1 /*- 2 * Copyright 1998, 2000 Marshall Kirk McKusick. 3 * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org> 4 * All rights reserved. 5 * 6 * The soft updates code is derived from the appendix of a University 7 * of Michigan technical report (Gregory R. Ganger and Yale N. Patt, 8 * "Soft Updates: A Solution to the Metadata Update Problem in File 9 * Systems", CSE-TR-254-95, August 1995). 10 * 11 * Further information about soft updates can be obtained from: 12 * 13 * Marshall Kirk McKusick http://www.mckusick.com/softdep/ 14 * 1614 Oxford Street mckusick@mckusick.com 15 * Berkeley, CA 94709-1608 +1-510-843-9542 16 * USA 17 * 18 * Redistribution and use in source and binary forms, with or without 19 * modification, are permitted provided that the following conditions 20 * are met: 21 * 22 * 1. Redistributions of source code must retain the above copyright 23 * notice, this list of conditions and the following disclaimer. 24 * 2. Redistributions in binary form must reproduce the above copyright 25 * notice, this list of conditions and the following disclaimer in the 26 * documentation and/or other materials provided with the distribution. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 29 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 31 * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, 32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 34 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 37 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 38 * 39 * from: @(#)ffs_softdep.c 9.59 (McKusick) 6/21/00 40 */ 41 42 #include <sys/cdefs.h> 43 __FBSDID("$FreeBSD$"); 44 45 #include "opt_ffs.h" 46 #include "opt_quota.h" 47 #include "opt_ddb.h" 48 49 /* 50 * For now we want the safety net that the DEBUG flag provides. 51 */ 52 #ifndef DEBUG 53 #define DEBUG 54 #endif 55 56 #include <sys/param.h> 57 #include <sys/kernel.h> 58 #include <sys/systm.h> 59 #include <sys/bio.h> 60 #include <sys/buf.h> 61 #include <sys/kdb.h> 62 #include <sys/kthread.h> 63 #include <sys/ktr.h> 64 #include <sys/limits.h> 65 #include <sys/lock.h> 66 #include <sys/malloc.h> 67 #include <sys/mount.h> 68 #include <sys/mutex.h> 69 #include <sys/namei.h> 70 #include <sys/priv.h> 71 #include <sys/proc.h> 72 #include <sys/rwlock.h> 73 #include <sys/stat.h> 74 #include <sys/sysctl.h> 75 #include <sys/syslog.h> 76 #include <sys/vnode.h> 77 #include <sys/conf.h> 78 79 #include <ufs/ufs/dir.h> 80 #include <ufs/ufs/extattr.h> 81 #include <ufs/ufs/quota.h> 82 #include <ufs/ufs/inode.h> 83 #include <ufs/ufs/ufsmount.h> 84 #include <ufs/ffs/fs.h> 85 #include <ufs/ffs/softdep.h> 86 #include <ufs/ffs/ffs_extern.h> 87 #include <ufs/ufs/ufs_extern.h> 88 89 #include <vm/vm.h> 90 #include <vm/vm_extern.h> 91 #include <vm/vm_object.h> 92 93 #include <geom/geom.h> 94 95 #include <ddb/ddb.h> 96 97 #define KTR_SUJ 0 /* Define to KTR_SPARE. */ 98 99 #ifndef SOFTUPDATES 100 101 int 102 softdep_flushfiles(oldmnt, flags, td) 103 struct mount *oldmnt; 104 int flags; 105 struct thread *td; 106 { 107 108 panic("softdep_flushfiles called"); 109 } 110 111 int 112 softdep_mount(devvp, mp, fs, cred) 113 struct vnode *devvp; 114 struct mount *mp; 115 struct fs *fs; 116 struct ucred *cred; 117 { 118 119 return (0); 120 } 121 122 void 123 softdep_initialize() 124 { 125 126 return; 127 } 128 129 void 130 softdep_uninitialize() 131 { 132 133 return; 134 } 135 136 void 137 softdep_unmount(mp) 138 struct mount *mp; 139 { 140 141 panic("softdep_unmount called"); 142 } 143 144 void 145 softdep_setup_sbupdate(ump, fs, bp) 146 struct ufsmount *ump; 147 struct fs *fs; 148 struct buf *bp; 149 { 150 151 panic("softdep_setup_sbupdate called"); 152 } 153 154 void 155 softdep_setup_inomapdep(bp, ip, newinum, mode) 156 struct buf *bp; 157 struct inode *ip; 158 ino_t newinum; 159 int mode; 160 { 161 162 panic("softdep_setup_inomapdep called"); 163 } 164 165 void 166 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags) 167 struct buf *bp; 168 struct mount *mp; 169 ufs2_daddr_t newblkno; 170 int frags; 171 int oldfrags; 172 { 173 174 panic("softdep_setup_blkmapdep called"); 175 } 176 177 void 178 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 179 struct inode *ip; 180 ufs_lbn_t lbn; 181 ufs2_daddr_t newblkno; 182 ufs2_daddr_t oldblkno; 183 long newsize; 184 long oldsize; 185 struct buf *bp; 186 { 187 188 panic("softdep_setup_allocdirect called"); 189 } 190 191 void 192 softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 193 struct inode *ip; 194 ufs_lbn_t lbn; 195 ufs2_daddr_t newblkno; 196 ufs2_daddr_t oldblkno; 197 long newsize; 198 long oldsize; 199 struct buf *bp; 200 { 201 202 panic("softdep_setup_allocext called"); 203 } 204 205 void 206 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 207 struct inode *ip; 208 ufs_lbn_t lbn; 209 struct buf *bp; 210 int ptrno; 211 ufs2_daddr_t newblkno; 212 ufs2_daddr_t oldblkno; 213 struct buf *nbp; 214 { 215 216 panic("softdep_setup_allocindir_page called"); 217 } 218 219 void 220 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 221 struct buf *nbp; 222 struct inode *ip; 223 struct buf *bp; 224 int ptrno; 225 ufs2_daddr_t newblkno; 226 { 227 228 panic("softdep_setup_allocindir_meta called"); 229 } 230 231 void 232 softdep_journal_freeblocks(ip, cred, length, flags) 233 struct inode *ip; 234 struct ucred *cred; 235 off_t length; 236 int flags; 237 { 238 239 panic("softdep_journal_freeblocks called"); 240 } 241 242 void 243 softdep_journal_fsync(ip) 244 struct inode *ip; 245 { 246 247 panic("softdep_journal_fsync called"); 248 } 249 250 void 251 softdep_setup_freeblocks(ip, length, flags) 252 struct inode *ip; 253 off_t length; 254 int flags; 255 { 256 257 panic("softdep_setup_freeblocks called"); 258 } 259 260 void 261 softdep_freefile(pvp, ino, mode) 262 struct vnode *pvp; 263 ino_t ino; 264 int mode; 265 { 266 267 panic("softdep_freefile called"); 268 } 269 270 int 271 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk) 272 struct buf *bp; 273 struct inode *dp; 274 off_t diroffset; 275 ino_t newinum; 276 struct buf *newdirbp; 277 int isnewblk; 278 { 279 280 panic("softdep_setup_directory_add called"); 281 } 282 283 void 284 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize) 285 struct buf *bp; 286 struct inode *dp; 287 caddr_t base; 288 caddr_t oldloc; 289 caddr_t newloc; 290 int entrysize; 291 { 292 293 panic("softdep_change_directoryentry_offset called"); 294 } 295 296 void 297 softdep_setup_remove(bp, dp, ip, isrmdir) 298 struct buf *bp; 299 struct inode *dp; 300 struct inode *ip; 301 int isrmdir; 302 { 303 304 panic("softdep_setup_remove called"); 305 } 306 307 void 308 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 309 struct buf *bp; 310 struct inode *dp; 311 struct inode *ip; 312 ino_t newinum; 313 int isrmdir; 314 { 315 316 panic("softdep_setup_directory_change called"); 317 } 318 319 void 320 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd) 321 struct mount *mp; 322 struct buf *bp; 323 ufs2_daddr_t blkno; 324 int frags; 325 struct workhead *wkhd; 326 { 327 328 panic("%s called", __FUNCTION__); 329 } 330 331 void 332 softdep_setup_inofree(mp, bp, ino, wkhd) 333 struct mount *mp; 334 struct buf *bp; 335 ino_t ino; 336 struct workhead *wkhd; 337 { 338 339 panic("%s called", __FUNCTION__); 340 } 341 342 void 343 softdep_setup_unlink(dp, ip) 344 struct inode *dp; 345 struct inode *ip; 346 { 347 348 panic("%s called", __FUNCTION__); 349 } 350 351 void 352 softdep_setup_link(dp, ip) 353 struct inode *dp; 354 struct inode *ip; 355 { 356 357 panic("%s called", __FUNCTION__); 358 } 359 360 void 361 softdep_revert_link(dp, ip) 362 struct inode *dp; 363 struct inode *ip; 364 { 365 366 panic("%s called", __FUNCTION__); 367 } 368 369 void 370 softdep_setup_rmdir(dp, ip) 371 struct inode *dp; 372 struct inode *ip; 373 { 374 375 panic("%s called", __FUNCTION__); 376 } 377 378 void 379 softdep_revert_rmdir(dp, ip) 380 struct inode *dp; 381 struct inode *ip; 382 { 383 384 panic("%s called", __FUNCTION__); 385 } 386 387 void 388 softdep_setup_create(dp, ip) 389 struct inode *dp; 390 struct inode *ip; 391 { 392 393 panic("%s called", __FUNCTION__); 394 } 395 396 void 397 softdep_revert_create(dp, ip) 398 struct inode *dp; 399 struct inode *ip; 400 { 401 402 panic("%s called", __FUNCTION__); 403 } 404 405 void 406 softdep_setup_mkdir(dp, ip) 407 struct inode *dp; 408 struct inode *ip; 409 { 410 411 panic("%s called", __FUNCTION__); 412 } 413 414 void 415 softdep_revert_mkdir(dp, ip) 416 struct inode *dp; 417 struct inode *ip; 418 { 419 420 panic("%s called", __FUNCTION__); 421 } 422 423 void 424 softdep_setup_dotdot_link(dp, ip) 425 struct inode *dp; 426 struct inode *ip; 427 { 428 429 panic("%s called", __FUNCTION__); 430 } 431 432 int 433 softdep_prealloc(vp, waitok) 434 struct vnode *vp; 435 int waitok; 436 { 437 438 panic("%s called", __FUNCTION__); 439 } 440 441 int 442 softdep_journal_lookup(mp, vpp) 443 struct mount *mp; 444 struct vnode **vpp; 445 { 446 447 return (ENOENT); 448 } 449 450 void 451 softdep_change_linkcnt(ip) 452 struct inode *ip; 453 { 454 455 panic("softdep_change_linkcnt called"); 456 } 457 458 void 459 softdep_load_inodeblock(ip) 460 struct inode *ip; 461 { 462 463 panic("softdep_load_inodeblock called"); 464 } 465 466 void 467 softdep_update_inodeblock(ip, bp, waitfor) 468 struct inode *ip; 469 struct buf *bp; 470 int waitfor; 471 { 472 473 panic("softdep_update_inodeblock called"); 474 } 475 476 int 477 softdep_fsync(vp) 478 struct vnode *vp; /* the "in_core" copy of the inode */ 479 { 480 481 return (0); 482 } 483 484 void 485 softdep_fsync_mountdev(vp) 486 struct vnode *vp; 487 { 488 489 return; 490 } 491 492 int 493 softdep_flushworklist(oldmnt, countp, td) 494 struct mount *oldmnt; 495 int *countp; 496 struct thread *td; 497 { 498 499 *countp = 0; 500 return (0); 501 } 502 503 int 504 softdep_sync_metadata(struct vnode *vp) 505 { 506 507 panic("softdep_sync_metadata called"); 508 } 509 510 int 511 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor) 512 { 513 514 panic("softdep_sync_buf called"); 515 } 516 517 int 518 softdep_slowdown(vp) 519 struct vnode *vp; 520 { 521 522 panic("softdep_slowdown called"); 523 } 524 525 int 526 softdep_request_cleanup(fs, vp, cred, resource) 527 struct fs *fs; 528 struct vnode *vp; 529 struct ucred *cred; 530 int resource; 531 { 532 533 return (0); 534 } 535 536 int 537 softdep_check_suspend(struct mount *mp, 538 struct vnode *devvp, 539 int softdep_depcnt, 540 int softdep_accdepcnt, 541 int secondary_writes, 542 int secondary_accwrites) 543 { 544 struct bufobj *bo; 545 int error; 546 547 (void) softdep_depcnt, 548 (void) softdep_accdepcnt; 549 550 bo = &devvp->v_bufobj; 551 ASSERT_BO_WLOCKED(bo); 552 553 MNT_ILOCK(mp); 554 while (mp->mnt_secondary_writes != 0) { 555 BO_UNLOCK(bo); 556 msleep(&mp->mnt_secondary_writes, MNT_MTX(mp), 557 (PUSER - 1) | PDROP, "secwr", 0); 558 BO_LOCK(bo); 559 MNT_ILOCK(mp); 560 } 561 562 /* 563 * Reasons for needing more work before suspend: 564 * - Dirty buffers on devvp. 565 * - Secondary writes occurred after start of vnode sync loop 566 */ 567 error = 0; 568 if (bo->bo_numoutput > 0 || 569 bo->bo_dirty.bv_cnt > 0 || 570 secondary_writes != 0 || 571 mp->mnt_secondary_writes != 0 || 572 secondary_accwrites != mp->mnt_secondary_accwrites) 573 error = EAGAIN; 574 BO_UNLOCK(bo); 575 return (error); 576 } 577 578 void 579 softdep_get_depcounts(struct mount *mp, 580 int *softdepactivep, 581 int *softdepactiveaccp) 582 { 583 (void) mp; 584 *softdepactivep = 0; 585 *softdepactiveaccp = 0; 586 } 587 588 void 589 softdep_buf_append(bp, wkhd) 590 struct buf *bp; 591 struct workhead *wkhd; 592 { 593 594 panic("softdep_buf_appendwork called"); 595 } 596 597 void 598 softdep_inode_append(ip, cred, wkhd) 599 struct inode *ip; 600 struct ucred *cred; 601 struct workhead *wkhd; 602 { 603 604 panic("softdep_inode_appendwork called"); 605 } 606 607 void 608 softdep_freework(wkhd) 609 struct workhead *wkhd; 610 { 611 612 panic("softdep_freework called"); 613 } 614 615 #else 616 617 FEATURE(softupdates, "FFS soft-updates support"); 618 619 static SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW, 0, 620 "soft updates stats"); 621 static SYSCTL_NODE(_debug_softdep, OID_AUTO, total, CTLFLAG_RW, 0, 622 "total dependencies allocated"); 623 static SYSCTL_NODE(_debug_softdep, OID_AUTO, highuse, CTLFLAG_RW, 0, 624 "high use dependencies allocated"); 625 static SYSCTL_NODE(_debug_softdep, OID_AUTO, current, CTLFLAG_RW, 0, 626 "current dependencies allocated"); 627 static SYSCTL_NODE(_debug_softdep, OID_AUTO, write, CTLFLAG_RW, 0, 628 "current dependencies written"); 629 630 unsigned long dep_current[D_LAST + 1]; 631 unsigned long dep_highuse[D_LAST + 1]; 632 unsigned long dep_total[D_LAST + 1]; 633 unsigned long dep_write[D_LAST + 1]; 634 635 #define SOFTDEP_TYPE(type, str, long) \ 636 static MALLOC_DEFINE(M_ ## type, #str, long); \ 637 SYSCTL_ULONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD, \ 638 &dep_total[D_ ## type], 0, ""); \ 639 SYSCTL_ULONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD, \ 640 &dep_current[D_ ## type], 0, ""); \ 641 SYSCTL_ULONG(_debug_softdep_highuse, OID_AUTO, str, CTLFLAG_RD, \ 642 &dep_highuse[D_ ## type], 0, ""); \ 643 SYSCTL_ULONG(_debug_softdep_write, OID_AUTO, str, CTLFLAG_RD, \ 644 &dep_write[D_ ## type], 0, ""); 645 646 SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies"); 647 SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies"); 648 SOFTDEP_TYPE(BMSAFEMAP, bmsafemap, 649 "Block or frag allocated from cyl group map"); 650 SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency"); 651 SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode"); 652 SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies"); 653 SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block"); 654 SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode"); 655 SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode"); 656 SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated"); 657 SOFTDEP_TYPE(DIRADD, diradd, "New directory entry"); 658 SOFTDEP_TYPE(MKDIR, mkdir, "New directory"); 659 SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted"); 660 SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block"); 661 SOFTDEP_TYPE(FREEWORK, freework, "free an inode block"); 662 SOFTDEP_TYPE(FREEDEP, freedep, "track a block free"); 663 SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add"); 664 SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove"); 665 SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move"); 666 SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block"); 667 SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block"); 668 SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag"); 669 SOFTDEP_TYPE(JSEG, jseg, "Journal segment"); 670 SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete"); 671 SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency"); 672 SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation"); 673 SOFTDEP_TYPE(JFSYNC, jfsync, "Journal fsync complete"); 674 675 static MALLOC_DEFINE(M_SENTINEL, "sentinel", "Worklist sentinel"); 676 677 static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes"); 678 static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations"); 679 static MALLOC_DEFINE(M_MOUNTDATA, "softdep", "Softdep per-mount data"); 680 681 #define M_SOFTDEP_FLAGS (M_WAITOK) 682 683 /* 684 * translate from workitem type to memory type 685 * MUST match the defines above, such that memtype[D_XXX] == M_XXX 686 */ 687 static struct malloc_type *memtype[] = { 688 M_PAGEDEP, 689 M_INODEDEP, 690 M_BMSAFEMAP, 691 M_NEWBLK, 692 M_ALLOCDIRECT, 693 M_INDIRDEP, 694 M_ALLOCINDIR, 695 M_FREEFRAG, 696 M_FREEBLKS, 697 M_FREEFILE, 698 M_DIRADD, 699 M_MKDIR, 700 M_DIRREM, 701 M_NEWDIRBLK, 702 M_FREEWORK, 703 M_FREEDEP, 704 M_JADDREF, 705 M_JREMREF, 706 M_JMVREF, 707 M_JNEWBLK, 708 M_JFREEBLK, 709 M_JFREEFRAG, 710 M_JSEG, 711 M_JSEGDEP, 712 M_SBDEP, 713 M_JTRUNC, 714 M_JFSYNC, 715 M_SENTINEL 716 }; 717 718 #define DtoM(type) (memtype[type]) 719 720 /* 721 * Names of malloc types. 722 */ 723 #define TYPENAME(type) \ 724 ((unsigned)(type) <= D_LAST ? memtype[type]->ks_shortdesc : "???") 725 /* 726 * End system adaptation definitions. 727 */ 728 729 #define DOTDOT_OFFSET offsetof(struct dirtemplate, dotdot_ino) 730 #define DOT_OFFSET offsetof(struct dirtemplate, dot_ino) 731 732 /* 733 * Internal function prototypes. 734 */ 735 static void check_clear_deps(struct mount *); 736 static void softdep_error(char *, int); 737 static int softdep_process_worklist(struct mount *, int); 738 static int softdep_waitidle(struct mount *); 739 static void drain_output(struct vnode *); 740 static struct buf *getdirtybuf(struct buf *, struct rwlock *, int); 741 static void clear_remove(struct mount *); 742 static void clear_inodedeps(struct mount *); 743 static void unlinked_inodedep(struct mount *, struct inodedep *); 744 static void clear_unlinked_inodedep(struct inodedep *); 745 static struct inodedep *first_unlinked_inodedep(struct ufsmount *); 746 static int flush_pagedep_deps(struct vnode *, struct mount *, 747 struct diraddhd *); 748 static int free_pagedep(struct pagedep *); 749 static int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t); 750 static int flush_inodedep_deps(struct vnode *, struct mount *, ino_t); 751 static int flush_deplist(struct allocdirectlst *, int, int *); 752 static int sync_cgs(struct mount *, int); 753 static int handle_written_filepage(struct pagedep *, struct buf *); 754 static int handle_written_sbdep(struct sbdep *, struct buf *); 755 static void initiate_write_sbdep(struct sbdep *); 756 static void diradd_inode_written(struct diradd *, struct inodedep *); 757 static int handle_written_indirdep(struct indirdep *, struct buf *, 758 struct buf**); 759 static int handle_written_inodeblock(struct inodedep *, struct buf *); 760 static int jnewblk_rollforward(struct jnewblk *, struct fs *, struct cg *, 761 uint8_t *); 762 static int handle_written_bmsafemap(struct bmsafemap *, struct buf *); 763 static void handle_written_jaddref(struct jaddref *); 764 static void handle_written_jremref(struct jremref *); 765 static void handle_written_jseg(struct jseg *, struct buf *); 766 static void handle_written_jnewblk(struct jnewblk *); 767 static void handle_written_jblkdep(struct jblkdep *); 768 static void handle_written_jfreefrag(struct jfreefrag *); 769 static void complete_jseg(struct jseg *); 770 static void complete_jsegs(struct jseg *); 771 static void jseg_write(struct ufsmount *ump, struct jseg *, uint8_t *); 772 static void jaddref_write(struct jaddref *, struct jseg *, uint8_t *); 773 static void jremref_write(struct jremref *, struct jseg *, uint8_t *); 774 static void jmvref_write(struct jmvref *, struct jseg *, uint8_t *); 775 static void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *); 776 static void jfsync_write(struct jfsync *, struct jseg *, uint8_t *data); 777 static void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *); 778 static void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *); 779 static void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *); 780 static inline void inoref_write(struct inoref *, struct jseg *, 781 struct jrefrec *); 782 static void handle_allocdirect_partdone(struct allocdirect *, 783 struct workhead *); 784 static struct jnewblk *cancel_newblk(struct newblk *, struct worklist *, 785 struct workhead *); 786 static void indirdep_complete(struct indirdep *); 787 static int indirblk_lookup(struct mount *, ufs2_daddr_t); 788 static void indirblk_insert(struct freework *); 789 static void indirblk_remove(struct freework *); 790 static void handle_allocindir_partdone(struct allocindir *); 791 static void initiate_write_filepage(struct pagedep *, struct buf *); 792 static void initiate_write_indirdep(struct indirdep*, struct buf *); 793 static void handle_written_mkdir(struct mkdir *, int); 794 static int jnewblk_rollback(struct jnewblk *, struct fs *, struct cg *, 795 uint8_t *); 796 static void initiate_write_bmsafemap(struct bmsafemap *, struct buf *); 797 static void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *); 798 static void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *); 799 static void handle_workitem_freefile(struct freefile *); 800 static int handle_workitem_remove(struct dirrem *, int); 801 static struct dirrem *newdirrem(struct buf *, struct inode *, 802 struct inode *, int, struct dirrem **); 803 static struct indirdep *indirdep_lookup(struct mount *, struct inode *, 804 struct buf *); 805 static void cancel_indirdep(struct indirdep *, struct buf *, 806 struct freeblks *); 807 static void free_indirdep(struct indirdep *); 808 static void free_diradd(struct diradd *, struct workhead *); 809 static void merge_diradd(struct inodedep *, struct diradd *); 810 static void complete_diradd(struct diradd *); 811 static struct diradd *diradd_lookup(struct pagedep *, int); 812 static struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *, 813 struct jremref *); 814 static struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *, 815 struct jremref *); 816 static void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *, 817 struct jremref *, struct jremref *); 818 static void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *, 819 struct jremref *); 820 static void cancel_allocindir(struct allocindir *, struct buf *bp, 821 struct freeblks *, int); 822 static int setup_trunc_indir(struct freeblks *, struct inode *, 823 ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t); 824 static void complete_trunc_indir(struct freework *); 825 static void trunc_indirdep(struct indirdep *, struct freeblks *, struct buf *, 826 int); 827 static void complete_mkdir(struct mkdir *); 828 static void free_newdirblk(struct newdirblk *); 829 static void free_jremref(struct jremref *); 830 static void free_jaddref(struct jaddref *); 831 static void free_jsegdep(struct jsegdep *); 832 static void free_jsegs(struct jblocks *); 833 static void rele_jseg(struct jseg *); 834 static void free_jseg(struct jseg *, struct jblocks *); 835 static void free_jnewblk(struct jnewblk *); 836 static void free_jblkdep(struct jblkdep *); 837 static void free_jfreefrag(struct jfreefrag *); 838 static void free_freedep(struct freedep *); 839 static void journal_jremref(struct dirrem *, struct jremref *, 840 struct inodedep *); 841 static void cancel_jnewblk(struct jnewblk *, struct workhead *); 842 static int cancel_jaddref(struct jaddref *, struct inodedep *, 843 struct workhead *); 844 static void cancel_jfreefrag(struct jfreefrag *); 845 static inline void setup_freedirect(struct freeblks *, struct inode *, 846 int, int); 847 static inline void setup_freeext(struct freeblks *, struct inode *, int, int); 848 static inline void setup_freeindir(struct freeblks *, struct inode *, int, 849 ufs_lbn_t, int); 850 static inline struct freeblks *newfreeblks(struct mount *, struct inode *); 851 static void freeblks_free(struct ufsmount *, struct freeblks *, int); 852 static void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t); 853 static ufs2_daddr_t blkcount(struct fs *, ufs2_daddr_t, off_t); 854 static int trunc_check_buf(struct buf *, int *, ufs_lbn_t, int, int); 855 static void trunc_dependencies(struct inode *, struct freeblks *, ufs_lbn_t, 856 int, int); 857 static void trunc_pages(struct inode *, off_t, ufs2_daddr_t, int); 858 static int cancel_pagedep(struct pagedep *, struct freeblks *, int); 859 static int deallocate_dependencies(struct buf *, struct freeblks *, int); 860 static void newblk_freefrag(struct newblk*); 861 static void free_newblk(struct newblk *); 862 static void cancel_allocdirect(struct allocdirectlst *, 863 struct allocdirect *, struct freeblks *); 864 static int check_inode_unwritten(struct inodedep *); 865 static int free_inodedep(struct inodedep *); 866 static void freework_freeblock(struct freework *); 867 static void freework_enqueue(struct freework *); 868 static int handle_workitem_freeblocks(struct freeblks *, int); 869 static int handle_complete_freeblocks(struct freeblks *, int); 870 static void handle_workitem_indirblk(struct freework *); 871 static void handle_written_freework(struct freework *); 872 static void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *); 873 static struct worklist *jnewblk_merge(struct worklist *, struct worklist *, 874 struct workhead *); 875 static struct freefrag *setup_allocindir_phase2(struct buf *, struct inode *, 876 struct inodedep *, struct allocindir *, ufs_lbn_t); 877 static struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t, 878 ufs2_daddr_t, ufs_lbn_t); 879 static void handle_workitem_freefrag(struct freefrag *); 880 static struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long, 881 ufs_lbn_t); 882 static void allocdirect_merge(struct allocdirectlst *, 883 struct allocdirect *, struct allocdirect *); 884 static struct freefrag *allocindir_merge(struct allocindir *, 885 struct allocindir *); 886 static int bmsafemap_find(struct bmsafemap_hashhead *, int, 887 struct bmsafemap **); 888 static struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *, 889 int cg, struct bmsafemap *); 890 static int newblk_find(struct newblk_hashhead *, ufs2_daddr_t, int, 891 struct newblk **); 892 static int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **); 893 static int inodedep_find(struct inodedep_hashhead *, ino_t, 894 struct inodedep **); 895 static int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **); 896 static int pagedep_lookup(struct mount *, struct buf *bp, ino_t, ufs_lbn_t, 897 int, struct pagedep **); 898 static int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t, 899 struct pagedep **); 900 static void pause_timer(void *); 901 static int request_cleanup(struct mount *, int); 902 static int process_worklist_item(struct mount *, int, int); 903 static void process_removes(struct vnode *); 904 static void process_truncates(struct vnode *); 905 static void jwork_move(struct workhead *, struct workhead *); 906 static void jwork_insert(struct workhead *, struct jsegdep *); 907 static void add_to_worklist(struct worklist *, int); 908 static void wake_worklist(struct worklist *); 909 static void wait_worklist(struct worklist *, char *); 910 static void remove_from_worklist(struct worklist *); 911 static void softdep_flush(void); 912 static void softdep_flushjournal(struct mount *); 913 static int softdep_speedup(void); 914 static void worklist_speedup(struct mount *); 915 static int journal_mount(struct mount *, struct fs *, struct ucred *); 916 static void journal_unmount(struct ufsmount *); 917 static int journal_space(struct ufsmount *, int); 918 static void journal_suspend(struct ufsmount *); 919 static int journal_unsuspend(struct ufsmount *ump); 920 static void softdep_prelink(struct vnode *, struct vnode *); 921 static void add_to_journal(struct worklist *); 922 static void remove_from_journal(struct worklist *); 923 static void softdep_process_journal(struct mount *, struct worklist *, int); 924 static struct jremref *newjremref(struct dirrem *, struct inode *, 925 struct inode *ip, off_t, nlink_t); 926 static struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t, 927 uint16_t); 928 static inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t, 929 uint16_t); 930 static inline struct jsegdep *inoref_jseg(struct inoref *); 931 static struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t); 932 static struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t, 933 ufs2_daddr_t, int); 934 static struct jtrunc *newjtrunc(struct freeblks *, off_t, int); 935 static void move_newblock_dep(struct jaddref *, struct inodedep *); 936 static void cancel_jfreeblk(struct freeblks *, ufs2_daddr_t); 937 static struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *, 938 ufs2_daddr_t, long, ufs_lbn_t); 939 static struct freework *newfreework(struct ufsmount *, struct freeblks *, 940 struct freework *, ufs_lbn_t, ufs2_daddr_t, int, int, int); 941 static int jwait(struct worklist *, int); 942 static struct inodedep *inodedep_lookup_ip(struct inode *); 943 static int bmsafemap_backgroundwrite(struct bmsafemap *, struct buf *); 944 static struct freefile *handle_bufwait(struct inodedep *, struct workhead *); 945 static void handle_jwork(struct workhead *); 946 static struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *, 947 struct mkdir **); 948 static struct jblocks *jblocks_create(void); 949 static ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *); 950 static void jblocks_free(struct jblocks *, struct mount *, int); 951 static void jblocks_destroy(struct jblocks *); 952 static void jblocks_add(struct jblocks *, ufs2_daddr_t, int); 953 954 /* 955 * Exported softdep operations. 956 */ 957 static void softdep_disk_io_initiation(struct buf *); 958 static void softdep_disk_write_complete(struct buf *); 959 static void softdep_deallocate_dependencies(struct buf *); 960 static int softdep_count_dependencies(struct buf *bp, int); 961 962 /* 963 * Global lock over all of soft updates. 964 */ 965 static struct rwlock lk; 966 RW_SYSINIT(softdep_lock, &lk, "Softdep Lock"); 967 968 /* 969 * Allow per-filesystem soft-updates locking. 970 * For now all use the same global lock defined above. 971 */ 972 #define LOCK_PTR(ump) ((ump)->um_softdep->sd_fslock) 973 #define TRY_ACQUIRE_LOCK(ump) rw_try_wlock((ump)->um_softdep->sd_fslock) 974 #define ACQUIRE_LOCK(ump) rw_wlock((ump)->um_softdep->sd_fslock) 975 #define FREE_LOCK(ump) rw_wunlock((ump)->um_softdep->sd_fslock) 976 #define LOCK_OWNED(ump) rw_assert((ump)->um_softdep->sd_fslock, \ 977 RA_WLOCKED) 978 979 #define BUF_AREC(bp) lockallowrecurse(&(bp)->b_lock) 980 #define BUF_NOREC(bp) lockdisablerecurse(&(bp)->b_lock) 981 982 /* 983 * Worklist queue management. 984 * These routines require that the lock be held. 985 */ 986 #ifndef /* NOT */ DEBUG 987 #define WORKLIST_INSERT(head, item) do { \ 988 (item)->wk_state |= ONWORKLIST; \ 989 LIST_INSERT_HEAD(head, item, wk_list); \ 990 } while (0) 991 #define WORKLIST_REMOVE(item) do { \ 992 (item)->wk_state &= ~ONWORKLIST; \ 993 LIST_REMOVE(item, wk_list); \ 994 } while (0) 995 #define WORKLIST_INSERT_UNLOCKED WORKLIST_INSERT 996 #define WORKLIST_REMOVE_UNLOCKED WORKLIST_REMOVE 997 998 #else /* DEBUG */ 999 static void worklist_insert(struct workhead *, struct worklist *, int); 1000 static void worklist_remove(struct worklist *, int); 1001 1002 #define WORKLIST_INSERT(head, item) worklist_insert(head, item, 1) 1003 #define WORKLIST_INSERT_UNLOCKED(head, item) worklist_insert(head, item, 0) 1004 #define WORKLIST_REMOVE(item) worklist_remove(item, 1) 1005 #define WORKLIST_REMOVE_UNLOCKED(item) worklist_remove(item, 0) 1006 1007 static void 1008 worklist_insert(head, item, locked) 1009 struct workhead *head; 1010 struct worklist *item; 1011 int locked; 1012 { 1013 1014 if (locked) 1015 LOCK_OWNED(VFSTOUFS(item->wk_mp)); 1016 if (item->wk_state & ONWORKLIST) 1017 panic("worklist_insert: %p %s(0x%X) already on list", 1018 item, TYPENAME(item->wk_type), item->wk_state); 1019 item->wk_state |= ONWORKLIST; 1020 LIST_INSERT_HEAD(head, item, wk_list); 1021 } 1022 1023 static void 1024 worklist_remove(item, locked) 1025 struct worklist *item; 1026 int locked; 1027 { 1028 1029 if (locked) 1030 LOCK_OWNED(VFSTOUFS(item->wk_mp)); 1031 if ((item->wk_state & ONWORKLIST) == 0) 1032 panic("worklist_remove: %p %s(0x%X) not on list", 1033 item, TYPENAME(item->wk_type), item->wk_state); 1034 item->wk_state &= ~ONWORKLIST; 1035 LIST_REMOVE(item, wk_list); 1036 } 1037 #endif /* DEBUG */ 1038 1039 /* 1040 * Merge two jsegdeps keeping only the oldest one as newer references 1041 * can't be discarded until after older references. 1042 */ 1043 static inline struct jsegdep * 1044 jsegdep_merge(struct jsegdep *one, struct jsegdep *two) 1045 { 1046 struct jsegdep *swp; 1047 1048 if (two == NULL) 1049 return (one); 1050 1051 if (one->jd_seg->js_seq > two->jd_seg->js_seq) { 1052 swp = one; 1053 one = two; 1054 two = swp; 1055 } 1056 WORKLIST_REMOVE(&two->jd_list); 1057 free_jsegdep(two); 1058 1059 return (one); 1060 } 1061 1062 /* 1063 * If two freedeps are compatible free one to reduce list size. 1064 */ 1065 static inline struct freedep * 1066 freedep_merge(struct freedep *one, struct freedep *two) 1067 { 1068 if (two == NULL) 1069 return (one); 1070 1071 if (one->fd_freework == two->fd_freework) { 1072 WORKLIST_REMOVE(&two->fd_list); 1073 free_freedep(two); 1074 } 1075 return (one); 1076 } 1077 1078 /* 1079 * Move journal work from one list to another. Duplicate freedeps and 1080 * jsegdeps are coalesced to keep the lists as small as possible. 1081 */ 1082 static void 1083 jwork_move(dst, src) 1084 struct workhead *dst; 1085 struct workhead *src; 1086 { 1087 struct freedep *freedep; 1088 struct jsegdep *jsegdep; 1089 struct worklist *wkn; 1090 struct worklist *wk; 1091 1092 KASSERT(dst != src, 1093 ("jwork_move: dst == src")); 1094 freedep = NULL; 1095 jsegdep = NULL; 1096 LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) { 1097 if (wk->wk_type == D_JSEGDEP) 1098 jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep); 1099 else if (wk->wk_type == D_FREEDEP) 1100 freedep = freedep_merge(WK_FREEDEP(wk), freedep); 1101 } 1102 1103 while ((wk = LIST_FIRST(src)) != NULL) { 1104 WORKLIST_REMOVE(wk); 1105 WORKLIST_INSERT(dst, wk); 1106 if (wk->wk_type == D_JSEGDEP) { 1107 jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep); 1108 continue; 1109 } 1110 if (wk->wk_type == D_FREEDEP) 1111 freedep = freedep_merge(WK_FREEDEP(wk), freedep); 1112 } 1113 } 1114 1115 static void 1116 jwork_insert(dst, jsegdep) 1117 struct workhead *dst; 1118 struct jsegdep *jsegdep; 1119 { 1120 struct jsegdep *jsegdepn; 1121 struct worklist *wk; 1122 1123 LIST_FOREACH(wk, dst, wk_list) 1124 if (wk->wk_type == D_JSEGDEP) 1125 break; 1126 if (wk == NULL) { 1127 WORKLIST_INSERT(dst, &jsegdep->jd_list); 1128 return; 1129 } 1130 jsegdepn = WK_JSEGDEP(wk); 1131 if (jsegdep->jd_seg->js_seq < jsegdepn->jd_seg->js_seq) { 1132 WORKLIST_REMOVE(wk); 1133 free_jsegdep(jsegdepn); 1134 WORKLIST_INSERT(dst, &jsegdep->jd_list); 1135 } else 1136 free_jsegdep(jsegdep); 1137 } 1138 1139 /* 1140 * Routines for tracking and managing workitems. 1141 */ 1142 static void workitem_free(struct worklist *, int); 1143 static void workitem_alloc(struct worklist *, int, struct mount *); 1144 static void workitem_reassign(struct worklist *, int); 1145 1146 #define WORKITEM_FREE(item, type) \ 1147 workitem_free((struct worklist *)(item), (type)) 1148 #define WORKITEM_REASSIGN(item, type) \ 1149 workitem_reassign((struct worklist *)(item), (type)) 1150 1151 static void 1152 workitem_free(item, type) 1153 struct worklist *item; 1154 int type; 1155 { 1156 struct ufsmount *ump; 1157 1158 #ifdef DEBUG 1159 if (item->wk_state & ONWORKLIST) 1160 panic("workitem_free: %s(0x%X) still on list", 1161 TYPENAME(item->wk_type), item->wk_state); 1162 if (item->wk_type != type && type != D_NEWBLK) 1163 panic("workitem_free: type mismatch %s != %s", 1164 TYPENAME(item->wk_type), TYPENAME(type)); 1165 #endif 1166 if (item->wk_state & IOWAITING) 1167 wakeup(item); 1168 ump = VFSTOUFS(item->wk_mp); 1169 LOCK_OWNED(ump); 1170 KASSERT(ump->softdep_deps > 0, 1171 ("workitem_free: %s: softdep_deps going negative", 1172 ump->um_fs->fs_fsmnt)); 1173 if (--ump->softdep_deps == 0 && ump->softdep_req) 1174 wakeup(&ump->softdep_deps); 1175 KASSERT(dep_current[item->wk_type] > 0, 1176 ("workitem_free: %s: dep_current[%s] going negative", 1177 ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1178 KASSERT(ump->softdep_curdeps[item->wk_type] > 0, 1179 ("workitem_free: %s: softdep_curdeps[%s] going negative", 1180 ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1181 dep_current[item->wk_type]--; 1182 ump->softdep_curdeps[item->wk_type] -= 1; 1183 free(item, DtoM(type)); 1184 } 1185 1186 static void 1187 workitem_alloc(item, type, mp) 1188 struct worklist *item; 1189 int type; 1190 struct mount *mp; 1191 { 1192 struct ufsmount *ump; 1193 1194 item->wk_type = type; 1195 item->wk_mp = mp; 1196 item->wk_state = 0; 1197 1198 ump = VFSTOUFS(mp); 1199 ACQUIRE_LOCK(ump); 1200 dep_current[type]++; 1201 if (dep_current[type] > dep_highuse[type]) 1202 dep_highuse[type] = dep_current[type]; 1203 dep_total[type]++; 1204 ump->softdep_curdeps[type] += 1; 1205 ump->softdep_deps++; 1206 ump->softdep_accdeps++; 1207 FREE_LOCK(ump); 1208 } 1209 1210 static void 1211 workitem_reassign(item, newtype) 1212 struct worklist *item; 1213 int newtype; 1214 { 1215 struct ufsmount *ump; 1216 1217 ump = VFSTOUFS(item->wk_mp); 1218 LOCK_OWNED(ump); 1219 KASSERT(ump->softdep_curdeps[item->wk_type] > 0, 1220 ("workitem_reassign: %s: softdep_curdeps[%s] going negative", 1221 VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1222 ump->softdep_curdeps[item->wk_type] -= 1; 1223 ump->softdep_curdeps[newtype] += 1; 1224 KASSERT(dep_current[item->wk_type] > 0, 1225 ("workitem_reassign: %s: dep_current[%s] going negative", 1226 VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1227 dep_current[item->wk_type]--; 1228 dep_current[newtype]++; 1229 if (dep_current[newtype] > dep_highuse[newtype]) 1230 dep_highuse[newtype] = dep_current[newtype]; 1231 dep_total[newtype]++; 1232 item->wk_type = newtype; 1233 } 1234 1235 /* 1236 * Workitem queue management 1237 */ 1238 static int max_softdeps; /* maximum number of structs before slowdown */ 1239 static int maxindirdeps = 50; /* max number of indirdeps before slowdown */ 1240 static int tickdelay = 2; /* number of ticks to pause during slowdown */ 1241 static int proc_waiting; /* tracks whether we have a timeout posted */ 1242 static int *stat_countp; /* statistic to count in proc_waiting timeout */ 1243 static struct callout softdep_callout; 1244 static struct mount *req_pending; 1245 #define ALLCLEAN ((struct mount *)-1) 1246 static int req_clear_inodedeps; /* syncer process flush some inodedeps */ 1247 static int req_clear_remove; /* syncer process flush some freeblks */ 1248 static int softdep_flushcache = 0; /* Should we do BIO_FLUSH? */ 1249 1250 /* 1251 * runtime statistics 1252 */ 1253 static int stat_softdep_mounts; /* number of softdep mounted filesystems */ 1254 static int stat_worklist_push; /* number of worklist cleanups */ 1255 static int stat_blk_limit_push; /* number of times block limit neared */ 1256 static int stat_ino_limit_push; /* number of times inode limit neared */ 1257 static int stat_blk_limit_hit; /* number of times block slowdown imposed */ 1258 static int stat_ino_limit_hit; /* number of times inode slowdown imposed */ 1259 static int stat_sync_limit_hit; /* number of synchronous slowdowns imposed */ 1260 static int stat_indir_blk_ptrs; /* bufs redirtied as indir ptrs not written */ 1261 static int stat_inode_bitmap; /* bufs redirtied as inode bitmap not written */ 1262 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */ 1263 static int stat_dir_entry; /* bufs redirtied as dir entry cannot write */ 1264 static int stat_jaddref; /* bufs redirtied as ino bitmap can not write */ 1265 static int stat_jnewblk; /* bufs redirtied as blk bitmap can not write */ 1266 static int stat_journal_min; /* Times hit journal min threshold */ 1267 static int stat_journal_low; /* Times hit journal low threshold */ 1268 static int stat_journal_wait; /* Times blocked in jwait(). */ 1269 static int stat_jwait_filepage; /* Times blocked in jwait() for filepage. */ 1270 static int stat_jwait_freeblks; /* Times blocked in jwait() for freeblks. */ 1271 static int stat_jwait_inode; /* Times blocked in jwait() for inodes. */ 1272 static int stat_jwait_newblk; /* Times blocked in jwait() for newblks. */ 1273 static int stat_cleanup_high_delay; /* Maximum cleanup delay (in ticks) */ 1274 static int stat_cleanup_blkrequests; /* Number of block cleanup requests */ 1275 static int stat_cleanup_inorequests; /* Number of inode cleanup requests */ 1276 static int stat_cleanup_retries; /* Number of cleanups that needed to flush */ 1277 static int stat_cleanup_failures; /* Number of cleanup requests that failed */ 1278 1279 SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW, 1280 &max_softdeps, 0, ""); 1281 SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW, 1282 &tickdelay, 0, ""); 1283 SYSCTL_INT(_debug_softdep, OID_AUTO, maxindirdeps, CTLFLAG_RW, 1284 &maxindirdeps, 0, ""); 1285 SYSCTL_INT(_debug_softdep, OID_AUTO, softdep_mounts, CTLFLAG_RD, 1286 &stat_softdep_mounts, 0, ""); 1287 SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push, CTLFLAG_RW, 1288 &stat_worklist_push, 0,""); 1289 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push, CTLFLAG_RW, 1290 &stat_blk_limit_push, 0,""); 1291 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push, CTLFLAG_RW, 1292 &stat_ino_limit_push, 0,""); 1293 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit, CTLFLAG_RW, 1294 &stat_blk_limit_hit, 0, ""); 1295 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit, CTLFLAG_RW, 1296 &stat_ino_limit_hit, 0, ""); 1297 SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit, CTLFLAG_RW, 1298 &stat_sync_limit_hit, 0, ""); 1299 SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW, 1300 &stat_indir_blk_ptrs, 0, ""); 1301 SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap, CTLFLAG_RW, 1302 &stat_inode_bitmap, 0, ""); 1303 SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW, 1304 &stat_direct_blk_ptrs, 0, ""); 1305 SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry, CTLFLAG_RW, 1306 &stat_dir_entry, 0, ""); 1307 SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback, CTLFLAG_RW, 1308 &stat_jaddref, 0, ""); 1309 SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback, CTLFLAG_RW, 1310 &stat_jnewblk, 0, ""); 1311 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low, CTLFLAG_RW, 1312 &stat_journal_low, 0, ""); 1313 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min, CTLFLAG_RW, 1314 &stat_journal_min, 0, ""); 1315 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait, CTLFLAG_RW, 1316 &stat_journal_wait, 0, ""); 1317 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage, CTLFLAG_RW, 1318 &stat_jwait_filepage, 0, ""); 1319 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks, CTLFLAG_RW, 1320 &stat_jwait_freeblks, 0, ""); 1321 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode, CTLFLAG_RW, 1322 &stat_jwait_inode, 0, ""); 1323 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk, CTLFLAG_RW, 1324 &stat_jwait_newblk, 0, ""); 1325 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_blkrequests, CTLFLAG_RW, 1326 &stat_cleanup_blkrequests, 0, ""); 1327 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_inorequests, CTLFLAG_RW, 1328 &stat_cleanup_inorequests, 0, ""); 1329 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_high_delay, CTLFLAG_RW, 1330 &stat_cleanup_high_delay, 0, ""); 1331 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_retries, CTLFLAG_RW, 1332 &stat_cleanup_retries, 0, ""); 1333 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_failures, CTLFLAG_RW, 1334 &stat_cleanup_failures, 0, ""); 1335 SYSCTL_INT(_debug_softdep, OID_AUTO, flushcache, CTLFLAG_RW, 1336 &softdep_flushcache, 0, ""); 1337 1338 SYSCTL_DECL(_vfs_ffs); 1339 1340 /* Whether to recompute the summary at mount time */ 1341 static int compute_summary_at_mount = 0; 1342 SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW, 1343 &compute_summary_at_mount, 0, "Recompute summary at mount"); 1344 static struct proc *softdepproc; 1345 static struct kproc_desc softdep_kp = { 1346 "softdepflush", 1347 softdep_flush, 1348 &softdepproc 1349 }; 1350 SYSINIT(sdproc, SI_SUB_KTHREAD_UPDATE, SI_ORDER_ANY, kproc_start, 1351 &softdep_kp); 1352 1353 static void 1354 softdep_flush(void) 1355 { 1356 struct mount *nmp; 1357 struct mount *mp; 1358 struct ufsmount *ump; 1359 struct thread *td; 1360 int remaining; 1361 int progress; 1362 1363 td = curthread; 1364 td->td_pflags |= TDP_NORUNNINGBUF; 1365 1366 for (;;) { 1367 kproc_suspend_check(softdepproc); 1368 remaining = progress = 0; 1369 mtx_lock(&mountlist_mtx); 1370 for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) { 1371 nmp = TAILQ_NEXT(mp, mnt_list); 1372 if (MOUNTEDSOFTDEP(mp) == 0) 1373 continue; 1374 if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK)) 1375 continue; 1376 ump = VFSTOUFS(mp); 1377 progress += softdep_process_worklist(mp, 0); 1378 remaining += ump->softdep_on_worklist; 1379 mtx_lock(&mountlist_mtx); 1380 nmp = TAILQ_NEXT(mp, mnt_list); 1381 vfs_unbusy(mp); 1382 } 1383 mtx_unlock(&mountlist_mtx); 1384 if (remaining && progress) 1385 continue; 1386 rw_wlock(&lk); 1387 if (req_pending == NULL) 1388 msleep(&req_pending, &lk, PVM, "sdflush", hz); 1389 req_pending = NULL; 1390 rw_wunlock(&lk); 1391 } 1392 } 1393 1394 static void 1395 worklist_speedup(mp) 1396 struct mount *mp; 1397 { 1398 rw_assert(&lk, RA_WLOCKED); 1399 if (req_pending == 0) { 1400 req_pending = mp; 1401 wakeup(&req_pending); 1402 } 1403 } 1404 1405 static int 1406 softdep_speedup(void) 1407 { 1408 1409 worklist_speedup(ALLCLEAN); 1410 bd_speedup(); 1411 return (speedup_syncer()); 1412 } 1413 1414 /* 1415 * Add an item to the end of the work queue. 1416 * This routine requires that the lock be held. 1417 * This is the only routine that adds items to the list. 1418 * The following routine is the only one that removes items 1419 * and does so in order from first to last. 1420 */ 1421 1422 #define WK_HEAD 0x0001 /* Add to HEAD. */ 1423 #define WK_NODELAY 0x0002 /* Process immediately. */ 1424 1425 static void 1426 add_to_worklist(wk, flags) 1427 struct worklist *wk; 1428 int flags; 1429 { 1430 struct ufsmount *ump; 1431 1432 ump = VFSTOUFS(wk->wk_mp); 1433 LOCK_OWNED(ump); 1434 if (wk->wk_state & ONWORKLIST) 1435 panic("add_to_worklist: %s(0x%X) already on list", 1436 TYPENAME(wk->wk_type), wk->wk_state); 1437 wk->wk_state |= ONWORKLIST; 1438 if (ump->softdep_on_worklist == 0) { 1439 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list); 1440 ump->softdep_worklist_tail = wk; 1441 } else if (flags & WK_HEAD) { 1442 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list); 1443 } else { 1444 LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list); 1445 ump->softdep_worklist_tail = wk; 1446 } 1447 ump->softdep_on_worklist += 1; 1448 if (flags & WK_NODELAY) 1449 worklist_speedup(wk->wk_mp); 1450 } 1451 1452 /* 1453 * Remove the item to be processed. If we are removing the last 1454 * item on the list, we need to recalculate the tail pointer. 1455 */ 1456 static void 1457 remove_from_worklist(wk) 1458 struct worklist *wk; 1459 { 1460 struct ufsmount *ump; 1461 1462 ump = VFSTOUFS(wk->wk_mp); 1463 WORKLIST_REMOVE(wk); 1464 if (ump->softdep_worklist_tail == wk) 1465 ump->softdep_worklist_tail = 1466 (struct worklist *)wk->wk_list.le_prev; 1467 ump->softdep_on_worklist -= 1; 1468 } 1469 1470 static void 1471 wake_worklist(wk) 1472 struct worklist *wk; 1473 { 1474 if (wk->wk_state & IOWAITING) { 1475 wk->wk_state &= ~IOWAITING; 1476 wakeup(wk); 1477 } 1478 } 1479 1480 static void 1481 wait_worklist(wk, wmesg) 1482 struct worklist *wk; 1483 char *wmesg; 1484 { 1485 struct ufsmount *ump; 1486 1487 ump = VFSTOUFS(wk->wk_mp); 1488 wk->wk_state |= IOWAITING; 1489 msleep(wk, LOCK_PTR(ump), PVM, wmesg, 0); 1490 } 1491 1492 /* 1493 * Process that runs once per second to handle items in the background queue. 1494 * 1495 * Note that we ensure that everything is done in the order in which they 1496 * appear in the queue. The code below depends on this property to ensure 1497 * that blocks of a file are freed before the inode itself is freed. This 1498 * ordering ensures that no new <vfsid, inum, lbn> triples will be generated 1499 * until all the old ones have been purged from the dependency lists. 1500 */ 1501 static int 1502 softdep_process_worklist(mp, full) 1503 struct mount *mp; 1504 int full; 1505 { 1506 int cnt, matchcnt; 1507 struct ufsmount *ump; 1508 long starttime; 1509 1510 KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp")); 1511 if (MOUNTEDSOFTDEP(mp) == 0) 1512 return (0); 1513 matchcnt = 0; 1514 ump = VFSTOUFS(mp); 1515 ACQUIRE_LOCK(ump); 1516 starttime = time_second; 1517 softdep_process_journal(mp, NULL, full ? MNT_WAIT : 0); 1518 check_clear_deps(mp); 1519 while (ump->softdep_on_worklist > 0) { 1520 if ((cnt = process_worklist_item(mp, 10, LK_NOWAIT)) == 0) 1521 break; 1522 else 1523 matchcnt += cnt; 1524 check_clear_deps(mp); 1525 /* 1526 * We do not generally want to stop for buffer space, but if 1527 * we are really being a buffer hog, we will stop and wait. 1528 */ 1529 if (should_yield()) { 1530 FREE_LOCK(ump); 1531 kern_yield(PRI_USER); 1532 bwillwrite(); 1533 ACQUIRE_LOCK(ump); 1534 } 1535 /* 1536 * Never allow processing to run for more than one 1537 * second. This gives the syncer thread the opportunity 1538 * to pause if appropriate. 1539 */ 1540 if (!full && starttime != time_second) 1541 break; 1542 } 1543 if (full == 0) 1544 journal_unsuspend(ump); 1545 FREE_LOCK(ump); 1546 return (matchcnt); 1547 } 1548 1549 /* 1550 * Process all removes associated with a vnode if we are running out of 1551 * journal space. Any other process which attempts to flush these will 1552 * be unable as we have the vnodes locked. 1553 */ 1554 static void 1555 process_removes(vp) 1556 struct vnode *vp; 1557 { 1558 struct inodedep *inodedep; 1559 struct dirrem *dirrem; 1560 struct ufsmount *ump; 1561 struct mount *mp; 1562 ino_t inum; 1563 1564 mp = vp->v_mount; 1565 ump = VFSTOUFS(mp); 1566 LOCK_OWNED(ump); 1567 inum = VTOI(vp)->i_number; 1568 for (;;) { 1569 top: 1570 if (inodedep_lookup(mp, inum, 0, &inodedep) == 0) 1571 return; 1572 LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext) { 1573 /* 1574 * If another thread is trying to lock this vnode 1575 * it will fail but we must wait for it to do so 1576 * before we can proceed. 1577 */ 1578 if (dirrem->dm_state & INPROGRESS) { 1579 wait_worklist(&dirrem->dm_list, "pwrwait"); 1580 goto top; 1581 } 1582 if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) == 1583 (COMPLETE | ONWORKLIST)) 1584 break; 1585 } 1586 if (dirrem == NULL) 1587 return; 1588 remove_from_worklist(&dirrem->dm_list); 1589 FREE_LOCK(ump); 1590 if (vn_start_secondary_write(NULL, &mp, V_NOWAIT)) 1591 panic("process_removes: suspended filesystem"); 1592 handle_workitem_remove(dirrem, 0); 1593 vn_finished_secondary_write(mp); 1594 ACQUIRE_LOCK(ump); 1595 } 1596 } 1597 1598 /* 1599 * Process all truncations associated with a vnode if we are running out 1600 * of journal space. This is called when the vnode lock is already held 1601 * and no other process can clear the truncation. This function returns 1602 * a value greater than zero if it did any work. 1603 */ 1604 static void 1605 process_truncates(vp) 1606 struct vnode *vp; 1607 { 1608 struct inodedep *inodedep; 1609 struct freeblks *freeblks; 1610 struct ufsmount *ump; 1611 struct mount *mp; 1612 ino_t inum; 1613 int cgwait; 1614 1615 mp = vp->v_mount; 1616 ump = VFSTOUFS(mp); 1617 LOCK_OWNED(ump); 1618 inum = VTOI(vp)->i_number; 1619 for (;;) { 1620 if (inodedep_lookup(mp, inum, 0, &inodedep) == 0) 1621 return; 1622 cgwait = 0; 1623 TAILQ_FOREACH(freeblks, &inodedep->id_freeblklst, fb_next) { 1624 /* Journal entries not yet written. */ 1625 if (!LIST_EMPTY(&freeblks->fb_jblkdephd)) { 1626 jwait(&LIST_FIRST( 1627 &freeblks->fb_jblkdephd)->jb_list, 1628 MNT_WAIT); 1629 break; 1630 } 1631 /* Another thread is executing this item. */ 1632 if (freeblks->fb_state & INPROGRESS) { 1633 wait_worklist(&freeblks->fb_list, "ptrwait"); 1634 break; 1635 } 1636 /* Freeblks is waiting on a inode write. */ 1637 if ((freeblks->fb_state & COMPLETE) == 0) { 1638 FREE_LOCK(ump); 1639 ffs_update(vp, 1); 1640 ACQUIRE_LOCK(ump); 1641 break; 1642 } 1643 if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST)) == 1644 (ALLCOMPLETE | ONWORKLIST)) { 1645 remove_from_worklist(&freeblks->fb_list); 1646 freeblks->fb_state |= INPROGRESS; 1647 FREE_LOCK(ump); 1648 if (vn_start_secondary_write(NULL, &mp, 1649 V_NOWAIT)) 1650 panic("process_truncates: " 1651 "suspended filesystem"); 1652 handle_workitem_freeblocks(freeblks, 0); 1653 vn_finished_secondary_write(mp); 1654 ACQUIRE_LOCK(ump); 1655 break; 1656 } 1657 if (freeblks->fb_cgwait) 1658 cgwait++; 1659 } 1660 if (cgwait) { 1661 FREE_LOCK(ump); 1662 sync_cgs(mp, MNT_WAIT); 1663 ffs_sync_snap(mp, MNT_WAIT); 1664 ACQUIRE_LOCK(ump); 1665 continue; 1666 } 1667 if (freeblks == NULL) 1668 break; 1669 } 1670 return; 1671 } 1672 1673 /* 1674 * Process one item on the worklist. 1675 */ 1676 static int 1677 process_worklist_item(mp, target, flags) 1678 struct mount *mp; 1679 int target; 1680 int flags; 1681 { 1682 struct worklist sentinel; 1683 struct worklist *wk; 1684 struct ufsmount *ump; 1685 int matchcnt; 1686 int error; 1687 1688 KASSERT(mp != NULL, ("process_worklist_item: NULL mp")); 1689 /* 1690 * If we are being called because of a process doing a 1691 * copy-on-write, then it is not safe to write as we may 1692 * recurse into the copy-on-write routine. 1693 */ 1694 if (curthread->td_pflags & TDP_COWINPROGRESS) 1695 return (-1); 1696 PHOLD(curproc); /* Don't let the stack go away. */ 1697 ump = VFSTOUFS(mp); 1698 LOCK_OWNED(ump); 1699 matchcnt = 0; 1700 sentinel.wk_mp = NULL; 1701 sentinel.wk_type = D_SENTINEL; 1702 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, &sentinel, wk_list); 1703 for (wk = LIST_NEXT(&sentinel, wk_list); wk != NULL; 1704 wk = LIST_NEXT(&sentinel, wk_list)) { 1705 if (wk->wk_type == D_SENTINEL) { 1706 LIST_REMOVE(&sentinel, wk_list); 1707 LIST_INSERT_AFTER(wk, &sentinel, wk_list); 1708 continue; 1709 } 1710 if (wk->wk_state & INPROGRESS) 1711 panic("process_worklist_item: %p already in progress.", 1712 wk); 1713 wk->wk_state |= INPROGRESS; 1714 remove_from_worklist(wk); 1715 FREE_LOCK(ump); 1716 if (vn_start_secondary_write(NULL, &mp, V_NOWAIT)) 1717 panic("process_worklist_item: suspended filesystem"); 1718 switch (wk->wk_type) { 1719 case D_DIRREM: 1720 /* removal of a directory entry */ 1721 error = handle_workitem_remove(WK_DIRREM(wk), flags); 1722 break; 1723 1724 case D_FREEBLKS: 1725 /* releasing blocks and/or fragments from a file */ 1726 error = handle_workitem_freeblocks(WK_FREEBLKS(wk), 1727 flags); 1728 break; 1729 1730 case D_FREEFRAG: 1731 /* releasing a fragment when replaced as a file grows */ 1732 handle_workitem_freefrag(WK_FREEFRAG(wk)); 1733 error = 0; 1734 break; 1735 1736 case D_FREEFILE: 1737 /* releasing an inode when its link count drops to 0 */ 1738 handle_workitem_freefile(WK_FREEFILE(wk)); 1739 error = 0; 1740 break; 1741 1742 default: 1743 panic("%s_process_worklist: Unknown type %s", 1744 "softdep", TYPENAME(wk->wk_type)); 1745 /* NOTREACHED */ 1746 } 1747 vn_finished_secondary_write(mp); 1748 ACQUIRE_LOCK(ump); 1749 if (error == 0) { 1750 if (++matchcnt == target) 1751 break; 1752 continue; 1753 } 1754 /* 1755 * We have to retry the worklist item later. Wake up any 1756 * waiters who may be able to complete it immediately and 1757 * add the item back to the head so we don't try to execute 1758 * it again. 1759 */ 1760 wk->wk_state &= ~INPROGRESS; 1761 wake_worklist(wk); 1762 add_to_worklist(wk, WK_HEAD); 1763 } 1764 LIST_REMOVE(&sentinel, wk_list); 1765 /* Sentinal could've become the tail from remove_from_worklist. */ 1766 if (ump->softdep_worklist_tail == &sentinel) 1767 ump->softdep_worklist_tail = 1768 (struct worklist *)sentinel.wk_list.le_prev; 1769 PRELE(curproc); 1770 return (matchcnt); 1771 } 1772 1773 /* 1774 * Move dependencies from one buffer to another. 1775 */ 1776 int 1777 softdep_move_dependencies(oldbp, newbp) 1778 struct buf *oldbp; 1779 struct buf *newbp; 1780 { 1781 struct worklist *wk, *wktail; 1782 struct ufsmount *ump; 1783 int dirty; 1784 1785 if ((wk = LIST_FIRST(&oldbp->b_dep)) == NULL) 1786 return (0); 1787 KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, 1788 ("softdep_move_dependencies called on non-softdep filesystem")); 1789 dirty = 0; 1790 wktail = NULL; 1791 ump = VFSTOUFS(wk->wk_mp); 1792 ACQUIRE_LOCK(ump); 1793 while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) { 1794 LIST_REMOVE(wk, wk_list); 1795 if (wk->wk_type == D_BMSAFEMAP && 1796 bmsafemap_backgroundwrite(WK_BMSAFEMAP(wk), newbp)) 1797 dirty = 1; 1798 if (wktail == 0) 1799 LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list); 1800 else 1801 LIST_INSERT_AFTER(wktail, wk, wk_list); 1802 wktail = wk; 1803 } 1804 FREE_LOCK(ump); 1805 1806 return (dirty); 1807 } 1808 1809 /* 1810 * Purge the work list of all items associated with a particular mount point. 1811 */ 1812 int 1813 softdep_flushworklist(oldmnt, countp, td) 1814 struct mount *oldmnt; 1815 int *countp; 1816 struct thread *td; 1817 { 1818 struct vnode *devvp; 1819 int count, error = 0; 1820 struct ufsmount *ump; 1821 1822 /* 1823 * Alternately flush the block device associated with the mount 1824 * point and process any dependencies that the flushing 1825 * creates. We continue until no more worklist dependencies 1826 * are found. 1827 */ 1828 *countp = 0; 1829 ump = VFSTOUFS(oldmnt); 1830 devvp = ump->um_devvp; 1831 while ((count = softdep_process_worklist(oldmnt, 1)) > 0) { 1832 *countp += count; 1833 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 1834 error = VOP_FSYNC(devvp, MNT_WAIT, td); 1835 VOP_UNLOCK(devvp, 0); 1836 if (error) 1837 break; 1838 } 1839 return (error); 1840 } 1841 1842 static int 1843 softdep_waitidle(struct mount *mp) 1844 { 1845 struct ufsmount *ump; 1846 int error; 1847 int i; 1848 1849 ump = VFSTOUFS(mp); 1850 ACQUIRE_LOCK(ump); 1851 for (i = 0; i < 10 && ump->softdep_deps; i++) { 1852 ump->softdep_req = 1; 1853 if (ump->softdep_on_worklist) 1854 panic("softdep_waitidle: work added after flush."); 1855 msleep(&ump->softdep_deps, LOCK_PTR(ump), PVM, "softdeps", 1); 1856 } 1857 ump->softdep_req = 0; 1858 FREE_LOCK(ump); 1859 error = 0; 1860 if (i == 10) { 1861 error = EBUSY; 1862 printf("softdep_waitidle: Failed to flush worklist for %p\n", 1863 mp); 1864 } 1865 1866 return (error); 1867 } 1868 1869 /* 1870 * Flush all vnodes and worklist items associated with a specified mount point. 1871 */ 1872 int 1873 softdep_flushfiles(oldmnt, flags, td) 1874 struct mount *oldmnt; 1875 int flags; 1876 struct thread *td; 1877 { 1878 #ifdef QUOTA 1879 struct ufsmount *ump; 1880 int i; 1881 #endif 1882 int error, early, depcount, loopcnt, retry_flush_count, retry; 1883 int morework; 1884 1885 KASSERT(MOUNTEDSOFTDEP(oldmnt) != 0, 1886 ("softdep_flushfiles called on non-softdep filesystem")); 1887 loopcnt = 10; 1888 retry_flush_count = 3; 1889 retry_flush: 1890 error = 0; 1891 1892 /* 1893 * Alternately flush the vnodes associated with the mount 1894 * point and process any dependencies that the flushing 1895 * creates. In theory, this loop can happen at most twice, 1896 * but we give it a few extra just to be sure. 1897 */ 1898 for (; loopcnt > 0; loopcnt--) { 1899 /* 1900 * Do another flush in case any vnodes were brought in 1901 * as part of the cleanup operations. 1902 */ 1903 early = retry_flush_count == 1 || (oldmnt->mnt_kern_flag & 1904 MNTK_UNMOUNT) == 0 ? 0 : EARLYFLUSH; 1905 if ((error = ffs_flushfiles(oldmnt, flags | early, td)) != 0) 1906 break; 1907 if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 || 1908 depcount == 0) 1909 break; 1910 } 1911 /* 1912 * If we are unmounting then it is an error to fail. If we 1913 * are simply trying to downgrade to read-only, then filesystem 1914 * activity can keep us busy forever, so we just fail with EBUSY. 1915 */ 1916 if (loopcnt == 0) { 1917 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) 1918 panic("softdep_flushfiles: looping"); 1919 error = EBUSY; 1920 } 1921 if (!error) 1922 error = softdep_waitidle(oldmnt); 1923 if (!error) { 1924 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) { 1925 retry = 0; 1926 MNT_ILOCK(oldmnt); 1927 KASSERT((oldmnt->mnt_kern_flag & MNTK_NOINSMNTQ) != 0, 1928 ("softdep_flushfiles: !MNTK_NOINSMNTQ")); 1929 morework = oldmnt->mnt_nvnodelistsize > 0; 1930 #ifdef QUOTA 1931 ump = VFSTOUFS(oldmnt); 1932 UFS_LOCK(ump); 1933 for (i = 0; i < MAXQUOTAS; i++) { 1934 if (ump->um_quotas[i] != NULLVP) 1935 morework = 1; 1936 } 1937 UFS_UNLOCK(ump); 1938 #endif 1939 if (morework) { 1940 if (--retry_flush_count > 0) { 1941 retry = 1; 1942 loopcnt = 3; 1943 } else 1944 error = EBUSY; 1945 } 1946 MNT_IUNLOCK(oldmnt); 1947 if (retry) 1948 goto retry_flush; 1949 } 1950 } 1951 return (error); 1952 } 1953 1954 /* 1955 * Structure hashing. 1956 * 1957 * There are four types of structures that can be looked up: 1958 * 1) pagedep structures identified by mount point, inode number, 1959 * and logical block. 1960 * 2) inodedep structures identified by mount point and inode number. 1961 * 3) newblk structures identified by mount point and 1962 * physical block number. 1963 * 4) bmsafemap structures identified by mount point and 1964 * cylinder group number. 1965 * 1966 * The "pagedep" and "inodedep" dependency structures are hashed 1967 * separately from the file blocks and inodes to which they correspond. 1968 * This separation helps when the in-memory copy of an inode or 1969 * file block must be replaced. It also obviates the need to access 1970 * an inode or file page when simply updating (or de-allocating) 1971 * dependency structures. Lookup of newblk structures is needed to 1972 * find newly allocated blocks when trying to associate them with 1973 * their allocdirect or allocindir structure. 1974 * 1975 * The lookup routines optionally create and hash a new instance when 1976 * an existing entry is not found. The bmsafemap lookup routine always 1977 * allocates a new structure if an existing one is not found. 1978 */ 1979 #define DEPALLOC 0x0001 /* allocate structure if lookup fails */ 1980 #define NODELAY 0x0002 /* cannot do background work */ 1981 1982 /* 1983 * Structures and routines associated with pagedep caching. 1984 */ 1985 #define PAGEDEP_HASH(ump, inum, lbn) \ 1986 (&(ump)->pagedep_hashtbl[((inum) + (lbn)) & (ump)->pagedep_hash_size]) 1987 1988 static int 1989 pagedep_find(pagedephd, ino, lbn, pagedeppp) 1990 struct pagedep_hashhead *pagedephd; 1991 ino_t ino; 1992 ufs_lbn_t lbn; 1993 struct pagedep **pagedeppp; 1994 { 1995 struct pagedep *pagedep; 1996 1997 LIST_FOREACH(pagedep, pagedephd, pd_hash) { 1998 if (ino == pagedep->pd_ino && lbn == pagedep->pd_lbn) { 1999 *pagedeppp = pagedep; 2000 return (1); 2001 } 2002 } 2003 *pagedeppp = NULL; 2004 return (0); 2005 } 2006 /* 2007 * Look up a pagedep. Return 1 if found, 0 otherwise. 2008 * If not found, allocate if DEPALLOC flag is passed. 2009 * Found or allocated entry is returned in pagedeppp. 2010 * This routine must be called with splbio interrupts blocked. 2011 */ 2012 static int 2013 pagedep_lookup(mp, bp, ino, lbn, flags, pagedeppp) 2014 struct mount *mp; 2015 struct buf *bp; 2016 ino_t ino; 2017 ufs_lbn_t lbn; 2018 int flags; 2019 struct pagedep **pagedeppp; 2020 { 2021 struct pagedep *pagedep; 2022 struct pagedep_hashhead *pagedephd; 2023 struct worklist *wk; 2024 struct ufsmount *ump; 2025 int ret; 2026 int i; 2027 2028 ump = VFSTOUFS(mp); 2029 LOCK_OWNED(ump); 2030 if (bp) { 2031 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 2032 if (wk->wk_type == D_PAGEDEP) { 2033 *pagedeppp = WK_PAGEDEP(wk); 2034 return (1); 2035 } 2036 } 2037 } 2038 pagedephd = PAGEDEP_HASH(ump, ino, lbn); 2039 ret = pagedep_find(pagedephd, ino, lbn, pagedeppp); 2040 if (ret) { 2041 if (((*pagedeppp)->pd_state & ONWORKLIST) == 0 && bp) 2042 WORKLIST_INSERT(&bp->b_dep, &(*pagedeppp)->pd_list); 2043 return (1); 2044 } 2045 if ((flags & DEPALLOC) == 0) 2046 return (0); 2047 FREE_LOCK(ump); 2048 pagedep = malloc(sizeof(struct pagedep), 2049 M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO); 2050 workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp); 2051 ACQUIRE_LOCK(ump); 2052 ret = pagedep_find(pagedephd, ino, lbn, pagedeppp); 2053 if (*pagedeppp) { 2054 /* 2055 * This should never happen since we only create pagedeps 2056 * with the vnode lock held. Could be an assert. 2057 */ 2058 WORKITEM_FREE(pagedep, D_PAGEDEP); 2059 return (ret); 2060 } 2061 pagedep->pd_ino = ino; 2062 pagedep->pd_lbn = lbn; 2063 LIST_INIT(&pagedep->pd_dirremhd); 2064 LIST_INIT(&pagedep->pd_pendinghd); 2065 for (i = 0; i < DAHASHSZ; i++) 2066 LIST_INIT(&pagedep->pd_diraddhd[i]); 2067 LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash); 2068 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 2069 *pagedeppp = pagedep; 2070 return (0); 2071 } 2072 2073 /* 2074 * Structures and routines associated with inodedep caching. 2075 */ 2076 #define INODEDEP_HASH(ump, inum) \ 2077 (&(ump)->inodedep_hashtbl[(inum) & (ump)->inodedep_hash_size]) 2078 2079 static int 2080 inodedep_find(inodedephd, inum, inodedeppp) 2081 struct inodedep_hashhead *inodedephd; 2082 ino_t inum; 2083 struct inodedep **inodedeppp; 2084 { 2085 struct inodedep *inodedep; 2086 2087 LIST_FOREACH(inodedep, inodedephd, id_hash) 2088 if (inum == inodedep->id_ino) 2089 break; 2090 if (inodedep) { 2091 *inodedeppp = inodedep; 2092 return (1); 2093 } 2094 *inodedeppp = NULL; 2095 2096 return (0); 2097 } 2098 /* 2099 * Look up an inodedep. Return 1 if found, 0 if not found. 2100 * If not found, allocate if DEPALLOC flag is passed. 2101 * Found or allocated entry is returned in inodedeppp. 2102 * This routine must be called with splbio interrupts blocked. 2103 */ 2104 static int 2105 inodedep_lookup(mp, inum, flags, inodedeppp) 2106 struct mount *mp; 2107 ino_t inum; 2108 int flags; 2109 struct inodedep **inodedeppp; 2110 { 2111 struct inodedep *inodedep; 2112 struct inodedep_hashhead *inodedephd; 2113 struct ufsmount *ump; 2114 struct fs *fs; 2115 2116 ump = VFSTOUFS(mp); 2117 LOCK_OWNED(ump); 2118 fs = ump->um_fs; 2119 inodedephd = INODEDEP_HASH(ump, inum); 2120 2121 if (inodedep_find(inodedephd, inum, inodedeppp)) 2122 return (1); 2123 if ((flags & DEPALLOC) == 0) 2124 return (0); 2125 /* 2126 * If we are over our limit, try to improve the situation. 2127 */ 2128 if (dep_current[D_INODEDEP] > max_softdeps && (flags & NODELAY) == 0) 2129 request_cleanup(mp, FLUSH_INODES); 2130 FREE_LOCK(ump); 2131 inodedep = malloc(sizeof(struct inodedep), 2132 M_INODEDEP, M_SOFTDEP_FLAGS); 2133 workitem_alloc(&inodedep->id_list, D_INODEDEP, mp); 2134 ACQUIRE_LOCK(ump); 2135 if (inodedep_find(inodedephd, inum, inodedeppp)) { 2136 WORKITEM_FREE(inodedep, D_INODEDEP); 2137 return (1); 2138 } 2139 inodedep->id_fs = fs; 2140 inodedep->id_ino = inum; 2141 inodedep->id_state = ALLCOMPLETE; 2142 inodedep->id_nlinkdelta = 0; 2143 inodedep->id_savedino1 = NULL; 2144 inodedep->id_savedsize = -1; 2145 inodedep->id_savedextsize = -1; 2146 inodedep->id_savednlink = -1; 2147 inodedep->id_bmsafemap = NULL; 2148 inodedep->id_mkdiradd = NULL; 2149 LIST_INIT(&inodedep->id_dirremhd); 2150 LIST_INIT(&inodedep->id_pendinghd); 2151 LIST_INIT(&inodedep->id_inowait); 2152 LIST_INIT(&inodedep->id_bufwait); 2153 TAILQ_INIT(&inodedep->id_inoreflst); 2154 TAILQ_INIT(&inodedep->id_inoupdt); 2155 TAILQ_INIT(&inodedep->id_newinoupdt); 2156 TAILQ_INIT(&inodedep->id_extupdt); 2157 TAILQ_INIT(&inodedep->id_newextupdt); 2158 TAILQ_INIT(&inodedep->id_freeblklst); 2159 LIST_INSERT_HEAD(inodedephd, inodedep, id_hash); 2160 *inodedeppp = inodedep; 2161 return (0); 2162 } 2163 2164 /* 2165 * Structures and routines associated with newblk caching. 2166 */ 2167 #define NEWBLK_HASH(ump, inum) \ 2168 (&(ump)->newblk_hashtbl[(inum) & (ump)->newblk_hash_size]) 2169 2170 static int 2171 newblk_find(newblkhd, newblkno, flags, newblkpp) 2172 struct newblk_hashhead *newblkhd; 2173 ufs2_daddr_t newblkno; 2174 int flags; 2175 struct newblk **newblkpp; 2176 { 2177 struct newblk *newblk; 2178 2179 LIST_FOREACH(newblk, newblkhd, nb_hash) { 2180 if (newblkno != newblk->nb_newblkno) 2181 continue; 2182 /* 2183 * If we're creating a new dependency don't match those that 2184 * have already been converted to allocdirects. This is for 2185 * a frag extend. 2186 */ 2187 if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK) 2188 continue; 2189 break; 2190 } 2191 if (newblk) { 2192 *newblkpp = newblk; 2193 return (1); 2194 } 2195 *newblkpp = NULL; 2196 return (0); 2197 } 2198 2199 /* 2200 * Look up a newblk. Return 1 if found, 0 if not found. 2201 * If not found, allocate if DEPALLOC flag is passed. 2202 * Found or allocated entry is returned in newblkpp. 2203 */ 2204 static int 2205 newblk_lookup(mp, newblkno, flags, newblkpp) 2206 struct mount *mp; 2207 ufs2_daddr_t newblkno; 2208 int flags; 2209 struct newblk **newblkpp; 2210 { 2211 struct newblk *newblk; 2212 struct newblk_hashhead *newblkhd; 2213 struct ufsmount *ump; 2214 2215 ump = VFSTOUFS(mp); 2216 LOCK_OWNED(ump); 2217 newblkhd = NEWBLK_HASH(ump, newblkno); 2218 if (newblk_find(newblkhd, newblkno, flags, newblkpp)) 2219 return (1); 2220 if ((flags & DEPALLOC) == 0) 2221 return (0); 2222 FREE_LOCK(ump); 2223 newblk = malloc(sizeof(union allblk), M_NEWBLK, 2224 M_SOFTDEP_FLAGS | M_ZERO); 2225 workitem_alloc(&newblk->nb_list, D_NEWBLK, mp); 2226 ACQUIRE_LOCK(ump); 2227 if (newblk_find(newblkhd, newblkno, flags, newblkpp)) { 2228 WORKITEM_FREE(newblk, D_NEWBLK); 2229 return (1); 2230 } 2231 newblk->nb_freefrag = NULL; 2232 LIST_INIT(&newblk->nb_indirdeps); 2233 LIST_INIT(&newblk->nb_newdirblk); 2234 LIST_INIT(&newblk->nb_jwork); 2235 newblk->nb_state = ATTACHED; 2236 newblk->nb_newblkno = newblkno; 2237 LIST_INSERT_HEAD(newblkhd, newblk, nb_hash); 2238 *newblkpp = newblk; 2239 return (0); 2240 } 2241 2242 /* 2243 * Structures and routines associated with freed indirect block caching. 2244 */ 2245 #define INDIR_HASH(ump, blkno) \ 2246 (&(ump)->indir_hashtbl[(blkno) & (ump)->indir_hash_size]) 2247 2248 /* 2249 * Lookup an indirect block in the indir hash table. The freework is 2250 * removed and potentially freed. The caller must do a blocking journal 2251 * write before writing to the blkno. 2252 */ 2253 static int 2254 indirblk_lookup(mp, blkno) 2255 struct mount *mp; 2256 ufs2_daddr_t blkno; 2257 { 2258 struct freework *freework; 2259 struct indir_hashhead *wkhd; 2260 struct ufsmount *ump; 2261 2262 ump = VFSTOUFS(mp); 2263 wkhd = INDIR_HASH(ump, blkno); 2264 TAILQ_FOREACH(freework, wkhd, fw_next) { 2265 if (freework->fw_blkno != blkno) 2266 continue; 2267 indirblk_remove(freework); 2268 return (1); 2269 } 2270 return (0); 2271 } 2272 2273 /* 2274 * Insert an indirect block represented by freework into the indirblk 2275 * hash table so that it may prevent the block from being re-used prior 2276 * to the journal being written. 2277 */ 2278 static void 2279 indirblk_insert(freework) 2280 struct freework *freework; 2281 { 2282 struct jblocks *jblocks; 2283 struct jseg *jseg; 2284 struct ufsmount *ump; 2285 2286 ump = VFSTOUFS(freework->fw_list.wk_mp); 2287 jblocks = ump->softdep_jblocks; 2288 jseg = TAILQ_LAST(&jblocks->jb_segs, jseglst); 2289 if (jseg == NULL) 2290 return; 2291 2292 LIST_INSERT_HEAD(&jseg->js_indirs, freework, fw_segs); 2293 TAILQ_INSERT_HEAD(INDIR_HASH(ump, freework->fw_blkno), freework, 2294 fw_next); 2295 freework->fw_state &= ~DEPCOMPLETE; 2296 } 2297 2298 static void 2299 indirblk_remove(freework) 2300 struct freework *freework; 2301 { 2302 struct ufsmount *ump; 2303 2304 ump = VFSTOUFS(freework->fw_list.wk_mp); 2305 LIST_REMOVE(freework, fw_segs); 2306 TAILQ_REMOVE(INDIR_HASH(ump, freework->fw_blkno), freework, fw_next); 2307 freework->fw_state |= DEPCOMPLETE; 2308 if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE) 2309 WORKITEM_FREE(freework, D_FREEWORK); 2310 } 2311 2312 /* 2313 * Executed during filesystem system initialization before 2314 * mounting any filesystems. 2315 */ 2316 void 2317 softdep_initialize() 2318 { 2319 2320 max_softdeps = desiredvnodes * 4; 2321 2322 /* initialise bioops hack */ 2323 bioops.io_start = softdep_disk_io_initiation; 2324 bioops.io_complete = softdep_disk_write_complete; 2325 bioops.io_deallocate = softdep_deallocate_dependencies; 2326 bioops.io_countdeps = softdep_count_dependencies; 2327 2328 /* Initialize the callout with an mtx. */ 2329 callout_init_mtx(&softdep_callout, &lk, 0); 2330 } 2331 2332 /* 2333 * Executed after all filesystems have been unmounted during 2334 * filesystem module unload. 2335 */ 2336 void 2337 softdep_uninitialize() 2338 { 2339 2340 /* clear bioops hack */ 2341 bioops.io_start = NULL; 2342 bioops.io_complete = NULL; 2343 bioops.io_deallocate = NULL; 2344 bioops.io_countdeps = NULL; 2345 2346 callout_drain(&softdep_callout); 2347 } 2348 2349 /* 2350 * Called at mount time to notify the dependency code that a 2351 * filesystem wishes to use it. 2352 */ 2353 int 2354 softdep_mount(devvp, mp, fs, cred) 2355 struct vnode *devvp; 2356 struct mount *mp; 2357 struct fs *fs; 2358 struct ucred *cred; 2359 { 2360 struct csum_total cstotal; 2361 struct mount_softdeps *sdp; 2362 struct ufsmount *ump; 2363 struct cg *cgp; 2364 struct buf *bp; 2365 int i, error, cyl; 2366 2367 sdp = malloc(sizeof(struct mount_softdeps), M_MOUNTDATA, 2368 M_WAITOK | M_ZERO); 2369 MNT_ILOCK(mp); 2370 mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP; 2371 if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) { 2372 mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) | 2373 MNTK_SOFTDEP | MNTK_NOASYNC; 2374 } 2375 ump = VFSTOUFS(mp); 2376 ump->um_softdep = sdp; 2377 MNT_IUNLOCK(mp); 2378 LOCK_PTR(ump) = &lk; 2379 LIST_INIT(&ump->softdep_workitem_pending); 2380 LIST_INIT(&ump->softdep_journal_pending); 2381 TAILQ_INIT(&ump->softdep_unlinked); 2382 LIST_INIT(&ump->softdep_dirtycg); 2383 ump->softdep_worklist_tail = NULL; 2384 ump->softdep_on_worklist = 0; 2385 ump->softdep_deps = 0; 2386 LIST_INIT(&ump->softdep_mkdirlisthd); 2387 ump->pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP, 2388 &ump->pagedep_hash_size); 2389 ump->pagedep_nextclean = 0; 2390 ump->inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, 2391 &ump->inodedep_hash_size); 2392 ump->inodedep_nextclean = 0; 2393 ump->newblk_hashtbl = hashinit(max_softdeps / 2, M_NEWBLK, 2394 &ump->newblk_hash_size); 2395 ump->bmsafemap_hashtbl = hashinit(1024, M_BMSAFEMAP, 2396 &ump->bmsafemap_hash_size); 2397 i = 1 << (ffs(desiredvnodes / 10) - 1); 2398 ump->indir_hashtbl = malloc(i * sizeof(struct indir_hashhead), 2399 M_FREEWORK, M_WAITOK); 2400 ump->indir_hash_size = i - 1; 2401 for (i = 0; i <= ump->indir_hash_size; i++) 2402 TAILQ_INIT(&ump->indir_hashtbl[i]); 2403 if ((fs->fs_flags & FS_SUJ) && 2404 (error = journal_mount(mp, fs, cred)) != 0) { 2405 printf("Failed to start journal: %d\n", error); 2406 softdep_unmount(mp); 2407 return (error); 2408 } 2409 atomic_add_int(&stat_softdep_mounts, 1); 2410 /* 2411 * When doing soft updates, the counters in the 2412 * superblock may have gotten out of sync. Recomputation 2413 * can take a long time and can be deferred for background 2414 * fsck. However, the old behavior of scanning the cylinder 2415 * groups and recalculating them at mount time is available 2416 * by setting vfs.ffs.compute_summary_at_mount to one. 2417 */ 2418 if (compute_summary_at_mount == 0 || fs->fs_clean != 0) 2419 return (0); 2420 bzero(&cstotal, sizeof cstotal); 2421 for (cyl = 0; cyl < fs->fs_ncg; cyl++) { 2422 if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)), 2423 fs->fs_cgsize, cred, &bp)) != 0) { 2424 brelse(bp); 2425 softdep_unmount(mp); 2426 return (error); 2427 } 2428 cgp = (struct cg *)bp->b_data; 2429 cstotal.cs_nffree += cgp->cg_cs.cs_nffree; 2430 cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree; 2431 cstotal.cs_nifree += cgp->cg_cs.cs_nifree; 2432 cstotal.cs_ndir += cgp->cg_cs.cs_ndir; 2433 fs->fs_cs(fs, cyl) = cgp->cg_cs; 2434 brelse(bp); 2435 } 2436 #ifdef DEBUG 2437 if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal)) 2438 printf("%s: superblock summary recomputed\n", fs->fs_fsmnt); 2439 #endif 2440 bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal); 2441 return (0); 2442 } 2443 2444 void 2445 softdep_unmount(mp) 2446 struct mount *mp; 2447 { 2448 struct ufsmount *ump; 2449 #ifdef INVARIANTS 2450 int i; 2451 #endif 2452 2453 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 2454 ("softdep_unmount called on non-softdep filesystem")); 2455 ump = VFSTOUFS(mp); 2456 MNT_ILOCK(mp); 2457 mp->mnt_flag &= ~MNT_SOFTDEP; 2458 if (MOUNTEDSUJ(mp) == 0) { 2459 MNT_IUNLOCK(mp); 2460 } else { 2461 mp->mnt_flag &= ~MNT_SUJ; 2462 MNT_IUNLOCK(mp); 2463 journal_unmount(ump); 2464 } 2465 atomic_subtract_int(&stat_softdep_mounts, 1); 2466 hashdestroy(ump->pagedep_hashtbl, M_PAGEDEP, ump->pagedep_hash_size); 2467 hashdestroy(ump->inodedep_hashtbl, M_INODEDEP, ump->inodedep_hash_size); 2468 hashdestroy(ump->newblk_hashtbl, M_NEWBLK, ump->newblk_hash_size); 2469 hashdestroy(ump->bmsafemap_hashtbl, M_BMSAFEMAP, 2470 ump->bmsafemap_hash_size); 2471 free(ump->indir_hashtbl, M_FREEWORK); 2472 #ifdef INVARIANTS 2473 for (i = 0; i <= D_LAST; i++) 2474 KASSERT(ump->softdep_curdeps[i] == 0, 2475 ("Unmount %s: Dep type %s != 0 (%ld)", ump->um_fs->fs_fsmnt, 2476 TYPENAME(i), ump->softdep_curdeps[i])); 2477 #endif 2478 free(ump->um_softdep, M_MOUNTDATA); 2479 } 2480 2481 static struct jblocks * 2482 jblocks_create(void) 2483 { 2484 struct jblocks *jblocks; 2485 2486 jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO); 2487 TAILQ_INIT(&jblocks->jb_segs); 2488 jblocks->jb_avail = 10; 2489 jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail, 2490 M_JBLOCKS, M_WAITOK | M_ZERO); 2491 2492 return (jblocks); 2493 } 2494 2495 static ufs2_daddr_t 2496 jblocks_alloc(jblocks, bytes, actual) 2497 struct jblocks *jblocks; 2498 int bytes; 2499 int *actual; 2500 { 2501 ufs2_daddr_t daddr; 2502 struct jextent *jext; 2503 int freecnt; 2504 int blocks; 2505 2506 blocks = bytes / DEV_BSIZE; 2507 jext = &jblocks->jb_extent[jblocks->jb_head]; 2508 freecnt = jext->je_blocks - jblocks->jb_off; 2509 if (freecnt == 0) { 2510 jblocks->jb_off = 0; 2511 if (++jblocks->jb_head > jblocks->jb_used) 2512 jblocks->jb_head = 0; 2513 jext = &jblocks->jb_extent[jblocks->jb_head]; 2514 freecnt = jext->je_blocks; 2515 } 2516 if (freecnt > blocks) 2517 freecnt = blocks; 2518 *actual = freecnt * DEV_BSIZE; 2519 daddr = jext->je_daddr + jblocks->jb_off; 2520 jblocks->jb_off += freecnt; 2521 jblocks->jb_free -= freecnt; 2522 2523 return (daddr); 2524 } 2525 2526 static void 2527 jblocks_free(jblocks, mp, bytes) 2528 struct jblocks *jblocks; 2529 struct mount *mp; 2530 int bytes; 2531 { 2532 2533 LOCK_OWNED(VFSTOUFS(mp)); 2534 jblocks->jb_free += bytes / DEV_BSIZE; 2535 if (jblocks->jb_suspended) 2536 worklist_speedup(mp); 2537 wakeup(jblocks); 2538 } 2539 2540 static void 2541 jblocks_destroy(jblocks) 2542 struct jblocks *jblocks; 2543 { 2544 2545 if (jblocks->jb_extent) 2546 free(jblocks->jb_extent, M_JBLOCKS); 2547 free(jblocks, M_JBLOCKS); 2548 } 2549 2550 static void 2551 jblocks_add(jblocks, daddr, blocks) 2552 struct jblocks *jblocks; 2553 ufs2_daddr_t daddr; 2554 int blocks; 2555 { 2556 struct jextent *jext; 2557 2558 jblocks->jb_blocks += blocks; 2559 jblocks->jb_free += blocks; 2560 jext = &jblocks->jb_extent[jblocks->jb_used]; 2561 /* Adding the first block. */ 2562 if (jext->je_daddr == 0) { 2563 jext->je_daddr = daddr; 2564 jext->je_blocks = blocks; 2565 return; 2566 } 2567 /* Extending the last extent. */ 2568 if (jext->je_daddr + jext->je_blocks == daddr) { 2569 jext->je_blocks += blocks; 2570 return; 2571 } 2572 /* Adding a new extent. */ 2573 if (++jblocks->jb_used == jblocks->jb_avail) { 2574 jblocks->jb_avail *= 2; 2575 jext = malloc(sizeof(struct jextent) * jblocks->jb_avail, 2576 M_JBLOCKS, M_WAITOK | M_ZERO); 2577 memcpy(jext, jblocks->jb_extent, 2578 sizeof(struct jextent) * jblocks->jb_used); 2579 free(jblocks->jb_extent, M_JBLOCKS); 2580 jblocks->jb_extent = jext; 2581 } 2582 jext = &jblocks->jb_extent[jblocks->jb_used]; 2583 jext->je_daddr = daddr; 2584 jext->je_blocks = blocks; 2585 return; 2586 } 2587 2588 int 2589 softdep_journal_lookup(mp, vpp) 2590 struct mount *mp; 2591 struct vnode **vpp; 2592 { 2593 struct componentname cnp; 2594 struct vnode *dvp; 2595 ino_t sujournal; 2596 int error; 2597 2598 error = VFS_VGET(mp, ROOTINO, LK_EXCLUSIVE, &dvp); 2599 if (error) 2600 return (error); 2601 bzero(&cnp, sizeof(cnp)); 2602 cnp.cn_nameiop = LOOKUP; 2603 cnp.cn_flags = ISLASTCN; 2604 cnp.cn_thread = curthread; 2605 cnp.cn_cred = curthread->td_ucred; 2606 cnp.cn_pnbuf = SUJ_FILE; 2607 cnp.cn_nameptr = SUJ_FILE; 2608 cnp.cn_namelen = strlen(SUJ_FILE); 2609 error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal); 2610 vput(dvp); 2611 if (error != 0) 2612 return (error); 2613 error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp); 2614 return (error); 2615 } 2616 2617 /* 2618 * Open and verify the journal file. 2619 */ 2620 static int 2621 journal_mount(mp, fs, cred) 2622 struct mount *mp; 2623 struct fs *fs; 2624 struct ucred *cred; 2625 { 2626 struct jblocks *jblocks; 2627 struct ufsmount *ump; 2628 struct vnode *vp; 2629 struct inode *ip; 2630 ufs2_daddr_t blkno; 2631 int bcount; 2632 int error; 2633 int i; 2634 2635 ump = VFSTOUFS(mp); 2636 ump->softdep_journal_tail = NULL; 2637 ump->softdep_on_journal = 0; 2638 ump->softdep_accdeps = 0; 2639 ump->softdep_req = 0; 2640 ump->softdep_jblocks = NULL; 2641 error = softdep_journal_lookup(mp, &vp); 2642 if (error != 0) { 2643 printf("Failed to find journal. Use tunefs to create one\n"); 2644 return (error); 2645 } 2646 ip = VTOI(vp); 2647 if (ip->i_size < SUJ_MIN) { 2648 error = ENOSPC; 2649 goto out; 2650 } 2651 bcount = lblkno(fs, ip->i_size); /* Only use whole blocks. */ 2652 jblocks = jblocks_create(); 2653 for (i = 0; i < bcount; i++) { 2654 error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL); 2655 if (error) 2656 break; 2657 jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag)); 2658 } 2659 if (error) { 2660 jblocks_destroy(jblocks); 2661 goto out; 2662 } 2663 jblocks->jb_low = jblocks->jb_free / 3; /* Reserve 33%. */ 2664 jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */ 2665 ump->softdep_jblocks = jblocks; 2666 out: 2667 if (error == 0) { 2668 MNT_ILOCK(mp); 2669 mp->mnt_flag |= MNT_SUJ; 2670 mp->mnt_flag &= ~MNT_SOFTDEP; 2671 MNT_IUNLOCK(mp); 2672 /* 2673 * Only validate the journal contents if the 2674 * filesystem is clean, otherwise we write the logs 2675 * but they'll never be used. If the filesystem was 2676 * still dirty when we mounted it the journal is 2677 * invalid and a new journal can only be valid if it 2678 * starts from a clean mount. 2679 */ 2680 if (fs->fs_clean) { 2681 DIP_SET(ip, i_modrev, fs->fs_mtime); 2682 ip->i_flags |= IN_MODIFIED; 2683 ffs_update(vp, 1); 2684 } 2685 } 2686 vput(vp); 2687 return (error); 2688 } 2689 2690 static void 2691 journal_unmount(ump) 2692 struct ufsmount *ump; 2693 { 2694 2695 if (ump->softdep_jblocks) 2696 jblocks_destroy(ump->softdep_jblocks); 2697 ump->softdep_jblocks = NULL; 2698 } 2699 2700 /* 2701 * Called when a journal record is ready to be written. Space is allocated 2702 * and the journal entry is created when the journal is flushed to stable 2703 * store. 2704 */ 2705 static void 2706 add_to_journal(wk) 2707 struct worklist *wk; 2708 { 2709 struct ufsmount *ump; 2710 2711 ump = VFSTOUFS(wk->wk_mp); 2712 LOCK_OWNED(ump); 2713 if (wk->wk_state & ONWORKLIST) 2714 panic("add_to_journal: %s(0x%X) already on list", 2715 TYPENAME(wk->wk_type), wk->wk_state); 2716 wk->wk_state |= ONWORKLIST | DEPCOMPLETE; 2717 if (LIST_EMPTY(&ump->softdep_journal_pending)) { 2718 ump->softdep_jblocks->jb_age = ticks; 2719 LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list); 2720 } else 2721 LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list); 2722 ump->softdep_journal_tail = wk; 2723 ump->softdep_on_journal += 1; 2724 } 2725 2726 /* 2727 * Remove an arbitrary item for the journal worklist maintain the tail 2728 * pointer. This happens when a new operation obviates the need to 2729 * journal an old operation. 2730 */ 2731 static void 2732 remove_from_journal(wk) 2733 struct worklist *wk; 2734 { 2735 struct ufsmount *ump; 2736 2737 ump = VFSTOUFS(wk->wk_mp); 2738 LOCK_OWNED(ump); 2739 #ifdef SUJ_DEBUG 2740 { 2741 struct worklist *wkn; 2742 2743 LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list) 2744 if (wkn == wk) 2745 break; 2746 if (wkn == NULL) 2747 panic("remove_from_journal: %p is not in journal", wk); 2748 } 2749 #endif 2750 /* 2751 * We emulate a TAILQ to save space in most structures which do not 2752 * require TAILQ semantics. Here we must update the tail position 2753 * when removing the tail which is not the final entry. This works 2754 * only if the worklist linkage are at the beginning of the structure. 2755 */ 2756 if (ump->softdep_journal_tail == wk) 2757 ump->softdep_journal_tail = 2758 (struct worklist *)wk->wk_list.le_prev; 2759 2760 WORKLIST_REMOVE(wk); 2761 ump->softdep_on_journal -= 1; 2762 } 2763 2764 /* 2765 * Check for journal space as well as dependency limits so the prelink 2766 * code can throttle both journaled and non-journaled filesystems. 2767 * Threshold is 0 for low and 1 for min. 2768 */ 2769 static int 2770 journal_space(ump, thresh) 2771 struct ufsmount *ump; 2772 int thresh; 2773 { 2774 struct jblocks *jblocks; 2775 int limit, avail; 2776 2777 jblocks = ump->softdep_jblocks; 2778 if (jblocks == NULL) 2779 return (1); 2780 /* 2781 * We use a tighter restriction here to prevent request_cleanup() 2782 * running in threads from running into locks we currently hold. 2783 * We have to be over the limit and our filesystem has to be 2784 * responsible for more than our share of that usage. 2785 */ 2786 limit = (max_softdeps / 10) * 9; 2787 if (dep_current[D_INODEDEP] > limit && 2788 ump->softdep_curdeps[D_INODEDEP] > limit / stat_softdep_mounts) 2789 return (0); 2790 if (thresh) 2791 thresh = jblocks->jb_min; 2792 else 2793 thresh = jblocks->jb_low; 2794 avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE; 2795 avail = jblocks->jb_free - avail; 2796 2797 return (avail > thresh); 2798 } 2799 2800 static void 2801 journal_suspend(ump) 2802 struct ufsmount *ump; 2803 { 2804 struct jblocks *jblocks; 2805 struct mount *mp; 2806 2807 mp = UFSTOVFS(ump); 2808 jblocks = ump->softdep_jblocks; 2809 MNT_ILOCK(mp); 2810 if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) { 2811 stat_journal_min++; 2812 mp->mnt_kern_flag |= MNTK_SUSPEND; 2813 mp->mnt_susp_owner = FIRST_THREAD_IN_PROC(softdepproc); 2814 } 2815 jblocks->jb_suspended = 1; 2816 MNT_IUNLOCK(mp); 2817 } 2818 2819 static int 2820 journal_unsuspend(struct ufsmount *ump) 2821 { 2822 struct jblocks *jblocks; 2823 struct mount *mp; 2824 2825 mp = UFSTOVFS(ump); 2826 jblocks = ump->softdep_jblocks; 2827 2828 if (jblocks != NULL && jblocks->jb_suspended && 2829 journal_space(ump, jblocks->jb_min)) { 2830 jblocks->jb_suspended = 0; 2831 FREE_LOCK(ump); 2832 mp->mnt_susp_owner = curthread; 2833 vfs_write_resume(mp, 0); 2834 ACQUIRE_LOCK(ump); 2835 return (1); 2836 } 2837 return (0); 2838 } 2839 2840 /* 2841 * Called before any allocation function to be certain that there is 2842 * sufficient space in the journal prior to creating any new records. 2843 * Since in the case of block allocation we may have multiple locked 2844 * buffers at the time of the actual allocation we can not block 2845 * when the journal records are created. Doing so would create a deadlock 2846 * if any of these buffers needed to be flushed to reclaim space. Instead 2847 * we require a sufficiently large amount of available space such that 2848 * each thread in the system could have passed this allocation check and 2849 * still have sufficient free space. With 20% of a minimum journal size 2850 * of 1MB we have 6553 records available. 2851 */ 2852 int 2853 softdep_prealloc(vp, waitok) 2854 struct vnode *vp; 2855 int waitok; 2856 { 2857 struct ufsmount *ump; 2858 2859 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 2860 ("softdep_prealloc called on non-softdep filesystem")); 2861 /* 2862 * Nothing to do if we are not running journaled soft updates. 2863 * If we currently hold the snapshot lock, we must avoid handling 2864 * other resources that could cause deadlock. 2865 */ 2866 if (DOINGSUJ(vp) == 0 || IS_SNAPSHOT(VTOI(vp))) 2867 return (0); 2868 ump = VFSTOUFS(vp->v_mount); 2869 ACQUIRE_LOCK(ump); 2870 if (journal_space(ump, 0)) { 2871 FREE_LOCK(ump); 2872 return (0); 2873 } 2874 stat_journal_low++; 2875 FREE_LOCK(ump); 2876 if (waitok == MNT_NOWAIT) 2877 return (ENOSPC); 2878 /* 2879 * Attempt to sync this vnode once to flush any journal 2880 * work attached to it. 2881 */ 2882 if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0) 2883 ffs_syncvnode(vp, waitok, 0); 2884 ACQUIRE_LOCK(ump); 2885 process_removes(vp); 2886 process_truncates(vp); 2887 if (journal_space(ump, 0) == 0) { 2888 softdep_speedup(); 2889 if (journal_space(ump, 1) == 0) 2890 journal_suspend(ump); 2891 } 2892 FREE_LOCK(ump); 2893 2894 return (0); 2895 } 2896 2897 /* 2898 * Before adjusting a link count on a vnode verify that we have sufficient 2899 * journal space. If not, process operations that depend on the currently 2900 * locked pair of vnodes to try to flush space as the syncer, buf daemon, 2901 * and softdep flush threads can not acquire these locks to reclaim space. 2902 */ 2903 static void 2904 softdep_prelink(dvp, vp) 2905 struct vnode *dvp; 2906 struct vnode *vp; 2907 { 2908 struct ufsmount *ump; 2909 2910 ump = VFSTOUFS(dvp->v_mount); 2911 LOCK_OWNED(ump); 2912 /* 2913 * Nothing to do if we have sufficient journal space. 2914 * If we currently hold the snapshot lock, we must avoid 2915 * handling other resources that could cause deadlock. 2916 */ 2917 if (journal_space(ump, 0) || (vp && IS_SNAPSHOT(VTOI(vp)))) 2918 return; 2919 stat_journal_low++; 2920 FREE_LOCK(ump); 2921 if (vp) 2922 ffs_syncvnode(vp, MNT_NOWAIT, 0); 2923 ffs_syncvnode(dvp, MNT_WAIT, 0); 2924 ACQUIRE_LOCK(ump); 2925 /* Process vp before dvp as it may create .. removes. */ 2926 if (vp) { 2927 process_removes(vp); 2928 process_truncates(vp); 2929 } 2930 process_removes(dvp); 2931 process_truncates(dvp); 2932 softdep_speedup(); 2933 process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT); 2934 if (journal_space(ump, 0) == 0) { 2935 softdep_speedup(); 2936 if (journal_space(ump, 1) == 0) 2937 journal_suspend(ump); 2938 } 2939 } 2940 2941 static void 2942 jseg_write(ump, jseg, data) 2943 struct ufsmount *ump; 2944 struct jseg *jseg; 2945 uint8_t *data; 2946 { 2947 struct jsegrec *rec; 2948 2949 rec = (struct jsegrec *)data; 2950 rec->jsr_seq = jseg->js_seq; 2951 rec->jsr_oldest = jseg->js_oldseq; 2952 rec->jsr_cnt = jseg->js_cnt; 2953 rec->jsr_blocks = jseg->js_size / ump->um_devvp->v_bufobj.bo_bsize; 2954 rec->jsr_crc = 0; 2955 rec->jsr_time = ump->um_fs->fs_mtime; 2956 } 2957 2958 static inline void 2959 inoref_write(inoref, jseg, rec) 2960 struct inoref *inoref; 2961 struct jseg *jseg; 2962 struct jrefrec *rec; 2963 { 2964 2965 inoref->if_jsegdep->jd_seg = jseg; 2966 rec->jr_ino = inoref->if_ino; 2967 rec->jr_parent = inoref->if_parent; 2968 rec->jr_nlink = inoref->if_nlink; 2969 rec->jr_mode = inoref->if_mode; 2970 rec->jr_diroff = inoref->if_diroff; 2971 } 2972 2973 static void 2974 jaddref_write(jaddref, jseg, data) 2975 struct jaddref *jaddref; 2976 struct jseg *jseg; 2977 uint8_t *data; 2978 { 2979 struct jrefrec *rec; 2980 2981 rec = (struct jrefrec *)data; 2982 rec->jr_op = JOP_ADDREF; 2983 inoref_write(&jaddref->ja_ref, jseg, rec); 2984 } 2985 2986 static void 2987 jremref_write(jremref, jseg, data) 2988 struct jremref *jremref; 2989 struct jseg *jseg; 2990 uint8_t *data; 2991 { 2992 struct jrefrec *rec; 2993 2994 rec = (struct jrefrec *)data; 2995 rec->jr_op = JOP_REMREF; 2996 inoref_write(&jremref->jr_ref, jseg, rec); 2997 } 2998 2999 static void 3000 jmvref_write(jmvref, jseg, data) 3001 struct jmvref *jmvref; 3002 struct jseg *jseg; 3003 uint8_t *data; 3004 { 3005 struct jmvrec *rec; 3006 3007 rec = (struct jmvrec *)data; 3008 rec->jm_op = JOP_MVREF; 3009 rec->jm_ino = jmvref->jm_ino; 3010 rec->jm_parent = jmvref->jm_parent; 3011 rec->jm_oldoff = jmvref->jm_oldoff; 3012 rec->jm_newoff = jmvref->jm_newoff; 3013 } 3014 3015 static void 3016 jnewblk_write(jnewblk, jseg, data) 3017 struct jnewblk *jnewblk; 3018 struct jseg *jseg; 3019 uint8_t *data; 3020 { 3021 struct jblkrec *rec; 3022 3023 jnewblk->jn_jsegdep->jd_seg = jseg; 3024 rec = (struct jblkrec *)data; 3025 rec->jb_op = JOP_NEWBLK; 3026 rec->jb_ino = jnewblk->jn_ino; 3027 rec->jb_blkno = jnewblk->jn_blkno; 3028 rec->jb_lbn = jnewblk->jn_lbn; 3029 rec->jb_frags = jnewblk->jn_frags; 3030 rec->jb_oldfrags = jnewblk->jn_oldfrags; 3031 } 3032 3033 static void 3034 jfreeblk_write(jfreeblk, jseg, data) 3035 struct jfreeblk *jfreeblk; 3036 struct jseg *jseg; 3037 uint8_t *data; 3038 { 3039 struct jblkrec *rec; 3040 3041 jfreeblk->jf_dep.jb_jsegdep->jd_seg = jseg; 3042 rec = (struct jblkrec *)data; 3043 rec->jb_op = JOP_FREEBLK; 3044 rec->jb_ino = jfreeblk->jf_ino; 3045 rec->jb_blkno = jfreeblk->jf_blkno; 3046 rec->jb_lbn = jfreeblk->jf_lbn; 3047 rec->jb_frags = jfreeblk->jf_frags; 3048 rec->jb_oldfrags = 0; 3049 } 3050 3051 static void 3052 jfreefrag_write(jfreefrag, jseg, data) 3053 struct jfreefrag *jfreefrag; 3054 struct jseg *jseg; 3055 uint8_t *data; 3056 { 3057 struct jblkrec *rec; 3058 3059 jfreefrag->fr_jsegdep->jd_seg = jseg; 3060 rec = (struct jblkrec *)data; 3061 rec->jb_op = JOP_FREEBLK; 3062 rec->jb_ino = jfreefrag->fr_ino; 3063 rec->jb_blkno = jfreefrag->fr_blkno; 3064 rec->jb_lbn = jfreefrag->fr_lbn; 3065 rec->jb_frags = jfreefrag->fr_frags; 3066 rec->jb_oldfrags = 0; 3067 } 3068 3069 static void 3070 jtrunc_write(jtrunc, jseg, data) 3071 struct jtrunc *jtrunc; 3072 struct jseg *jseg; 3073 uint8_t *data; 3074 { 3075 struct jtrncrec *rec; 3076 3077 jtrunc->jt_dep.jb_jsegdep->jd_seg = jseg; 3078 rec = (struct jtrncrec *)data; 3079 rec->jt_op = JOP_TRUNC; 3080 rec->jt_ino = jtrunc->jt_ino; 3081 rec->jt_size = jtrunc->jt_size; 3082 rec->jt_extsize = jtrunc->jt_extsize; 3083 } 3084 3085 static void 3086 jfsync_write(jfsync, jseg, data) 3087 struct jfsync *jfsync; 3088 struct jseg *jseg; 3089 uint8_t *data; 3090 { 3091 struct jtrncrec *rec; 3092 3093 rec = (struct jtrncrec *)data; 3094 rec->jt_op = JOP_SYNC; 3095 rec->jt_ino = jfsync->jfs_ino; 3096 rec->jt_size = jfsync->jfs_size; 3097 rec->jt_extsize = jfsync->jfs_extsize; 3098 } 3099 3100 static void 3101 softdep_flushjournal(mp) 3102 struct mount *mp; 3103 { 3104 struct jblocks *jblocks; 3105 struct ufsmount *ump; 3106 3107 if (MOUNTEDSUJ(mp) == 0) 3108 return; 3109 ump = VFSTOUFS(mp); 3110 jblocks = ump->softdep_jblocks; 3111 ACQUIRE_LOCK(ump); 3112 while (ump->softdep_on_journal) { 3113 jblocks->jb_needseg = 1; 3114 softdep_process_journal(mp, NULL, MNT_WAIT); 3115 } 3116 FREE_LOCK(ump); 3117 } 3118 3119 static void softdep_synchronize_completed(struct bio *); 3120 static void softdep_synchronize(struct bio *, struct ufsmount *, void *); 3121 3122 static void 3123 softdep_synchronize_completed(bp) 3124 struct bio *bp; 3125 { 3126 struct jseg *oldest; 3127 struct jseg *jseg; 3128 struct ufsmount *ump; 3129 3130 /* 3131 * caller1 marks the last segment written before we issued the 3132 * synchronize cache. 3133 */ 3134 jseg = bp->bio_caller1; 3135 if (jseg == NULL) { 3136 g_destroy_bio(bp); 3137 return; 3138 } 3139 ump = VFSTOUFS(jseg->js_list.wk_mp); 3140 ACQUIRE_LOCK(ump); 3141 oldest = NULL; 3142 /* 3143 * Mark all the journal entries waiting on the synchronize cache 3144 * as completed so they may continue on. 3145 */ 3146 while (jseg != NULL && (jseg->js_state & COMPLETE) == 0) { 3147 jseg->js_state |= COMPLETE; 3148 oldest = jseg; 3149 jseg = TAILQ_PREV(jseg, jseglst, js_next); 3150 } 3151 /* 3152 * Restart deferred journal entry processing from the oldest 3153 * completed jseg. 3154 */ 3155 if (oldest) 3156 complete_jsegs(oldest); 3157 3158 FREE_LOCK(ump); 3159 g_destroy_bio(bp); 3160 } 3161 3162 /* 3163 * Send BIO_FLUSH/SYNCHRONIZE CACHE to the device to enforce write ordering 3164 * barriers. The journal must be written prior to any blocks that depend 3165 * on it and the journal can not be released until the blocks have be 3166 * written. This code handles both barriers simultaneously. 3167 */ 3168 static void 3169 softdep_synchronize(bp, ump, caller1) 3170 struct bio *bp; 3171 struct ufsmount *ump; 3172 void *caller1; 3173 { 3174 3175 bp->bio_cmd = BIO_FLUSH; 3176 bp->bio_flags |= BIO_ORDERED; 3177 bp->bio_data = NULL; 3178 bp->bio_offset = ump->um_cp->provider->mediasize; 3179 bp->bio_length = 0; 3180 bp->bio_done = softdep_synchronize_completed; 3181 bp->bio_caller1 = caller1; 3182 g_io_request(bp, 3183 (struct g_consumer *)ump->um_devvp->v_bufobj.bo_private); 3184 } 3185 3186 /* 3187 * Flush some journal records to disk. 3188 */ 3189 static void 3190 softdep_process_journal(mp, needwk, flags) 3191 struct mount *mp; 3192 struct worklist *needwk; 3193 int flags; 3194 { 3195 struct jblocks *jblocks; 3196 struct ufsmount *ump; 3197 struct worklist *wk; 3198 struct jseg *jseg; 3199 struct buf *bp; 3200 struct bio *bio; 3201 uint8_t *data; 3202 struct fs *fs; 3203 int shouldflush; 3204 int segwritten; 3205 int jrecmin; /* Minimum records per block. */ 3206 int jrecmax; /* Maximum records per block. */ 3207 int size; 3208 int cnt; 3209 int off; 3210 int devbsize; 3211 3212 if (MOUNTEDSUJ(mp) == 0) 3213 return; 3214 shouldflush = softdep_flushcache; 3215 bio = NULL; 3216 jseg = NULL; 3217 ump = VFSTOUFS(mp); 3218 LOCK_OWNED(ump); 3219 fs = ump->um_fs; 3220 jblocks = ump->softdep_jblocks; 3221 devbsize = ump->um_devvp->v_bufobj.bo_bsize; 3222 /* 3223 * We write anywhere between a disk block and fs block. The upper 3224 * bound is picked to prevent buffer cache fragmentation and limit 3225 * processing time per I/O. 3226 */ 3227 jrecmin = (devbsize / JREC_SIZE) - 1; /* -1 for seg header */ 3228 jrecmax = (fs->fs_bsize / devbsize) * jrecmin; 3229 segwritten = 0; 3230 for (;;) { 3231 cnt = ump->softdep_on_journal; 3232 /* 3233 * Criteria for writing a segment: 3234 * 1) We have a full block. 3235 * 2) We're called from jwait() and haven't found the 3236 * journal item yet. 3237 * 3) Always write if needseg is set. 3238 * 4) If we are called from process_worklist and have 3239 * not yet written anything we write a partial block 3240 * to enforce a 1 second maximum latency on journal 3241 * entries. 3242 */ 3243 if (cnt < (jrecmax - 1) && needwk == NULL && 3244 jblocks->jb_needseg == 0 && (segwritten || cnt == 0)) 3245 break; 3246 cnt++; 3247 /* 3248 * Verify some free journal space. softdep_prealloc() should 3249 * guarantee that we don't run out so this is indicative of 3250 * a problem with the flow control. Try to recover 3251 * gracefully in any event. 3252 */ 3253 while (jblocks->jb_free == 0) { 3254 if (flags != MNT_WAIT) 3255 break; 3256 printf("softdep: Out of journal space!\n"); 3257 softdep_speedup(); 3258 msleep(jblocks, LOCK_PTR(ump), PRIBIO, "jblocks", hz); 3259 } 3260 FREE_LOCK(ump); 3261 jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS); 3262 workitem_alloc(&jseg->js_list, D_JSEG, mp); 3263 LIST_INIT(&jseg->js_entries); 3264 LIST_INIT(&jseg->js_indirs); 3265 jseg->js_state = ATTACHED; 3266 if (shouldflush == 0) 3267 jseg->js_state |= COMPLETE; 3268 else if (bio == NULL) 3269 bio = g_alloc_bio(); 3270 jseg->js_jblocks = jblocks; 3271 bp = geteblk(fs->fs_bsize, 0); 3272 ACQUIRE_LOCK(ump); 3273 /* 3274 * If there was a race while we were allocating the block 3275 * and jseg the entry we care about was likely written. 3276 * We bail out in both the WAIT and NOWAIT case and assume 3277 * the caller will loop if the entry it cares about is 3278 * not written. 3279 */ 3280 cnt = ump->softdep_on_journal; 3281 if (cnt + jblocks->jb_needseg == 0 || jblocks->jb_free == 0) { 3282 bp->b_flags |= B_INVAL | B_NOCACHE; 3283 WORKITEM_FREE(jseg, D_JSEG); 3284 FREE_LOCK(ump); 3285 brelse(bp); 3286 ACQUIRE_LOCK(ump); 3287 break; 3288 } 3289 /* 3290 * Calculate the disk block size required for the available 3291 * records rounded to the min size. 3292 */ 3293 if (cnt == 0) 3294 size = devbsize; 3295 else if (cnt < jrecmax) 3296 size = howmany(cnt, jrecmin) * devbsize; 3297 else 3298 size = fs->fs_bsize; 3299 /* 3300 * Allocate a disk block for this journal data and account 3301 * for truncation of the requested size if enough contiguous 3302 * space was not available. 3303 */ 3304 bp->b_blkno = jblocks_alloc(jblocks, size, &size); 3305 bp->b_lblkno = bp->b_blkno; 3306 bp->b_offset = bp->b_blkno * DEV_BSIZE; 3307 bp->b_bcount = size; 3308 bp->b_flags &= ~B_INVAL; 3309 bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY; 3310 /* 3311 * Initialize our jseg with cnt records. Assign the next 3312 * sequence number to it and link it in-order. 3313 */ 3314 cnt = MIN(cnt, (size / devbsize) * jrecmin); 3315 jseg->js_buf = bp; 3316 jseg->js_cnt = cnt; 3317 jseg->js_refs = cnt + 1; /* Self ref. */ 3318 jseg->js_size = size; 3319 jseg->js_seq = jblocks->jb_nextseq++; 3320 if (jblocks->jb_oldestseg == NULL) 3321 jblocks->jb_oldestseg = jseg; 3322 jseg->js_oldseq = jblocks->jb_oldestseg->js_seq; 3323 TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next); 3324 if (jblocks->jb_writeseg == NULL) 3325 jblocks->jb_writeseg = jseg; 3326 /* 3327 * Start filling in records from the pending list. 3328 */ 3329 data = bp->b_data; 3330 off = 0; 3331 while ((wk = LIST_FIRST(&ump->softdep_journal_pending)) 3332 != NULL) { 3333 if (cnt == 0) 3334 break; 3335 /* Place a segment header on every device block. */ 3336 if ((off % devbsize) == 0) { 3337 jseg_write(ump, jseg, data); 3338 off += JREC_SIZE; 3339 data = bp->b_data + off; 3340 } 3341 if (wk == needwk) 3342 needwk = NULL; 3343 remove_from_journal(wk); 3344 wk->wk_state |= INPROGRESS; 3345 WORKLIST_INSERT(&jseg->js_entries, wk); 3346 switch (wk->wk_type) { 3347 case D_JADDREF: 3348 jaddref_write(WK_JADDREF(wk), jseg, data); 3349 break; 3350 case D_JREMREF: 3351 jremref_write(WK_JREMREF(wk), jseg, data); 3352 break; 3353 case D_JMVREF: 3354 jmvref_write(WK_JMVREF(wk), jseg, data); 3355 break; 3356 case D_JNEWBLK: 3357 jnewblk_write(WK_JNEWBLK(wk), jseg, data); 3358 break; 3359 case D_JFREEBLK: 3360 jfreeblk_write(WK_JFREEBLK(wk), jseg, data); 3361 break; 3362 case D_JFREEFRAG: 3363 jfreefrag_write(WK_JFREEFRAG(wk), jseg, data); 3364 break; 3365 case D_JTRUNC: 3366 jtrunc_write(WK_JTRUNC(wk), jseg, data); 3367 break; 3368 case D_JFSYNC: 3369 jfsync_write(WK_JFSYNC(wk), jseg, data); 3370 break; 3371 default: 3372 panic("process_journal: Unknown type %s", 3373 TYPENAME(wk->wk_type)); 3374 /* NOTREACHED */ 3375 } 3376 off += JREC_SIZE; 3377 data = bp->b_data + off; 3378 cnt--; 3379 } 3380 /* 3381 * Write this one buffer and continue. 3382 */ 3383 segwritten = 1; 3384 jblocks->jb_needseg = 0; 3385 WORKLIST_INSERT(&bp->b_dep, &jseg->js_list); 3386 FREE_LOCK(ump); 3387 pbgetvp(ump->um_devvp, bp); 3388 /* 3389 * We only do the blocking wait once we find the journal 3390 * entry we're looking for. 3391 */ 3392 if (needwk == NULL && flags == MNT_WAIT) 3393 bwrite(bp); 3394 else 3395 bawrite(bp); 3396 ACQUIRE_LOCK(ump); 3397 } 3398 /* 3399 * If we wrote a segment issue a synchronize cache so the journal 3400 * is reflected on disk before the data is written. Since reclaiming 3401 * journal space also requires writing a journal record this 3402 * process also enforces a barrier before reclamation. 3403 */ 3404 if (segwritten && shouldflush) { 3405 softdep_synchronize(bio, ump, 3406 TAILQ_LAST(&jblocks->jb_segs, jseglst)); 3407 } else if (bio) 3408 g_destroy_bio(bio); 3409 /* 3410 * If we've suspended the filesystem because we ran out of journal 3411 * space either try to sync it here to make some progress or 3412 * unsuspend it if we already have. 3413 */ 3414 if (flags == 0 && jblocks->jb_suspended) { 3415 if (journal_unsuspend(ump)) 3416 return; 3417 FREE_LOCK(ump); 3418 VFS_SYNC(mp, MNT_NOWAIT); 3419 ffs_sbupdate(ump, MNT_WAIT, 0); 3420 ACQUIRE_LOCK(ump); 3421 } 3422 } 3423 3424 /* 3425 * Complete a jseg, allowing all dependencies awaiting journal writes 3426 * to proceed. Each journal dependency also attaches a jsegdep to dependent 3427 * structures so that the journal segment can be freed to reclaim space. 3428 */ 3429 static void 3430 complete_jseg(jseg) 3431 struct jseg *jseg; 3432 { 3433 struct worklist *wk; 3434 struct jmvref *jmvref; 3435 int waiting; 3436 #ifdef INVARIANTS 3437 int i = 0; 3438 #endif 3439 3440 while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) { 3441 WORKLIST_REMOVE(wk); 3442 waiting = wk->wk_state & IOWAITING; 3443 wk->wk_state &= ~(INPROGRESS | IOWAITING); 3444 wk->wk_state |= COMPLETE; 3445 KASSERT(i++ < jseg->js_cnt, 3446 ("handle_written_jseg: overflow %d >= %d", 3447 i - 1, jseg->js_cnt)); 3448 switch (wk->wk_type) { 3449 case D_JADDREF: 3450 handle_written_jaddref(WK_JADDREF(wk)); 3451 break; 3452 case D_JREMREF: 3453 handle_written_jremref(WK_JREMREF(wk)); 3454 break; 3455 case D_JMVREF: 3456 rele_jseg(jseg); /* No jsegdep. */ 3457 jmvref = WK_JMVREF(wk); 3458 LIST_REMOVE(jmvref, jm_deps); 3459 if ((jmvref->jm_pagedep->pd_state & ONWORKLIST) == 0) 3460 free_pagedep(jmvref->jm_pagedep); 3461 WORKITEM_FREE(jmvref, D_JMVREF); 3462 break; 3463 case D_JNEWBLK: 3464 handle_written_jnewblk(WK_JNEWBLK(wk)); 3465 break; 3466 case D_JFREEBLK: 3467 handle_written_jblkdep(&WK_JFREEBLK(wk)->jf_dep); 3468 break; 3469 case D_JTRUNC: 3470 handle_written_jblkdep(&WK_JTRUNC(wk)->jt_dep); 3471 break; 3472 case D_JFSYNC: 3473 rele_jseg(jseg); /* No jsegdep. */ 3474 WORKITEM_FREE(wk, D_JFSYNC); 3475 break; 3476 case D_JFREEFRAG: 3477 handle_written_jfreefrag(WK_JFREEFRAG(wk)); 3478 break; 3479 default: 3480 panic("handle_written_jseg: Unknown type %s", 3481 TYPENAME(wk->wk_type)); 3482 /* NOTREACHED */ 3483 } 3484 if (waiting) 3485 wakeup(wk); 3486 } 3487 /* Release the self reference so the structure may be freed. */ 3488 rele_jseg(jseg); 3489 } 3490 3491 /* 3492 * Determine which jsegs are ready for completion processing. Waits for 3493 * synchronize cache to complete as well as forcing in-order completion 3494 * of journal entries. 3495 */ 3496 static void 3497 complete_jsegs(jseg) 3498 struct jseg *jseg; 3499 { 3500 struct jblocks *jblocks; 3501 struct jseg *jsegn; 3502 3503 jblocks = jseg->js_jblocks; 3504 /* 3505 * Don't allow out of order completions. If this isn't the first 3506 * block wait for it to write before we're done. 3507 */ 3508 if (jseg != jblocks->jb_writeseg) 3509 return; 3510 /* Iterate through available jsegs processing their entries. */ 3511 while (jseg && (jseg->js_state & ALLCOMPLETE) == ALLCOMPLETE) { 3512 jblocks->jb_oldestwrseq = jseg->js_oldseq; 3513 jsegn = TAILQ_NEXT(jseg, js_next); 3514 complete_jseg(jseg); 3515 jseg = jsegn; 3516 } 3517 jblocks->jb_writeseg = jseg; 3518 /* 3519 * Attempt to free jsegs now that oldestwrseq may have advanced. 3520 */ 3521 free_jsegs(jblocks); 3522 } 3523 3524 /* 3525 * Mark a jseg as DEPCOMPLETE and throw away the buffer. Attempt to handle 3526 * the final completions. 3527 */ 3528 static void 3529 handle_written_jseg(jseg, bp) 3530 struct jseg *jseg; 3531 struct buf *bp; 3532 { 3533 3534 if (jseg->js_refs == 0) 3535 panic("handle_written_jseg: No self-reference on %p", jseg); 3536 jseg->js_state |= DEPCOMPLETE; 3537 /* 3538 * We'll never need this buffer again, set flags so it will be 3539 * discarded. 3540 */ 3541 bp->b_flags |= B_INVAL | B_NOCACHE; 3542 pbrelvp(bp); 3543 complete_jsegs(jseg); 3544 } 3545 3546 static inline struct jsegdep * 3547 inoref_jseg(inoref) 3548 struct inoref *inoref; 3549 { 3550 struct jsegdep *jsegdep; 3551 3552 jsegdep = inoref->if_jsegdep; 3553 inoref->if_jsegdep = NULL; 3554 3555 return (jsegdep); 3556 } 3557 3558 /* 3559 * Called once a jremref has made it to stable store. The jremref is marked 3560 * complete and we attempt to free it. Any pagedeps writes sleeping waiting 3561 * for the jremref to complete will be awoken by free_jremref. 3562 */ 3563 static void 3564 handle_written_jremref(jremref) 3565 struct jremref *jremref; 3566 { 3567 struct inodedep *inodedep; 3568 struct jsegdep *jsegdep; 3569 struct dirrem *dirrem; 3570 3571 /* Grab the jsegdep. */ 3572 jsegdep = inoref_jseg(&jremref->jr_ref); 3573 /* 3574 * Remove us from the inoref list. 3575 */ 3576 if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 3577 0, &inodedep) == 0) 3578 panic("handle_written_jremref: Lost inodedep"); 3579 TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps); 3580 /* 3581 * Complete the dirrem. 3582 */ 3583 dirrem = jremref->jr_dirrem; 3584 jremref->jr_dirrem = NULL; 3585 LIST_REMOVE(jremref, jr_deps); 3586 jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT; 3587 jwork_insert(&dirrem->dm_jwork, jsegdep); 3588 if (LIST_EMPTY(&dirrem->dm_jremrefhd) && 3589 (dirrem->dm_state & COMPLETE) != 0) 3590 add_to_worklist(&dirrem->dm_list, 0); 3591 free_jremref(jremref); 3592 } 3593 3594 /* 3595 * Called once a jaddref has made it to stable store. The dependency is 3596 * marked complete and any dependent structures are added to the inode 3597 * bufwait list to be completed as soon as it is written. If a bitmap write 3598 * depends on this entry we move the inode into the inodedephd of the 3599 * bmsafemap dependency and attempt to remove the jaddref from the bmsafemap. 3600 */ 3601 static void 3602 handle_written_jaddref(jaddref) 3603 struct jaddref *jaddref; 3604 { 3605 struct jsegdep *jsegdep; 3606 struct inodedep *inodedep; 3607 struct diradd *diradd; 3608 struct mkdir *mkdir; 3609 3610 /* Grab the jsegdep. */ 3611 jsegdep = inoref_jseg(&jaddref->ja_ref); 3612 mkdir = NULL; 3613 diradd = NULL; 3614 if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino, 3615 0, &inodedep) == 0) 3616 panic("handle_written_jaddref: Lost inodedep."); 3617 if (jaddref->ja_diradd == NULL) 3618 panic("handle_written_jaddref: No dependency"); 3619 if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) { 3620 diradd = jaddref->ja_diradd; 3621 WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list); 3622 } else if (jaddref->ja_state & MKDIR_PARENT) { 3623 mkdir = jaddref->ja_mkdir; 3624 WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list); 3625 } else if (jaddref->ja_state & MKDIR_BODY) 3626 mkdir = jaddref->ja_mkdir; 3627 else 3628 panic("handle_written_jaddref: Unknown dependency %p", 3629 jaddref->ja_diradd); 3630 jaddref->ja_diradd = NULL; /* also clears ja_mkdir */ 3631 /* 3632 * Remove us from the inode list. 3633 */ 3634 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps); 3635 /* 3636 * The mkdir may be waiting on the jaddref to clear before freeing. 3637 */ 3638 if (mkdir) { 3639 KASSERT(mkdir->md_list.wk_type == D_MKDIR, 3640 ("handle_written_jaddref: Incorrect type for mkdir %s", 3641 TYPENAME(mkdir->md_list.wk_type))); 3642 mkdir->md_jaddref = NULL; 3643 diradd = mkdir->md_diradd; 3644 mkdir->md_state |= DEPCOMPLETE; 3645 complete_mkdir(mkdir); 3646 } 3647 jwork_insert(&diradd->da_jwork, jsegdep); 3648 if (jaddref->ja_state & NEWBLOCK) { 3649 inodedep->id_state |= ONDEPLIST; 3650 LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd, 3651 inodedep, id_deps); 3652 } 3653 free_jaddref(jaddref); 3654 } 3655 3656 /* 3657 * Called once a jnewblk journal is written. The allocdirect or allocindir 3658 * is placed in the bmsafemap to await notification of a written bitmap. If 3659 * the operation was canceled we add the segdep to the appropriate 3660 * dependency to free the journal space once the canceling operation 3661 * completes. 3662 */ 3663 static void 3664 handle_written_jnewblk(jnewblk) 3665 struct jnewblk *jnewblk; 3666 { 3667 struct bmsafemap *bmsafemap; 3668 struct freefrag *freefrag; 3669 struct freework *freework; 3670 struct jsegdep *jsegdep; 3671 struct newblk *newblk; 3672 3673 /* Grab the jsegdep. */ 3674 jsegdep = jnewblk->jn_jsegdep; 3675 jnewblk->jn_jsegdep = NULL; 3676 if (jnewblk->jn_dep == NULL) 3677 panic("handle_written_jnewblk: No dependency for the segdep."); 3678 switch (jnewblk->jn_dep->wk_type) { 3679 case D_NEWBLK: 3680 case D_ALLOCDIRECT: 3681 case D_ALLOCINDIR: 3682 /* 3683 * Add the written block to the bmsafemap so it can 3684 * be notified when the bitmap is on disk. 3685 */ 3686 newblk = WK_NEWBLK(jnewblk->jn_dep); 3687 newblk->nb_jnewblk = NULL; 3688 if ((newblk->nb_state & GOINGAWAY) == 0) { 3689 bmsafemap = newblk->nb_bmsafemap; 3690 newblk->nb_state |= ONDEPLIST; 3691 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, 3692 nb_deps); 3693 } 3694 jwork_insert(&newblk->nb_jwork, jsegdep); 3695 break; 3696 case D_FREEFRAG: 3697 /* 3698 * A newblock being removed by a freefrag when replaced by 3699 * frag extension. 3700 */ 3701 freefrag = WK_FREEFRAG(jnewblk->jn_dep); 3702 freefrag->ff_jdep = NULL; 3703 jwork_insert(&freefrag->ff_jwork, jsegdep); 3704 break; 3705 case D_FREEWORK: 3706 /* 3707 * A direct block was removed by truncate. 3708 */ 3709 freework = WK_FREEWORK(jnewblk->jn_dep); 3710 freework->fw_jnewblk = NULL; 3711 jwork_insert(&freework->fw_freeblks->fb_jwork, jsegdep); 3712 break; 3713 default: 3714 panic("handle_written_jnewblk: Unknown type %d.", 3715 jnewblk->jn_dep->wk_type); 3716 } 3717 jnewblk->jn_dep = NULL; 3718 free_jnewblk(jnewblk); 3719 } 3720 3721 /* 3722 * Cancel a jfreefrag that won't be needed, probably due to colliding with 3723 * an in-flight allocation that has not yet been committed. Divorce us 3724 * from the freefrag and mark it DEPCOMPLETE so that it may be added 3725 * to the worklist. 3726 */ 3727 static void 3728 cancel_jfreefrag(jfreefrag) 3729 struct jfreefrag *jfreefrag; 3730 { 3731 struct freefrag *freefrag; 3732 3733 if (jfreefrag->fr_jsegdep) { 3734 free_jsegdep(jfreefrag->fr_jsegdep); 3735 jfreefrag->fr_jsegdep = NULL; 3736 } 3737 freefrag = jfreefrag->fr_freefrag; 3738 jfreefrag->fr_freefrag = NULL; 3739 free_jfreefrag(jfreefrag); 3740 freefrag->ff_state |= DEPCOMPLETE; 3741 CTR1(KTR_SUJ, "cancel_jfreefrag: blkno %jd", freefrag->ff_blkno); 3742 } 3743 3744 /* 3745 * Free a jfreefrag when the parent freefrag is rendered obsolete. 3746 */ 3747 static void 3748 free_jfreefrag(jfreefrag) 3749 struct jfreefrag *jfreefrag; 3750 { 3751 3752 if (jfreefrag->fr_state & INPROGRESS) 3753 WORKLIST_REMOVE(&jfreefrag->fr_list); 3754 else if (jfreefrag->fr_state & ONWORKLIST) 3755 remove_from_journal(&jfreefrag->fr_list); 3756 if (jfreefrag->fr_freefrag != NULL) 3757 panic("free_jfreefrag: Still attached to a freefrag."); 3758 WORKITEM_FREE(jfreefrag, D_JFREEFRAG); 3759 } 3760 3761 /* 3762 * Called when the journal write for a jfreefrag completes. The parent 3763 * freefrag is added to the worklist if this completes its dependencies. 3764 */ 3765 static void 3766 handle_written_jfreefrag(jfreefrag) 3767 struct jfreefrag *jfreefrag; 3768 { 3769 struct jsegdep *jsegdep; 3770 struct freefrag *freefrag; 3771 3772 /* Grab the jsegdep. */ 3773 jsegdep = jfreefrag->fr_jsegdep; 3774 jfreefrag->fr_jsegdep = NULL; 3775 freefrag = jfreefrag->fr_freefrag; 3776 if (freefrag == NULL) 3777 panic("handle_written_jfreefrag: No freefrag."); 3778 freefrag->ff_state |= DEPCOMPLETE; 3779 freefrag->ff_jdep = NULL; 3780 jwork_insert(&freefrag->ff_jwork, jsegdep); 3781 if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE) 3782 add_to_worklist(&freefrag->ff_list, 0); 3783 jfreefrag->fr_freefrag = NULL; 3784 free_jfreefrag(jfreefrag); 3785 } 3786 3787 /* 3788 * Called when the journal write for a jfreeblk completes. The jfreeblk 3789 * is removed from the freeblks list of pending journal writes and the 3790 * jsegdep is moved to the freeblks jwork to be completed when all blocks 3791 * have been reclaimed. 3792 */ 3793 static void 3794 handle_written_jblkdep(jblkdep) 3795 struct jblkdep *jblkdep; 3796 { 3797 struct freeblks *freeblks; 3798 struct jsegdep *jsegdep; 3799 3800 /* Grab the jsegdep. */ 3801 jsegdep = jblkdep->jb_jsegdep; 3802 jblkdep->jb_jsegdep = NULL; 3803 freeblks = jblkdep->jb_freeblks; 3804 LIST_REMOVE(jblkdep, jb_deps); 3805 jwork_insert(&freeblks->fb_jwork, jsegdep); 3806 /* 3807 * If the freeblks is all journaled, we can add it to the worklist. 3808 */ 3809 if (LIST_EMPTY(&freeblks->fb_jblkdephd) && 3810 (freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE) 3811 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 3812 3813 free_jblkdep(jblkdep); 3814 } 3815 3816 static struct jsegdep * 3817 newjsegdep(struct worklist *wk) 3818 { 3819 struct jsegdep *jsegdep; 3820 3821 jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS); 3822 workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp); 3823 jsegdep->jd_seg = NULL; 3824 3825 return (jsegdep); 3826 } 3827 3828 static struct jmvref * 3829 newjmvref(dp, ino, oldoff, newoff) 3830 struct inode *dp; 3831 ino_t ino; 3832 off_t oldoff; 3833 off_t newoff; 3834 { 3835 struct jmvref *jmvref; 3836 3837 jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS); 3838 workitem_alloc(&jmvref->jm_list, D_JMVREF, UFSTOVFS(dp->i_ump)); 3839 jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE; 3840 jmvref->jm_parent = dp->i_number; 3841 jmvref->jm_ino = ino; 3842 jmvref->jm_oldoff = oldoff; 3843 jmvref->jm_newoff = newoff; 3844 3845 return (jmvref); 3846 } 3847 3848 /* 3849 * Allocate a new jremref that tracks the removal of ip from dp with the 3850 * directory entry offset of diroff. Mark the entry as ATTACHED and 3851 * DEPCOMPLETE as we have all the information required for the journal write 3852 * and the directory has already been removed from the buffer. The caller 3853 * is responsible for linking the jremref into the pagedep and adding it 3854 * to the journal to write. The MKDIR_PARENT flag is set if we're doing 3855 * a DOTDOT addition so handle_workitem_remove() can properly assign 3856 * the jsegdep when we're done. 3857 */ 3858 static struct jremref * 3859 newjremref(struct dirrem *dirrem, struct inode *dp, struct inode *ip, 3860 off_t diroff, nlink_t nlink) 3861 { 3862 struct jremref *jremref; 3863 3864 jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS); 3865 workitem_alloc(&jremref->jr_list, D_JREMREF, UFSTOVFS(dp->i_ump)); 3866 jremref->jr_state = ATTACHED; 3867 newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff, 3868 nlink, ip->i_mode); 3869 jremref->jr_dirrem = dirrem; 3870 3871 return (jremref); 3872 } 3873 3874 static inline void 3875 newinoref(struct inoref *inoref, ino_t ino, ino_t parent, off_t diroff, 3876 nlink_t nlink, uint16_t mode) 3877 { 3878 3879 inoref->if_jsegdep = newjsegdep(&inoref->if_list); 3880 inoref->if_diroff = diroff; 3881 inoref->if_ino = ino; 3882 inoref->if_parent = parent; 3883 inoref->if_nlink = nlink; 3884 inoref->if_mode = mode; 3885 } 3886 3887 /* 3888 * Allocate a new jaddref to track the addition of ino to dp at diroff. The 3889 * directory offset may not be known until later. The caller is responsible 3890 * adding the entry to the journal when this information is available. nlink 3891 * should be the link count prior to the addition and mode is only required 3892 * to have the correct FMT. 3893 */ 3894 static struct jaddref * 3895 newjaddref(struct inode *dp, ino_t ino, off_t diroff, int16_t nlink, 3896 uint16_t mode) 3897 { 3898 struct jaddref *jaddref; 3899 3900 jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS); 3901 workitem_alloc(&jaddref->ja_list, D_JADDREF, UFSTOVFS(dp->i_ump)); 3902 jaddref->ja_state = ATTACHED; 3903 jaddref->ja_mkdir = NULL; 3904 newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode); 3905 3906 return (jaddref); 3907 } 3908 3909 /* 3910 * Create a new free dependency for a freework. The caller is responsible 3911 * for adjusting the reference count when it has the lock held. The freedep 3912 * will track an outstanding bitmap write that will ultimately clear the 3913 * freework to continue. 3914 */ 3915 static struct freedep * 3916 newfreedep(struct freework *freework) 3917 { 3918 struct freedep *freedep; 3919 3920 freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS); 3921 workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp); 3922 freedep->fd_freework = freework; 3923 3924 return (freedep); 3925 } 3926 3927 /* 3928 * Free a freedep structure once the buffer it is linked to is written. If 3929 * this is the last reference to the freework schedule it for completion. 3930 */ 3931 static void 3932 free_freedep(freedep) 3933 struct freedep *freedep; 3934 { 3935 struct freework *freework; 3936 3937 freework = freedep->fd_freework; 3938 freework->fw_freeblks->fb_cgwait--; 3939 if (--freework->fw_ref == 0) 3940 freework_enqueue(freework); 3941 WORKITEM_FREE(freedep, D_FREEDEP); 3942 } 3943 3944 /* 3945 * Allocate a new freework structure that may be a level in an indirect 3946 * when parent is not NULL or a top level block when it is. The top level 3947 * freework structures are allocated without the soft updates lock held 3948 * and before the freeblks is visible outside of softdep_setup_freeblocks(). 3949 */ 3950 static struct freework * 3951 newfreework(ump, freeblks, parent, lbn, nb, frags, off, journal) 3952 struct ufsmount *ump; 3953 struct freeblks *freeblks; 3954 struct freework *parent; 3955 ufs_lbn_t lbn; 3956 ufs2_daddr_t nb; 3957 int frags; 3958 int off; 3959 int journal; 3960 { 3961 struct freework *freework; 3962 3963 freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS); 3964 workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp); 3965 freework->fw_state = ATTACHED; 3966 freework->fw_jnewblk = NULL; 3967 freework->fw_freeblks = freeblks; 3968 freework->fw_parent = parent; 3969 freework->fw_lbn = lbn; 3970 freework->fw_blkno = nb; 3971 freework->fw_frags = frags; 3972 freework->fw_indir = NULL; 3973 freework->fw_ref = (MOUNTEDSUJ(UFSTOVFS(ump)) == 0 || lbn >= -NXADDR) 3974 ? 0 : NINDIR(ump->um_fs) + 1; 3975 freework->fw_start = freework->fw_off = off; 3976 if (journal) 3977 newjfreeblk(freeblks, lbn, nb, frags); 3978 if (parent == NULL) { 3979 ACQUIRE_LOCK(ump); 3980 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list); 3981 freeblks->fb_ref++; 3982 FREE_LOCK(ump); 3983 } 3984 3985 return (freework); 3986 } 3987 3988 /* 3989 * Eliminate a jfreeblk for a block that does not need journaling. 3990 */ 3991 static void 3992 cancel_jfreeblk(freeblks, blkno) 3993 struct freeblks *freeblks; 3994 ufs2_daddr_t blkno; 3995 { 3996 struct jfreeblk *jfreeblk; 3997 struct jblkdep *jblkdep; 3998 3999 LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) { 4000 if (jblkdep->jb_list.wk_type != D_JFREEBLK) 4001 continue; 4002 jfreeblk = WK_JFREEBLK(&jblkdep->jb_list); 4003 if (jfreeblk->jf_blkno == blkno) 4004 break; 4005 } 4006 if (jblkdep == NULL) 4007 return; 4008 CTR1(KTR_SUJ, "cancel_jfreeblk: blkno %jd", blkno); 4009 free_jsegdep(jblkdep->jb_jsegdep); 4010 LIST_REMOVE(jblkdep, jb_deps); 4011 WORKITEM_FREE(jfreeblk, D_JFREEBLK); 4012 } 4013 4014 /* 4015 * Allocate a new jfreeblk to journal top level block pointer when truncating 4016 * a file. The caller must add this to the worklist when the soft updates 4017 * lock is held. 4018 */ 4019 static struct jfreeblk * 4020 newjfreeblk(freeblks, lbn, blkno, frags) 4021 struct freeblks *freeblks; 4022 ufs_lbn_t lbn; 4023 ufs2_daddr_t blkno; 4024 int frags; 4025 { 4026 struct jfreeblk *jfreeblk; 4027 4028 jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS); 4029 workitem_alloc(&jfreeblk->jf_dep.jb_list, D_JFREEBLK, 4030 freeblks->fb_list.wk_mp); 4031 jfreeblk->jf_dep.jb_jsegdep = newjsegdep(&jfreeblk->jf_dep.jb_list); 4032 jfreeblk->jf_dep.jb_freeblks = freeblks; 4033 jfreeblk->jf_ino = freeblks->fb_inum; 4034 jfreeblk->jf_lbn = lbn; 4035 jfreeblk->jf_blkno = blkno; 4036 jfreeblk->jf_frags = frags; 4037 LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jfreeblk->jf_dep, jb_deps); 4038 4039 return (jfreeblk); 4040 } 4041 4042 /* 4043 * Allocate a new jtrunc to track a partial truncation. 4044 */ 4045 static struct jtrunc * 4046 newjtrunc(freeblks, size, extsize) 4047 struct freeblks *freeblks; 4048 off_t size; 4049 int extsize; 4050 { 4051 struct jtrunc *jtrunc; 4052 4053 jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS); 4054 workitem_alloc(&jtrunc->jt_dep.jb_list, D_JTRUNC, 4055 freeblks->fb_list.wk_mp); 4056 jtrunc->jt_dep.jb_jsegdep = newjsegdep(&jtrunc->jt_dep.jb_list); 4057 jtrunc->jt_dep.jb_freeblks = freeblks; 4058 jtrunc->jt_ino = freeblks->fb_inum; 4059 jtrunc->jt_size = size; 4060 jtrunc->jt_extsize = extsize; 4061 LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jtrunc->jt_dep, jb_deps); 4062 4063 return (jtrunc); 4064 } 4065 4066 /* 4067 * If we're canceling a new bitmap we have to search for another ref 4068 * to move into the bmsafemap dep. This might be better expressed 4069 * with another structure. 4070 */ 4071 static void 4072 move_newblock_dep(jaddref, inodedep) 4073 struct jaddref *jaddref; 4074 struct inodedep *inodedep; 4075 { 4076 struct inoref *inoref; 4077 struct jaddref *jaddrefn; 4078 4079 jaddrefn = NULL; 4080 for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref; 4081 inoref = TAILQ_NEXT(inoref, if_deps)) { 4082 if ((jaddref->ja_state & NEWBLOCK) && 4083 inoref->if_list.wk_type == D_JADDREF) { 4084 jaddrefn = (struct jaddref *)inoref; 4085 break; 4086 } 4087 } 4088 if (jaddrefn == NULL) 4089 return; 4090 jaddrefn->ja_state &= ~(ATTACHED | UNDONE); 4091 jaddrefn->ja_state |= jaddref->ja_state & 4092 (ATTACHED | UNDONE | NEWBLOCK); 4093 jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK); 4094 jaddref->ja_state |= ATTACHED; 4095 LIST_REMOVE(jaddref, ja_bmdeps); 4096 LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn, 4097 ja_bmdeps); 4098 } 4099 4100 /* 4101 * Cancel a jaddref either before it has been written or while it is being 4102 * written. This happens when a link is removed before the add reaches 4103 * the disk. The jaddref dependency is kept linked into the bmsafemap 4104 * and inode to prevent the link count or bitmap from reaching the disk 4105 * until handle_workitem_remove() re-adjusts the counts and bitmaps as 4106 * required. 4107 * 4108 * Returns 1 if the canceled addref requires journaling of the remove and 4109 * 0 otherwise. 4110 */ 4111 static int 4112 cancel_jaddref(jaddref, inodedep, wkhd) 4113 struct jaddref *jaddref; 4114 struct inodedep *inodedep; 4115 struct workhead *wkhd; 4116 { 4117 struct inoref *inoref; 4118 struct jsegdep *jsegdep; 4119 int needsj; 4120 4121 KASSERT((jaddref->ja_state & COMPLETE) == 0, 4122 ("cancel_jaddref: Canceling complete jaddref")); 4123 if (jaddref->ja_state & (INPROGRESS | COMPLETE)) 4124 needsj = 1; 4125 else 4126 needsj = 0; 4127 if (inodedep == NULL) 4128 if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino, 4129 0, &inodedep) == 0) 4130 panic("cancel_jaddref: Lost inodedep"); 4131 /* 4132 * We must adjust the nlink of any reference operation that follows 4133 * us so that it is consistent with the in-memory reference. This 4134 * ensures that inode nlink rollbacks always have the correct link. 4135 */ 4136 if (needsj == 0) { 4137 for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref; 4138 inoref = TAILQ_NEXT(inoref, if_deps)) { 4139 if (inoref->if_state & GOINGAWAY) 4140 break; 4141 inoref->if_nlink--; 4142 } 4143 } 4144 jsegdep = inoref_jseg(&jaddref->ja_ref); 4145 if (jaddref->ja_state & NEWBLOCK) 4146 move_newblock_dep(jaddref, inodedep); 4147 wake_worklist(&jaddref->ja_list); 4148 jaddref->ja_mkdir = NULL; 4149 if (jaddref->ja_state & INPROGRESS) { 4150 jaddref->ja_state &= ~INPROGRESS; 4151 WORKLIST_REMOVE(&jaddref->ja_list); 4152 jwork_insert(wkhd, jsegdep); 4153 } else { 4154 free_jsegdep(jsegdep); 4155 if (jaddref->ja_state & DEPCOMPLETE) 4156 remove_from_journal(&jaddref->ja_list); 4157 } 4158 jaddref->ja_state |= (GOINGAWAY | DEPCOMPLETE); 4159 /* 4160 * Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove 4161 * can arrange for them to be freed with the bitmap. Otherwise we 4162 * no longer need this addref attached to the inoreflst and it 4163 * will incorrectly adjust nlink if we leave it. 4164 */ 4165 if ((jaddref->ja_state & NEWBLOCK) == 0) { 4166 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, 4167 if_deps); 4168 jaddref->ja_state |= COMPLETE; 4169 free_jaddref(jaddref); 4170 return (needsj); 4171 } 4172 /* 4173 * Leave the head of the list for jsegdeps for fast merging. 4174 */ 4175 if (LIST_FIRST(wkhd) != NULL) { 4176 jaddref->ja_state |= ONWORKLIST; 4177 LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list); 4178 } else 4179 WORKLIST_INSERT(wkhd, &jaddref->ja_list); 4180 4181 return (needsj); 4182 } 4183 4184 /* 4185 * Attempt to free a jaddref structure when some work completes. This 4186 * should only succeed once the entry is written and all dependencies have 4187 * been notified. 4188 */ 4189 static void 4190 free_jaddref(jaddref) 4191 struct jaddref *jaddref; 4192 { 4193 4194 if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE) 4195 return; 4196 if (jaddref->ja_ref.if_jsegdep) 4197 panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n", 4198 jaddref, jaddref->ja_state); 4199 if (jaddref->ja_state & NEWBLOCK) 4200 LIST_REMOVE(jaddref, ja_bmdeps); 4201 if (jaddref->ja_state & (INPROGRESS | ONWORKLIST)) 4202 panic("free_jaddref: Bad state %p(0x%X)", 4203 jaddref, jaddref->ja_state); 4204 if (jaddref->ja_mkdir != NULL) 4205 panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state); 4206 WORKITEM_FREE(jaddref, D_JADDREF); 4207 } 4208 4209 /* 4210 * Free a jremref structure once it has been written or discarded. 4211 */ 4212 static void 4213 free_jremref(jremref) 4214 struct jremref *jremref; 4215 { 4216 4217 if (jremref->jr_ref.if_jsegdep) 4218 free_jsegdep(jremref->jr_ref.if_jsegdep); 4219 if (jremref->jr_state & INPROGRESS) 4220 panic("free_jremref: IO still pending"); 4221 WORKITEM_FREE(jremref, D_JREMREF); 4222 } 4223 4224 /* 4225 * Free a jnewblk structure. 4226 */ 4227 static void 4228 free_jnewblk(jnewblk) 4229 struct jnewblk *jnewblk; 4230 { 4231 4232 if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE) 4233 return; 4234 LIST_REMOVE(jnewblk, jn_deps); 4235 if (jnewblk->jn_dep != NULL) 4236 panic("free_jnewblk: Dependency still attached."); 4237 WORKITEM_FREE(jnewblk, D_JNEWBLK); 4238 } 4239 4240 /* 4241 * Cancel a jnewblk which has been been made redundant by frag extension. 4242 */ 4243 static void 4244 cancel_jnewblk(jnewblk, wkhd) 4245 struct jnewblk *jnewblk; 4246 struct workhead *wkhd; 4247 { 4248 struct jsegdep *jsegdep; 4249 4250 CTR1(KTR_SUJ, "cancel_jnewblk: blkno %jd", jnewblk->jn_blkno); 4251 jsegdep = jnewblk->jn_jsegdep; 4252 if (jnewblk->jn_jsegdep == NULL || jnewblk->jn_dep == NULL) 4253 panic("cancel_jnewblk: Invalid state"); 4254 jnewblk->jn_jsegdep = NULL; 4255 jnewblk->jn_dep = NULL; 4256 jnewblk->jn_state |= GOINGAWAY; 4257 if (jnewblk->jn_state & INPROGRESS) { 4258 jnewblk->jn_state &= ~INPROGRESS; 4259 WORKLIST_REMOVE(&jnewblk->jn_list); 4260 jwork_insert(wkhd, jsegdep); 4261 } else { 4262 free_jsegdep(jsegdep); 4263 remove_from_journal(&jnewblk->jn_list); 4264 } 4265 wake_worklist(&jnewblk->jn_list); 4266 WORKLIST_INSERT(wkhd, &jnewblk->jn_list); 4267 } 4268 4269 static void 4270 free_jblkdep(jblkdep) 4271 struct jblkdep *jblkdep; 4272 { 4273 4274 if (jblkdep->jb_list.wk_type == D_JFREEBLK) 4275 WORKITEM_FREE(jblkdep, D_JFREEBLK); 4276 else if (jblkdep->jb_list.wk_type == D_JTRUNC) 4277 WORKITEM_FREE(jblkdep, D_JTRUNC); 4278 else 4279 panic("free_jblkdep: Unexpected type %s", 4280 TYPENAME(jblkdep->jb_list.wk_type)); 4281 } 4282 4283 /* 4284 * Free a single jseg once it is no longer referenced in memory or on 4285 * disk. Reclaim journal blocks and dependencies waiting for the segment 4286 * to disappear. 4287 */ 4288 static void 4289 free_jseg(jseg, jblocks) 4290 struct jseg *jseg; 4291 struct jblocks *jblocks; 4292 { 4293 struct freework *freework; 4294 4295 /* 4296 * Free freework structures that were lingering to indicate freed 4297 * indirect blocks that forced journal write ordering on reallocate. 4298 */ 4299 while ((freework = LIST_FIRST(&jseg->js_indirs)) != NULL) 4300 indirblk_remove(freework); 4301 if (jblocks->jb_oldestseg == jseg) 4302 jblocks->jb_oldestseg = TAILQ_NEXT(jseg, js_next); 4303 TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next); 4304 jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size); 4305 KASSERT(LIST_EMPTY(&jseg->js_entries), 4306 ("free_jseg: Freed jseg has valid entries.")); 4307 WORKITEM_FREE(jseg, D_JSEG); 4308 } 4309 4310 /* 4311 * Free all jsegs that meet the criteria for being reclaimed and update 4312 * oldestseg. 4313 */ 4314 static void 4315 free_jsegs(jblocks) 4316 struct jblocks *jblocks; 4317 { 4318 struct jseg *jseg; 4319 4320 /* 4321 * Free only those jsegs which have none allocated before them to 4322 * preserve the journal space ordering. 4323 */ 4324 while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) { 4325 /* 4326 * Only reclaim space when nothing depends on this journal 4327 * set and another set has written that it is no longer 4328 * valid. 4329 */ 4330 if (jseg->js_refs != 0) { 4331 jblocks->jb_oldestseg = jseg; 4332 return; 4333 } 4334 if ((jseg->js_state & ALLCOMPLETE) != ALLCOMPLETE) 4335 break; 4336 if (jseg->js_seq > jblocks->jb_oldestwrseq) 4337 break; 4338 /* 4339 * We can free jsegs that didn't write entries when 4340 * oldestwrseq == js_seq. 4341 */ 4342 if (jseg->js_seq == jblocks->jb_oldestwrseq && 4343 jseg->js_cnt != 0) 4344 break; 4345 free_jseg(jseg, jblocks); 4346 } 4347 /* 4348 * If we exited the loop above we still must discover the 4349 * oldest valid segment. 4350 */ 4351 if (jseg) 4352 for (jseg = jblocks->jb_oldestseg; jseg != NULL; 4353 jseg = TAILQ_NEXT(jseg, js_next)) 4354 if (jseg->js_refs != 0) 4355 break; 4356 jblocks->jb_oldestseg = jseg; 4357 /* 4358 * The journal has no valid records but some jsegs may still be 4359 * waiting on oldestwrseq to advance. We force a small record 4360 * out to permit these lingering records to be reclaimed. 4361 */ 4362 if (jblocks->jb_oldestseg == NULL && !TAILQ_EMPTY(&jblocks->jb_segs)) 4363 jblocks->jb_needseg = 1; 4364 } 4365 4366 /* 4367 * Release one reference to a jseg and free it if the count reaches 0. This 4368 * should eventually reclaim journal space as well. 4369 */ 4370 static void 4371 rele_jseg(jseg) 4372 struct jseg *jseg; 4373 { 4374 4375 KASSERT(jseg->js_refs > 0, 4376 ("free_jseg: Invalid refcnt %d", jseg->js_refs)); 4377 if (--jseg->js_refs != 0) 4378 return; 4379 free_jsegs(jseg->js_jblocks); 4380 } 4381 4382 /* 4383 * Release a jsegdep and decrement the jseg count. 4384 */ 4385 static void 4386 free_jsegdep(jsegdep) 4387 struct jsegdep *jsegdep; 4388 { 4389 4390 if (jsegdep->jd_seg) 4391 rele_jseg(jsegdep->jd_seg); 4392 WORKITEM_FREE(jsegdep, D_JSEGDEP); 4393 } 4394 4395 /* 4396 * Wait for a journal item to make it to disk. Initiate journal processing 4397 * if required. 4398 */ 4399 static int 4400 jwait(wk, waitfor) 4401 struct worklist *wk; 4402 int waitfor; 4403 { 4404 4405 LOCK_OWNED(VFSTOUFS(wk->wk_mp)); 4406 /* 4407 * Blocking journal waits cause slow synchronous behavior. Record 4408 * stats on the frequency of these blocking operations. 4409 */ 4410 if (waitfor == MNT_WAIT) { 4411 stat_journal_wait++; 4412 switch (wk->wk_type) { 4413 case D_JREMREF: 4414 case D_JMVREF: 4415 stat_jwait_filepage++; 4416 break; 4417 case D_JTRUNC: 4418 case D_JFREEBLK: 4419 stat_jwait_freeblks++; 4420 break; 4421 case D_JNEWBLK: 4422 stat_jwait_newblk++; 4423 break; 4424 case D_JADDREF: 4425 stat_jwait_inode++; 4426 break; 4427 default: 4428 break; 4429 } 4430 } 4431 /* 4432 * If IO has not started we process the journal. We can't mark the 4433 * worklist item as IOWAITING because we drop the lock while 4434 * processing the journal and the worklist entry may be freed after 4435 * this point. The caller may call back in and re-issue the request. 4436 */ 4437 if ((wk->wk_state & INPROGRESS) == 0) { 4438 softdep_process_journal(wk->wk_mp, wk, waitfor); 4439 if (waitfor != MNT_WAIT) 4440 return (EBUSY); 4441 return (0); 4442 } 4443 if (waitfor != MNT_WAIT) 4444 return (EBUSY); 4445 wait_worklist(wk, "jwait"); 4446 return (0); 4447 } 4448 4449 /* 4450 * Lookup an inodedep based on an inode pointer and set the nlinkdelta as 4451 * appropriate. This is a convenience function to reduce duplicate code 4452 * for the setup and revert functions below. 4453 */ 4454 static struct inodedep * 4455 inodedep_lookup_ip(ip) 4456 struct inode *ip; 4457 { 4458 struct inodedep *inodedep; 4459 int dflags; 4460 4461 KASSERT(ip->i_nlink >= ip->i_effnlink, 4462 ("inodedep_lookup_ip: bad delta")); 4463 dflags = DEPALLOC; 4464 if (IS_SNAPSHOT(ip)) 4465 dflags |= NODELAY; 4466 (void) inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, dflags, 4467 &inodedep); 4468 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 4469 KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked")); 4470 4471 return (inodedep); 4472 } 4473 4474 /* 4475 * Called prior to creating a new inode and linking it to a directory. The 4476 * jaddref structure must already be allocated by softdep_setup_inomapdep 4477 * and it is discovered here so we can initialize the mode and update 4478 * nlinkdelta. 4479 */ 4480 void 4481 softdep_setup_create(dp, ip) 4482 struct inode *dp; 4483 struct inode *ip; 4484 { 4485 struct inodedep *inodedep; 4486 struct jaddref *jaddref; 4487 struct vnode *dvp; 4488 4489 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0, 4490 ("softdep_setup_create called on non-softdep filesystem")); 4491 KASSERT(ip->i_nlink == 1, 4492 ("softdep_setup_create: Invalid link count.")); 4493 dvp = ITOV(dp); 4494 ACQUIRE_LOCK(dp->i_ump); 4495 inodedep = inodedep_lookup_ip(ip); 4496 if (DOINGSUJ(dvp)) { 4497 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4498 inoreflst); 4499 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 4500 ("softdep_setup_create: No addref structure present.")); 4501 } 4502 softdep_prelink(dvp, NULL); 4503 FREE_LOCK(dp->i_ump); 4504 } 4505 4506 /* 4507 * Create a jaddref structure to track the addition of a DOTDOT link when 4508 * we are reparenting an inode as part of a rename. This jaddref will be 4509 * found by softdep_setup_directory_change. Adjusts nlinkdelta for 4510 * non-journaling softdep. 4511 */ 4512 void 4513 softdep_setup_dotdot_link(dp, ip) 4514 struct inode *dp; 4515 struct inode *ip; 4516 { 4517 struct inodedep *inodedep; 4518 struct jaddref *jaddref; 4519 struct vnode *dvp; 4520 struct vnode *vp; 4521 4522 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0, 4523 ("softdep_setup_dotdot_link called on non-softdep filesystem")); 4524 dvp = ITOV(dp); 4525 vp = ITOV(ip); 4526 jaddref = NULL; 4527 /* 4528 * We don't set MKDIR_PARENT as this is not tied to a mkdir and 4529 * is used as a normal link would be. 4530 */ 4531 if (DOINGSUJ(dvp)) 4532 jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET, 4533 dp->i_effnlink - 1, dp->i_mode); 4534 ACQUIRE_LOCK(dp->i_ump); 4535 inodedep = inodedep_lookup_ip(dp); 4536 if (jaddref) 4537 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 4538 if_deps); 4539 softdep_prelink(dvp, ITOV(ip)); 4540 FREE_LOCK(dp->i_ump); 4541 } 4542 4543 /* 4544 * Create a jaddref structure to track a new link to an inode. The directory 4545 * offset is not known until softdep_setup_directory_add or 4546 * softdep_setup_directory_change. Adjusts nlinkdelta for non-journaling 4547 * softdep. 4548 */ 4549 void 4550 softdep_setup_link(dp, ip) 4551 struct inode *dp; 4552 struct inode *ip; 4553 { 4554 struct inodedep *inodedep; 4555 struct jaddref *jaddref; 4556 struct vnode *dvp; 4557 4558 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0, 4559 ("softdep_setup_link called on non-softdep filesystem")); 4560 dvp = ITOV(dp); 4561 jaddref = NULL; 4562 if (DOINGSUJ(dvp)) 4563 jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1, 4564 ip->i_mode); 4565 ACQUIRE_LOCK(dp->i_ump); 4566 inodedep = inodedep_lookup_ip(ip); 4567 if (jaddref) 4568 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 4569 if_deps); 4570 softdep_prelink(dvp, ITOV(ip)); 4571 FREE_LOCK(dp->i_ump); 4572 } 4573 4574 /* 4575 * Called to create the jaddref structures to track . and .. references as 4576 * well as lookup and further initialize the incomplete jaddref created 4577 * by softdep_setup_inomapdep when the inode was allocated. Adjusts 4578 * nlinkdelta for non-journaling softdep. 4579 */ 4580 void 4581 softdep_setup_mkdir(dp, ip) 4582 struct inode *dp; 4583 struct inode *ip; 4584 { 4585 struct inodedep *inodedep; 4586 struct jaddref *dotdotaddref; 4587 struct jaddref *dotaddref; 4588 struct jaddref *jaddref; 4589 struct vnode *dvp; 4590 4591 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0, 4592 ("softdep_setup_mkdir called on non-softdep filesystem")); 4593 dvp = ITOV(dp); 4594 dotaddref = dotdotaddref = NULL; 4595 if (DOINGSUJ(dvp)) { 4596 dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1, 4597 ip->i_mode); 4598 dotaddref->ja_state |= MKDIR_BODY; 4599 dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET, 4600 dp->i_effnlink - 1, dp->i_mode); 4601 dotdotaddref->ja_state |= MKDIR_PARENT; 4602 } 4603 ACQUIRE_LOCK(dp->i_ump); 4604 inodedep = inodedep_lookup_ip(ip); 4605 if (DOINGSUJ(dvp)) { 4606 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4607 inoreflst); 4608 KASSERT(jaddref != NULL, 4609 ("softdep_setup_mkdir: No addref structure present.")); 4610 KASSERT(jaddref->ja_parent == dp->i_number, 4611 ("softdep_setup_mkdir: bad parent %ju", 4612 (uintmax_t)jaddref->ja_parent)); 4613 TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref, 4614 if_deps); 4615 } 4616 inodedep = inodedep_lookup_ip(dp); 4617 if (DOINGSUJ(dvp)) 4618 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, 4619 &dotdotaddref->ja_ref, if_deps); 4620 softdep_prelink(ITOV(dp), NULL); 4621 FREE_LOCK(dp->i_ump); 4622 } 4623 4624 /* 4625 * Called to track nlinkdelta of the inode and parent directories prior to 4626 * unlinking a directory. 4627 */ 4628 void 4629 softdep_setup_rmdir(dp, ip) 4630 struct inode *dp; 4631 struct inode *ip; 4632 { 4633 struct vnode *dvp; 4634 4635 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0, 4636 ("softdep_setup_rmdir called on non-softdep filesystem")); 4637 dvp = ITOV(dp); 4638 ACQUIRE_LOCK(dp->i_ump); 4639 (void) inodedep_lookup_ip(ip); 4640 (void) inodedep_lookup_ip(dp); 4641 softdep_prelink(dvp, ITOV(ip)); 4642 FREE_LOCK(dp->i_ump); 4643 } 4644 4645 /* 4646 * Called to track nlinkdelta of the inode and parent directories prior to 4647 * unlink. 4648 */ 4649 void 4650 softdep_setup_unlink(dp, ip) 4651 struct inode *dp; 4652 struct inode *ip; 4653 { 4654 struct vnode *dvp; 4655 4656 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0, 4657 ("softdep_setup_unlink called on non-softdep filesystem")); 4658 dvp = ITOV(dp); 4659 ACQUIRE_LOCK(dp->i_ump); 4660 (void) inodedep_lookup_ip(ip); 4661 (void) inodedep_lookup_ip(dp); 4662 softdep_prelink(dvp, ITOV(ip)); 4663 FREE_LOCK(dp->i_ump); 4664 } 4665 4666 /* 4667 * Called to release the journal structures created by a failed non-directory 4668 * creation. Adjusts nlinkdelta for non-journaling softdep. 4669 */ 4670 void 4671 softdep_revert_create(dp, ip) 4672 struct inode *dp; 4673 struct inode *ip; 4674 { 4675 struct inodedep *inodedep; 4676 struct jaddref *jaddref; 4677 struct vnode *dvp; 4678 4679 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0, 4680 ("softdep_revert_create called on non-softdep filesystem")); 4681 dvp = ITOV(dp); 4682 ACQUIRE_LOCK(dp->i_ump); 4683 inodedep = inodedep_lookup_ip(ip); 4684 if (DOINGSUJ(dvp)) { 4685 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4686 inoreflst); 4687 KASSERT(jaddref->ja_parent == dp->i_number, 4688 ("softdep_revert_create: addref parent mismatch")); 4689 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4690 } 4691 FREE_LOCK(dp->i_ump); 4692 } 4693 4694 /* 4695 * Called to release the journal structures created by a failed link 4696 * addition. Adjusts nlinkdelta for non-journaling softdep. 4697 */ 4698 void 4699 softdep_revert_link(dp, ip) 4700 struct inode *dp; 4701 struct inode *ip; 4702 { 4703 struct inodedep *inodedep; 4704 struct jaddref *jaddref; 4705 struct vnode *dvp; 4706 4707 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0, 4708 ("softdep_revert_link called on non-softdep filesystem")); 4709 dvp = ITOV(dp); 4710 ACQUIRE_LOCK(dp->i_ump); 4711 inodedep = inodedep_lookup_ip(ip); 4712 if (DOINGSUJ(dvp)) { 4713 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4714 inoreflst); 4715 KASSERT(jaddref->ja_parent == dp->i_number, 4716 ("softdep_revert_link: addref parent mismatch")); 4717 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4718 } 4719 FREE_LOCK(dp->i_ump); 4720 } 4721 4722 /* 4723 * Called to release the journal structures created by a failed mkdir 4724 * attempt. Adjusts nlinkdelta for non-journaling softdep. 4725 */ 4726 void 4727 softdep_revert_mkdir(dp, ip) 4728 struct inode *dp; 4729 struct inode *ip; 4730 { 4731 struct inodedep *inodedep; 4732 struct jaddref *jaddref; 4733 struct jaddref *dotaddref; 4734 struct vnode *dvp; 4735 4736 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0, 4737 ("softdep_revert_mkdir called on non-softdep filesystem")); 4738 dvp = ITOV(dp); 4739 4740 ACQUIRE_LOCK(dp->i_ump); 4741 inodedep = inodedep_lookup_ip(dp); 4742 if (DOINGSUJ(dvp)) { 4743 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4744 inoreflst); 4745 KASSERT(jaddref->ja_parent == ip->i_number, 4746 ("softdep_revert_mkdir: dotdot addref parent mismatch")); 4747 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4748 } 4749 inodedep = inodedep_lookup_ip(ip); 4750 if (DOINGSUJ(dvp)) { 4751 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4752 inoreflst); 4753 KASSERT(jaddref->ja_parent == dp->i_number, 4754 ("softdep_revert_mkdir: addref parent mismatch")); 4755 dotaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref, 4756 inoreflst, if_deps); 4757 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4758 KASSERT(dotaddref->ja_parent == ip->i_number, 4759 ("softdep_revert_mkdir: dot addref parent mismatch")); 4760 cancel_jaddref(dotaddref, inodedep, &inodedep->id_inowait); 4761 } 4762 FREE_LOCK(dp->i_ump); 4763 } 4764 4765 /* 4766 * Called to correct nlinkdelta after a failed rmdir. 4767 */ 4768 void 4769 softdep_revert_rmdir(dp, ip) 4770 struct inode *dp; 4771 struct inode *ip; 4772 { 4773 4774 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0, 4775 ("softdep_revert_rmdir called on non-softdep filesystem")); 4776 ACQUIRE_LOCK(dp->i_ump); 4777 (void) inodedep_lookup_ip(ip); 4778 (void) inodedep_lookup_ip(dp); 4779 FREE_LOCK(dp->i_ump); 4780 } 4781 4782 /* 4783 * Protecting the freemaps (or bitmaps). 4784 * 4785 * To eliminate the need to execute fsck before mounting a filesystem 4786 * after a power failure, one must (conservatively) guarantee that the 4787 * on-disk copy of the bitmaps never indicate that a live inode or block is 4788 * free. So, when a block or inode is allocated, the bitmap should be 4789 * updated (on disk) before any new pointers. When a block or inode is 4790 * freed, the bitmap should not be updated until all pointers have been 4791 * reset. The latter dependency is handled by the delayed de-allocation 4792 * approach described below for block and inode de-allocation. The former 4793 * dependency is handled by calling the following procedure when a block or 4794 * inode is allocated. When an inode is allocated an "inodedep" is created 4795 * with its DEPCOMPLETE flag cleared until its bitmap is written to disk. 4796 * Each "inodedep" is also inserted into the hash indexing structure so 4797 * that any additional link additions can be made dependent on the inode 4798 * allocation. 4799 * 4800 * The ufs filesystem maintains a number of free block counts (e.g., per 4801 * cylinder group, per cylinder and per <cylinder, rotational position> pair) 4802 * in addition to the bitmaps. These counts are used to improve efficiency 4803 * during allocation and therefore must be consistent with the bitmaps. 4804 * There is no convenient way to guarantee post-crash consistency of these 4805 * counts with simple update ordering, for two main reasons: (1) The counts 4806 * and bitmaps for a single cylinder group block are not in the same disk 4807 * sector. If a disk write is interrupted (e.g., by power failure), one may 4808 * be written and the other not. (2) Some of the counts are located in the 4809 * superblock rather than the cylinder group block. So, we focus our soft 4810 * updates implementation on protecting the bitmaps. When mounting a 4811 * filesystem, we recompute the auxiliary counts from the bitmaps. 4812 */ 4813 4814 /* 4815 * Called just after updating the cylinder group block to allocate an inode. 4816 */ 4817 void 4818 softdep_setup_inomapdep(bp, ip, newinum, mode) 4819 struct buf *bp; /* buffer for cylgroup block with inode map */ 4820 struct inode *ip; /* inode related to allocation */ 4821 ino_t newinum; /* new inode number being allocated */ 4822 int mode; 4823 { 4824 struct inodedep *inodedep; 4825 struct bmsafemap *bmsafemap; 4826 struct jaddref *jaddref; 4827 struct mount *mp; 4828 struct fs *fs; 4829 4830 mp = UFSTOVFS(ip->i_ump); 4831 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 4832 ("softdep_setup_inomapdep called on non-softdep filesystem")); 4833 fs = ip->i_ump->um_fs; 4834 jaddref = NULL; 4835 4836 /* 4837 * Allocate the journal reference add structure so that the bitmap 4838 * can be dependent on it. 4839 */ 4840 if (MOUNTEDSUJ(mp)) { 4841 jaddref = newjaddref(ip, newinum, 0, 0, mode); 4842 jaddref->ja_state |= NEWBLOCK; 4843 } 4844 4845 /* 4846 * Create a dependency for the newly allocated inode. 4847 * Panic if it already exists as something is seriously wrong. 4848 * Otherwise add it to the dependency list for the buffer holding 4849 * the cylinder group map from which it was allocated. 4850 * 4851 * We have to preallocate a bmsafemap entry in case it is needed 4852 * in bmsafemap_lookup since once we allocate the inodedep, we 4853 * have to finish initializing it before we can FREE_LOCK(). 4854 * By preallocating, we avoid FREE_LOCK() while doing a malloc 4855 * in bmsafemap_lookup. We cannot call bmsafemap_lookup before 4856 * creating the inodedep as it can be freed during the time 4857 * that we FREE_LOCK() while allocating the inodedep. We must 4858 * call workitem_alloc() before entering the locked section as 4859 * it also acquires the lock and we must avoid trying doing so 4860 * recursively. 4861 */ 4862 bmsafemap = malloc(sizeof(struct bmsafemap), 4863 M_BMSAFEMAP, M_SOFTDEP_FLAGS); 4864 workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp); 4865 ACQUIRE_LOCK(ip->i_ump); 4866 if ((inodedep_lookup(mp, newinum, DEPALLOC | NODELAY, &inodedep))) 4867 panic("softdep_setup_inomapdep: dependency %p for new" 4868 "inode already exists", inodedep); 4869 bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum), bmsafemap); 4870 if (jaddref) { 4871 LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps); 4872 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 4873 if_deps); 4874 } else { 4875 inodedep->id_state |= ONDEPLIST; 4876 LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps); 4877 } 4878 inodedep->id_bmsafemap = bmsafemap; 4879 inodedep->id_state &= ~DEPCOMPLETE; 4880 FREE_LOCK(ip->i_ump); 4881 } 4882 4883 /* 4884 * Called just after updating the cylinder group block to 4885 * allocate block or fragment. 4886 */ 4887 void 4888 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags) 4889 struct buf *bp; /* buffer for cylgroup block with block map */ 4890 struct mount *mp; /* filesystem doing allocation */ 4891 ufs2_daddr_t newblkno; /* number of newly allocated block */ 4892 int frags; /* Number of fragments. */ 4893 int oldfrags; /* Previous number of fragments for extend. */ 4894 { 4895 struct newblk *newblk; 4896 struct bmsafemap *bmsafemap; 4897 struct jnewblk *jnewblk; 4898 struct ufsmount *ump; 4899 struct fs *fs; 4900 4901 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 4902 ("softdep_setup_blkmapdep called on non-softdep filesystem")); 4903 ump = VFSTOUFS(mp); 4904 fs = ump->um_fs; 4905 jnewblk = NULL; 4906 /* 4907 * Create a dependency for the newly allocated block. 4908 * Add it to the dependency list for the buffer holding 4909 * the cylinder group map from which it was allocated. 4910 */ 4911 if (MOUNTEDSUJ(mp)) { 4912 jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS); 4913 workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp); 4914 jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list); 4915 jnewblk->jn_state = ATTACHED; 4916 jnewblk->jn_blkno = newblkno; 4917 jnewblk->jn_frags = frags; 4918 jnewblk->jn_oldfrags = oldfrags; 4919 #ifdef SUJ_DEBUG 4920 { 4921 struct cg *cgp; 4922 uint8_t *blksfree; 4923 long bno; 4924 int i; 4925 4926 cgp = (struct cg *)bp->b_data; 4927 blksfree = cg_blksfree(cgp); 4928 bno = dtogd(fs, jnewblk->jn_blkno); 4929 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; 4930 i++) { 4931 if (isset(blksfree, bno + i)) 4932 panic("softdep_setup_blkmapdep: " 4933 "free fragment %d from %d-%d " 4934 "state 0x%X dep %p", i, 4935 jnewblk->jn_oldfrags, 4936 jnewblk->jn_frags, 4937 jnewblk->jn_state, 4938 jnewblk->jn_dep); 4939 } 4940 } 4941 #endif 4942 } 4943 4944 CTR3(KTR_SUJ, 4945 "softdep_setup_blkmapdep: blkno %jd frags %d oldfrags %d", 4946 newblkno, frags, oldfrags); 4947 ACQUIRE_LOCK(ump); 4948 if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0) 4949 panic("softdep_setup_blkmapdep: found block"); 4950 newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp, 4951 dtog(fs, newblkno), NULL); 4952 if (jnewblk) { 4953 jnewblk->jn_dep = (struct worklist *)newblk; 4954 LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps); 4955 } else { 4956 newblk->nb_state |= ONDEPLIST; 4957 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps); 4958 } 4959 newblk->nb_bmsafemap = bmsafemap; 4960 newblk->nb_jnewblk = jnewblk; 4961 FREE_LOCK(ump); 4962 } 4963 4964 #define BMSAFEMAP_HASH(ump, cg) \ 4965 (&(ump)->bmsafemap_hashtbl[(cg) & (ump)->bmsafemap_hash_size]) 4966 4967 static int 4968 bmsafemap_find(bmsafemaphd, cg, bmsafemapp) 4969 struct bmsafemap_hashhead *bmsafemaphd; 4970 int cg; 4971 struct bmsafemap **bmsafemapp; 4972 { 4973 struct bmsafemap *bmsafemap; 4974 4975 LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash) 4976 if (bmsafemap->sm_cg == cg) 4977 break; 4978 if (bmsafemap) { 4979 *bmsafemapp = bmsafemap; 4980 return (1); 4981 } 4982 *bmsafemapp = NULL; 4983 4984 return (0); 4985 } 4986 4987 /* 4988 * Find the bmsafemap associated with a cylinder group buffer. 4989 * If none exists, create one. The buffer must be locked when 4990 * this routine is called and this routine must be called with 4991 * the softdep lock held. To avoid giving up the lock while 4992 * allocating a new bmsafemap, a preallocated bmsafemap may be 4993 * provided. If it is provided but not needed, it is freed. 4994 */ 4995 static struct bmsafemap * 4996 bmsafemap_lookup(mp, bp, cg, newbmsafemap) 4997 struct mount *mp; 4998 struct buf *bp; 4999 int cg; 5000 struct bmsafemap *newbmsafemap; 5001 { 5002 struct bmsafemap_hashhead *bmsafemaphd; 5003 struct bmsafemap *bmsafemap, *collision; 5004 struct worklist *wk; 5005 struct ufsmount *ump; 5006 5007 ump = VFSTOUFS(mp); 5008 LOCK_OWNED(ump); 5009 KASSERT(bp != NULL, ("bmsafemap_lookup: missing buffer")); 5010 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 5011 if (wk->wk_type == D_BMSAFEMAP) { 5012 if (newbmsafemap) 5013 WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP); 5014 return (WK_BMSAFEMAP(wk)); 5015 } 5016 } 5017 bmsafemaphd = BMSAFEMAP_HASH(ump, cg); 5018 if (bmsafemap_find(bmsafemaphd, cg, &bmsafemap) == 1) { 5019 if (newbmsafemap) 5020 WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP); 5021 return (bmsafemap); 5022 } 5023 if (newbmsafemap) { 5024 bmsafemap = newbmsafemap; 5025 } else { 5026 FREE_LOCK(ump); 5027 bmsafemap = malloc(sizeof(struct bmsafemap), 5028 M_BMSAFEMAP, M_SOFTDEP_FLAGS); 5029 workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp); 5030 ACQUIRE_LOCK(ump); 5031 } 5032 bmsafemap->sm_buf = bp; 5033 LIST_INIT(&bmsafemap->sm_inodedephd); 5034 LIST_INIT(&bmsafemap->sm_inodedepwr); 5035 LIST_INIT(&bmsafemap->sm_newblkhd); 5036 LIST_INIT(&bmsafemap->sm_newblkwr); 5037 LIST_INIT(&bmsafemap->sm_jaddrefhd); 5038 LIST_INIT(&bmsafemap->sm_jnewblkhd); 5039 LIST_INIT(&bmsafemap->sm_freehd); 5040 LIST_INIT(&bmsafemap->sm_freewr); 5041 if (bmsafemap_find(bmsafemaphd, cg, &collision) == 1) { 5042 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); 5043 return (collision); 5044 } 5045 bmsafemap->sm_cg = cg; 5046 LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash); 5047 LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next); 5048 WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list); 5049 return (bmsafemap); 5050 } 5051 5052 /* 5053 * Direct block allocation dependencies. 5054 * 5055 * When a new block is allocated, the corresponding disk locations must be 5056 * initialized (with zeros or new data) before the on-disk inode points to 5057 * them. Also, the freemap from which the block was allocated must be 5058 * updated (on disk) before the inode's pointer. These two dependencies are 5059 * independent of each other and are needed for all file blocks and indirect 5060 * blocks that are pointed to directly by the inode. Just before the 5061 * "in-core" version of the inode is updated with a newly allocated block 5062 * number, a procedure (below) is called to setup allocation dependency 5063 * structures. These structures are removed when the corresponding 5064 * dependencies are satisfied or when the block allocation becomes obsolete 5065 * (i.e., the file is deleted, the block is de-allocated, or the block is a 5066 * fragment that gets upgraded). All of these cases are handled in 5067 * procedures described later. 5068 * 5069 * When a file extension causes a fragment to be upgraded, either to a larger 5070 * fragment or to a full block, the on-disk location may change (if the 5071 * previous fragment could not simply be extended). In this case, the old 5072 * fragment must be de-allocated, but not until after the inode's pointer has 5073 * been updated. In most cases, this is handled by later procedures, which 5074 * will construct a "freefrag" structure to be added to the workitem queue 5075 * when the inode update is complete (or obsolete). The main exception to 5076 * this is when an allocation occurs while a pending allocation dependency 5077 * (for the same block pointer) remains. This case is handled in the main 5078 * allocation dependency setup procedure by immediately freeing the 5079 * unreferenced fragments. 5080 */ 5081 void 5082 softdep_setup_allocdirect(ip, off, newblkno, oldblkno, newsize, oldsize, bp) 5083 struct inode *ip; /* inode to which block is being added */ 5084 ufs_lbn_t off; /* block pointer within inode */ 5085 ufs2_daddr_t newblkno; /* disk block number being added */ 5086 ufs2_daddr_t oldblkno; /* previous block number, 0 unless frag */ 5087 long newsize; /* size of new block */ 5088 long oldsize; /* size of new block */ 5089 struct buf *bp; /* bp for allocated block */ 5090 { 5091 struct allocdirect *adp, *oldadp; 5092 struct allocdirectlst *adphead; 5093 struct freefrag *freefrag; 5094 struct inodedep *inodedep; 5095 struct pagedep *pagedep; 5096 struct jnewblk *jnewblk; 5097 struct newblk *newblk; 5098 struct mount *mp; 5099 ufs_lbn_t lbn; 5100 5101 lbn = bp->b_lblkno; 5102 mp = UFSTOVFS(ip->i_ump); 5103 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5104 ("softdep_setup_allocdirect called on non-softdep filesystem")); 5105 if (oldblkno && oldblkno != newblkno) 5106 freefrag = newfreefrag(ip, oldblkno, oldsize, lbn); 5107 else 5108 freefrag = NULL; 5109 5110 CTR6(KTR_SUJ, 5111 "softdep_setup_allocdirect: ino %d blkno %jd oldblkno %jd " 5112 "off %jd newsize %ld oldsize %d", 5113 ip->i_number, newblkno, oldblkno, off, newsize, oldsize); 5114 ACQUIRE_LOCK(ip->i_ump); 5115 if (off >= NDADDR) { 5116 if (lbn > 0) 5117 panic("softdep_setup_allocdirect: bad lbn %jd, off %jd", 5118 lbn, off); 5119 /* allocating an indirect block */ 5120 if (oldblkno != 0) 5121 panic("softdep_setup_allocdirect: non-zero indir"); 5122 } else { 5123 if (off != lbn) 5124 panic("softdep_setup_allocdirect: lbn %jd != off %jd", 5125 lbn, off); 5126 /* 5127 * Allocating a direct block. 5128 * 5129 * If we are allocating a directory block, then we must 5130 * allocate an associated pagedep to track additions and 5131 * deletions. 5132 */ 5133 if ((ip->i_mode & IFMT) == IFDIR) 5134 pagedep_lookup(mp, bp, ip->i_number, off, DEPALLOC, 5135 &pagedep); 5136 } 5137 if (newblk_lookup(mp, newblkno, 0, &newblk) == 0) 5138 panic("softdep_setup_allocdirect: lost block"); 5139 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 5140 ("softdep_setup_allocdirect: newblk already initialized")); 5141 /* 5142 * Convert the newblk to an allocdirect. 5143 */ 5144 WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT); 5145 adp = (struct allocdirect *)newblk; 5146 newblk->nb_freefrag = freefrag; 5147 adp->ad_offset = off; 5148 adp->ad_oldblkno = oldblkno; 5149 adp->ad_newsize = newsize; 5150 adp->ad_oldsize = oldsize; 5151 5152 /* 5153 * Finish initializing the journal. 5154 */ 5155 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 5156 jnewblk->jn_ino = ip->i_number; 5157 jnewblk->jn_lbn = lbn; 5158 add_to_journal(&jnewblk->jn_list); 5159 } 5160 if (freefrag && freefrag->ff_jdep != NULL && 5161 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 5162 add_to_journal(freefrag->ff_jdep); 5163 inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep); 5164 adp->ad_inodedep = inodedep; 5165 5166 WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list); 5167 /* 5168 * The list of allocdirects must be kept in sorted and ascending 5169 * order so that the rollback routines can quickly determine the 5170 * first uncommitted block (the size of the file stored on disk 5171 * ends at the end of the lowest committed fragment, or if there 5172 * are no fragments, at the end of the highest committed block). 5173 * Since files generally grow, the typical case is that the new 5174 * block is to be added at the end of the list. We speed this 5175 * special case by checking against the last allocdirect in the 5176 * list before laboriously traversing the list looking for the 5177 * insertion point. 5178 */ 5179 adphead = &inodedep->id_newinoupdt; 5180 oldadp = TAILQ_LAST(adphead, allocdirectlst); 5181 if (oldadp == NULL || oldadp->ad_offset <= off) { 5182 /* insert at end of list */ 5183 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 5184 if (oldadp != NULL && oldadp->ad_offset == off) 5185 allocdirect_merge(adphead, adp, oldadp); 5186 FREE_LOCK(ip->i_ump); 5187 return; 5188 } 5189 TAILQ_FOREACH(oldadp, adphead, ad_next) { 5190 if (oldadp->ad_offset >= off) 5191 break; 5192 } 5193 if (oldadp == NULL) 5194 panic("softdep_setup_allocdirect: lost entry"); 5195 /* insert in middle of list */ 5196 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 5197 if (oldadp->ad_offset == off) 5198 allocdirect_merge(adphead, adp, oldadp); 5199 5200 FREE_LOCK(ip->i_ump); 5201 } 5202 5203 /* 5204 * Merge a newer and older journal record to be stored either in a 5205 * newblock or freefrag. This handles aggregating journal records for 5206 * fragment allocation into a second record as well as replacing a 5207 * journal free with an aborted journal allocation. A segment for the 5208 * oldest record will be placed on wkhd if it has been written. If not 5209 * the segment for the newer record will suffice. 5210 */ 5211 static struct worklist * 5212 jnewblk_merge(new, old, wkhd) 5213 struct worklist *new; 5214 struct worklist *old; 5215 struct workhead *wkhd; 5216 { 5217 struct jnewblk *njnewblk; 5218 struct jnewblk *jnewblk; 5219 5220 /* Handle NULLs to simplify callers. */ 5221 if (new == NULL) 5222 return (old); 5223 if (old == NULL) 5224 return (new); 5225 /* Replace a jfreefrag with a jnewblk. */ 5226 if (new->wk_type == D_JFREEFRAG) { 5227 if (WK_JNEWBLK(old)->jn_blkno != WK_JFREEFRAG(new)->fr_blkno) 5228 panic("jnewblk_merge: blkno mismatch: %p, %p", 5229 old, new); 5230 cancel_jfreefrag(WK_JFREEFRAG(new)); 5231 return (old); 5232 } 5233 if (old->wk_type != D_JNEWBLK || new->wk_type != D_JNEWBLK) 5234 panic("jnewblk_merge: Bad type: old %d new %d\n", 5235 old->wk_type, new->wk_type); 5236 /* 5237 * Handle merging of two jnewblk records that describe 5238 * different sets of fragments in the same block. 5239 */ 5240 jnewblk = WK_JNEWBLK(old); 5241 njnewblk = WK_JNEWBLK(new); 5242 if (jnewblk->jn_blkno != njnewblk->jn_blkno) 5243 panic("jnewblk_merge: Merging disparate blocks."); 5244 /* 5245 * The record may be rolled back in the cg. 5246 */ 5247 if (jnewblk->jn_state & UNDONE) { 5248 jnewblk->jn_state &= ~UNDONE; 5249 njnewblk->jn_state |= UNDONE; 5250 njnewblk->jn_state &= ~ATTACHED; 5251 } 5252 /* 5253 * We modify the newer addref and free the older so that if neither 5254 * has been written the most up-to-date copy will be on disk. If 5255 * both have been written but rolled back we only temporarily need 5256 * one of them to fix the bits when the cg write completes. 5257 */ 5258 jnewblk->jn_state |= ATTACHED | COMPLETE; 5259 njnewblk->jn_oldfrags = jnewblk->jn_oldfrags; 5260 cancel_jnewblk(jnewblk, wkhd); 5261 WORKLIST_REMOVE(&jnewblk->jn_list); 5262 free_jnewblk(jnewblk); 5263 return (new); 5264 } 5265 5266 /* 5267 * Replace an old allocdirect dependency with a newer one. 5268 * This routine must be called with splbio interrupts blocked. 5269 */ 5270 static void 5271 allocdirect_merge(adphead, newadp, oldadp) 5272 struct allocdirectlst *adphead; /* head of list holding allocdirects */ 5273 struct allocdirect *newadp; /* allocdirect being added */ 5274 struct allocdirect *oldadp; /* existing allocdirect being checked */ 5275 { 5276 struct worklist *wk; 5277 struct freefrag *freefrag; 5278 5279 freefrag = NULL; 5280 LOCK_OWNED(VFSTOUFS(newadp->ad_list.wk_mp)); 5281 if (newadp->ad_oldblkno != oldadp->ad_newblkno || 5282 newadp->ad_oldsize != oldadp->ad_newsize || 5283 newadp->ad_offset >= NDADDR) 5284 panic("%s %jd != new %jd || old size %ld != new %ld", 5285 "allocdirect_merge: old blkno", 5286 (intmax_t)newadp->ad_oldblkno, 5287 (intmax_t)oldadp->ad_newblkno, 5288 newadp->ad_oldsize, oldadp->ad_newsize); 5289 newadp->ad_oldblkno = oldadp->ad_oldblkno; 5290 newadp->ad_oldsize = oldadp->ad_oldsize; 5291 /* 5292 * If the old dependency had a fragment to free or had never 5293 * previously had a block allocated, then the new dependency 5294 * can immediately post its freefrag and adopt the old freefrag. 5295 * This action is done by swapping the freefrag dependencies. 5296 * The new dependency gains the old one's freefrag, and the 5297 * old one gets the new one and then immediately puts it on 5298 * the worklist when it is freed by free_newblk. It is 5299 * not possible to do this swap when the old dependency had a 5300 * non-zero size but no previous fragment to free. This condition 5301 * arises when the new block is an extension of the old block. 5302 * Here, the first part of the fragment allocated to the new 5303 * dependency is part of the block currently claimed on disk by 5304 * the old dependency, so cannot legitimately be freed until the 5305 * conditions for the new dependency are fulfilled. 5306 */ 5307 freefrag = newadp->ad_freefrag; 5308 if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) { 5309 newadp->ad_freefrag = oldadp->ad_freefrag; 5310 oldadp->ad_freefrag = freefrag; 5311 } 5312 /* 5313 * If we are tracking a new directory-block allocation, 5314 * move it from the old allocdirect to the new allocdirect. 5315 */ 5316 if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) { 5317 WORKLIST_REMOVE(wk); 5318 if (!LIST_EMPTY(&oldadp->ad_newdirblk)) 5319 panic("allocdirect_merge: extra newdirblk"); 5320 WORKLIST_INSERT(&newadp->ad_newdirblk, wk); 5321 } 5322 TAILQ_REMOVE(adphead, oldadp, ad_next); 5323 /* 5324 * We need to move any journal dependencies over to the freefrag 5325 * that releases this block if it exists. Otherwise we are 5326 * extending an existing block and we'll wait until that is 5327 * complete to release the journal space and extend the 5328 * new journal to cover this old space as well. 5329 */ 5330 if (freefrag == NULL) { 5331 if (oldadp->ad_newblkno != newadp->ad_newblkno) 5332 panic("allocdirect_merge: %jd != %jd", 5333 oldadp->ad_newblkno, newadp->ad_newblkno); 5334 newadp->ad_block.nb_jnewblk = (struct jnewblk *) 5335 jnewblk_merge(&newadp->ad_block.nb_jnewblk->jn_list, 5336 &oldadp->ad_block.nb_jnewblk->jn_list, 5337 &newadp->ad_block.nb_jwork); 5338 oldadp->ad_block.nb_jnewblk = NULL; 5339 cancel_newblk(&oldadp->ad_block, NULL, 5340 &newadp->ad_block.nb_jwork); 5341 } else { 5342 wk = (struct worklist *) cancel_newblk(&oldadp->ad_block, 5343 &freefrag->ff_list, &freefrag->ff_jwork); 5344 freefrag->ff_jdep = jnewblk_merge(freefrag->ff_jdep, wk, 5345 &freefrag->ff_jwork); 5346 } 5347 free_newblk(&oldadp->ad_block); 5348 } 5349 5350 /* 5351 * Allocate a jfreefrag structure to journal a single block free. 5352 */ 5353 static struct jfreefrag * 5354 newjfreefrag(freefrag, ip, blkno, size, lbn) 5355 struct freefrag *freefrag; 5356 struct inode *ip; 5357 ufs2_daddr_t blkno; 5358 long size; 5359 ufs_lbn_t lbn; 5360 { 5361 struct jfreefrag *jfreefrag; 5362 struct fs *fs; 5363 5364 fs = ip->i_fs; 5365 jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG, 5366 M_SOFTDEP_FLAGS); 5367 workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, UFSTOVFS(ip->i_ump)); 5368 jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list); 5369 jfreefrag->fr_state = ATTACHED | DEPCOMPLETE; 5370 jfreefrag->fr_ino = ip->i_number; 5371 jfreefrag->fr_lbn = lbn; 5372 jfreefrag->fr_blkno = blkno; 5373 jfreefrag->fr_frags = numfrags(fs, size); 5374 jfreefrag->fr_freefrag = freefrag; 5375 5376 return (jfreefrag); 5377 } 5378 5379 /* 5380 * Allocate a new freefrag structure. 5381 */ 5382 static struct freefrag * 5383 newfreefrag(ip, blkno, size, lbn) 5384 struct inode *ip; 5385 ufs2_daddr_t blkno; 5386 long size; 5387 ufs_lbn_t lbn; 5388 { 5389 struct freefrag *freefrag; 5390 struct fs *fs; 5391 5392 CTR4(KTR_SUJ, "newfreefrag: ino %d blkno %jd size %ld lbn %jd", 5393 ip->i_number, blkno, size, lbn); 5394 fs = ip->i_fs; 5395 if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag) 5396 panic("newfreefrag: frag size"); 5397 freefrag = malloc(sizeof(struct freefrag), 5398 M_FREEFRAG, M_SOFTDEP_FLAGS); 5399 workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ip->i_ump)); 5400 freefrag->ff_state = ATTACHED; 5401 LIST_INIT(&freefrag->ff_jwork); 5402 freefrag->ff_inum = ip->i_number; 5403 freefrag->ff_vtype = ITOV(ip)->v_type; 5404 freefrag->ff_blkno = blkno; 5405 freefrag->ff_fragsize = size; 5406 5407 if (MOUNTEDSUJ(UFSTOVFS(ip->i_ump))) { 5408 freefrag->ff_jdep = (struct worklist *) 5409 newjfreefrag(freefrag, ip, blkno, size, lbn); 5410 } else { 5411 freefrag->ff_state |= DEPCOMPLETE; 5412 freefrag->ff_jdep = NULL; 5413 } 5414 5415 return (freefrag); 5416 } 5417 5418 /* 5419 * This workitem de-allocates fragments that were replaced during 5420 * file block allocation. 5421 */ 5422 static void 5423 handle_workitem_freefrag(freefrag) 5424 struct freefrag *freefrag; 5425 { 5426 struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp); 5427 struct workhead wkhd; 5428 5429 CTR3(KTR_SUJ, 5430 "handle_workitem_freefrag: ino %d blkno %jd size %ld", 5431 freefrag->ff_inum, freefrag->ff_blkno, freefrag->ff_fragsize); 5432 /* 5433 * It would be illegal to add new completion items to the 5434 * freefrag after it was schedule to be done so it must be 5435 * safe to modify the list head here. 5436 */ 5437 LIST_INIT(&wkhd); 5438 ACQUIRE_LOCK(ump); 5439 LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list); 5440 /* 5441 * If the journal has not been written we must cancel it here. 5442 */ 5443 if (freefrag->ff_jdep) { 5444 if (freefrag->ff_jdep->wk_type != D_JNEWBLK) 5445 panic("handle_workitem_freefrag: Unexpected type %d\n", 5446 freefrag->ff_jdep->wk_type); 5447 cancel_jnewblk(WK_JNEWBLK(freefrag->ff_jdep), &wkhd); 5448 } 5449 FREE_LOCK(ump); 5450 ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno, 5451 freefrag->ff_fragsize, freefrag->ff_inum, freefrag->ff_vtype, &wkhd); 5452 ACQUIRE_LOCK(ump); 5453 WORKITEM_FREE(freefrag, D_FREEFRAG); 5454 FREE_LOCK(ump); 5455 } 5456 5457 /* 5458 * Set up a dependency structure for an external attributes data block. 5459 * This routine follows much of the structure of softdep_setup_allocdirect. 5460 * See the description of softdep_setup_allocdirect above for details. 5461 */ 5462 void 5463 softdep_setup_allocext(ip, off, newblkno, oldblkno, newsize, oldsize, bp) 5464 struct inode *ip; 5465 ufs_lbn_t off; 5466 ufs2_daddr_t newblkno; 5467 ufs2_daddr_t oldblkno; 5468 long newsize; 5469 long oldsize; 5470 struct buf *bp; 5471 { 5472 struct allocdirect *adp, *oldadp; 5473 struct allocdirectlst *adphead; 5474 struct freefrag *freefrag; 5475 struct inodedep *inodedep; 5476 struct jnewblk *jnewblk; 5477 struct newblk *newblk; 5478 struct mount *mp; 5479 ufs_lbn_t lbn; 5480 5481 mp = UFSTOVFS(ip->i_ump); 5482 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5483 ("softdep_setup_allocext called on non-softdep filesystem")); 5484 KASSERT(off < NXADDR, ("softdep_setup_allocext: lbn %lld > NXADDR", 5485 (long long)off)); 5486 5487 lbn = bp->b_lblkno; 5488 if (oldblkno && oldblkno != newblkno) 5489 freefrag = newfreefrag(ip, oldblkno, oldsize, lbn); 5490 else 5491 freefrag = NULL; 5492 5493 ACQUIRE_LOCK(ip->i_ump); 5494 if (newblk_lookup(mp, newblkno, 0, &newblk) == 0) 5495 panic("softdep_setup_allocext: lost block"); 5496 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 5497 ("softdep_setup_allocext: newblk already initialized")); 5498 /* 5499 * Convert the newblk to an allocdirect. 5500 */ 5501 WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT); 5502 adp = (struct allocdirect *)newblk; 5503 newblk->nb_freefrag = freefrag; 5504 adp->ad_offset = off; 5505 adp->ad_oldblkno = oldblkno; 5506 adp->ad_newsize = newsize; 5507 adp->ad_oldsize = oldsize; 5508 adp->ad_state |= EXTDATA; 5509 5510 /* 5511 * Finish initializing the journal. 5512 */ 5513 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 5514 jnewblk->jn_ino = ip->i_number; 5515 jnewblk->jn_lbn = lbn; 5516 add_to_journal(&jnewblk->jn_list); 5517 } 5518 if (freefrag && freefrag->ff_jdep != NULL && 5519 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 5520 add_to_journal(freefrag->ff_jdep); 5521 inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep); 5522 adp->ad_inodedep = inodedep; 5523 5524 WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list); 5525 /* 5526 * The list of allocdirects must be kept in sorted and ascending 5527 * order so that the rollback routines can quickly determine the 5528 * first uncommitted block (the size of the file stored on disk 5529 * ends at the end of the lowest committed fragment, or if there 5530 * are no fragments, at the end of the highest committed block). 5531 * Since files generally grow, the typical case is that the new 5532 * block is to be added at the end of the list. We speed this 5533 * special case by checking against the last allocdirect in the 5534 * list before laboriously traversing the list looking for the 5535 * insertion point. 5536 */ 5537 adphead = &inodedep->id_newextupdt; 5538 oldadp = TAILQ_LAST(adphead, allocdirectlst); 5539 if (oldadp == NULL || oldadp->ad_offset <= off) { 5540 /* insert at end of list */ 5541 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 5542 if (oldadp != NULL && oldadp->ad_offset == off) 5543 allocdirect_merge(adphead, adp, oldadp); 5544 FREE_LOCK(ip->i_ump); 5545 return; 5546 } 5547 TAILQ_FOREACH(oldadp, adphead, ad_next) { 5548 if (oldadp->ad_offset >= off) 5549 break; 5550 } 5551 if (oldadp == NULL) 5552 panic("softdep_setup_allocext: lost entry"); 5553 /* insert in middle of list */ 5554 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 5555 if (oldadp->ad_offset == off) 5556 allocdirect_merge(adphead, adp, oldadp); 5557 FREE_LOCK(ip->i_ump); 5558 } 5559 5560 /* 5561 * Indirect block allocation dependencies. 5562 * 5563 * The same dependencies that exist for a direct block also exist when 5564 * a new block is allocated and pointed to by an entry in a block of 5565 * indirect pointers. The undo/redo states described above are also 5566 * used here. Because an indirect block contains many pointers that 5567 * may have dependencies, a second copy of the entire in-memory indirect 5568 * block is kept. The buffer cache copy is always completely up-to-date. 5569 * The second copy, which is used only as a source for disk writes, 5570 * contains only the safe pointers (i.e., those that have no remaining 5571 * update dependencies). The second copy is freed when all pointers 5572 * are safe. The cache is not allowed to replace indirect blocks with 5573 * pending update dependencies. If a buffer containing an indirect 5574 * block with dependencies is written, these routines will mark it 5575 * dirty again. It can only be successfully written once all the 5576 * dependencies are removed. The ffs_fsync routine in conjunction with 5577 * softdep_sync_metadata work together to get all the dependencies 5578 * removed so that a file can be successfully written to disk. Three 5579 * procedures are used when setting up indirect block pointer 5580 * dependencies. The division is necessary because of the organization 5581 * of the "balloc" routine and because of the distinction between file 5582 * pages and file metadata blocks. 5583 */ 5584 5585 /* 5586 * Allocate a new allocindir structure. 5587 */ 5588 static struct allocindir * 5589 newallocindir(ip, ptrno, newblkno, oldblkno, lbn) 5590 struct inode *ip; /* inode for file being extended */ 5591 int ptrno; /* offset of pointer in indirect block */ 5592 ufs2_daddr_t newblkno; /* disk block number being added */ 5593 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 5594 ufs_lbn_t lbn; 5595 { 5596 struct newblk *newblk; 5597 struct allocindir *aip; 5598 struct freefrag *freefrag; 5599 struct jnewblk *jnewblk; 5600 5601 if (oldblkno) 5602 freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize, lbn); 5603 else 5604 freefrag = NULL; 5605 ACQUIRE_LOCK(ip->i_ump); 5606 if (newblk_lookup(UFSTOVFS(ip->i_ump), newblkno, 0, &newblk) == 0) 5607 panic("new_allocindir: lost block"); 5608 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 5609 ("newallocindir: newblk already initialized")); 5610 WORKITEM_REASSIGN(newblk, D_ALLOCINDIR); 5611 newblk->nb_freefrag = freefrag; 5612 aip = (struct allocindir *)newblk; 5613 aip->ai_offset = ptrno; 5614 aip->ai_oldblkno = oldblkno; 5615 aip->ai_lbn = lbn; 5616 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 5617 jnewblk->jn_ino = ip->i_number; 5618 jnewblk->jn_lbn = lbn; 5619 add_to_journal(&jnewblk->jn_list); 5620 } 5621 if (freefrag && freefrag->ff_jdep != NULL && 5622 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 5623 add_to_journal(freefrag->ff_jdep); 5624 return (aip); 5625 } 5626 5627 /* 5628 * Called just before setting an indirect block pointer 5629 * to a newly allocated file page. 5630 */ 5631 void 5632 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 5633 struct inode *ip; /* inode for file being extended */ 5634 ufs_lbn_t lbn; /* allocated block number within file */ 5635 struct buf *bp; /* buffer with indirect blk referencing page */ 5636 int ptrno; /* offset of pointer in indirect block */ 5637 ufs2_daddr_t newblkno; /* disk block number being added */ 5638 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 5639 struct buf *nbp; /* buffer holding allocated page */ 5640 { 5641 struct inodedep *inodedep; 5642 struct freefrag *freefrag; 5643 struct allocindir *aip; 5644 struct pagedep *pagedep; 5645 struct mount *mp; 5646 int dflags; 5647 5648 mp = UFSTOVFS(ip->i_ump); 5649 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5650 ("softdep_setup_allocindir_page called on non-softdep filesystem")); 5651 KASSERT(lbn == nbp->b_lblkno, 5652 ("softdep_setup_allocindir_page: lbn %jd != lblkno %jd", 5653 lbn, bp->b_lblkno)); 5654 CTR4(KTR_SUJ, 5655 "softdep_setup_allocindir_page: ino %d blkno %jd oldblkno %jd " 5656 "lbn %jd", ip->i_number, newblkno, oldblkno, lbn); 5657 ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page"); 5658 aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn); 5659 dflags = DEPALLOC; 5660 if (IS_SNAPSHOT(ip)) 5661 dflags |= NODELAY; 5662 (void) inodedep_lookup(mp, ip->i_number, dflags, &inodedep); 5663 /* 5664 * If we are allocating a directory page, then we must 5665 * allocate an associated pagedep to track additions and 5666 * deletions. 5667 */ 5668 if ((ip->i_mode & IFMT) == IFDIR) 5669 pagedep_lookup(mp, nbp, ip->i_number, lbn, DEPALLOC, &pagedep); 5670 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list); 5671 freefrag = setup_allocindir_phase2(bp, ip, inodedep, aip, lbn); 5672 FREE_LOCK(ip->i_ump); 5673 if (freefrag) 5674 handle_workitem_freefrag(freefrag); 5675 } 5676 5677 /* 5678 * Called just before setting an indirect block pointer to a 5679 * newly allocated indirect block. 5680 */ 5681 void 5682 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 5683 struct buf *nbp; /* newly allocated indirect block */ 5684 struct inode *ip; /* inode for file being extended */ 5685 struct buf *bp; /* indirect block referencing allocated block */ 5686 int ptrno; /* offset of pointer in indirect block */ 5687 ufs2_daddr_t newblkno; /* disk block number being added */ 5688 { 5689 struct inodedep *inodedep; 5690 struct allocindir *aip; 5691 ufs_lbn_t lbn; 5692 int dflags; 5693 5694 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0, 5695 ("softdep_setup_allocindir_meta called on non-softdep filesystem")); 5696 CTR3(KTR_SUJ, 5697 "softdep_setup_allocindir_meta: ino %d blkno %jd ptrno %d", 5698 ip->i_number, newblkno, ptrno); 5699 lbn = nbp->b_lblkno; 5700 ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta"); 5701 aip = newallocindir(ip, ptrno, newblkno, 0, lbn); 5702 dflags = DEPALLOC; 5703 if (IS_SNAPSHOT(ip)) 5704 dflags |= NODELAY; 5705 inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, dflags, &inodedep); 5706 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list); 5707 if (setup_allocindir_phase2(bp, ip, inodedep, aip, lbn)) 5708 panic("softdep_setup_allocindir_meta: Block already existed"); 5709 FREE_LOCK(ip->i_ump); 5710 } 5711 5712 static void 5713 indirdep_complete(indirdep) 5714 struct indirdep *indirdep; 5715 { 5716 struct allocindir *aip; 5717 5718 LIST_REMOVE(indirdep, ir_next); 5719 indirdep->ir_state |= DEPCOMPLETE; 5720 5721 while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) { 5722 LIST_REMOVE(aip, ai_next); 5723 free_newblk(&aip->ai_block); 5724 } 5725 /* 5726 * If this indirdep is not attached to a buf it was simply waiting 5727 * on completion to clear completehd. free_indirdep() asserts 5728 * that nothing is dangling. 5729 */ 5730 if ((indirdep->ir_state & ONWORKLIST) == 0) 5731 free_indirdep(indirdep); 5732 } 5733 5734 static struct indirdep * 5735 indirdep_lookup(mp, ip, bp) 5736 struct mount *mp; 5737 struct inode *ip; 5738 struct buf *bp; 5739 { 5740 struct indirdep *indirdep, *newindirdep; 5741 struct newblk *newblk; 5742 struct ufsmount *ump; 5743 struct worklist *wk; 5744 struct fs *fs; 5745 ufs2_daddr_t blkno; 5746 5747 ump = VFSTOUFS(mp); 5748 LOCK_OWNED(ump); 5749 indirdep = NULL; 5750 newindirdep = NULL; 5751 fs = ip->i_fs; 5752 for (;;) { 5753 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 5754 if (wk->wk_type != D_INDIRDEP) 5755 continue; 5756 indirdep = WK_INDIRDEP(wk); 5757 break; 5758 } 5759 /* Found on the buffer worklist, no new structure to free. */ 5760 if (indirdep != NULL && newindirdep == NULL) 5761 return (indirdep); 5762 if (indirdep != NULL && newindirdep != NULL) 5763 panic("indirdep_lookup: simultaneous create"); 5764 /* None found on the buffer and a new structure is ready. */ 5765 if (indirdep == NULL && newindirdep != NULL) 5766 break; 5767 /* None found and no new structure available. */ 5768 FREE_LOCK(ump); 5769 newindirdep = malloc(sizeof(struct indirdep), 5770 M_INDIRDEP, M_SOFTDEP_FLAGS); 5771 workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp); 5772 newindirdep->ir_state = ATTACHED; 5773 if (ip->i_ump->um_fstype == UFS1) 5774 newindirdep->ir_state |= UFS1FMT; 5775 TAILQ_INIT(&newindirdep->ir_trunc); 5776 newindirdep->ir_saveddata = NULL; 5777 LIST_INIT(&newindirdep->ir_deplisthd); 5778 LIST_INIT(&newindirdep->ir_donehd); 5779 LIST_INIT(&newindirdep->ir_writehd); 5780 LIST_INIT(&newindirdep->ir_completehd); 5781 if (bp->b_blkno == bp->b_lblkno) { 5782 ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp, 5783 NULL, NULL); 5784 bp->b_blkno = blkno; 5785 } 5786 newindirdep->ir_freeblks = NULL; 5787 newindirdep->ir_savebp = 5788 getblk(ip->i_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0); 5789 newindirdep->ir_bp = bp; 5790 BUF_KERNPROC(newindirdep->ir_savebp); 5791 bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount); 5792 ACQUIRE_LOCK(ump); 5793 } 5794 indirdep = newindirdep; 5795 WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list); 5796 /* 5797 * If the block is not yet allocated we don't set DEPCOMPLETE so 5798 * that we don't free dependencies until the pointers are valid. 5799 * This could search b_dep for D_ALLOCDIRECT/D_ALLOCINDIR rather 5800 * than using the hash. 5801 */ 5802 if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)) 5803 LIST_INSERT_HEAD(&newblk->nb_indirdeps, indirdep, ir_next); 5804 else 5805 indirdep->ir_state |= DEPCOMPLETE; 5806 return (indirdep); 5807 } 5808 5809 /* 5810 * Called to finish the allocation of the "aip" allocated 5811 * by one of the two routines above. 5812 */ 5813 static struct freefrag * 5814 setup_allocindir_phase2(bp, ip, inodedep, aip, lbn) 5815 struct buf *bp; /* in-memory copy of the indirect block */ 5816 struct inode *ip; /* inode for file being extended */ 5817 struct inodedep *inodedep; /* Inodedep for ip */ 5818 struct allocindir *aip; /* allocindir allocated by the above routines */ 5819 ufs_lbn_t lbn; /* Logical block number for this block. */ 5820 { 5821 struct fs *fs; 5822 struct indirdep *indirdep; 5823 struct allocindir *oldaip; 5824 struct freefrag *freefrag; 5825 struct mount *mp; 5826 5827 LOCK_OWNED(ip->i_ump); 5828 mp = UFSTOVFS(ip->i_ump); 5829 fs = ip->i_fs; 5830 if (bp->b_lblkno >= 0) 5831 panic("setup_allocindir_phase2: not indir blk"); 5832 KASSERT(aip->ai_offset >= 0 && aip->ai_offset < NINDIR(fs), 5833 ("setup_allocindir_phase2: Bad offset %d", aip->ai_offset)); 5834 indirdep = indirdep_lookup(mp, ip, bp); 5835 KASSERT(indirdep->ir_savebp != NULL, 5836 ("setup_allocindir_phase2 NULL ir_savebp")); 5837 aip->ai_indirdep = indirdep; 5838 /* 5839 * Check for an unwritten dependency for this indirect offset. If 5840 * there is, merge the old dependency into the new one. This happens 5841 * as a result of reallocblk only. 5842 */ 5843 freefrag = NULL; 5844 if (aip->ai_oldblkno != 0) { 5845 LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) { 5846 if (oldaip->ai_offset == aip->ai_offset) { 5847 freefrag = allocindir_merge(aip, oldaip); 5848 goto done; 5849 } 5850 } 5851 LIST_FOREACH(oldaip, &indirdep->ir_donehd, ai_next) { 5852 if (oldaip->ai_offset == aip->ai_offset) { 5853 freefrag = allocindir_merge(aip, oldaip); 5854 goto done; 5855 } 5856 } 5857 } 5858 done: 5859 LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next); 5860 return (freefrag); 5861 } 5862 5863 /* 5864 * Merge two allocindirs which refer to the same block. Move newblock 5865 * dependencies and setup the freefrags appropriately. 5866 */ 5867 static struct freefrag * 5868 allocindir_merge(aip, oldaip) 5869 struct allocindir *aip; 5870 struct allocindir *oldaip; 5871 { 5872 struct freefrag *freefrag; 5873 struct worklist *wk; 5874 5875 if (oldaip->ai_newblkno != aip->ai_oldblkno) 5876 panic("allocindir_merge: blkno"); 5877 aip->ai_oldblkno = oldaip->ai_oldblkno; 5878 freefrag = aip->ai_freefrag; 5879 aip->ai_freefrag = oldaip->ai_freefrag; 5880 oldaip->ai_freefrag = NULL; 5881 KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag")); 5882 /* 5883 * If we are tracking a new directory-block allocation, 5884 * move it from the old allocindir to the new allocindir. 5885 */ 5886 if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) { 5887 WORKLIST_REMOVE(wk); 5888 if (!LIST_EMPTY(&oldaip->ai_newdirblk)) 5889 panic("allocindir_merge: extra newdirblk"); 5890 WORKLIST_INSERT(&aip->ai_newdirblk, wk); 5891 } 5892 /* 5893 * We can skip journaling for this freefrag and just complete 5894 * any pending journal work for the allocindir that is being 5895 * removed after the freefrag completes. 5896 */ 5897 if (freefrag->ff_jdep) 5898 cancel_jfreefrag(WK_JFREEFRAG(freefrag->ff_jdep)); 5899 LIST_REMOVE(oldaip, ai_next); 5900 freefrag->ff_jdep = (struct worklist *)cancel_newblk(&oldaip->ai_block, 5901 &freefrag->ff_list, &freefrag->ff_jwork); 5902 free_newblk(&oldaip->ai_block); 5903 5904 return (freefrag); 5905 } 5906 5907 static inline void 5908 setup_freedirect(freeblks, ip, i, needj) 5909 struct freeblks *freeblks; 5910 struct inode *ip; 5911 int i; 5912 int needj; 5913 { 5914 ufs2_daddr_t blkno; 5915 int frags; 5916 5917 blkno = DIP(ip, i_db[i]); 5918 if (blkno == 0) 5919 return; 5920 DIP_SET(ip, i_db[i], 0); 5921 frags = sblksize(ip->i_fs, ip->i_size, i); 5922 frags = numfrags(ip->i_fs, frags); 5923 newfreework(ip->i_ump, freeblks, NULL, i, blkno, frags, 0, needj); 5924 } 5925 5926 static inline void 5927 setup_freeext(freeblks, ip, i, needj) 5928 struct freeblks *freeblks; 5929 struct inode *ip; 5930 int i; 5931 int needj; 5932 { 5933 ufs2_daddr_t blkno; 5934 int frags; 5935 5936 blkno = ip->i_din2->di_extb[i]; 5937 if (blkno == 0) 5938 return; 5939 ip->i_din2->di_extb[i] = 0; 5940 frags = sblksize(ip->i_fs, ip->i_din2->di_extsize, i); 5941 frags = numfrags(ip->i_fs, frags); 5942 newfreework(ip->i_ump, freeblks, NULL, -1 - i, blkno, frags, 0, needj); 5943 } 5944 5945 static inline void 5946 setup_freeindir(freeblks, ip, i, lbn, needj) 5947 struct freeblks *freeblks; 5948 struct inode *ip; 5949 int i; 5950 ufs_lbn_t lbn; 5951 int needj; 5952 { 5953 ufs2_daddr_t blkno; 5954 5955 blkno = DIP(ip, i_ib[i]); 5956 if (blkno == 0) 5957 return; 5958 DIP_SET(ip, i_ib[i], 0); 5959 newfreework(ip->i_ump, freeblks, NULL, lbn, blkno, ip->i_fs->fs_frag, 5960 0, needj); 5961 } 5962 5963 static inline struct freeblks * 5964 newfreeblks(mp, ip) 5965 struct mount *mp; 5966 struct inode *ip; 5967 { 5968 struct freeblks *freeblks; 5969 5970 freeblks = malloc(sizeof(struct freeblks), 5971 M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO); 5972 workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp); 5973 LIST_INIT(&freeblks->fb_jblkdephd); 5974 LIST_INIT(&freeblks->fb_jwork); 5975 freeblks->fb_ref = 0; 5976 freeblks->fb_cgwait = 0; 5977 freeblks->fb_state = ATTACHED; 5978 freeblks->fb_uid = ip->i_uid; 5979 freeblks->fb_inum = ip->i_number; 5980 freeblks->fb_vtype = ITOV(ip)->v_type; 5981 freeblks->fb_modrev = DIP(ip, i_modrev); 5982 freeblks->fb_devvp = ip->i_devvp; 5983 freeblks->fb_chkcnt = 0; 5984 freeblks->fb_len = 0; 5985 5986 return (freeblks); 5987 } 5988 5989 static void 5990 trunc_indirdep(indirdep, freeblks, bp, off) 5991 struct indirdep *indirdep; 5992 struct freeblks *freeblks; 5993 struct buf *bp; 5994 int off; 5995 { 5996 struct allocindir *aip, *aipn; 5997 5998 /* 5999 * The first set of allocindirs won't be in savedbp. 6000 */ 6001 LIST_FOREACH_SAFE(aip, &indirdep->ir_deplisthd, ai_next, aipn) 6002 if (aip->ai_offset > off) 6003 cancel_allocindir(aip, bp, freeblks, 1); 6004 LIST_FOREACH_SAFE(aip, &indirdep->ir_donehd, ai_next, aipn) 6005 if (aip->ai_offset > off) 6006 cancel_allocindir(aip, bp, freeblks, 1); 6007 /* 6008 * These will exist in savedbp. 6009 */ 6010 LIST_FOREACH_SAFE(aip, &indirdep->ir_writehd, ai_next, aipn) 6011 if (aip->ai_offset > off) 6012 cancel_allocindir(aip, NULL, freeblks, 0); 6013 LIST_FOREACH_SAFE(aip, &indirdep->ir_completehd, ai_next, aipn) 6014 if (aip->ai_offset > off) 6015 cancel_allocindir(aip, NULL, freeblks, 0); 6016 } 6017 6018 /* 6019 * Follow the chain of indirects down to lastlbn creating a freework 6020 * structure for each. This will be used to start indir_trunc() at 6021 * the right offset and create the journal records for the parrtial 6022 * truncation. A second step will handle the truncated dependencies. 6023 */ 6024 static int 6025 setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno) 6026 struct freeblks *freeblks; 6027 struct inode *ip; 6028 ufs_lbn_t lbn; 6029 ufs_lbn_t lastlbn; 6030 ufs2_daddr_t blkno; 6031 { 6032 struct indirdep *indirdep; 6033 struct indirdep *indirn; 6034 struct freework *freework; 6035 struct newblk *newblk; 6036 struct mount *mp; 6037 struct buf *bp; 6038 uint8_t *start; 6039 uint8_t *end; 6040 ufs_lbn_t lbnadd; 6041 int level; 6042 int error; 6043 int off; 6044 6045 6046 freework = NULL; 6047 if (blkno == 0) 6048 return (0); 6049 mp = freeblks->fb_list.wk_mp; 6050 bp = getblk(ITOV(ip), lbn, mp->mnt_stat.f_iosize, 0, 0, 0); 6051 if ((bp->b_flags & B_CACHE) == 0) { 6052 bp->b_blkno = blkptrtodb(VFSTOUFS(mp), blkno); 6053 bp->b_iocmd = BIO_READ; 6054 bp->b_flags &= ~B_INVAL; 6055 bp->b_ioflags &= ~BIO_ERROR; 6056 vfs_busy_pages(bp, 0); 6057 bp->b_iooffset = dbtob(bp->b_blkno); 6058 bstrategy(bp); 6059 curthread->td_ru.ru_inblock++; 6060 error = bufwait(bp); 6061 if (error) { 6062 brelse(bp); 6063 return (error); 6064 } 6065 } 6066 level = lbn_level(lbn); 6067 lbnadd = lbn_offset(ip->i_fs, level); 6068 /* 6069 * Compute the offset of the last block we want to keep. Store 6070 * in the freework the first block we want to completely free. 6071 */ 6072 off = (lastlbn - -(lbn + level)) / lbnadd; 6073 if (off + 1 == NINDIR(ip->i_fs)) 6074 goto nowork; 6075 freework = newfreework(ip->i_ump, freeblks, NULL, lbn, blkno, 0, off+1, 6076 0); 6077 /* 6078 * Link the freework into the indirdep. This will prevent any new 6079 * allocations from proceeding until we are finished with the 6080 * truncate and the block is written. 6081 */ 6082 ACQUIRE_LOCK(ip->i_ump); 6083 indirdep = indirdep_lookup(mp, ip, bp); 6084 if (indirdep->ir_freeblks) 6085 panic("setup_trunc_indir: indirdep already truncated."); 6086 TAILQ_INSERT_TAIL(&indirdep->ir_trunc, freework, fw_next); 6087 freework->fw_indir = indirdep; 6088 /* 6089 * Cancel any allocindirs that will not make it to disk. 6090 * We have to do this for all copies of the indirdep that 6091 * live on this newblk. 6092 */ 6093 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 6094 newblk_lookup(mp, dbtofsb(ip->i_fs, bp->b_blkno), 0, &newblk); 6095 LIST_FOREACH(indirn, &newblk->nb_indirdeps, ir_next) 6096 trunc_indirdep(indirn, freeblks, bp, off); 6097 } else 6098 trunc_indirdep(indirdep, freeblks, bp, off); 6099 FREE_LOCK(ip->i_ump); 6100 /* 6101 * Creation is protected by the buf lock. The saveddata is only 6102 * needed if a full truncation follows a partial truncation but it 6103 * is difficult to allocate in that case so we fetch it anyway. 6104 */ 6105 if (indirdep->ir_saveddata == NULL) 6106 indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP, 6107 M_SOFTDEP_FLAGS); 6108 nowork: 6109 /* Fetch the blkno of the child and the zero start offset. */ 6110 if (ip->i_ump->um_fstype == UFS1) { 6111 blkno = ((ufs1_daddr_t *)bp->b_data)[off]; 6112 start = (uint8_t *)&((ufs1_daddr_t *)bp->b_data)[off+1]; 6113 } else { 6114 blkno = ((ufs2_daddr_t *)bp->b_data)[off]; 6115 start = (uint8_t *)&((ufs2_daddr_t *)bp->b_data)[off+1]; 6116 } 6117 if (freework) { 6118 /* Zero the truncated pointers. */ 6119 end = bp->b_data + bp->b_bcount; 6120 bzero(start, end - start); 6121 bdwrite(bp); 6122 } else 6123 bqrelse(bp); 6124 if (level == 0) 6125 return (0); 6126 lbn++; /* adjust level */ 6127 lbn -= (off * lbnadd); 6128 return setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno); 6129 } 6130 6131 /* 6132 * Complete the partial truncation of an indirect block setup by 6133 * setup_trunc_indir(). This zeros the truncated pointers in the saved 6134 * copy and writes them to disk before the freeblks is allowed to complete. 6135 */ 6136 static void 6137 complete_trunc_indir(freework) 6138 struct freework *freework; 6139 { 6140 struct freework *fwn; 6141 struct indirdep *indirdep; 6142 struct ufsmount *ump; 6143 struct buf *bp; 6144 uintptr_t start; 6145 int count; 6146 6147 ump = VFSTOUFS(freework->fw_list.wk_mp); 6148 LOCK_OWNED(ump); 6149 indirdep = freework->fw_indir; 6150 for (;;) { 6151 bp = indirdep->ir_bp; 6152 /* See if the block was discarded. */ 6153 if (bp == NULL) 6154 break; 6155 /* Inline part of getdirtybuf(). We dont want bremfree. */ 6156 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0) 6157 break; 6158 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 6159 LOCK_PTR(ump)) == 0) 6160 BUF_UNLOCK(bp); 6161 ACQUIRE_LOCK(ump); 6162 } 6163 freework->fw_state |= DEPCOMPLETE; 6164 TAILQ_REMOVE(&indirdep->ir_trunc, freework, fw_next); 6165 /* 6166 * Zero the pointers in the saved copy. 6167 */ 6168 if (indirdep->ir_state & UFS1FMT) 6169 start = sizeof(ufs1_daddr_t); 6170 else 6171 start = sizeof(ufs2_daddr_t); 6172 start *= freework->fw_start; 6173 count = indirdep->ir_savebp->b_bcount - start; 6174 start += (uintptr_t)indirdep->ir_savebp->b_data; 6175 bzero((char *)start, count); 6176 /* 6177 * We need to start the next truncation in the list if it has not 6178 * been started yet. 6179 */ 6180 fwn = TAILQ_FIRST(&indirdep->ir_trunc); 6181 if (fwn != NULL) { 6182 if (fwn->fw_freeblks == indirdep->ir_freeblks) 6183 TAILQ_REMOVE(&indirdep->ir_trunc, fwn, fw_next); 6184 if ((fwn->fw_state & ONWORKLIST) == 0) 6185 freework_enqueue(fwn); 6186 } 6187 /* 6188 * If bp is NULL the block was fully truncated, restore 6189 * the saved block list otherwise free it if it is no 6190 * longer needed. 6191 */ 6192 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 6193 if (bp == NULL) 6194 bcopy(indirdep->ir_saveddata, 6195 indirdep->ir_savebp->b_data, 6196 indirdep->ir_savebp->b_bcount); 6197 free(indirdep->ir_saveddata, M_INDIRDEP); 6198 indirdep->ir_saveddata = NULL; 6199 } 6200 /* 6201 * When bp is NULL there is a full truncation pending. We 6202 * must wait for this full truncation to be journaled before 6203 * we can release this freework because the disk pointers will 6204 * never be written as zero. 6205 */ 6206 if (bp == NULL) { 6207 if (LIST_EMPTY(&indirdep->ir_freeblks->fb_jblkdephd)) 6208 handle_written_freework(freework); 6209 else 6210 WORKLIST_INSERT(&indirdep->ir_freeblks->fb_freeworkhd, 6211 &freework->fw_list); 6212 } else { 6213 /* Complete when the real copy is written. */ 6214 WORKLIST_INSERT(&bp->b_dep, &freework->fw_list); 6215 BUF_UNLOCK(bp); 6216 } 6217 } 6218 6219 /* 6220 * Calculate the number of blocks we are going to release where datablocks 6221 * is the current total and length is the new file size. 6222 */ 6223 static ufs2_daddr_t 6224 blkcount(fs, datablocks, length) 6225 struct fs *fs; 6226 ufs2_daddr_t datablocks; 6227 off_t length; 6228 { 6229 off_t totblks, numblks; 6230 6231 totblks = 0; 6232 numblks = howmany(length, fs->fs_bsize); 6233 if (numblks <= NDADDR) { 6234 totblks = howmany(length, fs->fs_fsize); 6235 goto out; 6236 } 6237 totblks = blkstofrags(fs, numblks); 6238 numblks -= NDADDR; 6239 /* 6240 * Count all single, then double, then triple indirects required. 6241 * Subtracting one indirects worth of blocks for each pass 6242 * acknowledges one of each pointed to by the inode. 6243 */ 6244 for (;;) { 6245 totblks += blkstofrags(fs, howmany(numblks, NINDIR(fs))); 6246 numblks -= NINDIR(fs); 6247 if (numblks <= 0) 6248 break; 6249 numblks = howmany(numblks, NINDIR(fs)); 6250 } 6251 out: 6252 totblks = fsbtodb(fs, totblks); 6253 /* 6254 * Handle sparse files. We can't reclaim more blocks than the inode 6255 * references. We will correct it later in handle_complete_freeblks() 6256 * when we know the real count. 6257 */ 6258 if (totblks > datablocks) 6259 return (0); 6260 return (datablocks - totblks); 6261 } 6262 6263 /* 6264 * Handle freeblocks for journaled softupdate filesystems. 6265 * 6266 * Contrary to normal softupdates, we must preserve the block pointers in 6267 * indirects until their subordinates are free. This is to avoid journaling 6268 * every block that is freed which may consume more space than the journal 6269 * itself. The recovery program will see the free block journals at the 6270 * base of the truncated area and traverse them to reclaim space. The 6271 * pointers in the inode may be cleared immediately after the journal 6272 * records are written because each direct and indirect pointer in the 6273 * inode is recorded in a journal. This permits full truncation to proceed 6274 * asynchronously. The write order is journal -> inode -> cgs -> indirects. 6275 * 6276 * The algorithm is as follows: 6277 * 1) Traverse the in-memory state and create journal entries to release 6278 * the relevant blocks and full indirect trees. 6279 * 2) Traverse the indirect block chain adding partial truncation freework 6280 * records to indirects in the path to lastlbn. The freework will 6281 * prevent new allocation dependencies from being satisfied in this 6282 * indirect until the truncation completes. 6283 * 3) Read and lock the inode block, performing an update with the new size 6284 * and pointers. This prevents truncated data from becoming valid on 6285 * disk through step 4. 6286 * 4) Reap unsatisfied dependencies that are beyond the truncated area, 6287 * eliminate journal work for those records that do not require it. 6288 * 5) Schedule the journal records to be written followed by the inode block. 6289 * 6) Allocate any necessary frags for the end of file. 6290 * 7) Zero any partially truncated blocks. 6291 * 6292 * From this truncation proceeds asynchronously using the freework and 6293 * indir_trunc machinery. The file will not be extended again into a 6294 * partially truncated indirect block until all work is completed but 6295 * the normal dependency mechanism ensures that it is rolled back/forward 6296 * as appropriate. Further truncation may occur without delay and is 6297 * serialized in indir_trunc(). 6298 */ 6299 void 6300 softdep_journal_freeblocks(ip, cred, length, flags) 6301 struct inode *ip; /* The inode whose length is to be reduced */ 6302 struct ucred *cred; 6303 off_t length; /* The new length for the file */ 6304 int flags; /* IO_EXT and/or IO_NORMAL */ 6305 { 6306 struct freeblks *freeblks, *fbn; 6307 struct worklist *wk, *wkn; 6308 struct inodedep *inodedep; 6309 struct jblkdep *jblkdep; 6310 struct allocdirect *adp, *adpn; 6311 struct ufsmount *ump; 6312 struct fs *fs; 6313 struct buf *bp; 6314 struct vnode *vp; 6315 struct mount *mp; 6316 ufs2_daddr_t extblocks, datablocks; 6317 ufs_lbn_t tmpval, lbn, lastlbn; 6318 int frags, lastoff, iboff, allocblock, needj, dflags, error, i; 6319 6320 fs = ip->i_fs; 6321 ump = ip->i_ump; 6322 mp = UFSTOVFS(ump); 6323 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 6324 ("softdep_journal_freeblocks called on non-softdep filesystem")); 6325 vp = ITOV(ip); 6326 needj = 1; 6327 iboff = -1; 6328 allocblock = 0; 6329 extblocks = 0; 6330 datablocks = 0; 6331 frags = 0; 6332 freeblks = newfreeblks(mp, ip); 6333 ACQUIRE_LOCK(ump); 6334 /* 6335 * If we're truncating a removed file that will never be written 6336 * we don't need to journal the block frees. The canceled journals 6337 * for the allocations will suffice. 6338 */ 6339 dflags = DEPALLOC; 6340 if (IS_SNAPSHOT(ip)) 6341 dflags |= NODELAY; 6342 inodedep_lookup(mp, ip->i_number, dflags, &inodedep); 6343 if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED && 6344 length == 0) 6345 needj = 0; 6346 CTR3(KTR_SUJ, "softdep_journal_freeblks: ip %d length %ld needj %d", 6347 ip->i_number, length, needj); 6348 FREE_LOCK(ump); 6349 /* 6350 * Calculate the lbn that we are truncating to. This results in -1 6351 * if we're truncating the 0 bytes. So it is the last lbn we want 6352 * to keep, not the first lbn we want to truncate. 6353 */ 6354 lastlbn = lblkno(fs, length + fs->fs_bsize - 1) - 1; 6355 lastoff = blkoff(fs, length); 6356 /* 6357 * Compute frags we are keeping in lastlbn. 0 means all. 6358 */ 6359 if (lastlbn >= 0 && lastlbn < NDADDR) { 6360 frags = fragroundup(fs, lastoff); 6361 /* adp offset of last valid allocdirect. */ 6362 iboff = lastlbn; 6363 } else if (lastlbn > 0) 6364 iboff = NDADDR; 6365 if (fs->fs_magic == FS_UFS2_MAGIC) 6366 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 6367 /* 6368 * Handle normal data blocks and indirects. This section saves 6369 * values used after the inode update to complete frag and indirect 6370 * truncation. 6371 */ 6372 if ((flags & IO_NORMAL) != 0) { 6373 /* 6374 * Handle truncation of whole direct and indirect blocks. 6375 */ 6376 for (i = iboff + 1; i < NDADDR; i++) 6377 setup_freedirect(freeblks, ip, i, needj); 6378 for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR; 6379 i++, lbn += tmpval, tmpval *= NINDIR(fs)) { 6380 /* Release a whole indirect tree. */ 6381 if (lbn > lastlbn) { 6382 setup_freeindir(freeblks, ip, i, -lbn -i, 6383 needj); 6384 continue; 6385 } 6386 iboff = i + NDADDR; 6387 /* 6388 * Traverse partially truncated indirect tree. 6389 */ 6390 if (lbn <= lastlbn && lbn + tmpval - 1 > lastlbn) 6391 setup_trunc_indir(freeblks, ip, -lbn - i, 6392 lastlbn, DIP(ip, i_ib[i])); 6393 } 6394 /* 6395 * Handle partial truncation to a frag boundary. 6396 */ 6397 if (frags) { 6398 ufs2_daddr_t blkno; 6399 long oldfrags; 6400 6401 oldfrags = blksize(fs, ip, lastlbn); 6402 blkno = DIP(ip, i_db[lastlbn]); 6403 if (blkno && oldfrags != frags) { 6404 oldfrags -= frags; 6405 oldfrags = numfrags(ip->i_fs, oldfrags); 6406 blkno += numfrags(ip->i_fs, frags); 6407 newfreework(ump, freeblks, NULL, lastlbn, 6408 blkno, oldfrags, 0, needj); 6409 } else if (blkno == 0) 6410 allocblock = 1; 6411 } 6412 /* 6413 * Add a journal record for partial truncate if we are 6414 * handling indirect blocks. Non-indirects need no extra 6415 * journaling. 6416 */ 6417 if (length != 0 && lastlbn >= NDADDR) { 6418 ip->i_flag |= IN_TRUNCATED; 6419 newjtrunc(freeblks, length, 0); 6420 } 6421 ip->i_size = length; 6422 DIP_SET(ip, i_size, ip->i_size); 6423 datablocks = DIP(ip, i_blocks) - extblocks; 6424 if (length != 0) 6425 datablocks = blkcount(ip->i_fs, datablocks, length); 6426 freeblks->fb_len = length; 6427 } 6428 if ((flags & IO_EXT) != 0) { 6429 for (i = 0; i < NXADDR; i++) 6430 setup_freeext(freeblks, ip, i, needj); 6431 ip->i_din2->di_extsize = 0; 6432 datablocks += extblocks; 6433 } 6434 #ifdef QUOTA 6435 /* Reference the quotas in case the block count is wrong in the end. */ 6436 quotaref(vp, freeblks->fb_quota); 6437 (void) chkdq(ip, -datablocks, NOCRED, 0); 6438 #endif 6439 freeblks->fb_chkcnt = -datablocks; 6440 UFS_LOCK(ump); 6441 fs->fs_pendingblocks += datablocks; 6442 UFS_UNLOCK(ump); 6443 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks); 6444 /* 6445 * Handle truncation of incomplete alloc direct dependencies. We 6446 * hold the inode block locked to prevent incomplete dependencies 6447 * from reaching the disk while we are eliminating those that 6448 * have been truncated. This is a partially inlined ffs_update(). 6449 */ 6450 ufs_itimes(vp); 6451 ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED); 6452 error = bread(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 6453 (int)fs->fs_bsize, cred, &bp); 6454 if (error) { 6455 brelse(bp); 6456 softdep_error("softdep_journal_freeblocks", error); 6457 return; 6458 } 6459 if (bp->b_bufsize == fs->fs_bsize) 6460 bp->b_flags |= B_CLUSTEROK; 6461 softdep_update_inodeblock(ip, bp, 0); 6462 if (ump->um_fstype == UFS1) 6463 *((struct ufs1_dinode *)bp->b_data + 6464 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1; 6465 else 6466 *((struct ufs2_dinode *)bp->b_data + 6467 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2; 6468 ACQUIRE_LOCK(ump); 6469 (void) inodedep_lookup(mp, ip->i_number, dflags, &inodedep); 6470 if ((inodedep->id_state & IOSTARTED) != 0) 6471 panic("softdep_setup_freeblocks: inode busy"); 6472 /* 6473 * Add the freeblks structure to the list of operations that 6474 * must await the zero'ed inode being written to disk. If we 6475 * still have a bitmap dependency (needj), then the inode 6476 * has never been written to disk, so we can process the 6477 * freeblks below once we have deleted the dependencies. 6478 */ 6479 if (needj) 6480 WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list); 6481 else 6482 freeblks->fb_state |= COMPLETE; 6483 if ((flags & IO_NORMAL) != 0) { 6484 TAILQ_FOREACH_SAFE(adp, &inodedep->id_inoupdt, ad_next, adpn) { 6485 if (adp->ad_offset > iboff) 6486 cancel_allocdirect(&inodedep->id_inoupdt, adp, 6487 freeblks); 6488 /* 6489 * Truncate the allocdirect. We could eliminate 6490 * or modify journal records as well. 6491 */ 6492 else if (adp->ad_offset == iboff && frags) 6493 adp->ad_newsize = frags; 6494 } 6495 } 6496 if ((flags & IO_EXT) != 0) 6497 while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0) 6498 cancel_allocdirect(&inodedep->id_extupdt, adp, 6499 freeblks); 6500 /* 6501 * Scan the bufwait list for newblock dependencies that will never 6502 * make it to disk. 6503 */ 6504 LIST_FOREACH_SAFE(wk, &inodedep->id_bufwait, wk_list, wkn) { 6505 if (wk->wk_type != D_ALLOCDIRECT) 6506 continue; 6507 adp = WK_ALLOCDIRECT(wk); 6508 if (((flags & IO_NORMAL) != 0 && (adp->ad_offset > iboff)) || 6509 ((flags & IO_EXT) != 0 && (adp->ad_state & EXTDATA))) { 6510 cancel_jfreeblk(freeblks, adp->ad_newblkno); 6511 cancel_newblk(WK_NEWBLK(wk), NULL, &freeblks->fb_jwork); 6512 WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk); 6513 } 6514 } 6515 /* 6516 * Add journal work. 6517 */ 6518 LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) 6519 add_to_journal(&jblkdep->jb_list); 6520 FREE_LOCK(ump); 6521 bdwrite(bp); 6522 /* 6523 * Truncate dependency structures beyond length. 6524 */ 6525 trunc_dependencies(ip, freeblks, lastlbn, frags, flags); 6526 /* 6527 * This is only set when we need to allocate a fragment because 6528 * none existed at the end of a frag-sized file. It handles only 6529 * allocating a new, zero filled block. 6530 */ 6531 if (allocblock) { 6532 ip->i_size = length - lastoff; 6533 DIP_SET(ip, i_size, ip->i_size); 6534 error = UFS_BALLOC(vp, length - 1, 1, cred, BA_CLRBUF, &bp); 6535 if (error != 0) { 6536 softdep_error("softdep_journal_freeblks", error); 6537 return; 6538 } 6539 ip->i_size = length; 6540 DIP_SET(ip, i_size, length); 6541 ip->i_flag |= IN_CHANGE | IN_UPDATE; 6542 allocbuf(bp, frags); 6543 ffs_update(vp, 0); 6544 bawrite(bp); 6545 } else if (lastoff != 0 && vp->v_type != VDIR) { 6546 int size; 6547 6548 /* 6549 * Zero the end of a truncated frag or block. 6550 */ 6551 size = sblksize(fs, length, lastlbn); 6552 error = bread(vp, lastlbn, size, cred, &bp); 6553 if (error) { 6554 softdep_error("softdep_journal_freeblks", error); 6555 return; 6556 } 6557 bzero((char *)bp->b_data + lastoff, size - lastoff); 6558 bawrite(bp); 6559 6560 } 6561 ACQUIRE_LOCK(ump); 6562 inodedep_lookup(mp, ip->i_number, dflags, &inodedep); 6563 TAILQ_INSERT_TAIL(&inodedep->id_freeblklst, freeblks, fb_next); 6564 freeblks->fb_state |= DEPCOMPLETE | ONDEPLIST; 6565 /* 6566 * We zero earlier truncations so they don't erroneously 6567 * update i_blocks. 6568 */ 6569 if (freeblks->fb_len == 0 && (flags & IO_NORMAL) != 0) 6570 TAILQ_FOREACH(fbn, &inodedep->id_freeblklst, fb_next) 6571 fbn->fb_len = 0; 6572 if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE && 6573 LIST_EMPTY(&freeblks->fb_jblkdephd)) 6574 freeblks->fb_state |= INPROGRESS; 6575 else 6576 freeblks = NULL; 6577 FREE_LOCK(ump); 6578 if (freeblks) 6579 handle_workitem_freeblocks(freeblks, 0); 6580 trunc_pages(ip, length, extblocks, flags); 6581 6582 } 6583 6584 /* 6585 * Flush a JOP_SYNC to the journal. 6586 */ 6587 void 6588 softdep_journal_fsync(ip) 6589 struct inode *ip; 6590 { 6591 struct jfsync *jfsync; 6592 6593 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0, 6594 ("softdep_journal_fsync called on non-softdep filesystem")); 6595 if ((ip->i_flag & IN_TRUNCATED) == 0) 6596 return; 6597 ip->i_flag &= ~IN_TRUNCATED; 6598 jfsync = malloc(sizeof(*jfsync), M_JFSYNC, M_SOFTDEP_FLAGS | M_ZERO); 6599 workitem_alloc(&jfsync->jfs_list, D_JFSYNC, UFSTOVFS(ip->i_ump)); 6600 jfsync->jfs_size = ip->i_size; 6601 jfsync->jfs_ino = ip->i_number; 6602 ACQUIRE_LOCK(ip->i_ump); 6603 add_to_journal(&jfsync->jfs_list); 6604 jwait(&jfsync->jfs_list, MNT_WAIT); 6605 FREE_LOCK(ip->i_ump); 6606 } 6607 6608 /* 6609 * Block de-allocation dependencies. 6610 * 6611 * When blocks are de-allocated, the on-disk pointers must be nullified before 6612 * the blocks are made available for use by other files. (The true 6613 * requirement is that old pointers must be nullified before new on-disk 6614 * pointers are set. We chose this slightly more stringent requirement to 6615 * reduce complexity.) Our implementation handles this dependency by updating 6616 * the inode (or indirect block) appropriately but delaying the actual block 6617 * de-allocation (i.e., freemap and free space count manipulation) until 6618 * after the updated versions reach stable storage. After the disk is 6619 * updated, the blocks can be safely de-allocated whenever it is convenient. 6620 * This implementation handles only the common case of reducing a file's 6621 * length to zero. Other cases are handled by the conventional synchronous 6622 * write approach. 6623 * 6624 * The ffs implementation with which we worked double-checks 6625 * the state of the block pointers and file size as it reduces 6626 * a file's length. Some of this code is replicated here in our 6627 * soft updates implementation. The freeblks->fb_chkcnt field is 6628 * used to transfer a part of this information to the procedure 6629 * that eventually de-allocates the blocks. 6630 * 6631 * This routine should be called from the routine that shortens 6632 * a file's length, before the inode's size or block pointers 6633 * are modified. It will save the block pointer information for 6634 * later release and zero the inode so that the calling routine 6635 * can release it. 6636 */ 6637 void 6638 softdep_setup_freeblocks(ip, length, flags) 6639 struct inode *ip; /* The inode whose length is to be reduced */ 6640 off_t length; /* The new length for the file */ 6641 int flags; /* IO_EXT and/or IO_NORMAL */ 6642 { 6643 struct ufs1_dinode *dp1; 6644 struct ufs2_dinode *dp2; 6645 struct freeblks *freeblks; 6646 struct inodedep *inodedep; 6647 struct allocdirect *adp; 6648 struct ufsmount *ump; 6649 struct buf *bp; 6650 struct fs *fs; 6651 ufs2_daddr_t extblocks, datablocks; 6652 struct mount *mp; 6653 int i, delay, error, dflags; 6654 ufs_lbn_t tmpval; 6655 ufs_lbn_t lbn; 6656 6657 ump = ip->i_ump; 6658 mp = UFSTOVFS(ump); 6659 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 6660 ("softdep_setup_freeblocks called on non-softdep filesystem")); 6661 CTR2(KTR_SUJ, "softdep_setup_freeblks: ip %d length %ld", 6662 ip->i_number, length); 6663 KASSERT(length == 0, ("softdep_setup_freeblocks: non-zero length")); 6664 fs = ip->i_fs; 6665 freeblks = newfreeblks(mp, ip); 6666 extblocks = 0; 6667 datablocks = 0; 6668 if (fs->fs_magic == FS_UFS2_MAGIC) 6669 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 6670 if ((flags & IO_NORMAL) != 0) { 6671 for (i = 0; i < NDADDR; i++) 6672 setup_freedirect(freeblks, ip, i, 0); 6673 for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR; 6674 i++, lbn += tmpval, tmpval *= NINDIR(fs)) 6675 setup_freeindir(freeblks, ip, i, -lbn -i, 0); 6676 ip->i_size = 0; 6677 DIP_SET(ip, i_size, 0); 6678 datablocks = DIP(ip, i_blocks) - extblocks; 6679 } 6680 if ((flags & IO_EXT) != 0) { 6681 for (i = 0; i < NXADDR; i++) 6682 setup_freeext(freeblks, ip, i, 0); 6683 ip->i_din2->di_extsize = 0; 6684 datablocks += extblocks; 6685 } 6686 #ifdef QUOTA 6687 /* Reference the quotas in case the block count is wrong in the end. */ 6688 quotaref(ITOV(ip), freeblks->fb_quota); 6689 (void) chkdq(ip, -datablocks, NOCRED, 0); 6690 #endif 6691 freeblks->fb_chkcnt = -datablocks; 6692 UFS_LOCK(ump); 6693 fs->fs_pendingblocks += datablocks; 6694 UFS_UNLOCK(ump); 6695 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks); 6696 /* 6697 * Push the zero'ed inode to to its disk buffer so that we are free 6698 * to delete its dependencies below. Once the dependencies are gone 6699 * the buffer can be safely released. 6700 */ 6701 if ((error = bread(ip->i_devvp, 6702 fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 6703 (int)fs->fs_bsize, NOCRED, &bp)) != 0) { 6704 brelse(bp); 6705 softdep_error("softdep_setup_freeblocks", error); 6706 } 6707 if (ump->um_fstype == UFS1) { 6708 dp1 = ((struct ufs1_dinode *)bp->b_data + 6709 ino_to_fsbo(fs, ip->i_number)); 6710 ip->i_din1->di_freelink = dp1->di_freelink; 6711 *dp1 = *ip->i_din1; 6712 } else { 6713 dp2 = ((struct ufs2_dinode *)bp->b_data + 6714 ino_to_fsbo(fs, ip->i_number)); 6715 ip->i_din2->di_freelink = dp2->di_freelink; 6716 *dp2 = *ip->i_din2; 6717 } 6718 /* 6719 * Find and eliminate any inode dependencies. 6720 */ 6721 ACQUIRE_LOCK(ump); 6722 dflags = DEPALLOC; 6723 if (IS_SNAPSHOT(ip)) 6724 dflags |= NODELAY; 6725 (void) inodedep_lookup(mp, ip->i_number, dflags, &inodedep); 6726 if ((inodedep->id_state & IOSTARTED) != 0) 6727 panic("softdep_setup_freeblocks: inode busy"); 6728 /* 6729 * Add the freeblks structure to the list of operations that 6730 * must await the zero'ed inode being written to disk. If we 6731 * still have a bitmap dependency (delay == 0), then the inode 6732 * has never been written to disk, so we can process the 6733 * freeblks below once we have deleted the dependencies. 6734 */ 6735 delay = (inodedep->id_state & DEPCOMPLETE); 6736 if (delay) 6737 WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list); 6738 else 6739 freeblks->fb_state |= COMPLETE; 6740 /* 6741 * Because the file length has been truncated to zero, any 6742 * pending block allocation dependency structures associated 6743 * with this inode are obsolete and can simply be de-allocated. 6744 * We must first merge the two dependency lists to get rid of 6745 * any duplicate freefrag structures, then purge the merged list. 6746 * If we still have a bitmap dependency, then the inode has never 6747 * been written to disk, so we can free any fragments without delay. 6748 */ 6749 if (flags & IO_NORMAL) { 6750 merge_inode_lists(&inodedep->id_newinoupdt, 6751 &inodedep->id_inoupdt); 6752 while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != 0) 6753 cancel_allocdirect(&inodedep->id_inoupdt, adp, 6754 freeblks); 6755 } 6756 if (flags & IO_EXT) { 6757 merge_inode_lists(&inodedep->id_newextupdt, 6758 &inodedep->id_extupdt); 6759 while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0) 6760 cancel_allocdirect(&inodedep->id_extupdt, adp, 6761 freeblks); 6762 } 6763 FREE_LOCK(ump); 6764 bdwrite(bp); 6765 trunc_dependencies(ip, freeblks, -1, 0, flags); 6766 ACQUIRE_LOCK(ump); 6767 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) 6768 (void) free_inodedep(inodedep); 6769 freeblks->fb_state |= DEPCOMPLETE; 6770 /* 6771 * If the inode with zeroed block pointers is now on disk 6772 * we can start freeing blocks. 6773 */ 6774 if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE) 6775 freeblks->fb_state |= INPROGRESS; 6776 else 6777 freeblks = NULL; 6778 FREE_LOCK(ump); 6779 if (freeblks) 6780 handle_workitem_freeblocks(freeblks, 0); 6781 trunc_pages(ip, length, extblocks, flags); 6782 } 6783 6784 /* 6785 * Eliminate pages from the page cache that back parts of this inode and 6786 * adjust the vnode pager's idea of our size. This prevents stale data 6787 * from hanging around in the page cache. 6788 */ 6789 static void 6790 trunc_pages(ip, length, extblocks, flags) 6791 struct inode *ip; 6792 off_t length; 6793 ufs2_daddr_t extblocks; 6794 int flags; 6795 { 6796 struct vnode *vp; 6797 struct fs *fs; 6798 ufs_lbn_t lbn; 6799 off_t end, extend; 6800 6801 vp = ITOV(ip); 6802 fs = ip->i_fs; 6803 extend = OFF_TO_IDX(lblktosize(fs, -extblocks)); 6804 if ((flags & IO_EXT) != 0) 6805 vn_pages_remove(vp, extend, 0); 6806 if ((flags & IO_NORMAL) == 0) 6807 return; 6808 BO_LOCK(&vp->v_bufobj); 6809 drain_output(vp); 6810 BO_UNLOCK(&vp->v_bufobj); 6811 /* 6812 * The vnode pager eliminates file pages we eliminate indirects 6813 * below. 6814 */ 6815 vnode_pager_setsize(vp, length); 6816 /* 6817 * Calculate the end based on the last indirect we want to keep. If 6818 * the block extends into indirects we can just use the negative of 6819 * its lbn. Doubles and triples exist at lower numbers so we must 6820 * be careful not to remove those, if they exist. double and triple 6821 * indirect lbns do not overlap with others so it is not important 6822 * to verify how many levels are required. 6823 */ 6824 lbn = lblkno(fs, length); 6825 if (lbn >= NDADDR) { 6826 /* Calculate the virtual lbn of the triple indirect. */ 6827 lbn = -lbn - (NIADDR - 1); 6828 end = OFF_TO_IDX(lblktosize(fs, lbn)); 6829 } else 6830 end = extend; 6831 vn_pages_remove(vp, OFF_TO_IDX(OFF_MAX), end); 6832 } 6833 6834 /* 6835 * See if the buf bp is in the range eliminated by truncation. 6836 */ 6837 static int 6838 trunc_check_buf(bp, blkoffp, lastlbn, lastoff, flags) 6839 struct buf *bp; 6840 int *blkoffp; 6841 ufs_lbn_t lastlbn; 6842 int lastoff; 6843 int flags; 6844 { 6845 ufs_lbn_t lbn; 6846 6847 *blkoffp = 0; 6848 /* Only match ext/normal blocks as appropriate. */ 6849 if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) || 6850 ((flags & IO_NORMAL) == 0 && (bp->b_xflags & BX_ALTDATA) == 0)) 6851 return (0); 6852 /* ALTDATA is always a full truncation. */ 6853 if ((bp->b_xflags & BX_ALTDATA) != 0) 6854 return (1); 6855 /* -1 is full truncation. */ 6856 if (lastlbn == -1) 6857 return (1); 6858 /* 6859 * If this is a partial truncate we only want those 6860 * blocks and indirect blocks that cover the range 6861 * we're after. 6862 */ 6863 lbn = bp->b_lblkno; 6864 if (lbn < 0) 6865 lbn = -(lbn + lbn_level(lbn)); 6866 if (lbn < lastlbn) 6867 return (0); 6868 /* Here we only truncate lblkno if it's partial. */ 6869 if (lbn == lastlbn) { 6870 if (lastoff == 0) 6871 return (0); 6872 *blkoffp = lastoff; 6873 } 6874 return (1); 6875 } 6876 6877 /* 6878 * Eliminate any dependencies that exist in memory beyond lblkno:off 6879 */ 6880 static void 6881 trunc_dependencies(ip, freeblks, lastlbn, lastoff, flags) 6882 struct inode *ip; 6883 struct freeblks *freeblks; 6884 ufs_lbn_t lastlbn; 6885 int lastoff; 6886 int flags; 6887 { 6888 struct bufobj *bo; 6889 struct vnode *vp; 6890 struct buf *bp; 6891 struct fs *fs; 6892 int blkoff; 6893 6894 /* 6895 * We must wait for any I/O in progress to finish so that 6896 * all potential buffers on the dirty list will be visible. 6897 * Once they are all there, walk the list and get rid of 6898 * any dependencies. 6899 */ 6900 fs = ip->i_fs; 6901 vp = ITOV(ip); 6902 bo = &vp->v_bufobj; 6903 BO_LOCK(bo); 6904 drain_output(vp); 6905 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) 6906 bp->b_vflags &= ~BV_SCANNED; 6907 restart: 6908 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) { 6909 if (bp->b_vflags & BV_SCANNED) 6910 continue; 6911 if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) { 6912 bp->b_vflags |= BV_SCANNED; 6913 continue; 6914 } 6915 KASSERT(bp->b_bufobj == bo, ("Wrong object in buffer")); 6916 if ((bp = getdirtybuf(bp, BO_LOCKPTR(bo), MNT_WAIT)) == NULL) 6917 goto restart; 6918 BO_UNLOCK(bo); 6919 if (deallocate_dependencies(bp, freeblks, blkoff)) 6920 bqrelse(bp); 6921 else 6922 brelse(bp); 6923 BO_LOCK(bo); 6924 goto restart; 6925 } 6926 /* 6927 * Now do the work of vtruncbuf while also matching indirect blocks. 6928 */ 6929 TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) 6930 bp->b_vflags &= ~BV_SCANNED; 6931 cleanrestart: 6932 TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) { 6933 if (bp->b_vflags & BV_SCANNED) 6934 continue; 6935 if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) { 6936 bp->b_vflags |= BV_SCANNED; 6937 continue; 6938 } 6939 if (BUF_LOCK(bp, 6940 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 6941 BO_LOCKPTR(bo)) == ENOLCK) { 6942 BO_LOCK(bo); 6943 goto cleanrestart; 6944 } 6945 bp->b_vflags |= BV_SCANNED; 6946 bremfree(bp); 6947 if (blkoff != 0) { 6948 allocbuf(bp, blkoff); 6949 bqrelse(bp); 6950 } else { 6951 bp->b_flags |= B_INVAL | B_NOCACHE | B_RELBUF; 6952 brelse(bp); 6953 } 6954 BO_LOCK(bo); 6955 goto cleanrestart; 6956 } 6957 drain_output(vp); 6958 BO_UNLOCK(bo); 6959 } 6960 6961 static int 6962 cancel_pagedep(pagedep, freeblks, blkoff) 6963 struct pagedep *pagedep; 6964 struct freeblks *freeblks; 6965 int blkoff; 6966 { 6967 struct jremref *jremref; 6968 struct jmvref *jmvref; 6969 struct dirrem *dirrem, *tmp; 6970 int i; 6971 6972 /* 6973 * Copy any directory remove dependencies to the list 6974 * to be processed after the freeblks proceeds. If 6975 * directory entry never made it to disk they 6976 * can be dumped directly onto the work list. 6977 */ 6978 LIST_FOREACH_SAFE(dirrem, &pagedep->pd_dirremhd, dm_next, tmp) { 6979 /* Skip this directory removal if it is intended to remain. */ 6980 if (dirrem->dm_offset < blkoff) 6981 continue; 6982 /* 6983 * If there are any dirrems we wait for the journal write 6984 * to complete and then restart the buf scan as the lock 6985 * has been dropped. 6986 */ 6987 while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) { 6988 jwait(&jremref->jr_list, MNT_WAIT); 6989 return (ERESTART); 6990 } 6991 LIST_REMOVE(dirrem, dm_next); 6992 dirrem->dm_dirinum = pagedep->pd_ino; 6993 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &dirrem->dm_list); 6994 } 6995 while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) { 6996 jwait(&jmvref->jm_list, MNT_WAIT); 6997 return (ERESTART); 6998 } 6999 /* 7000 * When we're partially truncating a pagedep we just want to flush 7001 * journal entries and return. There can not be any adds in the 7002 * truncated portion of the directory and newblk must remain if 7003 * part of the block remains. 7004 */ 7005 if (blkoff != 0) { 7006 struct diradd *dap; 7007 7008 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) 7009 if (dap->da_offset > blkoff) 7010 panic("cancel_pagedep: diradd %p off %d > %d", 7011 dap, dap->da_offset, blkoff); 7012 for (i = 0; i < DAHASHSZ; i++) 7013 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) 7014 if (dap->da_offset > blkoff) 7015 panic("cancel_pagedep: diradd %p off %d > %d", 7016 dap, dap->da_offset, blkoff); 7017 return (0); 7018 } 7019 /* 7020 * There should be no directory add dependencies present 7021 * as the directory could not be truncated until all 7022 * children were removed. 7023 */ 7024 KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL, 7025 ("deallocate_dependencies: pendinghd != NULL")); 7026 for (i = 0; i < DAHASHSZ; i++) 7027 KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL, 7028 ("deallocate_dependencies: diraddhd != NULL")); 7029 if ((pagedep->pd_state & NEWBLOCK) != 0) 7030 free_newdirblk(pagedep->pd_newdirblk); 7031 if (free_pagedep(pagedep) == 0) 7032 panic("Failed to free pagedep %p", pagedep); 7033 return (0); 7034 } 7035 7036 /* 7037 * Reclaim any dependency structures from a buffer that is about to 7038 * be reallocated to a new vnode. The buffer must be locked, thus, 7039 * no I/O completion operations can occur while we are manipulating 7040 * its associated dependencies. The mutex is held so that other I/O's 7041 * associated with related dependencies do not occur. 7042 */ 7043 static int 7044 deallocate_dependencies(bp, freeblks, off) 7045 struct buf *bp; 7046 struct freeblks *freeblks; 7047 int off; 7048 { 7049 struct indirdep *indirdep; 7050 struct pagedep *pagedep; 7051 struct allocdirect *adp; 7052 struct worklist *wk, *wkn; 7053 struct ufsmount *ump; 7054 7055 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL) 7056 goto done; 7057 ump = VFSTOUFS(wk->wk_mp); 7058 ACQUIRE_LOCK(ump); 7059 LIST_FOREACH_SAFE(wk, &bp->b_dep, wk_list, wkn) { 7060 switch (wk->wk_type) { 7061 case D_INDIRDEP: 7062 indirdep = WK_INDIRDEP(wk); 7063 if (bp->b_lblkno >= 0 || 7064 bp->b_blkno != indirdep->ir_savebp->b_lblkno) 7065 panic("deallocate_dependencies: not indir"); 7066 cancel_indirdep(indirdep, bp, freeblks); 7067 continue; 7068 7069 case D_PAGEDEP: 7070 pagedep = WK_PAGEDEP(wk); 7071 if (cancel_pagedep(pagedep, freeblks, off)) { 7072 FREE_LOCK(ump); 7073 return (ERESTART); 7074 } 7075 continue; 7076 7077 case D_ALLOCINDIR: 7078 /* 7079 * Simply remove the allocindir, we'll find it via 7080 * the indirdep where we can clear pointers if 7081 * needed. 7082 */ 7083 WORKLIST_REMOVE(wk); 7084 continue; 7085 7086 case D_FREEWORK: 7087 /* 7088 * A truncation is waiting for the zero'd pointers 7089 * to be written. It can be freed when the freeblks 7090 * is journaled. 7091 */ 7092 WORKLIST_REMOVE(wk); 7093 wk->wk_state |= ONDEPLIST; 7094 WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk); 7095 break; 7096 7097 case D_ALLOCDIRECT: 7098 adp = WK_ALLOCDIRECT(wk); 7099 if (off != 0) 7100 continue; 7101 /* FALLTHROUGH */ 7102 default: 7103 panic("deallocate_dependencies: Unexpected type %s", 7104 TYPENAME(wk->wk_type)); 7105 /* NOTREACHED */ 7106 } 7107 } 7108 FREE_LOCK(ump); 7109 done: 7110 /* 7111 * Don't throw away this buf, we were partially truncating and 7112 * some deps may always remain. 7113 */ 7114 if (off) { 7115 allocbuf(bp, off); 7116 bp->b_vflags |= BV_SCANNED; 7117 return (EBUSY); 7118 } 7119 bp->b_flags |= B_INVAL | B_NOCACHE; 7120 7121 return (0); 7122 } 7123 7124 /* 7125 * An allocdirect is being canceled due to a truncate. We must make sure 7126 * the journal entry is released in concert with the blkfree that releases 7127 * the storage. Completed journal entries must not be released until the 7128 * space is no longer pointed to by the inode or in the bitmap. 7129 */ 7130 static void 7131 cancel_allocdirect(adphead, adp, freeblks) 7132 struct allocdirectlst *adphead; 7133 struct allocdirect *adp; 7134 struct freeblks *freeblks; 7135 { 7136 struct freework *freework; 7137 struct newblk *newblk; 7138 struct worklist *wk; 7139 7140 TAILQ_REMOVE(adphead, adp, ad_next); 7141 newblk = (struct newblk *)adp; 7142 freework = NULL; 7143 /* 7144 * Find the correct freework structure. 7145 */ 7146 LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) { 7147 if (wk->wk_type != D_FREEWORK) 7148 continue; 7149 freework = WK_FREEWORK(wk); 7150 if (freework->fw_blkno == newblk->nb_newblkno) 7151 break; 7152 } 7153 if (freework == NULL) 7154 panic("cancel_allocdirect: Freework not found"); 7155 /* 7156 * If a newblk exists at all we still have the journal entry that 7157 * initiated the allocation so we do not need to journal the free. 7158 */ 7159 cancel_jfreeblk(freeblks, freework->fw_blkno); 7160 /* 7161 * If the journal hasn't been written the jnewblk must be passed 7162 * to the call to ffs_blkfree that reclaims the space. We accomplish 7163 * this by linking the journal dependency into the freework to be 7164 * freed when freework_freeblock() is called. If the journal has 7165 * been written we can simply reclaim the journal space when the 7166 * freeblks work is complete. 7167 */ 7168 freework->fw_jnewblk = cancel_newblk(newblk, &freework->fw_list, 7169 &freeblks->fb_jwork); 7170 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list); 7171 } 7172 7173 7174 /* 7175 * Cancel a new block allocation. May be an indirect or direct block. We 7176 * remove it from various lists and return any journal record that needs to 7177 * be resolved by the caller. 7178 * 7179 * A special consideration is made for indirects which were never pointed 7180 * at on disk and will never be found once this block is released. 7181 */ 7182 static struct jnewblk * 7183 cancel_newblk(newblk, wk, wkhd) 7184 struct newblk *newblk; 7185 struct worklist *wk; 7186 struct workhead *wkhd; 7187 { 7188 struct jnewblk *jnewblk; 7189 7190 CTR1(KTR_SUJ, "cancel_newblk: blkno %jd", newblk->nb_newblkno); 7191 7192 newblk->nb_state |= GOINGAWAY; 7193 /* 7194 * Previously we traversed the completedhd on each indirdep 7195 * attached to this newblk to cancel them and gather journal 7196 * work. Since we need only the oldest journal segment and 7197 * the lowest point on the tree will always have the oldest 7198 * journal segment we are free to release the segments 7199 * of any subordinates and may leave the indirdep list to 7200 * indirdep_complete() when this newblk is freed. 7201 */ 7202 if (newblk->nb_state & ONDEPLIST) { 7203 newblk->nb_state &= ~ONDEPLIST; 7204 LIST_REMOVE(newblk, nb_deps); 7205 } 7206 if (newblk->nb_state & ONWORKLIST) 7207 WORKLIST_REMOVE(&newblk->nb_list); 7208 /* 7209 * If the journal entry hasn't been written we save a pointer to 7210 * the dependency that frees it until it is written or the 7211 * superseding operation completes. 7212 */ 7213 jnewblk = newblk->nb_jnewblk; 7214 if (jnewblk != NULL && wk != NULL) { 7215 newblk->nb_jnewblk = NULL; 7216 jnewblk->jn_dep = wk; 7217 } 7218 if (!LIST_EMPTY(&newblk->nb_jwork)) 7219 jwork_move(wkhd, &newblk->nb_jwork); 7220 /* 7221 * When truncating we must free the newdirblk early to remove 7222 * the pagedep from the hash before returning. 7223 */ 7224 if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL) 7225 free_newdirblk(WK_NEWDIRBLK(wk)); 7226 if (!LIST_EMPTY(&newblk->nb_newdirblk)) 7227 panic("cancel_newblk: extra newdirblk"); 7228 7229 return (jnewblk); 7230 } 7231 7232 /* 7233 * Schedule the freefrag associated with a newblk to be released once 7234 * the pointers are written and the previous block is no longer needed. 7235 */ 7236 static void 7237 newblk_freefrag(newblk) 7238 struct newblk *newblk; 7239 { 7240 struct freefrag *freefrag; 7241 7242 if (newblk->nb_freefrag == NULL) 7243 return; 7244 freefrag = newblk->nb_freefrag; 7245 newblk->nb_freefrag = NULL; 7246 freefrag->ff_state |= COMPLETE; 7247 if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE) 7248 add_to_worklist(&freefrag->ff_list, 0); 7249 } 7250 7251 /* 7252 * Free a newblk. Generate a new freefrag work request if appropriate. 7253 * This must be called after the inode pointer and any direct block pointers 7254 * are valid or fully removed via truncate or frag extension. 7255 */ 7256 static void 7257 free_newblk(newblk) 7258 struct newblk *newblk; 7259 { 7260 struct indirdep *indirdep; 7261 struct worklist *wk; 7262 7263 KASSERT(newblk->nb_jnewblk == NULL, 7264 ("free_newblk: jnewblk %p still attached", newblk->nb_jnewblk)); 7265 KASSERT(newblk->nb_list.wk_type != D_NEWBLK, 7266 ("free_newblk: unclaimed newblk")); 7267 LOCK_OWNED(VFSTOUFS(newblk->nb_list.wk_mp)); 7268 newblk_freefrag(newblk); 7269 if (newblk->nb_state & ONDEPLIST) 7270 LIST_REMOVE(newblk, nb_deps); 7271 if (newblk->nb_state & ONWORKLIST) 7272 WORKLIST_REMOVE(&newblk->nb_list); 7273 LIST_REMOVE(newblk, nb_hash); 7274 if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL) 7275 free_newdirblk(WK_NEWDIRBLK(wk)); 7276 if (!LIST_EMPTY(&newblk->nb_newdirblk)) 7277 panic("free_newblk: extra newdirblk"); 7278 while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL) 7279 indirdep_complete(indirdep); 7280 handle_jwork(&newblk->nb_jwork); 7281 WORKITEM_FREE(newblk, D_NEWBLK); 7282 } 7283 7284 /* 7285 * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep. 7286 * This routine must be called with splbio interrupts blocked. 7287 */ 7288 static void 7289 free_newdirblk(newdirblk) 7290 struct newdirblk *newdirblk; 7291 { 7292 struct pagedep *pagedep; 7293 struct diradd *dap; 7294 struct worklist *wk; 7295 7296 LOCK_OWNED(VFSTOUFS(newdirblk->db_list.wk_mp)); 7297 WORKLIST_REMOVE(&newdirblk->db_list); 7298 /* 7299 * If the pagedep is still linked onto the directory buffer 7300 * dependency chain, then some of the entries on the 7301 * pd_pendinghd list may not be committed to disk yet. In 7302 * this case, we will simply clear the NEWBLOCK flag and 7303 * let the pd_pendinghd list be processed when the pagedep 7304 * is next written. If the pagedep is no longer on the buffer 7305 * dependency chain, then all the entries on the pd_pending 7306 * list are committed to disk and we can free them here. 7307 */ 7308 pagedep = newdirblk->db_pagedep; 7309 pagedep->pd_state &= ~NEWBLOCK; 7310 if ((pagedep->pd_state & ONWORKLIST) == 0) { 7311 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 7312 free_diradd(dap, NULL); 7313 /* 7314 * If no dependencies remain, the pagedep will be freed. 7315 */ 7316 free_pagedep(pagedep); 7317 } 7318 /* Should only ever be one item in the list. */ 7319 while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) { 7320 WORKLIST_REMOVE(wk); 7321 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); 7322 } 7323 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 7324 } 7325 7326 /* 7327 * Prepare an inode to be freed. The actual free operation is not 7328 * done until the zero'ed inode has been written to disk. 7329 */ 7330 void 7331 softdep_freefile(pvp, ino, mode) 7332 struct vnode *pvp; 7333 ino_t ino; 7334 int mode; 7335 { 7336 struct inode *ip = VTOI(pvp); 7337 struct inodedep *inodedep; 7338 struct freefile *freefile; 7339 struct freeblks *freeblks; 7340 struct ufsmount *ump; 7341 7342 ump = ip->i_ump; 7343 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 7344 ("softdep_freefile called on non-softdep filesystem")); 7345 /* 7346 * This sets up the inode de-allocation dependency. 7347 */ 7348 freefile = malloc(sizeof(struct freefile), 7349 M_FREEFILE, M_SOFTDEP_FLAGS); 7350 workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount); 7351 freefile->fx_mode = mode; 7352 freefile->fx_oldinum = ino; 7353 freefile->fx_devvp = ip->i_devvp; 7354 LIST_INIT(&freefile->fx_jwork); 7355 UFS_LOCK(ump); 7356 ip->i_fs->fs_pendinginodes += 1; 7357 UFS_UNLOCK(ump); 7358 7359 /* 7360 * If the inodedep does not exist, then the zero'ed inode has 7361 * been written to disk. If the allocated inode has never been 7362 * written to disk, then the on-disk inode is zero'ed. In either 7363 * case we can free the file immediately. If the journal was 7364 * canceled before being written the inode will never make it to 7365 * disk and we must send the canceled journal entrys to 7366 * ffs_freefile() to be cleared in conjunction with the bitmap. 7367 * Any blocks waiting on the inode to write can be safely freed 7368 * here as it will never been written. 7369 */ 7370 ACQUIRE_LOCK(ump); 7371 inodedep_lookup(pvp->v_mount, ino, 0, &inodedep); 7372 if (inodedep) { 7373 /* 7374 * Clear out freeblks that no longer need to reference 7375 * this inode. 7376 */ 7377 while ((freeblks = 7378 TAILQ_FIRST(&inodedep->id_freeblklst)) != NULL) { 7379 TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, 7380 fb_next); 7381 freeblks->fb_state &= ~ONDEPLIST; 7382 } 7383 /* 7384 * Remove this inode from the unlinked list. 7385 */ 7386 if (inodedep->id_state & UNLINKED) { 7387 /* 7388 * Save the journal work to be freed with the bitmap 7389 * before we clear UNLINKED. Otherwise it can be lost 7390 * if the inode block is written. 7391 */ 7392 handle_bufwait(inodedep, &freefile->fx_jwork); 7393 clear_unlinked_inodedep(inodedep); 7394 /* 7395 * Re-acquire inodedep as we've dropped the 7396 * soft updates lock in clear_unlinked_inodedep(). 7397 */ 7398 inodedep_lookup(pvp->v_mount, ino, 0, &inodedep); 7399 } 7400 } 7401 if (inodedep == NULL || check_inode_unwritten(inodedep)) { 7402 FREE_LOCK(ump); 7403 handle_workitem_freefile(freefile); 7404 return; 7405 } 7406 if ((inodedep->id_state & DEPCOMPLETE) == 0) 7407 inodedep->id_state |= GOINGAWAY; 7408 WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list); 7409 FREE_LOCK(ump); 7410 if (ip->i_number == ino) 7411 ip->i_flag |= IN_MODIFIED; 7412 } 7413 7414 /* 7415 * Check to see if an inode has never been written to disk. If 7416 * so free the inodedep and return success, otherwise return failure. 7417 * This routine must be called with splbio interrupts blocked. 7418 * 7419 * If we still have a bitmap dependency, then the inode has never 7420 * been written to disk. Drop the dependency as it is no longer 7421 * necessary since the inode is being deallocated. We set the 7422 * ALLCOMPLETE flags since the bitmap now properly shows that the 7423 * inode is not allocated. Even if the inode is actively being 7424 * written, it has been rolled back to its zero'ed state, so we 7425 * are ensured that a zero inode is what is on the disk. For short 7426 * lived files, this change will usually result in removing all the 7427 * dependencies from the inode so that it can be freed immediately. 7428 */ 7429 static int 7430 check_inode_unwritten(inodedep) 7431 struct inodedep *inodedep; 7432 { 7433 7434 LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp)); 7435 7436 if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 || 7437 !LIST_EMPTY(&inodedep->id_dirremhd) || 7438 !LIST_EMPTY(&inodedep->id_pendinghd) || 7439 !LIST_EMPTY(&inodedep->id_bufwait) || 7440 !LIST_EMPTY(&inodedep->id_inowait) || 7441 !TAILQ_EMPTY(&inodedep->id_inoreflst) || 7442 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 7443 !TAILQ_EMPTY(&inodedep->id_newinoupdt) || 7444 !TAILQ_EMPTY(&inodedep->id_extupdt) || 7445 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 7446 !TAILQ_EMPTY(&inodedep->id_freeblklst) || 7447 inodedep->id_mkdiradd != NULL || 7448 inodedep->id_nlinkdelta != 0) 7449 return (0); 7450 /* 7451 * Another process might be in initiate_write_inodeblock_ufs[12] 7452 * trying to allocate memory without holding "Softdep Lock". 7453 */ 7454 if ((inodedep->id_state & IOSTARTED) != 0 && 7455 inodedep->id_savedino1 == NULL) 7456 return (0); 7457 7458 if (inodedep->id_state & ONDEPLIST) 7459 LIST_REMOVE(inodedep, id_deps); 7460 inodedep->id_state &= ~ONDEPLIST; 7461 inodedep->id_state |= ALLCOMPLETE; 7462 inodedep->id_bmsafemap = NULL; 7463 if (inodedep->id_state & ONWORKLIST) 7464 WORKLIST_REMOVE(&inodedep->id_list); 7465 if (inodedep->id_savedino1 != NULL) { 7466 free(inodedep->id_savedino1, M_SAVEDINO); 7467 inodedep->id_savedino1 = NULL; 7468 } 7469 if (free_inodedep(inodedep) == 0) 7470 panic("check_inode_unwritten: busy inode"); 7471 return (1); 7472 } 7473 7474 /* 7475 * Try to free an inodedep structure. Return 1 if it could be freed. 7476 */ 7477 static int 7478 free_inodedep(inodedep) 7479 struct inodedep *inodedep; 7480 { 7481 7482 LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp)); 7483 if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 || 7484 (inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE || 7485 !LIST_EMPTY(&inodedep->id_dirremhd) || 7486 !LIST_EMPTY(&inodedep->id_pendinghd) || 7487 !LIST_EMPTY(&inodedep->id_bufwait) || 7488 !LIST_EMPTY(&inodedep->id_inowait) || 7489 !TAILQ_EMPTY(&inodedep->id_inoreflst) || 7490 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 7491 !TAILQ_EMPTY(&inodedep->id_newinoupdt) || 7492 !TAILQ_EMPTY(&inodedep->id_extupdt) || 7493 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 7494 !TAILQ_EMPTY(&inodedep->id_freeblklst) || 7495 inodedep->id_mkdiradd != NULL || 7496 inodedep->id_nlinkdelta != 0 || 7497 inodedep->id_savedino1 != NULL) 7498 return (0); 7499 if (inodedep->id_state & ONDEPLIST) 7500 LIST_REMOVE(inodedep, id_deps); 7501 LIST_REMOVE(inodedep, id_hash); 7502 WORKITEM_FREE(inodedep, D_INODEDEP); 7503 return (1); 7504 } 7505 7506 /* 7507 * Free the block referenced by a freework structure. The parent freeblks 7508 * structure is released and completed when the final cg bitmap reaches 7509 * the disk. This routine may be freeing a jnewblk which never made it to 7510 * disk in which case we do not have to wait as the operation is undone 7511 * in memory immediately. 7512 */ 7513 static void 7514 freework_freeblock(freework) 7515 struct freework *freework; 7516 { 7517 struct freeblks *freeblks; 7518 struct jnewblk *jnewblk; 7519 struct ufsmount *ump; 7520 struct workhead wkhd; 7521 struct fs *fs; 7522 int bsize; 7523 int needj; 7524 7525 ump = VFSTOUFS(freework->fw_list.wk_mp); 7526 LOCK_OWNED(ump); 7527 /* 7528 * Handle partial truncate separately. 7529 */ 7530 if (freework->fw_indir) { 7531 complete_trunc_indir(freework); 7532 return; 7533 } 7534 freeblks = freework->fw_freeblks; 7535 fs = ump->um_fs; 7536 needj = MOUNTEDSUJ(freeblks->fb_list.wk_mp) != 0; 7537 bsize = lfragtosize(fs, freework->fw_frags); 7538 LIST_INIT(&wkhd); 7539 /* 7540 * DEPCOMPLETE is cleared in indirblk_insert() if the block lives 7541 * on the indirblk hashtable and prevents premature freeing. 7542 */ 7543 freework->fw_state |= DEPCOMPLETE; 7544 /* 7545 * SUJ needs to wait for the segment referencing freed indirect 7546 * blocks to expire so that we know the checker will not confuse 7547 * a re-allocated indirect block with its old contents. 7548 */ 7549 if (needj && freework->fw_lbn <= -NDADDR) 7550 indirblk_insert(freework); 7551 /* 7552 * If we are canceling an existing jnewblk pass it to the free 7553 * routine, otherwise pass the freeblk which will ultimately 7554 * release the freeblks. If we're not journaling, we can just 7555 * free the freeblks immediately. 7556 */ 7557 jnewblk = freework->fw_jnewblk; 7558 if (jnewblk != NULL) { 7559 cancel_jnewblk(jnewblk, &wkhd); 7560 needj = 0; 7561 } else if (needj) { 7562 freework->fw_state |= DELAYEDFREE; 7563 freeblks->fb_cgwait++; 7564 WORKLIST_INSERT(&wkhd, &freework->fw_list); 7565 } 7566 FREE_LOCK(ump); 7567 freeblks_free(ump, freeblks, btodb(bsize)); 7568 CTR4(KTR_SUJ, 7569 "freework_freeblock: ino %d blkno %jd lbn %jd size %ld", 7570 freeblks->fb_inum, freework->fw_blkno, freework->fw_lbn, bsize); 7571 ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno, bsize, 7572 freeblks->fb_inum, freeblks->fb_vtype, &wkhd); 7573 ACQUIRE_LOCK(ump); 7574 /* 7575 * The jnewblk will be discarded and the bits in the map never 7576 * made it to disk. We can immediately free the freeblk. 7577 */ 7578 if (needj == 0) 7579 handle_written_freework(freework); 7580 } 7581 7582 /* 7583 * We enqueue freework items that need processing back on the freeblks and 7584 * add the freeblks to the worklist. This makes it easier to find all work 7585 * required to flush a truncation in process_truncates(). 7586 */ 7587 static void 7588 freework_enqueue(freework) 7589 struct freework *freework; 7590 { 7591 struct freeblks *freeblks; 7592 7593 freeblks = freework->fw_freeblks; 7594 if ((freework->fw_state & INPROGRESS) == 0) 7595 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list); 7596 if ((freeblks->fb_state & 7597 (ONWORKLIST | INPROGRESS | ALLCOMPLETE)) == ALLCOMPLETE && 7598 LIST_EMPTY(&freeblks->fb_jblkdephd)) 7599 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 7600 } 7601 7602 /* 7603 * Start, continue, or finish the process of freeing an indirect block tree. 7604 * The free operation may be paused at any point with fw_off containing the 7605 * offset to restart from. This enables us to implement some flow control 7606 * for large truncates which may fan out and generate a huge number of 7607 * dependencies. 7608 */ 7609 static void 7610 handle_workitem_indirblk(freework) 7611 struct freework *freework; 7612 { 7613 struct freeblks *freeblks; 7614 struct ufsmount *ump; 7615 struct fs *fs; 7616 7617 freeblks = freework->fw_freeblks; 7618 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 7619 fs = ump->um_fs; 7620 if (freework->fw_state & DEPCOMPLETE) { 7621 handle_written_freework(freework); 7622 return; 7623 } 7624 if (freework->fw_off == NINDIR(fs)) { 7625 freework_freeblock(freework); 7626 return; 7627 } 7628 freework->fw_state |= INPROGRESS; 7629 FREE_LOCK(ump); 7630 indir_trunc(freework, fsbtodb(fs, freework->fw_blkno), 7631 freework->fw_lbn); 7632 ACQUIRE_LOCK(ump); 7633 } 7634 7635 /* 7636 * Called when a freework structure attached to a cg buf is written. The 7637 * ref on either the parent or the freeblks structure is released and 7638 * the freeblks is added back to the worklist if there is more work to do. 7639 */ 7640 static void 7641 handle_written_freework(freework) 7642 struct freework *freework; 7643 { 7644 struct freeblks *freeblks; 7645 struct freework *parent; 7646 7647 freeblks = freework->fw_freeblks; 7648 parent = freework->fw_parent; 7649 if (freework->fw_state & DELAYEDFREE) 7650 freeblks->fb_cgwait--; 7651 freework->fw_state |= COMPLETE; 7652 if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE) 7653 WORKITEM_FREE(freework, D_FREEWORK); 7654 if (parent) { 7655 if (--parent->fw_ref == 0) 7656 freework_enqueue(parent); 7657 return; 7658 } 7659 if (--freeblks->fb_ref != 0) 7660 return; 7661 if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST | INPROGRESS)) == 7662 ALLCOMPLETE && LIST_EMPTY(&freeblks->fb_jblkdephd)) 7663 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 7664 } 7665 7666 /* 7667 * This workitem routine performs the block de-allocation. 7668 * The workitem is added to the pending list after the updated 7669 * inode block has been written to disk. As mentioned above, 7670 * checks regarding the number of blocks de-allocated (compared 7671 * to the number of blocks allocated for the file) are also 7672 * performed in this function. 7673 */ 7674 static int 7675 handle_workitem_freeblocks(freeblks, flags) 7676 struct freeblks *freeblks; 7677 int flags; 7678 { 7679 struct freework *freework; 7680 struct newblk *newblk; 7681 struct allocindir *aip; 7682 struct ufsmount *ump; 7683 struct worklist *wk; 7684 7685 KASSERT(LIST_EMPTY(&freeblks->fb_jblkdephd), 7686 ("handle_workitem_freeblocks: Journal entries not written.")); 7687 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 7688 ACQUIRE_LOCK(ump); 7689 while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) { 7690 WORKLIST_REMOVE(wk); 7691 switch (wk->wk_type) { 7692 case D_DIRREM: 7693 wk->wk_state |= COMPLETE; 7694 add_to_worklist(wk, 0); 7695 continue; 7696 7697 case D_ALLOCDIRECT: 7698 free_newblk(WK_NEWBLK(wk)); 7699 continue; 7700 7701 case D_ALLOCINDIR: 7702 aip = WK_ALLOCINDIR(wk); 7703 freework = NULL; 7704 if (aip->ai_state & DELAYEDFREE) { 7705 FREE_LOCK(ump); 7706 freework = newfreework(ump, freeblks, NULL, 7707 aip->ai_lbn, aip->ai_newblkno, 7708 ump->um_fs->fs_frag, 0, 0); 7709 ACQUIRE_LOCK(ump); 7710 } 7711 newblk = WK_NEWBLK(wk); 7712 if (newblk->nb_jnewblk) { 7713 freework->fw_jnewblk = newblk->nb_jnewblk; 7714 newblk->nb_jnewblk->jn_dep = &freework->fw_list; 7715 newblk->nb_jnewblk = NULL; 7716 } 7717 free_newblk(newblk); 7718 continue; 7719 7720 case D_FREEWORK: 7721 freework = WK_FREEWORK(wk); 7722 if (freework->fw_lbn <= -NDADDR) 7723 handle_workitem_indirblk(freework); 7724 else 7725 freework_freeblock(freework); 7726 continue; 7727 default: 7728 panic("handle_workitem_freeblocks: Unknown type %s", 7729 TYPENAME(wk->wk_type)); 7730 } 7731 } 7732 if (freeblks->fb_ref != 0) { 7733 freeblks->fb_state &= ~INPROGRESS; 7734 wake_worklist(&freeblks->fb_list); 7735 freeblks = NULL; 7736 } 7737 FREE_LOCK(ump); 7738 if (freeblks) 7739 return handle_complete_freeblocks(freeblks, flags); 7740 return (0); 7741 } 7742 7743 /* 7744 * Handle completion of block free via truncate. This allows fs_pending 7745 * to track the actual free block count more closely than if we only updated 7746 * it at the end. We must be careful to handle cases where the block count 7747 * on free was incorrect. 7748 */ 7749 static void 7750 freeblks_free(ump, freeblks, blocks) 7751 struct ufsmount *ump; 7752 struct freeblks *freeblks; 7753 int blocks; 7754 { 7755 struct fs *fs; 7756 ufs2_daddr_t remain; 7757 7758 UFS_LOCK(ump); 7759 remain = -freeblks->fb_chkcnt; 7760 freeblks->fb_chkcnt += blocks; 7761 if (remain > 0) { 7762 if (remain < blocks) 7763 blocks = remain; 7764 fs = ump->um_fs; 7765 fs->fs_pendingblocks -= blocks; 7766 } 7767 UFS_UNLOCK(ump); 7768 } 7769 7770 /* 7771 * Once all of the freework workitems are complete we can retire the 7772 * freeblocks dependency and any journal work awaiting completion. This 7773 * can not be called until all other dependencies are stable on disk. 7774 */ 7775 static int 7776 handle_complete_freeblocks(freeblks, flags) 7777 struct freeblks *freeblks; 7778 int flags; 7779 { 7780 struct inodedep *inodedep; 7781 struct inode *ip; 7782 struct vnode *vp; 7783 struct fs *fs; 7784 struct ufsmount *ump; 7785 ufs2_daddr_t spare; 7786 7787 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 7788 fs = ump->um_fs; 7789 flags = LK_EXCLUSIVE | flags; 7790 spare = freeblks->fb_chkcnt; 7791 7792 /* 7793 * If we did not release the expected number of blocks we may have 7794 * to adjust the inode block count here. Only do so if it wasn't 7795 * a truncation to zero and the modrev still matches. 7796 */ 7797 if (spare && freeblks->fb_len != 0) { 7798 if (ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_inum, 7799 flags, &vp, FFSV_FORCEINSMQ) != 0) 7800 return (EBUSY); 7801 ip = VTOI(vp); 7802 if (DIP(ip, i_modrev) == freeblks->fb_modrev) { 7803 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - spare); 7804 ip->i_flag |= IN_CHANGE; 7805 /* 7806 * We must wait so this happens before the 7807 * journal is reclaimed. 7808 */ 7809 ffs_update(vp, 1); 7810 } 7811 vput(vp); 7812 } 7813 if (spare < 0) { 7814 UFS_LOCK(ump); 7815 fs->fs_pendingblocks += spare; 7816 UFS_UNLOCK(ump); 7817 } 7818 #ifdef QUOTA 7819 /* Handle spare. */ 7820 if (spare) 7821 quotaadj(freeblks->fb_quota, ump, -spare); 7822 quotarele(freeblks->fb_quota); 7823 #endif 7824 ACQUIRE_LOCK(ump); 7825 if (freeblks->fb_state & ONDEPLIST) { 7826 inodedep_lookup(freeblks->fb_list.wk_mp, freeblks->fb_inum, 7827 0, &inodedep); 7828 TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, fb_next); 7829 freeblks->fb_state &= ~ONDEPLIST; 7830 if (TAILQ_EMPTY(&inodedep->id_freeblklst)) 7831 free_inodedep(inodedep); 7832 } 7833 /* 7834 * All of the freeblock deps must be complete prior to this call 7835 * so it's now safe to complete earlier outstanding journal entries. 7836 */ 7837 handle_jwork(&freeblks->fb_jwork); 7838 WORKITEM_FREE(freeblks, D_FREEBLKS); 7839 FREE_LOCK(ump); 7840 return (0); 7841 } 7842 7843 /* 7844 * Release blocks associated with the freeblks and stored in the indirect 7845 * block dbn. If level is greater than SINGLE, the block is an indirect block 7846 * and recursive calls to indirtrunc must be used to cleanse other indirect 7847 * blocks. 7848 * 7849 * This handles partial and complete truncation of blocks. Partial is noted 7850 * with goingaway == 0. In this case the freework is completed after the 7851 * zero'd indirects are written to disk. For full truncation the freework 7852 * is completed after the block is freed. 7853 */ 7854 static void 7855 indir_trunc(freework, dbn, lbn) 7856 struct freework *freework; 7857 ufs2_daddr_t dbn; 7858 ufs_lbn_t lbn; 7859 { 7860 struct freework *nfreework; 7861 struct workhead wkhd; 7862 struct freeblks *freeblks; 7863 struct buf *bp; 7864 struct fs *fs; 7865 struct indirdep *indirdep; 7866 struct ufsmount *ump; 7867 ufs1_daddr_t *bap1 = 0; 7868 ufs2_daddr_t nb, nnb, *bap2 = 0; 7869 ufs_lbn_t lbnadd, nlbn; 7870 int i, nblocks, ufs1fmt; 7871 int freedblocks; 7872 int goingaway; 7873 int freedeps; 7874 int needj; 7875 int level; 7876 int cnt; 7877 7878 freeblks = freework->fw_freeblks; 7879 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 7880 fs = ump->um_fs; 7881 /* 7882 * Get buffer of block pointers to be freed. There are three cases: 7883 * 7884 * 1) Partial truncate caches the indirdep pointer in the freework 7885 * which provides us a back copy to the save bp which holds the 7886 * pointers we want to clear. When this completes the zero 7887 * pointers are written to the real copy. 7888 * 2) The indirect is being completely truncated, cancel_indirdep() 7889 * eliminated the real copy and placed the indirdep on the saved 7890 * copy. The indirdep and buf are discarded when this completes. 7891 * 3) The indirect was not in memory, we read a copy off of the disk 7892 * using the devvp and drop and invalidate the buffer when we're 7893 * done. 7894 */ 7895 goingaway = 1; 7896 indirdep = NULL; 7897 if (freework->fw_indir != NULL) { 7898 goingaway = 0; 7899 indirdep = freework->fw_indir; 7900 bp = indirdep->ir_savebp; 7901 if (bp == NULL || bp->b_blkno != dbn) 7902 panic("indir_trunc: Bad saved buf %p blkno %jd", 7903 bp, (intmax_t)dbn); 7904 } else if ((bp = incore(&freeblks->fb_devvp->v_bufobj, dbn)) != NULL) { 7905 /* 7906 * The lock prevents the buf dep list from changing and 7907 * indirects on devvp should only ever have one dependency. 7908 */ 7909 indirdep = WK_INDIRDEP(LIST_FIRST(&bp->b_dep)); 7910 if (indirdep == NULL || (indirdep->ir_state & GOINGAWAY) == 0) 7911 panic("indir_trunc: Bad indirdep %p from buf %p", 7912 indirdep, bp); 7913 } else if (bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize, 7914 NOCRED, &bp) != 0) { 7915 brelse(bp); 7916 return; 7917 } 7918 ACQUIRE_LOCK(ump); 7919 /* Protects against a race with complete_trunc_indir(). */ 7920 freework->fw_state &= ~INPROGRESS; 7921 /* 7922 * If we have an indirdep we need to enforce the truncation order 7923 * and discard it when it is complete. 7924 */ 7925 if (indirdep) { 7926 if (freework != TAILQ_FIRST(&indirdep->ir_trunc) && 7927 !TAILQ_EMPTY(&indirdep->ir_trunc)) { 7928 /* 7929 * Add the complete truncate to the list on the 7930 * indirdep to enforce in-order processing. 7931 */ 7932 if (freework->fw_indir == NULL) 7933 TAILQ_INSERT_TAIL(&indirdep->ir_trunc, 7934 freework, fw_next); 7935 FREE_LOCK(ump); 7936 return; 7937 } 7938 /* 7939 * If we're goingaway, free the indirdep. Otherwise it will 7940 * linger until the write completes. 7941 */ 7942 if (goingaway) { 7943 free_indirdep(indirdep); 7944 ump->softdep_numindirdeps -= 1; 7945 } 7946 } 7947 FREE_LOCK(ump); 7948 /* Initialize pointers depending on block size. */ 7949 if (ump->um_fstype == UFS1) { 7950 bap1 = (ufs1_daddr_t *)bp->b_data; 7951 nb = bap1[freework->fw_off]; 7952 ufs1fmt = 1; 7953 } else { 7954 bap2 = (ufs2_daddr_t *)bp->b_data; 7955 nb = bap2[freework->fw_off]; 7956 ufs1fmt = 0; 7957 } 7958 level = lbn_level(lbn); 7959 needj = MOUNTEDSUJ(UFSTOVFS(ump)) != 0; 7960 lbnadd = lbn_offset(fs, level); 7961 nblocks = btodb(fs->fs_bsize); 7962 nfreework = freework; 7963 freedeps = 0; 7964 cnt = 0; 7965 /* 7966 * Reclaim blocks. Traverses into nested indirect levels and 7967 * arranges for the current level to be freed when subordinates 7968 * are free when journaling. 7969 */ 7970 for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) { 7971 if (i != NINDIR(fs) - 1) { 7972 if (ufs1fmt) 7973 nnb = bap1[i+1]; 7974 else 7975 nnb = bap2[i+1]; 7976 } else 7977 nnb = 0; 7978 if (nb == 0) 7979 continue; 7980 cnt++; 7981 if (level != 0) { 7982 nlbn = (lbn + 1) - (i * lbnadd); 7983 if (needj != 0) { 7984 nfreework = newfreework(ump, freeblks, freework, 7985 nlbn, nb, fs->fs_frag, 0, 0); 7986 freedeps++; 7987 } 7988 indir_trunc(nfreework, fsbtodb(fs, nb), nlbn); 7989 } else { 7990 struct freedep *freedep; 7991 7992 /* 7993 * Attempt to aggregate freedep dependencies for 7994 * all blocks being released to the same CG. 7995 */ 7996 LIST_INIT(&wkhd); 7997 if (needj != 0 && 7998 (nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) { 7999 freedep = newfreedep(freework); 8000 WORKLIST_INSERT_UNLOCKED(&wkhd, 8001 &freedep->fd_list); 8002 freedeps++; 8003 } 8004 CTR3(KTR_SUJ, 8005 "indir_trunc: ino %d blkno %jd size %ld", 8006 freeblks->fb_inum, nb, fs->fs_bsize); 8007 ffs_blkfree(ump, fs, freeblks->fb_devvp, nb, 8008 fs->fs_bsize, freeblks->fb_inum, 8009 freeblks->fb_vtype, &wkhd); 8010 } 8011 } 8012 if (goingaway) { 8013 bp->b_flags |= B_INVAL | B_NOCACHE; 8014 brelse(bp); 8015 } 8016 freedblocks = 0; 8017 if (level == 0) 8018 freedblocks = (nblocks * cnt); 8019 if (needj == 0) 8020 freedblocks += nblocks; 8021 freeblks_free(ump, freeblks, freedblocks); 8022 /* 8023 * If we are journaling set up the ref counts and offset so this 8024 * indirect can be completed when its children are free. 8025 */ 8026 if (needj) { 8027 ACQUIRE_LOCK(ump); 8028 freework->fw_off = i; 8029 freework->fw_ref += freedeps; 8030 freework->fw_ref -= NINDIR(fs) + 1; 8031 if (level == 0) 8032 freeblks->fb_cgwait += freedeps; 8033 if (freework->fw_ref == 0) 8034 freework_freeblock(freework); 8035 FREE_LOCK(ump); 8036 return; 8037 } 8038 /* 8039 * If we're not journaling we can free the indirect now. 8040 */ 8041 dbn = dbtofsb(fs, dbn); 8042 CTR3(KTR_SUJ, 8043 "indir_trunc 2: ino %d blkno %jd size %ld", 8044 freeblks->fb_inum, dbn, fs->fs_bsize); 8045 ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize, 8046 freeblks->fb_inum, freeblks->fb_vtype, NULL); 8047 /* Non SUJ softdep does single-threaded truncations. */ 8048 if (freework->fw_blkno == dbn) { 8049 freework->fw_state |= ALLCOMPLETE; 8050 ACQUIRE_LOCK(ump); 8051 handle_written_freework(freework); 8052 FREE_LOCK(ump); 8053 } 8054 return; 8055 } 8056 8057 /* 8058 * Cancel an allocindir when it is removed via truncation. When bp is not 8059 * NULL the indirect never appeared on disk and is scheduled to be freed 8060 * independently of the indir so we can more easily track journal work. 8061 */ 8062 static void 8063 cancel_allocindir(aip, bp, freeblks, trunc) 8064 struct allocindir *aip; 8065 struct buf *bp; 8066 struct freeblks *freeblks; 8067 int trunc; 8068 { 8069 struct indirdep *indirdep; 8070 struct freefrag *freefrag; 8071 struct newblk *newblk; 8072 8073 newblk = (struct newblk *)aip; 8074 LIST_REMOVE(aip, ai_next); 8075 /* 8076 * We must eliminate the pointer in bp if it must be freed on its 8077 * own due to partial truncate or pending journal work. 8078 */ 8079 if (bp && (trunc || newblk->nb_jnewblk)) { 8080 /* 8081 * Clear the pointer and mark the aip to be freed 8082 * directly if it never existed on disk. 8083 */ 8084 aip->ai_state |= DELAYEDFREE; 8085 indirdep = aip->ai_indirdep; 8086 if (indirdep->ir_state & UFS1FMT) 8087 ((ufs1_daddr_t *)bp->b_data)[aip->ai_offset] = 0; 8088 else 8089 ((ufs2_daddr_t *)bp->b_data)[aip->ai_offset] = 0; 8090 } 8091 /* 8092 * When truncating the previous pointer will be freed via 8093 * savedbp. Eliminate the freefrag which would dup free. 8094 */ 8095 if (trunc && (freefrag = newblk->nb_freefrag) != NULL) { 8096 newblk->nb_freefrag = NULL; 8097 if (freefrag->ff_jdep) 8098 cancel_jfreefrag( 8099 WK_JFREEFRAG(freefrag->ff_jdep)); 8100 jwork_move(&freeblks->fb_jwork, &freefrag->ff_jwork); 8101 WORKITEM_FREE(freefrag, D_FREEFRAG); 8102 } 8103 /* 8104 * If the journal hasn't been written the jnewblk must be passed 8105 * to the call to ffs_blkfree that reclaims the space. We accomplish 8106 * this by leaving the journal dependency on the newblk to be freed 8107 * when a freework is created in handle_workitem_freeblocks(). 8108 */ 8109 cancel_newblk(newblk, NULL, &freeblks->fb_jwork); 8110 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list); 8111 } 8112 8113 /* 8114 * Create the mkdir dependencies for . and .. in a new directory. Link them 8115 * in to a newdirblk so any subsequent additions are tracked properly. The 8116 * caller is responsible for adding the mkdir1 dependency to the journal 8117 * and updating id_mkdiradd. This function returns with the soft updates 8118 * lock held. 8119 */ 8120 static struct mkdir * 8121 setup_newdir(dap, newinum, dinum, newdirbp, mkdirp) 8122 struct diradd *dap; 8123 ino_t newinum; 8124 ino_t dinum; 8125 struct buf *newdirbp; 8126 struct mkdir **mkdirp; 8127 { 8128 struct newblk *newblk; 8129 struct pagedep *pagedep; 8130 struct inodedep *inodedep; 8131 struct newdirblk *newdirblk = 0; 8132 struct mkdir *mkdir1, *mkdir2; 8133 struct worklist *wk; 8134 struct jaddref *jaddref; 8135 struct ufsmount *ump; 8136 struct mount *mp; 8137 8138 mp = dap->da_list.wk_mp; 8139 ump = VFSTOUFS(mp); 8140 newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK, 8141 M_SOFTDEP_FLAGS); 8142 workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp); 8143 LIST_INIT(&newdirblk->db_mkdir); 8144 mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS); 8145 workitem_alloc(&mkdir1->md_list, D_MKDIR, mp); 8146 mkdir1->md_state = ATTACHED | MKDIR_BODY; 8147 mkdir1->md_diradd = dap; 8148 mkdir1->md_jaddref = NULL; 8149 mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS); 8150 workitem_alloc(&mkdir2->md_list, D_MKDIR, mp); 8151 mkdir2->md_state = ATTACHED | MKDIR_PARENT; 8152 mkdir2->md_diradd = dap; 8153 mkdir2->md_jaddref = NULL; 8154 if (MOUNTEDSUJ(mp) == 0) { 8155 mkdir1->md_state |= DEPCOMPLETE; 8156 mkdir2->md_state |= DEPCOMPLETE; 8157 } 8158 /* 8159 * Dependency on "." and ".." being written to disk. 8160 */ 8161 mkdir1->md_buf = newdirbp; 8162 ACQUIRE_LOCK(VFSTOUFS(mp)); 8163 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir1, md_mkdirs); 8164 /* 8165 * We must link the pagedep, allocdirect, and newdirblk for 8166 * the initial file page so the pointer to the new directory 8167 * is not written until the directory contents are live and 8168 * any subsequent additions are not marked live until the 8169 * block is reachable via the inode. 8170 */ 8171 if (pagedep_lookup(mp, newdirbp, newinum, 0, 0, &pagedep) == 0) 8172 panic("setup_newdir: lost pagedep"); 8173 LIST_FOREACH(wk, &newdirbp->b_dep, wk_list) 8174 if (wk->wk_type == D_ALLOCDIRECT) 8175 break; 8176 if (wk == NULL) 8177 panic("setup_newdir: lost allocdirect"); 8178 if (pagedep->pd_state & NEWBLOCK) 8179 panic("setup_newdir: NEWBLOCK already set"); 8180 newblk = WK_NEWBLK(wk); 8181 pagedep->pd_state |= NEWBLOCK; 8182 pagedep->pd_newdirblk = newdirblk; 8183 newdirblk->db_pagedep = pagedep; 8184 WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list); 8185 WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list); 8186 /* 8187 * Look up the inodedep for the parent directory so that we 8188 * can link mkdir2 into the pending dotdot jaddref or 8189 * the inode write if there is none. If the inode is 8190 * ALLCOMPLETE and no jaddref is present all dependencies have 8191 * been satisfied and mkdir2 can be freed. 8192 */ 8193 inodedep_lookup(mp, dinum, 0, &inodedep); 8194 if (MOUNTEDSUJ(mp)) { 8195 if (inodedep == NULL) 8196 panic("setup_newdir: Lost parent."); 8197 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 8198 inoreflst); 8199 KASSERT(jaddref != NULL && jaddref->ja_parent == newinum && 8200 (jaddref->ja_state & MKDIR_PARENT), 8201 ("setup_newdir: bad dotdot jaddref %p", jaddref)); 8202 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs); 8203 mkdir2->md_jaddref = jaddref; 8204 jaddref->ja_mkdir = mkdir2; 8205 } else if (inodedep == NULL || 8206 (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 8207 dap->da_state &= ~MKDIR_PARENT; 8208 WORKITEM_FREE(mkdir2, D_MKDIR); 8209 mkdir2 = NULL; 8210 } else { 8211 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs); 8212 WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir2->md_list); 8213 } 8214 *mkdirp = mkdir2; 8215 8216 return (mkdir1); 8217 } 8218 8219 /* 8220 * Directory entry addition dependencies. 8221 * 8222 * When adding a new directory entry, the inode (with its incremented link 8223 * count) must be written to disk before the directory entry's pointer to it. 8224 * Also, if the inode is newly allocated, the corresponding freemap must be 8225 * updated (on disk) before the directory entry's pointer. These requirements 8226 * are met via undo/redo on the directory entry's pointer, which consists 8227 * simply of the inode number. 8228 * 8229 * As directory entries are added and deleted, the free space within a 8230 * directory block can become fragmented. The ufs filesystem will compact 8231 * a fragmented directory block to make space for a new entry. When this 8232 * occurs, the offsets of previously added entries change. Any "diradd" 8233 * dependency structures corresponding to these entries must be updated with 8234 * the new offsets. 8235 */ 8236 8237 /* 8238 * This routine is called after the in-memory inode's link 8239 * count has been incremented, but before the directory entry's 8240 * pointer to the inode has been set. 8241 */ 8242 int 8243 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk) 8244 struct buf *bp; /* buffer containing directory block */ 8245 struct inode *dp; /* inode for directory */ 8246 off_t diroffset; /* offset of new entry in directory */ 8247 ino_t newinum; /* inode referenced by new directory entry */ 8248 struct buf *newdirbp; /* non-NULL => contents of new mkdir */ 8249 int isnewblk; /* entry is in a newly allocated block */ 8250 { 8251 int offset; /* offset of new entry within directory block */ 8252 ufs_lbn_t lbn; /* block in directory containing new entry */ 8253 struct fs *fs; 8254 struct diradd *dap; 8255 struct newblk *newblk; 8256 struct pagedep *pagedep; 8257 struct inodedep *inodedep; 8258 struct newdirblk *newdirblk = 0; 8259 struct mkdir *mkdir1, *mkdir2; 8260 struct jaddref *jaddref; 8261 struct ufsmount *ump; 8262 struct mount *mp; 8263 int isindir; 8264 8265 ump = dp->i_ump; 8266 mp = UFSTOVFS(ump); 8267 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 8268 ("softdep_setup_directory_add called on non-softdep filesystem")); 8269 /* 8270 * Whiteouts have no dependencies. 8271 */ 8272 if (newinum == WINO) { 8273 if (newdirbp != NULL) 8274 bdwrite(newdirbp); 8275 return (0); 8276 } 8277 jaddref = NULL; 8278 mkdir1 = mkdir2 = NULL; 8279 fs = dp->i_fs; 8280 lbn = lblkno(fs, diroffset); 8281 offset = blkoff(fs, diroffset); 8282 dap = malloc(sizeof(struct diradd), M_DIRADD, 8283 M_SOFTDEP_FLAGS|M_ZERO); 8284 workitem_alloc(&dap->da_list, D_DIRADD, mp); 8285 dap->da_offset = offset; 8286 dap->da_newinum = newinum; 8287 dap->da_state = ATTACHED; 8288 LIST_INIT(&dap->da_jwork); 8289 isindir = bp->b_lblkno >= NDADDR; 8290 if (isnewblk && 8291 (isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) { 8292 newdirblk = malloc(sizeof(struct newdirblk), 8293 M_NEWDIRBLK, M_SOFTDEP_FLAGS); 8294 workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp); 8295 LIST_INIT(&newdirblk->db_mkdir); 8296 } 8297 /* 8298 * If we're creating a new directory setup the dependencies and set 8299 * the dap state to wait for them. Otherwise it's COMPLETE and 8300 * we can move on. 8301 */ 8302 if (newdirbp == NULL) { 8303 dap->da_state |= DEPCOMPLETE; 8304 ACQUIRE_LOCK(ump); 8305 } else { 8306 dap->da_state |= MKDIR_BODY | MKDIR_PARENT; 8307 mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp, 8308 &mkdir2); 8309 } 8310 /* 8311 * Link into parent directory pagedep to await its being written. 8312 */ 8313 pagedep_lookup(mp, bp, dp->i_number, lbn, DEPALLOC, &pagedep); 8314 #ifdef DEBUG 8315 if (diradd_lookup(pagedep, offset) != NULL) 8316 panic("softdep_setup_directory_add: %p already at off %d\n", 8317 diradd_lookup(pagedep, offset), offset); 8318 #endif 8319 dap->da_pagedep = pagedep; 8320 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap, 8321 da_pdlist); 8322 inodedep_lookup(mp, newinum, DEPALLOC | NODELAY, &inodedep); 8323 /* 8324 * If we're journaling, link the diradd into the jaddref so it 8325 * may be completed after the journal entry is written. Otherwise, 8326 * link the diradd into its inodedep. If the inode is not yet 8327 * written place it on the bufwait list, otherwise do the post-inode 8328 * write processing to put it on the id_pendinghd list. 8329 */ 8330 if (MOUNTEDSUJ(mp)) { 8331 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 8332 inoreflst); 8333 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 8334 ("softdep_setup_directory_add: bad jaddref %p", jaddref)); 8335 jaddref->ja_diroff = diroffset; 8336 jaddref->ja_diradd = dap; 8337 add_to_journal(&jaddref->ja_list); 8338 } else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) 8339 diradd_inode_written(dap, inodedep); 8340 else 8341 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 8342 /* 8343 * Add the journal entries for . and .. links now that the primary 8344 * link is written. 8345 */ 8346 if (mkdir1 != NULL && MOUNTEDSUJ(mp)) { 8347 jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref, 8348 inoreflst, if_deps); 8349 KASSERT(jaddref != NULL && 8350 jaddref->ja_ino == jaddref->ja_parent && 8351 (jaddref->ja_state & MKDIR_BODY), 8352 ("softdep_setup_directory_add: bad dot jaddref %p", 8353 jaddref)); 8354 mkdir1->md_jaddref = jaddref; 8355 jaddref->ja_mkdir = mkdir1; 8356 /* 8357 * It is important that the dotdot journal entry 8358 * is added prior to the dot entry since dot writes 8359 * both the dot and dotdot links. These both must 8360 * be added after the primary link for the journal 8361 * to remain consistent. 8362 */ 8363 add_to_journal(&mkdir2->md_jaddref->ja_list); 8364 add_to_journal(&jaddref->ja_list); 8365 } 8366 /* 8367 * If we are adding a new directory remember this diradd so that if 8368 * we rename it we can keep the dot and dotdot dependencies. If 8369 * we are adding a new name for an inode that has a mkdiradd we 8370 * must be in rename and we have to move the dot and dotdot 8371 * dependencies to this new name. The old name is being orphaned 8372 * soon. 8373 */ 8374 if (mkdir1 != NULL) { 8375 if (inodedep->id_mkdiradd != NULL) 8376 panic("softdep_setup_directory_add: Existing mkdir"); 8377 inodedep->id_mkdiradd = dap; 8378 } else if (inodedep->id_mkdiradd) 8379 merge_diradd(inodedep, dap); 8380 if (newdirblk) { 8381 /* 8382 * There is nothing to do if we are already tracking 8383 * this block. 8384 */ 8385 if ((pagedep->pd_state & NEWBLOCK) != 0) { 8386 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 8387 FREE_LOCK(ump); 8388 return (0); 8389 } 8390 if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk) 8391 == 0) 8392 panic("softdep_setup_directory_add: lost entry"); 8393 WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list); 8394 pagedep->pd_state |= NEWBLOCK; 8395 pagedep->pd_newdirblk = newdirblk; 8396 newdirblk->db_pagedep = pagedep; 8397 FREE_LOCK(ump); 8398 /* 8399 * If we extended into an indirect signal direnter to sync. 8400 */ 8401 if (isindir) 8402 return (1); 8403 return (0); 8404 } 8405 FREE_LOCK(ump); 8406 return (0); 8407 } 8408 8409 /* 8410 * This procedure is called to change the offset of a directory 8411 * entry when compacting a directory block which must be owned 8412 * exclusively by the caller. Note that the actual entry movement 8413 * must be done in this procedure to ensure that no I/O completions 8414 * occur while the move is in progress. 8415 */ 8416 void 8417 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize) 8418 struct buf *bp; /* Buffer holding directory block. */ 8419 struct inode *dp; /* inode for directory */ 8420 caddr_t base; /* address of dp->i_offset */ 8421 caddr_t oldloc; /* address of old directory location */ 8422 caddr_t newloc; /* address of new directory location */ 8423 int entrysize; /* size of directory entry */ 8424 { 8425 int offset, oldoffset, newoffset; 8426 struct pagedep *pagedep; 8427 struct jmvref *jmvref; 8428 struct diradd *dap; 8429 struct direct *de; 8430 struct mount *mp; 8431 ufs_lbn_t lbn; 8432 int flags; 8433 8434 mp = UFSTOVFS(dp->i_ump); 8435 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 8436 ("softdep_change_directoryentry_offset called on " 8437 "non-softdep filesystem")); 8438 de = (struct direct *)oldloc; 8439 jmvref = NULL; 8440 flags = 0; 8441 /* 8442 * Moves are always journaled as it would be too complex to 8443 * determine if any affected adds or removes are present in the 8444 * journal. 8445 */ 8446 if (MOUNTEDSUJ(mp)) { 8447 flags = DEPALLOC; 8448 jmvref = newjmvref(dp, de->d_ino, 8449 dp->i_offset + (oldloc - base), 8450 dp->i_offset + (newloc - base)); 8451 } 8452 lbn = lblkno(dp->i_fs, dp->i_offset); 8453 offset = blkoff(dp->i_fs, dp->i_offset); 8454 oldoffset = offset + (oldloc - base); 8455 newoffset = offset + (newloc - base); 8456 ACQUIRE_LOCK(dp->i_ump); 8457 if (pagedep_lookup(mp, bp, dp->i_number, lbn, flags, &pagedep) == 0) 8458 goto done; 8459 dap = diradd_lookup(pagedep, oldoffset); 8460 if (dap) { 8461 dap->da_offset = newoffset; 8462 newoffset = DIRADDHASH(newoffset); 8463 oldoffset = DIRADDHASH(oldoffset); 8464 if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE && 8465 newoffset != oldoffset) { 8466 LIST_REMOVE(dap, da_pdlist); 8467 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset], 8468 dap, da_pdlist); 8469 } 8470 } 8471 done: 8472 if (jmvref) { 8473 jmvref->jm_pagedep = pagedep; 8474 LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps); 8475 add_to_journal(&jmvref->jm_list); 8476 } 8477 bcopy(oldloc, newloc, entrysize); 8478 FREE_LOCK(dp->i_ump); 8479 } 8480 8481 /* 8482 * Move the mkdir dependencies and journal work from one diradd to another 8483 * when renaming a directory. The new name must depend on the mkdir deps 8484 * completing as the old name did. Directories can only have one valid link 8485 * at a time so one must be canonical. 8486 */ 8487 static void 8488 merge_diradd(inodedep, newdap) 8489 struct inodedep *inodedep; 8490 struct diradd *newdap; 8491 { 8492 struct diradd *olddap; 8493 struct mkdir *mkdir, *nextmd; 8494 struct ufsmount *ump; 8495 short state; 8496 8497 olddap = inodedep->id_mkdiradd; 8498 inodedep->id_mkdiradd = newdap; 8499 if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 8500 newdap->da_state &= ~DEPCOMPLETE; 8501 ump = VFSTOUFS(inodedep->id_list.wk_mp); 8502 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; 8503 mkdir = nextmd) { 8504 nextmd = LIST_NEXT(mkdir, md_mkdirs); 8505 if (mkdir->md_diradd != olddap) 8506 continue; 8507 mkdir->md_diradd = newdap; 8508 state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY); 8509 newdap->da_state |= state; 8510 olddap->da_state &= ~state; 8511 if ((olddap->da_state & 8512 (MKDIR_PARENT | MKDIR_BODY)) == 0) 8513 break; 8514 } 8515 if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) 8516 panic("merge_diradd: unfound ref"); 8517 } 8518 /* 8519 * Any mkdir related journal items are not safe to be freed until 8520 * the new name is stable. 8521 */ 8522 jwork_move(&newdap->da_jwork, &olddap->da_jwork); 8523 olddap->da_state |= DEPCOMPLETE; 8524 complete_diradd(olddap); 8525 } 8526 8527 /* 8528 * Move the diradd to the pending list when all diradd dependencies are 8529 * complete. 8530 */ 8531 static void 8532 complete_diradd(dap) 8533 struct diradd *dap; 8534 { 8535 struct pagedep *pagedep; 8536 8537 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 8538 if (dap->da_state & DIRCHG) 8539 pagedep = dap->da_previous->dm_pagedep; 8540 else 8541 pagedep = dap->da_pagedep; 8542 LIST_REMOVE(dap, da_pdlist); 8543 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 8544 } 8545 } 8546 8547 /* 8548 * Cancel a diradd when a dirrem overlaps with it. We must cancel the journal 8549 * add entries and conditonally journal the remove. 8550 */ 8551 static void 8552 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref) 8553 struct diradd *dap; 8554 struct dirrem *dirrem; 8555 struct jremref *jremref; 8556 struct jremref *dotremref; 8557 struct jremref *dotdotremref; 8558 { 8559 struct inodedep *inodedep; 8560 struct jaddref *jaddref; 8561 struct inoref *inoref; 8562 struct ufsmount *ump; 8563 struct mkdir *mkdir; 8564 8565 /* 8566 * If no remove references were allocated we're on a non-journaled 8567 * filesystem and can skip the cancel step. 8568 */ 8569 if (jremref == NULL) { 8570 free_diradd(dap, NULL); 8571 return; 8572 } 8573 /* 8574 * Cancel the primary name an free it if it does not require 8575 * journaling. 8576 */ 8577 if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum, 8578 0, &inodedep) != 0) { 8579 /* Abort the addref that reference this diradd. */ 8580 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 8581 if (inoref->if_list.wk_type != D_JADDREF) 8582 continue; 8583 jaddref = (struct jaddref *)inoref; 8584 if (jaddref->ja_diradd != dap) 8585 continue; 8586 if (cancel_jaddref(jaddref, inodedep, 8587 &dirrem->dm_jwork) == 0) { 8588 free_jremref(jremref); 8589 jremref = NULL; 8590 } 8591 break; 8592 } 8593 } 8594 /* 8595 * Cancel subordinate names and free them if they do not require 8596 * journaling. 8597 */ 8598 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 8599 ump = VFSTOUFS(dap->da_list.wk_mp); 8600 LIST_FOREACH(mkdir, &ump->softdep_mkdirlisthd, md_mkdirs) { 8601 if (mkdir->md_diradd != dap) 8602 continue; 8603 if ((jaddref = mkdir->md_jaddref) == NULL) 8604 continue; 8605 mkdir->md_jaddref = NULL; 8606 if (mkdir->md_state & MKDIR_PARENT) { 8607 if (cancel_jaddref(jaddref, NULL, 8608 &dirrem->dm_jwork) == 0) { 8609 free_jremref(dotdotremref); 8610 dotdotremref = NULL; 8611 } 8612 } else { 8613 if (cancel_jaddref(jaddref, inodedep, 8614 &dirrem->dm_jwork) == 0) { 8615 free_jremref(dotremref); 8616 dotremref = NULL; 8617 } 8618 } 8619 } 8620 } 8621 8622 if (jremref) 8623 journal_jremref(dirrem, jremref, inodedep); 8624 if (dotremref) 8625 journal_jremref(dirrem, dotremref, inodedep); 8626 if (dotdotremref) 8627 journal_jremref(dirrem, dotdotremref, NULL); 8628 jwork_move(&dirrem->dm_jwork, &dap->da_jwork); 8629 free_diradd(dap, &dirrem->dm_jwork); 8630 } 8631 8632 /* 8633 * Free a diradd dependency structure. This routine must be called 8634 * with splbio interrupts blocked. 8635 */ 8636 static void 8637 free_diradd(dap, wkhd) 8638 struct diradd *dap; 8639 struct workhead *wkhd; 8640 { 8641 struct dirrem *dirrem; 8642 struct pagedep *pagedep; 8643 struct inodedep *inodedep; 8644 struct mkdir *mkdir, *nextmd; 8645 struct ufsmount *ump; 8646 8647 ump = VFSTOUFS(dap->da_list.wk_mp); 8648 LOCK_OWNED(ump); 8649 LIST_REMOVE(dap, da_pdlist); 8650 if (dap->da_state & ONWORKLIST) 8651 WORKLIST_REMOVE(&dap->da_list); 8652 if ((dap->da_state & DIRCHG) == 0) { 8653 pagedep = dap->da_pagedep; 8654 } else { 8655 dirrem = dap->da_previous; 8656 pagedep = dirrem->dm_pagedep; 8657 dirrem->dm_dirinum = pagedep->pd_ino; 8658 dirrem->dm_state |= COMPLETE; 8659 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 8660 add_to_worklist(&dirrem->dm_list, 0); 8661 } 8662 if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum, 8663 0, &inodedep) != 0) 8664 if (inodedep->id_mkdiradd == dap) 8665 inodedep->id_mkdiradd = NULL; 8666 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 8667 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; 8668 mkdir = nextmd) { 8669 nextmd = LIST_NEXT(mkdir, md_mkdirs); 8670 if (mkdir->md_diradd != dap) 8671 continue; 8672 dap->da_state &= 8673 ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)); 8674 LIST_REMOVE(mkdir, md_mkdirs); 8675 if (mkdir->md_state & ONWORKLIST) 8676 WORKLIST_REMOVE(&mkdir->md_list); 8677 if (mkdir->md_jaddref != NULL) 8678 panic("free_diradd: Unexpected jaddref"); 8679 WORKITEM_FREE(mkdir, D_MKDIR); 8680 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) 8681 break; 8682 } 8683 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) 8684 panic("free_diradd: unfound ref"); 8685 } 8686 if (inodedep) 8687 free_inodedep(inodedep); 8688 /* 8689 * Free any journal segments waiting for the directory write. 8690 */ 8691 handle_jwork(&dap->da_jwork); 8692 WORKITEM_FREE(dap, D_DIRADD); 8693 } 8694 8695 /* 8696 * Directory entry removal dependencies. 8697 * 8698 * When removing a directory entry, the entry's inode pointer must be 8699 * zero'ed on disk before the corresponding inode's link count is decremented 8700 * (possibly freeing the inode for re-use). This dependency is handled by 8701 * updating the directory entry but delaying the inode count reduction until 8702 * after the directory block has been written to disk. After this point, the 8703 * inode count can be decremented whenever it is convenient. 8704 */ 8705 8706 /* 8707 * This routine should be called immediately after removing 8708 * a directory entry. The inode's link count should not be 8709 * decremented by the calling procedure -- the soft updates 8710 * code will do this task when it is safe. 8711 */ 8712 void 8713 softdep_setup_remove(bp, dp, ip, isrmdir) 8714 struct buf *bp; /* buffer containing directory block */ 8715 struct inode *dp; /* inode for the directory being modified */ 8716 struct inode *ip; /* inode for directory entry being removed */ 8717 int isrmdir; /* indicates if doing RMDIR */ 8718 { 8719 struct dirrem *dirrem, *prevdirrem; 8720 struct inodedep *inodedep; 8721 int direct; 8722 8723 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0, 8724 ("softdep_setup_remove called on non-softdep filesystem")); 8725 /* 8726 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK. We want 8727 * newdirrem() to setup the full directory remove which requires 8728 * isrmdir > 1. 8729 */ 8730 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 8731 /* 8732 * Add the dirrem to the inodedep's pending remove list for quick 8733 * discovery later. 8734 */ 8735 if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0, 8736 &inodedep) == 0) 8737 panic("softdep_setup_remove: Lost inodedep."); 8738 KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked")); 8739 dirrem->dm_state |= ONDEPLIST; 8740 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 8741 8742 /* 8743 * If the COMPLETE flag is clear, then there were no active 8744 * entries and we want to roll back to a zeroed entry until 8745 * the new inode is committed to disk. If the COMPLETE flag is 8746 * set then we have deleted an entry that never made it to 8747 * disk. If the entry we deleted resulted from a name change, 8748 * then the old name still resides on disk. We cannot delete 8749 * its inode (returned to us in prevdirrem) until the zeroed 8750 * directory entry gets to disk. The new inode has never been 8751 * referenced on the disk, so can be deleted immediately. 8752 */ 8753 if ((dirrem->dm_state & COMPLETE) == 0) { 8754 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem, 8755 dm_next); 8756 FREE_LOCK(ip->i_ump); 8757 } else { 8758 if (prevdirrem != NULL) 8759 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, 8760 prevdirrem, dm_next); 8761 dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino; 8762 direct = LIST_EMPTY(&dirrem->dm_jremrefhd); 8763 FREE_LOCK(ip->i_ump); 8764 if (direct) 8765 handle_workitem_remove(dirrem, 0); 8766 } 8767 } 8768 8769 /* 8770 * Check for an entry matching 'offset' on both the pd_dirraddhd list and the 8771 * pd_pendinghd list of a pagedep. 8772 */ 8773 static struct diradd * 8774 diradd_lookup(pagedep, offset) 8775 struct pagedep *pagedep; 8776 int offset; 8777 { 8778 struct diradd *dap; 8779 8780 LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist) 8781 if (dap->da_offset == offset) 8782 return (dap); 8783 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) 8784 if (dap->da_offset == offset) 8785 return (dap); 8786 return (NULL); 8787 } 8788 8789 /* 8790 * Search for a .. diradd dependency in a directory that is being removed. 8791 * If the directory was renamed to a new parent we have a diradd rather 8792 * than a mkdir for the .. entry. We need to cancel it now before 8793 * it is found in truncate(). 8794 */ 8795 static struct jremref * 8796 cancel_diradd_dotdot(ip, dirrem, jremref) 8797 struct inode *ip; 8798 struct dirrem *dirrem; 8799 struct jremref *jremref; 8800 { 8801 struct pagedep *pagedep; 8802 struct diradd *dap; 8803 struct worklist *wk; 8804 8805 if (pagedep_lookup(UFSTOVFS(ip->i_ump), NULL, ip->i_number, 0, 0, 8806 &pagedep) == 0) 8807 return (jremref); 8808 dap = diradd_lookup(pagedep, DOTDOT_OFFSET); 8809 if (dap == NULL) 8810 return (jremref); 8811 cancel_diradd(dap, dirrem, jremref, NULL, NULL); 8812 /* 8813 * Mark any journal work as belonging to the parent so it is freed 8814 * with the .. reference. 8815 */ 8816 LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list) 8817 wk->wk_state |= MKDIR_PARENT; 8818 return (NULL); 8819 } 8820 8821 /* 8822 * Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to 8823 * replace it with a dirrem/diradd pair as a result of re-parenting a 8824 * directory. This ensures that we don't simultaneously have a mkdir and 8825 * a diradd for the same .. entry. 8826 */ 8827 static struct jremref * 8828 cancel_mkdir_dotdot(ip, dirrem, jremref) 8829 struct inode *ip; 8830 struct dirrem *dirrem; 8831 struct jremref *jremref; 8832 { 8833 struct inodedep *inodedep; 8834 struct jaddref *jaddref; 8835 struct ufsmount *ump; 8836 struct mkdir *mkdir; 8837 struct diradd *dap; 8838 8839 if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0, 8840 &inodedep) == 0) 8841 return (jremref); 8842 dap = inodedep->id_mkdiradd; 8843 if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0) 8844 return (jremref); 8845 ump = VFSTOUFS(inodedep->id_list.wk_mp); 8846 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; 8847 mkdir = LIST_NEXT(mkdir, md_mkdirs)) 8848 if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT) 8849 break; 8850 if (mkdir == NULL) 8851 panic("cancel_mkdir_dotdot: Unable to find mkdir\n"); 8852 if ((jaddref = mkdir->md_jaddref) != NULL) { 8853 mkdir->md_jaddref = NULL; 8854 jaddref->ja_state &= ~MKDIR_PARENT; 8855 if (inodedep_lookup(UFSTOVFS(ip->i_ump), jaddref->ja_ino, 0, 8856 &inodedep) == 0) 8857 panic("cancel_mkdir_dotdot: Lost parent inodedep"); 8858 if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) { 8859 journal_jremref(dirrem, jremref, inodedep); 8860 jremref = NULL; 8861 } 8862 } 8863 if (mkdir->md_state & ONWORKLIST) 8864 WORKLIST_REMOVE(&mkdir->md_list); 8865 mkdir->md_state |= ALLCOMPLETE; 8866 complete_mkdir(mkdir); 8867 return (jremref); 8868 } 8869 8870 static void 8871 journal_jremref(dirrem, jremref, inodedep) 8872 struct dirrem *dirrem; 8873 struct jremref *jremref; 8874 struct inodedep *inodedep; 8875 { 8876 8877 if (inodedep == NULL) 8878 if (inodedep_lookup(jremref->jr_list.wk_mp, 8879 jremref->jr_ref.if_ino, 0, &inodedep) == 0) 8880 panic("journal_jremref: Lost inodedep"); 8881 LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps); 8882 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps); 8883 add_to_journal(&jremref->jr_list); 8884 } 8885 8886 static void 8887 dirrem_journal(dirrem, jremref, dotremref, dotdotremref) 8888 struct dirrem *dirrem; 8889 struct jremref *jremref; 8890 struct jremref *dotremref; 8891 struct jremref *dotdotremref; 8892 { 8893 struct inodedep *inodedep; 8894 8895 8896 if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0, 8897 &inodedep) == 0) 8898 panic("dirrem_journal: Lost inodedep"); 8899 journal_jremref(dirrem, jremref, inodedep); 8900 if (dotremref) 8901 journal_jremref(dirrem, dotremref, inodedep); 8902 if (dotdotremref) 8903 journal_jremref(dirrem, dotdotremref, NULL); 8904 } 8905 8906 /* 8907 * Allocate a new dirrem if appropriate and return it along with 8908 * its associated pagedep. Called without a lock, returns with lock. 8909 */ 8910 static struct dirrem * 8911 newdirrem(bp, dp, ip, isrmdir, prevdirremp) 8912 struct buf *bp; /* buffer containing directory block */ 8913 struct inode *dp; /* inode for the directory being modified */ 8914 struct inode *ip; /* inode for directory entry being removed */ 8915 int isrmdir; /* indicates if doing RMDIR */ 8916 struct dirrem **prevdirremp; /* previously referenced inode, if any */ 8917 { 8918 int offset; 8919 ufs_lbn_t lbn; 8920 struct diradd *dap; 8921 struct dirrem *dirrem; 8922 struct pagedep *pagedep; 8923 struct jremref *jremref; 8924 struct jremref *dotremref; 8925 struct jremref *dotdotremref; 8926 struct vnode *dvp; 8927 8928 /* 8929 * Whiteouts have no deletion dependencies. 8930 */ 8931 if (ip == NULL) 8932 panic("newdirrem: whiteout"); 8933 dvp = ITOV(dp); 8934 /* 8935 * If we are over our limit, try to improve the situation. 8936 * Limiting the number of dirrem structures will also limit 8937 * the number of freefile and freeblks structures. 8938 */ 8939 ACQUIRE_LOCK(ip->i_ump); 8940 if (!IS_SNAPSHOT(ip) && dep_current[D_DIRREM] > max_softdeps / 2) 8941 (void) request_cleanup(ITOV(dp)->v_mount, FLUSH_BLOCKS); 8942 FREE_LOCK(ip->i_ump); 8943 dirrem = malloc(sizeof(struct dirrem), 8944 M_DIRREM, M_SOFTDEP_FLAGS|M_ZERO); 8945 workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount); 8946 LIST_INIT(&dirrem->dm_jremrefhd); 8947 LIST_INIT(&dirrem->dm_jwork); 8948 dirrem->dm_state = isrmdir ? RMDIR : 0; 8949 dirrem->dm_oldinum = ip->i_number; 8950 *prevdirremp = NULL; 8951 /* 8952 * Allocate remove reference structures to track journal write 8953 * dependencies. We will always have one for the link and 8954 * when doing directories we will always have one more for dot. 8955 * When renaming a directory we skip the dotdot link change so 8956 * this is not needed. 8957 */ 8958 jremref = dotremref = dotdotremref = NULL; 8959 if (DOINGSUJ(dvp)) { 8960 if (isrmdir) { 8961 jremref = newjremref(dirrem, dp, ip, dp->i_offset, 8962 ip->i_effnlink + 2); 8963 dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET, 8964 ip->i_effnlink + 1); 8965 dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET, 8966 dp->i_effnlink + 1); 8967 dotdotremref->jr_state |= MKDIR_PARENT; 8968 } else 8969 jremref = newjremref(dirrem, dp, ip, dp->i_offset, 8970 ip->i_effnlink + 1); 8971 } 8972 ACQUIRE_LOCK(ip->i_ump); 8973 lbn = lblkno(dp->i_fs, dp->i_offset); 8974 offset = blkoff(dp->i_fs, dp->i_offset); 8975 pagedep_lookup(UFSTOVFS(dp->i_ump), bp, dp->i_number, lbn, DEPALLOC, 8976 &pagedep); 8977 dirrem->dm_pagedep = pagedep; 8978 dirrem->dm_offset = offset; 8979 /* 8980 * If we're renaming a .. link to a new directory, cancel any 8981 * existing MKDIR_PARENT mkdir. If it has already been canceled 8982 * the jremref is preserved for any potential diradd in this 8983 * location. This can not coincide with a rmdir. 8984 */ 8985 if (dp->i_offset == DOTDOT_OFFSET) { 8986 if (isrmdir) 8987 panic("newdirrem: .. directory change during remove?"); 8988 jremref = cancel_mkdir_dotdot(dp, dirrem, jremref); 8989 } 8990 /* 8991 * If we're removing a directory search for the .. dependency now and 8992 * cancel it. Any pending journal work will be added to the dirrem 8993 * to be completed when the workitem remove completes. 8994 */ 8995 if (isrmdir) 8996 dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref); 8997 /* 8998 * Check for a diradd dependency for the same directory entry. 8999 * If present, then both dependencies become obsolete and can 9000 * be de-allocated. 9001 */ 9002 dap = diradd_lookup(pagedep, offset); 9003 if (dap == NULL) { 9004 /* 9005 * Link the jremref structures into the dirrem so they are 9006 * written prior to the pagedep. 9007 */ 9008 if (jremref) 9009 dirrem_journal(dirrem, jremref, dotremref, 9010 dotdotremref); 9011 return (dirrem); 9012 } 9013 /* 9014 * Must be ATTACHED at this point. 9015 */ 9016 if ((dap->da_state & ATTACHED) == 0) 9017 panic("newdirrem: not ATTACHED"); 9018 if (dap->da_newinum != ip->i_number) 9019 panic("newdirrem: inum %ju should be %ju", 9020 (uintmax_t)ip->i_number, (uintmax_t)dap->da_newinum); 9021 /* 9022 * If we are deleting a changed name that never made it to disk, 9023 * then return the dirrem describing the previous inode (which 9024 * represents the inode currently referenced from this entry on disk). 9025 */ 9026 if ((dap->da_state & DIRCHG) != 0) { 9027 *prevdirremp = dap->da_previous; 9028 dap->da_state &= ~DIRCHG; 9029 dap->da_pagedep = pagedep; 9030 } 9031 /* 9032 * We are deleting an entry that never made it to disk. 9033 * Mark it COMPLETE so we can delete its inode immediately. 9034 */ 9035 dirrem->dm_state |= COMPLETE; 9036 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref); 9037 #ifdef SUJ_DEBUG 9038 if (isrmdir == 0) { 9039 struct worklist *wk; 9040 9041 LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list) 9042 if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT)) 9043 panic("bad wk %p (0x%X)\n", wk, wk->wk_state); 9044 } 9045 #endif 9046 9047 return (dirrem); 9048 } 9049 9050 /* 9051 * Directory entry change dependencies. 9052 * 9053 * Changing an existing directory entry requires that an add operation 9054 * be completed first followed by a deletion. The semantics for the addition 9055 * are identical to the description of adding a new entry above except 9056 * that the rollback is to the old inode number rather than zero. Once 9057 * the addition dependency is completed, the removal is done as described 9058 * in the removal routine above. 9059 */ 9060 9061 /* 9062 * This routine should be called immediately after changing 9063 * a directory entry. The inode's link count should not be 9064 * decremented by the calling procedure -- the soft updates 9065 * code will perform this task when it is safe. 9066 */ 9067 void 9068 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 9069 struct buf *bp; /* buffer containing directory block */ 9070 struct inode *dp; /* inode for the directory being modified */ 9071 struct inode *ip; /* inode for directory entry being removed */ 9072 ino_t newinum; /* new inode number for changed entry */ 9073 int isrmdir; /* indicates if doing RMDIR */ 9074 { 9075 int offset; 9076 struct diradd *dap = NULL; 9077 struct dirrem *dirrem, *prevdirrem; 9078 struct pagedep *pagedep; 9079 struct inodedep *inodedep; 9080 struct jaddref *jaddref; 9081 struct mount *mp; 9082 9083 offset = blkoff(dp->i_fs, dp->i_offset); 9084 mp = UFSTOVFS(dp->i_ump); 9085 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 9086 ("softdep_setup_directory_change called on non-softdep filesystem")); 9087 9088 /* 9089 * Whiteouts do not need diradd dependencies. 9090 */ 9091 if (newinum != WINO) { 9092 dap = malloc(sizeof(struct diradd), 9093 M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO); 9094 workitem_alloc(&dap->da_list, D_DIRADD, mp); 9095 dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE; 9096 dap->da_offset = offset; 9097 dap->da_newinum = newinum; 9098 LIST_INIT(&dap->da_jwork); 9099 } 9100 9101 /* 9102 * Allocate a new dirrem and ACQUIRE_LOCK. 9103 */ 9104 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 9105 pagedep = dirrem->dm_pagedep; 9106 /* 9107 * The possible values for isrmdir: 9108 * 0 - non-directory file rename 9109 * 1 - directory rename within same directory 9110 * inum - directory rename to new directory of given inode number 9111 * When renaming to a new directory, we are both deleting and 9112 * creating a new directory entry, so the link count on the new 9113 * directory should not change. Thus we do not need the followup 9114 * dirrem which is usually done in handle_workitem_remove. We set 9115 * the DIRCHG flag to tell handle_workitem_remove to skip the 9116 * followup dirrem. 9117 */ 9118 if (isrmdir > 1) 9119 dirrem->dm_state |= DIRCHG; 9120 9121 /* 9122 * Whiteouts have no additional dependencies, 9123 * so just put the dirrem on the correct list. 9124 */ 9125 if (newinum == WINO) { 9126 if ((dirrem->dm_state & COMPLETE) == 0) { 9127 LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem, 9128 dm_next); 9129 } else { 9130 dirrem->dm_dirinum = pagedep->pd_ino; 9131 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 9132 add_to_worklist(&dirrem->dm_list, 0); 9133 } 9134 FREE_LOCK(dp->i_ump); 9135 return; 9136 } 9137 /* 9138 * Add the dirrem to the inodedep's pending remove list for quick 9139 * discovery later. A valid nlinkdelta ensures that this lookup 9140 * will not fail. 9141 */ 9142 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 9143 panic("softdep_setup_directory_change: Lost inodedep."); 9144 dirrem->dm_state |= ONDEPLIST; 9145 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 9146 9147 /* 9148 * If the COMPLETE flag is clear, then there were no active 9149 * entries and we want to roll back to the previous inode until 9150 * the new inode is committed to disk. If the COMPLETE flag is 9151 * set, then we have deleted an entry that never made it to disk. 9152 * If the entry we deleted resulted from a name change, then the old 9153 * inode reference still resides on disk. Any rollback that we do 9154 * needs to be to that old inode (returned to us in prevdirrem). If 9155 * the entry we deleted resulted from a create, then there is 9156 * no entry on the disk, so we want to roll back to zero rather 9157 * than the uncommitted inode. In either of the COMPLETE cases we 9158 * want to immediately free the unwritten and unreferenced inode. 9159 */ 9160 if ((dirrem->dm_state & COMPLETE) == 0) { 9161 dap->da_previous = dirrem; 9162 } else { 9163 if (prevdirrem != NULL) { 9164 dap->da_previous = prevdirrem; 9165 } else { 9166 dap->da_state &= ~DIRCHG; 9167 dap->da_pagedep = pagedep; 9168 } 9169 dirrem->dm_dirinum = pagedep->pd_ino; 9170 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 9171 add_to_worklist(&dirrem->dm_list, 0); 9172 } 9173 /* 9174 * Lookup the jaddref for this journal entry. We must finish 9175 * initializing it and make the diradd write dependent on it. 9176 * If we're not journaling, put it on the id_bufwait list if the 9177 * inode is not yet written. If it is written, do the post-inode 9178 * write processing to put it on the id_pendinghd list. 9179 */ 9180 inodedep_lookup(mp, newinum, DEPALLOC | NODELAY, &inodedep); 9181 if (MOUNTEDSUJ(mp)) { 9182 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 9183 inoreflst); 9184 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 9185 ("softdep_setup_directory_change: bad jaddref %p", 9186 jaddref)); 9187 jaddref->ja_diroff = dp->i_offset; 9188 jaddref->ja_diradd = dap; 9189 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], 9190 dap, da_pdlist); 9191 add_to_journal(&jaddref->ja_list); 9192 } else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 9193 dap->da_state |= COMPLETE; 9194 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 9195 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 9196 } else { 9197 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], 9198 dap, da_pdlist); 9199 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 9200 } 9201 /* 9202 * If we're making a new name for a directory that has not been 9203 * committed when need to move the dot and dotdot references to 9204 * this new name. 9205 */ 9206 if (inodedep->id_mkdiradd && dp->i_offset != DOTDOT_OFFSET) 9207 merge_diradd(inodedep, dap); 9208 FREE_LOCK(dp->i_ump); 9209 } 9210 9211 /* 9212 * Called whenever the link count on an inode is changed. 9213 * It creates an inode dependency so that the new reference(s) 9214 * to the inode cannot be committed to disk until the updated 9215 * inode has been written. 9216 */ 9217 void 9218 softdep_change_linkcnt(ip) 9219 struct inode *ip; /* the inode with the increased link count */ 9220 { 9221 struct inodedep *inodedep; 9222 int dflags; 9223 9224 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0, 9225 ("softdep_change_linkcnt called on non-softdep filesystem")); 9226 ACQUIRE_LOCK(ip->i_ump); 9227 dflags = DEPALLOC; 9228 if (IS_SNAPSHOT(ip)) 9229 dflags |= NODELAY; 9230 inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, dflags, &inodedep); 9231 if (ip->i_nlink < ip->i_effnlink) 9232 panic("softdep_change_linkcnt: bad delta"); 9233 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 9234 FREE_LOCK(ip->i_ump); 9235 } 9236 9237 /* 9238 * Attach a sbdep dependency to the superblock buf so that we can keep 9239 * track of the head of the linked list of referenced but unlinked inodes. 9240 */ 9241 void 9242 softdep_setup_sbupdate(ump, fs, bp) 9243 struct ufsmount *ump; 9244 struct fs *fs; 9245 struct buf *bp; 9246 { 9247 struct sbdep *sbdep; 9248 struct worklist *wk; 9249 9250 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 9251 ("softdep_setup_sbupdate called on non-softdep filesystem")); 9252 LIST_FOREACH(wk, &bp->b_dep, wk_list) 9253 if (wk->wk_type == D_SBDEP) 9254 break; 9255 if (wk != NULL) 9256 return; 9257 sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS); 9258 workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump)); 9259 sbdep->sb_fs = fs; 9260 sbdep->sb_ump = ump; 9261 ACQUIRE_LOCK(ump); 9262 WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list); 9263 FREE_LOCK(ump); 9264 } 9265 9266 /* 9267 * Return the first unlinked inodedep which is ready to be the head of the 9268 * list. The inodedep and all those after it must have valid next pointers. 9269 */ 9270 static struct inodedep * 9271 first_unlinked_inodedep(ump) 9272 struct ufsmount *ump; 9273 { 9274 struct inodedep *inodedep; 9275 struct inodedep *idp; 9276 9277 LOCK_OWNED(ump); 9278 for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst); 9279 inodedep; inodedep = idp) { 9280 if ((inodedep->id_state & UNLINKNEXT) == 0) 9281 return (NULL); 9282 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 9283 if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0) 9284 break; 9285 if ((inodedep->id_state & UNLINKPREV) == 0) 9286 break; 9287 } 9288 return (inodedep); 9289 } 9290 9291 /* 9292 * Set the sujfree unlinked head pointer prior to writing a superblock. 9293 */ 9294 static void 9295 initiate_write_sbdep(sbdep) 9296 struct sbdep *sbdep; 9297 { 9298 struct inodedep *inodedep; 9299 struct fs *bpfs; 9300 struct fs *fs; 9301 9302 bpfs = sbdep->sb_fs; 9303 fs = sbdep->sb_ump->um_fs; 9304 inodedep = first_unlinked_inodedep(sbdep->sb_ump); 9305 if (inodedep) { 9306 fs->fs_sujfree = inodedep->id_ino; 9307 inodedep->id_state |= UNLINKPREV; 9308 } else 9309 fs->fs_sujfree = 0; 9310 bpfs->fs_sujfree = fs->fs_sujfree; 9311 } 9312 9313 /* 9314 * After a superblock is written determine whether it must be written again 9315 * due to a changing unlinked list head. 9316 */ 9317 static int 9318 handle_written_sbdep(sbdep, bp) 9319 struct sbdep *sbdep; 9320 struct buf *bp; 9321 { 9322 struct inodedep *inodedep; 9323 struct mount *mp; 9324 struct fs *fs; 9325 9326 LOCK_OWNED(sbdep->sb_ump); 9327 fs = sbdep->sb_fs; 9328 mp = UFSTOVFS(sbdep->sb_ump); 9329 /* 9330 * If the superblock doesn't match the in-memory list start over. 9331 */ 9332 inodedep = first_unlinked_inodedep(sbdep->sb_ump); 9333 if ((inodedep && fs->fs_sujfree != inodedep->id_ino) || 9334 (inodedep == NULL && fs->fs_sujfree != 0)) { 9335 bdirty(bp); 9336 return (1); 9337 } 9338 WORKITEM_FREE(sbdep, D_SBDEP); 9339 if (fs->fs_sujfree == 0) 9340 return (0); 9341 /* 9342 * Now that we have a record of this inode in stable store allow it 9343 * to be written to free up pending work. Inodes may see a lot of 9344 * write activity after they are unlinked which we must not hold up. 9345 */ 9346 for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) { 9347 if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS) 9348 panic("handle_written_sbdep: Bad inodedep %p (0x%X)", 9349 inodedep, inodedep->id_state); 9350 if (inodedep->id_state & UNLINKONLIST) 9351 break; 9352 inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST; 9353 } 9354 9355 return (0); 9356 } 9357 9358 /* 9359 * Mark an inodedep as unlinked and insert it into the in-memory unlinked list. 9360 */ 9361 static void 9362 unlinked_inodedep(mp, inodedep) 9363 struct mount *mp; 9364 struct inodedep *inodedep; 9365 { 9366 struct ufsmount *ump; 9367 9368 ump = VFSTOUFS(mp); 9369 LOCK_OWNED(ump); 9370 if (MOUNTEDSUJ(mp) == 0) 9371 return; 9372 ump->um_fs->fs_fmod = 1; 9373 if (inodedep->id_state & UNLINKED) 9374 panic("unlinked_inodedep: %p already unlinked\n", inodedep); 9375 inodedep->id_state |= UNLINKED; 9376 TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked); 9377 } 9378 9379 /* 9380 * Remove an inodedep from the unlinked inodedep list. This may require 9381 * disk writes if the inode has made it that far. 9382 */ 9383 static void 9384 clear_unlinked_inodedep(inodedep) 9385 struct inodedep *inodedep; 9386 { 9387 struct ufsmount *ump; 9388 struct inodedep *idp; 9389 struct inodedep *idn; 9390 struct fs *fs; 9391 struct buf *bp; 9392 ino_t ino; 9393 ino_t nino; 9394 ino_t pino; 9395 int error; 9396 9397 ump = VFSTOUFS(inodedep->id_list.wk_mp); 9398 fs = ump->um_fs; 9399 ino = inodedep->id_ino; 9400 error = 0; 9401 for (;;) { 9402 LOCK_OWNED(ump); 9403 KASSERT((inodedep->id_state & UNLINKED) != 0, 9404 ("clear_unlinked_inodedep: inodedep %p not unlinked", 9405 inodedep)); 9406 /* 9407 * If nothing has yet been written simply remove us from 9408 * the in memory list and return. This is the most common 9409 * case where handle_workitem_remove() loses the final 9410 * reference. 9411 */ 9412 if ((inodedep->id_state & UNLINKLINKS) == 0) 9413 break; 9414 /* 9415 * If we have a NEXT pointer and no PREV pointer we can simply 9416 * clear NEXT's PREV and remove ourselves from the list. Be 9417 * careful not to clear PREV if the superblock points at 9418 * next as well. 9419 */ 9420 idn = TAILQ_NEXT(inodedep, id_unlinked); 9421 if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) { 9422 if (idn && fs->fs_sujfree != idn->id_ino) 9423 idn->id_state &= ~UNLINKPREV; 9424 break; 9425 } 9426 /* 9427 * Here we have an inodedep which is actually linked into 9428 * the list. We must remove it by forcing a write to the 9429 * link before us, whether it be the superblock or an inode. 9430 * Unfortunately the list may change while we're waiting 9431 * on the buf lock for either resource so we must loop until 9432 * we lock the right one. If both the superblock and an 9433 * inode point to this inode we must clear the inode first 9434 * followed by the superblock. 9435 */ 9436 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 9437 pino = 0; 9438 if (idp && (idp->id_state & UNLINKNEXT)) 9439 pino = idp->id_ino; 9440 FREE_LOCK(ump); 9441 if (pino == 0) { 9442 bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc), 9443 (int)fs->fs_sbsize, 0, 0, 0); 9444 } else { 9445 error = bread(ump->um_devvp, 9446 fsbtodb(fs, ino_to_fsba(fs, pino)), 9447 (int)fs->fs_bsize, NOCRED, &bp); 9448 if (error) 9449 brelse(bp); 9450 } 9451 ACQUIRE_LOCK(ump); 9452 if (error) 9453 break; 9454 /* If the list has changed restart the loop. */ 9455 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 9456 nino = 0; 9457 if (idp && (idp->id_state & UNLINKNEXT)) 9458 nino = idp->id_ino; 9459 if (nino != pino || 9460 (inodedep->id_state & UNLINKPREV) != UNLINKPREV) { 9461 FREE_LOCK(ump); 9462 brelse(bp); 9463 ACQUIRE_LOCK(ump); 9464 continue; 9465 } 9466 nino = 0; 9467 idn = TAILQ_NEXT(inodedep, id_unlinked); 9468 if (idn) 9469 nino = idn->id_ino; 9470 /* 9471 * Remove us from the in memory list. After this we cannot 9472 * access the inodedep. 9473 */ 9474 KASSERT((inodedep->id_state & UNLINKED) != 0, 9475 ("clear_unlinked_inodedep: inodedep %p not unlinked", 9476 inodedep)); 9477 inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST); 9478 TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked); 9479 FREE_LOCK(ump); 9480 /* 9481 * The predecessor's next pointer is manually updated here 9482 * so that the NEXT flag is never cleared for an element 9483 * that is in the list. 9484 */ 9485 if (pino == 0) { 9486 bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize); 9487 ffs_oldfscompat_write((struct fs *)bp->b_data, ump); 9488 softdep_setup_sbupdate(ump, (struct fs *)bp->b_data, 9489 bp); 9490 } else if (fs->fs_magic == FS_UFS1_MAGIC) 9491 ((struct ufs1_dinode *)bp->b_data + 9492 ino_to_fsbo(fs, pino))->di_freelink = nino; 9493 else 9494 ((struct ufs2_dinode *)bp->b_data + 9495 ino_to_fsbo(fs, pino))->di_freelink = nino; 9496 /* 9497 * If the bwrite fails we have no recourse to recover. The 9498 * filesystem is corrupted already. 9499 */ 9500 bwrite(bp); 9501 ACQUIRE_LOCK(ump); 9502 /* 9503 * If the superblock pointer still needs to be cleared force 9504 * a write here. 9505 */ 9506 if (fs->fs_sujfree == ino) { 9507 FREE_LOCK(ump); 9508 bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc), 9509 (int)fs->fs_sbsize, 0, 0, 0); 9510 bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize); 9511 ffs_oldfscompat_write((struct fs *)bp->b_data, ump); 9512 softdep_setup_sbupdate(ump, (struct fs *)bp->b_data, 9513 bp); 9514 bwrite(bp); 9515 ACQUIRE_LOCK(ump); 9516 } 9517 9518 if (fs->fs_sujfree != ino) 9519 return; 9520 panic("clear_unlinked_inodedep: Failed to clear free head"); 9521 } 9522 if (inodedep->id_ino == fs->fs_sujfree) 9523 panic("clear_unlinked_inodedep: Freeing head of free list"); 9524 inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST); 9525 TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked); 9526 return; 9527 } 9528 9529 /* 9530 * This workitem decrements the inode's link count. 9531 * If the link count reaches zero, the file is removed. 9532 */ 9533 static int 9534 handle_workitem_remove(dirrem, flags) 9535 struct dirrem *dirrem; 9536 int flags; 9537 { 9538 struct inodedep *inodedep; 9539 struct workhead dotdotwk; 9540 struct worklist *wk; 9541 struct ufsmount *ump; 9542 struct mount *mp; 9543 struct vnode *vp; 9544 struct inode *ip; 9545 ino_t oldinum; 9546 9547 if (dirrem->dm_state & ONWORKLIST) 9548 panic("handle_workitem_remove: dirrem %p still on worklist", 9549 dirrem); 9550 oldinum = dirrem->dm_oldinum; 9551 mp = dirrem->dm_list.wk_mp; 9552 ump = VFSTOUFS(mp); 9553 flags |= LK_EXCLUSIVE; 9554 if (ffs_vgetf(mp, oldinum, flags, &vp, FFSV_FORCEINSMQ) != 0) 9555 return (EBUSY); 9556 ip = VTOI(vp); 9557 ACQUIRE_LOCK(ump); 9558 if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0) 9559 panic("handle_workitem_remove: lost inodedep"); 9560 if (dirrem->dm_state & ONDEPLIST) 9561 LIST_REMOVE(dirrem, dm_inonext); 9562 KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd), 9563 ("handle_workitem_remove: Journal entries not written.")); 9564 9565 /* 9566 * Move all dependencies waiting on the remove to complete 9567 * from the dirrem to the inode inowait list to be completed 9568 * after the inode has been updated and written to disk. Any 9569 * marked MKDIR_PARENT are saved to be completed when the .. ref 9570 * is removed. 9571 */ 9572 LIST_INIT(&dotdotwk); 9573 while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) { 9574 WORKLIST_REMOVE(wk); 9575 if (wk->wk_state & MKDIR_PARENT) { 9576 wk->wk_state &= ~MKDIR_PARENT; 9577 WORKLIST_INSERT(&dotdotwk, wk); 9578 continue; 9579 } 9580 WORKLIST_INSERT(&inodedep->id_inowait, wk); 9581 } 9582 LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list); 9583 /* 9584 * Normal file deletion. 9585 */ 9586 if ((dirrem->dm_state & RMDIR) == 0) { 9587 ip->i_nlink--; 9588 DIP_SET(ip, i_nlink, ip->i_nlink); 9589 ip->i_flag |= IN_CHANGE; 9590 if (ip->i_nlink < ip->i_effnlink) 9591 panic("handle_workitem_remove: bad file delta"); 9592 if (ip->i_nlink == 0) 9593 unlinked_inodedep(mp, inodedep); 9594 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 9595 KASSERT(LIST_EMPTY(&dirrem->dm_jwork), 9596 ("handle_workitem_remove: worklist not empty. %s", 9597 TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type))); 9598 WORKITEM_FREE(dirrem, D_DIRREM); 9599 FREE_LOCK(ump); 9600 goto out; 9601 } 9602 /* 9603 * Directory deletion. Decrement reference count for both the 9604 * just deleted parent directory entry and the reference for ".". 9605 * Arrange to have the reference count on the parent decremented 9606 * to account for the loss of "..". 9607 */ 9608 ip->i_nlink -= 2; 9609 DIP_SET(ip, i_nlink, ip->i_nlink); 9610 ip->i_flag |= IN_CHANGE; 9611 if (ip->i_nlink < ip->i_effnlink) 9612 panic("handle_workitem_remove: bad dir delta"); 9613 if (ip->i_nlink == 0) 9614 unlinked_inodedep(mp, inodedep); 9615 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 9616 /* 9617 * Rename a directory to a new parent. Since, we are both deleting 9618 * and creating a new directory entry, the link count on the new 9619 * directory should not change. Thus we skip the followup dirrem. 9620 */ 9621 if (dirrem->dm_state & DIRCHG) { 9622 KASSERT(LIST_EMPTY(&dirrem->dm_jwork), 9623 ("handle_workitem_remove: DIRCHG and worklist not empty.")); 9624 WORKITEM_FREE(dirrem, D_DIRREM); 9625 FREE_LOCK(ump); 9626 goto out; 9627 } 9628 dirrem->dm_state = ONDEPLIST; 9629 dirrem->dm_oldinum = dirrem->dm_dirinum; 9630 /* 9631 * Place the dirrem on the parent's diremhd list. 9632 */ 9633 if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0) 9634 panic("handle_workitem_remove: lost dir inodedep"); 9635 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 9636 /* 9637 * If the allocated inode has never been written to disk, then 9638 * the on-disk inode is zero'ed and we can remove the file 9639 * immediately. When journaling if the inode has been marked 9640 * unlinked and not DEPCOMPLETE we know it can never be written. 9641 */ 9642 inodedep_lookup(mp, oldinum, 0, &inodedep); 9643 if (inodedep == NULL || 9644 (inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED || 9645 check_inode_unwritten(inodedep)) { 9646 FREE_LOCK(ump); 9647 vput(vp); 9648 return handle_workitem_remove(dirrem, flags); 9649 } 9650 WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list); 9651 FREE_LOCK(ump); 9652 ip->i_flag |= IN_CHANGE; 9653 out: 9654 ffs_update(vp, 0); 9655 vput(vp); 9656 return (0); 9657 } 9658 9659 /* 9660 * Inode de-allocation dependencies. 9661 * 9662 * When an inode's link count is reduced to zero, it can be de-allocated. We 9663 * found it convenient to postpone de-allocation until after the inode is 9664 * written to disk with its new link count (zero). At this point, all of the 9665 * on-disk inode's block pointers are nullified and, with careful dependency 9666 * list ordering, all dependencies related to the inode will be satisfied and 9667 * the corresponding dependency structures de-allocated. So, if/when the 9668 * inode is reused, there will be no mixing of old dependencies with new 9669 * ones. This artificial dependency is set up by the block de-allocation 9670 * procedure above (softdep_setup_freeblocks) and completed by the 9671 * following procedure. 9672 */ 9673 static void 9674 handle_workitem_freefile(freefile) 9675 struct freefile *freefile; 9676 { 9677 struct workhead wkhd; 9678 struct fs *fs; 9679 struct inodedep *idp; 9680 struct ufsmount *ump; 9681 int error; 9682 9683 ump = VFSTOUFS(freefile->fx_list.wk_mp); 9684 fs = ump->um_fs; 9685 #ifdef DEBUG 9686 ACQUIRE_LOCK(ump); 9687 error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp); 9688 FREE_LOCK(ump); 9689 if (error) 9690 panic("handle_workitem_freefile: inodedep %p survived", idp); 9691 #endif 9692 UFS_LOCK(ump); 9693 fs->fs_pendinginodes -= 1; 9694 UFS_UNLOCK(ump); 9695 LIST_INIT(&wkhd); 9696 LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list); 9697 if ((error = ffs_freefile(ump, fs, freefile->fx_devvp, 9698 freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0) 9699 softdep_error("handle_workitem_freefile", error); 9700 ACQUIRE_LOCK(ump); 9701 WORKITEM_FREE(freefile, D_FREEFILE); 9702 FREE_LOCK(ump); 9703 } 9704 9705 9706 /* 9707 * Helper function which unlinks marker element from work list and returns 9708 * the next element on the list. 9709 */ 9710 static __inline struct worklist * 9711 markernext(struct worklist *marker) 9712 { 9713 struct worklist *next; 9714 9715 next = LIST_NEXT(marker, wk_list); 9716 LIST_REMOVE(marker, wk_list); 9717 return next; 9718 } 9719 9720 /* 9721 * Disk writes. 9722 * 9723 * The dependency structures constructed above are most actively used when file 9724 * system blocks are written to disk. No constraints are placed on when a 9725 * block can be written, but unsatisfied update dependencies are made safe by 9726 * modifying (or replacing) the source memory for the duration of the disk 9727 * write. When the disk write completes, the memory block is again brought 9728 * up-to-date. 9729 * 9730 * In-core inode structure reclamation. 9731 * 9732 * Because there are a finite number of "in-core" inode structures, they are 9733 * reused regularly. By transferring all inode-related dependencies to the 9734 * in-memory inode block and indexing them separately (via "inodedep"s), we 9735 * can allow "in-core" inode structures to be reused at any time and avoid 9736 * any increase in contention. 9737 * 9738 * Called just before entering the device driver to initiate a new disk I/O. 9739 * The buffer must be locked, thus, no I/O completion operations can occur 9740 * while we are manipulating its associated dependencies. 9741 */ 9742 static void 9743 softdep_disk_io_initiation(bp) 9744 struct buf *bp; /* structure describing disk write to occur */ 9745 { 9746 struct worklist *wk; 9747 struct worklist marker; 9748 struct inodedep *inodedep; 9749 struct freeblks *freeblks; 9750 struct jblkdep *jblkdep; 9751 struct newblk *newblk; 9752 struct ufsmount *ump; 9753 9754 /* 9755 * We only care about write operations. There should never 9756 * be dependencies for reads. 9757 */ 9758 if (bp->b_iocmd != BIO_WRITE) 9759 panic("softdep_disk_io_initiation: not write"); 9760 9761 if (bp->b_vflags & BV_BKGRDINPROG) 9762 panic("softdep_disk_io_initiation: Writing buffer with " 9763 "background write in progress: %p", bp); 9764 9765 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL) 9766 return; 9767 ump = VFSTOUFS(wk->wk_mp); 9768 9769 marker.wk_type = D_LAST + 1; /* Not a normal workitem */ 9770 PHOLD(curproc); /* Don't swap out kernel stack */ 9771 ACQUIRE_LOCK(ump); 9772 /* 9773 * Do any necessary pre-I/O processing. 9774 */ 9775 for (wk = LIST_FIRST(&bp->b_dep); wk != NULL; 9776 wk = markernext(&marker)) { 9777 LIST_INSERT_AFTER(wk, &marker, wk_list); 9778 switch (wk->wk_type) { 9779 9780 case D_PAGEDEP: 9781 initiate_write_filepage(WK_PAGEDEP(wk), bp); 9782 continue; 9783 9784 case D_INODEDEP: 9785 inodedep = WK_INODEDEP(wk); 9786 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) 9787 initiate_write_inodeblock_ufs1(inodedep, bp); 9788 else 9789 initiate_write_inodeblock_ufs2(inodedep, bp); 9790 continue; 9791 9792 case D_INDIRDEP: 9793 initiate_write_indirdep(WK_INDIRDEP(wk), bp); 9794 continue; 9795 9796 case D_BMSAFEMAP: 9797 initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp); 9798 continue; 9799 9800 case D_JSEG: 9801 WK_JSEG(wk)->js_buf = NULL; 9802 continue; 9803 9804 case D_FREEBLKS: 9805 freeblks = WK_FREEBLKS(wk); 9806 jblkdep = LIST_FIRST(&freeblks->fb_jblkdephd); 9807 /* 9808 * We have to wait for the freeblks to be journaled 9809 * before we can write an inodeblock with updated 9810 * pointers. Be careful to arrange the marker so 9811 * we revisit the freeblks if it's not removed by 9812 * the first jwait(). 9813 */ 9814 if (jblkdep != NULL) { 9815 LIST_REMOVE(&marker, wk_list); 9816 LIST_INSERT_BEFORE(wk, &marker, wk_list); 9817 jwait(&jblkdep->jb_list, MNT_WAIT); 9818 } 9819 continue; 9820 case D_ALLOCDIRECT: 9821 case D_ALLOCINDIR: 9822 /* 9823 * We have to wait for the jnewblk to be journaled 9824 * before we can write to a block if the contents 9825 * may be confused with an earlier file's indirect 9826 * at recovery time. Handle the marker as described 9827 * above. 9828 */ 9829 newblk = WK_NEWBLK(wk); 9830 if (newblk->nb_jnewblk != NULL && 9831 indirblk_lookup(newblk->nb_list.wk_mp, 9832 newblk->nb_newblkno)) { 9833 LIST_REMOVE(&marker, wk_list); 9834 LIST_INSERT_BEFORE(wk, &marker, wk_list); 9835 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 9836 } 9837 continue; 9838 9839 case D_SBDEP: 9840 initiate_write_sbdep(WK_SBDEP(wk)); 9841 continue; 9842 9843 case D_MKDIR: 9844 case D_FREEWORK: 9845 case D_FREEDEP: 9846 case D_JSEGDEP: 9847 continue; 9848 9849 default: 9850 panic("handle_disk_io_initiation: Unexpected type %s", 9851 TYPENAME(wk->wk_type)); 9852 /* NOTREACHED */ 9853 } 9854 } 9855 FREE_LOCK(ump); 9856 PRELE(curproc); /* Allow swapout of kernel stack */ 9857 } 9858 9859 /* 9860 * Called from within the procedure above to deal with unsatisfied 9861 * allocation dependencies in a directory. The buffer must be locked, 9862 * thus, no I/O completion operations can occur while we are 9863 * manipulating its associated dependencies. 9864 */ 9865 static void 9866 initiate_write_filepage(pagedep, bp) 9867 struct pagedep *pagedep; 9868 struct buf *bp; 9869 { 9870 struct jremref *jremref; 9871 struct jmvref *jmvref; 9872 struct dirrem *dirrem; 9873 struct diradd *dap; 9874 struct direct *ep; 9875 int i; 9876 9877 if (pagedep->pd_state & IOSTARTED) { 9878 /* 9879 * This can only happen if there is a driver that does not 9880 * understand chaining. Here biodone will reissue the call 9881 * to strategy for the incomplete buffers. 9882 */ 9883 printf("initiate_write_filepage: already started\n"); 9884 return; 9885 } 9886 pagedep->pd_state |= IOSTARTED; 9887 /* 9888 * Wait for all journal remove dependencies to hit the disk. 9889 * We can not allow any potentially conflicting directory adds 9890 * to be visible before removes and rollback is too difficult. 9891 * The soft updates lock may be dropped and re-acquired, however 9892 * we hold the buf locked so the dependency can not go away. 9893 */ 9894 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) 9895 while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) 9896 jwait(&jremref->jr_list, MNT_WAIT); 9897 while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) 9898 jwait(&jmvref->jm_list, MNT_WAIT); 9899 for (i = 0; i < DAHASHSZ; i++) { 9900 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 9901 ep = (struct direct *) 9902 ((char *)bp->b_data + dap->da_offset); 9903 if (ep->d_ino != dap->da_newinum) 9904 panic("%s: dir inum %ju != new %ju", 9905 "initiate_write_filepage", 9906 (uintmax_t)ep->d_ino, 9907 (uintmax_t)dap->da_newinum); 9908 if (dap->da_state & DIRCHG) 9909 ep->d_ino = dap->da_previous->dm_oldinum; 9910 else 9911 ep->d_ino = 0; 9912 dap->da_state &= ~ATTACHED; 9913 dap->da_state |= UNDONE; 9914 } 9915 } 9916 } 9917 9918 /* 9919 * Version of initiate_write_inodeblock that handles UFS1 dinodes. 9920 * Note that any bug fixes made to this routine must be done in the 9921 * version found below. 9922 * 9923 * Called from within the procedure above to deal with unsatisfied 9924 * allocation dependencies in an inodeblock. The buffer must be 9925 * locked, thus, no I/O completion operations can occur while we 9926 * are manipulating its associated dependencies. 9927 */ 9928 static void 9929 initiate_write_inodeblock_ufs1(inodedep, bp) 9930 struct inodedep *inodedep; 9931 struct buf *bp; /* The inode block */ 9932 { 9933 struct allocdirect *adp, *lastadp; 9934 struct ufs1_dinode *dp; 9935 struct ufs1_dinode *sip; 9936 struct inoref *inoref; 9937 struct ufsmount *ump; 9938 struct fs *fs; 9939 ufs_lbn_t i; 9940 #ifdef INVARIANTS 9941 ufs_lbn_t prevlbn = 0; 9942 #endif 9943 int deplist; 9944 9945 if (inodedep->id_state & IOSTARTED) 9946 panic("initiate_write_inodeblock_ufs1: already started"); 9947 inodedep->id_state |= IOSTARTED; 9948 fs = inodedep->id_fs; 9949 ump = VFSTOUFS(inodedep->id_list.wk_mp); 9950 LOCK_OWNED(ump); 9951 dp = (struct ufs1_dinode *)bp->b_data + 9952 ino_to_fsbo(fs, inodedep->id_ino); 9953 9954 /* 9955 * If we're on the unlinked list but have not yet written our 9956 * next pointer initialize it here. 9957 */ 9958 if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) { 9959 struct inodedep *inon; 9960 9961 inon = TAILQ_NEXT(inodedep, id_unlinked); 9962 dp->di_freelink = inon ? inon->id_ino : 0; 9963 } 9964 /* 9965 * If the bitmap is not yet written, then the allocated 9966 * inode cannot be written to disk. 9967 */ 9968 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 9969 if (inodedep->id_savedino1 != NULL) 9970 panic("initiate_write_inodeblock_ufs1: I/O underway"); 9971 FREE_LOCK(ump); 9972 sip = malloc(sizeof(struct ufs1_dinode), 9973 M_SAVEDINO, M_SOFTDEP_FLAGS); 9974 ACQUIRE_LOCK(ump); 9975 inodedep->id_savedino1 = sip; 9976 *inodedep->id_savedino1 = *dp; 9977 bzero((caddr_t)dp, sizeof(struct ufs1_dinode)); 9978 dp->di_gen = inodedep->id_savedino1->di_gen; 9979 dp->di_freelink = inodedep->id_savedino1->di_freelink; 9980 return; 9981 } 9982 /* 9983 * If no dependencies, then there is nothing to roll back. 9984 */ 9985 inodedep->id_savedsize = dp->di_size; 9986 inodedep->id_savedextsize = 0; 9987 inodedep->id_savednlink = dp->di_nlink; 9988 if (TAILQ_EMPTY(&inodedep->id_inoupdt) && 9989 TAILQ_EMPTY(&inodedep->id_inoreflst)) 9990 return; 9991 /* 9992 * Revert the link count to that of the first unwritten journal entry. 9993 */ 9994 inoref = TAILQ_FIRST(&inodedep->id_inoreflst); 9995 if (inoref) 9996 dp->di_nlink = inoref->if_nlink; 9997 /* 9998 * Set the dependencies to busy. 9999 */ 10000 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10001 adp = TAILQ_NEXT(adp, ad_next)) { 10002 #ifdef INVARIANTS 10003 if (deplist != 0 && prevlbn >= adp->ad_offset) 10004 panic("softdep_write_inodeblock: lbn order"); 10005 prevlbn = adp->ad_offset; 10006 if (adp->ad_offset < NDADDR && 10007 dp->di_db[adp->ad_offset] != adp->ad_newblkno) 10008 panic("%s: direct pointer #%jd mismatch %d != %jd", 10009 "softdep_write_inodeblock", 10010 (intmax_t)adp->ad_offset, 10011 dp->di_db[adp->ad_offset], 10012 (intmax_t)adp->ad_newblkno); 10013 if (adp->ad_offset >= NDADDR && 10014 dp->di_ib[adp->ad_offset - NDADDR] != adp->ad_newblkno) 10015 panic("%s: indirect pointer #%jd mismatch %d != %jd", 10016 "softdep_write_inodeblock", 10017 (intmax_t)adp->ad_offset - NDADDR, 10018 dp->di_ib[adp->ad_offset - NDADDR], 10019 (intmax_t)adp->ad_newblkno); 10020 deplist |= 1 << adp->ad_offset; 10021 if ((adp->ad_state & ATTACHED) == 0) 10022 panic("softdep_write_inodeblock: Unknown state 0x%x", 10023 adp->ad_state); 10024 #endif /* INVARIANTS */ 10025 adp->ad_state &= ~ATTACHED; 10026 adp->ad_state |= UNDONE; 10027 } 10028 /* 10029 * The on-disk inode cannot claim to be any larger than the last 10030 * fragment that has been written. Otherwise, the on-disk inode 10031 * might have fragments that were not the last block in the file 10032 * which would corrupt the filesystem. 10033 */ 10034 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10035 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10036 if (adp->ad_offset >= NDADDR) 10037 break; 10038 dp->di_db[adp->ad_offset] = adp->ad_oldblkno; 10039 /* keep going until hitting a rollback to a frag */ 10040 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10041 continue; 10042 dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10043 for (i = adp->ad_offset + 1; i < NDADDR; i++) { 10044 #ifdef INVARIANTS 10045 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) 10046 panic("softdep_write_inodeblock: lost dep1"); 10047 #endif /* INVARIANTS */ 10048 dp->di_db[i] = 0; 10049 } 10050 for (i = 0; i < NIADDR; i++) { 10051 #ifdef INVARIANTS 10052 if (dp->di_ib[i] != 0 && 10053 (deplist & ((1 << NDADDR) << i)) == 0) 10054 panic("softdep_write_inodeblock: lost dep2"); 10055 #endif /* INVARIANTS */ 10056 dp->di_ib[i] = 0; 10057 } 10058 return; 10059 } 10060 /* 10061 * If we have zero'ed out the last allocated block of the file, 10062 * roll back the size to the last currently allocated block. 10063 * We know that this last allocated block is a full-sized as 10064 * we already checked for fragments in the loop above. 10065 */ 10066 if (lastadp != NULL && 10067 dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10068 for (i = lastadp->ad_offset; i >= 0; i--) 10069 if (dp->di_db[i] != 0) 10070 break; 10071 dp->di_size = (i + 1) * fs->fs_bsize; 10072 } 10073 /* 10074 * The only dependencies are for indirect blocks. 10075 * 10076 * The file size for indirect block additions is not guaranteed. 10077 * Such a guarantee would be non-trivial to achieve. The conventional 10078 * synchronous write implementation also does not make this guarantee. 10079 * Fsck should catch and fix discrepancies. Arguably, the file size 10080 * can be over-estimated without destroying integrity when the file 10081 * moves into the indirect blocks (i.e., is large). If we want to 10082 * postpone fsck, we are stuck with this argument. 10083 */ 10084 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 10085 dp->di_ib[adp->ad_offset - NDADDR] = 0; 10086 } 10087 10088 /* 10089 * Version of initiate_write_inodeblock that handles UFS2 dinodes. 10090 * Note that any bug fixes made to this routine must be done in the 10091 * version found above. 10092 * 10093 * Called from within the procedure above to deal with unsatisfied 10094 * allocation dependencies in an inodeblock. The buffer must be 10095 * locked, thus, no I/O completion operations can occur while we 10096 * are manipulating its associated dependencies. 10097 */ 10098 static void 10099 initiate_write_inodeblock_ufs2(inodedep, bp) 10100 struct inodedep *inodedep; 10101 struct buf *bp; /* The inode block */ 10102 { 10103 struct allocdirect *adp, *lastadp; 10104 struct ufs2_dinode *dp; 10105 struct ufs2_dinode *sip; 10106 struct inoref *inoref; 10107 struct ufsmount *ump; 10108 struct fs *fs; 10109 ufs_lbn_t i; 10110 #ifdef INVARIANTS 10111 ufs_lbn_t prevlbn = 0; 10112 #endif 10113 int deplist; 10114 10115 if (inodedep->id_state & IOSTARTED) 10116 panic("initiate_write_inodeblock_ufs2: already started"); 10117 inodedep->id_state |= IOSTARTED; 10118 fs = inodedep->id_fs; 10119 ump = VFSTOUFS(inodedep->id_list.wk_mp); 10120 LOCK_OWNED(ump); 10121 dp = (struct ufs2_dinode *)bp->b_data + 10122 ino_to_fsbo(fs, inodedep->id_ino); 10123 10124 /* 10125 * If we're on the unlinked list but have not yet written our 10126 * next pointer initialize it here. 10127 */ 10128 if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) { 10129 struct inodedep *inon; 10130 10131 inon = TAILQ_NEXT(inodedep, id_unlinked); 10132 dp->di_freelink = inon ? inon->id_ino : 0; 10133 } 10134 /* 10135 * If the bitmap is not yet written, then the allocated 10136 * inode cannot be written to disk. 10137 */ 10138 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 10139 if (inodedep->id_savedino2 != NULL) 10140 panic("initiate_write_inodeblock_ufs2: I/O underway"); 10141 FREE_LOCK(ump); 10142 sip = malloc(sizeof(struct ufs2_dinode), 10143 M_SAVEDINO, M_SOFTDEP_FLAGS); 10144 ACQUIRE_LOCK(ump); 10145 inodedep->id_savedino2 = sip; 10146 *inodedep->id_savedino2 = *dp; 10147 bzero((caddr_t)dp, sizeof(struct ufs2_dinode)); 10148 dp->di_gen = inodedep->id_savedino2->di_gen; 10149 dp->di_freelink = inodedep->id_savedino2->di_freelink; 10150 return; 10151 } 10152 /* 10153 * If no dependencies, then there is nothing to roll back. 10154 */ 10155 inodedep->id_savedsize = dp->di_size; 10156 inodedep->id_savedextsize = dp->di_extsize; 10157 inodedep->id_savednlink = dp->di_nlink; 10158 if (TAILQ_EMPTY(&inodedep->id_inoupdt) && 10159 TAILQ_EMPTY(&inodedep->id_extupdt) && 10160 TAILQ_EMPTY(&inodedep->id_inoreflst)) 10161 return; 10162 /* 10163 * Revert the link count to that of the first unwritten journal entry. 10164 */ 10165 inoref = TAILQ_FIRST(&inodedep->id_inoreflst); 10166 if (inoref) 10167 dp->di_nlink = inoref->if_nlink; 10168 10169 /* 10170 * Set the ext data dependencies to busy. 10171 */ 10172 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 10173 adp = TAILQ_NEXT(adp, ad_next)) { 10174 #ifdef INVARIANTS 10175 if (deplist != 0 && prevlbn >= adp->ad_offset) 10176 panic("softdep_write_inodeblock: lbn order"); 10177 prevlbn = adp->ad_offset; 10178 if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno) 10179 panic("%s: direct pointer #%jd mismatch %jd != %jd", 10180 "softdep_write_inodeblock", 10181 (intmax_t)adp->ad_offset, 10182 (intmax_t)dp->di_extb[adp->ad_offset], 10183 (intmax_t)adp->ad_newblkno); 10184 deplist |= 1 << adp->ad_offset; 10185 if ((adp->ad_state & ATTACHED) == 0) 10186 panic("softdep_write_inodeblock: Unknown state 0x%x", 10187 adp->ad_state); 10188 #endif /* INVARIANTS */ 10189 adp->ad_state &= ~ATTACHED; 10190 adp->ad_state |= UNDONE; 10191 } 10192 /* 10193 * The on-disk inode cannot claim to be any larger than the last 10194 * fragment that has been written. Otherwise, the on-disk inode 10195 * might have fragments that were not the last block in the ext 10196 * data which would corrupt the filesystem. 10197 */ 10198 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 10199 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10200 dp->di_extb[adp->ad_offset] = adp->ad_oldblkno; 10201 /* keep going until hitting a rollback to a frag */ 10202 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10203 continue; 10204 dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10205 for (i = adp->ad_offset + 1; i < NXADDR; i++) { 10206 #ifdef INVARIANTS 10207 if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0) 10208 panic("softdep_write_inodeblock: lost dep1"); 10209 #endif /* INVARIANTS */ 10210 dp->di_extb[i] = 0; 10211 } 10212 lastadp = NULL; 10213 break; 10214 } 10215 /* 10216 * If we have zero'ed out the last allocated block of the ext 10217 * data, roll back the size to the last currently allocated block. 10218 * We know that this last allocated block is a full-sized as 10219 * we already checked for fragments in the loop above. 10220 */ 10221 if (lastadp != NULL && 10222 dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10223 for (i = lastadp->ad_offset; i >= 0; i--) 10224 if (dp->di_extb[i] != 0) 10225 break; 10226 dp->di_extsize = (i + 1) * fs->fs_bsize; 10227 } 10228 /* 10229 * Set the file data dependencies to busy. 10230 */ 10231 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10232 adp = TAILQ_NEXT(adp, ad_next)) { 10233 #ifdef INVARIANTS 10234 if (deplist != 0 && prevlbn >= adp->ad_offset) 10235 panic("softdep_write_inodeblock: lbn order"); 10236 if ((adp->ad_state & ATTACHED) == 0) 10237 panic("inodedep %p and adp %p not attached", inodedep, adp); 10238 prevlbn = adp->ad_offset; 10239 if (adp->ad_offset < NDADDR && 10240 dp->di_db[adp->ad_offset] != adp->ad_newblkno) 10241 panic("%s: direct pointer #%jd mismatch %jd != %jd", 10242 "softdep_write_inodeblock", 10243 (intmax_t)adp->ad_offset, 10244 (intmax_t)dp->di_db[adp->ad_offset], 10245 (intmax_t)adp->ad_newblkno); 10246 if (adp->ad_offset >= NDADDR && 10247 dp->di_ib[adp->ad_offset - NDADDR] != adp->ad_newblkno) 10248 panic("%s indirect pointer #%jd mismatch %jd != %jd", 10249 "softdep_write_inodeblock:", 10250 (intmax_t)adp->ad_offset - NDADDR, 10251 (intmax_t)dp->di_ib[adp->ad_offset - NDADDR], 10252 (intmax_t)adp->ad_newblkno); 10253 deplist |= 1 << adp->ad_offset; 10254 if ((adp->ad_state & ATTACHED) == 0) 10255 panic("softdep_write_inodeblock: Unknown state 0x%x", 10256 adp->ad_state); 10257 #endif /* INVARIANTS */ 10258 adp->ad_state &= ~ATTACHED; 10259 adp->ad_state |= UNDONE; 10260 } 10261 /* 10262 * The on-disk inode cannot claim to be any larger than the last 10263 * fragment that has been written. Otherwise, the on-disk inode 10264 * might have fragments that were not the last block in the file 10265 * which would corrupt the filesystem. 10266 */ 10267 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10268 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10269 if (adp->ad_offset >= NDADDR) 10270 break; 10271 dp->di_db[adp->ad_offset] = adp->ad_oldblkno; 10272 /* keep going until hitting a rollback to a frag */ 10273 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10274 continue; 10275 dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10276 for (i = adp->ad_offset + 1; i < NDADDR; i++) { 10277 #ifdef INVARIANTS 10278 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) 10279 panic("softdep_write_inodeblock: lost dep2"); 10280 #endif /* INVARIANTS */ 10281 dp->di_db[i] = 0; 10282 } 10283 for (i = 0; i < NIADDR; i++) { 10284 #ifdef INVARIANTS 10285 if (dp->di_ib[i] != 0 && 10286 (deplist & ((1 << NDADDR) << i)) == 0) 10287 panic("softdep_write_inodeblock: lost dep3"); 10288 #endif /* INVARIANTS */ 10289 dp->di_ib[i] = 0; 10290 } 10291 return; 10292 } 10293 /* 10294 * If we have zero'ed out the last allocated block of the file, 10295 * roll back the size to the last currently allocated block. 10296 * We know that this last allocated block is a full-sized as 10297 * we already checked for fragments in the loop above. 10298 */ 10299 if (lastadp != NULL && 10300 dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10301 for (i = lastadp->ad_offset; i >= 0; i--) 10302 if (dp->di_db[i] != 0) 10303 break; 10304 dp->di_size = (i + 1) * fs->fs_bsize; 10305 } 10306 /* 10307 * The only dependencies are for indirect blocks. 10308 * 10309 * The file size for indirect block additions is not guaranteed. 10310 * Such a guarantee would be non-trivial to achieve. The conventional 10311 * synchronous write implementation also does not make this guarantee. 10312 * Fsck should catch and fix discrepancies. Arguably, the file size 10313 * can be over-estimated without destroying integrity when the file 10314 * moves into the indirect blocks (i.e., is large). If we want to 10315 * postpone fsck, we are stuck with this argument. 10316 */ 10317 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 10318 dp->di_ib[adp->ad_offset - NDADDR] = 0; 10319 } 10320 10321 /* 10322 * Cancel an indirdep as a result of truncation. Release all of the 10323 * children allocindirs and place their journal work on the appropriate 10324 * list. 10325 */ 10326 static void 10327 cancel_indirdep(indirdep, bp, freeblks) 10328 struct indirdep *indirdep; 10329 struct buf *bp; 10330 struct freeblks *freeblks; 10331 { 10332 struct allocindir *aip; 10333 10334 /* 10335 * None of the indirect pointers will ever be visible, 10336 * so they can simply be tossed. GOINGAWAY ensures 10337 * that allocated pointers will be saved in the buffer 10338 * cache until they are freed. Note that they will 10339 * only be able to be found by their physical address 10340 * since the inode mapping the logical address will 10341 * be gone. The save buffer used for the safe copy 10342 * was allocated in setup_allocindir_phase2 using 10343 * the physical address so it could be used for this 10344 * purpose. Hence we swap the safe copy with the real 10345 * copy, allowing the safe copy to be freed and holding 10346 * on to the real copy for later use in indir_trunc. 10347 */ 10348 if (indirdep->ir_state & GOINGAWAY) 10349 panic("cancel_indirdep: already gone"); 10350 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 10351 indirdep->ir_state |= DEPCOMPLETE; 10352 LIST_REMOVE(indirdep, ir_next); 10353 } 10354 indirdep->ir_state |= GOINGAWAY; 10355 VFSTOUFS(indirdep->ir_list.wk_mp)->softdep_numindirdeps += 1; 10356 /* 10357 * Pass in bp for blocks still have journal writes 10358 * pending so we can cancel them on their own. 10359 */ 10360 while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != 0) 10361 cancel_allocindir(aip, bp, freeblks, 0); 10362 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) 10363 cancel_allocindir(aip, NULL, freeblks, 0); 10364 while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != 0) 10365 cancel_allocindir(aip, NULL, freeblks, 0); 10366 while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != 0) 10367 cancel_allocindir(aip, NULL, freeblks, 0); 10368 /* 10369 * If there are pending partial truncations we need to keep the 10370 * old block copy around until they complete. This is because 10371 * the current b_data is not a perfect superset of the available 10372 * blocks. 10373 */ 10374 if (TAILQ_EMPTY(&indirdep->ir_trunc)) 10375 bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount); 10376 else 10377 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); 10378 WORKLIST_REMOVE(&indirdep->ir_list); 10379 WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list); 10380 indirdep->ir_bp = NULL; 10381 indirdep->ir_freeblks = freeblks; 10382 } 10383 10384 /* 10385 * Free an indirdep once it no longer has new pointers to track. 10386 */ 10387 static void 10388 free_indirdep(indirdep) 10389 struct indirdep *indirdep; 10390 { 10391 10392 KASSERT(TAILQ_EMPTY(&indirdep->ir_trunc), 10393 ("free_indirdep: Indir trunc list not empty.")); 10394 KASSERT(LIST_EMPTY(&indirdep->ir_completehd), 10395 ("free_indirdep: Complete head not empty.")); 10396 KASSERT(LIST_EMPTY(&indirdep->ir_writehd), 10397 ("free_indirdep: write head not empty.")); 10398 KASSERT(LIST_EMPTY(&indirdep->ir_donehd), 10399 ("free_indirdep: done head not empty.")); 10400 KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd), 10401 ("free_indirdep: deplist head not empty.")); 10402 KASSERT((indirdep->ir_state & DEPCOMPLETE), 10403 ("free_indirdep: %p still on newblk list.", indirdep)); 10404 KASSERT(indirdep->ir_saveddata == NULL, 10405 ("free_indirdep: %p still has saved data.", indirdep)); 10406 if (indirdep->ir_state & ONWORKLIST) 10407 WORKLIST_REMOVE(&indirdep->ir_list); 10408 WORKITEM_FREE(indirdep, D_INDIRDEP); 10409 } 10410 10411 /* 10412 * Called before a write to an indirdep. This routine is responsible for 10413 * rolling back pointers to a safe state which includes only those 10414 * allocindirs which have been completed. 10415 */ 10416 static void 10417 initiate_write_indirdep(indirdep, bp) 10418 struct indirdep *indirdep; 10419 struct buf *bp; 10420 { 10421 struct ufsmount *ump; 10422 10423 indirdep->ir_state |= IOSTARTED; 10424 if (indirdep->ir_state & GOINGAWAY) 10425 panic("disk_io_initiation: indirdep gone"); 10426 /* 10427 * If there are no remaining dependencies, this will be writing 10428 * the real pointers. 10429 */ 10430 if (LIST_EMPTY(&indirdep->ir_deplisthd) && 10431 TAILQ_EMPTY(&indirdep->ir_trunc)) 10432 return; 10433 /* 10434 * Replace up-to-date version with safe version. 10435 */ 10436 if (indirdep->ir_saveddata == NULL) { 10437 ump = VFSTOUFS(indirdep->ir_list.wk_mp); 10438 LOCK_OWNED(ump); 10439 FREE_LOCK(ump); 10440 indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP, 10441 M_SOFTDEP_FLAGS); 10442 ACQUIRE_LOCK(ump); 10443 } 10444 indirdep->ir_state &= ~ATTACHED; 10445 indirdep->ir_state |= UNDONE; 10446 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); 10447 bcopy(indirdep->ir_savebp->b_data, bp->b_data, 10448 bp->b_bcount); 10449 } 10450 10451 /* 10452 * Called when an inode has been cleared in a cg bitmap. This finally 10453 * eliminates any canceled jaddrefs 10454 */ 10455 void 10456 softdep_setup_inofree(mp, bp, ino, wkhd) 10457 struct mount *mp; 10458 struct buf *bp; 10459 ino_t ino; 10460 struct workhead *wkhd; 10461 { 10462 struct worklist *wk, *wkn; 10463 struct inodedep *inodedep; 10464 struct ufsmount *ump; 10465 uint8_t *inosused; 10466 struct cg *cgp; 10467 struct fs *fs; 10468 10469 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 10470 ("softdep_setup_inofree called on non-softdep filesystem")); 10471 ump = VFSTOUFS(mp); 10472 ACQUIRE_LOCK(ump); 10473 fs = ump->um_fs; 10474 cgp = (struct cg *)bp->b_data; 10475 inosused = cg_inosused(cgp); 10476 if (isset(inosused, ino % fs->fs_ipg)) 10477 panic("softdep_setup_inofree: inode %ju not freed.", 10478 (uintmax_t)ino); 10479 if (inodedep_lookup(mp, ino, 0, &inodedep)) 10480 panic("softdep_setup_inofree: ino %ju has existing inodedep %p", 10481 (uintmax_t)ino, inodedep); 10482 if (wkhd) { 10483 LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) { 10484 if (wk->wk_type != D_JADDREF) 10485 continue; 10486 WORKLIST_REMOVE(wk); 10487 /* 10488 * We can free immediately even if the jaddref 10489 * isn't attached in a background write as now 10490 * the bitmaps are reconciled. 10491 */ 10492 wk->wk_state |= COMPLETE | ATTACHED; 10493 free_jaddref(WK_JADDREF(wk)); 10494 } 10495 jwork_move(&bp->b_dep, wkhd); 10496 } 10497 FREE_LOCK(ump); 10498 } 10499 10500 10501 /* 10502 * Called via ffs_blkfree() after a set of frags has been cleared from a cg 10503 * map. Any dependencies waiting for the write to clear are added to the 10504 * buf's list and any jnewblks that are being canceled are discarded 10505 * immediately. 10506 */ 10507 void 10508 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd) 10509 struct mount *mp; 10510 struct buf *bp; 10511 ufs2_daddr_t blkno; 10512 int frags; 10513 struct workhead *wkhd; 10514 { 10515 struct bmsafemap *bmsafemap; 10516 struct jnewblk *jnewblk; 10517 struct ufsmount *ump; 10518 struct worklist *wk; 10519 struct fs *fs; 10520 #ifdef SUJ_DEBUG 10521 uint8_t *blksfree; 10522 struct cg *cgp; 10523 ufs2_daddr_t jstart; 10524 ufs2_daddr_t jend; 10525 ufs2_daddr_t end; 10526 long bno; 10527 int i; 10528 #endif 10529 10530 CTR3(KTR_SUJ, 10531 "softdep_setup_blkfree: blkno %jd frags %d wk head %p", 10532 blkno, frags, wkhd); 10533 10534 ump = VFSTOUFS(mp); 10535 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 10536 ("softdep_setup_blkfree called on non-softdep filesystem")); 10537 ACQUIRE_LOCK(ump); 10538 /* Lookup the bmsafemap so we track when it is dirty. */ 10539 fs = ump->um_fs; 10540 bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL); 10541 /* 10542 * Detach any jnewblks which have been canceled. They must linger 10543 * until the bitmap is cleared again by ffs_blkfree() to prevent 10544 * an unjournaled allocation from hitting the disk. 10545 */ 10546 if (wkhd) { 10547 while ((wk = LIST_FIRST(wkhd)) != NULL) { 10548 CTR2(KTR_SUJ, 10549 "softdep_setup_blkfree: blkno %jd wk type %d", 10550 blkno, wk->wk_type); 10551 WORKLIST_REMOVE(wk); 10552 if (wk->wk_type != D_JNEWBLK) { 10553 WORKLIST_INSERT(&bmsafemap->sm_freehd, wk); 10554 continue; 10555 } 10556 jnewblk = WK_JNEWBLK(wk); 10557 KASSERT(jnewblk->jn_state & GOINGAWAY, 10558 ("softdep_setup_blkfree: jnewblk not canceled.")); 10559 #ifdef SUJ_DEBUG 10560 /* 10561 * Assert that this block is free in the bitmap 10562 * before we discard the jnewblk. 10563 */ 10564 cgp = (struct cg *)bp->b_data; 10565 blksfree = cg_blksfree(cgp); 10566 bno = dtogd(fs, jnewblk->jn_blkno); 10567 for (i = jnewblk->jn_oldfrags; 10568 i < jnewblk->jn_frags; i++) { 10569 if (isset(blksfree, bno + i)) 10570 continue; 10571 panic("softdep_setup_blkfree: not free"); 10572 } 10573 #endif 10574 /* 10575 * Even if it's not attached we can free immediately 10576 * as the new bitmap is correct. 10577 */ 10578 wk->wk_state |= COMPLETE | ATTACHED; 10579 free_jnewblk(jnewblk); 10580 } 10581 } 10582 10583 #ifdef SUJ_DEBUG 10584 /* 10585 * Assert that we are not freeing a block which has an outstanding 10586 * allocation dependency. 10587 */ 10588 fs = VFSTOUFS(mp)->um_fs; 10589 bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL); 10590 end = blkno + frags; 10591 LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) { 10592 /* 10593 * Don't match against blocks that will be freed when the 10594 * background write is done. 10595 */ 10596 if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) == 10597 (COMPLETE | DEPCOMPLETE)) 10598 continue; 10599 jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags; 10600 jend = jnewblk->jn_blkno + jnewblk->jn_frags; 10601 if ((blkno >= jstart && blkno < jend) || 10602 (end > jstart && end <= jend)) { 10603 printf("state 0x%X %jd - %d %d dep %p\n", 10604 jnewblk->jn_state, jnewblk->jn_blkno, 10605 jnewblk->jn_oldfrags, jnewblk->jn_frags, 10606 jnewblk->jn_dep); 10607 panic("softdep_setup_blkfree: " 10608 "%jd-%jd(%d) overlaps with %jd-%jd", 10609 blkno, end, frags, jstart, jend); 10610 } 10611 } 10612 #endif 10613 FREE_LOCK(ump); 10614 } 10615 10616 /* 10617 * Revert a block allocation when the journal record that describes it 10618 * is not yet written. 10619 */ 10620 static int 10621 jnewblk_rollback(jnewblk, fs, cgp, blksfree) 10622 struct jnewblk *jnewblk; 10623 struct fs *fs; 10624 struct cg *cgp; 10625 uint8_t *blksfree; 10626 { 10627 ufs1_daddr_t fragno; 10628 long cgbno, bbase; 10629 int frags, blk; 10630 int i; 10631 10632 frags = 0; 10633 cgbno = dtogd(fs, jnewblk->jn_blkno); 10634 /* 10635 * We have to test which frags need to be rolled back. We may 10636 * be operating on a stale copy when doing background writes. 10637 */ 10638 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) 10639 if (isclr(blksfree, cgbno + i)) 10640 frags++; 10641 if (frags == 0) 10642 return (0); 10643 /* 10644 * This is mostly ffs_blkfree() sans some validation and 10645 * superblock updates. 10646 */ 10647 if (frags == fs->fs_frag) { 10648 fragno = fragstoblks(fs, cgbno); 10649 ffs_setblock(fs, blksfree, fragno); 10650 ffs_clusteracct(fs, cgp, fragno, 1); 10651 cgp->cg_cs.cs_nbfree++; 10652 } else { 10653 cgbno += jnewblk->jn_oldfrags; 10654 bbase = cgbno - fragnum(fs, cgbno); 10655 /* Decrement the old frags. */ 10656 blk = blkmap(fs, blksfree, bbase); 10657 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 10658 /* Deallocate the fragment */ 10659 for (i = 0; i < frags; i++) 10660 setbit(blksfree, cgbno + i); 10661 cgp->cg_cs.cs_nffree += frags; 10662 /* Add back in counts associated with the new frags */ 10663 blk = blkmap(fs, blksfree, bbase); 10664 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 10665 /* If a complete block has been reassembled, account for it. */ 10666 fragno = fragstoblks(fs, bbase); 10667 if (ffs_isblock(fs, blksfree, fragno)) { 10668 cgp->cg_cs.cs_nffree -= fs->fs_frag; 10669 ffs_clusteracct(fs, cgp, fragno, 1); 10670 cgp->cg_cs.cs_nbfree++; 10671 } 10672 } 10673 stat_jnewblk++; 10674 jnewblk->jn_state &= ~ATTACHED; 10675 jnewblk->jn_state |= UNDONE; 10676 10677 return (frags); 10678 } 10679 10680 static void 10681 initiate_write_bmsafemap(bmsafemap, bp) 10682 struct bmsafemap *bmsafemap; 10683 struct buf *bp; /* The cg block. */ 10684 { 10685 struct jaddref *jaddref; 10686 struct jnewblk *jnewblk; 10687 uint8_t *inosused; 10688 uint8_t *blksfree; 10689 struct cg *cgp; 10690 struct fs *fs; 10691 ino_t ino; 10692 10693 if (bmsafemap->sm_state & IOSTARTED) 10694 return; 10695 bmsafemap->sm_state |= IOSTARTED; 10696 /* 10697 * Clear any inode allocations which are pending journal writes. 10698 */ 10699 if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) { 10700 cgp = (struct cg *)bp->b_data; 10701 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 10702 inosused = cg_inosused(cgp); 10703 LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) { 10704 ino = jaddref->ja_ino % fs->fs_ipg; 10705 if (isset(inosused, ino)) { 10706 if ((jaddref->ja_mode & IFMT) == IFDIR) 10707 cgp->cg_cs.cs_ndir--; 10708 cgp->cg_cs.cs_nifree++; 10709 clrbit(inosused, ino); 10710 jaddref->ja_state &= ~ATTACHED; 10711 jaddref->ja_state |= UNDONE; 10712 stat_jaddref++; 10713 } else 10714 panic("initiate_write_bmsafemap: inode %ju " 10715 "marked free", (uintmax_t)jaddref->ja_ino); 10716 } 10717 } 10718 /* 10719 * Clear any block allocations which are pending journal writes. 10720 */ 10721 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) { 10722 cgp = (struct cg *)bp->b_data; 10723 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 10724 blksfree = cg_blksfree(cgp); 10725 LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) { 10726 if (jnewblk_rollback(jnewblk, fs, cgp, blksfree)) 10727 continue; 10728 panic("initiate_write_bmsafemap: block %jd " 10729 "marked free", jnewblk->jn_blkno); 10730 } 10731 } 10732 /* 10733 * Move allocation lists to the written lists so they can be 10734 * cleared once the block write is complete. 10735 */ 10736 LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr, 10737 inodedep, id_deps); 10738 LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr, 10739 newblk, nb_deps); 10740 LIST_SWAP(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, worklist, 10741 wk_list); 10742 } 10743 10744 /* 10745 * This routine is called during the completion interrupt 10746 * service routine for a disk write (from the procedure called 10747 * by the device driver to inform the filesystem caches of 10748 * a request completion). It should be called early in this 10749 * procedure, before the block is made available to other 10750 * processes or other routines are called. 10751 * 10752 */ 10753 static void 10754 softdep_disk_write_complete(bp) 10755 struct buf *bp; /* describes the completed disk write */ 10756 { 10757 struct worklist *wk; 10758 struct worklist *owk; 10759 struct ufsmount *ump; 10760 struct workhead reattach; 10761 struct freeblks *freeblks; 10762 struct buf *sbp; 10763 10764 /* 10765 * If an error occurred while doing the write, then the data 10766 * has not hit the disk and the dependencies cannot be unrolled. 10767 */ 10768 if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0) 10769 return; 10770 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL) 10771 return; 10772 ump = VFSTOUFS(wk->wk_mp); 10773 LIST_INIT(&reattach); 10774 /* 10775 * This lock must not be released anywhere in this code segment. 10776 */ 10777 sbp = NULL; 10778 owk = NULL; 10779 ACQUIRE_LOCK(ump); 10780 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) { 10781 WORKLIST_REMOVE(wk); 10782 dep_write[wk->wk_type]++; 10783 if (wk == owk) 10784 panic("duplicate worklist: %p\n", wk); 10785 owk = wk; 10786 switch (wk->wk_type) { 10787 10788 case D_PAGEDEP: 10789 if (handle_written_filepage(WK_PAGEDEP(wk), bp)) 10790 WORKLIST_INSERT(&reattach, wk); 10791 continue; 10792 10793 case D_INODEDEP: 10794 if (handle_written_inodeblock(WK_INODEDEP(wk), bp)) 10795 WORKLIST_INSERT(&reattach, wk); 10796 continue; 10797 10798 case D_BMSAFEMAP: 10799 if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp)) 10800 WORKLIST_INSERT(&reattach, wk); 10801 continue; 10802 10803 case D_MKDIR: 10804 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); 10805 continue; 10806 10807 case D_ALLOCDIRECT: 10808 wk->wk_state |= COMPLETE; 10809 handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL); 10810 continue; 10811 10812 case D_ALLOCINDIR: 10813 wk->wk_state |= COMPLETE; 10814 handle_allocindir_partdone(WK_ALLOCINDIR(wk)); 10815 continue; 10816 10817 case D_INDIRDEP: 10818 if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp)) 10819 WORKLIST_INSERT(&reattach, wk); 10820 continue; 10821 10822 case D_FREEBLKS: 10823 wk->wk_state |= COMPLETE; 10824 freeblks = WK_FREEBLKS(wk); 10825 if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE && 10826 LIST_EMPTY(&freeblks->fb_jblkdephd)) 10827 add_to_worklist(wk, WK_NODELAY); 10828 continue; 10829 10830 case D_FREEWORK: 10831 handle_written_freework(WK_FREEWORK(wk)); 10832 break; 10833 10834 case D_JSEGDEP: 10835 free_jsegdep(WK_JSEGDEP(wk)); 10836 continue; 10837 10838 case D_JSEG: 10839 handle_written_jseg(WK_JSEG(wk), bp); 10840 continue; 10841 10842 case D_SBDEP: 10843 if (handle_written_sbdep(WK_SBDEP(wk), bp)) 10844 WORKLIST_INSERT(&reattach, wk); 10845 continue; 10846 10847 case D_FREEDEP: 10848 free_freedep(WK_FREEDEP(wk)); 10849 continue; 10850 10851 default: 10852 panic("handle_disk_write_complete: Unknown type %s", 10853 TYPENAME(wk->wk_type)); 10854 /* NOTREACHED */ 10855 } 10856 } 10857 /* 10858 * Reattach any requests that must be redone. 10859 */ 10860 while ((wk = LIST_FIRST(&reattach)) != NULL) { 10861 WORKLIST_REMOVE(wk); 10862 WORKLIST_INSERT(&bp->b_dep, wk); 10863 } 10864 FREE_LOCK(ump); 10865 if (sbp) 10866 brelse(sbp); 10867 } 10868 10869 /* 10870 * Called from within softdep_disk_write_complete above. Note that 10871 * this routine is always called from interrupt level with further 10872 * splbio interrupts blocked. 10873 */ 10874 static void 10875 handle_allocdirect_partdone(adp, wkhd) 10876 struct allocdirect *adp; /* the completed allocdirect */ 10877 struct workhead *wkhd; /* Work to do when inode is writtne. */ 10878 { 10879 struct allocdirectlst *listhead; 10880 struct allocdirect *listadp; 10881 struct inodedep *inodedep; 10882 long bsize; 10883 10884 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 10885 return; 10886 /* 10887 * The on-disk inode cannot claim to be any larger than the last 10888 * fragment that has been written. Otherwise, the on-disk inode 10889 * might have fragments that were not the last block in the file 10890 * which would corrupt the filesystem. Thus, we cannot free any 10891 * allocdirects after one whose ad_oldblkno claims a fragment as 10892 * these blocks must be rolled back to zero before writing the inode. 10893 * We check the currently active set of allocdirects in id_inoupdt 10894 * or id_extupdt as appropriate. 10895 */ 10896 inodedep = adp->ad_inodedep; 10897 bsize = inodedep->id_fs->fs_bsize; 10898 if (adp->ad_state & EXTDATA) 10899 listhead = &inodedep->id_extupdt; 10900 else 10901 listhead = &inodedep->id_inoupdt; 10902 TAILQ_FOREACH(listadp, listhead, ad_next) { 10903 /* found our block */ 10904 if (listadp == adp) 10905 break; 10906 /* continue if ad_oldlbn is not a fragment */ 10907 if (listadp->ad_oldsize == 0 || 10908 listadp->ad_oldsize == bsize) 10909 continue; 10910 /* hit a fragment */ 10911 return; 10912 } 10913 /* 10914 * If we have reached the end of the current list without 10915 * finding the just finished dependency, then it must be 10916 * on the future dependency list. Future dependencies cannot 10917 * be freed until they are moved to the current list. 10918 */ 10919 if (listadp == NULL) { 10920 #ifdef DEBUG 10921 if (adp->ad_state & EXTDATA) 10922 listhead = &inodedep->id_newextupdt; 10923 else 10924 listhead = &inodedep->id_newinoupdt; 10925 TAILQ_FOREACH(listadp, listhead, ad_next) 10926 /* found our block */ 10927 if (listadp == adp) 10928 break; 10929 if (listadp == NULL) 10930 panic("handle_allocdirect_partdone: lost dep"); 10931 #endif /* DEBUG */ 10932 return; 10933 } 10934 /* 10935 * If we have found the just finished dependency, then queue 10936 * it along with anything that follows it that is complete. 10937 * Since the pointer has not yet been written in the inode 10938 * as the dependency prevents it, place the allocdirect on the 10939 * bufwait list where it will be freed once the pointer is 10940 * valid. 10941 */ 10942 if (wkhd == NULL) 10943 wkhd = &inodedep->id_bufwait; 10944 for (; adp; adp = listadp) { 10945 listadp = TAILQ_NEXT(adp, ad_next); 10946 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 10947 return; 10948 TAILQ_REMOVE(listhead, adp, ad_next); 10949 WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list); 10950 } 10951 } 10952 10953 /* 10954 * Called from within softdep_disk_write_complete above. This routine 10955 * completes successfully written allocindirs. 10956 */ 10957 static void 10958 handle_allocindir_partdone(aip) 10959 struct allocindir *aip; /* the completed allocindir */ 10960 { 10961 struct indirdep *indirdep; 10962 10963 if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE) 10964 return; 10965 indirdep = aip->ai_indirdep; 10966 LIST_REMOVE(aip, ai_next); 10967 /* 10968 * Don't set a pointer while the buffer is undergoing IO or while 10969 * we have active truncations. 10970 */ 10971 if (indirdep->ir_state & UNDONE || !TAILQ_EMPTY(&indirdep->ir_trunc)) { 10972 LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next); 10973 return; 10974 } 10975 if (indirdep->ir_state & UFS1FMT) 10976 ((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 10977 aip->ai_newblkno; 10978 else 10979 ((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 10980 aip->ai_newblkno; 10981 /* 10982 * Await the pointer write before freeing the allocindir. 10983 */ 10984 LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next); 10985 } 10986 10987 /* 10988 * Release segments held on a jwork list. 10989 */ 10990 static void 10991 handle_jwork(wkhd) 10992 struct workhead *wkhd; 10993 { 10994 struct worklist *wk; 10995 10996 while ((wk = LIST_FIRST(wkhd)) != NULL) { 10997 WORKLIST_REMOVE(wk); 10998 switch (wk->wk_type) { 10999 case D_JSEGDEP: 11000 free_jsegdep(WK_JSEGDEP(wk)); 11001 continue; 11002 case D_FREEDEP: 11003 free_freedep(WK_FREEDEP(wk)); 11004 continue; 11005 case D_FREEFRAG: 11006 rele_jseg(WK_JSEG(WK_FREEFRAG(wk)->ff_jdep)); 11007 WORKITEM_FREE(wk, D_FREEFRAG); 11008 continue; 11009 case D_FREEWORK: 11010 handle_written_freework(WK_FREEWORK(wk)); 11011 continue; 11012 default: 11013 panic("handle_jwork: Unknown type %s\n", 11014 TYPENAME(wk->wk_type)); 11015 } 11016 } 11017 } 11018 11019 /* 11020 * Handle the bufwait list on an inode when it is safe to release items 11021 * held there. This normally happens after an inode block is written but 11022 * may be delayed and handled later if there are pending journal items that 11023 * are not yet safe to be released. 11024 */ 11025 static struct freefile * 11026 handle_bufwait(inodedep, refhd) 11027 struct inodedep *inodedep; 11028 struct workhead *refhd; 11029 { 11030 struct jaddref *jaddref; 11031 struct freefile *freefile; 11032 struct worklist *wk; 11033 11034 freefile = NULL; 11035 while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) { 11036 WORKLIST_REMOVE(wk); 11037 switch (wk->wk_type) { 11038 case D_FREEFILE: 11039 /* 11040 * We defer adding freefile to the worklist 11041 * until all other additions have been made to 11042 * ensure that it will be done after all the 11043 * old blocks have been freed. 11044 */ 11045 if (freefile != NULL) 11046 panic("handle_bufwait: freefile"); 11047 freefile = WK_FREEFILE(wk); 11048 continue; 11049 11050 case D_MKDIR: 11051 handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT); 11052 continue; 11053 11054 case D_DIRADD: 11055 diradd_inode_written(WK_DIRADD(wk), inodedep); 11056 continue; 11057 11058 case D_FREEFRAG: 11059 wk->wk_state |= COMPLETE; 11060 if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE) 11061 add_to_worklist(wk, 0); 11062 continue; 11063 11064 case D_DIRREM: 11065 wk->wk_state |= COMPLETE; 11066 add_to_worklist(wk, 0); 11067 continue; 11068 11069 case D_ALLOCDIRECT: 11070 case D_ALLOCINDIR: 11071 free_newblk(WK_NEWBLK(wk)); 11072 continue; 11073 11074 case D_JNEWBLK: 11075 wk->wk_state |= COMPLETE; 11076 free_jnewblk(WK_JNEWBLK(wk)); 11077 continue; 11078 11079 /* 11080 * Save freed journal segments and add references on 11081 * the supplied list which will delay their release 11082 * until the cg bitmap is cleared on disk. 11083 */ 11084 case D_JSEGDEP: 11085 if (refhd == NULL) 11086 free_jsegdep(WK_JSEGDEP(wk)); 11087 else 11088 WORKLIST_INSERT(refhd, wk); 11089 continue; 11090 11091 case D_JADDREF: 11092 jaddref = WK_JADDREF(wk); 11093 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, 11094 if_deps); 11095 /* 11096 * Transfer any jaddrefs to the list to be freed with 11097 * the bitmap if we're handling a removed file. 11098 */ 11099 if (refhd == NULL) { 11100 wk->wk_state |= COMPLETE; 11101 free_jaddref(jaddref); 11102 } else 11103 WORKLIST_INSERT(refhd, wk); 11104 continue; 11105 11106 default: 11107 panic("handle_bufwait: Unknown type %p(%s)", 11108 wk, TYPENAME(wk->wk_type)); 11109 /* NOTREACHED */ 11110 } 11111 } 11112 return (freefile); 11113 } 11114 /* 11115 * Called from within softdep_disk_write_complete above to restore 11116 * in-memory inode block contents to their most up-to-date state. Note 11117 * that this routine is always called from interrupt level with further 11118 * splbio interrupts blocked. 11119 */ 11120 static int 11121 handle_written_inodeblock(inodedep, bp) 11122 struct inodedep *inodedep; 11123 struct buf *bp; /* buffer containing the inode block */ 11124 { 11125 struct freefile *freefile; 11126 struct allocdirect *adp, *nextadp; 11127 struct ufs1_dinode *dp1 = NULL; 11128 struct ufs2_dinode *dp2 = NULL; 11129 struct workhead wkhd; 11130 int hadchanges, fstype; 11131 ino_t freelink; 11132 11133 LIST_INIT(&wkhd); 11134 hadchanges = 0; 11135 freefile = NULL; 11136 if ((inodedep->id_state & IOSTARTED) == 0) 11137 panic("handle_written_inodeblock: not started"); 11138 inodedep->id_state &= ~IOSTARTED; 11139 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) { 11140 fstype = UFS1; 11141 dp1 = (struct ufs1_dinode *)bp->b_data + 11142 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 11143 freelink = dp1->di_freelink; 11144 } else { 11145 fstype = UFS2; 11146 dp2 = (struct ufs2_dinode *)bp->b_data + 11147 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 11148 freelink = dp2->di_freelink; 11149 } 11150 /* 11151 * Leave this inodeblock dirty until it's in the list. 11152 */ 11153 if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED) { 11154 struct inodedep *inon; 11155 11156 inon = TAILQ_NEXT(inodedep, id_unlinked); 11157 if ((inon == NULL && freelink == 0) || 11158 (inon && inon->id_ino == freelink)) { 11159 if (inon) 11160 inon->id_state |= UNLINKPREV; 11161 inodedep->id_state |= UNLINKNEXT; 11162 } 11163 hadchanges = 1; 11164 } 11165 /* 11166 * If we had to rollback the inode allocation because of 11167 * bitmaps being incomplete, then simply restore it. 11168 * Keep the block dirty so that it will not be reclaimed until 11169 * all associated dependencies have been cleared and the 11170 * corresponding updates written to disk. 11171 */ 11172 if (inodedep->id_savedino1 != NULL) { 11173 hadchanges = 1; 11174 if (fstype == UFS1) 11175 *dp1 = *inodedep->id_savedino1; 11176 else 11177 *dp2 = *inodedep->id_savedino2; 11178 free(inodedep->id_savedino1, M_SAVEDINO); 11179 inodedep->id_savedino1 = NULL; 11180 if ((bp->b_flags & B_DELWRI) == 0) 11181 stat_inode_bitmap++; 11182 bdirty(bp); 11183 /* 11184 * If the inode is clear here and GOINGAWAY it will never 11185 * be written. Process the bufwait and clear any pending 11186 * work which may include the freefile. 11187 */ 11188 if (inodedep->id_state & GOINGAWAY) 11189 goto bufwait; 11190 return (1); 11191 } 11192 inodedep->id_state |= COMPLETE; 11193 /* 11194 * Roll forward anything that had to be rolled back before 11195 * the inode could be updated. 11196 */ 11197 for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) { 11198 nextadp = TAILQ_NEXT(adp, ad_next); 11199 if (adp->ad_state & ATTACHED) 11200 panic("handle_written_inodeblock: new entry"); 11201 if (fstype == UFS1) { 11202 if (adp->ad_offset < NDADDR) { 11203 if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno) 11204 panic("%s %s #%jd mismatch %d != %jd", 11205 "handle_written_inodeblock:", 11206 "direct pointer", 11207 (intmax_t)adp->ad_offset, 11208 dp1->di_db[adp->ad_offset], 11209 (intmax_t)adp->ad_oldblkno); 11210 dp1->di_db[adp->ad_offset] = adp->ad_newblkno; 11211 } else { 11212 if (dp1->di_ib[adp->ad_offset - NDADDR] != 0) 11213 panic("%s: %s #%jd allocated as %d", 11214 "handle_written_inodeblock", 11215 "indirect pointer", 11216 (intmax_t)adp->ad_offset - NDADDR, 11217 dp1->di_ib[adp->ad_offset - NDADDR]); 11218 dp1->di_ib[adp->ad_offset - NDADDR] = 11219 adp->ad_newblkno; 11220 } 11221 } else { 11222 if (adp->ad_offset < NDADDR) { 11223 if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno) 11224 panic("%s: %s #%jd %s %jd != %jd", 11225 "handle_written_inodeblock", 11226 "direct pointer", 11227 (intmax_t)adp->ad_offset, "mismatch", 11228 (intmax_t)dp2->di_db[adp->ad_offset], 11229 (intmax_t)adp->ad_oldblkno); 11230 dp2->di_db[adp->ad_offset] = adp->ad_newblkno; 11231 } else { 11232 if (dp2->di_ib[adp->ad_offset - NDADDR] != 0) 11233 panic("%s: %s #%jd allocated as %jd", 11234 "handle_written_inodeblock", 11235 "indirect pointer", 11236 (intmax_t)adp->ad_offset - NDADDR, 11237 (intmax_t) 11238 dp2->di_ib[adp->ad_offset - NDADDR]); 11239 dp2->di_ib[adp->ad_offset - NDADDR] = 11240 adp->ad_newblkno; 11241 } 11242 } 11243 adp->ad_state &= ~UNDONE; 11244 adp->ad_state |= ATTACHED; 11245 hadchanges = 1; 11246 } 11247 for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) { 11248 nextadp = TAILQ_NEXT(adp, ad_next); 11249 if (adp->ad_state & ATTACHED) 11250 panic("handle_written_inodeblock: new entry"); 11251 if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno) 11252 panic("%s: direct pointers #%jd %s %jd != %jd", 11253 "handle_written_inodeblock", 11254 (intmax_t)adp->ad_offset, "mismatch", 11255 (intmax_t)dp2->di_extb[adp->ad_offset], 11256 (intmax_t)adp->ad_oldblkno); 11257 dp2->di_extb[adp->ad_offset] = adp->ad_newblkno; 11258 adp->ad_state &= ~UNDONE; 11259 adp->ad_state |= ATTACHED; 11260 hadchanges = 1; 11261 } 11262 if (hadchanges && (bp->b_flags & B_DELWRI) == 0) 11263 stat_direct_blk_ptrs++; 11264 /* 11265 * Reset the file size to its most up-to-date value. 11266 */ 11267 if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1) 11268 panic("handle_written_inodeblock: bad size"); 11269 if (inodedep->id_savednlink > LINK_MAX) 11270 panic("handle_written_inodeblock: Invalid link count " 11271 "%d for inodedep %p", inodedep->id_savednlink, inodedep); 11272 if (fstype == UFS1) { 11273 if (dp1->di_nlink != inodedep->id_savednlink) { 11274 dp1->di_nlink = inodedep->id_savednlink; 11275 hadchanges = 1; 11276 } 11277 if (dp1->di_size != inodedep->id_savedsize) { 11278 dp1->di_size = inodedep->id_savedsize; 11279 hadchanges = 1; 11280 } 11281 } else { 11282 if (dp2->di_nlink != inodedep->id_savednlink) { 11283 dp2->di_nlink = inodedep->id_savednlink; 11284 hadchanges = 1; 11285 } 11286 if (dp2->di_size != inodedep->id_savedsize) { 11287 dp2->di_size = inodedep->id_savedsize; 11288 hadchanges = 1; 11289 } 11290 if (dp2->di_extsize != inodedep->id_savedextsize) { 11291 dp2->di_extsize = inodedep->id_savedextsize; 11292 hadchanges = 1; 11293 } 11294 } 11295 inodedep->id_savedsize = -1; 11296 inodedep->id_savedextsize = -1; 11297 inodedep->id_savednlink = -1; 11298 /* 11299 * If there were any rollbacks in the inode block, then it must be 11300 * marked dirty so that its will eventually get written back in 11301 * its correct form. 11302 */ 11303 if (hadchanges) 11304 bdirty(bp); 11305 bufwait: 11306 /* 11307 * Process any allocdirects that completed during the update. 11308 */ 11309 if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL) 11310 handle_allocdirect_partdone(adp, &wkhd); 11311 if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 11312 handle_allocdirect_partdone(adp, &wkhd); 11313 /* 11314 * Process deallocations that were held pending until the 11315 * inode had been written to disk. Freeing of the inode 11316 * is delayed until after all blocks have been freed to 11317 * avoid creation of new <vfsid, inum, lbn> triples 11318 * before the old ones have been deleted. Completely 11319 * unlinked inodes are not processed until the unlinked 11320 * inode list is written or the last reference is removed. 11321 */ 11322 if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) { 11323 freefile = handle_bufwait(inodedep, NULL); 11324 if (freefile && !LIST_EMPTY(&wkhd)) { 11325 WORKLIST_INSERT(&wkhd, &freefile->fx_list); 11326 freefile = NULL; 11327 } 11328 } 11329 /* 11330 * Move rolled forward dependency completions to the bufwait list 11331 * now that those that were already written have been processed. 11332 */ 11333 if (!LIST_EMPTY(&wkhd) && hadchanges == 0) 11334 panic("handle_written_inodeblock: bufwait but no changes"); 11335 jwork_move(&inodedep->id_bufwait, &wkhd); 11336 11337 if (freefile != NULL) { 11338 /* 11339 * If the inode is goingaway it was never written. Fake up 11340 * the state here so free_inodedep() can succeed. 11341 */ 11342 if (inodedep->id_state & GOINGAWAY) 11343 inodedep->id_state |= COMPLETE | DEPCOMPLETE; 11344 if (free_inodedep(inodedep) == 0) 11345 panic("handle_written_inodeblock: live inodedep %p", 11346 inodedep); 11347 add_to_worklist(&freefile->fx_list, 0); 11348 return (0); 11349 } 11350 11351 /* 11352 * If no outstanding dependencies, free it. 11353 */ 11354 if (free_inodedep(inodedep) || 11355 (TAILQ_FIRST(&inodedep->id_inoreflst) == 0 && 11356 TAILQ_FIRST(&inodedep->id_inoupdt) == 0 && 11357 TAILQ_FIRST(&inodedep->id_extupdt) == 0 && 11358 LIST_FIRST(&inodedep->id_bufwait) == 0)) 11359 return (0); 11360 return (hadchanges); 11361 } 11362 11363 static int 11364 handle_written_indirdep(indirdep, bp, bpp) 11365 struct indirdep *indirdep; 11366 struct buf *bp; 11367 struct buf **bpp; 11368 { 11369 struct allocindir *aip; 11370 struct buf *sbp; 11371 int chgs; 11372 11373 if (indirdep->ir_state & GOINGAWAY) 11374 panic("handle_written_indirdep: indirdep gone"); 11375 if ((indirdep->ir_state & IOSTARTED) == 0) 11376 panic("handle_written_indirdep: IO not started"); 11377 chgs = 0; 11378 /* 11379 * If there were rollbacks revert them here. 11380 */ 11381 if (indirdep->ir_saveddata) { 11382 bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount); 11383 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 11384 free(indirdep->ir_saveddata, M_INDIRDEP); 11385 indirdep->ir_saveddata = NULL; 11386 } 11387 chgs = 1; 11388 } 11389 indirdep->ir_state &= ~(UNDONE | IOSTARTED); 11390 indirdep->ir_state |= ATTACHED; 11391 /* 11392 * Move allocindirs with written pointers to the completehd if 11393 * the indirdep's pointer is not yet written. Otherwise 11394 * free them here. 11395 */ 11396 while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != 0) { 11397 LIST_REMOVE(aip, ai_next); 11398 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 11399 LIST_INSERT_HEAD(&indirdep->ir_completehd, aip, 11400 ai_next); 11401 newblk_freefrag(&aip->ai_block); 11402 continue; 11403 } 11404 free_newblk(&aip->ai_block); 11405 } 11406 /* 11407 * Move allocindirs that have finished dependency processing from 11408 * the done list to the write list after updating the pointers. 11409 */ 11410 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 11411 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) { 11412 handle_allocindir_partdone(aip); 11413 if (aip == LIST_FIRST(&indirdep->ir_donehd)) 11414 panic("disk_write_complete: not gone"); 11415 chgs = 1; 11416 } 11417 } 11418 /* 11419 * Preserve the indirdep if there were any changes or if it is not 11420 * yet valid on disk. 11421 */ 11422 if (chgs) { 11423 stat_indir_blk_ptrs++; 11424 bdirty(bp); 11425 return (1); 11426 } 11427 /* 11428 * If there were no changes we can discard the savedbp and detach 11429 * ourselves from the buf. We are only carrying completed pointers 11430 * in this case. 11431 */ 11432 sbp = indirdep->ir_savebp; 11433 sbp->b_flags |= B_INVAL | B_NOCACHE; 11434 indirdep->ir_savebp = NULL; 11435 indirdep->ir_bp = NULL; 11436 if (*bpp != NULL) 11437 panic("handle_written_indirdep: bp already exists."); 11438 *bpp = sbp; 11439 /* 11440 * The indirdep may not be freed until its parent points at it. 11441 */ 11442 if (indirdep->ir_state & DEPCOMPLETE) 11443 free_indirdep(indirdep); 11444 11445 return (0); 11446 } 11447 11448 /* 11449 * Process a diradd entry after its dependent inode has been written. 11450 * This routine must be called with splbio interrupts blocked. 11451 */ 11452 static void 11453 diradd_inode_written(dap, inodedep) 11454 struct diradd *dap; 11455 struct inodedep *inodedep; 11456 { 11457 11458 dap->da_state |= COMPLETE; 11459 complete_diradd(dap); 11460 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 11461 } 11462 11463 /* 11464 * Returns true if the bmsafemap will have rollbacks when written. Must only 11465 * be called with the soft updates lock and the buf lock on the cg held. 11466 */ 11467 static int 11468 bmsafemap_backgroundwrite(bmsafemap, bp) 11469 struct bmsafemap *bmsafemap; 11470 struct buf *bp; 11471 { 11472 int dirty; 11473 11474 LOCK_OWNED(VFSTOUFS(bmsafemap->sm_list.wk_mp)); 11475 dirty = !LIST_EMPTY(&bmsafemap->sm_jaddrefhd) | 11476 !LIST_EMPTY(&bmsafemap->sm_jnewblkhd); 11477 /* 11478 * If we're initiating a background write we need to process the 11479 * rollbacks as they exist now, not as they exist when IO starts. 11480 * No other consumers will look at the contents of the shadowed 11481 * buf so this is safe to do here. 11482 */ 11483 if (bp->b_xflags & BX_BKGRDMARKER) 11484 initiate_write_bmsafemap(bmsafemap, bp); 11485 11486 return (dirty); 11487 } 11488 11489 /* 11490 * Re-apply an allocation when a cg write is complete. 11491 */ 11492 static int 11493 jnewblk_rollforward(jnewblk, fs, cgp, blksfree) 11494 struct jnewblk *jnewblk; 11495 struct fs *fs; 11496 struct cg *cgp; 11497 uint8_t *blksfree; 11498 { 11499 ufs1_daddr_t fragno; 11500 ufs2_daddr_t blkno; 11501 long cgbno, bbase; 11502 int frags, blk; 11503 int i; 11504 11505 frags = 0; 11506 cgbno = dtogd(fs, jnewblk->jn_blkno); 11507 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) { 11508 if (isclr(blksfree, cgbno + i)) 11509 panic("jnewblk_rollforward: re-allocated fragment"); 11510 frags++; 11511 } 11512 if (frags == fs->fs_frag) { 11513 blkno = fragstoblks(fs, cgbno); 11514 ffs_clrblock(fs, blksfree, (long)blkno); 11515 ffs_clusteracct(fs, cgp, blkno, -1); 11516 cgp->cg_cs.cs_nbfree--; 11517 } else { 11518 bbase = cgbno - fragnum(fs, cgbno); 11519 cgbno += jnewblk->jn_oldfrags; 11520 /* If a complete block had been reassembled, account for it. */ 11521 fragno = fragstoblks(fs, bbase); 11522 if (ffs_isblock(fs, blksfree, fragno)) { 11523 cgp->cg_cs.cs_nffree += fs->fs_frag; 11524 ffs_clusteracct(fs, cgp, fragno, -1); 11525 cgp->cg_cs.cs_nbfree--; 11526 } 11527 /* Decrement the old frags. */ 11528 blk = blkmap(fs, blksfree, bbase); 11529 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 11530 /* Allocate the fragment */ 11531 for (i = 0; i < frags; i++) 11532 clrbit(blksfree, cgbno + i); 11533 cgp->cg_cs.cs_nffree -= frags; 11534 /* Add back in counts associated with the new frags */ 11535 blk = blkmap(fs, blksfree, bbase); 11536 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 11537 } 11538 return (frags); 11539 } 11540 11541 /* 11542 * Complete a write to a bmsafemap structure. Roll forward any bitmap 11543 * changes if it's not a background write. Set all written dependencies 11544 * to DEPCOMPLETE and free the structure if possible. 11545 */ 11546 static int 11547 handle_written_bmsafemap(bmsafemap, bp) 11548 struct bmsafemap *bmsafemap; 11549 struct buf *bp; 11550 { 11551 struct newblk *newblk; 11552 struct inodedep *inodedep; 11553 struct jaddref *jaddref, *jatmp; 11554 struct jnewblk *jnewblk, *jntmp; 11555 struct ufsmount *ump; 11556 uint8_t *inosused; 11557 uint8_t *blksfree; 11558 struct cg *cgp; 11559 struct fs *fs; 11560 ino_t ino; 11561 int foreground; 11562 int chgs; 11563 11564 if ((bmsafemap->sm_state & IOSTARTED) == 0) 11565 panic("initiate_write_bmsafemap: Not started\n"); 11566 ump = VFSTOUFS(bmsafemap->sm_list.wk_mp); 11567 chgs = 0; 11568 bmsafemap->sm_state &= ~IOSTARTED; 11569 foreground = (bp->b_xflags & BX_BKGRDMARKER) == 0; 11570 /* 11571 * Release journal work that was waiting on the write. 11572 */ 11573 handle_jwork(&bmsafemap->sm_freewr); 11574 11575 /* 11576 * Restore unwritten inode allocation pending jaddref writes. 11577 */ 11578 if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) { 11579 cgp = (struct cg *)bp->b_data; 11580 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 11581 inosused = cg_inosused(cgp); 11582 LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd, 11583 ja_bmdeps, jatmp) { 11584 if ((jaddref->ja_state & UNDONE) == 0) 11585 continue; 11586 ino = jaddref->ja_ino % fs->fs_ipg; 11587 if (isset(inosused, ino)) 11588 panic("handle_written_bmsafemap: " 11589 "re-allocated inode"); 11590 /* Do the roll-forward only if it's a real copy. */ 11591 if (foreground) { 11592 if ((jaddref->ja_mode & IFMT) == IFDIR) 11593 cgp->cg_cs.cs_ndir++; 11594 cgp->cg_cs.cs_nifree--; 11595 setbit(inosused, ino); 11596 chgs = 1; 11597 } 11598 jaddref->ja_state &= ~UNDONE; 11599 jaddref->ja_state |= ATTACHED; 11600 free_jaddref(jaddref); 11601 } 11602 } 11603 /* 11604 * Restore any block allocations which are pending journal writes. 11605 */ 11606 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) { 11607 cgp = (struct cg *)bp->b_data; 11608 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 11609 blksfree = cg_blksfree(cgp); 11610 LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps, 11611 jntmp) { 11612 if ((jnewblk->jn_state & UNDONE) == 0) 11613 continue; 11614 /* Do the roll-forward only if it's a real copy. */ 11615 if (foreground && 11616 jnewblk_rollforward(jnewblk, fs, cgp, blksfree)) 11617 chgs = 1; 11618 jnewblk->jn_state &= ~(UNDONE | NEWBLOCK); 11619 jnewblk->jn_state |= ATTACHED; 11620 free_jnewblk(jnewblk); 11621 } 11622 } 11623 while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) { 11624 newblk->nb_state |= DEPCOMPLETE; 11625 newblk->nb_state &= ~ONDEPLIST; 11626 newblk->nb_bmsafemap = NULL; 11627 LIST_REMOVE(newblk, nb_deps); 11628 if (newblk->nb_list.wk_type == D_ALLOCDIRECT) 11629 handle_allocdirect_partdone( 11630 WK_ALLOCDIRECT(&newblk->nb_list), NULL); 11631 else if (newblk->nb_list.wk_type == D_ALLOCINDIR) 11632 handle_allocindir_partdone( 11633 WK_ALLOCINDIR(&newblk->nb_list)); 11634 else if (newblk->nb_list.wk_type != D_NEWBLK) 11635 panic("handle_written_bmsafemap: Unexpected type: %s", 11636 TYPENAME(newblk->nb_list.wk_type)); 11637 } 11638 while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) { 11639 inodedep->id_state |= DEPCOMPLETE; 11640 inodedep->id_state &= ~ONDEPLIST; 11641 LIST_REMOVE(inodedep, id_deps); 11642 inodedep->id_bmsafemap = NULL; 11643 } 11644 LIST_REMOVE(bmsafemap, sm_next); 11645 if (chgs == 0 && LIST_EMPTY(&bmsafemap->sm_jaddrefhd) && 11646 LIST_EMPTY(&bmsafemap->sm_jnewblkhd) && 11647 LIST_EMPTY(&bmsafemap->sm_newblkhd) && 11648 LIST_EMPTY(&bmsafemap->sm_inodedephd) && 11649 LIST_EMPTY(&bmsafemap->sm_freehd)) { 11650 LIST_REMOVE(bmsafemap, sm_hash); 11651 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); 11652 return (0); 11653 } 11654 LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next); 11655 if (foreground) 11656 bdirty(bp); 11657 return (1); 11658 } 11659 11660 /* 11661 * Try to free a mkdir dependency. 11662 */ 11663 static void 11664 complete_mkdir(mkdir) 11665 struct mkdir *mkdir; 11666 { 11667 struct diradd *dap; 11668 11669 if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE) 11670 return; 11671 LIST_REMOVE(mkdir, md_mkdirs); 11672 dap = mkdir->md_diradd; 11673 dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)); 11674 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) { 11675 dap->da_state |= DEPCOMPLETE; 11676 complete_diradd(dap); 11677 } 11678 WORKITEM_FREE(mkdir, D_MKDIR); 11679 } 11680 11681 /* 11682 * Handle the completion of a mkdir dependency. 11683 */ 11684 static void 11685 handle_written_mkdir(mkdir, type) 11686 struct mkdir *mkdir; 11687 int type; 11688 { 11689 11690 if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type) 11691 panic("handle_written_mkdir: bad type"); 11692 mkdir->md_state |= COMPLETE; 11693 complete_mkdir(mkdir); 11694 } 11695 11696 static int 11697 free_pagedep(pagedep) 11698 struct pagedep *pagedep; 11699 { 11700 int i; 11701 11702 if (pagedep->pd_state & NEWBLOCK) 11703 return (0); 11704 if (!LIST_EMPTY(&pagedep->pd_dirremhd)) 11705 return (0); 11706 for (i = 0; i < DAHASHSZ; i++) 11707 if (!LIST_EMPTY(&pagedep->pd_diraddhd[i])) 11708 return (0); 11709 if (!LIST_EMPTY(&pagedep->pd_pendinghd)) 11710 return (0); 11711 if (!LIST_EMPTY(&pagedep->pd_jmvrefhd)) 11712 return (0); 11713 if (pagedep->pd_state & ONWORKLIST) 11714 WORKLIST_REMOVE(&pagedep->pd_list); 11715 LIST_REMOVE(pagedep, pd_hash); 11716 WORKITEM_FREE(pagedep, D_PAGEDEP); 11717 11718 return (1); 11719 } 11720 11721 /* 11722 * Called from within softdep_disk_write_complete above. 11723 * A write operation was just completed. Removed inodes can 11724 * now be freed and associated block pointers may be committed. 11725 * Note that this routine is always called from interrupt level 11726 * with further splbio interrupts blocked. 11727 */ 11728 static int 11729 handle_written_filepage(pagedep, bp) 11730 struct pagedep *pagedep; 11731 struct buf *bp; /* buffer containing the written page */ 11732 { 11733 struct dirrem *dirrem; 11734 struct diradd *dap, *nextdap; 11735 struct direct *ep; 11736 int i, chgs; 11737 11738 if ((pagedep->pd_state & IOSTARTED) == 0) 11739 panic("handle_written_filepage: not started"); 11740 pagedep->pd_state &= ~IOSTARTED; 11741 /* 11742 * Process any directory removals that have been committed. 11743 */ 11744 while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) { 11745 LIST_REMOVE(dirrem, dm_next); 11746 dirrem->dm_state |= COMPLETE; 11747 dirrem->dm_dirinum = pagedep->pd_ino; 11748 KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd), 11749 ("handle_written_filepage: Journal entries not written.")); 11750 add_to_worklist(&dirrem->dm_list, 0); 11751 } 11752 /* 11753 * Free any directory additions that have been committed. 11754 * If it is a newly allocated block, we have to wait until 11755 * the on-disk directory inode claims the new block. 11756 */ 11757 if ((pagedep->pd_state & NEWBLOCK) == 0) 11758 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 11759 free_diradd(dap, NULL); 11760 /* 11761 * Uncommitted directory entries must be restored. 11762 */ 11763 for (chgs = 0, i = 0; i < DAHASHSZ; i++) { 11764 for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap; 11765 dap = nextdap) { 11766 nextdap = LIST_NEXT(dap, da_pdlist); 11767 if (dap->da_state & ATTACHED) 11768 panic("handle_written_filepage: attached"); 11769 ep = (struct direct *) 11770 ((char *)bp->b_data + dap->da_offset); 11771 ep->d_ino = dap->da_newinum; 11772 dap->da_state &= ~UNDONE; 11773 dap->da_state |= ATTACHED; 11774 chgs = 1; 11775 /* 11776 * If the inode referenced by the directory has 11777 * been written out, then the dependency can be 11778 * moved to the pending list. 11779 */ 11780 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 11781 LIST_REMOVE(dap, da_pdlist); 11782 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, 11783 da_pdlist); 11784 } 11785 } 11786 } 11787 /* 11788 * If there were any rollbacks in the directory, then it must be 11789 * marked dirty so that its will eventually get written back in 11790 * its correct form. 11791 */ 11792 if (chgs) { 11793 if ((bp->b_flags & B_DELWRI) == 0) 11794 stat_dir_entry++; 11795 bdirty(bp); 11796 return (1); 11797 } 11798 /* 11799 * If we are not waiting for a new directory block to be 11800 * claimed by its inode, then the pagedep will be freed. 11801 * Otherwise it will remain to track any new entries on 11802 * the page in case they are fsync'ed. 11803 */ 11804 free_pagedep(pagedep); 11805 return (0); 11806 } 11807 11808 /* 11809 * Writing back in-core inode structures. 11810 * 11811 * The filesystem only accesses an inode's contents when it occupies an 11812 * "in-core" inode structure. These "in-core" structures are separate from 11813 * the page frames used to cache inode blocks. Only the latter are 11814 * transferred to/from the disk. So, when the updated contents of the 11815 * "in-core" inode structure are copied to the corresponding in-memory inode 11816 * block, the dependencies are also transferred. The following procedure is 11817 * called when copying a dirty "in-core" inode to a cached inode block. 11818 */ 11819 11820 /* 11821 * Called when an inode is loaded from disk. If the effective link count 11822 * differed from the actual link count when it was last flushed, then we 11823 * need to ensure that the correct effective link count is put back. 11824 */ 11825 void 11826 softdep_load_inodeblock(ip) 11827 struct inode *ip; /* the "in_core" copy of the inode */ 11828 { 11829 struct inodedep *inodedep; 11830 11831 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0, 11832 ("softdep_load_inodeblock called on non-softdep filesystem")); 11833 /* 11834 * Check for alternate nlink count. 11835 */ 11836 ip->i_effnlink = ip->i_nlink; 11837 ACQUIRE_LOCK(ip->i_ump); 11838 if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0, 11839 &inodedep) == 0) { 11840 FREE_LOCK(ip->i_ump); 11841 return; 11842 } 11843 ip->i_effnlink -= inodedep->id_nlinkdelta; 11844 FREE_LOCK(ip->i_ump); 11845 } 11846 11847 /* 11848 * This routine is called just before the "in-core" inode 11849 * information is to be copied to the in-memory inode block. 11850 * Recall that an inode block contains several inodes. If 11851 * the force flag is set, then the dependencies will be 11852 * cleared so that the update can always be made. Note that 11853 * the buffer is locked when this routine is called, so we 11854 * will never be in the middle of writing the inode block 11855 * to disk. 11856 */ 11857 void 11858 softdep_update_inodeblock(ip, bp, waitfor) 11859 struct inode *ip; /* the "in_core" copy of the inode */ 11860 struct buf *bp; /* the buffer containing the inode block */ 11861 int waitfor; /* nonzero => update must be allowed */ 11862 { 11863 struct inodedep *inodedep; 11864 struct inoref *inoref; 11865 struct ufsmount *ump; 11866 struct worklist *wk; 11867 struct mount *mp; 11868 struct buf *ibp; 11869 struct fs *fs; 11870 int error; 11871 11872 ump = ip->i_ump; 11873 mp = UFSTOVFS(ump); 11874 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 11875 ("softdep_update_inodeblock called on non-softdep filesystem")); 11876 fs = ip->i_fs; 11877 /* 11878 * Preserve the freelink that is on disk. clear_unlinked_inodedep() 11879 * does not have access to the in-core ip so must write directly into 11880 * the inode block buffer when setting freelink. 11881 */ 11882 if (fs->fs_magic == FS_UFS1_MAGIC) 11883 DIP_SET(ip, i_freelink, ((struct ufs1_dinode *)bp->b_data + 11884 ino_to_fsbo(fs, ip->i_number))->di_freelink); 11885 else 11886 DIP_SET(ip, i_freelink, ((struct ufs2_dinode *)bp->b_data + 11887 ino_to_fsbo(fs, ip->i_number))->di_freelink); 11888 /* 11889 * If the effective link count is not equal to the actual link 11890 * count, then we must track the difference in an inodedep while 11891 * the inode is (potentially) tossed out of the cache. Otherwise, 11892 * if there is no existing inodedep, then there are no dependencies 11893 * to track. 11894 */ 11895 ACQUIRE_LOCK(ump); 11896 again: 11897 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) { 11898 FREE_LOCK(ump); 11899 if (ip->i_effnlink != ip->i_nlink) 11900 panic("softdep_update_inodeblock: bad link count"); 11901 return; 11902 } 11903 if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink) 11904 panic("softdep_update_inodeblock: bad delta"); 11905 /* 11906 * If we're flushing all dependencies we must also move any waiting 11907 * for journal writes onto the bufwait list prior to I/O. 11908 */ 11909 if (waitfor) { 11910 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 11911 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 11912 == DEPCOMPLETE) { 11913 jwait(&inoref->if_list, MNT_WAIT); 11914 goto again; 11915 } 11916 } 11917 } 11918 /* 11919 * Changes have been initiated. Anything depending on these 11920 * changes cannot occur until this inode has been written. 11921 */ 11922 inodedep->id_state &= ~COMPLETE; 11923 if ((inodedep->id_state & ONWORKLIST) == 0) 11924 WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list); 11925 /* 11926 * Any new dependencies associated with the incore inode must 11927 * now be moved to the list associated with the buffer holding 11928 * the in-memory copy of the inode. Once merged process any 11929 * allocdirects that are completed by the merger. 11930 */ 11931 merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt); 11932 if (!TAILQ_EMPTY(&inodedep->id_inoupdt)) 11933 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt), 11934 NULL); 11935 merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt); 11936 if (!TAILQ_EMPTY(&inodedep->id_extupdt)) 11937 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt), 11938 NULL); 11939 /* 11940 * Now that the inode has been pushed into the buffer, the 11941 * operations dependent on the inode being written to disk 11942 * can be moved to the id_bufwait so that they will be 11943 * processed when the buffer I/O completes. 11944 */ 11945 while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) { 11946 WORKLIST_REMOVE(wk); 11947 WORKLIST_INSERT(&inodedep->id_bufwait, wk); 11948 } 11949 /* 11950 * Newly allocated inodes cannot be written until the bitmap 11951 * that allocates them have been written (indicated by 11952 * DEPCOMPLETE being set in id_state). If we are doing a 11953 * forced sync (e.g., an fsync on a file), we force the bitmap 11954 * to be written so that the update can be done. 11955 */ 11956 if (waitfor == 0) { 11957 FREE_LOCK(ump); 11958 return; 11959 } 11960 retry: 11961 if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) { 11962 FREE_LOCK(ump); 11963 return; 11964 } 11965 ibp = inodedep->id_bmsafemap->sm_buf; 11966 ibp = getdirtybuf(ibp, LOCK_PTR(ump), MNT_WAIT); 11967 if (ibp == NULL) { 11968 /* 11969 * If ibp came back as NULL, the dependency could have been 11970 * freed while we slept. Look it up again, and check to see 11971 * that it has completed. 11972 */ 11973 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) 11974 goto retry; 11975 FREE_LOCK(ump); 11976 return; 11977 } 11978 FREE_LOCK(ump); 11979 if ((error = bwrite(ibp)) != 0) 11980 softdep_error("softdep_update_inodeblock: bwrite", error); 11981 } 11982 11983 /* 11984 * Merge the a new inode dependency list (such as id_newinoupdt) into an 11985 * old inode dependency list (such as id_inoupdt). This routine must be 11986 * called with splbio interrupts blocked. 11987 */ 11988 static void 11989 merge_inode_lists(newlisthead, oldlisthead) 11990 struct allocdirectlst *newlisthead; 11991 struct allocdirectlst *oldlisthead; 11992 { 11993 struct allocdirect *listadp, *newadp; 11994 11995 newadp = TAILQ_FIRST(newlisthead); 11996 for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) { 11997 if (listadp->ad_offset < newadp->ad_offset) { 11998 listadp = TAILQ_NEXT(listadp, ad_next); 11999 continue; 12000 } 12001 TAILQ_REMOVE(newlisthead, newadp, ad_next); 12002 TAILQ_INSERT_BEFORE(listadp, newadp, ad_next); 12003 if (listadp->ad_offset == newadp->ad_offset) { 12004 allocdirect_merge(oldlisthead, newadp, 12005 listadp); 12006 listadp = newadp; 12007 } 12008 newadp = TAILQ_FIRST(newlisthead); 12009 } 12010 while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) { 12011 TAILQ_REMOVE(newlisthead, newadp, ad_next); 12012 TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next); 12013 } 12014 } 12015 12016 /* 12017 * If we are doing an fsync, then we must ensure that any directory 12018 * entries for the inode have been written after the inode gets to disk. 12019 */ 12020 int 12021 softdep_fsync(vp) 12022 struct vnode *vp; /* the "in_core" copy of the inode */ 12023 { 12024 struct inodedep *inodedep; 12025 struct pagedep *pagedep; 12026 struct inoref *inoref; 12027 struct ufsmount *ump; 12028 struct worklist *wk; 12029 struct diradd *dap; 12030 struct mount *mp; 12031 struct vnode *pvp; 12032 struct inode *ip; 12033 struct buf *bp; 12034 struct fs *fs; 12035 struct thread *td = curthread; 12036 int error, flushparent, pagedep_new_block; 12037 ino_t parentino; 12038 ufs_lbn_t lbn; 12039 12040 ip = VTOI(vp); 12041 fs = ip->i_fs; 12042 ump = ip->i_ump; 12043 mp = vp->v_mount; 12044 if (MOUNTEDSOFTDEP(mp) == 0) 12045 return (0); 12046 ACQUIRE_LOCK(ump); 12047 restart: 12048 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) { 12049 FREE_LOCK(ump); 12050 return (0); 12051 } 12052 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 12053 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 12054 == DEPCOMPLETE) { 12055 jwait(&inoref->if_list, MNT_WAIT); 12056 goto restart; 12057 } 12058 } 12059 if (!LIST_EMPTY(&inodedep->id_inowait) || 12060 !TAILQ_EMPTY(&inodedep->id_extupdt) || 12061 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 12062 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 12063 !TAILQ_EMPTY(&inodedep->id_newinoupdt)) 12064 panic("softdep_fsync: pending ops %p", inodedep); 12065 for (error = 0, flushparent = 0; ; ) { 12066 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL) 12067 break; 12068 if (wk->wk_type != D_DIRADD) 12069 panic("softdep_fsync: Unexpected type %s", 12070 TYPENAME(wk->wk_type)); 12071 dap = WK_DIRADD(wk); 12072 /* 12073 * Flush our parent if this directory entry has a MKDIR_PARENT 12074 * dependency or is contained in a newly allocated block. 12075 */ 12076 if (dap->da_state & DIRCHG) 12077 pagedep = dap->da_previous->dm_pagedep; 12078 else 12079 pagedep = dap->da_pagedep; 12080 parentino = pagedep->pd_ino; 12081 lbn = pagedep->pd_lbn; 12082 if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE) 12083 panic("softdep_fsync: dirty"); 12084 if ((dap->da_state & MKDIR_PARENT) || 12085 (pagedep->pd_state & NEWBLOCK)) 12086 flushparent = 1; 12087 else 12088 flushparent = 0; 12089 /* 12090 * If we are being fsync'ed as part of vgone'ing this vnode, 12091 * then we will not be able to release and recover the 12092 * vnode below, so we just have to give up on writing its 12093 * directory entry out. It will eventually be written, just 12094 * not now, but then the user was not asking to have it 12095 * written, so we are not breaking any promises. 12096 */ 12097 if (vp->v_iflag & VI_DOOMED) 12098 break; 12099 /* 12100 * We prevent deadlock by always fetching inodes from the 12101 * root, moving down the directory tree. Thus, when fetching 12102 * our parent directory, we first try to get the lock. If 12103 * that fails, we must unlock ourselves before requesting 12104 * the lock on our parent. See the comment in ufs_lookup 12105 * for details on possible races. 12106 */ 12107 FREE_LOCK(ump); 12108 if (ffs_vgetf(mp, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp, 12109 FFSV_FORCEINSMQ)) { 12110 error = vfs_busy(mp, MBF_NOWAIT); 12111 if (error != 0) { 12112 vfs_ref(mp); 12113 VOP_UNLOCK(vp, 0); 12114 error = vfs_busy(mp, 0); 12115 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 12116 vfs_rel(mp); 12117 if (error != 0) 12118 return (ENOENT); 12119 if (vp->v_iflag & VI_DOOMED) { 12120 vfs_unbusy(mp); 12121 return (ENOENT); 12122 } 12123 } 12124 VOP_UNLOCK(vp, 0); 12125 error = ffs_vgetf(mp, parentino, LK_EXCLUSIVE, 12126 &pvp, FFSV_FORCEINSMQ); 12127 vfs_unbusy(mp); 12128 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 12129 if (vp->v_iflag & VI_DOOMED) { 12130 if (error == 0) 12131 vput(pvp); 12132 error = ENOENT; 12133 } 12134 if (error != 0) 12135 return (error); 12136 } 12137 /* 12138 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps 12139 * that are contained in direct blocks will be resolved by 12140 * doing a ffs_update. Pagedeps contained in indirect blocks 12141 * may require a complete sync'ing of the directory. So, we 12142 * try the cheap and fast ffs_update first, and if that fails, 12143 * then we do the slower ffs_syncvnode of the directory. 12144 */ 12145 if (flushparent) { 12146 int locked; 12147 12148 if ((error = ffs_update(pvp, 1)) != 0) { 12149 vput(pvp); 12150 return (error); 12151 } 12152 ACQUIRE_LOCK(ump); 12153 locked = 1; 12154 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) { 12155 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) { 12156 if (wk->wk_type != D_DIRADD) 12157 panic("softdep_fsync: Unexpected type %s", 12158 TYPENAME(wk->wk_type)); 12159 dap = WK_DIRADD(wk); 12160 if (dap->da_state & DIRCHG) 12161 pagedep = dap->da_previous->dm_pagedep; 12162 else 12163 pagedep = dap->da_pagedep; 12164 pagedep_new_block = pagedep->pd_state & NEWBLOCK; 12165 FREE_LOCK(ump); 12166 locked = 0; 12167 if (pagedep_new_block && (error = 12168 ffs_syncvnode(pvp, MNT_WAIT, 0))) { 12169 vput(pvp); 12170 return (error); 12171 } 12172 } 12173 } 12174 if (locked) 12175 FREE_LOCK(ump); 12176 } 12177 /* 12178 * Flush directory page containing the inode's name. 12179 */ 12180 error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred, 12181 &bp); 12182 if (error == 0) 12183 error = bwrite(bp); 12184 else 12185 brelse(bp); 12186 vput(pvp); 12187 if (error != 0) 12188 return (error); 12189 ACQUIRE_LOCK(ump); 12190 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 12191 break; 12192 } 12193 FREE_LOCK(ump); 12194 return (0); 12195 } 12196 12197 /* 12198 * Flush all the dirty bitmaps associated with the block device 12199 * before flushing the rest of the dirty blocks so as to reduce 12200 * the number of dependencies that will have to be rolled back. 12201 * 12202 * XXX Unused? 12203 */ 12204 void 12205 softdep_fsync_mountdev(vp) 12206 struct vnode *vp; 12207 { 12208 struct buf *bp, *nbp; 12209 struct worklist *wk; 12210 struct bufobj *bo; 12211 12212 if (!vn_isdisk(vp, NULL)) 12213 panic("softdep_fsync_mountdev: vnode not a disk"); 12214 bo = &vp->v_bufobj; 12215 restart: 12216 BO_LOCK(bo); 12217 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 12218 /* 12219 * If it is already scheduled, skip to the next buffer. 12220 */ 12221 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) 12222 continue; 12223 12224 if ((bp->b_flags & B_DELWRI) == 0) 12225 panic("softdep_fsync_mountdev: not dirty"); 12226 /* 12227 * We are only interested in bitmaps with outstanding 12228 * dependencies. 12229 */ 12230 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL || 12231 wk->wk_type != D_BMSAFEMAP || 12232 (bp->b_vflags & BV_BKGRDINPROG)) { 12233 BUF_UNLOCK(bp); 12234 continue; 12235 } 12236 BO_UNLOCK(bo); 12237 bremfree(bp); 12238 (void) bawrite(bp); 12239 goto restart; 12240 } 12241 drain_output(vp); 12242 BO_UNLOCK(bo); 12243 } 12244 12245 /* 12246 * Sync all cylinder groups that were dirty at the time this function is 12247 * called. Newly dirtied cgs will be inserted before the sentinel. This 12248 * is used to flush freedep activity that may be holding up writes to a 12249 * indirect block. 12250 */ 12251 static int 12252 sync_cgs(mp, waitfor) 12253 struct mount *mp; 12254 int waitfor; 12255 { 12256 struct bmsafemap *bmsafemap; 12257 struct bmsafemap *sentinel; 12258 struct ufsmount *ump; 12259 struct buf *bp; 12260 int error; 12261 12262 sentinel = malloc(sizeof(*sentinel), M_BMSAFEMAP, M_ZERO | M_WAITOK); 12263 sentinel->sm_cg = -1; 12264 ump = VFSTOUFS(mp); 12265 error = 0; 12266 ACQUIRE_LOCK(ump); 12267 LIST_INSERT_HEAD(&ump->softdep_dirtycg, sentinel, sm_next); 12268 for (bmsafemap = LIST_NEXT(sentinel, sm_next); bmsafemap != NULL; 12269 bmsafemap = LIST_NEXT(sentinel, sm_next)) { 12270 /* Skip sentinels and cgs with no work to release. */ 12271 if (bmsafemap->sm_cg == -1 || 12272 (LIST_EMPTY(&bmsafemap->sm_freehd) && 12273 LIST_EMPTY(&bmsafemap->sm_freewr))) { 12274 LIST_REMOVE(sentinel, sm_next); 12275 LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next); 12276 continue; 12277 } 12278 /* 12279 * If we don't get the lock and we're waiting try again, if 12280 * not move on to the next buf and try to sync it. 12281 */ 12282 bp = getdirtybuf(bmsafemap->sm_buf, LOCK_PTR(ump), waitfor); 12283 if (bp == NULL && waitfor == MNT_WAIT) 12284 continue; 12285 LIST_REMOVE(sentinel, sm_next); 12286 LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next); 12287 if (bp == NULL) 12288 continue; 12289 FREE_LOCK(ump); 12290 if (waitfor == MNT_NOWAIT) 12291 bawrite(bp); 12292 else 12293 error = bwrite(bp); 12294 ACQUIRE_LOCK(ump); 12295 if (error) 12296 break; 12297 } 12298 LIST_REMOVE(sentinel, sm_next); 12299 FREE_LOCK(ump); 12300 free(sentinel, M_BMSAFEMAP); 12301 return (error); 12302 } 12303 12304 /* 12305 * This routine is called when we are trying to synchronously flush a 12306 * file. This routine must eliminate any filesystem metadata dependencies 12307 * so that the syncing routine can succeed. 12308 */ 12309 int 12310 softdep_sync_metadata(struct vnode *vp) 12311 { 12312 struct inode *ip; 12313 int error; 12314 12315 ip = VTOI(vp); 12316 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0, 12317 ("softdep_sync_metadata called on non-softdep filesystem")); 12318 /* 12319 * Ensure that any direct block dependencies have been cleared, 12320 * truncations are started, and inode references are journaled. 12321 */ 12322 ACQUIRE_LOCK(ip->i_ump); 12323 /* 12324 * Write all journal records to prevent rollbacks on devvp. 12325 */ 12326 if (vp->v_type == VCHR) 12327 softdep_flushjournal(vp->v_mount); 12328 error = flush_inodedep_deps(vp, vp->v_mount, ip->i_number); 12329 /* 12330 * Ensure that all truncates are written so we won't find deps on 12331 * indirect blocks. 12332 */ 12333 process_truncates(vp); 12334 FREE_LOCK(ip->i_ump); 12335 12336 return (error); 12337 } 12338 12339 /* 12340 * This routine is called when we are attempting to sync a buf with 12341 * dependencies. If waitfor is MNT_NOWAIT it attempts to schedule any 12342 * other IO it can but returns EBUSY if the buffer is not yet able to 12343 * be written. Dependencies which will not cause rollbacks will always 12344 * return 0. 12345 */ 12346 int 12347 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor) 12348 { 12349 struct indirdep *indirdep; 12350 struct pagedep *pagedep; 12351 struct allocindir *aip; 12352 struct newblk *newblk; 12353 struct ufsmount *ump; 12354 struct buf *nbp; 12355 struct worklist *wk; 12356 int i, error; 12357 12358 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 12359 ("softdep_sync_buf called on non-softdep filesystem")); 12360 /* 12361 * For VCHR we just don't want to force flush any dependencies that 12362 * will cause rollbacks. 12363 */ 12364 if (vp->v_type == VCHR) { 12365 if (waitfor == MNT_NOWAIT && softdep_count_dependencies(bp, 0)) 12366 return (EBUSY); 12367 return (0); 12368 } 12369 ump = VTOI(vp)->i_ump; 12370 ACQUIRE_LOCK(ump); 12371 /* 12372 * As we hold the buffer locked, none of its dependencies 12373 * will disappear. 12374 */ 12375 error = 0; 12376 top: 12377 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 12378 switch (wk->wk_type) { 12379 12380 case D_ALLOCDIRECT: 12381 case D_ALLOCINDIR: 12382 newblk = WK_NEWBLK(wk); 12383 if (newblk->nb_jnewblk != NULL) { 12384 if (waitfor == MNT_NOWAIT) { 12385 error = EBUSY; 12386 goto out_unlock; 12387 } 12388 jwait(&newblk->nb_jnewblk->jn_list, waitfor); 12389 goto top; 12390 } 12391 if (newblk->nb_state & DEPCOMPLETE || 12392 waitfor == MNT_NOWAIT) 12393 continue; 12394 nbp = newblk->nb_bmsafemap->sm_buf; 12395 nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor); 12396 if (nbp == NULL) 12397 goto top; 12398 FREE_LOCK(ump); 12399 if ((error = bwrite(nbp)) != 0) 12400 goto out; 12401 ACQUIRE_LOCK(ump); 12402 continue; 12403 12404 case D_INDIRDEP: 12405 indirdep = WK_INDIRDEP(wk); 12406 if (waitfor == MNT_NOWAIT) { 12407 if (!TAILQ_EMPTY(&indirdep->ir_trunc) || 12408 !LIST_EMPTY(&indirdep->ir_deplisthd)) { 12409 error = EBUSY; 12410 goto out_unlock; 12411 } 12412 } 12413 if (!TAILQ_EMPTY(&indirdep->ir_trunc)) 12414 panic("softdep_sync_buf: truncation pending."); 12415 restart: 12416 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) { 12417 newblk = (struct newblk *)aip; 12418 if (newblk->nb_jnewblk != NULL) { 12419 jwait(&newblk->nb_jnewblk->jn_list, 12420 waitfor); 12421 goto restart; 12422 } 12423 if (newblk->nb_state & DEPCOMPLETE) 12424 continue; 12425 nbp = newblk->nb_bmsafemap->sm_buf; 12426 nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor); 12427 if (nbp == NULL) 12428 goto restart; 12429 FREE_LOCK(ump); 12430 if ((error = bwrite(nbp)) != 0) 12431 goto out; 12432 ACQUIRE_LOCK(ump); 12433 goto restart; 12434 } 12435 continue; 12436 12437 case D_PAGEDEP: 12438 /* 12439 * Only flush directory entries in synchronous passes. 12440 */ 12441 if (waitfor != MNT_WAIT) { 12442 error = EBUSY; 12443 goto out_unlock; 12444 } 12445 /* 12446 * While syncing snapshots, we must allow recursive 12447 * lookups. 12448 */ 12449 BUF_AREC(bp); 12450 /* 12451 * We are trying to sync a directory that may 12452 * have dependencies on both its own metadata 12453 * and/or dependencies on the inodes of any 12454 * recently allocated files. We walk its diradd 12455 * lists pushing out the associated inode. 12456 */ 12457 pagedep = WK_PAGEDEP(wk); 12458 for (i = 0; i < DAHASHSZ; i++) { 12459 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0) 12460 continue; 12461 if ((error = flush_pagedep_deps(vp, wk->wk_mp, 12462 &pagedep->pd_diraddhd[i]))) { 12463 BUF_NOREC(bp); 12464 goto out_unlock; 12465 } 12466 } 12467 BUF_NOREC(bp); 12468 continue; 12469 12470 case D_FREEWORK: 12471 case D_FREEDEP: 12472 case D_JSEGDEP: 12473 case D_JNEWBLK: 12474 continue; 12475 12476 default: 12477 panic("softdep_sync_buf: Unknown type %s", 12478 TYPENAME(wk->wk_type)); 12479 /* NOTREACHED */ 12480 } 12481 } 12482 out_unlock: 12483 FREE_LOCK(ump); 12484 out: 12485 return (error); 12486 } 12487 12488 /* 12489 * Flush the dependencies associated with an inodedep. 12490 * Called with splbio blocked. 12491 */ 12492 static int 12493 flush_inodedep_deps(vp, mp, ino) 12494 struct vnode *vp; 12495 struct mount *mp; 12496 ino_t ino; 12497 { 12498 struct inodedep *inodedep; 12499 struct inoref *inoref; 12500 struct ufsmount *ump; 12501 int error, waitfor; 12502 12503 /* 12504 * This work is done in two passes. The first pass grabs most 12505 * of the buffers and begins asynchronously writing them. The 12506 * only way to wait for these asynchronous writes is to sleep 12507 * on the filesystem vnode which may stay busy for a long time 12508 * if the filesystem is active. So, instead, we make a second 12509 * pass over the dependencies blocking on each write. In the 12510 * usual case we will be blocking against a write that we 12511 * initiated, so when it is done the dependency will have been 12512 * resolved. Thus the second pass is expected to end quickly. 12513 * We give a brief window at the top of the loop to allow 12514 * any pending I/O to complete. 12515 */ 12516 ump = VFSTOUFS(mp); 12517 LOCK_OWNED(ump); 12518 for (error = 0, waitfor = MNT_NOWAIT; ; ) { 12519 if (error) 12520 return (error); 12521 FREE_LOCK(ump); 12522 ACQUIRE_LOCK(ump); 12523 restart: 12524 if (inodedep_lookup(mp, ino, 0, &inodedep) == 0) 12525 return (0); 12526 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 12527 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 12528 == DEPCOMPLETE) { 12529 jwait(&inoref->if_list, MNT_WAIT); 12530 goto restart; 12531 } 12532 } 12533 if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) || 12534 flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) || 12535 flush_deplist(&inodedep->id_extupdt, waitfor, &error) || 12536 flush_deplist(&inodedep->id_newextupdt, waitfor, &error)) 12537 continue; 12538 /* 12539 * If pass2, we are done, otherwise do pass 2. 12540 */ 12541 if (waitfor == MNT_WAIT) 12542 break; 12543 waitfor = MNT_WAIT; 12544 } 12545 /* 12546 * Try freeing inodedep in case all dependencies have been removed. 12547 */ 12548 if (inodedep_lookup(mp, ino, 0, &inodedep) != 0) 12549 (void) free_inodedep(inodedep); 12550 return (0); 12551 } 12552 12553 /* 12554 * Flush an inode dependency list. 12555 * Called with splbio blocked. 12556 */ 12557 static int 12558 flush_deplist(listhead, waitfor, errorp) 12559 struct allocdirectlst *listhead; 12560 int waitfor; 12561 int *errorp; 12562 { 12563 struct allocdirect *adp; 12564 struct newblk *newblk; 12565 struct ufsmount *ump; 12566 struct buf *bp; 12567 12568 if ((adp = TAILQ_FIRST(listhead)) == NULL) 12569 return (0); 12570 ump = VFSTOUFS(adp->ad_list.wk_mp); 12571 LOCK_OWNED(ump); 12572 TAILQ_FOREACH(adp, listhead, ad_next) { 12573 newblk = (struct newblk *)adp; 12574 if (newblk->nb_jnewblk != NULL) { 12575 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 12576 return (1); 12577 } 12578 if (newblk->nb_state & DEPCOMPLETE) 12579 continue; 12580 bp = newblk->nb_bmsafemap->sm_buf; 12581 bp = getdirtybuf(bp, LOCK_PTR(ump), waitfor); 12582 if (bp == NULL) { 12583 if (waitfor == MNT_NOWAIT) 12584 continue; 12585 return (1); 12586 } 12587 FREE_LOCK(ump); 12588 if (waitfor == MNT_NOWAIT) 12589 bawrite(bp); 12590 else 12591 *errorp = bwrite(bp); 12592 ACQUIRE_LOCK(ump); 12593 return (1); 12594 } 12595 return (0); 12596 } 12597 12598 /* 12599 * Flush dependencies associated with an allocdirect block. 12600 */ 12601 static int 12602 flush_newblk_dep(vp, mp, lbn) 12603 struct vnode *vp; 12604 struct mount *mp; 12605 ufs_lbn_t lbn; 12606 { 12607 struct newblk *newblk; 12608 struct ufsmount *ump; 12609 struct bufobj *bo; 12610 struct inode *ip; 12611 struct buf *bp; 12612 ufs2_daddr_t blkno; 12613 int error; 12614 12615 error = 0; 12616 bo = &vp->v_bufobj; 12617 ip = VTOI(vp); 12618 blkno = DIP(ip, i_db[lbn]); 12619 if (blkno == 0) 12620 panic("flush_newblk_dep: Missing block"); 12621 ump = VFSTOUFS(mp); 12622 ACQUIRE_LOCK(ump); 12623 /* 12624 * Loop until all dependencies related to this block are satisfied. 12625 * We must be careful to restart after each sleep in case a write 12626 * completes some part of this process for us. 12627 */ 12628 for (;;) { 12629 if (newblk_lookup(mp, blkno, 0, &newblk) == 0) { 12630 FREE_LOCK(ump); 12631 break; 12632 } 12633 if (newblk->nb_list.wk_type != D_ALLOCDIRECT) 12634 panic("flush_newblk_deps: Bad newblk %p", newblk); 12635 /* 12636 * Flush the journal. 12637 */ 12638 if (newblk->nb_jnewblk != NULL) { 12639 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 12640 continue; 12641 } 12642 /* 12643 * Write the bitmap dependency. 12644 */ 12645 if ((newblk->nb_state & DEPCOMPLETE) == 0) { 12646 bp = newblk->nb_bmsafemap->sm_buf; 12647 bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT); 12648 if (bp == NULL) 12649 continue; 12650 FREE_LOCK(ump); 12651 error = bwrite(bp); 12652 if (error) 12653 break; 12654 ACQUIRE_LOCK(ump); 12655 continue; 12656 } 12657 /* 12658 * Write the buffer. 12659 */ 12660 FREE_LOCK(ump); 12661 BO_LOCK(bo); 12662 bp = gbincore(bo, lbn); 12663 if (bp != NULL) { 12664 error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | 12665 LK_INTERLOCK, BO_LOCKPTR(bo)); 12666 if (error == ENOLCK) { 12667 ACQUIRE_LOCK(ump); 12668 continue; /* Slept, retry */ 12669 } 12670 if (error != 0) 12671 break; /* Failed */ 12672 if (bp->b_flags & B_DELWRI) { 12673 bremfree(bp); 12674 error = bwrite(bp); 12675 if (error) 12676 break; 12677 } else 12678 BUF_UNLOCK(bp); 12679 } else 12680 BO_UNLOCK(bo); 12681 /* 12682 * We have to wait for the direct pointers to 12683 * point at the newdirblk before the dependency 12684 * will go away. 12685 */ 12686 error = ffs_update(vp, 1); 12687 if (error) 12688 break; 12689 ACQUIRE_LOCK(ump); 12690 } 12691 return (error); 12692 } 12693 12694 /* 12695 * Eliminate a pagedep dependency by flushing out all its diradd dependencies. 12696 * Called with splbio blocked. 12697 */ 12698 static int 12699 flush_pagedep_deps(pvp, mp, diraddhdp) 12700 struct vnode *pvp; 12701 struct mount *mp; 12702 struct diraddhd *diraddhdp; 12703 { 12704 struct inodedep *inodedep; 12705 struct inoref *inoref; 12706 struct ufsmount *ump; 12707 struct diradd *dap; 12708 struct vnode *vp; 12709 int error = 0; 12710 struct buf *bp; 12711 ino_t inum; 12712 struct diraddhd unfinished; 12713 12714 LIST_INIT(&unfinished); 12715 ump = VFSTOUFS(mp); 12716 LOCK_OWNED(ump); 12717 restart: 12718 while ((dap = LIST_FIRST(diraddhdp)) != NULL) { 12719 /* 12720 * Flush ourselves if this directory entry 12721 * has a MKDIR_PARENT dependency. 12722 */ 12723 if (dap->da_state & MKDIR_PARENT) { 12724 FREE_LOCK(ump); 12725 if ((error = ffs_update(pvp, 1)) != 0) 12726 break; 12727 ACQUIRE_LOCK(ump); 12728 /* 12729 * If that cleared dependencies, go on to next. 12730 */ 12731 if (dap != LIST_FIRST(diraddhdp)) 12732 continue; 12733 /* 12734 * All MKDIR_PARENT dependencies and all the 12735 * NEWBLOCK pagedeps that are contained in direct 12736 * blocks were resolved by doing above ffs_update. 12737 * Pagedeps contained in indirect blocks may 12738 * require a complete sync'ing of the directory. 12739 * We are in the midst of doing a complete sync, 12740 * so if they are not resolved in this pass we 12741 * defer them for now as they will be sync'ed by 12742 * our caller shortly. 12743 */ 12744 LIST_REMOVE(dap, da_pdlist); 12745 LIST_INSERT_HEAD(&unfinished, dap, da_pdlist); 12746 continue; 12747 } 12748 /* 12749 * A newly allocated directory must have its "." and 12750 * ".." entries written out before its name can be 12751 * committed in its parent. 12752 */ 12753 inum = dap->da_newinum; 12754 if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0) 12755 panic("flush_pagedep_deps: lost inode1"); 12756 /* 12757 * Wait for any pending journal adds to complete so we don't 12758 * cause rollbacks while syncing. 12759 */ 12760 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 12761 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 12762 == DEPCOMPLETE) { 12763 jwait(&inoref->if_list, MNT_WAIT); 12764 goto restart; 12765 } 12766 } 12767 if (dap->da_state & MKDIR_BODY) { 12768 FREE_LOCK(ump); 12769 if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp, 12770 FFSV_FORCEINSMQ))) 12771 break; 12772 error = flush_newblk_dep(vp, mp, 0); 12773 /* 12774 * If we still have the dependency we might need to 12775 * update the vnode to sync the new link count to 12776 * disk. 12777 */ 12778 if (error == 0 && dap == LIST_FIRST(diraddhdp)) 12779 error = ffs_update(vp, 1); 12780 vput(vp); 12781 if (error != 0) 12782 break; 12783 ACQUIRE_LOCK(ump); 12784 /* 12785 * If that cleared dependencies, go on to next. 12786 */ 12787 if (dap != LIST_FIRST(diraddhdp)) 12788 continue; 12789 if (dap->da_state & MKDIR_BODY) { 12790 inodedep_lookup(UFSTOVFS(ump), inum, 0, 12791 &inodedep); 12792 panic("flush_pagedep_deps: MKDIR_BODY " 12793 "inodedep %p dap %p vp %p", 12794 inodedep, dap, vp); 12795 } 12796 } 12797 /* 12798 * Flush the inode on which the directory entry depends. 12799 * Having accounted for MKDIR_PARENT and MKDIR_BODY above, 12800 * the only remaining dependency is that the updated inode 12801 * count must get pushed to disk. The inode has already 12802 * been pushed into its inode buffer (via VOP_UPDATE) at 12803 * the time of the reference count change. So we need only 12804 * locate that buffer, ensure that there will be no rollback 12805 * caused by a bitmap dependency, then write the inode buffer. 12806 */ 12807 retry: 12808 if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0) 12809 panic("flush_pagedep_deps: lost inode"); 12810 /* 12811 * If the inode still has bitmap dependencies, 12812 * push them to disk. 12813 */ 12814 if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) { 12815 bp = inodedep->id_bmsafemap->sm_buf; 12816 bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT); 12817 if (bp == NULL) 12818 goto retry; 12819 FREE_LOCK(ump); 12820 if ((error = bwrite(bp)) != 0) 12821 break; 12822 ACQUIRE_LOCK(ump); 12823 if (dap != LIST_FIRST(diraddhdp)) 12824 continue; 12825 } 12826 /* 12827 * If the inode is still sitting in a buffer waiting 12828 * to be written or waiting for the link count to be 12829 * adjusted update it here to flush it to disk. 12830 */ 12831 if (dap == LIST_FIRST(diraddhdp)) { 12832 FREE_LOCK(ump); 12833 if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp, 12834 FFSV_FORCEINSMQ))) 12835 break; 12836 error = ffs_update(vp, 1); 12837 vput(vp); 12838 if (error) 12839 break; 12840 ACQUIRE_LOCK(ump); 12841 } 12842 /* 12843 * If we have failed to get rid of all the dependencies 12844 * then something is seriously wrong. 12845 */ 12846 if (dap == LIST_FIRST(diraddhdp)) { 12847 inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep); 12848 panic("flush_pagedep_deps: failed to flush " 12849 "inodedep %p ino %ju dap %p", 12850 inodedep, (uintmax_t)inum, dap); 12851 } 12852 } 12853 if (error) 12854 ACQUIRE_LOCK(ump); 12855 while ((dap = LIST_FIRST(&unfinished)) != NULL) { 12856 LIST_REMOVE(dap, da_pdlist); 12857 LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist); 12858 } 12859 return (error); 12860 } 12861 12862 /* 12863 * A large burst of file addition or deletion activity can drive the 12864 * memory load excessively high. First attempt to slow things down 12865 * using the techniques below. If that fails, this routine requests 12866 * the offending operations to fall back to running synchronously 12867 * until the memory load returns to a reasonable level. 12868 */ 12869 int 12870 softdep_slowdown(vp) 12871 struct vnode *vp; 12872 { 12873 struct ufsmount *ump; 12874 int jlow; 12875 int max_softdeps_hard; 12876 12877 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 12878 ("softdep_slowdown called on non-softdep filesystem")); 12879 ump = VFSTOUFS(vp->v_mount); 12880 ACQUIRE_LOCK(ump); 12881 jlow = 0; 12882 /* 12883 * Check for journal space if needed. 12884 */ 12885 if (DOINGSUJ(vp)) { 12886 if (journal_space(ump, 0) == 0) 12887 jlow = 1; 12888 } 12889 max_softdeps_hard = max_softdeps * 11 / 10; 12890 if (dep_current[D_DIRREM] < max_softdeps_hard / 2 && 12891 dep_current[D_INODEDEP] < max_softdeps_hard && 12892 VFSTOUFS(vp->v_mount)->softdep_numindirdeps < maxindirdeps && 12893 dep_current[D_FREEBLKS] < max_softdeps_hard && jlow == 0) { 12894 FREE_LOCK(ump); 12895 return (0); 12896 } 12897 if (VFSTOUFS(vp->v_mount)->softdep_numindirdeps >= maxindirdeps || jlow) 12898 softdep_speedup(); 12899 stat_sync_limit_hit += 1; 12900 FREE_LOCK(ump); 12901 if (DOINGSUJ(vp)) 12902 return (0); 12903 return (1); 12904 } 12905 12906 /* 12907 * Called by the allocation routines when they are about to fail 12908 * in the hope that we can free up the requested resource (inodes 12909 * or disk space). 12910 * 12911 * First check to see if the work list has anything on it. If it has, 12912 * clean up entries until we successfully free the requested resource. 12913 * Because this process holds inodes locked, we cannot handle any remove 12914 * requests that might block on a locked inode as that could lead to 12915 * deadlock. If the worklist yields none of the requested resource, 12916 * start syncing out vnodes to free up the needed space. 12917 */ 12918 int 12919 softdep_request_cleanup(fs, vp, cred, resource) 12920 struct fs *fs; 12921 struct vnode *vp; 12922 struct ucred *cred; 12923 int resource; 12924 { 12925 struct ufsmount *ump; 12926 struct mount *mp; 12927 struct vnode *lvp, *mvp; 12928 long starttime; 12929 ufs2_daddr_t needed; 12930 int error; 12931 12932 /* 12933 * If we are being called because of a process doing a 12934 * copy-on-write, then it is not safe to process any 12935 * worklist items as we will recurse into the copyonwrite 12936 * routine. This will result in an incoherent snapshot. 12937 * If the vnode that we hold is a snapshot, we must avoid 12938 * handling other resources that could cause deadlock. 12939 */ 12940 if ((curthread->td_pflags & TDP_COWINPROGRESS) || IS_SNAPSHOT(VTOI(vp))) 12941 return (0); 12942 12943 if (resource == FLUSH_BLOCKS_WAIT) 12944 stat_cleanup_blkrequests += 1; 12945 else 12946 stat_cleanup_inorequests += 1; 12947 12948 mp = vp->v_mount; 12949 ump = VFSTOUFS(mp); 12950 mtx_assert(UFS_MTX(ump), MA_OWNED); 12951 UFS_UNLOCK(ump); 12952 error = ffs_update(vp, 1); 12953 if (error != 0 || MOUNTEDSOFTDEP(mp) == 0) { 12954 UFS_LOCK(ump); 12955 return (0); 12956 } 12957 /* 12958 * If we are in need of resources, consider pausing for 12959 * tickdelay to give ourselves some breathing room. 12960 */ 12961 ACQUIRE_LOCK(ump); 12962 process_removes(vp); 12963 process_truncates(vp); 12964 request_cleanup(UFSTOVFS(ump), resource); 12965 FREE_LOCK(ump); 12966 /* 12967 * Now clean up at least as many resources as we will need. 12968 * 12969 * When requested to clean up inodes, the number that are needed 12970 * is set by the number of simultaneous writers (mnt_writeopcount) 12971 * plus a bit of slop (2) in case some more writers show up while 12972 * we are cleaning. 12973 * 12974 * When requested to free up space, the amount of space that 12975 * we need is enough blocks to allocate a full-sized segment 12976 * (fs_contigsumsize). The number of such segments that will 12977 * be needed is set by the number of simultaneous writers 12978 * (mnt_writeopcount) plus a bit of slop (2) in case some more 12979 * writers show up while we are cleaning. 12980 * 12981 * Additionally, if we are unpriviledged and allocating space, 12982 * we need to ensure that we clean up enough blocks to get the 12983 * needed number of blocks over the threshhold of the minimum 12984 * number of blocks required to be kept free by the filesystem 12985 * (fs_minfree). 12986 */ 12987 if (resource == FLUSH_INODES_WAIT) { 12988 needed = vp->v_mount->mnt_writeopcount + 2; 12989 } else if (resource == FLUSH_BLOCKS_WAIT) { 12990 needed = (vp->v_mount->mnt_writeopcount + 2) * 12991 fs->fs_contigsumsize; 12992 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0)) 12993 needed += fragstoblks(fs, 12994 roundup((fs->fs_dsize * fs->fs_minfree / 100) - 12995 fs->fs_cstotal.cs_nffree, fs->fs_frag)); 12996 } else { 12997 UFS_LOCK(ump); 12998 printf("softdep_request_cleanup: Unknown resource type %d\n", 12999 resource); 13000 return (0); 13001 } 13002 starttime = time_second; 13003 retry: 13004 if ((resource == FLUSH_BLOCKS_WAIT && ump->softdep_on_worklist > 0 && 13005 fs->fs_cstotal.cs_nbfree <= needed) || 13006 (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 && 13007 fs->fs_cstotal.cs_nifree <= needed)) { 13008 ACQUIRE_LOCK(ump); 13009 if (ump->softdep_on_worklist > 0 && 13010 process_worklist_item(UFSTOVFS(ump), 13011 ump->softdep_on_worklist, LK_NOWAIT) != 0) 13012 stat_worklist_push += 1; 13013 FREE_LOCK(ump); 13014 } 13015 /* 13016 * If we still need resources and there are no more worklist 13017 * entries to process to obtain them, we have to start flushing 13018 * the dirty vnodes to force the release of additional requests 13019 * to the worklist that we can then process to reap addition 13020 * resources. We walk the vnodes associated with the mount point 13021 * until we get the needed worklist requests that we can reap. 13022 */ 13023 if ((resource == FLUSH_BLOCKS_WAIT && 13024 fs->fs_cstotal.cs_nbfree <= needed) || 13025 (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 && 13026 fs->fs_cstotal.cs_nifree <= needed)) { 13027 MNT_VNODE_FOREACH_ALL(lvp, mp, mvp) { 13028 if (TAILQ_FIRST(&lvp->v_bufobj.bo_dirty.bv_hd) == 0) { 13029 VI_UNLOCK(lvp); 13030 continue; 13031 } 13032 if (vget(lvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT, 13033 curthread)) 13034 continue; 13035 if (lvp->v_vflag & VV_NOSYNC) { /* unlinked */ 13036 vput(lvp); 13037 continue; 13038 } 13039 (void) ffs_syncvnode(lvp, MNT_NOWAIT, 0); 13040 vput(lvp); 13041 } 13042 lvp = ump->um_devvp; 13043 if (vn_lock(lvp, LK_EXCLUSIVE | LK_NOWAIT) == 0) { 13044 VOP_FSYNC(lvp, MNT_NOWAIT, curthread); 13045 VOP_UNLOCK(lvp, 0); 13046 } 13047 if (ump->softdep_on_worklist > 0) { 13048 stat_cleanup_retries += 1; 13049 goto retry; 13050 } 13051 stat_cleanup_failures += 1; 13052 } 13053 if (time_second - starttime > stat_cleanup_high_delay) 13054 stat_cleanup_high_delay = time_second - starttime; 13055 UFS_LOCK(ump); 13056 return (1); 13057 } 13058 13059 /* 13060 * If memory utilization has gotten too high, deliberately slow things 13061 * down and speed up the I/O processing. 13062 */ 13063 static int 13064 request_cleanup(mp, resource) 13065 struct mount *mp; 13066 int resource; 13067 { 13068 struct thread *td = curthread; 13069 struct ufsmount *ump; 13070 13071 ump = VFSTOUFS(mp); 13072 LOCK_OWNED(ump); 13073 /* 13074 * We never hold up the filesystem syncer or buf daemon. 13075 */ 13076 if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF)) 13077 return (0); 13078 /* 13079 * First check to see if the work list has gotten backlogged. 13080 * If it has, co-opt this process to help clean up two entries. 13081 * Because this process may hold inodes locked, we cannot 13082 * handle any remove requests that might block on a locked 13083 * inode as that could lead to deadlock. We set TDP_SOFTDEP 13084 * to avoid recursively processing the worklist. 13085 */ 13086 if (ump->softdep_on_worklist > max_softdeps / 10) { 13087 td->td_pflags |= TDP_SOFTDEP; 13088 process_worklist_item(mp, 2, LK_NOWAIT); 13089 td->td_pflags &= ~TDP_SOFTDEP; 13090 stat_worklist_push += 2; 13091 return(1); 13092 } 13093 /* 13094 * Next, we attempt to speed up the syncer process. If that 13095 * is successful, then we allow the process to continue. 13096 */ 13097 if (softdep_speedup() && 13098 resource != FLUSH_BLOCKS_WAIT && 13099 resource != FLUSH_INODES_WAIT) 13100 return(0); 13101 /* 13102 * If we are resource constrained on inode dependencies, try 13103 * flushing some dirty inodes. Otherwise, we are constrained 13104 * by file deletions, so try accelerating flushes of directories 13105 * with removal dependencies. We would like to do the cleanup 13106 * here, but we probably hold an inode locked at this point and 13107 * that might deadlock against one that we try to clean. So, 13108 * the best that we can do is request the syncer daemon to do 13109 * the cleanup for us. 13110 */ 13111 switch (resource) { 13112 13113 case FLUSH_INODES: 13114 case FLUSH_INODES_WAIT: 13115 stat_ino_limit_push += 1; 13116 req_clear_inodedeps += 1; 13117 stat_countp = &stat_ino_limit_hit; 13118 break; 13119 13120 case FLUSH_BLOCKS: 13121 case FLUSH_BLOCKS_WAIT: 13122 stat_blk_limit_push += 1; 13123 req_clear_remove += 1; 13124 stat_countp = &stat_blk_limit_hit; 13125 break; 13126 13127 default: 13128 panic("request_cleanup: unknown type"); 13129 } 13130 /* 13131 * Hopefully the syncer daemon will catch up and awaken us. 13132 * We wait at most tickdelay before proceeding in any case. 13133 */ 13134 proc_waiting += 1; 13135 if (callout_pending(&softdep_callout) == FALSE) 13136 callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2, 13137 pause_timer, 0); 13138 13139 msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0); 13140 proc_waiting -= 1; 13141 return (1); 13142 } 13143 13144 /* 13145 * Awaken processes pausing in request_cleanup and clear proc_waiting 13146 * to indicate that there is no longer a timer running. Pause_timer 13147 * will be called with the global softdep mutex (&lk) locked. 13148 */ 13149 static void 13150 pause_timer(arg) 13151 void *arg; 13152 { 13153 13154 rw_assert(&lk, RA_WLOCKED); 13155 /* 13156 * The callout_ API has acquired mtx and will hold it around this 13157 * function call. 13158 */ 13159 *stat_countp += 1; 13160 wakeup_one(&proc_waiting); 13161 if (proc_waiting > 0) 13162 callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2, 13163 pause_timer, 0); 13164 } 13165 13166 /* 13167 * If requested, try removing inode or removal dependencies. 13168 */ 13169 static void 13170 check_clear_deps(mp) 13171 struct mount *mp; 13172 { 13173 13174 rw_assert(&lk, RA_WLOCKED); 13175 /* 13176 * If we are suspended, it may be because of our using 13177 * too many inodedeps, so help clear them out. 13178 */ 13179 if (MOUNTEDSUJ(mp) && VFSTOUFS(mp)->softdep_jblocks->jb_suspended) 13180 clear_inodedeps(mp); 13181 /* 13182 * General requests for cleanup of backed up dependencies 13183 */ 13184 if (req_clear_inodedeps) { 13185 req_clear_inodedeps -= 1; 13186 clear_inodedeps(mp); 13187 wakeup_one(&proc_waiting); 13188 } 13189 if (req_clear_remove) { 13190 req_clear_remove -= 1; 13191 clear_remove(mp); 13192 wakeup_one(&proc_waiting); 13193 } 13194 } 13195 13196 /* 13197 * Flush out a directory with at least one removal dependency in an effort to 13198 * reduce the number of dirrem, freefile, and freeblks dependency structures. 13199 */ 13200 static void 13201 clear_remove(mp) 13202 struct mount *mp; 13203 { 13204 struct pagedep_hashhead *pagedephd; 13205 struct pagedep *pagedep; 13206 struct ufsmount *ump; 13207 struct vnode *vp; 13208 struct bufobj *bo; 13209 int error, cnt; 13210 ino_t ino; 13211 13212 ump = VFSTOUFS(mp); 13213 LOCK_OWNED(ump); 13214 13215 for (cnt = 0; cnt <= ump->pagedep_hash_size; cnt++) { 13216 pagedephd = &ump->pagedep_hashtbl[ump->pagedep_nextclean++]; 13217 if (ump->pagedep_nextclean > ump->pagedep_hash_size) 13218 ump->pagedep_nextclean = 0; 13219 LIST_FOREACH(pagedep, pagedephd, pd_hash) { 13220 if (LIST_EMPTY(&pagedep->pd_dirremhd)) 13221 continue; 13222 ino = pagedep->pd_ino; 13223 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 13224 continue; 13225 FREE_LOCK(ump); 13226 13227 /* 13228 * Let unmount clear deps 13229 */ 13230 error = vfs_busy(mp, MBF_NOWAIT); 13231 if (error != 0) 13232 goto finish_write; 13233 error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp, 13234 FFSV_FORCEINSMQ); 13235 vfs_unbusy(mp); 13236 if (error != 0) { 13237 softdep_error("clear_remove: vget", error); 13238 goto finish_write; 13239 } 13240 if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0))) 13241 softdep_error("clear_remove: fsync", error); 13242 bo = &vp->v_bufobj; 13243 BO_LOCK(bo); 13244 drain_output(vp); 13245 BO_UNLOCK(bo); 13246 vput(vp); 13247 finish_write: 13248 vn_finished_write(mp); 13249 ACQUIRE_LOCK(ump); 13250 return; 13251 } 13252 } 13253 } 13254 13255 /* 13256 * Clear out a block of dirty inodes in an effort to reduce 13257 * the number of inodedep dependency structures. 13258 */ 13259 static void 13260 clear_inodedeps(mp) 13261 struct mount *mp; 13262 { 13263 struct inodedep_hashhead *inodedephd; 13264 struct inodedep *inodedep; 13265 struct ufsmount *ump; 13266 struct vnode *vp; 13267 struct fs *fs; 13268 int error, cnt; 13269 ino_t firstino, lastino, ino; 13270 13271 ump = VFSTOUFS(mp); 13272 fs = ump->um_fs; 13273 LOCK_OWNED(ump); 13274 /* 13275 * Pick a random inode dependency to be cleared. 13276 * We will then gather up all the inodes in its block 13277 * that have dependencies and flush them out. 13278 */ 13279 for (cnt = 0; cnt <= ump->inodedep_hash_size; cnt++) { 13280 inodedephd = &ump->inodedep_hashtbl[ump->inodedep_nextclean++]; 13281 if (ump->inodedep_nextclean > ump->inodedep_hash_size) 13282 ump->inodedep_nextclean = 0; 13283 if ((inodedep = LIST_FIRST(inodedephd)) != NULL) 13284 break; 13285 } 13286 if (inodedep == NULL) 13287 return; 13288 /* 13289 * Find the last inode in the block with dependencies. 13290 */ 13291 firstino = inodedep->id_ino & ~(INOPB(fs) - 1); 13292 for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--) 13293 if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0) 13294 break; 13295 /* 13296 * Asynchronously push all but the last inode with dependencies. 13297 * Synchronously push the last inode with dependencies to ensure 13298 * that the inode block gets written to free up the inodedeps. 13299 */ 13300 for (ino = firstino; ino <= lastino; ino++) { 13301 if (inodedep_lookup(mp, ino, 0, &inodedep) == 0) 13302 continue; 13303 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 13304 continue; 13305 FREE_LOCK(ump); 13306 error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */ 13307 if (error != 0) { 13308 vn_finished_write(mp); 13309 ACQUIRE_LOCK(ump); 13310 return; 13311 } 13312 if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp, 13313 FFSV_FORCEINSMQ)) != 0) { 13314 softdep_error("clear_inodedeps: vget", error); 13315 vfs_unbusy(mp); 13316 vn_finished_write(mp); 13317 ACQUIRE_LOCK(ump); 13318 return; 13319 } 13320 vfs_unbusy(mp); 13321 if (ino == lastino) { 13322 if ((error = ffs_syncvnode(vp, MNT_WAIT, 0))) 13323 softdep_error("clear_inodedeps: fsync1", error); 13324 } else { 13325 if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0))) 13326 softdep_error("clear_inodedeps: fsync2", error); 13327 BO_LOCK(&vp->v_bufobj); 13328 drain_output(vp); 13329 BO_UNLOCK(&vp->v_bufobj); 13330 } 13331 vput(vp); 13332 vn_finished_write(mp); 13333 ACQUIRE_LOCK(ump); 13334 } 13335 } 13336 13337 void 13338 softdep_buf_append(bp, wkhd) 13339 struct buf *bp; 13340 struct workhead *wkhd; 13341 { 13342 struct worklist *wk; 13343 struct ufsmount *ump; 13344 13345 if ((wk = LIST_FIRST(wkhd)) == NULL) 13346 return; 13347 KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, 13348 ("softdep_buf_append called on non-softdep filesystem")); 13349 ump = VFSTOUFS(wk->wk_mp); 13350 ACQUIRE_LOCK(ump); 13351 while ((wk = LIST_FIRST(wkhd)) != NULL) { 13352 WORKLIST_REMOVE(wk); 13353 WORKLIST_INSERT(&bp->b_dep, wk); 13354 } 13355 FREE_LOCK(ump); 13356 13357 } 13358 13359 void 13360 softdep_inode_append(ip, cred, wkhd) 13361 struct inode *ip; 13362 struct ucred *cred; 13363 struct workhead *wkhd; 13364 { 13365 struct buf *bp; 13366 struct fs *fs; 13367 int error; 13368 13369 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0, 13370 ("softdep_inode_append called on non-softdep filesystem")); 13371 fs = ip->i_fs; 13372 error = bread(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 13373 (int)fs->fs_bsize, cred, &bp); 13374 if (error) { 13375 bqrelse(bp); 13376 softdep_freework(wkhd); 13377 return; 13378 } 13379 softdep_buf_append(bp, wkhd); 13380 bqrelse(bp); 13381 } 13382 13383 void 13384 softdep_freework(wkhd) 13385 struct workhead *wkhd; 13386 { 13387 struct worklist *wk; 13388 struct ufsmount *ump; 13389 13390 if ((wk = LIST_FIRST(wkhd)) == NULL) 13391 return; 13392 KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, 13393 ("softdep_freework called on non-softdep filesystem")); 13394 ump = VFSTOUFS(wk->wk_mp); 13395 ACQUIRE_LOCK(ump); 13396 handle_jwork(wkhd); 13397 FREE_LOCK(ump); 13398 } 13399 13400 /* 13401 * Function to determine if the buffer has outstanding dependencies 13402 * that will cause a roll-back if the buffer is written. If wantcount 13403 * is set, return number of dependencies, otherwise just yes or no. 13404 */ 13405 static int 13406 softdep_count_dependencies(bp, wantcount) 13407 struct buf *bp; 13408 int wantcount; 13409 { 13410 struct worklist *wk; 13411 struct ufsmount *ump; 13412 struct bmsafemap *bmsafemap; 13413 struct freework *freework; 13414 struct inodedep *inodedep; 13415 struct indirdep *indirdep; 13416 struct freeblks *freeblks; 13417 struct allocindir *aip; 13418 struct pagedep *pagedep; 13419 struct dirrem *dirrem; 13420 struct newblk *newblk; 13421 struct mkdir *mkdir; 13422 struct diradd *dap; 13423 int i, retval; 13424 13425 retval = 0; 13426 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL) 13427 return (0); 13428 ump = VFSTOUFS(wk->wk_mp); 13429 ACQUIRE_LOCK(ump); 13430 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 13431 switch (wk->wk_type) { 13432 13433 case D_INODEDEP: 13434 inodedep = WK_INODEDEP(wk); 13435 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 13436 /* bitmap allocation dependency */ 13437 retval += 1; 13438 if (!wantcount) 13439 goto out; 13440 } 13441 if (TAILQ_FIRST(&inodedep->id_inoupdt)) { 13442 /* direct block pointer dependency */ 13443 retval += 1; 13444 if (!wantcount) 13445 goto out; 13446 } 13447 if (TAILQ_FIRST(&inodedep->id_extupdt)) { 13448 /* direct block pointer dependency */ 13449 retval += 1; 13450 if (!wantcount) 13451 goto out; 13452 } 13453 if (TAILQ_FIRST(&inodedep->id_inoreflst)) { 13454 /* Add reference dependency. */ 13455 retval += 1; 13456 if (!wantcount) 13457 goto out; 13458 } 13459 continue; 13460 13461 case D_INDIRDEP: 13462 indirdep = WK_INDIRDEP(wk); 13463 13464 TAILQ_FOREACH(freework, &indirdep->ir_trunc, fw_next) { 13465 /* indirect truncation dependency */ 13466 retval += 1; 13467 if (!wantcount) 13468 goto out; 13469 } 13470 13471 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) { 13472 /* indirect block pointer dependency */ 13473 retval += 1; 13474 if (!wantcount) 13475 goto out; 13476 } 13477 continue; 13478 13479 case D_PAGEDEP: 13480 pagedep = WK_PAGEDEP(wk); 13481 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) { 13482 if (LIST_FIRST(&dirrem->dm_jremrefhd)) { 13483 /* Journal remove ref dependency. */ 13484 retval += 1; 13485 if (!wantcount) 13486 goto out; 13487 } 13488 } 13489 for (i = 0; i < DAHASHSZ; i++) { 13490 13491 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 13492 /* directory entry dependency */ 13493 retval += 1; 13494 if (!wantcount) 13495 goto out; 13496 } 13497 } 13498 continue; 13499 13500 case D_BMSAFEMAP: 13501 bmsafemap = WK_BMSAFEMAP(wk); 13502 if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) { 13503 /* Add reference dependency. */ 13504 retval += 1; 13505 if (!wantcount) 13506 goto out; 13507 } 13508 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) { 13509 /* Allocate block dependency. */ 13510 retval += 1; 13511 if (!wantcount) 13512 goto out; 13513 } 13514 continue; 13515 13516 case D_FREEBLKS: 13517 freeblks = WK_FREEBLKS(wk); 13518 if (LIST_FIRST(&freeblks->fb_jblkdephd)) { 13519 /* Freeblk journal dependency. */ 13520 retval += 1; 13521 if (!wantcount) 13522 goto out; 13523 } 13524 continue; 13525 13526 case D_ALLOCDIRECT: 13527 case D_ALLOCINDIR: 13528 newblk = WK_NEWBLK(wk); 13529 if (newblk->nb_jnewblk) { 13530 /* Journal allocate dependency. */ 13531 retval += 1; 13532 if (!wantcount) 13533 goto out; 13534 } 13535 continue; 13536 13537 case D_MKDIR: 13538 mkdir = WK_MKDIR(wk); 13539 if (mkdir->md_jaddref) { 13540 /* Journal reference dependency. */ 13541 retval += 1; 13542 if (!wantcount) 13543 goto out; 13544 } 13545 continue; 13546 13547 case D_FREEWORK: 13548 case D_FREEDEP: 13549 case D_JSEGDEP: 13550 case D_JSEG: 13551 case D_SBDEP: 13552 /* never a dependency on these blocks */ 13553 continue; 13554 13555 default: 13556 panic("softdep_count_dependencies: Unexpected type %s", 13557 TYPENAME(wk->wk_type)); 13558 /* NOTREACHED */ 13559 } 13560 } 13561 out: 13562 FREE_LOCK(ump); 13563 return retval; 13564 } 13565 13566 /* 13567 * Acquire exclusive access to a buffer. 13568 * Must be called with a locked mtx parameter. 13569 * Return acquired buffer or NULL on failure. 13570 */ 13571 static struct buf * 13572 getdirtybuf(bp, lock, waitfor) 13573 struct buf *bp; 13574 struct rwlock *lock; 13575 int waitfor; 13576 { 13577 int error; 13578 13579 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) { 13580 if (waitfor != MNT_WAIT) 13581 return (NULL); 13582 error = BUF_LOCK(bp, 13583 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, lock); 13584 /* 13585 * Even if we sucessfully acquire bp here, we have dropped 13586 * lock, which may violates our guarantee. 13587 */ 13588 if (error == 0) 13589 BUF_UNLOCK(bp); 13590 else if (error != ENOLCK) 13591 panic("getdirtybuf: inconsistent lock: %d", error); 13592 rw_wlock(lock); 13593 return (NULL); 13594 } 13595 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) { 13596 if (lock != BO_LOCKPTR(bp->b_bufobj) && waitfor == MNT_WAIT) { 13597 rw_wunlock(lock); 13598 BO_LOCK(bp->b_bufobj); 13599 BUF_UNLOCK(bp); 13600 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) { 13601 bp->b_vflags |= BV_BKGRDWAIT; 13602 msleep(&bp->b_xflags, BO_LOCKPTR(bp->b_bufobj), 13603 PRIBIO | PDROP, "getbuf", 0); 13604 } else 13605 BO_UNLOCK(bp->b_bufobj); 13606 rw_wlock(lock); 13607 return (NULL); 13608 } 13609 BUF_UNLOCK(bp); 13610 if (waitfor != MNT_WAIT) 13611 return (NULL); 13612 /* 13613 * The lock argument must be bp->b_vp's mutex in 13614 * this case. 13615 */ 13616 #ifdef DEBUG_VFS_LOCKS 13617 if (bp->b_vp->v_type != VCHR) 13618 ASSERT_BO_WLOCKED(bp->b_bufobj); 13619 #endif 13620 bp->b_vflags |= BV_BKGRDWAIT; 13621 rw_sleep(&bp->b_xflags, lock, PRIBIO, "getbuf", 0); 13622 return (NULL); 13623 } 13624 if ((bp->b_flags & B_DELWRI) == 0) { 13625 BUF_UNLOCK(bp); 13626 return (NULL); 13627 } 13628 bremfree(bp); 13629 return (bp); 13630 } 13631 13632 13633 /* 13634 * Check if it is safe to suspend the file system now. On entry, 13635 * the vnode interlock for devvp should be held. Return 0 with 13636 * the mount interlock held if the file system can be suspended now, 13637 * otherwise return EAGAIN with the mount interlock held. 13638 */ 13639 int 13640 softdep_check_suspend(struct mount *mp, 13641 struct vnode *devvp, 13642 int softdep_depcnt, 13643 int softdep_accdepcnt, 13644 int secondary_writes, 13645 int secondary_accwrites) 13646 { 13647 struct bufobj *bo; 13648 struct ufsmount *ump; 13649 int error; 13650 13651 bo = &devvp->v_bufobj; 13652 ASSERT_BO_WLOCKED(bo); 13653 13654 /* 13655 * If we are not running with soft updates, then we need only 13656 * deal with secondary writes as we try to suspend. 13657 */ 13658 if (MOUNTEDSOFTDEP(mp) == 0) { 13659 MNT_ILOCK(mp); 13660 while (mp->mnt_secondary_writes != 0) { 13661 BO_UNLOCK(bo); 13662 msleep(&mp->mnt_secondary_writes, MNT_MTX(mp), 13663 (PUSER - 1) | PDROP, "secwr", 0); 13664 BO_LOCK(bo); 13665 MNT_ILOCK(mp); 13666 } 13667 13668 /* 13669 * Reasons for needing more work before suspend: 13670 * - Dirty buffers on devvp. 13671 * - Secondary writes occurred after start of vnode sync loop 13672 */ 13673 error = 0; 13674 if (bo->bo_numoutput > 0 || 13675 bo->bo_dirty.bv_cnt > 0 || 13676 secondary_writes != 0 || 13677 mp->mnt_secondary_writes != 0 || 13678 secondary_accwrites != mp->mnt_secondary_accwrites) 13679 error = EAGAIN; 13680 BO_UNLOCK(bo); 13681 return (error); 13682 } 13683 13684 /* 13685 * If we are running with soft updates, then we need to coordinate 13686 * with them as we try to suspend. 13687 */ 13688 ump = VFSTOUFS(mp); 13689 for (;;) { 13690 if (!TRY_ACQUIRE_LOCK(ump)) { 13691 BO_UNLOCK(bo); 13692 ACQUIRE_LOCK(ump); 13693 FREE_LOCK(ump); 13694 BO_LOCK(bo); 13695 continue; 13696 } 13697 MNT_ILOCK(mp); 13698 if (mp->mnt_secondary_writes != 0) { 13699 FREE_LOCK(ump); 13700 BO_UNLOCK(bo); 13701 msleep(&mp->mnt_secondary_writes, 13702 MNT_MTX(mp), 13703 (PUSER - 1) | PDROP, "secwr", 0); 13704 BO_LOCK(bo); 13705 continue; 13706 } 13707 break; 13708 } 13709 13710 /* 13711 * Reasons for needing more work before suspend: 13712 * - Dirty buffers on devvp. 13713 * - Softdep activity occurred after start of vnode sync loop 13714 * - Secondary writes occurred after start of vnode sync loop 13715 */ 13716 error = 0; 13717 if (bo->bo_numoutput > 0 || 13718 bo->bo_dirty.bv_cnt > 0 || 13719 softdep_depcnt != 0 || 13720 ump->softdep_deps != 0 || 13721 softdep_accdepcnt != ump->softdep_accdeps || 13722 secondary_writes != 0 || 13723 mp->mnt_secondary_writes != 0 || 13724 secondary_accwrites != mp->mnt_secondary_accwrites) 13725 error = EAGAIN; 13726 FREE_LOCK(ump); 13727 BO_UNLOCK(bo); 13728 return (error); 13729 } 13730 13731 13732 /* 13733 * Get the number of dependency structures for the file system, both 13734 * the current number and the total number allocated. These will 13735 * later be used to detect that softdep processing has occurred. 13736 */ 13737 void 13738 softdep_get_depcounts(struct mount *mp, 13739 int *softdep_depsp, 13740 int *softdep_accdepsp) 13741 { 13742 struct ufsmount *ump; 13743 13744 if (MOUNTEDSOFTDEP(mp) == 0) { 13745 *softdep_depsp = 0; 13746 *softdep_accdepsp = 0; 13747 return; 13748 } 13749 ump = VFSTOUFS(mp); 13750 ACQUIRE_LOCK(ump); 13751 *softdep_depsp = ump->softdep_deps; 13752 *softdep_accdepsp = ump->softdep_accdeps; 13753 FREE_LOCK(ump); 13754 } 13755 13756 /* 13757 * Wait for pending output on a vnode to complete. 13758 * Must be called with vnode lock and interlock locked. 13759 * 13760 * XXX: Should just be a call to bufobj_wwait(). 13761 */ 13762 static void 13763 drain_output(vp) 13764 struct vnode *vp; 13765 { 13766 struct bufobj *bo; 13767 13768 bo = &vp->v_bufobj; 13769 ASSERT_VOP_LOCKED(vp, "drain_output"); 13770 ASSERT_BO_WLOCKED(bo); 13771 13772 while (bo->bo_numoutput) { 13773 bo->bo_flag |= BO_WWAIT; 13774 msleep((caddr_t)&bo->bo_numoutput, 13775 BO_LOCKPTR(bo), PRIBIO + 1, "drainvp", 0); 13776 } 13777 } 13778 13779 /* 13780 * Called whenever a buffer that is being invalidated or reallocated 13781 * contains dependencies. This should only happen if an I/O error has 13782 * occurred. The routine is called with the buffer locked. 13783 */ 13784 static void 13785 softdep_deallocate_dependencies(bp) 13786 struct buf *bp; 13787 { 13788 13789 if ((bp->b_ioflags & BIO_ERROR) == 0) 13790 panic("softdep_deallocate_dependencies: dangling deps"); 13791 if (bp->b_vp != NULL && bp->b_vp->v_mount != NULL) 13792 softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error); 13793 else 13794 printf("softdep_deallocate_dependencies: " 13795 "got error %d while accessing filesystem\n", bp->b_error); 13796 if (bp->b_error != ENXIO) 13797 panic("softdep_deallocate_dependencies: unrecovered I/O error"); 13798 } 13799 13800 /* 13801 * Function to handle asynchronous write errors in the filesystem. 13802 */ 13803 static void 13804 softdep_error(func, error) 13805 char *func; 13806 int error; 13807 { 13808 13809 /* XXX should do something better! */ 13810 printf("%s: got error %d while accessing filesystem\n", func, error); 13811 } 13812 13813 #ifdef DDB 13814 13815 static void 13816 inodedep_print(struct inodedep *inodedep, int verbose) 13817 { 13818 db_printf("%p fs %p st %x ino %jd inoblk %jd delta %d nlink %d" 13819 " saveino %p\n", 13820 inodedep, inodedep->id_fs, inodedep->id_state, 13821 (intmax_t)inodedep->id_ino, 13822 (intmax_t)fsbtodb(inodedep->id_fs, 13823 ino_to_fsba(inodedep->id_fs, inodedep->id_ino)), 13824 inodedep->id_nlinkdelta, inodedep->id_savednlink, 13825 inodedep->id_savedino1); 13826 13827 if (verbose == 0) 13828 return; 13829 13830 db_printf("\tpendinghd %p, bufwait %p, inowait %p, inoreflst %p, " 13831 "mkdiradd %p\n", 13832 LIST_FIRST(&inodedep->id_pendinghd), 13833 LIST_FIRST(&inodedep->id_bufwait), 13834 LIST_FIRST(&inodedep->id_inowait), 13835 TAILQ_FIRST(&inodedep->id_inoreflst), 13836 inodedep->id_mkdiradd); 13837 db_printf("\tinoupdt %p, newinoupdt %p, extupdt %p, newextupdt %p\n", 13838 TAILQ_FIRST(&inodedep->id_inoupdt), 13839 TAILQ_FIRST(&inodedep->id_newinoupdt), 13840 TAILQ_FIRST(&inodedep->id_extupdt), 13841 TAILQ_FIRST(&inodedep->id_newextupdt)); 13842 } 13843 13844 DB_SHOW_COMMAND(inodedep, db_show_inodedep) 13845 { 13846 13847 if (have_addr == 0) { 13848 db_printf("Address required\n"); 13849 return; 13850 } 13851 inodedep_print((struct inodedep*)addr, 1); 13852 } 13853 13854 DB_SHOW_COMMAND(inodedeps, db_show_inodedeps) 13855 { 13856 struct inodedep_hashhead *inodedephd; 13857 struct inodedep *inodedep; 13858 struct ufsmount *ump; 13859 int cnt; 13860 13861 if (have_addr == 0) { 13862 db_printf("Address required\n"); 13863 return; 13864 } 13865 ump = (struct ufsmount *)addr; 13866 for (cnt = 0; cnt < ump->inodedep_hash_size; cnt++) { 13867 inodedephd = &ump->inodedep_hashtbl[cnt]; 13868 LIST_FOREACH(inodedep, inodedephd, id_hash) { 13869 inodedep_print(inodedep, 0); 13870 } 13871 } 13872 } 13873 13874 DB_SHOW_COMMAND(worklist, db_show_worklist) 13875 { 13876 struct worklist *wk; 13877 13878 if (have_addr == 0) { 13879 db_printf("Address required\n"); 13880 return; 13881 } 13882 wk = (struct worklist *)addr; 13883 printf("worklist: %p type %s state 0x%X\n", 13884 wk, TYPENAME(wk->wk_type), wk->wk_state); 13885 } 13886 13887 DB_SHOW_COMMAND(workhead, db_show_workhead) 13888 { 13889 struct workhead *wkhd; 13890 struct worklist *wk; 13891 int i; 13892 13893 if (have_addr == 0) { 13894 db_printf("Address required\n"); 13895 return; 13896 } 13897 wkhd = (struct workhead *)addr; 13898 wk = LIST_FIRST(wkhd); 13899 for (i = 0; i < 100 && wk != NULL; i++, wk = LIST_NEXT(wk, wk_list)) 13900 db_printf("worklist: %p type %s state 0x%X", 13901 wk, TYPENAME(wk->wk_type), wk->wk_state); 13902 if (i == 100) 13903 db_printf("workhead overflow"); 13904 printf("\n"); 13905 } 13906 13907 13908 DB_SHOW_COMMAND(mkdirs, db_show_mkdirs) 13909 { 13910 struct mkdirlist *mkdirlisthd; 13911 struct jaddref *jaddref; 13912 struct diradd *diradd; 13913 struct mkdir *mkdir; 13914 13915 if (have_addr == 0) { 13916 db_printf("Address required\n"); 13917 return; 13918 } 13919 mkdirlisthd = (struct mkdirlist *)addr; 13920 LIST_FOREACH(mkdir, mkdirlisthd, md_mkdirs) { 13921 diradd = mkdir->md_diradd; 13922 db_printf("mkdir: %p state 0x%X dap %p state 0x%X", 13923 mkdir, mkdir->md_state, diradd, diradd->da_state); 13924 if ((jaddref = mkdir->md_jaddref) != NULL) 13925 db_printf(" jaddref %p jaddref state 0x%X", 13926 jaddref, jaddref->ja_state); 13927 db_printf("\n"); 13928 } 13929 } 13930 13931 /* exported to ffs_vfsops.c */ 13932 extern void db_print_ffs(struct ufsmount *ump); 13933 void 13934 db_print_ffs(struct ufsmount *ump) 13935 { 13936 db_printf("mp %p %s devvp %p fs %p su_wl %d su_deps %d su_req %d\n", 13937 ump->um_mountp, ump->um_mountp->mnt_stat.f_mntonname, 13938 ump->um_devvp, ump->um_fs, ump->softdep_on_worklist, 13939 ump->softdep_deps, ump->softdep_req); 13940 } 13941 13942 #endif /* DDB */ 13943 13944 #endif /* SOFTUPDATES */ 13945