xref: /freebsd/sys/ufs/ffs/ffs_softdep.c (revision 27c43fe1f3795622c5bd4bbfc465a29a800c0799)
1 /*-
2  * Copyright 1998, 2000 Marshall Kirk McKusick.
3  * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org>
4  * All rights reserved.
5  *
6  * The soft updates code is derived from the appendix of a University
7  * of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
8  * "Soft Updates: A Solution to the Metadata Update Problem in File
9  * Systems", CSE-TR-254-95, August 1995).
10  *
11  * Further information about soft updates can be obtained from:
12  *
13  *	Marshall Kirk McKusick		http://www.mckusick.com/softdep/
14  *	1614 Oxford Street		mckusick@mckusick.com
15  *	Berkeley, CA 94709-1608		+1-510-843-9542
16  *	USA
17  *
18  * Redistribution and use in source and binary forms, with or without
19  * modification, are permitted provided that the following conditions
20  * are met:
21  *
22  * 1. Redistributions of source code must retain the above copyright
23  *    notice, this list of conditions and the following disclaimer.
24  * 2. Redistributions in binary form must reproduce the above copyright
25  *    notice, this list of conditions and the following disclaimer in the
26  *    documentation and/or other materials provided with the distribution.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
29  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
31  * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
32  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
33  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
34  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
35  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37  * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38  *
39  *	from: @(#)ffs_softdep.c	9.59 (McKusick) 6/21/00
40  */
41 
42 #include <sys/cdefs.h>
43 __FBSDID("$FreeBSD$");
44 
45 #include "opt_ffs.h"
46 #include "opt_quota.h"
47 #include "opt_ddb.h"
48 
49 /*
50  * For now we want the safety net that the DEBUG flag provides.
51  */
52 #ifndef DEBUG
53 #define DEBUG
54 #endif
55 
56 #include <sys/param.h>
57 #include <sys/kernel.h>
58 #include <sys/systm.h>
59 #include <sys/bio.h>
60 #include <sys/buf.h>
61 #include <sys/kdb.h>
62 #include <sys/kthread.h>
63 #include <sys/ktr.h>
64 #include <sys/limits.h>
65 #include <sys/lock.h>
66 #include <sys/malloc.h>
67 #include <sys/mount.h>
68 #include <sys/mutex.h>
69 #include <sys/namei.h>
70 #include <sys/priv.h>
71 #include <sys/proc.h>
72 #include <sys/rwlock.h>
73 #include <sys/stat.h>
74 #include <sys/sysctl.h>
75 #include <sys/syslog.h>
76 #include <sys/vnode.h>
77 #include <sys/conf.h>
78 
79 #include <ufs/ufs/dir.h>
80 #include <ufs/ufs/extattr.h>
81 #include <ufs/ufs/quota.h>
82 #include <ufs/ufs/inode.h>
83 #include <ufs/ufs/ufsmount.h>
84 #include <ufs/ffs/fs.h>
85 #include <ufs/ffs/softdep.h>
86 #include <ufs/ffs/ffs_extern.h>
87 #include <ufs/ufs/ufs_extern.h>
88 
89 #include <vm/vm.h>
90 #include <vm/vm_extern.h>
91 #include <vm/vm_object.h>
92 
93 #include <geom/geom.h>
94 
95 #include <ddb/ddb.h>
96 
97 #define	KTR_SUJ	0	/* Define to KTR_SPARE. */
98 
99 #ifndef SOFTUPDATES
100 
101 int
102 softdep_flushfiles(oldmnt, flags, td)
103 	struct mount *oldmnt;
104 	int flags;
105 	struct thread *td;
106 {
107 
108 	panic("softdep_flushfiles called");
109 }
110 
111 int
112 softdep_mount(devvp, mp, fs, cred)
113 	struct vnode *devvp;
114 	struct mount *mp;
115 	struct fs *fs;
116 	struct ucred *cred;
117 {
118 
119 	return (0);
120 }
121 
122 void
123 softdep_initialize()
124 {
125 
126 	return;
127 }
128 
129 void
130 softdep_uninitialize()
131 {
132 
133 	return;
134 }
135 
136 void
137 softdep_unmount(mp)
138 	struct mount *mp;
139 {
140 
141 	panic("softdep_unmount called");
142 }
143 
144 void
145 softdep_setup_sbupdate(ump, fs, bp)
146 	struct ufsmount *ump;
147 	struct fs *fs;
148 	struct buf *bp;
149 {
150 
151 	panic("softdep_setup_sbupdate called");
152 }
153 
154 void
155 softdep_setup_inomapdep(bp, ip, newinum, mode)
156 	struct buf *bp;
157 	struct inode *ip;
158 	ino_t newinum;
159 	int mode;
160 {
161 
162 	panic("softdep_setup_inomapdep called");
163 }
164 
165 void
166 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
167 	struct buf *bp;
168 	struct mount *mp;
169 	ufs2_daddr_t newblkno;
170 	int frags;
171 	int oldfrags;
172 {
173 
174 	panic("softdep_setup_blkmapdep called");
175 }
176 
177 void
178 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
179 	struct inode *ip;
180 	ufs_lbn_t lbn;
181 	ufs2_daddr_t newblkno;
182 	ufs2_daddr_t oldblkno;
183 	long newsize;
184 	long oldsize;
185 	struct buf *bp;
186 {
187 
188 	panic("softdep_setup_allocdirect called");
189 }
190 
191 void
192 softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
193 	struct inode *ip;
194 	ufs_lbn_t lbn;
195 	ufs2_daddr_t newblkno;
196 	ufs2_daddr_t oldblkno;
197 	long newsize;
198 	long oldsize;
199 	struct buf *bp;
200 {
201 
202 	panic("softdep_setup_allocext called");
203 }
204 
205 void
206 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
207 	struct inode *ip;
208 	ufs_lbn_t lbn;
209 	struct buf *bp;
210 	int ptrno;
211 	ufs2_daddr_t newblkno;
212 	ufs2_daddr_t oldblkno;
213 	struct buf *nbp;
214 {
215 
216 	panic("softdep_setup_allocindir_page called");
217 }
218 
219 void
220 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
221 	struct buf *nbp;
222 	struct inode *ip;
223 	struct buf *bp;
224 	int ptrno;
225 	ufs2_daddr_t newblkno;
226 {
227 
228 	panic("softdep_setup_allocindir_meta called");
229 }
230 
231 void
232 softdep_journal_freeblocks(ip, cred, length, flags)
233 	struct inode *ip;
234 	struct ucred *cred;
235 	off_t length;
236 	int flags;
237 {
238 
239 	panic("softdep_journal_freeblocks called");
240 }
241 
242 void
243 softdep_journal_fsync(ip)
244 	struct inode *ip;
245 {
246 
247 	panic("softdep_journal_fsync called");
248 }
249 
250 void
251 softdep_setup_freeblocks(ip, length, flags)
252 	struct inode *ip;
253 	off_t length;
254 	int flags;
255 {
256 
257 	panic("softdep_setup_freeblocks called");
258 }
259 
260 void
261 softdep_freefile(pvp, ino, mode)
262 		struct vnode *pvp;
263 		ino_t ino;
264 		int mode;
265 {
266 
267 	panic("softdep_freefile called");
268 }
269 
270 int
271 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
272 	struct buf *bp;
273 	struct inode *dp;
274 	off_t diroffset;
275 	ino_t newinum;
276 	struct buf *newdirbp;
277 	int isnewblk;
278 {
279 
280 	panic("softdep_setup_directory_add called");
281 }
282 
283 void
284 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
285 	struct buf *bp;
286 	struct inode *dp;
287 	caddr_t base;
288 	caddr_t oldloc;
289 	caddr_t newloc;
290 	int entrysize;
291 {
292 
293 	panic("softdep_change_directoryentry_offset called");
294 }
295 
296 void
297 softdep_setup_remove(bp, dp, ip, isrmdir)
298 	struct buf *bp;
299 	struct inode *dp;
300 	struct inode *ip;
301 	int isrmdir;
302 {
303 
304 	panic("softdep_setup_remove called");
305 }
306 
307 void
308 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
309 	struct buf *bp;
310 	struct inode *dp;
311 	struct inode *ip;
312 	ino_t newinum;
313 	int isrmdir;
314 {
315 
316 	panic("softdep_setup_directory_change called");
317 }
318 
319 void
320 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
321 	struct mount *mp;
322 	struct buf *bp;
323 	ufs2_daddr_t blkno;
324 	int frags;
325 	struct workhead *wkhd;
326 {
327 
328 	panic("%s called", __FUNCTION__);
329 }
330 
331 void
332 softdep_setup_inofree(mp, bp, ino, wkhd)
333 	struct mount *mp;
334 	struct buf *bp;
335 	ino_t ino;
336 	struct workhead *wkhd;
337 {
338 
339 	panic("%s called", __FUNCTION__);
340 }
341 
342 void
343 softdep_setup_unlink(dp, ip)
344 	struct inode *dp;
345 	struct inode *ip;
346 {
347 
348 	panic("%s called", __FUNCTION__);
349 }
350 
351 void
352 softdep_setup_link(dp, ip)
353 	struct inode *dp;
354 	struct inode *ip;
355 {
356 
357 	panic("%s called", __FUNCTION__);
358 }
359 
360 void
361 softdep_revert_link(dp, ip)
362 	struct inode *dp;
363 	struct inode *ip;
364 {
365 
366 	panic("%s called", __FUNCTION__);
367 }
368 
369 void
370 softdep_setup_rmdir(dp, ip)
371 	struct inode *dp;
372 	struct inode *ip;
373 {
374 
375 	panic("%s called", __FUNCTION__);
376 }
377 
378 void
379 softdep_revert_rmdir(dp, ip)
380 	struct inode *dp;
381 	struct inode *ip;
382 {
383 
384 	panic("%s called", __FUNCTION__);
385 }
386 
387 void
388 softdep_setup_create(dp, ip)
389 	struct inode *dp;
390 	struct inode *ip;
391 {
392 
393 	panic("%s called", __FUNCTION__);
394 }
395 
396 void
397 softdep_revert_create(dp, ip)
398 	struct inode *dp;
399 	struct inode *ip;
400 {
401 
402 	panic("%s called", __FUNCTION__);
403 }
404 
405 void
406 softdep_setup_mkdir(dp, ip)
407 	struct inode *dp;
408 	struct inode *ip;
409 {
410 
411 	panic("%s called", __FUNCTION__);
412 }
413 
414 void
415 softdep_revert_mkdir(dp, ip)
416 	struct inode *dp;
417 	struct inode *ip;
418 {
419 
420 	panic("%s called", __FUNCTION__);
421 }
422 
423 void
424 softdep_setup_dotdot_link(dp, ip)
425 	struct inode *dp;
426 	struct inode *ip;
427 {
428 
429 	panic("%s called", __FUNCTION__);
430 }
431 
432 int
433 softdep_prealloc(vp, waitok)
434 	struct vnode *vp;
435 	int waitok;
436 {
437 
438 	panic("%s called", __FUNCTION__);
439 }
440 
441 int
442 softdep_journal_lookup(mp, vpp)
443 	struct mount *mp;
444 	struct vnode **vpp;
445 {
446 
447 	return (ENOENT);
448 }
449 
450 void
451 softdep_change_linkcnt(ip)
452 	struct inode *ip;
453 {
454 
455 	panic("softdep_change_linkcnt called");
456 }
457 
458 void
459 softdep_load_inodeblock(ip)
460 	struct inode *ip;
461 {
462 
463 	panic("softdep_load_inodeblock called");
464 }
465 
466 void
467 softdep_update_inodeblock(ip, bp, waitfor)
468 	struct inode *ip;
469 	struct buf *bp;
470 	int waitfor;
471 {
472 
473 	panic("softdep_update_inodeblock called");
474 }
475 
476 int
477 softdep_fsync(vp)
478 	struct vnode *vp;	/* the "in_core" copy of the inode */
479 {
480 
481 	return (0);
482 }
483 
484 void
485 softdep_fsync_mountdev(vp)
486 	struct vnode *vp;
487 {
488 
489 	return;
490 }
491 
492 int
493 softdep_flushworklist(oldmnt, countp, td)
494 	struct mount *oldmnt;
495 	int *countp;
496 	struct thread *td;
497 {
498 
499 	*countp = 0;
500 	return (0);
501 }
502 
503 int
504 softdep_sync_metadata(struct vnode *vp)
505 {
506 
507 	panic("softdep_sync_metadata called");
508 }
509 
510 int
511 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
512 {
513 
514 	panic("softdep_sync_buf called");
515 }
516 
517 int
518 softdep_slowdown(vp)
519 	struct vnode *vp;
520 {
521 
522 	panic("softdep_slowdown called");
523 }
524 
525 int
526 softdep_request_cleanup(fs, vp, cred, resource)
527 	struct fs *fs;
528 	struct vnode *vp;
529 	struct ucred *cred;
530 	int resource;
531 {
532 
533 	return (0);
534 }
535 
536 int
537 softdep_check_suspend(struct mount *mp,
538 		      struct vnode *devvp,
539 		      int softdep_depcnt,
540 		      int softdep_accdepcnt,
541 		      int secondary_writes,
542 		      int secondary_accwrites)
543 {
544 	struct bufobj *bo;
545 	int error;
546 
547 	(void) softdep_depcnt,
548 	(void) softdep_accdepcnt;
549 
550 	bo = &devvp->v_bufobj;
551 	ASSERT_BO_WLOCKED(bo);
552 
553 	MNT_ILOCK(mp);
554 	while (mp->mnt_secondary_writes != 0) {
555 		BO_UNLOCK(bo);
556 		msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
557 		    (PUSER - 1) | PDROP, "secwr", 0);
558 		BO_LOCK(bo);
559 		MNT_ILOCK(mp);
560 	}
561 
562 	/*
563 	 * Reasons for needing more work before suspend:
564 	 * - Dirty buffers on devvp.
565 	 * - Secondary writes occurred after start of vnode sync loop
566 	 */
567 	error = 0;
568 	if (bo->bo_numoutput > 0 ||
569 	    bo->bo_dirty.bv_cnt > 0 ||
570 	    secondary_writes != 0 ||
571 	    mp->mnt_secondary_writes != 0 ||
572 	    secondary_accwrites != mp->mnt_secondary_accwrites)
573 		error = EAGAIN;
574 	BO_UNLOCK(bo);
575 	return (error);
576 }
577 
578 void
579 softdep_get_depcounts(struct mount *mp,
580 		      int *softdepactivep,
581 		      int *softdepactiveaccp)
582 {
583 	(void) mp;
584 	*softdepactivep = 0;
585 	*softdepactiveaccp = 0;
586 }
587 
588 void
589 softdep_buf_append(bp, wkhd)
590 	struct buf *bp;
591 	struct workhead *wkhd;
592 {
593 
594 	panic("softdep_buf_appendwork called");
595 }
596 
597 void
598 softdep_inode_append(ip, cred, wkhd)
599 	struct inode *ip;
600 	struct ucred *cred;
601 	struct workhead *wkhd;
602 {
603 
604 	panic("softdep_inode_appendwork called");
605 }
606 
607 void
608 softdep_freework(wkhd)
609 	struct workhead *wkhd;
610 {
611 
612 	panic("softdep_freework called");
613 }
614 
615 #else
616 
617 FEATURE(softupdates, "FFS soft-updates support");
618 
619 static SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW, 0,
620     "soft updates stats");
621 static SYSCTL_NODE(_debug_softdep, OID_AUTO, total, CTLFLAG_RW, 0,
622     "total dependencies allocated");
623 static SYSCTL_NODE(_debug_softdep, OID_AUTO, highuse, CTLFLAG_RW, 0,
624     "high use dependencies allocated");
625 static SYSCTL_NODE(_debug_softdep, OID_AUTO, current, CTLFLAG_RW, 0,
626     "current dependencies allocated");
627 static SYSCTL_NODE(_debug_softdep, OID_AUTO, write, CTLFLAG_RW, 0,
628     "current dependencies written");
629 
630 unsigned long dep_current[D_LAST + 1];
631 unsigned long dep_highuse[D_LAST + 1];
632 unsigned long dep_total[D_LAST + 1];
633 unsigned long dep_write[D_LAST + 1];
634 
635 #define	SOFTDEP_TYPE(type, str, long)					\
636     static MALLOC_DEFINE(M_ ## type, #str, long);			\
637     SYSCTL_ULONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD,	\
638 	&dep_total[D_ ## type], 0, "");					\
639     SYSCTL_ULONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD, 	\
640 	&dep_current[D_ ## type], 0, "");				\
641     SYSCTL_ULONG(_debug_softdep_highuse, OID_AUTO, str, CTLFLAG_RD, 	\
642 	&dep_highuse[D_ ## type], 0, "");				\
643     SYSCTL_ULONG(_debug_softdep_write, OID_AUTO, str, CTLFLAG_RD, 	\
644 	&dep_write[D_ ## type], 0, "");
645 
646 SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies");
647 SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies");
648 SOFTDEP_TYPE(BMSAFEMAP, bmsafemap,
649     "Block or frag allocated from cyl group map");
650 SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency");
651 SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode");
652 SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies");
653 SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block");
654 SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode");
655 SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode");
656 SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated");
657 SOFTDEP_TYPE(DIRADD, diradd, "New directory entry");
658 SOFTDEP_TYPE(MKDIR, mkdir, "New directory");
659 SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted");
660 SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block");
661 SOFTDEP_TYPE(FREEWORK, freework, "free an inode block");
662 SOFTDEP_TYPE(FREEDEP, freedep, "track a block free");
663 SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add");
664 SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove");
665 SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move");
666 SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block");
667 SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block");
668 SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag");
669 SOFTDEP_TYPE(JSEG, jseg, "Journal segment");
670 SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete");
671 SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency");
672 SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation");
673 SOFTDEP_TYPE(JFSYNC, jfsync, "Journal fsync complete");
674 
675 static MALLOC_DEFINE(M_SENTINEL, "sentinel", "Worklist sentinel");
676 
677 static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes");
678 static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations");
679 static MALLOC_DEFINE(M_MOUNTDATA, "softdep", "Softdep per-mount data");
680 
681 #define M_SOFTDEP_FLAGS	(M_WAITOK)
682 
683 /*
684  * translate from workitem type to memory type
685  * MUST match the defines above, such that memtype[D_XXX] == M_XXX
686  */
687 static struct malloc_type *memtype[] = {
688 	M_PAGEDEP,
689 	M_INODEDEP,
690 	M_BMSAFEMAP,
691 	M_NEWBLK,
692 	M_ALLOCDIRECT,
693 	M_INDIRDEP,
694 	M_ALLOCINDIR,
695 	M_FREEFRAG,
696 	M_FREEBLKS,
697 	M_FREEFILE,
698 	M_DIRADD,
699 	M_MKDIR,
700 	M_DIRREM,
701 	M_NEWDIRBLK,
702 	M_FREEWORK,
703 	M_FREEDEP,
704 	M_JADDREF,
705 	M_JREMREF,
706 	M_JMVREF,
707 	M_JNEWBLK,
708 	M_JFREEBLK,
709 	M_JFREEFRAG,
710 	M_JSEG,
711 	M_JSEGDEP,
712 	M_SBDEP,
713 	M_JTRUNC,
714 	M_JFSYNC,
715 	M_SENTINEL
716 };
717 
718 #define DtoM(type) (memtype[type])
719 
720 /*
721  * Names of malloc types.
722  */
723 #define TYPENAME(type)  \
724 	((unsigned)(type) <= D_LAST ? memtype[type]->ks_shortdesc : "???")
725 /*
726  * End system adaptation definitions.
727  */
728 
729 #define	DOTDOT_OFFSET	offsetof(struct dirtemplate, dotdot_ino)
730 #define	DOT_OFFSET	offsetof(struct dirtemplate, dot_ino)
731 
732 /*
733  * Internal function prototypes.
734  */
735 static	void check_clear_deps(struct mount *);
736 static	void softdep_error(char *, int);
737 static	int softdep_process_worklist(struct mount *, int);
738 static	int softdep_waitidle(struct mount *);
739 static	void drain_output(struct vnode *);
740 static	struct buf *getdirtybuf(struct buf *, struct rwlock *, int);
741 static	void clear_remove(struct mount *);
742 static	void clear_inodedeps(struct mount *);
743 static	void unlinked_inodedep(struct mount *, struct inodedep *);
744 static	void clear_unlinked_inodedep(struct inodedep *);
745 static	struct inodedep *first_unlinked_inodedep(struct ufsmount *);
746 static	int flush_pagedep_deps(struct vnode *, struct mount *,
747 	    struct diraddhd *);
748 static	int free_pagedep(struct pagedep *);
749 static	int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t);
750 static	int flush_inodedep_deps(struct vnode *, struct mount *, ino_t);
751 static	int flush_deplist(struct allocdirectlst *, int, int *);
752 static	int sync_cgs(struct mount *, int);
753 static	int handle_written_filepage(struct pagedep *, struct buf *);
754 static	int handle_written_sbdep(struct sbdep *, struct buf *);
755 static	void initiate_write_sbdep(struct sbdep *);
756 static	void diradd_inode_written(struct diradd *, struct inodedep *);
757 static	int handle_written_indirdep(struct indirdep *, struct buf *,
758 	    struct buf**);
759 static	int handle_written_inodeblock(struct inodedep *, struct buf *);
760 static	int jnewblk_rollforward(struct jnewblk *, struct fs *, struct cg *,
761 	    uint8_t *);
762 static	int handle_written_bmsafemap(struct bmsafemap *, struct buf *);
763 static	void handle_written_jaddref(struct jaddref *);
764 static	void handle_written_jremref(struct jremref *);
765 static	void handle_written_jseg(struct jseg *, struct buf *);
766 static	void handle_written_jnewblk(struct jnewblk *);
767 static	void handle_written_jblkdep(struct jblkdep *);
768 static	void handle_written_jfreefrag(struct jfreefrag *);
769 static	void complete_jseg(struct jseg *);
770 static	void complete_jsegs(struct jseg *);
771 static	void jseg_write(struct ufsmount *ump, struct jseg *, uint8_t *);
772 static	void jaddref_write(struct jaddref *, struct jseg *, uint8_t *);
773 static	void jremref_write(struct jremref *, struct jseg *, uint8_t *);
774 static	void jmvref_write(struct jmvref *, struct jseg *, uint8_t *);
775 static	void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *);
776 static	void jfsync_write(struct jfsync *, struct jseg *, uint8_t *data);
777 static	void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *);
778 static	void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *);
779 static	void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *);
780 static	inline void inoref_write(struct inoref *, struct jseg *,
781 	    struct jrefrec *);
782 static	void handle_allocdirect_partdone(struct allocdirect *,
783 	    struct workhead *);
784 static	struct jnewblk *cancel_newblk(struct newblk *, struct worklist *,
785 	    struct workhead *);
786 static	void indirdep_complete(struct indirdep *);
787 static	int indirblk_lookup(struct mount *, ufs2_daddr_t);
788 static	void indirblk_insert(struct freework *);
789 static	void indirblk_remove(struct freework *);
790 static	void handle_allocindir_partdone(struct allocindir *);
791 static	void initiate_write_filepage(struct pagedep *, struct buf *);
792 static	void initiate_write_indirdep(struct indirdep*, struct buf *);
793 static	void handle_written_mkdir(struct mkdir *, int);
794 static	int jnewblk_rollback(struct jnewblk *, struct fs *, struct cg *,
795 	    uint8_t *);
796 static	void initiate_write_bmsafemap(struct bmsafemap *, struct buf *);
797 static	void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *);
798 static	void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *);
799 static	void handle_workitem_freefile(struct freefile *);
800 static	int handle_workitem_remove(struct dirrem *, int);
801 static	struct dirrem *newdirrem(struct buf *, struct inode *,
802 	    struct inode *, int, struct dirrem **);
803 static	struct indirdep *indirdep_lookup(struct mount *, struct inode *,
804 	    struct buf *);
805 static	void cancel_indirdep(struct indirdep *, struct buf *,
806 	    struct freeblks *);
807 static	void free_indirdep(struct indirdep *);
808 static	void free_diradd(struct diradd *, struct workhead *);
809 static	void merge_diradd(struct inodedep *, struct diradd *);
810 static	void complete_diradd(struct diradd *);
811 static	struct diradd *diradd_lookup(struct pagedep *, int);
812 static	struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *,
813 	    struct jremref *);
814 static	struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *,
815 	    struct jremref *);
816 static	void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *,
817 	    struct jremref *, struct jremref *);
818 static	void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *,
819 	    struct jremref *);
820 static	void cancel_allocindir(struct allocindir *, struct buf *bp,
821 	    struct freeblks *, int);
822 static	int setup_trunc_indir(struct freeblks *, struct inode *,
823 	    ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t);
824 static	void complete_trunc_indir(struct freework *);
825 static	void trunc_indirdep(struct indirdep *, struct freeblks *, struct buf *,
826 	    int);
827 static	void complete_mkdir(struct mkdir *);
828 static	void free_newdirblk(struct newdirblk *);
829 static	void free_jremref(struct jremref *);
830 static	void free_jaddref(struct jaddref *);
831 static	void free_jsegdep(struct jsegdep *);
832 static	void free_jsegs(struct jblocks *);
833 static	void rele_jseg(struct jseg *);
834 static	void free_jseg(struct jseg *, struct jblocks *);
835 static	void free_jnewblk(struct jnewblk *);
836 static	void free_jblkdep(struct jblkdep *);
837 static	void free_jfreefrag(struct jfreefrag *);
838 static	void free_freedep(struct freedep *);
839 static	void journal_jremref(struct dirrem *, struct jremref *,
840 	    struct inodedep *);
841 static	void cancel_jnewblk(struct jnewblk *, struct workhead *);
842 static	int cancel_jaddref(struct jaddref *, struct inodedep *,
843 	    struct workhead *);
844 static	void cancel_jfreefrag(struct jfreefrag *);
845 static	inline void setup_freedirect(struct freeblks *, struct inode *,
846 	    int, int);
847 static	inline void setup_freeext(struct freeblks *, struct inode *, int, int);
848 static	inline void setup_freeindir(struct freeblks *, struct inode *, int,
849 	    ufs_lbn_t, int);
850 static	inline struct freeblks *newfreeblks(struct mount *, struct inode *);
851 static	void freeblks_free(struct ufsmount *, struct freeblks *, int);
852 static	void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t);
853 static	ufs2_daddr_t blkcount(struct fs *, ufs2_daddr_t, off_t);
854 static	int trunc_check_buf(struct buf *, int *, ufs_lbn_t, int, int);
855 static	void trunc_dependencies(struct inode *, struct freeblks *, ufs_lbn_t,
856 	    int, int);
857 static	void trunc_pages(struct inode *, off_t, ufs2_daddr_t, int);
858 static 	int cancel_pagedep(struct pagedep *, struct freeblks *, int);
859 static	int deallocate_dependencies(struct buf *, struct freeblks *, int);
860 static	void newblk_freefrag(struct newblk*);
861 static	void free_newblk(struct newblk *);
862 static	void cancel_allocdirect(struct allocdirectlst *,
863 	    struct allocdirect *, struct freeblks *);
864 static	int check_inode_unwritten(struct inodedep *);
865 static	int free_inodedep(struct inodedep *);
866 static	void freework_freeblock(struct freework *);
867 static	void freework_enqueue(struct freework *);
868 static	int handle_workitem_freeblocks(struct freeblks *, int);
869 static	int handle_complete_freeblocks(struct freeblks *, int);
870 static	void handle_workitem_indirblk(struct freework *);
871 static	void handle_written_freework(struct freework *);
872 static	void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *);
873 static	struct worklist *jnewblk_merge(struct worklist *, struct worklist *,
874 	    struct workhead *);
875 static	struct freefrag *setup_allocindir_phase2(struct buf *, struct inode *,
876 	    struct inodedep *, struct allocindir *, ufs_lbn_t);
877 static	struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t,
878 	    ufs2_daddr_t, ufs_lbn_t);
879 static	void handle_workitem_freefrag(struct freefrag *);
880 static	struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long,
881 	    ufs_lbn_t);
882 static	void allocdirect_merge(struct allocdirectlst *,
883 	    struct allocdirect *, struct allocdirect *);
884 static	struct freefrag *allocindir_merge(struct allocindir *,
885 	    struct allocindir *);
886 static	int bmsafemap_find(struct bmsafemap_hashhead *, int,
887 	    struct bmsafemap **);
888 static	struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *,
889 	    int cg, struct bmsafemap *);
890 static	int newblk_find(struct newblk_hashhead *, ufs2_daddr_t, int,
891 	    struct newblk **);
892 static	int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **);
893 static	int inodedep_find(struct inodedep_hashhead *, ino_t,
894 	    struct inodedep **);
895 static	int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **);
896 static	int pagedep_lookup(struct mount *, struct buf *bp, ino_t, ufs_lbn_t,
897 	    int, struct pagedep **);
898 static	int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t,
899 	    struct pagedep **);
900 static	void pause_timer(void *);
901 static	int request_cleanup(struct mount *, int);
902 static	int process_worklist_item(struct mount *, int, int);
903 static	void process_removes(struct vnode *);
904 static	void process_truncates(struct vnode *);
905 static	void jwork_move(struct workhead *, struct workhead *);
906 static	void jwork_insert(struct workhead *, struct jsegdep *);
907 static	void add_to_worklist(struct worklist *, int);
908 static	void wake_worklist(struct worklist *);
909 static	void wait_worklist(struct worklist *, char *);
910 static	void remove_from_worklist(struct worklist *);
911 static	void softdep_flush(void);
912 static	void softdep_flushjournal(struct mount *);
913 static	int softdep_speedup(void);
914 static	void worklist_speedup(struct mount *);
915 static	int journal_mount(struct mount *, struct fs *, struct ucred *);
916 static	void journal_unmount(struct ufsmount *);
917 static	int journal_space(struct ufsmount *, int);
918 static	void journal_suspend(struct ufsmount *);
919 static	int journal_unsuspend(struct ufsmount *ump);
920 static	void softdep_prelink(struct vnode *, struct vnode *);
921 static	void add_to_journal(struct worklist *);
922 static	void remove_from_journal(struct worklist *);
923 static	void softdep_process_journal(struct mount *, struct worklist *, int);
924 static	struct jremref *newjremref(struct dirrem *, struct inode *,
925 	    struct inode *ip, off_t, nlink_t);
926 static	struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t,
927 	    uint16_t);
928 static	inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t,
929 	    uint16_t);
930 static	inline struct jsegdep *inoref_jseg(struct inoref *);
931 static	struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t);
932 static	struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t,
933 	    ufs2_daddr_t, int);
934 static	struct jtrunc *newjtrunc(struct freeblks *, off_t, int);
935 static	void move_newblock_dep(struct jaddref *, struct inodedep *);
936 static	void cancel_jfreeblk(struct freeblks *, ufs2_daddr_t);
937 static	struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *,
938 	    ufs2_daddr_t, long, ufs_lbn_t);
939 static	struct freework *newfreework(struct ufsmount *, struct freeblks *,
940 	    struct freework *, ufs_lbn_t, ufs2_daddr_t, int, int, int);
941 static	int jwait(struct worklist *, int);
942 static	struct inodedep *inodedep_lookup_ip(struct inode *);
943 static	int bmsafemap_backgroundwrite(struct bmsafemap *, struct buf *);
944 static	struct freefile *handle_bufwait(struct inodedep *, struct workhead *);
945 static	void handle_jwork(struct workhead *);
946 static	struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *,
947 	    struct mkdir **);
948 static	struct jblocks *jblocks_create(void);
949 static	ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *);
950 static	void jblocks_free(struct jblocks *, struct mount *, int);
951 static	void jblocks_destroy(struct jblocks *);
952 static	void jblocks_add(struct jblocks *, ufs2_daddr_t, int);
953 
954 /*
955  * Exported softdep operations.
956  */
957 static	void softdep_disk_io_initiation(struct buf *);
958 static	void softdep_disk_write_complete(struct buf *);
959 static	void softdep_deallocate_dependencies(struct buf *);
960 static	int softdep_count_dependencies(struct buf *bp, int);
961 
962 /*
963  * Global lock over all of soft updates.
964  */
965 static struct rwlock lk;
966 RW_SYSINIT(softdep_lock, &lk, "Softdep Lock");
967 
968 /*
969  * Allow per-filesystem soft-updates locking.
970  * For now all use the same global lock defined above.
971  */
972 #define LOCK_PTR(ump)		((ump)->um_softdep->sd_fslock)
973 #define TRY_ACQUIRE_LOCK(ump)	rw_try_wlock((ump)->um_softdep->sd_fslock)
974 #define ACQUIRE_LOCK(ump)	rw_wlock((ump)->um_softdep->sd_fslock)
975 #define FREE_LOCK(ump)		rw_wunlock((ump)->um_softdep->sd_fslock)
976 #define LOCK_OWNED(ump)		rw_assert((ump)->um_softdep->sd_fslock, \
977 				    RA_WLOCKED)
978 
979 #define	BUF_AREC(bp)		lockallowrecurse(&(bp)->b_lock)
980 #define	BUF_NOREC(bp)		lockdisablerecurse(&(bp)->b_lock)
981 
982 /*
983  * Worklist queue management.
984  * These routines require that the lock be held.
985  */
986 #ifndef /* NOT */ DEBUG
987 #define WORKLIST_INSERT(head, item) do {	\
988 	(item)->wk_state |= ONWORKLIST;		\
989 	LIST_INSERT_HEAD(head, item, wk_list);	\
990 } while (0)
991 #define WORKLIST_REMOVE(item) do {		\
992 	(item)->wk_state &= ~ONWORKLIST;	\
993 	LIST_REMOVE(item, wk_list);		\
994 } while (0)
995 #define WORKLIST_INSERT_UNLOCKED	WORKLIST_INSERT
996 #define WORKLIST_REMOVE_UNLOCKED	WORKLIST_REMOVE
997 
998 #else /* DEBUG */
999 static	void worklist_insert(struct workhead *, struct worklist *, int);
1000 static	void worklist_remove(struct worklist *, int);
1001 
1002 #define WORKLIST_INSERT(head, item) worklist_insert(head, item, 1)
1003 #define WORKLIST_INSERT_UNLOCKED(head, item) worklist_insert(head, item, 0)
1004 #define WORKLIST_REMOVE(item) worklist_remove(item, 1)
1005 #define WORKLIST_REMOVE_UNLOCKED(item) worklist_remove(item, 0)
1006 
1007 static void
1008 worklist_insert(head, item, locked)
1009 	struct workhead *head;
1010 	struct worklist *item;
1011 	int locked;
1012 {
1013 
1014 	if (locked)
1015 		LOCK_OWNED(VFSTOUFS(item->wk_mp));
1016 	if (item->wk_state & ONWORKLIST)
1017 		panic("worklist_insert: %p %s(0x%X) already on list",
1018 		    item, TYPENAME(item->wk_type), item->wk_state);
1019 	item->wk_state |= ONWORKLIST;
1020 	LIST_INSERT_HEAD(head, item, wk_list);
1021 }
1022 
1023 static void
1024 worklist_remove(item, locked)
1025 	struct worklist *item;
1026 	int locked;
1027 {
1028 
1029 	if (locked)
1030 		LOCK_OWNED(VFSTOUFS(item->wk_mp));
1031 	if ((item->wk_state & ONWORKLIST) == 0)
1032 		panic("worklist_remove: %p %s(0x%X) not on list",
1033 		    item, TYPENAME(item->wk_type), item->wk_state);
1034 	item->wk_state &= ~ONWORKLIST;
1035 	LIST_REMOVE(item, wk_list);
1036 }
1037 #endif /* DEBUG */
1038 
1039 /*
1040  * Merge two jsegdeps keeping only the oldest one as newer references
1041  * can't be discarded until after older references.
1042  */
1043 static inline struct jsegdep *
1044 jsegdep_merge(struct jsegdep *one, struct jsegdep *two)
1045 {
1046 	struct jsegdep *swp;
1047 
1048 	if (two == NULL)
1049 		return (one);
1050 
1051 	if (one->jd_seg->js_seq > two->jd_seg->js_seq) {
1052 		swp = one;
1053 		one = two;
1054 		two = swp;
1055 	}
1056 	WORKLIST_REMOVE(&two->jd_list);
1057 	free_jsegdep(two);
1058 
1059 	return (one);
1060 }
1061 
1062 /*
1063  * If two freedeps are compatible free one to reduce list size.
1064  */
1065 static inline struct freedep *
1066 freedep_merge(struct freedep *one, struct freedep *two)
1067 {
1068 	if (two == NULL)
1069 		return (one);
1070 
1071 	if (one->fd_freework == two->fd_freework) {
1072 		WORKLIST_REMOVE(&two->fd_list);
1073 		free_freedep(two);
1074 	}
1075 	return (one);
1076 }
1077 
1078 /*
1079  * Move journal work from one list to another.  Duplicate freedeps and
1080  * jsegdeps are coalesced to keep the lists as small as possible.
1081  */
1082 static void
1083 jwork_move(dst, src)
1084 	struct workhead *dst;
1085 	struct workhead *src;
1086 {
1087 	struct freedep *freedep;
1088 	struct jsegdep *jsegdep;
1089 	struct worklist *wkn;
1090 	struct worklist *wk;
1091 
1092 	KASSERT(dst != src,
1093 	    ("jwork_move: dst == src"));
1094 	freedep = NULL;
1095 	jsegdep = NULL;
1096 	LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) {
1097 		if (wk->wk_type == D_JSEGDEP)
1098 			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1099 		else if (wk->wk_type == D_FREEDEP)
1100 			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1101 	}
1102 
1103 	while ((wk = LIST_FIRST(src)) != NULL) {
1104 		WORKLIST_REMOVE(wk);
1105 		WORKLIST_INSERT(dst, wk);
1106 		if (wk->wk_type == D_JSEGDEP) {
1107 			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1108 			continue;
1109 		}
1110 		if (wk->wk_type == D_FREEDEP)
1111 			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1112 	}
1113 }
1114 
1115 static void
1116 jwork_insert(dst, jsegdep)
1117 	struct workhead *dst;
1118 	struct jsegdep *jsegdep;
1119 {
1120 	struct jsegdep *jsegdepn;
1121 	struct worklist *wk;
1122 
1123 	LIST_FOREACH(wk, dst, wk_list)
1124 		if (wk->wk_type == D_JSEGDEP)
1125 			break;
1126 	if (wk == NULL) {
1127 		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1128 		return;
1129 	}
1130 	jsegdepn = WK_JSEGDEP(wk);
1131 	if (jsegdep->jd_seg->js_seq < jsegdepn->jd_seg->js_seq) {
1132 		WORKLIST_REMOVE(wk);
1133 		free_jsegdep(jsegdepn);
1134 		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1135 	} else
1136 		free_jsegdep(jsegdep);
1137 }
1138 
1139 /*
1140  * Routines for tracking and managing workitems.
1141  */
1142 static	void workitem_free(struct worklist *, int);
1143 static	void workitem_alloc(struct worklist *, int, struct mount *);
1144 static	void workitem_reassign(struct worklist *, int);
1145 
1146 #define	WORKITEM_FREE(item, type) \
1147 	workitem_free((struct worklist *)(item), (type))
1148 #define	WORKITEM_REASSIGN(item, type) \
1149 	workitem_reassign((struct worklist *)(item), (type))
1150 
1151 static void
1152 workitem_free(item, type)
1153 	struct worklist *item;
1154 	int type;
1155 {
1156 	struct ufsmount *ump;
1157 
1158 #ifdef DEBUG
1159 	if (item->wk_state & ONWORKLIST)
1160 		panic("workitem_free: %s(0x%X) still on list",
1161 		    TYPENAME(item->wk_type), item->wk_state);
1162 	if (item->wk_type != type && type != D_NEWBLK)
1163 		panic("workitem_free: type mismatch %s != %s",
1164 		    TYPENAME(item->wk_type), TYPENAME(type));
1165 #endif
1166 	if (item->wk_state & IOWAITING)
1167 		wakeup(item);
1168 	ump = VFSTOUFS(item->wk_mp);
1169 	LOCK_OWNED(ump);
1170 	KASSERT(ump->softdep_deps > 0,
1171 	    ("workitem_free: %s: softdep_deps going negative",
1172 	    ump->um_fs->fs_fsmnt));
1173 	if (--ump->softdep_deps == 0 && ump->softdep_req)
1174 		wakeup(&ump->softdep_deps);
1175 	KASSERT(dep_current[item->wk_type] > 0,
1176 	    ("workitem_free: %s: dep_current[%s] going negative",
1177 	    ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1178 	KASSERT(ump->softdep_curdeps[item->wk_type] > 0,
1179 	    ("workitem_free: %s: softdep_curdeps[%s] going negative",
1180 	    ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1181 	dep_current[item->wk_type]--;
1182 	ump->softdep_curdeps[item->wk_type] -= 1;
1183 	free(item, DtoM(type));
1184 }
1185 
1186 static void
1187 workitem_alloc(item, type, mp)
1188 	struct worklist *item;
1189 	int type;
1190 	struct mount *mp;
1191 {
1192 	struct ufsmount *ump;
1193 
1194 	item->wk_type = type;
1195 	item->wk_mp = mp;
1196 	item->wk_state = 0;
1197 
1198 	ump = VFSTOUFS(mp);
1199 	ACQUIRE_LOCK(ump);
1200 	dep_current[type]++;
1201 	if (dep_current[type] > dep_highuse[type])
1202 		dep_highuse[type] = dep_current[type];
1203 	dep_total[type]++;
1204 	ump->softdep_curdeps[type] += 1;
1205 	ump->softdep_deps++;
1206 	ump->softdep_accdeps++;
1207 	FREE_LOCK(ump);
1208 }
1209 
1210 static void
1211 workitem_reassign(item, newtype)
1212 	struct worklist *item;
1213 	int newtype;
1214 {
1215 	struct ufsmount *ump;
1216 
1217 	ump = VFSTOUFS(item->wk_mp);
1218 	LOCK_OWNED(ump);
1219 	KASSERT(ump->softdep_curdeps[item->wk_type] > 0,
1220 	    ("workitem_reassign: %s: softdep_curdeps[%s] going negative",
1221 	    VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1222 	ump->softdep_curdeps[item->wk_type] -= 1;
1223 	ump->softdep_curdeps[newtype] += 1;
1224 	KASSERT(dep_current[item->wk_type] > 0,
1225 	    ("workitem_reassign: %s: dep_current[%s] going negative",
1226 	    VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1227 	dep_current[item->wk_type]--;
1228 	dep_current[newtype]++;
1229 	if (dep_current[newtype] > dep_highuse[newtype])
1230 		dep_highuse[newtype] = dep_current[newtype];
1231 	dep_total[newtype]++;
1232 	item->wk_type = newtype;
1233 }
1234 
1235 /*
1236  * Workitem queue management
1237  */
1238 static int max_softdeps;	/* maximum number of structs before slowdown */
1239 static int maxindirdeps = 50;	/* max number of indirdeps before slowdown */
1240 static int tickdelay = 2;	/* number of ticks to pause during slowdown */
1241 static int proc_waiting;	/* tracks whether we have a timeout posted */
1242 static int *stat_countp;	/* statistic to count in proc_waiting timeout */
1243 static struct callout softdep_callout;
1244 static struct mount *req_pending;
1245 #define ALLCLEAN ((struct mount *)-1)
1246 static int req_clear_inodedeps;	/* syncer process flush some inodedeps */
1247 static int req_clear_remove;	/* syncer process flush some freeblks */
1248 static int softdep_flushcache = 0; /* Should we do BIO_FLUSH? */
1249 
1250 /*
1251  * runtime statistics
1252  */
1253 static int stat_softdep_mounts;	/* number of softdep mounted filesystems */
1254 static int stat_worklist_push;	/* number of worklist cleanups */
1255 static int stat_blk_limit_push;	/* number of times block limit neared */
1256 static int stat_ino_limit_push;	/* number of times inode limit neared */
1257 static int stat_blk_limit_hit;	/* number of times block slowdown imposed */
1258 static int stat_ino_limit_hit;	/* number of times inode slowdown imposed */
1259 static int stat_sync_limit_hit;	/* number of synchronous slowdowns imposed */
1260 static int stat_indir_blk_ptrs;	/* bufs redirtied as indir ptrs not written */
1261 static int stat_inode_bitmap;	/* bufs redirtied as inode bitmap not written */
1262 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
1263 static int stat_dir_entry;	/* bufs redirtied as dir entry cannot write */
1264 static int stat_jaddref;	/* bufs redirtied as ino bitmap can not write */
1265 static int stat_jnewblk;	/* bufs redirtied as blk bitmap can not write */
1266 static int stat_journal_min;	/* Times hit journal min threshold */
1267 static int stat_journal_low;	/* Times hit journal low threshold */
1268 static int stat_journal_wait;	/* Times blocked in jwait(). */
1269 static int stat_jwait_filepage;	/* Times blocked in jwait() for filepage. */
1270 static int stat_jwait_freeblks;	/* Times blocked in jwait() for freeblks. */
1271 static int stat_jwait_inode;	/* Times blocked in jwait() for inodes. */
1272 static int stat_jwait_newblk;	/* Times blocked in jwait() for newblks. */
1273 static int stat_cleanup_high_delay; /* Maximum cleanup delay (in ticks) */
1274 static int stat_cleanup_blkrequests; /* Number of block cleanup requests */
1275 static int stat_cleanup_inorequests; /* Number of inode cleanup requests */
1276 static int stat_cleanup_retries; /* Number of cleanups that needed to flush */
1277 static int stat_cleanup_failures; /* Number of cleanup requests that failed */
1278 
1279 SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW,
1280     &max_softdeps, 0, "");
1281 SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW,
1282     &tickdelay, 0, "");
1283 SYSCTL_INT(_debug_softdep, OID_AUTO, maxindirdeps, CTLFLAG_RW,
1284     &maxindirdeps, 0, "");
1285 SYSCTL_INT(_debug_softdep, OID_AUTO, softdep_mounts, CTLFLAG_RD,
1286     &stat_softdep_mounts, 0, "");
1287 SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push, CTLFLAG_RW,
1288     &stat_worklist_push, 0,"");
1289 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push, CTLFLAG_RW,
1290     &stat_blk_limit_push, 0,"");
1291 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push, CTLFLAG_RW,
1292     &stat_ino_limit_push, 0,"");
1293 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit, CTLFLAG_RW,
1294     &stat_blk_limit_hit, 0, "");
1295 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit, CTLFLAG_RW,
1296     &stat_ino_limit_hit, 0, "");
1297 SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit, CTLFLAG_RW,
1298     &stat_sync_limit_hit, 0, "");
1299 SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW,
1300     &stat_indir_blk_ptrs, 0, "");
1301 SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap, CTLFLAG_RW,
1302     &stat_inode_bitmap, 0, "");
1303 SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW,
1304     &stat_direct_blk_ptrs, 0, "");
1305 SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry, CTLFLAG_RW,
1306     &stat_dir_entry, 0, "");
1307 SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback, CTLFLAG_RW,
1308     &stat_jaddref, 0, "");
1309 SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback, CTLFLAG_RW,
1310     &stat_jnewblk, 0, "");
1311 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low, CTLFLAG_RW,
1312     &stat_journal_low, 0, "");
1313 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min, CTLFLAG_RW,
1314     &stat_journal_min, 0, "");
1315 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait, CTLFLAG_RW,
1316     &stat_journal_wait, 0, "");
1317 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage, CTLFLAG_RW,
1318     &stat_jwait_filepage, 0, "");
1319 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks, CTLFLAG_RW,
1320     &stat_jwait_freeblks, 0, "");
1321 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode, CTLFLAG_RW,
1322     &stat_jwait_inode, 0, "");
1323 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk, CTLFLAG_RW,
1324     &stat_jwait_newblk, 0, "");
1325 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_blkrequests, CTLFLAG_RW,
1326     &stat_cleanup_blkrequests, 0, "");
1327 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_inorequests, CTLFLAG_RW,
1328     &stat_cleanup_inorequests, 0, "");
1329 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_high_delay, CTLFLAG_RW,
1330     &stat_cleanup_high_delay, 0, "");
1331 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_retries, CTLFLAG_RW,
1332     &stat_cleanup_retries, 0, "");
1333 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_failures, CTLFLAG_RW,
1334     &stat_cleanup_failures, 0, "");
1335 SYSCTL_INT(_debug_softdep, OID_AUTO, flushcache, CTLFLAG_RW,
1336     &softdep_flushcache, 0, "");
1337 
1338 SYSCTL_DECL(_vfs_ffs);
1339 
1340 /* Whether to recompute the summary at mount time */
1341 static int compute_summary_at_mount = 0;
1342 SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW,
1343 	   &compute_summary_at_mount, 0, "Recompute summary at mount");
1344 static struct proc *softdepproc;
1345 static struct kproc_desc softdep_kp = {
1346 	"softdepflush",
1347 	softdep_flush,
1348 	&softdepproc
1349 };
1350 SYSINIT(sdproc, SI_SUB_KTHREAD_UPDATE, SI_ORDER_ANY, kproc_start,
1351     &softdep_kp);
1352 
1353 static void
1354 softdep_flush(void)
1355 {
1356 	struct mount *nmp;
1357 	struct mount *mp;
1358 	struct ufsmount *ump;
1359 	struct thread *td;
1360 	int remaining;
1361 	int progress;
1362 
1363 	td = curthread;
1364 	td->td_pflags |= TDP_NORUNNINGBUF;
1365 
1366 	for (;;) {
1367 		kproc_suspend_check(softdepproc);
1368 		remaining = progress = 0;
1369 		mtx_lock(&mountlist_mtx);
1370 		for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp)  {
1371 			nmp = TAILQ_NEXT(mp, mnt_list);
1372 			if (MOUNTEDSOFTDEP(mp) == 0)
1373 				continue;
1374 			if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK))
1375 				continue;
1376 			ump = VFSTOUFS(mp);
1377 			progress += softdep_process_worklist(mp, 0);
1378 			remaining += ump->softdep_on_worklist;
1379 			mtx_lock(&mountlist_mtx);
1380 			nmp = TAILQ_NEXT(mp, mnt_list);
1381 			vfs_unbusy(mp);
1382 		}
1383 		mtx_unlock(&mountlist_mtx);
1384 		if (remaining && progress)
1385 			continue;
1386 		rw_wlock(&lk);
1387 		if (req_pending == NULL)
1388 			msleep(&req_pending, &lk, PVM, "sdflush", hz);
1389 		req_pending = NULL;
1390 		rw_wunlock(&lk);
1391 	}
1392 }
1393 
1394 static void
1395 worklist_speedup(mp)
1396 	struct mount *mp;
1397 {
1398 	rw_assert(&lk, RA_WLOCKED);
1399 	if (req_pending == 0) {
1400 		req_pending = mp;
1401 		wakeup(&req_pending);
1402 	}
1403 }
1404 
1405 static int
1406 softdep_speedup(void)
1407 {
1408 
1409 	worklist_speedup(ALLCLEAN);
1410 	bd_speedup();
1411 	return (speedup_syncer());
1412 }
1413 
1414 /*
1415  * Add an item to the end of the work queue.
1416  * This routine requires that the lock be held.
1417  * This is the only routine that adds items to the list.
1418  * The following routine is the only one that removes items
1419  * and does so in order from first to last.
1420  */
1421 
1422 #define	WK_HEAD		0x0001	/* Add to HEAD. */
1423 #define	WK_NODELAY	0x0002	/* Process immediately. */
1424 
1425 static void
1426 add_to_worklist(wk, flags)
1427 	struct worklist *wk;
1428 	int flags;
1429 {
1430 	struct ufsmount *ump;
1431 
1432 	ump = VFSTOUFS(wk->wk_mp);
1433 	LOCK_OWNED(ump);
1434 	if (wk->wk_state & ONWORKLIST)
1435 		panic("add_to_worklist: %s(0x%X) already on list",
1436 		    TYPENAME(wk->wk_type), wk->wk_state);
1437 	wk->wk_state |= ONWORKLIST;
1438 	if (ump->softdep_on_worklist == 0) {
1439 		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1440 		ump->softdep_worklist_tail = wk;
1441 	} else if (flags & WK_HEAD) {
1442 		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1443 	} else {
1444 		LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list);
1445 		ump->softdep_worklist_tail = wk;
1446 	}
1447 	ump->softdep_on_worklist += 1;
1448 	if (flags & WK_NODELAY)
1449 		worklist_speedup(wk->wk_mp);
1450 }
1451 
1452 /*
1453  * Remove the item to be processed. If we are removing the last
1454  * item on the list, we need to recalculate the tail pointer.
1455  */
1456 static void
1457 remove_from_worklist(wk)
1458 	struct worklist *wk;
1459 {
1460 	struct ufsmount *ump;
1461 
1462 	ump = VFSTOUFS(wk->wk_mp);
1463 	WORKLIST_REMOVE(wk);
1464 	if (ump->softdep_worklist_tail == wk)
1465 		ump->softdep_worklist_tail =
1466 		    (struct worklist *)wk->wk_list.le_prev;
1467 	ump->softdep_on_worklist -= 1;
1468 }
1469 
1470 static void
1471 wake_worklist(wk)
1472 	struct worklist *wk;
1473 {
1474 	if (wk->wk_state & IOWAITING) {
1475 		wk->wk_state &= ~IOWAITING;
1476 		wakeup(wk);
1477 	}
1478 }
1479 
1480 static void
1481 wait_worklist(wk, wmesg)
1482 	struct worklist *wk;
1483 	char *wmesg;
1484 {
1485 	struct ufsmount *ump;
1486 
1487 	ump = VFSTOUFS(wk->wk_mp);
1488 	wk->wk_state |= IOWAITING;
1489 	msleep(wk, LOCK_PTR(ump), PVM, wmesg, 0);
1490 }
1491 
1492 /*
1493  * Process that runs once per second to handle items in the background queue.
1494  *
1495  * Note that we ensure that everything is done in the order in which they
1496  * appear in the queue. The code below depends on this property to ensure
1497  * that blocks of a file are freed before the inode itself is freed. This
1498  * ordering ensures that no new <vfsid, inum, lbn> triples will be generated
1499  * until all the old ones have been purged from the dependency lists.
1500  */
1501 static int
1502 softdep_process_worklist(mp, full)
1503 	struct mount *mp;
1504 	int full;
1505 {
1506 	int cnt, matchcnt;
1507 	struct ufsmount *ump;
1508 	long starttime;
1509 
1510 	KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp"));
1511 	if (MOUNTEDSOFTDEP(mp) == 0)
1512 		return (0);
1513 	matchcnt = 0;
1514 	ump = VFSTOUFS(mp);
1515 	ACQUIRE_LOCK(ump);
1516 	starttime = time_second;
1517 	softdep_process_journal(mp, NULL, full ? MNT_WAIT : 0);
1518 	check_clear_deps(mp);
1519 	while (ump->softdep_on_worklist > 0) {
1520 		if ((cnt = process_worklist_item(mp, 10, LK_NOWAIT)) == 0)
1521 			break;
1522 		else
1523 			matchcnt += cnt;
1524 		check_clear_deps(mp);
1525 		/*
1526 		 * We do not generally want to stop for buffer space, but if
1527 		 * we are really being a buffer hog, we will stop and wait.
1528 		 */
1529 		if (should_yield()) {
1530 			FREE_LOCK(ump);
1531 			kern_yield(PRI_USER);
1532 			bwillwrite();
1533 			ACQUIRE_LOCK(ump);
1534 		}
1535 		/*
1536 		 * Never allow processing to run for more than one
1537 		 * second. This gives the syncer thread the opportunity
1538 		 * to pause if appropriate.
1539 		 */
1540 		if (!full && starttime != time_second)
1541 			break;
1542 	}
1543 	if (full == 0)
1544 		journal_unsuspend(ump);
1545 	FREE_LOCK(ump);
1546 	return (matchcnt);
1547 }
1548 
1549 /*
1550  * Process all removes associated with a vnode if we are running out of
1551  * journal space.  Any other process which attempts to flush these will
1552  * be unable as we have the vnodes locked.
1553  */
1554 static void
1555 process_removes(vp)
1556 	struct vnode *vp;
1557 {
1558 	struct inodedep *inodedep;
1559 	struct dirrem *dirrem;
1560 	struct ufsmount *ump;
1561 	struct mount *mp;
1562 	ino_t inum;
1563 
1564 	mp = vp->v_mount;
1565 	ump = VFSTOUFS(mp);
1566 	LOCK_OWNED(ump);
1567 	inum = VTOI(vp)->i_number;
1568 	for (;;) {
1569 top:
1570 		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1571 			return;
1572 		LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext) {
1573 			/*
1574 			 * If another thread is trying to lock this vnode
1575 			 * it will fail but we must wait for it to do so
1576 			 * before we can proceed.
1577 			 */
1578 			if (dirrem->dm_state & INPROGRESS) {
1579 				wait_worklist(&dirrem->dm_list, "pwrwait");
1580 				goto top;
1581 			}
1582 			if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) ==
1583 			    (COMPLETE | ONWORKLIST))
1584 				break;
1585 		}
1586 		if (dirrem == NULL)
1587 			return;
1588 		remove_from_worklist(&dirrem->dm_list);
1589 		FREE_LOCK(ump);
1590 		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1591 			panic("process_removes: suspended filesystem");
1592 		handle_workitem_remove(dirrem, 0);
1593 		vn_finished_secondary_write(mp);
1594 		ACQUIRE_LOCK(ump);
1595 	}
1596 }
1597 
1598 /*
1599  * Process all truncations associated with a vnode if we are running out
1600  * of journal space.  This is called when the vnode lock is already held
1601  * and no other process can clear the truncation.  This function returns
1602  * a value greater than zero if it did any work.
1603  */
1604 static void
1605 process_truncates(vp)
1606 	struct vnode *vp;
1607 {
1608 	struct inodedep *inodedep;
1609 	struct freeblks *freeblks;
1610 	struct ufsmount *ump;
1611 	struct mount *mp;
1612 	ino_t inum;
1613 	int cgwait;
1614 
1615 	mp = vp->v_mount;
1616 	ump = VFSTOUFS(mp);
1617 	LOCK_OWNED(ump);
1618 	inum = VTOI(vp)->i_number;
1619 	for (;;) {
1620 		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1621 			return;
1622 		cgwait = 0;
1623 		TAILQ_FOREACH(freeblks, &inodedep->id_freeblklst, fb_next) {
1624 			/* Journal entries not yet written.  */
1625 			if (!LIST_EMPTY(&freeblks->fb_jblkdephd)) {
1626 				jwait(&LIST_FIRST(
1627 				    &freeblks->fb_jblkdephd)->jb_list,
1628 				    MNT_WAIT);
1629 				break;
1630 			}
1631 			/* Another thread is executing this item. */
1632 			if (freeblks->fb_state & INPROGRESS) {
1633 				wait_worklist(&freeblks->fb_list, "ptrwait");
1634 				break;
1635 			}
1636 			/* Freeblks is waiting on a inode write. */
1637 			if ((freeblks->fb_state & COMPLETE) == 0) {
1638 				FREE_LOCK(ump);
1639 				ffs_update(vp, 1);
1640 				ACQUIRE_LOCK(ump);
1641 				break;
1642 			}
1643 			if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST)) ==
1644 			    (ALLCOMPLETE | ONWORKLIST)) {
1645 				remove_from_worklist(&freeblks->fb_list);
1646 				freeblks->fb_state |= INPROGRESS;
1647 				FREE_LOCK(ump);
1648 				if (vn_start_secondary_write(NULL, &mp,
1649 				    V_NOWAIT))
1650 					panic("process_truncates: "
1651 					    "suspended filesystem");
1652 				handle_workitem_freeblocks(freeblks, 0);
1653 				vn_finished_secondary_write(mp);
1654 				ACQUIRE_LOCK(ump);
1655 				break;
1656 			}
1657 			if (freeblks->fb_cgwait)
1658 				cgwait++;
1659 		}
1660 		if (cgwait) {
1661 			FREE_LOCK(ump);
1662 			sync_cgs(mp, MNT_WAIT);
1663 			ffs_sync_snap(mp, MNT_WAIT);
1664 			ACQUIRE_LOCK(ump);
1665 			continue;
1666 		}
1667 		if (freeblks == NULL)
1668 			break;
1669 	}
1670 	return;
1671 }
1672 
1673 /*
1674  * Process one item on the worklist.
1675  */
1676 static int
1677 process_worklist_item(mp, target, flags)
1678 	struct mount *mp;
1679 	int target;
1680 	int flags;
1681 {
1682 	struct worklist sentinel;
1683 	struct worklist *wk;
1684 	struct ufsmount *ump;
1685 	int matchcnt;
1686 	int error;
1687 
1688 	KASSERT(mp != NULL, ("process_worklist_item: NULL mp"));
1689 	/*
1690 	 * If we are being called because of a process doing a
1691 	 * copy-on-write, then it is not safe to write as we may
1692 	 * recurse into the copy-on-write routine.
1693 	 */
1694 	if (curthread->td_pflags & TDP_COWINPROGRESS)
1695 		return (-1);
1696 	PHOLD(curproc);	/* Don't let the stack go away. */
1697 	ump = VFSTOUFS(mp);
1698 	LOCK_OWNED(ump);
1699 	matchcnt = 0;
1700 	sentinel.wk_mp = NULL;
1701 	sentinel.wk_type = D_SENTINEL;
1702 	LIST_INSERT_HEAD(&ump->softdep_workitem_pending, &sentinel, wk_list);
1703 	for (wk = LIST_NEXT(&sentinel, wk_list); wk != NULL;
1704 	    wk = LIST_NEXT(&sentinel, wk_list)) {
1705 		if (wk->wk_type == D_SENTINEL) {
1706 			LIST_REMOVE(&sentinel, wk_list);
1707 			LIST_INSERT_AFTER(wk, &sentinel, wk_list);
1708 			continue;
1709 		}
1710 		if (wk->wk_state & INPROGRESS)
1711 			panic("process_worklist_item: %p already in progress.",
1712 			    wk);
1713 		wk->wk_state |= INPROGRESS;
1714 		remove_from_worklist(wk);
1715 		FREE_LOCK(ump);
1716 		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1717 			panic("process_worklist_item: suspended filesystem");
1718 		switch (wk->wk_type) {
1719 		case D_DIRREM:
1720 			/* removal of a directory entry */
1721 			error = handle_workitem_remove(WK_DIRREM(wk), flags);
1722 			break;
1723 
1724 		case D_FREEBLKS:
1725 			/* releasing blocks and/or fragments from a file */
1726 			error = handle_workitem_freeblocks(WK_FREEBLKS(wk),
1727 			    flags);
1728 			break;
1729 
1730 		case D_FREEFRAG:
1731 			/* releasing a fragment when replaced as a file grows */
1732 			handle_workitem_freefrag(WK_FREEFRAG(wk));
1733 			error = 0;
1734 			break;
1735 
1736 		case D_FREEFILE:
1737 			/* releasing an inode when its link count drops to 0 */
1738 			handle_workitem_freefile(WK_FREEFILE(wk));
1739 			error = 0;
1740 			break;
1741 
1742 		default:
1743 			panic("%s_process_worklist: Unknown type %s",
1744 			    "softdep", TYPENAME(wk->wk_type));
1745 			/* NOTREACHED */
1746 		}
1747 		vn_finished_secondary_write(mp);
1748 		ACQUIRE_LOCK(ump);
1749 		if (error == 0) {
1750 			if (++matchcnt == target)
1751 				break;
1752 			continue;
1753 		}
1754 		/*
1755 		 * We have to retry the worklist item later.  Wake up any
1756 		 * waiters who may be able to complete it immediately and
1757 		 * add the item back to the head so we don't try to execute
1758 		 * it again.
1759 		 */
1760 		wk->wk_state &= ~INPROGRESS;
1761 		wake_worklist(wk);
1762 		add_to_worklist(wk, WK_HEAD);
1763 	}
1764 	LIST_REMOVE(&sentinel, wk_list);
1765 	/* Sentinal could've become the tail from remove_from_worklist. */
1766 	if (ump->softdep_worklist_tail == &sentinel)
1767 		ump->softdep_worklist_tail =
1768 		    (struct worklist *)sentinel.wk_list.le_prev;
1769 	PRELE(curproc);
1770 	return (matchcnt);
1771 }
1772 
1773 /*
1774  * Move dependencies from one buffer to another.
1775  */
1776 int
1777 softdep_move_dependencies(oldbp, newbp)
1778 	struct buf *oldbp;
1779 	struct buf *newbp;
1780 {
1781 	struct worklist *wk, *wktail;
1782 	struct ufsmount *ump;
1783 	int dirty;
1784 
1785 	if ((wk = LIST_FIRST(&oldbp->b_dep)) == NULL)
1786 		return (0);
1787 	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
1788 	    ("softdep_move_dependencies called on non-softdep filesystem"));
1789 	dirty = 0;
1790 	wktail = NULL;
1791 	ump = VFSTOUFS(wk->wk_mp);
1792 	ACQUIRE_LOCK(ump);
1793 	while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) {
1794 		LIST_REMOVE(wk, wk_list);
1795 		if (wk->wk_type == D_BMSAFEMAP &&
1796 		    bmsafemap_backgroundwrite(WK_BMSAFEMAP(wk), newbp))
1797 			dirty = 1;
1798 		if (wktail == 0)
1799 			LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list);
1800 		else
1801 			LIST_INSERT_AFTER(wktail, wk, wk_list);
1802 		wktail = wk;
1803 	}
1804 	FREE_LOCK(ump);
1805 
1806 	return (dirty);
1807 }
1808 
1809 /*
1810  * Purge the work list of all items associated with a particular mount point.
1811  */
1812 int
1813 softdep_flushworklist(oldmnt, countp, td)
1814 	struct mount *oldmnt;
1815 	int *countp;
1816 	struct thread *td;
1817 {
1818 	struct vnode *devvp;
1819 	int count, error = 0;
1820 	struct ufsmount *ump;
1821 
1822 	/*
1823 	 * Alternately flush the block device associated with the mount
1824 	 * point and process any dependencies that the flushing
1825 	 * creates. We continue until no more worklist dependencies
1826 	 * are found.
1827 	 */
1828 	*countp = 0;
1829 	ump = VFSTOUFS(oldmnt);
1830 	devvp = ump->um_devvp;
1831 	while ((count = softdep_process_worklist(oldmnt, 1)) > 0) {
1832 		*countp += count;
1833 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1834 		error = VOP_FSYNC(devvp, MNT_WAIT, td);
1835 		VOP_UNLOCK(devvp, 0);
1836 		if (error)
1837 			break;
1838 	}
1839 	return (error);
1840 }
1841 
1842 static int
1843 softdep_waitidle(struct mount *mp)
1844 {
1845 	struct ufsmount *ump;
1846 	int error;
1847 	int i;
1848 
1849 	ump = VFSTOUFS(mp);
1850 	ACQUIRE_LOCK(ump);
1851 	for (i = 0; i < 10 && ump->softdep_deps; i++) {
1852 		ump->softdep_req = 1;
1853 		if (ump->softdep_on_worklist)
1854 			panic("softdep_waitidle: work added after flush.");
1855 		msleep(&ump->softdep_deps, LOCK_PTR(ump), PVM, "softdeps", 1);
1856 	}
1857 	ump->softdep_req = 0;
1858 	FREE_LOCK(ump);
1859 	error = 0;
1860 	if (i == 10) {
1861 		error = EBUSY;
1862 		printf("softdep_waitidle: Failed to flush worklist for %p\n",
1863 		    mp);
1864 	}
1865 
1866 	return (error);
1867 }
1868 
1869 /*
1870  * Flush all vnodes and worklist items associated with a specified mount point.
1871  */
1872 int
1873 softdep_flushfiles(oldmnt, flags, td)
1874 	struct mount *oldmnt;
1875 	int flags;
1876 	struct thread *td;
1877 {
1878 #ifdef QUOTA
1879 	struct ufsmount *ump;
1880 	int i;
1881 #endif
1882 	int error, early, depcount, loopcnt, retry_flush_count, retry;
1883 	int morework;
1884 
1885 	KASSERT(MOUNTEDSOFTDEP(oldmnt) != 0,
1886 	    ("softdep_flushfiles called on non-softdep filesystem"));
1887 	loopcnt = 10;
1888 	retry_flush_count = 3;
1889 retry_flush:
1890 	error = 0;
1891 
1892 	/*
1893 	 * Alternately flush the vnodes associated with the mount
1894 	 * point and process any dependencies that the flushing
1895 	 * creates. In theory, this loop can happen at most twice,
1896 	 * but we give it a few extra just to be sure.
1897 	 */
1898 	for (; loopcnt > 0; loopcnt--) {
1899 		/*
1900 		 * Do another flush in case any vnodes were brought in
1901 		 * as part of the cleanup operations.
1902 		 */
1903 		early = retry_flush_count == 1 || (oldmnt->mnt_kern_flag &
1904 		    MNTK_UNMOUNT) == 0 ? 0 : EARLYFLUSH;
1905 		if ((error = ffs_flushfiles(oldmnt, flags | early, td)) != 0)
1906 			break;
1907 		if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 ||
1908 		    depcount == 0)
1909 			break;
1910 	}
1911 	/*
1912 	 * If we are unmounting then it is an error to fail. If we
1913 	 * are simply trying to downgrade to read-only, then filesystem
1914 	 * activity can keep us busy forever, so we just fail with EBUSY.
1915 	 */
1916 	if (loopcnt == 0) {
1917 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT)
1918 			panic("softdep_flushfiles: looping");
1919 		error = EBUSY;
1920 	}
1921 	if (!error)
1922 		error = softdep_waitidle(oldmnt);
1923 	if (!error) {
1924 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) {
1925 			retry = 0;
1926 			MNT_ILOCK(oldmnt);
1927 			KASSERT((oldmnt->mnt_kern_flag & MNTK_NOINSMNTQ) != 0,
1928 			    ("softdep_flushfiles: !MNTK_NOINSMNTQ"));
1929 			morework = oldmnt->mnt_nvnodelistsize > 0;
1930 #ifdef QUOTA
1931 			ump = VFSTOUFS(oldmnt);
1932 			UFS_LOCK(ump);
1933 			for (i = 0; i < MAXQUOTAS; i++) {
1934 				if (ump->um_quotas[i] != NULLVP)
1935 					morework = 1;
1936 			}
1937 			UFS_UNLOCK(ump);
1938 #endif
1939 			if (morework) {
1940 				if (--retry_flush_count > 0) {
1941 					retry = 1;
1942 					loopcnt = 3;
1943 				} else
1944 					error = EBUSY;
1945 			}
1946 			MNT_IUNLOCK(oldmnt);
1947 			if (retry)
1948 				goto retry_flush;
1949 		}
1950 	}
1951 	return (error);
1952 }
1953 
1954 /*
1955  * Structure hashing.
1956  *
1957  * There are four types of structures that can be looked up:
1958  *	1) pagedep structures identified by mount point, inode number,
1959  *	   and logical block.
1960  *	2) inodedep structures identified by mount point and inode number.
1961  *	3) newblk structures identified by mount point and
1962  *	   physical block number.
1963  *	4) bmsafemap structures identified by mount point and
1964  *	   cylinder group number.
1965  *
1966  * The "pagedep" and "inodedep" dependency structures are hashed
1967  * separately from the file blocks and inodes to which they correspond.
1968  * This separation helps when the in-memory copy of an inode or
1969  * file block must be replaced. It also obviates the need to access
1970  * an inode or file page when simply updating (or de-allocating)
1971  * dependency structures. Lookup of newblk structures is needed to
1972  * find newly allocated blocks when trying to associate them with
1973  * their allocdirect or allocindir structure.
1974  *
1975  * The lookup routines optionally create and hash a new instance when
1976  * an existing entry is not found. The bmsafemap lookup routine always
1977  * allocates a new structure if an existing one is not found.
1978  */
1979 #define DEPALLOC	0x0001	/* allocate structure if lookup fails */
1980 #define NODELAY		0x0002	/* cannot do background work */
1981 
1982 /*
1983  * Structures and routines associated with pagedep caching.
1984  */
1985 #define	PAGEDEP_HASH(ump, inum, lbn) \
1986 	(&(ump)->pagedep_hashtbl[((inum) + (lbn)) & (ump)->pagedep_hash_size])
1987 
1988 static int
1989 pagedep_find(pagedephd, ino, lbn, pagedeppp)
1990 	struct pagedep_hashhead *pagedephd;
1991 	ino_t ino;
1992 	ufs_lbn_t lbn;
1993 	struct pagedep **pagedeppp;
1994 {
1995 	struct pagedep *pagedep;
1996 
1997 	LIST_FOREACH(pagedep, pagedephd, pd_hash) {
1998 		if (ino == pagedep->pd_ino && lbn == pagedep->pd_lbn) {
1999 			*pagedeppp = pagedep;
2000 			return (1);
2001 		}
2002 	}
2003 	*pagedeppp = NULL;
2004 	return (0);
2005 }
2006 /*
2007  * Look up a pagedep. Return 1 if found, 0 otherwise.
2008  * If not found, allocate if DEPALLOC flag is passed.
2009  * Found or allocated entry is returned in pagedeppp.
2010  * This routine must be called with splbio interrupts blocked.
2011  */
2012 static int
2013 pagedep_lookup(mp, bp, ino, lbn, flags, pagedeppp)
2014 	struct mount *mp;
2015 	struct buf *bp;
2016 	ino_t ino;
2017 	ufs_lbn_t lbn;
2018 	int flags;
2019 	struct pagedep **pagedeppp;
2020 {
2021 	struct pagedep *pagedep;
2022 	struct pagedep_hashhead *pagedephd;
2023 	struct worklist *wk;
2024 	struct ufsmount *ump;
2025 	int ret;
2026 	int i;
2027 
2028 	ump = VFSTOUFS(mp);
2029 	LOCK_OWNED(ump);
2030 	if (bp) {
2031 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
2032 			if (wk->wk_type == D_PAGEDEP) {
2033 				*pagedeppp = WK_PAGEDEP(wk);
2034 				return (1);
2035 			}
2036 		}
2037 	}
2038 	pagedephd = PAGEDEP_HASH(ump, ino, lbn);
2039 	ret = pagedep_find(pagedephd, ino, lbn, pagedeppp);
2040 	if (ret) {
2041 		if (((*pagedeppp)->pd_state & ONWORKLIST) == 0 && bp)
2042 			WORKLIST_INSERT(&bp->b_dep, &(*pagedeppp)->pd_list);
2043 		return (1);
2044 	}
2045 	if ((flags & DEPALLOC) == 0)
2046 		return (0);
2047 	FREE_LOCK(ump);
2048 	pagedep = malloc(sizeof(struct pagedep),
2049 	    M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO);
2050 	workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp);
2051 	ACQUIRE_LOCK(ump);
2052 	ret = pagedep_find(pagedephd, ino, lbn, pagedeppp);
2053 	if (*pagedeppp) {
2054 		/*
2055 		 * This should never happen since we only create pagedeps
2056 		 * with the vnode lock held.  Could be an assert.
2057 		 */
2058 		WORKITEM_FREE(pagedep, D_PAGEDEP);
2059 		return (ret);
2060 	}
2061 	pagedep->pd_ino = ino;
2062 	pagedep->pd_lbn = lbn;
2063 	LIST_INIT(&pagedep->pd_dirremhd);
2064 	LIST_INIT(&pagedep->pd_pendinghd);
2065 	for (i = 0; i < DAHASHSZ; i++)
2066 		LIST_INIT(&pagedep->pd_diraddhd[i]);
2067 	LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
2068 	WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
2069 	*pagedeppp = pagedep;
2070 	return (0);
2071 }
2072 
2073 /*
2074  * Structures and routines associated with inodedep caching.
2075  */
2076 #define	INODEDEP_HASH(ump, inum) \
2077       (&(ump)->inodedep_hashtbl[(inum) & (ump)->inodedep_hash_size])
2078 
2079 static int
2080 inodedep_find(inodedephd, inum, inodedeppp)
2081 	struct inodedep_hashhead *inodedephd;
2082 	ino_t inum;
2083 	struct inodedep **inodedeppp;
2084 {
2085 	struct inodedep *inodedep;
2086 
2087 	LIST_FOREACH(inodedep, inodedephd, id_hash)
2088 		if (inum == inodedep->id_ino)
2089 			break;
2090 	if (inodedep) {
2091 		*inodedeppp = inodedep;
2092 		return (1);
2093 	}
2094 	*inodedeppp = NULL;
2095 
2096 	return (0);
2097 }
2098 /*
2099  * Look up an inodedep. Return 1 if found, 0 if not found.
2100  * If not found, allocate if DEPALLOC flag is passed.
2101  * Found or allocated entry is returned in inodedeppp.
2102  * This routine must be called with splbio interrupts blocked.
2103  */
2104 static int
2105 inodedep_lookup(mp, inum, flags, inodedeppp)
2106 	struct mount *mp;
2107 	ino_t inum;
2108 	int flags;
2109 	struct inodedep **inodedeppp;
2110 {
2111 	struct inodedep *inodedep;
2112 	struct inodedep_hashhead *inodedephd;
2113 	struct ufsmount *ump;
2114 	struct fs *fs;
2115 
2116 	ump = VFSTOUFS(mp);
2117 	LOCK_OWNED(ump);
2118 	fs = ump->um_fs;
2119 	inodedephd = INODEDEP_HASH(ump, inum);
2120 
2121 	if (inodedep_find(inodedephd, inum, inodedeppp))
2122 		return (1);
2123 	if ((flags & DEPALLOC) == 0)
2124 		return (0);
2125 	/*
2126 	 * If we are over our limit, try to improve the situation.
2127 	 */
2128 	if (dep_current[D_INODEDEP] > max_softdeps && (flags & NODELAY) == 0)
2129 		request_cleanup(mp, FLUSH_INODES);
2130 	FREE_LOCK(ump);
2131 	inodedep = malloc(sizeof(struct inodedep),
2132 		M_INODEDEP, M_SOFTDEP_FLAGS);
2133 	workitem_alloc(&inodedep->id_list, D_INODEDEP, mp);
2134 	ACQUIRE_LOCK(ump);
2135 	if (inodedep_find(inodedephd, inum, inodedeppp)) {
2136 		WORKITEM_FREE(inodedep, D_INODEDEP);
2137 		return (1);
2138 	}
2139 	inodedep->id_fs = fs;
2140 	inodedep->id_ino = inum;
2141 	inodedep->id_state = ALLCOMPLETE;
2142 	inodedep->id_nlinkdelta = 0;
2143 	inodedep->id_savedino1 = NULL;
2144 	inodedep->id_savedsize = -1;
2145 	inodedep->id_savedextsize = -1;
2146 	inodedep->id_savednlink = -1;
2147 	inodedep->id_bmsafemap = NULL;
2148 	inodedep->id_mkdiradd = NULL;
2149 	LIST_INIT(&inodedep->id_dirremhd);
2150 	LIST_INIT(&inodedep->id_pendinghd);
2151 	LIST_INIT(&inodedep->id_inowait);
2152 	LIST_INIT(&inodedep->id_bufwait);
2153 	TAILQ_INIT(&inodedep->id_inoreflst);
2154 	TAILQ_INIT(&inodedep->id_inoupdt);
2155 	TAILQ_INIT(&inodedep->id_newinoupdt);
2156 	TAILQ_INIT(&inodedep->id_extupdt);
2157 	TAILQ_INIT(&inodedep->id_newextupdt);
2158 	TAILQ_INIT(&inodedep->id_freeblklst);
2159 	LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
2160 	*inodedeppp = inodedep;
2161 	return (0);
2162 }
2163 
2164 /*
2165  * Structures and routines associated with newblk caching.
2166  */
2167 #define	NEWBLK_HASH(ump, inum) \
2168 	(&(ump)->newblk_hashtbl[(inum) & (ump)->newblk_hash_size])
2169 
2170 static int
2171 newblk_find(newblkhd, newblkno, flags, newblkpp)
2172 	struct newblk_hashhead *newblkhd;
2173 	ufs2_daddr_t newblkno;
2174 	int flags;
2175 	struct newblk **newblkpp;
2176 {
2177 	struct newblk *newblk;
2178 
2179 	LIST_FOREACH(newblk, newblkhd, nb_hash) {
2180 		if (newblkno != newblk->nb_newblkno)
2181 			continue;
2182 		/*
2183 		 * If we're creating a new dependency don't match those that
2184 		 * have already been converted to allocdirects.  This is for
2185 		 * a frag extend.
2186 		 */
2187 		if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK)
2188 			continue;
2189 		break;
2190 	}
2191 	if (newblk) {
2192 		*newblkpp = newblk;
2193 		return (1);
2194 	}
2195 	*newblkpp = NULL;
2196 	return (0);
2197 }
2198 
2199 /*
2200  * Look up a newblk. Return 1 if found, 0 if not found.
2201  * If not found, allocate if DEPALLOC flag is passed.
2202  * Found or allocated entry is returned in newblkpp.
2203  */
2204 static int
2205 newblk_lookup(mp, newblkno, flags, newblkpp)
2206 	struct mount *mp;
2207 	ufs2_daddr_t newblkno;
2208 	int flags;
2209 	struct newblk **newblkpp;
2210 {
2211 	struct newblk *newblk;
2212 	struct newblk_hashhead *newblkhd;
2213 	struct ufsmount *ump;
2214 
2215 	ump = VFSTOUFS(mp);
2216 	LOCK_OWNED(ump);
2217 	newblkhd = NEWBLK_HASH(ump, newblkno);
2218 	if (newblk_find(newblkhd, newblkno, flags, newblkpp))
2219 		return (1);
2220 	if ((flags & DEPALLOC) == 0)
2221 		return (0);
2222 	FREE_LOCK(ump);
2223 	newblk = malloc(sizeof(union allblk), M_NEWBLK,
2224 	    M_SOFTDEP_FLAGS | M_ZERO);
2225 	workitem_alloc(&newblk->nb_list, D_NEWBLK, mp);
2226 	ACQUIRE_LOCK(ump);
2227 	if (newblk_find(newblkhd, newblkno, flags, newblkpp)) {
2228 		WORKITEM_FREE(newblk, D_NEWBLK);
2229 		return (1);
2230 	}
2231 	newblk->nb_freefrag = NULL;
2232 	LIST_INIT(&newblk->nb_indirdeps);
2233 	LIST_INIT(&newblk->nb_newdirblk);
2234 	LIST_INIT(&newblk->nb_jwork);
2235 	newblk->nb_state = ATTACHED;
2236 	newblk->nb_newblkno = newblkno;
2237 	LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
2238 	*newblkpp = newblk;
2239 	return (0);
2240 }
2241 
2242 /*
2243  * Structures and routines associated with freed indirect block caching.
2244  */
2245 #define	INDIR_HASH(ump, blkno) \
2246 	(&(ump)->indir_hashtbl[(blkno) & (ump)->indir_hash_size])
2247 
2248 /*
2249  * Lookup an indirect block in the indir hash table.  The freework is
2250  * removed and potentially freed.  The caller must do a blocking journal
2251  * write before writing to the blkno.
2252  */
2253 static int
2254 indirblk_lookup(mp, blkno)
2255 	struct mount *mp;
2256 	ufs2_daddr_t blkno;
2257 {
2258 	struct freework *freework;
2259 	struct indir_hashhead *wkhd;
2260 	struct ufsmount *ump;
2261 
2262 	ump = VFSTOUFS(mp);
2263 	wkhd = INDIR_HASH(ump, blkno);
2264 	TAILQ_FOREACH(freework, wkhd, fw_next) {
2265 		if (freework->fw_blkno != blkno)
2266 			continue;
2267 		indirblk_remove(freework);
2268 		return (1);
2269 	}
2270 	return (0);
2271 }
2272 
2273 /*
2274  * Insert an indirect block represented by freework into the indirblk
2275  * hash table so that it may prevent the block from being re-used prior
2276  * to the journal being written.
2277  */
2278 static void
2279 indirblk_insert(freework)
2280 	struct freework *freework;
2281 {
2282 	struct jblocks *jblocks;
2283 	struct jseg *jseg;
2284 	struct ufsmount *ump;
2285 
2286 	ump = VFSTOUFS(freework->fw_list.wk_mp);
2287 	jblocks = ump->softdep_jblocks;
2288 	jseg = TAILQ_LAST(&jblocks->jb_segs, jseglst);
2289 	if (jseg == NULL)
2290 		return;
2291 
2292 	LIST_INSERT_HEAD(&jseg->js_indirs, freework, fw_segs);
2293 	TAILQ_INSERT_HEAD(INDIR_HASH(ump, freework->fw_blkno), freework,
2294 	    fw_next);
2295 	freework->fw_state &= ~DEPCOMPLETE;
2296 }
2297 
2298 static void
2299 indirblk_remove(freework)
2300 	struct freework *freework;
2301 {
2302 	struct ufsmount *ump;
2303 
2304 	ump = VFSTOUFS(freework->fw_list.wk_mp);
2305 	LIST_REMOVE(freework, fw_segs);
2306 	TAILQ_REMOVE(INDIR_HASH(ump, freework->fw_blkno), freework, fw_next);
2307 	freework->fw_state |= DEPCOMPLETE;
2308 	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
2309 		WORKITEM_FREE(freework, D_FREEWORK);
2310 }
2311 
2312 /*
2313  * Executed during filesystem system initialization before
2314  * mounting any filesystems.
2315  */
2316 void
2317 softdep_initialize()
2318 {
2319 
2320 	max_softdeps = desiredvnodes * 4;
2321 
2322 	/* initialise bioops hack */
2323 	bioops.io_start = softdep_disk_io_initiation;
2324 	bioops.io_complete = softdep_disk_write_complete;
2325 	bioops.io_deallocate = softdep_deallocate_dependencies;
2326 	bioops.io_countdeps = softdep_count_dependencies;
2327 
2328 	/* Initialize the callout with an mtx. */
2329 	callout_init_mtx(&softdep_callout, &lk, 0);
2330 }
2331 
2332 /*
2333  * Executed after all filesystems have been unmounted during
2334  * filesystem module unload.
2335  */
2336 void
2337 softdep_uninitialize()
2338 {
2339 
2340 	/* clear bioops hack */
2341 	bioops.io_start = NULL;
2342 	bioops.io_complete = NULL;
2343 	bioops.io_deallocate = NULL;
2344 	bioops.io_countdeps = NULL;
2345 
2346 	callout_drain(&softdep_callout);
2347 }
2348 
2349 /*
2350  * Called at mount time to notify the dependency code that a
2351  * filesystem wishes to use it.
2352  */
2353 int
2354 softdep_mount(devvp, mp, fs, cred)
2355 	struct vnode *devvp;
2356 	struct mount *mp;
2357 	struct fs *fs;
2358 	struct ucred *cred;
2359 {
2360 	struct csum_total cstotal;
2361 	struct mount_softdeps *sdp;
2362 	struct ufsmount *ump;
2363 	struct cg *cgp;
2364 	struct buf *bp;
2365 	int i, error, cyl;
2366 
2367 	sdp = malloc(sizeof(struct mount_softdeps), M_MOUNTDATA,
2368 	    M_WAITOK | M_ZERO);
2369 	MNT_ILOCK(mp);
2370 	mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP;
2371 	if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) {
2372 		mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) |
2373 			MNTK_SOFTDEP | MNTK_NOASYNC;
2374 	}
2375 	ump = VFSTOUFS(mp);
2376 	ump->um_softdep = sdp;
2377 	MNT_IUNLOCK(mp);
2378 	LOCK_PTR(ump) = &lk;
2379 	LIST_INIT(&ump->softdep_workitem_pending);
2380 	LIST_INIT(&ump->softdep_journal_pending);
2381 	TAILQ_INIT(&ump->softdep_unlinked);
2382 	LIST_INIT(&ump->softdep_dirtycg);
2383 	ump->softdep_worklist_tail = NULL;
2384 	ump->softdep_on_worklist = 0;
2385 	ump->softdep_deps = 0;
2386 	LIST_INIT(&ump->softdep_mkdirlisthd);
2387 	ump->pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP,
2388 	    &ump->pagedep_hash_size);
2389 	ump->pagedep_nextclean = 0;
2390 	ump->inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP,
2391 	    &ump->inodedep_hash_size);
2392 	ump->inodedep_nextclean = 0;
2393 	ump->newblk_hashtbl = hashinit(max_softdeps / 2,  M_NEWBLK,
2394 	    &ump->newblk_hash_size);
2395 	ump->bmsafemap_hashtbl = hashinit(1024, M_BMSAFEMAP,
2396 	    &ump->bmsafemap_hash_size);
2397 	i = 1 << (ffs(desiredvnodes / 10) - 1);
2398 	ump->indir_hashtbl = malloc(i * sizeof(struct indir_hashhead),
2399 	    M_FREEWORK, M_WAITOK);
2400 	ump->indir_hash_size = i - 1;
2401 	for (i = 0; i <= ump->indir_hash_size; i++)
2402 		TAILQ_INIT(&ump->indir_hashtbl[i]);
2403 	if ((fs->fs_flags & FS_SUJ) &&
2404 	    (error = journal_mount(mp, fs, cred)) != 0) {
2405 		printf("Failed to start journal: %d\n", error);
2406 		softdep_unmount(mp);
2407 		return (error);
2408 	}
2409 	atomic_add_int(&stat_softdep_mounts, 1);
2410 	/*
2411 	 * When doing soft updates, the counters in the
2412 	 * superblock may have gotten out of sync. Recomputation
2413 	 * can take a long time and can be deferred for background
2414 	 * fsck.  However, the old behavior of scanning the cylinder
2415 	 * groups and recalculating them at mount time is available
2416 	 * by setting vfs.ffs.compute_summary_at_mount to one.
2417 	 */
2418 	if (compute_summary_at_mount == 0 || fs->fs_clean != 0)
2419 		return (0);
2420 	bzero(&cstotal, sizeof cstotal);
2421 	for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
2422 		if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)),
2423 		    fs->fs_cgsize, cred, &bp)) != 0) {
2424 			brelse(bp);
2425 			softdep_unmount(mp);
2426 			return (error);
2427 		}
2428 		cgp = (struct cg *)bp->b_data;
2429 		cstotal.cs_nffree += cgp->cg_cs.cs_nffree;
2430 		cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree;
2431 		cstotal.cs_nifree += cgp->cg_cs.cs_nifree;
2432 		cstotal.cs_ndir += cgp->cg_cs.cs_ndir;
2433 		fs->fs_cs(fs, cyl) = cgp->cg_cs;
2434 		brelse(bp);
2435 	}
2436 #ifdef DEBUG
2437 	if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
2438 		printf("%s: superblock summary recomputed\n", fs->fs_fsmnt);
2439 #endif
2440 	bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
2441 	return (0);
2442 }
2443 
2444 void
2445 softdep_unmount(mp)
2446 	struct mount *mp;
2447 {
2448 	struct ufsmount *ump;
2449 #ifdef INVARIANTS
2450 	int i;
2451 #endif
2452 
2453 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
2454 	    ("softdep_unmount called on non-softdep filesystem"));
2455 	ump = VFSTOUFS(mp);
2456 	MNT_ILOCK(mp);
2457 	mp->mnt_flag &= ~MNT_SOFTDEP;
2458 	if (MOUNTEDSUJ(mp) == 0) {
2459 		MNT_IUNLOCK(mp);
2460 	} else {
2461 		mp->mnt_flag &= ~MNT_SUJ;
2462 		MNT_IUNLOCK(mp);
2463 		journal_unmount(ump);
2464 	}
2465 	atomic_subtract_int(&stat_softdep_mounts, 1);
2466 	hashdestroy(ump->pagedep_hashtbl, M_PAGEDEP, ump->pagedep_hash_size);
2467 	hashdestroy(ump->inodedep_hashtbl, M_INODEDEP, ump->inodedep_hash_size);
2468 	hashdestroy(ump->newblk_hashtbl, M_NEWBLK, ump->newblk_hash_size);
2469 	hashdestroy(ump->bmsafemap_hashtbl, M_BMSAFEMAP,
2470 	    ump->bmsafemap_hash_size);
2471 	free(ump->indir_hashtbl, M_FREEWORK);
2472 #ifdef INVARIANTS
2473 	for (i = 0; i <= D_LAST; i++)
2474 		KASSERT(ump->softdep_curdeps[i] == 0,
2475 		    ("Unmount %s: Dep type %s != 0 (%ld)", ump->um_fs->fs_fsmnt,
2476 		    TYPENAME(i), ump->softdep_curdeps[i]));
2477 #endif
2478 	free(ump->um_softdep, M_MOUNTDATA);
2479 }
2480 
2481 static struct jblocks *
2482 jblocks_create(void)
2483 {
2484 	struct jblocks *jblocks;
2485 
2486 	jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO);
2487 	TAILQ_INIT(&jblocks->jb_segs);
2488 	jblocks->jb_avail = 10;
2489 	jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2490 	    M_JBLOCKS, M_WAITOK | M_ZERO);
2491 
2492 	return (jblocks);
2493 }
2494 
2495 static ufs2_daddr_t
2496 jblocks_alloc(jblocks, bytes, actual)
2497 	struct jblocks *jblocks;
2498 	int bytes;
2499 	int *actual;
2500 {
2501 	ufs2_daddr_t daddr;
2502 	struct jextent *jext;
2503 	int freecnt;
2504 	int blocks;
2505 
2506 	blocks = bytes / DEV_BSIZE;
2507 	jext = &jblocks->jb_extent[jblocks->jb_head];
2508 	freecnt = jext->je_blocks - jblocks->jb_off;
2509 	if (freecnt == 0) {
2510 		jblocks->jb_off = 0;
2511 		if (++jblocks->jb_head > jblocks->jb_used)
2512 			jblocks->jb_head = 0;
2513 		jext = &jblocks->jb_extent[jblocks->jb_head];
2514 		freecnt = jext->je_blocks;
2515 	}
2516 	if (freecnt > blocks)
2517 		freecnt = blocks;
2518 	*actual = freecnt * DEV_BSIZE;
2519 	daddr = jext->je_daddr + jblocks->jb_off;
2520 	jblocks->jb_off += freecnt;
2521 	jblocks->jb_free -= freecnt;
2522 
2523 	return (daddr);
2524 }
2525 
2526 static void
2527 jblocks_free(jblocks, mp, bytes)
2528 	struct jblocks *jblocks;
2529 	struct mount *mp;
2530 	int bytes;
2531 {
2532 
2533 	LOCK_OWNED(VFSTOUFS(mp));
2534 	jblocks->jb_free += bytes / DEV_BSIZE;
2535 	if (jblocks->jb_suspended)
2536 		worklist_speedup(mp);
2537 	wakeup(jblocks);
2538 }
2539 
2540 static void
2541 jblocks_destroy(jblocks)
2542 	struct jblocks *jblocks;
2543 {
2544 
2545 	if (jblocks->jb_extent)
2546 		free(jblocks->jb_extent, M_JBLOCKS);
2547 	free(jblocks, M_JBLOCKS);
2548 }
2549 
2550 static void
2551 jblocks_add(jblocks, daddr, blocks)
2552 	struct jblocks *jblocks;
2553 	ufs2_daddr_t daddr;
2554 	int blocks;
2555 {
2556 	struct jextent *jext;
2557 
2558 	jblocks->jb_blocks += blocks;
2559 	jblocks->jb_free += blocks;
2560 	jext = &jblocks->jb_extent[jblocks->jb_used];
2561 	/* Adding the first block. */
2562 	if (jext->je_daddr == 0) {
2563 		jext->je_daddr = daddr;
2564 		jext->je_blocks = blocks;
2565 		return;
2566 	}
2567 	/* Extending the last extent. */
2568 	if (jext->je_daddr + jext->je_blocks == daddr) {
2569 		jext->je_blocks += blocks;
2570 		return;
2571 	}
2572 	/* Adding a new extent. */
2573 	if (++jblocks->jb_used == jblocks->jb_avail) {
2574 		jblocks->jb_avail *= 2;
2575 		jext = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2576 		    M_JBLOCKS, M_WAITOK | M_ZERO);
2577 		memcpy(jext, jblocks->jb_extent,
2578 		    sizeof(struct jextent) * jblocks->jb_used);
2579 		free(jblocks->jb_extent, M_JBLOCKS);
2580 		jblocks->jb_extent = jext;
2581 	}
2582 	jext = &jblocks->jb_extent[jblocks->jb_used];
2583 	jext->je_daddr = daddr;
2584 	jext->je_blocks = blocks;
2585 	return;
2586 }
2587 
2588 int
2589 softdep_journal_lookup(mp, vpp)
2590 	struct mount *mp;
2591 	struct vnode **vpp;
2592 {
2593 	struct componentname cnp;
2594 	struct vnode *dvp;
2595 	ino_t sujournal;
2596 	int error;
2597 
2598 	error = VFS_VGET(mp, ROOTINO, LK_EXCLUSIVE, &dvp);
2599 	if (error)
2600 		return (error);
2601 	bzero(&cnp, sizeof(cnp));
2602 	cnp.cn_nameiop = LOOKUP;
2603 	cnp.cn_flags = ISLASTCN;
2604 	cnp.cn_thread = curthread;
2605 	cnp.cn_cred = curthread->td_ucred;
2606 	cnp.cn_pnbuf = SUJ_FILE;
2607 	cnp.cn_nameptr = SUJ_FILE;
2608 	cnp.cn_namelen = strlen(SUJ_FILE);
2609 	error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal);
2610 	vput(dvp);
2611 	if (error != 0)
2612 		return (error);
2613 	error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp);
2614 	return (error);
2615 }
2616 
2617 /*
2618  * Open and verify the journal file.
2619  */
2620 static int
2621 journal_mount(mp, fs, cred)
2622 	struct mount *mp;
2623 	struct fs *fs;
2624 	struct ucred *cred;
2625 {
2626 	struct jblocks *jblocks;
2627 	struct ufsmount *ump;
2628 	struct vnode *vp;
2629 	struct inode *ip;
2630 	ufs2_daddr_t blkno;
2631 	int bcount;
2632 	int error;
2633 	int i;
2634 
2635 	ump = VFSTOUFS(mp);
2636 	ump->softdep_journal_tail = NULL;
2637 	ump->softdep_on_journal = 0;
2638 	ump->softdep_accdeps = 0;
2639 	ump->softdep_req = 0;
2640 	ump->softdep_jblocks = NULL;
2641 	error = softdep_journal_lookup(mp, &vp);
2642 	if (error != 0) {
2643 		printf("Failed to find journal.  Use tunefs to create one\n");
2644 		return (error);
2645 	}
2646 	ip = VTOI(vp);
2647 	if (ip->i_size < SUJ_MIN) {
2648 		error = ENOSPC;
2649 		goto out;
2650 	}
2651 	bcount = lblkno(fs, ip->i_size);	/* Only use whole blocks. */
2652 	jblocks = jblocks_create();
2653 	for (i = 0; i < bcount; i++) {
2654 		error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL);
2655 		if (error)
2656 			break;
2657 		jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag));
2658 	}
2659 	if (error) {
2660 		jblocks_destroy(jblocks);
2661 		goto out;
2662 	}
2663 	jblocks->jb_low = jblocks->jb_free / 3;	/* Reserve 33%. */
2664 	jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */
2665 	ump->softdep_jblocks = jblocks;
2666 out:
2667 	if (error == 0) {
2668 		MNT_ILOCK(mp);
2669 		mp->mnt_flag |= MNT_SUJ;
2670 		mp->mnt_flag &= ~MNT_SOFTDEP;
2671 		MNT_IUNLOCK(mp);
2672 		/*
2673 		 * Only validate the journal contents if the
2674 		 * filesystem is clean, otherwise we write the logs
2675 		 * but they'll never be used.  If the filesystem was
2676 		 * still dirty when we mounted it the journal is
2677 		 * invalid and a new journal can only be valid if it
2678 		 * starts from a clean mount.
2679 		 */
2680 		if (fs->fs_clean) {
2681 			DIP_SET(ip, i_modrev, fs->fs_mtime);
2682 			ip->i_flags |= IN_MODIFIED;
2683 			ffs_update(vp, 1);
2684 		}
2685 	}
2686 	vput(vp);
2687 	return (error);
2688 }
2689 
2690 static void
2691 journal_unmount(ump)
2692 	struct ufsmount *ump;
2693 {
2694 
2695 	if (ump->softdep_jblocks)
2696 		jblocks_destroy(ump->softdep_jblocks);
2697 	ump->softdep_jblocks = NULL;
2698 }
2699 
2700 /*
2701  * Called when a journal record is ready to be written.  Space is allocated
2702  * and the journal entry is created when the journal is flushed to stable
2703  * store.
2704  */
2705 static void
2706 add_to_journal(wk)
2707 	struct worklist *wk;
2708 {
2709 	struct ufsmount *ump;
2710 
2711 	ump = VFSTOUFS(wk->wk_mp);
2712 	LOCK_OWNED(ump);
2713 	if (wk->wk_state & ONWORKLIST)
2714 		panic("add_to_journal: %s(0x%X) already on list",
2715 		    TYPENAME(wk->wk_type), wk->wk_state);
2716 	wk->wk_state |= ONWORKLIST | DEPCOMPLETE;
2717 	if (LIST_EMPTY(&ump->softdep_journal_pending)) {
2718 		ump->softdep_jblocks->jb_age = ticks;
2719 		LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list);
2720 	} else
2721 		LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list);
2722 	ump->softdep_journal_tail = wk;
2723 	ump->softdep_on_journal += 1;
2724 }
2725 
2726 /*
2727  * Remove an arbitrary item for the journal worklist maintain the tail
2728  * pointer.  This happens when a new operation obviates the need to
2729  * journal an old operation.
2730  */
2731 static void
2732 remove_from_journal(wk)
2733 	struct worklist *wk;
2734 {
2735 	struct ufsmount *ump;
2736 
2737 	ump = VFSTOUFS(wk->wk_mp);
2738 	LOCK_OWNED(ump);
2739 #ifdef SUJ_DEBUG
2740 	{
2741 		struct worklist *wkn;
2742 
2743 		LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list)
2744 			if (wkn == wk)
2745 				break;
2746 		if (wkn == NULL)
2747 			panic("remove_from_journal: %p is not in journal", wk);
2748 	}
2749 #endif
2750 	/*
2751 	 * We emulate a TAILQ to save space in most structures which do not
2752 	 * require TAILQ semantics.  Here we must update the tail position
2753 	 * when removing the tail which is not the final entry. This works
2754 	 * only if the worklist linkage are at the beginning of the structure.
2755 	 */
2756 	if (ump->softdep_journal_tail == wk)
2757 		ump->softdep_journal_tail =
2758 		    (struct worklist *)wk->wk_list.le_prev;
2759 
2760 	WORKLIST_REMOVE(wk);
2761 	ump->softdep_on_journal -= 1;
2762 }
2763 
2764 /*
2765  * Check for journal space as well as dependency limits so the prelink
2766  * code can throttle both journaled and non-journaled filesystems.
2767  * Threshold is 0 for low and 1 for min.
2768  */
2769 static int
2770 journal_space(ump, thresh)
2771 	struct ufsmount *ump;
2772 	int thresh;
2773 {
2774 	struct jblocks *jblocks;
2775 	int limit, avail;
2776 
2777 	jblocks = ump->softdep_jblocks;
2778 	if (jblocks == NULL)
2779 		return (1);
2780 	/*
2781 	 * We use a tighter restriction here to prevent request_cleanup()
2782 	 * running in threads from running into locks we currently hold.
2783 	 * We have to be over the limit and our filesystem has to be
2784 	 * responsible for more than our share of that usage.
2785 	 */
2786 	limit = (max_softdeps / 10) * 9;
2787 	if (dep_current[D_INODEDEP] > limit &&
2788 	    ump->softdep_curdeps[D_INODEDEP] > limit / stat_softdep_mounts)
2789 		return (0);
2790 	if (thresh)
2791 		thresh = jblocks->jb_min;
2792 	else
2793 		thresh = jblocks->jb_low;
2794 	avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE;
2795 	avail = jblocks->jb_free - avail;
2796 
2797 	return (avail > thresh);
2798 }
2799 
2800 static void
2801 journal_suspend(ump)
2802 	struct ufsmount *ump;
2803 {
2804 	struct jblocks *jblocks;
2805 	struct mount *mp;
2806 
2807 	mp = UFSTOVFS(ump);
2808 	jblocks = ump->softdep_jblocks;
2809 	MNT_ILOCK(mp);
2810 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
2811 		stat_journal_min++;
2812 		mp->mnt_kern_flag |= MNTK_SUSPEND;
2813 		mp->mnt_susp_owner = FIRST_THREAD_IN_PROC(softdepproc);
2814 	}
2815 	jblocks->jb_suspended = 1;
2816 	MNT_IUNLOCK(mp);
2817 }
2818 
2819 static int
2820 journal_unsuspend(struct ufsmount *ump)
2821 {
2822 	struct jblocks *jblocks;
2823 	struct mount *mp;
2824 
2825 	mp = UFSTOVFS(ump);
2826 	jblocks = ump->softdep_jblocks;
2827 
2828 	if (jblocks != NULL && jblocks->jb_suspended &&
2829 	    journal_space(ump, jblocks->jb_min)) {
2830 		jblocks->jb_suspended = 0;
2831 		FREE_LOCK(ump);
2832 		mp->mnt_susp_owner = curthread;
2833 		vfs_write_resume(mp, 0);
2834 		ACQUIRE_LOCK(ump);
2835 		return (1);
2836 	}
2837 	return (0);
2838 }
2839 
2840 /*
2841  * Called before any allocation function to be certain that there is
2842  * sufficient space in the journal prior to creating any new records.
2843  * Since in the case of block allocation we may have multiple locked
2844  * buffers at the time of the actual allocation we can not block
2845  * when the journal records are created.  Doing so would create a deadlock
2846  * if any of these buffers needed to be flushed to reclaim space.  Instead
2847  * we require a sufficiently large amount of available space such that
2848  * each thread in the system could have passed this allocation check and
2849  * still have sufficient free space.  With 20% of a minimum journal size
2850  * of 1MB we have 6553 records available.
2851  */
2852 int
2853 softdep_prealloc(vp, waitok)
2854 	struct vnode *vp;
2855 	int waitok;
2856 {
2857 	struct ufsmount *ump;
2858 
2859 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
2860 	    ("softdep_prealloc called on non-softdep filesystem"));
2861 	/*
2862 	 * Nothing to do if we are not running journaled soft updates.
2863 	 * If we currently hold the snapshot lock, we must avoid handling
2864 	 * other resources that could cause deadlock.
2865 	 */
2866 	if (DOINGSUJ(vp) == 0 || IS_SNAPSHOT(VTOI(vp)))
2867 		return (0);
2868 	ump = VFSTOUFS(vp->v_mount);
2869 	ACQUIRE_LOCK(ump);
2870 	if (journal_space(ump, 0)) {
2871 		FREE_LOCK(ump);
2872 		return (0);
2873 	}
2874 	stat_journal_low++;
2875 	FREE_LOCK(ump);
2876 	if (waitok == MNT_NOWAIT)
2877 		return (ENOSPC);
2878 	/*
2879 	 * Attempt to sync this vnode once to flush any journal
2880 	 * work attached to it.
2881 	 */
2882 	if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0)
2883 		ffs_syncvnode(vp, waitok, 0);
2884 	ACQUIRE_LOCK(ump);
2885 	process_removes(vp);
2886 	process_truncates(vp);
2887 	if (journal_space(ump, 0) == 0) {
2888 		softdep_speedup();
2889 		if (journal_space(ump, 1) == 0)
2890 			journal_suspend(ump);
2891 	}
2892 	FREE_LOCK(ump);
2893 
2894 	return (0);
2895 }
2896 
2897 /*
2898  * Before adjusting a link count on a vnode verify that we have sufficient
2899  * journal space.  If not, process operations that depend on the currently
2900  * locked pair of vnodes to try to flush space as the syncer, buf daemon,
2901  * and softdep flush threads can not acquire these locks to reclaim space.
2902  */
2903 static void
2904 softdep_prelink(dvp, vp)
2905 	struct vnode *dvp;
2906 	struct vnode *vp;
2907 {
2908 	struct ufsmount *ump;
2909 
2910 	ump = VFSTOUFS(dvp->v_mount);
2911 	LOCK_OWNED(ump);
2912 	/*
2913 	 * Nothing to do if we have sufficient journal space.
2914 	 * If we currently hold the snapshot lock, we must avoid
2915 	 * handling other resources that could cause deadlock.
2916 	 */
2917 	if (journal_space(ump, 0) || (vp && IS_SNAPSHOT(VTOI(vp))))
2918 		return;
2919 	stat_journal_low++;
2920 	FREE_LOCK(ump);
2921 	if (vp)
2922 		ffs_syncvnode(vp, MNT_NOWAIT, 0);
2923 	ffs_syncvnode(dvp, MNT_WAIT, 0);
2924 	ACQUIRE_LOCK(ump);
2925 	/* Process vp before dvp as it may create .. removes. */
2926 	if (vp) {
2927 		process_removes(vp);
2928 		process_truncates(vp);
2929 	}
2930 	process_removes(dvp);
2931 	process_truncates(dvp);
2932 	softdep_speedup();
2933 	process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT);
2934 	if (journal_space(ump, 0) == 0) {
2935 		softdep_speedup();
2936 		if (journal_space(ump, 1) == 0)
2937 			journal_suspend(ump);
2938 	}
2939 }
2940 
2941 static void
2942 jseg_write(ump, jseg, data)
2943 	struct ufsmount *ump;
2944 	struct jseg *jseg;
2945 	uint8_t *data;
2946 {
2947 	struct jsegrec *rec;
2948 
2949 	rec = (struct jsegrec *)data;
2950 	rec->jsr_seq = jseg->js_seq;
2951 	rec->jsr_oldest = jseg->js_oldseq;
2952 	rec->jsr_cnt = jseg->js_cnt;
2953 	rec->jsr_blocks = jseg->js_size / ump->um_devvp->v_bufobj.bo_bsize;
2954 	rec->jsr_crc = 0;
2955 	rec->jsr_time = ump->um_fs->fs_mtime;
2956 }
2957 
2958 static inline void
2959 inoref_write(inoref, jseg, rec)
2960 	struct inoref *inoref;
2961 	struct jseg *jseg;
2962 	struct jrefrec *rec;
2963 {
2964 
2965 	inoref->if_jsegdep->jd_seg = jseg;
2966 	rec->jr_ino = inoref->if_ino;
2967 	rec->jr_parent = inoref->if_parent;
2968 	rec->jr_nlink = inoref->if_nlink;
2969 	rec->jr_mode = inoref->if_mode;
2970 	rec->jr_diroff = inoref->if_diroff;
2971 }
2972 
2973 static void
2974 jaddref_write(jaddref, jseg, data)
2975 	struct jaddref *jaddref;
2976 	struct jseg *jseg;
2977 	uint8_t *data;
2978 {
2979 	struct jrefrec *rec;
2980 
2981 	rec = (struct jrefrec *)data;
2982 	rec->jr_op = JOP_ADDREF;
2983 	inoref_write(&jaddref->ja_ref, jseg, rec);
2984 }
2985 
2986 static void
2987 jremref_write(jremref, jseg, data)
2988 	struct jremref *jremref;
2989 	struct jseg *jseg;
2990 	uint8_t *data;
2991 {
2992 	struct jrefrec *rec;
2993 
2994 	rec = (struct jrefrec *)data;
2995 	rec->jr_op = JOP_REMREF;
2996 	inoref_write(&jremref->jr_ref, jseg, rec);
2997 }
2998 
2999 static void
3000 jmvref_write(jmvref, jseg, data)
3001 	struct jmvref *jmvref;
3002 	struct jseg *jseg;
3003 	uint8_t *data;
3004 {
3005 	struct jmvrec *rec;
3006 
3007 	rec = (struct jmvrec *)data;
3008 	rec->jm_op = JOP_MVREF;
3009 	rec->jm_ino = jmvref->jm_ino;
3010 	rec->jm_parent = jmvref->jm_parent;
3011 	rec->jm_oldoff = jmvref->jm_oldoff;
3012 	rec->jm_newoff = jmvref->jm_newoff;
3013 }
3014 
3015 static void
3016 jnewblk_write(jnewblk, jseg, data)
3017 	struct jnewblk *jnewblk;
3018 	struct jseg *jseg;
3019 	uint8_t *data;
3020 {
3021 	struct jblkrec *rec;
3022 
3023 	jnewblk->jn_jsegdep->jd_seg = jseg;
3024 	rec = (struct jblkrec *)data;
3025 	rec->jb_op = JOP_NEWBLK;
3026 	rec->jb_ino = jnewblk->jn_ino;
3027 	rec->jb_blkno = jnewblk->jn_blkno;
3028 	rec->jb_lbn = jnewblk->jn_lbn;
3029 	rec->jb_frags = jnewblk->jn_frags;
3030 	rec->jb_oldfrags = jnewblk->jn_oldfrags;
3031 }
3032 
3033 static void
3034 jfreeblk_write(jfreeblk, jseg, data)
3035 	struct jfreeblk *jfreeblk;
3036 	struct jseg *jseg;
3037 	uint8_t *data;
3038 {
3039 	struct jblkrec *rec;
3040 
3041 	jfreeblk->jf_dep.jb_jsegdep->jd_seg = jseg;
3042 	rec = (struct jblkrec *)data;
3043 	rec->jb_op = JOP_FREEBLK;
3044 	rec->jb_ino = jfreeblk->jf_ino;
3045 	rec->jb_blkno = jfreeblk->jf_blkno;
3046 	rec->jb_lbn = jfreeblk->jf_lbn;
3047 	rec->jb_frags = jfreeblk->jf_frags;
3048 	rec->jb_oldfrags = 0;
3049 }
3050 
3051 static void
3052 jfreefrag_write(jfreefrag, jseg, data)
3053 	struct jfreefrag *jfreefrag;
3054 	struct jseg *jseg;
3055 	uint8_t *data;
3056 {
3057 	struct jblkrec *rec;
3058 
3059 	jfreefrag->fr_jsegdep->jd_seg = jseg;
3060 	rec = (struct jblkrec *)data;
3061 	rec->jb_op = JOP_FREEBLK;
3062 	rec->jb_ino = jfreefrag->fr_ino;
3063 	rec->jb_blkno = jfreefrag->fr_blkno;
3064 	rec->jb_lbn = jfreefrag->fr_lbn;
3065 	rec->jb_frags = jfreefrag->fr_frags;
3066 	rec->jb_oldfrags = 0;
3067 }
3068 
3069 static void
3070 jtrunc_write(jtrunc, jseg, data)
3071 	struct jtrunc *jtrunc;
3072 	struct jseg *jseg;
3073 	uint8_t *data;
3074 {
3075 	struct jtrncrec *rec;
3076 
3077 	jtrunc->jt_dep.jb_jsegdep->jd_seg = jseg;
3078 	rec = (struct jtrncrec *)data;
3079 	rec->jt_op = JOP_TRUNC;
3080 	rec->jt_ino = jtrunc->jt_ino;
3081 	rec->jt_size = jtrunc->jt_size;
3082 	rec->jt_extsize = jtrunc->jt_extsize;
3083 }
3084 
3085 static void
3086 jfsync_write(jfsync, jseg, data)
3087 	struct jfsync *jfsync;
3088 	struct jseg *jseg;
3089 	uint8_t *data;
3090 {
3091 	struct jtrncrec *rec;
3092 
3093 	rec = (struct jtrncrec *)data;
3094 	rec->jt_op = JOP_SYNC;
3095 	rec->jt_ino = jfsync->jfs_ino;
3096 	rec->jt_size = jfsync->jfs_size;
3097 	rec->jt_extsize = jfsync->jfs_extsize;
3098 }
3099 
3100 static void
3101 softdep_flushjournal(mp)
3102 	struct mount *mp;
3103 {
3104 	struct jblocks *jblocks;
3105 	struct ufsmount *ump;
3106 
3107 	if (MOUNTEDSUJ(mp) == 0)
3108 		return;
3109 	ump = VFSTOUFS(mp);
3110 	jblocks = ump->softdep_jblocks;
3111 	ACQUIRE_LOCK(ump);
3112 	while (ump->softdep_on_journal) {
3113 		jblocks->jb_needseg = 1;
3114 		softdep_process_journal(mp, NULL, MNT_WAIT);
3115 	}
3116 	FREE_LOCK(ump);
3117 }
3118 
3119 static void softdep_synchronize_completed(struct bio *);
3120 static void softdep_synchronize(struct bio *, struct ufsmount *, void *);
3121 
3122 static void
3123 softdep_synchronize_completed(bp)
3124         struct bio *bp;
3125 {
3126 	struct jseg *oldest;
3127 	struct jseg *jseg;
3128 	struct ufsmount *ump;
3129 
3130 	/*
3131 	 * caller1 marks the last segment written before we issued the
3132 	 * synchronize cache.
3133 	 */
3134 	jseg = bp->bio_caller1;
3135 	if (jseg == NULL) {
3136 		g_destroy_bio(bp);
3137 		return;
3138 	}
3139 	ump = VFSTOUFS(jseg->js_list.wk_mp);
3140 	ACQUIRE_LOCK(ump);
3141 	oldest = NULL;
3142 	/*
3143 	 * Mark all the journal entries waiting on the synchronize cache
3144 	 * as completed so they may continue on.
3145 	 */
3146 	while (jseg != NULL && (jseg->js_state & COMPLETE) == 0) {
3147 		jseg->js_state |= COMPLETE;
3148 		oldest = jseg;
3149 		jseg = TAILQ_PREV(jseg, jseglst, js_next);
3150 	}
3151 	/*
3152 	 * Restart deferred journal entry processing from the oldest
3153 	 * completed jseg.
3154 	 */
3155 	if (oldest)
3156 		complete_jsegs(oldest);
3157 
3158 	FREE_LOCK(ump);
3159 	g_destroy_bio(bp);
3160 }
3161 
3162 /*
3163  * Send BIO_FLUSH/SYNCHRONIZE CACHE to the device to enforce write ordering
3164  * barriers.  The journal must be written prior to any blocks that depend
3165  * on it and the journal can not be released until the blocks have be
3166  * written.  This code handles both barriers simultaneously.
3167  */
3168 static void
3169 softdep_synchronize(bp, ump, caller1)
3170 	struct bio *bp;
3171 	struct ufsmount *ump;
3172 	void *caller1;
3173 {
3174 
3175 	bp->bio_cmd = BIO_FLUSH;
3176 	bp->bio_flags |= BIO_ORDERED;
3177 	bp->bio_data = NULL;
3178 	bp->bio_offset = ump->um_cp->provider->mediasize;
3179 	bp->bio_length = 0;
3180 	bp->bio_done = softdep_synchronize_completed;
3181 	bp->bio_caller1 = caller1;
3182 	g_io_request(bp,
3183 	    (struct g_consumer *)ump->um_devvp->v_bufobj.bo_private);
3184 }
3185 
3186 /*
3187  * Flush some journal records to disk.
3188  */
3189 static void
3190 softdep_process_journal(mp, needwk, flags)
3191 	struct mount *mp;
3192 	struct worklist *needwk;
3193 	int flags;
3194 {
3195 	struct jblocks *jblocks;
3196 	struct ufsmount *ump;
3197 	struct worklist *wk;
3198 	struct jseg *jseg;
3199 	struct buf *bp;
3200 	struct bio *bio;
3201 	uint8_t *data;
3202 	struct fs *fs;
3203 	int shouldflush;
3204 	int segwritten;
3205 	int jrecmin;	/* Minimum records per block. */
3206 	int jrecmax;	/* Maximum records per block. */
3207 	int size;
3208 	int cnt;
3209 	int off;
3210 	int devbsize;
3211 
3212 	if (MOUNTEDSUJ(mp) == 0)
3213 		return;
3214 	shouldflush = softdep_flushcache;
3215 	bio = NULL;
3216 	jseg = NULL;
3217 	ump = VFSTOUFS(mp);
3218 	LOCK_OWNED(ump);
3219 	fs = ump->um_fs;
3220 	jblocks = ump->softdep_jblocks;
3221 	devbsize = ump->um_devvp->v_bufobj.bo_bsize;
3222 	/*
3223 	 * We write anywhere between a disk block and fs block.  The upper
3224 	 * bound is picked to prevent buffer cache fragmentation and limit
3225 	 * processing time per I/O.
3226 	 */
3227 	jrecmin = (devbsize / JREC_SIZE) - 1; /* -1 for seg header */
3228 	jrecmax = (fs->fs_bsize / devbsize) * jrecmin;
3229 	segwritten = 0;
3230 	for (;;) {
3231 		cnt = ump->softdep_on_journal;
3232 		/*
3233 		 * Criteria for writing a segment:
3234 		 * 1) We have a full block.
3235 		 * 2) We're called from jwait() and haven't found the
3236 		 *    journal item yet.
3237 		 * 3) Always write if needseg is set.
3238 		 * 4) If we are called from process_worklist and have
3239 		 *    not yet written anything we write a partial block
3240 		 *    to enforce a 1 second maximum latency on journal
3241 		 *    entries.
3242 		 */
3243 		if (cnt < (jrecmax - 1) && needwk == NULL &&
3244 		    jblocks->jb_needseg == 0 && (segwritten || cnt == 0))
3245 			break;
3246 		cnt++;
3247 		/*
3248 		 * Verify some free journal space.  softdep_prealloc() should
3249 		 * guarantee that we don't run out so this is indicative of
3250 		 * a problem with the flow control.  Try to recover
3251 		 * gracefully in any event.
3252 		 */
3253 		while (jblocks->jb_free == 0) {
3254 			if (flags != MNT_WAIT)
3255 				break;
3256 			printf("softdep: Out of journal space!\n");
3257 			softdep_speedup();
3258 			msleep(jblocks, LOCK_PTR(ump), PRIBIO, "jblocks", hz);
3259 		}
3260 		FREE_LOCK(ump);
3261 		jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS);
3262 		workitem_alloc(&jseg->js_list, D_JSEG, mp);
3263 		LIST_INIT(&jseg->js_entries);
3264 		LIST_INIT(&jseg->js_indirs);
3265 		jseg->js_state = ATTACHED;
3266 		if (shouldflush == 0)
3267 			jseg->js_state |= COMPLETE;
3268 		else if (bio == NULL)
3269 			bio = g_alloc_bio();
3270 		jseg->js_jblocks = jblocks;
3271 		bp = geteblk(fs->fs_bsize, 0);
3272 		ACQUIRE_LOCK(ump);
3273 		/*
3274 		 * If there was a race while we were allocating the block
3275 		 * and jseg the entry we care about was likely written.
3276 		 * We bail out in both the WAIT and NOWAIT case and assume
3277 		 * the caller will loop if the entry it cares about is
3278 		 * not written.
3279 		 */
3280 		cnt = ump->softdep_on_journal;
3281 		if (cnt + jblocks->jb_needseg == 0 || jblocks->jb_free == 0) {
3282 			bp->b_flags |= B_INVAL | B_NOCACHE;
3283 			WORKITEM_FREE(jseg, D_JSEG);
3284 			FREE_LOCK(ump);
3285 			brelse(bp);
3286 			ACQUIRE_LOCK(ump);
3287 			break;
3288 		}
3289 		/*
3290 		 * Calculate the disk block size required for the available
3291 		 * records rounded to the min size.
3292 		 */
3293 		if (cnt == 0)
3294 			size = devbsize;
3295 		else if (cnt < jrecmax)
3296 			size = howmany(cnt, jrecmin) * devbsize;
3297 		else
3298 			size = fs->fs_bsize;
3299 		/*
3300 		 * Allocate a disk block for this journal data and account
3301 		 * for truncation of the requested size if enough contiguous
3302 		 * space was not available.
3303 		 */
3304 		bp->b_blkno = jblocks_alloc(jblocks, size, &size);
3305 		bp->b_lblkno = bp->b_blkno;
3306 		bp->b_offset = bp->b_blkno * DEV_BSIZE;
3307 		bp->b_bcount = size;
3308 		bp->b_flags &= ~B_INVAL;
3309 		bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY;
3310 		/*
3311 		 * Initialize our jseg with cnt records.  Assign the next
3312 		 * sequence number to it and link it in-order.
3313 		 */
3314 		cnt = MIN(cnt, (size / devbsize) * jrecmin);
3315 		jseg->js_buf = bp;
3316 		jseg->js_cnt = cnt;
3317 		jseg->js_refs = cnt + 1;	/* Self ref. */
3318 		jseg->js_size = size;
3319 		jseg->js_seq = jblocks->jb_nextseq++;
3320 		if (jblocks->jb_oldestseg == NULL)
3321 			jblocks->jb_oldestseg = jseg;
3322 		jseg->js_oldseq = jblocks->jb_oldestseg->js_seq;
3323 		TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next);
3324 		if (jblocks->jb_writeseg == NULL)
3325 			jblocks->jb_writeseg = jseg;
3326 		/*
3327 		 * Start filling in records from the pending list.
3328 		 */
3329 		data = bp->b_data;
3330 		off = 0;
3331 		while ((wk = LIST_FIRST(&ump->softdep_journal_pending))
3332 		    != NULL) {
3333 			if (cnt == 0)
3334 				break;
3335 			/* Place a segment header on every device block. */
3336 			if ((off % devbsize) == 0) {
3337 				jseg_write(ump, jseg, data);
3338 				off += JREC_SIZE;
3339 				data = bp->b_data + off;
3340 			}
3341 			if (wk == needwk)
3342 				needwk = NULL;
3343 			remove_from_journal(wk);
3344 			wk->wk_state |= INPROGRESS;
3345 			WORKLIST_INSERT(&jseg->js_entries, wk);
3346 			switch (wk->wk_type) {
3347 			case D_JADDREF:
3348 				jaddref_write(WK_JADDREF(wk), jseg, data);
3349 				break;
3350 			case D_JREMREF:
3351 				jremref_write(WK_JREMREF(wk), jseg, data);
3352 				break;
3353 			case D_JMVREF:
3354 				jmvref_write(WK_JMVREF(wk), jseg, data);
3355 				break;
3356 			case D_JNEWBLK:
3357 				jnewblk_write(WK_JNEWBLK(wk), jseg, data);
3358 				break;
3359 			case D_JFREEBLK:
3360 				jfreeblk_write(WK_JFREEBLK(wk), jseg, data);
3361 				break;
3362 			case D_JFREEFRAG:
3363 				jfreefrag_write(WK_JFREEFRAG(wk), jseg, data);
3364 				break;
3365 			case D_JTRUNC:
3366 				jtrunc_write(WK_JTRUNC(wk), jseg, data);
3367 				break;
3368 			case D_JFSYNC:
3369 				jfsync_write(WK_JFSYNC(wk), jseg, data);
3370 				break;
3371 			default:
3372 				panic("process_journal: Unknown type %s",
3373 				    TYPENAME(wk->wk_type));
3374 				/* NOTREACHED */
3375 			}
3376 			off += JREC_SIZE;
3377 			data = bp->b_data + off;
3378 			cnt--;
3379 		}
3380 		/*
3381 		 * Write this one buffer and continue.
3382 		 */
3383 		segwritten = 1;
3384 		jblocks->jb_needseg = 0;
3385 		WORKLIST_INSERT(&bp->b_dep, &jseg->js_list);
3386 		FREE_LOCK(ump);
3387 		pbgetvp(ump->um_devvp, bp);
3388 		/*
3389 		 * We only do the blocking wait once we find the journal
3390 		 * entry we're looking for.
3391 		 */
3392 		if (needwk == NULL && flags == MNT_WAIT)
3393 			bwrite(bp);
3394 		else
3395 			bawrite(bp);
3396 		ACQUIRE_LOCK(ump);
3397 	}
3398 	/*
3399 	 * If we wrote a segment issue a synchronize cache so the journal
3400 	 * is reflected on disk before the data is written.  Since reclaiming
3401 	 * journal space also requires writing a journal record this
3402 	 * process also enforces a barrier before reclamation.
3403 	 */
3404 	if (segwritten && shouldflush) {
3405 		softdep_synchronize(bio, ump,
3406 		    TAILQ_LAST(&jblocks->jb_segs, jseglst));
3407 	} else if (bio)
3408 		g_destroy_bio(bio);
3409 	/*
3410 	 * If we've suspended the filesystem because we ran out of journal
3411 	 * space either try to sync it here to make some progress or
3412 	 * unsuspend it if we already have.
3413 	 */
3414 	if (flags == 0 && jblocks->jb_suspended) {
3415 		if (journal_unsuspend(ump))
3416 			return;
3417 		FREE_LOCK(ump);
3418 		VFS_SYNC(mp, MNT_NOWAIT);
3419 		ffs_sbupdate(ump, MNT_WAIT, 0);
3420 		ACQUIRE_LOCK(ump);
3421 	}
3422 }
3423 
3424 /*
3425  * Complete a jseg, allowing all dependencies awaiting journal writes
3426  * to proceed.  Each journal dependency also attaches a jsegdep to dependent
3427  * structures so that the journal segment can be freed to reclaim space.
3428  */
3429 static void
3430 complete_jseg(jseg)
3431 	struct jseg *jseg;
3432 {
3433 	struct worklist *wk;
3434 	struct jmvref *jmvref;
3435 	int waiting;
3436 #ifdef INVARIANTS
3437 	int i = 0;
3438 #endif
3439 
3440 	while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) {
3441 		WORKLIST_REMOVE(wk);
3442 		waiting = wk->wk_state & IOWAITING;
3443 		wk->wk_state &= ~(INPROGRESS | IOWAITING);
3444 		wk->wk_state |= COMPLETE;
3445 		KASSERT(i++ < jseg->js_cnt,
3446 		    ("handle_written_jseg: overflow %d >= %d",
3447 		    i - 1, jseg->js_cnt));
3448 		switch (wk->wk_type) {
3449 		case D_JADDREF:
3450 			handle_written_jaddref(WK_JADDREF(wk));
3451 			break;
3452 		case D_JREMREF:
3453 			handle_written_jremref(WK_JREMREF(wk));
3454 			break;
3455 		case D_JMVREF:
3456 			rele_jseg(jseg);	/* No jsegdep. */
3457 			jmvref = WK_JMVREF(wk);
3458 			LIST_REMOVE(jmvref, jm_deps);
3459 			if ((jmvref->jm_pagedep->pd_state & ONWORKLIST) == 0)
3460 				free_pagedep(jmvref->jm_pagedep);
3461 			WORKITEM_FREE(jmvref, D_JMVREF);
3462 			break;
3463 		case D_JNEWBLK:
3464 			handle_written_jnewblk(WK_JNEWBLK(wk));
3465 			break;
3466 		case D_JFREEBLK:
3467 			handle_written_jblkdep(&WK_JFREEBLK(wk)->jf_dep);
3468 			break;
3469 		case D_JTRUNC:
3470 			handle_written_jblkdep(&WK_JTRUNC(wk)->jt_dep);
3471 			break;
3472 		case D_JFSYNC:
3473 			rele_jseg(jseg);	/* No jsegdep. */
3474 			WORKITEM_FREE(wk, D_JFSYNC);
3475 			break;
3476 		case D_JFREEFRAG:
3477 			handle_written_jfreefrag(WK_JFREEFRAG(wk));
3478 			break;
3479 		default:
3480 			panic("handle_written_jseg: Unknown type %s",
3481 			    TYPENAME(wk->wk_type));
3482 			/* NOTREACHED */
3483 		}
3484 		if (waiting)
3485 			wakeup(wk);
3486 	}
3487 	/* Release the self reference so the structure may be freed. */
3488 	rele_jseg(jseg);
3489 }
3490 
3491 /*
3492  * Determine which jsegs are ready for completion processing.  Waits for
3493  * synchronize cache to complete as well as forcing in-order completion
3494  * of journal entries.
3495  */
3496 static void
3497 complete_jsegs(jseg)
3498 	struct jseg *jseg;
3499 {
3500 	struct jblocks *jblocks;
3501 	struct jseg *jsegn;
3502 
3503 	jblocks = jseg->js_jblocks;
3504 	/*
3505 	 * Don't allow out of order completions.  If this isn't the first
3506 	 * block wait for it to write before we're done.
3507 	 */
3508 	if (jseg != jblocks->jb_writeseg)
3509 		return;
3510 	/* Iterate through available jsegs processing their entries. */
3511 	while (jseg && (jseg->js_state & ALLCOMPLETE) == ALLCOMPLETE) {
3512 		jblocks->jb_oldestwrseq = jseg->js_oldseq;
3513 		jsegn = TAILQ_NEXT(jseg, js_next);
3514 		complete_jseg(jseg);
3515 		jseg = jsegn;
3516 	}
3517 	jblocks->jb_writeseg = jseg;
3518 	/*
3519 	 * Attempt to free jsegs now that oldestwrseq may have advanced.
3520 	 */
3521 	free_jsegs(jblocks);
3522 }
3523 
3524 /*
3525  * Mark a jseg as DEPCOMPLETE and throw away the buffer.  Attempt to handle
3526  * the final completions.
3527  */
3528 static void
3529 handle_written_jseg(jseg, bp)
3530 	struct jseg *jseg;
3531 	struct buf *bp;
3532 {
3533 
3534 	if (jseg->js_refs == 0)
3535 		panic("handle_written_jseg: No self-reference on %p", jseg);
3536 	jseg->js_state |= DEPCOMPLETE;
3537 	/*
3538 	 * We'll never need this buffer again, set flags so it will be
3539 	 * discarded.
3540 	 */
3541 	bp->b_flags |= B_INVAL | B_NOCACHE;
3542 	pbrelvp(bp);
3543 	complete_jsegs(jseg);
3544 }
3545 
3546 static inline struct jsegdep *
3547 inoref_jseg(inoref)
3548 	struct inoref *inoref;
3549 {
3550 	struct jsegdep *jsegdep;
3551 
3552 	jsegdep = inoref->if_jsegdep;
3553 	inoref->if_jsegdep = NULL;
3554 
3555 	return (jsegdep);
3556 }
3557 
3558 /*
3559  * Called once a jremref has made it to stable store.  The jremref is marked
3560  * complete and we attempt to free it.  Any pagedeps writes sleeping waiting
3561  * for the jremref to complete will be awoken by free_jremref.
3562  */
3563 static void
3564 handle_written_jremref(jremref)
3565 	struct jremref *jremref;
3566 {
3567 	struct inodedep *inodedep;
3568 	struct jsegdep *jsegdep;
3569 	struct dirrem *dirrem;
3570 
3571 	/* Grab the jsegdep. */
3572 	jsegdep = inoref_jseg(&jremref->jr_ref);
3573 	/*
3574 	 * Remove us from the inoref list.
3575 	 */
3576 	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino,
3577 	    0, &inodedep) == 0)
3578 		panic("handle_written_jremref: Lost inodedep");
3579 	TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
3580 	/*
3581 	 * Complete the dirrem.
3582 	 */
3583 	dirrem = jremref->jr_dirrem;
3584 	jremref->jr_dirrem = NULL;
3585 	LIST_REMOVE(jremref, jr_deps);
3586 	jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT;
3587 	jwork_insert(&dirrem->dm_jwork, jsegdep);
3588 	if (LIST_EMPTY(&dirrem->dm_jremrefhd) &&
3589 	    (dirrem->dm_state & COMPLETE) != 0)
3590 		add_to_worklist(&dirrem->dm_list, 0);
3591 	free_jremref(jremref);
3592 }
3593 
3594 /*
3595  * Called once a jaddref has made it to stable store.  The dependency is
3596  * marked complete and any dependent structures are added to the inode
3597  * bufwait list to be completed as soon as it is written.  If a bitmap write
3598  * depends on this entry we move the inode into the inodedephd of the
3599  * bmsafemap dependency and attempt to remove the jaddref from the bmsafemap.
3600  */
3601 static void
3602 handle_written_jaddref(jaddref)
3603 	struct jaddref *jaddref;
3604 {
3605 	struct jsegdep *jsegdep;
3606 	struct inodedep *inodedep;
3607 	struct diradd *diradd;
3608 	struct mkdir *mkdir;
3609 
3610 	/* Grab the jsegdep. */
3611 	jsegdep = inoref_jseg(&jaddref->ja_ref);
3612 	mkdir = NULL;
3613 	diradd = NULL;
3614 	if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
3615 	    0, &inodedep) == 0)
3616 		panic("handle_written_jaddref: Lost inodedep.");
3617 	if (jaddref->ja_diradd == NULL)
3618 		panic("handle_written_jaddref: No dependency");
3619 	if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) {
3620 		diradd = jaddref->ja_diradd;
3621 		WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list);
3622 	} else if (jaddref->ja_state & MKDIR_PARENT) {
3623 		mkdir = jaddref->ja_mkdir;
3624 		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list);
3625 	} else if (jaddref->ja_state & MKDIR_BODY)
3626 		mkdir = jaddref->ja_mkdir;
3627 	else
3628 		panic("handle_written_jaddref: Unknown dependency %p",
3629 		    jaddref->ja_diradd);
3630 	jaddref->ja_diradd = NULL;	/* also clears ja_mkdir */
3631 	/*
3632 	 * Remove us from the inode list.
3633 	 */
3634 	TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps);
3635 	/*
3636 	 * The mkdir may be waiting on the jaddref to clear before freeing.
3637 	 */
3638 	if (mkdir) {
3639 		KASSERT(mkdir->md_list.wk_type == D_MKDIR,
3640 		    ("handle_written_jaddref: Incorrect type for mkdir %s",
3641 		    TYPENAME(mkdir->md_list.wk_type)));
3642 		mkdir->md_jaddref = NULL;
3643 		diradd = mkdir->md_diradd;
3644 		mkdir->md_state |= DEPCOMPLETE;
3645 		complete_mkdir(mkdir);
3646 	}
3647 	jwork_insert(&diradd->da_jwork, jsegdep);
3648 	if (jaddref->ja_state & NEWBLOCK) {
3649 		inodedep->id_state |= ONDEPLIST;
3650 		LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd,
3651 		    inodedep, id_deps);
3652 	}
3653 	free_jaddref(jaddref);
3654 }
3655 
3656 /*
3657  * Called once a jnewblk journal is written.  The allocdirect or allocindir
3658  * is placed in the bmsafemap to await notification of a written bitmap.  If
3659  * the operation was canceled we add the segdep to the appropriate
3660  * dependency to free the journal space once the canceling operation
3661  * completes.
3662  */
3663 static void
3664 handle_written_jnewblk(jnewblk)
3665 	struct jnewblk *jnewblk;
3666 {
3667 	struct bmsafemap *bmsafemap;
3668 	struct freefrag *freefrag;
3669 	struct freework *freework;
3670 	struct jsegdep *jsegdep;
3671 	struct newblk *newblk;
3672 
3673 	/* Grab the jsegdep. */
3674 	jsegdep = jnewblk->jn_jsegdep;
3675 	jnewblk->jn_jsegdep = NULL;
3676 	if (jnewblk->jn_dep == NULL)
3677 		panic("handle_written_jnewblk: No dependency for the segdep.");
3678 	switch (jnewblk->jn_dep->wk_type) {
3679 	case D_NEWBLK:
3680 	case D_ALLOCDIRECT:
3681 	case D_ALLOCINDIR:
3682 		/*
3683 		 * Add the written block to the bmsafemap so it can
3684 		 * be notified when the bitmap is on disk.
3685 		 */
3686 		newblk = WK_NEWBLK(jnewblk->jn_dep);
3687 		newblk->nb_jnewblk = NULL;
3688 		if ((newblk->nb_state & GOINGAWAY) == 0) {
3689 			bmsafemap = newblk->nb_bmsafemap;
3690 			newblk->nb_state |= ONDEPLIST;
3691 			LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk,
3692 			    nb_deps);
3693 		}
3694 		jwork_insert(&newblk->nb_jwork, jsegdep);
3695 		break;
3696 	case D_FREEFRAG:
3697 		/*
3698 		 * A newblock being removed by a freefrag when replaced by
3699 		 * frag extension.
3700 		 */
3701 		freefrag = WK_FREEFRAG(jnewblk->jn_dep);
3702 		freefrag->ff_jdep = NULL;
3703 		jwork_insert(&freefrag->ff_jwork, jsegdep);
3704 		break;
3705 	case D_FREEWORK:
3706 		/*
3707 		 * A direct block was removed by truncate.
3708 		 */
3709 		freework = WK_FREEWORK(jnewblk->jn_dep);
3710 		freework->fw_jnewblk = NULL;
3711 		jwork_insert(&freework->fw_freeblks->fb_jwork, jsegdep);
3712 		break;
3713 	default:
3714 		panic("handle_written_jnewblk: Unknown type %d.",
3715 		    jnewblk->jn_dep->wk_type);
3716 	}
3717 	jnewblk->jn_dep = NULL;
3718 	free_jnewblk(jnewblk);
3719 }
3720 
3721 /*
3722  * Cancel a jfreefrag that won't be needed, probably due to colliding with
3723  * an in-flight allocation that has not yet been committed.  Divorce us
3724  * from the freefrag and mark it DEPCOMPLETE so that it may be added
3725  * to the worklist.
3726  */
3727 static void
3728 cancel_jfreefrag(jfreefrag)
3729 	struct jfreefrag *jfreefrag;
3730 {
3731 	struct freefrag *freefrag;
3732 
3733 	if (jfreefrag->fr_jsegdep) {
3734 		free_jsegdep(jfreefrag->fr_jsegdep);
3735 		jfreefrag->fr_jsegdep = NULL;
3736 	}
3737 	freefrag = jfreefrag->fr_freefrag;
3738 	jfreefrag->fr_freefrag = NULL;
3739 	free_jfreefrag(jfreefrag);
3740 	freefrag->ff_state |= DEPCOMPLETE;
3741 	CTR1(KTR_SUJ, "cancel_jfreefrag: blkno %jd", freefrag->ff_blkno);
3742 }
3743 
3744 /*
3745  * Free a jfreefrag when the parent freefrag is rendered obsolete.
3746  */
3747 static void
3748 free_jfreefrag(jfreefrag)
3749 	struct jfreefrag *jfreefrag;
3750 {
3751 
3752 	if (jfreefrag->fr_state & INPROGRESS)
3753 		WORKLIST_REMOVE(&jfreefrag->fr_list);
3754 	else if (jfreefrag->fr_state & ONWORKLIST)
3755 		remove_from_journal(&jfreefrag->fr_list);
3756 	if (jfreefrag->fr_freefrag != NULL)
3757 		panic("free_jfreefrag:  Still attached to a freefrag.");
3758 	WORKITEM_FREE(jfreefrag, D_JFREEFRAG);
3759 }
3760 
3761 /*
3762  * Called when the journal write for a jfreefrag completes.  The parent
3763  * freefrag is added to the worklist if this completes its dependencies.
3764  */
3765 static void
3766 handle_written_jfreefrag(jfreefrag)
3767 	struct jfreefrag *jfreefrag;
3768 {
3769 	struct jsegdep *jsegdep;
3770 	struct freefrag *freefrag;
3771 
3772 	/* Grab the jsegdep. */
3773 	jsegdep = jfreefrag->fr_jsegdep;
3774 	jfreefrag->fr_jsegdep = NULL;
3775 	freefrag = jfreefrag->fr_freefrag;
3776 	if (freefrag == NULL)
3777 		panic("handle_written_jfreefrag: No freefrag.");
3778 	freefrag->ff_state |= DEPCOMPLETE;
3779 	freefrag->ff_jdep = NULL;
3780 	jwork_insert(&freefrag->ff_jwork, jsegdep);
3781 	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
3782 		add_to_worklist(&freefrag->ff_list, 0);
3783 	jfreefrag->fr_freefrag = NULL;
3784 	free_jfreefrag(jfreefrag);
3785 }
3786 
3787 /*
3788  * Called when the journal write for a jfreeblk completes.  The jfreeblk
3789  * is removed from the freeblks list of pending journal writes and the
3790  * jsegdep is moved to the freeblks jwork to be completed when all blocks
3791  * have been reclaimed.
3792  */
3793 static void
3794 handle_written_jblkdep(jblkdep)
3795 	struct jblkdep *jblkdep;
3796 {
3797 	struct freeblks *freeblks;
3798 	struct jsegdep *jsegdep;
3799 
3800 	/* Grab the jsegdep. */
3801 	jsegdep = jblkdep->jb_jsegdep;
3802 	jblkdep->jb_jsegdep = NULL;
3803 	freeblks = jblkdep->jb_freeblks;
3804 	LIST_REMOVE(jblkdep, jb_deps);
3805 	jwork_insert(&freeblks->fb_jwork, jsegdep);
3806 	/*
3807 	 * If the freeblks is all journaled, we can add it to the worklist.
3808 	 */
3809 	if (LIST_EMPTY(&freeblks->fb_jblkdephd) &&
3810 	    (freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
3811 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
3812 
3813 	free_jblkdep(jblkdep);
3814 }
3815 
3816 static struct jsegdep *
3817 newjsegdep(struct worklist *wk)
3818 {
3819 	struct jsegdep *jsegdep;
3820 
3821 	jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS);
3822 	workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp);
3823 	jsegdep->jd_seg = NULL;
3824 
3825 	return (jsegdep);
3826 }
3827 
3828 static struct jmvref *
3829 newjmvref(dp, ino, oldoff, newoff)
3830 	struct inode *dp;
3831 	ino_t ino;
3832 	off_t oldoff;
3833 	off_t newoff;
3834 {
3835 	struct jmvref *jmvref;
3836 
3837 	jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS);
3838 	workitem_alloc(&jmvref->jm_list, D_JMVREF, UFSTOVFS(dp->i_ump));
3839 	jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE;
3840 	jmvref->jm_parent = dp->i_number;
3841 	jmvref->jm_ino = ino;
3842 	jmvref->jm_oldoff = oldoff;
3843 	jmvref->jm_newoff = newoff;
3844 
3845 	return (jmvref);
3846 }
3847 
3848 /*
3849  * Allocate a new jremref that tracks the removal of ip from dp with the
3850  * directory entry offset of diroff.  Mark the entry as ATTACHED and
3851  * DEPCOMPLETE as we have all the information required for the journal write
3852  * and the directory has already been removed from the buffer.  The caller
3853  * is responsible for linking the jremref into the pagedep and adding it
3854  * to the journal to write.  The MKDIR_PARENT flag is set if we're doing
3855  * a DOTDOT addition so handle_workitem_remove() can properly assign
3856  * the jsegdep when we're done.
3857  */
3858 static struct jremref *
3859 newjremref(struct dirrem *dirrem, struct inode *dp, struct inode *ip,
3860     off_t diroff, nlink_t nlink)
3861 {
3862 	struct jremref *jremref;
3863 
3864 	jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS);
3865 	workitem_alloc(&jremref->jr_list, D_JREMREF, UFSTOVFS(dp->i_ump));
3866 	jremref->jr_state = ATTACHED;
3867 	newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff,
3868 	   nlink, ip->i_mode);
3869 	jremref->jr_dirrem = dirrem;
3870 
3871 	return (jremref);
3872 }
3873 
3874 static inline void
3875 newinoref(struct inoref *inoref, ino_t ino, ino_t parent, off_t diroff,
3876     nlink_t nlink, uint16_t mode)
3877 {
3878 
3879 	inoref->if_jsegdep = newjsegdep(&inoref->if_list);
3880 	inoref->if_diroff = diroff;
3881 	inoref->if_ino = ino;
3882 	inoref->if_parent = parent;
3883 	inoref->if_nlink = nlink;
3884 	inoref->if_mode = mode;
3885 }
3886 
3887 /*
3888  * Allocate a new jaddref to track the addition of ino to dp at diroff.  The
3889  * directory offset may not be known until later.  The caller is responsible
3890  * adding the entry to the journal when this information is available.  nlink
3891  * should be the link count prior to the addition and mode is only required
3892  * to have the correct FMT.
3893  */
3894 static struct jaddref *
3895 newjaddref(struct inode *dp, ino_t ino, off_t diroff, int16_t nlink,
3896     uint16_t mode)
3897 {
3898 	struct jaddref *jaddref;
3899 
3900 	jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS);
3901 	workitem_alloc(&jaddref->ja_list, D_JADDREF, UFSTOVFS(dp->i_ump));
3902 	jaddref->ja_state = ATTACHED;
3903 	jaddref->ja_mkdir = NULL;
3904 	newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode);
3905 
3906 	return (jaddref);
3907 }
3908 
3909 /*
3910  * Create a new free dependency for a freework.  The caller is responsible
3911  * for adjusting the reference count when it has the lock held.  The freedep
3912  * will track an outstanding bitmap write that will ultimately clear the
3913  * freework to continue.
3914  */
3915 static struct freedep *
3916 newfreedep(struct freework *freework)
3917 {
3918 	struct freedep *freedep;
3919 
3920 	freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS);
3921 	workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp);
3922 	freedep->fd_freework = freework;
3923 
3924 	return (freedep);
3925 }
3926 
3927 /*
3928  * Free a freedep structure once the buffer it is linked to is written.  If
3929  * this is the last reference to the freework schedule it for completion.
3930  */
3931 static void
3932 free_freedep(freedep)
3933 	struct freedep *freedep;
3934 {
3935 	struct freework *freework;
3936 
3937 	freework = freedep->fd_freework;
3938 	freework->fw_freeblks->fb_cgwait--;
3939 	if (--freework->fw_ref == 0)
3940 		freework_enqueue(freework);
3941 	WORKITEM_FREE(freedep, D_FREEDEP);
3942 }
3943 
3944 /*
3945  * Allocate a new freework structure that may be a level in an indirect
3946  * when parent is not NULL or a top level block when it is.  The top level
3947  * freework structures are allocated without the soft updates lock held
3948  * and before the freeblks is visible outside of softdep_setup_freeblocks().
3949  */
3950 static struct freework *
3951 newfreework(ump, freeblks, parent, lbn, nb, frags, off, journal)
3952 	struct ufsmount *ump;
3953 	struct freeblks *freeblks;
3954 	struct freework *parent;
3955 	ufs_lbn_t lbn;
3956 	ufs2_daddr_t nb;
3957 	int frags;
3958 	int off;
3959 	int journal;
3960 {
3961 	struct freework *freework;
3962 
3963 	freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS);
3964 	workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp);
3965 	freework->fw_state = ATTACHED;
3966 	freework->fw_jnewblk = NULL;
3967 	freework->fw_freeblks = freeblks;
3968 	freework->fw_parent = parent;
3969 	freework->fw_lbn = lbn;
3970 	freework->fw_blkno = nb;
3971 	freework->fw_frags = frags;
3972 	freework->fw_indir = NULL;
3973 	freework->fw_ref = (MOUNTEDSUJ(UFSTOVFS(ump)) == 0 || lbn >= -NXADDR)
3974 		? 0 : NINDIR(ump->um_fs) + 1;
3975 	freework->fw_start = freework->fw_off = off;
3976 	if (journal)
3977 		newjfreeblk(freeblks, lbn, nb, frags);
3978 	if (parent == NULL) {
3979 		ACQUIRE_LOCK(ump);
3980 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
3981 		freeblks->fb_ref++;
3982 		FREE_LOCK(ump);
3983 	}
3984 
3985 	return (freework);
3986 }
3987 
3988 /*
3989  * Eliminate a jfreeblk for a block that does not need journaling.
3990  */
3991 static void
3992 cancel_jfreeblk(freeblks, blkno)
3993 	struct freeblks *freeblks;
3994 	ufs2_daddr_t blkno;
3995 {
3996 	struct jfreeblk *jfreeblk;
3997 	struct jblkdep *jblkdep;
3998 
3999 	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) {
4000 		if (jblkdep->jb_list.wk_type != D_JFREEBLK)
4001 			continue;
4002 		jfreeblk = WK_JFREEBLK(&jblkdep->jb_list);
4003 		if (jfreeblk->jf_blkno == blkno)
4004 			break;
4005 	}
4006 	if (jblkdep == NULL)
4007 		return;
4008 	CTR1(KTR_SUJ, "cancel_jfreeblk: blkno %jd", blkno);
4009 	free_jsegdep(jblkdep->jb_jsegdep);
4010 	LIST_REMOVE(jblkdep, jb_deps);
4011 	WORKITEM_FREE(jfreeblk, D_JFREEBLK);
4012 }
4013 
4014 /*
4015  * Allocate a new jfreeblk to journal top level block pointer when truncating
4016  * a file.  The caller must add this to the worklist when the soft updates
4017  * lock is held.
4018  */
4019 static struct jfreeblk *
4020 newjfreeblk(freeblks, lbn, blkno, frags)
4021 	struct freeblks *freeblks;
4022 	ufs_lbn_t lbn;
4023 	ufs2_daddr_t blkno;
4024 	int frags;
4025 {
4026 	struct jfreeblk *jfreeblk;
4027 
4028 	jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS);
4029 	workitem_alloc(&jfreeblk->jf_dep.jb_list, D_JFREEBLK,
4030 	    freeblks->fb_list.wk_mp);
4031 	jfreeblk->jf_dep.jb_jsegdep = newjsegdep(&jfreeblk->jf_dep.jb_list);
4032 	jfreeblk->jf_dep.jb_freeblks = freeblks;
4033 	jfreeblk->jf_ino = freeblks->fb_inum;
4034 	jfreeblk->jf_lbn = lbn;
4035 	jfreeblk->jf_blkno = blkno;
4036 	jfreeblk->jf_frags = frags;
4037 	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jfreeblk->jf_dep, jb_deps);
4038 
4039 	return (jfreeblk);
4040 }
4041 
4042 /*
4043  * Allocate a new jtrunc to track a partial truncation.
4044  */
4045 static struct jtrunc *
4046 newjtrunc(freeblks, size, extsize)
4047 	struct freeblks *freeblks;
4048 	off_t size;
4049 	int extsize;
4050 {
4051 	struct jtrunc *jtrunc;
4052 
4053 	jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS);
4054 	workitem_alloc(&jtrunc->jt_dep.jb_list, D_JTRUNC,
4055 	    freeblks->fb_list.wk_mp);
4056 	jtrunc->jt_dep.jb_jsegdep = newjsegdep(&jtrunc->jt_dep.jb_list);
4057 	jtrunc->jt_dep.jb_freeblks = freeblks;
4058 	jtrunc->jt_ino = freeblks->fb_inum;
4059 	jtrunc->jt_size = size;
4060 	jtrunc->jt_extsize = extsize;
4061 	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jtrunc->jt_dep, jb_deps);
4062 
4063 	return (jtrunc);
4064 }
4065 
4066 /*
4067  * If we're canceling a new bitmap we have to search for another ref
4068  * to move into the bmsafemap dep.  This might be better expressed
4069  * with another structure.
4070  */
4071 static void
4072 move_newblock_dep(jaddref, inodedep)
4073 	struct jaddref *jaddref;
4074 	struct inodedep *inodedep;
4075 {
4076 	struct inoref *inoref;
4077 	struct jaddref *jaddrefn;
4078 
4079 	jaddrefn = NULL;
4080 	for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
4081 	    inoref = TAILQ_NEXT(inoref, if_deps)) {
4082 		if ((jaddref->ja_state & NEWBLOCK) &&
4083 		    inoref->if_list.wk_type == D_JADDREF) {
4084 			jaddrefn = (struct jaddref *)inoref;
4085 			break;
4086 		}
4087 	}
4088 	if (jaddrefn == NULL)
4089 		return;
4090 	jaddrefn->ja_state &= ~(ATTACHED | UNDONE);
4091 	jaddrefn->ja_state |= jaddref->ja_state &
4092 	    (ATTACHED | UNDONE | NEWBLOCK);
4093 	jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK);
4094 	jaddref->ja_state |= ATTACHED;
4095 	LIST_REMOVE(jaddref, ja_bmdeps);
4096 	LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn,
4097 	    ja_bmdeps);
4098 }
4099 
4100 /*
4101  * Cancel a jaddref either before it has been written or while it is being
4102  * written.  This happens when a link is removed before the add reaches
4103  * the disk.  The jaddref dependency is kept linked into the bmsafemap
4104  * and inode to prevent the link count or bitmap from reaching the disk
4105  * until handle_workitem_remove() re-adjusts the counts and bitmaps as
4106  * required.
4107  *
4108  * Returns 1 if the canceled addref requires journaling of the remove and
4109  * 0 otherwise.
4110  */
4111 static int
4112 cancel_jaddref(jaddref, inodedep, wkhd)
4113 	struct jaddref *jaddref;
4114 	struct inodedep *inodedep;
4115 	struct workhead *wkhd;
4116 {
4117 	struct inoref *inoref;
4118 	struct jsegdep *jsegdep;
4119 	int needsj;
4120 
4121 	KASSERT((jaddref->ja_state & COMPLETE) == 0,
4122 	    ("cancel_jaddref: Canceling complete jaddref"));
4123 	if (jaddref->ja_state & (INPROGRESS | COMPLETE))
4124 		needsj = 1;
4125 	else
4126 		needsj = 0;
4127 	if (inodedep == NULL)
4128 		if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
4129 		    0, &inodedep) == 0)
4130 			panic("cancel_jaddref: Lost inodedep");
4131 	/*
4132 	 * We must adjust the nlink of any reference operation that follows
4133 	 * us so that it is consistent with the in-memory reference.  This
4134 	 * ensures that inode nlink rollbacks always have the correct link.
4135 	 */
4136 	if (needsj == 0) {
4137 		for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
4138 		    inoref = TAILQ_NEXT(inoref, if_deps)) {
4139 			if (inoref->if_state & GOINGAWAY)
4140 				break;
4141 			inoref->if_nlink--;
4142 		}
4143 	}
4144 	jsegdep = inoref_jseg(&jaddref->ja_ref);
4145 	if (jaddref->ja_state & NEWBLOCK)
4146 		move_newblock_dep(jaddref, inodedep);
4147 	wake_worklist(&jaddref->ja_list);
4148 	jaddref->ja_mkdir = NULL;
4149 	if (jaddref->ja_state & INPROGRESS) {
4150 		jaddref->ja_state &= ~INPROGRESS;
4151 		WORKLIST_REMOVE(&jaddref->ja_list);
4152 		jwork_insert(wkhd, jsegdep);
4153 	} else {
4154 		free_jsegdep(jsegdep);
4155 		if (jaddref->ja_state & DEPCOMPLETE)
4156 			remove_from_journal(&jaddref->ja_list);
4157 	}
4158 	jaddref->ja_state |= (GOINGAWAY | DEPCOMPLETE);
4159 	/*
4160 	 * Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove
4161 	 * can arrange for them to be freed with the bitmap.  Otherwise we
4162 	 * no longer need this addref attached to the inoreflst and it
4163 	 * will incorrectly adjust nlink if we leave it.
4164 	 */
4165 	if ((jaddref->ja_state & NEWBLOCK) == 0) {
4166 		TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
4167 		    if_deps);
4168 		jaddref->ja_state |= COMPLETE;
4169 		free_jaddref(jaddref);
4170 		return (needsj);
4171 	}
4172 	/*
4173 	 * Leave the head of the list for jsegdeps for fast merging.
4174 	 */
4175 	if (LIST_FIRST(wkhd) != NULL) {
4176 		jaddref->ja_state |= ONWORKLIST;
4177 		LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list);
4178 	} else
4179 		WORKLIST_INSERT(wkhd, &jaddref->ja_list);
4180 
4181 	return (needsj);
4182 }
4183 
4184 /*
4185  * Attempt to free a jaddref structure when some work completes.  This
4186  * should only succeed once the entry is written and all dependencies have
4187  * been notified.
4188  */
4189 static void
4190 free_jaddref(jaddref)
4191 	struct jaddref *jaddref;
4192 {
4193 
4194 	if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE)
4195 		return;
4196 	if (jaddref->ja_ref.if_jsegdep)
4197 		panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n",
4198 		    jaddref, jaddref->ja_state);
4199 	if (jaddref->ja_state & NEWBLOCK)
4200 		LIST_REMOVE(jaddref, ja_bmdeps);
4201 	if (jaddref->ja_state & (INPROGRESS | ONWORKLIST))
4202 		panic("free_jaddref: Bad state %p(0x%X)",
4203 		    jaddref, jaddref->ja_state);
4204 	if (jaddref->ja_mkdir != NULL)
4205 		panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state);
4206 	WORKITEM_FREE(jaddref, D_JADDREF);
4207 }
4208 
4209 /*
4210  * Free a jremref structure once it has been written or discarded.
4211  */
4212 static void
4213 free_jremref(jremref)
4214 	struct jremref *jremref;
4215 {
4216 
4217 	if (jremref->jr_ref.if_jsegdep)
4218 		free_jsegdep(jremref->jr_ref.if_jsegdep);
4219 	if (jremref->jr_state & INPROGRESS)
4220 		panic("free_jremref: IO still pending");
4221 	WORKITEM_FREE(jremref, D_JREMREF);
4222 }
4223 
4224 /*
4225  * Free a jnewblk structure.
4226  */
4227 static void
4228 free_jnewblk(jnewblk)
4229 	struct jnewblk *jnewblk;
4230 {
4231 
4232 	if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE)
4233 		return;
4234 	LIST_REMOVE(jnewblk, jn_deps);
4235 	if (jnewblk->jn_dep != NULL)
4236 		panic("free_jnewblk: Dependency still attached.");
4237 	WORKITEM_FREE(jnewblk, D_JNEWBLK);
4238 }
4239 
4240 /*
4241  * Cancel a jnewblk which has been been made redundant by frag extension.
4242  */
4243 static void
4244 cancel_jnewblk(jnewblk, wkhd)
4245 	struct jnewblk *jnewblk;
4246 	struct workhead *wkhd;
4247 {
4248 	struct jsegdep *jsegdep;
4249 
4250 	CTR1(KTR_SUJ, "cancel_jnewblk: blkno %jd", jnewblk->jn_blkno);
4251 	jsegdep = jnewblk->jn_jsegdep;
4252 	if (jnewblk->jn_jsegdep == NULL || jnewblk->jn_dep == NULL)
4253 		panic("cancel_jnewblk: Invalid state");
4254 	jnewblk->jn_jsegdep  = NULL;
4255 	jnewblk->jn_dep = NULL;
4256 	jnewblk->jn_state |= GOINGAWAY;
4257 	if (jnewblk->jn_state & INPROGRESS) {
4258 		jnewblk->jn_state &= ~INPROGRESS;
4259 		WORKLIST_REMOVE(&jnewblk->jn_list);
4260 		jwork_insert(wkhd, jsegdep);
4261 	} else {
4262 		free_jsegdep(jsegdep);
4263 		remove_from_journal(&jnewblk->jn_list);
4264 	}
4265 	wake_worklist(&jnewblk->jn_list);
4266 	WORKLIST_INSERT(wkhd, &jnewblk->jn_list);
4267 }
4268 
4269 static void
4270 free_jblkdep(jblkdep)
4271 	struct jblkdep *jblkdep;
4272 {
4273 
4274 	if (jblkdep->jb_list.wk_type == D_JFREEBLK)
4275 		WORKITEM_FREE(jblkdep, D_JFREEBLK);
4276 	else if (jblkdep->jb_list.wk_type == D_JTRUNC)
4277 		WORKITEM_FREE(jblkdep, D_JTRUNC);
4278 	else
4279 		panic("free_jblkdep: Unexpected type %s",
4280 		    TYPENAME(jblkdep->jb_list.wk_type));
4281 }
4282 
4283 /*
4284  * Free a single jseg once it is no longer referenced in memory or on
4285  * disk.  Reclaim journal blocks and dependencies waiting for the segment
4286  * to disappear.
4287  */
4288 static void
4289 free_jseg(jseg, jblocks)
4290 	struct jseg *jseg;
4291 	struct jblocks *jblocks;
4292 {
4293 	struct freework *freework;
4294 
4295 	/*
4296 	 * Free freework structures that were lingering to indicate freed
4297 	 * indirect blocks that forced journal write ordering on reallocate.
4298 	 */
4299 	while ((freework = LIST_FIRST(&jseg->js_indirs)) != NULL)
4300 		indirblk_remove(freework);
4301 	if (jblocks->jb_oldestseg == jseg)
4302 		jblocks->jb_oldestseg = TAILQ_NEXT(jseg, js_next);
4303 	TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next);
4304 	jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size);
4305 	KASSERT(LIST_EMPTY(&jseg->js_entries),
4306 	    ("free_jseg: Freed jseg has valid entries."));
4307 	WORKITEM_FREE(jseg, D_JSEG);
4308 }
4309 
4310 /*
4311  * Free all jsegs that meet the criteria for being reclaimed and update
4312  * oldestseg.
4313  */
4314 static void
4315 free_jsegs(jblocks)
4316 	struct jblocks *jblocks;
4317 {
4318 	struct jseg *jseg;
4319 
4320 	/*
4321 	 * Free only those jsegs which have none allocated before them to
4322 	 * preserve the journal space ordering.
4323 	 */
4324 	while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) {
4325 		/*
4326 		 * Only reclaim space when nothing depends on this journal
4327 		 * set and another set has written that it is no longer
4328 		 * valid.
4329 		 */
4330 		if (jseg->js_refs != 0) {
4331 			jblocks->jb_oldestseg = jseg;
4332 			return;
4333 		}
4334 		if ((jseg->js_state & ALLCOMPLETE) != ALLCOMPLETE)
4335 			break;
4336 		if (jseg->js_seq > jblocks->jb_oldestwrseq)
4337 			break;
4338 		/*
4339 		 * We can free jsegs that didn't write entries when
4340 		 * oldestwrseq == js_seq.
4341 		 */
4342 		if (jseg->js_seq == jblocks->jb_oldestwrseq &&
4343 		    jseg->js_cnt != 0)
4344 			break;
4345 		free_jseg(jseg, jblocks);
4346 	}
4347 	/*
4348 	 * If we exited the loop above we still must discover the
4349 	 * oldest valid segment.
4350 	 */
4351 	if (jseg)
4352 		for (jseg = jblocks->jb_oldestseg; jseg != NULL;
4353 		     jseg = TAILQ_NEXT(jseg, js_next))
4354 			if (jseg->js_refs != 0)
4355 				break;
4356 	jblocks->jb_oldestseg = jseg;
4357 	/*
4358 	 * The journal has no valid records but some jsegs may still be
4359 	 * waiting on oldestwrseq to advance.  We force a small record
4360 	 * out to permit these lingering records to be reclaimed.
4361 	 */
4362 	if (jblocks->jb_oldestseg == NULL && !TAILQ_EMPTY(&jblocks->jb_segs))
4363 		jblocks->jb_needseg = 1;
4364 }
4365 
4366 /*
4367  * Release one reference to a jseg and free it if the count reaches 0.  This
4368  * should eventually reclaim journal space as well.
4369  */
4370 static void
4371 rele_jseg(jseg)
4372 	struct jseg *jseg;
4373 {
4374 
4375 	KASSERT(jseg->js_refs > 0,
4376 	    ("free_jseg: Invalid refcnt %d", jseg->js_refs));
4377 	if (--jseg->js_refs != 0)
4378 		return;
4379 	free_jsegs(jseg->js_jblocks);
4380 }
4381 
4382 /*
4383  * Release a jsegdep and decrement the jseg count.
4384  */
4385 static void
4386 free_jsegdep(jsegdep)
4387 	struct jsegdep *jsegdep;
4388 {
4389 
4390 	if (jsegdep->jd_seg)
4391 		rele_jseg(jsegdep->jd_seg);
4392 	WORKITEM_FREE(jsegdep, D_JSEGDEP);
4393 }
4394 
4395 /*
4396  * Wait for a journal item to make it to disk.  Initiate journal processing
4397  * if required.
4398  */
4399 static int
4400 jwait(wk, waitfor)
4401 	struct worklist *wk;
4402 	int waitfor;
4403 {
4404 
4405 	LOCK_OWNED(VFSTOUFS(wk->wk_mp));
4406 	/*
4407 	 * Blocking journal waits cause slow synchronous behavior.  Record
4408 	 * stats on the frequency of these blocking operations.
4409 	 */
4410 	if (waitfor == MNT_WAIT) {
4411 		stat_journal_wait++;
4412 		switch (wk->wk_type) {
4413 		case D_JREMREF:
4414 		case D_JMVREF:
4415 			stat_jwait_filepage++;
4416 			break;
4417 		case D_JTRUNC:
4418 		case D_JFREEBLK:
4419 			stat_jwait_freeblks++;
4420 			break;
4421 		case D_JNEWBLK:
4422 			stat_jwait_newblk++;
4423 			break;
4424 		case D_JADDREF:
4425 			stat_jwait_inode++;
4426 			break;
4427 		default:
4428 			break;
4429 		}
4430 	}
4431 	/*
4432 	 * If IO has not started we process the journal.  We can't mark the
4433 	 * worklist item as IOWAITING because we drop the lock while
4434 	 * processing the journal and the worklist entry may be freed after
4435 	 * this point.  The caller may call back in and re-issue the request.
4436 	 */
4437 	if ((wk->wk_state & INPROGRESS) == 0) {
4438 		softdep_process_journal(wk->wk_mp, wk, waitfor);
4439 		if (waitfor != MNT_WAIT)
4440 			return (EBUSY);
4441 		return (0);
4442 	}
4443 	if (waitfor != MNT_WAIT)
4444 		return (EBUSY);
4445 	wait_worklist(wk, "jwait");
4446 	return (0);
4447 }
4448 
4449 /*
4450  * Lookup an inodedep based on an inode pointer and set the nlinkdelta as
4451  * appropriate.  This is a convenience function to reduce duplicate code
4452  * for the setup and revert functions below.
4453  */
4454 static struct inodedep *
4455 inodedep_lookup_ip(ip)
4456 	struct inode *ip;
4457 {
4458 	struct inodedep *inodedep;
4459 	int dflags;
4460 
4461 	KASSERT(ip->i_nlink >= ip->i_effnlink,
4462 	    ("inodedep_lookup_ip: bad delta"));
4463 	dflags = DEPALLOC;
4464 	if (IS_SNAPSHOT(ip))
4465 		dflags |= NODELAY;
4466 	(void) inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, dflags,
4467 	    &inodedep);
4468 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
4469 	KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
4470 
4471 	return (inodedep);
4472 }
4473 
4474 /*
4475  * Called prior to creating a new inode and linking it to a directory.  The
4476  * jaddref structure must already be allocated by softdep_setup_inomapdep
4477  * and it is discovered here so we can initialize the mode and update
4478  * nlinkdelta.
4479  */
4480 void
4481 softdep_setup_create(dp, ip)
4482 	struct inode *dp;
4483 	struct inode *ip;
4484 {
4485 	struct inodedep *inodedep;
4486 	struct jaddref *jaddref;
4487 	struct vnode *dvp;
4488 
4489 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4490 	    ("softdep_setup_create called on non-softdep filesystem"));
4491 	KASSERT(ip->i_nlink == 1,
4492 	    ("softdep_setup_create: Invalid link count."));
4493 	dvp = ITOV(dp);
4494 	ACQUIRE_LOCK(dp->i_ump);
4495 	inodedep = inodedep_lookup_ip(ip);
4496 	if (DOINGSUJ(dvp)) {
4497 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4498 		    inoreflst);
4499 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
4500 		    ("softdep_setup_create: No addref structure present."));
4501 	}
4502 	softdep_prelink(dvp, NULL);
4503 	FREE_LOCK(dp->i_ump);
4504 }
4505 
4506 /*
4507  * Create a jaddref structure to track the addition of a DOTDOT link when
4508  * we are reparenting an inode as part of a rename.  This jaddref will be
4509  * found by softdep_setup_directory_change.  Adjusts nlinkdelta for
4510  * non-journaling softdep.
4511  */
4512 void
4513 softdep_setup_dotdot_link(dp, ip)
4514 	struct inode *dp;
4515 	struct inode *ip;
4516 {
4517 	struct inodedep *inodedep;
4518 	struct jaddref *jaddref;
4519 	struct vnode *dvp;
4520 	struct vnode *vp;
4521 
4522 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4523 	    ("softdep_setup_dotdot_link called on non-softdep filesystem"));
4524 	dvp = ITOV(dp);
4525 	vp = ITOV(ip);
4526 	jaddref = NULL;
4527 	/*
4528 	 * We don't set MKDIR_PARENT as this is not tied to a mkdir and
4529 	 * is used as a normal link would be.
4530 	 */
4531 	if (DOINGSUJ(dvp))
4532 		jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
4533 		    dp->i_effnlink - 1, dp->i_mode);
4534 	ACQUIRE_LOCK(dp->i_ump);
4535 	inodedep = inodedep_lookup_ip(dp);
4536 	if (jaddref)
4537 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4538 		    if_deps);
4539 	softdep_prelink(dvp, ITOV(ip));
4540 	FREE_LOCK(dp->i_ump);
4541 }
4542 
4543 /*
4544  * Create a jaddref structure to track a new link to an inode.  The directory
4545  * offset is not known until softdep_setup_directory_add or
4546  * softdep_setup_directory_change.  Adjusts nlinkdelta for non-journaling
4547  * softdep.
4548  */
4549 void
4550 softdep_setup_link(dp, ip)
4551 	struct inode *dp;
4552 	struct inode *ip;
4553 {
4554 	struct inodedep *inodedep;
4555 	struct jaddref *jaddref;
4556 	struct vnode *dvp;
4557 
4558 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4559 	    ("softdep_setup_link called on non-softdep filesystem"));
4560 	dvp = ITOV(dp);
4561 	jaddref = NULL;
4562 	if (DOINGSUJ(dvp))
4563 		jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1,
4564 		    ip->i_mode);
4565 	ACQUIRE_LOCK(dp->i_ump);
4566 	inodedep = inodedep_lookup_ip(ip);
4567 	if (jaddref)
4568 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4569 		    if_deps);
4570 	softdep_prelink(dvp, ITOV(ip));
4571 	FREE_LOCK(dp->i_ump);
4572 }
4573 
4574 /*
4575  * Called to create the jaddref structures to track . and .. references as
4576  * well as lookup and further initialize the incomplete jaddref created
4577  * by softdep_setup_inomapdep when the inode was allocated.  Adjusts
4578  * nlinkdelta for non-journaling softdep.
4579  */
4580 void
4581 softdep_setup_mkdir(dp, ip)
4582 	struct inode *dp;
4583 	struct inode *ip;
4584 {
4585 	struct inodedep *inodedep;
4586 	struct jaddref *dotdotaddref;
4587 	struct jaddref *dotaddref;
4588 	struct jaddref *jaddref;
4589 	struct vnode *dvp;
4590 
4591 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4592 	    ("softdep_setup_mkdir called on non-softdep filesystem"));
4593 	dvp = ITOV(dp);
4594 	dotaddref = dotdotaddref = NULL;
4595 	if (DOINGSUJ(dvp)) {
4596 		dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1,
4597 		    ip->i_mode);
4598 		dotaddref->ja_state |= MKDIR_BODY;
4599 		dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
4600 		    dp->i_effnlink - 1, dp->i_mode);
4601 		dotdotaddref->ja_state |= MKDIR_PARENT;
4602 	}
4603 	ACQUIRE_LOCK(dp->i_ump);
4604 	inodedep = inodedep_lookup_ip(ip);
4605 	if (DOINGSUJ(dvp)) {
4606 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4607 		    inoreflst);
4608 		KASSERT(jaddref != NULL,
4609 		    ("softdep_setup_mkdir: No addref structure present."));
4610 		KASSERT(jaddref->ja_parent == dp->i_number,
4611 		    ("softdep_setup_mkdir: bad parent %ju",
4612 		    (uintmax_t)jaddref->ja_parent));
4613 		TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref,
4614 		    if_deps);
4615 	}
4616 	inodedep = inodedep_lookup_ip(dp);
4617 	if (DOINGSUJ(dvp))
4618 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst,
4619 		    &dotdotaddref->ja_ref, if_deps);
4620 	softdep_prelink(ITOV(dp), NULL);
4621 	FREE_LOCK(dp->i_ump);
4622 }
4623 
4624 /*
4625  * Called to track nlinkdelta of the inode and parent directories prior to
4626  * unlinking a directory.
4627  */
4628 void
4629 softdep_setup_rmdir(dp, ip)
4630 	struct inode *dp;
4631 	struct inode *ip;
4632 {
4633 	struct vnode *dvp;
4634 
4635 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4636 	    ("softdep_setup_rmdir called on non-softdep filesystem"));
4637 	dvp = ITOV(dp);
4638 	ACQUIRE_LOCK(dp->i_ump);
4639 	(void) inodedep_lookup_ip(ip);
4640 	(void) inodedep_lookup_ip(dp);
4641 	softdep_prelink(dvp, ITOV(ip));
4642 	FREE_LOCK(dp->i_ump);
4643 }
4644 
4645 /*
4646  * Called to track nlinkdelta of the inode and parent directories prior to
4647  * unlink.
4648  */
4649 void
4650 softdep_setup_unlink(dp, ip)
4651 	struct inode *dp;
4652 	struct inode *ip;
4653 {
4654 	struct vnode *dvp;
4655 
4656 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4657 	    ("softdep_setup_unlink called on non-softdep filesystem"));
4658 	dvp = ITOV(dp);
4659 	ACQUIRE_LOCK(dp->i_ump);
4660 	(void) inodedep_lookup_ip(ip);
4661 	(void) inodedep_lookup_ip(dp);
4662 	softdep_prelink(dvp, ITOV(ip));
4663 	FREE_LOCK(dp->i_ump);
4664 }
4665 
4666 /*
4667  * Called to release the journal structures created by a failed non-directory
4668  * creation.  Adjusts nlinkdelta for non-journaling softdep.
4669  */
4670 void
4671 softdep_revert_create(dp, ip)
4672 	struct inode *dp;
4673 	struct inode *ip;
4674 {
4675 	struct inodedep *inodedep;
4676 	struct jaddref *jaddref;
4677 	struct vnode *dvp;
4678 
4679 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4680 	    ("softdep_revert_create called on non-softdep filesystem"));
4681 	dvp = ITOV(dp);
4682 	ACQUIRE_LOCK(dp->i_ump);
4683 	inodedep = inodedep_lookup_ip(ip);
4684 	if (DOINGSUJ(dvp)) {
4685 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4686 		    inoreflst);
4687 		KASSERT(jaddref->ja_parent == dp->i_number,
4688 		    ("softdep_revert_create: addref parent mismatch"));
4689 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4690 	}
4691 	FREE_LOCK(dp->i_ump);
4692 }
4693 
4694 /*
4695  * Called to release the journal structures created by a failed link
4696  * addition.  Adjusts nlinkdelta for non-journaling softdep.
4697  */
4698 void
4699 softdep_revert_link(dp, ip)
4700 	struct inode *dp;
4701 	struct inode *ip;
4702 {
4703 	struct inodedep *inodedep;
4704 	struct jaddref *jaddref;
4705 	struct vnode *dvp;
4706 
4707 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4708 	    ("softdep_revert_link called on non-softdep filesystem"));
4709 	dvp = ITOV(dp);
4710 	ACQUIRE_LOCK(dp->i_ump);
4711 	inodedep = inodedep_lookup_ip(ip);
4712 	if (DOINGSUJ(dvp)) {
4713 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4714 		    inoreflst);
4715 		KASSERT(jaddref->ja_parent == dp->i_number,
4716 		    ("softdep_revert_link: addref parent mismatch"));
4717 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4718 	}
4719 	FREE_LOCK(dp->i_ump);
4720 }
4721 
4722 /*
4723  * Called to release the journal structures created by a failed mkdir
4724  * attempt.  Adjusts nlinkdelta for non-journaling softdep.
4725  */
4726 void
4727 softdep_revert_mkdir(dp, ip)
4728 	struct inode *dp;
4729 	struct inode *ip;
4730 {
4731 	struct inodedep *inodedep;
4732 	struct jaddref *jaddref;
4733 	struct jaddref *dotaddref;
4734 	struct vnode *dvp;
4735 
4736 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4737 	    ("softdep_revert_mkdir called on non-softdep filesystem"));
4738 	dvp = ITOV(dp);
4739 
4740 	ACQUIRE_LOCK(dp->i_ump);
4741 	inodedep = inodedep_lookup_ip(dp);
4742 	if (DOINGSUJ(dvp)) {
4743 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4744 		    inoreflst);
4745 		KASSERT(jaddref->ja_parent == ip->i_number,
4746 		    ("softdep_revert_mkdir: dotdot addref parent mismatch"));
4747 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4748 	}
4749 	inodedep = inodedep_lookup_ip(ip);
4750 	if (DOINGSUJ(dvp)) {
4751 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4752 		    inoreflst);
4753 		KASSERT(jaddref->ja_parent == dp->i_number,
4754 		    ("softdep_revert_mkdir: addref parent mismatch"));
4755 		dotaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
4756 		    inoreflst, if_deps);
4757 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4758 		KASSERT(dotaddref->ja_parent == ip->i_number,
4759 		    ("softdep_revert_mkdir: dot addref parent mismatch"));
4760 		cancel_jaddref(dotaddref, inodedep, &inodedep->id_inowait);
4761 	}
4762 	FREE_LOCK(dp->i_ump);
4763 }
4764 
4765 /*
4766  * Called to correct nlinkdelta after a failed rmdir.
4767  */
4768 void
4769 softdep_revert_rmdir(dp, ip)
4770 	struct inode *dp;
4771 	struct inode *ip;
4772 {
4773 
4774 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4775 	    ("softdep_revert_rmdir called on non-softdep filesystem"));
4776 	ACQUIRE_LOCK(dp->i_ump);
4777 	(void) inodedep_lookup_ip(ip);
4778 	(void) inodedep_lookup_ip(dp);
4779 	FREE_LOCK(dp->i_ump);
4780 }
4781 
4782 /*
4783  * Protecting the freemaps (or bitmaps).
4784  *
4785  * To eliminate the need to execute fsck before mounting a filesystem
4786  * after a power failure, one must (conservatively) guarantee that the
4787  * on-disk copy of the bitmaps never indicate that a live inode or block is
4788  * free.  So, when a block or inode is allocated, the bitmap should be
4789  * updated (on disk) before any new pointers.  When a block or inode is
4790  * freed, the bitmap should not be updated until all pointers have been
4791  * reset.  The latter dependency is handled by the delayed de-allocation
4792  * approach described below for block and inode de-allocation.  The former
4793  * dependency is handled by calling the following procedure when a block or
4794  * inode is allocated. When an inode is allocated an "inodedep" is created
4795  * with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
4796  * Each "inodedep" is also inserted into the hash indexing structure so
4797  * that any additional link additions can be made dependent on the inode
4798  * allocation.
4799  *
4800  * The ufs filesystem maintains a number of free block counts (e.g., per
4801  * cylinder group, per cylinder and per <cylinder, rotational position> pair)
4802  * in addition to the bitmaps.  These counts are used to improve efficiency
4803  * during allocation and therefore must be consistent with the bitmaps.
4804  * There is no convenient way to guarantee post-crash consistency of these
4805  * counts with simple update ordering, for two main reasons: (1) The counts
4806  * and bitmaps for a single cylinder group block are not in the same disk
4807  * sector.  If a disk write is interrupted (e.g., by power failure), one may
4808  * be written and the other not.  (2) Some of the counts are located in the
4809  * superblock rather than the cylinder group block. So, we focus our soft
4810  * updates implementation on protecting the bitmaps. When mounting a
4811  * filesystem, we recompute the auxiliary counts from the bitmaps.
4812  */
4813 
4814 /*
4815  * Called just after updating the cylinder group block to allocate an inode.
4816  */
4817 void
4818 softdep_setup_inomapdep(bp, ip, newinum, mode)
4819 	struct buf *bp;		/* buffer for cylgroup block with inode map */
4820 	struct inode *ip;	/* inode related to allocation */
4821 	ino_t newinum;		/* new inode number being allocated */
4822 	int mode;
4823 {
4824 	struct inodedep *inodedep;
4825 	struct bmsafemap *bmsafemap;
4826 	struct jaddref *jaddref;
4827 	struct mount *mp;
4828 	struct fs *fs;
4829 
4830 	mp = UFSTOVFS(ip->i_ump);
4831 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
4832 	    ("softdep_setup_inomapdep called on non-softdep filesystem"));
4833 	fs = ip->i_ump->um_fs;
4834 	jaddref = NULL;
4835 
4836 	/*
4837 	 * Allocate the journal reference add structure so that the bitmap
4838 	 * can be dependent on it.
4839 	 */
4840 	if (MOUNTEDSUJ(mp)) {
4841 		jaddref = newjaddref(ip, newinum, 0, 0, mode);
4842 		jaddref->ja_state |= NEWBLOCK;
4843 	}
4844 
4845 	/*
4846 	 * Create a dependency for the newly allocated inode.
4847 	 * Panic if it already exists as something is seriously wrong.
4848 	 * Otherwise add it to the dependency list for the buffer holding
4849 	 * the cylinder group map from which it was allocated.
4850 	 *
4851 	 * We have to preallocate a bmsafemap entry in case it is needed
4852 	 * in bmsafemap_lookup since once we allocate the inodedep, we
4853 	 * have to finish initializing it before we can FREE_LOCK().
4854 	 * By preallocating, we avoid FREE_LOCK() while doing a malloc
4855 	 * in bmsafemap_lookup. We cannot call bmsafemap_lookup before
4856 	 * creating the inodedep as it can be freed during the time
4857 	 * that we FREE_LOCK() while allocating the inodedep. We must
4858 	 * call workitem_alloc() before entering the locked section as
4859 	 * it also acquires the lock and we must avoid trying doing so
4860 	 * recursively.
4861 	 */
4862 	bmsafemap = malloc(sizeof(struct bmsafemap),
4863 	    M_BMSAFEMAP, M_SOFTDEP_FLAGS);
4864 	workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
4865 	ACQUIRE_LOCK(ip->i_ump);
4866 	if ((inodedep_lookup(mp, newinum, DEPALLOC | NODELAY, &inodedep)))
4867 		panic("softdep_setup_inomapdep: dependency %p for new"
4868 		    "inode already exists", inodedep);
4869 	bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum), bmsafemap);
4870 	if (jaddref) {
4871 		LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps);
4872 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4873 		    if_deps);
4874 	} else {
4875 		inodedep->id_state |= ONDEPLIST;
4876 		LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
4877 	}
4878 	inodedep->id_bmsafemap = bmsafemap;
4879 	inodedep->id_state &= ~DEPCOMPLETE;
4880 	FREE_LOCK(ip->i_ump);
4881 }
4882 
4883 /*
4884  * Called just after updating the cylinder group block to
4885  * allocate block or fragment.
4886  */
4887 void
4888 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
4889 	struct buf *bp;		/* buffer for cylgroup block with block map */
4890 	struct mount *mp;	/* filesystem doing allocation */
4891 	ufs2_daddr_t newblkno;	/* number of newly allocated block */
4892 	int frags;		/* Number of fragments. */
4893 	int oldfrags;		/* Previous number of fragments for extend. */
4894 {
4895 	struct newblk *newblk;
4896 	struct bmsafemap *bmsafemap;
4897 	struct jnewblk *jnewblk;
4898 	struct ufsmount *ump;
4899 	struct fs *fs;
4900 
4901 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
4902 	    ("softdep_setup_blkmapdep called on non-softdep filesystem"));
4903 	ump = VFSTOUFS(mp);
4904 	fs = ump->um_fs;
4905 	jnewblk = NULL;
4906 	/*
4907 	 * Create a dependency for the newly allocated block.
4908 	 * Add it to the dependency list for the buffer holding
4909 	 * the cylinder group map from which it was allocated.
4910 	 */
4911 	if (MOUNTEDSUJ(mp)) {
4912 		jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS);
4913 		workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp);
4914 		jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list);
4915 		jnewblk->jn_state = ATTACHED;
4916 		jnewblk->jn_blkno = newblkno;
4917 		jnewblk->jn_frags = frags;
4918 		jnewblk->jn_oldfrags = oldfrags;
4919 #ifdef SUJ_DEBUG
4920 		{
4921 			struct cg *cgp;
4922 			uint8_t *blksfree;
4923 			long bno;
4924 			int i;
4925 
4926 			cgp = (struct cg *)bp->b_data;
4927 			blksfree = cg_blksfree(cgp);
4928 			bno = dtogd(fs, jnewblk->jn_blkno);
4929 			for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags;
4930 			    i++) {
4931 				if (isset(blksfree, bno + i))
4932 					panic("softdep_setup_blkmapdep: "
4933 					    "free fragment %d from %d-%d "
4934 					    "state 0x%X dep %p", i,
4935 					    jnewblk->jn_oldfrags,
4936 					    jnewblk->jn_frags,
4937 					    jnewblk->jn_state,
4938 					    jnewblk->jn_dep);
4939 			}
4940 		}
4941 #endif
4942 	}
4943 
4944 	CTR3(KTR_SUJ,
4945 	    "softdep_setup_blkmapdep: blkno %jd frags %d oldfrags %d",
4946 	    newblkno, frags, oldfrags);
4947 	ACQUIRE_LOCK(ump);
4948 	if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0)
4949 		panic("softdep_setup_blkmapdep: found block");
4950 	newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp,
4951 	    dtog(fs, newblkno), NULL);
4952 	if (jnewblk) {
4953 		jnewblk->jn_dep = (struct worklist *)newblk;
4954 		LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps);
4955 	} else {
4956 		newblk->nb_state |= ONDEPLIST;
4957 		LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
4958 	}
4959 	newblk->nb_bmsafemap = bmsafemap;
4960 	newblk->nb_jnewblk = jnewblk;
4961 	FREE_LOCK(ump);
4962 }
4963 
4964 #define	BMSAFEMAP_HASH(ump, cg) \
4965       (&(ump)->bmsafemap_hashtbl[(cg) & (ump)->bmsafemap_hash_size])
4966 
4967 static int
4968 bmsafemap_find(bmsafemaphd, cg, bmsafemapp)
4969 	struct bmsafemap_hashhead *bmsafemaphd;
4970 	int cg;
4971 	struct bmsafemap **bmsafemapp;
4972 {
4973 	struct bmsafemap *bmsafemap;
4974 
4975 	LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash)
4976 		if (bmsafemap->sm_cg == cg)
4977 			break;
4978 	if (bmsafemap) {
4979 		*bmsafemapp = bmsafemap;
4980 		return (1);
4981 	}
4982 	*bmsafemapp = NULL;
4983 
4984 	return (0);
4985 }
4986 
4987 /*
4988  * Find the bmsafemap associated with a cylinder group buffer.
4989  * If none exists, create one. The buffer must be locked when
4990  * this routine is called and this routine must be called with
4991  * the softdep lock held. To avoid giving up the lock while
4992  * allocating a new bmsafemap, a preallocated bmsafemap may be
4993  * provided. If it is provided but not needed, it is freed.
4994  */
4995 static struct bmsafemap *
4996 bmsafemap_lookup(mp, bp, cg, newbmsafemap)
4997 	struct mount *mp;
4998 	struct buf *bp;
4999 	int cg;
5000 	struct bmsafemap *newbmsafemap;
5001 {
5002 	struct bmsafemap_hashhead *bmsafemaphd;
5003 	struct bmsafemap *bmsafemap, *collision;
5004 	struct worklist *wk;
5005 	struct ufsmount *ump;
5006 
5007 	ump = VFSTOUFS(mp);
5008 	LOCK_OWNED(ump);
5009 	KASSERT(bp != NULL, ("bmsafemap_lookup: missing buffer"));
5010 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5011 		if (wk->wk_type == D_BMSAFEMAP) {
5012 			if (newbmsafemap)
5013 				WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP);
5014 			return (WK_BMSAFEMAP(wk));
5015 		}
5016 	}
5017 	bmsafemaphd = BMSAFEMAP_HASH(ump, cg);
5018 	if (bmsafemap_find(bmsafemaphd, cg, &bmsafemap) == 1) {
5019 		if (newbmsafemap)
5020 			WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP);
5021 		return (bmsafemap);
5022 	}
5023 	if (newbmsafemap) {
5024 		bmsafemap = newbmsafemap;
5025 	} else {
5026 		FREE_LOCK(ump);
5027 		bmsafemap = malloc(sizeof(struct bmsafemap),
5028 			M_BMSAFEMAP, M_SOFTDEP_FLAGS);
5029 		workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
5030 		ACQUIRE_LOCK(ump);
5031 	}
5032 	bmsafemap->sm_buf = bp;
5033 	LIST_INIT(&bmsafemap->sm_inodedephd);
5034 	LIST_INIT(&bmsafemap->sm_inodedepwr);
5035 	LIST_INIT(&bmsafemap->sm_newblkhd);
5036 	LIST_INIT(&bmsafemap->sm_newblkwr);
5037 	LIST_INIT(&bmsafemap->sm_jaddrefhd);
5038 	LIST_INIT(&bmsafemap->sm_jnewblkhd);
5039 	LIST_INIT(&bmsafemap->sm_freehd);
5040 	LIST_INIT(&bmsafemap->sm_freewr);
5041 	if (bmsafemap_find(bmsafemaphd, cg, &collision) == 1) {
5042 		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
5043 		return (collision);
5044 	}
5045 	bmsafemap->sm_cg = cg;
5046 	LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash);
5047 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
5048 	WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list);
5049 	return (bmsafemap);
5050 }
5051 
5052 /*
5053  * Direct block allocation dependencies.
5054  *
5055  * When a new block is allocated, the corresponding disk locations must be
5056  * initialized (with zeros or new data) before the on-disk inode points to
5057  * them.  Also, the freemap from which the block was allocated must be
5058  * updated (on disk) before the inode's pointer. These two dependencies are
5059  * independent of each other and are needed for all file blocks and indirect
5060  * blocks that are pointed to directly by the inode.  Just before the
5061  * "in-core" version of the inode is updated with a newly allocated block
5062  * number, a procedure (below) is called to setup allocation dependency
5063  * structures.  These structures are removed when the corresponding
5064  * dependencies are satisfied or when the block allocation becomes obsolete
5065  * (i.e., the file is deleted, the block is de-allocated, or the block is a
5066  * fragment that gets upgraded).  All of these cases are handled in
5067  * procedures described later.
5068  *
5069  * When a file extension causes a fragment to be upgraded, either to a larger
5070  * fragment or to a full block, the on-disk location may change (if the
5071  * previous fragment could not simply be extended). In this case, the old
5072  * fragment must be de-allocated, but not until after the inode's pointer has
5073  * been updated. In most cases, this is handled by later procedures, which
5074  * will construct a "freefrag" structure to be added to the workitem queue
5075  * when the inode update is complete (or obsolete).  The main exception to
5076  * this is when an allocation occurs while a pending allocation dependency
5077  * (for the same block pointer) remains.  This case is handled in the main
5078  * allocation dependency setup procedure by immediately freeing the
5079  * unreferenced fragments.
5080  */
5081 void
5082 softdep_setup_allocdirect(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
5083 	struct inode *ip;	/* inode to which block is being added */
5084 	ufs_lbn_t off;		/* block pointer within inode */
5085 	ufs2_daddr_t newblkno;	/* disk block number being added */
5086 	ufs2_daddr_t oldblkno;	/* previous block number, 0 unless frag */
5087 	long newsize;		/* size of new block */
5088 	long oldsize;		/* size of new block */
5089 	struct buf *bp;		/* bp for allocated block */
5090 {
5091 	struct allocdirect *adp, *oldadp;
5092 	struct allocdirectlst *adphead;
5093 	struct freefrag *freefrag;
5094 	struct inodedep *inodedep;
5095 	struct pagedep *pagedep;
5096 	struct jnewblk *jnewblk;
5097 	struct newblk *newblk;
5098 	struct mount *mp;
5099 	ufs_lbn_t lbn;
5100 
5101 	lbn = bp->b_lblkno;
5102 	mp = UFSTOVFS(ip->i_ump);
5103 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5104 	    ("softdep_setup_allocdirect called on non-softdep filesystem"));
5105 	if (oldblkno && oldblkno != newblkno)
5106 		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn);
5107 	else
5108 		freefrag = NULL;
5109 
5110 	CTR6(KTR_SUJ,
5111 	    "softdep_setup_allocdirect: ino %d blkno %jd oldblkno %jd "
5112 	    "off %jd newsize %ld oldsize %d",
5113 	    ip->i_number, newblkno, oldblkno, off, newsize, oldsize);
5114 	ACQUIRE_LOCK(ip->i_ump);
5115 	if (off >= NDADDR) {
5116 		if (lbn > 0)
5117 			panic("softdep_setup_allocdirect: bad lbn %jd, off %jd",
5118 			    lbn, off);
5119 		/* allocating an indirect block */
5120 		if (oldblkno != 0)
5121 			panic("softdep_setup_allocdirect: non-zero indir");
5122 	} else {
5123 		if (off != lbn)
5124 			panic("softdep_setup_allocdirect: lbn %jd != off %jd",
5125 			    lbn, off);
5126 		/*
5127 		 * Allocating a direct block.
5128 		 *
5129 		 * If we are allocating a directory block, then we must
5130 		 * allocate an associated pagedep to track additions and
5131 		 * deletions.
5132 		 */
5133 		if ((ip->i_mode & IFMT) == IFDIR)
5134 			pagedep_lookup(mp, bp, ip->i_number, off, DEPALLOC,
5135 			    &pagedep);
5136 	}
5137 	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
5138 		panic("softdep_setup_allocdirect: lost block");
5139 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5140 	    ("softdep_setup_allocdirect: newblk already initialized"));
5141 	/*
5142 	 * Convert the newblk to an allocdirect.
5143 	 */
5144 	WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT);
5145 	adp = (struct allocdirect *)newblk;
5146 	newblk->nb_freefrag = freefrag;
5147 	adp->ad_offset = off;
5148 	adp->ad_oldblkno = oldblkno;
5149 	adp->ad_newsize = newsize;
5150 	adp->ad_oldsize = oldsize;
5151 
5152 	/*
5153 	 * Finish initializing the journal.
5154 	 */
5155 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5156 		jnewblk->jn_ino = ip->i_number;
5157 		jnewblk->jn_lbn = lbn;
5158 		add_to_journal(&jnewblk->jn_list);
5159 	}
5160 	if (freefrag && freefrag->ff_jdep != NULL &&
5161 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5162 		add_to_journal(freefrag->ff_jdep);
5163 	inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep);
5164 	adp->ad_inodedep = inodedep;
5165 
5166 	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
5167 	/*
5168 	 * The list of allocdirects must be kept in sorted and ascending
5169 	 * order so that the rollback routines can quickly determine the
5170 	 * first uncommitted block (the size of the file stored on disk
5171 	 * ends at the end of the lowest committed fragment, or if there
5172 	 * are no fragments, at the end of the highest committed block).
5173 	 * Since files generally grow, the typical case is that the new
5174 	 * block is to be added at the end of the list. We speed this
5175 	 * special case by checking against the last allocdirect in the
5176 	 * list before laboriously traversing the list looking for the
5177 	 * insertion point.
5178 	 */
5179 	adphead = &inodedep->id_newinoupdt;
5180 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
5181 	if (oldadp == NULL || oldadp->ad_offset <= off) {
5182 		/* insert at end of list */
5183 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
5184 		if (oldadp != NULL && oldadp->ad_offset == off)
5185 			allocdirect_merge(adphead, adp, oldadp);
5186 		FREE_LOCK(ip->i_ump);
5187 		return;
5188 	}
5189 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
5190 		if (oldadp->ad_offset >= off)
5191 			break;
5192 	}
5193 	if (oldadp == NULL)
5194 		panic("softdep_setup_allocdirect: lost entry");
5195 	/* insert in middle of list */
5196 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5197 	if (oldadp->ad_offset == off)
5198 		allocdirect_merge(adphead, adp, oldadp);
5199 
5200 	FREE_LOCK(ip->i_ump);
5201 }
5202 
5203 /*
5204  * Merge a newer and older journal record to be stored either in a
5205  * newblock or freefrag.  This handles aggregating journal records for
5206  * fragment allocation into a second record as well as replacing a
5207  * journal free with an aborted journal allocation.  A segment for the
5208  * oldest record will be placed on wkhd if it has been written.  If not
5209  * the segment for the newer record will suffice.
5210  */
5211 static struct worklist *
5212 jnewblk_merge(new, old, wkhd)
5213 	struct worklist *new;
5214 	struct worklist *old;
5215 	struct workhead *wkhd;
5216 {
5217 	struct jnewblk *njnewblk;
5218 	struct jnewblk *jnewblk;
5219 
5220 	/* Handle NULLs to simplify callers. */
5221 	if (new == NULL)
5222 		return (old);
5223 	if (old == NULL)
5224 		return (new);
5225 	/* Replace a jfreefrag with a jnewblk. */
5226 	if (new->wk_type == D_JFREEFRAG) {
5227 		if (WK_JNEWBLK(old)->jn_blkno != WK_JFREEFRAG(new)->fr_blkno)
5228 			panic("jnewblk_merge: blkno mismatch: %p, %p",
5229 			    old, new);
5230 		cancel_jfreefrag(WK_JFREEFRAG(new));
5231 		return (old);
5232 	}
5233 	if (old->wk_type != D_JNEWBLK || new->wk_type != D_JNEWBLK)
5234 		panic("jnewblk_merge: Bad type: old %d new %d\n",
5235 		    old->wk_type, new->wk_type);
5236 	/*
5237 	 * Handle merging of two jnewblk records that describe
5238 	 * different sets of fragments in the same block.
5239 	 */
5240 	jnewblk = WK_JNEWBLK(old);
5241 	njnewblk = WK_JNEWBLK(new);
5242 	if (jnewblk->jn_blkno != njnewblk->jn_blkno)
5243 		panic("jnewblk_merge: Merging disparate blocks.");
5244 	/*
5245 	 * The record may be rolled back in the cg.
5246 	 */
5247 	if (jnewblk->jn_state & UNDONE) {
5248 		jnewblk->jn_state &= ~UNDONE;
5249 		njnewblk->jn_state |= UNDONE;
5250 		njnewblk->jn_state &= ~ATTACHED;
5251 	}
5252 	/*
5253 	 * We modify the newer addref and free the older so that if neither
5254 	 * has been written the most up-to-date copy will be on disk.  If
5255 	 * both have been written but rolled back we only temporarily need
5256 	 * one of them to fix the bits when the cg write completes.
5257 	 */
5258 	jnewblk->jn_state |= ATTACHED | COMPLETE;
5259 	njnewblk->jn_oldfrags = jnewblk->jn_oldfrags;
5260 	cancel_jnewblk(jnewblk, wkhd);
5261 	WORKLIST_REMOVE(&jnewblk->jn_list);
5262 	free_jnewblk(jnewblk);
5263 	return (new);
5264 }
5265 
5266 /*
5267  * Replace an old allocdirect dependency with a newer one.
5268  * This routine must be called with splbio interrupts blocked.
5269  */
5270 static void
5271 allocdirect_merge(adphead, newadp, oldadp)
5272 	struct allocdirectlst *adphead;	/* head of list holding allocdirects */
5273 	struct allocdirect *newadp;	/* allocdirect being added */
5274 	struct allocdirect *oldadp;	/* existing allocdirect being checked */
5275 {
5276 	struct worklist *wk;
5277 	struct freefrag *freefrag;
5278 
5279 	freefrag = NULL;
5280 	LOCK_OWNED(VFSTOUFS(newadp->ad_list.wk_mp));
5281 	if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
5282 	    newadp->ad_oldsize != oldadp->ad_newsize ||
5283 	    newadp->ad_offset >= NDADDR)
5284 		panic("%s %jd != new %jd || old size %ld != new %ld",
5285 		    "allocdirect_merge: old blkno",
5286 		    (intmax_t)newadp->ad_oldblkno,
5287 		    (intmax_t)oldadp->ad_newblkno,
5288 		    newadp->ad_oldsize, oldadp->ad_newsize);
5289 	newadp->ad_oldblkno = oldadp->ad_oldblkno;
5290 	newadp->ad_oldsize = oldadp->ad_oldsize;
5291 	/*
5292 	 * If the old dependency had a fragment to free or had never
5293 	 * previously had a block allocated, then the new dependency
5294 	 * can immediately post its freefrag and adopt the old freefrag.
5295 	 * This action is done by swapping the freefrag dependencies.
5296 	 * The new dependency gains the old one's freefrag, and the
5297 	 * old one gets the new one and then immediately puts it on
5298 	 * the worklist when it is freed by free_newblk. It is
5299 	 * not possible to do this swap when the old dependency had a
5300 	 * non-zero size but no previous fragment to free. This condition
5301 	 * arises when the new block is an extension of the old block.
5302 	 * Here, the first part of the fragment allocated to the new
5303 	 * dependency is part of the block currently claimed on disk by
5304 	 * the old dependency, so cannot legitimately be freed until the
5305 	 * conditions for the new dependency are fulfilled.
5306 	 */
5307 	freefrag = newadp->ad_freefrag;
5308 	if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
5309 		newadp->ad_freefrag = oldadp->ad_freefrag;
5310 		oldadp->ad_freefrag = freefrag;
5311 	}
5312 	/*
5313 	 * If we are tracking a new directory-block allocation,
5314 	 * move it from the old allocdirect to the new allocdirect.
5315 	 */
5316 	if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) {
5317 		WORKLIST_REMOVE(wk);
5318 		if (!LIST_EMPTY(&oldadp->ad_newdirblk))
5319 			panic("allocdirect_merge: extra newdirblk");
5320 		WORKLIST_INSERT(&newadp->ad_newdirblk, wk);
5321 	}
5322 	TAILQ_REMOVE(adphead, oldadp, ad_next);
5323 	/*
5324 	 * We need to move any journal dependencies over to the freefrag
5325 	 * that releases this block if it exists.  Otherwise we are
5326 	 * extending an existing block and we'll wait until that is
5327 	 * complete to release the journal space and extend the
5328 	 * new journal to cover this old space as well.
5329 	 */
5330 	if (freefrag == NULL) {
5331 		if (oldadp->ad_newblkno != newadp->ad_newblkno)
5332 			panic("allocdirect_merge: %jd != %jd",
5333 			    oldadp->ad_newblkno, newadp->ad_newblkno);
5334 		newadp->ad_block.nb_jnewblk = (struct jnewblk *)
5335 		    jnewblk_merge(&newadp->ad_block.nb_jnewblk->jn_list,
5336 		    &oldadp->ad_block.nb_jnewblk->jn_list,
5337 		    &newadp->ad_block.nb_jwork);
5338 		oldadp->ad_block.nb_jnewblk = NULL;
5339 		cancel_newblk(&oldadp->ad_block, NULL,
5340 		    &newadp->ad_block.nb_jwork);
5341 	} else {
5342 		wk = (struct worklist *) cancel_newblk(&oldadp->ad_block,
5343 		    &freefrag->ff_list, &freefrag->ff_jwork);
5344 		freefrag->ff_jdep = jnewblk_merge(freefrag->ff_jdep, wk,
5345 		    &freefrag->ff_jwork);
5346 	}
5347 	free_newblk(&oldadp->ad_block);
5348 }
5349 
5350 /*
5351  * Allocate a jfreefrag structure to journal a single block free.
5352  */
5353 static struct jfreefrag *
5354 newjfreefrag(freefrag, ip, blkno, size, lbn)
5355 	struct freefrag *freefrag;
5356 	struct inode *ip;
5357 	ufs2_daddr_t blkno;
5358 	long size;
5359 	ufs_lbn_t lbn;
5360 {
5361 	struct jfreefrag *jfreefrag;
5362 	struct fs *fs;
5363 
5364 	fs = ip->i_fs;
5365 	jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG,
5366 	    M_SOFTDEP_FLAGS);
5367 	workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, UFSTOVFS(ip->i_ump));
5368 	jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list);
5369 	jfreefrag->fr_state = ATTACHED | DEPCOMPLETE;
5370 	jfreefrag->fr_ino = ip->i_number;
5371 	jfreefrag->fr_lbn = lbn;
5372 	jfreefrag->fr_blkno = blkno;
5373 	jfreefrag->fr_frags = numfrags(fs, size);
5374 	jfreefrag->fr_freefrag = freefrag;
5375 
5376 	return (jfreefrag);
5377 }
5378 
5379 /*
5380  * Allocate a new freefrag structure.
5381  */
5382 static struct freefrag *
5383 newfreefrag(ip, blkno, size, lbn)
5384 	struct inode *ip;
5385 	ufs2_daddr_t blkno;
5386 	long size;
5387 	ufs_lbn_t lbn;
5388 {
5389 	struct freefrag *freefrag;
5390 	struct fs *fs;
5391 
5392 	CTR4(KTR_SUJ, "newfreefrag: ino %d blkno %jd size %ld lbn %jd",
5393 	    ip->i_number, blkno, size, lbn);
5394 	fs = ip->i_fs;
5395 	if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
5396 		panic("newfreefrag: frag size");
5397 	freefrag = malloc(sizeof(struct freefrag),
5398 	    M_FREEFRAG, M_SOFTDEP_FLAGS);
5399 	workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ip->i_ump));
5400 	freefrag->ff_state = ATTACHED;
5401 	LIST_INIT(&freefrag->ff_jwork);
5402 	freefrag->ff_inum = ip->i_number;
5403 	freefrag->ff_vtype = ITOV(ip)->v_type;
5404 	freefrag->ff_blkno = blkno;
5405 	freefrag->ff_fragsize = size;
5406 
5407 	if (MOUNTEDSUJ(UFSTOVFS(ip->i_ump))) {
5408 		freefrag->ff_jdep = (struct worklist *)
5409 		    newjfreefrag(freefrag, ip, blkno, size, lbn);
5410 	} else {
5411 		freefrag->ff_state |= DEPCOMPLETE;
5412 		freefrag->ff_jdep = NULL;
5413 	}
5414 
5415 	return (freefrag);
5416 }
5417 
5418 /*
5419  * This workitem de-allocates fragments that were replaced during
5420  * file block allocation.
5421  */
5422 static void
5423 handle_workitem_freefrag(freefrag)
5424 	struct freefrag *freefrag;
5425 {
5426 	struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp);
5427 	struct workhead wkhd;
5428 
5429 	CTR3(KTR_SUJ,
5430 	    "handle_workitem_freefrag: ino %d blkno %jd size %ld",
5431 	    freefrag->ff_inum, freefrag->ff_blkno, freefrag->ff_fragsize);
5432 	/*
5433 	 * It would be illegal to add new completion items to the
5434 	 * freefrag after it was schedule to be done so it must be
5435 	 * safe to modify the list head here.
5436 	 */
5437 	LIST_INIT(&wkhd);
5438 	ACQUIRE_LOCK(ump);
5439 	LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list);
5440 	/*
5441 	 * If the journal has not been written we must cancel it here.
5442 	 */
5443 	if (freefrag->ff_jdep) {
5444 		if (freefrag->ff_jdep->wk_type != D_JNEWBLK)
5445 			panic("handle_workitem_freefrag: Unexpected type %d\n",
5446 			    freefrag->ff_jdep->wk_type);
5447 		cancel_jnewblk(WK_JNEWBLK(freefrag->ff_jdep), &wkhd);
5448 	}
5449 	FREE_LOCK(ump);
5450 	ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno,
5451 	   freefrag->ff_fragsize, freefrag->ff_inum, freefrag->ff_vtype, &wkhd);
5452 	ACQUIRE_LOCK(ump);
5453 	WORKITEM_FREE(freefrag, D_FREEFRAG);
5454 	FREE_LOCK(ump);
5455 }
5456 
5457 /*
5458  * Set up a dependency structure for an external attributes data block.
5459  * This routine follows much of the structure of softdep_setup_allocdirect.
5460  * See the description of softdep_setup_allocdirect above for details.
5461  */
5462 void
5463 softdep_setup_allocext(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
5464 	struct inode *ip;
5465 	ufs_lbn_t off;
5466 	ufs2_daddr_t newblkno;
5467 	ufs2_daddr_t oldblkno;
5468 	long newsize;
5469 	long oldsize;
5470 	struct buf *bp;
5471 {
5472 	struct allocdirect *adp, *oldadp;
5473 	struct allocdirectlst *adphead;
5474 	struct freefrag *freefrag;
5475 	struct inodedep *inodedep;
5476 	struct jnewblk *jnewblk;
5477 	struct newblk *newblk;
5478 	struct mount *mp;
5479 	ufs_lbn_t lbn;
5480 
5481 	mp = UFSTOVFS(ip->i_ump);
5482 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5483 	    ("softdep_setup_allocext called on non-softdep filesystem"));
5484 	KASSERT(off < NXADDR, ("softdep_setup_allocext: lbn %lld > NXADDR",
5485 		    (long long)off));
5486 
5487 	lbn = bp->b_lblkno;
5488 	if (oldblkno && oldblkno != newblkno)
5489 		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn);
5490 	else
5491 		freefrag = NULL;
5492 
5493 	ACQUIRE_LOCK(ip->i_ump);
5494 	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
5495 		panic("softdep_setup_allocext: lost block");
5496 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5497 	    ("softdep_setup_allocext: newblk already initialized"));
5498 	/*
5499 	 * Convert the newblk to an allocdirect.
5500 	 */
5501 	WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT);
5502 	adp = (struct allocdirect *)newblk;
5503 	newblk->nb_freefrag = freefrag;
5504 	adp->ad_offset = off;
5505 	adp->ad_oldblkno = oldblkno;
5506 	adp->ad_newsize = newsize;
5507 	adp->ad_oldsize = oldsize;
5508 	adp->ad_state |=  EXTDATA;
5509 
5510 	/*
5511 	 * Finish initializing the journal.
5512 	 */
5513 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5514 		jnewblk->jn_ino = ip->i_number;
5515 		jnewblk->jn_lbn = lbn;
5516 		add_to_journal(&jnewblk->jn_list);
5517 	}
5518 	if (freefrag && freefrag->ff_jdep != NULL &&
5519 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5520 		add_to_journal(freefrag->ff_jdep);
5521 	inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep);
5522 	adp->ad_inodedep = inodedep;
5523 
5524 	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
5525 	/*
5526 	 * The list of allocdirects must be kept in sorted and ascending
5527 	 * order so that the rollback routines can quickly determine the
5528 	 * first uncommitted block (the size of the file stored on disk
5529 	 * ends at the end of the lowest committed fragment, or if there
5530 	 * are no fragments, at the end of the highest committed block).
5531 	 * Since files generally grow, the typical case is that the new
5532 	 * block is to be added at the end of the list. We speed this
5533 	 * special case by checking against the last allocdirect in the
5534 	 * list before laboriously traversing the list looking for the
5535 	 * insertion point.
5536 	 */
5537 	adphead = &inodedep->id_newextupdt;
5538 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
5539 	if (oldadp == NULL || oldadp->ad_offset <= off) {
5540 		/* insert at end of list */
5541 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
5542 		if (oldadp != NULL && oldadp->ad_offset == off)
5543 			allocdirect_merge(adphead, adp, oldadp);
5544 		FREE_LOCK(ip->i_ump);
5545 		return;
5546 	}
5547 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
5548 		if (oldadp->ad_offset >= off)
5549 			break;
5550 	}
5551 	if (oldadp == NULL)
5552 		panic("softdep_setup_allocext: lost entry");
5553 	/* insert in middle of list */
5554 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5555 	if (oldadp->ad_offset == off)
5556 		allocdirect_merge(adphead, adp, oldadp);
5557 	FREE_LOCK(ip->i_ump);
5558 }
5559 
5560 /*
5561  * Indirect block allocation dependencies.
5562  *
5563  * The same dependencies that exist for a direct block also exist when
5564  * a new block is allocated and pointed to by an entry in a block of
5565  * indirect pointers. The undo/redo states described above are also
5566  * used here. Because an indirect block contains many pointers that
5567  * may have dependencies, a second copy of the entire in-memory indirect
5568  * block is kept. The buffer cache copy is always completely up-to-date.
5569  * The second copy, which is used only as a source for disk writes,
5570  * contains only the safe pointers (i.e., those that have no remaining
5571  * update dependencies). The second copy is freed when all pointers
5572  * are safe. The cache is not allowed to replace indirect blocks with
5573  * pending update dependencies. If a buffer containing an indirect
5574  * block with dependencies is written, these routines will mark it
5575  * dirty again. It can only be successfully written once all the
5576  * dependencies are removed. The ffs_fsync routine in conjunction with
5577  * softdep_sync_metadata work together to get all the dependencies
5578  * removed so that a file can be successfully written to disk. Three
5579  * procedures are used when setting up indirect block pointer
5580  * dependencies. The division is necessary because of the organization
5581  * of the "balloc" routine and because of the distinction between file
5582  * pages and file metadata blocks.
5583  */
5584 
5585 /*
5586  * Allocate a new allocindir structure.
5587  */
5588 static struct allocindir *
5589 newallocindir(ip, ptrno, newblkno, oldblkno, lbn)
5590 	struct inode *ip;	/* inode for file being extended */
5591 	int ptrno;		/* offset of pointer in indirect block */
5592 	ufs2_daddr_t newblkno;	/* disk block number being added */
5593 	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
5594 	ufs_lbn_t lbn;
5595 {
5596 	struct newblk *newblk;
5597 	struct allocindir *aip;
5598 	struct freefrag *freefrag;
5599 	struct jnewblk *jnewblk;
5600 
5601 	if (oldblkno)
5602 		freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize, lbn);
5603 	else
5604 		freefrag = NULL;
5605 	ACQUIRE_LOCK(ip->i_ump);
5606 	if (newblk_lookup(UFSTOVFS(ip->i_ump), newblkno, 0, &newblk) == 0)
5607 		panic("new_allocindir: lost block");
5608 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5609 	    ("newallocindir: newblk already initialized"));
5610 	WORKITEM_REASSIGN(newblk, D_ALLOCINDIR);
5611 	newblk->nb_freefrag = freefrag;
5612 	aip = (struct allocindir *)newblk;
5613 	aip->ai_offset = ptrno;
5614 	aip->ai_oldblkno = oldblkno;
5615 	aip->ai_lbn = lbn;
5616 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5617 		jnewblk->jn_ino = ip->i_number;
5618 		jnewblk->jn_lbn = lbn;
5619 		add_to_journal(&jnewblk->jn_list);
5620 	}
5621 	if (freefrag && freefrag->ff_jdep != NULL &&
5622 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5623 		add_to_journal(freefrag->ff_jdep);
5624 	return (aip);
5625 }
5626 
5627 /*
5628  * Called just before setting an indirect block pointer
5629  * to a newly allocated file page.
5630  */
5631 void
5632 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
5633 	struct inode *ip;	/* inode for file being extended */
5634 	ufs_lbn_t lbn;		/* allocated block number within file */
5635 	struct buf *bp;		/* buffer with indirect blk referencing page */
5636 	int ptrno;		/* offset of pointer in indirect block */
5637 	ufs2_daddr_t newblkno;	/* disk block number being added */
5638 	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
5639 	struct buf *nbp;	/* buffer holding allocated page */
5640 {
5641 	struct inodedep *inodedep;
5642 	struct freefrag *freefrag;
5643 	struct allocindir *aip;
5644 	struct pagedep *pagedep;
5645 	struct mount *mp;
5646 	int dflags;
5647 
5648 	mp = UFSTOVFS(ip->i_ump);
5649 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5650 	    ("softdep_setup_allocindir_page called on non-softdep filesystem"));
5651 	KASSERT(lbn == nbp->b_lblkno,
5652 	    ("softdep_setup_allocindir_page: lbn %jd != lblkno %jd",
5653 	    lbn, bp->b_lblkno));
5654 	CTR4(KTR_SUJ,
5655 	    "softdep_setup_allocindir_page: ino %d blkno %jd oldblkno %jd "
5656 	    "lbn %jd", ip->i_number, newblkno, oldblkno, lbn);
5657 	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page");
5658 	aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn);
5659 	dflags = DEPALLOC;
5660 	if (IS_SNAPSHOT(ip))
5661 		dflags |= NODELAY;
5662 	(void) inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
5663 	/*
5664 	 * If we are allocating a directory page, then we must
5665 	 * allocate an associated pagedep to track additions and
5666 	 * deletions.
5667 	 */
5668 	if ((ip->i_mode & IFMT) == IFDIR)
5669 		pagedep_lookup(mp, nbp, ip->i_number, lbn, DEPALLOC, &pagedep);
5670 	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
5671 	freefrag = setup_allocindir_phase2(bp, ip, inodedep, aip, lbn);
5672 	FREE_LOCK(ip->i_ump);
5673 	if (freefrag)
5674 		handle_workitem_freefrag(freefrag);
5675 }
5676 
5677 /*
5678  * Called just before setting an indirect block pointer to a
5679  * newly allocated indirect block.
5680  */
5681 void
5682 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
5683 	struct buf *nbp;	/* newly allocated indirect block */
5684 	struct inode *ip;	/* inode for file being extended */
5685 	struct buf *bp;		/* indirect block referencing allocated block */
5686 	int ptrno;		/* offset of pointer in indirect block */
5687 	ufs2_daddr_t newblkno;	/* disk block number being added */
5688 {
5689 	struct inodedep *inodedep;
5690 	struct allocindir *aip;
5691 	ufs_lbn_t lbn;
5692 	int dflags;
5693 
5694 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
5695 	    ("softdep_setup_allocindir_meta called on non-softdep filesystem"));
5696 	CTR3(KTR_SUJ,
5697 	    "softdep_setup_allocindir_meta: ino %d blkno %jd ptrno %d",
5698 	    ip->i_number, newblkno, ptrno);
5699 	lbn = nbp->b_lblkno;
5700 	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta");
5701 	aip = newallocindir(ip, ptrno, newblkno, 0, lbn);
5702 	dflags = DEPALLOC;
5703 	if (IS_SNAPSHOT(ip))
5704 		dflags |= NODELAY;
5705 	inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, dflags, &inodedep);
5706 	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
5707 	if (setup_allocindir_phase2(bp, ip, inodedep, aip, lbn))
5708 		panic("softdep_setup_allocindir_meta: Block already existed");
5709 	FREE_LOCK(ip->i_ump);
5710 }
5711 
5712 static void
5713 indirdep_complete(indirdep)
5714 	struct indirdep *indirdep;
5715 {
5716 	struct allocindir *aip;
5717 
5718 	LIST_REMOVE(indirdep, ir_next);
5719 	indirdep->ir_state |= DEPCOMPLETE;
5720 
5721 	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) {
5722 		LIST_REMOVE(aip, ai_next);
5723 		free_newblk(&aip->ai_block);
5724 	}
5725 	/*
5726 	 * If this indirdep is not attached to a buf it was simply waiting
5727 	 * on completion to clear completehd.  free_indirdep() asserts
5728 	 * that nothing is dangling.
5729 	 */
5730 	if ((indirdep->ir_state & ONWORKLIST) == 0)
5731 		free_indirdep(indirdep);
5732 }
5733 
5734 static struct indirdep *
5735 indirdep_lookup(mp, ip, bp)
5736 	struct mount *mp;
5737 	struct inode *ip;
5738 	struct buf *bp;
5739 {
5740 	struct indirdep *indirdep, *newindirdep;
5741 	struct newblk *newblk;
5742 	struct ufsmount *ump;
5743 	struct worklist *wk;
5744 	struct fs *fs;
5745 	ufs2_daddr_t blkno;
5746 
5747 	ump = VFSTOUFS(mp);
5748 	LOCK_OWNED(ump);
5749 	indirdep = NULL;
5750 	newindirdep = NULL;
5751 	fs = ip->i_fs;
5752 	for (;;) {
5753 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5754 			if (wk->wk_type != D_INDIRDEP)
5755 				continue;
5756 			indirdep = WK_INDIRDEP(wk);
5757 			break;
5758 		}
5759 		/* Found on the buffer worklist, no new structure to free. */
5760 		if (indirdep != NULL && newindirdep == NULL)
5761 			return (indirdep);
5762 		if (indirdep != NULL && newindirdep != NULL)
5763 			panic("indirdep_lookup: simultaneous create");
5764 		/* None found on the buffer and a new structure is ready. */
5765 		if (indirdep == NULL && newindirdep != NULL)
5766 			break;
5767 		/* None found and no new structure available. */
5768 		FREE_LOCK(ump);
5769 		newindirdep = malloc(sizeof(struct indirdep),
5770 		    M_INDIRDEP, M_SOFTDEP_FLAGS);
5771 		workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp);
5772 		newindirdep->ir_state = ATTACHED;
5773 		if (ip->i_ump->um_fstype == UFS1)
5774 			newindirdep->ir_state |= UFS1FMT;
5775 		TAILQ_INIT(&newindirdep->ir_trunc);
5776 		newindirdep->ir_saveddata = NULL;
5777 		LIST_INIT(&newindirdep->ir_deplisthd);
5778 		LIST_INIT(&newindirdep->ir_donehd);
5779 		LIST_INIT(&newindirdep->ir_writehd);
5780 		LIST_INIT(&newindirdep->ir_completehd);
5781 		if (bp->b_blkno == bp->b_lblkno) {
5782 			ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp,
5783 			    NULL, NULL);
5784 			bp->b_blkno = blkno;
5785 		}
5786 		newindirdep->ir_freeblks = NULL;
5787 		newindirdep->ir_savebp =
5788 		    getblk(ip->i_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0);
5789 		newindirdep->ir_bp = bp;
5790 		BUF_KERNPROC(newindirdep->ir_savebp);
5791 		bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
5792 		ACQUIRE_LOCK(ump);
5793 	}
5794 	indirdep = newindirdep;
5795 	WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list);
5796 	/*
5797 	 * If the block is not yet allocated we don't set DEPCOMPLETE so
5798 	 * that we don't free dependencies until the pointers are valid.
5799 	 * This could search b_dep for D_ALLOCDIRECT/D_ALLOCINDIR rather
5800 	 * than using the hash.
5801 	 */
5802 	if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk))
5803 		LIST_INSERT_HEAD(&newblk->nb_indirdeps, indirdep, ir_next);
5804 	else
5805 		indirdep->ir_state |= DEPCOMPLETE;
5806 	return (indirdep);
5807 }
5808 
5809 /*
5810  * Called to finish the allocation of the "aip" allocated
5811  * by one of the two routines above.
5812  */
5813 static struct freefrag *
5814 setup_allocindir_phase2(bp, ip, inodedep, aip, lbn)
5815 	struct buf *bp;		/* in-memory copy of the indirect block */
5816 	struct inode *ip;	/* inode for file being extended */
5817 	struct inodedep *inodedep; /* Inodedep for ip */
5818 	struct allocindir *aip;	/* allocindir allocated by the above routines */
5819 	ufs_lbn_t lbn;		/* Logical block number for this block. */
5820 {
5821 	struct fs *fs;
5822 	struct indirdep *indirdep;
5823 	struct allocindir *oldaip;
5824 	struct freefrag *freefrag;
5825 	struct mount *mp;
5826 
5827 	LOCK_OWNED(ip->i_ump);
5828 	mp = UFSTOVFS(ip->i_ump);
5829 	fs = ip->i_fs;
5830 	if (bp->b_lblkno >= 0)
5831 		panic("setup_allocindir_phase2: not indir blk");
5832 	KASSERT(aip->ai_offset >= 0 && aip->ai_offset < NINDIR(fs),
5833 	    ("setup_allocindir_phase2: Bad offset %d", aip->ai_offset));
5834 	indirdep = indirdep_lookup(mp, ip, bp);
5835 	KASSERT(indirdep->ir_savebp != NULL,
5836 	    ("setup_allocindir_phase2 NULL ir_savebp"));
5837 	aip->ai_indirdep = indirdep;
5838 	/*
5839 	 * Check for an unwritten dependency for this indirect offset.  If
5840 	 * there is, merge the old dependency into the new one.  This happens
5841 	 * as a result of reallocblk only.
5842 	 */
5843 	freefrag = NULL;
5844 	if (aip->ai_oldblkno != 0) {
5845 		LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) {
5846 			if (oldaip->ai_offset == aip->ai_offset) {
5847 				freefrag = allocindir_merge(aip, oldaip);
5848 				goto done;
5849 			}
5850 		}
5851 		LIST_FOREACH(oldaip, &indirdep->ir_donehd, ai_next) {
5852 			if (oldaip->ai_offset == aip->ai_offset) {
5853 				freefrag = allocindir_merge(aip, oldaip);
5854 				goto done;
5855 			}
5856 		}
5857 	}
5858 done:
5859 	LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
5860 	return (freefrag);
5861 }
5862 
5863 /*
5864  * Merge two allocindirs which refer to the same block.  Move newblock
5865  * dependencies and setup the freefrags appropriately.
5866  */
5867 static struct freefrag *
5868 allocindir_merge(aip, oldaip)
5869 	struct allocindir *aip;
5870 	struct allocindir *oldaip;
5871 {
5872 	struct freefrag *freefrag;
5873 	struct worklist *wk;
5874 
5875 	if (oldaip->ai_newblkno != aip->ai_oldblkno)
5876 		panic("allocindir_merge: blkno");
5877 	aip->ai_oldblkno = oldaip->ai_oldblkno;
5878 	freefrag = aip->ai_freefrag;
5879 	aip->ai_freefrag = oldaip->ai_freefrag;
5880 	oldaip->ai_freefrag = NULL;
5881 	KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag"));
5882 	/*
5883 	 * If we are tracking a new directory-block allocation,
5884 	 * move it from the old allocindir to the new allocindir.
5885 	 */
5886 	if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) {
5887 		WORKLIST_REMOVE(wk);
5888 		if (!LIST_EMPTY(&oldaip->ai_newdirblk))
5889 			panic("allocindir_merge: extra newdirblk");
5890 		WORKLIST_INSERT(&aip->ai_newdirblk, wk);
5891 	}
5892 	/*
5893 	 * We can skip journaling for this freefrag and just complete
5894 	 * any pending journal work for the allocindir that is being
5895 	 * removed after the freefrag completes.
5896 	 */
5897 	if (freefrag->ff_jdep)
5898 		cancel_jfreefrag(WK_JFREEFRAG(freefrag->ff_jdep));
5899 	LIST_REMOVE(oldaip, ai_next);
5900 	freefrag->ff_jdep = (struct worklist *)cancel_newblk(&oldaip->ai_block,
5901 	    &freefrag->ff_list, &freefrag->ff_jwork);
5902 	free_newblk(&oldaip->ai_block);
5903 
5904 	return (freefrag);
5905 }
5906 
5907 static inline void
5908 setup_freedirect(freeblks, ip, i, needj)
5909 	struct freeblks *freeblks;
5910 	struct inode *ip;
5911 	int i;
5912 	int needj;
5913 {
5914 	ufs2_daddr_t blkno;
5915 	int frags;
5916 
5917 	blkno = DIP(ip, i_db[i]);
5918 	if (blkno == 0)
5919 		return;
5920 	DIP_SET(ip, i_db[i], 0);
5921 	frags = sblksize(ip->i_fs, ip->i_size, i);
5922 	frags = numfrags(ip->i_fs, frags);
5923 	newfreework(ip->i_ump, freeblks, NULL, i, blkno, frags, 0, needj);
5924 }
5925 
5926 static inline void
5927 setup_freeext(freeblks, ip, i, needj)
5928 	struct freeblks *freeblks;
5929 	struct inode *ip;
5930 	int i;
5931 	int needj;
5932 {
5933 	ufs2_daddr_t blkno;
5934 	int frags;
5935 
5936 	blkno = ip->i_din2->di_extb[i];
5937 	if (blkno == 0)
5938 		return;
5939 	ip->i_din2->di_extb[i] = 0;
5940 	frags = sblksize(ip->i_fs, ip->i_din2->di_extsize, i);
5941 	frags = numfrags(ip->i_fs, frags);
5942 	newfreework(ip->i_ump, freeblks, NULL, -1 - i, blkno, frags, 0, needj);
5943 }
5944 
5945 static inline void
5946 setup_freeindir(freeblks, ip, i, lbn, needj)
5947 	struct freeblks *freeblks;
5948 	struct inode *ip;
5949 	int i;
5950 	ufs_lbn_t lbn;
5951 	int needj;
5952 {
5953 	ufs2_daddr_t blkno;
5954 
5955 	blkno = DIP(ip, i_ib[i]);
5956 	if (blkno == 0)
5957 		return;
5958 	DIP_SET(ip, i_ib[i], 0);
5959 	newfreework(ip->i_ump, freeblks, NULL, lbn, blkno, ip->i_fs->fs_frag,
5960 	    0, needj);
5961 }
5962 
5963 static inline struct freeblks *
5964 newfreeblks(mp, ip)
5965 	struct mount *mp;
5966 	struct inode *ip;
5967 {
5968 	struct freeblks *freeblks;
5969 
5970 	freeblks = malloc(sizeof(struct freeblks),
5971 		M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO);
5972 	workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp);
5973 	LIST_INIT(&freeblks->fb_jblkdephd);
5974 	LIST_INIT(&freeblks->fb_jwork);
5975 	freeblks->fb_ref = 0;
5976 	freeblks->fb_cgwait = 0;
5977 	freeblks->fb_state = ATTACHED;
5978 	freeblks->fb_uid = ip->i_uid;
5979 	freeblks->fb_inum = ip->i_number;
5980 	freeblks->fb_vtype = ITOV(ip)->v_type;
5981 	freeblks->fb_modrev = DIP(ip, i_modrev);
5982 	freeblks->fb_devvp = ip->i_devvp;
5983 	freeblks->fb_chkcnt = 0;
5984 	freeblks->fb_len = 0;
5985 
5986 	return (freeblks);
5987 }
5988 
5989 static void
5990 trunc_indirdep(indirdep, freeblks, bp, off)
5991 	struct indirdep *indirdep;
5992 	struct freeblks *freeblks;
5993 	struct buf *bp;
5994 	int off;
5995 {
5996 	struct allocindir *aip, *aipn;
5997 
5998 	/*
5999 	 * The first set of allocindirs won't be in savedbp.
6000 	 */
6001 	LIST_FOREACH_SAFE(aip, &indirdep->ir_deplisthd, ai_next, aipn)
6002 		if (aip->ai_offset > off)
6003 			cancel_allocindir(aip, bp, freeblks, 1);
6004 	LIST_FOREACH_SAFE(aip, &indirdep->ir_donehd, ai_next, aipn)
6005 		if (aip->ai_offset > off)
6006 			cancel_allocindir(aip, bp, freeblks, 1);
6007 	/*
6008 	 * These will exist in savedbp.
6009 	 */
6010 	LIST_FOREACH_SAFE(aip, &indirdep->ir_writehd, ai_next, aipn)
6011 		if (aip->ai_offset > off)
6012 			cancel_allocindir(aip, NULL, freeblks, 0);
6013 	LIST_FOREACH_SAFE(aip, &indirdep->ir_completehd, ai_next, aipn)
6014 		if (aip->ai_offset > off)
6015 			cancel_allocindir(aip, NULL, freeblks, 0);
6016 }
6017 
6018 /*
6019  * Follow the chain of indirects down to lastlbn creating a freework
6020  * structure for each.  This will be used to start indir_trunc() at
6021  * the right offset and create the journal records for the parrtial
6022  * truncation.  A second step will handle the truncated dependencies.
6023  */
6024 static int
6025 setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno)
6026 	struct freeblks *freeblks;
6027 	struct inode *ip;
6028 	ufs_lbn_t lbn;
6029 	ufs_lbn_t lastlbn;
6030 	ufs2_daddr_t blkno;
6031 {
6032 	struct indirdep *indirdep;
6033 	struct indirdep *indirn;
6034 	struct freework *freework;
6035 	struct newblk *newblk;
6036 	struct mount *mp;
6037 	struct buf *bp;
6038 	uint8_t *start;
6039 	uint8_t *end;
6040 	ufs_lbn_t lbnadd;
6041 	int level;
6042 	int error;
6043 	int off;
6044 
6045 
6046 	freework = NULL;
6047 	if (blkno == 0)
6048 		return (0);
6049 	mp = freeblks->fb_list.wk_mp;
6050 	bp = getblk(ITOV(ip), lbn, mp->mnt_stat.f_iosize, 0, 0, 0);
6051 	if ((bp->b_flags & B_CACHE) == 0) {
6052 		bp->b_blkno = blkptrtodb(VFSTOUFS(mp), blkno);
6053 		bp->b_iocmd = BIO_READ;
6054 		bp->b_flags &= ~B_INVAL;
6055 		bp->b_ioflags &= ~BIO_ERROR;
6056 		vfs_busy_pages(bp, 0);
6057 		bp->b_iooffset = dbtob(bp->b_blkno);
6058 		bstrategy(bp);
6059 		curthread->td_ru.ru_inblock++;
6060 		error = bufwait(bp);
6061 		if (error) {
6062 			brelse(bp);
6063 			return (error);
6064 		}
6065 	}
6066 	level = lbn_level(lbn);
6067 	lbnadd = lbn_offset(ip->i_fs, level);
6068 	/*
6069 	 * Compute the offset of the last block we want to keep.  Store
6070 	 * in the freework the first block we want to completely free.
6071 	 */
6072 	off = (lastlbn - -(lbn + level)) / lbnadd;
6073 	if (off + 1 == NINDIR(ip->i_fs))
6074 		goto nowork;
6075 	freework = newfreework(ip->i_ump, freeblks, NULL, lbn, blkno, 0, off+1,
6076 	    0);
6077 	/*
6078 	 * Link the freework into the indirdep.  This will prevent any new
6079 	 * allocations from proceeding until we are finished with the
6080 	 * truncate and the block is written.
6081 	 */
6082 	ACQUIRE_LOCK(ip->i_ump);
6083 	indirdep = indirdep_lookup(mp, ip, bp);
6084 	if (indirdep->ir_freeblks)
6085 		panic("setup_trunc_indir: indirdep already truncated.");
6086 	TAILQ_INSERT_TAIL(&indirdep->ir_trunc, freework, fw_next);
6087 	freework->fw_indir = indirdep;
6088 	/*
6089 	 * Cancel any allocindirs that will not make it to disk.
6090 	 * We have to do this for all copies of the indirdep that
6091 	 * live on this newblk.
6092 	 */
6093 	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
6094 		newblk_lookup(mp, dbtofsb(ip->i_fs, bp->b_blkno), 0, &newblk);
6095 		LIST_FOREACH(indirn, &newblk->nb_indirdeps, ir_next)
6096 			trunc_indirdep(indirn, freeblks, bp, off);
6097 	} else
6098 		trunc_indirdep(indirdep, freeblks, bp, off);
6099 	FREE_LOCK(ip->i_ump);
6100 	/*
6101 	 * Creation is protected by the buf lock. The saveddata is only
6102 	 * needed if a full truncation follows a partial truncation but it
6103 	 * is difficult to allocate in that case so we fetch it anyway.
6104 	 */
6105 	if (indirdep->ir_saveddata == NULL)
6106 		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
6107 		    M_SOFTDEP_FLAGS);
6108 nowork:
6109 	/* Fetch the blkno of the child and the zero start offset. */
6110 	if (ip->i_ump->um_fstype == UFS1) {
6111 		blkno = ((ufs1_daddr_t *)bp->b_data)[off];
6112 		start = (uint8_t *)&((ufs1_daddr_t *)bp->b_data)[off+1];
6113 	} else {
6114 		blkno = ((ufs2_daddr_t *)bp->b_data)[off];
6115 		start = (uint8_t *)&((ufs2_daddr_t *)bp->b_data)[off+1];
6116 	}
6117 	if (freework) {
6118 		/* Zero the truncated pointers. */
6119 		end = bp->b_data + bp->b_bcount;
6120 		bzero(start, end - start);
6121 		bdwrite(bp);
6122 	} else
6123 		bqrelse(bp);
6124 	if (level == 0)
6125 		return (0);
6126 	lbn++; /* adjust level */
6127 	lbn -= (off * lbnadd);
6128 	return setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno);
6129 }
6130 
6131 /*
6132  * Complete the partial truncation of an indirect block setup by
6133  * setup_trunc_indir().  This zeros the truncated pointers in the saved
6134  * copy and writes them to disk before the freeblks is allowed to complete.
6135  */
6136 static void
6137 complete_trunc_indir(freework)
6138 	struct freework *freework;
6139 {
6140 	struct freework *fwn;
6141 	struct indirdep *indirdep;
6142 	struct ufsmount *ump;
6143 	struct buf *bp;
6144 	uintptr_t start;
6145 	int count;
6146 
6147 	ump = VFSTOUFS(freework->fw_list.wk_mp);
6148 	LOCK_OWNED(ump);
6149 	indirdep = freework->fw_indir;
6150 	for (;;) {
6151 		bp = indirdep->ir_bp;
6152 		/* See if the block was discarded. */
6153 		if (bp == NULL)
6154 			break;
6155 		/* Inline part of getdirtybuf().  We dont want bremfree. */
6156 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0)
6157 			break;
6158 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
6159 		    LOCK_PTR(ump)) == 0)
6160 			BUF_UNLOCK(bp);
6161 		ACQUIRE_LOCK(ump);
6162 	}
6163 	freework->fw_state |= DEPCOMPLETE;
6164 	TAILQ_REMOVE(&indirdep->ir_trunc, freework, fw_next);
6165 	/*
6166 	 * Zero the pointers in the saved copy.
6167 	 */
6168 	if (indirdep->ir_state & UFS1FMT)
6169 		start = sizeof(ufs1_daddr_t);
6170 	else
6171 		start = sizeof(ufs2_daddr_t);
6172 	start *= freework->fw_start;
6173 	count = indirdep->ir_savebp->b_bcount - start;
6174 	start += (uintptr_t)indirdep->ir_savebp->b_data;
6175 	bzero((char *)start, count);
6176 	/*
6177 	 * We need to start the next truncation in the list if it has not
6178 	 * been started yet.
6179 	 */
6180 	fwn = TAILQ_FIRST(&indirdep->ir_trunc);
6181 	if (fwn != NULL) {
6182 		if (fwn->fw_freeblks == indirdep->ir_freeblks)
6183 			TAILQ_REMOVE(&indirdep->ir_trunc, fwn, fw_next);
6184 		if ((fwn->fw_state & ONWORKLIST) == 0)
6185 			freework_enqueue(fwn);
6186 	}
6187 	/*
6188 	 * If bp is NULL the block was fully truncated, restore
6189 	 * the saved block list otherwise free it if it is no
6190 	 * longer needed.
6191 	 */
6192 	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
6193 		if (bp == NULL)
6194 			bcopy(indirdep->ir_saveddata,
6195 			    indirdep->ir_savebp->b_data,
6196 			    indirdep->ir_savebp->b_bcount);
6197 		free(indirdep->ir_saveddata, M_INDIRDEP);
6198 		indirdep->ir_saveddata = NULL;
6199 	}
6200 	/*
6201 	 * When bp is NULL there is a full truncation pending.  We
6202 	 * must wait for this full truncation to be journaled before
6203 	 * we can release this freework because the disk pointers will
6204 	 * never be written as zero.
6205 	 */
6206 	if (bp == NULL)  {
6207 		if (LIST_EMPTY(&indirdep->ir_freeblks->fb_jblkdephd))
6208 			handle_written_freework(freework);
6209 		else
6210 			WORKLIST_INSERT(&indirdep->ir_freeblks->fb_freeworkhd,
6211 			   &freework->fw_list);
6212 	} else {
6213 		/* Complete when the real copy is written. */
6214 		WORKLIST_INSERT(&bp->b_dep, &freework->fw_list);
6215 		BUF_UNLOCK(bp);
6216 	}
6217 }
6218 
6219 /*
6220  * Calculate the number of blocks we are going to release where datablocks
6221  * is the current total and length is the new file size.
6222  */
6223 static ufs2_daddr_t
6224 blkcount(fs, datablocks, length)
6225 	struct fs *fs;
6226 	ufs2_daddr_t datablocks;
6227 	off_t length;
6228 {
6229 	off_t totblks, numblks;
6230 
6231 	totblks = 0;
6232 	numblks = howmany(length, fs->fs_bsize);
6233 	if (numblks <= NDADDR) {
6234 		totblks = howmany(length, fs->fs_fsize);
6235 		goto out;
6236 	}
6237         totblks = blkstofrags(fs, numblks);
6238 	numblks -= NDADDR;
6239 	/*
6240 	 * Count all single, then double, then triple indirects required.
6241 	 * Subtracting one indirects worth of blocks for each pass
6242 	 * acknowledges one of each pointed to by the inode.
6243 	 */
6244 	for (;;) {
6245 		totblks += blkstofrags(fs, howmany(numblks, NINDIR(fs)));
6246 		numblks -= NINDIR(fs);
6247 		if (numblks <= 0)
6248 			break;
6249 		numblks = howmany(numblks, NINDIR(fs));
6250 	}
6251 out:
6252 	totblks = fsbtodb(fs, totblks);
6253 	/*
6254 	 * Handle sparse files.  We can't reclaim more blocks than the inode
6255 	 * references.  We will correct it later in handle_complete_freeblks()
6256 	 * when we know the real count.
6257 	 */
6258 	if (totblks > datablocks)
6259 		return (0);
6260 	return (datablocks - totblks);
6261 }
6262 
6263 /*
6264  * Handle freeblocks for journaled softupdate filesystems.
6265  *
6266  * Contrary to normal softupdates, we must preserve the block pointers in
6267  * indirects until their subordinates are free.  This is to avoid journaling
6268  * every block that is freed which may consume more space than the journal
6269  * itself.  The recovery program will see the free block journals at the
6270  * base of the truncated area and traverse them to reclaim space.  The
6271  * pointers in the inode may be cleared immediately after the journal
6272  * records are written because each direct and indirect pointer in the
6273  * inode is recorded in a journal.  This permits full truncation to proceed
6274  * asynchronously.  The write order is journal -> inode -> cgs -> indirects.
6275  *
6276  * The algorithm is as follows:
6277  * 1) Traverse the in-memory state and create journal entries to release
6278  *    the relevant blocks and full indirect trees.
6279  * 2) Traverse the indirect block chain adding partial truncation freework
6280  *    records to indirects in the path to lastlbn.  The freework will
6281  *    prevent new allocation dependencies from being satisfied in this
6282  *    indirect until the truncation completes.
6283  * 3) Read and lock the inode block, performing an update with the new size
6284  *    and pointers.  This prevents truncated data from becoming valid on
6285  *    disk through step 4.
6286  * 4) Reap unsatisfied dependencies that are beyond the truncated area,
6287  *    eliminate journal work for those records that do not require it.
6288  * 5) Schedule the journal records to be written followed by the inode block.
6289  * 6) Allocate any necessary frags for the end of file.
6290  * 7) Zero any partially truncated blocks.
6291  *
6292  * From this truncation proceeds asynchronously using the freework and
6293  * indir_trunc machinery.  The file will not be extended again into a
6294  * partially truncated indirect block until all work is completed but
6295  * the normal dependency mechanism ensures that it is rolled back/forward
6296  * as appropriate.  Further truncation may occur without delay and is
6297  * serialized in indir_trunc().
6298  */
6299 void
6300 softdep_journal_freeblocks(ip, cred, length, flags)
6301 	struct inode *ip;	/* The inode whose length is to be reduced */
6302 	struct ucred *cred;
6303 	off_t length;		/* The new length for the file */
6304 	int flags;		/* IO_EXT and/or IO_NORMAL */
6305 {
6306 	struct freeblks *freeblks, *fbn;
6307 	struct worklist *wk, *wkn;
6308 	struct inodedep *inodedep;
6309 	struct jblkdep *jblkdep;
6310 	struct allocdirect *adp, *adpn;
6311 	struct ufsmount *ump;
6312 	struct fs *fs;
6313 	struct buf *bp;
6314 	struct vnode *vp;
6315 	struct mount *mp;
6316 	ufs2_daddr_t extblocks, datablocks;
6317 	ufs_lbn_t tmpval, lbn, lastlbn;
6318 	int frags, lastoff, iboff, allocblock, needj, dflags, error, i;
6319 
6320 	fs = ip->i_fs;
6321 	ump = ip->i_ump;
6322 	mp = UFSTOVFS(ump);
6323 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
6324 	    ("softdep_journal_freeblocks called on non-softdep filesystem"));
6325 	vp = ITOV(ip);
6326 	needj = 1;
6327 	iboff = -1;
6328 	allocblock = 0;
6329 	extblocks = 0;
6330 	datablocks = 0;
6331 	frags = 0;
6332 	freeblks = newfreeblks(mp, ip);
6333 	ACQUIRE_LOCK(ump);
6334 	/*
6335 	 * If we're truncating a removed file that will never be written
6336 	 * we don't need to journal the block frees.  The canceled journals
6337 	 * for the allocations will suffice.
6338 	 */
6339 	dflags = DEPALLOC;
6340 	if (IS_SNAPSHOT(ip))
6341 		dflags |= NODELAY;
6342 	inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
6343 	if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED &&
6344 	    length == 0)
6345 		needj = 0;
6346 	CTR3(KTR_SUJ, "softdep_journal_freeblks: ip %d length %ld needj %d",
6347 	    ip->i_number, length, needj);
6348 	FREE_LOCK(ump);
6349 	/*
6350 	 * Calculate the lbn that we are truncating to.  This results in -1
6351 	 * if we're truncating the 0 bytes.  So it is the last lbn we want
6352 	 * to keep, not the first lbn we want to truncate.
6353 	 */
6354 	lastlbn = lblkno(fs, length + fs->fs_bsize - 1) - 1;
6355 	lastoff = blkoff(fs, length);
6356 	/*
6357 	 * Compute frags we are keeping in lastlbn.  0 means all.
6358 	 */
6359 	if (lastlbn >= 0 && lastlbn < NDADDR) {
6360 		frags = fragroundup(fs, lastoff);
6361 		/* adp offset of last valid allocdirect. */
6362 		iboff = lastlbn;
6363 	} else if (lastlbn > 0)
6364 		iboff = NDADDR;
6365 	if (fs->fs_magic == FS_UFS2_MAGIC)
6366 		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
6367 	/*
6368 	 * Handle normal data blocks and indirects.  This section saves
6369 	 * values used after the inode update to complete frag and indirect
6370 	 * truncation.
6371 	 */
6372 	if ((flags & IO_NORMAL) != 0) {
6373 		/*
6374 		 * Handle truncation of whole direct and indirect blocks.
6375 		 */
6376 		for (i = iboff + 1; i < NDADDR; i++)
6377 			setup_freedirect(freeblks, ip, i, needj);
6378 		for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR;
6379 		    i++, lbn += tmpval, tmpval *= NINDIR(fs)) {
6380 			/* Release a whole indirect tree. */
6381 			if (lbn > lastlbn) {
6382 				setup_freeindir(freeblks, ip, i, -lbn -i,
6383 				    needj);
6384 				continue;
6385 			}
6386 			iboff = i + NDADDR;
6387 			/*
6388 			 * Traverse partially truncated indirect tree.
6389 			 */
6390 			if (lbn <= lastlbn && lbn + tmpval - 1 > lastlbn)
6391 				setup_trunc_indir(freeblks, ip, -lbn - i,
6392 				    lastlbn, DIP(ip, i_ib[i]));
6393 		}
6394 		/*
6395 		 * Handle partial truncation to a frag boundary.
6396 		 */
6397 		if (frags) {
6398 			ufs2_daddr_t blkno;
6399 			long oldfrags;
6400 
6401 			oldfrags = blksize(fs, ip, lastlbn);
6402 			blkno = DIP(ip, i_db[lastlbn]);
6403 			if (blkno && oldfrags != frags) {
6404 				oldfrags -= frags;
6405 				oldfrags = numfrags(ip->i_fs, oldfrags);
6406 				blkno += numfrags(ip->i_fs, frags);
6407 				newfreework(ump, freeblks, NULL, lastlbn,
6408 				    blkno, oldfrags, 0, needj);
6409 			} else if (blkno == 0)
6410 				allocblock = 1;
6411 		}
6412 		/*
6413 		 * Add a journal record for partial truncate if we are
6414 		 * handling indirect blocks.  Non-indirects need no extra
6415 		 * journaling.
6416 		 */
6417 		if (length != 0 && lastlbn >= NDADDR) {
6418 			ip->i_flag |= IN_TRUNCATED;
6419 			newjtrunc(freeblks, length, 0);
6420 		}
6421 		ip->i_size = length;
6422 		DIP_SET(ip, i_size, ip->i_size);
6423 		datablocks = DIP(ip, i_blocks) - extblocks;
6424 		if (length != 0)
6425 			datablocks = blkcount(ip->i_fs, datablocks, length);
6426 		freeblks->fb_len = length;
6427 	}
6428 	if ((flags & IO_EXT) != 0) {
6429 		for (i = 0; i < NXADDR; i++)
6430 			setup_freeext(freeblks, ip, i, needj);
6431 		ip->i_din2->di_extsize = 0;
6432 		datablocks += extblocks;
6433 	}
6434 #ifdef QUOTA
6435 	/* Reference the quotas in case the block count is wrong in the end. */
6436 	quotaref(vp, freeblks->fb_quota);
6437 	(void) chkdq(ip, -datablocks, NOCRED, 0);
6438 #endif
6439 	freeblks->fb_chkcnt = -datablocks;
6440 	UFS_LOCK(ump);
6441 	fs->fs_pendingblocks += datablocks;
6442 	UFS_UNLOCK(ump);
6443 	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
6444 	/*
6445 	 * Handle truncation of incomplete alloc direct dependencies.  We
6446 	 * hold the inode block locked to prevent incomplete dependencies
6447 	 * from reaching the disk while we are eliminating those that
6448 	 * have been truncated.  This is a partially inlined ffs_update().
6449 	 */
6450 	ufs_itimes(vp);
6451 	ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED);
6452 	error = bread(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
6453 	    (int)fs->fs_bsize, cred, &bp);
6454 	if (error) {
6455 		brelse(bp);
6456 		softdep_error("softdep_journal_freeblocks", error);
6457 		return;
6458 	}
6459 	if (bp->b_bufsize == fs->fs_bsize)
6460 		bp->b_flags |= B_CLUSTEROK;
6461 	softdep_update_inodeblock(ip, bp, 0);
6462 	if (ump->um_fstype == UFS1)
6463 		*((struct ufs1_dinode *)bp->b_data +
6464 		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1;
6465 	else
6466 		*((struct ufs2_dinode *)bp->b_data +
6467 		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2;
6468 	ACQUIRE_LOCK(ump);
6469 	(void) inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
6470 	if ((inodedep->id_state & IOSTARTED) != 0)
6471 		panic("softdep_setup_freeblocks: inode busy");
6472 	/*
6473 	 * Add the freeblks structure to the list of operations that
6474 	 * must await the zero'ed inode being written to disk. If we
6475 	 * still have a bitmap dependency (needj), then the inode
6476 	 * has never been written to disk, so we can process the
6477 	 * freeblks below once we have deleted the dependencies.
6478 	 */
6479 	if (needj)
6480 		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
6481 	else
6482 		freeblks->fb_state |= COMPLETE;
6483 	if ((flags & IO_NORMAL) != 0) {
6484 		TAILQ_FOREACH_SAFE(adp, &inodedep->id_inoupdt, ad_next, adpn) {
6485 			if (adp->ad_offset > iboff)
6486 				cancel_allocdirect(&inodedep->id_inoupdt, adp,
6487 				    freeblks);
6488 			/*
6489 			 * Truncate the allocdirect.  We could eliminate
6490 			 * or modify journal records as well.
6491 			 */
6492 			else if (adp->ad_offset == iboff && frags)
6493 				adp->ad_newsize = frags;
6494 		}
6495 	}
6496 	if ((flags & IO_EXT) != 0)
6497 		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0)
6498 			cancel_allocdirect(&inodedep->id_extupdt, adp,
6499 			    freeblks);
6500 	/*
6501 	 * Scan the bufwait list for newblock dependencies that will never
6502 	 * make it to disk.
6503 	 */
6504 	LIST_FOREACH_SAFE(wk, &inodedep->id_bufwait, wk_list, wkn) {
6505 		if (wk->wk_type != D_ALLOCDIRECT)
6506 			continue;
6507 		adp = WK_ALLOCDIRECT(wk);
6508 		if (((flags & IO_NORMAL) != 0 && (adp->ad_offset > iboff)) ||
6509 		    ((flags & IO_EXT) != 0 && (adp->ad_state & EXTDATA))) {
6510 			cancel_jfreeblk(freeblks, adp->ad_newblkno);
6511 			cancel_newblk(WK_NEWBLK(wk), NULL, &freeblks->fb_jwork);
6512 			WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
6513 		}
6514 	}
6515 	/*
6516 	 * Add journal work.
6517 	 */
6518 	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps)
6519 		add_to_journal(&jblkdep->jb_list);
6520 	FREE_LOCK(ump);
6521 	bdwrite(bp);
6522 	/*
6523 	 * Truncate dependency structures beyond length.
6524 	 */
6525 	trunc_dependencies(ip, freeblks, lastlbn, frags, flags);
6526 	/*
6527 	 * This is only set when we need to allocate a fragment because
6528 	 * none existed at the end of a frag-sized file.  It handles only
6529 	 * allocating a new, zero filled block.
6530 	 */
6531 	if (allocblock) {
6532 		ip->i_size = length - lastoff;
6533 		DIP_SET(ip, i_size, ip->i_size);
6534 		error = UFS_BALLOC(vp, length - 1, 1, cred, BA_CLRBUF, &bp);
6535 		if (error != 0) {
6536 			softdep_error("softdep_journal_freeblks", error);
6537 			return;
6538 		}
6539 		ip->i_size = length;
6540 		DIP_SET(ip, i_size, length);
6541 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
6542 		allocbuf(bp, frags);
6543 		ffs_update(vp, 0);
6544 		bawrite(bp);
6545 	} else if (lastoff != 0 && vp->v_type != VDIR) {
6546 		int size;
6547 
6548 		/*
6549 		 * Zero the end of a truncated frag or block.
6550 		 */
6551 		size = sblksize(fs, length, lastlbn);
6552 		error = bread(vp, lastlbn, size, cred, &bp);
6553 		if (error) {
6554 			softdep_error("softdep_journal_freeblks", error);
6555 			return;
6556 		}
6557 		bzero((char *)bp->b_data + lastoff, size - lastoff);
6558 		bawrite(bp);
6559 
6560 	}
6561 	ACQUIRE_LOCK(ump);
6562 	inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
6563 	TAILQ_INSERT_TAIL(&inodedep->id_freeblklst, freeblks, fb_next);
6564 	freeblks->fb_state |= DEPCOMPLETE | ONDEPLIST;
6565 	/*
6566 	 * We zero earlier truncations so they don't erroneously
6567 	 * update i_blocks.
6568 	 */
6569 	if (freeblks->fb_len == 0 && (flags & IO_NORMAL) != 0)
6570 		TAILQ_FOREACH(fbn, &inodedep->id_freeblklst, fb_next)
6571 			fbn->fb_len = 0;
6572 	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE &&
6573 	    LIST_EMPTY(&freeblks->fb_jblkdephd))
6574 		freeblks->fb_state |= INPROGRESS;
6575 	else
6576 		freeblks = NULL;
6577 	FREE_LOCK(ump);
6578 	if (freeblks)
6579 		handle_workitem_freeblocks(freeblks, 0);
6580 	trunc_pages(ip, length, extblocks, flags);
6581 
6582 }
6583 
6584 /*
6585  * Flush a JOP_SYNC to the journal.
6586  */
6587 void
6588 softdep_journal_fsync(ip)
6589 	struct inode *ip;
6590 {
6591 	struct jfsync *jfsync;
6592 
6593 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
6594 	    ("softdep_journal_fsync called on non-softdep filesystem"));
6595 	if ((ip->i_flag & IN_TRUNCATED) == 0)
6596 		return;
6597 	ip->i_flag &= ~IN_TRUNCATED;
6598 	jfsync = malloc(sizeof(*jfsync), M_JFSYNC, M_SOFTDEP_FLAGS | M_ZERO);
6599 	workitem_alloc(&jfsync->jfs_list, D_JFSYNC, UFSTOVFS(ip->i_ump));
6600 	jfsync->jfs_size = ip->i_size;
6601 	jfsync->jfs_ino = ip->i_number;
6602 	ACQUIRE_LOCK(ip->i_ump);
6603 	add_to_journal(&jfsync->jfs_list);
6604 	jwait(&jfsync->jfs_list, MNT_WAIT);
6605 	FREE_LOCK(ip->i_ump);
6606 }
6607 
6608 /*
6609  * Block de-allocation dependencies.
6610  *
6611  * When blocks are de-allocated, the on-disk pointers must be nullified before
6612  * the blocks are made available for use by other files.  (The true
6613  * requirement is that old pointers must be nullified before new on-disk
6614  * pointers are set.  We chose this slightly more stringent requirement to
6615  * reduce complexity.) Our implementation handles this dependency by updating
6616  * the inode (or indirect block) appropriately but delaying the actual block
6617  * de-allocation (i.e., freemap and free space count manipulation) until
6618  * after the updated versions reach stable storage.  After the disk is
6619  * updated, the blocks can be safely de-allocated whenever it is convenient.
6620  * This implementation handles only the common case of reducing a file's
6621  * length to zero. Other cases are handled by the conventional synchronous
6622  * write approach.
6623  *
6624  * The ffs implementation with which we worked double-checks
6625  * the state of the block pointers and file size as it reduces
6626  * a file's length.  Some of this code is replicated here in our
6627  * soft updates implementation.  The freeblks->fb_chkcnt field is
6628  * used to transfer a part of this information to the procedure
6629  * that eventually de-allocates the blocks.
6630  *
6631  * This routine should be called from the routine that shortens
6632  * a file's length, before the inode's size or block pointers
6633  * are modified. It will save the block pointer information for
6634  * later release and zero the inode so that the calling routine
6635  * can release it.
6636  */
6637 void
6638 softdep_setup_freeblocks(ip, length, flags)
6639 	struct inode *ip;	/* The inode whose length is to be reduced */
6640 	off_t length;		/* The new length for the file */
6641 	int flags;		/* IO_EXT and/or IO_NORMAL */
6642 {
6643 	struct ufs1_dinode *dp1;
6644 	struct ufs2_dinode *dp2;
6645 	struct freeblks *freeblks;
6646 	struct inodedep *inodedep;
6647 	struct allocdirect *adp;
6648 	struct ufsmount *ump;
6649 	struct buf *bp;
6650 	struct fs *fs;
6651 	ufs2_daddr_t extblocks, datablocks;
6652 	struct mount *mp;
6653 	int i, delay, error, dflags;
6654 	ufs_lbn_t tmpval;
6655 	ufs_lbn_t lbn;
6656 
6657 	ump = ip->i_ump;
6658 	mp = UFSTOVFS(ump);
6659 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
6660 	    ("softdep_setup_freeblocks called on non-softdep filesystem"));
6661 	CTR2(KTR_SUJ, "softdep_setup_freeblks: ip %d length %ld",
6662 	    ip->i_number, length);
6663 	KASSERT(length == 0, ("softdep_setup_freeblocks: non-zero length"));
6664 	fs = ip->i_fs;
6665 	freeblks = newfreeblks(mp, ip);
6666 	extblocks = 0;
6667 	datablocks = 0;
6668 	if (fs->fs_magic == FS_UFS2_MAGIC)
6669 		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
6670 	if ((flags & IO_NORMAL) != 0) {
6671 		for (i = 0; i < NDADDR; i++)
6672 			setup_freedirect(freeblks, ip, i, 0);
6673 		for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR;
6674 		    i++, lbn += tmpval, tmpval *= NINDIR(fs))
6675 			setup_freeindir(freeblks, ip, i, -lbn -i, 0);
6676 		ip->i_size = 0;
6677 		DIP_SET(ip, i_size, 0);
6678 		datablocks = DIP(ip, i_blocks) - extblocks;
6679 	}
6680 	if ((flags & IO_EXT) != 0) {
6681 		for (i = 0; i < NXADDR; i++)
6682 			setup_freeext(freeblks, ip, i, 0);
6683 		ip->i_din2->di_extsize = 0;
6684 		datablocks += extblocks;
6685 	}
6686 #ifdef QUOTA
6687 	/* Reference the quotas in case the block count is wrong in the end. */
6688 	quotaref(ITOV(ip), freeblks->fb_quota);
6689 	(void) chkdq(ip, -datablocks, NOCRED, 0);
6690 #endif
6691 	freeblks->fb_chkcnt = -datablocks;
6692 	UFS_LOCK(ump);
6693 	fs->fs_pendingblocks += datablocks;
6694 	UFS_UNLOCK(ump);
6695 	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
6696 	/*
6697 	 * Push the zero'ed inode to to its disk buffer so that we are free
6698 	 * to delete its dependencies below. Once the dependencies are gone
6699 	 * the buffer can be safely released.
6700 	 */
6701 	if ((error = bread(ip->i_devvp,
6702 	    fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
6703 	    (int)fs->fs_bsize, NOCRED, &bp)) != 0) {
6704 		brelse(bp);
6705 		softdep_error("softdep_setup_freeblocks", error);
6706 	}
6707 	if (ump->um_fstype == UFS1) {
6708 		dp1 = ((struct ufs1_dinode *)bp->b_data +
6709 		    ino_to_fsbo(fs, ip->i_number));
6710 		ip->i_din1->di_freelink = dp1->di_freelink;
6711 		*dp1 = *ip->i_din1;
6712 	} else {
6713 		dp2 = ((struct ufs2_dinode *)bp->b_data +
6714 		    ino_to_fsbo(fs, ip->i_number));
6715 		ip->i_din2->di_freelink = dp2->di_freelink;
6716 		*dp2 = *ip->i_din2;
6717 	}
6718 	/*
6719 	 * Find and eliminate any inode dependencies.
6720 	 */
6721 	ACQUIRE_LOCK(ump);
6722 	dflags = DEPALLOC;
6723 	if (IS_SNAPSHOT(ip))
6724 		dflags |= NODELAY;
6725 	(void) inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
6726 	if ((inodedep->id_state & IOSTARTED) != 0)
6727 		panic("softdep_setup_freeblocks: inode busy");
6728 	/*
6729 	 * Add the freeblks structure to the list of operations that
6730 	 * must await the zero'ed inode being written to disk. If we
6731 	 * still have a bitmap dependency (delay == 0), then the inode
6732 	 * has never been written to disk, so we can process the
6733 	 * freeblks below once we have deleted the dependencies.
6734 	 */
6735 	delay = (inodedep->id_state & DEPCOMPLETE);
6736 	if (delay)
6737 		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
6738 	else
6739 		freeblks->fb_state |= COMPLETE;
6740 	/*
6741 	 * Because the file length has been truncated to zero, any
6742 	 * pending block allocation dependency structures associated
6743 	 * with this inode are obsolete and can simply be de-allocated.
6744 	 * We must first merge the two dependency lists to get rid of
6745 	 * any duplicate freefrag structures, then purge the merged list.
6746 	 * If we still have a bitmap dependency, then the inode has never
6747 	 * been written to disk, so we can free any fragments without delay.
6748 	 */
6749 	if (flags & IO_NORMAL) {
6750 		merge_inode_lists(&inodedep->id_newinoupdt,
6751 		    &inodedep->id_inoupdt);
6752 		while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != 0)
6753 			cancel_allocdirect(&inodedep->id_inoupdt, adp,
6754 			    freeblks);
6755 	}
6756 	if (flags & IO_EXT) {
6757 		merge_inode_lists(&inodedep->id_newextupdt,
6758 		    &inodedep->id_extupdt);
6759 		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0)
6760 			cancel_allocdirect(&inodedep->id_extupdt, adp,
6761 			    freeblks);
6762 	}
6763 	FREE_LOCK(ump);
6764 	bdwrite(bp);
6765 	trunc_dependencies(ip, freeblks, -1, 0, flags);
6766 	ACQUIRE_LOCK(ump);
6767 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
6768 		(void) free_inodedep(inodedep);
6769 	freeblks->fb_state |= DEPCOMPLETE;
6770 	/*
6771 	 * If the inode with zeroed block pointers is now on disk
6772 	 * we can start freeing blocks.
6773 	 */
6774 	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
6775 		freeblks->fb_state |= INPROGRESS;
6776 	else
6777 		freeblks = NULL;
6778 	FREE_LOCK(ump);
6779 	if (freeblks)
6780 		handle_workitem_freeblocks(freeblks, 0);
6781 	trunc_pages(ip, length, extblocks, flags);
6782 }
6783 
6784 /*
6785  * Eliminate pages from the page cache that back parts of this inode and
6786  * adjust the vnode pager's idea of our size.  This prevents stale data
6787  * from hanging around in the page cache.
6788  */
6789 static void
6790 trunc_pages(ip, length, extblocks, flags)
6791 	struct inode *ip;
6792 	off_t length;
6793 	ufs2_daddr_t extblocks;
6794 	int flags;
6795 {
6796 	struct vnode *vp;
6797 	struct fs *fs;
6798 	ufs_lbn_t lbn;
6799 	off_t end, extend;
6800 
6801 	vp = ITOV(ip);
6802 	fs = ip->i_fs;
6803 	extend = OFF_TO_IDX(lblktosize(fs, -extblocks));
6804 	if ((flags & IO_EXT) != 0)
6805 		vn_pages_remove(vp, extend, 0);
6806 	if ((flags & IO_NORMAL) == 0)
6807 		return;
6808 	BO_LOCK(&vp->v_bufobj);
6809 	drain_output(vp);
6810 	BO_UNLOCK(&vp->v_bufobj);
6811 	/*
6812 	 * The vnode pager eliminates file pages we eliminate indirects
6813 	 * below.
6814 	 */
6815 	vnode_pager_setsize(vp, length);
6816 	/*
6817 	 * Calculate the end based on the last indirect we want to keep.  If
6818 	 * the block extends into indirects we can just use the negative of
6819 	 * its lbn.  Doubles and triples exist at lower numbers so we must
6820 	 * be careful not to remove those, if they exist.  double and triple
6821 	 * indirect lbns do not overlap with others so it is not important
6822 	 * to verify how many levels are required.
6823 	 */
6824 	lbn = lblkno(fs, length);
6825 	if (lbn >= NDADDR) {
6826 		/* Calculate the virtual lbn of the triple indirect. */
6827 		lbn = -lbn - (NIADDR - 1);
6828 		end = OFF_TO_IDX(lblktosize(fs, lbn));
6829 	} else
6830 		end = extend;
6831 	vn_pages_remove(vp, OFF_TO_IDX(OFF_MAX), end);
6832 }
6833 
6834 /*
6835  * See if the buf bp is in the range eliminated by truncation.
6836  */
6837 static int
6838 trunc_check_buf(bp, blkoffp, lastlbn, lastoff, flags)
6839 	struct buf *bp;
6840 	int *blkoffp;
6841 	ufs_lbn_t lastlbn;
6842 	int lastoff;
6843 	int flags;
6844 {
6845 	ufs_lbn_t lbn;
6846 
6847 	*blkoffp = 0;
6848 	/* Only match ext/normal blocks as appropriate. */
6849 	if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) ||
6850 	    ((flags & IO_NORMAL) == 0 && (bp->b_xflags & BX_ALTDATA) == 0))
6851 		return (0);
6852 	/* ALTDATA is always a full truncation. */
6853 	if ((bp->b_xflags & BX_ALTDATA) != 0)
6854 		return (1);
6855 	/* -1 is full truncation. */
6856 	if (lastlbn == -1)
6857 		return (1);
6858 	/*
6859 	 * If this is a partial truncate we only want those
6860 	 * blocks and indirect blocks that cover the range
6861 	 * we're after.
6862 	 */
6863 	lbn = bp->b_lblkno;
6864 	if (lbn < 0)
6865 		lbn = -(lbn + lbn_level(lbn));
6866 	if (lbn < lastlbn)
6867 		return (0);
6868 	/* Here we only truncate lblkno if it's partial. */
6869 	if (lbn == lastlbn) {
6870 		if (lastoff == 0)
6871 			return (0);
6872 		*blkoffp = lastoff;
6873 	}
6874 	return (1);
6875 }
6876 
6877 /*
6878  * Eliminate any dependencies that exist in memory beyond lblkno:off
6879  */
6880 static void
6881 trunc_dependencies(ip, freeblks, lastlbn, lastoff, flags)
6882 	struct inode *ip;
6883 	struct freeblks *freeblks;
6884 	ufs_lbn_t lastlbn;
6885 	int lastoff;
6886 	int flags;
6887 {
6888 	struct bufobj *bo;
6889 	struct vnode *vp;
6890 	struct buf *bp;
6891 	struct fs *fs;
6892 	int blkoff;
6893 
6894 	/*
6895 	 * We must wait for any I/O in progress to finish so that
6896 	 * all potential buffers on the dirty list will be visible.
6897 	 * Once they are all there, walk the list and get rid of
6898 	 * any dependencies.
6899 	 */
6900 	fs = ip->i_fs;
6901 	vp = ITOV(ip);
6902 	bo = &vp->v_bufobj;
6903 	BO_LOCK(bo);
6904 	drain_output(vp);
6905 	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
6906 		bp->b_vflags &= ~BV_SCANNED;
6907 restart:
6908 	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
6909 		if (bp->b_vflags & BV_SCANNED)
6910 			continue;
6911 		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
6912 			bp->b_vflags |= BV_SCANNED;
6913 			continue;
6914 		}
6915 		KASSERT(bp->b_bufobj == bo, ("Wrong object in buffer"));
6916 		if ((bp = getdirtybuf(bp, BO_LOCKPTR(bo), MNT_WAIT)) == NULL)
6917 			goto restart;
6918 		BO_UNLOCK(bo);
6919 		if (deallocate_dependencies(bp, freeblks, blkoff))
6920 			bqrelse(bp);
6921 		else
6922 			brelse(bp);
6923 		BO_LOCK(bo);
6924 		goto restart;
6925 	}
6926 	/*
6927 	 * Now do the work of vtruncbuf while also matching indirect blocks.
6928 	 */
6929 	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs)
6930 		bp->b_vflags &= ~BV_SCANNED;
6931 cleanrestart:
6932 	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) {
6933 		if (bp->b_vflags & BV_SCANNED)
6934 			continue;
6935 		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
6936 			bp->b_vflags |= BV_SCANNED;
6937 			continue;
6938 		}
6939 		if (BUF_LOCK(bp,
6940 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
6941 		    BO_LOCKPTR(bo)) == ENOLCK) {
6942 			BO_LOCK(bo);
6943 			goto cleanrestart;
6944 		}
6945 		bp->b_vflags |= BV_SCANNED;
6946 		bremfree(bp);
6947 		if (blkoff != 0) {
6948 			allocbuf(bp, blkoff);
6949 			bqrelse(bp);
6950 		} else {
6951 			bp->b_flags |= B_INVAL | B_NOCACHE | B_RELBUF;
6952 			brelse(bp);
6953 		}
6954 		BO_LOCK(bo);
6955 		goto cleanrestart;
6956 	}
6957 	drain_output(vp);
6958 	BO_UNLOCK(bo);
6959 }
6960 
6961 static int
6962 cancel_pagedep(pagedep, freeblks, blkoff)
6963 	struct pagedep *pagedep;
6964 	struct freeblks *freeblks;
6965 	int blkoff;
6966 {
6967 	struct jremref *jremref;
6968 	struct jmvref *jmvref;
6969 	struct dirrem *dirrem, *tmp;
6970 	int i;
6971 
6972 	/*
6973 	 * Copy any directory remove dependencies to the list
6974 	 * to be processed after the freeblks proceeds.  If
6975 	 * directory entry never made it to disk they
6976 	 * can be dumped directly onto the work list.
6977 	 */
6978 	LIST_FOREACH_SAFE(dirrem, &pagedep->pd_dirremhd, dm_next, tmp) {
6979 		/* Skip this directory removal if it is intended to remain. */
6980 		if (dirrem->dm_offset < blkoff)
6981 			continue;
6982 		/*
6983 		 * If there are any dirrems we wait for the journal write
6984 		 * to complete and then restart the buf scan as the lock
6985 		 * has been dropped.
6986 		 */
6987 		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) {
6988 			jwait(&jremref->jr_list, MNT_WAIT);
6989 			return (ERESTART);
6990 		}
6991 		LIST_REMOVE(dirrem, dm_next);
6992 		dirrem->dm_dirinum = pagedep->pd_ino;
6993 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &dirrem->dm_list);
6994 	}
6995 	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) {
6996 		jwait(&jmvref->jm_list, MNT_WAIT);
6997 		return (ERESTART);
6998 	}
6999 	/*
7000 	 * When we're partially truncating a pagedep we just want to flush
7001 	 * journal entries and return.  There can not be any adds in the
7002 	 * truncated portion of the directory and newblk must remain if
7003 	 * part of the block remains.
7004 	 */
7005 	if (blkoff != 0) {
7006 		struct diradd *dap;
7007 
7008 		LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
7009 			if (dap->da_offset > blkoff)
7010 				panic("cancel_pagedep: diradd %p off %d > %d",
7011 				    dap, dap->da_offset, blkoff);
7012 		for (i = 0; i < DAHASHSZ; i++)
7013 			LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist)
7014 				if (dap->da_offset > blkoff)
7015 					panic("cancel_pagedep: diradd %p off %d > %d",
7016 					    dap, dap->da_offset, blkoff);
7017 		return (0);
7018 	}
7019 	/*
7020 	 * There should be no directory add dependencies present
7021 	 * as the directory could not be truncated until all
7022 	 * children were removed.
7023 	 */
7024 	KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL,
7025 	    ("deallocate_dependencies: pendinghd != NULL"));
7026 	for (i = 0; i < DAHASHSZ; i++)
7027 		KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL,
7028 		    ("deallocate_dependencies: diraddhd != NULL"));
7029 	if ((pagedep->pd_state & NEWBLOCK) != 0)
7030 		free_newdirblk(pagedep->pd_newdirblk);
7031 	if (free_pagedep(pagedep) == 0)
7032 		panic("Failed to free pagedep %p", pagedep);
7033 	return (0);
7034 }
7035 
7036 /*
7037  * Reclaim any dependency structures from a buffer that is about to
7038  * be reallocated to a new vnode. The buffer must be locked, thus,
7039  * no I/O completion operations can occur while we are manipulating
7040  * its associated dependencies. The mutex is held so that other I/O's
7041  * associated with related dependencies do not occur.
7042  */
7043 static int
7044 deallocate_dependencies(bp, freeblks, off)
7045 	struct buf *bp;
7046 	struct freeblks *freeblks;
7047 	int off;
7048 {
7049 	struct indirdep *indirdep;
7050 	struct pagedep *pagedep;
7051 	struct allocdirect *adp;
7052 	struct worklist *wk, *wkn;
7053 	struct ufsmount *ump;
7054 
7055 	if ((wk = LIST_FIRST(&bp->b_dep)) == NULL)
7056 		goto done;
7057 	ump = VFSTOUFS(wk->wk_mp);
7058 	ACQUIRE_LOCK(ump);
7059 	LIST_FOREACH_SAFE(wk, &bp->b_dep, wk_list, wkn) {
7060 		switch (wk->wk_type) {
7061 		case D_INDIRDEP:
7062 			indirdep = WK_INDIRDEP(wk);
7063 			if (bp->b_lblkno >= 0 ||
7064 			    bp->b_blkno != indirdep->ir_savebp->b_lblkno)
7065 				panic("deallocate_dependencies: not indir");
7066 			cancel_indirdep(indirdep, bp, freeblks);
7067 			continue;
7068 
7069 		case D_PAGEDEP:
7070 			pagedep = WK_PAGEDEP(wk);
7071 			if (cancel_pagedep(pagedep, freeblks, off)) {
7072 				FREE_LOCK(ump);
7073 				return (ERESTART);
7074 			}
7075 			continue;
7076 
7077 		case D_ALLOCINDIR:
7078 			/*
7079 			 * Simply remove the allocindir, we'll find it via
7080 			 * the indirdep where we can clear pointers if
7081 			 * needed.
7082 			 */
7083 			WORKLIST_REMOVE(wk);
7084 			continue;
7085 
7086 		case D_FREEWORK:
7087 			/*
7088 			 * A truncation is waiting for the zero'd pointers
7089 			 * to be written.  It can be freed when the freeblks
7090 			 * is journaled.
7091 			 */
7092 			WORKLIST_REMOVE(wk);
7093 			wk->wk_state |= ONDEPLIST;
7094 			WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
7095 			break;
7096 
7097 		case D_ALLOCDIRECT:
7098 			adp = WK_ALLOCDIRECT(wk);
7099 			if (off != 0)
7100 				continue;
7101 			/* FALLTHROUGH */
7102 		default:
7103 			panic("deallocate_dependencies: Unexpected type %s",
7104 			    TYPENAME(wk->wk_type));
7105 			/* NOTREACHED */
7106 		}
7107 	}
7108 	FREE_LOCK(ump);
7109 done:
7110 	/*
7111 	 * Don't throw away this buf, we were partially truncating and
7112 	 * some deps may always remain.
7113 	 */
7114 	if (off) {
7115 		allocbuf(bp, off);
7116 		bp->b_vflags |= BV_SCANNED;
7117 		return (EBUSY);
7118 	}
7119 	bp->b_flags |= B_INVAL | B_NOCACHE;
7120 
7121 	return (0);
7122 }
7123 
7124 /*
7125  * An allocdirect is being canceled due to a truncate.  We must make sure
7126  * the journal entry is released in concert with the blkfree that releases
7127  * the storage.  Completed journal entries must not be released until the
7128  * space is no longer pointed to by the inode or in the bitmap.
7129  */
7130 static void
7131 cancel_allocdirect(adphead, adp, freeblks)
7132 	struct allocdirectlst *adphead;
7133 	struct allocdirect *adp;
7134 	struct freeblks *freeblks;
7135 {
7136 	struct freework *freework;
7137 	struct newblk *newblk;
7138 	struct worklist *wk;
7139 
7140 	TAILQ_REMOVE(adphead, adp, ad_next);
7141 	newblk = (struct newblk *)adp;
7142 	freework = NULL;
7143 	/*
7144 	 * Find the correct freework structure.
7145 	 */
7146 	LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) {
7147 		if (wk->wk_type != D_FREEWORK)
7148 			continue;
7149 		freework = WK_FREEWORK(wk);
7150 		if (freework->fw_blkno == newblk->nb_newblkno)
7151 			break;
7152 	}
7153 	if (freework == NULL)
7154 		panic("cancel_allocdirect: Freework not found");
7155 	/*
7156 	 * If a newblk exists at all we still have the journal entry that
7157 	 * initiated the allocation so we do not need to journal the free.
7158 	 */
7159 	cancel_jfreeblk(freeblks, freework->fw_blkno);
7160 	/*
7161 	 * If the journal hasn't been written the jnewblk must be passed
7162 	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
7163 	 * this by linking the journal dependency into the freework to be
7164 	 * freed when freework_freeblock() is called.  If the journal has
7165 	 * been written we can simply reclaim the journal space when the
7166 	 * freeblks work is complete.
7167 	 */
7168 	freework->fw_jnewblk = cancel_newblk(newblk, &freework->fw_list,
7169 	    &freeblks->fb_jwork);
7170 	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
7171 }
7172 
7173 
7174 /*
7175  * Cancel a new block allocation.  May be an indirect or direct block.  We
7176  * remove it from various lists and return any journal record that needs to
7177  * be resolved by the caller.
7178  *
7179  * A special consideration is made for indirects which were never pointed
7180  * at on disk and will never be found once this block is released.
7181  */
7182 static struct jnewblk *
7183 cancel_newblk(newblk, wk, wkhd)
7184 	struct newblk *newblk;
7185 	struct worklist *wk;
7186 	struct workhead *wkhd;
7187 {
7188 	struct jnewblk *jnewblk;
7189 
7190 	CTR1(KTR_SUJ, "cancel_newblk: blkno %jd", newblk->nb_newblkno);
7191 
7192 	newblk->nb_state |= GOINGAWAY;
7193 	/*
7194 	 * Previously we traversed the completedhd on each indirdep
7195 	 * attached to this newblk to cancel them and gather journal
7196 	 * work.  Since we need only the oldest journal segment and
7197 	 * the lowest point on the tree will always have the oldest
7198 	 * journal segment we are free to release the segments
7199 	 * of any subordinates and may leave the indirdep list to
7200 	 * indirdep_complete() when this newblk is freed.
7201 	 */
7202 	if (newblk->nb_state & ONDEPLIST) {
7203 		newblk->nb_state &= ~ONDEPLIST;
7204 		LIST_REMOVE(newblk, nb_deps);
7205 	}
7206 	if (newblk->nb_state & ONWORKLIST)
7207 		WORKLIST_REMOVE(&newblk->nb_list);
7208 	/*
7209 	 * If the journal entry hasn't been written we save a pointer to
7210 	 * the dependency that frees it until it is written or the
7211 	 * superseding operation completes.
7212 	 */
7213 	jnewblk = newblk->nb_jnewblk;
7214 	if (jnewblk != NULL && wk != NULL) {
7215 		newblk->nb_jnewblk = NULL;
7216 		jnewblk->jn_dep = wk;
7217 	}
7218 	if (!LIST_EMPTY(&newblk->nb_jwork))
7219 		jwork_move(wkhd, &newblk->nb_jwork);
7220 	/*
7221 	 * When truncating we must free the newdirblk early to remove
7222 	 * the pagedep from the hash before returning.
7223 	 */
7224 	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7225 		free_newdirblk(WK_NEWDIRBLK(wk));
7226 	if (!LIST_EMPTY(&newblk->nb_newdirblk))
7227 		panic("cancel_newblk: extra newdirblk");
7228 
7229 	return (jnewblk);
7230 }
7231 
7232 /*
7233  * Schedule the freefrag associated with a newblk to be released once
7234  * the pointers are written and the previous block is no longer needed.
7235  */
7236 static void
7237 newblk_freefrag(newblk)
7238 	struct newblk *newblk;
7239 {
7240 	struct freefrag *freefrag;
7241 
7242 	if (newblk->nb_freefrag == NULL)
7243 		return;
7244 	freefrag = newblk->nb_freefrag;
7245 	newblk->nb_freefrag = NULL;
7246 	freefrag->ff_state |= COMPLETE;
7247 	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
7248 		add_to_worklist(&freefrag->ff_list, 0);
7249 }
7250 
7251 /*
7252  * Free a newblk. Generate a new freefrag work request if appropriate.
7253  * This must be called after the inode pointer and any direct block pointers
7254  * are valid or fully removed via truncate or frag extension.
7255  */
7256 static void
7257 free_newblk(newblk)
7258 	struct newblk *newblk;
7259 {
7260 	struct indirdep *indirdep;
7261 	struct worklist *wk;
7262 
7263 	KASSERT(newblk->nb_jnewblk == NULL,
7264 	    ("free_newblk: jnewblk %p still attached", newblk->nb_jnewblk));
7265 	KASSERT(newblk->nb_list.wk_type != D_NEWBLK,
7266 	    ("free_newblk: unclaimed newblk"));
7267 	LOCK_OWNED(VFSTOUFS(newblk->nb_list.wk_mp));
7268 	newblk_freefrag(newblk);
7269 	if (newblk->nb_state & ONDEPLIST)
7270 		LIST_REMOVE(newblk, nb_deps);
7271 	if (newblk->nb_state & ONWORKLIST)
7272 		WORKLIST_REMOVE(&newblk->nb_list);
7273 	LIST_REMOVE(newblk, nb_hash);
7274 	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7275 		free_newdirblk(WK_NEWDIRBLK(wk));
7276 	if (!LIST_EMPTY(&newblk->nb_newdirblk))
7277 		panic("free_newblk: extra newdirblk");
7278 	while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL)
7279 		indirdep_complete(indirdep);
7280 	handle_jwork(&newblk->nb_jwork);
7281 	WORKITEM_FREE(newblk, D_NEWBLK);
7282 }
7283 
7284 /*
7285  * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep.
7286  * This routine must be called with splbio interrupts blocked.
7287  */
7288 static void
7289 free_newdirblk(newdirblk)
7290 	struct newdirblk *newdirblk;
7291 {
7292 	struct pagedep *pagedep;
7293 	struct diradd *dap;
7294 	struct worklist *wk;
7295 
7296 	LOCK_OWNED(VFSTOUFS(newdirblk->db_list.wk_mp));
7297 	WORKLIST_REMOVE(&newdirblk->db_list);
7298 	/*
7299 	 * If the pagedep is still linked onto the directory buffer
7300 	 * dependency chain, then some of the entries on the
7301 	 * pd_pendinghd list may not be committed to disk yet. In
7302 	 * this case, we will simply clear the NEWBLOCK flag and
7303 	 * let the pd_pendinghd list be processed when the pagedep
7304 	 * is next written. If the pagedep is no longer on the buffer
7305 	 * dependency chain, then all the entries on the pd_pending
7306 	 * list are committed to disk and we can free them here.
7307 	 */
7308 	pagedep = newdirblk->db_pagedep;
7309 	pagedep->pd_state &= ~NEWBLOCK;
7310 	if ((pagedep->pd_state & ONWORKLIST) == 0) {
7311 		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
7312 			free_diradd(dap, NULL);
7313 		/*
7314 		 * If no dependencies remain, the pagedep will be freed.
7315 		 */
7316 		free_pagedep(pagedep);
7317 	}
7318 	/* Should only ever be one item in the list. */
7319 	while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) {
7320 		WORKLIST_REMOVE(wk);
7321 		handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
7322 	}
7323 	WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
7324 }
7325 
7326 /*
7327  * Prepare an inode to be freed. The actual free operation is not
7328  * done until the zero'ed inode has been written to disk.
7329  */
7330 void
7331 softdep_freefile(pvp, ino, mode)
7332 	struct vnode *pvp;
7333 	ino_t ino;
7334 	int mode;
7335 {
7336 	struct inode *ip = VTOI(pvp);
7337 	struct inodedep *inodedep;
7338 	struct freefile *freefile;
7339 	struct freeblks *freeblks;
7340 	struct ufsmount *ump;
7341 
7342 	ump = ip->i_ump;
7343 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
7344 	    ("softdep_freefile called on non-softdep filesystem"));
7345 	/*
7346 	 * This sets up the inode de-allocation dependency.
7347 	 */
7348 	freefile = malloc(sizeof(struct freefile),
7349 		M_FREEFILE, M_SOFTDEP_FLAGS);
7350 	workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount);
7351 	freefile->fx_mode = mode;
7352 	freefile->fx_oldinum = ino;
7353 	freefile->fx_devvp = ip->i_devvp;
7354 	LIST_INIT(&freefile->fx_jwork);
7355 	UFS_LOCK(ump);
7356 	ip->i_fs->fs_pendinginodes += 1;
7357 	UFS_UNLOCK(ump);
7358 
7359 	/*
7360 	 * If the inodedep does not exist, then the zero'ed inode has
7361 	 * been written to disk. If the allocated inode has never been
7362 	 * written to disk, then the on-disk inode is zero'ed. In either
7363 	 * case we can free the file immediately.  If the journal was
7364 	 * canceled before being written the inode will never make it to
7365 	 * disk and we must send the canceled journal entrys to
7366 	 * ffs_freefile() to be cleared in conjunction with the bitmap.
7367 	 * Any blocks waiting on the inode to write can be safely freed
7368 	 * here as it will never been written.
7369 	 */
7370 	ACQUIRE_LOCK(ump);
7371 	inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
7372 	if (inodedep) {
7373 		/*
7374 		 * Clear out freeblks that no longer need to reference
7375 		 * this inode.
7376 		 */
7377 		while ((freeblks =
7378 		    TAILQ_FIRST(&inodedep->id_freeblklst)) != NULL) {
7379 			TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks,
7380 			    fb_next);
7381 			freeblks->fb_state &= ~ONDEPLIST;
7382 		}
7383 		/*
7384 		 * Remove this inode from the unlinked list.
7385 		 */
7386 		if (inodedep->id_state & UNLINKED) {
7387 			/*
7388 			 * Save the journal work to be freed with the bitmap
7389 			 * before we clear UNLINKED.  Otherwise it can be lost
7390 			 * if the inode block is written.
7391 			 */
7392 			handle_bufwait(inodedep, &freefile->fx_jwork);
7393 			clear_unlinked_inodedep(inodedep);
7394 			/*
7395 			 * Re-acquire inodedep as we've dropped the
7396 			 * soft updates lock in clear_unlinked_inodedep().
7397 			 */
7398 			inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
7399 		}
7400 	}
7401 	if (inodedep == NULL || check_inode_unwritten(inodedep)) {
7402 		FREE_LOCK(ump);
7403 		handle_workitem_freefile(freefile);
7404 		return;
7405 	}
7406 	if ((inodedep->id_state & DEPCOMPLETE) == 0)
7407 		inodedep->id_state |= GOINGAWAY;
7408 	WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
7409 	FREE_LOCK(ump);
7410 	if (ip->i_number == ino)
7411 		ip->i_flag |= IN_MODIFIED;
7412 }
7413 
7414 /*
7415  * Check to see if an inode has never been written to disk. If
7416  * so free the inodedep and return success, otherwise return failure.
7417  * This routine must be called with splbio interrupts blocked.
7418  *
7419  * If we still have a bitmap dependency, then the inode has never
7420  * been written to disk. Drop the dependency as it is no longer
7421  * necessary since the inode is being deallocated. We set the
7422  * ALLCOMPLETE flags since the bitmap now properly shows that the
7423  * inode is not allocated. Even if the inode is actively being
7424  * written, it has been rolled back to its zero'ed state, so we
7425  * are ensured that a zero inode is what is on the disk. For short
7426  * lived files, this change will usually result in removing all the
7427  * dependencies from the inode so that it can be freed immediately.
7428  */
7429 static int
7430 check_inode_unwritten(inodedep)
7431 	struct inodedep *inodedep;
7432 {
7433 
7434 	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
7435 
7436 	if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 ||
7437 	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
7438 	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
7439 	    !LIST_EMPTY(&inodedep->id_bufwait) ||
7440 	    !LIST_EMPTY(&inodedep->id_inowait) ||
7441 	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
7442 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
7443 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
7444 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
7445 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
7446 	    !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
7447 	    inodedep->id_mkdiradd != NULL ||
7448 	    inodedep->id_nlinkdelta != 0)
7449 		return (0);
7450 	/*
7451 	 * Another process might be in initiate_write_inodeblock_ufs[12]
7452 	 * trying to allocate memory without holding "Softdep Lock".
7453 	 */
7454 	if ((inodedep->id_state & IOSTARTED) != 0 &&
7455 	    inodedep->id_savedino1 == NULL)
7456 		return (0);
7457 
7458 	if (inodedep->id_state & ONDEPLIST)
7459 		LIST_REMOVE(inodedep, id_deps);
7460 	inodedep->id_state &= ~ONDEPLIST;
7461 	inodedep->id_state |= ALLCOMPLETE;
7462 	inodedep->id_bmsafemap = NULL;
7463 	if (inodedep->id_state & ONWORKLIST)
7464 		WORKLIST_REMOVE(&inodedep->id_list);
7465 	if (inodedep->id_savedino1 != NULL) {
7466 		free(inodedep->id_savedino1, M_SAVEDINO);
7467 		inodedep->id_savedino1 = NULL;
7468 	}
7469 	if (free_inodedep(inodedep) == 0)
7470 		panic("check_inode_unwritten: busy inode");
7471 	return (1);
7472 }
7473 
7474 /*
7475  * Try to free an inodedep structure. Return 1 if it could be freed.
7476  */
7477 static int
7478 free_inodedep(inodedep)
7479 	struct inodedep *inodedep;
7480 {
7481 
7482 	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
7483 	if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 ||
7484 	    (inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
7485 	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
7486 	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
7487 	    !LIST_EMPTY(&inodedep->id_bufwait) ||
7488 	    !LIST_EMPTY(&inodedep->id_inowait) ||
7489 	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
7490 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
7491 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
7492 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
7493 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
7494 	    !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
7495 	    inodedep->id_mkdiradd != NULL ||
7496 	    inodedep->id_nlinkdelta != 0 ||
7497 	    inodedep->id_savedino1 != NULL)
7498 		return (0);
7499 	if (inodedep->id_state & ONDEPLIST)
7500 		LIST_REMOVE(inodedep, id_deps);
7501 	LIST_REMOVE(inodedep, id_hash);
7502 	WORKITEM_FREE(inodedep, D_INODEDEP);
7503 	return (1);
7504 }
7505 
7506 /*
7507  * Free the block referenced by a freework structure.  The parent freeblks
7508  * structure is released and completed when the final cg bitmap reaches
7509  * the disk.  This routine may be freeing a jnewblk which never made it to
7510  * disk in which case we do not have to wait as the operation is undone
7511  * in memory immediately.
7512  */
7513 static void
7514 freework_freeblock(freework)
7515 	struct freework *freework;
7516 {
7517 	struct freeblks *freeblks;
7518 	struct jnewblk *jnewblk;
7519 	struct ufsmount *ump;
7520 	struct workhead wkhd;
7521 	struct fs *fs;
7522 	int bsize;
7523 	int needj;
7524 
7525 	ump = VFSTOUFS(freework->fw_list.wk_mp);
7526 	LOCK_OWNED(ump);
7527 	/*
7528 	 * Handle partial truncate separately.
7529 	 */
7530 	if (freework->fw_indir) {
7531 		complete_trunc_indir(freework);
7532 		return;
7533 	}
7534 	freeblks = freework->fw_freeblks;
7535 	fs = ump->um_fs;
7536 	needj = MOUNTEDSUJ(freeblks->fb_list.wk_mp) != 0;
7537 	bsize = lfragtosize(fs, freework->fw_frags);
7538 	LIST_INIT(&wkhd);
7539 	/*
7540 	 * DEPCOMPLETE is cleared in indirblk_insert() if the block lives
7541 	 * on the indirblk hashtable and prevents premature freeing.
7542 	 */
7543 	freework->fw_state |= DEPCOMPLETE;
7544 	/*
7545 	 * SUJ needs to wait for the segment referencing freed indirect
7546 	 * blocks to expire so that we know the checker will not confuse
7547 	 * a re-allocated indirect block with its old contents.
7548 	 */
7549 	if (needj && freework->fw_lbn <= -NDADDR)
7550 		indirblk_insert(freework);
7551 	/*
7552 	 * If we are canceling an existing jnewblk pass it to the free
7553 	 * routine, otherwise pass the freeblk which will ultimately
7554 	 * release the freeblks.  If we're not journaling, we can just
7555 	 * free the freeblks immediately.
7556 	 */
7557 	jnewblk = freework->fw_jnewblk;
7558 	if (jnewblk != NULL) {
7559 		cancel_jnewblk(jnewblk, &wkhd);
7560 		needj = 0;
7561 	} else if (needj) {
7562 		freework->fw_state |= DELAYEDFREE;
7563 		freeblks->fb_cgwait++;
7564 		WORKLIST_INSERT(&wkhd, &freework->fw_list);
7565 	}
7566 	FREE_LOCK(ump);
7567 	freeblks_free(ump, freeblks, btodb(bsize));
7568 	CTR4(KTR_SUJ,
7569 	    "freework_freeblock: ino %d blkno %jd lbn %jd size %ld",
7570 	    freeblks->fb_inum, freework->fw_blkno, freework->fw_lbn, bsize);
7571 	ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno, bsize,
7572 	    freeblks->fb_inum, freeblks->fb_vtype, &wkhd);
7573 	ACQUIRE_LOCK(ump);
7574 	/*
7575 	 * The jnewblk will be discarded and the bits in the map never
7576 	 * made it to disk.  We can immediately free the freeblk.
7577 	 */
7578 	if (needj == 0)
7579 		handle_written_freework(freework);
7580 }
7581 
7582 /*
7583  * We enqueue freework items that need processing back on the freeblks and
7584  * add the freeblks to the worklist.  This makes it easier to find all work
7585  * required to flush a truncation in process_truncates().
7586  */
7587 static void
7588 freework_enqueue(freework)
7589 	struct freework *freework;
7590 {
7591 	struct freeblks *freeblks;
7592 
7593 	freeblks = freework->fw_freeblks;
7594 	if ((freework->fw_state & INPROGRESS) == 0)
7595 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
7596 	if ((freeblks->fb_state &
7597 	    (ONWORKLIST | INPROGRESS | ALLCOMPLETE)) == ALLCOMPLETE &&
7598 	    LIST_EMPTY(&freeblks->fb_jblkdephd))
7599 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
7600 }
7601 
7602 /*
7603  * Start, continue, or finish the process of freeing an indirect block tree.
7604  * The free operation may be paused at any point with fw_off containing the
7605  * offset to restart from.  This enables us to implement some flow control
7606  * for large truncates which may fan out and generate a huge number of
7607  * dependencies.
7608  */
7609 static void
7610 handle_workitem_indirblk(freework)
7611 	struct freework *freework;
7612 {
7613 	struct freeblks *freeblks;
7614 	struct ufsmount *ump;
7615 	struct fs *fs;
7616 
7617 	freeblks = freework->fw_freeblks;
7618 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7619 	fs = ump->um_fs;
7620 	if (freework->fw_state & DEPCOMPLETE) {
7621 		handle_written_freework(freework);
7622 		return;
7623 	}
7624 	if (freework->fw_off == NINDIR(fs)) {
7625 		freework_freeblock(freework);
7626 		return;
7627 	}
7628 	freework->fw_state |= INPROGRESS;
7629 	FREE_LOCK(ump);
7630 	indir_trunc(freework, fsbtodb(fs, freework->fw_blkno),
7631 	    freework->fw_lbn);
7632 	ACQUIRE_LOCK(ump);
7633 }
7634 
7635 /*
7636  * Called when a freework structure attached to a cg buf is written.  The
7637  * ref on either the parent or the freeblks structure is released and
7638  * the freeblks is added back to the worklist if there is more work to do.
7639  */
7640 static void
7641 handle_written_freework(freework)
7642 	struct freework *freework;
7643 {
7644 	struct freeblks *freeblks;
7645 	struct freework *parent;
7646 
7647 	freeblks = freework->fw_freeblks;
7648 	parent = freework->fw_parent;
7649 	if (freework->fw_state & DELAYEDFREE)
7650 		freeblks->fb_cgwait--;
7651 	freework->fw_state |= COMPLETE;
7652 	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
7653 		WORKITEM_FREE(freework, D_FREEWORK);
7654 	if (parent) {
7655 		if (--parent->fw_ref == 0)
7656 			freework_enqueue(parent);
7657 		return;
7658 	}
7659 	if (--freeblks->fb_ref != 0)
7660 		return;
7661 	if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST | INPROGRESS)) ==
7662 	    ALLCOMPLETE && LIST_EMPTY(&freeblks->fb_jblkdephd))
7663 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
7664 }
7665 
7666 /*
7667  * This workitem routine performs the block de-allocation.
7668  * The workitem is added to the pending list after the updated
7669  * inode block has been written to disk.  As mentioned above,
7670  * checks regarding the number of blocks de-allocated (compared
7671  * to the number of blocks allocated for the file) are also
7672  * performed in this function.
7673  */
7674 static int
7675 handle_workitem_freeblocks(freeblks, flags)
7676 	struct freeblks *freeblks;
7677 	int flags;
7678 {
7679 	struct freework *freework;
7680 	struct newblk *newblk;
7681 	struct allocindir *aip;
7682 	struct ufsmount *ump;
7683 	struct worklist *wk;
7684 
7685 	KASSERT(LIST_EMPTY(&freeblks->fb_jblkdephd),
7686 	    ("handle_workitem_freeblocks: Journal entries not written."));
7687 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7688 	ACQUIRE_LOCK(ump);
7689 	while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) {
7690 		WORKLIST_REMOVE(wk);
7691 		switch (wk->wk_type) {
7692 		case D_DIRREM:
7693 			wk->wk_state |= COMPLETE;
7694 			add_to_worklist(wk, 0);
7695 			continue;
7696 
7697 		case D_ALLOCDIRECT:
7698 			free_newblk(WK_NEWBLK(wk));
7699 			continue;
7700 
7701 		case D_ALLOCINDIR:
7702 			aip = WK_ALLOCINDIR(wk);
7703 			freework = NULL;
7704 			if (aip->ai_state & DELAYEDFREE) {
7705 				FREE_LOCK(ump);
7706 				freework = newfreework(ump, freeblks, NULL,
7707 				    aip->ai_lbn, aip->ai_newblkno,
7708 				    ump->um_fs->fs_frag, 0, 0);
7709 				ACQUIRE_LOCK(ump);
7710 			}
7711 			newblk = WK_NEWBLK(wk);
7712 			if (newblk->nb_jnewblk) {
7713 				freework->fw_jnewblk = newblk->nb_jnewblk;
7714 				newblk->nb_jnewblk->jn_dep = &freework->fw_list;
7715 				newblk->nb_jnewblk = NULL;
7716 			}
7717 			free_newblk(newblk);
7718 			continue;
7719 
7720 		case D_FREEWORK:
7721 			freework = WK_FREEWORK(wk);
7722 			if (freework->fw_lbn <= -NDADDR)
7723 				handle_workitem_indirblk(freework);
7724 			else
7725 				freework_freeblock(freework);
7726 			continue;
7727 		default:
7728 			panic("handle_workitem_freeblocks: Unknown type %s",
7729 			    TYPENAME(wk->wk_type));
7730 		}
7731 	}
7732 	if (freeblks->fb_ref != 0) {
7733 		freeblks->fb_state &= ~INPROGRESS;
7734 		wake_worklist(&freeblks->fb_list);
7735 		freeblks = NULL;
7736 	}
7737 	FREE_LOCK(ump);
7738 	if (freeblks)
7739 		return handle_complete_freeblocks(freeblks, flags);
7740 	return (0);
7741 }
7742 
7743 /*
7744  * Handle completion of block free via truncate.  This allows fs_pending
7745  * to track the actual free block count more closely than if we only updated
7746  * it at the end.  We must be careful to handle cases where the block count
7747  * on free was incorrect.
7748  */
7749 static void
7750 freeblks_free(ump, freeblks, blocks)
7751 	struct ufsmount *ump;
7752 	struct freeblks *freeblks;
7753 	int blocks;
7754 {
7755 	struct fs *fs;
7756 	ufs2_daddr_t remain;
7757 
7758 	UFS_LOCK(ump);
7759 	remain = -freeblks->fb_chkcnt;
7760 	freeblks->fb_chkcnt += blocks;
7761 	if (remain > 0) {
7762 		if (remain < blocks)
7763 			blocks = remain;
7764 		fs = ump->um_fs;
7765 		fs->fs_pendingblocks -= blocks;
7766 	}
7767 	UFS_UNLOCK(ump);
7768 }
7769 
7770 /*
7771  * Once all of the freework workitems are complete we can retire the
7772  * freeblocks dependency and any journal work awaiting completion.  This
7773  * can not be called until all other dependencies are stable on disk.
7774  */
7775 static int
7776 handle_complete_freeblocks(freeblks, flags)
7777 	struct freeblks *freeblks;
7778 	int flags;
7779 {
7780 	struct inodedep *inodedep;
7781 	struct inode *ip;
7782 	struct vnode *vp;
7783 	struct fs *fs;
7784 	struct ufsmount *ump;
7785 	ufs2_daddr_t spare;
7786 
7787 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7788 	fs = ump->um_fs;
7789 	flags = LK_EXCLUSIVE | flags;
7790 	spare = freeblks->fb_chkcnt;
7791 
7792 	/*
7793 	 * If we did not release the expected number of blocks we may have
7794 	 * to adjust the inode block count here.  Only do so if it wasn't
7795 	 * a truncation to zero and the modrev still matches.
7796 	 */
7797 	if (spare && freeblks->fb_len != 0) {
7798 		if (ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_inum,
7799 		    flags, &vp, FFSV_FORCEINSMQ) != 0)
7800 			return (EBUSY);
7801 		ip = VTOI(vp);
7802 		if (DIP(ip, i_modrev) == freeblks->fb_modrev) {
7803 			DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - spare);
7804 			ip->i_flag |= IN_CHANGE;
7805 			/*
7806 			 * We must wait so this happens before the
7807 			 * journal is reclaimed.
7808 			 */
7809 			ffs_update(vp, 1);
7810 		}
7811 		vput(vp);
7812 	}
7813 	if (spare < 0) {
7814 		UFS_LOCK(ump);
7815 		fs->fs_pendingblocks += spare;
7816 		UFS_UNLOCK(ump);
7817 	}
7818 #ifdef QUOTA
7819 	/* Handle spare. */
7820 	if (spare)
7821 		quotaadj(freeblks->fb_quota, ump, -spare);
7822 	quotarele(freeblks->fb_quota);
7823 #endif
7824 	ACQUIRE_LOCK(ump);
7825 	if (freeblks->fb_state & ONDEPLIST) {
7826 		inodedep_lookup(freeblks->fb_list.wk_mp, freeblks->fb_inum,
7827 		    0, &inodedep);
7828 		TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, fb_next);
7829 		freeblks->fb_state &= ~ONDEPLIST;
7830 		if (TAILQ_EMPTY(&inodedep->id_freeblklst))
7831 			free_inodedep(inodedep);
7832 	}
7833 	/*
7834 	 * All of the freeblock deps must be complete prior to this call
7835 	 * so it's now safe to complete earlier outstanding journal entries.
7836 	 */
7837 	handle_jwork(&freeblks->fb_jwork);
7838 	WORKITEM_FREE(freeblks, D_FREEBLKS);
7839 	FREE_LOCK(ump);
7840 	return (0);
7841 }
7842 
7843 /*
7844  * Release blocks associated with the freeblks and stored in the indirect
7845  * block dbn. If level is greater than SINGLE, the block is an indirect block
7846  * and recursive calls to indirtrunc must be used to cleanse other indirect
7847  * blocks.
7848  *
7849  * This handles partial and complete truncation of blocks.  Partial is noted
7850  * with goingaway == 0.  In this case the freework is completed after the
7851  * zero'd indirects are written to disk.  For full truncation the freework
7852  * is completed after the block is freed.
7853  */
7854 static void
7855 indir_trunc(freework, dbn, lbn)
7856 	struct freework *freework;
7857 	ufs2_daddr_t dbn;
7858 	ufs_lbn_t lbn;
7859 {
7860 	struct freework *nfreework;
7861 	struct workhead wkhd;
7862 	struct freeblks *freeblks;
7863 	struct buf *bp;
7864 	struct fs *fs;
7865 	struct indirdep *indirdep;
7866 	struct ufsmount *ump;
7867 	ufs1_daddr_t *bap1 = 0;
7868 	ufs2_daddr_t nb, nnb, *bap2 = 0;
7869 	ufs_lbn_t lbnadd, nlbn;
7870 	int i, nblocks, ufs1fmt;
7871 	int freedblocks;
7872 	int goingaway;
7873 	int freedeps;
7874 	int needj;
7875 	int level;
7876 	int cnt;
7877 
7878 	freeblks = freework->fw_freeblks;
7879 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7880 	fs = ump->um_fs;
7881 	/*
7882 	 * Get buffer of block pointers to be freed.  There are three cases:
7883 	 *
7884 	 * 1) Partial truncate caches the indirdep pointer in the freework
7885 	 *    which provides us a back copy to the save bp which holds the
7886 	 *    pointers we want to clear.  When this completes the zero
7887 	 *    pointers are written to the real copy.
7888 	 * 2) The indirect is being completely truncated, cancel_indirdep()
7889 	 *    eliminated the real copy and placed the indirdep on the saved
7890 	 *    copy.  The indirdep and buf are discarded when this completes.
7891 	 * 3) The indirect was not in memory, we read a copy off of the disk
7892 	 *    using the devvp and drop and invalidate the buffer when we're
7893 	 *    done.
7894 	 */
7895 	goingaway = 1;
7896 	indirdep = NULL;
7897 	if (freework->fw_indir != NULL) {
7898 		goingaway = 0;
7899 		indirdep = freework->fw_indir;
7900 		bp = indirdep->ir_savebp;
7901 		if (bp == NULL || bp->b_blkno != dbn)
7902 			panic("indir_trunc: Bad saved buf %p blkno %jd",
7903 			    bp, (intmax_t)dbn);
7904 	} else if ((bp = incore(&freeblks->fb_devvp->v_bufobj, dbn)) != NULL) {
7905 		/*
7906 		 * The lock prevents the buf dep list from changing and
7907 	 	 * indirects on devvp should only ever have one dependency.
7908 		 */
7909 		indirdep = WK_INDIRDEP(LIST_FIRST(&bp->b_dep));
7910 		if (indirdep == NULL || (indirdep->ir_state & GOINGAWAY) == 0)
7911 			panic("indir_trunc: Bad indirdep %p from buf %p",
7912 			    indirdep, bp);
7913 	} else if (bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize,
7914 	    NOCRED, &bp) != 0) {
7915 		brelse(bp);
7916 		return;
7917 	}
7918 	ACQUIRE_LOCK(ump);
7919 	/* Protects against a race with complete_trunc_indir(). */
7920 	freework->fw_state &= ~INPROGRESS;
7921 	/*
7922 	 * If we have an indirdep we need to enforce the truncation order
7923 	 * and discard it when it is complete.
7924 	 */
7925 	if (indirdep) {
7926 		if (freework != TAILQ_FIRST(&indirdep->ir_trunc) &&
7927 		    !TAILQ_EMPTY(&indirdep->ir_trunc)) {
7928 			/*
7929 			 * Add the complete truncate to the list on the
7930 			 * indirdep to enforce in-order processing.
7931 			 */
7932 			if (freework->fw_indir == NULL)
7933 				TAILQ_INSERT_TAIL(&indirdep->ir_trunc,
7934 				    freework, fw_next);
7935 			FREE_LOCK(ump);
7936 			return;
7937 		}
7938 		/*
7939 		 * If we're goingaway, free the indirdep.  Otherwise it will
7940 		 * linger until the write completes.
7941 		 */
7942 		if (goingaway) {
7943 			free_indirdep(indirdep);
7944 			ump->softdep_numindirdeps -= 1;
7945 		}
7946 	}
7947 	FREE_LOCK(ump);
7948 	/* Initialize pointers depending on block size. */
7949 	if (ump->um_fstype == UFS1) {
7950 		bap1 = (ufs1_daddr_t *)bp->b_data;
7951 		nb = bap1[freework->fw_off];
7952 		ufs1fmt = 1;
7953 	} else {
7954 		bap2 = (ufs2_daddr_t *)bp->b_data;
7955 		nb = bap2[freework->fw_off];
7956 		ufs1fmt = 0;
7957 	}
7958 	level = lbn_level(lbn);
7959 	needj = MOUNTEDSUJ(UFSTOVFS(ump)) != 0;
7960 	lbnadd = lbn_offset(fs, level);
7961 	nblocks = btodb(fs->fs_bsize);
7962 	nfreework = freework;
7963 	freedeps = 0;
7964 	cnt = 0;
7965 	/*
7966 	 * Reclaim blocks.  Traverses into nested indirect levels and
7967 	 * arranges for the current level to be freed when subordinates
7968 	 * are free when journaling.
7969 	 */
7970 	for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) {
7971 		if (i != NINDIR(fs) - 1) {
7972 			if (ufs1fmt)
7973 				nnb = bap1[i+1];
7974 			else
7975 				nnb = bap2[i+1];
7976 		} else
7977 			nnb = 0;
7978 		if (nb == 0)
7979 			continue;
7980 		cnt++;
7981 		if (level != 0) {
7982 			nlbn = (lbn + 1) - (i * lbnadd);
7983 			if (needj != 0) {
7984 				nfreework = newfreework(ump, freeblks, freework,
7985 				    nlbn, nb, fs->fs_frag, 0, 0);
7986 				freedeps++;
7987 			}
7988 			indir_trunc(nfreework, fsbtodb(fs, nb), nlbn);
7989 		} else {
7990 			struct freedep *freedep;
7991 
7992 			/*
7993 			 * Attempt to aggregate freedep dependencies for
7994 			 * all blocks being released to the same CG.
7995 			 */
7996 			LIST_INIT(&wkhd);
7997 			if (needj != 0 &&
7998 			    (nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) {
7999 				freedep = newfreedep(freework);
8000 				WORKLIST_INSERT_UNLOCKED(&wkhd,
8001 				    &freedep->fd_list);
8002 				freedeps++;
8003 			}
8004 			CTR3(KTR_SUJ,
8005 			    "indir_trunc: ino %d blkno %jd size %ld",
8006 			    freeblks->fb_inum, nb, fs->fs_bsize);
8007 			ffs_blkfree(ump, fs, freeblks->fb_devvp, nb,
8008 			    fs->fs_bsize, freeblks->fb_inum,
8009 			    freeblks->fb_vtype, &wkhd);
8010 		}
8011 	}
8012 	if (goingaway) {
8013 		bp->b_flags |= B_INVAL | B_NOCACHE;
8014 		brelse(bp);
8015 	}
8016 	freedblocks = 0;
8017 	if (level == 0)
8018 		freedblocks = (nblocks * cnt);
8019 	if (needj == 0)
8020 		freedblocks += nblocks;
8021 	freeblks_free(ump, freeblks, freedblocks);
8022 	/*
8023 	 * If we are journaling set up the ref counts and offset so this
8024 	 * indirect can be completed when its children are free.
8025 	 */
8026 	if (needj) {
8027 		ACQUIRE_LOCK(ump);
8028 		freework->fw_off = i;
8029 		freework->fw_ref += freedeps;
8030 		freework->fw_ref -= NINDIR(fs) + 1;
8031 		if (level == 0)
8032 			freeblks->fb_cgwait += freedeps;
8033 		if (freework->fw_ref == 0)
8034 			freework_freeblock(freework);
8035 		FREE_LOCK(ump);
8036 		return;
8037 	}
8038 	/*
8039 	 * If we're not journaling we can free the indirect now.
8040 	 */
8041 	dbn = dbtofsb(fs, dbn);
8042 	CTR3(KTR_SUJ,
8043 	    "indir_trunc 2: ino %d blkno %jd size %ld",
8044 	    freeblks->fb_inum, dbn, fs->fs_bsize);
8045 	ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize,
8046 	    freeblks->fb_inum, freeblks->fb_vtype, NULL);
8047 	/* Non SUJ softdep does single-threaded truncations. */
8048 	if (freework->fw_blkno == dbn) {
8049 		freework->fw_state |= ALLCOMPLETE;
8050 		ACQUIRE_LOCK(ump);
8051 		handle_written_freework(freework);
8052 		FREE_LOCK(ump);
8053 	}
8054 	return;
8055 }
8056 
8057 /*
8058  * Cancel an allocindir when it is removed via truncation.  When bp is not
8059  * NULL the indirect never appeared on disk and is scheduled to be freed
8060  * independently of the indir so we can more easily track journal work.
8061  */
8062 static void
8063 cancel_allocindir(aip, bp, freeblks, trunc)
8064 	struct allocindir *aip;
8065 	struct buf *bp;
8066 	struct freeblks *freeblks;
8067 	int trunc;
8068 {
8069 	struct indirdep *indirdep;
8070 	struct freefrag *freefrag;
8071 	struct newblk *newblk;
8072 
8073 	newblk = (struct newblk *)aip;
8074 	LIST_REMOVE(aip, ai_next);
8075 	/*
8076 	 * We must eliminate the pointer in bp if it must be freed on its
8077 	 * own due to partial truncate or pending journal work.
8078 	 */
8079 	if (bp && (trunc || newblk->nb_jnewblk)) {
8080 		/*
8081 		 * Clear the pointer and mark the aip to be freed
8082 		 * directly if it never existed on disk.
8083 		 */
8084 		aip->ai_state |= DELAYEDFREE;
8085 		indirdep = aip->ai_indirdep;
8086 		if (indirdep->ir_state & UFS1FMT)
8087 			((ufs1_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
8088 		else
8089 			((ufs2_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
8090 	}
8091 	/*
8092 	 * When truncating the previous pointer will be freed via
8093 	 * savedbp.  Eliminate the freefrag which would dup free.
8094 	 */
8095 	if (trunc && (freefrag = newblk->nb_freefrag) != NULL) {
8096 		newblk->nb_freefrag = NULL;
8097 		if (freefrag->ff_jdep)
8098 			cancel_jfreefrag(
8099 			    WK_JFREEFRAG(freefrag->ff_jdep));
8100 		jwork_move(&freeblks->fb_jwork, &freefrag->ff_jwork);
8101 		WORKITEM_FREE(freefrag, D_FREEFRAG);
8102 	}
8103 	/*
8104 	 * If the journal hasn't been written the jnewblk must be passed
8105 	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
8106 	 * this by leaving the journal dependency on the newblk to be freed
8107 	 * when a freework is created in handle_workitem_freeblocks().
8108 	 */
8109 	cancel_newblk(newblk, NULL, &freeblks->fb_jwork);
8110 	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
8111 }
8112 
8113 /*
8114  * Create the mkdir dependencies for . and .. in a new directory.  Link them
8115  * in to a newdirblk so any subsequent additions are tracked properly.  The
8116  * caller is responsible for adding the mkdir1 dependency to the journal
8117  * and updating id_mkdiradd.  This function returns with the soft updates
8118  * lock held.
8119  */
8120 static struct mkdir *
8121 setup_newdir(dap, newinum, dinum, newdirbp, mkdirp)
8122 	struct diradd *dap;
8123 	ino_t newinum;
8124 	ino_t dinum;
8125 	struct buf *newdirbp;
8126 	struct mkdir **mkdirp;
8127 {
8128 	struct newblk *newblk;
8129 	struct pagedep *pagedep;
8130 	struct inodedep *inodedep;
8131 	struct newdirblk *newdirblk = 0;
8132 	struct mkdir *mkdir1, *mkdir2;
8133 	struct worklist *wk;
8134 	struct jaddref *jaddref;
8135 	struct ufsmount *ump;
8136 	struct mount *mp;
8137 
8138 	mp = dap->da_list.wk_mp;
8139 	ump = VFSTOUFS(mp);
8140 	newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK,
8141 	    M_SOFTDEP_FLAGS);
8142 	workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
8143 	LIST_INIT(&newdirblk->db_mkdir);
8144 	mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
8145 	workitem_alloc(&mkdir1->md_list, D_MKDIR, mp);
8146 	mkdir1->md_state = ATTACHED | MKDIR_BODY;
8147 	mkdir1->md_diradd = dap;
8148 	mkdir1->md_jaddref = NULL;
8149 	mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
8150 	workitem_alloc(&mkdir2->md_list, D_MKDIR, mp);
8151 	mkdir2->md_state = ATTACHED | MKDIR_PARENT;
8152 	mkdir2->md_diradd = dap;
8153 	mkdir2->md_jaddref = NULL;
8154 	if (MOUNTEDSUJ(mp) == 0) {
8155 		mkdir1->md_state |= DEPCOMPLETE;
8156 		mkdir2->md_state |= DEPCOMPLETE;
8157 	}
8158 	/*
8159 	 * Dependency on "." and ".." being written to disk.
8160 	 */
8161 	mkdir1->md_buf = newdirbp;
8162 	ACQUIRE_LOCK(VFSTOUFS(mp));
8163 	LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir1, md_mkdirs);
8164 	/*
8165 	 * We must link the pagedep, allocdirect, and newdirblk for
8166 	 * the initial file page so the pointer to the new directory
8167 	 * is not written until the directory contents are live and
8168 	 * any subsequent additions are not marked live until the
8169 	 * block is reachable via the inode.
8170 	 */
8171 	if (pagedep_lookup(mp, newdirbp, newinum, 0, 0, &pagedep) == 0)
8172 		panic("setup_newdir: lost pagedep");
8173 	LIST_FOREACH(wk, &newdirbp->b_dep, wk_list)
8174 		if (wk->wk_type == D_ALLOCDIRECT)
8175 			break;
8176 	if (wk == NULL)
8177 		panic("setup_newdir: lost allocdirect");
8178 	if (pagedep->pd_state & NEWBLOCK)
8179 		panic("setup_newdir: NEWBLOCK already set");
8180 	newblk = WK_NEWBLK(wk);
8181 	pagedep->pd_state |= NEWBLOCK;
8182 	pagedep->pd_newdirblk = newdirblk;
8183 	newdirblk->db_pagedep = pagedep;
8184 	WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
8185 	WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list);
8186 	/*
8187 	 * Look up the inodedep for the parent directory so that we
8188 	 * can link mkdir2 into the pending dotdot jaddref or
8189 	 * the inode write if there is none.  If the inode is
8190 	 * ALLCOMPLETE and no jaddref is present all dependencies have
8191 	 * been satisfied and mkdir2 can be freed.
8192 	 */
8193 	inodedep_lookup(mp, dinum, 0, &inodedep);
8194 	if (MOUNTEDSUJ(mp)) {
8195 		if (inodedep == NULL)
8196 			panic("setup_newdir: Lost parent.");
8197 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8198 		    inoreflst);
8199 		KASSERT(jaddref != NULL && jaddref->ja_parent == newinum &&
8200 		    (jaddref->ja_state & MKDIR_PARENT),
8201 		    ("setup_newdir: bad dotdot jaddref %p", jaddref));
8202 		LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs);
8203 		mkdir2->md_jaddref = jaddref;
8204 		jaddref->ja_mkdir = mkdir2;
8205 	} else if (inodedep == NULL ||
8206 	    (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
8207 		dap->da_state &= ~MKDIR_PARENT;
8208 		WORKITEM_FREE(mkdir2, D_MKDIR);
8209 		mkdir2 = NULL;
8210 	} else {
8211 		LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs);
8212 		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir2->md_list);
8213 	}
8214 	*mkdirp = mkdir2;
8215 
8216 	return (mkdir1);
8217 }
8218 
8219 /*
8220  * Directory entry addition dependencies.
8221  *
8222  * When adding a new directory entry, the inode (with its incremented link
8223  * count) must be written to disk before the directory entry's pointer to it.
8224  * Also, if the inode is newly allocated, the corresponding freemap must be
8225  * updated (on disk) before the directory entry's pointer. These requirements
8226  * are met via undo/redo on the directory entry's pointer, which consists
8227  * simply of the inode number.
8228  *
8229  * As directory entries are added and deleted, the free space within a
8230  * directory block can become fragmented.  The ufs filesystem will compact
8231  * a fragmented directory block to make space for a new entry. When this
8232  * occurs, the offsets of previously added entries change. Any "diradd"
8233  * dependency structures corresponding to these entries must be updated with
8234  * the new offsets.
8235  */
8236 
8237 /*
8238  * This routine is called after the in-memory inode's link
8239  * count has been incremented, but before the directory entry's
8240  * pointer to the inode has been set.
8241  */
8242 int
8243 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
8244 	struct buf *bp;		/* buffer containing directory block */
8245 	struct inode *dp;	/* inode for directory */
8246 	off_t diroffset;	/* offset of new entry in directory */
8247 	ino_t newinum;		/* inode referenced by new directory entry */
8248 	struct buf *newdirbp;	/* non-NULL => contents of new mkdir */
8249 	int isnewblk;		/* entry is in a newly allocated block */
8250 {
8251 	int offset;		/* offset of new entry within directory block */
8252 	ufs_lbn_t lbn;		/* block in directory containing new entry */
8253 	struct fs *fs;
8254 	struct diradd *dap;
8255 	struct newblk *newblk;
8256 	struct pagedep *pagedep;
8257 	struct inodedep *inodedep;
8258 	struct newdirblk *newdirblk = 0;
8259 	struct mkdir *mkdir1, *mkdir2;
8260 	struct jaddref *jaddref;
8261 	struct ufsmount *ump;
8262 	struct mount *mp;
8263 	int isindir;
8264 
8265 	ump = dp->i_ump;
8266 	mp = UFSTOVFS(ump);
8267 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
8268 	    ("softdep_setup_directory_add called on non-softdep filesystem"));
8269 	/*
8270 	 * Whiteouts have no dependencies.
8271 	 */
8272 	if (newinum == WINO) {
8273 		if (newdirbp != NULL)
8274 			bdwrite(newdirbp);
8275 		return (0);
8276 	}
8277 	jaddref = NULL;
8278 	mkdir1 = mkdir2 = NULL;
8279 	fs = dp->i_fs;
8280 	lbn = lblkno(fs, diroffset);
8281 	offset = blkoff(fs, diroffset);
8282 	dap = malloc(sizeof(struct diradd), M_DIRADD,
8283 		M_SOFTDEP_FLAGS|M_ZERO);
8284 	workitem_alloc(&dap->da_list, D_DIRADD, mp);
8285 	dap->da_offset = offset;
8286 	dap->da_newinum = newinum;
8287 	dap->da_state = ATTACHED;
8288 	LIST_INIT(&dap->da_jwork);
8289 	isindir = bp->b_lblkno >= NDADDR;
8290 	if (isnewblk &&
8291 	    (isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) {
8292 		newdirblk = malloc(sizeof(struct newdirblk),
8293 		    M_NEWDIRBLK, M_SOFTDEP_FLAGS);
8294 		workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
8295 		LIST_INIT(&newdirblk->db_mkdir);
8296 	}
8297 	/*
8298 	 * If we're creating a new directory setup the dependencies and set
8299 	 * the dap state to wait for them.  Otherwise it's COMPLETE and
8300 	 * we can move on.
8301 	 */
8302 	if (newdirbp == NULL) {
8303 		dap->da_state |= DEPCOMPLETE;
8304 		ACQUIRE_LOCK(ump);
8305 	} else {
8306 		dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
8307 		mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp,
8308 		    &mkdir2);
8309 	}
8310 	/*
8311 	 * Link into parent directory pagedep to await its being written.
8312 	 */
8313 	pagedep_lookup(mp, bp, dp->i_number, lbn, DEPALLOC, &pagedep);
8314 #ifdef DEBUG
8315 	if (diradd_lookup(pagedep, offset) != NULL)
8316 		panic("softdep_setup_directory_add: %p already at off %d\n",
8317 		    diradd_lookup(pagedep, offset), offset);
8318 #endif
8319 	dap->da_pagedep = pagedep;
8320 	LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
8321 	    da_pdlist);
8322 	inodedep_lookup(mp, newinum, DEPALLOC | NODELAY, &inodedep);
8323 	/*
8324 	 * If we're journaling, link the diradd into the jaddref so it
8325 	 * may be completed after the journal entry is written.  Otherwise,
8326 	 * link the diradd into its inodedep.  If the inode is not yet
8327 	 * written place it on the bufwait list, otherwise do the post-inode
8328 	 * write processing to put it on the id_pendinghd list.
8329 	 */
8330 	if (MOUNTEDSUJ(mp)) {
8331 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8332 		    inoreflst);
8333 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
8334 		    ("softdep_setup_directory_add: bad jaddref %p", jaddref));
8335 		jaddref->ja_diroff = diroffset;
8336 		jaddref->ja_diradd = dap;
8337 		add_to_journal(&jaddref->ja_list);
8338 	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
8339 		diradd_inode_written(dap, inodedep);
8340 	else
8341 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
8342 	/*
8343 	 * Add the journal entries for . and .. links now that the primary
8344 	 * link is written.
8345 	 */
8346 	if (mkdir1 != NULL && MOUNTEDSUJ(mp)) {
8347 		jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
8348 		    inoreflst, if_deps);
8349 		KASSERT(jaddref != NULL &&
8350 		    jaddref->ja_ino == jaddref->ja_parent &&
8351 		    (jaddref->ja_state & MKDIR_BODY),
8352 		    ("softdep_setup_directory_add: bad dot jaddref %p",
8353 		    jaddref));
8354 		mkdir1->md_jaddref = jaddref;
8355 		jaddref->ja_mkdir = mkdir1;
8356 		/*
8357 		 * It is important that the dotdot journal entry
8358 		 * is added prior to the dot entry since dot writes
8359 		 * both the dot and dotdot links.  These both must
8360 		 * be added after the primary link for the journal
8361 		 * to remain consistent.
8362 		 */
8363 		add_to_journal(&mkdir2->md_jaddref->ja_list);
8364 		add_to_journal(&jaddref->ja_list);
8365 	}
8366 	/*
8367 	 * If we are adding a new directory remember this diradd so that if
8368 	 * we rename it we can keep the dot and dotdot dependencies.  If
8369 	 * we are adding a new name for an inode that has a mkdiradd we
8370 	 * must be in rename and we have to move the dot and dotdot
8371 	 * dependencies to this new name.  The old name is being orphaned
8372 	 * soon.
8373 	 */
8374 	if (mkdir1 != NULL) {
8375 		if (inodedep->id_mkdiradd != NULL)
8376 			panic("softdep_setup_directory_add: Existing mkdir");
8377 		inodedep->id_mkdiradd = dap;
8378 	} else if (inodedep->id_mkdiradd)
8379 		merge_diradd(inodedep, dap);
8380 	if (newdirblk) {
8381 		/*
8382 		 * There is nothing to do if we are already tracking
8383 		 * this block.
8384 		 */
8385 		if ((pagedep->pd_state & NEWBLOCK) != 0) {
8386 			WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
8387 			FREE_LOCK(ump);
8388 			return (0);
8389 		}
8390 		if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)
8391 		    == 0)
8392 			panic("softdep_setup_directory_add: lost entry");
8393 		WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
8394 		pagedep->pd_state |= NEWBLOCK;
8395 		pagedep->pd_newdirblk = newdirblk;
8396 		newdirblk->db_pagedep = pagedep;
8397 		FREE_LOCK(ump);
8398 		/*
8399 		 * If we extended into an indirect signal direnter to sync.
8400 		 */
8401 		if (isindir)
8402 			return (1);
8403 		return (0);
8404 	}
8405 	FREE_LOCK(ump);
8406 	return (0);
8407 }
8408 
8409 /*
8410  * This procedure is called to change the offset of a directory
8411  * entry when compacting a directory block which must be owned
8412  * exclusively by the caller. Note that the actual entry movement
8413  * must be done in this procedure to ensure that no I/O completions
8414  * occur while the move is in progress.
8415  */
8416 void
8417 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
8418 	struct buf *bp;		/* Buffer holding directory block. */
8419 	struct inode *dp;	/* inode for directory */
8420 	caddr_t base;		/* address of dp->i_offset */
8421 	caddr_t oldloc;		/* address of old directory location */
8422 	caddr_t newloc;		/* address of new directory location */
8423 	int entrysize;		/* size of directory entry */
8424 {
8425 	int offset, oldoffset, newoffset;
8426 	struct pagedep *pagedep;
8427 	struct jmvref *jmvref;
8428 	struct diradd *dap;
8429 	struct direct *de;
8430 	struct mount *mp;
8431 	ufs_lbn_t lbn;
8432 	int flags;
8433 
8434 	mp = UFSTOVFS(dp->i_ump);
8435 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
8436 	    ("softdep_change_directoryentry_offset called on "
8437 	     "non-softdep filesystem"));
8438 	de = (struct direct *)oldloc;
8439 	jmvref = NULL;
8440 	flags = 0;
8441 	/*
8442 	 * Moves are always journaled as it would be too complex to
8443 	 * determine if any affected adds or removes are present in the
8444 	 * journal.
8445 	 */
8446 	if (MOUNTEDSUJ(mp)) {
8447 		flags = DEPALLOC;
8448 		jmvref = newjmvref(dp, de->d_ino,
8449 		    dp->i_offset + (oldloc - base),
8450 		    dp->i_offset + (newloc - base));
8451 	}
8452 	lbn = lblkno(dp->i_fs, dp->i_offset);
8453 	offset = blkoff(dp->i_fs, dp->i_offset);
8454 	oldoffset = offset + (oldloc - base);
8455 	newoffset = offset + (newloc - base);
8456 	ACQUIRE_LOCK(dp->i_ump);
8457 	if (pagedep_lookup(mp, bp, dp->i_number, lbn, flags, &pagedep) == 0)
8458 		goto done;
8459 	dap = diradd_lookup(pagedep, oldoffset);
8460 	if (dap) {
8461 		dap->da_offset = newoffset;
8462 		newoffset = DIRADDHASH(newoffset);
8463 		oldoffset = DIRADDHASH(oldoffset);
8464 		if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE &&
8465 		    newoffset != oldoffset) {
8466 			LIST_REMOVE(dap, da_pdlist);
8467 			LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset],
8468 			    dap, da_pdlist);
8469 		}
8470 	}
8471 done:
8472 	if (jmvref) {
8473 		jmvref->jm_pagedep = pagedep;
8474 		LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps);
8475 		add_to_journal(&jmvref->jm_list);
8476 	}
8477 	bcopy(oldloc, newloc, entrysize);
8478 	FREE_LOCK(dp->i_ump);
8479 }
8480 
8481 /*
8482  * Move the mkdir dependencies and journal work from one diradd to another
8483  * when renaming a directory.  The new name must depend on the mkdir deps
8484  * completing as the old name did.  Directories can only have one valid link
8485  * at a time so one must be canonical.
8486  */
8487 static void
8488 merge_diradd(inodedep, newdap)
8489 	struct inodedep *inodedep;
8490 	struct diradd *newdap;
8491 {
8492 	struct diradd *olddap;
8493 	struct mkdir *mkdir, *nextmd;
8494 	struct ufsmount *ump;
8495 	short state;
8496 
8497 	olddap = inodedep->id_mkdiradd;
8498 	inodedep->id_mkdiradd = newdap;
8499 	if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8500 		newdap->da_state &= ~DEPCOMPLETE;
8501 		ump = VFSTOUFS(inodedep->id_list.wk_mp);
8502 		for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
8503 		     mkdir = nextmd) {
8504 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
8505 			if (mkdir->md_diradd != olddap)
8506 				continue;
8507 			mkdir->md_diradd = newdap;
8508 			state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY);
8509 			newdap->da_state |= state;
8510 			olddap->da_state &= ~state;
8511 			if ((olddap->da_state &
8512 			    (MKDIR_PARENT | MKDIR_BODY)) == 0)
8513 				break;
8514 		}
8515 		if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
8516 			panic("merge_diradd: unfound ref");
8517 	}
8518 	/*
8519 	 * Any mkdir related journal items are not safe to be freed until
8520 	 * the new name is stable.
8521 	 */
8522 	jwork_move(&newdap->da_jwork, &olddap->da_jwork);
8523 	olddap->da_state |= DEPCOMPLETE;
8524 	complete_diradd(olddap);
8525 }
8526 
8527 /*
8528  * Move the diradd to the pending list when all diradd dependencies are
8529  * complete.
8530  */
8531 static void
8532 complete_diradd(dap)
8533 	struct diradd *dap;
8534 {
8535 	struct pagedep *pagedep;
8536 
8537 	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
8538 		if (dap->da_state & DIRCHG)
8539 			pagedep = dap->da_previous->dm_pagedep;
8540 		else
8541 			pagedep = dap->da_pagedep;
8542 		LIST_REMOVE(dap, da_pdlist);
8543 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
8544 	}
8545 }
8546 
8547 /*
8548  * Cancel a diradd when a dirrem overlaps with it.  We must cancel the journal
8549  * add entries and conditonally journal the remove.
8550  */
8551 static void
8552 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref)
8553 	struct diradd *dap;
8554 	struct dirrem *dirrem;
8555 	struct jremref *jremref;
8556 	struct jremref *dotremref;
8557 	struct jremref *dotdotremref;
8558 {
8559 	struct inodedep *inodedep;
8560 	struct jaddref *jaddref;
8561 	struct inoref *inoref;
8562 	struct ufsmount *ump;
8563 	struct mkdir *mkdir;
8564 
8565 	/*
8566 	 * If no remove references were allocated we're on a non-journaled
8567 	 * filesystem and can skip the cancel step.
8568 	 */
8569 	if (jremref == NULL) {
8570 		free_diradd(dap, NULL);
8571 		return;
8572 	}
8573 	/*
8574 	 * Cancel the primary name an free it if it does not require
8575 	 * journaling.
8576 	 */
8577 	if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum,
8578 	    0, &inodedep) != 0) {
8579 		/* Abort the addref that reference this diradd.  */
8580 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
8581 			if (inoref->if_list.wk_type != D_JADDREF)
8582 				continue;
8583 			jaddref = (struct jaddref *)inoref;
8584 			if (jaddref->ja_diradd != dap)
8585 				continue;
8586 			if (cancel_jaddref(jaddref, inodedep,
8587 			    &dirrem->dm_jwork) == 0) {
8588 				free_jremref(jremref);
8589 				jremref = NULL;
8590 			}
8591 			break;
8592 		}
8593 	}
8594 	/*
8595 	 * Cancel subordinate names and free them if they do not require
8596 	 * journaling.
8597 	 */
8598 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8599 		ump = VFSTOUFS(dap->da_list.wk_mp);
8600 		LIST_FOREACH(mkdir, &ump->softdep_mkdirlisthd, md_mkdirs) {
8601 			if (mkdir->md_diradd != dap)
8602 				continue;
8603 			if ((jaddref = mkdir->md_jaddref) == NULL)
8604 				continue;
8605 			mkdir->md_jaddref = NULL;
8606 			if (mkdir->md_state & MKDIR_PARENT) {
8607 				if (cancel_jaddref(jaddref, NULL,
8608 				    &dirrem->dm_jwork) == 0) {
8609 					free_jremref(dotdotremref);
8610 					dotdotremref = NULL;
8611 				}
8612 			} else {
8613 				if (cancel_jaddref(jaddref, inodedep,
8614 				    &dirrem->dm_jwork) == 0) {
8615 					free_jremref(dotremref);
8616 					dotremref = NULL;
8617 				}
8618 			}
8619 		}
8620 	}
8621 
8622 	if (jremref)
8623 		journal_jremref(dirrem, jremref, inodedep);
8624 	if (dotremref)
8625 		journal_jremref(dirrem, dotremref, inodedep);
8626 	if (dotdotremref)
8627 		journal_jremref(dirrem, dotdotremref, NULL);
8628 	jwork_move(&dirrem->dm_jwork, &dap->da_jwork);
8629 	free_diradd(dap, &dirrem->dm_jwork);
8630 }
8631 
8632 /*
8633  * Free a diradd dependency structure. This routine must be called
8634  * with splbio interrupts blocked.
8635  */
8636 static void
8637 free_diradd(dap, wkhd)
8638 	struct diradd *dap;
8639 	struct workhead *wkhd;
8640 {
8641 	struct dirrem *dirrem;
8642 	struct pagedep *pagedep;
8643 	struct inodedep *inodedep;
8644 	struct mkdir *mkdir, *nextmd;
8645 	struct ufsmount *ump;
8646 
8647 	ump = VFSTOUFS(dap->da_list.wk_mp);
8648 	LOCK_OWNED(ump);
8649 	LIST_REMOVE(dap, da_pdlist);
8650 	if (dap->da_state & ONWORKLIST)
8651 		WORKLIST_REMOVE(&dap->da_list);
8652 	if ((dap->da_state & DIRCHG) == 0) {
8653 		pagedep = dap->da_pagedep;
8654 	} else {
8655 		dirrem = dap->da_previous;
8656 		pagedep = dirrem->dm_pagedep;
8657 		dirrem->dm_dirinum = pagedep->pd_ino;
8658 		dirrem->dm_state |= COMPLETE;
8659 		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
8660 			add_to_worklist(&dirrem->dm_list, 0);
8661 	}
8662 	if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum,
8663 	    0, &inodedep) != 0)
8664 		if (inodedep->id_mkdiradd == dap)
8665 			inodedep->id_mkdiradd = NULL;
8666 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8667 		for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
8668 		     mkdir = nextmd) {
8669 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
8670 			if (mkdir->md_diradd != dap)
8671 				continue;
8672 			dap->da_state &=
8673 			    ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
8674 			LIST_REMOVE(mkdir, md_mkdirs);
8675 			if (mkdir->md_state & ONWORKLIST)
8676 				WORKLIST_REMOVE(&mkdir->md_list);
8677 			if (mkdir->md_jaddref != NULL)
8678 				panic("free_diradd: Unexpected jaddref");
8679 			WORKITEM_FREE(mkdir, D_MKDIR);
8680 			if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
8681 				break;
8682 		}
8683 		if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
8684 			panic("free_diradd: unfound ref");
8685 	}
8686 	if (inodedep)
8687 		free_inodedep(inodedep);
8688 	/*
8689 	 * Free any journal segments waiting for the directory write.
8690 	 */
8691 	handle_jwork(&dap->da_jwork);
8692 	WORKITEM_FREE(dap, D_DIRADD);
8693 }
8694 
8695 /*
8696  * Directory entry removal dependencies.
8697  *
8698  * When removing a directory entry, the entry's inode pointer must be
8699  * zero'ed on disk before the corresponding inode's link count is decremented
8700  * (possibly freeing the inode for re-use). This dependency is handled by
8701  * updating the directory entry but delaying the inode count reduction until
8702  * after the directory block has been written to disk. After this point, the
8703  * inode count can be decremented whenever it is convenient.
8704  */
8705 
8706 /*
8707  * This routine should be called immediately after removing
8708  * a directory entry.  The inode's link count should not be
8709  * decremented by the calling procedure -- the soft updates
8710  * code will do this task when it is safe.
8711  */
8712 void
8713 softdep_setup_remove(bp, dp, ip, isrmdir)
8714 	struct buf *bp;		/* buffer containing directory block */
8715 	struct inode *dp;	/* inode for the directory being modified */
8716 	struct inode *ip;	/* inode for directory entry being removed */
8717 	int isrmdir;		/* indicates if doing RMDIR */
8718 {
8719 	struct dirrem *dirrem, *prevdirrem;
8720 	struct inodedep *inodedep;
8721 	int direct;
8722 
8723 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
8724 	    ("softdep_setup_remove called on non-softdep filesystem"));
8725 	/*
8726 	 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK.  We want
8727 	 * newdirrem() to setup the full directory remove which requires
8728 	 * isrmdir > 1.
8729 	 */
8730 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
8731 	/*
8732 	 * Add the dirrem to the inodedep's pending remove list for quick
8733 	 * discovery later.
8734 	 */
8735 	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
8736 	    &inodedep) == 0)
8737 		panic("softdep_setup_remove: Lost inodedep.");
8738 	KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
8739 	dirrem->dm_state |= ONDEPLIST;
8740 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
8741 
8742 	/*
8743 	 * If the COMPLETE flag is clear, then there were no active
8744 	 * entries and we want to roll back to a zeroed entry until
8745 	 * the new inode is committed to disk. If the COMPLETE flag is
8746 	 * set then we have deleted an entry that never made it to
8747 	 * disk. If the entry we deleted resulted from a name change,
8748 	 * then the old name still resides on disk. We cannot delete
8749 	 * its inode (returned to us in prevdirrem) until the zeroed
8750 	 * directory entry gets to disk. The new inode has never been
8751 	 * referenced on the disk, so can be deleted immediately.
8752 	 */
8753 	if ((dirrem->dm_state & COMPLETE) == 0) {
8754 		LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
8755 		    dm_next);
8756 		FREE_LOCK(ip->i_ump);
8757 	} else {
8758 		if (prevdirrem != NULL)
8759 			LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd,
8760 			    prevdirrem, dm_next);
8761 		dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
8762 		direct = LIST_EMPTY(&dirrem->dm_jremrefhd);
8763 		FREE_LOCK(ip->i_ump);
8764 		if (direct)
8765 			handle_workitem_remove(dirrem, 0);
8766 	}
8767 }
8768 
8769 /*
8770  * Check for an entry matching 'offset' on both the pd_dirraddhd list and the
8771  * pd_pendinghd list of a pagedep.
8772  */
8773 static struct diradd *
8774 diradd_lookup(pagedep, offset)
8775 	struct pagedep *pagedep;
8776 	int offset;
8777 {
8778 	struct diradd *dap;
8779 
8780 	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist)
8781 		if (dap->da_offset == offset)
8782 			return (dap);
8783 	LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
8784 		if (dap->da_offset == offset)
8785 			return (dap);
8786 	return (NULL);
8787 }
8788 
8789 /*
8790  * Search for a .. diradd dependency in a directory that is being removed.
8791  * If the directory was renamed to a new parent we have a diradd rather
8792  * than a mkdir for the .. entry.  We need to cancel it now before
8793  * it is found in truncate().
8794  */
8795 static struct jremref *
8796 cancel_diradd_dotdot(ip, dirrem, jremref)
8797 	struct inode *ip;
8798 	struct dirrem *dirrem;
8799 	struct jremref *jremref;
8800 {
8801 	struct pagedep *pagedep;
8802 	struct diradd *dap;
8803 	struct worklist *wk;
8804 
8805 	if (pagedep_lookup(UFSTOVFS(ip->i_ump), NULL, ip->i_number, 0, 0,
8806 	    &pagedep) == 0)
8807 		return (jremref);
8808 	dap = diradd_lookup(pagedep, DOTDOT_OFFSET);
8809 	if (dap == NULL)
8810 		return (jremref);
8811 	cancel_diradd(dap, dirrem, jremref, NULL, NULL);
8812 	/*
8813 	 * Mark any journal work as belonging to the parent so it is freed
8814 	 * with the .. reference.
8815 	 */
8816 	LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
8817 		wk->wk_state |= MKDIR_PARENT;
8818 	return (NULL);
8819 }
8820 
8821 /*
8822  * Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to
8823  * replace it with a dirrem/diradd pair as a result of re-parenting a
8824  * directory.  This ensures that we don't simultaneously have a mkdir and
8825  * a diradd for the same .. entry.
8826  */
8827 static struct jremref *
8828 cancel_mkdir_dotdot(ip, dirrem, jremref)
8829 	struct inode *ip;
8830 	struct dirrem *dirrem;
8831 	struct jremref *jremref;
8832 {
8833 	struct inodedep *inodedep;
8834 	struct jaddref *jaddref;
8835 	struct ufsmount *ump;
8836 	struct mkdir *mkdir;
8837 	struct diradd *dap;
8838 
8839 	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
8840 	    &inodedep) == 0)
8841 		return (jremref);
8842 	dap = inodedep->id_mkdiradd;
8843 	if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0)
8844 		return (jremref);
8845 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
8846 	for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
8847 	    mkdir = LIST_NEXT(mkdir, md_mkdirs))
8848 		if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT)
8849 			break;
8850 	if (mkdir == NULL)
8851 		panic("cancel_mkdir_dotdot: Unable to find mkdir\n");
8852 	if ((jaddref = mkdir->md_jaddref) != NULL) {
8853 		mkdir->md_jaddref = NULL;
8854 		jaddref->ja_state &= ~MKDIR_PARENT;
8855 		if (inodedep_lookup(UFSTOVFS(ip->i_ump), jaddref->ja_ino, 0,
8856 		    &inodedep) == 0)
8857 			panic("cancel_mkdir_dotdot: Lost parent inodedep");
8858 		if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) {
8859 			journal_jremref(dirrem, jremref, inodedep);
8860 			jremref = NULL;
8861 		}
8862 	}
8863 	if (mkdir->md_state & ONWORKLIST)
8864 		WORKLIST_REMOVE(&mkdir->md_list);
8865 	mkdir->md_state |= ALLCOMPLETE;
8866 	complete_mkdir(mkdir);
8867 	return (jremref);
8868 }
8869 
8870 static void
8871 journal_jremref(dirrem, jremref, inodedep)
8872 	struct dirrem *dirrem;
8873 	struct jremref *jremref;
8874 	struct inodedep *inodedep;
8875 {
8876 
8877 	if (inodedep == NULL)
8878 		if (inodedep_lookup(jremref->jr_list.wk_mp,
8879 		    jremref->jr_ref.if_ino, 0, &inodedep) == 0)
8880 			panic("journal_jremref: Lost inodedep");
8881 	LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps);
8882 	TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
8883 	add_to_journal(&jremref->jr_list);
8884 }
8885 
8886 static void
8887 dirrem_journal(dirrem, jremref, dotremref, dotdotremref)
8888 	struct dirrem *dirrem;
8889 	struct jremref *jremref;
8890 	struct jremref *dotremref;
8891 	struct jremref *dotdotremref;
8892 {
8893 	struct inodedep *inodedep;
8894 
8895 
8896 	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0,
8897 	    &inodedep) == 0)
8898 		panic("dirrem_journal: Lost inodedep");
8899 	journal_jremref(dirrem, jremref, inodedep);
8900 	if (dotremref)
8901 		journal_jremref(dirrem, dotremref, inodedep);
8902 	if (dotdotremref)
8903 		journal_jremref(dirrem, dotdotremref, NULL);
8904 }
8905 
8906 /*
8907  * Allocate a new dirrem if appropriate and return it along with
8908  * its associated pagedep. Called without a lock, returns with lock.
8909  */
8910 static struct dirrem *
8911 newdirrem(bp, dp, ip, isrmdir, prevdirremp)
8912 	struct buf *bp;		/* buffer containing directory block */
8913 	struct inode *dp;	/* inode for the directory being modified */
8914 	struct inode *ip;	/* inode for directory entry being removed */
8915 	int isrmdir;		/* indicates if doing RMDIR */
8916 	struct dirrem **prevdirremp; /* previously referenced inode, if any */
8917 {
8918 	int offset;
8919 	ufs_lbn_t lbn;
8920 	struct diradd *dap;
8921 	struct dirrem *dirrem;
8922 	struct pagedep *pagedep;
8923 	struct jremref *jremref;
8924 	struct jremref *dotremref;
8925 	struct jremref *dotdotremref;
8926 	struct vnode *dvp;
8927 
8928 	/*
8929 	 * Whiteouts have no deletion dependencies.
8930 	 */
8931 	if (ip == NULL)
8932 		panic("newdirrem: whiteout");
8933 	dvp = ITOV(dp);
8934 	/*
8935 	 * If we are over our limit, try to improve the situation.
8936 	 * Limiting the number of dirrem structures will also limit
8937 	 * the number of freefile and freeblks structures.
8938 	 */
8939 	ACQUIRE_LOCK(ip->i_ump);
8940 	if (!IS_SNAPSHOT(ip) && dep_current[D_DIRREM] > max_softdeps / 2)
8941 		(void) request_cleanup(ITOV(dp)->v_mount, FLUSH_BLOCKS);
8942 	FREE_LOCK(ip->i_ump);
8943 	dirrem = malloc(sizeof(struct dirrem),
8944 		M_DIRREM, M_SOFTDEP_FLAGS|M_ZERO);
8945 	workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount);
8946 	LIST_INIT(&dirrem->dm_jremrefhd);
8947 	LIST_INIT(&dirrem->dm_jwork);
8948 	dirrem->dm_state = isrmdir ? RMDIR : 0;
8949 	dirrem->dm_oldinum = ip->i_number;
8950 	*prevdirremp = NULL;
8951 	/*
8952 	 * Allocate remove reference structures to track journal write
8953 	 * dependencies.  We will always have one for the link and
8954 	 * when doing directories we will always have one more for dot.
8955 	 * When renaming a directory we skip the dotdot link change so
8956 	 * this is not needed.
8957 	 */
8958 	jremref = dotremref = dotdotremref = NULL;
8959 	if (DOINGSUJ(dvp)) {
8960 		if (isrmdir) {
8961 			jremref = newjremref(dirrem, dp, ip, dp->i_offset,
8962 			    ip->i_effnlink + 2);
8963 			dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET,
8964 			    ip->i_effnlink + 1);
8965 			dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET,
8966 			    dp->i_effnlink + 1);
8967 			dotdotremref->jr_state |= MKDIR_PARENT;
8968 		} else
8969 			jremref = newjremref(dirrem, dp, ip, dp->i_offset,
8970 			    ip->i_effnlink + 1);
8971 	}
8972 	ACQUIRE_LOCK(ip->i_ump);
8973 	lbn = lblkno(dp->i_fs, dp->i_offset);
8974 	offset = blkoff(dp->i_fs, dp->i_offset);
8975 	pagedep_lookup(UFSTOVFS(dp->i_ump), bp, dp->i_number, lbn, DEPALLOC,
8976 	    &pagedep);
8977 	dirrem->dm_pagedep = pagedep;
8978 	dirrem->dm_offset = offset;
8979 	/*
8980 	 * If we're renaming a .. link to a new directory, cancel any
8981 	 * existing MKDIR_PARENT mkdir.  If it has already been canceled
8982 	 * the jremref is preserved for any potential diradd in this
8983 	 * location.  This can not coincide with a rmdir.
8984 	 */
8985 	if (dp->i_offset == DOTDOT_OFFSET) {
8986 		if (isrmdir)
8987 			panic("newdirrem: .. directory change during remove?");
8988 		jremref = cancel_mkdir_dotdot(dp, dirrem, jremref);
8989 	}
8990 	/*
8991 	 * If we're removing a directory search for the .. dependency now and
8992 	 * cancel it.  Any pending journal work will be added to the dirrem
8993 	 * to be completed when the workitem remove completes.
8994 	 */
8995 	if (isrmdir)
8996 		dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref);
8997 	/*
8998 	 * Check for a diradd dependency for the same directory entry.
8999 	 * If present, then both dependencies become obsolete and can
9000 	 * be de-allocated.
9001 	 */
9002 	dap = diradd_lookup(pagedep, offset);
9003 	if (dap == NULL) {
9004 		/*
9005 		 * Link the jremref structures into the dirrem so they are
9006 		 * written prior to the pagedep.
9007 		 */
9008 		if (jremref)
9009 			dirrem_journal(dirrem, jremref, dotremref,
9010 			    dotdotremref);
9011 		return (dirrem);
9012 	}
9013 	/*
9014 	 * Must be ATTACHED at this point.
9015 	 */
9016 	if ((dap->da_state & ATTACHED) == 0)
9017 		panic("newdirrem: not ATTACHED");
9018 	if (dap->da_newinum != ip->i_number)
9019 		panic("newdirrem: inum %ju should be %ju",
9020 		    (uintmax_t)ip->i_number, (uintmax_t)dap->da_newinum);
9021 	/*
9022 	 * If we are deleting a changed name that never made it to disk,
9023 	 * then return the dirrem describing the previous inode (which
9024 	 * represents the inode currently referenced from this entry on disk).
9025 	 */
9026 	if ((dap->da_state & DIRCHG) != 0) {
9027 		*prevdirremp = dap->da_previous;
9028 		dap->da_state &= ~DIRCHG;
9029 		dap->da_pagedep = pagedep;
9030 	}
9031 	/*
9032 	 * We are deleting an entry that never made it to disk.
9033 	 * Mark it COMPLETE so we can delete its inode immediately.
9034 	 */
9035 	dirrem->dm_state |= COMPLETE;
9036 	cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref);
9037 #ifdef SUJ_DEBUG
9038 	if (isrmdir == 0) {
9039 		struct worklist *wk;
9040 
9041 		LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
9042 			if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT))
9043 				panic("bad wk %p (0x%X)\n", wk, wk->wk_state);
9044 	}
9045 #endif
9046 
9047 	return (dirrem);
9048 }
9049 
9050 /*
9051  * Directory entry change dependencies.
9052  *
9053  * Changing an existing directory entry requires that an add operation
9054  * be completed first followed by a deletion. The semantics for the addition
9055  * are identical to the description of adding a new entry above except
9056  * that the rollback is to the old inode number rather than zero. Once
9057  * the addition dependency is completed, the removal is done as described
9058  * in the removal routine above.
9059  */
9060 
9061 /*
9062  * This routine should be called immediately after changing
9063  * a directory entry.  The inode's link count should not be
9064  * decremented by the calling procedure -- the soft updates
9065  * code will perform this task when it is safe.
9066  */
9067 void
9068 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
9069 	struct buf *bp;		/* buffer containing directory block */
9070 	struct inode *dp;	/* inode for the directory being modified */
9071 	struct inode *ip;	/* inode for directory entry being removed */
9072 	ino_t newinum;		/* new inode number for changed entry */
9073 	int isrmdir;		/* indicates if doing RMDIR */
9074 {
9075 	int offset;
9076 	struct diradd *dap = NULL;
9077 	struct dirrem *dirrem, *prevdirrem;
9078 	struct pagedep *pagedep;
9079 	struct inodedep *inodedep;
9080 	struct jaddref *jaddref;
9081 	struct mount *mp;
9082 
9083 	offset = blkoff(dp->i_fs, dp->i_offset);
9084 	mp = UFSTOVFS(dp->i_ump);
9085 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
9086 	   ("softdep_setup_directory_change called on non-softdep filesystem"));
9087 
9088 	/*
9089 	 * Whiteouts do not need diradd dependencies.
9090 	 */
9091 	if (newinum != WINO) {
9092 		dap = malloc(sizeof(struct diradd),
9093 		    M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO);
9094 		workitem_alloc(&dap->da_list, D_DIRADD, mp);
9095 		dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
9096 		dap->da_offset = offset;
9097 		dap->da_newinum = newinum;
9098 		LIST_INIT(&dap->da_jwork);
9099 	}
9100 
9101 	/*
9102 	 * Allocate a new dirrem and ACQUIRE_LOCK.
9103 	 */
9104 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
9105 	pagedep = dirrem->dm_pagedep;
9106 	/*
9107 	 * The possible values for isrmdir:
9108 	 *	0 - non-directory file rename
9109 	 *	1 - directory rename within same directory
9110 	 *   inum - directory rename to new directory of given inode number
9111 	 * When renaming to a new directory, we are both deleting and
9112 	 * creating a new directory entry, so the link count on the new
9113 	 * directory should not change. Thus we do not need the followup
9114 	 * dirrem which is usually done in handle_workitem_remove. We set
9115 	 * the DIRCHG flag to tell handle_workitem_remove to skip the
9116 	 * followup dirrem.
9117 	 */
9118 	if (isrmdir > 1)
9119 		dirrem->dm_state |= DIRCHG;
9120 
9121 	/*
9122 	 * Whiteouts have no additional dependencies,
9123 	 * so just put the dirrem on the correct list.
9124 	 */
9125 	if (newinum == WINO) {
9126 		if ((dirrem->dm_state & COMPLETE) == 0) {
9127 			LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
9128 			    dm_next);
9129 		} else {
9130 			dirrem->dm_dirinum = pagedep->pd_ino;
9131 			if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9132 				add_to_worklist(&dirrem->dm_list, 0);
9133 		}
9134 		FREE_LOCK(dp->i_ump);
9135 		return;
9136 	}
9137 	/*
9138 	 * Add the dirrem to the inodedep's pending remove list for quick
9139 	 * discovery later.  A valid nlinkdelta ensures that this lookup
9140 	 * will not fail.
9141 	 */
9142 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
9143 		panic("softdep_setup_directory_change: Lost inodedep.");
9144 	dirrem->dm_state |= ONDEPLIST;
9145 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9146 
9147 	/*
9148 	 * If the COMPLETE flag is clear, then there were no active
9149 	 * entries and we want to roll back to the previous inode until
9150 	 * the new inode is committed to disk. If the COMPLETE flag is
9151 	 * set, then we have deleted an entry that never made it to disk.
9152 	 * If the entry we deleted resulted from a name change, then the old
9153 	 * inode reference still resides on disk. Any rollback that we do
9154 	 * needs to be to that old inode (returned to us in prevdirrem). If
9155 	 * the entry we deleted resulted from a create, then there is
9156 	 * no entry on the disk, so we want to roll back to zero rather
9157 	 * than the uncommitted inode. In either of the COMPLETE cases we
9158 	 * want to immediately free the unwritten and unreferenced inode.
9159 	 */
9160 	if ((dirrem->dm_state & COMPLETE) == 0) {
9161 		dap->da_previous = dirrem;
9162 	} else {
9163 		if (prevdirrem != NULL) {
9164 			dap->da_previous = prevdirrem;
9165 		} else {
9166 			dap->da_state &= ~DIRCHG;
9167 			dap->da_pagedep = pagedep;
9168 		}
9169 		dirrem->dm_dirinum = pagedep->pd_ino;
9170 		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9171 			add_to_worklist(&dirrem->dm_list, 0);
9172 	}
9173 	/*
9174 	 * Lookup the jaddref for this journal entry.  We must finish
9175 	 * initializing it and make the diradd write dependent on it.
9176 	 * If we're not journaling, put it on the id_bufwait list if the
9177 	 * inode is not yet written. If it is written, do the post-inode
9178 	 * write processing to put it on the id_pendinghd list.
9179 	 */
9180 	inodedep_lookup(mp, newinum, DEPALLOC | NODELAY, &inodedep);
9181 	if (MOUNTEDSUJ(mp)) {
9182 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
9183 		    inoreflst);
9184 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
9185 		    ("softdep_setup_directory_change: bad jaddref %p",
9186 		    jaddref));
9187 		jaddref->ja_diroff = dp->i_offset;
9188 		jaddref->ja_diradd = dap;
9189 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
9190 		    dap, da_pdlist);
9191 		add_to_journal(&jaddref->ja_list);
9192 	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
9193 		dap->da_state |= COMPLETE;
9194 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
9195 		WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
9196 	} else {
9197 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
9198 		    dap, da_pdlist);
9199 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
9200 	}
9201 	/*
9202 	 * If we're making a new name for a directory that has not been
9203 	 * committed when need to move the dot and dotdot references to
9204 	 * this new name.
9205 	 */
9206 	if (inodedep->id_mkdiradd && dp->i_offset != DOTDOT_OFFSET)
9207 		merge_diradd(inodedep, dap);
9208 	FREE_LOCK(dp->i_ump);
9209 }
9210 
9211 /*
9212  * Called whenever the link count on an inode is changed.
9213  * It creates an inode dependency so that the new reference(s)
9214  * to the inode cannot be committed to disk until the updated
9215  * inode has been written.
9216  */
9217 void
9218 softdep_change_linkcnt(ip)
9219 	struct inode *ip;	/* the inode with the increased link count */
9220 {
9221 	struct inodedep *inodedep;
9222 	int dflags;
9223 
9224 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
9225 	    ("softdep_change_linkcnt called on non-softdep filesystem"));
9226 	ACQUIRE_LOCK(ip->i_ump);
9227 	dflags = DEPALLOC;
9228 	if (IS_SNAPSHOT(ip))
9229 		dflags |= NODELAY;
9230 	inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, dflags, &inodedep);
9231 	if (ip->i_nlink < ip->i_effnlink)
9232 		panic("softdep_change_linkcnt: bad delta");
9233 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9234 	FREE_LOCK(ip->i_ump);
9235 }
9236 
9237 /*
9238  * Attach a sbdep dependency to the superblock buf so that we can keep
9239  * track of the head of the linked list of referenced but unlinked inodes.
9240  */
9241 void
9242 softdep_setup_sbupdate(ump, fs, bp)
9243 	struct ufsmount *ump;
9244 	struct fs *fs;
9245 	struct buf *bp;
9246 {
9247 	struct sbdep *sbdep;
9248 	struct worklist *wk;
9249 
9250 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
9251 	    ("softdep_setup_sbupdate called on non-softdep filesystem"));
9252 	LIST_FOREACH(wk, &bp->b_dep, wk_list)
9253 		if (wk->wk_type == D_SBDEP)
9254 			break;
9255 	if (wk != NULL)
9256 		return;
9257 	sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS);
9258 	workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump));
9259 	sbdep->sb_fs = fs;
9260 	sbdep->sb_ump = ump;
9261 	ACQUIRE_LOCK(ump);
9262 	WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list);
9263 	FREE_LOCK(ump);
9264 }
9265 
9266 /*
9267  * Return the first unlinked inodedep which is ready to be the head of the
9268  * list.  The inodedep and all those after it must have valid next pointers.
9269  */
9270 static struct inodedep *
9271 first_unlinked_inodedep(ump)
9272 	struct ufsmount *ump;
9273 {
9274 	struct inodedep *inodedep;
9275 	struct inodedep *idp;
9276 
9277 	LOCK_OWNED(ump);
9278 	for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst);
9279 	    inodedep; inodedep = idp) {
9280 		if ((inodedep->id_state & UNLINKNEXT) == 0)
9281 			return (NULL);
9282 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9283 		if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0)
9284 			break;
9285 		if ((inodedep->id_state & UNLINKPREV) == 0)
9286 			break;
9287 	}
9288 	return (inodedep);
9289 }
9290 
9291 /*
9292  * Set the sujfree unlinked head pointer prior to writing a superblock.
9293  */
9294 static void
9295 initiate_write_sbdep(sbdep)
9296 	struct sbdep *sbdep;
9297 {
9298 	struct inodedep *inodedep;
9299 	struct fs *bpfs;
9300 	struct fs *fs;
9301 
9302 	bpfs = sbdep->sb_fs;
9303 	fs = sbdep->sb_ump->um_fs;
9304 	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9305 	if (inodedep) {
9306 		fs->fs_sujfree = inodedep->id_ino;
9307 		inodedep->id_state |= UNLINKPREV;
9308 	} else
9309 		fs->fs_sujfree = 0;
9310 	bpfs->fs_sujfree = fs->fs_sujfree;
9311 }
9312 
9313 /*
9314  * After a superblock is written determine whether it must be written again
9315  * due to a changing unlinked list head.
9316  */
9317 static int
9318 handle_written_sbdep(sbdep, bp)
9319 	struct sbdep *sbdep;
9320 	struct buf *bp;
9321 {
9322 	struct inodedep *inodedep;
9323 	struct mount *mp;
9324 	struct fs *fs;
9325 
9326 	LOCK_OWNED(sbdep->sb_ump);
9327 	fs = sbdep->sb_fs;
9328 	mp = UFSTOVFS(sbdep->sb_ump);
9329 	/*
9330 	 * If the superblock doesn't match the in-memory list start over.
9331 	 */
9332 	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9333 	if ((inodedep && fs->fs_sujfree != inodedep->id_ino) ||
9334 	    (inodedep == NULL && fs->fs_sujfree != 0)) {
9335 		bdirty(bp);
9336 		return (1);
9337 	}
9338 	WORKITEM_FREE(sbdep, D_SBDEP);
9339 	if (fs->fs_sujfree == 0)
9340 		return (0);
9341 	/*
9342 	 * Now that we have a record of this inode in stable store allow it
9343 	 * to be written to free up pending work.  Inodes may see a lot of
9344 	 * write activity after they are unlinked which we must not hold up.
9345 	 */
9346 	for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) {
9347 		if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS)
9348 			panic("handle_written_sbdep: Bad inodedep %p (0x%X)",
9349 			    inodedep, inodedep->id_state);
9350 		if (inodedep->id_state & UNLINKONLIST)
9351 			break;
9352 		inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST;
9353 	}
9354 
9355 	return (0);
9356 }
9357 
9358 /*
9359  * Mark an inodedep as unlinked and insert it into the in-memory unlinked list.
9360  */
9361 static void
9362 unlinked_inodedep(mp, inodedep)
9363 	struct mount *mp;
9364 	struct inodedep *inodedep;
9365 {
9366 	struct ufsmount *ump;
9367 
9368 	ump = VFSTOUFS(mp);
9369 	LOCK_OWNED(ump);
9370 	if (MOUNTEDSUJ(mp) == 0)
9371 		return;
9372 	ump->um_fs->fs_fmod = 1;
9373 	if (inodedep->id_state & UNLINKED)
9374 		panic("unlinked_inodedep: %p already unlinked\n", inodedep);
9375 	inodedep->id_state |= UNLINKED;
9376 	TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked);
9377 }
9378 
9379 /*
9380  * Remove an inodedep from the unlinked inodedep list.  This may require
9381  * disk writes if the inode has made it that far.
9382  */
9383 static void
9384 clear_unlinked_inodedep(inodedep)
9385 	struct inodedep *inodedep;
9386 {
9387 	struct ufsmount *ump;
9388 	struct inodedep *idp;
9389 	struct inodedep *idn;
9390 	struct fs *fs;
9391 	struct buf *bp;
9392 	ino_t ino;
9393 	ino_t nino;
9394 	ino_t pino;
9395 	int error;
9396 
9397 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
9398 	fs = ump->um_fs;
9399 	ino = inodedep->id_ino;
9400 	error = 0;
9401 	for (;;) {
9402 		LOCK_OWNED(ump);
9403 		KASSERT((inodedep->id_state & UNLINKED) != 0,
9404 		    ("clear_unlinked_inodedep: inodedep %p not unlinked",
9405 		    inodedep));
9406 		/*
9407 		 * If nothing has yet been written simply remove us from
9408 		 * the in memory list and return.  This is the most common
9409 		 * case where handle_workitem_remove() loses the final
9410 		 * reference.
9411 		 */
9412 		if ((inodedep->id_state & UNLINKLINKS) == 0)
9413 			break;
9414 		/*
9415 		 * If we have a NEXT pointer and no PREV pointer we can simply
9416 		 * clear NEXT's PREV and remove ourselves from the list.  Be
9417 		 * careful not to clear PREV if the superblock points at
9418 		 * next as well.
9419 		 */
9420 		idn = TAILQ_NEXT(inodedep, id_unlinked);
9421 		if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) {
9422 			if (idn && fs->fs_sujfree != idn->id_ino)
9423 				idn->id_state &= ~UNLINKPREV;
9424 			break;
9425 		}
9426 		/*
9427 		 * Here we have an inodedep which is actually linked into
9428 		 * the list.  We must remove it by forcing a write to the
9429 		 * link before us, whether it be the superblock or an inode.
9430 		 * Unfortunately the list may change while we're waiting
9431 		 * on the buf lock for either resource so we must loop until
9432 		 * we lock the right one.  If both the superblock and an
9433 		 * inode point to this inode we must clear the inode first
9434 		 * followed by the superblock.
9435 		 */
9436 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9437 		pino = 0;
9438 		if (idp && (idp->id_state & UNLINKNEXT))
9439 			pino = idp->id_ino;
9440 		FREE_LOCK(ump);
9441 		if (pino == 0) {
9442 			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
9443 			    (int)fs->fs_sbsize, 0, 0, 0);
9444 		} else {
9445 			error = bread(ump->um_devvp,
9446 			    fsbtodb(fs, ino_to_fsba(fs, pino)),
9447 			    (int)fs->fs_bsize, NOCRED, &bp);
9448 			if (error)
9449 				brelse(bp);
9450 		}
9451 		ACQUIRE_LOCK(ump);
9452 		if (error)
9453 			break;
9454 		/* If the list has changed restart the loop. */
9455 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9456 		nino = 0;
9457 		if (idp && (idp->id_state & UNLINKNEXT))
9458 			nino = idp->id_ino;
9459 		if (nino != pino ||
9460 		    (inodedep->id_state & UNLINKPREV) != UNLINKPREV) {
9461 			FREE_LOCK(ump);
9462 			brelse(bp);
9463 			ACQUIRE_LOCK(ump);
9464 			continue;
9465 		}
9466 		nino = 0;
9467 		idn = TAILQ_NEXT(inodedep, id_unlinked);
9468 		if (idn)
9469 			nino = idn->id_ino;
9470 		/*
9471 		 * Remove us from the in memory list.  After this we cannot
9472 		 * access the inodedep.
9473 		 */
9474 		KASSERT((inodedep->id_state & UNLINKED) != 0,
9475 		    ("clear_unlinked_inodedep: inodedep %p not unlinked",
9476 		    inodedep));
9477 		inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
9478 		TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
9479 		FREE_LOCK(ump);
9480 		/*
9481 		 * The predecessor's next pointer is manually updated here
9482 		 * so that the NEXT flag is never cleared for an element
9483 		 * that is in the list.
9484 		 */
9485 		if (pino == 0) {
9486 			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
9487 			ffs_oldfscompat_write((struct fs *)bp->b_data, ump);
9488 			softdep_setup_sbupdate(ump, (struct fs *)bp->b_data,
9489 			    bp);
9490 		} else if (fs->fs_magic == FS_UFS1_MAGIC)
9491 			((struct ufs1_dinode *)bp->b_data +
9492 			    ino_to_fsbo(fs, pino))->di_freelink = nino;
9493 		else
9494 			((struct ufs2_dinode *)bp->b_data +
9495 			    ino_to_fsbo(fs, pino))->di_freelink = nino;
9496 		/*
9497 		 * If the bwrite fails we have no recourse to recover.  The
9498 		 * filesystem is corrupted already.
9499 		 */
9500 		bwrite(bp);
9501 		ACQUIRE_LOCK(ump);
9502 		/*
9503 		 * If the superblock pointer still needs to be cleared force
9504 		 * a write here.
9505 		 */
9506 		if (fs->fs_sujfree == ino) {
9507 			FREE_LOCK(ump);
9508 			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
9509 			    (int)fs->fs_sbsize, 0, 0, 0);
9510 			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
9511 			ffs_oldfscompat_write((struct fs *)bp->b_data, ump);
9512 			softdep_setup_sbupdate(ump, (struct fs *)bp->b_data,
9513 			    bp);
9514 			bwrite(bp);
9515 			ACQUIRE_LOCK(ump);
9516 		}
9517 
9518 		if (fs->fs_sujfree != ino)
9519 			return;
9520 		panic("clear_unlinked_inodedep: Failed to clear free head");
9521 	}
9522 	if (inodedep->id_ino == fs->fs_sujfree)
9523 		panic("clear_unlinked_inodedep: Freeing head of free list");
9524 	inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
9525 	TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
9526 	return;
9527 }
9528 
9529 /*
9530  * This workitem decrements the inode's link count.
9531  * If the link count reaches zero, the file is removed.
9532  */
9533 static int
9534 handle_workitem_remove(dirrem, flags)
9535 	struct dirrem *dirrem;
9536 	int flags;
9537 {
9538 	struct inodedep *inodedep;
9539 	struct workhead dotdotwk;
9540 	struct worklist *wk;
9541 	struct ufsmount *ump;
9542 	struct mount *mp;
9543 	struct vnode *vp;
9544 	struct inode *ip;
9545 	ino_t oldinum;
9546 
9547 	if (dirrem->dm_state & ONWORKLIST)
9548 		panic("handle_workitem_remove: dirrem %p still on worklist",
9549 		    dirrem);
9550 	oldinum = dirrem->dm_oldinum;
9551 	mp = dirrem->dm_list.wk_mp;
9552 	ump = VFSTOUFS(mp);
9553 	flags |= LK_EXCLUSIVE;
9554 	if (ffs_vgetf(mp, oldinum, flags, &vp, FFSV_FORCEINSMQ) != 0)
9555 		return (EBUSY);
9556 	ip = VTOI(vp);
9557 	ACQUIRE_LOCK(ump);
9558 	if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0)
9559 		panic("handle_workitem_remove: lost inodedep");
9560 	if (dirrem->dm_state & ONDEPLIST)
9561 		LIST_REMOVE(dirrem, dm_inonext);
9562 	KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
9563 	    ("handle_workitem_remove:  Journal entries not written."));
9564 
9565 	/*
9566 	 * Move all dependencies waiting on the remove to complete
9567 	 * from the dirrem to the inode inowait list to be completed
9568 	 * after the inode has been updated and written to disk.  Any
9569 	 * marked MKDIR_PARENT are saved to be completed when the .. ref
9570 	 * is removed.
9571 	 */
9572 	LIST_INIT(&dotdotwk);
9573 	while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) {
9574 		WORKLIST_REMOVE(wk);
9575 		if (wk->wk_state & MKDIR_PARENT) {
9576 			wk->wk_state &= ~MKDIR_PARENT;
9577 			WORKLIST_INSERT(&dotdotwk, wk);
9578 			continue;
9579 		}
9580 		WORKLIST_INSERT(&inodedep->id_inowait, wk);
9581 	}
9582 	LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list);
9583 	/*
9584 	 * Normal file deletion.
9585 	 */
9586 	if ((dirrem->dm_state & RMDIR) == 0) {
9587 		ip->i_nlink--;
9588 		DIP_SET(ip, i_nlink, ip->i_nlink);
9589 		ip->i_flag |= IN_CHANGE;
9590 		if (ip->i_nlink < ip->i_effnlink)
9591 			panic("handle_workitem_remove: bad file delta");
9592 		if (ip->i_nlink == 0)
9593 			unlinked_inodedep(mp, inodedep);
9594 		inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9595 		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
9596 		    ("handle_workitem_remove: worklist not empty. %s",
9597 		    TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type)));
9598 		WORKITEM_FREE(dirrem, D_DIRREM);
9599 		FREE_LOCK(ump);
9600 		goto out;
9601 	}
9602 	/*
9603 	 * Directory deletion. Decrement reference count for both the
9604 	 * just deleted parent directory entry and the reference for ".".
9605 	 * Arrange to have the reference count on the parent decremented
9606 	 * to account for the loss of "..".
9607 	 */
9608 	ip->i_nlink -= 2;
9609 	DIP_SET(ip, i_nlink, ip->i_nlink);
9610 	ip->i_flag |= IN_CHANGE;
9611 	if (ip->i_nlink < ip->i_effnlink)
9612 		panic("handle_workitem_remove: bad dir delta");
9613 	if (ip->i_nlink == 0)
9614 		unlinked_inodedep(mp, inodedep);
9615 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9616 	/*
9617 	 * Rename a directory to a new parent. Since, we are both deleting
9618 	 * and creating a new directory entry, the link count on the new
9619 	 * directory should not change. Thus we skip the followup dirrem.
9620 	 */
9621 	if (dirrem->dm_state & DIRCHG) {
9622 		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
9623 		    ("handle_workitem_remove: DIRCHG and worklist not empty."));
9624 		WORKITEM_FREE(dirrem, D_DIRREM);
9625 		FREE_LOCK(ump);
9626 		goto out;
9627 	}
9628 	dirrem->dm_state = ONDEPLIST;
9629 	dirrem->dm_oldinum = dirrem->dm_dirinum;
9630 	/*
9631 	 * Place the dirrem on the parent's diremhd list.
9632 	 */
9633 	if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0)
9634 		panic("handle_workitem_remove: lost dir inodedep");
9635 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9636 	/*
9637 	 * If the allocated inode has never been written to disk, then
9638 	 * the on-disk inode is zero'ed and we can remove the file
9639 	 * immediately.  When journaling if the inode has been marked
9640 	 * unlinked and not DEPCOMPLETE we know it can never be written.
9641 	 */
9642 	inodedep_lookup(mp, oldinum, 0, &inodedep);
9643 	if (inodedep == NULL ||
9644 	    (inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED ||
9645 	    check_inode_unwritten(inodedep)) {
9646 		FREE_LOCK(ump);
9647 		vput(vp);
9648 		return handle_workitem_remove(dirrem, flags);
9649 	}
9650 	WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
9651 	FREE_LOCK(ump);
9652 	ip->i_flag |= IN_CHANGE;
9653 out:
9654 	ffs_update(vp, 0);
9655 	vput(vp);
9656 	return (0);
9657 }
9658 
9659 /*
9660  * Inode de-allocation dependencies.
9661  *
9662  * When an inode's link count is reduced to zero, it can be de-allocated. We
9663  * found it convenient to postpone de-allocation until after the inode is
9664  * written to disk with its new link count (zero).  At this point, all of the
9665  * on-disk inode's block pointers are nullified and, with careful dependency
9666  * list ordering, all dependencies related to the inode will be satisfied and
9667  * the corresponding dependency structures de-allocated.  So, if/when the
9668  * inode is reused, there will be no mixing of old dependencies with new
9669  * ones.  This artificial dependency is set up by the block de-allocation
9670  * procedure above (softdep_setup_freeblocks) and completed by the
9671  * following procedure.
9672  */
9673 static void
9674 handle_workitem_freefile(freefile)
9675 	struct freefile *freefile;
9676 {
9677 	struct workhead wkhd;
9678 	struct fs *fs;
9679 	struct inodedep *idp;
9680 	struct ufsmount *ump;
9681 	int error;
9682 
9683 	ump = VFSTOUFS(freefile->fx_list.wk_mp);
9684 	fs = ump->um_fs;
9685 #ifdef DEBUG
9686 	ACQUIRE_LOCK(ump);
9687 	error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp);
9688 	FREE_LOCK(ump);
9689 	if (error)
9690 		panic("handle_workitem_freefile: inodedep %p survived", idp);
9691 #endif
9692 	UFS_LOCK(ump);
9693 	fs->fs_pendinginodes -= 1;
9694 	UFS_UNLOCK(ump);
9695 	LIST_INIT(&wkhd);
9696 	LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list);
9697 	if ((error = ffs_freefile(ump, fs, freefile->fx_devvp,
9698 	    freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0)
9699 		softdep_error("handle_workitem_freefile", error);
9700 	ACQUIRE_LOCK(ump);
9701 	WORKITEM_FREE(freefile, D_FREEFILE);
9702 	FREE_LOCK(ump);
9703 }
9704 
9705 
9706 /*
9707  * Helper function which unlinks marker element from work list and returns
9708  * the next element on the list.
9709  */
9710 static __inline struct worklist *
9711 markernext(struct worklist *marker)
9712 {
9713 	struct worklist *next;
9714 
9715 	next = LIST_NEXT(marker, wk_list);
9716 	LIST_REMOVE(marker, wk_list);
9717 	return next;
9718 }
9719 
9720 /*
9721  * Disk writes.
9722  *
9723  * The dependency structures constructed above are most actively used when file
9724  * system blocks are written to disk.  No constraints are placed on when a
9725  * block can be written, but unsatisfied update dependencies are made safe by
9726  * modifying (or replacing) the source memory for the duration of the disk
9727  * write.  When the disk write completes, the memory block is again brought
9728  * up-to-date.
9729  *
9730  * In-core inode structure reclamation.
9731  *
9732  * Because there are a finite number of "in-core" inode structures, they are
9733  * reused regularly.  By transferring all inode-related dependencies to the
9734  * in-memory inode block and indexing them separately (via "inodedep"s), we
9735  * can allow "in-core" inode structures to be reused at any time and avoid
9736  * any increase in contention.
9737  *
9738  * Called just before entering the device driver to initiate a new disk I/O.
9739  * The buffer must be locked, thus, no I/O completion operations can occur
9740  * while we are manipulating its associated dependencies.
9741  */
9742 static void
9743 softdep_disk_io_initiation(bp)
9744 	struct buf *bp;		/* structure describing disk write to occur */
9745 {
9746 	struct worklist *wk;
9747 	struct worklist marker;
9748 	struct inodedep *inodedep;
9749 	struct freeblks *freeblks;
9750 	struct jblkdep *jblkdep;
9751 	struct newblk *newblk;
9752 	struct ufsmount *ump;
9753 
9754 	/*
9755 	 * We only care about write operations. There should never
9756 	 * be dependencies for reads.
9757 	 */
9758 	if (bp->b_iocmd != BIO_WRITE)
9759 		panic("softdep_disk_io_initiation: not write");
9760 
9761 	if (bp->b_vflags & BV_BKGRDINPROG)
9762 		panic("softdep_disk_io_initiation: Writing buffer with "
9763 		    "background write in progress: %p", bp);
9764 
9765 	if ((wk = LIST_FIRST(&bp->b_dep)) == NULL)
9766 		return;
9767 	ump = VFSTOUFS(wk->wk_mp);
9768 
9769 	marker.wk_type = D_LAST + 1;	/* Not a normal workitem */
9770 	PHOLD(curproc);			/* Don't swap out kernel stack */
9771 	ACQUIRE_LOCK(ump);
9772 	/*
9773 	 * Do any necessary pre-I/O processing.
9774 	 */
9775 	for (wk = LIST_FIRST(&bp->b_dep); wk != NULL;
9776 	     wk = markernext(&marker)) {
9777 		LIST_INSERT_AFTER(wk, &marker, wk_list);
9778 		switch (wk->wk_type) {
9779 
9780 		case D_PAGEDEP:
9781 			initiate_write_filepage(WK_PAGEDEP(wk), bp);
9782 			continue;
9783 
9784 		case D_INODEDEP:
9785 			inodedep = WK_INODEDEP(wk);
9786 			if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC)
9787 				initiate_write_inodeblock_ufs1(inodedep, bp);
9788 			else
9789 				initiate_write_inodeblock_ufs2(inodedep, bp);
9790 			continue;
9791 
9792 		case D_INDIRDEP:
9793 			initiate_write_indirdep(WK_INDIRDEP(wk), bp);
9794 			continue;
9795 
9796 		case D_BMSAFEMAP:
9797 			initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp);
9798 			continue;
9799 
9800 		case D_JSEG:
9801 			WK_JSEG(wk)->js_buf = NULL;
9802 			continue;
9803 
9804 		case D_FREEBLKS:
9805 			freeblks = WK_FREEBLKS(wk);
9806 			jblkdep = LIST_FIRST(&freeblks->fb_jblkdephd);
9807 			/*
9808 			 * We have to wait for the freeblks to be journaled
9809 			 * before we can write an inodeblock with updated
9810 			 * pointers.  Be careful to arrange the marker so
9811 			 * we revisit the freeblks if it's not removed by
9812 			 * the first jwait().
9813 			 */
9814 			if (jblkdep != NULL) {
9815 				LIST_REMOVE(&marker, wk_list);
9816 				LIST_INSERT_BEFORE(wk, &marker, wk_list);
9817 				jwait(&jblkdep->jb_list, MNT_WAIT);
9818 			}
9819 			continue;
9820 		case D_ALLOCDIRECT:
9821 		case D_ALLOCINDIR:
9822 			/*
9823 			 * We have to wait for the jnewblk to be journaled
9824 			 * before we can write to a block if the contents
9825 			 * may be confused with an earlier file's indirect
9826 			 * at recovery time.  Handle the marker as described
9827 			 * above.
9828 			 */
9829 			newblk = WK_NEWBLK(wk);
9830 			if (newblk->nb_jnewblk != NULL &&
9831 			    indirblk_lookup(newblk->nb_list.wk_mp,
9832 			    newblk->nb_newblkno)) {
9833 				LIST_REMOVE(&marker, wk_list);
9834 				LIST_INSERT_BEFORE(wk, &marker, wk_list);
9835 				jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
9836 			}
9837 			continue;
9838 
9839 		case D_SBDEP:
9840 			initiate_write_sbdep(WK_SBDEP(wk));
9841 			continue;
9842 
9843 		case D_MKDIR:
9844 		case D_FREEWORK:
9845 		case D_FREEDEP:
9846 		case D_JSEGDEP:
9847 			continue;
9848 
9849 		default:
9850 			panic("handle_disk_io_initiation: Unexpected type %s",
9851 			    TYPENAME(wk->wk_type));
9852 			/* NOTREACHED */
9853 		}
9854 	}
9855 	FREE_LOCK(ump);
9856 	PRELE(curproc);			/* Allow swapout of kernel stack */
9857 }
9858 
9859 /*
9860  * Called from within the procedure above to deal with unsatisfied
9861  * allocation dependencies in a directory. The buffer must be locked,
9862  * thus, no I/O completion operations can occur while we are
9863  * manipulating its associated dependencies.
9864  */
9865 static void
9866 initiate_write_filepage(pagedep, bp)
9867 	struct pagedep *pagedep;
9868 	struct buf *bp;
9869 {
9870 	struct jremref *jremref;
9871 	struct jmvref *jmvref;
9872 	struct dirrem *dirrem;
9873 	struct diradd *dap;
9874 	struct direct *ep;
9875 	int i;
9876 
9877 	if (pagedep->pd_state & IOSTARTED) {
9878 		/*
9879 		 * This can only happen if there is a driver that does not
9880 		 * understand chaining. Here biodone will reissue the call
9881 		 * to strategy for the incomplete buffers.
9882 		 */
9883 		printf("initiate_write_filepage: already started\n");
9884 		return;
9885 	}
9886 	pagedep->pd_state |= IOSTARTED;
9887 	/*
9888 	 * Wait for all journal remove dependencies to hit the disk.
9889 	 * We can not allow any potentially conflicting directory adds
9890 	 * to be visible before removes and rollback is too difficult.
9891 	 * The soft updates lock may be dropped and re-acquired, however
9892 	 * we hold the buf locked so the dependency can not go away.
9893 	 */
9894 	LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next)
9895 		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL)
9896 			jwait(&jremref->jr_list, MNT_WAIT);
9897 	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL)
9898 		jwait(&jmvref->jm_list, MNT_WAIT);
9899 	for (i = 0; i < DAHASHSZ; i++) {
9900 		LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
9901 			ep = (struct direct *)
9902 			    ((char *)bp->b_data + dap->da_offset);
9903 			if (ep->d_ino != dap->da_newinum)
9904 				panic("%s: dir inum %ju != new %ju",
9905 				    "initiate_write_filepage",
9906 				    (uintmax_t)ep->d_ino,
9907 				    (uintmax_t)dap->da_newinum);
9908 			if (dap->da_state & DIRCHG)
9909 				ep->d_ino = dap->da_previous->dm_oldinum;
9910 			else
9911 				ep->d_ino = 0;
9912 			dap->da_state &= ~ATTACHED;
9913 			dap->da_state |= UNDONE;
9914 		}
9915 	}
9916 }
9917 
9918 /*
9919  * Version of initiate_write_inodeblock that handles UFS1 dinodes.
9920  * Note that any bug fixes made to this routine must be done in the
9921  * version found below.
9922  *
9923  * Called from within the procedure above to deal with unsatisfied
9924  * allocation dependencies in an inodeblock. The buffer must be
9925  * locked, thus, no I/O completion operations can occur while we
9926  * are manipulating its associated dependencies.
9927  */
9928 static void
9929 initiate_write_inodeblock_ufs1(inodedep, bp)
9930 	struct inodedep *inodedep;
9931 	struct buf *bp;			/* The inode block */
9932 {
9933 	struct allocdirect *adp, *lastadp;
9934 	struct ufs1_dinode *dp;
9935 	struct ufs1_dinode *sip;
9936 	struct inoref *inoref;
9937 	struct ufsmount *ump;
9938 	struct fs *fs;
9939 	ufs_lbn_t i;
9940 #ifdef INVARIANTS
9941 	ufs_lbn_t prevlbn = 0;
9942 #endif
9943 	int deplist;
9944 
9945 	if (inodedep->id_state & IOSTARTED)
9946 		panic("initiate_write_inodeblock_ufs1: already started");
9947 	inodedep->id_state |= IOSTARTED;
9948 	fs = inodedep->id_fs;
9949 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
9950 	LOCK_OWNED(ump);
9951 	dp = (struct ufs1_dinode *)bp->b_data +
9952 	    ino_to_fsbo(fs, inodedep->id_ino);
9953 
9954 	/*
9955 	 * If we're on the unlinked list but have not yet written our
9956 	 * next pointer initialize it here.
9957 	 */
9958 	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
9959 		struct inodedep *inon;
9960 
9961 		inon = TAILQ_NEXT(inodedep, id_unlinked);
9962 		dp->di_freelink = inon ? inon->id_ino : 0;
9963 	}
9964 	/*
9965 	 * If the bitmap is not yet written, then the allocated
9966 	 * inode cannot be written to disk.
9967 	 */
9968 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
9969 		if (inodedep->id_savedino1 != NULL)
9970 			panic("initiate_write_inodeblock_ufs1: I/O underway");
9971 		FREE_LOCK(ump);
9972 		sip = malloc(sizeof(struct ufs1_dinode),
9973 		    M_SAVEDINO, M_SOFTDEP_FLAGS);
9974 		ACQUIRE_LOCK(ump);
9975 		inodedep->id_savedino1 = sip;
9976 		*inodedep->id_savedino1 = *dp;
9977 		bzero((caddr_t)dp, sizeof(struct ufs1_dinode));
9978 		dp->di_gen = inodedep->id_savedino1->di_gen;
9979 		dp->di_freelink = inodedep->id_savedino1->di_freelink;
9980 		return;
9981 	}
9982 	/*
9983 	 * If no dependencies, then there is nothing to roll back.
9984 	 */
9985 	inodedep->id_savedsize = dp->di_size;
9986 	inodedep->id_savedextsize = 0;
9987 	inodedep->id_savednlink = dp->di_nlink;
9988 	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
9989 	    TAILQ_EMPTY(&inodedep->id_inoreflst))
9990 		return;
9991 	/*
9992 	 * Revert the link count to that of the first unwritten journal entry.
9993 	 */
9994 	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
9995 	if (inoref)
9996 		dp->di_nlink = inoref->if_nlink;
9997 	/*
9998 	 * Set the dependencies to busy.
9999 	 */
10000 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10001 	     adp = TAILQ_NEXT(adp, ad_next)) {
10002 #ifdef INVARIANTS
10003 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10004 			panic("softdep_write_inodeblock: lbn order");
10005 		prevlbn = adp->ad_offset;
10006 		if (adp->ad_offset < NDADDR &&
10007 		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
10008 			panic("%s: direct pointer #%jd mismatch %d != %jd",
10009 			    "softdep_write_inodeblock",
10010 			    (intmax_t)adp->ad_offset,
10011 			    dp->di_db[adp->ad_offset],
10012 			    (intmax_t)adp->ad_newblkno);
10013 		if (adp->ad_offset >= NDADDR &&
10014 		    dp->di_ib[adp->ad_offset - NDADDR] != adp->ad_newblkno)
10015 			panic("%s: indirect pointer #%jd mismatch %d != %jd",
10016 			    "softdep_write_inodeblock",
10017 			    (intmax_t)adp->ad_offset - NDADDR,
10018 			    dp->di_ib[adp->ad_offset - NDADDR],
10019 			    (intmax_t)adp->ad_newblkno);
10020 		deplist |= 1 << adp->ad_offset;
10021 		if ((adp->ad_state & ATTACHED) == 0)
10022 			panic("softdep_write_inodeblock: Unknown state 0x%x",
10023 			    adp->ad_state);
10024 #endif /* INVARIANTS */
10025 		adp->ad_state &= ~ATTACHED;
10026 		adp->ad_state |= UNDONE;
10027 	}
10028 	/*
10029 	 * The on-disk inode cannot claim to be any larger than the last
10030 	 * fragment that has been written. Otherwise, the on-disk inode
10031 	 * might have fragments that were not the last block in the file
10032 	 * which would corrupt the filesystem.
10033 	 */
10034 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10035 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10036 		if (adp->ad_offset >= NDADDR)
10037 			break;
10038 		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
10039 		/* keep going until hitting a rollback to a frag */
10040 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10041 			continue;
10042 		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10043 		for (i = adp->ad_offset + 1; i < NDADDR; i++) {
10044 #ifdef INVARIANTS
10045 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
10046 				panic("softdep_write_inodeblock: lost dep1");
10047 #endif /* INVARIANTS */
10048 			dp->di_db[i] = 0;
10049 		}
10050 		for (i = 0; i < NIADDR; i++) {
10051 #ifdef INVARIANTS
10052 			if (dp->di_ib[i] != 0 &&
10053 			    (deplist & ((1 << NDADDR) << i)) == 0)
10054 				panic("softdep_write_inodeblock: lost dep2");
10055 #endif /* INVARIANTS */
10056 			dp->di_ib[i] = 0;
10057 		}
10058 		return;
10059 	}
10060 	/*
10061 	 * If we have zero'ed out the last allocated block of the file,
10062 	 * roll back the size to the last currently allocated block.
10063 	 * We know that this last allocated block is a full-sized as
10064 	 * we already checked for fragments in the loop above.
10065 	 */
10066 	if (lastadp != NULL &&
10067 	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10068 		for (i = lastadp->ad_offset; i >= 0; i--)
10069 			if (dp->di_db[i] != 0)
10070 				break;
10071 		dp->di_size = (i + 1) * fs->fs_bsize;
10072 	}
10073 	/*
10074 	 * The only dependencies are for indirect blocks.
10075 	 *
10076 	 * The file size for indirect block additions is not guaranteed.
10077 	 * Such a guarantee would be non-trivial to achieve. The conventional
10078 	 * synchronous write implementation also does not make this guarantee.
10079 	 * Fsck should catch and fix discrepancies. Arguably, the file size
10080 	 * can be over-estimated without destroying integrity when the file
10081 	 * moves into the indirect blocks (i.e., is large). If we want to
10082 	 * postpone fsck, we are stuck with this argument.
10083 	 */
10084 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
10085 		dp->di_ib[adp->ad_offset - NDADDR] = 0;
10086 }
10087 
10088 /*
10089  * Version of initiate_write_inodeblock that handles UFS2 dinodes.
10090  * Note that any bug fixes made to this routine must be done in the
10091  * version found above.
10092  *
10093  * Called from within the procedure above to deal with unsatisfied
10094  * allocation dependencies in an inodeblock. The buffer must be
10095  * locked, thus, no I/O completion operations can occur while we
10096  * are manipulating its associated dependencies.
10097  */
10098 static void
10099 initiate_write_inodeblock_ufs2(inodedep, bp)
10100 	struct inodedep *inodedep;
10101 	struct buf *bp;			/* The inode block */
10102 {
10103 	struct allocdirect *adp, *lastadp;
10104 	struct ufs2_dinode *dp;
10105 	struct ufs2_dinode *sip;
10106 	struct inoref *inoref;
10107 	struct ufsmount *ump;
10108 	struct fs *fs;
10109 	ufs_lbn_t i;
10110 #ifdef INVARIANTS
10111 	ufs_lbn_t prevlbn = 0;
10112 #endif
10113 	int deplist;
10114 
10115 	if (inodedep->id_state & IOSTARTED)
10116 		panic("initiate_write_inodeblock_ufs2: already started");
10117 	inodedep->id_state |= IOSTARTED;
10118 	fs = inodedep->id_fs;
10119 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
10120 	LOCK_OWNED(ump);
10121 	dp = (struct ufs2_dinode *)bp->b_data +
10122 	    ino_to_fsbo(fs, inodedep->id_ino);
10123 
10124 	/*
10125 	 * If we're on the unlinked list but have not yet written our
10126 	 * next pointer initialize it here.
10127 	 */
10128 	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
10129 		struct inodedep *inon;
10130 
10131 		inon = TAILQ_NEXT(inodedep, id_unlinked);
10132 		dp->di_freelink = inon ? inon->id_ino : 0;
10133 	}
10134 	/*
10135 	 * If the bitmap is not yet written, then the allocated
10136 	 * inode cannot be written to disk.
10137 	 */
10138 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
10139 		if (inodedep->id_savedino2 != NULL)
10140 			panic("initiate_write_inodeblock_ufs2: I/O underway");
10141 		FREE_LOCK(ump);
10142 		sip = malloc(sizeof(struct ufs2_dinode),
10143 		    M_SAVEDINO, M_SOFTDEP_FLAGS);
10144 		ACQUIRE_LOCK(ump);
10145 		inodedep->id_savedino2 = sip;
10146 		*inodedep->id_savedino2 = *dp;
10147 		bzero((caddr_t)dp, sizeof(struct ufs2_dinode));
10148 		dp->di_gen = inodedep->id_savedino2->di_gen;
10149 		dp->di_freelink = inodedep->id_savedino2->di_freelink;
10150 		return;
10151 	}
10152 	/*
10153 	 * If no dependencies, then there is nothing to roll back.
10154 	 */
10155 	inodedep->id_savedsize = dp->di_size;
10156 	inodedep->id_savedextsize = dp->di_extsize;
10157 	inodedep->id_savednlink = dp->di_nlink;
10158 	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
10159 	    TAILQ_EMPTY(&inodedep->id_extupdt) &&
10160 	    TAILQ_EMPTY(&inodedep->id_inoreflst))
10161 		return;
10162 	/*
10163 	 * Revert the link count to that of the first unwritten journal entry.
10164 	 */
10165 	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
10166 	if (inoref)
10167 		dp->di_nlink = inoref->if_nlink;
10168 
10169 	/*
10170 	 * Set the ext data dependencies to busy.
10171 	 */
10172 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
10173 	     adp = TAILQ_NEXT(adp, ad_next)) {
10174 #ifdef INVARIANTS
10175 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10176 			panic("softdep_write_inodeblock: lbn order");
10177 		prevlbn = adp->ad_offset;
10178 		if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno)
10179 			panic("%s: direct pointer #%jd mismatch %jd != %jd",
10180 			    "softdep_write_inodeblock",
10181 			    (intmax_t)adp->ad_offset,
10182 			    (intmax_t)dp->di_extb[adp->ad_offset],
10183 			    (intmax_t)adp->ad_newblkno);
10184 		deplist |= 1 << adp->ad_offset;
10185 		if ((adp->ad_state & ATTACHED) == 0)
10186 			panic("softdep_write_inodeblock: Unknown state 0x%x",
10187 			    adp->ad_state);
10188 #endif /* INVARIANTS */
10189 		adp->ad_state &= ~ATTACHED;
10190 		adp->ad_state |= UNDONE;
10191 	}
10192 	/*
10193 	 * The on-disk inode cannot claim to be any larger than the last
10194 	 * fragment that has been written. Otherwise, the on-disk inode
10195 	 * might have fragments that were not the last block in the ext
10196 	 * data which would corrupt the filesystem.
10197 	 */
10198 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
10199 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10200 		dp->di_extb[adp->ad_offset] = adp->ad_oldblkno;
10201 		/* keep going until hitting a rollback to a frag */
10202 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10203 			continue;
10204 		dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10205 		for (i = adp->ad_offset + 1; i < NXADDR; i++) {
10206 #ifdef INVARIANTS
10207 			if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0)
10208 				panic("softdep_write_inodeblock: lost dep1");
10209 #endif /* INVARIANTS */
10210 			dp->di_extb[i] = 0;
10211 		}
10212 		lastadp = NULL;
10213 		break;
10214 	}
10215 	/*
10216 	 * If we have zero'ed out the last allocated block of the ext
10217 	 * data, roll back the size to the last currently allocated block.
10218 	 * We know that this last allocated block is a full-sized as
10219 	 * we already checked for fragments in the loop above.
10220 	 */
10221 	if (lastadp != NULL &&
10222 	    dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10223 		for (i = lastadp->ad_offset; i >= 0; i--)
10224 			if (dp->di_extb[i] != 0)
10225 				break;
10226 		dp->di_extsize = (i + 1) * fs->fs_bsize;
10227 	}
10228 	/*
10229 	 * Set the file data dependencies to busy.
10230 	 */
10231 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10232 	     adp = TAILQ_NEXT(adp, ad_next)) {
10233 #ifdef INVARIANTS
10234 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10235 			panic("softdep_write_inodeblock: lbn order");
10236 		if ((adp->ad_state & ATTACHED) == 0)
10237 			panic("inodedep %p and adp %p not attached", inodedep, adp);
10238 		prevlbn = adp->ad_offset;
10239 		if (adp->ad_offset < NDADDR &&
10240 		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
10241 			panic("%s: direct pointer #%jd mismatch %jd != %jd",
10242 			    "softdep_write_inodeblock",
10243 			    (intmax_t)adp->ad_offset,
10244 			    (intmax_t)dp->di_db[adp->ad_offset],
10245 			    (intmax_t)adp->ad_newblkno);
10246 		if (adp->ad_offset >= NDADDR &&
10247 		    dp->di_ib[adp->ad_offset - NDADDR] != adp->ad_newblkno)
10248 			panic("%s indirect pointer #%jd mismatch %jd != %jd",
10249 			    "softdep_write_inodeblock:",
10250 			    (intmax_t)adp->ad_offset - NDADDR,
10251 			    (intmax_t)dp->di_ib[adp->ad_offset - NDADDR],
10252 			    (intmax_t)adp->ad_newblkno);
10253 		deplist |= 1 << adp->ad_offset;
10254 		if ((adp->ad_state & ATTACHED) == 0)
10255 			panic("softdep_write_inodeblock: Unknown state 0x%x",
10256 			    adp->ad_state);
10257 #endif /* INVARIANTS */
10258 		adp->ad_state &= ~ATTACHED;
10259 		adp->ad_state |= UNDONE;
10260 	}
10261 	/*
10262 	 * The on-disk inode cannot claim to be any larger than the last
10263 	 * fragment that has been written. Otherwise, the on-disk inode
10264 	 * might have fragments that were not the last block in the file
10265 	 * which would corrupt the filesystem.
10266 	 */
10267 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10268 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10269 		if (adp->ad_offset >= NDADDR)
10270 			break;
10271 		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
10272 		/* keep going until hitting a rollback to a frag */
10273 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10274 			continue;
10275 		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10276 		for (i = adp->ad_offset + 1; i < NDADDR; i++) {
10277 #ifdef INVARIANTS
10278 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
10279 				panic("softdep_write_inodeblock: lost dep2");
10280 #endif /* INVARIANTS */
10281 			dp->di_db[i] = 0;
10282 		}
10283 		for (i = 0; i < NIADDR; i++) {
10284 #ifdef INVARIANTS
10285 			if (dp->di_ib[i] != 0 &&
10286 			    (deplist & ((1 << NDADDR) << i)) == 0)
10287 				panic("softdep_write_inodeblock: lost dep3");
10288 #endif /* INVARIANTS */
10289 			dp->di_ib[i] = 0;
10290 		}
10291 		return;
10292 	}
10293 	/*
10294 	 * If we have zero'ed out the last allocated block of the file,
10295 	 * roll back the size to the last currently allocated block.
10296 	 * We know that this last allocated block is a full-sized as
10297 	 * we already checked for fragments in the loop above.
10298 	 */
10299 	if (lastadp != NULL &&
10300 	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10301 		for (i = lastadp->ad_offset; i >= 0; i--)
10302 			if (dp->di_db[i] != 0)
10303 				break;
10304 		dp->di_size = (i + 1) * fs->fs_bsize;
10305 	}
10306 	/*
10307 	 * The only dependencies are for indirect blocks.
10308 	 *
10309 	 * The file size for indirect block additions is not guaranteed.
10310 	 * Such a guarantee would be non-trivial to achieve. The conventional
10311 	 * synchronous write implementation also does not make this guarantee.
10312 	 * Fsck should catch and fix discrepancies. Arguably, the file size
10313 	 * can be over-estimated without destroying integrity when the file
10314 	 * moves into the indirect blocks (i.e., is large). If we want to
10315 	 * postpone fsck, we are stuck with this argument.
10316 	 */
10317 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
10318 		dp->di_ib[adp->ad_offset - NDADDR] = 0;
10319 }
10320 
10321 /*
10322  * Cancel an indirdep as a result of truncation.  Release all of the
10323  * children allocindirs and place their journal work on the appropriate
10324  * list.
10325  */
10326 static void
10327 cancel_indirdep(indirdep, bp, freeblks)
10328 	struct indirdep *indirdep;
10329 	struct buf *bp;
10330 	struct freeblks *freeblks;
10331 {
10332 	struct allocindir *aip;
10333 
10334 	/*
10335 	 * None of the indirect pointers will ever be visible,
10336 	 * so they can simply be tossed. GOINGAWAY ensures
10337 	 * that allocated pointers will be saved in the buffer
10338 	 * cache until they are freed. Note that they will
10339 	 * only be able to be found by their physical address
10340 	 * since the inode mapping the logical address will
10341 	 * be gone. The save buffer used for the safe copy
10342 	 * was allocated in setup_allocindir_phase2 using
10343 	 * the physical address so it could be used for this
10344 	 * purpose. Hence we swap the safe copy with the real
10345 	 * copy, allowing the safe copy to be freed and holding
10346 	 * on to the real copy for later use in indir_trunc.
10347 	 */
10348 	if (indirdep->ir_state & GOINGAWAY)
10349 		panic("cancel_indirdep: already gone");
10350 	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
10351 		indirdep->ir_state |= DEPCOMPLETE;
10352 		LIST_REMOVE(indirdep, ir_next);
10353 	}
10354 	indirdep->ir_state |= GOINGAWAY;
10355 	VFSTOUFS(indirdep->ir_list.wk_mp)->softdep_numindirdeps += 1;
10356 	/*
10357 	 * Pass in bp for blocks still have journal writes
10358 	 * pending so we can cancel them on their own.
10359 	 */
10360 	while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != 0)
10361 		cancel_allocindir(aip, bp, freeblks, 0);
10362 	while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0)
10363 		cancel_allocindir(aip, NULL, freeblks, 0);
10364 	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != 0)
10365 		cancel_allocindir(aip, NULL, freeblks, 0);
10366 	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != 0)
10367 		cancel_allocindir(aip, NULL, freeblks, 0);
10368 	/*
10369 	 * If there are pending partial truncations we need to keep the
10370 	 * old block copy around until they complete.  This is because
10371 	 * the current b_data is not a perfect superset of the available
10372 	 * blocks.
10373 	 */
10374 	if (TAILQ_EMPTY(&indirdep->ir_trunc))
10375 		bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount);
10376 	else
10377 		bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
10378 	WORKLIST_REMOVE(&indirdep->ir_list);
10379 	WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list);
10380 	indirdep->ir_bp = NULL;
10381 	indirdep->ir_freeblks = freeblks;
10382 }
10383 
10384 /*
10385  * Free an indirdep once it no longer has new pointers to track.
10386  */
10387 static void
10388 free_indirdep(indirdep)
10389 	struct indirdep *indirdep;
10390 {
10391 
10392 	KASSERT(TAILQ_EMPTY(&indirdep->ir_trunc),
10393 	    ("free_indirdep: Indir trunc list not empty."));
10394 	KASSERT(LIST_EMPTY(&indirdep->ir_completehd),
10395 	    ("free_indirdep: Complete head not empty."));
10396 	KASSERT(LIST_EMPTY(&indirdep->ir_writehd),
10397 	    ("free_indirdep: write head not empty."));
10398 	KASSERT(LIST_EMPTY(&indirdep->ir_donehd),
10399 	    ("free_indirdep: done head not empty."));
10400 	KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd),
10401 	    ("free_indirdep: deplist head not empty."));
10402 	KASSERT((indirdep->ir_state & DEPCOMPLETE),
10403 	    ("free_indirdep: %p still on newblk list.", indirdep));
10404 	KASSERT(indirdep->ir_saveddata == NULL,
10405 	    ("free_indirdep: %p still has saved data.", indirdep));
10406 	if (indirdep->ir_state & ONWORKLIST)
10407 		WORKLIST_REMOVE(&indirdep->ir_list);
10408 	WORKITEM_FREE(indirdep, D_INDIRDEP);
10409 }
10410 
10411 /*
10412  * Called before a write to an indirdep.  This routine is responsible for
10413  * rolling back pointers to a safe state which includes only those
10414  * allocindirs which have been completed.
10415  */
10416 static void
10417 initiate_write_indirdep(indirdep, bp)
10418 	struct indirdep *indirdep;
10419 	struct buf *bp;
10420 {
10421 	struct ufsmount *ump;
10422 
10423 	indirdep->ir_state |= IOSTARTED;
10424 	if (indirdep->ir_state & GOINGAWAY)
10425 		panic("disk_io_initiation: indirdep gone");
10426 	/*
10427 	 * If there are no remaining dependencies, this will be writing
10428 	 * the real pointers.
10429 	 */
10430 	if (LIST_EMPTY(&indirdep->ir_deplisthd) &&
10431 	    TAILQ_EMPTY(&indirdep->ir_trunc))
10432 		return;
10433 	/*
10434 	 * Replace up-to-date version with safe version.
10435 	 */
10436 	if (indirdep->ir_saveddata == NULL) {
10437 		ump = VFSTOUFS(indirdep->ir_list.wk_mp);
10438 		LOCK_OWNED(ump);
10439 		FREE_LOCK(ump);
10440 		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
10441 		    M_SOFTDEP_FLAGS);
10442 		ACQUIRE_LOCK(ump);
10443 	}
10444 	indirdep->ir_state &= ~ATTACHED;
10445 	indirdep->ir_state |= UNDONE;
10446 	bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
10447 	bcopy(indirdep->ir_savebp->b_data, bp->b_data,
10448 	    bp->b_bcount);
10449 }
10450 
10451 /*
10452  * Called when an inode has been cleared in a cg bitmap.  This finally
10453  * eliminates any canceled jaddrefs
10454  */
10455 void
10456 softdep_setup_inofree(mp, bp, ino, wkhd)
10457 	struct mount *mp;
10458 	struct buf *bp;
10459 	ino_t ino;
10460 	struct workhead *wkhd;
10461 {
10462 	struct worklist *wk, *wkn;
10463 	struct inodedep *inodedep;
10464 	struct ufsmount *ump;
10465 	uint8_t *inosused;
10466 	struct cg *cgp;
10467 	struct fs *fs;
10468 
10469 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
10470 	    ("softdep_setup_inofree called on non-softdep filesystem"));
10471 	ump = VFSTOUFS(mp);
10472 	ACQUIRE_LOCK(ump);
10473 	fs = ump->um_fs;
10474 	cgp = (struct cg *)bp->b_data;
10475 	inosused = cg_inosused(cgp);
10476 	if (isset(inosused, ino % fs->fs_ipg))
10477 		panic("softdep_setup_inofree: inode %ju not freed.",
10478 		    (uintmax_t)ino);
10479 	if (inodedep_lookup(mp, ino, 0, &inodedep))
10480 		panic("softdep_setup_inofree: ino %ju has existing inodedep %p",
10481 		    (uintmax_t)ino, inodedep);
10482 	if (wkhd) {
10483 		LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) {
10484 			if (wk->wk_type != D_JADDREF)
10485 				continue;
10486 			WORKLIST_REMOVE(wk);
10487 			/*
10488 			 * We can free immediately even if the jaddref
10489 			 * isn't attached in a background write as now
10490 			 * the bitmaps are reconciled.
10491 			 */
10492 			wk->wk_state |= COMPLETE | ATTACHED;
10493 			free_jaddref(WK_JADDREF(wk));
10494 		}
10495 		jwork_move(&bp->b_dep, wkhd);
10496 	}
10497 	FREE_LOCK(ump);
10498 }
10499 
10500 
10501 /*
10502  * Called via ffs_blkfree() after a set of frags has been cleared from a cg
10503  * map.  Any dependencies waiting for the write to clear are added to the
10504  * buf's list and any jnewblks that are being canceled are discarded
10505  * immediately.
10506  */
10507 void
10508 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
10509 	struct mount *mp;
10510 	struct buf *bp;
10511 	ufs2_daddr_t blkno;
10512 	int frags;
10513 	struct workhead *wkhd;
10514 {
10515 	struct bmsafemap *bmsafemap;
10516 	struct jnewblk *jnewblk;
10517 	struct ufsmount *ump;
10518 	struct worklist *wk;
10519 	struct fs *fs;
10520 #ifdef SUJ_DEBUG
10521 	uint8_t *blksfree;
10522 	struct cg *cgp;
10523 	ufs2_daddr_t jstart;
10524 	ufs2_daddr_t jend;
10525 	ufs2_daddr_t end;
10526 	long bno;
10527 	int i;
10528 #endif
10529 
10530 	CTR3(KTR_SUJ,
10531 	    "softdep_setup_blkfree: blkno %jd frags %d wk head %p",
10532 	    blkno, frags, wkhd);
10533 
10534 	ump = VFSTOUFS(mp);
10535 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
10536 	    ("softdep_setup_blkfree called on non-softdep filesystem"));
10537 	ACQUIRE_LOCK(ump);
10538 	/* Lookup the bmsafemap so we track when it is dirty. */
10539 	fs = ump->um_fs;
10540 	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
10541 	/*
10542 	 * Detach any jnewblks which have been canceled.  They must linger
10543 	 * until the bitmap is cleared again by ffs_blkfree() to prevent
10544 	 * an unjournaled allocation from hitting the disk.
10545 	 */
10546 	if (wkhd) {
10547 		while ((wk = LIST_FIRST(wkhd)) != NULL) {
10548 			CTR2(KTR_SUJ,
10549 			    "softdep_setup_blkfree: blkno %jd wk type %d",
10550 			    blkno, wk->wk_type);
10551 			WORKLIST_REMOVE(wk);
10552 			if (wk->wk_type != D_JNEWBLK) {
10553 				WORKLIST_INSERT(&bmsafemap->sm_freehd, wk);
10554 				continue;
10555 			}
10556 			jnewblk = WK_JNEWBLK(wk);
10557 			KASSERT(jnewblk->jn_state & GOINGAWAY,
10558 			    ("softdep_setup_blkfree: jnewblk not canceled."));
10559 #ifdef SUJ_DEBUG
10560 			/*
10561 			 * Assert that this block is free in the bitmap
10562 			 * before we discard the jnewblk.
10563 			 */
10564 			cgp = (struct cg *)bp->b_data;
10565 			blksfree = cg_blksfree(cgp);
10566 			bno = dtogd(fs, jnewblk->jn_blkno);
10567 			for (i = jnewblk->jn_oldfrags;
10568 			    i < jnewblk->jn_frags; i++) {
10569 				if (isset(blksfree, bno + i))
10570 					continue;
10571 				panic("softdep_setup_blkfree: not free");
10572 			}
10573 #endif
10574 			/*
10575 			 * Even if it's not attached we can free immediately
10576 			 * as the new bitmap is correct.
10577 			 */
10578 			wk->wk_state |= COMPLETE | ATTACHED;
10579 			free_jnewblk(jnewblk);
10580 		}
10581 	}
10582 
10583 #ifdef SUJ_DEBUG
10584 	/*
10585 	 * Assert that we are not freeing a block which has an outstanding
10586 	 * allocation dependency.
10587 	 */
10588 	fs = VFSTOUFS(mp)->um_fs;
10589 	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
10590 	end = blkno + frags;
10591 	LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
10592 		/*
10593 		 * Don't match against blocks that will be freed when the
10594 		 * background write is done.
10595 		 */
10596 		if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) ==
10597 		    (COMPLETE | DEPCOMPLETE))
10598 			continue;
10599 		jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags;
10600 		jend = jnewblk->jn_blkno + jnewblk->jn_frags;
10601 		if ((blkno >= jstart && blkno < jend) ||
10602 		    (end > jstart && end <= jend)) {
10603 			printf("state 0x%X %jd - %d %d dep %p\n",
10604 			    jnewblk->jn_state, jnewblk->jn_blkno,
10605 			    jnewblk->jn_oldfrags, jnewblk->jn_frags,
10606 			    jnewblk->jn_dep);
10607 			panic("softdep_setup_blkfree: "
10608 			    "%jd-%jd(%d) overlaps with %jd-%jd",
10609 			    blkno, end, frags, jstart, jend);
10610 		}
10611 	}
10612 #endif
10613 	FREE_LOCK(ump);
10614 }
10615 
10616 /*
10617  * Revert a block allocation when the journal record that describes it
10618  * is not yet written.
10619  */
10620 static int
10621 jnewblk_rollback(jnewblk, fs, cgp, blksfree)
10622 	struct jnewblk *jnewblk;
10623 	struct fs *fs;
10624 	struct cg *cgp;
10625 	uint8_t *blksfree;
10626 {
10627 	ufs1_daddr_t fragno;
10628 	long cgbno, bbase;
10629 	int frags, blk;
10630 	int i;
10631 
10632 	frags = 0;
10633 	cgbno = dtogd(fs, jnewblk->jn_blkno);
10634 	/*
10635 	 * We have to test which frags need to be rolled back.  We may
10636 	 * be operating on a stale copy when doing background writes.
10637 	 */
10638 	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++)
10639 		if (isclr(blksfree, cgbno + i))
10640 			frags++;
10641 	if (frags == 0)
10642 		return (0);
10643 	/*
10644 	 * This is mostly ffs_blkfree() sans some validation and
10645 	 * superblock updates.
10646 	 */
10647 	if (frags == fs->fs_frag) {
10648 		fragno = fragstoblks(fs, cgbno);
10649 		ffs_setblock(fs, blksfree, fragno);
10650 		ffs_clusteracct(fs, cgp, fragno, 1);
10651 		cgp->cg_cs.cs_nbfree++;
10652 	} else {
10653 		cgbno += jnewblk->jn_oldfrags;
10654 		bbase = cgbno - fragnum(fs, cgbno);
10655 		/* Decrement the old frags.  */
10656 		blk = blkmap(fs, blksfree, bbase);
10657 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
10658 		/* Deallocate the fragment */
10659 		for (i = 0; i < frags; i++)
10660 			setbit(blksfree, cgbno + i);
10661 		cgp->cg_cs.cs_nffree += frags;
10662 		/* Add back in counts associated with the new frags */
10663 		blk = blkmap(fs, blksfree, bbase);
10664 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
10665 		/* If a complete block has been reassembled, account for it. */
10666 		fragno = fragstoblks(fs, bbase);
10667 		if (ffs_isblock(fs, blksfree, fragno)) {
10668 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
10669 			ffs_clusteracct(fs, cgp, fragno, 1);
10670 			cgp->cg_cs.cs_nbfree++;
10671 		}
10672 	}
10673 	stat_jnewblk++;
10674 	jnewblk->jn_state &= ~ATTACHED;
10675 	jnewblk->jn_state |= UNDONE;
10676 
10677 	return (frags);
10678 }
10679 
10680 static void
10681 initiate_write_bmsafemap(bmsafemap, bp)
10682 	struct bmsafemap *bmsafemap;
10683 	struct buf *bp;			/* The cg block. */
10684 {
10685 	struct jaddref *jaddref;
10686 	struct jnewblk *jnewblk;
10687 	uint8_t *inosused;
10688 	uint8_t *blksfree;
10689 	struct cg *cgp;
10690 	struct fs *fs;
10691 	ino_t ino;
10692 
10693 	if (bmsafemap->sm_state & IOSTARTED)
10694 		return;
10695 	bmsafemap->sm_state |= IOSTARTED;
10696 	/*
10697 	 * Clear any inode allocations which are pending journal writes.
10698 	 */
10699 	if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) {
10700 		cgp = (struct cg *)bp->b_data;
10701 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
10702 		inosused = cg_inosused(cgp);
10703 		LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) {
10704 			ino = jaddref->ja_ino % fs->fs_ipg;
10705 			if (isset(inosused, ino)) {
10706 				if ((jaddref->ja_mode & IFMT) == IFDIR)
10707 					cgp->cg_cs.cs_ndir--;
10708 				cgp->cg_cs.cs_nifree++;
10709 				clrbit(inosused, ino);
10710 				jaddref->ja_state &= ~ATTACHED;
10711 				jaddref->ja_state |= UNDONE;
10712 				stat_jaddref++;
10713 			} else
10714 				panic("initiate_write_bmsafemap: inode %ju "
10715 				    "marked free", (uintmax_t)jaddref->ja_ino);
10716 		}
10717 	}
10718 	/*
10719 	 * Clear any block allocations which are pending journal writes.
10720 	 */
10721 	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
10722 		cgp = (struct cg *)bp->b_data;
10723 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
10724 		blksfree = cg_blksfree(cgp);
10725 		LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
10726 			if (jnewblk_rollback(jnewblk, fs, cgp, blksfree))
10727 				continue;
10728 			panic("initiate_write_bmsafemap: block %jd "
10729 			    "marked free", jnewblk->jn_blkno);
10730 		}
10731 	}
10732 	/*
10733 	 * Move allocation lists to the written lists so they can be
10734 	 * cleared once the block write is complete.
10735 	 */
10736 	LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr,
10737 	    inodedep, id_deps);
10738 	LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr,
10739 	    newblk, nb_deps);
10740 	LIST_SWAP(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, worklist,
10741 	    wk_list);
10742 }
10743 
10744 /*
10745  * This routine is called during the completion interrupt
10746  * service routine for a disk write (from the procedure called
10747  * by the device driver to inform the filesystem caches of
10748  * a request completion).  It should be called early in this
10749  * procedure, before the block is made available to other
10750  * processes or other routines are called.
10751  *
10752  */
10753 static void
10754 softdep_disk_write_complete(bp)
10755 	struct buf *bp;		/* describes the completed disk write */
10756 {
10757 	struct worklist *wk;
10758 	struct worklist *owk;
10759 	struct ufsmount *ump;
10760 	struct workhead reattach;
10761 	struct freeblks *freeblks;
10762 	struct buf *sbp;
10763 
10764 	/*
10765 	 * If an error occurred while doing the write, then the data
10766 	 * has not hit the disk and the dependencies cannot be unrolled.
10767 	 */
10768 	if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0)
10769 		return;
10770 	if ((wk = LIST_FIRST(&bp->b_dep)) == NULL)
10771 		return;
10772 	ump = VFSTOUFS(wk->wk_mp);
10773 	LIST_INIT(&reattach);
10774 	/*
10775 	 * This lock must not be released anywhere in this code segment.
10776 	 */
10777 	sbp = NULL;
10778 	owk = NULL;
10779 	ACQUIRE_LOCK(ump);
10780 	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
10781 		WORKLIST_REMOVE(wk);
10782 		dep_write[wk->wk_type]++;
10783 		if (wk == owk)
10784 			panic("duplicate worklist: %p\n", wk);
10785 		owk = wk;
10786 		switch (wk->wk_type) {
10787 
10788 		case D_PAGEDEP:
10789 			if (handle_written_filepage(WK_PAGEDEP(wk), bp))
10790 				WORKLIST_INSERT(&reattach, wk);
10791 			continue;
10792 
10793 		case D_INODEDEP:
10794 			if (handle_written_inodeblock(WK_INODEDEP(wk), bp))
10795 				WORKLIST_INSERT(&reattach, wk);
10796 			continue;
10797 
10798 		case D_BMSAFEMAP:
10799 			if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp))
10800 				WORKLIST_INSERT(&reattach, wk);
10801 			continue;
10802 
10803 		case D_MKDIR:
10804 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
10805 			continue;
10806 
10807 		case D_ALLOCDIRECT:
10808 			wk->wk_state |= COMPLETE;
10809 			handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL);
10810 			continue;
10811 
10812 		case D_ALLOCINDIR:
10813 			wk->wk_state |= COMPLETE;
10814 			handle_allocindir_partdone(WK_ALLOCINDIR(wk));
10815 			continue;
10816 
10817 		case D_INDIRDEP:
10818 			if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp))
10819 				WORKLIST_INSERT(&reattach, wk);
10820 			continue;
10821 
10822 		case D_FREEBLKS:
10823 			wk->wk_state |= COMPLETE;
10824 			freeblks = WK_FREEBLKS(wk);
10825 			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE &&
10826 			    LIST_EMPTY(&freeblks->fb_jblkdephd))
10827 				add_to_worklist(wk, WK_NODELAY);
10828 			continue;
10829 
10830 		case D_FREEWORK:
10831 			handle_written_freework(WK_FREEWORK(wk));
10832 			break;
10833 
10834 		case D_JSEGDEP:
10835 			free_jsegdep(WK_JSEGDEP(wk));
10836 			continue;
10837 
10838 		case D_JSEG:
10839 			handle_written_jseg(WK_JSEG(wk), bp);
10840 			continue;
10841 
10842 		case D_SBDEP:
10843 			if (handle_written_sbdep(WK_SBDEP(wk), bp))
10844 				WORKLIST_INSERT(&reattach, wk);
10845 			continue;
10846 
10847 		case D_FREEDEP:
10848 			free_freedep(WK_FREEDEP(wk));
10849 			continue;
10850 
10851 		default:
10852 			panic("handle_disk_write_complete: Unknown type %s",
10853 			    TYPENAME(wk->wk_type));
10854 			/* NOTREACHED */
10855 		}
10856 	}
10857 	/*
10858 	 * Reattach any requests that must be redone.
10859 	 */
10860 	while ((wk = LIST_FIRST(&reattach)) != NULL) {
10861 		WORKLIST_REMOVE(wk);
10862 		WORKLIST_INSERT(&bp->b_dep, wk);
10863 	}
10864 	FREE_LOCK(ump);
10865 	if (sbp)
10866 		brelse(sbp);
10867 }
10868 
10869 /*
10870  * Called from within softdep_disk_write_complete above. Note that
10871  * this routine is always called from interrupt level with further
10872  * splbio interrupts blocked.
10873  */
10874 static void
10875 handle_allocdirect_partdone(adp, wkhd)
10876 	struct allocdirect *adp;	/* the completed allocdirect */
10877 	struct workhead *wkhd;		/* Work to do when inode is writtne. */
10878 {
10879 	struct allocdirectlst *listhead;
10880 	struct allocdirect *listadp;
10881 	struct inodedep *inodedep;
10882 	long bsize;
10883 
10884 	if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
10885 		return;
10886 	/*
10887 	 * The on-disk inode cannot claim to be any larger than the last
10888 	 * fragment that has been written. Otherwise, the on-disk inode
10889 	 * might have fragments that were not the last block in the file
10890 	 * which would corrupt the filesystem. Thus, we cannot free any
10891 	 * allocdirects after one whose ad_oldblkno claims a fragment as
10892 	 * these blocks must be rolled back to zero before writing the inode.
10893 	 * We check the currently active set of allocdirects in id_inoupdt
10894 	 * or id_extupdt as appropriate.
10895 	 */
10896 	inodedep = adp->ad_inodedep;
10897 	bsize = inodedep->id_fs->fs_bsize;
10898 	if (adp->ad_state & EXTDATA)
10899 		listhead = &inodedep->id_extupdt;
10900 	else
10901 		listhead = &inodedep->id_inoupdt;
10902 	TAILQ_FOREACH(listadp, listhead, ad_next) {
10903 		/* found our block */
10904 		if (listadp == adp)
10905 			break;
10906 		/* continue if ad_oldlbn is not a fragment */
10907 		if (listadp->ad_oldsize == 0 ||
10908 		    listadp->ad_oldsize == bsize)
10909 			continue;
10910 		/* hit a fragment */
10911 		return;
10912 	}
10913 	/*
10914 	 * If we have reached the end of the current list without
10915 	 * finding the just finished dependency, then it must be
10916 	 * on the future dependency list. Future dependencies cannot
10917 	 * be freed until they are moved to the current list.
10918 	 */
10919 	if (listadp == NULL) {
10920 #ifdef DEBUG
10921 		if (adp->ad_state & EXTDATA)
10922 			listhead = &inodedep->id_newextupdt;
10923 		else
10924 			listhead = &inodedep->id_newinoupdt;
10925 		TAILQ_FOREACH(listadp, listhead, ad_next)
10926 			/* found our block */
10927 			if (listadp == adp)
10928 				break;
10929 		if (listadp == NULL)
10930 			panic("handle_allocdirect_partdone: lost dep");
10931 #endif /* DEBUG */
10932 		return;
10933 	}
10934 	/*
10935 	 * If we have found the just finished dependency, then queue
10936 	 * it along with anything that follows it that is complete.
10937 	 * Since the pointer has not yet been written in the inode
10938 	 * as the dependency prevents it, place the allocdirect on the
10939 	 * bufwait list where it will be freed once the pointer is
10940 	 * valid.
10941 	 */
10942 	if (wkhd == NULL)
10943 		wkhd = &inodedep->id_bufwait;
10944 	for (; adp; adp = listadp) {
10945 		listadp = TAILQ_NEXT(adp, ad_next);
10946 		if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
10947 			return;
10948 		TAILQ_REMOVE(listhead, adp, ad_next);
10949 		WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list);
10950 	}
10951 }
10952 
10953 /*
10954  * Called from within softdep_disk_write_complete above.  This routine
10955  * completes successfully written allocindirs.
10956  */
10957 static void
10958 handle_allocindir_partdone(aip)
10959 	struct allocindir *aip;		/* the completed allocindir */
10960 {
10961 	struct indirdep *indirdep;
10962 
10963 	if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
10964 		return;
10965 	indirdep = aip->ai_indirdep;
10966 	LIST_REMOVE(aip, ai_next);
10967 	/*
10968 	 * Don't set a pointer while the buffer is undergoing IO or while
10969 	 * we have active truncations.
10970 	 */
10971 	if (indirdep->ir_state & UNDONE || !TAILQ_EMPTY(&indirdep->ir_trunc)) {
10972 		LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
10973 		return;
10974 	}
10975 	if (indirdep->ir_state & UFS1FMT)
10976 		((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
10977 		    aip->ai_newblkno;
10978 	else
10979 		((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
10980 		    aip->ai_newblkno;
10981 	/*
10982 	 * Await the pointer write before freeing the allocindir.
10983 	 */
10984 	LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next);
10985 }
10986 
10987 /*
10988  * Release segments held on a jwork list.
10989  */
10990 static void
10991 handle_jwork(wkhd)
10992 	struct workhead *wkhd;
10993 {
10994 	struct worklist *wk;
10995 
10996 	while ((wk = LIST_FIRST(wkhd)) != NULL) {
10997 		WORKLIST_REMOVE(wk);
10998 		switch (wk->wk_type) {
10999 		case D_JSEGDEP:
11000 			free_jsegdep(WK_JSEGDEP(wk));
11001 			continue;
11002 		case D_FREEDEP:
11003 			free_freedep(WK_FREEDEP(wk));
11004 			continue;
11005 		case D_FREEFRAG:
11006 			rele_jseg(WK_JSEG(WK_FREEFRAG(wk)->ff_jdep));
11007 			WORKITEM_FREE(wk, D_FREEFRAG);
11008 			continue;
11009 		case D_FREEWORK:
11010 			handle_written_freework(WK_FREEWORK(wk));
11011 			continue;
11012 		default:
11013 			panic("handle_jwork: Unknown type %s\n",
11014 			    TYPENAME(wk->wk_type));
11015 		}
11016 	}
11017 }
11018 
11019 /*
11020  * Handle the bufwait list on an inode when it is safe to release items
11021  * held there.  This normally happens after an inode block is written but
11022  * may be delayed and handled later if there are pending journal items that
11023  * are not yet safe to be released.
11024  */
11025 static struct freefile *
11026 handle_bufwait(inodedep, refhd)
11027 	struct inodedep *inodedep;
11028 	struct workhead *refhd;
11029 {
11030 	struct jaddref *jaddref;
11031 	struct freefile *freefile;
11032 	struct worklist *wk;
11033 
11034 	freefile = NULL;
11035 	while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
11036 		WORKLIST_REMOVE(wk);
11037 		switch (wk->wk_type) {
11038 		case D_FREEFILE:
11039 			/*
11040 			 * We defer adding freefile to the worklist
11041 			 * until all other additions have been made to
11042 			 * ensure that it will be done after all the
11043 			 * old blocks have been freed.
11044 			 */
11045 			if (freefile != NULL)
11046 				panic("handle_bufwait: freefile");
11047 			freefile = WK_FREEFILE(wk);
11048 			continue;
11049 
11050 		case D_MKDIR:
11051 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
11052 			continue;
11053 
11054 		case D_DIRADD:
11055 			diradd_inode_written(WK_DIRADD(wk), inodedep);
11056 			continue;
11057 
11058 		case D_FREEFRAG:
11059 			wk->wk_state |= COMPLETE;
11060 			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE)
11061 				add_to_worklist(wk, 0);
11062 			continue;
11063 
11064 		case D_DIRREM:
11065 			wk->wk_state |= COMPLETE;
11066 			add_to_worklist(wk, 0);
11067 			continue;
11068 
11069 		case D_ALLOCDIRECT:
11070 		case D_ALLOCINDIR:
11071 			free_newblk(WK_NEWBLK(wk));
11072 			continue;
11073 
11074 		case D_JNEWBLK:
11075 			wk->wk_state |= COMPLETE;
11076 			free_jnewblk(WK_JNEWBLK(wk));
11077 			continue;
11078 
11079 		/*
11080 		 * Save freed journal segments and add references on
11081 		 * the supplied list which will delay their release
11082 		 * until the cg bitmap is cleared on disk.
11083 		 */
11084 		case D_JSEGDEP:
11085 			if (refhd == NULL)
11086 				free_jsegdep(WK_JSEGDEP(wk));
11087 			else
11088 				WORKLIST_INSERT(refhd, wk);
11089 			continue;
11090 
11091 		case D_JADDREF:
11092 			jaddref = WK_JADDREF(wk);
11093 			TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
11094 			    if_deps);
11095 			/*
11096 			 * Transfer any jaddrefs to the list to be freed with
11097 			 * the bitmap if we're handling a removed file.
11098 			 */
11099 			if (refhd == NULL) {
11100 				wk->wk_state |= COMPLETE;
11101 				free_jaddref(jaddref);
11102 			} else
11103 				WORKLIST_INSERT(refhd, wk);
11104 			continue;
11105 
11106 		default:
11107 			panic("handle_bufwait: Unknown type %p(%s)",
11108 			    wk, TYPENAME(wk->wk_type));
11109 			/* NOTREACHED */
11110 		}
11111 	}
11112 	return (freefile);
11113 }
11114 /*
11115  * Called from within softdep_disk_write_complete above to restore
11116  * in-memory inode block contents to their most up-to-date state. Note
11117  * that this routine is always called from interrupt level with further
11118  * splbio interrupts blocked.
11119  */
11120 static int
11121 handle_written_inodeblock(inodedep, bp)
11122 	struct inodedep *inodedep;
11123 	struct buf *bp;		/* buffer containing the inode block */
11124 {
11125 	struct freefile *freefile;
11126 	struct allocdirect *adp, *nextadp;
11127 	struct ufs1_dinode *dp1 = NULL;
11128 	struct ufs2_dinode *dp2 = NULL;
11129 	struct workhead wkhd;
11130 	int hadchanges, fstype;
11131 	ino_t freelink;
11132 
11133 	LIST_INIT(&wkhd);
11134 	hadchanges = 0;
11135 	freefile = NULL;
11136 	if ((inodedep->id_state & IOSTARTED) == 0)
11137 		panic("handle_written_inodeblock: not started");
11138 	inodedep->id_state &= ~IOSTARTED;
11139 	if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) {
11140 		fstype = UFS1;
11141 		dp1 = (struct ufs1_dinode *)bp->b_data +
11142 		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
11143 		freelink = dp1->di_freelink;
11144 	} else {
11145 		fstype = UFS2;
11146 		dp2 = (struct ufs2_dinode *)bp->b_data +
11147 		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
11148 		freelink = dp2->di_freelink;
11149 	}
11150 	/*
11151 	 * Leave this inodeblock dirty until it's in the list.
11152 	 */
11153 	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED) {
11154 		struct inodedep *inon;
11155 
11156 		inon = TAILQ_NEXT(inodedep, id_unlinked);
11157 		if ((inon == NULL && freelink == 0) ||
11158 		    (inon && inon->id_ino == freelink)) {
11159 			if (inon)
11160 				inon->id_state |= UNLINKPREV;
11161 			inodedep->id_state |= UNLINKNEXT;
11162 		}
11163 		hadchanges = 1;
11164 	}
11165 	/*
11166 	 * If we had to rollback the inode allocation because of
11167 	 * bitmaps being incomplete, then simply restore it.
11168 	 * Keep the block dirty so that it will not be reclaimed until
11169 	 * all associated dependencies have been cleared and the
11170 	 * corresponding updates written to disk.
11171 	 */
11172 	if (inodedep->id_savedino1 != NULL) {
11173 		hadchanges = 1;
11174 		if (fstype == UFS1)
11175 			*dp1 = *inodedep->id_savedino1;
11176 		else
11177 			*dp2 = *inodedep->id_savedino2;
11178 		free(inodedep->id_savedino1, M_SAVEDINO);
11179 		inodedep->id_savedino1 = NULL;
11180 		if ((bp->b_flags & B_DELWRI) == 0)
11181 			stat_inode_bitmap++;
11182 		bdirty(bp);
11183 		/*
11184 		 * If the inode is clear here and GOINGAWAY it will never
11185 		 * be written.  Process the bufwait and clear any pending
11186 		 * work which may include the freefile.
11187 		 */
11188 		if (inodedep->id_state & GOINGAWAY)
11189 			goto bufwait;
11190 		return (1);
11191 	}
11192 	inodedep->id_state |= COMPLETE;
11193 	/*
11194 	 * Roll forward anything that had to be rolled back before
11195 	 * the inode could be updated.
11196 	 */
11197 	for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
11198 		nextadp = TAILQ_NEXT(adp, ad_next);
11199 		if (adp->ad_state & ATTACHED)
11200 			panic("handle_written_inodeblock: new entry");
11201 		if (fstype == UFS1) {
11202 			if (adp->ad_offset < NDADDR) {
11203 				if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno)
11204 					panic("%s %s #%jd mismatch %d != %jd",
11205 					    "handle_written_inodeblock:",
11206 					    "direct pointer",
11207 					    (intmax_t)adp->ad_offset,
11208 					    dp1->di_db[adp->ad_offset],
11209 					    (intmax_t)adp->ad_oldblkno);
11210 				dp1->di_db[adp->ad_offset] = adp->ad_newblkno;
11211 			} else {
11212 				if (dp1->di_ib[adp->ad_offset - NDADDR] != 0)
11213 					panic("%s: %s #%jd allocated as %d",
11214 					    "handle_written_inodeblock",
11215 					    "indirect pointer",
11216 					    (intmax_t)adp->ad_offset - NDADDR,
11217 					    dp1->di_ib[adp->ad_offset - NDADDR]);
11218 				dp1->di_ib[adp->ad_offset - NDADDR] =
11219 				    adp->ad_newblkno;
11220 			}
11221 		} else {
11222 			if (adp->ad_offset < NDADDR) {
11223 				if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno)
11224 					panic("%s: %s #%jd %s %jd != %jd",
11225 					    "handle_written_inodeblock",
11226 					    "direct pointer",
11227 					    (intmax_t)adp->ad_offset, "mismatch",
11228 					    (intmax_t)dp2->di_db[adp->ad_offset],
11229 					    (intmax_t)adp->ad_oldblkno);
11230 				dp2->di_db[adp->ad_offset] = adp->ad_newblkno;
11231 			} else {
11232 				if (dp2->di_ib[adp->ad_offset - NDADDR] != 0)
11233 					panic("%s: %s #%jd allocated as %jd",
11234 					    "handle_written_inodeblock",
11235 					    "indirect pointer",
11236 					    (intmax_t)adp->ad_offset - NDADDR,
11237 					    (intmax_t)
11238 					    dp2->di_ib[adp->ad_offset - NDADDR]);
11239 				dp2->di_ib[adp->ad_offset - NDADDR] =
11240 				    adp->ad_newblkno;
11241 			}
11242 		}
11243 		adp->ad_state &= ~UNDONE;
11244 		adp->ad_state |= ATTACHED;
11245 		hadchanges = 1;
11246 	}
11247 	for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) {
11248 		nextadp = TAILQ_NEXT(adp, ad_next);
11249 		if (adp->ad_state & ATTACHED)
11250 			panic("handle_written_inodeblock: new entry");
11251 		if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno)
11252 			panic("%s: direct pointers #%jd %s %jd != %jd",
11253 			    "handle_written_inodeblock",
11254 			    (intmax_t)adp->ad_offset, "mismatch",
11255 			    (intmax_t)dp2->di_extb[adp->ad_offset],
11256 			    (intmax_t)adp->ad_oldblkno);
11257 		dp2->di_extb[adp->ad_offset] = adp->ad_newblkno;
11258 		adp->ad_state &= ~UNDONE;
11259 		adp->ad_state |= ATTACHED;
11260 		hadchanges = 1;
11261 	}
11262 	if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
11263 		stat_direct_blk_ptrs++;
11264 	/*
11265 	 * Reset the file size to its most up-to-date value.
11266 	 */
11267 	if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1)
11268 		panic("handle_written_inodeblock: bad size");
11269 	if (inodedep->id_savednlink > LINK_MAX)
11270 		panic("handle_written_inodeblock: Invalid link count "
11271 		    "%d for inodedep %p", inodedep->id_savednlink, inodedep);
11272 	if (fstype == UFS1) {
11273 		if (dp1->di_nlink != inodedep->id_savednlink) {
11274 			dp1->di_nlink = inodedep->id_savednlink;
11275 			hadchanges = 1;
11276 		}
11277 		if (dp1->di_size != inodedep->id_savedsize) {
11278 			dp1->di_size = inodedep->id_savedsize;
11279 			hadchanges = 1;
11280 		}
11281 	} else {
11282 		if (dp2->di_nlink != inodedep->id_savednlink) {
11283 			dp2->di_nlink = inodedep->id_savednlink;
11284 			hadchanges = 1;
11285 		}
11286 		if (dp2->di_size != inodedep->id_savedsize) {
11287 			dp2->di_size = inodedep->id_savedsize;
11288 			hadchanges = 1;
11289 		}
11290 		if (dp2->di_extsize != inodedep->id_savedextsize) {
11291 			dp2->di_extsize = inodedep->id_savedextsize;
11292 			hadchanges = 1;
11293 		}
11294 	}
11295 	inodedep->id_savedsize = -1;
11296 	inodedep->id_savedextsize = -1;
11297 	inodedep->id_savednlink = -1;
11298 	/*
11299 	 * If there were any rollbacks in the inode block, then it must be
11300 	 * marked dirty so that its will eventually get written back in
11301 	 * its correct form.
11302 	 */
11303 	if (hadchanges)
11304 		bdirty(bp);
11305 bufwait:
11306 	/*
11307 	 * Process any allocdirects that completed during the update.
11308 	 */
11309 	if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
11310 		handle_allocdirect_partdone(adp, &wkhd);
11311 	if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
11312 		handle_allocdirect_partdone(adp, &wkhd);
11313 	/*
11314 	 * Process deallocations that were held pending until the
11315 	 * inode had been written to disk. Freeing of the inode
11316 	 * is delayed until after all blocks have been freed to
11317 	 * avoid creation of new <vfsid, inum, lbn> triples
11318 	 * before the old ones have been deleted.  Completely
11319 	 * unlinked inodes are not processed until the unlinked
11320 	 * inode list is written or the last reference is removed.
11321 	 */
11322 	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) {
11323 		freefile = handle_bufwait(inodedep, NULL);
11324 		if (freefile && !LIST_EMPTY(&wkhd)) {
11325 			WORKLIST_INSERT(&wkhd, &freefile->fx_list);
11326 			freefile = NULL;
11327 		}
11328 	}
11329 	/*
11330 	 * Move rolled forward dependency completions to the bufwait list
11331 	 * now that those that were already written have been processed.
11332 	 */
11333 	if (!LIST_EMPTY(&wkhd) && hadchanges == 0)
11334 		panic("handle_written_inodeblock: bufwait but no changes");
11335 	jwork_move(&inodedep->id_bufwait, &wkhd);
11336 
11337 	if (freefile != NULL) {
11338 		/*
11339 		 * If the inode is goingaway it was never written.  Fake up
11340 		 * the state here so free_inodedep() can succeed.
11341 		 */
11342 		if (inodedep->id_state & GOINGAWAY)
11343 			inodedep->id_state |= COMPLETE | DEPCOMPLETE;
11344 		if (free_inodedep(inodedep) == 0)
11345 			panic("handle_written_inodeblock: live inodedep %p",
11346 			    inodedep);
11347 		add_to_worklist(&freefile->fx_list, 0);
11348 		return (0);
11349 	}
11350 
11351 	/*
11352 	 * If no outstanding dependencies, free it.
11353 	 */
11354 	if (free_inodedep(inodedep) ||
11355 	    (TAILQ_FIRST(&inodedep->id_inoreflst) == 0 &&
11356 	     TAILQ_FIRST(&inodedep->id_inoupdt) == 0 &&
11357 	     TAILQ_FIRST(&inodedep->id_extupdt) == 0 &&
11358 	     LIST_FIRST(&inodedep->id_bufwait) == 0))
11359 		return (0);
11360 	return (hadchanges);
11361 }
11362 
11363 static int
11364 handle_written_indirdep(indirdep, bp, bpp)
11365 	struct indirdep *indirdep;
11366 	struct buf *bp;
11367 	struct buf **bpp;
11368 {
11369 	struct allocindir *aip;
11370 	struct buf *sbp;
11371 	int chgs;
11372 
11373 	if (indirdep->ir_state & GOINGAWAY)
11374 		panic("handle_written_indirdep: indirdep gone");
11375 	if ((indirdep->ir_state & IOSTARTED) == 0)
11376 		panic("handle_written_indirdep: IO not started");
11377 	chgs = 0;
11378 	/*
11379 	 * If there were rollbacks revert them here.
11380 	 */
11381 	if (indirdep->ir_saveddata) {
11382 		bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount);
11383 		if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
11384 			free(indirdep->ir_saveddata, M_INDIRDEP);
11385 			indirdep->ir_saveddata = NULL;
11386 		}
11387 		chgs = 1;
11388 	}
11389 	indirdep->ir_state &= ~(UNDONE | IOSTARTED);
11390 	indirdep->ir_state |= ATTACHED;
11391 	/*
11392 	 * Move allocindirs with written pointers to the completehd if
11393 	 * the indirdep's pointer is not yet written.  Otherwise
11394 	 * free them here.
11395 	 */
11396 	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != 0) {
11397 		LIST_REMOVE(aip, ai_next);
11398 		if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
11399 			LIST_INSERT_HEAD(&indirdep->ir_completehd, aip,
11400 			    ai_next);
11401 			newblk_freefrag(&aip->ai_block);
11402 			continue;
11403 		}
11404 		free_newblk(&aip->ai_block);
11405 	}
11406 	/*
11407 	 * Move allocindirs that have finished dependency processing from
11408 	 * the done list to the write list after updating the pointers.
11409 	 */
11410 	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
11411 		while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) {
11412 			handle_allocindir_partdone(aip);
11413 			if (aip == LIST_FIRST(&indirdep->ir_donehd))
11414 				panic("disk_write_complete: not gone");
11415 			chgs = 1;
11416 		}
11417 	}
11418 	/*
11419 	 * Preserve the indirdep if there were any changes or if it is not
11420 	 * yet valid on disk.
11421 	 */
11422 	if (chgs) {
11423 		stat_indir_blk_ptrs++;
11424 		bdirty(bp);
11425 		return (1);
11426 	}
11427 	/*
11428 	 * If there were no changes we can discard the savedbp and detach
11429 	 * ourselves from the buf.  We are only carrying completed pointers
11430 	 * in this case.
11431 	 */
11432 	sbp = indirdep->ir_savebp;
11433 	sbp->b_flags |= B_INVAL | B_NOCACHE;
11434 	indirdep->ir_savebp = NULL;
11435 	indirdep->ir_bp = NULL;
11436 	if (*bpp != NULL)
11437 		panic("handle_written_indirdep: bp already exists.");
11438 	*bpp = sbp;
11439 	/*
11440 	 * The indirdep may not be freed until its parent points at it.
11441 	 */
11442 	if (indirdep->ir_state & DEPCOMPLETE)
11443 		free_indirdep(indirdep);
11444 
11445 	return (0);
11446 }
11447 
11448 /*
11449  * Process a diradd entry after its dependent inode has been written.
11450  * This routine must be called with splbio interrupts blocked.
11451  */
11452 static void
11453 diradd_inode_written(dap, inodedep)
11454 	struct diradd *dap;
11455 	struct inodedep *inodedep;
11456 {
11457 
11458 	dap->da_state |= COMPLETE;
11459 	complete_diradd(dap);
11460 	WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
11461 }
11462 
11463 /*
11464  * Returns true if the bmsafemap will have rollbacks when written.  Must only
11465  * be called with the soft updates lock and the buf lock on the cg held.
11466  */
11467 static int
11468 bmsafemap_backgroundwrite(bmsafemap, bp)
11469 	struct bmsafemap *bmsafemap;
11470 	struct buf *bp;
11471 {
11472 	int dirty;
11473 
11474 	LOCK_OWNED(VFSTOUFS(bmsafemap->sm_list.wk_mp));
11475 	dirty = !LIST_EMPTY(&bmsafemap->sm_jaddrefhd) |
11476 	    !LIST_EMPTY(&bmsafemap->sm_jnewblkhd);
11477 	/*
11478 	 * If we're initiating a background write we need to process the
11479 	 * rollbacks as they exist now, not as they exist when IO starts.
11480 	 * No other consumers will look at the contents of the shadowed
11481 	 * buf so this is safe to do here.
11482 	 */
11483 	if (bp->b_xflags & BX_BKGRDMARKER)
11484 		initiate_write_bmsafemap(bmsafemap, bp);
11485 
11486 	return (dirty);
11487 }
11488 
11489 /*
11490  * Re-apply an allocation when a cg write is complete.
11491  */
11492 static int
11493 jnewblk_rollforward(jnewblk, fs, cgp, blksfree)
11494 	struct jnewblk *jnewblk;
11495 	struct fs *fs;
11496 	struct cg *cgp;
11497 	uint8_t *blksfree;
11498 {
11499 	ufs1_daddr_t fragno;
11500 	ufs2_daddr_t blkno;
11501 	long cgbno, bbase;
11502 	int frags, blk;
11503 	int i;
11504 
11505 	frags = 0;
11506 	cgbno = dtogd(fs, jnewblk->jn_blkno);
11507 	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) {
11508 		if (isclr(blksfree, cgbno + i))
11509 			panic("jnewblk_rollforward: re-allocated fragment");
11510 		frags++;
11511 	}
11512 	if (frags == fs->fs_frag) {
11513 		blkno = fragstoblks(fs, cgbno);
11514 		ffs_clrblock(fs, blksfree, (long)blkno);
11515 		ffs_clusteracct(fs, cgp, blkno, -1);
11516 		cgp->cg_cs.cs_nbfree--;
11517 	} else {
11518 		bbase = cgbno - fragnum(fs, cgbno);
11519 		cgbno += jnewblk->jn_oldfrags;
11520                 /* If a complete block had been reassembled, account for it. */
11521 		fragno = fragstoblks(fs, bbase);
11522 		if (ffs_isblock(fs, blksfree, fragno)) {
11523 			cgp->cg_cs.cs_nffree += fs->fs_frag;
11524 			ffs_clusteracct(fs, cgp, fragno, -1);
11525 			cgp->cg_cs.cs_nbfree--;
11526 		}
11527 		/* Decrement the old frags.  */
11528 		blk = blkmap(fs, blksfree, bbase);
11529 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
11530 		/* Allocate the fragment */
11531 		for (i = 0; i < frags; i++)
11532 			clrbit(blksfree, cgbno + i);
11533 		cgp->cg_cs.cs_nffree -= frags;
11534 		/* Add back in counts associated with the new frags */
11535 		blk = blkmap(fs, blksfree, bbase);
11536 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
11537 	}
11538 	return (frags);
11539 }
11540 
11541 /*
11542  * Complete a write to a bmsafemap structure.  Roll forward any bitmap
11543  * changes if it's not a background write.  Set all written dependencies
11544  * to DEPCOMPLETE and free the structure if possible.
11545  */
11546 static int
11547 handle_written_bmsafemap(bmsafemap, bp)
11548 	struct bmsafemap *bmsafemap;
11549 	struct buf *bp;
11550 {
11551 	struct newblk *newblk;
11552 	struct inodedep *inodedep;
11553 	struct jaddref *jaddref, *jatmp;
11554 	struct jnewblk *jnewblk, *jntmp;
11555 	struct ufsmount *ump;
11556 	uint8_t *inosused;
11557 	uint8_t *blksfree;
11558 	struct cg *cgp;
11559 	struct fs *fs;
11560 	ino_t ino;
11561 	int foreground;
11562 	int chgs;
11563 
11564 	if ((bmsafemap->sm_state & IOSTARTED) == 0)
11565 		panic("initiate_write_bmsafemap: Not started\n");
11566 	ump = VFSTOUFS(bmsafemap->sm_list.wk_mp);
11567 	chgs = 0;
11568 	bmsafemap->sm_state &= ~IOSTARTED;
11569 	foreground = (bp->b_xflags & BX_BKGRDMARKER) == 0;
11570 	/*
11571 	 * Release journal work that was waiting on the write.
11572 	 */
11573 	handle_jwork(&bmsafemap->sm_freewr);
11574 
11575 	/*
11576 	 * Restore unwritten inode allocation pending jaddref writes.
11577 	 */
11578 	if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) {
11579 		cgp = (struct cg *)bp->b_data;
11580 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11581 		inosused = cg_inosused(cgp);
11582 		LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd,
11583 		    ja_bmdeps, jatmp) {
11584 			if ((jaddref->ja_state & UNDONE) == 0)
11585 				continue;
11586 			ino = jaddref->ja_ino % fs->fs_ipg;
11587 			if (isset(inosused, ino))
11588 				panic("handle_written_bmsafemap: "
11589 				    "re-allocated inode");
11590 			/* Do the roll-forward only if it's a real copy. */
11591 			if (foreground) {
11592 				if ((jaddref->ja_mode & IFMT) == IFDIR)
11593 					cgp->cg_cs.cs_ndir++;
11594 				cgp->cg_cs.cs_nifree--;
11595 				setbit(inosused, ino);
11596 				chgs = 1;
11597 			}
11598 			jaddref->ja_state &= ~UNDONE;
11599 			jaddref->ja_state |= ATTACHED;
11600 			free_jaddref(jaddref);
11601 		}
11602 	}
11603 	/*
11604 	 * Restore any block allocations which are pending journal writes.
11605 	 */
11606 	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
11607 		cgp = (struct cg *)bp->b_data;
11608 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11609 		blksfree = cg_blksfree(cgp);
11610 		LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps,
11611 		    jntmp) {
11612 			if ((jnewblk->jn_state & UNDONE) == 0)
11613 				continue;
11614 			/* Do the roll-forward only if it's a real copy. */
11615 			if (foreground &&
11616 			    jnewblk_rollforward(jnewblk, fs, cgp, blksfree))
11617 				chgs = 1;
11618 			jnewblk->jn_state &= ~(UNDONE | NEWBLOCK);
11619 			jnewblk->jn_state |= ATTACHED;
11620 			free_jnewblk(jnewblk);
11621 		}
11622 	}
11623 	while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) {
11624 		newblk->nb_state |= DEPCOMPLETE;
11625 		newblk->nb_state &= ~ONDEPLIST;
11626 		newblk->nb_bmsafemap = NULL;
11627 		LIST_REMOVE(newblk, nb_deps);
11628 		if (newblk->nb_list.wk_type == D_ALLOCDIRECT)
11629 			handle_allocdirect_partdone(
11630 			    WK_ALLOCDIRECT(&newblk->nb_list), NULL);
11631 		else if (newblk->nb_list.wk_type == D_ALLOCINDIR)
11632 			handle_allocindir_partdone(
11633 			    WK_ALLOCINDIR(&newblk->nb_list));
11634 		else if (newblk->nb_list.wk_type != D_NEWBLK)
11635 			panic("handle_written_bmsafemap: Unexpected type: %s",
11636 			    TYPENAME(newblk->nb_list.wk_type));
11637 	}
11638 	while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) {
11639 		inodedep->id_state |= DEPCOMPLETE;
11640 		inodedep->id_state &= ~ONDEPLIST;
11641 		LIST_REMOVE(inodedep, id_deps);
11642 		inodedep->id_bmsafemap = NULL;
11643 	}
11644 	LIST_REMOVE(bmsafemap, sm_next);
11645 	if (chgs == 0 && LIST_EMPTY(&bmsafemap->sm_jaddrefhd) &&
11646 	    LIST_EMPTY(&bmsafemap->sm_jnewblkhd) &&
11647 	    LIST_EMPTY(&bmsafemap->sm_newblkhd) &&
11648 	    LIST_EMPTY(&bmsafemap->sm_inodedephd) &&
11649 	    LIST_EMPTY(&bmsafemap->sm_freehd)) {
11650 		LIST_REMOVE(bmsafemap, sm_hash);
11651 		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
11652 		return (0);
11653 	}
11654 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
11655 	if (foreground)
11656 		bdirty(bp);
11657 	return (1);
11658 }
11659 
11660 /*
11661  * Try to free a mkdir dependency.
11662  */
11663 static void
11664 complete_mkdir(mkdir)
11665 	struct mkdir *mkdir;
11666 {
11667 	struct diradd *dap;
11668 
11669 	if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE)
11670 		return;
11671 	LIST_REMOVE(mkdir, md_mkdirs);
11672 	dap = mkdir->md_diradd;
11673 	dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
11674 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) {
11675 		dap->da_state |= DEPCOMPLETE;
11676 		complete_diradd(dap);
11677 	}
11678 	WORKITEM_FREE(mkdir, D_MKDIR);
11679 }
11680 
11681 /*
11682  * Handle the completion of a mkdir dependency.
11683  */
11684 static void
11685 handle_written_mkdir(mkdir, type)
11686 	struct mkdir *mkdir;
11687 	int type;
11688 {
11689 
11690 	if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type)
11691 		panic("handle_written_mkdir: bad type");
11692 	mkdir->md_state |= COMPLETE;
11693 	complete_mkdir(mkdir);
11694 }
11695 
11696 static int
11697 free_pagedep(pagedep)
11698 	struct pagedep *pagedep;
11699 {
11700 	int i;
11701 
11702 	if (pagedep->pd_state & NEWBLOCK)
11703 		return (0);
11704 	if (!LIST_EMPTY(&pagedep->pd_dirremhd))
11705 		return (0);
11706 	for (i = 0; i < DAHASHSZ; i++)
11707 		if (!LIST_EMPTY(&pagedep->pd_diraddhd[i]))
11708 			return (0);
11709 	if (!LIST_EMPTY(&pagedep->pd_pendinghd))
11710 		return (0);
11711 	if (!LIST_EMPTY(&pagedep->pd_jmvrefhd))
11712 		return (0);
11713 	if (pagedep->pd_state & ONWORKLIST)
11714 		WORKLIST_REMOVE(&pagedep->pd_list);
11715 	LIST_REMOVE(pagedep, pd_hash);
11716 	WORKITEM_FREE(pagedep, D_PAGEDEP);
11717 
11718 	return (1);
11719 }
11720 
11721 /*
11722  * Called from within softdep_disk_write_complete above.
11723  * A write operation was just completed. Removed inodes can
11724  * now be freed and associated block pointers may be committed.
11725  * Note that this routine is always called from interrupt level
11726  * with further splbio interrupts blocked.
11727  */
11728 static int
11729 handle_written_filepage(pagedep, bp)
11730 	struct pagedep *pagedep;
11731 	struct buf *bp;		/* buffer containing the written page */
11732 {
11733 	struct dirrem *dirrem;
11734 	struct diradd *dap, *nextdap;
11735 	struct direct *ep;
11736 	int i, chgs;
11737 
11738 	if ((pagedep->pd_state & IOSTARTED) == 0)
11739 		panic("handle_written_filepage: not started");
11740 	pagedep->pd_state &= ~IOSTARTED;
11741 	/*
11742 	 * Process any directory removals that have been committed.
11743 	 */
11744 	while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
11745 		LIST_REMOVE(dirrem, dm_next);
11746 		dirrem->dm_state |= COMPLETE;
11747 		dirrem->dm_dirinum = pagedep->pd_ino;
11748 		KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
11749 		    ("handle_written_filepage: Journal entries not written."));
11750 		add_to_worklist(&dirrem->dm_list, 0);
11751 	}
11752 	/*
11753 	 * Free any directory additions that have been committed.
11754 	 * If it is a newly allocated block, we have to wait until
11755 	 * the on-disk directory inode claims the new block.
11756 	 */
11757 	if ((pagedep->pd_state & NEWBLOCK) == 0)
11758 		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
11759 			free_diradd(dap, NULL);
11760 	/*
11761 	 * Uncommitted directory entries must be restored.
11762 	 */
11763 	for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
11764 		for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
11765 		     dap = nextdap) {
11766 			nextdap = LIST_NEXT(dap, da_pdlist);
11767 			if (dap->da_state & ATTACHED)
11768 				panic("handle_written_filepage: attached");
11769 			ep = (struct direct *)
11770 			    ((char *)bp->b_data + dap->da_offset);
11771 			ep->d_ino = dap->da_newinum;
11772 			dap->da_state &= ~UNDONE;
11773 			dap->da_state |= ATTACHED;
11774 			chgs = 1;
11775 			/*
11776 			 * If the inode referenced by the directory has
11777 			 * been written out, then the dependency can be
11778 			 * moved to the pending list.
11779 			 */
11780 			if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
11781 				LIST_REMOVE(dap, da_pdlist);
11782 				LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
11783 				    da_pdlist);
11784 			}
11785 		}
11786 	}
11787 	/*
11788 	 * If there were any rollbacks in the directory, then it must be
11789 	 * marked dirty so that its will eventually get written back in
11790 	 * its correct form.
11791 	 */
11792 	if (chgs) {
11793 		if ((bp->b_flags & B_DELWRI) == 0)
11794 			stat_dir_entry++;
11795 		bdirty(bp);
11796 		return (1);
11797 	}
11798 	/*
11799 	 * If we are not waiting for a new directory block to be
11800 	 * claimed by its inode, then the pagedep will be freed.
11801 	 * Otherwise it will remain to track any new entries on
11802 	 * the page in case they are fsync'ed.
11803 	 */
11804 	free_pagedep(pagedep);
11805 	return (0);
11806 }
11807 
11808 /*
11809  * Writing back in-core inode structures.
11810  *
11811  * The filesystem only accesses an inode's contents when it occupies an
11812  * "in-core" inode structure.  These "in-core" structures are separate from
11813  * the page frames used to cache inode blocks.  Only the latter are
11814  * transferred to/from the disk.  So, when the updated contents of the
11815  * "in-core" inode structure are copied to the corresponding in-memory inode
11816  * block, the dependencies are also transferred.  The following procedure is
11817  * called when copying a dirty "in-core" inode to a cached inode block.
11818  */
11819 
11820 /*
11821  * Called when an inode is loaded from disk. If the effective link count
11822  * differed from the actual link count when it was last flushed, then we
11823  * need to ensure that the correct effective link count is put back.
11824  */
11825 void
11826 softdep_load_inodeblock(ip)
11827 	struct inode *ip;	/* the "in_core" copy of the inode */
11828 {
11829 	struct inodedep *inodedep;
11830 
11831 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
11832 	    ("softdep_load_inodeblock called on non-softdep filesystem"));
11833 	/*
11834 	 * Check for alternate nlink count.
11835 	 */
11836 	ip->i_effnlink = ip->i_nlink;
11837 	ACQUIRE_LOCK(ip->i_ump);
11838 	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
11839 	    &inodedep) == 0) {
11840 		FREE_LOCK(ip->i_ump);
11841 		return;
11842 	}
11843 	ip->i_effnlink -= inodedep->id_nlinkdelta;
11844 	FREE_LOCK(ip->i_ump);
11845 }
11846 
11847 /*
11848  * This routine is called just before the "in-core" inode
11849  * information is to be copied to the in-memory inode block.
11850  * Recall that an inode block contains several inodes. If
11851  * the force flag is set, then the dependencies will be
11852  * cleared so that the update can always be made. Note that
11853  * the buffer is locked when this routine is called, so we
11854  * will never be in the middle of writing the inode block
11855  * to disk.
11856  */
11857 void
11858 softdep_update_inodeblock(ip, bp, waitfor)
11859 	struct inode *ip;	/* the "in_core" copy of the inode */
11860 	struct buf *bp;		/* the buffer containing the inode block */
11861 	int waitfor;		/* nonzero => update must be allowed */
11862 {
11863 	struct inodedep *inodedep;
11864 	struct inoref *inoref;
11865 	struct ufsmount *ump;
11866 	struct worklist *wk;
11867 	struct mount *mp;
11868 	struct buf *ibp;
11869 	struct fs *fs;
11870 	int error;
11871 
11872 	ump = ip->i_ump;
11873 	mp = UFSTOVFS(ump);
11874 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
11875 	    ("softdep_update_inodeblock called on non-softdep filesystem"));
11876 	fs = ip->i_fs;
11877 	/*
11878 	 * Preserve the freelink that is on disk.  clear_unlinked_inodedep()
11879 	 * does not have access to the in-core ip so must write directly into
11880 	 * the inode block buffer when setting freelink.
11881 	 */
11882 	if (fs->fs_magic == FS_UFS1_MAGIC)
11883 		DIP_SET(ip, i_freelink, ((struct ufs1_dinode *)bp->b_data +
11884 		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
11885 	else
11886 		DIP_SET(ip, i_freelink, ((struct ufs2_dinode *)bp->b_data +
11887 		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
11888 	/*
11889 	 * If the effective link count is not equal to the actual link
11890 	 * count, then we must track the difference in an inodedep while
11891 	 * the inode is (potentially) tossed out of the cache. Otherwise,
11892 	 * if there is no existing inodedep, then there are no dependencies
11893 	 * to track.
11894 	 */
11895 	ACQUIRE_LOCK(ump);
11896 again:
11897 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
11898 		FREE_LOCK(ump);
11899 		if (ip->i_effnlink != ip->i_nlink)
11900 			panic("softdep_update_inodeblock: bad link count");
11901 		return;
11902 	}
11903 	if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink)
11904 		panic("softdep_update_inodeblock: bad delta");
11905 	/*
11906 	 * If we're flushing all dependencies we must also move any waiting
11907 	 * for journal writes onto the bufwait list prior to I/O.
11908 	 */
11909 	if (waitfor) {
11910 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
11911 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
11912 			    == DEPCOMPLETE) {
11913 				jwait(&inoref->if_list, MNT_WAIT);
11914 				goto again;
11915 			}
11916 		}
11917 	}
11918 	/*
11919 	 * Changes have been initiated. Anything depending on these
11920 	 * changes cannot occur until this inode has been written.
11921 	 */
11922 	inodedep->id_state &= ~COMPLETE;
11923 	if ((inodedep->id_state & ONWORKLIST) == 0)
11924 		WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list);
11925 	/*
11926 	 * Any new dependencies associated with the incore inode must
11927 	 * now be moved to the list associated with the buffer holding
11928 	 * the in-memory copy of the inode. Once merged process any
11929 	 * allocdirects that are completed by the merger.
11930 	 */
11931 	merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt);
11932 	if (!TAILQ_EMPTY(&inodedep->id_inoupdt))
11933 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt),
11934 		    NULL);
11935 	merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt);
11936 	if (!TAILQ_EMPTY(&inodedep->id_extupdt))
11937 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt),
11938 		    NULL);
11939 	/*
11940 	 * Now that the inode has been pushed into the buffer, the
11941 	 * operations dependent on the inode being written to disk
11942 	 * can be moved to the id_bufwait so that they will be
11943 	 * processed when the buffer I/O completes.
11944 	 */
11945 	while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
11946 		WORKLIST_REMOVE(wk);
11947 		WORKLIST_INSERT(&inodedep->id_bufwait, wk);
11948 	}
11949 	/*
11950 	 * Newly allocated inodes cannot be written until the bitmap
11951 	 * that allocates them have been written (indicated by
11952 	 * DEPCOMPLETE being set in id_state). If we are doing a
11953 	 * forced sync (e.g., an fsync on a file), we force the bitmap
11954 	 * to be written so that the update can be done.
11955 	 */
11956 	if (waitfor == 0) {
11957 		FREE_LOCK(ump);
11958 		return;
11959 	}
11960 retry:
11961 	if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) {
11962 		FREE_LOCK(ump);
11963 		return;
11964 	}
11965 	ibp = inodedep->id_bmsafemap->sm_buf;
11966 	ibp = getdirtybuf(ibp, LOCK_PTR(ump), MNT_WAIT);
11967 	if (ibp == NULL) {
11968 		/*
11969 		 * If ibp came back as NULL, the dependency could have been
11970 		 * freed while we slept.  Look it up again, and check to see
11971 		 * that it has completed.
11972 		 */
11973 		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
11974 			goto retry;
11975 		FREE_LOCK(ump);
11976 		return;
11977 	}
11978 	FREE_LOCK(ump);
11979 	if ((error = bwrite(ibp)) != 0)
11980 		softdep_error("softdep_update_inodeblock: bwrite", error);
11981 }
11982 
11983 /*
11984  * Merge the a new inode dependency list (such as id_newinoupdt) into an
11985  * old inode dependency list (such as id_inoupdt). This routine must be
11986  * called with splbio interrupts blocked.
11987  */
11988 static void
11989 merge_inode_lists(newlisthead, oldlisthead)
11990 	struct allocdirectlst *newlisthead;
11991 	struct allocdirectlst *oldlisthead;
11992 {
11993 	struct allocdirect *listadp, *newadp;
11994 
11995 	newadp = TAILQ_FIRST(newlisthead);
11996 	for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) {
11997 		if (listadp->ad_offset < newadp->ad_offset) {
11998 			listadp = TAILQ_NEXT(listadp, ad_next);
11999 			continue;
12000 		}
12001 		TAILQ_REMOVE(newlisthead, newadp, ad_next);
12002 		TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
12003 		if (listadp->ad_offset == newadp->ad_offset) {
12004 			allocdirect_merge(oldlisthead, newadp,
12005 			    listadp);
12006 			listadp = newadp;
12007 		}
12008 		newadp = TAILQ_FIRST(newlisthead);
12009 	}
12010 	while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) {
12011 		TAILQ_REMOVE(newlisthead, newadp, ad_next);
12012 		TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next);
12013 	}
12014 }
12015 
12016 /*
12017  * If we are doing an fsync, then we must ensure that any directory
12018  * entries for the inode have been written after the inode gets to disk.
12019  */
12020 int
12021 softdep_fsync(vp)
12022 	struct vnode *vp;	/* the "in_core" copy of the inode */
12023 {
12024 	struct inodedep *inodedep;
12025 	struct pagedep *pagedep;
12026 	struct inoref *inoref;
12027 	struct ufsmount *ump;
12028 	struct worklist *wk;
12029 	struct diradd *dap;
12030 	struct mount *mp;
12031 	struct vnode *pvp;
12032 	struct inode *ip;
12033 	struct buf *bp;
12034 	struct fs *fs;
12035 	struct thread *td = curthread;
12036 	int error, flushparent, pagedep_new_block;
12037 	ino_t parentino;
12038 	ufs_lbn_t lbn;
12039 
12040 	ip = VTOI(vp);
12041 	fs = ip->i_fs;
12042 	ump = ip->i_ump;
12043 	mp = vp->v_mount;
12044 	if (MOUNTEDSOFTDEP(mp) == 0)
12045 		return (0);
12046 	ACQUIRE_LOCK(ump);
12047 restart:
12048 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
12049 		FREE_LOCK(ump);
12050 		return (0);
12051 	}
12052 	TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12053 		if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12054 		    == DEPCOMPLETE) {
12055 			jwait(&inoref->if_list, MNT_WAIT);
12056 			goto restart;
12057 		}
12058 	}
12059 	if (!LIST_EMPTY(&inodedep->id_inowait) ||
12060 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
12061 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
12062 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
12063 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt))
12064 		panic("softdep_fsync: pending ops %p", inodedep);
12065 	for (error = 0, flushparent = 0; ; ) {
12066 		if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
12067 			break;
12068 		if (wk->wk_type != D_DIRADD)
12069 			panic("softdep_fsync: Unexpected type %s",
12070 			    TYPENAME(wk->wk_type));
12071 		dap = WK_DIRADD(wk);
12072 		/*
12073 		 * Flush our parent if this directory entry has a MKDIR_PARENT
12074 		 * dependency or is contained in a newly allocated block.
12075 		 */
12076 		if (dap->da_state & DIRCHG)
12077 			pagedep = dap->da_previous->dm_pagedep;
12078 		else
12079 			pagedep = dap->da_pagedep;
12080 		parentino = pagedep->pd_ino;
12081 		lbn = pagedep->pd_lbn;
12082 		if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE)
12083 			panic("softdep_fsync: dirty");
12084 		if ((dap->da_state & MKDIR_PARENT) ||
12085 		    (pagedep->pd_state & NEWBLOCK))
12086 			flushparent = 1;
12087 		else
12088 			flushparent = 0;
12089 		/*
12090 		 * If we are being fsync'ed as part of vgone'ing this vnode,
12091 		 * then we will not be able to release and recover the
12092 		 * vnode below, so we just have to give up on writing its
12093 		 * directory entry out. It will eventually be written, just
12094 		 * not now, but then the user was not asking to have it
12095 		 * written, so we are not breaking any promises.
12096 		 */
12097 		if (vp->v_iflag & VI_DOOMED)
12098 			break;
12099 		/*
12100 		 * We prevent deadlock by always fetching inodes from the
12101 		 * root, moving down the directory tree. Thus, when fetching
12102 		 * our parent directory, we first try to get the lock. If
12103 		 * that fails, we must unlock ourselves before requesting
12104 		 * the lock on our parent. See the comment in ufs_lookup
12105 		 * for details on possible races.
12106 		 */
12107 		FREE_LOCK(ump);
12108 		if (ffs_vgetf(mp, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp,
12109 		    FFSV_FORCEINSMQ)) {
12110 			error = vfs_busy(mp, MBF_NOWAIT);
12111 			if (error != 0) {
12112 				vfs_ref(mp);
12113 				VOP_UNLOCK(vp, 0);
12114 				error = vfs_busy(mp, 0);
12115 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
12116 				vfs_rel(mp);
12117 				if (error != 0)
12118 					return (ENOENT);
12119 				if (vp->v_iflag & VI_DOOMED) {
12120 					vfs_unbusy(mp);
12121 					return (ENOENT);
12122 				}
12123 			}
12124 			VOP_UNLOCK(vp, 0);
12125 			error = ffs_vgetf(mp, parentino, LK_EXCLUSIVE,
12126 			    &pvp, FFSV_FORCEINSMQ);
12127 			vfs_unbusy(mp);
12128 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
12129 			if (vp->v_iflag & VI_DOOMED) {
12130 				if (error == 0)
12131 					vput(pvp);
12132 				error = ENOENT;
12133 			}
12134 			if (error != 0)
12135 				return (error);
12136 		}
12137 		/*
12138 		 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps
12139 		 * that are contained in direct blocks will be resolved by
12140 		 * doing a ffs_update. Pagedeps contained in indirect blocks
12141 		 * may require a complete sync'ing of the directory. So, we
12142 		 * try the cheap and fast ffs_update first, and if that fails,
12143 		 * then we do the slower ffs_syncvnode of the directory.
12144 		 */
12145 		if (flushparent) {
12146 			int locked;
12147 
12148 			if ((error = ffs_update(pvp, 1)) != 0) {
12149 				vput(pvp);
12150 				return (error);
12151 			}
12152 			ACQUIRE_LOCK(ump);
12153 			locked = 1;
12154 			if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) {
12155 				if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) {
12156 					if (wk->wk_type != D_DIRADD)
12157 						panic("softdep_fsync: Unexpected type %s",
12158 						      TYPENAME(wk->wk_type));
12159 					dap = WK_DIRADD(wk);
12160 					if (dap->da_state & DIRCHG)
12161 						pagedep = dap->da_previous->dm_pagedep;
12162 					else
12163 						pagedep = dap->da_pagedep;
12164 					pagedep_new_block = pagedep->pd_state & NEWBLOCK;
12165 					FREE_LOCK(ump);
12166 					locked = 0;
12167 					if (pagedep_new_block && (error =
12168 					    ffs_syncvnode(pvp, MNT_WAIT, 0))) {
12169 						vput(pvp);
12170 						return (error);
12171 					}
12172 				}
12173 			}
12174 			if (locked)
12175 				FREE_LOCK(ump);
12176 		}
12177 		/*
12178 		 * Flush directory page containing the inode's name.
12179 		 */
12180 		error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred,
12181 		    &bp);
12182 		if (error == 0)
12183 			error = bwrite(bp);
12184 		else
12185 			brelse(bp);
12186 		vput(pvp);
12187 		if (error != 0)
12188 			return (error);
12189 		ACQUIRE_LOCK(ump);
12190 		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
12191 			break;
12192 	}
12193 	FREE_LOCK(ump);
12194 	return (0);
12195 }
12196 
12197 /*
12198  * Flush all the dirty bitmaps associated with the block device
12199  * before flushing the rest of the dirty blocks so as to reduce
12200  * the number of dependencies that will have to be rolled back.
12201  *
12202  * XXX Unused?
12203  */
12204 void
12205 softdep_fsync_mountdev(vp)
12206 	struct vnode *vp;
12207 {
12208 	struct buf *bp, *nbp;
12209 	struct worklist *wk;
12210 	struct bufobj *bo;
12211 
12212 	if (!vn_isdisk(vp, NULL))
12213 		panic("softdep_fsync_mountdev: vnode not a disk");
12214 	bo = &vp->v_bufobj;
12215 restart:
12216 	BO_LOCK(bo);
12217 	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
12218 		/*
12219 		 * If it is already scheduled, skip to the next buffer.
12220 		 */
12221 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
12222 			continue;
12223 
12224 		if ((bp->b_flags & B_DELWRI) == 0)
12225 			panic("softdep_fsync_mountdev: not dirty");
12226 		/*
12227 		 * We are only interested in bitmaps with outstanding
12228 		 * dependencies.
12229 		 */
12230 		if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
12231 		    wk->wk_type != D_BMSAFEMAP ||
12232 		    (bp->b_vflags & BV_BKGRDINPROG)) {
12233 			BUF_UNLOCK(bp);
12234 			continue;
12235 		}
12236 		BO_UNLOCK(bo);
12237 		bremfree(bp);
12238 		(void) bawrite(bp);
12239 		goto restart;
12240 	}
12241 	drain_output(vp);
12242 	BO_UNLOCK(bo);
12243 }
12244 
12245 /*
12246  * Sync all cylinder groups that were dirty at the time this function is
12247  * called.  Newly dirtied cgs will be inserted before the sentinel.  This
12248  * is used to flush freedep activity that may be holding up writes to a
12249  * indirect block.
12250  */
12251 static int
12252 sync_cgs(mp, waitfor)
12253 	struct mount *mp;
12254 	int waitfor;
12255 {
12256 	struct bmsafemap *bmsafemap;
12257 	struct bmsafemap *sentinel;
12258 	struct ufsmount *ump;
12259 	struct buf *bp;
12260 	int error;
12261 
12262 	sentinel = malloc(sizeof(*sentinel), M_BMSAFEMAP, M_ZERO | M_WAITOK);
12263 	sentinel->sm_cg = -1;
12264 	ump = VFSTOUFS(mp);
12265 	error = 0;
12266 	ACQUIRE_LOCK(ump);
12267 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, sentinel, sm_next);
12268 	for (bmsafemap = LIST_NEXT(sentinel, sm_next); bmsafemap != NULL;
12269 	    bmsafemap = LIST_NEXT(sentinel, sm_next)) {
12270 		/* Skip sentinels and cgs with no work to release. */
12271 		if (bmsafemap->sm_cg == -1 ||
12272 		    (LIST_EMPTY(&bmsafemap->sm_freehd) &&
12273 		    LIST_EMPTY(&bmsafemap->sm_freewr))) {
12274 			LIST_REMOVE(sentinel, sm_next);
12275 			LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next);
12276 			continue;
12277 		}
12278 		/*
12279 		 * If we don't get the lock and we're waiting try again, if
12280 		 * not move on to the next buf and try to sync it.
12281 		 */
12282 		bp = getdirtybuf(bmsafemap->sm_buf, LOCK_PTR(ump), waitfor);
12283 		if (bp == NULL && waitfor == MNT_WAIT)
12284 			continue;
12285 		LIST_REMOVE(sentinel, sm_next);
12286 		LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next);
12287 		if (bp == NULL)
12288 			continue;
12289 		FREE_LOCK(ump);
12290 		if (waitfor == MNT_NOWAIT)
12291 			bawrite(bp);
12292 		else
12293 			error = bwrite(bp);
12294 		ACQUIRE_LOCK(ump);
12295 		if (error)
12296 			break;
12297 	}
12298 	LIST_REMOVE(sentinel, sm_next);
12299 	FREE_LOCK(ump);
12300 	free(sentinel, M_BMSAFEMAP);
12301 	return (error);
12302 }
12303 
12304 /*
12305  * This routine is called when we are trying to synchronously flush a
12306  * file. This routine must eliminate any filesystem metadata dependencies
12307  * so that the syncing routine can succeed.
12308  */
12309 int
12310 softdep_sync_metadata(struct vnode *vp)
12311 {
12312 	struct inode *ip;
12313 	int error;
12314 
12315 	ip = VTOI(vp);
12316 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
12317 	    ("softdep_sync_metadata called on non-softdep filesystem"));
12318 	/*
12319 	 * Ensure that any direct block dependencies have been cleared,
12320 	 * truncations are started, and inode references are journaled.
12321 	 */
12322 	ACQUIRE_LOCK(ip->i_ump);
12323 	/*
12324 	 * Write all journal records to prevent rollbacks on devvp.
12325 	 */
12326 	if (vp->v_type == VCHR)
12327 		softdep_flushjournal(vp->v_mount);
12328 	error = flush_inodedep_deps(vp, vp->v_mount, ip->i_number);
12329 	/*
12330 	 * Ensure that all truncates are written so we won't find deps on
12331 	 * indirect blocks.
12332 	 */
12333 	process_truncates(vp);
12334 	FREE_LOCK(ip->i_ump);
12335 
12336 	return (error);
12337 }
12338 
12339 /*
12340  * This routine is called when we are attempting to sync a buf with
12341  * dependencies.  If waitfor is MNT_NOWAIT it attempts to schedule any
12342  * other IO it can but returns EBUSY if the buffer is not yet able to
12343  * be written.  Dependencies which will not cause rollbacks will always
12344  * return 0.
12345  */
12346 int
12347 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
12348 {
12349 	struct indirdep *indirdep;
12350 	struct pagedep *pagedep;
12351 	struct allocindir *aip;
12352 	struct newblk *newblk;
12353 	struct ufsmount *ump;
12354 	struct buf *nbp;
12355 	struct worklist *wk;
12356 	int i, error;
12357 
12358 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
12359 	    ("softdep_sync_buf called on non-softdep filesystem"));
12360 	/*
12361 	 * For VCHR we just don't want to force flush any dependencies that
12362 	 * will cause rollbacks.
12363 	 */
12364 	if (vp->v_type == VCHR) {
12365 		if (waitfor == MNT_NOWAIT && softdep_count_dependencies(bp, 0))
12366 			return (EBUSY);
12367 		return (0);
12368 	}
12369 	ump = VTOI(vp)->i_ump;
12370 	ACQUIRE_LOCK(ump);
12371 	/*
12372 	 * As we hold the buffer locked, none of its dependencies
12373 	 * will disappear.
12374 	 */
12375 	error = 0;
12376 top:
12377 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
12378 		switch (wk->wk_type) {
12379 
12380 		case D_ALLOCDIRECT:
12381 		case D_ALLOCINDIR:
12382 			newblk = WK_NEWBLK(wk);
12383 			if (newblk->nb_jnewblk != NULL) {
12384 				if (waitfor == MNT_NOWAIT) {
12385 					error = EBUSY;
12386 					goto out_unlock;
12387 				}
12388 				jwait(&newblk->nb_jnewblk->jn_list, waitfor);
12389 				goto top;
12390 			}
12391 			if (newblk->nb_state & DEPCOMPLETE ||
12392 			    waitfor == MNT_NOWAIT)
12393 				continue;
12394 			nbp = newblk->nb_bmsafemap->sm_buf;
12395 			nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor);
12396 			if (nbp == NULL)
12397 				goto top;
12398 			FREE_LOCK(ump);
12399 			if ((error = bwrite(nbp)) != 0)
12400 				goto out;
12401 			ACQUIRE_LOCK(ump);
12402 			continue;
12403 
12404 		case D_INDIRDEP:
12405 			indirdep = WK_INDIRDEP(wk);
12406 			if (waitfor == MNT_NOWAIT) {
12407 				if (!TAILQ_EMPTY(&indirdep->ir_trunc) ||
12408 				    !LIST_EMPTY(&indirdep->ir_deplisthd)) {
12409 					error = EBUSY;
12410 					goto out_unlock;
12411 				}
12412 			}
12413 			if (!TAILQ_EMPTY(&indirdep->ir_trunc))
12414 				panic("softdep_sync_buf: truncation pending.");
12415 		restart:
12416 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
12417 				newblk = (struct newblk *)aip;
12418 				if (newblk->nb_jnewblk != NULL) {
12419 					jwait(&newblk->nb_jnewblk->jn_list,
12420 					    waitfor);
12421 					goto restart;
12422 				}
12423 				if (newblk->nb_state & DEPCOMPLETE)
12424 					continue;
12425 				nbp = newblk->nb_bmsafemap->sm_buf;
12426 				nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor);
12427 				if (nbp == NULL)
12428 					goto restart;
12429 				FREE_LOCK(ump);
12430 				if ((error = bwrite(nbp)) != 0)
12431 					goto out;
12432 				ACQUIRE_LOCK(ump);
12433 				goto restart;
12434 			}
12435 			continue;
12436 
12437 		case D_PAGEDEP:
12438 			/*
12439 			 * Only flush directory entries in synchronous passes.
12440 			 */
12441 			if (waitfor != MNT_WAIT) {
12442 				error = EBUSY;
12443 				goto out_unlock;
12444 			}
12445 			/*
12446 			 * While syncing snapshots, we must allow recursive
12447 			 * lookups.
12448 			 */
12449 			BUF_AREC(bp);
12450 			/*
12451 			 * We are trying to sync a directory that may
12452 			 * have dependencies on both its own metadata
12453 			 * and/or dependencies on the inodes of any
12454 			 * recently allocated files. We walk its diradd
12455 			 * lists pushing out the associated inode.
12456 			 */
12457 			pagedep = WK_PAGEDEP(wk);
12458 			for (i = 0; i < DAHASHSZ; i++) {
12459 				if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0)
12460 					continue;
12461 				if ((error = flush_pagedep_deps(vp, wk->wk_mp,
12462 				    &pagedep->pd_diraddhd[i]))) {
12463 					BUF_NOREC(bp);
12464 					goto out_unlock;
12465 				}
12466 			}
12467 			BUF_NOREC(bp);
12468 			continue;
12469 
12470 		case D_FREEWORK:
12471 		case D_FREEDEP:
12472 		case D_JSEGDEP:
12473 		case D_JNEWBLK:
12474 			continue;
12475 
12476 		default:
12477 			panic("softdep_sync_buf: Unknown type %s",
12478 			    TYPENAME(wk->wk_type));
12479 			/* NOTREACHED */
12480 		}
12481 	}
12482 out_unlock:
12483 	FREE_LOCK(ump);
12484 out:
12485 	return (error);
12486 }
12487 
12488 /*
12489  * Flush the dependencies associated with an inodedep.
12490  * Called with splbio blocked.
12491  */
12492 static int
12493 flush_inodedep_deps(vp, mp, ino)
12494 	struct vnode *vp;
12495 	struct mount *mp;
12496 	ino_t ino;
12497 {
12498 	struct inodedep *inodedep;
12499 	struct inoref *inoref;
12500 	struct ufsmount *ump;
12501 	int error, waitfor;
12502 
12503 	/*
12504 	 * This work is done in two passes. The first pass grabs most
12505 	 * of the buffers and begins asynchronously writing them. The
12506 	 * only way to wait for these asynchronous writes is to sleep
12507 	 * on the filesystem vnode which may stay busy for a long time
12508 	 * if the filesystem is active. So, instead, we make a second
12509 	 * pass over the dependencies blocking on each write. In the
12510 	 * usual case we will be blocking against a write that we
12511 	 * initiated, so when it is done the dependency will have been
12512 	 * resolved. Thus the second pass is expected to end quickly.
12513 	 * We give a brief window at the top of the loop to allow
12514 	 * any pending I/O to complete.
12515 	 */
12516 	ump = VFSTOUFS(mp);
12517 	LOCK_OWNED(ump);
12518 	for (error = 0, waitfor = MNT_NOWAIT; ; ) {
12519 		if (error)
12520 			return (error);
12521 		FREE_LOCK(ump);
12522 		ACQUIRE_LOCK(ump);
12523 restart:
12524 		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
12525 			return (0);
12526 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12527 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12528 			    == DEPCOMPLETE) {
12529 				jwait(&inoref->if_list, MNT_WAIT);
12530 				goto restart;
12531 			}
12532 		}
12533 		if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) ||
12534 		    flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) ||
12535 		    flush_deplist(&inodedep->id_extupdt, waitfor, &error) ||
12536 		    flush_deplist(&inodedep->id_newextupdt, waitfor, &error))
12537 			continue;
12538 		/*
12539 		 * If pass2, we are done, otherwise do pass 2.
12540 		 */
12541 		if (waitfor == MNT_WAIT)
12542 			break;
12543 		waitfor = MNT_WAIT;
12544 	}
12545 	/*
12546 	 * Try freeing inodedep in case all dependencies have been removed.
12547 	 */
12548 	if (inodedep_lookup(mp, ino, 0, &inodedep) != 0)
12549 		(void) free_inodedep(inodedep);
12550 	return (0);
12551 }
12552 
12553 /*
12554  * Flush an inode dependency list.
12555  * Called with splbio blocked.
12556  */
12557 static int
12558 flush_deplist(listhead, waitfor, errorp)
12559 	struct allocdirectlst *listhead;
12560 	int waitfor;
12561 	int *errorp;
12562 {
12563 	struct allocdirect *adp;
12564 	struct newblk *newblk;
12565 	struct ufsmount *ump;
12566 	struct buf *bp;
12567 
12568 	if ((adp = TAILQ_FIRST(listhead)) == NULL)
12569 		return (0);
12570 	ump = VFSTOUFS(adp->ad_list.wk_mp);
12571 	LOCK_OWNED(ump);
12572 	TAILQ_FOREACH(adp, listhead, ad_next) {
12573 		newblk = (struct newblk *)adp;
12574 		if (newblk->nb_jnewblk != NULL) {
12575 			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
12576 			return (1);
12577 		}
12578 		if (newblk->nb_state & DEPCOMPLETE)
12579 			continue;
12580 		bp = newblk->nb_bmsafemap->sm_buf;
12581 		bp = getdirtybuf(bp, LOCK_PTR(ump), waitfor);
12582 		if (bp == NULL) {
12583 			if (waitfor == MNT_NOWAIT)
12584 				continue;
12585 			return (1);
12586 		}
12587 		FREE_LOCK(ump);
12588 		if (waitfor == MNT_NOWAIT)
12589 			bawrite(bp);
12590 		else
12591 			*errorp = bwrite(bp);
12592 		ACQUIRE_LOCK(ump);
12593 		return (1);
12594 	}
12595 	return (0);
12596 }
12597 
12598 /*
12599  * Flush dependencies associated with an allocdirect block.
12600  */
12601 static int
12602 flush_newblk_dep(vp, mp, lbn)
12603 	struct vnode *vp;
12604 	struct mount *mp;
12605 	ufs_lbn_t lbn;
12606 {
12607 	struct newblk *newblk;
12608 	struct ufsmount *ump;
12609 	struct bufobj *bo;
12610 	struct inode *ip;
12611 	struct buf *bp;
12612 	ufs2_daddr_t blkno;
12613 	int error;
12614 
12615 	error = 0;
12616 	bo = &vp->v_bufobj;
12617 	ip = VTOI(vp);
12618 	blkno = DIP(ip, i_db[lbn]);
12619 	if (blkno == 0)
12620 		panic("flush_newblk_dep: Missing block");
12621 	ump = VFSTOUFS(mp);
12622 	ACQUIRE_LOCK(ump);
12623 	/*
12624 	 * Loop until all dependencies related to this block are satisfied.
12625 	 * We must be careful to restart after each sleep in case a write
12626 	 * completes some part of this process for us.
12627 	 */
12628 	for (;;) {
12629 		if (newblk_lookup(mp, blkno, 0, &newblk) == 0) {
12630 			FREE_LOCK(ump);
12631 			break;
12632 		}
12633 		if (newblk->nb_list.wk_type != D_ALLOCDIRECT)
12634 			panic("flush_newblk_deps: Bad newblk %p", newblk);
12635 		/*
12636 		 * Flush the journal.
12637 		 */
12638 		if (newblk->nb_jnewblk != NULL) {
12639 			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
12640 			continue;
12641 		}
12642 		/*
12643 		 * Write the bitmap dependency.
12644 		 */
12645 		if ((newblk->nb_state & DEPCOMPLETE) == 0) {
12646 			bp = newblk->nb_bmsafemap->sm_buf;
12647 			bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT);
12648 			if (bp == NULL)
12649 				continue;
12650 			FREE_LOCK(ump);
12651 			error = bwrite(bp);
12652 			if (error)
12653 				break;
12654 			ACQUIRE_LOCK(ump);
12655 			continue;
12656 		}
12657 		/*
12658 		 * Write the buffer.
12659 		 */
12660 		FREE_LOCK(ump);
12661 		BO_LOCK(bo);
12662 		bp = gbincore(bo, lbn);
12663 		if (bp != NULL) {
12664 			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
12665 			    LK_INTERLOCK, BO_LOCKPTR(bo));
12666 			if (error == ENOLCK) {
12667 				ACQUIRE_LOCK(ump);
12668 				continue; /* Slept, retry */
12669 			}
12670 			if (error != 0)
12671 				break;	/* Failed */
12672 			if (bp->b_flags & B_DELWRI) {
12673 				bremfree(bp);
12674 				error = bwrite(bp);
12675 				if (error)
12676 					break;
12677 			} else
12678 				BUF_UNLOCK(bp);
12679 		} else
12680 			BO_UNLOCK(bo);
12681 		/*
12682 		 * We have to wait for the direct pointers to
12683 		 * point at the newdirblk before the dependency
12684 		 * will go away.
12685 		 */
12686 		error = ffs_update(vp, 1);
12687 		if (error)
12688 			break;
12689 		ACQUIRE_LOCK(ump);
12690 	}
12691 	return (error);
12692 }
12693 
12694 /*
12695  * Eliminate a pagedep dependency by flushing out all its diradd dependencies.
12696  * Called with splbio blocked.
12697  */
12698 static int
12699 flush_pagedep_deps(pvp, mp, diraddhdp)
12700 	struct vnode *pvp;
12701 	struct mount *mp;
12702 	struct diraddhd *diraddhdp;
12703 {
12704 	struct inodedep *inodedep;
12705 	struct inoref *inoref;
12706 	struct ufsmount *ump;
12707 	struct diradd *dap;
12708 	struct vnode *vp;
12709 	int error = 0;
12710 	struct buf *bp;
12711 	ino_t inum;
12712 	struct diraddhd unfinished;
12713 
12714 	LIST_INIT(&unfinished);
12715 	ump = VFSTOUFS(mp);
12716 	LOCK_OWNED(ump);
12717 restart:
12718 	while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
12719 		/*
12720 		 * Flush ourselves if this directory entry
12721 		 * has a MKDIR_PARENT dependency.
12722 		 */
12723 		if (dap->da_state & MKDIR_PARENT) {
12724 			FREE_LOCK(ump);
12725 			if ((error = ffs_update(pvp, 1)) != 0)
12726 				break;
12727 			ACQUIRE_LOCK(ump);
12728 			/*
12729 			 * If that cleared dependencies, go on to next.
12730 			 */
12731 			if (dap != LIST_FIRST(diraddhdp))
12732 				continue;
12733 			/*
12734 			 * All MKDIR_PARENT dependencies and all the
12735 			 * NEWBLOCK pagedeps that are contained in direct
12736 			 * blocks were resolved by doing above ffs_update.
12737 			 * Pagedeps contained in indirect blocks may
12738 			 * require a complete sync'ing of the directory.
12739 			 * We are in the midst of doing a complete sync,
12740 			 * so if they are not resolved in this pass we
12741 			 * defer them for now as they will be sync'ed by
12742 			 * our caller shortly.
12743 			 */
12744 			LIST_REMOVE(dap, da_pdlist);
12745 			LIST_INSERT_HEAD(&unfinished, dap, da_pdlist);
12746 			continue;
12747 		}
12748 		/*
12749 		 * A newly allocated directory must have its "." and
12750 		 * ".." entries written out before its name can be
12751 		 * committed in its parent.
12752 		 */
12753 		inum = dap->da_newinum;
12754 		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
12755 			panic("flush_pagedep_deps: lost inode1");
12756 		/*
12757 		 * Wait for any pending journal adds to complete so we don't
12758 		 * cause rollbacks while syncing.
12759 		 */
12760 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12761 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12762 			    == DEPCOMPLETE) {
12763 				jwait(&inoref->if_list, MNT_WAIT);
12764 				goto restart;
12765 			}
12766 		}
12767 		if (dap->da_state & MKDIR_BODY) {
12768 			FREE_LOCK(ump);
12769 			if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
12770 			    FFSV_FORCEINSMQ)))
12771 				break;
12772 			error = flush_newblk_dep(vp, mp, 0);
12773 			/*
12774 			 * If we still have the dependency we might need to
12775 			 * update the vnode to sync the new link count to
12776 			 * disk.
12777 			 */
12778 			if (error == 0 && dap == LIST_FIRST(diraddhdp))
12779 				error = ffs_update(vp, 1);
12780 			vput(vp);
12781 			if (error != 0)
12782 				break;
12783 			ACQUIRE_LOCK(ump);
12784 			/*
12785 			 * If that cleared dependencies, go on to next.
12786 			 */
12787 			if (dap != LIST_FIRST(diraddhdp))
12788 				continue;
12789 			if (dap->da_state & MKDIR_BODY) {
12790 				inodedep_lookup(UFSTOVFS(ump), inum, 0,
12791 				    &inodedep);
12792 				panic("flush_pagedep_deps: MKDIR_BODY "
12793 				    "inodedep %p dap %p vp %p",
12794 				    inodedep, dap, vp);
12795 			}
12796 		}
12797 		/*
12798 		 * Flush the inode on which the directory entry depends.
12799 		 * Having accounted for MKDIR_PARENT and MKDIR_BODY above,
12800 		 * the only remaining dependency is that the updated inode
12801 		 * count must get pushed to disk. The inode has already
12802 		 * been pushed into its inode buffer (via VOP_UPDATE) at
12803 		 * the time of the reference count change. So we need only
12804 		 * locate that buffer, ensure that there will be no rollback
12805 		 * caused by a bitmap dependency, then write the inode buffer.
12806 		 */
12807 retry:
12808 		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
12809 			panic("flush_pagedep_deps: lost inode");
12810 		/*
12811 		 * If the inode still has bitmap dependencies,
12812 		 * push them to disk.
12813 		 */
12814 		if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) {
12815 			bp = inodedep->id_bmsafemap->sm_buf;
12816 			bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT);
12817 			if (bp == NULL)
12818 				goto retry;
12819 			FREE_LOCK(ump);
12820 			if ((error = bwrite(bp)) != 0)
12821 				break;
12822 			ACQUIRE_LOCK(ump);
12823 			if (dap != LIST_FIRST(diraddhdp))
12824 				continue;
12825 		}
12826 		/*
12827 		 * If the inode is still sitting in a buffer waiting
12828 		 * to be written or waiting for the link count to be
12829 		 * adjusted update it here to flush it to disk.
12830 		 */
12831 		if (dap == LIST_FIRST(diraddhdp)) {
12832 			FREE_LOCK(ump);
12833 			if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
12834 			    FFSV_FORCEINSMQ)))
12835 				break;
12836 			error = ffs_update(vp, 1);
12837 			vput(vp);
12838 			if (error)
12839 				break;
12840 			ACQUIRE_LOCK(ump);
12841 		}
12842 		/*
12843 		 * If we have failed to get rid of all the dependencies
12844 		 * then something is seriously wrong.
12845 		 */
12846 		if (dap == LIST_FIRST(diraddhdp)) {
12847 			inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep);
12848 			panic("flush_pagedep_deps: failed to flush "
12849 			    "inodedep %p ino %ju dap %p",
12850 			    inodedep, (uintmax_t)inum, dap);
12851 		}
12852 	}
12853 	if (error)
12854 		ACQUIRE_LOCK(ump);
12855 	while ((dap = LIST_FIRST(&unfinished)) != NULL) {
12856 		LIST_REMOVE(dap, da_pdlist);
12857 		LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist);
12858 	}
12859 	return (error);
12860 }
12861 
12862 /*
12863  * A large burst of file addition or deletion activity can drive the
12864  * memory load excessively high. First attempt to slow things down
12865  * using the techniques below. If that fails, this routine requests
12866  * the offending operations to fall back to running synchronously
12867  * until the memory load returns to a reasonable level.
12868  */
12869 int
12870 softdep_slowdown(vp)
12871 	struct vnode *vp;
12872 {
12873 	struct ufsmount *ump;
12874 	int jlow;
12875 	int max_softdeps_hard;
12876 
12877 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
12878 	    ("softdep_slowdown called on non-softdep filesystem"));
12879 	ump = VFSTOUFS(vp->v_mount);
12880 	ACQUIRE_LOCK(ump);
12881 	jlow = 0;
12882 	/*
12883 	 * Check for journal space if needed.
12884 	 */
12885 	if (DOINGSUJ(vp)) {
12886 		if (journal_space(ump, 0) == 0)
12887 			jlow = 1;
12888 	}
12889 	max_softdeps_hard = max_softdeps * 11 / 10;
12890 	if (dep_current[D_DIRREM] < max_softdeps_hard / 2 &&
12891 	    dep_current[D_INODEDEP] < max_softdeps_hard &&
12892 	    VFSTOUFS(vp->v_mount)->softdep_numindirdeps < maxindirdeps &&
12893 	    dep_current[D_FREEBLKS] < max_softdeps_hard && jlow == 0) {
12894 		FREE_LOCK(ump);
12895   		return (0);
12896 	}
12897 	if (VFSTOUFS(vp->v_mount)->softdep_numindirdeps >= maxindirdeps || jlow)
12898 		softdep_speedup();
12899 	stat_sync_limit_hit += 1;
12900 	FREE_LOCK(ump);
12901 	if (DOINGSUJ(vp))
12902 		return (0);
12903 	return (1);
12904 }
12905 
12906 /*
12907  * Called by the allocation routines when they are about to fail
12908  * in the hope that we can free up the requested resource (inodes
12909  * or disk space).
12910  *
12911  * First check to see if the work list has anything on it. If it has,
12912  * clean up entries until we successfully free the requested resource.
12913  * Because this process holds inodes locked, we cannot handle any remove
12914  * requests that might block on a locked inode as that could lead to
12915  * deadlock. If the worklist yields none of the requested resource,
12916  * start syncing out vnodes to free up the needed space.
12917  */
12918 int
12919 softdep_request_cleanup(fs, vp, cred, resource)
12920 	struct fs *fs;
12921 	struct vnode *vp;
12922 	struct ucred *cred;
12923 	int resource;
12924 {
12925 	struct ufsmount *ump;
12926 	struct mount *mp;
12927 	struct vnode *lvp, *mvp;
12928 	long starttime;
12929 	ufs2_daddr_t needed;
12930 	int error;
12931 
12932 	/*
12933 	 * If we are being called because of a process doing a
12934 	 * copy-on-write, then it is not safe to process any
12935 	 * worklist items as we will recurse into the copyonwrite
12936 	 * routine.  This will result in an incoherent snapshot.
12937 	 * If the vnode that we hold is a snapshot, we must avoid
12938 	 * handling other resources that could cause deadlock.
12939 	 */
12940 	if ((curthread->td_pflags & TDP_COWINPROGRESS) || IS_SNAPSHOT(VTOI(vp)))
12941 		return (0);
12942 
12943 	if (resource == FLUSH_BLOCKS_WAIT)
12944 		stat_cleanup_blkrequests += 1;
12945 	else
12946 		stat_cleanup_inorequests += 1;
12947 
12948 	mp = vp->v_mount;
12949 	ump = VFSTOUFS(mp);
12950 	mtx_assert(UFS_MTX(ump), MA_OWNED);
12951 	UFS_UNLOCK(ump);
12952 	error = ffs_update(vp, 1);
12953 	if (error != 0 || MOUNTEDSOFTDEP(mp) == 0) {
12954 		UFS_LOCK(ump);
12955 		return (0);
12956 	}
12957 	/*
12958 	 * If we are in need of resources, consider pausing for
12959 	 * tickdelay to give ourselves some breathing room.
12960 	 */
12961 	ACQUIRE_LOCK(ump);
12962 	process_removes(vp);
12963 	process_truncates(vp);
12964 	request_cleanup(UFSTOVFS(ump), resource);
12965 	FREE_LOCK(ump);
12966 	/*
12967 	 * Now clean up at least as many resources as we will need.
12968 	 *
12969 	 * When requested to clean up inodes, the number that are needed
12970 	 * is set by the number of simultaneous writers (mnt_writeopcount)
12971 	 * plus a bit of slop (2) in case some more writers show up while
12972 	 * we are cleaning.
12973 	 *
12974 	 * When requested to free up space, the amount of space that
12975 	 * we need is enough blocks to allocate a full-sized segment
12976 	 * (fs_contigsumsize). The number of such segments that will
12977 	 * be needed is set by the number of simultaneous writers
12978 	 * (mnt_writeopcount) plus a bit of slop (2) in case some more
12979 	 * writers show up while we are cleaning.
12980 	 *
12981 	 * Additionally, if we are unpriviledged and allocating space,
12982 	 * we need to ensure that we clean up enough blocks to get the
12983 	 * needed number of blocks over the threshhold of the minimum
12984 	 * number of blocks required to be kept free by the filesystem
12985 	 * (fs_minfree).
12986 	 */
12987 	if (resource == FLUSH_INODES_WAIT) {
12988 		needed = vp->v_mount->mnt_writeopcount + 2;
12989 	} else if (resource == FLUSH_BLOCKS_WAIT) {
12990 		needed = (vp->v_mount->mnt_writeopcount + 2) *
12991 		    fs->fs_contigsumsize;
12992 		if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0))
12993 			needed += fragstoblks(fs,
12994 			    roundup((fs->fs_dsize * fs->fs_minfree / 100) -
12995 			    fs->fs_cstotal.cs_nffree, fs->fs_frag));
12996 	} else {
12997 		UFS_LOCK(ump);
12998 		printf("softdep_request_cleanup: Unknown resource type %d\n",
12999 		    resource);
13000 		return (0);
13001 	}
13002 	starttime = time_second;
13003 retry:
13004 	if ((resource == FLUSH_BLOCKS_WAIT && ump->softdep_on_worklist > 0 &&
13005 	    fs->fs_cstotal.cs_nbfree <= needed) ||
13006 	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
13007 	    fs->fs_cstotal.cs_nifree <= needed)) {
13008 		ACQUIRE_LOCK(ump);
13009 		if (ump->softdep_on_worklist > 0 &&
13010 		    process_worklist_item(UFSTOVFS(ump),
13011 		    ump->softdep_on_worklist, LK_NOWAIT) != 0)
13012 			stat_worklist_push += 1;
13013 		FREE_LOCK(ump);
13014 	}
13015 	/*
13016 	 * If we still need resources and there are no more worklist
13017 	 * entries to process to obtain them, we have to start flushing
13018 	 * the dirty vnodes to force the release of additional requests
13019 	 * to the worklist that we can then process to reap addition
13020 	 * resources. We walk the vnodes associated with the mount point
13021 	 * until we get the needed worklist requests that we can reap.
13022 	 */
13023 	if ((resource == FLUSH_BLOCKS_WAIT &&
13024 	     fs->fs_cstotal.cs_nbfree <= needed) ||
13025 	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
13026 	     fs->fs_cstotal.cs_nifree <= needed)) {
13027 		MNT_VNODE_FOREACH_ALL(lvp, mp, mvp) {
13028 			if (TAILQ_FIRST(&lvp->v_bufobj.bo_dirty.bv_hd) == 0) {
13029 				VI_UNLOCK(lvp);
13030 				continue;
13031 			}
13032 			if (vget(lvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT,
13033 			    curthread))
13034 				continue;
13035 			if (lvp->v_vflag & VV_NOSYNC) {	/* unlinked */
13036 				vput(lvp);
13037 				continue;
13038 			}
13039 			(void) ffs_syncvnode(lvp, MNT_NOWAIT, 0);
13040 			vput(lvp);
13041 		}
13042 		lvp = ump->um_devvp;
13043 		if (vn_lock(lvp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
13044 			VOP_FSYNC(lvp, MNT_NOWAIT, curthread);
13045 			VOP_UNLOCK(lvp, 0);
13046 		}
13047 		if (ump->softdep_on_worklist > 0) {
13048 			stat_cleanup_retries += 1;
13049 			goto retry;
13050 		}
13051 		stat_cleanup_failures += 1;
13052 	}
13053 	if (time_second - starttime > stat_cleanup_high_delay)
13054 		stat_cleanup_high_delay = time_second - starttime;
13055 	UFS_LOCK(ump);
13056 	return (1);
13057 }
13058 
13059 /*
13060  * If memory utilization has gotten too high, deliberately slow things
13061  * down and speed up the I/O processing.
13062  */
13063 static int
13064 request_cleanup(mp, resource)
13065 	struct mount *mp;
13066 	int resource;
13067 {
13068 	struct thread *td = curthread;
13069 	struct ufsmount *ump;
13070 
13071 	ump = VFSTOUFS(mp);
13072 	LOCK_OWNED(ump);
13073 	/*
13074 	 * We never hold up the filesystem syncer or buf daemon.
13075 	 */
13076 	if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF))
13077 		return (0);
13078 	/*
13079 	 * First check to see if the work list has gotten backlogged.
13080 	 * If it has, co-opt this process to help clean up two entries.
13081 	 * Because this process may hold inodes locked, we cannot
13082 	 * handle any remove requests that might block on a locked
13083 	 * inode as that could lead to deadlock.  We set TDP_SOFTDEP
13084 	 * to avoid recursively processing the worklist.
13085 	 */
13086 	if (ump->softdep_on_worklist > max_softdeps / 10) {
13087 		td->td_pflags |= TDP_SOFTDEP;
13088 		process_worklist_item(mp, 2, LK_NOWAIT);
13089 		td->td_pflags &= ~TDP_SOFTDEP;
13090 		stat_worklist_push += 2;
13091 		return(1);
13092 	}
13093 	/*
13094 	 * Next, we attempt to speed up the syncer process. If that
13095 	 * is successful, then we allow the process to continue.
13096 	 */
13097 	if (softdep_speedup() &&
13098 	    resource != FLUSH_BLOCKS_WAIT &&
13099 	    resource != FLUSH_INODES_WAIT)
13100 		return(0);
13101 	/*
13102 	 * If we are resource constrained on inode dependencies, try
13103 	 * flushing some dirty inodes. Otherwise, we are constrained
13104 	 * by file deletions, so try accelerating flushes of directories
13105 	 * with removal dependencies. We would like to do the cleanup
13106 	 * here, but we probably hold an inode locked at this point and
13107 	 * that might deadlock against one that we try to clean. So,
13108 	 * the best that we can do is request the syncer daemon to do
13109 	 * the cleanup for us.
13110 	 */
13111 	switch (resource) {
13112 
13113 	case FLUSH_INODES:
13114 	case FLUSH_INODES_WAIT:
13115 		stat_ino_limit_push += 1;
13116 		req_clear_inodedeps += 1;
13117 		stat_countp = &stat_ino_limit_hit;
13118 		break;
13119 
13120 	case FLUSH_BLOCKS:
13121 	case FLUSH_BLOCKS_WAIT:
13122 		stat_blk_limit_push += 1;
13123 		req_clear_remove += 1;
13124 		stat_countp = &stat_blk_limit_hit;
13125 		break;
13126 
13127 	default:
13128 		panic("request_cleanup: unknown type");
13129 	}
13130 	/*
13131 	 * Hopefully the syncer daemon will catch up and awaken us.
13132 	 * We wait at most tickdelay before proceeding in any case.
13133 	 */
13134 	proc_waiting += 1;
13135 	if (callout_pending(&softdep_callout) == FALSE)
13136 		callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2,
13137 		    pause_timer, 0);
13138 
13139 	msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0);
13140 	proc_waiting -= 1;
13141 	return (1);
13142 }
13143 
13144 /*
13145  * Awaken processes pausing in request_cleanup and clear proc_waiting
13146  * to indicate that there is no longer a timer running. Pause_timer
13147  * will be called with the global softdep mutex (&lk) locked.
13148  */
13149 static void
13150 pause_timer(arg)
13151 	void *arg;
13152 {
13153 
13154 	rw_assert(&lk, RA_WLOCKED);
13155 	/*
13156 	 * The callout_ API has acquired mtx and will hold it around this
13157 	 * function call.
13158 	 */
13159 	*stat_countp += 1;
13160 	wakeup_one(&proc_waiting);
13161 	if (proc_waiting > 0)
13162 		callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2,
13163 		    pause_timer, 0);
13164 }
13165 
13166 /*
13167  * If requested, try removing inode or removal dependencies.
13168  */
13169 static void
13170 check_clear_deps(mp)
13171 	struct mount *mp;
13172 {
13173 
13174 	rw_assert(&lk, RA_WLOCKED);
13175 	/*
13176 	 * If we are suspended, it may be because of our using
13177 	 * too many inodedeps, so help clear them out.
13178 	 */
13179 	if (MOUNTEDSUJ(mp) && VFSTOUFS(mp)->softdep_jblocks->jb_suspended)
13180 		clear_inodedeps(mp);
13181 	/*
13182 	 * General requests for cleanup of backed up dependencies
13183 	 */
13184 	if (req_clear_inodedeps) {
13185 		req_clear_inodedeps -= 1;
13186 		clear_inodedeps(mp);
13187 		wakeup_one(&proc_waiting);
13188 	}
13189 	if (req_clear_remove) {
13190 		req_clear_remove -= 1;
13191 		clear_remove(mp);
13192 		wakeup_one(&proc_waiting);
13193 	}
13194 }
13195 
13196 /*
13197  * Flush out a directory with at least one removal dependency in an effort to
13198  * reduce the number of dirrem, freefile, and freeblks dependency structures.
13199  */
13200 static void
13201 clear_remove(mp)
13202 	struct mount *mp;
13203 {
13204 	struct pagedep_hashhead *pagedephd;
13205 	struct pagedep *pagedep;
13206 	struct ufsmount *ump;
13207 	struct vnode *vp;
13208 	struct bufobj *bo;
13209 	int error, cnt;
13210 	ino_t ino;
13211 
13212 	ump = VFSTOUFS(mp);
13213 	LOCK_OWNED(ump);
13214 
13215 	for (cnt = 0; cnt <= ump->pagedep_hash_size; cnt++) {
13216 		pagedephd = &ump->pagedep_hashtbl[ump->pagedep_nextclean++];
13217 		if (ump->pagedep_nextclean > ump->pagedep_hash_size)
13218 			ump->pagedep_nextclean = 0;
13219 		LIST_FOREACH(pagedep, pagedephd, pd_hash) {
13220 			if (LIST_EMPTY(&pagedep->pd_dirremhd))
13221 				continue;
13222 			ino = pagedep->pd_ino;
13223 			if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
13224 				continue;
13225 			FREE_LOCK(ump);
13226 
13227 			/*
13228 			 * Let unmount clear deps
13229 			 */
13230 			error = vfs_busy(mp, MBF_NOWAIT);
13231 			if (error != 0)
13232 				goto finish_write;
13233 			error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
13234 			     FFSV_FORCEINSMQ);
13235 			vfs_unbusy(mp);
13236 			if (error != 0) {
13237 				softdep_error("clear_remove: vget", error);
13238 				goto finish_write;
13239 			}
13240 			if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
13241 				softdep_error("clear_remove: fsync", error);
13242 			bo = &vp->v_bufobj;
13243 			BO_LOCK(bo);
13244 			drain_output(vp);
13245 			BO_UNLOCK(bo);
13246 			vput(vp);
13247 		finish_write:
13248 			vn_finished_write(mp);
13249 			ACQUIRE_LOCK(ump);
13250 			return;
13251 		}
13252 	}
13253 }
13254 
13255 /*
13256  * Clear out a block of dirty inodes in an effort to reduce
13257  * the number of inodedep dependency structures.
13258  */
13259 static void
13260 clear_inodedeps(mp)
13261 	struct mount *mp;
13262 {
13263 	struct inodedep_hashhead *inodedephd;
13264 	struct inodedep *inodedep;
13265 	struct ufsmount *ump;
13266 	struct vnode *vp;
13267 	struct fs *fs;
13268 	int error, cnt;
13269 	ino_t firstino, lastino, ino;
13270 
13271 	ump = VFSTOUFS(mp);
13272 	fs = ump->um_fs;
13273 	LOCK_OWNED(ump);
13274 	/*
13275 	 * Pick a random inode dependency to be cleared.
13276 	 * We will then gather up all the inodes in its block
13277 	 * that have dependencies and flush them out.
13278 	 */
13279 	for (cnt = 0; cnt <= ump->inodedep_hash_size; cnt++) {
13280 		inodedephd = &ump->inodedep_hashtbl[ump->inodedep_nextclean++];
13281 		if (ump->inodedep_nextclean > ump->inodedep_hash_size)
13282 			ump->inodedep_nextclean = 0;
13283 		if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
13284 			break;
13285 	}
13286 	if (inodedep == NULL)
13287 		return;
13288 	/*
13289 	 * Find the last inode in the block with dependencies.
13290 	 */
13291 	firstino = inodedep->id_ino & ~(INOPB(fs) - 1);
13292 	for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
13293 		if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0)
13294 			break;
13295 	/*
13296 	 * Asynchronously push all but the last inode with dependencies.
13297 	 * Synchronously push the last inode with dependencies to ensure
13298 	 * that the inode block gets written to free up the inodedeps.
13299 	 */
13300 	for (ino = firstino; ino <= lastino; ino++) {
13301 		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
13302 			continue;
13303 		if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
13304 			continue;
13305 		FREE_LOCK(ump);
13306 		error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */
13307 		if (error != 0) {
13308 			vn_finished_write(mp);
13309 			ACQUIRE_LOCK(ump);
13310 			return;
13311 		}
13312 		if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
13313 		    FFSV_FORCEINSMQ)) != 0) {
13314 			softdep_error("clear_inodedeps: vget", error);
13315 			vfs_unbusy(mp);
13316 			vn_finished_write(mp);
13317 			ACQUIRE_LOCK(ump);
13318 			return;
13319 		}
13320 		vfs_unbusy(mp);
13321 		if (ino == lastino) {
13322 			if ((error = ffs_syncvnode(vp, MNT_WAIT, 0)))
13323 				softdep_error("clear_inodedeps: fsync1", error);
13324 		} else {
13325 			if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
13326 				softdep_error("clear_inodedeps: fsync2", error);
13327 			BO_LOCK(&vp->v_bufobj);
13328 			drain_output(vp);
13329 			BO_UNLOCK(&vp->v_bufobj);
13330 		}
13331 		vput(vp);
13332 		vn_finished_write(mp);
13333 		ACQUIRE_LOCK(ump);
13334 	}
13335 }
13336 
13337 void
13338 softdep_buf_append(bp, wkhd)
13339 	struct buf *bp;
13340 	struct workhead *wkhd;
13341 {
13342 	struct worklist *wk;
13343 	struct ufsmount *ump;
13344 
13345 	if ((wk = LIST_FIRST(wkhd)) == NULL)
13346 		return;
13347 	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
13348 	    ("softdep_buf_append called on non-softdep filesystem"));
13349 	ump = VFSTOUFS(wk->wk_mp);
13350 	ACQUIRE_LOCK(ump);
13351 	while ((wk = LIST_FIRST(wkhd)) != NULL) {
13352 		WORKLIST_REMOVE(wk);
13353 		WORKLIST_INSERT(&bp->b_dep, wk);
13354 	}
13355 	FREE_LOCK(ump);
13356 
13357 }
13358 
13359 void
13360 softdep_inode_append(ip, cred, wkhd)
13361 	struct inode *ip;
13362 	struct ucred *cred;
13363 	struct workhead *wkhd;
13364 {
13365 	struct buf *bp;
13366 	struct fs *fs;
13367 	int error;
13368 
13369 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
13370 	    ("softdep_inode_append called on non-softdep filesystem"));
13371 	fs = ip->i_fs;
13372 	error = bread(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
13373 	    (int)fs->fs_bsize, cred, &bp);
13374 	if (error) {
13375 		bqrelse(bp);
13376 		softdep_freework(wkhd);
13377 		return;
13378 	}
13379 	softdep_buf_append(bp, wkhd);
13380 	bqrelse(bp);
13381 }
13382 
13383 void
13384 softdep_freework(wkhd)
13385 	struct workhead *wkhd;
13386 {
13387 	struct worklist *wk;
13388 	struct ufsmount *ump;
13389 
13390 	if ((wk = LIST_FIRST(wkhd)) == NULL)
13391 		return;
13392 	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
13393 	    ("softdep_freework called on non-softdep filesystem"));
13394 	ump = VFSTOUFS(wk->wk_mp);
13395 	ACQUIRE_LOCK(ump);
13396 	handle_jwork(wkhd);
13397 	FREE_LOCK(ump);
13398 }
13399 
13400 /*
13401  * Function to determine if the buffer has outstanding dependencies
13402  * that will cause a roll-back if the buffer is written. If wantcount
13403  * is set, return number of dependencies, otherwise just yes or no.
13404  */
13405 static int
13406 softdep_count_dependencies(bp, wantcount)
13407 	struct buf *bp;
13408 	int wantcount;
13409 {
13410 	struct worklist *wk;
13411 	struct ufsmount *ump;
13412 	struct bmsafemap *bmsafemap;
13413 	struct freework *freework;
13414 	struct inodedep *inodedep;
13415 	struct indirdep *indirdep;
13416 	struct freeblks *freeblks;
13417 	struct allocindir *aip;
13418 	struct pagedep *pagedep;
13419 	struct dirrem *dirrem;
13420 	struct newblk *newblk;
13421 	struct mkdir *mkdir;
13422 	struct diradd *dap;
13423 	int i, retval;
13424 
13425 	retval = 0;
13426 	if ((wk = LIST_FIRST(&bp->b_dep)) == NULL)
13427 		return (0);
13428 	ump = VFSTOUFS(wk->wk_mp);
13429 	ACQUIRE_LOCK(ump);
13430 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
13431 		switch (wk->wk_type) {
13432 
13433 		case D_INODEDEP:
13434 			inodedep = WK_INODEDEP(wk);
13435 			if ((inodedep->id_state & DEPCOMPLETE) == 0) {
13436 				/* bitmap allocation dependency */
13437 				retval += 1;
13438 				if (!wantcount)
13439 					goto out;
13440 			}
13441 			if (TAILQ_FIRST(&inodedep->id_inoupdt)) {
13442 				/* direct block pointer dependency */
13443 				retval += 1;
13444 				if (!wantcount)
13445 					goto out;
13446 			}
13447 			if (TAILQ_FIRST(&inodedep->id_extupdt)) {
13448 				/* direct block pointer dependency */
13449 				retval += 1;
13450 				if (!wantcount)
13451 					goto out;
13452 			}
13453 			if (TAILQ_FIRST(&inodedep->id_inoreflst)) {
13454 				/* Add reference dependency. */
13455 				retval += 1;
13456 				if (!wantcount)
13457 					goto out;
13458 			}
13459 			continue;
13460 
13461 		case D_INDIRDEP:
13462 			indirdep = WK_INDIRDEP(wk);
13463 
13464 			TAILQ_FOREACH(freework, &indirdep->ir_trunc, fw_next) {
13465 				/* indirect truncation dependency */
13466 				retval += 1;
13467 				if (!wantcount)
13468 					goto out;
13469 			}
13470 
13471 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
13472 				/* indirect block pointer dependency */
13473 				retval += 1;
13474 				if (!wantcount)
13475 					goto out;
13476 			}
13477 			continue;
13478 
13479 		case D_PAGEDEP:
13480 			pagedep = WK_PAGEDEP(wk);
13481 			LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
13482 				if (LIST_FIRST(&dirrem->dm_jremrefhd)) {
13483 					/* Journal remove ref dependency. */
13484 					retval += 1;
13485 					if (!wantcount)
13486 						goto out;
13487 				}
13488 			}
13489 			for (i = 0; i < DAHASHSZ; i++) {
13490 
13491 				LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
13492 					/* directory entry dependency */
13493 					retval += 1;
13494 					if (!wantcount)
13495 						goto out;
13496 				}
13497 			}
13498 			continue;
13499 
13500 		case D_BMSAFEMAP:
13501 			bmsafemap = WK_BMSAFEMAP(wk);
13502 			if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) {
13503 				/* Add reference dependency. */
13504 				retval += 1;
13505 				if (!wantcount)
13506 					goto out;
13507 			}
13508 			if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) {
13509 				/* Allocate block dependency. */
13510 				retval += 1;
13511 				if (!wantcount)
13512 					goto out;
13513 			}
13514 			continue;
13515 
13516 		case D_FREEBLKS:
13517 			freeblks = WK_FREEBLKS(wk);
13518 			if (LIST_FIRST(&freeblks->fb_jblkdephd)) {
13519 				/* Freeblk journal dependency. */
13520 				retval += 1;
13521 				if (!wantcount)
13522 					goto out;
13523 			}
13524 			continue;
13525 
13526 		case D_ALLOCDIRECT:
13527 		case D_ALLOCINDIR:
13528 			newblk = WK_NEWBLK(wk);
13529 			if (newblk->nb_jnewblk) {
13530 				/* Journal allocate dependency. */
13531 				retval += 1;
13532 				if (!wantcount)
13533 					goto out;
13534 			}
13535 			continue;
13536 
13537 		case D_MKDIR:
13538 			mkdir = WK_MKDIR(wk);
13539 			if (mkdir->md_jaddref) {
13540 				/* Journal reference dependency. */
13541 				retval += 1;
13542 				if (!wantcount)
13543 					goto out;
13544 			}
13545 			continue;
13546 
13547 		case D_FREEWORK:
13548 		case D_FREEDEP:
13549 		case D_JSEGDEP:
13550 		case D_JSEG:
13551 		case D_SBDEP:
13552 			/* never a dependency on these blocks */
13553 			continue;
13554 
13555 		default:
13556 			panic("softdep_count_dependencies: Unexpected type %s",
13557 			    TYPENAME(wk->wk_type));
13558 			/* NOTREACHED */
13559 		}
13560 	}
13561 out:
13562 	FREE_LOCK(ump);
13563 	return retval;
13564 }
13565 
13566 /*
13567  * Acquire exclusive access to a buffer.
13568  * Must be called with a locked mtx parameter.
13569  * Return acquired buffer or NULL on failure.
13570  */
13571 static struct buf *
13572 getdirtybuf(bp, lock, waitfor)
13573 	struct buf *bp;
13574 	struct rwlock *lock;
13575 	int waitfor;
13576 {
13577 	int error;
13578 
13579 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) {
13580 		if (waitfor != MNT_WAIT)
13581 			return (NULL);
13582 		error = BUF_LOCK(bp,
13583 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, lock);
13584 		/*
13585 		 * Even if we sucessfully acquire bp here, we have dropped
13586 		 * lock, which may violates our guarantee.
13587 		 */
13588 		if (error == 0)
13589 			BUF_UNLOCK(bp);
13590 		else if (error != ENOLCK)
13591 			panic("getdirtybuf: inconsistent lock: %d", error);
13592 		rw_wlock(lock);
13593 		return (NULL);
13594 	}
13595 	if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
13596 		if (lock != BO_LOCKPTR(bp->b_bufobj) && waitfor == MNT_WAIT) {
13597 			rw_wunlock(lock);
13598 			BO_LOCK(bp->b_bufobj);
13599 			BUF_UNLOCK(bp);
13600 			if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
13601 				bp->b_vflags |= BV_BKGRDWAIT;
13602 				msleep(&bp->b_xflags, BO_LOCKPTR(bp->b_bufobj),
13603 				       PRIBIO | PDROP, "getbuf", 0);
13604 			} else
13605 				BO_UNLOCK(bp->b_bufobj);
13606 			rw_wlock(lock);
13607 			return (NULL);
13608 		}
13609 		BUF_UNLOCK(bp);
13610 		if (waitfor != MNT_WAIT)
13611 			return (NULL);
13612 		/*
13613 		 * The lock argument must be bp->b_vp's mutex in
13614 		 * this case.
13615 		 */
13616 #ifdef	DEBUG_VFS_LOCKS
13617 		if (bp->b_vp->v_type != VCHR)
13618 			ASSERT_BO_WLOCKED(bp->b_bufobj);
13619 #endif
13620 		bp->b_vflags |= BV_BKGRDWAIT;
13621 		rw_sleep(&bp->b_xflags, lock, PRIBIO, "getbuf", 0);
13622 		return (NULL);
13623 	}
13624 	if ((bp->b_flags & B_DELWRI) == 0) {
13625 		BUF_UNLOCK(bp);
13626 		return (NULL);
13627 	}
13628 	bremfree(bp);
13629 	return (bp);
13630 }
13631 
13632 
13633 /*
13634  * Check if it is safe to suspend the file system now.  On entry,
13635  * the vnode interlock for devvp should be held.  Return 0 with
13636  * the mount interlock held if the file system can be suspended now,
13637  * otherwise return EAGAIN with the mount interlock held.
13638  */
13639 int
13640 softdep_check_suspend(struct mount *mp,
13641 		      struct vnode *devvp,
13642 		      int softdep_depcnt,
13643 		      int softdep_accdepcnt,
13644 		      int secondary_writes,
13645 		      int secondary_accwrites)
13646 {
13647 	struct bufobj *bo;
13648 	struct ufsmount *ump;
13649 	int error;
13650 
13651 	bo = &devvp->v_bufobj;
13652 	ASSERT_BO_WLOCKED(bo);
13653 
13654 	/*
13655 	 * If we are not running with soft updates, then we need only
13656 	 * deal with secondary writes as we try to suspend.
13657 	 */
13658 	if (MOUNTEDSOFTDEP(mp) == 0) {
13659 		MNT_ILOCK(mp);
13660 		while (mp->mnt_secondary_writes != 0) {
13661 			BO_UNLOCK(bo);
13662 			msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
13663 			    (PUSER - 1) | PDROP, "secwr", 0);
13664 			BO_LOCK(bo);
13665 			MNT_ILOCK(mp);
13666 		}
13667 
13668 		/*
13669 		 * Reasons for needing more work before suspend:
13670 		 * - Dirty buffers on devvp.
13671 		 * - Secondary writes occurred after start of vnode sync loop
13672 		 */
13673 		error = 0;
13674 		if (bo->bo_numoutput > 0 ||
13675 		    bo->bo_dirty.bv_cnt > 0 ||
13676 		    secondary_writes != 0 ||
13677 		    mp->mnt_secondary_writes != 0 ||
13678 		    secondary_accwrites != mp->mnt_secondary_accwrites)
13679 			error = EAGAIN;
13680 		BO_UNLOCK(bo);
13681 		return (error);
13682 	}
13683 
13684 	/*
13685 	 * If we are running with soft updates, then we need to coordinate
13686 	 * with them as we try to suspend.
13687 	 */
13688 	ump = VFSTOUFS(mp);
13689 	for (;;) {
13690 		if (!TRY_ACQUIRE_LOCK(ump)) {
13691 			BO_UNLOCK(bo);
13692 			ACQUIRE_LOCK(ump);
13693 			FREE_LOCK(ump);
13694 			BO_LOCK(bo);
13695 			continue;
13696 		}
13697 		MNT_ILOCK(mp);
13698 		if (mp->mnt_secondary_writes != 0) {
13699 			FREE_LOCK(ump);
13700 			BO_UNLOCK(bo);
13701 			msleep(&mp->mnt_secondary_writes,
13702 			       MNT_MTX(mp),
13703 			       (PUSER - 1) | PDROP, "secwr", 0);
13704 			BO_LOCK(bo);
13705 			continue;
13706 		}
13707 		break;
13708 	}
13709 
13710 	/*
13711 	 * Reasons for needing more work before suspend:
13712 	 * - Dirty buffers on devvp.
13713 	 * - Softdep activity occurred after start of vnode sync loop
13714 	 * - Secondary writes occurred after start of vnode sync loop
13715 	 */
13716 	error = 0;
13717 	if (bo->bo_numoutput > 0 ||
13718 	    bo->bo_dirty.bv_cnt > 0 ||
13719 	    softdep_depcnt != 0 ||
13720 	    ump->softdep_deps != 0 ||
13721 	    softdep_accdepcnt != ump->softdep_accdeps ||
13722 	    secondary_writes != 0 ||
13723 	    mp->mnt_secondary_writes != 0 ||
13724 	    secondary_accwrites != mp->mnt_secondary_accwrites)
13725 		error = EAGAIN;
13726 	FREE_LOCK(ump);
13727 	BO_UNLOCK(bo);
13728 	return (error);
13729 }
13730 
13731 
13732 /*
13733  * Get the number of dependency structures for the file system, both
13734  * the current number and the total number allocated.  These will
13735  * later be used to detect that softdep processing has occurred.
13736  */
13737 void
13738 softdep_get_depcounts(struct mount *mp,
13739 		      int *softdep_depsp,
13740 		      int *softdep_accdepsp)
13741 {
13742 	struct ufsmount *ump;
13743 
13744 	if (MOUNTEDSOFTDEP(mp) == 0) {
13745 		*softdep_depsp = 0;
13746 		*softdep_accdepsp = 0;
13747 		return;
13748 	}
13749 	ump = VFSTOUFS(mp);
13750 	ACQUIRE_LOCK(ump);
13751 	*softdep_depsp = ump->softdep_deps;
13752 	*softdep_accdepsp = ump->softdep_accdeps;
13753 	FREE_LOCK(ump);
13754 }
13755 
13756 /*
13757  * Wait for pending output on a vnode to complete.
13758  * Must be called with vnode lock and interlock locked.
13759  *
13760  * XXX: Should just be a call to bufobj_wwait().
13761  */
13762 static void
13763 drain_output(vp)
13764 	struct vnode *vp;
13765 {
13766 	struct bufobj *bo;
13767 
13768 	bo = &vp->v_bufobj;
13769 	ASSERT_VOP_LOCKED(vp, "drain_output");
13770 	ASSERT_BO_WLOCKED(bo);
13771 
13772 	while (bo->bo_numoutput) {
13773 		bo->bo_flag |= BO_WWAIT;
13774 		msleep((caddr_t)&bo->bo_numoutput,
13775 		    BO_LOCKPTR(bo), PRIBIO + 1, "drainvp", 0);
13776 	}
13777 }
13778 
13779 /*
13780  * Called whenever a buffer that is being invalidated or reallocated
13781  * contains dependencies. This should only happen if an I/O error has
13782  * occurred. The routine is called with the buffer locked.
13783  */
13784 static void
13785 softdep_deallocate_dependencies(bp)
13786 	struct buf *bp;
13787 {
13788 
13789 	if ((bp->b_ioflags & BIO_ERROR) == 0)
13790 		panic("softdep_deallocate_dependencies: dangling deps");
13791 	if (bp->b_vp != NULL && bp->b_vp->v_mount != NULL)
13792 		softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error);
13793 	else
13794 		printf("softdep_deallocate_dependencies: "
13795 		    "got error %d while accessing filesystem\n", bp->b_error);
13796 	if (bp->b_error != ENXIO)
13797 		panic("softdep_deallocate_dependencies: unrecovered I/O error");
13798 }
13799 
13800 /*
13801  * Function to handle asynchronous write errors in the filesystem.
13802  */
13803 static void
13804 softdep_error(func, error)
13805 	char *func;
13806 	int error;
13807 {
13808 
13809 	/* XXX should do something better! */
13810 	printf("%s: got error %d while accessing filesystem\n", func, error);
13811 }
13812 
13813 #ifdef DDB
13814 
13815 static void
13816 inodedep_print(struct inodedep *inodedep, int verbose)
13817 {
13818 	db_printf("%p fs %p st %x ino %jd inoblk %jd delta %d nlink %d"
13819 	    " saveino %p\n",
13820 	    inodedep, inodedep->id_fs, inodedep->id_state,
13821 	    (intmax_t)inodedep->id_ino,
13822 	    (intmax_t)fsbtodb(inodedep->id_fs,
13823 	    ino_to_fsba(inodedep->id_fs, inodedep->id_ino)),
13824 	    inodedep->id_nlinkdelta, inodedep->id_savednlink,
13825 	    inodedep->id_savedino1);
13826 
13827 	if (verbose == 0)
13828 		return;
13829 
13830 	db_printf("\tpendinghd %p, bufwait %p, inowait %p, inoreflst %p, "
13831 	    "mkdiradd %p\n",
13832 	    LIST_FIRST(&inodedep->id_pendinghd),
13833 	    LIST_FIRST(&inodedep->id_bufwait),
13834 	    LIST_FIRST(&inodedep->id_inowait),
13835 	    TAILQ_FIRST(&inodedep->id_inoreflst),
13836 	    inodedep->id_mkdiradd);
13837 	db_printf("\tinoupdt %p, newinoupdt %p, extupdt %p, newextupdt %p\n",
13838 	    TAILQ_FIRST(&inodedep->id_inoupdt),
13839 	    TAILQ_FIRST(&inodedep->id_newinoupdt),
13840 	    TAILQ_FIRST(&inodedep->id_extupdt),
13841 	    TAILQ_FIRST(&inodedep->id_newextupdt));
13842 }
13843 
13844 DB_SHOW_COMMAND(inodedep, db_show_inodedep)
13845 {
13846 
13847 	if (have_addr == 0) {
13848 		db_printf("Address required\n");
13849 		return;
13850 	}
13851 	inodedep_print((struct inodedep*)addr, 1);
13852 }
13853 
13854 DB_SHOW_COMMAND(inodedeps, db_show_inodedeps)
13855 {
13856 	struct inodedep_hashhead *inodedephd;
13857 	struct inodedep *inodedep;
13858 	struct ufsmount *ump;
13859 	int cnt;
13860 
13861 	if (have_addr == 0) {
13862 		db_printf("Address required\n");
13863 		return;
13864 	}
13865 	ump = (struct ufsmount *)addr;
13866 	for (cnt = 0; cnt < ump->inodedep_hash_size; cnt++) {
13867 		inodedephd = &ump->inodedep_hashtbl[cnt];
13868 		LIST_FOREACH(inodedep, inodedephd, id_hash) {
13869 			inodedep_print(inodedep, 0);
13870 		}
13871 	}
13872 }
13873 
13874 DB_SHOW_COMMAND(worklist, db_show_worklist)
13875 {
13876 	struct worklist *wk;
13877 
13878 	if (have_addr == 0) {
13879 		db_printf("Address required\n");
13880 		return;
13881 	}
13882 	wk = (struct worklist *)addr;
13883 	printf("worklist: %p type %s state 0x%X\n",
13884 	    wk, TYPENAME(wk->wk_type), wk->wk_state);
13885 }
13886 
13887 DB_SHOW_COMMAND(workhead, db_show_workhead)
13888 {
13889 	struct workhead *wkhd;
13890 	struct worklist *wk;
13891 	int i;
13892 
13893 	if (have_addr == 0) {
13894 		db_printf("Address required\n");
13895 		return;
13896 	}
13897 	wkhd = (struct workhead *)addr;
13898 	wk = LIST_FIRST(wkhd);
13899 	for (i = 0; i < 100 && wk != NULL; i++, wk = LIST_NEXT(wk, wk_list))
13900 		db_printf("worklist: %p type %s state 0x%X",
13901 		    wk, TYPENAME(wk->wk_type), wk->wk_state);
13902 	if (i == 100)
13903 		db_printf("workhead overflow");
13904 	printf("\n");
13905 }
13906 
13907 
13908 DB_SHOW_COMMAND(mkdirs, db_show_mkdirs)
13909 {
13910 	struct mkdirlist *mkdirlisthd;
13911 	struct jaddref *jaddref;
13912 	struct diradd *diradd;
13913 	struct mkdir *mkdir;
13914 
13915 	if (have_addr == 0) {
13916 		db_printf("Address required\n");
13917 		return;
13918 	}
13919 	mkdirlisthd = (struct mkdirlist *)addr;
13920 	LIST_FOREACH(mkdir, mkdirlisthd, md_mkdirs) {
13921 		diradd = mkdir->md_diradd;
13922 		db_printf("mkdir: %p state 0x%X dap %p state 0x%X",
13923 		    mkdir, mkdir->md_state, diradd, diradd->da_state);
13924 		if ((jaddref = mkdir->md_jaddref) != NULL)
13925 			db_printf(" jaddref %p jaddref state 0x%X",
13926 			    jaddref, jaddref->ja_state);
13927 		db_printf("\n");
13928 	}
13929 }
13930 
13931 /* exported to ffs_vfsops.c */
13932 extern void db_print_ffs(struct ufsmount *ump);
13933 void
13934 db_print_ffs(struct ufsmount *ump)
13935 {
13936 	db_printf("mp %p %s devvp %p fs %p su_wl %d su_deps %d su_req %d\n",
13937 	    ump->um_mountp, ump->um_mountp->mnt_stat.f_mntonname,
13938 	    ump->um_devvp, ump->um_fs, ump->softdep_on_worklist,
13939 	    ump->softdep_deps, ump->softdep_req);
13940 }
13941 
13942 #endif /* DDB */
13943 
13944 #endif /* SOFTUPDATES */
13945