directory entry requires that an add operation
9494  * be completed first followed by a deletion. The semantics for the addition
9495  * are identical to the description of adding a new entry above except
9496  * that the rollback is to the old inode number rather than zero. Once
9497  * the addition dependency is completed, the removal is done as described
9498  * in the removal routine above.
9499  */
9500 
9501 /*
9502  * This routine should be called immediately after changing
9503  * a directory entry.  The inode's link count should not be
9504  * decremented by the calling procedure -- the soft updates
9505  * code will perform this task when it is safe.
9506  */
9507 void
9508 softdep_setup_directory_change(
9509 	struct buf *bp,		/* buffer containing directory block */
9510 	struct inode *dp,	/* inode for the directory being modified */
9511 	struct inode *ip,	/* inode for directory entry being removed */
9512 	ino_t newinum,		/* new inode number for changed entry */
9513 	int isrmdir)		/* indicates if doing RMDIR */
9514 {
9515 	int offset;
9516 	struct diradd *dap = NULL;
9517 	struct dirrem *dirrem, *prevdirrem;
9518 	struct pagedep *pagedep;
9519 	struct inodedep *inodedep;
9520 	struct jaddref *jaddref;
9521 	struct mount *mp;
9522 	struct ufsmount *ump;
9523 
9524 	mp = ITOVFS(dp);
9525 	ump = VFSTOUFS(mp);
9526 	offset = blkoff(ump->um_fs, I_OFFSET(dp));
9527 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
9528 	   ("softdep_setup_directory_change called on non-softdep filesystem"));
9529 
9530 	/*
9531 	 * Whiteouts do not need diradd dependencies.
9532 	 */
9533 	if (newinum != UFS_WINO) {
9534 		dap = malloc(sizeof(struct diradd),
9535 		    M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO);
9536 		workitem_alloc(&dap->da_list, D_DIRADD, mp);
9537 		dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
9538 		dap->da_offset = offset;
9539 		dap->da_newinum = newinum;
9540 		LIST_INIT(&dap->da_jwork);
9541 	}
9542 
9543 	/*
9544 	 * Allocate a new dirrem and ACQUIRE_LOCK.
9545 	 */
9546 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
9547 	pagedep = dirrem->dm_pagedep;
9548 	/*
9549 	 * The possible values for isrmdir:
9550 	 *	0 - non-directory file rename
9551 	 *	1 - directory rename within same directory
9552 	 *   inum - directory rename to new directory of given inode number
9553 	 * When renaming to a new directory, we are both deleting and
9554 	 * creating a new directory entry, so the link count on the new
9555 	 * directory should not change. Thus we do not need the followup
9556 	 * dirrem which is usually done in handle_workitem_remove. We set
9557 	 * the DIRCHG flag to tell handle_workitem_remove to skip the
9558 	 * followup dirrem.
9559 	 */
9560 	if (isrmdir > 1)
9561 		dirrem->dm_state |= DIRCHG;
9562 
9563 	/*
9564 	 * Whiteouts have no additional dependencies,
9565 	 * so just put the dirrem on the correct list.
9566 	 */
9567 	if (newinum == UFS_WINO) {
9568 		if ((dirrem->dm_state & COMPLETE) == 0) {
9569 			LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
9570 			    dm_next);
9571 		} else {
9572 			dirrem->dm_dirinum = pagedep->pd_ino;
9573 			if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9574 				add_to_worklist(&dirrem->dm_list, 0);
9575 		}
9576 		FREE_LOCK(ump);
9577 		return;
9578 	}
9579 	/*
9580 	 * Add the dirrem to the inodedep's pending remove list for quick
9581 	 * discovery later.  A valid nlinkdelta ensures that this lookup
9582 	 * will not fail.
9583 	 */
9584 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
9585 		panic("softdep_setup_directory_change: Lost inodedep.");
9586 	dirrem->dm_state |= ONDEPLIST;
9587 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9588 
9589 	/*
9590 	 * If the COMPLETE flag is clear, then there were no active
9591 	 * entries and we want to roll back to the previous inode until
9592 	 * the new inode is committed to disk. If the COMPLETE flag is
9593 	 * set, then we have deleted an entry that never made it to disk.
9594 	 * If the entry we deleted resulted from a name change, then the old
9595 	 * inode reference still resides on disk. Any rollback that we do
9596 	 * needs to be to that old inode (returned to us in prevdirrem). If
9597 	 * the entry we deleted resulted from a create, then there is
9598 	 * no entry on the disk, so we want to roll back to zero rather
9599 	 * than the uncommitted inode. In either of the COMPLETE cases we
9600 	 * want to immediately free the unwritten and unreferenced inode.
9601 	 */
9602 	if ((dirrem->dm_state & COMPLETE) == 0) {
9603 		dap->da_previous = dirrem;
9604 	} else {
9605 		if (prevdirrem != NULL) {
9606 			dap->da_previous = prevdirrem;
9607 		} else {
9608 			dap->da_state &= ~DIRCHG;
9609 			dap->da_pagedep = pagedep;
9610 		}
9611 		dirrem->dm_dirinum = pagedep->pd_ino;
9612 		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9613 			add_to_worklist(&dirrem->dm_list, 0);
9614 	}
9615 	/*
9616 	 * Lookup the jaddref for this journal entry.  We must finish
9617 	 * initializing it and make the diradd write dependent on it.
9618 	 * If we're not journaling, put it on the id_bufwait list if the
9619 	 * inode is not yet written. If it is written, do the post-inode
9620 	 * write processing to put it on the id_pendinghd list.
9621 	 */
9622 	inodedep_lookup(mp, newinum, DEPALLOC, &inodedep);
9623 	if (MOUNTEDSUJ(mp)) {
9624 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
9625 		    inoreflst);
9626 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
9627 		    ("softdep_setup_directory_change: bad jaddref %p",
9628 		    jaddref));
9629 		jaddref->ja_diroff = I_OFFSET(dp);
9630 		jaddref->ja_diradd = dap;
9631 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
9632 		    dap, da_pdlist);
9633 		add_to_journal(&jaddref->ja_list);
9634 	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
9635 		dap->da_state |= COMPLETE;
9636 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
9637 		WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
9638 	} else {
9639 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
9640 		    dap, da_pdlist);
9641 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
9642 	}
9643 	/*
9644 	 * If we're making a new name for a directory that has not been
9645 	 * committed when need to move the dot and dotdot references to
9646 	 * this new name.
9647 	 */
9648 	if (inodedep->id_mkdiradd && I_OFFSET(dp) != DOTDOT_OFFSET)
9649 		merge_diradd(inodedep, dap);
9650 	FREE_LOCK(ump);
9651 }
9652 
9653 /*
9654  * Called whenever the link count on an inode is changed.
9655  * It creates an inode dependency so that the new reference(s)
9656  * to the inode cannot be committed to disk until the updated
9657  * inode has been written.
9658  */
9659 void
9660 softdep_change_linkcnt(
9661 	struct inode *ip)	/* the inode with the increased link count */
9662 {
9663 	struct inodedep *inodedep;
9664 	struct ufsmount *ump;
9665 
9666 	ump = ITOUMP(ip);
9667 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
9668 	    ("softdep_change_linkcnt called on non-softdep filesystem"));
9669 	ACQUIRE_LOCK(ump);
9670 	inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep);
9671 	if (ip->i_nlink < ip->i_effnlink)
9672 		panic("softdep_change_linkcnt: bad delta");
9673 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9674 	FREE_LOCK(ump);
9675 }
9676 
9677 /*
9678  * Attach a sbdep dependency to the superblock buf so that we can keep
9679  * track of the head of the linked list of referenced but unlinked inodes.
9680  */
9681 void
9682 softdep_setup_sbupdate(
9683 	struct ufsmount *ump,
9684 	struct fs *fs,
9685 	struct buf *bp)
9686 {
9687 	struct sbdep *sbdep;
9688 	struct worklist *wk;
9689 
9690 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
9691 	    ("softdep_setup_sbupdate called on non-softdep filesystem"));
9692 	LIST_FOREACH(wk, &bp->b_dep, wk_list)
9693 		if (wk->wk_type == D_SBDEP)
9694 			break;
9695 	if (wk != NULL)
9696 		return;
9697 	sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS);
9698 	workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump));
9699 	sbdep->sb_fs = fs;
9700 	sbdep->sb_ump = ump;
9701 	ACQUIRE_LOCK(ump);
9702 	WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list);
9703 	FREE_LOCK(ump);
9704 }
9705 
9706 /*
9707  * Return the first unlinked inodedep which is ready to be the head of the
9708  * list.  The inodedep and all those after it must have valid next pointers.
9709  */
9710 static struct inodedep *
9711 first_unlinked_inodedep(struct ufsmount *ump)
9712 {
9713 	struct inodedep *inodedep;
9714 	struct inodedep *idp;
9715 
9716 	LOCK_OWNED(ump);
9717 	for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst);
9718 	    inodedep; inodedep = idp) {
9719 		if ((inodedep->id_state & UNLINKNEXT) == 0)
9720 			return (NULL);
9721 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9722 		if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0)
9723 			break;
9724 		if ((inodedep->id_state & UNLINKPREV) == 0)
9725 			break;
9726 	}
9727 	return (inodedep);
9728 }
9729 
9730 /*
9731  * Set the sujfree unlinked head pointer prior to writing a superblock.
9732  */
9733 static void
9734 initiate_write_sbdep(struct sbdep *sbdep)
9735 {
9736 	struct inodedep *inodedep;
9737 	struct fs *bpfs;
9738 	struct fs *fs;
9739 
9740 	bpfs = sbdep->sb_fs;
9741 	fs = sbdep->sb_ump->um_fs;
9742 	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9743 	if (inodedep) {
9744 		fs->fs_sujfree = inodedep->id_ino;
9745 		inodedep->id_state |= UNLINKPREV;
9746 	} else
9747 		fs->fs_sujfree = 0;
9748 	bpfs->fs_sujfree = fs->fs_sujfree;
9749 	/*
9750 	 * Because we have made changes to the superblock, we need to
9751 	 * recompute its check-hash.
9752 	 */
9753 	bpfs->fs_ckhash = ffs_calc_sbhash(bpfs);
9754 }
9755 
9756 /*
9757  * After a superblock is written determine whether it must be written again
9758  * due to a changing unlinked list head.
9759  */
9760 static int
9761 handle_written_sbdep(struct sbdep *sbdep, struct buf *bp)
9762 {
9763 	struct inodedep *inodedep;
9764 	struct fs *fs;
9765 
9766 	LOCK_OWNED(sbdep->sb_ump);
9767 	fs = sbdep->sb_fs;
9768 	/*
9769 	 * If the superblock doesn't match the in-memory list start over.
9770 	 */
9771 	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9772 	if ((inodedep && fs->fs_sujfree != inodedep->id_ino) ||
9773 	    (inodedep == NULL && fs->fs_sujfree != 0)) {
9774 		bdirty(bp);
9775 		return (1);
9776 	}
9777 	WORKITEM_FREE(sbdep, D_SBDEP);
9778 	if (fs->fs_sujfree == 0)
9779 		return (0);
9780 	/*
9781 	 * Now that we have a record of this inode in stable store allow it
9782 	 * to be written to free up pending work.  Inodes may see a lot of
9783 	 * write activity after they are unlinked which we must not hold up.
9784 	 */
9785 	for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) {
9786 		if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS)
9787 			panic("handle_written_sbdep: Bad inodedep %p (0x%X)",
9788 			    inodedep, inodedep->id_state);
9789 		if (inodedep->id_state & UNLINKONLIST)
9790 			break;
9791 		inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST;
9792 	}
9793 
9794 	return (0);
9795 }
9796 
9797 /*
9798  * Mark an inodedep as unlinked and insert it into the in-memory unlinked list.
9799  */
9800 static void
9801 unlinked_inodedep( struct mount *mp, struct inodedep *inodedep)
9802 {
9803 	struct ufsmount *ump;
9804 
9805 	ump = VFSTOUFS(mp);
9806 	LOCK_OWNED(ump);
9807 	if (MOUNTEDSUJ(mp) == 0)
9808 		return;
9809 	ump->um_fs->fs_fmod = 1;
9810 	if (inodedep->id_state & UNLINKED)
9811 		panic("unlinked_inodedep: %p already unlinked\n", inodedep);
9812 	inodedep->id_state |= UNLINKED;
9813 	TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked);
9814 }
9815 
9816 /*
9817  * Remove an inodedep from the unlinked inodedep list.  This may require
9818  * disk writes if the inode has made it that far.
9819  */
9820 static void
9821 clear_unlinked_inodedep( struct inodedep *inodedep)
9822 {
9823 	struct ufs2_dinode *dip;
9824 	struct ufsmount *ump;
9825 	struct inodedep *idp;
9826 	struct inodedep *idn;
9827 	struct fs *fs, *bpfs;
9828 	struct buf *bp;
9829 	daddr_t dbn;
9830 	ino_t ino;
9831 	ino_t nino;
9832 	ino_t pino;
9833 	int error;
9834 
9835 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
9836 	fs = ump->um_fs;
9837 	ino = inodedep->id_ino;
9838 	error = 0;
9839 	for (;;) {
9840 		LOCK_OWNED(ump);
9841 		KASSERT((inodedep->id_state & UNLINKED) != 0,
9842 		    ("clear_unlinked_inodedep: inodedep %p not unlinked",
9843 		    inodedep));
9844 		/*
9845 		 * If nothing has yet been written simply remove us from
9846 		 * the in memory list and return.  This is the most common
9847 		 * case where handle_workitem_remove() loses the final
9848 		 * reference.
9849 		 */
9850 		if ((inodedep->id_state & UNLINKLINKS) == 0)
9851 			break;
9852 		/*
9853 		 * If we have a NEXT pointer and no PREV pointer we can simply
9854 		 * clear NEXT's PREV and remove ourselves from the list.  Be
9855 		 * careful not to clear PREV if the superblock points at
9856 		 * next as well.
9857 		 */
9858 		idn = TAILQ_NEXT(inodedep, id_unlinked);
9859 		if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) {
9860 			if (idn && fs->fs_sujfree != idn->id_ino)
9861 				idn->id_state &= ~UNLINKPREV;
9862 			break;
9863 		}
9864 		/*
9865 		 * Here we have an inodedep which is actually linked into
9866 		 * the list.  We must remove it by forcing a write to the
9867 		 * link before us, whether it be the superblock or an inode.
9868 		 * Unfortunately the list may change while we're waiting
9869 		 * on the buf lock for either resource so we must loop until
9870 		 * we lock the right one.  If both the superblock and an
9871 		 * inode point to this inode we must clear the inode first
9872 		 * followed by the superblock.
9873 		 */
9874 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9875 		pino = 0;
9876 		if (idp && (idp->id_state & UNLINKNEXT))
9877 			pino = idp->id_ino;
9878 		FREE_LOCK(ump);
9879 		if (pino == 0) {
9880 			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
9881 			    (int)fs->fs_sbsize, 0, 0, 0);
9882 		} else {
9883 			dbn = fsbtodb(fs, ino_to_fsba(fs, pino));
9884 			error = ffs_breadz(ump, ump->um_devvp, dbn, dbn,
9885 			    (int)fs->fs_bsize, NULL, NULL, 0, NOCRED, 0, NULL,
9886 			    &bp);
9887 		}
9888 		ACQUIRE_LOCK(ump);
9889 		if (error)
9890 			break;
9891 		/* If the list has changed restart the loop. */
9892 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9893 		nino = 0;
9894 		if (idp && (idp->id_state & UNLINKNEXT))
9895 			nino = idp->id_ino;
9896 		if (nino != pino ||
9897 		    (inodedep->id_state & UNLINKPREV) != UNLINKPREV) {
9898 			FREE_LOCK(ump);
9899 			brelse(bp);
9900 			ACQUIRE_LOCK(ump);
9901 			continue;
9902 		}
9903 		nino = 0;
9904 		idn = TAILQ_NEXT(inodedep, id_unlinked);
9905 		if (idn)
9906 			nino = idn->id_ino;
9907 		/*
9908 		 * Remove us from the in memory list.  After this we cannot
9909 		 * access the inodedep.
9910 		 */
9911 		KASSERT((inodedep->id_state & UNLINKED) != 0,
9912 		    ("clear_unlinked_inodedep: inodedep %p not unlinked",
9913 		    inodedep));
9914 		inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
9915 		TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
9916 		FREE_LOCK(ump);
9917 		/*
9918 		 * The predecessor's next pointer is manually updated here
9919 		 * so that the NEXT flag is never cleared for an element
9920 		 * that is in the list.
9921 		 */
9922 		if (pino == 0) {
9923 			bcopy((caddr_t)fs, bp->b_data, (uint64_t)fs->fs_sbsize);
9924 			bpfs = (struct fs *)bp->b_data;
9925 			ffs_oldfscompat_write(bpfs, ump);
9926 			softdep_setup_sbupdate(ump, bpfs, bp);
9927 			/*
9928 			 * Because we may have made changes to the superblock,
9929 			 * we need to recompute its check-hash.
9930 			 */
9931 			bpfs->fs_ckhash = ffs_calc_sbhash(bpfs);
9932 		} else if (fs->fs_magic == FS_UFS1_MAGIC) {
9933 			((struct ufs1_dinode *)bp->b_data +
9934 			    ino_to_fsbo(fs, pino))->di_freelink = nino;
9935 		} else {
9936 			dip = (struct ufs2_dinode *)bp->b_data +
9937 			    ino_to_fsbo(fs, pino);
9938 			dip->di_freelink = nino;
9939 			ffs_update_dinode_ckhash(fs, dip);
9940 		}
9941 		/*
9942 		 * If the bwrite fails we have no recourse to recover.  The
9943 		 * filesystem is corrupted already.
9944 		 */
9945 		bwrite(bp);
9946 		ACQUIRE_LOCK(ump);
9947 		/*
9948 		 * If the superblock pointer still needs to be cleared force
9949 		 * a write here.
9950 		 */
9951 		if (fs->fs_sujfree == ino) {
9952 			FREE_LOCK(ump);
9953 			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
9954 			    (int)fs->fs_sbsize, 0, 0, 0);
9955 			bcopy((caddr_t)fs, bp->b_data, (uint64_t)fs->fs_sbsize);
9956 			bpfs = (struct fs *)bp->b_data;
9957 			ffs_oldfscompat_write(bpfs, ump);
9958 			softdep_setup_sbupdate(ump, bpfs, bp);
9959 			/*
9960 			 * Because we may have made changes to the superblock,
9961 			 * we need to recompute its check-hash.
9962 			 */
9963 			bpfs->fs_ckhash = ffs_calc_sbhash(bpfs);
9964 			bwrite(bp);
9965 			ACQUIRE_LOCK(ump);
9966 		}
9967 
9968 		if (fs->fs_sujfree != ino)
9969 			return;
9970 		panic("clear_unlinked_inodedep: Failed to clear free head");
9971 	}
9972 	if (inodedep->id_ino == fs->fs_sujfree)
9973 		panic("clear_unlinked_inodedep: Freeing head of free list");
9974 	inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
9975 	TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
9976 	return;
9977 }
9978 
9979 /*
9980  * This workitem decrements the inode's link count.
9981  * If the link count reaches zero, the file is removed.
9982  */
9983 static int
9984 handle_workitem_remove(struct dirrem *dirrem, int flags)
9985 {
9986 	struct inodedep *inodedep;
9987 	struct workhead dotdotwk;
9988 	struct worklist *wk;
9989 	struct ufsmount *ump;
9990 	struct mount *mp;
9991 	struct vnode *vp;
9992 	struct inode *ip;
9993 	ino_t oldinum;
9994 
9995 	if (dirrem->dm_state & ONWORKLIST)
9996 		panic("handle_workitem_remove: dirrem %p still on worklist",
9997 		    dirrem);
9998 	oldinum = dirrem->dm_oldinum;
9999 	mp = dirrem->dm_list.wk_mp;
10000 	ump = VFSTOUFS(mp);
10001 	flags |= LK_EXCLUSIVE;
10002 	if (ffs_vgetf(mp, oldinum, flags, &vp, FFSV_FORCEINSMQ |
10003 	    FFSV_FORCEINODEDEP) != 0)
10004 		return (EBUSY);
10005 	ip = VTOI(vp);
10006 	MPASS(ip->i_mode != 0);
10007 	ACQUIRE_LOCK(ump);
10008 	if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0)
10009 		panic("handle_workitem_remove: lost inodedep");
10010 	if (dirrem->dm_state & ONDEPLIST)
10011 		LIST_REMOVE(dirrem, dm_inonext);
10012 	KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
10013 	    ("handle_workitem_remove:  Journal entries not written."));
10014 
10015 	/*
10016 	 * Move all dependencies waiting on the remove to complete
10017 	 * from the dirrem to the inode inowait list to be completed
10018 	 * after the inode has been updated and written to disk.
10019 	 *
10020 	 * Any marked MKDIR_PARENT are saved to be completed when the
10021 	 * dotdot ref is removed unless DIRCHG is specified.  For
10022 	 * directory change operations there will be no further
10023 	 * directory writes and the jsegdeps need to be moved along
10024 	 * with the rest to be completed when the inode is free or
10025 	 * stable in the inode free list.
10026 	 */
10027 	LIST_INIT(&dotdotwk);
10028 	while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) {
10029 		WORKLIST_REMOVE(wk);
10030 		if ((dirrem->dm_state & DIRCHG) == 0 &&
10031 		    wk->wk_state & MKDIR_PARENT) {
10032 			wk->wk_state &= ~MKDIR_PARENT;
10033 			WORKLIST_INSERT(&dotdotwk, wk);
10034 			continue;
10035 		}
10036 		WORKLIST_INSERT(&inodedep->id_inowait, wk);
10037 	}
10038 	LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list);
10039 	/*
10040 	 * Normal file deletion.
10041 	 */
10042 	if ((dirrem->dm_state & RMDIR) == 0) {
10043 		ip->i_nlink--;
10044 		KASSERT(ip->i_nlink >= 0, ("handle_workitem_remove: file ino "
10045 		    "%ju negative i_nlink %d", (intmax_t)ip->i_number,
10046 		    ip->i_nlink));
10047 		DIP_SET_NLINK(ip, ip->i_nlink);
10048 		UFS_INODE_SET_FLAG(ip, IN_CHANGE);
10049 		if (ip->i_nlink < ip->i_effnlink)
10050 			panic("handle_workitem_remove: bad file delta");
10051 		if (ip->i_nlink == 0)
10052 			unlinked_inodedep(mp, inodedep);
10053 		inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
10054 		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
10055 		    ("handle_workitem_remove: worklist not empty. %s",
10056 		    TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type)));
10057 		WORKITEM_FREE(dirrem, D_DIRREM);
10058 		FREE_LOCK(ump);
10059 		goto out;
10060 	}
10061 	/*
10062 	 * Directory deletion. Decrement reference count for both the
10063 	 * just deleted parent directory entry and the reference for ".".
10064 	 * Arrange to have the reference count on the parent decremented
10065 	 * to account for the loss of "..".
10066 	 */
10067 	ip->i_nlink -= 2;
10068 	KASSERT(ip->i_nlink >= 0, ("handle_workitem_remove: directory ino "
10069 	    "%ju negative i_nlink %d", (intmax_t)ip->i_number, ip->i_nlink));
10070 	DIP_SET_NLINK(ip, ip->i_nlink);
10071 	UFS_INODE_SET_FLAG(ip, IN_CHANGE);
10072 	if (ip->i_nlink < ip->i_effnlink)
10073 		panic("handle_workitem_remove: bad dir delta");
10074 	if (ip->i_nlink == 0)
10075 		unlinked_inodedep(mp, inodedep);
10076 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
10077 	/*
10078 	 * Rename a directory to a new parent. Since, we are both deleting
10079 	 * and creating a new directory entry, the link count on the new
10080 	 * directory should not change. Thus we skip the followup dirrem.
10081 	 */
10082 	if (dirrem->dm_state & DIRCHG) {
10083 		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
10084 		    ("handle_workitem_remove: DIRCHG and worklist not empty."));
10085 		WORKITEM_FREE(dirrem, D_DIRREM);
10086 		FREE_LOCK(ump);
10087 		goto out;
10088 	}
10089 	dirrem->dm_state = ONDEPLIST;
10090 	dirrem->dm_oldinum = dirrem->dm_dirinum;
10091 	/*
10092 	 * Place the dirrem on the parent's diremhd list.
10093 	 */
10094 	if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0)
10095 		panic("handle_workitem_remove: lost dir inodedep");
10096 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
10097 	/*
10098 	 * If the allocated inode has never been written to disk, then
10099 	 * the on-disk inode is zero'ed and we can remove the file
10100 	 * immediately.  When journaling if the inode has been marked
10101 	 * unlinked and not DEPCOMPLETE we know it can never be written.
10102 	 */
10103 	inodedep_lookup(mp, oldinum, 0, &inodedep);
10104 	if (inodedep == NULL ||
10105 	    (inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED ||
10106 	    check_inode_unwritten(inodedep)) {
10107 		FREE_LOCK(ump);
10108 		vput(vp);
10109 		return handle_workitem_remove(dirrem, flags);
10110 	}
10111 	WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
10112 	FREE_LOCK(ump);
10113 	UFS_INODE_SET_FLAG(ip, IN_CHANGE);
10114 out:
10115 	ffs_update(vp, 0);
10116 	vput(vp);
10117 	return (0);
10118 }
10119 
10120 /*
10121  * Inode de-allocation dependencies.
10122  *
10123  * When an inode's link count is reduced to zero, it can be de-allocated. We
10124  * found it convenient to postpone de-allocation until after the inode is
10125  * written to disk with its new link count (zero).  At this point, all of the
10126  * on-disk inode's block pointers are nullified and, with careful dependency
10127  * list ordering, all dependencies related to the inode will be satisfied and
10128  * the corresponding dependency structures de-allocated.  So, if/when the
10129  * inode is reused, there will be no mixing of old dependencies with new
10130  * ones.  This artificial dependency is set up by the block de-allocation
10131  * procedure above (softdep_setup_freeblocks) and completed by the
10132  * following procedure.
10133  */
10134 static void
10135 handle_workitem_freefile(struct freefile *freefile)
10136 {
10137 	struct workhead wkhd;
10138 	struct fs *fs;
10139 	struct ufsmount *ump;
10140 	int error;
10141 #ifdef INVARIANTS
10142 	struct inodedep *idp;
10143 #endif
10144 
10145 	ump = VFSTOUFS(freefile->fx_list.wk_mp);
10146 	fs = ump->um_fs;
10147 #ifdef INVARIANTS
10148 	ACQUIRE_LOCK(ump);
10149 	error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp);
10150 	FREE_LOCK(ump);
10151 	if (error)
10152 		panic("handle_workitem_freefile: inodedep %p survived", idp);
10153 #endif
10154 	UFS_LOCK(ump);
10155 	fs->fs_pendinginodes -= 1;
10156 	UFS_UNLOCK(ump);
10157 	LIST_INIT(&wkhd);
10158 	LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list);
10159 	if ((error = ffs_freefile(ump, fs, freefile->fx_devvp,
10160 	    freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0)
10161 		softdep_error("handle_workitem_freefile", error);
10162 	ACQUIRE_LOCK(ump);
10163 	WORKITEM_FREE(freefile, D_FREEFILE);
10164 	FREE_LOCK(ump);
10165 }
10166 
10167 /*
10168  * Helper function which unlinks marker element from work list and returns
10169  * the next element on the list.
10170  */
10171 static __inline struct worklist *
10172 markernext(struct worklist *marker)
10173 {
10174 	struct worklist *next;
10175 
10176 	next = LIST_NEXT(marker, wk_list);
10177 	LIST_REMOVE(marker, wk_list);
10178 	return next;
10179 }
10180 
10181 /*
10182  * Disk writes.
10183  *
10184  * The dependency structures constructed above are most actively used when file
10185  * system blocks are written to disk.  No constraints are placed on when a
10186  * block can be written, but unsatisfied update dependencies are made safe by
10187  * modifying (or replacing) the source memory for the duration of the disk
10188  * write.  When the disk write completes, the memory block is again brought
10189  * up-to-date.
10190  *
10191  * In-core inode structure reclamation.
10192  *
10193  * Because there are a finite number of "in-core" inode structures, they are
10194  * reused regularly.  By transferring all inode-related dependencies to the
10195  * in-memory inode block and indexing them separately (via "inodedep"s), we
10196  * can allow "in-core" inode structures to be reused at any time and avoid
10197  * any increase in contention.
10198  *
10199  * Called just before entering the device driver to initiate a new disk I/O.
10200  * The buffer must be locked, thus, no I/O completion operations can occur
10201  * while we are manipulating its associated dependencies.
10202  */
10203 static void
10204 softdep_disk_io_initiation(
10205 	struct buf *bp)		/* structure describing disk write to occur */
10206 {
10207 	struct worklist *wk;
10208 	struct worklist marker;
10209 	struct inodedep *inodedep;
10210 	struct freeblks *freeblks;
10211 	struct jblkdep *jblkdep;
10212 	struct newblk *newblk;
10213 	struct ufsmount *ump;
10214 
10215 	/*
10216 	 * We only care about write operations. There should never
10217 	 * be dependencies for reads.
10218 	 */
10219 	if (bp->b_iocmd != BIO_WRITE)
10220 		panic("softdep_disk_io_initiation: not write");
10221 
10222 	if (bp->b_vflags & BV_BKGRDINPROG)
10223 		panic("softdep_disk_io_initiation: Writing buffer with "
10224 		    "background write in progress: %p", bp);
10225 
10226 	ump = softdep_bp_to_mp(bp);
10227 	if (ump == NULL)
10228 		return;
10229 
10230 	marker.wk_type = D_LAST + 1;	/* Not a normal workitem */
10231 	ACQUIRE_LOCK(ump);
10232 	/*
10233 	 * Do any necessary pre-I/O processing.
10234 	 */
10235 	for (wk = LIST_FIRST(&bp->b_dep); wk != NULL;
10236 	     wk = markernext(&marker)) {
10237 		LIST_INSERT_AFTER(wk, &marker, wk_list);
10238 		switch (wk->wk_type) {
10239 		case D_PAGEDEP:
10240 			initiate_write_filepage(WK_PAGEDEP(wk), bp);
10241 			continue;
10242 
10243 		case D_INODEDEP:
10244 			inodedep = WK_INODEDEP(wk);
10245 			if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC)
10246 				initiate_write_inodeblock_ufs1(inodedep, bp);
10247 			else
10248 				initiate_write_inodeblock_ufs2(inodedep, bp);
10249 			continue;
10250 
10251 		case D_INDIRDEP:
10252 			initiate_write_indirdep(WK_INDIRDEP(wk), bp);
10253 			continue;
10254 
10255 		case D_BMSAFEMAP:
10256 			initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp);
10257 			continue;
10258 
10259 		case D_JSEG:
10260 			WK_JSEG(wk)->js_buf = NULL;
10261 			continue;
10262 
10263 		case D_FREEBLKS:
10264 			freeblks = WK_FREEBLKS(wk);
10265 			jblkdep = LIST_FIRST(&freeblks->fb_jblkdephd);
10266 			/*
10267 			 * We have to wait for the freeblks to be journaled
10268 			 * before we can write an inodeblock with updated
10269 			 * pointers.  Be careful to arrange the marker so
10270 			 * we revisit the freeblks if it's not removed by
10271 			 * the first jwait().
10272 			 */
10273 			if (jblkdep != NULL) {
10274 				LIST_REMOVE(&marker, wk_list);
10275 				LIST_INSERT_BEFORE(wk, &marker, wk_list);
10276 				jwait(&jblkdep->jb_list, MNT_WAIT);
10277 			}
10278 			continue;
10279 		case D_ALLOCDIRECT:
10280 		case D_ALLOCINDIR:
10281 			/*
10282 			 * We have to wait for the jnewblk to be journaled
10283 			 * before we can write to a block if the contents
10284 			 * may be confused with an earlier file's indirect
10285 			 * at recovery time.  Handle the marker as described
10286 			 * above.
10287 			 */
10288 			newblk = WK_NEWBLK(wk);
10289 			if (newblk->nb_jnewblk != NULL &&
10290 			    indirblk_lookup(newblk->nb_list.wk_mp,
10291 			    newblk->nb_newblkno)) {
10292 				LIST_REMOVE(&marker, wk_list);
10293 				LIST_INSERT_BEFORE(wk, &marker, wk_list);
10294 				jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
10295 			}
10296 			continue;
10297 
10298 		case D_SBDEP:
10299 			initiate_write_sbdep(WK_SBDEP(wk));
10300 			continue;
10301 
10302 		case D_MKDIR:
10303 		case D_FREEWORK:
10304 		case D_FREEDEP:
10305 		case D_JSEGDEP:
10306 			continue;
10307 
10308 		default:
10309 			panic("handle_disk_io_initiation: Unexpected type %s",
10310 			    TYPENAME(wk->wk_type));
10311 			/* NOTREACHED */
10312 		}
10313 	}
10314 	FREE_LOCK(ump);
10315 }
10316 
10317 /*
10318  * Called from within the procedure above to deal with unsatisfied
10319  * allocation dependencies in a directory. The buffer must be locked,
10320  * thus, no I/O completion operations can occur while we are
10321  * manipulating its associated dependencies.
10322  */
10323 static void
10324 initiate_write_filepage(struct pagedep *pagedep, struct buf *bp)
10325 {
10326 	struct jremref *jremref;
10327 	struct jmvref *jmvref;
10328 	struct dirrem *dirrem;
10329 	struct diradd *dap;
10330 	struct direct *ep;
10331 	int i;
10332 
10333 	if (pagedep->pd_state & IOSTARTED) {
10334 		/*
10335 		 * This can only happen if there is a driver that does not
10336 		 * understand chaining. Here biodone will reissue the call
10337 		 * to strategy for the incomplete buffers.
10338 		 */
10339 		printf("initiate_write_filepage: already started\n");
10340 		return;
10341 	}
10342 	pagedep->pd_state |= IOSTARTED;
10343 	/*
10344 	 * Wait for all journal remove dependencies to hit the disk.
10345 	 * We can not allow any potentially conflicting directory adds
10346 	 * to be visible before removes and rollback is too difficult.
10347 	 * The per-filesystem lock may be dropped and re-acquired, however
10348 	 * we hold the buf locked so the dependency can not go away.
10349 	 */
10350 	LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next)
10351 		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL)
10352 			jwait(&jremref->jr_list, MNT_WAIT);
10353 	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL)
10354 		jwait(&jmvref->jm_list, MNT_WAIT);
10355 	for (i = 0; i < DAHASHSZ; i++) {
10356 		LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
10357 			ep = (struct direct *)
10358 			    ((char *)bp->b_data + dap->da_offset);
10359 			if (ep->d_ino != dap->da_newinum)
10360 				panic("%s: dir inum %ju != new %ju",
10361 				    "initiate_write_filepage",
10362 				    (uintmax_t)ep->d_ino,
10363 				    (uintmax_t)dap->da_newinum);
10364 			if (dap->da_state & DIRCHG)
10365 				ep->d_ino = dap->da_previous->dm_oldinum;
10366 			else
10367 				ep->d_ino = 0;
10368 			dap->da_state &= ~ATTACHED;
10369 			dap->da_state |= UNDONE;
10370 		}
10371 	}
10372 }
10373 
10374 /*
10375  * Version of initiate_write_inodeblock that handles UFS1 dinodes.
10376  * Note that any bug fixes made to this routine must be done in the
10377  * version found below.
10378  *
10379  * Called from within the procedure above to deal with unsatisfied
10380  * allocation dependencies in an inodeblock. The buffer must be
10381  * locked, thus, no I/O completion operations can occur while we
10382  * are manipulating its associated dependencies.
10383  */
10384 static void
10385 initiate_write_inodeblock_ufs1(
10386 	struct inodedep *inodedep,
10387 	struct buf *bp)			/* The inode block */
10388 {
10389 	struct allocdirect *adp, *lastadp;
10390 	struct ufs1_dinode *dp;
10391 	struct ufs1_dinode *sip;
10392 	struct inoref *inoref;
10393 	struct ufsmount *ump;
10394 	struct fs *fs;
10395 	ufs_lbn_t i;
10396 #ifdef INVARIANTS
10397 	ufs_lbn_t prevlbn = 0;
10398 #endif
10399 	int deplist __diagused;
10400 
10401 	if (inodedep->id_state & IOSTARTED)
10402 		panic("initiate_write_inodeblock_ufs1: already started");
10403 	inodedep->id_state |= IOSTARTED;
10404 	fs = inodedep->id_fs;
10405 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
10406 	LOCK_OWNED(ump);
10407 	dp = (struct ufs1_dinode *)bp->b_data +
10408 	    ino_to_fsbo(fs, inodedep->id_ino);
10409 
10410 	/*
10411 	 * If we're on the unlinked list but have not yet written our
10412 	 * next pointer initialize it here.
10413 	 */
10414 	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
10415 		struct inodedep *inon;
10416 
10417 		inon = TAILQ_NEXT(inodedep, id_unlinked);
10418 		dp->di_freelink = inon ? inon->id_ino : 0;
10419 	}
10420 	/*
10421 	 * If the bitmap is not yet written, then the allocated
10422 	 * inode cannot be written to disk.
10423 	 */
10424 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
10425 		if (inodedep->id_savedino1 != NULL)
10426 			panic("initiate_write_inodeblock_ufs1: I/O underway");
10427 		FREE_LOCK(ump);
10428 		sip = malloc(sizeof(struct ufs1_dinode),
10429 		    M_SAVEDINO, M_SOFTDEP_FLAGS);
10430 		ACQUIRE_LOCK(ump);
10431 		inodedep->id_savedino1 = sip;
10432 		*inodedep->id_savedino1 = *dp;
10433 		bzero((caddr_t)dp, sizeof(struct ufs1_dinode));
10434 		dp->di_gen = inodedep->id_savedino1->di_gen;
10435 		dp->di_freelink = inodedep->id_savedino1->di_freelink;
10436 		return;
10437 	}
10438 	/*
10439 	 * If no dependencies, then there is nothing to roll back.
10440 	 */
10441 	inodedep->id_savedsize = dp->di_size;
10442 	inodedep->id_savedextsize = 0;
10443 	inodedep->id_savednlink = dp->di_nlink;
10444 	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
10445 	    TAILQ_EMPTY(&inodedep->id_inoreflst))
10446 		return;
10447 	/*
10448 	 * Revert the link count to that of the first unwritten journal entry.
10449 	 */
10450 	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
10451 	if (inoref)
10452 		dp->di_nlink = inoref->if_nlink;
10453 	/*
10454 	 * Set the dependencies to busy.
10455 	 */
10456 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10457 	     adp = TAILQ_NEXT(adp, ad_next)) {
10458 #ifdef INVARIANTS
10459 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10460 			panic("softdep_write_inodeblock: lbn order");
10461 		prevlbn = adp->ad_offset;
10462 		if (adp->ad_offset < UFS_NDADDR &&
10463 		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
10464 			panic("initiate_write_inodeblock_ufs1: "
10465 			    "direct pointer #%jd mismatch %d != %jd",
10466 			    (intmax_t)adp->ad_offset,
10467 			    dp->di_db[adp->ad_offset],
10468 			    (intmax_t)adp->ad_newblkno);
10469 		if (adp->ad_offset >= UFS_NDADDR &&
10470 		    dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno)
10471 			panic("initiate_write_inodeblock_ufs1: "
10472 			    "indirect pointer #%jd mismatch %d != %jd",
10473 			    (intmax_t)adp->ad_offset - UFS_NDADDR,
10474 			    dp->di_ib[adp->ad_offset - UFS_NDADDR],
10475 			    (intmax_t)adp->ad_newblkno);
10476 		deplist |= 1 << adp->ad_offset;
10477 		if ((adp->ad_state & ATTACHED) == 0)
10478 			panic("initiate_write_inodeblock_ufs1: "
10479 			    "Unknown state 0x%x", adp->ad_state);
10480 #endif /* INVARIANTS */
10481 		adp->ad_state &= ~ATTACHED;
10482 		adp->ad_state |= UNDONE;
10483 	}
10484 	/*
10485 	 * The on-disk inode cannot claim to be any larger than the last
10486 	 * fragment that has been written. Otherwise, the on-disk inode
10487 	 * might have fragments that were not the last block in the file
10488 	 * which would corrupt the filesystem.
10489 	 */
10490 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10491 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10492 		if (adp->ad_offset >= UFS_NDADDR)
10493 			break;
10494 		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
10495 		/* keep going until hitting a rollback to a frag */
10496 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10497 			continue;
10498 		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10499 		for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) {
10500 #ifdef INVARIANTS
10501 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
10502 				panic("initiate_write_inodeblock_ufs1: "
10503 				    "lost dep1");
10504 #endif /* INVARIANTS */
10505 			dp->di_db[i] = 0;
10506 		}
10507 		for (i = 0; i < UFS_NIADDR; i++) {
10508 #ifdef INVARIANTS
10509 			if (dp->di_ib[i] != 0 &&
10510 			    (deplist & ((1 << UFS_NDADDR) << i)) == 0)
10511 				panic("initiate_write_inodeblock_ufs1: "
10512 				    "lost dep2");
10513 #endif /* INVARIANTS */
10514 			dp->di_ib[i] = 0;
10515 		}
10516 		return;
10517 	}
10518 	/*
10519 	 * If we have zero'ed out the last allocated block of the file,
10520 	 * roll back the size to the last currently allocated block.
10521 	 * We know that this last allocated block is a full-sized as
10522 	 * we already checked for fragments in the loop above.
10523 	 */
10524 	if (lastadp != NULL &&
10525 	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10526 		for (i = lastadp->ad_offset; i >= 0; i--)
10527 			if (dp->di_db[i] != 0)
10528 				break;
10529 		dp->di_size = (i + 1) * fs->fs_bsize;
10530 	}
10531 	/*
10532 	 * The only dependencies are for indirect blocks.
10533 	 *
10534 	 * The file size for indirect block additions is not guaranteed.
10535 	 * Such a guarantee would be non-trivial to achieve. The conventional
10536 	 * synchronous write implementation also does not make this guarantee.
10537 	 * Fsck should catch and fix discrepancies. Arguably, the file size
10538 	 * can be over-estimated without destroying integrity when the file
10539 	 * moves into the indirect blocks (i.e., is large). If we want to
10540 	 * postpone fsck, we are stuck with this argument.
10541 	 */
10542 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
10543 		dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0;
10544 }
10545 
10546 /*
10547  * Version of initiate_write_inodeblock that handles UFS2 dinodes.
10548  * Note that any bug fixes made to this routine must be done in the
10549  * version found above.
10550  *
10551  * Called from within the procedure above to deal with unsatisfied
10552  * allocation dependencies in an inodeblock. The buffer must be
10553  * locked, thus, no I/O completion operations can occur while we
10554  * are manipulating its associated dependencies.
10555  */
10556 static void
10557 initiate_write_inodeblock_ufs2(
10558 	struct inodedep *inodedep,
10559 	struct buf *bp)			/* The inode block */
10560 {
10561 	struct allocdirect *adp, *lastadp;
10562 	struct ufs2_dinode *dp;
10563 	struct ufs2_dinode *sip;
10564 	struct inoref *inoref;
10565 	struct ufsmount *ump;
10566 	struct fs *fs;
10567 	ufs_lbn_t i;
10568 #ifdef INVARIANTS
10569 	ufs_lbn_t prevlbn = 0;
10570 #endif
10571 	int deplist __diagused;
10572 
10573 	if (inodedep->id_state & IOSTARTED)
10574 		panic("initiate_write_inodeblock_ufs2: already started");
10575 	inodedep->id_state |= IOSTARTED;
10576 	fs = inodedep->id_fs;
10577 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
10578 	LOCK_OWNED(ump);
10579 	dp = (struct ufs2_dinode *)bp->b_data +
10580 	    ino_to_fsbo(fs, inodedep->id_ino);
10581 
10582 	/*
10583 	 * If we're on the unlinked list but have not yet written our
10584 	 * next pointer initialize it here.
10585 	 */
10586 	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
10587 		struct inodedep *inon;
10588 
10589 		inon = TAILQ_NEXT(inodedep, id_unlinked);
10590 		dp->di_freelink = inon ? inon->id_ino : 0;
10591 		ffs_update_dinode_ckhash(fs, dp);
10592 	}
10593 	/*
10594 	 * If the bitmap is not yet written, then the allocated
10595 	 * inode cannot be written to disk.
10596 	 */
10597 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
10598 		if (inodedep->id_savedino2 != NULL)
10599 			panic("initiate_write_inodeblock_ufs2: I/O underway");
10600 		FREE_LOCK(ump);
10601 		sip = malloc(sizeof(struct ufs2_dinode),
10602 		    M_SAVEDINO, M_SOFTDEP_FLAGS);
10603 		ACQUIRE_LOCK(ump);
10604 		inodedep->id_savedino2 = sip;
10605 		*inodedep->id_savedino2 = *dp;
10606 		bzero((caddr_t)dp, sizeof(struct ufs2_dinode));
10607 		dp->di_gen = inodedep->id_savedino2->di_gen;
10608 		dp->di_freelink = inodedep->id_savedino2->di_freelink;
10609 		return;
10610 	}
10611 	/*
10612 	 * If no dependencies, then there is nothing to roll back.
10613 	 */
10614 	inodedep->id_savedsize = dp->di_size;
10615 	inodedep->id_savedextsize = dp->di_extsize;
10616 	inodedep->id_savednlink = dp->di_nlink;
10617 	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
10618 	    TAILQ_EMPTY(&inodedep->id_extupdt) &&
10619 	    TAILQ_EMPTY(&inodedep->id_inoreflst))
10620 		return;
10621 	/*
10622 	 * Revert the link count to that of the first unwritten journal entry.
10623 	 */
10624 	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
10625 	if (inoref)
10626 		dp->di_nlink = inoref->if_nlink;
10627 
10628 	/*
10629 	 * Set the ext data dependencies to busy.
10630 	 */
10631 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
10632 	     adp = TAILQ_NEXT(adp, ad_next)) {
10633 #ifdef INVARIANTS
10634 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10635 			panic("initiate_write_inodeblock_ufs2: lbn order");
10636 		prevlbn = adp->ad_offset;
10637 		if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno)
10638 			panic("initiate_write_inodeblock_ufs2: "
10639 			    "ext pointer #%jd mismatch %jd != %jd",
10640 			    (intmax_t)adp->ad_offset,
10641 			    (intmax_t)dp->di_extb[adp->ad_offset],
10642 			    (intmax_t)adp->ad_newblkno);
10643 		deplist |= 1 << adp->ad_offset;
10644 		if ((adp->ad_state & ATTACHED) == 0)
10645 			panic("initiate_write_inodeblock_ufs2: Unknown "
10646 			    "state 0x%x", adp->ad_state);
10647 #endif /* INVARIANTS */
10648 		adp->ad_state &= ~ATTACHED;
10649 		adp->ad_state |= UNDONE;
10650 	}
10651 	/*
10652 	 * The on-disk inode cannot claim to be any larger than the last
10653 	 * fragment that has been written. Otherwise, the on-disk inode
10654 	 * might have fragments that were not the last block in the ext
10655 	 * data which would corrupt the filesystem.
10656 	 */
10657 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
10658 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10659 		dp->di_extb[adp->ad_offset] = adp->ad_oldblkno;
10660 		/* keep going until hitting a rollback to a frag */
10661 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10662 			continue;
10663 		dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10664 		for (i = adp->ad_offset + 1; i < UFS_NXADDR; i++) {
10665 #ifdef INVARIANTS
10666 			if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0)
10667 				panic("initiate_write_inodeblock_ufs2: "
10668 				    "lost dep1");
10669 #endif /* INVARIANTS */
10670 			dp->di_extb[i] = 0;
10671 		}
10672 		lastadp = NULL;
10673 		break;
10674 	}
10675 	/*
10676 	 * If we have zero'ed out the last allocated block of the ext
10677 	 * data, roll back the size to the last currently allocated block.
10678 	 * We know that this last allocated block is a full-sized as
10679 	 * we already checked for fragments in the loop above.
10680 	 */
10681 	if (lastadp != NULL &&
10682 	    dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10683 		for (i = lastadp->ad_offset; i >= 0; i--)
10684 			if (dp->di_extb[i] != 0)
10685 				break;
10686 		dp->di_extsize = (i + 1) * fs->fs_bsize;
10687 	}
10688 	/*
10689 	 * Set the file data dependencies to busy.
10690 	 */
10691 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10692 	     adp = TAILQ_NEXT(adp, ad_next)) {
10693 #ifdef INVARIANTS
10694 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10695 			panic("softdep_write_inodeblock: lbn order");
10696 		if ((adp->ad_state & ATTACHED) == 0)
10697 			panic("inodedep %p and adp %p not attached", inodedep, adp);
10698 		prevlbn = adp->ad_offset;
10699 		if (!ffs_fsfail_cleanup(ump, 0) &&
10700 		    adp->ad_offset < UFS_NDADDR &&
10701 		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
10702 			panic("initiate_write_inodeblock_ufs2: "
10703 			    "direct pointer #%jd mismatch %jd != %jd",
10704 			    (intmax_t)adp->ad_offset,
10705 			    (intmax_t)dp->di_db[adp->ad_offset],
10706 			    (intmax_t)adp->ad_newblkno);
10707 		if (!ffs_fsfail_cleanup(ump, 0) &&
10708 		    adp->ad_offset >= UFS_NDADDR &&
10709 		    dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno)
10710 			panic("initiate_write_inodeblock_ufs2: "
10711 			    "indirect pointer #%jd mismatch %jd != %jd",
10712 			    (intmax_t)adp->ad_offset - UFS_NDADDR,
10713 			    (intmax_t)dp->di_ib[adp->ad_offset - UFS_NDADDR],
10714 			    (intmax_t)adp->ad_newblkno);
10715 		deplist |= 1 << adp->ad_offset;
10716 		if ((adp->ad_state & ATTACHED) == 0)
10717 			panic("initiate_write_inodeblock_ufs2: Unknown "
10718 			     "state 0x%x", adp->ad_state);
10719 #endif /* INVARIANTS */
10720 		adp->ad_state &= ~ATTACHED;
10721 		adp->ad_state |= UNDONE;
10722 	}
10723 	/*
10724 	 * The on-disk inode cannot claim to be any larger than the last
10725 	 * fragment that has been written. Otherwise, the on-disk inode
10726 	 * might have fragments that were not the last block in the file
10727 	 * which would corrupt the filesystem.
10728 	 */
10729 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10730 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10731 		if (adp->ad_offset >= UFS_NDADDR)
10732 			break;
10733 		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
10734 		/* keep going until hitting a rollback to a frag */
10735 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10736 			continue;
10737 		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10738 		for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) {
10739 #ifdef INVARIANTS
10740 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
10741 				panic("initiate_write_inodeblock_ufs2: "
10742 				    "lost dep2");
10743 #endif /* INVARIANTS */
10744 			dp->di_db[i] = 0;
10745 		}
10746 		for (i = 0; i < UFS_NIADDR; i++) {
10747 #ifdef INVARIANTS
10748 			if (dp->di_ib[i] != 0 &&
10749 			    (deplist & ((1 << UFS_NDADDR) << i)) == 0)
10750 				panic("initiate_write_inodeblock_ufs2: "
10751 				    "lost dep3");
10752 #endif /* INVARIANTS */
10753 			dp->di_ib[i] = 0;
10754 		}
10755 		ffs_update_dinode_ckhash(fs, dp);
10756 		return;
10757 	}
10758 	/*
10759 	 * If we have zero'ed out the last allocated block of the file,
10760 	 * roll back the size to the last currently allocated block.
10761 	 * We know that this last allocated block is a full-sized as
10762 	 * we already checked for fragments in the loop above.
10763 	 */
10764 	if (lastadp != NULL &&
10765 	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10766 		for (i = lastadp->ad_offset; i >= 0; i--)
10767 			if (dp->di_db[i] != 0)
10768 				break;
10769 		dp->di_size = (i + 1) * fs->fs_bsize;
10770 	}
10771 	/*
10772 	 * The only dependencies are for indirect blocks.
10773 	 *
10774 	 * The file size for indirect block additions is not guaranteed.
10775 	 * Such a guarantee would be non-trivial to achieve. The conventional
10776 	 * synchronous write implementation also does not make this guarantee.
10777 	 * Fsck should catch and fix discrepancies. Arguably, the file size
10778 	 * can be over-estimated without destroying integrity when the file
10779 	 * moves into the indirect blocks (i.e., is large). If we want to
10780 	 * postpone fsck, we are stuck with this argument.
10781 	 */
10782 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
10783 		dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0;
10784 	ffs_update_dinode_ckhash(fs, dp);
10785 }
10786 
10787 /*
10788  * Cancel an indirdep as a result of truncation.  Release all of the
10789  * children allocindirs and place their journal work on the appropriate
10790  * list.
10791  */
10792 static void
10793 cancel_indirdep(
10794 	struct indirdep *indirdep,
10795 	struct buf *bp,
10796 	struct freeblks *freeblks)
10797 {
10798 	struct allocindir *aip;
10799 
10800 	/*
10801 	 * None of the indirect pointers will ever be visible,
10802 	 * so they can simply be tossed. GOINGAWAY ensures
10803 	 * that allocated pointers will be saved in the buffer
10804 	 * cache until they are freed. Note that they will
10805 	 * only be able to be found by their physical address
10806 	 * since the inode mapping the logical address will
10807 	 * be gone. The save buffer used for the safe copy
10808 	 * was allocated in setup_allocindir_phase2 using
10809 	 * the physical address so it could be used for this
10810 	 * purpose. Hence we swap the safe copy with the real
10811 	 * copy, allowing the safe copy to be freed and holding
10812 	 * on to the real copy for later use in indir_trunc.
10813 	 */
10814 	if (indirdep->ir_state & GOINGAWAY)
10815 		panic("cancel_indirdep: already gone");
10816 	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
10817 		indirdep->ir_state |= DEPCOMPLETE;
10818 		LIST_REMOVE(indirdep, ir_next);
10819 	}
10820 	indirdep->ir_state |= GOINGAWAY;
10821 	/*
10822 	 * Pass in bp for blocks still have journal writes
10823 	 * pending so we can cancel them on their own.
10824 	 */
10825 	while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != NULL)
10826 		cancel_allocindir(aip, bp, freeblks, 0);
10827 	while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL)
10828 		cancel_allocindir(aip, NULL, freeblks, 0);
10829 	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL)
10830 		cancel_allocindir(aip, NULL, freeblks, 0);
10831 	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL)
10832 		cancel_allocindir(aip, NULL, freeblks, 0);
10833 	/*
10834 	 * If there are pending partial truncations we need to keep the
10835 	 * old block copy around until they complete.  This is because
10836 	 * the current b_data is not a perfect superset of the available
10837 	 * blocks.
10838 	 */
10839 	if (TAILQ_EMPTY(&indirdep->ir_trunc))
10840 		bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount);
10841 	else
10842 		bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
10843 	WORKLIST_REMOVE(&indirdep->ir_list);
10844 	WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list);
10845 	indirdep->ir_bp = NULL;
10846 	indirdep->ir_freeblks = freeblks;
10847 }
10848 
10849 /*
10850  * Free an indirdep once it no longer has new pointers to track.
10851  */
10852 static void
10853 free_indirdep(struct indirdep *indirdep)
10854 {
10855 
10856 	KASSERT(TAILQ_EMPTY(&indirdep->ir_trunc),
10857 	    ("free_indirdep: Indir trunc list not empty."));
10858 	KASSERT(LIST_EMPTY(&indirdep->ir_completehd),
10859 	    ("free_indirdep: Complete head not empty."));
10860 	KASSERT(LIST_EMPTY(&indirdep->ir_writehd),
10861 	    ("free_indirdep: write head not empty."));
10862 	KASSERT(LIST_EMPTY(&indirdep->ir_donehd),
10863 	    ("free_indirdep: done head not empty."));
10864 	KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd),
10865 	    ("free_indirdep: deplist head not empty."));
10866 	KASSERT((indirdep->ir_state & DEPCOMPLETE),
10867 	    ("free_indirdep: %p still on newblk list.", indirdep));
10868 	KASSERT(indirdep->ir_saveddata == NULL,
10869 	    ("free_indirdep: %p still has saved data.", indirdep));
10870 	KASSERT(indirdep->ir_savebp == NULL,
10871 	    ("free_indirdep: %p still has savebp buffer.", indirdep));
10872 	if (indirdep->ir_state & ONWORKLIST)
10873 		WORKLIST_REMOVE(&indirdep->ir_list);
10874 	WORKITEM_FREE(indirdep, D_INDIRDEP);
10875 }
10876 
10877 /*
10878  * Called before a write to an indirdep.  This routine is responsible for
10879  * rolling back pointers to a safe state which includes only those
10880  * allocindirs which have been completed.
10881  */
10882 static void
10883 initiate_write_indirdep(struct indirdep *indirdep, struct buf *bp)
10884 {
10885 	struct ufsmount *ump;
10886 
10887 	indirdep->ir_state |= IOSTARTED;
10888 	if (indirdep->ir_state & GOINGAWAY)
10889 		panic("disk_io_initiation: indirdep gone");
10890 	/*
10891 	 * If there are no remaining dependencies, this will be writing
10892 	 * the real pointers.
10893 	 */
10894 	if (LIST_EMPTY(&indirdep->ir_deplisthd) &&
10895 	    TAILQ_EMPTY(&indirdep->ir_trunc))
10896 		return;
10897 	/*
10898 	 * Replace up-to-date version with safe version.
10899 	 */
10900 	if (indirdep->ir_saveddata == NULL) {
10901 		ump = VFSTOUFS(indirdep->ir_list.wk_mp);
10902 		LOCK_OWNED(ump);
10903 		FREE_LOCK(ump);
10904 		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
10905 		    M_SOFTDEP_FLAGS);
10906 		ACQUIRE_LOCK(ump);
10907 	}
10908 	indirdep->ir_state &= ~ATTACHED;
10909 	indirdep->ir_state |= UNDONE;
10910 	bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
10911 	bcopy(indirdep->ir_savebp->b_data, bp->b_data,
10912 	    bp->b_bcount);
10913 }
10914 
10915 /*
10916  * Called when an inode has been cleared in a cg bitmap.  This finally
10917  * eliminates any canceled jaddrefs
10918  */
10919 void
10920 softdep_setup_inofree(struct mount *mp,
10921 	struct buf *bp,
10922 	ino_t ino,
10923 	struct workhead *wkhd,
10924 	bool doingrecovery)
10925 {
10926 	struct worklist *wk, *wkn;
10927 	struct ufsmount *ump;
10928 #ifdef INVARIANTS
10929 	struct inodedep *inodedep;
10930 #endif
10931 
10932 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
10933 	    ("softdep_setup_inofree called on non-softdep filesystem"));
10934 	ump = VFSTOUFS(mp);
10935 	ACQUIRE_LOCK(ump);
10936 	KASSERT(doingrecovery || ffs_fsfail_cleanup(ump, 0) ||
10937 	    isclr(cg_inosused((struct cg *)bp->b_data),
10938 	    ino % ump->um_fs->fs_ipg),
10939 	    ("softdep_setup_inofree: inode %ju not freed.", (uintmax_t)ino));
10940 	KASSERT(inodedep_lookup(mp, ino, 0, &inodedep) == 0,
10941 	    ("softdep_setup_inofree: ino %ju has existing inodedep %p",
10942 	    (uintmax_t)ino, inodedep));
10943 	if (wkhd) {
10944 		LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) {
10945 			if (wk->wk_type != D_JADDREF)
10946 				continue;
10947 			WORKLIST_REMOVE(wk);
10948 			/*
10949 			 * We can free immediately even if the jaddref
10950 			 * isn't attached in a background write as now
10951 			 * the bitmaps are reconciled.
10952 			 */
10953 			wk->wk_state |= COMPLETE | ATTACHED;
10954 			free_jaddref(WK_JADDREF(wk));
10955 		}
10956 		jwork_move(&bp->b_dep, wkhd);
10957 	}
10958 	FREE_LOCK(ump);
10959 }
10960 
10961 /*
10962  * Called via ffs_blkfree() after a set of frags has been cleared from a cg
10963  * map.  Any dependencies waiting for the write to clear are added to the
10964  * buf's list and any jnewblks that are being canceled are discarded
10965  * immediately.
10966  */
10967 void
10968 softdep_setup_blkfree(
10969 	struct mount *mp,
10970 	struct buf *bp,
10971 	ufs2_daddr_t blkno,
10972 	int frags,
10973 	struct workhead *wkhd,
10974 	bool doingrecovery)
10975 {
10976 	struct bmsafemap *bmsafemap;
10977 	struct jnewblk *jnewblk;
10978 	struct ufsmount *ump;
10979 	struct worklist *wk;
10980 	struct fs *fs;
10981 #ifdef INVARIANTS
10982 	uint8_t *blksfree;
10983 	struct cg *cgp;
10984 	ufs2_daddr_t jstart;
10985 	ufs2_daddr_t jend;
10986 	ufs2_daddr_t end;
10987 	long bno;
10988 	int i;
10989 #endif
10990 
10991 	CTR3(KTR_SUJ,
10992 	    "softdep_setup_blkfree: blkno %jd frags %d wk head %p",
10993 	    blkno, frags, wkhd);
10994 
10995 	ump = VFSTOUFS(mp);
10996 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
10997 	    ("softdep_setup_blkfree called on non-softdep filesystem"));
10998 	ACQUIRE_LOCK(ump);
10999 	/* Lookup the bmsafemap so we track when it is dirty. */
11000 	fs = ump->um_fs;
11001 	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
11002 	/*
11003 	 * Detach any jnewblks which have been canceled.  They must linger
11004 	 * until the bitmap is cleared again by ffs_blkfree() to prevent
11005 	 * an unjournaled allocation from hitting the disk.
11006 	 */
11007 	if (wkhd) {
11008 		while ((wk = LIST_FIRST(wkhd)) != NULL) {
11009 			CTR2(KTR_SUJ,
11010 			    "softdep_setup_blkfree: blkno %jd wk type %d",
11011 			    blkno, wk->wk_type);
11012 			WORKLIST_REMOVE(wk);
11013 			if (wk->wk_type != D_JNEWBLK) {
11014 				WORKLIST_INSERT(&bmsafemap->sm_freehd, wk);
11015 				continue;
11016 			}
11017 			jnewblk = WK_JNEWBLK(wk);
11018 			KASSERT(jnewblk->jn_state & GOINGAWAY,
11019 			    ("softdep_setup_blkfree: jnewblk not canceled."));
11020 #ifdef INVARIANTS
11021 			if (!doingrecovery && !ffs_fsfail_cleanup(ump, 0)) {
11022 				/*
11023 				 * Assert that this block is free in the
11024 				 * bitmap before we discard the jnewblk.
11025 				 */
11026 				cgp = (struct cg *)bp->b_data;
11027 				blksfree = cg_blksfree(cgp);
11028 				bno = dtogd(fs, jnewblk->jn_blkno);
11029 				for (i = jnewblk->jn_oldfrags;
11030 				    i < jnewblk->jn_frags; i++) {
11031 					if (isset(blksfree, bno + i))
11032 						continue;
11033 					panic("softdep_setup_blkfree: block "
11034 					    "%ju not freed.",
11035 					    (uintmax_t)jnewblk->jn_blkno);
11036 				}
11037 			}
11038 #endif
11039 			/*
11040 			 * Even if it's not attached we can free immediately
11041 			 * as the new bitmap is correct.
11042 			 */
11043 			wk->wk_state |= COMPLETE | ATTACHED;
11044 			free_jnewblk(jnewblk);
11045 		}
11046 	}
11047 
11048 #ifdef INVARIANTS
11049 	/*
11050 	 * Assert that we are not freeing a block which has an outstanding
11051 	 * allocation dependency.
11052 	 */
11053 	fs = VFSTOUFS(mp)->um_fs;
11054 	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
11055 	end = blkno + frags;
11056 	LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
11057 		/*
11058 		 * Don't match against blocks that will be freed when the
11059 		 * background write is done.
11060 		 */
11061 		if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) ==
11062 		    (COMPLETE | DEPCOMPLETE))
11063 			continue;
11064 		jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags;
11065 		jend = jnewblk->jn_blkno + jnewblk->jn_frags;
11066 		if ((blkno >= jstart && blkno < jend) ||
11067 		    (end > jstart && end <= jend)) {
11068 			printf("state 0x%X %jd - %d %d dep %p\n",
11069 			    jnewblk->jn_state, jnewblk->jn_blkno,
11070 			    jnewblk->jn_oldfrags, jnewblk->jn_frags,
11071 			    jnewblk->jn_dep);
11072 			panic("softdep_setup_blkfree: "
11073 			    "%jd-%jd(%d) overlaps with %jd-%jd",
11074 			    blkno, end, frags, jstart, jend);
11075 		}
11076 	}
11077 #endif
11078 	FREE_LOCK(ump);
11079 }
11080 
11081 /*
11082  * Revert a block allocation when the journal record that describes it
11083  * is not yet written.
11084  */
11085 static int
11086 jnewblk_rollback(
11087 	struct jnewblk *jnewblk,
11088 	struct fs *fs,
11089 	struct cg *cgp,
11090 	uint8_t *blksfree)
11091 {
11092 	ufs1_daddr_t fragno;
11093 	long cgbno, bbase;
11094 	int frags, blk;
11095 	int i;
11096 
11097 	frags = 0;
11098 	cgbno = dtogd(fs, jnewblk->jn_blkno);
11099 	/*
11100 	 * We have to test which frags need to be rolled back.  We may
11101 	 * be operating on a stale copy when doing background writes.
11102 	 */
11103 	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++)
11104 		if (isclr(blksfree, cgbno + i))
11105 			frags++;
11106 	if (frags == 0)
11107 		return (0);
11108 	/*
11109 	 * This is mostly ffs_blkfree() sans some validation and
11110 	 * superblock updates.
11111 	 */
11112 	if (frags == fs->fs_frag) {
11113 		fragno = fragstoblks(fs, cgbno);
11114 		ffs_setblock(fs, blksfree, fragno);
11115 		ffs_clusteracct(fs, cgp, fragno, 1);
11116 		cgp->cg_cs.cs_nbfree++;
11117 	} else {
11118 		cgbno += jnewblk->jn_oldfrags;
11119 		bbase = cgbno - fragnum(fs, cgbno);
11120 		/* Decrement the old frags.  */
11121 		blk = blkmap(fs, blksfree, bbase);
11122 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
11123 		/* Deallocate the fragment */
11124 		for (i = 0; i < frags; i++)
11125 			setbit(blksfree, cgbno + i);
11126 		cgp->cg_cs.cs_nffree += frags;
11127 		/* Add back in counts associated with the new frags */
11128 		blk = blkmap(fs, blksfree, bbase);
11129 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
11130 		/* If a complete block has been reassembled, account for it. */
11131 		fragno = fragstoblks(fs, bbase);
11132 		if (ffs_isblock(fs, blksfree, fragno)) {
11133 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
11134 			ffs_clusteracct(fs, cgp, fragno, 1);
11135 			cgp->cg_cs.cs_nbfree++;
11136 		}
11137 	}
11138 	stat_jnewblk++;
11139 	jnewblk->jn_state &= ~ATTACHED;
11140 	jnewblk->jn_state |= UNDONE;
11141 
11142 	return (frags);
11143 }
11144 
11145 static void
11146 initiate_write_bmsafemap(
11147 	struct bmsafemap *bmsafemap,
11148 	struct buf *bp)			/* The cg block. */
11149 {
11150 	struct jaddref *jaddref;
11151 	struct jnewblk *jnewblk;
11152 	uint8_t *inosused;
11153 	uint8_t *blksfree;
11154 	struct cg *cgp;
11155 	struct fs *fs;
11156 	ino_t ino;
11157 
11158 	/*
11159 	 * If this is a background write, we did this at the time that
11160 	 * the copy was made, so do not need to do it again.
11161 	 */
11162 	if (bmsafemap->sm_state & IOSTARTED)
11163 		return;
11164 	bmsafemap->sm_state |= IOSTARTED;
11165 	/*
11166 	 * Clear any inode allocations which are pending journal writes.
11167 	 */
11168 	if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) {
11169 		cgp = (struct cg *)bp->b_data;
11170 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11171 		inosused = cg_inosused(cgp);
11172 		LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) {
11173 			ino = jaddref->ja_ino % fs->fs_ipg;
11174 			if (isset(inosused, ino)) {
11175 				if ((jaddref->ja_mode & IFMT) == IFDIR)
11176 					cgp->cg_cs.cs_ndir--;
11177 				cgp->cg_cs.cs_nifree++;
11178 				clrbit(inosused, ino);
11179 				jaddref->ja_state &= ~ATTACHED;
11180 				jaddref->ja_state |= UNDONE;
11181 				stat_jaddref++;
11182 			} else
11183 				panic("initiate_write_bmsafemap: inode %ju "
11184 				    "marked free", (uintmax_t)jaddref->ja_ino);
11185 		}
11186 	}
11187 	/*
11188 	 * Clear any block allocations which are pending journal writes.
11189 	 */
11190 	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
11191 		cgp = (struct cg *)bp->b_data;
11192 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11193 		blksfree = cg_blksfree(cgp);
11194 		LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
11195 			if (jnewblk_rollback(jnewblk, fs, cgp, blksfree))
11196 				continue;
11197 			panic("initiate_write_bmsafemap: block %jd "
11198 			    "marked free", jnewblk->jn_blkno);
11199 		}
11200 	}
11201 	/*
11202 	 * Move allocation lists to the written lists so they can be
11203 	 * cleared once the block write is complete.
11204 	 */
11205 	LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr,
11206 	    inodedep, id_deps);
11207 	LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr,
11208 	    newblk, nb_deps);
11209 	LIST_SWAP(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, worklist,
11210 	    wk_list);
11211 }
11212 
11213 void
11214 softdep_handle_error(struct buf *bp)
11215 {
11216 	struct ufsmount *ump;
11217 
11218 	ump = softdep_bp_to_mp(bp);
11219 	if (ump == NULL)
11220 		return;
11221 
11222 	if (ffs_fsfail_cleanup(ump, bp->b_error)) {
11223 		/*
11224 		 * No future writes will succeed, so the on-disk image is safe.
11225 		 * Pretend that this write succeeded so that the softdep state
11226 		 * will be cleaned up naturally.
11227 		 */
11228 		bp->b_ioflags &= ~BIO_ERROR;
11229 		bp->b_error = 0;
11230 	}
11231 }
11232 
11233 /*
11234  * This routine is called during the completion interrupt
11235  * service routine for a disk write (from the procedure called
11236  * by the device driver to inform the filesystem caches of
11237  * a request completion).  It should be called early in this
11238  * procedure, before the block is made available to other
11239  * processes or other routines are called.
11240  *
11241  */
11242 static void
11243 softdep_disk_write_complete(
11244 	struct buf *bp)		/* describes the completed disk write */
11245 {
11246 	struct worklist *wk;
11247 	struct worklist *owk;
11248 	struct ufsmount *ump;
11249 	struct workhead reattach;
11250 	struct freeblks *freeblks;
11251 	struct buf *sbp;
11252 
11253 	ump = softdep_bp_to_mp(bp);
11254 	KASSERT(LIST_EMPTY(&bp->b_dep) || ump != NULL,
11255 	    ("softdep_disk_write_complete: softdep_bp_to_mp returned NULL "
11256 	     "with outstanding dependencies for buffer %p", bp));
11257 	if (ump == NULL)
11258 		return;
11259 	if ((bp->b_ioflags & BIO_ERROR) != 0)
11260 		softdep_handle_error(bp);
11261 	/*
11262 	 * If an error occurred while doing the write, then the data
11263 	 * has not hit the disk and the dependencies cannot be processed.
11264 	 * But we do have to go through and roll forward any dependencies
11265 	 * that were rolled back before the disk write.
11266 	 */
11267 	sbp = NULL;
11268 	ACQUIRE_LOCK(ump);
11269 	if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0) {
11270 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
11271 			switch (wk->wk_type) {
11272 			case D_PAGEDEP:
11273 				handle_written_filepage(WK_PAGEDEP(wk), bp, 0);
11274 				continue;
11275 
11276 			case D_INODEDEP:
11277 				handle_written_inodeblock(WK_INODEDEP(wk),
11278 				    bp, 0);
11279 				continue;
11280 
11281 			case D_BMSAFEMAP:
11282 				handle_written_bmsafemap(WK_BMSAFEMAP(wk),
11283 				    bp, 0);
11284 				continue;
11285 
11286 			case D_INDIRDEP:
11287 				handle_written_indirdep(WK_INDIRDEP(wk),
11288 				    bp, &sbp, 0);
11289 				continue;
11290 			default:
11291 				/* nothing to roll forward */
11292 				continue;
11293 			}
11294 		}
11295 		FREE_LOCK(ump);
11296 		if (sbp)
11297 			brelse(sbp);
11298 		return;
11299 	}
11300 	LIST_INIT(&reattach);
11301 
11302 	/*
11303 	 * Ump SU lock must not be released anywhere in this code segment.
11304 	 */
11305 	owk = NULL;
11306 	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
11307 		WORKLIST_REMOVE(wk);
11308 		atomic_add_long(&dep_write[wk->wk_type], 1);
11309 		if (wk == owk)
11310 			panic("duplicate worklist: %p\n", wk);
11311 		owk = wk;
11312 		switch (wk->wk_type) {
11313 		case D_PAGEDEP:
11314 			if (handle_written_filepage(WK_PAGEDEP(wk), bp,
11315 			    WRITESUCCEEDED))
11316 				WORKLIST_INSERT(&reattach, wk);
11317 			continue;
11318 
11319 		case D_INODEDEP:
11320 			if (handle_written_inodeblock(WK_INODEDEP(wk), bp,
11321 			    WRITESUCCEEDED))
11322 				WORKLIST_INSERT(&reattach, wk);
11323 			continue;
11324 
11325 		case D_BMSAFEMAP:
11326 			if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp,
11327 			    WRITESUCCEEDED))
11328 				WORKLIST_INSERT(&reattach, wk);
11329 			continue;
11330 
11331 		case D_MKDIR:
11332 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
11333 			continue;
11334 
11335 		case D_ALLOCDIRECT:
11336 			wk->wk_state |= COMPLETE;
11337 			handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL);
11338 			continue;
11339 
11340 		case D_ALLOCINDIR:
11341 			wk->wk_state |= COMPLETE;
11342 			handle_allocindir_partdone(WK_ALLOCINDIR(wk));
11343 			continue;
11344 
11345 		case D_INDIRDEP:
11346 			if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp,
11347 			    WRITESUCCEEDED))
11348 				WORKLIST_INSERT(&reattach, wk);
11349 			continue;
11350 
11351 		case D_FREEBLKS:
11352 			wk->wk_state |= COMPLETE;
11353 			freeblks = WK_FREEBLKS(wk);
11354 			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE &&
11355 			    LIST_EMPTY(&freeblks->fb_jblkdephd))
11356 				add_to_worklist(wk, WK_NODELAY);
11357 			continue;
11358 
11359 		case D_FREEWORK:
11360 			handle_written_freework(WK_FREEWORK(wk));
11361 			break;
11362 
11363 		case D_JSEGDEP:
11364 			free_jsegdep(WK_JSEGDEP(wk));
11365 			continue;
11366 
11367 		case D_JSEG:
11368 			handle_written_jseg(WK_JSEG(wk), bp);
11369 			continue;
11370 
11371 		case D_SBDEP:
11372 			if (handle_written_sbdep(WK_SBDEP(wk), bp))
11373 				WORKLIST_INSERT(&reattach, wk);
11374 			continue;
11375 
11376 		case D_FREEDEP:
11377 			free_freedep(WK_FREEDEP(wk));
11378 			continue;
11379 
11380 		default:
11381 			panic("handle_disk_write_complete: Unknown type %s",
11382 			    TYPENAME(wk->wk_type));
11383 			/* NOTREACHED */
11384 		}
11385 	}
11386 	/*
11387 	 * Reattach any requests that must be redone.
11388 	 */
11389 	while ((wk = LIST_FIRST(&reattach)) != NULL) {
11390 		WORKLIST_REMOVE(wk);
11391 		WORKLIST_INSERT(&bp->b_dep, wk);
11392 	}
11393 	FREE_LOCK(ump);
11394 	if (sbp)
11395 		brelse(sbp);
11396 }
11397 
11398 /*
11399  * Called from within softdep_disk_write_complete above.
11400  */
11401 static void
11402 handle_allocdirect_partdone(
11403 	struct allocdirect *adp,	/* the completed allocdirect */
11404 	struct workhead *wkhd)		/* Work to do when inode is writtne. */
11405 {
11406 	struct allocdirectlst *listhead;
11407 	struct allocdirect *listadp;
11408 	struct inodedep *inodedep;
11409 	long bsize;
11410 
11411 	LOCK_OWNED(VFSTOUFS(adp->ad_block.nb_list.wk_mp));
11412 	if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
11413 		return;
11414 	/*
11415 	 * The on-disk inode cannot claim to be any larger than the last
11416 	 * fragment that has been written. Otherwise, the on-disk inode
11417 	 * might have fragments that were not the last block in the file
11418 	 * which would corrupt the filesystem. Thus, we cannot free any
11419 	 * allocdirects after one whose ad_oldblkno claims a fragment as
11420 	 * these blocks must be rolled back to zero before writing the inode.
11421 	 * We check the currently active set of allocdirects in id_inoupdt
11422 	 * or id_extupdt as appropriate.
11423 	 */
11424 	inodedep = adp->ad_inodedep;
11425 	bsize = inodedep->id_fs->fs_bsize;
11426 	if (adp->ad_state & EXTDATA)
11427 		listhead = &inodedep->id_extupdt;
11428 	else
11429 		listhead = &inodedep->id_inoupdt;
11430 	TAILQ_FOREACH(listadp, listhead, ad_next) {
11431 		/* found our block */
11432 		if (listadp == adp)
11433 			break;
11434 		/* continue if ad_oldlbn is not a fragment */
11435 		if (listadp->ad_oldsize == 0 ||
11436 		    listadp->ad_oldsize == bsize)
11437 			continue;
11438 		/* hit a fragment */
11439 		return;
11440 	}
11441 	/*
11442 	 * If we have reached the end of the current list without
11443 	 * finding the just finished dependency, then it must be
11444 	 * on the future dependency list. Future dependencies cannot
11445 	 * be freed until they are moved to the current list.
11446 	 */
11447 	if (listadp == NULL) {
11448 #ifdef INVARIANTS
11449 		if (adp->ad_state & EXTDATA)
11450 			listhead = &inodedep->id_newextupdt;
11451 		else
11452 			listhead = &inodedep->id_newinoupdt;
11453 		TAILQ_FOREACH(listadp, listhead, ad_next)
11454 			/* found our block */
11455 			if (listadp == adp)
11456 				break;
11457 		if (listadp == NULL)
11458 			panic("handle_allocdirect_partdone: lost dep");
11459 #endif /* INVARIANTS */
11460 		return;
11461 	}
11462 	/*
11463 	 * If we have found the just finished dependency, then queue
11464 	 * it along with anything that follows it that is complete.
11465 	 * Since the pointer has not yet been written in the inode
11466 	 * as the dependency prevents it, place the allocdirect on the
11467 	 * bufwait list where it will be freed once the pointer is
11468 	 * valid.
11469 	 */
11470 	if (wkhd == NULL)
11471 		wkhd = &inodedep->id_bufwait;
11472 	for (; adp; adp = listadp) {
11473 		listadp = TAILQ_NEXT(adp, ad_next);
11474 		if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
11475 			return;
11476 		TAILQ_REMOVE(listhead, adp, ad_next);
11477 		WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list);
11478 	}
11479 }
11480 
11481 /*
11482  * Called from within softdep_disk_write_complete above.  This routine
11483  * completes successfully written allocindirs.
11484  */
11485 static void
11486 handle_allocindir_partdone(
11487 	struct allocindir *aip)		/* the completed allocindir */
11488 {
11489 	struct indirdep *indirdep;
11490 
11491 	if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
11492 		return;
11493 	indirdep = aip->ai_indirdep;
11494 	LIST_REMOVE(aip, ai_next);
11495 	/*
11496 	 * Don't set a pointer while the buffer is undergoing IO or while
11497 	 * we have active truncations.
11498 	 */
11499 	if (indirdep->ir_state & UNDONE || !TAILQ_EMPTY(&indirdep->ir_trunc)) {
11500 		LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
11501 		return;
11502 	}
11503 	if (indirdep->ir_state & UFS1FMT)
11504 		((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
11505 		    aip->ai_newblkno;
11506 	else
11507 		((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
11508 		    aip->ai_newblkno;
11509 	/*
11510 	 * Await the pointer write before freeing the allocindir.
11511 	 */
11512 	LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next);
11513 }
11514 
11515 /*
11516  * Release segments held on a jwork list.
11517  */
11518 static void
11519 handle_jwork(struct workhead *wkhd)
11520 {
11521 	struct worklist *wk;
11522 
11523 	while ((wk = LIST_FIRST(wkhd)) != NULL) {
11524 		WORKLIST_REMOVE(wk);
11525 		switch (wk->wk_type) {
11526 		case D_JSEGDEP:
11527 			free_jsegdep(WK_JSEGDEP(wk));
11528 			continue;
11529 		case D_FREEDEP:
11530 			free_freedep(WK_FREEDEP(wk));
11531 			continue;
11532 		case D_FREEFRAG:
11533 			rele_jseg(WK_JSEG(WK_FREEFRAG(wk)->ff_jdep));
11534 			WORKITEM_FREE(wk, D_FREEFRAG);
11535 			continue;
11536 		case D_FREEWORK:
11537 			handle_written_freework(WK_FREEWORK(wk));
11538 			continue;
11539 		default:
11540 			panic("handle_jwork: Unknown type %s\n",
11541 			    TYPENAME(wk->wk_type));
11542 		}
11543 	}
11544 }
11545 
11546 /*
11547  * Handle the bufwait list on an inode when it is safe to release items
11548  * held there.  This normally happens after an inode block is written but
11549  * may be delayed and handled later if there are pending journal items that
11550  * are not yet safe to be released.
11551  */
11552 static struct freefile *
11553 handle_bufwait(
11554 	struct inodedep *inodedep,
11555 	struct workhead *refhd)
11556 {
11557 	struct jaddref *jaddref;
11558 	struct freefile *freefile;
11559 	struct worklist *wk;
11560 
11561 	freefile = NULL;
11562 	while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
11563 		WORKLIST_REMOVE(wk);
11564 		switch (wk->wk_type) {
11565 		case D_FREEFILE:
11566 			/*
11567 			 * We defer adding freefile to the worklist
11568 			 * until all other additions have been made to
11569 			 * ensure that it will be done after all the
11570 			 * old blocks have been freed.
11571 			 */
11572 			if (freefile != NULL)
11573 				panic("handle_bufwait: freefile");
11574 			freefile = WK_FREEFILE(wk);
11575 			continue;
11576 
11577 		case D_MKDIR:
11578 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
11579 			continue;
11580 
11581 		case D_DIRADD:
11582 			diradd_inode_written(WK_DIRADD(wk), inodedep);
11583 			continue;
11584 
11585 		case D_FREEFRAG:
11586 			wk->wk_state |= COMPLETE;
11587 			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE)
11588 				add_to_worklist(wk, 0);
11589 			continue;
11590 
11591 		case D_DIRREM:
11592 			wk->wk_state |= COMPLETE;
11593 			add_to_worklist(wk, 0);
11594 			continue;
11595 
11596 		case D_ALLOCDIRECT:
11597 		case D_ALLOCINDIR:
11598 			free_newblk(WK_NEWBLK(wk));
11599 			continue;
11600 
11601 		case D_JNEWBLK:
11602 			wk->wk_state |= COMPLETE;
11603 			free_jnewblk(WK_JNEWBLK(wk));
11604 			continue;
11605 
11606 		/*
11607 		 * Save freed journal segments and add references on
11608 		 * the supplied list which will delay their release
11609 		 * until the cg bitmap is cleared on disk.
11610 		 */
11611 		case D_JSEGDEP:
11612 			if (refhd == NULL)
11613 				free_jsegdep(WK_JSEGDEP(wk));
11614 			else
11615 				WORKLIST_INSERT(refhd, wk);
11616 			continue;
11617 
11618 		case D_JADDREF:
11619 			jaddref = WK_JADDREF(wk);
11620 			TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
11621 			    if_deps);
11622 			/*
11623 			 * Transfer any jaddrefs to the list to be freed with
11624 			 * the bitmap if we're handling a removed file.
11625 			 */
11626 			if (refhd == NULL) {
11627 				wk->wk_state |= COMPLETE;
11628 				free_jaddref(jaddref);
11629 			} else
11630 				WORKLIST_INSERT(refhd, wk);
11631 			continue;
11632 
11633 		default:
11634 			panic("handle_bufwait: Unknown type %p(%s)",
11635 			    wk, TYPENAME(wk->wk_type));
11636 			/* NOTREACHED */
11637 		}
11638 	}
11639 	return (freefile);
11640 }
11641 /*
11642  * Called from within softdep_disk_write_complete above to restore
11643  * in-memory inode block contents to their most up-to-date state. Note
11644  * that this routine is always called from interrupt level with further
11645  * interrupts from this device blocked.
11646  *
11647  * If the write did not succeed, we will do all the roll-forward
11648  * operations, but we will not take the actions that will allow its
11649  * dependencies to be processed.
11650  */
11651 static int
11652 handle_written_inodeblock(
11653 	struct inodedep *inodedep,
11654 	struct buf *bp,		/* buffer containing the inode block */
11655 	int flags)
11656 {
11657 	struct freefile *freefile;
11658 	struct allocdirect *adp, *nextadp;
11659 	struct ufs1_dinode *dp1 = NULL;
11660 	struct ufs2_dinode *dp2 = NULL;
11661 	struct workhead wkhd;
11662 	int hadchanges, fstype;
11663 	ino_t freelink;
11664 
11665 	LIST_INIT(&wkhd);
11666 	hadchanges = 0;
11667 	freefile = NULL;
11668 	if ((inodedep->id_state & IOSTARTED) == 0)
11669 		panic("handle_written_inodeblock: not started");
11670 	inodedep->id_state &= ~IOSTARTED;
11671 	if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) {
11672 		fstype = UFS1;
11673 		dp1 = (struct ufs1_dinode *)bp->b_data +
11674 		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
11675 		freelink = dp1->di_freelink;
11676 	} else {
11677 		fstype = UFS2;
11678 		dp2 = (struct ufs2_dinode *)bp->b_data +
11679 		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
11680 		freelink = dp2->di_freelink;
11681 	}
11682 	/*
11683 	 * Leave this inodeblock dirty until it's in the list.
11684 	 */
11685 	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED &&
11686 	    (flags & WRITESUCCEEDED)) {
11687 		struct inodedep *inon;
11688 
11689 		inon = TAILQ_NEXT(inodedep, id_unlinked);
11690 		if ((inon == NULL && freelink == 0) ||
11691 		    (inon && inon->id_ino == freelink)) {
11692 			if (inon)
11693 				inon->id_state |= UNLINKPREV;
11694 			inodedep->id_state |= UNLINKNEXT;
11695 		}
11696 		hadchanges = 1;
11697 	}
11698 	/*
11699 	 * If we had to rollback the inode allocation because of
11700 	 * bitmaps being incomplete, then simply restore it.
11701 	 * Keep the block dirty so that it will not be reclaimed until
11702 	 * all associated dependencies have been cleared and the
11703 	 * corresponding updates written to disk.
11704 	 */
11705 	if (inodedep->id_savedino1 != NULL) {
11706 		hadchanges = 1;
11707 		if (fstype == UFS1)
11708 			*dp1 = *inodedep->id_savedino1;
11709 		else
11710 			*dp2 = *inodedep->id_savedino2;
11711 		free(inodedep->id_savedino1, M_SAVEDINO);
11712 		inodedep->id_savedino1 = NULL;
11713 		if ((bp->b_flags & B_DELWRI) == 0)
11714 			stat_inode_bitmap++;
11715 		bdirty(bp);
11716 		/*
11717 		 * If the inode is clear here and GOINGAWAY it will never
11718 		 * be written.  Process the bufwait and clear any pending
11719 		 * work which may include the freefile.
11720 		 */
11721 		if (inodedep->id_state & GOINGAWAY)
11722 			goto bufwait;
11723 		return (1);
11724 	}
11725 	if (flags & WRITESUCCEEDED)
11726 		inodedep->id_state |= COMPLETE;
11727 	/*
11728 	 * Roll forward anything that had to be rolled back before
11729 	 * the inode could be updated.
11730 	 */
11731 	for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
11732 		nextadp = TAILQ_NEXT(adp, ad_next);
11733 		if (adp->ad_state & ATTACHED)
11734 			panic("handle_written_inodeblock: new entry");
11735 		if (fstype == UFS1) {
11736 			if (adp->ad_offset < UFS_NDADDR) {
11737 				if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno)
11738 					panic("%s %s #%jd mismatch %d != %jd",
11739 					    "handle_written_inodeblock:",
11740 					    "direct pointer",
11741 					    (intmax_t)adp->ad_offset,
11742 					    dp1->di_db[adp->ad_offset],
11743 					    (intmax_t)adp->ad_oldblkno);
11744 				dp1->di_db[adp->ad_offset] = adp->ad_newblkno;
11745 			} else {
11746 				if (dp1->di_ib[adp->ad_offset - UFS_NDADDR] !=
11747 				    0)
11748 					panic("%s: %s #%jd allocated as %d",
11749 					    "handle_written_inodeblock",
11750 					    "indirect pointer",
11751 					    (intmax_t)adp->ad_offset -
11752 					    UFS_NDADDR,
11753 					    dp1->di_ib[adp->ad_offset -
11754 					    UFS_NDADDR]);
11755 				dp1->di_ib[adp->ad_offset - UFS_NDADDR] =
11756 				    adp->ad_newblkno;
11757 			}
11758 		} else {
11759 			if (adp->ad_offset < UFS_NDADDR) {
11760 				if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno)
11761 					panic("%s: %s #%jd %s %jd != %jd",
11762 					    "handle_written_inodeblock",
11763 					    "direct pointer",
11764 					    (intmax_t)adp->ad_offset, "mismatch",
11765 					    (intmax_t)dp2->di_db[adp->ad_offset],
11766 					    (intmax_t)adp->ad_oldblkno);
11767 				dp2->di_db[adp->ad_offset] = adp->ad_newblkno;
11768 			} else {
11769 				if (dp2->di_ib[adp->ad_offset - UFS_NDADDR] !=
11770 				    0)
11771 					panic("%s: %s #%jd allocated as %jd",
11772 					    "handle_written_inodeblock",
11773 					    "indirect pointer",
11774 					    (intmax_t)adp->ad_offset -
11775 					    UFS_NDADDR,
11776 					    (intmax_t)
11777 					    dp2->di_ib[adp->ad_offset -
11778 					    UFS_NDADDR]);
11779 				dp2->di_ib[adp->ad_offset - UFS_NDADDR] =
11780 				    adp->ad_newblkno;
11781 			}
11782 		}
11783 		adp->ad_state &= ~UNDONE;
11784 		adp->ad_state |= ATTACHED;
11785 		hadchanges = 1;
11786 	}
11787 	for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) {
11788 		nextadp = TAILQ_NEXT(adp, ad_next);
11789 		if (adp->ad_state & ATTACHED)
11790 			panic("handle_written_inodeblock: new entry");
11791 		if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno)
11792 			panic("%s: direct pointers #%jd %s %jd != %jd",
11793 			    "handle_written_inodeblock",
11794 			    (intmax_t)adp->ad_offset, "mismatch",
11795 			    (intmax_t)dp2->di_extb[adp->ad_offset],
11796 			    (intmax_t)adp->ad_oldblkno);
11797 		dp2->di_extb[adp->ad_offset] = adp->ad_newblkno;
11798 		adp->ad_state &= ~UNDONE;
11799 		adp->ad_state |= ATTACHED;
11800 		hadchanges = 1;
11801 	}
11802 	if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
11803 		stat_direct_blk_ptrs++;
11804 	/*
11805 	 * Reset the file size to its most up-to-date value.
11806 	 */
11807 	if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1)
11808 		panic("handle_written_inodeblock: bad size");
11809 	if (inodedep->id_savednlink > UFS_LINK_MAX)
11810 		panic("handle_written_inodeblock: Invalid link count "
11811 		    "%jd for inodedep %p", (uintmax_t)inodedep->id_savednlink,
11812 		    inodedep);
11813 	if (fstype == UFS1) {
11814 		if (dp1->di_nlink != inodedep->id_savednlink) {
11815 			dp1->di_nlink = inodedep->id_savednlink;
11816 			hadchanges = 1;
11817 		}
11818 		if (dp1->di_size != inodedep->id_savedsize) {
11819 			dp1->di_size = inodedep->id_savedsize;
11820 			hadchanges = 1;
11821 		}
11822 	} else {
11823 		if (dp2->di_nlink != inodedep->id_savednlink) {
11824 			dp2->di_nlink = inodedep->id_savednlink;
11825 			hadchanges = 1;
11826 		}
11827 		if (dp2->di_size != inodedep->id_savedsize) {
11828 			dp2->di_size = inodedep->id_savedsize;
11829 			hadchanges = 1;
11830 		}
11831 		if (dp2->di_extsize != inodedep->id_savedextsize) {
11832 			dp2->di_extsize = inodedep->id_savedextsize;
11833 			hadchanges = 1;
11834 		}
11835 	}
11836 	inodedep->id_savedsize = -1;
11837 	inodedep->id_savedextsize = -1;
11838 	inodedep->id_savednlink = -1;
11839 	/*
11840 	 * If there were any rollbacks in the inode block, then it must be
11841 	 * marked dirty so that its will eventually get written back in
11842 	 * its correct form.
11843 	 */
11844 	if (hadchanges) {
11845 		if (fstype == UFS2)
11846 			ffs_update_dinode_ckhash(inodedep->id_fs, dp2);
11847 		bdirty(bp);
11848 	}
11849 bufwait:
11850 	/*
11851 	 * If the write did not succeed, we have done all the roll-forward
11852 	 * operations, but we cannot take the actions that will allow its
11853 	 * dependencies to be processed.
11854 	 */
11855 	if ((flags & WRITESUCCEEDED) == 0)
11856 		return (hadchanges);
11857 	/*
11858 	 * Process any allocdirects that completed during the update.
11859 	 */
11860 	if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
11861 		handle_allocdirect_partdone(adp, &wkhd);
11862 	if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
11863 		handle_allocdirect_partdone(adp, &wkhd);
11864 	/*
11865 	 * Process deallocations that were held pending until the
11866 	 * inode had been written to disk. Freeing of the inode
11867 	 * is delayed until after all blocks have been freed to
11868 	 * avoid creation of new <vfsid, inum, lbn> triples
11869 	 * before the old ones have been deleted.  Completely
11870 	 * unlinked inodes are not processed until the unlinked
11871 	 * inode list is written or the last reference is removed.
11872 	 */
11873 	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) {
11874 		freefile = handle_bufwait(inodedep, NULL);
11875 		if (freefile && !LIST_EMPTY(&wkhd)) {
11876 			WORKLIST_INSERT(&wkhd, &freefile->fx_list);
11877 			freefile = NULL;
11878 		}
11879 	}
11880 	/*
11881 	 * Move rolled forward dependency completions to the bufwait list
11882 	 * now that those that were already written have been processed.
11883 	 */
11884 	if (!LIST_EMPTY(&wkhd) && hadchanges == 0)
11885 		panic("handle_written_inodeblock: bufwait but no changes");
11886 	jwork_move(&inodedep->id_bufwait, &wkhd);
11887 
11888 	if (freefile != NULL) {
11889 		/*
11890 		 * If the inode is goingaway it was never written.  Fake up
11891 		 * the state here so free_inodedep() can succeed.
11892 		 */
11893 		if (inodedep->id_state & GOINGAWAY)
11894 			inodedep->id_state |= COMPLETE | DEPCOMPLETE;
11895 		if (free_inodedep(inodedep) == 0)
11896 			panic("handle_written_inodeblock: live inodedep %p",
11897 			    inodedep);
11898 		add_to_worklist(&freefile->fx_list, 0);
11899 		return (0);
11900 	}
11901 
11902 	/*
11903 	 * If no outstanding dependencies, free it.
11904 	 */
11905 	if (free_inodedep(inodedep) ||
11906 	    (TAILQ_FIRST(&inodedep->id_inoreflst) == 0 &&
11907 	     TAILQ_FIRST(&inodedep->id_inoupdt) == 0 &&
11908 	     TAILQ_FIRST(&inodedep->id_extupdt) == 0 &&
11909 	     LIST_FIRST(&inodedep->id_bufwait) == 0))
11910 		return (0);
11911 	return (hadchanges);
11912 }
11913 
11914 /*
11915  * Perform needed roll-forwards and kick off any dependencies that
11916  * can now be processed.
11917  *
11918  * If the write did not succeed, we will do all the roll-forward
11919  * operations, but we will not take the actions that will allow its
11920  * dependencies to be processed.
11921  */
11922 static int
11923 handle_written_indirdep(
11924 	struct indirdep *indirdep,
11925 	struct buf *bp,
11926 	struct buf **bpp,
11927 	int flags)
11928 {
11929 	struct allocindir *aip;
11930 	struct buf *sbp;
11931 	int chgs;
11932 
11933 	if (indirdep->ir_state & GOINGAWAY)
11934 		panic("handle_written_indirdep: indirdep gone");
11935 	if ((indirdep->ir_state & IOSTARTED) == 0)
11936 		panic("handle_written_indirdep: IO not started");
11937 	chgs = 0;
11938 	/*
11939 	 * If there were rollbacks revert them here.
11940 	 */
11941 	if (indirdep->ir_saveddata) {
11942 		bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount);
11943 		if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
11944 			free(indirdep->ir_saveddata, M_INDIRDEP);
11945 			indirdep->ir_saveddata = NULL;
11946 		}
11947 		chgs = 1;
11948 	}
11949 	indirdep->ir_state &= ~(UNDONE | IOSTARTED);
11950 	indirdep->ir_state |= ATTACHED;
11951 	/*
11952 	 * If the write did not succeed, we have done all the roll-forward
11953 	 * operations, but we cannot take the actions that will allow its
11954 	 * dependencies to be processed.
11955 	 */
11956 	if ((flags & WRITESUCCEEDED) == 0) {
11957 		stat_indir_blk_ptrs++;
11958 		bdirty(bp);
11959 		return (1);
11960 	}
11961 	/*
11962 	 * Move allocindirs with written pointers to the completehd if
11963 	 * the indirdep's pointer is not yet written.  Otherwise
11964 	 * free them here.
11965 	 */
11966 	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL) {
11967 		LIST_REMOVE(aip, ai_next);
11968 		if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
11969 			LIST_INSERT_HEAD(&indirdep->ir_completehd, aip,
11970 			    ai_next);
11971 			newblk_freefrag(&aip->ai_block);
11972 			continue;
11973 		}
11974 		free_newblk(&aip->ai_block);
11975 	}
11976 	/*
11977 	 * Move allocindirs that have finished dependency processing from
11978 	 * the done list to the write list after updating the pointers.
11979 	 */
11980 	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
11981 		while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL) {
11982 			handle_allocindir_partdone(aip);
11983 			if (aip == LIST_FIRST(&indirdep->ir_donehd))
11984 				panic("disk_write_complete: not gone");
11985 			chgs = 1;
11986 		}
11987 	}
11988 	/*
11989 	 * Preserve the indirdep if there were any changes or if it is not
11990 	 * yet valid on disk.
11991 	 */
11992 	if (chgs) {
11993 		stat_indir_blk_ptrs++;
11994 		bdirty(bp);
11995 		return (1);
11996 	}
11997 	/*
11998 	 * If there were no changes we can discard the savedbp and detach
11999 	 * ourselves from the buf.  We are only carrying completed pointers
12000 	 * in this case.
12001 	 */
12002 	sbp = indirdep->ir_savebp;
12003 	sbp->b_flags |= B_INVAL | B_NOCACHE;
12004 	indirdep->ir_savebp = NULL;
12005 	indirdep->ir_bp = NULL;
12006 	if (*bpp != NULL)
12007 		panic("handle_written_indirdep: bp already exists.");
12008 	*bpp = sbp;
12009 	/*
12010 	 * The indirdep may not be freed until its parent points at it.
12011 	 */
12012 	if (indirdep->ir_state & DEPCOMPLETE)
12013 		free_indirdep(indirdep);
12014 
12015 	return (0);
12016 }
12017 
12018 /*
12019  * Process a diradd entry after its dependent inode has been written.
12020  */
12021 static void
12022 diradd_inode_written(
12023 	struct diradd *dap,
12024 	struct inodedep *inodedep)
12025 {
12026 
12027 	LOCK_OWNED(VFSTOUFS(dap->da_list.wk_mp));
12028 	dap->da_state |= COMPLETE;
12029 	complete_diradd(dap);
12030 	WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
12031 }
12032 
12033 /*
12034  * Returns true if the bmsafemap will have rollbacks when written.  Must only
12035  * be called with the per-filesystem lock and the buf lock on the cg held.
12036  */
12037 static int
12038 bmsafemap_backgroundwrite(
12039 	struct bmsafemap *bmsafemap,
12040 	struct buf *bp)
12041 {
12042 	int dirty;
12043 
12044 	LOCK_OWNED(VFSTOUFS(bmsafemap->sm_list.wk_mp));
12045 	dirty = !LIST_EMPTY(&bmsafemap->sm_jaddrefhd) |
12046 	    !LIST_EMPTY(&bmsafemap->sm_jnewblkhd);
12047 	/*
12048 	 * If we're initiating a background write we need to process the
12049 	 * rollbacks as they exist now, not as they exist when IO starts.
12050 	 * No other consumers will look at the contents of the shadowed
12051 	 * buf so this is safe to do here.
12052 	 */
12053 	if (bp->b_xflags & BX_BKGRDMARKER)
12054 		initiate_write_bmsafemap(bmsafemap, bp);
12055 
12056 	return (dirty);
12057 }
12058 
12059 /*
12060  * Re-apply an allocation when a cg write is complete.
12061  */
12062 static int
12063 jnewblk_rollforward(
12064 	struct jnewblk *jnewblk,
12065 	struct fs *fs,
12066 	struct cg *cgp,
12067 	uint8_t *blksfree)
12068 {
12069 	ufs1_daddr_t fragno;
12070 	ufs2_daddr_t blkno;
12071 	long cgbno, bbase;
12072 	int frags, blk;
12073 	int i;
12074 
12075 	frags = 0;
12076 	cgbno = dtogd(fs, jnewblk->jn_blkno);
12077 	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) {
12078 		if (isclr(blksfree, cgbno + i))
12079 			panic("jnewblk_rollforward: re-allocated fragment");
12080 		frags++;
12081 	}
12082 	if (frags == fs->fs_frag) {
12083 		blkno = fragstoblks(fs, cgbno);
12084 		ffs_clrblock(fs, blksfree, (long)blkno);
12085 		ffs_clusteracct(fs, cgp, blkno, -1);
12086 		cgp->cg_cs.cs_nbfree--;
12087 	} else {
12088 		bbase = cgbno - fragnum(fs, cgbno);
12089 		cgbno += jnewblk->jn_oldfrags;
12090                 /* If a complete block had been reassembled, account for it. */
12091 		fragno = fragstoblks(fs, bbase);
12092 		if (ffs_isblock(fs, blksfree, fragno)) {
12093 			cgp->cg_cs.cs_nffree += fs->fs_frag;
12094 			ffs_clusteracct(fs, cgp, fragno, -1);
12095 			cgp->cg_cs.cs_nbfree--;
12096 		}
12097 		/* Decrement the old frags.  */
12098 		blk = blkmap(fs, blksfree, bbase);
12099 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
12100 		/* Allocate the fragment */
12101 		for (i = 0; i < frags; i++)
12102 			clrbit(blksfree, cgbno + i);
12103 		cgp->cg_cs.cs_nffree -= frags;
12104 		/* Add back in counts associated with the new frags */
12105 		blk = blkmap(fs, blksfree, bbase);
12106 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
12107 	}
12108 	return (frags);
12109 }
12110 
12111 /*
12112  * Complete a write to a bmsafemap structure.  Roll forward any bitmap
12113  * changes if it's not a background write.  Set all written dependencies
12114  * to DEPCOMPLETE and free the structure if possible.
12115  *
12116  * If the write did not succeed, we will do all the roll-forward
12117  * operations, but we will not take the actions that will allow its
12118  * dependencies to be processed.
12119  */
12120 static int
12121 handle_written_bmsafemap(
12122 	struct bmsafemap *bmsafemap,
12123 	struct buf *bp,
12124 	int flags)
12125 {
12126 	struct newblk *newblk;
12127 	struct inodedep *inodedep;
12128 	struct jaddref *jaddref, *jatmp;
12129 	struct jnewblk *jnewblk, *jntmp;
12130 	struct ufsmount *ump;
12131 	uint8_t *inosused;
12132 	uint8_t *blksfree;
12133 	struct cg *cgp;
12134 	struct fs *fs;
12135 	ino_t ino;
12136 	int foreground;
12137 	int chgs;
12138 
12139 	if ((bmsafemap->sm_state & IOSTARTED) == 0)
12140 		panic("handle_written_bmsafemap: Not started\n");
12141 	ump = VFSTOUFS(bmsafemap->sm_list.wk_mp);
12142 	chgs = 0;
12143 	bmsafemap->sm_state &= ~IOSTARTED;
12144 	foreground = (bp->b_xflags & BX_BKGRDMARKER) == 0;
12145 	/*
12146 	 * If write was successful, release journal work that was waiting
12147 	 * on the write. Otherwise move the work back.
12148 	 */
12149 	if (flags & WRITESUCCEEDED)
12150 		handle_jwork(&bmsafemap->sm_freewr);
12151 	else
12152 		LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr,
12153 		    worklist, wk_list);
12154 
12155 	/*
12156 	 * Restore unwritten inode allocation pending jaddref writes.
12157 	 */
12158 	if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) {
12159 		cgp = (struct cg *)bp->b_data;
12160 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
12161 		inosused = cg_inosused(cgp);
12162 		LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd,
12163 		    ja_bmdeps, jatmp) {
12164 			if ((jaddref->ja_state & UNDONE) == 0)
12165 				continue;
12166 			ino = jaddref->ja_ino % fs->fs_ipg;
12167 			if (isset(inosused, ino))
12168 				panic("handle_written_bmsafemap: "
12169 				    "re-allocated inode");
12170 			/* Do the roll-forward only if it's a real copy. */
12171 			if (foreground) {
12172 				if ((jaddref->ja_mode & IFMT) == IFDIR)
12173 					cgp->cg_cs.cs_ndir++;
12174 				cgp->cg_cs.cs_nifree--;
12175 				setbit(inosused, ino);
12176 				chgs = 1;
12177 			}
12178 			jaddref->ja_state &= ~UNDONE;
12179 			jaddref->ja_state |= ATTACHED;
12180 			free_jaddref(jaddref);
12181 		}
12182 	}
12183 	/*
12184 	 * Restore any block allocations which are pending journal writes.
12185 	 */
12186 	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
12187 		cgp = (struct cg *)bp->b_data;
12188 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
12189 		blksfree = cg_blksfree(cgp);
12190 		LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps,
12191 		    jntmp) {
12192 			if ((jnewblk->jn_state & UNDONE) == 0)
12193 				continue;
12194 			/* Do the roll-forward only if it's a real copy. */
12195 			if (foreground &&
12196 			    jnewblk_rollforward(jnewblk, fs, cgp, blksfree))
12197 				chgs = 1;
12198 			jnewblk->jn_state &= ~(UNDONE | NEWBLOCK);
12199 			jnewblk->jn_state |= ATTACHED;
12200 			free_jnewblk(jnewblk);
12201 		}
12202 	}
12203 	/*
12204 	 * If the write did not succeed, we have done all the roll-forward
12205 	 * operations, but we cannot take the actions that will allow its
12206 	 * dependencies to be processed.
12207 	 */
12208 	if ((flags & WRITESUCCEEDED) == 0) {
12209 		LIST_CONCAT(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr,
12210 		    newblk, nb_deps);
12211 		LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr,
12212 		    worklist, wk_list);
12213 		if (foreground)
12214 			bdirty(bp);
12215 		return (1);
12216 	}
12217 	while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) {
12218 		newblk->nb_state |= DEPCOMPLETE;
12219 		newblk->nb_state &= ~ONDEPLIST;
12220 		newblk->nb_bmsafemap = NULL;
12221 		LIST_REMOVE(newblk, nb_deps);
12222 		if (newblk->nb_list.wk_type == D_ALLOCDIRECT)
12223 			handle_allocdirect_partdone(
12224 			    WK_ALLOCDIRECT(&newblk->nb_list), NULL);
12225 		else if (newblk->nb_list.wk_type == D_ALLOCINDIR)
12226 			handle_allocindir_partdone(
12227 			    WK_ALLOCINDIR(&newblk->nb_list));
12228 		else if (newblk->nb_list.wk_type != D_NEWBLK)
12229 			panic("handle_written_bmsafemap: Unexpected type: %s",
12230 			    TYPENAME(newblk->nb_list.wk_type));
12231 	}
12232 	while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) {
12233 		inodedep->id_state |= DEPCOMPLETE;
12234 		inodedep->id_state &= ~ONDEPLIST;
12235 		LIST_REMOVE(inodedep, id_deps);
12236 		inodedep->id_bmsafemap = NULL;
12237 	}
12238 	LIST_REMOVE(bmsafemap, sm_next);
12239 	if (chgs == 0 && LIST_EMPTY(&bmsafemap->sm_jaddrefhd) &&
12240 	    LIST_EMPTY(&bmsafemap->sm_jnewblkhd) &&
12241 	    LIST_EMPTY(&bmsafemap->sm_newblkhd) &&
12242 	    LIST_EMPTY(&bmsafemap->sm_inodedephd) &&
12243 	    LIST_EMPTY(&bmsafemap->sm_freehd)) {
12244 		LIST_REMOVE(bmsafemap, sm_hash);
12245 		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
12246 		return (0);
12247 	}
12248 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
12249 	if (foreground)
12250 		bdirty(bp);
12251 	return (1);
12252 }
12253 
12254 /*
12255  * Try to free a mkdir dependency.
12256  */
12257 static void
12258 complete_mkdir(struct mkdir *mkdir)
12259 {
12260 	struct diradd *dap;
12261 
12262 	if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE)
12263 		return;
12264 	LIST_REMOVE(mkdir, md_mkdirs);
12265 	dap = mkdir->md_diradd;
12266 	dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
12267 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) {
12268 		dap->da_state |= DEPCOMPLETE;
12269 		complete_diradd(dap);
12270 	}
12271 	WORKITEM_FREE(mkdir, D_MKDIR);
12272 }
12273 
12274 /*
12275  * Handle the completion of a mkdir dependency.
12276  */
12277 static void
12278 handle_written_mkdir(struct mkdir *mkdir, int type)
12279 {
12280 
12281 	if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type)
12282 		panic("handle_written_mkdir: bad type");
12283 	mkdir->md_state |= COMPLETE;
12284 	complete_mkdir(mkdir);
12285 }
12286 
12287 static int
12288 free_pagedep(struct pagedep *pagedep)
12289 {
12290 	int i;
12291 
12292 	if (pagedep->pd_state & NEWBLOCK)
12293 		return (0);
12294 	if (!LIST_EMPTY(&pagedep->pd_dirremhd))
12295 		return (0);
12296 	for (i = 0; i < DAHASHSZ; i++)
12297 		if (!LIST_EMPTY(&pagedep->pd_diraddhd[i]))
12298 			return (0);
12299 	if (!LIST_EMPTY(&pagedep->pd_pendinghd))
12300 		return (0);
12301 	if (!LIST_EMPTY(&pagedep->pd_jmvrefhd))
12302 		return (0);
12303 	if (pagedep->pd_state & ONWORKLIST)
12304 		WORKLIST_REMOVE(&pagedep->pd_list);
12305 	LIST_REMOVE(pagedep, pd_hash);
12306 	WORKITEM_FREE(pagedep, D_PAGEDEP);
12307 
12308 	return (1);
12309 }
12310 
12311 /*
12312  * Called from within softdep_disk_write_complete above.
12313  * A write operation was just completed. Removed inodes can
12314  * now be freed and associated block pointers may be committed.
12315  * Note that this routine is always called from interrupt level
12316  * with further interrupts from this device blocked.
12317  *
12318  * If the write did not succeed, we will do all the roll-forward
12319  * operations, but we will not take the actions that will allow its
12320  * dependencies to be processed.
12321  */
12322 static int
12323 handle_written_filepage(
12324 	struct pagedep *pagedep,
12325 	struct buf *bp,		/* buffer containing the written page */
12326 	int flags)
12327 {
12328 	struct dirrem *dirrem;
12329 	struct diradd *dap, *nextdap;
12330 	struct direct *ep;
12331 	int i, chgs;
12332 
12333 	if ((pagedep->pd_state & IOSTARTED) == 0)
12334 		panic("handle_written_filepage: not started");
12335 	pagedep->pd_state &= ~IOSTARTED;
12336 	if ((flags & WRITESUCCEEDED) == 0)
12337 		goto rollforward;
12338 	/*
12339 	 * Process any directory removals that have been committed.
12340 	 */
12341 	while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
12342 		LIST_REMOVE(dirrem, dm_next);
12343 		dirrem->dm_state |= COMPLETE;
12344 		dirrem->dm_dirinum = pagedep->pd_ino;
12345 		KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
12346 		    ("handle_written_filepage: Journal entries not written."));
12347 		add_to_worklist(&dirrem->dm_list, 0);
12348 	}
12349 	/*
12350 	 * Free any directory additions that have been committed.
12351 	 * If it is a newly allocated block, we have to wait until
12352 	 * the on-disk directory inode claims the new block.
12353 	 */
12354 	if ((pagedep->pd_state & NEWBLOCK) == 0)
12355 		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
12356 			free_diradd(dap, NULL);
12357 rollforward:
12358 	/*
12359 	 * Uncommitted directory entries must be restored.
12360 	 */
12361 	for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
12362 		for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
12363 		     dap = nextdap) {
12364 			nextdap = LIST_NEXT(dap, da_pdlist);
12365 			if (dap->da_state & ATTACHED)
12366 				panic("handle_written_filepage: attached");
12367 			ep = (struct direct *)
12368 			    ((char *)bp->b_data + dap->da_offset);
12369 			ep->d_ino = dap->da_newinum;
12370 			dap->da_state &= ~UNDONE;
12371 			dap->da_state |= ATTACHED;
12372 			chgs = 1;
12373 			/*
12374 			 * If the inode referenced by the directory has
12375 			 * been written out, then the dependency can be
12376 			 * moved to the pending list.
12377 			 */
12378 			if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
12379 				LIST_REMOVE(dap, da_pdlist);
12380 				LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
12381 				    da_pdlist);
12382 			}
12383 		}
12384 	}
12385 	/*
12386 	 * If there were any rollbacks in the directory, then it must be
12387 	 * marked dirty so that its will eventually get written back in
12388 	 * its correct form.
12389 	 */
12390 	if (chgs || (flags & WRITESUCCEEDED) == 0) {
12391 		if ((bp->b_flags & B_DELWRI) == 0)
12392 			stat_dir_entry++;
12393 		bdirty(bp);
12394 		return (1);
12395 	}
12396 	/*
12397 	 * If we are not waiting for a new directory block to be
12398 	 * claimed by its inode, then the pagedep will be freed.
12399 	 * Otherwise it will remain to track any new entries on
12400 	 * the page in case they are fsync'ed.
12401 	 */
12402 	free_pagedep(pagedep);
12403 	return (0);
12404 }
12405 
12406 /*
12407  * Writing back in-core inode structures.
12408  *
12409  * The filesystem only accesses an inode's contents when it occupies an
12410  * "in-core" inode structure.  These "in-core" structures are separate from
12411  * the page frames used to cache inode blocks.  Only the latter are
12412  * transferred to/from the disk.  So, when the updated contents of the
12413  * "in-core" inode structure are copied to the corresponding in-memory inode
12414  * block, the dependencies are also transferred.  The following procedure is
12415  * called when copying a dirty "in-core" inode to a cached inode block.
12416  */
12417 
12418 /*
12419  * Called when an inode is loaded from disk. If the effective link count
12420  * differed from the actual link count when it was last flushed, then we
12421  * need to ensure that the correct effective link count is put back.
12422  */
12423 void
12424 softdep_load_inodeblock(
12425 	struct inode *ip)	/* the "in_core" copy of the inode */
12426 {
12427 	struct inodedep *inodedep;
12428 	struct ufsmount *ump;
12429 
12430 	ump = ITOUMP(ip);
12431 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
12432 	    ("softdep_load_inodeblock called on non-softdep filesystem"));
12433 	/*
12434 	 * Check for alternate nlink count.
12435 	 */
12436 	ip->i_effnlink = ip->i_nlink;
12437 	ACQUIRE_LOCK(ump);
12438 	if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0) {
12439 		FREE_LOCK(ump);
12440 		return;
12441 	}
12442 	if (ip->i_nlink != inodedep->id_nlinkwrote &&
12443 	    inodedep->id_nlinkwrote != -1) {
12444 		KASSERT(ip->i_nlink == 0 &&
12445 		    (ump->um_flags & UM_FSFAIL_CLEANUP) != 0,
12446 		    ("read bad i_nlink value"));
12447 		ip->i_effnlink = ip->i_nlink = inodedep->id_nlinkwrote;
12448 	}
12449 	ip->i_effnlink -= inodedep->id_nlinkdelta;
12450 	KASSERT(ip->i_effnlink >= 0,
12451 	    ("softdep_load_inodeblock: negative i_effnlink"));
12452 	FREE_LOCK(ump);
12453 }
12454 
12455 /*
12456  * This routine is called just before the "in-core" inode
12457  * information is to be copied to the in-memory inode block.
12458  * Recall that an inode block contains several inodes. If
12459  * the force flag is set, then the dependencies will be
12460  * cleared so that the update can always be made. Note that
12461  * the buffer is locked when this routine is called, so we
12462  * will never be in the middle of writing the inode block
12463  * to disk.
12464  */
12465 void
12466 softdep_update_inodeblock(
12467 	struct inode *ip,	/* the "in_core" copy of the inode */
12468 	struct buf *bp,		/* the buffer containing the inode block */
12469 	int waitfor)		/* nonzero => update must be allowed */
12470 {
12471 	struct inodedep *inodedep;
12472 	struct inoref *inoref;
12473 	struct ufsmount *ump;
12474 	struct worklist *wk;
12475 	struct mount *mp;
12476 	struct buf *ibp;
12477 	struct fs *fs;
12478 	int error;
12479 
12480 	ump = ITOUMP(ip);
12481 	mp = UFSTOVFS(ump);
12482 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
12483 	    ("softdep_update_inodeblock called on non-softdep filesystem"));
12484 	fs = ump->um_fs;
12485 	/*
12486 	 * If the effective link count is not equal to the actual link
12487 	 * count, then we must track the difference in an inodedep while
12488 	 * the inode is (potentially) tossed out of the cache. Otherwise,
12489 	 * if there is no existing inodedep, then there are no dependencies
12490 	 * to track.
12491 	 */
12492 	ACQUIRE_LOCK(ump);
12493 again:
12494 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
12495 		FREE_LOCK(ump);
12496 		if (ip->i_effnlink != ip->i_nlink)
12497 			panic("softdep_update_inodeblock: bad link count");
12498 		return;
12499 	}
12500 	/*
12501 	 * Preserve the freelink that is on disk.  clear_unlinked_inodedep()
12502 	 * does not have access to the in-core ip so must write directly into
12503 	 * the inode block buffer when setting freelink.
12504 	 */
12505 	if ((inodedep->id_state & UNLINKED) != 0) {
12506 		if (fs->fs_magic == FS_UFS1_MAGIC)
12507 			DIP_SET(ip, i_freelink,
12508 			    ((struct ufs1_dinode *)bp->b_data +
12509 			    ino_to_fsbo(fs, ip->i_number))->di_freelink);
12510 		else
12511 			DIP_SET(ip, i_freelink,
12512 			    ((struct ufs2_dinode *)bp->b_data +
12513 			    ino_to_fsbo(fs, ip->i_number))->di_freelink);
12514 	}
12515 	KASSERT(ip->i_nlink >= inodedep->id_nlinkdelta,
12516 	    ("softdep_update_inodeblock inconsistent ip %p i_nlink %d "
12517 	    "inodedep %p id_nlinkdelta %jd",
12518 	    ip, ip->i_nlink, inodedep, (intmax_t)inodedep->id_nlinkdelta));
12519 	inodedep->id_nlinkwrote = ip->i_nlink;
12520 	if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink)
12521 		panic("softdep_update_inodeblock: bad delta");
12522 	/*
12523 	 * If we're flushing all dependencies we must also move any waiting
12524 	 * for journal writes onto the bufwait list prior to I/O.
12525 	 */
12526 	if (waitfor) {
12527 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12528 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12529 			    == DEPCOMPLETE) {
12530 				jwait(&inoref->if_list, MNT_WAIT);
12531 				goto again;
12532 			}
12533 		}
12534 	}
12535 	/*
12536 	 * Changes have been initiated. Anything depending on these
12537 	 * changes cannot occur until this inode has been written.
12538 	 */
12539 	inodedep->id_state &= ~COMPLETE;
12540 	if ((inodedep->id_state & ONWORKLIST) == 0)
12541 		WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list);
12542 	/*
12543 	 * Any new dependencies associated with the incore inode must
12544 	 * now be moved to the list associated with the buffer holding
12545 	 * the in-memory copy of the inode. Once merged process any
12546 	 * allocdirects that are completed by the merger.
12547 	 */
12548 	merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt);
12549 	if (!TAILQ_EMPTY(&inodedep->id_inoupdt))
12550 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt),
12551 		    NULL);
12552 	merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt);
12553 	if (!TAILQ_EMPTY(&inodedep->id_extupdt))
12554 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt),
12555 		    NULL);
12556 	/*
12557 	 * Now that the inode has been pushed into the buffer, the
12558 	 * operations dependent on the inode being written to disk
12559 	 * can be moved to the id_bufwait so that they will be
12560 	 * processed when the buffer I/O completes.
12561 	 */
12562 	while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
12563 		WORKLIST_REMOVE(wk);
12564 		WORKLIST_INSERT(&inodedep->id_bufwait, wk);
12565 	}
12566 	/*
12567 	 * Newly allocated inodes cannot be written until the bitmap
12568 	 * that allocates them have been written (indicated by
12569 	 * DEPCOMPLETE being set in id_state). If we are doing a
12570 	 * forced sync (e.g., an fsync on a file), we force the bitmap
12571 	 * to be written so that the update can be done.
12572 	 */
12573 	if (waitfor == 0) {
12574 		FREE_LOCK(ump);
12575 		return;
12576 	}
12577 retry:
12578 	if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) {
12579 		FREE_LOCK(ump);
12580 		return;
12581 	}
12582 	ibp = inodedep->id_bmsafemap->sm_buf;
12583 	ibp = getdirtybuf(ibp, LOCK_PTR(ump), MNT_WAIT);
12584 	if (ibp == NULL) {
12585 		/*
12586 		 * If ibp came back as NULL, the dependency could have been
12587 		 * freed while we slept.  Look it up again, and check to see
12588 		 * that it has completed.
12589 		 */
12590 		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
12591 			goto retry;
12592 		FREE_LOCK(ump);
12593 		return;
12594 	}
12595 	FREE_LOCK(ump);
12596 	if ((error = bwrite(ibp)) != 0)
12597 		softdep_error("softdep_update_inodeblock: bwrite", error);
12598 }
12599 
12600 /*
12601  * Merge the a new inode dependency list (such as id_newinoupdt) into an
12602  * old inode dependency list (such as id_inoupdt).
12603  */
12604 static void
12605 merge_inode_lists(
12606 	struct allocdirectlst *newlisthead,
12607 	struct allocdirectlst *oldlisthead)
12608 {
12609 	struct allocdirect *listadp, *newadp;
12610 
12611 	newadp = TAILQ_FIRST(newlisthead);
12612 	if (newadp != NULL)
12613 		LOCK_OWNED(VFSTOUFS(newadp->ad_block.nb_list.wk_mp));
12614 	for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) {
12615 		if (listadp->ad_offset < newadp->ad_offset) {
12616 			listadp = TAILQ_NEXT(listadp, ad_next);
12617 			continue;
12618 		}
12619 		TAILQ_REMOVE(newlisthead, newadp, ad_next);
12620 		TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
12621 		if (listadp->ad_offset == newadp->ad_offset) {
12622 			allocdirect_merge(oldlisthead, newadp,
12623 			    listadp);
12624 			listadp = newadp;
12625 		}
12626 		newadp = TAILQ_FIRST(newlisthead);
12627 	}
12628 	while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) {
12629 		TAILQ_REMOVE(newlisthead, newadp, ad_next);
12630 		TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next);
12631 	}
12632 }
12633 
12634 /*
12635  * If we are doing an fsync, then we must ensure that any directory
12636  * entries for the inode have been written after the inode gets to disk.
12637  */
12638 int
12639 softdep_fsync(
12640 	struct vnode *vp)	/* the "in_core" copy of the inode */
12641 {
12642 	struct inodedep *inodedep;
12643 	struct pagedep *pagedep;
12644 	struct inoref *inoref;
12645 	struct ufsmount *ump;
12646 	struct worklist *wk;
12647 	struct diradd *dap;
12648 	struct mount *mp;
12649 	struct vnode *pvp;
12650 	struct inode *ip;
12651 	struct buf *bp;
12652 	struct fs *fs;
12653 	struct thread *td = curthread;
12654 	int error, flushparent, pagedep_new_block;
12655 	ino_t parentino;
12656 	ufs_lbn_t lbn;
12657 
12658 	ip = VTOI(vp);
12659 	mp = vp->v_mount;
12660 	ump = VFSTOUFS(mp);
12661 	fs = ump->um_fs;
12662 	if (MOUNTEDSOFTDEP(mp) == 0)
12663 		return (0);
12664 	ACQUIRE_LOCK(ump);
12665 restart:
12666 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
12667 		FREE_LOCK(ump);
12668 		return (0);
12669 	}
12670 	TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12671 		if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12672 		    == DEPCOMPLETE) {
12673 			jwait(&inoref->if_list, MNT_WAIT);
12674 			goto restart;
12675 		}
12676 	}
12677 	if (!LIST_EMPTY(&inodedep->id_inowait) ||
12678 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
12679 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
12680 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
12681 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt))
12682 		panic("softdep_fsync: pending ops %p", inodedep);
12683 	for (error = 0, flushparent = 0; ; ) {
12684 		if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
12685 			break;
12686 		if (wk->wk_type != D_DIRADD)
12687 			panic("softdep_fsync: Unexpected type %s",
12688 			    TYPENAME(wk->wk_type));
12689 		dap = WK_DIRADD(wk);
12690 		/*
12691 		 * Flush our parent if this directory entry has a MKDIR_PARENT
12692 		 * dependency or is contained in a newly allocated block.
12693 		 */
12694 		if (dap->da_state & DIRCHG)
12695 			pagedep = dap->da_previous->dm_pagedep;
12696 		else
12697 			pagedep = dap->da_pagedep;
12698 		parentino = pagedep->pd_ino;
12699 		lbn = pagedep->pd_lbn;
12700 		if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE)
12701 			panic("softdep_fsync: dirty");
12702 		if ((dap->da_state & MKDIR_PARENT) ||
12703 		    (pagedep->pd_state & NEWBLOCK))
12704 			flushparent = 1;
12705 		else
12706 			flushparent = 0;
12707 		/*
12708 		 * If we are being fsync'ed as part of vgone'ing this vnode,
12709 		 * then we will not be able to release and recover the
12710 		 * vnode below, so we just have to give up on writing its
12711 		 * directory entry out. It will eventually be written, just
12712 		 * not now, but then the user was not asking to have it
12713 		 * written, so we are not breaking any promises.
12714 		 */
12715 		if (VN_IS_DOOMED(vp))
12716 			break;
12717 		/*
12718 		 * We prevent deadlock by always fetching inodes from the
12719 		 * root, moving down the directory tree. Thus, when fetching
12720 		 * our parent directory, we first try to get the lock. If
12721 		 * that fails, we must unlock ourselves before requesting
12722 		 * the lock on our parent. See the comment in ufs_lookup
12723 		 * for details on possible races.
12724 		 */
12725 		FREE_LOCK(ump);
12726 		error = get_parent_vp(vp, mp, parentino, NULL, NULL, NULL,
12727 		    &pvp);
12728 		if (error == ERELOOKUP)
12729 			error = 0;
12730 		if (error != 0)
12731 			return (error);
12732 		/*
12733 		 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps
12734 		 * that are contained in direct blocks will be resolved by
12735 		 * doing a ffs_update. Pagedeps contained in indirect blocks
12736 		 * may require a complete sync'ing of the directory. So, we
12737 		 * try the cheap and fast ffs_update first, and if that fails,
12738 		 * then we do the slower ffs_syncvnode of the directory.
12739 		 */
12740 		if (flushparent) {
12741 			int locked;
12742 
12743 			if ((error = ffs_update(pvp, 1)) != 0) {
12744 				vput(pvp);
12745 				return (error);
12746 			}
12747 			ACQUIRE_LOCK(ump);
12748 			locked = 1;
12749 			if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) {
12750 				if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) {
12751 					if (wk->wk_type != D_DIRADD)
12752 						panic("softdep_fsync: Unexpected type %s",
12753 						      TYPENAME(wk->wk_type));
12754 					dap = WK_DIRADD(wk);
12755 					if (dap->da_state & DIRCHG)
12756 						pagedep = dap->da_previous->dm_pagedep;
12757 					else
12758 						pagedep = dap->da_pagedep;
12759 					pagedep_new_block = pagedep->pd_state & NEWBLOCK;
12760 					FREE_LOCK(ump);
12761 					locked = 0;
12762 					if (pagedep_new_block) {
12763 						VOP_UNLOCK(vp);
12764 						error = ffs_syncvnode(pvp,
12765 						    MNT_WAIT, 0);
12766 						if (error == 0)
12767 							error = ERELOOKUP;
12768 						vput(pvp);
12769 						vn_lock(vp, LK_EXCLUSIVE |
12770 						    LK_RETRY);
12771 						return (error);
12772 					}
12773 				}
12774 			}
12775 			if (locked)
12776 				FREE_LOCK(ump);
12777 		}
12778 		/*
12779 		 * Flush directory page containing the inode's name.
12780 		 */
12781 		error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred,
12782 		    &bp);
12783 		if (error == 0)
12784 			error = bwrite(bp);
12785 		else
12786 			brelse(bp);
12787 		vput(pvp);
12788 		if (!ffs_fsfail_cleanup(ump, error))
12789 			return (error);
12790 		ACQUIRE_LOCK(ump);
12791 		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
12792 			break;
12793 	}
12794 	FREE_LOCK(ump);
12795 	return (0);
12796 }
12797 
12798 /*
12799  * Flush all the dirty bitmaps associated with the block device
12800  * before flushing the rest of the dirty blocks so as to reduce
12801  * the number of dependencies that will have to be rolled back.
12802  *
12803  * XXX Unused?
12804  */
12805 void
12806 softdep_fsync_mountdev(struct vnode *vp)
12807 {
12808 	struct buf *bp, *nbp;
12809 	struct worklist *wk;
12810 	struct bufobj *bo;
12811 
12812 	if (!vn_isdisk(vp))
12813 		panic("softdep_fsync_mountdev: vnode not a disk");
12814 	bo = &vp->v_bufobj;
12815 restart:
12816 	BO_LOCK(bo);
12817 	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
12818 		/*
12819 		 * If it is already scheduled, skip to the next buffer.
12820 		 */
12821 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
12822 			continue;
12823 
12824 		if ((bp->b_flags & B_DELWRI) == 0)
12825 			panic("softdep_fsync_mountdev: not dirty");
12826 		/*
12827 		 * We are only interested in bitmaps with outstanding
12828 		 * dependencies.
12829 		 */
12830 		if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
12831 		    wk->wk_type != D_BMSAFEMAP ||
12832 		    (bp->b_vflags & BV_BKGRDINPROG)) {
12833 			BUF_UNLOCK(bp);
12834 			continue;
12835 		}
12836 		BO_UNLOCK(bo);
12837 		bremfree(bp);
12838 		(void) bawrite(bp);
12839 		goto restart;
12840 	}
12841 	drain_output(vp);
12842 	BO_UNLOCK(bo);
12843 }
12844 
12845 /*
12846  * Sync all cylinder groups that were dirty at the time this function is
12847  * called.  Newly dirtied cgs will be inserted before the sentinel.  This
12848  * is used to flush freedep activity that may be holding up writes to a
12849  * indirect block.
12850  */
12851 static int
12852 sync_cgs(struct mount *mp, int waitfor)
12853 {
12854 	struct bmsafemap *bmsafemap;
12855 	struct bmsafemap *sentinel;
12856 	struct ufsmount *ump;
12857 	struct buf *bp;
12858 	int error;
12859 
12860 	sentinel = malloc(sizeof(*sentinel), M_BMSAFEMAP, M_ZERO | M_WAITOK);
12861 	sentinel->sm_cg = -1;
12862 	ump = VFSTOUFS(mp);
12863 	error = 0;
12864 	ACQUIRE_LOCK(ump);
12865 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, sentinel, sm_next);
12866 	for (bmsafemap = LIST_NEXT(sentinel, sm_next); bmsafemap != NULL;
12867 	    bmsafemap = LIST_NEXT(sentinel, sm_next)) {
12868 		/* Skip sentinels and cgs with no work to release. */
12869 		if (bmsafemap->sm_cg == -1 ||
12870 		    (LIST_EMPTY(&bmsafemap->sm_freehd) &&
12871 		    LIST_EMPTY(&bmsafemap->sm_freewr))) {
12872 			LIST_REMOVE(sentinel, sm_next);
12873 			LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next);
12874 			continue;
12875 		}
12876 		/*
12877 		 * If we don't get the lock and we're waiting try again, if
12878 		 * not move on to the next buf and try to sync it.
12879 		 */
12880 		bp = getdirtybuf(bmsafemap->sm_buf, LOCK_PTR(ump), waitfor);
12881 		if (bp == NULL && waitfor == MNT_WAIT)
12882 			continue;
12883 		LIST_REMOVE(sentinel, sm_next);
12884 		LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next);
12885 		if (bp == NULL)
12886 			continue;
12887 		FREE_LOCK(ump);
12888 		if (waitfor == MNT_NOWAIT)
12889 			bawrite(bp);
12890 		else
12891 			error = bwrite(bp);
12892 		ACQUIRE_LOCK(ump);
12893 		if (error)
12894 			break;
12895 	}
12896 	LIST_REMOVE(sentinel, sm_next);
12897 	FREE_LOCK(ump);
12898 	free(sentinel, M_BMSAFEMAP);
12899 	return (error);
12900 }
12901 
12902 /*
12903  * This routine is called when we are trying to synchronously flush a
12904  * file. This routine must eliminate any filesystem metadata dependencies
12905  * so that the syncing routine can succeed.
12906  */
12907 int
12908 softdep_sync_metadata(struct vnode *vp)
12909 {
12910 	struct inode *ip;
12911 	int error;
12912 
12913 	ip = VTOI(vp);
12914 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
12915 	    ("softdep_sync_metadata called on non-softdep filesystem"));
12916 	/*
12917 	 * Ensure that any direct block dependencies have been cleared,
12918 	 * truncations are started, and inode references are journaled.
12919 	 */
12920 	ACQUIRE_LOCK(VFSTOUFS(vp->v_mount));
12921 	/*
12922 	 * Write all journal records to prevent rollbacks on devvp.
12923 	 */
12924 	if (vp->v_type == VCHR)
12925 		softdep_flushjournal(vp->v_mount);
12926 	error = flush_inodedep_deps(vp, vp->v_mount, ip->i_number);
12927 	/*
12928 	 * Ensure that all truncates are written so we won't find deps on
12929 	 * indirect blocks.
12930 	 */
12931 	process_truncates(vp);
12932 	FREE_LOCK(VFSTOUFS(vp->v_mount));
12933 
12934 	return (error);
12935 }
12936 
12937 /*
12938  * This routine is called when we are attempting to sync a buf with
12939  * dependencies.  If waitfor is MNT_NOWAIT it attempts to schedule any
12940  * other IO it can but returns EBUSY if the buffer is not yet able to
12941  * be written.  Dependencies which will not cause rollbacks will always
12942  * return 0.
12943  */
12944 int
12945 softdep_sync_buf(struct vnode *vp,
12946 	struct buf *bp,
12947 	int waitfor)
12948 {
12949 	struct indirdep *indirdep;
12950 	struct pagedep *pagedep;
12951 	struct allocindir *aip;
12952 	struct newblk *newblk;
12953 	struct ufsmount *ump;
12954 	struct buf *nbp;
12955 	struct worklist *wk;
12956 	int i, error;
12957 
12958 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
12959 	    ("softdep_sync_buf called on non-softdep filesystem"));
12960 	/*
12961 	 * For VCHR we just don't want to force flush any dependencies that
12962 	 * will cause rollbacks.
12963 	 */
12964 	if (vp->v_type == VCHR) {
12965 		if (waitfor == MNT_NOWAIT && softdep_count_dependencies(bp, 0))
12966 			return (EBUSY);
12967 		return (0);
12968 	}
12969 	ump = VFSTOUFS(vp->v_mount);
12970 	ACQUIRE_LOCK(ump);
12971 	/*
12972 	 * As we hold the buffer locked, none of its dependencies
12973 	 * will disappear.
12974 	 */
12975 	error = 0;
12976 top:
12977 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
12978 		switch (wk->wk_type) {
12979 		case D_ALLOCDIRECT:
12980 		case D_ALLOCINDIR:
12981 			newblk = WK_NEWBLK(wk);
12982 			if (newblk->nb_jnewblk != NULL) {
12983 				if (waitfor == MNT_NOWAIT) {
12984 					error = EBUSY;
12985 					goto out_unlock;
12986 				}
12987 				jwait(&newblk->nb_jnewblk->jn_list, waitfor);
12988 				goto top;
12989 			}
12990 			if (newblk->nb_state & DEPCOMPLETE ||
12991 			    waitfor == MNT_NOWAIT)
12992 				continue;
12993 			nbp = newblk->nb_bmsafemap->sm_buf;
12994 			nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor);
12995 			if (nbp == NULL)
12996 				goto top;
12997 			FREE_LOCK(ump);
12998 			if ((error = bwrite(nbp)) != 0)
12999 				goto out;
13000 			ACQUIRE_LOCK(ump);
13001 			continue;
13002 
13003 		case D_INDIRDEP:
13004 			indirdep = WK_INDIRDEP(wk);
13005 			if (waitfor == MNT_NOWAIT) {
13006 				if (!TAILQ_EMPTY(&indirdep->ir_trunc) ||
13007 				    !LIST_EMPTY(&indirdep->ir_deplisthd)) {
13008 					error = EBUSY;
13009 					goto out_unlock;
13010 				}
13011 			}
13012 			if (!TAILQ_EMPTY(&indirdep->ir_trunc))
13013 				panic("softdep_sync_buf: truncation pending.");
13014 		restart:
13015 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
13016 				newblk = (struct newblk *)aip;
13017 				if (newblk->nb_jnewblk != NULL) {
13018 					jwait(&newblk->nb_jnewblk->jn_list,
13019 					    waitfor);
13020 					goto restart;
13021 				}
13022 				if (newblk->nb_state & DEPCOMPLETE)
13023 					continue;
13024 				nbp = newblk->nb_bmsafemap->sm_buf;
13025 				nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor);
13026 				if (nbp == NULL)
13027 					goto restart;
13028 				FREE_LOCK(ump);
13029 				if ((error = bwrite(nbp)) != 0)
13030 					goto out;
13031 				ACQUIRE_LOCK(ump);
13032 				goto restart;
13033 			}
13034 			continue;
13035 
13036 		case D_PAGEDEP:
13037 			/*
13038 			 * Only flush directory entries in synchronous passes.
13039 			 */
13040 			if (waitfor != MNT_WAIT) {
13041 				error = EBUSY;
13042 				goto out_unlock;
13043 			}
13044 			/*
13045 			 * While syncing snapshots, we must allow recursive
13046 			 * lookups.
13047 			 */
13048 			BUF_AREC(bp);
13049 			/*
13050 			 * We are trying to sync a directory that may
13051 			 * have dependencies on both its own metadata
13052 			 * and/or dependencies on the inodes of any
13053 			 * recently allocated files. We walk its diradd
13054 			 * lists pushing out the associated inode.
13055 			 */
13056 			pagedep = WK_PAGEDEP(wk);
13057 			for (i = 0; i < DAHASHSZ; i++) {
13058 				if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0)
13059 					continue;
13060 				error = flush_pagedep_deps(vp, wk->wk_mp,
13061 				    &pagedep->pd_diraddhd[i], bp);
13062 				if (error != 0) {
13063 					if (error != ERELOOKUP)
13064 						BUF_NOREC(bp);
13065 					goto out_unlock;
13066 				}
13067 			}
13068 			BUF_NOREC(bp);
13069 			continue;
13070 
13071 		case D_FREEWORK:
13072 		case D_FREEDEP:
13073 		case D_JSEGDEP:
13074 		case D_JNEWBLK:
13075 			continue;
13076 
13077 		default:
13078 			panic("softdep_sync_buf: Unknown type %s",
13079 			    TYPENAME(wk->wk_type));
13080 			/* NOTREACHED */
13081 		}
13082 	}
13083 out_unlock:
13084 	FREE_LOCK(ump);
13085 out:
13086 	return (error);
13087 }
13088 
13089 /*
13090  * Flush the dependencies associated with an inodedep.
13091  */
13092 static int
13093 flush_inodedep_deps(
13094 	struct vnode *vp,
13095 	struct mount *mp,
13096 	ino_t ino)
13097 {
13098 	struct inodedep *inodedep;
13099 	struct inoref *inoref;
13100 	struct ufsmount *ump;
13101 	int error, waitfor;
13102 
13103 	/*
13104 	 * This work is done in two passes. The first pass grabs most
13105 	 * of the buffers and begins asynchronously writing them. The
13106 	 * only way to wait for these asynchronous writes is to sleep
13107 	 * on the filesystem vnode which may stay busy for a long time
13108 	 * if the filesystem is active. So, instead, we make a second
13109 	 * pass over the dependencies blocking on each write. In the
13110 	 * usual case we will be blocking against a write that we
13111 	 * initiated, so when it is done the dependency will have been
13112 	 * resolved. Thus the second pass is expected to end quickly.
13113 	 * We give a brief window at the top of the loop to allow
13114 	 * any pending I/O to complete.
13115 	 */
13116 	ump = VFSTOUFS(mp);
13117 	LOCK_OWNED(ump);
13118 	for (error = 0, waitfor = MNT_NOWAIT; ; ) {
13119 		if (error)
13120 			return (error);
13121 		FREE_LOCK(ump);
13122 		ACQUIRE_LOCK(ump);
13123 restart:
13124 		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
13125 			return (0);
13126 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
13127 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
13128 			    == DEPCOMPLETE) {
13129 				jwait(&inoref->if_list, MNT_WAIT);
13130 				goto restart;
13131 			}
13132 		}
13133 		if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) ||
13134 		    flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) ||
13135 		    flush_deplist(&inodedep->id_extupdt, waitfor, &error) ||
13136 		    flush_deplist(&inodedep->id_newextupdt, waitfor, &error))
13137 			continue;
13138 		/*
13139 		 * If pass2, we are done, otherwise do pass 2.
13140 		 */
13141 		if (waitfor == MNT_WAIT)
13142 			break;
13143 		waitfor = MNT_WAIT;
13144 	}
13145 	/*
13146 	 * Try freeing inodedep in case all dependencies have been removed.
13147 	 */
13148 	if (inodedep_lookup(mp, ino, 0, &inodedep) != 0)
13149 		(void) free_inodedep(inodedep);
13150 	return (0);
13151 }
13152 
13153 /*
13154  * Flush an inode dependency list.
13155  */
13156 static int
13157 flush_deplist(
13158 	struct allocdirectlst *listhead,
13159 	int waitfor,
13160 	int *errorp)
13161 {
13162 	struct allocdirect *adp;
13163 	struct newblk *newblk;
13164 	struct ufsmount *ump;
13165 	struct buf *bp;
13166 
13167 	if ((adp = TAILQ_FIRST(listhead)) == NULL)
13168 		return (0);
13169 	ump = VFSTOUFS(adp->ad_list.wk_mp);
13170 	LOCK_OWNED(ump);
13171 	TAILQ_FOREACH(adp, listhead, ad_next) {
13172 		newblk = (struct newblk *)adp;
13173 		if (newblk->nb_jnewblk != NULL) {
13174 			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
13175 			return (1);
13176 		}
13177 		if (newblk->nb_state & DEPCOMPLETE)
13178 			continue;
13179 		bp = newblk->nb_bmsafemap->sm_buf;
13180 		bp = getdirtybuf(bp, LOCK_PTR(ump), waitfor);
13181 		if (bp == NULL) {
13182 			if (waitfor == MNT_NOWAIT)
13183 				continue;
13184 			return (1);
13185 		}
13186 		FREE_LOCK(ump);
13187 		if (waitfor == MNT_NOWAIT)
13188 			bawrite(bp);
13189 		else
13190 			*errorp = bwrite(bp);
13191 		ACQUIRE_LOCK(ump);
13192 		return (1);
13193 	}
13194 	return (0);
13195 }
13196 
13197 /*
13198  * Flush dependencies associated with an allocdirect block.
13199  */
13200 static int
13201 flush_newblk_dep(
13202 	struct vnode *vp,
13203 	struct mount *mp,
13204 	ufs_lbn_t lbn)
13205 {
13206 	struct newblk *newblk;
13207 	struct ufsmount *ump;
13208 	struct bufobj *bo;
13209 	struct inode *ip;
13210 	struct buf *bp;
13211 	ufs2_daddr_t blkno;
13212 	int error;
13213 
13214 	error = 0;
13215 	bo = &vp->v_bufobj;
13216 	ip = VTOI(vp);
13217 	blkno = DIP(ip, i_db[lbn]);
13218 	if (blkno == 0)
13219 		panic("flush_newblk_dep: Missing block");
13220 	ump = VFSTOUFS(mp);
13221 	ACQUIRE_LOCK(ump);
13222 	/*
13223 	 * Loop until all dependencies related to this block are satisfied.
13224 	 * We must be careful to restart after each sleep in case a write
13225 	 * completes some part of this process for us.
13226 	 */
13227 	for (;;) {
13228 		if (newblk_lookup(mp, blkno, 0, &newblk) == 0) {
13229 			FREE_LOCK(ump);
13230 			break;
13231 		}
13232 		if (newblk->nb_list.wk_type != D_ALLOCDIRECT)
13233 			panic("flush_newblk_dep: Bad newblk %p", newblk);
13234 		/*
13235 		 * Flush the journal.
13236 		 */
13237 		if (newblk->nb_jnewblk != NULL) {
13238 			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
13239 			continue;
13240 		}
13241 		/*
13242 		 * Write the bitmap dependency.
13243 		 */
13244 		if ((newblk->nb_state & DEPCOMPLETE) == 0) {
13245 			bp = newblk->nb_bmsafemap->sm_buf;
13246 			bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT);
13247 			if (bp == NULL)
13248 				continue;
13249 			FREE_LOCK(ump);
13250 			error = bwrite(bp);
13251 			if (error)
13252 				break;
13253 			ACQUIRE_LOCK(ump);
13254 			continue;
13255 		}
13256 		/*
13257 		 * Write the buffer.
13258 		 */
13259 		FREE_LOCK(ump);
13260 		BO_LOCK(bo);
13261 		bp = gbincore(bo, lbn);
13262 		if (bp != NULL) {
13263 			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
13264 			    LK_INTERLOCK, BO_LOCKPTR(bo));
13265 			if (error == ENOLCK) {
13266 				ACQUIRE_LOCK(ump);
13267 				error = 0;
13268 				continue; /* Slept, retry */
13269 			}
13270 			if (error != 0)
13271 				break;	/* Failed */
13272 			if (bp->b_flags & B_DELWRI) {
13273 				bremfree(bp);
13274 				error = bwrite(bp);
13275 				if (error)
13276 					break;
13277 			} else
13278 				BUF_UNLOCK(bp);
13279 		} else
13280 			BO_UNLOCK(bo);
13281 		/*
13282 		 * We have to wait for the direct pointers to
13283 		 * point at the newdirblk before the dependency
13284 		 * will go away.
13285 		 */
13286 		error = ffs_update(vp, 1);
13287 		if (error)
13288 			break;
13289 		ACQUIRE_LOCK(ump);
13290 	}
13291 	return (error);
13292 }
13293 
13294 /*
13295  * Eliminate a pagedep dependency by flushing out all its diradd dependencies.
13296  */
13297 static int
13298 flush_pagedep_deps(
13299 	struct vnode *pvp,
13300 	struct mount *mp,
13301 	struct diraddhd *diraddhdp,
13302 	struct buf *locked_bp)
13303 {
13304 	struct inodedep *inodedep;
13305 	struct inoref *inoref;
13306 	struct ufsmount *ump;
13307 	struct diradd *dap;
13308 	struct vnode *vp;
13309 	int error = 0;
13310 	struct buf *bp;
13311 	ino_t inum;
13312 	struct diraddhd unfinished;
13313 
13314 	LIST_INIT(&unfinished);
13315 	ump = VFSTOUFS(mp);
13316 	LOCK_OWNED(ump);
13317 restart:
13318 	while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
13319 		/*
13320 		 * Flush ourselves if this directory entry
13321 		 * has a MKDIR_PARENT dependency.
13322 		 */
13323 		if (dap->da_state & MKDIR_PARENT) {
13324 			FREE_LOCK(ump);
13325 			if ((error = ffs_update(pvp, 1)) != 0)
13326 				break;
13327 			ACQUIRE_LOCK(ump);
13328 			/*
13329 			 * If that cleared dependencies, go on to next.
13330 			 */
13331 			if (dap != LIST_FIRST(diraddhdp))
13332 				continue;
13333 			/*
13334 			 * All MKDIR_PARENT dependencies and all the
13335 			 * NEWBLOCK pagedeps that are contained in direct
13336 			 * blocks were resolved by doing above ffs_update.
13337 			 * Pagedeps contained in indirect blocks may
13338 			 * require a complete sync'ing of the directory.
13339 			 * We are in the midst of doing a complete sync,
13340 			 * so if they are not resolved in this pass we
13341 			 * defer them for now as they will be sync'ed by
13342 			 * our caller shortly.
13343 			 */
13344 			LIST_REMOVE(dap, da_pdlist);
13345 			LIST_INSERT_HEAD(&unfinished, dap, da_pdlist);
13346 			continue;
13347 		}
13348 		/*
13349 		 * A newly allocated directory must have its "." and
13350 		 * ".." entries written out before its name can be
13351 		 * committed in its parent.
13352 		 */
13353 		inum = dap->da_newinum;
13354 		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
13355 			panic("flush_pagedep_deps: lost inode1");
13356 		/*
13357 		 * Wait for any pending journal adds to complete so we don't
13358 		 * cause rollbacks while syncing.
13359 		 */
13360 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
13361 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
13362 			    == DEPCOMPLETE) {
13363 				jwait(&inoref->if_list, MNT_WAIT);
13364 				goto restart;
13365 			}
13366 		}
13367 		if (dap->da_state & MKDIR_BODY) {
13368 			FREE_LOCK(ump);
13369 			error = get_parent_vp(pvp, mp, inum, locked_bp,
13370 			    diraddhdp, &unfinished, &vp);
13371 			if (error != 0)
13372 				break;
13373 			error = flush_newblk_dep(vp, mp, 0);
13374 			/*
13375 			 * If we still have the dependency we might need to
13376 			 * update the vnode to sync the new link count to
13377 			 * disk.
13378 			 */
13379 			if (error == 0 && dap == LIST_FIRST(diraddhdp))
13380 				error = ffs_update(vp, 1);
13381 			vput(vp);
13382 			if (error != 0)
13383 				break;
13384 			ACQUIRE_LOCK(ump);
13385 			/*
13386 			 * If that cleared dependencies, go on to next.
13387 			 */
13388 			if (dap != LIST_FIRST(diraddhdp))
13389 				continue;
13390 			if (dap->da_state & MKDIR_BODY) {
13391 				inodedep_lookup(UFSTOVFS(ump), inum, 0,
13392 				    &inodedep);
13393 				panic("flush_pagedep_deps: MKDIR_BODY "
13394 				    "inodedep %p dap %p vp %p",
13395 				    inodedep, dap, vp);
13396 			}
13397 		}
13398 		/*
13399 		 * Flush the inode on which the directory entry depends.
13400 		 * Having accounted for MKDIR_PARENT and MKDIR_BODY above,
13401 		 * the only remaining dependency is that the updated inode
13402 		 * count must get pushed to disk. The inode has already
13403 		 * been pushed into its inode buffer (via VOP_UPDATE) at
13404 		 * the time of the reference count change. So we need only
13405 		 * locate that buffer, ensure that there will be no rollback
13406 		 * caused by a bitmap dependency, then write the inode buffer.
13407 		 */
13408 retry:
13409 		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
13410 			panic("flush_pagedep_deps: lost inode");
13411 		/*
13412 		 * If the inode still has bitmap dependencies,
13413 		 * push them to disk.
13414 		 */
13415 		if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) {
13416 			bp = inodedep->id_bmsafemap->sm_buf;
13417 			bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT);
13418 			if (bp == NULL)
13419 				goto retry;
13420 			FREE_LOCK(ump);
13421 			if ((error = bwrite(bp)) != 0)
13422 				break;
13423 			ACQUIRE_LOCK(ump);
13424 			if (dap != LIST_FIRST(diraddhdp))
13425 				continue;
13426 		}
13427 		/*
13428 		 * If the inode is still sitting in a buffer waiting
13429 		 * to be written or waiting for the link count to be
13430 		 * adjusted update it here to flush it to disk.
13431 		 */
13432 		if (dap == LIST_FIRST(diraddhdp)) {
13433 			FREE_LOCK(ump);
13434 			error = get_parent_vp(pvp, mp, inum, locked_bp,
13435 			    diraddhdp, &unfinished, &vp);
13436 			if (error != 0)
13437 				break;
13438 			error = ffs_update(vp, 1);
13439 			vput(vp);
13440 			if (error)
13441 				break;
13442 			ACQUIRE_LOCK(ump);
13443 		}
13444 		/*
13445 		 * If we have failed to get rid of all the dependencies
13446 		 * then something is seriously wrong.
13447 		 */
13448 		if (dap == LIST_FIRST(diraddhdp)) {
13449 			inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep);
13450 			panic("flush_pagedep_deps: failed to flush "
13451 			    "inodedep %p ino %ju dap %p",
13452 			    inodedep, (uintmax_t)inum, dap);
13453 		}
13454 	}
13455 	if (error)
13456 		ACQUIRE_LOCK(ump);
13457 	while ((dap = LIST_FIRST(&unfinished)) != NULL) {
13458 		LIST_REMOVE(dap, da_pdlist);
13459 		LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist);
13460 	}
13461 	return (error);
13462 }
13463 
13464 /*
13465  * A large burst of file addition or deletion activity can drive the
13466  * memory load excessively high. First attempt to slow things down
13467  * using the techniques below. If that fails, this routine requests
13468  * the offending operations to fall back to running synchronously
13469  * until the memory load returns to a reasonable level.
13470  */
13471 int
13472 softdep_slowdown(struct vnode *vp)
13473 {
13474 	struct ufsmount *ump;
13475 	int jlow;
13476 	int max_softdeps_hard;
13477 
13478 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
13479 	    ("softdep_slowdown called on non-softdep filesystem"));
13480 	ump = VFSTOUFS(vp->v_mount);
13481 	ACQUIRE_LOCK(ump);
13482 	jlow = 0;
13483 	/*
13484 	 * Check for journal space if needed.
13485 	 */
13486 	if (DOINGSUJ(vp)) {
13487 		if (journal_space(ump, 0) == 0)
13488 			jlow = 1;
13489 	}
13490 	/*
13491 	 * If the system is under its limits and our filesystem is
13492 	 * not responsible for more than our share of the usage and
13493 	 * we are not low on journal space, then no need to slow down.
13494 	 */
13495 	max_softdeps_hard = max_softdeps * 11 / 10;
13496 	if (dep_current[D_DIRREM] < max_softdeps_hard / 2 &&
13497 	    dep_current[D_INODEDEP] < max_softdeps_hard &&
13498 	    dep_current[D_INDIRDEP] < max_softdeps_hard / 1000 &&
13499 	    dep_current[D_FREEBLKS] < max_softdeps_hard && jlow == 0 &&
13500 	    ump->softdep_curdeps[D_DIRREM] <
13501 	    (max_softdeps_hard / 2) / stat_flush_threads &&
13502 	    ump->softdep_curdeps[D_INODEDEP] <
13503 	    max_softdeps_hard / stat_flush_threads &&
13504 	    ump->softdep_curdeps[D_INDIRDEP] <
13505 	    (max_softdeps_hard / 1000) / stat_flush_threads &&
13506 	    ump->softdep_curdeps[D_FREEBLKS] <
13507 	    max_softdeps_hard / stat_flush_threads) {
13508 		FREE_LOCK(ump);
13509   		return (0);
13510 	}
13511 	/*
13512 	 * If the journal is low or our filesystem is over its limit
13513 	 * then speedup the cleanup.
13514 	 */
13515 	if (ump->softdep_curdeps[D_INDIRDEP] <
13516 	    (max_softdeps_hard / 1000) / stat_flush_threads || jlow)
13517 		softdep_speedup(ump);
13518 	stat_sync_limit_hit += 1;
13519 	FREE_LOCK(ump);
13520 	/*
13521 	 * We only slow down the rate at which new dependencies are
13522 	 * generated if we are not using journaling. With journaling,
13523 	 * the cleanup should always be sufficient to keep things
13524 	 * under control.
13525 	 */
13526 	if (DOINGSUJ(vp))
13527 		return (0);
13528 	return (1);
13529 }
13530 
13531 static int
13532 softdep_request_cleanup_filter(struct vnode *vp, void *arg __unused)
13533 {
13534 	return ((vp->v_iflag & VI_OWEINACT) != 0 && vp->v_usecount == 0 &&
13535 	    ((vp->v_vflag & VV_NOSYNC) != 0 || VTOI(vp)->i_effnlink == 0));
13536 }
13537 
13538 static void
13539 softdep_request_cleanup_inactivate(struct mount *mp)
13540 {
13541 	struct vnode *vp, *mvp;
13542 	int error;
13543 
13544 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, softdep_request_cleanup_filter,
13545 	    NULL) {
13546 		vholdl(vp);
13547 		vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK | LK_RETRY);
13548 		VI_LOCK(vp);
13549 		if (IS_UFS(vp) && vp->v_usecount == 0) {
13550 			while ((vp->v_iflag & VI_OWEINACT) != 0) {
13551 				error = vinactive(vp);
13552 				if (error != 0 && error != ERELOOKUP)
13553 					break;
13554 			}
13555 			atomic_add_int(&stat_delayed_inact, 1);
13556 		}
13557 		VOP_UNLOCK(vp);
13558 		vdropl(vp);
13559 	}
13560 }
13561 
13562 /*
13563  * Called by the allocation routines when they are about to fail
13564  * in the hope that we can free up the requested resource (inodes
13565  * or disk space).
13566  *
13567  * First check to see if the work list has anything on it. If it has,
13568  * clean up entries until we successfully free the requested resource.
13569  * Because this process holds inodes locked, we cannot handle any remove
13570  * requests that might block on a locked inode as that could lead to
13571  * deadlock. If the worklist yields none of the requested resource,
13572  * start syncing out vnodes to free up the needed space.
13573  */
13574 int
13575 softdep_request_cleanup(
13576 	struct fs *fs,
13577 	struct vnode *vp,
13578 	struct ucred *cred,
13579 	int resource)
13580 {
13581 	struct ufsmount *ump;
13582 	struct mount *mp;
13583 	long starttime;
13584 	ufs2_daddr_t needed;
13585 	int error, failed_vnode;
13586 
13587 	/*
13588 	 * If we are being called because of a process doing a
13589 	 * copy-on-write, then it is not safe to process any
13590 	 * worklist items as we will recurse into the copyonwrite
13591 	 * routine.  This will result in an incoherent snapshot.
13592 	 * If the vnode that we hold is a snapshot, we must avoid
13593 	 * handling other resources that could cause deadlock.
13594 	 */
13595 	if ((curthread->td_pflags & TDP_COWINPROGRESS) || IS_SNAPSHOT(VTOI(vp)))
13596 		return (0);
13597 
13598 	if (resource == FLUSH_BLOCKS_WAIT)
13599 		stat_cleanup_blkrequests += 1;
13600 	else
13601 		stat_cleanup_inorequests += 1;
13602 
13603 	mp = vp->v_mount;
13604 	ump = VFSTOUFS(mp);
13605 	mtx_assert(UFS_MTX(ump), MA_OWNED);
13606 	UFS_UNLOCK(ump);
13607 	error = ffs_update(vp, 1);
13608 	if (error != 0 || MOUNTEDSOFTDEP(mp) == 0) {
13609 		UFS_LOCK(ump);
13610 		return (0);
13611 	}
13612 	/*
13613 	 * If we are in need of resources, start by cleaning up
13614 	 * any block removals associated with our inode.
13615 	 */
13616 	ACQUIRE_LOCK(ump);
13617 	process_removes(vp);
13618 	process_truncates(vp);
13619 	FREE_LOCK(ump);
13620 	/*
13621 	 * Now clean up at least as many resources as we will need.
13622 	 *
13623 	 * When requested to clean up inodes, the number that are needed
13624 	 * is set by the number of simultaneous writers (mnt_writeopcount)
13625 	 * plus a bit of slop (2) in case some more writers show up while
13626 	 * we are cleaning.
13627 	 *
13628 	 * When requested to free up space, the amount of space that
13629 	 * we need is enough blocks to allocate a full-sized segment
13630 	 * (fs_contigsumsize). The number of such segments that will
13631 	 * be needed is set by the number of simultaneous writers
13632 	 * (mnt_writeopcount) plus a bit of slop (2) in case some more
13633 	 * writers show up while we are cleaning.
13634 	 *
13635 	 * Additionally, if we are unpriviledged and allocating space,
13636 	 * we need to ensure that we clean up enough blocks to get the
13637 	 * needed number of blocks over the threshold of the minimum
13638 	 * number of blocks required to be kept free by the filesystem
13639 	 * (fs_minfree).
13640 	 */
13641 	if (resource == FLUSH_INODES_WAIT) {
13642 		needed = vfs_mount_fetch_counter(vp->v_mount,
13643 		    MNT_COUNT_WRITEOPCOUNT) + 2;
13644 	} else if (resource == FLUSH_BLOCKS_WAIT) {
13645 		needed = (vfs_mount_fetch_counter(vp->v_mount,
13646 		    MNT_COUNT_WRITEOPCOUNT) + 2) * fs->fs_contigsumsize;
13647 		if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE))
13648 			needed += fragstoblks(fs,
13649 			    roundup((fs->fs_dsize * fs->fs_minfree / 100) -
13650 			    fs->fs_cstotal.cs_nffree, fs->fs_frag));
13651 	} else {
13652 		printf("softdep_request_cleanup: Unknown resource type %d\n",
13653 		    resource);
13654 		UFS_LOCK(ump);
13655 		return (0);
13656 	}
13657 	starttime = time_second;
13658 retry:
13659 	if (resource == FLUSH_BLOCKS_WAIT &&
13660 	    fs->fs_cstotal.cs_nbfree <= needed)
13661 		softdep_send_speedup(ump, needed * fs->fs_bsize,
13662 		    BIO_SPEEDUP_TRIM);
13663 	if ((resource == FLUSH_BLOCKS_WAIT && ump->softdep_on_worklist > 0 &&
13664 	    fs->fs_cstotal.cs_nbfree <= needed) ||
13665 	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
13666 	    fs->fs_cstotal.cs_nifree <= needed)) {
13667 		ACQUIRE_LOCK(ump);
13668 		if (ump->softdep_on_worklist > 0 &&
13669 		    process_worklist_item(UFSTOVFS(ump),
13670 		    ump->softdep_on_worklist, LK_NOWAIT) != 0)
13671 			stat_worklist_push += 1;
13672 		FREE_LOCK(ump);
13673 	}
13674 
13675 	/*
13676 	 * Check that there are vnodes pending inactivation.  As they
13677 	 * have been unlinked, inactivating them will free up their
13678 	 * inodes.
13679 	 */
13680 	ACQUIRE_LOCK(ump);
13681 	if (resource == FLUSH_INODES_WAIT &&
13682 	    fs->fs_cstotal.cs_nifree <= needed &&
13683 	    fs->fs_pendinginodes <= needed) {
13684 		if ((ump->um_softdep->sd_flags & FLUSH_DI_ACTIVE) == 0) {
13685 			ump->um_softdep->sd_flags |= FLUSH_DI_ACTIVE;
13686 			FREE_LOCK(ump);
13687 			softdep_request_cleanup_inactivate(mp);
13688 			ACQUIRE_LOCK(ump);
13689 			ump->um_softdep->sd_flags &= ~FLUSH_DI_ACTIVE;
13690 			wakeup(&ump->um_softdep->sd_flags);
13691 		} else {
13692 			while ((ump->um_softdep->sd_flags &
13693 			    FLUSH_DI_ACTIVE) != 0) {
13694 				msleep(&ump->um_softdep->sd_flags,
13695 				    LOCK_PTR(ump), PVM, "ffsvina", hz);
13696 			}
13697 		}
13698 	}
13699 	FREE_LOCK(ump);
13700 
13701 	/*
13702 	 * If we still need resources and there are no more worklist
13703 	 * entries to process to obtain them, we have to start flushing
13704 	 * the dirty vnodes to force the release of additional requests
13705 	 * to the worklist that we can then process to reap addition
13706 	 * resources. We walk the vnodes associated with the mount point
13707 	 * until we get the needed worklist requests that we can reap.
13708 	 *
13709 	 * If there are several threads all needing to clean the same
13710 	 * mount point, only one is allowed to walk the mount list.
13711 	 * When several threads all try to walk the same mount list,
13712 	 * they end up competing with each other and often end up in
13713 	 * livelock. This approach ensures that forward progress is
13714 	 * made at the cost of occational ENOSPC errors being returned
13715 	 * that might otherwise have been avoided.
13716 	 */
13717 	error = 1;
13718 	if ((resource == FLUSH_BLOCKS_WAIT &&
13719 	     fs->fs_cstotal.cs_nbfree <= needed) ||
13720 	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
13721 	     fs->fs_cstotal.cs_nifree <= needed)) {
13722 		ACQUIRE_LOCK(ump);
13723 		if ((ump->um_softdep->sd_flags & FLUSH_RC_ACTIVE) == 0) {
13724 			ump->um_softdep->sd_flags |= FLUSH_RC_ACTIVE;
13725 			FREE_LOCK(ump);
13726 			failed_vnode = softdep_request_cleanup_flush(mp, ump);
13727 			ACQUIRE_LOCK(ump);
13728 			ump->um_softdep->sd_flags &= ~FLUSH_RC_ACTIVE;
13729 			wakeup(&ump->um_softdep->sd_flags);
13730 			FREE_LOCK(ump);
13731 			if (ump->softdep_on_worklist > 0) {
13732 				stat_cleanup_retries += 1;
13733 				if (!failed_vnode)
13734 					goto retry;
13735 			}
13736 		} else {
13737 			while ((ump->um_softdep->sd_flags &
13738 			    FLUSH_RC_ACTIVE) != 0) {
13739 				msleep(&ump->um_softdep->sd_flags,
13740 				    LOCK_PTR(ump), PVM, "ffsrca", hz);
13741 			}
13742 			FREE_LOCK(ump);
13743 			error = 0;
13744 		}
13745 		stat_cleanup_failures += 1;
13746 	}
13747 	if (time_second - starttime > stat_cleanup_high_delay)
13748 		stat_cleanup_high_delay = time_second - starttime;
13749 	UFS_LOCK(ump);
13750 	return (error);
13751 }
13752 
13753 /*
13754  * Scan the vnodes for the specified mount point flushing out any
13755  * vnodes that can be locked without waiting. Finally, try to flush
13756  * the device associated with the mount point if it can be locked
13757  * without waiting.
13758  *
13759  * We return 0 if we were able to lock every vnode in our scan.
13760  * If we had to skip one or more vnodes, we return 1.
13761  */
13762 static int
13763 softdep_request_cleanup_flush(struct mount *mp, struct ufsmount *ump)
13764 {
13765 	struct thread *td;
13766 	struct vnode *lvp, *mvp;
13767 	int failed_vnode;
13768 
13769 	failed_vnode = 0;
13770 	td = curthread;
13771 	MNT_VNODE_FOREACH_ALL(lvp, mp, mvp) {
13772 		if (TAILQ_FIRST(&lvp->v_bufobj.bo_dirty.bv_hd) == 0) {
13773 			VI_UNLOCK(lvp);
13774 			continue;
13775 		}
13776 		if (vget(lvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT) != 0) {
13777 			failed_vnode = 1;
13778 			continue;
13779 		}
13780 		if (lvp->v_vflag & VV_NOSYNC) {	/* unlinked */
13781 			vput(lvp);
13782 			continue;
13783 		}
13784 		(void) ffs_syncvnode(lvp, MNT_NOWAIT, 0);
13785 		vput(lvp);
13786 	}
13787 	lvp = ump->um_devvp;
13788 	if (vn_lock(lvp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
13789 		VOP_FSYNC(lvp, MNT_NOWAIT, td);
13790 		VOP_UNLOCK(lvp);
13791 	}
13792 	return (failed_vnode);
13793 }
13794 
13795 static bool
13796 softdep_excess_items(struct ufsmount *ump, int item)
13797 {
13798 
13799 	KASSERT(item >= 0 && item < D_LAST, ("item %d", item));
13800 	return (dep_current[item] > max_softdeps &&
13801 	    ump->softdep_curdeps[item] > max_softdeps /
13802 	    stat_flush_threads);
13803 }
13804 
13805 static void
13806 schedule_cleanup(struct mount *mp)
13807 {
13808 	struct ufsmount *ump;
13809 	struct thread *td;
13810 
13811 	ump = VFSTOUFS(mp);
13812 	LOCK_OWNED(ump);
13813 	FREE_LOCK(ump);
13814 	td = curthread;
13815 	if ((td->td_pflags & TDP_KTHREAD) != 0 &&
13816 	    (td->td_proc->p_flag2 & P2_AST_SU) == 0) {
13817 		/*
13818 		 * No ast is delivered to kernel threads, so nobody
13819 		 * would deref the mp.  Some kernel threads
13820 		 * explicitly check for AST, e.g. NFS daemon does
13821 		 * this in the serving loop.
13822 		 */
13823 		return;
13824 	}
13825 	if (td->td_su != NULL)
13826 		vfs_rel(td->td_su);
13827 	vfs_ref(mp);
13828 	td->td_su = mp;
13829 	ast_sched(td, TDA_UFS);
13830 }
13831 
13832 static void
13833 softdep_ast_cleanup_proc(struct thread *td, int ast __unused)
13834 {
13835 	struct mount *mp;
13836 	struct ufsmount *ump;
13837 	int error;
13838 	bool req;
13839 
13840 	while ((mp = td->td_su) != NULL) {
13841 		td->td_su = NULL;
13842 		error = vfs_busy(mp, MBF_NOWAIT);
13843 		vfs_rel(mp);
13844 		if (error != 0)
13845 			return;
13846 		if (ffs_own_mount(mp) && MOUNTEDSOFTDEP(mp)) {
13847 			ump = VFSTOUFS(mp);
13848 			for (;;) {
13849 				req = false;
13850 				ACQUIRE_LOCK(ump);
13851 				if (softdep_excess_items(ump, D_INODEDEP)) {
13852 					req = true;
13853 					request_cleanup(mp, FLUSH_INODES);
13854 				}
13855 				if (softdep_excess_items(ump, D_DIRREM)) {
13856 					req = true;
13857 					request_cleanup(mp, FLUSH_BLOCKS);
13858 				}
13859 				FREE_LOCK(ump);
13860 				if (softdep_excess_items(ump, D_NEWBLK) ||
13861 				    softdep_excess_items(ump, D_ALLOCDIRECT) ||
13862 				    softdep_excess_items(ump, D_ALLOCINDIR)) {
13863 					error = vn_start_write(NULL, &mp,
13864 					    V_WAIT);
13865 					if (error == 0) {
13866 						req = true;
13867 						VFS_SYNC(mp, MNT_WAIT);
13868 						vn_finished_write(mp);
13869 					}
13870 				}
13871 				if ((td->td_pflags & TDP_KTHREAD) != 0 || !req)
13872 					break;
13873 			}
13874 		}
13875 		vfs_unbusy(mp);
13876 	}
13877 	if ((mp = td->td_su) != NULL) {
13878 		td->td_su = NULL;
13879 		vfs_rel(mp);
13880 	}
13881 }
13882 
13883 /*
13884  * If memory utilization has gotten too high, deliberately slow things
13885  * down and speed up the I/O processing.
13886  */
13887 static int
13888 request_cleanup(struct mount *mp, int resource)
13889 {
13890 	struct thread *td = curthread;
13891 	struct ufsmount *ump;
13892 
13893 	ump = VFSTOUFS(mp);
13894 	LOCK_OWNED(ump);
13895 	/*
13896 	 * We never hold up the filesystem syncer or buf daemon.
13897 	 */
13898 	if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF))
13899 		return (0);
13900 	/*
13901 	 * First check to see if the work list has gotten backlogged.
13902 	 * If it has, co-opt this process to help clean up two entries.
13903 	 * Because this process may hold inodes locked, we cannot
13904 	 * handle any remove requests that might block on a locked
13905 	 * inode as that could lead to deadlock.  We set TDP_SOFTDEP
13906 	 * to avoid recursively processing the worklist.
13907 	 */
13908 	if (ump->softdep_on_worklist > max_softdeps / 10) {
13909 		td->td_pflags |= TDP_SOFTDEP;
13910 		process_worklist_item(mp, 2, LK_NOWAIT);
13911 		td->td_pflags &= ~TDP_SOFTDEP;
13912 		stat_worklist_push += 2;
13913 		return(1);
13914 	}
13915 	/*
13916 	 * Next, we attempt to speed up the syncer process. If that
13917 	 * is successful, then we allow the process to continue.
13918 	 */
13919 	if (softdep_speedup(ump) &&
13920 	    resource != FLUSH_BLOCKS_WAIT &&
13921 	    resource != FLUSH_INODES_WAIT)
13922 		return(0);
13923 	/*
13924 	 * If we are resource constrained on inode dependencies, try
13925 	 * flushing some dirty inodes. Otherwise, we are constrained
13926 	 * by file deletions, so try accelerating flushes of directories
13927 	 * with removal dependencies. We would like to do the cleanup
13928 	 * here, but we probably hold an inode locked at this point and
13929 	 * that might deadlock against one that we try to clean. So,
13930 	 * the best that we can do is request the syncer daemon to do
13931 	 * the cleanup for us.
13932 	 */
13933 	switch (resource) {
13934 	case FLUSH_INODES:
13935 	case FLUSH_INODES_WAIT:
13936 		ACQUIRE_GBLLOCK(&lk);
13937 		stat_ino_limit_push += 1;
13938 		req_clear_inodedeps += 1;
13939 		FREE_GBLLOCK(&lk);
13940 		stat_countp = &stat_ino_limit_hit;
13941 		break;
13942 
13943 	case FLUSH_BLOCKS:
13944 	case FLUSH_BLOCKS_WAIT:
13945 		ACQUIRE_GBLLOCK(&lk);
13946 		stat_blk_limit_push += 1;
13947 		req_clear_remove += 1;
13948 		FREE_GBLLOCK(&lk);
13949 		stat_countp = &stat_blk_limit_hit;
13950 		break;
13951 
13952 	default:
13953 		panic("request_cleanup: unknown type");
13954 	}
13955 	/*
13956 	 * Hopefully the syncer daemon will catch up and awaken us.
13957 	 * We wait at most tickdelay before proceeding in any case.
13958 	 */
13959 	ACQUIRE_GBLLOCK(&lk);
13960 	FREE_LOCK(ump);
13961 	proc_waiting += 1;
13962 	if (callout_pending(&softdep_callout) == FALSE)
13963 		callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2,
13964 		    pause_timer, 0);
13965 
13966 	if ((td->td_pflags & TDP_KTHREAD) == 0)
13967 		msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0);
13968 	proc_waiting -= 1;
13969 	FREE_GBLLOCK(&lk);
13970 	ACQUIRE_LOCK(ump);
13971 	return (1);
13972 }
13973 
13974 /*
13975  * Awaken processes pausing in request_cleanup and clear proc_waiting
13976  * to indicate that there is no longer a timer running. Pause_timer
13977  * will be called with the global softdep mutex (&lk) locked.
13978  */
13979 static void
13980 pause_timer(void *arg)
13981 {
13982 
13983 	GBLLOCK_OWNED(&lk);
13984 	/*
13985 	 * The callout_ API has acquired mtx and will hold it around this
13986 	 * function call.
13987 	 */
13988 	*stat_countp += proc_waiting;
13989 	wakeup(&proc_waiting);
13990 }
13991 
13992 /*
13993  * If requested, try removing inode or removal dependencies.
13994  */
13995 static void
13996 check_clear_deps(struct mount *mp)
13997 {
13998 	struct ufsmount *ump;
13999 	bool suj_susp;
14000 
14001 	/*
14002 	 * Tell the lower layers that any TRIM or WRITE transactions that have
14003 	 * been delayed for performance reasons should proceed to help alleviate
14004 	 * the shortage faster. The race between checking req_* and the softdep
14005 	 * mutex (lk) is fine since this is an advisory operation that at most
14006 	 * causes deferred work to be done sooner.
14007 	 */
14008 	ump = VFSTOUFS(mp);
14009 	suj_susp = ump->um_softdep->sd_jblocks != NULL &&
14010 	    ump->softdep_jblocks->jb_suspended;
14011 	if (req_clear_remove || req_clear_inodedeps || suj_susp) {
14012 		FREE_LOCK(ump);
14013 		softdep_send_speedup(ump, 0, BIO_SPEEDUP_TRIM | BIO_SPEEDUP_WRITE);
14014 		ACQUIRE_LOCK(ump);
14015 	}
14016 
14017 	/*
14018 	 * If we are suspended, it may be because of our using
14019 	 * too many inodedeps, so help clear them out.
14020 	 */
14021 	if (suj_susp)
14022 		clear_inodedeps(mp);
14023 
14024 	/*
14025 	 * General requests for cleanup of backed up dependencies
14026 	 */
14027 	ACQUIRE_GBLLOCK(&lk);
14028 	if (req_clear_inodedeps) {
14029 		req_clear_inodedeps -= 1;
14030 		FREE_GBLLOCK(&lk);
14031 		clear_inodedeps(mp);
14032 		ACQUIRE_GBLLOCK(&lk);
14033 		wakeup(&proc_waiting);
14034 	}
14035 	if (req_clear_remove) {
14036 		req_clear_remove -= 1;
14037 		FREE_GBLLOCK(&lk);
14038 		clear_remove(mp);
14039 		ACQUIRE_GBLLOCK(&lk);
14040 		wakeup(&proc_waiting);
14041 	}
14042 	FREE_GBLLOCK(&lk);
14043 }
14044 
14045 /*
14046  * Flush out a directory with at least one removal dependency in an effort to
14047  * reduce the number of dirrem, freefile, and freeblks dependency structures.
14048  */
14049 static void
14050 clear_remove(struct mount *mp)
14051 {
14052 	struct pagedep_hashhead *pagedephd;
14053 	struct pagedep *pagedep;
14054 	struct ufsmount *ump;
14055 	struct vnode *vp;
14056 	struct bufobj *bo;
14057 	int error, cnt;
14058 	ino_t ino;
14059 
14060 	ump = VFSTOUFS(mp);
14061 	LOCK_OWNED(ump);
14062 
14063 	for (cnt = 0; cnt <= ump->pagedep_hash_size; cnt++) {
14064 		pagedephd = &ump->pagedep_hashtbl[ump->pagedep_nextclean++];
14065 		if (ump->pagedep_nextclean > ump->pagedep_hash_size)
14066 			ump->pagedep_nextclean = 0;
14067 		LIST_FOREACH(pagedep, pagedephd, pd_hash) {
14068 			if (LIST_EMPTY(&pagedep->pd_dirremhd))
14069 				continue;
14070 			ino = pagedep->pd_ino;
14071 			if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
14072 				continue;
14073 			FREE_LOCK(ump);
14074 
14075 			/*
14076 			 * Let unmount clear deps
14077 			 */
14078 			error = vfs_busy(mp, MBF_NOWAIT);
14079 			if (error != 0)
14080 				goto finish_write;
14081 			error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
14082 			     FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP);
14083 			vfs_unbusy(mp);
14084 			if (error != 0) {
14085 				softdep_error("clear_remove: vget", error);
14086 				goto finish_write;
14087 			}
14088 			MPASS(VTOI(vp)->i_mode != 0);
14089 			if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
14090 				softdep_error("clear_remove: fsync", error);
14091 			bo = &vp->v_bufobj;
14092 			BO_LOCK(bo);
14093 			drain_output(vp);
14094 			BO_UNLOCK(bo);
14095 			vput(vp);
14096 		finish_write:
14097 			vn_finished_write(mp);
14098 			ACQUIRE_LOCK(ump);
14099 			return;
14100 		}
14101 	}
14102 }
14103 
14104 /*
14105  * Clear out a block of dirty inodes in an effort to reduce
14106  * the number of inodedep dependency structures.
14107  */
14108 static void
14109 clear_inodedeps(struct mount *mp)
14110 {
14111 	struct inodedep_hashhead *inodedephd;
14112 	struct inodedep *inodedep;
14113 	struct ufsmount *ump;
14114 	struct vnode *vp;
14115 	struct fs *fs;
14116 	int error, cnt;
14117 	ino_t firstino, lastino, ino;
14118 
14119 	ump = VFSTOUFS(mp);
14120 	fs = ump->um_fs;
14121 	LOCK_OWNED(ump);
14122 	/*
14123 	 * Pick a random inode dependency to be cleared.
14124 	 * We will then gather up all the inodes in its block
14125 	 * that have dependencies and flush them out.
14126 	 */
14127 	for (cnt = 0; cnt <= ump->inodedep_hash_size; cnt++) {
14128 		inodedephd = &ump->inodedep_hashtbl[ump->inodedep_nextclean++];
14129 		if (ump->inodedep_nextclean > ump->inodedep_hash_size)
14130 			ump->inodedep_nextclean = 0;
14131 		if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
14132 			break;
14133 	}
14134 	if (inodedep == NULL)
14135 		return;
14136 	/*
14137 	 * Find the last inode in the block with dependencies.
14138 	 */
14139 	firstino = rounddown2(inodedep->id_ino, INOPB(fs));
14140 	for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
14141 		if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0)
14142 			break;
14143 	/*
14144 	 * Asynchronously push all but the last inode with dependencies.
14145 	 * Synchronously push the last inode with dependencies to ensure
14146 	 * that the inode block gets written to free up the inodedeps.
14147 	 */
14148 	for (ino = firstino; ino <= lastino; ino++) {
14149 		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
14150 			continue;
14151 		if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
14152 			continue;
14153 		FREE_LOCK(ump);
14154 		error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */
14155 		if (error != 0) {
14156 			vn_finished_write(mp);
14157 			ACQUIRE_LOCK(ump);
14158 			return;
14159 		}
14160 		if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
14161 		    FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP)) != 0) {
14162 			softdep_error("clear_inodedeps: vget", error);
14163 			vfs_unbusy(mp);
14164 			vn_finished_write(mp);
14165 			ACQUIRE_LOCK(ump);
14166 			return;
14167 		}
14168 		vfs_unbusy(mp);
14169 		if (VTOI(vp)->i_mode == 0) {
14170 			vgone(vp);
14171 		} else if (ino == lastino) {
14172 			do {
14173 				error = ffs_syncvnode(vp, MNT_WAIT, 0);
14174 			} while (error == ERELOOKUP);
14175 			if (error != 0)
14176 				softdep_error("clear_inodedeps: fsync1", error);
14177 		} else {
14178 			if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
14179 				softdep_error("clear_inodedeps: fsync2", error);
14180 			BO_LOCK(&vp->v_bufobj);
14181 			drain_output(vp);
14182 			BO_UNLOCK(&vp->v_bufobj);
14183 		}
14184 		vput(vp);
14185 		vn_finished_write(mp);
14186 		ACQUIRE_LOCK(ump);
14187 	}
14188 }
14189 
14190 void
14191 softdep_buf_append(struct buf *bp, struct workhead *wkhd)
14192 {
14193 	struct worklist *wk;
14194 	struct ufsmount *ump;
14195 
14196 	if ((wk = LIST_FIRST(wkhd)) == NULL)
14197 		return;
14198 	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
14199 	    ("softdep_buf_append called on non-softdep filesystem"));
14200 	ump = VFSTOUFS(wk->wk_mp);
14201 	ACQUIRE_LOCK(ump);
14202 	while ((wk = LIST_FIRST(wkhd)) != NULL) {
14203 		WORKLIST_REMOVE(wk);
14204 		WORKLIST_INSERT(&bp->b_dep, wk);
14205 	}
14206 	FREE_LOCK(ump);
14207 
14208 }
14209 
14210 void
14211 softdep_inode_append(
14212 	struct inode *ip,
14213 	struct ucred *cred,
14214 	struct workhead *wkhd)
14215 {
14216 	struct buf *bp;
14217 	struct fs *fs;
14218 	struct ufsmount *ump;
14219 	int error;
14220 
14221 	ump = ITOUMP(ip);
14222 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
14223 	    ("softdep_inode_append called on non-softdep filesystem"));
14224 	fs = ump->um_fs;
14225 	error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
14226 	    (int)fs->fs_bsize, cred, &bp);
14227 	if (error) {
14228 		bqrelse(bp);
14229 		softdep_freework(wkhd);
14230 		return;
14231 	}
14232 	softdep_buf_append(bp, wkhd);
14233 	bqrelse(bp);
14234 }
14235 
14236 void
14237 softdep_freework(struct workhead *wkhd)
14238 {
14239 	struct worklist *wk;
14240 	struct ufsmount *ump;
14241 
14242 	if ((wk = LIST_FIRST(wkhd)) == NULL)
14243 		return;
14244 	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
14245 	    ("softdep_freework called on non-softdep filesystem"));
14246 	ump = VFSTOUFS(wk->wk_mp);
14247 	ACQUIRE_LOCK(ump);
14248 	handle_jwork(wkhd);
14249 	FREE_LOCK(ump);
14250 }
14251 
14252 static struct ufsmount *
14253 softdep_bp_to_mp(struct buf *bp)
14254 {
14255 	struct mount *mp;
14256 	struct vnode *vp;
14257 
14258 	if (LIST_EMPTY(&bp->b_dep))
14259 		return (NULL);
14260 	vp = bp->b_vp;
14261 	KASSERT(vp != NULL,
14262 	    ("%s, buffer with dependencies lacks vnode", __func__));
14263 
14264 	/*
14265 	 * The ump mount point is stable after we get a correct
14266 	 * pointer, since bp is locked and this prevents unmount from
14267 	 * proceeding.  But to get to it, we cannot dereference bp->b_dep
14268 	 * head wk_mp, because we do not yet own SU ump lock and
14269 	 * workitem might be freed while dereferenced.
14270 	 */
14271 retry:
14272 	switch (vp->v_type) {
14273 	case VCHR:
14274 		VI_LOCK(vp);
14275 		mp = vp->v_type == VCHR ? vp->v_rdev->si_mountpt : NULL;
14276 		VI_UNLOCK(vp);
14277 		if (mp == NULL)
14278 			goto retry;
14279 		break;
14280 	case VREG:
14281 	case VDIR:
14282 	case VLNK:
14283 	case VFIFO:
14284 	case VSOCK:
14285 		mp = vp->v_mount;
14286 		break;
14287 	case VBLK:
14288 		vn_printf(vp, "softdep_bp_to_mp: unexpected block device\n");
14289 		/* FALLTHROUGH */
14290 	case VNON:
14291 	case VBAD:
14292 	case VMARKER:
14293 		mp = NULL;
14294 		break;
14295 	default:
14296 		vn_printf(vp, "unknown vnode type");
14297 		mp = NULL;
14298 		break;
14299 	}
14300 	return (VFSTOUFS(mp));
14301 }
14302 
14303 /*
14304  * Function to determine if the buffer has outstanding dependencies
14305  * that will cause a roll-back if the buffer is written. If wantcount
14306  * is set, return number of dependencies, otherwise just yes or no.
14307  */
14308 static int
14309 softdep_count_dependencies(struct buf *bp, int wantcount)
14310 {
14311 	struct worklist *wk;
14312 	struct ufsmount *ump;
14313 	struct bmsafemap *bmsafemap;
14314 	struct freework *freework;
14315 	struct inodedep *inodedep;
14316 	struct indirdep *indirdep;
14317 	struct freeblks *freeblks;
14318 	struct allocindir *aip;
14319 	struct pagedep *pagedep;
14320 	struct dirrem *dirrem;
14321 	struct newblk *newblk;
14322 	struct mkdir *mkdir;
14323 	struct diradd *dap;
14324 	int i, retval;
14325 
14326 	ump = softdep_bp_to_mp(bp);
14327 	if (ump == NULL)
14328 		return (0);
14329 	retval = 0;
14330 	ACQUIRE_LOCK(ump);
14331 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
14332 		switch (wk->wk_type) {
14333 		case D_INODEDEP:
14334 			inodedep = WK_INODEDEP(wk);
14335 			if ((inodedep->id_state & DEPCOMPLETE) == 0) {
14336 				/* bitmap allocation dependency */
14337 				retval += 1;
14338 				if (!wantcount)
14339 					goto out;
14340 			}
14341 			if (TAILQ_FIRST(&inodedep->id_inoupdt)) {
14342 				/* direct block pointer dependency */
14343 				retval += 1;
14344 				if (!wantcount)
14345 					goto out;
14346 			}
14347 			if (TAILQ_FIRST(&inodedep->id_extupdt)) {
14348 				/* direct block pointer dependency */
14349 				retval += 1;
14350 				if (!wantcount)
14351 					goto out;
14352 			}
14353 			if (TAILQ_FIRST(&inodedep->id_inoreflst)) {
14354 				/* Add reference dependency. */
14355 				retval += 1;
14356 				if (!wantcount)
14357 					goto out;
14358 			}
14359 			continue;
14360 
14361 		case D_INDIRDEP:
14362 			indirdep = WK_INDIRDEP(wk);
14363 
14364 			TAILQ_FOREACH(freework, &indirdep->ir_trunc, fw_next) {
14365 				/* indirect truncation dependency */
14366 				retval += 1;
14367 				if (!wantcount)
14368 					goto out;
14369 			}
14370 
14371 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
14372 				/* indirect block pointer dependency */
14373 				retval += 1;
14374 				if (!wantcount)
14375 					goto out;
14376 			}
14377 			continue;
14378 
14379 		case D_PAGEDEP:
14380 			pagedep = WK_PAGEDEP(wk);
14381 			LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
14382 				if (LIST_FIRST(&dirrem->dm_jremrefhd)) {
14383 					/* Journal remove ref dependency. */
14384 					retval += 1;
14385 					if (!wantcount)
14386 						goto out;
14387 				}
14388 			}
14389 			for (i = 0; i < DAHASHSZ; i++) {
14390 				LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
14391 					/* directory entry dependency */
14392 					retval += 1;
14393 					if (!wantcount)
14394 						goto out;
14395 				}
14396 			}
14397 			continue;
14398 
14399 		case D_BMSAFEMAP:
14400 			bmsafemap = WK_BMSAFEMAP(wk);
14401 			if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) {
14402 				/* Add reference dependency. */
14403 				retval += 1;
14404 				if (!wantcount)
14405 					goto out;
14406 			}
14407 			if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) {
14408 				/* Allocate block dependency. */
14409 				retval += 1;
14410 				if (!wantcount)
14411 					goto out;
14412 			}
14413 			continue;
14414 
14415 		case D_FREEBLKS:
14416 			freeblks = WK_FREEBLKS(wk);
14417 			if (LIST_FIRST(&freeblks->fb_jblkdephd)) {
14418 				/* Freeblk journal dependency. */
14419 				retval += 1;
14420 				if (!wantcount)
14421 					goto out;
14422 			}
14423 			continue;
14424 
14425 		case D_ALLOCDIRECT:
14426 		case D_ALLOCINDIR:
14427 			newblk = WK_NEWBLK(wk);
14428 			if (newblk->nb_jnewblk) {
14429 				/* Journal allocate dependency. */
14430 				retval += 1;
14431 				if (!wantcount)
14432 					goto out;
14433 			}
14434 			continue;
14435 
14436 		case D_MKDIR:
14437 			mkdir = WK_MKDIR(wk);
14438 			if (mkdir->md_jaddref) {
14439 				/* Journal reference dependency. */
14440 				retval += 1;
14441 				if (!wantcount)
14442 					goto out;
14443 			}
14444 			continue;
14445 
14446 		case D_FREEWORK:
14447 		case D_FREEDEP:
14448 		case D_JSEGDEP:
14449 		case D_JSEG:
14450 		case D_SBDEP:
14451 			/* never a dependency on these blocks */
14452 			continue;
14453 
14454 		default:
14455 			panic("softdep_count_dependencies: Unexpected type %s",
14456 			    TYPENAME(wk->wk_type));
14457 			/* NOTREACHED */
14458 		}
14459 	}
14460 out:
14461 	FREE_LOCK(ump);
14462 	return (retval);
14463 }
14464 
14465 /*
14466  * Acquire exclusive access to a buffer.
14467  * Must be called with a locked mtx parameter.
14468  * Return acquired buffer or NULL on failure.
14469  */
14470 static struct buf *
14471 getdirtybuf(struct buf *bp,
14472 	struct rwlock *lock,
14473 	int waitfor)
14474 {
14475 	int error;
14476 
14477 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) {
14478 		if (waitfor != MNT_WAIT)
14479 			return (NULL);
14480 		error = BUF_LOCK(bp,
14481 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, lock);
14482 		/*
14483 		 * Even if we successfully acquire bp here, we have dropped
14484 		 * lock, which may violates our guarantee.
14485 		 */
14486 		if (error == 0)
14487 			BUF_UNLOCK(bp);
14488 		else if (error != ENOLCK)
14489 			panic("getdirtybuf: inconsistent lock: %d", error);
14490 		rw_wlock(lock);
14491 		return (NULL);
14492 	}
14493 	if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
14494 		if (lock != BO_LOCKPTR(bp->b_bufobj) && waitfor == MNT_WAIT) {
14495 			rw_wunlock(lock);
14496 			BO_LOCK(bp->b_bufobj);
14497 			BUF_UNLOCK(bp);
14498 			if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
14499 				bp->b_vflags |= BV_BKGRDWAIT;
14500 				msleep(&bp->b_xflags, BO_LOCKPTR(bp->b_bufobj),
14501 				       PRIBIO | PDROP, "getbuf", 0);
14502 			} else
14503 				BO_UNLOCK(bp->b_bufobj);
14504 			rw_wlock(lock);
14505 			return (NULL);
14506 		}
14507 		BUF_UNLOCK(bp);
14508 		if (waitfor != MNT_WAIT)
14509 			return (NULL);
14510 #ifdef DEBUG_VFS_LOCKS
14511 		if (bp->b_vp->v_type != VCHR)
14512 			ASSERT_BO_WLOCKED(bp->b_bufobj);
14513 #endif
14514 		bp->b_vflags |= BV_BKGRDWAIT;
14515 		rw_sleep(&bp->b_xflags, lock, PRIBIO, "getbuf", 0);
14516 		return (NULL);
14517 	}
14518 	if ((bp->b_flags & B_DELWRI) == 0) {
14519 		BUF_UNLOCK(bp);
14520 		return (NULL);
14521 	}
14522 	bremfree(bp);
14523 	return (bp);
14524 }
14525 
14526 /*
14527  * Check if it is safe to suspend the file system now.  On entry,
14528  * the vnode interlock for devvp should be held.  Return 0 with
14529  * the mount interlock held if the file system can be suspended now,
14530  * otherwise return EAGAIN with the mount interlock held.
14531  */
14532 int
14533 softdep_check_suspend(struct mount *mp,
14534 		      struct vnode *devvp,
14535 		      int softdep_depcnt,
14536 		      int softdep_accdepcnt,
14537 		      int secondary_writes,
14538 		      int secondary_accwrites)
14539 {
14540 	struct buf *bp;
14541 	struct bufobj *bo;
14542 	struct ufsmount *ump;
14543 	struct inodedep *inodedep;
14544 	struct indirdep *indirdep;
14545 	struct worklist *wk, *nextwk;
14546 	int error, unlinked;
14547 
14548 	bo = &devvp->v_bufobj;
14549 	ASSERT_BO_WLOCKED(bo);
14550 
14551 	/*
14552 	 * If we are not running with soft updates, then we need only
14553 	 * deal with secondary writes as we try to suspend.
14554 	 */
14555 	if (MOUNTEDSOFTDEP(mp) == 0) {
14556 		MNT_ILOCK(mp);
14557 		while (mp->mnt_secondary_writes != 0) {
14558 			BO_UNLOCK(bo);
14559 			msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
14560 			    (PUSER - 1) | PDROP, "secwr", 0);
14561 			BO_LOCK(bo);
14562 			MNT_ILOCK(mp);
14563 		}
14564 
14565 		/*
14566 		 * Reasons for needing more work before suspend:
14567 		 * - Dirty buffers on devvp.
14568 		 * - Secondary writes occurred after start of vnode sync loop
14569 		 */
14570 		error = 0;
14571 		if (bo->bo_numoutput > 0 ||
14572 		    bo->bo_dirty.bv_cnt > 0 ||
14573 		    secondary_writes != 0 ||
14574 		    mp->mnt_secondary_writes != 0 ||
14575 		    secondary_accwrites != mp->mnt_secondary_accwrites)
14576 			error = EAGAIN;
14577 		BO_UNLOCK(bo);
14578 		return (error);
14579 	}
14580 
14581 	/*
14582 	 * If we are running with soft updates, then we need to coordinate
14583 	 * with them as we try to suspend.
14584 	 */
14585 	ump = VFSTOUFS(mp);
14586 	for (;;) {
14587 		if (!TRY_ACQUIRE_LOCK(ump)) {
14588 			BO_UNLOCK(bo);
14589 			ACQUIRE_LOCK(ump);
14590 			FREE_LOCK(ump);
14591 			BO_LOCK(bo);
14592 			continue;
14593 		}
14594 		MNT_ILOCK(mp);
14595 		if (mp->mnt_secondary_writes != 0) {
14596 			FREE_LOCK(ump);
14597 			BO_UNLOCK(bo);
14598 			msleep(&mp->mnt_secondary_writes,
14599 			       MNT_MTX(mp),
14600 			       (PUSER - 1) | PDROP, "secwr", 0);
14601 			BO_LOCK(bo);
14602 			continue;
14603 		}
14604 		break;
14605 	}
14606 
14607 	unlinked = 0;
14608 	if (MOUNTEDSUJ(mp)) {
14609 		for (inodedep = TAILQ_FIRST(&ump->softdep_unlinked);
14610 		    inodedep != NULL;
14611 		    inodedep = TAILQ_NEXT(inodedep, id_unlinked)) {
14612 			if ((inodedep->id_state & (UNLINKED | UNLINKLINKS |
14613 			    UNLINKONLIST)) != (UNLINKED | UNLINKLINKS |
14614 			    UNLINKONLIST) ||
14615 			    !check_inodedep_free(inodedep))
14616 				continue;
14617 			unlinked++;
14618 		}
14619 	}
14620 
14621 	/*
14622 	 * XXX Check for orphaned indirdep dependency structures.
14623 	 *
14624 	 * During forcible unmount after a disk failure there is a
14625 	 * bug that causes one or more indirdep dependency structures
14626 	 * to fail to be deallocated. We check for them here and clean
14627 	 * them up so that the unmount can succeed.
14628 	 */
14629 	if ((ump->um_flags & UM_FSFAIL_CLEANUP) != 0 && ump->softdep_deps > 0 &&
14630 	    ump->softdep_deps == ump->softdep_curdeps[D_INDIRDEP]) {
14631 		LIST_FOREACH_SAFE(wk, &ump->softdep_alldeps[D_INDIRDEP],
14632 		    wk_all, nextwk) {
14633 			indirdep = WK_INDIRDEP(wk);
14634 			if ((indirdep->ir_state & (GOINGAWAY | DEPCOMPLETE)) !=
14635 			    (GOINGAWAY | DEPCOMPLETE) ||
14636 			    !TAILQ_EMPTY(&indirdep->ir_trunc) ||
14637 			    !LIST_EMPTY(&indirdep->ir_completehd) ||
14638 			    !LIST_EMPTY(&indirdep->ir_writehd) ||
14639 			    !LIST_EMPTY(&indirdep->ir_donehd) ||
14640 			    !LIST_EMPTY(&indirdep->ir_deplisthd) ||
14641 			    indirdep->ir_saveddata != NULL ||
14642 			    indirdep->ir_savebp == NULL) {
14643 				printf("%s: skipping orphaned indirdep %p\n",
14644 				    __FUNCTION__, indirdep);
14645 				continue;
14646 			}
14647 			printf("%s: freeing orphaned indirdep %p\n",
14648 			    __FUNCTION__, indirdep);
14649 			bp = indirdep->ir_savebp;
14650 			indirdep->ir_savebp = NULL;
14651 			free_indirdep(indirdep);
14652 			FREE_LOCK(ump);
14653 			brelse(bp);
14654 			while (!TRY_ACQUIRE_LOCK(ump)) {
14655 				BO_UNLOCK(bo);
14656 				ACQUIRE_LOCK(ump);
14657 				FREE_LOCK(ump);
14658 				BO_LOCK(bo);
14659 			}
14660 		}
14661 	}
14662 
14663 	/*
14664 	 * Reasons for needing more work before suspend:
14665 	 * - Dirty buffers on devvp.
14666 	 * - Dependency structures still exist
14667 	 * - Softdep activity occurred after start of vnode sync loop
14668 	 * - Secondary writes occurred after start of vnode sync loop
14669 	 */
14670 	error = 0;
14671 	if (bo->bo_numoutput > 0 ||
14672 	    bo->bo_dirty.bv_cnt > 0 ||
14673 	    softdep_depcnt != unlinked ||
14674 	    ump->softdep_deps != unlinked ||
14675 	    softdep_accdepcnt != ump->softdep_accdeps ||
14676 	    secondary_writes != 0 ||
14677 	    mp->mnt_secondary_writes != 0 ||
14678 	    secondary_accwrites != mp->mnt_secondary_accwrites)
14679 		error = EAGAIN;
14680 	FREE_LOCK(ump);
14681 	BO_UNLOCK(bo);
14682 	return (error);
14683 }
14684 
14685 /*
14686  * Get the number of dependency structures for the file system, both
14687  * the current number and the total number allocated.  These will
14688  * later be used to detect that softdep processing has occurred.
14689  */
14690 void
14691 softdep_get_depcounts(struct mount *mp,
14692 		      int *softdep_depsp,
14693 		      int *softdep_accdepsp)
14694 {
14695 	struct ufsmount *ump;
14696 
14697 	if (MOUNTEDSOFTDEP(mp) == 0) {
14698 		*softdep_depsp = 0;
14699 		*softdep_accdepsp = 0;
14700 		return;
14701 	}
14702 	ump = VFSTOUFS(mp);
14703 	ACQUIRE_LOCK(ump);
14704 	*softdep_depsp = ump->softdep_deps;
14705 	*softdep_accdepsp = ump->softdep_accdeps;
14706 	FREE_LOCK(ump);
14707 }
14708 
14709 /*
14710  * Wait for pending output on a vnode to complete.
14711  */
14712 static void
14713 drain_output(struct vnode *vp)
14714 {
14715 
14716 	ASSERT_VOP_LOCKED(vp, "drain_output");
14717 	(void)bufobj_wwait(&vp->v_bufobj, 0, 0);
14718 }
14719 
14720 /*
14721  * Called whenever a buffer that is being invalidated or reallocated
14722  * contains dependencies. This should only happen if an I/O error has
14723  * occurred. The routine is called with the buffer locked.
14724  */
14725 static void
14726 softdep_deallocate_dependencies(struct buf *bp)
14727 {
14728 
14729 	if ((bp->b_ioflags & BIO_ERROR) == 0)
14730 		panic("softdep_deallocate_dependencies: dangling deps");
14731 	if (bp->b_vp != NULL && bp->b_vp->v_mount != NULL)
14732 		softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error);
14733 	else
14734 		printf("softdep_deallocate_dependencies: "
14735 		    "got error %d while accessing filesystem\n", bp->b_error);
14736 	if (bp->b_error != ENXIO)
14737 		panic("softdep_deallocate_dependencies: unrecovered I/O error");
14738 }
14739 
14740 /*
14741  * Function to handle asynchronous write errors in the filesystem.
14742  */
14743 static void
14744 softdep_error(char *func, int error)
14745 {
14746 
14747 	/* XXX should do something better! */
14748 	printf("%s: got error %d while accessing filesystem\n", func, error);
14749 }
14750 
14751 #ifdef DDB
14752 
14753 /* exported to ffs_vfsops.c */
14754 extern void db_print_ffs(struct ufsmount *ump);
14755 void
14756 db_print_ffs(struct ufsmount *ump)
14757 {
14758 	db_printf("mp %p (%s) devvp %p\n", ump->um_mountp,
14759 	    ump->um_mountp->mnt_stat.f_mntonname, ump->um_devvp);
14760 	db_printf("    fs %p ", ump->um_fs);
14761 
14762 	if (ump->um_softdep != NULL) {
14763 		db_printf("su_wl %d su_deps %d su_req %d\n",
14764 		    ump->softdep_on_worklist, ump->softdep_deps,
14765 		    ump->softdep_req);
14766 	} else {
14767 		db_printf("su disabled\n");
14768 	}
14769 }
14770 
14771 static void
14772 worklist_print(struct worklist *wk, int verbose)
14773 {
14774 
14775 	if (!verbose) {
14776 		db_printf("%s: %p state 0x%b\n", TYPENAME(wk->wk_type), wk,
14777 		    wk->wk_state, PRINT_SOFTDEP_FLAGS);
14778 		return;
14779 	}
14780 	db_printf("worklist: %p type %s state 0x%b next %p\n    ", wk,
14781 	    TYPENAME(wk->wk_type), wk->wk_state, PRINT_SOFTDEP_FLAGS,
14782 	    LIST_NEXT(wk, wk_list));
14783 	db_print_ffs(VFSTOUFS(wk->wk_mp));
14784 }
14785 
14786 static void
14787 inodedep_print(struct inodedep *inodedep, int verbose)
14788 {
14789 
14790 	worklist_print(&inodedep->id_list, 0);
14791 	db_printf("    fs %p ino %jd inoblk %jd delta %jd nlink %jd\n",
14792 	    inodedep->id_fs,
14793 	    (intmax_t)inodedep->id_ino,
14794 	    (intmax_t)fsbtodb(inodedep->id_fs,
14795 	        ino_to_fsba(inodedep->id_fs, inodedep->id_ino)),
14796 	    (intmax_t)inodedep->id_nlinkdelta,
14797 	    (intmax_t)inodedep->id_savednlink);
14798 
14799 	if (verbose == 0)
14800 		return;
14801 
14802 	db_printf("    bmsafemap %p, mkdiradd %p, inoreflst %p\n",
14803 	    inodedep->id_bmsafemap,
14804 	    inodedep->id_mkdiradd,
14805 	    TAILQ_FIRST(&inodedep->id_inoreflst));
14806 	db_printf("    dirremhd %p, pendinghd %p, bufwait %p\n",
14807 	    LIST_FIRST(&inodedep->id_dirremhd),
14808 	    LIST_FIRST(&inodedep->id_pendinghd),
14809 	    LIST_FIRST(&inodedep->id_bufwait));
14810 	db_printf("    inowait %p, inoupdt %p, newinoupdt %p\n",
14811 	    LIST_FIRST(&inodedep->id_inowait),
14812 	    TAILQ_FIRST(&inodedep->id_inoupdt),
14813 	    TAILQ_FIRST(&inodedep->id_newinoupdt));
14814 	db_printf("    extupdt %p, newextupdt %p, freeblklst %p\n",
14815 	    TAILQ_FIRST(&inodedep->id_extupdt),
14816 	    TAILQ_FIRST(&inodedep->id_newextupdt),
14817 	    TAILQ_FIRST(&inodedep->id_freeblklst));
14818 	db_printf("    saveino %p, savedsize %jd, savedextsize %jd\n",
14819 	    inodedep->id_savedino1,
14820 	    (intmax_t)inodedep->id_savedsize,
14821 	    (intmax_t)inodedep->id_savedextsize);
14822 }
14823 
14824 static void
14825 newblk_print(struct newblk *nbp)
14826 {
14827 
14828 	worklist_print(&nbp->nb_list, 0);
14829 	db_printf("    newblkno %jd\n", (intmax_t)nbp->nb_newblkno);
14830 	db_printf("    jnewblk %p, bmsafemap %p, freefrag %p\n",
14831 	    &nbp->nb_jnewblk,
14832 	    &nbp->nb_bmsafemap,
14833 	    &nbp->nb_freefrag);
14834 	db_printf("    indirdeps %p, newdirblk %p, jwork %p\n",
14835 	    LIST_FIRST(&nbp->nb_indirdeps),
14836 	    LIST_FIRST(&nbp->nb_newdirblk),
14837 	    LIST_FIRST(&nbp->nb_jwork));
14838 }
14839 
14840 static void
14841 allocdirect_print(struct allocdirect *adp)
14842 {
14843 
14844 	newblk_print(&adp->ad_block);
14845 	db_printf("    oldblkno %jd, oldsize %ld, newsize %ld\n",
14846 	    adp->ad_oldblkno, adp->ad_oldsize, adp->ad_newsize);
14847 	db_printf("    offset %d, inodedep %p\n",
14848 	    adp->ad_offset, adp->ad_inodedep);
14849 }
14850 
14851 static void
14852 allocindir_print(struct allocindir *aip)
14853 {
14854 
14855 	newblk_print(&aip->ai_block);
14856 	db_printf("    oldblkno %jd, lbn %jd\n",
14857 	    (intmax_t)aip->ai_oldblkno, (intmax_t)aip->ai_lbn);
14858 	db_printf("    offset %d, indirdep %p\n",
14859 	    aip->ai_offset, aip->ai_indirdep);
14860 }
14861 
14862 static void
14863 mkdir_print(struct mkdir *mkdir)
14864 {
14865 
14866 	worklist_print(&mkdir->md_list, 0);
14867 	db_printf("    diradd %p, jaddref %p, buf %p\n",
14868 		mkdir->md_diradd, mkdir->md_jaddref, mkdir->md_buf);
14869 }
14870 
14871 DB_SHOW_COMMAND(sd_inodedep, db_show_sd_inodedep)
14872 {
14873 
14874 	if (have_addr == 0) {
14875 		db_printf("inodedep address required\n");
14876 		return;
14877 	}
14878 	inodedep_print((struct inodedep*)addr, 1);
14879 }
14880 
14881 DB_SHOW_COMMAND(sd_allinodedeps, db_show_sd_allinodedeps)
14882 {
14883 	struct inodedep_hashhead *inodedephd;
14884 	struct inodedep *inodedep;
14885 	struct ufsmount *ump;
14886 	int cnt;
14887 
14888 	if (have_addr == 0) {
14889 		db_printf("ufsmount address required\n");
14890 		return;
14891 	}
14892 	ump = (struct ufsmount *)addr;
14893 	for (cnt = 0; cnt < ump->inodedep_hash_size; cnt++) {
14894 		inodedephd = &ump->inodedep_hashtbl[cnt];
14895 		LIST_FOREACH(inodedep, inodedephd, id_hash) {
14896 			inodedep_print(inodedep, 0);
14897 		}
14898 	}
14899 }
14900 
14901 DB_SHOW_COMMAND(sd_worklist, db_show_sd_worklist)
14902 {
14903 
14904 	if (have_addr == 0) {
14905 		db_printf("worklist address required\n");
14906 		return;
14907 	}
14908 	worklist_print((struct worklist *)addr, 1);
14909 }
14910 
14911 DB_SHOW_COMMAND(sd_workhead, db_show_sd_workhead)
14912 {
14913 	struct worklist *wk;
14914 	struct workhead *wkhd;
14915 
14916 	if (have_addr == 0) {
14917 		db_printf("worklist address required "
14918 		    "(for example value in bp->b_dep)\n");
14919 		return;
14920 	}
14921 	/*
14922 	 * We often do not have the address of the worklist head but
14923 	 * instead a pointer to its first entry (e.g., we have the
14924 	 * contents of bp->b_dep rather than &bp->b_dep). But the back
14925 	 * pointer of bp->b_dep will point at the head of the list, so
14926 	 * we cheat and use that instead. If we are in the middle of
14927 	 * a list we will still get the same result, so nothing
14928 	 * unexpected will result.
14929 	 */
14930 	wk = (struct worklist *)addr;
14931 	if (wk == NULL)
14932 		return;
14933 	wkhd = (struct workhead *)wk->wk_list.le_prev;
14934 	LIST_FOREACH(wk, wkhd, wk_list) {
14935 		switch(wk->wk_type) {
14936 		case D_INODEDEP:
14937 			inodedep_print(WK_INODEDEP(wk), 0);
14938 			continue;
14939 		case D_ALLOCDIRECT:
14940 			allocdirect_print(WK_ALLOCDIRECT(wk));
14941 			continue;
14942 		case D_ALLOCINDIR:
14943 			allocindir_print(WK_ALLOCINDIR(wk));
14944 			continue;
14945 		case D_MKDIR:
14946 			mkdir_print(WK_MKDIR(wk));
14947 			continue;
14948 		default:
14949 			worklist_print(wk, 0);
14950 			continue;
14951 		}
14952 	}
14953 }
14954 
14955 DB_SHOW_COMMAND(sd_mkdir, db_show_sd_mkdir)
14956 {
14957 	if (have_addr == 0) {
14958 		db_printf("mkdir address required\n");
14959 		return;
14960 	}
14961 	mkdir_print((struct mkdir *)addr);
14962 }
14963 
14964 DB_SHOW_COMMAND(sd_mkdir_list, db_show_sd_mkdir_list)
14965 {
14966 	struct mkdirlist *mkdirlisthd;
14967 	struct mkdir *mkdir;
14968 
14969 	if (have_addr == 0) {
14970 		db_printf("mkdir listhead address required\n");
14971 		return;
14972 	}
14973 	mkdirlisthd = (struct mkdirlist *)addr;
14974 	LIST_FOREACH(mkdir, mkdirlisthd, md_mkdirs) {
14975 		mkdir_print(mkdir);
14976 		if (mkdir->md_diradd != NULL) {
14977 			db_printf("    ");
14978 			worklist_print(&mkdir->md_diradd->da_list, 0);
14979 		}
14980 		if (mkdir->md_jaddref != NULL) {
14981 			db_printf("    ");
14982 			worklist_print(&mkdir->md_jaddref->ja_list, 0);
14983 		}
14984 	}
14985 }
14986 
14987 DB_SHOW_COMMAND(sd_allocdirect, db_show_sd_allocdirect)
14988 {
14989 	if (have_addr == 0) {
14990 		db_printf("allocdirect address required\n");
14991 		return;
14992 	}
14993 	allocdirect_print((struct allocdirect *)addr);
14994 }
14995 
14996 DB_SHOW_COMMAND(sd_allocindir, db_show_sd_allocindir)
14997 {
14998 	if (have_addr == 0) {
14999 		db_printf("allocindir address required\n");
15000 		return;
15001 	}
15002 	allocindir_print((struct allocindir *)addr);
15003 }
15004 
15005 #endif /* DDB */
15006 
15007 #endif /* SOFTUPDATES */
15008