1 /*- 2 * Copyright 1998, 2000 Marshall Kirk McKusick. All Rights Reserved. 3 * 4 * The soft updates code is derived from the appendix of a University 5 * of Michigan technical report (Gregory R. Ganger and Yale N. Patt, 6 * "Soft Updates: A Solution to the Metadata Update Problem in File 7 * Systems", CSE-TR-254-95, August 1995). 8 * 9 * Further information about soft updates can be obtained from: 10 * 11 * Marshall Kirk McKusick http://www.mckusick.com/softdep/ 12 * 1614 Oxford Street mckusick@mckusick.com 13 * Berkeley, CA 94709-1608 +1-510-843-9542 14 * USA 15 * 16 * Redistribution and use in source and binary forms, with or without 17 * modification, are permitted provided that the following conditions 18 * are met: 19 * 20 * 1. Redistributions of source code must retain the above copyright 21 * notice, this list of conditions and the following disclaimer. 22 * 2. Redistributions in binary form must reproduce the above copyright 23 * notice, this list of conditions and the following disclaimer in the 24 * documentation and/or other materials provided with the distribution. 25 * 26 * THIS SOFTWARE IS PROVIDED BY MARSHALL KIRK MCKUSICK ``AS IS'' AND ANY 27 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 28 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 29 * DISCLAIMED. IN NO EVENT SHALL MARSHALL KIRK MCKUSICK BE LIABLE FOR 30 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * from: @(#)ffs_softdep.c 9.59 (McKusick) 6/21/00 39 */ 40 41 #include <sys/cdefs.h> 42 __FBSDID("$FreeBSD$"); 43 44 /* 45 * For now we want the safety net that the DIAGNOSTIC and DEBUG flags provide. 46 */ 47 #ifndef DIAGNOSTIC 48 #define DIAGNOSTIC 49 #endif 50 #ifndef DEBUG 51 #define DEBUG 52 #endif 53 54 #include <sys/param.h> 55 #include <sys/kernel.h> 56 #include <sys/systm.h> 57 #include <sys/bio.h> 58 #include <sys/buf.h> 59 #include <sys/kdb.h> 60 #include <sys/kthread.h> 61 #include <sys/lock.h> 62 #include <sys/malloc.h> 63 #include <sys/mount.h> 64 #include <sys/mutex.h> 65 #include <sys/proc.h> 66 #include <sys/stat.h> 67 #include <sys/sysctl.h> 68 #include <sys/syslog.h> 69 #include <sys/vnode.h> 70 #include <sys/conf.h> 71 #include <ufs/ufs/dir.h> 72 #include <ufs/ufs/extattr.h> 73 #include <ufs/ufs/quota.h> 74 #include <ufs/ufs/inode.h> 75 #include <ufs/ufs/ufsmount.h> 76 #include <ufs/ffs/fs.h> 77 #include <ufs/ffs/softdep.h> 78 #include <ufs/ffs/ffs_extern.h> 79 #include <ufs/ufs/ufs_extern.h> 80 81 #include <vm/vm.h> 82 83 #include "opt_ffs.h" 84 #include "opt_quota.h" 85 86 #ifndef SOFTUPDATES 87 88 int 89 softdep_flushfiles(oldmnt, flags, td) 90 struct mount *oldmnt; 91 int flags; 92 struct thread *td; 93 { 94 95 panic("softdep_flushfiles called"); 96 } 97 98 int 99 softdep_mount(devvp, mp, fs, cred) 100 struct vnode *devvp; 101 struct mount *mp; 102 struct fs *fs; 103 struct ucred *cred; 104 { 105 106 return (0); 107 } 108 109 void 110 softdep_initialize() 111 { 112 113 return; 114 } 115 116 void 117 softdep_uninitialize() 118 { 119 120 return; 121 } 122 123 void 124 softdep_setup_inomapdep(bp, ip, newinum) 125 struct buf *bp; 126 struct inode *ip; 127 ino_t newinum; 128 { 129 130 panic("softdep_setup_inomapdep called"); 131 } 132 133 void 134 softdep_setup_blkmapdep(bp, mp, newblkno) 135 struct buf *bp; 136 struct mount *mp; 137 ufs2_daddr_t newblkno; 138 { 139 140 panic("softdep_setup_blkmapdep called"); 141 } 142 143 void 144 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 145 struct inode *ip; 146 ufs_lbn_t lbn; 147 ufs2_daddr_t newblkno; 148 ufs2_daddr_t oldblkno; 149 long newsize; 150 long oldsize; 151 struct buf *bp; 152 { 153 154 panic("softdep_setup_allocdirect called"); 155 } 156 157 void 158 softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 159 struct inode *ip; 160 ufs_lbn_t lbn; 161 ufs2_daddr_t newblkno; 162 ufs2_daddr_t oldblkno; 163 long newsize; 164 long oldsize; 165 struct buf *bp; 166 { 167 168 panic("softdep_setup_allocext called"); 169 } 170 171 void 172 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 173 struct inode *ip; 174 ufs_lbn_t lbn; 175 struct buf *bp; 176 int ptrno; 177 ufs2_daddr_t newblkno; 178 ufs2_daddr_t oldblkno; 179 struct buf *nbp; 180 { 181 182 panic("softdep_setup_allocindir_page called"); 183 } 184 185 void 186 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 187 struct buf *nbp; 188 struct inode *ip; 189 struct buf *bp; 190 int ptrno; 191 ufs2_daddr_t newblkno; 192 { 193 194 panic("softdep_setup_allocindir_meta called"); 195 } 196 197 void 198 softdep_setup_freeblocks(ip, length, flags) 199 struct inode *ip; 200 off_t length; 201 int flags; 202 { 203 204 panic("softdep_setup_freeblocks called"); 205 } 206 207 void 208 softdep_freefile(pvp, ino, mode) 209 struct vnode *pvp; 210 ino_t ino; 211 int mode; 212 { 213 214 panic("softdep_freefile called"); 215 } 216 217 int 218 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk) 219 struct buf *bp; 220 struct inode *dp; 221 off_t diroffset; 222 ino_t newinum; 223 struct buf *newdirbp; 224 int isnewblk; 225 { 226 227 panic("softdep_setup_directory_add called"); 228 } 229 230 void 231 softdep_change_directoryentry_offset(dp, base, oldloc, newloc, entrysize) 232 struct inode *dp; 233 caddr_t base; 234 caddr_t oldloc; 235 caddr_t newloc; 236 int entrysize; 237 { 238 239 panic("softdep_change_directoryentry_offset called"); 240 } 241 242 void 243 softdep_setup_remove(bp, dp, ip, isrmdir) 244 struct buf *bp; 245 struct inode *dp; 246 struct inode *ip; 247 int isrmdir; 248 { 249 250 panic("softdep_setup_remove called"); 251 } 252 253 void 254 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 255 struct buf *bp; 256 struct inode *dp; 257 struct inode *ip; 258 ino_t newinum; 259 int isrmdir; 260 { 261 262 panic("softdep_setup_directory_change called"); 263 } 264 265 void 266 softdep_change_linkcnt(ip) 267 struct inode *ip; 268 { 269 270 panic("softdep_change_linkcnt called"); 271 } 272 273 void 274 softdep_load_inodeblock(ip) 275 struct inode *ip; 276 { 277 278 panic("softdep_load_inodeblock called"); 279 } 280 281 void 282 softdep_update_inodeblock(ip, bp, waitfor) 283 struct inode *ip; 284 struct buf *bp; 285 int waitfor; 286 { 287 288 panic("softdep_update_inodeblock called"); 289 } 290 291 int 292 softdep_fsync(vp) 293 struct vnode *vp; /* the "in_core" copy of the inode */ 294 { 295 296 return (0); 297 } 298 299 void 300 softdep_fsync_mountdev(vp) 301 struct vnode *vp; 302 { 303 304 return; 305 } 306 307 int 308 softdep_flushworklist(oldmnt, countp, td) 309 struct mount *oldmnt; 310 int *countp; 311 struct thread *td; 312 { 313 314 *countp = 0; 315 return (0); 316 } 317 318 int 319 softdep_sync_metadata(struct vnode *vp) 320 { 321 322 return (0); 323 } 324 325 int 326 softdep_slowdown(vp) 327 struct vnode *vp; 328 { 329 330 panic("softdep_slowdown called"); 331 } 332 333 void 334 softdep_releasefile(ip) 335 struct inode *ip; /* inode with the zero effective link count */ 336 { 337 338 panic("softdep_releasefile called"); 339 } 340 341 int 342 softdep_request_cleanup(fs, vp) 343 struct fs *fs; 344 struct vnode *vp; 345 { 346 347 return (0); 348 } 349 350 int 351 softdep_check_suspend(struct mount *mp, 352 struct vnode *devvp, 353 int softdep_deps, 354 int softdep_accdeps, 355 int secondary_writes, 356 int secondary_accwrites) 357 { 358 struct bufobj *bo; 359 int error; 360 361 (void) softdep_deps, 362 (void) softdep_accdeps; 363 364 ASSERT_VI_LOCKED(devvp, "softdep_check_suspend"); 365 bo = &devvp->v_bufobj; 366 367 for (;;) { 368 if (!MNT_ITRYLOCK(mp)) { 369 VI_UNLOCK(devvp); 370 MNT_ILOCK(mp); 371 MNT_IUNLOCK(mp); 372 VI_LOCK(devvp); 373 continue; 374 } 375 if (mp->mnt_secondary_writes != 0) { 376 VI_UNLOCK(devvp); 377 msleep(&mp->mnt_secondary_writes, 378 MNT_MTX(mp), 379 (PUSER - 1) | PDROP, "secwr", 0); 380 VI_LOCK(devvp); 381 continue; 382 } 383 break; 384 } 385 386 /* 387 * Reasons for needing more work before suspend: 388 * - Dirty buffers on devvp. 389 * - Secondary writes occurred after start of vnode sync loop 390 */ 391 error = 0; 392 if (bo->bo_numoutput > 0 || 393 bo->bo_dirty.bv_cnt > 0 || 394 secondary_writes != 0 || 395 mp->mnt_secondary_writes != 0 || 396 secondary_accwrites != mp->mnt_secondary_accwrites) 397 error = EAGAIN; 398 VI_UNLOCK(devvp); 399 return (error); 400 } 401 402 void 403 softdep_get_depcounts(struct mount *mp, 404 int *softdepactivep, 405 int *softdepactiveaccp) 406 { 407 (void) mp; 408 *softdepactivep = 0; 409 *softdepactiveaccp = 0; 410 } 411 412 #else 413 /* 414 * These definitions need to be adapted to the system to which 415 * this file is being ported. 416 */ 417 /* 418 * malloc types defined for the softdep system. 419 */ 420 static MALLOC_DEFINE(M_PAGEDEP, "pagedep","File page dependencies"); 421 static MALLOC_DEFINE(M_INODEDEP, "inodedep","Inode dependencies"); 422 static MALLOC_DEFINE(M_NEWBLK, "newblk","New block allocation"); 423 static MALLOC_DEFINE(M_BMSAFEMAP, "bmsafemap","Block or frag allocated from cyl group map"); 424 static MALLOC_DEFINE(M_ALLOCDIRECT, "allocdirect","Block or frag dependency for an inode"); 425 static MALLOC_DEFINE(M_INDIRDEP, "indirdep","Indirect block dependencies"); 426 static MALLOC_DEFINE(M_ALLOCINDIR, "allocindir","Block dependency for an indirect block"); 427 static MALLOC_DEFINE(M_FREEFRAG, "freefrag","Previously used frag for an inode"); 428 static MALLOC_DEFINE(M_FREEBLKS, "freeblks","Blocks freed from an inode"); 429 static MALLOC_DEFINE(M_FREEFILE, "freefile","Inode deallocated"); 430 static MALLOC_DEFINE(M_DIRADD, "diradd","New directory entry"); 431 static MALLOC_DEFINE(M_MKDIR, "mkdir","New directory"); 432 static MALLOC_DEFINE(M_DIRREM, "dirrem","Directory entry deleted"); 433 static MALLOC_DEFINE(M_NEWDIRBLK, "newdirblk","Unclaimed new directory block"); 434 static MALLOC_DEFINE(M_SAVEDINO, "savedino","Saved inodes"); 435 436 #define M_SOFTDEP_FLAGS (M_WAITOK | M_USE_RESERVE) 437 438 #define D_PAGEDEP 0 439 #define D_INODEDEP 1 440 #define D_NEWBLK 2 441 #define D_BMSAFEMAP 3 442 #define D_ALLOCDIRECT 4 443 #define D_INDIRDEP 5 444 #define D_ALLOCINDIR 6 445 #define D_FREEFRAG 7 446 #define D_FREEBLKS 8 447 #define D_FREEFILE 9 448 #define D_DIRADD 10 449 #define D_MKDIR 11 450 #define D_DIRREM 12 451 #define D_NEWDIRBLK 13 452 #define D_LAST D_NEWDIRBLK 453 454 /* 455 * translate from workitem type to memory type 456 * MUST match the defines above, such that memtype[D_XXX] == M_XXX 457 */ 458 static struct malloc_type *memtype[] = { 459 M_PAGEDEP, 460 M_INODEDEP, 461 M_NEWBLK, 462 M_BMSAFEMAP, 463 M_ALLOCDIRECT, 464 M_INDIRDEP, 465 M_ALLOCINDIR, 466 M_FREEFRAG, 467 M_FREEBLKS, 468 M_FREEFILE, 469 M_DIRADD, 470 M_MKDIR, 471 M_DIRREM, 472 M_NEWDIRBLK 473 }; 474 475 #define DtoM(type) (memtype[type]) 476 477 /* 478 * Names of malloc types. 479 */ 480 #define TYPENAME(type) \ 481 ((unsigned)(type) < D_LAST ? memtype[type]->ks_shortdesc : "???") 482 /* 483 * End system adaptation definitions. 484 */ 485 486 /* 487 * Forward declarations. 488 */ 489 struct inodedep_hashhead; 490 struct newblk_hashhead; 491 struct pagedep_hashhead; 492 493 /* 494 * Internal function prototypes. 495 */ 496 static void softdep_error(char *, int); 497 static void drain_output(struct vnode *); 498 static struct buf *getdirtybuf(struct buf *, struct mtx *, int); 499 static void clear_remove(struct thread *); 500 static void clear_inodedeps(struct thread *); 501 static int flush_pagedep_deps(struct vnode *, struct mount *, 502 struct diraddhd *); 503 static int flush_inodedep_deps(struct mount *, ino_t); 504 static int flush_deplist(struct allocdirectlst *, int, int *); 505 static int handle_written_filepage(struct pagedep *, struct buf *); 506 static void diradd_inode_written(struct diradd *, struct inodedep *); 507 static int handle_written_inodeblock(struct inodedep *, struct buf *); 508 static void handle_allocdirect_partdone(struct allocdirect *); 509 static void handle_allocindir_partdone(struct allocindir *); 510 static void initiate_write_filepage(struct pagedep *, struct buf *); 511 static void handle_written_mkdir(struct mkdir *, int); 512 static void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *); 513 static void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *); 514 static void handle_workitem_freefile(struct freefile *); 515 static void handle_workitem_remove(struct dirrem *, struct vnode *); 516 static struct dirrem *newdirrem(struct buf *, struct inode *, 517 struct inode *, int, struct dirrem **); 518 static void free_diradd(struct diradd *); 519 static void free_allocindir(struct allocindir *, struct inodedep *); 520 static void free_newdirblk(struct newdirblk *); 521 static int indir_trunc(struct freeblks *, ufs2_daddr_t, int, ufs_lbn_t, 522 ufs2_daddr_t *); 523 static void deallocate_dependencies(struct buf *, struct inodedep *); 524 static void free_allocdirect(struct allocdirectlst *, 525 struct allocdirect *, int); 526 static int check_inode_unwritten(struct inodedep *); 527 static int free_inodedep(struct inodedep *); 528 static void handle_workitem_freeblocks(struct freeblks *, int); 529 static void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *); 530 static void setup_allocindir_phase2(struct buf *, struct inode *, 531 struct allocindir *); 532 static struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t, 533 ufs2_daddr_t); 534 static void handle_workitem_freefrag(struct freefrag *); 535 static struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long); 536 static void allocdirect_merge(struct allocdirectlst *, 537 struct allocdirect *, struct allocdirect *); 538 static struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *); 539 static int newblk_find(struct newblk_hashhead *, struct fs *, ufs2_daddr_t, 540 struct newblk **); 541 static int newblk_lookup(struct fs *, ufs2_daddr_t, int, struct newblk **); 542 static int inodedep_find(struct inodedep_hashhead *, struct fs *, ino_t, 543 struct inodedep **); 544 static int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **); 545 static int pagedep_lookup(struct inode *, ufs_lbn_t, int, struct pagedep **); 546 static int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t, 547 struct mount *mp, int, struct pagedep **); 548 static void pause_timer(void *); 549 static int request_cleanup(struct mount *, int); 550 static int process_worklist_item(struct mount *, int); 551 static void add_to_worklist(struct worklist *); 552 static void softdep_flush(void); 553 static int softdep_speedup(void); 554 555 /* 556 * Exported softdep operations. 557 */ 558 static void softdep_disk_io_initiation(struct buf *); 559 static void softdep_disk_write_complete(struct buf *); 560 static void softdep_deallocate_dependencies(struct buf *); 561 static int softdep_count_dependencies(struct buf *bp, int); 562 563 static struct mtx lk; 564 MTX_SYSINIT(softdep_lock, &lk, "Softdep Lock", MTX_DEF); 565 566 #define TRY_ACQUIRE_LOCK(lk) mtx_trylock(lk) 567 #define ACQUIRE_LOCK(lk) mtx_lock(lk) 568 #define FREE_LOCK(lk) mtx_unlock(lk) 569 570 /* 571 * Worklist queue management. 572 * These routines require that the lock be held. 573 */ 574 #ifndef /* NOT */ DEBUG 575 #define WORKLIST_INSERT(head, item) do { \ 576 (item)->wk_state |= ONWORKLIST; \ 577 LIST_INSERT_HEAD(head, item, wk_list); \ 578 } while (0) 579 #define WORKLIST_REMOVE(item) do { \ 580 (item)->wk_state &= ~ONWORKLIST; \ 581 LIST_REMOVE(item, wk_list); \ 582 } while (0) 583 #else /* DEBUG */ 584 static void worklist_insert(struct workhead *, struct worklist *); 585 static void worklist_remove(struct worklist *); 586 587 #define WORKLIST_INSERT(head, item) worklist_insert(head, item) 588 #define WORKLIST_REMOVE(item) worklist_remove(item) 589 590 static void 591 worklist_insert(head, item) 592 struct workhead *head; 593 struct worklist *item; 594 { 595 596 mtx_assert(&lk, MA_OWNED); 597 if (item->wk_state & ONWORKLIST) 598 panic("worklist_insert: already on list"); 599 item->wk_state |= ONWORKLIST; 600 LIST_INSERT_HEAD(head, item, wk_list); 601 } 602 603 static void 604 worklist_remove(item) 605 struct worklist *item; 606 { 607 608 mtx_assert(&lk, MA_OWNED); 609 if ((item->wk_state & ONWORKLIST) == 0) 610 panic("worklist_remove: not on list"); 611 item->wk_state &= ~ONWORKLIST; 612 LIST_REMOVE(item, wk_list); 613 } 614 #endif /* DEBUG */ 615 616 /* 617 * Routines for tracking and managing workitems. 618 */ 619 static void workitem_free(struct worklist *, int); 620 static void workitem_alloc(struct worklist *, int, struct mount *); 621 622 #define WORKITEM_FREE(item, type) workitem_free((struct worklist *)(item), (type)) 623 624 static void 625 workitem_free(item, type) 626 struct worklist *item; 627 int type; 628 { 629 struct ufsmount *ump; 630 mtx_assert(&lk, MA_OWNED); 631 632 #ifdef DEBUG 633 if (item->wk_state & ONWORKLIST) 634 panic("workitem_free: still on list"); 635 if (item->wk_type != type) 636 panic("workitem_free: type mismatch"); 637 #endif 638 ump = VFSTOUFS(item->wk_mp); 639 if (--ump->softdep_deps == 0 && ump->softdep_req) 640 wakeup(&ump->softdep_deps); 641 FREE(item, DtoM(type)); 642 } 643 644 static void 645 workitem_alloc(item, type, mp) 646 struct worklist *item; 647 int type; 648 struct mount *mp; 649 { 650 item->wk_type = type; 651 item->wk_mp = mp; 652 item->wk_state = 0; 653 ACQUIRE_LOCK(&lk); 654 VFSTOUFS(mp)->softdep_deps++; 655 VFSTOUFS(mp)->softdep_accdeps++; 656 FREE_LOCK(&lk); 657 } 658 659 /* 660 * Workitem queue management 661 */ 662 static int max_softdeps; /* maximum number of structs before slowdown */ 663 static int maxindirdeps = 50; /* max number of indirdeps before slowdown */ 664 static int tickdelay = 2; /* number of ticks to pause during slowdown */ 665 static int proc_waiting; /* tracks whether we have a timeout posted */ 666 static int *stat_countp; /* statistic to count in proc_waiting timeout */ 667 static struct callout_handle handle; /* handle on posted proc_waiting timeout */ 668 static int req_pending; 669 static int req_clear_inodedeps; /* syncer process flush some inodedeps */ 670 #define FLUSH_INODES 1 671 static int req_clear_remove; /* syncer process flush some freeblks */ 672 #define FLUSH_REMOVE 2 673 #define FLUSH_REMOVE_WAIT 3 674 /* 675 * runtime statistics 676 */ 677 static int stat_worklist_push; /* number of worklist cleanups */ 678 static int stat_blk_limit_push; /* number of times block limit neared */ 679 static int stat_ino_limit_push; /* number of times inode limit neared */ 680 static int stat_blk_limit_hit; /* number of times block slowdown imposed */ 681 static int stat_ino_limit_hit; /* number of times inode slowdown imposed */ 682 static int stat_sync_limit_hit; /* number of synchronous slowdowns imposed */ 683 static int stat_indir_blk_ptrs; /* bufs redirtied as indir ptrs not written */ 684 static int stat_inode_bitmap; /* bufs redirtied as inode bitmap not written */ 685 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */ 686 static int stat_dir_entry; /* bufs redirtied as dir entry cannot write */ 687 688 SYSCTL_INT(_debug, OID_AUTO, max_softdeps, CTLFLAG_RW, &max_softdeps, 0, ""); 689 SYSCTL_INT(_debug, OID_AUTO, tickdelay, CTLFLAG_RW, &tickdelay, 0, ""); 690 SYSCTL_INT(_debug, OID_AUTO, maxindirdeps, CTLFLAG_RW, &maxindirdeps, 0, ""); 691 SYSCTL_INT(_debug, OID_AUTO, worklist_push, CTLFLAG_RW, &stat_worklist_push, 0,""); 692 SYSCTL_INT(_debug, OID_AUTO, blk_limit_push, CTLFLAG_RW, &stat_blk_limit_push, 0,""); 693 SYSCTL_INT(_debug, OID_AUTO, ino_limit_push, CTLFLAG_RW, &stat_ino_limit_push, 0,""); 694 SYSCTL_INT(_debug, OID_AUTO, blk_limit_hit, CTLFLAG_RW, &stat_blk_limit_hit, 0, ""); 695 SYSCTL_INT(_debug, OID_AUTO, ino_limit_hit, CTLFLAG_RW, &stat_ino_limit_hit, 0, ""); 696 SYSCTL_INT(_debug, OID_AUTO, sync_limit_hit, CTLFLAG_RW, &stat_sync_limit_hit, 0, ""); 697 SYSCTL_INT(_debug, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW, &stat_indir_blk_ptrs, 0, ""); 698 SYSCTL_INT(_debug, OID_AUTO, inode_bitmap, CTLFLAG_RW, &stat_inode_bitmap, 0, ""); 699 SYSCTL_INT(_debug, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW, &stat_direct_blk_ptrs, 0, ""); 700 SYSCTL_INT(_debug, OID_AUTO, dir_entry, CTLFLAG_RW, &stat_dir_entry, 0, ""); 701 /* SYSCTL_INT(_debug, OID_AUTO, worklist_num, CTLFLAG_RD, &softdep_on_worklist, 0, ""); */ 702 703 SYSCTL_DECL(_vfs_ffs); 704 705 static int compute_summary_at_mount = 0; /* Whether to recompute the summary at mount time */ 706 SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW, 707 &compute_summary_at_mount, 0, "Recompute summary at mount"); 708 709 static struct proc *softdepproc; 710 static struct kproc_desc softdep_kp = { 711 "softdepflush", 712 softdep_flush, 713 &softdepproc 714 }; 715 SYSINIT(sdproc, SI_SUB_KTHREAD_UPDATE, SI_ORDER_ANY, kproc_start, &softdep_kp) 716 717 static void 718 softdep_flush(void) 719 { 720 struct mount *nmp; 721 struct mount *mp; 722 struct ufsmount *ump; 723 struct thread *td; 724 int remaining; 725 int vfslocked; 726 727 td = curthread; 728 td->td_pflags |= TDP_NORUNNINGBUF; 729 730 for (;;) { 731 kthread_suspend_check(softdepproc); 732 #ifdef QUOTA 733 mtx_lock(&Giant); 734 #endif 735 ACQUIRE_LOCK(&lk); 736 /* 737 * If requested, try removing inode or removal dependencies. 738 */ 739 if (req_clear_inodedeps) { 740 clear_inodedeps(td); 741 req_clear_inodedeps -= 1; 742 wakeup_one(&proc_waiting); 743 } 744 if (req_clear_remove) { 745 clear_remove(td); 746 req_clear_remove -= 1; 747 wakeup_one(&proc_waiting); 748 } 749 FREE_LOCK(&lk); 750 #ifdef QUOTA 751 mtx_unlock(&Giant); 752 #endif 753 remaining = 0; 754 mtx_lock(&mountlist_mtx); 755 for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) { 756 nmp = TAILQ_NEXT(mp, mnt_list); 757 if ((mp->mnt_flag & MNT_SOFTDEP) == 0) 758 continue; 759 if (vfs_busy(mp, LK_NOWAIT, &mountlist_mtx, td)) 760 continue; 761 vfslocked = VFS_LOCK_GIANT(mp); 762 softdep_process_worklist(mp, 0); 763 ump = VFSTOUFS(mp); 764 remaining += ump->softdep_on_worklist - 765 ump->softdep_on_worklist_inprogress; 766 VFS_UNLOCK_GIANT(vfslocked); 767 mtx_lock(&mountlist_mtx); 768 nmp = TAILQ_NEXT(mp, mnt_list); 769 vfs_unbusy(mp, td); 770 } 771 mtx_unlock(&mountlist_mtx); 772 if (remaining) 773 continue; 774 ACQUIRE_LOCK(&lk); 775 if (!req_pending) 776 msleep(&req_pending, &lk, PVM, "sdflush", hz); 777 req_pending = 0; 778 FREE_LOCK(&lk); 779 } 780 } 781 782 static int 783 softdep_speedup(void) 784 { 785 786 mtx_assert(&lk, MA_OWNED); 787 if (req_pending == 0) { 788 req_pending = 1; 789 wakeup(&req_pending); 790 } 791 792 return speedup_syncer(); 793 } 794 795 /* 796 * Add an item to the end of the work queue. 797 * This routine requires that the lock be held. 798 * This is the only routine that adds items to the list. 799 * The following routine is the only one that removes items 800 * and does so in order from first to last. 801 */ 802 static void 803 add_to_worklist(wk) 804 struct worklist *wk; 805 { 806 struct ufsmount *ump; 807 808 mtx_assert(&lk, MA_OWNED); 809 ump = VFSTOUFS(wk->wk_mp); 810 if (wk->wk_state & ONWORKLIST) 811 panic("add_to_worklist: already on list"); 812 wk->wk_state |= ONWORKLIST; 813 if (LIST_FIRST(&ump->softdep_workitem_pending) == NULL) 814 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list); 815 else 816 LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list); 817 ump->softdep_worklist_tail = wk; 818 ump->softdep_on_worklist += 1; 819 } 820 821 /* 822 * Process that runs once per second to handle items in the background queue. 823 * 824 * Note that we ensure that everything is done in the order in which they 825 * appear in the queue. The code below depends on this property to ensure 826 * that blocks of a file are freed before the inode itself is freed. This 827 * ordering ensures that no new <vfsid, inum, lbn> triples will be generated 828 * until all the old ones have been purged from the dependency lists. 829 */ 830 int 831 softdep_process_worklist(mp, full) 832 struct mount *mp; 833 int full; 834 { 835 struct thread *td = curthread; 836 int cnt, matchcnt, loopcount; 837 struct ufsmount *ump; 838 long starttime; 839 840 KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp")); 841 /* 842 * Record the process identifier of our caller so that we can give 843 * this process preferential treatment in request_cleanup below. 844 */ 845 matchcnt = 0; 846 ump = VFSTOUFS(mp); 847 ACQUIRE_LOCK(&lk); 848 loopcount = 1; 849 starttime = time_second; 850 while (ump->softdep_on_worklist > 0) { 851 if ((cnt = process_worklist_item(mp, 0)) == -1) 852 break; 853 else 854 matchcnt += cnt; 855 /* 856 * If requested, try removing inode or removal dependencies. 857 */ 858 if (req_clear_inodedeps) { 859 clear_inodedeps(td); 860 req_clear_inodedeps -= 1; 861 wakeup_one(&proc_waiting); 862 } 863 if (req_clear_remove) { 864 clear_remove(td); 865 req_clear_remove -= 1; 866 wakeup_one(&proc_waiting); 867 } 868 /* 869 * We do not generally want to stop for buffer space, but if 870 * we are really being a buffer hog, we will stop and wait. 871 */ 872 if (loopcount++ % 128 == 0) { 873 FREE_LOCK(&lk); 874 bwillwrite(); 875 ACQUIRE_LOCK(&lk); 876 } 877 /* 878 * Never allow processing to run for more than one 879 * second. Otherwise the other mountpoints may get 880 * excessively backlogged. 881 */ 882 if (!full && starttime != time_second) { 883 matchcnt = -1; 884 break; 885 } 886 } 887 FREE_LOCK(&lk); 888 return (matchcnt); 889 } 890 891 /* 892 * Process one item on the worklist. 893 */ 894 static int 895 process_worklist_item(mp, flags) 896 struct mount *mp; 897 int flags; 898 { 899 struct worklist *wk, *wkend; 900 struct ufsmount *ump; 901 struct vnode *vp; 902 int matchcnt = 0; 903 904 mtx_assert(&lk, MA_OWNED); 905 KASSERT(mp != NULL, ("process_worklist_item: NULL mp")); 906 /* 907 * If we are being called because of a process doing a 908 * copy-on-write, then it is not safe to write as we may 909 * recurse into the copy-on-write routine. 910 */ 911 if (curthread->td_pflags & TDP_COWINPROGRESS) 912 return (-1); 913 /* 914 * Normally we just process each item on the worklist in order. 915 * However, if we are in a situation where we cannot lock any 916 * inodes, we have to skip over any dirrem requests whose 917 * vnodes are resident and locked. 918 */ 919 ump = VFSTOUFS(mp); 920 vp = NULL; 921 LIST_FOREACH(wk, &ump->softdep_workitem_pending, wk_list) { 922 if (wk->wk_state & INPROGRESS) 923 continue; 924 if ((flags & LK_NOWAIT) == 0 || wk->wk_type != D_DIRREM) 925 break; 926 wk->wk_state |= INPROGRESS; 927 ump->softdep_on_worklist_inprogress++; 928 FREE_LOCK(&lk); 929 ffs_vget(mp, WK_DIRREM(wk)->dm_oldinum, 930 LK_NOWAIT | LK_EXCLUSIVE, &vp); 931 ACQUIRE_LOCK(&lk); 932 wk->wk_state &= ~INPROGRESS; 933 ump->softdep_on_worklist_inprogress--; 934 if (vp != NULL) 935 break; 936 } 937 if (wk == 0) 938 return (-1); 939 /* 940 * Remove the item to be processed. If we are removing the last 941 * item on the list, we need to recalculate the tail pointer. 942 * As this happens rarely and usually when the list is short, 943 * we just run down the list to find it rather than tracking it 944 * in the above loop. 945 */ 946 WORKLIST_REMOVE(wk); 947 if (wk == ump->softdep_worklist_tail) { 948 LIST_FOREACH(wkend, &ump->softdep_workitem_pending, wk_list) 949 if (LIST_NEXT(wkend, wk_list) == NULL) 950 break; 951 ump->softdep_worklist_tail = wkend; 952 } 953 ump->softdep_on_worklist -= 1; 954 FREE_LOCK(&lk); 955 if (vn_start_secondary_write(NULL, &mp, V_NOWAIT)) 956 panic("process_worklist_item: suspended filesystem"); 957 matchcnt++; 958 switch (wk->wk_type) { 959 960 case D_DIRREM: 961 /* removal of a directory entry */ 962 handle_workitem_remove(WK_DIRREM(wk), vp); 963 break; 964 965 case D_FREEBLKS: 966 /* releasing blocks and/or fragments from a file */ 967 handle_workitem_freeblocks(WK_FREEBLKS(wk), flags & LK_NOWAIT); 968 break; 969 970 case D_FREEFRAG: 971 /* releasing a fragment when replaced as a file grows */ 972 handle_workitem_freefrag(WK_FREEFRAG(wk)); 973 break; 974 975 case D_FREEFILE: 976 /* releasing an inode when its link count drops to 0 */ 977 handle_workitem_freefile(WK_FREEFILE(wk)); 978 break; 979 980 default: 981 panic("%s_process_worklist: Unknown type %s", 982 "softdep", TYPENAME(wk->wk_type)); 983 /* NOTREACHED */ 984 } 985 vn_finished_secondary_write(mp); 986 ACQUIRE_LOCK(&lk); 987 return (matchcnt); 988 } 989 990 /* 991 * Move dependencies from one buffer to another. 992 */ 993 void 994 softdep_move_dependencies(oldbp, newbp) 995 struct buf *oldbp; 996 struct buf *newbp; 997 { 998 struct worklist *wk, *wktail; 999 1000 if (LIST_FIRST(&newbp->b_dep) != NULL) 1001 panic("softdep_move_dependencies: need merge code"); 1002 wktail = 0; 1003 ACQUIRE_LOCK(&lk); 1004 while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) { 1005 LIST_REMOVE(wk, wk_list); 1006 if (wktail == 0) 1007 LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list); 1008 else 1009 LIST_INSERT_AFTER(wktail, wk, wk_list); 1010 wktail = wk; 1011 } 1012 FREE_LOCK(&lk); 1013 } 1014 1015 /* 1016 * Purge the work list of all items associated with a particular mount point. 1017 */ 1018 int 1019 softdep_flushworklist(oldmnt, countp, td) 1020 struct mount *oldmnt; 1021 int *countp; 1022 struct thread *td; 1023 { 1024 struct vnode *devvp; 1025 int count, error = 0; 1026 struct ufsmount *ump; 1027 1028 /* 1029 * Alternately flush the block device associated with the mount 1030 * point and process any dependencies that the flushing 1031 * creates. We continue until no more worklist dependencies 1032 * are found. 1033 */ 1034 *countp = 0; 1035 ump = VFSTOUFS(oldmnt); 1036 devvp = ump->um_devvp; 1037 while ((count = softdep_process_worklist(oldmnt, 1)) > 0) { 1038 *countp += count; 1039 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY, td); 1040 error = VOP_FSYNC(devvp, MNT_WAIT, td); 1041 VOP_UNLOCK(devvp, 0, td); 1042 if (error) 1043 break; 1044 } 1045 return (error); 1046 } 1047 1048 int 1049 softdep_waitidle(struct mount *mp) 1050 { 1051 struct ufsmount *ump; 1052 int error; 1053 int i; 1054 1055 ump = VFSTOUFS(mp); 1056 ACQUIRE_LOCK(&lk); 1057 for (i = 0; i < 10 && ump->softdep_deps; i++) { 1058 ump->softdep_req = 1; 1059 if (ump->softdep_on_worklist) 1060 panic("softdep_waitidle: work added after flush."); 1061 msleep(&ump->softdep_deps, &lk, PVM, "softdeps", 1); 1062 } 1063 ump->softdep_req = 0; 1064 FREE_LOCK(&lk); 1065 error = 0; 1066 if (i == 10) { 1067 error = EBUSY; 1068 printf("softdep_waitidle: Failed to flush worklist for %p", 1069 mp); 1070 } 1071 1072 return (error); 1073 } 1074 1075 /* 1076 * Flush all vnodes and worklist items associated with a specified mount point. 1077 */ 1078 int 1079 softdep_flushfiles(oldmnt, flags, td) 1080 struct mount *oldmnt; 1081 int flags; 1082 struct thread *td; 1083 { 1084 int error, count, loopcnt; 1085 1086 error = 0; 1087 1088 /* 1089 * Alternately flush the vnodes associated with the mount 1090 * point and process any dependencies that the flushing 1091 * creates. In theory, this loop can happen at most twice, 1092 * but we give it a few extra just to be sure. 1093 */ 1094 for (loopcnt = 10; loopcnt > 0; loopcnt--) { 1095 /* 1096 * Do another flush in case any vnodes were brought in 1097 * as part of the cleanup operations. 1098 */ 1099 if ((error = ffs_flushfiles(oldmnt, flags, td)) != 0) 1100 break; 1101 if ((error = softdep_flushworklist(oldmnt, &count, td)) != 0 || 1102 count == 0) 1103 break; 1104 } 1105 /* 1106 * If we are unmounting then it is an error to fail. If we 1107 * are simply trying to downgrade to read-only, then filesystem 1108 * activity can keep us busy forever, so we just fail with EBUSY. 1109 */ 1110 if (loopcnt == 0) { 1111 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) 1112 panic("softdep_flushfiles: looping"); 1113 error = EBUSY; 1114 } 1115 if (!error) 1116 error = softdep_waitidle(oldmnt); 1117 return (error); 1118 } 1119 1120 /* 1121 * Structure hashing. 1122 * 1123 * There are three types of structures that can be looked up: 1124 * 1) pagedep structures identified by mount point, inode number, 1125 * and logical block. 1126 * 2) inodedep structures identified by mount point and inode number. 1127 * 3) newblk structures identified by mount point and 1128 * physical block number. 1129 * 1130 * The "pagedep" and "inodedep" dependency structures are hashed 1131 * separately from the file blocks and inodes to which they correspond. 1132 * This separation helps when the in-memory copy of an inode or 1133 * file block must be replaced. It also obviates the need to access 1134 * an inode or file page when simply updating (or de-allocating) 1135 * dependency structures. Lookup of newblk structures is needed to 1136 * find newly allocated blocks when trying to associate them with 1137 * their allocdirect or allocindir structure. 1138 * 1139 * The lookup routines optionally create and hash a new instance when 1140 * an existing entry is not found. 1141 */ 1142 #define DEPALLOC 0x0001 /* allocate structure if lookup fails */ 1143 #define NODELAY 0x0002 /* cannot do background work */ 1144 1145 /* 1146 * Structures and routines associated with pagedep caching. 1147 */ 1148 LIST_HEAD(pagedep_hashhead, pagedep) *pagedep_hashtbl; 1149 u_long pagedep_hash; /* size of hash table - 1 */ 1150 #define PAGEDEP_HASH(mp, inum, lbn) \ 1151 (&pagedep_hashtbl[((((register_t)(mp)) >> 13) + (inum) + (lbn)) & \ 1152 pagedep_hash]) 1153 1154 static int 1155 pagedep_find(pagedephd, ino, lbn, mp, flags, pagedeppp) 1156 struct pagedep_hashhead *pagedephd; 1157 ino_t ino; 1158 ufs_lbn_t lbn; 1159 struct mount *mp; 1160 int flags; 1161 struct pagedep **pagedeppp; 1162 { 1163 struct pagedep *pagedep; 1164 1165 LIST_FOREACH(pagedep, pagedephd, pd_hash) 1166 if (ino == pagedep->pd_ino && 1167 lbn == pagedep->pd_lbn && 1168 mp == pagedep->pd_list.wk_mp) 1169 break; 1170 if (pagedep) { 1171 *pagedeppp = pagedep; 1172 if ((flags & DEPALLOC) != 0 && 1173 (pagedep->pd_state & ONWORKLIST) == 0) 1174 return (0); 1175 return (1); 1176 } 1177 *pagedeppp = NULL; 1178 return (0); 1179 } 1180 /* 1181 * Look up a pagedep. Return 1 if found, 0 if not found or found 1182 * when asked to allocate but not associated with any buffer. 1183 * If not found, allocate if DEPALLOC flag is passed. 1184 * Found or allocated entry is returned in pagedeppp. 1185 * This routine must be called with splbio interrupts blocked. 1186 */ 1187 static int 1188 pagedep_lookup(ip, lbn, flags, pagedeppp) 1189 struct inode *ip; 1190 ufs_lbn_t lbn; 1191 int flags; 1192 struct pagedep **pagedeppp; 1193 { 1194 struct pagedep *pagedep; 1195 struct pagedep_hashhead *pagedephd; 1196 struct mount *mp; 1197 int ret; 1198 int i; 1199 1200 mtx_assert(&lk, MA_OWNED); 1201 mp = ITOV(ip)->v_mount; 1202 pagedephd = PAGEDEP_HASH(mp, ip->i_number, lbn); 1203 1204 ret = pagedep_find(pagedephd, ip->i_number, lbn, mp, flags, pagedeppp); 1205 if (*pagedeppp || (flags & DEPALLOC) == 0) 1206 return (ret); 1207 FREE_LOCK(&lk); 1208 MALLOC(pagedep, struct pagedep *, sizeof(struct pagedep), 1209 M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO); 1210 workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp); 1211 ACQUIRE_LOCK(&lk); 1212 ret = pagedep_find(pagedephd, ip->i_number, lbn, mp, flags, pagedeppp); 1213 if (*pagedeppp) { 1214 WORKITEM_FREE(pagedep, D_PAGEDEP); 1215 return (ret); 1216 } 1217 pagedep->pd_ino = ip->i_number; 1218 pagedep->pd_lbn = lbn; 1219 LIST_INIT(&pagedep->pd_dirremhd); 1220 LIST_INIT(&pagedep->pd_pendinghd); 1221 for (i = 0; i < DAHASHSZ; i++) 1222 LIST_INIT(&pagedep->pd_diraddhd[i]); 1223 LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash); 1224 *pagedeppp = pagedep; 1225 return (0); 1226 } 1227 1228 /* 1229 * Structures and routines associated with inodedep caching. 1230 */ 1231 LIST_HEAD(inodedep_hashhead, inodedep) *inodedep_hashtbl; 1232 static u_long inodedep_hash; /* size of hash table - 1 */ 1233 static long num_inodedep; /* number of inodedep allocated */ 1234 #define INODEDEP_HASH(fs, inum) \ 1235 (&inodedep_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & inodedep_hash]) 1236 1237 static int 1238 inodedep_find(inodedephd, fs, inum, inodedeppp) 1239 struct inodedep_hashhead *inodedephd; 1240 struct fs *fs; 1241 ino_t inum; 1242 struct inodedep **inodedeppp; 1243 { 1244 struct inodedep *inodedep; 1245 1246 LIST_FOREACH(inodedep, inodedephd, id_hash) 1247 if (inum == inodedep->id_ino && fs == inodedep->id_fs) 1248 break; 1249 if (inodedep) { 1250 *inodedeppp = inodedep; 1251 return (1); 1252 } 1253 *inodedeppp = NULL; 1254 1255 return (0); 1256 } 1257 /* 1258 * Look up an inodedep. Return 1 if found, 0 if not found. 1259 * If not found, allocate if DEPALLOC flag is passed. 1260 * Found or allocated entry is returned in inodedeppp. 1261 * This routine must be called with splbio interrupts blocked. 1262 */ 1263 static int 1264 inodedep_lookup(mp, inum, flags, inodedeppp) 1265 struct mount *mp; 1266 ino_t inum; 1267 int flags; 1268 struct inodedep **inodedeppp; 1269 { 1270 struct inodedep *inodedep; 1271 struct inodedep_hashhead *inodedephd; 1272 struct fs *fs; 1273 1274 mtx_assert(&lk, MA_OWNED); 1275 fs = VFSTOUFS(mp)->um_fs; 1276 inodedephd = INODEDEP_HASH(fs, inum); 1277 1278 if (inodedep_find(inodedephd, fs, inum, inodedeppp)) 1279 return (1); 1280 if ((flags & DEPALLOC) == 0) 1281 return (0); 1282 /* 1283 * If we are over our limit, try to improve the situation. 1284 */ 1285 if (num_inodedep > max_softdeps && (flags & NODELAY) == 0) 1286 request_cleanup(mp, FLUSH_INODES); 1287 FREE_LOCK(&lk); 1288 MALLOC(inodedep, struct inodedep *, sizeof(struct inodedep), 1289 M_INODEDEP, M_SOFTDEP_FLAGS); 1290 workitem_alloc(&inodedep->id_list, D_INODEDEP, mp); 1291 ACQUIRE_LOCK(&lk); 1292 if (inodedep_find(inodedephd, fs, inum, inodedeppp)) { 1293 WORKITEM_FREE(inodedep, D_INODEDEP); 1294 return (1); 1295 } 1296 num_inodedep += 1; 1297 inodedep->id_fs = fs; 1298 inodedep->id_ino = inum; 1299 inodedep->id_state = ALLCOMPLETE; 1300 inodedep->id_nlinkdelta = 0; 1301 inodedep->id_savedino1 = NULL; 1302 inodedep->id_savedsize = -1; 1303 inodedep->id_savedextsize = -1; 1304 inodedep->id_buf = NULL; 1305 LIST_INIT(&inodedep->id_pendinghd); 1306 LIST_INIT(&inodedep->id_inowait); 1307 LIST_INIT(&inodedep->id_bufwait); 1308 TAILQ_INIT(&inodedep->id_inoupdt); 1309 TAILQ_INIT(&inodedep->id_newinoupdt); 1310 TAILQ_INIT(&inodedep->id_extupdt); 1311 TAILQ_INIT(&inodedep->id_newextupdt); 1312 LIST_INSERT_HEAD(inodedephd, inodedep, id_hash); 1313 *inodedeppp = inodedep; 1314 return (0); 1315 } 1316 1317 /* 1318 * Structures and routines associated with newblk caching. 1319 */ 1320 LIST_HEAD(newblk_hashhead, newblk) *newblk_hashtbl; 1321 u_long newblk_hash; /* size of hash table - 1 */ 1322 #define NEWBLK_HASH(fs, inum) \ 1323 (&newblk_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & newblk_hash]) 1324 1325 static int 1326 newblk_find(newblkhd, fs, newblkno, newblkpp) 1327 struct newblk_hashhead *newblkhd; 1328 struct fs *fs; 1329 ufs2_daddr_t newblkno; 1330 struct newblk **newblkpp; 1331 { 1332 struct newblk *newblk; 1333 1334 LIST_FOREACH(newblk, newblkhd, nb_hash) 1335 if (newblkno == newblk->nb_newblkno && fs == newblk->nb_fs) 1336 break; 1337 if (newblk) { 1338 *newblkpp = newblk; 1339 return (1); 1340 } 1341 *newblkpp = NULL; 1342 return (0); 1343 } 1344 1345 /* 1346 * Look up a newblk. Return 1 if found, 0 if not found. 1347 * If not found, allocate if DEPALLOC flag is passed. 1348 * Found or allocated entry is returned in newblkpp. 1349 */ 1350 static int 1351 newblk_lookup(fs, newblkno, flags, newblkpp) 1352 struct fs *fs; 1353 ufs2_daddr_t newblkno; 1354 int flags; 1355 struct newblk **newblkpp; 1356 { 1357 struct newblk *newblk; 1358 struct newblk_hashhead *newblkhd; 1359 1360 newblkhd = NEWBLK_HASH(fs, newblkno); 1361 if (newblk_find(newblkhd, fs, newblkno, newblkpp)) 1362 return (1); 1363 if ((flags & DEPALLOC) == 0) 1364 return (0); 1365 FREE_LOCK(&lk); 1366 MALLOC(newblk, struct newblk *, sizeof(struct newblk), 1367 M_NEWBLK, M_SOFTDEP_FLAGS); 1368 ACQUIRE_LOCK(&lk); 1369 if (newblk_find(newblkhd, fs, newblkno, newblkpp)) { 1370 FREE(newblk, M_NEWBLK); 1371 return (1); 1372 } 1373 newblk->nb_state = 0; 1374 newblk->nb_fs = fs; 1375 newblk->nb_newblkno = newblkno; 1376 LIST_INSERT_HEAD(newblkhd, newblk, nb_hash); 1377 *newblkpp = newblk; 1378 return (0); 1379 } 1380 1381 /* 1382 * Executed during filesystem system initialization before 1383 * mounting any filesystems. 1384 */ 1385 void 1386 softdep_initialize() 1387 { 1388 1389 LIST_INIT(&mkdirlisthd); 1390 max_softdeps = desiredvnodes * 4; 1391 pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP, 1392 &pagedep_hash); 1393 inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, &inodedep_hash); 1394 newblk_hashtbl = hashinit(64, M_NEWBLK, &newblk_hash); 1395 1396 /* initialise bioops hack */ 1397 bioops.io_start = softdep_disk_io_initiation; 1398 bioops.io_complete = softdep_disk_write_complete; 1399 bioops.io_deallocate = softdep_deallocate_dependencies; 1400 bioops.io_countdeps = softdep_count_dependencies; 1401 } 1402 1403 /* 1404 * Executed after all filesystems have been unmounted during 1405 * filesystem module unload. 1406 */ 1407 void 1408 softdep_uninitialize() 1409 { 1410 1411 hashdestroy(pagedep_hashtbl, M_PAGEDEP, pagedep_hash); 1412 hashdestroy(inodedep_hashtbl, M_INODEDEP, inodedep_hash); 1413 hashdestroy(newblk_hashtbl, M_NEWBLK, newblk_hash); 1414 } 1415 1416 /* 1417 * Called at mount time to notify the dependency code that a 1418 * filesystem wishes to use it. 1419 */ 1420 int 1421 softdep_mount(devvp, mp, fs, cred) 1422 struct vnode *devvp; 1423 struct mount *mp; 1424 struct fs *fs; 1425 struct ucred *cred; 1426 { 1427 struct csum_total cstotal; 1428 struct ufsmount *ump; 1429 struct cg *cgp; 1430 struct buf *bp; 1431 int error, cyl; 1432 1433 MNT_ILOCK(mp); 1434 mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP; 1435 if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) { 1436 mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) | 1437 MNTK_SOFTDEP; 1438 mp->mnt_noasync++; 1439 } 1440 MNT_IUNLOCK(mp); 1441 ump = VFSTOUFS(mp); 1442 LIST_INIT(&ump->softdep_workitem_pending); 1443 ump->softdep_worklist_tail = NULL; 1444 ump->softdep_on_worklist = 0; 1445 ump->softdep_deps = 0; 1446 /* 1447 * When doing soft updates, the counters in the 1448 * superblock may have gotten out of sync. Recomputation 1449 * can take a long time and can be deferred for background 1450 * fsck. However, the old behavior of scanning the cylinder 1451 * groups and recalculating them at mount time is available 1452 * by setting vfs.ffs.compute_summary_at_mount to one. 1453 */ 1454 if (compute_summary_at_mount == 0 || fs->fs_clean != 0) 1455 return (0); 1456 bzero(&cstotal, sizeof cstotal); 1457 for (cyl = 0; cyl < fs->fs_ncg; cyl++) { 1458 if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)), 1459 fs->fs_cgsize, cred, &bp)) != 0) { 1460 brelse(bp); 1461 return (error); 1462 } 1463 cgp = (struct cg *)bp->b_data; 1464 cstotal.cs_nffree += cgp->cg_cs.cs_nffree; 1465 cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree; 1466 cstotal.cs_nifree += cgp->cg_cs.cs_nifree; 1467 cstotal.cs_ndir += cgp->cg_cs.cs_ndir; 1468 fs->fs_cs(fs, cyl) = cgp->cg_cs; 1469 brelse(bp); 1470 } 1471 #ifdef DEBUG 1472 if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal)) 1473 printf("%s: superblock summary recomputed\n", fs->fs_fsmnt); 1474 #endif 1475 bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal); 1476 return (0); 1477 } 1478 1479 /* 1480 * Protecting the freemaps (or bitmaps). 1481 * 1482 * To eliminate the need to execute fsck before mounting a filesystem 1483 * after a power failure, one must (conservatively) guarantee that the 1484 * on-disk copy of the bitmaps never indicate that a live inode or block is 1485 * free. So, when a block or inode is allocated, the bitmap should be 1486 * updated (on disk) before any new pointers. When a block or inode is 1487 * freed, the bitmap should not be updated until all pointers have been 1488 * reset. The latter dependency is handled by the delayed de-allocation 1489 * approach described below for block and inode de-allocation. The former 1490 * dependency is handled by calling the following procedure when a block or 1491 * inode is allocated. When an inode is allocated an "inodedep" is created 1492 * with its DEPCOMPLETE flag cleared until its bitmap is written to disk. 1493 * Each "inodedep" is also inserted into the hash indexing structure so 1494 * that any additional link additions can be made dependent on the inode 1495 * allocation. 1496 * 1497 * The ufs filesystem maintains a number of free block counts (e.g., per 1498 * cylinder group, per cylinder and per <cylinder, rotational position> pair) 1499 * in addition to the bitmaps. These counts are used to improve efficiency 1500 * during allocation and therefore must be consistent with the bitmaps. 1501 * There is no convenient way to guarantee post-crash consistency of these 1502 * counts with simple update ordering, for two main reasons: (1) The counts 1503 * and bitmaps for a single cylinder group block are not in the same disk 1504 * sector. If a disk write is interrupted (e.g., by power failure), one may 1505 * be written and the other not. (2) Some of the counts are located in the 1506 * superblock rather than the cylinder group block. So, we focus our soft 1507 * updates implementation on protecting the bitmaps. When mounting a 1508 * filesystem, we recompute the auxiliary counts from the bitmaps. 1509 */ 1510 1511 /* 1512 * Called just after updating the cylinder group block to allocate an inode. 1513 */ 1514 void 1515 softdep_setup_inomapdep(bp, ip, newinum) 1516 struct buf *bp; /* buffer for cylgroup block with inode map */ 1517 struct inode *ip; /* inode related to allocation */ 1518 ino_t newinum; /* new inode number being allocated */ 1519 { 1520 struct inodedep *inodedep; 1521 struct bmsafemap *bmsafemap; 1522 1523 /* 1524 * Create a dependency for the newly allocated inode. 1525 * Panic if it already exists as something is seriously wrong. 1526 * Otherwise add it to the dependency list for the buffer holding 1527 * the cylinder group map from which it was allocated. 1528 */ 1529 ACQUIRE_LOCK(&lk); 1530 if ((inodedep_lookup(UFSTOVFS(ip->i_ump), newinum, DEPALLOC|NODELAY, 1531 &inodedep))) 1532 panic("softdep_setup_inomapdep: dependency for new inode " 1533 "already exists"); 1534 inodedep->id_buf = bp; 1535 inodedep->id_state &= ~DEPCOMPLETE; 1536 bmsafemap = bmsafemap_lookup(inodedep->id_list.wk_mp, bp); 1537 LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps); 1538 FREE_LOCK(&lk); 1539 } 1540 1541 /* 1542 * Called just after updating the cylinder group block to 1543 * allocate block or fragment. 1544 */ 1545 void 1546 softdep_setup_blkmapdep(bp, mp, newblkno) 1547 struct buf *bp; /* buffer for cylgroup block with block map */ 1548 struct mount *mp; /* filesystem doing allocation */ 1549 ufs2_daddr_t newblkno; /* number of newly allocated block */ 1550 { 1551 struct newblk *newblk; 1552 struct bmsafemap *bmsafemap; 1553 struct fs *fs; 1554 1555 fs = VFSTOUFS(mp)->um_fs; 1556 /* 1557 * Create a dependency for the newly allocated block. 1558 * Add it to the dependency list for the buffer holding 1559 * the cylinder group map from which it was allocated. 1560 */ 1561 ACQUIRE_LOCK(&lk); 1562 if (newblk_lookup(fs, newblkno, DEPALLOC, &newblk) != 0) 1563 panic("softdep_setup_blkmapdep: found block"); 1564 newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp); 1565 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps); 1566 FREE_LOCK(&lk); 1567 } 1568 1569 /* 1570 * Find the bmsafemap associated with a cylinder group buffer. 1571 * If none exists, create one. The buffer must be locked when 1572 * this routine is called and this routine must be called with 1573 * splbio interrupts blocked. 1574 */ 1575 static struct bmsafemap * 1576 bmsafemap_lookup(mp, bp) 1577 struct mount *mp; 1578 struct buf *bp; 1579 { 1580 struct bmsafemap *bmsafemap; 1581 struct worklist *wk; 1582 1583 mtx_assert(&lk, MA_OWNED); 1584 LIST_FOREACH(wk, &bp->b_dep, wk_list) 1585 if (wk->wk_type == D_BMSAFEMAP) 1586 return (WK_BMSAFEMAP(wk)); 1587 FREE_LOCK(&lk); 1588 MALLOC(bmsafemap, struct bmsafemap *, sizeof(struct bmsafemap), 1589 M_BMSAFEMAP, M_SOFTDEP_FLAGS); 1590 workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp); 1591 bmsafemap->sm_buf = bp; 1592 LIST_INIT(&bmsafemap->sm_allocdirecthd); 1593 LIST_INIT(&bmsafemap->sm_allocindirhd); 1594 LIST_INIT(&bmsafemap->sm_inodedephd); 1595 LIST_INIT(&bmsafemap->sm_newblkhd); 1596 ACQUIRE_LOCK(&lk); 1597 WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list); 1598 return (bmsafemap); 1599 } 1600 1601 /* 1602 * Direct block allocation dependencies. 1603 * 1604 * When a new block is allocated, the corresponding disk locations must be 1605 * initialized (with zeros or new data) before the on-disk inode points to 1606 * them. Also, the freemap from which the block was allocated must be 1607 * updated (on disk) before the inode's pointer. These two dependencies are 1608 * independent of each other and are needed for all file blocks and indirect 1609 * blocks that are pointed to directly by the inode. Just before the 1610 * "in-core" version of the inode is updated with a newly allocated block 1611 * number, a procedure (below) is called to setup allocation dependency 1612 * structures. These structures are removed when the corresponding 1613 * dependencies are satisfied or when the block allocation becomes obsolete 1614 * (i.e., the file is deleted, the block is de-allocated, or the block is a 1615 * fragment that gets upgraded). All of these cases are handled in 1616 * procedures described later. 1617 * 1618 * When a file extension causes a fragment to be upgraded, either to a larger 1619 * fragment or to a full block, the on-disk location may change (if the 1620 * previous fragment could not simply be extended). In this case, the old 1621 * fragment must be de-allocated, but not until after the inode's pointer has 1622 * been updated. In most cases, this is handled by later procedures, which 1623 * will construct a "freefrag" structure to be added to the workitem queue 1624 * when the inode update is complete (or obsolete). The main exception to 1625 * this is when an allocation occurs while a pending allocation dependency 1626 * (for the same block pointer) remains. This case is handled in the main 1627 * allocation dependency setup procedure by immediately freeing the 1628 * unreferenced fragments. 1629 */ 1630 void 1631 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 1632 struct inode *ip; /* inode to which block is being added */ 1633 ufs_lbn_t lbn; /* block pointer within inode */ 1634 ufs2_daddr_t newblkno; /* disk block number being added */ 1635 ufs2_daddr_t oldblkno; /* previous block number, 0 unless frag */ 1636 long newsize; /* size of new block */ 1637 long oldsize; /* size of new block */ 1638 struct buf *bp; /* bp for allocated block */ 1639 { 1640 struct allocdirect *adp, *oldadp; 1641 struct allocdirectlst *adphead; 1642 struct bmsafemap *bmsafemap; 1643 struct inodedep *inodedep; 1644 struct pagedep *pagedep; 1645 struct newblk *newblk; 1646 struct mount *mp; 1647 1648 mp = UFSTOVFS(ip->i_ump); 1649 MALLOC(adp, struct allocdirect *, sizeof(struct allocdirect), 1650 M_ALLOCDIRECT, M_SOFTDEP_FLAGS|M_ZERO); 1651 workitem_alloc(&adp->ad_list, D_ALLOCDIRECT, mp); 1652 adp->ad_lbn = lbn; 1653 adp->ad_newblkno = newblkno; 1654 adp->ad_oldblkno = oldblkno; 1655 adp->ad_newsize = newsize; 1656 adp->ad_oldsize = oldsize; 1657 adp->ad_state = ATTACHED; 1658 LIST_INIT(&adp->ad_newdirblk); 1659 if (newblkno == oldblkno) 1660 adp->ad_freefrag = NULL; 1661 else 1662 adp->ad_freefrag = newfreefrag(ip, oldblkno, oldsize); 1663 1664 ACQUIRE_LOCK(&lk); 1665 if (lbn >= NDADDR) { 1666 /* allocating an indirect block */ 1667 if (oldblkno != 0) 1668 panic("softdep_setup_allocdirect: non-zero indir"); 1669 } else { 1670 /* 1671 * Allocating a direct block. 1672 * 1673 * If we are allocating a directory block, then we must 1674 * allocate an associated pagedep to track additions and 1675 * deletions. 1676 */ 1677 if ((ip->i_mode & IFMT) == IFDIR && 1678 pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0) 1679 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 1680 } 1681 if (newblk_lookup(ip->i_fs, newblkno, 0, &newblk) == 0) 1682 panic("softdep_setup_allocdirect: lost block"); 1683 if (newblk->nb_state == DEPCOMPLETE) { 1684 adp->ad_state |= DEPCOMPLETE; 1685 adp->ad_buf = NULL; 1686 } else { 1687 bmsafemap = newblk->nb_bmsafemap; 1688 adp->ad_buf = bmsafemap->sm_buf; 1689 LIST_REMOVE(newblk, nb_deps); 1690 LIST_INSERT_HEAD(&bmsafemap->sm_allocdirecthd, adp, ad_deps); 1691 } 1692 LIST_REMOVE(newblk, nb_hash); 1693 FREE(newblk, M_NEWBLK); 1694 1695 inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep); 1696 adp->ad_inodedep = inodedep; 1697 WORKLIST_INSERT(&bp->b_dep, &adp->ad_list); 1698 /* 1699 * The list of allocdirects must be kept in sorted and ascending 1700 * order so that the rollback routines can quickly determine the 1701 * first uncommitted block (the size of the file stored on disk 1702 * ends at the end of the lowest committed fragment, or if there 1703 * are no fragments, at the end of the highest committed block). 1704 * Since files generally grow, the typical case is that the new 1705 * block is to be added at the end of the list. We speed this 1706 * special case by checking against the last allocdirect in the 1707 * list before laboriously traversing the list looking for the 1708 * insertion point. 1709 */ 1710 adphead = &inodedep->id_newinoupdt; 1711 oldadp = TAILQ_LAST(adphead, allocdirectlst); 1712 if (oldadp == NULL || oldadp->ad_lbn <= lbn) { 1713 /* insert at end of list */ 1714 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 1715 if (oldadp != NULL && oldadp->ad_lbn == lbn) 1716 allocdirect_merge(adphead, adp, oldadp); 1717 FREE_LOCK(&lk); 1718 return; 1719 } 1720 TAILQ_FOREACH(oldadp, adphead, ad_next) { 1721 if (oldadp->ad_lbn >= lbn) 1722 break; 1723 } 1724 if (oldadp == NULL) 1725 panic("softdep_setup_allocdirect: lost entry"); 1726 /* insert in middle of list */ 1727 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 1728 if (oldadp->ad_lbn == lbn) 1729 allocdirect_merge(adphead, adp, oldadp); 1730 FREE_LOCK(&lk); 1731 } 1732 1733 /* 1734 * Replace an old allocdirect dependency with a newer one. 1735 * This routine must be called with splbio interrupts blocked. 1736 */ 1737 static void 1738 allocdirect_merge(adphead, newadp, oldadp) 1739 struct allocdirectlst *adphead; /* head of list holding allocdirects */ 1740 struct allocdirect *newadp; /* allocdirect being added */ 1741 struct allocdirect *oldadp; /* existing allocdirect being checked */ 1742 { 1743 struct worklist *wk; 1744 struct freefrag *freefrag; 1745 struct newdirblk *newdirblk; 1746 1747 mtx_assert(&lk, MA_OWNED); 1748 if (newadp->ad_oldblkno != oldadp->ad_newblkno || 1749 newadp->ad_oldsize != oldadp->ad_newsize || 1750 newadp->ad_lbn >= NDADDR) 1751 panic("%s %jd != new %jd || old size %ld != new %ld", 1752 "allocdirect_merge: old blkno", 1753 (intmax_t)newadp->ad_oldblkno, 1754 (intmax_t)oldadp->ad_newblkno, 1755 newadp->ad_oldsize, oldadp->ad_newsize); 1756 newadp->ad_oldblkno = oldadp->ad_oldblkno; 1757 newadp->ad_oldsize = oldadp->ad_oldsize; 1758 /* 1759 * If the old dependency had a fragment to free or had never 1760 * previously had a block allocated, then the new dependency 1761 * can immediately post its freefrag and adopt the old freefrag. 1762 * This action is done by swapping the freefrag dependencies. 1763 * The new dependency gains the old one's freefrag, and the 1764 * old one gets the new one and then immediately puts it on 1765 * the worklist when it is freed by free_allocdirect. It is 1766 * not possible to do this swap when the old dependency had a 1767 * non-zero size but no previous fragment to free. This condition 1768 * arises when the new block is an extension of the old block. 1769 * Here, the first part of the fragment allocated to the new 1770 * dependency is part of the block currently claimed on disk by 1771 * the old dependency, so cannot legitimately be freed until the 1772 * conditions for the new dependency are fulfilled. 1773 */ 1774 if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) { 1775 freefrag = newadp->ad_freefrag; 1776 newadp->ad_freefrag = oldadp->ad_freefrag; 1777 oldadp->ad_freefrag = freefrag; 1778 } 1779 /* 1780 * If we are tracking a new directory-block allocation, 1781 * move it from the old allocdirect to the new allocdirect. 1782 */ 1783 if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) { 1784 newdirblk = WK_NEWDIRBLK(wk); 1785 WORKLIST_REMOVE(&newdirblk->db_list); 1786 if (LIST_FIRST(&oldadp->ad_newdirblk) != NULL) 1787 panic("allocdirect_merge: extra newdirblk"); 1788 WORKLIST_INSERT(&newadp->ad_newdirblk, &newdirblk->db_list); 1789 } 1790 free_allocdirect(adphead, oldadp, 0); 1791 } 1792 1793 /* 1794 * Allocate a new freefrag structure if needed. 1795 */ 1796 static struct freefrag * 1797 newfreefrag(ip, blkno, size) 1798 struct inode *ip; 1799 ufs2_daddr_t blkno; 1800 long size; 1801 { 1802 struct freefrag *freefrag; 1803 struct fs *fs; 1804 1805 if (blkno == 0) 1806 return (NULL); 1807 fs = ip->i_fs; 1808 if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag) 1809 panic("newfreefrag: frag size"); 1810 MALLOC(freefrag, struct freefrag *, sizeof(struct freefrag), 1811 M_FREEFRAG, M_SOFTDEP_FLAGS); 1812 workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ip->i_ump)); 1813 freefrag->ff_inum = ip->i_number; 1814 freefrag->ff_blkno = blkno; 1815 freefrag->ff_fragsize = size; 1816 return (freefrag); 1817 } 1818 1819 /* 1820 * This workitem de-allocates fragments that were replaced during 1821 * file block allocation. 1822 */ 1823 static void 1824 handle_workitem_freefrag(freefrag) 1825 struct freefrag *freefrag; 1826 { 1827 struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp); 1828 1829 ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno, 1830 freefrag->ff_fragsize, freefrag->ff_inum); 1831 ACQUIRE_LOCK(&lk); 1832 WORKITEM_FREE(freefrag, D_FREEFRAG); 1833 FREE_LOCK(&lk); 1834 } 1835 1836 /* 1837 * Set up a dependency structure for an external attributes data block. 1838 * This routine follows much of the structure of softdep_setup_allocdirect. 1839 * See the description of softdep_setup_allocdirect above for details. 1840 */ 1841 void 1842 softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 1843 struct inode *ip; 1844 ufs_lbn_t lbn; 1845 ufs2_daddr_t newblkno; 1846 ufs2_daddr_t oldblkno; 1847 long newsize; 1848 long oldsize; 1849 struct buf *bp; 1850 { 1851 struct allocdirect *adp, *oldadp; 1852 struct allocdirectlst *adphead; 1853 struct bmsafemap *bmsafemap; 1854 struct inodedep *inodedep; 1855 struct newblk *newblk; 1856 struct mount *mp; 1857 1858 mp = UFSTOVFS(ip->i_ump); 1859 MALLOC(adp, struct allocdirect *, sizeof(struct allocdirect), 1860 M_ALLOCDIRECT, M_SOFTDEP_FLAGS|M_ZERO); 1861 workitem_alloc(&adp->ad_list, D_ALLOCDIRECT, mp); 1862 adp->ad_lbn = lbn; 1863 adp->ad_newblkno = newblkno; 1864 adp->ad_oldblkno = oldblkno; 1865 adp->ad_newsize = newsize; 1866 adp->ad_oldsize = oldsize; 1867 adp->ad_state = ATTACHED | EXTDATA; 1868 LIST_INIT(&adp->ad_newdirblk); 1869 if (newblkno == oldblkno) 1870 adp->ad_freefrag = NULL; 1871 else 1872 adp->ad_freefrag = newfreefrag(ip, oldblkno, oldsize); 1873 1874 ACQUIRE_LOCK(&lk); 1875 if (newblk_lookup(ip->i_fs, newblkno, 0, &newblk) == 0) 1876 panic("softdep_setup_allocext: lost block"); 1877 1878 inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep); 1879 adp->ad_inodedep = inodedep; 1880 1881 if (newblk->nb_state == DEPCOMPLETE) { 1882 adp->ad_state |= DEPCOMPLETE; 1883 adp->ad_buf = NULL; 1884 } else { 1885 bmsafemap = newblk->nb_bmsafemap; 1886 adp->ad_buf = bmsafemap->sm_buf; 1887 LIST_REMOVE(newblk, nb_deps); 1888 LIST_INSERT_HEAD(&bmsafemap->sm_allocdirecthd, adp, ad_deps); 1889 } 1890 LIST_REMOVE(newblk, nb_hash); 1891 FREE(newblk, M_NEWBLK); 1892 1893 WORKLIST_INSERT(&bp->b_dep, &adp->ad_list); 1894 if (lbn >= NXADDR) 1895 panic("softdep_setup_allocext: lbn %lld > NXADDR", 1896 (long long)lbn); 1897 /* 1898 * The list of allocdirects must be kept in sorted and ascending 1899 * order so that the rollback routines can quickly determine the 1900 * first uncommitted block (the size of the file stored on disk 1901 * ends at the end of the lowest committed fragment, or if there 1902 * are no fragments, at the end of the highest committed block). 1903 * Since files generally grow, the typical case is that the new 1904 * block is to be added at the end of the list. We speed this 1905 * special case by checking against the last allocdirect in the 1906 * list before laboriously traversing the list looking for the 1907 * insertion point. 1908 */ 1909 adphead = &inodedep->id_newextupdt; 1910 oldadp = TAILQ_LAST(adphead, allocdirectlst); 1911 if (oldadp == NULL || oldadp->ad_lbn <= lbn) { 1912 /* insert at end of list */ 1913 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 1914 if (oldadp != NULL && oldadp->ad_lbn == lbn) 1915 allocdirect_merge(adphead, adp, oldadp); 1916 FREE_LOCK(&lk); 1917 return; 1918 } 1919 TAILQ_FOREACH(oldadp, adphead, ad_next) { 1920 if (oldadp->ad_lbn >= lbn) 1921 break; 1922 } 1923 if (oldadp == NULL) 1924 panic("softdep_setup_allocext: lost entry"); 1925 /* insert in middle of list */ 1926 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 1927 if (oldadp->ad_lbn == lbn) 1928 allocdirect_merge(adphead, adp, oldadp); 1929 FREE_LOCK(&lk); 1930 } 1931 1932 /* 1933 * Indirect block allocation dependencies. 1934 * 1935 * The same dependencies that exist for a direct block also exist when 1936 * a new block is allocated and pointed to by an entry in a block of 1937 * indirect pointers. The undo/redo states described above are also 1938 * used here. Because an indirect block contains many pointers that 1939 * may have dependencies, a second copy of the entire in-memory indirect 1940 * block is kept. The buffer cache copy is always completely up-to-date. 1941 * The second copy, which is used only as a source for disk writes, 1942 * contains only the safe pointers (i.e., those that have no remaining 1943 * update dependencies). The second copy is freed when all pointers 1944 * are safe. The cache is not allowed to replace indirect blocks with 1945 * pending update dependencies. If a buffer containing an indirect 1946 * block with dependencies is written, these routines will mark it 1947 * dirty again. It can only be successfully written once all the 1948 * dependencies are removed. The ffs_fsync routine in conjunction with 1949 * softdep_sync_metadata work together to get all the dependencies 1950 * removed so that a file can be successfully written to disk. Three 1951 * procedures are used when setting up indirect block pointer 1952 * dependencies. The division is necessary because of the organization 1953 * of the "balloc" routine and because of the distinction between file 1954 * pages and file metadata blocks. 1955 */ 1956 1957 /* 1958 * Allocate a new allocindir structure. 1959 */ 1960 static struct allocindir * 1961 newallocindir(ip, ptrno, newblkno, oldblkno) 1962 struct inode *ip; /* inode for file being extended */ 1963 int ptrno; /* offset of pointer in indirect block */ 1964 ufs2_daddr_t newblkno; /* disk block number being added */ 1965 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 1966 { 1967 struct allocindir *aip; 1968 1969 MALLOC(aip, struct allocindir *, sizeof(struct allocindir), 1970 M_ALLOCINDIR, M_SOFTDEP_FLAGS|M_ZERO); 1971 workitem_alloc(&aip->ai_list, D_ALLOCINDIR, UFSTOVFS(ip->i_ump)); 1972 aip->ai_state = ATTACHED; 1973 aip->ai_offset = ptrno; 1974 aip->ai_newblkno = newblkno; 1975 aip->ai_oldblkno = oldblkno; 1976 aip->ai_freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize); 1977 return (aip); 1978 } 1979 1980 /* 1981 * Called just before setting an indirect block pointer 1982 * to a newly allocated file page. 1983 */ 1984 void 1985 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 1986 struct inode *ip; /* inode for file being extended */ 1987 ufs_lbn_t lbn; /* allocated block number within file */ 1988 struct buf *bp; /* buffer with indirect blk referencing page */ 1989 int ptrno; /* offset of pointer in indirect block */ 1990 ufs2_daddr_t newblkno; /* disk block number being added */ 1991 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 1992 struct buf *nbp; /* buffer holding allocated page */ 1993 { 1994 struct allocindir *aip; 1995 struct pagedep *pagedep; 1996 1997 ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page"); 1998 aip = newallocindir(ip, ptrno, newblkno, oldblkno); 1999 ACQUIRE_LOCK(&lk); 2000 /* 2001 * If we are allocating a directory page, then we must 2002 * allocate an associated pagedep to track additions and 2003 * deletions. 2004 */ 2005 if ((ip->i_mode & IFMT) == IFDIR && 2006 pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0) 2007 WORKLIST_INSERT(&nbp->b_dep, &pagedep->pd_list); 2008 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_list); 2009 setup_allocindir_phase2(bp, ip, aip); 2010 FREE_LOCK(&lk); 2011 } 2012 2013 /* 2014 * Called just before setting an indirect block pointer to a 2015 * newly allocated indirect block. 2016 */ 2017 void 2018 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 2019 struct buf *nbp; /* newly allocated indirect block */ 2020 struct inode *ip; /* inode for file being extended */ 2021 struct buf *bp; /* indirect block referencing allocated block */ 2022 int ptrno; /* offset of pointer in indirect block */ 2023 ufs2_daddr_t newblkno; /* disk block number being added */ 2024 { 2025 struct allocindir *aip; 2026 2027 ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta"); 2028 aip = newallocindir(ip, ptrno, newblkno, 0); 2029 ACQUIRE_LOCK(&lk); 2030 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_list); 2031 setup_allocindir_phase2(bp, ip, aip); 2032 FREE_LOCK(&lk); 2033 } 2034 2035 /* 2036 * Called to finish the allocation of the "aip" allocated 2037 * by one of the two routines above. 2038 */ 2039 static void 2040 setup_allocindir_phase2(bp, ip, aip) 2041 struct buf *bp; /* in-memory copy of the indirect block */ 2042 struct inode *ip; /* inode for file being extended */ 2043 struct allocindir *aip; /* allocindir allocated by the above routines */ 2044 { 2045 struct worklist *wk; 2046 struct indirdep *indirdep, *newindirdep; 2047 struct bmsafemap *bmsafemap; 2048 struct allocindir *oldaip; 2049 struct freefrag *freefrag; 2050 struct newblk *newblk; 2051 ufs2_daddr_t blkno; 2052 2053 mtx_assert(&lk, MA_OWNED); 2054 if (bp->b_lblkno >= 0) 2055 panic("setup_allocindir_phase2: not indir blk"); 2056 for (indirdep = NULL, newindirdep = NULL; ; ) { 2057 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 2058 if (wk->wk_type != D_INDIRDEP) 2059 continue; 2060 indirdep = WK_INDIRDEP(wk); 2061 break; 2062 } 2063 if (indirdep == NULL && newindirdep) { 2064 indirdep = newindirdep; 2065 WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list); 2066 newindirdep = NULL; 2067 } 2068 if (indirdep) { 2069 if (newblk_lookup(ip->i_fs, aip->ai_newblkno, 0, 2070 &newblk) == 0) 2071 panic("setup_allocindir: lost block"); 2072 if (newblk->nb_state == DEPCOMPLETE) { 2073 aip->ai_state |= DEPCOMPLETE; 2074 aip->ai_buf = NULL; 2075 } else { 2076 bmsafemap = newblk->nb_bmsafemap; 2077 aip->ai_buf = bmsafemap->sm_buf; 2078 LIST_REMOVE(newblk, nb_deps); 2079 LIST_INSERT_HEAD(&bmsafemap->sm_allocindirhd, 2080 aip, ai_deps); 2081 } 2082 LIST_REMOVE(newblk, nb_hash); 2083 FREE(newblk, M_NEWBLK); 2084 aip->ai_indirdep = indirdep; 2085 /* 2086 * Check to see if there is an existing dependency 2087 * for this block. If there is, merge the old 2088 * dependency into the new one. 2089 */ 2090 if (aip->ai_oldblkno == 0) 2091 oldaip = NULL; 2092 else 2093 2094 LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) 2095 if (oldaip->ai_offset == aip->ai_offset) 2096 break; 2097 freefrag = NULL; 2098 if (oldaip != NULL) { 2099 if (oldaip->ai_newblkno != aip->ai_oldblkno) 2100 panic("setup_allocindir_phase2: blkno"); 2101 aip->ai_oldblkno = oldaip->ai_oldblkno; 2102 freefrag = aip->ai_freefrag; 2103 aip->ai_freefrag = oldaip->ai_freefrag; 2104 oldaip->ai_freefrag = NULL; 2105 free_allocindir(oldaip, NULL); 2106 } 2107 LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next); 2108 if (ip->i_ump->um_fstype == UFS1) 2109 ((ufs1_daddr_t *)indirdep->ir_savebp->b_data) 2110 [aip->ai_offset] = aip->ai_oldblkno; 2111 else 2112 ((ufs2_daddr_t *)indirdep->ir_savebp->b_data) 2113 [aip->ai_offset] = aip->ai_oldblkno; 2114 FREE_LOCK(&lk); 2115 if (freefrag != NULL) 2116 handle_workitem_freefrag(freefrag); 2117 } else 2118 FREE_LOCK(&lk); 2119 if (newindirdep) { 2120 newindirdep->ir_savebp->b_flags |= B_INVAL | B_NOCACHE; 2121 brelse(newindirdep->ir_savebp); 2122 ACQUIRE_LOCK(&lk); 2123 WORKITEM_FREE((caddr_t)newindirdep, D_INDIRDEP); 2124 if (indirdep) 2125 break; 2126 FREE_LOCK(&lk); 2127 } 2128 if (indirdep) { 2129 ACQUIRE_LOCK(&lk); 2130 break; 2131 } 2132 MALLOC(newindirdep, struct indirdep *, sizeof(struct indirdep), 2133 M_INDIRDEP, M_SOFTDEP_FLAGS); 2134 workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, 2135 UFSTOVFS(ip->i_ump)); 2136 newindirdep->ir_state = ATTACHED; 2137 if (ip->i_ump->um_fstype == UFS1) 2138 newindirdep->ir_state |= UFS1FMT; 2139 LIST_INIT(&newindirdep->ir_deplisthd); 2140 LIST_INIT(&newindirdep->ir_donehd); 2141 if (bp->b_blkno == bp->b_lblkno) { 2142 ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp, 2143 NULL, NULL); 2144 bp->b_blkno = blkno; 2145 } 2146 newindirdep->ir_savebp = 2147 getblk(ip->i_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0); 2148 BUF_KERNPROC(newindirdep->ir_savebp); 2149 bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount); 2150 ACQUIRE_LOCK(&lk); 2151 } 2152 } 2153 2154 /* 2155 * Block de-allocation dependencies. 2156 * 2157 * When blocks are de-allocated, the on-disk pointers must be nullified before 2158 * the blocks are made available for use by other files. (The true 2159 * requirement is that old pointers must be nullified before new on-disk 2160 * pointers are set. We chose this slightly more stringent requirement to 2161 * reduce complexity.) Our implementation handles this dependency by updating 2162 * the inode (or indirect block) appropriately but delaying the actual block 2163 * de-allocation (i.e., freemap and free space count manipulation) until 2164 * after the updated versions reach stable storage. After the disk is 2165 * updated, the blocks can be safely de-allocated whenever it is convenient. 2166 * This implementation handles only the common case of reducing a file's 2167 * length to zero. Other cases are handled by the conventional synchronous 2168 * write approach. 2169 * 2170 * The ffs implementation with which we worked double-checks 2171 * the state of the block pointers and file size as it reduces 2172 * a file's length. Some of this code is replicated here in our 2173 * soft updates implementation. The freeblks->fb_chkcnt field is 2174 * used to transfer a part of this information to the procedure 2175 * that eventually de-allocates the blocks. 2176 * 2177 * This routine should be called from the routine that shortens 2178 * a file's length, before the inode's size or block pointers 2179 * are modified. It will save the block pointer information for 2180 * later release and zero the inode so that the calling routine 2181 * can release it. 2182 */ 2183 void 2184 softdep_setup_freeblocks(ip, length, flags) 2185 struct inode *ip; /* The inode whose length is to be reduced */ 2186 off_t length; /* The new length for the file */ 2187 int flags; /* IO_EXT and/or IO_NORMAL */ 2188 { 2189 struct freeblks *freeblks; 2190 struct inodedep *inodedep; 2191 struct allocdirect *adp; 2192 struct vnode *vp; 2193 struct buf *bp; 2194 struct fs *fs; 2195 ufs2_daddr_t extblocks, datablocks; 2196 struct mount *mp; 2197 int i, delay, error; 2198 2199 fs = ip->i_fs; 2200 mp = UFSTOVFS(ip->i_ump); 2201 if (length != 0) 2202 panic("softdep_setup_freeblocks: non-zero length"); 2203 MALLOC(freeblks, struct freeblks *, sizeof(struct freeblks), 2204 M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO); 2205 workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp); 2206 freeblks->fb_state = ATTACHED; 2207 freeblks->fb_uid = ip->i_uid; 2208 freeblks->fb_previousinum = ip->i_number; 2209 freeblks->fb_devvp = ip->i_devvp; 2210 extblocks = 0; 2211 if (fs->fs_magic == FS_UFS2_MAGIC) 2212 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 2213 datablocks = DIP(ip, i_blocks) - extblocks; 2214 if ((flags & IO_NORMAL) == 0) { 2215 freeblks->fb_oldsize = 0; 2216 freeblks->fb_chkcnt = 0; 2217 } else { 2218 freeblks->fb_oldsize = ip->i_size; 2219 ip->i_size = 0; 2220 DIP_SET(ip, i_size, 0); 2221 freeblks->fb_chkcnt = datablocks; 2222 for (i = 0; i < NDADDR; i++) { 2223 freeblks->fb_dblks[i] = DIP(ip, i_db[i]); 2224 DIP_SET(ip, i_db[i], 0); 2225 } 2226 for (i = 0; i < NIADDR; i++) { 2227 freeblks->fb_iblks[i] = DIP(ip, i_ib[i]); 2228 DIP_SET(ip, i_ib[i], 0); 2229 } 2230 /* 2231 * If the file was removed, then the space being freed was 2232 * accounted for then (see softdep_releasefile()). If the 2233 * file is merely being truncated, then we account for it now. 2234 */ 2235 if ((ip->i_flag & IN_SPACECOUNTED) == 0) { 2236 UFS_LOCK(ip->i_ump); 2237 fs->fs_pendingblocks += datablocks; 2238 UFS_UNLOCK(ip->i_ump); 2239 } 2240 } 2241 if ((flags & IO_EXT) == 0) { 2242 freeblks->fb_oldextsize = 0; 2243 } else { 2244 freeblks->fb_oldextsize = ip->i_din2->di_extsize; 2245 ip->i_din2->di_extsize = 0; 2246 freeblks->fb_chkcnt += extblocks; 2247 for (i = 0; i < NXADDR; i++) { 2248 freeblks->fb_eblks[i] = ip->i_din2->di_extb[i]; 2249 ip->i_din2->di_extb[i] = 0; 2250 } 2251 } 2252 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - freeblks->fb_chkcnt); 2253 /* 2254 * Push the zero'ed inode to to its disk buffer so that we are free 2255 * to delete its dependencies below. Once the dependencies are gone 2256 * the buffer can be safely released. 2257 */ 2258 if ((error = bread(ip->i_devvp, 2259 fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 2260 (int)fs->fs_bsize, NOCRED, &bp)) != 0) { 2261 brelse(bp); 2262 softdep_error("softdep_setup_freeblocks", error); 2263 } 2264 if (ip->i_ump->um_fstype == UFS1) 2265 *((struct ufs1_dinode *)bp->b_data + 2266 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1; 2267 else 2268 *((struct ufs2_dinode *)bp->b_data + 2269 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2; 2270 /* 2271 * Find and eliminate any inode dependencies. 2272 */ 2273 ACQUIRE_LOCK(&lk); 2274 (void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 2275 if ((inodedep->id_state & IOSTARTED) != 0) 2276 panic("softdep_setup_freeblocks: inode busy"); 2277 /* 2278 * Add the freeblks structure to the list of operations that 2279 * must await the zero'ed inode being written to disk. If we 2280 * still have a bitmap dependency (delay == 0), then the inode 2281 * has never been written to disk, so we can process the 2282 * freeblks below once we have deleted the dependencies. 2283 */ 2284 delay = (inodedep->id_state & DEPCOMPLETE); 2285 if (delay) 2286 WORKLIST_INSERT(&inodedep->id_bufwait, &freeblks->fb_list); 2287 /* 2288 * Because the file length has been truncated to zero, any 2289 * pending block allocation dependency structures associated 2290 * with this inode are obsolete and can simply be de-allocated. 2291 * We must first merge the two dependency lists to get rid of 2292 * any duplicate freefrag structures, then purge the merged list. 2293 * If we still have a bitmap dependency, then the inode has never 2294 * been written to disk, so we can free any fragments without delay. 2295 */ 2296 if (flags & IO_NORMAL) { 2297 merge_inode_lists(&inodedep->id_newinoupdt, 2298 &inodedep->id_inoupdt); 2299 while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != 0) 2300 free_allocdirect(&inodedep->id_inoupdt, adp, delay); 2301 } 2302 if (flags & IO_EXT) { 2303 merge_inode_lists(&inodedep->id_newextupdt, 2304 &inodedep->id_extupdt); 2305 while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0) 2306 free_allocdirect(&inodedep->id_extupdt, adp, delay); 2307 } 2308 FREE_LOCK(&lk); 2309 bdwrite(bp); 2310 /* 2311 * We must wait for any I/O in progress to finish so that 2312 * all potential buffers on the dirty list will be visible. 2313 * Once they are all there, walk the list and get rid of 2314 * any dependencies. 2315 */ 2316 vp = ITOV(ip); 2317 VI_LOCK(vp); 2318 drain_output(vp); 2319 restart: 2320 TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) { 2321 if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) || 2322 ((flags & IO_NORMAL) == 0 && 2323 (bp->b_xflags & BX_ALTDATA) == 0)) 2324 continue; 2325 if ((bp = getdirtybuf(bp, VI_MTX(vp), MNT_WAIT)) == NULL) 2326 goto restart; 2327 VI_UNLOCK(vp); 2328 ACQUIRE_LOCK(&lk); 2329 (void) inodedep_lookup(mp, ip->i_number, 0, &inodedep); 2330 deallocate_dependencies(bp, inodedep); 2331 FREE_LOCK(&lk); 2332 bp->b_flags |= B_INVAL | B_NOCACHE; 2333 brelse(bp); 2334 VI_LOCK(vp); 2335 goto restart; 2336 } 2337 VI_UNLOCK(vp); 2338 ACQUIRE_LOCK(&lk); 2339 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) 2340 (void) free_inodedep(inodedep); 2341 2342 if(delay) { 2343 freeblks->fb_state |= DEPCOMPLETE; 2344 /* 2345 * If the inode with zeroed block pointers is now on disk 2346 * we can start freeing blocks. Add freeblks to the worklist 2347 * instead of calling handle_workitem_freeblocks directly as 2348 * it is more likely that additional IO is needed to complete 2349 * the request here than in the !delay case. 2350 */ 2351 if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE) 2352 add_to_worklist(&freeblks->fb_list); 2353 } 2354 2355 FREE_LOCK(&lk); 2356 /* 2357 * If the inode has never been written to disk (delay == 0), 2358 * then we can process the freeblks now that we have deleted 2359 * the dependencies. 2360 */ 2361 if (!delay) 2362 handle_workitem_freeblocks(freeblks, 0); 2363 } 2364 2365 /* 2366 * Reclaim any dependency structures from a buffer that is about to 2367 * be reallocated to a new vnode. The buffer must be locked, thus, 2368 * no I/O completion operations can occur while we are manipulating 2369 * its associated dependencies. The mutex is held so that other I/O's 2370 * associated with related dependencies do not occur. 2371 */ 2372 static void 2373 deallocate_dependencies(bp, inodedep) 2374 struct buf *bp; 2375 struct inodedep *inodedep; 2376 { 2377 struct worklist *wk; 2378 struct indirdep *indirdep; 2379 struct allocindir *aip; 2380 struct pagedep *pagedep; 2381 struct dirrem *dirrem; 2382 struct diradd *dap; 2383 int i; 2384 2385 mtx_assert(&lk, MA_OWNED); 2386 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) { 2387 switch (wk->wk_type) { 2388 2389 case D_INDIRDEP: 2390 indirdep = WK_INDIRDEP(wk); 2391 /* 2392 * None of the indirect pointers will ever be visible, 2393 * so they can simply be tossed. GOINGAWAY ensures 2394 * that allocated pointers will be saved in the buffer 2395 * cache until they are freed. Note that they will 2396 * only be able to be found by their physical address 2397 * since the inode mapping the logical address will 2398 * be gone. The save buffer used for the safe copy 2399 * was allocated in setup_allocindir_phase2 using 2400 * the physical address so it could be used for this 2401 * purpose. Hence we swap the safe copy with the real 2402 * copy, allowing the safe copy to be freed and holding 2403 * on to the real copy for later use in indir_trunc. 2404 */ 2405 if (indirdep->ir_state & GOINGAWAY) 2406 panic("deallocate_dependencies: already gone"); 2407 indirdep->ir_state |= GOINGAWAY; 2408 VFSTOUFS(bp->b_vp->v_mount)->um_numindirdeps += 1; 2409 while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != 0) 2410 free_allocindir(aip, inodedep); 2411 if (bp->b_lblkno >= 0 || 2412 bp->b_blkno != indirdep->ir_savebp->b_lblkno) 2413 panic("deallocate_dependencies: not indir"); 2414 bcopy(bp->b_data, indirdep->ir_savebp->b_data, 2415 bp->b_bcount); 2416 WORKLIST_REMOVE(wk); 2417 WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, wk); 2418 continue; 2419 2420 case D_PAGEDEP: 2421 pagedep = WK_PAGEDEP(wk); 2422 /* 2423 * None of the directory additions will ever be 2424 * visible, so they can simply be tossed. 2425 */ 2426 for (i = 0; i < DAHASHSZ; i++) 2427 while ((dap = 2428 LIST_FIRST(&pagedep->pd_diraddhd[i]))) 2429 free_diradd(dap); 2430 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != 0) 2431 free_diradd(dap); 2432 /* 2433 * Copy any directory remove dependencies to the list 2434 * to be processed after the zero'ed inode is written. 2435 * If the inode has already been written, then they 2436 * can be dumped directly onto the work list. 2437 */ 2438 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) { 2439 LIST_REMOVE(dirrem, dm_next); 2440 dirrem->dm_dirinum = pagedep->pd_ino; 2441 if (inodedep == NULL || 2442 (inodedep->id_state & ALLCOMPLETE) == 2443 ALLCOMPLETE) 2444 add_to_worklist(&dirrem->dm_list); 2445 else 2446 WORKLIST_INSERT(&inodedep->id_bufwait, 2447 &dirrem->dm_list); 2448 } 2449 if ((pagedep->pd_state & NEWBLOCK) != 0) { 2450 LIST_FOREACH(wk, &inodedep->id_bufwait, wk_list) 2451 if (wk->wk_type == D_NEWDIRBLK && 2452 WK_NEWDIRBLK(wk)->db_pagedep == 2453 pagedep) 2454 break; 2455 if (wk != NULL) { 2456 WORKLIST_REMOVE(wk); 2457 free_newdirblk(WK_NEWDIRBLK(wk)); 2458 } else 2459 panic("deallocate_dependencies: " 2460 "lost pagedep"); 2461 } 2462 WORKLIST_REMOVE(&pagedep->pd_list); 2463 LIST_REMOVE(pagedep, pd_hash); 2464 WORKITEM_FREE(pagedep, D_PAGEDEP); 2465 continue; 2466 2467 case D_ALLOCINDIR: 2468 free_allocindir(WK_ALLOCINDIR(wk), inodedep); 2469 continue; 2470 2471 case D_ALLOCDIRECT: 2472 case D_INODEDEP: 2473 panic("deallocate_dependencies: Unexpected type %s", 2474 TYPENAME(wk->wk_type)); 2475 /* NOTREACHED */ 2476 2477 default: 2478 panic("deallocate_dependencies: Unknown type %s", 2479 TYPENAME(wk->wk_type)); 2480 /* NOTREACHED */ 2481 } 2482 } 2483 } 2484 2485 /* 2486 * Free an allocdirect. Generate a new freefrag work request if appropriate. 2487 * This routine must be called with splbio interrupts blocked. 2488 */ 2489 static void 2490 free_allocdirect(adphead, adp, delay) 2491 struct allocdirectlst *adphead; 2492 struct allocdirect *adp; 2493 int delay; 2494 { 2495 struct newdirblk *newdirblk; 2496 struct worklist *wk; 2497 2498 mtx_assert(&lk, MA_OWNED); 2499 if ((adp->ad_state & DEPCOMPLETE) == 0) 2500 LIST_REMOVE(adp, ad_deps); 2501 TAILQ_REMOVE(adphead, adp, ad_next); 2502 if ((adp->ad_state & COMPLETE) == 0) 2503 WORKLIST_REMOVE(&adp->ad_list); 2504 if (adp->ad_freefrag != NULL) { 2505 if (delay) 2506 WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait, 2507 &adp->ad_freefrag->ff_list); 2508 else 2509 add_to_worklist(&adp->ad_freefrag->ff_list); 2510 } 2511 if ((wk = LIST_FIRST(&adp->ad_newdirblk)) != NULL) { 2512 newdirblk = WK_NEWDIRBLK(wk); 2513 WORKLIST_REMOVE(&newdirblk->db_list); 2514 if (LIST_FIRST(&adp->ad_newdirblk) != NULL) 2515 panic("free_allocdirect: extra newdirblk"); 2516 if (delay) 2517 WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait, 2518 &newdirblk->db_list); 2519 else 2520 free_newdirblk(newdirblk); 2521 } 2522 WORKITEM_FREE(adp, D_ALLOCDIRECT); 2523 } 2524 2525 /* 2526 * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep. 2527 * This routine must be called with splbio interrupts blocked. 2528 */ 2529 static void 2530 free_newdirblk(newdirblk) 2531 struct newdirblk *newdirblk; 2532 { 2533 struct pagedep *pagedep; 2534 struct diradd *dap; 2535 int i; 2536 2537 mtx_assert(&lk, MA_OWNED); 2538 /* 2539 * If the pagedep is still linked onto the directory buffer 2540 * dependency chain, then some of the entries on the 2541 * pd_pendinghd list may not be committed to disk yet. In 2542 * this case, we will simply clear the NEWBLOCK flag and 2543 * let the pd_pendinghd list be processed when the pagedep 2544 * is next written. If the pagedep is no longer on the buffer 2545 * dependency chain, then all the entries on the pd_pending 2546 * list are committed to disk and we can free them here. 2547 */ 2548 pagedep = newdirblk->db_pagedep; 2549 pagedep->pd_state &= ~NEWBLOCK; 2550 if ((pagedep->pd_state & ONWORKLIST) == 0) 2551 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 2552 free_diradd(dap); 2553 /* 2554 * If no dependencies remain, the pagedep will be freed. 2555 */ 2556 for (i = 0; i < DAHASHSZ; i++) 2557 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) != NULL) 2558 break; 2559 if (i == DAHASHSZ && (pagedep->pd_state & ONWORKLIST) == 0) { 2560 LIST_REMOVE(pagedep, pd_hash); 2561 WORKITEM_FREE(pagedep, D_PAGEDEP); 2562 } 2563 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 2564 } 2565 2566 /* 2567 * Prepare an inode to be freed. The actual free operation is not 2568 * done until the zero'ed inode has been written to disk. 2569 */ 2570 void 2571 softdep_freefile(pvp, ino, mode) 2572 struct vnode *pvp; 2573 ino_t ino; 2574 int mode; 2575 { 2576 struct inode *ip = VTOI(pvp); 2577 struct inodedep *inodedep; 2578 struct freefile *freefile; 2579 2580 /* 2581 * This sets up the inode de-allocation dependency. 2582 */ 2583 MALLOC(freefile, struct freefile *, sizeof(struct freefile), 2584 M_FREEFILE, M_SOFTDEP_FLAGS); 2585 workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount); 2586 freefile->fx_mode = mode; 2587 freefile->fx_oldinum = ino; 2588 freefile->fx_devvp = ip->i_devvp; 2589 if ((ip->i_flag & IN_SPACECOUNTED) == 0) { 2590 UFS_LOCK(ip->i_ump); 2591 ip->i_fs->fs_pendinginodes += 1; 2592 UFS_UNLOCK(ip->i_ump); 2593 } 2594 2595 /* 2596 * If the inodedep does not exist, then the zero'ed inode has 2597 * been written to disk. If the allocated inode has never been 2598 * written to disk, then the on-disk inode is zero'ed. In either 2599 * case we can free the file immediately. 2600 */ 2601 ACQUIRE_LOCK(&lk); 2602 if (inodedep_lookup(pvp->v_mount, ino, 0, &inodedep) == 0 || 2603 check_inode_unwritten(inodedep)) { 2604 FREE_LOCK(&lk); 2605 handle_workitem_freefile(freefile); 2606 return; 2607 } 2608 WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list); 2609 FREE_LOCK(&lk); 2610 } 2611 2612 /* 2613 * Check to see if an inode has never been written to disk. If 2614 * so free the inodedep and return success, otherwise return failure. 2615 * This routine must be called with splbio interrupts blocked. 2616 * 2617 * If we still have a bitmap dependency, then the inode has never 2618 * been written to disk. Drop the dependency as it is no longer 2619 * necessary since the inode is being deallocated. We set the 2620 * ALLCOMPLETE flags since the bitmap now properly shows that the 2621 * inode is not allocated. Even if the inode is actively being 2622 * written, it has been rolled back to its zero'ed state, so we 2623 * are ensured that a zero inode is what is on the disk. For short 2624 * lived files, this change will usually result in removing all the 2625 * dependencies from the inode so that it can be freed immediately. 2626 */ 2627 static int 2628 check_inode_unwritten(inodedep) 2629 struct inodedep *inodedep; 2630 { 2631 2632 mtx_assert(&lk, MA_OWNED); 2633 if ((inodedep->id_state & DEPCOMPLETE) != 0 || 2634 LIST_FIRST(&inodedep->id_pendinghd) != NULL || 2635 LIST_FIRST(&inodedep->id_bufwait) != NULL || 2636 LIST_FIRST(&inodedep->id_inowait) != NULL || 2637 TAILQ_FIRST(&inodedep->id_inoupdt) != NULL || 2638 TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL || 2639 TAILQ_FIRST(&inodedep->id_extupdt) != NULL || 2640 TAILQ_FIRST(&inodedep->id_newextupdt) != NULL || 2641 inodedep->id_nlinkdelta != 0) 2642 return (0); 2643 2644 /* 2645 * Another process might be in initiate_write_inodeblock_ufs[12] 2646 * trying to allocate memory without holding "Softdep Lock". 2647 */ 2648 if ((inodedep->id_state & IOSTARTED) != 0 && 2649 inodedep->id_savedino1 == NULL) 2650 return (0); 2651 2652 inodedep->id_state |= ALLCOMPLETE; 2653 LIST_REMOVE(inodedep, id_deps); 2654 inodedep->id_buf = NULL; 2655 if (inodedep->id_state & ONWORKLIST) 2656 WORKLIST_REMOVE(&inodedep->id_list); 2657 if (inodedep->id_savedino1 != NULL) { 2658 FREE(inodedep->id_savedino1, M_SAVEDINO); 2659 inodedep->id_savedino1 = NULL; 2660 } 2661 if (free_inodedep(inodedep) == 0) 2662 panic("check_inode_unwritten: busy inode"); 2663 return (1); 2664 } 2665 2666 /* 2667 * Try to free an inodedep structure. Return 1 if it could be freed. 2668 */ 2669 static int 2670 free_inodedep(inodedep) 2671 struct inodedep *inodedep; 2672 { 2673 2674 mtx_assert(&lk, MA_OWNED); 2675 if ((inodedep->id_state & ONWORKLIST) != 0 || 2676 (inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE || 2677 LIST_FIRST(&inodedep->id_pendinghd) != NULL || 2678 LIST_FIRST(&inodedep->id_bufwait) != NULL || 2679 LIST_FIRST(&inodedep->id_inowait) != NULL || 2680 TAILQ_FIRST(&inodedep->id_inoupdt) != NULL || 2681 TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL || 2682 TAILQ_FIRST(&inodedep->id_extupdt) != NULL || 2683 TAILQ_FIRST(&inodedep->id_newextupdt) != NULL || 2684 inodedep->id_nlinkdelta != 0 || inodedep->id_savedino1 != NULL) 2685 return (0); 2686 LIST_REMOVE(inodedep, id_hash); 2687 WORKITEM_FREE(inodedep, D_INODEDEP); 2688 num_inodedep -= 1; 2689 return (1); 2690 } 2691 2692 /* 2693 * This workitem routine performs the block de-allocation. 2694 * The workitem is added to the pending list after the updated 2695 * inode block has been written to disk. As mentioned above, 2696 * checks regarding the number of blocks de-allocated (compared 2697 * to the number of blocks allocated for the file) are also 2698 * performed in this function. 2699 */ 2700 static void 2701 handle_workitem_freeblocks(freeblks, flags) 2702 struct freeblks *freeblks; 2703 int flags; 2704 { 2705 struct inode *ip; 2706 struct vnode *vp; 2707 struct fs *fs; 2708 struct ufsmount *ump; 2709 int i, nblocks, level, bsize; 2710 ufs2_daddr_t bn, blocksreleased = 0; 2711 int error, allerror = 0; 2712 ufs_lbn_t baselbns[NIADDR], tmpval; 2713 int fs_pendingblocks; 2714 2715 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 2716 fs = ump->um_fs; 2717 fs_pendingblocks = 0; 2718 tmpval = 1; 2719 baselbns[0] = NDADDR; 2720 for (i = 1; i < NIADDR; i++) { 2721 tmpval *= NINDIR(fs); 2722 baselbns[i] = baselbns[i - 1] + tmpval; 2723 } 2724 nblocks = btodb(fs->fs_bsize); 2725 blocksreleased = 0; 2726 /* 2727 * Release all extended attribute blocks or frags. 2728 */ 2729 if (freeblks->fb_oldextsize > 0) { 2730 for (i = (NXADDR - 1); i >= 0; i--) { 2731 if ((bn = freeblks->fb_eblks[i]) == 0) 2732 continue; 2733 bsize = sblksize(fs, freeblks->fb_oldextsize, i); 2734 ffs_blkfree(ump, fs, freeblks->fb_devvp, bn, bsize, 2735 freeblks->fb_previousinum); 2736 blocksreleased += btodb(bsize); 2737 } 2738 } 2739 /* 2740 * Release all data blocks or frags. 2741 */ 2742 if (freeblks->fb_oldsize > 0) { 2743 /* 2744 * Indirect blocks first. 2745 */ 2746 for (level = (NIADDR - 1); level >= 0; level--) { 2747 if ((bn = freeblks->fb_iblks[level]) == 0) 2748 continue; 2749 if ((error = indir_trunc(freeblks, fsbtodb(fs, bn), 2750 level, baselbns[level], &blocksreleased)) != 0) 2751 allerror = error; 2752 ffs_blkfree(ump, fs, freeblks->fb_devvp, bn, 2753 fs->fs_bsize, freeblks->fb_previousinum); 2754 fs_pendingblocks += nblocks; 2755 blocksreleased += nblocks; 2756 } 2757 /* 2758 * All direct blocks or frags. 2759 */ 2760 for (i = (NDADDR - 1); i >= 0; i--) { 2761 if ((bn = freeblks->fb_dblks[i]) == 0) 2762 continue; 2763 bsize = sblksize(fs, freeblks->fb_oldsize, i); 2764 ffs_blkfree(ump, fs, freeblks->fb_devvp, bn, bsize, 2765 freeblks->fb_previousinum); 2766 fs_pendingblocks += btodb(bsize); 2767 blocksreleased += btodb(bsize); 2768 } 2769 } 2770 UFS_LOCK(ump); 2771 fs->fs_pendingblocks -= fs_pendingblocks; 2772 UFS_UNLOCK(ump); 2773 /* 2774 * If we still have not finished background cleanup, then check 2775 * to see if the block count needs to be adjusted. 2776 */ 2777 if (freeblks->fb_chkcnt != blocksreleased && 2778 (fs->fs_flags & FS_UNCLEAN) != 0 && 2779 ffs_vget(freeblks->fb_list.wk_mp, freeblks->fb_previousinum, 2780 (flags & LK_NOWAIT) | LK_EXCLUSIVE, &vp) == 0) { 2781 ip = VTOI(vp); 2782 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + \ 2783 freeblks->fb_chkcnt - blocksreleased); 2784 ip->i_flag |= IN_CHANGE; 2785 vput(vp); 2786 } 2787 2788 #ifdef DIAGNOSTIC 2789 if (freeblks->fb_chkcnt != blocksreleased && 2790 ((fs->fs_flags & FS_UNCLEAN) == 0 || (flags & LK_NOWAIT) != 0)) 2791 printf("handle_workitem_freeblocks: block count\n"); 2792 if (allerror) 2793 softdep_error("handle_workitem_freeblks", allerror); 2794 #endif /* DIAGNOSTIC */ 2795 2796 ACQUIRE_LOCK(&lk); 2797 WORKITEM_FREE(freeblks, D_FREEBLKS); 2798 FREE_LOCK(&lk); 2799 } 2800 2801 /* 2802 * Release blocks associated with the inode ip and stored in the indirect 2803 * block dbn. If level is greater than SINGLE, the block is an indirect block 2804 * and recursive calls to indirtrunc must be used to cleanse other indirect 2805 * blocks. 2806 */ 2807 static int 2808 indir_trunc(freeblks, dbn, level, lbn, countp) 2809 struct freeblks *freeblks; 2810 ufs2_daddr_t dbn; 2811 int level; 2812 ufs_lbn_t lbn; 2813 ufs2_daddr_t *countp; 2814 { 2815 struct buf *bp; 2816 struct fs *fs; 2817 struct worklist *wk; 2818 struct indirdep *indirdep; 2819 struct ufsmount *ump; 2820 ufs1_daddr_t *bap1 = 0; 2821 ufs2_daddr_t nb, *bap2 = 0; 2822 ufs_lbn_t lbnadd; 2823 int i, nblocks, ufs1fmt; 2824 int error, allerror = 0; 2825 int fs_pendingblocks; 2826 2827 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 2828 fs = ump->um_fs; 2829 fs_pendingblocks = 0; 2830 lbnadd = 1; 2831 for (i = level; i > 0; i--) 2832 lbnadd *= NINDIR(fs); 2833 /* 2834 * Get buffer of block pointers to be freed. This routine is not 2835 * called until the zero'ed inode has been written, so it is safe 2836 * to free blocks as they are encountered. Because the inode has 2837 * been zero'ed, calls to bmap on these blocks will fail. So, we 2838 * have to use the on-disk address and the block device for the 2839 * filesystem to look them up. If the file was deleted before its 2840 * indirect blocks were all written to disk, the routine that set 2841 * us up (deallocate_dependencies) will have arranged to leave 2842 * a complete copy of the indirect block in memory for our use. 2843 * Otherwise we have to read the blocks in from the disk. 2844 */ 2845 #ifdef notyet 2846 bp = getblk(freeblks->fb_devvp, dbn, (int)fs->fs_bsize, 0, 0, 2847 GB_NOCREAT); 2848 #else 2849 bp = incore(&freeblks->fb_devvp->v_bufobj, dbn); 2850 #endif 2851 ACQUIRE_LOCK(&lk); 2852 if (bp != NULL && (wk = LIST_FIRST(&bp->b_dep)) != NULL) { 2853 if (wk->wk_type != D_INDIRDEP || 2854 (indirdep = WK_INDIRDEP(wk))->ir_savebp != bp || 2855 (indirdep->ir_state & GOINGAWAY) == 0) 2856 panic("indir_trunc: lost indirdep"); 2857 WORKLIST_REMOVE(wk); 2858 WORKITEM_FREE(indirdep, D_INDIRDEP); 2859 if (LIST_FIRST(&bp->b_dep) != NULL) 2860 panic("indir_trunc: dangling dep"); 2861 ump->um_numindirdeps -= 1; 2862 FREE_LOCK(&lk); 2863 } else { 2864 #ifdef notyet 2865 if (bp) 2866 brelse(bp); 2867 #endif 2868 FREE_LOCK(&lk); 2869 error = bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize, 2870 NOCRED, &bp); 2871 if (error) { 2872 brelse(bp); 2873 return (error); 2874 } 2875 } 2876 /* 2877 * Recursively free indirect blocks. 2878 */ 2879 if (ump->um_fstype == UFS1) { 2880 ufs1fmt = 1; 2881 bap1 = (ufs1_daddr_t *)bp->b_data; 2882 } else { 2883 ufs1fmt = 0; 2884 bap2 = (ufs2_daddr_t *)bp->b_data; 2885 } 2886 nblocks = btodb(fs->fs_bsize); 2887 for (i = NINDIR(fs) - 1; i >= 0; i--) { 2888 if (ufs1fmt) 2889 nb = bap1[i]; 2890 else 2891 nb = bap2[i]; 2892 if (nb == 0) 2893 continue; 2894 if (level != 0) { 2895 if ((error = indir_trunc(freeblks, fsbtodb(fs, nb), 2896 level - 1, lbn + (i * lbnadd), countp)) != 0) 2897 allerror = error; 2898 } 2899 ffs_blkfree(ump, fs, freeblks->fb_devvp, nb, fs->fs_bsize, 2900 freeblks->fb_previousinum); 2901 fs_pendingblocks += nblocks; 2902 *countp += nblocks; 2903 } 2904 UFS_LOCK(ump); 2905 fs->fs_pendingblocks -= fs_pendingblocks; 2906 UFS_UNLOCK(ump); 2907 bp->b_flags |= B_INVAL | B_NOCACHE; 2908 brelse(bp); 2909 return (allerror); 2910 } 2911 2912 /* 2913 * Free an allocindir. 2914 * This routine must be called with splbio interrupts blocked. 2915 */ 2916 static void 2917 free_allocindir(aip, inodedep) 2918 struct allocindir *aip; 2919 struct inodedep *inodedep; 2920 { 2921 struct freefrag *freefrag; 2922 2923 mtx_assert(&lk, MA_OWNED); 2924 if ((aip->ai_state & DEPCOMPLETE) == 0) 2925 LIST_REMOVE(aip, ai_deps); 2926 if (aip->ai_state & ONWORKLIST) 2927 WORKLIST_REMOVE(&aip->ai_list); 2928 LIST_REMOVE(aip, ai_next); 2929 if ((freefrag = aip->ai_freefrag) != NULL) { 2930 if (inodedep == NULL) 2931 add_to_worklist(&freefrag->ff_list); 2932 else 2933 WORKLIST_INSERT(&inodedep->id_bufwait, 2934 &freefrag->ff_list); 2935 } 2936 WORKITEM_FREE(aip, D_ALLOCINDIR); 2937 } 2938 2939 /* 2940 * Directory entry addition dependencies. 2941 * 2942 * When adding a new directory entry, the inode (with its incremented link 2943 * count) must be written to disk before the directory entry's pointer to it. 2944 * Also, if the inode is newly allocated, the corresponding freemap must be 2945 * updated (on disk) before the directory entry's pointer. These requirements 2946 * are met via undo/redo on the directory entry's pointer, which consists 2947 * simply of the inode number. 2948 * 2949 * As directory entries are added and deleted, the free space within a 2950 * directory block can become fragmented. The ufs filesystem will compact 2951 * a fragmented directory block to make space for a new entry. When this 2952 * occurs, the offsets of previously added entries change. Any "diradd" 2953 * dependency structures corresponding to these entries must be updated with 2954 * the new offsets. 2955 */ 2956 2957 /* 2958 * This routine is called after the in-memory inode's link 2959 * count has been incremented, but before the directory entry's 2960 * pointer to the inode has been set. 2961 */ 2962 int 2963 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk) 2964 struct buf *bp; /* buffer containing directory block */ 2965 struct inode *dp; /* inode for directory */ 2966 off_t diroffset; /* offset of new entry in directory */ 2967 ino_t newinum; /* inode referenced by new directory entry */ 2968 struct buf *newdirbp; /* non-NULL => contents of new mkdir */ 2969 int isnewblk; /* entry is in a newly allocated block */ 2970 { 2971 int offset; /* offset of new entry within directory block */ 2972 ufs_lbn_t lbn; /* block in directory containing new entry */ 2973 struct fs *fs; 2974 struct diradd *dap; 2975 struct allocdirect *adp; 2976 struct pagedep *pagedep; 2977 struct inodedep *inodedep; 2978 struct newdirblk *newdirblk = 0; 2979 struct mkdir *mkdir1, *mkdir2; 2980 struct mount *mp; 2981 2982 /* 2983 * Whiteouts have no dependencies. 2984 */ 2985 if (newinum == WINO) { 2986 if (newdirbp != NULL) 2987 bdwrite(newdirbp); 2988 return (0); 2989 } 2990 mp = UFSTOVFS(dp->i_ump); 2991 fs = dp->i_fs; 2992 lbn = lblkno(fs, diroffset); 2993 offset = blkoff(fs, diroffset); 2994 MALLOC(dap, struct diradd *, sizeof(struct diradd), M_DIRADD, 2995 M_SOFTDEP_FLAGS|M_ZERO); 2996 workitem_alloc(&dap->da_list, D_DIRADD, mp); 2997 dap->da_offset = offset; 2998 dap->da_newinum = newinum; 2999 dap->da_state = ATTACHED; 3000 if (isnewblk && lbn < NDADDR && fragoff(fs, diroffset) == 0) { 3001 MALLOC(newdirblk, struct newdirblk *, sizeof(struct newdirblk), 3002 M_NEWDIRBLK, M_SOFTDEP_FLAGS); 3003 workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp); 3004 } 3005 if (newdirbp == NULL) { 3006 dap->da_state |= DEPCOMPLETE; 3007 ACQUIRE_LOCK(&lk); 3008 } else { 3009 dap->da_state |= MKDIR_BODY | MKDIR_PARENT; 3010 MALLOC(mkdir1, struct mkdir *, sizeof(struct mkdir), M_MKDIR, 3011 M_SOFTDEP_FLAGS); 3012 workitem_alloc(&mkdir1->md_list, D_MKDIR, mp); 3013 mkdir1->md_state = MKDIR_BODY; 3014 mkdir1->md_diradd = dap; 3015 MALLOC(mkdir2, struct mkdir *, sizeof(struct mkdir), M_MKDIR, 3016 M_SOFTDEP_FLAGS); 3017 workitem_alloc(&mkdir2->md_list, D_MKDIR, mp); 3018 mkdir2->md_state = MKDIR_PARENT; 3019 mkdir2->md_diradd = dap; 3020 /* 3021 * Dependency on "." and ".." being written to disk. 3022 */ 3023 mkdir1->md_buf = newdirbp; 3024 ACQUIRE_LOCK(&lk); 3025 LIST_INSERT_HEAD(&mkdirlisthd, mkdir1, md_mkdirs); 3026 WORKLIST_INSERT(&newdirbp->b_dep, &mkdir1->md_list); 3027 FREE_LOCK(&lk); 3028 bdwrite(newdirbp); 3029 /* 3030 * Dependency on link count increase for parent directory 3031 */ 3032 ACQUIRE_LOCK(&lk); 3033 if (inodedep_lookup(mp, dp->i_number, 0, &inodedep) == 0 3034 || (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 3035 dap->da_state &= ~MKDIR_PARENT; 3036 WORKITEM_FREE(mkdir2, D_MKDIR); 3037 } else { 3038 LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs); 3039 WORKLIST_INSERT(&inodedep->id_bufwait,&mkdir2->md_list); 3040 } 3041 } 3042 /* 3043 * Link into parent directory pagedep to await its being written. 3044 */ 3045 if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0) 3046 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 3047 dap->da_pagedep = pagedep; 3048 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap, 3049 da_pdlist); 3050 /* 3051 * Link into its inodedep. Put it on the id_bufwait list if the inode 3052 * is not yet written. If it is written, do the post-inode write 3053 * processing to put it on the id_pendinghd list. 3054 */ 3055 (void) inodedep_lookup(mp, newinum, DEPALLOC, &inodedep); 3056 if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) 3057 diradd_inode_written(dap, inodedep); 3058 else 3059 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 3060 if (isnewblk) { 3061 /* 3062 * Directories growing into indirect blocks are rare 3063 * enough and the frequency of new block allocation 3064 * in those cases even more rare, that we choose not 3065 * to bother tracking them. Rather we simply force the 3066 * new directory entry to disk. 3067 */ 3068 if (lbn >= NDADDR) { 3069 FREE_LOCK(&lk); 3070 /* 3071 * We only have a new allocation when at the 3072 * beginning of a new block, not when we are 3073 * expanding into an existing block. 3074 */ 3075 if (blkoff(fs, diroffset) == 0) 3076 return (1); 3077 return (0); 3078 } 3079 /* 3080 * We only have a new allocation when at the beginning 3081 * of a new fragment, not when we are expanding into an 3082 * existing fragment. Also, there is nothing to do if we 3083 * are already tracking this block. 3084 */ 3085 if (fragoff(fs, diroffset) != 0) { 3086 FREE_LOCK(&lk); 3087 return (0); 3088 } 3089 if ((pagedep->pd_state & NEWBLOCK) != 0) { 3090 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 3091 FREE_LOCK(&lk); 3092 return (0); 3093 } 3094 /* 3095 * Find our associated allocdirect and have it track us. 3096 */ 3097 if (inodedep_lookup(mp, dp->i_number, 0, &inodedep) == 0) 3098 panic("softdep_setup_directory_add: lost inodedep"); 3099 adp = TAILQ_LAST(&inodedep->id_newinoupdt, allocdirectlst); 3100 if (adp == NULL || adp->ad_lbn != lbn) 3101 panic("softdep_setup_directory_add: lost entry"); 3102 pagedep->pd_state |= NEWBLOCK; 3103 newdirblk->db_pagedep = pagedep; 3104 WORKLIST_INSERT(&adp->ad_newdirblk, &newdirblk->db_list); 3105 } 3106 FREE_LOCK(&lk); 3107 return (0); 3108 } 3109 3110 /* 3111 * This procedure is called to change the offset of a directory 3112 * entry when compacting a directory block which must be owned 3113 * exclusively by the caller. Note that the actual entry movement 3114 * must be done in this procedure to ensure that no I/O completions 3115 * occur while the move is in progress. 3116 */ 3117 void 3118 softdep_change_directoryentry_offset(dp, base, oldloc, newloc, entrysize) 3119 struct inode *dp; /* inode for directory */ 3120 caddr_t base; /* address of dp->i_offset */ 3121 caddr_t oldloc; /* address of old directory location */ 3122 caddr_t newloc; /* address of new directory location */ 3123 int entrysize; /* size of directory entry */ 3124 { 3125 int offset, oldoffset, newoffset; 3126 struct pagedep *pagedep; 3127 struct diradd *dap; 3128 ufs_lbn_t lbn; 3129 3130 ACQUIRE_LOCK(&lk); 3131 lbn = lblkno(dp->i_fs, dp->i_offset); 3132 offset = blkoff(dp->i_fs, dp->i_offset); 3133 if (pagedep_lookup(dp, lbn, 0, &pagedep) == 0) 3134 goto done; 3135 oldoffset = offset + (oldloc - base); 3136 newoffset = offset + (newloc - base); 3137 3138 LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(oldoffset)], da_pdlist) { 3139 if (dap->da_offset != oldoffset) 3140 continue; 3141 dap->da_offset = newoffset; 3142 if (DIRADDHASH(newoffset) == DIRADDHASH(oldoffset)) 3143 break; 3144 LIST_REMOVE(dap, da_pdlist); 3145 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(newoffset)], 3146 dap, da_pdlist); 3147 break; 3148 } 3149 if (dap == NULL) { 3150 3151 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) { 3152 if (dap->da_offset == oldoffset) { 3153 dap->da_offset = newoffset; 3154 break; 3155 } 3156 } 3157 } 3158 done: 3159 bcopy(oldloc, newloc, entrysize); 3160 FREE_LOCK(&lk); 3161 } 3162 3163 /* 3164 * Free a diradd dependency structure. This routine must be called 3165 * with splbio interrupts blocked. 3166 */ 3167 static void 3168 free_diradd(dap) 3169 struct diradd *dap; 3170 { 3171 struct dirrem *dirrem; 3172 struct pagedep *pagedep; 3173 struct inodedep *inodedep; 3174 struct mkdir *mkdir, *nextmd; 3175 3176 mtx_assert(&lk, MA_OWNED); 3177 WORKLIST_REMOVE(&dap->da_list); 3178 LIST_REMOVE(dap, da_pdlist); 3179 if ((dap->da_state & DIRCHG) == 0) { 3180 pagedep = dap->da_pagedep; 3181 } else { 3182 dirrem = dap->da_previous; 3183 pagedep = dirrem->dm_pagedep; 3184 dirrem->dm_dirinum = pagedep->pd_ino; 3185 add_to_worklist(&dirrem->dm_list); 3186 } 3187 if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum, 3188 0, &inodedep) != 0) 3189 (void) free_inodedep(inodedep); 3190 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 3191 for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) { 3192 nextmd = LIST_NEXT(mkdir, md_mkdirs); 3193 if (mkdir->md_diradd != dap) 3194 continue; 3195 dap->da_state &= ~mkdir->md_state; 3196 WORKLIST_REMOVE(&mkdir->md_list); 3197 LIST_REMOVE(mkdir, md_mkdirs); 3198 WORKITEM_FREE(mkdir, D_MKDIR); 3199 } 3200 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) 3201 panic("free_diradd: unfound ref"); 3202 } 3203 WORKITEM_FREE(dap, D_DIRADD); 3204 } 3205 3206 /* 3207 * Directory entry removal dependencies. 3208 * 3209 * When removing a directory entry, the entry's inode pointer must be 3210 * zero'ed on disk before the corresponding inode's link count is decremented 3211 * (possibly freeing the inode for re-use). This dependency is handled by 3212 * updating the directory entry but delaying the inode count reduction until 3213 * after the directory block has been written to disk. After this point, the 3214 * inode count can be decremented whenever it is convenient. 3215 */ 3216 3217 /* 3218 * This routine should be called immediately after removing 3219 * a directory entry. The inode's link count should not be 3220 * decremented by the calling procedure -- the soft updates 3221 * code will do this task when it is safe. 3222 */ 3223 void 3224 softdep_setup_remove(bp, dp, ip, isrmdir) 3225 struct buf *bp; /* buffer containing directory block */ 3226 struct inode *dp; /* inode for the directory being modified */ 3227 struct inode *ip; /* inode for directory entry being removed */ 3228 int isrmdir; /* indicates if doing RMDIR */ 3229 { 3230 struct dirrem *dirrem, *prevdirrem; 3231 3232 /* 3233 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK. 3234 */ 3235 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 3236 3237 /* 3238 * If the COMPLETE flag is clear, then there were no active 3239 * entries and we want to roll back to a zeroed entry until 3240 * the new inode is committed to disk. If the COMPLETE flag is 3241 * set then we have deleted an entry that never made it to 3242 * disk. If the entry we deleted resulted from a name change, 3243 * then the old name still resides on disk. We cannot delete 3244 * its inode (returned to us in prevdirrem) until the zeroed 3245 * directory entry gets to disk. The new inode has never been 3246 * referenced on the disk, so can be deleted immediately. 3247 */ 3248 if ((dirrem->dm_state & COMPLETE) == 0) { 3249 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem, 3250 dm_next); 3251 FREE_LOCK(&lk); 3252 } else { 3253 if (prevdirrem != NULL) 3254 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, 3255 prevdirrem, dm_next); 3256 dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino; 3257 FREE_LOCK(&lk); 3258 handle_workitem_remove(dirrem, NULL); 3259 } 3260 } 3261 3262 /* 3263 * Allocate a new dirrem if appropriate and return it along with 3264 * its associated pagedep. Called without a lock, returns with lock. 3265 */ 3266 static long num_dirrem; /* number of dirrem allocated */ 3267 static struct dirrem * 3268 newdirrem(bp, dp, ip, isrmdir, prevdirremp) 3269 struct buf *bp; /* buffer containing directory block */ 3270 struct inode *dp; /* inode for the directory being modified */ 3271 struct inode *ip; /* inode for directory entry being removed */ 3272 int isrmdir; /* indicates if doing RMDIR */ 3273 struct dirrem **prevdirremp; /* previously referenced inode, if any */ 3274 { 3275 int offset; 3276 ufs_lbn_t lbn; 3277 struct diradd *dap; 3278 struct dirrem *dirrem; 3279 struct pagedep *pagedep; 3280 3281 /* 3282 * Whiteouts have no deletion dependencies. 3283 */ 3284 if (ip == NULL) 3285 panic("newdirrem: whiteout"); 3286 /* 3287 * If we are over our limit, try to improve the situation. 3288 * Limiting the number of dirrem structures will also limit 3289 * the number of freefile and freeblks structures. 3290 */ 3291 ACQUIRE_LOCK(&lk); 3292 if (num_dirrem > max_softdeps / 2) 3293 (void) request_cleanup(ITOV(dp)->v_mount, FLUSH_REMOVE); 3294 num_dirrem += 1; 3295 FREE_LOCK(&lk); 3296 MALLOC(dirrem, struct dirrem *, sizeof(struct dirrem), 3297 M_DIRREM, M_SOFTDEP_FLAGS|M_ZERO); 3298 workitem_alloc(&dirrem->dm_list, D_DIRREM, ITOV(dp)->v_mount); 3299 dirrem->dm_state = isrmdir ? RMDIR : 0; 3300 dirrem->dm_oldinum = ip->i_number; 3301 *prevdirremp = NULL; 3302 3303 ACQUIRE_LOCK(&lk); 3304 lbn = lblkno(dp->i_fs, dp->i_offset); 3305 offset = blkoff(dp->i_fs, dp->i_offset); 3306 if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0) 3307 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 3308 dirrem->dm_pagedep = pagedep; 3309 /* 3310 * Check for a diradd dependency for the same directory entry. 3311 * If present, then both dependencies become obsolete and can 3312 * be de-allocated. Check for an entry on both the pd_dirraddhd 3313 * list and the pd_pendinghd list. 3314 */ 3315 3316 LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist) 3317 if (dap->da_offset == offset) 3318 break; 3319 if (dap == NULL) { 3320 3321 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) 3322 if (dap->da_offset == offset) 3323 break; 3324 if (dap == NULL) 3325 return (dirrem); 3326 } 3327 /* 3328 * Must be ATTACHED at this point. 3329 */ 3330 if ((dap->da_state & ATTACHED) == 0) 3331 panic("newdirrem: not ATTACHED"); 3332 if (dap->da_newinum != ip->i_number) 3333 panic("newdirrem: inum %d should be %d", 3334 ip->i_number, dap->da_newinum); 3335 /* 3336 * If we are deleting a changed name that never made it to disk, 3337 * then return the dirrem describing the previous inode (which 3338 * represents the inode currently referenced from this entry on disk). 3339 */ 3340 if ((dap->da_state & DIRCHG) != 0) { 3341 *prevdirremp = dap->da_previous; 3342 dap->da_state &= ~DIRCHG; 3343 dap->da_pagedep = pagedep; 3344 } 3345 /* 3346 * We are deleting an entry that never made it to disk. 3347 * Mark it COMPLETE so we can delete its inode immediately. 3348 */ 3349 dirrem->dm_state |= COMPLETE; 3350 free_diradd(dap); 3351 return (dirrem); 3352 } 3353 3354 /* 3355 * Directory entry change dependencies. 3356 * 3357 * Changing an existing directory entry requires that an add operation 3358 * be completed first followed by a deletion. The semantics for the addition 3359 * are identical to the description of adding a new entry above except 3360 * that the rollback is to the old inode number rather than zero. Once 3361 * the addition dependency is completed, the removal is done as described 3362 * in the removal routine above. 3363 */ 3364 3365 /* 3366 * This routine should be called immediately after changing 3367 * a directory entry. The inode's link count should not be 3368 * decremented by the calling procedure -- the soft updates 3369 * code will perform this task when it is safe. 3370 */ 3371 void 3372 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 3373 struct buf *bp; /* buffer containing directory block */ 3374 struct inode *dp; /* inode for the directory being modified */ 3375 struct inode *ip; /* inode for directory entry being removed */ 3376 ino_t newinum; /* new inode number for changed entry */ 3377 int isrmdir; /* indicates if doing RMDIR */ 3378 { 3379 int offset; 3380 struct diradd *dap = NULL; 3381 struct dirrem *dirrem, *prevdirrem; 3382 struct pagedep *pagedep; 3383 struct inodedep *inodedep; 3384 struct mount *mp; 3385 3386 offset = blkoff(dp->i_fs, dp->i_offset); 3387 mp = UFSTOVFS(dp->i_ump); 3388 3389 /* 3390 * Whiteouts do not need diradd dependencies. 3391 */ 3392 if (newinum != WINO) { 3393 MALLOC(dap, struct diradd *, sizeof(struct diradd), 3394 M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO); 3395 workitem_alloc(&dap->da_list, D_DIRADD, mp); 3396 dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE; 3397 dap->da_offset = offset; 3398 dap->da_newinum = newinum; 3399 } 3400 3401 /* 3402 * Allocate a new dirrem and ACQUIRE_LOCK. 3403 */ 3404 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 3405 pagedep = dirrem->dm_pagedep; 3406 /* 3407 * The possible values for isrmdir: 3408 * 0 - non-directory file rename 3409 * 1 - directory rename within same directory 3410 * inum - directory rename to new directory of given inode number 3411 * When renaming to a new directory, we are both deleting and 3412 * creating a new directory entry, so the link count on the new 3413 * directory should not change. Thus we do not need the followup 3414 * dirrem which is usually done in handle_workitem_remove. We set 3415 * the DIRCHG flag to tell handle_workitem_remove to skip the 3416 * followup dirrem. 3417 */ 3418 if (isrmdir > 1) 3419 dirrem->dm_state |= DIRCHG; 3420 3421 /* 3422 * Whiteouts have no additional dependencies, 3423 * so just put the dirrem on the correct list. 3424 */ 3425 if (newinum == WINO) { 3426 if ((dirrem->dm_state & COMPLETE) == 0) { 3427 LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem, 3428 dm_next); 3429 } else { 3430 dirrem->dm_dirinum = pagedep->pd_ino; 3431 add_to_worklist(&dirrem->dm_list); 3432 } 3433 FREE_LOCK(&lk); 3434 return; 3435 } 3436 3437 /* 3438 * If the COMPLETE flag is clear, then there were no active 3439 * entries and we want to roll back to the previous inode until 3440 * the new inode is committed to disk. If the COMPLETE flag is 3441 * set, then we have deleted an entry that never made it to disk. 3442 * If the entry we deleted resulted from a name change, then the old 3443 * inode reference still resides on disk. Any rollback that we do 3444 * needs to be to that old inode (returned to us in prevdirrem). If 3445 * the entry we deleted resulted from a create, then there is 3446 * no entry on the disk, so we want to roll back to zero rather 3447 * than the uncommitted inode. In either of the COMPLETE cases we 3448 * want to immediately free the unwritten and unreferenced inode. 3449 */ 3450 if ((dirrem->dm_state & COMPLETE) == 0) { 3451 dap->da_previous = dirrem; 3452 } else { 3453 if (prevdirrem != NULL) { 3454 dap->da_previous = prevdirrem; 3455 } else { 3456 dap->da_state &= ~DIRCHG; 3457 dap->da_pagedep = pagedep; 3458 } 3459 dirrem->dm_dirinum = pagedep->pd_ino; 3460 add_to_worklist(&dirrem->dm_list); 3461 } 3462 /* 3463 * Link into its inodedep. Put it on the id_bufwait list if the inode 3464 * is not yet written. If it is written, do the post-inode write 3465 * processing to put it on the id_pendinghd list. 3466 */ 3467 if (inodedep_lookup(mp, newinum, DEPALLOC, &inodedep) == 0 || 3468 (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 3469 dap->da_state |= COMPLETE; 3470 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 3471 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 3472 } else { 3473 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], 3474 dap, da_pdlist); 3475 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 3476 } 3477 FREE_LOCK(&lk); 3478 } 3479 3480 /* 3481 * Called whenever the link count on an inode is changed. 3482 * It creates an inode dependency so that the new reference(s) 3483 * to the inode cannot be committed to disk until the updated 3484 * inode has been written. 3485 */ 3486 void 3487 softdep_change_linkcnt(ip) 3488 struct inode *ip; /* the inode with the increased link count */ 3489 { 3490 struct inodedep *inodedep; 3491 3492 ACQUIRE_LOCK(&lk); 3493 (void) inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 3494 DEPALLOC, &inodedep); 3495 if (ip->i_nlink < ip->i_effnlink) 3496 panic("softdep_change_linkcnt: bad delta"); 3497 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 3498 FREE_LOCK(&lk); 3499 } 3500 3501 /* 3502 * Called when the effective link count and the reference count 3503 * on an inode drops to zero. At this point there are no names 3504 * referencing the file in the filesystem and no active file 3505 * references. The space associated with the file will be freed 3506 * as soon as the necessary soft dependencies are cleared. 3507 */ 3508 void 3509 softdep_releasefile(ip) 3510 struct inode *ip; /* inode with the zero effective link count */ 3511 { 3512 struct inodedep *inodedep; 3513 struct fs *fs; 3514 int extblocks; 3515 3516 if (ip->i_effnlink > 0) 3517 panic("softdep_releasefile: file still referenced"); 3518 /* 3519 * We may be called several times as the on-disk link count 3520 * drops to zero. We only want to account for the space once. 3521 */ 3522 if (ip->i_flag & IN_SPACECOUNTED) 3523 return; 3524 /* 3525 * We have to deactivate a snapshot otherwise copyonwrites may 3526 * add blocks and the cleanup may remove blocks after we have 3527 * tried to account for them. 3528 */ 3529 if ((ip->i_flags & SF_SNAPSHOT) != 0) 3530 ffs_snapremove(ITOV(ip)); 3531 /* 3532 * If we are tracking an nlinkdelta, we have to also remember 3533 * whether we accounted for the freed space yet. 3534 */ 3535 ACQUIRE_LOCK(&lk); 3536 if ((inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0, &inodedep))) 3537 inodedep->id_state |= SPACECOUNTED; 3538 FREE_LOCK(&lk); 3539 fs = ip->i_fs; 3540 extblocks = 0; 3541 if (fs->fs_magic == FS_UFS2_MAGIC) 3542 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 3543 UFS_LOCK(ip->i_ump); 3544 ip->i_fs->fs_pendingblocks += DIP(ip, i_blocks) - extblocks; 3545 ip->i_fs->fs_pendinginodes += 1; 3546 UFS_UNLOCK(ip->i_ump); 3547 ip->i_flag |= IN_SPACECOUNTED; 3548 } 3549 3550 /* 3551 * This workitem decrements the inode's link count. 3552 * If the link count reaches zero, the file is removed. 3553 */ 3554 static void 3555 handle_workitem_remove(dirrem, xp) 3556 struct dirrem *dirrem; 3557 struct vnode *xp; 3558 { 3559 struct thread *td = curthread; 3560 struct inodedep *inodedep; 3561 struct vnode *vp; 3562 struct inode *ip; 3563 ino_t oldinum; 3564 int error; 3565 3566 if ((vp = xp) == NULL && 3567 (error = ffs_vget(dirrem->dm_list.wk_mp, 3568 dirrem->dm_oldinum, LK_EXCLUSIVE, &vp)) != 0) { 3569 softdep_error("handle_workitem_remove: vget", error); 3570 return; 3571 } 3572 ip = VTOI(vp); 3573 ACQUIRE_LOCK(&lk); 3574 if ((inodedep_lookup(dirrem->dm_list.wk_mp, 3575 dirrem->dm_oldinum, 0, &inodedep)) == 0) 3576 panic("handle_workitem_remove: lost inodedep"); 3577 /* 3578 * Normal file deletion. 3579 */ 3580 if ((dirrem->dm_state & RMDIR) == 0) { 3581 ip->i_nlink--; 3582 DIP_SET(ip, i_nlink, ip->i_nlink); 3583 ip->i_flag |= IN_CHANGE; 3584 if (ip->i_nlink < ip->i_effnlink) 3585 panic("handle_workitem_remove: bad file delta"); 3586 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 3587 num_dirrem -= 1; 3588 WORKITEM_FREE(dirrem, D_DIRREM); 3589 FREE_LOCK(&lk); 3590 vput(vp); 3591 return; 3592 } 3593 /* 3594 * Directory deletion. Decrement reference count for both the 3595 * just deleted parent directory entry and the reference for ".". 3596 * Next truncate the directory to length zero. When the 3597 * truncation completes, arrange to have the reference count on 3598 * the parent decremented to account for the loss of "..". 3599 */ 3600 ip->i_nlink -= 2; 3601 DIP_SET(ip, i_nlink, ip->i_nlink); 3602 ip->i_flag |= IN_CHANGE; 3603 if (ip->i_nlink < ip->i_effnlink) 3604 panic("handle_workitem_remove: bad dir delta"); 3605 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 3606 FREE_LOCK(&lk); 3607 if ((error = ffs_truncate(vp, (off_t)0, 0, td->td_ucred, td)) != 0) 3608 softdep_error("handle_workitem_remove: truncate", error); 3609 ACQUIRE_LOCK(&lk); 3610 /* 3611 * Rename a directory to a new parent. Since, we are both deleting 3612 * and creating a new directory entry, the link count on the new 3613 * directory should not change. Thus we skip the followup dirrem. 3614 */ 3615 if (dirrem->dm_state & DIRCHG) { 3616 num_dirrem -= 1; 3617 WORKITEM_FREE(dirrem, D_DIRREM); 3618 FREE_LOCK(&lk); 3619 vput(vp); 3620 return; 3621 } 3622 /* 3623 * If the inodedep does not exist, then the zero'ed inode has 3624 * been written to disk. If the allocated inode has never been 3625 * written to disk, then the on-disk inode is zero'ed. In either 3626 * case we can remove the file immediately. 3627 */ 3628 dirrem->dm_state = 0; 3629 oldinum = dirrem->dm_oldinum; 3630 dirrem->dm_oldinum = dirrem->dm_dirinum; 3631 if (inodedep_lookup(dirrem->dm_list.wk_mp, oldinum, 3632 0, &inodedep) == 0 || check_inode_unwritten(inodedep)) { 3633 FREE_LOCK(&lk); 3634 vput(vp); 3635 handle_workitem_remove(dirrem, NULL); 3636 return; 3637 } 3638 WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list); 3639 FREE_LOCK(&lk); 3640 ip->i_flag |= IN_CHANGE; 3641 ffs_update(vp, 0); 3642 vput(vp); 3643 } 3644 3645 /* 3646 * Inode de-allocation dependencies. 3647 * 3648 * When an inode's link count is reduced to zero, it can be de-allocated. We 3649 * found it convenient to postpone de-allocation until after the inode is 3650 * written to disk with its new link count (zero). At this point, all of the 3651 * on-disk inode's block pointers are nullified and, with careful dependency 3652 * list ordering, all dependencies related to the inode will be satisfied and 3653 * the corresponding dependency structures de-allocated. So, if/when the 3654 * inode is reused, there will be no mixing of old dependencies with new 3655 * ones. This artificial dependency is set up by the block de-allocation 3656 * procedure above (softdep_setup_freeblocks) and completed by the 3657 * following procedure. 3658 */ 3659 static void 3660 handle_workitem_freefile(freefile) 3661 struct freefile *freefile; 3662 { 3663 struct fs *fs; 3664 struct inodedep *idp; 3665 struct ufsmount *ump; 3666 int error; 3667 3668 ump = VFSTOUFS(freefile->fx_list.wk_mp); 3669 fs = ump->um_fs; 3670 #ifdef DEBUG 3671 ACQUIRE_LOCK(&lk); 3672 error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp); 3673 FREE_LOCK(&lk); 3674 if (error) 3675 panic("handle_workitem_freefile: inodedep survived"); 3676 #endif 3677 UFS_LOCK(ump); 3678 fs->fs_pendinginodes -= 1; 3679 UFS_UNLOCK(ump); 3680 if ((error = ffs_freefile(ump, fs, freefile->fx_devvp, 3681 freefile->fx_oldinum, freefile->fx_mode)) != 0) 3682 softdep_error("handle_workitem_freefile", error); 3683 ACQUIRE_LOCK(&lk); 3684 WORKITEM_FREE(freefile, D_FREEFILE); 3685 FREE_LOCK(&lk); 3686 } 3687 3688 3689 /* 3690 * Helper function which unlinks marker element from work list and returns 3691 * the next element on the list. 3692 */ 3693 static __inline struct worklist * 3694 markernext(struct worklist *marker) 3695 { 3696 struct worklist *next; 3697 3698 next = LIST_NEXT(marker, wk_list); 3699 LIST_REMOVE(marker, wk_list); 3700 return next; 3701 } 3702 3703 /* 3704 * Disk writes. 3705 * 3706 * The dependency structures constructed above are most actively used when file 3707 * system blocks are written to disk. No constraints are placed on when a 3708 * block can be written, but unsatisfied update dependencies are made safe by 3709 * modifying (or replacing) the source memory for the duration of the disk 3710 * write. When the disk write completes, the memory block is again brought 3711 * up-to-date. 3712 * 3713 * In-core inode structure reclamation. 3714 * 3715 * Because there are a finite number of "in-core" inode structures, they are 3716 * reused regularly. By transferring all inode-related dependencies to the 3717 * in-memory inode block and indexing them separately (via "inodedep"s), we 3718 * can allow "in-core" inode structures to be reused at any time and avoid 3719 * any increase in contention. 3720 * 3721 * Called just before entering the device driver to initiate a new disk I/O. 3722 * The buffer must be locked, thus, no I/O completion operations can occur 3723 * while we are manipulating its associated dependencies. 3724 */ 3725 static void 3726 softdep_disk_io_initiation(bp) 3727 struct buf *bp; /* structure describing disk write to occur */ 3728 { 3729 struct worklist *wk; 3730 struct worklist marker; 3731 struct indirdep *indirdep; 3732 struct inodedep *inodedep; 3733 3734 /* 3735 * We only care about write operations. There should never 3736 * be dependencies for reads. 3737 */ 3738 if (bp->b_iocmd != BIO_WRITE) 3739 panic("softdep_disk_io_initiation: not write"); 3740 3741 marker.wk_type = D_LAST + 1; /* Not a normal workitem */ 3742 PHOLD(curproc); /* Don't swap out kernel stack */ 3743 3744 ACQUIRE_LOCK(&lk); 3745 /* 3746 * Do any necessary pre-I/O processing. 3747 */ 3748 for (wk = LIST_FIRST(&bp->b_dep); wk != NULL; 3749 wk = markernext(&marker)) { 3750 LIST_INSERT_AFTER(wk, &marker, wk_list); 3751 switch (wk->wk_type) { 3752 3753 case D_PAGEDEP: 3754 initiate_write_filepage(WK_PAGEDEP(wk), bp); 3755 continue; 3756 3757 case D_INODEDEP: 3758 inodedep = WK_INODEDEP(wk); 3759 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) 3760 initiate_write_inodeblock_ufs1(inodedep, bp); 3761 else 3762 initiate_write_inodeblock_ufs2(inodedep, bp); 3763 continue; 3764 3765 case D_INDIRDEP: 3766 indirdep = WK_INDIRDEP(wk); 3767 if (indirdep->ir_state & GOINGAWAY) 3768 panic("disk_io_initiation: indirdep gone"); 3769 /* 3770 * If there are no remaining dependencies, this 3771 * will be writing the real pointers, so the 3772 * dependency can be freed. 3773 */ 3774 if (LIST_FIRST(&indirdep->ir_deplisthd) == NULL) { 3775 struct buf *bp; 3776 3777 bp = indirdep->ir_savebp; 3778 bp->b_flags |= B_INVAL | B_NOCACHE; 3779 /* inline expand WORKLIST_REMOVE(wk); */ 3780 wk->wk_state &= ~ONWORKLIST; 3781 LIST_REMOVE(wk, wk_list); 3782 WORKITEM_FREE(indirdep, D_INDIRDEP); 3783 FREE_LOCK(&lk); 3784 brelse(bp); 3785 ACQUIRE_LOCK(&lk); 3786 continue; 3787 } 3788 /* 3789 * Replace up-to-date version with safe version. 3790 */ 3791 FREE_LOCK(&lk); 3792 MALLOC(indirdep->ir_saveddata, caddr_t, bp->b_bcount, 3793 M_INDIRDEP, M_SOFTDEP_FLAGS); 3794 ACQUIRE_LOCK(&lk); 3795 indirdep->ir_state &= ~ATTACHED; 3796 indirdep->ir_state |= UNDONE; 3797 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); 3798 bcopy(indirdep->ir_savebp->b_data, bp->b_data, 3799 bp->b_bcount); 3800 continue; 3801 3802 case D_MKDIR: 3803 case D_BMSAFEMAP: 3804 case D_ALLOCDIRECT: 3805 case D_ALLOCINDIR: 3806 continue; 3807 3808 default: 3809 panic("handle_disk_io_initiation: Unexpected type %s", 3810 TYPENAME(wk->wk_type)); 3811 /* NOTREACHED */ 3812 } 3813 } 3814 FREE_LOCK(&lk); 3815 PRELE(curproc); /* Allow swapout of kernel stack */ 3816 } 3817 3818 /* 3819 * Called from within the procedure above to deal with unsatisfied 3820 * allocation dependencies in a directory. The buffer must be locked, 3821 * thus, no I/O completion operations can occur while we are 3822 * manipulating its associated dependencies. 3823 */ 3824 static void 3825 initiate_write_filepage(pagedep, bp) 3826 struct pagedep *pagedep; 3827 struct buf *bp; 3828 { 3829 struct diradd *dap; 3830 struct direct *ep; 3831 int i; 3832 3833 if (pagedep->pd_state & IOSTARTED) { 3834 /* 3835 * This can only happen if there is a driver that does not 3836 * understand chaining. Here biodone will reissue the call 3837 * to strategy for the incomplete buffers. 3838 */ 3839 printf("initiate_write_filepage: already started\n"); 3840 return; 3841 } 3842 pagedep->pd_state |= IOSTARTED; 3843 for (i = 0; i < DAHASHSZ; i++) { 3844 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 3845 ep = (struct direct *) 3846 ((char *)bp->b_data + dap->da_offset); 3847 if (ep->d_ino != dap->da_newinum) 3848 panic("%s: dir inum %d != new %d", 3849 "initiate_write_filepage", 3850 ep->d_ino, dap->da_newinum); 3851 if (dap->da_state & DIRCHG) 3852 ep->d_ino = dap->da_previous->dm_oldinum; 3853 else 3854 ep->d_ino = 0; 3855 dap->da_state &= ~ATTACHED; 3856 dap->da_state |= UNDONE; 3857 } 3858 } 3859 } 3860 3861 /* 3862 * Version of initiate_write_inodeblock that handles UFS1 dinodes. 3863 * Note that any bug fixes made to this routine must be done in the 3864 * version found below. 3865 * 3866 * Called from within the procedure above to deal with unsatisfied 3867 * allocation dependencies in an inodeblock. The buffer must be 3868 * locked, thus, no I/O completion operations can occur while we 3869 * are manipulating its associated dependencies. 3870 */ 3871 static void 3872 initiate_write_inodeblock_ufs1(inodedep, bp) 3873 struct inodedep *inodedep; 3874 struct buf *bp; /* The inode block */ 3875 { 3876 struct allocdirect *adp, *lastadp; 3877 struct ufs1_dinode *dp; 3878 struct ufs1_dinode *sip; 3879 struct fs *fs; 3880 ufs_lbn_t i, prevlbn = 0; 3881 int deplist; 3882 3883 if (inodedep->id_state & IOSTARTED) 3884 panic("initiate_write_inodeblock_ufs1: already started"); 3885 inodedep->id_state |= IOSTARTED; 3886 fs = inodedep->id_fs; 3887 dp = (struct ufs1_dinode *)bp->b_data + 3888 ino_to_fsbo(fs, inodedep->id_ino); 3889 /* 3890 * If the bitmap is not yet written, then the allocated 3891 * inode cannot be written to disk. 3892 */ 3893 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 3894 if (inodedep->id_savedino1 != NULL) 3895 panic("initiate_write_inodeblock_ufs1: I/O underway"); 3896 FREE_LOCK(&lk); 3897 MALLOC(sip, struct ufs1_dinode *, 3898 sizeof(struct ufs1_dinode), M_SAVEDINO, M_SOFTDEP_FLAGS); 3899 ACQUIRE_LOCK(&lk); 3900 inodedep->id_savedino1 = sip; 3901 *inodedep->id_savedino1 = *dp; 3902 bzero((caddr_t)dp, sizeof(struct ufs1_dinode)); 3903 dp->di_gen = inodedep->id_savedino1->di_gen; 3904 return; 3905 } 3906 /* 3907 * If no dependencies, then there is nothing to roll back. 3908 */ 3909 inodedep->id_savedsize = dp->di_size; 3910 inodedep->id_savedextsize = 0; 3911 if (TAILQ_FIRST(&inodedep->id_inoupdt) == NULL) 3912 return; 3913 /* 3914 * Set the dependencies to busy. 3915 */ 3916 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 3917 adp = TAILQ_NEXT(adp, ad_next)) { 3918 #ifdef DIAGNOSTIC 3919 if (deplist != 0 && prevlbn >= adp->ad_lbn) 3920 panic("softdep_write_inodeblock: lbn order"); 3921 prevlbn = adp->ad_lbn; 3922 if (adp->ad_lbn < NDADDR && 3923 dp->di_db[adp->ad_lbn] != adp->ad_newblkno) 3924 panic("%s: direct pointer #%jd mismatch %d != %jd", 3925 "softdep_write_inodeblock", 3926 (intmax_t)adp->ad_lbn, 3927 dp->di_db[adp->ad_lbn], 3928 (intmax_t)adp->ad_newblkno); 3929 if (adp->ad_lbn >= NDADDR && 3930 dp->di_ib[adp->ad_lbn - NDADDR] != adp->ad_newblkno) 3931 panic("%s: indirect pointer #%jd mismatch %d != %jd", 3932 "softdep_write_inodeblock", 3933 (intmax_t)adp->ad_lbn - NDADDR, 3934 dp->di_ib[adp->ad_lbn - NDADDR], 3935 (intmax_t)adp->ad_newblkno); 3936 deplist |= 1 << adp->ad_lbn; 3937 if ((adp->ad_state & ATTACHED) == 0) 3938 panic("softdep_write_inodeblock: Unknown state 0x%x", 3939 adp->ad_state); 3940 #endif /* DIAGNOSTIC */ 3941 adp->ad_state &= ~ATTACHED; 3942 adp->ad_state |= UNDONE; 3943 } 3944 /* 3945 * The on-disk inode cannot claim to be any larger than the last 3946 * fragment that has been written. Otherwise, the on-disk inode 3947 * might have fragments that were not the last block in the file 3948 * which would corrupt the filesystem. 3949 */ 3950 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 3951 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 3952 if (adp->ad_lbn >= NDADDR) 3953 break; 3954 dp->di_db[adp->ad_lbn] = adp->ad_oldblkno; 3955 /* keep going until hitting a rollback to a frag */ 3956 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 3957 continue; 3958 dp->di_size = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize; 3959 for (i = adp->ad_lbn + 1; i < NDADDR; i++) { 3960 #ifdef DIAGNOSTIC 3961 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) 3962 panic("softdep_write_inodeblock: lost dep1"); 3963 #endif /* DIAGNOSTIC */ 3964 dp->di_db[i] = 0; 3965 } 3966 for (i = 0; i < NIADDR; i++) { 3967 #ifdef DIAGNOSTIC 3968 if (dp->di_ib[i] != 0 && 3969 (deplist & ((1 << NDADDR) << i)) == 0) 3970 panic("softdep_write_inodeblock: lost dep2"); 3971 #endif /* DIAGNOSTIC */ 3972 dp->di_ib[i] = 0; 3973 } 3974 return; 3975 } 3976 /* 3977 * If we have zero'ed out the last allocated block of the file, 3978 * roll back the size to the last currently allocated block. 3979 * We know that this last allocated block is a full-sized as 3980 * we already checked for fragments in the loop above. 3981 */ 3982 if (lastadp != NULL && 3983 dp->di_size <= (lastadp->ad_lbn + 1) * fs->fs_bsize) { 3984 for (i = lastadp->ad_lbn; i >= 0; i--) 3985 if (dp->di_db[i] != 0) 3986 break; 3987 dp->di_size = (i + 1) * fs->fs_bsize; 3988 } 3989 /* 3990 * The only dependencies are for indirect blocks. 3991 * 3992 * The file size for indirect block additions is not guaranteed. 3993 * Such a guarantee would be non-trivial to achieve. The conventional 3994 * synchronous write implementation also does not make this guarantee. 3995 * Fsck should catch and fix discrepancies. Arguably, the file size 3996 * can be over-estimated without destroying integrity when the file 3997 * moves into the indirect blocks (i.e., is large). If we want to 3998 * postpone fsck, we are stuck with this argument. 3999 */ 4000 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 4001 dp->di_ib[adp->ad_lbn - NDADDR] = 0; 4002 } 4003 4004 /* 4005 * Version of initiate_write_inodeblock that handles UFS2 dinodes. 4006 * Note that any bug fixes made to this routine must be done in the 4007 * version found above. 4008 * 4009 * Called from within the procedure above to deal with unsatisfied 4010 * allocation dependencies in an inodeblock. The buffer must be 4011 * locked, thus, no I/O completion operations can occur while we 4012 * are manipulating its associated dependencies. 4013 */ 4014 static void 4015 initiate_write_inodeblock_ufs2(inodedep, bp) 4016 struct inodedep *inodedep; 4017 struct buf *bp; /* The inode block */ 4018 { 4019 struct allocdirect *adp, *lastadp; 4020 struct ufs2_dinode *dp; 4021 struct ufs2_dinode *sip; 4022 struct fs *fs; 4023 ufs_lbn_t i, prevlbn = 0; 4024 int deplist; 4025 4026 if (inodedep->id_state & IOSTARTED) 4027 panic("initiate_write_inodeblock_ufs2: already started"); 4028 inodedep->id_state |= IOSTARTED; 4029 fs = inodedep->id_fs; 4030 dp = (struct ufs2_dinode *)bp->b_data + 4031 ino_to_fsbo(fs, inodedep->id_ino); 4032 /* 4033 * If the bitmap is not yet written, then the allocated 4034 * inode cannot be written to disk. 4035 */ 4036 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 4037 if (inodedep->id_savedino2 != NULL) 4038 panic("initiate_write_inodeblock_ufs2: I/O underway"); 4039 FREE_LOCK(&lk); 4040 MALLOC(sip, struct ufs2_dinode *, 4041 sizeof(struct ufs2_dinode), M_SAVEDINO, M_SOFTDEP_FLAGS); 4042 ACQUIRE_LOCK(&lk); 4043 inodedep->id_savedino2 = sip; 4044 *inodedep->id_savedino2 = *dp; 4045 bzero((caddr_t)dp, sizeof(struct ufs2_dinode)); 4046 dp->di_gen = inodedep->id_savedino2->di_gen; 4047 return; 4048 } 4049 /* 4050 * If no dependencies, then there is nothing to roll back. 4051 */ 4052 inodedep->id_savedsize = dp->di_size; 4053 inodedep->id_savedextsize = dp->di_extsize; 4054 if (TAILQ_FIRST(&inodedep->id_inoupdt) == NULL && 4055 TAILQ_FIRST(&inodedep->id_extupdt) == NULL) 4056 return; 4057 /* 4058 * Set the ext data dependencies to busy. 4059 */ 4060 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 4061 adp = TAILQ_NEXT(adp, ad_next)) { 4062 #ifdef DIAGNOSTIC 4063 if (deplist != 0 && prevlbn >= adp->ad_lbn) 4064 panic("softdep_write_inodeblock: lbn order"); 4065 prevlbn = adp->ad_lbn; 4066 if (dp->di_extb[adp->ad_lbn] != adp->ad_newblkno) 4067 panic("%s: direct pointer #%jd mismatch %jd != %jd", 4068 "softdep_write_inodeblock", 4069 (intmax_t)adp->ad_lbn, 4070 (intmax_t)dp->di_extb[adp->ad_lbn], 4071 (intmax_t)adp->ad_newblkno); 4072 deplist |= 1 << adp->ad_lbn; 4073 if ((adp->ad_state & ATTACHED) == 0) 4074 panic("softdep_write_inodeblock: Unknown state 0x%x", 4075 adp->ad_state); 4076 #endif /* DIAGNOSTIC */ 4077 adp->ad_state &= ~ATTACHED; 4078 adp->ad_state |= UNDONE; 4079 } 4080 /* 4081 * The on-disk inode cannot claim to be any larger than the last 4082 * fragment that has been written. Otherwise, the on-disk inode 4083 * might have fragments that were not the last block in the ext 4084 * data which would corrupt the filesystem. 4085 */ 4086 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 4087 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 4088 dp->di_extb[adp->ad_lbn] = adp->ad_oldblkno; 4089 /* keep going until hitting a rollback to a frag */ 4090 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 4091 continue; 4092 dp->di_extsize = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize; 4093 for (i = adp->ad_lbn + 1; i < NXADDR; i++) { 4094 #ifdef DIAGNOSTIC 4095 if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0) 4096 panic("softdep_write_inodeblock: lost dep1"); 4097 #endif /* DIAGNOSTIC */ 4098 dp->di_extb[i] = 0; 4099 } 4100 lastadp = NULL; 4101 break; 4102 } 4103 /* 4104 * If we have zero'ed out the last allocated block of the ext 4105 * data, roll back the size to the last currently allocated block. 4106 * We know that this last allocated block is a full-sized as 4107 * we already checked for fragments in the loop above. 4108 */ 4109 if (lastadp != NULL && 4110 dp->di_extsize <= (lastadp->ad_lbn + 1) * fs->fs_bsize) { 4111 for (i = lastadp->ad_lbn; i >= 0; i--) 4112 if (dp->di_extb[i] != 0) 4113 break; 4114 dp->di_extsize = (i + 1) * fs->fs_bsize; 4115 } 4116 /* 4117 * Set the file data dependencies to busy. 4118 */ 4119 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 4120 adp = TAILQ_NEXT(adp, ad_next)) { 4121 #ifdef DIAGNOSTIC 4122 if (deplist != 0 && prevlbn >= adp->ad_lbn) 4123 panic("softdep_write_inodeblock: lbn order"); 4124 prevlbn = adp->ad_lbn; 4125 if (adp->ad_lbn < NDADDR && 4126 dp->di_db[adp->ad_lbn] != adp->ad_newblkno) 4127 panic("%s: direct pointer #%jd mismatch %jd != %jd", 4128 "softdep_write_inodeblock", 4129 (intmax_t)adp->ad_lbn, 4130 (intmax_t)dp->di_db[adp->ad_lbn], 4131 (intmax_t)adp->ad_newblkno); 4132 if (adp->ad_lbn >= NDADDR && 4133 dp->di_ib[adp->ad_lbn - NDADDR] != adp->ad_newblkno) 4134 panic("%s indirect pointer #%jd mismatch %jd != %jd", 4135 "softdep_write_inodeblock:", 4136 (intmax_t)adp->ad_lbn - NDADDR, 4137 (intmax_t)dp->di_ib[adp->ad_lbn - NDADDR], 4138 (intmax_t)adp->ad_newblkno); 4139 deplist |= 1 << adp->ad_lbn; 4140 if ((adp->ad_state & ATTACHED) == 0) 4141 panic("softdep_write_inodeblock: Unknown state 0x%x", 4142 adp->ad_state); 4143 #endif /* DIAGNOSTIC */ 4144 adp->ad_state &= ~ATTACHED; 4145 adp->ad_state |= UNDONE; 4146 } 4147 /* 4148 * The on-disk inode cannot claim to be any larger than the last 4149 * fragment that has been written. Otherwise, the on-disk inode 4150 * might have fragments that were not the last block in the file 4151 * which would corrupt the filesystem. 4152 */ 4153 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 4154 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 4155 if (adp->ad_lbn >= NDADDR) 4156 break; 4157 dp->di_db[adp->ad_lbn] = adp->ad_oldblkno; 4158 /* keep going until hitting a rollback to a frag */ 4159 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 4160 continue; 4161 dp->di_size = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize; 4162 for (i = adp->ad_lbn + 1; i < NDADDR; i++) { 4163 #ifdef DIAGNOSTIC 4164 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) 4165 panic("softdep_write_inodeblock: lost dep2"); 4166 #endif /* DIAGNOSTIC */ 4167 dp->di_db[i] = 0; 4168 } 4169 for (i = 0; i < NIADDR; i++) { 4170 #ifdef DIAGNOSTIC 4171 if (dp->di_ib[i] != 0 && 4172 (deplist & ((1 << NDADDR) << i)) == 0) 4173 panic("softdep_write_inodeblock: lost dep3"); 4174 #endif /* DIAGNOSTIC */ 4175 dp->di_ib[i] = 0; 4176 } 4177 return; 4178 } 4179 /* 4180 * If we have zero'ed out the last allocated block of the file, 4181 * roll back the size to the last currently allocated block. 4182 * We know that this last allocated block is a full-sized as 4183 * we already checked for fragments in the loop above. 4184 */ 4185 if (lastadp != NULL && 4186 dp->di_size <= (lastadp->ad_lbn + 1) * fs->fs_bsize) { 4187 for (i = lastadp->ad_lbn; i >= 0; i--) 4188 if (dp->di_db[i] != 0) 4189 break; 4190 dp->di_size = (i + 1) * fs->fs_bsize; 4191 } 4192 /* 4193 * The only dependencies are for indirect blocks. 4194 * 4195 * The file size for indirect block additions is not guaranteed. 4196 * Such a guarantee would be non-trivial to achieve. The conventional 4197 * synchronous write implementation also does not make this guarantee. 4198 * Fsck should catch and fix discrepancies. Arguably, the file size 4199 * can be over-estimated without destroying integrity when the file 4200 * moves into the indirect blocks (i.e., is large). If we want to 4201 * postpone fsck, we are stuck with this argument. 4202 */ 4203 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 4204 dp->di_ib[adp->ad_lbn - NDADDR] = 0; 4205 } 4206 4207 /* 4208 * This routine is called during the completion interrupt 4209 * service routine for a disk write (from the procedure called 4210 * by the device driver to inform the filesystem caches of 4211 * a request completion). It should be called early in this 4212 * procedure, before the block is made available to other 4213 * processes or other routines are called. 4214 */ 4215 static void 4216 softdep_disk_write_complete(bp) 4217 struct buf *bp; /* describes the completed disk write */ 4218 { 4219 struct worklist *wk; 4220 struct worklist *owk; 4221 struct workhead reattach; 4222 struct newblk *newblk; 4223 struct allocindir *aip; 4224 struct allocdirect *adp; 4225 struct indirdep *indirdep; 4226 struct inodedep *inodedep; 4227 struct bmsafemap *bmsafemap; 4228 4229 /* 4230 * If an error occurred while doing the write, then the data 4231 * has not hit the disk and the dependencies cannot be unrolled. 4232 */ 4233 if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0) 4234 return; 4235 LIST_INIT(&reattach); 4236 /* 4237 * This lock must not be released anywhere in this code segment. 4238 */ 4239 ACQUIRE_LOCK(&lk); 4240 owk = NULL; 4241 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) { 4242 WORKLIST_REMOVE(wk); 4243 if (wk == owk) 4244 panic("duplicate worklist: %p\n", wk); 4245 owk = wk; 4246 switch (wk->wk_type) { 4247 4248 case D_PAGEDEP: 4249 if (handle_written_filepage(WK_PAGEDEP(wk), bp)) 4250 WORKLIST_INSERT(&reattach, wk); 4251 continue; 4252 4253 case D_INODEDEP: 4254 if (handle_written_inodeblock(WK_INODEDEP(wk), bp)) 4255 WORKLIST_INSERT(&reattach, wk); 4256 continue; 4257 4258 case D_BMSAFEMAP: 4259 bmsafemap = WK_BMSAFEMAP(wk); 4260 while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkhd))) { 4261 newblk->nb_state |= DEPCOMPLETE; 4262 newblk->nb_bmsafemap = NULL; 4263 LIST_REMOVE(newblk, nb_deps); 4264 } 4265 while ((adp = 4266 LIST_FIRST(&bmsafemap->sm_allocdirecthd))) { 4267 adp->ad_state |= DEPCOMPLETE; 4268 adp->ad_buf = NULL; 4269 LIST_REMOVE(adp, ad_deps); 4270 handle_allocdirect_partdone(adp); 4271 } 4272 while ((aip = 4273 LIST_FIRST(&bmsafemap->sm_allocindirhd))) { 4274 aip->ai_state |= DEPCOMPLETE; 4275 aip->ai_buf = NULL; 4276 LIST_REMOVE(aip, ai_deps); 4277 handle_allocindir_partdone(aip); 4278 } 4279 while ((inodedep = 4280 LIST_FIRST(&bmsafemap->sm_inodedephd)) != NULL) { 4281 inodedep->id_state |= DEPCOMPLETE; 4282 LIST_REMOVE(inodedep, id_deps); 4283 inodedep->id_buf = NULL; 4284 } 4285 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); 4286 continue; 4287 4288 case D_MKDIR: 4289 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); 4290 continue; 4291 4292 case D_ALLOCDIRECT: 4293 adp = WK_ALLOCDIRECT(wk); 4294 adp->ad_state |= COMPLETE; 4295 handle_allocdirect_partdone(adp); 4296 continue; 4297 4298 case D_ALLOCINDIR: 4299 aip = WK_ALLOCINDIR(wk); 4300 aip->ai_state |= COMPLETE; 4301 handle_allocindir_partdone(aip); 4302 continue; 4303 4304 case D_INDIRDEP: 4305 indirdep = WK_INDIRDEP(wk); 4306 if (indirdep->ir_state & GOINGAWAY) 4307 panic("disk_write_complete: indirdep gone"); 4308 bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount); 4309 FREE(indirdep->ir_saveddata, M_INDIRDEP); 4310 indirdep->ir_saveddata = 0; 4311 indirdep->ir_state &= ~UNDONE; 4312 indirdep->ir_state |= ATTACHED; 4313 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) { 4314 handle_allocindir_partdone(aip); 4315 if (aip == LIST_FIRST(&indirdep->ir_donehd)) 4316 panic("disk_write_complete: not gone"); 4317 } 4318 WORKLIST_INSERT(&reattach, wk); 4319 if ((bp->b_flags & B_DELWRI) == 0) 4320 stat_indir_blk_ptrs++; 4321 bdirty(bp); 4322 continue; 4323 4324 default: 4325 panic("handle_disk_write_complete: Unknown type %s", 4326 TYPENAME(wk->wk_type)); 4327 /* NOTREACHED */ 4328 } 4329 } 4330 /* 4331 * Reattach any requests that must be redone. 4332 */ 4333 while ((wk = LIST_FIRST(&reattach)) != NULL) { 4334 WORKLIST_REMOVE(wk); 4335 WORKLIST_INSERT(&bp->b_dep, wk); 4336 } 4337 FREE_LOCK(&lk); 4338 } 4339 4340 /* 4341 * Called from within softdep_disk_write_complete above. Note that 4342 * this routine is always called from interrupt level with further 4343 * splbio interrupts blocked. 4344 */ 4345 static void 4346 handle_allocdirect_partdone(adp) 4347 struct allocdirect *adp; /* the completed allocdirect */ 4348 { 4349 struct allocdirectlst *listhead; 4350 struct allocdirect *listadp; 4351 struct inodedep *inodedep; 4352 long bsize, delay; 4353 4354 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 4355 return; 4356 if (adp->ad_buf != NULL) 4357 panic("handle_allocdirect_partdone: dangling dep"); 4358 /* 4359 * The on-disk inode cannot claim to be any larger than the last 4360 * fragment that has been written. Otherwise, the on-disk inode 4361 * might have fragments that were not the last block in the file 4362 * which would corrupt the filesystem. Thus, we cannot free any 4363 * allocdirects after one whose ad_oldblkno claims a fragment as 4364 * these blocks must be rolled back to zero before writing the inode. 4365 * We check the currently active set of allocdirects in id_inoupdt 4366 * or id_extupdt as appropriate. 4367 */ 4368 inodedep = adp->ad_inodedep; 4369 bsize = inodedep->id_fs->fs_bsize; 4370 if (adp->ad_state & EXTDATA) 4371 listhead = &inodedep->id_extupdt; 4372 else 4373 listhead = &inodedep->id_inoupdt; 4374 TAILQ_FOREACH(listadp, listhead, ad_next) { 4375 /* found our block */ 4376 if (listadp == adp) 4377 break; 4378 /* continue if ad_oldlbn is not a fragment */ 4379 if (listadp->ad_oldsize == 0 || 4380 listadp->ad_oldsize == bsize) 4381 continue; 4382 /* hit a fragment */ 4383 return; 4384 } 4385 /* 4386 * If we have reached the end of the current list without 4387 * finding the just finished dependency, then it must be 4388 * on the future dependency list. Future dependencies cannot 4389 * be freed until they are moved to the current list. 4390 */ 4391 if (listadp == NULL) { 4392 #ifdef DEBUG 4393 if (adp->ad_state & EXTDATA) 4394 listhead = &inodedep->id_newextupdt; 4395 else 4396 listhead = &inodedep->id_newinoupdt; 4397 TAILQ_FOREACH(listadp, listhead, ad_next) 4398 /* found our block */ 4399 if (listadp == adp) 4400 break; 4401 if (listadp == NULL) 4402 panic("handle_allocdirect_partdone: lost dep"); 4403 #endif /* DEBUG */ 4404 return; 4405 } 4406 /* 4407 * If we have found the just finished dependency, then free 4408 * it along with anything that follows it that is complete. 4409 * If the inode still has a bitmap dependency, then it has 4410 * never been written to disk, hence the on-disk inode cannot 4411 * reference the old fragment so we can free it without delay. 4412 */ 4413 delay = (inodedep->id_state & DEPCOMPLETE); 4414 for (; adp; adp = listadp) { 4415 listadp = TAILQ_NEXT(adp, ad_next); 4416 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 4417 return; 4418 free_allocdirect(listhead, adp, delay); 4419 } 4420 } 4421 4422 /* 4423 * Called from within softdep_disk_write_complete above. Note that 4424 * this routine is always called from interrupt level with further 4425 * splbio interrupts blocked. 4426 */ 4427 static void 4428 handle_allocindir_partdone(aip) 4429 struct allocindir *aip; /* the completed allocindir */ 4430 { 4431 struct indirdep *indirdep; 4432 4433 if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE) 4434 return; 4435 if (aip->ai_buf != NULL) 4436 panic("handle_allocindir_partdone: dangling dependency"); 4437 indirdep = aip->ai_indirdep; 4438 if (indirdep->ir_state & UNDONE) { 4439 LIST_REMOVE(aip, ai_next); 4440 LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next); 4441 return; 4442 } 4443 if (indirdep->ir_state & UFS1FMT) 4444 ((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 4445 aip->ai_newblkno; 4446 else 4447 ((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 4448 aip->ai_newblkno; 4449 LIST_REMOVE(aip, ai_next); 4450 if (aip->ai_freefrag != NULL) 4451 add_to_worklist(&aip->ai_freefrag->ff_list); 4452 WORKITEM_FREE(aip, D_ALLOCINDIR); 4453 } 4454 4455 /* 4456 * Called from within softdep_disk_write_complete above to restore 4457 * in-memory inode block contents to their most up-to-date state. Note 4458 * that this routine is always called from interrupt level with further 4459 * splbio interrupts blocked. 4460 */ 4461 static int 4462 handle_written_inodeblock(inodedep, bp) 4463 struct inodedep *inodedep; 4464 struct buf *bp; /* buffer containing the inode block */ 4465 { 4466 struct worklist *wk, *filefree; 4467 struct allocdirect *adp, *nextadp; 4468 struct ufs1_dinode *dp1 = NULL; 4469 struct ufs2_dinode *dp2 = NULL; 4470 int hadchanges, fstype; 4471 4472 if ((inodedep->id_state & IOSTARTED) == 0) 4473 panic("handle_written_inodeblock: not started"); 4474 inodedep->id_state &= ~IOSTARTED; 4475 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) { 4476 fstype = UFS1; 4477 dp1 = (struct ufs1_dinode *)bp->b_data + 4478 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 4479 } else { 4480 fstype = UFS2; 4481 dp2 = (struct ufs2_dinode *)bp->b_data + 4482 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 4483 } 4484 /* 4485 * If we had to rollback the inode allocation because of 4486 * bitmaps being incomplete, then simply restore it. 4487 * Keep the block dirty so that it will not be reclaimed until 4488 * all associated dependencies have been cleared and the 4489 * corresponding updates written to disk. 4490 */ 4491 if (inodedep->id_savedino1 != NULL) { 4492 if (fstype == UFS1) 4493 *dp1 = *inodedep->id_savedino1; 4494 else 4495 *dp2 = *inodedep->id_savedino2; 4496 FREE(inodedep->id_savedino1, M_SAVEDINO); 4497 inodedep->id_savedino1 = NULL; 4498 if ((bp->b_flags & B_DELWRI) == 0) 4499 stat_inode_bitmap++; 4500 bdirty(bp); 4501 return (1); 4502 } 4503 inodedep->id_state |= COMPLETE; 4504 /* 4505 * Roll forward anything that had to be rolled back before 4506 * the inode could be updated. 4507 */ 4508 hadchanges = 0; 4509 for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) { 4510 nextadp = TAILQ_NEXT(adp, ad_next); 4511 if (adp->ad_state & ATTACHED) 4512 panic("handle_written_inodeblock: new entry"); 4513 if (fstype == UFS1) { 4514 if (adp->ad_lbn < NDADDR) { 4515 if (dp1->di_db[adp->ad_lbn]!=adp->ad_oldblkno) 4516 panic("%s %s #%jd mismatch %d != %jd", 4517 "handle_written_inodeblock:", 4518 "direct pointer", 4519 (intmax_t)adp->ad_lbn, 4520 dp1->di_db[adp->ad_lbn], 4521 (intmax_t)adp->ad_oldblkno); 4522 dp1->di_db[adp->ad_lbn] = adp->ad_newblkno; 4523 } else { 4524 if (dp1->di_ib[adp->ad_lbn - NDADDR] != 0) 4525 panic("%s: %s #%jd allocated as %d", 4526 "handle_written_inodeblock", 4527 "indirect pointer", 4528 (intmax_t)adp->ad_lbn - NDADDR, 4529 dp1->di_ib[adp->ad_lbn - NDADDR]); 4530 dp1->di_ib[adp->ad_lbn - NDADDR] = 4531 adp->ad_newblkno; 4532 } 4533 } else { 4534 if (adp->ad_lbn < NDADDR) { 4535 if (dp2->di_db[adp->ad_lbn]!=adp->ad_oldblkno) 4536 panic("%s: %s #%jd %s %jd != %jd", 4537 "handle_written_inodeblock", 4538 "direct pointer", 4539 (intmax_t)adp->ad_lbn, "mismatch", 4540 (intmax_t)dp2->di_db[adp->ad_lbn], 4541 (intmax_t)adp->ad_oldblkno); 4542 dp2->di_db[adp->ad_lbn] = adp->ad_newblkno; 4543 } else { 4544 if (dp2->di_ib[adp->ad_lbn - NDADDR] != 0) 4545 panic("%s: %s #%jd allocated as %jd", 4546 "handle_written_inodeblock", 4547 "indirect pointer", 4548 (intmax_t)adp->ad_lbn - NDADDR, 4549 (intmax_t) 4550 dp2->di_ib[adp->ad_lbn - NDADDR]); 4551 dp2->di_ib[adp->ad_lbn - NDADDR] = 4552 adp->ad_newblkno; 4553 } 4554 } 4555 adp->ad_state &= ~UNDONE; 4556 adp->ad_state |= ATTACHED; 4557 hadchanges = 1; 4558 } 4559 for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) { 4560 nextadp = TAILQ_NEXT(adp, ad_next); 4561 if (adp->ad_state & ATTACHED) 4562 panic("handle_written_inodeblock: new entry"); 4563 if (dp2->di_extb[adp->ad_lbn] != adp->ad_oldblkno) 4564 panic("%s: direct pointers #%jd %s %jd != %jd", 4565 "handle_written_inodeblock", 4566 (intmax_t)adp->ad_lbn, "mismatch", 4567 (intmax_t)dp2->di_extb[adp->ad_lbn], 4568 (intmax_t)adp->ad_oldblkno); 4569 dp2->di_extb[adp->ad_lbn] = adp->ad_newblkno; 4570 adp->ad_state &= ~UNDONE; 4571 adp->ad_state |= ATTACHED; 4572 hadchanges = 1; 4573 } 4574 if (hadchanges && (bp->b_flags & B_DELWRI) == 0) 4575 stat_direct_blk_ptrs++; 4576 /* 4577 * Reset the file size to its most up-to-date value. 4578 */ 4579 if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1) 4580 panic("handle_written_inodeblock: bad size"); 4581 if (fstype == UFS1) { 4582 if (dp1->di_size != inodedep->id_savedsize) { 4583 dp1->di_size = inodedep->id_savedsize; 4584 hadchanges = 1; 4585 } 4586 } else { 4587 if (dp2->di_size != inodedep->id_savedsize) { 4588 dp2->di_size = inodedep->id_savedsize; 4589 hadchanges = 1; 4590 } 4591 if (dp2->di_extsize != inodedep->id_savedextsize) { 4592 dp2->di_extsize = inodedep->id_savedextsize; 4593 hadchanges = 1; 4594 } 4595 } 4596 inodedep->id_savedsize = -1; 4597 inodedep->id_savedextsize = -1; 4598 /* 4599 * If there were any rollbacks in the inode block, then it must be 4600 * marked dirty so that its will eventually get written back in 4601 * its correct form. 4602 */ 4603 if (hadchanges) 4604 bdirty(bp); 4605 /* 4606 * Process any allocdirects that completed during the update. 4607 */ 4608 if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL) 4609 handle_allocdirect_partdone(adp); 4610 if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 4611 handle_allocdirect_partdone(adp); 4612 /* 4613 * Process deallocations that were held pending until the 4614 * inode had been written to disk. Freeing of the inode 4615 * is delayed until after all blocks have been freed to 4616 * avoid creation of new <vfsid, inum, lbn> triples 4617 * before the old ones have been deleted. 4618 */ 4619 filefree = NULL; 4620 while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) { 4621 WORKLIST_REMOVE(wk); 4622 switch (wk->wk_type) { 4623 4624 case D_FREEFILE: 4625 /* 4626 * We defer adding filefree to the worklist until 4627 * all other additions have been made to ensure 4628 * that it will be done after all the old blocks 4629 * have been freed. 4630 */ 4631 if (filefree != NULL) 4632 panic("handle_written_inodeblock: filefree"); 4633 filefree = wk; 4634 continue; 4635 4636 case D_MKDIR: 4637 handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT); 4638 continue; 4639 4640 case D_DIRADD: 4641 diradd_inode_written(WK_DIRADD(wk), inodedep); 4642 continue; 4643 4644 case D_FREEBLKS: 4645 wk->wk_state |= COMPLETE; 4646 if ((wk->wk_state & ALLCOMPLETE) != ALLCOMPLETE) 4647 continue; 4648 /* -- fall through -- */ 4649 case D_FREEFRAG: 4650 case D_DIRREM: 4651 add_to_worklist(wk); 4652 continue; 4653 4654 case D_NEWDIRBLK: 4655 free_newdirblk(WK_NEWDIRBLK(wk)); 4656 continue; 4657 4658 default: 4659 panic("handle_written_inodeblock: Unknown type %s", 4660 TYPENAME(wk->wk_type)); 4661 /* NOTREACHED */ 4662 } 4663 } 4664 if (filefree != NULL) { 4665 if (free_inodedep(inodedep) == 0) 4666 panic("handle_written_inodeblock: live inodedep"); 4667 add_to_worklist(filefree); 4668 return (0); 4669 } 4670 4671 /* 4672 * If no outstanding dependencies, free it. 4673 */ 4674 if (free_inodedep(inodedep) || 4675 (TAILQ_FIRST(&inodedep->id_inoupdt) == 0 && 4676 TAILQ_FIRST(&inodedep->id_extupdt) == 0)) 4677 return (0); 4678 return (hadchanges); 4679 } 4680 4681 /* 4682 * Process a diradd entry after its dependent inode has been written. 4683 * This routine must be called with splbio interrupts blocked. 4684 */ 4685 static void 4686 diradd_inode_written(dap, inodedep) 4687 struct diradd *dap; 4688 struct inodedep *inodedep; 4689 { 4690 struct pagedep *pagedep; 4691 4692 dap->da_state |= COMPLETE; 4693 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 4694 if (dap->da_state & DIRCHG) 4695 pagedep = dap->da_previous->dm_pagedep; 4696 else 4697 pagedep = dap->da_pagedep; 4698 LIST_REMOVE(dap, da_pdlist); 4699 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 4700 } 4701 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 4702 } 4703 4704 /* 4705 * Handle the completion of a mkdir dependency. 4706 */ 4707 static void 4708 handle_written_mkdir(mkdir, type) 4709 struct mkdir *mkdir; 4710 int type; 4711 { 4712 struct diradd *dap; 4713 struct pagedep *pagedep; 4714 4715 if (mkdir->md_state != type) 4716 panic("handle_written_mkdir: bad type"); 4717 dap = mkdir->md_diradd; 4718 dap->da_state &= ~type; 4719 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) 4720 dap->da_state |= DEPCOMPLETE; 4721 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 4722 if (dap->da_state & DIRCHG) 4723 pagedep = dap->da_previous->dm_pagedep; 4724 else 4725 pagedep = dap->da_pagedep; 4726 LIST_REMOVE(dap, da_pdlist); 4727 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 4728 } 4729 LIST_REMOVE(mkdir, md_mkdirs); 4730 WORKITEM_FREE(mkdir, D_MKDIR); 4731 } 4732 4733 /* 4734 * Called from within softdep_disk_write_complete above. 4735 * A write operation was just completed. Removed inodes can 4736 * now be freed and associated block pointers may be committed. 4737 * Note that this routine is always called from interrupt level 4738 * with further splbio interrupts blocked. 4739 */ 4740 static int 4741 handle_written_filepage(pagedep, bp) 4742 struct pagedep *pagedep; 4743 struct buf *bp; /* buffer containing the written page */ 4744 { 4745 struct dirrem *dirrem; 4746 struct diradd *dap, *nextdap; 4747 struct direct *ep; 4748 int i, chgs; 4749 4750 if ((pagedep->pd_state & IOSTARTED) == 0) 4751 panic("handle_written_filepage: not started"); 4752 pagedep->pd_state &= ~IOSTARTED; 4753 /* 4754 * Process any directory removals that have been committed. 4755 */ 4756 while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) { 4757 LIST_REMOVE(dirrem, dm_next); 4758 dirrem->dm_dirinum = pagedep->pd_ino; 4759 add_to_worklist(&dirrem->dm_list); 4760 } 4761 /* 4762 * Free any directory additions that have been committed. 4763 * If it is a newly allocated block, we have to wait until 4764 * the on-disk directory inode claims the new block. 4765 */ 4766 if ((pagedep->pd_state & NEWBLOCK) == 0) 4767 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 4768 free_diradd(dap); 4769 /* 4770 * Uncommitted directory entries must be restored. 4771 */ 4772 for (chgs = 0, i = 0; i < DAHASHSZ; i++) { 4773 for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap; 4774 dap = nextdap) { 4775 nextdap = LIST_NEXT(dap, da_pdlist); 4776 if (dap->da_state & ATTACHED) 4777 panic("handle_written_filepage: attached"); 4778 ep = (struct direct *) 4779 ((char *)bp->b_data + dap->da_offset); 4780 ep->d_ino = dap->da_newinum; 4781 dap->da_state &= ~UNDONE; 4782 dap->da_state |= ATTACHED; 4783 chgs = 1; 4784 /* 4785 * If the inode referenced by the directory has 4786 * been written out, then the dependency can be 4787 * moved to the pending list. 4788 */ 4789 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 4790 LIST_REMOVE(dap, da_pdlist); 4791 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, 4792 da_pdlist); 4793 } 4794 } 4795 } 4796 /* 4797 * If there were any rollbacks in the directory, then it must be 4798 * marked dirty so that its will eventually get written back in 4799 * its correct form. 4800 */ 4801 if (chgs) { 4802 if ((bp->b_flags & B_DELWRI) == 0) 4803 stat_dir_entry++; 4804 bdirty(bp); 4805 return (1); 4806 } 4807 /* 4808 * If we are not waiting for a new directory block to be 4809 * claimed by its inode, then the pagedep will be freed. 4810 * Otherwise it will remain to track any new entries on 4811 * the page in case they are fsync'ed. 4812 */ 4813 if ((pagedep->pd_state & NEWBLOCK) == 0) { 4814 LIST_REMOVE(pagedep, pd_hash); 4815 WORKITEM_FREE(pagedep, D_PAGEDEP); 4816 } 4817 return (0); 4818 } 4819 4820 /* 4821 * Writing back in-core inode structures. 4822 * 4823 * The filesystem only accesses an inode's contents when it occupies an 4824 * "in-core" inode structure. These "in-core" structures are separate from 4825 * the page frames used to cache inode blocks. Only the latter are 4826 * transferred to/from the disk. So, when the updated contents of the 4827 * "in-core" inode structure are copied to the corresponding in-memory inode 4828 * block, the dependencies are also transferred. The following procedure is 4829 * called when copying a dirty "in-core" inode to a cached inode block. 4830 */ 4831 4832 /* 4833 * Called when an inode is loaded from disk. If the effective link count 4834 * differed from the actual link count when it was last flushed, then we 4835 * need to ensure that the correct effective link count is put back. 4836 */ 4837 void 4838 softdep_load_inodeblock(ip) 4839 struct inode *ip; /* the "in_core" copy of the inode */ 4840 { 4841 struct inodedep *inodedep; 4842 4843 /* 4844 * Check for alternate nlink count. 4845 */ 4846 ip->i_effnlink = ip->i_nlink; 4847 ACQUIRE_LOCK(&lk); 4848 if (inodedep_lookup(UFSTOVFS(ip->i_ump), 4849 ip->i_number, 0, &inodedep) == 0) { 4850 FREE_LOCK(&lk); 4851 return; 4852 } 4853 ip->i_effnlink -= inodedep->id_nlinkdelta; 4854 if (inodedep->id_state & SPACECOUNTED) 4855 ip->i_flag |= IN_SPACECOUNTED; 4856 FREE_LOCK(&lk); 4857 } 4858 4859 /* 4860 * This routine is called just before the "in-core" inode 4861 * information is to be copied to the in-memory inode block. 4862 * Recall that an inode block contains several inodes. If 4863 * the force flag is set, then the dependencies will be 4864 * cleared so that the update can always be made. Note that 4865 * the buffer is locked when this routine is called, so we 4866 * will never be in the middle of writing the inode block 4867 * to disk. 4868 */ 4869 void 4870 softdep_update_inodeblock(ip, bp, waitfor) 4871 struct inode *ip; /* the "in_core" copy of the inode */ 4872 struct buf *bp; /* the buffer containing the inode block */ 4873 int waitfor; /* nonzero => update must be allowed */ 4874 { 4875 struct inodedep *inodedep; 4876 struct worklist *wk; 4877 struct mount *mp; 4878 struct buf *ibp; 4879 int error; 4880 4881 /* 4882 * If the effective link count is not equal to the actual link 4883 * count, then we must track the difference in an inodedep while 4884 * the inode is (potentially) tossed out of the cache. Otherwise, 4885 * if there is no existing inodedep, then there are no dependencies 4886 * to track. 4887 */ 4888 mp = UFSTOVFS(ip->i_ump); 4889 ACQUIRE_LOCK(&lk); 4890 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) { 4891 FREE_LOCK(&lk); 4892 if (ip->i_effnlink != ip->i_nlink) 4893 panic("softdep_update_inodeblock: bad link count"); 4894 return; 4895 } 4896 if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink) 4897 panic("softdep_update_inodeblock: bad delta"); 4898 /* 4899 * Changes have been initiated. Anything depending on these 4900 * changes cannot occur until this inode has been written. 4901 */ 4902 inodedep->id_state &= ~COMPLETE; 4903 if ((inodedep->id_state & ONWORKLIST) == 0) 4904 WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list); 4905 /* 4906 * Any new dependencies associated with the incore inode must 4907 * now be moved to the list associated with the buffer holding 4908 * the in-memory copy of the inode. Once merged process any 4909 * allocdirects that are completed by the merger. 4910 */ 4911 merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt); 4912 if (TAILQ_FIRST(&inodedep->id_inoupdt) != NULL) 4913 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt)); 4914 merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt); 4915 if (TAILQ_FIRST(&inodedep->id_extupdt) != NULL) 4916 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt)); 4917 /* 4918 * Now that the inode has been pushed into the buffer, the 4919 * operations dependent on the inode being written to disk 4920 * can be moved to the id_bufwait so that they will be 4921 * processed when the buffer I/O completes. 4922 */ 4923 while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) { 4924 WORKLIST_REMOVE(wk); 4925 WORKLIST_INSERT(&inodedep->id_bufwait, wk); 4926 } 4927 /* 4928 * Newly allocated inodes cannot be written until the bitmap 4929 * that allocates them have been written (indicated by 4930 * DEPCOMPLETE being set in id_state). If we are doing a 4931 * forced sync (e.g., an fsync on a file), we force the bitmap 4932 * to be written so that the update can be done. 4933 */ 4934 if (waitfor == 0) { 4935 FREE_LOCK(&lk); 4936 return; 4937 } 4938 retry: 4939 if ((inodedep->id_state & DEPCOMPLETE) != 0) { 4940 FREE_LOCK(&lk); 4941 return; 4942 } 4943 ibp = inodedep->id_buf; 4944 ibp = getdirtybuf(ibp, &lk, MNT_WAIT); 4945 if (ibp == NULL) { 4946 /* 4947 * If ibp came back as NULL, the dependency could have been 4948 * freed while we slept. Look it up again, and check to see 4949 * that it has completed. 4950 */ 4951 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) 4952 goto retry; 4953 FREE_LOCK(&lk); 4954 return; 4955 } 4956 FREE_LOCK(&lk); 4957 if ((error = bwrite(ibp)) != 0) 4958 softdep_error("softdep_update_inodeblock: bwrite", error); 4959 } 4960 4961 /* 4962 * Merge the a new inode dependency list (such as id_newinoupdt) into an 4963 * old inode dependency list (such as id_inoupdt). This routine must be 4964 * called with splbio interrupts blocked. 4965 */ 4966 static void 4967 merge_inode_lists(newlisthead, oldlisthead) 4968 struct allocdirectlst *newlisthead; 4969 struct allocdirectlst *oldlisthead; 4970 { 4971 struct allocdirect *listadp, *newadp; 4972 4973 newadp = TAILQ_FIRST(newlisthead); 4974 for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) { 4975 if (listadp->ad_lbn < newadp->ad_lbn) { 4976 listadp = TAILQ_NEXT(listadp, ad_next); 4977 continue; 4978 } 4979 TAILQ_REMOVE(newlisthead, newadp, ad_next); 4980 TAILQ_INSERT_BEFORE(listadp, newadp, ad_next); 4981 if (listadp->ad_lbn == newadp->ad_lbn) { 4982 allocdirect_merge(oldlisthead, newadp, 4983 listadp); 4984 listadp = newadp; 4985 } 4986 newadp = TAILQ_FIRST(newlisthead); 4987 } 4988 while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) { 4989 TAILQ_REMOVE(newlisthead, newadp, ad_next); 4990 TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next); 4991 } 4992 } 4993 4994 /* 4995 * If we are doing an fsync, then we must ensure that any directory 4996 * entries for the inode have been written after the inode gets to disk. 4997 */ 4998 int 4999 softdep_fsync(vp) 5000 struct vnode *vp; /* the "in_core" copy of the inode */ 5001 { 5002 struct inodedep *inodedep; 5003 struct pagedep *pagedep; 5004 struct worklist *wk; 5005 struct diradd *dap; 5006 struct mount *mp; 5007 struct vnode *pvp; 5008 struct inode *ip; 5009 struct buf *bp; 5010 struct fs *fs; 5011 struct thread *td = curthread; 5012 int error, flushparent; 5013 ino_t parentino; 5014 ufs_lbn_t lbn; 5015 5016 ip = VTOI(vp); 5017 fs = ip->i_fs; 5018 mp = vp->v_mount; 5019 ACQUIRE_LOCK(&lk); 5020 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) { 5021 FREE_LOCK(&lk); 5022 return (0); 5023 } 5024 if (LIST_FIRST(&inodedep->id_inowait) != NULL || 5025 LIST_FIRST(&inodedep->id_bufwait) != NULL || 5026 TAILQ_FIRST(&inodedep->id_extupdt) != NULL || 5027 TAILQ_FIRST(&inodedep->id_newextupdt) != NULL || 5028 TAILQ_FIRST(&inodedep->id_inoupdt) != NULL || 5029 TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL) 5030 panic("softdep_fsync: pending ops"); 5031 for (error = 0, flushparent = 0; ; ) { 5032 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL) 5033 break; 5034 if (wk->wk_type != D_DIRADD) 5035 panic("softdep_fsync: Unexpected type %s", 5036 TYPENAME(wk->wk_type)); 5037 dap = WK_DIRADD(wk); 5038 /* 5039 * Flush our parent if this directory entry has a MKDIR_PARENT 5040 * dependency or is contained in a newly allocated block. 5041 */ 5042 if (dap->da_state & DIRCHG) 5043 pagedep = dap->da_previous->dm_pagedep; 5044 else 5045 pagedep = dap->da_pagedep; 5046 parentino = pagedep->pd_ino; 5047 lbn = pagedep->pd_lbn; 5048 if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE) 5049 panic("softdep_fsync: dirty"); 5050 if ((dap->da_state & MKDIR_PARENT) || 5051 (pagedep->pd_state & NEWBLOCK)) 5052 flushparent = 1; 5053 else 5054 flushparent = 0; 5055 /* 5056 * If we are being fsync'ed as part of vgone'ing this vnode, 5057 * then we will not be able to release and recover the 5058 * vnode below, so we just have to give up on writing its 5059 * directory entry out. It will eventually be written, just 5060 * not now, but then the user was not asking to have it 5061 * written, so we are not breaking any promises. 5062 */ 5063 if (vp->v_iflag & VI_DOOMED) 5064 break; 5065 /* 5066 * We prevent deadlock by always fetching inodes from the 5067 * root, moving down the directory tree. Thus, when fetching 5068 * our parent directory, we first try to get the lock. If 5069 * that fails, we must unlock ourselves before requesting 5070 * the lock on our parent. See the comment in ufs_lookup 5071 * for details on possible races. 5072 */ 5073 FREE_LOCK(&lk); 5074 if (ffs_vget(mp, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp)) { 5075 VOP_UNLOCK(vp, 0, td); 5076 error = ffs_vget(mp, parentino, LK_EXCLUSIVE, &pvp); 5077 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td); 5078 if (error != 0) 5079 return (error); 5080 } 5081 /* 5082 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps 5083 * that are contained in direct blocks will be resolved by 5084 * doing a ffs_update. Pagedeps contained in indirect blocks 5085 * may require a complete sync'ing of the directory. So, we 5086 * try the cheap and fast ffs_update first, and if that fails, 5087 * then we do the slower ffs_syncvnode of the directory. 5088 */ 5089 if (flushparent) { 5090 if ((error = ffs_update(pvp, 1)) != 0) { 5091 vput(pvp); 5092 return (error); 5093 } 5094 if ((pagedep->pd_state & NEWBLOCK) && 5095 (error = ffs_syncvnode(pvp, MNT_WAIT))) { 5096 vput(pvp); 5097 return (error); 5098 } 5099 } 5100 /* 5101 * Flush directory page containing the inode's name. 5102 */ 5103 error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred, 5104 &bp); 5105 if (error == 0) 5106 error = bwrite(bp); 5107 else 5108 brelse(bp); 5109 vput(pvp); 5110 if (error != 0) 5111 return (error); 5112 ACQUIRE_LOCK(&lk); 5113 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 5114 break; 5115 } 5116 FREE_LOCK(&lk); 5117 return (0); 5118 } 5119 5120 /* 5121 * Flush all the dirty bitmaps associated with the block device 5122 * before flushing the rest of the dirty blocks so as to reduce 5123 * the number of dependencies that will have to be rolled back. 5124 */ 5125 void 5126 softdep_fsync_mountdev(vp) 5127 struct vnode *vp; 5128 { 5129 struct buf *bp, *nbp; 5130 struct worklist *wk; 5131 5132 if (!vn_isdisk(vp, NULL)) 5133 panic("softdep_fsync_mountdev: vnode not a disk"); 5134 restart: 5135 ACQUIRE_LOCK(&lk); 5136 VI_LOCK(vp); 5137 TAILQ_FOREACH_SAFE(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs, nbp) { 5138 /* 5139 * If it is already scheduled, skip to the next buffer. 5140 */ 5141 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) 5142 continue; 5143 5144 if ((bp->b_flags & B_DELWRI) == 0) 5145 panic("softdep_fsync_mountdev: not dirty"); 5146 /* 5147 * We are only interested in bitmaps with outstanding 5148 * dependencies. 5149 */ 5150 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL || 5151 wk->wk_type != D_BMSAFEMAP || 5152 (bp->b_vflags & BV_BKGRDINPROG)) { 5153 BUF_UNLOCK(bp); 5154 continue; 5155 } 5156 VI_UNLOCK(vp); 5157 FREE_LOCK(&lk); 5158 bremfree(bp); 5159 (void) bawrite(bp); 5160 goto restart; 5161 } 5162 FREE_LOCK(&lk); 5163 drain_output(vp); 5164 VI_UNLOCK(vp); 5165 } 5166 5167 /* 5168 * This routine is called when we are trying to synchronously flush a 5169 * file. This routine must eliminate any filesystem metadata dependencies 5170 * so that the syncing routine can succeed by pushing the dirty blocks 5171 * associated with the file. If any I/O errors occur, they are returned. 5172 */ 5173 int 5174 softdep_sync_metadata(struct vnode *vp) 5175 { 5176 struct pagedep *pagedep; 5177 struct allocdirect *adp; 5178 struct allocindir *aip; 5179 struct buf *bp, *nbp; 5180 struct worklist *wk; 5181 int i, error, waitfor; 5182 5183 if (!DOINGSOFTDEP(vp)) 5184 return (0); 5185 /* 5186 * Ensure that any direct block dependencies have been cleared. 5187 */ 5188 ACQUIRE_LOCK(&lk); 5189 if ((error = flush_inodedep_deps(vp->v_mount, VTOI(vp)->i_number))) { 5190 FREE_LOCK(&lk); 5191 return (error); 5192 } 5193 FREE_LOCK(&lk); 5194 /* 5195 * For most files, the only metadata dependencies are the 5196 * cylinder group maps that allocate their inode or blocks. 5197 * The block allocation dependencies can be found by traversing 5198 * the dependency lists for any buffers that remain on their 5199 * dirty buffer list. The inode allocation dependency will 5200 * be resolved when the inode is updated with MNT_WAIT. 5201 * This work is done in two passes. The first pass grabs most 5202 * of the buffers and begins asynchronously writing them. The 5203 * only way to wait for these asynchronous writes is to sleep 5204 * on the filesystem vnode which may stay busy for a long time 5205 * if the filesystem is active. So, instead, we make a second 5206 * pass over the dependencies blocking on each write. In the 5207 * usual case we will be blocking against a write that we 5208 * initiated, so when it is done the dependency will have been 5209 * resolved. Thus the second pass is expected to end quickly. 5210 */ 5211 waitfor = MNT_NOWAIT; 5212 5213 top: 5214 /* 5215 * We must wait for any I/O in progress to finish so that 5216 * all potential buffers on the dirty list will be visible. 5217 */ 5218 VI_LOCK(vp); 5219 drain_output(vp); 5220 while ((bp = TAILQ_FIRST(&vp->v_bufobj.bo_dirty.bv_hd)) != NULL) { 5221 bp = getdirtybuf(bp, VI_MTX(vp), MNT_WAIT); 5222 if (bp) 5223 break; 5224 } 5225 VI_UNLOCK(vp); 5226 if (bp == NULL) 5227 return (0); 5228 loop: 5229 /* While syncing snapshots, we must allow recursive lookups */ 5230 bp->b_lock.lk_flags |= LK_CANRECURSE; 5231 ACQUIRE_LOCK(&lk); 5232 /* 5233 * As we hold the buffer locked, none of its dependencies 5234 * will disappear. 5235 */ 5236 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 5237 switch (wk->wk_type) { 5238 5239 case D_ALLOCDIRECT: 5240 adp = WK_ALLOCDIRECT(wk); 5241 if (adp->ad_state & DEPCOMPLETE) 5242 continue; 5243 nbp = adp->ad_buf; 5244 nbp = getdirtybuf(nbp, &lk, waitfor); 5245 if (nbp == NULL) 5246 continue; 5247 FREE_LOCK(&lk); 5248 if (waitfor == MNT_NOWAIT) { 5249 bawrite(nbp); 5250 } else if ((error = bwrite(nbp)) != 0) { 5251 break; 5252 } 5253 ACQUIRE_LOCK(&lk); 5254 continue; 5255 5256 case D_ALLOCINDIR: 5257 aip = WK_ALLOCINDIR(wk); 5258 if (aip->ai_state & DEPCOMPLETE) 5259 continue; 5260 nbp = aip->ai_buf; 5261 nbp = getdirtybuf(nbp, &lk, waitfor); 5262 if (nbp == NULL) 5263 continue; 5264 FREE_LOCK(&lk); 5265 if (waitfor == MNT_NOWAIT) { 5266 bawrite(nbp); 5267 } else if ((error = bwrite(nbp)) != 0) { 5268 break; 5269 } 5270 ACQUIRE_LOCK(&lk); 5271 continue; 5272 5273 case D_INDIRDEP: 5274 restart: 5275 5276 LIST_FOREACH(aip, &WK_INDIRDEP(wk)->ir_deplisthd, ai_next) { 5277 if (aip->ai_state & DEPCOMPLETE) 5278 continue; 5279 nbp = aip->ai_buf; 5280 nbp = getdirtybuf(nbp, &lk, MNT_WAIT); 5281 if (nbp == NULL) 5282 goto restart; 5283 FREE_LOCK(&lk); 5284 if ((error = bwrite(nbp)) != 0) { 5285 goto loop_end; 5286 } 5287 ACQUIRE_LOCK(&lk); 5288 goto restart; 5289 } 5290 continue; 5291 5292 case D_INODEDEP: 5293 if ((error = flush_inodedep_deps(wk->wk_mp, 5294 WK_INODEDEP(wk)->id_ino)) != 0) { 5295 FREE_LOCK(&lk); 5296 break; 5297 } 5298 continue; 5299 5300 case D_PAGEDEP: 5301 /* 5302 * We are trying to sync a directory that may 5303 * have dependencies on both its own metadata 5304 * and/or dependencies on the inodes of any 5305 * recently allocated files. We walk its diradd 5306 * lists pushing out the associated inode. 5307 */ 5308 pagedep = WK_PAGEDEP(wk); 5309 for (i = 0; i < DAHASHSZ; i++) { 5310 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0) 5311 continue; 5312 if ((error = 5313 flush_pagedep_deps(vp, wk->wk_mp, 5314 &pagedep->pd_diraddhd[i]))) { 5315 FREE_LOCK(&lk); 5316 goto loop_end; 5317 } 5318 } 5319 continue; 5320 5321 case D_MKDIR: 5322 /* 5323 * This case should never happen if the vnode has 5324 * been properly sync'ed. However, if this function 5325 * is used at a place where the vnode has not yet 5326 * been sync'ed, this dependency can show up. So, 5327 * rather than panic, just flush it. 5328 */ 5329 nbp = WK_MKDIR(wk)->md_buf; 5330 nbp = getdirtybuf(nbp, &lk, waitfor); 5331 if (nbp == NULL) 5332 continue; 5333 FREE_LOCK(&lk); 5334 if (waitfor == MNT_NOWAIT) { 5335 bawrite(nbp); 5336 } else if ((error = bwrite(nbp)) != 0) { 5337 break; 5338 } 5339 ACQUIRE_LOCK(&lk); 5340 continue; 5341 5342 case D_BMSAFEMAP: 5343 /* 5344 * This case should never happen if the vnode has 5345 * been properly sync'ed. However, if this function 5346 * is used at a place where the vnode has not yet 5347 * been sync'ed, this dependency can show up. So, 5348 * rather than panic, just flush it. 5349 */ 5350 nbp = WK_BMSAFEMAP(wk)->sm_buf; 5351 nbp = getdirtybuf(nbp, &lk, waitfor); 5352 if (nbp == NULL) 5353 continue; 5354 FREE_LOCK(&lk); 5355 if (waitfor == MNT_NOWAIT) { 5356 bawrite(nbp); 5357 } else if ((error = bwrite(nbp)) != 0) { 5358 break; 5359 } 5360 ACQUIRE_LOCK(&lk); 5361 continue; 5362 5363 default: 5364 panic("softdep_sync_metadata: Unknown type %s", 5365 TYPENAME(wk->wk_type)); 5366 /* NOTREACHED */ 5367 } 5368 loop_end: 5369 /* We reach here only in error and unlocked */ 5370 if (error == 0) 5371 panic("softdep_sync_metadata: zero error"); 5372 bp->b_lock.lk_flags &= ~LK_CANRECURSE; 5373 bawrite(bp); 5374 return (error); 5375 } 5376 FREE_LOCK(&lk); 5377 VI_LOCK(vp); 5378 while ((nbp = TAILQ_NEXT(bp, b_bobufs)) != NULL) { 5379 nbp = getdirtybuf(nbp, VI_MTX(vp), MNT_WAIT); 5380 if (nbp) 5381 break; 5382 } 5383 VI_UNLOCK(vp); 5384 bp->b_lock.lk_flags &= ~LK_CANRECURSE; 5385 bawrite(bp); 5386 if (nbp != NULL) { 5387 bp = nbp; 5388 goto loop; 5389 } 5390 /* 5391 * The brief unlock is to allow any pent up dependency 5392 * processing to be done. Then proceed with the second pass. 5393 */ 5394 if (waitfor == MNT_NOWAIT) { 5395 waitfor = MNT_WAIT; 5396 goto top; 5397 } 5398 5399 /* 5400 * If we have managed to get rid of all the dirty buffers, 5401 * then we are done. For certain directories and block 5402 * devices, we may need to do further work. 5403 * 5404 * We must wait for any I/O in progress to finish so that 5405 * all potential buffers on the dirty list will be visible. 5406 */ 5407 VI_LOCK(vp); 5408 drain_output(vp); 5409 VI_UNLOCK(vp); 5410 return (0); 5411 } 5412 5413 /* 5414 * Flush the dependencies associated with an inodedep. 5415 * Called with splbio blocked. 5416 */ 5417 static int 5418 flush_inodedep_deps(mp, ino) 5419 struct mount *mp; 5420 ino_t ino; 5421 { 5422 struct inodedep *inodedep; 5423 int error, waitfor; 5424 5425 /* 5426 * This work is done in two passes. The first pass grabs most 5427 * of the buffers and begins asynchronously writing them. The 5428 * only way to wait for these asynchronous writes is to sleep 5429 * on the filesystem vnode which may stay busy for a long time 5430 * if the filesystem is active. So, instead, we make a second 5431 * pass over the dependencies blocking on each write. In the 5432 * usual case we will be blocking against a write that we 5433 * initiated, so when it is done the dependency will have been 5434 * resolved. Thus the second pass is expected to end quickly. 5435 * We give a brief window at the top of the loop to allow 5436 * any pending I/O to complete. 5437 */ 5438 for (error = 0, waitfor = MNT_NOWAIT; ; ) { 5439 if (error) 5440 return (error); 5441 FREE_LOCK(&lk); 5442 ACQUIRE_LOCK(&lk); 5443 if (inodedep_lookup(mp, ino, 0, &inodedep) == 0) 5444 return (0); 5445 if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) || 5446 flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) || 5447 flush_deplist(&inodedep->id_extupdt, waitfor, &error) || 5448 flush_deplist(&inodedep->id_newextupdt, waitfor, &error)) 5449 continue; 5450 /* 5451 * If pass2, we are done, otherwise do pass 2. 5452 */ 5453 if (waitfor == MNT_WAIT) 5454 break; 5455 waitfor = MNT_WAIT; 5456 } 5457 /* 5458 * Try freeing inodedep in case all dependencies have been removed. 5459 */ 5460 if (inodedep_lookup(mp, ino, 0, &inodedep) != 0) 5461 (void) free_inodedep(inodedep); 5462 return (0); 5463 } 5464 5465 /* 5466 * Flush an inode dependency list. 5467 * Called with splbio blocked. 5468 */ 5469 static int 5470 flush_deplist(listhead, waitfor, errorp) 5471 struct allocdirectlst *listhead; 5472 int waitfor; 5473 int *errorp; 5474 { 5475 struct allocdirect *adp; 5476 struct buf *bp; 5477 5478 mtx_assert(&lk, MA_OWNED); 5479 TAILQ_FOREACH(adp, listhead, ad_next) { 5480 if (adp->ad_state & DEPCOMPLETE) 5481 continue; 5482 bp = adp->ad_buf; 5483 bp = getdirtybuf(bp, &lk, waitfor); 5484 if (bp == NULL) { 5485 if (waitfor == MNT_NOWAIT) 5486 continue; 5487 return (1); 5488 } 5489 FREE_LOCK(&lk); 5490 if (waitfor == MNT_NOWAIT) { 5491 bawrite(bp); 5492 } else if ((*errorp = bwrite(bp)) != 0) { 5493 ACQUIRE_LOCK(&lk); 5494 return (1); 5495 } 5496 ACQUIRE_LOCK(&lk); 5497 return (1); 5498 } 5499 return (0); 5500 } 5501 5502 /* 5503 * Eliminate a pagedep dependency by flushing out all its diradd dependencies. 5504 * Called with splbio blocked. 5505 */ 5506 static int 5507 flush_pagedep_deps(pvp, mp, diraddhdp) 5508 struct vnode *pvp; 5509 struct mount *mp; 5510 struct diraddhd *diraddhdp; 5511 { 5512 struct inodedep *inodedep; 5513 struct ufsmount *ump; 5514 struct diradd *dap; 5515 struct vnode *vp; 5516 int error = 0; 5517 struct buf *bp; 5518 ino_t inum; 5519 struct worklist *wk; 5520 5521 ump = VFSTOUFS(mp); 5522 while ((dap = LIST_FIRST(diraddhdp)) != NULL) { 5523 /* 5524 * Flush ourselves if this directory entry 5525 * has a MKDIR_PARENT dependency. 5526 */ 5527 if (dap->da_state & MKDIR_PARENT) { 5528 FREE_LOCK(&lk); 5529 if ((error = ffs_update(pvp, 1)) != 0) 5530 break; 5531 ACQUIRE_LOCK(&lk); 5532 /* 5533 * If that cleared dependencies, go on to next. 5534 */ 5535 if (dap != LIST_FIRST(diraddhdp)) 5536 continue; 5537 if (dap->da_state & MKDIR_PARENT) 5538 panic("flush_pagedep_deps: MKDIR_PARENT"); 5539 } 5540 /* 5541 * A newly allocated directory must have its "." and 5542 * ".." entries written out before its name can be 5543 * committed in its parent. We do not want or need 5544 * the full semantics of a synchronous ffs_syncvnode as 5545 * that may end up here again, once for each directory 5546 * level in the filesystem. Instead, we push the blocks 5547 * and wait for them to clear. We have to fsync twice 5548 * because the first call may choose to defer blocks 5549 * that still have dependencies, but deferral will 5550 * happen at most once. 5551 */ 5552 inum = dap->da_newinum; 5553 if (dap->da_state & MKDIR_BODY) { 5554 FREE_LOCK(&lk); 5555 if ((error = ffs_vget(mp, inum, LK_EXCLUSIVE, &vp))) 5556 break; 5557 if ((error=ffs_syncvnode(vp, MNT_NOWAIT)) || 5558 (error=ffs_syncvnode(vp, MNT_NOWAIT))) { 5559 vput(vp); 5560 break; 5561 } 5562 VI_LOCK(vp); 5563 drain_output(vp); 5564 /* 5565 * If first block is still dirty with a D_MKDIR 5566 * dependency then it needs to be written now. 5567 */ 5568 for (;;) { 5569 error = 0; 5570 bp = gbincore(&vp->v_bufobj, 0); 5571 if (bp == NULL) 5572 break; /* First block not present */ 5573 error = BUF_LOCK(bp, 5574 LK_EXCLUSIVE | 5575 LK_SLEEPFAIL | 5576 LK_INTERLOCK, 5577 VI_MTX(vp)); 5578 VI_LOCK(vp); 5579 if (error == ENOLCK) 5580 continue; /* Slept, retry */ 5581 if (error != 0) 5582 break; /* Failed */ 5583 if ((bp->b_flags & B_DELWRI) == 0) { 5584 BUF_UNLOCK(bp); 5585 break; /* Buffer not dirty */ 5586 } 5587 for (wk = LIST_FIRST(&bp->b_dep); 5588 wk != NULL; 5589 wk = LIST_NEXT(wk, wk_list)) 5590 if (wk->wk_type == D_MKDIR) 5591 break; 5592 if (wk == NULL) 5593 BUF_UNLOCK(bp); /* Dependency gone */ 5594 else { 5595 /* 5596 * D_MKDIR dependency remains, 5597 * must write buffer to stable 5598 * storage. 5599 */ 5600 VI_UNLOCK(vp); 5601 bremfree(bp); 5602 error = bwrite(bp); 5603 VI_LOCK(vp); 5604 } 5605 break; 5606 } 5607 VI_UNLOCK(vp); 5608 vput(vp); 5609 if (error != 0) 5610 break; /* Flushing of first block failed */ 5611 ACQUIRE_LOCK(&lk); 5612 /* 5613 * If that cleared dependencies, go on to next. 5614 */ 5615 if (dap != LIST_FIRST(diraddhdp)) 5616 continue; 5617 if (dap->da_state & MKDIR_BODY) 5618 panic("flush_pagedep_deps: MKDIR_BODY"); 5619 } 5620 /* 5621 * Flush the inode on which the directory entry depends. 5622 * Having accounted for MKDIR_PARENT and MKDIR_BODY above, 5623 * the only remaining dependency is that the updated inode 5624 * count must get pushed to disk. The inode has already 5625 * been pushed into its inode buffer (via VOP_UPDATE) at 5626 * the time of the reference count change. So we need only 5627 * locate that buffer, ensure that there will be no rollback 5628 * caused by a bitmap dependency, then write the inode buffer. 5629 */ 5630 retry: 5631 if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0) 5632 panic("flush_pagedep_deps: lost inode"); 5633 /* 5634 * If the inode still has bitmap dependencies, 5635 * push them to disk. 5636 */ 5637 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 5638 bp = inodedep->id_buf; 5639 bp = getdirtybuf(bp, &lk, MNT_WAIT); 5640 if (bp == NULL) 5641 goto retry; 5642 FREE_LOCK(&lk); 5643 if ((error = bwrite(bp)) != 0) 5644 break; 5645 ACQUIRE_LOCK(&lk); 5646 if (dap != LIST_FIRST(diraddhdp)) 5647 continue; 5648 } 5649 /* 5650 * If the inode is still sitting in a buffer waiting 5651 * to be written, push it to disk. 5652 */ 5653 FREE_LOCK(&lk); 5654 if ((error = bread(ump->um_devvp, 5655 fsbtodb(ump->um_fs, ino_to_fsba(ump->um_fs, inum)), 5656 (int)ump->um_fs->fs_bsize, NOCRED, &bp)) != 0) { 5657 brelse(bp); 5658 break; 5659 } 5660 if ((error = bwrite(bp)) != 0) 5661 break; 5662 ACQUIRE_LOCK(&lk); 5663 /* 5664 * If we have failed to get rid of all the dependencies 5665 * then something is seriously wrong. 5666 */ 5667 if (dap == LIST_FIRST(diraddhdp)) 5668 panic("flush_pagedep_deps: flush failed"); 5669 } 5670 if (error) 5671 ACQUIRE_LOCK(&lk); 5672 return (error); 5673 } 5674 5675 /* 5676 * A large burst of file addition or deletion activity can drive the 5677 * memory load excessively high. First attempt to slow things down 5678 * using the techniques below. If that fails, this routine requests 5679 * the offending operations to fall back to running synchronously 5680 * until the memory load returns to a reasonable level. 5681 */ 5682 int 5683 softdep_slowdown(vp) 5684 struct vnode *vp; 5685 { 5686 int max_softdeps_hard; 5687 5688 ACQUIRE_LOCK(&lk); 5689 max_softdeps_hard = max_softdeps * 11 / 10; 5690 if (num_dirrem < max_softdeps_hard / 2 && 5691 num_inodedep < max_softdeps_hard && 5692 VFSTOUFS(vp->v_mount)->um_numindirdeps < maxindirdeps) { 5693 FREE_LOCK(&lk); 5694 return (0); 5695 } 5696 if (VFSTOUFS(vp->v_mount)->um_numindirdeps >= maxindirdeps) 5697 softdep_speedup(); 5698 stat_sync_limit_hit += 1; 5699 FREE_LOCK(&lk); 5700 return (1); 5701 } 5702 5703 /* 5704 * Called by the allocation routines when they are about to fail 5705 * in the hope that we can free up some disk space. 5706 * 5707 * First check to see if the work list has anything on it. If it has, 5708 * clean up entries until we successfully free some space. Because this 5709 * process holds inodes locked, we cannot handle any remove requests 5710 * that might block on a locked inode as that could lead to deadlock. 5711 * If the worklist yields no free space, encourage the syncer daemon 5712 * to help us. In no event will we try for longer than tickdelay seconds. 5713 */ 5714 int 5715 softdep_request_cleanup(fs, vp) 5716 struct fs *fs; 5717 struct vnode *vp; 5718 { 5719 struct ufsmount *ump; 5720 long starttime; 5721 ufs2_daddr_t needed; 5722 int error; 5723 5724 ump = VTOI(vp)->i_ump; 5725 mtx_assert(UFS_MTX(ump), MA_OWNED); 5726 needed = fs->fs_cstotal.cs_nbfree + fs->fs_contigsumsize; 5727 starttime = time_second + tickdelay; 5728 /* 5729 * If we are being called because of a process doing a 5730 * copy-on-write, then it is not safe to update the vnode 5731 * as we may recurse into the copy-on-write routine. 5732 */ 5733 if (!(curthread->td_pflags & TDP_COWINPROGRESS)) { 5734 UFS_UNLOCK(ump); 5735 error = ffs_update(vp, 1); 5736 UFS_LOCK(ump); 5737 if (error != 0) 5738 return (0); 5739 } 5740 while (fs->fs_pendingblocks > 0 && fs->fs_cstotal.cs_nbfree <= needed) { 5741 if (time_second > starttime) 5742 return (0); 5743 UFS_UNLOCK(ump); 5744 ACQUIRE_LOCK(&lk); 5745 if (ump->softdep_on_worklist > 0 && 5746 process_worklist_item(UFSTOVFS(ump), LK_NOWAIT) != -1) { 5747 stat_worklist_push += 1; 5748 FREE_LOCK(&lk); 5749 UFS_LOCK(ump); 5750 continue; 5751 } 5752 request_cleanup(UFSTOVFS(ump), FLUSH_REMOVE_WAIT); 5753 FREE_LOCK(&lk); 5754 UFS_LOCK(ump); 5755 } 5756 return (1); 5757 } 5758 5759 /* 5760 * If memory utilization has gotten too high, deliberately slow things 5761 * down and speed up the I/O processing. 5762 */ 5763 extern struct thread *syncertd; 5764 static int 5765 request_cleanup(mp, resource) 5766 struct mount *mp; 5767 int resource; 5768 { 5769 struct thread *td = curthread; 5770 struct ufsmount *ump; 5771 5772 mtx_assert(&lk, MA_OWNED); 5773 /* 5774 * We never hold up the filesystem syncer or buf daemon. 5775 */ 5776 if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF)) 5777 return (0); 5778 ump = VFSTOUFS(mp); 5779 /* 5780 * First check to see if the work list has gotten backlogged. 5781 * If it has, co-opt this process to help clean up two entries. 5782 * Because this process may hold inodes locked, we cannot 5783 * handle any remove requests that might block on a locked 5784 * inode as that could lead to deadlock. We set TDP_SOFTDEP 5785 * to avoid recursively processing the worklist. 5786 */ 5787 if (ump->softdep_on_worklist > max_softdeps / 10) { 5788 td->td_pflags |= TDP_SOFTDEP; 5789 process_worklist_item(mp, LK_NOWAIT); 5790 process_worklist_item(mp, LK_NOWAIT); 5791 td->td_pflags &= ~TDP_SOFTDEP; 5792 stat_worklist_push += 2; 5793 return(1); 5794 } 5795 /* 5796 * Next, we attempt to speed up the syncer process. If that 5797 * is successful, then we allow the process to continue. 5798 */ 5799 if (softdep_speedup() && resource != FLUSH_REMOVE_WAIT) 5800 return(0); 5801 /* 5802 * If we are resource constrained on inode dependencies, try 5803 * flushing some dirty inodes. Otherwise, we are constrained 5804 * by file deletions, so try accelerating flushes of directories 5805 * with removal dependencies. We would like to do the cleanup 5806 * here, but we probably hold an inode locked at this point and 5807 * that might deadlock against one that we try to clean. So, 5808 * the best that we can do is request the syncer daemon to do 5809 * the cleanup for us. 5810 */ 5811 switch (resource) { 5812 5813 case FLUSH_INODES: 5814 stat_ino_limit_push += 1; 5815 req_clear_inodedeps += 1; 5816 stat_countp = &stat_ino_limit_hit; 5817 break; 5818 5819 case FLUSH_REMOVE: 5820 case FLUSH_REMOVE_WAIT: 5821 stat_blk_limit_push += 1; 5822 req_clear_remove += 1; 5823 stat_countp = &stat_blk_limit_hit; 5824 break; 5825 5826 default: 5827 panic("request_cleanup: unknown type"); 5828 } 5829 /* 5830 * Hopefully the syncer daemon will catch up and awaken us. 5831 * We wait at most tickdelay before proceeding in any case. 5832 */ 5833 proc_waiting += 1; 5834 if (handle.callout == NULL) 5835 handle = timeout(pause_timer, 0, tickdelay > 2 ? tickdelay : 2); 5836 msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0); 5837 proc_waiting -= 1; 5838 return (1); 5839 } 5840 5841 /* 5842 * Awaken processes pausing in request_cleanup and clear proc_waiting 5843 * to indicate that there is no longer a timer running. 5844 */ 5845 static void 5846 pause_timer(arg) 5847 void *arg; 5848 { 5849 5850 ACQUIRE_LOCK(&lk); 5851 *stat_countp += 1; 5852 wakeup_one(&proc_waiting); 5853 if (proc_waiting > 0) 5854 handle = timeout(pause_timer, 0, tickdelay > 2 ? tickdelay : 2); 5855 else 5856 handle.callout = NULL; 5857 FREE_LOCK(&lk); 5858 } 5859 5860 /* 5861 * Flush out a directory with at least one removal dependency in an effort to 5862 * reduce the number of dirrem, freefile, and freeblks dependency structures. 5863 */ 5864 static void 5865 clear_remove(td) 5866 struct thread *td; 5867 { 5868 struct pagedep_hashhead *pagedephd; 5869 struct pagedep *pagedep; 5870 static int next = 0; 5871 struct mount *mp; 5872 struct vnode *vp; 5873 int error, cnt; 5874 ino_t ino; 5875 5876 mtx_assert(&lk, MA_OWNED); 5877 5878 for (cnt = 0; cnt < pagedep_hash; cnt++) { 5879 pagedephd = &pagedep_hashtbl[next++]; 5880 if (next >= pagedep_hash) 5881 next = 0; 5882 LIST_FOREACH(pagedep, pagedephd, pd_hash) { 5883 if (LIST_FIRST(&pagedep->pd_dirremhd) == NULL) 5884 continue; 5885 mp = pagedep->pd_list.wk_mp; 5886 ino = pagedep->pd_ino; 5887 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 5888 continue; 5889 FREE_LOCK(&lk); 5890 if ((error = ffs_vget(mp, ino, LK_EXCLUSIVE, &vp))) { 5891 softdep_error("clear_remove: vget", error); 5892 vn_finished_write(mp); 5893 ACQUIRE_LOCK(&lk); 5894 return; 5895 } 5896 if ((error = ffs_syncvnode(vp, MNT_NOWAIT))) 5897 softdep_error("clear_remove: fsync", error); 5898 VI_LOCK(vp); 5899 drain_output(vp); 5900 VI_UNLOCK(vp); 5901 vput(vp); 5902 vn_finished_write(mp); 5903 ACQUIRE_LOCK(&lk); 5904 return; 5905 } 5906 } 5907 } 5908 5909 /* 5910 * Clear out a block of dirty inodes in an effort to reduce 5911 * the number of inodedep dependency structures. 5912 */ 5913 static void 5914 clear_inodedeps(td) 5915 struct thread *td; 5916 { 5917 struct inodedep_hashhead *inodedephd; 5918 struct inodedep *inodedep; 5919 static int next = 0; 5920 struct mount *mp; 5921 struct vnode *vp; 5922 struct fs *fs; 5923 int error, cnt; 5924 ino_t firstino, lastino, ino; 5925 5926 mtx_assert(&lk, MA_OWNED); 5927 /* 5928 * Pick a random inode dependency to be cleared. 5929 * We will then gather up all the inodes in its block 5930 * that have dependencies and flush them out. 5931 */ 5932 for (cnt = 0; cnt < inodedep_hash; cnt++) { 5933 inodedephd = &inodedep_hashtbl[next++]; 5934 if (next >= inodedep_hash) 5935 next = 0; 5936 if ((inodedep = LIST_FIRST(inodedephd)) != NULL) 5937 break; 5938 } 5939 if (inodedep == NULL) 5940 return; 5941 fs = inodedep->id_fs; 5942 mp = inodedep->id_list.wk_mp; 5943 /* 5944 * Find the last inode in the block with dependencies. 5945 */ 5946 firstino = inodedep->id_ino & ~(INOPB(fs) - 1); 5947 for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--) 5948 if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0) 5949 break; 5950 /* 5951 * Asynchronously push all but the last inode with dependencies. 5952 * Synchronously push the last inode with dependencies to ensure 5953 * that the inode block gets written to free up the inodedeps. 5954 */ 5955 for (ino = firstino; ino <= lastino; ino++) { 5956 if (inodedep_lookup(mp, ino, 0, &inodedep) == 0) 5957 continue; 5958 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 5959 continue; 5960 FREE_LOCK(&lk); 5961 if ((error = ffs_vget(mp, ino, LK_EXCLUSIVE, &vp)) != 0) { 5962 softdep_error("clear_inodedeps: vget", error); 5963 vn_finished_write(mp); 5964 ACQUIRE_LOCK(&lk); 5965 return; 5966 } 5967 if (ino == lastino) { 5968 if ((error = ffs_syncvnode(vp, MNT_WAIT))) 5969 softdep_error("clear_inodedeps: fsync1", error); 5970 } else { 5971 if ((error = ffs_syncvnode(vp, MNT_NOWAIT))) 5972 softdep_error("clear_inodedeps: fsync2", error); 5973 VI_LOCK(vp); 5974 drain_output(vp); 5975 VI_UNLOCK(vp); 5976 } 5977 vput(vp); 5978 vn_finished_write(mp); 5979 ACQUIRE_LOCK(&lk); 5980 } 5981 } 5982 5983 /* 5984 * Function to determine if the buffer has outstanding dependencies 5985 * that will cause a roll-back if the buffer is written. If wantcount 5986 * is set, return number of dependencies, otherwise just yes or no. 5987 */ 5988 static int 5989 softdep_count_dependencies(bp, wantcount) 5990 struct buf *bp; 5991 int wantcount; 5992 { 5993 struct worklist *wk; 5994 struct inodedep *inodedep; 5995 struct indirdep *indirdep; 5996 struct allocindir *aip; 5997 struct pagedep *pagedep; 5998 struct diradd *dap; 5999 int i, retval; 6000 6001 retval = 0; 6002 ACQUIRE_LOCK(&lk); 6003 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 6004 switch (wk->wk_type) { 6005 6006 case D_INODEDEP: 6007 inodedep = WK_INODEDEP(wk); 6008 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 6009 /* bitmap allocation dependency */ 6010 retval += 1; 6011 if (!wantcount) 6012 goto out; 6013 } 6014 if (TAILQ_FIRST(&inodedep->id_inoupdt)) { 6015 /* direct block pointer dependency */ 6016 retval += 1; 6017 if (!wantcount) 6018 goto out; 6019 } 6020 if (TAILQ_FIRST(&inodedep->id_extupdt)) { 6021 /* direct block pointer dependency */ 6022 retval += 1; 6023 if (!wantcount) 6024 goto out; 6025 } 6026 continue; 6027 6028 case D_INDIRDEP: 6029 indirdep = WK_INDIRDEP(wk); 6030 6031 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) { 6032 /* indirect block pointer dependency */ 6033 retval += 1; 6034 if (!wantcount) 6035 goto out; 6036 } 6037 continue; 6038 6039 case D_PAGEDEP: 6040 pagedep = WK_PAGEDEP(wk); 6041 for (i = 0; i < DAHASHSZ; i++) { 6042 6043 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 6044 /* directory entry dependency */ 6045 retval += 1; 6046 if (!wantcount) 6047 goto out; 6048 } 6049 } 6050 continue; 6051 6052 case D_BMSAFEMAP: 6053 case D_ALLOCDIRECT: 6054 case D_ALLOCINDIR: 6055 case D_MKDIR: 6056 /* never a dependency on these blocks */ 6057 continue; 6058 6059 default: 6060 panic("softdep_check_for_rollback: Unexpected type %s", 6061 TYPENAME(wk->wk_type)); 6062 /* NOTREACHED */ 6063 } 6064 } 6065 out: 6066 FREE_LOCK(&lk); 6067 return retval; 6068 } 6069 6070 /* 6071 * Acquire exclusive access to a buffer. 6072 * Must be called with a locked mtx parameter. 6073 * Return acquired buffer or NULL on failure. 6074 */ 6075 static struct buf * 6076 getdirtybuf(bp, mtx, waitfor) 6077 struct buf *bp; 6078 struct mtx *mtx; 6079 int waitfor; 6080 { 6081 int error; 6082 6083 mtx_assert(mtx, MA_OWNED); 6084 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) { 6085 if (waitfor != MNT_WAIT) 6086 return (NULL); 6087 error = BUF_LOCK(bp, 6088 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, mtx); 6089 /* 6090 * Even if we sucessfully acquire bp here, we have dropped 6091 * mtx, which may violates our guarantee. 6092 */ 6093 if (error == 0) 6094 BUF_UNLOCK(bp); 6095 else if (error != ENOLCK) 6096 panic("getdirtybuf: inconsistent lock: %d", error); 6097 mtx_lock(mtx); 6098 return (NULL); 6099 } 6100 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) { 6101 if (mtx == &lk && waitfor == MNT_WAIT) { 6102 mtx_unlock(mtx); 6103 BO_LOCK(bp->b_bufobj); 6104 BUF_UNLOCK(bp); 6105 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) { 6106 bp->b_vflags |= BV_BKGRDWAIT; 6107 msleep(&bp->b_xflags, BO_MTX(bp->b_bufobj), 6108 PRIBIO | PDROP, "getbuf", 0); 6109 } else 6110 BO_UNLOCK(bp->b_bufobj); 6111 mtx_lock(mtx); 6112 return (NULL); 6113 } 6114 BUF_UNLOCK(bp); 6115 if (waitfor != MNT_WAIT) 6116 return (NULL); 6117 /* 6118 * The mtx argument must be bp->b_vp's mutex in 6119 * this case. 6120 */ 6121 #ifdef DEBUG_VFS_LOCKS 6122 if (bp->b_vp->v_type != VCHR) 6123 ASSERT_VI_LOCKED(bp->b_vp, "getdirtybuf"); 6124 #endif 6125 bp->b_vflags |= BV_BKGRDWAIT; 6126 msleep(&bp->b_xflags, mtx, PRIBIO, "getbuf", 0); 6127 return (NULL); 6128 } 6129 if ((bp->b_flags & B_DELWRI) == 0) { 6130 BUF_UNLOCK(bp); 6131 return (NULL); 6132 } 6133 bremfree(bp); 6134 return (bp); 6135 } 6136 6137 6138 /* 6139 * Check if it is safe to suspend the file system now. On entry, 6140 * the vnode interlock for devvp should be held. Return 0 with 6141 * the mount interlock held if the file system can be suspended now, 6142 * otherwise return EAGAIN with the mount interlock held. 6143 */ 6144 int 6145 softdep_check_suspend(struct mount *mp, 6146 struct vnode *devvp, 6147 int softdep_deps, 6148 int softdep_accdeps, 6149 int secondary_writes, 6150 int secondary_accwrites) 6151 { 6152 struct bufobj *bo; 6153 struct ufsmount *ump; 6154 int error; 6155 6156 ASSERT_VI_LOCKED(devvp, "softdep_check_suspend"); 6157 ump = VFSTOUFS(mp); 6158 bo = &devvp->v_bufobj; 6159 6160 for (;;) { 6161 if (!TRY_ACQUIRE_LOCK(&lk)) { 6162 VI_UNLOCK(devvp); 6163 ACQUIRE_LOCK(&lk); 6164 FREE_LOCK(&lk); 6165 VI_LOCK(devvp); 6166 continue; 6167 } 6168 if (!MNT_ITRYLOCK(mp)) { 6169 FREE_LOCK(&lk); 6170 VI_UNLOCK(devvp); 6171 MNT_ILOCK(mp); 6172 MNT_IUNLOCK(mp); 6173 VI_LOCK(devvp); 6174 continue; 6175 } 6176 if (mp->mnt_secondary_writes != 0) { 6177 FREE_LOCK(&lk); 6178 VI_UNLOCK(devvp); 6179 msleep(&mp->mnt_secondary_writes, 6180 MNT_MTX(mp), 6181 (PUSER - 1) | PDROP, "secwr", 0); 6182 VI_LOCK(devvp); 6183 continue; 6184 } 6185 break; 6186 } 6187 6188 /* 6189 * Reasons for needing more work before suspend: 6190 * - Dirty buffers on devvp. 6191 * - Softdep activity occurred after start of vnode sync loop 6192 * - Secondary writes occurred after start of vnode sync loop 6193 */ 6194 error = 0; 6195 if (bo->bo_numoutput > 0 || 6196 bo->bo_dirty.bv_cnt > 0 || 6197 softdep_deps != 0 || 6198 ump->softdep_deps != 0 || 6199 softdep_accdeps != ump->softdep_accdeps || 6200 secondary_writes != 0 || 6201 mp->mnt_secondary_writes != 0 || 6202 secondary_accwrites != mp->mnt_secondary_accwrites) 6203 error = EAGAIN; 6204 FREE_LOCK(&lk); 6205 VI_UNLOCK(devvp); 6206 return (error); 6207 } 6208 6209 6210 /* 6211 * Get the number of dependency structures for the file system, both 6212 * the current number and the total number allocated. These will 6213 * later be used to detect that softdep processing has occurred. 6214 */ 6215 void 6216 softdep_get_depcounts(struct mount *mp, 6217 int *softdep_depsp, 6218 int *softdep_accdepsp) 6219 { 6220 struct ufsmount *ump; 6221 6222 ump = VFSTOUFS(mp); 6223 ACQUIRE_LOCK(&lk); 6224 *softdep_depsp = ump->softdep_deps; 6225 *softdep_accdepsp = ump->softdep_accdeps; 6226 FREE_LOCK(&lk); 6227 } 6228 6229 /* 6230 * Wait for pending output on a vnode to complete. 6231 * Must be called with vnode lock and interlock locked. 6232 * 6233 * XXX: Should just be a call to bufobj_wwait(). 6234 */ 6235 static void 6236 drain_output(vp) 6237 struct vnode *vp; 6238 { 6239 ASSERT_VOP_LOCKED(vp, "drain_output"); 6240 ASSERT_VI_LOCKED(vp, "drain_output"); 6241 6242 while (vp->v_bufobj.bo_numoutput) { 6243 vp->v_bufobj.bo_flag |= BO_WWAIT; 6244 msleep((caddr_t)&vp->v_bufobj.bo_numoutput, 6245 VI_MTX(vp), PRIBIO + 1, "drainvp", 0); 6246 } 6247 } 6248 6249 /* 6250 * Called whenever a buffer that is being invalidated or reallocated 6251 * contains dependencies. This should only happen if an I/O error has 6252 * occurred. The routine is called with the buffer locked. 6253 */ 6254 static void 6255 softdep_deallocate_dependencies(bp) 6256 struct buf *bp; 6257 { 6258 6259 if ((bp->b_ioflags & BIO_ERROR) == 0) 6260 panic("softdep_deallocate_dependencies: dangling deps"); 6261 softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error); 6262 panic("softdep_deallocate_dependencies: unrecovered I/O error"); 6263 } 6264 6265 /* 6266 * Function to handle asynchronous write errors in the filesystem. 6267 */ 6268 static void 6269 softdep_error(func, error) 6270 char *func; 6271 int error; 6272 { 6273 6274 /* XXX should do something better! */ 6275 printf("%s: got error %d while accessing filesystem\n", func, error); 6276 } 6277 6278 #endif /* SOFTUPDATES */ 6279