1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright 1998, 2000 Marshall Kirk McKusick. 5 * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org> 6 * All rights reserved. 7 * 8 * The soft updates code is derived from the appendix of a University 9 * of Michigan technical report (Gregory R. Ganger and Yale N. Patt, 10 * "Soft Updates: A Solution to the Metadata Update Problem in File 11 * Systems", CSE-TR-254-95, August 1995). 12 * 13 * Further information about soft updates can be obtained from: 14 * 15 * Marshall Kirk McKusick http://www.mckusick.com/softdep/ 16 * 1614 Oxford Street mckusick@mckusick.com 17 * Berkeley, CA 94709-1608 +1-510-843-9542 18 * USA 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * 1. Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * 2. Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in the 28 * documentation and/or other materials provided with the distribution. 29 * 30 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 31 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 32 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 33 * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, 34 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 35 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 36 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 37 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 38 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 39 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 40 * 41 * from: @(#)ffs_softdep.c 9.59 (McKusick) 6/21/00 42 */ 43 44 #include <sys/cdefs.h> 45 __FBSDID("$FreeBSD$"); 46 47 #include "opt_ffs.h" 48 #include "opt_quota.h" 49 #include "opt_ddb.h" 50 51 #include <sys/param.h> 52 #include <sys/kernel.h> 53 #include <sys/systm.h> 54 #include <sys/bio.h> 55 #include <sys/buf.h> 56 #include <sys/kdb.h> 57 #include <sys/kthread.h> 58 #include <sys/ktr.h> 59 #include <sys/limits.h> 60 #include <sys/lock.h> 61 #include <sys/malloc.h> 62 #include <sys/mount.h> 63 #include <sys/mutex.h> 64 #include <sys/namei.h> 65 #include <sys/priv.h> 66 #include <sys/proc.h> 67 #include <sys/racct.h> 68 #include <sys/rwlock.h> 69 #include <sys/stat.h> 70 #include <sys/sysctl.h> 71 #include <sys/syslog.h> 72 #include <sys/vnode.h> 73 #include <sys/conf.h> 74 75 #include <ufs/ufs/dir.h> 76 #include <ufs/ufs/extattr.h> 77 #include <ufs/ufs/quota.h> 78 #include <ufs/ufs/inode.h> 79 #include <ufs/ufs/ufsmount.h> 80 #include <ufs/ffs/fs.h> 81 #include <ufs/ffs/softdep.h> 82 #include <ufs/ffs/ffs_extern.h> 83 #include <ufs/ufs/ufs_extern.h> 84 85 #include <vm/vm.h> 86 #include <vm/vm_extern.h> 87 #include <vm/vm_object.h> 88 89 #include <geom/geom.h> 90 91 #include <ddb/ddb.h> 92 93 #define KTR_SUJ 0 /* Define to KTR_SPARE. */ 94 95 #ifndef SOFTUPDATES 96 97 int 98 softdep_flushfiles(oldmnt, flags, td) 99 struct mount *oldmnt; 100 int flags; 101 struct thread *td; 102 { 103 104 panic("softdep_flushfiles called"); 105 } 106 107 int 108 softdep_mount(devvp, mp, fs, cred) 109 struct vnode *devvp; 110 struct mount *mp; 111 struct fs *fs; 112 struct ucred *cred; 113 { 114 115 return (0); 116 } 117 118 void 119 softdep_initialize() 120 { 121 122 return; 123 } 124 125 void 126 softdep_uninitialize() 127 { 128 129 return; 130 } 131 132 void 133 softdep_unmount(mp) 134 struct mount *mp; 135 { 136 137 panic("softdep_unmount called"); 138 } 139 140 void 141 softdep_setup_sbupdate(ump, fs, bp) 142 struct ufsmount *ump; 143 struct fs *fs; 144 struct buf *bp; 145 { 146 147 panic("softdep_setup_sbupdate called"); 148 } 149 150 void 151 softdep_setup_inomapdep(bp, ip, newinum, mode) 152 struct buf *bp; 153 struct inode *ip; 154 ino_t newinum; 155 int mode; 156 { 157 158 panic("softdep_setup_inomapdep called"); 159 } 160 161 void 162 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags) 163 struct buf *bp; 164 struct mount *mp; 165 ufs2_daddr_t newblkno; 166 int frags; 167 int oldfrags; 168 { 169 170 panic("softdep_setup_blkmapdep called"); 171 } 172 173 void 174 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 175 struct inode *ip; 176 ufs_lbn_t lbn; 177 ufs2_daddr_t newblkno; 178 ufs2_daddr_t oldblkno; 179 long newsize; 180 long oldsize; 181 struct buf *bp; 182 { 183 184 panic("softdep_setup_allocdirect called"); 185 } 186 187 void 188 softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 189 struct inode *ip; 190 ufs_lbn_t lbn; 191 ufs2_daddr_t newblkno; 192 ufs2_daddr_t oldblkno; 193 long newsize; 194 long oldsize; 195 struct buf *bp; 196 { 197 198 panic("softdep_setup_allocext called"); 199 } 200 201 void 202 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 203 struct inode *ip; 204 ufs_lbn_t lbn; 205 struct buf *bp; 206 int ptrno; 207 ufs2_daddr_t newblkno; 208 ufs2_daddr_t oldblkno; 209 struct buf *nbp; 210 { 211 212 panic("softdep_setup_allocindir_page called"); 213 } 214 215 void 216 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 217 struct buf *nbp; 218 struct inode *ip; 219 struct buf *bp; 220 int ptrno; 221 ufs2_daddr_t newblkno; 222 { 223 224 panic("softdep_setup_allocindir_meta called"); 225 } 226 227 void 228 softdep_journal_freeblocks(ip, cred, length, flags) 229 struct inode *ip; 230 struct ucred *cred; 231 off_t length; 232 int flags; 233 { 234 235 panic("softdep_journal_freeblocks called"); 236 } 237 238 void 239 softdep_journal_fsync(ip) 240 struct inode *ip; 241 { 242 243 panic("softdep_journal_fsync called"); 244 } 245 246 void 247 softdep_setup_freeblocks(ip, length, flags) 248 struct inode *ip; 249 off_t length; 250 int flags; 251 { 252 253 panic("softdep_setup_freeblocks called"); 254 } 255 256 void 257 softdep_freefile(pvp, ino, mode) 258 struct vnode *pvp; 259 ino_t ino; 260 int mode; 261 { 262 263 panic("softdep_freefile called"); 264 } 265 266 int 267 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk) 268 struct buf *bp; 269 struct inode *dp; 270 off_t diroffset; 271 ino_t newinum; 272 struct buf *newdirbp; 273 int isnewblk; 274 { 275 276 panic("softdep_setup_directory_add called"); 277 } 278 279 void 280 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize) 281 struct buf *bp; 282 struct inode *dp; 283 caddr_t base; 284 caddr_t oldloc; 285 caddr_t newloc; 286 int entrysize; 287 { 288 289 panic("softdep_change_directoryentry_offset called"); 290 } 291 292 void 293 softdep_setup_remove(bp, dp, ip, isrmdir) 294 struct buf *bp; 295 struct inode *dp; 296 struct inode *ip; 297 int isrmdir; 298 { 299 300 panic("softdep_setup_remove called"); 301 } 302 303 void 304 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 305 struct buf *bp; 306 struct inode *dp; 307 struct inode *ip; 308 ino_t newinum; 309 int isrmdir; 310 { 311 312 panic("softdep_setup_directory_change called"); 313 } 314 315 void 316 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd) 317 struct mount *mp; 318 struct buf *bp; 319 ufs2_daddr_t blkno; 320 int frags; 321 struct workhead *wkhd; 322 { 323 324 panic("%s called", __FUNCTION__); 325 } 326 327 void 328 softdep_setup_inofree(mp, bp, ino, wkhd) 329 struct mount *mp; 330 struct buf *bp; 331 ino_t ino; 332 struct workhead *wkhd; 333 { 334 335 panic("%s called", __FUNCTION__); 336 } 337 338 void 339 softdep_setup_unlink(dp, ip) 340 struct inode *dp; 341 struct inode *ip; 342 { 343 344 panic("%s called", __FUNCTION__); 345 } 346 347 void 348 softdep_setup_link(dp, ip) 349 struct inode *dp; 350 struct inode *ip; 351 { 352 353 panic("%s called", __FUNCTION__); 354 } 355 356 void 357 softdep_revert_link(dp, ip) 358 struct inode *dp; 359 struct inode *ip; 360 { 361 362 panic("%s called", __FUNCTION__); 363 } 364 365 void 366 softdep_setup_rmdir(dp, ip) 367 struct inode *dp; 368 struct inode *ip; 369 { 370 371 panic("%s called", __FUNCTION__); 372 } 373 374 void 375 softdep_revert_rmdir(dp, ip) 376 struct inode *dp; 377 struct inode *ip; 378 { 379 380 panic("%s called", __FUNCTION__); 381 } 382 383 void 384 softdep_setup_create(dp, ip) 385 struct inode *dp; 386 struct inode *ip; 387 { 388 389 panic("%s called", __FUNCTION__); 390 } 391 392 void 393 softdep_revert_create(dp, ip) 394 struct inode *dp; 395 struct inode *ip; 396 { 397 398 panic("%s called", __FUNCTION__); 399 } 400 401 void 402 softdep_setup_mkdir(dp, ip) 403 struct inode *dp; 404 struct inode *ip; 405 { 406 407 panic("%s called", __FUNCTION__); 408 } 409 410 void 411 softdep_revert_mkdir(dp, ip) 412 struct inode *dp; 413 struct inode *ip; 414 { 415 416 panic("%s called", __FUNCTION__); 417 } 418 419 void 420 softdep_setup_dotdot_link(dp, ip) 421 struct inode *dp; 422 struct inode *ip; 423 { 424 425 panic("%s called", __FUNCTION__); 426 } 427 428 int 429 softdep_prealloc(vp, waitok) 430 struct vnode *vp; 431 int waitok; 432 { 433 434 panic("%s called", __FUNCTION__); 435 } 436 437 int 438 softdep_journal_lookup(mp, vpp) 439 struct mount *mp; 440 struct vnode **vpp; 441 { 442 443 return (ENOENT); 444 } 445 446 void 447 softdep_change_linkcnt(ip) 448 struct inode *ip; 449 { 450 451 panic("softdep_change_linkcnt called"); 452 } 453 454 void 455 softdep_load_inodeblock(ip) 456 struct inode *ip; 457 { 458 459 panic("softdep_load_inodeblock called"); 460 } 461 462 void 463 softdep_update_inodeblock(ip, bp, waitfor) 464 struct inode *ip; 465 struct buf *bp; 466 int waitfor; 467 { 468 469 panic("softdep_update_inodeblock called"); 470 } 471 472 int 473 softdep_fsync(vp) 474 struct vnode *vp; /* the "in_core" copy of the inode */ 475 { 476 477 return (0); 478 } 479 480 void 481 softdep_fsync_mountdev(vp) 482 struct vnode *vp; 483 { 484 485 return; 486 } 487 488 int 489 softdep_flushworklist(oldmnt, countp, td) 490 struct mount *oldmnt; 491 int *countp; 492 struct thread *td; 493 { 494 495 *countp = 0; 496 return (0); 497 } 498 499 int 500 softdep_sync_metadata(struct vnode *vp) 501 { 502 503 panic("softdep_sync_metadata called"); 504 } 505 506 int 507 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor) 508 { 509 510 panic("softdep_sync_buf called"); 511 } 512 513 int 514 softdep_slowdown(vp) 515 struct vnode *vp; 516 { 517 518 panic("softdep_slowdown called"); 519 } 520 521 int 522 softdep_request_cleanup(fs, vp, cred, resource) 523 struct fs *fs; 524 struct vnode *vp; 525 struct ucred *cred; 526 int resource; 527 { 528 529 return (0); 530 } 531 532 int 533 softdep_check_suspend(struct mount *mp, 534 struct vnode *devvp, 535 int softdep_depcnt, 536 int softdep_accdepcnt, 537 int secondary_writes, 538 int secondary_accwrites) 539 { 540 struct bufobj *bo; 541 int error; 542 543 (void) softdep_depcnt, 544 (void) softdep_accdepcnt; 545 546 bo = &devvp->v_bufobj; 547 ASSERT_BO_WLOCKED(bo); 548 549 MNT_ILOCK(mp); 550 while (mp->mnt_secondary_writes != 0) { 551 BO_UNLOCK(bo); 552 msleep(&mp->mnt_secondary_writes, MNT_MTX(mp), 553 (PUSER - 1) | PDROP, "secwr", 0); 554 BO_LOCK(bo); 555 MNT_ILOCK(mp); 556 } 557 558 /* 559 * Reasons for needing more work before suspend: 560 * - Dirty buffers on devvp. 561 * - Secondary writes occurred after start of vnode sync loop 562 */ 563 error = 0; 564 if (bo->bo_numoutput > 0 || 565 bo->bo_dirty.bv_cnt > 0 || 566 secondary_writes != 0 || 567 mp->mnt_secondary_writes != 0 || 568 secondary_accwrites != mp->mnt_secondary_accwrites) 569 error = EAGAIN; 570 BO_UNLOCK(bo); 571 return (error); 572 } 573 574 void 575 softdep_get_depcounts(struct mount *mp, 576 int *softdepactivep, 577 int *softdepactiveaccp) 578 { 579 (void) mp; 580 *softdepactivep = 0; 581 *softdepactiveaccp = 0; 582 } 583 584 void 585 softdep_buf_append(bp, wkhd) 586 struct buf *bp; 587 struct workhead *wkhd; 588 { 589 590 panic("softdep_buf_appendwork called"); 591 } 592 593 void 594 softdep_inode_append(ip, cred, wkhd) 595 struct inode *ip; 596 struct ucred *cred; 597 struct workhead *wkhd; 598 { 599 600 panic("softdep_inode_appendwork called"); 601 } 602 603 void 604 softdep_freework(wkhd) 605 struct workhead *wkhd; 606 { 607 608 panic("softdep_freework called"); 609 } 610 611 #else 612 613 FEATURE(softupdates, "FFS soft-updates support"); 614 615 static SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW, 0, 616 "soft updates stats"); 617 static SYSCTL_NODE(_debug_softdep, OID_AUTO, total, CTLFLAG_RW, 0, 618 "total dependencies allocated"); 619 static SYSCTL_NODE(_debug_softdep, OID_AUTO, highuse, CTLFLAG_RW, 0, 620 "high use dependencies allocated"); 621 static SYSCTL_NODE(_debug_softdep, OID_AUTO, current, CTLFLAG_RW, 0, 622 "current dependencies allocated"); 623 static SYSCTL_NODE(_debug_softdep, OID_AUTO, write, CTLFLAG_RW, 0, 624 "current dependencies written"); 625 626 unsigned long dep_current[D_LAST + 1]; 627 unsigned long dep_highuse[D_LAST + 1]; 628 unsigned long dep_total[D_LAST + 1]; 629 unsigned long dep_write[D_LAST + 1]; 630 631 #define SOFTDEP_TYPE(type, str, long) \ 632 static MALLOC_DEFINE(M_ ## type, #str, long); \ 633 SYSCTL_ULONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD, \ 634 &dep_total[D_ ## type], 0, ""); \ 635 SYSCTL_ULONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD, \ 636 &dep_current[D_ ## type], 0, ""); \ 637 SYSCTL_ULONG(_debug_softdep_highuse, OID_AUTO, str, CTLFLAG_RD, \ 638 &dep_highuse[D_ ## type], 0, ""); \ 639 SYSCTL_ULONG(_debug_softdep_write, OID_AUTO, str, CTLFLAG_RD, \ 640 &dep_write[D_ ## type], 0, ""); 641 642 SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies"); 643 SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies"); 644 SOFTDEP_TYPE(BMSAFEMAP, bmsafemap, 645 "Block or frag allocated from cyl group map"); 646 SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency"); 647 SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode"); 648 SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies"); 649 SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block"); 650 SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode"); 651 SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode"); 652 SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated"); 653 SOFTDEP_TYPE(DIRADD, diradd, "New directory entry"); 654 SOFTDEP_TYPE(MKDIR, mkdir, "New directory"); 655 SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted"); 656 SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block"); 657 SOFTDEP_TYPE(FREEWORK, freework, "free an inode block"); 658 SOFTDEP_TYPE(FREEDEP, freedep, "track a block free"); 659 SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add"); 660 SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove"); 661 SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move"); 662 SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block"); 663 SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block"); 664 SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag"); 665 SOFTDEP_TYPE(JSEG, jseg, "Journal segment"); 666 SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete"); 667 SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency"); 668 SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation"); 669 SOFTDEP_TYPE(JFSYNC, jfsync, "Journal fsync complete"); 670 671 static MALLOC_DEFINE(M_SENTINEL, "sentinel", "Worklist sentinel"); 672 673 static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes"); 674 static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations"); 675 static MALLOC_DEFINE(M_MOUNTDATA, "softdep", "Softdep per-mount data"); 676 677 #define M_SOFTDEP_FLAGS (M_WAITOK) 678 679 /* 680 * translate from workitem type to memory type 681 * MUST match the defines above, such that memtype[D_XXX] == M_XXX 682 */ 683 static struct malloc_type *memtype[] = { 684 NULL, 685 M_PAGEDEP, 686 M_INODEDEP, 687 M_BMSAFEMAP, 688 M_NEWBLK, 689 M_ALLOCDIRECT, 690 M_INDIRDEP, 691 M_ALLOCINDIR, 692 M_FREEFRAG, 693 M_FREEBLKS, 694 M_FREEFILE, 695 M_DIRADD, 696 M_MKDIR, 697 M_DIRREM, 698 M_NEWDIRBLK, 699 M_FREEWORK, 700 M_FREEDEP, 701 M_JADDREF, 702 M_JREMREF, 703 M_JMVREF, 704 M_JNEWBLK, 705 M_JFREEBLK, 706 M_JFREEFRAG, 707 M_JSEG, 708 M_JSEGDEP, 709 M_SBDEP, 710 M_JTRUNC, 711 M_JFSYNC, 712 M_SENTINEL 713 }; 714 715 #define DtoM(type) (memtype[type]) 716 717 /* 718 * Names of malloc types. 719 */ 720 #define TYPENAME(type) \ 721 ((unsigned)(type) <= D_LAST && (unsigned)(type) >= D_FIRST ? \ 722 memtype[type]->ks_shortdesc : "???") 723 /* 724 * End system adaptation definitions. 725 */ 726 727 #define DOTDOT_OFFSET offsetof(struct dirtemplate, dotdot_ino) 728 #define DOT_OFFSET offsetof(struct dirtemplate, dot_ino) 729 730 /* 731 * Internal function prototypes. 732 */ 733 static void check_clear_deps(struct mount *); 734 static void softdep_error(char *, int); 735 static int softdep_process_worklist(struct mount *, int); 736 static int softdep_waitidle(struct mount *, int); 737 static void drain_output(struct vnode *); 738 static struct buf *getdirtybuf(struct buf *, struct rwlock *, int); 739 static int check_inodedep_free(struct inodedep *); 740 static void clear_remove(struct mount *); 741 static void clear_inodedeps(struct mount *); 742 static void unlinked_inodedep(struct mount *, struct inodedep *); 743 static void clear_unlinked_inodedep(struct inodedep *); 744 static struct inodedep *first_unlinked_inodedep(struct ufsmount *); 745 static int flush_pagedep_deps(struct vnode *, struct mount *, 746 struct diraddhd *); 747 static int free_pagedep(struct pagedep *); 748 static int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t); 749 static int flush_inodedep_deps(struct vnode *, struct mount *, ino_t); 750 static int flush_deplist(struct allocdirectlst *, int, int *); 751 static int sync_cgs(struct mount *, int); 752 static int handle_written_filepage(struct pagedep *, struct buf *, int); 753 static int handle_written_sbdep(struct sbdep *, struct buf *); 754 static void initiate_write_sbdep(struct sbdep *); 755 static void diradd_inode_written(struct diradd *, struct inodedep *); 756 static int handle_written_indirdep(struct indirdep *, struct buf *, 757 struct buf**, int); 758 static int handle_written_inodeblock(struct inodedep *, struct buf *, int); 759 static int jnewblk_rollforward(struct jnewblk *, struct fs *, struct cg *, 760 uint8_t *); 761 static int handle_written_bmsafemap(struct bmsafemap *, struct buf *, int); 762 static void handle_written_jaddref(struct jaddref *); 763 static void handle_written_jremref(struct jremref *); 764 static void handle_written_jseg(struct jseg *, struct buf *); 765 static void handle_written_jnewblk(struct jnewblk *); 766 static void handle_written_jblkdep(struct jblkdep *); 767 static void handle_written_jfreefrag(struct jfreefrag *); 768 static void complete_jseg(struct jseg *); 769 static void complete_jsegs(struct jseg *); 770 static void jseg_write(struct ufsmount *ump, struct jseg *, uint8_t *); 771 static void jaddref_write(struct jaddref *, struct jseg *, uint8_t *); 772 static void jremref_write(struct jremref *, struct jseg *, uint8_t *); 773 static void jmvref_write(struct jmvref *, struct jseg *, uint8_t *); 774 static void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *); 775 static void jfsync_write(struct jfsync *, struct jseg *, uint8_t *data); 776 static void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *); 777 static void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *); 778 static void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *); 779 static inline void inoref_write(struct inoref *, struct jseg *, 780 struct jrefrec *); 781 static void handle_allocdirect_partdone(struct allocdirect *, 782 struct workhead *); 783 static struct jnewblk *cancel_newblk(struct newblk *, struct worklist *, 784 struct workhead *); 785 static void indirdep_complete(struct indirdep *); 786 static int indirblk_lookup(struct mount *, ufs2_daddr_t); 787 static void indirblk_insert(struct freework *); 788 static void indirblk_remove(struct freework *); 789 static void handle_allocindir_partdone(struct allocindir *); 790 static void initiate_write_filepage(struct pagedep *, struct buf *); 791 static void initiate_write_indirdep(struct indirdep*, struct buf *); 792 static void handle_written_mkdir(struct mkdir *, int); 793 static int jnewblk_rollback(struct jnewblk *, struct fs *, struct cg *, 794 uint8_t *); 795 static void initiate_write_bmsafemap(struct bmsafemap *, struct buf *); 796 static void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *); 797 static void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *); 798 static void handle_workitem_freefile(struct freefile *); 799 static int handle_workitem_remove(struct dirrem *, int); 800 static struct dirrem *newdirrem(struct buf *, struct inode *, 801 struct inode *, int, struct dirrem **); 802 static struct indirdep *indirdep_lookup(struct mount *, struct inode *, 803 struct buf *); 804 static void cancel_indirdep(struct indirdep *, struct buf *, 805 struct freeblks *); 806 static void free_indirdep(struct indirdep *); 807 static void free_diradd(struct diradd *, struct workhead *); 808 static void merge_diradd(struct inodedep *, struct diradd *); 809 static void complete_diradd(struct diradd *); 810 static struct diradd *diradd_lookup(struct pagedep *, int); 811 static struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *, 812 struct jremref *); 813 static struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *, 814 struct jremref *); 815 static void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *, 816 struct jremref *, struct jremref *); 817 static void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *, 818 struct jremref *); 819 static void cancel_allocindir(struct allocindir *, struct buf *bp, 820 struct freeblks *, int); 821 static int setup_trunc_indir(struct freeblks *, struct inode *, 822 ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t); 823 static void complete_trunc_indir(struct freework *); 824 static void trunc_indirdep(struct indirdep *, struct freeblks *, struct buf *, 825 int); 826 static void complete_mkdir(struct mkdir *); 827 static void free_newdirblk(struct newdirblk *); 828 static void free_jremref(struct jremref *); 829 static void free_jaddref(struct jaddref *); 830 static void free_jsegdep(struct jsegdep *); 831 static void free_jsegs(struct jblocks *); 832 static void rele_jseg(struct jseg *); 833 static void free_jseg(struct jseg *, struct jblocks *); 834 static void free_jnewblk(struct jnewblk *); 835 static void free_jblkdep(struct jblkdep *); 836 static void free_jfreefrag(struct jfreefrag *); 837 static void free_freedep(struct freedep *); 838 static void journal_jremref(struct dirrem *, struct jremref *, 839 struct inodedep *); 840 static void cancel_jnewblk(struct jnewblk *, struct workhead *); 841 static int cancel_jaddref(struct jaddref *, struct inodedep *, 842 struct workhead *); 843 static void cancel_jfreefrag(struct jfreefrag *); 844 static inline void setup_freedirect(struct freeblks *, struct inode *, 845 int, int); 846 static inline void setup_freeext(struct freeblks *, struct inode *, int, int); 847 static inline void setup_freeindir(struct freeblks *, struct inode *, int, 848 ufs_lbn_t, int); 849 static inline struct freeblks *newfreeblks(struct mount *, struct inode *); 850 static void freeblks_free(struct ufsmount *, struct freeblks *, int); 851 static void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t); 852 static ufs2_daddr_t blkcount(struct fs *, ufs2_daddr_t, off_t); 853 static int trunc_check_buf(struct buf *, int *, ufs_lbn_t, int, int); 854 static void trunc_dependencies(struct inode *, struct freeblks *, ufs_lbn_t, 855 int, int); 856 static void trunc_pages(struct inode *, off_t, ufs2_daddr_t, int); 857 static int cancel_pagedep(struct pagedep *, struct freeblks *, int); 858 static int deallocate_dependencies(struct buf *, struct freeblks *, int); 859 static void newblk_freefrag(struct newblk*); 860 static void free_newblk(struct newblk *); 861 static void cancel_allocdirect(struct allocdirectlst *, 862 struct allocdirect *, struct freeblks *); 863 static int check_inode_unwritten(struct inodedep *); 864 static int free_inodedep(struct inodedep *); 865 static void freework_freeblock(struct freework *, u_long); 866 static void freework_enqueue(struct freework *); 867 static int handle_workitem_freeblocks(struct freeblks *, int); 868 static int handle_complete_freeblocks(struct freeblks *, int); 869 static void handle_workitem_indirblk(struct freework *); 870 static void handle_written_freework(struct freework *); 871 static void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *); 872 static struct worklist *jnewblk_merge(struct worklist *, struct worklist *, 873 struct workhead *); 874 static struct freefrag *setup_allocindir_phase2(struct buf *, struct inode *, 875 struct inodedep *, struct allocindir *, ufs_lbn_t); 876 static struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t, 877 ufs2_daddr_t, ufs_lbn_t); 878 static void handle_workitem_freefrag(struct freefrag *); 879 static struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long, 880 ufs_lbn_t, u_long); 881 static void allocdirect_merge(struct allocdirectlst *, 882 struct allocdirect *, struct allocdirect *); 883 static struct freefrag *allocindir_merge(struct allocindir *, 884 struct allocindir *); 885 static int bmsafemap_find(struct bmsafemap_hashhead *, int, 886 struct bmsafemap **); 887 static struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *, 888 int cg, struct bmsafemap *); 889 static int newblk_find(struct newblk_hashhead *, ufs2_daddr_t, int, 890 struct newblk **); 891 static int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **); 892 static int inodedep_find(struct inodedep_hashhead *, ino_t, 893 struct inodedep **); 894 static int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **); 895 static int pagedep_lookup(struct mount *, struct buf *bp, ino_t, ufs_lbn_t, 896 int, struct pagedep **); 897 static int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t, 898 struct pagedep **); 899 static void pause_timer(void *); 900 static int request_cleanup(struct mount *, int); 901 static int softdep_request_cleanup_flush(struct mount *, struct ufsmount *); 902 static void schedule_cleanup(struct mount *); 903 static void softdep_ast_cleanup_proc(struct thread *); 904 static struct ufsmount *softdep_bp_to_mp(struct buf *bp); 905 static int process_worklist_item(struct mount *, int, int); 906 static void process_removes(struct vnode *); 907 static void process_truncates(struct vnode *); 908 static void jwork_move(struct workhead *, struct workhead *); 909 static void jwork_insert(struct workhead *, struct jsegdep *); 910 static void add_to_worklist(struct worklist *, int); 911 static void wake_worklist(struct worklist *); 912 static void wait_worklist(struct worklist *, char *); 913 static void remove_from_worklist(struct worklist *); 914 static void softdep_flush(void *); 915 static void softdep_flushjournal(struct mount *); 916 static int softdep_speedup(struct ufsmount *); 917 static void worklist_speedup(struct mount *); 918 static int journal_mount(struct mount *, struct fs *, struct ucred *); 919 static void journal_unmount(struct ufsmount *); 920 static int journal_space(struct ufsmount *, int); 921 static void journal_suspend(struct ufsmount *); 922 static int journal_unsuspend(struct ufsmount *ump); 923 static void softdep_prelink(struct vnode *, struct vnode *); 924 static void add_to_journal(struct worklist *); 925 static void remove_from_journal(struct worklist *); 926 static bool softdep_excess_items(struct ufsmount *, int); 927 static void softdep_process_journal(struct mount *, struct worklist *, int); 928 static struct jremref *newjremref(struct dirrem *, struct inode *, 929 struct inode *ip, off_t, nlink_t); 930 static struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t, 931 uint16_t); 932 static inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t, 933 uint16_t); 934 static inline struct jsegdep *inoref_jseg(struct inoref *); 935 static struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t); 936 static struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t, 937 ufs2_daddr_t, int); 938 static void adjust_newfreework(struct freeblks *, int); 939 static struct jtrunc *newjtrunc(struct freeblks *, off_t, int); 940 static void move_newblock_dep(struct jaddref *, struct inodedep *); 941 static void cancel_jfreeblk(struct freeblks *, ufs2_daddr_t); 942 static struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *, 943 ufs2_daddr_t, long, ufs_lbn_t); 944 static struct freework *newfreework(struct ufsmount *, struct freeblks *, 945 struct freework *, ufs_lbn_t, ufs2_daddr_t, int, int, int); 946 static int jwait(struct worklist *, int); 947 static struct inodedep *inodedep_lookup_ip(struct inode *); 948 static int bmsafemap_backgroundwrite(struct bmsafemap *, struct buf *); 949 static struct freefile *handle_bufwait(struct inodedep *, struct workhead *); 950 static void handle_jwork(struct workhead *); 951 static struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *, 952 struct mkdir **); 953 static struct jblocks *jblocks_create(void); 954 static ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *); 955 static void jblocks_free(struct jblocks *, struct mount *, int); 956 static void jblocks_destroy(struct jblocks *); 957 static void jblocks_add(struct jblocks *, ufs2_daddr_t, int); 958 959 /* 960 * Exported softdep operations. 961 */ 962 static void softdep_disk_io_initiation(struct buf *); 963 static void softdep_disk_write_complete(struct buf *); 964 static void softdep_deallocate_dependencies(struct buf *); 965 static int softdep_count_dependencies(struct buf *bp, int); 966 967 /* 968 * Global lock over all of soft updates. 969 */ 970 static struct mtx lk; 971 MTX_SYSINIT(softdep_lock, &lk, "Global Softdep Lock", MTX_DEF); 972 973 #define ACQUIRE_GBLLOCK(lk) mtx_lock(lk) 974 #define FREE_GBLLOCK(lk) mtx_unlock(lk) 975 #define GBLLOCK_OWNED(lk) mtx_assert((lk), MA_OWNED) 976 977 /* 978 * Per-filesystem soft-updates locking. 979 */ 980 #define LOCK_PTR(ump) (&(ump)->um_softdep->sd_fslock) 981 #define TRY_ACQUIRE_LOCK(ump) rw_try_wlock(&(ump)->um_softdep->sd_fslock) 982 #define ACQUIRE_LOCK(ump) rw_wlock(&(ump)->um_softdep->sd_fslock) 983 #define FREE_LOCK(ump) rw_wunlock(&(ump)->um_softdep->sd_fslock) 984 #define LOCK_OWNED(ump) rw_assert(&(ump)->um_softdep->sd_fslock, \ 985 RA_WLOCKED) 986 987 #define BUF_AREC(bp) lockallowrecurse(&(bp)->b_lock) 988 #define BUF_NOREC(bp) lockdisablerecurse(&(bp)->b_lock) 989 990 /* 991 * Worklist queue management. 992 * These routines require that the lock be held. 993 */ 994 #ifndef /* NOT */ INVARIANTS 995 #define WORKLIST_INSERT(head, item) do { \ 996 (item)->wk_state |= ONWORKLIST; \ 997 LIST_INSERT_HEAD(head, item, wk_list); \ 998 } while (0) 999 #define WORKLIST_REMOVE(item) do { \ 1000 (item)->wk_state &= ~ONWORKLIST; \ 1001 LIST_REMOVE(item, wk_list); \ 1002 } while (0) 1003 #define WORKLIST_INSERT_UNLOCKED WORKLIST_INSERT 1004 #define WORKLIST_REMOVE_UNLOCKED WORKLIST_REMOVE 1005 1006 #else /* INVARIANTS */ 1007 static void worklist_insert(struct workhead *, struct worklist *, int, 1008 const char *, int); 1009 static void worklist_remove(struct worklist *, int, const char *, int); 1010 1011 #define WORKLIST_INSERT(head, item) \ 1012 worklist_insert(head, item, 1, __func__, __LINE__) 1013 #define WORKLIST_INSERT_UNLOCKED(head, item)\ 1014 worklist_insert(head, item, 0, __func__, __LINE__) 1015 #define WORKLIST_REMOVE(item)\ 1016 worklist_remove(item, 1, __func__, __LINE__) 1017 #define WORKLIST_REMOVE_UNLOCKED(item)\ 1018 worklist_remove(item, 0, __func__, __LINE__) 1019 1020 static void 1021 worklist_insert(head, item, locked, func, line) 1022 struct workhead *head; 1023 struct worklist *item; 1024 int locked; 1025 const char *func; 1026 int line; 1027 { 1028 1029 if (locked) 1030 LOCK_OWNED(VFSTOUFS(item->wk_mp)); 1031 if (item->wk_state & ONWORKLIST) 1032 panic("worklist_insert: %p %s(0x%X) already on list, " 1033 "added in function %s at line %d", 1034 item, TYPENAME(item->wk_type), item->wk_state, 1035 item->wk_func, item->wk_line); 1036 item->wk_state |= ONWORKLIST; 1037 item->wk_func = func; 1038 item->wk_line = line; 1039 LIST_INSERT_HEAD(head, item, wk_list); 1040 } 1041 1042 static void 1043 worklist_remove(item, locked, func, line) 1044 struct worklist *item; 1045 int locked; 1046 const char *func; 1047 int line; 1048 { 1049 1050 if (locked) 1051 LOCK_OWNED(VFSTOUFS(item->wk_mp)); 1052 if ((item->wk_state & ONWORKLIST) == 0) 1053 panic("worklist_remove: %p %s(0x%X) not on list, " 1054 "removed in function %s at line %d", 1055 item, TYPENAME(item->wk_type), item->wk_state, 1056 item->wk_func, item->wk_line); 1057 item->wk_state &= ~ONWORKLIST; 1058 item->wk_func = func; 1059 item->wk_line = line; 1060 LIST_REMOVE(item, wk_list); 1061 } 1062 #endif /* INVARIANTS */ 1063 1064 /* 1065 * Merge two jsegdeps keeping only the oldest one as newer references 1066 * can't be discarded until after older references. 1067 */ 1068 static inline struct jsegdep * 1069 jsegdep_merge(struct jsegdep *one, struct jsegdep *two) 1070 { 1071 struct jsegdep *swp; 1072 1073 if (two == NULL) 1074 return (one); 1075 1076 if (one->jd_seg->js_seq > two->jd_seg->js_seq) { 1077 swp = one; 1078 one = two; 1079 two = swp; 1080 } 1081 WORKLIST_REMOVE(&two->jd_list); 1082 free_jsegdep(two); 1083 1084 return (one); 1085 } 1086 1087 /* 1088 * If two freedeps are compatible free one to reduce list size. 1089 */ 1090 static inline struct freedep * 1091 freedep_merge(struct freedep *one, struct freedep *two) 1092 { 1093 if (two == NULL) 1094 return (one); 1095 1096 if (one->fd_freework == two->fd_freework) { 1097 WORKLIST_REMOVE(&two->fd_list); 1098 free_freedep(two); 1099 } 1100 return (one); 1101 } 1102 1103 /* 1104 * Move journal work from one list to another. Duplicate freedeps and 1105 * jsegdeps are coalesced to keep the lists as small as possible. 1106 */ 1107 static void 1108 jwork_move(dst, src) 1109 struct workhead *dst; 1110 struct workhead *src; 1111 { 1112 struct freedep *freedep; 1113 struct jsegdep *jsegdep; 1114 struct worklist *wkn; 1115 struct worklist *wk; 1116 1117 KASSERT(dst != src, 1118 ("jwork_move: dst == src")); 1119 freedep = NULL; 1120 jsegdep = NULL; 1121 LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) { 1122 if (wk->wk_type == D_JSEGDEP) 1123 jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep); 1124 else if (wk->wk_type == D_FREEDEP) 1125 freedep = freedep_merge(WK_FREEDEP(wk), freedep); 1126 } 1127 1128 while ((wk = LIST_FIRST(src)) != NULL) { 1129 WORKLIST_REMOVE(wk); 1130 WORKLIST_INSERT(dst, wk); 1131 if (wk->wk_type == D_JSEGDEP) { 1132 jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep); 1133 continue; 1134 } 1135 if (wk->wk_type == D_FREEDEP) 1136 freedep = freedep_merge(WK_FREEDEP(wk), freedep); 1137 } 1138 } 1139 1140 static void 1141 jwork_insert(dst, jsegdep) 1142 struct workhead *dst; 1143 struct jsegdep *jsegdep; 1144 { 1145 struct jsegdep *jsegdepn; 1146 struct worklist *wk; 1147 1148 LIST_FOREACH(wk, dst, wk_list) 1149 if (wk->wk_type == D_JSEGDEP) 1150 break; 1151 if (wk == NULL) { 1152 WORKLIST_INSERT(dst, &jsegdep->jd_list); 1153 return; 1154 } 1155 jsegdepn = WK_JSEGDEP(wk); 1156 if (jsegdep->jd_seg->js_seq < jsegdepn->jd_seg->js_seq) { 1157 WORKLIST_REMOVE(wk); 1158 free_jsegdep(jsegdepn); 1159 WORKLIST_INSERT(dst, &jsegdep->jd_list); 1160 } else 1161 free_jsegdep(jsegdep); 1162 } 1163 1164 /* 1165 * Routines for tracking and managing workitems. 1166 */ 1167 static void workitem_free(struct worklist *, int); 1168 static void workitem_alloc(struct worklist *, int, struct mount *); 1169 static void workitem_reassign(struct worklist *, int); 1170 1171 #define WORKITEM_FREE(item, type) \ 1172 workitem_free((struct worklist *)(item), (type)) 1173 #define WORKITEM_REASSIGN(item, type) \ 1174 workitem_reassign((struct worklist *)(item), (type)) 1175 1176 static void 1177 workitem_free(item, type) 1178 struct worklist *item; 1179 int type; 1180 { 1181 struct ufsmount *ump; 1182 1183 #ifdef INVARIANTS 1184 if (item->wk_state & ONWORKLIST) 1185 panic("workitem_free: %s(0x%X) still on list, " 1186 "added in function %s at line %d", 1187 TYPENAME(item->wk_type), item->wk_state, 1188 item->wk_func, item->wk_line); 1189 if (item->wk_type != type && type != D_NEWBLK) 1190 panic("workitem_free: type mismatch %s != %s", 1191 TYPENAME(item->wk_type), TYPENAME(type)); 1192 #endif 1193 if (item->wk_state & IOWAITING) 1194 wakeup(item); 1195 ump = VFSTOUFS(item->wk_mp); 1196 LOCK_OWNED(ump); 1197 KASSERT(ump->softdep_deps > 0, 1198 ("workitem_free: %s: softdep_deps going negative", 1199 ump->um_fs->fs_fsmnt)); 1200 if (--ump->softdep_deps == 0 && ump->softdep_req) 1201 wakeup(&ump->softdep_deps); 1202 KASSERT(dep_current[item->wk_type] > 0, 1203 ("workitem_free: %s: dep_current[%s] going negative", 1204 ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1205 KASSERT(ump->softdep_curdeps[item->wk_type] > 0, 1206 ("workitem_free: %s: softdep_curdeps[%s] going negative", 1207 ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1208 atomic_subtract_long(&dep_current[item->wk_type], 1); 1209 ump->softdep_curdeps[item->wk_type] -= 1; 1210 free(item, DtoM(type)); 1211 } 1212 1213 static void 1214 workitem_alloc(item, type, mp) 1215 struct worklist *item; 1216 int type; 1217 struct mount *mp; 1218 { 1219 struct ufsmount *ump; 1220 1221 item->wk_type = type; 1222 item->wk_mp = mp; 1223 item->wk_state = 0; 1224 1225 ump = VFSTOUFS(mp); 1226 ACQUIRE_GBLLOCK(&lk); 1227 dep_current[type]++; 1228 if (dep_current[type] > dep_highuse[type]) 1229 dep_highuse[type] = dep_current[type]; 1230 dep_total[type]++; 1231 FREE_GBLLOCK(&lk); 1232 ACQUIRE_LOCK(ump); 1233 ump->softdep_curdeps[type] += 1; 1234 ump->softdep_deps++; 1235 ump->softdep_accdeps++; 1236 FREE_LOCK(ump); 1237 } 1238 1239 static void 1240 workitem_reassign(item, newtype) 1241 struct worklist *item; 1242 int newtype; 1243 { 1244 struct ufsmount *ump; 1245 1246 ump = VFSTOUFS(item->wk_mp); 1247 LOCK_OWNED(ump); 1248 KASSERT(ump->softdep_curdeps[item->wk_type] > 0, 1249 ("workitem_reassign: %s: softdep_curdeps[%s] going negative", 1250 VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1251 ump->softdep_curdeps[item->wk_type] -= 1; 1252 ump->softdep_curdeps[newtype] += 1; 1253 KASSERT(dep_current[item->wk_type] > 0, 1254 ("workitem_reassign: %s: dep_current[%s] going negative", 1255 VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1256 ACQUIRE_GBLLOCK(&lk); 1257 dep_current[newtype]++; 1258 dep_current[item->wk_type]--; 1259 if (dep_current[newtype] > dep_highuse[newtype]) 1260 dep_highuse[newtype] = dep_current[newtype]; 1261 dep_total[newtype]++; 1262 FREE_GBLLOCK(&lk); 1263 item->wk_type = newtype; 1264 } 1265 1266 /* 1267 * Workitem queue management 1268 */ 1269 static int max_softdeps; /* maximum number of structs before slowdown */ 1270 static int tickdelay = 2; /* number of ticks to pause during slowdown */ 1271 static int proc_waiting; /* tracks whether we have a timeout posted */ 1272 static int *stat_countp; /* statistic to count in proc_waiting timeout */ 1273 static struct callout softdep_callout; 1274 static int req_clear_inodedeps; /* syncer process flush some inodedeps */ 1275 static int req_clear_remove; /* syncer process flush some freeblks */ 1276 static int softdep_flushcache = 0; /* Should we do BIO_FLUSH? */ 1277 1278 /* 1279 * runtime statistics 1280 */ 1281 static int stat_flush_threads; /* number of softdep flushing threads */ 1282 static int stat_worklist_push; /* number of worklist cleanups */ 1283 static int stat_blk_limit_push; /* number of times block limit neared */ 1284 static int stat_ino_limit_push; /* number of times inode limit neared */ 1285 static int stat_blk_limit_hit; /* number of times block slowdown imposed */ 1286 static int stat_ino_limit_hit; /* number of times inode slowdown imposed */ 1287 static int stat_sync_limit_hit; /* number of synchronous slowdowns imposed */ 1288 static int stat_indir_blk_ptrs; /* bufs redirtied as indir ptrs not written */ 1289 static int stat_inode_bitmap; /* bufs redirtied as inode bitmap not written */ 1290 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */ 1291 static int stat_dir_entry; /* bufs redirtied as dir entry cannot write */ 1292 static int stat_jaddref; /* bufs redirtied as ino bitmap can not write */ 1293 static int stat_jnewblk; /* bufs redirtied as blk bitmap can not write */ 1294 static int stat_journal_min; /* Times hit journal min threshold */ 1295 static int stat_journal_low; /* Times hit journal low threshold */ 1296 static int stat_journal_wait; /* Times blocked in jwait(). */ 1297 static int stat_jwait_filepage; /* Times blocked in jwait() for filepage. */ 1298 static int stat_jwait_freeblks; /* Times blocked in jwait() for freeblks. */ 1299 static int stat_jwait_inode; /* Times blocked in jwait() for inodes. */ 1300 static int stat_jwait_newblk; /* Times blocked in jwait() for newblks. */ 1301 static int stat_cleanup_high_delay; /* Maximum cleanup delay (in ticks) */ 1302 static int stat_cleanup_blkrequests; /* Number of block cleanup requests */ 1303 static int stat_cleanup_inorequests; /* Number of inode cleanup requests */ 1304 static int stat_cleanup_retries; /* Number of cleanups that needed to flush */ 1305 static int stat_cleanup_failures; /* Number of cleanup requests that failed */ 1306 static int stat_emptyjblocks; /* Number of potentially empty journal blocks */ 1307 1308 SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW, 1309 &max_softdeps, 0, ""); 1310 SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW, 1311 &tickdelay, 0, ""); 1312 SYSCTL_INT(_debug_softdep, OID_AUTO, flush_threads, CTLFLAG_RD, 1313 &stat_flush_threads, 0, ""); 1314 SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push, CTLFLAG_RW, 1315 &stat_worklist_push, 0,""); 1316 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push, CTLFLAG_RW, 1317 &stat_blk_limit_push, 0,""); 1318 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push, CTLFLAG_RW, 1319 &stat_ino_limit_push, 0,""); 1320 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit, CTLFLAG_RW, 1321 &stat_blk_limit_hit, 0, ""); 1322 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit, CTLFLAG_RW, 1323 &stat_ino_limit_hit, 0, ""); 1324 SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit, CTLFLAG_RW, 1325 &stat_sync_limit_hit, 0, ""); 1326 SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW, 1327 &stat_indir_blk_ptrs, 0, ""); 1328 SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap, CTLFLAG_RW, 1329 &stat_inode_bitmap, 0, ""); 1330 SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW, 1331 &stat_direct_blk_ptrs, 0, ""); 1332 SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry, CTLFLAG_RW, 1333 &stat_dir_entry, 0, ""); 1334 SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback, CTLFLAG_RW, 1335 &stat_jaddref, 0, ""); 1336 SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback, CTLFLAG_RW, 1337 &stat_jnewblk, 0, ""); 1338 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low, CTLFLAG_RW, 1339 &stat_journal_low, 0, ""); 1340 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min, CTLFLAG_RW, 1341 &stat_journal_min, 0, ""); 1342 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait, CTLFLAG_RW, 1343 &stat_journal_wait, 0, ""); 1344 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage, CTLFLAG_RW, 1345 &stat_jwait_filepage, 0, ""); 1346 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks, CTLFLAG_RW, 1347 &stat_jwait_freeblks, 0, ""); 1348 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode, CTLFLAG_RW, 1349 &stat_jwait_inode, 0, ""); 1350 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk, CTLFLAG_RW, 1351 &stat_jwait_newblk, 0, ""); 1352 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_blkrequests, CTLFLAG_RW, 1353 &stat_cleanup_blkrequests, 0, ""); 1354 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_inorequests, CTLFLAG_RW, 1355 &stat_cleanup_inorequests, 0, ""); 1356 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_high_delay, CTLFLAG_RW, 1357 &stat_cleanup_high_delay, 0, ""); 1358 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_retries, CTLFLAG_RW, 1359 &stat_cleanup_retries, 0, ""); 1360 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_failures, CTLFLAG_RW, 1361 &stat_cleanup_failures, 0, ""); 1362 SYSCTL_INT(_debug_softdep, OID_AUTO, flushcache, CTLFLAG_RW, 1363 &softdep_flushcache, 0, ""); 1364 SYSCTL_INT(_debug_softdep, OID_AUTO, emptyjblocks, CTLFLAG_RD, 1365 &stat_emptyjblocks, 0, ""); 1366 1367 SYSCTL_DECL(_vfs_ffs); 1368 1369 /* Whether to recompute the summary at mount time */ 1370 static int compute_summary_at_mount = 0; 1371 SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW, 1372 &compute_summary_at_mount, 0, "Recompute summary at mount"); 1373 static int print_threads = 0; 1374 SYSCTL_INT(_debug_softdep, OID_AUTO, print_threads, CTLFLAG_RW, 1375 &print_threads, 0, "Notify flusher thread start/stop"); 1376 1377 /* List of all filesystems mounted with soft updates */ 1378 static TAILQ_HEAD(, mount_softdeps) softdepmounts; 1379 1380 /* 1381 * This function cleans the worklist for a filesystem. 1382 * Each filesystem running with soft dependencies gets its own 1383 * thread to run in this function. The thread is started up in 1384 * softdep_mount and shutdown in softdep_unmount. They show up 1385 * as part of the kernel "bufdaemon" process whose process 1386 * entry is available in bufdaemonproc. 1387 */ 1388 static int searchfailed; 1389 extern struct proc *bufdaemonproc; 1390 static void 1391 softdep_flush(addr) 1392 void *addr; 1393 { 1394 struct mount *mp; 1395 struct thread *td; 1396 struct ufsmount *ump; 1397 1398 td = curthread; 1399 td->td_pflags |= TDP_NORUNNINGBUF; 1400 mp = (struct mount *)addr; 1401 ump = VFSTOUFS(mp); 1402 atomic_add_int(&stat_flush_threads, 1); 1403 ACQUIRE_LOCK(ump); 1404 ump->softdep_flags &= ~FLUSH_STARTING; 1405 wakeup(&ump->softdep_flushtd); 1406 FREE_LOCK(ump); 1407 if (print_threads) { 1408 if (stat_flush_threads == 1) 1409 printf("Running %s at pid %d\n", bufdaemonproc->p_comm, 1410 bufdaemonproc->p_pid); 1411 printf("Start thread %s\n", td->td_name); 1412 } 1413 for (;;) { 1414 while (softdep_process_worklist(mp, 0) > 0 || 1415 (MOUNTEDSUJ(mp) && 1416 VFSTOUFS(mp)->softdep_jblocks->jb_suspended)) 1417 kthread_suspend_check(); 1418 ACQUIRE_LOCK(ump); 1419 if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) 1420 msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM, 1421 "sdflush", hz / 2); 1422 ump->softdep_flags &= ~FLUSH_CLEANUP; 1423 /* 1424 * Check to see if we are done and need to exit. 1425 */ 1426 if ((ump->softdep_flags & FLUSH_EXIT) == 0) { 1427 FREE_LOCK(ump); 1428 continue; 1429 } 1430 ump->softdep_flags &= ~FLUSH_EXIT; 1431 FREE_LOCK(ump); 1432 wakeup(&ump->softdep_flags); 1433 if (print_threads) 1434 printf("Stop thread %s: searchfailed %d, did cleanups %d\n", td->td_name, searchfailed, ump->um_softdep->sd_cleanups); 1435 atomic_subtract_int(&stat_flush_threads, 1); 1436 kthread_exit(); 1437 panic("kthread_exit failed\n"); 1438 } 1439 } 1440 1441 static void 1442 worklist_speedup(mp) 1443 struct mount *mp; 1444 { 1445 struct ufsmount *ump; 1446 1447 ump = VFSTOUFS(mp); 1448 LOCK_OWNED(ump); 1449 if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) 1450 ump->softdep_flags |= FLUSH_CLEANUP; 1451 wakeup(&ump->softdep_flushtd); 1452 } 1453 1454 static int 1455 softdep_speedup(ump) 1456 struct ufsmount *ump; 1457 { 1458 struct ufsmount *altump; 1459 struct mount_softdeps *sdp; 1460 1461 LOCK_OWNED(ump); 1462 worklist_speedup(ump->um_mountp); 1463 bd_speedup(); 1464 /* 1465 * If we have global shortages, then we need other 1466 * filesystems to help with the cleanup. Here we wakeup a 1467 * flusher thread for a filesystem that is over its fair 1468 * share of resources. 1469 */ 1470 if (req_clear_inodedeps || req_clear_remove) { 1471 ACQUIRE_GBLLOCK(&lk); 1472 TAILQ_FOREACH(sdp, &softdepmounts, sd_next) { 1473 if ((altump = sdp->sd_ump) == ump) 1474 continue; 1475 if (((req_clear_inodedeps && 1476 altump->softdep_curdeps[D_INODEDEP] > 1477 max_softdeps / stat_flush_threads) || 1478 (req_clear_remove && 1479 altump->softdep_curdeps[D_DIRREM] > 1480 (max_softdeps / 2) / stat_flush_threads)) && 1481 TRY_ACQUIRE_LOCK(altump)) 1482 break; 1483 } 1484 if (sdp == NULL) { 1485 searchfailed++; 1486 FREE_GBLLOCK(&lk); 1487 } else { 1488 /* 1489 * Move to the end of the list so we pick a 1490 * different one on out next try. 1491 */ 1492 TAILQ_REMOVE(&softdepmounts, sdp, sd_next); 1493 TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next); 1494 FREE_GBLLOCK(&lk); 1495 if ((altump->softdep_flags & 1496 (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) 1497 altump->softdep_flags |= FLUSH_CLEANUP; 1498 altump->um_softdep->sd_cleanups++; 1499 wakeup(&altump->softdep_flushtd); 1500 FREE_LOCK(altump); 1501 } 1502 } 1503 return (speedup_syncer()); 1504 } 1505 1506 /* 1507 * Add an item to the end of the work queue. 1508 * This routine requires that the lock be held. 1509 * This is the only routine that adds items to the list. 1510 * The following routine is the only one that removes items 1511 * and does so in order from first to last. 1512 */ 1513 1514 #define WK_HEAD 0x0001 /* Add to HEAD. */ 1515 #define WK_NODELAY 0x0002 /* Process immediately. */ 1516 1517 static void 1518 add_to_worklist(wk, flags) 1519 struct worklist *wk; 1520 int flags; 1521 { 1522 struct ufsmount *ump; 1523 1524 ump = VFSTOUFS(wk->wk_mp); 1525 LOCK_OWNED(ump); 1526 if (wk->wk_state & ONWORKLIST) 1527 panic("add_to_worklist: %s(0x%X) already on list", 1528 TYPENAME(wk->wk_type), wk->wk_state); 1529 wk->wk_state |= ONWORKLIST; 1530 if (ump->softdep_on_worklist == 0) { 1531 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list); 1532 ump->softdep_worklist_tail = wk; 1533 } else if (flags & WK_HEAD) { 1534 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list); 1535 } else { 1536 LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list); 1537 ump->softdep_worklist_tail = wk; 1538 } 1539 ump->softdep_on_worklist += 1; 1540 if (flags & WK_NODELAY) 1541 worklist_speedup(wk->wk_mp); 1542 } 1543 1544 /* 1545 * Remove the item to be processed. If we are removing the last 1546 * item on the list, we need to recalculate the tail pointer. 1547 */ 1548 static void 1549 remove_from_worklist(wk) 1550 struct worklist *wk; 1551 { 1552 struct ufsmount *ump; 1553 1554 ump = VFSTOUFS(wk->wk_mp); 1555 if (ump->softdep_worklist_tail == wk) 1556 ump->softdep_worklist_tail = 1557 (struct worklist *)wk->wk_list.le_prev; 1558 WORKLIST_REMOVE(wk); 1559 ump->softdep_on_worklist -= 1; 1560 } 1561 1562 static void 1563 wake_worklist(wk) 1564 struct worklist *wk; 1565 { 1566 if (wk->wk_state & IOWAITING) { 1567 wk->wk_state &= ~IOWAITING; 1568 wakeup(wk); 1569 } 1570 } 1571 1572 static void 1573 wait_worklist(wk, wmesg) 1574 struct worklist *wk; 1575 char *wmesg; 1576 { 1577 struct ufsmount *ump; 1578 1579 ump = VFSTOUFS(wk->wk_mp); 1580 wk->wk_state |= IOWAITING; 1581 msleep(wk, LOCK_PTR(ump), PVM, wmesg, 0); 1582 } 1583 1584 /* 1585 * Process that runs once per second to handle items in the background queue. 1586 * 1587 * Note that we ensure that everything is done in the order in which they 1588 * appear in the queue. The code below depends on this property to ensure 1589 * that blocks of a file are freed before the inode itself is freed. This 1590 * ordering ensures that no new <vfsid, inum, lbn> triples will be generated 1591 * until all the old ones have been purged from the dependency lists. 1592 */ 1593 static int 1594 softdep_process_worklist(mp, full) 1595 struct mount *mp; 1596 int full; 1597 { 1598 int cnt, matchcnt; 1599 struct ufsmount *ump; 1600 long starttime; 1601 1602 KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp")); 1603 if (MOUNTEDSOFTDEP(mp) == 0) 1604 return (0); 1605 matchcnt = 0; 1606 ump = VFSTOUFS(mp); 1607 ACQUIRE_LOCK(ump); 1608 starttime = time_second; 1609 softdep_process_journal(mp, NULL, full ? MNT_WAIT : 0); 1610 check_clear_deps(mp); 1611 while (ump->softdep_on_worklist > 0) { 1612 if ((cnt = process_worklist_item(mp, 10, LK_NOWAIT)) == 0) 1613 break; 1614 else 1615 matchcnt += cnt; 1616 check_clear_deps(mp); 1617 /* 1618 * We do not generally want to stop for buffer space, but if 1619 * we are really being a buffer hog, we will stop and wait. 1620 */ 1621 if (should_yield()) { 1622 FREE_LOCK(ump); 1623 kern_yield(PRI_USER); 1624 bwillwrite(); 1625 ACQUIRE_LOCK(ump); 1626 } 1627 /* 1628 * Never allow processing to run for more than one 1629 * second. This gives the syncer thread the opportunity 1630 * to pause if appropriate. 1631 */ 1632 if (!full && starttime != time_second) 1633 break; 1634 } 1635 if (full == 0) 1636 journal_unsuspend(ump); 1637 FREE_LOCK(ump); 1638 return (matchcnt); 1639 } 1640 1641 /* 1642 * Process all removes associated with a vnode if we are running out of 1643 * journal space. Any other process which attempts to flush these will 1644 * be unable as we have the vnodes locked. 1645 */ 1646 static void 1647 process_removes(vp) 1648 struct vnode *vp; 1649 { 1650 struct inodedep *inodedep; 1651 struct dirrem *dirrem; 1652 struct ufsmount *ump; 1653 struct mount *mp; 1654 ino_t inum; 1655 1656 mp = vp->v_mount; 1657 ump = VFSTOUFS(mp); 1658 LOCK_OWNED(ump); 1659 inum = VTOI(vp)->i_number; 1660 for (;;) { 1661 top: 1662 if (inodedep_lookup(mp, inum, 0, &inodedep) == 0) 1663 return; 1664 LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext) { 1665 /* 1666 * If another thread is trying to lock this vnode 1667 * it will fail but we must wait for it to do so 1668 * before we can proceed. 1669 */ 1670 if (dirrem->dm_state & INPROGRESS) { 1671 wait_worklist(&dirrem->dm_list, "pwrwait"); 1672 goto top; 1673 } 1674 if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) == 1675 (COMPLETE | ONWORKLIST)) 1676 break; 1677 } 1678 if (dirrem == NULL) 1679 return; 1680 remove_from_worklist(&dirrem->dm_list); 1681 FREE_LOCK(ump); 1682 if (vn_start_secondary_write(NULL, &mp, V_NOWAIT)) 1683 panic("process_removes: suspended filesystem"); 1684 handle_workitem_remove(dirrem, 0); 1685 vn_finished_secondary_write(mp); 1686 ACQUIRE_LOCK(ump); 1687 } 1688 } 1689 1690 /* 1691 * Process all truncations associated with a vnode if we are running out 1692 * of journal space. This is called when the vnode lock is already held 1693 * and no other process can clear the truncation. This function returns 1694 * a value greater than zero if it did any work. 1695 */ 1696 static void 1697 process_truncates(vp) 1698 struct vnode *vp; 1699 { 1700 struct inodedep *inodedep; 1701 struct freeblks *freeblks; 1702 struct ufsmount *ump; 1703 struct mount *mp; 1704 ino_t inum; 1705 int cgwait; 1706 1707 mp = vp->v_mount; 1708 ump = VFSTOUFS(mp); 1709 LOCK_OWNED(ump); 1710 inum = VTOI(vp)->i_number; 1711 for (;;) { 1712 if (inodedep_lookup(mp, inum, 0, &inodedep) == 0) 1713 return; 1714 cgwait = 0; 1715 TAILQ_FOREACH(freeblks, &inodedep->id_freeblklst, fb_next) { 1716 /* Journal entries not yet written. */ 1717 if (!LIST_EMPTY(&freeblks->fb_jblkdephd)) { 1718 jwait(&LIST_FIRST( 1719 &freeblks->fb_jblkdephd)->jb_list, 1720 MNT_WAIT); 1721 break; 1722 } 1723 /* Another thread is executing this item. */ 1724 if (freeblks->fb_state & INPROGRESS) { 1725 wait_worklist(&freeblks->fb_list, "ptrwait"); 1726 break; 1727 } 1728 /* Freeblks is waiting on a inode write. */ 1729 if ((freeblks->fb_state & COMPLETE) == 0) { 1730 FREE_LOCK(ump); 1731 ffs_update(vp, 1); 1732 ACQUIRE_LOCK(ump); 1733 break; 1734 } 1735 if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST)) == 1736 (ALLCOMPLETE | ONWORKLIST)) { 1737 remove_from_worklist(&freeblks->fb_list); 1738 freeblks->fb_state |= INPROGRESS; 1739 FREE_LOCK(ump); 1740 if (vn_start_secondary_write(NULL, &mp, 1741 V_NOWAIT)) 1742 panic("process_truncates: " 1743 "suspended filesystem"); 1744 handle_workitem_freeblocks(freeblks, 0); 1745 vn_finished_secondary_write(mp); 1746 ACQUIRE_LOCK(ump); 1747 break; 1748 } 1749 if (freeblks->fb_cgwait) 1750 cgwait++; 1751 } 1752 if (cgwait) { 1753 FREE_LOCK(ump); 1754 sync_cgs(mp, MNT_WAIT); 1755 ffs_sync_snap(mp, MNT_WAIT); 1756 ACQUIRE_LOCK(ump); 1757 continue; 1758 } 1759 if (freeblks == NULL) 1760 break; 1761 } 1762 return; 1763 } 1764 1765 /* 1766 * Process one item on the worklist. 1767 */ 1768 static int 1769 process_worklist_item(mp, target, flags) 1770 struct mount *mp; 1771 int target; 1772 int flags; 1773 { 1774 struct worklist sentinel; 1775 struct worklist *wk; 1776 struct ufsmount *ump; 1777 int matchcnt; 1778 int error; 1779 1780 KASSERT(mp != NULL, ("process_worklist_item: NULL mp")); 1781 /* 1782 * If we are being called because of a process doing a 1783 * copy-on-write, then it is not safe to write as we may 1784 * recurse into the copy-on-write routine. 1785 */ 1786 if (curthread->td_pflags & TDP_COWINPROGRESS) 1787 return (-1); 1788 PHOLD(curproc); /* Don't let the stack go away. */ 1789 ump = VFSTOUFS(mp); 1790 LOCK_OWNED(ump); 1791 matchcnt = 0; 1792 sentinel.wk_mp = NULL; 1793 sentinel.wk_type = D_SENTINEL; 1794 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, &sentinel, wk_list); 1795 for (wk = LIST_NEXT(&sentinel, wk_list); wk != NULL; 1796 wk = LIST_NEXT(&sentinel, wk_list)) { 1797 if (wk->wk_type == D_SENTINEL) { 1798 LIST_REMOVE(&sentinel, wk_list); 1799 LIST_INSERT_AFTER(wk, &sentinel, wk_list); 1800 continue; 1801 } 1802 if (wk->wk_state & INPROGRESS) 1803 panic("process_worklist_item: %p already in progress.", 1804 wk); 1805 wk->wk_state |= INPROGRESS; 1806 remove_from_worklist(wk); 1807 FREE_LOCK(ump); 1808 if (vn_start_secondary_write(NULL, &mp, V_NOWAIT)) 1809 panic("process_worklist_item: suspended filesystem"); 1810 switch (wk->wk_type) { 1811 case D_DIRREM: 1812 /* removal of a directory entry */ 1813 error = handle_workitem_remove(WK_DIRREM(wk), flags); 1814 break; 1815 1816 case D_FREEBLKS: 1817 /* releasing blocks and/or fragments from a file */ 1818 error = handle_workitem_freeblocks(WK_FREEBLKS(wk), 1819 flags); 1820 break; 1821 1822 case D_FREEFRAG: 1823 /* releasing a fragment when replaced as a file grows */ 1824 handle_workitem_freefrag(WK_FREEFRAG(wk)); 1825 error = 0; 1826 break; 1827 1828 case D_FREEFILE: 1829 /* releasing an inode when its link count drops to 0 */ 1830 handle_workitem_freefile(WK_FREEFILE(wk)); 1831 error = 0; 1832 break; 1833 1834 default: 1835 panic("%s_process_worklist: Unknown type %s", 1836 "softdep", TYPENAME(wk->wk_type)); 1837 /* NOTREACHED */ 1838 } 1839 vn_finished_secondary_write(mp); 1840 ACQUIRE_LOCK(ump); 1841 if (error == 0) { 1842 if (++matchcnt == target) 1843 break; 1844 continue; 1845 } 1846 /* 1847 * We have to retry the worklist item later. Wake up any 1848 * waiters who may be able to complete it immediately and 1849 * add the item back to the head so we don't try to execute 1850 * it again. 1851 */ 1852 wk->wk_state &= ~INPROGRESS; 1853 wake_worklist(wk); 1854 add_to_worklist(wk, WK_HEAD); 1855 } 1856 /* Sentinal could've become the tail from remove_from_worklist. */ 1857 if (ump->softdep_worklist_tail == &sentinel) 1858 ump->softdep_worklist_tail = 1859 (struct worklist *)sentinel.wk_list.le_prev; 1860 LIST_REMOVE(&sentinel, wk_list); 1861 PRELE(curproc); 1862 return (matchcnt); 1863 } 1864 1865 /* 1866 * Move dependencies from one buffer to another. 1867 */ 1868 int 1869 softdep_move_dependencies(oldbp, newbp) 1870 struct buf *oldbp; 1871 struct buf *newbp; 1872 { 1873 struct worklist *wk, *wktail; 1874 struct ufsmount *ump; 1875 int dirty; 1876 1877 if ((wk = LIST_FIRST(&oldbp->b_dep)) == NULL) 1878 return (0); 1879 KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, 1880 ("softdep_move_dependencies called on non-softdep filesystem")); 1881 dirty = 0; 1882 wktail = NULL; 1883 ump = VFSTOUFS(wk->wk_mp); 1884 ACQUIRE_LOCK(ump); 1885 while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) { 1886 LIST_REMOVE(wk, wk_list); 1887 if (wk->wk_type == D_BMSAFEMAP && 1888 bmsafemap_backgroundwrite(WK_BMSAFEMAP(wk), newbp)) 1889 dirty = 1; 1890 if (wktail == NULL) 1891 LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list); 1892 else 1893 LIST_INSERT_AFTER(wktail, wk, wk_list); 1894 wktail = wk; 1895 } 1896 FREE_LOCK(ump); 1897 1898 return (dirty); 1899 } 1900 1901 /* 1902 * Purge the work list of all items associated with a particular mount point. 1903 */ 1904 int 1905 softdep_flushworklist(oldmnt, countp, td) 1906 struct mount *oldmnt; 1907 int *countp; 1908 struct thread *td; 1909 { 1910 struct vnode *devvp; 1911 struct ufsmount *ump; 1912 int count, error; 1913 1914 /* 1915 * Alternately flush the block device associated with the mount 1916 * point and process any dependencies that the flushing 1917 * creates. We continue until no more worklist dependencies 1918 * are found. 1919 */ 1920 *countp = 0; 1921 error = 0; 1922 ump = VFSTOUFS(oldmnt); 1923 devvp = ump->um_devvp; 1924 while ((count = softdep_process_worklist(oldmnt, 1)) > 0) { 1925 *countp += count; 1926 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 1927 error = VOP_FSYNC(devvp, MNT_WAIT, td); 1928 VOP_UNLOCK(devvp, 0); 1929 if (error != 0) 1930 break; 1931 } 1932 return (error); 1933 } 1934 1935 #define SU_WAITIDLE_RETRIES 20 1936 static int 1937 softdep_waitidle(struct mount *mp, int flags __unused) 1938 { 1939 struct ufsmount *ump; 1940 struct vnode *devvp; 1941 struct thread *td; 1942 int error, i; 1943 1944 ump = VFSTOUFS(mp); 1945 devvp = ump->um_devvp; 1946 td = curthread; 1947 error = 0; 1948 ACQUIRE_LOCK(ump); 1949 for (i = 0; i < SU_WAITIDLE_RETRIES && ump->softdep_deps != 0; i++) { 1950 ump->softdep_req = 1; 1951 KASSERT((flags & FORCECLOSE) == 0 || 1952 ump->softdep_on_worklist == 0, 1953 ("softdep_waitidle: work added after flush")); 1954 msleep(&ump->softdep_deps, LOCK_PTR(ump), PVM | PDROP, 1955 "softdeps", 10 * hz); 1956 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 1957 error = VOP_FSYNC(devvp, MNT_WAIT, td); 1958 VOP_UNLOCK(devvp, 0); 1959 ACQUIRE_LOCK(ump); 1960 if (error != 0) 1961 break; 1962 } 1963 ump->softdep_req = 0; 1964 if (i == SU_WAITIDLE_RETRIES && error == 0 && ump->softdep_deps != 0) { 1965 error = EBUSY; 1966 printf("softdep_waitidle: Failed to flush worklist for %p\n", 1967 mp); 1968 } 1969 FREE_LOCK(ump); 1970 return (error); 1971 } 1972 1973 /* 1974 * Flush all vnodes and worklist items associated with a specified mount point. 1975 */ 1976 int 1977 softdep_flushfiles(oldmnt, flags, td) 1978 struct mount *oldmnt; 1979 int flags; 1980 struct thread *td; 1981 { 1982 #ifdef QUOTA 1983 struct ufsmount *ump; 1984 int i; 1985 #endif 1986 int error, early, depcount, loopcnt, retry_flush_count, retry; 1987 int morework; 1988 1989 KASSERT(MOUNTEDSOFTDEP(oldmnt) != 0, 1990 ("softdep_flushfiles called on non-softdep filesystem")); 1991 loopcnt = 10; 1992 retry_flush_count = 3; 1993 retry_flush: 1994 error = 0; 1995 1996 /* 1997 * Alternately flush the vnodes associated with the mount 1998 * point and process any dependencies that the flushing 1999 * creates. In theory, this loop can happen at most twice, 2000 * but we give it a few extra just to be sure. 2001 */ 2002 for (; loopcnt > 0; loopcnt--) { 2003 /* 2004 * Do another flush in case any vnodes were brought in 2005 * as part of the cleanup operations. 2006 */ 2007 early = retry_flush_count == 1 || (oldmnt->mnt_kern_flag & 2008 MNTK_UNMOUNT) == 0 ? 0 : EARLYFLUSH; 2009 if ((error = ffs_flushfiles(oldmnt, flags | early, td)) != 0) 2010 break; 2011 if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 || 2012 depcount == 0) 2013 break; 2014 } 2015 /* 2016 * If we are unmounting then it is an error to fail. If we 2017 * are simply trying to downgrade to read-only, then filesystem 2018 * activity can keep us busy forever, so we just fail with EBUSY. 2019 */ 2020 if (loopcnt == 0) { 2021 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) 2022 panic("softdep_flushfiles: looping"); 2023 error = EBUSY; 2024 } 2025 if (!error) 2026 error = softdep_waitidle(oldmnt, flags); 2027 if (!error) { 2028 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) { 2029 retry = 0; 2030 MNT_ILOCK(oldmnt); 2031 morework = oldmnt->mnt_nvnodelistsize > 0; 2032 #ifdef QUOTA 2033 ump = VFSTOUFS(oldmnt); 2034 UFS_LOCK(ump); 2035 for (i = 0; i < MAXQUOTAS; i++) { 2036 if (ump->um_quotas[i] != NULLVP) 2037 morework = 1; 2038 } 2039 UFS_UNLOCK(ump); 2040 #endif 2041 if (morework) { 2042 if (--retry_flush_count > 0) { 2043 retry = 1; 2044 loopcnt = 3; 2045 } else 2046 error = EBUSY; 2047 } 2048 MNT_IUNLOCK(oldmnt); 2049 if (retry) 2050 goto retry_flush; 2051 } 2052 } 2053 return (error); 2054 } 2055 2056 /* 2057 * Structure hashing. 2058 * 2059 * There are four types of structures that can be looked up: 2060 * 1) pagedep structures identified by mount point, inode number, 2061 * and logical block. 2062 * 2) inodedep structures identified by mount point and inode number. 2063 * 3) newblk structures identified by mount point and 2064 * physical block number. 2065 * 4) bmsafemap structures identified by mount point and 2066 * cylinder group number. 2067 * 2068 * The "pagedep" and "inodedep" dependency structures are hashed 2069 * separately from the file blocks and inodes to which they correspond. 2070 * This separation helps when the in-memory copy of an inode or 2071 * file block must be replaced. It also obviates the need to access 2072 * an inode or file page when simply updating (or de-allocating) 2073 * dependency structures. Lookup of newblk structures is needed to 2074 * find newly allocated blocks when trying to associate them with 2075 * their allocdirect or allocindir structure. 2076 * 2077 * The lookup routines optionally create and hash a new instance when 2078 * an existing entry is not found. The bmsafemap lookup routine always 2079 * allocates a new structure if an existing one is not found. 2080 */ 2081 #define DEPALLOC 0x0001 /* allocate structure if lookup fails */ 2082 2083 /* 2084 * Structures and routines associated with pagedep caching. 2085 */ 2086 #define PAGEDEP_HASH(ump, inum, lbn) \ 2087 (&(ump)->pagedep_hashtbl[((inum) + (lbn)) & (ump)->pagedep_hash_size]) 2088 2089 static int 2090 pagedep_find(pagedephd, ino, lbn, pagedeppp) 2091 struct pagedep_hashhead *pagedephd; 2092 ino_t ino; 2093 ufs_lbn_t lbn; 2094 struct pagedep **pagedeppp; 2095 { 2096 struct pagedep *pagedep; 2097 2098 LIST_FOREACH(pagedep, pagedephd, pd_hash) { 2099 if (ino == pagedep->pd_ino && lbn == pagedep->pd_lbn) { 2100 *pagedeppp = pagedep; 2101 return (1); 2102 } 2103 } 2104 *pagedeppp = NULL; 2105 return (0); 2106 } 2107 /* 2108 * Look up a pagedep. Return 1 if found, 0 otherwise. 2109 * If not found, allocate if DEPALLOC flag is passed. 2110 * Found or allocated entry is returned in pagedeppp. 2111 */ 2112 static int 2113 pagedep_lookup(mp, bp, ino, lbn, flags, pagedeppp) 2114 struct mount *mp; 2115 struct buf *bp; 2116 ino_t ino; 2117 ufs_lbn_t lbn; 2118 int flags; 2119 struct pagedep **pagedeppp; 2120 { 2121 struct pagedep *pagedep; 2122 struct pagedep_hashhead *pagedephd; 2123 struct worklist *wk; 2124 struct ufsmount *ump; 2125 int ret; 2126 int i; 2127 2128 ump = VFSTOUFS(mp); 2129 LOCK_OWNED(ump); 2130 if (bp) { 2131 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 2132 if (wk->wk_type == D_PAGEDEP) { 2133 *pagedeppp = WK_PAGEDEP(wk); 2134 return (1); 2135 } 2136 } 2137 } 2138 pagedephd = PAGEDEP_HASH(ump, ino, lbn); 2139 ret = pagedep_find(pagedephd, ino, lbn, pagedeppp); 2140 if (ret) { 2141 if (((*pagedeppp)->pd_state & ONWORKLIST) == 0 && bp) 2142 WORKLIST_INSERT(&bp->b_dep, &(*pagedeppp)->pd_list); 2143 return (1); 2144 } 2145 if ((flags & DEPALLOC) == 0) 2146 return (0); 2147 FREE_LOCK(ump); 2148 pagedep = malloc(sizeof(struct pagedep), 2149 M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO); 2150 workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp); 2151 ACQUIRE_LOCK(ump); 2152 ret = pagedep_find(pagedephd, ino, lbn, pagedeppp); 2153 if (*pagedeppp) { 2154 /* 2155 * This should never happen since we only create pagedeps 2156 * with the vnode lock held. Could be an assert. 2157 */ 2158 WORKITEM_FREE(pagedep, D_PAGEDEP); 2159 return (ret); 2160 } 2161 pagedep->pd_ino = ino; 2162 pagedep->pd_lbn = lbn; 2163 LIST_INIT(&pagedep->pd_dirremhd); 2164 LIST_INIT(&pagedep->pd_pendinghd); 2165 for (i = 0; i < DAHASHSZ; i++) 2166 LIST_INIT(&pagedep->pd_diraddhd[i]); 2167 LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash); 2168 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 2169 *pagedeppp = pagedep; 2170 return (0); 2171 } 2172 2173 /* 2174 * Structures and routines associated with inodedep caching. 2175 */ 2176 #define INODEDEP_HASH(ump, inum) \ 2177 (&(ump)->inodedep_hashtbl[(inum) & (ump)->inodedep_hash_size]) 2178 2179 static int 2180 inodedep_find(inodedephd, inum, inodedeppp) 2181 struct inodedep_hashhead *inodedephd; 2182 ino_t inum; 2183 struct inodedep **inodedeppp; 2184 { 2185 struct inodedep *inodedep; 2186 2187 LIST_FOREACH(inodedep, inodedephd, id_hash) 2188 if (inum == inodedep->id_ino) 2189 break; 2190 if (inodedep) { 2191 *inodedeppp = inodedep; 2192 return (1); 2193 } 2194 *inodedeppp = NULL; 2195 2196 return (0); 2197 } 2198 /* 2199 * Look up an inodedep. Return 1 if found, 0 if not found. 2200 * If not found, allocate if DEPALLOC flag is passed. 2201 * Found or allocated entry is returned in inodedeppp. 2202 */ 2203 static int 2204 inodedep_lookup(mp, inum, flags, inodedeppp) 2205 struct mount *mp; 2206 ino_t inum; 2207 int flags; 2208 struct inodedep **inodedeppp; 2209 { 2210 struct inodedep *inodedep; 2211 struct inodedep_hashhead *inodedephd; 2212 struct ufsmount *ump; 2213 struct fs *fs; 2214 2215 ump = VFSTOUFS(mp); 2216 LOCK_OWNED(ump); 2217 fs = ump->um_fs; 2218 inodedephd = INODEDEP_HASH(ump, inum); 2219 2220 if (inodedep_find(inodedephd, inum, inodedeppp)) 2221 return (1); 2222 if ((flags & DEPALLOC) == 0) 2223 return (0); 2224 /* 2225 * If the system is over its limit and our filesystem is 2226 * responsible for more than our share of that usage and 2227 * we are not in a rush, request some inodedep cleanup. 2228 */ 2229 if (softdep_excess_items(ump, D_INODEDEP)) 2230 schedule_cleanup(mp); 2231 else 2232 FREE_LOCK(ump); 2233 inodedep = malloc(sizeof(struct inodedep), 2234 M_INODEDEP, M_SOFTDEP_FLAGS); 2235 workitem_alloc(&inodedep->id_list, D_INODEDEP, mp); 2236 ACQUIRE_LOCK(ump); 2237 if (inodedep_find(inodedephd, inum, inodedeppp)) { 2238 WORKITEM_FREE(inodedep, D_INODEDEP); 2239 return (1); 2240 } 2241 inodedep->id_fs = fs; 2242 inodedep->id_ino = inum; 2243 inodedep->id_state = ALLCOMPLETE; 2244 inodedep->id_nlinkdelta = 0; 2245 inodedep->id_savedino1 = NULL; 2246 inodedep->id_savedsize = -1; 2247 inodedep->id_savedextsize = -1; 2248 inodedep->id_savednlink = -1; 2249 inodedep->id_bmsafemap = NULL; 2250 inodedep->id_mkdiradd = NULL; 2251 LIST_INIT(&inodedep->id_dirremhd); 2252 LIST_INIT(&inodedep->id_pendinghd); 2253 LIST_INIT(&inodedep->id_inowait); 2254 LIST_INIT(&inodedep->id_bufwait); 2255 TAILQ_INIT(&inodedep->id_inoreflst); 2256 TAILQ_INIT(&inodedep->id_inoupdt); 2257 TAILQ_INIT(&inodedep->id_newinoupdt); 2258 TAILQ_INIT(&inodedep->id_extupdt); 2259 TAILQ_INIT(&inodedep->id_newextupdt); 2260 TAILQ_INIT(&inodedep->id_freeblklst); 2261 LIST_INSERT_HEAD(inodedephd, inodedep, id_hash); 2262 *inodedeppp = inodedep; 2263 return (0); 2264 } 2265 2266 /* 2267 * Structures and routines associated with newblk caching. 2268 */ 2269 #define NEWBLK_HASH(ump, inum) \ 2270 (&(ump)->newblk_hashtbl[(inum) & (ump)->newblk_hash_size]) 2271 2272 static int 2273 newblk_find(newblkhd, newblkno, flags, newblkpp) 2274 struct newblk_hashhead *newblkhd; 2275 ufs2_daddr_t newblkno; 2276 int flags; 2277 struct newblk **newblkpp; 2278 { 2279 struct newblk *newblk; 2280 2281 LIST_FOREACH(newblk, newblkhd, nb_hash) { 2282 if (newblkno != newblk->nb_newblkno) 2283 continue; 2284 /* 2285 * If we're creating a new dependency don't match those that 2286 * have already been converted to allocdirects. This is for 2287 * a frag extend. 2288 */ 2289 if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK) 2290 continue; 2291 break; 2292 } 2293 if (newblk) { 2294 *newblkpp = newblk; 2295 return (1); 2296 } 2297 *newblkpp = NULL; 2298 return (0); 2299 } 2300 2301 /* 2302 * Look up a newblk. Return 1 if found, 0 if not found. 2303 * If not found, allocate if DEPALLOC flag is passed. 2304 * Found or allocated entry is returned in newblkpp. 2305 */ 2306 static int 2307 newblk_lookup(mp, newblkno, flags, newblkpp) 2308 struct mount *mp; 2309 ufs2_daddr_t newblkno; 2310 int flags; 2311 struct newblk **newblkpp; 2312 { 2313 struct newblk *newblk; 2314 struct newblk_hashhead *newblkhd; 2315 struct ufsmount *ump; 2316 2317 ump = VFSTOUFS(mp); 2318 LOCK_OWNED(ump); 2319 newblkhd = NEWBLK_HASH(ump, newblkno); 2320 if (newblk_find(newblkhd, newblkno, flags, newblkpp)) 2321 return (1); 2322 if ((flags & DEPALLOC) == 0) 2323 return (0); 2324 if (softdep_excess_items(ump, D_NEWBLK) || 2325 softdep_excess_items(ump, D_ALLOCDIRECT) || 2326 softdep_excess_items(ump, D_ALLOCINDIR)) 2327 schedule_cleanup(mp); 2328 else 2329 FREE_LOCK(ump); 2330 newblk = malloc(sizeof(union allblk), M_NEWBLK, 2331 M_SOFTDEP_FLAGS | M_ZERO); 2332 workitem_alloc(&newblk->nb_list, D_NEWBLK, mp); 2333 ACQUIRE_LOCK(ump); 2334 if (newblk_find(newblkhd, newblkno, flags, newblkpp)) { 2335 WORKITEM_FREE(newblk, D_NEWBLK); 2336 return (1); 2337 } 2338 newblk->nb_freefrag = NULL; 2339 LIST_INIT(&newblk->nb_indirdeps); 2340 LIST_INIT(&newblk->nb_newdirblk); 2341 LIST_INIT(&newblk->nb_jwork); 2342 newblk->nb_state = ATTACHED; 2343 newblk->nb_newblkno = newblkno; 2344 LIST_INSERT_HEAD(newblkhd, newblk, nb_hash); 2345 *newblkpp = newblk; 2346 return (0); 2347 } 2348 2349 /* 2350 * Structures and routines associated with freed indirect block caching. 2351 */ 2352 #define INDIR_HASH(ump, blkno) \ 2353 (&(ump)->indir_hashtbl[(blkno) & (ump)->indir_hash_size]) 2354 2355 /* 2356 * Lookup an indirect block in the indir hash table. The freework is 2357 * removed and potentially freed. The caller must do a blocking journal 2358 * write before writing to the blkno. 2359 */ 2360 static int 2361 indirblk_lookup(mp, blkno) 2362 struct mount *mp; 2363 ufs2_daddr_t blkno; 2364 { 2365 struct freework *freework; 2366 struct indir_hashhead *wkhd; 2367 struct ufsmount *ump; 2368 2369 ump = VFSTOUFS(mp); 2370 wkhd = INDIR_HASH(ump, blkno); 2371 TAILQ_FOREACH(freework, wkhd, fw_next) { 2372 if (freework->fw_blkno != blkno) 2373 continue; 2374 indirblk_remove(freework); 2375 return (1); 2376 } 2377 return (0); 2378 } 2379 2380 /* 2381 * Insert an indirect block represented by freework into the indirblk 2382 * hash table so that it may prevent the block from being re-used prior 2383 * to the journal being written. 2384 */ 2385 static void 2386 indirblk_insert(freework) 2387 struct freework *freework; 2388 { 2389 struct jblocks *jblocks; 2390 struct jseg *jseg; 2391 struct ufsmount *ump; 2392 2393 ump = VFSTOUFS(freework->fw_list.wk_mp); 2394 jblocks = ump->softdep_jblocks; 2395 jseg = TAILQ_LAST(&jblocks->jb_segs, jseglst); 2396 if (jseg == NULL) 2397 return; 2398 2399 LIST_INSERT_HEAD(&jseg->js_indirs, freework, fw_segs); 2400 TAILQ_INSERT_HEAD(INDIR_HASH(ump, freework->fw_blkno), freework, 2401 fw_next); 2402 freework->fw_state &= ~DEPCOMPLETE; 2403 } 2404 2405 static void 2406 indirblk_remove(freework) 2407 struct freework *freework; 2408 { 2409 struct ufsmount *ump; 2410 2411 ump = VFSTOUFS(freework->fw_list.wk_mp); 2412 LIST_REMOVE(freework, fw_segs); 2413 TAILQ_REMOVE(INDIR_HASH(ump, freework->fw_blkno), freework, fw_next); 2414 freework->fw_state |= DEPCOMPLETE; 2415 if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE) 2416 WORKITEM_FREE(freework, D_FREEWORK); 2417 } 2418 2419 /* 2420 * Executed during filesystem system initialization before 2421 * mounting any filesystems. 2422 */ 2423 void 2424 softdep_initialize() 2425 { 2426 2427 TAILQ_INIT(&softdepmounts); 2428 #ifdef __LP64__ 2429 max_softdeps = desiredvnodes * 4; 2430 #else 2431 max_softdeps = desiredvnodes * 2; 2432 #endif 2433 2434 /* initialise bioops hack */ 2435 bioops.io_start = softdep_disk_io_initiation; 2436 bioops.io_complete = softdep_disk_write_complete; 2437 bioops.io_deallocate = softdep_deallocate_dependencies; 2438 bioops.io_countdeps = softdep_count_dependencies; 2439 softdep_ast_cleanup = softdep_ast_cleanup_proc; 2440 2441 /* Initialize the callout with an mtx. */ 2442 callout_init_mtx(&softdep_callout, &lk, 0); 2443 } 2444 2445 /* 2446 * Executed after all filesystems have been unmounted during 2447 * filesystem module unload. 2448 */ 2449 void 2450 softdep_uninitialize() 2451 { 2452 2453 /* clear bioops hack */ 2454 bioops.io_start = NULL; 2455 bioops.io_complete = NULL; 2456 bioops.io_deallocate = NULL; 2457 bioops.io_countdeps = NULL; 2458 softdep_ast_cleanup = NULL; 2459 2460 callout_drain(&softdep_callout); 2461 } 2462 2463 /* 2464 * Called at mount time to notify the dependency code that a 2465 * filesystem wishes to use it. 2466 */ 2467 int 2468 softdep_mount(devvp, mp, fs, cred) 2469 struct vnode *devvp; 2470 struct mount *mp; 2471 struct fs *fs; 2472 struct ucred *cred; 2473 { 2474 struct csum_total cstotal; 2475 struct mount_softdeps *sdp; 2476 struct ufsmount *ump; 2477 struct cg *cgp; 2478 struct buf *bp; 2479 u_int cyl, i; 2480 int error; 2481 2482 sdp = malloc(sizeof(struct mount_softdeps), M_MOUNTDATA, 2483 M_WAITOK | M_ZERO); 2484 MNT_ILOCK(mp); 2485 mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP; 2486 if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) { 2487 mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) | 2488 MNTK_SOFTDEP | MNTK_NOASYNC; 2489 } 2490 ump = VFSTOUFS(mp); 2491 ump->um_softdep = sdp; 2492 MNT_IUNLOCK(mp); 2493 rw_init(LOCK_PTR(ump), "Per-Filesystem Softdep Lock"); 2494 sdp->sd_ump = ump; 2495 LIST_INIT(&ump->softdep_workitem_pending); 2496 LIST_INIT(&ump->softdep_journal_pending); 2497 TAILQ_INIT(&ump->softdep_unlinked); 2498 LIST_INIT(&ump->softdep_dirtycg); 2499 ump->softdep_worklist_tail = NULL; 2500 ump->softdep_on_worklist = 0; 2501 ump->softdep_deps = 0; 2502 LIST_INIT(&ump->softdep_mkdirlisthd); 2503 ump->pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP, 2504 &ump->pagedep_hash_size); 2505 ump->pagedep_nextclean = 0; 2506 ump->inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, 2507 &ump->inodedep_hash_size); 2508 ump->inodedep_nextclean = 0; 2509 ump->newblk_hashtbl = hashinit(max_softdeps / 2, M_NEWBLK, 2510 &ump->newblk_hash_size); 2511 ump->bmsafemap_hashtbl = hashinit(1024, M_BMSAFEMAP, 2512 &ump->bmsafemap_hash_size); 2513 i = 1 << (ffs(desiredvnodes / 10) - 1); 2514 ump->indir_hashtbl = malloc(i * sizeof(struct indir_hashhead), 2515 M_FREEWORK, M_WAITOK); 2516 ump->indir_hash_size = i - 1; 2517 for (i = 0; i <= ump->indir_hash_size; i++) 2518 TAILQ_INIT(&ump->indir_hashtbl[i]); 2519 ACQUIRE_GBLLOCK(&lk); 2520 TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next); 2521 FREE_GBLLOCK(&lk); 2522 if ((fs->fs_flags & FS_SUJ) && 2523 (error = journal_mount(mp, fs, cred)) != 0) { 2524 printf("Failed to start journal: %d\n", error); 2525 softdep_unmount(mp); 2526 return (error); 2527 } 2528 /* 2529 * Start our flushing thread in the bufdaemon process. 2530 */ 2531 ACQUIRE_LOCK(ump); 2532 ump->softdep_flags |= FLUSH_STARTING; 2533 FREE_LOCK(ump); 2534 kproc_kthread_add(&softdep_flush, mp, &bufdaemonproc, 2535 &ump->softdep_flushtd, 0, 0, "softdepflush", "%s worker", 2536 mp->mnt_stat.f_mntonname); 2537 ACQUIRE_LOCK(ump); 2538 while ((ump->softdep_flags & FLUSH_STARTING) != 0) { 2539 msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM, "sdstart", 2540 hz / 2); 2541 } 2542 FREE_LOCK(ump); 2543 /* 2544 * When doing soft updates, the counters in the 2545 * superblock may have gotten out of sync. Recomputation 2546 * can take a long time and can be deferred for background 2547 * fsck. However, the old behavior of scanning the cylinder 2548 * groups and recalculating them at mount time is available 2549 * by setting vfs.ffs.compute_summary_at_mount to one. 2550 */ 2551 if (compute_summary_at_mount == 0 || fs->fs_clean != 0) 2552 return (0); 2553 bzero(&cstotal, sizeof cstotal); 2554 for (cyl = 0; cyl < fs->fs_ncg; cyl++) { 2555 if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)), 2556 fs->fs_cgsize, cred, &bp)) != 0) { 2557 brelse(bp); 2558 softdep_unmount(mp); 2559 return (error); 2560 } 2561 cgp = (struct cg *)bp->b_data; 2562 cstotal.cs_nffree += cgp->cg_cs.cs_nffree; 2563 cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree; 2564 cstotal.cs_nifree += cgp->cg_cs.cs_nifree; 2565 cstotal.cs_ndir += cgp->cg_cs.cs_ndir; 2566 fs->fs_cs(fs, cyl) = cgp->cg_cs; 2567 brelse(bp); 2568 } 2569 #ifdef INVARIANTS 2570 if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal)) 2571 printf("%s: superblock summary recomputed\n", fs->fs_fsmnt); 2572 #endif 2573 bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal); 2574 return (0); 2575 } 2576 2577 void 2578 softdep_unmount(mp) 2579 struct mount *mp; 2580 { 2581 struct ufsmount *ump; 2582 #ifdef INVARIANTS 2583 int i; 2584 #endif 2585 2586 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 2587 ("softdep_unmount called on non-softdep filesystem")); 2588 ump = VFSTOUFS(mp); 2589 MNT_ILOCK(mp); 2590 mp->mnt_flag &= ~MNT_SOFTDEP; 2591 if (MOUNTEDSUJ(mp) == 0) { 2592 MNT_IUNLOCK(mp); 2593 } else { 2594 mp->mnt_flag &= ~MNT_SUJ; 2595 MNT_IUNLOCK(mp); 2596 journal_unmount(ump); 2597 } 2598 /* 2599 * Shut down our flushing thread. Check for NULL is if 2600 * softdep_mount errors out before the thread has been created. 2601 */ 2602 if (ump->softdep_flushtd != NULL) { 2603 ACQUIRE_LOCK(ump); 2604 ump->softdep_flags |= FLUSH_EXIT; 2605 wakeup(&ump->softdep_flushtd); 2606 msleep(&ump->softdep_flags, LOCK_PTR(ump), PVM | PDROP, 2607 "sdwait", 0); 2608 KASSERT((ump->softdep_flags & FLUSH_EXIT) == 0, 2609 ("Thread shutdown failed")); 2610 } 2611 /* 2612 * Free up our resources. 2613 */ 2614 ACQUIRE_GBLLOCK(&lk); 2615 TAILQ_REMOVE(&softdepmounts, ump->um_softdep, sd_next); 2616 FREE_GBLLOCK(&lk); 2617 rw_destroy(LOCK_PTR(ump)); 2618 hashdestroy(ump->pagedep_hashtbl, M_PAGEDEP, ump->pagedep_hash_size); 2619 hashdestroy(ump->inodedep_hashtbl, M_INODEDEP, ump->inodedep_hash_size); 2620 hashdestroy(ump->newblk_hashtbl, M_NEWBLK, ump->newblk_hash_size); 2621 hashdestroy(ump->bmsafemap_hashtbl, M_BMSAFEMAP, 2622 ump->bmsafemap_hash_size); 2623 free(ump->indir_hashtbl, M_FREEWORK); 2624 #ifdef INVARIANTS 2625 for (i = 0; i <= D_LAST; i++) 2626 KASSERT(ump->softdep_curdeps[i] == 0, 2627 ("Unmount %s: Dep type %s != 0 (%ld)", ump->um_fs->fs_fsmnt, 2628 TYPENAME(i), ump->softdep_curdeps[i])); 2629 #endif 2630 free(ump->um_softdep, M_MOUNTDATA); 2631 } 2632 2633 static struct jblocks * 2634 jblocks_create(void) 2635 { 2636 struct jblocks *jblocks; 2637 2638 jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO); 2639 TAILQ_INIT(&jblocks->jb_segs); 2640 jblocks->jb_avail = 10; 2641 jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail, 2642 M_JBLOCKS, M_WAITOK | M_ZERO); 2643 2644 return (jblocks); 2645 } 2646 2647 static ufs2_daddr_t 2648 jblocks_alloc(jblocks, bytes, actual) 2649 struct jblocks *jblocks; 2650 int bytes; 2651 int *actual; 2652 { 2653 ufs2_daddr_t daddr; 2654 struct jextent *jext; 2655 int freecnt; 2656 int blocks; 2657 2658 blocks = bytes / DEV_BSIZE; 2659 jext = &jblocks->jb_extent[jblocks->jb_head]; 2660 freecnt = jext->je_blocks - jblocks->jb_off; 2661 if (freecnt == 0) { 2662 jblocks->jb_off = 0; 2663 if (++jblocks->jb_head > jblocks->jb_used) 2664 jblocks->jb_head = 0; 2665 jext = &jblocks->jb_extent[jblocks->jb_head]; 2666 freecnt = jext->je_blocks; 2667 } 2668 if (freecnt > blocks) 2669 freecnt = blocks; 2670 *actual = freecnt * DEV_BSIZE; 2671 daddr = jext->je_daddr + jblocks->jb_off; 2672 jblocks->jb_off += freecnt; 2673 jblocks->jb_free -= freecnt; 2674 2675 return (daddr); 2676 } 2677 2678 static void 2679 jblocks_free(jblocks, mp, bytes) 2680 struct jblocks *jblocks; 2681 struct mount *mp; 2682 int bytes; 2683 { 2684 2685 LOCK_OWNED(VFSTOUFS(mp)); 2686 jblocks->jb_free += bytes / DEV_BSIZE; 2687 if (jblocks->jb_suspended) 2688 worklist_speedup(mp); 2689 wakeup(jblocks); 2690 } 2691 2692 static void 2693 jblocks_destroy(jblocks) 2694 struct jblocks *jblocks; 2695 { 2696 2697 if (jblocks->jb_extent) 2698 free(jblocks->jb_extent, M_JBLOCKS); 2699 free(jblocks, M_JBLOCKS); 2700 } 2701 2702 static void 2703 jblocks_add(jblocks, daddr, blocks) 2704 struct jblocks *jblocks; 2705 ufs2_daddr_t daddr; 2706 int blocks; 2707 { 2708 struct jextent *jext; 2709 2710 jblocks->jb_blocks += blocks; 2711 jblocks->jb_free += blocks; 2712 jext = &jblocks->jb_extent[jblocks->jb_used]; 2713 /* Adding the first block. */ 2714 if (jext->je_daddr == 0) { 2715 jext->je_daddr = daddr; 2716 jext->je_blocks = blocks; 2717 return; 2718 } 2719 /* Extending the last extent. */ 2720 if (jext->je_daddr + jext->je_blocks == daddr) { 2721 jext->je_blocks += blocks; 2722 return; 2723 } 2724 /* Adding a new extent. */ 2725 if (++jblocks->jb_used == jblocks->jb_avail) { 2726 jblocks->jb_avail *= 2; 2727 jext = malloc(sizeof(struct jextent) * jblocks->jb_avail, 2728 M_JBLOCKS, M_WAITOK | M_ZERO); 2729 memcpy(jext, jblocks->jb_extent, 2730 sizeof(struct jextent) * jblocks->jb_used); 2731 free(jblocks->jb_extent, M_JBLOCKS); 2732 jblocks->jb_extent = jext; 2733 } 2734 jext = &jblocks->jb_extent[jblocks->jb_used]; 2735 jext->je_daddr = daddr; 2736 jext->je_blocks = blocks; 2737 return; 2738 } 2739 2740 int 2741 softdep_journal_lookup(mp, vpp) 2742 struct mount *mp; 2743 struct vnode **vpp; 2744 { 2745 struct componentname cnp; 2746 struct vnode *dvp; 2747 ino_t sujournal; 2748 int error; 2749 2750 error = VFS_VGET(mp, UFS_ROOTINO, LK_EXCLUSIVE, &dvp); 2751 if (error) 2752 return (error); 2753 bzero(&cnp, sizeof(cnp)); 2754 cnp.cn_nameiop = LOOKUP; 2755 cnp.cn_flags = ISLASTCN; 2756 cnp.cn_thread = curthread; 2757 cnp.cn_cred = curthread->td_ucred; 2758 cnp.cn_pnbuf = SUJ_FILE; 2759 cnp.cn_nameptr = SUJ_FILE; 2760 cnp.cn_namelen = strlen(SUJ_FILE); 2761 error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal); 2762 vput(dvp); 2763 if (error != 0) 2764 return (error); 2765 error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp); 2766 return (error); 2767 } 2768 2769 /* 2770 * Open and verify the journal file. 2771 */ 2772 static int 2773 journal_mount(mp, fs, cred) 2774 struct mount *mp; 2775 struct fs *fs; 2776 struct ucred *cred; 2777 { 2778 struct jblocks *jblocks; 2779 struct ufsmount *ump; 2780 struct vnode *vp; 2781 struct inode *ip; 2782 ufs2_daddr_t blkno; 2783 int bcount; 2784 int error; 2785 int i; 2786 2787 ump = VFSTOUFS(mp); 2788 ump->softdep_journal_tail = NULL; 2789 ump->softdep_on_journal = 0; 2790 ump->softdep_accdeps = 0; 2791 ump->softdep_req = 0; 2792 ump->softdep_jblocks = NULL; 2793 error = softdep_journal_lookup(mp, &vp); 2794 if (error != 0) { 2795 printf("Failed to find journal. Use tunefs to create one\n"); 2796 return (error); 2797 } 2798 ip = VTOI(vp); 2799 if (ip->i_size < SUJ_MIN) { 2800 error = ENOSPC; 2801 goto out; 2802 } 2803 bcount = lblkno(fs, ip->i_size); /* Only use whole blocks. */ 2804 jblocks = jblocks_create(); 2805 for (i = 0; i < bcount; i++) { 2806 error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL); 2807 if (error) 2808 break; 2809 jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag)); 2810 } 2811 if (error) { 2812 jblocks_destroy(jblocks); 2813 goto out; 2814 } 2815 jblocks->jb_low = jblocks->jb_free / 3; /* Reserve 33%. */ 2816 jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */ 2817 ump->softdep_jblocks = jblocks; 2818 out: 2819 if (error == 0) { 2820 MNT_ILOCK(mp); 2821 mp->mnt_flag |= MNT_SUJ; 2822 mp->mnt_flag &= ~MNT_SOFTDEP; 2823 MNT_IUNLOCK(mp); 2824 /* 2825 * Only validate the journal contents if the 2826 * filesystem is clean, otherwise we write the logs 2827 * but they'll never be used. If the filesystem was 2828 * still dirty when we mounted it the journal is 2829 * invalid and a new journal can only be valid if it 2830 * starts from a clean mount. 2831 */ 2832 if (fs->fs_clean) { 2833 DIP_SET(ip, i_modrev, fs->fs_mtime); 2834 ip->i_flags |= IN_MODIFIED; 2835 ffs_update(vp, 1); 2836 } 2837 } 2838 vput(vp); 2839 return (error); 2840 } 2841 2842 static void 2843 journal_unmount(ump) 2844 struct ufsmount *ump; 2845 { 2846 2847 if (ump->softdep_jblocks) 2848 jblocks_destroy(ump->softdep_jblocks); 2849 ump->softdep_jblocks = NULL; 2850 } 2851 2852 /* 2853 * Called when a journal record is ready to be written. Space is allocated 2854 * and the journal entry is created when the journal is flushed to stable 2855 * store. 2856 */ 2857 static void 2858 add_to_journal(wk) 2859 struct worklist *wk; 2860 { 2861 struct ufsmount *ump; 2862 2863 ump = VFSTOUFS(wk->wk_mp); 2864 LOCK_OWNED(ump); 2865 if (wk->wk_state & ONWORKLIST) 2866 panic("add_to_journal: %s(0x%X) already on list", 2867 TYPENAME(wk->wk_type), wk->wk_state); 2868 wk->wk_state |= ONWORKLIST | DEPCOMPLETE; 2869 if (LIST_EMPTY(&ump->softdep_journal_pending)) { 2870 ump->softdep_jblocks->jb_age = ticks; 2871 LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list); 2872 } else 2873 LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list); 2874 ump->softdep_journal_tail = wk; 2875 ump->softdep_on_journal += 1; 2876 } 2877 2878 /* 2879 * Remove an arbitrary item for the journal worklist maintain the tail 2880 * pointer. This happens when a new operation obviates the need to 2881 * journal an old operation. 2882 */ 2883 static void 2884 remove_from_journal(wk) 2885 struct worklist *wk; 2886 { 2887 struct ufsmount *ump; 2888 2889 ump = VFSTOUFS(wk->wk_mp); 2890 LOCK_OWNED(ump); 2891 #ifdef INVARIANTS 2892 { 2893 struct worklist *wkn; 2894 2895 LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list) 2896 if (wkn == wk) 2897 break; 2898 if (wkn == NULL) 2899 panic("remove_from_journal: %p is not in journal", wk); 2900 } 2901 #endif 2902 /* 2903 * We emulate a TAILQ to save space in most structures which do not 2904 * require TAILQ semantics. Here we must update the tail position 2905 * when removing the tail which is not the final entry. This works 2906 * only if the worklist linkage are at the beginning of the structure. 2907 */ 2908 if (ump->softdep_journal_tail == wk) 2909 ump->softdep_journal_tail = 2910 (struct worklist *)wk->wk_list.le_prev; 2911 WORKLIST_REMOVE(wk); 2912 ump->softdep_on_journal -= 1; 2913 } 2914 2915 /* 2916 * Check for journal space as well as dependency limits so the prelink 2917 * code can throttle both journaled and non-journaled filesystems. 2918 * Threshold is 0 for low and 1 for min. 2919 */ 2920 static int 2921 journal_space(ump, thresh) 2922 struct ufsmount *ump; 2923 int thresh; 2924 { 2925 struct jblocks *jblocks; 2926 int limit, avail; 2927 2928 jblocks = ump->softdep_jblocks; 2929 if (jblocks == NULL) 2930 return (1); 2931 /* 2932 * We use a tighter restriction here to prevent request_cleanup() 2933 * running in threads from running into locks we currently hold. 2934 * We have to be over the limit and our filesystem has to be 2935 * responsible for more than our share of that usage. 2936 */ 2937 limit = (max_softdeps / 10) * 9; 2938 if (dep_current[D_INODEDEP] > limit && 2939 ump->softdep_curdeps[D_INODEDEP] > limit / stat_flush_threads) 2940 return (0); 2941 if (thresh) 2942 thresh = jblocks->jb_min; 2943 else 2944 thresh = jblocks->jb_low; 2945 avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE; 2946 avail = jblocks->jb_free - avail; 2947 2948 return (avail > thresh); 2949 } 2950 2951 static void 2952 journal_suspend(ump) 2953 struct ufsmount *ump; 2954 { 2955 struct jblocks *jblocks; 2956 struct mount *mp; 2957 2958 mp = UFSTOVFS(ump); 2959 jblocks = ump->softdep_jblocks; 2960 MNT_ILOCK(mp); 2961 if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) { 2962 stat_journal_min++; 2963 mp->mnt_kern_flag |= MNTK_SUSPEND; 2964 mp->mnt_susp_owner = ump->softdep_flushtd; 2965 } 2966 jblocks->jb_suspended = 1; 2967 MNT_IUNLOCK(mp); 2968 } 2969 2970 static int 2971 journal_unsuspend(struct ufsmount *ump) 2972 { 2973 struct jblocks *jblocks; 2974 struct mount *mp; 2975 2976 mp = UFSTOVFS(ump); 2977 jblocks = ump->softdep_jblocks; 2978 2979 if (jblocks != NULL && jblocks->jb_suspended && 2980 journal_space(ump, jblocks->jb_min)) { 2981 jblocks->jb_suspended = 0; 2982 FREE_LOCK(ump); 2983 mp->mnt_susp_owner = curthread; 2984 vfs_write_resume(mp, 0); 2985 ACQUIRE_LOCK(ump); 2986 return (1); 2987 } 2988 return (0); 2989 } 2990 2991 /* 2992 * Called before any allocation function to be certain that there is 2993 * sufficient space in the journal prior to creating any new records. 2994 * Since in the case of block allocation we may have multiple locked 2995 * buffers at the time of the actual allocation we can not block 2996 * when the journal records are created. Doing so would create a deadlock 2997 * if any of these buffers needed to be flushed to reclaim space. Instead 2998 * we require a sufficiently large amount of available space such that 2999 * each thread in the system could have passed this allocation check and 3000 * still have sufficient free space. With 20% of a minimum journal size 3001 * of 1MB we have 6553 records available. 3002 */ 3003 int 3004 softdep_prealloc(vp, waitok) 3005 struct vnode *vp; 3006 int waitok; 3007 { 3008 struct ufsmount *ump; 3009 3010 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 3011 ("softdep_prealloc called on non-softdep filesystem")); 3012 /* 3013 * Nothing to do if we are not running journaled soft updates. 3014 * If we currently hold the snapshot lock, we must avoid 3015 * handling other resources that could cause deadlock. Do not 3016 * touch quotas vnode since it is typically recursed with 3017 * other vnode locks held. 3018 */ 3019 if (DOINGSUJ(vp) == 0 || IS_SNAPSHOT(VTOI(vp)) || 3020 (vp->v_vflag & VV_SYSTEM) != 0) 3021 return (0); 3022 ump = VFSTOUFS(vp->v_mount); 3023 ACQUIRE_LOCK(ump); 3024 if (journal_space(ump, 0)) { 3025 FREE_LOCK(ump); 3026 return (0); 3027 } 3028 stat_journal_low++; 3029 FREE_LOCK(ump); 3030 if (waitok == MNT_NOWAIT) 3031 return (ENOSPC); 3032 /* 3033 * Attempt to sync this vnode once to flush any journal 3034 * work attached to it. 3035 */ 3036 if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0) 3037 ffs_syncvnode(vp, waitok, 0); 3038 ACQUIRE_LOCK(ump); 3039 process_removes(vp); 3040 process_truncates(vp); 3041 if (journal_space(ump, 0) == 0) { 3042 softdep_speedup(ump); 3043 if (journal_space(ump, 1) == 0) 3044 journal_suspend(ump); 3045 } 3046 FREE_LOCK(ump); 3047 3048 return (0); 3049 } 3050 3051 /* 3052 * Before adjusting a link count on a vnode verify that we have sufficient 3053 * journal space. If not, process operations that depend on the currently 3054 * locked pair of vnodes to try to flush space as the syncer, buf daemon, 3055 * and softdep flush threads can not acquire these locks to reclaim space. 3056 */ 3057 static void 3058 softdep_prelink(dvp, vp) 3059 struct vnode *dvp; 3060 struct vnode *vp; 3061 { 3062 struct ufsmount *ump; 3063 3064 ump = VFSTOUFS(dvp->v_mount); 3065 LOCK_OWNED(ump); 3066 /* 3067 * Nothing to do if we have sufficient journal space. 3068 * If we currently hold the snapshot lock, we must avoid 3069 * handling other resources that could cause deadlock. 3070 */ 3071 if (journal_space(ump, 0) || (vp && IS_SNAPSHOT(VTOI(vp)))) 3072 return; 3073 stat_journal_low++; 3074 FREE_LOCK(ump); 3075 if (vp) 3076 ffs_syncvnode(vp, MNT_NOWAIT, 0); 3077 ffs_syncvnode(dvp, MNT_WAIT, 0); 3078 ACQUIRE_LOCK(ump); 3079 /* Process vp before dvp as it may create .. removes. */ 3080 if (vp) { 3081 process_removes(vp); 3082 process_truncates(vp); 3083 } 3084 process_removes(dvp); 3085 process_truncates(dvp); 3086 softdep_speedup(ump); 3087 process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT); 3088 if (journal_space(ump, 0) == 0) { 3089 softdep_speedup(ump); 3090 if (journal_space(ump, 1) == 0) 3091 journal_suspend(ump); 3092 } 3093 } 3094 3095 static void 3096 jseg_write(ump, jseg, data) 3097 struct ufsmount *ump; 3098 struct jseg *jseg; 3099 uint8_t *data; 3100 { 3101 struct jsegrec *rec; 3102 3103 rec = (struct jsegrec *)data; 3104 rec->jsr_seq = jseg->js_seq; 3105 rec->jsr_oldest = jseg->js_oldseq; 3106 rec->jsr_cnt = jseg->js_cnt; 3107 rec->jsr_blocks = jseg->js_size / ump->um_devvp->v_bufobj.bo_bsize; 3108 rec->jsr_crc = 0; 3109 rec->jsr_time = ump->um_fs->fs_mtime; 3110 } 3111 3112 static inline void 3113 inoref_write(inoref, jseg, rec) 3114 struct inoref *inoref; 3115 struct jseg *jseg; 3116 struct jrefrec *rec; 3117 { 3118 3119 inoref->if_jsegdep->jd_seg = jseg; 3120 rec->jr_ino = inoref->if_ino; 3121 rec->jr_parent = inoref->if_parent; 3122 rec->jr_nlink = inoref->if_nlink; 3123 rec->jr_mode = inoref->if_mode; 3124 rec->jr_diroff = inoref->if_diroff; 3125 } 3126 3127 static void 3128 jaddref_write(jaddref, jseg, data) 3129 struct jaddref *jaddref; 3130 struct jseg *jseg; 3131 uint8_t *data; 3132 { 3133 struct jrefrec *rec; 3134 3135 rec = (struct jrefrec *)data; 3136 rec->jr_op = JOP_ADDREF; 3137 inoref_write(&jaddref->ja_ref, jseg, rec); 3138 } 3139 3140 static void 3141 jremref_write(jremref, jseg, data) 3142 struct jremref *jremref; 3143 struct jseg *jseg; 3144 uint8_t *data; 3145 { 3146 struct jrefrec *rec; 3147 3148 rec = (struct jrefrec *)data; 3149 rec->jr_op = JOP_REMREF; 3150 inoref_write(&jremref->jr_ref, jseg, rec); 3151 } 3152 3153 static void 3154 jmvref_write(jmvref, jseg, data) 3155 struct jmvref *jmvref; 3156 struct jseg *jseg; 3157 uint8_t *data; 3158 { 3159 struct jmvrec *rec; 3160 3161 rec = (struct jmvrec *)data; 3162 rec->jm_op = JOP_MVREF; 3163 rec->jm_ino = jmvref->jm_ino; 3164 rec->jm_parent = jmvref->jm_parent; 3165 rec->jm_oldoff = jmvref->jm_oldoff; 3166 rec->jm_newoff = jmvref->jm_newoff; 3167 } 3168 3169 static void 3170 jnewblk_write(jnewblk, jseg, data) 3171 struct jnewblk *jnewblk; 3172 struct jseg *jseg; 3173 uint8_t *data; 3174 { 3175 struct jblkrec *rec; 3176 3177 jnewblk->jn_jsegdep->jd_seg = jseg; 3178 rec = (struct jblkrec *)data; 3179 rec->jb_op = JOP_NEWBLK; 3180 rec->jb_ino = jnewblk->jn_ino; 3181 rec->jb_blkno = jnewblk->jn_blkno; 3182 rec->jb_lbn = jnewblk->jn_lbn; 3183 rec->jb_frags = jnewblk->jn_frags; 3184 rec->jb_oldfrags = jnewblk->jn_oldfrags; 3185 } 3186 3187 static void 3188 jfreeblk_write(jfreeblk, jseg, data) 3189 struct jfreeblk *jfreeblk; 3190 struct jseg *jseg; 3191 uint8_t *data; 3192 { 3193 struct jblkrec *rec; 3194 3195 jfreeblk->jf_dep.jb_jsegdep->jd_seg = jseg; 3196 rec = (struct jblkrec *)data; 3197 rec->jb_op = JOP_FREEBLK; 3198 rec->jb_ino = jfreeblk->jf_ino; 3199 rec->jb_blkno = jfreeblk->jf_blkno; 3200 rec->jb_lbn = jfreeblk->jf_lbn; 3201 rec->jb_frags = jfreeblk->jf_frags; 3202 rec->jb_oldfrags = 0; 3203 } 3204 3205 static void 3206 jfreefrag_write(jfreefrag, jseg, data) 3207 struct jfreefrag *jfreefrag; 3208 struct jseg *jseg; 3209 uint8_t *data; 3210 { 3211 struct jblkrec *rec; 3212 3213 jfreefrag->fr_jsegdep->jd_seg = jseg; 3214 rec = (struct jblkrec *)data; 3215 rec->jb_op = JOP_FREEBLK; 3216 rec->jb_ino = jfreefrag->fr_ino; 3217 rec->jb_blkno = jfreefrag->fr_blkno; 3218 rec->jb_lbn = jfreefrag->fr_lbn; 3219 rec->jb_frags = jfreefrag->fr_frags; 3220 rec->jb_oldfrags = 0; 3221 } 3222 3223 static void 3224 jtrunc_write(jtrunc, jseg, data) 3225 struct jtrunc *jtrunc; 3226 struct jseg *jseg; 3227 uint8_t *data; 3228 { 3229 struct jtrncrec *rec; 3230 3231 jtrunc->jt_dep.jb_jsegdep->jd_seg = jseg; 3232 rec = (struct jtrncrec *)data; 3233 rec->jt_op = JOP_TRUNC; 3234 rec->jt_ino = jtrunc->jt_ino; 3235 rec->jt_size = jtrunc->jt_size; 3236 rec->jt_extsize = jtrunc->jt_extsize; 3237 } 3238 3239 static void 3240 jfsync_write(jfsync, jseg, data) 3241 struct jfsync *jfsync; 3242 struct jseg *jseg; 3243 uint8_t *data; 3244 { 3245 struct jtrncrec *rec; 3246 3247 rec = (struct jtrncrec *)data; 3248 rec->jt_op = JOP_SYNC; 3249 rec->jt_ino = jfsync->jfs_ino; 3250 rec->jt_size = jfsync->jfs_size; 3251 rec->jt_extsize = jfsync->jfs_extsize; 3252 } 3253 3254 static void 3255 softdep_flushjournal(mp) 3256 struct mount *mp; 3257 { 3258 struct jblocks *jblocks; 3259 struct ufsmount *ump; 3260 3261 if (MOUNTEDSUJ(mp) == 0) 3262 return; 3263 ump = VFSTOUFS(mp); 3264 jblocks = ump->softdep_jblocks; 3265 ACQUIRE_LOCK(ump); 3266 while (ump->softdep_on_journal) { 3267 jblocks->jb_needseg = 1; 3268 softdep_process_journal(mp, NULL, MNT_WAIT); 3269 } 3270 FREE_LOCK(ump); 3271 } 3272 3273 static void softdep_synchronize_completed(struct bio *); 3274 static void softdep_synchronize(struct bio *, struct ufsmount *, void *); 3275 3276 static void 3277 softdep_synchronize_completed(bp) 3278 struct bio *bp; 3279 { 3280 struct jseg *oldest; 3281 struct jseg *jseg; 3282 struct ufsmount *ump; 3283 3284 /* 3285 * caller1 marks the last segment written before we issued the 3286 * synchronize cache. 3287 */ 3288 jseg = bp->bio_caller1; 3289 if (jseg == NULL) { 3290 g_destroy_bio(bp); 3291 return; 3292 } 3293 ump = VFSTOUFS(jseg->js_list.wk_mp); 3294 ACQUIRE_LOCK(ump); 3295 oldest = NULL; 3296 /* 3297 * Mark all the journal entries waiting on the synchronize cache 3298 * as completed so they may continue on. 3299 */ 3300 while (jseg != NULL && (jseg->js_state & COMPLETE) == 0) { 3301 jseg->js_state |= COMPLETE; 3302 oldest = jseg; 3303 jseg = TAILQ_PREV(jseg, jseglst, js_next); 3304 } 3305 /* 3306 * Restart deferred journal entry processing from the oldest 3307 * completed jseg. 3308 */ 3309 if (oldest) 3310 complete_jsegs(oldest); 3311 3312 FREE_LOCK(ump); 3313 g_destroy_bio(bp); 3314 } 3315 3316 /* 3317 * Send BIO_FLUSH/SYNCHRONIZE CACHE to the device to enforce write ordering 3318 * barriers. The journal must be written prior to any blocks that depend 3319 * on it and the journal can not be released until the blocks have be 3320 * written. This code handles both barriers simultaneously. 3321 */ 3322 static void 3323 softdep_synchronize(bp, ump, caller1) 3324 struct bio *bp; 3325 struct ufsmount *ump; 3326 void *caller1; 3327 { 3328 3329 bp->bio_cmd = BIO_FLUSH; 3330 bp->bio_flags |= BIO_ORDERED; 3331 bp->bio_data = NULL; 3332 bp->bio_offset = ump->um_cp->provider->mediasize; 3333 bp->bio_length = 0; 3334 bp->bio_done = softdep_synchronize_completed; 3335 bp->bio_caller1 = caller1; 3336 g_io_request(bp, 3337 (struct g_consumer *)ump->um_devvp->v_bufobj.bo_private); 3338 } 3339 3340 /* 3341 * Flush some journal records to disk. 3342 */ 3343 static void 3344 softdep_process_journal(mp, needwk, flags) 3345 struct mount *mp; 3346 struct worklist *needwk; 3347 int flags; 3348 { 3349 struct jblocks *jblocks; 3350 struct ufsmount *ump; 3351 struct worklist *wk; 3352 struct jseg *jseg; 3353 struct buf *bp; 3354 struct bio *bio; 3355 uint8_t *data; 3356 struct fs *fs; 3357 int shouldflush; 3358 int segwritten; 3359 int jrecmin; /* Minimum records per block. */ 3360 int jrecmax; /* Maximum records per block. */ 3361 int size; 3362 int cnt; 3363 int off; 3364 int devbsize; 3365 3366 if (MOUNTEDSUJ(mp) == 0) 3367 return; 3368 shouldflush = softdep_flushcache; 3369 bio = NULL; 3370 jseg = NULL; 3371 ump = VFSTOUFS(mp); 3372 LOCK_OWNED(ump); 3373 fs = ump->um_fs; 3374 jblocks = ump->softdep_jblocks; 3375 devbsize = ump->um_devvp->v_bufobj.bo_bsize; 3376 /* 3377 * We write anywhere between a disk block and fs block. The upper 3378 * bound is picked to prevent buffer cache fragmentation and limit 3379 * processing time per I/O. 3380 */ 3381 jrecmin = (devbsize / JREC_SIZE) - 1; /* -1 for seg header */ 3382 jrecmax = (fs->fs_bsize / devbsize) * jrecmin; 3383 segwritten = 0; 3384 for (;;) { 3385 cnt = ump->softdep_on_journal; 3386 /* 3387 * Criteria for writing a segment: 3388 * 1) We have a full block. 3389 * 2) We're called from jwait() and haven't found the 3390 * journal item yet. 3391 * 3) Always write if needseg is set. 3392 * 4) If we are called from process_worklist and have 3393 * not yet written anything we write a partial block 3394 * to enforce a 1 second maximum latency on journal 3395 * entries. 3396 */ 3397 if (cnt < (jrecmax - 1) && needwk == NULL && 3398 jblocks->jb_needseg == 0 && (segwritten || cnt == 0)) 3399 break; 3400 cnt++; 3401 /* 3402 * Verify some free journal space. softdep_prealloc() should 3403 * guarantee that we don't run out so this is indicative of 3404 * a problem with the flow control. Try to recover 3405 * gracefully in any event. 3406 */ 3407 while (jblocks->jb_free == 0) { 3408 if (flags != MNT_WAIT) 3409 break; 3410 printf("softdep: Out of journal space!\n"); 3411 softdep_speedup(ump); 3412 msleep(jblocks, LOCK_PTR(ump), PRIBIO, "jblocks", hz); 3413 } 3414 FREE_LOCK(ump); 3415 jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS); 3416 workitem_alloc(&jseg->js_list, D_JSEG, mp); 3417 LIST_INIT(&jseg->js_entries); 3418 LIST_INIT(&jseg->js_indirs); 3419 jseg->js_state = ATTACHED; 3420 if (shouldflush == 0) 3421 jseg->js_state |= COMPLETE; 3422 else if (bio == NULL) 3423 bio = g_alloc_bio(); 3424 jseg->js_jblocks = jblocks; 3425 bp = geteblk(fs->fs_bsize, 0); 3426 ACQUIRE_LOCK(ump); 3427 /* 3428 * If there was a race while we were allocating the block 3429 * and jseg the entry we care about was likely written. 3430 * We bail out in both the WAIT and NOWAIT case and assume 3431 * the caller will loop if the entry it cares about is 3432 * not written. 3433 */ 3434 cnt = ump->softdep_on_journal; 3435 if (cnt + jblocks->jb_needseg == 0 || jblocks->jb_free == 0) { 3436 bp->b_flags |= B_INVAL | B_NOCACHE; 3437 WORKITEM_FREE(jseg, D_JSEG); 3438 FREE_LOCK(ump); 3439 brelse(bp); 3440 ACQUIRE_LOCK(ump); 3441 break; 3442 } 3443 /* 3444 * Calculate the disk block size required for the available 3445 * records rounded to the min size. 3446 */ 3447 if (cnt == 0) 3448 size = devbsize; 3449 else if (cnt < jrecmax) 3450 size = howmany(cnt, jrecmin) * devbsize; 3451 else 3452 size = fs->fs_bsize; 3453 /* 3454 * Allocate a disk block for this journal data and account 3455 * for truncation of the requested size if enough contiguous 3456 * space was not available. 3457 */ 3458 bp->b_blkno = jblocks_alloc(jblocks, size, &size); 3459 bp->b_lblkno = bp->b_blkno; 3460 bp->b_offset = bp->b_blkno * DEV_BSIZE; 3461 bp->b_bcount = size; 3462 bp->b_flags &= ~B_INVAL; 3463 bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY; 3464 /* 3465 * Initialize our jseg with cnt records. Assign the next 3466 * sequence number to it and link it in-order. 3467 */ 3468 cnt = MIN(cnt, (size / devbsize) * jrecmin); 3469 jseg->js_buf = bp; 3470 jseg->js_cnt = cnt; 3471 jseg->js_refs = cnt + 1; /* Self ref. */ 3472 jseg->js_size = size; 3473 jseg->js_seq = jblocks->jb_nextseq++; 3474 if (jblocks->jb_oldestseg == NULL) 3475 jblocks->jb_oldestseg = jseg; 3476 jseg->js_oldseq = jblocks->jb_oldestseg->js_seq; 3477 TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next); 3478 if (jblocks->jb_writeseg == NULL) 3479 jblocks->jb_writeseg = jseg; 3480 /* 3481 * Start filling in records from the pending list. 3482 */ 3483 data = bp->b_data; 3484 off = 0; 3485 3486 /* 3487 * Always put a header on the first block. 3488 * XXX As with below, there might not be a chance to get 3489 * into the loop. Ensure that something valid is written. 3490 */ 3491 jseg_write(ump, jseg, data); 3492 off += JREC_SIZE; 3493 data = bp->b_data + off; 3494 3495 /* 3496 * XXX Something is wrong here. There's no work to do, 3497 * but we need to perform and I/O and allow it to complete 3498 * anyways. 3499 */ 3500 if (LIST_EMPTY(&ump->softdep_journal_pending)) 3501 stat_emptyjblocks++; 3502 3503 while ((wk = LIST_FIRST(&ump->softdep_journal_pending)) 3504 != NULL) { 3505 if (cnt == 0) 3506 break; 3507 /* Place a segment header on every device block. */ 3508 if ((off % devbsize) == 0) { 3509 jseg_write(ump, jseg, data); 3510 off += JREC_SIZE; 3511 data = bp->b_data + off; 3512 } 3513 if (wk == needwk) 3514 needwk = NULL; 3515 remove_from_journal(wk); 3516 wk->wk_state |= INPROGRESS; 3517 WORKLIST_INSERT(&jseg->js_entries, wk); 3518 switch (wk->wk_type) { 3519 case D_JADDREF: 3520 jaddref_write(WK_JADDREF(wk), jseg, data); 3521 break; 3522 case D_JREMREF: 3523 jremref_write(WK_JREMREF(wk), jseg, data); 3524 break; 3525 case D_JMVREF: 3526 jmvref_write(WK_JMVREF(wk), jseg, data); 3527 break; 3528 case D_JNEWBLK: 3529 jnewblk_write(WK_JNEWBLK(wk), jseg, data); 3530 break; 3531 case D_JFREEBLK: 3532 jfreeblk_write(WK_JFREEBLK(wk), jseg, data); 3533 break; 3534 case D_JFREEFRAG: 3535 jfreefrag_write(WK_JFREEFRAG(wk), jseg, data); 3536 break; 3537 case D_JTRUNC: 3538 jtrunc_write(WK_JTRUNC(wk), jseg, data); 3539 break; 3540 case D_JFSYNC: 3541 jfsync_write(WK_JFSYNC(wk), jseg, data); 3542 break; 3543 default: 3544 panic("process_journal: Unknown type %s", 3545 TYPENAME(wk->wk_type)); 3546 /* NOTREACHED */ 3547 } 3548 off += JREC_SIZE; 3549 data = bp->b_data + off; 3550 cnt--; 3551 } 3552 3553 /* Clear any remaining space so we don't leak kernel data */ 3554 if (size > off) 3555 bzero(data, size - off); 3556 3557 /* 3558 * Write this one buffer and continue. 3559 */ 3560 segwritten = 1; 3561 jblocks->jb_needseg = 0; 3562 WORKLIST_INSERT(&bp->b_dep, &jseg->js_list); 3563 FREE_LOCK(ump); 3564 pbgetvp(ump->um_devvp, bp); 3565 /* 3566 * We only do the blocking wait once we find the journal 3567 * entry we're looking for. 3568 */ 3569 if (needwk == NULL && flags == MNT_WAIT) 3570 bwrite(bp); 3571 else 3572 bawrite(bp); 3573 ACQUIRE_LOCK(ump); 3574 } 3575 /* 3576 * If we wrote a segment issue a synchronize cache so the journal 3577 * is reflected on disk before the data is written. Since reclaiming 3578 * journal space also requires writing a journal record this 3579 * process also enforces a barrier before reclamation. 3580 */ 3581 if (segwritten && shouldflush) { 3582 softdep_synchronize(bio, ump, 3583 TAILQ_LAST(&jblocks->jb_segs, jseglst)); 3584 } else if (bio) 3585 g_destroy_bio(bio); 3586 /* 3587 * If we've suspended the filesystem because we ran out of journal 3588 * space either try to sync it here to make some progress or 3589 * unsuspend it if we already have. 3590 */ 3591 if (flags == 0 && jblocks->jb_suspended) { 3592 if (journal_unsuspend(ump)) 3593 return; 3594 FREE_LOCK(ump); 3595 VFS_SYNC(mp, MNT_NOWAIT); 3596 ffs_sbupdate(ump, MNT_WAIT, 0); 3597 ACQUIRE_LOCK(ump); 3598 } 3599 } 3600 3601 /* 3602 * Complete a jseg, allowing all dependencies awaiting journal writes 3603 * to proceed. Each journal dependency also attaches a jsegdep to dependent 3604 * structures so that the journal segment can be freed to reclaim space. 3605 */ 3606 static void 3607 complete_jseg(jseg) 3608 struct jseg *jseg; 3609 { 3610 struct worklist *wk; 3611 struct jmvref *jmvref; 3612 #ifdef INVARIANTS 3613 int i = 0; 3614 #endif 3615 3616 while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) { 3617 WORKLIST_REMOVE(wk); 3618 wk->wk_state &= ~INPROGRESS; 3619 wk->wk_state |= COMPLETE; 3620 KASSERT(i++ < jseg->js_cnt, 3621 ("handle_written_jseg: overflow %d >= %d", 3622 i - 1, jseg->js_cnt)); 3623 switch (wk->wk_type) { 3624 case D_JADDREF: 3625 handle_written_jaddref(WK_JADDREF(wk)); 3626 break; 3627 case D_JREMREF: 3628 handle_written_jremref(WK_JREMREF(wk)); 3629 break; 3630 case D_JMVREF: 3631 rele_jseg(jseg); /* No jsegdep. */ 3632 jmvref = WK_JMVREF(wk); 3633 LIST_REMOVE(jmvref, jm_deps); 3634 if ((jmvref->jm_pagedep->pd_state & ONWORKLIST) == 0) 3635 free_pagedep(jmvref->jm_pagedep); 3636 WORKITEM_FREE(jmvref, D_JMVREF); 3637 break; 3638 case D_JNEWBLK: 3639 handle_written_jnewblk(WK_JNEWBLK(wk)); 3640 break; 3641 case D_JFREEBLK: 3642 handle_written_jblkdep(&WK_JFREEBLK(wk)->jf_dep); 3643 break; 3644 case D_JTRUNC: 3645 handle_written_jblkdep(&WK_JTRUNC(wk)->jt_dep); 3646 break; 3647 case D_JFSYNC: 3648 rele_jseg(jseg); /* No jsegdep. */ 3649 WORKITEM_FREE(wk, D_JFSYNC); 3650 break; 3651 case D_JFREEFRAG: 3652 handle_written_jfreefrag(WK_JFREEFRAG(wk)); 3653 break; 3654 default: 3655 panic("handle_written_jseg: Unknown type %s", 3656 TYPENAME(wk->wk_type)); 3657 /* NOTREACHED */ 3658 } 3659 } 3660 /* Release the self reference so the structure may be freed. */ 3661 rele_jseg(jseg); 3662 } 3663 3664 /* 3665 * Determine which jsegs are ready for completion processing. Waits for 3666 * synchronize cache to complete as well as forcing in-order completion 3667 * of journal entries. 3668 */ 3669 static void 3670 complete_jsegs(jseg) 3671 struct jseg *jseg; 3672 { 3673 struct jblocks *jblocks; 3674 struct jseg *jsegn; 3675 3676 jblocks = jseg->js_jblocks; 3677 /* 3678 * Don't allow out of order completions. If this isn't the first 3679 * block wait for it to write before we're done. 3680 */ 3681 if (jseg != jblocks->jb_writeseg) 3682 return; 3683 /* Iterate through available jsegs processing their entries. */ 3684 while (jseg && (jseg->js_state & ALLCOMPLETE) == ALLCOMPLETE) { 3685 jblocks->jb_oldestwrseq = jseg->js_oldseq; 3686 jsegn = TAILQ_NEXT(jseg, js_next); 3687 complete_jseg(jseg); 3688 jseg = jsegn; 3689 } 3690 jblocks->jb_writeseg = jseg; 3691 /* 3692 * Attempt to free jsegs now that oldestwrseq may have advanced. 3693 */ 3694 free_jsegs(jblocks); 3695 } 3696 3697 /* 3698 * Mark a jseg as DEPCOMPLETE and throw away the buffer. Attempt to handle 3699 * the final completions. 3700 */ 3701 static void 3702 handle_written_jseg(jseg, bp) 3703 struct jseg *jseg; 3704 struct buf *bp; 3705 { 3706 3707 if (jseg->js_refs == 0) 3708 panic("handle_written_jseg: No self-reference on %p", jseg); 3709 jseg->js_state |= DEPCOMPLETE; 3710 /* 3711 * We'll never need this buffer again, set flags so it will be 3712 * discarded. 3713 */ 3714 bp->b_flags |= B_INVAL | B_NOCACHE; 3715 pbrelvp(bp); 3716 complete_jsegs(jseg); 3717 } 3718 3719 static inline struct jsegdep * 3720 inoref_jseg(inoref) 3721 struct inoref *inoref; 3722 { 3723 struct jsegdep *jsegdep; 3724 3725 jsegdep = inoref->if_jsegdep; 3726 inoref->if_jsegdep = NULL; 3727 3728 return (jsegdep); 3729 } 3730 3731 /* 3732 * Called once a jremref has made it to stable store. The jremref is marked 3733 * complete and we attempt to free it. Any pagedeps writes sleeping waiting 3734 * for the jremref to complete will be awoken by free_jremref. 3735 */ 3736 static void 3737 handle_written_jremref(jremref) 3738 struct jremref *jremref; 3739 { 3740 struct inodedep *inodedep; 3741 struct jsegdep *jsegdep; 3742 struct dirrem *dirrem; 3743 3744 /* Grab the jsegdep. */ 3745 jsegdep = inoref_jseg(&jremref->jr_ref); 3746 /* 3747 * Remove us from the inoref list. 3748 */ 3749 if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 3750 0, &inodedep) == 0) 3751 panic("handle_written_jremref: Lost inodedep"); 3752 TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps); 3753 /* 3754 * Complete the dirrem. 3755 */ 3756 dirrem = jremref->jr_dirrem; 3757 jremref->jr_dirrem = NULL; 3758 LIST_REMOVE(jremref, jr_deps); 3759 jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT; 3760 jwork_insert(&dirrem->dm_jwork, jsegdep); 3761 if (LIST_EMPTY(&dirrem->dm_jremrefhd) && 3762 (dirrem->dm_state & COMPLETE) != 0) 3763 add_to_worklist(&dirrem->dm_list, 0); 3764 free_jremref(jremref); 3765 } 3766 3767 /* 3768 * Called once a jaddref has made it to stable store. The dependency is 3769 * marked complete and any dependent structures are added to the inode 3770 * bufwait list to be completed as soon as it is written. If a bitmap write 3771 * depends on this entry we move the inode into the inodedephd of the 3772 * bmsafemap dependency and attempt to remove the jaddref from the bmsafemap. 3773 */ 3774 static void 3775 handle_written_jaddref(jaddref) 3776 struct jaddref *jaddref; 3777 { 3778 struct jsegdep *jsegdep; 3779 struct inodedep *inodedep; 3780 struct diradd *diradd; 3781 struct mkdir *mkdir; 3782 3783 /* Grab the jsegdep. */ 3784 jsegdep = inoref_jseg(&jaddref->ja_ref); 3785 mkdir = NULL; 3786 diradd = NULL; 3787 if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino, 3788 0, &inodedep) == 0) 3789 panic("handle_written_jaddref: Lost inodedep."); 3790 if (jaddref->ja_diradd == NULL) 3791 panic("handle_written_jaddref: No dependency"); 3792 if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) { 3793 diradd = jaddref->ja_diradd; 3794 WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list); 3795 } else if (jaddref->ja_state & MKDIR_PARENT) { 3796 mkdir = jaddref->ja_mkdir; 3797 WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list); 3798 } else if (jaddref->ja_state & MKDIR_BODY) 3799 mkdir = jaddref->ja_mkdir; 3800 else 3801 panic("handle_written_jaddref: Unknown dependency %p", 3802 jaddref->ja_diradd); 3803 jaddref->ja_diradd = NULL; /* also clears ja_mkdir */ 3804 /* 3805 * Remove us from the inode list. 3806 */ 3807 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps); 3808 /* 3809 * The mkdir may be waiting on the jaddref to clear before freeing. 3810 */ 3811 if (mkdir) { 3812 KASSERT(mkdir->md_list.wk_type == D_MKDIR, 3813 ("handle_written_jaddref: Incorrect type for mkdir %s", 3814 TYPENAME(mkdir->md_list.wk_type))); 3815 mkdir->md_jaddref = NULL; 3816 diradd = mkdir->md_diradd; 3817 mkdir->md_state |= DEPCOMPLETE; 3818 complete_mkdir(mkdir); 3819 } 3820 jwork_insert(&diradd->da_jwork, jsegdep); 3821 if (jaddref->ja_state & NEWBLOCK) { 3822 inodedep->id_state |= ONDEPLIST; 3823 LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd, 3824 inodedep, id_deps); 3825 } 3826 free_jaddref(jaddref); 3827 } 3828 3829 /* 3830 * Called once a jnewblk journal is written. The allocdirect or allocindir 3831 * is placed in the bmsafemap to await notification of a written bitmap. If 3832 * the operation was canceled we add the segdep to the appropriate 3833 * dependency to free the journal space once the canceling operation 3834 * completes. 3835 */ 3836 static void 3837 handle_written_jnewblk(jnewblk) 3838 struct jnewblk *jnewblk; 3839 { 3840 struct bmsafemap *bmsafemap; 3841 struct freefrag *freefrag; 3842 struct freework *freework; 3843 struct jsegdep *jsegdep; 3844 struct newblk *newblk; 3845 3846 /* Grab the jsegdep. */ 3847 jsegdep = jnewblk->jn_jsegdep; 3848 jnewblk->jn_jsegdep = NULL; 3849 if (jnewblk->jn_dep == NULL) 3850 panic("handle_written_jnewblk: No dependency for the segdep."); 3851 switch (jnewblk->jn_dep->wk_type) { 3852 case D_NEWBLK: 3853 case D_ALLOCDIRECT: 3854 case D_ALLOCINDIR: 3855 /* 3856 * Add the written block to the bmsafemap so it can 3857 * be notified when the bitmap is on disk. 3858 */ 3859 newblk = WK_NEWBLK(jnewblk->jn_dep); 3860 newblk->nb_jnewblk = NULL; 3861 if ((newblk->nb_state & GOINGAWAY) == 0) { 3862 bmsafemap = newblk->nb_bmsafemap; 3863 newblk->nb_state |= ONDEPLIST; 3864 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, 3865 nb_deps); 3866 } 3867 jwork_insert(&newblk->nb_jwork, jsegdep); 3868 break; 3869 case D_FREEFRAG: 3870 /* 3871 * A newblock being removed by a freefrag when replaced by 3872 * frag extension. 3873 */ 3874 freefrag = WK_FREEFRAG(jnewblk->jn_dep); 3875 freefrag->ff_jdep = NULL; 3876 jwork_insert(&freefrag->ff_jwork, jsegdep); 3877 break; 3878 case D_FREEWORK: 3879 /* 3880 * A direct block was removed by truncate. 3881 */ 3882 freework = WK_FREEWORK(jnewblk->jn_dep); 3883 freework->fw_jnewblk = NULL; 3884 jwork_insert(&freework->fw_freeblks->fb_jwork, jsegdep); 3885 break; 3886 default: 3887 panic("handle_written_jnewblk: Unknown type %d.", 3888 jnewblk->jn_dep->wk_type); 3889 } 3890 jnewblk->jn_dep = NULL; 3891 free_jnewblk(jnewblk); 3892 } 3893 3894 /* 3895 * Cancel a jfreefrag that won't be needed, probably due to colliding with 3896 * an in-flight allocation that has not yet been committed. Divorce us 3897 * from the freefrag and mark it DEPCOMPLETE so that it may be added 3898 * to the worklist. 3899 */ 3900 static void 3901 cancel_jfreefrag(jfreefrag) 3902 struct jfreefrag *jfreefrag; 3903 { 3904 struct freefrag *freefrag; 3905 3906 if (jfreefrag->fr_jsegdep) { 3907 free_jsegdep(jfreefrag->fr_jsegdep); 3908 jfreefrag->fr_jsegdep = NULL; 3909 } 3910 freefrag = jfreefrag->fr_freefrag; 3911 jfreefrag->fr_freefrag = NULL; 3912 free_jfreefrag(jfreefrag); 3913 freefrag->ff_state |= DEPCOMPLETE; 3914 CTR1(KTR_SUJ, "cancel_jfreefrag: blkno %jd", freefrag->ff_blkno); 3915 } 3916 3917 /* 3918 * Free a jfreefrag when the parent freefrag is rendered obsolete. 3919 */ 3920 static void 3921 free_jfreefrag(jfreefrag) 3922 struct jfreefrag *jfreefrag; 3923 { 3924 3925 if (jfreefrag->fr_state & INPROGRESS) 3926 WORKLIST_REMOVE(&jfreefrag->fr_list); 3927 else if (jfreefrag->fr_state & ONWORKLIST) 3928 remove_from_journal(&jfreefrag->fr_list); 3929 if (jfreefrag->fr_freefrag != NULL) 3930 panic("free_jfreefrag: Still attached to a freefrag."); 3931 WORKITEM_FREE(jfreefrag, D_JFREEFRAG); 3932 } 3933 3934 /* 3935 * Called when the journal write for a jfreefrag completes. The parent 3936 * freefrag is added to the worklist if this completes its dependencies. 3937 */ 3938 static void 3939 handle_written_jfreefrag(jfreefrag) 3940 struct jfreefrag *jfreefrag; 3941 { 3942 struct jsegdep *jsegdep; 3943 struct freefrag *freefrag; 3944 3945 /* Grab the jsegdep. */ 3946 jsegdep = jfreefrag->fr_jsegdep; 3947 jfreefrag->fr_jsegdep = NULL; 3948 freefrag = jfreefrag->fr_freefrag; 3949 if (freefrag == NULL) 3950 panic("handle_written_jfreefrag: No freefrag."); 3951 freefrag->ff_state |= DEPCOMPLETE; 3952 freefrag->ff_jdep = NULL; 3953 jwork_insert(&freefrag->ff_jwork, jsegdep); 3954 if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE) 3955 add_to_worklist(&freefrag->ff_list, 0); 3956 jfreefrag->fr_freefrag = NULL; 3957 free_jfreefrag(jfreefrag); 3958 } 3959 3960 /* 3961 * Called when the journal write for a jfreeblk completes. The jfreeblk 3962 * is removed from the freeblks list of pending journal writes and the 3963 * jsegdep is moved to the freeblks jwork to be completed when all blocks 3964 * have been reclaimed. 3965 */ 3966 static void 3967 handle_written_jblkdep(jblkdep) 3968 struct jblkdep *jblkdep; 3969 { 3970 struct freeblks *freeblks; 3971 struct jsegdep *jsegdep; 3972 3973 /* Grab the jsegdep. */ 3974 jsegdep = jblkdep->jb_jsegdep; 3975 jblkdep->jb_jsegdep = NULL; 3976 freeblks = jblkdep->jb_freeblks; 3977 LIST_REMOVE(jblkdep, jb_deps); 3978 jwork_insert(&freeblks->fb_jwork, jsegdep); 3979 /* 3980 * If the freeblks is all journaled, we can add it to the worklist. 3981 */ 3982 if (LIST_EMPTY(&freeblks->fb_jblkdephd) && 3983 (freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE) 3984 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 3985 3986 free_jblkdep(jblkdep); 3987 } 3988 3989 static struct jsegdep * 3990 newjsegdep(struct worklist *wk) 3991 { 3992 struct jsegdep *jsegdep; 3993 3994 jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS); 3995 workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp); 3996 jsegdep->jd_seg = NULL; 3997 3998 return (jsegdep); 3999 } 4000 4001 static struct jmvref * 4002 newjmvref(dp, ino, oldoff, newoff) 4003 struct inode *dp; 4004 ino_t ino; 4005 off_t oldoff; 4006 off_t newoff; 4007 { 4008 struct jmvref *jmvref; 4009 4010 jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS); 4011 workitem_alloc(&jmvref->jm_list, D_JMVREF, ITOVFS(dp)); 4012 jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE; 4013 jmvref->jm_parent = dp->i_number; 4014 jmvref->jm_ino = ino; 4015 jmvref->jm_oldoff = oldoff; 4016 jmvref->jm_newoff = newoff; 4017 4018 return (jmvref); 4019 } 4020 4021 /* 4022 * Allocate a new jremref that tracks the removal of ip from dp with the 4023 * directory entry offset of diroff. Mark the entry as ATTACHED and 4024 * DEPCOMPLETE as we have all the information required for the journal write 4025 * and the directory has already been removed from the buffer. The caller 4026 * is responsible for linking the jremref into the pagedep and adding it 4027 * to the journal to write. The MKDIR_PARENT flag is set if we're doing 4028 * a DOTDOT addition so handle_workitem_remove() can properly assign 4029 * the jsegdep when we're done. 4030 */ 4031 static struct jremref * 4032 newjremref(struct dirrem *dirrem, struct inode *dp, struct inode *ip, 4033 off_t diroff, nlink_t nlink) 4034 { 4035 struct jremref *jremref; 4036 4037 jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS); 4038 workitem_alloc(&jremref->jr_list, D_JREMREF, ITOVFS(dp)); 4039 jremref->jr_state = ATTACHED; 4040 newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff, 4041 nlink, ip->i_mode); 4042 jremref->jr_dirrem = dirrem; 4043 4044 return (jremref); 4045 } 4046 4047 static inline void 4048 newinoref(struct inoref *inoref, ino_t ino, ino_t parent, off_t diroff, 4049 nlink_t nlink, uint16_t mode) 4050 { 4051 4052 inoref->if_jsegdep = newjsegdep(&inoref->if_list); 4053 inoref->if_diroff = diroff; 4054 inoref->if_ino = ino; 4055 inoref->if_parent = parent; 4056 inoref->if_nlink = nlink; 4057 inoref->if_mode = mode; 4058 } 4059 4060 /* 4061 * Allocate a new jaddref to track the addition of ino to dp at diroff. The 4062 * directory offset may not be known until later. The caller is responsible 4063 * adding the entry to the journal when this information is available. nlink 4064 * should be the link count prior to the addition and mode is only required 4065 * to have the correct FMT. 4066 */ 4067 static struct jaddref * 4068 newjaddref(struct inode *dp, ino_t ino, off_t diroff, int16_t nlink, 4069 uint16_t mode) 4070 { 4071 struct jaddref *jaddref; 4072 4073 jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS); 4074 workitem_alloc(&jaddref->ja_list, D_JADDREF, ITOVFS(dp)); 4075 jaddref->ja_state = ATTACHED; 4076 jaddref->ja_mkdir = NULL; 4077 newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode); 4078 4079 return (jaddref); 4080 } 4081 4082 /* 4083 * Create a new free dependency for a freework. The caller is responsible 4084 * for adjusting the reference count when it has the lock held. The freedep 4085 * will track an outstanding bitmap write that will ultimately clear the 4086 * freework to continue. 4087 */ 4088 static struct freedep * 4089 newfreedep(struct freework *freework) 4090 { 4091 struct freedep *freedep; 4092 4093 freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS); 4094 workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp); 4095 freedep->fd_freework = freework; 4096 4097 return (freedep); 4098 } 4099 4100 /* 4101 * Free a freedep structure once the buffer it is linked to is written. If 4102 * this is the last reference to the freework schedule it for completion. 4103 */ 4104 static void 4105 free_freedep(freedep) 4106 struct freedep *freedep; 4107 { 4108 struct freework *freework; 4109 4110 freework = freedep->fd_freework; 4111 freework->fw_freeblks->fb_cgwait--; 4112 if (--freework->fw_ref == 0) 4113 freework_enqueue(freework); 4114 WORKITEM_FREE(freedep, D_FREEDEP); 4115 } 4116 4117 /* 4118 * Allocate a new freework structure that may be a level in an indirect 4119 * when parent is not NULL or a top level block when it is. The top level 4120 * freework structures are allocated without the per-filesystem lock held 4121 * and before the freeblks is visible outside of softdep_setup_freeblocks(). 4122 */ 4123 static struct freework * 4124 newfreework(ump, freeblks, parent, lbn, nb, frags, off, journal) 4125 struct ufsmount *ump; 4126 struct freeblks *freeblks; 4127 struct freework *parent; 4128 ufs_lbn_t lbn; 4129 ufs2_daddr_t nb; 4130 int frags; 4131 int off; 4132 int journal; 4133 { 4134 struct freework *freework; 4135 4136 freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS); 4137 workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp); 4138 freework->fw_state = ATTACHED; 4139 freework->fw_jnewblk = NULL; 4140 freework->fw_freeblks = freeblks; 4141 freework->fw_parent = parent; 4142 freework->fw_lbn = lbn; 4143 freework->fw_blkno = nb; 4144 freework->fw_frags = frags; 4145 freework->fw_indir = NULL; 4146 freework->fw_ref = (MOUNTEDSUJ(UFSTOVFS(ump)) == 0 || 4147 lbn >= -UFS_NXADDR) ? 0 : NINDIR(ump->um_fs) + 1; 4148 freework->fw_start = freework->fw_off = off; 4149 if (journal) 4150 newjfreeblk(freeblks, lbn, nb, frags); 4151 if (parent == NULL) { 4152 ACQUIRE_LOCK(ump); 4153 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list); 4154 freeblks->fb_ref++; 4155 FREE_LOCK(ump); 4156 } 4157 4158 return (freework); 4159 } 4160 4161 /* 4162 * Eliminate a jfreeblk for a block that does not need journaling. 4163 */ 4164 static void 4165 cancel_jfreeblk(freeblks, blkno) 4166 struct freeblks *freeblks; 4167 ufs2_daddr_t blkno; 4168 { 4169 struct jfreeblk *jfreeblk; 4170 struct jblkdep *jblkdep; 4171 4172 LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) { 4173 if (jblkdep->jb_list.wk_type != D_JFREEBLK) 4174 continue; 4175 jfreeblk = WK_JFREEBLK(&jblkdep->jb_list); 4176 if (jfreeblk->jf_blkno == blkno) 4177 break; 4178 } 4179 if (jblkdep == NULL) 4180 return; 4181 CTR1(KTR_SUJ, "cancel_jfreeblk: blkno %jd", blkno); 4182 free_jsegdep(jblkdep->jb_jsegdep); 4183 LIST_REMOVE(jblkdep, jb_deps); 4184 WORKITEM_FREE(jfreeblk, D_JFREEBLK); 4185 } 4186 4187 /* 4188 * Allocate a new jfreeblk to journal top level block pointer when truncating 4189 * a file. The caller must add this to the worklist when the per-filesystem 4190 * lock is held. 4191 */ 4192 static struct jfreeblk * 4193 newjfreeblk(freeblks, lbn, blkno, frags) 4194 struct freeblks *freeblks; 4195 ufs_lbn_t lbn; 4196 ufs2_daddr_t blkno; 4197 int frags; 4198 { 4199 struct jfreeblk *jfreeblk; 4200 4201 jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS); 4202 workitem_alloc(&jfreeblk->jf_dep.jb_list, D_JFREEBLK, 4203 freeblks->fb_list.wk_mp); 4204 jfreeblk->jf_dep.jb_jsegdep = newjsegdep(&jfreeblk->jf_dep.jb_list); 4205 jfreeblk->jf_dep.jb_freeblks = freeblks; 4206 jfreeblk->jf_ino = freeblks->fb_inum; 4207 jfreeblk->jf_lbn = lbn; 4208 jfreeblk->jf_blkno = blkno; 4209 jfreeblk->jf_frags = frags; 4210 LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jfreeblk->jf_dep, jb_deps); 4211 4212 return (jfreeblk); 4213 } 4214 4215 /* 4216 * The journal is only prepared to handle full-size block numbers, so we 4217 * have to adjust the record to reflect the change to a full-size block. 4218 * For example, suppose we have a block made up of fragments 8-15 and 4219 * want to free its last two fragments. We are given a request that says: 4220 * FREEBLK ino=5, blkno=14, lbn=0, frags=2, oldfrags=0 4221 * where frags are the number of fragments to free and oldfrags are the 4222 * number of fragments to keep. To block align it, we have to change it to 4223 * have a valid full-size blkno, so it becomes: 4224 * FREEBLK ino=5, blkno=8, lbn=0, frags=2, oldfrags=6 4225 */ 4226 static void 4227 adjust_newfreework(freeblks, frag_offset) 4228 struct freeblks *freeblks; 4229 int frag_offset; 4230 { 4231 struct jfreeblk *jfreeblk; 4232 4233 KASSERT((LIST_FIRST(&freeblks->fb_jblkdephd) != NULL && 4234 LIST_FIRST(&freeblks->fb_jblkdephd)->jb_list.wk_type == D_JFREEBLK), 4235 ("adjust_newfreework: Missing freeblks dependency")); 4236 4237 jfreeblk = WK_JFREEBLK(LIST_FIRST(&freeblks->fb_jblkdephd)); 4238 jfreeblk->jf_blkno -= frag_offset; 4239 jfreeblk->jf_frags += frag_offset; 4240 } 4241 4242 /* 4243 * Allocate a new jtrunc to track a partial truncation. 4244 */ 4245 static struct jtrunc * 4246 newjtrunc(freeblks, size, extsize) 4247 struct freeblks *freeblks; 4248 off_t size; 4249 int extsize; 4250 { 4251 struct jtrunc *jtrunc; 4252 4253 jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS); 4254 workitem_alloc(&jtrunc->jt_dep.jb_list, D_JTRUNC, 4255 freeblks->fb_list.wk_mp); 4256 jtrunc->jt_dep.jb_jsegdep = newjsegdep(&jtrunc->jt_dep.jb_list); 4257 jtrunc->jt_dep.jb_freeblks = freeblks; 4258 jtrunc->jt_ino = freeblks->fb_inum; 4259 jtrunc->jt_size = size; 4260 jtrunc->jt_extsize = extsize; 4261 LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jtrunc->jt_dep, jb_deps); 4262 4263 return (jtrunc); 4264 } 4265 4266 /* 4267 * If we're canceling a new bitmap we have to search for another ref 4268 * to move into the bmsafemap dep. This might be better expressed 4269 * with another structure. 4270 */ 4271 static void 4272 move_newblock_dep(jaddref, inodedep) 4273 struct jaddref *jaddref; 4274 struct inodedep *inodedep; 4275 { 4276 struct inoref *inoref; 4277 struct jaddref *jaddrefn; 4278 4279 jaddrefn = NULL; 4280 for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref; 4281 inoref = TAILQ_NEXT(inoref, if_deps)) { 4282 if ((jaddref->ja_state & NEWBLOCK) && 4283 inoref->if_list.wk_type == D_JADDREF) { 4284 jaddrefn = (struct jaddref *)inoref; 4285 break; 4286 } 4287 } 4288 if (jaddrefn == NULL) 4289 return; 4290 jaddrefn->ja_state &= ~(ATTACHED | UNDONE); 4291 jaddrefn->ja_state |= jaddref->ja_state & 4292 (ATTACHED | UNDONE | NEWBLOCK); 4293 jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK); 4294 jaddref->ja_state |= ATTACHED; 4295 LIST_REMOVE(jaddref, ja_bmdeps); 4296 LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn, 4297 ja_bmdeps); 4298 } 4299 4300 /* 4301 * Cancel a jaddref either before it has been written or while it is being 4302 * written. This happens when a link is removed before the add reaches 4303 * the disk. The jaddref dependency is kept linked into the bmsafemap 4304 * and inode to prevent the link count or bitmap from reaching the disk 4305 * until handle_workitem_remove() re-adjusts the counts and bitmaps as 4306 * required. 4307 * 4308 * Returns 1 if the canceled addref requires journaling of the remove and 4309 * 0 otherwise. 4310 */ 4311 static int 4312 cancel_jaddref(jaddref, inodedep, wkhd) 4313 struct jaddref *jaddref; 4314 struct inodedep *inodedep; 4315 struct workhead *wkhd; 4316 { 4317 struct inoref *inoref; 4318 struct jsegdep *jsegdep; 4319 int needsj; 4320 4321 KASSERT((jaddref->ja_state & COMPLETE) == 0, 4322 ("cancel_jaddref: Canceling complete jaddref")); 4323 if (jaddref->ja_state & (INPROGRESS | COMPLETE)) 4324 needsj = 1; 4325 else 4326 needsj = 0; 4327 if (inodedep == NULL) 4328 if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino, 4329 0, &inodedep) == 0) 4330 panic("cancel_jaddref: Lost inodedep"); 4331 /* 4332 * We must adjust the nlink of any reference operation that follows 4333 * us so that it is consistent with the in-memory reference. This 4334 * ensures that inode nlink rollbacks always have the correct link. 4335 */ 4336 if (needsj == 0) { 4337 for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref; 4338 inoref = TAILQ_NEXT(inoref, if_deps)) { 4339 if (inoref->if_state & GOINGAWAY) 4340 break; 4341 inoref->if_nlink--; 4342 } 4343 } 4344 jsegdep = inoref_jseg(&jaddref->ja_ref); 4345 if (jaddref->ja_state & NEWBLOCK) 4346 move_newblock_dep(jaddref, inodedep); 4347 wake_worklist(&jaddref->ja_list); 4348 jaddref->ja_mkdir = NULL; 4349 if (jaddref->ja_state & INPROGRESS) { 4350 jaddref->ja_state &= ~INPROGRESS; 4351 WORKLIST_REMOVE(&jaddref->ja_list); 4352 jwork_insert(wkhd, jsegdep); 4353 } else { 4354 free_jsegdep(jsegdep); 4355 if (jaddref->ja_state & DEPCOMPLETE) 4356 remove_from_journal(&jaddref->ja_list); 4357 } 4358 jaddref->ja_state |= (GOINGAWAY | DEPCOMPLETE); 4359 /* 4360 * Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove 4361 * can arrange for them to be freed with the bitmap. Otherwise we 4362 * no longer need this addref attached to the inoreflst and it 4363 * will incorrectly adjust nlink if we leave it. 4364 */ 4365 if ((jaddref->ja_state & NEWBLOCK) == 0) { 4366 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, 4367 if_deps); 4368 jaddref->ja_state |= COMPLETE; 4369 free_jaddref(jaddref); 4370 return (needsj); 4371 } 4372 /* 4373 * Leave the head of the list for jsegdeps for fast merging. 4374 */ 4375 if (LIST_FIRST(wkhd) != NULL) { 4376 jaddref->ja_state |= ONWORKLIST; 4377 LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list); 4378 } else 4379 WORKLIST_INSERT(wkhd, &jaddref->ja_list); 4380 4381 return (needsj); 4382 } 4383 4384 /* 4385 * Attempt to free a jaddref structure when some work completes. This 4386 * should only succeed once the entry is written and all dependencies have 4387 * been notified. 4388 */ 4389 static void 4390 free_jaddref(jaddref) 4391 struct jaddref *jaddref; 4392 { 4393 4394 if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE) 4395 return; 4396 if (jaddref->ja_ref.if_jsegdep) 4397 panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n", 4398 jaddref, jaddref->ja_state); 4399 if (jaddref->ja_state & NEWBLOCK) 4400 LIST_REMOVE(jaddref, ja_bmdeps); 4401 if (jaddref->ja_state & (INPROGRESS | ONWORKLIST)) 4402 panic("free_jaddref: Bad state %p(0x%X)", 4403 jaddref, jaddref->ja_state); 4404 if (jaddref->ja_mkdir != NULL) 4405 panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state); 4406 WORKITEM_FREE(jaddref, D_JADDREF); 4407 } 4408 4409 /* 4410 * Free a jremref structure once it has been written or discarded. 4411 */ 4412 static void 4413 free_jremref(jremref) 4414 struct jremref *jremref; 4415 { 4416 4417 if (jremref->jr_ref.if_jsegdep) 4418 free_jsegdep(jremref->jr_ref.if_jsegdep); 4419 if (jremref->jr_state & INPROGRESS) 4420 panic("free_jremref: IO still pending"); 4421 WORKITEM_FREE(jremref, D_JREMREF); 4422 } 4423 4424 /* 4425 * Free a jnewblk structure. 4426 */ 4427 static void 4428 free_jnewblk(jnewblk) 4429 struct jnewblk *jnewblk; 4430 { 4431 4432 if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE) 4433 return; 4434 LIST_REMOVE(jnewblk, jn_deps); 4435 if (jnewblk->jn_dep != NULL) 4436 panic("free_jnewblk: Dependency still attached."); 4437 WORKITEM_FREE(jnewblk, D_JNEWBLK); 4438 } 4439 4440 /* 4441 * Cancel a jnewblk which has been been made redundant by frag extension. 4442 */ 4443 static void 4444 cancel_jnewblk(jnewblk, wkhd) 4445 struct jnewblk *jnewblk; 4446 struct workhead *wkhd; 4447 { 4448 struct jsegdep *jsegdep; 4449 4450 CTR1(KTR_SUJ, "cancel_jnewblk: blkno %jd", jnewblk->jn_blkno); 4451 jsegdep = jnewblk->jn_jsegdep; 4452 if (jnewblk->jn_jsegdep == NULL || jnewblk->jn_dep == NULL) 4453 panic("cancel_jnewblk: Invalid state"); 4454 jnewblk->jn_jsegdep = NULL; 4455 jnewblk->jn_dep = NULL; 4456 jnewblk->jn_state |= GOINGAWAY; 4457 if (jnewblk->jn_state & INPROGRESS) { 4458 jnewblk->jn_state &= ~INPROGRESS; 4459 WORKLIST_REMOVE(&jnewblk->jn_list); 4460 jwork_insert(wkhd, jsegdep); 4461 } else { 4462 free_jsegdep(jsegdep); 4463 remove_from_journal(&jnewblk->jn_list); 4464 } 4465 wake_worklist(&jnewblk->jn_list); 4466 WORKLIST_INSERT(wkhd, &jnewblk->jn_list); 4467 } 4468 4469 static void 4470 free_jblkdep(jblkdep) 4471 struct jblkdep *jblkdep; 4472 { 4473 4474 if (jblkdep->jb_list.wk_type == D_JFREEBLK) 4475 WORKITEM_FREE(jblkdep, D_JFREEBLK); 4476 else if (jblkdep->jb_list.wk_type == D_JTRUNC) 4477 WORKITEM_FREE(jblkdep, D_JTRUNC); 4478 else 4479 panic("free_jblkdep: Unexpected type %s", 4480 TYPENAME(jblkdep->jb_list.wk_type)); 4481 } 4482 4483 /* 4484 * Free a single jseg once it is no longer referenced in memory or on 4485 * disk. Reclaim journal blocks and dependencies waiting for the segment 4486 * to disappear. 4487 */ 4488 static void 4489 free_jseg(jseg, jblocks) 4490 struct jseg *jseg; 4491 struct jblocks *jblocks; 4492 { 4493 struct freework *freework; 4494 4495 /* 4496 * Free freework structures that were lingering to indicate freed 4497 * indirect blocks that forced journal write ordering on reallocate. 4498 */ 4499 while ((freework = LIST_FIRST(&jseg->js_indirs)) != NULL) 4500 indirblk_remove(freework); 4501 if (jblocks->jb_oldestseg == jseg) 4502 jblocks->jb_oldestseg = TAILQ_NEXT(jseg, js_next); 4503 TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next); 4504 jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size); 4505 KASSERT(LIST_EMPTY(&jseg->js_entries), 4506 ("free_jseg: Freed jseg has valid entries.")); 4507 WORKITEM_FREE(jseg, D_JSEG); 4508 } 4509 4510 /* 4511 * Free all jsegs that meet the criteria for being reclaimed and update 4512 * oldestseg. 4513 */ 4514 static void 4515 free_jsegs(jblocks) 4516 struct jblocks *jblocks; 4517 { 4518 struct jseg *jseg; 4519 4520 /* 4521 * Free only those jsegs which have none allocated before them to 4522 * preserve the journal space ordering. 4523 */ 4524 while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) { 4525 /* 4526 * Only reclaim space when nothing depends on this journal 4527 * set and another set has written that it is no longer 4528 * valid. 4529 */ 4530 if (jseg->js_refs != 0) { 4531 jblocks->jb_oldestseg = jseg; 4532 return; 4533 } 4534 if ((jseg->js_state & ALLCOMPLETE) != ALLCOMPLETE) 4535 break; 4536 if (jseg->js_seq > jblocks->jb_oldestwrseq) 4537 break; 4538 /* 4539 * We can free jsegs that didn't write entries when 4540 * oldestwrseq == js_seq. 4541 */ 4542 if (jseg->js_seq == jblocks->jb_oldestwrseq && 4543 jseg->js_cnt != 0) 4544 break; 4545 free_jseg(jseg, jblocks); 4546 } 4547 /* 4548 * If we exited the loop above we still must discover the 4549 * oldest valid segment. 4550 */ 4551 if (jseg) 4552 for (jseg = jblocks->jb_oldestseg; jseg != NULL; 4553 jseg = TAILQ_NEXT(jseg, js_next)) 4554 if (jseg->js_refs != 0) 4555 break; 4556 jblocks->jb_oldestseg = jseg; 4557 /* 4558 * The journal has no valid records but some jsegs may still be 4559 * waiting on oldestwrseq to advance. We force a small record 4560 * out to permit these lingering records to be reclaimed. 4561 */ 4562 if (jblocks->jb_oldestseg == NULL && !TAILQ_EMPTY(&jblocks->jb_segs)) 4563 jblocks->jb_needseg = 1; 4564 } 4565 4566 /* 4567 * Release one reference to a jseg and free it if the count reaches 0. This 4568 * should eventually reclaim journal space as well. 4569 */ 4570 static void 4571 rele_jseg(jseg) 4572 struct jseg *jseg; 4573 { 4574 4575 KASSERT(jseg->js_refs > 0, 4576 ("free_jseg: Invalid refcnt %d", jseg->js_refs)); 4577 if (--jseg->js_refs != 0) 4578 return; 4579 free_jsegs(jseg->js_jblocks); 4580 } 4581 4582 /* 4583 * Release a jsegdep and decrement the jseg count. 4584 */ 4585 static void 4586 free_jsegdep(jsegdep) 4587 struct jsegdep *jsegdep; 4588 { 4589 4590 if (jsegdep->jd_seg) 4591 rele_jseg(jsegdep->jd_seg); 4592 WORKITEM_FREE(jsegdep, D_JSEGDEP); 4593 } 4594 4595 /* 4596 * Wait for a journal item to make it to disk. Initiate journal processing 4597 * if required. 4598 */ 4599 static int 4600 jwait(wk, waitfor) 4601 struct worklist *wk; 4602 int waitfor; 4603 { 4604 4605 LOCK_OWNED(VFSTOUFS(wk->wk_mp)); 4606 /* 4607 * Blocking journal waits cause slow synchronous behavior. Record 4608 * stats on the frequency of these blocking operations. 4609 */ 4610 if (waitfor == MNT_WAIT) { 4611 stat_journal_wait++; 4612 switch (wk->wk_type) { 4613 case D_JREMREF: 4614 case D_JMVREF: 4615 stat_jwait_filepage++; 4616 break; 4617 case D_JTRUNC: 4618 case D_JFREEBLK: 4619 stat_jwait_freeblks++; 4620 break; 4621 case D_JNEWBLK: 4622 stat_jwait_newblk++; 4623 break; 4624 case D_JADDREF: 4625 stat_jwait_inode++; 4626 break; 4627 default: 4628 break; 4629 } 4630 } 4631 /* 4632 * If IO has not started we process the journal. We can't mark the 4633 * worklist item as IOWAITING because we drop the lock while 4634 * processing the journal and the worklist entry may be freed after 4635 * this point. The caller may call back in and re-issue the request. 4636 */ 4637 if ((wk->wk_state & INPROGRESS) == 0) { 4638 softdep_process_journal(wk->wk_mp, wk, waitfor); 4639 if (waitfor != MNT_WAIT) 4640 return (EBUSY); 4641 return (0); 4642 } 4643 if (waitfor != MNT_WAIT) 4644 return (EBUSY); 4645 wait_worklist(wk, "jwait"); 4646 return (0); 4647 } 4648 4649 /* 4650 * Lookup an inodedep based on an inode pointer and set the nlinkdelta as 4651 * appropriate. This is a convenience function to reduce duplicate code 4652 * for the setup and revert functions below. 4653 */ 4654 static struct inodedep * 4655 inodedep_lookup_ip(ip) 4656 struct inode *ip; 4657 { 4658 struct inodedep *inodedep; 4659 4660 KASSERT(ip->i_nlink >= ip->i_effnlink, 4661 ("inodedep_lookup_ip: bad delta")); 4662 (void) inodedep_lookup(ITOVFS(ip), ip->i_number, DEPALLOC, 4663 &inodedep); 4664 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 4665 KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked")); 4666 4667 return (inodedep); 4668 } 4669 4670 /* 4671 * Called prior to creating a new inode and linking it to a directory. The 4672 * jaddref structure must already be allocated by softdep_setup_inomapdep 4673 * and it is discovered here so we can initialize the mode and update 4674 * nlinkdelta. 4675 */ 4676 void 4677 softdep_setup_create(dp, ip) 4678 struct inode *dp; 4679 struct inode *ip; 4680 { 4681 struct inodedep *inodedep; 4682 struct jaddref *jaddref; 4683 struct vnode *dvp; 4684 4685 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4686 ("softdep_setup_create called on non-softdep filesystem")); 4687 KASSERT(ip->i_nlink == 1, 4688 ("softdep_setup_create: Invalid link count.")); 4689 dvp = ITOV(dp); 4690 ACQUIRE_LOCK(ITOUMP(dp)); 4691 inodedep = inodedep_lookup_ip(ip); 4692 if (DOINGSUJ(dvp)) { 4693 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4694 inoreflst); 4695 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 4696 ("softdep_setup_create: No addref structure present.")); 4697 } 4698 softdep_prelink(dvp, NULL); 4699 FREE_LOCK(ITOUMP(dp)); 4700 } 4701 4702 /* 4703 * Create a jaddref structure to track the addition of a DOTDOT link when 4704 * we are reparenting an inode as part of a rename. This jaddref will be 4705 * found by softdep_setup_directory_change. Adjusts nlinkdelta for 4706 * non-journaling softdep. 4707 */ 4708 void 4709 softdep_setup_dotdot_link(dp, ip) 4710 struct inode *dp; 4711 struct inode *ip; 4712 { 4713 struct inodedep *inodedep; 4714 struct jaddref *jaddref; 4715 struct vnode *dvp; 4716 4717 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4718 ("softdep_setup_dotdot_link called on non-softdep filesystem")); 4719 dvp = ITOV(dp); 4720 jaddref = NULL; 4721 /* 4722 * We don't set MKDIR_PARENT as this is not tied to a mkdir and 4723 * is used as a normal link would be. 4724 */ 4725 if (DOINGSUJ(dvp)) 4726 jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET, 4727 dp->i_effnlink - 1, dp->i_mode); 4728 ACQUIRE_LOCK(ITOUMP(dp)); 4729 inodedep = inodedep_lookup_ip(dp); 4730 if (jaddref) 4731 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 4732 if_deps); 4733 softdep_prelink(dvp, ITOV(ip)); 4734 FREE_LOCK(ITOUMP(dp)); 4735 } 4736 4737 /* 4738 * Create a jaddref structure to track a new link to an inode. The directory 4739 * offset is not known until softdep_setup_directory_add or 4740 * softdep_setup_directory_change. Adjusts nlinkdelta for non-journaling 4741 * softdep. 4742 */ 4743 void 4744 softdep_setup_link(dp, ip) 4745 struct inode *dp; 4746 struct inode *ip; 4747 { 4748 struct inodedep *inodedep; 4749 struct jaddref *jaddref; 4750 struct vnode *dvp; 4751 4752 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4753 ("softdep_setup_link called on non-softdep filesystem")); 4754 dvp = ITOV(dp); 4755 jaddref = NULL; 4756 if (DOINGSUJ(dvp)) 4757 jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1, 4758 ip->i_mode); 4759 ACQUIRE_LOCK(ITOUMP(dp)); 4760 inodedep = inodedep_lookup_ip(ip); 4761 if (jaddref) 4762 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 4763 if_deps); 4764 softdep_prelink(dvp, ITOV(ip)); 4765 FREE_LOCK(ITOUMP(dp)); 4766 } 4767 4768 /* 4769 * Called to create the jaddref structures to track . and .. references as 4770 * well as lookup and further initialize the incomplete jaddref created 4771 * by softdep_setup_inomapdep when the inode was allocated. Adjusts 4772 * nlinkdelta for non-journaling softdep. 4773 */ 4774 void 4775 softdep_setup_mkdir(dp, ip) 4776 struct inode *dp; 4777 struct inode *ip; 4778 { 4779 struct inodedep *inodedep; 4780 struct jaddref *dotdotaddref; 4781 struct jaddref *dotaddref; 4782 struct jaddref *jaddref; 4783 struct vnode *dvp; 4784 4785 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4786 ("softdep_setup_mkdir called on non-softdep filesystem")); 4787 dvp = ITOV(dp); 4788 dotaddref = dotdotaddref = NULL; 4789 if (DOINGSUJ(dvp)) { 4790 dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1, 4791 ip->i_mode); 4792 dotaddref->ja_state |= MKDIR_BODY; 4793 dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET, 4794 dp->i_effnlink - 1, dp->i_mode); 4795 dotdotaddref->ja_state |= MKDIR_PARENT; 4796 } 4797 ACQUIRE_LOCK(ITOUMP(dp)); 4798 inodedep = inodedep_lookup_ip(ip); 4799 if (DOINGSUJ(dvp)) { 4800 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4801 inoreflst); 4802 KASSERT(jaddref != NULL, 4803 ("softdep_setup_mkdir: No addref structure present.")); 4804 KASSERT(jaddref->ja_parent == dp->i_number, 4805 ("softdep_setup_mkdir: bad parent %ju", 4806 (uintmax_t)jaddref->ja_parent)); 4807 TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref, 4808 if_deps); 4809 } 4810 inodedep = inodedep_lookup_ip(dp); 4811 if (DOINGSUJ(dvp)) 4812 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, 4813 &dotdotaddref->ja_ref, if_deps); 4814 softdep_prelink(ITOV(dp), NULL); 4815 FREE_LOCK(ITOUMP(dp)); 4816 } 4817 4818 /* 4819 * Called to track nlinkdelta of the inode and parent directories prior to 4820 * unlinking a directory. 4821 */ 4822 void 4823 softdep_setup_rmdir(dp, ip) 4824 struct inode *dp; 4825 struct inode *ip; 4826 { 4827 struct vnode *dvp; 4828 4829 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4830 ("softdep_setup_rmdir called on non-softdep filesystem")); 4831 dvp = ITOV(dp); 4832 ACQUIRE_LOCK(ITOUMP(dp)); 4833 (void) inodedep_lookup_ip(ip); 4834 (void) inodedep_lookup_ip(dp); 4835 softdep_prelink(dvp, ITOV(ip)); 4836 FREE_LOCK(ITOUMP(dp)); 4837 } 4838 4839 /* 4840 * Called to track nlinkdelta of the inode and parent directories prior to 4841 * unlink. 4842 */ 4843 void 4844 softdep_setup_unlink(dp, ip) 4845 struct inode *dp; 4846 struct inode *ip; 4847 { 4848 struct vnode *dvp; 4849 4850 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4851 ("softdep_setup_unlink called on non-softdep filesystem")); 4852 dvp = ITOV(dp); 4853 ACQUIRE_LOCK(ITOUMP(dp)); 4854 (void) inodedep_lookup_ip(ip); 4855 (void) inodedep_lookup_ip(dp); 4856 softdep_prelink(dvp, ITOV(ip)); 4857 FREE_LOCK(ITOUMP(dp)); 4858 } 4859 4860 /* 4861 * Called to release the journal structures created by a failed non-directory 4862 * creation. Adjusts nlinkdelta for non-journaling softdep. 4863 */ 4864 void 4865 softdep_revert_create(dp, ip) 4866 struct inode *dp; 4867 struct inode *ip; 4868 { 4869 struct inodedep *inodedep; 4870 struct jaddref *jaddref; 4871 struct vnode *dvp; 4872 4873 KASSERT(MOUNTEDSOFTDEP(ITOVFS((dp))) != 0, 4874 ("softdep_revert_create called on non-softdep filesystem")); 4875 dvp = ITOV(dp); 4876 ACQUIRE_LOCK(ITOUMP(dp)); 4877 inodedep = inodedep_lookup_ip(ip); 4878 if (DOINGSUJ(dvp)) { 4879 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4880 inoreflst); 4881 KASSERT(jaddref->ja_parent == dp->i_number, 4882 ("softdep_revert_create: addref parent mismatch")); 4883 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4884 } 4885 FREE_LOCK(ITOUMP(dp)); 4886 } 4887 4888 /* 4889 * Called to release the journal structures created by a failed link 4890 * addition. Adjusts nlinkdelta for non-journaling softdep. 4891 */ 4892 void 4893 softdep_revert_link(dp, ip) 4894 struct inode *dp; 4895 struct inode *ip; 4896 { 4897 struct inodedep *inodedep; 4898 struct jaddref *jaddref; 4899 struct vnode *dvp; 4900 4901 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4902 ("softdep_revert_link called on non-softdep filesystem")); 4903 dvp = ITOV(dp); 4904 ACQUIRE_LOCK(ITOUMP(dp)); 4905 inodedep = inodedep_lookup_ip(ip); 4906 if (DOINGSUJ(dvp)) { 4907 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4908 inoreflst); 4909 KASSERT(jaddref->ja_parent == dp->i_number, 4910 ("softdep_revert_link: addref parent mismatch")); 4911 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4912 } 4913 FREE_LOCK(ITOUMP(dp)); 4914 } 4915 4916 /* 4917 * Called to release the journal structures created by a failed mkdir 4918 * attempt. Adjusts nlinkdelta for non-journaling softdep. 4919 */ 4920 void 4921 softdep_revert_mkdir(dp, ip) 4922 struct inode *dp; 4923 struct inode *ip; 4924 { 4925 struct inodedep *inodedep; 4926 struct jaddref *jaddref; 4927 struct jaddref *dotaddref; 4928 struct vnode *dvp; 4929 4930 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4931 ("softdep_revert_mkdir called on non-softdep filesystem")); 4932 dvp = ITOV(dp); 4933 4934 ACQUIRE_LOCK(ITOUMP(dp)); 4935 inodedep = inodedep_lookup_ip(dp); 4936 if (DOINGSUJ(dvp)) { 4937 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4938 inoreflst); 4939 KASSERT(jaddref->ja_parent == ip->i_number, 4940 ("softdep_revert_mkdir: dotdot addref parent mismatch")); 4941 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4942 } 4943 inodedep = inodedep_lookup_ip(ip); 4944 if (DOINGSUJ(dvp)) { 4945 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4946 inoreflst); 4947 KASSERT(jaddref->ja_parent == dp->i_number, 4948 ("softdep_revert_mkdir: addref parent mismatch")); 4949 dotaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref, 4950 inoreflst, if_deps); 4951 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4952 KASSERT(dotaddref->ja_parent == ip->i_number, 4953 ("softdep_revert_mkdir: dot addref parent mismatch")); 4954 cancel_jaddref(dotaddref, inodedep, &inodedep->id_inowait); 4955 } 4956 FREE_LOCK(ITOUMP(dp)); 4957 } 4958 4959 /* 4960 * Called to correct nlinkdelta after a failed rmdir. 4961 */ 4962 void 4963 softdep_revert_rmdir(dp, ip) 4964 struct inode *dp; 4965 struct inode *ip; 4966 { 4967 4968 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4969 ("softdep_revert_rmdir called on non-softdep filesystem")); 4970 ACQUIRE_LOCK(ITOUMP(dp)); 4971 (void) inodedep_lookup_ip(ip); 4972 (void) inodedep_lookup_ip(dp); 4973 FREE_LOCK(ITOUMP(dp)); 4974 } 4975 4976 /* 4977 * Protecting the freemaps (or bitmaps). 4978 * 4979 * To eliminate the need to execute fsck before mounting a filesystem 4980 * after a power failure, one must (conservatively) guarantee that the 4981 * on-disk copy of the bitmaps never indicate that a live inode or block is 4982 * free. So, when a block or inode is allocated, the bitmap should be 4983 * updated (on disk) before any new pointers. When a block or inode is 4984 * freed, the bitmap should not be updated until all pointers have been 4985 * reset. The latter dependency is handled by the delayed de-allocation 4986 * approach described below for block and inode de-allocation. The former 4987 * dependency is handled by calling the following procedure when a block or 4988 * inode is allocated. When an inode is allocated an "inodedep" is created 4989 * with its DEPCOMPLETE flag cleared until its bitmap is written to disk. 4990 * Each "inodedep" is also inserted into the hash indexing structure so 4991 * that any additional link additions can be made dependent on the inode 4992 * allocation. 4993 * 4994 * The ufs filesystem maintains a number of free block counts (e.g., per 4995 * cylinder group, per cylinder and per <cylinder, rotational position> pair) 4996 * in addition to the bitmaps. These counts are used to improve efficiency 4997 * during allocation and therefore must be consistent with the bitmaps. 4998 * There is no convenient way to guarantee post-crash consistency of these 4999 * counts with simple update ordering, for two main reasons: (1) The counts 5000 * and bitmaps for a single cylinder group block are not in the same disk 5001 * sector. If a disk write is interrupted (e.g., by power failure), one may 5002 * be written and the other not. (2) Some of the counts are located in the 5003 * superblock rather than the cylinder group block. So, we focus our soft 5004 * updates implementation on protecting the bitmaps. When mounting a 5005 * filesystem, we recompute the auxiliary counts from the bitmaps. 5006 */ 5007 5008 /* 5009 * Called just after updating the cylinder group block to allocate an inode. 5010 */ 5011 void 5012 softdep_setup_inomapdep(bp, ip, newinum, mode) 5013 struct buf *bp; /* buffer for cylgroup block with inode map */ 5014 struct inode *ip; /* inode related to allocation */ 5015 ino_t newinum; /* new inode number being allocated */ 5016 int mode; 5017 { 5018 struct inodedep *inodedep; 5019 struct bmsafemap *bmsafemap; 5020 struct jaddref *jaddref; 5021 struct mount *mp; 5022 struct fs *fs; 5023 5024 mp = ITOVFS(ip); 5025 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5026 ("softdep_setup_inomapdep called on non-softdep filesystem")); 5027 fs = VFSTOUFS(mp)->um_fs; 5028 jaddref = NULL; 5029 5030 /* 5031 * Allocate the journal reference add structure so that the bitmap 5032 * can be dependent on it. 5033 */ 5034 if (MOUNTEDSUJ(mp)) { 5035 jaddref = newjaddref(ip, newinum, 0, 0, mode); 5036 jaddref->ja_state |= NEWBLOCK; 5037 } 5038 5039 /* 5040 * Create a dependency for the newly allocated inode. 5041 * Panic if it already exists as something is seriously wrong. 5042 * Otherwise add it to the dependency list for the buffer holding 5043 * the cylinder group map from which it was allocated. 5044 * 5045 * We have to preallocate a bmsafemap entry in case it is needed 5046 * in bmsafemap_lookup since once we allocate the inodedep, we 5047 * have to finish initializing it before we can FREE_LOCK(). 5048 * By preallocating, we avoid FREE_LOCK() while doing a malloc 5049 * in bmsafemap_lookup. We cannot call bmsafemap_lookup before 5050 * creating the inodedep as it can be freed during the time 5051 * that we FREE_LOCK() while allocating the inodedep. We must 5052 * call workitem_alloc() before entering the locked section as 5053 * it also acquires the lock and we must avoid trying doing so 5054 * recursively. 5055 */ 5056 bmsafemap = malloc(sizeof(struct bmsafemap), 5057 M_BMSAFEMAP, M_SOFTDEP_FLAGS); 5058 workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp); 5059 ACQUIRE_LOCK(ITOUMP(ip)); 5060 if ((inodedep_lookup(mp, newinum, DEPALLOC, &inodedep))) 5061 panic("softdep_setup_inomapdep: dependency %p for new" 5062 "inode already exists", inodedep); 5063 bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum), bmsafemap); 5064 if (jaddref) { 5065 LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps); 5066 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 5067 if_deps); 5068 } else { 5069 inodedep->id_state |= ONDEPLIST; 5070 LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps); 5071 } 5072 inodedep->id_bmsafemap = bmsafemap; 5073 inodedep->id_state &= ~DEPCOMPLETE; 5074 FREE_LOCK(ITOUMP(ip)); 5075 } 5076 5077 /* 5078 * Called just after updating the cylinder group block to 5079 * allocate block or fragment. 5080 */ 5081 void 5082 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags) 5083 struct buf *bp; /* buffer for cylgroup block with block map */ 5084 struct mount *mp; /* filesystem doing allocation */ 5085 ufs2_daddr_t newblkno; /* number of newly allocated block */ 5086 int frags; /* Number of fragments. */ 5087 int oldfrags; /* Previous number of fragments for extend. */ 5088 { 5089 struct newblk *newblk; 5090 struct bmsafemap *bmsafemap; 5091 struct jnewblk *jnewblk; 5092 struct ufsmount *ump; 5093 struct fs *fs; 5094 5095 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5096 ("softdep_setup_blkmapdep called on non-softdep filesystem")); 5097 ump = VFSTOUFS(mp); 5098 fs = ump->um_fs; 5099 jnewblk = NULL; 5100 /* 5101 * Create a dependency for the newly allocated block. 5102 * Add it to the dependency list for the buffer holding 5103 * the cylinder group map from which it was allocated. 5104 */ 5105 if (MOUNTEDSUJ(mp)) { 5106 jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS); 5107 workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp); 5108 jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list); 5109 jnewblk->jn_state = ATTACHED; 5110 jnewblk->jn_blkno = newblkno; 5111 jnewblk->jn_frags = frags; 5112 jnewblk->jn_oldfrags = oldfrags; 5113 #ifdef INVARIANTS 5114 { 5115 struct cg *cgp; 5116 uint8_t *blksfree; 5117 long bno; 5118 int i; 5119 5120 cgp = (struct cg *)bp->b_data; 5121 blksfree = cg_blksfree(cgp); 5122 bno = dtogd(fs, jnewblk->jn_blkno); 5123 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; 5124 i++) { 5125 if (isset(blksfree, bno + i)) 5126 panic("softdep_setup_blkmapdep: " 5127 "free fragment %d from %d-%d " 5128 "state 0x%X dep %p", i, 5129 jnewblk->jn_oldfrags, 5130 jnewblk->jn_frags, 5131 jnewblk->jn_state, 5132 jnewblk->jn_dep); 5133 } 5134 } 5135 #endif 5136 } 5137 5138 CTR3(KTR_SUJ, 5139 "softdep_setup_blkmapdep: blkno %jd frags %d oldfrags %d", 5140 newblkno, frags, oldfrags); 5141 ACQUIRE_LOCK(ump); 5142 if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0) 5143 panic("softdep_setup_blkmapdep: found block"); 5144 newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp, 5145 dtog(fs, newblkno), NULL); 5146 if (jnewblk) { 5147 jnewblk->jn_dep = (struct worklist *)newblk; 5148 LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps); 5149 } else { 5150 newblk->nb_state |= ONDEPLIST; 5151 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps); 5152 } 5153 newblk->nb_bmsafemap = bmsafemap; 5154 newblk->nb_jnewblk = jnewblk; 5155 FREE_LOCK(ump); 5156 } 5157 5158 #define BMSAFEMAP_HASH(ump, cg) \ 5159 (&(ump)->bmsafemap_hashtbl[(cg) & (ump)->bmsafemap_hash_size]) 5160 5161 static int 5162 bmsafemap_find(bmsafemaphd, cg, bmsafemapp) 5163 struct bmsafemap_hashhead *bmsafemaphd; 5164 int cg; 5165 struct bmsafemap **bmsafemapp; 5166 { 5167 struct bmsafemap *bmsafemap; 5168 5169 LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash) 5170 if (bmsafemap->sm_cg == cg) 5171 break; 5172 if (bmsafemap) { 5173 *bmsafemapp = bmsafemap; 5174 return (1); 5175 } 5176 *bmsafemapp = NULL; 5177 5178 return (0); 5179 } 5180 5181 /* 5182 * Find the bmsafemap associated with a cylinder group buffer. 5183 * If none exists, create one. The buffer must be locked when 5184 * this routine is called and this routine must be called with 5185 * the softdep lock held. To avoid giving up the lock while 5186 * allocating a new bmsafemap, a preallocated bmsafemap may be 5187 * provided. If it is provided but not needed, it is freed. 5188 */ 5189 static struct bmsafemap * 5190 bmsafemap_lookup(mp, bp, cg, newbmsafemap) 5191 struct mount *mp; 5192 struct buf *bp; 5193 int cg; 5194 struct bmsafemap *newbmsafemap; 5195 { 5196 struct bmsafemap_hashhead *bmsafemaphd; 5197 struct bmsafemap *bmsafemap, *collision; 5198 struct worklist *wk; 5199 struct ufsmount *ump; 5200 5201 ump = VFSTOUFS(mp); 5202 LOCK_OWNED(ump); 5203 KASSERT(bp != NULL, ("bmsafemap_lookup: missing buffer")); 5204 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 5205 if (wk->wk_type == D_BMSAFEMAP) { 5206 if (newbmsafemap) 5207 WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP); 5208 return (WK_BMSAFEMAP(wk)); 5209 } 5210 } 5211 bmsafemaphd = BMSAFEMAP_HASH(ump, cg); 5212 if (bmsafemap_find(bmsafemaphd, cg, &bmsafemap) == 1) { 5213 if (newbmsafemap) 5214 WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP); 5215 return (bmsafemap); 5216 } 5217 if (newbmsafemap) { 5218 bmsafemap = newbmsafemap; 5219 } else { 5220 FREE_LOCK(ump); 5221 bmsafemap = malloc(sizeof(struct bmsafemap), 5222 M_BMSAFEMAP, M_SOFTDEP_FLAGS); 5223 workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp); 5224 ACQUIRE_LOCK(ump); 5225 } 5226 bmsafemap->sm_buf = bp; 5227 LIST_INIT(&bmsafemap->sm_inodedephd); 5228 LIST_INIT(&bmsafemap->sm_inodedepwr); 5229 LIST_INIT(&bmsafemap->sm_newblkhd); 5230 LIST_INIT(&bmsafemap->sm_newblkwr); 5231 LIST_INIT(&bmsafemap->sm_jaddrefhd); 5232 LIST_INIT(&bmsafemap->sm_jnewblkhd); 5233 LIST_INIT(&bmsafemap->sm_freehd); 5234 LIST_INIT(&bmsafemap->sm_freewr); 5235 if (bmsafemap_find(bmsafemaphd, cg, &collision) == 1) { 5236 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); 5237 return (collision); 5238 } 5239 bmsafemap->sm_cg = cg; 5240 LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash); 5241 LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next); 5242 WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list); 5243 return (bmsafemap); 5244 } 5245 5246 /* 5247 * Direct block allocation dependencies. 5248 * 5249 * When a new block is allocated, the corresponding disk locations must be 5250 * initialized (with zeros or new data) before the on-disk inode points to 5251 * them. Also, the freemap from which the block was allocated must be 5252 * updated (on disk) before the inode's pointer. These two dependencies are 5253 * independent of each other and are needed for all file blocks and indirect 5254 * blocks that are pointed to directly by the inode. Just before the 5255 * "in-core" version of the inode is updated with a newly allocated block 5256 * number, a procedure (below) is called to setup allocation dependency 5257 * structures. These structures are removed when the corresponding 5258 * dependencies are satisfied or when the block allocation becomes obsolete 5259 * (i.e., the file is deleted, the block is de-allocated, or the block is a 5260 * fragment that gets upgraded). All of these cases are handled in 5261 * procedures described later. 5262 * 5263 * When a file extension causes a fragment to be upgraded, either to a larger 5264 * fragment or to a full block, the on-disk location may change (if the 5265 * previous fragment could not simply be extended). In this case, the old 5266 * fragment must be de-allocated, but not until after the inode's pointer has 5267 * been updated. In most cases, this is handled by later procedures, which 5268 * will construct a "freefrag" structure to be added to the workitem queue 5269 * when the inode update is complete (or obsolete). The main exception to 5270 * this is when an allocation occurs while a pending allocation dependency 5271 * (for the same block pointer) remains. This case is handled in the main 5272 * allocation dependency setup procedure by immediately freeing the 5273 * unreferenced fragments. 5274 */ 5275 void 5276 softdep_setup_allocdirect(ip, off, newblkno, oldblkno, newsize, oldsize, bp) 5277 struct inode *ip; /* inode to which block is being added */ 5278 ufs_lbn_t off; /* block pointer within inode */ 5279 ufs2_daddr_t newblkno; /* disk block number being added */ 5280 ufs2_daddr_t oldblkno; /* previous block number, 0 unless frag */ 5281 long newsize; /* size of new block */ 5282 long oldsize; /* size of new block */ 5283 struct buf *bp; /* bp for allocated block */ 5284 { 5285 struct allocdirect *adp, *oldadp; 5286 struct allocdirectlst *adphead; 5287 struct freefrag *freefrag; 5288 struct inodedep *inodedep; 5289 struct pagedep *pagedep; 5290 struct jnewblk *jnewblk; 5291 struct newblk *newblk; 5292 struct mount *mp; 5293 ufs_lbn_t lbn; 5294 5295 lbn = bp->b_lblkno; 5296 mp = ITOVFS(ip); 5297 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5298 ("softdep_setup_allocdirect called on non-softdep filesystem")); 5299 if (oldblkno && oldblkno != newblkno) 5300 /* 5301 * The usual case is that a smaller fragment that 5302 * was just allocated has been replaced with a bigger 5303 * fragment or a full-size block. If it is marked as 5304 * B_DELWRI, the current contents have not been written 5305 * to disk. It is possible that the block was written 5306 * earlier, but very uncommon. If the block has never 5307 * been written, there is no need to send a BIO_DELETE 5308 * for it when it is freed. The gain from avoiding the 5309 * TRIMs for the common case of unwritten blocks far 5310 * exceeds the cost of the write amplification for the 5311 * uncommon case of failing to send a TRIM for a block 5312 * that had been written. 5313 */ 5314 freefrag = newfreefrag(ip, oldblkno, oldsize, lbn, 5315 (bp->b_flags & B_DELWRI) != 0 ? NOTRIM_KEY : SINGLETON_KEY); 5316 else 5317 freefrag = NULL; 5318 5319 CTR6(KTR_SUJ, 5320 "softdep_setup_allocdirect: ino %d blkno %jd oldblkno %jd " 5321 "off %jd newsize %ld oldsize %d", 5322 ip->i_number, newblkno, oldblkno, off, newsize, oldsize); 5323 ACQUIRE_LOCK(ITOUMP(ip)); 5324 if (off >= UFS_NDADDR) { 5325 if (lbn > 0) 5326 panic("softdep_setup_allocdirect: bad lbn %jd, off %jd", 5327 lbn, off); 5328 /* allocating an indirect block */ 5329 if (oldblkno != 0) 5330 panic("softdep_setup_allocdirect: non-zero indir"); 5331 } else { 5332 if (off != lbn) 5333 panic("softdep_setup_allocdirect: lbn %jd != off %jd", 5334 lbn, off); 5335 /* 5336 * Allocating a direct block. 5337 * 5338 * If we are allocating a directory block, then we must 5339 * allocate an associated pagedep to track additions and 5340 * deletions. 5341 */ 5342 if ((ip->i_mode & IFMT) == IFDIR) 5343 pagedep_lookup(mp, bp, ip->i_number, off, DEPALLOC, 5344 &pagedep); 5345 } 5346 if (newblk_lookup(mp, newblkno, 0, &newblk) == 0) 5347 panic("softdep_setup_allocdirect: lost block"); 5348 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 5349 ("softdep_setup_allocdirect: newblk already initialized")); 5350 /* 5351 * Convert the newblk to an allocdirect. 5352 */ 5353 WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT); 5354 adp = (struct allocdirect *)newblk; 5355 newblk->nb_freefrag = freefrag; 5356 adp->ad_offset = off; 5357 adp->ad_oldblkno = oldblkno; 5358 adp->ad_newsize = newsize; 5359 adp->ad_oldsize = oldsize; 5360 5361 /* 5362 * Finish initializing the journal. 5363 */ 5364 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 5365 jnewblk->jn_ino = ip->i_number; 5366 jnewblk->jn_lbn = lbn; 5367 add_to_journal(&jnewblk->jn_list); 5368 } 5369 if (freefrag && freefrag->ff_jdep != NULL && 5370 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 5371 add_to_journal(freefrag->ff_jdep); 5372 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 5373 adp->ad_inodedep = inodedep; 5374 5375 WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list); 5376 /* 5377 * The list of allocdirects must be kept in sorted and ascending 5378 * order so that the rollback routines can quickly determine the 5379 * first uncommitted block (the size of the file stored on disk 5380 * ends at the end of the lowest committed fragment, or if there 5381 * are no fragments, at the end of the highest committed block). 5382 * Since files generally grow, the typical case is that the new 5383 * block is to be added at the end of the list. We speed this 5384 * special case by checking against the last allocdirect in the 5385 * list before laboriously traversing the list looking for the 5386 * insertion point. 5387 */ 5388 adphead = &inodedep->id_newinoupdt; 5389 oldadp = TAILQ_LAST(adphead, allocdirectlst); 5390 if (oldadp == NULL || oldadp->ad_offset <= off) { 5391 /* insert at end of list */ 5392 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 5393 if (oldadp != NULL && oldadp->ad_offset == off) 5394 allocdirect_merge(adphead, adp, oldadp); 5395 FREE_LOCK(ITOUMP(ip)); 5396 return; 5397 } 5398 TAILQ_FOREACH(oldadp, adphead, ad_next) { 5399 if (oldadp->ad_offset >= off) 5400 break; 5401 } 5402 if (oldadp == NULL) 5403 panic("softdep_setup_allocdirect: lost entry"); 5404 /* insert in middle of list */ 5405 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 5406 if (oldadp->ad_offset == off) 5407 allocdirect_merge(adphead, adp, oldadp); 5408 5409 FREE_LOCK(ITOUMP(ip)); 5410 } 5411 5412 /* 5413 * Merge a newer and older journal record to be stored either in a 5414 * newblock or freefrag. This handles aggregating journal records for 5415 * fragment allocation into a second record as well as replacing a 5416 * journal free with an aborted journal allocation. A segment for the 5417 * oldest record will be placed on wkhd if it has been written. If not 5418 * the segment for the newer record will suffice. 5419 */ 5420 static struct worklist * 5421 jnewblk_merge(new, old, wkhd) 5422 struct worklist *new; 5423 struct worklist *old; 5424 struct workhead *wkhd; 5425 { 5426 struct jnewblk *njnewblk; 5427 struct jnewblk *jnewblk; 5428 5429 /* Handle NULLs to simplify callers. */ 5430 if (new == NULL) 5431 return (old); 5432 if (old == NULL) 5433 return (new); 5434 /* Replace a jfreefrag with a jnewblk. */ 5435 if (new->wk_type == D_JFREEFRAG) { 5436 if (WK_JNEWBLK(old)->jn_blkno != WK_JFREEFRAG(new)->fr_blkno) 5437 panic("jnewblk_merge: blkno mismatch: %p, %p", 5438 old, new); 5439 cancel_jfreefrag(WK_JFREEFRAG(new)); 5440 return (old); 5441 } 5442 if (old->wk_type != D_JNEWBLK || new->wk_type != D_JNEWBLK) 5443 panic("jnewblk_merge: Bad type: old %d new %d\n", 5444 old->wk_type, new->wk_type); 5445 /* 5446 * Handle merging of two jnewblk records that describe 5447 * different sets of fragments in the same block. 5448 */ 5449 jnewblk = WK_JNEWBLK(old); 5450 njnewblk = WK_JNEWBLK(new); 5451 if (jnewblk->jn_blkno != njnewblk->jn_blkno) 5452 panic("jnewblk_merge: Merging disparate blocks."); 5453 /* 5454 * The record may be rolled back in the cg. 5455 */ 5456 if (jnewblk->jn_state & UNDONE) { 5457 jnewblk->jn_state &= ~UNDONE; 5458 njnewblk->jn_state |= UNDONE; 5459 njnewblk->jn_state &= ~ATTACHED; 5460 } 5461 /* 5462 * We modify the newer addref and free the older so that if neither 5463 * has been written the most up-to-date copy will be on disk. If 5464 * both have been written but rolled back we only temporarily need 5465 * one of them to fix the bits when the cg write completes. 5466 */ 5467 jnewblk->jn_state |= ATTACHED | COMPLETE; 5468 njnewblk->jn_oldfrags = jnewblk->jn_oldfrags; 5469 cancel_jnewblk(jnewblk, wkhd); 5470 WORKLIST_REMOVE(&jnewblk->jn_list); 5471 free_jnewblk(jnewblk); 5472 return (new); 5473 } 5474 5475 /* 5476 * Replace an old allocdirect dependency with a newer one. 5477 */ 5478 static void 5479 allocdirect_merge(adphead, newadp, oldadp) 5480 struct allocdirectlst *adphead; /* head of list holding allocdirects */ 5481 struct allocdirect *newadp; /* allocdirect being added */ 5482 struct allocdirect *oldadp; /* existing allocdirect being checked */ 5483 { 5484 struct worklist *wk; 5485 struct freefrag *freefrag; 5486 5487 freefrag = NULL; 5488 LOCK_OWNED(VFSTOUFS(newadp->ad_list.wk_mp)); 5489 if (newadp->ad_oldblkno != oldadp->ad_newblkno || 5490 newadp->ad_oldsize != oldadp->ad_newsize || 5491 newadp->ad_offset >= UFS_NDADDR) 5492 panic("%s %jd != new %jd || old size %ld != new %ld", 5493 "allocdirect_merge: old blkno", 5494 (intmax_t)newadp->ad_oldblkno, 5495 (intmax_t)oldadp->ad_newblkno, 5496 newadp->ad_oldsize, oldadp->ad_newsize); 5497 newadp->ad_oldblkno = oldadp->ad_oldblkno; 5498 newadp->ad_oldsize = oldadp->ad_oldsize; 5499 /* 5500 * If the old dependency had a fragment to free or had never 5501 * previously had a block allocated, then the new dependency 5502 * can immediately post its freefrag and adopt the old freefrag. 5503 * This action is done by swapping the freefrag dependencies. 5504 * The new dependency gains the old one's freefrag, and the 5505 * old one gets the new one and then immediately puts it on 5506 * the worklist when it is freed by free_newblk. It is 5507 * not possible to do this swap when the old dependency had a 5508 * non-zero size but no previous fragment to free. This condition 5509 * arises when the new block is an extension of the old block. 5510 * Here, the first part of the fragment allocated to the new 5511 * dependency is part of the block currently claimed on disk by 5512 * the old dependency, so cannot legitimately be freed until the 5513 * conditions for the new dependency are fulfilled. 5514 */ 5515 freefrag = newadp->ad_freefrag; 5516 if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) { 5517 newadp->ad_freefrag = oldadp->ad_freefrag; 5518 oldadp->ad_freefrag = freefrag; 5519 } 5520 /* 5521 * If we are tracking a new directory-block allocation, 5522 * move it from the old allocdirect to the new allocdirect. 5523 */ 5524 if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) { 5525 WORKLIST_REMOVE(wk); 5526 if (!LIST_EMPTY(&oldadp->ad_newdirblk)) 5527 panic("allocdirect_merge: extra newdirblk"); 5528 WORKLIST_INSERT(&newadp->ad_newdirblk, wk); 5529 } 5530 TAILQ_REMOVE(adphead, oldadp, ad_next); 5531 /* 5532 * We need to move any journal dependencies over to the freefrag 5533 * that releases this block if it exists. Otherwise we are 5534 * extending an existing block and we'll wait until that is 5535 * complete to release the journal space and extend the 5536 * new journal to cover this old space as well. 5537 */ 5538 if (freefrag == NULL) { 5539 if (oldadp->ad_newblkno != newadp->ad_newblkno) 5540 panic("allocdirect_merge: %jd != %jd", 5541 oldadp->ad_newblkno, newadp->ad_newblkno); 5542 newadp->ad_block.nb_jnewblk = (struct jnewblk *) 5543 jnewblk_merge(&newadp->ad_block.nb_jnewblk->jn_list, 5544 &oldadp->ad_block.nb_jnewblk->jn_list, 5545 &newadp->ad_block.nb_jwork); 5546 oldadp->ad_block.nb_jnewblk = NULL; 5547 cancel_newblk(&oldadp->ad_block, NULL, 5548 &newadp->ad_block.nb_jwork); 5549 } else { 5550 wk = (struct worklist *) cancel_newblk(&oldadp->ad_block, 5551 &freefrag->ff_list, &freefrag->ff_jwork); 5552 freefrag->ff_jdep = jnewblk_merge(freefrag->ff_jdep, wk, 5553 &freefrag->ff_jwork); 5554 } 5555 free_newblk(&oldadp->ad_block); 5556 } 5557 5558 /* 5559 * Allocate a jfreefrag structure to journal a single block free. 5560 */ 5561 static struct jfreefrag * 5562 newjfreefrag(freefrag, ip, blkno, size, lbn) 5563 struct freefrag *freefrag; 5564 struct inode *ip; 5565 ufs2_daddr_t blkno; 5566 long size; 5567 ufs_lbn_t lbn; 5568 { 5569 struct jfreefrag *jfreefrag; 5570 struct fs *fs; 5571 5572 fs = ITOFS(ip); 5573 jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG, 5574 M_SOFTDEP_FLAGS); 5575 workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, ITOVFS(ip)); 5576 jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list); 5577 jfreefrag->fr_state = ATTACHED | DEPCOMPLETE; 5578 jfreefrag->fr_ino = ip->i_number; 5579 jfreefrag->fr_lbn = lbn; 5580 jfreefrag->fr_blkno = blkno; 5581 jfreefrag->fr_frags = numfrags(fs, size); 5582 jfreefrag->fr_freefrag = freefrag; 5583 5584 return (jfreefrag); 5585 } 5586 5587 /* 5588 * Allocate a new freefrag structure. 5589 */ 5590 static struct freefrag * 5591 newfreefrag(ip, blkno, size, lbn, key) 5592 struct inode *ip; 5593 ufs2_daddr_t blkno; 5594 long size; 5595 ufs_lbn_t lbn; 5596 u_long key; 5597 { 5598 struct freefrag *freefrag; 5599 struct ufsmount *ump; 5600 struct fs *fs; 5601 5602 CTR4(KTR_SUJ, "newfreefrag: ino %d blkno %jd size %ld lbn %jd", 5603 ip->i_number, blkno, size, lbn); 5604 ump = ITOUMP(ip); 5605 fs = ump->um_fs; 5606 if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag) 5607 panic("newfreefrag: frag size"); 5608 freefrag = malloc(sizeof(struct freefrag), 5609 M_FREEFRAG, M_SOFTDEP_FLAGS); 5610 workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ump)); 5611 freefrag->ff_state = ATTACHED; 5612 LIST_INIT(&freefrag->ff_jwork); 5613 freefrag->ff_inum = ip->i_number; 5614 freefrag->ff_vtype = ITOV(ip)->v_type; 5615 freefrag->ff_blkno = blkno; 5616 freefrag->ff_fragsize = size; 5617 freefrag->ff_key = key; 5618 5619 if (MOUNTEDSUJ(UFSTOVFS(ump))) { 5620 freefrag->ff_jdep = (struct worklist *) 5621 newjfreefrag(freefrag, ip, blkno, size, lbn); 5622 } else { 5623 freefrag->ff_state |= DEPCOMPLETE; 5624 freefrag->ff_jdep = NULL; 5625 } 5626 5627 return (freefrag); 5628 } 5629 5630 /* 5631 * This workitem de-allocates fragments that were replaced during 5632 * file block allocation. 5633 */ 5634 static void 5635 handle_workitem_freefrag(freefrag) 5636 struct freefrag *freefrag; 5637 { 5638 struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp); 5639 struct workhead wkhd; 5640 5641 CTR3(KTR_SUJ, 5642 "handle_workitem_freefrag: ino %d blkno %jd size %ld", 5643 freefrag->ff_inum, freefrag->ff_blkno, freefrag->ff_fragsize); 5644 /* 5645 * It would be illegal to add new completion items to the 5646 * freefrag after it was schedule to be done so it must be 5647 * safe to modify the list head here. 5648 */ 5649 LIST_INIT(&wkhd); 5650 ACQUIRE_LOCK(ump); 5651 LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list); 5652 /* 5653 * If the journal has not been written we must cancel it here. 5654 */ 5655 if (freefrag->ff_jdep) { 5656 if (freefrag->ff_jdep->wk_type != D_JNEWBLK) 5657 panic("handle_workitem_freefrag: Unexpected type %d\n", 5658 freefrag->ff_jdep->wk_type); 5659 cancel_jnewblk(WK_JNEWBLK(freefrag->ff_jdep), &wkhd); 5660 } 5661 FREE_LOCK(ump); 5662 ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno, 5663 freefrag->ff_fragsize, freefrag->ff_inum, freefrag->ff_vtype, 5664 &wkhd, freefrag->ff_key); 5665 ACQUIRE_LOCK(ump); 5666 WORKITEM_FREE(freefrag, D_FREEFRAG); 5667 FREE_LOCK(ump); 5668 } 5669 5670 /* 5671 * Set up a dependency structure for an external attributes data block. 5672 * This routine follows much of the structure of softdep_setup_allocdirect. 5673 * See the description of softdep_setup_allocdirect above for details. 5674 */ 5675 void 5676 softdep_setup_allocext(ip, off, newblkno, oldblkno, newsize, oldsize, bp) 5677 struct inode *ip; 5678 ufs_lbn_t off; 5679 ufs2_daddr_t newblkno; 5680 ufs2_daddr_t oldblkno; 5681 long newsize; 5682 long oldsize; 5683 struct buf *bp; 5684 { 5685 struct allocdirect *adp, *oldadp; 5686 struct allocdirectlst *adphead; 5687 struct freefrag *freefrag; 5688 struct inodedep *inodedep; 5689 struct jnewblk *jnewblk; 5690 struct newblk *newblk; 5691 struct mount *mp; 5692 struct ufsmount *ump; 5693 ufs_lbn_t lbn; 5694 5695 mp = ITOVFS(ip); 5696 ump = VFSTOUFS(mp); 5697 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5698 ("softdep_setup_allocext called on non-softdep filesystem")); 5699 KASSERT(off < UFS_NXADDR, 5700 ("softdep_setup_allocext: lbn %lld > UFS_NXADDR", (long long)off)); 5701 5702 lbn = bp->b_lblkno; 5703 if (oldblkno && oldblkno != newblkno) 5704 /* 5705 * The usual case is that a smaller fragment that 5706 * was just allocated has been replaced with a bigger 5707 * fragment or a full-size block. If it is marked as 5708 * B_DELWRI, the current contents have not been written 5709 * to disk. It is possible that the block was written 5710 * earlier, but very uncommon. If the block has never 5711 * been written, there is no need to send a BIO_DELETE 5712 * for it when it is freed. The gain from avoiding the 5713 * TRIMs for the common case of unwritten blocks far 5714 * exceeds the cost of the write amplification for the 5715 * uncommon case of failing to send a TRIM for a block 5716 * that had been written. 5717 */ 5718 freefrag = newfreefrag(ip, oldblkno, oldsize, lbn, 5719 (bp->b_flags & B_DELWRI) != 0 ? NOTRIM_KEY : SINGLETON_KEY); 5720 else 5721 freefrag = NULL; 5722 5723 ACQUIRE_LOCK(ump); 5724 if (newblk_lookup(mp, newblkno, 0, &newblk) == 0) 5725 panic("softdep_setup_allocext: lost block"); 5726 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 5727 ("softdep_setup_allocext: newblk already initialized")); 5728 /* 5729 * Convert the newblk to an allocdirect. 5730 */ 5731 WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT); 5732 adp = (struct allocdirect *)newblk; 5733 newblk->nb_freefrag = freefrag; 5734 adp->ad_offset = off; 5735 adp->ad_oldblkno = oldblkno; 5736 adp->ad_newsize = newsize; 5737 adp->ad_oldsize = oldsize; 5738 adp->ad_state |= EXTDATA; 5739 5740 /* 5741 * Finish initializing the journal. 5742 */ 5743 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 5744 jnewblk->jn_ino = ip->i_number; 5745 jnewblk->jn_lbn = lbn; 5746 add_to_journal(&jnewblk->jn_list); 5747 } 5748 if (freefrag && freefrag->ff_jdep != NULL && 5749 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 5750 add_to_journal(freefrag->ff_jdep); 5751 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 5752 adp->ad_inodedep = inodedep; 5753 5754 WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list); 5755 /* 5756 * The list of allocdirects must be kept in sorted and ascending 5757 * order so that the rollback routines can quickly determine the 5758 * first uncommitted block (the size of the file stored on disk 5759 * ends at the end of the lowest committed fragment, or if there 5760 * are no fragments, at the end of the highest committed block). 5761 * Since files generally grow, the typical case is that the new 5762 * block is to be added at the end of the list. We speed this 5763 * special case by checking against the last allocdirect in the 5764 * list before laboriously traversing the list looking for the 5765 * insertion point. 5766 */ 5767 adphead = &inodedep->id_newextupdt; 5768 oldadp = TAILQ_LAST(adphead, allocdirectlst); 5769 if (oldadp == NULL || oldadp->ad_offset <= off) { 5770 /* insert at end of list */ 5771 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 5772 if (oldadp != NULL && oldadp->ad_offset == off) 5773 allocdirect_merge(adphead, adp, oldadp); 5774 FREE_LOCK(ump); 5775 return; 5776 } 5777 TAILQ_FOREACH(oldadp, adphead, ad_next) { 5778 if (oldadp->ad_offset >= off) 5779 break; 5780 } 5781 if (oldadp == NULL) 5782 panic("softdep_setup_allocext: lost entry"); 5783 /* insert in middle of list */ 5784 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 5785 if (oldadp->ad_offset == off) 5786 allocdirect_merge(adphead, adp, oldadp); 5787 FREE_LOCK(ump); 5788 } 5789 5790 /* 5791 * Indirect block allocation dependencies. 5792 * 5793 * The same dependencies that exist for a direct block also exist when 5794 * a new block is allocated and pointed to by an entry in a block of 5795 * indirect pointers. The undo/redo states described above are also 5796 * used here. Because an indirect block contains many pointers that 5797 * may have dependencies, a second copy of the entire in-memory indirect 5798 * block is kept. The buffer cache copy is always completely up-to-date. 5799 * The second copy, which is used only as a source for disk writes, 5800 * contains only the safe pointers (i.e., those that have no remaining 5801 * update dependencies). The second copy is freed when all pointers 5802 * are safe. The cache is not allowed to replace indirect blocks with 5803 * pending update dependencies. If a buffer containing an indirect 5804 * block with dependencies is written, these routines will mark it 5805 * dirty again. It can only be successfully written once all the 5806 * dependencies are removed. The ffs_fsync routine in conjunction with 5807 * softdep_sync_metadata work together to get all the dependencies 5808 * removed so that a file can be successfully written to disk. Three 5809 * procedures are used when setting up indirect block pointer 5810 * dependencies. The division is necessary because of the organization 5811 * of the "balloc" routine and because of the distinction between file 5812 * pages and file metadata blocks. 5813 */ 5814 5815 /* 5816 * Allocate a new allocindir structure. 5817 */ 5818 static struct allocindir * 5819 newallocindir(ip, ptrno, newblkno, oldblkno, lbn) 5820 struct inode *ip; /* inode for file being extended */ 5821 int ptrno; /* offset of pointer in indirect block */ 5822 ufs2_daddr_t newblkno; /* disk block number being added */ 5823 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 5824 ufs_lbn_t lbn; 5825 { 5826 struct newblk *newblk; 5827 struct allocindir *aip; 5828 struct freefrag *freefrag; 5829 struct jnewblk *jnewblk; 5830 5831 if (oldblkno) 5832 freefrag = newfreefrag(ip, oldblkno, ITOFS(ip)->fs_bsize, lbn, 5833 SINGLETON_KEY); 5834 else 5835 freefrag = NULL; 5836 ACQUIRE_LOCK(ITOUMP(ip)); 5837 if (newblk_lookup(ITOVFS(ip), newblkno, 0, &newblk) == 0) 5838 panic("new_allocindir: lost block"); 5839 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 5840 ("newallocindir: newblk already initialized")); 5841 WORKITEM_REASSIGN(newblk, D_ALLOCINDIR); 5842 newblk->nb_freefrag = freefrag; 5843 aip = (struct allocindir *)newblk; 5844 aip->ai_offset = ptrno; 5845 aip->ai_oldblkno = oldblkno; 5846 aip->ai_lbn = lbn; 5847 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 5848 jnewblk->jn_ino = ip->i_number; 5849 jnewblk->jn_lbn = lbn; 5850 add_to_journal(&jnewblk->jn_list); 5851 } 5852 if (freefrag && freefrag->ff_jdep != NULL && 5853 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 5854 add_to_journal(freefrag->ff_jdep); 5855 return (aip); 5856 } 5857 5858 /* 5859 * Called just before setting an indirect block pointer 5860 * to a newly allocated file page. 5861 */ 5862 void 5863 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 5864 struct inode *ip; /* inode for file being extended */ 5865 ufs_lbn_t lbn; /* allocated block number within file */ 5866 struct buf *bp; /* buffer with indirect blk referencing page */ 5867 int ptrno; /* offset of pointer in indirect block */ 5868 ufs2_daddr_t newblkno; /* disk block number being added */ 5869 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 5870 struct buf *nbp; /* buffer holding allocated page */ 5871 { 5872 struct inodedep *inodedep; 5873 struct freefrag *freefrag; 5874 struct allocindir *aip; 5875 struct pagedep *pagedep; 5876 struct mount *mp; 5877 struct ufsmount *ump; 5878 5879 mp = ITOVFS(ip); 5880 ump = VFSTOUFS(mp); 5881 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5882 ("softdep_setup_allocindir_page called on non-softdep filesystem")); 5883 KASSERT(lbn == nbp->b_lblkno, 5884 ("softdep_setup_allocindir_page: lbn %jd != lblkno %jd", 5885 lbn, bp->b_lblkno)); 5886 CTR4(KTR_SUJ, 5887 "softdep_setup_allocindir_page: ino %d blkno %jd oldblkno %jd " 5888 "lbn %jd", ip->i_number, newblkno, oldblkno, lbn); 5889 ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page"); 5890 aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn); 5891 (void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 5892 /* 5893 * If we are allocating a directory page, then we must 5894 * allocate an associated pagedep to track additions and 5895 * deletions. 5896 */ 5897 if ((ip->i_mode & IFMT) == IFDIR) 5898 pagedep_lookup(mp, nbp, ip->i_number, lbn, DEPALLOC, &pagedep); 5899 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list); 5900 freefrag = setup_allocindir_phase2(bp, ip, inodedep, aip, lbn); 5901 FREE_LOCK(ump); 5902 if (freefrag) 5903 handle_workitem_freefrag(freefrag); 5904 } 5905 5906 /* 5907 * Called just before setting an indirect block pointer to a 5908 * newly allocated indirect block. 5909 */ 5910 void 5911 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 5912 struct buf *nbp; /* newly allocated indirect block */ 5913 struct inode *ip; /* inode for file being extended */ 5914 struct buf *bp; /* indirect block referencing allocated block */ 5915 int ptrno; /* offset of pointer in indirect block */ 5916 ufs2_daddr_t newblkno; /* disk block number being added */ 5917 { 5918 struct inodedep *inodedep; 5919 struct allocindir *aip; 5920 struct ufsmount *ump; 5921 ufs_lbn_t lbn; 5922 5923 ump = ITOUMP(ip); 5924 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 5925 ("softdep_setup_allocindir_meta called on non-softdep filesystem")); 5926 CTR3(KTR_SUJ, 5927 "softdep_setup_allocindir_meta: ino %d blkno %jd ptrno %d", 5928 ip->i_number, newblkno, ptrno); 5929 lbn = nbp->b_lblkno; 5930 ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta"); 5931 aip = newallocindir(ip, ptrno, newblkno, 0, lbn); 5932 inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep); 5933 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list); 5934 if (setup_allocindir_phase2(bp, ip, inodedep, aip, lbn)) 5935 panic("softdep_setup_allocindir_meta: Block already existed"); 5936 FREE_LOCK(ump); 5937 } 5938 5939 static void 5940 indirdep_complete(indirdep) 5941 struct indirdep *indirdep; 5942 { 5943 struct allocindir *aip; 5944 5945 LIST_REMOVE(indirdep, ir_next); 5946 indirdep->ir_state |= DEPCOMPLETE; 5947 5948 while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) { 5949 LIST_REMOVE(aip, ai_next); 5950 free_newblk(&aip->ai_block); 5951 } 5952 /* 5953 * If this indirdep is not attached to a buf it was simply waiting 5954 * on completion to clear completehd. free_indirdep() asserts 5955 * that nothing is dangling. 5956 */ 5957 if ((indirdep->ir_state & ONWORKLIST) == 0) 5958 free_indirdep(indirdep); 5959 } 5960 5961 static struct indirdep * 5962 indirdep_lookup(mp, ip, bp) 5963 struct mount *mp; 5964 struct inode *ip; 5965 struct buf *bp; 5966 { 5967 struct indirdep *indirdep, *newindirdep; 5968 struct newblk *newblk; 5969 struct ufsmount *ump; 5970 struct worklist *wk; 5971 struct fs *fs; 5972 ufs2_daddr_t blkno; 5973 5974 ump = VFSTOUFS(mp); 5975 LOCK_OWNED(ump); 5976 indirdep = NULL; 5977 newindirdep = NULL; 5978 fs = ump->um_fs; 5979 for (;;) { 5980 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 5981 if (wk->wk_type != D_INDIRDEP) 5982 continue; 5983 indirdep = WK_INDIRDEP(wk); 5984 break; 5985 } 5986 /* Found on the buffer worklist, no new structure to free. */ 5987 if (indirdep != NULL && newindirdep == NULL) 5988 return (indirdep); 5989 if (indirdep != NULL && newindirdep != NULL) 5990 panic("indirdep_lookup: simultaneous create"); 5991 /* None found on the buffer and a new structure is ready. */ 5992 if (indirdep == NULL && newindirdep != NULL) 5993 break; 5994 /* None found and no new structure available. */ 5995 FREE_LOCK(ump); 5996 newindirdep = malloc(sizeof(struct indirdep), 5997 M_INDIRDEP, M_SOFTDEP_FLAGS); 5998 workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp); 5999 newindirdep->ir_state = ATTACHED; 6000 if (I_IS_UFS1(ip)) 6001 newindirdep->ir_state |= UFS1FMT; 6002 TAILQ_INIT(&newindirdep->ir_trunc); 6003 newindirdep->ir_saveddata = NULL; 6004 LIST_INIT(&newindirdep->ir_deplisthd); 6005 LIST_INIT(&newindirdep->ir_donehd); 6006 LIST_INIT(&newindirdep->ir_writehd); 6007 LIST_INIT(&newindirdep->ir_completehd); 6008 if (bp->b_blkno == bp->b_lblkno) { 6009 ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp, 6010 NULL, NULL); 6011 bp->b_blkno = blkno; 6012 } 6013 newindirdep->ir_freeblks = NULL; 6014 newindirdep->ir_savebp = 6015 getblk(ump->um_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0); 6016 newindirdep->ir_bp = bp; 6017 BUF_KERNPROC(newindirdep->ir_savebp); 6018 bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount); 6019 ACQUIRE_LOCK(ump); 6020 } 6021 indirdep = newindirdep; 6022 WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list); 6023 /* 6024 * If the block is not yet allocated we don't set DEPCOMPLETE so 6025 * that we don't free dependencies until the pointers are valid. 6026 * This could search b_dep for D_ALLOCDIRECT/D_ALLOCINDIR rather 6027 * than using the hash. 6028 */ 6029 if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)) 6030 LIST_INSERT_HEAD(&newblk->nb_indirdeps, indirdep, ir_next); 6031 else 6032 indirdep->ir_state |= DEPCOMPLETE; 6033 return (indirdep); 6034 } 6035 6036 /* 6037 * Called to finish the allocation of the "aip" allocated 6038 * by one of the two routines above. 6039 */ 6040 static struct freefrag * 6041 setup_allocindir_phase2(bp, ip, inodedep, aip, lbn) 6042 struct buf *bp; /* in-memory copy of the indirect block */ 6043 struct inode *ip; /* inode for file being extended */ 6044 struct inodedep *inodedep; /* Inodedep for ip */ 6045 struct allocindir *aip; /* allocindir allocated by the above routines */ 6046 ufs_lbn_t lbn; /* Logical block number for this block. */ 6047 { 6048 struct fs *fs; 6049 struct indirdep *indirdep; 6050 struct allocindir *oldaip; 6051 struct freefrag *freefrag; 6052 struct mount *mp; 6053 struct ufsmount *ump; 6054 6055 mp = ITOVFS(ip); 6056 ump = VFSTOUFS(mp); 6057 LOCK_OWNED(ump); 6058 fs = ump->um_fs; 6059 if (bp->b_lblkno >= 0) 6060 panic("setup_allocindir_phase2: not indir blk"); 6061 KASSERT(aip->ai_offset >= 0 && aip->ai_offset < NINDIR(fs), 6062 ("setup_allocindir_phase2: Bad offset %d", aip->ai_offset)); 6063 indirdep = indirdep_lookup(mp, ip, bp); 6064 KASSERT(indirdep->ir_savebp != NULL, 6065 ("setup_allocindir_phase2 NULL ir_savebp")); 6066 aip->ai_indirdep = indirdep; 6067 /* 6068 * Check for an unwritten dependency for this indirect offset. If 6069 * there is, merge the old dependency into the new one. This happens 6070 * as a result of reallocblk only. 6071 */ 6072 freefrag = NULL; 6073 if (aip->ai_oldblkno != 0) { 6074 LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) { 6075 if (oldaip->ai_offset == aip->ai_offset) { 6076 freefrag = allocindir_merge(aip, oldaip); 6077 goto done; 6078 } 6079 } 6080 LIST_FOREACH(oldaip, &indirdep->ir_donehd, ai_next) { 6081 if (oldaip->ai_offset == aip->ai_offset) { 6082 freefrag = allocindir_merge(aip, oldaip); 6083 goto done; 6084 } 6085 } 6086 } 6087 done: 6088 LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next); 6089 return (freefrag); 6090 } 6091 6092 /* 6093 * Merge two allocindirs which refer to the same block. Move newblock 6094 * dependencies and setup the freefrags appropriately. 6095 */ 6096 static struct freefrag * 6097 allocindir_merge(aip, oldaip) 6098 struct allocindir *aip; 6099 struct allocindir *oldaip; 6100 { 6101 struct freefrag *freefrag; 6102 struct worklist *wk; 6103 6104 if (oldaip->ai_newblkno != aip->ai_oldblkno) 6105 panic("allocindir_merge: blkno"); 6106 aip->ai_oldblkno = oldaip->ai_oldblkno; 6107 freefrag = aip->ai_freefrag; 6108 aip->ai_freefrag = oldaip->ai_freefrag; 6109 oldaip->ai_freefrag = NULL; 6110 KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag")); 6111 /* 6112 * If we are tracking a new directory-block allocation, 6113 * move it from the old allocindir to the new allocindir. 6114 */ 6115 if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) { 6116 WORKLIST_REMOVE(wk); 6117 if (!LIST_EMPTY(&oldaip->ai_newdirblk)) 6118 panic("allocindir_merge: extra newdirblk"); 6119 WORKLIST_INSERT(&aip->ai_newdirblk, wk); 6120 } 6121 /* 6122 * We can skip journaling for this freefrag and just complete 6123 * any pending journal work for the allocindir that is being 6124 * removed after the freefrag completes. 6125 */ 6126 if (freefrag->ff_jdep) 6127 cancel_jfreefrag(WK_JFREEFRAG(freefrag->ff_jdep)); 6128 LIST_REMOVE(oldaip, ai_next); 6129 freefrag->ff_jdep = (struct worklist *)cancel_newblk(&oldaip->ai_block, 6130 &freefrag->ff_list, &freefrag->ff_jwork); 6131 free_newblk(&oldaip->ai_block); 6132 6133 return (freefrag); 6134 } 6135 6136 static inline void 6137 setup_freedirect(freeblks, ip, i, needj) 6138 struct freeblks *freeblks; 6139 struct inode *ip; 6140 int i; 6141 int needj; 6142 { 6143 struct ufsmount *ump; 6144 ufs2_daddr_t blkno; 6145 int frags; 6146 6147 blkno = DIP(ip, i_db[i]); 6148 if (blkno == 0) 6149 return; 6150 DIP_SET(ip, i_db[i], 0); 6151 ump = ITOUMP(ip); 6152 frags = sblksize(ump->um_fs, ip->i_size, i); 6153 frags = numfrags(ump->um_fs, frags); 6154 newfreework(ump, freeblks, NULL, i, blkno, frags, 0, needj); 6155 } 6156 6157 static inline void 6158 setup_freeext(freeblks, ip, i, needj) 6159 struct freeblks *freeblks; 6160 struct inode *ip; 6161 int i; 6162 int needj; 6163 { 6164 struct ufsmount *ump; 6165 ufs2_daddr_t blkno; 6166 int frags; 6167 6168 blkno = ip->i_din2->di_extb[i]; 6169 if (blkno == 0) 6170 return; 6171 ip->i_din2->di_extb[i] = 0; 6172 ump = ITOUMP(ip); 6173 frags = sblksize(ump->um_fs, ip->i_din2->di_extsize, i); 6174 frags = numfrags(ump->um_fs, frags); 6175 newfreework(ump, freeblks, NULL, -1 - i, blkno, frags, 0, needj); 6176 } 6177 6178 static inline void 6179 setup_freeindir(freeblks, ip, i, lbn, needj) 6180 struct freeblks *freeblks; 6181 struct inode *ip; 6182 int i; 6183 ufs_lbn_t lbn; 6184 int needj; 6185 { 6186 struct ufsmount *ump; 6187 ufs2_daddr_t blkno; 6188 6189 blkno = DIP(ip, i_ib[i]); 6190 if (blkno == 0) 6191 return; 6192 DIP_SET(ip, i_ib[i], 0); 6193 ump = ITOUMP(ip); 6194 newfreework(ump, freeblks, NULL, lbn, blkno, ump->um_fs->fs_frag, 6195 0, needj); 6196 } 6197 6198 static inline struct freeblks * 6199 newfreeblks(mp, ip) 6200 struct mount *mp; 6201 struct inode *ip; 6202 { 6203 struct freeblks *freeblks; 6204 6205 freeblks = malloc(sizeof(struct freeblks), 6206 M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO); 6207 workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp); 6208 LIST_INIT(&freeblks->fb_jblkdephd); 6209 LIST_INIT(&freeblks->fb_jwork); 6210 freeblks->fb_ref = 0; 6211 freeblks->fb_cgwait = 0; 6212 freeblks->fb_state = ATTACHED; 6213 freeblks->fb_uid = ip->i_uid; 6214 freeblks->fb_inum = ip->i_number; 6215 freeblks->fb_vtype = ITOV(ip)->v_type; 6216 freeblks->fb_modrev = DIP(ip, i_modrev); 6217 freeblks->fb_devvp = ITODEVVP(ip); 6218 freeblks->fb_chkcnt = 0; 6219 freeblks->fb_len = 0; 6220 6221 return (freeblks); 6222 } 6223 6224 static void 6225 trunc_indirdep(indirdep, freeblks, bp, off) 6226 struct indirdep *indirdep; 6227 struct freeblks *freeblks; 6228 struct buf *bp; 6229 int off; 6230 { 6231 struct allocindir *aip, *aipn; 6232 6233 /* 6234 * The first set of allocindirs won't be in savedbp. 6235 */ 6236 LIST_FOREACH_SAFE(aip, &indirdep->ir_deplisthd, ai_next, aipn) 6237 if (aip->ai_offset > off) 6238 cancel_allocindir(aip, bp, freeblks, 1); 6239 LIST_FOREACH_SAFE(aip, &indirdep->ir_donehd, ai_next, aipn) 6240 if (aip->ai_offset > off) 6241 cancel_allocindir(aip, bp, freeblks, 1); 6242 /* 6243 * These will exist in savedbp. 6244 */ 6245 LIST_FOREACH_SAFE(aip, &indirdep->ir_writehd, ai_next, aipn) 6246 if (aip->ai_offset > off) 6247 cancel_allocindir(aip, NULL, freeblks, 0); 6248 LIST_FOREACH_SAFE(aip, &indirdep->ir_completehd, ai_next, aipn) 6249 if (aip->ai_offset > off) 6250 cancel_allocindir(aip, NULL, freeblks, 0); 6251 } 6252 6253 /* 6254 * Follow the chain of indirects down to lastlbn creating a freework 6255 * structure for each. This will be used to start indir_trunc() at 6256 * the right offset and create the journal records for the parrtial 6257 * truncation. A second step will handle the truncated dependencies. 6258 */ 6259 static int 6260 setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno) 6261 struct freeblks *freeblks; 6262 struct inode *ip; 6263 ufs_lbn_t lbn; 6264 ufs_lbn_t lastlbn; 6265 ufs2_daddr_t blkno; 6266 { 6267 struct indirdep *indirdep; 6268 struct indirdep *indirn; 6269 struct freework *freework; 6270 struct newblk *newblk; 6271 struct mount *mp; 6272 struct ufsmount *ump; 6273 struct buf *bp; 6274 uint8_t *start; 6275 uint8_t *end; 6276 ufs_lbn_t lbnadd; 6277 int level; 6278 int error; 6279 int off; 6280 6281 6282 freework = NULL; 6283 if (blkno == 0) 6284 return (0); 6285 mp = freeblks->fb_list.wk_mp; 6286 ump = VFSTOUFS(mp); 6287 bp = getblk(ITOV(ip), lbn, mp->mnt_stat.f_iosize, 0, 0, 0); 6288 if ((bp->b_flags & B_CACHE) == 0) { 6289 bp->b_blkno = blkptrtodb(VFSTOUFS(mp), blkno); 6290 bp->b_iocmd = BIO_READ; 6291 bp->b_flags &= ~B_INVAL; 6292 bp->b_ioflags &= ~BIO_ERROR; 6293 vfs_busy_pages(bp, 0); 6294 bp->b_iooffset = dbtob(bp->b_blkno); 6295 bstrategy(bp); 6296 #ifdef RACCT 6297 if (racct_enable) { 6298 PROC_LOCK(curproc); 6299 racct_add_buf(curproc, bp, 0); 6300 PROC_UNLOCK(curproc); 6301 } 6302 #endif /* RACCT */ 6303 curthread->td_ru.ru_inblock++; 6304 error = bufwait(bp); 6305 if (error) { 6306 brelse(bp); 6307 return (error); 6308 } 6309 } 6310 level = lbn_level(lbn); 6311 lbnadd = lbn_offset(ump->um_fs, level); 6312 /* 6313 * Compute the offset of the last block we want to keep. Store 6314 * in the freework the first block we want to completely free. 6315 */ 6316 off = (lastlbn - -(lbn + level)) / lbnadd; 6317 if (off + 1 == NINDIR(ump->um_fs)) 6318 goto nowork; 6319 freework = newfreework(ump, freeblks, NULL, lbn, blkno, 0, off + 1, 0); 6320 /* 6321 * Link the freework into the indirdep. This will prevent any new 6322 * allocations from proceeding until we are finished with the 6323 * truncate and the block is written. 6324 */ 6325 ACQUIRE_LOCK(ump); 6326 indirdep = indirdep_lookup(mp, ip, bp); 6327 if (indirdep->ir_freeblks) 6328 panic("setup_trunc_indir: indirdep already truncated."); 6329 TAILQ_INSERT_TAIL(&indirdep->ir_trunc, freework, fw_next); 6330 freework->fw_indir = indirdep; 6331 /* 6332 * Cancel any allocindirs that will not make it to disk. 6333 * We have to do this for all copies of the indirdep that 6334 * live on this newblk. 6335 */ 6336 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 6337 if (newblk_lookup(mp, dbtofsb(ump->um_fs, bp->b_blkno), 0, 6338 &newblk) == 0) 6339 panic("setup_trunc_indir: lost block"); 6340 LIST_FOREACH(indirn, &newblk->nb_indirdeps, ir_next) 6341 trunc_indirdep(indirn, freeblks, bp, off); 6342 } else 6343 trunc_indirdep(indirdep, freeblks, bp, off); 6344 FREE_LOCK(ump); 6345 /* 6346 * Creation is protected by the buf lock. The saveddata is only 6347 * needed if a full truncation follows a partial truncation but it 6348 * is difficult to allocate in that case so we fetch it anyway. 6349 */ 6350 if (indirdep->ir_saveddata == NULL) 6351 indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP, 6352 M_SOFTDEP_FLAGS); 6353 nowork: 6354 /* Fetch the blkno of the child and the zero start offset. */ 6355 if (I_IS_UFS1(ip)) { 6356 blkno = ((ufs1_daddr_t *)bp->b_data)[off]; 6357 start = (uint8_t *)&((ufs1_daddr_t *)bp->b_data)[off+1]; 6358 } else { 6359 blkno = ((ufs2_daddr_t *)bp->b_data)[off]; 6360 start = (uint8_t *)&((ufs2_daddr_t *)bp->b_data)[off+1]; 6361 } 6362 if (freework) { 6363 /* Zero the truncated pointers. */ 6364 end = bp->b_data + bp->b_bcount; 6365 bzero(start, end - start); 6366 bdwrite(bp); 6367 } else 6368 bqrelse(bp); 6369 if (level == 0) 6370 return (0); 6371 lbn++; /* adjust level */ 6372 lbn -= (off * lbnadd); 6373 return setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno); 6374 } 6375 6376 /* 6377 * Complete the partial truncation of an indirect block setup by 6378 * setup_trunc_indir(). This zeros the truncated pointers in the saved 6379 * copy and writes them to disk before the freeblks is allowed to complete. 6380 */ 6381 static void 6382 complete_trunc_indir(freework) 6383 struct freework *freework; 6384 { 6385 struct freework *fwn; 6386 struct indirdep *indirdep; 6387 struct ufsmount *ump; 6388 struct buf *bp; 6389 uintptr_t start; 6390 int count; 6391 6392 ump = VFSTOUFS(freework->fw_list.wk_mp); 6393 LOCK_OWNED(ump); 6394 indirdep = freework->fw_indir; 6395 for (;;) { 6396 bp = indirdep->ir_bp; 6397 /* See if the block was discarded. */ 6398 if (bp == NULL) 6399 break; 6400 /* Inline part of getdirtybuf(). We dont want bremfree. */ 6401 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0) 6402 break; 6403 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 6404 LOCK_PTR(ump)) == 0) 6405 BUF_UNLOCK(bp); 6406 ACQUIRE_LOCK(ump); 6407 } 6408 freework->fw_state |= DEPCOMPLETE; 6409 TAILQ_REMOVE(&indirdep->ir_trunc, freework, fw_next); 6410 /* 6411 * Zero the pointers in the saved copy. 6412 */ 6413 if (indirdep->ir_state & UFS1FMT) 6414 start = sizeof(ufs1_daddr_t); 6415 else 6416 start = sizeof(ufs2_daddr_t); 6417 start *= freework->fw_start; 6418 count = indirdep->ir_savebp->b_bcount - start; 6419 start += (uintptr_t)indirdep->ir_savebp->b_data; 6420 bzero((char *)start, count); 6421 /* 6422 * We need to start the next truncation in the list if it has not 6423 * been started yet. 6424 */ 6425 fwn = TAILQ_FIRST(&indirdep->ir_trunc); 6426 if (fwn != NULL) { 6427 if (fwn->fw_freeblks == indirdep->ir_freeblks) 6428 TAILQ_REMOVE(&indirdep->ir_trunc, fwn, fw_next); 6429 if ((fwn->fw_state & ONWORKLIST) == 0) 6430 freework_enqueue(fwn); 6431 } 6432 /* 6433 * If bp is NULL the block was fully truncated, restore 6434 * the saved block list otherwise free it if it is no 6435 * longer needed. 6436 */ 6437 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 6438 if (bp == NULL) 6439 bcopy(indirdep->ir_saveddata, 6440 indirdep->ir_savebp->b_data, 6441 indirdep->ir_savebp->b_bcount); 6442 free(indirdep->ir_saveddata, M_INDIRDEP); 6443 indirdep->ir_saveddata = NULL; 6444 } 6445 /* 6446 * When bp is NULL there is a full truncation pending. We 6447 * must wait for this full truncation to be journaled before 6448 * we can release this freework because the disk pointers will 6449 * never be written as zero. 6450 */ 6451 if (bp == NULL) { 6452 if (LIST_EMPTY(&indirdep->ir_freeblks->fb_jblkdephd)) 6453 handle_written_freework(freework); 6454 else 6455 WORKLIST_INSERT(&indirdep->ir_freeblks->fb_freeworkhd, 6456 &freework->fw_list); 6457 } else { 6458 /* Complete when the real copy is written. */ 6459 WORKLIST_INSERT(&bp->b_dep, &freework->fw_list); 6460 BUF_UNLOCK(bp); 6461 } 6462 } 6463 6464 /* 6465 * Calculate the number of blocks we are going to release where datablocks 6466 * is the current total and length is the new file size. 6467 */ 6468 static ufs2_daddr_t 6469 blkcount(fs, datablocks, length) 6470 struct fs *fs; 6471 ufs2_daddr_t datablocks; 6472 off_t length; 6473 { 6474 off_t totblks, numblks; 6475 6476 totblks = 0; 6477 numblks = howmany(length, fs->fs_bsize); 6478 if (numblks <= UFS_NDADDR) { 6479 totblks = howmany(length, fs->fs_fsize); 6480 goto out; 6481 } 6482 totblks = blkstofrags(fs, numblks); 6483 numblks -= UFS_NDADDR; 6484 /* 6485 * Count all single, then double, then triple indirects required. 6486 * Subtracting one indirects worth of blocks for each pass 6487 * acknowledges one of each pointed to by the inode. 6488 */ 6489 for (;;) { 6490 totblks += blkstofrags(fs, howmany(numblks, NINDIR(fs))); 6491 numblks -= NINDIR(fs); 6492 if (numblks <= 0) 6493 break; 6494 numblks = howmany(numblks, NINDIR(fs)); 6495 } 6496 out: 6497 totblks = fsbtodb(fs, totblks); 6498 /* 6499 * Handle sparse files. We can't reclaim more blocks than the inode 6500 * references. We will correct it later in handle_complete_freeblks() 6501 * when we know the real count. 6502 */ 6503 if (totblks > datablocks) 6504 return (0); 6505 return (datablocks - totblks); 6506 } 6507 6508 /* 6509 * Handle freeblocks for journaled softupdate filesystems. 6510 * 6511 * Contrary to normal softupdates, we must preserve the block pointers in 6512 * indirects until their subordinates are free. This is to avoid journaling 6513 * every block that is freed which may consume more space than the journal 6514 * itself. The recovery program will see the free block journals at the 6515 * base of the truncated area and traverse them to reclaim space. The 6516 * pointers in the inode may be cleared immediately after the journal 6517 * records are written because each direct and indirect pointer in the 6518 * inode is recorded in a journal. This permits full truncation to proceed 6519 * asynchronously. The write order is journal -> inode -> cgs -> indirects. 6520 * 6521 * The algorithm is as follows: 6522 * 1) Traverse the in-memory state and create journal entries to release 6523 * the relevant blocks and full indirect trees. 6524 * 2) Traverse the indirect block chain adding partial truncation freework 6525 * records to indirects in the path to lastlbn. The freework will 6526 * prevent new allocation dependencies from being satisfied in this 6527 * indirect until the truncation completes. 6528 * 3) Read and lock the inode block, performing an update with the new size 6529 * and pointers. This prevents truncated data from becoming valid on 6530 * disk through step 4. 6531 * 4) Reap unsatisfied dependencies that are beyond the truncated area, 6532 * eliminate journal work for those records that do not require it. 6533 * 5) Schedule the journal records to be written followed by the inode block. 6534 * 6) Allocate any necessary frags for the end of file. 6535 * 7) Zero any partially truncated blocks. 6536 * 6537 * From this truncation proceeds asynchronously using the freework and 6538 * indir_trunc machinery. The file will not be extended again into a 6539 * partially truncated indirect block until all work is completed but 6540 * the normal dependency mechanism ensures that it is rolled back/forward 6541 * as appropriate. Further truncation may occur without delay and is 6542 * serialized in indir_trunc(). 6543 */ 6544 void 6545 softdep_journal_freeblocks(ip, cred, length, flags) 6546 struct inode *ip; /* The inode whose length is to be reduced */ 6547 struct ucred *cred; 6548 off_t length; /* The new length for the file */ 6549 int flags; /* IO_EXT and/or IO_NORMAL */ 6550 { 6551 struct freeblks *freeblks, *fbn; 6552 struct worklist *wk, *wkn; 6553 struct inodedep *inodedep; 6554 struct jblkdep *jblkdep; 6555 struct allocdirect *adp, *adpn; 6556 struct ufsmount *ump; 6557 struct fs *fs; 6558 struct buf *bp; 6559 struct vnode *vp; 6560 struct mount *mp; 6561 ufs2_daddr_t extblocks, datablocks; 6562 ufs_lbn_t tmpval, lbn, lastlbn; 6563 int frags, lastoff, iboff, allocblock, needj, error, i; 6564 6565 ump = ITOUMP(ip); 6566 mp = UFSTOVFS(ump); 6567 fs = ump->um_fs; 6568 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 6569 ("softdep_journal_freeblocks called on non-softdep filesystem")); 6570 vp = ITOV(ip); 6571 needj = 1; 6572 iboff = -1; 6573 allocblock = 0; 6574 extblocks = 0; 6575 datablocks = 0; 6576 frags = 0; 6577 freeblks = newfreeblks(mp, ip); 6578 ACQUIRE_LOCK(ump); 6579 /* 6580 * If we're truncating a removed file that will never be written 6581 * we don't need to journal the block frees. The canceled journals 6582 * for the allocations will suffice. 6583 */ 6584 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 6585 if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED && 6586 length == 0) 6587 needj = 0; 6588 CTR3(KTR_SUJ, "softdep_journal_freeblks: ip %d length %ld needj %d", 6589 ip->i_number, length, needj); 6590 FREE_LOCK(ump); 6591 /* 6592 * Calculate the lbn that we are truncating to. This results in -1 6593 * if we're truncating the 0 bytes. So it is the last lbn we want 6594 * to keep, not the first lbn we want to truncate. 6595 */ 6596 lastlbn = lblkno(fs, length + fs->fs_bsize - 1) - 1; 6597 lastoff = blkoff(fs, length); 6598 /* 6599 * Compute frags we are keeping in lastlbn. 0 means all. 6600 */ 6601 if (lastlbn >= 0 && lastlbn < UFS_NDADDR) { 6602 frags = fragroundup(fs, lastoff); 6603 /* adp offset of last valid allocdirect. */ 6604 iboff = lastlbn; 6605 } else if (lastlbn > 0) 6606 iboff = UFS_NDADDR; 6607 if (fs->fs_magic == FS_UFS2_MAGIC) 6608 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 6609 /* 6610 * Handle normal data blocks and indirects. This section saves 6611 * values used after the inode update to complete frag and indirect 6612 * truncation. 6613 */ 6614 if ((flags & IO_NORMAL) != 0) { 6615 /* 6616 * Handle truncation of whole direct and indirect blocks. 6617 */ 6618 for (i = iboff + 1; i < UFS_NDADDR; i++) 6619 setup_freedirect(freeblks, ip, i, needj); 6620 for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR; 6621 i < UFS_NIADDR; 6622 i++, lbn += tmpval, tmpval *= NINDIR(fs)) { 6623 /* Release a whole indirect tree. */ 6624 if (lbn > lastlbn) { 6625 setup_freeindir(freeblks, ip, i, -lbn -i, 6626 needj); 6627 continue; 6628 } 6629 iboff = i + UFS_NDADDR; 6630 /* 6631 * Traverse partially truncated indirect tree. 6632 */ 6633 if (lbn <= lastlbn && lbn + tmpval - 1 > lastlbn) 6634 setup_trunc_indir(freeblks, ip, -lbn - i, 6635 lastlbn, DIP(ip, i_ib[i])); 6636 } 6637 /* 6638 * Handle partial truncation to a frag boundary. 6639 */ 6640 if (frags) { 6641 ufs2_daddr_t blkno; 6642 long oldfrags; 6643 6644 oldfrags = blksize(fs, ip, lastlbn); 6645 blkno = DIP(ip, i_db[lastlbn]); 6646 if (blkno && oldfrags != frags) { 6647 oldfrags -= frags; 6648 oldfrags = numfrags(fs, oldfrags); 6649 blkno += numfrags(fs, frags); 6650 newfreework(ump, freeblks, NULL, lastlbn, 6651 blkno, oldfrags, 0, needj); 6652 if (needj) 6653 adjust_newfreework(freeblks, 6654 numfrags(fs, frags)); 6655 } else if (blkno == 0) 6656 allocblock = 1; 6657 } 6658 /* 6659 * Add a journal record for partial truncate if we are 6660 * handling indirect blocks. Non-indirects need no extra 6661 * journaling. 6662 */ 6663 if (length != 0 && lastlbn >= UFS_NDADDR) { 6664 ip->i_flag |= IN_TRUNCATED; 6665 newjtrunc(freeblks, length, 0); 6666 } 6667 ip->i_size = length; 6668 DIP_SET(ip, i_size, ip->i_size); 6669 datablocks = DIP(ip, i_blocks) - extblocks; 6670 if (length != 0) 6671 datablocks = blkcount(fs, datablocks, length); 6672 freeblks->fb_len = length; 6673 } 6674 if ((flags & IO_EXT) != 0) { 6675 for (i = 0; i < UFS_NXADDR; i++) 6676 setup_freeext(freeblks, ip, i, needj); 6677 ip->i_din2->di_extsize = 0; 6678 datablocks += extblocks; 6679 } 6680 #ifdef QUOTA 6681 /* Reference the quotas in case the block count is wrong in the end. */ 6682 quotaref(vp, freeblks->fb_quota); 6683 (void) chkdq(ip, -datablocks, NOCRED, FORCE); 6684 #endif 6685 freeblks->fb_chkcnt = -datablocks; 6686 UFS_LOCK(ump); 6687 fs->fs_pendingblocks += datablocks; 6688 UFS_UNLOCK(ump); 6689 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks); 6690 /* 6691 * Handle truncation of incomplete alloc direct dependencies. We 6692 * hold the inode block locked to prevent incomplete dependencies 6693 * from reaching the disk while we are eliminating those that 6694 * have been truncated. This is a partially inlined ffs_update(). 6695 */ 6696 ufs_itimes(vp); 6697 ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED); 6698 error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 6699 (int)fs->fs_bsize, cred, &bp); 6700 if (error) { 6701 softdep_error("softdep_journal_freeblocks", error); 6702 return; 6703 } 6704 if (bp->b_bufsize == fs->fs_bsize) 6705 bp->b_flags |= B_CLUSTEROK; 6706 softdep_update_inodeblock(ip, bp, 0); 6707 if (ump->um_fstype == UFS1) { 6708 *((struct ufs1_dinode *)bp->b_data + 6709 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1; 6710 } else { 6711 ffs_update_dinode_ckhash(fs, ip->i_din2); 6712 *((struct ufs2_dinode *)bp->b_data + 6713 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2; 6714 } 6715 ACQUIRE_LOCK(ump); 6716 (void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 6717 if ((inodedep->id_state & IOSTARTED) != 0) 6718 panic("softdep_setup_freeblocks: inode busy"); 6719 /* 6720 * Add the freeblks structure to the list of operations that 6721 * must await the zero'ed inode being written to disk. If we 6722 * still have a bitmap dependency (needj), then the inode 6723 * has never been written to disk, so we can process the 6724 * freeblks below once we have deleted the dependencies. 6725 */ 6726 if (needj) 6727 WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list); 6728 else 6729 freeblks->fb_state |= COMPLETE; 6730 if ((flags & IO_NORMAL) != 0) { 6731 TAILQ_FOREACH_SAFE(adp, &inodedep->id_inoupdt, ad_next, adpn) { 6732 if (adp->ad_offset > iboff) 6733 cancel_allocdirect(&inodedep->id_inoupdt, adp, 6734 freeblks); 6735 /* 6736 * Truncate the allocdirect. We could eliminate 6737 * or modify journal records as well. 6738 */ 6739 else if (adp->ad_offset == iboff && frags) 6740 adp->ad_newsize = frags; 6741 } 6742 } 6743 if ((flags & IO_EXT) != 0) 6744 while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 6745 cancel_allocdirect(&inodedep->id_extupdt, adp, 6746 freeblks); 6747 /* 6748 * Scan the bufwait list for newblock dependencies that will never 6749 * make it to disk. 6750 */ 6751 LIST_FOREACH_SAFE(wk, &inodedep->id_bufwait, wk_list, wkn) { 6752 if (wk->wk_type != D_ALLOCDIRECT) 6753 continue; 6754 adp = WK_ALLOCDIRECT(wk); 6755 if (((flags & IO_NORMAL) != 0 && (adp->ad_offset > iboff)) || 6756 ((flags & IO_EXT) != 0 && (adp->ad_state & EXTDATA))) { 6757 cancel_jfreeblk(freeblks, adp->ad_newblkno); 6758 cancel_newblk(WK_NEWBLK(wk), NULL, &freeblks->fb_jwork); 6759 WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk); 6760 } 6761 } 6762 /* 6763 * Add journal work. 6764 */ 6765 LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) 6766 add_to_journal(&jblkdep->jb_list); 6767 FREE_LOCK(ump); 6768 bdwrite(bp); 6769 /* 6770 * Truncate dependency structures beyond length. 6771 */ 6772 trunc_dependencies(ip, freeblks, lastlbn, frags, flags); 6773 /* 6774 * This is only set when we need to allocate a fragment because 6775 * none existed at the end of a frag-sized file. It handles only 6776 * allocating a new, zero filled block. 6777 */ 6778 if (allocblock) { 6779 ip->i_size = length - lastoff; 6780 DIP_SET(ip, i_size, ip->i_size); 6781 error = UFS_BALLOC(vp, length - 1, 1, cred, BA_CLRBUF, &bp); 6782 if (error != 0) { 6783 softdep_error("softdep_journal_freeblks", error); 6784 return; 6785 } 6786 ip->i_size = length; 6787 DIP_SET(ip, i_size, length); 6788 ip->i_flag |= IN_CHANGE | IN_UPDATE; 6789 allocbuf(bp, frags); 6790 ffs_update(vp, 0); 6791 bawrite(bp); 6792 } else if (lastoff != 0 && vp->v_type != VDIR) { 6793 int size; 6794 6795 /* 6796 * Zero the end of a truncated frag or block. 6797 */ 6798 size = sblksize(fs, length, lastlbn); 6799 error = bread(vp, lastlbn, size, cred, &bp); 6800 if (error) { 6801 softdep_error("softdep_journal_freeblks", error); 6802 return; 6803 } 6804 bzero((char *)bp->b_data + lastoff, size - lastoff); 6805 bawrite(bp); 6806 6807 } 6808 ACQUIRE_LOCK(ump); 6809 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 6810 TAILQ_INSERT_TAIL(&inodedep->id_freeblklst, freeblks, fb_next); 6811 freeblks->fb_state |= DEPCOMPLETE | ONDEPLIST; 6812 /* 6813 * We zero earlier truncations so they don't erroneously 6814 * update i_blocks. 6815 */ 6816 if (freeblks->fb_len == 0 && (flags & IO_NORMAL) != 0) 6817 TAILQ_FOREACH(fbn, &inodedep->id_freeblklst, fb_next) 6818 fbn->fb_len = 0; 6819 if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE && 6820 LIST_EMPTY(&freeblks->fb_jblkdephd)) 6821 freeblks->fb_state |= INPROGRESS; 6822 else 6823 freeblks = NULL; 6824 FREE_LOCK(ump); 6825 if (freeblks) 6826 handle_workitem_freeblocks(freeblks, 0); 6827 trunc_pages(ip, length, extblocks, flags); 6828 6829 } 6830 6831 /* 6832 * Flush a JOP_SYNC to the journal. 6833 */ 6834 void 6835 softdep_journal_fsync(ip) 6836 struct inode *ip; 6837 { 6838 struct jfsync *jfsync; 6839 struct ufsmount *ump; 6840 6841 ump = ITOUMP(ip); 6842 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 6843 ("softdep_journal_fsync called on non-softdep filesystem")); 6844 if ((ip->i_flag & IN_TRUNCATED) == 0) 6845 return; 6846 ip->i_flag &= ~IN_TRUNCATED; 6847 jfsync = malloc(sizeof(*jfsync), M_JFSYNC, M_SOFTDEP_FLAGS | M_ZERO); 6848 workitem_alloc(&jfsync->jfs_list, D_JFSYNC, UFSTOVFS(ump)); 6849 jfsync->jfs_size = ip->i_size; 6850 jfsync->jfs_ino = ip->i_number; 6851 ACQUIRE_LOCK(ump); 6852 add_to_journal(&jfsync->jfs_list); 6853 jwait(&jfsync->jfs_list, MNT_WAIT); 6854 FREE_LOCK(ump); 6855 } 6856 6857 /* 6858 * Block de-allocation dependencies. 6859 * 6860 * When blocks are de-allocated, the on-disk pointers must be nullified before 6861 * the blocks are made available for use by other files. (The true 6862 * requirement is that old pointers must be nullified before new on-disk 6863 * pointers are set. We chose this slightly more stringent requirement to 6864 * reduce complexity.) Our implementation handles this dependency by updating 6865 * the inode (or indirect block) appropriately but delaying the actual block 6866 * de-allocation (i.e., freemap and free space count manipulation) until 6867 * after the updated versions reach stable storage. After the disk is 6868 * updated, the blocks can be safely de-allocated whenever it is convenient. 6869 * This implementation handles only the common case of reducing a file's 6870 * length to zero. Other cases are handled by the conventional synchronous 6871 * write approach. 6872 * 6873 * The ffs implementation with which we worked double-checks 6874 * the state of the block pointers and file size as it reduces 6875 * a file's length. Some of this code is replicated here in our 6876 * soft updates implementation. The freeblks->fb_chkcnt field is 6877 * used to transfer a part of this information to the procedure 6878 * that eventually de-allocates the blocks. 6879 * 6880 * This routine should be called from the routine that shortens 6881 * a file's length, before the inode's size or block pointers 6882 * are modified. It will save the block pointer information for 6883 * later release and zero the inode so that the calling routine 6884 * can release it. 6885 */ 6886 void 6887 softdep_setup_freeblocks(ip, length, flags) 6888 struct inode *ip; /* The inode whose length is to be reduced */ 6889 off_t length; /* The new length for the file */ 6890 int flags; /* IO_EXT and/or IO_NORMAL */ 6891 { 6892 struct ufs1_dinode *dp1; 6893 struct ufs2_dinode *dp2; 6894 struct freeblks *freeblks; 6895 struct inodedep *inodedep; 6896 struct allocdirect *adp; 6897 struct ufsmount *ump; 6898 struct buf *bp; 6899 struct fs *fs; 6900 ufs2_daddr_t extblocks, datablocks; 6901 struct mount *mp; 6902 int i, delay, error; 6903 ufs_lbn_t tmpval; 6904 ufs_lbn_t lbn; 6905 6906 ump = ITOUMP(ip); 6907 mp = UFSTOVFS(ump); 6908 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 6909 ("softdep_setup_freeblocks called on non-softdep filesystem")); 6910 CTR2(KTR_SUJ, "softdep_setup_freeblks: ip %d length %ld", 6911 ip->i_number, length); 6912 KASSERT(length == 0, ("softdep_setup_freeblocks: non-zero length")); 6913 fs = ump->um_fs; 6914 if ((error = bread(ump->um_devvp, 6915 fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 6916 (int)fs->fs_bsize, NOCRED, &bp)) != 0) { 6917 brelse(bp); 6918 softdep_error("softdep_setup_freeblocks", error); 6919 return; 6920 } 6921 freeblks = newfreeblks(mp, ip); 6922 extblocks = 0; 6923 datablocks = 0; 6924 if (fs->fs_magic == FS_UFS2_MAGIC) 6925 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 6926 if ((flags & IO_NORMAL) != 0) { 6927 for (i = 0; i < UFS_NDADDR; i++) 6928 setup_freedirect(freeblks, ip, i, 0); 6929 for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR; 6930 i < UFS_NIADDR; 6931 i++, lbn += tmpval, tmpval *= NINDIR(fs)) 6932 setup_freeindir(freeblks, ip, i, -lbn -i, 0); 6933 ip->i_size = 0; 6934 DIP_SET(ip, i_size, 0); 6935 datablocks = DIP(ip, i_blocks) - extblocks; 6936 } 6937 if ((flags & IO_EXT) != 0) { 6938 for (i = 0; i < UFS_NXADDR; i++) 6939 setup_freeext(freeblks, ip, i, 0); 6940 ip->i_din2->di_extsize = 0; 6941 datablocks += extblocks; 6942 } 6943 #ifdef QUOTA 6944 /* Reference the quotas in case the block count is wrong in the end. */ 6945 quotaref(ITOV(ip), freeblks->fb_quota); 6946 (void) chkdq(ip, -datablocks, NOCRED, FORCE); 6947 #endif 6948 freeblks->fb_chkcnt = -datablocks; 6949 UFS_LOCK(ump); 6950 fs->fs_pendingblocks += datablocks; 6951 UFS_UNLOCK(ump); 6952 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks); 6953 /* 6954 * Push the zero'ed inode to its disk buffer so that we are free 6955 * to delete its dependencies below. Once the dependencies are gone 6956 * the buffer can be safely released. 6957 */ 6958 if (ump->um_fstype == UFS1) { 6959 dp1 = ((struct ufs1_dinode *)bp->b_data + 6960 ino_to_fsbo(fs, ip->i_number)); 6961 ip->i_din1->di_freelink = dp1->di_freelink; 6962 *dp1 = *ip->i_din1; 6963 } else { 6964 dp2 = ((struct ufs2_dinode *)bp->b_data + 6965 ino_to_fsbo(fs, ip->i_number)); 6966 ip->i_din2->di_freelink = dp2->di_freelink; 6967 ffs_update_dinode_ckhash(fs, ip->i_din2); 6968 *dp2 = *ip->i_din2; 6969 } 6970 /* 6971 * Find and eliminate any inode dependencies. 6972 */ 6973 ACQUIRE_LOCK(ump); 6974 (void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 6975 if ((inodedep->id_state & IOSTARTED) != 0) 6976 panic("softdep_setup_freeblocks: inode busy"); 6977 /* 6978 * Add the freeblks structure to the list of operations that 6979 * must await the zero'ed inode being written to disk. If we 6980 * still have a bitmap dependency (delay == 0), then the inode 6981 * has never been written to disk, so we can process the 6982 * freeblks below once we have deleted the dependencies. 6983 */ 6984 delay = (inodedep->id_state & DEPCOMPLETE); 6985 if (delay) 6986 WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list); 6987 else 6988 freeblks->fb_state |= COMPLETE; 6989 /* 6990 * Because the file length has been truncated to zero, any 6991 * pending block allocation dependency structures associated 6992 * with this inode are obsolete and can simply be de-allocated. 6993 * We must first merge the two dependency lists to get rid of 6994 * any duplicate freefrag structures, then purge the merged list. 6995 * If we still have a bitmap dependency, then the inode has never 6996 * been written to disk, so we can free any fragments without delay. 6997 */ 6998 if (flags & IO_NORMAL) { 6999 merge_inode_lists(&inodedep->id_newinoupdt, 7000 &inodedep->id_inoupdt); 7001 while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL) 7002 cancel_allocdirect(&inodedep->id_inoupdt, adp, 7003 freeblks); 7004 } 7005 if (flags & IO_EXT) { 7006 merge_inode_lists(&inodedep->id_newextupdt, 7007 &inodedep->id_extupdt); 7008 while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 7009 cancel_allocdirect(&inodedep->id_extupdt, adp, 7010 freeblks); 7011 } 7012 FREE_LOCK(ump); 7013 bdwrite(bp); 7014 trunc_dependencies(ip, freeblks, -1, 0, flags); 7015 ACQUIRE_LOCK(ump); 7016 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) 7017 (void) free_inodedep(inodedep); 7018 freeblks->fb_state |= DEPCOMPLETE; 7019 /* 7020 * If the inode with zeroed block pointers is now on disk 7021 * we can start freeing blocks. 7022 */ 7023 if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE) 7024 freeblks->fb_state |= INPROGRESS; 7025 else 7026 freeblks = NULL; 7027 FREE_LOCK(ump); 7028 if (freeblks) 7029 handle_workitem_freeblocks(freeblks, 0); 7030 trunc_pages(ip, length, extblocks, flags); 7031 } 7032 7033 /* 7034 * Eliminate pages from the page cache that back parts of this inode and 7035 * adjust the vnode pager's idea of our size. This prevents stale data 7036 * from hanging around in the page cache. 7037 */ 7038 static void 7039 trunc_pages(ip, length, extblocks, flags) 7040 struct inode *ip; 7041 off_t length; 7042 ufs2_daddr_t extblocks; 7043 int flags; 7044 { 7045 struct vnode *vp; 7046 struct fs *fs; 7047 ufs_lbn_t lbn; 7048 off_t end, extend; 7049 7050 vp = ITOV(ip); 7051 fs = ITOFS(ip); 7052 extend = OFF_TO_IDX(lblktosize(fs, -extblocks)); 7053 if ((flags & IO_EXT) != 0) 7054 vn_pages_remove(vp, extend, 0); 7055 if ((flags & IO_NORMAL) == 0) 7056 return; 7057 BO_LOCK(&vp->v_bufobj); 7058 drain_output(vp); 7059 BO_UNLOCK(&vp->v_bufobj); 7060 /* 7061 * The vnode pager eliminates file pages we eliminate indirects 7062 * below. 7063 */ 7064 vnode_pager_setsize(vp, length); 7065 /* 7066 * Calculate the end based on the last indirect we want to keep. If 7067 * the block extends into indirects we can just use the negative of 7068 * its lbn. Doubles and triples exist at lower numbers so we must 7069 * be careful not to remove those, if they exist. double and triple 7070 * indirect lbns do not overlap with others so it is not important 7071 * to verify how many levels are required. 7072 */ 7073 lbn = lblkno(fs, length); 7074 if (lbn >= UFS_NDADDR) { 7075 /* Calculate the virtual lbn of the triple indirect. */ 7076 lbn = -lbn - (UFS_NIADDR - 1); 7077 end = OFF_TO_IDX(lblktosize(fs, lbn)); 7078 } else 7079 end = extend; 7080 vn_pages_remove(vp, OFF_TO_IDX(OFF_MAX), end); 7081 } 7082 7083 /* 7084 * See if the buf bp is in the range eliminated by truncation. 7085 */ 7086 static int 7087 trunc_check_buf(bp, blkoffp, lastlbn, lastoff, flags) 7088 struct buf *bp; 7089 int *blkoffp; 7090 ufs_lbn_t lastlbn; 7091 int lastoff; 7092 int flags; 7093 { 7094 ufs_lbn_t lbn; 7095 7096 *blkoffp = 0; 7097 /* Only match ext/normal blocks as appropriate. */ 7098 if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) || 7099 ((flags & IO_NORMAL) == 0 && (bp->b_xflags & BX_ALTDATA) == 0)) 7100 return (0); 7101 /* ALTDATA is always a full truncation. */ 7102 if ((bp->b_xflags & BX_ALTDATA) != 0) 7103 return (1); 7104 /* -1 is full truncation. */ 7105 if (lastlbn == -1) 7106 return (1); 7107 /* 7108 * If this is a partial truncate we only want those 7109 * blocks and indirect blocks that cover the range 7110 * we're after. 7111 */ 7112 lbn = bp->b_lblkno; 7113 if (lbn < 0) 7114 lbn = -(lbn + lbn_level(lbn)); 7115 if (lbn < lastlbn) 7116 return (0); 7117 /* Here we only truncate lblkno if it's partial. */ 7118 if (lbn == lastlbn) { 7119 if (lastoff == 0) 7120 return (0); 7121 *blkoffp = lastoff; 7122 } 7123 return (1); 7124 } 7125 7126 /* 7127 * Eliminate any dependencies that exist in memory beyond lblkno:off 7128 */ 7129 static void 7130 trunc_dependencies(ip, freeblks, lastlbn, lastoff, flags) 7131 struct inode *ip; 7132 struct freeblks *freeblks; 7133 ufs_lbn_t lastlbn; 7134 int lastoff; 7135 int flags; 7136 { 7137 struct bufobj *bo; 7138 struct vnode *vp; 7139 struct buf *bp; 7140 int blkoff; 7141 7142 /* 7143 * We must wait for any I/O in progress to finish so that 7144 * all potential buffers on the dirty list will be visible. 7145 * Once they are all there, walk the list and get rid of 7146 * any dependencies. 7147 */ 7148 vp = ITOV(ip); 7149 bo = &vp->v_bufobj; 7150 BO_LOCK(bo); 7151 drain_output(vp); 7152 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) 7153 bp->b_vflags &= ~BV_SCANNED; 7154 restart: 7155 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) { 7156 if (bp->b_vflags & BV_SCANNED) 7157 continue; 7158 if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) { 7159 bp->b_vflags |= BV_SCANNED; 7160 continue; 7161 } 7162 KASSERT(bp->b_bufobj == bo, ("Wrong object in buffer")); 7163 if ((bp = getdirtybuf(bp, BO_LOCKPTR(bo), MNT_WAIT)) == NULL) 7164 goto restart; 7165 BO_UNLOCK(bo); 7166 if (deallocate_dependencies(bp, freeblks, blkoff)) 7167 bqrelse(bp); 7168 else 7169 brelse(bp); 7170 BO_LOCK(bo); 7171 goto restart; 7172 } 7173 /* 7174 * Now do the work of vtruncbuf while also matching indirect blocks. 7175 */ 7176 TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) 7177 bp->b_vflags &= ~BV_SCANNED; 7178 cleanrestart: 7179 TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) { 7180 if (bp->b_vflags & BV_SCANNED) 7181 continue; 7182 if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) { 7183 bp->b_vflags |= BV_SCANNED; 7184 continue; 7185 } 7186 if (BUF_LOCK(bp, 7187 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 7188 BO_LOCKPTR(bo)) == ENOLCK) { 7189 BO_LOCK(bo); 7190 goto cleanrestart; 7191 } 7192 bp->b_vflags |= BV_SCANNED; 7193 bremfree(bp); 7194 if (blkoff != 0) { 7195 allocbuf(bp, blkoff); 7196 bqrelse(bp); 7197 } else { 7198 bp->b_flags |= B_INVAL | B_NOCACHE | B_RELBUF; 7199 brelse(bp); 7200 } 7201 BO_LOCK(bo); 7202 goto cleanrestart; 7203 } 7204 drain_output(vp); 7205 BO_UNLOCK(bo); 7206 } 7207 7208 static int 7209 cancel_pagedep(pagedep, freeblks, blkoff) 7210 struct pagedep *pagedep; 7211 struct freeblks *freeblks; 7212 int blkoff; 7213 { 7214 struct jremref *jremref; 7215 struct jmvref *jmvref; 7216 struct dirrem *dirrem, *tmp; 7217 int i; 7218 7219 /* 7220 * Copy any directory remove dependencies to the list 7221 * to be processed after the freeblks proceeds. If 7222 * directory entry never made it to disk they 7223 * can be dumped directly onto the work list. 7224 */ 7225 LIST_FOREACH_SAFE(dirrem, &pagedep->pd_dirremhd, dm_next, tmp) { 7226 /* Skip this directory removal if it is intended to remain. */ 7227 if (dirrem->dm_offset < blkoff) 7228 continue; 7229 /* 7230 * If there are any dirrems we wait for the journal write 7231 * to complete and then restart the buf scan as the lock 7232 * has been dropped. 7233 */ 7234 while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) { 7235 jwait(&jremref->jr_list, MNT_WAIT); 7236 return (ERESTART); 7237 } 7238 LIST_REMOVE(dirrem, dm_next); 7239 dirrem->dm_dirinum = pagedep->pd_ino; 7240 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &dirrem->dm_list); 7241 } 7242 while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) { 7243 jwait(&jmvref->jm_list, MNT_WAIT); 7244 return (ERESTART); 7245 } 7246 /* 7247 * When we're partially truncating a pagedep we just want to flush 7248 * journal entries and return. There can not be any adds in the 7249 * truncated portion of the directory and newblk must remain if 7250 * part of the block remains. 7251 */ 7252 if (blkoff != 0) { 7253 struct diradd *dap; 7254 7255 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) 7256 if (dap->da_offset > blkoff) 7257 panic("cancel_pagedep: diradd %p off %d > %d", 7258 dap, dap->da_offset, blkoff); 7259 for (i = 0; i < DAHASHSZ; i++) 7260 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) 7261 if (dap->da_offset > blkoff) 7262 panic("cancel_pagedep: diradd %p off %d > %d", 7263 dap, dap->da_offset, blkoff); 7264 return (0); 7265 } 7266 /* 7267 * There should be no directory add dependencies present 7268 * as the directory could not be truncated until all 7269 * children were removed. 7270 */ 7271 KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL, 7272 ("deallocate_dependencies: pendinghd != NULL")); 7273 for (i = 0; i < DAHASHSZ; i++) 7274 KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL, 7275 ("deallocate_dependencies: diraddhd != NULL")); 7276 if ((pagedep->pd_state & NEWBLOCK) != 0) 7277 free_newdirblk(pagedep->pd_newdirblk); 7278 if (free_pagedep(pagedep) == 0) 7279 panic("Failed to free pagedep %p", pagedep); 7280 return (0); 7281 } 7282 7283 /* 7284 * Reclaim any dependency structures from a buffer that is about to 7285 * be reallocated to a new vnode. The buffer must be locked, thus, 7286 * no I/O completion operations can occur while we are manipulating 7287 * its associated dependencies. The mutex is held so that other I/O's 7288 * associated with related dependencies do not occur. 7289 */ 7290 static int 7291 deallocate_dependencies(bp, freeblks, off) 7292 struct buf *bp; 7293 struct freeblks *freeblks; 7294 int off; 7295 { 7296 struct indirdep *indirdep; 7297 struct pagedep *pagedep; 7298 struct worklist *wk, *wkn; 7299 struct ufsmount *ump; 7300 7301 ump = softdep_bp_to_mp(bp); 7302 if (ump == NULL) 7303 goto done; 7304 ACQUIRE_LOCK(ump); 7305 LIST_FOREACH_SAFE(wk, &bp->b_dep, wk_list, wkn) { 7306 switch (wk->wk_type) { 7307 case D_INDIRDEP: 7308 indirdep = WK_INDIRDEP(wk); 7309 if (bp->b_lblkno >= 0 || 7310 bp->b_blkno != indirdep->ir_savebp->b_lblkno) 7311 panic("deallocate_dependencies: not indir"); 7312 cancel_indirdep(indirdep, bp, freeblks); 7313 continue; 7314 7315 case D_PAGEDEP: 7316 pagedep = WK_PAGEDEP(wk); 7317 if (cancel_pagedep(pagedep, freeblks, off)) { 7318 FREE_LOCK(ump); 7319 return (ERESTART); 7320 } 7321 continue; 7322 7323 case D_ALLOCINDIR: 7324 /* 7325 * Simply remove the allocindir, we'll find it via 7326 * the indirdep where we can clear pointers if 7327 * needed. 7328 */ 7329 WORKLIST_REMOVE(wk); 7330 continue; 7331 7332 case D_FREEWORK: 7333 /* 7334 * A truncation is waiting for the zero'd pointers 7335 * to be written. It can be freed when the freeblks 7336 * is journaled. 7337 */ 7338 WORKLIST_REMOVE(wk); 7339 wk->wk_state |= ONDEPLIST; 7340 WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk); 7341 break; 7342 7343 case D_ALLOCDIRECT: 7344 if (off != 0) 7345 continue; 7346 /* FALLTHROUGH */ 7347 default: 7348 panic("deallocate_dependencies: Unexpected type %s", 7349 TYPENAME(wk->wk_type)); 7350 /* NOTREACHED */ 7351 } 7352 } 7353 FREE_LOCK(ump); 7354 done: 7355 /* 7356 * Don't throw away this buf, we were partially truncating and 7357 * some deps may always remain. 7358 */ 7359 if (off) { 7360 allocbuf(bp, off); 7361 bp->b_vflags |= BV_SCANNED; 7362 return (EBUSY); 7363 } 7364 bp->b_flags |= B_INVAL | B_NOCACHE; 7365 7366 return (0); 7367 } 7368 7369 /* 7370 * An allocdirect is being canceled due to a truncate. We must make sure 7371 * the journal entry is released in concert with the blkfree that releases 7372 * the storage. Completed journal entries must not be released until the 7373 * space is no longer pointed to by the inode or in the bitmap. 7374 */ 7375 static void 7376 cancel_allocdirect(adphead, adp, freeblks) 7377 struct allocdirectlst *adphead; 7378 struct allocdirect *adp; 7379 struct freeblks *freeblks; 7380 { 7381 struct freework *freework; 7382 struct newblk *newblk; 7383 struct worklist *wk; 7384 7385 TAILQ_REMOVE(adphead, adp, ad_next); 7386 newblk = (struct newblk *)adp; 7387 freework = NULL; 7388 /* 7389 * Find the correct freework structure. 7390 */ 7391 LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) { 7392 if (wk->wk_type != D_FREEWORK) 7393 continue; 7394 freework = WK_FREEWORK(wk); 7395 if (freework->fw_blkno == newblk->nb_newblkno) 7396 break; 7397 } 7398 if (freework == NULL) 7399 panic("cancel_allocdirect: Freework not found"); 7400 /* 7401 * If a newblk exists at all we still have the journal entry that 7402 * initiated the allocation so we do not need to journal the free. 7403 */ 7404 cancel_jfreeblk(freeblks, freework->fw_blkno); 7405 /* 7406 * If the journal hasn't been written the jnewblk must be passed 7407 * to the call to ffs_blkfree that reclaims the space. We accomplish 7408 * this by linking the journal dependency into the freework to be 7409 * freed when freework_freeblock() is called. If the journal has 7410 * been written we can simply reclaim the journal space when the 7411 * freeblks work is complete. 7412 */ 7413 freework->fw_jnewblk = cancel_newblk(newblk, &freework->fw_list, 7414 &freeblks->fb_jwork); 7415 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list); 7416 } 7417 7418 7419 /* 7420 * Cancel a new block allocation. May be an indirect or direct block. We 7421 * remove it from various lists and return any journal record that needs to 7422 * be resolved by the caller. 7423 * 7424 * A special consideration is made for indirects which were never pointed 7425 * at on disk and will never be found once this block is released. 7426 */ 7427 static struct jnewblk * 7428 cancel_newblk(newblk, wk, wkhd) 7429 struct newblk *newblk; 7430 struct worklist *wk; 7431 struct workhead *wkhd; 7432 { 7433 struct jnewblk *jnewblk; 7434 7435 CTR1(KTR_SUJ, "cancel_newblk: blkno %jd", newblk->nb_newblkno); 7436 7437 newblk->nb_state |= GOINGAWAY; 7438 /* 7439 * Previously we traversed the completedhd on each indirdep 7440 * attached to this newblk to cancel them and gather journal 7441 * work. Since we need only the oldest journal segment and 7442 * the lowest point on the tree will always have the oldest 7443 * journal segment we are free to release the segments 7444 * of any subordinates and may leave the indirdep list to 7445 * indirdep_complete() when this newblk is freed. 7446 */ 7447 if (newblk->nb_state & ONDEPLIST) { 7448 newblk->nb_state &= ~ONDEPLIST; 7449 LIST_REMOVE(newblk, nb_deps); 7450 } 7451 if (newblk->nb_state & ONWORKLIST) 7452 WORKLIST_REMOVE(&newblk->nb_list); 7453 /* 7454 * If the journal entry hasn't been written we save a pointer to 7455 * the dependency that frees it until it is written or the 7456 * superseding operation completes. 7457 */ 7458 jnewblk = newblk->nb_jnewblk; 7459 if (jnewblk != NULL && wk != NULL) { 7460 newblk->nb_jnewblk = NULL; 7461 jnewblk->jn_dep = wk; 7462 } 7463 if (!LIST_EMPTY(&newblk->nb_jwork)) 7464 jwork_move(wkhd, &newblk->nb_jwork); 7465 /* 7466 * When truncating we must free the newdirblk early to remove 7467 * the pagedep from the hash before returning. 7468 */ 7469 if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL) 7470 free_newdirblk(WK_NEWDIRBLK(wk)); 7471 if (!LIST_EMPTY(&newblk->nb_newdirblk)) 7472 panic("cancel_newblk: extra newdirblk"); 7473 7474 return (jnewblk); 7475 } 7476 7477 /* 7478 * Schedule the freefrag associated with a newblk to be released once 7479 * the pointers are written and the previous block is no longer needed. 7480 */ 7481 static void 7482 newblk_freefrag(newblk) 7483 struct newblk *newblk; 7484 { 7485 struct freefrag *freefrag; 7486 7487 if (newblk->nb_freefrag == NULL) 7488 return; 7489 freefrag = newblk->nb_freefrag; 7490 newblk->nb_freefrag = NULL; 7491 freefrag->ff_state |= COMPLETE; 7492 if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE) 7493 add_to_worklist(&freefrag->ff_list, 0); 7494 } 7495 7496 /* 7497 * Free a newblk. Generate a new freefrag work request if appropriate. 7498 * This must be called after the inode pointer and any direct block pointers 7499 * are valid or fully removed via truncate or frag extension. 7500 */ 7501 static void 7502 free_newblk(newblk) 7503 struct newblk *newblk; 7504 { 7505 struct indirdep *indirdep; 7506 struct worklist *wk; 7507 7508 KASSERT(newblk->nb_jnewblk == NULL, 7509 ("free_newblk: jnewblk %p still attached", newblk->nb_jnewblk)); 7510 KASSERT(newblk->nb_list.wk_type != D_NEWBLK, 7511 ("free_newblk: unclaimed newblk")); 7512 LOCK_OWNED(VFSTOUFS(newblk->nb_list.wk_mp)); 7513 newblk_freefrag(newblk); 7514 if (newblk->nb_state & ONDEPLIST) 7515 LIST_REMOVE(newblk, nb_deps); 7516 if (newblk->nb_state & ONWORKLIST) 7517 WORKLIST_REMOVE(&newblk->nb_list); 7518 LIST_REMOVE(newblk, nb_hash); 7519 if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL) 7520 free_newdirblk(WK_NEWDIRBLK(wk)); 7521 if (!LIST_EMPTY(&newblk->nb_newdirblk)) 7522 panic("free_newblk: extra newdirblk"); 7523 while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL) 7524 indirdep_complete(indirdep); 7525 handle_jwork(&newblk->nb_jwork); 7526 WORKITEM_FREE(newblk, D_NEWBLK); 7527 } 7528 7529 /* 7530 * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep. 7531 */ 7532 static void 7533 free_newdirblk(newdirblk) 7534 struct newdirblk *newdirblk; 7535 { 7536 struct pagedep *pagedep; 7537 struct diradd *dap; 7538 struct worklist *wk; 7539 7540 LOCK_OWNED(VFSTOUFS(newdirblk->db_list.wk_mp)); 7541 WORKLIST_REMOVE(&newdirblk->db_list); 7542 /* 7543 * If the pagedep is still linked onto the directory buffer 7544 * dependency chain, then some of the entries on the 7545 * pd_pendinghd list may not be committed to disk yet. In 7546 * this case, we will simply clear the NEWBLOCK flag and 7547 * let the pd_pendinghd list be processed when the pagedep 7548 * is next written. If the pagedep is no longer on the buffer 7549 * dependency chain, then all the entries on the pd_pending 7550 * list are committed to disk and we can free them here. 7551 */ 7552 pagedep = newdirblk->db_pagedep; 7553 pagedep->pd_state &= ~NEWBLOCK; 7554 if ((pagedep->pd_state & ONWORKLIST) == 0) { 7555 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 7556 free_diradd(dap, NULL); 7557 /* 7558 * If no dependencies remain, the pagedep will be freed. 7559 */ 7560 free_pagedep(pagedep); 7561 } 7562 /* Should only ever be one item in the list. */ 7563 while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) { 7564 WORKLIST_REMOVE(wk); 7565 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); 7566 } 7567 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 7568 } 7569 7570 /* 7571 * Prepare an inode to be freed. The actual free operation is not 7572 * done until the zero'ed inode has been written to disk. 7573 */ 7574 void 7575 softdep_freefile(pvp, ino, mode) 7576 struct vnode *pvp; 7577 ino_t ino; 7578 int mode; 7579 { 7580 struct inode *ip = VTOI(pvp); 7581 struct inodedep *inodedep; 7582 struct freefile *freefile; 7583 struct freeblks *freeblks; 7584 struct ufsmount *ump; 7585 7586 ump = ITOUMP(ip); 7587 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 7588 ("softdep_freefile called on non-softdep filesystem")); 7589 /* 7590 * This sets up the inode de-allocation dependency. 7591 */ 7592 freefile = malloc(sizeof(struct freefile), 7593 M_FREEFILE, M_SOFTDEP_FLAGS); 7594 workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount); 7595 freefile->fx_mode = mode; 7596 freefile->fx_oldinum = ino; 7597 freefile->fx_devvp = ump->um_devvp; 7598 LIST_INIT(&freefile->fx_jwork); 7599 UFS_LOCK(ump); 7600 ump->um_fs->fs_pendinginodes += 1; 7601 UFS_UNLOCK(ump); 7602 7603 /* 7604 * If the inodedep does not exist, then the zero'ed inode has 7605 * been written to disk. If the allocated inode has never been 7606 * written to disk, then the on-disk inode is zero'ed. In either 7607 * case we can free the file immediately. If the journal was 7608 * canceled before being written the inode will never make it to 7609 * disk and we must send the canceled journal entrys to 7610 * ffs_freefile() to be cleared in conjunction with the bitmap. 7611 * Any blocks waiting on the inode to write can be safely freed 7612 * here as it will never been written. 7613 */ 7614 ACQUIRE_LOCK(ump); 7615 inodedep_lookup(pvp->v_mount, ino, 0, &inodedep); 7616 if (inodedep) { 7617 /* 7618 * Clear out freeblks that no longer need to reference 7619 * this inode. 7620 */ 7621 while ((freeblks = 7622 TAILQ_FIRST(&inodedep->id_freeblklst)) != NULL) { 7623 TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, 7624 fb_next); 7625 freeblks->fb_state &= ~ONDEPLIST; 7626 } 7627 /* 7628 * Remove this inode from the unlinked list. 7629 */ 7630 if (inodedep->id_state & UNLINKED) { 7631 /* 7632 * Save the journal work to be freed with the bitmap 7633 * before we clear UNLINKED. Otherwise it can be lost 7634 * if the inode block is written. 7635 */ 7636 handle_bufwait(inodedep, &freefile->fx_jwork); 7637 clear_unlinked_inodedep(inodedep); 7638 /* 7639 * Re-acquire inodedep as we've dropped the 7640 * per-filesystem lock in clear_unlinked_inodedep(). 7641 */ 7642 inodedep_lookup(pvp->v_mount, ino, 0, &inodedep); 7643 } 7644 } 7645 if (inodedep == NULL || check_inode_unwritten(inodedep)) { 7646 FREE_LOCK(ump); 7647 handle_workitem_freefile(freefile); 7648 return; 7649 } 7650 if ((inodedep->id_state & DEPCOMPLETE) == 0) 7651 inodedep->id_state |= GOINGAWAY; 7652 WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list); 7653 FREE_LOCK(ump); 7654 if (ip->i_number == ino) 7655 ip->i_flag |= IN_MODIFIED; 7656 } 7657 7658 /* 7659 * Check to see if an inode has never been written to disk. If 7660 * so free the inodedep and return success, otherwise return failure. 7661 * 7662 * If we still have a bitmap dependency, then the inode has never 7663 * been written to disk. Drop the dependency as it is no longer 7664 * necessary since the inode is being deallocated. We set the 7665 * ALLCOMPLETE flags since the bitmap now properly shows that the 7666 * inode is not allocated. Even if the inode is actively being 7667 * written, it has been rolled back to its zero'ed state, so we 7668 * are ensured that a zero inode is what is on the disk. For short 7669 * lived files, this change will usually result in removing all the 7670 * dependencies from the inode so that it can be freed immediately. 7671 */ 7672 static int 7673 check_inode_unwritten(inodedep) 7674 struct inodedep *inodedep; 7675 { 7676 7677 LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp)); 7678 7679 if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 || 7680 !LIST_EMPTY(&inodedep->id_dirremhd) || 7681 !LIST_EMPTY(&inodedep->id_pendinghd) || 7682 !LIST_EMPTY(&inodedep->id_bufwait) || 7683 !LIST_EMPTY(&inodedep->id_inowait) || 7684 !TAILQ_EMPTY(&inodedep->id_inoreflst) || 7685 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 7686 !TAILQ_EMPTY(&inodedep->id_newinoupdt) || 7687 !TAILQ_EMPTY(&inodedep->id_extupdt) || 7688 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 7689 !TAILQ_EMPTY(&inodedep->id_freeblklst) || 7690 inodedep->id_mkdiradd != NULL || 7691 inodedep->id_nlinkdelta != 0) 7692 return (0); 7693 /* 7694 * Another process might be in initiate_write_inodeblock_ufs[12] 7695 * trying to allocate memory without holding "Softdep Lock". 7696 */ 7697 if ((inodedep->id_state & IOSTARTED) != 0 && 7698 inodedep->id_savedino1 == NULL) 7699 return (0); 7700 7701 if (inodedep->id_state & ONDEPLIST) 7702 LIST_REMOVE(inodedep, id_deps); 7703 inodedep->id_state &= ~ONDEPLIST; 7704 inodedep->id_state |= ALLCOMPLETE; 7705 inodedep->id_bmsafemap = NULL; 7706 if (inodedep->id_state & ONWORKLIST) 7707 WORKLIST_REMOVE(&inodedep->id_list); 7708 if (inodedep->id_savedino1 != NULL) { 7709 free(inodedep->id_savedino1, M_SAVEDINO); 7710 inodedep->id_savedino1 = NULL; 7711 } 7712 if (free_inodedep(inodedep) == 0) 7713 panic("check_inode_unwritten: busy inode"); 7714 return (1); 7715 } 7716 7717 static int 7718 check_inodedep_free(inodedep) 7719 struct inodedep *inodedep; 7720 { 7721 7722 LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp)); 7723 if ((inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE || 7724 !LIST_EMPTY(&inodedep->id_dirremhd) || 7725 !LIST_EMPTY(&inodedep->id_pendinghd) || 7726 !LIST_EMPTY(&inodedep->id_bufwait) || 7727 !LIST_EMPTY(&inodedep->id_inowait) || 7728 !TAILQ_EMPTY(&inodedep->id_inoreflst) || 7729 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 7730 !TAILQ_EMPTY(&inodedep->id_newinoupdt) || 7731 !TAILQ_EMPTY(&inodedep->id_extupdt) || 7732 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 7733 !TAILQ_EMPTY(&inodedep->id_freeblklst) || 7734 inodedep->id_mkdiradd != NULL || 7735 inodedep->id_nlinkdelta != 0 || 7736 inodedep->id_savedino1 != NULL) 7737 return (0); 7738 return (1); 7739 } 7740 7741 /* 7742 * Try to free an inodedep structure. Return 1 if it could be freed. 7743 */ 7744 static int 7745 free_inodedep(inodedep) 7746 struct inodedep *inodedep; 7747 { 7748 7749 LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp)); 7750 if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 || 7751 !check_inodedep_free(inodedep)) 7752 return (0); 7753 if (inodedep->id_state & ONDEPLIST) 7754 LIST_REMOVE(inodedep, id_deps); 7755 LIST_REMOVE(inodedep, id_hash); 7756 WORKITEM_FREE(inodedep, D_INODEDEP); 7757 return (1); 7758 } 7759 7760 /* 7761 * Free the block referenced by a freework structure. The parent freeblks 7762 * structure is released and completed when the final cg bitmap reaches 7763 * the disk. This routine may be freeing a jnewblk which never made it to 7764 * disk in which case we do not have to wait as the operation is undone 7765 * in memory immediately. 7766 */ 7767 static void 7768 freework_freeblock(freework, key) 7769 struct freework *freework; 7770 u_long key; 7771 { 7772 struct freeblks *freeblks; 7773 struct jnewblk *jnewblk; 7774 struct ufsmount *ump; 7775 struct workhead wkhd; 7776 struct fs *fs; 7777 int bsize; 7778 int needj; 7779 7780 ump = VFSTOUFS(freework->fw_list.wk_mp); 7781 LOCK_OWNED(ump); 7782 /* 7783 * Handle partial truncate separately. 7784 */ 7785 if (freework->fw_indir) { 7786 complete_trunc_indir(freework); 7787 return; 7788 } 7789 freeblks = freework->fw_freeblks; 7790 fs = ump->um_fs; 7791 needj = MOUNTEDSUJ(freeblks->fb_list.wk_mp) != 0; 7792 bsize = lfragtosize(fs, freework->fw_frags); 7793 LIST_INIT(&wkhd); 7794 /* 7795 * DEPCOMPLETE is cleared in indirblk_insert() if the block lives 7796 * on the indirblk hashtable and prevents premature freeing. 7797 */ 7798 freework->fw_state |= DEPCOMPLETE; 7799 /* 7800 * SUJ needs to wait for the segment referencing freed indirect 7801 * blocks to expire so that we know the checker will not confuse 7802 * a re-allocated indirect block with its old contents. 7803 */ 7804 if (needj && freework->fw_lbn <= -UFS_NDADDR) 7805 indirblk_insert(freework); 7806 /* 7807 * If we are canceling an existing jnewblk pass it to the free 7808 * routine, otherwise pass the freeblk which will ultimately 7809 * release the freeblks. If we're not journaling, we can just 7810 * free the freeblks immediately. 7811 */ 7812 jnewblk = freework->fw_jnewblk; 7813 if (jnewblk != NULL) { 7814 cancel_jnewblk(jnewblk, &wkhd); 7815 needj = 0; 7816 } else if (needj) { 7817 freework->fw_state |= DELAYEDFREE; 7818 freeblks->fb_cgwait++; 7819 WORKLIST_INSERT(&wkhd, &freework->fw_list); 7820 } 7821 FREE_LOCK(ump); 7822 freeblks_free(ump, freeblks, btodb(bsize)); 7823 CTR4(KTR_SUJ, 7824 "freework_freeblock: ino %jd blkno %jd lbn %jd size %d", 7825 freeblks->fb_inum, freework->fw_blkno, freework->fw_lbn, bsize); 7826 ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno, bsize, 7827 freeblks->fb_inum, freeblks->fb_vtype, &wkhd, key); 7828 ACQUIRE_LOCK(ump); 7829 /* 7830 * The jnewblk will be discarded and the bits in the map never 7831 * made it to disk. We can immediately free the freeblk. 7832 */ 7833 if (needj == 0) 7834 handle_written_freework(freework); 7835 } 7836 7837 /* 7838 * We enqueue freework items that need processing back on the freeblks and 7839 * add the freeblks to the worklist. This makes it easier to find all work 7840 * required to flush a truncation in process_truncates(). 7841 */ 7842 static void 7843 freework_enqueue(freework) 7844 struct freework *freework; 7845 { 7846 struct freeblks *freeblks; 7847 7848 freeblks = freework->fw_freeblks; 7849 if ((freework->fw_state & INPROGRESS) == 0) 7850 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list); 7851 if ((freeblks->fb_state & 7852 (ONWORKLIST | INPROGRESS | ALLCOMPLETE)) == ALLCOMPLETE && 7853 LIST_EMPTY(&freeblks->fb_jblkdephd)) 7854 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 7855 } 7856 7857 /* 7858 * Start, continue, or finish the process of freeing an indirect block tree. 7859 * The free operation may be paused at any point with fw_off containing the 7860 * offset to restart from. This enables us to implement some flow control 7861 * for large truncates which may fan out and generate a huge number of 7862 * dependencies. 7863 */ 7864 static void 7865 handle_workitem_indirblk(freework) 7866 struct freework *freework; 7867 { 7868 struct freeblks *freeblks; 7869 struct ufsmount *ump; 7870 struct fs *fs; 7871 7872 freeblks = freework->fw_freeblks; 7873 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 7874 fs = ump->um_fs; 7875 if (freework->fw_state & DEPCOMPLETE) { 7876 handle_written_freework(freework); 7877 return; 7878 } 7879 if (freework->fw_off == NINDIR(fs)) { 7880 freework_freeblock(freework, SINGLETON_KEY); 7881 return; 7882 } 7883 freework->fw_state |= INPROGRESS; 7884 FREE_LOCK(ump); 7885 indir_trunc(freework, fsbtodb(fs, freework->fw_blkno), 7886 freework->fw_lbn); 7887 ACQUIRE_LOCK(ump); 7888 } 7889 7890 /* 7891 * Called when a freework structure attached to a cg buf is written. The 7892 * ref on either the parent or the freeblks structure is released and 7893 * the freeblks is added back to the worklist if there is more work to do. 7894 */ 7895 static void 7896 handle_written_freework(freework) 7897 struct freework *freework; 7898 { 7899 struct freeblks *freeblks; 7900 struct freework *parent; 7901 7902 freeblks = freework->fw_freeblks; 7903 parent = freework->fw_parent; 7904 if (freework->fw_state & DELAYEDFREE) 7905 freeblks->fb_cgwait--; 7906 freework->fw_state |= COMPLETE; 7907 if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE) 7908 WORKITEM_FREE(freework, D_FREEWORK); 7909 if (parent) { 7910 if (--parent->fw_ref == 0) 7911 freework_enqueue(parent); 7912 return; 7913 } 7914 if (--freeblks->fb_ref != 0) 7915 return; 7916 if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST | INPROGRESS)) == 7917 ALLCOMPLETE && LIST_EMPTY(&freeblks->fb_jblkdephd)) 7918 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 7919 } 7920 7921 /* 7922 * This workitem routine performs the block de-allocation. 7923 * The workitem is added to the pending list after the updated 7924 * inode block has been written to disk. As mentioned above, 7925 * checks regarding the number of blocks de-allocated (compared 7926 * to the number of blocks allocated for the file) are also 7927 * performed in this function. 7928 */ 7929 static int 7930 handle_workitem_freeblocks(freeblks, flags) 7931 struct freeblks *freeblks; 7932 int flags; 7933 { 7934 struct freework *freework; 7935 struct newblk *newblk; 7936 struct allocindir *aip; 7937 struct ufsmount *ump; 7938 struct worklist *wk; 7939 u_long key; 7940 7941 KASSERT(LIST_EMPTY(&freeblks->fb_jblkdephd), 7942 ("handle_workitem_freeblocks: Journal entries not written.")); 7943 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 7944 key = ffs_blkrelease_start(ump, freeblks->fb_devvp, freeblks->fb_inum); 7945 ACQUIRE_LOCK(ump); 7946 while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) { 7947 WORKLIST_REMOVE(wk); 7948 switch (wk->wk_type) { 7949 case D_DIRREM: 7950 wk->wk_state |= COMPLETE; 7951 add_to_worklist(wk, 0); 7952 continue; 7953 7954 case D_ALLOCDIRECT: 7955 free_newblk(WK_NEWBLK(wk)); 7956 continue; 7957 7958 case D_ALLOCINDIR: 7959 aip = WK_ALLOCINDIR(wk); 7960 freework = NULL; 7961 if (aip->ai_state & DELAYEDFREE) { 7962 FREE_LOCK(ump); 7963 freework = newfreework(ump, freeblks, NULL, 7964 aip->ai_lbn, aip->ai_newblkno, 7965 ump->um_fs->fs_frag, 0, 0); 7966 ACQUIRE_LOCK(ump); 7967 } 7968 newblk = WK_NEWBLK(wk); 7969 if (newblk->nb_jnewblk) { 7970 freework->fw_jnewblk = newblk->nb_jnewblk; 7971 newblk->nb_jnewblk->jn_dep = &freework->fw_list; 7972 newblk->nb_jnewblk = NULL; 7973 } 7974 free_newblk(newblk); 7975 continue; 7976 7977 case D_FREEWORK: 7978 freework = WK_FREEWORK(wk); 7979 if (freework->fw_lbn <= -UFS_NDADDR) 7980 handle_workitem_indirblk(freework); 7981 else 7982 freework_freeblock(freework, key); 7983 continue; 7984 default: 7985 panic("handle_workitem_freeblocks: Unknown type %s", 7986 TYPENAME(wk->wk_type)); 7987 } 7988 } 7989 if (freeblks->fb_ref != 0) { 7990 freeblks->fb_state &= ~INPROGRESS; 7991 wake_worklist(&freeblks->fb_list); 7992 freeblks = NULL; 7993 } 7994 FREE_LOCK(ump); 7995 ffs_blkrelease_finish(ump, key); 7996 if (freeblks) 7997 return handle_complete_freeblocks(freeblks, flags); 7998 return (0); 7999 } 8000 8001 /* 8002 * Handle completion of block free via truncate. This allows fs_pending 8003 * to track the actual free block count more closely than if we only updated 8004 * it at the end. We must be careful to handle cases where the block count 8005 * on free was incorrect. 8006 */ 8007 static void 8008 freeblks_free(ump, freeblks, blocks) 8009 struct ufsmount *ump; 8010 struct freeblks *freeblks; 8011 int blocks; 8012 { 8013 struct fs *fs; 8014 ufs2_daddr_t remain; 8015 8016 UFS_LOCK(ump); 8017 remain = -freeblks->fb_chkcnt; 8018 freeblks->fb_chkcnt += blocks; 8019 if (remain > 0) { 8020 if (remain < blocks) 8021 blocks = remain; 8022 fs = ump->um_fs; 8023 fs->fs_pendingblocks -= blocks; 8024 } 8025 UFS_UNLOCK(ump); 8026 } 8027 8028 /* 8029 * Once all of the freework workitems are complete we can retire the 8030 * freeblocks dependency and any journal work awaiting completion. This 8031 * can not be called until all other dependencies are stable on disk. 8032 */ 8033 static int 8034 handle_complete_freeblocks(freeblks, flags) 8035 struct freeblks *freeblks; 8036 int flags; 8037 { 8038 struct inodedep *inodedep; 8039 struct inode *ip; 8040 struct vnode *vp; 8041 struct fs *fs; 8042 struct ufsmount *ump; 8043 ufs2_daddr_t spare; 8044 8045 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 8046 fs = ump->um_fs; 8047 flags = LK_EXCLUSIVE | flags; 8048 spare = freeblks->fb_chkcnt; 8049 8050 /* 8051 * If we did not release the expected number of blocks we may have 8052 * to adjust the inode block count here. Only do so if it wasn't 8053 * a truncation to zero and the modrev still matches. 8054 */ 8055 if (spare && freeblks->fb_len != 0) { 8056 if (ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_inum, 8057 flags, &vp, FFSV_FORCEINSMQ) != 0) 8058 return (EBUSY); 8059 ip = VTOI(vp); 8060 if (DIP(ip, i_modrev) == freeblks->fb_modrev) { 8061 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - spare); 8062 ip->i_flag |= IN_CHANGE; 8063 /* 8064 * We must wait so this happens before the 8065 * journal is reclaimed. 8066 */ 8067 ffs_update(vp, 1); 8068 } 8069 vput(vp); 8070 } 8071 if (spare < 0) { 8072 UFS_LOCK(ump); 8073 fs->fs_pendingblocks += spare; 8074 UFS_UNLOCK(ump); 8075 } 8076 #ifdef QUOTA 8077 /* Handle spare. */ 8078 if (spare) 8079 quotaadj(freeblks->fb_quota, ump, -spare); 8080 quotarele(freeblks->fb_quota); 8081 #endif 8082 ACQUIRE_LOCK(ump); 8083 if (freeblks->fb_state & ONDEPLIST) { 8084 inodedep_lookup(freeblks->fb_list.wk_mp, freeblks->fb_inum, 8085 0, &inodedep); 8086 TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, fb_next); 8087 freeblks->fb_state &= ~ONDEPLIST; 8088 if (TAILQ_EMPTY(&inodedep->id_freeblklst)) 8089 free_inodedep(inodedep); 8090 } 8091 /* 8092 * All of the freeblock deps must be complete prior to this call 8093 * so it's now safe to complete earlier outstanding journal entries. 8094 */ 8095 handle_jwork(&freeblks->fb_jwork); 8096 WORKITEM_FREE(freeblks, D_FREEBLKS); 8097 FREE_LOCK(ump); 8098 return (0); 8099 } 8100 8101 /* 8102 * Release blocks associated with the freeblks and stored in the indirect 8103 * block dbn. If level is greater than SINGLE, the block is an indirect block 8104 * and recursive calls to indirtrunc must be used to cleanse other indirect 8105 * blocks. 8106 * 8107 * This handles partial and complete truncation of blocks. Partial is noted 8108 * with goingaway == 0. In this case the freework is completed after the 8109 * zero'd indirects are written to disk. For full truncation the freework 8110 * is completed after the block is freed. 8111 */ 8112 static void 8113 indir_trunc(freework, dbn, lbn) 8114 struct freework *freework; 8115 ufs2_daddr_t dbn; 8116 ufs_lbn_t lbn; 8117 { 8118 struct freework *nfreework; 8119 struct workhead wkhd; 8120 struct freeblks *freeblks; 8121 struct buf *bp; 8122 struct fs *fs; 8123 struct indirdep *indirdep; 8124 struct mount *mp; 8125 struct ufsmount *ump; 8126 ufs1_daddr_t *bap1; 8127 ufs2_daddr_t nb, nnb, *bap2; 8128 ufs_lbn_t lbnadd, nlbn; 8129 u_long key; 8130 int nblocks, ufs1fmt, freedblocks; 8131 int goingaway, freedeps, needj, level, cnt, i; 8132 8133 freeblks = freework->fw_freeblks; 8134 mp = freeblks->fb_list.wk_mp; 8135 ump = VFSTOUFS(mp); 8136 fs = ump->um_fs; 8137 /* 8138 * Get buffer of block pointers to be freed. There are three cases: 8139 * 8140 * 1) Partial truncate caches the indirdep pointer in the freework 8141 * which provides us a back copy to the save bp which holds the 8142 * pointers we want to clear. When this completes the zero 8143 * pointers are written to the real copy. 8144 * 2) The indirect is being completely truncated, cancel_indirdep() 8145 * eliminated the real copy and placed the indirdep on the saved 8146 * copy. The indirdep and buf are discarded when this completes. 8147 * 3) The indirect was not in memory, we read a copy off of the disk 8148 * using the devvp and drop and invalidate the buffer when we're 8149 * done. 8150 */ 8151 goingaway = 1; 8152 indirdep = NULL; 8153 if (freework->fw_indir != NULL) { 8154 goingaway = 0; 8155 indirdep = freework->fw_indir; 8156 bp = indirdep->ir_savebp; 8157 if (bp == NULL || bp->b_blkno != dbn) 8158 panic("indir_trunc: Bad saved buf %p blkno %jd", 8159 bp, (intmax_t)dbn); 8160 } else if ((bp = incore(&freeblks->fb_devvp->v_bufobj, dbn)) != NULL) { 8161 /* 8162 * The lock prevents the buf dep list from changing and 8163 * indirects on devvp should only ever have one dependency. 8164 */ 8165 indirdep = WK_INDIRDEP(LIST_FIRST(&bp->b_dep)); 8166 if (indirdep == NULL || (indirdep->ir_state & GOINGAWAY) == 0) 8167 panic("indir_trunc: Bad indirdep %p from buf %p", 8168 indirdep, bp); 8169 } else if (bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize, 8170 NOCRED, &bp) != 0) { 8171 brelse(bp); 8172 return; 8173 } 8174 ACQUIRE_LOCK(ump); 8175 /* Protects against a race with complete_trunc_indir(). */ 8176 freework->fw_state &= ~INPROGRESS; 8177 /* 8178 * If we have an indirdep we need to enforce the truncation order 8179 * and discard it when it is complete. 8180 */ 8181 if (indirdep) { 8182 if (freework != TAILQ_FIRST(&indirdep->ir_trunc) && 8183 !TAILQ_EMPTY(&indirdep->ir_trunc)) { 8184 /* 8185 * Add the complete truncate to the list on the 8186 * indirdep to enforce in-order processing. 8187 */ 8188 if (freework->fw_indir == NULL) 8189 TAILQ_INSERT_TAIL(&indirdep->ir_trunc, 8190 freework, fw_next); 8191 FREE_LOCK(ump); 8192 return; 8193 } 8194 /* 8195 * If we're goingaway, free the indirdep. Otherwise it will 8196 * linger until the write completes. 8197 */ 8198 if (goingaway) 8199 free_indirdep(indirdep); 8200 } 8201 FREE_LOCK(ump); 8202 /* Initialize pointers depending on block size. */ 8203 if (ump->um_fstype == UFS1) { 8204 bap1 = (ufs1_daddr_t *)bp->b_data; 8205 nb = bap1[freework->fw_off]; 8206 ufs1fmt = 1; 8207 bap2 = NULL; 8208 } else { 8209 bap2 = (ufs2_daddr_t *)bp->b_data; 8210 nb = bap2[freework->fw_off]; 8211 ufs1fmt = 0; 8212 bap1 = NULL; 8213 } 8214 level = lbn_level(lbn); 8215 needj = MOUNTEDSUJ(UFSTOVFS(ump)) != 0; 8216 lbnadd = lbn_offset(fs, level); 8217 nblocks = btodb(fs->fs_bsize); 8218 nfreework = freework; 8219 freedeps = 0; 8220 cnt = 0; 8221 /* 8222 * Reclaim blocks. Traverses into nested indirect levels and 8223 * arranges for the current level to be freed when subordinates 8224 * are free when journaling. 8225 */ 8226 key = ffs_blkrelease_start(ump, freeblks->fb_devvp, freeblks->fb_inum); 8227 for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) { 8228 if (UFS_CHECK_BLKNO(mp, freeblks->fb_inum, nb, 8229 fs->fs_bsize) != 0) 8230 nb = 0; 8231 if (i != NINDIR(fs) - 1) { 8232 if (ufs1fmt) 8233 nnb = bap1[i+1]; 8234 else 8235 nnb = bap2[i+1]; 8236 } else 8237 nnb = 0; 8238 if (nb == 0) 8239 continue; 8240 cnt++; 8241 if (level != 0) { 8242 nlbn = (lbn + 1) - (i * lbnadd); 8243 if (needj != 0) { 8244 nfreework = newfreework(ump, freeblks, freework, 8245 nlbn, nb, fs->fs_frag, 0, 0); 8246 freedeps++; 8247 } 8248 indir_trunc(nfreework, fsbtodb(fs, nb), nlbn); 8249 } else { 8250 struct freedep *freedep; 8251 8252 /* 8253 * Attempt to aggregate freedep dependencies for 8254 * all blocks being released to the same CG. 8255 */ 8256 LIST_INIT(&wkhd); 8257 if (needj != 0 && 8258 (nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) { 8259 freedep = newfreedep(freework); 8260 WORKLIST_INSERT_UNLOCKED(&wkhd, 8261 &freedep->fd_list); 8262 freedeps++; 8263 } 8264 CTR3(KTR_SUJ, 8265 "indir_trunc: ino %jd blkno %jd size %d", 8266 freeblks->fb_inum, nb, fs->fs_bsize); 8267 ffs_blkfree(ump, fs, freeblks->fb_devvp, nb, 8268 fs->fs_bsize, freeblks->fb_inum, 8269 freeblks->fb_vtype, &wkhd, key); 8270 } 8271 } 8272 ffs_blkrelease_finish(ump, key); 8273 if (goingaway) { 8274 bp->b_flags |= B_INVAL | B_NOCACHE; 8275 brelse(bp); 8276 } 8277 freedblocks = 0; 8278 if (level == 0) 8279 freedblocks = (nblocks * cnt); 8280 if (needj == 0) 8281 freedblocks += nblocks; 8282 freeblks_free(ump, freeblks, freedblocks); 8283 /* 8284 * If we are journaling set up the ref counts and offset so this 8285 * indirect can be completed when its children are free. 8286 */ 8287 if (needj) { 8288 ACQUIRE_LOCK(ump); 8289 freework->fw_off = i; 8290 freework->fw_ref += freedeps; 8291 freework->fw_ref -= NINDIR(fs) + 1; 8292 if (level == 0) 8293 freeblks->fb_cgwait += freedeps; 8294 if (freework->fw_ref == 0) 8295 freework_freeblock(freework, SINGLETON_KEY); 8296 FREE_LOCK(ump); 8297 return; 8298 } 8299 /* 8300 * If we're not journaling we can free the indirect now. 8301 */ 8302 dbn = dbtofsb(fs, dbn); 8303 CTR3(KTR_SUJ, 8304 "indir_trunc 2: ino %jd blkno %jd size %d", 8305 freeblks->fb_inum, dbn, fs->fs_bsize); 8306 ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize, 8307 freeblks->fb_inum, freeblks->fb_vtype, NULL, SINGLETON_KEY); 8308 /* Non SUJ softdep does single-threaded truncations. */ 8309 if (freework->fw_blkno == dbn) { 8310 freework->fw_state |= ALLCOMPLETE; 8311 ACQUIRE_LOCK(ump); 8312 handle_written_freework(freework); 8313 FREE_LOCK(ump); 8314 } 8315 return; 8316 } 8317 8318 /* 8319 * Cancel an allocindir when it is removed via truncation. When bp is not 8320 * NULL the indirect never appeared on disk and is scheduled to be freed 8321 * independently of the indir so we can more easily track journal work. 8322 */ 8323 static void 8324 cancel_allocindir(aip, bp, freeblks, trunc) 8325 struct allocindir *aip; 8326 struct buf *bp; 8327 struct freeblks *freeblks; 8328 int trunc; 8329 { 8330 struct indirdep *indirdep; 8331 struct freefrag *freefrag; 8332 struct newblk *newblk; 8333 8334 newblk = (struct newblk *)aip; 8335 LIST_REMOVE(aip, ai_next); 8336 /* 8337 * We must eliminate the pointer in bp if it must be freed on its 8338 * own due to partial truncate or pending journal work. 8339 */ 8340 if (bp && (trunc || newblk->nb_jnewblk)) { 8341 /* 8342 * Clear the pointer and mark the aip to be freed 8343 * directly if it never existed on disk. 8344 */ 8345 aip->ai_state |= DELAYEDFREE; 8346 indirdep = aip->ai_indirdep; 8347 if (indirdep->ir_state & UFS1FMT) 8348 ((ufs1_daddr_t *)bp->b_data)[aip->ai_offset] = 0; 8349 else 8350 ((ufs2_daddr_t *)bp->b_data)[aip->ai_offset] = 0; 8351 } 8352 /* 8353 * When truncating the previous pointer will be freed via 8354 * savedbp. Eliminate the freefrag which would dup free. 8355 */ 8356 if (trunc && (freefrag = newblk->nb_freefrag) != NULL) { 8357 newblk->nb_freefrag = NULL; 8358 if (freefrag->ff_jdep) 8359 cancel_jfreefrag( 8360 WK_JFREEFRAG(freefrag->ff_jdep)); 8361 jwork_move(&freeblks->fb_jwork, &freefrag->ff_jwork); 8362 WORKITEM_FREE(freefrag, D_FREEFRAG); 8363 } 8364 /* 8365 * If the journal hasn't been written the jnewblk must be passed 8366 * to the call to ffs_blkfree that reclaims the space. We accomplish 8367 * this by leaving the journal dependency on the newblk to be freed 8368 * when a freework is created in handle_workitem_freeblocks(). 8369 */ 8370 cancel_newblk(newblk, NULL, &freeblks->fb_jwork); 8371 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list); 8372 } 8373 8374 /* 8375 * Create the mkdir dependencies for . and .. in a new directory. Link them 8376 * in to a newdirblk so any subsequent additions are tracked properly. The 8377 * caller is responsible for adding the mkdir1 dependency to the journal 8378 * and updating id_mkdiradd. This function returns with the per-filesystem 8379 * lock held. 8380 */ 8381 static struct mkdir * 8382 setup_newdir(dap, newinum, dinum, newdirbp, mkdirp) 8383 struct diradd *dap; 8384 ino_t newinum; 8385 ino_t dinum; 8386 struct buf *newdirbp; 8387 struct mkdir **mkdirp; 8388 { 8389 struct newblk *newblk; 8390 struct pagedep *pagedep; 8391 struct inodedep *inodedep; 8392 struct newdirblk *newdirblk; 8393 struct mkdir *mkdir1, *mkdir2; 8394 struct worklist *wk; 8395 struct jaddref *jaddref; 8396 struct ufsmount *ump; 8397 struct mount *mp; 8398 8399 mp = dap->da_list.wk_mp; 8400 ump = VFSTOUFS(mp); 8401 newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK, 8402 M_SOFTDEP_FLAGS); 8403 workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp); 8404 LIST_INIT(&newdirblk->db_mkdir); 8405 mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS); 8406 workitem_alloc(&mkdir1->md_list, D_MKDIR, mp); 8407 mkdir1->md_state = ATTACHED | MKDIR_BODY; 8408 mkdir1->md_diradd = dap; 8409 mkdir1->md_jaddref = NULL; 8410 mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS); 8411 workitem_alloc(&mkdir2->md_list, D_MKDIR, mp); 8412 mkdir2->md_state = ATTACHED | MKDIR_PARENT; 8413 mkdir2->md_diradd = dap; 8414 mkdir2->md_jaddref = NULL; 8415 if (MOUNTEDSUJ(mp) == 0) { 8416 mkdir1->md_state |= DEPCOMPLETE; 8417 mkdir2->md_state |= DEPCOMPLETE; 8418 } 8419 /* 8420 * Dependency on "." and ".." being written to disk. 8421 */ 8422 mkdir1->md_buf = newdirbp; 8423 ACQUIRE_LOCK(VFSTOUFS(mp)); 8424 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir1, md_mkdirs); 8425 /* 8426 * We must link the pagedep, allocdirect, and newdirblk for 8427 * the initial file page so the pointer to the new directory 8428 * is not written until the directory contents are live and 8429 * any subsequent additions are not marked live until the 8430 * block is reachable via the inode. 8431 */ 8432 if (pagedep_lookup(mp, newdirbp, newinum, 0, 0, &pagedep) == 0) 8433 panic("setup_newdir: lost pagedep"); 8434 LIST_FOREACH(wk, &newdirbp->b_dep, wk_list) 8435 if (wk->wk_type == D_ALLOCDIRECT) 8436 break; 8437 if (wk == NULL) 8438 panic("setup_newdir: lost allocdirect"); 8439 if (pagedep->pd_state & NEWBLOCK) 8440 panic("setup_newdir: NEWBLOCK already set"); 8441 newblk = WK_NEWBLK(wk); 8442 pagedep->pd_state |= NEWBLOCK; 8443 pagedep->pd_newdirblk = newdirblk; 8444 newdirblk->db_pagedep = pagedep; 8445 WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list); 8446 WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list); 8447 /* 8448 * Look up the inodedep for the parent directory so that we 8449 * can link mkdir2 into the pending dotdot jaddref or 8450 * the inode write if there is none. If the inode is 8451 * ALLCOMPLETE and no jaddref is present all dependencies have 8452 * been satisfied and mkdir2 can be freed. 8453 */ 8454 inodedep_lookup(mp, dinum, 0, &inodedep); 8455 if (MOUNTEDSUJ(mp)) { 8456 if (inodedep == NULL) 8457 panic("setup_newdir: Lost parent."); 8458 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 8459 inoreflst); 8460 KASSERT(jaddref != NULL && jaddref->ja_parent == newinum && 8461 (jaddref->ja_state & MKDIR_PARENT), 8462 ("setup_newdir: bad dotdot jaddref %p", jaddref)); 8463 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs); 8464 mkdir2->md_jaddref = jaddref; 8465 jaddref->ja_mkdir = mkdir2; 8466 } else if (inodedep == NULL || 8467 (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 8468 dap->da_state &= ~MKDIR_PARENT; 8469 WORKITEM_FREE(mkdir2, D_MKDIR); 8470 mkdir2 = NULL; 8471 } else { 8472 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs); 8473 WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir2->md_list); 8474 } 8475 *mkdirp = mkdir2; 8476 8477 return (mkdir1); 8478 } 8479 8480 /* 8481 * Directory entry addition dependencies. 8482 * 8483 * When adding a new directory entry, the inode (with its incremented link 8484 * count) must be written to disk before the directory entry's pointer to it. 8485 * Also, if the inode is newly allocated, the corresponding freemap must be 8486 * updated (on disk) before the directory entry's pointer. These requirements 8487 * are met via undo/redo on the directory entry's pointer, which consists 8488 * simply of the inode number. 8489 * 8490 * As directory entries are added and deleted, the free space within a 8491 * directory block can become fragmented. The ufs filesystem will compact 8492 * a fragmented directory block to make space for a new entry. When this 8493 * occurs, the offsets of previously added entries change. Any "diradd" 8494 * dependency structures corresponding to these entries must be updated with 8495 * the new offsets. 8496 */ 8497 8498 /* 8499 * This routine is called after the in-memory inode's link 8500 * count has been incremented, but before the directory entry's 8501 * pointer to the inode has been set. 8502 */ 8503 int 8504 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk) 8505 struct buf *bp; /* buffer containing directory block */ 8506 struct inode *dp; /* inode for directory */ 8507 off_t diroffset; /* offset of new entry in directory */ 8508 ino_t newinum; /* inode referenced by new directory entry */ 8509 struct buf *newdirbp; /* non-NULL => contents of new mkdir */ 8510 int isnewblk; /* entry is in a newly allocated block */ 8511 { 8512 int offset; /* offset of new entry within directory block */ 8513 ufs_lbn_t lbn; /* block in directory containing new entry */ 8514 struct fs *fs; 8515 struct diradd *dap; 8516 struct newblk *newblk; 8517 struct pagedep *pagedep; 8518 struct inodedep *inodedep; 8519 struct newdirblk *newdirblk; 8520 struct mkdir *mkdir1, *mkdir2; 8521 struct jaddref *jaddref; 8522 struct ufsmount *ump; 8523 struct mount *mp; 8524 int isindir; 8525 8526 mp = ITOVFS(dp); 8527 ump = VFSTOUFS(mp); 8528 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 8529 ("softdep_setup_directory_add called on non-softdep filesystem")); 8530 /* 8531 * Whiteouts have no dependencies. 8532 */ 8533 if (newinum == UFS_WINO) { 8534 if (newdirbp != NULL) 8535 bdwrite(newdirbp); 8536 return (0); 8537 } 8538 jaddref = NULL; 8539 mkdir1 = mkdir2 = NULL; 8540 fs = ump->um_fs; 8541 lbn = lblkno(fs, diroffset); 8542 offset = blkoff(fs, diroffset); 8543 dap = malloc(sizeof(struct diradd), M_DIRADD, 8544 M_SOFTDEP_FLAGS|M_ZERO); 8545 workitem_alloc(&dap->da_list, D_DIRADD, mp); 8546 dap->da_offset = offset; 8547 dap->da_newinum = newinum; 8548 dap->da_state = ATTACHED; 8549 LIST_INIT(&dap->da_jwork); 8550 isindir = bp->b_lblkno >= UFS_NDADDR; 8551 newdirblk = NULL; 8552 if (isnewblk && 8553 (isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) { 8554 newdirblk = malloc(sizeof(struct newdirblk), 8555 M_NEWDIRBLK, M_SOFTDEP_FLAGS); 8556 workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp); 8557 LIST_INIT(&newdirblk->db_mkdir); 8558 } 8559 /* 8560 * If we're creating a new directory setup the dependencies and set 8561 * the dap state to wait for them. Otherwise it's COMPLETE and 8562 * we can move on. 8563 */ 8564 if (newdirbp == NULL) { 8565 dap->da_state |= DEPCOMPLETE; 8566 ACQUIRE_LOCK(ump); 8567 } else { 8568 dap->da_state |= MKDIR_BODY | MKDIR_PARENT; 8569 mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp, 8570 &mkdir2); 8571 } 8572 /* 8573 * Link into parent directory pagedep to await its being written. 8574 */ 8575 pagedep_lookup(mp, bp, dp->i_number, lbn, DEPALLOC, &pagedep); 8576 #ifdef INVARIANTS 8577 if (diradd_lookup(pagedep, offset) != NULL) 8578 panic("softdep_setup_directory_add: %p already at off %d\n", 8579 diradd_lookup(pagedep, offset), offset); 8580 #endif 8581 dap->da_pagedep = pagedep; 8582 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap, 8583 da_pdlist); 8584 inodedep_lookup(mp, newinum, DEPALLOC, &inodedep); 8585 /* 8586 * If we're journaling, link the diradd into the jaddref so it 8587 * may be completed after the journal entry is written. Otherwise, 8588 * link the diradd into its inodedep. If the inode is not yet 8589 * written place it on the bufwait list, otherwise do the post-inode 8590 * write processing to put it on the id_pendinghd list. 8591 */ 8592 if (MOUNTEDSUJ(mp)) { 8593 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 8594 inoreflst); 8595 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 8596 ("softdep_setup_directory_add: bad jaddref %p", jaddref)); 8597 jaddref->ja_diroff = diroffset; 8598 jaddref->ja_diradd = dap; 8599 add_to_journal(&jaddref->ja_list); 8600 } else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) 8601 diradd_inode_written(dap, inodedep); 8602 else 8603 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 8604 /* 8605 * Add the journal entries for . and .. links now that the primary 8606 * link is written. 8607 */ 8608 if (mkdir1 != NULL && MOUNTEDSUJ(mp)) { 8609 jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref, 8610 inoreflst, if_deps); 8611 KASSERT(jaddref != NULL && 8612 jaddref->ja_ino == jaddref->ja_parent && 8613 (jaddref->ja_state & MKDIR_BODY), 8614 ("softdep_setup_directory_add: bad dot jaddref %p", 8615 jaddref)); 8616 mkdir1->md_jaddref = jaddref; 8617 jaddref->ja_mkdir = mkdir1; 8618 /* 8619 * It is important that the dotdot journal entry 8620 * is added prior to the dot entry since dot writes 8621 * both the dot and dotdot links. These both must 8622 * be added after the primary link for the journal 8623 * to remain consistent. 8624 */ 8625 add_to_journal(&mkdir2->md_jaddref->ja_list); 8626 add_to_journal(&jaddref->ja_list); 8627 } 8628 /* 8629 * If we are adding a new directory remember this diradd so that if 8630 * we rename it we can keep the dot and dotdot dependencies. If 8631 * we are adding a new name for an inode that has a mkdiradd we 8632 * must be in rename and we have to move the dot and dotdot 8633 * dependencies to this new name. The old name is being orphaned 8634 * soon. 8635 */ 8636 if (mkdir1 != NULL) { 8637 if (inodedep->id_mkdiradd != NULL) 8638 panic("softdep_setup_directory_add: Existing mkdir"); 8639 inodedep->id_mkdiradd = dap; 8640 } else if (inodedep->id_mkdiradd) 8641 merge_diradd(inodedep, dap); 8642 if (newdirblk != NULL) { 8643 /* 8644 * There is nothing to do if we are already tracking 8645 * this block. 8646 */ 8647 if ((pagedep->pd_state & NEWBLOCK) != 0) { 8648 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 8649 FREE_LOCK(ump); 8650 return (0); 8651 } 8652 if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk) 8653 == 0) 8654 panic("softdep_setup_directory_add: lost entry"); 8655 WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list); 8656 pagedep->pd_state |= NEWBLOCK; 8657 pagedep->pd_newdirblk = newdirblk; 8658 newdirblk->db_pagedep = pagedep; 8659 FREE_LOCK(ump); 8660 /* 8661 * If we extended into an indirect signal direnter to sync. 8662 */ 8663 if (isindir) 8664 return (1); 8665 return (0); 8666 } 8667 FREE_LOCK(ump); 8668 return (0); 8669 } 8670 8671 /* 8672 * This procedure is called to change the offset of a directory 8673 * entry when compacting a directory block which must be owned 8674 * exclusively by the caller. Note that the actual entry movement 8675 * must be done in this procedure to ensure that no I/O completions 8676 * occur while the move is in progress. 8677 */ 8678 void 8679 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize) 8680 struct buf *bp; /* Buffer holding directory block. */ 8681 struct inode *dp; /* inode for directory */ 8682 caddr_t base; /* address of dp->i_offset */ 8683 caddr_t oldloc; /* address of old directory location */ 8684 caddr_t newloc; /* address of new directory location */ 8685 int entrysize; /* size of directory entry */ 8686 { 8687 int offset, oldoffset, newoffset; 8688 struct pagedep *pagedep; 8689 struct jmvref *jmvref; 8690 struct diradd *dap; 8691 struct direct *de; 8692 struct mount *mp; 8693 struct ufsmount *ump; 8694 ufs_lbn_t lbn; 8695 int flags; 8696 8697 mp = ITOVFS(dp); 8698 ump = VFSTOUFS(mp); 8699 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 8700 ("softdep_change_directoryentry_offset called on " 8701 "non-softdep filesystem")); 8702 de = (struct direct *)oldloc; 8703 jmvref = NULL; 8704 flags = 0; 8705 /* 8706 * Moves are always journaled as it would be too complex to 8707 * determine if any affected adds or removes are present in the 8708 * journal. 8709 */ 8710 if (MOUNTEDSUJ(mp)) { 8711 flags = DEPALLOC; 8712 jmvref = newjmvref(dp, de->d_ino, 8713 dp->i_offset + (oldloc - base), 8714 dp->i_offset + (newloc - base)); 8715 } 8716 lbn = lblkno(ump->um_fs, dp->i_offset); 8717 offset = blkoff(ump->um_fs, dp->i_offset); 8718 oldoffset = offset + (oldloc - base); 8719 newoffset = offset + (newloc - base); 8720 ACQUIRE_LOCK(ump); 8721 if (pagedep_lookup(mp, bp, dp->i_number, lbn, flags, &pagedep) == 0) 8722 goto done; 8723 dap = diradd_lookup(pagedep, oldoffset); 8724 if (dap) { 8725 dap->da_offset = newoffset; 8726 newoffset = DIRADDHASH(newoffset); 8727 oldoffset = DIRADDHASH(oldoffset); 8728 if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE && 8729 newoffset != oldoffset) { 8730 LIST_REMOVE(dap, da_pdlist); 8731 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset], 8732 dap, da_pdlist); 8733 } 8734 } 8735 done: 8736 if (jmvref) { 8737 jmvref->jm_pagedep = pagedep; 8738 LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps); 8739 add_to_journal(&jmvref->jm_list); 8740 } 8741 bcopy(oldloc, newloc, entrysize); 8742 FREE_LOCK(ump); 8743 } 8744 8745 /* 8746 * Move the mkdir dependencies and journal work from one diradd to another 8747 * when renaming a directory. The new name must depend on the mkdir deps 8748 * completing as the old name did. Directories can only have one valid link 8749 * at a time so one must be canonical. 8750 */ 8751 static void 8752 merge_diradd(inodedep, newdap) 8753 struct inodedep *inodedep; 8754 struct diradd *newdap; 8755 { 8756 struct diradd *olddap; 8757 struct mkdir *mkdir, *nextmd; 8758 struct ufsmount *ump; 8759 short state; 8760 8761 olddap = inodedep->id_mkdiradd; 8762 inodedep->id_mkdiradd = newdap; 8763 if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 8764 newdap->da_state &= ~DEPCOMPLETE; 8765 ump = VFSTOUFS(inodedep->id_list.wk_mp); 8766 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; 8767 mkdir = nextmd) { 8768 nextmd = LIST_NEXT(mkdir, md_mkdirs); 8769 if (mkdir->md_diradd != olddap) 8770 continue; 8771 mkdir->md_diradd = newdap; 8772 state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY); 8773 newdap->da_state |= state; 8774 olddap->da_state &= ~state; 8775 if ((olddap->da_state & 8776 (MKDIR_PARENT | MKDIR_BODY)) == 0) 8777 break; 8778 } 8779 if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) 8780 panic("merge_diradd: unfound ref"); 8781 } 8782 /* 8783 * Any mkdir related journal items are not safe to be freed until 8784 * the new name is stable. 8785 */ 8786 jwork_move(&newdap->da_jwork, &olddap->da_jwork); 8787 olddap->da_state |= DEPCOMPLETE; 8788 complete_diradd(olddap); 8789 } 8790 8791 /* 8792 * Move the diradd to the pending list when all diradd dependencies are 8793 * complete. 8794 */ 8795 static void 8796 complete_diradd(dap) 8797 struct diradd *dap; 8798 { 8799 struct pagedep *pagedep; 8800 8801 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 8802 if (dap->da_state & DIRCHG) 8803 pagedep = dap->da_previous->dm_pagedep; 8804 else 8805 pagedep = dap->da_pagedep; 8806 LIST_REMOVE(dap, da_pdlist); 8807 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 8808 } 8809 } 8810 8811 /* 8812 * Cancel a diradd when a dirrem overlaps with it. We must cancel the journal 8813 * add entries and conditonally journal the remove. 8814 */ 8815 static void 8816 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref) 8817 struct diradd *dap; 8818 struct dirrem *dirrem; 8819 struct jremref *jremref; 8820 struct jremref *dotremref; 8821 struct jremref *dotdotremref; 8822 { 8823 struct inodedep *inodedep; 8824 struct jaddref *jaddref; 8825 struct inoref *inoref; 8826 struct ufsmount *ump; 8827 struct mkdir *mkdir; 8828 8829 /* 8830 * If no remove references were allocated we're on a non-journaled 8831 * filesystem and can skip the cancel step. 8832 */ 8833 if (jremref == NULL) { 8834 free_diradd(dap, NULL); 8835 return; 8836 } 8837 /* 8838 * Cancel the primary name an free it if it does not require 8839 * journaling. 8840 */ 8841 if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum, 8842 0, &inodedep) != 0) { 8843 /* Abort the addref that reference this diradd. */ 8844 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 8845 if (inoref->if_list.wk_type != D_JADDREF) 8846 continue; 8847 jaddref = (struct jaddref *)inoref; 8848 if (jaddref->ja_diradd != dap) 8849 continue; 8850 if (cancel_jaddref(jaddref, inodedep, 8851 &dirrem->dm_jwork) == 0) { 8852 free_jremref(jremref); 8853 jremref = NULL; 8854 } 8855 break; 8856 } 8857 } 8858 /* 8859 * Cancel subordinate names and free them if they do not require 8860 * journaling. 8861 */ 8862 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 8863 ump = VFSTOUFS(dap->da_list.wk_mp); 8864 LIST_FOREACH(mkdir, &ump->softdep_mkdirlisthd, md_mkdirs) { 8865 if (mkdir->md_diradd != dap) 8866 continue; 8867 if ((jaddref = mkdir->md_jaddref) == NULL) 8868 continue; 8869 mkdir->md_jaddref = NULL; 8870 if (mkdir->md_state & MKDIR_PARENT) { 8871 if (cancel_jaddref(jaddref, NULL, 8872 &dirrem->dm_jwork) == 0) { 8873 free_jremref(dotdotremref); 8874 dotdotremref = NULL; 8875 } 8876 } else { 8877 if (cancel_jaddref(jaddref, inodedep, 8878 &dirrem->dm_jwork) == 0) { 8879 free_jremref(dotremref); 8880 dotremref = NULL; 8881 } 8882 } 8883 } 8884 } 8885 8886 if (jremref) 8887 journal_jremref(dirrem, jremref, inodedep); 8888 if (dotremref) 8889 journal_jremref(dirrem, dotremref, inodedep); 8890 if (dotdotremref) 8891 journal_jremref(dirrem, dotdotremref, NULL); 8892 jwork_move(&dirrem->dm_jwork, &dap->da_jwork); 8893 free_diradd(dap, &dirrem->dm_jwork); 8894 } 8895 8896 /* 8897 * Free a diradd dependency structure. 8898 */ 8899 static void 8900 free_diradd(dap, wkhd) 8901 struct diradd *dap; 8902 struct workhead *wkhd; 8903 { 8904 struct dirrem *dirrem; 8905 struct pagedep *pagedep; 8906 struct inodedep *inodedep; 8907 struct mkdir *mkdir, *nextmd; 8908 struct ufsmount *ump; 8909 8910 ump = VFSTOUFS(dap->da_list.wk_mp); 8911 LOCK_OWNED(ump); 8912 LIST_REMOVE(dap, da_pdlist); 8913 if (dap->da_state & ONWORKLIST) 8914 WORKLIST_REMOVE(&dap->da_list); 8915 if ((dap->da_state & DIRCHG) == 0) { 8916 pagedep = dap->da_pagedep; 8917 } else { 8918 dirrem = dap->da_previous; 8919 pagedep = dirrem->dm_pagedep; 8920 dirrem->dm_dirinum = pagedep->pd_ino; 8921 dirrem->dm_state |= COMPLETE; 8922 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 8923 add_to_worklist(&dirrem->dm_list, 0); 8924 } 8925 if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum, 8926 0, &inodedep) != 0) 8927 if (inodedep->id_mkdiradd == dap) 8928 inodedep->id_mkdiradd = NULL; 8929 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 8930 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; 8931 mkdir = nextmd) { 8932 nextmd = LIST_NEXT(mkdir, md_mkdirs); 8933 if (mkdir->md_diradd != dap) 8934 continue; 8935 dap->da_state &= 8936 ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)); 8937 LIST_REMOVE(mkdir, md_mkdirs); 8938 if (mkdir->md_state & ONWORKLIST) 8939 WORKLIST_REMOVE(&mkdir->md_list); 8940 if (mkdir->md_jaddref != NULL) 8941 panic("free_diradd: Unexpected jaddref"); 8942 WORKITEM_FREE(mkdir, D_MKDIR); 8943 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) 8944 break; 8945 } 8946 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) 8947 panic("free_diradd: unfound ref"); 8948 } 8949 if (inodedep) 8950 free_inodedep(inodedep); 8951 /* 8952 * Free any journal segments waiting for the directory write. 8953 */ 8954 handle_jwork(&dap->da_jwork); 8955 WORKITEM_FREE(dap, D_DIRADD); 8956 } 8957 8958 /* 8959 * Directory entry removal dependencies. 8960 * 8961 * When removing a directory entry, the entry's inode pointer must be 8962 * zero'ed on disk before the corresponding inode's link count is decremented 8963 * (possibly freeing the inode for re-use). This dependency is handled by 8964 * updating the directory entry but delaying the inode count reduction until 8965 * after the directory block has been written to disk. After this point, the 8966 * inode count can be decremented whenever it is convenient. 8967 */ 8968 8969 /* 8970 * This routine should be called immediately after removing 8971 * a directory entry. The inode's link count should not be 8972 * decremented by the calling procedure -- the soft updates 8973 * code will do this task when it is safe. 8974 */ 8975 void 8976 softdep_setup_remove(bp, dp, ip, isrmdir) 8977 struct buf *bp; /* buffer containing directory block */ 8978 struct inode *dp; /* inode for the directory being modified */ 8979 struct inode *ip; /* inode for directory entry being removed */ 8980 int isrmdir; /* indicates if doing RMDIR */ 8981 { 8982 struct dirrem *dirrem, *prevdirrem; 8983 struct inodedep *inodedep; 8984 struct ufsmount *ump; 8985 int direct; 8986 8987 ump = ITOUMP(ip); 8988 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 8989 ("softdep_setup_remove called on non-softdep filesystem")); 8990 /* 8991 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK. We want 8992 * newdirrem() to setup the full directory remove which requires 8993 * isrmdir > 1. 8994 */ 8995 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 8996 /* 8997 * Add the dirrem to the inodedep's pending remove list for quick 8998 * discovery later. 8999 */ 9000 if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0) 9001 panic("softdep_setup_remove: Lost inodedep."); 9002 KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked")); 9003 dirrem->dm_state |= ONDEPLIST; 9004 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 9005 9006 /* 9007 * If the COMPLETE flag is clear, then there were no active 9008 * entries and we want to roll back to a zeroed entry until 9009 * the new inode is committed to disk. If the COMPLETE flag is 9010 * set then we have deleted an entry that never made it to 9011 * disk. If the entry we deleted resulted from a name change, 9012 * then the old name still resides on disk. We cannot delete 9013 * its inode (returned to us in prevdirrem) until the zeroed 9014 * directory entry gets to disk. The new inode has never been 9015 * referenced on the disk, so can be deleted immediately. 9016 */ 9017 if ((dirrem->dm_state & COMPLETE) == 0) { 9018 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem, 9019 dm_next); 9020 FREE_LOCK(ump); 9021 } else { 9022 if (prevdirrem != NULL) 9023 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, 9024 prevdirrem, dm_next); 9025 dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino; 9026 direct = LIST_EMPTY(&dirrem->dm_jremrefhd); 9027 FREE_LOCK(ump); 9028 if (direct) 9029 handle_workitem_remove(dirrem, 0); 9030 } 9031 } 9032 9033 /* 9034 * Check for an entry matching 'offset' on both the pd_dirraddhd list and the 9035 * pd_pendinghd list of a pagedep. 9036 */ 9037 static struct diradd * 9038 diradd_lookup(pagedep, offset) 9039 struct pagedep *pagedep; 9040 int offset; 9041 { 9042 struct diradd *dap; 9043 9044 LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist) 9045 if (dap->da_offset == offset) 9046 return (dap); 9047 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) 9048 if (dap->da_offset == offset) 9049 return (dap); 9050 return (NULL); 9051 } 9052 9053 /* 9054 * Search for a .. diradd dependency in a directory that is being removed. 9055 * If the directory was renamed to a new parent we have a diradd rather 9056 * than a mkdir for the .. entry. We need to cancel it now before 9057 * it is found in truncate(). 9058 */ 9059 static struct jremref * 9060 cancel_diradd_dotdot(ip, dirrem, jremref) 9061 struct inode *ip; 9062 struct dirrem *dirrem; 9063 struct jremref *jremref; 9064 { 9065 struct pagedep *pagedep; 9066 struct diradd *dap; 9067 struct worklist *wk; 9068 9069 if (pagedep_lookup(ITOVFS(ip), NULL, ip->i_number, 0, 0, &pagedep) == 0) 9070 return (jremref); 9071 dap = diradd_lookup(pagedep, DOTDOT_OFFSET); 9072 if (dap == NULL) 9073 return (jremref); 9074 cancel_diradd(dap, dirrem, jremref, NULL, NULL); 9075 /* 9076 * Mark any journal work as belonging to the parent so it is freed 9077 * with the .. reference. 9078 */ 9079 LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list) 9080 wk->wk_state |= MKDIR_PARENT; 9081 return (NULL); 9082 } 9083 9084 /* 9085 * Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to 9086 * replace it with a dirrem/diradd pair as a result of re-parenting a 9087 * directory. This ensures that we don't simultaneously have a mkdir and 9088 * a diradd for the same .. entry. 9089 */ 9090 static struct jremref * 9091 cancel_mkdir_dotdot(ip, dirrem, jremref) 9092 struct inode *ip; 9093 struct dirrem *dirrem; 9094 struct jremref *jremref; 9095 { 9096 struct inodedep *inodedep; 9097 struct jaddref *jaddref; 9098 struct ufsmount *ump; 9099 struct mkdir *mkdir; 9100 struct diradd *dap; 9101 struct mount *mp; 9102 9103 mp = ITOVFS(ip); 9104 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 9105 return (jremref); 9106 dap = inodedep->id_mkdiradd; 9107 if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0) 9108 return (jremref); 9109 ump = VFSTOUFS(inodedep->id_list.wk_mp); 9110 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; 9111 mkdir = LIST_NEXT(mkdir, md_mkdirs)) 9112 if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT) 9113 break; 9114 if (mkdir == NULL) 9115 panic("cancel_mkdir_dotdot: Unable to find mkdir\n"); 9116 if ((jaddref = mkdir->md_jaddref) != NULL) { 9117 mkdir->md_jaddref = NULL; 9118 jaddref->ja_state &= ~MKDIR_PARENT; 9119 if (inodedep_lookup(mp, jaddref->ja_ino, 0, &inodedep) == 0) 9120 panic("cancel_mkdir_dotdot: Lost parent inodedep"); 9121 if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) { 9122 journal_jremref(dirrem, jremref, inodedep); 9123 jremref = NULL; 9124 } 9125 } 9126 if (mkdir->md_state & ONWORKLIST) 9127 WORKLIST_REMOVE(&mkdir->md_list); 9128 mkdir->md_state |= ALLCOMPLETE; 9129 complete_mkdir(mkdir); 9130 return (jremref); 9131 } 9132 9133 static void 9134 journal_jremref(dirrem, jremref, inodedep) 9135 struct dirrem *dirrem; 9136 struct jremref *jremref; 9137 struct inodedep *inodedep; 9138 { 9139 9140 if (inodedep == NULL) 9141 if (inodedep_lookup(jremref->jr_list.wk_mp, 9142 jremref->jr_ref.if_ino, 0, &inodedep) == 0) 9143 panic("journal_jremref: Lost inodedep"); 9144 LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps); 9145 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps); 9146 add_to_journal(&jremref->jr_list); 9147 } 9148 9149 static void 9150 dirrem_journal(dirrem, jremref, dotremref, dotdotremref) 9151 struct dirrem *dirrem; 9152 struct jremref *jremref; 9153 struct jremref *dotremref; 9154 struct jremref *dotdotremref; 9155 { 9156 struct inodedep *inodedep; 9157 9158 9159 if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0, 9160 &inodedep) == 0) 9161 panic("dirrem_journal: Lost inodedep"); 9162 journal_jremref(dirrem, jremref, inodedep); 9163 if (dotremref) 9164 journal_jremref(dirrem, dotremref, inodedep); 9165 if (dotdotremref) 9166 journal_jremref(dirrem, dotdotremref, NULL); 9167 } 9168 9169 /* 9170 * Allocate a new dirrem if appropriate and return it along with 9171 * its associated pagedep. Called without a lock, returns with lock. 9172 */ 9173 static struct dirrem * 9174 newdirrem(bp, dp, ip, isrmdir, prevdirremp) 9175 struct buf *bp; /* buffer containing directory block */ 9176 struct inode *dp; /* inode for the directory being modified */ 9177 struct inode *ip; /* inode for directory entry being removed */ 9178 int isrmdir; /* indicates if doing RMDIR */ 9179 struct dirrem **prevdirremp; /* previously referenced inode, if any */ 9180 { 9181 int offset; 9182 ufs_lbn_t lbn; 9183 struct diradd *dap; 9184 struct dirrem *dirrem; 9185 struct pagedep *pagedep; 9186 struct jremref *jremref; 9187 struct jremref *dotremref; 9188 struct jremref *dotdotremref; 9189 struct vnode *dvp; 9190 struct ufsmount *ump; 9191 9192 /* 9193 * Whiteouts have no deletion dependencies. 9194 */ 9195 if (ip == NULL) 9196 panic("newdirrem: whiteout"); 9197 dvp = ITOV(dp); 9198 ump = ITOUMP(dp); 9199 9200 /* 9201 * If the system is over its limit and our filesystem is 9202 * responsible for more than our share of that usage and 9203 * we are not a snapshot, request some inodedep cleanup. 9204 * Limiting the number of dirrem structures will also limit 9205 * the number of freefile and freeblks structures. 9206 */ 9207 ACQUIRE_LOCK(ump); 9208 if (!IS_SNAPSHOT(ip) && softdep_excess_items(ump, D_DIRREM)) 9209 schedule_cleanup(UFSTOVFS(ump)); 9210 else 9211 FREE_LOCK(ump); 9212 dirrem = malloc(sizeof(struct dirrem), M_DIRREM, M_SOFTDEP_FLAGS | 9213 M_ZERO); 9214 workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount); 9215 LIST_INIT(&dirrem->dm_jremrefhd); 9216 LIST_INIT(&dirrem->dm_jwork); 9217 dirrem->dm_state = isrmdir ? RMDIR : 0; 9218 dirrem->dm_oldinum = ip->i_number; 9219 *prevdirremp = NULL; 9220 /* 9221 * Allocate remove reference structures to track journal write 9222 * dependencies. We will always have one for the link and 9223 * when doing directories we will always have one more for dot. 9224 * When renaming a directory we skip the dotdot link change so 9225 * this is not needed. 9226 */ 9227 jremref = dotremref = dotdotremref = NULL; 9228 if (DOINGSUJ(dvp)) { 9229 if (isrmdir) { 9230 jremref = newjremref(dirrem, dp, ip, dp->i_offset, 9231 ip->i_effnlink + 2); 9232 dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET, 9233 ip->i_effnlink + 1); 9234 dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET, 9235 dp->i_effnlink + 1); 9236 dotdotremref->jr_state |= MKDIR_PARENT; 9237 } else 9238 jremref = newjremref(dirrem, dp, ip, dp->i_offset, 9239 ip->i_effnlink + 1); 9240 } 9241 ACQUIRE_LOCK(ump); 9242 lbn = lblkno(ump->um_fs, dp->i_offset); 9243 offset = blkoff(ump->um_fs, dp->i_offset); 9244 pagedep_lookup(UFSTOVFS(ump), bp, dp->i_number, lbn, DEPALLOC, 9245 &pagedep); 9246 dirrem->dm_pagedep = pagedep; 9247 dirrem->dm_offset = offset; 9248 /* 9249 * If we're renaming a .. link to a new directory, cancel any 9250 * existing MKDIR_PARENT mkdir. If it has already been canceled 9251 * the jremref is preserved for any potential diradd in this 9252 * location. This can not coincide with a rmdir. 9253 */ 9254 if (dp->i_offset == DOTDOT_OFFSET) { 9255 if (isrmdir) 9256 panic("newdirrem: .. directory change during remove?"); 9257 jremref = cancel_mkdir_dotdot(dp, dirrem, jremref); 9258 } 9259 /* 9260 * If we're removing a directory search for the .. dependency now and 9261 * cancel it. Any pending journal work will be added to the dirrem 9262 * to be completed when the workitem remove completes. 9263 */ 9264 if (isrmdir) 9265 dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref); 9266 /* 9267 * Check for a diradd dependency for the same directory entry. 9268 * If present, then both dependencies become obsolete and can 9269 * be de-allocated. 9270 */ 9271 dap = diradd_lookup(pagedep, offset); 9272 if (dap == NULL) { 9273 /* 9274 * Link the jremref structures into the dirrem so they are 9275 * written prior to the pagedep. 9276 */ 9277 if (jremref) 9278 dirrem_journal(dirrem, jremref, dotremref, 9279 dotdotremref); 9280 return (dirrem); 9281 } 9282 /* 9283 * Must be ATTACHED at this point. 9284 */ 9285 if ((dap->da_state & ATTACHED) == 0) 9286 panic("newdirrem: not ATTACHED"); 9287 if (dap->da_newinum != ip->i_number) 9288 panic("newdirrem: inum %ju should be %ju", 9289 (uintmax_t)ip->i_number, (uintmax_t)dap->da_newinum); 9290 /* 9291 * If we are deleting a changed name that never made it to disk, 9292 * then return the dirrem describing the previous inode (which 9293 * represents the inode currently referenced from this entry on disk). 9294 */ 9295 if ((dap->da_state & DIRCHG) != 0) { 9296 *prevdirremp = dap->da_previous; 9297 dap->da_state &= ~DIRCHG; 9298 dap->da_pagedep = pagedep; 9299 } 9300 /* 9301 * We are deleting an entry that never made it to disk. 9302 * Mark it COMPLETE so we can delete its inode immediately. 9303 */ 9304 dirrem->dm_state |= COMPLETE; 9305 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref); 9306 #ifdef INVARIANTS 9307 if (isrmdir == 0) { 9308 struct worklist *wk; 9309 9310 LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list) 9311 if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT)) 9312 panic("bad wk %p (0x%X)\n", wk, wk->wk_state); 9313 } 9314 #endif 9315 9316 return (dirrem); 9317 } 9318 9319 /* 9320 * Directory entry change dependencies. 9321 * 9322 * Changing an existing directory entry requires that an add operation 9323 * be completed first followed by a deletion. The semantics for the addition 9324 * are identical to the description of adding a new entry above except 9325 * that the rollback is to the old inode number rather than zero. Once 9326 * the addition dependency is completed, the removal is done as described 9327 * in the removal routine above. 9328 */ 9329 9330 /* 9331 * This routine should be called immediately after changing 9332 * a directory entry. The inode's link count should not be 9333 * decremented by the calling procedure -- the soft updates 9334 * code will perform this task when it is safe. 9335 */ 9336 void 9337 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 9338 struct buf *bp; /* buffer containing directory block */ 9339 struct inode *dp; /* inode for the directory being modified */ 9340 struct inode *ip; /* inode for directory entry being removed */ 9341 ino_t newinum; /* new inode number for changed entry */ 9342 int isrmdir; /* indicates if doing RMDIR */ 9343 { 9344 int offset; 9345 struct diradd *dap = NULL; 9346 struct dirrem *dirrem, *prevdirrem; 9347 struct pagedep *pagedep; 9348 struct inodedep *inodedep; 9349 struct jaddref *jaddref; 9350 struct mount *mp; 9351 struct ufsmount *ump; 9352 9353 mp = ITOVFS(dp); 9354 ump = VFSTOUFS(mp); 9355 offset = blkoff(ump->um_fs, dp->i_offset); 9356 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 9357 ("softdep_setup_directory_change called on non-softdep filesystem")); 9358 9359 /* 9360 * Whiteouts do not need diradd dependencies. 9361 */ 9362 if (newinum != UFS_WINO) { 9363 dap = malloc(sizeof(struct diradd), 9364 M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO); 9365 workitem_alloc(&dap->da_list, D_DIRADD, mp); 9366 dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE; 9367 dap->da_offset = offset; 9368 dap->da_newinum = newinum; 9369 LIST_INIT(&dap->da_jwork); 9370 } 9371 9372 /* 9373 * Allocate a new dirrem and ACQUIRE_LOCK. 9374 */ 9375 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 9376 pagedep = dirrem->dm_pagedep; 9377 /* 9378 * The possible values for isrmdir: 9379 * 0 - non-directory file rename 9380 * 1 - directory rename within same directory 9381 * inum - directory rename to new directory of given inode number 9382 * When renaming to a new directory, we are both deleting and 9383 * creating a new directory entry, so the link count on the new 9384 * directory should not change. Thus we do not need the followup 9385 * dirrem which is usually done in handle_workitem_remove. We set 9386 * the DIRCHG flag to tell handle_workitem_remove to skip the 9387 * followup dirrem. 9388 */ 9389 if (isrmdir > 1) 9390 dirrem->dm_state |= DIRCHG; 9391 9392 /* 9393 * Whiteouts have no additional dependencies, 9394 * so just put the dirrem on the correct list. 9395 */ 9396 if (newinum == UFS_WINO) { 9397 if ((dirrem->dm_state & COMPLETE) == 0) { 9398 LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem, 9399 dm_next); 9400 } else { 9401 dirrem->dm_dirinum = pagedep->pd_ino; 9402 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 9403 add_to_worklist(&dirrem->dm_list, 0); 9404 } 9405 FREE_LOCK(ump); 9406 return; 9407 } 9408 /* 9409 * Add the dirrem to the inodedep's pending remove list for quick 9410 * discovery later. A valid nlinkdelta ensures that this lookup 9411 * will not fail. 9412 */ 9413 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 9414 panic("softdep_setup_directory_change: Lost inodedep."); 9415 dirrem->dm_state |= ONDEPLIST; 9416 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 9417 9418 /* 9419 * If the COMPLETE flag is clear, then there were no active 9420 * entries and we want to roll back to the previous inode until 9421 * the new inode is committed to disk. If the COMPLETE flag is 9422 * set, then we have deleted an entry that never made it to disk. 9423 * If the entry we deleted resulted from a name change, then the old 9424 * inode reference still resides on disk. Any rollback that we do 9425 * needs to be to that old inode (returned to us in prevdirrem). If 9426 * the entry we deleted resulted from a create, then there is 9427 * no entry on the disk, so we want to roll back to zero rather 9428 * than the uncommitted inode. In either of the COMPLETE cases we 9429 * want to immediately free the unwritten and unreferenced inode. 9430 */ 9431 if ((dirrem->dm_state & COMPLETE) == 0) { 9432 dap->da_previous = dirrem; 9433 } else { 9434 if (prevdirrem != NULL) { 9435 dap->da_previous = prevdirrem; 9436 } else { 9437 dap->da_state &= ~DIRCHG; 9438 dap->da_pagedep = pagedep; 9439 } 9440 dirrem->dm_dirinum = pagedep->pd_ino; 9441 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 9442 add_to_worklist(&dirrem->dm_list, 0); 9443 } 9444 /* 9445 * Lookup the jaddref for this journal entry. We must finish 9446 * initializing it and make the diradd write dependent on it. 9447 * If we're not journaling, put it on the id_bufwait list if the 9448 * inode is not yet written. If it is written, do the post-inode 9449 * write processing to put it on the id_pendinghd list. 9450 */ 9451 inodedep_lookup(mp, newinum, DEPALLOC, &inodedep); 9452 if (MOUNTEDSUJ(mp)) { 9453 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 9454 inoreflst); 9455 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 9456 ("softdep_setup_directory_change: bad jaddref %p", 9457 jaddref)); 9458 jaddref->ja_diroff = dp->i_offset; 9459 jaddref->ja_diradd = dap; 9460 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], 9461 dap, da_pdlist); 9462 add_to_journal(&jaddref->ja_list); 9463 } else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 9464 dap->da_state |= COMPLETE; 9465 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 9466 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 9467 } else { 9468 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], 9469 dap, da_pdlist); 9470 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 9471 } 9472 /* 9473 * If we're making a new name for a directory that has not been 9474 * committed when need to move the dot and dotdot references to 9475 * this new name. 9476 */ 9477 if (inodedep->id_mkdiradd && dp->i_offset != DOTDOT_OFFSET) 9478 merge_diradd(inodedep, dap); 9479 FREE_LOCK(ump); 9480 } 9481 9482 /* 9483 * Called whenever the link count on an inode is changed. 9484 * It creates an inode dependency so that the new reference(s) 9485 * to the inode cannot be committed to disk until the updated 9486 * inode has been written. 9487 */ 9488 void 9489 softdep_change_linkcnt(ip) 9490 struct inode *ip; /* the inode with the increased link count */ 9491 { 9492 struct inodedep *inodedep; 9493 struct ufsmount *ump; 9494 9495 ump = ITOUMP(ip); 9496 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 9497 ("softdep_change_linkcnt called on non-softdep filesystem")); 9498 ACQUIRE_LOCK(ump); 9499 inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep); 9500 if (ip->i_nlink < ip->i_effnlink) 9501 panic("softdep_change_linkcnt: bad delta"); 9502 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 9503 FREE_LOCK(ump); 9504 } 9505 9506 /* 9507 * Attach a sbdep dependency to the superblock buf so that we can keep 9508 * track of the head of the linked list of referenced but unlinked inodes. 9509 */ 9510 void 9511 softdep_setup_sbupdate(ump, fs, bp) 9512 struct ufsmount *ump; 9513 struct fs *fs; 9514 struct buf *bp; 9515 { 9516 struct sbdep *sbdep; 9517 struct worklist *wk; 9518 9519 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 9520 ("softdep_setup_sbupdate called on non-softdep filesystem")); 9521 LIST_FOREACH(wk, &bp->b_dep, wk_list) 9522 if (wk->wk_type == D_SBDEP) 9523 break; 9524 if (wk != NULL) 9525 return; 9526 sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS); 9527 workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump)); 9528 sbdep->sb_fs = fs; 9529 sbdep->sb_ump = ump; 9530 ACQUIRE_LOCK(ump); 9531 WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list); 9532 FREE_LOCK(ump); 9533 } 9534 9535 /* 9536 * Return the first unlinked inodedep which is ready to be the head of the 9537 * list. The inodedep and all those after it must have valid next pointers. 9538 */ 9539 static struct inodedep * 9540 first_unlinked_inodedep(ump) 9541 struct ufsmount *ump; 9542 { 9543 struct inodedep *inodedep; 9544 struct inodedep *idp; 9545 9546 LOCK_OWNED(ump); 9547 for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst); 9548 inodedep; inodedep = idp) { 9549 if ((inodedep->id_state & UNLINKNEXT) == 0) 9550 return (NULL); 9551 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 9552 if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0) 9553 break; 9554 if ((inodedep->id_state & UNLINKPREV) == 0) 9555 break; 9556 } 9557 return (inodedep); 9558 } 9559 9560 /* 9561 * Set the sujfree unlinked head pointer prior to writing a superblock. 9562 */ 9563 static void 9564 initiate_write_sbdep(sbdep) 9565 struct sbdep *sbdep; 9566 { 9567 struct inodedep *inodedep; 9568 struct fs *bpfs; 9569 struct fs *fs; 9570 9571 bpfs = sbdep->sb_fs; 9572 fs = sbdep->sb_ump->um_fs; 9573 inodedep = first_unlinked_inodedep(sbdep->sb_ump); 9574 if (inodedep) { 9575 fs->fs_sujfree = inodedep->id_ino; 9576 inodedep->id_state |= UNLINKPREV; 9577 } else 9578 fs->fs_sujfree = 0; 9579 bpfs->fs_sujfree = fs->fs_sujfree; 9580 } 9581 9582 /* 9583 * After a superblock is written determine whether it must be written again 9584 * due to a changing unlinked list head. 9585 */ 9586 static int 9587 handle_written_sbdep(sbdep, bp) 9588 struct sbdep *sbdep; 9589 struct buf *bp; 9590 { 9591 struct inodedep *inodedep; 9592 struct fs *fs; 9593 9594 LOCK_OWNED(sbdep->sb_ump); 9595 fs = sbdep->sb_fs; 9596 /* 9597 * If the superblock doesn't match the in-memory list start over. 9598 */ 9599 inodedep = first_unlinked_inodedep(sbdep->sb_ump); 9600 if ((inodedep && fs->fs_sujfree != inodedep->id_ino) || 9601 (inodedep == NULL && fs->fs_sujfree != 0)) { 9602 bdirty(bp); 9603 return (1); 9604 } 9605 WORKITEM_FREE(sbdep, D_SBDEP); 9606 if (fs->fs_sujfree == 0) 9607 return (0); 9608 /* 9609 * Now that we have a record of this inode in stable store allow it 9610 * to be written to free up pending work. Inodes may see a lot of 9611 * write activity after they are unlinked which we must not hold up. 9612 */ 9613 for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) { 9614 if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS) 9615 panic("handle_written_sbdep: Bad inodedep %p (0x%X)", 9616 inodedep, inodedep->id_state); 9617 if (inodedep->id_state & UNLINKONLIST) 9618 break; 9619 inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST; 9620 } 9621 9622 return (0); 9623 } 9624 9625 /* 9626 * Mark an inodedep as unlinked and insert it into the in-memory unlinked list. 9627 */ 9628 static void 9629 unlinked_inodedep(mp, inodedep) 9630 struct mount *mp; 9631 struct inodedep *inodedep; 9632 { 9633 struct ufsmount *ump; 9634 9635 ump = VFSTOUFS(mp); 9636 LOCK_OWNED(ump); 9637 if (MOUNTEDSUJ(mp) == 0) 9638 return; 9639 ump->um_fs->fs_fmod = 1; 9640 if (inodedep->id_state & UNLINKED) 9641 panic("unlinked_inodedep: %p already unlinked\n", inodedep); 9642 inodedep->id_state |= UNLINKED; 9643 TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked); 9644 } 9645 9646 /* 9647 * Remove an inodedep from the unlinked inodedep list. This may require 9648 * disk writes if the inode has made it that far. 9649 */ 9650 static void 9651 clear_unlinked_inodedep(inodedep) 9652 struct inodedep *inodedep; 9653 { 9654 struct ufs2_dinode *dip; 9655 struct ufsmount *ump; 9656 struct inodedep *idp; 9657 struct inodedep *idn; 9658 struct fs *fs; 9659 struct buf *bp; 9660 ino_t ino; 9661 ino_t nino; 9662 ino_t pino; 9663 int error; 9664 9665 ump = VFSTOUFS(inodedep->id_list.wk_mp); 9666 fs = ump->um_fs; 9667 ino = inodedep->id_ino; 9668 error = 0; 9669 for (;;) { 9670 LOCK_OWNED(ump); 9671 KASSERT((inodedep->id_state & UNLINKED) != 0, 9672 ("clear_unlinked_inodedep: inodedep %p not unlinked", 9673 inodedep)); 9674 /* 9675 * If nothing has yet been written simply remove us from 9676 * the in memory list and return. This is the most common 9677 * case where handle_workitem_remove() loses the final 9678 * reference. 9679 */ 9680 if ((inodedep->id_state & UNLINKLINKS) == 0) 9681 break; 9682 /* 9683 * If we have a NEXT pointer and no PREV pointer we can simply 9684 * clear NEXT's PREV and remove ourselves from the list. Be 9685 * careful not to clear PREV if the superblock points at 9686 * next as well. 9687 */ 9688 idn = TAILQ_NEXT(inodedep, id_unlinked); 9689 if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) { 9690 if (idn && fs->fs_sujfree != idn->id_ino) 9691 idn->id_state &= ~UNLINKPREV; 9692 break; 9693 } 9694 /* 9695 * Here we have an inodedep which is actually linked into 9696 * the list. We must remove it by forcing a write to the 9697 * link before us, whether it be the superblock or an inode. 9698 * Unfortunately the list may change while we're waiting 9699 * on the buf lock for either resource so we must loop until 9700 * we lock the right one. If both the superblock and an 9701 * inode point to this inode we must clear the inode first 9702 * followed by the superblock. 9703 */ 9704 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 9705 pino = 0; 9706 if (idp && (idp->id_state & UNLINKNEXT)) 9707 pino = idp->id_ino; 9708 FREE_LOCK(ump); 9709 if (pino == 0) { 9710 bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc), 9711 (int)fs->fs_sbsize, 0, 0, 0); 9712 } else { 9713 error = bread(ump->um_devvp, 9714 fsbtodb(fs, ino_to_fsba(fs, pino)), 9715 (int)fs->fs_bsize, NOCRED, &bp); 9716 if (error) 9717 brelse(bp); 9718 } 9719 ACQUIRE_LOCK(ump); 9720 if (error) 9721 break; 9722 /* If the list has changed restart the loop. */ 9723 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 9724 nino = 0; 9725 if (idp && (idp->id_state & UNLINKNEXT)) 9726 nino = idp->id_ino; 9727 if (nino != pino || 9728 (inodedep->id_state & UNLINKPREV) != UNLINKPREV) { 9729 FREE_LOCK(ump); 9730 brelse(bp); 9731 ACQUIRE_LOCK(ump); 9732 continue; 9733 } 9734 nino = 0; 9735 idn = TAILQ_NEXT(inodedep, id_unlinked); 9736 if (idn) 9737 nino = idn->id_ino; 9738 /* 9739 * Remove us from the in memory list. After this we cannot 9740 * access the inodedep. 9741 */ 9742 KASSERT((inodedep->id_state & UNLINKED) != 0, 9743 ("clear_unlinked_inodedep: inodedep %p not unlinked", 9744 inodedep)); 9745 inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST); 9746 TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked); 9747 FREE_LOCK(ump); 9748 /* 9749 * The predecessor's next pointer is manually updated here 9750 * so that the NEXT flag is never cleared for an element 9751 * that is in the list. 9752 */ 9753 if (pino == 0) { 9754 bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize); 9755 ffs_oldfscompat_write((struct fs *)bp->b_data, ump); 9756 softdep_setup_sbupdate(ump, (struct fs *)bp->b_data, 9757 bp); 9758 } else if (fs->fs_magic == FS_UFS1_MAGIC) { 9759 ((struct ufs1_dinode *)bp->b_data + 9760 ino_to_fsbo(fs, pino))->di_freelink = nino; 9761 } else { 9762 dip = (struct ufs2_dinode *)bp->b_data + 9763 ino_to_fsbo(fs, pino); 9764 dip->di_freelink = nino; 9765 ffs_update_dinode_ckhash(fs, dip); 9766 } 9767 /* 9768 * If the bwrite fails we have no recourse to recover. The 9769 * filesystem is corrupted already. 9770 */ 9771 bwrite(bp); 9772 ACQUIRE_LOCK(ump); 9773 /* 9774 * If the superblock pointer still needs to be cleared force 9775 * a write here. 9776 */ 9777 if (fs->fs_sujfree == ino) { 9778 FREE_LOCK(ump); 9779 bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc), 9780 (int)fs->fs_sbsize, 0, 0, 0); 9781 bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize); 9782 ffs_oldfscompat_write((struct fs *)bp->b_data, ump); 9783 softdep_setup_sbupdate(ump, (struct fs *)bp->b_data, 9784 bp); 9785 bwrite(bp); 9786 ACQUIRE_LOCK(ump); 9787 } 9788 9789 if (fs->fs_sujfree != ino) 9790 return; 9791 panic("clear_unlinked_inodedep: Failed to clear free head"); 9792 } 9793 if (inodedep->id_ino == fs->fs_sujfree) 9794 panic("clear_unlinked_inodedep: Freeing head of free list"); 9795 inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST); 9796 TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked); 9797 return; 9798 } 9799 9800 /* 9801 * This workitem decrements the inode's link count. 9802 * If the link count reaches zero, the file is removed. 9803 */ 9804 static int 9805 handle_workitem_remove(dirrem, flags) 9806 struct dirrem *dirrem; 9807 int flags; 9808 { 9809 struct inodedep *inodedep; 9810 struct workhead dotdotwk; 9811 struct worklist *wk; 9812 struct ufsmount *ump; 9813 struct mount *mp; 9814 struct vnode *vp; 9815 struct inode *ip; 9816 ino_t oldinum; 9817 9818 if (dirrem->dm_state & ONWORKLIST) 9819 panic("handle_workitem_remove: dirrem %p still on worklist", 9820 dirrem); 9821 oldinum = dirrem->dm_oldinum; 9822 mp = dirrem->dm_list.wk_mp; 9823 ump = VFSTOUFS(mp); 9824 flags |= LK_EXCLUSIVE; 9825 if (ffs_vgetf(mp, oldinum, flags, &vp, FFSV_FORCEINSMQ) != 0) 9826 return (EBUSY); 9827 ip = VTOI(vp); 9828 ACQUIRE_LOCK(ump); 9829 if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0) 9830 panic("handle_workitem_remove: lost inodedep"); 9831 if (dirrem->dm_state & ONDEPLIST) 9832 LIST_REMOVE(dirrem, dm_inonext); 9833 KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd), 9834 ("handle_workitem_remove: Journal entries not written.")); 9835 9836 /* 9837 * Move all dependencies waiting on the remove to complete 9838 * from the dirrem to the inode inowait list to be completed 9839 * after the inode has been updated and written to disk. Any 9840 * marked MKDIR_PARENT are saved to be completed when the .. ref 9841 * is removed. 9842 */ 9843 LIST_INIT(&dotdotwk); 9844 while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) { 9845 WORKLIST_REMOVE(wk); 9846 if (wk->wk_state & MKDIR_PARENT) { 9847 wk->wk_state &= ~MKDIR_PARENT; 9848 WORKLIST_INSERT(&dotdotwk, wk); 9849 continue; 9850 } 9851 WORKLIST_INSERT(&inodedep->id_inowait, wk); 9852 } 9853 LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list); 9854 /* 9855 * Normal file deletion. 9856 */ 9857 if ((dirrem->dm_state & RMDIR) == 0) { 9858 ip->i_nlink--; 9859 DIP_SET(ip, i_nlink, ip->i_nlink); 9860 ip->i_flag |= IN_CHANGE; 9861 if (ip->i_nlink < ip->i_effnlink) 9862 panic("handle_workitem_remove: bad file delta"); 9863 if (ip->i_nlink == 0) 9864 unlinked_inodedep(mp, inodedep); 9865 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 9866 KASSERT(LIST_EMPTY(&dirrem->dm_jwork), 9867 ("handle_workitem_remove: worklist not empty. %s", 9868 TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type))); 9869 WORKITEM_FREE(dirrem, D_DIRREM); 9870 FREE_LOCK(ump); 9871 goto out; 9872 } 9873 /* 9874 * Directory deletion. Decrement reference count for both the 9875 * just deleted parent directory entry and the reference for ".". 9876 * Arrange to have the reference count on the parent decremented 9877 * to account for the loss of "..". 9878 */ 9879 ip->i_nlink -= 2; 9880 DIP_SET(ip, i_nlink, ip->i_nlink); 9881 ip->i_flag |= IN_CHANGE; 9882 if (ip->i_nlink < ip->i_effnlink) 9883 panic("handle_workitem_remove: bad dir delta"); 9884 if (ip->i_nlink == 0) 9885 unlinked_inodedep(mp, inodedep); 9886 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 9887 /* 9888 * Rename a directory to a new parent. Since, we are both deleting 9889 * and creating a new directory entry, the link count on the new 9890 * directory should not change. Thus we skip the followup dirrem. 9891 */ 9892 if (dirrem->dm_state & DIRCHG) { 9893 KASSERT(LIST_EMPTY(&dirrem->dm_jwork), 9894 ("handle_workitem_remove: DIRCHG and worklist not empty.")); 9895 WORKITEM_FREE(dirrem, D_DIRREM); 9896 FREE_LOCK(ump); 9897 goto out; 9898 } 9899 dirrem->dm_state = ONDEPLIST; 9900 dirrem->dm_oldinum = dirrem->dm_dirinum; 9901 /* 9902 * Place the dirrem on the parent's diremhd list. 9903 */ 9904 if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0) 9905 panic("handle_workitem_remove: lost dir inodedep"); 9906 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 9907 /* 9908 * If the allocated inode has never been written to disk, then 9909 * the on-disk inode is zero'ed and we can remove the file 9910 * immediately. When journaling if the inode has been marked 9911 * unlinked and not DEPCOMPLETE we know it can never be written. 9912 */ 9913 inodedep_lookup(mp, oldinum, 0, &inodedep); 9914 if (inodedep == NULL || 9915 (inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED || 9916 check_inode_unwritten(inodedep)) { 9917 FREE_LOCK(ump); 9918 vput(vp); 9919 return handle_workitem_remove(dirrem, flags); 9920 } 9921 WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list); 9922 FREE_LOCK(ump); 9923 ip->i_flag |= IN_CHANGE; 9924 out: 9925 ffs_update(vp, 0); 9926 vput(vp); 9927 return (0); 9928 } 9929 9930 /* 9931 * Inode de-allocation dependencies. 9932 * 9933 * When an inode's link count is reduced to zero, it can be de-allocated. We 9934 * found it convenient to postpone de-allocation until after the inode is 9935 * written to disk with its new link count (zero). At this point, all of the 9936 * on-disk inode's block pointers are nullified and, with careful dependency 9937 * list ordering, all dependencies related to the inode will be satisfied and 9938 * the corresponding dependency structures de-allocated. So, if/when the 9939 * inode is reused, there will be no mixing of old dependencies with new 9940 * ones. This artificial dependency is set up by the block de-allocation 9941 * procedure above (softdep_setup_freeblocks) and completed by the 9942 * following procedure. 9943 */ 9944 static void 9945 handle_workitem_freefile(freefile) 9946 struct freefile *freefile; 9947 { 9948 struct workhead wkhd; 9949 struct fs *fs; 9950 struct ufsmount *ump; 9951 int error; 9952 #ifdef INVARIANTS 9953 struct inodedep *idp; 9954 #endif 9955 9956 ump = VFSTOUFS(freefile->fx_list.wk_mp); 9957 fs = ump->um_fs; 9958 #ifdef INVARIANTS 9959 ACQUIRE_LOCK(ump); 9960 error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp); 9961 FREE_LOCK(ump); 9962 if (error) 9963 panic("handle_workitem_freefile: inodedep %p survived", idp); 9964 #endif 9965 UFS_LOCK(ump); 9966 fs->fs_pendinginodes -= 1; 9967 UFS_UNLOCK(ump); 9968 LIST_INIT(&wkhd); 9969 LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list); 9970 if ((error = ffs_freefile(ump, fs, freefile->fx_devvp, 9971 freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0) 9972 softdep_error("handle_workitem_freefile", error); 9973 ACQUIRE_LOCK(ump); 9974 WORKITEM_FREE(freefile, D_FREEFILE); 9975 FREE_LOCK(ump); 9976 } 9977 9978 9979 /* 9980 * Helper function which unlinks marker element from work list and returns 9981 * the next element on the list. 9982 */ 9983 static __inline struct worklist * 9984 markernext(struct worklist *marker) 9985 { 9986 struct worklist *next; 9987 9988 next = LIST_NEXT(marker, wk_list); 9989 LIST_REMOVE(marker, wk_list); 9990 return next; 9991 } 9992 9993 /* 9994 * Disk writes. 9995 * 9996 * The dependency structures constructed above are most actively used when file 9997 * system blocks are written to disk. No constraints are placed on when a 9998 * block can be written, but unsatisfied update dependencies are made safe by 9999 * modifying (or replacing) the source memory for the duration of the disk 10000 * write. When the disk write completes, the memory block is again brought 10001 * up-to-date. 10002 * 10003 * In-core inode structure reclamation. 10004 * 10005 * Because there are a finite number of "in-core" inode structures, they are 10006 * reused regularly. By transferring all inode-related dependencies to the 10007 * in-memory inode block and indexing them separately (via "inodedep"s), we 10008 * can allow "in-core" inode structures to be reused at any time and avoid 10009 * any increase in contention. 10010 * 10011 * Called just before entering the device driver to initiate a new disk I/O. 10012 * The buffer must be locked, thus, no I/O completion operations can occur 10013 * while we are manipulating its associated dependencies. 10014 */ 10015 static void 10016 softdep_disk_io_initiation(bp) 10017 struct buf *bp; /* structure describing disk write to occur */ 10018 { 10019 struct worklist *wk; 10020 struct worklist marker; 10021 struct inodedep *inodedep; 10022 struct freeblks *freeblks; 10023 struct jblkdep *jblkdep; 10024 struct newblk *newblk; 10025 struct ufsmount *ump; 10026 10027 /* 10028 * We only care about write operations. There should never 10029 * be dependencies for reads. 10030 */ 10031 if (bp->b_iocmd != BIO_WRITE) 10032 panic("softdep_disk_io_initiation: not write"); 10033 10034 if (bp->b_vflags & BV_BKGRDINPROG) 10035 panic("softdep_disk_io_initiation: Writing buffer with " 10036 "background write in progress: %p", bp); 10037 10038 ump = softdep_bp_to_mp(bp); 10039 if (ump == NULL) 10040 return; 10041 10042 marker.wk_type = D_LAST + 1; /* Not a normal workitem */ 10043 PHOLD(curproc); /* Don't swap out kernel stack */ 10044 ACQUIRE_LOCK(ump); 10045 /* 10046 * Do any necessary pre-I/O processing. 10047 */ 10048 for (wk = LIST_FIRST(&bp->b_dep); wk != NULL; 10049 wk = markernext(&marker)) { 10050 LIST_INSERT_AFTER(wk, &marker, wk_list); 10051 switch (wk->wk_type) { 10052 10053 case D_PAGEDEP: 10054 initiate_write_filepage(WK_PAGEDEP(wk), bp); 10055 continue; 10056 10057 case D_INODEDEP: 10058 inodedep = WK_INODEDEP(wk); 10059 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) 10060 initiate_write_inodeblock_ufs1(inodedep, bp); 10061 else 10062 initiate_write_inodeblock_ufs2(inodedep, bp); 10063 continue; 10064 10065 case D_INDIRDEP: 10066 initiate_write_indirdep(WK_INDIRDEP(wk), bp); 10067 continue; 10068 10069 case D_BMSAFEMAP: 10070 initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp); 10071 continue; 10072 10073 case D_JSEG: 10074 WK_JSEG(wk)->js_buf = NULL; 10075 continue; 10076 10077 case D_FREEBLKS: 10078 freeblks = WK_FREEBLKS(wk); 10079 jblkdep = LIST_FIRST(&freeblks->fb_jblkdephd); 10080 /* 10081 * We have to wait for the freeblks to be journaled 10082 * before we can write an inodeblock with updated 10083 * pointers. Be careful to arrange the marker so 10084 * we revisit the freeblks if it's not removed by 10085 * the first jwait(). 10086 */ 10087 if (jblkdep != NULL) { 10088 LIST_REMOVE(&marker, wk_list); 10089 LIST_INSERT_BEFORE(wk, &marker, wk_list); 10090 jwait(&jblkdep->jb_list, MNT_WAIT); 10091 } 10092 continue; 10093 case D_ALLOCDIRECT: 10094 case D_ALLOCINDIR: 10095 /* 10096 * We have to wait for the jnewblk to be journaled 10097 * before we can write to a block if the contents 10098 * may be confused with an earlier file's indirect 10099 * at recovery time. Handle the marker as described 10100 * above. 10101 */ 10102 newblk = WK_NEWBLK(wk); 10103 if (newblk->nb_jnewblk != NULL && 10104 indirblk_lookup(newblk->nb_list.wk_mp, 10105 newblk->nb_newblkno)) { 10106 LIST_REMOVE(&marker, wk_list); 10107 LIST_INSERT_BEFORE(wk, &marker, wk_list); 10108 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 10109 } 10110 continue; 10111 10112 case D_SBDEP: 10113 initiate_write_sbdep(WK_SBDEP(wk)); 10114 continue; 10115 10116 case D_MKDIR: 10117 case D_FREEWORK: 10118 case D_FREEDEP: 10119 case D_JSEGDEP: 10120 continue; 10121 10122 default: 10123 panic("handle_disk_io_initiation: Unexpected type %s", 10124 TYPENAME(wk->wk_type)); 10125 /* NOTREACHED */ 10126 } 10127 } 10128 FREE_LOCK(ump); 10129 PRELE(curproc); /* Allow swapout of kernel stack */ 10130 } 10131 10132 /* 10133 * Called from within the procedure above to deal with unsatisfied 10134 * allocation dependencies in a directory. The buffer must be locked, 10135 * thus, no I/O completion operations can occur while we are 10136 * manipulating its associated dependencies. 10137 */ 10138 static void 10139 initiate_write_filepage(pagedep, bp) 10140 struct pagedep *pagedep; 10141 struct buf *bp; 10142 { 10143 struct jremref *jremref; 10144 struct jmvref *jmvref; 10145 struct dirrem *dirrem; 10146 struct diradd *dap; 10147 struct direct *ep; 10148 int i; 10149 10150 if (pagedep->pd_state & IOSTARTED) { 10151 /* 10152 * This can only happen if there is a driver that does not 10153 * understand chaining. Here biodone will reissue the call 10154 * to strategy for the incomplete buffers. 10155 */ 10156 printf("initiate_write_filepage: already started\n"); 10157 return; 10158 } 10159 pagedep->pd_state |= IOSTARTED; 10160 /* 10161 * Wait for all journal remove dependencies to hit the disk. 10162 * We can not allow any potentially conflicting directory adds 10163 * to be visible before removes and rollback is too difficult. 10164 * The per-filesystem lock may be dropped and re-acquired, however 10165 * we hold the buf locked so the dependency can not go away. 10166 */ 10167 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) 10168 while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) 10169 jwait(&jremref->jr_list, MNT_WAIT); 10170 while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) 10171 jwait(&jmvref->jm_list, MNT_WAIT); 10172 for (i = 0; i < DAHASHSZ; i++) { 10173 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 10174 ep = (struct direct *) 10175 ((char *)bp->b_data + dap->da_offset); 10176 if (ep->d_ino != dap->da_newinum) 10177 panic("%s: dir inum %ju != new %ju", 10178 "initiate_write_filepage", 10179 (uintmax_t)ep->d_ino, 10180 (uintmax_t)dap->da_newinum); 10181 if (dap->da_state & DIRCHG) 10182 ep->d_ino = dap->da_previous->dm_oldinum; 10183 else 10184 ep->d_ino = 0; 10185 dap->da_state &= ~ATTACHED; 10186 dap->da_state |= UNDONE; 10187 } 10188 } 10189 } 10190 10191 /* 10192 * Version of initiate_write_inodeblock that handles UFS1 dinodes. 10193 * Note that any bug fixes made to this routine must be done in the 10194 * version found below. 10195 * 10196 * Called from within the procedure above to deal with unsatisfied 10197 * allocation dependencies in an inodeblock. The buffer must be 10198 * locked, thus, no I/O completion operations can occur while we 10199 * are manipulating its associated dependencies. 10200 */ 10201 static void 10202 initiate_write_inodeblock_ufs1(inodedep, bp) 10203 struct inodedep *inodedep; 10204 struct buf *bp; /* The inode block */ 10205 { 10206 struct allocdirect *adp, *lastadp; 10207 struct ufs1_dinode *dp; 10208 struct ufs1_dinode *sip; 10209 struct inoref *inoref; 10210 struct ufsmount *ump; 10211 struct fs *fs; 10212 ufs_lbn_t i; 10213 #ifdef INVARIANTS 10214 ufs_lbn_t prevlbn = 0; 10215 #endif 10216 int deplist; 10217 10218 if (inodedep->id_state & IOSTARTED) 10219 panic("initiate_write_inodeblock_ufs1: already started"); 10220 inodedep->id_state |= IOSTARTED; 10221 fs = inodedep->id_fs; 10222 ump = VFSTOUFS(inodedep->id_list.wk_mp); 10223 LOCK_OWNED(ump); 10224 dp = (struct ufs1_dinode *)bp->b_data + 10225 ino_to_fsbo(fs, inodedep->id_ino); 10226 10227 /* 10228 * If we're on the unlinked list but have not yet written our 10229 * next pointer initialize it here. 10230 */ 10231 if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) { 10232 struct inodedep *inon; 10233 10234 inon = TAILQ_NEXT(inodedep, id_unlinked); 10235 dp->di_freelink = inon ? inon->id_ino : 0; 10236 } 10237 /* 10238 * If the bitmap is not yet written, then the allocated 10239 * inode cannot be written to disk. 10240 */ 10241 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 10242 if (inodedep->id_savedino1 != NULL) 10243 panic("initiate_write_inodeblock_ufs1: I/O underway"); 10244 FREE_LOCK(ump); 10245 sip = malloc(sizeof(struct ufs1_dinode), 10246 M_SAVEDINO, M_SOFTDEP_FLAGS); 10247 ACQUIRE_LOCK(ump); 10248 inodedep->id_savedino1 = sip; 10249 *inodedep->id_savedino1 = *dp; 10250 bzero((caddr_t)dp, sizeof(struct ufs1_dinode)); 10251 dp->di_gen = inodedep->id_savedino1->di_gen; 10252 dp->di_freelink = inodedep->id_savedino1->di_freelink; 10253 return; 10254 } 10255 /* 10256 * If no dependencies, then there is nothing to roll back. 10257 */ 10258 inodedep->id_savedsize = dp->di_size; 10259 inodedep->id_savedextsize = 0; 10260 inodedep->id_savednlink = dp->di_nlink; 10261 if (TAILQ_EMPTY(&inodedep->id_inoupdt) && 10262 TAILQ_EMPTY(&inodedep->id_inoreflst)) 10263 return; 10264 /* 10265 * Revert the link count to that of the first unwritten journal entry. 10266 */ 10267 inoref = TAILQ_FIRST(&inodedep->id_inoreflst); 10268 if (inoref) 10269 dp->di_nlink = inoref->if_nlink; 10270 /* 10271 * Set the dependencies to busy. 10272 */ 10273 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10274 adp = TAILQ_NEXT(adp, ad_next)) { 10275 #ifdef INVARIANTS 10276 if (deplist != 0 && prevlbn >= adp->ad_offset) 10277 panic("softdep_write_inodeblock: lbn order"); 10278 prevlbn = adp->ad_offset; 10279 if (adp->ad_offset < UFS_NDADDR && 10280 dp->di_db[adp->ad_offset] != adp->ad_newblkno) 10281 panic("initiate_write_inodeblock_ufs1: " 10282 "direct pointer #%jd mismatch %d != %jd", 10283 (intmax_t)adp->ad_offset, 10284 dp->di_db[adp->ad_offset], 10285 (intmax_t)adp->ad_newblkno); 10286 if (adp->ad_offset >= UFS_NDADDR && 10287 dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno) 10288 panic("initiate_write_inodeblock_ufs1: " 10289 "indirect pointer #%jd mismatch %d != %jd", 10290 (intmax_t)adp->ad_offset - UFS_NDADDR, 10291 dp->di_ib[adp->ad_offset - UFS_NDADDR], 10292 (intmax_t)adp->ad_newblkno); 10293 deplist |= 1 << adp->ad_offset; 10294 if ((adp->ad_state & ATTACHED) == 0) 10295 panic("initiate_write_inodeblock_ufs1: " 10296 "Unknown state 0x%x", adp->ad_state); 10297 #endif /* INVARIANTS */ 10298 adp->ad_state &= ~ATTACHED; 10299 adp->ad_state |= UNDONE; 10300 } 10301 /* 10302 * The on-disk inode cannot claim to be any larger than the last 10303 * fragment that has been written. Otherwise, the on-disk inode 10304 * might have fragments that were not the last block in the file 10305 * which would corrupt the filesystem. 10306 */ 10307 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10308 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10309 if (adp->ad_offset >= UFS_NDADDR) 10310 break; 10311 dp->di_db[adp->ad_offset] = adp->ad_oldblkno; 10312 /* keep going until hitting a rollback to a frag */ 10313 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10314 continue; 10315 dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10316 for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) { 10317 #ifdef INVARIANTS 10318 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) 10319 panic("initiate_write_inodeblock_ufs1: " 10320 "lost dep1"); 10321 #endif /* INVARIANTS */ 10322 dp->di_db[i] = 0; 10323 } 10324 for (i = 0; i < UFS_NIADDR; i++) { 10325 #ifdef INVARIANTS 10326 if (dp->di_ib[i] != 0 && 10327 (deplist & ((1 << UFS_NDADDR) << i)) == 0) 10328 panic("initiate_write_inodeblock_ufs1: " 10329 "lost dep2"); 10330 #endif /* INVARIANTS */ 10331 dp->di_ib[i] = 0; 10332 } 10333 return; 10334 } 10335 /* 10336 * If we have zero'ed out the last allocated block of the file, 10337 * roll back the size to the last currently allocated block. 10338 * We know that this last allocated block is a full-sized as 10339 * we already checked for fragments in the loop above. 10340 */ 10341 if (lastadp != NULL && 10342 dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10343 for (i = lastadp->ad_offset; i >= 0; i--) 10344 if (dp->di_db[i] != 0) 10345 break; 10346 dp->di_size = (i + 1) * fs->fs_bsize; 10347 } 10348 /* 10349 * The only dependencies are for indirect blocks. 10350 * 10351 * The file size for indirect block additions is not guaranteed. 10352 * Such a guarantee would be non-trivial to achieve. The conventional 10353 * synchronous write implementation also does not make this guarantee. 10354 * Fsck should catch and fix discrepancies. Arguably, the file size 10355 * can be over-estimated without destroying integrity when the file 10356 * moves into the indirect blocks (i.e., is large). If we want to 10357 * postpone fsck, we are stuck with this argument. 10358 */ 10359 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 10360 dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0; 10361 } 10362 10363 /* 10364 * Version of initiate_write_inodeblock that handles UFS2 dinodes. 10365 * Note that any bug fixes made to this routine must be done in the 10366 * version found above. 10367 * 10368 * Called from within the procedure above to deal with unsatisfied 10369 * allocation dependencies in an inodeblock. The buffer must be 10370 * locked, thus, no I/O completion operations can occur while we 10371 * are manipulating its associated dependencies. 10372 */ 10373 static void 10374 initiate_write_inodeblock_ufs2(inodedep, bp) 10375 struct inodedep *inodedep; 10376 struct buf *bp; /* The inode block */ 10377 { 10378 struct allocdirect *adp, *lastadp; 10379 struct ufs2_dinode *dp; 10380 struct ufs2_dinode *sip; 10381 struct inoref *inoref; 10382 struct ufsmount *ump; 10383 struct fs *fs; 10384 ufs_lbn_t i; 10385 #ifdef INVARIANTS 10386 ufs_lbn_t prevlbn = 0; 10387 #endif 10388 int deplist; 10389 10390 if (inodedep->id_state & IOSTARTED) 10391 panic("initiate_write_inodeblock_ufs2: already started"); 10392 inodedep->id_state |= IOSTARTED; 10393 fs = inodedep->id_fs; 10394 ump = VFSTOUFS(inodedep->id_list.wk_mp); 10395 LOCK_OWNED(ump); 10396 dp = (struct ufs2_dinode *)bp->b_data + 10397 ino_to_fsbo(fs, inodedep->id_ino); 10398 10399 /* 10400 * If we're on the unlinked list but have not yet written our 10401 * next pointer initialize it here. 10402 */ 10403 if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) { 10404 struct inodedep *inon; 10405 10406 inon = TAILQ_NEXT(inodedep, id_unlinked); 10407 dp->di_freelink = inon ? inon->id_ino : 0; 10408 ffs_update_dinode_ckhash(fs, dp); 10409 } 10410 /* 10411 * If the bitmap is not yet written, then the allocated 10412 * inode cannot be written to disk. 10413 */ 10414 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 10415 if (inodedep->id_savedino2 != NULL) 10416 panic("initiate_write_inodeblock_ufs2: I/O underway"); 10417 FREE_LOCK(ump); 10418 sip = malloc(sizeof(struct ufs2_dinode), 10419 M_SAVEDINO, M_SOFTDEP_FLAGS); 10420 ACQUIRE_LOCK(ump); 10421 inodedep->id_savedino2 = sip; 10422 *inodedep->id_savedino2 = *dp; 10423 bzero((caddr_t)dp, sizeof(struct ufs2_dinode)); 10424 dp->di_gen = inodedep->id_savedino2->di_gen; 10425 dp->di_freelink = inodedep->id_savedino2->di_freelink; 10426 return; 10427 } 10428 /* 10429 * If no dependencies, then there is nothing to roll back. 10430 */ 10431 inodedep->id_savedsize = dp->di_size; 10432 inodedep->id_savedextsize = dp->di_extsize; 10433 inodedep->id_savednlink = dp->di_nlink; 10434 if (TAILQ_EMPTY(&inodedep->id_inoupdt) && 10435 TAILQ_EMPTY(&inodedep->id_extupdt) && 10436 TAILQ_EMPTY(&inodedep->id_inoreflst)) 10437 return; 10438 /* 10439 * Revert the link count to that of the first unwritten journal entry. 10440 */ 10441 inoref = TAILQ_FIRST(&inodedep->id_inoreflst); 10442 if (inoref) 10443 dp->di_nlink = inoref->if_nlink; 10444 10445 /* 10446 * Set the ext data dependencies to busy. 10447 */ 10448 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 10449 adp = TAILQ_NEXT(adp, ad_next)) { 10450 #ifdef INVARIANTS 10451 if (deplist != 0 && prevlbn >= adp->ad_offset) 10452 panic("initiate_write_inodeblock_ufs2: lbn order"); 10453 prevlbn = adp->ad_offset; 10454 if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno) 10455 panic("initiate_write_inodeblock_ufs2: " 10456 "ext pointer #%jd mismatch %jd != %jd", 10457 (intmax_t)adp->ad_offset, 10458 (intmax_t)dp->di_extb[adp->ad_offset], 10459 (intmax_t)adp->ad_newblkno); 10460 deplist |= 1 << adp->ad_offset; 10461 if ((adp->ad_state & ATTACHED) == 0) 10462 panic("initiate_write_inodeblock_ufs2: Unknown " 10463 "state 0x%x", adp->ad_state); 10464 #endif /* INVARIANTS */ 10465 adp->ad_state &= ~ATTACHED; 10466 adp->ad_state |= UNDONE; 10467 } 10468 /* 10469 * The on-disk inode cannot claim to be any larger than the last 10470 * fragment that has been written. Otherwise, the on-disk inode 10471 * might have fragments that were not the last block in the ext 10472 * data which would corrupt the filesystem. 10473 */ 10474 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 10475 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10476 dp->di_extb[adp->ad_offset] = adp->ad_oldblkno; 10477 /* keep going until hitting a rollback to a frag */ 10478 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10479 continue; 10480 dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10481 for (i = adp->ad_offset + 1; i < UFS_NXADDR; i++) { 10482 #ifdef INVARIANTS 10483 if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0) 10484 panic("initiate_write_inodeblock_ufs2: " 10485 "lost dep1"); 10486 #endif /* INVARIANTS */ 10487 dp->di_extb[i] = 0; 10488 } 10489 lastadp = NULL; 10490 break; 10491 } 10492 /* 10493 * If we have zero'ed out the last allocated block of the ext 10494 * data, roll back the size to the last currently allocated block. 10495 * We know that this last allocated block is a full-sized as 10496 * we already checked for fragments in the loop above. 10497 */ 10498 if (lastadp != NULL && 10499 dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10500 for (i = lastadp->ad_offset; i >= 0; i--) 10501 if (dp->di_extb[i] != 0) 10502 break; 10503 dp->di_extsize = (i + 1) * fs->fs_bsize; 10504 } 10505 /* 10506 * Set the file data dependencies to busy. 10507 */ 10508 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10509 adp = TAILQ_NEXT(adp, ad_next)) { 10510 #ifdef INVARIANTS 10511 if (deplist != 0 && prevlbn >= adp->ad_offset) 10512 panic("softdep_write_inodeblock: lbn order"); 10513 if ((adp->ad_state & ATTACHED) == 0) 10514 panic("inodedep %p and adp %p not attached", inodedep, adp); 10515 prevlbn = adp->ad_offset; 10516 if (adp->ad_offset < UFS_NDADDR && 10517 dp->di_db[adp->ad_offset] != adp->ad_newblkno) 10518 panic("initiate_write_inodeblock_ufs2: " 10519 "direct pointer #%jd mismatch %jd != %jd", 10520 (intmax_t)adp->ad_offset, 10521 (intmax_t)dp->di_db[adp->ad_offset], 10522 (intmax_t)adp->ad_newblkno); 10523 if (adp->ad_offset >= UFS_NDADDR && 10524 dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno) 10525 panic("initiate_write_inodeblock_ufs2: " 10526 "indirect pointer #%jd mismatch %jd != %jd", 10527 (intmax_t)adp->ad_offset - UFS_NDADDR, 10528 (intmax_t)dp->di_ib[adp->ad_offset - UFS_NDADDR], 10529 (intmax_t)adp->ad_newblkno); 10530 deplist |= 1 << adp->ad_offset; 10531 if ((adp->ad_state & ATTACHED) == 0) 10532 panic("initiate_write_inodeblock_ufs2: Unknown " 10533 "state 0x%x", adp->ad_state); 10534 #endif /* INVARIANTS */ 10535 adp->ad_state &= ~ATTACHED; 10536 adp->ad_state |= UNDONE; 10537 } 10538 /* 10539 * The on-disk inode cannot claim to be any larger than the last 10540 * fragment that has been written. Otherwise, the on-disk inode 10541 * might have fragments that were not the last block in the file 10542 * which would corrupt the filesystem. 10543 */ 10544 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10545 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10546 if (adp->ad_offset >= UFS_NDADDR) 10547 break; 10548 dp->di_db[adp->ad_offset] = adp->ad_oldblkno; 10549 /* keep going until hitting a rollback to a frag */ 10550 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10551 continue; 10552 dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10553 for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) { 10554 #ifdef INVARIANTS 10555 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) 10556 panic("initiate_write_inodeblock_ufs2: " 10557 "lost dep2"); 10558 #endif /* INVARIANTS */ 10559 dp->di_db[i] = 0; 10560 } 10561 for (i = 0; i < UFS_NIADDR; i++) { 10562 #ifdef INVARIANTS 10563 if (dp->di_ib[i] != 0 && 10564 (deplist & ((1 << UFS_NDADDR) << i)) == 0) 10565 panic("initiate_write_inodeblock_ufs2: " 10566 "lost dep3"); 10567 #endif /* INVARIANTS */ 10568 dp->di_ib[i] = 0; 10569 } 10570 ffs_update_dinode_ckhash(fs, dp); 10571 return; 10572 } 10573 /* 10574 * If we have zero'ed out the last allocated block of the file, 10575 * roll back the size to the last currently allocated block. 10576 * We know that this last allocated block is a full-sized as 10577 * we already checked for fragments in the loop above. 10578 */ 10579 if (lastadp != NULL && 10580 dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10581 for (i = lastadp->ad_offset; i >= 0; i--) 10582 if (dp->di_db[i] != 0) 10583 break; 10584 dp->di_size = (i + 1) * fs->fs_bsize; 10585 } 10586 /* 10587 * The only dependencies are for indirect blocks. 10588 * 10589 * The file size for indirect block additions is not guaranteed. 10590 * Such a guarantee would be non-trivial to achieve. The conventional 10591 * synchronous write implementation also does not make this guarantee. 10592 * Fsck should catch and fix discrepancies. Arguably, the file size 10593 * can be over-estimated without destroying integrity when the file 10594 * moves into the indirect blocks (i.e., is large). If we want to 10595 * postpone fsck, we are stuck with this argument. 10596 */ 10597 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 10598 dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0; 10599 ffs_update_dinode_ckhash(fs, dp); 10600 } 10601 10602 /* 10603 * Cancel an indirdep as a result of truncation. Release all of the 10604 * children allocindirs and place their journal work on the appropriate 10605 * list. 10606 */ 10607 static void 10608 cancel_indirdep(indirdep, bp, freeblks) 10609 struct indirdep *indirdep; 10610 struct buf *bp; 10611 struct freeblks *freeblks; 10612 { 10613 struct allocindir *aip; 10614 10615 /* 10616 * None of the indirect pointers will ever be visible, 10617 * so they can simply be tossed. GOINGAWAY ensures 10618 * that allocated pointers will be saved in the buffer 10619 * cache until they are freed. Note that they will 10620 * only be able to be found by their physical address 10621 * since the inode mapping the logical address will 10622 * be gone. The save buffer used for the safe copy 10623 * was allocated in setup_allocindir_phase2 using 10624 * the physical address so it could be used for this 10625 * purpose. Hence we swap the safe copy with the real 10626 * copy, allowing the safe copy to be freed and holding 10627 * on to the real copy for later use in indir_trunc. 10628 */ 10629 if (indirdep->ir_state & GOINGAWAY) 10630 panic("cancel_indirdep: already gone"); 10631 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 10632 indirdep->ir_state |= DEPCOMPLETE; 10633 LIST_REMOVE(indirdep, ir_next); 10634 } 10635 indirdep->ir_state |= GOINGAWAY; 10636 /* 10637 * Pass in bp for blocks still have journal writes 10638 * pending so we can cancel them on their own. 10639 */ 10640 while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != NULL) 10641 cancel_allocindir(aip, bp, freeblks, 0); 10642 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL) 10643 cancel_allocindir(aip, NULL, freeblks, 0); 10644 while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL) 10645 cancel_allocindir(aip, NULL, freeblks, 0); 10646 while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) 10647 cancel_allocindir(aip, NULL, freeblks, 0); 10648 /* 10649 * If there are pending partial truncations we need to keep the 10650 * old block copy around until they complete. This is because 10651 * the current b_data is not a perfect superset of the available 10652 * blocks. 10653 */ 10654 if (TAILQ_EMPTY(&indirdep->ir_trunc)) 10655 bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount); 10656 else 10657 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); 10658 WORKLIST_REMOVE(&indirdep->ir_list); 10659 WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list); 10660 indirdep->ir_bp = NULL; 10661 indirdep->ir_freeblks = freeblks; 10662 } 10663 10664 /* 10665 * Free an indirdep once it no longer has new pointers to track. 10666 */ 10667 static void 10668 free_indirdep(indirdep) 10669 struct indirdep *indirdep; 10670 { 10671 10672 KASSERT(TAILQ_EMPTY(&indirdep->ir_trunc), 10673 ("free_indirdep: Indir trunc list not empty.")); 10674 KASSERT(LIST_EMPTY(&indirdep->ir_completehd), 10675 ("free_indirdep: Complete head not empty.")); 10676 KASSERT(LIST_EMPTY(&indirdep->ir_writehd), 10677 ("free_indirdep: write head not empty.")); 10678 KASSERT(LIST_EMPTY(&indirdep->ir_donehd), 10679 ("free_indirdep: done head not empty.")); 10680 KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd), 10681 ("free_indirdep: deplist head not empty.")); 10682 KASSERT((indirdep->ir_state & DEPCOMPLETE), 10683 ("free_indirdep: %p still on newblk list.", indirdep)); 10684 KASSERT(indirdep->ir_saveddata == NULL, 10685 ("free_indirdep: %p still has saved data.", indirdep)); 10686 if (indirdep->ir_state & ONWORKLIST) 10687 WORKLIST_REMOVE(&indirdep->ir_list); 10688 WORKITEM_FREE(indirdep, D_INDIRDEP); 10689 } 10690 10691 /* 10692 * Called before a write to an indirdep. This routine is responsible for 10693 * rolling back pointers to a safe state which includes only those 10694 * allocindirs which have been completed. 10695 */ 10696 static void 10697 initiate_write_indirdep(indirdep, bp) 10698 struct indirdep *indirdep; 10699 struct buf *bp; 10700 { 10701 struct ufsmount *ump; 10702 10703 indirdep->ir_state |= IOSTARTED; 10704 if (indirdep->ir_state & GOINGAWAY) 10705 panic("disk_io_initiation: indirdep gone"); 10706 /* 10707 * If there are no remaining dependencies, this will be writing 10708 * the real pointers. 10709 */ 10710 if (LIST_EMPTY(&indirdep->ir_deplisthd) && 10711 TAILQ_EMPTY(&indirdep->ir_trunc)) 10712 return; 10713 /* 10714 * Replace up-to-date version with safe version. 10715 */ 10716 if (indirdep->ir_saveddata == NULL) { 10717 ump = VFSTOUFS(indirdep->ir_list.wk_mp); 10718 LOCK_OWNED(ump); 10719 FREE_LOCK(ump); 10720 indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP, 10721 M_SOFTDEP_FLAGS); 10722 ACQUIRE_LOCK(ump); 10723 } 10724 indirdep->ir_state &= ~ATTACHED; 10725 indirdep->ir_state |= UNDONE; 10726 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); 10727 bcopy(indirdep->ir_savebp->b_data, bp->b_data, 10728 bp->b_bcount); 10729 } 10730 10731 /* 10732 * Called when an inode has been cleared in a cg bitmap. This finally 10733 * eliminates any canceled jaddrefs 10734 */ 10735 void 10736 softdep_setup_inofree(mp, bp, ino, wkhd) 10737 struct mount *mp; 10738 struct buf *bp; 10739 ino_t ino; 10740 struct workhead *wkhd; 10741 { 10742 struct worklist *wk, *wkn; 10743 struct inodedep *inodedep; 10744 struct ufsmount *ump; 10745 uint8_t *inosused; 10746 struct cg *cgp; 10747 struct fs *fs; 10748 10749 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 10750 ("softdep_setup_inofree called on non-softdep filesystem")); 10751 ump = VFSTOUFS(mp); 10752 ACQUIRE_LOCK(ump); 10753 fs = ump->um_fs; 10754 cgp = (struct cg *)bp->b_data; 10755 inosused = cg_inosused(cgp); 10756 if (isset(inosused, ino % fs->fs_ipg)) 10757 panic("softdep_setup_inofree: inode %ju not freed.", 10758 (uintmax_t)ino); 10759 if (inodedep_lookup(mp, ino, 0, &inodedep)) 10760 panic("softdep_setup_inofree: ino %ju has existing inodedep %p", 10761 (uintmax_t)ino, inodedep); 10762 if (wkhd) { 10763 LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) { 10764 if (wk->wk_type != D_JADDREF) 10765 continue; 10766 WORKLIST_REMOVE(wk); 10767 /* 10768 * We can free immediately even if the jaddref 10769 * isn't attached in a background write as now 10770 * the bitmaps are reconciled. 10771 */ 10772 wk->wk_state |= COMPLETE | ATTACHED; 10773 free_jaddref(WK_JADDREF(wk)); 10774 } 10775 jwork_move(&bp->b_dep, wkhd); 10776 } 10777 FREE_LOCK(ump); 10778 } 10779 10780 10781 /* 10782 * Called via ffs_blkfree() after a set of frags has been cleared from a cg 10783 * map. Any dependencies waiting for the write to clear are added to the 10784 * buf's list and any jnewblks that are being canceled are discarded 10785 * immediately. 10786 */ 10787 void 10788 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd) 10789 struct mount *mp; 10790 struct buf *bp; 10791 ufs2_daddr_t blkno; 10792 int frags; 10793 struct workhead *wkhd; 10794 { 10795 struct bmsafemap *bmsafemap; 10796 struct jnewblk *jnewblk; 10797 struct ufsmount *ump; 10798 struct worklist *wk; 10799 struct fs *fs; 10800 #ifdef INVARIANTS 10801 uint8_t *blksfree; 10802 struct cg *cgp; 10803 ufs2_daddr_t jstart; 10804 ufs2_daddr_t jend; 10805 ufs2_daddr_t end; 10806 long bno; 10807 int i; 10808 #endif 10809 10810 CTR3(KTR_SUJ, 10811 "softdep_setup_blkfree: blkno %jd frags %d wk head %p", 10812 blkno, frags, wkhd); 10813 10814 ump = VFSTOUFS(mp); 10815 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 10816 ("softdep_setup_blkfree called on non-softdep filesystem")); 10817 ACQUIRE_LOCK(ump); 10818 /* Lookup the bmsafemap so we track when it is dirty. */ 10819 fs = ump->um_fs; 10820 bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL); 10821 /* 10822 * Detach any jnewblks which have been canceled. They must linger 10823 * until the bitmap is cleared again by ffs_blkfree() to prevent 10824 * an unjournaled allocation from hitting the disk. 10825 */ 10826 if (wkhd) { 10827 while ((wk = LIST_FIRST(wkhd)) != NULL) { 10828 CTR2(KTR_SUJ, 10829 "softdep_setup_blkfree: blkno %jd wk type %d", 10830 blkno, wk->wk_type); 10831 WORKLIST_REMOVE(wk); 10832 if (wk->wk_type != D_JNEWBLK) { 10833 WORKLIST_INSERT(&bmsafemap->sm_freehd, wk); 10834 continue; 10835 } 10836 jnewblk = WK_JNEWBLK(wk); 10837 KASSERT(jnewblk->jn_state & GOINGAWAY, 10838 ("softdep_setup_blkfree: jnewblk not canceled.")); 10839 #ifdef INVARIANTS 10840 /* 10841 * Assert that this block is free in the bitmap 10842 * before we discard the jnewblk. 10843 */ 10844 cgp = (struct cg *)bp->b_data; 10845 blksfree = cg_blksfree(cgp); 10846 bno = dtogd(fs, jnewblk->jn_blkno); 10847 for (i = jnewblk->jn_oldfrags; 10848 i < jnewblk->jn_frags; i++) { 10849 if (isset(blksfree, bno + i)) 10850 continue; 10851 panic("softdep_setup_blkfree: not free"); 10852 } 10853 #endif 10854 /* 10855 * Even if it's not attached we can free immediately 10856 * as the new bitmap is correct. 10857 */ 10858 wk->wk_state |= COMPLETE | ATTACHED; 10859 free_jnewblk(jnewblk); 10860 } 10861 } 10862 10863 #ifdef INVARIANTS 10864 /* 10865 * Assert that we are not freeing a block which has an outstanding 10866 * allocation dependency. 10867 */ 10868 fs = VFSTOUFS(mp)->um_fs; 10869 bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL); 10870 end = blkno + frags; 10871 LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) { 10872 /* 10873 * Don't match against blocks that will be freed when the 10874 * background write is done. 10875 */ 10876 if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) == 10877 (COMPLETE | DEPCOMPLETE)) 10878 continue; 10879 jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags; 10880 jend = jnewblk->jn_blkno + jnewblk->jn_frags; 10881 if ((blkno >= jstart && blkno < jend) || 10882 (end > jstart && end <= jend)) { 10883 printf("state 0x%X %jd - %d %d dep %p\n", 10884 jnewblk->jn_state, jnewblk->jn_blkno, 10885 jnewblk->jn_oldfrags, jnewblk->jn_frags, 10886 jnewblk->jn_dep); 10887 panic("softdep_setup_blkfree: " 10888 "%jd-%jd(%d) overlaps with %jd-%jd", 10889 blkno, end, frags, jstart, jend); 10890 } 10891 } 10892 #endif 10893 FREE_LOCK(ump); 10894 } 10895 10896 /* 10897 * Revert a block allocation when the journal record that describes it 10898 * is not yet written. 10899 */ 10900 static int 10901 jnewblk_rollback(jnewblk, fs, cgp, blksfree) 10902 struct jnewblk *jnewblk; 10903 struct fs *fs; 10904 struct cg *cgp; 10905 uint8_t *blksfree; 10906 { 10907 ufs1_daddr_t fragno; 10908 long cgbno, bbase; 10909 int frags, blk; 10910 int i; 10911 10912 frags = 0; 10913 cgbno = dtogd(fs, jnewblk->jn_blkno); 10914 /* 10915 * We have to test which frags need to be rolled back. We may 10916 * be operating on a stale copy when doing background writes. 10917 */ 10918 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) 10919 if (isclr(blksfree, cgbno + i)) 10920 frags++; 10921 if (frags == 0) 10922 return (0); 10923 /* 10924 * This is mostly ffs_blkfree() sans some validation and 10925 * superblock updates. 10926 */ 10927 if (frags == fs->fs_frag) { 10928 fragno = fragstoblks(fs, cgbno); 10929 ffs_setblock(fs, blksfree, fragno); 10930 ffs_clusteracct(fs, cgp, fragno, 1); 10931 cgp->cg_cs.cs_nbfree++; 10932 } else { 10933 cgbno += jnewblk->jn_oldfrags; 10934 bbase = cgbno - fragnum(fs, cgbno); 10935 /* Decrement the old frags. */ 10936 blk = blkmap(fs, blksfree, bbase); 10937 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 10938 /* Deallocate the fragment */ 10939 for (i = 0; i < frags; i++) 10940 setbit(blksfree, cgbno + i); 10941 cgp->cg_cs.cs_nffree += frags; 10942 /* Add back in counts associated with the new frags */ 10943 blk = blkmap(fs, blksfree, bbase); 10944 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 10945 /* If a complete block has been reassembled, account for it. */ 10946 fragno = fragstoblks(fs, bbase); 10947 if (ffs_isblock(fs, blksfree, fragno)) { 10948 cgp->cg_cs.cs_nffree -= fs->fs_frag; 10949 ffs_clusteracct(fs, cgp, fragno, 1); 10950 cgp->cg_cs.cs_nbfree++; 10951 } 10952 } 10953 stat_jnewblk++; 10954 jnewblk->jn_state &= ~ATTACHED; 10955 jnewblk->jn_state |= UNDONE; 10956 10957 return (frags); 10958 } 10959 10960 static void 10961 initiate_write_bmsafemap(bmsafemap, bp) 10962 struct bmsafemap *bmsafemap; 10963 struct buf *bp; /* The cg block. */ 10964 { 10965 struct jaddref *jaddref; 10966 struct jnewblk *jnewblk; 10967 uint8_t *inosused; 10968 uint8_t *blksfree; 10969 struct cg *cgp; 10970 struct fs *fs; 10971 ino_t ino; 10972 10973 /* 10974 * If this is a background write, we did this at the time that 10975 * the copy was made, so do not need to do it again. 10976 */ 10977 if (bmsafemap->sm_state & IOSTARTED) 10978 return; 10979 bmsafemap->sm_state |= IOSTARTED; 10980 /* 10981 * Clear any inode allocations which are pending journal writes. 10982 */ 10983 if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) { 10984 cgp = (struct cg *)bp->b_data; 10985 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 10986 inosused = cg_inosused(cgp); 10987 LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) { 10988 ino = jaddref->ja_ino % fs->fs_ipg; 10989 if (isset(inosused, ino)) { 10990 if ((jaddref->ja_mode & IFMT) == IFDIR) 10991 cgp->cg_cs.cs_ndir--; 10992 cgp->cg_cs.cs_nifree++; 10993 clrbit(inosused, ino); 10994 jaddref->ja_state &= ~ATTACHED; 10995 jaddref->ja_state |= UNDONE; 10996 stat_jaddref++; 10997 } else 10998 panic("initiate_write_bmsafemap: inode %ju " 10999 "marked free", (uintmax_t)jaddref->ja_ino); 11000 } 11001 } 11002 /* 11003 * Clear any block allocations which are pending journal writes. 11004 */ 11005 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) { 11006 cgp = (struct cg *)bp->b_data; 11007 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 11008 blksfree = cg_blksfree(cgp); 11009 LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) { 11010 if (jnewblk_rollback(jnewblk, fs, cgp, blksfree)) 11011 continue; 11012 panic("initiate_write_bmsafemap: block %jd " 11013 "marked free", jnewblk->jn_blkno); 11014 } 11015 } 11016 /* 11017 * Move allocation lists to the written lists so they can be 11018 * cleared once the block write is complete. 11019 */ 11020 LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr, 11021 inodedep, id_deps); 11022 LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr, 11023 newblk, nb_deps); 11024 LIST_SWAP(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, worklist, 11025 wk_list); 11026 } 11027 11028 /* 11029 * This routine is called during the completion interrupt 11030 * service routine for a disk write (from the procedure called 11031 * by the device driver to inform the filesystem caches of 11032 * a request completion). It should be called early in this 11033 * procedure, before the block is made available to other 11034 * processes or other routines are called. 11035 * 11036 */ 11037 static void 11038 softdep_disk_write_complete(bp) 11039 struct buf *bp; /* describes the completed disk write */ 11040 { 11041 struct worklist *wk; 11042 struct worklist *owk; 11043 struct ufsmount *ump; 11044 struct workhead reattach; 11045 struct freeblks *freeblks; 11046 struct buf *sbp; 11047 11048 ump = softdep_bp_to_mp(bp); 11049 KASSERT(LIST_EMPTY(&bp->b_dep) || ump != NULL, 11050 ("softdep_disk_write_complete: softdep_bp_to_mp returned NULL " 11051 "with outstanding dependencies for buffer %p", bp)); 11052 if (ump == NULL) 11053 return; 11054 /* 11055 * If an error occurred while doing the write, then the data 11056 * has not hit the disk and the dependencies cannot be processed. 11057 * But we do have to go through and roll forward any dependencies 11058 * that were rolled back before the disk write. 11059 */ 11060 sbp = NULL; 11061 ACQUIRE_LOCK(ump); 11062 if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0) { 11063 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 11064 switch (wk->wk_type) { 11065 11066 case D_PAGEDEP: 11067 handle_written_filepage(WK_PAGEDEP(wk), bp, 0); 11068 continue; 11069 11070 case D_INODEDEP: 11071 handle_written_inodeblock(WK_INODEDEP(wk), 11072 bp, 0); 11073 continue; 11074 11075 case D_BMSAFEMAP: 11076 handle_written_bmsafemap(WK_BMSAFEMAP(wk), 11077 bp, 0); 11078 continue; 11079 11080 case D_INDIRDEP: 11081 handle_written_indirdep(WK_INDIRDEP(wk), 11082 bp, &sbp, 0); 11083 continue; 11084 default: 11085 /* nothing to roll forward */ 11086 continue; 11087 } 11088 } 11089 FREE_LOCK(ump); 11090 if (sbp) 11091 brelse(sbp); 11092 return; 11093 } 11094 LIST_INIT(&reattach); 11095 11096 /* 11097 * Ump SU lock must not be released anywhere in this code segment. 11098 */ 11099 owk = NULL; 11100 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) { 11101 WORKLIST_REMOVE(wk); 11102 atomic_add_long(&dep_write[wk->wk_type], 1); 11103 if (wk == owk) 11104 panic("duplicate worklist: %p\n", wk); 11105 owk = wk; 11106 switch (wk->wk_type) { 11107 11108 case D_PAGEDEP: 11109 if (handle_written_filepage(WK_PAGEDEP(wk), bp, 11110 WRITESUCCEEDED)) 11111 WORKLIST_INSERT(&reattach, wk); 11112 continue; 11113 11114 case D_INODEDEP: 11115 if (handle_written_inodeblock(WK_INODEDEP(wk), bp, 11116 WRITESUCCEEDED)) 11117 WORKLIST_INSERT(&reattach, wk); 11118 continue; 11119 11120 case D_BMSAFEMAP: 11121 if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp, 11122 WRITESUCCEEDED)) 11123 WORKLIST_INSERT(&reattach, wk); 11124 continue; 11125 11126 case D_MKDIR: 11127 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); 11128 continue; 11129 11130 case D_ALLOCDIRECT: 11131 wk->wk_state |= COMPLETE; 11132 handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL); 11133 continue; 11134 11135 case D_ALLOCINDIR: 11136 wk->wk_state |= COMPLETE; 11137 handle_allocindir_partdone(WK_ALLOCINDIR(wk)); 11138 continue; 11139 11140 case D_INDIRDEP: 11141 if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp, 11142 WRITESUCCEEDED)) 11143 WORKLIST_INSERT(&reattach, wk); 11144 continue; 11145 11146 case D_FREEBLKS: 11147 wk->wk_state |= COMPLETE; 11148 freeblks = WK_FREEBLKS(wk); 11149 if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE && 11150 LIST_EMPTY(&freeblks->fb_jblkdephd)) 11151 add_to_worklist(wk, WK_NODELAY); 11152 continue; 11153 11154 case D_FREEWORK: 11155 handle_written_freework(WK_FREEWORK(wk)); 11156 break; 11157 11158 case D_JSEGDEP: 11159 free_jsegdep(WK_JSEGDEP(wk)); 11160 continue; 11161 11162 case D_JSEG: 11163 handle_written_jseg(WK_JSEG(wk), bp); 11164 continue; 11165 11166 case D_SBDEP: 11167 if (handle_written_sbdep(WK_SBDEP(wk), bp)) 11168 WORKLIST_INSERT(&reattach, wk); 11169 continue; 11170 11171 case D_FREEDEP: 11172 free_freedep(WK_FREEDEP(wk)); 11173 continue; 11174 11175 default: 11176 panic("handle_disk_write_complete: Unknown type %s", 11177 TYPENAME(wk->wk_type)); 11178 /* NOTREACHED */ 11179 } 11180 } 11181 /* 11182 * Reattach any requests that must be redone. 11183 */ 11184 while ((wk = LIST_FIRST(&reattach)) != NULL) { 11185 WORKLIST_REMOVE(wk); 11186 WORKLIST_INSERT(&bp->b_dep, wk); 11187 } 11188 FREE_LOCK(ump); 11189 if (sbp) 11190 brelse(sbp); 11191 } 11192 11193 /* 11194 * Called from within softdep_disk_write_complete above. 11195 */ 11196 static void 11197 handle_allocdirect_partdone(adp, wkhd) 11198 struct allocdirect *adp; /* the completed allocdirect */ 11199 struct workhead *wkhd; /* Work to do when inode is writtne. */ 11200 { 11201 struct allocdirectlst *listhead; 11202 struct allocdirect *listadp; 11203 struct inodedep *inodedep; 11204 long bsize; 11205 11206 LOCK_OWNED(VFSTOUFS(adp->ad_block.nb_list.wk_mp)); 11207 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 11208 return; 11209 /* 11210 * The on-disk inode cannot claim to be any larger than the last 11211 * fragment that has been written. Otherwise, the on-disk inode 11212 * might have fragments that were not the last block in the file 11213 * which would corrupt the filesystem. Thus, we cannot free any 11214 * allocdirects after one whose ad_oldblkno claims a fragment as 11215 * these blocks must be rolled back to zero before writing the inode. 11216 * We check the currently active set of allocdirects in id_inoupdt 11217 * or id_extupdt as appropriate. 11218 */ 11219 inodedep = adp->ad_inodedep; 11220 bsize = inodedep->id_fs->fs_bsize; 11221 if (adp->ad_state & EXTDATA) 11222 listhead = &inodedep->id_extupdt; 11223 else 11224 listhead = &inodedep->id_inoupdt; 11225 TAILQ_FOREACH(listadp, listhead, ad_next) { 11226 /* found our block */ 11227 if (listadp == adp) 11228 break; 11229 /* continue if ad_oldlbn is not a fragment */ 11230 if (listadp->ad_oldsize == 0 || 11231 listadp->ad_oldsize == bsize) 11232 continue; 11233 /* hit a fragment */ 11234 return; 11235 } 11236 /* 11237 * If we have reached the end of the current list without 11238 * finding the just finished dependency, then it must be 11239 * on the future dependency list. Future dependencies cannot 11240 * be freed until they are moved to the current list. 11241 */ 11242 if (listadp == NULL) { 11243 #ifdef INVARIANTS 11244 if (adp->ad_state & EXTDATA) 11245 listhead = &inodedep->id_newextupdt; 11246 else 11247 listhead = &inodedep->id_newinoupdt; 11248 TAILQ_FOREACH(listadp, listhead, ad_next) 11249 /* found our block */ 11250 if (listadp == adp) 11251 break; 11252 if (listadp == NULL) 11253 panic("handle_allocdirect_partdone: lost dep"); 11254 #endif /* INVARIANTS */ 11255 return; 11256 } 11257 /* 11258 * If we have found the just finished dependency, then queue 11259 * it along with anything that follows it that is complete. 11260 * Since the pointer has not yet been written in the inode 11261 * as the dependency prevents it, place the allocdirect on the 11262 * bufwait list where it will be freed once the pointer is 11263 * valid. 11264 */ 11265 if (wkhd == NULL) 11266 wkhd = &inodedep->id_bufwait; 11267 for (; adp; adp = listadp) { 11268 listadp = TAILQ_NEXT(adp, ad_next); 11269 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 11270 return; 11271 TAILQ_REMOVE(listhead, adp, ad_next); 11272 WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list); 11273 } 11274 } 11275 11276 /* 11277 * Called from within softdep_disk_write_complete above. This routine 11278 * completes successfully written allocindirs. 11279 */ 11280 static void 11281 handle_allocindir_partdone(aip) 11282 struct allocindir *aip; /* the completed allocindir */ 11283 { 11284 struct indirdep *indirdep; 11285 11286 if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE) 11287 return; 11288 indirdep = aip->ai_indirdep; 11289 LIST_REMOVE(aip, ai_next); 11290 /* 11291 * Don't set a pointer while the buffer is undergoing IO or while 11292 * we have active truncations. 11293 */ 11294 if (indirdep->ir_state & UNDONE || !TAILQ_EMPTY(&indirdep->ir_trunc)) { 11295 LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next); 11296 return; 11297 } 11298 if (indirdep->ir_state & UFS1FMT) 11299 ((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 11300 aip->ai_newblkno; 11301 else 11302 ((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 11303 aip->ai_newblkno; 11304 /* 11305 * Await the pointer write before freeing the allocindir. 11306 */ 11307 LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next); 11308 } 11309 11310 /* 11311 * Release segments held on a jwork list. 11312 */ 11313 static void 11314 handle_jwork(wkhd) 11315 struct workhead *wkhd; 11316 { 11317 struct worklist *wk; 11318 11319 while ((wk = LIST_FIRST(wkhd)) != NULL) { 11320 WORKLIST_REMOVE(wk); 11321 switch (wk->wk_type) { 11322 case D_JSEGDEP: 11323 free_jsegdep(WK_JSEGDEP(wk)); 11324 continue; 11325 case D_FREEDEP: 11326 free_freedep(WK_FREEDEP(wk)); 11327 continue; 11328 case D_FREEFRAG: 11329 rele_jseg(WK_JSEG(WK_FREEFRAG(wk)->ff_jdep)); 11330 WORKITEM_FREE(wk, D_FREEFRAG); 11331 continue; 11332 case D_FREEWORK: 11333 handle_written_freework(WK_FREEWORK(wk)); 11334 continue; 11335 default: 11336 panic("handle_jwork: Unknown type %s\n", 11337 TYPENAME(wk->wk_type)); 11338 } 11339 } 11340 } 11341 11342 /* 11343 * Handle the bufwait list on an inode when it is safe to release items 11344 * held there. This normally happens after an inode block is written but 11345 * may be delayed and handled later if there are pending journal items that 11346 * are not yet safe to be released. 11347 */ 11348 static struct freefile * 11349 handle_bufwait(inodedep, refhd) 11350 struct inodedep *inodedep; 11351 struct workhead *refhd; 11352 { 11353 struct jaddref *jaddref; 11354 struct freefile *freefile; 11355 struct worklist *wk; 11356 11357 freefile = NULL; 11358 while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) { 11359 WORKLIST_REMOVE(wk); 11360 switch (wk->wk_type) { 11361 case D_FREEFILE: 11362 /* 11363 * We defer adding freefile to the worklist 11364 * until all other additions have been made to 11365 * ensure that it will be done after all the 11366 * old blocks have been freed. 11367 */ 11368 if (freefile != NULL) 11369 panic("handle_bufwait: freefile"); 11370 freefile = WK_FREEFILE(wk); 11371 continue; 11372 11373 case D_MKDIR: 11374 handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT); 11375 continue; 11376 11377 case D_DIRADD: 11378 diradd_inode_written(WK_DIRADD(wk), inodedep); 11379 continue; 11380 11381 case D_FREEFRAG: 11382 wk->wk_state |= COMPLETE; 11383 if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE) 11384 add_to_worklist(wk, 0); 11385 continue; 11386 11387 case D_DIRREM: 11388 wk->wk_state |= COMPLETE; 11389 add_to_worklist(wk, 0); 11390 continue; 11391 11392 case D_ALLOCDIRECT: 11393 case D_ALLOCINDIR: 11394 free_newblk(WK_NEWBLK(wk)); 11395 continue; 11396 11397 case D_JNEWBLK: 11398 wk->wk_state |= COMPLETE; 11399 free_jnewblk(WK_JNEWBLK(wk)); 11400 continue; 11401 11402 /* 11403 * Save freed journal segments and add references on 11404 * the supplied list which will delay their release 11405 * until the cg bitmap is cleared on disk. 11406 */ 11407 case D_JSEGDEP: 11408 if (refhd == NULL) 11409 free_jsegdep(WK_JSEGDEP(wk)); 11410 else 11411 WORKLIST_INSERT(refhd, wk); 11412 continue; 11413 11414 case D_JADDREF: 11415 jaddref = WK_JADDREF(wk); 11416 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, 11417 if_deps); 11418 /* 11419 * Transfer any jaddrefs to the list to be freed with 11420 * the bitmap if we're handling a removed file. 11421 */ 11422 if (refhd == NULL) { 11423 wk->wk_state |= COMPLETE; 11424 free_jaddref(jaddref); 11425 } else 11426 WORKLIST_INSERT(refhd, wk); 11427 continue; 11428 11429 default: 11430 panic("handle_bufwait: Unknown type %p(%s)", 11431 wk, TYPENAME(wk->wk_type)); 11432 /* NOTREACHED */ 11433 } 11434 } 11435 return (freefile); 11436 } 11437 /* 11438 * Called from within softdep_disk_write_complete above to restore 11439 * in-memory inode block contents to their most up-to-date state. Note 11440 * that this routine is always called from interrupt level with further 11441 * interrupts from this device blocked. 11442 * 11443 * If the write did not succeed, we will do all the roll-forward 11444 * operations, but we will not take the actions that will allow its 11445 * dependencies to be processed. 11446 */ 11447 static int 11448 handle_written_inodeblock(inodedep, bp, flags) 11449 struct inodedep *inodedep; 11450 struct buf *bp; /* buffer containing the inode block */ 11451 int flags; 11452 { 11453 struct freefile *freefile; 11454 struct allocdirect *adp, *nextadp; 11455 struct ufs1_dinode *dp1 = NULL; 11456 struct ufs2_dinode *dp2 = NULL; 11457 struct workhead wkhd; 11458 int hadchanges, fstype; 11459 ino_t freelink; 11460 11461 LIST_INIT(&wkhd); 11462 hadchanges = 0; 11463 freefile = NULL; 11464 if ((inodedep->id_state & IOSTARTED) == 0) 11465 panic("handle_written_inodeblock: not started"); 11466 inodedep->id_state &= ~IOSTARTED; 11467 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) { 11468 fstype = UFS1; 11469 dp1 = (struct ufs1_dinode *)bp->b_data + 11470 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 11471 freelink = dp1->di_freelink; 11472 } else { 11473 fstype = UFS2; 11474 dp2 = (struct ufs2_dinode *)bp->b_data + 11475 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 11476 freelink = dp2->di_freelink; 11477 } 11478 /* 11479 * Leave this inodeblock dirty until it's in the list. 11480 */ 11481 if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED && 11482 (flags & WRITESUCCEEDED)) { 11483 struct inodedep *inon; 11484 11485 inon = TAILQ_NEXT(inodedep, id_unlinked); 11486 if ((inon == NULL && freelink == 0) || 11487 (inon && inon->id_ino == freelink)) { 11488 if (inon) 11489 inon->id_state |= UNLINKPREV; 11490 inodedep->id_state |= UNLINKNEXT; 11491 } 11492 hadchanges = 1; 11493 } 11494 /* 11495 * If we had to rollback the inode allocation because of 11496 * bitmaps being incomplete, then simply restore it. 11497 * Keep the block dirty so that it will not be reclaimed until 11498 * all associated dependencies have been cleared and the 11499 * corresponding updates written to disk. 11500 */ 11501 if (inodedep->id_savedino1 != NULL) { 11502 hadchanges = 1; 11503 if (fstype == UFS1) 11504 *dp1 = *inodedep->id_savedino1; 11505 else 11506 *dp2 = *inodedep->id_savedino2; 11507 free(inodedep->id_savedino1, M_SAVEDINO); 11508 inodedep->id_savedino1 = NULL; 11509 if ((bp->b_flags & B_DELWRI) == 0) 11510 stat_inode_bitmap++; 11511 bdirty(bp); 11512 /* 11513 * If the inode is clear here and GOINGAWAY it will never 11514 * be written. Process the bufwait and clear any pending 11515 * work which may include the freefile. 11516 */ 11517 if (inodedep->id_state & GOINGAWAY) 11518 goto bufwait; 11519 return (1); 11520 } 11521 if (flags & WRITESUCCEEDED) 11522 inodedep->id_state |= COMPLETE; 11523 /* 11524 * Roll forward anything that had to be rolled back before 11525 * the inode could be updated. 11526 */ 11527 for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) { 11528 nextadp = TAILQ_NEXT(adp, ad_next); 11529 if (adp->ad_state & ATTACHED) 11530 panic("handle_written_inodeblock: new entry"); 11531 if (fstype == UFS1) { 11532 if (adp->ad_offset < UFS_NDADDR) { 11533 if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno) 11534 panic("%s %s #%jd mismatch %d != %jd", 11535 "handle_written_inodeblock:", 11536 "direct pointer", 11537 (intmax_t)adp->ad_offset, 11538 dp1->di_db[adp->ad_offset], 11539 (intmax_t)adp->ad_oldblkno); 11540 dp1->di_db[adp->ad_offset] = adp->ad_newblkno; 11541 } else { 11542 if (dp1->di_ib[adp->ad_offset - UFS_NDADDR] != 11543 0) 11544 panic("%s: %s #%jd allocated as %d", 11545 "handle_written_inodeblock", 11546 "indirect pointer", 11547 (intmax_t)adp->ad_offset - 11548 UFS_NDADDR, 11549 dp1->di_ib[adp->ad_offset - 11550 UFS_NDADDR]); 11551 dp1->di_ib[adp->ad_offset - UFS_NDADDR] = 11552 adp->ad_newblkno; 11553 } 11554 } else { 11555 if (adp->ad_offset < UFS_NDADDR) { 11556 if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno) 11557 panic("%s: %s #%jd %s %jd != %jd", 11558 "handle_written_inodeblock", 11559 "direct pointer", 11560 (intmax_t)adp->ad_offset, "mismatch", 11561 (intmax_t)dp2->di_db[adp->ad_offset], 11562 (intmax_t)adp->ad_oldblkno); 11563 dp2->di_db[adp->ad_offset] = adp->ad_newblkno; 11564 } else { 11565 if (dp2->di_ib[adp->ad_offset - UFS_NDADDR] != 11566 0) 11567 panic("%s: %s #%jd allocated as %jd", 11568 "handle_written_inodeblock", 11569 "indirect pointer", 11570 (intmax_t)adp->ad_offset - 11571 UFS_NDADDR, 11572 (intmax_t) 11573 dp2->di_ib[adp->ad_offset - 11574 UFS_NDADDR]); 11575 dp2->di_ib[adp->ad_offset - UFS_NDADDR] = 11576 adp->ad_newblkno; 11577 } 11578 } 11579 adp->ad_state &= ~UNDONE; 11580 adp->ad_state |= ATTACHED; 11581 hadchanges = 1; 11582 } 11583 for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) { 11584 nextadp = TAILQ_NEXT(adp, ad_next); 11585 if (adp->ad_state & ATTACHED) 11586 panic("handle_written_inodeblock: new entry"); 11587 if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno) 11588 panic("%s: direct pointers #%jd %s %jd != %jd", 11589 "handle_written_inodeblock", 11590 (intmax_t)adp->ad_offset, "mismatch", 11591 (intmax_t)dp2->di_extb[adp->ad_offset], 11592 (intmax_t)adp->ad_oldblkno); 11593 dp2->di_extb[adp->ad_offset] = adp->ad_newblkno; 11594 adp->ad_state &= ~UNDONE; 11595 adp->ad_state |= ATTACHED; 11596 hadchanges = 1; 11597 } 11598 if (hadchanges && (bp->b_flags & B_DELWRI) == 0) 11599 stat_direct_blk_ptrs++; 11600 /* 11601 * Reset the file size to its most up-to-date value. 11602 */ 11603 if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1) 11604 panic("handle_written_inodeblock: bad size"); 11605 if (inodedep->id_savednlink > UFS_LINK_MAX) 11606 panic("handle_written_inodeblock: Invalid link count " 11607 "%jd for inodedep %p", (uintmax_t)inodedep->id_savednlink, 11608 inodedep); 11609 if (fstype == UFS1) { 11610 if (dp1->di_nlink != inodedep->id_savednlink) { 11611 dp1->di_nlink = inodedep->id_savednlink; 11612 hadchanges = 1; 11613 } 11614 if (dp1->di_size != inodedep->id_savedsize) { 11615 dp1->di_size = inodedep->id_savedsize; 11616 hadchanges = 1; 11617 } 11618 } else { 11619 if (dp2->di_nlink != inodedep->id_savednlink) { 11620 dp2->di_nlink = inodedep->id_savednlink; 11621 hadchanges = 1; 11622 } 11623 if (dp2->di_size != inodedep->id_savedsize) { 11624 dp2->di_size = inodedep->id_savedsize; 11625 hadchanges = 1; 11626 } 11627 if (dp2->di_extsize != inodedep->id_savedextsize) { 11628 dp2->di_extsize = inodedep->id_savedextsize; 11629 hadchanges = 1; 11630 } 11631 } 11632 inodedep->id_savedsize = -1; 11633 inodedep->id_savedextsize = -1; 11634 inodedep->id_savednlink = -1; 11635 /* 11636 * If there were any rollbacks in the inode block, then it must be 11637 * marked dirty so that its will eventually get written back in 11638 * its correct form. 11639 */ 11640 if (hadchanges) { 11641 if (fstype == UFS2) 11642 ffs_update_dinode_ckhash(inodedep->id_fs, dp2); 11643 bdirty(bp); 11644 } 11645 bufwait: 11646 /* 11647 * If the write did not succeed, we have done all the roll-forward 11648 * operations, but we cannot take the actions that will allow its 11649 * dependencies to be processed. 11650 */ 11651 if ((flags & WRITESUCCEEDED) == 0) 11652 return (hadchanges); 11653 /* 11654 * Process any allocdirects that completed during the update. 11655 */ 11656 if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL) 11657 handle_allocdirect_partdone(adp, &wkhd); 11658 if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 11659 handle_allocdirect_partdone(adp, &wkhd); 11660 /* 11661 * Process deallocations that were held pending until the 11662 * inode had been written to disk. Freeing of the inode 11663 * is delayed until after all blocks have been freed to 11664 * avoid creation of new <vfsid, inum, lbn> triples 11665 * before the old ones have been deleted. Completely 11666 * unlinked inodes are not processed until the unlinked 11667 * inode list is written or the last reference is removed. 11668 */ 11669 if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) { 11670 freefile = handle_bufwait(inodedep, NULL); 11671 if (freefile && !LIST_EMPTY(&wkhd)) { 11672 WORKLIST_INSERT(&wkhd, &freefile->fx_list); 11673 freefile = NULL; 11674 } 11675 } 11676 /* 11677 * Move rolled forward dependency completions to the bufwait list 11678 * now that those that were already written have been processed. 11679 */ 11680 if (!LIST_EMPTY(&wkhd) && hadchanges == 0) 11681 panic("handle_written_inodeblock: bufwait but no changes"); 11682 jwork_move(&inodedep->id_bufwait, &wkhd); 11683 11684 if (freefile != NULL) { 11685 /* 11686 * If the inode is goingaway it was never written. Fake up 11687 * the state here so free_inodedep() can succeed. 11688 */ 11689 if (inodedep->id_state & GOINGAWAY) 11690 inodedep->id_state |= COMPLETE | DEPCOMPLETE; 11691 if (free_inodedep(inodedep) == 0) 11692 panic("handle_written_inodeblock: live inodedep %p", 11693 inodedep); 11694 add_to_worklist(&freefile->fx_list, 0); 11695 return (0); 11696 } 11697 11698 /* 11699 * If no outstanding dependencies, free it. 11700 */ 11701 if (free_inodedep(inodedep) || 11702 (TAILQ_FIRST(&inodedep->id_inoreflst) == 0 && 11703 TAILQ_FIRST(&inodedep->id_inoupdt) == 0 && 11704 TAILQ_FIRST(&inodedep->id_extupdt) == 0 && 11705 LIST_FIRST(&inodedep->id_bufwait) == 0)) 11706 return (0); 11707 return (hadchanges); 11708 } 11709 11710 /* 11711 * Perform needed roll-forwards and kick off any dependencies that 11712 * can now be processed. 11713 * 11714 * If the write did not succeed, we will do all the roll-forward 11715 * operations, but we will not take the actions that will allow its 11716 * dependencies to be processed. 11717 */ 11718 static int 11719 handle_written_indirdep(indirdep, bp, bpp, flags) 11720 struct indirdep *indirdep; 11721 struct buf *bp; 11722 struct buf **bpp; 11723 int flags; 11724 { 11725 struct allocindir *aip; 11726 struct buf *sbp; 11727 int chgs; 11728 11729 if (indirdep->ir_state & GOINGAWAY) 11730 panic("handle_written_indirdep: indirdep gone"); 11731 if ((indirdep->ir_state & IOSTARTED) == 0) 11732 panic("handle_written_indirdep: IO not started"); 11733 chgs = 0; 11734 /* 11735 * If there were rollbacks revert them here. 11736 */ 11737 if (indirdep->ir_saveddata) { 11738 bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount); 11739 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 11740 free(indirdep->ir_saveddata, M_INDIRDEP); 11741 indirdep->ir_saveddata = NULL; 11742 } 11743 chgs = 1; 11744 } 11745 indirdep->ir_state &= ~(UNDONE | IOSTARTED); 11746 indirdep->ir_state |= ATTACHED; 11747 /* 11748 * If the write did not succeed, we have done all the roll-forward 11749 * operations, but we cannot take the actions that will allow its 11750 * dependencies to be processed. 11751 */ 11752 if ((flags & WRITESUCCEEDED) == 0) { 11753 stat_indir_blk_ptrs++; 11754 bdirty(bp); 11755 return (1); 11756 } 11757 /* 11758 * Move allocindirs with written pointers to the completehd if 11759 * the indirdep's pointer is not yet written. Otherwise 11760 * free them here. 11761 */ 11762 while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL) { 11763 LIST_REMOVE(aip, ai_next); 11764 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 11765 LIST_INSERT_HEAD(&indirdep->ir_completehd, aip, 11766 ai_next); 11767 newblk_freefrag(&aip->ai_block); 11768 continue; 11769 } 11770 free_newblk(&aip->ai_block); 11771 } 11772 /* 11773 * Move allocindirs that have finished dependency processing from 11774 * the done list to the write list after updating the pointers. 11775 */ 11776 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 11777 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL) { 11778 handle_allocindir_partdone(aip); 11779 if (aip == LIST_FIRST(&indirdep->ir_donehd)) 11780 panic("disk_write_complete: not gone"); 11781 chgs = 1; 11782 } 11783 } 11784 /* 11785 * Preserve the indirdep if there were any changes or if it is not 11786 * yet valid on disk. 11787 */ 11788 if (chgs) { 11789 stat_indir_blk_ptrs++; 11790 bdirty(bp); 11791 return (1); 11792 } 11793 /* 11794 * If there were no changes we can discard the savedbp and detach 11795 * ourselves from the buf. We are only carrying completed pointers 11796 * in this case. 11797 */ 11798 sbp = indirdep->ir_savebp; 11799 sbp->b_flags |= B_INVAL | B_NOCACHE; 11800 indirdep->ir_savebp = NULL; 11801 indirdep->ir_bp = NULL; 11802 if (*bpp != NULL) 11803 panic("handle_written_indirdep: bp already exists."); 11804 *bpp = sbp; 11805 /* 11806 * The indirdep may not be freed until its parent points at it. 11807 */ 11808 if (indirdep->ir_state & DEPCOMPLETE) 11809 free_indirdep(indirdep); 11810 11811 return (0); 11812 } 11813 11814 /* 11815 * Process a diradd entry after its dependent inode has been written. 11816 */ 11817 static void 11818 diradd_inode_written(dap, inodedep) 11819 struct diradd *dap; 11820 struct inodedep *inodedep; 11821 { 11822 11823 LOCK_OWNED(VFSTOUFS(dap->da_list.wk_mp)); 11824 dap->da_state |= COMPLETE; 11825 complete_diradd(dap); 11826 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 11827 } 11828 11829 /* 11830 * Returns true if the bmsafemap will have rollbacks when written. Must only 11831 * be called with the per-filesystem lock and the buf lock on the cg held. 11832 */ 11833 static int 11834 bmsafemap_backgroundwrite(bmsafemap, bp) 11835 struct bmsafemap *bmsafemap; 11836 struct buf *bp; 11837 { 11838 int dirty; 11839 11840 LOCK_OWNED(VFSTOUFS(bmsafemap->sm_list.wk_mp)); 11841 dirty = !LIST_EMPTY(&bmsafemap->sm_jaddrefhd) | 11842 !LIST_EMPTY(&bmsafemap->sm_jnewblkhd); 11843 /* 11844 * If we're initiating a background write we need to process the 11845 * rollbacks as they exist now, not as they exist when IO starts. 11846 * No other consumers will look at the contents of the shadowed 11847 * buf so this is safe to do here. 11848 */ 11849 if (bp->b_xflags & BX_BKGRDMARKER) 11850 initiate_write_bmsafemap(bmsafemap, bp); 11851 11852 return (dirty); 11853 } 11854 11855 /* 11856 * Re-apply an allocation when a cg write is complete. 11857 */ 11858 static int 11859 jnewblk_rollforward(jnewblk, fs, cgp, blksfree) 11860 struct jnewblk *jnewblk; 11861 struct fs *fs; 11862 struct cg *cgp; 11863 uint8_t *blksfree; 11864 { 11865 ufs1_daddr_t fragno; 11866 ufs2_daddr_t blkno; 11867 long cgbno, bbase; 11868 int frags, blk; 11869 int i; 11870 11871 frags = 0; 11872 cgbno = dtogd(fs, jnewblk->jn_blkno); 11873 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) { 11874 if (isclr(blksfree, cgbno + i)) 11875 panic("jnewblk_rollforward: re-allocated fragment"); 11876 frags++; 11877 } 11878 if (frags == fs->fs_frag) { 11879 blkno = fragstoblks(fs, cgbno); 11880 ffs_clrblock(fs, blksfree, (long)blkno); 11881 ffs_clusteracct(fs, cgp, blkno, -1); 11882 cgp->cg_cs.cs_nbfree--; 11883 } else { 11884 bbase = cgbno - fragnum(fs, cgbno); 11885 cgbno += jnewblk->jn_oldfrags; 11886 /* If a complete block had been reassembled, account for it. */ 11887 fragno = fragstoblks(fs, bbase); 11888 if (ffs_isblock(fs, blksfree, fragno)) { 11889 cgp->cg_cs.cs_nffree += fs->fs_frag; 11890 ffs_clusteracct(fs, cgp, fragno, -1); 11891 cgp->cg_cs.cs_nbfree--; 11892 } 11893 /* Decrement the old frags. */ 11894 blk = blkmap(fs, blksfree, bbase); 11895 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 11896 /* Allocate the fragment */ 11897 for (i = 0; i < frags; i++) 11898 clrbit(blksfree, cgbno + i); 11899 cgp->cg_cs.cs_nffree -= frags; 11900 /* Add back in counts associated with the new frags */ 11901 blk = blkmap(fs, blksfree, bbase); 11902 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 11903 } 11904 return (frags); 11905 } 11906 11907 /* 11908 * Complete a write to a bmsafemap structure. Roll forward any bitmap 11909 * changes if it's not a background write. Set all written dependencies 11910 * to DEPCOMPLETE and free the structure if possible. 11911 * 11912 * If the write did not succeed, we will do all the roll-forward 11913 * operations, but we will not take the actions that will allow its 11914 * dependencies to be processed. 11915 */ 11916 static int 11917 handle_written_bmsafemap(bmsafemap, bp, flags) 11918 struct bmsafemap *bmsafemap; 11919 struct buf *bp; 11920 int flags; 11921 { 11922 struct newblk *newblk; 11923 struct inodedep *inodedep; 11924 struct jaddref *jaddref, *jatmp; 11925 struct jnewblk *jnewblk, *jntmp; 11926 struct ufsmount *ump; 11927 uint8_t *inosused; 11928 uint8_t *blksfree; 11929 struct cg *cgp; 11930 struct fs *fs; 11931 ino_t ino; 11932 int foreground; 11933 int chgs; 11934 11935 if ((bmsafemap->sm_state & IOSTARTED) == 0) 11936 panic("handle_written_bmsafemap: Not started\n"); 11937 ump = VFSTOUFS(bmsafemap->sm_list.wk_mp); 11938 chgs = 0; 11939 bmsafemap->sm_state &= ~IOSTARTED; 11940 foreground = (bp->b_xflags & BX_BKGRDMARKER) == 0; 11941 /* 11942 * If write was successful, release journal work that was waiting 11943 * on the write. Otherwise move the work back. 11944 */ 11945 if (flags & WRITESUCCEEDED) 11946 handle_jwork(&bmsafemap->sm_freewr); 11947 else 11948 LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, 11949 worklist, wk_list); 11950 11951 /* 11952 * Restore unwritten inode allocation pending jaddref writes. 11953 */ 11954 if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) { 11955 cgp = (struct cg *)bp->b_data; 11956 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 11957 inosused = cg_inosused(cgp); 11958 LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd, 11959 ja_bmdeps, jatmp) { 11960 if ((jaddref->ja_state & UNDONE) == 0) 11961 continue; 11962 ino = jaddref->ja_ino % fs->fs_ipg; 11963 if (isset(inosused, ino)) 11964 panic("handle_written_bmsafemap: " 11965 "re-allocated inode"); 11966 /* Do the roll-forward only if it's a real copy. */ 11967 if (foreground) { 11968 if ((jaddref->ja_mode & IFMT) == IFDIR) 11969 cgp->cg_cs.cs_ndir++; 11970 cgp->cg_cs.cs_nifree--; 11971 setbit(inosused, ino); 11972 chgs = 1; 11973 } 11974 jaddref->ja_state &= ~UNDONE; 11975 jaddref->ja_state |= ATTACHED; 11976 free_jaddref(jaddref); 11977 } 11978 } 11979 /* 11980 * Restore any block allocations which are pending journal writes. 11981 */ 11982 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) { 11983 cgp = (struct cg *)bp->b_data; 11984 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 11985 blksfree = cg_blksfree(cgp); 11986 LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps, 11987 jntmp) { 11988 if ((jnewblk->jn_state & UNDONE) == 0) 11989 continue; 11990 /* Do the roll-forward only if it's a real copy. */ 11991 if (foreground && 11992 jnewblk_rollforward(jnewblk, fs, cgp, blksfree)) 11993 chgs = 1; 11994 jnewblk->jn_state &= ~(UNDONE | NEWBLOCK); 11995 jnewblk->jn_state |= ATTACHED; 11996 free_jnewblk(jnewblk); 11997 } 11998 } 11999 /* 12000 * If the write did not succeed, we have done all the roll-forward 12001 * operations, but we cannot take the actions that will allow its 12002 * dependencies to be processed. 12003 */ 12004 if ((flags & WRITESUCCEEDED) == 0) { 12005 LIST_CONCAT(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr, 12006 newblk, nb_deps); 12007 LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, 12008 worklist, wk_list); 12009 if (foreground) 12010 bdirty(bp); 12011 return (1); 12012 } 12013 while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) { 12014 newblk->nb_state |= DEPCOMPLETE; 12015 newblk->nb_state &= ~ONDEPLIST; 12016 newblk->nb_bmsafemap = NULL; 12017 LIST_REMOVE(newblk, nb_deps); 12018 if (newblk->nb_list.wk_type == D_ALLOCDIRECT) 12019 handle_allocdirect_partdone( 12020 WK_ALLOCDIRECT(&newblk->nb_list), NULL); 12021 else if (newblk->nb_list.wk_type == D_ALLOCINDIR) 12022 handle_allocindir_partdone( 12023 WK_ALLOCINDIR(&newblk->nb_list)); 12024 else if (newblk->nb_list.wk_type != D_NEWBLK) 12025 panic("handle_written_bmsafemap: Unexpected type: %s", 12026 TYPENAME(newblk->nb_list.wk_type)); 12027 } 12028 while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) { 12029 inodedep->id_state |= DEPCOMPLETE; 12030 inodedep->id_state &= ~ONDEPLIST; 12031 LIST_REMOVE(inodedep, id_deps); 12032 inodedep->id_bmsafemap = NULL; 12033 } 12034 LIST_REMOVE(bmsafemap, sm_next); 12035 if (chgs == 0 && LIST_EMPTY(&bmsafemap->sm_jaddrefhd) && 12036 LIST_EMPTY(&bmsafemap->sm_jnewblkhd) && 12037 LIST_EMPTY(&bmsafemap->sm_newblkhd) && 12038 LIST_EMPTY(&bmsafemap->sm_inodedephd) && 12039 LIST_EMPTY(&bmsafemap->sm_freehd)) { 12040 LIST_REMOVE(bmsafemap, sm_hash); 12041 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); 12042 return (0); 12043 } 12044 LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next); 12045 if (foreground) 12046 bdirty(bp); 12047 return (1); 12048 } 12049 12050 /* 12051 * Try to free a mkdir dependency. 12052 */ 12053 static void 12054 complete_mkdir(mkdir) 12055 struct mkdir *mkdir; 12056 { 12057 struct diradd *dap; 12058 12059 if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE) 12060 return; 12061 LIST_REMOVE(mkdir, md_mkdirs); 12062 dap = mkdir->md_diradd; 12063 dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)); 12064 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) { 12065 dap->da_state |= DEPCOMPLETE; 12066 complete_diradd(dap); 12067 } 12068 WORKITEM_FREE(mkdir, D_MKDIR); 12069 } 12070 12071 /* 12072 * Handle the completion of a mkdir dependency. 12073 */ 12074 static void 12075 handle_written_mkdir(mkdir, type) 12076 struct mkdir *mkdir; 12077 int type; 12078 { 12079 12080 if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type) 12081 panic("handle_written_mkdir: bad type"); 12082 mkdir->md_state |= COMPLETE; 12083 complete_mkdir(mkdir); 12084 } 12085 12086 static int 12087 free_pagedep(pagedep) 12088 struct pagedep *pagedep; 12089 { 12090 int i; 12091 12092 if (pagedep->pd_state & NEWBLOCK) 12093 return (0); 12094 if (!LIST_EMPTY(&pagedep->pd_dirremhd)) 12095 return (0); 12096 for (i = 0; i < DAHASHSZ; i++) 12097 if (!LIST_EMPTY(&pagedep->pd_diraddhd[i])) 12098 return (0); 12099 if (!LIST_EMPTY(&pagedep->pd_pendinghd)) 12100 return (0); 12101 if (!LIST_EMPTY(&pagedep->pd_jmvrefhd)) 12102 return (0); 12103 if (pagedep->pd_state & ONWORKLIST) 12104 WORKLIST_REMOVE(&pagedep->pd_list); 12105 LIST_REMOVE(pagedep, pd_hash); 12106 WORKITEM_FREE(pagedep, D_PAGEDEP); 12107 12108 return (1); 12109 } 12110 12111 /* 12112 * Called from within softdep_disk_write_complete above. 12113 * A write operation was just completed. Removed inodes can 12114 * now be freed and associated block pointers may be committed. 12115 * Note that this routine is always called from interrupt level 12116 * with further interrupts from this device blocked. 12117 * 12118 * If the write did not succeed, we will do all the roll-forward 12119 * operations, but we will not take the actions that will allow its 12120 * dependencies to be processed. 12121 */ 12122 static int 12123 handle_written_filepage(pagedep, bp, flags) 12124 struct pagedep *pagedep; 12125 struct buf *bp; /* buffer containing the written page */ 12126 int flags; 12127 { 12128 struct dirrem *dirrem; 12129 struct diradd *dap, *nextdap; 12130 struct direct *ep; 12131 int i, chgs; 12132 12133 if ((pagedep->pd_state & IOSTARTED) == 0) 12134 panic("handle_written_filepage: not started"); 12135 pagedep->pd_state &= ~IOSTARTED; 12136 if ((flags & WRITESUCCEEDED) == 0) 12137 goto rollforward; 12138 /* 12139 * Process any directory removals that have been committed. 12140 */ 12141 while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) { 12142 LIST_REMOVE(dirrem, dm_next); 12143 dirrem->dm_state |= COMPLETE; 12144 dirrem->dm_dirinum = pagedep->pd_ino; 12145 KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd), 12146 ("handle_written_filepage: Journal entries not written.")); 12147 add_to_worklist(&dirrem->dm_list, 0); 12148 } 12149 /* 12150 * Free any directory additions that have been committed. 12151 * If it is a newly allocated block, we have to wait until 12152 * the on-disk directory inode claims the new block. 12153 */ 12154 if ((pagedep->pd_state & NEWBLOCK) == 0) 12155 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 12156 free_diradd(dap, NULL); 12157 rollforward: 12158 /* 12159 * Uncommitted directory entries must be restored. 12160 */ 12161 for (chgs = 0, i = 0; i < DAHASHSZ; i++) { 12162 for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap; 12163 dap = nextdap) { 12164 nextdap = LIST_NEXT(dap, da_pdlist); 12165 if (dap->da_state & ATTACHED) 12166 panic("handle_written_filepage: attached"); 12167 ep = (struct direct *) 12168 ((char *)bp->b_data + dap->da_offset); 12169 ep->d_ino = dap->da_newinum; 12170 dap->da_state &= ~UNDONE; 12171 dap->da_state |= ATTACHED; 12172 chgs = 1; 12173 /* 12174 * If the inode referenced by the directory has 12175 * been written out, then the dependency can be 12176 * moved to the pending list. 12177 */ 12178 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 12179 LIST_REMOVE(dap, da_pdlist); 12180 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, 12181 da_pdlist); 12182 } 12183 } 12184 } 12185 /* 12186 * If there were any rollbacks in the directory, then it must be 12187 * marked dirty so that its will eventually get written back in 12188 * its correct form. 12189 */ 12190 if (chgs || (flags & WRITESUCCEEDED) == 0) { 12191 if ((bp->b_flags & B_DELWRI) == 0) 12192 stat_dir_entry++; 12193 bdirty(bp); 12194 return (1); 12195 } 12196 /* 12197 * If we are not waiting for a new directory block to be 12198 * claimed by its inode, then the pagedep will be freed. 12199 * Otherwise it will remain to track any new entries on 12200 * the page in case they are fsync'ed. 12201 */ 12202 free_pagedep(pagedep); 12203 return (0); 12204 } 12205 12206 /* 12207 * Writing back in-core inode structures. 12208 * 12209 * The filesystem only accesses an inode's contents when it occupies an 12210 * "in-core" inode structure. These "in-core" structures are separate from 12211 * the page frames used to cache inode blocks. Only the latter are 12212 * transferred to/from the disk. So, when the updated contents of the 12213 * "in-core" inode structure are copied to the corresponding in-memory inode 12214 * block, the dependencies are also transferred. The following procedure is 12215 * called when copying a dirty "in-core" inode to a cached inode block. 12216 */ 12217 12218 /* 12219 * Called when an inode is loaded from disk. If the effective link count 12220 * differed from the actual link count when it was last flushed, then we 12221 * need to ensure that the correct effective link count is put back. 12222 */ 12223 void 12224 softdep_load_inodeblock(ip) 12225 struct inode *ip; /* the "in_core" copy of the inode */ 12226 { 12227 struct inodedep *inodedep; 12228 struct ufsmount *ump; 12229 12230 ump = ITOUMP(ip); 12231 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 12232 ("softdep_load_inodeblock called on non-softdep filesystem")); 12233 /* 12234 * Check for alternate nlink count. 12235 */ 12236 ip->i_effnlink = ip->i_nlink; 12237 ACQUIRE_LOCK(ump); 12238 if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0) { 12239 FREE_LOCK(ump); 12240 return; 12241 } 12242 ip->i_effnlink -= inodedep->id_nlinkdelta; 12243 FREE_LOCK(ump); 12244 } 12245 12246 /* 12247 * This routine is called just before the "in-core" inode 12248 * information is to be copied to the in-memory inode block. 12249 * Recall that an inode block contains several inodes. If 12250 * the force flag is set, then the dependencies will be 12251 * cleared so that the update can always be made. Note that 12252 * the buffer is locked when this routine is called, so we 12253 * will never be in the middle of writing the inode block 12254 * to disk. 12255 */ 12256 void 12257 softdep_update_inodeblock(ip, bp, waitfor) 12258 struct inode *ip; /* the "in_core" copy of the inode */ 12259 struct buf *bp; /* the buffer containing the inode block */ 12260 int waitfor; /* nonzero => update must be allowed */ 12261 { 12262 struct inodedep *inodedep; 12263 struct inoref *inoref; 12264 struct ufsmount *ump; 12265 struct worklist *wk; 12266 struct mount *mp; 12267 struct buf *ibp; 12268 struct fs *fs; 12269 int error; 12270 12271 ump = ITOUMP(ip); 12272 mp = UFSTOVFS(ump); 12273 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 12274 ("softdep_update_inodeblock called on non-softdep filesystem")); 12275 fs = ump->um_fs; 12276 /* 12277 * Preserve the freelink that is on disk. clear_unlinked_inodedep() 12278 * does not have access to the in-core ip so must write directly into 12279 * the inode block buffer when setting freelink. 12280 */ 12281 if (fs->fs_magic == FS_UFS1_MAGIC) 12282 DIP_SET(ip, i_freelink, ((struct ufs1_dinode *)bp->b_data + 12283 ino_to_fsbo(fs, ip->i_number))->di_freelink); 12284 else 12285 DIP_SET(ip, i_freelink, ((struct ufs2_dinode *)bp->b_data + 12286 ino_to_fsbo(fs, ip->i_number))->di_freelink); 12287 /* 12288 * If the effective link count is not equal to the actual link 12289 * count, then we must track the difference in an inodedep while 12290 * the inode is (potentially) tossed out of the cache. Otherwise, 12291 * if there is no existing inodedep, then there are no dependencies 12292 * to track. 12293 */ 12294 ACQUIRE_LOCK(ump); 12295 again: 12296 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) { 12297 FREE_LOCK(ump); 12298 if (ip->i_effnlink != ip->i_nlink) 12299 panic("softdep_update_inodeblock: bad link count"); 12300 return; 12301 } 12302 if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink) 12303 panic("softdep_update_inodeblock: bad delta"); 12304 /* 12305 * If we're flushing all dependencies we must also move any waiting 12306 * for journal writes onto the bufwait list prior to I/O. 12307 */ 12308 if (waitfor) { 12309 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 12310 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 12311 == DEPCOMPLETE) { 12312 jwait(&inoref->if_list, MNT_WAIT); 12313 goto again; 12314 } 12315 } 12316 } 12317 /* 12318 * Changes have been initiated. Anything depending on these 12319 * changes cannot occur until this inode has been written. 12320 */ 12321 inodedep->id_state &= ~COMPLETE; 12322 if ((inodedep->id_state & ONWORKLIST) == 0) 12323 WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list); 12324 /* 12325 * Any new dependencies associated with the incore inode must 12326 * now be moved to the list associated with the buffer holding 12327 * the in-memory copy of the inode. Once merged process any 12328 * allocdirects that are completed by the merger. 12329 */ 12330 merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt); 12331 if (!TAILQ_EMPTY(&inodedep->id_inoupdt)) 12332 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt), 12333 NULL); 12334 merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt); 12335 if (!TAILQ_EMPTY(&inodedep->id_extupdt)) 12336 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt), 12337 NULL); 12338 /* 12339 * Now that the inode has been pushed into the buffer, the 12340 * operations dependent on the inode being written to disk 12341 * can be moved to the id_bufwait so that they will be 12342 * processed when the buffer I/O completes. 12343 */ 12344 while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) { 12345 WORKLIST_REMOVE(wk); 12346 WORKLIST_INSERT(&inodedep->id_bufwait, wk); 12347 } 12348 /* 12349 * Newly allocated inodes cannot be written until the bitmap 12350 * that allocates them have been written (indicated by 12351 * DEPCOMPLETE being set in id_state). If we are doing a 12352 * forced sync (e.g., an fsync on a file), we force the bitmap 12353 * to be written so that the update can be done. 12354 */ 12355 if (waitfor == 0) { 12356 FREE_LOCK(ump); 12357 return; 12358 } 12359 retry: 12360 if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) { 12361 FREE_LOCK(ump); 12362 return; 12363 } 12364 ibp = inodedep->id_bmsafemap->sm_buf; 12365 ibp = getdirtybuf(ibp, LOCK_PTR(ump), MNT_WAIT); 12366 if (ibp == NULL) { 12367 /* 12368 * If ibp came back as NULL, the dependency could have been 12369 * freed while we slept. Look it up again, and check to see 12370 * that it has completed. 12371 */ 12372 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) 12373 goto retry; 12374 FREE_LOCK(ump); 12375 return; 12376 } 12377 FREE_LOCK(ump); 12378 if ((error = bwrite(ibp)) != 0) 12379 softdep_error("softdep_update_inodeblock: bwrite", error); 12380 } 12381 12382 /* 12383 * Merge the a new inode dependency list (such as id_newinoupdt) into an 12384 * old inode dependency list (such as id_inoupdt). 12385 */ 12386 static void 12387 merge_inode_lists(newlisthead, oldlisthead) 12388 struct allocdirectlst *newlisthead; 12389 struct allocdirectlst *oldlisthead; 12390 { 12391 struct allocdirect *listadp, *newadp; 12392 12393 newadp = TAILQ_FIRST(newlisthead); 12394 if (newadp != NULL) 12395 LOCK_OWNED(VFSTOUFS(newadp->ad_block.nb_list.wk_mp)); 12396 for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) { 12397 if (listadp->ad_offset < newadp->ad_offset) { 12398 listadp = TAILQ_NEXT(listadp, ad_next); 12399 continue; 12400 } 12401 TAILQ_REMOVE(newlisthead, newadp, ad_next); 12402 TAILQ_INSERT_BEFORE(listadp, newadp, ad_next); 12403 if (listadp->ad_offset == newadp->ad_offset) { 12404 allocdirect_merge(oldlisthead, newadp, 12405 listadp); 12406 listadp = newadp; 12407 } 12408 newadp = TAILQ_FIRST(newlisthead); 12409 } 12410 while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) { 12411 TAILQ_REMOVE(newlisthead, newadp, ad_next); 12412 TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next); 12413 } 12414 } 12415 12416 /* 12417 * If we are doing an fsync, then we must ensure that any directory 12418 * entries for the inode have been written after the inode gets to disk. 12419 */ 12420 int 12421 softdep_fsync(vp) 12422 struct vnode *vp; /* the "in_core" copy of the inode */ 12423 { 12424 struct inodedep *inodedep; 12425 struct pagedep *pagedep; 12426 struct inoref *inoref; 12427 struct ufsmount *ump; 12428 struct worklist *wk; 12429 struct diradd *dap; 12430 struct mount *mp; 12431 struct vnode *pvp; 12432 struct inode *ip; 12433 struct buf *bp; 12434 struct fs *fs; 12435 struct thread *td = curthread; 12436 int error, flushparent, pagedep_new_block; 12437 ino_t parentino; 12438 ufs_lbn_t lbn; 12439 12440 ip = VTOI(vp); 12441 mp = vp->v_mount; 12442 ump = VFSTOUFS(mp); 12443 fs = ump->um_fs; 12444 if (MOUNTEDSOFTDEP(mp) == 0) 12445 return (0); 12446 ACQUIRE_LOCK(ump); 12447 restart: 12448 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) { 12449 FREE_LOCK(ump); 12450 return (0); 12451 } 12452 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 12453 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 12454 == DEPCOMPLETE) { 12455 jwait(&inoref->if_list, MNT_WAIT); 12456 goto restart; 12457 } 12458 } 12459 if (!LIST_EMPTY(&inodedep->id_inowait) || 12460 !TAILQ_EMPTY(&inodedep->id_extupdt) || 12461 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 12462 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 12463 !TAILQ_EMPTY(&inodedep->id_newinoupdt)) 12464 panic("softdep_fsync: pending ops %p", inodedep); 12465 for (error = 0, flushparent = 0; ; ) { 12466 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL) 12467 break; 12468 if (wk->wk_type != D_DIRADD) 12469 panic("softdep_fsync: Unexpected type %s", 12470 TYPENAME(wk->wk_type)); 12471 dap = WK_DIRADD(wk); 12472 /* 12473 * Flush our parent if this directory entry has a MKDIR_PARENT 12474 * dependency or is contained in a newly allocated block. 12475 */ 12476 if (dap->da_state & DIRCHG) 12477 pagedep = dap->da_previous->dm_pagedep; 12478 else 12479 pagedep = dap->da_pagedep; 12480 parentino = pagedep->pd_ino; 12481 lbn = pagedep->pd_lbn; 12482 if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE) 12483 panic("softdep_fsync: dirty"); 12484 if ((dap->da_state & MKDIR_PARENT) || 12485 (pagedep->pd_state & NEWBLOCK)) 12486 flushparent = 1; 12487 else 12488 flushparent = 0; 12489 /* 12490 * If we are being fsync'ed as part of vgone'ing this vnode, 12491 * then we will not be able to release and recover the 12492 * vnode below, so we just have to give up on writing its 12493 * directory entry out. It will eventually be written, just 12494 * not now, but then the user was not asking to have it 12495 * written, so we are not breaking any promises. 12496 */ 12497 if (vp->v_iflag & VI_DOOMED) 12498 break; 12499 /* 12500 * We prevent deadlock by always fetching inodes from the 12501 * root, moving down the directory tree. Thus, when fetching 12502 * our parent directory, we first try to get the lock. If 12503 * that fails, we must unlock ourselves before requesting 12504 * the lock on our parent. See the comment in ufs_lookup 12505 * for details on possible races. 12506 */ 12507 FREE_LOCK(ump); 12508 if (ffs_vgetf(mp, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp, 12509 FFSV_FORCEINSMQ)) { 12510 /* 12511 * Unmount cannot proceed after unlock because 12512 * caller must have called vn_start_write(). 12513 */ 12514 VOP_UNLOCK(vp, 0); 12515 error = ffs_vgetf(mp, parentino, LK_EXCLUSIVE, 12516 &pvp, FFSV_FORCEINSMQ); 12517 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 12518 if (vp->v_iflag & VI_DOOMED) { 12519 if (error == 0) 12520 vput(pvp); 12521 error = ENOENT; 12522 } 12523 if (error != 0) 12524 return (error); 12525 } 12526 /* 12527 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps 12528 * that are contained in direct blocks will be resolved by 12529 * doing a ffs_update. Pagedeps contained in indirect blocks 12530 * may require a complete sync'ing of the directory. So, we 12531 * try the cheap and fast ffs_update first, and if that fails, 12532 * then we do the slower ffs_syncvnode of the directory. 12533 */ 12534 if (flushparent) { 12535 int locked; 12536 12537 if ((error = ffs_update(pvp, 1)) != 0) { 12538 vput(pvp); 12539 return (error); 12540 } 12541 ACQUIRE_LOCK(ump); 12542 locked = 1; 12543 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) { 12544 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) { 12545 if (wk->wk_type != D_DIRADD) 12546 panic("softdep_fsync: Unexpected type %s", 12547 TYPENAME(wk->wk_type)); 12548 dap = WK_DIRADD(wk); 12549 if (dap->da_state & DIRCHG) 12550 pagedep = dap->da_previous->dm_pagedep; 12551 else 12552 pagedep = dap->da_pagedep; 12553 pagedep_new_block = pagedep->pd_state & NEWBLOCK; 12554 FREE_LOCK(ump); 12555 locked = 0; 12556 if (pagedep_new_block && (error = 12557 ffs_syncvnode(pvp, MNT_WAIT, 0))) { 12558 vput(pvp); 12559 return (error); 12560 } 12561 } 12562 } 12563 if (locked) 12564 FREE_LOCK(ump); 12565 } 12566 /* 12567 * Flush directory page containing the inode's name. 12568 */ 12569 error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred, 12570 &bp); 12571 if (error == 0) 12572 error = bwrite(bp); 12573 else 12574 brelse(bp); 12575 vput(pvp); 12576 if (error != 0) 12577 return (error); 12578 ACQUIRE_LOCK(ump); 12579 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 12580 break; 12581 } 12582 FREE_LOCK(ump); 12583 return (0); 12584 } 12585 12586 /* 12587 * Flush all the dirty bitmaps associated with the block device 12588 * before flushing the rest of the dirty blocks so as to reduce 12589 * the number of dependencies that will have to be rolled back. 12590 * 12591 * XXX Unused? 12592 */ 12593 void 12594 softdep_fsync_mountdev(vp) 12595 struct vnode *vp; 12596 { 12597 struct buf *bp, *nbp; 12598 struct worklist *wk; 12599 struct bufobj *bo; 12600 12601 if (!vn_isdisk(vp, NULL)) 12602 panic("softdep_fsync_mountdev: vnode not a disk"); 12603 bo = &vp->v_bufobj; 12604 restart: 12605 BO_LOCK(bo); 12606 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 12607 /* 12608 * If it is already scheduled, skip to the next buffer. 12609 */ 12610 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) 12611 continue; 12612 12613 if ((bp->b_flags & B_DELWRI) == 0) 12614 panic("softdep_fsync_mountdev: not dirty"); 12615 /* 12616 * We are only interested in bitmaps with outstanding 12617 * dependencies. 12618 */ 12619 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL || 12620 wk->wk_type != D_BMSAFEMAP || 12621 (bp->b_vflags & BV_BKGRDINPROG)) { 12622 BUF_UNLOCK(bp); 12623 continue; 12624 } 12625 BO_UNLOCK(bo); 12626 bremfree(bp); 12627 (void) bawrite(bp); 12628 goto restart; 12629 } 12630 drain_output(vp); 12631 BO_UNLOCK(bo); 12632 } 12633 12634 /* 12635 * Sync all cylinder groups that were dirty at the time this function is 12636 * called. Newly dirtied cgs will be inserted before the sentinel. This 12637 * is used to flush freedep activity that may be holding up writes to a 12638 * indirect block. 12639 */ 12640 static int 12641 sync_cgs(mp, waitfor) 12642 struct mount *mp; 12643 int waitfor; 12644 { 12645 struct bmsafemap *bmsafemap; 12646 struct bmsafemap *sentinel; 12647 struct ufsmount *ump; 12648 struct buf *bp; 12649 int error; 12650 12651 sentinel = malloc(sizeof(*sentinel), M_BMSAFEMAP, M_ZERO | M_WAITOK); 12652 sentinel->sm_cg = -1; 12653 ump = VFSTOUFS(mp); 12654 error = 0; 12655 ACQUIRE_LOCK(ump); 12656 LIST_INSERT_HEAD(&ump->softdep_dirtycg, sentinel, sm_next); 12657 for (bmsafemap = LIST_NEXT(sentinel, sm_next); bmsafemap != NULL; 12658 bmsafemap = LIST_NEXT(sentinel, sm_next)) { 12659 /* Skip sentinels and cgs with no work to release. */ 12660 if (bmsafemap->sm_cg == -1 || 12661 (LIST_EMPTY(&bmsafemap->sm_freehd) && 12662 LIST_EMPTY(&bmsafemap->sm_freewr))) { 12663 LIST_REMOVE(sentinel, sm_next); 12664 LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next); 12665 continue; 12666 } 12667 /* 12668 * If we don't get the lock and we're waiting try again, if 12669 * not move on to the next buf and try to sync it. 12670 */ 12671 bp = getdirtybuf(bmsafemap->sm_buf, LOCK_PTR(ump), waitfor); 12672 if (bp == NULL && waitfor == MNT_WAIT) 12673 continue; 12674 LIST_REMOVE(sentinel, sm_next); 12675 LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next); 12676 if (bp == NULL) 12677 continue; 12678 FREE_LOCK(ump); 12679 if (waitfor == MNT_NOWAIT) 12680 bawrite(bp); 12681 else 12682 error = bwrite(bp); 12683 ACQUIRE_LOCK(ump); 12684 if (error) 12685 break; 12686 } 12687 LIST_REMOVE(sentinel, sm_next); 12688 FREE_LOCK(ump); 12689 free(sentinel, M_BMSAFEMAP); 12690 return (error); 12691 } 12692 12693 /* 12694 * This routine is called when we are trying to synchronously flush a 12695 * file. This routine must eliminate any filesystem metadata dependencies 12696 * so that the syncing routine can succeed. 12697 */ 12698 int 12699 softdep_sync_metadata(struct vnode *vp) 12700 { 12701 struct inode *ip; 12702 int error; 12703 12704 ip = VTOI(vp); 12705 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 12706 ("softdep_sync_metadata called on non-softdep filesystem")); 12707 /* 12708 * Ensure that any direct block dependencies have been cleared, 12709 * truncations are started, and inode references are journaled. 12710 */ 12711 ACQUIRE_LOCK(VFSTOUFS(vp->v_mount)); 12712 /* 12713 * Write all journal records to prevent rollbacks on devvp. 12714 */ 12715 if (vp->v_type == VCHR) 12716 softdep_flushjournal(vp->v_mount); 12717 error = flush_inodedep_deps(vp, vp->v_mount, ip->i_number); 12718 /* 12719 * Ensure that all truncates are written so we won't find deps on 12720 * indirect blocks. 12721 */ 12722 process_truncates(vp); 12723 FREE_LOCK(VFSTOUFS(vp->v_mount)); 12724 12725 return (error); 12726 } 12727 12728 /* 12729 * This routine is called when we are attempting to sync a buf with 12730 * dependencies. If waitfor is MNT_NOWAIT it attempts to schedule any 12731 * other IO it can but returns EBUSY if the buffer is not yet able to 12732 * be written. Dependencies which will not cause rollbacks will always 12733 * return 0. 12734 */ 12735 int 12736 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor) 12737 { 12738 struct indirdep *indirdep; 12739 struct pagedep *pagedep; 12740 struct allocindir *aip; 12741 struct newblk *newblk; 12742 struct ufsmount *ump; 12743 struct buf *nbp; 12744 struct worklist *wk; 12745 int i, error; 12746 12747 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 12748 ("softdep_sync_buf called on non-softdep filesystem")); 12749 /* 12750 * For VCHR we just don't want to force flush any dependencies that 12751 * will cause rollbacks. 12752 */ 12753 if (vp->v_type == VCHR) { 12754 if (waitfor == MNT_NOWAIT && softdep_count_dependencies(bp, 0)) 12755 return (EBUSY); 12756 return (0); 12757 } 12758 ump = VFSTOUFS(vp->v_mount); 12759 ACQUIRE_LOCK(ump); 12760 /* 12761 * As we hold the buffer locked, none of its dependencies 12762 * will disappear. 12763 */ 12764 error = 0; 12765 top: 12766 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 12767 switch (wk->wk_type) { 12768 12769 case D_ALLOCDIRECT: 12770 case D_ALLOCINDIR: 12771 newblk = WK_NEWBLK(wk); 12772 if (newblk->nb_jnewblk != NULL) { 12773 if (waitfor == MNT_NOWAIT) { 12774 error = EBUSY; 12775 goto out_unlock; 12776 } 12777 jwait(&newblk->nb_jnewblk->jn_list, waitfor); 12778 goto top; 12779 } 12780 if (newblk->nb_state & DEPCOMPLETE || 12781 waitfor == MNT_NOWAIT) 12782 continue; 12783 nbp = newblk->nb_bmsafemap->sm_buf; 12784 nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor); 12785 if (nbp == NULL) 12786 goto top; 12787 FREE_LOCK(ump); 12788 if ((error = bwrite(nbp)) != 0) 12789 goto out; 12790 ACQUIRE_LOCK(ump); 12791 continue; 12792 12793 case D_INDIRDEP: 12794 indirdep = WK_INDIRDEP(wk); 12795 if (waitfor == MNT_NOWAIT) { 12796 if (!TAILQ_EMPTY(&indirdep->ir_trunc) || 12797 !LIST_EMPTY(&indirdep->ir_deplisthd)) { 12798 error = EBUSY; 12799 goto out_unlock; 12800 } 12801 } 12802 if (!TAILQ_EMPTY(&indirdep->ir_trunc)) 12803 panic("softdep_sync_buf: truncation pending."); 12804 restart: 12805 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) { 12806 newblk = (struct newblk *)aip; 12807 if (newblk->nb_jnewblk != NULL) { 12808 jwait(&newblk->nb_jnewblk->jn_list, 12809 waitfor); 12810 goto restart; 12811 } 12812 if (newblk->nb_state & DEPCOMPLETE) 12813 continue; 12814 nbp = newblk->nb_bmsafemap->sm_buf; 12815 nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor); 12816 if (nbp == NULL) 12817 goto restart; 12818 FREE_LOCK(ump); 12819 if ((error = bwrite(nbp)) != 0) 12820 goto out; 12821 ACQUIRE_LOCK(ump); 12822 goto restart; 12823 } 12824 continue; 12825 12826 case D_PAGEDEP: 12827 /* 12828 * Only flush directory entries in synchronous passes. 12829 */ 12830 if (waitfor != MNT_WAIT) { 12831 error = EBUSY; 12832 goto out_unlock; 12833 } 12834 /* 12835 * While syncing snapshots, we must allow recursive 12836 * lookups. 12837 */ 12838 BUF_AREC(bp); 12839 /* 12840 * We are trying to sync a directory that may 12841 * have dependencies on both its own metadata 12842 * and/or dependencies on the inodes of any 12843 * recently allocated files. We walk its diradd 12844 * lists pushing out the associated inode. 12845 */ 12846 pagedep = WK_PAGEDEP(wk); 12847 for (i = 0; i < DAHASHSZ; i++) { 12848 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0) 12849 continue; 12850 if ((error = flush_pagedep_deps(vp, wk->wk_mp, 12851 &pagedep->pd_diraddhd[i]))) { 12852 BUF_NOREC(bp); 12853 goto out_unlock; 12854 } 12855 } 12856 BUF_NOREC(bp); 12857 continue; 12858 12859 case D_FREEWORK: 12860 case D_FREEDEP: 12861 case D_JSEGDEP: 12862 case D_JNEWBLK: 12863 continue; 12864 12865 default: 12866 panic("softdep_sync_buf: Unknown type %s", 12867 TYPENAME(wk->wk_type)); 12868 /* NOTREACHED */ 12869 } 12870 } 12871 out_unlock: 12872 FREE_LOCK(ump); 12873 out: 12874 return (error); 12875 } 12876 12877 /* 12878 * Flush the dependencies associated with an inodedep. 12879 */ 12880 static int 12881 flush_inodedep_deps(vp, mp, ino) 12882 struct vnode *vp; 12883 struct mount *mp; 12884 ino_t ino; 12885 { 12886 struct inodedep *inodedep; 12887 struct inoref *inoref; 12888 struct ufsmount *ump; 12889 int error, waitfor; 12890 12891 /* 12892 * This work is done in two passes. The first pass grabs most 12893 * of the buffers and begins asynchronously writing them. The 12894 * only way to wait for these asynchronous writes is to sleep 12895 * on the filesystem vnode which may stay busy for a long time 12896 * if the filesystem is active. So, instead, we make a second 12897 * pass over the dependencies blocking on each write. In the 12898 * usual case we will be blocking against a write that we 12899 * initiated, so when it is done the dependency will have been 12900 * resolved. Thus the second pass is expected to end quickly. 12901 * We give a brief window at the top of the loop to allow 12902 * any pending I/O to complete. 12903 */ 12904 ump = VFSTOUFS(mp); 12905 LOCK_OWNED(ump); 12906 for (error = 0, waitfor = MNT_NOWAIT; ; ) { 12907 if (error) 12908 return (error); 12909 FREE_LOCK(ump); 12910 ACQUIRE_LOCK(ump); 12911 restart: 12912 if (inodedep_lookup(mp, ino, 0, &inodedep) == 0) 12913 return (0); 12914 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 12915 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 12916 == DEPCOMPLETE) { 12917 jwait(&inoref->if_list, MNT_WAIT); 12918 goto restart; 12919 } 12920 } 12921 if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) || 12922 flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) || 12923 flush_deplist(&inodedep->id_extupdt, waitfor, &error) || 12924 flush_deplist(&inodedep->id_newextupdt, waitfor, &error)) 12925 continue; 12926 /* 12927 * If pass2, we are done, otherwise do pass 2. 12928 */ 12929 if (waitfor == MNT_WAIT) 12930 break; 12931 waitfor = MNT_WAIT; 12932 } 12933 /* 12934 * Try freeing inodedep in case all dependencies have been removed. 12935 */ 12936 if (inodedep_lookup(mp, ino, 0, &inodedep) != 0) 12937 (void) free_inodedep(inodedep); 12938 return (0); 12939 } 12940 12941 /* 12942 * Flush an inode dependency list. 12943 */ 12944 static int 12945 flush_deplist(listhead, waitfor, errorp) 12946 struct allocdirectlst *listhead; 12947 int waitfor; 12948 int *errorp; 12949 { 12950 struct allocdirect *adp; 12951 struct newblk *newblk; 12952 struct ufsmount *ump; 12953 struct buf *bp; 12954 12955 if ((adp = TAILQ_FIRST(listhead)) == NULL) 12956 return (0); 12957 ump = VFSTOUFS(adp->ad_list.wk_mp); 12958 LOCK_OWNED(ump); 12959 TAILQ_FOREACH(adp, listhead, ad_next) { 12960 newblk = (struct newblk *)adp; 12961 if (newblk->nb_jnewblk != NULL) { 12962 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 12963 return (1); 12964 } 12965 if (newblk->nb_state & DEPCOMPLETE) 12966 continue; 12967 bp = newblk->nb_bmsafemap->sm_buf; 12968 bp = getdirtybuf(bp, LOCK_PTR(ump), waitfor); 12969 if (bp == NULL) { 12970 if (waitfor == MNT_NOWAIT) 12971 continue; 12972 return (1); 12973 } 12974 FREE_LOCK(ump); 12975 if (waitfor == MNT_NOWAIT) 12976 bawrite(bp); 12977 else 12978 *errorp = bwrite(bp); 12979 ACQUIRE_LOCK(ump); 12980 return (1); 12981 } 12982 return (0); 12983 } 12984 12985 /* 12986 * Flush dependencies associated with an allocdirect block. 12987 */ 12988 static int 12989 flush_newblk_dep(vp, mp, lbn) 12990 struct vnode *vp; 12991 struct mount *mp; 12992 ufs_lbn_t lbn; 12993 { 12994 struct newblk *newblk; 12995 struct ufsmount *ump; 12996 struct bufobj *bo; 12997 struct inode *ip; 12998 struct buf *bp; 12999 ufs2_daddr_t blkno; 13000 int error; 13001 13002 error = 0; 13003 bo = &vp->v_bufobj; 13004 ip = VTOI(vp); 13005 blkno = DIP(ip, i_db[lbn]); 13006 if (blkno == 0) 13007 panic("flush_newblk_dep: Missing block"); 13008 ump = VFSTOUFS(mp); 13009 ACQUIRE_LOCK(ump); 13010 /* 13011 * Loop until all dependencies related to this block are satisfied. 13012 * We must be careful to restart after each sleep in case a write 13013 * completes some part of this process for us. 13014 */ 13015 for (;;) { 13016 if (newblk_lookup(mp, blkno, 0, &newblk) == 0) { 13017 FREE_LOCK(ump); 13018 break; 13019 } 13020 if (newblk->nb_list.wk_type != D_ALLOCDIRECT) 13021 panic("flush_newblk_dep: Bad newblk %p", newblk); 13022 /* 13023 * Flush the journal. 13024 */ 13025 if (newblk->nb_jnewblk != NULL) { 13026 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 13027 continue; 13028 } 13029 /* 13030 * Write the bitmap dependency. 13031 */ 13032 if ((newblk->nb_state & DEPCOMPLETE) == 0) { 13033 bp = newblk->nb_bmsafemap->sm_buf; 13034 bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT); 13035 if (bp == NULL) 13036 continue; 13037 FREE_LOCK(ump); 13038 error = bwrite(bp); 13039 if (error) 13040 break; 13041 ACQUIRE_LOCK(ump); 13042 continue; 13043 } 13044 /* 13045 * Write the buffer. 13046 */ 13047 FREE_LOCK(ump); 13048 BO_LOCK(bo); 13049 bp = gbincore(bo, lbn); 13050 if (bp != NULL) { 13051 error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | 13052 LK_INTERLOCK, BO_LOCKPTR(bo)); 13053 if (error == ENOLCK) { 13054 ACQUIRE_LOCK(ump); 13055 error = 0; 13056 continue; /* Slept, retry */ 13057 } 13058 if (error != 0) 13059 break; /* Failed */ 13060 if (bp->b_flags & B_DELWRI) { 13061 bremfree(bp); 13062 error = bwrite(bp); 13063 if (error) 13064 break; 13065 } else 13066 BUF_UNLOCK(bp); 13067 } else 13068 BO_UNLOCK(bo); 13069 /* 13070 * We have to wait for the direct pointers to 13071 * point at the newdirblk before the dependency 13072 * will go away. 13073 */ 13074 error = ffs_update(vp, 1); 13075 if (error) 13076 break; 13077 ACQUIRE_LOCK(ump); 13078 } 13079 return (error); 13080 } 13081 13082 /* 13083 * Eliminate a pagedep dependency by flushing out all its diradd dependencies. 13084 */ 13085 static int 13086 flush_pagedep_deps(pvp, mp, diraddhdp) 13087 struct vnode *pvp; 13088 struct mount *mp; 13089 struct diraddhd *diraddhdp; 13090 { 13091 struct inodedep *inodedep; 13092 struct inoref *inoref; 13093 struct ufsmount *ump; 13094 struct diradd *dap; 13095 struct vnode *vp; 13096 int error = 0; 13097 struct buf *bp; 13098 ino_t inum; 13099 struct diraddhd unfinished; 13100 13101 LIST_INIT(&unfinished); 13102 ump = VFSTOUFS(mp); 13103 LOCK_OWNED(ump); 13104 restart: 13105 while ((dap = LIST_FIRST(diraddhdp)) != NULL) { 13106 /* 13107 * Flush ourselves if this directory entry 13108 * has a MKDIR_PARENT dependency. 13109 */ 13110 if (dap->da_state & MKDIR_PARENT) { 13111 FREE_LOCK(ump); 13112 if ((error = ffs_update(pvp, 1)) != 0) 13113 break; 13114 ACQUIRE_LOCK(ump); 13115 /* 13116 * If that cleared dependencies, go on to next. 13117 */ 13118 if (dap != LIST_FIRST(diraddhdp)) 13119 continue; 13120 /* 13121 * All MKDIR_PARENT dependencies and all the 13122 * NEWBLOCK pagedeps that are contained in direct 13123 * blocks were resolved by doing above ffs_update. 13124 * Pagedeps contained in indirect blocks may 13125 * require a complete sync'ing of the directory. 13126 * We are in the midst of doing a complete sync, 13127 * so if they are not resolved in this pass we 13128 * defer them for now as they will be sync'ed by 13129 * our caller shortly. 13130 */ 13131 LIST_REMOVE(dap, da_pdlist); 13132 LIST_INSERT_HEAD(&unfinished, dap, da_pdlist); 13133 continue; 13134 } 13135 /* 13136 * A newly allocated directory must have its "." and 13137 * ".." entries written out before its name can be 13138 * committed in its parent. 13139 */ 13140 inum = dap->da_newinum; 13141 if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0) 13142 panic("flush_pagedep_deps: lost inode1"); 13143 /* 13144 * Wait for any pending journal adds to complete so we don't 13145 * cause rollbacks while syncing. 13146 */ 13147 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 13148 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 13149 == DEPCOMPLETE) { 13150 jwait(&inoref->if_list, MNT_WAIT); 13151 goto restart; 13152 } 13153 } 13154 if (dap->da_state & MKDIR_BODY) { 13155 FREE_LOCK(ump); 13156 if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp, 13157 FFSV_FORCEINSMQ))) 13158 break; 13159 error = flush_newblk_dep(vp, mp, 0); 13160 /* 13161 * If we still have the dependency we might need to 13162 * update the vnode to sync the new link count to 13163 * disk. 13164 */ 13165 if (error == 0 && dap == LIST_FIRST(diraddhdp)) 13166 error = ffs_update(vp, 1); 13167 vput(vp); 13168 if (error != 0) 13169 break; 13170 ACQUIRE_LOCK(ump); 13171 /* 13172 * If that cleared dependencies, go on to next. 13173 */ 13174 if (dap != LIST_FIRST(diraddhdp)) 13175 continue; 13176 if (dap->da_state & MKDIR_BODY) { 13177 inodedep_lookup(UFSTOVFS(ump), inum, 0, 13178 &inodedep); 13179 panic("flush_pagedep_deps: MKDIR_BODY " 13180 "inodedep %p dap %p vp %p", 13181 inodedep, dap, vp); 13182 } 13183 } 13184 /* 13185 * Flush the inode on which the directory entry depends. 13186 * Having accounted for MKDIR_PARENT and MKDIR_BODY above, 13187 * the only remaining dependency is that the updated inode 13188 * count must get pushed to disk. The inode has already 13189 * been pushed into its inode buffer (via VOP_UPDATE) at 13190 * the time of the reference count change. So we need only 13191 * locate that buffer, ensure that there will be no rollback 13192 * caused by a bitmap dependency, then write the inode buffer. 13193 */ 13194 retry: 13195 if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0) 13196 panic("flush_pagedep_deps: lost inode"); 13197 /* 13198 * If the inode still has bitmap dependencies, 13199 * push them to disk. 13200 */ 13201 if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) { 13202 bp = inodedep->id_bmsafemap->sm_buf; 13203 bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT); 13204 if (bp == NULL) 13205 goto retry; 13206 FREE_LOCK(ump); 13207 if ((error = bwrite(bp)) != 0) 13208 break; 13209 ACQUIRE_LOCK(ump); 13210 if (dap != LIST_FIRST(diraddhdp)) 13211 continue; 13212 } 13213 /* 13214 * If the inode is still sitting in a buffer waiting 13215 * to be written or waiting for the link count to be 13216 * adjusted update it here to flush it to disk. 13217 */ 13218 if (dap == LIST_FIRST(diraddhdp)) { 13219 FREE_LOCK(ump); 13220 if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp, 13221 FFSV_FORCEINSMQ))) 13222 break; 13223 error = ffs_update(vp, 1); 13224 vput(vp); 13225 if (error) 13226 break; 13227 ACQUIRE_LOCK(ump); 13228 } 13229 /* 13230 * If we have failed to get rid of all the dependencies 13231 * then something is seriously wrong. 13232 */ 13233 if (dap == LIST_FIRST(diraddhdp)) { 13234 inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep); 13235 panic("flush_pagedep_deps: failed to flush " 13236 "inodedep %p ino %ju dap %p", 13237 inodedep, (uintmax_t)inum, dap); 13238 } 13239 } 13240 if (error) 13241 ACQUIRE_LOCK(ump); 13242 while ((dap = LIST_FIRST(&unfinished)) != NULL) { 13243 LIST_REMOVE(dap, da_pdlist); 13244 LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist); 13245 } 13246 return (error); 13247 } 13248 13249 /* 13250 * A large burst of file addition or deletion activity can drive the 13251 * memory load excessively high. First attempt to slow things down 13252 * using the techniques below. If that fails, this routine requests 13253 * the offending operations to fall back to running synchronously 13254 * until the memory load returns to a reasonable level. 13255 */ 13256 int 13257 softdep_slowdown(vp) 13258 struct vnode *vp; 13259 { 13260 struct ufsmount *ump; 13261 int jlow; 13262 int max_softdeps_hard; 13263 13264 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 13265 ("softdep_slowdown called on non-softdep filesystem")); 13266 ump = VFSTOUFS(vp->v_mount); 13267 ACQUIRE_LOCK(ump); 13268 jlow = 0; 13269 /* 13270 * Check for journal space if needed. 13271 */ 13272 if (DOINGSUJ(vp)) { 13273 if (journal_space(ump, 0) == 0) 13274 jlow = 1; 13275 } 13276 /* 13277 * If the system is under its limits and our filesystem is 13278 * not responsible for more than our share of the usage and 13279 * we are not low on journal space, then no need to slow down. 13280 */ 13281 max_softdeps_hard = max_softdeps * 11 / 10; 13282 if (dep_current[D_DIRREM] < max_softdeps_hard / 2 && 13283 dep_current[D_INODEDEP] < max_softdeps_hard && 13284 dep_current[D_INDIRDEP] < max_softdeps_hard / 1000 && 13285 dep_current[D_FREEBLKS] < max_softdeps_hard && jlow == 0 && 13286 ump->softdep_curdeps[D_DIRREM] < 13287 (max_softdeps_hard / 2) / stat_flush_threads && 13288 ump->softdep_curdeps[D_INODEDEP] < 13289 max_softdeps_hard / stat_flush_threads && 13290 ump->softdep_curdeps[D_INDIRDEP] < 13291 (max_softdeps_hard / 1000) / stat_flush_threads && 13292 ump->softdep_curdeps[D_FREEBLKS] < 13293 max_softdeps_hard / stat_flush_threads) { 13294 FREE_LOCK(ump); 13295 return (0); 13296 } 13297 /* 13298 * If the journal is low or our filesystem is over its limit 13299 * then speedup the cleanup. 13300 */ 13301 if (ump->softdep_curdeps[D_INDIRDEP] < 13302 (max_softdeps_hard / 1000) / stat_flush_threads || jlow) 13303 softdep_speedup(ump); 13304 stat_sync_limit_hit += 1; 13305 FREE_LOCK(ump); 13306 /* 13307 * We only slow down the rate at which new dependencies are 13308 * generated if we are not using journaling. With journaling, 13309 * the cleanup should always be sufficient to keep things 13310 * under control. 13311 */ 13312 if (DOINGSUJ(vp)) 13313 return (0); 13314 return (1); 13315 } 13316 13317 /* 13318 * Called by the allocation routines when they are about to fail 13319 * in the hope that we can free up the requested resource (inodes 13320 * or disk space). 13321 * 13322 * First check to see if the work list has anything on it. If it has, 13323 * clean up entries until we successfully free the requested resource. 13324 * Because this process holds inodes locked, we cannot handle any remove 13325 * requests that might block on a locked inode as that could lead to 13326 * deadlock. If the worklist yields none of the requested resource, 13327 * start syncing out vnodes to free up the needed space. 13328 */ 13329 int 13330 softdep_request_cleanup(fs, vp, cred, resource) 13331 struct fs *fs; 13332 struct vnode *vp; 13333 struct ucred *cred; 13334 int resource; 13335 { 13336 struct ufsmount *ump; 13337 struct mount *mp; 13338 long starttime; 13339 ufs2_daddr_t needed; 13340 int error, failed_vnode; 13341 13342 /* 13343 * If we are being called because of a process doing a 13344 * copy-on-write, then it is not safe to process any 13345 * worklist items as we will recurse into the copyonwrite 13346 * routine. This will result in an incoherent snapshot. 13347 * If the vnode that we hold is a snapshot, we must avoid 13348 * handling other resources that could cause deadlock. 13349 */ 13350 if ((curthread->td_pflags & TDP_COWINPROGRESS) || IS_SNAPSHOT(VTOI(vp))) 13351 return (0); 13352 13353 if (resource == FLUSH_BLOCKS_WAIT) 13354 stat_cleanup_blkrequests += 1; 13355 else 13356 stat_cleanup_inorequests += 1; 13357 13358 mp = vp->v_mount; 13359 ump = VFSTOUFS(mp); 13360 mtx_assert(UFS_MTX(ump), MA_OWNED); 13361 UFS_UNLOCK(ump); 13362 error = ffs_update(vp, 1); 13363 if (error != 0 || MOUNTEDSOFTDEP(mp) == 0) { 13364 UFS_LOCK(ump); 13365 return (0); 13366 } 13367 /* 13368 * If we are in need of resources, start by cleaning up 13369 * any block removals associated with our inode. 13370 */ 13371 ACQUIRE_LOCK(ump); 13372 process_removes(vp); 13373 process_truncates(vp); 13374 FREE_LOCK(ump); 13375 /* 13376 * Now clean up at least as many resources as we will need. 13377 * 13378 * When requested to clean up inodes, the number that are needed 13379 * is set by the number of simultaneous writers (mnt_writeopcount) 13380 * plus a bit of slop (2) in case some more writers show up while 13381 * we are cleaning. 13382 * 13383 * When requested to free up space, the amount of space that 13384 * we need is enough blocks to allocate a full-sized segment 13385 * (fs_contigsumsize). The number of such segments that will 13386 * be needed is set by the number of simultaneous writers 13387 * (mnt_writeopcount) plus a bit of slop (2) in case some more 13388 * writers show up while we are cleaning. 13389 * 13390 * Additionally, if we are unpriviledged and allocating space, 13391 * we need to ensure that we clean up enough blocks to get the 13392 * needed number of blocks over the threshold of the minimum 13393 * number of blocks required to be kept free by the filesystem 13394 * (fs_minfree). 13395 */ 13396 if (resource == FLUSH_INODES_WAIT) { 13397 needed = vp->v_mount->mnt_writeopcount + 2; 13398 } else if (resource == FLUSH_BLOCKS_WAIT) { 13399 needed = (vp->v_mount->mnt_writeopcount + 2) * 13400 fs->fs_contigsumsize; 13401 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE)) 13402 needed += fragstoblks(fs, 13403 roundup((fs->fs_dsize * fs->fs_minfree / 100) - 13404 fs->fs_cstotal.cs_nffree, fs->fs_frag)); 13405 } else { 13406 UFS_LOCK(ump); 13407 printf("softdep_request_cleanup: Unknown resource type %d\n", 13408 resource); 13409 return (0); 13410 } 13411 starttime = time_second; 13412 retry: 13413 if ((resource == FLUSH_BLOCKS_WAIT && ump->softdep_on_worklist > 0 && 13414 fs->fs_cstotal.cs_nbfree <= needed) || 13415 (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 && 13416 fs->fs_cstotal.cs_nifree <= needed)) { 13417 ACQUIRE_LOCK(ump); 13418 if (ump->softdep_on_worklist > 0 && 13419 process_worklist_item(UFSTOVFS(ump), 13420 ump->softdep_on_worklist, LK_NOWAIT) != 0) 13421 stat_worklist_push += 1; 13422 FREE_LOCK(ump); 13423 } 13424 /* 13425 * If we still need resources and there are no more worklist 13426 * entries to process to obtain them, we have to start flushing 13427 * the dirty vnodes to force the release of additional requests 13428 * to the worklist that we can then process to reap addition 13429 * resources. We walk the vnodes associated with the mount point 13430 * until we get the needed worklist requests that we can reap. 13431 * 13432 * If there are several threads all needing to clean the same 13433 * mount point, only one is allowed to walk the mount list. 13434 * When several threads all try to walk the same mount list, 13435 * they end up competing with each other and often end up in 13436 * livelock. This approach ensures that forward progress is 13437 * made at the cost of occational ENOSPC errors being returned 13438 * that might otherwise have been avoided. 13439 */ 13440 error = 1; 13441 if ((resource == FLUSH_BLOCKS_WAIT && 13442 fs->fs_cstotal.cs_nbfree <= needed) || 13443 (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 && 13444 fs->fs_cstotal.cs_nifree <= needed)) { 13445 ACQUIRE_LOCK(ump); 13446 if ((ump->um_softdep->sd_flags & FLUSH_RC_ACTIVE) == 0) { 13447 ump->um_softdep->sd_flags |= FLUSH_RC_ACTIVE; 13448 FREE_LOCK(ump); 13449 failed_vnode = softdep_request_cleanup_flush(mp, ump); 13450 ACQUIRE_LOCK(ump); 13451 ump->um_softdep->sd_flags &= ~FLUSH_RC_ACTIVE; 13452 FREE_LOCK(ump); 13453 if (ump->softdep_on_worklist > 0) { 13454 stat_cleanup_retries += 1; 13455 if (!failed_vnode) 13456 goto retry; 13457 } 13458 } else { 13459 FREE_LOCK(ump); 13460 error = 0; 13461 } 13462 stat_cleanup_failures += 1; 13463 } 13464 if (time_second - starttime > stat_cleanup_high_delay) 13465 stat_cleanup_high_delay = time_second - starttime; 13466 UFS_LOCK(ump); 13467 return (error); 13468 } 13469 13470 /* 13471 * Scan the vnodes for the specified mount point flushing out any 13472 * vnodes that can be locked without waiting. Finally, try to flush 13473 * the device associated with the mount point if it can be locked 13474 * without waiting. 13475 * 13476 * We return 0 if we were able to lock every vnode in our scan. 13477 * If we had to skip one or more vnodes, we return 1. 13478 */ 13479 static int 13480 softdep_request_cleanup_flush(mp, ump) 13481 struct mount *mp; 13482 struct ufsmount *ump; 13483 { 13484 struct thread *td; 13485 struct vnode *lvp, *mvp; 13486 int failed_vnode; 13487 13488 failed_vnode = 0; 13489 td = curthread; 13490 MNT_VNODE_FOREACH_ALL(lvp, mp, mvp) { 13491 if (TAILQ_FIRST(&lvp->v_bufobj.bo_dirty.bv_hd) == 0) { 13492 VI_UNLOCK(lvp); 13493 continue; 13494 } 13495 if (vget(lvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT, 13496 td) != 0) { 13497 failed_vnode = 1; 13498 continue; 13499 } 13500 if (lvp->v_vflag & VV_NOSYNC) { /* unlinked */ 13501 vput(lvp); 13502 continue; 13503 } 13504 (void) ffs_syncvnode(lvp, MNT_NOWAIT, 0); 13505 vput(lvp); 13506 } 13507 lvp = ump->um_devvp; 13508 if (vn_lock(lvp, LK_EXCLUSIVE | LK_NOWAIT) == 0) { 13509 VOP_FSYNC(lvp, MNT_NOWAIT, td); 13510 VOP_UNLOCK(lvp, 0); 13511 } 13512 return (failed_vnode); 13513 } 13514 13515 static bool 13516 softdep_excess_items(struct ufsmount *ump, int item) 13517 { 13518 13519 KASSERT(item >= 0 && item < D_LAST, ("item %d", item)); 13520 return (dep_current[item] > max_softdeps && 13521 ump->softdep_curdeps[item] > max_softdeps / 13522 stat_flush_threads); 13523 } 13524 13525 static void 13526 schedule_cleanup(struct mount *mp) 13527 { 13528 struct ufsmount *ump; 13529 struct thread *td; 13530 13531 ump = VFSTOUFS(mp); 13532 LOCK_OWNED(ump); 13533 FREE_LOCK(ump); 13534 td = curthread; 13535 if ((td->td_pflags & TDP_KTHREAD) != 0 && 13536 (td->td_proc->p_flag2 & P2_AST_SU) == 0) { 13537 /* 13538 * No ast is delivered to kernel threads, so nobody 13539 * would deref the mp. Some kernel threads 13540 * explicitely check for AST, e.g. NFS daemon does 13541 * this in the serving loop. 13542 */ 13543 return; 13544 } 13545 if (td->td_su != NULL) 13546 vfs_rel(td->td_su); 13547 vfs_ref(mp); 13548 td->td_su = mp; 13549 thread_lock(td); 13550 td->td_flags |= TDF_ASTPENDING; 13551 thread_unlock(td); 13552 } 13553 13554 static void 13555 softdep_ast_cleanup_proc(struct thread *td) 13556 { 13557 struct mount *mp; 13558 struct ufsmount *ump; 13559 int error; 13560 bool req; 13561 13562 while ((mp = td->td_su) != NULL) { 13563 td->td_su = NULL; 13564 error = vfs_busy(mp, MBF_NOWAIT); 13565 vfs_rel(mp); 13566 if (error != 0) 13567 return; 13568 if (ffs_own_mount(mp) && MOUNTEDSOFTDEP(mp)) { 13569 ump = VFSTOUFS(mp); 13570 for (;;) { 13571 req = false; 13572 ACQUIRE_LOCK(ump); 13573 if (softdep_excess_items(ump, D_INODEDEP)) { 13574 req = true; 13575 request_cleanup(mp, FLUSH_INODES); 13576 } 13577 if (softdep_excess_items(ump, D_DIRREM)) { 13578 req = true; 13579 request_cleanup(mp, FLUSH_BLOCKS); 13580 } 13581 FREE_LOCK(ump); 13582 if (softdep_excess_items(ump, D_NEWBLK) || 13583 softdep_excess_items(ump, D_ALLOCDIRECT) || 13584 softdep_excess_items(ump, D_ALLOCINDIR)) { 13585 error = vn_start_write(NULL, &mp, 13586 V_WAIT); 13587 if (error == 0) { 13588 req = true; 13589 VFS_SYNC(mp, MNT_WAIT); 13590 vn_finished_write(mp); 13591 } 13592 } 13593 if ((td->td_pflags & TDP_KTHREAD) != 0 || !req) 13594 break; 13595 } 13596 } 13597 vfs_unbusy(mp); 13598 } 13599 if ((mp = td->td_su) != NULL) { 13600 td->td_su = NULL; 13601 vfs_rel(mp); 13602 } 13603 } 13604 13605 /* 13606 * If memory utilization has gotten too high, deliberately slow things 13607 * down and speed up the I/O processing. 13608 */ 13609 static int 13610 request_cleanup(mp, resource) 13611 struct mount *mp; 13612 int resource; 13613 { 13614 struct thread *td = curthread; 13615 struct ufsmount *ump; 13616 13617 ump = VFSTOUFS(mp); 13618 LOCK_OWNED(ump); 13619 /* 13620 * We never hold up the filesystem syncer or buf daemon. 13621 */ 13622 if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF)) 13623 return (0); 13624 /* 13625 * First check to see if the work list has gotten backlogged. 13626 * If it has, co-opt this process to help clean up two entries. 13627 * Because this process may hold inodes locked, we cannot 13628 * handle any remove requests that might block on a locked 13629 * inode as that could lead to deadlock. We set TDP_SOFTDEP 13630 * to avoid recursively processing the worklist. 13631 */ 13632 if (ump->softdep_on_worklist > max_softdeps / 10) { 13633 td->td_pflags |= TDP_SOFTDEP; 13634 process_worklist_item(mp, 2, LK_NOWAIT); 13635 td->td_pflags &= ~TDP_SOFTDEP; 13636 stat_worklist_push += 2; 13637 return(1); 13638 } 13639 /* 13640 * Next, we attempt to speed up the syncer process. If that 13641 * is successful, then we allow the process to continue. 13642 */ 13643 if (softdep_speedup(ump) && 13644 resource != FLUSH_BLOCKS_WAIT && 13645 resource != FLUSH_INODES_WAIT) 13646 return(0); 13647 /* 13648 * If we are resource constrained on inode dependencies, try 13649 * flushing some dirty inodes. Otherwise, we are constrained 13650 * by file deletions, so try accelerating flushes of directories 13651 * with removal dependencies. We would like to do the cleanup 13652 * here, but we probably hold an inode locked at this point and 13653 * that might deadlock against one that we try to clean. So, 13654 * the best that we can do is request the syncer daemon to do 13655 * the cleanup for us. 13656 */ 13657 switch (resource) { 13658 13659 case FLUSH_INODES: 13660 case FLUSH_INODES_WAIT: 13661 ACQUIRE_GBLLOCK(&lk); 13662 stat_ino_limit_push += 1; 13663 req_clear_inodedeps += 1; 13664 FREE_GBLLOCK(&lk); 13665 stat_countp = &stat_ino_limit_hit; 13666 break; 13667 13668 case FLUSH_BLOCKS: 13669 case FLUSH_BLOCKS_WAIT: 13670 ACQUIRE_GBLLOCK(&lk); 13671 stat_blk_limit_push += 1; 13672 req_clear_remove += 1; 13673 FREE_GBLLOCK(&lk); 13674 stat_countp = &stat_blk_limit_hit; 13675 break; 13676 13677 default: 13678 panic("request_cleanup: unknown type"); 13679 } 13680 /* 13681 * Hopefully the syncer daemon will catch up and awaken us. 13682 * We wait at most tickdelay before proceeding in any case. 13683 */ 13684 ACQUIRE_GBLLOCK(&lk); 13685 FREE_LOCK(ump); 13686 proc_waiting += 1; 13687 if (callout_pending(&softdep_callout) == FALSE) 13688 callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2, 13689 pause_timer, 0); 13690 13691 if ((td->td_pflags & TDP_KTHREAD) == 0) 13692 msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0); 13693 proc_waiting -= 1; 13694 FREE_GBLLOCK(&lk); 13695 ACQUIRE_LOCK(ump); 13696 return (1); 13697 } 13698 13699 /* 13700 * Awaken processes pausing in request_cleanup and clear proc_waiting 13701 * to indicate that there is no longer a timer running. Pause_timer 13702 * will be called with the global softdep mutex (&lk) locked. 13703 */ 13704 static void 13705 pause_timer(arg) 13706 void *arg; 13707 { 13708 13709 GBLLOCK_OWNED(&lk); 13710 /* 13711 * The callout_ API has acquired mtx and will hold it around this 13712 * function call. 13713 */ 13714 *stat_countp += proc_waiting; 13715 wakeup(&proc_waiting); 13716 } 13717 13718 /* 13719 * If requested, try removing inode or removal dependencies. 13720 */ 13721 static void 13722 check_clear_deps(mp) 13723 struct mount *mp; 13724 { 13725 13726 /* 13727 * If we are suspended, it may be because of our using 13728 * too many inodedeps, so help clear them out. 13729 */ 13730 if (MOUNTEDSUJ(mp) && VFSTOUFS(mp)->softdep_jblocks->jb_suspended) 13731 clear_inodedeps(mp); 13732 /* 13733 * General requests for cleanup of backed up dependencies 13734 */ 13735 ACQUIRE_GBLLOCK(&lk); 13736 if (req_clear_inodedeps) { 13737 req_clear_inodedeps -= 1; 13738 FREE_GBLLOCK(&lk); 13739 clear_inodedeps(mp); 13740 ACQUIRE_GBLLOCK(&lk); 13741 wakeup(&proc_waiting); 13742 } 13743 if (req_clear_remove) { 13744 req_clear_remove -= 1; 13745 FREE_GBLLOCK(&lk); 13746 clear_remove(mp); 13747 ACQUIRE_GBLLOCK(&lk); 13748 wakeup(&proc_waiting); 13749 } 13750 FREE_GBLLOCK(&lk); 13751 } 13752 13753 /* 13754 * Flush out a directory with at least one removal dependency in an effort to 13755 * reduce the number of dirrem, freefile, and freeblks dependency structures. 13756 */ 13757 static void 13758 clear_remove(mp) 13759 struct mount *mp; 13760 { 13761 struct pagedep_hashhead *pagedephd; 13762 struct pagedep *pagedep; 13763 struct ufsmount *ump; 13764 struct vnode *vp; 13765 struct bufobj *bo; 13766 int error, cnt; 13767 ino_t ino; 13768 13769 ump = VFSTOUFS(mp); 13770 LOCK_OWNED(ump); 13771 13772 for (cnt = 0; cnt <= ump->pagedep_hash_size; cnt++) { 13773 pagedephd = &ump->pagedep_hashtbl[ump->pagedep_nextclean++]; 13774 if (ump->pagedep_nextclean > ump->pagedep_hash_size) 13775 ump->pagedep_nextclean = 0; 13776 LIST_FOREACH(pagedep, pagedephd, pd_hash) { 13777 if (LIST_EMPTY(&pagedep->pd_dirremhd)) 13778 continue; 13779 ino = pagedep->pd_ino; 13780 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 13781 continue; 13782 FREE_LOCK(ump); 13783 13784 /* 13785 * Let unmount clear deps 13786 */ 13787 error = vfs_busy(mp, MBF_NOWAIT); 13788 if (error != 0) 13789 goto finish_write; 13790 error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp, 13791 FFSV_FORCEINSMQ); 13792 vfs_unbusy(mp); 13793 if (error != 0) { 13794 softdep_error("clear_remove: vget", error); 13795 goto finish_write; 13796 } 13797 if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0))) 13798 softdep_error("clear_remove: fsync", error); 13799 bo = &vp->v_bufobj; 13800 BO_LOCK(bo); 13801 drain_output(vp); 13802 BO_UNLOCK(bo); 13803 vput(vp); 13804 finish_write: 13805 vn_finished_write(mp); 13806 ACQUIRE_LOCK(ump); 13807 return; 13808 } 13809 } 13810 } 13811 13812 /* 13813 * Clear out a block of dirty inodes in an effort to reduce 13814 * the number of inodedep dependency structures. 13815 */ 13816 static void 13817 clear_inodedeps(mp) 13818 struct mount *mp; 13819 { 13820 struct inodedep_hashhead *inodedephd; 13821 struct inodedep *inodedep; 13822 struct ufsmount *ump; 13823 struct vnode *vp; 13824 struct fs *fs; 13825 int error, cnt; 13826 ino_t firstino, lastino, ino; 13827 13828 ump = VFSTOUFS(mp); 13829 fs = ump->um_fs; 13830 LOCK_OWNED(ump); 13831 /* 13832 * Pick a random inode dependency to be cleared. 13833 * We will then gather up all the inodes in its block 13834 * that have dependencies and flush them out. 13835 */ 13836 for (cnt = 0; cnt <= ump->inodedep_hash_size; cnt++) { 13837 inodedephd = &ump->inodedep_hashtbl[ump->inodedep_nextclean++]; 13838 if (ump->inodedep_nextclean > ump->inodedep_hash_size) 13839 ump->inodedep_nextclean = 0; 13840 if ((inodedep = LIST_FIRST(inodedephd)) != NULL) 13841 break; 13842 } 13843 if (inodedep == NULL) 13844 return; 13845 /* 13846 * Find the last inode in the block with dependencies. 13847 */ 13848 firstino = rounddown2(inodedep->id_ino, INOPB(fs)); 13849 for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--) 13850 if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0) 13851 break; 13852 /* 13853 * Asynchronously push all but the last inode with dependencies. 13854 * Synchronously push the last inode with dependencies to ensure 13855 * that the inode block gets written to free up the inodedeps. 13856 */ 13857 for (ino = firstino; ino <= lastino; ino++) { 13858 if (inodedep_lookup(mp, ino, 0, &inodedep) == 0) 13859 continue; 13860 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 13861 continue; 13862 FREE_LOCK(ump); 13863 error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */ 13864 if (error != 0) { 13865 vn_finished_write(mp); 13866 ACQUIRE_LOCK(ump); 13867 return; 13868 } 13869 if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp, 13870 FFSV_FORCEINSMQ)) != 0) { 13871 softdep_error("clear_inodedeps: vget", error); 13872 vfs_unbusy(mp); 13873 vn_finished_write(mp); 13874 ACQUIRE_LOCK(ump); 13875 return; 13876 } 13877 vfs_unbusy(mp); 13878 if (ino == lastino) { 13879 if ((error = ffs_syncvnode(vp, MNT_WAIT, 0))) 13880 softdep_error("clear_inodedeps: fsync1", error); 13881 } else { 13882 if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0))) 13883 softdep_error("clear_inodedeps: fsync2", error); 13884 BO_LOCK(&vp->v_bufobj); 13885 drain_output(vp); 13886 BO_UNLOCK(&vp->v_bufobj); 13887 } 13888 vput(vp); 13889 vn_finished_write(mp); 13890 ACQUIRE_LOCK(ump); 13891 } 13892 } 13893 13894 void 13895 softdep_buf_append(bp, wkhd) 13896 struct buf *bp; 13897 struct workhead *wkhd; 13898 { 13899 struct worklist *wk; 13900 struct ufsmount *ump; 13901 13902 if ((wk = LIST_FIRST(wkhd)) == NULL) 13903 return; 13904 KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, 13905 ("softdep_buf_append called on non-softdep filesystem")); 13906 ump = VFSTOUFS(wk->wk_mp); 13907 ACQUIRE_LOCK(ump); 13908 while ((wk = LIST_FIRST(wkhd)) != NULL) { 13909 WORKLIST_REMOVE(wk); 13910 WORKLIST_INSERT(&bp->b_dep, wk); 13911 } 13912 FREE_LOCK(ump); 13913 13914 } 13915 13916 void 13917 softdep_inode_append(ip, cred, wkhd) 13918 struct inode *ip; 13919 struct ucred *cred; 13920 struct workhead *wkhd; 13921 { 13922 struct buf *bp; 13923 struct fs *fs; 13924 struct ufsmount *ump; 13925 int error; 13926 13927 ump = ITOUMP(ip); 13928 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 13929 ("softdep_inode_append called on non-softdep filesystem")); 13930 fs = ump->um_fs; 13931 error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 13932 (int)fs->fs_bsize, cred, &bp); 13933 if (error) { 13934 bqrelse(bp); 13935 softdep_freework(wkhd); 13936 return; 13937 } 13938 softdep_buf_append(bp, wkhd); 13939 bqrelse(bp); 13940 } 13941 13942 void 13943 softdep_freework(wkhd) 13944 struct workhead *wkhd; 13945 { 13946 struct worklist *wk; 13947 struct ufsmount *ump; 13948 13949 if ((wk = LIST_FIRST(wkhd)) == NULL) 13950 return; 13951 KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, 13952 ("softdep_freework called on non-softdep filesystem")); 13953 ump = VFSTOUFS(wk->wk_mp); 13954 ACQUIRE_LOCK(ump); 13955 handle_jwork(wkhd); 13956 FREE_LOCK(ump); 13957 } 13958 13959 static struct ufsmount * 13960 softdep_bp_to_mp(bp) 13961 struct buf *bp; 13962 { 13963 struct mount *mp; 13964 struct vnode *vp; 13965 13966 if (LIST_EMPTY(&bp->b_dep)) 13967 return (NULL); 13968 vp = bp->b_vp; 13969 KASSERT(vp != NULL, 13970 ("%s, buffer with dependencies lacks vnode", __func__)); 13971 13972 /* 13973 * The ump mount point is stable after we get a correct 13974 * pointer, since bp is locked and this prevents unmount from 13975 * proceeding. But to get to it, we cannot dereference bp->b_dep 13976 * head wk_mp, because we do not yet own SU ump lock and 13977 * workitem might be freed while dereferenced. 13978 */ 13979 retry: 13980 switch (vp->v_type) { 13981 case VCHR: 13982 VI_LOCK(vp); 13983 mp = vp->v_type == VCHR ? vp->v_rdev->si_mountpt : NULL; 13984 VI_UNLOCK(vp); 13985 if (mp == NULL) 13986 goto retry; 13987 break; 13988 case VREG: 13989 case VDIR: 13990 case VLNK: 13991 case VFIFO: 13992 case VSOCK: 13993 mp = vp->v_mount; 13994 break; 13995 case VBLK: 13996 vn_printf(vp, "softdep_bp_to_mp: unexpected block device\n"); 13997 /* FALLTHROUGH */ 13998 case VNON: 13999 case VBAD: 14000 case VMARKER: 14001 mp = NULL; 14002 break; 14003 default: 14004 vn_printf(vp, "unknown vnode type"); 14005 mp = NULL; 14006 break; 14007 } 14008 return (VFSTOUFS(mp)); 14009 } 14010 14011 /* 14012 * Function to determine if the buffer has outstanding dependencies 14013 * that will cause a roll-back if the buffer is written. If wantcount 14014 * is set, return number of dependencies, otherwise just yes or no. 14015 */ 14016 static int 14017 softdep_count_dependencies(bp, wantcount) 14018 struct buf *bp; 14019 int wantcount; 14020 { 14021 struct worklist *wk; 14022 struct ufsmount *ump; 14023 struct bmsafemap *bmsafemap; 14024 struct freework *freework; 14025 struct inodedep *inodedep; 14026 struct indirdep *indirdep; 14027 struct freeblks *freeblks; 14028 struct allocindir *aip; 14029 struct pagedep *pagedep; 14030 struct dirrem *dirrem; 14031 struct newblk *newblk; 14032 struct mkdir *mkdir; 14033 struct diradd *dap; 14034 int i, retval; 14035 14036 ump = softdep_bp_to_mp(bp); 14037 if (ump == NULL) 14038 return (0); 14039 retval = 0; 14040 ACQUIRE_LOCK(ump); 14041 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 14042 switch (wk->wk_type) { 14043 14044 case D_INODEDEP: 14045 inodedep = WK_INODEDEP(wk); 14046 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 14047 /* bitmap allocation dependency */ 14048 retval += 1; 14049 if (!wantcount) 14050 goto out; 14051 } 14052 if (TAILQ_FIRST(&inodedep->id_inoupdt)) { 14053 /* direct block pointer dependency */ 14054 retval += 1; 14055 if (!wantcount) 14056 goto out; 14057 } 14058 if (TAILQ_FIRST(&inodedep->id_extupdt)) { 14059 /* direct block pointer dependency */ 14060 retval += 1; 14061 if (!wantcount) 14062 goto out; 14063 } 14064 if (TAILQ_FIRST(&inodedep->id_inoreflst)) { 14065 /* Add reference dependency. */ 14066 retval += 1; 14067 if (!wantcount) 14068 goto out; 14069 } 14070 continue; 14071 14072 case D_INDIRDEP: 14073 indirdep = WK_INDIRDEP(wk); 14074 14075 TAILQ_FOREACH(freework, &indirdep->ir_trunc, fw_next) { 14076 /* indirect truncation dependency */ 14077 retval += 1; 14078 if (!wantcount) 14079 goto out; 14080 } 14081 14082 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) { 14083 /* indirect block pointer dependency */ 14084 retval += 1; 14085 if (!wantcount) 14086 goto out; 14087 } 14088 continue; 14089 14090 case D_PAGEDEP: 14091 pagedep = WK_PAGEDEP(wk); 14092 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) { 14093 if (LIST_FIRST(&dirrem->dm_jremrefhd)) { 14094 /* Journal remove ref dependency. */ 14095 retval += 1; 14096 if (!wantcount) 14097 goto out; 14098 } 14099 } 14100 for (i = 0; i < DAHASHSZ; i++) { 14101 14102 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 14103 /* directory entry dependency */ 14104 retval += 1; 14105 if (!wantcount) 14106 goto out; 14107 } 14108 } 14109 continue; 14110 14111 case D_BMSAFEMAP: 14112 bmsafemap = WK_BMSAFEMAP(wk); 14113 if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) { 14114 /* Add reference dependency. */ 14115 retval += 1; 14116 if (!wantcount) 14117 goto out; 14118 } 14119 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) { 14120 /* Allocate block dependency. */ 14121 retval += 1; 14122 if (!wantcount) 14123 goto out; 14124 } 14125 continue; 14126 14127 case D_FREEBLKS: 14128 freeblks = WK_FREEBLKS(wk); 14129 if (LIST_FIRST(&freeblks->fb_jblkdephd)) { 14130 /* Freeblk journal dependency. */ 14131 retval += 1; 14132 if (!wantcount) 14133 goto out; 14134 } 14135 continue; 14136 14137 case D_ALLOCDIRECT: 14138 case D_ALLOCINDIR: 14139 newblk = WK_NEWBLK(wk); 14140 if (newblk->nb_jnewblk) { 14141 /* Journal allocate dependency. */ 14142 retval += 1; 14143 if (!wantcount) 14144 goto out; 14145 } 14146 continue; 14147 14148 case D_MKDIR: 14149 mkdir = WK_MKDIR(wk); 14150 if (mkdir->md_jaddref) { 14151 /* Journal reference dependency. */ 14152 retval += 1; 14153 if (!wantcount) 14154 goto out; 14155 } 14156 continue; 14157 14158 case D_FREEWORK: 14159 case D_FREEDEP: 14160 case D_JSEGDEP: 14161 case D_JSEG: 14162 case D_SBDEP: 14163 /* never a dependency on these blocks */ 14164 continue; 14165 14166 default: 14167 panic("softdep_count_dependencies: Unexpected type %s", 14168 TYPENAME(wk->wk_type)); 14169 /* NOTREACHED */ 14170 } 14171 } 14172 out: 14173 FREE_LOCK(ump); 14174 return (retval); 14175 } 14176 14177 /* 14178 * Acquire exclusive access to a buffer. 14179 * Must be called with a locked mtx parameter. 14180 * Return acquired buffer or NULL on failure. 14181 */ 14182 static struct buf * 14183 getdirtybuf(bp, lock, waitfor) 14184 struct buf *bp; 14185 struct rwlock *lock; 14186 int waitfor; 14187 { 14188 int error; 14189 14190 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) { 14191 if (waitfor != MNT_WAIT) 14192 return (NULL); 14193 error = BUF_LOCK(bp, 14194 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, lock); 14195 /* 14196 * Even if we successfully acquire bp here, we have dropped 14197 * lock, which may violates our guarantee. 14198 */ 14199 if (error == 0) 14200 BUF_UNLOCK(bp); 14201 else if (error != ENOLCK) 14202 panic("getdirtybuf: inconsistent lock: %d", error); 14203 rw_wlock(lock); 14204 return (NULL); 14205 } 14206 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) { 14207 if (lock != BO_LOCKPTR(bp->b_bufobj) && waitfor == MNT_WAIT) { 14208 rw_wunlock(lock); 14209 BO_LOCK(bp->b_bufobj); 14210 BUF_UNLOCK(bp); 14211 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) { 14212 bp->b_vflags |= BV_BKGRDWAIT; 14213 msleep(&bp->b_xflags, BO_LOCKPTR(bp->b_bufobj), 14214 PRIBIO | PDROP, "getbuf", 0); 14215 } else 14216 BO_UNLOCK(bp->b_bufobj); 14217 rw_wlock(lock); 14218 return (NULL); 14219 } 14220 BUF_UNLOCK(bp); 14221 if (waitfor != MNT_WAIT) 14222 return (NULL); 14223 #ifdef DEBUG_VFS_LOCKS 14224 if (bp->b_vp->v_type != VCHR) 14225 ASSERT_BO_WLOCKED(bp->b_bufobj); 14226 #endif 14227 bp->b_vflags |= BV_BKGRDWAIT; 14228 rw_sleep(&bp->b_xflags, lock, PRIBIO, "getbuf", 0); 14229 return (NULL); 14230 } 14231 if ((bp->b_flags & B_DELWRI) == 0) { 14232 BUF_UNLOCK(bp); 14233 return (NULL); 14234 } 14235 bremfree(bp); 14236 return (bp); 14237 } 14238 14239 14240 /* 14241 * Check if it is safe to suspend the file system now. On entry, 14242 * the vnode interlock for devvp should be held. Return 0 with 14243 * the mount interlock held if the file system can be suspended now, 14244 * otherwise return EAGAIN with the mount interlock held. 14245 */ 14246 int 14247 softdep_check_suspend(struct mount *mp, 14248 struct vnode *devvp, 14249 int softdep_depcnt, 14250 int softdep_accdepcnt, 14251 int secondary_writes, 14252 int secondary_accwrites) 14253 { 14254 struct bufobj *bo; 14255 struct ufsmount *ump; 14256 struct inodedep *inodedep; 14257 int error, unlinked; 14258 14259 bo = &devvp->v_bufobj; 14260 ASSERT_BO_WLOCKED(bo); 14261 14262 /* 14263 * If we are not running with soft updates, then we need only 14264 * deal with secondary writes as we try to suspend. 14265 */ 14266 if (MOUNTEDSOFTDEP(mp) == 0) { 14267 MNT_ILOCK(mp); 14268 while (mp->mnt_secondary_writes != 0) { 14269 BO_UNLOCK(bo); 14270 msleep(&mp->mnt_secondary_writes, MNT_MTX(mp), 14271 (PUSER - 1) | PDROP, "secwr", 0); 14272 BO_LOCK(bo); 14273 MNT_ILOCK(mp); 14274 } 14275 14276 /* 14277 * Reasons for needing more work before suspend: 14278 * - Dirty buffers on devvp. 14279 * - Secondary writes occurred after start of vnode sync loop 14280 */ 14281 error = 0; 14282 if (bo->bo_numoutput > 0 || 14283 bo->bo_dirty.bv_cnt > 0 || 14284 secondary_writes != 0 || 14285 mp->mnt_secondary_writes != 0 || 14286 secondary_accwrites != mp->mnt_secondary_accwrites) 14287 error = EAGAIN; 14288 BO_UNLOCK(bo); 14289 return (error); 14290 } 14291 14292 /* 14293 * If we are running with soft updates, then we need to coordinate 14294 * with them as we try to suspend. 14295 */ 14296 ump = VFSTOUFS(mp); 14297 for (;;) { 14298 if (!TRY_ACQUIRE_LOCK(ump)) { 14299 BO_UNLOCK(bo); 14300 ACQUIRE_LOCK(ump); 14301 FREE_LOCK(ump); 14302 BO_LOCK(bo); 14303 continue; 14304 } 14305 MNT_ILOCK(mp); 14306 if (mp->mnt_secondary_writes != 0) { 14307 FREE_LOCK(ump); 14308 BO_UNLOCK(bo); 14309 msleep(&mp->mnt_secondary_writes, 14310 MNT_MTX(mp), 14311 (PUSER - 1) | PDROP, "secwr", 0); 14312 BO_LOCK(bo); 14313 continue; 14314 } 14315 break; 14316 } 14317 14318 unlinked = 0; 14319 if (MOUNTEDSUJ(mp)) { 14320 for (inodedep = TAILQ_FIRST(&ump->softdep_unlinked); 14321 inodedep != NULL; 14322 inodedep = TAILQ_NEXT(inodedep, id_unlinked)) { 14323 if ((inodedep->id_state & (UNLINKED | UNLINKLINKS | 14324 UNLINKONLIST)) != (UNLINKED | UNLINKLINKS | 14325 UNLINKONLIST) || 14326 !check_inodedep_free(inodedep)) 14327 continue; 14328 unlinked++; 14329 } 14330 } 14331 14332 /* 14333 * Reasons for needing more work before suspend: 14334 * - Dirty buffers on devvp. 14335 * - Softdep activity occurred after start of vnode sync loop 14336 * - Secondary writes occurred after start of vnode sync loop 14337 */ 14338 error = 0; 14339 if (bo->bo_numoutput > 0 || 14340 bo->bo_dirty.bv_cnt > 0 || 14341 softdep_depcnt != unlinked || 14342 ump->softdep_deps != unlinked || 14343 softdep_accdepcnt != ump->softdep_accdeps || 14344 secondary_writes != 0 || 14345 mp->mnt_secondary_writes != 0 || 14346 secondary_accwrites != mp->mnt_secondary_accwrites) 14347 error = EAGAIN; 14348 FREE_LOCK(ump); 14349 BO_UNLOCK(bo); 14350 return (error); 14351 } 14352 14353 14354 /* 14355 * Get the number of dependency structures for the file system, both 14356 * the current number and the total number allocated. These will 14357 * later be used to detect that softdep processing has occurred. 14358 */ 14359 void 14360 softdep_get_depcounts(struct mount *mp, 14361 int *softdep_depsp, 14362 int *softdep_accdepsp) 14363 { 14364 struct ufsmount *ump; 14365 14366 if (MOUNTEDSOFTDEP(mp) == 0) { 14367 *softdep_depsp = 0; 14368 *softdep_accdepsp = 0; 14369 return; 14370 } 14371 ump = VFSTOUFS(mp); 14372 ACQUIRE_LOCK(ump); 14373 *softdep_depsp = ump->softdep_deps; 14374 *softdep_accdepsp = ump->softdep_accdeps; 14375 FREE_LOCK(ump); 14376 } 14377 14378 /* 14379 * Wait for pending output on a vnode to complete. 14380 */ 14381 static void 14382 drain_output(vp) 14383 struct vnode *vp; 14384 { 14385 14386 ASSERT_VOP_LOCKED(vp, "drain_output"); 14387 (void)bufobj_wwait(&vp->v_bufobj, 0, 0); 14388 } 14389 14390 /* 14391 * Called whenever a buffer that is being invalidated or reallocated 14392 * contains dependencies. This should only happen if an I/O error has 14393 * occurred. The routine is called with the buffer locked. 14394 */ 14395 static void 14396 softdep_deallocate_dependencies(bp) 14397 struct buf *bp; 14398 { 14399 14400 if ((bp->b_ioflags & BIO_ERROR) == 0) 14401 panic("softdep_deallocate_dependencies: dangling deps"); 14402 if (bp->b_vp != NULL && bp->b_vp->v_mount != NULL) 14403 softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error); 14404 else 14405 printf("softdep_deallocate_dependencies: " 14406 "got error %d while accessing filesystem\n", bp->b_error); 14407 if (bp->b_error != ENXIO) 14408 panic("softdep_deallocate_dependencies: unrecovered I/O error"); 14409 } 14410 14411 /* 14412 * Function to handle asynchronous write errors in the filesystem. 14413 */ 14414 static void 14415 softdep_error(func, error) 14416 char *func; 14417 int error; 14418 { 14419 14420 /* XXX should do something better! */ 14421 printf("%s: got error %d while accessing filesystem\n", func, error); 14422 } 14423 14424 #ifdef DDB 14425 14426 /* exported to ffs_vfsops.c */ 14427 extern void db_print_ffs(struct ufsmount *ump); 14428 void 14429 db_print_ffs(struct ufsmount *ump) 14430 { 14431 db_printf("mp %p (%s) devvp %p\n", ump->um_mountp, 14432 ump->um_mountp->mnt_stat.f_mntonname, ump->um_devvp); 14433 db_printf(" fs %p su_wl %d su_deps %d su_req %d\n", 14434 ump->um_fs, ump->softdep_on_worklist, 14435 ump->softdep_deps, ump->softdep_req); 14436 } 14437 14438 static void 14439 worklist_print(struct worklist *wk, int verbose) 14440 { 14441 14442 if (!verbose) { 14443 db_printf("%s: %p state 0x%b\n", TYPENAME(wk->wk_type), wk, 14444 (u_int)wk->wk_state, PRINT_SOFTDEP_FLAGS); 14445 return; 14446 } 14447 db_printf("worklist: %p type %s state 0x%b next %p\n ", wk, 14448 TYPENAME(wk->wk_type), (u_int)wk->wk_state, PRINT_SOFTDEP_FLAGS, 14449 LIST_NEXT(wk, wk_list)); 14450 db_print_ffs(VFSTOUFS(wk->wk_mp)); 14451 } 14452 14453 static void 14454 inodedep_print(struct inodedep *inodedep, int verbose) 14455 { 14456 14457 worklist_print(&inodedep->id_list, 0); 14458 db_printf(" fs %p ino %jd inoblk %jd delta %jd nlink %jd\n", 14459 inodedep->id_fs, 14460 (intmax_t)inodedep->id_ino, 14461 (intmax_t)fsbtodb(inodedep->id_fs, 14462 ino_to_fsba(inodedep->id_fs, inodedep->id_ino)), 14463 (intmax_t)inodedep->id_nlinkdelta, 14464 (intmax_t)inodedep->id_savednlink); 14465 14466 if (verbose == 0) 14467 return; 14468 14469 db_printf(" bmsafemap %p, mkdiradd %p, inoreflst %p\n", 14470 inodedep->id_bmsafemap, 14471 inodedep->id_mkdiradd, 14472 TAILQ_FIRST(&inodedep->id_inoreflst)); 14473 db_printf(" dirremhd %p, pendinghd %p, bufwait %p\n", 14474 LIST_FIRST(&inodedep->id_dirremhd), 14475 LIST_FIRST(&inodedep->id_pendinghd), 14476 LIST_FIRST(&inodedep->id_bufwait)); 14477 db_printf(" inowait %p, inoupdt %p, newinoupdt %p\n", 14478 LIST_FIRST(&inodedep->id_inowait), 14479 TAILQ_FIRST(&inodedep->id_inoupdt), 14480 TAILQ_FIRST(&inodedep->id_newinoupdt)); 14481 db_printf(" extupdt %p, newextupdt %p, freeblklst %p\n", 14482 TAILQ_FIRST(&inodedep->id_extupdt), 14483 TAILQ_FIRST(&inodedep->id_newextupdt), 14484 TAILQ_FIRST(&inodedep->id_freeblklst)); 14485 db_printf(" saveino %p, savedsize %jd, savedextsize %jd\n", 14486 inodedep->id_savedino1, 14487 (intmax_t)inodedep->id_savedsize, 14488 (intmax_t)inodedep->id_savedextsize); 14489 } 14490 14491 static void 14492 newblk_print(struct newblk *nbp) 14493 { 14494 14495 worklist_print(&nbp->nb_list, 0); 14496 db_printf(" newblkno %jd\n", (intmax_t)nbp->nb_newblkno); 14497 db_printf(" jnewblk %p, bmsafemap %p, freefrag %p\n", 14498 &nbp->nb_jnewblk, 14499 &nbp->nb_bmsafemap, 14500 &nbp->nb_freefrag); 14501 db_printf(" indirdeps %p, newdirblk %p, jwork %p\n", 14502 LIST_FIRST(&nbp->nb_indirdeps), 14503 LIST_FIRST(&nbp->nb_newdirblk), 14504 LIST_FIRST(&nbp->nb_jwork)); 14505 } 14506 14507 static void 14508 allocdirect_print(struct allocdirect *adp) 14509 { 14510 14511 newblk_print(&adp->ad_block); 14512 db_printf(" oldblkno %jd, oldsize %ld, newsize %ld\n", 14513 adp->ad_oldblkno, adp->ad_oldsize, adp->ad_newsize); 14514 db_printf(" offset %d, inodedep %p\n", 14515 adp->ad_offset, adp->ad_inodedep); 14516 } 14517 14518 static void 14519 allocindir_print(struct allocindir *aip) 14520 { 14521 14522 newblk_print(&aip->ai_block); 14523 db_printf(" oldblkno %jd, lbn %jd\n", 14524 (intmax_t)aip->ai_oldblkno, (intmax_t)aip->ai_lbn); 14525 db_printf(" offset %d, indirdep %p\n", 14526 aip->ai_offset, aip->ai_indirdep); 14527 } 14528 14529 static void 14530 mkdir_print(struct mkdir *mkdir) 14531 { 14532 14533 worklist_print(&mkdir->md_list, 0); 14534 db_printf(" diradd %p, jaddref %p, buf %p\n", 14535 mkdir->md_diradd, mkdir->md_jaddref, mkdir->md_buf); 14536 } 14537 14538 DB_SHOW_COMMAND(sd_inodedep, db_show_sd_inodedep) 14539 { 14540 14541 if (have_addr == 0) { 14542 db_printf("inodedep address required\n"); 14543 return; 14544 } 14545 inodedep_print((struct inodedep*)addr, 1); 14546 } 14547 14548 DB_SHOW_COMMAND(sd_allinodedeps, db_show_sd_allinodedeps) 14549 { 14550 struct inodedep_hashhead *inodedephd; 14551 struct inodedep *inodedep; 14552 struct ufsmount *ump; 14553 int cnt; 14554 14555 if (have_addr == 0) { 14556 db_printf("ufsmount address required\n"); 14557 return; 14558 } 14559 ump = (struct ufsmount *)addr; 14560 for (cnt = 0; cnt < ump->inodedep_hash_size; cnt++) { 14561 inodedephd = &ump->inodedep_hashtbl[cnt]; 14562 LIST_FOREACH(inodedep, inodedephd, id_hash) { 14563 inodedep_print(inodedep, 0); 14564 } 14565 } 14566 } 14567 14568 DB_SHOW_COMMAND(sd_worklist, db_show_sd_worklist) 14569 { 14570 14571 if (have_addr == 0) { 14572 db_printf("worklist address required\n"); 14573 return; 14574 } 14575 worklist_print((struct worklist *)addr, 1); 14576 } 14577 14578 DB_SHOW_COMMAND(sd_workhead, db_show_sd_workhead) 14579 { 14580 struct worklist *wk; 14581 struct workhead *wkhd; 14582 14583 if (have_addr == 0) { 14584 db_printf("worklist address required " 14585 "(for example value in bp->b_dep)\n"); 14586 return; 14587 } 14588 /* 14589 * We often do not have the address of the worklist head but 14590 * instead a pointer to its first entry (e.g., we have the 14591 * contents of bp->b_dep rather than &bp->b_dep). But the back 14592 * pointer of bp->b_dep will point at the head of the list, so 14593 * we cheat and use that instead. If we are in the middle of 14594 * a list we will still get the same result, so nothing 14595 * unexpected will result. 14596 */ 14597 wk = (struct worklist *)addr; 14598 if (wk == NULL) 14599 return; 14600 wkhd = (struct workhead *)wk->wk_list.le_prev; 14601 LIST_FOREACH(wk, wkhd, wk_list) { 14602 switch(wk->wk_type) { 14603 case D_INODEDEP: 14604 inodedep_print(WK_INODEDEP(wk), 0); 14605 continue; 14606 case D_ALLOCDIRECT: 14607 allocdirect_print(WK_ALLOCDIRECT(wk)); 14608 continue; 14609 case D_ALLOCINDIR: 14610 allocindir_print(WK_ALLOCINDIR(wk)); 14611 continue; 14612 case D_MKDIR: 14613 mkdir_print(WK_MKDIR(wk)); 14614 continue; 14615 default: 14616 worklist_print(wk, 0); 14617 continue; 14618 } 14619 } 14620 } 14621 14622 DB_SHOW_COMMAND(sd_mkdir, db_show_sd_mkdir) 14623 { 14624 if (have_addr == 0) { 14625 db_printf("mkdir address required\n"); 14626 return; 14627 } 14628 mkdir_print((struct mkdir *)addr); 14629 } 14630 14631 DB_SHOW_COMMAND(sd_mkdir_list, db_show_sd_mkdir_list) 14632 { 14633 struct mkdirlist *mkdirlisthd; 14634 struct mkdir *mkdir; 14635 14636 if (have_addr == 0) { 14637 db_printf("mkdir listhead address required\n"); 14638 return; 14639 } 14640 mkdirlisthd = (struct mkdirlist *)addr; 14641 LIST_FOREACH(mkdir, mkdirlisthd, md_mkdirs) { 14642 mkdir_print(mkdir); 14643 if (mkdir->md_diradd != NULL) { 14644 db_printf(" "); 14645 worklist_print(&mkdir->md_diradd->da_list, 0); 14646 } 14647 if (mkdir->md_jaddref != NULL) { 14648 db_printf(" "); 14649 worklist_print(&mkdir->md_jaddref->ja_list, 0); 14650 } 14651 } 14652 } 14653 14654 DB_SHOW_COMMAND(sd_allocdirect, db_show_sd_allocdirect) 14655 { 14656 if (have_addr == 0) { 14657 db_printf("allocdirect address required\n"); 14658 return; 14659 } 14660 allocdirect_print((struct allocdirect *)addr); 14661 } 14662 14663 DB_SHOW_COMMAND(sd_allocindir, db_show_sd_allocindir) 14664 { 14665 if (have_addr == 0) { 14666 db_printf("allocindir address required\n"); 14667 return; 14668 } 14669 allocindir_print((struct allocindir *)addr); 14670 } 14671 14672 #endif /* DDB */ 14673 14674 #endif /* SOFTUPDATES */ 14675