1 /*- 2 * Copyright 1998, 2000 Marshall Kirk McKusick. All Rights Reserved. 3 * 4 * The soft updates code is derived from the appendix of a University 5 * of Michigan technical report (Gregory R. Ganger and Yale N. Patt, 6 * "Soft Updates: A Solution to the Metadata Update Problem in File 7 * Systems", CSE-TR-254-95, August 1995). 8 * 9 * Further information about soft updates can be obtained from: 10 * 11 * Marshall Kirk McKusick http://www.mckusick.com/softdep/ 12 * 1614 Oxford Street mckusick@mckusick.com 13 * Berkeley, CA 94709-1608 +1-510-843-9542 14 * USA 15 * 16 * Redistribution and use in source and binary forms, with or without 17 * modification, are permitted provided that the following conditions 18 * are met: 19 * 20 * 1. Redistributions of source code must retain the above copyright 21 * notice, this list of conditions and the following disclaimer. 22 * 2. Redistributions in binary form must reproduce the above copyright 23 * notice, this list of conditions and the following disclaimer in the 24 * documentation and/or other materials provided with the distribution. 25 * 26 * THIS SOFTWARE IS PROVIDED BY MARSHALL KIRK MCKUSICK ``AS IS'' AND ANY 27 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 28 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 29 * DISCLAIMED. IN NO EVENT SHALL MARSHALL KIRK MCKUSICK BE LIABLE FOR 30 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * from: @(#)ffs_softdep.c 9.59 (McKusick) 6/21/00 39 */ 40 41 #include <sys/cdefs.h> 42 __FBSDID("$FreeBSD$"); 43 44 /* 45 * For now we want the safety net that the DIAGNOSTIC and DEBUG flags provide. 46 */ 47 #ifndef DIAGNOSTIC 48 #define DIAGNOSTIC 49 #endif 50 #ifndef DEBUG 51 #define DEBUG 52 #endif 53 54 #include <sys/param.h> 55 #include <sys/kernel.h> 56 #include <sys/systm.h> 57 #include <sys/bio.h> 58 #include <sys/buf.h> 59 #include <sys/kdb.h> 60 #include <sys/lock.h> 61 #include <sys/malloc.h> 62 #include <sys/mount.h> 63 #include <sys/mutex.h> 64 #include <sys/proc.h> 65 #include <sys/stat.h> 66 #include <sys/sysctl.h> 67 #include <sys/syslog.h> 68 #include <sys/vnode.h> 69 #include <sys/conf.h> 70 #include <ufs/ufs/dir.h> 71 #include <ufs/ufs/extattr.h> 72 #include <ufs/ufs/quota.h> 73 #include <ufs/ufs/inode.h> 74 #include <ufs/ufs/ufsmount.h> 75 #include <ufs/ffs/fs.h> 76 #include <ufs/ffs/softdep.h> 77 #include <ufs/ffs/ffs_extern.h> 78 #include <ufs/ufs/ufs_extern.h> 79 80 #include <vm/vm.h> 81 82 #include "opt_ffs.h" 83 84 #ifndef SOFTUPDATES 85 86 int 87 softdep_flushfiles(oldmnt, flags, td) 88 struct mount *oldmnt; 89 int flags; 90 struct thread *td; 91 { 92 93 panic("softdep_flushfiles called"); 94 } 95 96 int 97 softdep_mount(devvp, mp, fs, cred) 98 struct vnode *devvp; 99 struct mount *mp; 100 struct fs *fs; 101 struct ucred *cred; 102 { 103 104 return (0); 105 } 106 107 void 108 softdep_initialize() 109 { 110 111 return; 112 } 113 114 void 115 softdep_uninitialize() 116 { 117 118 return; 119 } 120 121 void 122 softdep_setup_inomapdep(bp, ip, newinum) 123 struct buf *bp; 124 struct inode *ip; 125 ino_t newinum; 126 { 127 128 panic("softdep_setup_inomapdep called"); 129 } 130 131 void 132 softdep_setup_blkmapdep(bp, fs, newblkno) 133 struct buf *bp; 134 struct fs *fs; 135 ufs2_daddr_t newblkno; 136 { 137 138 panic("softdep_setup_blkmapdep called"); 139 } 140 141 void 142 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 143 struct inode *ip; 144 ufs_lbn_t lbn; 145 ufs2_daddr_t newblkno; 146 ufs2_daddr_t oldblkno; 147 long newsize; 148 long oldsize; 149 struct buf *bp; 150 { 151 152 panic("softdep_setup_allocdirect called"); 153 } 154 155 void 156 softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 157 struct inode *ip; 158 ufs_lbn_t lbn; 159 ufs2_daddr_t newblkno; 160 ufs2_daddr_t oldblkno; 161 long newsize; 162 long oldsize; 163 struct buf *bp; 164 { 165 166 panic("softdep_setup_allocdirect called"); 167 } 168 169 void 170 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 171 struct inode *ip; 172 ufs_lbn_t lbn; 173 struct buf *bp; 174 int ptrno; 175 ufs2_daddr_t newblkno; 176 ufs2_daddr_t oldblkno; 177 struct buf *nbp; 178 { 179 180 panic("softdep_setup_allocindir_page called"); 181 } 182 183 void 184 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 185 struct buf *nbp; 186 struct inode *ip; 187 struct buf *bp; 188 int ptrno; 189 ufs2_daddr_t newblkno; 190 { 191 192 panic("softdep_setup_allocindir_meta called"); 193 } 194 195 void 196 softdep_setup_freeblocks(ip, length, flags) 197 struct inode *ip; 198 off_t length; 199 int flags; 200 { 201 202 panic("softdep_setup_freeblocks called"); 203 } 204 205 void 206 softdep_freefile(pvp, ino, mode) 207 struct vnode *pvp; 208 ino_t ino; 209 int mode; 210 { 211 212 panic("softdep_freefile called"); 213 } 214 215 int 216 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk) 217 struct buf *bp; 218 struct inode *dp; 219 off_t diroffset; 220 ino_t newinum; 221 struct buf *newdirbp; 222 int isnewblk; 223 { 224 225 panic("softdep_setup_directory_add called"); 226 } 227 228 void 229 softdep_change_directoryentry_offset(dp, base, oldloc, newloc, entrysize) 230 struct inode *dp; 231 caddr_t base; 232 caddr_t oldloc; 233 caddr_t newloc; 234 int entrysize; 235 { 236 237 panic("softdep_change_directoryentry_offset called"); 238 } 239 240 void 241 softdep_setup_remove(bp, dp, ip, isrmdir) 242 struct buf *bp; 243 struct inode *dp; 244 struct inode *ip; 245 int isrmdir; 246 { 247 248 panic("softdep_setup_remove called"); 249 } 250 251 void 252 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 253 struct buf *bp; 254 struct inode *dp; 255 struct inode *ip; 256 ino_t newinum; 257 int isrmdir; 258 { 259 260 panic("softdep_setup_directory_change called"); 261 } 262 263 void 264 softdep_change_linkcnt(ip) 265 struct inode *ip; 266 { 267 268 panic("softdep_change_linkcnt called"); 269 } 270 271 void 272 softdep_load_inodeblock(ip) 273 struct inode *ip; 274 { 275 276 panic("softdep_load_inodeblock called"); 277 } 278 279 void 280 softdep_update_inodeblock(ip, bp, waitfor) 281 struct inode *ip; 282 struct buf *bp; 283 int waitfor; 284 { 285 286 panic("softdep_update_inodeblock called"); 287 } 288 289 int 290 softdep_fsync(vp) 291 struct vnode *vp; /* the "in_core" copy of the inode */ 292 { 293 294 return (0); 295 } 296 297 void 298 softdep_fsync_mountdev(vp) 299 struct vnode *vp; 300 { 301 302 return; 303 } 304 305 int 306 softdep_flushworklist(oldmnt, countp, td) 307 struct mount *oldmnt; 308 int *countp; 309 struct thread *td; 310 { 311 312 *countp = 0; 313 return (0); 314 } 315 316 int 317 softdep_sync_metadata(struct vnode *vp) 318 { 319 320 return (0); 321 } 322 323 int 324 softdep_slowdown(vp) 325 struct vnode *vp; 326 { 327 328 panic("softdep_slowdown called"); 329 } 330 331 void 332 softdep_releasefile(ip) 333 struct inode *ip; /* inode with the zero effective link count */ 334 { 335 336 panic("softdep_releasefile called"); 337 } 338 339 int 340 softdep_request_cleanup(fs, vp) 341 struct fs *fs; 342 struct vnode *vp; 343 { 344 345 return (0); 346 } 347 348 #else 349 /* 350 * These definitions need to be adapted to the system to which 351 * this file is being ported. 352 */ 353 /* 354 * malloc types defined for the softdep system. 355 */ 356 static MALLOC_DEFINE(M_PAGEDEP, "pagedep","File page dependencies"); 357 static MALLOC_DEFINE(M_INODEDEP, "inodedep","Inode dependencies"); 358 static MALLOC_DEFINE(M_NEWBLK, "newblk","New block allocation"); 359 static MALLOC_DEFINE(M_BMSAFEMAP, "bmsafemap","Block or frag allocated from cyl group map"); 360 static MALLOC_DEFINE(M_ALLOCDIRECT, "allocdirect","Block or frag dependency for an inode"); 361 static MALLOC_DEFINE(M_INDIRDEP, "indirdep","Indirect block dependencies"); 362 static MALLOC_DEFINE(M_ALLOCINDIR, "allocindir","Block dependency for an indirect block"); 363 static MALLOC_DEFINE(M_FREEFRAG, "freefrag","Previously used frag for an inode"); 364 static MALLOC_DEFINE(M_FREEBLKS, "freeblks","Blocks freed from an inode"); 365 static MALLOC_DEFINE(M_FREEFILE, "freefile","Inode deallocated"); 366 static MALLOC_DEFINE(M_DIRADD, "diradd","New directory entry"); 367 static MALLOC_DEFINE(M_MKDIR, "mkdir","New directory"); 368 static MALLOC_DEFINE(M_DIRREM, "dirrem","Directory entry deleted"); 369 static MALLOC_DEFINE(M_NEWDIRBLK, "newdirblk","Unclaimed new directory block"); 370 static MALLOC_DEFINE(M_SAVEDINO, "savedino","Saved inodes"); 371 372 #define M_SOFTDEP_FLAGS (M_WAITOK | M_USE_RESERVE) 373 374 #define D_PAGEDEP 0 375 #define D_INODEDEP 1 376 #define D_NEWBLK 2 377 #define D_BMSAFEMAP 3 378 #define D_ALLOCDIRECT 4 379 #define D_INDIRDEP 5 380 #define D_ALLOCINDIR 6 381 #define D_FREEFRAG 7 382 #define D_FREEBLKS 8 383 #define D_FREEFILE 9 384 #define D_DIRADD 10 385 #define D_MKDIR 11 386 #define D_DIRREM 12 387 #define D_NEWDIRBLK 13 388 #define D_LAST D_NEWDIRBLK 389 390 /* 391 * translate from workitem type to memory type 392 * MUST match the defines above, such that memtype[D_XXX] == M_XXX 393 */ 394 static struct malloc_type *memtype[] = { 395 M_PAGEDEP, 396 M_INODEDEP, 397 M_NEWBLK, 398 M_BMSAFEMAP, 399 M_ALLOCDIRECT, 400 M_INDIRDEP, 401 M_ALLOCINDIR, 402 M_FREEFRAG, 403 M_FREEBLKS, 404 M_FREEFILE, 405 M_DIRADD, 406 M_MKDIR, 407 M_DIRREM, 408 M_NEWDIRBLK 409 }; 410 411 #define DtoM(type) (memtype[type]) 412 413 /* 414 * Names of malloc types. 415 */ 416 #define TYPENAME(type) \ 417 ((unsigned)(type) < D_LAST ? memtype[type]->ks_shortdesc : "???") 418 /* 419 * End system adaptaion definitions. 420 */ 421 422 /* 423 * Forward declarations. 424 */ 425 struct inodedep_hashhead; 426 struct newblk_hashhead; 427 struct pagedep_hashhead; 428 429 /* 430 * Internal function prototypes. 431 */ 432 static void softdep_error(char *, int); 433 static void drain_output(struct vnode *); 434 static struct buf *getdirtybuf(struct buf *, struct mtx *, int); 435 static void clear_remove(struct thread *); 436 static void clear_inodedeps(struct thread *); 437 static int flush_pagedep_deps(struct vnode *, struct mount *, 438 struct diraddhd *); 439 static int flush_inodedep_deps(struct fs *, ino_t); 440 static int flush_deplist(struct allocdirectlst *, int, int *); 441 static int handle_written_filepage(struct pagedep *, struct buf *); 442 static void diradd_inode_written(struct diradd *, struct inodedep *); 443 static int handle_written_inodeblock(struct inodedep *, struct buf *); 444 static void handle_allocdirect_partdone(struct allocdirect *); 445 static void handle_allocindir_partdone(struct allocindir *); 446 static void initiate_write_filepage(struct pagedep *, struct buf *); 447 static void handle_written_mkdir(struct mkdir *, int); 448 static void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *); 449 static void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *); 450 static void handle_workitem_freefile(struct freefile *); 451 static void handle_workitem_remove(struct dirrem *, struct vnode *); 452 static struct dirrem *newdirrem(struct buf *, struct inode *, 453 struct inode *, int, struct dirrem **); 454 static void free_diradd(struct diradd *); 455 static void free_allocindir(struct allocindir *, struct inodedep *); 456 static void free_newdirblk(struct newdirblk *); 457 static int indir_trunc(struct freeblks *, ufs2_daddr_t, int, ufs_lbn_t, 458 ufs2_daddr_t *); 459 static void deallocate_dependencies(struct buf *, struct inodedep *); 460 static void free_allocdirect(struct allocdirectlst *, 461 struct allocdirect *, int); 462 static int check_inode_unwritten(struct inodedep *); 463 static int free_inodedep(struct inodedep *); 464 static void handle_workitem_freeblocks(struct freeblks *, int); 465 static void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *); 466 static void setup_allocindir_phase2(struct buf *, struct inode *, 467 struct allocindir *); 468 static struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t, 469 ufs2_daddr_t); 470 static void handle_workitem_freefrag(struct freefrag *); 471 static struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long); 472 static void allocdirect_merge(struct allocdirectlst *, 473 struct allocdirect *, struct allocdirect *); 474 static struct bmsafemap *bmsafemap_lookup(struct buf *); 475 static int newblk_find(struct newblk_hashhead *, struct fs *, ufs2_daddr_t, 476 struct newblk **); 477 static int newblk_lookup(struct fs *, ufs2_daddr_t, int, struct newblk **); 478 static int inodedep_find(struct inodedep_hashhead *, struct fs *, ino_t, 479 struct inodedep **); 480 static int inodedep_lookup(struct fs *, ino_t, int, struct inodedep **); 481 static int pagedep_lookup(struct inode *, ufs_lbn_t, int, struct pagedep **); 482 static int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t, 483 struct mount *mp, int, struct pagedep **); 484 static void pause_timer(void *); 485 static int request_cleanup(int); 486 static int process_worklist_item(struct mount *, int); 487 static void add_to_worklist(struct worklist *); 488 489 /* 490 * Exported softdep operations. 491 */ 492 static void softdep_disk_io_initiation(struct buf *); 493 static void softdep_disk_write_complete(struct buf *); 494 static void softdep_deallocate_dependencies(struct buf *); 495 static int softdep_count_dependencies(struct buf *bp, int); 496 497 static struct mtx lk; 498 MTX_SYSINIT(softdep_lock, &lk, "Softdep Lock", MTX_DEF); 499 500 #define ACQUIRE_LOCK(lk) mtx_lock(lk) 501 #define FREE_LOCK(lk) mtx_unlock(lk) 502 503 /* 504 * Worklist queue management. 505 * These routines require that the lock be held. 506 */ 507 #ifndef /* NOT */ DEBUG 508 #define WORKLIST_INSERT(head, item) do { \ 509 (item)->wk_state |= ONWORKLIST; \ 510 LIST_INSERT_HEAD(head, item, wk_list); \ 511 } while (0) 512 #define WORKLIST_REMOVE(item) do { \ 513 (item)->wk_state &= ~ONWORKLIST; \ 514 LIST_REMOVE(item, wk_list); \ 515 } while (0) 516 #define WORKITEM_FREE(item, type) FREE(item, DtoM(type)) 517 518 #else /* DEBUG */ 519 static void worklist_insert(struct workhead *, struct worklist *); 520 static void worklist_remove(struct worklist *); 521 static void workitem_free(struct worklist *, int); 522 523 #define WORKLIST_INSERT(head, item) worklist_insert(head, item) 524 #define WORKLIST_REMOVE(item) worklist_remove(item) 525 #define WORKITEM_FREE(item, type) workitem_free((struct worklist *)item, type) 526 527 static void 528 worklist_insert(head, item) 529 struct workhead *head; 530 struct worklist *item; 531 { 532 533 mtx_assert(&lk, MA_OWNED); 534 if (item->wk_state & ONWORKLIST) 535 panic("worklist_insert: already on list"); 536 item->wk_state |= ONWORKLIST; 537 LIST_INSERT_HEAD(head, item, wk_list); 538 } 539 540 static void 541 worklist_remove(item) 542 struct worklist *item; 543 { 544 545 mtx_assert(&lk, MA_OWNED); 546 if ((item->wk_state & ONWORKLIST) == 0) 547 panic("worklist_remove: not on list"); 548 item->wk_state &= ~ONWORKLIST; 549 LIST_REMOVE(item, wk_list); 550 } 551 552 static void 553 workitem_free(item, type) 554 struct worklist *item; 555 int type; 556 { 557 558 if (item->wk_state & ONWORKLIST) 559 panic("workitem_free: still on list"); 560 if (item->wk_type != type) 561 panic("workitem_free: type mismatch"); 562 FREE(item, DtoM(type)); 563 } 564 #endif /* DEBUG */ 565 566 /* 567 * Workitem queue management 568 */ 569 static struct workhead softdep_workitem_pending; 570 static struct worklist *worklist_tail; 571 static int num_on_worklist; /* number of worklist items to be processed */ 572 static int softdep_worklist_busy; /* 1 => trying to do unmount */ 573 static int softdep_worklist_req; /* serialized waiters */ 574 static int max_softdeps; /* maximum number of structs before slowdown */ 575 static int maxindirdeps = 50; /* max number of indirdeps before slowdown */ 576 static int tickdelay = 2; /* number of ticks to pause during slowdown */ 577 static int proc_waiting; /* tracks whether we have a timeout posted */ 578 static int *stat_countp; /* statistic to count in proc_waiting timeout */ 579 static struct callout_handle handle; /* handle on posted proc_waiting timeout */ 580 static struct thread *filesys_syncer; /* proc of filesystem syncer process */ 581 static int req_clear_inodedeps; /* syncer process flush some inodedeps */ 582 #define FLUSH_INODES 1 583 static int req_clear_remove; /* syncer process flush some freeblks */ 584 #define FLUSH_REMOVE 2 585 #define FLUSH_REMOVE_WAIT 3 586 /* 587 * runtime statistics 588 */ 589 static int stat_worklist_push; /* number of worklist cleanups */ 590 static int stat_blk_limit_push; /* number of times block limit neared */ 591 static int stat_ino_limit_push; /* number of times inode limit neared */ 592 static int stat_blk_limit_hit; /* number of times block slowdown imposed */ 593 static int stat_ino_limit_hit; /* number of times inode slowdown imposed */ 594 static int stat_sync_limit_hit; /* number of synchronous slowdowns imposed */ 595 static int stat_indir_blk_ptrs; /* bufs redirtied as indir ptrs not written */ 596 static int stat_inode_bitmap; /* bufs redirtied as inode bitmap not written */ 597 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */ 598 static int stat_dir_entry; /* bufs redirtied as dir entry cannot write */ 599 600 SYSCTL_INT(_debug, OID_AUTO, max_softdeps, CTLFLAG_RW, &max_softdeps, 0, ""); 601 SYSCTL_INT(_debug, OID_AUTO, tickdelay, CTLFLAG_RW, &tickdelay, 0, ""); 602 SYSCTL_INT(_debug, OID_AUTO, maxindirdeps, CTLFLAG_RW, &maxindirdeps, 0, ""); 603 SYSCTL_INT(_debug, OID_AUTO, worklist_push, CTLFLAG_RW, &stat_worklist_push, 0,""); 604 SYSCTL_INT(_debug, OID_AUTO, blk_limit_push, CTLFLAG_RW, &stat_blk_limit_push, 0,""); 605 SYSCTL_INT(_debug, OID_AUTO, ino_limit_push, CTLFLAG_RW, &stat_ino_limit_push, 0,""); 606 SYSCTL_INT(_debug, OID_AUTO, blk_limit_hit, CTLFLAG_RW, &stat_blk_limit_hit, 0, ""); 607 SYSCTL_INT(_debug, OID_AUTO, ino_limit_hit, CTLFLAG_RW, &stat_ino_limit_hit, 0, ""); 608 SYSCTL_INT(_debug, OID_AUTO, sync_limit_hit, CTLFLAG_RW, &stat_sync_limit_hit, 0, ""); 609 SYSCTL_INT(_debug, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW, &stat_indir_blk_ptrs, 0, ""); 610 SYSCTL_INT(_debug, OID_AUTO, inode_bitmap, CTLFLAG_RW, &stat_inode_bitmap, 0, ""); 611 SYSCTL_INT(_debug, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW, &stat_direct_blk_ptrs, 0, ""); 612 SYSCTL_INT(_debug, OID_AUTO, dir_entry, CTLFLAG_RW, &stat_dir_entry, 0, ""); 613 SYSCTL_INT(_debug, OID_AUTO, worklist_num, CTLFLAG_RD, &num_on_worklist, 0, ""); 614 615 SYSCTL_DECL(_vfs_ffs); 616 617 static int compute_summary_at_mount = 0; /* Whether to recompute the summary at mount time */ 618 SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW, 619 &compute_summary_at_mount, 0, "Recompute summary at mount"); 620 621 /* 622 * Add an item to the end of the work queue. 623 * This routine requires that the lock be held. 624 * This is the only routine that adds items to the list. 625 * The following routine is the only one that removes items 626 * and does so in order from first to last. 627 */ 628 static void 629 add_to_worklist(wk) 630 struct worklist *wk; 631 { 632 633 mtx_assert(&lk, MA_OWNED); 634 if (wk->wk_state & ONWORKLIST) 635 panic("add_to_worklist: already on list"); 636 wk->wk_state |= ONWORKLIST; 637 if (LIST_FIRST(&softdep_workitem_pending) == NULL) 638 LIST_INSERT_HEAD(&softdep_workitem_pending, wk, wk_list); 639 else 640 LIST_INSERT_AFTER(worklist_tail, wk, wk_list); 641 worklist_tail = wk; 642 num_on_worklist += 1; 643 } 644 645 /* 646 * Process that runs once per second to handle items in the background queue. 647 * 648 * Note that we ensure that everything is done in the order in which they 649 * appear in the queue. The code below depends on this property to ensure 650 * that blocks of a file are freed before the inode itself is freed. This 651 * ordering ensures that no new <vfsid, inum, lbn> triples will be generated 652 * until all the old ones have been purged from the dependency lists. 653 */ 654 int 655 softdep_process_worklist(matchmnt) 656 struct mount *matchmnt; 657 { 658 struct thread *td = curthread; 659 int cnt, matchcnt, loopcount; 660 long starttime; 661 662 /* 663 * Record the process identifier of our caller so that we can give 664 * this process preferential treatment in request_cleanup below. 665 */ 666 filesys_syncer = td; 667 matchcnt = 0; 668 669 /* 670 * There is no danger of having multiple processes run this 671 * code, but we have to single-thread it when softdep_flushfiles() 672 * is in operation to get an accurate count of the number of items 673 * related to its mount point that are in the list. 674 */ 675 ACQUIRE_LOCK(&lk); 676 if (matchmnt == NULL) { 677 if (softdep_worklist_busy < 0) { 678 FREE_LOCK(&lk); 679 return(-1); 680 } 681 softdep_worklist_busy += 1; 682 } 683 684 /* 685 * If requested, try removing inode or removal dependencies. 686 */ 687 if (req_clear_inodedeps) { 688 clear_inodedeps(td); 689 req_clear_inodedeps -= 1; 690 wakeup_one(&proc_waiting); 691 } 692 if (req_clear_remove) { 693 clear_remove(td); 694 req_clear_remove -= 1; 695 wakeup_one(&proc_waiting); 696 } 697 loopcount = 1; 698 starttime = time_second; 699 while (num_on_worklist > 0) { 700 if ((cnt = process_worklist_item(matchmnt, 0)) == -1) 701 break; 702 else 703 matchcnt += cnt; 704 705 /* 706 * If a umount operation wants to run the worklist 707 * accurately, abort. 708 */ 709 if (softdep_worklist_req && matchmnt == NULL) { 710 matchcnt = -1; 711 break; 712 } 713 714 /* 715 * If requested, try removing inode or removal dependencies. 716 */ 717 if (req_clear_inodedeps) { 718 clear_inodedeps(td); 719 req_clear_inodedeps -= 1; 720 wakeup_one(&proc_waiting); 721 } 722 if (req_clear_remove) { 723 clear_remove(td); 724 req_clear_remove -= 1; 725 wakeup_one(&proc_waiting); 726 } 727 /* 728 * We do not generally want to stop for buffer space, but if 729 * we are really being a buffer hog, we will stop and wait. 730 */ 731 if (loopcount++ % 128 == 0) { 732 FREE_LOCK(&lk); 733 bwillwrite(); 734 ACQUIRE_LOCK(&lk); 735 } 736 /* 737 * Never allow processing to run for more than one 738 * second. Otherwise the other syncer tasks may get 739 * excessively backlogged. 740 */ 741 if (starttime != time_second && matchmnt == NULL) { 742 matchcnt = -1; 743 break; 744 } 745 } 746 if (matchmnt == NULL) { 747 softdep_worklist_busy -= 1; 748 if (softdep_worklist_req && softdep_worklist_busy == 0) 749 wakeup(&softdep_worklist_req); 750 } 751 FREE_LOCK(&lk); 752 return (matchcnt); 753 } 754 755 /* 756 * Process one item on the worklist. 757 */ 758 static int 759 process_worklist_item(matchmnt, flags) 760 struct mount *matchmnt; 761 int flags; 762 { 763 struct worklist *wk, *wkend; 764 struct mount *mp; 765 struct vnode *vp; 766 int matchcnt = 0; 767 768 mtx_assert(&lk, MA_OWNED); 769 /* 770 * If we are being called because of a process doing a 771 * copy-on-write, then it is not safe to write as we may 772 * recurse into the copy-on-write routine. 773 */ 774 if (curthread->td_pflags & TDP_COWINPROGRESS) 775 return (-1); 776 /* 777 * Normally we just process each item on the worklist in order. 778 * However, if we are in a situation where we cannot lock any 779 * inodes, we have to skip over any dirrem requests whose 780 * vnodes are resident and locked. 781 */ 782 vp = NULL; 783 LIST_FOREACH(wk, &softdep_workitem_pending, wk_list) { 784 if (wk->wk_state & INPROGRESS) 785 continue; 786 if ((flags & LK_NOWAIT) == 0 || wk->wk_type != D_DIRREM) 787 break; 788 wk->wk_state |= INPROGRESS; 789 FREE_LOCK(&lk); 790 ffs_vget(WK_DIRREM(wk)->dm_mnt, WK_DIRREM(wk)->dm_oldinum, 791 LK_NOWAIT | LK_EXCLUSIVE, &vp); 792 ACQUIRE_LOCK(&lk); 793 wk->wk_state &= ~INPROGRESS; 794 if (vp != NULL) 795 break; 796 } 797 if (wk == 0) 798 return (-1); 799 /* 800 * Remove the item to be processed. If we are removing the last 801 * item on the list, we need to recalculate the tail pointer. 802 * As this happens rarely and usually when the list is short, 803 * we just run down the list to find it rather than tracking it 804 * in the above loop. 805 */ 806 WORKLIST_REMOVE(wk); 807 if (wk == worklist_tail) { 808 LIST_FOREACH(wkend, &softdep_workitem_pending, wk_list) 809 if (LIST_NEXT(wkend, wk_list) == NULL) 810 break; 811 worklist_tail = wkend; 812 } 813 num_on_worklist -= 1; 814 FREE_LOCK(&lk); 815 switch (wk->wk_type) { 816 817 case D_DIRREM: 818 /* removal of a directory entry */ 819 mp = WK_DIRREM(wk)->dm_mnt; 820 if (vn_write_suspend_wait(NULL, mp, V_NOWAIT)) 821 panic("%s: dirrem on suspended filesystem", 822 "process_worklist_item"); 823 if (mp == matchmnt) 824 matchcnt += 1; 825 handle_workitem_remove(WK_DIRREM(wk), vp); 826 break; 827 828 case D_FREEBLKS: 829 /* releasing blocks and/or fragments from a file */ 830 mp = WK_FREEBLKS(wk)->fb_mnt; 831 if (vn_write_suspend_wait(NULL, mp, V_NOWAIT)) 832 panic("%s: freeblks on suspended filesystem", 833 "process_worklist_item"); 834 if (mp == matchmnt) 835 matchcnt += 1; 836 handle_workitem_freeblocks(WK_FREEBLKS(wk), flags & LK_NOWAIT); 837 break; 838 839 case D_FREEFRAG: 840 /* releasing a fragment when replaced as a file grows */ 841 mp = WK_FREEFRAG(wk)->ff_mnt; 842 if (vn_write_suspend_wait(NULL, mp, V_NOWAIT)) 843 panic("%s: freefrag on suspended filesystem", 844 "process_worklist_item"); 845 if (mp == matchmnt) 846 matchcnt += 1; 847 handle_workitem_freefrag(WK_FREEFRAG(wk)); 848 break; 849 850 case D_FREEFILE: 851 /* releasing an inode when its link count drops to 0 */ 852 mp = WK_FREEFILE(wk)->fx_mnt; 853 if (vn_write_suspend_wait(NULL, mp, V_NOWAIT)) 854 panic("%s: freefile on suspended filesystem", 855 "process_worklist_item"); 856 if (mp == matchmnt) 857 matchcnt += 1; 858 handle_workitem_freefile(WK_FREEFILE(wk)); 859 break; 860 861 default: 862 panic("%s_process_worklist: Unknown type %s", 863 "softdep", TYPENAME(wk->wk_type)); 864 /* NOTREACHED */ 865 } 866 ACQUIRE_LOCK(&lk); 867 return (matchcnt); 868 } 869 870 /* 871 * Move dependencies from one buffer to another. 872 */ 873 void 874 softdep_move_dependencies(oldbp, newbp) 875 struct buf *oldbp; 876 struct buf *newbp; 877 { 878 struct worklist *wk, *wktail; 879 880 if (LIST_FIRST(&newbp->b_dep) != NULL) 881 panic("softdep_move_dependencies: need merge code"); 882 wktail = 0; 883 ACQUIRE_LOCK(&lk); 884 while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) { 885 LIST_REMOVE(wk, wk_list); 886 if (wktail == 0) 887 LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list); 888 else 889 LIST_INSERT_AFTER(wktail, wk, wk_list); 890 wktail = wk; 891 } 892 FREE_LOCK(&lk); 893 } 894 895 /* 896 * Purge the work list of all items associated with a particular mount point. 897 */ 898 int 899 softdep_flushworklist(oldmnt, countp, td) 900 struct mount *oldmnt; 901 int *countp; 902 struct thread *td; 903 { 904 struct vnode *devvp; 905 int count, error = 0; 906 907 /* 908 * Await our turn to clear out the queue, then serialize access. 909 */ 910 ACQUIRE_LOCK(&lk); 911 while (softdep_worklist_busy) { 912 softdep_worklist_req += 1; 913 msleep(&softdep_worklist_req, &lk, PRIBIO, "softflush", 0); 914 softdep_worklist_req -= 1; 915 } 916 softdep_worklist_busy = -1; 917 FREE_LOCK(&lk); 918 /* 919 * Alternately flush the block device associated with the mount 920 * point and process any dependencies that the flushing 921 * creates. We continue until no more worklist dependencies 922 * are found. 923 */ 924 *countp = 0; 925 devvp = VFSTOUFS(oldmnt)->um_devvp; 926 while ((count = softdep_process_worklist(oldmnt)) > 0) { 927 *countp += count; 928 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY, td); 929 error = VOP_FSYNC(devvp, MNT_WAIT, td); 930 VOP_UNLOCK(devvp, 0, td); 931 if (error) 932 break; 933 } 934 ACQUIRE_LOCK(&lk); 935 softdep_worklist_busy = 0; 936 if (softdep_worklist_req) 937 wakeup(&softdep_worklist_req); 938 FREE_LOCK(&lk); 939 return (error); 940 } 941 942 /* 943 * Flush all vnodes and worklist items associated with a specified mount point. 944 */ 945 int 946 softdep_flushfiles(oldmnt, flags, td) 947 struct mount *oldmnt; 948 int flags; 949 struct thread *td; 950 { 951 int error, count, loopcnt; 952 953 error = 0; 954 955 /* 956 * Alternately flush the vnodes associated with the mount 957 * point and process any dependencies that the flushing 958 * creates. In theory, this loop can happen at most twice, 959 * but we give it a few extra just to be sure. 960 */ 961 for (loopcnt = 10; loopcnt > 0; loopcnt--) { 962 /* 963 * Do another flush in case any vnodes were brought in 964 * as part of the cleanup operations. 965 */ 966 if ((error = ffs_flushfiles(oldmnt, flags, td)) != 0) 967 break; 968 if ((error = softdep_flushworklist(oldmnt, &count, td)) != 0 || 969 count == 0) 970 break; 971 } 972 /* 973 * If we are unmounting then it is an error to fail. If we 974 * are simply trying to downgrade to read-only, then filesystem 975 * activity can keep us busy forever, so we just fail with EBUSY. 976 */ 977 if (loopcnt == 0) { 978 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) 979 panic("softdep_flushfiles: looping"); 980 error = EBUSY; 981 } 982 return (error); 983 } 984 985 /* 986 * Structure hashing. 987 * 988 * There are three types of structures that can be looked up: 989 * 1) pagedep structures identified by mount point, inode number, 990 * and logical block. 991 * 2) inodedep structures identified by mount point and inode number. 992 * 3) newblk structures identified by mount point and 993 * physical block number. 994 * 995 * The "pagedep" and "inodedep" dependency structures are hashed 996 * separately from the file blocks and inodes to which they correspond. 997 * This separation helps when the in-memory copy of an inode or 998 * file block must be replaced. It also obviates the need to access 999 * an inode or file page when simply updating (or de-allocating) 1000 * dependency structures. Lookup of newblk structures is needed to 1001 * find newly allocated blocks when trying to associate them with 1002 * their allocdirect or allocindir structure. 1003 * 1004 * The lookup routines optionally create and hash a new instance when 1005 * an existing entry is not found. 1006 */ 1007 #define DEPALLOC 0x0001 /* allocate structure if lookup fails */ 1008 #define NODELAY 0x0002 /* cannot do background work */ 1009 1010 /* 1011 * Structures and routines associated with pagedep caching. 1012 */ 1013 LIST_HEAD(pagedep_hashhead, pagedep) *pagedep_hashtbl; 1014 u_long pagedep_hash; /* size of hash table - 1 */ 1015 #define PAGEDEP_HASH(mp, inum, lbn) \ 1016 (&pagedep_hashtbl[((((register_t)(mp)) >> 13) + (inum) + (lbn)) & \ 1017 pagedep_hash]) 1018 1019 static int 1020 pagedep_find(pagedephd, ino, lbn, mp, flags, pagedeppp) 1021 struct pagedep_hashhead *pagedephd; 1022 ino_t ino; 1023 ufs_lbn_t lbn; 1024 struct mount *mp; 1025 int flags; 1026 struct pagedep **pagedeppp; 1027 { 1028 struct pagedep *pagedep; 1029 1030 LIST_FOREACH(pagedep, pagedephd, pd_hash) 1031 if (ino == pagedep->pd_ino && 1032 lbn == pagedep->pd_lbn && 1033 mp == pagedep->pd_mnt) 1034 break; 1035 if (pagedep) { 1036 *pagedeppp = pagedep; 1037 if ((flags & DEPALLOC) != 0 && 1038 (pagedep->pd_state & ONWORKLIST) == 0) 1039 return (0); 1040 return (1); 1041 } 1042 *pagedeppp = NULL; 1043 return (0); 1044 } 1045 /* 1046 * Look up a pagedep. Return 1 if found, 0 if not found or found 1047 * when asked to allocate but not associated with any buffer. 1048 * If not found, allocate if DEPALLOC flag is passed. 1049 * Found or allocated entry is returned in pagedeppp. 1050 * This routine must be called with splbio interrupts blocked. 1051 */ 1052 static int 1053 pagedep_lookup(ip, lbn, flags, pagedeppp) 1054 struct inode *ip; 1055 ufs_lbn_t lbn; 1056 int flags; 1057 struct pagedep **pagedeppp; 1058 { 1059 struct pagedep *pagedep; 1060 struct pagedep_hashhead *pagedephd; 1061 struct mount *mp; 1062 int ret; 1063 int i; 1064 1065 mtx_assert(&lk, MA_OWNED); 1066 mp = ITOV(ip)->v_mount; 1067 pagedephd = PAGEDEP_HASH(mp, ip->i_number, lbn); 1068 1069 ret = pagedep_find(pagedephd, ip->i_number, lbn, mp, flags, pagedeppp); 1070 if (*pagedeppp || (flags & DEPALLOC) == 0) 1071 return (ret); 1072 FREE_LOCK(&lk); 1073 MALLOC(pagedep, struct pagedep *, sizeof(struct pagedep), 1074 M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO); 1075 ACQUIRE_LOCK(&lk); 1076 ret = pagedep_find(pagedephd, ip->i_number, lbn, mp, flags, pagedeppp); 1077 if (*pagedeppp) { 1078 FREE(pagedep, M_PAGEDEP); 1079 return (ret); 1080 } 1081 pagedep->pd_list.wk_type = D_PAGEDEP; 1082 pagedep->pd_mnt = mp; 1083 pagedep->pd_ino = ip->i_number; 1084 pagedep->pd_lbn = lbn; 1085 LIST_INIT(&pagedep->pd_dirremhd); 1086 LIST_INIT(&pagedep->pd_pendinghd); 1087 for (i = 0; i < DAHASHSZ; i++) 1088 LIST_INIT(&pagedep->pd_diraddhd[i]); 1089 LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash); 1090 *pagedeppp = pagedep; 1091 return (0); 1092 } 1093 1094 /* 1095 * Structures and routines associated with inodedep caching. 1096 */ 1097 LIST_HEAD(inodedep_hashhead, inodedep) *inodedep_hashtbl; 1098 static u_long inodedep_hash; /* size of hash table - 1 */ 1099 static long num_inodedep; /* number of inodedep allocated */ 1100 #define INODEDEP_HASH(fs, inum) \ 1101 (&inodedep_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & inodedep_hash]) 1102 1103 static int 1104 inodedep_find(inodedephd, fs, inum, inodedeppp) 1105 struct inodedep_hashhead *inodedephd; 1106 struct fs *fs; 1107 ino_t inum; 1108 struct inodedep **inodedeppp; 1109 { 1110 struct inodedep *inodedep; 1111 1112 LIST_FOREACH(inodedep, inodedephd, id_hash) 1113 if (inum == inodedep->id_ino && fs == inodedep->id_fs) 1114 break; 1115 if (inodedep) { 1116 *inodedeppp = inodedep; 1117 return (1); 1118 } 1119 *inodedeppp = NULL; 1120 1121 return (0); 1122 } 1123 /* 1124 * Look up an inodedep. Return 1 if found, 0 if not found. 1125 * If not found, allocate if DEPALLOC flag is passed. 1126 * Found or allocated entry is returned in inodedeppp. 1127 * This routine must be called with splbio interrupts blocked. 1128 */ 1129 static int 1130 inodedep_lookup(fs, inum, flags, inodedeppp) 1131 struct fs *fs; 1132 ino_t inum; 1133 int flags; 1134 struct inodedep **inodedeppp; 1135 { 1136 struct inodedep *inodedep; 1137 struct inodedep_hashhead *inodedephd; 1138 1139 mtx_assert(&lk, MA_OWNED); 1140 inodedephd = INODEDEP_HASH(fs, inum); 1141 1142 if (inodedep_find(inodedephd, fs, inum, inodedeppp)) 1143 return (1); 1144 if ((flags & DEPALLOC) == 0) 1145 return (0); 1146 /* 1147 * If we are over our limit, try to improve the situation. 1148 */ 1149 if (num_inodedep > max_softdeps && (flags & NODELAY) == 0) 1150 request_cleanup(FLUSH_INODES); 1151 FREE_LOCK(&lk); 1152 MALLOC(inodedep, struct inodedep *, sizeof(struct inodedep), 1153 M_INODEDEP, M_SOFTDEP_FLAGS); 1154 ACQUIRE_LOCK(&lk); 1155 if (inodedep_find(inodedephd, fs, inum, inodedeppp)) { 1156 FREE(inodedep, M_INODEDEP); 1157 return (1); 1158 } 1159 num_inodedep += 1; 1160 inodedep->id_list.wk_type = D_INODEDEP; 1161 inodedep->id_fs = fs; 1162 inodedep->id_ino = inum; 1163 inodedep->id_state = ALLCOMPLETE; 1164 inodedep->id_nlinkdelta = 0; 1165 inodedep->id_savedino1 = NULL; 1166 inodedep->id_savedsize = -1; 1167 inodedep->id_savedextsize = -1; 1168 inodedep->id_buf = NULL; 1169 LIST_INIT(&inodedep->id_pendinghd); 1170 LIST_INIT(&inodedep->id_inowait); 1171 LIST_INIT(&inodedep->id_bufwait); 1172 TAILQ_INIT(&inodedep->id_inoupdt); 1173 TAILQ_INIT(&inodedep->id_newinoupdt); 1174 TAILQ_INIT(&inodedep->id_extupdt); 1175 TAILQ_INIT(&inodedep->id_newextupdt); 1176 LIST_INSERT_HEAD(inodedephd, inodedep, id_hash); 1177 *inodedeppp = inodedep; 1178 return (0); 1179 } 1180 1181 /* 1182 * Structures and routines associated with newblk caching. 1183 */ 1184 LIST_HEAD(newblk_hashhead, newblk) *newblk_hashtbl; 1185 u_long newblk_hash; /* size of hash table - 1 */ 1186 #define NEWBLK_HASH(fs, inum) \ 1187 (&newblk_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & newblk_hash]) 1188 1189 static int 1190 newblk_find(newblkhd, fs, newblkno, newblkpp) 1191 struct newblk_hashhead *newblkhd; 1192 struct fs *fs; 1193 ufs2_daddr_t newblkno; 1194 struct newblk **newblkpp; 1195 { 1196 struct newblk *newblk; 1197 1198 LIST_FOREACH(newblk, newblkhd, nb_hash) 1199 if (newblkno == newblk->nb_newblkno && fs == newblk->nb_fs) 1200 break; 1201 if (newblk) { 1202 *newblkpp = newblk; 1203 return (1); 1204 } 1205 *newblkpp = NULL; 1206 return (0); 1207 } 1208 1209 /* 1210 * Look up a newblk. Return 1 if found, 0 if not found. 1211 * If not found, allocate if DEPALLOC flag is passed. 1212 * Found or allocated entry is returned in newblkpp. 1213 */ 1214 static int 1215 newblk_lookup(fs, newblkno, flags, newblkpp) 1216 struct fs *fs; 1217 ufs2_daddr_t newblkno; 1218 int flags; 1219 struct newblk **newblkpp; 1220 { 1221 struct newblk *newblk; 1222 struct newblk_hashhead *newblkhd; 1223 1224 newblkhd = NEWBLK_HASH(fs, newblkno); 1225 if (newblk_find(newblkhd, fs, newblkno, newblkpp)) 1226 return (1); 1227 if ((flags & DEPALLOC) == 0) 1228 return (0); 1229 FREE_LOCK(&lk); 1230 MALLOC(newblk, struct newblk *, sizeof(struct newblk), 1231 M_NEWBLK, M_SOFTDEP_FLAGS); 1232 ACQUIRE_LOCK(&lk); 1233 if (newblk_find(newblkhd, fs, newblkno, newblkpp)) { 1234 FREE(newblk, M_NEWBLK); 1235 return (1); 1236 } 1237 newblk->nb_state = 0; 1238 newblk->nb_fs = fs; 1239 newblk->nb_newblkno = newblkno; 1240 LIST_INSERT_HEAD(newblkhd, newblk, nb_hash); 1241 *newblkpp = newblk; 1242 return (0); 1243 } 1244 1245 /* 1246 * Executed during filesystem system initialization before 1247 * mounting any filesystems. 1248 */ 1249 void 1250 softdep_initialize() 1251 { 1252 1253 LIST_INIT(&mkdirlisthd); 1254 LIST_INIT(&softdep_workitem_pending); 1255 max_softdeps = desiredvnodes * 4; 1256 pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP, 1257 &pagedep_hash); 1258 inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, &inodedep_hash); 1259 newblk_hashtbl = hashinit(64, M_NEWBLK, &newblk_hash); 1260 1261 /* hooks through which the main kernel code calls us */ 1262 softdep_process_worklist_hook = softdep_process_worklist; 1263 1264 /* initialise bioops hack */ 1265 bioops.io_start = softdep_disk_io_initiation; 1266 bioops.io_complete = softdep_disk_write_complete; 1267 bioops.io_deallocate = softdep_deallocate_dependencies; 1268 bioops.io_countdeps = softdep_count_dependencies; 1269 } 1270 1271 /* 1272 * Executed after all filesystems have been unmounted during 1273 * filesystem module unload. 1274 */ 1275 void 1276 softdep_uninitialize() 1277 { 1278 1279 softdep_process_worklist_hook = NULL; 1280 hashdestroy(pagedep_hashtbl, M_PAGEDEP, pagedep_hash); 1281 hashdestroy(inodedep_hashtbl, M_INODEDEP, inodedep_hash); 1282 hashdestroy(newblk_hashtbl, M_NEWBLK, newblk_hash); 1283 } 1284 1285 /* 1286 * Called at mount time to notify the dependency code that a 1287 * filesystem wishes to use it. 1288 */ 1289 int 1290 softdep_mount(devvp, mp, fs, cred) 1291 struct vnode *devvp; 1292 struct mount *mp; 1293 struct fs *fs; 1294 struct ucred *cred; 1295 { 1296 struct csum_total cstotal; 1297 struct cg *cgp; 1298 struct buf *bp; 1299 int error, cyl; 1300 1301 mp->mnt_flag &= ~MNT_ASYNC; 1302 mp->mnt_flag |= MNT_SOFTDEP; 1303 /* 1304 * When doing soft updates, the counters in the 1305 * superblock may have gotten out of sync. Recomputation 1306 * can take a long time and can be deferred for background 1307 * fsck. However, the old behavior of scanning the cylinder 1308 * groups and recalculating them at mount time is available 1309 * by setting vfs.ffs.compute_summary_at_mount to one. 1310 */ 1311 if (compute_summary_at_mount == 0 || fs->fs_clean != 0) 1312 return (0); 1313 bzero(&cstotal, sizeof cstotal); 1314 for (cyl = 0; cyl < fs->fs_ncg; cyl++) { 1315 if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)), 1316 fs->fs_cgsize, cred, &bp)) != 0) { 1317 brelse(bp); 1318 return (error); 1319 } 1320 cgp = (struct cg *)bp->b_data; 1321 cstotal.cs_nffree += cgp->cg_cs.cs_nffree; 1322 cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree; 1323 cstotal.cs_nifree += cgp->cg_cs.cs_nifree; 1324 cstotal.cs_ndir += cgp->cg_cs.cs_ndir; 1325 fs->fs_cs(fs, cyl) = cgp->cg_cs; 1326 brelse(bp); 1327 } 1328 #ifdef DEBUG 1329 if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal)) 1330 printf("%s: superblock summary recomputed\n", fs->fs_fsmnt); 1331 #endif 1332 bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal); 1333 return (0); 1334 } 1335 1336 /* 1337 * Protecting the freemaps (or bitmaps). 1338 * 1339 * To eliminate the need to execute fsck before mounting a filesystem 1340 * after a power failure, one must (conservatively) guarantee that the 1341 * on-disk copy of the bitmaps never indicate that a live inode or block is 1342 * free. So, when a block or inode is allocated, the bitmap should be 1343 * updated (on disk) before any new pointers. When a block or inode is 1344 * freed, the bitmap should not be updated until all pointers have been 1345 * reset. The latter dependency is handled by the delayed de-allocation 1346 * approach described below for block and inode de-allocation. The former 1347 * dependency is handled by calling the following procedure when a block or 1348 * inode is allocated. When an inode is allocated an "inodedep" is created 1349 * with its DEPCOMPLETE flag cleared until its bitmap is written to disk. 1350 * Each "inodedep" is also inserted into the hash indexing structure so 1351 * that any additional link additions can be made dependent on the inode 1352 * allocation. 1353 * 1354 * The ufs filesystem maintains a number of free block counts (e.g., per 1355 * cylinder group, per cylinder and per <cylinder, rotational position> pair) 1356 * in addition to the bitmaps. These counts are used to improve efficiency 1357 * during allocation and therefore must be consistent with the bitmaps. 1358 * There is no convenient way to guarantee post-crash consistency of these 1359 * counts with simple update ordering, for two main reasons: (1) The counts 1360 * and bitmaps for a single cylinder group block are not in the same disk 1361 * sector. If a disk write is interrupted (e.g., by power failure), one may 1362 * be written and the other not. (2) Some of the counts are located in the 1363 * superblock rather than the cylinder group block. So, we focus our soft 1364 * updates implementation on protecting the bitmaps. When mounting a 1365 * filesystem, we recompute the auxiliary counts from the bitmaps. 1366 */ 1367 1368 /* 1369 * Called just after updating the cylinder group block to allocate an inode. 1370 */ 1371 void 1372 softdep_setup_inomapdep(bp, ip, newinum) 1373 struct buf *bp; /* buffer for cylgroup block with inode map */ 1374 struct inode *ip; /* inode related to allocation */ 1375 ino_t newinum; /* new inode number being allocated */ 1376 { 1377 struct inodedep *inodedep; 1378 struct bmsafemap *bmsafemap; 1379 1380 /* 1381 * Create a dependency for the newly allocated inode. 1382 * Panic if it already exists as something is seriously wrong. 1383 * Otherwise add it to the dependency list for the buffer holding 1384 * the cylinder group map from which it was allocated. 1385 */ 1386 ACQUIRE_LOCK(&lk); 1387 if ((inodedep_lookup(ip->i_fs, newinum, DEPALLOC|NODELAY, &inodedep))) 1388 panic("softdep_setup_inomapdep: found inode"); 1389 inodedep->id_buf = bp; 1390 inodedep->id_state &= ~DEPCOMPLETE; 1391 bmsafemap = bmsafemap_lookup(bp); 1392 LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps); 1393 FREE_LOCK(&lk); 1394 } 1395 1396 /* 1397 * Called just after updating the cylinder group block to 1398 * allocate block or fragment. 1399 */ 1400 void 1401 softdep_setup_blkmapdep(bp, fs, newblkno) 1402 struct buf *bp; /* buffer for cylgroup block with block map */ 1403 struct fs *fs; /* filesystem doing allocation */ 1404 ufs2_daddr_t newblkno; /* number of newly allocated block */ 1405 { 1406 struct newblk *newblk; 1407 struct bmsafemap *bmsafemap; 1408 1409 /* 1410 * Create a dependency for the newly allocated block. 1411 * Add it to the dependency list for the buffer holding 1412 * the cylinder group map from which it was allocated. 1413 */ 1414 ACQUIRE_LOCK(&lk); 1415 if (newblk_lookup(fs, newblkno, DEPALLOC, &newblk) != 0) 1416 panic("softdep_setup_blkmapdep: found block"); 1417 newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(bp); 1418 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps); 1419 FREE_LOCK(&lk); 1420 } 1421 1422 /* 1423 * Find the bmsafemap associated with a cylinder group buffer. 1424 * If none exists, create one. The buffer must be locked when 1425 * this routine is called and this routine must be called with 1426 * splbio interrupts blocked. 1427 */ 1428 static struct bmsafemap * 1429 bmsafemap_lookup(bp) 1430 struct buf *bp; 1431 { 1432 struct bmsafemap *bmsafemap; 1433 struct worklist *wk; 1434 1435 mtx_assert(&lk, MA_OWNED); 1436 LIST_FOREACH(wk, &bp->b_dep, wk_list) 1437 if (wk->wk_type == D_BMSAFEMAP) 1438 return (WK_BMSAFEMAP(wk)); 1439 FREE_LOCK(&lk); 1440 MALLOC(bmsafemap, struct bmsafemap *, sizeof(struct bmsafemap), 1441 M_BMSAFEMAP, M_SOFTDEP_FLAGS); 1442 bmsafemap->sm_list.wk_type = D_BMSAFEMAP; 1443 bmsafemap->sm_list.wk_state = 0; 1444 bmsafemap->sm_buf = bp; 1445 LIST_INIT(&bmsafemap->sm_allocdirecthd); 1446 LIST_INIT(&bmsafemap->sm_allocindirhd); 1447 LIST_INIT(&bmsafemap->sm_inodedephd); 1448 LIST_INIT(&bmsafemap->sm_newblkhd); 1449 ACQUIRE_LOCK(&lk); 1450 WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list); 1451 return (bmsafemap); 1452 } 1453 1454 /* 1455 * Direct block allocation dependencies. 1456 * 1457 * When a new block is allocated, the corresponding disk locations must be 1458 * initialized (with zeros or new data) before the on-disk inode points to 1459 * them. Also, the freemap from which the block was allocated must be 1460 * updated (on disk) before the inode's pointer. These two dependencies are 1461 * independent of each other and are needed for all file blocks and indirect 1462 * blocks that are pointed to directly by the inode. Just before the 1463 * "in-core" version of the inode is updated with a newly allocated block 1464 * number, a procedure (below) is called to setup allocation dependency 1465 * structures. These structures are removed when the corresponding 1466 * dependencies are satisfied or when the block allocation becomes obsolete 1467 * (i.e., the file is deleted, the block is de-allocated, or the block is a 1468 * fragment that gets upgraded). All of these cases are handled in 1469 * procedures described later. 1470 * 1471 * When a file extension causes a fragment to be upgraded, either to a larger 1472 * fragment or to a full block, the on-disk location may change (if the 1473 * previous fragment could not simply be extended). In this case, the old 1474 * fragment must be de-allocated, but not until after the inode's pointer has 1475 * been updated. In most cases, this is handled by later procedures, which 1476 * will construct a "freefrag" structure to be added to the workitem queue 1477 * when the inode update is complete (or obsolete). The main exception to 1478 * this is when an allocation occurs while a pending allocation dependency 1479 * (for the same block pointer) remains. This case is handled in the main 1480 * allocation dependency setup procedure by immediately freeing the 1481 * unreferenced fragments. 1482 */ 1483 void 1484 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 1485 struct inode *ip; /* inode to which block is being added */ 1486 ufs_lbn_t lbn; /* block pointer within inode */ 1487 ufs2_daddr_t newblkno; /* disk block number being added */ 1488 ufs2_daddr_t oldblkno; /* previous block number, 0 unless frag */ 1489 long newsize; /* size of new block */ 1490 long oldsize; /* size of new block */ 1491 struct buf *bp; /* bp for allocated block */ 1492 { 1493 struct allocdirect *adp, *oldadp; 1494 struct allocdirectlst *adphead; 1495 struct bmsafemap *bmsafemap; 1496 struct inodedep *inodedep; 1497 struct pagedep *pagedep; 1498 struct newblk *newblk; 1499 1500 MALLOC(adp, struct allocdirect *, sizeof(struct allocdirect), 1501 M_ALLOCDIRECT, M_SOFTDEP_FLAGS|M_ZERO); 1502 adp->ad_list.wk_type = D_ALLOCDIRECT; 1503 adp->ad_lbn = lbn; 1504 adp->ad_newblkno = newblkno; 1505 adp->ad_oldblkno = oldblkno; 1506 adp->ad_newsize = newsize; 1507 adp->ad_oldsize = oldsize; 1508 adp->ad_state = ATTACHED; 1509 LIST_INIT(&adp->ad_newdirblk); 1510 if (newblkno == oldblkno) 1511 adp->ad_freefrag = NULL; 1512 else 1513 adp->ad_freefrag = newfreefrag(ip, oldblkno, oldsize); 1514 1515 ACQUIRE_LOCK(&lk); 1516 if (lbn >= NDADDR) { 1517 /* allocating an indirect block */ 1518 if (oldblkno != 0) 1519 panic("softdep_setup_allocdirect: non-zero indir"); 1520 } else { 1521 /* 1522 * Allocating a direct block. 1523 * 1524 * If we are allocating a directory block, then we must 1525 * allocate an associated pagedep to track additions and 1526 * deletions. 1527 */ 1528 if ((ip->i_mode & IFMT) == IFDIR && 1529 pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0) 1530 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 1531 } 1532 if (newblk_lookup(ip->i_fs, newblkno, 0, &newblk) == 0) 1533 panic("softdep_setup_allocdirect: lost block"); 1534 if (newblk->nb_state == DEPCOMPLETE) { 1535 adp->ad_state |= DEPCOMPLETE; 1536 adp->ad_buf = NULL; 1537 } else { 1538 bmsafemap = newblk->nb_bmsafemap; 1539 adp->ad_buf = bmsafemap->sm_buf; 1540 LIST_REMOVE(newblk, nb_deps); 1541 LIST_INSERT_HEAD(&bmsafemap->sm_allocdirecthd, adp, ad_deps); 1542 } 1543 LIST_REMOVE(newblk, nb_hash); 1544 FREE(newblk, M_NEWBLK); 1545 1546 inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC | NODELAY, &inodedep); 1547 adp->ad_inodedep = inodedep; 1548 WORKLIST_INSERT(&bp->b_dep, &adp->ad_list); 1549 /* 1550 * The list of allocdirects must be kept in sorted and ascending 1551 * order so that the rollback routines can quickly determine the 1552 * first uncommitted block (the size of the file stored on disk 1553 * ends at the end of the lowest committed fragment, or if there 1554 * are no fragments, at the end of the highest committed block). 1555 * Since files generally grow, the typical case is that the new 1556 * block is to be added at the end of the list. We speed this 1557 * special case by checking against the last allocdirect in the 1558 * list before laboriously traversing the list looking for the 1559 * insertion point. 1560 */ 1561 adphead = &inodedep->id_newinoupdt; 1562 oldadp = TAILQ_LAST(adphead, allocdirectlst); 1563 if (oldadp == NULL || oldadp->ad_lbn <= lbn) { 1564 /* insert at end of list */ 1565 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 1566 if (oldadp != NULL && oldadp->ad_lbn == lbn) 1567 allocdirect_merge(adphead, adp, oldadp); 1568 FREE_LOCK(&lk); 1569 return; 1570 } 1571 TAILQ_FOREACH(oldadp, adphead, ad_next) { 1572 if (oldadp->ad_lbn >= lbn) 1573 break; 1574 } 1575 if (oldadp == NULL) 1576 panic("softdep_setup_allocdirect: lost entry"); 1577 /* insert in middle of list */ 1578 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 1579 if (oldadp->ad_lbn == lbn) 1580 allocdirect_merge(adphead, adp, oldadp); 1581 FREE_LOCK(&lk); 1582 } 1583 1584 /* 1585 * Replace an old allocdirect dependency with a newer one. 1586 * This routine must be called with splbio interrupts blocked. 1587 */ 1588 static void 1589 allocdirect_merge(adphead, newadp, oldadp) 1590 struct allocdirectlst *adphead; /* head of list holding allocdirects */ 1591 struct allocdirect *newadp; /* allocdirect being added */ 1592 struct allocdirect *oldadp; /* existing allocdirect being checked */ 1593 { 1594 struct worklist *wk; 1595 struct freefrag *freefrag; 1596 struct newdirblk *newdirblk; 1597 1598 mtx_assert(&lk, MA_OWNED); 1599 if (newadp->ad_oldblkno != oldadp->ad_newblkno || 1600 newadp->ad_oldsize != oldadp->ad_newsize || 1601 newadp->ad_lbn >= NDADDR) 1602 panic("%s %jd != new %jd || old size %ld != new %ld", 1603 "allocdirect_merge: old blkno", 1604 (intmax_t)newadp->ad_oldblkno, 1605 (intmax_t)oldadp->ad_newblkno, 1606 newadp->ad_oldsize, oldadp->ad_newsize); 1607 newadp->ad_oldblkno = oldadp->ad_oldblkno; 1608 newadp->ad_oldsize = oldadp->ad_oldsize; 1609 /* 1610 * If the old dependency had a fragment to free or had never 1611 * previously had a block allocated, then the new dependency 1612 * can immediately post its freefrag and adopt the old freefrag. 1613 * This action is done by swapping the freefrag dependencies. 1614 * The new dependency gains the old one's freefrag, and the 1615 * old one gets the new one and then immediately puts it on 1616 * the worklist when it is freed by free_allocdirect. It is 1617 * not possible to do this swap when the old dependency had a 1618 * non-zero size but no previous fragment to free. This condition 1619 * arises when the new block is an extension of the old block. 1620 * Here, the first part of the fragment allocated to the new 1621 * dependency is part of the block currently claimed on disk by 1622 * the old dependency, so cannot legitimately be freed until the 1623 * conditions for the new dependency are fulfilled. 1624 */ 1625 if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) { 1626 freefrag = newadp->ad_freefrag; 1627 newadp->ad_freefrag = oldadp->ad_freefrag; 1628 oldadp->ad_freefrag = freefrag; 1629 } 1630 /* 1631 * If we are tracking a new directory-block allocation, 1632 * move it from the old allocdirect to the new allocdirect. 1633 */ 1634 if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) { 1635 newdirblk = WK_NEWDIRBLK(wk); 1636 WORKLIST_REMOVE(&newdirblk->db_list); 1637 if (LIST_FIRST(&oldadp->ad_newdirblk) != NULL) 1638 panic("allocdirect_merge: extra newdirblk"); 1639 WORKLIST_INSERT(&newadp->ad_newdirblk, &newdirblk->db_list); 1640 } 1641 free_allocdirect(adphead, oldadp, 0); 1642 } 1643 1644 /* 1645 * Allocate a new freefrag structure if needed. 1646 */ 1647 static struct freefrag * 1648 newfreefrag(ip, blkno, size) 1649 struct inode *ip; 1650 ufs2_daddr_t blkno; 1651 long size; 1652 { 1653 struct freefrag *freefrag; 1654 struct fs *fs; 1655 1656 if (blkno == 0) 1657 return (NULL); 1658 fs = ip->i_fs; 1659 if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag) 1660 panic("newfreefrag: frag size"); 1661 MALLOC(freefrag, struct freefrag *, sizeof(struct freefrag), 1662 M_FREEFRAG, M_SOFTDEP_FLAGS); 1663 freefrag->ff_list.wk_type = D_FREEFRAG; 1664 freefrag->ff_state = 0; 1665 freefrag->ff_inum = ip->i_number; 1666 freefrag->ff_mnt = ITOV(ip)->v_mount; 1667 freefrag->ff_blkno = blkno; 1668 freefrag->ff_fragsize = size; 1669 return (freefrag); 1670 } 1671 1672 /* 1673 * This workitem de-allocates fragments that were replaced during 1674 * file block allocation. 1675 */ 1676 static void 1677 handle_workitem_freefrag(freefrag) 1678 struct freefrag *freefrag; 1679 { 1680 struct ufsmount *ump = VFSTOUFS(freefrag->ff_mnt); 1681 1682 ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno, 1683 freefrag->ff_fragsize, freefrag->ff_inum); 1684 FREE(freefrag, M_FREEFRAG); 1685 } 1686 1687 /* 1688 * Set up a dependency structure for an external attributes data block. 1689 * This routine follows much of the structure of softdep_setup_allocdirect. 1690 * See the description of softdep_setup_allocdirect above for details. 1691 */ 1692 void 1693 softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 1694 struct inode *ip; 1695 ufs_lbn_t lbn; 1696 ufs2_daddr_t newblkno; 1697 ufs2_daddr_t oldblkno; 1698 long newsize; 1699 long oldsize; 1700 struct buf *bp; 1701 { 1702 struct allocdirect *adp, *oldadp; 1703 struct allocdirectlst *adphead; 1704 struct bmsafemap *bmsafemap; 1705 struct inodedep *inodedep; 1706 struct newblk *newblk; 1707 1708 MALLOC(adp, struct allocdirect *, sizeof(struct allocdirect), 1709 M_ALLOCDIRECT, M_SOFTDEP_FLAGS|M_ZERO); 1710 adp->ad_list.wk_type = D_ALLOCDIRECT; 1711 adp->ad_lbn = lbn; 1712 adp->ad_newblkno = newblkno; 1713 adp->ad_oldblkno = oldblkno; 1714 adp->ad_newsize = newsize; 1715 adp->ad_oldsize = oldsize; 1716 adp->ad_state = ATTACHED | EXTDATA; 1717 LIST_INIT(&adp->ad_newdirblk); 1718 if (newblkno == oldblkno) 1719 adp->ad_freefrag = NULL; 1720 else 1721 adp->ad_freefrag = newfreefrag(ip, oldblkno, oldsize); 1722 1723 ACQUIRE_LOCK(&lk); 1724 if (newblk_lookup(ip->i_fs, newblkno, 0, &newblk) == 0) 1725 panic("softdep_setup_allocext: lost block"); 1726 1727 inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC | NODELAY, &inodedep); 1728 adp->ad_inodedep = inodedep; 1729 1730 if (newblk->nb_state == DEPCOMPLETE) { 1731 adp->ad_state |= DEPCOMPLETE; 1732 adp->ad_buf = NULL; 1733 } else { 1734 bmsafemap = newblk->nb_bmsafemap; 1735 adp->ad_buf = bmsafemap->sm_buf; 1736 LIST_REMOVE(newblk, nb_deps); 1737 LIST_INSERT_HEAD(&bmsafemap->sm_allocdirecthd, adp, ad_deps); 1738 } 1739 LIST_REMOVE(newblk, nb_hash); 1740 FREE(newblk, M_NEWBLK); 1741 1742 WORKLIST_INSERT(&bp->b_dep, &adp->ad_list); 1743 if (lbn >= NXADDR) 1744 panic("softdep_setup_allocext: lbn %lld > NXADDR", 1745 (long long)lbn); 1746 /* 1747 * The list of allocdirects must be kept in sorted and ascending 1748 * order so that the rollback routines can quickly determine the 1749 * first uncommitted block (the size of the file stored on disk 1750 * ends at the end of the lowest committed fragment, or if there 1751 * are no fragments, at the end of the highest committed block). 1752 * Since files generally grow, the typical case is that the new 1753 * block is to be added at the end of the list. We speed this 1754 * special case by checking against the last allocdirect in the 1755 * list before laboriously traversing the list looking for the 1756 * insertion point. 1757 */ 1758 adphead = &inodedep->id_newextupdt; 1759 oldadp = TAILQ_LAST(adphead, allocdirectlst); 1760 if (oldadp == NULL || oldadp->ad_lbn <= lbn) { 1761 /* insert at end of list */ 1762 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 1763 if (oldadp != NULL && oldadp->ad_lbn == lbn) 1764 allocdirect_merge(adphead, adp, oldadp); 1765 FREE_LOCK(&lk); 1766 return; 1767 } 1768 TAILQ_FOREACH(oldadp, adphead, ad_next) { 1769 if (oldadp->ad_lbn >= lbn) 1770 break; 1771 } 1772 if (oldadp == NULL) 1773 panic("softdep_setup_allocext: lost entry"); 1774 /* insert in middle of list */ 1775 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 1776 if (oldadp->ad_lbn == lbn) 1777 allocdirect_merge(adphead, adp, oldadp); 1778 FREE_LOCK(&lk); 1779 } 1780 1781 /* 1782 * Indirect block allocation dependencies. 1783 * 1784 * The same dependencies that exist for a direct block also exist when 1785 * a new block is allocated and pointed to by an entry in a block of 1786 * indirect pointers. The undo/redo states described above are also 1787 * used here. Because an indirect block contains many pointers that 1788 * may have dependencies, a second copy of the entire in-memory indirect 1789 * block is kept. The buffer cache copy is always completely up-to-date. 1790 * The second copy, which is used only as a source for disk writes, 1791 * contains only the safe pointers (i.e., those that have no remaining 1792 * update dependencies). The second copy is freed when all pointers 1793 * are safe. The cache is not allowed to replace indirect blocks with 1794 * pending update dependencies. If a buffer containing an indirect 1795 * block with dependencies is written, these routines will mark it 1796 * dirty again. It can only be successfully written once all the 1797 * dependencies are removed. The ffs_fsync routine in conjunction with 1798 * softdep_sync_metadata work together to get all the dependencies 1799 * removed so that a file can be successfully written to disk. Three 1800 * procedures are used when setting up indirect block pointer 1801 * dependencies. The division is necessary because of the organization 1802 * of the "balloc" routine and because of the distinction between file 1803 * pages and file metadata blocks. 1804 */ 1805 1806 /* 1807 * Allocate a new allocindir structure. 1808 */ 1809 static struct allocindir * 1810 newallocindir(ip, ptrno, newblkno, oldblkno) 1811 struct inode *ip; /* inode for file being extended */ 1812 int ptrno; /* offset of pointer in indirect block */ 1813 ufs2_daddr_t newblkno; /* disk block number being added */ 1814 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 1815 { 1816 struct allocindir *aip; 1817 1818 MALLOC(aip, struct allocindir *, sizeof(struct allocindir), 1819 M_ALLOCINDIR, M_SOFTDEP_FLAGS|M_ZERO); 1820 aip->ai_list.wk_type = D_ALLOCINDIR; 1821 aip->ai_state = ATTACHED; 1822 aip->ai_offset = ptrno; 1823 aip->ai_newblkno = newblkno; 1824 aip->ai_oldblkno = oldblkno; 1825 aip->ai_freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize); 1826 return (aip); 1827 } 1828 1829 /* 1830 * Called just before setting an indirect block pointer 1831 * to a newly allocated file page. 1832 */ 1833 void 1834 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 1835 struct inode *ip; /* inode for file being extended */ 1836 ufs_lbn_t lbn; /* allocated block number within file */ 1837 struct buf *bp; /* buffer with indirect blk referencing page */ 1838 int ptrno; /* offset of pointer in indirect block */ 1839 ufs2_daddr_t newblkno; /* disk block number being added */ 1840 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 1841 struct buf *nbp; /* buffer holding allocated page */ 1842 { 1843 struct allocindir *aip; 1844 struct pagedep *pagedep; 1845 1846 ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page"); 1847 aip = newallocindir(ip, ptrno, newblkno, oldblkno); 1848 ACQUIRE_LOCK(&lk); 1849 /* 1850 * If we are allocating a directory page, then we must 1851 * allocate an associated pagedep to track additions and 1852 * deletions. 1853 */ 1854 if ((ip->i_mode & IFMT) == IFDIR && 1855 pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0) 1856 WORKLIST_INSERT(&nbp->b_dep, &pagedep->pd_list); 1857 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_list); 1858 setup_allocindir_phase2(bp, ip, aip); 1859 FREE_LOCK(&lk); 1860 } 1861 1862 /* 1863 * Called just before setting an indirect block pointer to a 1864 * newly allocated indirect block. 1865 */ 1866 void 1867 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 1868 struct buf *nbp; /* newly allocated indirect block */ 1869 struct inode *ip; /* inode for file being extended */ 1870 struct buf *bp; /* indirect block referencing allocated block */ 1871 int ptrno; /* offset of pointer in indirect block */ 1872 ufs2_daddr_t newblkno; /* disk block number being added */ 1873 { 1874 struct allocindir *aip; 1875 1876 ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta"); 1877 aip = newallocindir(ip, ptrno, newblkno, 0); 1878 ACQUIRE_LOCK(&lk); 1879 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_list); 1880 setup_allocindir_phase2(bp, ip, aip); 1881 FREE_LOCK(&lk); 1882 } 1883 1884 /* 1885 * Called to finish the allocation of the "aip" allocated 1886 * by one of the two routines above. 1887 */ 1888 static void 1889 setup_allocindir_phase2(bp, ip, aip) 1890 struct buf *bp; /* in-memory copy of the indirect block */ 1891 struct inode *ip; /* inode for file being extended */ 1892 struct allocindir *aip; /* allocindir allocated by the above routines */ 1893 { 1894 struct worklist *wk; 1895 struct indirdep *indirdep, *newindirdep; 1896 struct bmsafemap *bmsafemap; 1897 struct allocindir *oldaip; 1898 struct freefrag *freefrag; 1899 struct newblk *newblk; 1900 ufs2_daddr_t blkno; 1901 1902 mtx_assert(&lk, MA_OWNED); 1903 if (bp->b_lblkno >= 0) 1904 panic("setup_allocindir_phase2: not indir blk"); 1905 for (indirdep = NULL, newindirdep = NULL; ; ) { 1906 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 1907 if (wk->wk_type != D_INDIRDEP) 1908 continue; 1909 indirdep = WK_INDIRDEP(wk); 1910 break; 1911 } 1912 if (indirdep == NULL && newindirdep) { 1913 indirdep = newindirdep; 1914 WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list); 1915 newindirdep = NULL; 1916 } 1917 if (indirdep) { 1918 if (newblk_lookup(ip->i_fs, aip->ai_newblkno, 0, 1919 &newblk) == 0) 1920 panic("setup_allocindir: lost block"); 1921 if (newblk->nb_state == DEPCOMPLETE) { 1922 aip->ai_state |= DEPCOMPLETE; 1923 aip->ai_buf = NULL; 1924 } else { 1925 bmsafemap = newblk->nb_bmsafemap; 1926 aip->ai_buf = bmsafemap->sm_buf; 1927 LIST_REMOVE(newblk, nb_deps); 1928 LIST_INSERT_HEAD(&bmsafemap->sm_allocindirhd, 1929 aip, ai_deps); 1930 } 1931 LIST_REMOVE(newblk, nb_hash); 1932 FREE(newblk, M_NEWBLK); 1933 aip->ai_indirdep = indirdep; 1934 /* 1935 * Check to see if there is an existing dependency 1936 * for this block. If there is, merge the old 1937 * dependency into the new one. 1938 */ 1939 if (aip->ai_oldblkno == 0) 1940 oldaip = NULL; 1941 else 1942 1943 LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) 1944 if (oldaip->ai_offset == aip->ai_offset) 1945 break; 1946 freefrag = NULL; 1947 if (oldaip != NULL) { 1948 if (oldaip->ai_newblkno != aip->ai_oldblkno) 1949 panic("setup_allocindir_phase2: blkno"); 1950 aip->ai_oldblkno = oldaip->ai_oldblkno; 1951 freefrag = aip->ai_freefrag; 1952 aip->ai_freefrag = oldaip->ai_freefrag; 1953 oldaip->ai_freefrag = NULL; 1954 free_allocindir(oldaip, NULL); 1955 } 1956 LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next); 1957 if (ip->i_ump->um_fstype == UFS1) 1958 ((ufs1_daddr_t *)indirdep->ir_savebp->b_data) 1959 [aip->ai_offset] = aip->ai_oldblkno; 1960 else 1961 ((ufs2_daddr_t *)indirdep->ir_savebp->b_data) 1962 [aip->ai_offset] = aip->ai_oldblkno; 1963 FREE_LOCK(&lk); 1964 if (freefrag != NULL) 1965 handle_workitem_freefrag(freefrag); 1966 } else 1967 FREE_LOCK(&lk); 1968 if (newindirdep) { 1969 newindirdep->ir_savebp->b_flags |= B_INVAL | B_NOCACHE; 1970 brelse(newindirdep->ir_savebp); 1971 WORKITEM_FREE((caddr_t)newindirdep, D_INDIRDEP); 1972 } 1973 if (indirdep) { 1974 ACQUIRE_LOCK(&lk); 1975 break; 1976 } 1977 MALLOC(newindirdep, struct indirdep *, sizeof(struct indirdep), 1978 M_INDIRDEP, M_SOFTDEP_FLAGS); 1979 newindirdep->ir_list.wk_type = D_INDIRDEP; 1980 newindirdep->ir_state = ATTACHED; 1981 if (ip->i_ump->um_fstype == UFS1) 1982 newindirdep->ir_state |= UFS1FMT; 1983 LIST_INIT(&newindirdep->ir_deplisthd); 1984 LIST_INIT(&newindirdep->ir_donehd); 1985 if (bp->b_blkno == bp->b_lblkno) { 1986 ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp, 1987 NULL, NULL); 1988 bp->b_blkno = blkno; 1989 } 1990 newindirdep->ir_savebp = 1991 getblk(ip->i_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0); 1992 BUF_KERNPROC(newindirdep->ir_savebp); 1993 bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount); 1994 ACQUIRE_LOCK(&lk); 1995 } 1996 } 1997 1998 /* 1999 * Block de-allocation dependencies. 2000 * 2001 * When blocks are de-allocated, the on-disk pointers must be nullified before 2002 * the blocks are made available for use by other files. (The true 2003 * requirement is that old pointers must be nullified before new on-disk 2004 * pointers are set. We chose this slightly more stringent requirement to 2005 * reduce complexity.) Our implementation handles this dependency by updating 2006 * the inode (or indirect block) appropriately but delaying the actual block 2007 * de-allocation (i.e., freemap and free space count manipulation) until 2008 * after the updated versions reach stable storage. After the disk is 2009 * updated, the blocks can be safely de-allocated whenever it is convenient. 2010 * This implementation handles only the common case of reducing a file's 2011 * length to zero. Other cases are handled by the conventional synchronous 2012 * write approach. 2013 * 2014 * The ffs implementation with which we worked double-checks 2015 * the state of the block pointers and file size as it reduces 2016 * a file's length. Some of this code is replicated here in our 2017 * soft updates implementation. The freeblks->fb_chkcnt field is 2018 * used to transfer a part of this information to the procedure 2019 * that eventually de-allocates the blocks. 2020 * 2021 * This routine should be called from the routine that shortens 2022 * a file's length, before the inode's size or block pointers 2023 * are modified. It will save the block pointer information for 2024 * later release and zero the inode so that the calling routine 2025 * can release it. 2026 */ 2027 void 2028 softdep_setup_freeblocks(ip, length, flags) 2029 struct inode *ip; /* The inode whose length is to be reduced */ 2030 off_t length; /* The new length for the file */ 2031 int flags; /* IO_EXT and/or IO_NORMAL */ 2032 { 2033 struct freeblks *freeblks; 2034 struct inodedep *inodedep; 2035 struct allocdirect *adp; 2036 struct vnode *vp; 2037 struct buf *bp; 2038 struct fs *fs; 2039 ufs2_daddr_t extblocks, datablocks; 2040 int i, delay, error; 2041 2042 fs = ip->i_fs; 2043 if (length != 0) 2044 panic("softdep_setup_freeblocks: non-zero length"); 2045 MALLOC(freeblks, struct freeblks *, sizeof(struct freeblks), 2046 M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO); 2047 freeblks->fb_list.wk_type = D_FREEBLKS; 2048 freeblks->fb_state = ATTACHED; 2049 freeblks->fb_uid = ip->i_uid; 2050 freeblks->fb_previousinum = ip->i_number; 2051 freeblks->fb_devvp = ip->i_devvp; 2052 freeblks->fb_mnt = ITOV(ip)->v_mount; 2053 extblocks = 0; 2054 if (fs->fs_magic == FS_UFS2_MAGIC) 2055 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 2056 datablocks = DIP(ip, i_blocks) - extblocks; 2057 if ((flags & IO_NORMAL) == 0) { 2058 freeblks->fb_oldsize = 0; 2059 freeblks->fb_chkcnt = 0; 2060 } else { 2061 freeblks->fb_oldsize = ip->i_size; 2062 ip->i_size = 0; 2063 DIP_SET(ip, i_size, 0); 2064 freeblks->fb_chkcnt = datablocks; 2065 for (i = 0; i < NDADDR; i++) { 2066 freeblks->fb_dblks[i] = DIP(ip, i_db[i]); 2067 DIP_SET(ip, i_db[i], 0); 2068 } 2069 for (i = 0; i < NIADDR; i++) { 2070 freeblks->fb_iblks[i] = DIP(ip, i_ib[i]); 2071 DIP_SET(ip, i_ib[i], 0); 2072 } 2073 /* 2074 * If the file was removed, then the space being freed was 2075 * accounted for then (see softdep_filereleased()). If the 2076 * file is merely being truncated, then we account for it now. 2077 */ 2078 if ((ip->i_flag & IN_SPACECOUNTED) == 0) { 2079 UFS_LOCK(ip->i_ump); 2080 fs->fs_pendingblocks += datablocks; 2081 UFS_UNLOCK(ip->i_ump); 2082 } 2083 } 2084 if ((flags & IO_EXT) == 0) { 2085 freeblks->fb_oldextsize = 0; 2086 } else { 2087 freeblks->fb_oldextsize = ip->i_din2->di_extsize; 2088 ip->i_din2->di_extsize = 0; 2089 freeblks->fb_chkcnt += extblocks; 2090 for (i = 0; i < NXADDR; i++) { 2091 freeblks->fb_eblks[i] = ip->i_din2->di_extb[i]; 2092 ip->i_din2->di_extb[i] = 0; 2093 } 2094 } 2095 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - freeblks->fb_chkcnt); 2096 /* 2097 * Push the zero'ed inode to to its disk buffer so that we are free 2098 * to delete its dependencies below. Once the dependencies are gone 2099 * the buffer can be safely released. 2100 */ 2101 if ((error = bread(ip->i_devvp, 2102 fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 2103 (int)fs->fs_bsize, NOCRED, &bp)) != 0) { 2104 brelse(bp); 2105 softdep_error("softdep_setup_freeblocks", error); 2106 } 2107 if (ip->i_ump->um_fstype == UFS1) 2108 *((struct ufs1_dinode *)bp->b_data + 2109 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1; 2110 else 2111 *((struct ufs2_dinode *)bp->b_data + 2112 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2; 2113 /* 2114 * Find and eliminate any inode dependencies. 2115 */ 2116 ACQUIRE_LOCK(&lk); 2117 (void) inodedep_lookup(fs, ip->i_number, DEPALLOC, &inodedep); 2118 if ((inodedep->id_state & IOSTARTED) != 0) 2119 panic("softdep_setup_freeblocks: inode busy"); 2120 /* 2121 * Add the freeblks structure to the list of operations that 2122 * must await the zero'ed inode being written to disk. If we 2123 * still have a bitmap dependency (delay == 0), then the inode 2124 * has never been written to disk, so we can process the 2125 * freeblks below once we have deleted the dependencies. 2126 */ 2127 delay = (inodedep->id_state & DEPCOMPLETE); 2128 if (delay) 2129 WORKLIST_INSERT(&inodedep->id_bufwait, &freeblks->fb_list); 2130 /* 2131 * Because the file length has been truncated to zero, any 2132 * pending block allocation dependency structures associated 2133 * with this inode are obsolete and can simply be de-allocated. 2134 * We must first merge the two dependency lists to get rid of 2135 * any duplicate freefrag structures, then purge the merged list. 2136 * If we still have a bitmap dependency, then the inode has never 2137 * been written to disk, so we can free any fragments without delay. 2138 */ 2139 if (flags & IO_NORMAL) { 2140 merge_inode_lists(&inodedep->id_newinoupdt, 2141 &inodedep->id_inoupdt); 2142 while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != 0) 2143 free_allocdirect(&inodedep->id_inoupdt, adp, delay); 2144 } 2145 if (flags & IO_EXT) { 2146 merge_inode_lists(&inodedep->id_newextupdt, 2147 &inodedep->id_extupdt); 2148 while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0) 2149 free_allocdirect(&inodedep->id_extupdt, adp, delay); 2150 } 2151 FREE_LOCK(&lk); 2152 bdwrite(bp); 2153 /* 2154 * We must wait for any I/O in progress to finish so that 2155 * all potential buffers on the dirty list will be visible. 2156 * Once they are all there, walk the list and get rid of 2157 * any dependencies. 2158 */ 2159 vp = ITOV(ip); 2160 VI_LOCK(vp); 2161 drain_output(vp); 2162 restart: 2163 TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) { 2164 if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) || 2165 ((flags & IO_NORMAL) == 0 && 2166 (bp->b_xflags & BX_ALTDATA) == 0)) 2167 continue; 2168 if ((bp = getdirtybuf(bp, VI_MTX(vp), MNT_WAIT)) == NULL) 2169 goto restart; 2170 VI_UNLOCK(vp); 2171 ACQUIRE_LOCK(&lk); 2172 (void) inodedep_lookup(fs, ip->i_number, 0, &inodedep); 2173 deallocate_dependencies(bp, inodedep); 2174 FREE_LOCK(&lk); 2175 bp->b_flags |= B_INVAL | B_NOCACHE; 2176 brelse(bp); 2177 VI_LOCK(vp); 2178 goto restart; 2179 } 2180 VI_UNLOCK(vp); 2181 ACQUIRE_LOCK(&lk); 2182 if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) != 0) 2183 (void) free_inodedep(inodedep); 2184 2185 if(delay) { 2186 freeblks->fb_state |= DEPCOMPLETE; 2187 /* 2188 * If the inode with zeroed block pointers is now on disk 2189 * we can start freeing blocks. Add freeblks to the worklist 2190 * instead of calling handle_workitem_freeblocks directly as 2191 * it is more likely that additional IO is needed to complete 2192 * the request here than in the !delay case. 2193 */ 2194 if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE) 2195 add_to_worklist(&freeblks->fb_list); 2196 } 2197 2198 FREE_LOCK(&lk); 2199 /* 2200 * If the inode has never been written to disk (delay == 0), 2201 * then we can process the freeblks now that we have deleted 2202 * the dependencies. 2203 */ 2204 if (!delay) 2205 handle_workitem_freeblocks(freeblks, 0); 2206 } 2207 2208 /* 2209 * Reclaim any dependency structures from a buffer that is about to 2210 * be reallocated to a new vnode. The buffer must be locked, thus, 2211 * no I/O completion operations can occur while we are manipulating 2212 * its associated dependencies. The mutex is held so that other I/O's 2213 * associated with related dependencies do not occur. 2214 */ 2215 static void 2216 deallocate_dependencies(bp, inodedep) 2217 struct buf *bp; 2218 struct inodedep *inodedep; 2219 { 2220 struct worklist *wk; 2221 struct indirdep *indirdep; 2222 struct allocindir *aip; 2223 struct pagedep *pagedep; 2224 struct dirrem *dirrem; 2225 struct diradd *dap; 2226 int i; 2227 2228 mtx_assert(&lk, MA_OWNED); 2229 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) { 2230 switch (wk->wk_type) { 2231 2232 case D_INDIRDEP: 2233 indirdep = WK_INDIRDEP(wk); 2234 /* 2235 * None of the indirect pointers will ever be visible, 2236 * so they can simply be tossed. GOINGAWAY ensures 2237 * that allocated pointers will be saved in the buffer 2238 * cache until they are freed. Note that they will 2239 * only be able to be found by their physical address 2240 * since the inode mapping the logical address will 2241 * be gone. The save buffer used for the safe copy 2242 * was allocated in setup_allocindir_phase2 using 2243 * the physical address so it could be used for this 2244 * purpose. Hence we swap the safe copy with the real 2245 * copy, allowing the safe copy to be freed and holding 2246 * on to the real copy for later use in indir_trunc. 2247 */ 2248 if (indirdep->ir_state & GOINGAWAY) 2249 panic("deallocate_dependencies: already gone"); 2250 indirdep->ir_state |= GOINGAWAY; 2251 VFSTOUFS(bp->b_vp->v_mount)->um_numindirdeps += 1; 2252 while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != 0) 2253 free_allocindir(aip, inodedep); 2254 if (bp->b_lblkno >= 0 || 2255 bp->b_blkno != indirdep->ir_savebp->b_lblkno) 2256 panic("deallocate_dependencies: not indir"); 2257 bcopy(bp->b_data, indirdep->ir_savebp->b_data, 2258 bp->b_bcount); 2259 WORKLIST_REMOVE(wk); 2260 WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, wk); 2261 continue; 2262 2263 case D_PAGEDEP: 2264 pagedep = WK_PAGEDEP(wk); 2265 /* 2266 * None of the directory additions will ever be 2267 * visible, so they can simply be tossed. 2268 */ 2269 for (i = 0; i < DAHASHSZ; i++) 2270 while ((dap = 2271 LIST_FIRST(&pagedep->pd_diraddhd[i]))) 2272 free_diradd(dap); 2273 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != 0) 2274 free_diradd(dap); 2275 /* 2276 * Copy any directory remove dependencies to the list 2277 * to be processed after the zero'ed inode is written. 2278 * If the inode has already been written, then they 2279 * can be dumped directly onto the work list. 2280 */ 2281 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) { 2282 LIST_REMOVE(dirrem, dm_next); 2283 dirrem->dm_dirinum = pagedep->pd_ino; 2284 if (inodedep == NULL || 2285 (inodedep->id_state & ALLCOMPLETE) == 2286 ALLCOMPLETE) 2287 add_to_worklist(&dirrem->dm_list); 2288 else 2289 WORKLIST_INSERT(&inodedep->id_bufwait, 2290 &dirrem->dm_list); 2291 } 2292 if ((pagedep->pd_state & NEWBLOCK) != 0) { 2293 LIST_FOREACH(wk, &inodedep->id_bufwait, wk_list) 2294 if (wk->wk_type == D_NEWDIRBLK && 2295 WK_NEWDIRBLK(wk)->db_pagedep == 2296 pagedep) 2297 break; 2298 if (wk != NULL) { 2299 WORKLIST_REMOVE(wk); 2300 free_newdirblk(WK_NEWDIRBLK(wk)); 2301 } else 2302 panic("deallocate_dependencies: " 2303 "lost pagedep"); 2304 } 2305 WORKLIST_REMOVE(&pagedep->pd_list); 2306 LIST_REMOVE(pagedep, pd_hash); 2307 WORKITEM_FREE(pagedep, D_PAGEDEP); 2308 continue; 2309 2310 case D_ALLOCINDIR: 2311 free_allocindir(WK_ALLOCINDIR(wk), inodedep); 2312 continue; 2313 2314 case D_ALLOCDIRECT: 2315 case D_INODEDEP: 2316 panic("deallocate_dependencies: Unexpected type %s", 2317 TYPENAME(wk->wk_type)); 2318 /* NOTREACHED */ 2319 2320 default: 2321 panic("deallocate_dependencies: Unknown type %s", 2322 TYPENAME(wk->wk_type)); 2323 /* NOTREACHED */ 2324 } 2325 } 2326 } 2327 2328 /* 2329 * Free an allocdirect. Generate a new freefrag work request if appropriate. 2330 * This routine must be called with splbio interrupts blocked. 2331 */ 2332 static void 2333 free_allocdirect(adphead, adp, delay) 2334 struct allocdirectlst *adphead; 2335 struct allocdirect *adp; 2336 int delay; 2337 { 2338 struct newdirblk *newdirblk; 2339 struct worklist *wk; 2340 2341 mtx_assert(&lk, MA_OWNED); 2342 if ((adp->ad_state & DEPCOMPLETE) == 0) 2343 LIST_REMOVE(adp, ad_deps); 2344 TAILQ_REMOVE(adphead, adp, ad_next); 2345 if ((adp->ad_state & COMPLETE) == 0) 2346 WORKLIST_REMOVE(&adp->ad_list); 2347 if (adp->ad_freefrag != NULL) { 2348 if (delay) 2349 WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait, 2350 &adp->ad_freefrag->ff_list); 2351 else 2352 add_to_worklist(&adp->ad_freefrag->ff_list); 2353 } 2354 if ((wk = LIST_FIRST(&adp->ad_newdirblk)) != NULL) { 2355 newdirblk = WK_NEWDIRBLK(wk); 2356 WORKLIST_REMOVE(&newdirblk->db_list); 2357 if (LIST_FIRST(&adp->ad_newdirblk) != NULL) 2358 panic("free_allocdirect: extra newdirblk"); 2359 if (delay) 2360 WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait, 2361 &newdirblk->db_list); 2362 else 2363 free_newdirblk(newdirblk); 2364 } 2365 WORKITEM_FREE(adp, D_ALLOCDIRECT); 2366 } 2367 2368 /* 2369 * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep. 2370 * This routine must be called with splbio interrupts blocked. 2371 */ 2372 static void 2373 free_newdirblk(newdirblk) 2374 struct newdirblk *newdirblk; 2375 { 2376 struct pagedep *pagedep; 2377 struct diradd *dap; 2378 int i; 2379 2380 mtx_assert(&lk, MA_OWNED); 2381 /* 2382 * If the pagedep is still linked onto the directory buffer 2383 * dependency chain, then some of the entries on the 2384 * pd_pendinghd list may not be committed to disk yet. In 2385 * this case, we will simply clear the NEWBLOCK flag and 2386 * let the pd_pendinghd list be processed when the pagedep 2387 * is next written. If the pagedep is no longer on the buffer 2388 * dependency chain, then all the entries on the pd_pending 2389 * list are committed to disk and we can free them here. 2390 */ 2391 pagedep = newdirblk->db_pagedep; 2392 pagedep->pd_state &= ~NEWBLOCK; 2393 if ((pagedep->pd_state & ONWORKLIST) == 0) 2394 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 2395 free_diradd(dap); 2396 /* 2397 * If no dependencies remain, the pagedep will be freed. 2398 */ 2399 for (i = 0; i < DAHASHSZ; i++) 2400 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) != NULL) 2401 break; 2402 if (i == DAHASHSZ && (pagedep->pd_state & ONWORKLIST) == 0) { 2403 LIST_REMOVE(pagedep, pd_hash); 2404 WORKITEM_FREE(pagedep, D_PAGEDEP); 2405 } 2406 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 2407 } 2408 2409 /* 2410 * Prepare an inode to be freed. The actual free operation is not 2411 * done until the zero'ed inode has been written to disk. 2412 */ 2413 void 2414 softdep_freefile(pvp, ino, mode) 2415 struct vnode *pvp; 2416 ino_t ino; 2417 int mode; 2418 { 2419 struct inode *ip = VTOI(pvp); 2420 struct inodedep *inodedep; 2421 struct freefile *freefile; 2422 2423 /* 2424 * This sets up the inode de-allocation dependency. 2425 */ 2426 MALLOC(freefile, struct freefile *, sizeof(struct freefile), 2427 M_FREEFILE, M_SOFTDEP_FLAGS); 2428 freefile->fx_list.wk_type = D_FREEFILE; 2429 freefile->fx_list.wk_state = 0; 2430 freefile->fx_mode = mode; 2431 freefile->fx_oldinum = ino; 2432 freefile->fx_devvp = ip->i_devvp; 2433 freefile->fx_mnt = ITOV(ip)->v_mount; 2434 if ((ip->i_flag & IN_SPACECOUNTED) == 0) { 2435 UFS_LOCK(ip->i_ump); 2436 ip->i_fs->fs_pendinginodes += 1; 2437 UFS_UNLOCK(ip->i_ump); 2438 } 2439 2440 /* 2441 * If the inodedep does not exist, then the zero'ed inode has 2442 * been written to disk. If the allocated inode has never been 2443 * written to disk, then the on-disk inode is zero'ed. In either 2444 * case we can free the file immediately. 2445 */ 2446 ACQUIRE_LOCK(&lk); 2447 if (inodedep_lookup(ip->i_fs, ino, 0, &inodedep) == 0 || 2448 check_inode_unwritten(inodedep)) { 2449 FREE_LOCK(&lk); 2450 handle_workitem_freefile(freefile); 2451 return; 2452 } 2453 WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list); 2454 FREE_LOCK(&lk); 2455 } 2456 2457 /* 2458 * Check to see if an inode has never been written to disk. If 2459 * so free the inodedep and return success, otherwise return failure. 2460 * This routine must be called with splbio interrupts blocked. 2461 * 2462 * If we still have a bitmap dependency, then the inode has never 2463 * been written to disk. Drop the dependency as it is no longer 2464 * necessary since the inode is being deallocated. We set the 2465 * ALLCOMPLETE flags since the bitmap now properly shows that the 2466 * inode is not allocated. Even if the inode is actively being 2467 * written, it has been rolled back to its zero'ed state, so we 2468 * are ensured that a zero inode is what is on the disk. For short 2469 * lived files, this change will usually result in removing all the 2470 * dependencies from the inode so that it can be freed immediately. 2471 */ 2472 static int 2473 check_inode_unwritten(inodedep) 2474 struct inodedep *inodedep; 2475 { 2476 2477 mtx_assert(&lk, MA_OWNED); 2478 if ((inodedep->id_state & DEPCOMPLETE) != 0 || 2479 LIST_FIRST(&inodedep->id_pendinghd) != NULL || 2480 LIST_FIRST(&inodedep->id_bufwait) != NULL || 2481 LIST_FIRST(&inodedep->id_inowait) != NULL || 2482 TAILQ_FIRST(&inodedep->id_inoupdt) != NULL || 2483 TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL || 2484 TAILQ_FIRST(&inodedep->id_extupdt) != NULL || 2485 TAILQ_FIRST(&inodedep->id_newextupdt) != NULL || 2486 inodedep->id_nlinkdelta != 0) 2487 return (0); 2488 2489 /* 2490 * Another process might be in initiate_write_inodeblock_ufs[12] 2491 * trying to allocate memory without holding "Softdep Lock". 2492 */ 2493 if ((inodedep->id_state & IOSTARTED) != 0 && 2494 inodedep->id_savedino1 == NULL) 2495 return (0); 2496 2497 inodedep->id_state |= ALLCOMPLETE; 2498 LIST_REMOVE(inodedep, id_deps); 2499 inodedep->id_buf = NULL; 2500 if (inodedep->id_state & ONWORKLIST) 2501 WORKLIST_REMOVE(&inodedep->id_list); 2502 if (inodedep->id_savedino1 != NULL) { 2503 FREE(inodedep->id_savedino1, M_SAVEDINO); 2504 inodedep->id_savedino1 = NULL; 2505 } 2506 if (free_inodedep(inodedep) == 0) 2507 panic("check_inode_unwritten: busy inode"); 2508 return (1); 2509 } 2510 2511 /* 2512 * Try to free an inodedep structure. Return 1 if it could be freed. 2513 */ 2514 static int 2515 free_inodedep(inodedep) 2516 struct inodedep *inodedep; 2517 { 2518 2519 mtx_assert(&lk, MA_OWNED); 2520 if ((inodedep->id_state & ONWORKLIST) != 0 || 2521 (inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE || 2522 LIST_FIRST(&inodedep->id_pendinghd) != NULL || 2523 LIST_FIRST(&inodedep->id_bufwait) != NULL || 2524 LIST_FIRST(&inodedep->id_inowait) != NULL || 2525 TAILQ_FIRST(&inodedep->id_inoupdt) != NULL || 2526 TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL || 2527 TAILQ_FIRST(&inodedep->id_extupdt) != NULL || 2528 TAILQ_FIRST(&inodedep->id_newextupdt) != NULL || 2529 inodedep->id_nlinkdelta != 0 || inodedep->id_savedino1 != NULL) 2530 return (0); 2531 LIST_REMOVE(inodedep, id_hash); 2532 WORKITEM_FREE(inodedep, D_INODEDEP); 2533 num_inodedep -= 1; 2534 return (1); 2535 } 2536 2537 /* 2538 * This workitem routine performs the block de-allocation. 2539 * The workitem is added to the pending list after the updated 2540 * inode block has been written to disk. As mentioned above, 2541 * checks regarding the number of blocks de-allocated (compared 2542 * to the number of blocks allocated for the file) are also 2543 * performed in this function. 2544 */ 2545 static void 2546 handle_workitem_freeblocks(freeblks, flags) 2547 struct freeblks *freeblks; 2548 int flags; 2549 { 2550 struct inode *ip; 2551 struct vnode *vp; 2552 struct fs *fs; 2553 struct ufsmount *ump; 2554 int i, nblocks, level, bsize; 2555 ufs2_daddr_t bn, blocksreleased = 0; 2556 int error, allerror = 0; 2557 ufs_lbn_t baselbns[NIADDR], tmpval; 2558 int fs_pendingblocks; 2559 2560 ump = VFSTOUFS(freeblks->fb_mnt); 2561 fs = ump->um_fs; 2562 fs_pendingblocks = 0; 2563 tmpval = 1; 2564 baselbns[0] = NDADDR; 2565 for (i = 1; i < NIADDR; i++) { 2566 tmpval *= NINDIR(fs); 2567 baselbns[i] = baselbns[i - 1] + tmpval; 2568 } 2569 nblocks = btodb(fs->fs_bsize); 2570 blocksreleased = 0; 2571 /* 2572 * Release all extended attribute blocks or frags. 2573 */ 2574 if (freeblks->fb_oldextsize > 0) { 2575 for (i = (NXADDR - 1); i >= 0; i--) { 2576 if ((bn = freeblks->fb_eblks[i]) == 0) 2577 continue; 2578 bsize = sblksize(fs, freeblks->fb_oldextsize, i); 2579 ffs_blkfree(ump, fs, freeblks->fb_devvp, bn, bsize, 2580 freeblks->fb_previousinum); 2581 blocksreleased += btodb(bsize); 2582 } 2583 } 2584 /* 2585 * Release all data blocks or frags. 2586 */ 2587 if (freeblks->fb_oldsize > 0) { 2588 /* 2589 * Indirect blocks first. 2590 */ 2591 for (level = (NIADDR - 1); level >= 0; level--) { 2592 if ((bn = freeblks->fb_iblks[level]) == 0) 2593 continue; 2594 if ((error = indir_trunc(freeblks, fsbtodb(fs, bn), 2595 level, baselbns[level], &blocksreleased)) == 0) 2596 allerror = error; 2597 ffs_blkfree(ump, fs, freeblks->fb_devvp, bn, 2598 fs->fs_bsize, freeblks->fb_previousinum); 2599 fs_pendingblocks += nblocks; 2600 blocksreleased += nblocks; 2601 } 2602 /* 2603 * All direct blocks or frags. 2604 */ 2605 for (i = (NDADDR - 1); i >= 0; i--) { 2606 if ((bn = freeblks->fb_dblks[i]) == 0) 2607 continue; 2608 bsize = sblksize(fs, freeblks->fb_oldsize, i); 2609 ffs_blkfree(ump, fs, freeblks->fb_devvp, bn, bsize, 2610 freeblks->fb_previousinum); 2611 fs_pendingblocks += btodb(bsize); 2612 blocksreleased += btodb(bsize); 2613 } 2614 } 2615 UFS_LOCK(ump); 2616 fs->fs_pendingblocks -= fs_pendingblocks; 2617 UFS_UNLOCK(ump); 2618 /* 2619 * If we still have not finished background cleanup, then check 2620 * to see if the block count needs to be adjusted. 2621 */ 2622 if (freeblks->fb_chkcnt != blocksreleased && 2623 (fs->fs_flags & FS_UNCLEAN) != 0 && 2624 ffs_vget(freeblks->fb_mnt, freeblks->fb_previousinum, 2625 (flags & LK_NOWAIT) | LK_EXCLUSIVE, &vp) == 0) { 2626 ip = VTOI(vp); 2627 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + \ 2628 freeblks->fb_chkcnt - blocksreleased); 2629 ip->i_flag |= IN_CHANGE; 2630 vput(vp); 2631 } 2632 2633 #ifdef DIAGNOSTIC 2634 if (freeblks->fb_chkcnt != blocksreleased && 2635 ((fs->fs_flags & FS_UNCLEAN) == 0 || (flags & LK_NOWAIT) != 0)) 2636 printf("handle_workitem_freeblocks: block count\n"); 2637 if (allerror) 2638 softdep_error("handle_workitem_freeblks", allerror); 2639 #endif /* DIAGNOSTIC */ 2640 2641 WORKITEM_FREE(freeblks, D_FREEBLKS); 2642 } 2643 2644 /* 2645 * Release blocks associated with the inode ip and stored in the indirect 2646 * block dbn. If level is greater than SINGLE, the block is an indirect block 2647 * and recursive calls to indirtrunc must be used to cleanse other indirect 2648 * blocks. 2649 */ 2650 static int 2651 indir_trunc(freeblks, dbn, level, lbn, countp) 2652 struct freeblks *freeblks; 2653 ufs2_daddr_t dbn; 2654 int level; 2655 ufs_lbn_t lbn; 2656 ufs2_daddr_t *countp; 2657 { 2658 struct buf *bp; 2659 struct fs *fs; 2660 struct worklist *wk; 2661 struct indirdep *indirdep; 2662 struct ufsmount *ump; 2663 ufs1_daddr_t *bap1 = 0; 2664 ufs2_daddr_t nb, *bap2 = 0; 2665 ufs_lbn_t lbnadd; 2666 int i, nblocks, ufs1fmt; 2667 int error, allerror = 0; 2668 int fs_pendingblocks; 2669 2670 ump = VFSTOUFS(freeblks->fb_mnt); 2671 fs = ump->um_fs; 2672 fs_pendingblocks = 0; 2673 lbnadd = 1; 2674 for (i = level; i > 0; i--) 2675 lbnadd *= NINDIR(fs); 2676 /* 2677 * Get buffer of block pointers to be freed. This routine is not 2678 * called until the zero'ed inode has been written, so it is safe 2679 * to free blocks as they are encountered. Because the inode has 2680 * been zero'ed, calls to bmap on these blocks will fail. So, we 2681 * have to use the on-disk address and the block device for the 2682 * filesystem to look them up. If the file was deleted before its 2683 * indirect blocks were all written to disk, the routine that set 2684 * us up (deallocate_dependencies) will have arranged to leave 2685 * a complete copy of the indirect block in memory for our use. 2686 * Otherwise we have to read the blocks in from the disk. 2687 */ 2688 #ifdef notyet 2689 bp = getblk(freeblks->fb_devvp, dbn, (int)fs->fs_bsize, 0, 0, 2690 GB_NOCREAT); 2691 #else 2692 bp = incore(&freeblks->fb_devvp->v_bufobj, dbn); 2693 #endif 2694 ACQUIRE_LOCK(&lk); 2695 if (bp != NULL && (wk = LIST_FIRST(&bp->b_dep)) != NULL) { 2696 if (wk->wk_type != D_INDIRDEP || 2697 (indirdep = WK_INDIRDEP(wk))->ir_savebp != bp || 2698 (indirdep->ir_state & GOINGAWAY) == 0) 2699 panic("indir_trunc: lost indirdep"); 2700 WORKLIST_REMOVE(wk); 2701 WORKITEM_FREE(indirdep, D_INDIRDEP); 2702 if (LIST_FIRST(&bp->b_dep) != NULL) 2703 panic("indir_trunc: dangling dep"); 2704 VFSTOUFS(freeblks->fb_mnt)->um_numindirdeps -= 1; 2705 FREE_LOCK(&lk); 2706 } else { 2707 #ifdef notyet 2708 if (bp) 2709 brelse(bp); 2710 #endif 2711 FREE_LOCK(&lk); 2712 error = bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize, 2713 NOCRED, &bp); 2714 if (error) { 2715 brelse(bp); 2716 return (error); 2717 } 2718 } 2719 /* 2720 * Recursively free indirect blocks. 2721 */ 2722 if (VFSTOUFS(freeblks->fb_mnt)->um_fstype == UFS1) { 2723 ufs1fmt = 1; 2724 bap1 = (ufs1_daddr_t *)bp->b_data; 2725 } else { 2726 ufs1fmt = 0; 2727 bap2 = (ufs2_daddr_t *)bp->b_data; 2728 } 2729 nblocks = btodb(fs->fs_bsize); 2730 for (i = NINDIR(fs) - 1; i >= 0; i--) { 2731 if (ufs1fmt) 2732 nb = bap1[i]; 2733 else 2734 nb = bap2[i]; 2735 if (nb == 0) 2736 continue; 2737 if (level != 0) { 2738 if ((error = indir_trunc(freeblks, fsbtodb(fs, nb), 2739 level - 1, lbn + (i * lbnadd), countp)) != 0) 2740 allerror = error; 2741 } 2742 ffs_blkfree(ump, fs, freeblks->fb_devvp, nb, fs->fs_bsize, 2743 freeblks->fb_previousinum); 2744 fs_pendingblocks += nblocks; 2745 *countp += nblocks; 2746 } 2747 UFS_LOCK(ump); 2748 fs->fs_pendingblocks -= fs_pendingblocks; 2749 UFS_UNLOCK(ump); 2750 bp->b_flags |= B_INVAL | B_NOCACHE; 2751 brelse(bp); 2752 return (allerror); 2753 } 2754 2755 /* 2756 * Free an allocindir. 2757 * This routine must be called with splbio interrupts blocked. 2758 */ 2759 static void 2760 free_allocindir(aip, inodedep) 2761 struct allocindir *aip; 2762 struct inodedep *inodedep; 2763 { 2764 struct freefrag *freefrag; 2765 2766 mtx_assert(&lk, MA_OWNED); 2767 if ((aip->ai_state & DEPCOMPLETE) == 0) 2768 LIST_REMOVE(aip, ai_deps); 2769 if (aip->ai_state & ONWORKLIST) 2770 WORKLIST_REMOVE(&aip->ai_list); 2771 LIST_REMOVE(aip, ai_next); 2772 if ((freefrag = aip->ai_freefrag) != NULL) { 2773 if (inodedep == NULL) 2774 add_to_worklist(&freefrag->ff_list); 2775 else 2776 WORKLIST_INSERT(&inodedep->id_bufwait, 2777 &freefrag->ff_list); 2778 } 2779 WORKITEM_FREE(aip, D_ALLOCINDIR); 2780 } 2781 2782 /* 2783 * Directory entry addition dependencies. 2784 * 2785 * When adding a new directory entry, the inode (with its incremented link 2786 * count) must be written to disk before the directory entry's pointer to it. 2787 * Also, if the inode is newly allocated, the corresponding freemap must be 2788 * updated (on disk) before the directory entry's pointer. These requirements 2789 * are met via undo/redo on the directory entry's pointer, which consists 2790 * simply of the inode number. 2791 * 2792 * As directory entries are added and deleted, the free space within a 2793 * directory block can become fragmented. The ufs filesystem will compact 2794 * a fragmented directory block to make space for a new entry. When this 2795 * occurs, the offsets of previously added entries change. Any "diradd" 2796 * dependency structures corresponding to these entries must be updated with 2797 * the new offsets. 2798 */ 2799 2800 /* 2801 * This routine is called after the in-memory inode's link 2802 * count has been incremented, but before the directory entry's 2803 * pointer to the inode has been set. 2804 */ 2805 int 2806 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk) 2807 struct buf *bp; /* buffer containing directory block */ 2808 struct inode *dp; /* inode for directory */ 2809 off_t diroffset; /* offset of new entry in directory */ 2810 ino_t newinum; /* inode referenced by new directory entry */ 2811 struct buf *newdirbp; /* non-NULL => contents of new mkdir */ 2812 int isnewblk; /* entry is in a newly allocated block */ 2813 { 2814 int offset; /* offset of new entry within directory block */ 2815 ufs_lbn_t lbn; /* block in directory containing new entry */ 2816 struct fs *fs; 2817 struct diradd *dap; 2818 struct allocdirect *adp; 2819 struct pagedep *pagedep; 2820 struct inodedep *inodedep; 2821 struct newdirblk *newdirblk = 0; 2822 struct mkdir *mkdir1, *mkdir2; 2823 2824 /* 2825 * Whiteouts have no dependencies. 2826 */ 2827 if (newinum == WINO) { 2828 if (newdirbp != NULL) 2829 bdwrite(newdirbp); 2830 return (0); 2831 } 2832 2833 fs = dp->i_fs; 2834 lbn = lblkno(fs, diroffset); 2835 offset = blkoff(fs, diroffset); 2836 MALLOC(dap, struct diradd *, sizeof(struct diradd), M_DIRADD, 2837 M_SOFTDEP_FLAGS|M_ZERO); 2838 dap->da_list.wk_type = D_DIRADD; 2839 dap->da_offset = offset; 2840 dap->da_newinum = newinum; 2841 dap->da_state = ATTACHED; 2842 if (isnewblk && lbn < NDADDR && fragoff(fs, diroffset) == 0) { 2843 MALLOC(newdirblk, struct newdirblk *, sizeof(struct newdirblk), 2844 M_NEWDIRBLK, M_SOFTDEP_FLAGS); 2845 newdirblk->db_list.wk_type = D_NEWDIRBLK; 2846 newdirblk->db_state = 0; 2847 } 2848 if (newdirbp == NULL) { 2849 dap->da_state |= DEPCOMPLETE; 2850 ACQUIRE_LOCK(&lk); 2851 } else { 2852 dap->da_state |= MKDIR_BODY | MKDIR_PARENT; 2853 MALLOC(mkdir1, struct mkdir *, sizeof(struct mkdir), M_MKDIR, 2854 M_SOFTDEP_FLAGS); 2855 mkdir1->md_list.wk_type = D_MKDIR; 2856 mkdir1->md_state = MKDIR_BODY; 2857 mkdir1->md_diradd = dap; 2858 MALLOC(mkdir2, struct mkdir *, sizeof(struct mkdir), M_MKDIR, 2859 M_SOFTDEP_FLAGS); 2860 mkdir2->md_list.wk_type = D_MKDIR; 2861 mkdir2->md_state = MKDIR_PARENT; 2862 mkdir2->md_diradd = dap; 2863 /* 2864 * Dependency on "." and ".." being written to disk. 2865 */ 2866 mkdir1->md_buf = newdirbp; 2867 ACQUIRE_LOCK(&lk); 2868 LIST_INSERT_HEAD(&mkdirlisthd, mkdir1, md_mkdirs); 2869 WORKLIST_INSERT(&newdirbp->b_dep, &mkdir1->md_list); 2870 FREE_LOCK(&lk); 2871 bdwrite(newdirbp); 2872 /* 2873 * Dependency on link count increase for parent directory 2874 */ 2875 ACQUIRE_LOCK(&lk); 2876 if (inodedep_lookup(fs, dp->i_number, 0, &inodedep) == 0 2877 || (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 2878 dap->da_state &= ~MKDIR_PARENT; 2879 WORKITEM_FREE(mkdir2, D_MKDIR); 2880 } else { 2881 LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs); 2882 WORKLIST_INSERT(&inodedep->id_bufwait,&mkdir2->md_list); 2883 } 2884 } 2885 /* 2886 * Link into parent directory pagedep to await its being written. 2887 */ 2888 if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0) 2889 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 2890 dap->da_pagedep = pagedep; 2891 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap, 2892 da_pdlist); 2893 /* 2894 * Link into its inodedep. Put it on the id_bufwait list if the inode 2895 * is not yet written. If it is written, do the post-inode write 2896 * processing to put it on the id_pendinghd list. 2897 */ 2898 (void) inodedep_lookup(fs, newinum, DEPALLOC, &inodedep); 2899 if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) 2900 diradd_inode_written(dap, inodedep); 2901 else 2902 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 2903 if (isnewblk) { 2904 /* 2905 * Directories growing into indirect blocks are rare 2906 * enough and the frequency of new block allocation 2907 * in those cases even more rare, that we choose not 2908 * to bother tracking them. Rather we simply force the 2909 * new directory entry to disk. 2910 */ 2911 if (lbn >= NDADDR) { 2912 FREE_LOCK(&lk); 2913 /* 2914 * We only have a new allocation when at the 2915 * beginning of a new block, not when we are 2916 * expanding into an existing block. 2917 */ 2918 if (blkoff(fs, diroffset) == 0) 2919 return (1); 2920 return (0); 2921 } 2922 /* 2923 * We only have a new allocation when at the beginning 2924 * of a new fragment, not when we are expanding into an 2925 * existing fragment. Also, there is nothing to do if we 2926 * are already tracking this block. 2927 */ 2928 if (fragoff(fs, diroffset) != 0) { 2929 FREE_LOCK(&lk); 2930 return (0); 2931 } 2932 if ((pagedep->pd_state & NEWBLOCK) != 0) { 2933 FREE_LOCK(&lk); 2934 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 2935 return (0); 2936 } 2937 /* 2938 * Find our associated allocdirect and have it track us. 2939 */ 2940 if (inodedep_lookup(fs, dp->i_number, 0, &inodedep) == 0) 2941 panic("softdep_setup_directory_add: lost inodedep"); 2942 adp = TAILQ_LAST(&inodedep->id_newinoupdt, allocdirectlst); 2943 if (adp == NULL || adp->ad_lbn != lbn) 2944 panic("softdep_setup_directory_add: lost entry"); 2945 pagedep->pd_state |= NEWBLOCK; 2946 newdirblk->db_pagedep = pagedep; 2947 WORKLIST_INSERT(&adp->ad_newdirblk, &newdirblk->db_list); 2948 } 2949 FREE_LOCK(&lk); 2950 return (0); 2951 } 2952 2953 /* 2954 * This procedure is called to change the offset of a directory 2955 * entry when compacting a directory block which must be owned 2956 * exclusively by the caller. Note that the actual entry movement 2957 * must be done in this procedure to ensure that no I/O completions 2958 * occur while the move is in progress. 2959 */ 2960 void 2961 softdep_change_directoryentry_offset(dp, base, oldloc, newloc, entrysize) 2962 struct inode *dp; /* inode for directory */ 2963 caddr_t base; /* address of dp->i_offset */ 2964 caddr_t oldloc; /* address of old directory location */ 2965 caddr_t newloc; /* address of new directory location */ 2966 int entrysize; /* size of directory entry */ 2967 { 2968 int offset, oldoffset, newoffset; 2969 struct pagedep *pagedep; 2970 struct diradd *dap; 2971 ufs_lbn_t lbn; 2972 2973 ACQUIRE_LOCK(&lk); 2974 lbn = lblkno(dp->i_fs, dp->i_offset); 2975 offset = blkoff(dp->i_fs, dp->i_offset); 2976 if (pagedep_lookup(dp, lbn, 0, &pagedep) == 0) 2977 goto done; 2978 oldoffset = offset + (oldloc - base); 2979 newoffset = offset + (newloc - base); 2980 2981 LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(oldoffset)], da_pdlist) { 2982 if (dap->da_offset != oldoffset) 2983 continue; 2984 dap->da_offset = newoffset; 2985 if (DIRADDHASH(newoffset) == DIRADDHASH(oldoffset)) 2986 break; 2987 LIST_REMOVE(dap, da_pdlist); 2988 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(newoffset)], 2989 dap, da_pdlist); 2990 break; 2991 } 2992 if (dap == NULL) { 2993 2994 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) { 2995 if (dap->da_offset == oldoffset) { 2996 dap->da_offset = newoffset; 2997 break; 2998 } 2999 } 3000 } 3001 done: 3002 bcopy(oldloc, newloc, entrysize); 3003 FREE_LOCK(&lk); 3004 } 3005 3006 /* 3007 * Free a diradd dependency structure. This routine must be called 3008 * with splbio interrupts blocked. 3009 */ 3010 static void 3011 free_diradd(dap) 3012 struct diradd *dap; 3013 { 3014 struct dirrem *dirrem; 3015 struct pagedep *pagedep; 3016 struct inodedep *inodedep; 3017 struct mkdir *mkdir, *nextmd; 3018 3019 mtx_assert(&lk, MA_OWNED); 3020 WORKLIST_REMOVE(&dap->da_list); 3021 LIST_REMOVE(dap, da_pdlist); 3022 if ((dap->da_state & DIRCHG) == 0) { 3023 pagedep = dap->da_pagedep; 3024 } else { 3025 dirrem = dap->da_previous; 3026 pagedep = dirrem->dm_pagedep; 3027 dirrem->dm_dirinum = pagedep->pd_ino; 3028 add_to_worklist(&dirrem->dm_list); 3029 } 3030 if (inodedep_lookup(VFSTOUFS(pagedep->pd_mnt)->um_fs, dap->da_newinum, 3031 0, &inodedep) != 0) 3032 (void) free_inodedep(inodedep); 3033 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 3034 for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) { 3035 nextmd = LIST_NEXT(mkdir, md_mkdirs); 3036 if (mkdir->md_diradd != dap) 3037 continue; 3038 dap->da_state &= ~mkdir->md_state; 3039 WORKLIST_REMOVE(&mkdir->md_list); 3040 LIST_REMOVE(mkdir, md_mkdirs); 3041 WORKITEM_FREE(mkdir, D_MKDIR); 3042 } 3043 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) 3044 panic("free_diradd: unfound ref"); 3045 } 3046 WORKITEM_FREE(dap, D_DIRADD); 3047 } 3048 3049 /* 3050 * Directory entry removal dependencies. 3051 * 3052 * When removing a directory entry, the entry's inode pointer must be 3053 * zero'ed on disk before the corresponding inode's link count is decremented 3054 * (possibly freeing the inode for re-use). This dependency is handled by 3055 * updating the directory entry but delaying the inode count reduction until 3056 * after the directory block has been written to disk. After this point, the 3057 * inode count can be decremented whenever it is convenient. 3058 */ 3059 3060 /* 3061 * This routine should be called immediately after removing 3062 * a directory entry. The inode's link count should not be 3063 * decremented by the calling procedure -- the soft updates 3064 * code will do this task when it is safe. 3065 */ 3066 void 3067 softdep_setup_remove(bp, dp, ip, isrmdir) 3068 struct buf *bp; /* buffer containing directory block */ 3069 struct inode *dp; /* inode for the directory being modified */ 3070 struct inode *ip; /* inode for directory entry being removed */ 3071 int isrmdir; /* indicates if doing RMDIR */ 3072 { 3073 struct dirrem *dirrem, *prevdirrem; 3074 3075 /* 3076 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK. 3077 */ 3078 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 3079 3080 /* 3081 * If the COMPLETE flag is clear, then there were no active 3082 * entries and we want to roll back to a zeroed entry until 3083 * the new inode is committed to disk. If the COMPLETE flag is 3084 * set then we have deleted an entry that never made it to 3085 * disk. If the entry we deleted resulted from a name change, 3086 * then the old name still resides on disk. We cannot delete 3087 * its inode (returned to us in prevdirrem) until the zeroed 3088 * directory entry gets to disk. The new inode has never been 3089 * referenced on the disk, so can be deleted immediately. 3090 */ 3091 if ((dirrem->dm_state & COMPLETE) == 0) { 3092 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem, 3093 dm_next); 3094 FREE_LOCK(&lk); 3095 } else { 3096 if (prevdirrem != NULL) 3097 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, 3098 prevdirrem, dm_next); 3099 dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino; 3100 FREE_LOCK(&lk); 3101 handle_workitem_remove(dirrem, NULL); 3102 } 3103 } 3104 3105 /* 3106 * Allocate a new dirrem if appropriate and return it along with 3107 * its associated pagedep. Called without a lock, returns with lock. 3108 */ 3109 static long num_dirrem; /* number of dirrem allocated */ 3110 static struct dirrem * 3111 newdirrem(bp, dp, ip, isrmdir, prevdirremp) 3112 struct buf *bp; /* buffer containing directory block */ 3113 struct inode *dp; /* inode for the directory being modified */ 3114 struct inode *ip; /* inode for directory entry being removed */ 3115 int isrmdir; /* indicates if doing RMDIR */ 3116 struct dirrem **prevdirremp; /* previously referenced inode, if any */ 3117 { 3118 int offset; 3119 ufs_lbn_t lbn; 3120 struct diradd *dap; 3121 struct dirrem *dirrem; 3122 struct pagedep *pagedep; 3123 3124 /* 3125 * Whiteouts have no deletion dependencies. 3126 */ 3127 if (ip == NULL) 3128 panic("newdirrem: whiteout"); 3129 /* 3130 * If we are over our limit, try to improve the situation. 3131 * Limiting the number of dirrem structures will also limit 3132 * the number of freefile and freeblks structures. 3133 */ 3134 ACQUIRE_LOCK(&lk); 3135 if (num_dirrem > max_softdeps / 2) 3136 (void) request_cleanup(FLUSH_REMOVE); 3137 num_dirrem += 1; 3138 FREE_LOCK(&lk); 3139 MALLOC(dirrem, struct dirrem *, sizeof(struct dirrem), 3140 M_DIRREM, M_SOFTDEP_FLAGS|M_ZERO); 3141 dirrem->dm_list.wk_type = D_DIRREM; 3142 dirrem->dm_state = isrmdir ? RMDIR : 0; 3143 dirrem->dm_mnt = ITOV(ip)->v_mount; 3144 dirrem->dm_oldinum = ip->i_number; 3145 *prevdirremp = NULL; 3146 3147 ACQUIRE_LOCK(&lk); 3148 lbn = lblkno(dp->i_fs, dp->i_offset); 3149 offset = blkoff(dp->i_fs, dp->i_offset); 3150 if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0) 3151 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 3152 dirrem->dm_pagedep = pagedep; 3153 /* 3154 * Check for a diradd dependency for the same directory entry. 3155 * If present, then both dependencies become obsolete and can 3156 * be de-allocated. Check for an entry on both the pd_dirraddhd 3157 * list and the pd_pendinghd list. 3158 */ 3159 3160 LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist) 3161 if (dap->da_offset == offset) 3162 break; 3163 if (dap == NULL) { 3164 3165 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) 3166 if (dap->da_offset == offset) 3167 break; 3168 if (dap == NULL) 3169 return (dirrem); 3170 } 3171 /* 3172 * Must be ATTACHED at this point. 3173 */ 3174 if ((dap->da_state & ATTACHED) == 0) 3175 panic("newdirrem: not ATTACHED"); 3176 if (dap->da_newinum != ip->i_number) 3177 panic("newdirrem: inum %d should be %d", 3178 ip->i_number, dap->da_newinum); 3179 /* 3180 * If we are deleting a changed name that never made it to disk, 3181 * then return the dirrem describing the previous inode (which 3182 * represents the inode currently referenced from this entry on disk). 3183 */ 3184 if ((dap->da_state & DIRCHG) != 0) { 3185 *prevdirremp = dap->da_previous; 3186 dap->da_state &= ~DIRCHG; 3187 dap->da_pagedep = pagedep; 3188 } 3189 /* 3190 * We are deleting an entry that never made it to disk. 3191 * Mark it COMPLETE so we can delete its inode immediately. 3192 */ 3193 dirrem->dm_state |= COMPLETE; 3194 free_diradd(dap); 3195 return (dirrem); 3196 } 3197 3198 /* 3199 * Directory entry change dependencies. 3200 * 3201 * Changing an existing directory entry requires that an add operation 3202 * be completed first followed by a deletion. The semantics for the addition 3203 * are identical to the description of adding a new entry above except 3204 * that the rollback is to the old inode number rather than zero. Once 3205 * the addition dependency is completed, the removal is done as described 3206 * in the removal routine above. 3207 */ 3208 3209 /* 3210 * This routine should be called immediately after changing 3211 * a directory entry. The inode's link count should not be 3212 * decremented by the calling procedure -- the soft updates 3213 * code will perform this task when it is safe. 3214 */ 3215 void 3216 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 3217 struct buf *bp; /* buffer containing directory block */ 3218 struct inode *dp; /* inode for the directory being modified */ 3219 struct inode *ip; /* inode for directory entry being removed */ 3220 ino_t newinum; /* new inode number for changed entry */ 3221 int isrmdir; /* indicates if doing RMDIR */ 3222 { 3223 int offset; 3224 struct diradd *dap = NULL; 3225 struct dirrem *dirrem, *prevdirrem; 3226 struct pagedep *pagedep; 3227 struct inodedep *inodedep; 3228 3229 offset = blkoff(dp->i_fs, dp->i_offset); 3230 3231 /* 3232 * Whiteouts do not need diradd dependencies. 3233 */ 3234 if (newinum != WINO) { 3235 MALLOC(dap, struct diradd *, sizeof(struct diradd), 3236 M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO); 3237 dap->da_list.wk_type = D_DIRADD; 3238 dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE; 3239 dap->da_offset = offset; 3240 dap->da_newinum = newinum; 3241 } 3242 3243 /* 3244 * Allocate a new dirrem and ACQUIRE_LOCK. 3245 */ 3246 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 3247 pagedep = dirrem->dm_pagedep; 3248 /* 3249 * The possible values for isrmdir: 3250 * 0 - non-directory file rename 3251 * 1 - directory rename within same directory 3252 * inum - directory rename to new directory of given inode number 3253 * When renaming to a new directory, we are both deleting and 3254 * creating a new directory entry, so the link count on the new 3255 * directory should not change. Thus we do not need the followup 3256 * dirrem which is usually done in handle_workitem_remove. We set 3257 * the DIRCHG flag to tell handle_workitem_remove to skip the 3258 * followup dirrem. 3259 */ 3260 if (isrmdir > 1) 3261 dirrem->dm_state |= DIRCHG; 3262 3263 /* 3264 * Whiteouts have no additional dependencies, 3265 * so just put the dirrem on the correct list. 3266 */ 3267 if (newinum == WINO) { 3268 if ((dirrem->dm_state & COMPLETE) == 0) { 3269 LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem, 3270 dm_next); 3271 } else { 3272 dirrem->dm_dirinum = pagedep->pd_ino; 3273 add_to_worklist(&dirrem->dm_list); 3274 } 3275 FREE_LOCK(&lk); 3276 return; 3277 } 3278 3279 /* 3280 * If the COMPLETE flag is clear, then there were no active 3281 * entries and we want to roll back to the previous inode until 3282 * the new inode is committed to disk. If the COMPLETE flag is 3283 * set, then we have deleted an entry that never made it to disk. 3284 * If the entry we deleted resulted from a name change, then the old 3285 * inode reference still resides on disk. Any rollback that we do 3286 * needs to be to that old inode (returned to us in prevdirrem). If 3287 * the entry we deleted resulted from a create, then there is 3288 * no entry on the disk, so we want to roll back to zero rather 3289 * than the uncommitted inode. In either of the COMPLETE cases we 3290 * want to immediately free the unwritten and unreferenced inode. 3291 */ 3292 if ((dirrem->dm_state & COMPLETE) == 0) { 3293 dap->da_previous = dirrem; 3294 } else { 3295 if (prevdirrem != NULL) { 3296 dap->da_previous = prevdirrem; 3297 } else { 3298 dap->da_state &= ~DIRCHG; 3299 dap->da_pagedep = pagedep; 3300 } 3301 dirrem->dm_dirinum = pagedep->pd_ino; 3302 add_to_worklist(&dirrem->dm_list); 3303 } 3304 /* 3305 * Link into its inodedep. Put it on the id_bufwait list if the inode 3306 * is not yet written. If it is written, do the post-inode write 3307 * processing to put it on the id_pendinghd list. 3308 */ 3309 if (inodedep_lookup(dp->i_fs, newinum, DEPALLOC, &inodedep) == 0 || 3310 (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 3311 dap->da_state |= COMPLETE; 3312 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 3313 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 3314 } else { 3315 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], 3316 dap, da_pdlist); 3317 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 3318 } 3319 FREE_LOCK(&lk); 3320 } 3321 3322 /* 3323 * Called whenever the link count on an inode is changed. 3324 * It creates an inode dependency so that the new reference(s) 3325 * to the inode cannot be committed to disk until the updated 3326 * inode has been written. 3327 */ 3328 void 3329 softdep_change_linkcnt(ip) 3330 struct inode *ip; /* the inode with the increased link count */ 3331 { 3332 struct inodedep *inodedep; 3333 3334 ACQUIRE_LOCK(&lk); 3335 (void) inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC, &inodedep); 3336 if (ip->i_nlink < ip->i_effnlink) 3337 panic("softdep_change_linkcnt: bad delta"); 3338 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 3339 FREE_LOCK(&lk); 3340 } 3341 3342 /* 3343 * Called when the effective link count and the reference count 3344 * on an inode drops to zero. At this point there are no names 3345 * referencing the file in the filesystem and no active file 3346 * references. The space associated with the file will be freed 3347 * as soon as the necessary soft dependencies are cleared. 3348 */ 3349 void 3350 softdep_releasefile(ip) 3351 struct inode *ip; /* inode with the zero effective link count */ 3352 { 3353 struct inodedep *inodedep; 3354 struct fs *fs; 3355 int extblocks; 3356 3357 if (ip->i_effnlink > 0) 3358 panic("softdep_filerelease: file still referenced"); 3359 /* 3360 * We may be called several times as the real reference count 3361 * drops to zero. We only want to account for the space once. 3362 */ 3363 if (ip->i_flag & IN_SPACECOUNTED) 3364 return; 3365 /* 3366 * We have to deactivate a snapshot otherwise copyonwrites may 3367 * add blocks and the cleanup may remove blocks after we have 3368 * tried to account for them. 3369 */ 3370 if ((ip->i_flags & SF_SNAPSHOT) != 0) 3371 ffs_snapremove(ITOV(ip)); 3372 /* 3373 * If we are tracking an nlinkdelta, we have to also remember 3374 * whether we accounted for the freed space yet. 3375 */ 3376 ACQUIRE_LOCK(&lk); 3377 if ((inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep))) 3378 inodedep->id_state |= SPACECOUNTED; 3379 FREE_LOCK(&lk); 3380 fs = ip->i_fs; 3381 extblocks = 0; 3382 if (fs->fs_magic == FS_UFS2_MAGIC) 3383 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 3384 UFS_LOCK(ip->i_ump); 3385 ip->i_fs->fs_pendingblocks += DIP(ip, i_blocks) - extblocks; 3386 ip->i_fs->fs_pendinginodes += 1; 3387 UFS_UNLOCK(ip->i_ump); 3388 ip->i_flag |= IN_SPACECOUNTED; 3389 } 3390 3391 /* 3392 * This workitem decrements the inode's link count. 3393 * If the link count reaches zero, the file is removed. 3394 */ 3395 static void 3396 handle_workitem_remove(dirrem, xp) 3397 struct dirrem *dirrem; 3398 struct vnode *xp; 3399 { 3400 struct thread *td = curthread; 3401 struct inodedep *inodedep; 3402 struct vnode *vp; 3403 struct inode *ip; 3404 ino_t oldinum; 3405 int error; 3406 3407 if ((vp = xp) == NULL && 3408 (error = ffs_vget(dirrem->dm_mnt, dirrem->dm_oldinum, LK_EXCLUSIVE, 3409 &vp)) != 0) { 3410 softdep_error("handle_workitem_remove: vget", error); 3411 return; 3412 } 3413 ip = VTOI(vp); 3414 ACQUIRE_LOCK(&lk); 3415 if ((inodedep_lookup(ip->i_fs, dirrem->dm_oldinum, 0, &inodedep)) == 0) 3416 panic("handle_workitem_remove: lost inodedep"); 3417 /* 3418 * Normal file deletion. 3419 */ 3420 if ((dirrem->dm_state & RMDIR) == 0) { 3421 ip->i_nlink--; 3422 DIP_SET(ip, i_nlink, ip->i_nlink); 3423 ip->i_flag |= IN_CHANGE; 3424 if (ip->i_nlink < ip->i_effnlink) 3425 panic("handle_workitem_remove: bad file delta"); 3426 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 3427 num_dirrem -= 1; 3428 FREE_LOCK(&lk); 3429 vput(vp); 3430 WORKITEM_FREE(dirrem, D_DIRREM); 3431 return; 3432 } 3433 /* 3434 * Directory deletion. Decrement reference count for both the 3435 * just deleted parent directory entry and the reference for ".". 3436 * Next truncate the directory to length zero. When the 3437 * truncation completes, arrange to have the reference count on 3438 * the parent decremented to account for the loss of "..". 3439 */ 3440 ip->i_nlink -= 2; 3441 DIP_SET(ip, i_nlink, ip->i_nlink); 3442 ip->i_flag |= IN_CHANGE; 3443 if (ip->i_nlink < ip->i_effnlink) 3444 panic("handle_workitem_remove: bad dir delta"); 3445 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 3446 FREE_LOCK(&lk); 3447 if ((error = ffs_truncate(vp, (off_t)0, 0, td->td_ucred, td)) != 0) 3448 softdep_error("handle_workitem_remove: truncate", error); 3449 ACQUIRE_LOCK(&lk); 3450 /* 3451 * Rename a directory to a new parent. Since, we are both deleting 3452 * and creating a new directory entry, the link count on the new 3453 * directory should not change. Thus we skip the followup dirrem. 3454 */ 3455 if (dirrem->dm_state & DIRCHG) { 3456 num_dirrem -= 1; 3457 FREE_LOCK(&lk); 3458 vput(vp); 3459 WORKITEM_FREE(dirrem, D_DIRREM); 3460 return; 3461 } 3462 /* 3463 * If the inodedep does not exist, then the zero'ed inode has 3464 * been written to disk. If the allocated inode has never been 3465 * written to disk, then the on-disk inode is zero'ed. In either 3466 * case we can remove the file immediately. 3467 */ 3468 dirrem->dm_state = 0; 3469 oldinum = dirrem->dm_oldinum; 3470 dirrem->dm_oldinum = dirrem->dm_dirinum; 3471 if (inodedep_lookup(ip->i_fs, oldinum, 0, &inodedep) == 0 || 3472 check_inode_unwritten(inodedep)) { 3473 FREE_LOCK(&lk); 3474 vput(vp); 3475 handle_workitem_remove(dirrem, NULL); 3476 return; 3477 } 3478 WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list); 3479 FREE_LOCK(&lk); 3480 ip->i_flag |= IN_CHANGE; 3481 ffs_update(vp, 0); 3482 vput(vp); 3483 } 3484 3485 /* 3486 * Inode de-allocation dependencies. 3487 * 3488 * When an inode's link count is reduced to zero, it can be de-allocated. We 3489 * found it convenient to postpone de-allocation until after the inode is 3490 * written to disk with its new link count (zero). At this point, all of the 3491 * on-disk inode's block pointers are nullified and, with careful dependency 3492 * list ordering, all dependencies related to the inode will be satisfied and 3493 * the corresponding dependency structures de-allocated. So, if/when the 3494 * inode is reused, there will be no mixing of old dependencies with new 3495 * ones. This artificial dependency is set up by the block de-allocation 3496 * procedure above (softdep_setup_freeblocks) and completed by the 3497 * following procedure. 3498 */ 3499 static void 3500 handle_workitem_freefile(freefile) 3501 struct freefile *freefile; 3502 { 3503 struct fs *fs; 3504 struct inodedep *idp; 3505 struct ufsmount *ump; 3506 int error; 3507 3508 ump = VFSTOUFS(freefile->fx_mnt); 3509 fs = ump->um_fs; 3510 #ifdef DEBUG 3511 ACQUIRE_LOCK(&lk); 3512 error = inodedep_lookup(fs, freefile->fx_oldinum, 0, &idp); 3513 FREE_LOCK(&lk); 3514 if (error) 3515 panic("handle_workitem_freefile: inodedep survived"); 3516 #endif 3517 UFS_LOCK(ump); 3518 fs->fs_pendinginodes -= 1; 3519 UFS_UNLOCK(ump); 3520 if ((error = ffs_freefile(VFSTOUFS(freefile->fx_mnt), fs, 3521 freefile->fx_devvp, freefile->fx_oldinum, freefile->fx_mode)) != 0) 3522 softdep_error("handle_workitem_freefile", error); 3523 WORKITEM_FREE(freefile, D_FREEFILE); 3524 } 3525 3526 3527 /* 3528 * Helper function which unlinks marker element from work list and returns 3529 * the next element on the list. 3530 */ 3531 static __inline struct worklist * 3532 markernext(struct worklist *marker) 3533 { 3534 struct worklist *next; 3535 3536 next = LIST_NEXT(marker, wk_list); 3537 LIST_REMOVE(marker, wk_list); 3538 return next; 3539 } 3540 3541 /* 3542 * Disk writes. 3543 * 3544 * The dependency structures constructed above are most actively used when file 3545 * system blocks are written to disk. No constraints are placed on when a 3546 * block can be written, but unsatisfied update dependencies are made safe by 3547 * modifying (or replacing) the source memory for the duration of the disk 3548 * write. When the disk write completes, the memory block is again brought 3549 * up-to-date. 3550 * 3551 * In-core inode structure reclamation. 3552 * 3553 * Because there are a finite number of "in-core" inode structures, they are 3554 * reused regularly. By transferring all inode-related dependencies to the 3555 * in-memory inode block and indexing them separately (via "inodedep"s), we 3556 * can allow "in-core" inode structures to be reused at any time and avoid 3557 * any increase in contention. 3558 * 3559 * Called just before entering the device driver to initiate a new disk I/O. 3560 * The buffer must be locked, thus, no I/O completion operations can occur 3561 * while we are manipulating its associated dependencies. 3562 */ 3563 static void 3564 softdep_disk_io_initiation(bp) 3565 struct buf *bp; /* structure describing disk write to occur */ 3566 { 3567 struct worklist *wk; 3568 struct worklist marker; 3569 struct indirdep *indirdep; 3570 struct inodedep *inodedep; 3571 3572 /* 3573 * We only care about write operations. There should never 3574 * be dependencies for reads. 3575 */ 3576 if (bp->b_iocmd != BIO_WRITE) 3577 panic("softdep_disk_io_initiation: not write"); 3578 3579 marker.wk_type = D_LAST + 1; /* Not a normal workitem */ 3580 PHOLD(curproc); /* Don't swap out kernel stack */ 3581 3582 ACQUIRE_LOCK(&lk); 3583 /* 3584 * Do any necessary pre-I/O processing. 3585 */ 3586 for (wk = LIST_FIRST(&bp->b_dep); wk != NULL; 3587 wk = markernext(&marker)) { 3588 LIST_INSERT_AFTER(wk, &marker, wk_list); 3589 switch (wk->wk_type) { 3590 3591 case D_PAGEDEP: 3592 initiate_write_filepage(WK_PAGEDEP(wk), bp); 3593 continue; 3594 3595 case D_INODEDEP: 3596 inodedep = WK_INODEDEP(wk); 3597 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) 3598 initiate_write_inodeblock_ufs1(inodedep, bp); 3599 else 3600 initiate_write_inodeblock_ufs2(inodedep, bp); 3601 continue; 3602 3603 case D_INDIRDEP: 3604 indirdep = WK_INDIRDEP(wk); 3605 if (indirdep->ir_state & GOINGAWAY) 3606 panic("disk_io_initiation: indirdep gone"); 3607 /* 3608 * If there are no remaining dependencies, this 3609 * will be writing the real pointers, so the 3610 * dependency can be freed. 3611 */ 3612 if (LIST_FIRST(&indirdep->ir_deplisthd) == NULL) { 3613 struct buf *bp; 3614 3615 bp = indirdep->ir_savebp; 3616 bp->b_flags |= B_INVAL | B_NOCACHE; 3617 /* inline expand WORKLIST_REMOVE(wk); */ 3618 wk->wk_state &= ~ONWORKLIST; 3619 LIST_REMOVE(wk, wk_list); 3620 WORKITEM_FREE(indirdep, D_INDIRDEP); 3621 FREE_LOCK(&lk); 3622 brelse(bp); 3623 ACQUIRE_LOCK(&lk); 3624 continue; 3625 } 3626 /* 3627 * Replace up-to-date version with safe version. 3628 */ 3629 FREE_LOCK(&lk); 3630 MALLOC(indirdep->ir_saveddata, caddr_t, bp->b_bcount, 3631 M_INDIRDEP, M_SOFTDEP_FLAGS); 3632 ACQUIRE_LOCK(&lk); 3633 indirdep->ir_state &= ~ATTACHED; 3634 indirdep->ir_state |= UNDONE; 3635 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); 3636 bcopy(indirdep->ir_savebp->b_data, bp->b_data, 3637 bp->b_bcount); 3638 continue; 3639 3640 case D_MKDIR: 3641 case D_BMSAFEMAP: 3642 case D_ALLOCDIRECT: 3643 case D_ALLOCINDIR: 3644 continue; 3645 3646 default: 3647 panic("handle_disk_io_initiation: Unexpected type %s", 3648 TYPENAME(wk->wk_type)); 3649 /* NOTREACHED */ 3650 } 3651 } 3652 FREE_LOCK(&lk); 3653 PRELE(curproc); /* Allow swapout of kernel stack */ 3654 } 3655 3656 /* 3657 * Called from within the procedure above to deal with unsatisfied 3658 * allocation dependencies in a directory. The buffer must be locked, 3659 * thus, no I/O completion operations can occur while we are 3660 * manipulating its associated dependencies. 3661 */ 3662 static void 3663 initiate_write_filepage(pagedep, bp) 3664 struct pagedep *pagedep; 3665 struct buf *bp; 3666 { 3667 struct diradd *dap; 3668 struct direct *ep; 3669 int i; 3670 3671 if (pagedep->pd_state & IOSTARTED) { 3672 /* 3673 * This can only happen if there is a driver that does not 3674 * understand chaining. Here biodone will reissue the call 3675 * to strategy for the incomplete buffers. 3676 */ 3677 printf("initiate_write_filepage: already started\n"); 3678 return; 3679 } 3680 pagedep->pd_state |= IOSTARTED; 3681 for (i = 0; i < DAHASHSZ; i++) { 3682 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 3683 ep = (struct direct *) 3684 ((char *)bp->b_data + dap->da_offset); 3685 if (ep->d_ino != dap->da_newinum) 3686 panic("%s: dir inum %d != new %d", 3687 "initiate_write_filepage", 3688 ep->d_ino, dap->da_newinum); 3689 if (dap->da_state & DIRCHG) 3690 ep->d_ino = dap->da_previous->dm_oldinum; 3691 else 3692 ep->d_ino = 0; 3693 dap->da_state &= ~ATTACHED; 3694 dap->da_state |= UNDONE; 3695 } 3696 } 3697 } 3698 3699 /* 3700 * Version of initiate_write_inodeblock that handles UFS1 dinodes. 3701 * Note that any bug fixes made to this routine must be done in the 3702 * version found below. 3703 * 3704 * Called from within the procedure above to deal with unsatisfied 3705 * allocation dependencies in an inodeblock. The buffer must be 3706 * locked, thus, no I/O completion operations can occur while we 3707 * are manipulating its associated dependencies. 3708 */ 3709 static void 3710 initiate_write_inodeblock_ufs1(inodedep, bp) 3711 struct inodedep *inodedep; 3712 struct buf *bp; /* The inode block */ 3713 { 3714 struct allocdirect *adp, *lastadp; 3715 struct ufs1_dinode *dp; 3716 struct ufs1_dinode *sip; 3717 struct fs *fs; 3718 ufs_lbn_t i, prevlbn = 0; 3719 int deplist; 3720 3721 if (inodedep->id_state & IOSTARTED) 3722 panic("initiate_write_inodeblock_ufs1: already started"); 3723 inodedep->id_state |= IOSTARTED; 3724 fs = inodedep->id_fs; 3725 dp = (struct ufs1_dinode *)bp->b_data + 3726 ino_to_fsbo(fs, inodedep->id_ino); 3727 /* 3728 * If the bitmap is not yet written, then the allocated 3729 * inode cannot be written to disk. 3730 */ 3731 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 3732 if (inodedep->id_savedino1 != NULL) 3733 panic("initiate_write_inodeblock_ufs1: I/O underway"); 3734 FREE_LOCK(&lk); 3735 MALLOC(sip, struct ufs1_dinode *, 3736 sizeof(struct ufs1_dinode), M_SAVEDINO, M_SOFTDEP_FLAGS); 3737 ACQUIRE_LOCK(&lk); 3738 inodedep->id_savedino1 = sip; 3739 *inodedep->id_savedino1 = *dp; 3740 bzero((caddr_t)dp, sizeof(struct ufs1_dinode)); 3741 dp->di_gen = inodedep->id_savedino1->di_gen; 3742 return; 3743 } 3744 /* 3745 * If no dependencies, then there is nothing to roll back. 3746 */ 3747 inodedep->id_savedsize = dp->di_size; 3748 inodedep->id_savedextsize = 0; 3749 if (TAILQ_FIRST(&inodedep->id_inoupdt) == NULL) 3750 return; 3751 /* 3752 * Set the dependencies to busy. 3753 */ 3754 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 3755 adp = TAILQ_NEXT(adp, ad_next)) { 3756 #ifdef DIAGNOSTIC 3757 if (deplist != 0 && prevlbn >= adp->ad_lbn) 3758 panic("softdep_write_inodeblock: lbn order"); 3759 prevlbn = adp->ad_lbn; 3760 if (adp->ad_lbn < NDADDR && 3761 dp->di_db[adp->ad_lbn] != adp->ad_newblkno) 3762 panic("%s: direct pointer #%jd mismatch %d != %jd", 3763 "softdep_write_inodeblock", 3764 (intmax_t)adp->ad_lbn, 3765 dp->di_db[adp->ad_lbn], 3766 (intmax_t)adp->ad_newblkno); 3767 if (adp->ad_lbn >= NDADDR && 3768 dp->di_ib[adp->ad_lbn - NDADDR] != adp->ad_newblkno) 3769 panic("%s: indirect pointer #%jd mismatch %d != %jd", 3770 "softdep_write_inodeblock", 3771 (intmax_t)adp->ad_lbn - NDADDR, 3772 dp->di_ib[adp->ad_lbn - NDADDR], 3773 (intmax_t)adp->ad_newblkno); 3774 deplist |= 1 << adp->ad_lbn; 3775 if ((adp->ad_state & ATTACHED) == 0) 3776 panic("softdep_write_inodeblock: Unknown state 0x%x", 3777 adp->ad_state); 3778 #endif /* DIAGNOSTIC */ 3779 adp->ad_state &= ~ATTACHED; 3780 adp->ad_state |= UNDONE; 3781 } 3782 /* 3783 * The on-disk inode cannot claim to be any larger than the last 3784 * fragment that has been written. Otherwise, the on-disk inode 3785 * might have fragments that were not the last block in the file 3786 * which would corrupt the filesystem. 3787 */ 3788 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 3789 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 3790 if (adp->ad_lbn >= NDADDR) 3791 break; 3792 dp->di_db[adp->ad_lbn] = adp->ad_oldblkno; 3793 /* keep going until hitting a rollback to a frag */ 3794 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 3795 continue; 3796 dp->di_size = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize; 3797 for (i = adp->ad_lbn + 1; i < NDADDR; i++) { 3798 #ifdef DIAGNOSTIC 3799 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) 3800 panic("softdep_write_inodeblock: lost dep1"); 3801 #endif /* DIAGNOSTIC */ 3802 dp->di_db[i] = 0; 3803 } 3804 for (i = 0; i < NIADDR; i++) { 3805 #ifdef DIAGNOSTIC 3806 if (dp->di_ib[i] != 0 && 3807 (deplist & ((1 << NDADDR) << i)) == 0) 3808 panic("softdep_write_inodeblock: lost dep2"); 3809 #endif /* DIAGNOSTIC */ 3810 dp->di_ib[i] = 0; 3811 } 3812 return; 3813 } 3814 /* 3815 * If we have zero'ed out the last allocated block of the file, 3816 * roll back the size to the last currently allocated block. 3817 * We know that this last allocated block is a full-sized as 3818 * we already checked for fragments in the loop above. 3819 */ 3820 if (lastadp != NULL && 3821 dp->di_size <= (lastadp->ad_lbn + 1) * fs->fs_bsize) { 3822 for (i = lastadp->ad_lbn; i >= 0; i--) 3823 if (dp->di_db[i] != 0) 3824 break; 3825 dp->di_size = (i + 1) * fs->fs_bsize; 3826 } 3827 /* 3828 * The only dependencies are for indirect blocks. 3829 * 3830 * The file size for indirect block additions is not guaranteed. 3831 * Such a guarantee would be non-trivial to achieve. The conventional 3832 * synchronous write implementation also does not make this guarantee. 3833 * Fsck should catch and fix discrepancies. Arguably, the file size 3834 * can be over-estimated without destroying integrity when the file 3835 * moves into the indirect blocks (i.e., is large). If we want to 3836 * postpone fsck, we are stuck with this argument. 3837 */ 3838 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 3839 dp->di_ib[adp->ad_lbn - NDADDR] = 0; 3840 } 3841 3842 /* 3843 * Version of initiate_write_inodeblock that handles UFS2 dinodes. 3844 * Note that any bug fixes made to this routine must be done in the 3845 * version found above. 3846 * 3847 * Called from within the procedure above to deal with unsatisfied 3848 * allocation dependencies in an inodeblock. The buffer must be 3849 * locked, thus, no I/O completion operations can occur while we 3850 * are manipulating its associated dependencies. 3851 */ 3852 static void 3853 initiate_write_inodeblock_ufs2(inodedep, bp) 3854 struct inodedep *inodedep; 3855 struct buf *bp; /* The inode block */ 3856 { 3857 struct allocdirect *adp, *lastadp; 3858 struct ufs2_dinode *dp; 3859 struct ufs2_dinode *sip; 3860 struct fs *fs; 3861 ufs_lbn_t i, prevlbn = 0; 3862 int deplist; 3863 3864 if (inodedep->id_state & IOSTARTED) 3865 panic("initiate_write_inodeblock_ufs2: already started"); 3866 inodedep->id_state |= IOSTARTED; 3867 fs = inodedep->id_fs; 3868 dp = (struct ufs2_dinode *)bp->b_data + 3869 ino_to_fsbo(fs, inodedep->id_ino); 3870 /* 3871 * If the bitmap is not yet written, then the allocated 3872 * inode cannot be written to disk. 3873 */ 3874 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 3875 if (inodedep->id_savedino2 != NULL) 3876 panic("initiate_write_inodeblock_ufs2: I/O underway"); 3877 FREE_LOCK(&lk); 3878 MALLOC(sip, struct ufs2_dinode *, 3879 sizeof(struct ufs2_dinode), M_SAVEDINO, M_SOFTDEP_FLAGS); 3880 ACQUIRE_LOCK(&lk); 3881 inodedep->id_savedino2 = sip; 3882 *inodedep->id_savedino2 = *dp; 3883 bzero((caddr_t)dp, sizeof(struct ufs2_dinode)); 3884 dp->di_gen = inodedep->id_savedino2->di_gen; 3885 return; 3886 } 3887 /* 3888 * If no dependencies, then there is nothing to roll back. 3889 */ 3890 inodedep->id_savedsize = dp->di_size; 3891 inodedep->id_savedextsize = dp->di_extsize; 3892 if (TAILQ_FIRST(&inodedep->id_inoupdt) == NULL && 3893 TAILQ_FIRST(&inodedep->id_extupdt) == NULL) 3894 return; 3895 /* 3896 * Set the ext data dependencies to busy. 3897 */ 3898 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 3899 adp = TAILQ_NEXT(adp, ad_next)) { 3900 #ifdef DIAGNOSTIC 3901 if (deplist != 0 && prevlbn >= adp->ad_lbn) 3902 panic("softdep_write_inodeblock: lbn order"); 3903 prevlbn = adp->ad_lbn; 3904 if (dp->di_extb[adp->ad_lbn] != adp->ad_newblkno) 3905 panic("%s: direct pointer #%jd mismatch %jd != %jd", 3906 "softdep_write_inodeblock", 3907 (intmax_t)adp->ad_lbn, 3908 (intmax_t)dp->di_extb[adp->ad_lbn], 3909 (intmax_t)adp->ad_newblkno); 3910 deplist |= 1 << adp->ad_lbn; 3911 if ((adp->ad_state & ATTACHED) == 0) 3912 panic("softdep_write_inodeblock: Unknown state 0x%x", 3913 adp->ad_state); 3914 #endif /* DIAGNOSTIC */ 3915 adp->ad_state &= ~ATTACHED; 3916 adp->ad_state |= UNDONE; 3917 } 3918 /* 3919 * The on-disk inode cannot claim to be any larger than the last 3920 * fragment that has been written. Otherwise, the on-disk inode 3921 * might have fragments that were not the last block in the ext 3922 * data which would corrupt the filesystem. 3923 */ 3924 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 3925 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 3926 dp->di_extb[adp->ad_lbn] = adp->ad_oldblkno; 3927 /* keep going until hitting a rollback to a frag */ 3928 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 3929 continue; 3930 dp->di_extsize = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize; 3931 for (i = adp->ad_lbn + 1; i < NXADDR; i++) { 3932 #ifdef DIAGNOSTIC 3933 if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0) 3934 panic("softdep_write_inodeblock: lost dep1"); 3935 #endif /* DIAGNOSTIC */ 3936 dp->di_extb[i] = 0; 3937 } 3938 lastadp = NULL; 3939 break; 3940 } 3941 /* 3942 * If we have zero'ed out the last allocated block of the ext 3943 * data, roll back the size to the last currently allocated block. 3944 * We know that this last allocated block is a full-sized as 3945 * we already checked for fragments in the loop above. 3946 */ 3947 if (lastadp != NULL && 3948 dp->di_extsize <= (lastadp->ad_lbn + 1) * fs->fs_bsize) { 3949 for (i = lastadp->ad_lbn; i >= 0; i--) 3950 if (dp->di_extb[i] != 0) 3951 break; 3952 dp->di_extsize = (i + 1) * fs->fs_bsize; 3953 } 3954 /* 3955 * Set the file data dependencies to busy. 3956 */ 3957 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 3958 adp = TAILQ_NEXT(adp, ad_next)) { 3959 #ifdef DIAGNOSTIC 3960 if (deplist != 0 && prevlbn >= adp->ad_lbn) 3961 panic("softdep_write_inodeblock: lbn order"); 3962 prevlbn = adp->ad_lbn; 3963 if (adp->ad_lbn < NDADDR && 3964 dp->di_db[adp->ad_lbn] != adp->ad_newblkno) 3965 panic("%s: direct pointer #%jd mismatch %jd != %jd", 3966 "softdep_write_inodeblock", 3967 (intmax_t)adp->ad_lbn, 3968 (intmax_t)dp->di_db[adp->ad_lbn], 3969 (intmax_t)adp->ad_newblkno); 3970 if (adp->ad_lbn >= NDADDR && 3971 dp->di_ib[adp->ad_lbn - NDADDR] != adp->ad_newblkno) 3972 panic("%s indirect pointer #%jd mismatch %jd != %jd", 3973 "softdep_write_inodeblock:", 3974 (intmax_t)adp->ad_lbn - NDADDR, 3975 (intmax_t)dp->di_ib[adp->ad_lbn - NDADDR], 3976 (intmax_t)adp->ad_newblkno); 3977 deplist |= 1 << adp->ad_lbn; 3978 if ((adp->ad_state & ATTACHED) == 0) 3979 panic("softdep_write_inodeblock: Unknown state 0x%x", 3980 adp->ad_state); 3981 #endif /* DIAGNOSTIC */ 3982 adp->ad_state &= ~ATTACHED; 3983 adp->ad_state |= UNDONE; 3984 } 3985 /* 3986 * The on-disk inode cannot claim to be any larger than the last 3987 * fragment that has been written. Otherwise, the on-disk inode 3988 * might have fragments that were not the last block in the file 3989 * which would corrupt the filesystem. 3990 */ 3991 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 3992 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 3993 if (adp->ad_lbn >= NDADDR) 3994 break; 3995 dp->di_db[adp->ad_lbn] = adp->ad_oldblkno; 3996 /* keep going until hitting a rollback to a frag */ 3997 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 3998 continue; 3999 dp->di_size = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize; 4000 for (i = adp->ad_lbn + 1; i < NDADDR; i++) { 4001 #ifdef DIAGNOSTIC 4002 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) 4003 panic("softdep_write_inodeblock: lost dep2"); 4004 #endif /* DIAGNOSTIC */ 4005 dp->di_db[i] = 0; 4006 } 4007 for (i = 0; i < NIADDR; i++) { 4008 #ifdef DIAGNOSTIC 4009 if (dp->di_ib[i] != 0 && 4010 (deplist & ((1 << NDADDR) << i)) == 0) 4011 panic("softdep_write_inodeblock: lost dep3"); 4012 #endif /* DIAGNOSTIC */ 4013 dp->di_ib[i] = 0; 4014 } 4015 return; 4016 } 4017 /* 4018 * If we have zero'ed out the last allocated block of the file, 4019 * roll back the size to the last currently allocated block. 4020 * We know that this last allocated block is a full-sized as 4021 * we already checked for fragments in the loop above. 4022 */ 4023 if (lastadp != NULL && 4024 dp->di_size <= (lastadp->ad_lbn + 1) * fs->fs_bsize) { 4025 for (i = lastadp->ad_lbn; i >= 0; i--) 4026 if (dp->di_db[i] != 0) 4027 break; 4028 dp->di_size = (i + 1) * fs->fs_bsize; 4029 } 4030 /* 4031 * The only dependencies are for indirect blocks. 4032 * 4033 * The file size for indirect block additions is not guaranteed. 4034 * Such a guarantee would be non-trivial to achieve. The conventional 4035 * synchronous write implementation also does not make this guarantee. 4036 * Fsck should catch and fix discrepancies. Arguably, the file size 4037 * can be over-estimated without destroying integrity when the file 4038 * moves into the indirect blocks (i.e., is large). If we want to 4039 * postpone fsck, we are stuck with this argument. 4040 */ 4041 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 4042 dp->di_ib[adp->ad_lbn - NDADDR] = 0; 4043 } 4044 4045 /* 4046 * This routine is called during the completion interrupt 4047 * service routine for a disk write (from the procedure called 4048 * by the device driver to inform the filesystem caches of 4049 * a request completion). It should be called early in this 4050 * procedure, before the block is made available to other 4051 * processes or other routines are called. 4052 */ 4053 static void 4054 softdep_disk_write_complete(bp) 4055 struct buf *bp; /* describes the completed disk write */ 4056 { 4057 struct worklist *wk; 4058 struct worklist *owk; 4059 struct workhead reattach; 4060 struct newblk *newblk; 4061 struct allocindir *aip; 4062 struct allocdirect *adp; 4063 struct indirdep *indirdep; 4064 struct inodedep *inodedep; 4065 struct bmsafemap *bmsafemap; 4066 4067 /* 4068 * If an error occurred while doing the write, then the data 4069 * has not hit the disk and the dependencies cannot be unrolled. 4070 */ 4071 if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0) 4072 return; 4073 LIST_INIT(&reattach); 4074 /* 4075 * This lock must not be released anywhere in this code segment. 4076 */ 4077 ACQUIRE_LOCK(&lk); 4078 owk = NULL; 4079 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) { 4080 WORKLIST_REMOVE(wk); 4081 if (wk == owk) 4082 panic("duplicate worklist: %p\n", wk); 4083 owk = wk; 4084 switch (wk->wk_type) { 4085 4086 case D_PAGEDEP: 4087 if (handle_written_filepage(WK_PAGEDEP(wk), bp)) 4088 WORKLIST_INSERT(&reattach, wk); 4089 continue; 4090 4091 case D_INODEDEP: 4092 if (handle_written_inodeblock(WK_INODEDEP(wk), bp)) 4093 WORKLIST_INSERT(&reattach, wk); 4094 continue; 4095 4096 case D_BMSAFEMAP: 4097 bmsafemap = WK_BMSAFEMAP(wk); 4098 while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkhd))) { 4099 newblk->nb_state |= DEPCOMPLETE; 4100 newblk->nb_bmsafemap = NULL; 4101 LIST_REMOVE(newblk, nb_deps); 4102 } 4103 while ((adp = 4104 LIST_FIRST(&bmsafemap->sm_allocdirecthd))) { 4105 adp->ad_state |= DEPCOMPLETE; 4106 adp->ad_buf = NULL; 4107 LIST_REMOVE(adp, ad_deps); 4108 handle_allocdirect_partdone(adp); 4109 } 4110 while ((aip = 4111 LIST_FIRST(&bmsafemap->sm_allocindirhd))) { 4112 aip->ai_state |= DEPCOMPLETE; 4113 aip->ai_buf = NULL; 4114 LIST_REMOVE(aip, ai_deps); 4115 handle_allocindir_partdone(aip); 4116 } 4117 while ((inodedep = 4118 LIST_FIRST(&bmsafemap->sm_inodedephd)) != NULL) { 4119 inodedep->id_state |= DEPCOMPLETE; 4120 LIST_REMOVE(inodedep, id_deps); 4121 inodedep->id_buf = NULL; 4122 } 4123 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); 4124 continue; 4125 4126 case D_MKDIR: 4127 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); 4128 continue; 4129 4130 case D_ALLOCDIRECT: 4131 adp = WK_ALLOCDIRECT(wk); 4132 adp->ad_state |= COMPLETE; 4133 handle_allocdirect_partdone(adp); 4134 continue; 4135 4136 case D_ALLOCINDIR: 4137 aip = WK_ALLOCINDIR(wk); 4138 aip->ai_state |= COMPLETE; 4139 handle_allocindir_partdone(aip); 4140 continue; 4141 4142 case D_INDIRDEP: 4143 indirdep = WK_INDIRDEP(wk); 4144 if (indirdep->ir_state & GOINGAWAY) 4145 panic("disk_write_complete: indirdep gone"); 4146 bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount); 4147 FREE(indirdep->ir_saveddata, M_INDIRDEP); 4148 indirdep->ir_saveddata = 0; 4149 indirdep->ir_state &= ~UNDONE; 4150 indirdep->ir_state |= ATTACHED; 4151 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) { 4152 handle_allocindir_partdone(aip); 4153 if (aip == LIST_FIRST(&indirdep->ir_donehd)) 4154 panic("disk_write_complete: not gone"); 4155 } 4156 WORKLIST_INSERT(&reattach, wk); 4157 if ((bp->b_flags & B_DELWRI) == 0) 4158 stat_indir_blk_ptrs++; 4159 bdirty(bp); 4160 continue; 4161 4162 default: 4163 panic("handle_disk_write_complete: Unknown type %s", 4164 TYPENAME(wk->wk_type)); 4165 /* NOTREACHED */ 4166 } 4167 } 4168 /* 4169 * Reattach any requests that must be redone. 4170 */ 4171 while ((wk = LIST_FIRST(&reattach)) != NULL) { 4172 WORKLIST_REMOVE(wk); 4173 WORKLIST_INSERT(&bp->b_dep, wk); 4174 } 4175 FREE_LOCK(&lk); 4176 } 4177 4178 /* 4179 * Called from within softdep_disk_write_complete above. Note that 4180 * this routine is always called from interrupt level with further 4181 * splbio interrupts blocked. 4182 */ 4183 static void 4184 handle_allocdirect_partdone(adp) 4185 struct allocdirect *adp; /* the completed allocdirect */ 4186 { 4187 struct allocdirectlst *listhead; 4188 struct allocdirect *listadp; 4189 struct inodedep *inodedep; 4190 long bsize, delay; 4191 4192 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 4193 return; 4194 if (adp->ad_buf != NULL) 4195 panic("handle_allocdirect_partdone: dangling dep"); 4196 /* 4197 * The on-disk inode cannot claim to be any larger than the last 4198 * fragment that has been written. Otherwise, the on-disk inode 4199 * might have fragments that were not the last block in the file 4200 * which would corrupt the filesystem. Thus, we cannot free any 4201 * allocdirects after one whose ad_oldblkno claims a fragment as 4202 * these blocks must be rolled back to zero before writing the inode. 4203 * We check the currently active set of allocdirects in id_inoupdt 4204 * or id_extupdt as appropriate. 4205 */ 4206 inodedep = adp->ad_inodedep; 4207 bsize = inodedep->id_fs->fs_bsize; 4208 if (adp->ad_state & EXTDATA) 4209 listhead = &inodedep->id_extupdt; 4210 else 4211 listhead = &inodedep->id_inoupdt; 4212 TAILQ_FOREACH(listadp, listhead, ad_next) { 4213 /* found our block */ 4214 if (listadp == adp) 4215 break; 4216 /* continue if ad_oldlbn is not a fragment */ 4217 if (listadp->ad_oldsize == 0 || 4218 listadp->ad_oldsize == bsize) 4219 continue; 4220 /* hit a fragment */ 4221 return; 4222 } 4223 /* 4224 * If we have reached the end of the current list without 4225 * finding the just finished dependency, then it must be 4226 * on the future dependency list. Future dependencies cannot 4227 * be freed until they are moved to the current list. 4228 */ 4229 if (listadp == NULL) { 4230 #ifdef DEBUG 4231 if (adp->ad_state & EXTDATA) 4232 listhead = &inodedep->id_newextupdt; 4233 else 4234 listhead = &inodedep->id_newinoupdt; 4235 TAILQ_FOREACH(listadp, listhead, ad_next) 4236 /* found our block */ 4237 if (listadp == adp) 4238 break; 4239 if (listadp == NULL) 4240 panic("handle_allocdirect_partdone: lost dep"); 4241 #endif /* DEBUG */ 4242 return; 4243 } 4244 /* 4245 * If we have found the just finished dependency, then free 4246 * it along with anything that follows it that is complete. 4247 * If the inode still has a bitmap dependency, then it has 4248 * never been written to disk, hence the on-disk inode cannot 4249 * reference the old fragment so we can free it without delay. 4250 */ 4251 delay = (inodedep->id_state & DEPCOMPLETE); 4252 for (; adp; adp = listadp) { 4253 listadp = TAILQ_NEXT(adp, ad_next); 4254 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 4255 return; 4256 free_allocdirect(listhead, adp, delay); 4257 } 4258 } 4259 4260 /* 4261 * Called from within softdep_disk_write_complete above. Note that 4262 * this routine is always called from interrupt level with further 4263 * splbio interrupts blocked. 4264 */ 4265 static void 4266 handle_allocindir_partdone(aip) 4267 struct allocindir *aip; /* the completed allocindir */ 4268 { 4269 struct indirdep *indirdep; 4270 4271 if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE) 4272 return; 4273 if (aip->ai_buf != NULL) 4274 panic("handle_allocindir_partdone: dangling dependency"); 4275 indirdep = aip->ai_indirdep; 4276 if (indirdep->ir_state & UNDONE) { 4277 LIST_REMOVE(aip, ai_next); 4278 LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next); 4279 return; 4280 } 4281 if (indirdep->ir_state & UFS1FMT) 4282 ((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 4283 aip->ai_newblkno; 4284 else 4285 ((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 4286 aip->ai_newblkno; 4287 LIST_REMOVE(aip, ai_next); 4288 if (aip->ai_freefrag != NULL) 4289 add_to_worklist(&aip->ai_freefrag->ff_list); 4290 WORKITEM_FREE(aip, D_ALLOCINDIR); 4291 } 4292 4293 /* 4294 * Called from within softdep_disk_write_complete above to restore 4295 * in-memory inode block contents to their most up-to-date state. Note 4296 * that this routine is always called from interrupt level with further 4297 * splbio interrupts blocked. 4298 */ 4299 static int 4300 handle_written_inodeblock(inodedep, bp) 4301 struct inodedep *inodedep; 4302 struct buf *bp; /* buffer containing the inode block */ 4303 { 4304 struct worklist *wk, *filefree; 4305 struct allocdirect *adp, *nextadp; 4306 struct ufs1_dinode *dp1 = NULL; 4307 struct ufs2_dinode *dp2 = NULL; 4308 int hadchanges, fstype; 4309 4310 if ((inodedep->id_state & IOSTARTED) == 0) 4311 panic("handle_written_inodeblock: not started"); 4312 inodedep->id_state &= ~IOSTARTED; 4313 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) { 4314 fstype = UFS1; 4315 dp1 = (struct ufs1_dinode *)bp->b_data + 4316 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 4317 } else { 4318 fstype = UFS2; 4319 dp2 = (struct ufs2_dinode *)bp->b_data + 4320 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 4321 } 4322 /* 4323 * If we had to rollback the inode allocation because of 4324 * bitmaps being incomplete, then simply restore it. 4325 * Keep the block dirty so that it will not be reclaimed until 4326 * all associated dependencies have been cleared and the 4327 * corresponding updates written to disk. 4328 */ 4329 if (inodedep->id_savedino1 != NULL) { 4330 if (fstype == UFS1) 4331 *dp1 = *inodedep->id_savedino1; 4332 else 4333 *dp2 = *inodedep->id_savedino2; 4334 FREE(inodedep->id_savedino1, M_SAVEDINO); 4335 inodedep->id_savedino1 = NULL; 4336 if ((bp->b_flags & B_DELWRI) == 0) 4337 stat_inode_bitmap++; 4338 bdirty(bp); 4339 return (1); 4340 } 4341 inodedep->id_state |= COMPLETE; 4342 /* 4343 * Roll forward anything that had to be rolled back before 4344 * the inode could be updated. 4345 */ 4346 hadchanges = 0; 4347 for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) { 4348 nextadp = TAILQ_NEXT(adp, ad_next); 4349 if (adp->ad_state & ATTACHED) 4350 panic("handle_written_inodeblock: new entry"); 4351 if (fstype == UFS1) { 4352 if (adp->ad_lbn < NDADDR) { 4353 if (dp1->di_db[adp->ad_lbn]!=adp->ad_oldblkno) 4354 panic("%s %s #%jd mismatch %d != %jd", 4355 "handle_written_inodeblock:", 4356 "direct pointer", 4357 (intmax_t)adp->ad_lbn, 4358 dp1->di_db[adp->ad_lbn], 4359 (intmax_t)adp->ad_oldblkno); 4360 dp1->di_db[adp->ad_lbn] = adp->ad_newblkno; 4361 } else { 4362 if (dp1->di_ib[adp->ad_lbn - NDADDR] != 0) 4363 panic("%s: %s #%jd allocated as %d", 4364 "handle_written_inodeblock", 4365 "indirect pointer", 4366 (intmax_t)adp->ad_lbn - NDADDR, 4367 dp1->di_ib[adp->ad_lbn - NDADDR]); 4368 dp1->di_ib[adp->ad_lbn - NDADDR] = 4369 adp->ad_newblkno; 4370 } 4371 } else { 4372 if (adp->ad_lbn < NDADDR) { 4373 if (dp2->di_db[adp->ad_lbn]!=adp->ad_oldblkno) 4374 panic("%s: %s #%jd %s %jd != %jd", 4375 "handle_written_inodeblock", 4376 "direct pointer", 4377 (intmax_t)adp->ad_lbn, "mismatch", 4378 (intmax_t)dp2->di_db[adp->ad_lbn], 4379 (intmax_t)adp->ad_oldblkno); 4380 dp2->di_db[adp->ad_lbn] = adp->ad_newblkno; 4381 } else { 4382 if (dp2->di_ib[adp->ad_lbn - NDADDR] != 0) 4383 panic("%s: %s #%jd allocated as %jd", 4384 "handle_written_inodeblock", 4385 "indirect pointer", 4386 (intmax_t)adp->ad_lbn - NDADDR, 4387 (intmax_t) 4388 dp2->di_ib[adp->ad_lbn - NDADDR]); 4389 dp2->di_ib[adp->ad_lbn - NDADDR] = 4390 adp->ad_newblkno; 4391 } 4392 } 4393 adp->ad_state &= ~UNDONE; 4394 adp->ad_state |= ATTACHED; 4395 hadchanges = 1; 4396 } 4397 for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) { 4398 nextadp = TAILQ_NEXT(adp, ad_next); 4399 if (adp->ad_state & ATTACHED) 4400 panic("handle_written_inodeblock: new entry"); 4401 if (dp2->di_extb[adp->ad_lbn] != adp->ad_oldblkno) 4402 panic("%s: direct pointers #%jd %s %jd != %jd", 4403 "handle_written_inodeblock", 4404 (intmax_t)adp->ad_lbn, "mismatch", 4405 (intmax_t)dp2->di_extb[adp->ad_lbn], 4406 (intmax_t)adp->ad_oldblkno); 4407 dp2->di_extb[adp->ad_lbn] = adp->ad_newblkno; 4408 adp->ad_state &= ~UNDONE; 4409 adp->ad_state |= ATTACHED; 4410 hadchanges = 1; 4411 } 4412 if (hadchanges && (bp->b_flags & B_DELWRI) == 0) 4413 stat_direct_blk_ptrs++; 4414 /* 4415 * Reset the file size to its most up-to-date value. 4416 */ 4417 if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1) 4418 panic("handle_written_inodeblock: bad size"); 4419 if (fstype == UFS1) { 4420 if (dp1->di_size != inodedep->id_savedsize) { 4421 dp1->di_size = inodedep->id_savedsize; 4422 hadchanges = 1; 4423 } 4424 } else { 4425 if (dp2->di_size != inodedep->id_savedsize) { 4426 dp2->di_size = inodedep->id_savedsize; 4427 hadchanges = 1; 4428 } 4429 if (dp2->di_extsize != inodedep->id_savedextsize) { 4430 dp2->di_extsize = inodedep->id_savedextsize; 4431 hadchanges = 1; 4432 } 4433 } 4434 inodedep->id_savedsize = -1; 4435 inodedep->id_savedextsize = -1; 4436 /* 4437 * If there were any rollbacks in the inode block, then it must be 4438 * marked dirty so that its will eventually get written back in 4439 * its correct form. 4440 */ 4441 if (hadchanges) 4442 bdirty(bp); 4443 /* 4444 * Process any allocdirects that completed during the update. 4445 */ 4446 if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL) 4447 handle_allocdirect_partdone(adp); 4448 if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 4449 handle_allocdirect_partdone(adp); 4450 /* 4451 * Process deallocations that were held pending until the 4452 * inode had been written to disk. Freeing of the inode 4453 * is delayed until after all blocks have been freed to 4454 * avoid creation of new <vfsid, inum, lbn> triples 4455 * before the old ones have been deleted. 4456 */ 4457 filefree = NULL; 4458 while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) { 4459 WORKLIST_REMOVE(wk); 4460 switch (wk->wk_type) { 4461 4462 case D_FREEFILE: 4463 /* 4464 * We defer adding filefree to the worklist until 4465 * all other additions have been made to ensure 4466 * that it will be done after all the old blocks 4467 * have been freed. 4468 */ 4469 if (filefree != NULL) 4470 panic("handle_written_inodeblock: filefree"); 4471 filefree = wk; 4472 continue; 4473 4474 case D_MKDIR: 4475 handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT); 4476 continue; 4477 4478 case D_DIRADD: 4479 diradd_inode_written(WK_DIRADD(wk), inodedep); 4480 continue; 4481 4482 case D_FREEBLKS: 4483 wk->wk_state |= COMPLETE; 4484 if ((wk->wk_state & ALLCOMPLETE) != ALLCOMPLETE) 4485 continue; 4486 /* -- fall through -- */ 4487 case D_FREEFRAG: 4488 case D_DIRREM: 4489 add_to_worklist(wk); 4490 continue; 4491 4492 case D_NEWDIRBLK: 4493 free_newdirblk(WK_NEWDIRBLK(wk)); 4494 continue; 4495 4496 default: 4497 panic("handle_written_inodeblock: Unknown type %s", 4498 TYPENAME(wk->wk_type)); 4499 /* NOTREACHED */ 4500 } 4501 } 4502 if (filefree != NULL) { 4503 if (free_inodedep(inodedep) == 0) 4504 panic("handle_written_inodeblock: live inodedep"); 4505 add_to_worklist(filefree); 4506 return (0); 4507 } 4508 4509 /* 4510 * If no outstanding dependencies, free it. 4511 */ 4512 if (free_inodedep(inodedep) || 4513 (TAILQ_FIRST(&inodedep->id_inoupdt) == 0 && 4514 TAILQ_FIRST(&inodedep->id_extupdt) == 0)) 4515 return (0); 4516 return (hadchanges); 4517 } 4518 4519 /* 4520 * Process a diradd entry after its dependent inode has been written. 4521 * This routine must be called with splbio interrupts blocked. 4522 */ 4523 static void 4524 diradd_inode_written(dap, inodedep) 4525 struct diradd *dap; 4526 struct inodedep *inodedep; 4527 { 4528 struct pagedep *pagedep; 4529 4530 dap->da_state |= COMPLETE; 4531 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 4532 if (dap->da_state & DIRCHG) 4533 pagedep = dap->da_previous->dm_pagedep; 4534 else 4535 pagedep = dap->da_pagedep; 4536 LIST_REMOVE(dap, da_pdlist); 4537 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 4538 } 4539 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 4540 } 4541 4542 /* 4543 * Handle the completion of a mkdir dependency. 4544 */ 4545 static void 4546 handle_written_mkdir(mkdir, type) 4547 struct mkdir *mkdir; 4548 int type; 4549 { 4550 struct diradd *dap; 4551 struct pagedep *pagedep; 4552 4553 if (mkdir->md_state != type) 4554 panic("handle_written_mkdir: bad type"); 4555 dap = mkdir->md_diradd; 4556 dap->da_state &= ~type; 4557 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) 4558 dap->da_state |= DEPCOMPLETE; 4559 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 4560 if (dap->da_state & DIRCHG) 4561 pagedep = dap->da_previous->dm_pagedep; 4562 else 4563 pagedep = dap->da_pagedep; 4564 LIST_REMOVE(dap, da_pdlist); 4565 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 4566 } 4567 LIST_REMOVE(mkdir, md_mkdirs); 4568 WORKITEM_FREE(mkdir, D_MKDIR); 4569 } 4570 4571 /* 4572 * Called from within softdep_disk_write_complete above. 4573 * A write operation was just completed. Removed inodes can 4574 * now be freed and associated block pointers may be committed. 4575 * Note that this routine is always called from interrupt level 4576 * with further splbio interrupts blocked. 4577 */ 4578 static int 4579 handle_written_filepage(pagedep, bp) 4580 struct pagedep *pagedep; 4581 struct buf *bp; /* buffer containing the written page */ 4582 { 4583 struct dirrem *dirrem; 4584 struct diradd *dap, *nextdap; 4585 struct direct *ep; 4586 int i, chgs; 4587 4588 if ((pagedep->pd_state & IOSTARTED) == 0) 4589 panic("handle_written_filepage: not started"); 4590 pagedep->pd_state &= ~IOSTARTED; 4591 /* 4592 * Process any directory removals that have been committed. 4593 */ 4594 while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) { 4595 LIST_REMOVE(dirrem, dm_next); 4596 dirrem->dm_dirinum = pagedep->pd_ino; 4597 add_to_worklist(&dirrem->dm_list); 4598 } 4599 /* 4600 * Free any directory additions that have been committed. 4601 * If it is a newly allocated block, we have to wait until 4602 * the on-disk directory inode claims the new block. 4603 */ 4604 if ((pagedep->pd_state & NEWBLOCK) == 0) 4605 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 4606 free_diradd(dap); 4607 /* 4608 * Uncommitted directory entries must be restored. 4609 */ 4610 for (chgs = 0, i = 0; i < DAHASHSZ; i++) { 4611 for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap; 4612 dap = nextdap) { 4613 nextdap = LIST_NEXT(dap, da_pdlist); 4614 if (dap->da_state & ATTACHED) 4615 panic("handle_written_filepage: attached"); 4616 ep = (struct direct *) 4617 ((char *)bp->b_data + dap->da_offset); 4618 ep->d_ino = dap->da_newinum; 4619 dap->da_state &= ~UNDONE; 4620 dap->da_state |= ATTACHED; 4621 chgs = 1; 4622 /* 4623 * If the inode referenced by the directory has 4624 * been written out, then the dependency can be 4625 * moved to the pending list. 4626 */ 4627 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 4628 LIST_REMOVE(dap, da_pdlist); 4629 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, 4630 da_pdlist); 4631 } 4632 } 4633 } 4634 /* 4635 * If there were any rollbacks in the directory, then it must be 4636 * marked dirty so that its will eventually get written back in 4637 * its correct form. 4638 */ 4639 if (chgs) { 4640 if ((bp->b_flags & B_DELWRI) == 0) 4641 stat_dir_entry++; 4642 bdirty(bp); 4643 return (1); 4644 } 4645 /* 4646 * If we are not waiting for a new directory block to be 4647 * claimed by its inode, then the pagedep will be freed. 4648 * Otherwise it will remain to track any new entries on 4649 * the page in case they are fsync'ed. 4650 */ 4651 if ((pagedep->pd_state & NEWBLOCK) == 0) { 4652 LIST_REMOVE(pagedep, pd_hash); 4653 WORKITEM_FREE(pagedep, D_PAGEDEP); 4654 } 4655 return (0); 4656 } 4657 4658 /* 4659 * Writing back in-core inode structures. 4660 * 4661 * The filesystem only accesses an inode's contents when it occupies an 4662 * "in-core" inode structure. These "in-core" structures are separate from 4663 * the page frames used to cache inode blocks. Only the latter are 4664 * transferred to/from the disk. So, when the updated contents of the 4665 * "in-core" inode structure are copied to the corresponding in-memory inode 4666 * block, the dependencies are also transferred. The following procedure is 4667 * called when copying a dirty "in-core" inode to a cached inode block. 4668 */ 4669 4670 /* 4671 * Called when an inode is loaded from disk. If the effective link count 4672 * differed from the actual link count when it was last flushed, then we 4673 * need to ensure that the correct effective link count is put back. 4674 */ 4675 void 4676 softdep_load_inodeblock(ip) 4677 struct inode *ip; /* the "in_core" copy of the inode */ 4678 { 4679 struct inodedep *inodedep; 4680 4681 /* 4682 * Check for alternate nlink count. 4683 */ 4684 ip->i_effnlink = ip->i_nlink; 4685 ACQUIRE_LOCK(&lk); 4686 if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) { 4687 FREE_LOCK(&lk); 4688 return; 4689 } 4690 ip->i_effnlink -= inodedep->id_nlinkdelta; 4691 if (inodedep->id_state & SPACECOUNTED) 4692 ip->i_flag |= IN_SPACECOUNTED; 4693 FREE_LOCK(&lk); 4694 } 4695 4696 /* 4697 * This routine is called just before the "in-core" inode 4698 * information is to be copied to the in-memory inode block. 4699 * Recall that an inode block contains several inodes. If 4700 * the force flag is set, then the dependencies will be 4701 * cleared so that the update can always be made. Note that 4702 * the buffer is locked when this routine is called, so we 4703 * will never be in the middle of writing the inode block 4704 * to disk. 4705 */ 4706 void 4707 softdep_update_inodeblock(ip, bp, waitfor) 4708 struct inode *ip; /* the "in_core" copy of the inode */ 4709 struct buf *bp; /* the buffer containing the inode block */ 4710 int waitfor; /* nonzero => update must be allowed */ 4711 { 4712 struct inodedep *inodedep; 4713 struct worklist *wk; 4714 struct buf *ibp; 4715 int error; 4716 4717 /* 4718 * If the effective link count is not equal to the actual link 4719 * count, then we must track the difference in an inodedep while 4720 * the inode is (potentially) tossed out of the cache. Otherwise, 4721 * if there is no existing inodedep, then there are no dependencies 4722 * to track. 4723 */ 4724 ACQUIRE_LOCK(&lk); 4725 if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) { 4726 FREE_LOCK(&lk); 4727 if (ip->i_effnlink != ip->i_nlink) 4728 panic("softdep_update_inodeblock: bad link count"); 4729 return; 4730 } 4731 if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink) 4732 panic("softdep_update_inodeblock: bad delta"); 4733 /* 4734 * Changes have been initiated. Anything depending on these 4735 * changes cannot occur until this inode has been written. 4736 */ 4737 inodedep->id_state &= ~COMPLETE; 4738 if ((inodedep->id_state & ONWORKLIST) == 0) 4739 WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list); 4740 /* 4741 * Any new dependencies associated with the incore inode must 4742 * now be moved to the list associated with the buffer holding 4743 * the in-memory copy of the inode. Once merged process any 4744 * allocdirects that are completed by the merger. 4745 */ 4746 merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt); 4747 if (TAILQ_FIRST(&inodedep->id_inoupdt) != NULL) 4748 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt)); 4749 merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt); 4750 if (TAILQ_FIRST(&inodedep->id_extupdt) != NULL) 4751 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt)); 4752 /* 4753 * Now that the inode has been pushed into the buffer, the 4754 * operations dependent on the inode being written to disk 4755 * can be moved to the id_bufwait so that they will be 4756 * processed when the buffer I/O completes. 4757 */ 4758 while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) { 4759 WORKLIST_REMOVE(wk); 4760 WORKLIST_INSERT(&inodedep->id_bufwait, wk); 4761 } 4762 /* 4763 * Newly allocated inodes cannot be written until the bitmap 4764 * that allocates them have been written (indicated by 4765 * DEPCOMPLETE being set in id_state). If we are doing a 4766 * forced sync (e.g., an fsync on a file), we force the bitmap 4767 * to be written so that the update can be done. 4768 */ 4769 if (waitfor == 0) { 4770 FREE_LOCK(&lk); 4771 return; 4772 } 4773 retry: 4774 if ((inodedep->id_state & DEPCOMPLETE) != 0) { 4775 FREE_LOCK(&lk); 4776 return; 4777 } 4778 ibp = inodedep->id_buf; 4779 ibp = getdirtybuf(ibp, &lk, MNT_WAIT); 4780 if (ibp == NULL) { 4781 /* 4782 * If ibp came back as NULL, the dependency could have been 4783 * freed while we slept. Look it up again, and check to see 4784 * that it has completed. 4785 */ 4786 if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) != 0) 4787 goto retry; 4788 FREE_LOCK(&lk); 4789 return; 4790 } 4791 FREE_LOCK(&lk); 4792 if ((error = bwrite(ibp)) != 0) 4793 softdep_error("softdep_update_inodeblock: bwrite", error); 4794 } 4795 4796 /* 4797 * Merge the a new inode dependency list (such as id_newinoupdt) into an 4798 * old inode dependency list (such as id_inoupdt). This routine must be 4799 * called with splbio interrupts blocked. 4800 */ 4801 static void 4802 merge_inode_lists(newlisthead, oldlisthead) 4803 struct allocdirectlst *newlisthead; 4804 struct allocdirectlst *oldlisthead; 4805 { 4806 struct allocdirect *listadp, *newadp; 4807 4808 newadp = TAILQ_FIRST(newlisthead); 4809 for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) { 4810 if (listadp->ad_lbn < newadp->ad_lbn) { 4811 listadp = TAILQ_NEXT(listadp, ad_next); 4812 continue; 4813 } 4814 TAILQ_REMOVE(newlisthead, newadp, ad_next); 4815 TAILQ_INSERT_BEFORE(listadp, newadp, ad_next); 4816 if (listadp->ad_lbn == newadp->ad_lbn) { 4817 allocdirect_merge(oldlisthead, newadp, 4818 listadp); 4819 listadp = newadp; 4820 } 4821 newadp = TAILQ_FIRST(newlisthead); 4822 } 4823 while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) { 4824 TAILQ_REMOVE(newlisthead, newadp, ad_next); 4825 TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next); 4826 } 4827 } 4828 4829 /* 4830 * If we are doing an fsync, then we must ensure that any directory 4831 * entries for the inode have been written after the inode gets to disk. 4832 */ 4833 int 4834 softdep_fsync(vp) 4835 struct vnode *vp; /* the "in_core" copy of the inode */ 4836 { 4837 struct inodedep *inodedep; 4838 struct pagedep *pagedep; 4839 struct worklist *wk; 4840 struct diradd *dap; 4841 struct mount *mnt; 4842 struct vnode *pvp; 4843 struct inode *ip; 4844 struct buf *bp; 4845 struct fs *fs; 4846 struct thread *td = curthread; 4847 int error, flushparent; 4848 ino_t parentino; 4849 ufs_lbn_t lbn; 4850 4851 ip = VTOI(vp); 4852 fs = ip->i_fs; 4853 ACQUIRE_LOCK(&lk); 4854 if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0) { 4855 FREE_LOCK(&lk); 4856 return (0); 4857 } 4858 if (LIST_FIRST(&inodedep->id_inowait) != NULL || 4859 LIST_FIRST(&inodedep->id_bufwait) != NULL || 4860 TAILQ_FIRST(&inodedep->id_extupdt) != NULL || 4861 TAILQ_FIRST(&inodedep->id_newextupdt) != NULL || 4862 TAILQ_FIRST(&inodedep->id_inoupdt) != NULL || 4863 TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL) 4864 panic("softdep_fsync: pending ops"); 4865 for (error = 0, flushparent = 0; ; ) { 4866 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL) 4867 break; 4868 if (wk->wk_type != D_DIRADD) 4869 panic("softdep_fsync: Unexpected type %s", 4870 TYPENAME(wk->wk_type)); 4871 dap = WK_DIRADD(wk); 4872 /* 4873 * Flush our parent if this directory entry has a MKDIR_PARENT 4874 * dependency or is contained in a newly allocated block. 4875 */ 4876 if (dap->da_state & DIRCHG) 4877 pagedep = dap->da_previous->dm_pagedep; 4878 else 4879 pagedep = dap->da_pagedep; 4880 mnt = pagedep->pd_mnt; 4881 parentino = pagedep->pd_ino; 4882 lbn = pagedep->pd_lbn; 4883 if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE) 4884 panic("softdep_fsync: dirty"); 4885 if ((dap->da_state & MKDIR_PARENT) || 4886 (pagedep->pd_state & NEWBLOCK)) 4887 flushparent = 1; 4888 else 4889 flushparent = 0; 4890 /* 4891 * If we are being fsync'ed as part of vgone'ing this vnode, 4892 * then we will not be able to release and recover the 4893 * vnode below, so we just have to give up on writing its 4894 * directory entry out. It will eventually be written, just 4895 * not now, but then the user was not asking to have it 4896 * written, so we are not breaking any promises. 4897 */ 4898 if (vp->v_iflag & VI_DOOMED) 4899 break; 4900 /* 4901 * We prevent deadlock by always fetching inodes from the 4902 * root, moving down the directory tree. Thus, when fetching 4903 * our parent directory, we first try to get the lock. If 4904 * that fails, we must unlock ourselves before requesting 4905 * the lock on our parent. See the comment in ufs_lookup 4906 * for details on possible races. 4907 */ 4908 FREE_LOCK(&lk); 4909 if (ffs_vget(mnt, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp)) { 4910 VOP_UNLOCK(vp, 0, td); 4911 error = ffs_vget(mnt, parentino, LK_EXCLUSIVE, &pvp); 4912 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td); 4913 if (error != 0) 4914 return (error); 4915 } 4916 /* 4917 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps 4918 * that are contained in direct blocks will be resolved by 4919 * doing a ffs_update. Pagedeps contained in indirect blocks 4920 * may require a complete sync'ing of the directory. So, we 4921 * try the cheap and fast ffs_update first, and if that fails, 4922 * then we do the slower ffs_syncvnode of the directory. 4923 */ 4924 if (flushparent) { 4925 if ((error = ffs_update(pvp, 1)) != 0) { 4926 vput(pvp); 4927 return (error); 4928 } 4929 if ((pagedep->pd_state & NEWBLOCK) && 4930 (error = ffs_syncvnode(pvp, MNT_WAIT))) { 4931 vput(pvp); 4932 return (error); 4933 } 4934 } 4935 /* 4936 * Flush directory page containing the inode's name. 4937 */ 4938 error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred, 4939 &bp); 4940 if (error == 0) 4941 error = bwrite(bp); 4942 else 4943 brelse(bp); 4944 vput(pvp); 4945 if (error != 0) 4946 return (error); 4947 ACQUIRE_LOCK(&lk); 4948 if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0) 4949 break; 4950 } 4951 FREE_LOCK(&lk); 4952 return (0); 4953 } 4954 4955 /* 4956 * Flush all the dirty bitmaps associated with the block device 4957 * before flushing the rest of the dirty blocks so as to reduce 4958 * the number of dependencies that will have to be rolled back. 4959 */ 4960 void 4961 softdep_fsync_mountdev(vp) 4962 struct vnode *vp; 4963 { 4964 struct buf *bp, *nbp; 4965 struct worklist *wk; 4966 4967 if (!vn_isdisk(vp, NULL)) 4968 panic("softdep_fsync_mountdev: vnode not a disk"); 4969 restart: 4970 ACQUIRE_LOCK(&lk); 4971 VI_LOCK(vp); 4972 TAILQ_FOREACH_SAFE(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs, nbp) { 4973 /* 4974 * If it is already scheduled, skip to the next buffer. 4975 */ 4976 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) 4977 continue; 4978 4979 if ((bp->b_flags & B_DELWRI) == 0) 4980 panic("softdep_fsync_mountdev: not dirty"); 4981 /* 4982 * We are only interested in bitmaps with outstanding 4983 * dependencies. 4984 */ 4985 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL || 4986 wk->wk_type != D_BMSAFEMAP || 4987 (bp->b_vflags & BV_BKGRDINPROG)) { 4988 BUF_UNLOCK(bp); 4989 continue; 4990 } 4991 VI_UNLOCK(vp); 4992 FREE_LOCK(&lk); 4993 bremfree(bp); 4994 (void) bawrite(bp); 4995 goto restart; 4996 } 4997 FREE_LOCK(&lk); 4998 drain_output(vp); 4999 VI_UNLOCK(vp); 5000 } 5001 5002 /* 5003 * This routine is called when we are trying to synchronously flush a 5004 * file. This routine must eliminate any filesystem metadata dependencies 5005 * so that the syncing routine can succeed by pushing the dirty blocks 5006 * associated with the file. If any I/O errors occur, they are returned. 5007 */ 5008 int 5009 softdep_sync_metadata(struct vnode *vp) 5010 { 5011 struct pagedep *pagedep; 5012 struct allocdirect *adp; 5013 struct allocindir *aip; 5014 struct buf *bp, *nbp; 5015 struct worklist *wk; 5016 int i, error, waitfor; 5017 5018 if (!DOINGSOFTDEP(vp)) 5019 return (0); 5020 /* 5021 * Ensure that any direct block dependencies have been cleared. 5022 */ 5023 ACQUIRE_LOCK(&lk); 5024 if ((error = flush_inodedep_deps(VTOI(vp)->i_fs, VTOI(vp)->i_number))) { 5025 FREE_LOCK(&lk); 5026 return (error); 5027 } 5028 FREE_LOCK(&lk); 5029 /* 5030 * For most files, the only metadata dependencies are the 5031 * cylinder group maps that allocate their inode or blocks. 5032 * The block allocation dependencies can be found by traversing 5033 * the dependency lists for any buffers that remain on their 5034 * dirty buffer list. The inode allocation dependency will 5035 * be resolved when the inode is updated with MNT_WAIT. 5036 * This work is done in two passes. The first pass grabs most 5037 * of the buffers and begins asynchronously writing them. The 5038 * only way to wait for these asynchronous writes is to sleep 5039 * on the filesystem vnode which may stay busy for a long time 5040 * if the filesystem is active. So, instead, we make a second 5041 * pass over the dependencies blocking on each write. In the 5042 * usual case we will be blocking against a write that we 5043 * initiated, so when it is done the dependency will have been 5044 * resolved. Thus the second pass is expected to end quickly. 5045 */ 5046 waitfor = MNT_NOWAIT; 5047 5048 top: 5049 /* 5050 * We must wait for any I/O in progress to finish so that 5051 * all potential buffers on the dirty list will be visible. 5052 */ 5053 VI_LOCK(vp); 5054 drain_output(vp); 5055 while ((bp = TAILQ_FIRST(&vp->v_bufobj.bo_dirty.bv_hd)) != NULL) { 5056 bp = getdirtybuf(bp, VI_MTX(vp), MNT_WAIT); 5057 if (bp) 5058 break; 5059 } 5060 VI_UNLOCK(vp); 5061 if (bp == NULL) 5062 return (0); 5063 loop: 5064 /* While syncing snapshots, we must allow recursive lookups */ 5065 bp->b_lock.lk_flags |= LK_CANRECURSE; 5066 ACQUIRE_LOCK(&lk); 5067 /* 5068 * As we hold the buffer locked, none of its dependencies 5069 * will disappear. 5070 */ 5071 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 5072 switch (wk->wk_type) { 5073 5074 case D_ALLOCDIRECT: 5075 adp = WK_ALLOCDIRECT(wk); 5076 if (adp->ad_state & DEPCOMPLETE) 5077 continue; 5078 nbp = adp->ad_buf; 5079 nbp = getdirtybuf(nbp, &lk, waitfor); 5080 if (nbp == NULL) 5081 continue; 5082 FREE_LOCK(&lk); 5083 if (waitfor == MNT_NOWAIT) { 5084 bawrite(nbp); 5085 } else if ((error = bwrite(nbp)) != 0) { 5086 break; 5087 } 5088 ACQUIRE_LOCK(&lk); 5089 continue; 5090 5091 case D_ALLOCINDIR: 5092 aip = WK_ALLOCINDIR(wk); 5093 if (aip->ai_state & DEPCOMPLETE) 5094 continue; 5095 nbp = aip->ai_buf; 5096 nbp = getdirtybuf(nbp, &lk, waitfor); 5097 if (nbp == NULL) 5098 continue; 5099 FREE_LOCK(&lk); 5100 if (waitfor == MNT_NOWAIT) { 5101 bawrite(nbp); 5102 } else if ((error = bwrite(nbp)) != 0) { 5103 break; 5104 } 5105 ACQUIRE_LOCK(&lk); 5106 continue; 5107 5108 case D_INDIRDEP: 5109 restart: 5110 5111 LIST_FOREACH(aip, &WK_INDIRDEP(wk)->ir_deplisthd, ai_next) { 5112 if (aip->ai_state & DEPCOMPLETE) 5113 continue; 5114 nbp = aip->ai_buf; 5115 nbp = getdirtybuf(nbp, &lk, MNT_WAIT); 5116 if (nbp == NULL) 5117 goto restart; 5118 FREE_LOCK(&lk); 5119 if ((error = bwrite(nbp)) != 0) { 5120 break; 5121 } 5122 ACQUIRE_LOCK(&lk); 5123 goto restart; 5124 } 5125 continue; 5126 5127 case D_INODEDEP: 5128 if ((error = flush_inodedep_deps(WK_INODEDEP(wk)->id_fs, 5129 WK_INODEDEP(wk)->id_ino)) != 0) { 5130 FREE_LOCK(&lk); 5131 break; 5132 } 5133 continue; 5134 5135 case D_PAGEDEP: 5136 /* 5137 * We are trying to sync a directory that may 5138 * have dependencies on both its own metadata 5139 * and/or dependencies on the inodes of any 5140 * recently allocated files. We walk its diradd 5141 * lists pushing out the associated inode. 5142 */ 5143 pagedep = WK_PAGEDEP(wk); 5144 for (i = 0; i < DAHASHSZ; i++) { 5145 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0) 5146 continue; 5147 if ((error = 5148 flush_pagedep_deps(vp, pagedep->pd_mnt, 5149 &pagedep->pd_diraddhd[i]))) { 5150 FREE_LOCK(&lk); 5151 break; 5152 } 5153 } 5154 continue; 5155 5156 case D_MKDIR: 5157 /* 5158 * This case should never happen if the vnode has 5159 * been properly sync'ed. However, if this function 5160 * is used at a place where the vnode has not yet 5161 * been sync'ed, this dependency can show up. So, 5162 * rather than panic, just flush it. 5163 */ 5164 nbp = WK_MKDIR(wk)->md_buf; 5165 nbp = getdirtybuf(nbp, &lk, waitfor); 5166 if (nbp == NULL) 5167 continue; 5168 FREE_LOCK(&lk); 5169 if (waitfor == MNT_NOWAIT) { 5170 bawrite(nbp); 5171 } else if ((error = bwrite(nbp)) != 0) { 5172 break; 5173 } 5174 ACQUIRE_LOCK(&lk); 5175 continue; 5176 5177 case D_BMSAFEMAP: 5178 /* 5179 * This case should never happen if the vnode has 5180 * been properly sync'ed. However, if this function 5181 * is used at a place where the vnode has not yet 5182 * been sync'ed, this dependency can show up. So, 5183 * rather than panic, just flush it. 5184 */ 5185 nbp = WK_BMSAFEMAP(wk)->sm_buf; 5186 nbp = getdirtybuf(nbp, &lk, waitfor); 5187 if (nbp == NULL) 5188 continue; 5189 FREE_LOCK(&lk); 5190 if (waitfor == MNT_NOWAIT) { 5191 bawrite(nbp); 5192 } else if ((error = bwrite(nbp)) != 0) { 5193 break; 5194 } 5195 ACQUIRE_LOCK(&lk); 5196 continue; 5197 5198 default: 5199 panic("softdep_sync_metadata: Unknown type %s", 5200 TYPENAME(wk->wk_type)); 5201 /* NOTREACHED */ 5202 } 5203 /* We reach here only in error and unlocked */ 5204 if (error == 0) 5205 panic("softdep_sync_metadata: zero error"); 5206 bp->b_lock.lk_flags &= ~LK_CANRECURSE; 5207 bawrite(bp); 5208 return (error); 5209 } 5210 FREE_LOCK(&lk); 5211 VI_LOCK(vp); 5212 while ((nbp = TAILQ_NEXT(bp, b_bobufs)) != NULL) { 5213 nbp = getdirtybuf(nbp, VI_MTX(vp), MNT_WAIT); 5214 if (nbp) 5215 break; 5216 } 5217 VI_UNLOCK(vp); 5218 bp->b_lock.lk_flags &= ~LK_CANRECURSE; 5219 bawrite(bp); 5220 if (nbp != NULL) { 5221 bp = nbp; 5222 goto loop; 5223 } 5224 /* 5225 * The brief unlock is to allow any pent up dependency 5226 * processing to be done. Then proceed with the second pass. 5227 */ 5228 if (waitfor == MNT_NOWAIT) { 5229 waitfor = MNT_WAIT; 5230 goto top; 5231 } 5232 5233 /* 5234 * If we have managed to get rid of all the dirty buffers, 5235 * then we are done. For certain directories and block 5236 * devices, we may need to do further work. 5237 * 5238 * We must wait for any I/O in progress to finish so that 5239 * all potential buffers on the dirty list will be visible. 5240 */ 5241 VI_LOCK(vp); 5242 drain_output(vp); 5243 VI_UNLOCK(vp); 5244 return (0); 5245 } 5246 5247 /* 5248 * Flush the dependencies associated with an inodedep. 5249 * Called with splbio blocked. 5250 */ 5251 static int 5252 flush_inodedep_deps(fs, ino) 5253 struct fs *fs; 5254 ino_t ino; 5255 { 5256 struct inodedep *inodedep; 5257 int error, waitfor; 5258 5259 /* 5260 * This work is done in two passes. The first pass grabs most 5261 * of the buffers and begins asynchronously writing them. The 5262 * only way to wait for these asynchronous writes is to sleep 5263 * on the filesystem vnode which may stay busy for a long time 5264 * if the filesystem is active. So, instead, we make a second 5265 * pass over the dependencies blocking on each write. In the 5266 * usual case we will be blocking against a write that we 5267 * initiated, so when it is done the dependency will have been 5268 * resolved. Thus the second pass is expected to end quickly. 5269 * We give a brief window at the top of the loop to allow 5270 * any pending I/O to complete. 5271 */ 5272 for (error = 0, waitfor = MNT_NOWAIT; ; ) { 5273 if (error) 5274 return (error); 5275 FREE_LOCK(&lk); 5276 ACQUIRE_LOCK(&lk); 5277 if (inodedep_lookup(fs, ino, 0, &inodedep) == 0) 5278 return (0); 5279 if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) || 5280 flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) || 5281 flush_deplist(&inodedep->id_extupdt, waitfor, &error) || 5282 flush_deplist(&inodedep->id_newextupdt, waitfor, &error)) 5283 continue; 5284 /* 5285 * If pass2, we are done, otherwise do pass 2. 5286 */ 5287 if (waitfor == MNT_WAIT) 5288 break; 5289 waitfor = MNT_WAIT; 5290 } 5291 /* 5292 * Try freeing inodedep in case all dependencies have been removed. 5293 */ 5294 if (inodedep_lookup(fs, ino, 0, &inodedep) != 0) 5295 (void) free_inodedep(inodedep); 5296 return (0); 5297 } 5298 5299 /* 5300 * Flush an inode dependency list. 5301 * Called with splbio blocked. 5302 */ 5303 static int 5304 flush_deplist(listhead, waitfor, errorp) 5305 struct allocdirectlst *listhead; 5306 int waitfor; 5307 int *errorp; 5308 { 5309 struct allocdirect *adp; 5310 struct buf *bp; 5311 5312 mtx_assert(&lk, MA_OWNED); 5313 TAILQ_FOREACH(adp, listhead, ad_next) { 5314 if (adp->ad_state & DEPCOMPLETE) 5315 continue; 5316 bp = adp->ad_buf; 5317 bp = getdirtybuf(bp, &lk, waitfor); 5318 if (bp == NULL) { 5319 if (waitfor == MNT_NOWAIT) 5320 continue; 5321 return (1); 5322 } 5323 FREE_LOCK(&lk); 5324 if (waitfor == MNT_NOWAIT) { 5325 bawrite(bp); 5326 } else if ((*errorp = bwrite(bp)) != 0) { 5327 ACQUIRE_LOCK(&lk); 5328 return (1); 5329 } 5330 ACQUIRE_LOCK(&lk); 5331 return (1); 5332 } 5333 return (0); 5334 } 5335 5336 /* 5337 * Eliminate a pagedep dependency by flushing out all its diradd dependencies. 5338 * Called with splbio blocked. 5339 */ 5340 static int 5341 flush_pagedep_deps(pvp, mp, diraddhdp) 5342 struct vnode *pvp; 5343 struct mount *mp; 5344 struct diraddhd *diraddhdp; 5345 { 5346 struct inodedep *inodedep; 5347 struct ufsmount *ump; 5348 struct diradd *dap; 5349 struct vnode *vp; 5350 int error = 0; 5351 struct buf *bp; 5352 ino_t inum; 5353 5354 ump = VFSTOUFS(mp); 5355 while ((dap = LIST_FIRST(diraddhdp)) != NULL) { 5356 /* 5357 * Flush ourselves if this directory entry 5358 * has a MKDIR_PARENT dependency. 5359 */ 5360 if (dap->da_state & MKDIR_PARENT) { 5361 FREE_LOCK(&lk); 5362 if ((error = ffs_update(pvp, 1)) != 0) 5363 break; 5364 ACQUIRE_LOCK(&lk); 5365 /* 5366 * If that cleared dependencies, go on to next. 5367 */ 5368 if (dap != LIST_FIRST(diraddhdp)) 5369 continue; 5370 if (dap->da_state & MKDIR_PARENT) 5371 panic("flush_pagedep_deps: MKDIR_PARENT"); 5372 } 5373 /* 5374 * A newly allocated directory must have its "." and 5375 * ".." entries written out before its name can be 5376 * committed in its parent. We do not want or need 5377 * the full semantics of a synchronous ffs_syncvnode as 5378 * that may end up here again, once for each directory 5379 * level in the filesystem. Instead, we push the blocks 5380 * and wait for them to clear. We have to fsync twice 5381 * because the first call may choose to defer blocks 5382 * that still have dependencies, but deferral will 5383 * happen at most once. 5384 */ 5385 inum = dap->da_newinum; 5386 if (dap->da_state & MKDIR_BODY) { 5387 FREE_LOCK(&lk); 5388 if ((error = ffs_vget(mp, inum, LK_EXCLUSIVE, &vp))) 5389 break; 5390 if ((error=ffs_syncvnode(vp, MNT_NOWAIT)) || 5391 (error=ffs_syncvnode(vp, MNT_NOWAIT))) { 5392 vput(vp); 5393 break; 5394 } 5395 VI_LOCK(vp); 5396 drain_output(vp); 5397 VI_UNLOCK(vp); 5398 vput(vp); 5399 ACQUIRE_LOCK(&lk); 5400 /* 5401 * If that cleared dependencies, go on to next. 5402 */ 5403 if (dap != LIST_FIRST(diraddhdp)) 5404 continue; 5405 if (dap->da_state & MKDIR_BODY) 5406 panic("flush_pagedep_deps: MKDIR_BODY"); 5407 } 5408 /* 5409 * Flush the inode on which the directory entry depends. 5410 * Having accounted for MKDIR_PARENT and MKDIR_BODY above, 5411 * the only remaining dependency is that the updated inode 5412 * count must get pushed to disk. The inode has already 5413 * been pushed into its inode buffer (via VOP_UPDATE) at 5414 * the time of the reference count change. So we need only 5415 * locate that buffer, ensure that there will be no rollback 5416 * caused by a bitmap dependency, then write the inode buffer. 5417 */ 5418 retry: 5419 if (inodedep_lookup(ump->um_fs, inum, 0, &inodedep) == 0) 5420 panic("flush_pagedep_deps: lost inode"); 5421 /* 5422 * If the inode still has bitmap dependencies, 5423 * push them to disk. 5424 */ 5425 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 5426 bp = inodedep->id_buf; 5427 bp = getdirtybuf(bp, &lk, MNT_WAIT); 5428 if (bp == NULL) 5429 goto retry; 5430 FREE_LOCK(&lk); 5431 if ((error = bwrite(bp)) != 0) 5432 break; 5433 ACQUIRE_LOCK(&lk); 5434 if (dap != LIST_FIRST(diraddhdp)) 5435 continue; 5436 } 5437 /* 5438 * If the inode is still sitting in a buffer waiting 5439 * to be written, push it to disk. 5440 */ 5441 FREE_LOCK(&lk); 5442 if ((error = bread(ump->um_devvp, 5443 fsbtodb(ump->um_fs, ino_to_fsba(ump->um_fs, inum)), 5444 (int)ump->um_fs->fs_bsize, NOCRED, &bp)) != 0) { 5445 brelse(bp); 5446 break; 5447 } 5448 if ((error = bwrite(bp)) != 0) 5449 break; 5450 ACQUIRE_LOCK(&lk); 5451 /* 5452 * If we have failed to get rid of all the dependencies 5453 * then something is seriously wrong. 5454 */ 5455 if (dap == LIST_FIRST(diraddhdp)) 5456 panic("flush_pagedep_deps: flush failed"); 5457 } 5458 if (error) 5459 ACQUIRE_LOCK(&lk); 5460 return (error); 5461 } 5462 5463 /* 5464 * A large burst of file addition or deletion activity can drive the 5465 * memory load excessively high. First attempt to slow things down 5466 * using the techniques below. If that fails, this routine requests 5467 * the offending operations to fall back to running synchronously 5468 * until the memory load returns to a reasonable level. 5469 */ 5470 int 5471 softdep_slowdown(vp) 5472 struct vnode *vp; 5473 { 5474 int max_softdeps_hard; 5475 5476 max_softdeps_hard = max_softdeps * 11 / 10; 5477 if (num_dirrem < max_softdeps_hard / 2 && 5478 num_inodedep < max_softdeps_hard && 5479 VFSTOUFS(vp->v_mount)->um_numindirdeps < maxindirdeps) 5480 return (0); 5481 if (VFSTOUFS(vp->v_mount)->um_numindirdeps >= maxindirdeps) 5482 speedup_syncer(); 5483 stat_sync_limit_hit += 1; 5484 return (1); 5485 } 5486 5487 /* 5488 * Called by the allocation routines when they are about to fail 5489 * in the hope that we can free up some disk space. 5490 * 5491 * First check to see if the work list has anything on it. If it has, 5492 * clean up entries until we successfully free some space. Because this 5493 * process holds inodes locked, we cannot handle any remove requests 5494 * that might block on a locked inode as that could lead to deadlock. 5495 * If the worklist yields no free space, encourage the syncer daemon 5496 * to help us. In no event will we try for longer than tickdelay seconds. 5497 */ 5498 int 5499 softdep_request_cleanup(fs, vp) 5500 struct fs *fs; 5501 struct vnode *vp; 5502 { 5503 struct ufsmount *ump; 5504 long starttime; 5505 ufs2_daddr_t needed; 5506 int error; 5507 5508 ump = VTOI(vp)->i_ump; 5509 mtx_assert(UFS_MTX(ump), MA_OWNED); 5510 needed = fs->fs_cstotal.cs_nbfree + fs->fs_contigsumsize; 5511 starttime = time_second + tickdelay; 5512 /* 5513 * If we are being called because of a process doing a 5514 * copy-on-write, then it is not safe to update the vnode 5515 * as we may recurse into the copy-on-write routine. 5516 */ 5517 if (!(curthread->td_pflags & TDP_COWINPROGRESS)) { 5518 UFS_UNLOCK(ump); 5519 error = ffs_update(vp, 1); 5520 UFS_LOCK(ump); 5521 if (error != 0) 5522 return (0); 5523 } 5524 while (fs->fs_pendingblocks > 0 && fs->fs_cstotal.cs_nbfree <= needed) { 5525 if (time_second > starttime) 5526 return (0); 5527 UFS_UNLOCK(ump); 5528 ACQUIRE_LOCK(&lk); 5529 if (num_on_worklist > 0 && 5530 process_worklist_item(NULL, LK_NOWAIT) != -1) { 5531 stat_worklist_push += 1; 5532 FREE_LOCK(&lk); 5533 UFS_LOCK(ump); 5534 continue; 5535 } 5536 request_cleanup(FLUSH_REMOVE_WAIT); 5537 FREE_LOCK(&lk); 5538 UFS_LOCK(ump); 5539 } 5540 return (1); 5541 } 5542 5543 /* 5544 * If memory utilization has gotten too high, deliberately slow things 5545 * down and speed up the I/O processing. 5546 */ 5547 static int 5548 request_cleanup(resource) 5549 int resource; 5550 { 5551 struct thread *td = curthread; 5552 5553 mtx_assert(&lk, MA_OWNED); 5554 /* 5555 * We never hold up the filesystem syncer process. 5556 */ 5557 if (td == filesys_syncer || (td->td_pflags & TDP_SOFTDEP)) 5558 return (0); 5559 /* 5560 * First check to see if the work list has gotten backlogged. 5561 * If it has, co-opt this process to help clean up two entries. 5562 * Because this process may hold inodes locked, we cannot 5563 * handle any remove requests that might block on a locked 5564 * inode as that could lead to deadlock. We set TDP_SOFTDEP 5565 * to avoid recursively processing the worklist. 5566 */ 5567 if (num_on_worklist > max_softdeps / 10) { 5568 td->td_pflags |= TDP_SOFTDEP; 5569 process_worklist_item(NULL, LK_NOWAIT); 5570 process_worklist_item(NULL, LK_NOWAIT); 5571 td->td_pflags &= ~TDP_SOFTDEP; 5572 stat_worklist_push += 2; 5573 return(1); 5574 } 5575 /* 5576 * Next, we attempt to speed up the syncer process. If that 5577 * is successful, then we allow the process to continue. 5578 */ 5579 if (speedup_syncer() && resource != FLUSH_REMOVE_WAIT) 5580 return(0); 5581 /* 5582 * If we are resource constrained on inode dependencies, try 5583 * flushing some dirty inodes. Otherwise, we are constrained 5584 * by file deletions, so try accelerating flushes of directories 5585 * with removal dependencies. We would like to do the cleanup 5586 * here, but we probably hold an inode locked at this point and 5587 * that might deadlock against one that we try to clean. So, 5588 * the best that we can do is request the syncer daemon to do 5589 * the cleanup for us. 5590 */ 5591 switch (resource) { 5592 5593 case FLUSH_INODES: 5594 stat_ino_limit_push += 1; 5595 req_clear_inodedeps += 1; 5596 stat_countp = &stat_ino_limit_hit; 5597 break; 5598 5599 case FLUSH_REMOVE: 5600 case FLUSH_REMOVE_WAIT: 5601 stat_blk_limit_push += 1; 5602 req_clear_remove += 1; 5603 stat_countp = &stat_blk_limit_hit; 5604 break; 5605 5606 default: 5607 panic("request_cleanup: unknown type"); 5608 } 5609 /* 5610 * Hopefully the syncer daemon will catch up and awaken us. 5611 * We wait at most tickdelay before proceeding in any case. 5612 */ 5613 proc_waiting += 1; 5614 if (handle.callout == NULL) 5615 handle = timeout(pause_timer, 0, tickdelay > 2 ? tickdelay : 2); 5616 msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0); 5617 proc_waiting -= 1; 5618 return (1); 5619 } 5620 5621 /* 5622 * Awaken processes pausing in request_cleanup and clear proc_waiting 5623 * to indicate that there is no longer a timer running. 5624 */ 5625 static void 5626 pause_timer(arg) 5627 void *arg; 5628 { 5629 5630 ACQUIRE_LOCK(&lk); 5631 *stat_countp += 1; 5632 wakeup_one(&proc_waiting); 5633 if (proc_waiting > 0) 5634 handle = timeout(pause_timer, 0, tickdelay > 2 ? tickdelay : 2); 5635 else 5636 handle.callout = NULL; 5637 FREE_LOCK(&lk); 5638 } 5639 5640 /* 5641 * Flush out a directory with at least one removal dependency in an effort to 5642 * reduce the number of dirrem, freefile, and freeblks dependency structures. 5643 */ 5644 static void 5645 clear_remove(td) 5646 struct thread *td; 5647 { 5648 struct pagedep_hashhead *pagedephd; 5649 struct pagedep *pagedep; 5650 static int next = 0; 5651 struct mount *mp; 5652 struct vnode *vp; 5653 int error, cnt; 5654 ino_t ino; 5655 5656 mtx_assert(&lk, MA_OWNED); 5657 5658 for (cnt = 0; cnt < pagedep_hash; cnt++) { 5659 pagedephd = &pagedep_hashtbl[next++]; 5660 if (next >= pagedep_hash) 5661 next = 0; 5662 LIST_FOREACH(pagedep, pagedephd, pd_hash) { 5663 if (LIST_FIRST(&pagedep->pd_dirremhd) == NULL) 5664 continue; 5665 mp = pagedep->pd_mnt; 5666 ino = pagedep->pd_ino; 5667 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 5668 continue; 5669 FREE_LOCK(&lk); 5670 if ((error = ffs_vget(mp, ino, LK_EXCLUSIVE, &vp))) { 5671 softdep_error("clear_remove: vget", error); 5672 vn_finished_write(mp); 5673 ACQUIRE_LOCK(&lk); 5674 return; 5675 } 5676 if ((error = ffs_syncvnode(vp, MNT_NOWAIT))) 5677 softdep_error("clear_remove: fsync", error); 5678 VI_LOCK(vp); 5679 drain_output(vp); 5680 VI_UNLOCK(vp); 5681 vput(vp); 5682 vn_finished_write(mp); 5683 ACQUIRE_LOCK(&lk); 5684 return; 5685 } 5686 } 5687 } 5688 5689 /* 5690 * Clear out a block of dirty inodes in an effort to reduce 5691 * the number of inodedep dependency structures. 5692 */ 5693 static void 5694 clear_inodedeps(td) 5695 struct thread *td; 5696 { 5697 struct inodedep_hashhead *inodedephd; 5698 struct inodedep *inodedep; 5699 static int next = 0; 5700 struct mount *mp; 5701 struct vnode *vp; 5702 struct fs *fs; 5703 int error, cnt; 5704 ino_t firstino, lastino, ino; 5705 5706 mtx_assert(&lk, MA_OWNED); 5707 /* 5708 * Pick a random inode dependency to be cleared. 5709 * We will then gather up all the inodes in its block 5710 * that have dependencies and flush them out. 5711 */ 5712 for (cnt = 0; cnt < inodedep_hash; cnt++) { 5713 inodedephd = &inodedep_hashtbl[next++]; 5714 if (next >= inodedep_hash) 5715 next = 0; 5716 if ((inodedep = LIST_FIRST(inodedephd)) != NULL) 5717 break; 5718 } 5719 if (inodedep == NULL) 5720 return; 5721 /* 5722 * Ugly code to find mount point given pointer to superblock. 5723 */ 5724 fs = inodedep->id_fs; 5725 TAILQ_FOREACH(mp, &mountlist, mnt_list) 5726 if ((mp->mnt_flag & MNT_SOFTDEP) && fs == VFSTOUFS(mp)->um_fs) 5727 break; 5728 /* 5729 * Find the last inode in the block with dependencies. 5730 */ 5731 firstino = inodedep->id_ino & ~(INOPB(fs) - 1); 5732 for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--) 5733 if (inodedep_lookup(fs, lastino, 0, &inodedep) != 0) 5734 break; 5735 /* 5736 * Asynchronously push all but the last inode with dependencies. 5737 * Synchronously push the last inode with dependencies to ensure 5738 * that the inode block gets written to free up the inodedeps. 5739 */ 5740 for (ino = firstino; ino <= lastino; ino++) { 5741 if (inodedep_lookup(fs, ino, 0, &inodedep) == 0) 5742 continue; 5743 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 5744 continue; 5745 FREE_LOCK(&lk); 5746 if ((error = ffs_vget(mp, ino, LK_EXCLUSIVE, &vp)) != 0) { 5747 softdep_error("clear_inodedeps: vget", error); 5748 vn_finished_write(mp); 5749 ACQUIRE_LOCK(&lk); 5750 return; 5751 } 5752 if (ino == lastino) { 5753 if ((error = ffs_syncvnode(vp, MNT_WAIT))) 5754 softdep_error("clear_inodedeps: fsync1", error); 5755 } else { 5756 if ((error = ffs_syncvnode(vp, MNT_NOWAIT))) 5757 softdep_error("clear_inodedeps: fsync2", error); 5758 VI_LOCK(vp); 5759 drain_output(vp); 5760 VI_UNLOCK(vp); 5761 } 5762 vput(vp); 5763 vn_finished_write(mp); 5764 ACQUIRE_LOCK(&lk); 5765 } 5766 } 5767 5768 /* 5769 * Function to determine if the buffer has outstanding dependencies 5770 * that will cause a roll-back if the buffer is written. If wantcount 5771 * is set, return number of dependencies, otherwise just yes or no. 5772 */ 5773 static int 5774 softdep_count_dependencies(bp, wantcount) 5775 struct buf *bp; 5776 int wantcount; 5777 { 5778 struct worklist *wk; 5779 struct inodedep *inodedep; 5780 struct indirdep *indirdep; 5781 struct allocindir *aip; 5782 struct pagedep *pagedep; 5783 struct diradd *dap; 5784 int i, retval; 5785 5786 retval = 0; 5787 ACQUIRE_LOCK(&lk); 5788 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 5789 switch (wk->wk_type) { 5790 5791 case D_INODEDEP: 5792 inodedep = WK_INODEDEP(wk); 5793 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 5794 /* bitmap allocation dependency */ 5795 retval += 1; 5796 if (!wantcount) 5797 goto out; 5798 } 5799 if (TAILQ_FIRST(&inodedep->id_inoupdt)) { 5800 /* direct block pointer dependency */ 5801 retval += 1; 5802 if (!wantcount) 5803 goto out; 5804 } 5805 if (TAILQ_FIRST(&inodedep->id_extupdt)) { 5806 /* direct block pointer dependency */ 5807 retval += 1; 5808 if (!wantcount) 5809 goto out; 5810 } 5811 continue; 5812 5813 case D_INDIRDEP: 5814 indirdep = WK_INDIRDEP(wk); 5815 5816 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) { 5817 /* indirect block pointer dependency */ 5818 retval += 1; 5819 if (!wantcount) 5820 goto out; 5821 } 5822 continue; 5823 5824 case D_PAGEDEP: 5825 pagedep = WK_PAGEDEP(wk); 5826 for (i = 0; i < DAHASHSZ; i++) { 5827 5828 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 5829 /* directory entry dependency */ 5830 retval += 1; 5831 if (!wantcount) 5832 goto out; 5833 } 5834 } 5835 continue; 5836 5837 case D_BMSAFEMAP: 5838 case D_ALLOCDIRECT: 5839 case D_ALLOCINDIR: 5840 case D_MKDIR: 5841 /* never a dependency on these blocks */ 5842 continue; 5843 5844 default: 5845 panic("softdep_check_for_rollback: Unexpected type %s", 5846 TYPENAME(wk->wk_type)); 5847 /* NOTREACHED */ 5848 } 5849 } 5850 out: 5851 FREE_LOCK(&lk); 5852 return retval; 5853 } 5854 5855 /* 5856 * Acquire exclusive access to a buffer. 5857 * Must be called with a locked mtx parameter. 5858 * Return acquired buffer or NULL on failure. 5859 */ 5860 static struct buf * 5861 getdirtybuf(bp, mtx, waitfor) 5862 struct buf *bp; 5863 struct mtx *mtx; 5864 int waitfor; 5865 { 5866 int error; 5867 5868 mtx_assert(mtx, MA_OWNED); 5869 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) { 5870 if (waitfor != MNT_WAIT) 5871 return (NULL); 5872 error = BUF_LOCK(bp, 5873 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, mtx); 5874 /* 5875 * Even if we sucessfully acquire bp here, we have dropped 5876 * mtx, which may violates our guarantee. 5877 */ 5878 if (error == 0) 5879 BUF_UNLOCK(bp); 5880 else if (error != ENOLCK) 5881 panic("getdirtybuf: inconsistent lock: %d", error); 5882 mtx_lock(mtx); 5883 return (NULL); 5884 } 5885 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) { 5886 BUF_UNLOCK(bp); 5887 if (waitfor != MNT_WAIT) 5888 return (NULL); 5889 /* 5890 * The mtx argument must be bp->b_vp's mutex in 5891 * this case. 5892 */ 5893 #ifdef DEBUG_VFS_LOCKS 5894 if (bp->b_vp->v_type != VCHR) 5895 ASSERT_VI_LOCKED(bp->b_vp, "getdirtybuf"); 5896 #endif 5897 bp->b_vflags |= BV_BKGRDWAIT; 5898 msleep(&bp->b_xflags, mtx, PRIBIO, "getbuf", 0); 5899 return (NULL); 5900 } 5901 if ((bp->b_flags & B_DELWRI) == 0) { 5902 BUF_UNLOCK(bp); 5903 return (NULL); 5904 } 5905 bremfree(bp); 5906 return (bp); 5907 } 5908 5909 /* 5910 * Wait for pending output on a vnode to complete. 5911 * Must be called with vnode lock and interlock locked. 5912 * 5913 * XXX: Should just be a call to bufobj_wwait(). 5914 */ 5915 static void 5916 drain_output(vp) 5917 struct vnode *vp; 5918 { 5919 ASSERT_VOP_LOCKED(vp, "drain_output"); 5920 ASSERT_VI_LOCKED(vp, "drain_output"); 5921 5922 while (vp->v_bufobj.bo_numoutput) { 5923 vp->v_bufobj.bo_flag |= BO_WWAIT; 5924 msleep((caddr_t)&vp->v_bufobj.bo_numoutput, 5925 VI_MTX(vp), PRIBIO + 1, "drainvp", 0); 5926 } 5927 } 5928 5929 /* 5930 * Called whenever a buffer that is being invalidated or reallocated 5931 * contains dependencies. This should only happen if an I/O error has 5932 * occurred. The routine is called with the buffer locked. 5933 */ 5934 static void 5935 softdep_deallocate_dependencies(bp) 5936 struct buf *bp; 5937 { 5938 5939 if ((bp->b_ioflags & BIO_ERROR) == 0) 5940 panic("softdep_deallocate_dependencies: dangling deps"); 5941 softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error); 5942 panic("softdep_deallocate_dependencies: unrecovered I/O error"); 5943 } 5944 5945 /* 5946 * Function to handle asynchronous write errors in the filesystem. 5947 */ 5948 static void 5949 softdep_error(func, error) 5950 char *func; 5951 int error; 5952 { 5953 5954 /* XXX should do something better! */ 5955 printf("%s: got error %d while accessing filesystem\n", func, error); 5956 } 5957 5958 #endif /* SOFTUPDATES */ 5959