xref: /freebsd/sys/ufs/ffs/ffs_softdep.c (revision 273c26a3c3bea87a241d6879abd4f991db180bf0)
1 /*-
2  * Copyright 1998, 2000 Marshall Kirk McKusick.
3  * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org>
4  * All rights reserved.
5  *
6  * The soft updates code is derived from the appendix of a University
7  * of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
8  * "Soft Updates: A Solution to the Metadata Update Problem in File
9  * Systems", CSE-TR-254-95, August 1995).
10  *
11  * Further information about soft updates can be obtained from:
12  *
13  *	Marshall Kirk McKusick		http://www.mckusick.com/softdep/
14  *	1614 Oxford Street		mckusick@mckusick.com
15  *	Berkeley, CA 94709-1608		+1-510-843-9542
16  *	USA
17  *
18  * Redistribution and use in source and binary forms, with or without
19  * modification, are permitted provided that the following conditions
20  * are met:
21  *
22  * 1. Redistributions of source code must retain the above copyright
23  *    notice, this list of conditions and the following disclaimer.
24  * 2. Redistributions in binary form must reproduce the above copyright
25  *    notice, this list of conditions and the following disclaimer in the
26  *    documentation and/or other materials provided with the distribution.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
29  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
31  * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
32  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
33  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
34  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
35  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37  * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38  *
39  *	from: @(#)ffs_softdep.c	9.59 (McKusick) 6/21/00
40  */
41 
42 #include <sys/cdefs.h>
43 __FBSDID("$FreeBSD$");
44 
45 #include "opt_ffs.h"
46 #include "opt_quota.h"
47 #include "opt_ddb.h"
48 
49 /*
50  * For now we want the safety net that the DEBUG flag provides.
51  */
52 #ifndef DEBUG
53 #define DEBUG
54 #endif
55 
56 #include <sys/param.h>
57 #include <sys/kernel.h>
58 #include <sys/systm.h>
59 #include <sys/bio.h>
60 #include <sys/buf.h>
61 #include <sys/kdb.h>
62 #include <sys/kthread.h>
63 #include <sys/ktr.h>
64 #include <sys/limits.h>
65 #include <sys/lock.h>
66 #include <sys/malloc.h>
67 #include <sys/mount.h>
68 #include <sys/mutex.h>
69 #include <sys/namei.h>
70 #include <sys/priv.h>
71 #include <sys/proc.h>
72 #include <sys/racct.h>
73 #include <sys/rwlock.h>
74 #include <sys/stat.h>
75 #include <sys/sysctl.h>
76 #include <sys/syslog.h>
77 #include <sys/vnode.h>
78 #include <sys/conf.h>
79 
80 #include <ufs/ufs/dir.h>
81 #include <ufs/ufs/extattr.h>
82 #include <ufs/ufs/quota.h>
83 #include <ufs/ufs/inode.h>
84 #include <ufs/ufs/ufsmount.h>
85 #include <ufs/ffs/fs.h>
86 #include <ufs/ffs/softdep.h>
87 #include <ufs/ffs/ffs_extern.h>
88 #include <ufs/ufs/ufs_extern.h>
89 
90 #include <vm/vm.h>
91 #include <vm/vm_extern.h>
92 #include <vm/vm_object.h>
93 
94 #include <geom/geom.h>
95 
96 #include <ddb/ddb.h>
97 
98 #define	KTR_SUJ	0	/* Define to KTR_SPARE. */
99 
100 #ifndef SOFTUPDATES
101 
102 int
103 softdep_flushfiles(oldmnt, flags, td)
104 	struct mount *oldmnt;
105 	int flags;
106 	struct thread *td;
107 {
108 
109 	panic("softdep_flushfiles called");
110 }
111 
112 int
113 softdep_mount(devvp, mp, fs, cred)
114 	struct vnode *devvp;
115 	struct mount *mp;
116 	struct fs *fs;
117 	struct ucred *cred;
118 {
119 
120 	return (0);
121 }
122 
123 void
124 softdep_initialize()
125 {
126 
127 	return;
128 }
129 
130 void
131 softdep_uninitialize()
132 {
133 
134 	return;
135 }
136 
137 void
138 softdep_unmount(mp)
139 	struct mount *mp;
140 {
141 
142 	panic("softdep_unmount called");
143 }
144 
145 void
146 softdep_setup_sbupdate(ump, fs, bp)
147 	struct ufsmount *ump;
148 	struct fs *fs;
149 	struct buf *bp;
150 {
151 
152 	panic("softdep_setup_sbupdate called");
153 }
154 
155 void
156 softdep_setup_inomapdep(bp, ip, newinum, mode)
157 	struct buf *bp;
158 	struct inode *ip;
159 	ino_t newinum;
160 	int mode;
161 {
162 
163 	panic("softdep_setup_inomapdep called");
164 }
165 
166 void
167 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
168 	struct buf *bp;
169 	struct mount *mp;
170 	ufs2_daddr_t newblkno;
171 	int frags;
172 	int oldfrags;
173 {
174 
175 	panic("softdep_setup_blkmapdep called");
176 }
177 
178 void
179 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
180 	struct inode *ip;
181 	ufs_lbn_t lbn;
182 	ufs2_daddr_t newblkno;
183 	ufs2_daddr_t oldblkno;
184 	long newsize;
185 	long oldsize;
186 	struct buf *bp;
187 {
188 
189 	panic("softdep_setup_allocdirect called");
190 }
191 
192 void
193 softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
194 	struct inode *ip;
195 	ufs_lbn_t lbn;
196 	ufs2_daddr_t newblkno;
197 	ufs2_daddr_t oldblkno;
198 	long newsize;
199 	long oldsize;
200 	struct buf *bp;
201 {
202 
203 	panic("softdep_setup_allocext called");
204 }
205 
206 void
207 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
208 	struct inode *ip;
209 	ufs_lbn_t lbn;
210 	struct buf *bp;
211 	int ptrno;
212 	ufs2_daddr_t newblkno;
213 	ufs2_daddr_t oldblkno;
214 	struct buf *nbp;
215 {
216 
217 	panic("softdep_setup_allocindir_page called");
218 }
219 
220 void
221 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
222 	struct buf *nbp;
223 	struct inode *ip;
224 	struct buf *bp;
225 	int ptrno;
226 	ufs2_daddr_t newblkno;
227 {
228 
229 	panic("softdep_setup_allocindir_meta called");
230 }
231 
232 void
233 softdep_journal_freeblocks(ip, cred, length, flags)
234 	struct inode *ip;
235 	struct ucred *cred;
236 	off_t length;
237 	int flags;
238 {
239 
240 	panic("softdep_journal_freeblocks called");
241 }
242 
243 void
244 softdep_journal_fsync(ip)
245 	struct inode *ip;
246 {
247 
248 	panic("softdep_journal_fsync called");
249 }
250 
251 void
252 softdep_setup_freeblocks(ip, length, flags)
253 	struct inode *ip;
254 	off_t length;
255 	int flags;
256 {
257 
258 	panic("softdep_setup_freeblocks called");
259 }
260 
261 void
262 softdep_freefile(pvp, ino, mode)
263 		struct vnode *pvp;
264 		ino_t ino;
265 		int mode;
266 {
267 
268 	panic("softdep_freefile called");
269 }
270 
271 int
272 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
273 	struct buf *bp;
274 	struct inode *dp;
275 	off_t diroffset;
276 	ino_t newinum;
277 	struct buf *newdirbp;
278 	int isnewblk;
279 {
280 
281 	panic("softdep_setup_directory_add called");
282 }
283 
284 void
285 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
286 	struct buf *bp;
287 	struct inode *dp;
288 	caddr_t base;
289 	caddr_t oldloc;
290 	caddr_t newloc;
291 	int entrysize;
292 {
293 
294 	panic("softdep_change_directoryentry_offset called");
295 }
296 
297 void
298 softdep_setup_remove(bp, dp, ip, isrmdir)
299 	struct buf *bp;
300 	struct inode *dp;
301 	struct inode *ip;
302 	int isrmdir;
303 {
304 
305 	panic("softdep_setup_remove called");
306 }
307 
308 void
309 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
310 	struct buf *bp;
311 	struct inode *dp;
312 	struct inode *ip;
313 	ino_t newinum;
314 	int isrmdir;
315 {
316 
317 	panic("softdep_setup_directory_change called");
318 }
319 
320 void
321 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
322 	struct mount *mp;
323 	struct buf *bp;
324 	ufs2_daddr_t blkno;
325 	int frags;
326 	struct workhead *wkhd;
327 {
328 
329 	panic("%s called", __FUNCTION__);
330 }
331 
332 void
333 softdep_setup_inofree(mp, bp, ino, wkhd)
334 	struct mount *mp;
335 	struct buf *bp;
336 	ino_t ino;
337 	struct workhead *wkhd;
338 {
339 
340 	panic("%s called", __FUNCTION__);
341 }
342 
343 void
344 softdep_setup_unlink(dp, ip)
345 	struct inode *dp;
346 	struct inode *ip;
347 {
348 
349 	panic("%s called", __FUNCTION__);
350 }
351 
352 void
353 softdep_setup_link(dp, ip)
354 	struct inode *dp;
355 	struct inode *ip;
356 {
357 
358 	panic("%s called", __FUNCTION__);
359 }
360 
361 void
362 softdep_revert_link(dp, ip)
363 	struct inode *dp;
364 	struct inode *ip;
365 {
366 
367 	panic("%s called", __FUNCTION__);
368 }
369 
370 void
371 softdep_setup_rmdir(dp, ip)
372 	struct inode *dp;
373 	struct inode *ip;
374 {
375 
376 	panic("%s called", __FUNCTION__);
377 }
378 
379 void
380 softdep_revert_rmdir(dp, ip)
381 	struct inode *dp;
382 	struct inode *ip;
383 {
384 
385 	panic("%s called", __FUNCTION__);
386 }
387 
388 void
389 softdep_setup_create(dp, ip)
390 	struct inode *dp;
391 	struct inode *ip;
392 {
393 
394 	panic("%s called", __FUNCTION__);
395 }
396 
397 void
398 softdep_revert_create(dp, ip)
399 	struct inode *dp;
400 	struct inode *ip;
401 {
402 
403 	panic("%s called", __FUNCTION__);
404 }
405 
406 void
407 softdep_setup_mkdir(dp, ip)
408 	struct inode *dp;
409 	struct inode *ip;
410 {
411 
412 	panic("%s called", __FUNCTION__);
413 }
414 
415 void
416 softdep_revert_mkdir(dp, ip)
417 	struct inode *dp;
418 	struct inode *ip;
419 {
420 
421 	panic("%s called", __FUNCTION__);
422 }
423 
424 void
425 softdep_setup_dotdot_link(dp, ip)
426 	struct inode *dp;
427 	struct inode *ip;
428 {
429 
430 	panic("%s called", __FUNCTION__);
431 }
432 
433 int
434 softdep_prealloc(vp, waitok)
435 	struct vnode *vp;
436 	int waitok;
437 {
438 
439 	panic("%s called", __FUNCTION__);
440 }
441 
442 int
443 softdep_journal_lookup(mp, vpp)
444 	struct mount *mp;
445 	struct vnode **vpp;
446 {
447 
448 	return (ENOENT);
449 }
450 
451 void
452 softdep_change_linkcnt(ip)
453 	struct inode *ip;
454 {
455 
456 	panic("softdep_change_linkcnt called");
457 }
458 
459 void
460 softdep_load_inodeblock(ip)
461 	struct inode *ip;
462 {
463 
464 	panic("softdep_load_inodeblock called");
465 }
466 
467 void
468 softdep_update_inodeblock(ip, bp, waitfor)
469 	struct inode *ip;
470 	struct buf *bp;
471 	int waitfor;
472 {
473 
474 	panic("softdep_update_inodeblock called");
475 }
476 
477 int
478 softdep_fsync(vp)
479 	struct vnode *vp;	/* the "in_core" copy of the inode */
480 {
481 
482 	return (0);
483 }
484 
485 void
486 softdep_fsync_mountdev(vp)
487 	struct vnode *vp;
488 {
489 
490 	return;
491 }
492 
493 int
494 softdep_flushworklist(oldmnt, countp, td)
495 	struct mount *oldmnt;
496 	int *countp;
497 	struct thread *td;
498 {
499 
500 	*countp = 0;
501 	return (0);
502 }
503 
504 int
505 softdep_sync_metadata(struct vnode *vp)
506 {
507 
508 	panic("softdep_sync_metadata called");
509 }
510 
511 int
512 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
513 {
514 
515 	panic("softdep_sync_buf called");
516 }
517 
518 int
519 softdep_slowdown(vp)
520 	struct vnode *vp;
521 {
522 
523 	panic("softdep_slowdown called");
524 }
525 
526 int
527 softdep_request_cleanup(fs, vp, cred, resource)
528 	struct fs *fs;
529 	struct vnode *vp;
530 	struct ucred *cred;
531 	int resource;
532 {
533 
534 	return (0);
535 }
536 
537 int
538 softdep_check_suspend(struct mount *mp,
539 		      struct vnode *devvp,
540 		      int softdep_depcnt,
541 		      int softdep_accdepcnt,
542 		      int secondary_writes,
543 		      int secondary_accwrites)
544 {
545 	struct bufobj *bo;
546 	int error;
547 
548 	(void) softdep_depcnt,
549 	(void) softdep_accdepcnt;
550 
551 	bo = &devvp->v_bufobj;
552 	ASSERT_BO_WLOCKED(bo);
553 
554 	MNT_ILOCK(mp);
555 	while (mp->mnt_secondary_writes != 0) {
556 		BO_UNLOCK(bo);
557 		msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
558 		    (PUSER - 1) | PDROP, "secwr", 0);
559 		BO_LOCK(bo);
560 		MNT_ILOCK(mp);
561 	}
562 
563 	/*
564 	 * Reasons for needing more work before suspend:
565 	 * - Dirty buffers on devvp.
566 	 * - Secondary writes occurred after start of vnode sync loop
567 	 */
568 	error = 0;
569 	if (bo->bo_numoutput > 0 ||
570 	    bo->bo_dirty.bv_cnt > 0 ||
571 	    secondary_writes != 0 ||
572 	    mp->mnt_secondary_writes != 0 ||
573 	    secondary_accwrites != mp->mnt_secondary_accwrites)
574 		error = EAGAIN;
575 	BO_UNLOCK(bo);
576 	return (error);
577 }
578 
579 void
580 softdep_get_depcounts(struct mount *mp,
581 		      int *softdepactivep,
582 		      int *softdepactiveaccp)
583 {
584 	(void) mp;
585 	*softdepactivep = 0;
586 	*softdepactiveaccp = 0;
587 }
588 
589 void
590 softdep_buf_append(bp, wkhd)
591 	struct buf *bp;
592 	struct workhead *wkhd;
593 {
594 
595 	panic("softdep_buf_appendwork called");
596 }
597 
598 void
599 softdep_inode_append(ip, cred, wkhd)
600 	struct inode *ip;
601 	struct ucred *cred;
602 	struct workhead *wkhd;
603 {
604 
605 	panic("softdep_inode_appendwork called");
606 }
607 
608 void
609 softdep_freework(wkhd)
610 	struct workhead *wkhd;
611 {
612 
613 	panic("softdep_freework called");
614 }
615 
616 #else
617 
618 FEATURE(softupdates, "FFS soft-updates support");
619 
620 static SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW, 0,
621     "soft updates stats");
622 static SYSCTL_NODE(_debug_softdep, OID_AUTO, total, CTLFLAG_RW, 0,
623     "total dependencies allocated");
624 static SYSCTL_NODE(_debug_softdep, OID_AUTO, highuse, CTLFLAG_RW, 0,
625     "high use dependencies allocated");
626 static SYSCTL_NODE(_debug_softdep, OID_AUTO, current, CTLFLAG_RW, 0,
627     "current dependencies allocated");
628 static SYSCTL_NODE(_debug_softdep, OID_AUTO, write, CTLFLAG_RW, 0,
629     "current dependencies written");
630 
631 unsigned long dep_current[D_LAST + 1];
632 unsigned long dep_highuse[D_LAST + 1];
633 unsigned long dep_total[D_LAST + 1];
634 unsigned long dep_write[D_LAST + 1];
635 
636 #define	SOFTDEP_TYPE(type, str, long)					\
637     static MALLOC_DEFINE(M_ ## type, #str, long);			\
638     SYSCTL_ULONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD,	\
639 	&dep_total[D_ ## type], 0, "");					\
640     SYSCTL_ULONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD, 	\
641 	&dep_current[D_ ## type], 0, "");				\
642     SYSCTL_ULONG(_debug_softdep_highuse, OID_AUTO, str, CTLFLAG_RD, 	\
643 	&dep_highuse[D_ ## type], 0, "");				\
644     SYSCTL_ULONG(_debug_softdep_write, OID_AUTO, str, CTLFLAG_RD, 	\
645 	&dep_write[D_ ## type], 0, "");
646 
647 SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies");
648 SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies");
649 SOFTDEP_TYPE(BMSAFEMAP, bmsafemap,
650     "Block or frag allocated from cyl group map");
651 SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency");
652 SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode");
653 SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies");
654 SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block");
655 SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode");
656 SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode");
657 SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated");
658 SOFTDEP_TYPE(DIRADD, diradd, "New directory entry");
659 SOFTDEP_TYPE(MKDIR, mkdir, "New directory");
660 SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted");
661 SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block");
662 SOFTDEP_TYPE(FREEWORK, freework, "free an inode block");
663 SOFTDEP_TYPE(FREEDEP, freedep, "track a block free");
664 SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add");
665 SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove");
666 SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move");
667 SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block");
668 SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block");
669 SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag");
670 SOFTDEP_TYPE(JSEG, jseg, "Journal segment");
671 SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete");
672 SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency");
673 SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation");
674 SOFTDEP_TYPE(JFSYNC, jfsync, "Journal fsync complete");
675 
676 static MALLOC_DEFINE(M_SENTINEL, "sentinel", "Worklist sentinel");
677 
678 static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes");
679 static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations");
680 static MALLOC_DEFINE(M_MOUNTDATA, "softdep", "Softdep per-mount data");
681 
682 #define M_SOFTDEP_FLAGS	(M_WAITOK)
683 
684 /*
685  * translate from workitem type to memory type
686  * MUST match the defines above, such that memtype[D_XXX] == M_XXX
687  */
688 static struct malloc_type *memtype[] = {
689 	M_PAGEDEP,
690 	M_INODEDEP,
691 	M_BMSAFEMAP,
692 	M_NEWBLK,
693 	M_ALLOCDIRECT,
694 	M_INDIRDEP,
695 	M_ALLOCINDIR,
696 	M_FREEFRAG,
697 	M_FREEBLKS,
698 	M_FREEFILE,
699 	M_DIRADD,
700 	M_MKDIR,
701 	M_DIRREM,
702 	M_NEWDIRBLK,
703 	M_FREEWORK,
704 	M_FREEDEP,
705 	M_JADDREF,
706 	M_JREMREF,
707 	M_JMVREF,
708 	M_JNEWBLK,
709 	M_JFREEBLK,
710 	M_JFREEFRAG,
711 	M_JSEG,
712 	M_JSEGDEP,
713 	M_SBDEP,
714 	M_JTRUNC,
715 	M_JFSYNC,
716 	M_SENTINEL
717 };
718 
719 #define DtoM(type) (memtype[type])
720 
721 /*
722  * Names of malloc types.
723  */
724 #define TYPENAME(type)  \
725 	((unsigned)(type) <= D_LAST ? memtype[type]->ks_shortdesc : "???")
726 /*
727  * End system adaptation definitions.
728  */
729 
730 #define	DOTDOT_OFFSET	offsetof(struct dirtemplate, dotdot_ino)
731 #define	DOT_OFFSET	offsetof(struct dirtemplate, dot_ino)
732 
733 /*
734  * Internal function prototypes.
735  */
736 static	void check_clear_deps(struct mount *);
737 static	void softdep_error(char *, int);
738 static	int softdep_process_worklist(struct mount *, int);
739 static	int softdep_waitidle(struct mount *, int);
740 static	void drain_output(struct vnode *);
741 static	struct buf *getdirtybuf(struct buf *, struct rwlock *, int);
742 static	int check_inodedep_free(struct inodedep *);
743 static	void clear_remove(struct mount *);
744 static	void clear_inodedeps(struct mount *);
745 static	void unlinked_inodedep(struct mount *, struct inodedep *);
746 static	void clear_unlinked_inodedep(struct inodedep *);
747 static	struct inodedep *first_unlinked_inodedep(struct ufsmount *);
748 static	int flush_pagedep_deps(struct vnode *, struct mount *,
749 	    struct diraddhd *);
750 static	int free_pagedep(struct pagedep *);
751 static	int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t);
752 static	int flush_inodedep_deps(struct vnode *, struct mount *, ino_t);
753 static	int flush_deplist(struct allocdirectlst *, int, int *);
754 static	int sync_cgs(struct mount *, int);
755 static	int handle_written_filepage(struct pagedep *, struct buf *, int);
756 static	int handle_written_sbdep(struct sbdep *, struct buf *);
757 static	void initiate_write_sbdep(struct sbdep *);
758 static	void diradd_inode_written(struct diradd *, struct inodedep *);
759 static	int handle_written_indirdep(struct indirdep *, struct buf *,
760 	    struct buf**, int);
761 static	int handle_written_inodeblock(struct inodedep *, struct buf *, int);
762 static	int jnewblk_rollforward(struct jnewblk *, struct fs *, struct cg *,
763 	    uint8_t *);
764 static	int handle_written_bmsafemap(struct bmsafemap *, struct buf *, int);
765 static	void handle_written_jaddref(struct jaddref *);
766 static	void handle_written_jremref(struct jremref *);
767 static	void handle_written_jseg(struct jseg *, struct buf *);
768 static	void handle_written_jnewblk(struct jnewblk *);
769 static	void handle_written_jblkdep(struct jblkdep *);
770 static	void handle_written_jfreefrag(struct jfreefrag *);
771 static	void complete_jseg(struct jseg *);
772 static	void complete_jsegs(struct jseg *);
773 static	void jseg_write(struct ufsmount *ump, struct jseg *, uint8_t *);
774 static	void jaddref_write(struct jaddref *, struct jseg *, uint8_t *);
775 static	void jremref_write(struct jremref *, struct jseg *, uint8_t *);
776 static	void jmvref_write(struct jmvref *, struct jseg *, uint8_t *);
777 static	void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *);
778 static	void jfsync_write(struct jfsync *, struct jseg *, uint8_t *data);
779 static	void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *);
780 static	void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *);
781 static	void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *);
782 static	inline void inoref_write(struct inoref *, struct jseg *,
783 	    struct jrefrec *);
784 static	void handle_allocdirect_partdone(struct allocdirect *,
785 	    struct workhead *);
786 static	struct jnewblk *cancel_newblk(struct newblk *, struct worklist *,
787 	    struct workhead *);
788 static	void indirdep_complete(struct indirdep *);
789 static	int indirblk_lookup(struct mount *, ufs2_daddr_t);
790 static	void indirblk_insert(struct freework *);
791 static	void indirblk_remove(struct freework *);
792 static	void handle_allocindir_partdone(struct allocindir *);
793 static	void initiate_write_filepage(struct pagedep *, struct buf *);
794 static	void initiate_write_indirdep(struct indirdep*, struct buf *);
795 static	void handle_written_mkdir(struct mkdir *, int);
796 static	int jnewblk_rollback(struct jnewblk *, struct fs *, struct cg *,
797 	    uint8_t *);
798 static	void initiate_write_bmsafemap(struct bmsafemap *, struct buf *);
799 static	void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *);
800 static	void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *);
801 static	void handle_workitem_freefile(struct freefile *);
802 static	int handle_workitem_remove(struct dirrem *, int);
803 static	struct dirrem *newdirrem(struct buf *, struct inode *,
804 	    struct inode *, int, struct dirrem **);
805 static	struct indirdep *indirdep_lookup(struct mount *, struct inode *,
806 	    struct buf *);
807 static	void cancel_indirdep(struct indirdep *, struct buf *,
808 	    struct freeblks *);
809 static	void free_indirdep(struct indirdep *);
810 static	void free_diradd(struct diradd *, struct workhead *);
811 static	void merge_diradd(struct inodedep *, struct diradd *);
812 static	void complete_diradd(struct diradd *);
813 static	struct diradd *diradd_lookup(struct pagedep *, int);
814 static	struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *,
815 	    struct jremref *);
816 static	struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *,
817 	    struct jremref *);
818 static	void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *,
819 	    struct jremref *, struct jremref *);
820 static	void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *,
821 	    struct jremref *);
822 static	void cancel_allocindir(struct allocindir *, struct buf *bp,
823 	    struct freeblks *, int);
824 static	int setup_trunc_indir(struct freeblks *, struct inode *,
825 	    ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t);
826 static	void complete_trunc_indir(struct freework *);
827 static	void trunc_indirdep(struct indirdep *, struct freeblks *, struct buf *,
828 	    int);
829 static	void complete_mkdir(struct mkdir *);
830 static	void free_newdirblk(struct newdirblk *);
831 static	void free_jremref(struct jremref *);
832 static	void free_jaddref(struct jaddref *);
833 static	void free_jsegdep(struct jsegdep *);
834 static	void free_jsegs(struct jblocks *);
835 static	void rele_jseg(struct jseg *);
836 static	void free_jseg(struct jseg *, struct jblocks *);
837 static	void free_jnewblk(struct jnewblk *);
838 static	void free_jblkdep(struct jblkdep *);
839 static	void free_jfreefrag(struct jfreefrag *);
840 static	void free_freedep(struct freedep *);
841 static	void journal_jremref(struct dirrem *, struct jremref *,
842 	    struct inodedep *);
843 static	void cancel_jnewblk(struct jnewblk *, struct workhead *);
844 static	int cancel_jaddref(struct jaddref *, struct inodedep *,
845 	    struct workhead *);
846 static	void cancel_jfreefrag(struct jfreefrag *);
847 static	inline void setup_freedirect(struct freeblks *, struct inode *,
848 	    int, int);
849 static	inline void setup_freeext(struct freeblks *, struct inode *, int, int);
850 static	inline void setup_freeindir(struct freeblks *, struct inode *, int,
851 	    ufs_lbn_t, int);
852 static	inline struct freeblks *newfreeblks(struct mount *, struct inode *);
853 static	void freeblks_free(struct ufsmount *, struct freeblks *, int);
854 static	void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t);
855 static	ufs2_daddr_t blkcount(struct fs *, ufs2_daddr_t, off_t);
856 static	int trunc_check_buf(struct buf *, int *, ufs_lbn_t, int, int);
857 static	void trunc_dependencies(struct inode *, struct freeblks *, ufs_lbn_t,
858 	    int, int);
859 static	void trunc_pages(struct inode *, off_t, ufs2_daddr_t, int);
860 static 	int cancel_pagedep(struct pagedep *, struct freeblks *, int);
861 static	int deallocate_dependencies(struct buf *, struct freeblks *, int);
862 static	void newblk_freefrag(struct newblk*);
863 static	void free_newblk(struct newblk *);
864 static	void cancel_allocdirect(struct allocdirectlst *,
865 	    struct allocdirect *, struct freeblks *);
866 static	int check_inode_unwritten(struct inodedep *);
867 static	int free_inodedep(struct inodedep *);
868 static	void freework_freeblock(struct freework *);
869 static	void freework_enqueue(struct freework *);
870 static	int handle_workitem_freeblocks(struct freeblks *, int);
871 static	int handle_complete_freeblocks(struct freeblks *, int);
872 static	void handle_workitem_indirblk(struct freework *);
873 static	void handle_written_freework(struct freework *);
874 static	void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *);
875 static	struct worklist *jnewblk_merge(struct worklist *, struct worklist *,
876 	    struct workhead *);
877 static	struct freefrag *setup_allocindir_phase2(struct buf *, struct inode *,
878 	    struct inodedep *, struct allocindir *, ufs_lbn_t);
879 static	struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t,
880 	    ufs2_daddr_t, ufs_lbn_t);
881 static	void handle_workitem_freefrag(struct freefrag *);
882 static	struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long,
883 	    ufs_lbn_t);
884 static	void allocdirect_merge(struct allocdirectlst *,
885 	    struct allocdirect *, struct allocdirect *);
886 static	struct freefrag *allocindir_merge(struct allocindir *,
887 	    struct allocindir *);
888 static	int bmsafemap_find(struct bmsafemap_hashhead *, int,
889 	    struct bmsafemap **);
890 static	struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *,
891 	    int cg, struct bmsafemap *);
892 static	int newblk_find(struct newblk_hashhead *, ufs2_daddr_t, int,
893 	    struct newblk **);
894 static	int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **);
895 static	int inodedep_find(struct inodedep_hashhead *, ino_t,
896 	    struct inodedep **);
897 static	int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **);
898 static	int pagedep_lookup(struct mount *, struct buf *bp, ino_t, ufs_lbn_t,
899 	    int, struct pagedep **);
900 static	int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t,
901 	    struct pagedep **);
902 static	void pause_timer(void *);
903 static	int request_cleanup(struct mount *, int);
904 static	void schedule_cleanup(struct mount *);
905 static void softdep_ast_cleanup_proc(void);
906 static	int process_worklist_item(struct mount *, int, int);
907 static	void process_removes(struct vnode *);
908 static	void process_truncates(struct vnode *);
909 static	void jwork_move(struct workhead *, struct workhead *);
910 static	void jwork_insert(struct workhead *, struct jsegdep *);
911 static	void add_to_worklist(struct worklist *, int);
912 static	void wake_worklist(struct worklist *);
913 static	void wait_worklist(struct worklist *, char *);
914 static	void remove_from_worklist(struct worklist *);
915 static	void softdep_flush(void *);
916 static	void softdep_flushjournal(struct mount *);
917 static	int softdep_speedup(struct ufsmount *);
918 static	void worklist_speedup(struct mount *);
919 static	int journal_mount(struct mount *, struct fs *, struct ucred *);
920 static	void journal_unmount(struct ufsmount *);
921 static	int journal_space(struct ufsmount *, int);
922 static	void journal_suspend(struct ufsmount *);
923 static	int journal_unsuspend(struct ufsmount *ump);
924 static	void softdep_prelink(struct vnode *, struct vnode *);
925 static	void add_to_journal(struct worklist *);
926 static	void remove_from_journal(struct worklist *);
927 static	bool softdep_excess_items(struct ufsmount *, int);
928 static	void softdep_process_journal(struct mount *, struct worklist *, int);
929 static	struct jremref *newjremref(struct dirrem *, struct inode *,
930 	    struct inode *ip, off_t, nlink_t);
931 static	struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t,
932 	    uint16_t);
933 static	inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t,
934 	    uint16_t);
935 static	inline struct jsegdep *inoref_jseg(struct inoref *);
936 static	struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t);
937 static	struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t,
938 	    ufs2_daddr_t, int);
939 static	void adjust_newfreework(struct freeblks *, int);
940 static	struct jtrunc *newjtrunc(struct freeblks *, off_t, int);
941 static	void move_newblock_dep(struct jaddref *, struct inodedep *);
942 static	void cancel_jfreeblk(struct freeblks *, ufs2_daddr_t);
943 static	struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *,
944 	    ufs2_daddr_t, long, ufs_lbn_t);
945 static	struct freework *newfreework(struct ufsmount *, struct freeblks *,
946 	    struct freework *, ufs_lbn_t, ufs2_daddr_t, int, int, int);
947 static	int jwait(struct worklist *, int);
948 static	struct inodedep *inodedep_lookup_ip(struct inode *);
949 static	int bmsafemap_backgroundwrite(struct bmsafemap *, struct buf *);
950 static	struct freefile *handle_bufwait(struct inodedep *, struct workhead *);
951 static	void handle_jwork(struct workhead *);
952 static	struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *,
953 	    struct mkdir **);
954 static	struct jblocks *jblocks_create(void);
955 static	ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *);
956 static	void jblocks_free(struct jblocks *, struct mount *, int);
957 static	void jblocks_destroy(struct jblocks *);
958 static	void jblocks_add(struct jblocks *, ufs2_daddr_t, int);
959 
960 /*
961  * Exported softdep operations.
962  */
963 static	void softdep_disk_io_initiation(struct buf *);
964 static	void softdep_disk_write_complete(struct buf *);
965 static	void softdep_deallocate_dependencies(struct buf *);
966 static	int softdep_count_dependencies(struct buf *bp, int);
967 
968 /*
969  * Global lock over all of soft updates.
970  */
971 static struct mtx lk;
972 MTX_SYSINIT(softdep_lock, &lk, "Global Softdep Lock", MTX_DEF);
973 
974 #define ACQUIRE_GBLLOCK(lk)	mtx_lock(lk)
975 #define FREE_GBLLOCK(lk)	mtx_unlock(lk)
976 #define GBLLOCK_OWNED(lk)	mtx_assert((lk), MA_OWNED)
977 
978 /*
979  * Per-filesystem soft-updates locking.
980  */
981 #define LOCK_PTR(ump)		(&(ump)->um_softdep->sd_fslock)
982 #define TRY_ACQUIRE_LOCK(ump)	rw_try_wlock(&(ump)->um_softdep->sd_fslock)
983 #define ACQUIRE_LOCK(ump)	rw_wlock(&(ump)->um_softdep->sd_fslock)
984 #define FREE_LOCK(ump)		rw_wunlock(&(ump)->um_softdep->sd_fslock)
985 #define LOCK_OWNED(ump)		rw_assert(&(ump)->um_softdep->sd_fslock, \
986 				    RA_WLOCKED)
987 
988 #define	BUF_AREC(bp)		lockallowrecurse(&(bp)->b_lock)
989 #define	BUF_NOREC(bp)		lockdisablerecurse(&(bp)->b_lock)
990 
991 /*
992  * Worklist queue management.
993  * These routines require that the lock be held.
994  */
995 #ifndef /* NOT */ DEBUG
996 #define WORKLIST_INSERT(head, item) do {	\
997 	(item)->wk_state |= ONWORKLIST;		\
998 	LIST_INSERT_HEAD(head, item, wk_list);	\
999 } while (0)
1000 #define WORKLIST_REMOVE(item) do {		\
1001 	(item)->wk_state &= ~ONWORKLIST;	\
1002 	LIST_REMOVE(item, wk_list);		\
1003 } while (0)
1004 #define WORKLIST_INSERT_UNLOCKED	WORKLIST_INSERT
1005 #define WORKLIST_REMOVE_UNLOCKED	WORKLIST_REMOVE
1006 
1007 #else /* DEBUG */
1008 static	void worklist_insert(struct workhead *, struct worklist *, int);
1009 static	void worklist_remove(struct worklist *, int);
1010 
1011 #define WORKLIST_INSERT(head, item) worklist_insert(head, item, 1)
1012 #define WORKLIST_INSERT_UNLOCKED(head, item) worklist_insert(head, item, 0)
1013 #define WORKLIST_REMOVE(item) worklist_remove(item, 1)
1014 #define WORKLIST_REMOVE_UNLOCKED(item) worklist_remove(item, 0)
1015 
1016 static void
1017 worklist_insert(head, item, locked)
1018 	struct workhead *head;
1019 	struct worklist *item;
1020 	int locked;
1021 {
1022 
1023 	if (locked)
1024 		LOCK_OWNED(VFSTOUFS(item->wk_mp));
1025 	if (item->wk_state & ONWORKLIST)
1026 		panic("worklist_insert: %p %s(0x%X) already on list",
1027 		    item, TYPENAME(item->wk_type), item->wk_state);
1028 	item->wk_state |= ONWORKLIST;
1029 	LIST_INSERT_HEAD(head, item, wk_list);
1030 }
1031 
1032 static void
1033 worklist_remove(item, locked)
1034 	struct worklist *item;
1035 	int locked;
1036 {
1037 
1038 	if (locked)
1039 		LOCK_OWNED(VFSTOUFS(item->wk_mp));
1040 	if ((item->wk_state & ONWORKLIST) == 0)
1041 		panic("worklist_remove: %p %s(0x%X) not on list",
1042 		    item, TYPENAME(item->wk_type), item->wk_state);
1043 	item->wk_state &= ~ONWORKLIST;
1044 	LIST_REMOVE(item, wk_list);
1045 }
1046 #endif /* DEBUG */
1047 
1048 /*
1049  * Merge two jsegdeps keeping only the oldest one as newer references
1050  * can't be discarded until after older references.
1051  */
1052 static inline struct jsegdep *
1053 jsegdep_merge(struct jsegdep *one, struct jsegdep *two)
1054 {
1055 	struct jsegdep *swp;
1056 
1057 	if (two == NULL)
1058 		return (one);
1059 
1060 	if (one->jd_seg->js_seq > two->jd_seg->js_seq) {
1061 		swp = one;
1062 		one = two;
1063 		two = swp;
1064 	}
1065 	WORKLIST_REMOVE(&two->jd_list);
1066 	free_jsegdep(two);
1067 
1068 	return (one);
1069 }
1070 
1071 /*
1072  * If two freedeps are compatible free one to reduce list size.
1073  */
1074 static inline struct freedep *
1075 freedep_merge(struct freedep *one, struct freedep *two)
1076 {
1077 	if (two == NULL)
1078 		return (one);
1079 
1080 	if (one->fd_freework == two->fd_freework) {
1081 		WORKLIST_REMOVE(&two->fd_list);
1082 		free_freedep(two);
1083 	}
1084 	return (one);
1085 }
1086 
1087 /*
1088  * Move journal work from one list to another.  Duplicate freedeps and
1089  * jsegdeps are coalesced to keep the lists as small as possible.
1090  */
1091 static void
1092 jwork_move(dst, src)
1093 	struct workhead *dst;
1094 	struct workhead *src;
1095 {
1096 	struct freedep *freedep;
1097 	struct jsegdep *jsegdep;
1098 	struct worklist *wkn;
1099 	struct worklist *wk;
1100 
1101 	KASSERT(dst != src,
1102 	    ("jwork_move: dst == src"));
1103 	freedep = NULL;
1104 	jsegdep = NULL;
1105 	LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) {
1106 		if (wk->wk_type == D_JSEGDEP)
1107 			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1108 		else if (wk->wk_type == D_FREEDEP)
1109 			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1110 	}
1111 
1112 	while ((wk = LIST_FIRST(src)) != NULL) {
1113 		WORKLIST_REMOVE(wk);
1114 		WORKLIST_INSERT(dst, wk);
1115 		if (wk->wk_type == D_JSEGDEP) {
1116 			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1117 			continue;
1118 		}
1119 		if (wk->wk_type == D_FREEDEP)
1120 			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1121 	}
1122 }
1123 
1124 static void
1125 jwork_insert(dst, jsegdep)
1126 	struct workhead *dst;
1127 	struct jsegdep *jsegdep;
1128 {
1129 	struct jsegdep *jsegdepn;
1130 	struct worklist *wk;
1131 
1132 	LIST_FOREACH(wk, dst, wk_list)
1133 		if (wk->wk_type == D_JSEGDEP)
1134 			break;
1135 	if (wk == NULL) {
1136 		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1137 		return;
1138 	}
1139 	jsegdepn = WK_JSEGDEP(wk);
1140 	if (jsegdep->jd_seg->js_seq < jsegdepn->jd_seg->js_seq) {
1141 		WORKLIST_REMOVE(wk);
1142 		free_jsegdep(jsegdepn);
1143 		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1144 	} else
1145 		free_jsegdep(jsegdep);
1146 }
1147 
1148 /*
1149  * Routines for tracking and managing workitems.
1150  */
1151 static	void workitem_free(struct worklist *, int);
1152 static	void workitem_alloc(struct worklist *, int, struct mount *);
1153 static	void workitem_reassign(struct worklist *, int);
1154 
1155 #define	WORKITEM_FREE(item, type) \
1156 	workitem_free((struct worklist *)(item), (type))
1157 #define	WORKITEM_REASSIGN(item, type) \
1158 	workitem_reassign((struct worklist *)(item), (type))
1159 
1160 static void
1161 workitem_free(item, type)
1162 	struct worklist *item;
1163 	int type;
1164 {
1165 	struct ufsmount *ump;
1166 
1167 #ifdef DEBUG
1168 	if (item->wk_state & ONWORKLIST)
1169 		panic("workitem_free: %s(0x%X) still on list",
1170 		    TYPENAME(item->wk_type), item->wk_state);
1171 	if (item->wk_type != type && type != D_NEWBLK)
1172 		panic("workitem_free: type mismatch %s != %s",
1173 		    TYPENAME(item->wk_type), TYPENAME(type));
1174 #endif
1175 	if (item->wk_state & IOWAITING)
1176 		wakeup(item);
1177 	ump = VFSTOUFS(item->wk_mp);
1178 	LOCK_OWNED(ump);
1179 	KASSERT(ump->softdep_deps > 0,
1180 	    ("workitem_free: %s: softdep_deps going negative",
1181 	    ump->um_fs->fs_fsmnt));
1182 	if (--ump->softdep_deps == 0 && ump->softdep_req)
1183 		wakeup(&ump->softdep_deps);
1184 	KASSERT(dep_current[item->wk_type] > 0,
1185 	    ("workitem_free: %s: dep_current[%s] going negative",
1186 	    ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1187 	KASSERT(ump->softdep_curdeps[item->wk_type] > 0,
1188 	    ("workitem_free: %s: softdep_curdeps[%s] going negative",
1189 	    ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1190 	atomic_subtract_long(&dep_current[item->wk_type], 1);
1191 	ump->softdep_curdeps[item->wk_type] -= 1;
1192 	free(item, DtoM(type));
1193 }
1194 
1195 static void
1196 workitem_alloc(item, type, mp)
1197 	struct worklist *item;
1198 	int type;
1199 	struct mount *mp;
1200 {
1201 	struct ufsmount *ump;
1202 
1203 	item->wk_type = type;
1204 	item->wk_mp = mp;
1205 	item->wk_state = 0;
1206 
1207 	ump = VFSTOUFS(mp);
1208 	ACQUIRE_GBLLOCK(&lk);
1209 	dep_current[type]++;
1210 	if (dep_current[type] > dep_highuse[type])
1211 		dep_highuse[type] = dep_current[type];
1212 	dep_total[type]++;
1213 	FREE_GBLLOCK(&lk);
1214 	ACQUIRE_LOCK(ump);
1215 	ump->softdep_curdeps[type] += 1;
1216 	ump->softdep_deps++;
1217 	ump->softdep_accdeps++;
1218 	FREE_LOCK(ump);
1219 }
1220 
1221 static void
1222 workitem_reassign(item, newtype)
1223 	struct worklist *item;
1224 	int newtype;
1225 {
1226 	struct ufsmount *ump;
1227 
1228 	ump = VFSTOUFS(item->wk_mp);
1229 	LOCK_OWNED(ump);
1230 	KASSERT(ump->softdep_curdeps[item->wk_type] > 0,
1231 	    ("workitem_reassign: %s: softdep_curdeps[%s] going negative",
1232 	    VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1233 	ump->softdep_curdeps[item->wk_type] -= 1;
1234 	ump->softdep_curdeps[newtype] += 1;
1235 	KASSERT(dep_current[item->wk_type] > 0,
1236 	    ("workitem_reassign: %s: dep_current[%s] going negative",
1237 	    VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1238 	ACQUIRE_GBLLOCK(&lk);
1239 	dep_current[newtype]++;
1240 	dep_current[item->wk_type]--;
1241 	if (dep_current[newtype] > dep_highuse[newtype])
1242 		dep_highuse[newtype] = dep_current[newtype];
1243 	dep_total[newtype]++;
1244 	FREE_GBLLOCK(&lk);
1245 	item->wk_type = newtype;
1246 }
1247 
1248 /*
1249  * Workitem queue management
1250  */
1251 static int max_softdeps;	/* maximum number of structs before slowdown */
1252 static int tickdelay = 2;	/* number of ticks to pause during slowdown */
1253 static int proc_waiting;	/* tracks whether we have a timeout posted */
1254 static int *stat_countp;	/* statistic to count in proc_waiting timeout */
1255 static struct callout softdep_callout;
1256 static int req_clear_inodedeps;	/* syncer process flush some inodedeps */
1257 static int req_clear_remove;	/* syncer process flush some freeblks */
1258 static int softdep_flushcache = 0; /* Should we do BIO_FLUSH? */
1259 
1260 /*
1261  * runtime statistics
1262  */
1263 static int stat_flush_threads;	/* number of softdep flushing threads */
1264 static int stat_worklist_push;	/* number of worklist cleanups */
1265 static int stat_blk_limit_push;	/* number of times block limit neared */
1266 static int stat_ino_limit_push;	/* number of times inode limit neared */
1267 static int stat_blk_limit_hit;	/* number of times block slowdown imposed */
1268 static int stat_ino_limit_hit;	/* number of times inode slowdown imposed */
1269 static int stat_sync_limit_hit;	/* number of synchronous slowdowns imposed */
1270 static int stat_indir_blk_ptrs;	/* bufs redirtied as indir ptrs not written */
1271 static int stat_inode_bitmap;	/* bufs redirtied as inode bitmap not written */
1272 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
1273 static int stat_dir_entry;	/* bufs redirtied as dir entry cannot write */
1274 static int stat_jaddref;	/* bufs redirtied as ino bitmap can not write */
1275 static int stat_jnewblk;	/* bufs redirtied as blk bitmap can not write */
1276 static int stat_journal_min;	/* Times hit journal min threshold */
1277 static int stat_journal_low;	/* Times hit journal low threshold */
1278 static int stat_journal_wait;	/* Times blocked in jwait(). */
1279 static int stat_jwait_filepage;	/* Times blocked in jwait() for filepage. */
1280 static int stat_jwait_freeblks;	/* Times blocked in jwait() for freeblks. */
1281 static int stat_jwait_inode;	/* Times blocked in jwait() for inodes. */
1282 static int stat_jwait_newblk;	/* Times blocked in jwait() for newblks. */
1283 static int stat_cleanup_high_delay; /* Maximum cleanup delay (in ticks) */
1284 static int stat_cleanup_blkrequests; /* Number of block cleanup requests */
1285 static int stat_cleanup_inorequests; /* Number of inode cleanup requests */
1286 static int stat_cleanup_retries; /* Number of cleanups that needed to flush */
1287 static int stat_cleanup_failures; /* Number of cleanup requests that failed */
1288 static int stat_emptyjblocks; /* Number of potentially empty journal blocks */
1289 
1290 SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW,
1291     &max_softdeps, 0, "");
1292 SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW,
1293     &tickdelay, 0, "");
1294 SYSCTL_INT(_debug_softdep, OID_AUTO, flush_threads, CTLFLAG_RD,
1295     &stat_flush_threads, 0, "");
1296 SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push, CTLFLAG_RW,
1297     &stat_worklist_push, 0,"");
1298 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push, CTLFLAG_RW,
1299     &stat_blk_limit_push, 0,"");
1300 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push, CTLFLAG_RW,
1301     &stat_ino_limit_push, 0,"");
1302 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit, CTLFLAG_RW,
1303     &stat_blk_limit_hit, 0, "");
1304 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit, CTLFLAG_RW,
1305     &stat_ino_limit_hit, 0, "");
1306 SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit, CTLFLAG_RW,
1307     &stat_sync_limit_hit, 0, "");
1308 SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW,
1309     &stat_indir_blk_ptrs, 0, "");
1310 SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap, CTLFLAG_RW,
1311     &stat_inode_bitmap, 0, "");
1312 SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW,
1313     &stat_direct_blk_ptrs, 0, "");
1314 SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry, CTLFLAG_RW,
1315     &stat_dir_entry, 0, "");
1316 SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback, CTLFLAG_RW,
1317     &stat_jaddref, 0, "");
1318 SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback, CTLFLAG_RW,
1319     &stat_jnewblk, 0, "");
1320 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low, CTLFLAG_RW,
1321     &stat_journal_low, 0, "");
1322 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min, CTLFLAG_RW,
1323     &stat_journal_min, 0, "");
1324 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait, CTLFLAG_RW,
1325     &stat_journal_wait, 0, "");
1326 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage, CTLFLAG_RW,
1327     &stat_jwait_filepage, 0, "");
1328 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks, CTLFLAG_RW,
1329     &stat_jwait_freeblks, 0, "");
1330 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode, CTLFLAG_RW,
1331     &stat_jwait_inode, 0, "");
1332 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk, CTLFLAG_RW,
1333     &stat_jwait_newblk, 0, "");
1334 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_blkrequests, CTLFLAG_RW,
1335     &stat_cleanup_blkrequests, 0, "");
1336 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_inorequests, CTLFLAG_RW,
1337     &stat_cleanup_inorequests, 0, "");
1338 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_high_delay, CTLFLAG_RW,
1339     &stat_cleanup_high_delay, 0, "");
1340 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_retries, CTLFLAG_RW,
1341     &stat_cleanup_retries, 0, "");
1342 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_failures, CTLFLAG_RW,
1343     &stat_cleanup_failures, 0, "");
1344 SYSCTL_INT(_debug_softdep, OID_AUTO, flushcache, CTLFLAG_RW,
1345     &softdep_flushcache, 0, "");
1346 SYSCTL_INT(_debug_softdep, OID_AUTO, emptyjblocks, CTLFLAG_RD,
1347     &stat_emptyjblocks, 0, "");
1348 
1349 SYSCTL_DECL(_vfs_ffs);
1350 
1351 /* Whether to recompute the summary at mount time */
1352 static int compute_summary_at_mount = 0;
1353 SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW,
1354 	   &compute_summary_at_mount, 0, "Recompute summary at mount");
1355 static int print_threads = 0;
1356 SYSCTL_INT(_debug_softdep, OID_AUTO, print_threads, CTLFLAG_RW,
1357     &print_threads, 0, "Notify flusher thread start/stop");
1358 
1359 /* List of all filesystems mounted with soft updates */
1360 static TAILQ_HEAD(, mount_softdeps) softdepmounts;
1361 
1362 /*
1363  * This function cleans the worklist for a filesystem.
1364  * Each filesystem running with soft dependencies gets its own
1365  * thread to run in this function. The thread is started up in
1366  * softdep_mount and shutdown in softdep_unmount. They show up
1367  * as part of the kernel "bufdaemon" process whose process
1368  * entry is available in bufdaemonproc.
1369  */
1370 static int searchfailed;
1371 extern struct proc *bufdaemonproc;
1372 static void
1373 softdep_flush(addr)
1374 	void *addr;
1375 {
1376 	struct mount *mp;
1377 	struct thread *td;
1378 	struct ufsmount *ump;
1379 
1380 	td = curthread;
1381 	td->td_pflags |= TDP_NORUNNINGBUF;
1382 	mp = (struct mount *)addr;
1383 	ump = VFSTOUFS(mp);
1384 	atomic_add_int(&stat_flush_threads, 1);
1385 	ACQUIRE_LOCK(ump);
1386 	ump->softdep_flags &= ~FLUSH_STARTING;
1387 	wakeup(&ump->softdep_flushtd);
1388 	FREE_LOCK(ump);
1389 	if (print_threads) {
1390 		if (stat_flush_threads == 1)
1391 			printf("Running %s at pid %d\n", bufdaemonproc->p_comm,
1392 			    bufdaemonproc->p_pid);
1393 		printf("Start thread %s\n", td->td_name);
1394 	}
1395 	for (;;) {
1396 		while (softdep_process_worklist(mp, 0) > 0 ||
1397 		    (MOUNTEDSUJ(mp) &&
1398 		    VFSTOUFS(mp)->softdep_jblocks->jb_suspended))
1399 			kthread_suspend_check();
1400 		ACQUIRE_LOCK(ump);
1401 		if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
1402 			msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM,
1403 			    "sdflush", hz / 2);
1404 		ump->softdep_flags &= ~FLUSH_CLEANUP;
1405 		/*
1406 		 * Check to see if we are done and need to exit.
1407 		 */
1408 		if ((ump->softdep_flags & FLUSH_EXIT) == 0) {
1409 			FREE_LOCK(ump);
1410 			continue;
1411 		}
1412 		ump->softdep_flags &= ~FLUSH_EXIT;
1413 		FREE_LOCK(ump);
1414 		wakeup(&ump->softdep_flags);
1415 		if (print_threads)
1416 			printf("Stop thread %s: searchfailed %d, did cleanups %d\n", td->td_name, searchfailed, ump->um_softdep->sd_cleanups);
1417 		atomic_subtract_int(&stat_flush_threads, 1);
1418 		kthread_exit();
1419 		panic("kthread_exit failed\n");
1420 	}
1421 }
1422 
1423 static void
1424 worklist_speedup(mp)
1425 	struct mount *mp;
1426 {
1427 	struct ufsmount *ump;
1428 
1429 	ump = VFSTOUFS(mp);
1430 	LOCK_OWNED(ump);
1431 	if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
1432 		ump->softdep_flags |= FLUSH_CLEANUP;
1433 	wakeup(&ump->softdep_flushtd);
1434 }
1435 
1436 static int
1437 softdep_speedup(ump)
1438 	struct ufsmount *ump;
1439 {
1440 	struct ufsmount *altump;
1441 	struct mount_softdeps *sdp;
1442 
1443 	LOCK_OWNED(ump);
1444 	worklist_speedup(ump->um_mountp);
1445 	bd_speedup();
1446 	/*
1447 	 * If we have global shortages, then we need other
1448 	 * filesystems to help with the cleanup. Here we wakeup a
1449 	 * flusher thread for a filesystem that is over its fair
1450 	 * share of resources.
1451 	 */
1452 	if (req_clear_inodedeps || req_clear_remove) {
1453 		ACQUIRE_GBLLOCK(&lk);
1454 		TAILQ_FOREACH(sdp, &softdepmounts, sd_next) {
1455 			if ((altump = sdp->sd_ump) == ump)
1456 				continue;
1457 			if (((req_clear_inodedeps &&
1458 			    altump->softdep_curdeps[D_INODEDEP] >
1459 			    max_softdeps / stat_flush_threads) ||
1460 			    (req_clear_remove &&
1461 			    altump->softdep_curdeps[D_DIRREM] >
1462 			    (max_softdeps / 2) / stat_flush_threads)) &&
1463 			    TRY_ACQUIRE_LOCK(altump))
1464 				break;
1465 		}
1466 		if (sdp == NULL) {
1467 			searchfailed++;
1468 			FREE_GBLLOCK(&lk);
1469 		} else {
1470 			/*
1471 			 * Move to the end of the list so we pick a
1472 			 * different one on out next try.
1473 			 */
1474 			TAILQ_REMOVE(&softdepmounts, sdp, sd_next);
1475 			TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next);
1476 			FREE_GBLLOCK(&lk);
1477 			if ((altump->softdep_flags &
1478 			    (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
1479 				altump->softdep_flags |= FLUSH_CLEANUP;
1480 			altump->um_softdep->sd_cleanups++;
1481 			wakeup(&altump->softdep_flushtd);
1482 			FREE_LOCK(altump);
1483 		}
1484 	}
1485 	return (speedup_syncer());
1486 }
1487 
1488 /*
1489  * Add an item to the end of the work queue.
1490  * This routine requires that the lock be held.
1491  * This is the only routine that adds items to the list.
1492  * The following routine is the only one that removes items
1493  * and does so in order from first to last.
1494  */
1495 
1496 #define	WK_HEAD		0x0001	/* Add to HEAD. */
1497 #define	WK_NODELAY	0x0002	/* Process immediately. */
1498 
1499 static void
1500 add_to_worklist(wk, flags)
1501 	struct worklist *wk;
1502 	int flags;
1503 {
1504 	struct ufsmount *ump;
1505 
1506 	ump = VFSTOUFS(wk->wk_mp);
1507 	LOCK_OWNED(ump);
1508 	if (wk->wk_state & ONWORKLIST)
1509 		panic("add_to_worklist: %s(0x%X) already on list",
1510 		    TYPENAME(wk->wk_type), wk->wk_state);
1511 	wk->wk_state |= ONWORKLIST;
1512 	if (ump->softdep_on_worklist == 0) {
1513 		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1514 		ump->softdep_worklist_tail = wk;
1515 	} else if (flags & WK_HEAD) {
1516 		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1517 	} else {
1518 		LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list);
1519 		ump->softdep_worklist_tail = wk;
1520 	}
1521 	ump->softdep_on_worklist += 1;
1522 	if (flags & WK_NODELAY)
1523 		worklist_speedup(wk->wk_mp);
1524 }
1525 
1526 /*
1527  * Remove the item to be processed. If we are removing the last
1528  * item on the list, we need to recalculate the tail pointer.
1529  */
1530 static void
1531 remove_from_worklist(wk)
1532 	struct worklist *wk;
1533 {
1534 	struct ufsmount *ump;
1535 
1536 	ump = VFSTOUFS(wk->wk_mp);
1537 	WORKLIST_REMOVE(wk);
1538 	if (ump->softdep_worklist_tail == wk)
1539 		ump->softdep_worklist_tail =
1540 		    (struct worklist *)wk->wk_list.le_prev;
1541 	ump->softdep_on_worklist -= 1;
1542 }
1543 
1544 static void
1545 wake_worklist(wk)
1546 	struct worklist *wk;
1547 {
1548 	if (wk->wk_state & IOWAITING) {
1549 		wk->wk_state &= ~IOWAITING;
1550 		wakeup(wk);
1551 	}
1552 }
1553 
1554 static void
1555 wait_worklist(wk, wmesg)
1556 	struct worklist *wk;
1557 	char *wmesg;
1558 {
1559 	struct ufsmount *ump;
1560 
1561 	ump = VFSTOUFS(wk->wk_mp);
1562 	wk->wk_state |= IOWAITING;
1563 	msleep(wk, LOCK_PTR(ump), PVM, wmesg, 0);
1564 }
1565 
1566 /*
1567  * Process that runs once per second to handle items in the background queue.
1568  *
1569  * Note that we ensure that everything is done in the order in which they
1570  * appear in the queue. The code below depends on this property to ensure
1571  * that blocks of a file are freed before the inode itself is freed. This
1572  * ordering ensures that no new <vfsid, inum, lbn> triples will be generated
1573  * until all the old ones have been purged from the dependency lists.
1574  */
1575 static int
1576 softdep_process_worklist(mp, full)
1577 	struct mount *mp;
1578 	int full;
1579 {
1580 	int cnt, matchcnt;
1581 	struct ufsmount *ump;
1582 	long starttime;
1583 
1584 	KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp"));
1585 	if (MOUNTEDSOFTDEP(mp) == 0)
1586 		return (0);
1587 	matchcnt = 0;
1588 	ump = VFSTOUFS(mp);
1589 	ACQUIRE_LOCK(ump);
1590 	starttime = time_second;
1591 	softdep_process_journal(mp, NULL, full ? MNT_WAIT : 0);
1592 	check_clear_deps(mp);
1593 	while (ump->softdep_on_worklist > 0) {
1594 		if ((cnt = process_worklist_item(mp, 10, LK_NOWAIT)) == 0)
1595 			break;
1596 		else
1597 			matchcnt += cnt;
1598 		check_clear_deps(mp);
1599 		/*
1600 		 * We do not generally want to stop for buffer space, but if
1601 		 * we are really being a buffer hog, we will stop and wait.
1602 		 */
1603 		if (should_yield()) {
1604 			FREE_LOCK(ump);
1605 			kern_yield(PRI_USER);
1606 			bwillwrite();
1607 			ACQUIRE_LOCK(ump);
1608 		}
1609 		/*
1610 		 * Never allow processing to run for more than one
1611 		 * second. This gives the syncer thread the opportunity
1612 		 * to pause if appropriate.
1613 		 */
1614 		if (!full && starttime != time_second)
1615 			break;
1616 	}
1617 	if (full == 0)
1618 		journal_unsuspend(ump);
1619 	FREE_LOCK(ump);
1620 	return (matchcnt);
1621 }
1622 
1623 /*
1624  * Process all removes associated with a vnode if we are running out of
1625  * journal space.  Any other process which attempts to flush these will
1626  * be unable as we have the vnodes locked.
1627  */
1628 static void
1629 process_removes(vp)
1630 	struct vnode *vp;
1631 {
1632 	struct inodedep *inodedep;
1633 	struct dirrem *dirrem;
1634 	struct ufsmount *ump;
1635 	struct mount *mp;
1636 	ino_t inum;
1637 
1638 	mp = vp->v_mount;
1639 	ump = VFSTOUFS(mp);
1640 	LOCK_OWNED(ump);
1641 	inum = VTOI(vp)->i_number;
1642 	for (;;) {
1643 top:
1644 		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1645 			return;
1646 		LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext) {
1647 			/*
1648 			 * If another thread is trying to lock this vnode
1649 			 * it will fail but we must wait for it to do so
1650 			 * before we can proceed.
1651 			 */
1652 			if (dirrem->dm_state & INPROGRESS) {
1653 				wait_worklist(&dirrem->dm_list, "pwrwait");
1654 				goto top;
1655 			}
1656 			if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) ==
1657 			    (COMPLETE | ONWORKLIST))
1658 				break;
1659 		}
1660 		if (dirrem == NULL)
1661 			return;
1662 		remove_from_worklist(&dirrem->dm_list);
1663 		FREE_LOCK(ump);
1664 		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1665 			panic("process_removes: suspended filesystem");
1666 		handle_workitem_remove(dirrem, 0);
1667 		vn_finished_secondary_write(mp);
1668 		ACQUIRE_LOCK(ump);
1669 	}
1670 }
1671 
1672 /*
1673  * Process all truncations associated with a vnode if we are running out
1674  * of journal space.  This is called when the vnode lock is already held
1675  * and no other process can clear the truncation.  This function returns
1676  * a value greater than zero if it did any work.
1677  */
1678 static void
1679 process_truncates(vp)
1680 	struct vnode *vp;
1681 {
1682 	struct inodedep *inodedep;
1683 	struct freeblks *freeblks;
1684 	struct ufsmount *ump;
1685 	struct mount *mp;
1686 	ino_t inum;
1687 	int cgwait;
1688 
1689 	mp = vp->v_mount;
1690 	ump = VFSTOUFS(mp);
1691 	LOCK_OWNED(ump);
1692 	inum = VTOI(vp)->i_number;
1693 	for (;;) {
1694 		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1695 			return;
1696 		cgwait = 0;
1697 		TAILQ_FOREACH(freeblks, &inodedep->id_freeblklst, fb_next) {
1698 			/* Journal entries not yet written.  */
1699 			if (!LIST_EMPTY(&freeblks->fb_jblkdephd)) {
1700 				jwait(&LIST_FIRST(
1701 				    &freeblks->fb_jblkdephd)->jb_list,
1702 				    MNT_WAIT);
1703 				break;
1704 			}
1705 			/* Another thread is executing this item. */
1706 			if (freeblks->fb_state & INPROGRESS) {
1707 				wait_worklist(&freeblks->fb_list, "ptrwait");
1708 				break;
1709 			}
1710 			/* Freeblks is waiting on a inode write. */
1711 			if ((freeblks->fb_state & COMPLETE) == 0) {
1712 				FREE_LOCK(ump);
1713 				ffs_update(vp, 1);
1714 				ACQUIRE_LOCK(ump);
1715 				break;
1716 			}
1717 			if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST)) ==
1718 			    (ALLCOMPLETE | ONWORKLIST)) {
1719 				remove_from_worklist(&freeblks->fb_list);
1720 				freeblks->fb_state |= INPROGRESS;
1721 				FREE_LOCK(ump);
1722 				if (vn_start_secondary_write(NULL, &mp,
1723 				    V_NOWAIT))
1724 					panic("process_truncates: "
1725 					    "suspended filesystem");
1726 				handle_workitem_freeblocks(freeblks, 0);
1727 				vn_finished_secondary_write(mp);
1728 				ACQUIRE_LOCK(ump);
1729 				break;
1730 			}
1731 			if (freeblks->fb_cgwait)
1732 				cgwait++;
1733 		}
1734 		if (cgwait) {
1735 			FREE_LOCK(ump);
1736 			sync_cgs(mp, MNT_WAIT);
1737 			ffs_sync_snap(mp, MNT_WAIT);
1738 			ACQUIRE_LOCK(ump);
1739 			continue;
1740 		}
1741 		if (freeblks == NULL)
1742 			break;
1743 	}
1744 	return;
1745 }
1746 
1747 /*
1748  * Process one item on the worklist.
1749  */
1750 static int
1751 process_worklist_item(mp, target, flags)
1752 	struct mount *mp;
1753 	int target;
1754 	int flags;
1755 {
1756 	struct worklist sentinel;
1757 	struct worklist *wk;
1758 	struct ufsmount *ump;
1759 	int matchcnt;
1760 	int error;
1761 
1762 	KASSERT(mp != NULL, ("process_worklist_item: NULL mp"));
1763 	/*
1764 	 * If we are being called because of a process doing a
1765 	 * copy-on-write, then it is not safe to write as we may
1766 	 * recurse into the copy-on-write routine.
1767 	 */
1768 	if (curthread->td_pflags & TDP_COWINPROGRESS)
1769 		return (-1);
1770 	PHOLD(curproc);	/* Don't let the stack go away. */
1771 	ump = VFSTOUFS(mp);
1772 	LOCK_OWNED(ump);
1773 	matchcnt = 0;
1774 	sentinel.wk_mp = NULL;
1775 	sentinel.wk_type = D_SENTINEL;
1776 	LIST_INSERT_HEAD(&ump->softdep_workitem_pending, &sentinel, wk_list);
1777 	for (wk = LIST_NEXT(&sentinel, wk_list); wk != NULL;
1778 	    wk = LIST_NEXT(&sentinel, wk_list)) {
1779 		if (wk->wk_type == D_SENTINEL) {
1780 			LIST_REMOVE(&sentinel, wk_list);
1781 			LIST_INSERT_AFTER(wk, &sentinel, wk_list);
1782 			continue;
1783 		}
1784 		if (wk->wk_state & INPROGRESS)
1785 			panic("process_worklist_item: %p already in progress.",
1786 			    wk);
1787 		wk->wk_state |= INPROGRESS;
1788 		remove_from_worklist(wk);
1789 		FREE_LOCK(ump);
1790 		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1791 			panic("process_worklist_item: suspended filesystem");
1792 		switch (wk->wk_type) {
1793 		case D_DIRREM:
1794 			/* removal of a directory entry */
1795 			error = handle_workitem_remove(WK_DIRREM(wk), flags);
1796 			break;
1797 
1798 		case D_FREEBLKS:
1799 			/* releasing blocks and/or fragments from a file */
1800 			error = handle_workitem_freeblocks(WK_FREEBLKS(wk),
1801 			    flags);
1802 			break;
1803 
1804 		case D_FREEFRAG:
1805 			/* releasing a fragment when replaced as a file grows */
1806 			handle_workitem_freefrag(WK_FREEFRAG(wk));
1807 			error = 0;
1808 			break;
1809 
1810 		case D_FREEFILE:
1811 			/* releasing an inode when its link count drops to 0 */
1812 			handle_workitem_freefile(WK_FREEFILE(wk));
1813 			error = 0;
1814 			break;
1815 
1816 		default:
1817 			panic("%s_process_worklist: Unknown type %s",
1818 			    "softdep", TYPENAME(wk->wk_type));
1819 			/* NOTREACHED */
1820 		}
1821 		vn_finished_secondary_write(mp);
1822 		ACQUIRE_LOCK(ump);
1823 		if (error == 0) {
1824 			if (++matchcnt == target)
1825 				break;
1826 			continue;
1827 		}
1828 		/*
1829 		 * We have to retry the worklist item later.  Wake up any
1830 		 * waiters who may be able to complete it immediately and
1831 		 * add the item back to the head so we don't try to execute
1832 		 * it again.
1833 		 */
1834 		wk->wk_state &= ~INPROGRESS;
1835 		wake_worklist(wk);
1836 		add_to_worklist(wk, WK_HEAD);
1837 	}
1838 	LIST_REMOVE(&sentinel, wk_list);
1839 	/* Sentinal could've become the tail from remove_from_worklist. */
1840 	if (ump->softdep_worklist_tail == &sentinel)
1841 		ump->softdep_worklist_tail =
1842 		    (struct worklist *)sentinel.wk_list.le_prev;
1843 	PRELE(curproc);
1844 	return (matchcnt);
1845 }
1846 
1847 /*
1848  * Move dependencies from one buffer to another.
1849  */
1850 int
1851 softdep_move_dependencies(oldbp, newbp)
1852 	struct buf *oldbp;
1853 	struct buf *newbp;
1854 {
1855 	struct worklist *wk, *wktail;
1856 	struct ufsmount *ump;
1857 	int dirty;
1858 
1859 	if ((wk = LIST_FIRST(&oldbp->b_dep)) == NULL)
1860 		return (0);
1861 	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
1862 	    ("softdep_move_dependencies called on non-softdep filesystem"));
1863 	dirty = 0;
1864 	wktail = NULL;
1865 	ump = VFSTOUFS(wk->wk_mp);
1866 	ACQUIRE_LOCK(ump);
1867 	while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) {
1868 		LIST_REMOVE(wk, wk_list);
1869 		if (wk->wk_type == D_BMSAFEMAP &&
1870 		    bmsafemap_backgroundwrite(WK_BMSAFEMAP(wk), newbp))
1871 			dirty = 1;
1872 		if (wktail == NULL)
1873 			LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list);
1874 		else
1875 			LIST_INSERT_AFTER(wktail, wk, wk_list);
1876 		wktail = wk;
1877 	}
1878 	FREE_LOCK(ump);
1879 
1880 	return (dirty);
1881 }
1882 
1883 /*
1884  * Purge the work list of all items associated with a particular mount point.
1885  */
1886 int
1887 softdep_flushworklist(oldmnt, countp, td)
1888 	struct mount *oldmnt;
1889 	int *countp;
1890 	struct thread *td;
1891 {
1892 	struct vnode *devvp;
1893 	struct ufsmount *ump;
1894 	int count, error;
1895 
1896 	/*
1897 	 * Alternately flush the block device associated with the mount
1898 	 * point and process any dependencies that the flushing
1899 	 * creates. We continue until no more worklist dependencies
1900 	 * are found.
1901 	 */
1902 	*countp = 0;
1903 	error = 0;
1904 	ump = VFSTOUFS(oldmnt);
1905 	devvp = ump->um_devvp;
1906 	while ((count = softdep_process_worklist(oldmnt, 1)) > 0) {
1907 		*countp += count;
1908 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1909 		error = VOP_FSYNC(devvp, MNT_WAIT, td);
1910 		VOP_UNLOCK(devvp, 0);
1911 		if (error != 0)
1912 			break;
1913 	}
1914 	return (error);
1915 }
1916 
1917 #define	SU_WAITIDLE_RETRIES	20
1918 static int
1919 softdep_waitidle(struct mount *mp, int flags __unused)
1920 {
1921 	struct ufsmount *ump;
1922 	struct vnode *devvp;
1923 	struct thread *td;
1924 	int error, i;
1925 
1926 	ump = VFSTOUFS(mp);
1927 	devvp = ump->um_devvp;
1928 	td = curthread;
1929 	error = 0;
1930 	ACQUIRE_LOCK(ump);
1931 	for (i = 0; i < SU_WAITIDLE_RETRIES && ump->softdep_deps != 0; i++) {
1932 		ump->softdep_req = 1;
1933 		KASSERT((flags & FORCECLOSE) == 0 ||
1934 		    ump->softdep_on_worklist == 0,
1935 		    ("softdep_waitidle: work added after flush"));
1936 		msleep(&ump->softdep_deps, LOCK_PTR(ump), PVM | PDROP,
1937 		    "softdeps", 10 * hz);
1938 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1939 		error = VOP_FSYNC(devvp, MNT_WAIT, td);
1940 		VOP_UNLOCK(devvp, 0);
1941 		ACQUIRE_LOCK(ump);
1942 		if (error != 0)
1943 			break;
1944 	}
1945 	ump->softdep_req = 0;
1946 	if (i == SU_WAITIDLE_RETRIES && error == 0 && ump->softdep_deps != 0) {
1947 		error = EBUSY;
1948 		printf("softdep_waitidle: Failed to flush worklist for %p\n",
1949 		    mp);
1950 	}
1951 	FREE_LOCK(ump);
1952 	return (error);
1953 }
1954 
1955 /*
1956  * Flush all vnodes and worklist items associated with a specified mount point.
1957  */
1958 int
1959 softdep_flushfiles(oldmnt, flags, td)
1960 	struct mount *oldmnt;
1961 	int flags;
1962 	struct thread *td;
1963 {
1964 #ifdef QUOTA
1965 	struct ufsmount *ump;
1966 	int i;
1967 #endif
1968 	int error, early, depcount, loopcnt, retry_flush_count, retry;
1969 	int morework;
1970 
1971 	KASSERT(MOUNTEDSOFTDEP(oldmnt) != 0,
1972 	    ("softdep_flushfiles called on non-softdep filesystem"));
1973 	loopcnt = 10;
1974 	retry_flush_count = 3;
1975 retry_flush:
1976 	error = 0;
1977 
1978 	/*
1979 	 * Alternately flush the vnodes associated with the mount
1980 	 * point and process any dependencies that the flushing
1981 	 * creates. In theory, this loop can happen at most twice,
1982 	 * but we give it a few extra just to be sure.
1983 	 */
1984 	for (; loopcnt > 0; loopcnt--) {
1985 		/*
1986 		 * Do another flush in case any vnodes were brought in
1987 		 * as part of the cleanup operations.
1988 		 */
1989 		early = retry_flush_count == 1 || (oldmnt->mnt_kern_flag &
1990 		    MNTK_UNMOUNT) == 0 ? 0 : EARLYFLUSH;
1991 		if ((error = ffs_flushfiles(oldmnt, flags | early, td)) != 0)
1992 			break;
1993 		if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 ||
1994 		    depcount == 0)
1995 			break;
1996 	}
1997 	/*
1998 	 * If we are unmounting then it is an error to fail. If we
1999 	 * are simply trying to downgrade to read-only, then filesystem
2000 	 * activity can keep us busy forever, so we just fail with EBUSY.
2001 	 */
2002 	if (loopcnt == 0) {
2003 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT)
2004 			panic("softdep_flushfiles: looping");
2005 		error = EBUSY;
2006 	}
2007 	if (!error)
2008 		error = softdep_waitidle(oldmnt, flags);
2009 	if (!error) {
2010 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) {
2011 			retry = 0;
2012 			MNT_ILOCK(oldmnt);
2013 			KASSERT((oldmnt->mnt_kern_flag & MNTK_NOINSMNTQ) != 0,
2014 			    ("softdep_flushfiles: !MNTK_NOINSMNTQ"));
2015 			morework = oldmnt->mnt_nvnodelistsize > 0;
2016 #ifdef QUOTA
2017 			ump = VFSTOUFS(oldmnt);
2018 			UFS_LOCK(ump);
2019 			for (i = 0; i < MAXQUOTAS; i++) {
2020 				if (ump->um_quotas[i] != NULLVP)
2021 					morework = 1;
2022 			}
2023 			UFS_UNLOCK(ump);
2024 #endif
2025 			if (morework) {
2026 				if (--retry_flush_count > 0) {
2027 					retry = 1;
2028 					loopcnt = 3;
2029 				} else
2030 					error = EBUSY;
2031 			}
2032 			MNT_IUNLOCK(oldmnt);
2033 			if (retry)
2034 				goto retry_flush;
2035 		}
2036 	}
2037 	return (error);
2038 }
2039 
2040 /*
2041  * Structure hashing.
2042  *
2043  * There are four types of structures that can be looked up:
2044  *	1) pagedep structures identified by mount point, inode number,
2045  *	   and logical block.
2046  *	2) inodedep structures identified by mount point and inode number.
2047  *	3) newblk structures identified by mount point and
2048  *	   physical block number.
2049  *	4) bmsafemap structures identified by mount point and
2050  *	   cylinder group number.
2051  *
2052  * The "pagedep" and "inodedep" dependency structures are hashed
2053  * separately from the file blocks and inodes to which they correspond.
2054  * This separation helps when the in-memory copy of an inode or
2055  * file block must be replaced. It also obviates the need to access
2056  * an inode or file page when simply updating (or de-allocating)
2057  * dependency structures. Lookup of newblk structures is needed to
2058  * find newly allocated blocks when trying to associate them with
2059  * their allocdirect or allocindir structure.
2060  *
2061  * The lookup routines optionally create and hash a new instance when
2062  * an existing entry is not found. The bmsafemap lookup routine always
2063  * allocates a new structure if an existing one is not found.
2064  */
2065 #define DEPALLOC	0x0001	/* allocate structure if lookup fails */
2066 
2067 /*
2068  * Structures and routines associated with pagedep caching.
2069  */
2070 #define	PAGEDEP_HASH(ump, inum, lbn) \
2071 	(&(ump)->pagedep_hashtbl[((inum) + (lbn)) & (ump)->pagedep_hash_size])
2072 
2073 static int
2074 pagedep_find(pagedephd, ino, lbn, pagedeppp)
2075 	struct pagedep_hashhead *pagedephd;
2076 	ino_t ino;
2077 	ufs_lbn_t lbn;
2078 	struct pagedep **pagedeppp;
2079 {
2080 	struct pagedep *pagedep;
2081 
2082 	LIST_FOREACH(pagedep, pagedephd, pd_hash) {
2083 		if (ino == pagedep->pd_ino && lbn == pagedep->pd_lbn) {
2084 			*pagedeppp = pagedep;
2085 			return (1);
2086 		}
2087 	}
2088 	*pagedeppp = NULL;
2089 	return (0);
2090 }
2091 /*
2092  * Look up a pagedep. Return 1 if found, 0 otherwise.
2093  * If not found, allocate if DEPALLOC flag is passed.
2094  * Found or allocated entry is returned in pagedeppp.
2095  * This routine must be called with splbio interrupts blocked.
2096  */
2097 static int
2098 pagedep_lookup(mp, bp, ino, lbn, flags, pagedeppp)
2099 	struct mount *mp;
2100 	struct buf *bp;
2101 	ino_t ino;
2102 	ufs_lbn_t lbn;
2103 	int flags;
2104 	struct pagedep **pagedeppp;
2105 {
2106 	struct pagedep *pagedep;
2107 	struct pagedep_hashhead *pagedephd;
2108 	struct worklist *wk;
2109 	struct ufsmount *ump;
2110 	int ret;
2111 	int i;
2112 
2113 	ump = VFSTOUFS(mp);
2114 	LOCK_OWNED(ump);
2115 	if (bp) {
2116 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
2117 			if (wk->wk_type == D_PAGEDEP) {
2118 				*pagedeppp = WK_PAGEDEP(wk);
2119 				return (1);
2120 			}
2121 		}
2122 	}
2123 	pagedephd = PAGEDEP_HASH(ump, ino, lbn);
2124 	ret = pagedep_find(pagedephd, ino, lbn, pagedeppp);
2125 	if (ret) {
2126 		if (((*pagedeppp)->pd_state & ONWORKLIST) == 0 && bp)
2127 			WORKLIST_INSERT(&bp->b_dep, &(*pagedeppp)->pd_list);
2128 		return (1);
2129 	}
2130 	if ((flags & DEPALLOC) == 0)
2131 		return (0);
2132 	FREE_LOCK(ump);
2133 	pagedep = malloc(sizeof(struct pagedep),
2134 	    M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO);
2135 	workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp);
2136 	ACQUIRE_LOCK(ump);
2137 	ret = pagedep_find(pagedephd, ino, lbn, pagedeppp);
2138 	if (*pagedeppp) {
2139 		/*
2140 		 * This should never happen since we only create pagedeps
2141 		 * with the vnode lock held.  Could be an assert.
2142 		 */
2143 		WORKITEM_FREE(pagedep, D_PAGEDEP);
2144 		return (ret);
2145 	}
2146 	pagedep->pd_ino = ino;
2147 	pagedep->pd_lbn = lbn;
2148 	LIST_INIT(&pagedep->pd_dirremhd);
2149 	LIST_INIT(&pagedep->pd_pendinghd);
2150 	for (i = 0; i < DAHASHSZ; i++)
2151 		LIST_INIT(&pagedep->pd_diraddhd[i]);
2152 	LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
2153 	WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
2154 	*pagedeppp = pagedep;
2155 	return (0);
2156 }
2157 
2158 /*
2159  * Structures and routines associated with inodedep caching.
2160  */
2161 #define	INODEDEP_HASH(ump, inum) \
2162       (&(ump)->inodedep_hashtbl[(inum) & (ump)->inodedep_hash_size])
2163 
2164 static int
2165 inodedep_find(inodedephd, inum, inodedeppp)
2166 	struct inodedep_hashhead *inodedephd;
2167 	ino_t inum;
2168 	struct inodedep **inodedeppp;
2169 {
2170 	struct inodedep *inodedep;
2171 
2172 	LIST_FOREACH(inodedep, inodedephd, id_hash)
2173 		if (inum == inodedep->id_ino)
2174 			break;
2175 	if (inodedep) {
2176 		*inodedeppp = inodedep;
2177 		return (1);
2178 	}
2179 	*inodedeppp = NULL;
2180 
2181 	return (0);
2182 }
2183 /*
2184  * Look up an inodedep. Return 1 if found, 0 if not found.
2185  * If not found, allocate if DEPALLOC flag is passed.
2186  * Found or allocated entry is returned in inodedeppp.
2187  * This routine must be called with splbio interrupts blocked.
2188  */
2189 static int
2190 inodedep_lookup(mp, inum, flags, inodedeppp)
2191 	struct mount *mp;
2192 	ino_t inum;
2193 	int flags;
2194 	struct inodedep **inodedeppp;
2195 {
2196 	struct inodedep *inodedep;
2197 	struct inodedep_hashhead *inodedephd;
2198 	struct ufsmount *ump;
2199 	struct fs *fs;
2200 
2201 	ump = VFSTOUFS(mp);
2202 	LOCK_OWNED(ump);
2203 	fs = ump->um_fs;
2204 	inodedephd = INODEDEP_HASH(ump, inum);
2205 
2206 	if (inodedep_find(inodedephd, inum, inodedeppp))
2207 		return (1);
2208 	if ((flags & DEPALLOC) == 0)
2209 		return (0);
2210 	/*
2211 	 * If the system is over its limit and our filesystem is
2212 	 * responsible for more than our share of that usage and
2213 	 * we are not in a rush, request some inodedep cleanup.
2214 	 */
2215 	if (softdep_excess_items(ump, D_INODEDEP))
2216 		schedule_cleanup(mp);
2217 	else
2218 		FREE_LOCK(ump);
2219 	inodedep = malloc(sizeof(struct inodedep),
2220 		M_INODEDEP, M_SOFTDEP_FLAGS);
2221 	workitem_alloc(&inodedep->id_list, D_INODEDEP, mp);
2222 	ACQUIRE_LOCK(ump);
2223 	if (inodedep_find(inodedephd, inum, inodedeppp)) {
2224 		WORKITEM_FREE(inodedep, D_INODEDEP);
2225 		return (1);
2226 	}
2227 	inodedep->id_fs = fs;
2228 	inodedep->id_ino = inum;
2229 	inodedep->id_state = ALLCOMPLETE;
2230 	inodedep->id_nlinkdelta = 0;
2231 	inodedep->id_savedino1 = NULL;
2232 	inodedep->id_savedsize = -1;
2233 	inodedep->id_savedextsize = -1;
2234 	inodedep->id_savednlink = -1;
2235 	inodedep->id_bmsafemap = NULL;
2236 	inodedep->id_mkdiradd = NULL;
2237 	LIST_INIT(&inodedep->id_dirremhd);
2238 	LIST_INIT(&inodedep->id_pendinghd);
2239 	LIST_INIT(&inodedep->id_inowait);
2240 	LIST_INIT(&inodedep->id_bufwait);
2241 	TAILQ_INIT(&inodedep->id_inoreflst);
2242 	TAILQ_INIT(&inodedep->id_inoupdt);
2243 	TAILQ_INIT(&inodedep->id_newinoupdt);
2244 	TAILQ_INIT(&inodedep->id_extupdt);
2245 	TAILQ_INIT(&inodedep->id_newextupdt);
2246 	TAILQ_INIT(&inodedep->id_freeblklst);
2247 	LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
2248 	*inodedeppp = inodedep;
2249 	return (0);
2250 }
2251 
2252 /*
2253  * Structures and routines associated with newblk caching.
2254  */
2255 #define	NEWBLK_HASH(ump, inum) \
2256 	(&(ump)->newblk_hashtbl[(inum) & (ump)->newblk_hash_size])
2257 
2258 static int
2259 newblk_find(newblkhd, newblkno, flags, newblkpp)
2260 	struct newblk_hashhead *newblkhd;
2261 	ufs2_daddr_t newblkno;
2262 	int flags;
2263 	struct newblk **newblkpp;
2264 {
2265 	struct newblk *newblk;
2266 
2267 	LIST_FOREACH(newblk, newblkhd, nb_hash) {
2268 		if (newblkno != newblk->nb_newblkno)
2269 			continue;
2270 		/*
2271 		 * If we're creating a new dependency don't match those that
2272 		 * have already been converted to allocdirects.  This is for
2273 		 * a frag extend.
2274 		 */
2275 		if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK)
2276 			continue;
2277 		break;
2278 	}
2279 	if (newblk) {
2280 		*newblkpp = newblk;
2281 		return (1);
2282 	}
2283 	*newblkpp = NULL;
2284 	return (0);
2285 }
2286 
2287 /*
2288  * Look up a newblk. Return 1 if found, 0 if not found.
2289  * If not found, allocate if DEPALLOC flag is passed.
2290  * Found or allocated entry is returned in newblkpp.
2291  */
2292 static int
2293 newblk_lookup(mp, newblkno, flags, newblkpp)
2294 	struct mount *mp;
2295 	ufs2_daddr_t newblkno;
2296 	int flags;
2297 	struct newblk **newblkpp;
2298 {
2299 	struct newblk *newblk;
2300 	struct newblk_hashhead *newblkhd;
2301 	struct ufsmount *ump;
2302 
2303 	ump = VFSTOUFS(mp);
2304 	LOCK_OWNED(ump);
2305 	newblkhd = NEWBLK_HASH(ump, newblkno);
2306 	if (newblk_find(newblkhd, newblkno, flags, newblkpp))
2307 		return (1);
2308 	if ((flags & DEPALLOC) == 0)
2309 		return (0);
2310 	if (softdep_excess_items(ump, D_NEWBLK) ||
2311 	    softdep_excess_items(ump, D_ALLOCDIRECT) ||
2312 	    softdep_excess_items(ump, D_ALLOCINDIR))
2313 		schedule_cleanup(mp);
2314 	else
2315 		FREE_LOCK(ump);
2316 	newblk = malloc(sizeof(union allblk), M_NEWBLK,
2317 	    M_SOFTDEP_FLAGS | M_ZERO);
2318 	workitem_alloc(&newblk->nb_list, D_NEWBLK, mp);
2319 	ACQUIRE_LOCK(ump);
2320 	if (newblk_find(newblkhd, newblkno, flags, newblkpp)) {
2321 		WORKITEM_FREE(newblk, D_NEWBLK);
2322 		return (1);
2323 	}
2324 	newblk->nb_freefrag = NULL;
2325 	LIST_INIT(&newblk->nb_indirdeps);
2326 	LIST_INIT(&newblk->nb_newdirblk);
2327 	LIST_INIT(&newblk->nb_jwork);
2328 	newblk->nb_state = ATTACHED;
2329 	newblk->nb_newblkno = newblkno;
2330 	LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
2331 	*newblkpp = newblk;
2332 	return (0);
2333 }
2334 
2335 /*
2336  * Structures and routines associated with freed indirect block caching.
2337  */
2338 #define	INDIR_HASH(ump, blkno) \
2339 	(&(ump)->indir_hashtbl[(blkno) & (ump)->indir_hash_size])
2340 
2341 /*
2342  * Lookup an indirect block in the indir hash table.  The freework is
2343  * removed and potentially freed.  The caller must do a blocking journal
2344  * write before writing to the blkno.
2345  */
2346 static int
2347 indirblk_lookup(mp, blkno)
2348 	struct mount *mp;
2349 	ufs2_daddr_t blkno;
2350 {
2351 	struct freework *freework;
2352 	struct indir_hashhead *wkhd;
2353 	struct ufsmount *ump;
2354 
2355 	ump = VFSTOUFS(mp);
2356 	wkhd = INDIR_HASH(ump, blkno);
2357 	TAILQ_FOREACH(freework, wkhd, fw_next) {
2358 		if (freework->fw_blkno != blkno)
2359 			continue;
2360 		indirblk_remove(freework);
2361 		return (1);
2362 	}
2363 	return (0);
2364 }
2365 
2366 /*
2367  * Insert an indirect block represented by freework into the indirblk
2368  * hash table so that it may prevent the block from being re-used prior
2369  * to the journal being written.
2370  */
2371 static void
2372 indirblk_insert(freework)
2373 	struct freework *freework;
2374 {
2375 	struct jblocks *jblocks;
2376 	struct jseg *jseg;
2377 	struct ufsmount *ump;
2378 
2379 	ump = VFSTOUFS(freework->fw_list.wk_mp);
2380 	jblocks = ump->softdep_jblocks;
2381 	jseg = TAILQ_LAST(&jblocks->jb_segs, jseglst);
2382 	if (jseg == NULL)
2383 		return;
2384 
2385 	LIST_INSERT_HEAD(&jseg->js_indirs, freework, fw_segs);
2386 	TAILQ_INSERT_HEAD(INDIR_HASH(ump, freework->fw_blkno), freework,
2387 	    fw_next);
2388 	freework->fw_state &= ~DEPCOMPLETE;
2389 }
2390 
2391 static void
2392 indirblk_remove(freework)
2393 	struct freework *freework;
2394 {
2395 	struct ufsmount *ump;
2396 
2397 	ump = VFSTOUFS(freework->fw_list.wk_mp);
2398 	LIST_REMOVE(freework, fw_segs);
2399 	TAILQ_REMOVE(INDIR_HASH(ump, freework->fw_blkno), freework, fw_next);
2400 	freework->fw_state |= DEPCOMPLETE;
2401 	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
2402 		WORKITEM_FREE(freework, D_FREEWORK);
2403 }
2404 
2405 /*
2406  * Executed during filesystem system initialization before
2407  * mounting any filesystems.
2408  */
2409 void
2410 softdep_initialize()
2411 {
2412 
2413 	TAILQ_INIT(&softdepmounts);
2414 #ifdef __LP64__
2415 	max_softdeps = desiredvnodes * 4;
2416 #else
2417 	max_softdeps = desiredvnodes * 2;
2418 #endif
2419 
2420 	/* initialise bioops hack */
2421 	bioops.io_start = softdep_disk_io_initiation;
2422 	bioops.io_complete = softdep_disk_write_complete;
2423 	bioops.io_deallocate = softdep_deallocate_dependencies;
2424 	bioops.io_countdeps = softdep_count_dependencies;
2425 	softdep_ast_cleanup = softdep_ast_cleanup_proc;
2426 
2427 	/* Initialize the callout with an mtx. */
2428 	callout_init_mtx(&softdep_callout, &lk, 0);
2429 }
2430 
2431 /*
2432  * Executed after all filesystems have been unmounted during
2433  * filesystem module unload.
2434  */
2435 void
2436 softdep_uninitialize()
2437 {
2438 
2439 	/* clear bioops hack */
2440 	bioops.io_start = NULL;
2441 	bioops.io_complete = NULL;
2442 	bioops.io_deallocate = NULL;
2443 	bioops.io_countdeps = NULL;
2444 	softdep_ast_cleanup = NULL;
2445 
2446 	callout_drain(&softdep_callout);
2447 }
2448 
2449 /*
2450  * Called at mount time to notify the dependency code that a
2451  * filesystem wishes to use it.
2452  */
2453 int
2454 softdep_mount(devvp, mp, fs, cred)
2455 	struct vnode *devvp;
2456 	struct mount *mp;
2457 	struct fs *fs;
2458 	struct ucred *cred;
2459 {
2460 	struct csum_total cstotal;
2461 	struct mount_softdeps *sdp;
2462 	struct ufsmount *ump;
2463 	struct cg *cgp;
2464 	struct buf *bp;
2465 	int i, error, cyl;
2466 
2467 	sdp = malloc(sizeof(struct mount_softdeps), M_MOUNTDATA,
2468 	    M_WAITOK | M_ZERO);
2469 	MNT_ILOCK(mp);
2470 	mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP;
2471 	if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) {
2472 		mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) |
2473 			MNTK_SOFTDEP | MNTK_NOASYNC;
2474 	}
2475 	ump = VFSTOUFS(mp);
2476 	ump->um_softdep = sdp;
2477 	MNT_IUNLOCK(mp);
2478 	rw_init(LOCK_PTR(ump), "Per-Filesystem Softdep Lock");
2479 	sdp->sd_ump = ump;
2480 	LIST_INIT(&ump->softdep_workitem_pending);
2481 	LIST_INIT(&ump->softdep_journal_pending);
2482 	TAILQ_INIT(&ump->softdep_unlinked);
2483 	LIST_INIT(&ump->softdep_dirtycg);
2484 	ump->softdep_worklist_tail = NULL;
2485 	ump->softdep_on_worklist = 0;
2486 	ump->softdep_deps = 0;
2487 	LIST_INIT(&ump->softdep_mkdirlisthd);
2488 	ump->pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP,
2489 	    &ump->pagedep_hash_size);
2490 	ump->pagedep_nextclean = 0;
2491 	ump->inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP,
2492 	    &ump->inodedep_hash_size);
2493 	ump->inodedep_nextclean = 0;
2494 	ump->newblk_hashtbl = hashinit(max_softdeps / 2,  M_NEWBLK,
2495 	    &ump->newblk_hash_size);
2496 	ump->bmsafemap_hashtbl = hashinit(1024, M_BMSAFEMAP,
2497 	    &ump->bmsafemap_hash_size);
2498 	i = 1 << (ffs(desiredvnodes / 10) - 1);
2499 	ump->indir_hashtbl = malloc(i * sizeof(struct indir_hashhead),
2500 	    M_FREEWORK, M_WAITOK);
2501 	ump->indir_hash_size = i - 1;
2502 	for (i = 0; i <= ump->indir_hash_size; i++)
2503 		TAILQ_INIT(&ump->indir_hashtbl[i]);
2504 	ACQUIRE_GBLLOCK(&lk);
2505 	TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next);
2506 	FREE_GBLLOCK(&lk);
2507 	if ((fs->fs_flags & FS_SUJ) &&
2508 	    (error = journal_mount(mp, fs, cred)) != 0) {
2509 		printf("Failed to start journal: %d\n", error);
2510 		softdep_unmount(mp);
2511 		return (error);
2512 	}
2513 	/*
2514 	 * Start our flushing thread in the bufdaemon process.
2515 	 */
2516 	ACQUIRE_LOCK(ump);
2517 	ump->softdep_flags |= FLUSH_STARTING;
2518 	FREE_LOCK(ump);
2519 	kproc_kthread_add(&softdep_flush, mp, &bufdaemonproc,
2520 	    &ump->softdep_flushtd, 0, 0, "softdepflush", "%s worker",
2521 	    mp->mnt_stat.f_mntonname);
2522 	ACQUIRE_LOCK(ump);
2523 	while ((ump->softdep_flags & FLUSH_STARTING) != 0) {
2524 		msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM, "sdstart",
2525 		    hz / 2);
2526 	}
2527 	FREE_LOCK(ump);
2528 	/*
2529 	 * When doing soft updates, the counters in the
2530 	 * superblock may have gotten out of sync. Recomputation
2531 	 * can take a long time and can be deferred for background
2532 	 * fsck.  However, the old behavior of scanning the cylinder
2533 	 * groups and recalculating them at mount time is available
2534 	 * by setting vfs.ffs.compute_summary_at_mount to one.
2535 	 */
2536 	if (compute_summary_at_mount == 0 || fs->fs_clean != 0)
2537 		return (0);
2538 	bzero(&cstotal, sizeof cstotal);
2539 	for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
2540 		if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)),
2541 		    fs->fs_cgsize, cred, &bp)) != 0) {
2542 			brelse(bp);
2543 			softdep_unmount(mp);
2544 			return (error);
2545 		}
2546 		cgp = (struct cg *)bp->b_data;
2547 		cstotal.cs_nffree += cgp->cg_cs.cs_nffree;
2548 		cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree;
2549 		cstotal.cs_nifree += cgp->cg_cs.cs_nifree;
2550 		cstotal.cs_ndir += cgp->cg_cs.cs_ndir;
2551 		fs->fs_cs(fs, cyl) = cgp->cg_cs;
2552 		brelse(bp);
2553 	}
2554 #ifdef DEBUG
2555 	if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
2556 		printf("%s: superblock summary recomputed\n", fs->fs_fsmnt);
2557 #endif
2558 	bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
2559 	return (0);
2560 }
2561 
2562 void
2563 softdep_unmount(mp)
2564 	struct mount *mp;
2565 {
2566 	struct ufsmount *ump;
2567 #ifdef INVARIANTS
2568 	int i;
2569 #endif
2570 
2571 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
2572 	    ("softdep_unmount called on non-softdep filesystem"));
2573 	ump = VFSTOUFS(mp);
2574 	MNT_ILOCK(mp);
2575 	mp->mnt_flag &= ~MNT_SOFTDEP;
2576 	if (MOUNTEDSUJ(mp) == 0) {
2577 		MNT_IUNLOCK(mp);
2578 	} else {
2579 		mp->mnt_flag &= ~MNT_SUJ;
2580 		MNT_IUNLOCK(mp);
2581 		journal_unmount(ump);
2582 	}
2583 	/*
2584 	 * Shut down our flushing thread. Check for NULL is if
2585 	 * softdep_mount errors out before the thread has been created.
2586 	 */
2587 	if (ump->softdep_flushtd != NULL) {
2588 		ACQUIRE_LOCK(ump);
2589 		ump->softdep_flags |= FLUSH_EXIT;
2590 		wakeup(&ump->softdep_flushtd);
2591 		msleep(&ump->softdep_flags, LOCK_PTR(ump), PVM | PDROP,
2592 		    "sdwait", 0);
2593 		KASSERT((ump->softdep_flags & FLUSH_EXIT) == 0,
2594 		    ("Thread shutdown failed"));
2595 	}
2596 	/*
2597 	 * Free up our resources.
2598 	 */
2599 	ACQUIRE_GBLLOCK(&lk);
2600 	TAILQ_REMOVE(&softdepmounts, ump->um_softdep, sd_next);
2601 	FREE_GBLLOCK(&lk);
2602 	rw_destroy(LOCK_PTR(ump));
2603 	hashdestroy(ump->pagedep_hashtbl, M_PAGEDEP, ump->pagedep_hash_size);
2604 	hashdestroy(ump->inodedep_hashtbl, M_INODEDEP, ump->inodedep_hash_size);
2605 	hashdestroy(ump->newblk_hashtbl, M_NEWBLK, ump->newblk_hash_size);
2606 	hashdestroy(ump->bmsafemap_hashtbl, M_BMSAFEMAP,
2607 	    ump->bmsafemap_hash_size);
2608 	free(ump->indir_hashtbl, M_FREEWORK);
2609 #ifdef INVARIANTS
2610 	for (i = 0; i <= D_LAST; i++)
2611 		KASSERT(ump->softdep_curdeps[i] == 0,
2612 		    ("Unmount %s: Dep type %s != 0 (%ld)", ump->um_fs->fs_fsmnt,
2613 		    TYPENAME(i), ump->softdep_curdeps[i]));
2614 #endif
2615 	free(ump->um_softdep, M_MOUNTDATA);
2616 }
2617 
2618 static struct jblocks *
2619 jblocks_create(void)
2620 {
2621 	struct jblocks *jblocks;
2622 
2623 	jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO);
2624 	TAILQ_INIT(&jblocks->jb_segs);
2625 	jblocks->jb_avail = 10;
2626 	jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2627 	    M_JBLOCKS, M_WAITOK | M_ZERO);
2628 
2629 	return (jblocks);
2630 }
2631 
2632 static ufs2_daddr_t
2633 jblocks_alloc(jblocks, bytes, actual)
2634 	struct jblocks *jblocks;
2635 	int bytes;
2636 	int *actual;
2637 {
2638 	ufs2_daddr_t daddr;
2639 	struct jextent *jext;
2640 	int freecnt;
2641 	int blocks;
2642 
2643 	blocks = bytes / DEV_BSIZE;
2644 	jext = &jblocks->jb_extent[jblocks->jb_head];
2645 	freecnt = jext->je_blocks - jblocks->jb_off;
2646 	if (freecnt == 0) {
2647 		jblocks->jb_off = 0;
2648 		if (++jblocks->jb_head > jblocks->jb_used)
2649 			jblocks->jb_head = 0;
2650 		jext = &jblocks->jb_extent[jblocks->jb_head];
2651 		freecnt = jext->je_blocks;
2652 	}
2653 	if (freecnt > blocks)
2654 		freecnt = blocks;
2655 	*actual = freecnt * DEV_BSIZE;
2656 	daddr = jext->je_daddr + jblocks->jb_off;
2657 	jblocks->jb_off += freecnt;
2658 	jblocks->jb_free -= freecnt;
2659 
2660 	return (daddr);
2661 }
2662 
2663 static void
2664 jblocks_free(jblocks, mp, bytes)
2665 	struct jblocks *jblocks;
2666 	struct mount *mp;
2667 	int bytes;
2668 {
2669 
2670 	LOCK_OWNED(VFSTOUFS(mp));
2671 	jblocks->jb_free += bytes / DEV_BSIZE;
2672 	if (jblocks->jb_suspended)
2673 		worklist_speedup(mp);
2674 	wakeup(jblocks);
2675 }
2676 
2677 static void
2678 jblocks_destroy(jblocks)
2679 	struct jblocks *jblocks;
2680 {
2681 
2682 	if (jblocks->jb_extent)
2683 		free(jblocks->jb_extent, M_JBLOCKS);
2684 	free(jblocks, M_JBLOCKS);
2685 }
2686 
2687 static void
2688 jblocks_add(jblocks, daddr, blocks)
2689 	struct jblocks *jblocks;
2690 	ufs2_daddr_t daddr;
2691 	int blocks;
2692 {
2693 	struct jextent *jext;
2694 
2695 	jblocks->jb_blocks += blocks;
2696 	jblocks->jb_free += blocks;
2697 	jext = &jblocks->jb_extent[jblocks->jb_used];
2698 	/* Adding the first block. */
2699 	if (jext->je_daddr == 0) {
2700 		jext->je_daddr = daddr;
2701 		jext->je_blocks = blocks;
2702 		return;
2703 	}
2704 	/* Extending the last extent. */
2705 	if (jext->je_daddr + jext->je_blocks == daddr) {
2706 		jext->je_blocks += blocks;
2707 		return;
2708 	}
2709 	/* Adding a new extent. */
2710 	if (++jblocks->jb_used == jblocks->jb_avail) {
2711 		jblocks->jb_avail *= 2;
2712 		jext = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2713 		    M_JBLOCKS, M_WAITOK | M_ZERO);
2714 		memcpy(jext, jblocks->jb_extent,
2715 		    sizeof(struct jextent) * jblocks->jb_used);
2716 		free(jblocks->jb_extent, M_JBLOCKS);
2717 		jblocks->jb_extent = jext;
2718 	}
2719 	jext = &jblocks->jb_extent[jblocks->jb_used];
2720 	jext->je_daddr = daddr;
2721 	jext->je_blocks = blocks;
2722 	return;
2723 }
2724 
2725 int
2726 softdep_journal_lookup(mp, vpp)
2727 	struct mount *mp;
2728 	struct vnode **vpp;
2729 {
2730 	struct componentname cnp;
2731 	struct vnode *dvp;
2732 	ino_t sujournal;
2733 	int error;
2734 
2735 	error = VFS_VGET(mp, ROOTINO, LK_EXCLUSIVE, &dvp);
2736 	if (error)
2737 		return (error);
2738 	bzero(&cnp, sizeof(cnp));
2739 	cnp.cn_nameiop = LOOKUP;
2740 	cnp.cn_flags = ISLASTCN;
2741 	cnp.cn_thread = curthread;
2742 	cnp.cn_cred = curthread->td_ucred;
2743 	cnp.cn_pnbuf = SUJ_FILE;
2744 	cnp.cn_nameptr = SUJ_FILE;
2745 	cnp.cn_namelen = strlen(SUJ_FILE);
2746 	error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal);
2747 	vput(dvp);
2748 	if (error != 0)
2749 		return (error);
2750 	error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp);
2751 	return (error);
2752 }
2753 
2754 /*
2755  * Open and verify the journal file.
2756  */
2757 static int
2758 journal_mount(mp, fs, cred)
2759 	struct mount *mp;
2760 	struct fs *fs;
2761 	struct ucred *cred;
2762 {
2763 	struct jblocks *jblocks;
2764 	struct ufsmount *ump;
2765 	struct vnode *vp;
2766 	struct inode *ip;
2767 	ufs2_daddr_t blkno;
2768 	int bcount;
2769 	int error;
2770 	int i;
2771 
2772 	ump = VFSTOUFS(mp);
2773 	ump->softdep_journal_tail = NULL;
2774 	ump->softdep_on_journal = 0;
2775 	ump->softdep_accdeps = 0;
2776 	ump->softdep_req = 0;
2777 	ump->softdep_jblocks = NULL;
2778 	error = softdep_journal_lookup(mp, &vp);
2779 	if (error != 0) {
2780 		printf("Failed to find journal.  Use tunefs to create one\n");
2781 		return (error);
2782 	}
2783 	ip = VTOI(vp);
2784 	if (ip->i_size < SUJ_MIN) {
2785 		error = ENOSPC;
2786 		goto out;
2787 	}
2788 	bcount = lblkno(fs, ip->i_size);	/* Only use whole blocks. */
2789 	jblocks = jblocks_create();
2790 	for (i = 0; i < bcount; i++) {
2791 		error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL);
2792 		if (error)
2793 			break;
2794 		jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag));
2795 	}
2796 	if (error) {
2797 		jblocks_destroy(jblocks);
2798 		goto out;
2799 	}
2800 	jblocks->jb_low = jblocks->jb_free / 3;	/* Reserve 33%. */
2801 	jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */
2802 	ump->softdep_jblocks = jblocks;
2803 out:
2804 	if (error == 0) {
2805 		MNT_ILOCK(mp);
2806 		mp->mnt_flag |= MNT_SUJ;
2807 		mp->mnt_flag &= ~MNT_SOFTDEP;
2808 		MNT_IUNLOCK(mp);
2809 		/*
2810 		 * Only validate the journal contents if the
2811 		 * filesystem is clean, otherwise we write the logs
2812 		 * but they'll never be used.  If the filesystem was
2813 		 * still dirty when we mounted it the journal is
2814 		 * invalid and a new journal can only be valid if it
2815 		 * starts from a clean mount.
2816 		 */
2817 		if (fs->fs_clean) {
2818 			DIP_SET(ip, i_modrev, fs->fs_mtime);
2819 			ip->i_flags |= IN_MODIFIED;
2820 			ffs_update(vp, 1);
2821 		}
2822 	}
2823 	vput(vp);
2824 	return (error);
2825 }
2826 
2827 static void
2828 journal_unmount(ump)
2829 	struct ufsmount *ump;
2830 {
2831 
2832 	if (ump->softdep_jblocks)
2833 		jblocks_destroy(ump->softdep_jblocks);
2834 	ump->softdep_jblocks = NULL;
2835 }
2836 
2837 /*
2838  * Called when a journal record is ready to be written.  Space is allocated
2839  * and the journal entry is created when the journal is flushed to stable
2840  * store.
2841  */
2842 static void
2843 add_to_journal(wk)
2844 	struct worklist *wk;
2845 {
2846 	struct ufsmount *ump;
2847 
2848 	ump = VFSTOUFS(wk->wk_mp);
2849 	LOCK_OWNED(ump);
2850 	if (wk->wk_state & ONWORKLIST)
2851 		panic("add_to_journal: %s(0x%X) already on list",
2852 		    TYPENAME(wk->wk_type), wk->wk_state);
2853 	wk->wk_state |= ONWORKLIST | DEPCOMPLETE;
2854 	if (LIST_EMPTY(&ump->softdep_journal_pending)) {
2855 		ump->softdep_jblocks->jb_age = ticks;
2856 		LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list);
2857 	} else
2858 		LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list);
2859 	ump->softdep_journal_tail = wk;
2860 	ump->softdep_on_journal += 1;
2861 }
2862 
2863 /*
2864  * Remove an arbitrary item for the journal worklist maintain the tail
2865  * pointer.  This happens when a new operation obviates the need to
2866  * journal an old operation.
2867  */
2868 static void
2869 remove_from_journal(wk)
2870 	struct worklist *wk;
2871 {
2872 	struct ufsmount *ump;
2873 
2874 	ump = VFSTOUFS(wk->wk_mp);
2875 	LOCK_OWNED(ump);
2876 #ifdef SUJ_DEBUG
2877 	{
2878 		struct worklist *wkn;
2879 
2880 		LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list)
2881 			if (wkn == wk)
2882 				break;
2883 		if (wkn == NULL)
2884 			panic("remove_from_journal: %p is not in journal", wk);
2885 	}
2886 #endif
2887 	/*
2888 	 * We emulate a TAILQ to save space in most structures which do not
2889 	 * require TAILQ semantics.  Here we must update the tail position
2890 	 * when removing the tail which is not the final entry. This works
2891 	 * only if the worklist linkage are at the beginning of the structure.
2892 	 */
2893 	if (ump->softdep_journal_tail == wk)
2894 		ump->softdep_journal_tail =
2895 		    (struct worklist *)wk->wk_list.le_prev;
2896 
2897 	WORKLIST_REMOVE(wk);
2898 	ump->softdep_on_journal -= 1;
2899 }
2900 
2901 /*
2902  * Check for journal space as well as dependency limits so the prelink
2903  * code can throttle both journaled and non-journaled filesystems.
2904  * Threshold is 0 for low and 1 for min.
2905  */
2906 static int
2907 journal_space(ump, thresh)
2908 	struct ufsmount *ump;
2909 	int thresh;
2910 {
2911 	struct jblocks *jblocks;
2912 	int limit, avail;
2913 
2914 	jblocks = ump->softdep_jblocks;
2915 	if (jblocks == NULL)
2916 		return (1);
2917 	/*
2918 	 * We use a tighter restriction here to prevent request_cleanup()
2919 	 * running in threads from running into locks we currently hold.
2920 	 * We have to be over the limit and our filesystem has to be
2921 	 * responsible for more than our share of that usage.
2922 	 */
2923 	limit = (max_softdeps / 10) * 9;
2924 	if (dep_current[D_INODEDEP] > limit &&
2925 	    ump->softdep_curdeps[D_INODEDEP] > limit / stat_flush_threads)
2926 		return (0);
2927 	if (thresh)
2928 		thresh = jblocks->jb_min;
2929 	else
2930 		thresh = jblocks->jb_low;
2931 	avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE;
2932 	avail = jblocks->jb_free - avail;
2933 
2934 	return (avail > thresh);
2935 }
2936 
2937 static void
2938 journal_suspend(ump)
2939 	struct ufsmount *ump;
2940 {
2941 	struct jblocks *jblocks;
2942 	struct mount *mp;
2943 
2944 	mp = UFSTOVFS(ump);
2945 	jblocks = ump->softdep_jblocks;
2946 	MNT_ILOCK(mp);
2947 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
2948 		stat_journal_min++;
2949 		mp->mnt_kern_flag |= MNTK_SUSPEND;
2950 		mp->mnt_susp_owner = ump->softdep_flushtd;
2951 	}
2952 	jblocks->jb_suspended = 1;
2953 	MNT_IUNLOCK(mp);
2954 }
2955 
2956 static int
2957 journal_unsuspend(struct ufsmount *ump)
2958 {
2959 	struct jblocks *jblocks;
2960 	struct mount *mp;
2961 
2962 	mp = UFSTOVFS(ump);
2963 	jblocks = ump->softdep_jblocks;
2964 
2965 	if (jblocks != NULL && jblocks->jb_suspended &&
2966 	    journal_space(ump, jblocks->jb_min)) {
2967 		jblocks->jb_suspended = 0;
2968 		FREE_LOCK(ump);
2969 		mp->mnt_susp_owner = curthread;
2970 		vfs_write_resume(mp, 0);
2971 		ACQUIRE_LOCK(ump);
2972 		return (1);
2973 	}
2974 	return (0);
2975 }
2976 
2977 /*
2978  * Called before any allocation function to be certain that there is
2979  * sufficient space in the journal prior to creating any new records.
2980  * Since in the case of block allocation we may have multiple locked
2981  * buffers at the time of the actual allocation we can not block
2982  * when the journal records are created.  Doing so would create a deadlock
2983  * if any of these buffers needed to be flushed to reclaim space.  Instead
2984  * we require a sufficiently large amount of available space such that
2985  * each thread in the system could have passed this allocation check and
2986  * still have sufficient free space.  With 20% of a minimum journal size
2987  * of 1MB we have 6553 records available.
2988  */
2989 int
2990 softdep_prealloc(vp, waitok)
2991 	struct vnode *vp;
2992 	int waitok;
2993 {
2994 	struct ufsmount *ump;
2995 
2996 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
2997 	    ("softdep_prealloc called on non-softdep filesystem"));
2998 	/*
2999 	 * Nothing to do if we are not running journaled soft updates.
3000 	 * If we currently hold the snapshot lock, we must avoid
3001 	 * handling other resources that could cause deadlock.  Do not
3002 	 * touch quotas vnode since it is typically recursed with
3003 	 * other vnode locks held.
3004 	 */
3005 	if (DOINGSUJ(vp) == 0 || IS_SNAPSHOT(VTOI(vp)) ||
3006 	    (vp->v_vflag & VV_SYSTEM) != 0)
3007 		return (0);
3008 	ump = VFSTOUFS(vp->v_mount);
3009 	ACQUIRE_LOCK(ump);
3010 	if (journal_space(ump, 0)) {
3011 		FREE_LOCK(ump);
3012 		return (0);
3013 	}
3014 	stat_journal_low++;
3015 	FREE_LOCK(ump);
3016 	if (waitok == MNT_NOWAIT)
3017 		return (ENOSPC);
3018 	/*
3019 	 * Attempt to sync this vnode once to flush any journal
3020 	 * work attached to it.
3021 	 */
3022 	if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0)
3023 		ffs_syncvnode(vp, waitok, 0);
3024 	ACQUIRE_LOCK(ump);
3025 	process_removes(vp);
3026 	process_truncates(vp);
3027 	if (journal_space(ump, 0) == 0) {
3028 		softdep_speedup(ump);
3029 		if (journal_space(ump, 1) == 0)
3030 			journal_suspend(ump);
3031 	}
3032 	FREE_LOCK(ump);
3033 
3034 	return (0);
3035 }
3036 
3037 /*
3038  * Before adjusting a link count on a vnode verify that we have sufficient
3039  * journal space.  If not, process operations that depend on the currently
3040  * locked pair of vnodes to try to flush space as the syncer, buf daemon,
3041  * and softdep flush threads can not acquire these locks to reclaim space.
3042  */
3043 static void
3044 softdep_prelink(dvp, vp)
3045 	struct vnode *dvp;
3046 	struct vnode *vp;
3047 {
3048 	struct ufsmount *ump;
3049 
3050 	ump = VFSTOUFS(dvp->v_mount);
3051 	LOCK_OWNED(ump);
3052 	/*
3053 	 * Nothing to do if we have sufficient journal space.
3054 	 * If we currently hold the snapshot lock, we must avoid
3055 	 * handling other resources that could cause deadlock.
3056 	 */
3057 	if (journal_space(ump, 0) || (vp && IS_SNAPSHOT(VTOI(vp))))
3058 		return;
3059 	stat_journal_low++;
3060 	FREE_LOCK(ump);
3061 	if (vp)
3062 		ffs_syncvnode(vp, MNT_NOWAIT, 0);
3063 	ffs_syncvnode(dvp, MNT_WAIT, 0);
3064 	ACQUIRE_LOCK(ump);
3065 	/* Process vp before dvp as it may create .. removes. */
3066 	if (vp) {
3067 		process_removes(vp);
3068 		process_truncates(vp);
3069 	}
3070 	process_removes(dvp);
3071 	process_truncates(dvp);
3072 	softdep_speedup(ump);
3073 	process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT);
3074 	if (journal_space(ump, 0) == 0) {
3075 		softdep_speedup(ump);
3076 		if (journal_space(ump, 1) == 0)
3077 			journal_suspend(ump);
3078 	}
3079 }
3080 
3081 static void
3082 jseg_write(ump, jseg, data)
3083 	struct ufsmount *ump;
3084 	struct jseg *jseg;
3085 	uint8_t *data;
3086 {
3087 	struct jsegrec *rec;
3088 
3089 	rec = (struct jsegrec *)data;
3090 	rec->jsr_seq = jseg->js_seq;
3091 	rec->jsr_oldest = jseg->js_oldseq;
3092 	rec->jsr_cnt = jseg->js_cnt;
3093 	rec->jsr_blocks = jseg->js_size / ump->um_devvp->v_bufobj.bo_bsize;
3094 	rec->jsr_crc = 0;
3095 	rec->jsr_time = ump->um_fs->fs_mtime;
3096 }
3097 
3098 static inline void
3099 inoref_write(inoref, jseg, rec)
3100 	struct inoref *inoref;
3101 	struct jseg *jseg;
3102 	struct jrefrec *rec;
3103 {
3104 
3105 	inoref->if_jsegdep->jd_seg = jseg;
3106 	rec->jr_ino = inoref->if_ino;
3107 	rec->jr_parent = inoref->if_parent;
3108 	rec->jr_nlink = inoref->if_nlink;
3109 	rec->jr_mode = inoref->if_mode;
3110 	rec->jr_diroff = inoref->if_diroff;
3111 }
3112 
3113 static void
3114 jaddref_write(jaddref, jseg, data)
3115 	struct jaddref *jaddref;
3116 	struct jseg *jseg;
3117 	uint8_t *data;
3118 {
3119 	struct jrefrec *rec;
3120 
3121 	rec = (struct jrefrec *)data;
3122 	rec->jr_op = JOP_ADDREF;
3123 	inoref_write(&jaddref->ja_ref, jseg, rec);
3124 }
3125 
3126 static void
3127 jremref_write(jremref, jseg, data)
3128 	struct jremref *jremref;
3129 	struct jseg *jseg;
3130 	uint8_t *data;
3131 {
3132 	struct jrefrec *rec;
3133 
3134 	rec = (struct jrefrec *)data;
3135 	rec->jr_op = JOP_REMREF;
3136 	inoref_write(&jremref->jr_ref, jseg, rec);
3137 }
3138 
3139 static void
3140 jmvref_write(jmvref, jseg, data)
3141 	struct jmvref *jmvref;
3142 	struct jseg *jseg;
3143 	uint8_t *data;
3144 {
3145 	struct jmvrec *rec;
3146 
3147 	rec = (struct jmvrec *)data;
3148 	rec->jm_op = JOP_MVREF;
3149 	rec->jm_ino = jmvref->jm_ino;
3150 	rec->jm_parent = jmvref->jm_parent;
3151 	rec->jm_oldoff = jmvref->jm_oldoff;
3152 	rec->jm_newoff = jmvref->jm_newoff;
3153 }
3154 
3155 static void
3156 jnewblk_write(jnewblk, jseg, data)
3157 	struct jnewblk *jnewblk;
3158 	struct jseg *jseg;
3159 	uint8_t *data;
3160 {
3161 	struct jblkrec *rec;
3162 
3163 	jnewblk->jn_jsegdep->jd_seg = jseg;
3164 	rec = (struct jblkrec *)data;
3165 	rec->jb_op = JOP_NEWBLK;
3166 	rec->jb_ino = jnewblk->jn_ino;
3167 	rec->jb_blkno = jnewblk->jn_blkno;
3168 	rec->jb_lbn = jnewblk->jn_lbn;
3169 	rec->jb_frags = jnewblk->jn_frags;
3170 	rec->jb_oldfrags = jnewblk->jn_oldfrags;
3171 }
3172 
3173 static void
3174 jfreeblk_write(jfreeblk, jseg, data)
3175 	struct jfreeblk *jfreeblk;
3176 	struct jseg *jseg;
3177 	uint8_t *data;
3178 {
3179 	struct jblkrec *rec;
3180 
3181 	jfreeblk->jf_dep.jb_jsegdep->jd_seg = jseg;
3182 	rec = (struct jblkrec *)data;
3183 	rec->jb_op = JOP_FREEBLK;
3184 	rec->jb_ino = jfreeblk->jf_ino;
3185 	rec->jb_blkno = jfreeblk->jf_blkno;
3186 	rec->jb_lbn = jfreeblk->jf_lbn;
3187 	rec->jb_frags = jfreeblk->jf_frags;
3188 	rec->jb_oldfrags = 0;
3189 }
3190 
3191 static void
3192 jfreefrag_write(jfreefrag, jseg, data)
3193 	struct jfreefrag *jfreefrag;
3194 	struct jseg *jseg;
3195 	uint8_t *data;
3196 {
3197 	struct jblkrec *rec;
3198 
3199 	jfreefrag->fr_jsegdep->jd_seg = jseg;
3200 	rec = (struct jblkrec *)data;
3201 	rec->jb_op = JOP_FREEBLK;
3202 	rec->jb_ino = jfreefrag->fr_ino;
3203 	rec->jb_blkno = jfreefrag->fr_blkno;
3204 	rec->jb_lbn = jfreefrag->fr_lbn;
3205 	rec->jb_frags = jfreefrag->fr_frags;
3206 	rec->jb_oldfrags = 0;
3207 }
3208 
3209 static void
3210 jtrunc_write(jtrunc, jseg, data)
3211 	struct jtrunc *jtrunc;
3212 	struct jseg *jseg;
3213 	uint8_t *data;
3214 {
3215 	struct jtrncrec *rec;
3216 
3217 	jtrunc->jt_dep.jb_jsegdep->jd_seg = jseg;
3218 	rec = (struct jtrncrec *)data;
3219 	rec->jt_op = JOP_TRUNC;
3220 	rec->jt_ino = jtrunc->jt_ino;
3221 	rec->jt_size = jtrunc->jt_size;
3222 	rec->jt_extsize = jtrunc->jt_extsize;
3223 }
3224 
3225 static void
3226 jfsync_write(jfsync, jseg, data)
3227 	struct jfsync *jfsync;
3228 	struct jseg *jseg;
3229 	uint8_t *data;
3230 {
3231 	struct jtrncrec *rec;
3232 
3233 	rec = (struct jtrncrec *)data;
3234 	rec->jt_op = JOP_SYNC;
3235 	rec->jt_ino = jfsync->jfs_ino;
3236 	rec->jt_size = jfsync->jfs_size;
3237 	rec->jt_extsize = jfsync->jfs_extsize;
3238 }
3239 
3240 static void
3241 softdep_flushjournal(mp)
3242 	struct mount *mp;
3243 {
3244 	struct jblocks *jblocks;
3245 	struct ufsmount *ump;
3246 
3247 	if (MOUNTEDSUJ(mp) == 0)
3248 		return;
3249 	ump = VFSTOUFS(mp);
3250 	jblocks = ump->softdep_jblocks;
3251 	ACQUIRE_LOCK(ump);
3252 	while (ump->softdep_on_journal) {
3253 		jblocks->jb_needseg = 1;
3254 		softdep_process_journal(mp, NULL, MNT_WAIT);
3255 	}
3256 	FREE_LOCK(ump);
3257 }
3258 
3259 static void softdep_synchronize_completed(struct bio *);
3260 static void softdep_synchronize(struct bio *, struct ufsmount *, void *);
3261 
3262 static void
3263 softdep_synchronize_completed(bp)
3264         struct bio *bp;
3265 {
3266 	struct jseg *oldest;
3267 	struct jseg *jseg;
3268 	struct ufsmount *ump;
3269 
3270 	/*
3271 	 * caller1 marks the last segment written before we issued the
3272 	 * synchronize cache.
3273 	 */
3274 	jseg = bp->bio_caller1;
3275 	if (jseg == NULL) {
3276 		g_destroy_bio(bp);
3277 		return;
3278 	}
3279 	ump = VFSTOUFS(jseg->js_list.wk_mp);
3280 	ACQUIRE_LOCK(ump);
3281 	oldest = NULL;
3282 	/*
3283 	 * Mark all the journal entries waiting on the synchronize cache
3284 	 * as completed so they may continue on.
3285 	 */
3286 	while (jseg != NULL && (jseg->js_state & COMPLETE) == 0) {
3287 		jseg->js_state |= COMPLETE;
3288 		oldest = jseg;
3289 		jseg = TAILQ_PREV(jseg, jseglst, js_next);
3290 	}
3291 	/*
3292 	 * Restart deferred journal entry processing from the oldest
3293 	 * completed jseg.
3294 	 */
3295 	if (oldest)
3296 		complete_jsegs(oldest);
3297 
3298 	FREE_LOCK(ump);
3299 	g_destroy_bio(bp);
3300 }
3301 
3302 /*
3303  * Send BIO_FLUSH/SYNCHRONIZE CACHE to the device to enforce write ordering
3304  * barriers.  The journal must be written prior to any blocks that depend
3305  * on it and the journal can not be released until the blocks have be
3306  * written.  This code handles both barriers simultaneously.
3307  */
3308 static void
3309 softdep_synchronize(bp, ump, caller1)
3310 	struct bio *bp;
3311 	struct ufsmount *ump;
3312 	void *caller1;
3313 {
3314 
3315 	bp->bio_cmd = BIO_FLUSH;
3316 	bp->bio_flags |= BIO_ORDERED;
3317 	bp->bio_data = NULL;
3318 	bp->bio_offset = ump->um_cp->provider->mediasize;
3319 	bp->bio_length = 0;
3320 	bp->bio_done = softdep_synchronize_completed;
3321 	bp->bio_caller1 = caller1;
3322 	g_io_request(bp,
3323 	    (struct g_consumer *)ump->um_devvp->v_bufobj.bo_private);
3324 }
3325 
3326 /*
3327  * Flush some journal records to disk.
3328  */
3329 static void
3330 softdep_process_journal(mp, needwk, flags)
3331 	struct mount *mp;
3332 	struct worklist *needwk;
3333 	int flags;
3334 {
3335 	struct jblocks *jblocks;
3336 	struct ufsmount *ump;
3337 	struct worklist *wk;
3338 	struct jseg *jseg;
3339 	struct buf *bp;
3340 	struct bio *bio;
3341 	uint8_t *data;
3342 	struct fs *fs;
3343 	int shouldflush;
3344 	int segwritten;
3345 	int jrecmin;	/* Minimum records per block. */
3346 	int jrecmax;	/* Maximum records per block. */
3347 	int size;
3348 	int cnt;
3349 	int off;
3350 	int devbsize;
3351 
3352 	if (MOUNTEDSUJ(mp) == 0)
3353 		return;
3354 	shouldflush = softdep_flushcache;
3355 	bio = NULL;
3356 	jseg = NULL;
3357 	ump = VFSTOUFS(mp);
3358 	LOCK_OWNED(ump);
3359 	fs = ump->um_fs;
3360 	jblocks = ump->softdep_jblocks;
3361 	devbsize = ump->um_devvp->v_bufobj.bo_bsize;
3362 	/*
3363 	 * We write anywhere between a disk block and fs block.  The upper
3364 	 * bound is picked to prevent buffer cache fragmentation and limit
3365 	 * processing time per I/O.
3366 	 */
3367 	jrecmin = (devbsize / JREC_SIZE) - 1; /* -1 for seg header */
3368 	jrecmax = (fs->fs_bsize / devbsize) * jrecmin;
3369 	segwritten = 0;
3370 	for (;;) {
3371 		cnt = ump->softdep_on_journal;
3372 		/*
3373 		 * Criteria for writing a segment:
3374 		 * 1) We have a full block.
3375 		 * 2) We're called from jwait() and haven't found the
3376 		 *    journal item yet.
3377 		 * 3) Always write if needseg is set.
3378 		 * 4) If we are called from process_worklist and have
3379 		 *    not yet written anything we write a partial block
3380 		 *    to enforce a 1 second maximum latency on journal
3381 		 *    entries.
3382 		 */
3383 		if (cnt < (jrecmax - 1) && needwk == NULL &&
3384 		    jblocks->jb_needseg == 0 && (segwritten || cnt == 0))
3385 			break;
3386 		cnt++;
3387 		/*
3388 		 * Verify some free journal space.  softdep_prealloc() should
3389 		 * guarantee that we don't run out so this is indicative of
3390 		 * a problem with the flow control.  Try to recover
3391 		 * gracefully in any event.
3392 		 */
3393 		while (jblocks->jb_free == 0) {
3394 			if (flags != MNT_WAIT)
3395 				break;
3396 			printf("softdep: Out of journal space!\n");
3397 			softdep_speedup(ump);
3398 			msleep(jblocks, LOCK_PTR(ump), PRIBIO, "jblocks", hz);
3399 		}
3400 		FREE_LOCK(ump);
3401 		jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS);
3402 		workitem_alloc(&jseg->js_list, D_JSEG, mp);
3403 		LIST_INIT(&jseg->js_entries);
3404 		LIST_INIT(&jseg->js_indirs);
3405 		jseg->js_state = ATTACHED;
3406 		if (shouldflush == 0)
3407 			jseg->js_state |= COMPLETE;
3408 		else if (bio == NULL)
3409 			bio = g_alloc_bio();
3410 		jseg->js_jblocks = jblocks;
3411 		bp = geteblk(fs->fs_bsize, 0);
3412 		ACQUIRE_LOCK(ump);
3413 		/*
3414 		 * If there was a race while we were allocating the block
3415 		 * and jseg the entry we care about was likely written.
3416 		 * We bail out in both the WAIT and NOWAIT case and assume
3417 		 * the caller will loop if the entry it cares about is
3418 		 * not written.
3419 		 */
3420 		cnt = ump->softdep_on_journal;
3421 		if (cnt + jblocks->jb_needseg == 0 || jblocks->jb_free == 0) {
3422 			bp->b_flags |= B_INVAL | B_NOCACHE;
3423 			WORKITEM_FREE(jseg, D_JSEG);
3424 			FREE_LOCK(ump);
3425 			brelse(bp);
3426 			ACQUIRE_LOCK(ump);
3427 			break;
3428 		}
3429 		/*
3430 		 * Calculate the disk block size required for the available
3431 		 * records rounded to the min size.
3432 		 */
3433 		if (cnt == 0)
3434 			size = devbsize;
3435 		else if (cnt < jrecmax)
3436 			size = howmany(cnt, jrecmin) * devbsize;
3437 		else
3438 			size = fs->fs_bsize;
3439 		/*
3440 		 * Allocate a disk block for this journal data and account
3441 		 * for truncation of the requested size if enough contiguous
3442 		 * space was not available.
3443 		 */
3444 		bp->b_blkno = jblocks_alloc(jblocks, size, &size);
3445 		bp->b_lblkno = bp->b_blkno;
3446 		bp->b_offset = bp->b_blkno * DEV_BSIZE;
3447 		bp->b_bcount = size;
3448 		bp->b_flags &= ~B_INVAL;
3449 		bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY;
3450 		/*
3451 		 * Initialize our jseg with cnt records.  Assign the next
3452 		 * sequence number to it and link it in-order.
3453 		 */
3454 		cnt = MIN(cnt, (size / devbsize) * jrecmin);
3455 		jseg->js_buf = bp;
3456 		jseg->js_cnt = cnt;
3457 		jseg->js_refs = cnt + 1;	/* Self ref. */
3458 		jseg->js_size = size;
3459 		jseg->js_seq = jblocks->jb_nextseq++;
3460 		if (jblocks->jb_oldestseg == NULL)
3461 			jblocks->jb_oldestseg = jseg;
3462 		jseg->js_oldseq = jblocks->jb_oldestseg->js_seq;
3463 		TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next);
3464 		if (jblocks->jb_writeseg == NULL)
3465 			jblocks->jb_writeseg = jseg;
3466 		/*
3467 		 * Start filling in records from the pending list.
3468 		 */
3469 		data = bp->b_data;
3470 		off = 0;
3471 
3472 		/*
3473 		 * Always put a header on the first block.
3474 		 * XXX As with below, there might not be a chance to get
3475 		 * into the loop.  Ensure that something valid is written.
3476 		 */
3477 		jseg_write(ump, jseg, data);
3478 		off += JREC_SIZE;
3479 		data = bp->b_data + off;
3480 
3481 		/*
3482 		 * XXX Something is wrong here.  There's no work to do,
3483 		 * but we need to perform and I/O and allow it to complete
3484 		 * anyways.
3485 		 */
3486 		if (LIST_EMPTY(&ump->softdep_journal_pending))
3487 			stat_emptyjblocks++;
3488 
3489 		while ((wk = LIST_FIRST(&ump->softdep_journal_pending))
3490 		    != NULL) {
3491 			if (cnt == 0)
3492 				break;
3493 			/* Place a segment header on every device block. */
3494 			if ((off % devbsize) == 0) {
3495 				jseg_write(ump, jseg, data);
3496 				off += JREC_SIZE;
3497 				data = bp->b_data + off;
3498 			}
3499 			if (wk == needwk)
3500 				needwk = NULL;
3501 			remove_from_journal(wk);
3502 			wk->wk_state |= INPROGRESS;
3503 			WORKLIST_INSERT(&jseg->js_entries, wk);
3504 			switch (wk->wk_type) {
3505 			case D_JADDREF:
3506 				jaddref_write(WK_JADDREF(wk), jseg, data);
3507 				break;
3508 			case D_JREMREF:
3509 				jremref_write(WK_JREMREF(wk), jseg, data);
3510 				break;
3511 			case D_JMVREF:
3512 				jmvref_write(WK_JMVREF(wk), jseg, data);
3513 				break;
3514 			case D_JNEWBLK:
3515 				jnewblk_write(WK_JNEWBLK(wk), jseg, data);
3516 				break;
3517 			case D_JFREEBLK:
3518 				jfreeblk_write(WK_JFREEBLK(wk), jseg, data);
3519 				break;
3520 			case D_JFREEFRAG:
3521 				jfreefrag_write(WK_JFREEFRAG(wk), jseg, data);
3522 				break;
3523 			case D_JTRUNC:
3524 				jtrunc_write(WK_JTRUNC(wk), jseg, data);
3525 				break;
3526 			case D_JFSYNC:
3527 				jfsync_write(WK_JFSYNC(wk), jseg, data);
3528 				break;
3529 			default:
3530 				panic("process_journal: Unknown type %s",
3531 				    TYPENAME(wk->wk_type));
3532 				/* NOTREACHED */
3533 			}
3534 			off += JREC_SIZE;
3535 			data = bp->b_data + off;
3536 			cnt--;
3537 		}
3538 
3539 		/* Clear any remaining space so we don't leak kernel data */
3540 		if (size > off)
3541 			bzero(data, size - off);
3542 
3543 		/*
3544 		 * Write this one buffer and continue.
3545 		 */
3546 		segwritten = 1;
3547 		jblocks->jb_needseg = 0;
3548 		WORKLIST_INSERT(&bp->b_dep, &jseg->js_list);
3549 		FREE_LOCK(ump);
3550 		pbgetvp(ump->um_devvp, bp);
3551 		/*
3552 		 * We only do the blocking wait once we find the journal
3553 		 * entry we're looking for.
3554 		 */
3555 		if (needwk == NULL && flags == MNT_WAIT)
3556 			bwrite(bp);
3557 		else
3558 			bawrite(bp);
3559 		ACQUIRE_LOCK(ump);
3560 	}
3561 	/*
3562 	 * If we wrote a segment issue a synchronize cache so the journal
3563 	 * is reflected on disk before the data is written.  Since reclaiming
3564 	 * journal space also requires writing a journal record this
3565 	 * process also enforces a barrier before reclamation.
3566 	 */
3567 	if (segwritten && shouldflush) {
3568 		softdep_synchronize(bio, ump,
3569 		    TAILQ_LAST(&jblocks->jb_segs, jseglst));
3570 	} else if (bio)
3571 		g_destroy_bio(bio);
3572 	/*
3573 	 * If we've suspended the filesystem because we ran out of journal
3574 	 * space either try to sync it here to make some progress or
3575 	 * unsuspend it if we already have.
3576 	 */
3577 	if (flags == 0 && jblocks->jb_suspended) {
3578 		if (journal_unsuspend(ump))
3579 			return;
3580 		FREE_LOCK(ump);
3581 		VFS_SYNC(mp, MNT_NOWAIT);
3582 		ffs_sbupdate(ump, MNT_WAIT, 0);
3583 		ACQUIRE_LOCK(ump);
3584 	}
3585 }
3586 
3587 /*
3588  * Complete a jseg, allowing all dependencies awaiting journal writes
3589  * to proceed.  Each journal dependency also attaches a jsegdep to dependent
3590  * structures so that the journal segment can be freed to reclaim space.
3591  */
3592 static void
3593 complete_jseg(jseg)
3594 	struct jseg *jseg;
3595 {
3596 	struct worklist *wk;
3597 	struct jmvref *jmvref;
3598 	int waiting;
3599 #ifdef INVARIANTS
3600 	int i = 0;
3601 #endif
3602 
3603 	while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) {
3604 		WORKLIST_REMOVE(wk);
3605 		waiting = wk->wk_state & IOWAITING;
3606 		wk->wk_state &= ~(INPROGRESS | IOWAITING);
3607 		wk->wk_state |= COMPLETE;
3608 		KASSERT(i++ < jseg->js_cnt,
3609 		    ("handle_written_jseg: overflow %d >= %d",
3610 		    i - 1, jseg->js_cnt));
3611 		switch (wk->wk_type) {
3612 		case D_JADDREF:
3613 			handle_written_jaddref(WK_JADDREF(wk));
3614 			break;
3615 		case D_JREMREF:
3616 			handle_written_jremref(WK_JREMREF(wk));
3617 			break;
3618 		case D_JMVREF:
3619 			rele_jseg(jseg);	/* No jsegdep. */
3620 			jmvref = WK_JMVREF(wk);
3621 			LIST_REMOVE(jmvref, jm_deps);
3622 			if ((jmvref->jm_pagedep->pd_state & ONWORKLIST) == 0)
3623 				free_pagedep(jmvref->jm_pagedep);
3624 			WORKITEM_FREE(jmvref, D_JMVREF);
3625 			break;
3626 		case D_JNEWBLK:
3627 			handle_written_jnewblk(WK_JNEWBLK(wk));
3628 			break;
3629 		case D_JFREEBLK:
3630 			handle_written_jblkdep(&WK_JFREEBLK(wk)->jf_dep);
3631 			break;
3632 		case D_JTRUNC:
3633 			handle_written_jblkdep(&WK_JTRUNC(wk)->jt_dep);
3634 			break;
3635 		case D_JFSYNC:
3636 			rele_jseg(jseg);	/* No jsegdep. */
3637 			WORKITEM_FREE(wk, D_JFSYNC);
3638 			break;
3639 		case D_JFREEFRAG:
3640 			handle_written_jfreefrag(WK_JFREEFRAG(wk));
3641 			break;
3642 		default:
3643 			panic("handle_written_jseg: Unknown type %s",
3644 			    TYPENAME(wk->wk_type));
3645 			/* NOTREACHED */
3646 		}
3647 		if (waiting)
3648 			wakeup(wk);
3649 	}
3650 	/* Release the self reference so the structure may be freed. */
3651 	rele_jseg(jseg);
3652 }
3653 
3654 /*
3655  * Determine which jsegs are ready for completion processing.  Waits for
3656  * synchronize cache to complete as well as forcing in-order completion
3657  * of journal entries.
3658  */
3659 static void
3660 complete_jsegs(jseg)
3661 	struct jseg *jseg;
3662 {
3663 	struct jblocks *jblocks;
3664 	struct jseg *jsegn;
3665 
3666 	jblocks = jseg->js_jblocks;
3667 	/*
3668 	 * Don't allow out of order completions.  If this isn't the first
3669 	 * block wait for it to write before we're done.
3670 	 */
3671 	if (jseg != jblocks->jb_writeseg)
3672 		return;
3673 	/* Iterate through available jsegs processing their entries. */
3674 	while (jseg && (jseg->js_state & ALLCOMPLETE) == ALLCOMPLETE) {
3675 		jblocks->jb_oldestwrseq = jseg->js_oldseq;
3676 		jsegn = TAILQ_NEXT(jseg, js_next);
3677 		complete_jseg(jseg);
3678 		jseg = jsegn;
3679 	}
3680 	jblocks->jb_writeseg = jseg;
3681 	/*
3682 	 * Attempt to free jsegs now that oldestwrseq may have advanced.
3683 	 */
3684 	free_jsegs(jblocks);
3685 }
3686 
3687 /*
3688  * Mark a jseg as DEPCOMPLETE and throw away the buffer.  Attempt to handle
3689  * the final completions.
3690  */
3691 static void
3692 handle_written_jseg(jseg, bp)
3693 	struct jseg *jseg;
3694 	struct buf *bp;
3695 {
3696 
3697 	if (jseg->js_refs == 0)
3698 		panic("handle_written_jseg: No self-reference on %p", jseg);
3699 	jseg->js_state |= DEPCOMPLETE;
3700 	/*
3701 	 * We'll never need this buffer again, set flags so it will be
3702 	 * discarded.
3703 	 */
3704 	bp->b_flags |= B_INVAL | B_NOCACHE;
3705 	pbrelvp(bp);
3706 	complete_jsegs(jseg);
3707 }
3708 
3709 static inline struct jsegdep *
3710 inoref_jseg(inoref)
3711 	struct inoref *inoref;
3712 {
3713 	struct jsegdep *jsegdep;
3714 
3715 	jsegdep = inoref->if_jsegdep;
3716 	inoref->if_jsegdep = NULL;
3717 
3718 	return (jsegdep);
3719 }
3720 
3721 /*
3722  * Called once a jremref has made it to stable store.  The jremref is marked
3723  * complete and we attempt to free it.  Any pagedeps writes sleeping waiting
3724  * for the jremref to complete will be awoken by free_jremref.
3725  */
3726 static void
3727 handle_written_jremref(jremref)
3728 	struct jremref *jremref;
3729 {
3730 	struct inodedep *inodedep;
3731 	struct jsegdep *jsegdep;
3732 	struct dirrem *dirrem;
3733 
3734 	/* Grab the jsegdep. */
3735 	jsegdep = inoref_jseg(&jremref->jr_ref);
3736 	/*
3737 	 * Remove us from the inoref list.
3738 	 */
3739 	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino,
3740 	    0, &inodedep) == 0)
3741 		panic("handle_written_jremref: Lost inodedep");
3742 	TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
3743 	/*
3744 	 * Complete the dirrem.
3745 	 */
3746 	dirrem = jremref->jr_dirrem;
3747 	jremref->jr_dirrem = NULL;
3748 	LIST_REMOVE(jremref, jr_deps);
3749 	jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT;
3750 	jwork_insert(&dirrem->dm_jwork, jsegdep);
3751 	if (LIST_EMPTY(&dirrem->dm_jremrefhd) &&
3752 	    (dirrem->dm_state & COMPLETE) != 0)
3753 		add_to_worklist(&dirrem->dm_list, 0);
3754 	free_jremref(jremref);
3755 }
3756 
3757 /*
3758  * Called once a jaddref has made it to stable store.  The dependency is
3759  * marked complete and any dependent structures are added to the inode
3760  * bufwait list to be completed as soon as it is written.  If a bitmap write
3761  * depends on this entry we move the inode into the inodedephd of the
3762  * bmsafemap dependency and attempt to remove the jaddref from the bmsafemap.
3763  */
3764 static void
3765 handle_written_jaddref(jaddref)
3766 	struct jaddref *jaddref;
3767 {
3768 	struct jsegdep *jsegdep;
3769 	struct inodedep *inodedep;
3770 	struct diradd *diradd;
3771 	struct mkdir *mkdir;
3772 
3773 	/* Grab the jsegdep. */
3774 	jsegdep = inoref_jseg(&jaddref->ja_ref);
3775 	mkdir = NULL;
3776 	diradd = NULL;
3777 	if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
3778 	    0, &inodedep) == 0)
3779 		panic("handle_written_jaddref: Lost inodedep.");
3780 	if (jaddref->ja_diradd == NULL)
3781 		panic("handle_written_jaddref: No dependency");
3782 	if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) {
3783 		diradd = jaddref->ja_diradd;
3784 		WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list);
3785 	} else if (jaddref->ja_state & MKDIR_PARENT) {
3786 		mkdir = jaddref->ja_mkdir;
3787 		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list);
3788 	} else if (jaddref->ja_state & MKDIR_BODY)
3789 		mkdir = jaddref->ja_mkdir;
3790 	else
3791 		panic("handle_written_jaddref: Unknown dependency %p",
3792 		    jaddref->ja_diradd);
3793 	jaddref->ja_diradd = NULL;	/* also clears ja_mkdir */
3794 	/*
3795 	 * Remove us from the inode list.
3796 	 */
3797 	TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps);
3798 	/*
3799 	 * The mkdir may be waiting on the jaddref to clear before freeing.
3800 	 */
3801 	if (mkdir) {
3802 		KASSERT(mkdir->md_list.wk_type == D_MKDIR,
3803 		    ("handle_written_jaddref: Incorrect type for mkdir %s",
3804 		    TYPENAME(mkdir->md_list.wk_type)));
3805 		mkdir->md_jaddref = NULL;
3806 		diradd = mkdir->md_diradd;
3807 		mkdir->md_state |= DEPCOMPLETE;
3808 		complete_mkdir(mkdir);
3809 	}
3810 	jwork_insert(&diradd->da_jwork, jsegdep);
3811 	if (jaddref->ja_state & NEWBLOCK) {
3812 		inodedep->id_state |= ONDEPLIST;
3813 		LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd,
3814 		    inodedep, id_deps);
3815 	}
3816 	free_jaddref(jaddref);
3817 }
3818 
3819 /*
3820  * Called once a jnewblk journal is written.  The allocdirect or allocindir
3821  * is placed in the bmsafemap to await notification of a written bitmap.  If
3822  * the operation was canceled we add the segdep to the appropriate
3823  * dependency to free the journal space once the canceling operation
3824  * completes.
3825  */
3826 static void
3827 handle_written_jnewblk(jnewblk)
3828 	struct jnewblk *jnewblk;
3829 {
3830 	struct bmsafemap *bmsafemap;
3831 	struct freefrag *freefrag;
3832 	struct freework *freework;
3833 	struct jsegdep *jsegdep;
3834 	struct newblk *newblk;
3835 
3836 	/* Grab the jsegdep. */
3837 	jsegdep = jnewblk->jn_jsegdep;
3838 	jnewblk->jn_jsegdep = NULL;
3839 	if (jnewblk->jn_dep == NULL)
3840 		panic("handle_written_jnewblk: No dependency for the segdep.");
3841 	switch (jnewblk->jn_dep->wk_type) {
3842 	case D_NEWBLK:
3843 	case D_ALLOCDIRECT:
3844 	case D_ALLOCINDIR:
3845 		/*
3846 		 * Add the written block to the bmsafemap so it can
3847 		 * be notified when the bitmap is on disk.
3848 		 */
3849 		newblk = WK_NEWBLK(jnewblk->jn_dep);
3850 		newblk->nb_jnewblk = NULL;
3851 		if ((newblk->nb_state & GOINGAWAY) == 0) {
3852 			bmsafemap = newblk->nb_bmsafemap;
3853 			newblk->nb_state |= ONDEPLIST;
3854 			LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk,
3855 			    nb_deps);
3856 		}
3857 		jwork_insert(&newblk->nb_jwork, jsegdep);
3858 		break;
3859 	case D_FREEFRAG:
3860 		/*
3861 		 * A newblock being removed by a freefrag when replaced by
3862 		 * frag extension.
3863 		 */
3864 		freefrag = WK_FREEFRAG(jnewblk->jn_dep);
3865 		freefrag->ff_jdep = NULL;
3866 		jwork_insert(&freefrag->ff_jwork, jsegdep);
3867 		break;
3868 	case D_FREEWORK:
3869 		/*
3870 		 * A direct block was removed by truncate.
3871 		 */
3872 		freework = WK_FREEWORK(jnewblk->jn_dep);
3873 		freework->fw_jnewblk = NULL;
3874 		jwork_insert(&freework->fw_freeblks->fb_jwork, jsegdep);
3875 		break;
3876 	default:
3877 		panic("handle_written_jnewblk: Unknown type %d.",
3878 		    jnewblk->jn_dep->wk_type);
3879 	}
3880 	jnewblk->jn_dep = NULL;
3881 	free_jnewblk(jnewblk);
3882 }
3883 
3884 /*
3885  * Cancel a jfreefrag that won't be needed, probably due to colliding with
3886  * an in-flight allocation that has not yet been committed.  Divorce us
3887  * from the freefrag and mark it DEPCOMPLETE so that it may be added
3888  * to the worklist.
3889  */
3890 static void
3891 cancel_jfreefrag(jfreefrag)
3892 	struct jfreefrag *jfreefrag;
3893 {
3894 	struct freefrag *freefrag;
3895 
3896 	if (jfreefrag->fr_jsegdep) {
3897 		free_jsegdep(jfreefrag->fr_jsegdep);
3898 		jfreefrag->fr_jsegdep = NULL;
3899 	}
3900 	freefrag = jfreefrag->fr_freefrag;
3901 	jfreefrag->fr_freefrag = NULL;
3902 	free_jfreefrag(jfreefrag);
3903 	freefrag->ff_state |= DEPCOMPLETE;
3904 	CTR1(KTR_SUJ, "cancel_jfreefrag: blkno %jd", freefrag->ff_blkno);
3905 }
3906 
3907 /*
3908  * Free a jfreefrag when the parent freefrag is rendered obsolete.
3909  */
3910 static void
3911 free_jfreefrag(jfreefrag)
3912 	struct jfreefrag *jfreefrag;
3913 {
3914 
3915 	if (jfreefrag->fr_state & INPROGRESS)
3916 		WORKLIST_REMOVE(&jfreefrag->fr_list);
3917 	else if (jfreefrag->fr_state & ONWORKLIST)
3918 		remove_from_journal(&jfreefrag->fr_list);
3919 	if (jfreefrag->fr_freefrag != NULL)
3920 		panic("free_jfreefrag:  Still attached to a freefrag.");
3921 	WORKITEM_FREE(jfreefrag, D_JFREEFRAG);
3922 }
3923 
3924 /*
3925  * Called when the journal write for a jfreefrag completes.  The parent
3926  * freefrag is added to the worklist if this completes its dependencies.
3927  */
3928 static void
3929 handle_written_jfreefrag(jfreefrag)
3930 	struct jfreefrag *jfreefrag;
3931 {
3932 	struct jsegdep *jsegdep;
3933 	struct freefrag *freefrag;
3934 
3935 	/* Grab the jsegdep. */
3936 	jsegdep = jfreefrag->fr_jsegdep;
3937 	jfreefrag->fr_jsegdep = NULL;
3938 	freefrag = jfreefrag->fr_freefrag;
3939 	if (freefrag == NULL)
3940 		panic("handle_written_jfreefrag: No freefrag.");
3941 	freefrag->ff_state |= DEPCOMPLETE;
3942 	freefrag->ff_jdep = NULL;
3943 	jwork_insert(&freefrag->ff_jwork, jsegdep);
3944 	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
3945 		add_to_worklist(&freefrag->ff_list, 0);
3946 	jfreefrag->fr_freefrag = NULL;
3947 	free_jfreefrag(jfreefrag);
3948 }
3949 
3950 /*
3951  * Called when the journal write for a jfreeblk completes.  The jfreeblk
3952  * is removed from the freeblks list of pending journal writes and the
3953  * jsegdep is moved to the freeblks jwork to be completed when all blocks
3954  * have been reclaimed.
3955  */
3956 static void
3957 handle_written_jblkdep(jblkdep)
3958 	struct jblkdep *jblkdep;
3959 {
3960 	struct freeblks *freeblks;
3961 	struct jsegdep *jsegdep;
3962 
3963 	/* Grab the jsegdep. */
3964 	jsegdep = jblkdep->jb_jsegdep;
3965 	jblkdep->jb_jsegdep = NULL;
3966 	freeblks = jblkdep->jb_freeblks;
3967 	LIST_REMOVE(jblkdep, jb_deps);
3968 	jwork_insert(&freeblks->fb_jwork, jsegdep);
3969 	/*
3970 	 * If the freeblks is all journaled, we can add it to the worklist.
3971 	 */
3972 	if (LIST_EMPTY(&freeblks->fb_jblkdephd) &&
3973 	    (freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
3974 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
3975 
3976 	free_jblkdep(jblkdep);
3977 }
3978 
3979 static struct jsegdep *
3980 newjsegdep(struct worklist *wk)
3981 {
3982 	struct jsegdep *jsegdep;
3983 
3984 	jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS);
3985 	workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp);
3986 	jsegdep->jd_seg = NULL;
3987 
3988 	return (jsegdep);
3989 }
3990 
3991 static struct jmvref *
3992 newjmvref(dp, ino, oldoff, newoff)
3993 	struct inode *dp;
3994 	ino_t ino;
3995 	off_t oldoff;
3996 	off_t newoff;
3997 {
3998 	struct jmvref *jmvref;
3999 
4000 	jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS);
4001 	workitem_alloc(&jmvref->jm_list, D_JMVREF, ITOVFS(dp));
4002 	jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE;
4003 	jmvref->jm_parent = dp->i_number;
4004 	jmvref->jm_ino = ino;
4005 	jmvref->jm_oldoff = oldoff;
4006 	jmvref->jm_newoff = newoff;
4007 
4008 	return (jmvref);
4009 }
4010 
4011 /*
4012  * Allocate a new jremref that tracks the removal of ip from dp with the
4013  * directory entry offset of diroff.  Mark the entry as ATTACHED and
4014  * DEPCOMPLETE as we have all the information required for the journal write
4015  * and the directory has already been removed from the buffer.  The caller
4016  * is responsible for linking the jremref into the pagedep and adding it
4017  * to the journal to write.  The MKDIR_PARENT flag is set if we're doing
4018  * a DOTDOT addition so handle_workitem_remove() can properly assign
4019  * the jsegdep when we're done.
4020  */
4021 static struct jremref *
4022 newjremref(struct dirrem *dirrem, struct inode *dp, struct inode *ip,
4023     off_t diroff, nlink_t nlink)
4024 {
4025 	struct jremref *jremref;
4026 
4027 	jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS);
4028 	workitem_alloc(&jremref->jr_list, D_JREMREF, ITOVFS(dp));
4029 	jremref->jr_state = ATTACHED;
4030 	newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff,
4031 	   nlink, ip->i_mode);
4032 	jremref->jr_dirrem = dirrem;
4033 
4034 	return (jremref);
4035 }
4036 
4037 static inline void
4038 newinoref(struct inoref *inoref, ino_t ino, ino_t parent, off_t diroff,
4039     nlink_t nlink, uint16_t mode)
4040 {
4041 
4042 	inoref->if_jsegdep = newjsegdep(&inoref->if_list);
4043 	inoref->if_diroff = diroff;
4044 	inoref->if_ino = ino;
4045 	inoref->if_parent = parent;
4046 	inoref->if_nlink = nlink;
4047 	inoref->if_mode = mode;
4048 }
4049 
4050 /*
4051  * Allocate a new jaddref to track the addition of ino to dp at diroff.  The
4052  * directory offset may not be known until later.  The caller is responsible
4053  * adding the entry to the journal when this information is available.  nlink
4054  * should be the link count prior to the addition and mode is only required
4055  * to have the correct FMT.
4056  */
4057 static struct jaddref *
4058 newjaddref(struct inode *dp, ino_t ino, off_t diroff, int16_t nlink,
4059     uint16_t mode)
4060 {
4061 	struct jaddref *jaddref;
4062 
4063 	jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS);
4064 	workitem_alloc(&jaddref->ja_list, D_JADDREF, ITOVFS(dp));
4065 	jaddref->ja_state = ATTACHED;
4066 	jaddref->ja_mkdir = NULL;
4067 	newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode);
4068 
4069 	return (jaddref);
4070 }
4071 
4072 /*
4073  * Create a new free dependency for a freework.  The caller is responsible
4074  * for adjusting the reference count when it has the lock held.  The freedep
4075  * will track an outstanding bitmap write that will ultimately clear the
4076  * freework to continue.
4077  */
4078 static struct freedep *
4079 newfreedep(struct freework *freework)
4080 {
4081 	struct freedep *freedep;
4082 
4083 	freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS);
4084 	workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp);
4085 	freedep->fd_freework = freework;
4086 
4087 	return (freedep);
4088 }
4089 
4090 /*
4091  * Free a freedep structure once the buffer it is linked to is written.  If
4092  * this is the last reference to the freework schedule it for completion.
4093  */
4094 static void
4095 free_freedep(freedep)
4096 	struct freedep *freedep;
4097 {
4098 	struct freework *freework;
4099 
4100 	freework = freedep->fd_freework;
4101 	freework->fw_freeblks->fb_cgwait--;
4102 	if (--freework->fw_ref == 0)
4103 		freework_enqueue(freework);
4104 	WORKITEM_FREE(freedep, D_FREEDEP);
4105 }
4106 
4107 /*
4108  * Allocate a new freework structure that may be a level in an indirect
4109  * when parent is not NULL or a top level block when it is.  The top level
4110  * freework structures are allocated without the per-filesystem lock held
4111  * and before the freeblks is visible outside of softdep_setup_freeblocks().
4112  */
4113 static struct freework *
4114 newfreework(ump, freeblks, parent, lbn, nb, frags, off, journal)
4115 	struct ufsmount *ump;
4116 	struct freeblks *freeblks;
4117 	struct freework *parent;
4118 	ufs_lbn_t lbn;
4119 	ufs2_daddr_t nb;
4120 	int frags;
4121 	int off;
4122 	int journal;
4123 {
4124 	struct freework *freework;
4125 
4126 	freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS);
4127 	workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp);
4128 	freework->fw_state = ATTACHED;
4129 	freework->fw_jnewblk = NULL;
4130 	freework->fw_freeblks = freeblks;
4131 	freework->fw_parent = parent;
4132 	freework->fw_lbn = lbn;
4133 	freework->fw_blkno = nb;
4134 	freework->fw_frags = frags;
4135 	freework->fw_indir = NULL;
4136 	freework->fw_ref = (MOUNTEDSUJ(UFSTOVFS(ump)) == 0 || lbn >= -NXADDR)
4137 		? 0 : NINDIR(ump->um_fs) + 1;
4138 	freework->fw_start = freework->fw_off = off;
4139 	if (journal)
4140 		newjfreeblk(freeblks, lbn, nb, frags);
4141 	if (parent == NULL) {
4142 		ACQUIRE_LOCK(ump);
4143 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
4144 		freeblks->fb_ref++;
4145 		FREE_LOCK(ump);
4146 	}
4147 
4148 	return (freework);
4149 }
4150 
4151 /*
4152  * Eliminate a jfreeblk for a block that does not need journaling.
4153  */
4154 static void
4155 cancel_jfreeblk(freeblks, blkno)
4156 	struct freeblks *freeblks;
4157 	ufs2_daddr_t blkno;
4158 {
4159 	struct jfreeblk *jfreeblk;
4160 	struct jblkdep *jblkdep;
4161 
4162 	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) {
4163 		if (jblkdep->jb_list.wk_type != D_JFREEBLK)
4164 			continue;
4165 		jfreeblk = WK_JFREEBLK(&jblkdep->jb_list);
4166 		if (jfreeblk->jf_blkno == blkno)
4167 			break;
4168 	}
4169 	if (jblkdep == NULL)
4170 		return;
4171 	CTR1(KTR_SUJ, "cancel_jfreeblk: blkno %jd", blkno);
4172 	free_jsegdep(jblkdep->jb_jsegdep);
4173 	LIST_REMOVE(jblkdep, jb_deps);
4174 	WORKITEM_FREE(jfreeblk, D_JFREEBLK);
4175 }
4176 
4177 /*
4178  * Allocate a new jfreeblk to journal top level block pointer when truncating
4179  * a file.  The caller must add this to the worklist when the per-filesystem
4180  * lock is held.
4181  */
4182 static struct jfreeblk *
4183 newjfreeblk(freeblks, lbn, blkno, frags)
4184 	struct freeblks *freeblks;
4185 	ufs_lbn_t lbn;
4186 	ufs2_daddr_t blkno;
4187 	int frags;
4188 {
4189 	struct jfreeblk *jfreeblk;
4190 
4191 	jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS);
4192 	workitem_alloc(&jfreeblk->jf_dep.jb_list, D_JFREEBLK,
4193 	    freeblks->fb_list.wk_mp);
4194 	jfreeblk->jf_dep.jb_jsegdep = newjsegdep(&jfreeblk->jf_dep.jb_list);
4195 	jfreeblk->jf_dep.jb_freeblks = freeblks;
4196 	jfreeblk->jf_ino = freeblks->fb_inum;
4197 	jfreeblk->jf_lbn = lbn;
4198 	jfreeblk->jf_blkno = blkno;
4199 	jfreeblk->jf_frags = frags;
4200 	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jfreeblk->jf_dep, jb_deps);
4201 
4202 	return (jfreeblk);
4203 }
4204 
4205 /*
4206  * The journal is only prepared to handle full-size block numbers, so we
4207  * have to adjust the record to reflect the change to a full-size block.
4208  * For example, suppose we have a block made up of fragments 8-15 and
4209  * want to free its last two fragments. We are given a request that says:
4210  *     FREEBLK ino=5, blkno=14, lbn=0, frags=2, oldfrags=0
4211  * where frags are the number of fragments to free and oldfrags are the
4212  * number of fragments to keep. To block align it, we have to change it to
4213  * have a valid full-size blkno, so it becomes:
4214  *     FREEBLK ino=5, blkno=8, lbn=0, frags=2, oldfrags=6
4215  */
4216 static void
4217 adjust_newfreework(freeblks, frag_offset)
4218 	struct freeblks *freeblks;
4219 	int frag_offset;
4220 {
4221 	struct jfreeblk *jfreeblk;
4222 
4223 	KASSERT((LIST_FIRST(&freeblks->fb_jblkdephd) != NULL &&
4224 	    LIST_FIRST(&freeblks->fb_jblkdephd)->jb_list.wk_type == D_JFREEBLK),
4225 	    ("adjust_newfreework: Missing freeblks dependency"));
4226 
4227 	jfreeblk = WK_JFREEBLK(LIST_FIRST(&freeblks->fb_jblkdephd));
4228 	jfreeblk->jf_blkno -= frag_offset;
4229 	jfreeblk->jf_frags += frag_offset;
4230 }
4231 
4232 /*
4233  * Allocate a new jtrunc to track a partial truncation.
4234  */
4235 static struct jtrunc *
4236 newjtrunc(freeblks, size, extsize)
4237 	struct freeblks *freeblks;
4238 	off_t size;
4239 	int extsize;
4240 {
4241 	struct jtrunc *jtrunc;
4242 
4243 	jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS);
4244 	workitem_alloc(&jtrunc->jt_dep.jb_list, D_JTRUNC,
4245 	    freeblks->fb_list.wk_mp);
4246 	jtrunc->jt_dep.jb_jsegdep = newjsegdep(&jtrunc->jt_dep.jb_list);
4247 	jtrunc->jt_dep.jb_freeblks = freeblks;
4248 	jtrunc->jt_ino = freeblks->fb_inum;
4249 	jtrunc->jt_size = size;
4250 	jtrunc->jt_extsize = extsize;
4251 	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jtrunc->jt_dep, jb_deps);
4252 
4253 	return (jtrunc);
4254 }
4255 
4256 /*
4257  * If we're canceling a new bitmap we have to search for another ref
4258  * to move into the bmsafemap dep.  This might be better expressed
4259  * with another structure.
4260  */
4261 static void
4262 move_newblock_dep(jaddref, inodedep)
4263 	struct jaddref *jaddref;
4264 	struct inodedep *inodedep;
4265 {
4266 	struct inoref *inoref;
4267 	struct jaddref *jaddrefn;
4268 
4269 	jaddrefn = NULL;
4270 	for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
4271 	    inoref = TAILQ_NEXT(inoref, if_deps)) {
4272 		if ((jaddref->ja_state & NEWBLOCK) &&
4273 		    inoref->if_list.wk_type == D_JADDREF) {
4274 			jaddrefn = (struct jaddref *)inoref;
4275 			break;
4276 		}
4277 	}
4278 	if (jaddrefn == NULL)
4279 		return;
4280 	jaddrefn->ja_state &= ~(ATTACHED | UNDONE);
4281 	jaddrefn->ja_state |= jaddref->ja_state &
4282 	    (ATTACHED | UNDONE | NEWBLOCK);
4283 	jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK);
4284 	jaddref->ja_state |= ATTACHED;
4285 	LIST_REMOVE(jaddref, ja_bmdeps);
4286 	LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn,
4287 	    ja_bmdeps);
4288 }
4289 
4290 /*
4291  * Cancel a jaddref either before it has been written or while it is being
4292  * written.  This happens when a link is removed before the add reaches
4293  * the disk.  The jaddref dependency is kept linked into the bmsafemap
4294  * and inode to prevent the link count or bitmap from reaching the disk
4295  * until handle_workitem_remove() re-adjusts the counts and bitmaps as
4296  * required.
4297  *
4298  * Returns 1 if the canceled addref requires journaling of the remove and
4299  * 0 otherwise.
4300  */
4301 static int
4302 cancel_jaddref(jaddref, inodedep, wkhd)
4303 	struct jaddref *jaddref;
4304 	struct inodedep *inodedep;
4305 	struct workhead *wkhd;
4306 {
4307 	struct inoref *inoref;
4308 	struct jsegdep *jsegdep;
4309 	int needsj;
4310 
4311 	KASSERT((jaddref->ja_state & COMPLETE) == 0,
4312 	    ("cancel_jaddref: Canceling complete jaddref"));
4313 	if (jaddref->ja_state & (INPROGRESS | COMPLETE))
4314 		needsj = 1;
4315 	else
4316 		needsj = 0;
4317 	if (inodedep == NULL)
4318 		if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
4319 		    0, &inodedep) == 0)
4320 			panic("cancel_jaddref: Lost inodedep");
4321 	/*
4322 	 * We must adjust the nlink of any reference operation that follows
4323 	 * us so that it is consistent with the in-memory reference.  This
4324 	 * ensures that inode nlink rollbacks always have the correct link.
4325 	 */
4326 	if (needsj == 0) {
4327 		for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
4328 		    inoref = TAILQ_NEXT(inoref, if_deps)) {
4329 			if (inoref->if_state & GOINGAWAY)
4330 				break;
4331 			inoref->if_nlink--;
4332 		}
4333 	}
4334 	jsegdep = inoref_jseg(&jaddref->ja_ref);
4335 	if (jaddref->ja_state & NEWBLOCK)
4336 		move_newblock_dep(jaddref, inodedep);
4337 	wake_worklist(&jaddref->ja_list);
4338 	jaddref->ja_mkdir = NULL;
4339 	if (jaddref->ja_state & INPROGRESS) {
4340 		jaddref->ja_state &= ~INPROGRESS;
4341 		WORKLIST_REMOVE(&jaddref->ja_list);
4342 		jwork_insert(wkhd, jsegdep);
4343 	} else {
4344 		free_jsegdep(jsegdep);
4345 		if (jaddref->ja_state & DEPCOMPLETE)
4346 			remove_from_journal(&jaddref->ja_list);
4347 	}
4348 	jaddref->ja_state |= (GOINGAWAY | DEPCOMPLETE);
4349 	/*
4350 	 * Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove
4351 	 * can arrange for them to be freed with the bitmap.  Otherwise we
4352 	 * no longer need this addref attached to the inoreflst and it
4353 	 * will incorrectly adjust nlink if we leave it.
4354 	 */
4355 	if ((jaddref->ja_state & NEWBLOCK) == 0) {
4356 		TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
4357 		    if_deps);
4358 		jaddref->ja_state |= COMPLETE;
4359 		free_jaddref(jaddref);
4360 		return (needsj);
4361 	}
4362 	/*
4363 	 * Leave the head of the list for jsegdeps for fast merging.
4364 	 */
4365 	if (LIST_FIRST(wkhd) != NULL) {
4366 		jaddref->ja_state |= ONWORKLIST;
4367 		LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list);
4368 	} else
4369 		WORKLIST_INSERT(wkhd, &jaddref->ja_list);
4370 
4371 	return (needsj);
4372 }
4373 
4374 /*
4375  * Attempt to free a jaddref structure when some work completes.  This
4376  * should only succeed once the entry is written and all dependencies have
4377  * been notified.
4378  */
4379 static void
4380 free_jaddref(jaddref)
4381 	struct jaddref *jaddref;
4382 {
4383 
4384 	if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE)
4385 		return;
4386 	if (jaddref->ja_ref.if_jsegdep)
4387 		panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n",
4388 		    jaddref, jaddref->ja_state);
4389 	if (jaddref->ja_state & NEWBLOCK)
4390 		LIST_REMOVE(jaddref, ja_bmdeps);
4391 	if (jaddref->ja_state & (INPROGRESS | ONWORKLIST))
4392 		panic("free_jaddref: Bad state %p(0x%X)",
4393 		    jaddref, jaddref->ja_state);
4394 	if (jaddref->ja_mkdir != NULL)
4395 		panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state);
4396 	WORKITEM_FREE(jaddref, D_JADDREF);
4397 }
4398 
4399 /*
4400  * Free a jremref structure once it has been written or discarded.
4401  */
4402 static void
4403 free_jremref(jremref)
4404 	struct jremref *jremref;
4405 {
4406 
4407 	if (jremref->jr_ref.if_jsegdep)
4408 		free_jsegdep(jremref->jr_ref.if_jsegdep);
4409 	if (jremref->jr_state & INPROGRESS)
4410 		panic("free_jremref: IO still pending");
4411 	WORKITEM_FREE(jremref, D_JREMREF);
4412 }
4413 
4414 /*
4415  * Free a jnewblk structure.
4416  */
4417 static void
4418 free_jnewblk(jnewblk)
4419 	struct jnewblk *jnewblk;
4420 {
4421 
4422 	if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE)
4423 		return;
4424 	LIST_REMOVE(jnewblk, jn_deps);
4425 	if (jnewblk->jn_dep != NULL)
4426 		panic("free_jnewblk: Dependency still attached.");
4427 	WORKITEM_FREE(jnewblk, D_JNEWBLK);
4428 }
4429 
4430 /*
4431  * Cancel a jnewblk which has been been made redundant by frag extension.
4432  */
4433 static void
4434 cancel_jnewblk(jnewblk, wkhd)
4435 	struct jnewblk *jnewblk;
4436 	struct workhead *wkhd;
4437 {
4438 	struct jsegdep *jsegdep;
4439 
4440 	CTR1(KTR_SUJ, "cancel_jnewblk: blkno %jd", jnewblk->jn_blkno);
4441 	jsegdep = jnewblk->jn_jsegdep;
4442 	if (jnewblk->jn_jsegdep == NULL || jnewblk->jn_dep == NULL)
4443 		panic("cancel_jnewblk: Invalid state");
4444 	jnewblk->jn_jsegdep  = NULL;
4445 	jnewblk->jn_dep = NULL;
4446 	jnewblk->jn_state |= GOINGAWAY;
4447 	if (jnewblk->jn_state & INPROGRESS) {
4448 		jnewblk->jn_state &= ~INPROGRESS;
4449 		WORKLIST_REMOVE(&jnewblk->jn_list);
4450 		jwork_insert(wkhd, jsegdep);
4451 	} else {
4452 		free_jsegdep(jsegdep);
4453 		remove_from_journal(&jnewblk->jn_list);
4454 	}
4455 	wake_worklist(&jnewblk->jn_list);
4456 	WORKLIST_INSERT(wkhd, &jnewblk->jn_list);
4457 }
4458 
4459 static void
4460 free_jblkdep(jblkdep)
4461 	struct jblkdep *jblkdep;
4462 {
4463 
4464 	if (jblkdep->jb_list.wk_type == D_JFREEBLK)
4465 		WORKITEM_FREE(jblkdep, D_JFREEBLK);
4466 	else if (jblkdep->jb_list.wk_type == D_JTRUNC)
4467 		WORKITEM_FREE(jblkdep, D_JTRUNC);
4468 	else
4469 		panic("free_jblkdep: Unexpected type %s",
4470 		    TYPENAME(jblkdep->jb_list.wk_type));
4471 }
4472 
4473 /*
4474  * Free a single jseg once it is no longer referenced in memory or on
4475  * disk.  Reclaim journal blocks and dependencies waiting for the segment
4476  * to disappear.
4477  */
4478 static void
4479 free_jseg(jseg, jblocks)
4480 	struct jseg *jseg;
4481 	struct jblocks *jblocks;
4482 {
4483 	struct freework *freework;
4484 
4485 	/*
4486 	 * Free freework structures that were lingering to indicate freed
4487 	 * indirect blocks that forced journal write ordering on reallocate.
4488 	 */
4489 	while ((freework = LIST_FIRST(&jseg->js_indirs)) != NULL)
4490 		indirblk_remove(freework);
4491 	if (jblocks->jb_oldestseg == jseg)
4492 		jblocks->jb_oldestseg = TAILQ_NEXT(jseg, js_next);
4493 	TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next);
4494 	jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size);
4495 	KASSERT(LIST_EMPTY(&jseg->js_entries),
4496 	    ("free_jseg: Freed jseg has valid entries."));
4497 	WORKITEM_FREE(jseg, D_JSEG);
4498 }
4499 
4500 /*
4501  * Free all jsegs that meet the criteria for being reclaimed and update
4502  * oldestseg.
4503  */
4504 static void
4505 free_jsegs(jblocks)
4506 	struct jblocks *jblocks;
4507 {
4508 	struct jseg *jseg;
4509 
4510 	/*
4511 	 * Free only those jsegs which have none allocated before them to
4512 	 * preserve the journal space ordering.
4513 	 */
4514 	while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) {
4515 		/*
4516 		 * Only reclaim space when nothing depends on this journal
4517 		 * set and another set has written that it is no longer
4518 		 * valid.
4519 		 */
4520 		if (jseg->js_refs != 0) {
4521 			jblocks->jb_oldestseg = jseg;
4522 			return;
4523 		}
4524 		if ((jseg->js_state & ALLCOMPLETE) != ALLCOMPLETE)
4525 			break;
4526 		if (jseg->js_seq > jblocks->jb_oldestwrseq)
4527 			break;
4528 		/*
4529 		 * We can free jsegs that didn't write entries when
4530 		 * oldestwrseq == js_seq.
4531 		 */
4532 		if (jseg->js_seq == jblocks->jb_oldestwrseq &&
4533 		    jseg->js_cnt != 0)
4534 			break;
4535 		free_jseg(jseg, jblocks);
4536 	}
4537 	/*
4538 	 * If we exited the loop above we still must discover the
4539 	 * oldest valid segment.
4540 	 */
4541 	if (jseg)
4542 		for (jseg = jblocks->jb_oldestseg; jseg != NULL;
4543 		     jseg = TAILQ_NEXT(jseg, js_next))
4544 			if (jseg->js_refs != 0)
4545 				break;
4546 	jblocks->jb_oldestseg = jseg;
4547 	/*
4548 	 * The journal has no valid records but some jsegs may still be
4549 	 * waiting on oldestwrseq to advance.  We force a small record
4550 	 * out to permit these lingering records to be reclaimed.
4551 	 */
4552 	if (jblocks->jb_oldestseg == NULL && !TAILQ_EMPTY(&jblocks->jb_segs))
4553 		jblocks->jb_needseg = 1;
4554 }
4555 
4556 /*
4557  * Release one reference to a jseg and free it if the count reaches 0.  This
4558  * should eventually reclaim journal space as well.
4559  */
4560 static void
4561 rele_jseg(jseg)
4562 	struct jseg *jseg;
4563 {
4564 
4565 	KASSERT(jseg->js_refs > 0,
4566 	    ("free_jseg: Invalid refcnt %d", jseg->js_refs));
4567 	if (--jseg->js_refs != 0)
4568 		return;
4569 	free_jsegs(jseg->js_jblocks);
4570 }
4571 
4572 /*
4573  * Release a jsegdep and decrement the jseg count.
4574  */
4575 static void
4576 free_jsegdep(jsegdep)
4577 	struct jsegdep *jsegdep;
4578 {
4579 
4580 	if (jsegdep->jd_seg)
4581 		rele_jseg(jsegdep->jd_seg);
4582 	WORKITEM_FREE(jsegdep, D_JSEGDEP);
4583 }
4584 
4585 /*
4586  * Wait for a journal item to make it to disk.  Initiate journal processing
4587  * if required.
4588  */
4589 static int
4590 jwait(wk, waitfor)
4591 	struct worklist *wk;
4592 	int waitfor;
4593 {
4594 
4595 	LOCK_OWNED(VFSTOUFS(wk->wk_mp));
4596 	/*
4597 	 * Blocking journal waits cause slow synchronous behavior.  Record
4598 	 * stats on the frequency of these blocking operations.
4599 	 */
4600 	if (waitfor == MNT_WAIT) {
4601 		stat_journal_wait++;
4602 		switch (wk->wk_type) {
4603 		case D_JREMREF:
4604 		case D_JMVREF:
4605 			stat_jwait_filepage++;
4606 			break;
4607 		case D_JTRUNC:
4608 		case D_JFREEBLK:
4609 			stat_jwait_freeblks++;
4610 			break;
4611 		case D_JNEWBLK:
4612 			stat_jwait_newblk++;
4613 			break;
4614 		case D_JADDREF:
4615 			stat_jwait_inode++;
4616 			break;
4617 		default:
4618 			break;
4619 		}
4620 	}
4621 	/*
4622 	 * If IO has not started we process the journal.  We can't mark the
4623 	 * worklist item as IOWAITING because we drop the lock while
4624 	 * processing the journal and the worklist entry may be freed after
4625 	 * this point.  The caller may call back in and re-issue the request.
4626 	 */
4627 	if ((wk->wk_state & INPROGRESS) == 0) {
4628 		softdep_process_journal(wk->wk_mp, wk, waitfor);
4629 		if (waitfor != MNT_WAIT)
4630 			return (EBUSY);
4631 		return (0);
4632 	}
4633 	if (waitfor != MNT_WAIT)
4634 		return (EBUSY);
4635 	wait_worklist(wk, "jwait");
4636 	return (0);
4637 }
4638 
4639 /*
4640  * Lookup an inodedep based on an inode pointer and set the nlinkdelta as
4641  * appropriate.  This is a convenience function to reduce duplicate code
4642  * for the setup and revert functions below.
4643  */
4644 static struct inodedep *
4645 inodedep_lookup_ip(ip)
4646 	struct inode *ip;
4647 {
4648 	struct inodedep *inodedep;
4649 
4650 	KASSERT(ip->i_nlink >= ip->i_effnlink,
4651 	    ("inodedep_lookup_ip: bad delta"));
4652 	(void) inodedep_lookup(ITOVFS(ip), ip->i_number, DEPALLOC,
4653 	    &inodedep);
4654 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
4655 	KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
4656 
4657 	return (inodedep);
4658 }
4659 
4660 /*
4661  * Called prior to creating a new inode and linking it to a directory.  The
4662  * jaddref structure must already be allocated by softdep_setup_inomapdep
4663  * and it is discovered here so we can initialize the mode and update
4664  * nlinkdelta.
4665  */
4666 void
4667 softdep_setup_create(dp, ip)
4668 	struct inode *dp;
4669 	struct inode *ip;
4670 {
4671 	struct inodedep *inodedep;
4672 	struct jaddref *jaddref;
4673 	struct vnode *dvp;
4674 
4675 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4676 	    ("softdep_setup_create called on non-softdep filesystem"));
4677 	KASSERT(ip->i_nlink == 1,
4678 	    ("softdep_setup_create: Invalid link count."));
4679 	dvp = ITOV(dp);
4680 	ACQUIRE_LOCK(ITOUMP(dp));
4681 	inodedep = inodedep_lookup_ip(ip);
4682 	if (DOINGSUJ(dvp)) {
4683 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4684 		    inoreflst);
4685 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
4686 		    ("softdep_setup_create: No addref structure present."));
4687 	}
4688 	softdep_prelink(dvp, NULL);
4689 	FREE_LOCK(ITOUMP(dp));
4690 }
4691 
4692 /*
4693  * Create a jaddref structure to track the addition of a DOTDOT link when
4694  * we are reparenting an inode as part of a rename.  This jaddref will be
4695  * found by softdep_setup_directory_change.  Adjusts nlinkdelta for
4696  * non-journaling softdep.
4697  */
4698 void
4699 softdep_setup_dotdot_link(dp, ip)
4700 	struct inode *dp;
4701 	struct inode *ip;
4702 {
4703 	struct inodedep *inodedep;
4704 	struct jaddref *jaddref;
4705 	struct vnode *dvp;
4706 
4707 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4708 	    ("softdep_setup_dotdot_link called on non-softdep filesystem"));
4709 	dvp = ITOV(dp);
4710 	jaddref = NULL;
4711 	/*
4712 	 * We don't set MKDIR_PARENT as this is not tied to a mkdir and
4713 	 * is used as a normal link would be.
4714 	 */
4715 	if (DOINGSUJ(dvp))
4716 		jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
4717 		    dp->i_effnlink - 1, dp->i_mode);
4718 	ACQUIRE_LOCK(ITOUMP(dp));
4719 	inodedep = inodedep_lookup_ip(dp);
4720 	if (jaddref)
4721 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4722 		    if_deps);
4723 	softdep_prelink(dvp, ITOV(ip));
4724 	FREE_LOCK(ITOUMP(dp));
4725 }
4726 
4727 /*
4728  * Create a jaddref structure to track a new link to an inode.  The directory
4729  * offset is not known until softdep_setup_directory_add or
4730  * softdep_setup_directory_change.  Adjusts nlinkdelta for non-journaling
4731  * softdep.
4732  */
4733 void
4734 softdep_setup_link(dp, ip)
4735 	struct inode *dp;
4736 	struct inode *ip;
4737 {
4738 	struct inodedep *inodedep;
4739 	struct jaddref *jaddref;
4740 	struct vnode *dvp;
4741 
4742 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4743 	    ("softdep_setup_link called on non-softdep filesystem"));
4744 	dvp = ITOV(dp);
4745 	jaddref = NULL;
4746 	if (DOINGSUJ(dvp))
4747 		jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1,
4748 		    ip->i_mode);
4749 	ACQUIRE_LOCK(ITOUMP(dp));
4750 	inodedep = inodedep_lookup_ip(ip);
4751 	if (jaddref)
4752 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4753 		    if_deps);
4754 	softdep_prelink(dvp, ITOV(ip));
4755 	FREE_LOCK(ITOUMP(dp));
4756 }
4757 
4758 /*
4759  * Called to create the jaddref structures to track . and .. references as
4760  * well as lookup and further initialize the incomplete jaddref created
4761  * by softdep_setup_inomapdep when the inode was allocated.  Adjusts
4762  * nlinkdelta for non-journaling softdep.
4763  */
4764 void
4765 softdep_setup_mkdir(dp, ip)
4766 	struct inode *dp;
4767 	struct inode *ip;
4768 {
4769 	struct inodedep *inodedep;
4770 	struct jaddref *dotdotaddref;
4771 	struct jaddref *dotaddref;
4772 	struct jaddref *jaddref;
4773 	struct vnode *dvp;
4774 
4775 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4776 	    ("softdep_setup_mkdir called on non-softdep filesystem"));
4777 	dvp = ITOV(dp);
4778 	dotaddref = dotdotaddref = NULL;
4779 	if (DOINGSUJ(dvp)) {
4780 		dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1,
4781 		    ip->i_mode);
4782 		dotaddref->ja_state |= MKDIR_BODY;
4783 		dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
4784 		    dp->i_effnlink - 1, dp->i_mode);
4785 		dotdotaddref->ja_state |= MKDIR_PARENT;
4786 	}
4787 	ACQUIRE_LOCK(ITOUMP(dp));
4788 	inodedep = inodedep_lookup_ip(ip);
4789 	if (DOINGSUJ(dvp)) {
4790 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4791 		    inoreflst);
4792 		KASSERT(jaddref != NULL,
4793 		    ("softdep_setup_mkdir: No addref structure present."));
4794 		KASSERT(jaddref->ja_parent == dp->i_number,
4795 		    ("softdep_setup_mkdir: bad parent %ju",
4796 		    (uintmax_t)jaddref->ja_parent));
4797 		TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref,
4798 		    if_deps);
4799 	}
4800 	inodedep = inodedep_lookup_ip(dp);
4801 	if (DOINGSUJ(dvp))
4802 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst,
4803 		    &dotdotaddref->ja_ref, if_deps);
4804 	softdep_prelink(ITOV(dp), NULL);
4805 	FREE_LOCK(ITOUMP(dp));
4806 }
4807 
4808 /*
4809  * Called to track nlinkdelta of the inode and parent directories prior to
4810  * unlinking a directory.
4811  */
4812 void
4813 softdep_setup_rmdir(dp, ip)
4814 	struct inode *dp;
4815 	struct inode *ip;
4816 {
4817 	struct vnode *dvp;
4818 
4819 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4820 	    ("softdep_setup_rmdir called on non-softdep filesystem"));
4821 	dvp = ITOV(dp);
4822 	ACQUIRE_LOCK(ITOUMP(dp));
4823 	(void) inodedep_lookup_ip(ip);
4824 	(void) inodedep_lookup_ip(dp);
4825 	softdep_prelink(dvp, ITOV(ip));
4826 	FREE_LOCK(ITOUMP(dp));
4827 }
4828 
4829 /*
4830  * Called to track nlinkdelta of the inode and parent directories prior to
4831  * unlink.
4832  */
4833 void
4834 softdep_setup_unlink(dp, ip)
4835 	struct inode *dp;
4836 	struct inode *ip;
4837 {
4838 	struct vnode *dvp;
4839 
4840 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4841 	    ("softdep_setup_unlink called on non-softdep filesystem"));
4842 	dvp = ITOV(dp);
4843 	ACQUIRE_LOCK(ITOUMP(dp));
4844 	(void) inodedep_lookup_ip(ip);
4845 	(void) inodedep_lookup_ip(dp);
4846 	softdep_prelink(dvp, ITOV(ip));
4847 	FREE_LOCK(ITOUMP(dp));
4848 }
4849 
4850 /*
4851  * Called to release the journal structures created by a failed non-directory
4852  * creation.  Adjusts nlinkdelta for non-journaling softdep.
4853  */
4854 void
4855 softdep_revert_create(dp, ip)
4856 	struct inode *dp;
4857 	struct inode *ip;
4858 {
4859 	struct inodedep *inodedep;
4860 	struct jaddref *jaddref;
4861 	struct vnode *dvp;
4862 
4863 	KASSERT(MOUNTEDSOFTDEP(ITOVFS((dp))) != 0,
4864 	    ("softdep_revert_create called on non-softdep filesystem"));
4865 	dvp = ITOV(dp);
4866 	ACQUIRE_LOCK(ITOUMP(dp));
4867 	inodedep = inodedep_lookup_ip(ip);
4868 	if (DOINGSUJ(dvp)) {
4869 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4870 		    inoreflst);
4871 		KASSERT(jaddref->ja_parent == dp->i_number,
4872 		    ("softdep_revert_create: addref parent mismatch"));
4873 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4874 	}
4875 	FREE_LOCK(ITOUMP(dp));
4876 }
4877 
4878 /*
4879  * Called to release the journal structures created by a failed link
4880  * addition.  Adjusts nlinkdelta for non-journaling softdep.
4881  */
4882 void
4883 softdep_revert_link(dp, ip)
4884 	struct inode *dp;
4885 	struct inode *ip;
4886 {
4887 	struct inodedep *inodedep;
4888 	struct jaddref *jaddref;
4889 	struct vnode *dvp;
4890 
4891 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4892 	    ("softdep_revert_link called on non-softdep filesystem"));
4893 	dvp = ITOV(dp);
4894 	ACQUIRE_LOCK(ITOUMP(dp));
4895 	inodedep = inodedep_lookup_ip(ip);
4896 	if (DOINGSUJ(dvp)) {
4897 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4898 		    inoreflst);
4899 		KASSERT(jaddref->ja_parent == dp->i_number,
4900 		    ("softdep_revert_link: addref parent mismatch"));
4901 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4902 	}
4903 	FREE_LOCK(ITOUMP(dp));
4904 }
4905 
4906 /*
4907  * Called to release the journal structures created by a failed mkdir
4908  * attempt.  Adjusts nlinkdelta for non-journaling softdep.
4909  */
4910 void
4911 softdep_revert_mkdir(dp, ip)
4912 	struct inode *dp;
4913 	struct inode *ip;
4914 {
4915 	struct inodedep *inodedep;
4916 	struct jaddref *jaddref;
4917 	struct jaddref *dotaddref;
4918 	struct vnode *dvp;
4919 
4920 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4921 	    ("softdep_revert_mkdir called on non-softdep filesystem"));
4922 	dvp = ITOV(dp);
4923 
4924 	ACQUIRE_LOCK(ITOUMP(dp));
4925 	inodedep = inodedep_lookup_ip(dp);
4926 	if (DOINGSUJ(dvp)) {
4927 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4928 		    inoreflst);
4929 		KASSERT(jaddref->ja_parent == ip->i_number,
4930 		    ("softdep_revert_mkdir: dotdot addref parent mismatch"));
4931 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4932 	}
4933 	inodedep = inodedep_lookup_ip(ip);
4934 	if (DOINGSUJ(dvp)) {
4935 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4936 		    inoreflst);
4937 		KASSERT(jaddref->ja_parent == dp->i_number,
4938 		    ("softdep_revert_mkdir: addref parent mismatch"));
4939 		dotaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
4940 		    inoreflst, if_deps);
4941 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4942 		KASSERT(dotaddref->ja_parent == ip->i_number,
4943 		    ("softdep_revert_mkdir: dot addref parent mismatch"));
4944 		cancel_jaddref(dotaddref, inodedep, &inodedep->id_inowait);
4945 	}
4946 	FREE_LOCK(ITOUMP(dp));
4947 }
4948 
4949 /*
4950  * Called to correct nlinkdelta after a failed rmdir.
4951  */
4952 void
4953 softdep_revert_rmdir(dp, ip)
4954 	struct inode *dp;
4955 	struct inode *ip;
4956 {
4957 
4958 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4959 	    ("softdep_revert_rmdir called on non-softdep filesystem"));
4960 	ACQUIRE_LOCK(ITOUMP(dp));
4961 	(void) inodedep_lookup_ip(ip);
4962 	(void) inodedep_lookup_ip(dp);
4963 	FREE_LOCK(ITOUMP(dp));
4964 }
4965 
4966 /*
4967  * Protecting the freemaps (or bitmaps).
4968  *
4969  * To eliminate the need to execute fsck before mounting a filesystem
4970  * after a power failure, one must (conservatively) guarantee that the
4971  * on-disk copy of the bitmaps never indicate that a live inode or block is
4972  * free.  So, when a block or inode is allocated, the bitmap should be
4973  * updated (on disk) before any new pointers.  When a block or inode is
4974  * freed, the bitmap should not be updated until all pointers have been
4975  * reset.  The latter dependency is handled by the delayed de-allocation
4976  * approach described below for block and inode de-allocation.  The former
4977  * dependency is handled by calling the following procedure when a block or
4978  * inode is allocated. When an inode is allocated an "inodedep" is created
4979  * with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
4980  * Each "inodedep" is also inserted into the hash indexing structure so
4981  * that any additional link additions can be made dependent on the inode
4982  * allocation.
4983  *
4984  * The ufs filesystem maintains a number of free block counts (e.g., per
4985  * cylinder group, per cylinder and per <cylinder, rotational position> pair)
4986  * in addition to the bitmaps.  These counts are used to improve efficiency
4987  * during allocation and therefore must be consistent with the bitmaps.
4988  * There is no convenient way to guarantee post-crash consistency of these
4989  * counts with simple update ordering, for two main reasons: (1) The counts
4990  * and bitmaps for a single cylinder group block are not in the same disk
4991  * sector.  If a disk write is interrupted (e.g., by power failure), one may
4992  * be written and the other not.  (2) Some of the counts are located in the
4993  * superblock rather than the cylinder group block. So, we focus our soft
4994  * updates implementation on protecting the bitmaps. When mounting a
4995  * filesystem, we recompute the auxiliary counts from the bitmaps.
4996  */
4997 
4998 /*
4999  * Called just after updating the cylinder group block to allocate an inode.
5000  */
5001 void
5002 softdep_setup_inomapdep(bp, ip, newinum, mode)
5003 	struct buf *bp;		/* buffer for cylgroup block with inode map */
5004 	struct inode *ip;	/* inode related to allocation */
5005 	ino_t newinum;		/* new inode number being allocated */
5006 	int mode;
5007 {
5008 	struct inodedep *inodedep;
5009 	struct bmsafemap *bmsafemap;
5010 	struct jaddref *jaddref;
5011 	struct mount *mp;
5012 	struct fs *fs;
5013 
5014 	mp = ITOVFS(ip);
5015 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5016 	    ("softdep_setup_inomapdep called on non-softdep filesystem"));
5017 	fs = VFSTOUFS(mp)->um_fs;
5018 	jaddref = NULL;
5019 
5020 	/*
5021 	 * Allocate the journal reference add structure so that the bitmap
5022 	 * can be dependent on it.
5023 	 */
5024 	if (MOUNTEDSUJ(mp)) {
5025 		jaddref = newjaddref(ip, newinum, 0, 0, mode);
5026 		jaddref->ja_state |= NEWBLOCK;
5027 	}
5028 
5029 	/*
5030 	 * Create a dependency for the newly allocated inode.
5031 	 * Panic if it already exists as something is seriously wrong.
5032 	 * Otherwise add it to the dependency list for the buffer holding
5033 	 * the cylinder group map from which it was allocated.
5034 	 *
5035 	 * We have to preallocate a bmsafemap entry in case it is needed
5036 	 * in bmsafemap_lookup since once we allocate the inodedep, we
5037 	 * have to finish initializing it before we can FREE_LOCK().
5038 	 * By preallocating, we avoid FREE_LOCK() while doing a malloc
5039 	 * in bmsafemap_lookup. We cannot call bmsafemap_lookup before
5040 	 * creating the inodedep as it can be freed during the time
5041 	 * that we FREE_LOCK() while allocating the inodedep. We must
5042 	 * call workitem_alloc() before entering the locked section as
5043 	 * it also acquires the lock and we must avoid trying doing so
5044 	 * recursively.
5045 	 */
5046 	bmsafemap = malloc(sizeof(struct bmsafemap),
5047 	    M_BMSAFEMAP, M_SOFTDEP_FLAGS);
5048 	workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
5049 	ACQUIRE_LOCK(ITOUMP(ip));
5050 	if ((inodedep_lookup(mp, newinum, DEPALLOC, &inodedep)))
5051 		panic("softdep_setup_inomapdep: dependency %p for new"
5052 		    "inode already exists", inodedep);
5053 	bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum), bmsafemap);
5054 	if (jaddref) {
5055 		LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps);
5056 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
5057 		    if_deps);
5058 	} else {
5059 		inodedep->id_state |= ONDEPLIST;
5060 		LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
5061 	}
5062 	inodedep->id_bmsafemap = bmsafemap;
5063 	inodedep->id_state &= ~DEPCOMPLETE;
5064 	FREE_LOCK(ITOUMP(ip));
5065 }
5066 
5067 /*
5068  * Called just after updating the cylinder group block to
5069  * allocate block or fragment.
5070  */
5071 void
5072 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
5073 	struct buf *bp;		/* buffer for cylgroup block with block map */
5074 	struct mount *mp;	/* filesystem doing allocation */
5075 	ufs2_daddr_t newblkno;	/* number of newly allocated block */
5076 	int frags;		/* Number of fragments. */
5077 	int oldfrags;		/* Previous number of fragments for extend. */
5078 {
5079 	struct newblk *newblk;
5080 	struct bmsafemap *bmsafemap;
5081 	struct jnewblk *jnewblk;
5082 	struct ufsmount *ump;
5083 	struct fs *fs;
5084 
5085 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5086 	    ("softdep_setup_blkmapdep called on non-softdep filesystem"));
5087 	ump = VFSTOUFS(mp);
5088 	fs = ump->um_fs;
5089 	jnewblk = NULL;
5090 	/*
5091 	 * Create a dependency for the newly allocated block.
5092 	 * Add it to the dependency list for the buffer holding
5093 	 * the cylinder group map from which it was allocated.
5094 	 */
5095 	if (MOUNTEDSUJ(mp)) {
5096 		jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS);
5097 		workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp);
5098 		jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list);
5099 		jnewblk->jn_state = ATTACHED;
5100 		jnewblk->jn_blkno = newblkno;
5101 		jnewblk->jn_frags = frags;
5102 		jnewblk->jn_oldfrags = oldfrags;
5103 #ifdef SUJ_DEBUG
5104 		{
5105 			struct cg *cgp;
5106 			uint8_t *blksfree;
5107 			long bno;
5108 			int i;
5109 
5110 			cgp = (struct cg *)bp->b_data;
5111 			blksfree = cg_blksfree(cgp);
5112 			bno = dtogd(fs, jnewblk->jn_blkno);
5113 			for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags;
5114 			    i++) {
5115 				if (isset(blksfree, bno + i))
5116 					panic("softdep_setup_blkmapdep: "
5117 					    "free fragment %d from %d-%d "
5118 					    "state 0x%X dep %p", i,
5119 					    jnewblk->jn_oldfrags,
5120 					    jnewblk->jn_frags,
5121 					    jnewblk->jn_state,
5122 					    jnewblk->jn_dep);
5123 			}
5124 		}
5125 #endif
5126 	}
5127 
5128 	CTR3(KTR_SUJ,
5129 	    "softdep_setup_blkmapdep: blkno %jd frags %d oldfrags %d",
5130 	    newblkno, frags, oldfrags);
5131 	ACQUIRE_LOCK(ump);
5132 	if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0)
5133 		panic("softdep_setup_blkmapdep: found block");
5134 	newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp,
5135 	    dtog(fs, newblkno), NULL);
5136 	if (jnewblk) {
5137 		jnewblk->jn_dep = (struct worklist *)newblk;
5138 		LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps);
5139 	} else {
5140 		newblk->nb_state |= ONDEPLIST;
5141 		LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
5142 	}
5143 	newblk->nb_bmsafemap = bmsafemap;
5144 	newblk->nb_jnewblk = jnewblk;
5145 	FREE_LOCK(ump);
5146 }
5147 
5148 #define	BMSAFEMAP_HASH(ump, cg) \
5149       (&(ump)->bmsafemap_hashtbl[(cg) & (ump)->bmsafemap_hash_size])
5150 
5151 static int
5152 bmsafemap_find(bmsafemaphd, cg, bmsafemapp)
5153 	struct bmsafemap_hashhead *bmsafemaphd;
5154 	int cg;
5155 	struct bmsafemap **bmsafemapp;
5156 {
5157 	struct bmsafemap *bmsafemap;
5158 
5159 	LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash)
5160 		if (bmsafemap->sm_cg == cg)
5161 			break;
5162 	if (bmsafemap) {
5163 		*bmsafemapp = bmsafemap;
5164 		return (1);
5165 	}
5166 	*bmsafemapp = NULL;
5167 
5168 	return (0);
5169 }
5170 
5171 /*
5172  * Find the bmsafemap associated with a cylinder group buffer.
5173  * If none exists, create one. The buffer must be locked when
5174  * this routine is called and this routine must be called with
5175  * the softdep lock held. To avoid giving up the lock while
5176  * allocating a new bmsafemap, a preallocated bmsafemap may be
5177  * provided. If it is provided but not needed, it is freed.
5178  */
5179 static struct bmsafemap *
5180 bmsafemap_lookup(mp, bp, cg, newbmsafemap)
5181 	struct mount *mp;
5182 	struct buf *bp;
5183 	int cg;
5184 	struct bmsafemap *newbmsafemap;
5185 {
5186 	struct bmsafemap_hashhead *bmsafemaphd;
5187 	struct bmsafemap *bmsafemap, *collision;
5188 	struct worklist *wk;
5189 	struct ufsmount *ump;
5190 
5191 	ump = VFSTOUFS(mp);
5192 	LOCK_OWNED(ump);
5193 	KASSERT(bp != NULL, ("bmsafemap_lookup: missing buffer"));
5194 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5195 		if (wk->wk_type == D_BMSAFEMAP) {
5196 			if (newbmsafemap)
5197 				WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP);
5198 			return (WK_BMSAFEMAP(wk));
5199 		}
5200 	}
5201 	bmsafemaphd = BMSAFEMAP_HASH(ump, cg);
5202 	if (bmsafemap_find(bmsafemaphd, cg, &bmsafemap) == 1) {
5203 		if (newbmsafemap)
5204 			WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP);
5205 		return (bmsafemap);
5206 	}
5207 	if (newbmsafemap) {
5208 		bmsafemap = newbmsafemap;
5209 	} else {
5210 		FREE_LOCK(ump);
5211 		bmsafemap = malloc(sizeof(struct bmsafemap),
5212 			M_BMSAFEMAP, M_SOFTDEP_FLAGS);
5213 		workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
5214 		ACQUIRE_LOCK(ump);
5215 	}
5216 	bmsafemap->sm_buf = bp;
5217 	LIST_INIT(&bmsafemap->sm_inodedephd);
5218 	LIST_INIT(&bmsafemap->sm_inodedepwr);
5219 	LIST_INIT(&bmsafemap->sm_newblkhd);
5220 	LIST_INIT(&bmsafemap->sm_newblkwr);
5221 	LIST_INIT(&bmsafemap->sm_jaddrefhd);
5222 	LIST_INIT(&bmsafemap->sm_jnewblkhd);
5223 	LIST_INIT(&bmsafemap->sm_freehd);
5224 	LIST_INIT(&bmsafemap->sm_freewr);
5225 	if (bmsafemap_find(bmsafemaphd, cg, &collision) == 1) {
5226 		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
5227 		return (collision);
5228 	}
5229 	bmsafemap->sm_cg = cg;
5230 	LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash);
5231 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
5232 	WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list);
5233 	return (bmsafemap);
5234 }
5235 
5236 /*
5237  * Direct block allocation dependencies.
5238  *
5239  * When a new block is allocated, the corresponding disk locations must be
5240  * initialized (with zeros or new data) before the on-disk inode points to
5241  * them.  Also, the freemap from which the block was allocated must be
5242  * updated (on disk) before the inode's pointer. These two dependencies are
5243  * independent of each other and are needed for all file blocks and indirect
5244  * blocks that are pointed to directly by the inode.  Just before the
5245  * "in-core" version of the inode is updated with a newly allocated block
5246  * number, a procedure (below) is called to setup allocation dependency
5247  * structures.  These structures are removed when the corresponding
5248  * dependencies are satisfied or when the block allocation becomes obsolete
5249  * (i.e., the file is deleted, the block is de-allocated, or the block is a
5250  * fragment that gets upgraded).  All of these cases are handled in
5251  * procedures described later.
5252  *
5253  * When a file extension causes a fragment to be upgraded, either to a larger
5254  * fragment or to a full block, the on-disk location may change (if the
5255  * previous fragment could not simply be extended). In this case, the old
5256  * fragment must be de-allocated, but not until after the inode's pointer has
5257  * been updated. In most cases, this is handled by later procedures, which
5258  * will construct a "freefrag" structure to be added to the workitem queue
5259  * when the inode update is complete (or obsolete).  The main exception to
5260  * this is when an allocation occurs while a pending allocation dependency
5261  * (for the same block pointer) remains.  This case is handled in the main
5262  * allocation dependency setup procedure by immediately freeing the
5263  * unreferenced fragments.
5264  */
5265 void
5266 softdep_setup_allocdirect(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
5267 	struct inode *ip;	/* inode to which block is being added */
5268 	ufs_lbn_t off;		/* block pointer within inode */
5269 	ufs2_daddr_t newblkno;	/* disk block number being added */
5270 	ufs2_daddr_t oldblkno;	/* previous block number, 0 unless frag */
5271 	long newsize;		/* size of new block */
5272 	long oldsize;		/* size of new block */
5273 	struct buf *bp;		/* bp for allocated block */
5274 {
5275 	struct allocdirect *adp, *oldadp;
5276 	struct allocdirectlst *adphead;
5277 	struct freefrag *freefrag;
5278 	struct inodedep *inodedep;
5279 	struct pagedep *pagedep;
5280 	struct jnewblk *jnewblk;
5281 	struct newblk *newblk;
5282 	struct mount *mp;
5283 	ufs_lbn_t lbn;
5284 
5285 	lbn = bp->b_lblkno;
5286 	mp = ITOVFS(ip);
5287 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5288 	    ("softdep_setup_allocdirect called on non-softdep filesystem"));
5289 	if (oldblkno && oldblkno != newblkno)
5290 		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn);
5291 	else
5292 		freefrag = NULL;
5293 
5294 	CTR6(KTR_SUJ,
5295 	    "softdep_setup_allocdirect: ino %d blkno %jd oldblkno %jd "
5296 	    "off %jd newsize %ld oldsize %d",
5297 	    ip->i_number, newblkno, oldblkno, off, newsize, oldsize);
5298 	ACQUIRE_LOCK(ITOUMP(ip));
5299 	if (off >= NDADDR) {
5300 		if (lbn > 0)
5301 			panic("softdep_setup_allocdirect: bad lbn %jd, off %jd",
5302 			    lbn, off);
5303 		/* allocating an indirect block */
5304 		if (oldblkno != 0)
5305 			panic("softdep_setup_allocdirect: non-zero indir");
5306 	} else {
5307 		if (off != lbn)
5308 			panic("softdep_setup_allocdirect: lbn %jd != off %jd",
5309 			    lbn, off);
5310 		/*
5311 		 * Allocating a direct block.
5312 		 *
5313 		 * If we are allocating a directory block, then we must
5314 		 * allocate an associated pagedep to track additions and
5315 		 * deletions.
5316 		 */
5317 		if ((ip->i_mode & IFMT) == IFDIR)
5318 			pagedep_lookup(mp, bp, ip->i_number, off, DEPALLOC,
5319 			    &pagedep);
5320 	}
5321 	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
5322 		panic("softdep_setup_allocdirect: lost block");
5323 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5324 	    ("softdep_setup_allocdirect: newblk already initialized"));
5325 	/*
5326 	 * Convert the newblk to an allocdirect.
5327 	 */
5328 	WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT);
5329 	adp = (struct allocdirect *)newblk;
5330 	newblk->nb_freefrag = freefrag;
5331 	adp->ad_offset = off;
5332 	adp->ad_oldblkno = oldblkno;
5333 	adp->ad_newsize = newsize;
5334 	adp->ad_oldsize = oldsize;
5335 
5336 	/*
5337 	 * Finish initializing the journal.
5338 	 */
5339 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5340 		jnewblk->jn_ino = ip->i_number;
5341 		jnewblk->jn_lbn = lbn;
5342 		add_to_journal(&jnewblk->jn_list);
5343 	}
5344 	if (freefrag && freefrag->ff_jdep != NULL &&
5345 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5346 		add_to_journal(freefrag->ff_jdep);
5347 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
5348 	adp->ad_inodedep = inodedep;
5349 
5350 	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
5351 	/*
5352 	 * The list of allocdirects must be kept in sorted and ascending
5353 	 * order so that the rollback routines can quickly determine the
5354 	 * first uncommitted block (the size of the file stored on disk
5355 	 * ends at the end of the lowest committed fragment, or if there
5356 	 * are no fragments, at the end of the highest committed block).
5357 	 * Since files generally grow, the typical case is that the new
5358 	 * block is to be added at the end of the list. We speed this
5359 	 * special case by checking against the last allocdirect in the
5360 	 * list before laboriously traversing the list looking for the
5361 	 * insertion point.
5362 	 */
5363 	adphead = &inodedep->id_newinoupdt;
5364 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
5365 	if (oldadp == NULL || oldadp->ad_offset <= off) {
5366 		/* insert at end of list */
5367 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
5368 		if (oldadp != NULL && oldadp->ad_offset == off)
5369 			allocdirect_merge(adphead, adp, oldadp);
5370 		FREE_LOCK(ITOUMP(ip));
5371 		return;
5372 	}
5373 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
5374 		if (oldadp->ad_offset >= off)
5375 			break;
5376 	}
5377 	if (oldadp == NULL)
5378 		panic("softdep_setup_allocdirect: lost entry");
5379 	/* insert in middle of list */
5380 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5381 	if (oldadp->ad_offset == off)
5382 		allocdirect_merge(adphead, adp, oldadp);
5383 
5384 	FREE_LOCK(ITOUMP(ip));
5385 }
5386 
5387 /*
5388  * Merge a newer and older journal record to be stored either in a
5389  * newblock or freefrag.  This handles aggregating journal records for
5390  * fragment allocation into a second record as well as replacing a
5391  * journal free with an aborted journal allocation.  A segment for the
5392  * oldest record will be placed on wkhd if it has been written.  If not
5393  * the segment for the newer record will suffice.
5394  */
5395 static struct worklist *
5396 jnewblk_merge(new, old, wkhd)
5397 	struct worklist *new;
5398 	struct worklist *old;
5399 	struct workhead *wkhd;
5400 {
5401 	struct jnewblk *njnewblk;
5402 	struct jnewblk *jnewblk;
5403 
5404 	/* Handle NULLs to simplify callers. */
5405 	if (new == NULL)
5406 		return (old);
5407 	if (old == NULL)
5408 		return (new);
5409 	/* Replace a jfreefrag with a jnewblk. */
5410 	if (new->wk_type == D_JFREEFRAG) {
5411 		if (WK_JNEWBLK(old)->jn_blkno != WK_JFREEFRAG(new)->fr_blkno)
5412 			panic("jnewblk_merge: blkno mismatch: %p, %p",
5413 			    old, new);
5414 		cancel_jfreefrag(WK_JFREEFRAG(new));
5415 		return (old);
5416 	}
5417 	if (old->wk_type != D_JNEWBLK || new->wk_type != D_JNEWBLK)
5418 		panic("jnewblk_merge: Bad type: old %d new %d\n",
5419 		    old->wk_type, new->wk_type);
5420 	/*
5421 	 * Handle merging of two jnewblk records that describe
5422 	 * different sets of fragments in the same block.
5423 	 */
5424 	jnewblk = WK_JNEWBLK(old);
5425 	njnewblk = WK_JNEWBLK(new);
5426 	if (jnewblk->jn_blkno != njnewblk->jn_blkno)
5427 		panic("jnewblk_merge: Merging disparate blocks.");
5428 	/*
5429 	 * The record may be rolled back in the cg.
5430 	 */
5431 	if (jnewblk->jn_state & UNDONE) {
5432 		jnewblk->jn_state &= ~UNDONE;
5433 		njnewblk->jn_state |= UNDONE;
5434 		njnewblk->jn_state &= ~ATTACHED;
5435 	}
5436 	/*
5437 	 * We modify the newer addref and free the older so that if neither
5438 	 * has been written the most up-to-date copy will be on disk.  If
5439 	 * both have been written but rolled back we only temporarily need
5440 	 * one of them to fix the bits when the cg write completes.
5441 	 */
5442 	jnewblk->jn_state |= ATTACHED | COMPLETE;
5443 	njnewblk->jn_oldfrags = jnewblk->jn_oldfrags;
5444 	cancel_jnewblk(jnewblk, wkhd);
5445 	WORKLIST_REMOVE(&jnewblk->jn_list);
5446 	free_jnewblk(jnewblk);
5447 	return (new);
5448 }
5449 
5450 /*
5451  * Replace an old allocdirect dependency with a newer one.
5452  * This routine must be called with splbio interrupts blocked.
5453  */
5454 static void
5455 allocdirect_merge(adphead, newadp, oldadp)
5456 	struct allocdirectlst *adphead;	/* head of list holding allocdirects */
5457 	struct allocdirect *newadp;	/* allocdirect being added */
5458 	struct allocdirect *oldadp;	/* existing allocdirect being checked */
5459 {
5460 	struct worklist *wk;
5461 	struct freefrag *freefrag;
5462 
5463 	freefrag = NULL;
5464 	LOCK_OWNED(VFSTOUFS(newadp->ad_list.wk_mp));
5465 	if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
5466 	    newadp->ad_oldsize != oldadp->ad_newsize ||
5467 	    newadp->ad_offset >= NDADDR)
5468 		panic("%s %jd != new %jd || old size %ld != new %ld",
5469 		    "allocdirect_merge: old blkno",
5470 		    (intmax_t)newadp->ad_oldblkno,
5471 		    (intmax_t)oldadp->ad_newblkno,
5472 		    newadp->ad_oldsize, oldadp->ad_newsize);
5473 	newadp->ad_oldblkno = oldadp->ad_oldblkno;
5474 	newadp->ad_oldsize = oldadp->ad_oldsize;
5475 	/*
5476 	 * If the old dependency had a fragment to free or had never
5477 	 * previously had a block allocated, then the new dependency
5478 	 * can immediately post its freefrag and adopt the old freefrag.
5479 	 * This action is done by swapping the freefrag dependencies.
5480 	 * The new dependency gains the old one's freefrag, and the
5481 	 * old one gets the new one and then immediately puts it on
5482 	 * the worklist when it is freed by free_newblk. It is
5483 	 * not possible to do this swap when the old dependency had a
5484 	 * non-zero size but no previous fragment to free. This condition
5485 	 * arises when the new block is an extension of the old block.
5486 	 * Here, the first part of the fragment allocated to the new
5487 	 * dependency is part of the block currently claimed on disk by
5488 	 * the old dependency, so cannot legitimately be freed until the
5489 	 * conditions for the new dependency are fulfilled.
5490 	 */
5491 	freefrag = newadp->ad_freefrag;
5492 	if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
5493 		newadp->ad_freefrag = oldadp->ad_freefrag;
5494 		oldadp->ad_freefrag = freefrag;
5495 	}
5496 	/*
5497 	 * If we are tracking a new directory-block allocation,
5498 	 * move it from the old allocdirect to the new allocdirect.
5499 	 */
5500 	if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) {
5501 		WORKLIST_REMOVE(wk);
5502 		if (!LIST_EMPTY(&oldadp->ad_newdirblk))
5503 			panic("allocdirect_merge: extra newdirblk");
5504 		WORKLIST_INSERT(&newadp->ad_newdirblk, wk);
5505 	}
5506 	TAILQ_REMOVE(adphead, oldadp, ad_next);
5507 	/*
5508 	 * We need to move any journal dependencies over to the freefrag
5509 	 * that releases this block if it exists.  Otherwise we are
5510 	 * extending an existing block and we'll wait until that is
5511 	 * complete to release the journal space and extend the
5512 	 * new journal to cover this old space as well.
5513 	 */
5514 	if (freefrag == NULL) {
5515 		if (oldadp->ad_newblkno != newadp->ad_newblkno)
5516 			panic("allocdirect_merge: %jd != %jd",
5517 			    oldadp->ad_newblkno, newadp->ad_newblkno);
5518 		newadp->ad_block.nb_jnewblk = (struct jnewblk *)
5519 		    jnewblk_merge(&newadp->ad_block.nb_jnewblk->jn_list,
5520 		    &oldadp->ad_block.nb_jnewblk->jn_list,
5521 		    &newadp->ad_block.nb_jwork);
5522 		oldadp->ad_block.nb_jnewblk = NULL;
5523 		cancel_newblk(&oldadp->ad_block, NULL,
5524 		    &newadp->ad_block.nb_jwork);
5525 	} else {
5526 		wk = (struct worklist *) cancel_newblk(&oldadp->ad_block,
5527 		    &freefrag->ff_list, &freefrag->ff_jwork);
5528 		freefrag->ff_jdep = jnewblk_merge(freefrag->ff_jdep, wk,
5529 		    &freefrag->ff_jwork);
5530 	}
5531 	free_newblk(&oldadp->ad_block);
5532 }
5533 
5534 /*
5535  * Allocate a jfreefrag structure to journal a single block free.
5536  */
5537 static struct jfreefrag *
5538 newjfreefrag(freefrag, ip, blkno, size, lbn)
5539 	struct freefrag *freefrag;
5540 	struct inode *ip;
5541 	ufs2_daddr_t blkno;
5542 	long size;
5543 	ufs_lbn_t lbn;
5544 {
5545 	struct jfreefrag *jfreefrag;
5546 	struct fs *fs;
5547 
5548 	fs = ITOFS(ip);
5549 	jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG,
5550 	    M_SOFTDEP_FLAGS);
5551 	workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, ITOVFS(ip));
5552 	jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list);
5553 	jfreefrag->fr_state = ATTACHED | DEPCOMPLETE;
5554 	jfreefrag->fr_ino = ip->i_number;
5555 	jfreefrag->fr_lbn = lbn;
5556 	jfreefrag->fr_blkno = blkno;
5557 	jfreefrag->fr_frags = numfrags(fs, size);
5558 	jfreefrag->fr_freefrag = freefrag;
5559 
5560 	return (jfreefrag);
5561 }
5562 
5563 /*
5564  * Allocate a new freefrag structure.
5565  */
5566 static struct freefrag *
5567 newfreefrag(ip, blkno, size, lbn)
5568 	struct inode *ip;
5569 	ufs2_daddr_t blkno;
5570 	long size;
5571 	ufs_lbn_t lbn;
5572 {
5573 	struct freefrag *freefrag;
5574 	struct ufsmount *ump;
5575 	struct fs *fs;
5576 
5577 	CTR4(KTR_SUJ, "newfreefrag: ino %d blkno %jd size %ld lbn %jd",
5578 	    ip->i_number, blkno, size, lbn);
5579 	ump = ITOUMP(ip);
5580 	fs = ump->um_fs;
5581 	if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
5582 		panic("newfreefrag: frag size");
5583 	freefrag = malloc(sizeof(struct freefrag),
5584 	    M_FREEFRAG, M_SOFTDEP_FLAGS);
5585 	workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ump));
5586 	freefrag->ff_state = ATTACHED;
5587 	LIST_INIT(&freefrag->ff_jwork);
5588 	freefrag->ff_inum = ip->i_number;
5589 	freefrag->ff_vtype = ITOV(ip)->v_type;
5590 	freefrag->ff_blkno = blkno;
5591 	freefrag->ff_fragsize = size;
5592 
5593 	if (MOUNTEDSUJ(UFSTOVFS(ump))) {
5594 		freefrag->ff_jdep = (struct worklist *)
5595 		    newjfreefrag(freefrag, ip, blkno, size, lbn);
5596 	} else {
5597 		freefrag->ff_state |= DEPCOMPLETE;
5598 		freefrag->ff_jdep = NULL;
5599 	}
5600 
5601 	return (freefrag);
5602 }
5603 
5604 /*
5605  * This workitem de-allocates fragments that were replaced during
5606  * file block allocation.
5607  */
5608 static void
5609 handle_workitem_freefrag(freefrag)
5610 	struct freefrag *freefrag;
5611 {
5612 	struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp);
5613 	struct workhead wkhd;
5614 
5615 	CTR3(KTR_SUJ,
5616 	    "handle_workitem_freefrag: ino %d blkno %jd size %ld",
5617 	    freefrag->ff_inum, freefrag->ff_blkno, freefrag->ff_fragsize);
5618 	/*
5619 	 * It would be illegal to add new completion items to the
5620 	 * freefrag after it was schedule to be done so it must be
5621 	 * safe to modify the list head here.
5622 	 */
5623 	LIST_INIT(&wkhd);
5624 	ACQUIRE_LOCK(ump);
5625 	LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list);
5626 	/*
5627 	 * If the journal has not been written we must cancel it here.
5628 	 */
5629 	if (freefrag->ff_jdep) {
5630 		if (freefrag->ff_jdep->wk_type != D_JNEWBLK)
5631 			panic("handle_workitem_freefrag: Unexpected type %d\n",
5632 			    freefrag->ff_jdep->wk_type);
5633 		cancel_jnewblk(WK_JNEWBLK(freefrag->ff_jdep), &wkhd);
5634 	}
5635 	FREE_LOCK(ump);
5636 	ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno,
5637 	   freefrag->ff_fragsize, freefrag->ff_inum, freefrag->ff_vtype, &wkhd);
5638 	ACQUIRE_LOCK(ump);
5639 	WORKITEM_FREE(freefrag, D_FREEFRAG);
5640 	FREE_LOCK(ump);
5641 }
5642 
5643 /*
5644  * Set up a dependency structure for an external attributes data block.
5645  * This routine follows much of the structure of softdep_setup_allocdirect.
5646  * See the description of softdep_setup_allocdirect above for details.
5647  */
5648 void
5649 softdep_setup_allocext(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
5650 	struct inode *ip;
5651 	ufs_lbn_t off;
5652 	ufs2_daddr_t newblkno;
5653 	ufs2_daddr_t oldblkno;
5654 	long newsize;
5655 	long oldsize;
5656 	struct buf *bp;
5657 {
5658 	struct allocdirect *adp, *oldadp;
5659 	struct allocdirectlst *adphead;
5660 	struct freefrag *freefrag;
5661 	struct inodedep *inodedep;
5662 	struct jnewblk *jnewblk;
5663 	struct newblk *newblk;
5664 	struct mount *mp;
5665 	struct ufsmount *ump;
5666 	ufs_lbn_t lbn;
5667 
5668 	mp = ITOVFS(ip);
5669 	ump = VFSTOUFS(mp);
5670 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5671 	    ("softdep_setup_allocext called on non-softdep filesystem"));
5672 	KASSERT(off < NXADDR, ("softdep_setup_allocext: lbn %lld > NXADDR",
5673 		    (long long)off));
5674 
5675 	lbn = bp->b_lblkno;
5676 	if (oldblkno && oldblkno != newblkno)
5677 		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn);
5678 	else
5679 		freefrag = NULL;
5680 
5681 	ACQUIRE_LOCK(ump);
5682 	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
5683 		panic("softdep_setup_allocext: lost block");
5684 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5685 	    ("softdep_setup_allocext: newblk already initialized"));
5686 	/*
5687 	 * Convert the newblk to an allocdirect.
5688 	 */
5689 	WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT);
5690 	adp = (struct allocdirect *)newblk;
5691 	newblk->nb_freefrag = freefrag;
5692 	adp->ad_offset = off;
5693 	adp->ad_oldblkno = oldblkno;
5694 	adp->ad_newsize = newsize;
5695 	adp->ad_oldsize = oldsize;
5696 	adp->ad_state |=  EXTDATA;
5697 
5698 	/*
5699 	 * Finish initializing the journal.
5700 	 */
5701 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5702 		jnewblk->jn_ino = ip->i_number;
5703 		jnewblk->jn_lbn = lbn;
5704 		add_to_journal(&jnewblk->jn_list);
5705 	}
5706 	if (freefrag && freefrag->ff_jdep != NULL &&
5707 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5708 		add_to_journal(freefrag->ff_jdep);
5709 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
5710 	adp->ad_inodedep = inodedep;
5711 
5712 	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
5713 	/*
5714 	 * The list of allocdirects must be kept in sorted and ascending
5715 	 * order so that the rollback routines can quickly determine the
5716 	 * first uncommitted block (the size of the file stored on disk
5717 	 * ends at the end of the lowest committed fragment, or if there
5718 	 * are no fragments, at the end of the highest committed block).
5719 	 * Since files generally grow, the typical case is that the new
5720 	 * block is to be added at the end of the list. We speed this
5721 	 * special case by checking against the last allocdirect in the
5722 	 * list before laboriously traversing the list looking for the
5723 	 * insertion point.
5724 	 */
5725 	adphead = &inodedep->id_newextupdt;
5726 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
5727 	if (oldadp == NULL || oldadp->ad_offset <= off) {
5728 		/* insert at end of list */
5729 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
5730 		if (oldadp != NULL && oldadp->ad_offset == off)
5731 			allocdirect_merge(adphead, adp, oldadp);
5732 		FREE_LOCK(ump);
5733 		return;
5734 	}
5735 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
5736 		if (oldadp->ad_offset >= off)
5737 			break;
5738 	}
5739 	if (oldadp == NULL)
5740 		panic("softdep_setup_allocext: lost entry");
5741 	/* insert in middle of list */
5742 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5743 	if (oldadp->ad_offset == off)
5744 		allocdirect_merge(adphead, adp, oldadp);
5745 	FREE_LOCK(ump);
5746 }
5747 
5748 /*
5749  * Indirect block allocation dependencies.
5750  *
5751  * The same dependencies that exist for a direct block also exist when
5752  * a new block is allocated and pointed to by an entry in a block of
5753  * indirect pointers. The undo/redo states described above are also
5754  * used here. Because an indirect block contains many pointers that
5755  * may have dependencies, a second copy of the entire in-memory indirect
5756  * block is kept. The buffer cache copy is always completely up-to-date.
5757  * The second copy, which is used only as a source for disk writes,
5758  * contains only the safe pointers (i.e., those that have no remaining
5759  * update dependencies). The second copy is freed when all pointers
5760  * are safe. The cache is not allowed to replace indirect blocks with
5761  * pending update dependencies. If a buffer containing an indirect
5762  * block with dependencies is written, these routines will mark it
5763  * dirty again. It can only be successfully written once all the
5764  * dependencies are removed. The ffs_fsync routine in conjunction with
5765  * softdep_sync_metadata work together to get all the dependencies
5766  * removed so that a file can be successfully written to disk. Three
5767  * procedures are used when setting up indirect block pointer
5768  * dependencies. The division is necessary because of the organization
5769  * of the "balloc" routine and because of the distinction between file
5770  * pages and file metadata blocks.
5771  */
5772 
5773 /*
5774  * Allocate a new allocindir structure.
5775  */
5776 static struct allocindir *
5777 newallocindir(ip, ptrno, newblkno, oldblkno, lbn)
5778 	struct inode *ip;	/* inode for file being extended */
5779 	int ptrno;		/* offset of pointer in indirect block */
5780 	ufs2_daddr_t newblkno;	/* disk block number being added */
5781 	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
5782 	ufs_lbn_t lbn;
5783 {
5784 	struct newblk *newblk;
5785 	struct allocindir *aip;
5786 	struct freefrag *freefrag;
5787 	struct jnewblk *jnewblk;
5788 
5789 	if (oldblkno)
5790 		freefrag = newfreefrag(ip, oldblkno, ITOFS(ip)->fs_bsize, lbn);
5791 	else
5792 		freefrag = NULL;
5793 	ACQUIRE_LOCK(ITOUMP(ip));
5794 	if (newblk_lookup(ITOVFS(ip), newblkno, 0, &newblk) == 0)
5795 		panic("new_allocindir: lost block");
5796 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5797 	    ("newallocindir: newblk already initialized"));
5798 	WORKITEM_REASSIGN(newblk, D_ALLOCINDIR);
5799 	newblk->nb_freefrag = freefrag;
5800 	aip = (struct allocindir *)newblk;
5801 	aip->ai_offset = ptrno;
5802 	aip->ai_oldblkno = oldblkno;
5803 	aip->ai_lbn = lbn;
5804 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5805 		jnewblk->jn_ino = ip->i_number;
5806 		jnewblk->jn_lbn = lbn;
5807 		add_to_journal(&jnewblk->jn_list);
5808 	}
5809 	if (freefrag && freefrag->ff_jdep != NULL &&
5810 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5811 		add_to_journal(freefrag->ff_jdep);
5812 	return (aip);
5813 }
5814 
5815 /*
5816  * Called just before setting an indirect block pointer
5817  * to a newly allocated file page.
5818  */
5819 void
5820 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
5821 	struct inode *ip;	/* inode for file being extended */
5822 	ufs_lbn_t lbn;		/* allocated block number within file */
5823 	struct buf *bp;		/* buffer with indirect blk referencing page */
5824 	int ptrno;		/* offset of pointer in indirect block */
5825 	ufs2_daddr_t newblkno;	/* disk block number being added */
5826 	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
5827 	struct buf *nbp;	/* buffer holding allocated page */
5828 {
5829 	struct inodedep *inodedep;
5830 	struct freefrag *freefrag;
5831 	struct allocindir *aip;
5832 	struct pagedep *pagedep;
5833 	struct mount *mp;
5834 	struct ufsmount *ump;
5835 
5836 	mp = ITOVFS(ip);
5837 	ump = VFSTOUFS(mp);
5838 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5839 	    ("softdep_setup_allocindir_page called on non-softdep filesystem"));
5840 	KASSERT(lbn == nbp->b_lblkno,
5841 	    ("softdep_setup_allocindir_page: lbn %jd != lblkno %jd",
5842 	    lbn, bp->b_lblkno));
5843 	CTR4(KTR_SUJ,
5844 	    "softdep_setup_allocindir_page: ino %d blkno %jd oldblkno %jd "
5845 	    "lbn %jd", ip->i_number, newblkno, oldblkno, lbn);
5846 	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page");
5847 	aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn);
5848 	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
5849 	/*
5850 	 * If we are allocating a directory page, then we must
5851 	 * allocate an associated pagedep to track additions and
5852 	 * deletions.
5853 	 */
5854 	if ((ip->i_mode & IFMT) == IFDIR)
5855 		pagedep_lookup(mp, nbp, ip->i_number, lbn, DEPALLOC, &pagedep);
5856 	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
5857 	freefrag = setup_allocindir_phase2(bp, ip, inodedep, aip, lbn);
5858 	FREE_LOCK(ump);
5859 	if (freefrag)
5860 		handle_workitem_freefrag(freefrag);
5861 }
5862 
5863 /*
5864  * Called just before setting an indirect block pointer to a
5865  * newly allocated indirect block.
5866  */
5867 void
5868 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
5869 	struct buf *nbp;	/* newly allocated indirect block */
5870 	struct inode *ip;	/* inode for file being extended */
5871 	struct buf *bp;		/* indirect block referencing allocated block */
5872 	int ptrno;		/* offset of pointer in indirect block */
5873 	ufs2_daddr_t newblkno;	/* disk block number being added */
5874 {
5875 	struct inodedep *inodedep;
5876 	struct allocindir *aip;
5877 	struct ufsmount *ump;
5878 	ufs_lbn_t lbn;
5879 
5880 	ump = ITOUMP(ip);
5881 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
5882 	    ("softdep_setup_allocindir_meta called on non-softdep filesystem"));
5883 	CTR3(KTR_SUJ,
5884 	    "softdep_setup_allocindir_meta: ino %d blkno %jd ptrno %d",
5885 	    ip->i_number, newblkno, ptrno);
5886 	lbn = nbp->b_lblkno;
5887 	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta");
5888 	aip = newallocindir(ip, ptrno, newblkno, 0, lbn);
5889 	inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep);
5890 	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
5891 	if (setup_allocindir_phase2(bp, ip, inodedep, aip, lbn))
5892 		panic("softdep_setup_allocindir_meta: Block already existed");
5893 	FREE_LOCK(ump);
5894 }
5895 
5896 static void
5897 indirdep_complete(indirdep)
5898 	struct indirdep *indirdep;
5899 {
5900 	struct allocindir *aip;
5901 
5902 	LIST_REMOVE(indirdep, ir_next);
5903 	indirdep->ir_state |= DEPCOMPLETE;
5904 
5905 	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) {
5906 		LIST_REMOVE(aip, ai_next);
5907 		free_newblk(&aip->ai_block);
5908 	}
5909 	/*
5910 	 * If this indirdep is not attached to a buf it was simply waiting
5911 	 * on completion to clear completehd.  free_indirdep() asserts
5912 	 * that nothing is dangling.
5913 	 */
5914 	if ((indirdep->ir_state & ONWORKLIST) == 0)
5915 		free_indirdep(indirdep);
5916 }
5917 
5918 static struct indirdep *
5919 indirdep_lookup(mp, ip, bp)
5920 	struct mount *mp;
5921 	struct inode *ip;
5922 	struct buf *bp;
5923 {
5924 	struct indirdep *indirdep, *newindirdep;
5925 	struct newblk *newblk;
5926 	struct ufsmount *ump;
5927 	struct worklist *wk;
5928 	struct fs *fs;
5929 	ufs2_daddr_t blkno;
5930 
5931 	ump = VFSTOUFS(mp);
5932 	LOCK_OWNED(ump);
5933 	indirdep = NULL;
5934 	newindirdep = NULL;
5935 	fs = ump->um_fs;
5936 	for (;;) {
5937 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5938 			if (wk->wk_type != D_INDIRDEP)
5939 				continue;
5940 			indirdep = WK_INDIRDEP(wk);
5941 			break;
5942 		}
5943 		/* Found on the buffer worklist, no new structure to free. */
5944 		if (indirdep != NULL && newindirdep == NULL)
5945 			return (indirdep);
5946 		if (indirdep != NULL && newindirdep != NULL)
5947 			panic("indirdep_lookup: simultaneous create");
5948 		/* None found on the buffer and a new structure is ready. */
5949 		if (indirdep == NULL && newindirdep != NULL)
5950 			break;
5951 		/* None found and no new structure available. */
5952 		FREE_LOCK(ump);
5953 		newindirdep = malloc(sizeof(struct indirdep),
5954 		    M_INDIRDEP, M_SOFTDEP_FLAGS);
5955 		workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp);
5956 		newindirdep->ir_state = ATTACHED;
5957 		if (I_IS_UFS1(ip))
5958 			newindirdep->ir_state |= UFS1FMT;
5959 		TAILQ_INIT(&newindirdep->ir_trunc);
5960 		newindirdep->ir_saveddata = NULL;
5961 		LIST_INIT(&newindirdep->ir_deplisthd);
5962 		LIST_INIT(&newindirdep->ir_donehd);
5963 		LIST_INIT(&newindirdep->ir_writehd);
5964 		LIST_INIT(&newindirdep->ir_completehd);
5965 		if (bp->b_blkno == bp->b_lblkno) {
5966 			ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp,
5967 			    NULL, NULL);
5968 			bp->b_blkno = blkno;
5969 		}
5970 		newindirdep->ir_freeblks = NULL;
5971 		newindirdep->ir_savebp =
5972 		    getblk(ump->um_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0);
5973 		newindirdep->ir_bp = bp;
5974 		BUF_KERNPROC(newindirdep->ir_savebp);
5975 		bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
5976 		ACQUIRE_LOCK(ump);
5977 	}
5978 	indirdep = newindirdep;
5979 	WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list);
5980 	/*
5981 	 * If the block is not yet allocated we don't set DEPCOMPLETE so
5982 	 * that we don't free dependencies until the pointers are valid.
5983 	 * This could search b_dep for D_ALLOCDIRECT/D_ALLOCINDIR rather
5984 	 * than using the hash.
5985 	 */
5986 	if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk))
5987 		LIST_INSERT_HEAD(&newblk->nb_indirdeps, indirdep, ir_next);
5988 	else
5989 		indirdep->ir_state |= DEPCOMPLETE;
5990 	return (indirdep);
5991 }
5992 
5993 /*
5994  * Called to finish the allocation of the "aip" allocated
5995  * by one of the two routines above.
5996  */
5997 static struct freefrag *
5998 setup_allocindir_phase2(bp, ip, inodedep, aip, lbn)
5999 	struct buf *bp;		/* in-memory copy of the indirect block */
6000 	struct inode *ip;	/* inode for file being extended */
6001 	struct inodedep *inodedep; /* Inodedep for ip */
6002 	struct allocindir *aip;	/* allocindir allocated by the above routines */
6003 	ufs_lbn_t lbn;		/* Logical block number for this block. */
6004 {
6005 	struct fs *fs;
6006 	struct indirdep *indirdep;
6007 	struct allocindir *oldaip;
6008 	struct freefrag *freefrag;
6009 	struct mount *mp;
6010 	struct ufsmount *ump;
6011 
6012 	mp = ITOVFS(ip);
6013 	ump = VFSTOUFS(mp);
6014 	LOCK_OWNED(ump);
6015 	fs = ump->um_fs;
6016 	if (bp->b_lblkno >= 0)
6017 		panic("setup_allocindir_phase2: not indir blk");
6018 	KASSERT(aip->ai_offset >= 0 && aip->ai_offset < NINDIR(fs),
6019 	    ("setup_allocindir_phase2: Bad offset %d", aip->ai_offset));
6020 	indirdep = indirdep_lookup(mp, ip, bp);
6021 	KASSERT(indirdep->ir_savebp != NULL,
6022 	    ("setup_allocindir_phase2 NULL ir_savebp"));
6023 	aip->ai_indirdep = indirdep;
6024 	/*
6025 	 * Check for an unwritten dependency for this indirect offset.  If
6026 	 * there is, merge the old dependency into the new one.  This happens
6027 	 * as a result of reallocblk only.
6028 	 */
6029 	freefrag = NULL;
6030 	if (aip->ai_oldblkno != 0) {
6031 		LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) {
6032 			if (oldaip->ai_offset == aip->ai_offset) {
6033 				freefrag = allocindir_merge(aip, oldaip);
6034 				goto done;
6035 			}
6036 		}
6037 		LIST_FOREACH(oldaip, &indirdep->ir_donehd, ai_next) {
6038 			if (oldaip->ai_offset == aip->ai_offset) {
6039 				freefrag = allocindir_merge(aip, oldaip);
6040 				goto done;
6041 			}
6042 		}
6043 	}
6044 done:
6045 	LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
6046 	return (freefrag);
6047 }
6048 
6049 /*
6050  * Merge two allocindirs which refer to the same block.  Move newblock
6051  * dependencies and setup the freefrags appropriately.
6052  */
6053 static struct freefrag *
6054 allocindir_merge(aip, oldaip)
6055 	struct allocindir *aip;
6056 	struct allocindir *oldaip;
6057 {
6058 	struct freefrag *freefrag;
6059 	struct worklist *wk;
6060 
6061 	if (oldaip->ai_newblkno != aip->ai_oldblkno)
6062 		panic("allocindir_merge: blkno");
6063 	aip->ai_oldblkno = oldaip->ai_oldblkno;
6064 	freefrag = aip->ai_freefrag;
6065 	aip->ai_freefrag = oldaip->ai_freefrag;
6066 	oldaip->ai_freefrag = NULL;
6067 	KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag"));
6068 	/*
6069 	 * If we are tracking a new directory-block allocation,
6070 	 * move it from the old allocindir to the new allocindir.
6071 	 */
6072 	if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) {
6073 		WORKLIST_REMOVE(wk);
6074 		if (!LIST_EMPTY(&oldaip->ai_newdirblk))
6075 			panic("allocindir_merge: extra newdirblk");
6076 		WORKLIST_INSERT(&aip->ai_newdirblk, wk);
6077 	}
6078 	/*
6079 	 * We can skip journaling for this freefrag and just complete
6080 	 * any pending journal work for the allocindir that is being
6081 	 * removed after the freefrag completes.
6082 	 */
6083 	if (freefrag->ff_jdep)
6084 		cancel_jfreefrag(WK_JFREEFRAG(freefrag->ff_jdep));
6085 	LIST_REMOVE(oldaip, ai_next);
6086 	freefrag->ff_jdep = (struct worklist *)cancel_newblk(&oldaip->ai_block,
6087 	    &freefrag->ff_list, &freefrag->ff_jwork);
6088 	free_newblk(&oldaip->ai_block);
6089 
6090 	return (freefrag);
6091 }
6092 
6093 static inline void
6094 setup_freedirect(freeblks, ip, i, needj)
6095 	struct freeblks *freeblks;
6096 	struct inode *ip;
6097 	int i;
6098 	int needj;
6099 {
6100 	struct ufsmount *ump;
6101 	ufs2_daddr_t blkno;
6102 	int frags;
6103 
6104 	blkno = DIP(ip, i_db[i]);
6105 	if (blkno == 0)
6106 		return;
6107 	DIP_SET(ip, i_db[i], 0);
6108 	ump = ITOUMP(ip);
6109 	frags = sblksize(ump->um_fs, ip->i_size, i);
6110 	frags = numfrags(ump->um_fs, frags);
6111 	newfreework(ump, freeblks, NULL, i, blkno, frags, 0, needj);
6112 }
6113 
6114 static inline void
6115 setup_freeext(freeblks, ip, i, needj)
6116 	struct freeblks *freeblks;
6117 	struct inode *ip;
6118 	int i;
6119 	int needj;
6120 {
6121 	struct ufsmount *ump;
6122 	ufs2_daddr_t blkno;
6123 	int frags;
6124 
6125 	blkno = ip->i_din2->di_extb[i];
6126 	if (blkno == 0)
6127 		return;
6128 	ip->i_din2->di_extb[i] = 0;
6129 	ump = ITOUMP(ip);
6130 	frags = sblksize(ump->um_fs, ip->i_din2->di_extsize, i);
6131 	frags = numfrags(ump->um_fs, frags);
6132 	newfreework(ump, freeblks, NULL, -1 - i, blkno, frags, 0, needj);
6133 }
6134 
6135 static inline void
6136 setup_freeindir(freeblks, ip, i, lbn, needj)
6137 	struct freeblks *freeblks;
6138 	struct inode *ip;
6139 	int i;
6140 	ufs_lbn_t lbn;
6141 	int needj;
6142 {
6143 	struct ufsmount *ump;
6144 	ufs2_daddr_t blkno;
6145 
6146 	blkno = DIP(ip, i_ib[i]);
6147 	if (blkno == 0)
6148 		return;
6149 	DIP_SET(ip, i_ib[i], 0);
6150 	ump = ITOUMP(ip);
6151 	newfreework(ump, freeblks, NULL, lbn, blkno, ump->um_fs->fs_frag,
6152 	    0, needj);
6153 }
6154 
6155 static inline struct freeblks *
6156 newfreeblks(mp, ip)
6157 	struct mount *mp;
6158 	struct inode *ip;
6159 {
6160 	struct freeblks *freeblks;
6161 
6162 	freeblks = malloc(sizeof(struct freeblks),
6163 		M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO);
6164 	workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp);
6165 	LIST_INIT(&freeblks->fb_jblkdephd);
6166 	LIST_INIT(&freeblks->fb_jwork);
6167 	freeblks->fb_ref = 0;
6168 	freeblks->fb_cgwait = 0;
6169 	freeblks->fb_state = ATTACHED;
6170 	freeblks->fb_uid = ip->i_uid;
6171 	freeblks->fb_inum = ip->i_number;
6172 	freeblks->fb_vtype = ITOV(ip)->v_type;
6173 	freeblks->fb_modrev = DIP(ip, i_modrev);
6174 	freeblks->fb_devvp = ITODEVVP(ip);
6175 	freeblks->fb_chkcnt = 0;
6176 	freeblks->fb_len = 0;
6177 
6178 	return (freeblks);
6179 }
6180 
6181 static void
6182 trunc_indirdep(indirdep, freeblks, bp, off)
6183 	struct indirdep *indirdep;
6184 	struct freeblks *freeblks;
6185 	struct buf *bp;
6186 	int off;
6187 {
6188 	struct allocindir *aip, *aipn;
6189 
6190 	/*
6191 	 * The first set of allocindirs won't be in savedbp.
6192 	 */
6193 	LIST_FOREACH_SAFE(aip, &indirdep->ir_deplisthd, ai_next, aipn)
6194 		if (aip->ai_offset > off)
6195 			cancel_allocindir(aip, bp, freeblks, 1);
6196 	LIST_FOREACH_SAFE(aip, &indirdep->ir_donehd, ai_next, aipn)
6197 		if (aip->ai_offset > off)
6198 			cancel_allocindir(aip, bp, freeblks, 1);
6199 	/*
6200 	 * These will exist in savedbp.
6201 	 */
6202 	LIST_FOREACH_SAFE(aip, &indirdep->ir_writehd, ai_next, aipn)
6203 		if (aip->ai_offset > off)
6204 			cancel_allocindir(aip, NULL, freeblks, 0);
6205 	LIST_FOREACH_SAFE(aip, &indirdep->ir_completehd, ai_next, aipn)
6206 		if (aip->ai_offset > off)
6207 			cancel_allocindir(aip, NULL, freeblks, 0);
6208 }
6209 
6210 /*
6211  * Follow the chain of indirects down to lastlbn creating a freework
6212  * structure for each.  This will be used to start indir_trunc() at
6213  * the right offset and create the journal records for the parrtial
6214  * truncation.  A second step will handle the truncated dependencies.
6215  */
6216 static int
6217 setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno)
6218 	struct freeblks *freeblks;
6219 	struct inode *ip;
6220 	ufs_lbn_t lbn;
6221 	ufs_lbn_t lastlbn;
6222 	ufs2_daddr_t blkno;
6223 {
6224 	struct indirdep *indirdep;
6225 	struct indirdep *indirn;
6226 	struct freework *freework;
6227 	struct newblk *newblk;
6228 	struct mount *mp;
6229 	struct ufsmount *ump;
6230 	struct buf *bp;
6231 	uint8_t *start;
6232 	uint8_t *end;
6233 	ufs_lbn_t lbnadd;
6234 	int level;
6235 	int error;
6236 	int off;
6237 
6238 
6239 	freework = NULL;
6240 	if (blkno == 0)
6241 		return (0);
6242 	mp = freeblks->fb_list.wk_mp;
6243 	ump = VFSTOUFS(mp);
6244 	bp = getblk(ITOV(ip), lbn, mp->mnt_stat.f_iosize, 0, 0, 0);
6245 	if ((bp->b_flags & B_CACHE) == 0) {
6246 		bp->b_blkno = blkptrtodb(VFSTOUFS(mp), blkno);
6247 		bp->b_iocmd = BIO_READ;
6248 		bp->b_flags &= ~B_INVAL;
6249 		bp->b_ioflags &= ~BIO_ERROR;
6250 		vfs_busy_pages(bp, 0);
6251 		bp->b_iooffset = dbtob(bp->b_blkno);
6252 		bstrategy(bp);
6253 #ifdef RACCT
6254 		if (racct_enable) {
6255 			PROC_LOCK(curproc);
6256 			racct_add_buf(curproc, bp, 0);
6257 			PROC_UNLOCK(curproc);
6258 		}
6259 #endif /* RACCT */
6260 		curthread->td_ru.ru_inblock++;
6261 		error = bufwait(bp);
6262 		if (error) {
6263 			brelse(bp);
6264 			return (error);
6265 		}
6266 	}
6267 	level = lbn_level(lbn);
6268 	lbnadd = lbn_offset(ump->um_fs, level);
6269 	/*
6270 	 * Compute the offset of the last block we want to keep.  Store
6271 	 * in the freework the first block we want to completely free.
6272 	 */
6273 	off = (lastlbn - -(lbn + level)) / lbnadd;
6274 	if (off + 1 == NINDIR(ump->um_fs))
6275 		goto nowork;
6276 	freework = newfreework(ump, freeblks, NULL, lbn, blkno, 0, off + 1, 0);
6277 	/*
6278 	 * Link the freework into the indirdep.  This will prevent any new
6279 	 * allocations from proceeding until we are finished with the
6280 	 * truncate and the block is written.
6281 	 */
6282 	ACQUIRE_LOCK(ump);
6283 	indirdep = indirdep_lookup(mp, ip, bp);
6284 	if (indirdep->ir_freeblks)
6285 		panic("setup_trunc_indir: indirdep already truncated.");
6286 	TAILQ_INSERT_TAIL(&indirdep->ir_trunc, freework, fw_next);
6287 	freework->fw_indir = indirdep;
6288 	/*
6289 	 * Cancel any allocindirs that will not make it to disk.
6290 	 * We have to do this for all copies of the indirdep that
6291 	 * live on this newblk.
6292 	 */
6293 	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
6294 		newblk_lookup(mp, dbtofsb(ump->um_fs, bp->b_blkno), 0, &newblk);
6295 		LIST_FOREACH(indirn, &newblk->nb_indirdeps, ir_next)
6296 			trunc_indirdep(indirn, freeblks, bp, off);
6297 	} else
6298 		trunc_indirdep(indirdep, freeblks, bp, off);
6299 	FREE_LOCK(ump);
6300 	/*
6301 	 * Creation is protected by the buf lock. The saveddata is only
6302 	 * needed if a full truncation follows a partial truncation but it
6303 	 * is difficult to allocate in that case so we fetch it anyway.
6304 	 */
6305 	if (indirdep->ir_saveddata == NULL)
6306 		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
6307 		    M_SOFTDEP_FLAGS);
6308 nowork:
6309 	/* Fetch the blkno of the child and the zero start offset. */
6310 	if (I_IS_UFS1(ip)) {
6311 		blkno = ((ufs1_daddr_t *)bp->b_data)[off];
6312 		start = (uint8_t *)&((ufs1_daddr_t *)bp->b_data)[off+1];
6313 	} else {
6314 		blkno = ((ufs2_daddr_t *)bp->b_data)[off];
6315 		start = (uint8_t *)&((ufs2_daddr_t *)bp->b_data)[off+1];
6316 	}
6317 	if (freework) {
6318 		/* Zero the truncated pointers. */
6319 		end = bp->b_data + bp->b_bcount;
6320 		bzero(start, end - start);
6321 		bdwrite(bp);
6322 	} else
6323 		bqrelse(bp);
6324 	if (level == 0)
6325 		return (0);
6326 	lbn++; /* adjust level */
6327 	lbn -= (off * lbnadd);
6328 	return setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno);
6329 }
6330 
6331 /*
6332  * Complete the partial truncation of an indirect block setup by
6333  * setup_trunc_indir().  This zeros the truncated pointers in the saved
6334  * copy and writes them to disk before the freeblks is allowed to complete.
6335  */
6336 static void
6337 complete_trunc_indir(freework)
6338 	struct freework *freework;
6339 {
6340 	struct freework *fwn;
6341 	struct indirdep *indirdep;
6342 	struct ufsmount *ump;
6343 	struct buf *bp;
6344 	uintptr_t start;
6345 	int count;
6346 
6347 	ump = VFSTOUFS(freework->fw_list.wk_mp);
6348 	LOCK_OWNED(ump);
6349 	indirdep = freework->fw_indir;
6350 	for (;;) {
6351 		bp = indirdep->ir_bp;
6352 		/* See if the block was discarded. */
6353 		if (bp == NULL)
6354 			break;
6355 		/* Inline part of getdirtybuf().  We dont want bremfree. */
6356 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0)
6357 			break;
6358 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
6359 		    LOCK_PTR(ump)) == 0)
6360 			BUF_UNLOCK(bp);
6361 		ACQUIRE_LOCK(ump);
6362 	}
6363 	freework->fw_state |= DEPCOMPLETE;
6364 	TAILQ_REMOVE(&indirdep->ir_trunc, freework, fw_next);
6365 	/*
6366 	 * Zero the pointers in the saved copy.
6367 	 */
6368 	if (indirdep->ir_state & UFS1FMT)
6369 		start = sizeof(ufs1_daddr_t);
6370 	else
6371 		start = sizeof(ufs2_daddr_t);
6372 	start *= freework->fw_start;
6373 	count = indirdep->ir_savebp->b_bcount - start;
6374 	start += (uintptr_t)indirdep->ir_savebp->b_data;
6375 	bzero((char *)start, count);
6376 	/*
6377 	 * We need to start the next truncation in the list if it has not
6378 	 * been started yet.
6379 	 */
6380 	fwn = TAILQ_FIRST(&indirdep->ir_trunc);
6381 	if (fwn != NULL) {
6382 		if (fwn->fw_freeblks == indirdep->ir_freeblks)
6383 			TAILQ_REMOVE(&indirdep->ir_trunc, fwn, fw_next);
6384 		if ((fwn->fw_state & ONWORKLIST) == 0)
6385 			freework_enqueue(fwn);
6386 	}
6387 	/*
6388 	 * If bp is NULL the block was fully truncated, restore
6389 	 * the saved block list otherwise free it if it is no
6390 	 * longer needed.
6391 	 */
6392 	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
6393 		if (bp == NULL)
6394 			bcopy(indirdep->ir_saveddata,
6395 			    indirdep->ir_savebp->b_data,
6396 			    indirdep->ir_savebp->b_bcount);
6397 		free(indirdep->ir_saveddata, M_INDIRDEP);
6398 		indirdep->ir_saveddata = NULL;
6399 	}
6400 	/*
6401 	 * When bp is NULL there is a full truncation pending.  We
6402 	 * must wait for this full truncation to be journaled before
6403 	 * we can release this freework because the disk pointers will
6404 	 * never be written as zero.
6405 	 */
6406 	if (bp == NULL)  {
6407 		if (LIST_EMPTY(&indirdep->ir_freeblks->fb_jblkdephd))
6408 			handle_written_freework(freework);
6409 		else
6410 			WORKLIST_INSERT(&indirdep->ir_freeblks->fb_freeworkhd,
6411 			   &freework->fw_list);
6412 	} else {
6413 		/* Complete when the real copy is written. */
6414 		WORKLIST_INSERT(&bp->b_dep, &freework->fw_list);
6415 		BUF_UNLOCK(bp);
6416 	}
6417 }
6418 
6419 /*
6420  * Calculate the number of blocks we are going to release where datablocks
6421  * is the current total and length is the new file size.
6422  */
6423 static ufs2_daddr_t
6424 blkcount(fs, datablocks, length)
6425 	struct fs *fs;
6426 	ufs2_daddr_t datablocks;
6427 	off_t length;
6428 {
6429 	off_t totblks, numblks;
6430 
6431 	totblks = 0;
6432 	numblks = howmany(length, fs->fs_bsize);
6433 	if (numblks <= NDADDR) {
6434 		totblks = howmany(length, fs->fs_fsize);
6435 		goto out;
6436 	}
6437         totblks = blkstofrags(fs, numblks);
6438 	numblks -= NDADDR;
6439 	/*
6440 	 * Count all single, then double, then triple indirects required.
6441 	 * Subtracting one indirects worth of blocks for each pass
6442 	 * acknowledges one of each pointed to by the inode.
6443 	 */
6444 	for (;;) {
6445 		totblks += blkstofrags(fs, howmany(numblks, NINDIR(fs)));
6446 		numblks -= NINDIR(fs);
6447 		if (numblks <= 0)
6448 			break;
6449 		numblks = howmany(numblks, NINDIR(fs));
6450 	}
6451 out:
6452 	totblks = fsbtodb(fs, totblks);
6453 	/*
6454 	 * Handle sparse files.  We can't reclaim more blocks than the inode
6455 	 * references.  We will correct it later in handle_complete_freeblks()
6456 	 * when we know the real count.
6457 	 */
6458 	if (totblks > datablocks)
6459 		return (0);
6460 	return (datablocks - totblks);
6461 }
6462 
6463 /*
6464  * Handle freeblocks for journaled softupdate filesystems.
6465  *
6466  * Contrary to normal softupdates, we must preserve the block pointers in
6467  * indirects until their subordinates are free.  This is to avoid journaling
6468  * every block that is freed which may consume more space than the journal
6469  * itself.  The recovery program will see the free block journals at the
6470  * base of the truncated area and traverse them to reclaim space.  The
6471  * pointers in the inode may be cleared immediately after the journal
6472  * records are written because each direct and indirect pointer in the
6473  * inode is recorded in a journal.  This permits full truncation to proceed
6474  * asynchronously.  The write order is journal -> inode -> cgs -> indirects.
6475  *
6476  * The algorithm is as follows:
6477  * 1) Traverse the in-memory state and create journal entries to release
6478  *    the relevant blocks and full indirect trees.
6479  * 2) Traverse the indirect block chain adding partial truncation freework
6480  *    records to indirects in the path to lastlbn.  The freework will
6481  *    prevent new allocation dependencies from being satisfied in this
6482  *    indirect until the truncation completes.
6483  * 3) Read and lock the inode block, performing an update with the new size
6484  *    and pointers.  This prevents truncated data from becoming valid on
6485  *    disk through step 4.
6486  * 4) Reap unsatisfied dependencies that are beyond the truncated area,
6487  *    eliminate journal work for those records that do not require it.
6488  * 5) Schedule the journal records to be written followed by the inode block.
6489  * 6) Allocate any necessary frags for the end of file.
6490  * 7) Zero any partially truncated blocks.
6491  *
6492  * From this truncation proceeds asynchronously using the freework and
6493  * indir_trunc machinery.  The file will not be extended again into a
6494  * partially truncated indirect block until all work is completed but
6495  * the normal dependency mechanism ensures that it is rolled back/forward
6496  * as appropriate.  Further truncation may occur without delay and is
6497  * serialized in indir_trunc().
6498  */
6499 void
6500 softdep_journal_freeblocks(ip, cred, length, flags)
6501 	struct inode *ip;	/* The inode whose length is to be reduced */
6502 	struct ucred *cred;
6503 	off_t length;		/* The new length for the file */
6504 	int flags;		/* IO_EXT and/or IO_NORMAL */
6505 {
6506 	struct freeblks *freeblks, *fbn;
6507 	struct worklist *wk, *wkn;
6508 	struct inodedep *inodedep;
6509 	struct jblkdep *jblkdep;
6510 	struct allocdirect *adp, *adpn;
6511 	struct ufsmount *ump;
6512 	struct fs *fs;
6513 	struct buf *bp;
6514 	struct vnode *vp;
6515 	struct mount *mp;
6516 	ufs2_daddr_t extblocks, datablocks;
6517 	ufs_lbn_t tmpval, lbn, lastlbn;
6518 	int frags, lastoff, iboff, allocblock, needj, error, i;
6519 
6520 	ump = ITOUMP(ip);
6521 	mp = UFSTOVFS(ump);
6522 	fs = ump->um_fs;
6523 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
6524 	    ("softdep_journal_freeblocks called on non-softdep filesystem"));
6525 	vp = ITOV(ip);
6526 	needj = 1;
6527 	iboff = -1;
6528 	allocblock = 0;
6529 	extblocks = 0;
6530 	datablocks = 0;
6531 	frags = 0;
6532 	freeblks = newfreeblks(mp, ip);
6533 	ACQUIRE_LOCK(ump);
6534 	/*
6535 	 * If we're truncating a removed file that will never be written
6536 	 * we don't need to journal the block frees.  The canceled journals
6537 	 * for the allocations will suffice.
6538 	 */
6539 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6540 	if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED &&
6541 	    length == 0)
6542 		needj = 0;
6543 	CTR3(KTR_SUJ, "softdep_journal_freeblks: ip %d length %ld needj %d",
6544 	    ip->i_number, length, needj);
6545 	FREE_LOCK(ump);
6546 	/*
6547 	 * Calculate the lbn that we are truncating to.  This results in -1
6548 	 * if we're truncating the 0 bytes.  So it is the last lbn we want
6549 	 * to keep, not the first lbn we want to truncate.
6550 	 */
6551 	lastlbn = lblkno(fs, length + fs->fs_bsize - 1) - 1;
6552 	lastoff = blkoff(fs, length);
6553 	/*
6554 	 * Compute frags we are keeping in lastlbn.  0 means all.
6555 	 */
6556 	if (lastlbn >= 0 && lastlbn < NDADDR) {
6557 		frags = fragroundup(fs, lastoff);
6558 		/* adp offset of last valid allocdirect. */
6559 		iboff = lastlbn;
6560 	} else if (lastlbn > 0)
6561 		iboff = NDADDR;
6562 	if (fs->fs_magic == FS_UFS2_MAGIC)
6563 		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
6564 	/*
6565 	 * Handle normal data blocks and indirects.  This section saves
6566 	 * values used after the inode update to complete frag and indirect
6567 	 * truncation.
6568 	 */
6569 	if ((flags & IO_NORMAL) != 0) {
6570 		/*
6571 		 * Handle truncation of whole direct and indirect blocks.
6572 		 */
6573 		for (i = iboff + 1; i < NDADDR; i++)
6574 			setup_freedirect(freeblks, ip, i, needj);
6575 		for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR;
6576 		    i++, lbn += tmpval, tmpval *= NINDIR(fs)) {
6577 			/* Release a whole indirect tree. */
6578 			if (lbn > lastlbn) {
6579 				setup_freeindir(freeblks, ip, i, -lbn -i,
6580 				    needj);
6581 				continue;
6582 			}
6583 			iboff = i + NDADDR;
6584 			/*
6585 			 * Traverse partially truncated indirect tree.
6586 			 */
6587 			if (lbn <= lastlbn && lbn + tmpval - 1 > lastlbn)
6588 				setup_trunc_indir(freeblks, ip, -lbn - i,
6589 				    lastlbn, DIP(ip, i_ib[i]));
6590 		}
6591 		/*
6592 		 * Handle partial truncation to a frag boundary.
6593 		 */
6594 		if (frags) {
6595 			ufs2_daddr_t blkno;
6596 			long oldfrags;
6597 
6598 			oldfrags = blksize(fs, ip, lastlbn);
6599 			blkno = DIP(ip, i_db[lastlbn]);
6600 			if (blkno && oldfrags != frags) {
6601 				oldfrags -= frags;
6602 				oldfrags = numfrags(fs, oldfrags);
6603 				blkno += numfrags(fs, frags);
6604 				newfreework(ump, freeblks, NULL, lastlbn,
6605 				    blkno, oldfrags, 0, needj);
6606 				if (needj)
6607 					adjust_newfreework(freeblks,
6608 					    numfrags(fs, frags));
6609 			} else if (blkno == 0)
6610 				allocblock = 1;
6611 		}
6612 		/*
6613 		 * Add a journal record for partial truncate if we are
6614 		 * handling indirect blocks.  Non-indirects need no extra
6615 		 * journaling.
6616 		 */
6617 		if (length != 0 && lastlbn >= NDADDR) {
6618 			ip->i_flag |= IN_TRUNCATED;
6619 			newjtrunc(freeblks, length, 0);
6620 		}
6621 		ip->i_size = length;
6622 		DIP_SET(ip, i_size, ip->i_size);
6623 		datablocks = DIP(ip, i_blocks) - extblocks;
6624 		if (length != 0)
6625 			datablocks = blkcount(fs, datablocks, length);
6626 		freeblks->fb_len = length;
6627 	}
6628 	if ((flags & IO_EXT) != 0) {
6629 		for (i = 0; i < NXADDR; i++)
6630 			setup_freeext(freeblks, ip, i, needj);
6631 		ip->i_din2->di_extsize = 0;
6632 		datablocks += extblocks;
6633 	}
6634 #ifdef QUOTA
6635 	/* Reference the quotas in case the block count is wrong in the end. */
6636 	quotaref(vp, freeblks->fb_quota);
6637 	(void) chkdq(ip, -datablocks, NOCRED, 0);
6638 #endif
6639 	freeblks->fb_chkcnt = -datablocks;
6640 	UFS_LOCK(ump);
6641 	fs->fs_pendingblocks += datablocks;
6642 	UFS_UNLOCK(ump);
6643 	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
6644 	/*
6645 	 * Handle truncation of incomplete alloc direct dependencies.  We
6646 	 * hold the inode block locked to prevent incomplete dependencies
6647 	 * from reaching the disk while we are eliminating those that
6648 	 * have been truncated.  This is a partially inlined ffs_update().
6649 	 */
6650 	ufs_itimes(vp);
6651 	ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED);
6652 	error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
6653 	    (int)fs->fs_bsize, cred, &bp);
6654 	if (error) {
6655 		brelse(bp);
6656 		softdep_error("softdep_journal_freeblocks", error);
6657 		return;
6658 	}
6659 	if (bp->b_bufsize == fs->fs_bsize)
6660 		bp->b_flags |= B_CLUSTEROK;
6661 	softdep_update_inodeblock(ip, bp, 0);
6662 	if (ump->um_fstype == UFS1)
6663 		*((struct ufs1_dinode *)bp->b_data +
6664 		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1;
6665 	else
6666 		*((struct ufs2_dinode *)bp->b_data +
6667 		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2;
6668 	ACQUIRE_LOCK(ump);
6669 	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6670 	if ((inodedep->id_state & IOSTARTED) != 0)
6671 		panic("softdep_setup_freeblocks: inode busy");
6672 	/*
6673 	 * Add the freeblks structure to the list of operations that
6674 	 * must await the zero'ed inode being written to disk. If we
6675 	 * still have a bitmap dependency (needj), then the inode
6676 	 * has never been written to disk, so we can process the
6677 	 * freeblks below once we have deleted the dependencies.
6678 	 */
6679 	if (needj)
6680 		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
6681 	else
6682 		freeblks->fb_state |= COMPLETE;
6683 	if ((flags & IO_NORMAL) != 0) {
6684 		TAILQ_FOREACH_SAFE(adp, &inodedep->id_inoupdt, ad_next, adpn) {
6685 			if (adp->ad_offset > iboff)
6686 				cancel_allocdirect(&inodedep->id_inoupdt, adp,
6687 				    freeblks);
6688 			/*
6689 			 * Truncate the allocdirect.  We could eliminate
6690 			 * or modify journal records as well.
6691 			 */
6692 			else if (adp->ad_offset == iboff && frags)
6693 				adp->ad_newsize = frags;
6694 		}
6695 	}
6696 	if ((flags & IO_EXT) != 0)
6697 		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
6698 			cancel_allocdirect(&inodedep->id_extupdt, adp,
6699 			    freeblks);
6700 	/*
6701 	 * Scan the bufwait list for newblock dependencies that will never
6702 	 * make it to disk.
6703 	 */
6704 	LIST_FOREACH_SAFE(wk, &inodedep->id_bufwait, wk_list, wkn) {
6705 		if (wk->wk_type != D_ALLOCDIRECT)
6706 			continue;
6707 		adp = WK_ALLOCDIRECT(wk);
6708 		if (((flags & IO_NORMAL) != 0 && (adp->ad_offset > iboff)) ||
6709 		    ((flags & IO_EXT) != 0 && (adp->ad_state & EXTDATA))) {
6710 			cancel_jfreeblk(freeblks, adp->ad_newblkno);
6711 			cancel_newblk(WK_NEWBLK(wk), NULL, &freeblks->fb_jwork);
6712 			WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
6713 		}
6714 	}
6715 	/*
6716 	 * Add journal work.
6717 	 */
6718 	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps)
6719 		add_to_journal(&jblkdep->jb_list);
6720 	FREE_LOCK(ump);
6721 	bdwrite(bp);
6722 	/*
6723 	 * Truncate dependency structures beyond length.
6724 	 */
6725 	trunc_dependencies(ip, freeblks, lastlbn, frags, flags);
6726 	/*
6727 	 * This is only set when we need to allocate a fragment because
6728 	 * none existed at the end of a frag-sized file.  It handles only
6729 	 * allocating a new, zero filled block.
6730 	 */
6731 	if (allocblock) {
6732 		ip->i_size = length - lastoff;
6733 		DIP_SET(ip, i_size, ip->i_size);
6734 		error = UFS_BALLOC(vp, length - 1, 1, cred, BA_CLRBUF, &bp);
6735 		if (error != 0) {
6736 			softdep_error("softdep_journal_freeblks", error);
6737 			return;
6738 		}
6739 		ip->i_size = length;
6740 		DIP_SET(ip, i_size, length);
6741 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
6742 		allocbuf(bp, frags);
6743 		ffs_update(vp, 0);
6744 		bawrite(bp);
6745 	} else if (lastoff != 0 && vp->v_type != VDIR) {
6746 		int size;
6747 
6748 		/*
6749 		 * Zero the end of a truncated frag or block.
6750 		 */
6751 		size = sblksize(fs, length, lastlbn);
6752 		error = bread(vp, lastlbn, size, cred, &bp);
6753 		if (error) {
6754 			softdep_error("softdep_journal_freeblks", error);
6755 			return;
6756 		}
6757 		bzero((char *)bp->b_data + lastoff, size - lastoff);
6758 		bawrite(bp);
6759 
6760 	}
6761 	ACQUIRE_LOCK(ump);
6762 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6763 	TAILQ_INSERT_TAIL(&inodedep->id_freeblklst, freeblks, fb_next);
6764 	freeblks->fb_state |= DEPCOMPLETE | ONDEPLIST;
6765 	/*
6766 	 * We zero earlier truncations so they don't erroneously
6767 	 * update i_blocks.
6768 	 */
6769 	if (freeblks->fb_len == 0 && (flags & IO_NORMAL) != 0)
6770 		TAILQ_FOREACH(fbn, &inodedep->id_freeblklst, fb_next)
6771 			fbn->fb_len = 0;
6772 	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE &&
6773 	    LIST_EMPTY(&freeblks->fb_jblkdephd))
6774 		freeblks->fb_state |= INPROGRESS;
6775 	else
6776 		freeblks = NULL;
6777 	FREE_LOCK(ump);
6778 	if (freeblks)
6779 		handle_workitem_freeblocks(freeblks, 0);
6780 	trunc_pages(ip, length, extblocks, flags);
6781 
6782 }
6783 
6784 /*
6785  * Flush a JOP_SYNC to the journal.
6786  */
6787 void
6788 softdep_journal_fsync(ip)
6789 	struct inode *ip;
6790 {
6791 	struct jfsync *jfsync;
6792 	struct ufsmount *ump;
6793 
6794 	ump = ITOUMP(ip);
6795 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
6796 	    ("softdep_journal_fsync called on non-softdep filesystem"));
6797 	if ((ip->i_flag & IN_TRUNCATED) == 0)
6798 		return;
6799 	ip->i_flag &= ~IN_TRUNCATED;
6800 	jfsync = malloc(sizeof(*jfsync), M_JFSYNC, M_SOFTDEP_FLAGS | M_ZERO);
6801 	workitem_alloc(&jfsync->jfs_list, D_JFSYNC, UFSTOVFS(ump));
6802 	jfsync->jfs_size = ip->i_size;
6803 	jfsync->jfs_ino = ip->i_number;
6804 	ACQUIRE_LOCK(ump);
6805 	add_to_journal(&jfsync->jfs_list);
6806 	jwait(&jfsync->jfs_list, MNT_WAIT);
6807 	FREE_LOCK(ump);
6808 }
6809 
6810 /*
6811  * Block de-allocation dependencies.
6812  *
6813  * When blocks are de-allocated, the on-disk pointers must be nullified before
6814  * the blocks are made available for use by other files.  (The true
6815  * requirement is that old pointers must be nullified before new on-disk
6816  * pointers are set.  We chose this slightly more stringent requirement to
6817  * reduce complexity.) Our implementation handles this dependency by updating
6818  * the inode (or indirect block) appropriately but delaying the actual block
6819  * de-allocation (i.e., freemap and free space count manipulation) until
6820  * after the updated versions reach stable storage.  After the disk is
6821  * updated, the blocks can be safely de-allocated whenever it is convenient.
6822  * This implementation handles only the common case of reducing a file's
6823  * length to zero. Other cases are handled by the conventional synchronous
6824  * write approach.
6825  *
6826  * The ffs implementation with which we worked double-checks
6827  * the state of the block pointers and file size as it reduces
6828  * a file's length.  Some of this code is replicated here in our
6829  * soft updates implementation.  The freeblks->fb_chkcnt field is
6830  * used to transfer a part of this information to the procedure
6831  * that eventually de-allocates the blocks.
6832  *
6833  * This routine should be called from the routine that shortens
6834  * a file's length, before the inode's size or block pointers
6835  * are modified. It will save the block pointer information for
6836  * later release and zero the inode so that the calling routine
6837  * can release it.
6838  */
6839 void
6840 softdep_setup_freeblocks(ip, length, flags)
6841 	struct inode *ip;	/* The inode whose length is to be reduced */
6842 	off_t length;		/* The new length for the file */
6843 	int flags;		/* IO_EXT and/or IO_NORMAL */
6844 {
6845 	struct ufs1_dinode *dp1;
6846 	struct ufs2_dinode *dp2;
6847 	struct freeblks *freeblks;
6848 	struct inodedep *inodedep;
6849 	struct allocdirect *adp;
6850 	struct ufsmount *ump;
6851 	struct buf *bp;
6852 	struct fs *fs;
6853 	ufs2_daddr_t extblocks, datablocks;
6854 	struct mount *mp;
6855 	int i, delay, error;
6856 	ufs_lbn_t tmpval;
6857 	ufs_lbn_t lbn;
6858 
6859 	ump = ITOUMP(ip);
6860 	mp = UFSTOVFS(ump);
6861 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
6862 	    ("softdep_setup_freeblocks called on non-softdep filesystem"));
6863 	CTR2(KTR_SUJ, "softdep_setup_freeblks: ip %d length %ld",
6864 	    ip->i_number, length);
6865 	KASSERT(length == 0, ("softdep_setup_freeblocks: non-zero length"));
6866 	fs = ump->um_fs;
6867 	if ((error = bread(ump->um_devvp,
6868 	    fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
6869 	    (int)fs->fs_bsize, NOCRED, &bp)) != 0) {
6870 		brelse(bp);
6871 		softdep_error("softdep_setup_freeblocks", error);
6872 		return;
6873 	}
6874 	freeblks = newfreeblks(mp, ip);
6875 	extblocks = 0;
6876 	datablocks = 0;
6877 	if (fs->fs_magic == FS_UFS2_MAGIC)
6878 		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
6879 	if ((flags & IO_NORMAL) != 0) {
6880 		for (i = 0; i < NDADDR; i++)
6881 			setup_freedirect(freeblks, ip, i, 0);
6882 		for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR;
6883 		    i++, lbn += tmpval, tmpval *= NINDIR(fs))
6884 			setup_freeindir(freeblks, ip, i, -lbn -i, 0);
6885 		ip->i_size = 0;
6886 		DIP_SET(ip, i_size, 0);
6887 		datablocks = DIP(ip, i_blocks) - extblocks;
6888 	}
6889 	if ((flags & IO_EXT) != 0) {
6890 		for (i = 0; i < NXADDR; i++)
6891 			setup_freeext(freeblks, ip, i, 0);
6892 		ip->i_din2->di_extsize = 0;
6893 		datablocks += extblocks;
6894 	}
6895 #ifdef QUOTA
6896 	/* Reference the quotas in case the block count is wrong in the end. */
6897 	quotaref(ITOV(ip), freeblks->fb_quota);
6898 	(void) chkdq(ip, -datablocks, NOCRED, 0);
6899 #endif
6900 	freeblks->fb_chkcnt = -datablocks;
6901 	UFS_LOCK(ump);
6902 	fs->fs_pendingblocks += datablocks;
6903 	UFS_UNLOCK(ump);
6904 	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
6905 	/*
6906 	 * Push the zero'ed inode to to its disk buffer so that we are free
6907 	 * to delete its dependencies below. Once the dependencies are gone
6908 	 * the buffer can be safely released.
6909 	 */
6910 	if (ump->um_fstype == UFS1) {
6911 		dp1 = ((struct ufs1_dinode *)bp->b_data +
6912 		    ino_to_fsbo(fs, ip->i_number));
6913 		ip->i_din1->di_freelink = dp1->di_freelink;
6914 		*dp1 = *ip->i_din1;
6915 	} else {
6916 		dp2 = ((struct ufs2_dinode *)bp->b_data +
6917 		    ino_to_fsbo(fs, ip->i_number));
6918 		ip->i_din2->di_freelink = dp2->di_freelink;
6919 		*dp2 = *ip->i_din2;
6920 	}
6921 	/*
6922 	 * Find and eliminate any inode dependencies.
6923 	 */
6924 	ACQUIRE_LOCK(ump);
6925 	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6926 	if ((inodedep->id_state & IOSTARTED) != 0)
6927 		panic("softdep_setup_freeblocks: inode busy");
6928 	/*
6929 	 * Add the freeblks structure to the list of operations that
6930 	 * must await the zero'ed inode being written to disk. If we
6931 	 * still have a bitmap dependency (delay == 0), then the inode
6932 	 * has never been written to disk, so we can process the
6933 	 * freeblks below once we have deleted the dependencies.
6934 	 */
6935 	delay = (inodedep->id_state & DEPCOMPLETE);
6936 	if (delay)
6937 		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
6938 	else
6939 		freeblks->fb_state |= COMPLETE;
6940 	/*
6941 	 * Because the file length has been truncated to zero, any
6942 	 * pending block allocation dependency structures associated
6943 	 * with this inode are obsolete and can simply be de-allocated.
6944 	 * We must first merge the two dependency lists to get rid of
6945 	 * any duplicate freefrag structures, then purge the merged list.
6946 	 * If we still have a bitmap dependency, then the inode has never
6947 	 * been written to disk, so we can free any fragments without delay.
6948 	 */
6949 	if (flags & IO_NORMAL) {
6950 		merge_inode_lists(&inodedep->id_newinoupdt,
6951 		    &inodedep->id_inoupdt);
6952 		while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
6953 			cancel_allocdirect(&inodedep->id_inoupdt, adp,
6954 			    freeblks);
6955 	}
6956 	if (flags & IO_EXT) {
6957 		merge_inode_lists(&inodedep->id_newextupdt,
6958 		    &inodedep->id_extupdt);
6959 		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
6960 			cancel_allocdirect(&inodedep->id_extupdt, adp,
6961 			    freeblks);
6962 	}
6963 	FREE_LOCK(ump);
6964 	bdwrite(bp);
6965 	trunc_dependencies(ip, freeblks, -1, 0, flags);
6966 	ACQUIRE_LOCK(ump);
6967 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
6968 		(void) free_inodedep(inodedep);
6969 	freeblks->fb_state |= DEPCOMPLETE;
6970 	/*
6971 	 * If the inode with zeroed block pointers is now on disk
6972 	 * we can start freeing blocks.
6973 	 */
6974 	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
6975 		freeblks->fb_state |= INPROGRESS;
6976 	else
6977 		freeblks = NULL;
6978 	FREE_LOCK(ump);
6979 	if (freeblks)
6980 		handle_workitem_freeblocks(freeblks, 0);
6981 	trunc_pages(ip, length, extblocks, flags);
6982 }
6983 
6984 /*
6985  * Eliminate pages from the page cache that back parts of this inode and
6986  * adjust the vnode pager's idea of our size.  This prevents stale data
6987  * from hanging around in the page cache.
6988  */
6989 static void
6990 trunc_pages(ip, length, extblocks, flags)
6991 	struct inode *ip;
6992 	off_t length;
6993 	ufs2_daddr_t extblocks;
6994 	int flags;
6995 {
6996 	struct vnode *vp;
6997 	struct fs *fs;
6998 	ufs_lbn_t lbn;
6999 	off_t end, extend;
7000 
7001 	vp = ITOV(ip);
7002 	fs = ITOFS(ip);
7003 	extend = OFF_TO_IDX(lblktosize(fs, -extblocks));
7004 	if ((flags & IO_EXT) != 0)
7005 		vn_pages_remove(vp, extend, 0);
7006 	if ((flags & IO_NORMAL) == 0)
7007 		return;
7008 	BO_LOCK(&vp->v_bufobj);
7009 	drain_output(vp);
7010 	BO_UNLOCK(&vp->v_bufobj);
7011 	/*
7012 	 * The vnode pager eliminates file pages we eliminate indirects
7013 	 * below.
7014 	 */
7015 	vnode_pager_setsize(vp, length);
7016 	/*
7017 	 * Calculate the end based on the last indirect we want to keep.  If
7018 	 * the block extends into indirects we can just use the negative of
7019 	 * its lbn.  Doubles and triples exist at lower numbers so we must
7020 	 * be careful not to remove those, if they exist.  double and triple
7021 	 * indirect lbns do not overlap with others so it is not important
7022 	 * to verify how many levels are required.
7023 	 */
7024 	lbn = lblkno(fs, length);
7025 	if (lbn >= NDADDR) {
7026 		/* Calculate the virtual lbn of the triple indirect. */
7027 		lbn = -lbn - (NIADDR - 1);
7028 		end = OFF_TO_IDX(lblktosize(fs, lbn));
7029 	} else
7030 		end = extend;
7031 	vn_pages_remove(vp, OFF_TO_IDX(OFF_MAX), end);
7032 }
7033 
7034 /*
7035  * See if the buf bp is in the range eliminated by truncation.
7036  */
7037 static int
7038 trunc_check_buf(bp, blkoffp, lastlbn, lastoff, flags)
7039 	struct buf *bp;
7040 	int *blkoffp;
7041 	ufs_lbn_t lastlbn;
7042 	int lastoff;
7043 	int flags;
7044 {
7045 	ufs_lbn_t lbn;
7046 
7047 	*blkoffp = 0;
7048 	/* Only match ext/normal blocks as appropriate. */
7049 	if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) ||
7050 	    ((flags & IO_NORMAL) == 0 && (bp->b_xflags & BX_ALTDATA) == 0))
7051 		return (0);
7052 	/* ALTDATA is always a full truncation. */
7053 	if ((bp->b_xflags & BX_ALTDATA) != 0)
7054 		return (1);
7055 	/* -1 is full truncation. */
7056 	if (lastlbn == -1)
7057 		return (1);
7058 	/*
7059 	 * If this is a partial truncate we only want those
7060 	 * blocks and indirect blocks that cover the range
7061 	 * we're after.
7062 	 */
7063 	lbn = bp->b_lblkno;
7064 	if (lbn < 0)
7065 		lbn = -(lbn + lbn_level(lbn));
7066 	if (lbn < lastlbn)
7067 		return (0);
7068 	/* Here we only truncate lblkno if it's partial. */
7069 	if (lbn == lastlbn) {
7070 		if (lastoff == 0)
7071 			return (0);
7072 		*blkoffp = lastoff;
7073 	}
7074 	return (1);
7075 }
7076 
7077 /*
7078  * Eliminate any dependencies that exist in memory beyond lblkno:off
7079  */
7080 static void
7081 trunc_dependencies(ip, freeblks, lastlbn, lastoff, flags)
7082 	struct inode *ip;
7083 	struct freeblks *freeblks;
7084 	ufs_lbn_t lastlbn;
7085 	int lastoff;
7086 	int flags;
7087 {
7088 	struct bufobj *bo;
7089 	struct vnode *vp;
7090 	struct buf *bp;
7091 	int blkoff;
7092 
7093 	/*
7094 	 * We must wait for any I/O in progress to finish so that
7095 	 * all potential buffers on the dirty list will be visible.
7096 	 * Once they are all there, walk the list and get rid of
7097 	 * any dependencies.
7098 	 */
7099 	vp = ITOV(ip);
7100 	bo = &vp->v_bufobj;
7101 	BO_LOCK(bo);
7102 	drain_output(vp);
7103 	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
7104 		bp->b_vflags &= ~BV_SCANNED;
7105 restart:
7106 	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
7107 		if (bp->b_vflags & BV_SCANNED)
7108 			continue;
7109 		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
7110 			bp->b_vflags |= BV_SCANNED;
7111 			continue;
7112 		}
7113 		KASSERT(bp->b_bufobj == bo, ("Wrong object in buffer"));
7114 		if ((bp = getdirtybuf(bp, BO_LOCKPTR(bo), MNT_WAIT)) == NULL)
7115 			goto restart;
7116 		BO_UNLOCK(bo);
7117 		if (deallocate_dependencies(bp, freeblks, blkoff))
7118 			bqrelse(bp);
7119 		else
7120 			brelse(bp);
7121 		BO_LOCK(bo);
7122 		goto restart;
7123 	}
7124 	/*
7125 	 * Now do the work of vtruncbuf while also matching indirect blocks.
7126 	 */
7127 	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs)
7128 		bp->b_vflags &= ~BV_SCANNED;
7129 cleanrestart:
7130 	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) {
7131 		if (bp->b_vflags & BV_SCANNED)
7132 			continue;
7133 		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
7134 			bp->b_vflags |= BV_SCANNED;
7135 			continue;
7136 		}
7137 		if (BUF_LOCK(bp,
7138 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
7139 		    BO_LOCKPTR(bo)) == ENOLCK) {
7140 			BO_LOCK(bo);
7141 			goto cleanrestart;
7142 		}
7143 		bp->b_vflags |= BV_SCANNED;
7144 		bremfree(bp);
7145 		if (blkoff != 0) {
7146 			allocbuf(bp, blkoff);
7147 			bqrelse(bp);
7148 		} else {
7149 			bp->b_flags |= B_INVAL | B_NOCACHE | B_RELBUF;
7150 			brelse(bp);
7151 		}
7152 		BO_LOCK(bo);
7153 		goto cleanrestart;
7154 	}
7155 	drain_output(vp);
7156 	BO_UNLOCK(bo);
7157 }
7158 
7159 static int
7160 cancel_pagedep(pagedep, freeblks, blkoff)
7161 	struct pagedep *pagedep;
7162 	struct freeblks *freeblks;
7163 	int blkoff;
7164 {
7165 	struct jremref *jremref;
7166 	struct jmvref *jmvref;
7167 	struct dirrem *dirrem, *tmp;
7168 	int i;
7169 
7170 	/*
7171 	 * Copy any directory remove dependencies to the list
7172 	 * to be processed after the freeblks proceeds.  If
7173 	 * directory entry never made it to disk they
7174 	 * can be dumped directly onto the work list.
7175 	 */
7176 	LIST_FOREACH_SAFE(dirrem, &pagedep->pd_dirremhd, dm_next, tmp) {
7177 		/* Skip this directory removal if it is intended to remain. */
7178 		if (dirrem->dm_offset < blkoff)
7179 			continue;
7180 		/*
7181 		 * If there are any dirrems we wait for the journal write
7182 		 * to complete and then restart the buf scan as the lock
7183 		 * has been dropped.
7184 		 */
7185 		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) {
7186 			jwait(&jremref->jr_list, MNT_WAIT);
7187 			return (ERESTART);
7188 		}
7189 		LIST_REMOVE(dirrem, dm_next);
7190 		dirrem->dm_dirinum = pagedep->pd_ino;
7191 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &dirrem->dm_list);
7192 	}
7193 	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) {
7194 		jwait(&jmvref->jm_list, MNT_WAIT);
7195 		return (ERESTART);
7196 	}
7197 	/*
7198 	 * When we're partially truncating a pagedep we just want to flush
7199 	 * journal entries and return.  There can not be any adds in the
7200 	 * truncated portion of the directory and newblk must remain if
7201 	 * part of the block remains.
7202 	 */
7203 	if (blkoff != 0) {
7204 		struct diradd *dap;
7205 
7206 		LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
7207 			if (dap->da_offset > blkoff)
7208 				panic("cancel_pagedep: diradd %p off %d > %d",
7209 				    dap, dap->da_offset, blkoff);
7210 		for (i = 0; i < DAHASHSZ; i++)
7211 			LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist)
7212 				if (dap->da_offset > blkoff)
7213 					panic("cancel_pagedep: diradd %p off %d > %d",
7214 					    dap, dap->da_offset, blkoff);
7215 		return (0);
7216 	}
7217 	/*
7218 	 * There should be no directory add dependencies present
7219 	 * as the directory could not be truncated until all
7220 	 * children were removed.
7221 	 */
7222 	KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL,
7223 	    ("deallocate_dependencies: pendinghd != NULL"));
7224 	for (i = 0; i < DAHASHSZ; i++)
7225 		KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL,
7226 		    ("deallocate_dependencies: diraddhd != NULL"));
7227 	if ((pagedep->pd_state & NEWBLOCK) != 0)
7228 		free_newdirblk(pagedep->pd_newdirblk);
7229 	if (free_pagedep(pagedep) == 0)
7230 		panic("Failed to free pagedep %p", pagedep);
7231 	return (0);
7232 }
7233 
7234 /*
7235  * Reclaim any dependency structures from a buffer that is about to
7236  * be reallocated to a new vnode. The buffer must be locked, thus,
7237  * no I/O completion operations can occur while we are manipulating
7238  * its associated dependencies. The mutex is held so that other I/O's
7239  * associated with related dependencies do not occur.
7240  */
7241 static int
7242 deallocate_dependencies(bp, freeblks, off)
7243 	struct buf *bp;
7244 	struct freeblks *freeblks;
7245 	int off;
7246 {
7247 	struct indirdep *indirdep;
7248 	struct pagedep *pagedep;
7249 	struct worklist *wk, *wkn;
7250 	struct ufsmount *ump;
7251 
7252 	if ((wk = LIST_FIRST(&bp->b_dep)) == NULL)
7253 		goto done;
7254 	ump = VFSTOUFS(wk->wk_mp);
7255 	ACQUIRE_LOCK(ump);
7256 	LIST_FOREACH_SAFE(wk, &bp->b_dep, wk_list, wkn) {
7257 		switch (wk->wk_type) {
7258 		case D_INDIRDEP:
7259 			indirdep = WK_INDIRDEP(wk);
7260 			if (bp->b_lblkno >= 0 ||
7261 			    bp->b_blkno != indirdep->ir_savebp->b_lblkno)
7262 				panic("deallocate_dependencies: not indir");
7263 			cancel_indirdep(indirdep, bp, freeblks);
7264 			continue;
7265 
7266 		case D_PAGEDEP:
7267 			pagedep = WK_PAGEDEP(wk);
7268 			if (cancel_pagedep(pagedep, freeblks, off)) {
7269 				FREE_LOCK(ump);
7270 				return (ERESTART);
7271 			}
7272 			continue;
7273 
7274 		case D_ALLOCINDIR:
7275 			/*
7276 			 * Simply remove the allocindir, we'll find it via
7277 			 * the indirdep where we can clear pointers if
7278 			 * needed.
7279 			 */
7280 			WORKLIST_REMOVE(wk);
7281 			continue;
7282 
7283 		case D_FREEWORK:
7284 			/*
7285 			 * A truncation is waiting for the zero'd pointers
7286 			 * to be written.  It can be freed when the freeblks
7287 			 * is journaled.
7288 			 */
7289 			WORKLIST_REMOVE(wk);
7290 			wk->wk_state |= ONDEPLIST;
7291 			WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
7292 			break;
7293 
7294 		case D_ALLOCDIRECT:
7295 			if (off != 0)
7296 				continue;
7297 			/* FALLTHROUGH */
7298 		default:
7299 			panic("deallocate_dependencies: Unexpected type %s",
7300 			    TYPENAME(wk->wk_type));
7301 			/* NOTREACHED */
7302 		}
7303 	}
7304 	FREE_LOCK(ump);
7305 done:
7306 	/*
7307 	 * Don't throw away this buf, we were partially truncating and
7308 	 * some deps may always remain.
7309 	 */
7310 	if (off) {
7311 		allocbuf(bp, off);
7312 		bp->b_vflags |= BV_SCANNED;
7313 		return (EBUSY);
7314 	}
7315 	bp->b_flags |= B_INVAL | B_NOCACHE;
7316 
7317 	return (0);
7318 }
7319 
7320 /*
7321  * An allocdirect is being canceled due to a truncate.  We must make sure
7322  * the journal entry is released in concert with the blkfree that releases
7323  * the storage.  Completed journal entries must not be released until the
7324  * space is no longer pointed to by the inode or in the bitmap.
7325  */
7326 static void
7327 cancel_allocdirect(adphead, adp, freeblks)
7328 	struct allocdirectlst *adphead;
7329 	struct allocdirect *adp;
7330 	struct freeblks *freeblks;
7331 {
7332 	struct freework *freework;
7333 	struct newblk *newblk;
7334 	struct worklist *wk;
7335 
7336 	TAILQ_REMOVE(adphead, adp, ad_next);
7337 	newblk = (struct newblk *)adp;
7338 	freework = NULL;
7339 	/*
7340 	 * Find the correct freework structure.
7341 	 */
7342 	LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) {
7343 		if (wk->wk_type != D_FREEWORK)
7344 			continue;
7345 		freework = WK_FREEWORK(wk);
7346 		if (freework->fw_blkno == newblk->nb_newblkno)
7347 			break;
7348 	}
7349 	if (freework == NULL)
7350 		panic("cancel_allocdirect: Freework not found");
7351 	/*
7352 	 * If a newblk exists at all we still have the journal entry that
7353 	 * initiated the allocation so we do not need to journal the free.
7354 	 */
7355 	cancel_jfreeblk(freeblks, freework->fw_blkno);
7356 	/*
7357 	 * If the journal hasn't been written the jnewblk must be passed
7358 	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
7359 	 * this by linking the journal dependency into the freework to be
7360 	 * freed when freework_freeblock() is called.  If the journal has
7361 	 * been written we can simply reclaim the journal space when the
7362 	 * freeblks work is complete.
7363 	 */
7364 	freework->fw_jnewblk = cancel_newblk(newblk, &freework->fw_list,
7365 	    &freeblks->fb_jwork);
7366 	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
7367 }
7368 
7369 
7370 /*
7371  * Cancel a new block allocation.  May be an indirect or direct block.  We
7372  * remove it from various lists and return any journal record that needs to
7373  * be resolved by the caller.
7374  *
7375  * A special consideration is made for indirects which were never pointed
7376  * at on disk and will never be found once this block is released.
7377  */
7378 static struct jnewblk *
7379 cancel_newblk(newblk, wk, wkhd)
7380 	struct newblk *newblk;
7381 	struct worklist *wk;
7382 	struct workhead *wkhd;
7383 {
7384 	struct jnewblk *jnewblk;
7385 
7386 	CTR1(KTR_SUJ, "cancel_newblk: blkno %jd", newblk->nb_newblkno);
7387 
7388 	newblk->nb_state |= GOINGAWAY;
7389 	/*
7390 	 * Previously we traversed the completedhd on each indirdep
7391 	 * attached to this newblk to cancel them and gather journal
7392 	 * work.  Since we need only the oldest journal segment and
7393 	 * the lowest point on the tree will always have the oldest
7394 	 * journal segment we are free to release the segments
7395 	 * of any subordinates and may leave the indirdep list to
7396 	 * indirdep_complete() when this newblk is freed.
7397 	 */
7398 	if (newblk->nb_state & ONDEPLIST) {
7399 		newblk->nb_state &= ~ONDEPLIST;
7400 		LIST_REMOVE(newblk, nb_deps);
7401 	}
7402 	if (newblk->nb_state & ONWORKLIST)
7403 		WORKLIST_REMOVE(&newblk->nb_list);
7404 	/*
7405 	 * If the journal entry hasn't been written we save a pointer to
7406 	 * the dependency that frees it until it is written or the
7407 	 * superseding operation completes.
7408 	 */
7409 	jnewblk = newblk->nb_jnewblk;
7410 	if (jnewblk != NULL && wk != NULL) {
7411 		newblk->nb_jnewblk = NULL;
7412 		jnewblk->jn_dep = wk;
7413 	}
7414 	if (!LIST_EMPTY(&newblk->nb_jwork))
7415 		jwork_move(wkhd, &newblk->nb_jwork);
7416 	/*
7417 	 * When truncating we must free the newdirblk early to remove
7418 	 * the pagedep from the hash before returning.
7419 	 */
7420 	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7421 		free_newdirblk(WK_NEWDIRBLK(wk));
7422 	if (!LIST_EMPTY(&newblk->nb_newdirblk))
7423 		panic("cancel_newblk: extra newdirblk");
7424 
7425 	return (jnewblk);
7426 }
7427 
7428 /*
7429  * Schedule the freefrag associated with a newblk to be released once
7430  * the pointers are written and the previous block is no longer needed.
7431  */
7432 static void
7433 newblk_freefrag(newblk)
7434 	struct newblk *newblk;
7435 {
7436 	struct freefrag *freefrag;
7437 
7438 	if (newblk->nb_freefrag == NULL)
7439 		return;
7440 	freefrag = newblk->nb_freefrag;
7441 	newblk->nb_freefrag = NULL;
7442 	freefrag->ff_state |= COMPLETE;
7443 	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
7444 		add_to_worklist(&freefrag->ff_list, 0);
7445 }
7446 
7447 /*
7448  * Free a newblk. Generate a new freefrag work request if appropriate.
7449  * This must be called after the inode pointer and any direct block pointers
7450  * are valid or fully removed via truncate or frag extension.
7451  */
7452 static void
7453 free_newblk(newblk)
7454 	struct newblk *newblk;
7455 {
7456 	struct indirdep *indirdep;
7457 	struct worklist *wk;
7458 
7459 	KASSERT(newblk->nb_jnewblk == NULL,
7460 	    ("free_newblk: jnewblk %p still attached", newblk->nb_jnewblk));
7461 	KASSERT(newblk->nb_list.wk_type != D_NEWBLK,
7462 	    ("free_newblk: unclaimed newblk"));
7463 	LOCK_OWNED(VFSTOUFS(newblk->nb_list.wk_mp));
7464 	newblk_freefrag(newblk);
7465 	if (newblk->nb_state & ONDEPLIST)
7466 		LIST_REMOVE(newblk, nb_deps);
7467 	if (newblk->nb_state & ONWORKLIST)
7468 		WORKLIST_REMOVE(&newblk->nb_list);
7469 	LIST_REMOVE(newblk, nb_hash);
7470 	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7471 		free_newdirblk(WK_NEWDIRBLK(wk));
7472 	if (!LIST_EMPTY(&newblk->nb_newdirblk))
7473 		panic("free_newblk: extra newdirblk");
7474 	while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL)
7475 		indirdep_complete(indirdep);
7476 	handle_jwork(&newblk->nb_jwork);
7477 	WORKITEM_FREE(newblk, D_NEWBLK);
7478 }
7479 
7480 /*
7481  * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep.
7482  * This routine must be called with splbio interrupts blocked.
7483  */
7484 static void
7485 free_newdirblk(newdirblk)
7486 	struct newdirblk *newdirblk;
7487 {
7488 	struct pagedep *pagedep;
7489 	struct diradd *dap;
7490 	struct worklist *wk;
7491 
7492 	LOCK_OWNED(VFSTOUFS(newdirblk->db_list.wk_mp));
7493 	WORKLIST_REMOVE(&newdirblk->db_list);
7494 	/*
7495 	 * If the pagedep is still linked onto the directory buffer
7496 	 * dependency chain, then some of the entries on the
7497 	 * pd_pendinghd list may not be committed to disk yet. In
7498 	 * this case, we will simply clear the NEWBLOCK flag and
7499 	 * let the pd_pendinghd list be processed when the pagedep
7500 	 * is next written. If the pagedep is no longer on the buffer
7501 	 * dependency chain, then all the entries on the pd_pending
7502 	 * list are committed to disk and we can free them here.
7503 	 */
7504 	pagedep = newdirblk->db_pagedep;
7505 	pagedep->pd_state &= ~NEWBLOCK;
7506 	if ((pagedep->pd_state & ONWORKLIST) == 0) {
7507 		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
7508 			free_diradd(dap, NULL);
7509 		/*
7510 		 * If no dependencies remain, the pagedep will be freed.
7511 		 */
7512 		free_pagedep(pagedep);
7513 	}
7514 	/* Should only ever be one item in the list. */
7515 	while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) {
7516 		WORKLIST_REMOVE(wk);
7517 		handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
7518 	}
7519 	WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
7520 }
7521 
7522 /*
7523  * Prepare an inode to be freed. The actual free operation is not
7524  * done until the zero'ed inode has been written to disk.
7525  */
7526 void
7527 softdep_freefile(pvp, ino, mode)
7528 	struct vnode *pvp;
7529 	ino_t ino;
7530 	int mode;
7531 {
7532 	struct inode *ip = VTOI(pvp);
7533 	struct inodedep *inodedep;
7534 	struct freefile *freefile;
7535 	struct freeblks *freeblks;
7536 	struct ufsmount *ump;
7537 
7538 	ump = ITOUMP(ip);
7539 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
7540 	    ("softdep_freefile called on non-softdep filesystem"));
7541 	/*
7542 	 * This sets up the inode de-allocation dependency.
7543 	 */
7544 	freefile = malloc(sizeof(struct freefile),
7545 		M_FREEFILE, M_SOFTDEP_FLAGS);
7546 	workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount);
7547 	freefile->fx_mode = mode;
7548 	freefile->fx_oldinum = ino;
7549 	freefile->fx_devvp = ump->um_devvp;
7550 	LIST_INIT(&freefile->fx_jwork);
7551 	UFS_LOCK(ump);
7552 	ump->um_fs->fs_pendinginodes += 1;
7553 	UFS_UNLOCK(ump);
7554 
7555 	/*
7556 	 * If the inodedep does not exist, then the zero'ed inode has
7557 	 * been written to disk. If the allocated inode has never been
7558 	 * written to disk, then the on-disk inode is zero'ed. In either
7559 	 * case we can free the file immediately.  If the journal was
7560 	 * canceled before being written the inode will never make it to
7561 	 * disk and we must send the canceled journal entrys to
7562 	 * ffs_freefile() to be cleared in conjunction with the bitmap.
7563 	 * Any blocks waiting on the inode to write can be safely freed
7564 	 * here as it will never been written.
7565 	 */
7566 	ACQUIRE_LOCK(ump);
7567 	inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
7568 	if (inodedep) {
7569 		/*
7570 		 * Clear out freeblks that no longer need to reference
7571 		 * this inode.
7572 		 */
7573 		while ((freeblks =
7574 		    TAILQ_FIRST(&inodedep->id_freeblklst)) != NULL) {
7575 			TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks,
7576 			    fb_next);
7577 			freeblks->fb_state &= ~ONDEPLIST;
7578 		}
7579 		/*
7580 		 * Remove this inode from the unlinked list.
7581 		 */
7582 		if (inodedep->id_state & UNLINKED) {
7583 			/*
7584 			 * Save the journal work to be freed with the bitmap
7585 			 * before we clear UNLINKED.  Otherwise it can be lost
7586 			 * if the inode block is written.
7587 			 */
7588 			handle_bufwait(inodedep, &freefile->fx_jwork);
7589 			clear_unlinked_inodedep(inodedep);
7590 			/*
7591 			 * Re-acquire inodedep as we've dropped the
7592 			 * per-filesystem lock in clear_unlinked_inodedep().
7593 			 */
7594 			inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
7595 		}
7596 	}
7597 	if (inodedep == NULL || check_inode_unwritten(inodedep)) {
7598 		FREE_LOCK(ump);
7599 		handle_workitem_freefile(freefile);
7600 		return;
7601 	}
7602 	if ((inodedep->id_state & DEPCOMPLETE) == 0)
7603 		inodedep->id_state |= GOINGAWAY;
7604 	WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
7605 	FREE_LOCK(ump);
7606 	if (ip->i_number == ino)
7607 		ip->i_flag |= IN_MODIFIED;
7608 }
7609 
7610 /*
7611  * Check to see if an inode has never been written to disk. If
7612  * so free the inodedep and return success, otherwise return failure.
7613  * This routine must be called with splbio interrupts blocked.
7614  *
7615  * If we still have a bitmap dependency, then the inode has never
7616  * been written to disk. Drop the dependency as it is no longer
7617  * necessary since the inode is being deallocated. We set the
7618  * ALLCOMPLETE flags since the bitmap now properly shows that the
7619  * inode is not allocated. Even if the inode is actively being
7620  * written, it has been rolled back to its zero'ed state, so we
7621  * are ensured that a zero inode is what is on the disk. For short
7622  * lived files, this change will usually result in removing all the
7623  * dependencies from the inode so that it can be freed immediately.
7624  */
7625 static int
7626 check_inode_unwritten(inodedep)
7627 	struct inodedep *inodedep;
7628 {
7629 
7630 	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
7631 
7632 	if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 ||
7633 	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
7634 	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
7635 	    !LIST_EMPTY(&inodedep->id_bufwait) ||
7636 	    !LIST_EMPTY(&inodedep->id_inowait) ||
7637 	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
7638 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
7639 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
7640 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
7641 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
7642 	    !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
7643 	    inodedep->id_mkdiradd != NULL ||
7644 	    inodedep->id_nlinkdelta != 0)
7645 		return (0);
7646 	/*
7647 	 * Another process might be in initiate_write_inodeblock_ufs[12]
7648 	 * trying to allocate memory without holding "Softdep Lock".
7649 	 */
7650 	if ((inodedep->id_state & IOSTARTED) != 0 &&
7651 	    inodedep->id_savedino1 == NULL)
7652 		return (0);
7653 
7654 	if (inodedep->id_state & ONDEPLIST)
7655 		LIST_REMOVE(inodedep, id_deps);
7656 	inodedep->id_state &= ~ONDEPLIST;
7657 	inodedep->id_state |= ALLCOMPLETE;
7658 	inodedep->id_bmsafemap = NULL;
7659 	if (inodedep->id_state & ONWORKLIST)
7660 		WORKLIST_REMOVE(&inodedep->id_list);
7661 	if (inodedep->id_savedino1 != NULL) {
7662 		free(inodedep->id_savedino1, M_SAVEDINO);
7663 		inodedep->id_savedino1 = NULL;
7664 	}
7665 	if (free_inodedep(inodedep) == 0)
7666 		panic("check_inode_unwritten: busy inode");
7667 	return (1);
7668 }
7669 
7670 static int
7671 check_inodedep_free(inodedep)
7672 	struct inodedep *inodedep;
7673 {
7674 
7675 	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
7676 	if ((inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
7677 	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
7678 	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
7679 	    !LIST_EMPTY(&inodedep->id_bufwait) ||
7680 	    !LIST_EMPTY(&inodedep->id_inowait) ||
7681 	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
7682 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
7683 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
7684 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
7685 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
7686 	    !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
7687 	    inodedep->id_mkdiradd != NULL ||
7688 	    inodedep->id_nlinkdelta != 0 ||
7689 	    inodedep->id_savedino1 != NULL)
7690 		return (0);
7691 	return (1);
7692 }
7693 
7694 /*
7695  * Try to free an inodedep structure. Return 1 if it could be freed.
7696  */
7697 static int
7698 free_inodedep(inodedep)
7699 	struct inodedep *inodedep;
7700 {
7701 
7702 	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
7703 	if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 ||
7704 	    !check_inodedep_free(inodedep))
7705 		return (0);
7706 	if (inodedep->id_state & ONDEPLIST)
7707 		LIST_REMOVE(inodedep, id_deps);
7708 	LIST_REMOVE(inodedep, id_hash);
7709 	WORKITEM_FREE(inodedep, D_INODEDEP);
7710 	return (1);
7711 }
7712 
7713 /*
7714  * Free the block referenced by a freework structure.  The parent freeblks
7715  * structure is released and completed when the final cg bitmap reaches
7716  * the disk.  This routine may be freeing a jnewblk which never made it to
7717  * disk in which case we do not have to wait as the operation is undone
7718  * in memory immediately.
7719  */
7720 static void
7721 freework_freeblock(freework)
7722 	struct freework *freework;
7723 {
7724 	struct freeblks *freeblks;
7725 	struct jnewblk *jnewblk;
7726 	struct ufsmount *ump;
7727 	struct workhead wkhd;
7728 	struct fs *fs;
7729 	int bsize;
7730 	int needj;
7731 
7732 	ump = VFSTOUFS(freework->fw_list.wk_mp);
7733 	LOCK_OWNED(ump);
7734 	/*
7735 	 * Handle partial truncate separately.
7736 	 */
7737 	if (freework->fw_indir) {
7738 		complete_trunc_indir(freework);
7739 		return;
7740 	}
7741 	freeblks = freework->fw_freeblks;
7742 	fs = ump->um_fs;
7743 	needj = MOUNTEDSUJ(freeblks->fb_list.wk_mp) != 0;
7744 	bsize = lfragtosize(fs, freework->fw_frags);
7745 	LIST_INIT(&wkhd);
7746 	/*
7747 	 * DEPCOMPLETE is cleared in indirblk_insert() if the block lives
7748 	 * on the indirblk hashtable and prevents premature freeing.
7749 	 */
7750 	freework->fw_state |= DEPCOMPLETE;
7751 	/*
7752 	 * SUJ needs to wait for the segment referencing freed indirect
7753 	 * blocks to expire so that we know the checker will not confuse
7754 	 * a re-allocated indirect block with its old contents.
7755 	 */
7756 	if (needj && freework->fw_lbn <= -NDADDR)
7757 		indirblk_insert(freework);
7758 	/*
7759 	 * If we are canceling an existing jnewblk pass it to the free
7760 	 * routine, otherwise pass the freeblk which will ultimately
7761 	 * release the freeblks.  If we're not journaling, we can just
7762 	 * free the freeblks immediately.
7763 	 */
7764 	jnewblk = freework->fw_jnewblk;
7765 	if (jnewblk != NULL) {
7766 		cancel_jnewblk(jnewblk, &wkhd);
7767 		needj = 0;
7768 	} else if (needj) {
7769 		freework->fw_state |= DELAYEDFREE;
7770 		freeblks->fb_cgwait++;
7771 		WORKLIST_INSERT(&wkhd, &freework->fw_list);
7772 	}
7773 	FREE_LOCK(ump);
7774 	freeblks_free(ump, freeblks, btodb(bsize));
7775 	CTR4(KTR_SUJ,
7776 	    "freework_freeblock: ino %d blkno %jd lbn %jd size %ld",
7777 	    freeblks->fb_inum, freework->fw_blkno, freework->fw_lbn, bsize);
7778 	ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno, bsize,
7779 	    freeblks->fb_inum, freeblks->fb_vtype, &wkhd);
7780 	ACQUIRE_LOCK(ump);
7781 	/*
7782 	 * The jnewblk will be discarded and the bits in the map never
7783 	 * made it to disk.  We can immediately free the freeblk.
7784 	 */
7785 	if (needj == 0)
7786 		handle_written_freework(freework);
7787 }
7788 
7789 /*
7790  * We enqueue freework items that need processing back on the freeblks and
7791  * add the freeblks to the worklist.  This makes it easier to find all work
7792  * required to flush a truncation in process_truncates().
7793  */
7794 static void
7795 freework_enqueue(freework)
7796 	struct freework *freework;
7797 {
7798 	struct freeblks *freeblks;
7799 
7800 	freeblks = freework->fw_freeblks;
7801 	if ((freework->fw_state & INPROGRESS) == 0)
7802 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
7803 	if ((freeblks->fb_state &
7804 	    (ONWORKLIST | INPROGRESS | ALLCOMPLETE)) == ALLCOMPLETE &&
7805 	    LIST_EMPTY(&freeblks->fb_jblkdephd))
7806 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
7807 }
7808 
7809 /*
7810  * Start, continue, or finish the process of freeing an indirect block tree.
7811  * The free operation may be paused at any point with fw_off containing the
7812  * offset to restart from.  This enables us to implement some flow control
7813  * for large truncates which may fan out and generate a huge number of
7814  * dependencies.
7815  */
7816 static void
7817 handle_workitem_indirblk(freework)
7818 	struct freework *freework;
7819 {
7820 	struct freeblks *freeblks;
7821 	struct ufsmount *ump;
7822 	struct fs *fs;
7823 
7824 	freeblks = freework->fw_freeblks;
7825 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7826 	fs = ump->um_fs;
7827 	if (freework->fw_state & DEPCOMPLETE) {
7828 		handle_written_freework(freework);
7829 		return;
7830 	}
7831 	if (freework->fw_off == NINDIR(fs)) {
7832 		freework_freeblock(freework);
7833 		return;
7834 	}
7835 	freework->fw_state |= INPROGRESS;
7836 	FREE_LOCK(ump);
7837 	indir_trunc(freework, fsbtodb(fs, freework->fw_blkno),
7838 	    freework->fw_lbn);
7839 	ACQUIRE_LOCK(ump);
7840 }
7841 
7842 /*
7843  * Called when a freework structure attached to a cg buf is written.  The
7844  * ref on either the parent or the freeblks structure is released and
7845  * the freeblks is added back to the worklist if there is more work to do.
7846  */
7847 static void
7848 handle_written_freework(freework)
7849 	struct freework *freework;
7850 {
7851 	struct freeblks *freeblks;
7852 	struct freework *parent;
7853 
7854 	freeblks = freework->fw_freeblks;
7855 	parent = freework->fw_parent;
7856 	if (freework->fw_state & DELAYEDFREE)
7857 		freeblks->fb_cgwait--;
7858 	freework->fw_state |= COMPLETE;
7859 	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
7860 		WORKITEM_FREE(freework, D_FREEWORK);
7861 	if (parent) {
7862 		if (--parent->fw_ref == 0)
7863 			freework_enqueue(parent);
7864 		return;
7865 	}
7866 	if (--freeblks->fb_ref != 0)
7867 		return;
7868 	if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST | INPROGRESS)) ==
7869 	    ALLCOMPLETE && LIST_EMPTY(&freeblks->fb_jblkdephd))
7870 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
7871 }
7872 
7873 /*
7874  * This workitem routine performs the block de-allocation.
7875  * The workitem is added to the pending list after the updated
7876  * inode block has been written to disk.  As mentioned above,
7877  * checks regarding the number of blocks de-allocated (compared
7878  * to the number of blocks allocated for the file) are also
7879  * performed in this function.
7880  */
7881 static int
7882 handle_workitem_freeblocks(freeblks, flags)
7883 	struct freeblks *freeblks;
7884 	int flags;
7885 {
7886 	struct freework *freework;
7887 	struct newblk *newblk;
7888 	struct allocindir *aip;
7889 	struct ufsmount *ump;
7890 	struct worklist *wk;
7891 
7892 	KASSERT(LIST_EMPTY(&freeblks->fb_jblkdephd),
7893 	    ("handle_workitem_freeblocks: Journal entries not written."));
7894 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7895 	ACQUIRE_LOCK(ump);
7896 	while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) {
7897 		WORKLIST_REMOVE(wk);
7898 		switch (wk->wk_type) {
7899 		case D_DIRREM:
7900 			wk->wk_state |= COMPLETE;
7901 			add_to_worklist(wk, 0);
7902 			continue;
7903 
7904 		case D_ALLOCDIRECT:
7905 			free_newblk(WK_NEWBLK(wk));
7906 			continue;
7907 
7908 		case D_ALLOCINDIR:
7909 			aip = WK_ALLOCINDIR(wk);
7910 			freework = NULL;
7911 			if (aip->ai_state & DELAYEDFREE) {
7912 				FREE_LOCK(ump);
7913 				freework = newfreework(ump, freeblks, NULL,
7914 				    aip->ai_lbn, aip->ai_newblkno,
7915 				    ump->um_fs->fs_frag, 0, 0);
7916 				ACQUIRE_LOCK(ump);
7917 			}
7918 			newblk = WK_NEWBLK(wk);
7919 			if (newblk->nb_jnewblk) {
7920 				freework->fw_jnewblk = newblk->nb_jnewblk;
7921 				newblk->nb_jnewblk->jn_dep = &freework->fw_list;
7922 				newblk->nb_jnewblk = NULL;
7923 			}
7924 			free_newblk(newblk);
7925 			continue;
7926 
7927 		case D_FREEWORK:
7928 			freework = WK_FREEWORK(wk);
7929 			if (freework->fw_lbn <= -NDADDR)
7930 				handle_workitem_indirblk(freework);
7931 			else
7932 				freework_freeblock(freework);
7933 			continue;
7934 		default:
7935 			panic("handle_workitem_freeblocks: Unknown type %s",
7936 			    TYPENAME(wk->wk_type));
7937 		}
7938 	}
7939 	if (freeblks->fb_ref != 0) {
7940 		freeblks->fb_state &= ~INPROGRESS;
7941 		wake_worklist(&freeblks->fb_list);
7942 		freeblks = NULL;
7943 	}
7944 	FREE_LOCK(ump);
7945 	if (freeblks)
7946 		return handle_complete_freeblocks(freeblks, flags);
7947 	return (0);
7948 }
7949 
7950 /*
7951  * Handle completion of block free via truncate.  This allows fs_pending
7952  * to track the actual free block count more closely than if we only updated
7953  * it at the end.  We must be careful to handle cases where the block count
7954  * on free was incorrect.
7955  */
7956 static void
7957 freeblks_free(ump, freeblks, blocks)
7958 	struct ufsmount *ump;
7959 	struct freeblks *freeblks;
7960 	int blocks;
7961 {
7962 	struct fs *fs;
7963 	ufs2_daddr_t remain;
7964 
7965 	UFS_LOCK(ump);
7966 	remain = -freeblks->fb_chkcnt;
7967 	freeblks->fb_chkcnt += blocks;
7968 	if (remain > 0) {
7969 		if (remain < blocks)
7970 			blocks = remain;
7971 		fs = ump->um_fs;
7972 		fs->fs_pendingblocks -= blocks;
7973 	}
7974 	UFS_UNLOCK(ump);
7975 }
7976 
7977 /*
7978  * Once all of the freework workitems are complete we can retire the
7979  * freeblocks dependency and any journal work awaiting completion.  This
7980  * can not be called until all other dependencies are stable on disk.
7981  */
7982 static int
7983 handle_complete_freeblocks(freeblks, flags)
7984 	struct freeblks *freeblks;
7985 	int flags;
7986 {
7987 	struct inodedep *inodedep;
7988 	struct inode *ip;
7989 	struct vnode *vp;
7990 	struct fs *fs;
7991 	struct ufsmount *ump;
7992 	ufs2_daddr_t spare;
7993 
7994 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7995 	fs = ump->um_fs;
7996 	flags = LK_EXCLUSIVE | flags;
7997 	spare = freeblks->fb_chkcnt;
7998 
7999 	/*
8000 	 * If we did not release the expected number of blocks we may have
8001 	 * to adjust the inode block count here.  Only do so if it wasn't
8002 	 * a truncation to zero and the modrev still matches.
8003 	 */
8004 	if (spare && freeblks->fb_len != 0) {
8005 		if (ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_inum,
8006 		    flags, &vp, FFSV_FORCEINSMQ) != 0)
8007 			return (EBUSY);
8008 		ip = VTOI(vp);
8009 		if (DIP(ip, i_modrev) == freeblks->fb_modrev) {
8010 			DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - spare);
8011 			ip->i_flag |= IN_CHANGE;
8012 			/*
8013 			 * We must wait so this happens before the
8014 			 * journal is reclaimed.
8015 			 */
8016 			ffs_update(vp, 1);
8017 		}
8018 		vput(vp);
8019 	}
8020 	if (spare < 0) {
8021 		UFS_LOCK(ump);
8022 		fs->fs_pendingblocks += spare;
8023 		UFS_UNLOCK(ump);
8024 	}
8025 #ifdef QUOTA
8026 	/* Handle spare. */
8027 	if (spare)
8028 		quotaadj(freeblks->fb_quota, ump, -spare);
8029 	quotarele(freeblks->fb_quota);
8030 #endif
8031 	ACQUIRE_LOCK(ump);
8032 	if (freeblks->fb_state & ONDEPLIST) {
8033 		inodedep_lookup(freeblks->fb_list.wk_mp, freeblks->fb_inum,
8034 		    0, &inodedep);
8035 		TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, fb_next);
8036 		freeblks->fb_state &= ~ONDEPLIST;
8037 		if (TAILQ_EMPTY(&inodedep->id_freeblklst))
8038 			free_inodedep(inodedep);
8039 	}
8040 	/*
8041 	 * All of the freeblock deps must be complete prior to this call
8042 	 * so it's now safe to complete earlier outstanding journal entries.
8043 	 */
8044 	handle_jwork(&freeblks->fb_jwork);
8045 	WORKITEM_FREE(freeblks, D_FREEBLKS);
8046 	FREE_LOCK(ump);
8047 	return (0);
8048 }
8049 
8050 /*
8051  * Release blocks associated with the freeblks and stored in the indirect
8052  * block dbn. If level is greater than SINGLE, the block is an indirect block
8053  * and recursive calls to indirtrunc must be used to cleanse other indirect
8054  * blocks.
8055  *
8056  * This handles partial and complete truncation of blocks.  Partial is noted
8057  * with goingaway == 0.  In this case the freework is completed after the
8058  * zero'd indirects are written to disk.  For full truncation the freework
8059  * is completed after the block is freed.
8060  */
8061 static void
8062 indir_trunc(freework, dbn, lbn)
8063 	struct freework *freework;
8064 	ufs2_daddr_t dbn;
8065 	ufs_lbn_t lbn;
8066 {
8067 	struct freework *nfreework;
8068 	struct workhead wkhd;
8069 	struct freeblks *freeblks;
8070 	struct buf *bp;
8071 	struct fs *fs;
8072 	struct indirdep *indirdep;
8073 	struct ufsmount *ump;
8074 	ufs1_daddr_t *bap1;
8075 	ufs2_daddr_t nb, nnb, *bap2;
8076 	ufs_lbn_t lbnadd, nlbn;
8077 	int i, nblocks, ufs1fmt;
8078 	int freedblocks;
8079 	int goingaway;
8080 	int freedeps;
8081 	int needj;
8082 	int level;
8083 	int cnt;
8084 
8085 	freeblks = freework->fw_freeblks;
8086 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
8087 	fs = ump->um_fs;
8088 	/*
8089 	 * Get buffer of block pointers to be freed.  There are three cases:
8090 	 *
8091 	 * 1) Partial truncate caches the indirdep pointer in the freework
8092 	 *    which provides us a back copy to the save bp which holds the
8093 	 *    pointers we want to clear.  When this completes the zero
8094 	 *    pointers are written to the real copy.
8095 	 * 2) The indirect is being completely truncated, cancel_indirdep()
8096 	 *    eliminated the real copy and placed the indirdep on the saved
8097 	 *    copy.  The indirdep and buf are discarded when this completes.
8098 	 * 3) The indirect was not in memory, we read a copy off of the disk
8099 	 *    using the devvp and drop and invalidate the buffer when we're
8100 	 *    done.
8101 	 */
8102 	goingaway = 1;
8103 	indirdep = NULL;
8104 	if (freework->fw_indir != NULL) {
8105 		goingaway = 0;
8106 		indirdep = freework->fw_indir;
8107 		bp = indirdep->ir_savebp;
8108 		if (bp == NULL || bp->b_blkno != dbn)
8109 			panic("indir_trunc: Bad saved buf %p blkno %jd",
8110 			    bp, (intmax_t)dbn);
8111 	} else if ((bp = incore(&freeblks->fb_devvp->v_bufobj, dbn)) != NULL) {
8112 		/*
8113 		 * The lock prevents the buf dep list from changing and
8114 	 	 * indirects on devvp should only ever have one dependency.
8115 		 */
8116 		indirdep = WK_INDIRDEP(LIST_FIRST(&bp->b_dep));
8117 		if (indirdep == NULL || (indirdep->ir_state & GOINGAWAY) == 0)
8118 			panic("indir_trunc: Bad indirdep %p from buf %p",
8119 			    indirdep, bp);
8120 	} else if (bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize,
8121 	    NOCRED, &bp) != 0) {
8122 		brelse(bp);
8123 		return;
8124 	}
8125 	ACQUIRE_LOCK(ump);
8126 	/* Protects against a race with complete_trunc_indir(). */
8127 	freework->fw_state &= ~INPROGRESS;
8128 	/*
8129 	 * If we have an indirdep we need to enforce the truncation order
8130 	 * and discard it when it is complete.
8131 	 */
8132 	if (indirdep) {
8133 		if (freework != TAILQ_FIRST(&indirdep->ir_trunc) &&
8134 		    !TAILQ_EMPTY(&indirdep->ir_trunc)) {
8135 			/*
8136 			 * Add the complete truncate to the list on the
8137 			 * indirdep to enforce in-order processing.
8138 			 */
8139 			if (freework->fw_indir == NULL)
8140 				TAILQ_INSERT_TAIL(&indirdep->ir_trunc,
8141 				    freework, fw_next);
8142 			FREE_LOCK(ump);
8143 			return;
8144 		}
8145 		/*
8146 		 * If we're goingaway, free the indirdep.  Otherwise it will
8147 		 * linger until the write completes.
8148 		 */
8149 		if (goingaway)
8150 			free_indirdep(indirdep);
8151 	}
8152 	FREE_LOCK(ump);
8153 	/* Initialize pointers depending on block size. */
8154 	if (ump->um_fstype == UFS1) {
8155 		bap1 = (ufs1_daddr_t *)bp->b_data;
8156 		nb = bap1[freework->fw_off];
8157 		ufs1fmt = 1;
8158 		bap2 = NULL;
8159 	} else {
8160 		bap2 = (ufs2_daddr_t *)bp->b_data;
8161 		nb = bap2[freework->fw_off];
8162 		ufs1fmt = 0;
8163 		bap1 = NULL;
8164 	}
8165 	level = lbn_level(lbn);
8166 	needj = MOUNTEDSUJ(UFSTOVFS(ump)) != 0;
8167 	lbnadd = lbn_offset(fs, level);
8168 	nblocks = btodb(fs->fs_bsize);
8169 	nfreework = freework;
8170 	freedeps = 0;
8171 	cnt = 0;
8172 	/*
8173 	 * Reclaim blocks.  Traverses into nested indirect levels and
8174 	 * arranges for the current level to be freed when subordinates
8175 	 * are free when journaling.
8176 	 */
8177 	for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) {
8178 		if (i != NINDIR(fs) - 1) {
8179 			if (ufs1fmt)
8180 				nnb = bap1[i+1];
8181 			else
8182 				nnb = bap2[i+1];
8183 		} else
8184 			nnb = 0;
8185 		if (nb == 0)
8186 			continue;
8187 		cnt++;
8188 		if (level != 0) {
8189 			nlbn = (lbn + 1) - (i * lbnadd);
8190 			if (needj != 0) {
8191 				nfreework = newfreework(ump, freeblks, freework,
8192 				    nlbn, nb, fs->fs_frag, 0, 0);
8193 				freedeps++;
8194 			}
8195 			indir_trunc(nfreework, fsbtodb(fs, nb), nlbn);
8196 		} else {
8197 			struct freedep *freedep;
8198 
8199 			/*
8200 			 * Attempt to aggregate freedep dependencies for
8201 			 * all blocks being released to the same CG.
8202 			 */
8203 			LIST_INIT(&wkhd);
8204 			if (needj != 0 &&
8205 			    (nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) {
8206 				freedep = newfreedep(freework);
8207 				WORKLIST_INSERT_UNLOCKED(&wkhd,
8208 				    &freedep->fd_list);
8209 				freedeps++;
8210 			}
8211 			CTR3(KTR_SUJ,
8212 			    "indir_trunc: ino %d blkno %jd size %ld",
8213 			    freeblks->fb_inum, nb, fs->fs_bsize);
8214 			ffs_blkfree(ump, fs, freeblks->fb_devvp, nb,
8215 			    fs->fs_bsize, freeblks->fb_inum,
8216 			    freeblks->fb_vtype, &wkhd);
8217 		}
8218 	}
8219 	if (goingaway) {
8220 		bp->b_flags |= B_INVAL | B_NOCACHE;
8221 		brelse(bp);
8222 	}
8223 	freedblocks = 0;
8224 	if (level == 0)
8225 		freedblocks = (nblocks * cnt);
8226 	if (needj == 0)
8227 		freedblocks += nblocks;
8228 	freeblks_free(ump, freeblks, freedblocks);
8229 	/*
8230 	 * If we are journaling set up the ref counts and offset so this
8231 	 * indirect can be completed when its children are free.
8232 	 */
8233 	if (needj) {
8234 		ACQUIRE_LOCK(ump);
8235 		freework->fw_off = i;
8236 		freework->fw_ref += freedeps;
8237 		freework->fw_ref -= NINDIR(fs) + 1;
8238 		if (level == 0)
8239 			freeblks->fb_cgwait += freedeps;
8240 		if (freework->fw_ref == 0)
8241 			freework_freeblock(freework);
8242 		FREE_LOCK(ump);
8243 		return;
8244 	}
8245 	/*
8246 	 * If we're not journaling we can free the indirect now.
8247 	 */
8248 	dbn = dbtofsb(fs, dbn);
8249 	CTR3(KTR_SUJ,
8250 	    "indir_trunc 2: ino %d blkno %jd size %ld",
8251 	    freeblks->fb_inum, dbn, fs->fs_bsize);
8252 	ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize,
8253 	    freeblks->fb_inum, freeblks->fb_vtype, NULL);
8254 	/* Non SUJ softdep does single-threaded truncations. */
8255 	if (freework->fw_blkno == dbn) {
8256 		freework->fw_state |= ALLCOMPLETE;
8257 		ACQUIRE_LOCK(ump);
8258 		handle_written_freework(freework);
8259 		FREE_LOCK(ump);
8260 	}
8261 	return;
8262 }
8263 
8264 /*
8265  * Cancel an allocindir when it is removed via truncation.  When bp is not
8266  * NULL the indirect never appeared on disk and is scheduled to be freed
8267  * independently of the indir so we can more easily track journal work.
8268  */
8269 static void
8270 cancel_allocindir(aip, bp, freeblks, trunc)
8271 	struct allocindir *aip;
8272 	struct buf *bp;
8273 	struct freeblks *freeblks;
8274 	int trunc;
8275 {
8276 	struct indirdep *indirdep;
8277 	struct freefrag *freefrag;
8278 	struct newblk *newblk;
8279 
8280 	newblk = (struct newblk *)aip;
8281 	LIST_REMOVE(aip, ai_next);
8282 	/*
8283 	 * We must eliminate the pointer in bp if it must be freed on its
8284 	 * own due to partial truncate or pending journal work.
8285 	 */
8286 	if (bp && (trunc || newblk->nb_jnewblk)) {
8287 		/*
8288 		 * Clear the pointer and mark the aip to be freed
8289 		 * directly if it never existed on disk.
8290 		 */
8291 		aip->ai_state |= DELAYEDFREE;
8292 		indirdep = aip->ai_indirdep;
8293 		if (indirdep->ir_state & UFS1FMT)
8294 			((ufs1_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
8295 		else
8296 			((ufs2_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
8297 	}
8298 	/*
8299 	 * When truncating the previous pointer will be freed via
8300 	 * savedbp.  Eliminate the freefrag which would dup free.
8301 	 */
8302 	if (trunc && (freefrag = newblk->nb_freefrag) != NULL) {
8303 		newblk->nb_freefrag = NULL;
8304 		if (freefrag->ff_jdep)
8305 			cancel_jfreefrag(
8306 			    WK_JFREEFRAG(freefrag->ff_jdep));
8307 		jwork_move(&freeblks->fb_jwork, &freefrag->ff_jwork);
8308 		WORKITEM_FREE(freefrag, D_FREEFRAG);
8309 	}
8310 	/*
8311 	 * If the journal hasn't been written the jnewblk must be passed
8312 	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
8313 	 * this by leaving the journal dependency on the newblk to be freed
8314 	 * when a freework is created in handle_workitem_freeblocks().
8315 	 */
8316 	cancel_newblk(newblk, NULL, &freeblks->fb_jwork);
8317 	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
8318 }
8319 
8320 /*
8321  * Create the mkdir dependencies for . and .. in a new directory.  Link them
8322  * in to a newdirblk so any subsequent additions are tracked properly.  The
8323  * caller is responsible for adding the mkdir1 dependency to the journal
8324  * and updating id_mkdiradd.  This function returns with the per-filesystem
8325  * lock held.
8326  */
8327 static struct mkdir *
8328 setup_newdir(dap, newinum, dinum, newdirbp, mkdirp)
8329 	struct diradd *dap;
8330 	ino_t newinum;
8331 	ino_t dinum;
8332 	struct buf *newdirbp;
8333 	struct mkdir **mkdirp;
8334 {
8335 	struct newblk *newblk;
8336 	struct pagedep *pagedep;
8337 	struct inodedep *inodedep;
8338 	struct newdirblk *newdirblk;
8339 	struct mkdir *mkdir1, *mkdir2;
8340 	struct worklist *wk;
8341 	struct jaddref *jaddref;
8342 	struct ufsmount *ump;
8343 	struct mount *mp;
8344 
8345 	mp = dap->da_list.wk_mp;
8346 	ump = VFSTOUFS(mp);
8347 	newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK,
8348 	    M_SOFTDEP_FLAGS);
8349 	workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
8350 	LIST_INIT(&newdirblk->db_mkdir);
8351 	mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
8352 	workitem_alloc(&mkdir1->md_list, D_MKDIR, mp);
8353 	mkdir1->md_state = ATTACHED | MKDIR_BODY;
8354 	mkdir1->md_diradd = dap;
8355 	mkdir1->md_jaddref = NULL;
8356 	mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
8357 	workitem_alloc(&mkdir2->md_list, D_MKDIR, mp);
8358 	mkdir2->md_state = ATTACHED | MKDIR_PARENT;
8359 	mkdir2->md_diradd = dap;
8360 	mkdir2->md_jaddref = NULL;
8361 	if (MOUNTEDSUJ(mp) == 0) {
8362 		mkdir1->md_state |= DEPCOMPLETE;
8363 		mkdir2->md_state |= DEPCOMPLETE;
8364 	}
8365 	/*
8366 	 * Dependency on "." and ".." being written to disk.
8367 	 */
8368 	mkdir1->md_buf = newdirbp;
8369 	ACQUIRE_LOCK(VFSTOUFS(mp));
8370 	LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir1, md_mkdirs);
8371 	/*
8372 	 * We must link the pagedep, allocdirect, and newdirblk for
8373 	 * the initial file page so the pointer to the new directory
8374 	 * is not written until the directory contents are live and
8375 	 * any subsequent additions are not marked live until the
8376 	 * block is reachable via the inode.
8377 	 */
8378 	if (pagedep_lookup(mp, newdirbp, newinum, 0, 0, &pagedep) == 0)
8379 		panic("setup_newdir: lost pagedep");
8380 	LIST_FOREACH(wk, &newdirbp->b_dep, wk_list)
8381 		if (wk->wk_type == D_ALLOCDIRECT)
8382 			break;
8383 	if (wk == NULL)
8384 		panic("setup_newdir: lost allocdirect");
8385 	if (pagedep->pd_state & NEWBLOCK)
8386 		panic("setup_newdir: NEWBLOCK already set");
8387 	newblk = WK_NEWBLK(wk);
8388 	pagedep->pd_state |= NEWBLOCK;
8389 	pagedep->pd_newdirblk = newdirblk;
8390 	newdirblk->db_pagedep = pagedep;
8391 	WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
8392 	WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list);
8393 	/*
8394 	 * Look up the inodedep for the parent directory so that we
8395 	 * can link mkdir2 into the pending dotdot jaddref or
8396 	 * the inode write if there is none.  If the inode is
8397 	 * ALLCOMPLETE and no jaddref is present all dependencies have
8398 	 * been satisfied and mkdir2 can be freed.
8399 	 */
8400 	inodedep_lookup(mp, dinum, 0, &inodedep);
8401 	if (MOUNTEDSUJ(mp)) {
8402 		if (inodedep == NULL)
8403 			panic("setup_newdir: Lost parent.");
8404 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8405 		    inoreflst);
8406 		KASSERT(jaddref != NULL && jaddref->ja_parent == newinum &&
8407 		    (jaddref->ja_state & MKDIR_PARENT),
8408 		    ("setup_newdir: bad dotdot jaddref %p", jaddref));
8409 		LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs);
8410 		mkdir2->md_jaddref = jaddref;
8411 		jaddref->ja_mkdir = mkdir2;
8412 	} else if (inodedep == NULL ||
8413 	    (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
8414 		dap->da_state &= ~MKDIR_PARENT;
8415 		WORKITEM_FREE(mkdir2, D_MKDIR);
8416 		mkdir2 = NULL;
8417 	} else {
8418 		LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs);
8419 		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir2->md_list);
8420 	}
8421 	*mkdirp = mkdir2;
8422 
8423 	return (mkdir1);
8424 }
8425 
8426 /*
8427  * Directory entry addition dependencies.
8428  *
8429  * When adding a new directory entry, the inode (with its incremented link
8430  * count) must be written to disk before the directory entry's pointer to it.
8431  * Also, if the inode is newly allocated, the corresponding freemap must be
8432  * updated (on disk) before the directory entry's pointer. These requirements
8433  * are met via undo/redo on the directory entry's pointer, which consists
8434  * simply of the inode number.
8435  *
8436  * As directory entries are added and deleted, the free space within a
8437  * directory block can become fragmented.  The ufs filesystem will compact
8438  * a fragmented directory block to make space for a new entry. When this
8439  * occurs, the offsets of previously added entries change. Any "diradd"
8440  * dependency structures corresponding to these entries must be updated with
8441  * the new offsets.
8442  */
8443 
8444 /*
8445  * This routine is called after the in-memory inode's link
8446  * count has been incremented, but before the directory entry's
8447  * pointer to the inode has been set.
8448  */
8449 int
8450 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
8451 	struct buf *bp;		/* buffer containing directory block */
8452 	struct inode *dp;	/* inode for directory */
8453 	off_t diroffset;	/* offset of new entry in directory */
8454 	ino_t newinum;		/* inode referenced by new directory entry */
8455 	struct buf *newdirbp;	/* non-NULL => contents of new mkdir */
8456 	int isnewblk;		/* entry is in a newly allocated block */
8457 {
8458 	int offset;		/* offset of new entry within directory block */
8459 	ufs_lbn_t lbn;		/* block in directory containing new entry */
8460 	struct fs *fs;
8461 	struct diradd *dap;
8462 	struct newblk *newblk;
8463 	struct pagedep *pagedep;
8464 	struct inodedep *inodedep;
8465 	struct newdirblk *newdirblk;
8466 	struct mkdir *mkdir1, *mkdir2;
8467 	struct jaddref *jaddref;
8468 	struct ufsmount *ump;
8469 	struct mount *mp;
8470 	int isindir;
8471 
8472 	mp = ITOVFS(dp);
8473 	ump = VFSTOUFS(mp);
8474 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
8475 	    ("softdep_setup_directory_add called on non-softdep filesystem"));
8476 	/*
8477 	 * Whiteouts have no dependencies.
8478 	 */
8479 	if (newinum == WINO) {
8480 		if (newdirbp != NULL)
8481 			bdwrite(newdirbp);
8482 		return (0);
8483 	}
8484 	jaddref = NULL;
8485 	mkdir1 = mkdir2 = NULL;
8486 	fs = ump->um_fs;
8487 	lbn = lblkno(fs, diroffset);
8488 	offset = blkoff(fs, diroffset);
8489 	dap = malloc(sizeof(struct diradd), M_DIRADD,
8490 		M_SOFTDEP_FLAGS|M_ZERO);
8491 	workitem_alloc(&dap->da_list, D_DIRADD, mp);
8492 	dap->da_offset = offset;
8493 	dap->da_newinum = newinum;
8494 	dap->da_state = ATTACHED;
8495 	LIST_INIT(&dap->da_jwork);
8496 	isindir = bp->b_lblkno >= NDADDR;
8497 	newdirblk = NULL;
8498 	if (isnewblk &&
8499 	    (isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) {
8500 		newdirblk = malloc(sizeof(struct newdirblk),
8501 		    M_NEWDIRBLK, M_SOFTDEP_FLAGS);
8502 		workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
8503 		LIST_INIT(&newdirblk->db_mkdir);
8504 	}
8505 	/*
8506 	 * If we're creating a new directory setup the dependencies and set
8507 	 * the dap state to wait for them.  Otherwise it's COMPLETE and
8508 	 * we can move on.
8509 	 */
8510 	if (newdirbp == NULL) {
8511 		dap->da_state |= DEPCOMPLETE;
8512 		ACQUIRE_LOCK(ump);
8513 	} else {
8514 		dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
8515 		mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp,
8516 		    &mkdir2);
8517 	}
8518 	/*
8519 	 * Link into parent directory pagedep to await its being written.
8520 	 */
8521 	pagedep_lookup(mp, bp, dp->i_number, lbn, DEPALLOC, &pagedep);
8522 #ifdef DEBUG
8523 	if (diradd_lookup(pagedep, offset) != NULL)
8524 		panic("softdep_setup_directory_add: %p already at off %d\n",
8525 		    diradd_lookup(pagedep, offset), offset);
8526 #endif
8527 	dap->da_pagedep = pagedep;
8528 	LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
8529 	    da_pdlist);
8530 	inodedep_lookup(mp, newinum, DEPALLOC, &inodedep);
8531 	/*
8532 	 * If we're journaling, link the diradd into the jaddref so it
8533 	 * may be completed after the journal entry is written.  Otherwise,
8534 	 * link the diradd into its inodedep.  If the inode is not yet
8535 	 * written place it on the bufwait list, otherwise do the post-inode
8536 	 * write processing to put it on the id_pendinghd list.
8537 	 */
8538 	if (MOUNTEDSUJ(mp)) {
8539 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8540 		    inoreflst);
8541 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
8542 		    ("softdep_setup_directory_add: bad jaddref %p", jaddref));
8543 		jaddref->ja_diroff = diroffset;
8544 		jaddref->ja_diradd = dap;
8545 		add_to_journal(&jaddref->ja_list);
8546 	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
8547 		diradd_inode_written(dap, inodedep);
8548 	else
8549 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
8550 	/*
8551 	 * Add the journal entries for . and .. links now that the primary
8552 	 * link is written.
8553 	 */
8554 	if (mkdir1 != NULL && MOUNTEDSUJ(mp)) {
8555 		jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
8556 		    inoreflst, if_deps);
8557 		KASSERT(jaddref != NULL &&
8558 		    jaddref->ja_ino == jaddref->ja_parent &&
8559 		    (jaddref->ja_state & MKDIR_BODY),
8560 		    ("softdep_setup_directory_add: bad dot jaddref %p",
8561 		    jaddref));
8562 		mkdir1->md_jaddref = jaddref;
8563 		jaddref->ja_mkdir = mkdir1;
8564 		/*
8565 		 * It is important that the dotdot journal entry
8566 		 * is added prior to the dot entry since dot writes
8567 		 * both the dot and dotdot links.  These both must
8568 		 * be added after the primary link for the journal
8569 		 * to remain consistent.
8570 		 */
8571 		add_to_journal(&mkdir2->md_jaddref->ja_list);
8572 		add_to_journal(&jaddref->ja_list);
8573 	}
8574 	/*
8575 	 * If we are adding a new directory remember this diradd so that if
8576 	 * we rename it we can keep the dot and dotdot dependencies.  If
8577 	 * we are adding a new name for an inode that has a mkdiradd we
8578 	 * must be in rename and we have to move the dot and dotdot
8579 	 * dependencies to this new name.  The old name is being orphaned
8580 	 * soon.
8581 	 */
8582 	if (mkdir1 != NULL) {
8583 		if (inodedep->id_mkdiradd != NULL)
8584 			panic("softdep_setup_directory_add: Existing mkdir");
8585 		inodedep->id_mkdiradd = dap;
8586 	} else if (inodedep->id_mkdiradd)
8587 		merge_diradd(inodedep, dap);
8588 	if (newdirblk != NULL) {
8589 		/*
8590 		 * There is nothing to do if we are already tracking
8591 		 * this block.
8592 		 */
8593 		if ((pagedep->pd_state & NEWBLOCK) != 0) {
8594 			WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
8595 			FREE_LOCK(ump);
8596 			return (0);
8597 		}
8598 		if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)
8599 		    == 0)
8600 			panic("softdep_setup_directory_add: lost entry");
8601 		WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
8602 		pagedep->pd_state |= NEWBLOCK;
8603 		pagedep->pd_newdirblk = newdirblk;
8604 		newdirblk->db_pagedep = pagedep;
8605 		FREE_LOCK(ump);
8606 		/*
8607 		 * If we extended into an indirect signal direnter to sync.
8608 		 */
8609 		if (isindir)
8610 			return (1);
8611 		return (0);
8612 	}
8613 	FREE_LOCK(ump);
8614 	return (0);
8615 }
8616 
8617 /*
8618  * This procedure is called to change the offset of a directory
8619  * entry when compacting a directory block which must be owned
8620  * exclusively by the caller. Note that the actual entry movement
8621  * must be done in this procedure to ensure that no I/O completions
8622  * occur while the move is in progress.
8623  */
8624 void
8625 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
8626 	struct buf *bp;		/* Buffer holding directory block. */
8627 	struct inode *dp;	/* inode for directory */
8628 	caddr_t base;		/* address of dp->i_offset */
8629 	caddr_t oldloc;		/* address of old directory location */
8630 	caddr_t newloc;		/* address of new directory location */
8631 	int entrysize;		/* size of directory entry */
8632 {
8633 	int offset, oldoffset, newoffset;
8634 	struct pagedep *pagedep;
8635 	struct jmvref *jmvref;
8636 	struct diradd *dap;
8637 	struct direct *de;
8638 	struct mount *mp;
8639 	struct ufsmount *ump;
8640 	ufs_lbn_t lbn;
8641 	int flags;
8642 
8643 	mp = ITOVFS(dp);
8644 	ump = VFSTOUFS(mp);
8645 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
8646 	    ("softdep_change_directoryentry_offset called on "
8647 	     "non-softdep filesystem"));
8648 	de = (struct direct *)oldloc;
8649 	jmvref = NULL;
8650 	flags = 0;
8651 	/*
8652 	 * Moves are always journaled as it would be too complex to
8653 	 * determine if any affected adds or removes are present in the
8654 	 * journal.
8655 	 */
8656 	if (MOUNTEDSUJ(mp)) {
8657 		flags = DEPALLOC;
8658 		jmvref = newjmvref(dp, de->d_ino,
8659 		    dp->i_offset + (oldloc - base),
8660 		    dp->i_offset + (newloc - base));
8661 	}
8662 	lbn = lblkno(ump->um_fs, dp->i_offset);
8663 	offset = blkoff(ump->um_fs, dp->i_offset);
8664 	oldoffset = offset + (oldloc - base);
8665 	newoffset = offset + (newloc - base);
8666 	ACQUIRE_LOCK(ump);
8667 	if (pagedep_lookup(mp, bp, dp->i_number, lbn, flags, &pagedep) == 0)
8668 		goto done;
8669 	dap = diradd_lookup(pagedep, oldoffset);
8670 	if (dap) {
8671 		dap->da_offset = newoffset;
8672 		newoffset = DIRADDHASH(newoffset);
8673 		oldoffset = DIRADDHASH(oldoffset);
8674 		if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE &&
8675 		    newoffset != oldoffset) {
8676 			LIST_REMOVE(dap, da_pdlist);
8677 			LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset],
8678 			    dap, da_pdlist);
8679 		}
8680 	}
8681 done:
8682 	if (jmvref) {
8683 		jmvref->jm_pagedep = pagedep;
8684 		LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps);
8685 		add_to_journal(&jmvref->jm_list);
8686 	}
8687 	bcopy(oldloc, newloc, entrysize);
8688 	FREE_LOCK(ump);
8689 }
8690 
8691 /*
8692  * Move the mkdir dependencies and journal work from one diradd to another
8693  * when renaming a directory.  The new name must depend on the mkdir deps
8694  * completing as the old name did.  Directories can only have one valid link
8695  * at a time so one must be canonical.
8696  */
8697 static void
8698 merge_diradd(inodedep, newdap)
8699 	struct inodedep *inodedep;
8700 	struct diradd *newdap;
8701 {
8702 	struct diradd *olddap;
8703 	struct mkdir *mkdir, *nextmd;
8704 	struct ufsmount *ump;
8705 	short state;
8706 
8707 	olddap = inodedep->id_mkdiradd;
8708 	inodedep->id_mkdiradd = newdap;
8709 	if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8710 		newdap->da_state &= ~DEPCOMPLETE;
8711 		ump = VFSTOUFS(inodedep->id_list.wk_mp);
8712 		for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
8713 		     mkdir = nextmd) {
8714 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
8715 			if (mkdir->md_diradd != olddap)
8716 				continue;
8717 			mkdir->md_diradd = newdap;
8718 			state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY);
8719 			newdap->da_state |= state;
8720 			olddap->da_state &= ~state;
8721 			if ((olddap->da_state &
8722 			    (MKDIR_PARENT | MKDIR_BODY)) == 0)
8723 				break;
8724 		}
8725 		if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
8726 			panic("merge_diradd: unfound ref");
8727 	}
8728 	/*
8729 	 * Any mkdir related journal items are not safe to be freed until
8730 	 * the new name is stable.
8731 	 */
8732 	jwork_move(&newdap->da_jwork, &olddap->da_jwork);
8733 	olddap->da_state |= DEPCOMPLETE;
8734 	complete_diradd(olddap);
8735 }
8736 
8737 /*
8738  * Move the diradd to the pending list when all diradd dependencies are
8739  * complete.
8740  */
8741 static void
8742 complete_diradd(dap)
8743 	struct diradd *dap;
8744 {
8745 	struct pagedep *pagedep;
8746 
8747 	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
8748 		if (dap->da_state & DIRCHG)
8749 			pagedep = dap->da_previous->dm_pagedep;
8750 		else
8751 			pagedep = dap->da_pagedep;
8752 		LIST_REMOVE(dap, da_pdlist);
8753 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
8754 	}
8755 }
8756 
8757 /*
8758  * Cancel a diradd when a dirrem overlaps with it.  We must cancel the journal
8759  * add entries and conditonally journal the remove.
8760  */
8761 static void
8762 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref)
8763 	struct diradd *dap;
8764 	struct dirrem *dirrem;
8765 	struct jremref *jremref;
8766 	struct jremref *dotremref;
8767 	struct jremref *dotdotremref;
8768 {
8769 	struct inodedep *inodedep;
8770 	struct jaddref *jaddref;
8771 	struct inoref *inoref;
8772 	struct ufsmount *ump;
8773 	struct mkdir *mkdir;
8774 
8775 	/*
8776 	 * If no remove references were allocated we're on a non-journaled
8777 	 * filesystem and can skip the cancel step.
8778 	 */
8779 	if (jremref == NULL) {
8780 		free_diradd(dap, NULL);
8781 		return;
8782 	}
8783 	/*
8784 	 * Cancel the primary name an free it if it does not require
8785 	 * journaling.
8786 	 */
8787 	if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum,
8788 	    0, &inodedep) != 0) {
8789 		/* Abort the addref that reference this diradd.  */
8790 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
8791 			if (inoref->if_list.wk_type != D_JADDREF)
8792 				continue;
8793 			jaddref = (struct jaddref *)inoref;
8794 			if (jaddref->ja_diradd != dap)
8795 				continue;
8796 			if (cancel_jaddref(jaddref, inodedep,
8797 			    &dirrem->dm_jwork) == 0) {
8798 				free_jremref(jremref);
8799 				jremref = NULL;
8800 			}
8801 			break;
8802 		}
8803 	}
8804 	/*
8805 	 * Cancel subordinate names and free them if they do not require
8806 	 * journaling.
8807 	 */
8808 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8809 		ump = VFSTOUFS(dap->da_list.wk_mp);
8810 		LIST_FOREACH(mkdir, &ump->softdep_mkdirlisthd, md_mkdirs) {
8811 			if (mkdir->md_diradd != dap)
8812 				continue;
8813 			if ((jaddref = mkdir->md_jaddref) == NULL)
8814 				continue;
8815 			mkdir->md_jaddref = NULL;
8816 			if (mkdir->md_state & MKDIR_PARENT) {
8817 				if (cancel_jaddref(jaddref, NULL,
8818 				    &dirrem->dm_jwork) == 0) {
8819 					free_jremref(dotdotremref);
8820 					dotdotremref = NULL;
8821 				}
8822 			} else {
8823 				if (cancel_jaddref(jaddref, inodedep,
8824 				    &dirrem->dm_jwork) == 0) {
8825 					free_jremref(dotremref);
8826 					dotremref = NULL;
8827 				}
8828 			}
8829 		}
8830 	}
8831 
8832 	if (jremref)
8833 		journal_jremref(dirrem, jremref, inodedep);
8834 	if (dotremref)
8835 		journal_jremref(dirrem, dotremref, inodedep);
8836 	if (dotdotremref)
8837 		journal_jremref(dirrem, dotdotremref, NULL);
8838 	jwork_move(&dirrem->dm_jwork, &dap->da_jwork);
8839 	free_diradd(dap, &dirrem->dm_jwork);
8840 }
8841 
8842 /*
8843  * Free a diradd dependency structure. This routine must be called
8844  * with splbio interrupts blocked.
8845  */
8846 static void
8847 free_diradd(dap, wkhd)
8848 	struct diradd *dap;
8849 	struct workhead *wkhd;
8850 {
8851 	struct dirrem *dirrem;
8852 	struct pagedep *pagedep;
8853 	struct inodedep *inodedep;
8854 	struct mkdir *mkdir, *nextmd;
8855 	struct ufsmount *ump;
8856 
8857 	ump = VFSTOUFS(dap->da_list.wk_mp);
8858 	LOCK_OWNED(ump);
8859 	LIST_REMOVE(dap, da_pdlist);
8860 	if (dap->da_state & ONWORKLIST)
8861 		WORKLIST_REMOVE(&dap->da_list);
8862 	if ((dap->da_state & DIRCHG) == 0) {
8863 		pagedep = dap->da_pagedep;
8864 	} else {
8865 		dirrem = dap->da_previous;
8866 		pagedep = dirrem->dm_pagedep;
8867 		dirrem->dm_dirinum = pagedep->pd_ino;
8868 		dirrem->dm_state |= COMPLETE;
8869 		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
8870 			add_to_worklist(&dirrem->dm_list, 0);
8871 	}
8872 	if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum,
8873 	    0, &inodedep) != 0)
8874 		if (inodedep->id_mkdiradd == dap)
8875 			inodedep->id_mkdiradd = NULL;
8876 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8877 		for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
8878 		     mkdir = nextmd) {
8879 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
8880 			if (mkdir->md_diradd != dap)
8881 				continue;
8882 			dap->da_state &=
8883 			    ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
8884 			LIST_REMOVE(mkdir, md_mkdirs);
8885 			if (mkdir->md_state & ONWORKLIST)
8886 				WORKLIST_REMOVE(&mkdir->md_list);
8887 			if (mkdir->md_jaddref != NULL)
8888 				panic("free_diradd: Unexpected jaddref");
8889 			WORKITEM_FREE(mkdir, D_MKDIR);
8890 			if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
8891 				break;
8892 		}
8893 		if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
8894 			panic("free_diradd: unfound ref");
8895 	}
8896 	if (inodedep)
8897 		free_inodedep(inodedep);
8898 	/*
8899 	 * Free any journal segments waiting for the directory write.
8900 	 */
8901 	handle_jwork(&dap->da_jwork);
8902 	WORKITEM_FREE(dap, D_DIRADD);
8903 }
8904 
8905 /*
8906  * Directory entry removal dependencies.
8907  *
8908  * When removing a directory entry, the entry's inode pointer must be
8909  * zero'ed on disk before the corresponding inode's link count is decremented
8910  * (possibly freeing the inode for re-use). This dependency is handled by
8911  * updating the directory entry but delaying the inode count reduction until
8912  * after the directory block has been written to disk. After this point, the
8913  * inode count can be decremented whenever it is convenient.
8914  */
8915 
8916 /*
8917  * This routine should be called immediately after removing
8918  * a directory entry.  The inode's link count should not be
8919  * decremented by the calling procedure -- the soft updates
8920  * code will do this task when it is safe.
8921  */
8922 void
8923 softdep_setup_remove(bp, dp, ip, isrmdir)
8924 	struct buf *bp;		/* buffer containing directory block */
8925 	struct inode *dp;	/* inode for the directory being modified */
8926 	struct inode *ip;	/* inode for directory entry being removed */
8927 	int isrmdir;		/* indicates if doing RMDIR */
8928 {
8929 	struct dirrem *dirrem, *prevdirrem;
8930 	struct inodedep *inodedep;
8931 	struct ufsmount *ump;
8932 	int direct;
8933 
8934 	ump = ITOUMP(ip);
8935 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
8936 	    ("softdep_setup_remove called on non-softdep filesystem"));
8937 	/*
8938 	 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK.  We want
8939 	 * newdirrem() to setup the full directory remove which requires
8940 	 * isrmdir > 1.
8941 	 */
8942 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
8943 	/*
8944 	 * Add the dirrem to the inodedep's pending remove list for quick
8945 	 * discovery later.
8946 	 */
8947 	if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0)
8948 		panic("softdep_setup_remove: Lost inodedep.");
8949 	KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
8950 	dirrem->dm_state |= ONDEPLIST;
8951 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
8952 
8953 	/*
8954 	 * If the COMPLETE flag is clear, then there were no active
8955 	 * entries and we want to roll back to a zeroed entry until
8956 	 * the new inode is committed to disk. If the COMPLETE flag is
8957 	 * set then we have deleted an entry that never made it to
8958 	 * disk. If the entry we deleted resulted from a name change,
8959 	 * then the old name still resides on disk. We cannot delete
8960 	 * its inode (returned to us in prevdirrem) until the zeroed
8961 	 * directory entry gets to disk. The new inode has never been
8962 	 * referenced on the disk, so can be deleted immediately.
8963 	 */
8964 	if ((dirrem->dm_state & COMPLETE) == 0) {
8965 		LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
8966 		    dm_next);
8967 		FREE_LOCK(ump);
8968 	} else {
8969 		if (prevdirrem != NULL)
8970 			LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd,
8971 			    prevdirrem, dm_next);
8972 		dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
8973 		direct = LIST_EMPTY(&dirrem->dm_jremrefhd);
8974 		FREE_LOCK(ump);
8975 		if (direct)
8976 			handle_workitem_remove(dirrem, 0);
8977 	}
8978 }
8979 
8980 /*
8981  * Check for an entry matching 'offset' on both the pd_dirraddhd list and the
8982  * pd_pendinghd list of a pagedep.
8983  */
8984 static struct diradd *
8985 diradd_lookup(pagedep, offset)
8986 	struct pagedep *pagedep;
8987 	int offset;
8988 {
8989 	struct diradd *dap;
8990 
8991 	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist)
8992 		if (dap->da_offset == offset)
8993 			return (dap);
8994 	LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
8995 		if (dap->da_offset == offset)
8996 			return (dap);
8997 	return (NULL);
8998 }
8999 
9000 /*
9001  * Search for a .. diradd dependency in a directory that is being removed.
9002  * If the directory was renamed to a new parent we have a diradd rather
9003  * than a mkdir for the .. entry.  We need to cancel it now before
9004  * it is found in truncate().
9005  */
9006 static struct jremref *
9007 cancel_diradd_dotdot(ip, dirrem, jremref)
9008 	struct inode *ip;
9009 	struct dirrem *dirrem;
9010 	struct jremref *jremref;
9011 {
9012 	struct pagedep *pagedep;
9013 	struct diradd *dap;
9014 	struct worklist *wk;
9015 
9016 	if (pagedep_lookup(ITOVFS(ip), NULL, ip->i_number, 0, 0, &pagedep) == 0)
9017 		return (jremref);
9018 	dap = diradd_lookup(pagedep, DOTDOT_OFFSET);
9019 	if (dap == NULL)
9020 		return (jremref);
9021 	cancel_diradd(dap, dirrem, jremref, NULL, NULL);
9022 	/*
9023 	 * Mark any journal work as belonging to the parent so it is freed
9024 	 * with the .. reference.
9025 	 */
9026 	LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
9027 		wk->wk_state |= MKDIR_PARENT;
9028 	return (NULL);
9029 }
9030 
9031 /*
9032  * Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to
9033  * replace it with a dirrem/diradd pair as a result of re-parenting a
9034  * directory.  This ensures that we don't simultaneously have a mkdir and
9035  * a diradd for the same .. entry.
9036  */
9037 static struct jremref *
9038 cancel_mkdir_dotdot(ip, dirrem, jremref)
9039 	struct inode *ip;
9040 	struct dirrem *dirrem;
9041 	struct jremref *jremref;
9042 {
9043 	struct inodedep *inodedep;
9044 	struct jaddref *jaddref;
9045 	struct ufsmount *ump;
9046 	struct mkdir *mkdir;
9047 	struct diradd *dap;
9048 	struct mount *mp;
9049 
9050 	mp = ITOVFS(ip);
9051 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
9052 		return (jremref);
9053 	dap = inodedep->id_mkdiradd;
9054 	if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0)
9055 		return (jremref);
9056 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
9057 	for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
9058 	    mkdir = LIST_NEXT(mkdir, md_mkdirs))
9059 		if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT)
9060 			break;
9061 	if (mkdir == NULL)
9062 		panic("cancel_mkdir_dotdot: Unable to find mkdir\n");
9063 	if ((jaddref = mkdir->md_jaddref) != NULL) {
9064 		mkdir->md_jaddref = NULL;
9065 		jaddref->ja_state &= ~MKDIR_PARENT;
9066 		if (inodedep_lookup(mp, jaddref->ja_ino, 0, &inodedep) == 0)
9067 			panic("cancel_mkdir_dotdot: Lost parent inodedep");
9068 		if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) {
9069 			journal_jremref(dirrem, jremref, inodedep);
9070 			jremref = NULL;
9071 		}
9072 	}
9073 	if (mkdir->md_state & ONWORKLIST)
9074 		WORKLIST_REMOVE(&mkdir->md_list);
9075 	mkdir->md_state |= ALLCOMPLETE;
9076 	complete_mkdir(mkdir);
9077 	return (jremref);
9078 }
9079 
9080 static void
9081 journal_jremref(dirrem, jremref, inodedep)
9082 	struct dirrem *dirrem;
9083 	struct jremref *jremref;
9084 	struct inodedep *inodedep;
9085 {
9086 
9087 	if (inodedep == NULL)
9088 		if (inodedep_lookup(jremref->jr_list.wk_mp,
9089 		    jremref->jr_ref.if_ino, 0, &inodedep) == 0)
9090 			panic("journal_jremref: Lost inodedep");
9091 	LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps);
9092 	TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
9093 	add_to_journal(&jremref->jr_list);
9094 }
9095 
9096 static void
9097 dirrem_journal(dirrem, jremref, dotremref, dotdotremref)
9098 	struct dirrem *dirrem;
9099 	struct jremref *jremref;
9100 	struct jremref *dotremref;
9101 	struct jremref *dotdotremref;
9102 {
9103 	struct inodedep *inodedep;
9104 
9105 
9106 	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0,
9107 	    &inodedep) == 0)
9108 		panic("dirrem_journal: Lost inodedep");
9109 	journal_jremref(dirrem, jremref, inodedep);
9110 	if (dotremref)
9111 		journal_jremref(dirrem, dotremref, inodedep);
9112 	if (dotdotremref)
9113 		journal_jremref(dirrem, dotdotremref, NULL);
9114 }
9115 
9116 /*
9117  * Allocate a new dirrem if appropriate and return it along with
9118  * its associated pagedep. Called without a lock, returns with lock.
9119  */
9120 static struct dirrem *
9121 newdirrem(bp, dp, ip, isrmdir, prevdirremp)
9122 	struct buf *bp;		/* buffer containing directory block */
9123 	struct inode *dp;	/* inode for the directory being modified */
9124 	struct inode *ip;	/* inode for directory entry being removed */
9125 	int isrmdir;		/* indicates if doing RMDIR */
9126 	struct dirrem **prevdirremp; /* previously referenced inode, if any */
9127 {
9128 	int offset;
9129 	ufs_lbn_t lbn;
9130 	struct diradd *dap;
9131 	struct dirrem *dirrem;
9132 	struct pagedep *pagedep;
9133 	struct jremref *jremref;
9134 	struct jremref *dotremref;
9135 	struct jremref *dotdotremref;
9136 	struct vnode *dvp;
9137 	struct ufsmount *ump;
9138 
9139 	/*
9140 	 * Whiteouts have no deletion dependencies.
9141 	 */
9142 	if (ip == NULL)
9143 		panic("newdirrem: whiteout");
9144 	dvp = ITOV(dp);
9145 	ump = ITOUMP(dp);
9146 
9147 	/*
9148 	 * If the system is over its limit and our filesystem is
9149 	 * responsible for more than our share of that usage and
9150 	 * we are not a snapshot, request some inodedep cleanup.
9151 	 * Limiting the number of dirrem structures will also limit
9152 	 * the number of freefile and freeblks structures.
9153 	 */
9154 	ACQUIRE_LOCK(ump);
9155 	if (!IS_SNAPSHOT(ip) && softdep_excess_items(ump, D_DIRREM))
9156 		schedule_cleanup(UFSTOVFS(ump));
9157 	else
9158 		FREE_LOCK(ump);
9159 	dirrem = malloc(sizeof(struct dirrem), M_DIRREM, M_SOFTDEP_FLAGS |
9160 	    M_ZERO);
9161 	workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount);
9162 	LIST_INIT(&dirrem->dm_jremrefhd);
9163 	LIST_INIT(&dirrem->dm_jwork);
9164 	dirrem->dm_state = isrmdir ? RMDIR : 0;
9165 	dirrem->dm_oldinum = ip->i_number;
9166 	*prevdirremp = NULL;
9167 	/*
9168 	 * Allocate remove reference structures to track journal write
9169 	 * dependencies.  We will always have one for the link and
9170 	 * when doing directories we will always have one more for dot.
9171 	 * When renaming a directory we skip the dotdot link change so
9172 	 * this is not needed.
9173 	 */
9174 	jremref = dotremref = dotdotremref = NULL;
9175 	if (DOINGSUJ(dvp)) {
9176 		if (isrmdir) {
9177 			jremref = newjremref(dirrem, dp, ip, dp->i_offset,
9178 			    ip->i_effnlink + 2);
9179 			dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET,
9180 			    ip->i_effnlink + 1);
9181 			dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET,
9182 			    dp->i_effnlink + 1);
9183 			dotdotremref->jr_state |= MKDIR_PARENT;
9184 		} else
9185 			jremref = newjremref(dirrem, dp, ip, dp->i_offset,
9186 			    ip->i_effnlink + 1);
9187 	}
9188 	ACQUIRE_LOCK(ump);
9189 	lbn = lblkno(ump->um_fs, dp->i_offset);
9190 	offset = blkoff(ump->um_fs, dp->i_offset);
9191 	pagedep_lookup(UFSTOVFS(ump), bp, dp->i_number, lbn, DEPALLOC,
9192 	    &pagedep);
9193 	dirrem->dm_pagedep = pagedep;
9194 	dirrem->dm_offset = offset;
9195 	/*
9196 	 * If we're renaming a .. link to a new directory, cancel any
9197 	 * existing MKDIR_PARENT mkdir.  If it has already been canceled
9198 	 * the jremref is preserved for any potential diradd in this
9199 	 * location.  This can not coincide with a rmdir.
9200 	 */
9201 	if (dp->i_offset == DOTDOT_OFFSET) {
9202 		if (isrmdir)
9203 			panic("newdirrem: .. directory change during remove?");
9204 		jremref = cancel_mkdir_dotdot(dp, dirrem, jremref);
9205 	}
9206 	/*
9207 	 * If we're removing a directory search for the .. dependency now and
9208 	 * cancel it.  Any pending journal work will be added to the dirrem
9209 	 * to be completed when the workitem remove completes.
9210 	 */
9211 	if (isrmdir)
9212 		dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref);
9213 	/*
9214 	 * Check for a diradd dependency for the same directory entry.
9215 	 * If present, then both dependencies become obsolete and can
9216 	 * be de-allocated.
9217 	 */
9218 	dap = diradd_lookup(pagedep, offset);
9219 	if (dap == NULL) {
9220 		/*
9221 		 * Link the jremref structures into the dirrem so they are
9222 		 * written prior to the pagedep.
9223 		 */
9224 		if (jremref)
9225 			dirrem_journal(dirrem, jremref, dotremref,
9226 			    dotdotremref);
9227 		return (dirrem);
9228 	}
9229 	/*
9230 	 * Must be ATTACHED at this point.
9231 	 */
9232 	if ((dap->da_state & ATTACHED) == 0)
9233 		panic("newdirrem: not ATTACHED");
9234 	if (dap->da_newinum != ip->i_number)
9235 		panic("newdirrem: inum %ju should be %ju",
9236 		    (uintmax_t)ip->i_number, (uintmax_t)dap->da_newinum);
9237 	/*
9238 	 * If we are deleting a changed name that never made it to disk,
9239 	 * then return the dirrem describing the previous inode (which
9240 	 * represents the inode currently referenced from this entry on disk).
9241 	 */
9242 	if ((dap->da_state & DIRCHG) != 0) {
9243 		*prevdirremp = dap->da_previous;
9244 		dap->da_state &= ~DIRCHG;
9245 		dap->da_pagedep = pagedep;
9246 	}
9247 	/*
9248 	 * We are deleting an entry that never made it to disk.
9249 	 * Mark it COMPLETE so we can delete its inode immediately.
9250 	 */
9251 	dirrem->dm_state |= COMPLETE;
9252 	cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref);
9253 #ifdef SUJ_DEBUG
9254 	if (isrmdir == 0) {
9255 		struct worklist *wk;
9256 
9257 		LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
9258 			if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT))
9259 				panic("bad wk %p (0x%X)\n", wk, wk->wk_state);
9260 	}
9261 #endif
9262 
9263 	return (dirrem);
9264 }
9265 
9266 /*
9267  * Directory entry change dependencies.
9268  *
9269  * Changing an existing directory entry requires that an add operation
9270  * be completed first followed by a deletion. The semantics for the addition
9271  * are identical to the description of adding a new entry above except
9272  * that the rollback is to the old inode number rather than zero. Once
9273  * the addition dependency is completed, the removal is done as described
9274  * in the removal routine above.
9275  */
9276 
9277 /*
9278  * This routine should be called immediately after changing
9279  * a directory entry.  The inode's link count should not be
9280  * decremented by the calling procedure -- the soft updates
9281  * code will perform this task when it is safe.
9282  */
9283 void
9284 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
9285 	struct buf *bp;		/* buffer containing directory block */
9286 	struct inode *dp;	/* inode for the directory being modified */
9287 	struct inode *ip;	/* inode for directory entry being removed */
9288 	ino_t newinum;		/* new inode number for changed entry */
9289 	int isrmdir;		/* indicates if doing RMDIR */
9290 {
9291 	int offset;
9292 	struct diradd *dap = NULL;
9293 	struct dirrem *dirrem, *prevdirrem;
9294 	struct pagedep *pagedep;
9295 	struct inodedep *inodedep;
9296 	struct jaddref *jaddref;
9297 	struct mount *mp;
9298 	struct ufsmount *ump;
9299 
9300 	mp = ITOVFS(dp);
9301 	ump = VFSTOUFS(mp);
9302 	offset = blkoff(ump->um_fs, dp->i_offset);
9303 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
9304 	   ("softdep_setup_directory_change called on non-softdep filesystem"));
9305 
9306 	/*
9307 	 * Whiteouts do not need diradd dependencies.
9308 	 */
9309 	if (newinum != WINO) {
9310 		dap = malloc(sizeof(struct diradd),
9311 		    M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO);
9312 		workitem_alloc(&dap->da_list, D_DIRADD, mp);
9313 		dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
9314 		dap->da_offset = offset;
9315 		dap->da_newinum = newinum;
9316 		LIST_INIT(&dap->da_jwork);
9317 	}
9318 
9319 	/*
9320 	 * Allocate a new dirrem and ACQUIRE_LOCK.
9321 	 */
9322 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
9323 	pagedep = dirrem->dm_pagedep;
9324 	/*
9325 	 * The possible values for isrmdir:
9326 	 *	0 - non-directory file rename
9327 	 *	1 - directory rename within same directory
9328 	 *   inum - directory rename to new directory of given inode number
9329 	 * When renaming to a new directory, we are both deleting and
9330 	 * creating a new directory entry, so the link count on the new
9331 	 * directory should not change. Thus we do not need the followup
9332 	 * dirrem which is usually done in handle_workitem_remove. We set
9333 	 * the DIRCHG flag to tell handle_workitem_remove to skip the
9334 	 * followup dirrem.
9335 	 */
9336 	if (isrmdir > 1)
9337 		dirrem->dm_state |= DIRCHG;
9338 
9339 	/*
9340 	 * Whiteouts have no additional dependencies,
9341 	 * so just put the dirrem on the correct list.
9342 	 */
9343 	if (newinum == WINO) {
9344 		if ((dirrem->dm_state & COMPLETE) == 0) {
9345 			LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
9346 			    dm_next);
9347 		} else {
9348 			dirrem->dm_dirinum = pagedep->pd_ino;
9349 			if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9350 				add_to_worklist(&dirrem->dm_list, 0);
9351 		}
9352 		FREE_LOCK(ump);
9353 		return;
9354 	}
9355 	/*
9356 	 * Add the dirrem to the inodedep's pending remove list for quick
9357 	 * discovery later.  A valid nlinkdelta ensures that this lookup
9358 	 * will not fail.
9359 	 */
9360 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
9361 		panic("softdep_setup_directory_change: Lost inodedep.");
9362 	dirrem->dm_state |= ONDEPLIST;
9363 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9364 
9365 	/*
9366 	 * If the COMPLETE flag is clear, then there were no active
9367 	 * entries and we want to roll back to the previous inode until
9368 	 * the new inode is committed to disk. If the COMPLETE flag is
9369 	 * set, then we have deleted an entry that never made it to disk.
9370 	 * If the entry we deleted resulted from a name change, then the old
9371 	 * inode reference still resides on disk. Any rollback that we do
9372 	 * needs to be to that old inode (returned to us in prevdirrem). If
9373 	 * the entry we deleted resulted from a create, then there is
9374 	 * no entry on the disk, so we want to roll back to zero rather
9375 	 * than the uncommitted inode. In either of the COMPLETE cases we
9376 	 * want to immediately free the unwritten and unreferenced inode.
9377 	 */
9378 	if ((dirrem->dm_state & COMPLETE) == 0) {
9379 		dap->da_previous = dirrem;
9380 	} else {
9381 		if (prevdirrem != NULL) {
9382 			dap->da_previous = prevdirrem;
9383 		} else {
9384 			dap->da_state &= ~DIRCHG;
9385 			dap->da_pagedep = pagedep;
9386 		}
9387 		dirrem->dm_dirinum = pagedep->pd_ino;
9388 		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9389 			add_to_worklist(&dirrem->dm_list, 0);
9390 	}
9391 	/*
9392 	 * Lookup the jaddref for this journal entry.  We must finish
9393 	 * initializing it and make the diradd write dependent on it.
9394 	 * If we're not journaling, put it on the id_bufwait list if the
9395 	 * inode is not yet written. If it is written, do the post-inode
9396 	 * write processing to put it on the id_pendinghd list.
9397 	 */
9398 	inodedep_lookup(mp, newinum, DEPALLOC, &inodedep);
9399 	if (MOUNTEDSUJ(mp)) {
9400 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
9401 		    inoreflst);
9402 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
9403 		    ("softdep_setup_directory_change: bad jaddref %p",
9404 		    jaddref));
9405 		jaddref->ja_diroff = dp->i_offset;
9406 		jaddref->ja_diradd = dap;
9407 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
9408 		    dap, da_pdlist);
9409 		add_to_journal(&jaddref->ja_list);
9410 	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
9411 		dap->da_state |= COMPLETE;
9412 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
9413 		WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
9414 	} else {
9415 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
9416 		    dap, da_pdlist);
9417 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
9418 	}
9419 	/*
9420 	 * If we're making a new name for a directory that has not been
9421 	 * committed when need to move the dot and dotdot references to
9422 	 * this new name.
9423 	 */
9424 	if (inodedep->id_mkdiradd && dp->i_offset != DOTDOT_OFFSET)
9425 		merge_diradd(inodedep, dap);
9426 	FREE_LOCK(ump);
9427 }
9428 
9429 /*
9430  * Called whenever the link count on an inode is changed.
9431  * It creates an inode dependency so that the new reference(s)
9432  * to the inode cannot be committed to disk until the updated
9433  * inode has been written.
9434  */
9435 void
9436 softdep_change_linkcnt(ip)
9437 	struct inode *ip;	/* the inode with the increased link count */
9438 {
9439 	struct inodedep *inodedep;
9440 	struct ufsmount *ump;
9441 
9442 	ump = ITOUMP(ip);
9443 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
9444 	    ("softdep_change_linkcnt called on non-softdep filesystem"));
9445 	ACQUIRE_LOCK(ump);
9446 	inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep);
9447 	if (ip->i_nlink < ip->i_effnlink)
9448 		panic("softdep_change_linkcnt: bad delta");
9449 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9450 	FREE_LOCK(ump);
9451 }
9452 
9453 /*
9454  * Attach a sbdep dependency to the superblock buf so that we can keep
9455  * track of the head of the linked list of referenced but unlinked inodes.
9456  */
9457 void
9458 softdep_setup_sbupdate(ump, fs, bp)
9459 	struct ufsmount *ump;
9460 	struct fs *fs;
9461 	struct buf *bp;
9462 {
9463 	struct sbdep *sbdep;
9464 	struct worklist *wk;
9465 
9466 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
9467 	    ("softdep_setup_sbupdate called on non-softdep filesystem"));
9468 	LIST_FOREACH(wk, &bp->b_dep, wk_list)
9469 		if (wk->wk_type == D_SBDEP)
9470 			break;
9471 	if (wk != NULL)
9472 		return;
9473 	sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS);
9474 	workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump));
9475 	sbdep->sb_fs = fs;
9476 	sbdep->sb_ump = ump;
9477 	ACQUIRE_LOCK(ump);
9478 	WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list);
9479 	FREE_LOCK(ump);
9480 }
9481 
9482 /*
9483  * Return the first unlinked inodedep which is ready to be the head of the
9484  * list.  The inodedep and all those after it must have valid next pointers.
9485  */
9486 static struct inodedep *
9487 first_unlinked_inodedep(ump)
9488 	struct ufsmount *ump;
9489 {
9490 	struct inodedep *inodedep;
9491 	struct inodedep *idp;
9492 
9493 	LOCK_OWNED(ump);
9494 	for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst);
9495 	    inodedep; inodedep = idp) {
9496 		if ((inodedep->id_state & UNLINKNEXT) == 0)
9497 			return (NULL);
9498 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9499 		if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0)
9500 			break;
9501 		if ((inodedep->id_state & UNLINKPREV) == 0)
9502 			break;
9503 	}
9504 	return (inodedep);
9505 }
9506 
9507 /*
9508  * Set the sujfree unlinked head pointer prior to writing a superblock.
9509  */
9510 static void
9511 initiate_write_sbdep(sbdep)
9512 	struct sbdep *sbdep;
9513 {
9514 	struct inodedep *inodedep;
9515 	struct fs *bpfs;
9516 	struct fs *fs;
9517 
9518 	bpfs = sbdep->sb_fs;
9519 	fs = sbdep->sb_ump->um_fs;
9520 	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9521 	if (inodedep) {
9522 		fs->fs_sujfree = inodedep->id_ino;
9523 		inodedep->id_state |= UNLINKPREV;
9524 	} else
9525 		fs->fs_sujfree = 0;
9526 	bpfs->fs_sujfree = fs->fs_sujfree;
9527 }
9528 
9529 /*
9530  * After a superblock is written determine whether it must be written again
9531  * due to a changing unlinked list head.
9532  */
9533 static int
9534 handle_written_sbdep(sbdep, bp)
9535 	struct sbdep *sbdep;
9536 	struct buf *bp;
9537 {
9538 	struct inodedep *inodedep;
9539 	struct fs *fs;
9540 
9541 	LOCK_OWNED(sbdep->sb_ump);
9542 	fs = sbdep->sb_fs;
9543 	/*
9544 	 * If the superblock doesn't match the in-memory list start over.
9545 	 */
9546 	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9547 	if ((inodedep && fs->fs_sujfree != inodedep->id_ino) ||
9548 	    (inodedep == NULL && fs->fs_sujfree != 0)) {
9549 		bdirty(bp);
9550 		return (1);
9551 	}
9552 	WORKITEM_FREE(sbdep, D_SBDEP);
9553 	if (fs->fs_sujfree == 0)
9554 		return (0);
9555 	/*
9556 	 * Now that we have a record of this inode in stable store allow it
9557 	 * to be written to free up pending work.  Inodes may see a lot of
9558 	 * write activity after they are unlinked which we must not hold up.
9559 	 */
9560 	for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) {
9561 		if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS)
9562 			panic("handle_written_sbdep: Bad inodedep %p (0x%X)",
9563 			    inodedep, inodedep->id_state);
9564 		if (inodedep->id_state & UNLINKONLIST)
9565 			break;
9566 		inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST;
9567 	}
9568 
9569 	return (0);
9570 }
9571 
9572 /*
9573  * Mark an inodedep as unlinked and insert it into the in-memory unlinked list.
9574  */
9575 static void
9576 unlinked_inodedep(mp, inodedep)
9577 	struct mount *mp;
9578 	struct inodedep *inodedep;
9579 {
9580 	struct ufsmount *ump;
9581 
9582 	ump = VFSTOUFS(mp);
9583 	LOCK_OWNED(ump);
9584 	if (MOUNTEDSUJ(mp) == 0)
9585 		return;
9586 	ump->um_fs->fs_fmod = 1;
9587 	if (inodedep->id_state & UNLINKED)
9588 		panic("unlinked_inodedep: %p already unlinked\n", inodedep);
9589 	inodedep->id_state |= UNLINKED;
9590 	TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked);
9591 }
9592 
9593 /*
9594  * Remove an inodedep from the unlinked inodedep list.  This may require
9595  * disk writes if the inode has made it that far.
9596  */
9597 static void
9598 clear_unlinked_inodedep(inodedep)
9599 	struct inodedep *inodedep;
9600 {
9601 	struct ufsmount *ump;
9602 	struct inodedep *idp;
9603 	struct inodedep *idn;
9604 	struct fs *fs;
9605 	struct buf *bp;
9606 	ino_t ino;
9607 	ino_t nino;
9608 	ino_t pino;
9609 	int error;
9610 
9611 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
9612 	fs = ump->um_fs;
9613 	ino = inodedep->id_ino;
9614 	error = 0;
9615 	for (;;) {
9616 		LOCK_OWNED(ump);
9617 		KASSERT((inodedep->id_state & UNLINKED) != 0,
9618 		    ("clear_unlinked_inodedep: inodedep %p not unlinked",
9619 		    inodedep));
9620 		/*
9621 		 * If nothing has yet been written simply remove us from
9622 		 * the in memory list and return.  This is the most common
9623 		 * case where handle_workitem_remove() loses the final
9624 		 * reference.
9625 		 */
9626 		if ((inodedep->id_state & UNLINKLINKS) == 0)
9627 			break;
9628 		/*
9629 		 * If we have a NEXT pointer and no PREV pointer we can simply
9630 		 * clear NEXT's PREV and remove ourselves from the list.  Be
9631 		 * careful not to clear PREV if the superblock points at
9632 		 * next as well.
9633 		 */
9634 		idn = TAILQ_NEXT(inodedep, id_unlinked);
9635 		if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) {
9636 			if (idn && fs->fs_sujfree != idn->id_ino)
9637 				idn->id_state &= ~UNLINKPREV;
9638 			break;
9639 		}
9640 		/*
9641 		 * Here we have an inodedep which is actually linked into
9642 		 * the list.  We must remove it by forcing a write to the
9643 		 * link before us, whether it be the superblock or an inode.
9644 		 * Unfortunately the list may change while we're waiting
9645 		 * on the buf lock for either resource so we must loop until
9646 		 * we lock the right one.  If both the superblock and an
9647 		 * inode point to this inode we must clear the inode first
9648 		 * followed by the superblock.
9649 		 */
9650 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9651 		pino = 0;
9652 		if (idp && (idp->id_state & UNLINKNEXT))
9653 			pino = idp->id_ino;
9654 		FREE_LOCK(ump);
9655 		if (pino == 0) {
9656 			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
9657 			    (int)fs->fs_sbsize, 0, 0, 0);
9658 		} else {
9659 			error = bread(ump->um_devvp,
9660 			    fsbtodb(fs, ino_to_fsba(fs, pino)),
9661 			    (int)fs->fs_bsize, NOCRED, &bp);
9662 			if (error)
9663 				brelse(bp);
9664 		}
9665 		ACQUIRE_LOCK(ump);
9666 		if (error)
9667 			break;
9668 		/* If the list has changed restart the loop. */
9669 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9670 		nino = 0;
9671 		if (idp && (idp->id_state & UNLINKNEXT))
9672 			nino = idp->id_ino;
9673 		if (nino != pino ||
9674 		    (inodedep->id_state & UNLINKPREV) != UNLINKPREV) {
9675 			FREE_LOCK(ump);
9676 			brelse(bp);
9677 			ACQUIRE_LOCK(ump);
9678 			continue;
9679 		}
9680 		nino = 0;
9681 		idn = TAILQ_NEXT(inodedep, id_unlinked);
9682 		if (idn)
9683 			nino = idn->id_ino;
9684 		/*
9685 		 * Remove us from the in memory list.  After this we cannot
9686 		 * access the inodedep.
9687 		 */
9688 		KASSERT((inodedep->id_state & UNLINKED) != 0,
9689 		    ("clear_unlinked_inodedep: inodedep %p not unlinked",
9690 		    inodedep));
9691 		inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
9692 		TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
9693 		FREE_LOCK(ump);
9694 		/*
9695 		 * The predecessor's next pointer is manually updated here
9696 		 * so that the NEXT flag is never cleared for an element
9697 		 * that is in the list.
9698 		 */
9699 		if (pino == 0) {
9700 			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
9701 			ffs_oldfscompat_write((struct fs *)bp->b_data, ump);
9702 			softdep_setup_sbupdate(ump, (struct fs *)bp->b_data,
9703 			    bp);
9704 		} else if (fs->fs_magic == FS_UFS1_MAGIC)
9705 			((struct ufs1_dinode *)bp->b_data +
9706 			    ino_to_fsbo(fs, pino))->di_freelink = nino;
9707 		else
9708 			((struct ufs2_dinode *)bp->b_data +
9709 			    ino_to_fsbo(fs, pino))->di_freelink = nino;
9710 		/*
9711 		 * If the bwrite fails we have no recourse to recover.  The
9712 		 * filesystem is corrupted already.
9713 		 */
9714 		bwrite(bp);
9715 		ACQUIRE_LOCK(ump);
9716 		/*
9717 		 * If the superblock pointer still needs to be cleared force
9718 		 * a write here.
9719 		 */
9720 		if (fs->fs_sujfree == ino) {
9721 			FREE_LOCK(ump);
9722 			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
9723 			    (int)fs->fs_sbsize, 0, 0, 0);
9724 			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
9725 			ffs_oldfscompat_write((struct fs *)bp->b_data, ump);
9726 			softdep_setup_sbupdate(ump, (struct fs *)bp->b_data,
9727 			    bp);
9728 			bwrite(bp);
9729 			ACQUIRE_LOCK(ump);
9730 		}
9731 
9732 		if (fs->fs_sujfree != ino)
9733 			return;
9734 		panic("clear_unlinked_inodedep: Failed to clear free head");
9735 	}
9736 	if (inodedep->id_ino == fs->fs_sujfree)
9737 		panic("clear_unlinked_inodedep: Freeing head of free list");
9738 	inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
9739 	TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
9740 	return;
9741 }
9742 
9743 /*
9744  * This workitem decrements the inode's link count.
9745  * If the link count reaches zero, the file is removed.
9746  */
9747 static int
9748 handle_workitem_remove(dirrem, flags)
9749 	struct dirrem *dirrem;
9750 	int flags;
9751 {
9752 	struct inodedep *inodedep;
9753 	struct workhead dotdotwk;
9754 	struct worklist *wk;
9755 	struct ufsmount *ump;
9756 	struct mount *mp;
9757 	struct vnode *vp;
9758 	struct inode *ip;
9759 	ino_t oldinum;
9760 
9761 	if (dirrem->dm_state & ONWORKLIST)
9762 		panic("handle_workitem_remove: dirrem %p still on worklist",
9763 		    dirrem);
9764 	oldinum = dirrem->dm_oldinum;
9765 	mp = dirrem->dm_list.wk_mp;
9766 	ump = VFSTOUFS(mp);
9767 	flags |= LK_EXCLUSIVE;
9768 	if (ffs_vgetf(mp, oldinum, flags, &vp, FFSV_FORCEINSMQ) != 0)
9769 		return (EBUSY);
9770 	ip = VTOI(vp);
9771 	ACQUIRE_LOCK(ump);
9772 	if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0)
9773 		panic("handle_workitem_remove: lost inodedep");
9774 	if (dirrem->dm_state & ONDEPLIST)
9775 		LIST_REMOVE(dirrem, dm_inonext);
9776 	KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
9777 	    ("handle_workitem_remove:  Journal entries not written."));
9778 
9779 	/*
9780 	 * Move all dependencies waiting on the remove to complete
9781 	 * from the dirrem to the inode inowait list to be completed
9782 	 * after the inode has been updated and written to disk.  Any
9783 	 * marked MKDIR_PARENT are saved to be completed when the .. ref
9784 	 * is removed.
9785 	 */
9786 	LIST_INIT(&dotdotwk);
9787 	while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) {
9788 		WORKLIST_REMOVE(wk);
9789 		if (wk->wk_state & MKDIR_PARENT) {
9790 			wk->wk_state &= ~MKDIR_PARENT;
9791 			WORKLIST_INSERT(&dotdotwk, wk);
9792 			continue;
9793 		}
9794 		WORKLIST_INSERT(&inodedep->id_inowait, wk);
9795 	}
9796 	LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list);
9797 	/*
9798 	 * Normal file deletion.
9799 	 */
9800 	if ((dirrem->dm_state & RMDIR) == 0) {
9801 		ip->i_nlink--;
9802 		DIP_SET(ip, i_nlink, ip->i_nlink);
9803 		ip->i_flag |= IN_CHANGE;
9804 		if (ip->i_nlink < ip->i_effnlink)
9805 			panic("handle_workitem_remove: bad file delta");
9806 		if (ip->i_nlink == 0)
9807 			unlinked_inodedep(mp, inodedep);
9808 		inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9809 		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
9810 		    ("handle_workitem_remove: worklist not empty. %s",
9811 		    TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type)));
9812 		WORKITEM_FREE(dirrem, D_DIRREM);
9813 		FREE_LOCK(ump);
9814 		goto out;
9815 	}
9816 	/*
9817 	 * Directory deletion. Decrement reference count for both the
9818 	 * just deleted parent directory entry and the reference for ".".
9819 	 * Arrange to have the reference count on the parent decremented
9820 	 * to account for the loss of "..".
9821 	 */
9822 	ip->i_nlink -= 2;
9823 	DIP_SET(ip, i_nlink, ip->i_nlink);
9824 	ip->i_flag |= IN_CHANGE;
9825 	if (ip->i_nlink < ip->i_effnlink)
9826 		panic("handle_workitem_remove: bad dir delta");
9827 	if (ip->i_nlink == 0)
9828 		unlinked_inodedep(mp, inodedep);
9829 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9830 	/*
9831 	 * Rename a directory to a new parent. Since, we are both deleting
9832 	 * and creating a new directory entry, the link count on the new
9833 	 * directory should not change. Thus we skip the followup dirrem.
9834 	 */
9835 	if (dirrem->dm_state & DIRCHG) {
9836 		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
9837 		    ("handle_workitem_remove: DIRCHG and worklist not empty."));
9838 		WORKITEM_FREE(dirrem, D_DIRREM);
9839 		FREE_LOCK(ump);
9840 		goto out;
9841 	}
9842 	dirrem->dm_state = ONDEPLIST;
9843 	dirrem->dm_oldinum = dirrem->dm_dirinum;
9844 	/*
9845 	 * Place the dirrem on the parent's diremhd list.
9846 	 */
9847 	if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0)
9848 		panic("handle_workitem_remove: lost dir inodedep");
9849 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9850 	/*
9851 	 * If the allocated inode has never been written to disk, then
9852 	 * the on-disk inode is zero'ed and we can remove the file
9853 	 * immediately.  When journaling if the inode has been marked
9854 	 * unlinked and not DEPCOMPLETE we know it can never be written.
9855 	 */
9856 	inodedep_lookup(mp, oldinum, 0, &inodedep);
9857 	if (inodedep == NULL ||
9858 	    (inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED ||
9859 	    check_inode_unwritten(inodedep)) {
9860 		FREE_LOCK(ump);
9861 		vput(vp);
9862 		return handle_workitem_remove(dirrem, flags);
9863 	}
9864 	WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
9865 	FREE_LOCK(ump);
9866 	ip->i_flag |= IN_CHANGE;
9867 out:
9868 	ffs_update(vp, 0);
9869 	vput(vp);
9870 	return (0);
9871 }
9872 
9873 /*
9874  * Inode de-allocation dependencies.
9875  *
9876  * When an inode's link count is reduced to zero, it can be de-allocated. We
9877  * found it convenient to postpone de-allocation until after the inode is
9878  * written to disk with its new link count (zero).  At this point, all of the
9879  * on-disk inode's block pointers are nullified and, with careful dependency
9880  * list ordering, all dependencies related to the inode will be satisfied and
9881  * the corresponding dependency structures de-allocated.  So, if/when the
9882  * inode is reused, there will be no mixing of old dependencies with new
9883  * ones.  This artificial dependency is set up by the block de-allocation
9884  * procedure above (softdep_setup_freeblocks) and completed by the
9885  * following procedure.
9886  */
9887 static void
9888 handle_workitem_freefile(freefile)
9889 	struct freefile *freefile;
9890 {
9891 	struct workhead wkhd;
9892 	struct fs *fs;
9893 	struct inodedep *idp;
9894 	struct ufsmount *ump;
9895 	int error;
9896 
9897 	ump = VFSTOUFS(freefile->fx_list.wk_mp);
9898 	fs = ump->um_fs;
9899 #ifdef DEBUG
9900 	ACQUIRE_LOCK(ump);
9901 	error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp);
9902 	FREE_LOCK(ump);
9903 	if (error)
9904 		panic("handle_workitem_freefile: inodedep %p survived", idp);
9905 #endif
9906 	UFS_LOCK(ump);
9907 	fs->fs_pendinginodes -= 1;
9908 	UFS_UNLOCK(ump);
9909 	LIST_INIT(&wkhd);
9910 	LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list);
9911 	if ((error = ffs_freefile(ump, fs, freefile->fx_devvp,
9912 	    freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0)
9913 		softdep_error("handle_workitem_freefile", error);
9914 	ACQUIRE_LOCK(ump);
9915 	WORKITEM_FREE(freefile, D_FREEFILE);
9916 	FREE_LOCK(ump);
9917 }
9918 
9919 
9920 /*
9921  * Helper function which unlinks marker element from work list and returns
9922  * the next element on the list.
9923  */
9924 static __inline struct worklist *
9925 markernext(struct worklist *marker)
9926 {
9927 	struct worklist *next;
9928 
9929 	next = LIST_NEXT(marker, wk_list);
9930 	LIST_REMOVE(marker, wk_list);
9931 	return next;
9932 }
9933 
9934 /*
9935  * Disk writes.
9936  *
9937  * The dependency structures constructed above are most actively used when file
9938  * system blocks are written to disk.  No constraints are placed on when a
9939  * block can be written, but unsatisfied update dependencies are made safe by
9940  * modifying (or replacing) the source memory for the duration of the disk
9941  * write.  When the disk write completes, the memory block is again brought
9942  * up-to-date.
9943  *
9944  * In-core inode structure reclamation.
9945  *
9946  * Because there are a finite number of "in-core" inode structures, they are
9947  * reused regularly.  By transferring all inode-related dependencies to the
9948  * in-memory inode block and indexing them separately (via "inodedep"s), we
9949  * can allow "in-core" inode structures to be reused at any time and avoid
9950  * any increase in contention.
9951  *
9952  * Called just before entering the device driver to initiate a new disk I/O.
9953  * The buffer must be locked, thus, no I/O completion operations can occur
9954  * while we are manipulating its associated dependencies.
9955  */
9956 static void
9957 softdep_disk_io_initiation(bp)
9958 	struct buf *bp;		/* structure describing disk write to occur */
9959 {
9960 	struct worklist *wk;
9961 	struct worklist marker;
9962 	struct inodedep *inodedep;
9963 	struct freeblks *freeblks;
9964 	struct jblkdep *jblkdep;
9965 	struct newblk *newblk;
9966 	struct ufsmount *ump;
9967 
9968 	/*
9969 	 * We only care about write operations. There should never
9970 	 * be dependencies for reads.
9971 	 */
9972 	if (bp->b_iocmd != BIO_WRITE)
9973 		panic("softdep_disk_io_initiation: not write");
9974 
9975 	if (bp->b_vflags & BV_BKGRDINPROG)
9976 		panic("softdep_disk_io_initiation: Writing buffer with "
9977 		    "background write in progress: %p", bp);
9978 
9979 	if ((wk = LIST_FIRST(&bp->b_dep)) == NULL)
9980 		return;
9981 	ump = VFSTOUFS(wk->wk_mp);
9982 
9983 	marker.wk_type = D_LAST + 1;	/* Not a normal workitem */
9984 	PHOLD(curproc);			/* Don't swap out kernel stack */
9985 	ACQUIRE_LOCK(ump);
9986 	/*
9987 	 * Do any necessary pre-I/O processing.
9988 	 */
9989 	for (wk = LIST_FIRST(&bp->b_dep); wk != NULL;
9990 	     wk = markernext(&marker)) {
9991 		LIST_INSERT_AFTER(wk, &marker, wk_list);
9992 		switch (wk->wk_type) {
9993 
9994 		case D_PAGEDEP:
9995 			initiate_write_filepage(WK_PAGEDEP(wk), bp);
9996 			continue;
9997 
9998 		case D_INODEDEP:
9999 			inodedep = WK_INODEDEP(wk);
10000 			if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC)
10001 				initiate_write_inodeblock_ufs1(inodedep, bp);
10002 			else
10003 				initiate_write_inodeblock_ufs2(inodedep, bp);
10004 			continue;
10005 
10006 		case D_INDIRDEP:
10007 			initiate_write_indirdep(WK_INDIRDEP(wk), bp);
10008 			continue;
10009 
10010 		case D_BMSAFEMAP:
10011 			initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp);
10012 			continue;
10013 
10014 		case D_JSEG:
10015 			WK_JSEG(wk)->js_buf = NULL;
10016 			continue;
10017 
10018 		case D_FREEBLKS:
10019 			freeblks = WK_FREEBLKS(wk);
10020 			jblkdep = LIST_FIRST(&freeblks->fb_jblkdephd);
10021 			/*
10022 			 * We have to wait for the freeblks to be journaled
10023 			 * before we can write an inodeblock with updated
10024 			 * pointers.  Be careful to arrange the marker so
10025 			 * we revisit the freeblks if it's not removed by
10026 			 * the first jwait().
10027 			 */
10028 			if (jblkdep != NULL) {
10029 				LIST_REMOVE(&marker, wk_list);
10030 				LIST_INSERT_BEFORE(wk, &marker, wk_list);
10031 				jwait(&jblkdep->jb_list, MNT_WAIT);
10032 			}
10033 			continue;
10034 		case D_ALLOCDIRECT:
10035 		case D_ALLOCINDIR:
10036 			/*
10037 			 * We have to wait for the jnewblk to be journaled
10038 			 * before we can write to a block if the contents
10039 			 * may be confused with an earlier file's indirect
10040 			 * at recovery time.  Handle the marker as described
10041 			 * above.
10042 			 */
10043 			newblk = WK_NEWBLK(wk);
10044 			if (newblk->nb_jnewblk != NULL &&
10045 			    indirblk_lookup(newblk->nb_list.wk_mp,
10046 			    newblk->nb_newblkno)) {
10047 				LIST_REMOVE(&marker, wk_list);
10048 				LIST_INSERT_BEFORE(wk, &marker, wk_list);
10049 				jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
10050 			}
10051 			continue;
10052 
10053 		case D_SBDEP:
10054 			initiate_write_sbdep(WK_SBDEP(wk));
10055 			continue;
10056 
10057 		case D_MKDIR:
10058 		case D_FREEWORK:
10059 		case D_FREEDEP:
10060 		case D_JSEGDEP:
10061 			continue;
10062 
10063 		default:
10064 			panic("handle_disk_io_initiation: Unexpected type %s",
10065 			    TYPENAME(wk->wk_type));
10066 			/* NOTREACHED */
10067 		}
10068 	}
10069 	FREE_LOCK(ump);
10070 	PRELE(curproc);			/* Allow swapout of kernel stack */
10071 }
10072 
10073 /*
10074  * Called from within the procedure above to deal with unsatisfied
10075  * allocation dependencies in a directory. The buffer must be locked,
10076  * thus, no I/O completion operations can occur while we are
10077  * manipulating its associated dependencies.
10078  */
10079 static void
10080 initiate_write_filepage(pagedep, bp)
10081 	struct pagedep *pagedep;
10082 	struct buf *bp;
10083 {
10084 	struct jremref *jremref;
10085 	struct jmvref *jmvref;
10086 	struct dirrem *dirrem;
10087 	struct diradd *dap;
10088 	struct direct *ep;
10089 	int i;
10090 
10091 	if (pagedep->pd_state & IOSTARTED) {
10092 		/*
10093 		 * This can only happen if there is a driver that does not
10094 		 * understand chaining. Here biodone will reissue the call
10095 		 * to strategy for the incomplete buffers.
10096 		 */
10097 		printf("initiate_write_filepage: already started\n");
10098 		return;
10099 	}
10100 	pagedep->pd_state |= IOSTARTED;
10101 	/*
10102 	 * Wait for all journal remove dependencies to hit the disk.
10103 	 * We can not allow any potentially conflicting directory adds
10104 	 * to be visible before removes and rollback is too difficult.
10105 	 * The per-filesystem lock may be dropped and re-acquired, however
10106 	 * we hold the buf locked so the dependency can not go away.
10107 	 */
10108 	LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next)
10109 		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL)
10110 			jwait(&jremref->jr_list, MNT_WAIT);
10111 	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL)
10112 		jwait(&jmvref->jm_list, MNT_WAIT);
10113 	for (i = 0; i < DAHASHSZ; i++) {
10114 		LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
10115 			ep = (struct direct *)
10116 			    ((char *)bp->b_data + dap->da_offset);
10117 			if (ep->d_ino != dap->da_newinum)
10118 				panic("%s: dir inum %ju != new %ju",
10119 				    "initiate_write_filepage",
10120 				    (uintmax_t)ep->d_ino,
10121 				    (uintmax_t)dap->da_newinum);
10122 			if (dap->da_state & DIRCHG)
10123 				ep->d_ino = dap->da_previous->dm_oldinum;
10124 			else
10125 				ep->d_ino = 0;
10126 			dap->da_state &= ~ATTACHED;
10127 			dap->da_state |= UNDONE;
10128 		}
10129 	}
10130 }
10131 
10132 /*
10133  * Version of initiate_write_inodeblock that handles UFS1 dinodes.
10134  * Note that any bug fixes made to this routine must be done in the
10135  * version found below.
10136  *
10137  * Called from within the procedure above to deal with unsatisfied
10138  * allocation dependencies in an inodeblock. The buffer must be
10139  * locked, thus, no I/O completion operations can occur while we
10140  * are manipulating its associated dependencies.
10141  */
10142 static void
10143 initiate_write_inodeblock_ufs1(inodedep, bp)
10144 	struct inodedep *inodedep;
10145 	struct buf *bp;			/* The inode block */
10146 {
10147 	struct allocdirect *adp, *lastadp;
10148 	struct ufs1_dinode *dp;
10149 	struct ufs1_dinode *sip;
10150 	struct inoref *inoref;
10151 	struct ufsmount *ump;
10152 	struct fs *fs;
10153 	ufs_lbn_t i;
10154 #ifdef INVARIANTS
10155 	ufs_lbn_t prevlbn = 0;
10156 #endif
10157 	int deplist;
10158 
10159 	if (inodedep->id_state & IOSTARTED)
10160 		panic("initiate_write_inodeblock_ufs1: already started");
10161 	inodedep->id_state |= IOSTARTED;
10162 	fs = inodedep->id_fs;
10163 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
10164 	LOCK_OWNED(ump);
10165 	dp = (struct ufs1_dinode *)bp->b_data +
10166 	    ino_to_fsbo(fs, inodedep->id_ino);
10167 
10168 	/*
10169 	 * If we're on the unlinked list but have not yet written our
10170 	 * next pointer initialize it here.
10171 	 */
10172 	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
10173 		struct inodedep *inon;
10174 
10175 		inon = TAILQ_NEXT(inodedep, id_unlinked);
10176 		dp->di_freelink = inon ? inon->id_ino : 0;
10177 	}
10178 	/*
10179 	 * If the bitmap is not yet written, then the allocated
10180 	 * inode cannot be written to disk.
10181 	 */
10182 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
10183 		if (inodedep->id_savedino1 != NULL)
10184 			panic("initiate_write_inodeblock_ufs1: I/O underway");
10185 		FREE_LOCK(ump);
10186 		sip = malloc(sizeof(struct ufs1_dinode),
10187 		    M_SAVEDINO, M_SOFTDEP_FLAGS);
10188 		ACQUIRE_LOCK(ump);
10189 		inodedep->id_savedino1 = sip;
10190 		*inodedep->id_savedino1 = *dp;
10191 		bzero((caddr_t)dp, sizeof(struct ufs1_dinode));
10192 		dp->di_gen = inodedep->id_savedino1->di_gen;
10193 		dp->di_freelink = inodedep->id_savedino1->di_freelink;
10194 		return;
10195 	}
10196 	/*
10197 	 * If no dependencies, then there is nothing to roll back.
10198 	 */
10199 	inodedep->id_savedsize = dp->di_size;
10200 	inodedep->id_savedextsize = 0;
10201 	inodedep->id_savednlink = dp->di_nlink;
10202 	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
10203 	    TAILQ_EMPTY(&inodedep->id_inoreflst))
10204 		return;
10205 	/*
10206 	 * Revert the link count to that of the first unwritten journal entry.
10207 	 */
10208 	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
10209 	if (inoref)
10210 		dp->di_nlink = inoref->if_nlink;
10211 	/*
10212 	 * Set the dependencies to busy.
10213 	 */
10214 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10215 	     adp = TAILQ_NEXT(adp, ad_next)) {
10216 #ifdef INVARIANTS
10217 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10218 			panic("softdep_write_inodeblock: lbn order");
10219 		prevlbn = adp->ad_offset;
10220 		if (adp->ad_offset < NDADDR &&
10221 		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
10222 			panic("%s: direct pointer #%jd mismatch %d != %jd",
10223 			    "softdep_write_inodeblock",
10224 			    (intmax_t)adp->ad_offset,
10225 			    dp->di_db[adp->ad_offset],
10226 			    (intmax_t)adp->ad_newblkno);
10227 		if (adp->ad_offset >= NDADDR &&
10228 		    dp->di_ib[adp->ad_offset - NDADDR] != adp->ad_newblkno)
10229 			panic("%s: indirect pointer #%jd mismatch %d != %jd",
10230 			    "softdep_write_inodeblock",
10231 			    (intmax_t)adp->ad_offset - NDADDR,
10232 			    dp->di_ib[adp->ad_offset - NDADDR],
10233 			    (intmax_t)adp->ad_newblkno);
10234 		deplist |= 1 << adp->ad_offset;
10235 		if ((adp->ad_state & ATTACHED) == 0)
10236 			panic("softdep_write_inodeblock: Unknown state 0x%x",
10237 			    adp->ad_state);
10238 #endif /* INVARIANTS */
10239 		adp->ad_state &= ~ATTACHED;
10240 		adp->ad_state |= UNDONE;
10241 	}
10242 	/*
10243 	 * The on-disk inode cannot claim to be any larger than the last
10244 	 * fragment that has been written. Otherwise, the on-disk inode
10245 	 * might have fragments that were not the last block in the file
10246 	 * which would corrupt the filesystem.
10247 	 */
10248 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10249 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10250 		if (adp->ad_offset >= NDADDR)
10251 			break;
10252 		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
10253 		/* keep going until hitting a rollback to a frag */
10254 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10255 			continue;
10256 		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10257 		for (i = adp->ad_offset + 1; i < NDADDR; i++) {
10258 #ifdef INVARIANTS
10259 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
10260 				panic("softdep_write_inodeblock: lost dep1");
10261 #endif /* INVARIANTS */
10262 			dp->di_db[i] = 0;
10263 		}
10264 		for (i = 0; i < NIADDR; i++) {
10265 #ifdef INVARIANTS
10266 			if (dp->di_ib[i] != 0 &&
10267 			    (deplist & ((1 << NDADDR) << i)) == 0)
10268 				panic("softdep_write_inodeblock: lost dep2");
10269 #endif /* INVARIANTS */
10270 			dp->di_ib[i] = 0;
10271 		}
10272 		return;
10273 	}
10274 	/*
10275 	 * If we have zero'ed out the last allocated block of the file,
10276 	 * roll back the size to the last currently allocated block.
10277 	 * We know that this last allocated block is a full-sized as
10278 	 * we already checked for fragments in the loop above.
10279 	 */
10280 	if (lastadp != NULL &&
10281 	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10282 		for (i = lastadp->ad_offset; i >= 0; i--)
10283 			if (dp->di_db[i] != 0)
10284 				break;
10285 		dp->di_size = (i + 1) * fs->fs_bsize;
10286 	}
10287 	/*
10288 	 * The only dependencies are for indirect blocks.
10289 	 *
10290 	 * The file size for indirect block additions is not guaranteed.
10291 	 * Such a guarantee would be non-trivial to achieve. The conventional
10292 	 * synchronous write implementation also does not make this guarantee.
10293 	 * Fsck should catch and fix discrepancies. Arguably, the file size
10294 	 * can be over-estimated without destroying integrity when the file
10295 	 * moves into the indirect blocks (i.e., is large). If we want to
10296 	 * postpone fsck, we are stuck with this argument.
10297 	 */
10298 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
10299 		dp->di_ib[adp->ad_offset - NDADDR] = 0;
10300 }
10301 
10302 /*
10303  * Version of initiate_write_inodeblock that handles UFS2 dinodes.
10304  * Note that any bug fixes made to this routine must be done in the
10305  * version found above.
10306  *
10307  * Called from within the procedure above to deal with unsatisfied
10308  * allocation dependencies in an inodeblock. The buffer must be
10309  * locked, thus, no I/O completion operations can occur while we
10310  * are manipulating its associated dependencies.
10311  */
10312 static void
10313 initiate_write_inodeblock_ufs2(inodedep, bp)
10314 	struct inodedep *inodedep;
10315 	struct buf *bp;			/* The inode block */
10316 {
10317 	struct allocdirect *adp, *lastadp;
10318 	struct ufs2_dinode *dp;
10319 	struct ufs2_dinode *sip;
10320 	struct inoref *inoref;
10321 	struct ufsmount *ump;
10322 	struct fs *fs;
10323 	ufs_lbn_t i;
10324 #ifdef INVARIANTS
10325 	ufs_lbn_t prevlbn = 0;
10326 #endif
10327 	int deplist;
10328 
10329 	if (inodedep->id_state & IOSTARTED)
10330 		panic("initiate_write_inodeblock_ufs2: already started");
10331 	inodedep->id_state |= IOSTARTED;
10332 	fs = inodedep->id_fs;
10333 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
10334 	LOCK_OWNED(ump);
10335 	dp = (struct ufs2_dinode *)bp->b_data +
10336 	    ino_to_fsbo(fs, inodedep->id_ino);
10337 
10338 	/*
10339 	 * If we're on the unlinked list but have not yet written our
10340 	 * next pointer initialize it here.
10341 	 */
10342 	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
10343 		struct inodedep *inon;
10344 
10345 		inon = TAILQ_NEXT(inodedep, id_unlinked);
10346 		dp->di_freelink = inon ? inon->id_ino : 0;
10347 	}
10348 	/*
10349 	 * If the bitmap is not yet written, then the allocated
10350 	 * inode cannot be written to disk.
10351 	 */
10352 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
10353 		if (inodedep->id_savedino2 != NULL)
10354 			panic("initiate_write_inodeblock_ufs2: I/O underway");
10355 		FREE_LOCK(ump);
10356 		sip = malloc(sizeof(struct ufs2_dinode),
10357 		    M_SAVEDINO, M_SOFTDEP_FLAGS);
10358 		ACQUIRE_LOCK(ump);
10359 		inodedep->id_savedino2 = sip;
10360 		*inodedep->id_savedino2 = *dp;
10361 		bzero((caddr_t)dp, sizeof(struct ufs2_dinode));
10362 		dp->di_gen = inodedep->id_savedino2->di_gen;
10363 		dp->di_freelink = inodedep->id_savedino2->di_freelink;
10364 		return;
10365 	}
10366 	/*
10367 	 * If no dependencies, then there is nothing to roll back.
10368 	 */
10369 	inodedep->id_savedsize = dp->di_size;
10370 	inodedep->id_savedextsize = dp->di_extsize;
10371 	inodedep->id_savednlink = dp->di_nlink;
10372 	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
10373 	    TAILQ_EMPTY(&inodedep->id_extupdt) &&
10374 	    TAILQ_EMPTY(&inodedep->id_inoreflst))
10375 		return;
10376 	/*
10377 	 * Revert the link count to that of the first unwritten journal entry.
10378 	 */
10379 	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
10380 	if (inoref)
10381 		dp->di_nlink = inoref->if_nlink;
10382 
10383 	/*
10384 	 * Set the ext data dependencies to busy.
10385 	 */
10386 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
10387 	     adp = TAILQ_NEXT(adp, ad_next)) {
10388 #ifdef INVARIANTS
10389 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10390 			panic("softdep_write_inodeblock: lbn order");
10391 		prevlbn = adp->ad_offset;
10392 		if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno)
10393 			panic("%s: direct pointer #%jd mismatch %jd != %jd",
10394 			    "softdep_write_inodeblock",
10395 			    (intmax_t)adp->ad_offset,
10396 			    (intmax_t)dp->di_extb[adp->ad_offset],
10397 			    (intmax_t)adp->ad_newblkno);
10398 		deplist |= 1 << adp->ad_offset;
10399 		if ((adp->ad_state & ATTACHED) == 0)
10400 			panic("softdep_write_inodeblock: Unknown state 0x%x",
10401 			    adp->ad_state);
10402 #endif /* INVARIANTS */
10403 		adp->ad_state &= ~ATTACHED;
10404 		adp->ad_state |= UNDONE;
10405 	}
10406 	/*
10407 	 * The on-disk inode cannot claim to be any larger than the last
10408 	 * fragment that has been written. Otherwise, the on-disk inode
10409 	 * might have fragments that were not the last block in the ext
10410 	 * data which would corrupt the filesystem.
10411 	 */
10412 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
10413 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10414 		dp->di_extb[adp->ad_offset] = adp->ad_oldblkno;
10415 		/* keep going until hitting a rollback to a frag */
10416 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10417 			continue;
10418 		dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10419 		for (i = adp->ad_offset + 1; i < NXADDR; i++) {
10420 #ifdef INVARIANTS
10421 			if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0)
10422 				panic("softdep_write_inodeblock: lost dep1");
10423 #endif /* INVARIANTS */
10424 			dp->di_extb[i] = 0;
10425 		}
10426 		lastadp = NULL;
10427 		break;
10428 	}
10429 	/*
10430 	 * If we have zero'ed out the last allocated block of the ext
10431 	 * data, roll back the size to the last currently allocated block.
10432 	 * We know that this last allocated block is a full-sized as
10433 	 * we already checked for fragments in the loop above.
10434 	 */
10435 	if (lastadp != NULL &&
10436 	    dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10437 		for (i = lastadp->ad_offset; i >= 0; i--)
10438 			if (dp->di_extb[i] != 0)
10439 				break;
10440 		dp->di_extsize = (i + 1) * fs->fs_bsize;
10441 	}
10442 	/*
10443 	 * Set the file data dependencies to busy.
10444 	 */
10445 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10446 	     adp = TAILQ_NEXT(adp, ad_next)) {
10447 #ifdef INVARIANTS
10448 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10449 			panic("softdep_write_inodeblock: lbn order");
10450 		if ((adp->ad_state & ATTACHED) == 0)
10451 			panic("inodedep %p and adp %p not attached", inodedep, adp);
10452 		prevlbn = adp->ad_offset;
10453 		if (adp->ad_offset < NDADDR &&
10454 		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
10455 			panic("%s: direct pointer #%jd mismatch %jd != %jd",
10456 			    "softdep_write_inodeblock",
10457 			    (intmax_t)adp->ad_offset,
10458 			    (intmax_t)dp->di_db[adp->ad_offset],
10459 			    (intmax_t)adp->ad_newblkno);
10460 		if (adp->ad_offset >= NDADDR &&
10461 		    dp->di_ib[adp->ad_offset - NDADDR] != adp->ad_newblkno)
10462 			panic("%s indirect pointer #%jd mismatch %jd != %jd",
10463 			    "softdep_write_inodeblock:",
10464 			    (intmax_t)adp->ad_offset - NDADDR,
10465 			    (intmax_t)dp->di_ib[adp->ad_offset - NDADDR],
10466 			    (intmax_t)adp->ad_newblkno);
10467 		deplist |= 1 << adp->ad_offset;
10468 		if ((adp->ad_state & ATTACHED) == 0)
10469 			panic("softdep_write_inodeblock: Unknown state 0x%x",
10470 			    adp->ad_state);
10471 #endif /* INVARIANTS */
10472 		adp->ad_state &= ~ATTACHED;
10473 		adp->ad_state |= UNDONE;
10474 	}
10475 	/*
10476 	 * The on-disk inode cannot claim to be any larger than the last
10477 	 * fragment that has been written. Otherwise, the on-disk inode
10478 	 * might have fragments that were not the last block in the file
10479 	 * which would corrupt the filesystem.
10480 	 */
10481 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10482 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10483 		if (adp->ad_offset >= NDADDR)
10484 			break;
10485 		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
10486 		/* keep going until hitting a rollback to a frag */
10487 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10488 			continue;
10489 		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10490 		for (i = adp->ad_offset + 1; i < NDADDR; i++) {
10491 #ifdef INVARIANTS
10492 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
10493 				panic("softdep_write_inodeblock: lost dep2");
10494 #endif /* INVARIANTS */
10495 			dp->di_db[i] = 0;
10496 		}
10497 		for (i = 0; i < NIADDR; i++) {
10498 #ifdef INVARIANTS
10499 			if (dp->di_ib[i] != 0 &&
10500 			    (deplist & ((1 << NDADDR) << i)) == 0)
10501 				panic("softdep_write_inodeblock: lost dep3");
10502 #endif /* INVARIANTS */
10503 			dp->di_ib[i] = 0;
10504 		}
10505 		return;
10506 	}
10507 	/*
10508 	 * If we have zero'ed out the last allocated block of the file,
10509 	 * roll back the size to the last currently allocated block.
10510 	 * We know that this last allocated block is a full-sized as
10511 	 * we already checked for fragments in the loop above.
10512 	 */
10513 	if (lastadp != NULL &&
10514 	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10515 		for (i = lastadp->ad_offset; i >= 0; i--)
10516 			if (dp->di_db[i] != 0)
10517 				break;
10518 		dp->di_size = (i + 1) * fs->fs_bsize;
10519 	}
10520 	/*
10521 	 * The only dependencies are for indirect blocks.
10522 	 *
10523 	 * The file size for indirect block additions is not guaranteed.
10524 	 * Such a guarantee would be non-trivial to achieve. The conventional
10525 	 * synchronous write implementation also does not make this guarantee.
10526 	 * Fsck should catch and fix discrepancies. Arguably, the file size
10527 	 * can be over-estimated without destroying integrity when the file
10528 	 * moves into the indirect blocks (i.e., is large). If we want to
10529 	 * postpone fsck, we are stuck with this argument.
10530 	 */
10531 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
10532 		dp->di_ib[adp->ad_offset - NDADDR] = 0;
10533 }
10534 
10535 /*
10536  * Cancel an indirdep as a result of truncation.  Release all of the
10537  * children allocindirs and place their journal work on the appropriate
10538  * list.
10539  */
10540 static void
10541 cancel_indirdep(indirdep, bp, freeblks)
10542 	struct indirdep *indirdep;
10543 	struct buf *bp;
10544 	struct freeblks *freeblks;
10545 {
10546 	struct allocindir *aip;
10547 
10548 	/*
10549 	 * None of the indirect pointers will ever be visible,
10550 	 * so they can simply be tossed. GOINGAWAY ensures
10551 	 * that allocated pointers will be saved in the buffer
10552 	 * cache until they are freed. Note that they will
10553 	 * only be able to be found by their physical address
10554 	 * since the inode mapping the logical address will
10555 	 * be gone. The save buffer used for the safe copy
10556 	 * was allocated in setup_allocindir_phase2 using
10557 	 * the physical address so it could be used for this
10558 	 * purpose. Hence we swap the safe copy with the real
10559 	 * copy, allowing the safe copy to be freed and holding
10560 	 * on to the real copy for later use in indir_trunc.
10561 	 */
10562 	if (indirdep->ir_state & GOINGAWAY)
10563 		panic("cancel_indirdep: already gone");
10564 	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
10565 		indirdep->ir_state |= DEPCOMPLETE;
10566 		LIST_REMOVE(indirdep, ir_next);
10567 	}
10568 	indirdep->ir_state |= GOINGAWAY;
10569 	/*
10570 	 * Pass in bp for blocks still have journal writes
10571 	 * pending so we can cancel them on their own.
10572 	 */
10573 	while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != NULL)
10574 		cancel_allocindir(aip, bp, freeblks, 0);
10575 	while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL)
10576 		cancel_allocindir(aip, NULL, freeblks, 0);
10577 	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL)
10578 		cancel_allocindir(aip, NULL, freeblks, 0);
10579 	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL)
10580 		cancel_allocindir(aip, NULL, freeblks, 0);
10581 	/*
10582 	 * If there are pending partial truncations we need to keep the
10583 	 * old block copy around until they complete.  This is because
10584 	 * the current b_data is not a perfect superset of the available
10585 	 * blocks.
10586 	 */
10587 	if (TAILQ_EMPTY(&indirdep->ir_trunc))
10588 		bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount);
10589 	else
10590 		bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
10591 	WORKLIST_REMOVE(&indirdep->ir_list);
10592 	WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list);
10593 	indirdep->ir_bp = NULL;
10594 	indirdep->ir_freeblks = freeblks;
10595 }
10596 
10597 /*
10598  * Free an indirdep once it no longer has new pointers to track.
10599  */
10600 static void
10601 free_indirdep(indirdep)
10602 	struct indirdep *indirdep;
10603 {
10604 
10605 	KASSERT(TAILQ_EMPTY(&indirdep->ir_trunc),
10606 	    ("free_indirdep: Indir trunc list not empty."));
10607 	KASSERT(LIST_EMPTY(&indirdep->ir_completehd),
10608 	    ("free_indirdep: Complete head not empty."));
10609 	KASSERT(LIST_EMPTY(&indirdep->ir_writehd),
10610 	    ("free_indirdep: write head not empty."));
10611 	KASSERT(LIST_EMPTY(&indirdep->ir_donehd),
10612 	    ("free_indirdep: done head not empty."));
10613 	KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd),
10614 	    ("free_indirdep: deplist head not empty."));
10615 	KASSERT((indirdep->ir_state & DEPCOMPLETE),
10616 	    ("free_indirdep: %p still on newblk list.", indirdep));
10617 	KASSERT(indirdep->ir_saveddata == NULL,
10618 	    ("free_indirdep: %p still has saved data.", indirdep));
10619 	if (indirdep->ir_state & ONWORKLIST)
10620 		WORKLIST_REMOVE(&indirdep->ir_list);
10621 	WORKITEM_FREE(indirdep, D_INDIRDEP);
10622 }
10623 
10624 /*
10625  * Called before a write to an indirdep.  This routine is responsible for
10626  * rolling back pointers to a safe state which includes only those
10627  * allocindirs which have been completed.
10628  */
10629 static void
10630 initiate_write_indirdep(indirdep, bp)
10631 	struct indirdep *indirdep;
10632 	struct buf *bp;
10633 {
10634 	struct ufsmount *ump;
10635 
10636 	indirdep->ir_state |= IOSTARTED;
10637 	if (indirdep->ir_state & GOINGAWAY)
10638 		panic("disk_io_initiation: indirdep gone");
10639 	/*
10640 	 * If there are no remaining dependencies, this will be writing
10641 	 * the real pointers.
10642 	 */
10643 	if (LIST_EMPTY(&indirdep->ir_deplisthd) &&
10644 	    TAILQ_EMPTY(&indirdep->ir_trunc))
10645 		return;
10646 	/*
10647 	 * Replace up-to-date version with safe version.
10648 	 */
10649 	if (indirdep->ir_saveddata == NULL) {
10650 		ump = VFSTOUFS(indirdep->ir_list.wk_mp);
10651 		LOCK_OWNED(ump);
10652 		FREE_LOCK(ump);
10653 		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
10654 		    M_SOFTDEP_FLAGS);
10655 		ACQUIRE_LOCK(ump);
10656 	}
10657 	indirdep->ir_state &= ~ATTACHED;
10658 	indirdep->ir_state |= UNDONE;
10659 	bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
10660 	bcopy(indirdep->ir_savebp->b_data, bp->b_data,
10661 	    bp->b_bcount);
10662 }
10663 
10664 /*
10665  * Called when an inode has been cleared in a cg bitmap.  This finally
10666  * eliminates any canceled jaddrefs
10667  */
10668 void
10669 softdep_setup_inofree(mp, bp, ino, wkhd)
10670 	struct mount *mp;
10671 	struct buf *bp;
10672 	ino_t ino;
10673 	struct workhead *wkhd;
10674 {
10675 	struct worklist *wk, *wkn;
10676 	struct inodedep *inodedep;
10677 	struct ufsmount *ump;
10678 	uint8_t *inosused;
10679 	struct cg *cgp;
10680 	struct fs *fs;
10681 
10682 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
10683 	    ("softdep_setup_inofree called on non-softdep filesystem"));
10684 	ump = VFSTOUFS(mp);
10685 	ACQUIRE_LOCK(ump);
10686 	fs = ump->um_fs;
10687 	cgp = (struct cg *)bp->b_data;
10688 	inosused = cg_inosused(cgp);
10689 	if (isset(inosused, ino % fs->fs_ipg))
10690 		panic("softdep_setup_inofree: inode %ju not freed.",
10691 		    (uintmax_t)ino);
10692 	if (inodedep_lookup(mp, ino, 0, &inodedep))
10693 		panic("softdep_setup_inofree: ino %ju has existing inodedep %p",
10694 		    (uintmax_t)ino, inodedep);
10695 	if (wkhd) {
10696 		LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) {
10697 			if (wk->wk_type != D_JADDREF)
10698 				continue;
10699 			WORKLIST_REMOVE(wk);
10700 			/*
10701 			 * We can free immediately even if the jaddref
10702 			 * isn't attached in a background write as now
10703 			 * the bitmaps are reconciled.
10704 			 */
10705 			wk->wk_state |= COMPLETE | ATTACHED;
10706 			free_jaddref(WK_JADDREF(wk));
10707 		}
10708 		jwork_move(&bp->b_dep, wkhd);
10709 	}
10710 	FREE_LOCK(ump);
10711 }
10712 
10713 
10714 /*
10715  * Called via ffs_blkfree() after a set of frags has been cleared from a cg
10716  * map.  Any dependencies waiting for the write to clear are added to the
10717  * buf's list and any jnewblks that are being canceled are discarded
10718  * immediately.
10719  */
10720 void
10721 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
10722 	struct mount *mp;
10723 	struct buf *bp;
10724 	ufs2_daddr_t blkno;
10725 	int frags;
10726 	struct workhead *wkhd;
10727 {
10728 	struct bmsafemap *bmsafemap;
10729 	struct jnewblk *jnewblk;
10730 	struct ufsmount *ump;
10731 	struct worklist *wk;
10732 	struct fs *fs;
10733 #ifdef SUJ_DEBUG
10734 	uint8_t *blksfree;
10735 	struct cg *cgp;
10736 	ufs2_daddr_t jstart;
10737 	ufs2_daddr_t jend;
10738 	ufs2_daddr_t end;
10739 	long bno;
10740 	int i;
10741 #endif
10742 
10743 	CTR3(KTR_SUJ,
10744 	    "softdep_setup_blkfree: blkno %jd frags %d wk head %p",
10745 	    blkno, frags, wkhd);
10746 
10747 	ump = VFSTOUFS(mp);
10748 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
10749 	    ("softdep_setup_blkfree called on non-softdep filesystem"));
10750 	ACQUIRE_LOCK(ump);
10751 	/* Lookup the bmsafemap so we track when it is dirty. */
10752 	fs = ump->um_fs;
10753 	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
10754 	/*
10755 	 * Detach any jnewblks which have been canceled.  They must linger
10756 	 * until the bitmap is cleared again by ffs_blkfree() to prevent
10757 	 * an unjournaled allocation from hitting the disk.
10758 	 */
10759 	if (wkhd) {
10760 		while ((wk = LIST_FIRST(wkhd)) != NULL) {
10761 			CTR2(KTR_SUJ,
10762 			    "softdep_setup_blkfree: blkno %jd wk type %d",
10763 			    blkno, wk->wk_type);
10764 			WORKLIST_REMOVE(wk);
10765 			if (wk->wk_type != D_JNEWBLK) {
10766 				WORKLIST_INSERT(&bmsafemap->sm_freehd, wk);
10767 				continue;
10768 			}
10769 			jnewblk = WK_JNEWBLK(wk);
10770 			KASSERT(jnewblk->jn_state & GOINGAWAY,
10771 			    ("softdep_setup_blkfree: jnewblk not canceled."));
10772 #ifdef SUJ_DEBUG
10773 			/*
10774 			 * Assert that this block is free in the bitmap
10775 			 * before we discard the jnewblk.
10776 			 */
10777 			cgp = (struct cg *)bp->b_data;
10778 			blksfree = cg_blksfree(cgp);
10779 			bno = dtogd(fs, jnewblk->jn_blkno);
10780 			for (i = jnewblk->jn_oldfrags;
10781 			    i < jnewblk->jn_frags; i++) {
10782 				if (isset(blksfree, bno + i))
10783 					continue;
10784 				panic("softdep_setup_blkfree: not free");
10785 			}
10786 #endif
10787 			/*
10788 			 * Even if it's not attached we can free immediately
10789 			 * as the new bitmap is correct.
10790 			 */
10791 			wk->wk_state |= COMPLETE | ATTACHED;
10792 			free_jnewblk(jnewblk);
10793 		}
10794 	}
10795 
10796 #ifdef SUJ_DEBUG
10797 	/*
10798 	 * Assert that we are not freeing a block which has an outstanding
10799 	 * allocation dependency.
10800 	 */
10801 	fs = VFSTOUFS(mp)->um_fs;
10802 	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
10803 	end = blkno + frags;
10804 	LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
10805 		/*
10806 		 * Don't match against blocks that will be freed when the
10807 		 * background write is done.
10808 		 */
10809 		if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) ==
10810 		    (COMPLETE | DEPCOMPLETE))
10811 			continue;
10812 		jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags;
10813 		jend = jnewblk->jn_blkno + jnewblk->jn_frags;
10814 		if ((blkno >= jstart && blkno < jend) ||
10815 		    (end > jstart && end <= jend)) {
10816 			printf("state 0x%X %jd - %d %d dep %p\n",
10817 			    jnewblk->jn_state, jnewblk->jn_blkno,
10818 			    jnewblk->jn_oldfrags, jnewblk->jn_frags,
10819 			    jnewblk->jn_dep);
10820 			panic("softdep_setup_blkfree: "
10821 			    "%jd-%jd(%d) overlaps with %jd-%jd",
10822 			    blkno, end, frags, jstart, jend);
10823 		}
10824 	}
10825 #endif
10826 	FREE_LOCK(ump);
10827 }
10828 
10829 /*
10830  * Revert a block allocation when the journal record that describes it
10831  * is not yet written.
10832  */
10833 static int
10834 jnewblk_rollback(jnewblk, fs, cgp, blksfree)
10835 	struct jnewblk *jnewblk;
10836 	struct fs *fs;
10837 	struct cg *cgp;
10838 	uint8_t *blksfree;
10839 {
10840 	ufs1_daddr_t fragno;
10841 	long cgbno, bbase;
10842 	int frags, blk;
10843 	int i;
10844 
10845 	frags = 0;
10846 	cgbno = dtogd(fs, jnewblk->jn_blkno);
10847 	/*
10848 	 * We have to test which frags need to be rolled back.  We may
10849 	 * be operating on a stale copy when doing background writes.
10850 	 */
10851 	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++)
10852 		if (isclr(blksfree, cgbno + i))
10853 			frags++;
10854 	if (frags == 0)
10855 		return (0);
10856 	/*
10857 	 * This is mostly ffs_blkfree() sans some validation and
10858 	 * superblock updates.
10859 	 */
10860 	if (frags == fs->fs_frag) {
10861 		fragno = fragstoblks(fs, cgbno);
10862 		ffs_setblock(fs, blksfree, fragno);
10863 		ffs_clusteracct(fs, cgp, fragno, 1);
10864 		cgp->cg_cs.cs_nbfree++;
10865 	} else {
10866 		cgbno += jnewblk->jn_oldfrags;
10867 		bbase = cgbno - fragnum(fs, cgbno);
10868 		/* Decrement the old frags.  */
10869 		blk = blkmap(fs, blksfree, bbase);
10870 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
10871 		/* Deallocate the fragment */
10872 		for (i = 0; i < frags; i++)
10873 			setbit(blksfree, cgbno + i);
10874 		cgp->cg_cs.cs_nffree += frags;
10875 		/* Add back in counts associated with the new frags */
10876 		blk = blkmap(fs, blksfree, bbase);
10877 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
10878 		/* If a complete block has been reassembled, account for it. */
10879 		fragno = fragstoblks(fs, bbase);
10880 		if (ffs_isblock(fs, blksfree, fragno)) {
10881 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
10882 			ffs_clusteracct(fs, cgp, fragno, 1);
10883 			cgp->cg_cs.cs_nbfree++;
10884 		}
10885 	}
10886 	stat_jnewblk++;
10887 	jnewblk->jn_state &= ~ATTACHED;
10888 	jnewblk->jn_state |= UNDONE;
10889 
10890 	return (frags);
10891 }
10892 
10893 static void
10894 initiate_write_bmsafemap(bmsafemap, bp)
10895 	struct bmsafemap *bmsafemap;
10896 	struct buf *bp;			/* The cg block. */
10897 {
10898 	struct jaddref *jaddref;
10899 	struct jnewblk *jnewblk;
10900 	uint8_t *inosused;
10901 	uint8_t *blksfree;
10902 	struct cg *cgp;
10903 	struct fs *fs;
10904 	ino_t ino;
10905 
10906 	/*
10907 	 * If this is a background write, we did this at the time that
10908 	 * the copy was made, so do not need to do it again.
10909 	 */
10910 	if (bmsafemap->sm_state & IOSTARTED)
10911 		return;
10912 	bmsafemap->sm_state |= IOSTARTED;
10913 	/*
10914 	 * Clear any inode allocations which are pending journal writes.
10915 	 */
10916 	if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) {
10917 		cgp = (struct cg *)bp->b_data;
10918 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
10919 		inosused = cg_inosused(cgp);
10920 		LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) {
10921 			ino = jaddref->ja_ino % fs->fs_ipg;
10922 			if (isset(inosused, ino)) {
10923 				if ((jaddref->ja_mode & IFMT) == IFDIR)
10924 					cgp->cg_cs.cs_ndir--;
10925 				cgp->cg_cs.cs_nifree++;
10926 				clrbit(inosused, ino);
10927 				jaddref->ja_state &= ~ATTACHED;
10928 				jaddref->ja_state |= UNDONE;
10929 				stat_jaddref++;
10930 			} else
10931 				panic("initiate_write_bmsafemap: inode %ju "
10932 				    "marked free", (uintmax_t)jaddref->ja_ino);
10933 		}
10934 	}
10935 	/*
10936 	 * Clear any block allocations which are pending journal writes.
10937 	 */
10938 	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
10939 		cgp = (struct cg *)bp->b_data;
10940 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
10941 		blksfree = cg_blksfree(cgp);
10942 		LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
10943 			if (jnewblk_rollback(jnewblk, fs, cgp, blksfree))
10944 				continue;
10945 			panic("initiate_write_bmsafemap: block %jd "
10946 			    "marked free", jnewblk->jn_blkno);
10947 		}
10948 	}
10949 	/*
10950 	 * Move allocation lists to the written lists so they can be
10951 	 * cleared once the block write is complete.
10952 	 */
10953 	LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr,
10954 	    inodedep, id_deps);
10955 	LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr,
10956 	    newblk, nb_deps);
10957 	LIST_SWAP(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, worklist,
10958 	    wk_list);
10959 }
10960 
10961 /*
10962  * This routine is called during the completion interrupt
10963  * service routine for a disk write (from the procedure called
10964  * by the device driver to inform the filesystem caches of
10965  * a request completion).  It should be called early in this
10966  * procedure, before the block is made available to other
10967  * processes or other routines are called.
10968  *
10969  */
10970 static void
10971 softdep_disk_write_complete(bp)
10972 	struct buf *bp;		/* describes the completed disk write */
10973 {
10974 	struct worklist *wk;
10975 	struct worklist *owk;
10976 	struct ufsmount *ump;
10977 	struct workhead reattach;
10978 	struct freeblks *freeblks;
10979 	struct buf *sbp;
10980 
10981 	/*
10982 	 * If an error occurred while doing the write, then the data
10983 	 * has not hit the disk and the dependencies cannot be processed.
10984 	 * But we do have to go through and roll forward any dependencies
10985 	 * that were rolled back before the disk write.
10986 	 */
10987 	if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0) {
10988 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
10989 			switch (wk->wk_type) {
10990 
10991 			case D_PAGEDEP:
10992 				handle_written_filepage(WK_PAGEDEP(wk), bp, 0);
10993 				continue;
10994 
10995 			case D_INODEDEP:
10996 				handle_written_inodeblock(WK_INODEDEP(wk),
10997 				    bp, 0);
10998 				continue;
10999 
11000 			case D_BMSAFEMAP:
11001 				handle_written_bmsafemap(WK_BMSAFEMAP(wk),
11002 				    bp, 0);
11003 				continue;
11004 
11005 			case D_INDIRDEP:
11006 				handle_written_indirdep(WK_INDIRDEP(wk),
11007 				    bp, &sbp, 0);
11008 				continue;
11009 			default:
11010 				/* nothing to roll forward */
11011 				continue;
11012 			}
11013 		}
11014 		return;
11015 	}
11016 	if ((wk = LIST_FIRST(&bp->b_dep)) == NULL)
11017 		return;
11018 	ump = VFSTOUFS(wk->wk_mp);
11019 	LIST_INIT(&reattach);
11020 	/*
11021 	 * This lock must not be released anywhere in this code segment.
11022 	 */
11023 	sbp = NULL;
11024 	owk = NULL;
11025 	ACQUIRE_LOCK(ump);
11026 	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
11027 		WORKLIST_REMOVE(wk);
11028 		atomic_add_long(&dep_write[wk->wk_type], 1);
11029 		if (wk == owk)
11030 			panic("duplicate worklist: %p\n", wk);
11031 		owk = wk;
11032 		switch (wk->wk_type) {
11033 
11034 		case D_PAGEDEP:
11035 			if (handle_written_filepage(WK_PAGEDEP(wk), bp,
11036 			    WRITESUCCEEDED))
11037 				WORKLIST_INSERT(&reattach, wk);
11038 			continue;
11039 
11040 		case D_INODEDEP:
11041 			if (handle_written_inodeblock(WK_INODEDEP(wk), bp,
11042 			    WRITESUCCEEDED))
11043 				WORKLIST_INSERT(&reattach, wk);
11044 			continue;
11045 
11046 		case D_BMSAFEMAP:
11047 			if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp,
11048 			    WRITESUCCEEDED))
11049 				WORKLIST_INSERT(&reattach, wk);
11050 			continue;
11051 
11052 		case D_MKDIR:
11053 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
11054 			continue;
11055 
11056 		case D_ALLOCDIRECT:
11057 			wk->wk_state |= COMPLETE;
11058 			handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL);
11059 			continue;
11060 
11061 		case D_ALLOCINDIR:
11062 			wk->wk_state |= COMPLETE;
11063 			handle_allocindir_partdone(WK_ALLOCINDIR(wk));
11064 			continue;
11065 
11066 		case D_INDIRDEP:
11067 			if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp,
11068 			    WRITESUCCEEDED))
11069 				WORKLIST_INSERT(&reattach, wk);
11070 			continue;
11071 
11072 		case D_FREEBLKS:
11073 			wk->wk_state |= COMPLETE;
11074 			freeblks = WK_FREEBLKS(wk);
11075 			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE &&
11076 			    LIST_EMPTY(&freeblks->fb_jblkdephd))
11077 				add_to_worklist(wk, WK_NODELAY);
11078 			continue;
11079 
11080 		case D_FREEWORK:
11081 			handle_written_freework(WK_FREEWORK(wk));
11082 			break;
11083 
11084 		case D_JSEGDEP:
11085 			free_jsegdep(WK_JSEGDEP(wk));
11086 			continue;
11087 
11088 		case D_JSEG:
11089 			handle_written_jseg(WK_JSEG(wk), bp);
11090 			continue;
11091 
11092 		case D_SBDEP:
11093 			if (handle_written_sbdep(WK_SBDEP(wk), bp))
11094 				WORKLIST_INSERT(&reattach, wk);
11095 			continue;
11096 
11097 		case D_FREEDEP:
11098 			free_freedep(WK_FREEDEP(wk));
11099 			continue;
11100 
11101 		default:
11102 			panic("handle_disk_write_complete: Unknown type %s",
11103 			    TYPENAME(wk->wk_type));
11104 			/* NOTREACHED */
11105 		}
11106 	}
11107 	/*
11108 	 * Reattach any requests that must be redone.
11109 	 */
11110 	while ((wk = LIST_FIRST(&reattach)) != NULL) {
11111 		WORKLIST_REMOVE(wk);
11112 		WORKLIST_INSERT(&bp->b_dep, wk);
11113 	}
11114 	FREE_LOCK(ump);
11115 	if (sbp)
11116 		brelse(sbp);
11117 }
11118 
11119 /*
11120  * Called from within softdep_disk_write_complete above. Note that
11121  * this routine is always called from interrupt level with further
11122  * splbio interrupts blocked.
11123  */
11124 static void
11125 handle_allocdirect_partdone(adp, wkhd)
11126 	struct allocdirect *adp;	/* the completed allocdirect */
11127 	struct workhead *wkhd;		/* Work to do when inode is writtne. */
11128 {
11129 	struct allocdirectlst *listhead;
11130 	struct allocdirect *listadp;
11131 	struct inodedep *inodedep;
11132 	long bsize;
11133 
11134 	if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
11135 		return;
11136 	/*
11137 	 * The on-disk inode cannot claim to be any larger than the last
11138 	 * fragment that has been written. Otherwise, the on-disk inode
11139 	 * might have fragments that were not the last block in the file
11140 	 * which would corrupt the filesystem. Thus, we cannot free any
11141 	 * allocdirects after one whose ad_oldblkno claims a fragment as
11142 	 * these blocks must be rolled back to zero before writing the inode.
11143 	 * We check the currently active set of allocdirects in id_inoupdt
11144 	 * or id_extupdt as appropriate.
11145 	 */
11146 	inodedep = adp->ad_inodedep;
11147 	bsize = inodedep->id_fs->fs_bsize;
11148 	if (adp->ad_state & EXTDATA)
11149 		listhead = &inodedep->id_extupdt;
11150 	else
11151 		listhead = &inodedep->id_inoupdt;
11152 	TAILQ_FOREACH(listadp, listhead, ad_next) {
11153 		/* found our block */
11154 		if (listadp == adp)
11155 			break;
11156 		/* continue if ad_oldlbn is not a fragment */
11157 		if (listadp->ad_oldsize == 0 ||
11158 		    listadp->ad_oldsize == bsize)
11159 			continue;
11160 		/* hit a fragment */
11161 		return;
11162 	}
11163 	/*
11164 	 * If we have reached the end of the current list without
11165 	 * finding the just finished dependency, then it must be
11166 	 * on the future dependency list. Future dependencies cannot
11167 	 * be freed until they are moved to the current list.
11168 	 */
11169 	if (listadp == NULL) {
11170 #ifdef DEBUG
11171 		if (adp->ad_state & EXTDATA)
11172 			listhead = &inodedep->id_newextupdt;
11173 		else
11174 			listhead = &inodedep->id_newinoupdt;
11175 		TAILQ_FOREACH(listadp, listhead, ad_next)
11176 			/* found our block */
11177 			if (listadp == adp)
11178 				break;
11179 		if (listadp == NULL)
11180 			panic("handle_allocdirect_partdone: lost dep");
11181 #endif /* DEBUG */
11182 		return;
11183 	}
11184 	/*
11185 	 * If we have found the just finished dependency, then queue
11186 	 * it along with anything that follows it that is complete.
11187 	 * Since the pointer has not yet been written in the inode
11188 	 * as the dependency prevents it, place the allocdirect on the
11189 	 * bufwait list where it will be freed once the pointer is
11190 	 * valid.
11191 	 */
11192 	if (wkhd == NULL)
11193 		wkhd = &inodedep->id_bufwait;
11194 	for (; adp; adp = listadp) {
11195 		listadp = TAILQ_NEXT(adp, ad_next);
11196 		if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
11197 			return;
11198 		TAILQ_REMOVE(listhead, adp, ad_next);
11199 		WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list);
11200 	}
11201 }
11202 
11203 /*
11204  * Called from within softdep_disk_write_complete above.  This routine
11205  * completes successfully written allocindirs.
11206  */
11207 static void
11208 handle_allocindir_partdone(aip)
11209 	struct allocindir *aip;		/* the completed allocindir */
11210 {
11211 	struct indirdep *indirdep;
11212 
11213 	if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
11214 		return;
11215 	indirdep = aip->ai_indirdep;
11216 	LIST_REMOVE(aip, ai_next);
11217 	/*
11218 	 * Don't set a pointer while the buffer is undergoing IO or while
11219 	 * we have active truncations.
11220 	 */
11221 	if (indirdep->ir_state & UNDONE || !TAILQ_EMPTY(&indirdep->ir_trunc)) {
11222 		LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
11223 		return;
11224 	}
11225 	if (indirdep->ir_state & UFS1FMT)
11226 		((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
11227 		    aip->ai_newblkno;
11228 	else
11229 		((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
11230 		    aip->ai_newblkno;
11231 	/*
11232 	 * Await the pointer write before freeing the allocindir.
11233 	 */
11234 	LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next);
11235 }
11236 
11237 /*
11238  * Release segments held on a jwork list.
11239  */
11240 static void
11241 handle_jwork(wkhd)
11242 	struct workhead *wkhd;
11243 {
11244 	struct worklist *wk;
11245 
11246 	while ((wk = LIST_FIRST(wkhd)) != NULL) {
11247 		WORKLIST_REMOVE(wk);
11248 		switch (wk->wk_type) {
11249 		case D_JSEGDEP:
11250 			free_jsegdep(WK_JSEGDEP(wk));
11251 			continue;
11252 		case D_FREEDEP:
11253 			free_freedep(WK_FREEDEP(wk));
11254 			continue;
11255 		case D_FREEFRAG:
11256 			rele_jseg(WK_JSEG(WK_FREEFRAG(wk)->ff_jdep));
11257 			WORKITEM_FREE(wk, D_FREEFRAG);
11258 			continue;
11259 		case D_FREEWORK:
11260 			handle_written_freework(WK_FREEWORK(wk));
11261 			continue;
11262 		default:
11263 			panic("handle_jwork: Unknown type %s\n",
11264 			    TYPENAME(wk->wk_type));
11265 		}
11266 	}
11267 }
11268 
11269 /*
11270  * Handle the bufwait list on an inode when it is safe to release items
11271  * held there.  This normally happens after an inode block is written but
11272  * may be delayed and handled later if there are pending journal items that
11273  * are not yet safe to be released.
11274  */
11275 static struct freefile *
11276 handle_bufwait(inodedep, refhd)
11277 	struct inodedep *inodedep;
11278 	struct workhead *refhd;
11279 {
11280 	struct jaddref *jaddref;
11281 	struct freefile *freefile;
11282 	struct worklist *wk;
11283 
11284 	freefile = NULL;
11285 	while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
11286 		WORKLIST_REMOVE(wk);
11287 		switch (wk->wk_type) {
11288 		case D_FREEFILE:
11289 			/*
11290 			 * We defer adding freefile to the worklist
11291 			 * until all other additions have been made to
11292 			 * ensure that it will be done after all the
11293 			 * old blocks have been freed.
11294 			 */
11295 			if (freefile != NULL)
11296 				panic("handle_bufwait: freefile");
11297 			freefile = WK_FREEFILE(wk);
11298 			continue;
11299 
11300 		case D_MKDIR:
11301 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
11302 			continue;
11303 
11304 		case D_DIRADD:
11305 			diradd_inode_written(WK_DIRADD(wk), inodedep);
11306 			continue;
11307 
11308 		case D_FREEFRAG:
11309 			wk->wk_state |= COMPLETE;
11310 			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE)
11311 				add_to_worklist(wk, 0);
11312 			continue;
11313 
11314 		case D_DIRREM:
11315 			wk->wk_state |= COMPLETE;
11316 			add_to_worklist(wk, 0);
11317 			continue;
11318 
11319 		case D_ALLOCDIRECT:
11320 		case D_ALLOCINDIR:
11321 			free_newblk(WK_NEWBLK(wk));
11322 			continue;
11323 
11324 		case D_JNEWBLK:
11325 			wk->wk_state |= COMPLETE;
11326 			free_jnewblk(WK_JNEWBLK(wk));
11327 			continue;
11328 
11329 		/*
11330 		 * Save freed journal segments and add references on
11331 		 * the supplied list which will delay their release
11332 		 * until the cg bitmap is cleared on disk.
11333 		 */
11334 		case D_JSEGDEP:
11335 			if (refhd == NULL)
11336 				free_jsegdep(WK_JSEGDEP(wk));
11337 			else
11338 				WORKLIST_INSERT(refhd, wk);
11339 			continue;
11340 
11341 		case D_JADDREF:
11342 			jaddref = WK_JADDREF(wk);
11343 			TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
11344 			    if_deps);
11345 			/*
11346 			 * Transfer any jaddrefs to the list to be freed with
11347 			 * the bitmap if we're handling a removed file.
11348 			 */
11349 			if (refhd == NULL) {
11350 				wk->wk_state |= COMPLETE;
11351 				free_jaddref(jaddref);
11352 			} else
11353 				WORKLIST_INSERT(refhd, wk);
11354 			continue;
11355 
11356 		default:
11357 			panic("handle_bufwait: Unknown type %p(%s)",
11358 			    wk, TYPENAME(wk->wk_type));
11359 			/* NOTREACHED */
11360 		}
11361 	}
11362 	return (freefile);
11363 }
11364 /*
11365  * Called from within softdep_disk_write_complete above to restore
11366  * in-memory inode block contents to their most up-to-date state. Note
11367  * that this routine is always called from interrupt level with further
11368  * interrupts from this device blocked.
11369  *
11370  * If the write did not succeed, we will do all the roll-forward
11371  * operations, but we will not take the actions that will allow its
11372  * dependencies to be processed.
11373  */
11374 static int
11375 handle_written_inodeblock(inodedep, bp, flags)
11376 	struct inodedep *inodedep;
11377 	struct buf *bp;		/* buffer containing the inode block */
11378 	int flags;
11379 {
11380 	struct freefile *freefile;
11381 	struct allocdirect *adp, *nextadp;
11382 	struct ufs1_dinode *dp1 = NULL;
11383 	struct ufs2_dinode *dp2 = NULL;
11384 	struct workhead wkhd;
11385 	int hadchanges, fstype;
11386 	ino_t freelink;
11387 
11388 	LIST_INIT(&wkhd);
11389 	hadchanges = 0;
11390 	freefile = NULL;
11391 	if ((inodedep->id_state & IOSTARTED) == 0)
11392 		panic("handle_written_inodeblock: not started");
11393 	inodedep->id_state &= ~IOSTARTED;
11394 	if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) {
11395 		fstype = UFS1;
11396 		dp1 = (struct ufs1_dinode *)bp->b_data +
11397 		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
11398 		freelink = dp1->di_freelink;
11399 	} else {
11400 		fstype = UFS2;
11401 		dp2 = (struct ufs2_dinode *)bp->b_data +
11402 		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
11403 		freelink = dp2->di_freelink;
11404 	}
11405 	/*
11406 	 * Leave this inodeblock dirty until it's in the list.
11407 	 */
11408 	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED &&
11409 	    (flags & WRITESUCCEEDED)) {
11410 		struct inodedep *inon;
11411 
11412 		inon = TAILQ_NEXT(inodedep, id_unlinked);
11413 		if ((inon == NULL && freelink == 0) ||
11414 		    (inon && inon->id_ino == freelink)) {
11415 			if (inon)
11416 				inon->id_state |= UNLINKPREV;
11417 			inodedep->id_state |= UNLINKNEXT;
11418 		}
11419 		hadchanges = 1;
11420 	}
11421 	/*
11422 	 * If we had to rollback the inode allocation because of
11423 	 * bitmaps being incomplete, then simply restore it.
11424 	 * Keep the block dirty so that it will not be reclaimed until
11425 	 * all associated dependencies have been cleared and the
11426 	 * corresponding updates written to disk.
11427 	 */
11428 	if (inodedep->id_savedino1 != NULL) {
11429 		hadchanges = 1;
11430 		if (fstype == UFS1)
11431 			*dp1 = *inodedep->id_savedino1;
11432 		else
11433 			*dp2 = *inodedep->id_savedino2;
11434 		free(inodedep->id_savedino1, M_SAVEDINO);
11435 		inodedep->id_savedino1 = NULL;
11436 		if ((bp->b_flags & B_DELWRI) == 0)
11437 			stat_inode_bitmap++;
11438 		bdirty(bp);
11439 		/*
11440 		 * If the inode is clear here and GOINGAWAY it will never
11441 		 * be written.  Process the bufwait and clear any pending
11442 		 * work which may include the freefile.
11443 		 */
11444 		if (inodedep->id_state & GOINGAWAY)
11445 			goto bufwait;
11446 		return (1);
11447 	}
11448 	if (flags & WRITESUCCEEDED)
11449 		inodedep->id_state |= COMPLETE;
11450 	/*
11451 	 * Roll forward anything that had to be rolled back before
11452 	 * the inode could be updated.
11453 	 */
11454 	for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
11455 		nextadp = TAILQ_NEXT(adp, ad_next);
11456 		if (adp->ad_state & ATTACHED)
11457 			panic("handle_written_inodeblock: new entry");
11458 		if (fstype == UFS1) {
11459 			if (adp->ad_offset < NDADDR) {
11460 				if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno)
11461 					panic("%s %s #%jd mismatch %d != %jd",
11462 					    "handle_written_inodeblock:",
11463 					    "direct pointer",
11464 					    (intmax_t)adp->ad_offset,
11465 					    dp1->di_db[adp->ad_offset],
11466 					    (intmax_t)adp->ad_oldblkno);
11467 				dp1->di_db[adp->ad_offset] = adp->ad_newblkno;
11468 			} else {
11469 				if (dp1->di_ib[adp->ad_offset - NDADDR] != 0)
11470 					panic("%s: %s #%jd allocated as %d",
11471 					    "handle_written_inodeblock",
11472 					    "indirect pointer",
11473 					    (intmax_t)adp->ad_offset - NDADDR,
11474 					    dp1->di_ib[adp->ad_offset - NDADDR]);
11475 				dp1->di_ib[adp->ad_offset - NDADDR] =
11476 				    adp->ad_newblkno;
11477 			}
11478 		} else {
11479 			if (adp->ad_offset < NDADDR) {
11480 				if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno)
11481 					panic("%s: %s #%jd %s %jd != %jd",
11482 					    "handle_written_inodeblock",
11483 					    "direct pointer",
11484 					    (intmax_t)adp->ad_offset, "mismatch",
11485 					    (intmax_t)dp2->di_db[adp->ad_offset],
11486 					    (intmax_t)adp->ad_oldblkno);
11487 				dp2->di_db[adp->ad_offset] = adp->ad_newblkno;
11488 			} else {
11489 				if (dp2->di_ib[adp->ad_offset - NDADDR] != 0)
11490 					panic("%s: %s #%jd allocated as %jd",
11491 					    "handle_written_inodeblock",
11492 					    "indirect pointer",
11493 					    (intmax_t)adp->ad_offset - NDADDR,
11494 					    (intmax_t)
11495 					    dp2->di_ib[adp->ad_offset - NDADDR]);
11496 				dp2->di_ib[adp->ad_offset - NDADDR] =
11497 				    adp->ad_newblkno;
11498 			}
11499 		}
11500 		adp->ad_state &= ~UNDONE;
11501 		adp->ad_state |= ATTACHED;
11502 		hadchanges = 1;
11503 	}
11504 	for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) {
11505 		nextadp = TAILQ_NEXT(adp, ad_next);
11506 		if (adp->ad_state & ATTACHED)
11507 			panic("handle_written_inodeblock: new entry");
11508 		if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno)
11509 			panic("%s: direct pointers #%jd %s %jd != %jd",
11510 			    "handle_written_inodeblock",
11511 			    (intmax_t)adp->ad_offset, "mismatch",
11512 			    (intmax_t)dp2->di_extb[adp->ad_offset],
11513 			    (intmax_t)adp->ad_oldblkno);
11514 		dp2->di_extb[adp->ad_offset] = adp->ad_newblkno;
11515 		adp->ad_state &= ~UNDONE;
11516 		adp->ad_state |= ATTACHED;
11517 		hadchanges = 1;
11518 	}
11519 	if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
11520 		stat_direct_blk_ptrs++;
11521 	/*
11522 	 * Reset the file size to its most up-to-date value.
11523 	 */
11524 	if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1)
11525 		panic("handle_written_inodeblock: bad size");
11526 	if (inodedep->id_savednlink > LINK_MAX)
11527 		panic("handle_written_inodeblock: Invalid link count "
11528 		    "%d for inodedep %p", inodedep->id_savednlink, inodedep);
11529 	if (fstype == UFS1) {
11530 		if (dp1->di_nlink != inodedep->id_savednlink) {
11531 			dp1->di_nlink = inodedep->id_savednlink;
11532 			hadchanges = 1;
11533 		}
11534 		if (dp1->di_size != inodedep->id_savedsize) {
11535 			dp1->di_size = inodedep->id_savedsize;
11536 			hadchanges = 1;
11537 		}
11538 	} else {
11539 		if (dp2->di_nlink != inodedep->id_savednlink) {
11540 			dp2->di_nlink = inodedep->id_savednlink;
11541 			hadchanges = 1;
11542 		}
11543 		if (dp2->di_size != inodedep->id_savedsize) {
11544 			dp2->di_size = inodedep->id_savedsize;
11545 			hadchanges = 1;
11546 		}
11547 		if (dp2->di_extsize != inodedep->id_savedextsize) {
11548 			dp2->di_extsize = inodedep->id_savedextsize;
11549 			hadchanges = 1;
11550 		}
11551 	}
11552 	inodedep->id_savedsize = -1;
11553 	inodedep->id_savedextsize = -1;
11554 	inodedep->id_savednlink = -1;
11555 	/*
11556 	 * If there were any rollbacks in the inode block, then it must be
11557 	 * marked dirty so that its will eventually get written back in
11558 	 * its correct form.
11559 	 */
11560 	if (hadchanges)
11561 		bdirty(bp);
11562 bufwait:
11563 	/*
11564 	 * If the write did not succeed, we have done all the roll-forward
11565 	 * operations, but we cannot take the actions that will allow its
11566 	 * dependencies to be processed.
11567 	 */
11568 	if ((flags & WRITESUCCEEDED) == 0)
11569 		return (hadchanges);
11570 	/*
11571 	 * Process any allocdirects that completed during the update.
11572 	 */
11573 	if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
11574 		handle_allocdirect_partdone(adp, &wkhd);
11575 	if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
11576 		handle_allocdirect_partdone(adp, &wkhd);
11577 	/*
11578 	 * Process deallocations that were held pending until the
11579 	 * inode had been written to disk. Freeing of the inode
11580 	 * is delayed until after all blocks have been freed to
11581 	 * avoid creation of new <vfsid, inum, lbn> triples
11582 	 * before the old ones have been deleted.  Completely
11583 	 * unlinked inodes are not processed until the unlinked
11584 	 * inode list is written or the last reference is removed.
11585 	 */
11586 	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) {
11587 		freefile = handle_bufwait(inodedep, NULL);
11588 		if (freefile && !LIST_EMPTY(&wkhd)) {
11589 			WORKLIST_INSERT(&wkhd, &freefile->fx_list);
11590 			freefile = NULL;
11591 		}
11592 	}
11593 	/*
11594 	 * Move rolled forward dependency completions to the bufwait list
11595 	 * now that those that were already written have been processed.
11596 	 */
11597 	if (!LIST_EMPTY(&wkhd) && hadchanges == 0)
11598 		panic("handle_written_inodeblock: bufwait but no changes");
11599 	jwork_move(&inodedep->id_bufwait, &wkhd);
11600 
11601 	if (freefile != NULL) {
11602 		/*
11603 		 * If the inode is goingaway it was never written.  Fake up
11604 		 * the state here so free_inodedep() can succeed.
11605 		 */
11606 		if (inodedep->id_state & GOINGAWAY)
11607 			inodedep->id_state |= COMPLETE | DEPCOMPLETE;
11608 		if (free_inodedep(inodedep) == 0)
11609 			panic("handle_written_inodeblock: live inodedep %p",
11610 			    inodedep);
11611 		add_to_worklist(&freefile->fx_list, 0);
11612 		return (0);
11613 	}
11614 
11615 	/*
11616 	 * If no outstanding dependencies, free it.
11617 	 */
11618 	if (free_inodedep(inodedep) ||
11619 	    (TAILQ_FIRST(&inodedep->id_inoreflst) == 0 &&
11620 	     TAILQ_FIRST(&inodedep->id_inoupdt) == 0 &&
11621 	     TAILQ_FIRST(&inodedep->id_extupdt) == 0 &&
11622 	     LIST_FIRST(&inodedep->id_bufwait) == 0))
11623 		return (0);
11624 	return (hadchanges);
11625 }
11626 
11627 /*
11628  * Perform needed roll-forwards and kick off any dependencies that
11629  * can now be processed.
11630  *
11631  * If the write did not succeed, we will do all the roll-forward
11632  * operations, but we will not take the actions that will allow its
11633  * dependencies to be processed.
11634  */
11635 static int
11636 handle_written_indirdep(indirdep, bp, bpp, flags)
11637 	struct indirdep *indirdep;
11638 	struct buf *bp;
11639 	struct buf **bpp;
11640 	int flags;
11641 {
11642 	struct allocindir *aip;
11643 	struct buf *sbp;
11644 	int chgs;
11645 
11646 	if (indirdep->ir_state & GOINGAWAY)
11647 		panic("handle_written_indirdep: indirdep gone");
11648 	if ((indirdep->ir_state & IOSTARTED) == 0)
11649 		panic("handle_written_indirdep: IO not started");
11650 	chgs = 0;
11651 	/*
11652 	 * If there were rollbacks revert them here.
11653 	 */
11654 	if (indirdep->ir_saveddata) {
11655 		bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount);
11656 		if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
11657 			free(indirdep->ir_saveddata, M_INDIRDEP);
11658 			indirdep->ir_saveddata = NULL;
11659 		}
11660 		chgs = 1;
11661 	}
11662 	indirdep->ir_state &= ~(UNDONE | IOSTARTED);
11663 	indirdep->ir_state |= ATTACHED;
11664 	/*
11665 	 * If the write did not succeed, we have done all the roll-forward
11666 	 * operations, but we cannot take the actions that will allow its
11667 	 * dependencies to be processed.
11668 	 */
11669 	if ((flags & WRITESUCCEEDED) == 0) {
11670 		stat_indir_blk_ptrs++;
11671 		bdirty(bp);
11672 		return (1);
11673 	}
11674 	/*
11675 	 * Move allocindirs with written pointers to the completehd if
11676 	 * the indirdep's pointer is not yet written.  Otherwise
11677 	 * free them here.
11678 	 */
11679 	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL) {
11680 		LIST_REMOVE(aip, ai_next);
11681 		if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
11682 			LIST_INSERT_HEAD(&indirdep->ir_completehd, aip,
11683 			    ai_next);
11684 			newblk_freefrag(&aip->ai_block);
11685 			continue;
11686 		}
11687 		free_newblk(&aip->ai_block);
11688 	}
11689 	/*
11690 	 * Move allocindirs that have finished dependency processing from
11691 	 * the done list to the write list after updating the pointers.
11692 	 */
11693 	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
11694 		while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL) {
11695 			handle_allocindir_partdone(aip);
11696 			if (aip == LIST_FIRST(&indirdep->ir_donehd))
11697 				panic("disk_write_complete: not gone");
11698 			chgs = 1;
11699 		}
11700 	}
11701 	/*
11702 	 * Preserve the indirdep if there were any changes or if it is not
11703 	 * yet valid on disk.
11704 	 */
11705 	if (chgs) {
11706 		stat_indir_blk_ptrs++;
11707 		bdirty(bp);
11708 		return (1);
11709 	}
11710 	/*
11711 	 * If there were no changes we can discard the savedbp and detach
11712 	 * ourselves from the buf.  We are only carrying completed pointers
11713 	 * in this case.
11714 	 */
11715 	sbp = indirdep->ir_savebp;
11716 	sbp->b_flags |= B_INVAL | B_NOCACHE;
11717 	indirdep->ir_savebp = NULL;
11718 	indirdep->ir_bp = NULL;
11719 	if (*bpp != NULL)
11720 		panic("handle_written_indirdep: bp already exists.");
11721 	*bpp = sbp;
11722 	/*
11723 	 * The indirdep may not be freed until its parent points at it.
11724 	 */
11725 	if (indirdep->ir_state & DEPCOMPLETE)
11726 		free_indirdep(indirdep);
11727 
11728 	return (0);
11729 }
11730 
11731 /*
11732  * Process a diradd entry after its dependent inode has been written.
11733  * This routine must be called with splbio interrupts blocked.
11734  */
11735 static void
11736 diradd_inode_written(dap, inodedep)
11737 	struct diradd *dap;
11738 	struct inodedep *inodedep;
11739 {
11740 
11741 	dap->da_state |= COMPLETE;
11742 	complete_diradd(dap);
11743 	WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
11744 }
11745 
11746 /*
11747  * Returns true if the bmsafemap will have rollbacks when written.  Must only
11748  * be called with the per-filesystem lock and the buf lock on the cg held.
11749  */
11750 static int
11751 bmsafemap_backgroundwrite(bmsafemap, bp)
11752 	struct bmsafemap *bmsafemap;
11753 	struct buf *bp;
11754 {
11755 	int dirty;
11756 
11757 	LOCK_OWNED(VFSTOUFS(bmsafemap->sm_list.wk_mp));
11758 	dirty = !LIST_EMPTY(&bmsafemap->sm_jaddrefhd) |
11759 	    !LIST_EMPTY(&bmsafemap->sm_jnewblkhd);
11760 	/*
11761 	 * If we're initiating a background write we need to process the
11762 	 * rollbacks as they exist now, not as they exist when IO starts.
11763 	 * No other consumers will look at the contents of the shadowed
11764 	 * buf so this is safe to do here.
11765 	 */
11766 	if (bp->b_xflags & BX_BKGRDMARKER)
11767 		initiate_write_bmsafemap(bmsafemap, bp);
11768 
11769 	return (dirty);
11770 }
11771 
11772 /*
11773  * Re-apply an allocation when a cg write is complete.
11774  */
11775 static int
11776 jnewblk_rollforward(jnewblk, fs, cgp, blksfree)
11777 	struct jnewblk *jnewblk;
11778 	struct fs *fs;
11779 	struct cg *cgp;
11780 	uint8_t *blksfree;
11781 {
11782 	ufs1_daddr_t fragno;
11783 	ufs2_daddr_t blkno;
11784 	long cgbno, bbase;
11785 	int frags, blk;
11786 	int i;
11787 
11788 	frags = 0;
11789 	cgbno = dtogd(fs, jnewblk->jn_blkno);
11790 	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) {
11791 		if (isclr(blksfree, cgbno + i))
11792 			panic("jnewblk_rollforward: re-allocated fragment");
11793 		frags++;
11794 	}
11795 	if (frags == fs->fs_frag) {
11796 		blkno = fragstoblks(fs, cgbno);
11797 		ffs_clrblock(fs, blksfree, (long)blkno);
11798 		ffs_clusteracct(fs, cgp, blkno, -1);
11799 		cgp->cg_cs.cs_nbfree--;
11800 	} else {
11801 		bbase = cgbno - fragnum(fs, cgbno);
11802 		cgbno += jnewblk->jn_oldfrags;
11803                 /* If a complete block had been reassembled, account for it. */
11804 		fragno = fragstoblks(fs, bbase);
11805 		if (ffs_isblock(fs, blksfree, fragno)) {
11806 			cgp->cg_cs.cs_nffree += fs->fs_frag;
11807 			ffs_clusteracct(fs, cgp, fragno, -1);
11808 			cgp->cg_cs.cs_nbfree--;
11809 		}
11810 		/* Decrement the old frags.  */
11811 		blk = blkmap(fs, blksfree, bbase);
11812 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
11813 		/* Allocate the fragment */
11814 		for (i = 0; i < frags; i++)
11815 			clrbit(blksfree, cgbno + i);
11816 		cgp->cg_cs.cs_nffree -= frags;
11817 		/* Add back in counts associated with the new frags */
11818 		blk = blkmap(fs, blksfree, bbase);
11819 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
11820 	}
11821 	return (frags);
11822 }
11823 
11824 /*
11825  * Complete a write to a bmsafemap structure.  Roll forward any bitmap
11826  * changes if it's not a background write.  Set all written dependencies
11827  * to DEPCOMPLETE and free the structure if possible.
11828  *
11829  * If the write did not succeed, we will do all the roll-forward
11830  * operations, but we will not take the actions that will allow its
11831  * dependencies to be processed.
11832  */
11833 static int
11834 handle_written_bmsafemap(bmsafemap, bp, flags)
11835 	struct bmsafemap *bmsafemap;
11836 	struct buf *bp;
11837 	int flags;
11838 {
11839 	struct newblk *newblk;
11840 	struct inodedep *inodedep;
11841 	struct jaddref *jaddref, *jatmp;
11842 	struct jnewblk *jnewblk, *jntmp;
11843 	struct ufsmount *ump;
11844 	uint8_t *inosused;
11845 	uint8_t *blksfree;
11846 	struct cg *cgp;
11847 	struct fs *fs;
11848 	ino_t ino;
11849 	int foreground;
11850 	int chgs;
11851 
11852 	if ((bmsafemap->sm_state & IOSTARTED) == 0)
11853 		panic("handle_written_bmsafemap: Not started\n");
11854 	ump = VFSTOUFS(bmsafemap->sm_list.wk_mp);
11855 	chgs = 0;
11856 	bmsafemap->sm_state &= ~IOSTARTED;
11857 	foreground = (bp->b_xflags & BX_BKGRDMARKER) == 0;
11858 	/*
11859 	 * If write was successful, release journal work that was waiting
11860 	 * on the write. Otherwise move the work back.
11861 	 */
11862 	if (flags & WRITESUCCEEDED)
11863 		handle_jwork(&bmsafemap->sm_freewr);
11864 	else
11865 		LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr,
11866 		    worklist, wk_list);
11867 
11868 	/*
11869 	 * Restore unwritten inode allocation pending jaddref writes.
11870 	 */
11871 	if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) {
11872 		cgp = (struct cg *)bp->b_data;
11873 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11874 		inosused = cg_inosused(cgp);
11875 		LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd,
11876 		    ja_bmdeps, jatmp) {
11877 			if ((jaddref->ja_state & UNDONE) == 0)
11878 				continue;
11879 			ino = jaddref->ja_ino % fs->fs_ipg;
11880 			if (isset(inosused, ino))
11881 				panic("handle_written_bmsafemap: "
11882 				    "re-allocated inode");
11883 			/* Do the roll-forward only if it's a real copy. */
11884 			if (foreground) {
11885 				if ((jaddref->ja_mode & IFMT) == IFDIR)
11886 					cgp->cg_cs.cs_ndir++;
11887 				cgp->cg_cs.cs_nifree--;
11888 				setbit(inosused, ino);
11889 				chgs = 1;
11890 			}
11891 			jaddref->ja_state &= ~UNDONE;
11892 			jaddref->ja_state |= ATTACHED;
11893 			free_jaddref(jaddref);
11894 		}
11895 	}
11896 	/*
11897 	 * Restore any block allocations which are pending journal writes.
11898 	 */
11899 	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
11900 		cgp = (struct cg *)bp->b_data;
11901 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11902 		blksfree = cg_blksfree(cgp);
11903 		LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps,
11904 		    jntmp) {
11905 			if ((jnewblk->jn_state & UNDONE) == 0)
11906 				continue;
11907 			/* Do the roll-forward only if it's a real copy. */
11908 			if (foreground &&
11909 			    jnewblk_rollforward(jnewblk, fs, cgp, blksfree))
11910 				chgs = 1;
11911 			jnewblk->jn_state &= ~(UNDONE | NEWBLOCK);
11912 			jnewblk->jn_state |= ATTACHED;
11913 			free_jnewblk(jnewblk);
11914 		}
11915 	}
11916 	/*
11917 	 * If the write did not succeed, we have done all the roll-forward
11918 	 * operations, but we cannot take the actions that will allow its
11919 	 * dependencies to be processed.
11920 	 */
11921 	if ((flags & WRITESUCCEEDED) == 0) {
11922 		LIST_CONCAT(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr,
11923 		    newblk, nb_deps);
11924 		LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr,
11925 		    worklist, wk_list);
11926 		if (foreground)
11927 			bdirty(bp);
11928 		return (1);
11929 	}
11930 	while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) {
11931 		newblk->nb_state |= DEPCOMPLETE;
11932 		newblk->nb_state &= ~ONDEPLIST;
11933 		newblk->nb_bmsafemap = NULL;
11934 		LIST_REMOVE(newblk, nb_deps);
11935 		if (newblk->nb_list.wk_type == D_ALLOCDIRECT)
11936 			handle_allocdirect_partdone(
11937 			    WK_ALLOCDIRECT(&newblk->nb_list), NULL);
11938 		else if (newblk->nb_list.wk_type == D_ALLOCINDIR)
11939 			handle_allocindir_partdone(
11940 			    WK_ALLOCINDIR(&newblk->nb_list));
11941 		else if (newblk->nb_list.wk_type != D_NEWBLK)
11942 			panic("handle_written_bmsafemap: Unexpected type: %s",
11943 			    TYPENAME(newblk->nb_list.wk_type));
11944 	}
11945 	while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) {
11946 		inodedep->id_state |= DEPCOMPLETE;
11947 		inodedep->id_state &= ~ONDEPLIST;
11948 		LIST_REMOVE(inodedep, id_deps);
11949 		inodedep->id_bmsafemap = NULL;
11950 	}
11951 	LIST_REMOVE(bmsafemap, sm_next);
11952 	if (chgs == 0 && LIST_EMPTY(&bmsafemap->sm_jaddrefhd) &&
11953 	    LIST_EMPTY(&bmsafemap->sm_jnewblkhd) &&
11954 	    LIST_EMPTY(&bmsafemap->sm_newblkhd) &&
11955 	    LIST_EMPTY(&bmsafemap->sm_inodedephd) &&
11956 	    LIST_EMPTY(&bmsafemap->sm_freehd)) {
11957 		LIST_REMOVE(bmsafemap, sm_hash);
11958 		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
11959 		return (0);
11960 	}
11961 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
11962 	if (foreground)
11963 		bdirty(bp);
11964 	return (1);
11965 }
11966 
11967 /*
11968  * Try to free a mkdir dependency.
11969  */
11970 static void
11971 complete_mkdir(mkdir)
11972 	struct mkdir *mkdir;
11973 {
11974 	struct diradd *dap;
11975 
11976 	if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE)
11977 		return;
11978 	LIST_REMOVE(mkdir, md_mkdirs);
11979 	dap = mkdir->md_diradd;
11980 	dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
11981 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) {
11982 		dap->da_state |= DEPCOMPLETE;
11983 		complete_diradd(dap);
11984 	}
11985 	WORKITEM_FREE(mkdir, D_MKDIR);
11986 }
11987 
11988 /*
11989  * Handle the completion of a mkdir dependency.
11990  */
11991 static void
11992 handle_written_mkdir(mkdir, type)
11993 	struct mkdir *mkdir;
11994 	int type;
11995 {
11996 
11997 	if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type)
11998 		panic("handle_written_mkdir: bad type");
11999 	mkdir->md_state |= COMPLETE;
12000 	complete_mkdir(mkdir);
12001 }
12002 
12003 static int
12004 free_pagedep(pagedep)
12005 	struct pagedep *pagedep;
12006 {
12007 	int i;
12008 
12009 	if (pagedep->pd_state & NEWBLOCK)
12010 		return (0);
12011 	if (!LIST_EMPTY(&pagedep->pd_dirremhd))
12012 		return (0);
12013 	for (i = 0; i < DAHASHSZ; i++)
12014 		if (!LIST_EMPTY(&pagedep->pd_diraddhd[i]))
12015 			return (0);
12016 	if (!LIST_EMPTY(&pagedep->pd_pendinghd))
12017 		return (0);
12018 	if (!LIST_EMPTY(&pagedep->pd_jmvrefhd))
12019 		return (0);
12020 	if (pagedep->pd_state & ONWORKLIST)
12021 		WORKLIST_REMOVE(&pagedep->pd_list);
12022 	LIST_REMOVE(pagedep, pd_hash);
12023 	WORKITEM_FREE(pagedep, D_PAGEDEP);
12024 
12025 	return (1);
12026 }
12027 
12028 /*
12029  * Called from within softdep_disk_write_complete above.
12030  * A write operation was just completed. Removed inodes can
12031  * now be freed and associated block pointers may be committed.
12032  * Note that this routine is always called from interrupt level
12033  * with further interrupts from this device blocked.
12034  *
12035  * If the write did not succeed, we will do all the roll-forward
12036  * operations, but we will not take the actions that will allow its
12037  * dependencies to be processed.
12038  */
12039 static int
12040 handle_written_filepage(pagedep, bp, flags)
12041 	struct pagedep *pagedep;
12042 	struct buf *bp;		/* buffer containing the written page */
12043 	int flags;
12044 {
12045 	struct dirrem *dirrem;
12046 	struct diradd *dap, *nextdap;
12047 	struct direct *ep;
12048 	int i, chgs;
12049 
12050 	if ((pagedep->pd_state & IOSTARTED) == 0)
12051 		panic("handle_written_filepage: not started");
12052 	pagedep->pd_state &= ~IOSTARTED;
12053 	if ((flags & WRITESUCCEEDED) == 0)
12054 		goto rollforward;
12055 	/*
12056 	 * Process any directory removals that have been committed.
12057 	 */
12058 	while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
12059 		LIST_REMOVE(dirrem, dm_next);
12060 		dirrem->dm_state |= COMPLETE;
12061 		dirrem->dm_dirinum = pagedep->pd_ino;
12062 		KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
12063 		    ("handle_written_filepage: Journal entries not written."));
12064 		add_to_worklist(&dirrem->dm_list, 0);
12065 	}
12066 	/*
12067 	 * Free any directory additions that have been committed.
12068 	 * If it is a newly allocated block, we have to wait until
12069 	 * the on-disk directory inode claims the new block.
12070 	 */
12071 	if ((pagedep->pd_state & NEWBLOCK) == 0)
12072 		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
12073 			free_diradd(dap, NULL);
12074 rollforward:
12075 	/*
12076 	 * Uncommitted directory entries must be restored.
12077 	 */
12078 	for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
12079 		for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
12080 		     dap = nextdap) {
12081 			nextdap = LIST_NEXT(dap, da_pdlist);
12082 			if (dap->da_state & ATTACHED)
12083 				panic("handle_written_filepage: attached");
12084 			ep = (struct direct *)
12085 			    ((char *)bp->b_data + dap->da_offset);
12086 			ep->d_ino = dap->da_newinum;
12087 			dap->da_state &= ~UNDONE;
12088 			dap->da_state |= ATTACHED;
12089 			chgs = 1;
12090 			/*
12091 			 * If the inode referenced by the directory has
12092 			 * been written out, then the dependency can be
12093 			 * moved to the pending list.
12094 			 */
12095 			if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
12096 				LIST_REMOVE(dap, da_pdlist);
12097 				LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
12098 				    da_pdlist);
12099 			}
12100 		}
12101 	}
12102 	/*
12103 	 * If there were any rollbacks in the directory, then it must be
12104 	 * marked dirty so that its will eventually get written back in
12105 	 * its correct form.
12106 	 */
12107 	if (chgs || (flags & WRITESUCCEEDED) == 0) {
12108 		if ((bp->b_flags & B_DELWRI) == 0)
12109 			stat_dir_entry++;
12110 		bdirty(bp);
12111 		return (1);
12112 	}
12113 	/*
12114 	 * If we are not waiting for a new directory block to be
12115 	 * claimed by its inode, then the pagedep will be freed.
12116 	 * Otherwise it will remain to track any new entries on
12117 	 * the page in case they are fsync'ed.
12118 	 */
12119 	free_pagedep(pagedep);
12120 	return (0);
12121 }
12122 
12123 /*
12124  * Writing back in-core inode structures.
12125  *
12126  * The filesystem only accesses an inode's contents when it occupies an
12127  * "in-core" inode structure.  These "in-core" structures are separate from
12128  * the page frames used to cache inode blocks.  Only the latter are
12129  * transferred to/from the disk.  So, when the updated contents of the
12130  * "in-core" inode structure are copied to the corresponding in-memory inode
12131  * block, the dependencies are also transferred.  The following procedure is
12132  * called when copying a dirty "in-core" inode to a cached inode block.
12133  */
12134 
12135 /*
12136  * Called when an inode is loaded from disk. If the effective link count
12137  * differed from the actual link count when it was last flushed, then we
12138  * need to ensure that the correct effective link count is put back.
12139  */
12140 void
12141 softdep_load_inodeblock(ip)
12142 	struct inode *ip;	/* the "in_core" copy of the inode */
12143 {
12144 	struct inodedep *inodedep;
12145 	struct ufsmount *ump;
12146 
12147 	ump = ITOUMP(ip);
12148 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
12149 	    ("softdep_load_inodeblock called on non-softdep filesystem"));
12150 	/*
12151 	 * Check for alternate nlink count.
12152 	 */
12153 	ip->i_effnlink = ip->i_nlink;
12154 	ACQUIRE_LOCK(ump);
12155 	if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0) {
12156 		FREE_LOCK(ump);
12157 		return;
12158 	}
12159 	ip->i_effnlink -= inodedep->id_nlinkdelta;
12160 	FREE_LOCK(ump);
12161 }
12162 
12163 /*
12164  * This routine is called just before the "in-core" inode
12165  * information is to be copied to the in-memory inode block.
12166  * Recall that an inode block contains several inodes. If
12167  * the force flag is set, then the dependencies will be
12168  * cleared so that the update can always be made. Note that
12169  * the buffer is locked when this routine is called, so we
12170  * will never be in the middle of writing the inode block
12171  * to disk.
12172  */
12173 void
12174 softdep_update_inodeblock(ip, bp, waitfor)
12175 	struct inode *ip;	/* the "in_core" copy of the inode */
12176 	struct buf *bp;		/* the buffer containing the inode block */
12177 	int waitfor;		/* nonzero => update must be allowed */
12178 {
12179 	struct inodedep *inodedep;
12180 	struct inoref *inoref;
12181 	struct ufsmount *ump;
12182 	struct worklist *wk;
12183 	struct mount *mp;
12184 	struct buf *ibp;
12185 	struct fs *fs;
12186 	int error;
12187 
12188 	ump = ITOUMP(ip);
12189 	mp = UFSTOVFS(ump);
12190 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
12191 	    ("softdep_update_inodeblock called on non-softdep filesystem"));
12192 	fs = ump->um_fs;
12193 	/*
12194 	 * Preserve the freelink that is on disk.  clear_unlinked_inodedep()
12195 	 * does not have access to the in-core ip so must write directly into
12196 	 * the inode block buffer when setting freelink.
12197 	 */
12198 	if (fs->fs_magic == FS_UFS1_MAGIC)
12199 		DIP_SET(ip, i_freelink, ((struct ufs1_dinode *)bp->b_data +
12200 		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
12201 	else
12202 		DIP_SET(ip, i_freelink, ((struct ufs2_dinode *)bp->b_data +
12203 		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
12204 	/*
12205 	 * If the effective link count is not equal to the actual link
12206 	 * count, then we must track the difference in an inodedep while
12207 	 * the inode is (potentially) tossed out of the cache. Otherwise,
12208 	 * if there is no existing inodedep, then there are no dependencies
12209 	 * to track.
12210 	 */
12211 	ACQUIRE_LOCK(ump);
12212 again:
12213 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
12214 		FREE_LOCK(ump);
12215 		if (ip->i_effnlink != ip->i_nlink)
12216 			panic("softdep_update_inodeblock: bad link count");
12217 		return;
12218 	}
12219 	if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink)
12220 		panic("softdep_update_inodeblock: bad delta");
12221 	/*
12222 	 * If we're flushing all dependencies we must also move any waiting
12223 	 * for journal writes onto the bufwait list prior to I/O.
12224 	 */
12225 	if (waitfor) {
12226 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12227 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12228 			    == DEPCOMPLETE) {
12229 				jwait(&inoref->if_list, MNT_WAIT);
12230 				goto again;
12231 			}
12232 		}
12233 	}
12234 	/*
12235 	 * Changes have been initiated. Anything depending on these
12236 	 * changes cannot occur until this inode has been written.
12237 	 */
12238 	inodedep->id_state &= ~COMPLETE;
12239 	if ((inodedep->id_state & ONWORKLIST) == 0)
12240 		WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list);
12241 	/*
12242 	 * Any new dependencies associated with the incore inode must
12243 	 * now be moved to the list associated with the buffer holding
12244 	 * the in-memory copy of the inode. Once merged process any
12245 	 * allocdirects that are completed by the merger.
12246 	 */
12247 	merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt);
12248 	if (!TAILQ_EMPTY(&inodedep->id_inoupdt))
12249 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt),
12250 		    NULL);
12251 	merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt);
12252 	if (!TAILQ_EMPTY(&inodedep->id_extupdt))
12253 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt),
12254 		    NULL);
12255 	/*
12256 	 * Now that the inode has been pushed into the buffer, the
12257 	 * operations dependent on the inode being written to disk
12258 	 * can be moved to the id_bufwait so that they will be
12259 	 * processed when the buffer I/O completes.
12260 	 */
12261 	while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
12262 		WORKLIST_REMOVE(wk);
12263 		WORKLIST_INSERT(&inodedep->id_bufwait, wk);
12264 	}
12265 	/*
12266 	 * Newly allocated inodes cannot be written until the bitmap
12267 	 * that allocates them have been written (indicated by
12268 	 * DEPCOMPLETE being set in id_state). If we are doing a
12269 	 * forced sync (e.g., an fsync on a file), we force the bitmap
12270 	 * to be written so that the update can be done.
12271 	 */
12272 	if (waitfor == 0) {
12273 		FREE_LOCK(ump);
12274 		return;
12275 	}
12276 retry:
12277 	if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) {
12278 		FREE_LOCK(ump);
12279 		return;
12280 	}
12281 	ibp = inodedep->id_bmsafemap->sm_buf;
12282 	ibp = getdirtybuf(ibp, LOCK_PTR(ump), MNT_WAIT);
12283 	if (ibp == NULL) {
12284 		/*
12285 		 * If ibp came back as NULL, the dependency could have been
12286 		 * freed while we slept.  Look it up again, and check to see
12287 		 * that it has completed.
12288 		 */
12289 		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
12290 			goto retry;
12291 		FREE_LOCK(ump);
12292 		return;
12293 	}
12294 	FREE_LOCK(ump);
12295 	if ((error = bwrite(ibp)) != 0)
12296 		softdep_error("softdep_update_inodeblock: bwrite", error);
12297 }
12298 
12299 /*
12300  * Merge the a new inode dependency list (such as id_newinoupdt) into an
12301  * old inode dependency list (such as id_inoupdt). This routine must be
12302  * called with splbio interrupts blocked.
12303  */
12304 static void
12305 merge_inode_lists(newlisthead, oldlisthead)
12306 	struct allocdirectlst *newlisthead;
12307 	struct allocdirectlst *oldlisthead;
12308 {
12309 	struct allocdirect *listadp, *newadp;
12310 
12311 	newadp = TAILQ_FIRST(newlisthead);
12312 	for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) {
12313 		if (listadp->ad_offset < newadp->ad_offset) {
12314 			listadp = TAILQ_NEXT(listadp, ad_next);
12315 			continue;
12316 		}
12317 		TAILQ_REMOVE(newlisthead, newadp, ad_next);
12318 		TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
12319 		if (listadp->ad_offset == newadp->ad_offset) {
12320 			allocdirect_merge(oldlisthead, newadp,
12321 			    listadp);
12322 			listadp = newadp;
12323 		}
12324 		newadp = TAILQ_FIRST(newlisthead);
12325 	}
12326 	while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) {
12327 		TAILQ_REMOVE(newlisthead, newadp, ad_next);
12328 		TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next);
12329 	}
12330 }
12331 
12332 /*
12333  * If we are doing an fsync, then we must ensure that any directory
12334  * entries for the inode have been written after the inode gets to disk.
12335  */
12336 int
12337 softdep_fsync(vp)
12338 	struct vnode *vp;	/* the "in_core" copy of the inode */
12339 {
12340 	struct inodedep *inodedep;
12341 	struct pagedep *pagedep;
12342 	struct inoref *inoref;
12343 	struct ufsmount *ump;
12344 	struct worklist *wk;
12345 	struct diradd *dap;
12346 	struct mount *mp;
12347 	struct vnode *pvp;
12348 	struct inode *ip;
12349 	struct buf *bp;
12350 	struct fs *fs;
12351 	struct thread *td = curthread;
12352 	int error, flushparent, pagedep_new_block;
12353 	ino_t parentino;
12354 	ufs_lbn_t lbn;
12355 
12356 	ip = VTOI(vp);
12357 	mp = vp->v_mount;
12358 	ump = VFSTOUFS(mp);
12359 	fs = ump->um_fs;
12360 	if (MOUNTEDSOFTDEP(mp) == 0)
12361 		return (0);
12362 	ACQUIRE_LOCK(ump);
12363 restart:
12364 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
12365 		FREE_LOCK(ump);
12366 		return (0);
12367 	}
12368 	TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12369 		if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12370 		    == DEPCOMPLETE) {
12371 			jwait(&inoref->if_list, MNT_WAIT);
12372 			goto restart;
12373 		}
12374 	}
12375 	if (!LIST_EMPTY(&inodedep->id_inowait) ||
12376 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
12377 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
12378 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
12379 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt))
12380 		panic("softdep_fsync: pending ops %p", inodedep);
12381 	for (error = 0, flushparent = 0; ; ) {
12382 		if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
12383 			break;
12384 		if (wk->wk_type != D_DIRADD)
12385 			panic("softdep_fsync: Unexpected type %s",
12386 			    TYPENAME(wk->wk_type));
12387 		dap = WK_DIRADD(wk);
12388 		/*
12389 		 * Flush our parent if this directory entry has a MKDIR_PARENT
12390 		 * dependency or is contained in a newly allocated block.
12391 		 */
12392 		if (dap->da_state & DIRCHG)
12393 			pagedep = dap->da_previous->dm_pagedep;
12394 		else
12395 			pagedep = dap->da_pagedep;
12396 		parentino = pagedep->pd_ino;
12397 		lbn = pagedep->pd_lbn;
12398 		if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE)
12399 			panic("softdep_fsync: dirty");
12400 		if ((dap->da_state & MKDIR_PARENT) ||
12401 		    (pagedep->pd_state & NEWBLOCK))
12402 			flushparent = 1;
12403 		else
12404 			flushparent = 0;
12405 		/*
12406 		 * If we are being fsync'ed as part of vgone'ing this vnode,
12407 		 * then we will not be able to release and recover the
12408 		 * vnode below, so we just have to give up on writing its
12409 		 * directory entry out. It will eventually be written, just
12410 		 * not now, but then the user was not asking to have it
12411 		 * written, so we are not breaking any promises.
12412 		 */
12413 		if (vp->v_iflag & VI_DOOMED)
12414 			break;
12415 		/*
12416 		 * We prevent deadlock by always fetching inodes from the
12417 		 * root, moving down the directory tree. Thus, when fetching
12418 		 * our parent directory, we first try to get the lock. If
12419 		 * that fails, we must unlock ourselves before requesting
12420 		 * the lock on our parent. See the comment in ufs_lookup
12421 		 * for details on possible races.
12422 		 */
12423 		FREE_LOCK(ump);
12424 		if (ffs_vgetf(mp, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp,
12425 		    FFSV_FORCEINSMQ)) {
12426 			error = vfs_busy(mp, MBF_NOWAIT);
12427 			if (error != 0) {
12428 				vfs_ref(mp);
12429 				VOP_UNLOCK(vp, 0);
12430 				error = vfs_busy(mp, 0);
12431 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
12432 				vfs_rel(mp);
12433 				if (error != 0)
12434 					return (ENOENT);
12435 				if (vp->v_iflag & VI_DOOMED) {
12436 					vfs_unbusy(mp);
12437 					return (ENOENT);
12438 				}
12439 			}
12440 			VOP_UNLOCK(vp, 0);
12441 			error = ffs_vgetf(mp, parentino, LK_EXCLUSIVE,
12442 			    &pvp, FFSV_FORCEINSMQ);
12443 			vfs_unbusy(mp);
12444 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
12445 			if (vp->v_iflag & VI_DOOMED) {
12446 				if (error == 0)
12447 					vput(pvp);
12448 				error = ENOENT;
12449 			}
12450 			if (error != 0)
12451 				return (error);
12452 		}
12453 		/*
12454 		 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps
12455 		 * that are contained in direct blocks will be resolved by
12456 		 * doing a ffs_update. Pagedeps contained in indirect blocks
12457 		 * may require a complete sync'ing of the directory. So, we
12458 		 * try the cheap and fast ffs_update first, and if that fails,
12459 		 * then we do the slower ffs_syncvnode of the directory.
12460 		 */
12461 		if (flushparent) {
12462 			int locked;
12463 
12464 			if ((error = ffs_update(pvp, 1)) != 0) {
12465 				vput(pvp);
12466 				return (error);
12467 			}
12468 			ACQUIRE_LOCK(ump);
12469 			locked = 1;
12470 			if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) {
12471 				if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) {
12472 					if (wk->wk_type != D_DIRADD)
12473 						panic("softdep_fsync: Unexpected type %s",
12474 						      TYPENAME(wk->wk_type));
12475 					dap = WK_DIRADD(wk);
12476 					if (dap->da_state & DIRCHG)
12477 						pagedep = dap->da_previous->dm_pagedep;
12478 					else
12479 						pagedep = dap->da_pagedep;
12480 					pagedep_new_block = pagedep->pd_state & NEWBLOCK;
12481 					FREE_LOCK(ump);
12482 					locked = 0;
12483 					if (pagedep_new_block && (error =
12484 					    ffs_syncvnode(pvp, MNT_WAIT, 0))) {
12485 						vput(pvp);
12486 						return (error);
12487 					}
12488 				}
12489 			}
12490 			if (locked)
12491 				FREE_LOCK(ump);
12492 		}
12493 		/*
12494 		 * Flush directory page containing the inode's name.
12495 		 */
12496 		error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred,
12497 		    &bp);
12498 		if (error == 0)
12499 			error = bwrite(bp);
12500 		else
12501 			brelse(bp);
12502 		vput(pvp);
12503 		if (error != 0)
12504 			return (error);
12505 		ACQUIRE_LOCK(ump);
12506 		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
12507 			break;
12508 	}
12509 	FREE_LOCK(ump);
12510 	return (0);
12511 }
12512 
12513 /*
12514  * Flush all the dirty bitmaps associated with the block device
12515  * before flushing the rest of the dirty blocks so as to reduce
12516  * the number of dependencies that will have to be rolled back.
12517  *
12518  * XXX Unused?
12519  */
12520 void
12521 softdep_fsync_mountdev(vp)
12522 	struct vnode *vp;
12523 {
12524 	struct buf *bp, *nbp;
12525 	struct worklist *wk;
12526 	struct bufobj *bo;
12527 
12528 	if (!vn_isdisk(vp, NULL))
12529 		panic("softdep_fsync_mountdev: vnode not a disk");
12530 	bo = &vp->v_bufobj;
12531 restart:
12532 	BO_LOCK(bo);
12533 	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
12534 		/*
12535 		 * If it is already scheduled, skip to the next buffer.
12536 		 */
12537 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
12538 			continue;
12539 
12540 		if ((bp->b_flags & B_DELWRI) == 0)
12541 			panic("softdep_fsync_mountdev: not dirty");
12542 		/*
12543 		 * We are only interested in bitmaps with outstanding
12544 		 * dependencies.
12545 		 */
12546 		if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
12547 		    wk->wk_type != D_BMSAFEMAP ||
12548 		    (bp->b_vflags & BV_BKGRDINPROG)) {
12549 			BUF_UNLOCK(bp);
12550 			continue;
12551 		}
12552 		BO_UNLOCK(bo);
12553 		bremfree(bp);
12554 		(void) bawrite(bp);
12555 		goto restart;
12556 	}
12557 	drain_output(vp);
12558 	BO_UNLOCK(bo);
12559 }
12560 
12561 /*
12562  * Sync all cylinder groups that were dirty at the time this function is
12563  * called.  Newly dirtied cgs will be inserted before the sentinel.  This
12564  * is used to flush freedep activity that may be holding up writes to a
12565  * indirect block.
12566  */
12567 static int
12568 sync_cgs(mp, waitfor)
12569 	struct mount *mp;
12570 	int waitfor;
12571 {
12572 	struct bmsafemap *bmsafemap;
12573 	struct bmsafemap *sentinel;
12574 	struct ufsmount *ump;
12575 	struct buf *bp;
12576 	int error;
12577 
12578 	sentinel = malloc(sizeof(*sentinel), M_BMSAFEMAP, M_ZERO | M_WAITOK);
12579 	sentinel->sm_cg = -1;
12580 	ump = VFSTOUFS(mp);
12581 	error = 0;
12582 	ACQUIRE_LOCK(ump);
12583 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, sentinel, sm_next);
12584 	for (bmsafemap = LIST_NEXT(sentinel, sm_next); bmsafemap != NULL;
12585 	    bmsafemap = LIST_NEXT(sentinel, sm_next)) {
12586 		/* Skip sentinels and cgs with no work to release. */
12587 		if (bmsafemap->sm_cg == -1 ||
12588 		    (LIST_EMPTY(&bmsafemap->sm_freehd) &&
12589 		    LIST_EMPTY(&bmsafemap->sm_freewr))) {
12590 			LIST_REMOVE(sentinel, sm_next);
12591 			LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next);
12592 			continue;
12593 		}
12594 		/*
12595 		 * If we don't get the lock and we're waiting try again, if
12596 		 * not move on to the next buf and try to sync it.
12597 		 */
12598 		bp = getdirtybuf(bmsafemap->sm_buf, LOCK_PTR(ump), waitfor);
12599 		if (bp == NULL && waitfor == MNT_WAIT)
12600 			continue;
12601 		LIST_REMOVE(sentinel, sm_next);
12602 		LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next);
12603 		if (bp == NULL)
12604 			continue;
12605 		FREE_LOCK(ump);
12606 		if (waitfor == MNT_NOWAIT)
12607 			bawrite(bp);
12608 		else
12609 			error = bwrite(bp);
12610 		ACQUIRE_LOCK(ump);
12611 		if (error)
12612 			break;
12613 	}
12614 	LIST_REMOVE(sentinel, sm_next);
12615 	FREE_LOCK(ump);
12616 	free(sentinel, M_BMSAFEMAP);
12617 	return (error);
12618 }
12619 
12620 /*
12621  * This routine is called when we are trying to synchronously flush a
12622  * file. This routine must eliminate any filesystem metadata dependencies
12623  * so that the syncing routine can succeed.
12624  */
12625 int
12626 softdep_sync_metadata(struct vnode *vp)
12627 {
12628 	struct inode *ip;
12629 	int error;
12630 
12631 	ip = VTOI(vp);
12632 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
12633 	    ("softdep_sync_metadata called on non-softdep filesystem"));
12634 	/*
12635 	 * Ensure that any direct block dependencies have been cleared,
12636 	 * truncations are started, and inode references are journaled.
12637 	 */
12638 	ACQUIRE_LOCK(VFSTOUFS(vp->v_mount));
12639 	/*
12640 	 * Write all journal records to prevent rollbacks on devvp.
12641 	 */
12642 	if (vp->v_type == VCHR)
12643 		softdep_flushjournal(vp->v_mount);
12644 	error = flush_inodedep_deps(vp, vp->v_mount, ip->i_number);
12645 	/*
12646 	 * Ensure that all truncates are written so we won't find deps on
12647 	 * indirect blocks.
12648 	 */
12649 	process_truncates(vp);
12650 	FREE_LOCK(VFSTOUFS(vp->v_mount));
12651 
12652 	return (error);
12653 }
12654 
12655 /*
12656  * This routine is called when we are attempting to sync a buf with
12657  * dependencies.  If waitfor is MNT_NOWAIT it attempts to schedule any
12658  * other IO it can but returns EBUSY if the buffer is not yet able to
12659  * be written.  Dependencies which will not cause rollbacks will always
12660  * return 0.
12661  */
12662 int
12663 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
12664 {
12665 	struct indirdep *indirdep;
12666 	struct pagedep *pagedep;
12667 	struct allocindir *aip;
12668 	struct newblk *newblk;
12669 	struct ufsmount *ump;
12670 	struct buf *nbp;
12671 	struct worklist *wk;
12672 	int i, error;
12673 
12674 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
12675 	    ("softdep_sync_buf called on non-softdep filesystem"));
12676 	/*
12677 	 * For VCHR we just don't want to force flush any dependencies that
12678 	 * will cause rollbacks.
12679 	 */
12680 	if (vp->v_type == VCHR) {
12681 		if (waitfor == MNT_NOWAIT && softdep_count_dependencies(bp, 0))
12682 			return (EBUSY);
12683 		return (0);
12684 	}
12685 	ump = VFSTOUFS(vp->v_mount);
12686 	ACQUIRE_LOCK(ump);
12687 	/*
12688 	 * As we hold the buffer locked, none of its dependencies
12689 	 * will disappear.
12690 	 */
12691 	error = 0;
12692 top:
12693 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
12694 		switch (wk->wk_type) {
12695 
12696 		case D_ALLOCDIRECT:
12697 		case D_ALLOCINDIR:
12698 			newblk = WK_NEWBLK(wk);
12699 			if (newblk->nb_jnewblk != NULL) {
12700 				if (waitfor == MNT_NOWAIT) {
12701 					error = EBUSY;
12702 					goto out_unlock;
12703 				}
12704 				jwait(&newblk->nb_jnewblk->jn_list, waitfor);
12705 				goto top;
12706 			}
12707 			if (newblk->nb_state & DEPCOMPLETE ||
12708 			    waitfor == MNT_NOWAIT)
12709 				continue;
12710 			nbp = newblk->nb_bmsafemap->sm_buf;
12711 			nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor);
12712 			if (nbp == NULL)
12713 				goto top;
12714 			FREE_LOCK(ump);
12715 			if ((error = bwrite(nbp)) != 0)
12716 				goto out;
12717 			ACQUIRE_LOCK(ump);
12718 			continue;
12719 
12720 		case D_INDIRDEP:
12721 			indirdep = WK_INDIRDEP(wk);
12722 			if (waitfor == MNT_NOWAIT) {
12723 				if (!TAILQ_EMPTY(&indirdep->ir_trunc) ||
12724 				    !LIST_EMPTY(&indirdep->ir_deplisthd)) {
12725 					error = EBUSY;
12726 					goto out_unlock;
12727 				}
12728 			}
12729 			if (!TAILQ_EMPTY(&indirdep->ir_trunc))
12730 				panic("softdep_sync_buf: truncation pending.");
12731 		restart:
12732 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
12733 				newblk = (struct newblk *)aip;
12734 				if (newblk->nb_jnewblk != NULL) {
12735 					jwait(&newblk->nb_jnewblk->jn_list,
12736 					    waitfor);
12737 					goto restart;
12738 				}
12739 				if (newblk->nb_state & DEPCOMPLETE)
12740 					continue;
12741 				nbp = newblk->nb_bmsafemap->sm_buf;
12742 				nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor);
12743 				if (nbp == NULL)
12744 					goto restart;
12745 				FREE_LOCK(ump);
12746 				if ((error = bwrite(nbp)) != 0)
12747 					goto out;
12748 				ACQUIRE_LOCK(ump);
12749 				goto restart;
12750 			}
12751 			continue;
12752 
12753 		case D_PAGEDEP:
12754 			/*
12755 			 * Only flush directory entries in synchronous passes.
12756 			 */
12757 			if (waitfor != MNT_WAIT) {
12758 				error = EBUSY;
12759 				goto out_unlock;
12760 			}
12761 			/*
12762 			 * While syncing snapshots, we must allow recursive
12763 			 * lookups.
12764 			 */
12765 			BUF_AREC(bp);
12766 			/*
12767 			 * We are trying to sync a directory that may
12768 			 * have dependencies on both its own metadata
12769 			 * and/or dependencies on the inodes of any
12770 			 * recently allocated files. We walk its diradd
12771 			 * lists pushing out the associated inode.
12772 			 */
12773 			pagedep = WK_PAGEDEP(wk);
12774 			for (i = 0; i < DAHASHSZ; i++) {
12775 				if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0)
12776 					continue;
12777 				if ((error = flush_pagedep_deps(vp, wk->wk_mp,
12778 				    &pagedep->pd_diraddhd[i]))) {
12779 					BUF_NOREC(bp);
12780 					goto out_unlock;
12781 				}
12782 			}
12783 			BUF_NOREC(bp);
12784 			continue;
12785 
12786 		case D_FREEWORK:
12787 		case D_FREEDEP:
12788 		case D_JSEGDEP:
12789 		case D_JNEWBLK:
12790 			continue;
12791 
12792 		default:
12793 			panic("softdep_sync_buf: Unknown type %s",
12794 			    TYPENAME(wk->wk_type));
12795 			/* NOTREACHED */
12796 		}
12797 	}
12798 out_unlock:
12799 	FREE_LOCK(ump);
12800 out:
12801 	return (error);
12802 }
12803 
12804 /*
12805  * Flush the dependencies associated with an inodedep.
12806  * Called with splbio blocked.
12807  */
12808 static int
12809 flush_inodedep_deps(vp, mp, ino)
12810 	struct vnode *vp;
12811 	struct mount *mp;
12812 	ino_t ino;
12813 {
12814 	struct inodedep *inodedep;
12815 	struct inoref *inoref;
12816 	struct ufsmount *ump;
12817 	int error, waitfor;
12818 
12819 	/*
12820 	 * This work is done in two passes. The first pass grabs most
12821 	 * of the buffers and begins asynchronously writing them. The
12822 	 * only way to wait for these asynchronous writes is to sleep
12823 	 * on the filesystem vnode which may stay busy for a long time
12824 	 * if the filesystem is active. So, instead, we make a second
12825 	 * pass over the dependencies blocking on each write. In the
12826 	 * usual case we will be blocking against a write that we
12827 	 * initiated, so when it is done the dependency will have been
12828 	 * resolved. Thus the second pass is expected to end quickly.
12829 	 * We give a brief window at the top of the loop to allow
12830 	 * any pending I/O to complete.
12831 	 */
12832 	ump = VFSTOUFS(mp);
12833 	LOCK_OWNED(ump);
12834 	for (error = 0, waitfor = MNT_NOWAIT; ; ) {
12835 		if (error)
12836 			return (error);
12837 		FREE_LOCK(ump);
12838 		ACQUIRE_LOCK(ump);
12839 restart:
12840 		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
12841 			return (0);
12842 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12843 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12844 			    == DEPCOMPLETE) {
12845 				jwait(&inoref->if_list, MNT_WAIT);
12846 				goto restart;
12847 			}
12848 		}
12849 		if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) ||
12850 		    flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) ||
12851 		    flush_deplist(&inodedep->id_extupdt, waitfor, &error) ||
12852 		    flush_deplist(&inodedep->id_newextupdt, waitfor, &error))
12853 			continue;
12854 		/*
12855 		 * If pass2, we are done, otherwise do pass 2.
12856 		 */
12857 		if (waitfor == MNT_WAIT)
12858 			break;
12859 		waitfor = MNT_WAIT;
12860 	}
12861 	/*
12862 	 * Try freeing inodedep in case all dependencies have been removed.
12863 	 */
12864 	if (inodedep_lookup(mp, ino, 0, &inodedep) != 0)
12865 		(void) free_inodedep(inodedep);
12866 	return (0);
12867 }
12868 
12869 /*
12870  * Flush an inode dependency list.
12871  * Called with splbio blocked.
12872  */
12873 static int
12874 flush_deplist(listhead, waitfor, errorp)
12875 	struct allocdirectlst *listhead;
12876 	int waitfor;
12877 	int *errorp;
12878 {
12879 	struct allocdirect *adp;
12880 	struct newblk *newblk;
12881 	struct ufsmount *ump;
12882 	struct buf *bp;
12883 
12884 	if ((adp = TAILQ_FIRST(listhead)) == NULL)
12885 		return (0);
12886 	ump = VFSTOUFS(adp->ad_list.wk_mp);
12887 	LOCK_OWNED(ump);
12888 	TAILQ_FOREACH(adp, listhead, ad_next) {
12889 		newblk = (struct newblk *)adp;
12890 		if (newblk->nb_jnewblk != NULL) {
12891 			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
12892 			return (1);
12893 		}
12894 		if (newblk->nb_state & DEPCOMPLETE)
12895 			continue;
12896 		bp = newblk->nb_bmsafemap->sm_buf;
12897 		bp = getdirtybuf(bp, LOCK_PTR(ump), waitfor);
12898 		if (bp == NULL) {
12899 			if (waitfor == MNT_NOWAIT)
12900 				continue;
12901 			return (1);
12902 		}
12903 		FREE_LOCK(ump);
12904 		if (waitfor == MNT_NOWAIT)
12905 			bawrite(bp);
12906 		else
12907 			*errorp = bwrite(bp);
12908 		ACQUIRE_LOCK(ump);
12909 		return (1);
12910 	}
12911 	return (0);
12912 }
12913 
12914 /*
12915  * Flush dependencies associated with an allocdirect block.
12916  */
12917 static int
12918 flush_newblk_dep(vp, mp, lbn)
12919 	struct vnode *vp;
12920 	struct mount *mp;
12921 	ufs_lbn_t lbn;
12922 {
12923 	struct newblk *newblk;
12924 	struct ufsmount *ump;
12925 	struct bufobj *bo;
12926 	struct inode *ip;
12927 	struct buf *bp;
12928 	ufs2_daddr_t blkno;
12929 	int error;
12930 
12931 	error = 0;
12932 	bo = &vp->v_bufobj;
12933 	ip = VTOI(vp);
12934 	blkno = DIP(ip, i_db[lbn]);
12935 	if (blkno == 0)
12936 		panic("flush_newblk_dep: Missing block");
12937 	ump = VFSTOUFS(mp);
12938 	ACQUIRE_LOCK(ump);
12939 	/*
12940 	 * Loop until all dependencies related to this block are satisfied.
12941 	 * We must be careful to restart after each sleep in case a write
12942 	 * completes some part of this process for us.
12943 	 */
12944 	for (;;) {
12945 		if (newblk_lookup(mp, blkno, 0, &newblk) == 0) {
12946 			FREE_LOCK(ump);
12947 			break;
12948 		}
12949 		if (newblk->nb_list.wk_type != D_ALLOCDIRECT)
12950 			panic("flush_newblk_deps: Bad newblk %p", newblk);
12951 		/*
12952 		 * Flush the journal.
12953 		 */
12954 		if (newblk->nb_jnewblk != NULL) {
12955 			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
12956 			continue;
12957 		}
12958 		/*
12959 		 * Write the bitmap dependency.
12960 		 */
12961 		if ((newblk->nb_state & DEPCOMPLETE) == 0) {
12962 			bp = newblk->nb_bmsafemap->sm_buf;
12963 			bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT);
12964 			if (bp == NULL)
12965 				continue;
12966 			FREE_LOCK(ump);
12967 			error = bwrite(bp);
12968 			if (error)
12969 				break;
12970 			ACQUIRE_LOCK(ump);
12971 			continue;
12972 		}
12973 		/*
12974 		 * Write the buffer.
12975 		 */
12976 		FREE_LOCK(ump);
12977 		BO_LOCK(bo);
12978 		bp = gbincore(bo, lbn);
12979 		if (bp != NULL) {
12980 			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
12981 			    LK_INTERLOCK, BO_LOCKPTR(bo));
12982 			if (error == ENOLCK) {
12983 				ACQUIRE_LOCK(ump);
12984 				error = 0;
12985 				continue; /* Slept, retry */
12986 			}
12987 			if (error != 0)
12988 				break;	/* Failed */
12989 			if (bp->b_flags & B_DELWRI) {
12990 				bremfree(bp);
12991 				error = bwrite(bp);
12992 				if (error)
12993 					break;
12994 			} else
12995 				BUF_UNLOCK(bp);
12996 		} else
12997 			BO_UNLOCK(bo);
12998 		/*
12999 		 * We have to wait for the direct pointers to
13000 		 * point at the newdirblk before the dependency
13001 		 * will go away.
13002 		 */
13003 		error = ffs_update(vp, 1);
13004 		if (error)
13005 			break;
13006 		ACQUIRE_LOCK(ump);
13007 	}
13008 	return (error);
13009 }
13010 
13011 /*
13012  * Eliminate a pagedep dependency by flushing out all its diradd dependencies.
13013  * Called with splbio blocked.
13014  */
13015 static int
13016 flush_pagedep_deps(pvp, mp, diraddhdp)
13017 	struct vnode *pvp;
13018 	struct mount *mp;
13019 	struct diraddhd *diraddhdp;
13020 {
13021 	struct inodedep *inodedep;
13022 	struct inoref *inoref;
13023 	struct ufsmount *ump;
13024 	struct diradd *dap;
13025 	struct vnode *vp;
13026 	int error = 0;
13027 	struct buf *bp;
13028 	ino_t inum;
13029 	struct diraddhd unfinished;
13030 
13031 	LIST_INIT(&unfinished);
13032 	ump = VFSTOUFS(mp);
13033 	LOCK_OWNED(ump);
13034 restart:
13035 	while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
13036 		/*
13037 		 * Flush ourselves if this directory entry
13038 		 * has a MKDIR_PARENT dependency.
13039 		 */
13040 		if (dap->da_state & MKDIR_PARENT) {
13041 			FREE_LOCK(ump);
13042 			if ((error = ffs_update(pvp, 1)) != 0)
13043 				break;
13044 			ACQUIRE_LOCK(ump);
13045 			/*
13046 			 * If that cleared dependencies, go on to next.
13047 			 */
13048 			if (dap != LIST_FIRST(diraddhdp))
13049 				continue;
13050 			/*
13051 			 * All MKDIR_PARENT dependencies and all the
13052 			 * NEWBLOCK pagedeps that are contained in direct
13053 			 * blocks were resolved by doing above ffs_update.
13054 			 * Pagedeps contained in indirect blocks may
13055 			 * require a complete sync'ing of the directory.
13056 			 * We are in the midst of doing a complete sync,
13057 			 * so if they are not resolved in this pass we
13058 			 * defer them for now as they will be sync'ed by
13059 			 * our caller shortly.
13060 			 */
13061 			LIST_REMOVE(dap, da_pdlist);
13062 			LIST_INSERT_HEAD(&unfinished, dap, da_pdlist);
13063 			continue;
13064 		}
13065 		/*
13066 		 * A newly allocated directory must have its "." and
13067 		 * ".." entries written out before its name can be
13068 		 * committed in its parent.
13069 		 */
13070 		inum = dap->da_newinum;
13071 		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
13072 			panic("flush_pagedep_deps: lost inode1");
13073 		/*
13074 		 * Wait for any pending journal adds to complete so we don't
13075 		 * cause rollbacks while syncing.
13076 		 */
13077 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
13078 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
13079 			    == DEPCOMPLETE) {
13080 				jwait(&inoref->if_list, MNT_WAIT);
13081 				goto restart;
13082 			}
13083 		}
13084 		if (dap->da_state & MKDIR_BODY) {
13085 			FREE_LOCK(ump);
13086 			if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
13087 			    FFSV_FORCEINSMQ)))
13088 				break;
13089 			error = flush_newblk_dep(vp, mp, 0);
13090 			/*
13091 			 * If we still have the dependency we might need to
13092 			 * update the vnode to sync the new link count to
13093 			 * disk.
13094 			 */
13095 			if (error == 0 && dap == LIST_FIRST(diraddhdp))
13096 				error = ffs_update(vp, 1);
13097 			vput(vp);
13098 			if (error != 0)
13099 				break;
13100 			ACQUIRE_LOCK(ump);
13101 			/*
13102 			 * If that cleared dependencies, go on to next.
13103 			 */
13104 			if (dap != LIST_FIRST(diraddhdp))
13105 				continue;
13106 			if (dap->da_state & MKDIR_BODY) {
13107 				inodedep_lookup(UFSTOVFS(ump), inum, 0,
13108 				    &inodedep);
13109 				panic("flush_pagedep_deps: MKDIR_BODY "
13110 				    "inodedep %p dap %p vp %p",
13111 				    inodedep, dap, vp);
13112 			}
13113 		}
13114 		/*
13115 		 * Flush the inode on which the directory entry depends.
13116 		 * Having accounted for MKDIR_PARENT and MKDIR_BODY above,
13117 		 * the only remaining dependency is that the updated inode
13118 		 * count must get pushed to disk. The inode has already
13119 		 * been pushed into its inode buffer (via VOP_UPDATE) at
13120 		 * the time of the reference count change. So we need only
13121 		 * locate that buffer, ensure that there will be no rollback
13122 		 * caused by a bitmap dependency, then write the inode buffer.
13123 		 */
13124 retry:
13125 		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
13126 			panic("flush_pagedep_deps: lost inode");
13127 		/*
13128 		 * If the inode still has bitmap dependencies,
13129 		 * push them to disk.
13130 		 */
13131 		if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) {
13132 			bp = inodedep->id_bmsafemap->sm_buf;
13133 			bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT);
13134 			if (bp == NULL)
13135 				goto retry;
13136 			FREE_LOCK(ump);
13137 			if ((error = bwrite(bp)) != 0)
13138 				break;
13139 			ACQUIRE_LOCK(ump);
13140 			if (dap != LIST_FIRST(diraddhdp))
13141 				continue;
13142 		}
13143 		/*
13144 		 * If the inode is still sitting in a buffer waiting
13145 		 * to be written or waiting for the link count to be
13146 		 * adjusted update it here to flush it to disk.
13147 		 */
13148 		if (dap == LIST_FIRST(diraddhdp)) {
13149 			FREE_LOCK(ump);
13150 			if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
13151 			    FFSV_FORCEINSMQ)))
13152 				break;
13153 			error = ffs_update(vp, 1);
13154 			vput(vp);
13155 			if (error)
13156 				break;
13157 			ACQUIRE_LOCK(ump);
13158 		}
13159 		/*
13160 		 * If we have failed to get rid of all the dependencies
13161 		 * then something is seriously wrong.
13162 		 */
13163 		if (dap == LIST_FIRST(diraddhdp)) {
13164 			inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep);
13165 			panic("flush_pagedep_deps: failed to flush "
13166 			    "inodedep %p ino %ju dap %p",
13167 			    inodedep, (uintmax_t)inum, dap);
13168 		}
13169 	}
13170 	if (error)
13171 		ACQUIRE_LOCK(ump);
13172 	while ((dap = LIST_FIRST(&unfinished)) != NULL) {
13173 		LIST_REMOVE(dap, da_pdlist);
13174 		LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist);
13175 	}
13176 	return (error);
13177 }
13178 
13179 /*
13180  * A large burst of file addition or deletion activity can drive the
13181  * memory load excessively high. First attempt to slow things down
13182  * using the techniques below. If that fails, this routine requests
13183  * the offending operations to fall back to running synchronously
13184  * until the memory load returns to a reasonable level.
13185  */
13186 int
13187 softdep_slowdown(vp)
13188 	struct vnode *vp;
13189 {
13190 	struct ufsmount *ump;
13191 	int jlow;
13192 	int max_softdeps_hard;
13193 
13194 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
13195 	    ("softdep_slowdown called on non-softdep filesystem"));
13196 	ump = VFSTOUFS(vp->v_mount);
13197 	ACQUIRE_LOCK(ump);
13198 	jlow = 0;
13199 	/*
13200 	 * Check for journal space if needed.
13201 	 */
13202 	if (DOINGSUJ(vp)) {
13203 		if (journal_space(ump, 0) == 0)
13204 			jlow = 1;
13205 	}
13206 	/*
13207 	 * If the system is under its limits and our filesystem is
13208 	 * not responsible for more than our share of the usage and
13209 	 * we are not low on journal space, then no need to slow down.
13210 	 */
13211 	max_softdeps_hard = max_softdeps * 11 / 10;
13212 	if (dep_current[D_DIRREM] < max_softdeps_hard / 2 &&
13213 	    dep_current[D_INODEDEP] < max_softdeps_hard &&
13214 	    dep_current[D_INDIRDEP] < max_softdeps_hard / 1000 &&
13215 	    dep_current[D_FREEBLKS] < max_softdeps_hard && jlow == 0 &&
13216 	    ump->softdep_curdeps[D_DIRREM] <
13217 	    (max_softdeps_hard / 2) / stat_flush_threads &&
13218 	    ump->softdep_curdeps[D_INODEDEP] <
13219 	    max_softdeps_hard / stat_flush_threads &&
13220 	    ump->softdep_curdeps[D_INDIRDEP] <
13221 	    (max_softdeps_hard / 1000) / stat_flush_threads &&
13222 	    ump->softdep_curdeps[D_FREEBLKS] <
13223 	    max_softdeps_hard / stat_flush_threads) {
13224 		FREE_LOCK(ump);
13225   		return (0);
13226 	}
13227 	/*
13228 	 * If the journal is low or our filesystem is over its limit
13229 	 * then speedup the cleanup.
13230 	 */
13231 	if (ump->softdep_curdeps[D_INDIRDEP] <
13232 	    (max_softdeps_hard / 1000) / stat_flush_threads || jlow)
13233 		softdep_speedup(ump);
13234 	stat_sync_limit_hit += 1;
13235 	FREE_LOCK(ump);
13236 	/*
13237 	 * We only slow down the rate at which new dependencies are
13238 	 * generated if we are not using journaling. With journaling,
13239 	 * the cleanup should always be sufficient to keep things
13240 	 * under control.
13241 	 */
13242 	if (DOINGSUJ(vp))
13243 		return (0);
13244 	return (1);
13245 }
13246 
13247 /*
13248  * Called by the allocation routines when they are about to fail
13249  * in the hope that we can free up the requested resource (inodes
13250  * or disk space).
13251  *
13252  * First check to see if the work list has anything on it. If it has,
13253  * clean up entries until we successfully free the requested resource.
13254  * Because this process holds inodes locked, we cannot handle any remove
13255  * requests that might block on a locked inode as that could lead to
13256  * deadlock. If the worklist yields none of the requested resource,
13257  * start syncing out vnodes to free up the needed space.
13258  */
13259 int
13260 softdep_request_cleanup(fs, vp, cred, resource)
13261 	struct fs *fs;
13262 	struct vnode *vp;
13263 	struct ucred *cred;
13264 	int resource;
13265 {
13266 	struct ufsmount *ump;
13267 	struct mount *mp;
13268 	struct vnode *lvp, *mvp;
13269 	long starttime;
13270 	ufs2_daddr_t needed;
13271 	int error;
13272 
13273 	/*
13274 	 * If we are being called because of a process doing a
13275 	 * copy-on-write, then it is not safe to process any
13276 	 * worklist items as we will recurse into the copyonwrite
13277 	 * routine.  This will result in an incoherent snapshot.
13278 	 * If the vnode that we hold is a snapshot, we must avoid
13279 	 * handling other resources that could cause deadlock.
13280 	 */
13281 	if ((curthread->td_pflags & TDP_COWINPROGRESS) || IS_SNAPSHOT(VTOI(vp)))
13282 		return (0);
13283 
13284 	if (resource == FLUSH_BLOCKS_WAIT)
13285 		stat_cleanup_blkrequests += 1;
13286 	else
13287 		stat_cleanup_inorequests += 1;
13288 
13289 	mp = vp->v_mount;
13290 	ump = VFSTOUFS(mp);
13291 	mtx_assert(UFS_MTX(ump), MA_OWNED);
13292 	UFS_UNLOCK(ump);
13293 	error = ffs_update(vp, 1);
13294 	if (error != 0 || MOUNTEDSOFTDEP(mp) == 0) {
13295 		UFS_LOCK(ump);
13296 		return (0);
13297 	}
13298 	/*
13299 	 * If we are in need of resources, start by cleaning up
13300 	 * any block removals associated with our inode.
13301 	 */
13302 	ACQUIRE_LOCK(ump);
13303 	process_removes(vp);
13304 	process_truncates(vp);
13305 	FREE_LOCK(ump);
13306 	/*
13307 	 * Now clean up at least as many resources as we will need.
13308 	 *
13309 	 * When requested to clean up inodes, the number that are needed
13310 	 * is set by the number of simultaneous writers (mnt_writeopcount)
13311 	 * plus a bit of slop (2) in case some more writers show up while
13312 	 * we are cleaning.
13313 	 *
13314 	 * When requested to free up space, the amount of space that
13315 	 * we need is enough blocks to allocate a full-sized segment
13316 	 * (fs_contigsumsize). The number of such segments that will
13317 	 * be needed is set by the number of simultaneous writers
13318 	 * (mnt_writeopcount) plus a bit of slop (2) in case some more
13319 	 * writers show up while we are cleaning.
13320 	 *
13321 	 * Additionally, if we are unpriviledged and allocating space,
13322 	 * we need to ensure that we clean up enough blocks to get the
13323 	 * needed number of blocks over the threshold of the minimum
13324 	 * number of blocks required to be kept free by the filesystem
13325 	 * (fs_minfree).
13326 	 */
13327 	if (resource == FLUSH_INODES_WAIT) {
13328 		needed = vp->v_mount->mnt_writeopcount + 2;
13329 	} else if (resource == FLUSH_BLOCKS_WAIT) {
13330 		needed = (vp->v_mount->mnt_writeopcount + 2) *
13331 		    fs->fs_contigsumsize;
13332 		if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0))
13333 			needed += fragstoblks(fs,
13334 			    roundup((fs->fs_dsize * fs->fs_minfree / 100) -
13335 			    fs->fs_cstotal.cs_nffree, fs->fs_frag));
13336 	} else {
13337 		UFS_LOCK(ump);
13338 		printf("softdep_request_cleanup: Unknown resource type %d\n",
13339 		    resource);
13340 		return (0);
13341 	}
13342 	starttime = time_second;
13343 retry:
13344 	if ((resource == FLUSH_BLOCKS_WAIT && ump->softdep_on_worklist > 0 &&
13345 	    fs->fs_cstotal.cs_nbfree <= needed) ||
13346 	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
13347 	    fs->fs_cstotal.cs_nifree <= needed)) {
13348 		ACQUIRE_LOCK(ump);
13349 		if (ump->softdep_on_worklist > 0 &&
13350 		    process_worklist_item(UFSTOVFS(ump),
13351 		    ump->softdep_on_worklist, LK_NOWAIT) != 0)
13352 			stat_worklist_push += 1;
13353 		FREE_LOCK(ump);
13354 	}
13355 	/*
13356 	 * If we still need resources and there are no more worklist
13357 	 * entries to process to obtain them, we have to start flushing
13358 	 * the dirty vnodes to force the release of additional requests
13359 	 * to the worklist that we can then process to reap addition
13360 	 * resources. We walk the vnodes associated with the mount point
13361 	 * until we get the needed worklist requests that we can reap.
13362 	 */
13363 	if ((resource == FLUSH_BLOCKS_WAIT &&
13364 	     fs->fs_cstotal.cs_nbfree <= needed) ||
13365 	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
13366 	     fs->fs_cstotal.cs_nifree <= needed)) {
13367 		MNT_VNODE_FOREACH_ALL(lvp, mp, mvp) {
13368 			if (TAILQ_FIRST(&lvp->v_bufobj.bo_dirty.bv_hd) == 0) {
13369 				VI_UNLOCK(lvp);
13370 				continue;
13371 			}
13372 			if (vget(lvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT,
13373 			    curthread))
13374 				continue;
13375 			if (lvp->v_vflag & VV_NOSYNC) {	/* unlinked */
13376 				vput(lvp);
13377 				continue;
13378 			}
13379 			(void) ffs_syncvnode(lvp, MNT_NOWAIT, 0);
13380 			vput(lvp);
13381 		}
13382 		lvp = ump->um_devvp;
13383 		if (vn_lock(lvp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
13384 			VOP_FSYNC(lvp, MNT_NOWAIT, curthread);
13385 			VOP_UNLOCK(lvp, 0);
13386 		}
13387 		if (ump->softdep_on_worklist > 0) {
13388 			stat_cleanup_retries += 1;
13389 			goto retry;
13390 		}
13391 		stat_cleanup_failures += 1;
13392 	}
13393 	if (time_second - starttime > stat_cleanup_high_delay)
13394 		stat_cleanup_high_delay = time_second - starttime;
13395 	UFS_LOCK(ump);
13396 	return (1);
13397 }
13398 
13399 static bool
13400 softdep_excess_items(struct ufsmount *ump, int item)
13401 {
13402 
13403 	KASSERT(item >= 0 && item < D_LAST, ("item %d", item));
13404 	return (dep_current[item] > max_softdeps &&
13405 	    ump->softdep_curdeps[item] > max_softdeps /
13406 	    stat_flush_threads);
13407 }
13408 
13409 static void
13410 schedule_cleanup(struct mount *mp)
13411 {
13412 	struct ufsmount *ump;
13413 	struct thread *td;
13414 
13415 	ump = VFSTOUFS(mp);
13416 	LOCK_OWNED(ump);
13417 	FREE_LOCK(ump);
13418 	td = curthread;
13419 	if ((td->td_pflags & TDP_KTHREAD) != 0 &&
13420 	    (td->td_proc->p_flag2 & P2_AST_SU) == 0) {
13421 		/*
13422 		 * No ast is delivered to kernel threads, so nobody
13423 		 * would deref the mp.  Some kernel threads
13424 		 * explicitely check for AST, e.g. NFS daemon does
13425 		 * this in the serving loop.
13426 		 */
13427 		return;
13428 	}
13429 	if (td->td_su != NULL)
13430 		vfs_rel(td->td_su);
13431 	vfs_ref(mp);
13432 	td->td_su = mp;
13433 	thread_lock(td);
13434 	td->td_flags |= TDF_ASTPENDING;
13435 	thread_unlock(td);
13436 }
13437 
13438 static void
13439 softdep_ast_cleanup_proc(void)
13440 {
13441 	struct thread *td;
13442 	struct mount *mp;
13443 	struct ufsmount *ump;
13444 	int error;
13445 	bool req;
13446 
13447 	td = curthread;
13448 	while ((mp = td->td_su) != NULL) {
13449 		td->td_su = NULL;
13450 		error = vfs_busy(mp, MBF_NOWAIT);
13451 		vfs_rel(mp);
13452 		if (error != 0)
13453 			return;
13454 		if (ffs_own_mount(mp) && MOUNTEDSOFTDEP(mp)) {
13455 			ump = VFSTOUFS(mp);
13456 			for (;;) {
13457 				req = false;
13458 				ACQUIRE_LOCK(ump);
13459 				if (softdep_excess_items(ump, D_INODEDEP)) {
13460 					req = true;
13461 					request_cleanup(mp, FLUSH_INODES);
13462 				}
13463 				if (softdep_excess_items(ump, D_DIRREM)) {
13464 					req = true;
13465 					request_cleanup(mp, FLUSH_BLOCKS);
13466 				}
13467 				FREE_LOCK(ump);
13468 				if (softdep_excess_items(ump, D_NEWBLK) ||
13469 				    softdep_excess_items(ump, D_ALLOCDIRECT) ||
13470 				    softdep_excess_items(ump, D_ALLOCINDIR)) {
13471 					error = vn_start_write(NULL, &mp,
13472 					    V_WAIT);
13473 					if (error == 0) {
13474 						req = true;
13475 						VFS_SYNC(mp, MNT_WAIT);
13476 						vn_finished_write(mp);
13477 					}
13478 				}
13479 				if ((td->td_pflags & TDP_KTHREAD) != 0 || !req)
13480 					break;
13481 			}
13482 		}
13483 		vfs_unbusy(mp);
13484 	}
13485 }
13486 
13487 /*
13488  * If memory utilization has gotten too high, deliberately slow things
13489  * down and speed up the I/O processing.
13490  */
13491 static int
13492 request_cleanup(mp, resource)
13493 	struct mount *mp;
13494 	int resource;
13495 {
13496 	struct thread *td = curthread;
13497 	struct ufsmount *ump;
13498 
13499 	ump = VFSTOUFS(mp);
13500 	LOCK_OWNED(ump);
13501 	/*
13502 	 * We never hold up the filesystem syncer or buf daemon.
13503 	 */
13504 	if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF))
13505 		return (0);
13506 	/*
13507 	 * First check to see if the work list has gotten backlogged.
13508 	 * If it has, co-opt this process to help clean up two entries.
13509 	 * Because this process may hold inodes locked, we cannot
13510 	 * handle any remove requests that might block on a locked
13511 	 * inode as that could lead to deadlock.  We set TDP_SOFTDEP
13512 	 * to avoid recursively processing the worklist.
13513 	 */
13514 	if (ump->softdep_on_worklist > max_softdeps / 10) {
13515 		td->td_pflags |= TDP_SOFTDEP;
13516 		process_worklist_item(mp, 2, LK_NOWAIT);
13517 		td->td_pflags &= ~TDP_SOFTDEP;
13518 		stat_worklist_push += 2;
13519 		return(1);
13520 	}
13521 	/*
13522 	 * Next, we attempt to speed up the syncer process. If that
13523 	 * is successful, then we allow the process to continue.
13524 	 */
13525 	if (softdep_speedup(ump) &&
13526 	    resource != FLUSH_BLOCKS_WAIT &&
13527 	    resource != FLUSH_INODES_WAIT)
13528 		return(0);
13529 	/*
13530 	 * If we are resource constrained on inode dependencies, try
13531 	 * flushing some dirty inodes. Otherwise, we are constrained
13532 	 * by file deletions, so try accelerating flushes of directories
13533 	 * with removal dependencies. We would like to do the cleanup
13534 	 * here, but we probably hold an inode locked at this point and
13535 	 * that might deadlock against one that we try to clean. So,
13536 	 * the best that we can do is request the syncer daemon to do
13537 	 * the cleanup for us.
13538 	 */
13539 	switch (resource) {
13540 
13541 	case FLUSH_INODES:
13542 	case FLUSH_INODES_WAIT:
13543 		ACQUIRE_GBLLOCK(&lk);
13544 		stat_ino_limit_push += 1;
13545 		req_clear_inodedeps += 1;
13546 		FREE_GBLLOCK(&lk);
13547 		stat_countp = &stat_ino_limit_hit;
13548 		break;
13549 
13550 	case FLUSH_BLOCKS:
13551 	case FLUSH_BLOCKS_WAIT:
13552 		ACQUIRE_GBLLOCK(&lk);
13553 		stat_blk_limit_push += 1;
13554 		req_clear_remove += 1;
13555 		FREE_GBLLOCK(&lk);
13556 		stat_countp = &stat_blk_limit_hit;
13557 		break;
13558 
13559 	default:
13560 		panic("request_cleanup: unknown type");
13561 	}
13562 	/*
13563 	 * Hopefully the syncer daemon will catch up and awaken us.
13564 	 * We wait at most tickdelay before proceeding in any case.
13565 	 */
13566 	ACQUIRE_GBLLOCK(&lk);
13567 	FREE_LOCK(ump);
13568 	proc_waiting += 1;
13569 	if (callout_pending(&softdep_callout) == FALSE)
13570 		callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2,
13571 		    pause_timer, 0);
13572 
13573 	if ((td->td_pflags & TDP_KTHREAD) == 0)
13574 		msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0);
13575 	proc_waiting -= 1;
13576 	FREE_GBLLOCK(&lk);
13577 	ACQUIRE_LOCK(ump);
13578 	return (1);
13579 }
13580 
13581 /*
13582  * Awaken processes pausing in request_cleanup and clear proc_waiting
13583  * to indicate that there is no longer a timer running. Pause_timer
13584  * will be called with the global softdep mutex (&lk) locked.
13585  */
13586 static void
13587 pause_timer(arg)
13588 	void *arg;
13589 {
13590 
13591 	GBLLOCK_OWNED(&lk);
13592 	/*
13593 	 * The callout_ API has acquired mtx and will hold it around this
13594 	 * function call.
13595 	 */
13596 	*stat_countp += proc_waiting;
13597 	wakeup(&proc_waiting);
13598 }
13599 
13600 /*
13601  * If requested, try removing inode or removal dependencies.
13602  */
13603 static void
13604 check_clear_deps(mp)
13605 	struct mount *mp;
13606 {
13607 
13608 	/*
13609 	 * If we are suspended, it may be because of our using
13610 	 * too many inodedeps, so help clear them out.
13611 	 */
13612 	if (MOUNTEDSUJ(mp) && VFSTOUFS(mp)->softdep_jblocks->jb_suspended)
13613 		clear_inodedeps(mp);
13614 	/*
13615 	 * General requests for cleanup of backed up dependencies
13616 	 */
13617 	ACQUIRE_GBLLOCK(&lk);
13618 	if (req_clear_inodedeps) {
13619 		req_clear_inodedeps -= 1;
13620 		FREE_GBLLOCK(&lk);
13621 		clear_inodedeps(mp);
13622 		ACQUIRE_GBLLOCK(&lk);
13623 		wakeup(&proc_waiting);
13624 	}
13625 	if (req_clear_remove) {
13626 		req_clear_remove -= 1;
13627 		FREE_GBLLOCK(&lk);
13628 		clear_remove(mp);
13629 		ACQUIRE_GBLLOCK(&lk);
13630 		wakeup(&proc_waiting);
13631 	}
13632 	FREE_GBLLOCK(&lk);
13633 }
13634 
13635 /*
13636  * Flush out a directory with at least one removal dependency in an effort to
13637  * reduce the number of dirrem, freefile, and freeblks dependency structures.
13638  */
13639 static void
13640 clear_remove(mp)
13641 	struct mount *mp;
13642 {
13643 	struct pagedep_hashhead *pagedephd;
13644 	struct pagedep *pagedep;
13645 	struct ufsmount *ump;
13646 	struct vnode *vp;
13647 	struct bufobj *bo;
13648 	int error, cnt;
13649 	ino_t ino;
13650 
13651 	ump = VFSTOUFS(mp);
13652 	LOCK_OWNED(ump);
13653 
13654 	for (cnt = 0; cnt <= ump->pagedep_hash_size; cnt++) {
13655 		pagedephd = &ump->pagedep_hashtbl[ump->pagedep_nextclean++];
13656 		if (ump->pagedep_nextclean > ump->pagedep_hash_size)
13657 			ump->pagedep_nextclean = 0;
13658 		LIST_FOREACH(pagedep, pagedephd, pd_hash) {
13659 			if (LIST_EMPTY(&pagedep->pd_dirremhd))
13660 				continue;
13661 			ino = pagedep->pd_ino;
13662 			if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
13663 				continue;
13664 			FREE_LOCK(ump);
13665 
13666 			/*
13667 			 * Let unmount clear deps
13668 			 */
13669 			error = vfs_busy(mp, MBF_NOWAIT);
13670 			if (error != 0)
13671 				goto finish_write;
13672 			error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
13673 			     FFSV_FORCEINSMQ);
13674 			vfs_unbusy(mp);
13675 			if (error != 0) {
13676 				softdep_error("clear_remove: vget", error);
13677 				goto finish_write;
13678 			}
13679 			if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
13680 				softdep_error("clear_remove: fsync", error);
13681 			bo = &vp->v_bufobj;
13682 			BO_LOCK(bo);
13683 			drain_output(vp);
13684 			BO_UNLOCK(bo);
13685 			vput(vp);
13686 		finish_write:
13687 			vn_finished_write(mp);
13688 			ACQUIRE_LOCK(ump);
13689 			return;
13690 		}
13691 	}
13692 }
13693 
13694 /*
13695  * Clear out a block of dirty inodes in an effort to reduce
13696  * the number of inodedep dependency structures.
13697  */
13698 static void
13699 clear_inodedeps(mp)
13700 	struct mount *mp;
13701 {
13702 	struct inodedep_hashhead *inodedephd;
13703 	struct inodedep *inodedep;
13704 	struct ufsmount *ump;
13705 	struct vnode *vp;
13706 	struct fs *fs;
13707 	int error, cnt;
13708 	ino_t firstino, lastino, ino;
13709 
13710 	ump = VFSTOUFS(mp);
13711 	fs = ump->um_fs;
13712 	LOCK_OWNED(ump);
13713 	/*
13714 	 * Pick a random inode dependency to be cleared.
13715 	 * We will then gather up all the inodes in its block
13716 	 * that have dependencies and flush them out.
13717 	 */
13718 	for (cnt = 0; cnt <= ump->inodedep_hash_size; cnt++) {
13719 		inodedephd = &ump->inodedep_hashtbl[ump->inodedep_nextclean++];
13720 		if (ump->inodedep_nextclean > ump->inodedep_hash_size)
13721 			ump->inodedep_nextclean = 0;
13722 		if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
13723 			break;
13724 	}
13725 	if (inodedep == NULL)
13726 		return;
13727 	/*
13728 	 * Find the last inode in the block with dependencies.
13729 	 */
13730 	firstino = rounddown2(inodedep->id_ino, INOPB(fs));
13731 	for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
13732 		if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0)
13733 			break;
13734 	/*
13735 	 * Asynchronously push all but the last inode with dependencies.
13736 	 * Synchronously push the last inode with dependencies to ensure
13737 	 * that the inode block gets written to free up the inodedeps.
13738 	 */
13739 	for (ino = firstino; ino <= lastino; ino++) {
13740 		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
13741 			continue;
13742 		if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
13743 			continue;
13744 		FREE_LOCK(ump);
13745 		error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */
13746 		if (error != 0) {
13747 			vn_finished_write(mp);
13748 			ACQUIRE_LOCK(ump);
13749 			return;
13750 		}
13751 		if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
13752 		    FFSV_FORCEINSMQ)) != 0) {
13753 			softdep_error("clear_inodedeps: vget", error);
13754 			vfs_unbusy(mp);
13755 			vn_finished_write(mp);
13756 			ACQUIRE_LOCK(ump);
13757 			return;
13758 		}
13759 		vfs_unbusy(mp);
13760 		if (ino == lastino) {
13761 			if ((error = ffs_syncvnode(vp, MNT_WAIT, 0)))
13762 				softdep_error("clear_inodedeps: fsync1", error);
13763 		} else {
13764 			if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
13765 				softdep_error("clear_inodedeps: fsync2", error);
13766 			BO_LOCK(&vp->v_bufobj);
13767 			drain_output(vp);
13768 			BO_UNLOCK(&vp->v_bufobj);
13769 		}
13770 		vput(vp);
13771 		vn_finished_write(mp);
13772 		ACQUIRE_LOCK(ump);
13773 	}
13774 }
13775 
13776 void
13777 softdep_buf_append(bp, wkhd)
13778 	struct buf *bp;
13779 	struct workhead *wkhd;
13780 {
13781 	struct worklist *wk;
13782 	struct ufsmount *ump;
13783 
13784 	if ((wk = LIST_FIRST(wkhd)) == NULL)
13785 		return;
13786 	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
13787 	    ("softdep_buf_append called on non-softdep filesystem"));
13788 	ump = VFSTOUFS(wk->wk_mp);
13789 	ACQUIRE_LOCK(ump);
13790 	while ((wk = LIST_FIRST(wkhd)) != NULL) {
13791 		WORKLIST_REMOVE(wk);
13792 		WORKLIST_INSERT(&bp->b_dep, wk);
13793 	}
13794 	FREE_LOCK(ump);
13795 
13796 }
13797 
13798 void
13799 softdep_inode_append(ip, cred, wkhd)
13800 	struct inode *ip;
13801 	struct ucred *cred;
13802 	struct workhead *wkhd;
13803 {
13804 	struct buf *bp;
13805 	struct fs *fs;
13806 	struct ufsmount *ump;
13807 	int error;
13808 
13809 	ump = ITOUMP(ip);
13810 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
13811 	    ("softdep_inode_append called on non-softdep filesystem"));
13812 	fs = ump->um_fs;
13813 	error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
13814 	    (int)fs->fs_bsize, cred, &bp);
13815 	if (error) {
13816 		bqrelse(bp);
13817 		softdep_freework(wkhd);
13818 		return;
13819 	}
13820 	softdep_buf_append(bp, wkhd);
13821 	bqrelse(bp);
13822 }
13823 
13824 void
13825 softdep_freework(wkhd)
13826 	struct workhead *wkhd;
13827 {
13828 	struct worklist *wk;
13829 	struct ufsmount *ump;
13830 
13831 	if ((wk = LIST_FIRST(wkhd)) == NULL)
13832 		return;
13833 	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
13834 	    ("softdep_freework called on non-softdep filesystem"));
13835 	ump = VFSTOUFS(wk->wk_mp);
13836 	ACQUIRE_LOCK(ump);
13837 	handle_jwork(wkhd);
13838 	FREE_LOCK(ump);
13839 }
13840 
13841 /*
13842  * Function to determine if the buffer has outstanding dependencies
13843  * that will cause a roll-back if the buffer is written. If wantcount
13844  * is set, return number of dependencies, otherwise just yes or no.
13845  */
13846 static int
13847 softdep_count_dependencies(bp, wantcount)
13848 	struct buf *bp;
13849 	int wantcount;
13850 {
13851 	struct worklist *wk;
13852 	struct ufsmount *ump;
13853 	struct bmsafemap *bmsafemap;
13854 	struct freework *freework;
13855 	struct inodedep *inodedep;
13856 	struct indirdep *indirdep;
13857 	struct freeblks *freeblks;
13858 	struct allocindir *aip;
13859 	struct pagedep *pagedep;
13860 	struct dirrem *dirrem;
13861 	struct newblk *newblk;
13862 	struct mkdir *mkdir;
13863 	struct diradd *dap;
13864 	int i, retval;
13865 
13866 	retval = 0;
13867 	if ((wk = LIST_FIRST(&bp->b_dep)) == NULL)
13868 		return (0);
13869 	ump = VFSTOUFS(wk->wk_mp);
13870 	ACQUIRE_LOCK(ump);
13871 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
13872 		switch (wk->wk_type) {
13873 
13874 		case D_INODEDEP:
13875 			inodedep = WK_INODEDEP(wk);
13876 			if ((inodedep->id_state & DEPCOMPLETE) == 0) {
13877 				/* bitmap allocation dependency */
13878 				retval += 1;
13879 				if (!wantcount)
13880 					goto out;
13881 			}
13882 			if (TAILQ_FIRST(&inodedep->id_inoupdt)) {
13883 				/* direct block pointer dependency */
13884 				retval += 1;
13885 				if (!wantcount)
13886 					goto out;
13887 			}
13888 			if (TAILQ_FIRST(&inodedep->id_extupdt)) {
13889 				/* direct block pointer dependency */
13890 				retval += 1;
13891 				if (!wantcount)
13892 					goto out;
13893 			}
13894 			if (TAILQ_FIRST(&inodedep->id_inoreflst)) {
13895 				/* Add reference dependency. */
13896 				retval += 1;
13897 				if (!wantcount)
13898 					goto out;
13899 			}
13900 			continue;
13901 
13902 		case D_INDIRDEP:
13903 			indirdep = WK_INDIRDEP(wk);
13904 
13905 			TAILQ_FOREACH(freework, &indirdep->ir_trunc, fw_next) {
13906 				/* indirect truncation dependency */
13907 				retval += 1;
13908 				if (!wantcount)
13909 					goto out;
13910 			}
13911 
13912 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
13913 				/* indirect block pointer dependency */
13914 				retval += 1;
13915 				if (!wantcount)
13916 					goto out;
13917 			}
13918 			continue;
13919 
13920 		case D_PAGEDEP:
13921 			pagedep = WK_PAGEDEP(wk);
13922 			LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
13923 				if (LIST_FIRST(&dirrem->dm_jremrefhd)) {
13924 					/* Journal remove ref dependency. */
13925 					retval += 1;
13926 					if (!wantcount)
13927 						goto out;
13928 				}
13929 			}
13930 			for (i = 0; i < DAHASHSZ; i++) {
13931 
13932 				LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
13933 					/* directory entry dependency */
13934 					retval += 1;
13935 					if (!wantcount)
13936 						goto out;
13937 				}
13938 			}
13939 			continue;
13940 
13941 		case D_BMSAFEMAP:
13942 			bmsafemap = WK_BMSAFEMAP(wk);
13943 			if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) {
13944 				/* Add reference dependency. */
13945 				retval += 1;
13946 				if (!wantcount)
13947 					goto out;
13948 			}
13949 			if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) {
13950 				/* Allocate block dependency. */
13951 				retval += 1;
13952 				if (!wantcount)
13953 					goto out;
13954 			}
13955 			continue;
13956 
13957 		case D_FREEBLKS:
13958 			freeblks = WK_FREEBLKS(wk);
13959 			if (LIST_FIRST(&freeblks->fb_jblkdephd)) {
13960 				/* Freeblk journal dependency. */
13961 				retval += 1;
13962 				if (!wantcount)
13963 					goto out;
13964 			}
13965 			continue;
13966 
13967 		case D_ALLOCDIRECT:
13968 		case D_ALLOCINDIR:
13969 			newblk = WK_NEWBLK(wk);
13970 			if (newblk->nb_jnewblk) {
13971 				/* Journal allocate dependency. */
13972 				retval += 1;
13973 				if (!wantcount)
13974 					goto out;
13975 			}
13976 			continue;
13977 
13978 		case D_MKDIR:
13979 			mkdir = WK_MKDIR(wk);
13980 			if (mkdir->md_jaddref) {
13981 				/* Journal reference dependency. */
13982 				retval += 1;
13983 				if (!wantcount)
13984 					goto out;
13985 			}
13986 			continue;
13987 
13988 		case D_FREEWORK:
13989 		case D_FREEDEP:
13990 		case D_JSEGDEP:
13991 		case D_JSEG:
13992 		case D_SBDEP:
13993 			/* never a dependency on these blocks */
13994 			continue;
13995 
13996 		default:
13997 			panic("softdep_count_dependencies: Unexpected type %s",
13998 			    TYPENAME(wk->wk_type));
13999 			/* NOTREACHED */
14000 		}
14001 	}
14002 out:
14003 	FREE_LOCK(ump);
14004 	return retval;
14005 }
14006 
14007 /*
14008  * Acquire exclusive access to a buffer.
14009  * Must be called with a locked mtx parameter.
14010  * Return acquired buffer or NULL on failure.
14011  */
14012 static struct buf *
14013 getdirtybuf(bp, lock, waitfor)
14014 	struct buf *bp;
14015 	struct rwlock *lock;
14016 	int waitfor;
14017 {
14018 	int error;
14019 
14020 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) {
14021 		if (waitfor != MNT_WAIT)
14022 			return (NULL);
14023 		error = BUF_LOCK(bp,
14024 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, lock);
14025 		/*
14026 		 * Even if we successfully acquire bp here, we have dropped
14027 		 * lock, which may violates our guarantee.
14028 		 */
14029 		if (error == 0)
14030 			BUF_UNLOCK(bp);
14031 		else if (error != ENOLCK)
14032 			panic("getdirtybuf: inconsistent lock: %d", error);
14033 		rw_wlock(lock);
14034 		return (NULL);
14035 	}
14036 	if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
14037 		if (lock != BO_LOCKPTR(bp->b_bufobj) && waitfor == MNT_WAIT) {
14038 			rw_wunlock(lock);
14039 			BO_LOCK(bp->b_bufobj);
14040 			BUF_UNLOCK(bp);
14041 			if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
14042 				bp->b_vflags |= BV_BKGRDWAIT;
14043 				msleep(&bp->b_xflags, BO_LOCKPTR(bp->b_bufobj),
14044 				       PRIBIO | PDROP, "getbuf", 0);
14045 			} else
14046 				BO_UNLOCK(bp->b_bufobj);
14047 			rw_wlock(lock);
14048 			return (NULL);
14049 		}
14050 		BUF_UNLOCK(bp);
14051 		if (waitfor != MNT_WAIT)
14052 			return (NULL);
14053 		/*
14054 		 * The lock argument must be bp->b_vp's mutex in
14055 		 * this case.
14056 		 */
14057 #ifdef	DEBUG_VFS_LOCKS
14058 		if (bp->b_vp->v_type != VCHR)
14059 			ASSERT_BO_WLOCKED(bp->b_bufobj);
14060 #endif
14061 		bp->b_vflags |= BV_BKGRDWAIT;
14062 		rw_sleep(&bp->b_xflags, lock, PRIBIO, "getbuf", 0);
14063 		return (NULL);
14064 	}
14065 	if ((bp->b_flags & B_DELWRI) == 0) {
14066 		BUF_UNLOCK(bp);
14067 		return (NULL);
14068 	}
14069 	bremfree(bp);
14070 	return (bp);
14071 }
14072 
14073 
14074 /*
14075  * Check if it is safe to suspend the file system now.  On entry,
14076  * the vnode interlock for devvp should be held.  Return 0 with
14077  * the mount interlock held if the file system can be suspended now,
14078  * otherwise return EAGAIN with the mount interlock held.
14079  */
14080 int
14081 softdep_check_suspend(struct mount *mp,
14082 		      struct vnode *devvp,
14083 		      int softdep_depcnt,
14084 		      int softdep_accdepcnt,
14085 		      int secondary_writes,
14086 		      int secondary_accwrites)
14087 {
14088 	struct bufobj *bo;
14089 	struct ufsmount *ump;
14090 	struct inodedep *inodedep;
14091 	int error, unlinked;
14092 
14093 	bo = &devvp->v_bufobj;
14094 	ASSERT_BO_WLOCKED(bo);
14095 
14096 	/*
14097 	 * If we are not running with soft updates, then we need only
14098 	 * deal with secondary writes as we try to suspend.
14099 	 */
14100 	if (MOUNTEDSOFTDEP(mp) == 0) {
14101 		MNT_ILOCK(mp);
14102 		while (mp->mnt_secondary_writes != 0) {
14103 			BO_UNLOCK(bo);
14104 			msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
14105 			    (PUSER - 1) | PDROP, "secwr", 0);
14106 			BO_LOCK(bo);
14107 			MNT_ILOCK(mp);
14108 		}
14109 
14110 		/*
14111 		 * Reasons for needing more work before suspend:
14112 		 * - Dirty buffers on devvp.
14113 		 * - Secondary writes occurred after start of vnode sync loop
14114 		 */
14115 		error = 0;
14116 		if (bo->bo_numoutput > 0 ||
14117 		    bo->bo_dirty.bv_cnt > 0 ||
14118 		    secondary_writes != 0 ||
14119 		    mp->mnt_secondary_writes != 0 ||
14120 		    secondary_accwrites != mp->mnt_secondary_accwrites)
14121 			error = EAGAIN;
14122 		BO_UNLOCK(bo);
14123 		return (error);
14124 	}
14125 
14126 	/*
14127 	 * If we are running with soft updates, then we need to coordinate
14128 	 * with them as we try to suspend.
14129 	 */
14130 	ump = VFSTOUFS(mp);
14131 	for (;;) {
14132 		if (!TRY_ACQUIRE_LOCK(ump)) {
14133 			BO_UNLOCK(bo);
14134 			ACQUIRE_LOCK(ump);
14135 			FREE_LOCK(ump);
14136 			BO_LOCK(bo);
14137 			continue;
14138 		}
14139 		MNT_ILOCK(mp);
14140 		if (mp->mnt_secondary_writes != 0) {
14141 			FREE_LOCK(ump);
14142 			BO_UNLOCK(bo);
14143 			msleep(&mp->mnt_secondary_writes,
14144 			       MNT_MTX(mp),
14145 			       (PUSER - 1) | PDROP, "secwr", 0);
14146 			BO_LOCK(bo);
14147 			continue;
14148 		}
14149 		break;
14150 	}
14151 
14152 	unlinked = 0;
14153 	if (MOUNTEDSUJ(mp)) {
14154 		for (inodedep = TAILQ_FIRST(&ump->softdep_unlinked);
14155 		    inodedep != NULL;
14156 		    inodedep = TAILQ_NEXT(inodedep, id_unlinked)) {
14157 			if ((inodedep->id_state & (UNLINKED | UNLINKLINKS |
14158 			    UNLINKONLIST)) != (UNLINKED | UNLINKLINKS |
14159 			    UNLINKONLIST) ||
14160 			    !check_inodedep_free(inodedep))
14161 				continue;
14162 			unlinked++;
14163 		}
14164 	}
14165 
14166 	/*
14167 	 * Reasons for needing more work before suspend:
14168 	 * - Dirty buffers on devvp.
14169 	 * - Softdep activity occurred after start of vnode sync loop
14170 	 * - Secondary writes occurred after start of vnode sync loop
14171 	 */
14172 	error = 0;
14173 	if (bo->bo_numoutput > 0 ||
14174 	    bo->bo_dirty.bv_cnt > 0 ||
14175 	    softdep_depcnt != unlinked ||
14176 	    ump->softdep_deps != unlinked ||
14177 	    softdep_accdepcnt != ump->softdep_accdeps ||
14178 	    secondary_writes != 0 ||
14179 	    mp->mnt_secondary_writes != 0 ||
14180 	    secondary_accwrites != mp->mnt_secondary_accwrites)
14181 		error = EAGAIN;
14182 	FREE_LOCK(ump);
14183 	BO_UNLOCK(bo);
14184 	return (error);
14185 }
14186 
14187 
14188 /*
14189  * Get the number of dependency structures for the file system, both
14190  * the current number and the total number allocated.  These will
14191  * later be used to detect that softdep processing has occurred.
14192  */
14193 void
14194 softdep_get_depcounts(struct mount *mp,
14195 		      int *softdep_depsp,
14196 		      int *softdep_accdepsp)
14197 {
14198 	struct ufsmount *ump;
14199 
14200 	if (MOUNTEDSOFTDEP(mp) == 0) {
14201 		*softdep_depsp = 0;
14202 		*softdep_accdepsp = 0;
14203 		return;
14204 	}
14205 	ump = VFSTOUFS(mp);
14206 	ACQUIRE_LOCK(ump);
14207 	*softdep_depsp = ump->softdep_deps;
14208 	*softdep_accdepsp = ump->softdep_accdeps;
14209 	FREE_LOCK(ump);
14210 }
14211 
14212 /*
14213  * Wait for pending output on a vnode to complete.
14214  * Must be called with vnode lock and interlock locked.
14215  *
14216  * XXX: Should just be a call to bufobj_wwait().
14217  */
14218 static void
14219 drain_output(vp)
14220 	struct vnode *vp;
14221 {
14222 	struct bufobj *bo;
14223 
14224 	bo = &vp->v_bufobj;
14225 	ASSERT_VOP_LOCKED(vp, "drain_output");
14226 	ASSERT_BO_WLOCKED(bo);
14227 
14228 	while (bo->bo_numoutput) {
14229 		bo->bo_flag |= BO_WWAIT;
14230 		msleep((caddr_t)&bo->bo_numoutput,
14231 		    BO_LOCKPTR(bo), PRIBIO + 1, "drainvp", 0);
14232 	}
14233 }
14234 
14235 /*
14236  * Called whenever a buffer that is being invalidated or reallocated
14237  * contains dependencies. This should only happen if an I/O error has
14238  * occurred. The routine is called with the buffer locked.
14239  */
14240 static void
14241 softdep_deallocate_dependencies(bp)
14242 	struct buf *bp;
14243 {
14244 
14245 	if ((bp->b_ioflags & BIO_ERROR) == 0)
14246 		panic("softdep_deallocate_dependencies: dangling deps");
14247 	if (bp->b_vp != NULL && bp->b_vp->v_mount != NULL)
14248 		softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error);
14249 	else
14250 		printf("softdep_deallocate_dependencies: "
14251 		    "got error %d while accessing filesystem\n", bp->b_error);
14252 	if (bp->b_error != ENXIO)
14253 		panic("softdep_deallocate_dependencies: unrecovered I/O error");
14254 }
14255 
14256 /*
14257  * Function to handle asynchronous write errors in the filesystem.
14258  */
14259 static void
14260 softdep_error(func, error)
14261 	char *func;
14262 	int error;
14263 {
14264 
14265 	/* XXX should do something better! */
14266 	printf("%s: got error %d while accessing filesystem\n", func, error);
14267 }
14268 
14269 #ifdef DDB
14270 
14271 static void
14272 inodedep_print(struct inodedep *inodedep, int verbose)
14273 {
14274 	db_printf("%p fs %p st %x ino %jd inoblk %jd delta %d nlink %d"
14275 	    " saveino %p\n",
14276 	    inodedep, inodedep->id_fs, inodedep->id_state,
14277 	    (intmax_t)inodedep->id_ino,
14278 	    (intmax_t)fsbtodb(inodedep->id_fs,
14279 	    ino_to_fsba(inodedep->id_fs, inodedep->id_ino)),
14280 	    inodedep->id_nlinkdelta, inodedep->id_savednlink,
14281 	    inodedep->id_savedino1);
14282 
14283 	if (verbose == 0)
14284 		return;
14285 
14286 	db_printf("\tpendinghd %p, bufwait %p, inowait %p, inoreflst %p, "
14287 	    "mkdiradd %p\n",
14288 	    LIST_FIRST(&inodedep->id_pendinghd),
14289 	    LIST_FIRST(&inodedep->id_bufwait),
14290 	    LIST_FIRST(&inodedep->id_inowait),
14291 	    TAILQ_FIRST(&inodedep->id_inoreflst),
14292 	    inodedep->id_mkdiradd);
14293 	db_printf("\tinoupdt %p, newinoupdt %p, extupdt %p, newextupdt %p\n",
14294 	    TAILQ_FIRST(&inodedep->id_inoupdt),
14295 	    TAILQ_FIRST(&inodedep->id_newinoupdt),
14296 	    TAILQ_FIRST(&inodedep->id_extupdt),
14297 	    TAILQ_FIRST(&inodedep->id_newextupdt));
14298 }
14299 
14300 DB_SHOW_COMMAND(inodedep, db_show_inodedep)
14301 {
14302 
14303 	if (have_addr == 0) {
14304 		db_printf("Address required\n");
14305 		return;
14306 	}
14307 	inodedep_print((struct inodedep*)addr, 1);
14308 }
14309 
14310 DB_SHOW_COMMAND(inodedeps, db_show_inodedeps)
14311 {
14312 	struct inodedep_hashhead *inodedephd;
14313 	struct inodedep *inodedep;
14314 	struct ufsmount *ump;
14315 	int cnt;
14316 
14317 	if (have_addr == 0) {
14318 		db_printf("Address required\n");
14319 		return;
14320 	}
14321 	ump = (struct ufsmount *)addr;
14322 	for (cnt = 0; cnt < ump->inodedep_hash_size; cnt++) {
14323 		inodedephd = &ump->inodedep_hashtbl[cnt];
14324 		LIST_FOREACH(inodedep, inodedephd, id_hash) {
14325 			inodedep_print(inodedep, 0);
14326 		}
14327 	}
14328 }
14329 
14330 DB_SHOW_COMMAND(worklist, db_show_worklist)
14331 {
14332 	struct worklist *wk;
14333 
14334 	if (have_addr == 0) {
14335 		db_printf("Address required\n");
14336 		return;
14337 	}
14338 	wk = (struct worklist *)addr;
14339 	printf("worklist: %p type %s state 0x%X\n",
14340 	    wk, TYPENAME(wk->wk_type), wk->wk_state);
14341 }
14342 
14343 DB_SHOW_COMMAND(workhead, db_show_workhead)
14344 {
14345 	struct workhead *wkhd;
14346 	struct worklist *wk;
14347 	int i;
14348 
14349 	if (have_addr == 0) {
14350 		db_printf("Address required\n");
14351 		return;
14352 	}
14353 	wkhd = (struct workhead *)addr;
14354 	wk = LIST_FIRST(wkhd);
14355 	for (i = 0; i < 100 && wk != NULL; i++, wk = LIST_NEXT(wk, wk_list))
14356 		db_printf("worklist: %p type %s state 0x%X",
14357 		    wk, TYPENAME(wk->wk_type), wk->wk_state);
14358 	if (i == 100)
14359 		db_printf("workhead overflow");
14360 	printf("\n");
14361 }
14362 
14363 
14364 DB_SHOW_COMMAND(mkdirs, db_show_mkdirs)
14365 {
14366 	struct mkdirlist *mkdirlisthd;
14367 	struct jaddref *jaddref;
14368 	struct diradd *diradd;
14369 	struct mkdir *mkdir;
14370 
14371 	if (have_addr == 0) {
14372 		db_printf("Address required\n");
14373 		return;
14374 	}
14375 	mkdirlisthd = (struct mkdirlist *)addr;
14376 	LIST_FOREACH(mkdir, mkdirlisthd, md_mkdirs) {
14377 		diradd = mkdir->md_diradd;
14378 		db_printf("mkdir: %p state 0x%X dap %p state 0x%X",
14379 		    mkdir, mkdir->md_state, diradd, diradd->da_state);
14380 		if ((jaddref = mkdir->md_jaddref) != NULL)
14381 			db_printf(" jaddref %p jaddref state 0x%X",
14382 			    jaddref, jaddref->ja_state);
14383 		db_printf("\n");
14384 	}
14385 }
14386 
14387 /* exported to ffs_vfsops.c */
14388 extern void db_print_ffs(struct ufsmount *ump);
14389 void
14390 db_print_ffs(struct ufsmount *ump)
14391 {
14392 	db_printf("mp %p %s devvp %p fs %p su_wl %d su_deps %d su_req %d\n",
14393 	    ump->um_mountp, ump->um_mountp->mnt_stat.f_mntonname,
14394 	    ump->um_devvp, ump->um_fs, ump->softdep_on_worklist,
14395 	    ump->softdep_deps, ump->softdep_req);
14396 }
14397 
14398 #endif /* DDB */
14399 
14400 #endif /* SOFTUPDATES */
14401