1 /* 2 * Copyright 1998 Marshall Kirk McKusick. All Rights Reserved. 3 * 4 * The soft updates code is derived from the appendix of a University 5 * of Michigan technical report (Gregory R. Ganger and Yale N. Patt, 6 * "Soft Updates: A Solution to the Metadata Update Problem in File 7 * Systems", CSE-TR-254-95, August 1995). 8 * 9 * The following are the copyrights and redistribution conditions that 10 * apply to this copy of the soft update software. For a license 11 * to use, redistribute or sell the soft update software under 12 * conditions other than those described here, please contact the 13 * author at one of the following addresses: 14 * 15 * Marshall Kirk McKusick mckusick@mckusick.com 16 * 1614 Oxford Street +1-510-843-9542 17 * Berkeley, CA 94709-1608 18 * USA 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * 1. Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * 2. Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in the 28 * documentation and/or other materials provided with the distribution. 29 * 3. None of the names of McKusick, Ganger, Patt, or the University of 30 * Michigan may be used to endorse or promote products derived from 31 * this software without specific prior written permission. 32 * 4. Redistributions in any form must be accompanied by information on 33 * how to obtain complete source code for any accompanying software 34 * that uses this software. This source code must either be included 35 * in the distribution or be available for no more than the cost of 36 * distribution plus a nominal fee, and must be freely redistributable 37 * under reasonable conditions. For an executable file, complete 38 * source code means the source code for all modules it contains. 39 * It does not mean source code for modules or files that typically 40 * accompany the operating system on which the executable file runs, 41 * e.g., standard library modules or system header files. 42 * 43 * THIS SOFTWARE IS PROVIDED BY MARSHALL KIRK MCKUSICK ``AS IS'' AND ANY 44 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 45 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 46 * DISCLAIMED. IN NO EVENT SHALL MARSHALL KIRK MCKUSICK BE LIABLE FOR 47 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 48 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 49 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 50 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 51 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 52 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 53 * SUCH DAMAGE. 54 * 55 * from: @(#)ffs_softdep.c 9.56 (McKusick) 1/17/00 56 * $FreeBSD$ 57 */ 58 59 /* 60 * For now we want the safety net that the DIAGNOSTIC and DEBUG flags provide. 61 */ 62 #ifndef DIAGNOSTIC 63 #define DIAGNOSTIC 64 #endif 65 #ifndef DEBUG 66 #define DEBUG 67 #endif 68 69 #include <sys/param.h> 70 #include <sys/kernel.h> 71 #include <sys/systm.h> 72 #include <sys/buf.h> 73 #include <sys/malloc.h> 74 #include <sys/mount.h> 75 #include <sys/proc.h> 76 #include <sys/syslog.h> 77 #include <sys/vnode.h> 78 #include <sys/conf.h> 79 #include <ufs/ufs/dir.h> 80 #include <ufs/ufs/extattr.h> 81 #include <ufs/ufs/quota.h> 82 #include <ufs/ufs/inode.h> 83 #include <ufs/ufs/ufsmount.h> 84 #include <ufs/ffs/fs.h> 85 #include <ufs/ffs/softdep.h> 86 #include <ufs/ffs/ffs_extern.h> 87 #include <ufs/ufs/ufs_extern.h> 88 89 /* 90 * These definitions need to be adapted to the system to which 91 * this file is being ported. 92 */ 93 /* 94 * malloc types defined for the softdep system. 95 */ 96 MALLOC_DEFINE(M_PAGEDEP, "pagedep","File page dependencies"); 97 MALLOC_DEFINE(M_INODEDEP, "inodedep","Inode dependencies"); 98 MALLOC_DEFINE(M_NEWBLK, "newblk","New block allocation"); 99 MALLOC_DEFINE(M_BMSAFEMAP, "bmsafemap","Block or frag allocated from cyl group map"); 100 MALLOC_DEFINE(M_ALLOCDIRECT, "allocdirect","Block or frag dependency for an inode"); 101 MALLOC_DEFINE(M_INDIRDEP, "indirdep","Indirect block dependencies"); 102 MALLOC_DEFINE(M_ALLOCINDIR, "allocindir","Block dependency for an indirect block"); 103 MALLOC_DEFINE(M_FREEFRAG, "freefrag","Previously used frag for an inode"); 104 MALLOC_DEFINE(M_FREEBLKS, "freeblks","Blocks freed from an inode"); 105 MALLOC_DEFINE(M_FREEFILE, "freefile","Inode deallocated"); 106 MALLOC_DEFINE(M_DIRADD, "diradd","New directory entry"); 107 MALLOC_DEFINE(M_MKDIR, "mkdir","New directory"); 108 MALLOC_DEFINE(M_DIRREM, "dirrem","Directory entry deleted"); 109 110 #define D_PAGEDEP 0 111 #define D_INODEDEP 1 112 #define D_NEWBLK 2 113 #define D_BMSAFEMAP 3 114 #define D_ALLOCDIRECT 4 115 #define D_INDIRDEP 5 116 #define D_ALLOCINDIR 6 117 #define D_FREEFRAG 7 118 #define D_FREEBLKS 8 119 #define D_FREEFILE 9 120 #define D_DIRADD 10 121 #define D_MKDIR 11 122 #define D_DIRREM 12 123 #define D_LAST D_DIRREM 124 125 /* 126 * translate from workitem type to memory type 127 * MUST match the defines above, such that memtype[D_XXX] == M_XXX 128 */ 129 static struct malloc_type *memtype[] = { 130 M_PAGEDEP, 131 M_INODEDEP, 132 M_NEWBLK, 133 M_BMSAFEMAP, 134 M_ALLOCDIRECT, 135 M_INDIRDEP, 136 M_ALLOCINDIR, 137 M_FREEFRAG, 138 M_FREEBLKS, 139 M_FREEFILE, 140 M_DIRADD, 141 M_MKDIR, 142 M_DIRREM 143 }; 144 145 #define DtoM(type) (memtype[type]) 146 147 /* 148 * Names of malloc types. 149 */ 150 #define TYPENAME(type) \ 151 ((unsigned)(type) < D_LAST ? memtype[type]->ks_shortdesc : "???") 152 #define CURPROC curproc 153 /* 154 * End system adaptaion definitions. 155 */ 156 157 /* 158 * Internal function prototypes. 159 */ 160 static void softdep_error __P((char *, int)); 161 static void drain_output __P((struct vnode *, int)); 162 static int getdirtybuf __P((struct buf **, int)); 163 static void clear_remove __P((struct proc *)); 164 static void clear_inodedeps __P((struct proc *)); 165 static int flush_pagedep_deps __P((struct vnode *, struct mount *, 166 struct diraddhd *)); 167 static int flush_inodedep_deps __P((struct fs *, ino_t)); 168 static int handle_written_filepage __P((struct pagedep *, struct buf *)); 169 static void diradd_inode_written __P((struct diradd *, struct inodedep *)); 170 static int handle_written_inodeblock __P((struct inodedep *, struct buf *)); 171 static void handle_allocdirect_partdone __P((struct allocdirect *)); 172 static void handle_allocindir_partdone __P((struct allocindir *)); 173 static void initiate_write_filepage __P((struct pagedep *, struct buf *)); 174 static void handle_written_mkdir __P((struct mkdir *, int)); 175 static void initiate_write_inodeblock __P((struct inodedep *, struct buf *)); 176 static void handle_workitem_freefile __P((struct freefile *)); 177 static void handle_workitem_remove __P((struct dirrem *)); 178 static struct dirrem *newdirrem __P((struct buf *, struct inode *, 179 struct inode *, int, struct dirrem **)); 180 static void free_diradd __P((struct diradd *)); 181 static void free_allocindir __P((struct allocindir *, struct inodedep *)); 182 static int indir_trunc __P((struct inode *, ufs_daddr_t, int, ufs_lbn_t, 183 long *)); 184 static void deallocate_dependencies __P((struct buf *, struct inodedep *)); 185 static void free_allocdirect __P((struct allocdirectlst *, 186 struct allocdirect *, int)); 187 static int check_inode_unwritten __P((struct inodedep *)); 188 static int free_inodedep __P((struct inodedep *)); 189 static void handle_workitem_freeblocks __P((struct freeblks *)); 190 static void merge_inode_lists __P((struct inodedep *)); 191 static void setup_allocindir_phase2 __P((struct buf *, struct inode *, 192 struct allocindir *)); 193 static struct allocindir *newallocindir __P((struct inode *, int, ufs_daddr_t, 194 ufs_daddr_t)); 195 static void handle_workitem_freefrag __P((struct freefrag *)); 196 static struct freefrag *newfreefrag __P((struct inode *, ufs_daddr_t, long)); 197 static void allocdirect_merge __P((struct allocdirectlst *, 198 struct allocdirect *, struct allocdirect *)); 199 static struct bmsafemap *bmsafemap_lookup __P((struct buf *)); 200 static int newblk_lookup __P((struct fs *, ufs_daddr_t, int, 201 struct newblk **)); 202 static int inodedep_lookup __P((struct fs *, ino_t, int, struct inodedep **)); 203 static int pagedep_lookup __P((struct inode *, ufs_lbn_t, int, 204 struct pagedep **)); 205 static void pause_timer __P((void *)); 206 static int request_cleanup __P((int, int)); 207 static void add_to_worklist __P((struct worklist *)); 208 209 /* 210 * Exported softdep operations. 211 */ 212 static void softdep_disk_io_initiation __P((struct buf *)); 213 static void softdep_disk_write_complete __P((struct buf *)); 214 static void softdep_deallocate_dependencies __P((struct buf *)); 215 static int softdep_fsync __P((struct vnode *)); 216 static int softdep_process_worklist __P((struct mount *)); 217 static void softdep_move_dependencies __P((struct buf *, struct buf *)); 218 static int softdep_count_dependencies __P((struct buf *bp, int)); 219 220 struct bio_ops bioops = { 221 softdep_disk_io_initiation, /* io_start */ 222 softdep_disk_write_complete, /* io_complete */ 223 softdep_deallocate_dependencies, /* io_deallocate */ 224 softdep_fsync, /* io_fsync */ 225 softdep_process_worklist, /* io_sync */ 226 softdep_move_dependencies, /* io_movedeps */ 227 softdep_count_dependencies, /* io_countdeps */ 228 }; 229 230 /* 231 * Locking primitives. 232 * 233 * For a uniprocessor, all we need to do is protect against disk 234 * interrupts. For a multiprocessor, this lock would have to be 235 * a mutex. A single mutex is used throughout this file, though 236 * finer grain locking could be used if contention warranted it. 237 * 238 * For a multiprocessor, the sleep call would accept a lock and 239 * release it after the sleep processing was complete. In a uniprocessor 240 * implementation there is no such interlock, so we simple mark 241 * the places where it needs to be done with the `interlocked' form 242 * of the lock calls. Since the uniprocessor sleep already interlocks 243 * the spl, there is nothing that really needs to be done. 244 */ 245 #ifndef /* NOT */ DEBUG 246 static struct lockit { 247 int lkt_spl; 248 } lk = { 0 }; 249 #define ACQUIRE_LOCK(lk) (lk)->lkt_spl = splbio() 250 #define FREE_LOCK(lk) splx((lk)->lkt_spl) 251 #define ACQUIRE_LOCK_INTERLOCKED(lk) 252 #define FREE_LOCK_INTERLOCKED(lk) 253 254 #else /* DEBUG */ 255 static struct lockit { 256 int lkt_spl; 257 pid_t lkt_held; 258 } lk = { 0, -1 }; 259 static int lockcnt; 260 261 static void acquire_lock __P((struct lockit *)); 262 static void free_lock __P((struct lockit *)); 263 static void acquire_lock_interlocked __P((struct lockit *)); 264 static void free_lock_interlocked __P((struct lockit *)); 265 266 #define ACQUIRE_LOCK(lk) acquire_lock(lk) 267 #define FREE_LOCK(lk) free_lock(lk) 268 #define ACQUIRE_LOCK_INTERLOCKED(lk) acquire_lock_interlocked(lk) 269 #define FREE_LOCK_INTERLOCKED(lk) free_lock_interlocked(lk) 270 271 static void 272 acquire_lock(lk) 273 struct lockit *lk; 274 { 275 276 if (lk->lkt_held != -1) { 277 if (lk->lkt_held == CURPROC->p_pid) 278 panic("softdep_lock: locking against myself"); 279 else 280 panic("softdep_lock: lock held by %d", lk->lkt_held); 281 } 282 lk->lkt_spl = splbio(); 283 lk->lkt_held = CURPROC->p_pid; 284 lockcnt++; 285 } 286 287 static void 288 free_lock(lk) 289 struct lockit *lk; 290 { 291 292 if (lk->lkt_held == -1) 293 panic("softdep_unlock: lock not held"); 294 lk->lkt_held = -1; 295 splx(lk->lkt_spl); 296 } 297 298 static void 299 acquire_lock_interlocked(lk) 300 struct lockit *lk; 301 { 302 303 if (lk->lkt_held != -1) { 304 if (lk->lkt_held == CURPROC->p_pid) 305 panic("softdep_lock_interlocked: locking against self"); 306 else 307 panic("softdep_lock_interlocked: lock held by %d", 308 lk->lkt_held); 309 } 310 lk->lkt_held = CURPROC->p_pid; 311 lockcnt++; 312 } 313 314 static void 315 free_lock_interlocked(lk) 316 struct lockit *lk; 317 { 318 319 if (lk->lkt_held == -1) 320 panic("softdep_unlock_interlocked: lock not held"); 321 lk->lkt_held = -1; 322 } 323 #endif /* DEBUG */ 324 325 /* 326 * Place holder for real semaphores. 327 */ 328 struct sema { 329 int value; 330 pid_t holder; 331 char *name; 332 int prio; 333 int timo; 334 }; 335 static void sema_init __P((struct sema *, char *, int, int)); 336 static int sema_get __P((struct sema *, struct lockit *)); 337 static void sema_release __P((struct sema *)); 338 339 static void 340 sema_init(semap, name, prio, timo) 341 struct sema *semap; 342 char *name; 343 int prio, timo; 344 { 345 346 semap->holder = -1; 347 semap->value = 0; 348 semap->name = name; 349 semap->prio = prio; 350 semap->timo = timo; 351 } 352 353 static int 354 sema_get(semap, interlock) 355 struct sema *semap; 356 struct lockit *interlock; 357 { 358 359 if (semap->value++ > 0) { 360 if (interlock != NULL) 361 FREE_LOCK_INTERLOCKED(interlock); 362 tsleep((caddr_t)semap, semap->prio, semap->name, semap->timo); 363 if (interlock != NULL) { 364 ACQUIRE_LOCK_INTERLOCKED(interlock); 365 FREE_LOCK(interlock); 366 } 367 return (0); 368 } 369 semap->holder = CURPROC->p_pid; 370 if (interlock != NULL) 371 FREE_LOCK(interlock); 372 return (1); 373 } 374 375 static void 376 sema_release(semap) 377 struct sema *semap; 378 { 379 380 if (semap->value <= 0 || semap->holder != CURPROC->p_pid) 381 panic("sema_release: not held"); 382 if (--semap->value > 0) { 383 semap->value = 0; 384 wakeup(semap); 385 } 386 semap->holder = -1; 387 } 388 389 /* 390 * Worklist queue management. 391 * These routines require that the lock be held. 392 */ 393 #ifndef /* NOT */ DEBUG 394 #define WORKLIST_INSERT(head, item) do { \ 395 (item)->wk_state |= ONWORKLIST; \ 396 LIST_INSERT_HEAD(head, item, wk_list); \ 397 } while (0) 398 #define WORKLIST_REMOVE(item) do { \ 399 (item)->wk_state &= ~ONWORKLIST; \ 400 LIST_REMOVE(item, wk_list); \ 401 } while (0) 402 #define WORKITEM_FREE(item, type) FREE(item, DtoM(type)) 403 404 #else /* DEBUG */ 405 static void worklist_insert __P((struct workhead *, struct worklist *)); 406 static void worklist_remove __P((struct worklist *)); 407 static void workitem_free __P((struct worklist *, int)); 408 409 #define WORKLIST_INSERT(head, item) worklist_insert(head, item) 410 #define WORKLIST_REMOVE(item) worklist_remove(item) 411 #define WORKITEM_FREE(item, type) workitem_free((struct worklist *)item, type) 412 413 static void 414 worklist_insert(head, item) 415 struct workhead *head; 416 struct worklist *item; 417 { 418 419 if (lk.lkt_held == -1) 420 panic("worklist_insert: lock not held"); 421 if (item->wk_state & ONWORKLIST) 422 panic("worklist_insert: already on list"); 423 item->wk_state |= ONWORKLIST; 424 LIST_INSERT_HEAD(head, item, wk_list); 425 } 426 427 static void 428 worklist_remove(item) 429 struct worklist *item; 430 { 431 432 if (lk.lkt_held == -1) 433 panic("worklist_remove: lock not held"); 434 if ((item->wk_state & ONWORKLIST) == 0) 435 panic("worklist_remove: not on list"); 436 item->wk_state &= ~ONWORKLIST; 437 LIST_REMOVE(item, wk_list); 438 } 439 440 static void 441 workitem_free(item, type) 442 struct worklist *item; 443 int type; 444 { 445 446 if (item->wk_state & ONWORKLIST) 447 panic("workitem_free: still on list"); 448 if (item->wk_type != type) 449 panic("workitem_free: type mismatch"); 450 FREE(item, DtoM(type)); 451 } 452 #endif /* DEBUG */ 453 454 /* 455 * Workitem queue management 456 */ 457 static struct workhead softdep_workitem_pending; 458 static int softdep_worklist_busy; 459 static int max_softdeps; /* maximum number of structs before slowdown */ 460 static int tickdelay = 2; /* number of ticks to pause during slowdown */ 461 static int proc_waiting; /* tracks whether we have a timeout posted */ 462 static struct proc *filesys_syncer; /* proc of filesystem syncer process */ 463 static int req_clear_inodedeps; /* syncer process flush some inodedeps */ 464 #define FLUSH_INODES 1 465 static int req_clear_remove; /* syncer process flush some freeblks */ 466 #define FLUSH_REMOVE 2 467 /* 468 * runtime statistics 469 */ 470 static int stat_blk_limit_push; /* number of times block limit neared */ 471 static int stat_ino_limit_push; /* number of times inode limit neared */ 472 static int stat_blk_limit_hit; /* number of times block slowdown imposed */ 473 static int stat_ino_limit_hit; /* number of times inode slowdown imposed */ 474 static int stat_indir_blk_ptrs; /* bufs redirtied as indir ptrs not written */ 475 static int stat_inode_bitmap; /* bufs redirtied as inode bitmap not written */ 476 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */ 477 static int stat_dir_entry; /* bufs redirtied as dir entry cannot write */ 478 #ifdef DEBUG 479 #include <vm/vm.h> 480 #include <sys/sysctl.h> 481 SYSCTL_INT(_debug, OID_AUTO, max_softdeps, CTLFLAG_RW, &max_softdeps, 0, ""); 482 SYSCTL_INT(_debug, OID_AUTO, tickdelay, CTLFLAG_RW, &tickdelay, 0, ""); 483 SYSCTL_INT(_debug, OID_AUTO, blk_limit_push, CTLFLAG_RW, &stat_blk_limit_push, 0,""); 484 SYSCTL_INT(_debug, OID_AUTO, ino_limit_push, CTLFLAG_RW, &stat_ino_limit_push, 0,""); 485 SYSCTL_INT(_debug, OID_AUTO, blk_limit_hit, CTLFLAG_RW, &stat_blk_limit_hit, 0, ""); 486 SYSCTL_INT(_debug, OID_AUTO, ino_limit_hit, CTLFLAG_RW, &stat_ino_limit_hit, 0, ""); 487 SYSCTL_INT(_debug, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW, &stat_indir_blk_ptrs, 0, ""); 488 SYSCTL_INT(_debug, OID_AUTO, inode_bitmap, CTLFLAG_RW, &stat_inode_bitmap, 0, ""); 489 SYSCTL_INT(_debug, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW, &stat_direct_blk_ptrs, 0, ""); 490 SYSCTL_INT(_debug, OID_AUTO, dir_entry, CTLFLAG_RW, &stat_dir_entry, 0, ""); 491 #endif /* DEBUG */ 492 493 /* 494 * Add an item to the end of the work queue. 495 * This routine requires that the lock be held. 496 * This is the only routine that adds items to the list. 497 * The following routine is the only one that removes items 498 * and does so in order from first to last. 499 */ 500 static void 501 add_to_worklist(wk) 502 struct worklist *wk; 503 { 504 static struct worklist *worklist_tail; 505 506 if (wk->wk_state & ONWORKLIST) 507 panic("add_to_worklist: already on list"); 508 wk->wk_state |= ONWORKLIST; 509 if (LIST_FIRST(&softdep_workitem_pending) == NULL) 510 LIST_INSERT_HEAD(&softdep_workitem_pending, wk, wk_list); 511 else 512 LIST_INSERT_AFTER(worklist_tail, wk, wk_list); 513 worklist_tail = wk; 514 } 515 516 /* 517 * Process that runs once per second to handle items in the background queue. 518 * 519 * Note that we ensure that everything is done in the order in which they 520 * appear in the queue. The code below depends on this property to ensure 521 * that blocks of a file are freed before the inode itself is freed. This 522 * ordering ensures that no new <vfsid, inum, lbn> triples will be generated 523 * until all the old ones have been purged from the dependency lists. 524 */ 525 static int 526 softdep_process_worklist(matchmnt) 527 struct mount *matchmnt; 528 { 529 struct proc *p = CURPROC; 530 struct worklist *wk; 531 struct fs *matchfs; 532 int matchcnt, loopcount; 533 534 /* 535 * Record the process identifier of our caller so that we can give 536 * this process preferential treatment in request_cleanup below. 537 */ 538 filesys_syncer = p; 539 matchcnt = 0; 540 matchfs = NULL; 541 if (matchmnt != NULL) 542 matchfs = VFSTOUFS(matchmnt)->um_fs; 543 /* 544 * There is no danger of having multiple processes run this 545 * code. It is single threaded solely so that softdep_flushfiles 546 * (below) can get an accurate count of the number of items 547 * related to its mount point that are in the list. 548 */ 549 if (softdep_worklist_busy && matchmnt == NULL) 550 return (-1); 551 /* 552 * If requested, try removing inode or removal dependencies. 553 */ 554 if (req_clear_inodedeps) { 555 clear_inodedeps(p); 556 req_clear_inodedeps = 0; 557 wakeup(&proc_waiting); 558 } 559 if (req_clear_remove) { 560 clear_remove(p); 561 req_clear_remove = 0; 562 wakeup(&proc_waiting); 563 } 564 ACQUIRE_LOCK(&lk); 565 loopcount = 1; 566 while ((wk = LIST_FIRST(&softdep_workitem_pending)) != 0) { 567 WORKLIST_REMOVE(wk); 568 FREE_LOCK(&lk); 569 switch (wk->wk_type) { 570 571 case D_DIRREM: 572 /* removal of a directory entry */ 573 if (WK_DIRREM(wk)->dm_mnt == matchmnt) 574 matchcnt += 1; 575 handle_workitem_remove(WK_DIRREM(wk)); 576 break; 577 578 case D_FREEBLKS: 579 /* releasing blocks and/or fragments from a file */ 580 if (WK_FREEBLKS(wk)->fb_fs == matchfs) 581 matchcnt += 1; 582 handle_workitem_freeblocks(WK_FREEBLKS(wk)); 583 break; 584 585 case D_FREEFRAG: 586 /* releasing a fragment when replaced as a file grows */ 587 if (WK_FREEFRAG(wk)->ff_fs == matchfs) 588 matchcnt += 1; 589 handle_workitem_freefrag(WK_FREEFRAG(wk)); 590 break; 591 592 case D_FREEFILE: 593 /* releasing an inode when its link count drops to 0 */ 594 if (WK_FREEFILE(wk)->fx_fs == matchfs) 595 matchcnt += 1; 596 handle_workitem_freefile(WK_FREEFILE(wk)); 597 break; 598 599 default: 600 panic("%s_process_worklist: Unknown type %s", 601 "softdep", TYPENAME(wk->wk_type)); 602 /* NOTREACHED */ 603 } 604 if (softdep_worklist_busy && matchmnt == NULL) 605 return (-1); 606 /* 607 * If requested, try removing inode or removal dependencies. 608 */ 609 if (req_clear_inodedeps) { 610 clear_inodedeps(p); 611 req_clear_inodedeps = 0; 612 wakeup(&proc_waiting); 613 } 614 if (req_clear_remove) { 615 clear_remove(p); 616 req_clear_remove = 0; 617 wakeup(&proc_waiting); 618 } 619 /* 620 * We do not generally want to stop for buffer space, but if 621 * we are really being a buffer hog, we will stop and wait. 622 */ 623 if (loopcount++ % 128 == 0) 624 bwillwrite(); 625 ACQUIRE_LOCK(&lk); 626 } 627 FREE_LOCK(&lk); 628 return (matchcnt); 629 } 630 631 /* 632 * Move dependencies from one buffer to another. 633 */ 634 static void 635 softdep_move_dependencies(oldbp, newbp) 636 struct buf *oldbp; 637 struct buf *newbp; 638 { 639 struct worklist *wk, *wktail; 640 641 if (LIST_FIRST(&newbp->b_dep) != NULL) 642 panic("softdep_move_dependencies: need merge code"); 643 wktail = 0; 644 ACQUIRE_LOCK(&lk); 645 while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) { 646 LIST_REMOVE(wk, wk_list); 647 if (wktail == 0) 648 LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list); 649 else 650 LIST_INSERT_AFTER(wktail, wk, wk_list); 651 wktail = wk; 652 } 653 FREE_LOCK(&lk); 654 } 655 656 /* 657 * Purge the work list of all items associated with a particular mount point. 658 */ 659 int 660 softdep_flushfiles(oldmnt, flags, p) 661 struct mount *oldmnt; 662 int flags; 663 struct proc *p; 664 { 665 struct vnode *devvp; 666 int error, loopcnt; 667 668 /* 669 * Await our turn to clear out the queue. 670 */ 671 while (softdep_worklist_busy) 672 tsleep(&lbolt, PRIBIO, "softflush", 0); 673 softdep_worklist_busy = 1; 674 if ((error = ffs_flushfiles(oldmnt, flags, p)) != 0) { 675 softdep_worklist_busy = 0; 676 return (error); 677 } 678 /* 679 * Alternately flush the block device associated with the mount 680 * point and process any dependencies that the flushing 681 * creates. In theory, this loop can happen at most twice, 682 * but we give it a few extra just to be sure. 683 */ 684 devvp = VFSTOUFS(oldmnt)->um_devvp; 685 for (loopcnt = 10; loopcnt > 0; ) { 686 if (softdep_process_worklist(oldmnt) == 0) { 687 loopcnt--; 688 /* 689 * Do another flush in case any vnodes were brought in 690 * as part of the cleanup operations. 691 */ 692 if ((error = ffs_flushfiles(oldmnt, flags, p)) != 0) 693 break; 694 /* 695 * If we still found nothing to do, we are really done. 696 */ 697 if (softdep_process_worklist(oldmnt) == 0) 698 break; 699 } 700 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY, p); 701 error = VOP_FSYNC(devvp, p->p_ucred, MNT_WAIT, p); 702 VOP_UNLOCK(devvp, 0, p); 703 if (error) 704 break; 705 } 706 softdep_worklist_busy = 0; 707 /* 708 * If we are unmounting then it is an error to fail. If we 709 * are simply trying to downgrade to read-only, then filesystem 710 * activity can keep us busy forever, so we just fail with EBUSY. 711 */ 712 if (loopcnt == 0) { 713 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) 714 panic("softdep_flushfiles: looping"); 715 error = EBUSY; 716 } 717 return (error); 718 } 719 720 /* 721 * Structure hashing. 722 * 723 * There are three types of structures that can be looked up: 724 * 1) pagedep structures identified by mount point, inode number, 725 * and logical block. 726 * 2) inodedep structures identified by mount point and inode number. 727 * 3) newblk structures identified by mount point and 728 * physical block number. 729 * 730 * The "pagedep" and "inodedep" dependency structures are hashed 731 * separately from the file blocks and inodes to which they correspond. 732 * This separation helps when the in-memory copy of an inode or 733 * file block must be replaced. It also obviates the need to access 734 * an inode or file page when simply updating (or de-allocating) 735 * dependency structures. Lookup of newblk structures is needed to 736 * find newly allocated blocks when trying to associate them with 737 * their allocdirect or allocindir structure. 738 * 739 * The lookup routines optionally create and hash a new instance when 740 * an existing entry is not found. 741 */ 742 #define DEPALLOC 0x0001 /* allocate structure if lookup fails */ 743 744 /* 745 * Structures and routines associated with pagedep caching. 746 */ 747 LIST_HEAD(pagedep_hashhead, pagedep) *pagedep_hashtbl; 748 u_long pagedep_hash; /* size of hash table - 1 */ 749 #define PAGEDEP_HASH(mp, inum, lbn) \ 750 (&pagedep_hashtbl[((((register_t)(mp)) >> 13) + (inum) + (lbn)) & \ 751 pagedep_hash]) 752 static struct sema pagedep_in_progress; 753 754 /* 755 * Look up a pagedep. Return 1 if found, 0 if not found. 756 * If not found, allocate if DEPALLOC flag is passed. 757 * Found or allocated entry is returned in pagedeppp. 758 * This routine must be called with splbio interrupts blocked. 759 */ 760 static int 761 pagedep_lookup(ip, lbn, flags, pagedeppp) 762 struct inode *ip; 763 ufs_lbn_t lbn; 764 int flags; 765 struct pagedep **pagedeppp; 766 { 767 struct pagedep *pagedep; 768 struct pagedep_hashhead *pagedephd; 769 struct mount *mp; 770 int i; 771 772 #ifdef DEBUG 773 if (lk.lkt_held == -1) 774 panic("pagedep_lookup: lock not held"); 775 #endif 776 mp = ITOV(ip)->v_mount; 777 pagedephd = PAGEDEP_HASH(mp, ip->i_number, lbn); 778 top: 779 for (pagedep = LIST_FIRST(pagedephd); pagedep; 780 pagedep = LIST_NEXT(pagedep, pd_hash)) 781 if (ip->i_number == pagedep->pd_ino && 782 lbn == pagedep->pd_lbn && 783 mp == pagedep->pd_mnt) 784 break; 785 if (pagedep) { 786 *pagedeppp = pagedep; 787 return (1); 788 } 789 if ((flags & DEPALLOC) == 0) { 790 *pagedeppp = NULL; 791 return (0); 792 } 793 if (sema_get(&pagedep_in_progress, &lk) == 0) { 794 ACQUIRE_LOCK(&lk); 795 goto top; 796 } 797 MALLOC(pagedep, struct pagedep *, sizeof(struct pagedep), M_PAGEDEP, 798 M_WAITOK); 799 bzero(pagedep, sizeof(struct pagedep)); 800 pagedep->pd_list.wk_type = D_PAGEDEP; 801 pagedep->pd_mnt = mp; 802 pagedep->pd_ino = ip->i_number; 803 pagedep->pd_lbn = lbn; 804 LIST_INIT(&pagedep->pd_dirremhd); 805 LIST_INIT(&pagedep->pd_pendinghd); 806 for (i = 0; i < DAHASHSZ; i++) 807 LIST_INIT(&pagedep->pd_diraddhd[i]); 808 ACQUIRE_LOCK(&lk); 809 LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash); 810 sema_release(&pagedep_in_progress); 811 *pagedeppp = pagedep; 812 return (0); 813 } 814 815 /* 816 * Structures and routines associated with inodedep caching. 817 */ 818 LIST_HEAD(inodedep_hashhead, inodedep) *inodedep_hashtbl; 819 static u_long inodedep_hash; /* size of hash table - 1 */ 820 static long num_inodedep; /* number of inodedep allocated */ 821 #define INODEDEP_HASH(fs, inum) \ 822 (&inodedep_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & inodedep_hash]) 823 static struct sema inodedep_in_progress; 824 825 /* 826 * Look up a inodedep. Return 1 if found, 0 if not found. 827 * If not found, allocate if DEPALLOC flag is passed. 828 * Found or allocated entry is returned in inodedeppp. 829 * This routine must be called with splbio interrupts blocked. 830 */ 831 static int 832 inodedep_lookup(fs, inum, flags, inodedeppp) 833 struct fs *fs; 834 ino_t inum; 835 int flags; 836 struct inodedep **inodedeppp; 837 { 838 struct inodedep *inodedep; 839 struct inodedep_hashhead *inodedephd; 840 int firsttry; 841 842 #ifdef DEBUG 843 if (lk.lkt_held == -1) 844 panic("inodedep_lookup: lock not held"); 845 #endif 846 firsttry = 1; 847 inodedephd = INODEDEP_HASH(fs, inum); 848 top: 849 for (inodedep = LIST_FIRST(inodedephd); inodedep; 850 inodedep = LIST_NEXT(inodedep, id_hash)) 851 if (inum == inodedep->id_ino && fs == inodedep->id_fs) 852 break; 853 if (inodedep) { 854 *inodedeppp = inodedep; 855 return (1); 856 } 857 if ((flags & DEPALLOC) == 0) { 858 *inodedeppp = NULL; 859 return (0); 860 } 861 /* 862 * If we are over our limit, try to improve the situation. 863 */ 864 if (num_inodedep > max_softdeps && firsttry && speedup_syncer() == 0 && 865 request_cleanup(FLUSH_INODES, 1)) { 866 firsttry = 0; 867 goto top; 868 } 869 if (sema_get(&inodedep_in_progress, &lk) == 0) { 870 ACQUIRE_LOCK(&lk); 871 goto top; 872 } 873 num_inodedep += 1; 874 MALLOC(inodedep, struct inodedep *, sizeof(struct inodedep), 875 M_INODEDEP, M_WAITOK); 876 inodedep->id_list.wk_type = D_INODEDEP; 877 inodedep->id_fs = fs; 878 inodedep->id_ino = inum; 879 inodedep->id_state = ALLCOMPLETE; 880 inodedep->id_nlinkdelta = 0; 881 inodedep->id_savedino = NULL; 882 inodedep->id_savedsize = -1; 883 inodedep->id_buf = NULL; 884 LIST_INIT(&inodedep->id_pendinghd); 885 LIST_INIT(&inodedep->id_inowait); 886 LIST_INIT(&inodedep->id_bufwait); 887 TAILQ_INIT(&inodedep->id_inoupdt); 888 TAILQ_INIT(&inodedep->id_newinoupdt); 889 ACQUIRE_LOCK(&lk); 890 LIST_INSERT_HEAD(inodedephd, inodedep, id_hash); 891 sema_release(&inodedep_in_progress); 892 *inodedeppp = inodedep; 893 return (0); 894 } 895 896 /* 897 * Structures and routines associated with newblk caching. 898 */ 899 LIST_HEAD(newblk_hashhead, newblk) *newblk_hashtbl; 900 u_long newblk_hash; /* size of hash table - 1 */ 901 #define NEWBLK_HASH(fs, inum) \ 902 (&newblk_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & newblk_hash]) 903 static struct sema newblk_in_progress; 904 905 /* 906 * Look up a newblk. Return 1 if found, 0 if not found. 907 * If not found, allocate if DEPALLOC flag is passed. 908 * Found or allocated entry is returned in newblkpp. 909 */ 910 static int 911 newblk_lookup(fs, newblkno, flags, newblkpp) 912 struct fs *fs; 913 ufs_daddr_t newblkno; 914 int flags; 915 struct newblk **newblkpp; 916 { 917 struct newblk *newblk; 918 struct newblk_hashhead *newblkhd; 919 920 newblkhd = NEWBLK_HASH(fs, newblkno); 921 top: 922 for (newblk = LIST_FIRST(newblkhd); newblk; 923 newblk = LIST_NEXT(newblk, nb_hash)) 924 if (newblkno == newblk->nb_newblkno && fs == newblk->nb_fs) 925 break; 926 if (newblk) { 927 *newblkpp = newblk; 928 return (1); 929 } 930 if ((flags & DEPALLOC) == 0) { 931 *newblkpp = NULL; 932 return (0); 933 } 934 if (sema_get(&newblk_in_progress, 0) == 0) 935 goto top; 936 MALLOC(newblk, struct newblk *, sizeof(struct newblk), 937 M_NEWBLK, M_WAITOK); 938 newblk->nb_state = 0; 939 newblk->nb_fs = fs; 940 newblk->nb_newblkno = newblkno; 941 LIST_INSERT_HEAD(newblkhd, newblk, nb_hash); 942 sema_release(&newblk_in_progress); 943 *newblkpp = newblk; 944 return (0); 945 } 946 947 /* 948 * Executed during filesystem system initialization before 949 * mounting any file systems. 950 */ 951 void 952 softdep_initialize() 953 { 954 955 LIST_INIT(&mkdirlisthd); 956 LIST_INIT(&softdep_workitem_pending); 957 max_softdeps = desiredvnodes * 8; 958 pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP, 959 &pagedep_hash); 960 sema_init(&pagedep_in_progress, "pagedep", PRIBIO, 0); 961 inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, &inodedep_hash); 962 sema_init(&inodedep_in_progress, "inodedep", PRIBIO, 0); 963 newblk_hashtbl = hashinit(64, M_NEWBLK, &newblk_hash); 964 sema_init(&newblk_in_progress, "newblk", PRIBIO, 0); 965 } 966 967 /* 968 * Called at mount time to notify the dependency code that a 969 * filesystem wishes to use it. 970 */ 971 int 972 softdep_mount(devvp, mp, fs, cred) 973 struct vnode *devvp; 974 struct mount *mp; 975 struct fs *fs; 976 struct ucred *cred; 977 { 978 struct csum cstotal; 979 struct cg *cgp; 980 struct buf *bp; 981 int error, cyl; 982 983 mp->mnt_flag &= ~MNT_ASYNC; 984 mp->mnt_flag |= MNT_SOFTDEP; 985 /* 986 * When doing soft updates, the counters in the 987 * superblock may have gotten out of sync, so we have 988 * to scan the cylinder groups and recalculate them. 989 */ 990 if (fs->fs_clean != 0) 991 return (0); 992 bzero(&cstotal, sizeof cstotal); 993 for (cyl = 0; cyl < fs->fs_ncg; cyl++) { 994 if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)), 995 fs->fs_cgsize, cred, &bp)) != 0) { 996 brelse(bp); 997 return (error); 998 } 999 cgp = (struct cg *)bp->b_data; 1000 cstotal.cs_nffree += cgp->cg_cs.cs_nffree; 1001 cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree; 1002 cstotal.cs_nifree += cgp->cg_cs.cs_nifree; 1003 cstotal.cs_ndir += cgp->cg_cs.cs_ndir; 1004 fs->fs_cs(fs, cyl) = cgp->cg_cs; 1005 brelse(bp); 1006 } 1007 #ifdef DEBUG 1008 if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal)) 1009 printf("ffs_mountfs: superblock updated for soft updates\n"); 1010 #endif 1011 bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal); 1012 return (0); 1013 } 1014 1015 /* 1016 * Protecting the freemaps (or bitmaps). 1017 * 1018 * To eliminate the need to execute fsck before mounting a file system 1019 * after a power failure, one must (conservatively) guarantee that the 1020 * on-disk copy of the bitmaps never indicate that a live inode or block is 1021 * free. So, when a block or inode is allocated, the bitmap should be 1022 * updated (on disk) before any new pointers. When a block or inode is 1023 * freed, the bitmap should not be updated until all pointers have been 1024 * reset. The latter dependency is handled by the delayed de-allocation 1025 * approach described below for block and inode de-allocation. The former 1026 * dependency is handled by calling the following procedure when a block or 1027 * inode is allocated. When an inode is allocated an "inodedep" is created 1028 * with its DEPCOMPLETE flag cleared until its bitmap is written to disk. 1029 * Each "inodedep" is also inserted into the hash indexing structure so 1030 * that any additional link additions can be made dependent on the inode 1031 * allocation. 1032 * 1033 * The ufs file system maintains a number of free block counts (e.g., per 1034 * cylinder group, per cylinder and per <cylinder, rotational position> pair) 1035 * in addition to the bitmaps. These counts are used to improve efficiency 1036 * during allocation and therefore must be consistent with the bitmaps. 1037 * There is no convenient way to guarantee post-crash consistency of these 1038 * counts with simple update ordering, for two main reasons: (1) The counts 1039 * and bitmaps for a single cylinder group block are not in the same disk 1040 * sector. If a disk write is interrupted (e.g., by power failure), one may 1041 * be written and the other not. (2) Some of the counts are located in the 1042 * superblock rather than the cylinder group block. So, we focus our soft 1043 * updates implementation on protecting the bitmaps. When mounting a 1044 * filesystem, we recompute the auxiliary counts from the bitmaps. 1045 */ 1046 1047 /* 1048 * Called just after updating the cylinder group block to allocate an inode. 1049 */ 1050 void 1051 softdep_setup_inomapdep(bp, ip, newinum) 1052 struct buf *bp; /* buffer for cylgroup block with inode map */ 1053 struct inode *ip; /* inode related to allocation */ 1054 ino_t newinum; /* new inode number being allocated */ 1055 { 1056 struct inodedep *inodedep; 1057 struct bmsafemap *bmsafemap; 1058 1059 /* 1060 * Create a dependency for the newly allocated inode. 1061 * Panic if it already exists as something is seriously wrong. 1062 * Otherwise add it to the dependency list for the buffer holding 1063 * the cylinder group map from which it was allocated. 1064 */ 1065 ACQUIRE_LOCK(&lk); 1066 if (inodedep_lookup(ip->i_fs, newinum, DEPALLOC, &inodedep) != 0) 1067 panic("softdep_setup_inomapdep: found inode"); 1068 inodedep->id_buf = bp; 1069 inodedep->id_state &= ~DEPCOMPLETE; 1070 bmsafemap = bmsafemap_lookup(bp); 1071 LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps); 1072 FREE_LOCK(&lk); 1073 } 1074 1075 /* 1076 * Called just after updating the cylinder group block to 1077 * allocate block or fragment. 1078 */ 1079 void 1080 softdep_setup_blkmapdep(bp, fs, newblkno) 1081 struct buf *bp; /* buffer for cylgroup block with block map */ 1082 struct fs *fs; /* filesystem doing allocation */ 1083 ufs_daddr_t newblkno; /* number of newly allocated block */ 1084 { 1085 struct newblk *newblk; 1086 struct bmsafemap *bmsafemap; 1087 1088 /* 1089 * Create a dependency for the newly allocated block. 1090 * Add it to the dependency list for the buffer holding 1091 * the cylinder group map from which it was allocated. 1092 */ 1093 if (newblk_lookup(fs, newblkno, DEPALLOC, &newblk) != 0) 1094 panic("softdep_setup_blkmapdep: found block"); 1095 ACQUIRE_LOCK(&lk); 1096 newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(bp); 1097 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps); 1098 FREE_LOCK(&lk); 1099 } 1100 1101 /* 1102 * Find the bmsafemap associated with a cylinder group buffer. 1103 * If none exists, create one. The buffer must be locked when 1104 * this routine is called and this routine must be called with 1105 * splbio interrupts blocked. 1106 */ 1107 static struct bmsafemap * 1108 bmsafemap_lookup(bp) 1109 struct buf *bp; 1110 { 1111 struct bmsafemap *bmsafemap; 1112 struct worklist *wk; 1113 1114 #ifdef DEBUG 1115 if (lk.lkt_held == -1) 1116 panic("bmsafemap_lookup: lock not held"); 1117 #endif 1118 for (wk = LIST_FIRST(&bp->b_dep); wk; wk = LIST_NEXT(wk, wk_list)) 1119 if (wk->wk_type == D_BMSAFEMAP) 1120 return (WK_BMSAFEMAP(wk)); 1121 FREE_LOCK(&lk); 1122 MALLOC(bmsafemap, struct bmsafemap *, sizeof(struct bmsafemap), 1123 M_BMSAFEMAP, M_WAITOK); 1124 bmsafemap->sm_list.wk_type = D_BMSAFEMAP; 1125 bmsafemap->sm_list.wk_state = 0; 1126 bmsafemap->sm_buf = bp; 1127 LIST_INIT(&bmsafemap->sm_allocdirecthd); 1128 LIST_INIT(&bmsafemap->sm_allocindirhd); 1129 LIST_INIT(&bmsafemap->sm_inodedephd); 1130 LIST_INIT(&bmsafemap->sm_newblkhd); 1131 ACQUIRE_LOCK(&lk); 1132 WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list); 1133 return (bmsafemap); 1134 } 1135 1136 /* 1137 * Direct block allocation dependencies. 1138 * 1139 * When a new block is allocated, the corresponding disk locations must be 1140 * initialized (with zeros or new data) before the on-disk inode points to 1141 * them. Also, the freemap from which the block was allocated must be 1142 * updated (on disk) before the inode's pointer. These two dependencies are 1143 * independent of each other and are needed for all file blocks and indirect 1144 * blocks that are pointed to directly by the inode. Just before the 1145 * "in-core" version of the inode is updated with a newly allocated block 1146 * number, a procedure (below) is called to setup allocation dependency 1147 * structures. These structures are removed when the corresponding 1148 * dependencies are satisfied or when the block allocation becomes obsolete 1149 * (i.e., the file is deleted, the block is de-allocated, or the block is a 1150 * fragment that gets upgraded). All of these cases are handled in 1151 * procedures described later. 1152 * 1153 * When a file extension causes a fragment to be upgraded, either to a larger 1154 * fragment or to a full block, the on-disk location may change (if the 1155 * previous fragment could not simply be extended). In this case, the old 1156 * fragment must be de-allocated, but not until after the inode's pointer has 1157 * been updated. In most cases, this is handled by later procedures, which 1158 * will construct a "freefrag" structure to be added to the workitem queue 1159 * when the inode update is complete (or obsolete). The main exception to 1160 * this is when an allocation occurs while a pending allocation dependency 1161 * (for the same block pointer) remains. This case is handled in the main 1162 * allocation dependency setup procedure by immediately freeing the 1163 * unreferenced fragments. 1164 */ 1165 void 1166 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 1167 struct inode *ip; /* inode to which block is being added */ 1168 ufs_lbn_t lbn; /* block pointer within inode */ 1169 ufs_daddr_t newblkno; /* disk block number being added */ 1170 ufs_daddr_t oldblkno; /* previous block number, 0 unless frag */ 1171 long newsize; /* size of new block */ 1172 long oldsize; /* size of new block */ 1173 struct buf *bp; /* bp for allocated block */ 1174 { 1175 struct allocdirect *adp, *oldadp; 1176 struct allocdirectlst *adphead; 1177 struct bmsafemap *bmsafemap; 1178 struct inodedep *inodedep; 1179 struct pagedep *pagedep; 1180 struct newblk *newblk; 1181 1182 MALLOC(adp, struct allocdirect *, sizeof(struct allocdirect), 1183 M_ALLOCDIRECT, M_WAITOK); 1184 bzero(adp, sizeof(struct allocdirect)); 1185 adp->ad_list.wk_type = D_ALLOCDIRECT; 1186 adp->ad_lbn = lbn; 1187 adp->ad_newblkno = newblkno; 1188 adp->ad_oldblkno = oldblkno; 1189 adp->ad_newsize = newsize; 1190 adp->ad_oldsize = oldsize; 1191 adp->ad_state = ATTACHED; 1192 if (newblkno == oldblkno) 1193 adp->ad_freefrag = NULL; 1194 else 1195 adp->ad_freefrag = newfreefrag(ip, oldblkno, oldsize); 1196 1197 if (newblk_lookup(ip->i_fs, newblkno, 0, &newblk) == 0) 1198 panic("softdep_setup_allocdirect: lost block"); 1199 1200 ACQUIRE_LOCK(&lk); 1201 (void) inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC, &inodedep); 1202 adp->ad_inodedep = inodedep; 1203 1204 if (newblk->nb_state == DEPCOMPLETE) { 1205 adp->ad_state |= DEPCOMPLETE; 1206 adp->ad_buf = NULL; 1207 } else { 1208 bmsafemap = newblk->nb_bmsafemap; 1209 adp->ad_buf = bmsafemap->sm_buf; 1210 LIST_REMOVE(newblk, nb_deps); 1211 LIST_INSERT_HEAD(&bmsafemap->sm_allocdirecthd, adp, ad_deps); 1212 } 1213 LIST_REMOVE(newblk, nb_hash); 1214 FREE(newblk, M_NEWBLK); 1215 1216 WORKLIST_INSERT(&bp->b_dep, &adp->ad_list); 1217 if (lbn >= NDADDR) { 1218 /* allocating an indirect block */ 1219 if (oldblkno != 0) 1220 panic("softdep_setup_allocdirect: non-zero indir"); 1221 } else { 1222 /* 1223 * Allocating a direct block. 1224 * 1225 * If we are allocating a directory block, then we must 1226 * allocate an associated pagedep to track additions and 1227 * deletions. 1228 */ 1229 if ((ip->i_mode & IFMT) == IFDIR && 1230 pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0) 1231 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 1232 } 1233 /* 1234 * The list of allocdirects must be kept in sorted and ascending 1235 * order so that the rollback routines can quickly determine the 1236 * first uncommitted block (the size of the file stored on disk 1237 * ends at the end of the lowest committed fragment, or if there 1238 * are no fragments, at the end of the highest committed block). 1239 * Since files generally grow, the typical case is that the new 1240 * block is to be added at the end of the list. We speed this 1241 * special case by checking against the last allocdirect in the 1242 * list before laboriously traversing the list looking for the 1243 * insertion point. 1244 */ 1245 adphead = &inodedep->id_newinoupdt; 1246 oldadp = TAILQ_LAST(adphead, allocdirectlst); 1247 if (oldadp == NULL || oldadp->ad_lbn <= lbn) { 1248 /* insert at end of list */ 1249 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 1250 if (oldadp != NULL && oldadp->ad_lbn == lbn) 1251 allocdirect_merge(adphead, adp, oldadp); 1252 FREE_LOCK(&lk); 1253 return; 1254 } 1255 for (oldadp = TAILQ_FIRST(adphead); oldadp; 1256 oldadp = TAILQ_NEXT(oldadp, ad_next)) { 1257 if (oldadp->ad_lbn >= lbn) 1258 break; 1259 } 1260 if (oldadp == NULL) 1261 panic("softdep_setup_allocdirect: lost entry"); 1262 /* insert in middle of list */ 1263 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 1264 if (oldadp->ad_lbn == lbn) 1265 allocdirect_merge(adphead, adp, oldadp); 1266 FREE_LOCK(&lk); 1267 } 1268 1269 /* 1270 * Replace an old allocdirect dependency with a newer one. 1271 * This routine must be called with splbio interrupts blocked. 1272 */ 1273 static void 1274 allocdirect_merge(adphead, newadp, oldadp) 1275 struct allocdirectlst *adphead; /* head of list holding allocdirects */ 1276 struct allocdirect *newadp; /* allocdirect being added */ 1277 struct allocdirect *oldadp; /* existing allocdirect being checked */ 1278 { 1279 struct freefrag *freefrag; 1280 1281 #ifdef DEBUG 1282 if (lk.lkt_held == -1) 1283 panic("allocdirect_merge: lock not held"); 1284 #endif 1285 if (newadp->ad_oldblkno != oldadp->ad_newblkno || 1286 newadp->ad_oldsize != oldadp->ad_newsize || 1287 newadp->ad_lbn >= NDADDR) 1288 panic("allocdirect_check: old %d != new %d || lbn %ld >= %d", 1289 newadp->ad_oldblkno, oldadp->ad_newblkno, newadp->ad_lbn, 1290 NDADDR); 1291 newadp->ad_oldblkno = oldadp->ad_oldblkno; 1292 newadp->ad_oldsize = oldadp->ad_oldsize; 1293 /* 1294 * If the old dependency had a fragment to free or had never 1295 * previously had a block allocated, then the new dependency 1296 * can immediately post its freefrag and adopt the old freefrag. 1297 * This action is done by swapping the freefrag dependencies. 1298 * The new dependency gains the old one's freefrag, and the 1299 * old one gets the new one and then immediately puts it on 1300 * the worklist when it is freed by free_allocdirect. It is 1301 * not possible to do this swap when the old dependency had a 1302 * non-zero size but no previous fragment to free. This condition 1303 * arises when the new block is an extension of the old block. 1304 * Here, the first part of the fragment allocated to the new 1305 * dependency is part of the block currently claimed on disk by 1306 * the old dependency, so cannot legitimately be freed until the 1307 * conditions for the new dependency are fulfilled. 1308 */ 1309 if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) { 1310 freefrag = newadp->ad_freefrag; 1311 newadp->ad_freefrag = oldadp->ad_freefrag; 1312 oldadp->ad_freefrag = freefrag; 1313 } 1314 free_allocdirect(adphead, oldadp, 0); 1315 } 1316 1317 /* 1318 * Allocate a new freefrag structure if needed. 1319 */ 1320 static struct freefrag * 1321 newfreefrag(ip, blkno, size) 1322 struct inode *ip; 1323 ufs_daddr_t blkno; 1324 long size; 1325 { 1326 struct freefrag *freefrag; 1327 struct fs *fs; 1328 1329 if (blkno == 0) 1330 return (NULL); 1331 fs = ip->i_fs; 1332 if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag) 1333 panic("newfreefrag: frag size"); 1334 MALLOC(freefrag, struct freefrag *, sizeof(struct freefrag), 1335 M_FREEFRAG, M_WAITOK); 1336 freefrag->ff_list.wk_type = D_FREEFRAG; 1337 freefrag->ff_state = ip->i_uid & ~ONWORKLIST; /* XXX - used below */ 1338 freefrag->ff_inum = ip->i_number; 1339 freefrag->ff_fs = fs; 1340 freefrag->ff_devvp = ip->i_devvp; 1341 freefrag->ff_blkno = blkno; 1342 freefrag->ff_fragsize = size; 1343 return (freefrag); 1344 } 1345 1346 /* 1347 * This workitem de-allocates fragments that were replaced during 1348 * file block allocation. 1349 */ 1350 static void 1351 handle_workitem_freefrag(freefrag) 1352 struct freefrag *freefrag; 1353 { 1354 struct inode tip; 1355 1356 tip.i_fs = freefrag->ff_fs; 1357 tip.i_devvp = freefrag->ff_devvp; 1358 tip.i_dev = freefrag->ff_devvp->v_rdev; 1359 tip.i_number = freefrag->ff_inum; 1360 tip.i_uid = freefrag->ff_state & ~ONWORKLIST; /* XXX - set above */ 1361 ffs_blkfree(&tip, freefrag->ff_blkno, freefrag->ff_fragsize); 1362 FREE(freefrag, M_FREEFRAG); 1363 } 1364 1365 /* 1366 * Indirect block allocation dependencies. 1367 * 1368 * The same dependencies that exist for a direct block also exist when 1369 * a new block is allocated and pointed to by an entry in a block of 1370 * indirect pointers. The undo/redo states described above are also 1371 * used here. Because an indirect block contains many pointers that 1372 * may have dependencies, a second copy of the entire in-memory indirect 1373 * block is kept. The buffer cache copy is always completely up-to-date. 1374 * The second copy, which is used only as a source for disk writes, 1375 * contains only the safe pointers (i.e., those that have no remaining 1376 * update dependencies). The second copy is freed when all pointers 1377 * are safe. The cache is not allowed to replace indirect blocks with 1378 * pending update dependencies. If a buffer containing an indirect 1379 * block with dependencies is written, these routines will mark it 1380 * dirty again. It can only be successfully written once all the 1381 * dependencies are removed. The ffs_fsync routine in conjunction with 1382 * softdep_sync_metadata work together to get all the dependencies 1383 * removed so that a file can be successfully written to disk. Three 1384 * procedures are used when setting up indirect block pointer 1385 * dependencies. The division is necessary because of the organization 1386 * of the "balloc" routine and because of the distinction between file 1387 * pages and file metadata blocks. 1388 */ 1389 1390 /* 1391 * Allocate a new allocindir structure. 1392 */ 1393 static struct allocindir * 1394 newallocindir(ip, ptrno, newblkno, oldblkno) 1395 struct inode *ip; /* inode for file being extended */ 1396 int ptrno; /* offset of pointer in indirect block */ 1397 ufs_daddr_t newblkno; /* disk block number being added */ 1398 ufs_daddr_t oldblkno; /* previous block number, 0 if none */ 1399 { 1400 struct allocindir *aip; 1401 1402 MALLOC(aip, struct allocindir *, sizeof(struct allocindir), 1403 M_ALLOCINDIR, M_WAITOK); 1404 bzero(aip, sizeof(struct allocindir)); 1405 aip->ai_list.wk_type = D_ALLOCINDIR; 1406 aip->ai_state = ATTACHED; 1407 aip->ai_offset = ptrno; 1408 aip->ai_newblkno = newblkno; 1409 aip->ai_oldblkno = oldblkno; 1410 aip->ai_freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize); 1411 return (aip); 1412 } 1413 1414 /* 1415 * Called just before setting an indirect block pointer 1416 * to a newly allocated file page. 1417 */ 1418 void 1419 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 1420 struct inode *ip; /* inode for file being extended */ 1421 ufs_lbn_t lbn; /* allocated block number within file */ 1422 struct buf *bp; /* buffer with indirect blk referencing page */ 1423 int ptrno; /* offset of pointer in indirect block */ 1424 ufs_daddr_t newblkno; /* disk block number being added */ 1425 ufs_daddr_t oldblkno; /* previous block number, 0 if none */ 1426 struct buf *nbp; /* buffer holding allocated page */ 1427 { 1428 struct allocindir *aip; 1429 struct pagedep *pagedep; 1430 1431 aip = newallocindir(ip, ptrno, newblkno, oldblkno); 1432 ACQUIRE_LOCK(&lk); 1433 /* 1434 * If we are allocating a directory page, then we must 1435 * allocate an associated pagedep to track additions and 1436 * deletions. 1437 */ 1438 if ((ip->i_mode & IFMT) == IFDIR && 1439 pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0) 1440 WORKLIST_INSERT(&nbp->b_dep, &pagedep->pd_list); 1441 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_list); 1442 FREE_LOCK(&lk); 1443 setup_allocindir_phase2(bp, ip, aip); 1444 } 1445 1446 /* 1447 * Called just before setting an indirect block pointer to a 1448 * newly allocated indirect block. 1449 */ 1450 void 1451 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 1452 struct buf *nbp; /* newly allocated indirect block */ 1453 struct inode *ip; /* inode for file being extended */ 1454 struct buf *bp; /* indirect block referencing allocated block */ 1455 int ptrno; /* offset of pointer in indirect block */ 1456 ufs_daddr_t newblkno; /* disk block number being added */ 1457 { 1458 struct allocindir *aip; 1459 1460 aip = newallocindir(ip, ptrno, newblkno, 0); 1461 ACQUIRE_LOCK(&lk); 1462 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_list); 1463 FREE_LOCK(&lk); 1464 setup_allocindir_phase2(bp, ip, aip); 1465 } 1466 1467 /* 1468 * Called to finish the allocation of the "aip" allocated 1469 * by one of the two routines above. 1470 */ 1471 static void 1472 setup_allocindir_phase2(bp, ip, aip) 1473 struct buf *bp; /* in-memory copy of the indirect block */ 1474 struct inode *ip; /* inode for file being extended */ 1475 struct allocindir *aip; /* allocindir allocated by the above routines */ 1476 { 1477 struct worklist *wk; 1478 struct indirdep *indirdep, *newindirdep; 1479 struct bmsafemap *bmsafemap; 1480 struct allocindir *oldaip; 1481 struct freefrag *freefrag; 1482 struct newblk *newblk; 1483 1484 if (bp->b_lblkno >= 0) 1485 panic("setup_allocindir_phase2: not indir blk"); 1486 for (indirdep = NULL, newindirdep = NULL; ; ) { 1487 ACQUIRE_LOCK(&lk); 1488 for (wk = LIST_FIRST(&bp->b_dep); wk; 1489 wk = LIST_NEXT(wk, wk_list)) { 1490 if (wk->wk_type != D_INDIRDEP) 1491 continue; 1492 indirdep = WK_INDIRDEP(wk); 1493 break; 1494 } 1495 if (indirdep == NULL && newindirdep) { 1496 indirdep = newindirdep; 1497 WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list); 1498 newindirdep = NULL; 1499 } 1500 FREE_LOCK(&lk); 1501 if (indirdep) { 1502 if (newblk_lookup(ip->i_fs, aip->ai_newblkno, 0, 1503 &newblk) == 0) 1504 panic("setup_allocindir: lost block"); 1505 ACQUIRE_LOCK(&lk); 1506 if (newblk->nb_state == DEPCOMPLETE) { 1507 aip->ai_state |= DEPCOMPLETE; 1508 aip->ai_buf = NULL; 1509 } else { 1510 bmsafemap = newblk->nb_bmsafemap; 1511 aip->ai_buf = bmsafemap->sm_buf; 1512 LIST_REMOVE(newblk, nb_deps); 1513 LIST_INSERT_HEAD(&bmsafemap->sm_allocindirhd, 1514 aip, ai_deps); 1515 } 1516 LIST_REMOVE(newblk, nb_hash); 1517 FREE(newblk, M_NEWBLK); 1518 aip->ai_indirdep = indirdep; 1519 /* 1520 * Check to see if there is an existing dependency 1521 * for this block. If there is, merge the old 1522 * dependency into the new one. 1523 */ 1524 if (aip->ai_oldblkno == 0) 1525 oldaip = NULL; 1526 else 1527 for (oldaip=LIST_FIRST(&indirdep->ir_deplisthd); 1528 oldaip; oldaip = LIST_NEXT(oldaip, ai_next)) 1529 if (oldaip->ai_offset == aip->ai_offset) 1530 break; 1531 if (oldaip != NULL) { 1532 if (oldaip->ai_newblkno != aip->ai_oldblkno) 1533 panic("setup_allocindir_phase2: blkno"); 1534 aip->ai_oldblkno = oldaip->ai_oldblkno; 1535 freefrag = oldaip->ai_freefrag; 1536 oldaip->ai_freefrag = aip->ai_freefrag; 1537 aip->ai_freefrag = freefrag; 1538 free_allocindir(oldaip, NULL); 1539 } 1540 LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next); 1541 ((ufs_daddr_t *)indirdep->ir_savebp->b_data) 1542 [aip->ai_offset] = aip->ai_oldblkno; 1543 FREE_LOCK(&lk); 1544 } 1545 if (newindirdep) { 1546 if (indirdep->ir_savebp != NULL) 1547 brelse(newindirdep->ir_savebp); 1548 WORKITEM_FREE((caddr_t)newindirdep, D_INDIRDEP); 1549 } 1550 if (indirdep) 1551 break; 1552 MALLOC(newindirdep, struct indirdep *, sizeof(struct indirdep), 1553 M_INDIRDEP, M_WAITOK); 1554 newindirdep->ir_list.wk_type = D_INDIRDEP; 1555 newindirdep->ir_state = ATTACHED; 1556 LIST_INIT(&newindirdep->ir_deplisthd); 1557 LIST_INIT(&newindirdep->ir_donehd); 1558 if (bp->b_blkno == bp->b_lblkno) { 1559 VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, 1560 NULL, NULL); 1561 } 1562 newindirdep->ir_savebp = 1563 getblk(ip->i_devvp, bp->b_blkno, bp->b_bcount, 0, 0); 1564 BUF_KERNPROC(newindirdep->ir_savebp); 1565 bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount); 1566 } 1567 } 1568 1569 /* 1570 * Block de-allocation dependencies. 1571 * 1572 * When blocks are de-allocated, the on-disk pointers must be nullified before 1573 * the blocks are made available for use by other files. (The true 1574 * requirement is that old pointers must be nullified before new on-disk 1575 * pointers are set. We chose this slightly more stringent requirement to 1576 * reduce complexity.) Our implementation handles this dependency by updating 1577 * the inode (or indirect block) appropriately but delaying the actual block 1578 * de-allocation (i.e., freemap and free space count manipulation) until 1579 * after the updated versions reach stable storage. After the disk is 1580 * updated, the blocks can be safely de-allocated whenever it is convenient. 1581 * This implementation handles only the common case of reducing a file's 1582 * length to zero. Other cases are handled by the conventional synchronous 1583 * write approach. 1584 * 1585 * The ffs implementation with which we worked double-checks 1586 * the state of the block pointers and file size as it reduces 1587 * a file's length. Some of this code is replicated here in our 1588 * soft updates implementation. The freeblks->fb_chkcnt field is 1589 * used to transfer a part of this information to the procedure 1590 * that eventually de-allocates the blocks. 1591 * 1592 * This routine should be called from the routine that shortens 1593 * a file's length, before the inode's size or block pointers 1594 * are modified. It will save the block pointer information for 1595 * later release and zero the inode so that the calling routine 1596 * can release it. 1597 */ 1598 void 1599 softdep_setup_freeblocks(ip, length) 1600 struct inode *ip; /* The inode whose length is to be reduced */ 1601 off_t length; /* The new length for the file */ 1602 { 1603 struct freeblks *freeblks; 1604 struct inodedep *inodedep; 1605 struct allocdirect *adp; 1606 struct vnode *vp; 1607 struct buf *bp; 1608 struct fs *fs; 1609 int i, error; 1610 1611 fs = ip->i_fs; 1612 if (length != 0) 1613 panic("softde_setup_freeblocks: non-zero length"); 1614 MALLOC(freeblks, struct freeblks *, sizeof(struct freeblks), 1615 M_FREEBLKS, M_WAITOK); 1616 bzero(freeblks, sizeof(struct freeblks)); 1617 freeblks->fb_list.wk_type = D_FREEBLKS; 1618 freeblks->fb_uid = ip->i_uid; 1619 freeblks->fb_previousinum = ip->i_number; 1620 freeblks->fb_devvp = ip->i_devvp; 1621 freeblks->fb_fs = fs; 1622 freeblks->fb_oldsize = ip->i_size; 1623 freeblks->fb_newsize = length; 1624 freeblks->fb_chkcnt = ip->i_blocks; 1625 for (i = 0; i < NDADDR; i++) { 1626 freeblks->fb_dblks[i] = ip->i_db[i]; 1627 ip->i_db[i] = 0; 1628 } 1629 for (i = 0; i < NIADDR; i++) { 1630 freeblks->fb_iblks[i] = ip->i_ib[i]; 1631 ip->i_ib[i] = 0; 1632 } 1633 ip->i_blocks = 0; 1634 ip->i_size = 0; 1635 /* 1636 * Push the zero'ed inode to to its disk buffer so that we are free 1637 * to delete its dependencies below. Once the dependencies are gone 1638 * the buffer can be safely released. 1639 */ 1640 if ((error = bread(ip->i_devvp, 1641 fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 1642 (int)fs->fs_bsize, NOCRED, &bp)) != 0) 1643 softdep_error("softdep_setup_freeblocks", error); 1644 *((struct dinode *)bp->b_data + ino_to_fsbo(fs, ip->i_number)) = 1645 ip->i_din; 1646 /* 1647 * Find and eliminate any inode dependencies. 1648 */ 1649 ACQUIRE_LOCK(&lk); 1650 (void) inodedep_lookup(fs, ip->i_number, DEPALLOC, &inodedep); 1651 if ((inodedep->id_state & IOSTARTED) != 0) 1652 panic("softdep_setup_freeblocks: inode busy"); 1653 /* 1654 * Because the file length has been truncated to zero, any 1655 * pending block allocation dependency structures associated 1656 * with this inode are obsolete and can simply be de-allocated. 1657 * We must first merge the two dependency lists to get rid of 1658 * any duplicate freefrag structures, then purge the merged list. 1659 */ 1660 merge_inode_lists(inodedep); 1661 while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != 0) 1662 free_allocdirect(&inodedep->id_inoupdt, adp, 1); 1663 FREE_LOCK(&lk); 1664 bdwrite(bp); 1665 /* 1666 * We must wait for any I/O in progress to finish so that 1667 * all potential buffers on the dirty list will be visible. 1668 * Once they are all there, walk the list and get rid of 1669 * any dependencies. 1670 */ 1671 vp = ITOV(ip); 1672 ACQUIRE_LOCK(&lk); 1673 drain_output(vp, 1); 1674 while (getdirtybuf(&TAILQ_FIRST(&vp->v_dirtyblkhd), MNT_WAIT)) { 1675 bp = TAILQ_FIRST(&vp->v_dirtyblkhd); 1676 (void) inodedep_lookup(fs, ip->i_number, 0, &inodedep); 1677 deallocate_dependencies(bp, inodedep); 1678 bp->b_flags |= B_INVAL | B_NOCACHE; 1679 FREE_LOCK(&lk); 1680 brelse(bp); 1681 ACQUIRE_LOCK(&lk); 1682 } 1683 /* 1684 * Add the freeblks structure to the list of operations that 1685 * must await the zero'ed inode being written to disk. If we 1686 * still have a bitmap dependency, then the inode has never been 1687 * written to disk, so we can process the freeblks immediately. 1688 * If the inodedep does not exist, then the zero'ed inode has 1689 * been written and we can also proceed. 1690 */ 1691 if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0 || 1692 free_inodedep(inodedep) || 1693 (inodedep->id_state & DEPCOMPLETE) == 0) { 1694 FREE_LOCK(&lk); 1695 handle_workitem_freeblocks(freeblks); 1696 } else { 1697 WORKLIST_INSERT(&inodedep->id_bufwait, &freeblks->fb_list); 1698 FREE_LOCK(&lk); 1699 } 1700 } 1701 1702 /* 1703 * Reclaim any dependency structures from a buffer that is about to 1704 * be reallocated to a new vnode. The buffer must be locked, thus, 1705 * no I/O completion operations can occur while we are manipulating 1706 * its associated dependencies. The mutex is held so that other I/O's 1707 * associated with related dependencies do not occur. 1708 */ 1709 static void 1710 deallocate_dependencies(bp, inodedep) 1711 struct buf *bp; 1712 struct inodedep *inodedep; 1713 { 1714 struct worklist *wk; 1715 struct indirdep *indirdep; 1716 struct allocindir *aip; 1717 struct pagedep *pagedep; 1718 struct dirrem *dirrem; 1719 struct diradd *dap; 1720 int i; 1721 1722 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) { 1723 switch (wk->wk_type) { 1724 1725 case D_INDIRDEP: 1726 indirdep = WK_INDIRDEP(wk); 1727 /* 1728 * None of the indirect pointers will ever be visible, 1729 * so they can simply be tossed. GOINGAWAY ensures 1730 * that allocated pointers will be saved in the buffer 1731 * cache until they are freed. Note that they will 1732 * only be able to be found by their physical address 1733 * since the inode mapping the logical address will 1734 * be gone. The save buffer used for the safe copy 1735 * was allocated in setup_allocindir_phase2 using 1736 * the physical address so it could be used for this 1737 * purpose. Hence we swap the safe copy with the real 1738 * copy, allowing the safe copy to be freed and holding 1739 * on to the real copy for later use in indir_trunc. 1740 */ 1741 if (indirdep->ir_state & GOINGAWAY) 1742 panic("deallocate_dependencies: already gone"); 1743 indirdep->ir_state |= GOINGAWAY; 1744 while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != 0) 1745 free_allocindir(aip, inodedep); 1746 if (bp->b_lblkno >= 0 || 1747 bp->b_blkno != indirdep->ir_savebp->b_lblkno) 1748 panic("deallocate_dependencies: not indir"); 1749 bcopy(bp->b_data, indirdep->ir_savebp->b_data, 1750 bp->b_bcount); 1751 WORKLIST_REMOVE(wk); 1752 WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, wk); 1753 continue; 1754 1755 case D_PAGEDEP: 1756 pagedep = WK_PAGEDEP(wk); 1757 /* 1758 * None of the directory additions will ever be 1759 * visible, so they can simply be tossed. 1760 */ 1761 for (i = 0; i < DAHASHSZ; i++) 1762 while ((dap = 1763 LIST_FIRST(&pagedep->pd_diraddhd[i]))) 1764 free_diradd(dap); 1765 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != 0) 1766 free_diradd(dap); 1767 /* 1768 * Copy any directory remove dependencies to the list 1769 * to be processed after the zero'ed inode is written. 1770 * If the inode has already been written, then they 1771 * can be dumped directly onto the work list. 1772 */ 1773 for (dirrem = LIST_FIRST(&pagedep->pd_dirremhd); dirrem; 1774 dirrem = LIST_NEXT(dirrem, dm_next)) { 1775 LIST_REMOVE(dirrem, dm_next); 1776 dirrem->dm_dirinum = pagedep->pd_ino; 1777 if (inodedep == NULL || 1778 (inodedep->id_state & ALLCOMPLETE) == 1779 ALLCOMPLETE) 1780 add_to_worklist(&dirrem->dm_list); 1781 else 1782 WORKLIST_INSERT(&inodedep->id_bufwait, 1783 &dirrem->dm_list); 1784 } 1785 WORKLIST_REMOVE(&pagedep->pd_list); 1786 LIST_REMOVE(pagedep, pd_hash); 1787 WORKITEM_FREE(pagedep, D_PAGEDEP); 1788 continue; 1789 1790 case D_ALLOCINDIR: 1791 free_allocindir(WK_ALLOCINDIR(wk), inodedep); 1792 continue; 1793 1794 case D_ALLOCDIRECT: 1795 case D_INODEDEP: 1796 panic("deallocate_dependencies: Unexpected type %s", 1797 TYPENAME(wk->wk_type)); 1798 /* NOTREACHED */ 1799 1800 default: 1801 panic("deallocate_dependencies: Unknown type %s", 1802 TYPENAME(wk->wk_type)); 1803 /* NOTREACHED */ 1804 } 1805 } 1806 } 1807 1808 /* 1809 * Free an allocdirect. Generate a new freefrag work request if appropriate. 1810 * This routine must be called with splbio interrupts blocked. 1811 */ 1812 static void 1813 free_allocdirect(adphead, adp, delay) 1814 struct allocdirectlst *adphead; 1815 struct allocdirect *adp; 1816 int delay; 1817 { 1818 1819 #ifdef DEBUG 1820 if (lk.lkt_held == -1) 1821 panic("free_allocdirect: lock not held"); 1822 #endif 1823 if ((adp->ad_state & DEPCOMPLETE) == 0) 1824 LIST_REMOVE(adp, ad_deps); 1825 TAILQ_REMOVE(adphead, adp, ad_next); 1826 if ((adp->ad_state & COMPLETE) == 0) 1827 WORKLIST_REMOVE(&adp->ad_list); 1828 if (adp->ad_freefrag != NULL) { 1829 if (delay) 1830 WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait, 1831 &adp->ad_freefrag->ff_list); 1832 else 1833 add_to_worklist(&adp->ad_freefrag->ff_list); 1834 } 1835 WORKITEM_FREE(adp, D_ALLOCDIRECT); 1836 } 1837 1838 /* 1839 * Prepare an inode to be freed. The actual free operation is not 1840 * done until the zero'ed inode has been written to disk. 1841 */ 1842 void 1843 softdep_freefile(pvp, ino, mode) 1844 struct vnode *pvp; 1845 ino_t ino; 1846 int mode; 1847 { 1848 struct inode *ip = VTOI(pvp); 1849 struct inodedep *inodedep; 1850 struct freefile *freefile; 1851 1852 /* 1853 * This sets up the inode de-allocation dependency. 1854 */ 1855 MALLOC(freefile, struct freefile *, sizeof(struct freefile), 1856 M_FREEFILE, M_WAITOK); 1857 freefile->fx_list.wk_type = D_FREEFILE; 1858 freefile->fx_list.wk_state = 0; 1859 freefile->fx_mode = mode; 1860 freefile->fx_oldinum = ino; 1861 freefile->fx_devvp = ip->i_devvp; 1862 freefile->fx_fs = ip->i_fs; 1863 1864 /* 1865 * If the inodedep does not exist, then the zero'ed inode has 1866 * been written to disk. If the allocated inode has never been 1867 * written to disk, then the on-disk inode is zero'ed. In either 1868 * case we can free the file immediately. 1869 */ 1870 ACQUIRE_LOCK(&lk); 1871 if (inodedep_lookup(ip->i_fs, ino, 0, &inodedep) == 0 || 1872 check_inode_unwritten(inodedep)) { 1873 FREE_LOCK(&lk); 1874 handle_workitem_freefile(freefile); 1875 return; 1876 } 1877 WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list); 1878 FREE_LOCK(&lk); 1879 } 1880 1881 /* 1882 * Check to see if an inode has never been written to disk. If 1883 * so free the inodedep and return success, otherwise return failure. 1884 * This routine must be called with splbio interrupts blocked. 1885 * 1886 * If we still have a bitmap dependency, then the inode has never 1887 * been written to disk. Drop the dependency as it is no longer 1888 * necessary since the inode is being deallocated. We set the 1889 * ALLCOMPLETE flags since the bitmap now properly shows that the 1890 * inode is not allocated. Even if the inode is actively being 1891 * written, it has been rolled back to its zero'ed state, so we 1892 * are ensured that a zero inode is what is on the disk. For short 1893 * lived files, this change will usually result in removing all the 1894 * dependencies from the inode so that it can be freed immediately. 1895 */ 1896 static int 1897 check_inode_unwritten(inodedep) 1898 struct inodedep *inodedep; 1899 { 1900 1901 if ((inodedep->id_state & DEPCOMPLETE) != 0 || 1902 LIST_FIRST(&inodedep->id_pendinghd) != NULL || 1903 LIST_FIRST(&inodedep->id_bufwait) != NULL || 1904 LIST_FIRST(&inodedep->id_inowait) != NULL || 1905 TAILQ_FIRST(&inodedep->id_inoupdt) != NULL || 1906 TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL || 1907 inodedep->id_nlinkdelta != 0) 1908 return (0); 1909 inodedep->id_state |= ALLCOMPLETE; 1910 LIST_REMOVE(inodedep, id_deps); 1911 inodedep->id_buf = NULL; 1912 WORKLIST_REMOVE(&inodedep->id_list); 1913 if (inodedep->id_savedino != NULL) { 1914 FREE(inodedep->id_savedino, M_INODEDEP); 1915 inodedep->id_savedino = NULL; 1916 } 1917 if (free_inodedep(inodedep) == 0) 1918 panic("check_inode_unwritten: busy inode"); 1919 return (1); 1920 } 1921 1922 /* 1923 * Try to free an inodedep structure. Return 1 if it could be freed. 1924 */ 1925 static int 1926 free_inodedep(inodedep) 1927 struct inodedep *inodedep; 1928 { 1929 1930 if ((inodedep->id_state & ONWORKLIST) != 0 || 1931 (inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE || 1932 LIST_FIRST(&inodedep->id_pendinghd) != NULL || 1933 LIST_FIRST(&inodedep->id_bufwait) != NULL || 1934 LIST_FIRST(&inodedep->id_inowait) != NULL || 1935 TAILQ_FIRST(&inodedep->id_inoupdt) != NULL || 1936 TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL || 1937 inodedep->id_nlinkdelta != 0 || inodedep->id_savedino != NULL) 1938 return (0); 1939 LIST_REMOVE(inodedep, id_hash); 1940 WORKITEM_FREE(inodedep, D_INODEDEP); 1941 num_inodedep -= 1; 1942 return (1); 1943 } 1944 1945 /* 1946 * This workitem routine performs the block de-allocation. 1947 * The workitem is added to the pending list after the updated 1948 * inode block has been written to disk. As mentioned above, 1949 * checks regarding the number of blocks de-allocated (compared 1950 * to the number of blocks allocated for the file) are also 1951 * performed in this function. 1952 */ 1953 static void 1954 handle_workitem_freeblocks(freeblks) 1955 struct freeblks *freeblks; 1956 { 1957 struct inode tip; 1958 ufs_daddr_t bn; 1959 struct fs *fs; 1960 int i, level, bsize; 1961 long nblocks, blocksreleased = 0; 1962 int error, allerror = 0; 1963 ufs_lbn_t baselbns[NIADDR], tmpval; 1964 1965 tip.i_number = freeblks->fb_previousinum; 1966 tip.i_devvp = freeblks->fb_devvp; 1967 tip.i_dev = freeblks->fb_devvp->v_rdev; 1968 tip.i_fs = freeblks->fb_fs; 1969 tip.i_size = freeblks->fb_oldsize; 1970 tip.i_uid = freeblks->fb_uid; 1971 fs = freeblks->fb_fs; 1972 tmpval = 1; 1973 baselbns[0] = NDADDR; 1974 for (i = 1; i < NIADDR; i++) { 1975 tmpval *= NINDIR(fs); 1976 baselbns[i] = baselbns[i - 1] + tmpval; 1977 } 1978 nblocks = btodb(fs->fs_bsize); 1979 blocksreleased = 0; 1980 /* 1981 * Indirect blocks first. 1982 */ 1983 for (level = (NIADDR - 1); level >= 0; level--) { 1984 if ((bn = freeblks->fb_iblks[level]) == 0) 1985 continue; 1986 if ((error = indir_trunc(&tip, fsbtodb(fs, bn), level, 1987 baselbns[level], &blocksreleased)) == 0) 1988 allerror = error; 1989 ffs_blkfree(&tip, bn, fs->fs_bsize); 1990 blocksreleased += nblocks; 1991 } 1992 /* 1993 * All direct blocks or frags. 1994 */ 1995 for (i = (NDADDR - 1); i >= 0; i--) { 1996 if ((bn = freeblks->fb_dblks[i]) == 0) 1997 continue; 1998 bsize = blksize(fs, &tip, i); 1999 ffs_blkfree(&tip, bn, bsize); 2000 blocksreleased += btodb(bsize); 2001 } 2002 2003 #ifdef DIAGNOSTIC 2004 if (freeblks->fb_chkcnt != blocksreleased) 2005 panic("handle_workitem_freeblocks: block count"); 2006 if (allerror) 2007 softdep_error("handle_workitem_freeblks", allerror); 2008 #endif /* DIAGNOSTIC */ 2009 WORKITEM_FREE(freeblks, D_FREEBLKS); 2010 } 2011 2012 /* 2013 * Release blocks associated with the inode ip and stored in the indirect 2014 * block dbn. If level is greater than SINGLE, the block is an indirect block 2015 * and recursive calls to indirtrunc must be used to cleanse other indirect 2016 * blocks. 2017 */ 2018 static int 2019 indir_trunc(ip, dbn, level, lbn, countp) 2020 struct inode *ip; 2021 ufs_daddr_t dbn; 2022 int level; 2023 ufs_lbn_t lbn; 2024 long *countp; 2025 { 2026 struct buf *bp; 2027 ufs_daddr_t *bap; 2028 ufs_daddr_t nb; 2029 struct fs *fs; 2030 struct worklist *wk; 2031 struct indirdep *indirdep; 2032 int i, lbnadd, nblocks; 2033 int error, allerror = 0; 2034 2035 fs = ip->i_fs; 2036 lbnadd = 1; 2037 for (i = level; i > 0; i--) 2038 lbnadd *= NINDIR(fs); 2039 /* 2040 * Get buffer of block pointers to be freed. This routine is not 2041 * called until the zero'ed inode has been written, so it is safe 2042 * to free blocks as they are encountered. Because the inode has 2043 * been zero'ed, calls to bmap on these blocks will fail. So, we 2044 * have to use the on-disk address and the block device for the 2045 * filesystem to look them up. If the file was deleted before its 2046 * indirect blocks were all written to disk, the routine that set 2047 * us up (deallocate_dependencies) will have arranged to leave 2048 * a complete copy of the indirect block in memory for our use. 2049 * Otherwise we have to read the blocks in from the disk. 2050 */ 2051 ACQUIRE_LOCK(&lk); 2052 if ((bp = incore(ip->i_devvp, dbn)) != NULL && 2053 (wk = LIST_FIRST(&bp->b_dep)) != NULL) { 2054 if (wk->wk_type != D_INDIRDEP || 2055 (indirdep = WK_INDIRDEP(wk))->ir_savebp != bp || 2056 (indirdep->ir_state & GOINGAWAY) == 0) 2057 panic("indir_trunc: lost indirdep"); 2058 WORKLIST_REMOVE(wk); 2059 WORKITEM_FREE(indirdep, D_INDIRDEP); 2060 if (LIST_FIRST(&bp->b_dep) != NULL) 2061 panic("indir_trunc: dangling dep"); 2062 FREE_LOCK(&lk); 2063 } else { 2064 FREE_LOCK(&lk); 2065 error = bread(ip->i_devvp, dbn, (int)fs->fs_bsize, NOCRED, &bp); 2066 if (error) 2067 return (error); 2068 } 2069 /* 2070 * Recursively free indirect blocks. 2071 */ 2072 bap = (ufs_daddr_t *)bp->b_data; 2073 nblocks = btodb(fs->fs_bsize); 2074 for (i = NINDIR(fs) - 1; i >= 0; i--) { 2075 if ((nb = bap[i]) == 0) 2076 continue; 2077 if (level != 0) { 2078 if ((error = indir_trunc(ip, fsbtodb(fs, nb), 2079 level - 1, lbn + (i * lbnadd), countp)) != 0) 2080 allerror = error; 2081 } 2082 ffs_blkfree(ip, nb, fs->fs_bsize); 2083 *countp += nblocks; 2084 } 2085 bp->b_flags |= B_INVAL | B_NOCACHE; 2086 brelse(bp); 2087 return (allerror); 2088 } 2089 2090 /* 2091 * Free an allocindir. 2092 * This routine must be called with splbio interrupts blocked. 2093 */ 2094 static void 2095 free_allocindir(aip, inodedep) 2096 struct allocindir *aip; 2097 struct inodedep *inodedep; 2098 { 2099 struct freefrag *freefrag; 2100 2101 #ifdef DEBUG 2102 if (lk.lkt_held == -1) 2103 panic("free_allocindir: lock not held"); 2104 #endif 2105 if ((aip->ai_state & DEPCOMPLETE) == 0) 2106 LIST_REMOVE(aip, ai_deps); 2107 if (aip->ai_state & ONWORKLIST) 2108 WORKLIST_REMOVE(&aip->ai_list); 2109 LIST_REMOVE(aip, ai_next); 2110 if ((freefrag = aip->ai_freefrag) != NULL) { 2111 if (inodedep == NULL) 2112 add_to_worklist(&freefrag->ff_list); 2113 else 2114 WORKLIST_INSERT(&inodedep->id_bufwait, 2115 &freefrag->ff_list); 2116 } 2117 WORKITEM_FREE(aip, D_ALLOCINDIR); 2118 } 2119 2120 /* 2121 * Directory entry addition dependencies. 2122 * 2123 * When adding a new directory entry, the inode (with its incremented link 2124 * count) must be written to disk before the directory entry's pointer to it. 2125 * Also, if the inode is newly allocated, the corresponding freemap must be 2126 * updated (on disk) before the directory entry's pointer. These requirements 2127 * are met via undo/redo on the directory entry's pointer, which consists 2128 * simply of the inode number. 2129 * 2130 * As directory entries are added and deleted, the free space within a 2131 * directory block can become fragmented. The ufs file system will compact 2132 * a fragmented directory block to make space for a new entry. When this 2133 * occurs, the offsets of previously added entries change. Any "diradd" 2134 * dependency structures corresponding to these entries must be updated with 2135 * the new offsets. 2136 */ 2137 2138 /* 2139 * This routine is called after the in-memory inode's link 2140 * count has been incremented, but before the directory entry's 2141 * pointer to the inode has been set. 2142 */ 2143 void 2144 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp) 2145 struct buf *bp; /* buffer containing directory block */ 2146 struct inode *dp; /* inode for directory */ 2147 off_t diroffset; /* offset of new entry in directory */ 2148 long newinum; /* inode referenced by new directory entry */ 2149 struct buf *newdirbp; /* non-NULL => contents of new mkdir */ 2150 { 2151 int offset; /* offset of new entry within directory block */ 2152 ufs_lbn_t lbn; /* block in directory containing new entry */ 2153 struct fs *fs; 2154 struct diradd *dap; 2155 struct pagedep *pagedep; 2156 struct inodedep *inodedep; 2157 struct mkdir *mkdir1, *mkdir2; 2158 2159 /* 2160 * Whiteouts have no dependencies. 2161 */ 2162 if (newinum == WINO) { 2163 if (newdirbp != NULL) 2164 bdwrite(newdirbp); 2165 return; 2166 } 2167 2168 fs = dp->i_fs; 2169 lbn = lblkno(fs, diroffset); 2170 offset = blkoff(fs, diroffset); 2171 MALLOC(dap, struct diradd *, sizeof(struct diradd), M_DIRADD, M_WAITOK); 2172 bzero(dap, sizeof(struct diradd)); 2173 dap->da_list.wk_type = D_DIRADD; 2174 dap->da_offset = offset; 2175 dap->da_newinum = newinum; 2176 dap->da_state = ATTACHED; 2177 if (newdirbp == NULL) { 2178 dap->da_state |= DEPCOMPLETE; 2179 ACQUIRE_LOCK(&lk); 2180 } else { 2181 dap->da_state |= MKDIR_BODY | MKDIR_PARENT; 2182 MALLOC(mkdir1, struct mkdir *, sizeof(struct mkdir), M_MKDIR, 2183 M_WAITOK); 2184 mkdir1->md_list.wk_type = D_MKDIR; 2185 mkdir1->md_state = MKDIR_BODY; 2186 mkdir1->md_diradd = dap; 2187 MALLOC(mkdir2, struct mkdir *, sizeof(struct mkdir), M_MKDIR, 2188 M_WAITOK); 2189 mkdir2->md_list.wk_type = D_MKDIR; 2190 mkdir2->md_state = MKDIR_PARENT; 2191 mkdir2->md_diradd = dap; 2192 /* 2193 * Dependency on "." and ".." being written to disk. 2194 */ 2195 mkdir1->md_buf = newdirbp; 2196 ACQUIRE_LOCK(&lk); 2197 LIST_INSERT_HEAD(&mkdirlisthd, mkdir1, md_mkdirs); 2198 WORKLIST_INSERT(&newdirbp->b_dep, &mkdir1->md_list); 2199 FREE_LOCK(&lk); 2200 bdwrite(newdirbp); 2201 /* 2202 * Dependency on link count increase for parent directory 2203 */ 2204 ACQUIRE_LOCK(&lk); 2205 if (inodedep_lookup(dp->i_fs, dp->i_number, 0, &inodedep) == 0 2206 || (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 2207 dap->da_state &= ~MKDIR_PARENT; 2208 WORKITEM_FREE(mkdir2, D_MKDIR); 2209 } else { 2210 LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs); 2211 WORKLIST_INSERT(&inodedep->id_bufwait,&mkdir2->md_list); 2212 } 2213 } 2214 /* 2215 * Link into parent directory pagedep to await its being written. 2216 */ 2217 if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0) 2218 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 2219 dap->da_pagedep = pagedep; 2220 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap, 2221 da_pdlist); 2222 /* 2223 * Link into its inodedep. Put it on the id_bufwait list if the inode 2224 * is not yet written. If it is written, do the post-inode write 2225 * processing to put it on the id_pendinghd list. 2226 */ 2227 (void) inodedep_lookup(fs, newinum, DEPALLOC, &inodedep); 2228 if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) 2229 diradd_inode_written(dap, inodedep); 2230 else 2231 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 2232 FREE_LOCK(&lk); 2233 } 2234 2235 /* 2236 * This procedure is called to change the offset of a directory 2237 * entry when compacting a directory block which must be owned 2238 * exclusively by the caller. Note that the actual entry movement 2239 * must be done in this procedure to ensure that no I/O completions 2240 * occur while the move is in progress. 2241 */ 2242 void 2243 softdep_change_directoryentry_offset(dp, base, oldloc, newloc, entrysize) 2244 struct inode *dp; /* inode for directory */ 2245 caddr_t base; /* address of dp->i_offset */ 2246 caddr_t oldloc; /* address of old directory location */ 2247 caddr_t newloc; /* address of new directory location */ 2248 int entrysize; /* size of directory entry */ 2249 { 2250 int offset, oldoffset, newoffset; 2251 struct pagedep *pagedep; 2252 struct diradd *dap; 2253 ufs_lbn_t lbn; 2254 2255 ACQUIRE_LOCK(&lk); 2256 lbn = lblkno(dp->i_fs, dp->i_offset); 2257 offset = blkoff(dp->i_fs, dp->i_offset); 2258 if (pagedep_lookup(dp, lbn, 0, &pagedep) == 0) 2259 goto done; 2260 oldoffset = offset + (oldloc - base); 2261 newoffset = offset + (newloc - base); 2262 for (dap = LIST_FIRST(&pagedep->pd_diraddhd[DIRADDHASH(oldoffset)]); 2263 dap; dap = LIST_NEXT(dap, da_pdlist)) { 2264 if (dap->da_offset != oldoffset) 2265 continue; 2266 dap->da_offset = newoffset; 2267 if (DIRADDHASH(newoffset) == DIRADDHASH(oldoffset)) 2268 break; 2269 LIST_REMOVE(dap, da_pdlist); 2270 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(newoffset)], 2271 dap, da_pdlist); 2272 break; 2273 } 2274 if (dap == NULL) { 2275 for (dap = LIST_FIRST(&pagedep->pd_pendinghd); 2276 dap; dap = LIST_NEXT(dap, da_pdlist)) { 2277 if (dap->da_offset == oldoffset) { 2278 dap->da_offset = newoffset; 2279 break; 2280 } 2281 } 2282 } 2283 done: 2284 bcopy(oldloc, newloc, entrysize); 2285 FREE_LOCK(&lk); 2286 } 2287 2288 /* 2289 * Free a diradd dependency structure. This routine must be called 2290 * with splbio interrupts blocked. 2291 */ 2292 static void 2293 free_diradd(dap) 2294 struct diradd *dap; 2295 { 2296 struct dirrem *dirrem; 2297 struct pagedep *pagedep; 2298 struct inodedep *inodedep; 2299 struct mkdir *mkdir, *nextmd; 2300 2301 #ifdef DEBUG 2302 if (lk.lkt_held == -1) 2303 panic("free_diradd: lock not held"); 2304 #endif 2305 WORKLIST_REMOVE(&dap->da_list); 2306 LIST_REMOVE(dap, da_pdlist); 2307 if ((dap->da_state & DIRCHG) == 0) { 2308 pagedep = dap->da_pagedep; 2309 } else { 2310 dirrem = dap->da_previous; 2311 pagedep = dirrem->dm_pagedep; 2312 dirrem->dm_dirinum = pagedep->pd_ino; 2313 add_to_worklist(&dirrem->dm_list); 2314 } 2315 if (inodedep_lookup(VFSTOUFS(pagedep->pd_mnt)->um_fs, dap->da_newinum, 2316 0, &inodedep) != 0) 2317 (void) free_inodedep(inodedep); 2318 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 2319 for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) { 2320 nextmd = LIST_NEXT(mkdir, md_mkdirs); 2321 if (mkdir->md_diradd != dap) 2322 continue; 2323 dap->da_state &= ~mkdir->md_state; 2324 WORKLIST_REMOVE(&mkdir->md_list); 2325 LIST_REMOVE(mkdir, md_mkdirs); 2326 WORKITEM_FREE(mkdir, D_MKDIR); 2327 } 2328 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) 2329 panic("free_diradd: unfound ref"); 2330 } 2331 WORKITEM_FREE(dap, D_DIRADD); 2332 } 2333 2334 /* 2335 * Directory entry removal dependencies. 2336 * 2337 * When removing a directory entry, the entry's inode pointer must be 2338 * zero'ed on disk before the corresponding inode's link count is decremented 2339 * (possibly freeing the inode for re-use). This dependency is handled by 2340 * updating the directory entry but delaying the inode count reduction until 2341 * after the directory block has been written to disk. After this point, the 2342 * inode count can be decremented whenever it is convenient. 2343 */ 2344 2345 /* 2346 * This routine should be called immediately after removing 2347 * a directory entry. The inode's link count should not be 2348 * decremented by the calling procedure -- the soft updates 2349 * code will do this task when it is safe. 2350 */ 2351 void 2352 softdep_setup_remove(bp, dp, ip, isrmdir) 2353 struct buf *bp; /* buffer containing directory block */ 2354 struct inode *dp; /* inode for the directory being modified */ 2355 struct inode *ip; /* inode for directory entry being removed */ 2356 int isrmdir; /* indicates if doing RMDIR */ 2357 { 2358 struct dirrem *dirrem, *prevdirrem; 2359 2360 /* 2361 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK. 2362 */ 2363 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 2364 2365 /* 2366 * If the COMPLETE flag is clear, then there were no active 2367 * entries and we want to roll back to a zeroed entry until 2368 * the new inode is committed to disk. If the COMPLETE flag is 2369 * set then we have deleted an entry that never made it to 2370 * disk. If the entry we deleted resulted from a name change, 2371 * then the old name still resides on disk. We cannot delete 2372 * its inode (returned to us in prevdirrem) until the zeroed 2373 * directory entry gets to disk. The new inode has never been 2374 * referenced on the disk, so can be deleted immediately. 2375 */ 2376 if ((dirrem->dm_state & COMPLETE) == 0) { 2377 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem, 2378 dm_next); 2379 FREE_LOCK(&lk); 2380 } else { 2381 if (prevdirrem != NULL) 2382 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, 2383 prevdirrem, dm_next); 2384 dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino; 2385 FREE_LOCK(&lk); 2386 handle_workitem_remove(dirrem); 2387 } 2388 } 2389 2390 /* 2391 * Allocate a new dirrem if appropriate and return it along with 2392 * its associated pagedep. Called without a lock, returns with lock. 2393 */ 2394 static long num_dirrem; /* number of dirrem allocated */ 2395 static struct dirrem * 2396 newdirrem(bp, dp, ip, isrmdir, prevdirremp) 2397 struct buf *bp; /* buffer containing directory block */ 2398 struct inode *dp; /* inode for the directory being modified */ 2399 struct inode *ip; /* inode for directory entry being removed */ 2400 int isrmdir; /* indicates if doing RMDIR */ 2401 struct dirrem **prevdirremp; /* previously referenced inode, if any */ 2402 { 2403 int offset; 2404 ufs_lbn_t lbn; 2405 struct diradd *dap; 2406 struct dirrem *dirrem; 2407 struct pagedep *pagedep; 2408 2409 /* 2410 * Whiteouts have no deletion dependencies. 2411 */ 2412 if (ip == NULL) 2413 panic("newdirrem: whiteout"); 2414 /* 2415 * If we are over our limit, try to improve the situation. 2416 * Limiting the number of dirrem structures will also limit 2417 * the number of freefile and freeblks structures. 2418 */ 2419 if (num_dirrem > max_softdeps / 2 && speedup_syncer() == 0) 2420 (void) request_cleanup(FLUSH_REMOVE, 0); 2421 num_dirrem += 1; 2422 MALLOC(dirrem, struct dirrem *, sizeof(struct dirrem), 2423 M_DIRREM, M_WAITOK); 2424 bzero(dirrem, sizeof(struct dirrem)); 2425 dirrem->dm_list.wk_type = D_DIRREM; 2426 dirrem->dm_state = isrmdir ? RMDIR : 0; 2427 dirrem->dm_mnt = ITOV(ip)->v_mount; 2428 dirrem->dm_oldinum = ip->i_number; 2429 *prevdirremp = NULL; 2430 2431 ACQUIRE_LOCK(&lk); 2432 lbn = lblkno(dp->i_fs, dp->i_offset); 2433 offset = blkoff(dp->i_fs, dp->i_offset); 2434 if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0) 2435 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 2436 dirrem->dm_pagedep = pagedep; 2437 /* 2438 * Check for a diradd dependency for the same directory entry. 2439 * If present, then both dependencies become obsolete and can 2440 * be de-allocated. Check for an entry on both the pd_dirraddhd 2441 * list and the pd_pendinghd list. 2442 */ 2443 for (dap = LIST_FIRST(&pagedep->pd_diraddhd[DIRADDHASH(offset)]); 2444 dap; dap = LIST_NEXT(dap, da_pdlist)) 2445 if (dap->da_offset == offset) 2446 break; 2447 if (dap == NULL) { 2448 for (dap = LIST_FIRST(&pagedep->pd_pendinghd); 2449 dap; dap = LIST_NEXT(dap, da_pdlist)) 2450 if (dap->da_offset == offset) 2451 break; 2452 if (dap == NULL) 2453 return (dirrem); 2454 } 2455 /* 2456 * Must be ATTACHED at this point. 2457 */ 2458 if ((dap->da_state & ATTACHED) == 0) 2459 panic("newdirrem: not ATTACHED"); 2460 if (dap->da_newinum != ip->i_number) 2461 panic("newdirrem: inum %d should be %d", 2462 ip->i_number, dap->da_newinum); 2463 /* 2464 * If we are deleting a changed name that never made it to disk, 2465 * then return the dirrem describing the previous inode (which 2466 * represents the inode currently referenced from this entry on disk). 2467 */ 2468 if ((dap->da_state & DIRCHG) != 0) { 2469 *prevdirremp = dap->da_previous; 2470 dap->da_state &= ~DIRCHG; 2471 dap->da_pagedep = pagedep; 2472 } 2473 /* 2474 * We are deleting an entry that never made it to disk. 2475 * Mark it COMPLETE so we can delete its inode immediately. 2476 */ 2477 dirrem->dm_state |= COMPLETE; 2478 free_diradd(dap); 2479 return (dirrem); 2480 } 2481 2482 /* 2483 * Directory entry change dependencies. 2484 * 2485 * Changing an existing directory entry requires that an add operation 2486 * be completed first followed by a deletion. The semantics for the addition 2487 * are identical to the description of adding a new entry above except 2488 * that the rollback is to the old inode number rather than zero. Once 2489 * the addition dependency is completed, the removal is done as described 2490 * in the removal routine above. 2491 */ 2492 2493 /* 2494 * This routine should be called immediately after changing 2495 * a directory entry. The inode's link count should not be 2496 * decremented by the calling procedure -- the soft updates 2497 * code will perform this task when it is safe. 2498 */ 2499 void 2500 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 2501 struct buf *bp; /* buffer containing directory block */ 2502 struct inode *dp; /* inode for the directory being modified */ 2503 struct inode *ip; /* inode for directory entry being removed */ 2504 long newinum; /* new inode number for changed entry */ 2505 int isrmdir; /* indicates if doing RMDIR */ 2506 { 2507 int offset; 2508 struct diradd *dap = NULL; 2509 struct dirrem *dirrem, *prevdirrem; 2510 struct pagedep *pagedep; 2511 struct inodedep *inodedep; 2512 2513 offset = blkoff(dp->i_fs, dp->i_offset); 2514 2515 /* 2516 * Whiteouts do not need diradd dependencies. 2517 */ 2518 if (newinum != WINO) { 2519 MALLOC(dap, struct diradd *, sizeof(struct diradd), 2520 M_DIRADD, M_WAITOK); 2521 bzero(dap, sizeof(struct diradd)); 2522 dap->da_list.wk_type = D_DIRADD; 2523 dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE; 2524 dap->da_offset = offset; 2525 dap->da_newinum = newinum; 2526 } 2527 2528 /* 2529 * Allocate a new dirrem and ACQUIRE_LOCK. 2530 */ 2531 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 2532 pagedep = dirrem->dm_pagedep; 2533 /* 2534 * The possible values for isrmdir: 2535 * 0 - non-directory file rename 2536 * 1 - directory rename within same directory 2537 * inum - directory rename to new directory of given inode number 2538 * When renaming to a new directory, we are both deleting and 2539 * creating a new directory entry, so the link count on the new 2540 * directory should not change. Thus we do not need the followup 2541 * dirrem which is usually done in handle_workitem_remove. We set 2542 * the DIRCHG flag to tell handle_workitem_remove to skip the 2543 * followup dirrem. 2544 */ 2545 if (isrmdir > 1) 2546 dirrem->dm_state |= DIRCHG; 2547 2548 /* 2549 * Whiteouts have no additional dependencies, 2550 * so just put the dirrem on the correct list. 2551 */ 2552 if (newinum == WINO) { 2553 if ((dirrem->dm_state & COMPLETE) == 0) { 2554 LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem, 2555 dm_next); 2556 } else { 2557 dirrem->dm_dirinum = pagedep->pd_ino; 2558 add_to_worklist(&dirrem->dm_list); 2559 } 2560 FREE_LOCK(&lk); 2561 return; 2562 } 2563 2564 /* 2565 * If the COMPLETE flag is clear, then there were no active 2566 * entries and we want to roll back to the previous inode until 2567 * the new inode is committed to disk. If the COMPLETE flag is 2568 * set, then we have deleted an entry that never made it to disk. 2569 * If the entry we deleted resulted from a name change, then the old 2570 * inode reference still resides on disk. Any rollback that we do 2571 * needs to be to that old inode (returned to us in prevdirrem). If 2572 * the entry we deleted resulted from a create, then there is 2573 * no entry on the disk, so we want to roll back to zero rather 2574 * than the uncommitted inode. In either of the COMPLETE cases we 2575 * want to immediately free the unwritten and unreferenced inode. 2576 */ 2577 if ((dirrem->dm_state & COMPLETE) == 0) { 2578 dap->da_previous = dirrem; 2579 } else { 2580 if (prevdirrem != NULL) { 2581 dap->da_previous = prevdirrem; 2582 } else { 2583 dap->da_state &= ~DIRCHG; 2584 dap->da_pagedep = pagedep; 2585 } 2586 dirrem->dm_dirinum = pagedep->pd_ino; 2587 add_to_worklist(&dirrem->dm_list); 2588 } 2589 /* 2590 * Link into its inodedep. Put it on the id_bufwait list if the inode 2591 * is not yet written. If it is written, do the post-inode write 2592 * processing to put it on the id_pendinghd list. 2593 */ 2594 if (inodedep_lookup(dp->i_fs, newinum, DEPALLOC, &inodedep) == 0 || 2595 (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 2596 dap->da_state |= COMPLETE; 2597 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 2598 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 2599 } else { 2600 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], 2601 dap, da_pdlist); 2602 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 2603 } 2604 FREE_LOCK(&lk); 2605 } 2606 2607 /* 2608 * Called whenever the link count on an inode is changed. 2609 * It creates an inode dependency so that the new reference(s) 2610 * to the inode cannot be committed to disk until the updated 2611 * inode has been written. 2612 */ 2613 void 2614 softdep_change_linkcnt(ip) 2615 struct inode *ip; /* the inode with the increased link count */ 2616 { 2617 struct inodedep *inodedep; 2618 2619 ACQUIRE_LOCK(&lk); 2620 (void) inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC, &inodedep); 2621 if (ip->i_nlink < ip->i_effnlink) 2622 panic("softdep_change_linkcnt: bad delta"); 2623 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 2624 FREE_LOCK(&lk); 2625 } 2626 2627 /* 2628 * This workitem decrements the inode's link count. 2629 * If the link count reaches zero, the file is removed. 2630 */ 2631 static void 2632 handle_workitem_remove(dirrem) 2633 struct dirrem *dirrem; 2634 { 2635 struct proc *p = CURPROC; /* XXX */ 2636 struct inodedep *inodedep; 2637 struct vnode *vp; 2638 struct inode *ip; 2639 ino_t oldinum; 2640 int error; 2641 2642 if ((error = VFS_VGET(dirrem->dm_mnt, dirrem->dm_oldinum, &vp)) != 0) { 2643 softdep_error("handle_workitem_remove: vget", error); 2644 return; 2645 } 2646 ip = VTOI(vp); 2647 ACQUIRE_LOCK(&lk); 2648 if ((inodedep_lookup(ip->i_fs, dirrem->dm_oldinum, 0, &inodedep)) == 0) 2649 panic("handle_workitem_remove: lost inodedep"); 2650 /* 2651 * Normal file deletion. 2652 */ 2653 if ((dirrem->dm_state & RMDIR) == 0) { 2654 ip->i_nlink--; 2655 ip->i_flag |= IN_CHANGE; 2656 if (ip->i_nlink < ip->i_effnlink) 2657 panic("handle_workitem_remove: bad file delta"); 2658 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 2659 FREE_LOCK(&lk); 2660 vput(vp); 2661 num_dirrem -= 1; 2662 WORKITEM_FREE(dirrem, D_DIRREM); 2663 return; 2664 } 2665 /* 2666 * Directory deletion. Decrement reference count for both the 2667 * just deleted parent directory entry and the reference for ".". 2668 * Next truncate the directory to length zero. When the 2669 * truncation completes, arrange to have the reference count on 2670 * the parent decremented to account for the loss of "..". 2671 */ 2672 ip->i_nlink -= 2; 2673 ip->i_flag |= IN_CHANGE; 2674 if (ip->i_nlink < ip->i_effnlink) 2675 panic("handle_workitem_remove: bad dir delta"); 2676 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 2677 FREE_LOCK(&lk); 2678 if ((error = UFS_TRUNCATE(vp, (off_t)0, 0, p->p_ucred, p)) != 0) 2679 softdep_error("handle_workitem_remove: truncate", error); 2680 /* 2681 * Rename a directory to a new parent. Since, we are both deleting 2682 * and creating a new directory entry, the link count on the new 2683 * directory should not change. Thus we skip the followup dirrem. 2684 */ 2685 if (dirrem->dm_state & DIRCHG) { 2686 vput(vp); 2687 num_dirrem -= 1; 2688 WORKITEM_FREE(dirrem, D_DIRREM); 2689 return; 2690 } 2691 /* 2692 * If the inodedep does not exist, then the zero'ed inode has 2693 * been written to disk. If the allocated inode has never been 2694 * written to disk, then the on-disk inode is zero'ed. In either 2695 * case we can remove the file immediately. 2696 */ 2697 ACQUIRE_LOCK(&lk); 2698 dirrem->dm_state = 0; 2699 oldinum = dirrem->dm_oldinum; 2700 dirrem->dm_oldinum = dirrem->dm_dirinum; 2701 if (inodedep_lookup(ip->i_fs, oldinum, 0, &inodedep) == 0 || 2702 check_inode_unwritten(inodedep)) { 2703 FREE_LOCK(&lk); 2704 vput(vp); 2705 handle_workitem_remove(dirrem); 2706 return; 2707 } 2708 WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list); 2709 FREE_LOCK(&lk); 2710 vput(vp); 2711 } 2712 2713 /* 2714 * Inode de-allocation dependencies. 2715 * 2716 * When an inode's link count is reduced to zero, it can be de-allocated. We 2717 * found it convenient to postpone de-allocation until after the inode is 2718 * written to disk with its new link count (zero). At this point, all of the 2719 * on-disk inode's block pointers are nullified and, with careful dependency 2720 * list ordering, all dependencies related to the inode will be satisfied and 2721 * the corresponding dependency structures de-allocated. So, if/when the 2722 * inode is reused, there will be no mixing of old dependencies with new 2723 * ones. This artificial dependency is set up by the block de-allocation 2724 * procedure above (softdep_setup_freeblocks) and completed by the 2725 * following procedure. 2726 */ 2727 static void 2728 handle_workitem_freefile(freefile) 2729 struct freefile *freefile; 2730 { 2731 struct vnode vp; 2732 struct inode tip; 2733 struct inodedep *idp; 2734 int error; 2735 2736 #ifdef DEBUG 2737 ACQUIRE_LOCK(&lk); 2738 if (inodedep_lookup(freefile->fx_fs, freefile->fx_oldinum, 0, &idp)) 2739 panic("handle_workitem_freefile: inodedep survived"); 2740 FREE_LOCK(&lk); 2741 #endif 2742 tip.i_devvp = freefile->fx_devvp; 2743 tip.i_dev = freefile->fx_devvp->v_rdev; 2744 tip.i_fs = freefile->fx_fs; 2745 vp.v_data = &tip; 2746 if ((error = ffs_freefile(&vp, freefile->fx_oldinum, freefile->fx_mode)) != 0) 2747 softdep_error("handle_workitem_freefile", error); 2748 WORKITEM_FREE(freefile, D_FREEFILE); 2749 } 2750 2751 /* 2752 * Disk writes. 2753 * 2754 * The dependency structures constructed above are most actively used when file 2755 * system blocks are written to disk. No constraints are placed on when a 2756 * block can be written, but unsatisfied update dependencies are made safe by 2757 * modifying (or replacing) the source memory for the duration of the disk 2758 * write. When the disk write completes, the memory block is again brought 2759 * up-to-date. 2760 * 2761 * In-core inode structure reclamation. 2762 * 2763 * Because there are a finite number of "in-core" inode structures, they are 2764 * reused regularly. By transferring all inode-related dependencies to the 2765 * in-memory inode block and indexing them separately (via "inodedep"s), we 2766 * can allow "in-core" inode structures to be reused at any time and avoid 2767 * any increase in contention. 2768 * 2769 * Called just before entering the device driver to initiate a new disk I/O. 2770 * The buffer must be locked, thus, no I/O completion operations can occur 2771 * while we are manipulating its associated dependencies. 2772 */ 2773 static void 2774 softdep_disk_io_initiation(bp) 2775 struct buf *bp; /* structure describing disk write to occur */ 2776 { 2777 struct worklist *wk, *nextwk; 2778 struct indirdep *indirdep; 2779 2780 /* 2781 * We only care about write operations. There should never 2782 * be dependencies for reads. 2783 */ 2784 if (bp->b_iocmd == BIO_READ) 2785 panic("softdep_disk_io_initiation: read"); 2786 /* 2787 * Do any necessary pre-I/O processing. 2788 */ 2789 for (wk = LIST_FIRST(&bp->b_dep); wk; wk = nextwk) { 2790 nextwk = LIST_NEXT(wk, wk_list); 2791 switch (wk->wk_type) { 2792 2793 case D_PAGEDEP: 2794 initiate_write_filepage(WK_PAGEDEP(wk), bp); 2795 continue; 2796 2797 case D_INODEDEP: 2798 initiate_write_inodeblock(WK_INODEDEP(wk), bp); 2799 continue; 2800 2801 case D_INDIRDEP: 2802 indirdep = WK_INDIRDEP(wk); 2803 if (indirdep->ir_state & GOINGAWAY) 2804 panic("disk_io_initiation: indirdep gone"); 2805 /* 2806 * If there are no remaining dependencies, this 2807 * will be writing the real pointers, so the 2808 * dependency can be freed. 2809 */ 2810 if (LIST_FIRST(&indirdep->ir_deplisthd) == NULL) { 2811 indirdep->ir_savebp->b_flags |= B_INVAL | B_NOCACHE; 2812 brelse(indirdep->ir_savebp); 2813 /* inline expand WORKLIST_REMOVE(wk); */ 2814 wk->wk_state &= ~ONWORKLIST; 2815 LIST_REMOVE(wk, wk_list); 2816 WORKITEM_FREE(indirdep, D_INDIRDEP); 2817 continue; 2818 } 2819 /* 2820 * Replace up-to-date version with safe version. 2821 */ 2822 ACQUIRE_LOCK(&lk); 2823 indirdep->ir_state &= ~ATTACHED; 2824 indirdep->ir_state |= UNDONE; 2825 MALLOC(indirdep->ir_saveddata, caddr_t, bp->b_bcount, 2826 M_INDIRDEP, M_WAITOK); 2827 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); 2828 bcopy(indirdep->ir_savebp->b_data, bp->b_data, 2829 bp->b_bcount); 2830 FREE_LOCK(&lk); 2831 continue; 2832 2833 case D_MKDIR: 2834 case D_BMSAFEMAP: 2835 case D_ALLOCDIRECT: 2836 case D_ALLOCINDIR: 2837 continue; 2838 2839 default: 2840 panic("handle_disk_io_initiation: Unexpected type %s", 2841 TYPENAME(wk->wk_type)); 2842 /* NOTREACHED */ 2843 } 2844 } 2845 } 2846 2847 /* 2848 * Called from within the procedure above to deal with unsatisfied 2849 * allocation dependencies in a directory. The buffer must be locked, 2850 * thus, no I/O completion operations can occur while we are 2851 * manipulating its associated dependencies. 2852 */ 2853 static void 2854 initiate_write_filepage(pagedep, bp) 2855 struct pagedep *pagedep; 2856 struct buf *bp; 2857 { 2858 struct diradd *dap; 2859 struct direct *ep; 2860 int i; 2861 2862 if (pagedep->pd_state & IOSTARTED) { 2863 /* 2864 * This can only happen if there is a driver that does not 2865 * understand chaining. Here biodone will reissue the call 2866 * to strategy for the incomplete buffers. 2867 */ 2868 printf("initiate_write_filepage: already started\n"); 2869 return; 2870 } 2871 pagedep->pd_state |= IOSTARTED; 2872 ACQUIRE_LOCK(&lk); 2873 for (i = 0; i < DAHASHSZ; i++) { 2874 for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap; 2875 dap = LIST_NEXT(dap, da_pdlist)) { 2876 ep = (struct direct *) 2877 ((char *)bp->b_data + dap->da_offset); 2878 if (ep->d_ino != dap->da_newinum) 2879 panic("%s: dir inum %d != new %d", 2880 "initiate_write_filepage", 2881 ep->d_ino, dap->da_newinum); 2882 if (dap->da_state & DIRCHG) 2883 ep->d_ino = dap->da_previous->dm_oldinum; 2884 else 2885 ep->d_ino = 0; 2886 dap->da_state &= ~ATTACHED; 2887 dap->da_state |= UNDONE; 2888 } 2889 } 2890 FREE_LOCK(&lk); 2891 } 2892 2893 /* 2894 * Called from within the procedure above to deal with unsatisfied 2895 * allocation dependencies in an inodeblock. The buffer must be 2896 * locked, thus, no I/O completion operations can occur while we 2897 * are manipulating its associated dependencies. 2898 */ 2899 static void 2900 initiate_write_inodeblock(inodedep, bp) 2901 struct inodedep *inodedep; 2902 struct buf *bp; /* The inode block */ 2903 { 2904 struct allocdirect *adp, *lastadp; 2905 struct dinode *dp; 2906 struct fs *fs; 2907 ufs_lbn_t prevlbn = 0; 2908 int i, deplist; 2909 2910 if (inodedep->id_state & IOSTARTED) 2911 panic("initiate_write_inodeblock: already started"); 2912 inodedep->id_state |= IOSTARTED; 2913 fs = inodedep->id_fs; 2914 dp = (struct dinode *)bp->b_data + 2915 ino_to_fsbo(fs, inodedep->id_ino); 2916 /* 2917 * If the bitmap is not yet written, then the allocated 2918 * inode cannot be written to disk. 2919 */ 2920 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 2921 if (inodedep->id_savedino != NULL) 2922 panic("initiate_write_inodeblock: already doing I/O"); 2923 MALLOC(inodedep->id_savedino, struct dinode *, 2924 sizeof(struct dinode), M_INODEDEP, M_WAITOK); 2925 *inodedep->id_savedino = *dp; 2926 bzero((caddr_t)dp, sizeof(struct dinode)); 2927 return; 2928 } 2929 /* 2930 * If no dependencies, then there is nothing to roll back. 2931 */ 2932 inodedep->id_savedsize = dp->di_size; 2933 if (TAILQ_FIRST(&inodedep->id_inoupdt) == NULL) 2934 return; 2935 /* 2936 * Set the dependencies to busy. 2937 */ 2938 ACQUIRE_LOCK(&lk); 2939 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 2940 adp = TAILQ_NEXT(adp, ad_next)) { 2941 #ifdef DIAGNOSTIC 2942 if (deplist != 0 && prevlbn >= adp->ad_lbn) 2943 panic("softdep_write_inodeblock: lbn order"); 2944 prevlbn = adp->ad_lbn; 2945 if (adp->ad_lbn < NDADDR && 2946 dp->di_db[adp->ad_lbn] != adp->ad_newblkno) 2947 panic("%s: direct pointer #%ld mismatch %d != %d", 2948 "softdep_write_inodeblock", adp->ad_lbn, 2949 dp->di_db[adp->ad_lbn], adp->ad_newblkno); 2950 if (adp->ad_lbn >= NDADDR && 2951 dp->di_ib[adp->ad_lbn - NDADDR] != adp->ad_newblkno) 2952 panic("%s: indirect pointer #%ld mismatch %d != %d", 2953 "softdep_write_inodeblock", adp->ad_lbn - NDADDR, 2954 dp->di_ib[adp->ad_lbn - NDADDR], adp->ad_newblkno); 2955 deplist |= 1 << adp->ad_lbn; 2956 if ((adp->ad_state & ATTACHED) == 0) 2957 panic("softdep_write_inodeblock: Unknown state 0x%x", 2958 adp->ad_state); 2959 #endif /* DIAGNOSTIC */ 2960 adp->ad_state &= ~ATTACHED; 2961 adp->ad_state |= UNDONE; 2962 } 2963 /* 2964 * The on-disk inode cannot claim to be any larger than the last 2965 * fragment that has been written. Otherwise, the on-disk inode 2966 * might have fragments that were not the last block in the file 2967 * which would corrupt the filesystem. 2968 */ 2969 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 2970 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 2971 if (adp->ad_lbn >= NDADDR) 2972 break; 2973 dp->di_db[adp->ad_lbn] = adp->ad_oldblkno; 2974 /* keep going until hitting a rollback to a frag */ 2975 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 2976 continue; 2977 dp->di_size = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize; 2978 for (i = adp->ad_lbn + 1; i < NDADDR; i++) { 2979 #ifdef DIAGNOSTIC 2980 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) 2981 panic("softdep_write_inodeblock: lost dep1"); 2982 #endif /* DIAGNOSTIC */ 2983 dp->di_db[i] = 0; 2984 } 2985 for (i = 0; i < NIADDR; i++) { 2986 #ifdef DIAGNOSTIC 2987 if (dp->di_ib[i] != 0 && 2988 (deplist & ((1 << NDADDR) << i)) == 0) 2989 panic("softdep_write_inodeblock: lost dep2"); 2990 #endif /* DIAGNOSTIC */ 2991 dp->di_ib[i] = 0; 2992 } 2993 FREE_LOCK(&lk); 2994 return; 2995 } 2996 /* 2997 * If we have zero'ed out the last allocated block of the file, 2998 * roll back the size to the last currently allocated block. 2999 * We know that this last allocated block is a full-sized as 3000 * we already checked for fragments in the loop above. 3001 */ 3002 if (lastadp != NULL && 3003 dp->di_size <= (lastadp->ad_lbn + 1) * fs->fs_bsize) { 3004 for (i = lastadp->ad_lbn; i >= 0; i--) 3005 if (dp->di_db[i] != 0) 3006 break; 3007 dp->di_size = (i + 1) * fs->fs_bsize; 3008 } 3009 /* 3010 * The only dependencies are for indirect blocks. 3011 * 3012 * The file size for indirect block additions is not guaranteed. 3013 * Such a guarantee would be non-trivial to achieve. The conventional 3014 * synchronous write implementation also does not make this guarantee. 3015 * Fsck should catch and fix discrepancies. Arguably, the file size 3016 * can be over-estimated without destroying integrity when the file 3017 * moves into the indirect blocks (i.e., is large). If we want to 3018 * postpone fsck, we are stuck with this argument. 3019 */ 3020 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 3021 dp->di_ib[adp->ad_lbn - NDADDR] = 0; 3022 FREE_LOCK(&lk); 3023 } 3024 3025 /* 3026 * This routine is called during the completion interrupt 3027 * service routine for a disk write (from the procedure called 3028 * by the device driver to inform the file system caches of 3029 * a request completion). It should be called early in this 3030 * procedure, before the block is made available to other 3031 * processes or other routines are called. 3032 */ 3033 static void 3034 softdep_disk_write_complete(bp) 3035 struct buf *bp; /* describes the completed disk write */ 3036 { 3037 struct worklist *wk; 3038 struct workhead reattach; 3039 struct newblk *newblk; 3040 struct allocindir *aip; 3041 struct allocdirect *adp; 3042 struct indirdep *indirdep; 3043 struct inodedep *inodedep; 3044 struct bmsafemap *bmsafemap; 3045 3046 #ifdef DEBUG 3047 if (lk.lkt_held != -1) 3048 panic("softdep_disk_write_complete: lock is held"); 3049 lk.lkt_held = -2; 3050 #endif 3051 LIST_INIT(&reattach); 3052 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) { 3053 WORKLIST_REMOVE(wk); 3054 switch (wk->wk_type) { 3055 3056 case D_PAGEDEP: 3057 if (handle_written_filepage(WK_PAGEDEP(wk), bp)) 3058 WORKLIST_INSERT(&reattach, wk); 3059 continue; 3060 3061 case D_INODEDEP: 3062 if (handle_written_inodeblock(WK_INODEDEP(wk), bp)) 3063 WORKLIST_INSERT(&reattach, wk); 3064 continue; 3065 3066 case D_BMSAFEMAP: 3067 bmsafemap = WK_BMSAFEMAP(wk); 3068 while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkhd))) { 3069 newblk->nb_state |= DEPCOMPLETE; 3070 newblk->nb_bmsafemap = NULL; 3071 LIST_REMOVE(newblk, nb_deps); 3072 } 3073 while ((adp = 3074 LIST_FIRST(&bmsafemap->sm_allocdirecthd))) { 3075 adp->ad_state |= DEPCOMPLETE; 3076 adp->ad_buf = NULL; 3077 LIST_REMOVE(adp, ad_deps); 3078 handle_allocdirect_partdone(adp); 3079 } 3080 while ((aip = 3081 LIST_FIRST(&bmsafemap->sm_allocindirhd))) { 3082 aip->ai_state |= DEPCOMPLETE; 3083 aip->ai_buf = NULL; 3084 LIST_REMOVE(aip, ai_deps); 3085 handle_allocindir_partdone(aip); 3086 } 3087 while ((inodedep = 3088 LIST_FIRST(&bmsafemap->sm_inodedephd)) != NULL) { 3089 inodedep->id_state |= DEPCOMPLETE; 3090 LIST_REMOVE(inodedep, id_deps); 3091 inodedep->id_buf = NULL; 3092 } 3093 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); 3094 continue; 3095 3096 case D_MKDIR: 3097 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); 3098 continue; 3099 3100 case D_ALLOCDIRECT: 3101 adp = WK_ALLOCDIRECT(wk); 3102 adp->ad_state |= COMPLETE; 3103 handle_allocdirect_partdone(adp); 3104 continue; 3105 3106 case D_ALLOCINDIR: 3107 aip = WK_ALLOCINDIR(wk); 3108 aip->ai_state |= COMPLETE; 3109 handle_allocindir_partdone(aip); 3110 continue; 3111 3112 case D_INDIRDEP: 3113 indirdep = WK_INDIRDEP(wk); 3114 if (indirdep->ir_state & GOINGAWAY) 3115 panic("disk_write_complete: indirdep gone"); 3116 bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount); 3117 FREE(indirdep->ir_saveddata, M_INDIRDEP); 3118 indirdep->ir_saveddata = 0; 3119 indirdep->ir_state &= ~UNDONE; 3120 indirdep->ir_state |= ATTACHED; 3121 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) { 3122 handle_allocindir_partdone(aip); 3123 if (aip == LIST_FIRST(&indirdep->ir_donehd)) 3124 panic("disk_write_complete: not gone"); 3125 } 3126 WORKLIST_INSERT(&reattach, wk); 3127 if ((bp->b_flags & B_DELWRI) == 0) 3128 stat_indir_blk_ptrs++; 3129 bdirty(bp); 3130 continue; 3131 3132 default: 3133 panic("handle_disk_write_complete: Unknown type %s", 3134 TYPENAME(wk->wk_type)); 3135 /* NOTREACHED */ 3136 } 3137 } 3138 /* 3139 * Reattach any requests that must be redone. 3140 */ 3141 while ((wk = LIST_FIRST(&reattach)) != NULL) { 3142 WORKLIST_REMOVE(wk); 3143 WORKLIST_INSERT(&bp->b_dep, wk); 3144 } 3145 #ifdef DEBUG 3146 if (lk.lkt_held != -2) 3147 panic("softdep_disk_write_complete: lock lost"); 3148 lk.lkt_held = -1; 3149 #endif 3150 } 3151 3152 /* 3153 * Called from within softdep_disk_write_complete above. Note that 3154 * this routine is always called from interrupt level with further 3155 * splbio interrupts blocked. 3156 */ 3157 static void 3158 handle_allocdirect_partdone(adp) 3159 struct allocdirect *adp; /* the completed allocdirect */ 3160 { 3161 struct allocdirect *listadp; 3162 struct inodedep *inodedep; 3163 long bsize; 3164 3165 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 3166 return; 3167 if (adp->ad_buf != NULL) 3168 panic("handle_allocdirect_partdone: dangling dep"); 3169 /* 3170 * The on-disk inode cannot claim to be any larger than the last 3171 * fragment that has been written. Otherwise, the on-disk inode 3172 * might have fragments that were not the last block in the file 3173 * which would corrupt the filesystem. Thus, we cannot free any 3174 * allocdirects after one whose ad_oldblkno claims a fragment as 3175 * these blocks must be rolled back to zero before writing the inode. 3176 * We check the currently active set of allocdirects in id_inoupdt. 3177 */ 3178 inodedep = adp->ad_inodedep; 3179 bsize = inodedep->id_fs->fs_bsize; 3180 for (listadp = TAILQ_FIRST(&inodedep->id_inoupdt); listadp; 3181 listadp = TAILQ_NEXT(listadp, ad_next)) { 3182 /* found our block */ 3183 if (listadp == adp) 3184 break; 3185 /* continue if ad_oldlbn is not a fragment */ 3186 if (listadp->ad_oldsize == 0 || 3187 listadp->ad_oldsize == bsize) 3188 continue; 3189 /* hit a fragment */ 3190 return; 3191 } 3192 /* 3193 * If we have reached the end of the current list without 3194 * finding the just finished dependency, then it must be 3195 * on the future dependency list. Future dependencies cannot 3196 * be freed until they are moved to the current list. 3197 */ 3198 if (listadp == NULL) { 3199 #ifdef DEBUG 3200 for (listadp = TAILQ_FIRST(&inodedep->id_newinoupdt); listadp; 3201 listadp = TAILQ_NEXT(listadp, ad_next)) 3202 /* found our block */ 3203 if (listadp == adp) 3204 break; 3205 if (listadp == NULL) 3206 panic("handle_allocdirect_partdone: lost dep"); 3207 #endif /* DEBUG */ 3208 return; 3209 } 3210 /* 3211 * If we have found the just finished dependency, then free 3212 * it along with anything that follows it that is complete. 3213 */ 3214 for (; adp; adp = listadp) { 3215 listadp = TAILQ_NEXT(adp, ad_next); 3216 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 3217 return; 3218 free_allocdirect(&inodedep->id_inoupdt, adp, 1); 3219 } 3220 } 3221 3222 /* 3223 * Called from within softdep_disk_write_complete above. Note that 3224 * this routine is always called from interrupt level with further 3225 * splbio interrupts blocked. 3226 */ 3227 static void 3228 handle_allocindir_partdone(aip) 3229 struct allocindir *aip; /* the completed allocindir */ 3230 { 3231 struct indirdep *indirdep; 3232 3233 if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE) 3234 return; 3235 if (aip->ai_buf != NULL) 3236 panic("handle_allocindir_partdone: dangling dependency"); 3237 indirdep = aip->ai_indirdep; 3238 if (indirdep->ir_state & UNDONE) { 3239 LIST_REMOVE(aip, ai_next); 3240 LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next); 3241 return; 3242 } 3243 ((ufs_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 3244 aip->ai_newblkno; 3245 LIST_REMOVE(aip, ai_next); 3246 if (aip->ai_freefrag != NULL) 3247 add_to_worklist(&aip->ai_freefrag->ff_list); 3248 WORKITEM_FREE(aip, D_ALLOCINDIR); 3249 } 3250 3251 /* 3252 * Called from within softdep_disk_write_complete above to restore 3253 * in-memory inode block contents to their most up-to-date state. Note 3254 * that this routine is always called from interrupt level with further 3255 * splbio interrupts blocked. 3256 */ 3257 static int 3258 handle_written_inodeblock(inodedep, bp) 3259 struct inodedep *inodedep; 3260 struct buf *bp; /* buffer containing the inode block */ 3261 { 3262 struct worklist *wk, *filefree; 3263 struct allocdirect *adp, *nextadp; 3264 struct dinode *dp; 3265 int hadchanges; 3266 3267 if ((inodedep->id_state & IOSTARTED) == 0) 3268 panic("handle_written_inodeblock: not started"); 3269 inodedep->id_state &= ~IOSTARTED; 3270 inodedep->id_state |= COMPLETE; 3271 dp = (struct dinode *)bp->b_data + 3272 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 3273 /* 3274 * If we had to rollback the inode allocation because of 3275 * bitmaps being incomplete, then simply restore it. 3276 * Keep the block dirty so that it will not be reclaimed until 3277 * all associated dependencies have been cleared and the 3278 * corresponding updates written to disk. 3279 */ 3280 if (inodedep->id_savedino != NULL) { 3281 *dp = *inodedep->id_savedino; 3282 FREE(inodedep->id_savedino, M_INODEDEP); 3283 inodedep->id_savedino = NULL; 3284 if ((bp->b_flags & B_DELWRI) == 0) 3285 stat_inode_bitmap++; 3286 bdirty(bp); 3287 return (1); 3288 } 3289 /* 3290 * Roll forward anything that had to be rolled back before 3291 * the inode could be updated. 3292 */ 3293 hadchanges = 0; 3294 for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) { 3295 nextadp = TAILQ_NEXT(adp, ad_next); 3296 if (adp->ad_state & ATTACHED) 3297 panic("handle_written_inodeblock: new entry"); 3298 if (adp->ad_lbn < NDADDR) { 3299 if (dp->di_db[adp->ad_lbn] != adp->ad_oldblkno) 3300 panic("%s: %s #%ld mismatch %d != %d", 3301 "handle_written_inodeblock", 3302 "direct pointer", adp->ad_lbn, 3303 dp->di_db[adp->ad_lbn], adp->ad_oldblkno); 3304 dp->di_db[adp->ad_lbn] = adp->ad_newblkno; 3305 } else { 3306 if (dp->di_ib[adp->ad_lbn - NDADDR] != 0) 3307 panic("%s: %s #%ld allocated as %d", 3308 "handle_written_inodeblock", 3309 "indirect pointer", adp->ad_lbn - NDADDR, 3310 dp->di_ib[adp->ad_lbn - NDADDR]); 3311 dp->di_ib[adp->ad_lbn - NDADDR] = adp->ad_newblkno; 3312 } 3313 adp->ad_state &= ~UNDONE; 3314 adp->ad_state |= ATTACHED; 3315 hadchanges = 1; 3316 } 3317 if (hadchanges && (bp->b_flags & B_DELWRI) == 0) 3318 stat_direct_blk_ptrs++; 3319 /* 3320 * Reset the file size to its most up-to-date value. 3321 */ 3322 if (inodedep->id_savedsize == -1) 3323 panic("handle_written_inodeblock: bad size"); 3324 if (dp->di_size != inodedep->id_savedsize) { 3325 dp->di_size = inodedep->id_savedsize; 3326 hadchanges = 1; 3327 } 3328 inodedep->id_savedsize = -1; 3329 /* 3330 * If there were any rollbacks in the inode block, then it must be 3331 * marked dirty so that its will eventually get written back in 3332 * its correct form. 3333 */ 3334 if (hadchanges) 3335 bdirty(bp); 3336 /* 3337 * Process any allocdirects that completed during the update. 3338 */ 3339 if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL) 3340 handle_allocdirect_partdone(adp); 3341 /* 3342 * Process deallocations that were held pending until the 3343 * inode had been written to disk. Freeing of the inode 3344 * is delayed until after all blocks have been freed to 3345 * avoid creation of new <vfsid, inum, lbn> triples 3346 * before the old ones have been deleted. 3347 */ 3348 filefree = NULL; 3349 while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) { 3350 WORKLIST_REMOVE(wk); 3351 switch (wk->wk_type) { 3352 3353 case D_FREEFILE: 3354 /* 3355 * We defer adding filefree to the worklist until 3356 * all other additions have been made to ensure 3357 * that it will be done after all the old blocks 3358 * have been freed. 3359 */ 3360 if (filefree != NULL) 3361 panic("handle_written_inodeblock: filefree"); 3362 filefree = wk; 3363 continue; 3364 3365 case D_MKDIR: 3366 handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT); 3367 continue; 3368 3369 case D_DIRADD: 3370 diradd_inode_written(WK_DIRADD(wk), inodedep); 3371 continue; 3372 3373 case D_FREEBLKS: 3374 case D_FREEFRAG: 3375 case D_DIRREM: 3376 add_to_worklist(wk); 3377 continue; 3378 3379 default: 3380 panic("handle_written_inodeblock: Unknown type %s", 3381 TYPENAME(wk->wk_type)); 3382 /* NOTREACHED */ 3383 } 3384 } 3385 if (filefree != NULL) { 3386 if (free_inodedep(inodedep) == 0) 3387 panic("handle_written_inodeblock: live inodedep"); 3388 add_to_worklist(filefree); 3389 return (0); 3390 } 3391 3392 /* 3393 * If no outstanding dependencies, free it. 3394 */ 3395 if (free_inodedep(inodedep) || TAILQ_FIRST(&inodedep->id_inoupdt) == 0) 3396 return (0); 3397 return (hadchanges); 3398 } 3399 3400 /* 3401 * Process a diradd entry after its dependent inode has been written. 3402 * This routine must be called with splbio interrupts blocked. 3403 */ 3404 static void 3405 diradd_inode_written(dap, inodedep) 3406 struct diradd *dap; 3407 struct inodedep *inodedep; 3408 { 3409 struct pagedep *pagedep; 3410 3411 dap->da_state |= COMPLETE; 3412 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 3413 if (dap->da_state & DIRCHG) 3414 pagedep = dap->da_previous->dm_pagedep; 3415 else 3416 pagedep = dap->da_pagedep; 3417 LIST_REMOVE(dap, da_pdlist); 3418 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 3419 } 3420 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 3421 } 3422 3423 /* 3424 * Handle the completion of a mkdir dependency. 3425 */ 3426 static void 3427 handle_written_mkdir(mkdir, type) 3428 struct mkdir *mkdir; 3429 int type; 3430 { 3431 struct diradd *dap; 3432 struct pagedep *pagedep; 3433 3434 if (mkdir->md_state != type) 3435 panic("handle_written_mkdir: bad type"); 3436 dap = mkdir->md_diradd; 3437 dap->da_state &= ~type; 3438 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) 3439 dap->da_state |= DEPCOMPLETE; 3440 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 3441 if (dap->da_state & DIRCHG) 3442 pagedep = dap->da_previous->dm_pagedep; 3443 else 3444 pagedep = dap->da_pagedep; 3445 LIST_REMOVE(dap, da_pdlist); 3446 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 3447 } 3448 LIST_REMOVE(mkdir, md_mkdirs); 3449 WORKITEM_FREE(mkdir, D_MKDIR); 3450 } 3451 3452 /* 3453 * Called from within softdep_disk_write_complete above. 3454 * A write operation was just completed. Removed inodes can 3455 * now be freed and associated block pointers may be committed. 3456 * Note that this routine is always called from interrupt level 3457 * with further splbio interrupts blocked. 3458 */ 3459 static int 3460 handle_written_filepage(pagedep, bp) 3461 struct pagedep *pagedep; 3462 struct buf *bp; /* buffer containing the written page */ 3463 { 3464 struct dirrem *dirrem; 3465 struct diradd *dap, *nextdap; 3466 struct direct *ep; 3467 int i, chgs; 3468 3469 if ((pagedep->pd_state & IOSTARTED) == 0) 3470 panic("handle_written_filepage: not started"); 3471 pagedep->pd_state &= ~IOSTARTED; 3472 /* 3473 * Process any directory removals that have been committed. 3474 */ 3475 while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) { 3476 LIST_REMOVE(dirrem, dm_next); 3477 dirrem->dm_dirinum = pagedep->pd_ino; 3478 add_to_worklist(&dirrem->dm_list); 3479 } 3480 /* 3481 * Free any directory additions that have been committed. 3482 */ 3483 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 3484 free_diradd(dap); 3485 /* 3486 * Uncommitted directory entries must be restored. 3487 */ 3488 for (chgs = 0, i = 0; i < DAHASHSZ; i++) { 3489 for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap; 3490 dap = nextdap) { 3491 nextdap = LIST_NEXT(dap, da_pdlist); 3492 if (dap->da_state & ATTACHED) 3493 panic("handle_written_filepage: attached"); 3494 ep = (struct direct *) 3495 ((char *)bp->b_data + dap->da_offset); 3496 ep->d_ino = dap->da_newinum; 3497 dap->da_state &= ~UNDONE; 3498 dap->da_state |= ATTACHED; 3499 chgs = 1; 3500 /* 3501 * If the inode referenced by the directory has 3502 * been written out, then the dependency can be 3503 * moved to the pending list. 3504 */ 3505 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 3506 LIST_REMOVE(dap, da_pdlist); 3507 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, 3508 da_pdlist); 3509 } 3510 } 3511 } 3512 /* 3513 * If there were any rollbacks in the directory, then it must be 3514 * marked dirty so that its will eventually get written back in 3515 * its correct form. 3516 */ 3517 if (chgs) { 3518 if ((bp->b_flags & B_DELWRI) == 0) 3519 stat_dir_entry++; 3520 bdirty(bp); 3521 } 3522 /* 3523 * If no dependencies remain, the pagedep will be freed. 3524 * Otherwise it will remain to update the page before it 3525 * is written back to disk. 3526 */ 3527 if (LIST_FIRST(&pagedep->pd_pendinghd) == 0) { 3528 for (i = 0; i < DAHASHSZ; i++) 3529 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) != NULL) 3530 break; 3531 if (i == DAHASHSZ) { 3532 LIST_REMOVE(pagedep, pd_hash); 3533 WORKITEM_FREE(pagedep, D_PAGEDEP); 3534 return (0); 3535 } 3536 } 3537 return (1); 3538 } 3539 3540 /* 3541 * Writing back in-core inode structures. 3542 * 3543 * The file system only accesses an inode's contents when it occupies an 3544 * "in-core" inode structure. These "in-core" structures are separate from 3545 * the page frames used to cache inode blocks. Only the latter are 3546 * transferred to/from the disk. So, when the updated contents of the 3547 * "in-core" inode structure are copied to the corresponding in-memory inode 3548 * block, the dependencies are also transferred. The following procedure is 3549 * called when copying a dirty "in-core" inode to a cached inode block. 3550 */ 3551 3552 /* 3553 * Called when an inode is loaded from disk. If the effective link count 3554 * differed from the actual link count when it was last flushed, then we 3555 * need to ensure that the correct effective link count is put back. 3556 */ 3557 void 3558 softdep_load_inodeblock(ip) 3559 struct inode *ip; /* the "in_core" copy of the inode */ 3560 { 3561 struct inodedep *inodedep; 3562 3563 /* 3564 * Check for alternate nlink count. 3565 */ 3566 ip->i_effnlink = ip->i_nlink; 3567 ACQUIRE_LOCK(&lk); 3568 if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) { 3569 FREE_LOCK(&lk); 3570 return; 3571 } 3572 ip->i_effnlink -= inodedep->id_nlinkdelta; 3573 FREE_LOCK(&lk); 3574 } 3575 3576 /* 3577 * This routine is called just before the "in-core" inode 3578 * information is to be copied to the in-memory inode block. 3579 * Recall that an inode block contains several inodes. If 3580 * the force flag is set, then the dependencies will be 3581 * cleared so that the update can always be made. Note that 3582 * the buffer is locked when this routine is called, so we 3583 * will never be in the middle of writing the inode block 3584 * to disk. 3585 */ 3586 void 3587 softdep_update_inodeblock(ip, bp, waitfor) 3588 struct inode *ip; /* the "in_core" copy of the inode */ 3589 struct buf *bp; /* the buffer containing the inode block */ 3590 int waitfor; /* nonzero => update must be allowed */ 3591 { 3592 struct inodedep *inodedep; 3593 struct worklist *wk; 3594 int error, gotit; 3595 3596 /* 3597 * If the effective link count is not equal to the actual link 3598 * count, then we must track the difference in an inodedep while 3599 * the inode is (potentially) tossed out of the cache. Otherwise, 3600 * if there is no existing inodedep, then there are no dependencies 3601 * to track. 3602 */ 3603 ACQUIRE_LOCK(&lk); 3604 if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) { 3605 if (ip->i_effnlink != ip->i_nlink) 3606 panic("softdep_update_inodeblock: bad link count"); 3607 FREE_LOCK(&lk); 3608 return; 3609 } 3610 if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink) 3611 panic("softdep_update_inodeblock: bad delta"); 3612 /* 3613 * Changes have been initiated. Anything depending on these 3614 * changes cannot occur until this inode has been written. 3615 */ 3616 inodedep->id_state &= ~COMPLETE; 3617 if ((inodedep->id_state & ONWORKLIST) == 0) 3618 WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list); 3619 /* 3620 * Any new dependencies associated with the incore inode must 3621 * now be moved to the list associated with the buffer holding 3622 * the in-memory copy of the inode. Once merged process any 3623 * allocdirects that are completed by the merger. 3624 */ 3625 merge_inode_lists(inodedep); 3626 if (TAILQ_FIRST(&inodedep->id_inoupdt) != NULL) 3627 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt)); 3628 /* 3629 * Now that the inode has been pushed into the buffer, the 3630 * operations dependent on the inode being written to disk 3631 * can be moved to the id_bufwait so that they will be 3632 * processed when the buffer I/O completes. 3633 */ 3634 while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) { 3635 WORKLIST_REMOVE(wk); 3636 WORKLIST_INSERT(&inodedep->id_bufwait, wk); 3637 } 3638 /* 3639 * Newly allocated inodes cannot be written until the bitmap 3640 * that allocates them have been written (indicated by 3641 * DEPCOMPLETE being set in id_state). If we are doing a 3642 * forced sync (e.g., an fsync on a file), we force the bitmap 3643 * to be written so that the update can be done. 3644 */ 3645 if ((inodedep->id_state & DEPCOMPLETE) != 0 || waitfor == 0) { 3646 FREE_LOCK(&lk); 3647 return; 3648 } 3649 gotit = getdirtybuf(&inodedep->id_buf, MNT_WAIT); 3650 FREE_LOCK(&lk); 3651 if (gotit && 3652 (error = BUF_WRITE(inodedep->id_buf)) != 0) 3653 softdep_error("softdep_update_inodeblock: bwrite", error); 3654 if ((inodedep->id_state & DEPCOMPLETE) == 0) 3655 panic("softdep_update_inodeblock: update failed"); 3656 } 3657 3658 /* 3659 * Merge the new inode dependency list (id_newinoupdt) into the old 3660 * inode dependency list (id_inoupdt). This routine must be called 3661 * with splbio interrupts blocked. 3662 */ 3663 static void 3664 merge_inode_lists(inodedep) 3665 struct inodedep *inodedep; 3666 { 3667 struct allocdirect *listadp, *newadp; 3668 3669 newadp = TAILQ_FIRST(&inodedep->id_newinoupdt); 3670 for (listadp = TAILQ_FIRST(&inodedep->id_inoupdt); listadp && newadp;) { 3671 if (listadp->ad_lbn < newadp->ad_lbn) { 3672 listadp = TAILQ_NEXT(listadp, ad_next); 3673 continue; 3674 } 3675 TAILQ_REMOVE(&inodedep->id_newinoupdt, newadp, ad_next); 3676 TAILQ_INSERT_BEFORE(listadp, newadp, ad_next); 3677 if (listadp->ad_lbn == newadp->ad_lbn) { 3678 allocdirect_merge(&inodedep->id_inoupdt, newadp, 3679 listadp); 3680 listadp = newadp; 3681 } 3682 newadp = TAILQ_FIRST(&inodedep->id_newinoupdt); 3683 } 3684 while ((newadp = TAILQ_FIRST(&inodedep->id_newinoupdt)) != NULL) { 3685 TAILQ_REMOVE(&inodedep->id_newinoupdt, newadp, ad_next); 3686 TAILQ_INSERT_TAIL(&inodedep->id_inoupdt, newadp, ad_next); 3687 } 3688 } 3689 3690 /* 3691 * If we are doing an fsync, then we must ensure that any directory 3692 * entries for the inode have been written after the inode gets to disk. 3693 */ 3694 static int 3695 softdep_fsync(vp) 3696 struct vnode *vp; /* the "in_core" copy of the inode */ 3697 { 3698 struct inodedep *inodedep; 3699 struct pagedep *pagedep; 3700 struct worklist *wk; 3701 struct diradd *dap; 3702 struct mount *mnt; 3703 struct vnode *pvp; 3704 struct inode *ip; 3705 struct buf *bp; 3706 struct fs *fs; 3707 struct proc *p = CURPROC; /* XXX */ 3708 int error, flushparent; 3709 ino_t parentino; 3710 ufs_lbn_t lbn; 3711 3712 ip = VTOI(vp); 3713 fs = ip->i_fs; 3714 ACQUIRE_LOCK(&lk); 3715 if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0) { 3716 FREE_LOCK(&lk); 3717 return (0); 3718 } 3719 if (LIST_FIRST(&inodedep->id_inowait) != NULL || 3720 LIST_FIRST(&inodedep->id_bufwait) != NULL || 3721 TAILQ_FIRST(&inodedep->id_inoupdt) != NULL || 3722 TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL) 3723 panic("softdep_fsync: pending ops"); 3724 for (error = 0, flushparent = 0; ; ) { 3725 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL) 3726 break; 3727 if (wk->wk_type != D_DIRADD) 3728 panic("softdep_fsync: Unexpected type %s", 3729 TYPENAME(wk->wk_type)); 3730 dap = WK_DIRADD(wk); 3731 /* 3732 * Flush our parent if this directory entry 3733 * has a MKDIR_PARENT dependency. 3734 */ 3735 if (dap->da_state & DIRCHG) 3736 pagedep = dap->da_previous->dm_pagedep; 3737 else 3738 pagedep = dap->da_pagedep; 3739 mnt = pagedep->pd_mnt; 3740 parentino = pagedep->pd_ino; 3741 lbn = pagedep->pd_lbn; 3742 if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE) 3743 panic("softdep_fsync: dirty"); 3744 flushparent = dap->da_state & MKDIR_PARENT; 3745 /* 3746 * If we are being fsync'ed as part of vgone'ing this vnode, 3747 * then we will not be able to release and recover the 3748 * vnode below, so we just have to give up on writing its 3749 * directory entry out. It will eventually be written, just 3750 * not now, but then the user was not asking to have it 3751 * written, so we are not breaking any promises. 3752 */ 3753 if (vp->v_flag & VXLOCK) 3754 break; 3755 /* 3756 * We prevent deadlock by always fetching inodes from the 3757 * root, moving down the directory tree. Thus, when fetching 3758 * our parent directory, we must unlock ourselves before 3759 * requesting the lock on our parent. See the comment in 3760 * ufs_lookup for details on possible races. 3761 */ 3762 FREE_LOCK(&lk); 3763 VOP_UNLOCK(vp, 0, p); 3764 error = VFS_VGET(mnt, parentino, &pvp); 3765 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, p); 3766 if (error != 0) 3767 return (error); 3768 if (flushparent) { 3769 if ((error = UFS_UPDATE(pvp, 1)) != 0) { 3770 vput(pvp); 3771 return (error); 3772 } 3773 } 3774 /* 3775 * Flush directory page containing the inode's name. 3776 */ 3777 error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), p->p_ucred, 3778 &bp); 3779 if (error == 0) 3780 error = BUF_WRITE(bp); 3781 vput(pvp); 3782 if (error != 0) 3783 return (error); 3784 ACQUIRE_LOCK(&lk); 3785 if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0) 3786 break; 3787 } 3788 FREE_LOCK(&lk); 3789 return (0); 3790 } 3791 3792 /* 3793 * Flush all the dirty bitmaps associated with the block device 3794 * before flushing the rest of the dirty blocks so as to reduce 3795 * the number of dependencies that will have to be rolled back. 3796 */ 3797 void 3798 softdep_fsync_mountdev(vp) 3799 struct vnode *vp; 3800 { 3801 struct buf *bp, *nbp; 3802 struct worklist *wk; 3803 3804 if (!vn_isdisk(vp, NULL)) 3805 panic("softdep_fsync_mountdev: vnode not a disk"); 3806 ACQUIRE_LOCK(&lk); 3807 for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { 3808 nbp = TAILQ_NEXT(bp, b_vnbufs); 3809 /* 3810 * If it is already scheduled, skip to the next buffer. 3811 */ 3812 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) 3813 continue; 3814 if ((bp->b_flags & B_DELWRI) == 0) 3815 panic("softdep_fsync_mountdev: not dirty"); 3816 /* 3817 * We are only interested in bitmaps with outstanding 3818 * dependencies. 3819 */ 3820 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL || 3821 wk->wk_type != D_BMSAFEMAP || 3822 (bp->b_xflags & BX_BKGRDINPROG)) { 3823 BUF_UNLOCK(bp); 3824 continue; 3825 } 3826 bremfree(bp); 3827 FREE_LOCK(&lk); 3828 (void) bawrite(bp); 3829 ACQUIRE_LOCK(&lk); 3830 /* 3831 * Since we may have slept during the I/O, we need 3832 * to start from a known point. 3833 */ 3834 nbp = TAILQ_FIRST(&vp->v_dirtyblkhd); 3835 } 3836 drain_output(vp, 1); 3837 FREE_LOCK(&lk); 3838 } 3839 3840 /* 3841 * This routine is called when we are trying to synchronously flush a 3842 * file. This routine must eliminate any filesystem metadata dependencies 3843 * so that the syncing routine can succeed by pushing the dirty blocks 3844 * associated with the file. If any I/O errors occur, they are returned. 3845 */ 3846 int 3847 softdep_sync_metadata(ap) 3848 struct vop_fsync_args /* { 3849 struct vnode *a_vp; 3850 struct ucred *a_cred; 3851 int a_waitfor; 3852 struct proc *a_p; 3853 } */ *ap; 3854 { 3855 struct vnode *vp = ap->a_vp; 3856 struct pagedep *pagedep; 3857 struct allocdirect *adp; 3858 struct allocindir *aip; 3859 struct buf *bp, *nbp; 3860 struct worklist *wk; 3861 int i, error, waitfor; 3862 3863 /* 3864 * Check whether this vnode is involved in a filesystem 3865 * that is doing soft dependency processing. 3866 */ 3867 if (!vn_isdisk(vp, NULL)) { 3868 if (!DOINGSOFTDEP(vp)) 3869 return (0); 3870 } else 3871 if (vp->v_specmountpoint == NULL || 3872 (vp->v_specmountpoint->mnt_flag & MNT_SOFTDEP) == 0) 3873 return (0); 3874 /* 3875 * Ensure that any direct block dependencies have been cleared. 3876 */ 3877 ACQUIRE_LOCK(&lk); 3878 if ((error = flush_inodedep_deps(VTOI(vp)->i_fs, VTOI(vp)->i_number))) { 3879 FREE_LOCK(&lk); 3880 return (error); 3881 } 3882 /* 3883 * For most files, the only metadata dependencies are the 3884 * cylinder group maps that allocate their inode or blocks. 3885 * The block allocation dependencies can be found by traversing 3886 * the dependency lists for any buffers that remain on their 3887 * dirty buffer list. The inode allocation dependency will 3888 * be resolved when the inode is updated with MNT_WAIT. 3889 * This work is done in two passes. The first pass grabs most 3890 * of the buffers and begins asynchronously writing them. The 3891 * only way to wait for these asynchronous writes is to sleep 3892 * on the filesystem vnode which may stay busy for a long time 3893 * if the filesystem is active. So, instead, we make a second 3894 * pass over the dependencies blocking on each write. In the 3895 * usual case we will be blocking against a write that we 3896 * initiated, so when it is done the dependency will have been 3897 * resolved. Thus the second pass is expected to end quickly. 3898 */ 3899 waitfor = MNT_NOWAIT; 3900 top: 3901 if (getdirtybuf(&TAILQ_FIRST(&vp->v_dirtyblkhd), MNT_WAIT) == 0) { 3902 FREE_LOCK(&lk); 3903 return (0); 3904 } 3905 bp = TAILQ_FIRST(&vp->v_dirtyblkhd); 3906 loop: 3907 /* 3908 * As we hold the buffer locked, none of its dependencies 3909 * will disappear. 3910 */ 3911 for (wk = LIST_FIRST(&bp->b_dep); wk; 3912 wk = LIST_NEXT(wk, wk_list)) { 3913 switch (wk->wk_type) { 3914 3915 case D_ALLOCDIRECT: 3916 adp = WK_ALLOCDIRECT(wk); 3917 if (adp->ad_state & DEPCOMPLETE) 3918 break; 3919 nbp = adp->ad_buf; 3920 if (getdirtybuf(&nbp, waitfor) == 0) 3921 break; 3922 FREE_LOCK(&lk); 3923 if (waitfor == MNT_NOWAIT) { 3924 bawrite(nbp); 3925 } else if ((error = BUF_WRITE(nbp)) != 0) { 3926 bawrite(bp); 3927 return (error); 3928 } 3929 ACQUIRE_LOCK(&lk); 3930 break; 3931 3932 case D_ALLOCINDIR: 3933 aip = WK_ALLOCINDIR(wk); 3934 if (aip->ai_state & DEPCOMPLETE) 3935 break; 3936 nbp = aip->ai_buf; 3937 if (getdirtybuf(&nbp, waitfor) == 0) 3938 break; 3939 FREE_LOCK(&lk); 3940 if (waitfor == MNT_NOWAIT) { 3941 bawrite(nbp); 3942 } else if ((error = BUF_WRITE(nbp)) != 0) { 3943 bawrite(bp); 3944 return (error); 3945 } 3946 ACQUIRE_LOCK(&lk); 3947 break; 3948 3949 case D_INDIRDEP: 3950 restart: 3951 for (aip = LIST_FIRST(&WK_INDIRDEP(wk)->ir_deplisthd); 3952 aip; aip = LIST_NEXT(aip, ai_next)) { 3953 if (aip->ai_state & DEPCOMPLETE) 3954 continue; 3955 nbp = aip->ai_buf; 3956 if (getdirtybuf(&nbp, MNT_WAIT) == 0) 3957 goto restart; 3958 FREE_LOCK(&lk); 3959 if ((error = BUF_WRITE(nbp)) != 0) { 3960 bawrite(bp); 3961 return (error); 3962 } 3963 ACQUIRE_LOCK(&lk); 3964 goto restart; 3965 } 3966 break; 3967 3968 case D_INODEDEP: 3969 if ((error = flush_inodedep_deps(WK_INODEDEP(wk)->id_fs, 3970 WK_INODEDEP(wk)->id_ino)) != 0) { 3971 FREE_LOCK(&lk); 3972 bawrite(bp); 3973 return (error); 3974 } 3975 break; 3976 3977 case D_PAGEDEP: 3978 /* 3979 * We are trying to sync a directory that may 3980 * have dependencies on both its own metadata 3981 * and/or dependencies on the inodes of any 3982 * recently allocated files. We walk its diradd 3983 * lists pushing out the associated inode. 3984 */ 3985 pagedep = WK_PAGEDEP(wk); 3986 for (i = 0; i < DAHASHSZ; i++) { 3987 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0) 3988 continue; 3989 if ((error = 3990 flush_pagedep_deps(vp, pagedep->pd_mnt, 3991 &pagedep->pd_diraddhd[i]))) { 3992 FREE_LOCK(&lk); 3993 bawrite(bp); 3994 return (error); 3995 } 3996 } 3997 break; 3998 3999 case D_MKDIR: 4000 /* 4001 * This case should never happen if the vnode has 4002 * been properly sync'ed. However, if this function 4003 * is used at a place where the vnode has not yet 4004 * been sync'ed, this dependency can show up. So, 4005 * rather than panic, just flush it. 4006 */ 4007 nbp = WK_MKDIR(wk)->md_buf; 4008 if (getdirtybuf(&nbp, waitfor) == 0) 4009 break; 4010 FREE_LOCK(&lk); 4011 if (waitfor == MNT_NOWAIT) { 4012 bawrite(nbp); 4013 } else if ((error = BUF_WRITE(nbp)) != 0) { 4014 bawrite(bp); 4015 return (error); 4016 } 4017 ACQUIRE_LOCK(&lk); 4018 break; 4019 4020 case D_BMSAFEMAP: 4021 /* 4022 * This case should never happen if the vnode has 4023 * been properly sync'ed. However, if this function 4024 * is used at a place where the vnode has not yet 4025 * been sync'ed, this dependency can show up. So, 4026 * rather than panic, just flush it. 4027 */ 4028 nbp = WK_BMSAFEMAP(wk)->sm_buf; 4029 if (getdirtybuf(&nbp, waitfor) == 0) 4030 break; 4031 FREE_LOCK(&lk); 4032 if (waitfor == MNT_NOWAIT) { 4033 bawrite(nbp); 4034 } else if ((error = BUF_WRITE(nbp)) != 0) { 4035 bawrite(bp); 4036 return (error); 4037 } 4038 ACQUIRE_LOCK(&lk); 4039 break; 4040 4041 default: 4042 panic("softdep_sync_metadata: Unknown type %s", 4043 TYPENAME(wk->wk_type)); 4044 /* NOTREACHED */ 4045 } 4046 } 4047 (void) getdirtybuf(&TAILQ_NEXT(bp, b_vnbufs), MNT_WAIT); 4048 nbp = TAILQ_NEXT(bp, b_vnbufs); 4049 FREE_LOCK(&lk); 4050 bawrite(bp); 4051 ACQUIRE_LOCK(&lk); 4052 if (nbp != NULL) { 4053 bp = nbp; 4054 goto loop; 4055 } 4056 /* 4057 * We must wait for any I/O in progress to finish so that 4058 * all potential buffers on the dirty list will be visible. 4059 * Once they are all there, proceed with the second pass 4060 * which will wait for the I/O as per above. 4061 */ 4062 drain_output(vp, 1); 4063 /* 4064 * The brief unlock is to allow any pent up dependency 4065 * processing to be done. 4066 */ 4067 if (waitfor == MNT_NOWAIT) { 4068 waitfor = MNT_WAIT; 4069 FREE_LOCK(&lk); 4070 ACQUIRE_LOCK(&lk); 4071 goto top; 4072 } 4073 4074 /* 4075 * If we have managed to get rid of all the dirty buffers, 4076 * then we are done. For certain directories and block 4077 * devices, we may need to do further work. 4078 */ 4079 if (TAILQ_FIRST(&vp->v_dirtyblkhd) == NULL) { 4080 FREE_LOCK(&lk); 4081 return (0); 4082 } 4083 4084 FREE_LOCK(&lk); 4085 /* 4086 * If we are trying to sync a block device, some of its buffers may 4087 * contain metadata that cannot be written until the contents of some 4088 * partially written files have been written to disk. The only easy 4089 * way to accomplish this is to sync the entire filesystem (luckily 4090 * this happens rarely). 4091 */ 4092 if (vn_isdisk(vp, NULL) && 4093 vp->v_specmountpoint && !VOP_ISLOCKED(vp, NULL) && 4094 (error = VFS_SYNC(vp->v_specmountpoint, MNT_WAIT, ap->a_cred, 4095 ap->a_p)) != 0) 4096 return (error); 4097 return (0); 4098 } 4099 4100 /* 4101 * Flush the dependencies associated with an inodedep. 4102 * Called with splbio blocked. 4103 */ 4104 static int 4105 flush_inodedep_deps(fs, ino) 4106 struct fs *fs; 4107 ino_t ino; 4108 { 4109 struct inodedep *inodedep; 4110 struct allocdirect *adp; 4111 int error, waitfor; 4112 struct buf *bp; 4113 4114 /* 4115 * This work is done in two passes. The first pass grabs most 4116 * of the buffers and begins asynchronously writing them. The 4117 * only way to wait for these asynchronous writes is to sleep 4118 * on the filesystem vnode which may stay busy for a long time 4119 * if the filesystem is active. So, instead, we make a second 4120 * pass over the dependencies blocking on each write. In the 4121 * usual case we will be blocking against a write that we 4122 * initiated, so when it is done the dependency will have been 4123 * resolved. Thus the second pass is expected to end quickly. 4124 * We give a brief window at the top of the loop to allow 4125 * any pending I/O to complete. 4126 */ 4127 for (waitfor = MNT_NOWAIT; ; ) { 4128 FREE_LOCK(&lk); 4129 ACQUIRE_LOCK(&lk); 4130 if (inodedep_lookup(fs, ino, 0, &inodedep) == 0) 4131 return (0); 4132 for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 4133 adp = TAILQ_NEXT(adp, ad_next)) { 4134 if (adp->ad_state & DEPCOMPLETE) 4135 continue; 4136 bp = adp->ad_buf; 4137 if (getdirtybuf(&bp, waitfor) == 0) { 4138 if (waitfor == MNT_NOWAIT) 4139 continue; 4140 break; 4141 } 4142 FREE_LOCK(&lk); 4143 if (waitfor == MNT_NOWAIT) { 4144 bawrite(bp); 4145 } else if ((error = BUF_WRITE(bp)) != 0) { 4146 ACQUIRE_LOCK(&lk); 4147 return (error); 4148 } 4149 ACQUIRE_LOCK(&lk); 4150 break; 4151 } 4152 if (adp != NULL) 4153 continue; 4154 for (adp = TAILQ_FIRST(&inodedep->id_newinoupdt); adp; 4155 adp = TAILQ_NEXT(adp, ad_next)) { 4156 if (adp->ad_state & DEPCOMPLETE) 4157 continue; 4158 bp = adp->ad_buf; 4159 if (getdirtybuf(&bp, waitfor) == 0) { 4160 if (waitfor == MNT_NOWAIT) 4161 continue; 4162 break; 4163 } 4164 FREE_LOCK(&lk); 4165 if (waitfor == MNT_NOWAIT) { 4166 bawrite(bp); 4167 } else if ((error = BUF_WRITE(bp)) != 0) { 4168 ACQUIRE_LOCK(&lk); 4169 return (error); 4170 } 4171 ACQUIRE_LOCK(&lk); 4172 break; 4173 } 4174 if (adp != NULL) 4175 continue; 4176 /* 4177 * If pass2, we are done, otherwise do pass 2. 4178 */ 4179 if (waitfor == MNT_WAIT) 4180 break; 4181 waitfor = MNT_WAIT; 4182 } 4183 /* 4184 * Try freeing inodedep in case all dependencies have been removed. 4185 */ 4186 if (inodedep_lookup(fs, ino, 0, &inodedep) != 0) 4187 (void) free_inodedep(inodedep); 4188 return (0); 4189 } 4190 4191 /* 4192 * Eliminate a pagedep dependency by flushing out all its diradd dependencies. 4193 * Called with splbio blocked. 4194 */ 4195 static int 4196 flush_pagedep_deps(pvp, mp, diraddhdp) 4197 struct vnode *pvp; 4198 struct mount *mp; 4199 struct diraddhd *diraddhdp; 4200 { 4201 struct proc *p = CURPROC; /* XXX */ 4202 struct inodedep *inodedep; 4203 struct ufsmount *ump; 4204 struct diradd *dap; 4205 struct vnode *vp; 4206 int gotit, error = 0; 4207 struct buf *bp; 4208 ino_t inum; 4209 4210 ump = VFSTOUFS(mp); 4211 while ((dap = LIST_FIRST(diraddhdp)) != NULL) { 4212 /* 4213 * Flush ourselves if this directory entry 4214 * has a MKDIR_PARENT dependency. 4215 */ 4216 if (dap->da_state & MKDIR_PARENT) { 4217 FREE_LOCK(&lk); 4218 if ((error = UFS_UPDATE(pvp, 1)) != 0) 4219 break; 4220 ACQUIRE_LOCK(&lk); 4221 /* 4222 * If that cleared dependencies, go on to next. 4223 */ 4224 if (dap != LIST_FIRST(diraddhdp)) 4225 continue; 4226 if (dap->da_state & MKDIR_PARENT) 4227 panic("flush_pagedep_deps: MKDIR_PARENT"); 4228 } 4229 /* 4230 * A newly allocated directory must have its "." and 4231 * ".." entries written out before its name can be 4232 * committed in its parent. We do not want or need 4233 * the full semantics of a synchronous VOP_FSYNC as 4234 * that may end up here again, once for each directory 4235 * level in the filesystem. Instead, we push the blocks 4236 * and wait for them to clear. We have to fsync twice 4237 * because the first call may choose to defer blocks 4238 * that still have dependencies, but deferral will 4239 * happen at most once. 4240 */ 4241 inum = dap->da_newinum; 4242 if (dap->da_state & MKDIR_BODY) { 4243 FREE_LOCK(&lk); 4244 if ((error = VFS_VGET(mp, inum, &vp)) != 0) 4245 break; 4246 if ((error=VOP_FSYNC(vp, p->p_ucred, MNT_NOWAIT, p)) || 4247 (error=VOP_FSYNC(vp, p->p_ucred, MNT_NOWAIT, p))) { 4248 vput(vp); 4249 break; 4250 } 4251 drain_output(vp, 0); 4252 vput(vp); 4253 ACQUIRE_LOCK(&lk); 4254 /* 4255 * If that cleared dependencies, go on to next. 4256 */ 4257 if (dap != LIST_FIRST(diraddhdp)) 4258 continue; 4259 if (dap->da_state & MKDIR_BODY) 4260 panic("flush_pagedep_deps: MKDIR_BODY"); 4261 } 4262 /* 4263 * Flush the inode on which the directory entry depends. 4264 * Having accounted for MKDIR_PARENT and MKDIR_BODY above, 4265 * the only remaining dependency is that the updated inode 4266 * count must get pushed to disk. The inode has already 4267 * been pushed into its inode buffer (via VOP_UPDATE) at 4268 * the time of the reference count change. So we need only 4269 * locate that buffer, ensure that there will be no rollback 4270 * caused by a bitmap dependency, then write the inode buffer. 4271 */ 4272 if (inodedep_lookup(ump->um_fs, inum, 0, &inodedep) == 0) 4273 panic("flush_pagedep_deps: lost inode"); 4274 /* 4275 * If the inode still has bitmap dependencies, 4276 * push them to disk. 4277 */ 4278 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 4279 gotit = getdirtybuf(&inodedep->id_buf, MNT_WAIT); 4280 FREE_LOCK(&lk); 4281 if (gotit && 4282 (error = BUF_WRITE(inodedep->id_buf)) != 0) 4283 break; 4284 ACQUIRE_LOCK(&lk); 4285 if (dap != LIST_FIRST(diraddhdp)) 4286 continue; 4287 } 4288 /* 4289 * If the inode is still sitting in a buffer waiting 4290 * to be written, push it to disk. 4291 */ 4292 FREE_LOCK(&lk); 4293 if ((error = bread(ump->um_devvp, 4294 fsbtodb(ump->um_fs, ino_to_fsba(ump->um_fs, inum)), 4295 (int)ump->um_fs->fs_bsize, NOCRED, &bp)) != 0) 4296 break; 4297 if ((error = BUF_WRITE(bp)) != 0) 4298 break; 4299 ACQUIRE_LOCK(&lk); 4300 /* 4301 * If we have failed to get rid of all the dependencies 4302 * then something is seriously wrong. 4303 */ 4304 if (dap == LIST_FIRST(diraddhdp)) 4305 panic("flush_pagedep_deps: flush failed"); 4306 } 4307 if (error) 4308 ACQUIRE_LOCK(&lk); 4309 return (error); 4310 } 4311 4312 /* 4313 * A large burst of file addition or deletion activity can drive the 4314 * memory load excessively high. Therefore we deliberately slow things 4315 * down and speed up the I/O processing if we find ourselves with too 4316 * many dependencies in progress. 4317 */ 4318 static int 4319 request_cleanup(resource, islocked) 4320 int resource; 4321 int islocked; 4322 { 4323 struct callout_handle handle; 4324 struct proc *p = CURPROC; 4325 4326 /* 4327 * We never hold up the filesystem syncer process. 4328 */ 4329 if (p == filesys_syncer) 4330 return (0); 4331 /* 4332 * If we are resource constrained on inode dependencies, try 4333 * flushing some dirty inodes. Otherwise, we are constrained 4334 * by file deletions, so try accelerating flushes of directories 4335 * with removal dependencies. We would like to do the cleanup 4336 * here, but we probably hold an inode locked at this point and 4337 * that might deadlock against one that we try to clean. So, 4338 * the best that we can do is request the syncer daemon to do 4339 * the cleanup for us. 4340 */ 4341 switch (resource) { 4342 4343 case FLUSH_INODES: 4344 stat_ino_limit_push += 1; 4345 req_clear_inodedeps = 1; 4346 break; 4347 4348 case FLUSH_REMOVE: 4349 stat_blk_limit_push += 1; 4350 req_clear_remove = 1; 4351 break; 4352 4353 default: 4354 panic("request_cleanup: unknown type"); 4355 } 4356 /* 4357 * Hopefully the syncer daemon will catch up and awaken us. 4358 * We wait at most tickdelay before proceeding in any case. 4359 */ 4360 if (islocked == 0) 4361 ACQUIRE_LOCK(&lk); 4362 if (proc_waiting == 0) { 4363 proc_waiting = 1; 4364 handle = timeout(pause_timer, NULL, 4365 tickdelay > 2 ? tickdelay : 2); 4366 } 4367 FREE_LOCK_INTERLOCKED(&lk); 4368 (void) tsleep((caddr_t)&proc_waiting, PPAUSE, "softupdate", 0); 4369 ACQUIRE_LOCK_INTERLOCKED(&lk); 4370 if (proc_waiting) { 4371 untimeout(pause_timer, NULL, handle); 4372 proc_waiting = 0; 4373 } else { 4374 switch (resource) { 4375 4376 case FLUSH_INODES: 4377 stat_ino_limit_hit += 1; 4378 break; 4379 4380 case FLUSH_REMOVE: 4381 stat_blk_limit_hit += 1; 4382 break; 4383 } 4384 } 4385 if (islocked == 0) 4386 FREE_LOCK(&lk); 4387 return (1); 4388 } 4389 4390 /* 4391 * Awaken processes pausing in request_cleanup and clear proc_waiting 4392 * to indicate that there is no longer a timer running. 4393 */ 4394 void 4395 pause_timer(arg) 4396 void *arg; 4397 { 4398 4399 proc_waiting = 0; 4400 wakeup(&proc_waiting); 4401 } 4402 4403 /* 4404 * Flush out a directory with at least one removal dependency in an effort to 4405 * reduce the number of dirrem, freefile, and freeblks dependency structures. 4406 */ 4407 static void 4408 clear_remove(p) 4409 struct proc *p; 4410 { 4411 struct pagedep_hashhead *pagedephd; 4412 struct pagedep *pagedep; 4413 static int next = 0; 4414 struct mount *mp; 4415 struct vnode *vp; 4416 int error, cnt; 4417 ino_t ino; 4418 4419 ACQUIRE_LOCK(&lk); 4420 for (cnt = 0; cnt < pagedep_hash; cnt++) { 4421 pagedephd = &pagedep_hashtbl[next++]; 4422 if (next >= pagedep_hash) 4423 next = 0; 4424 for (pagedep = LIST_FIRST(pagedephd); pagedep; 4425 pagedep = LIST_NEXT(pagedep, pd_hash)) { 4426 if (LIST_FIRST(&pagedep->pd_dirremhd) == NULL) 4427 continue; 4428 mp = pagedep->pd_mnt; 4429 ino = pagedep->pd_ino; 4430 FREE_LOCK(&lk); 4431 if ((error = VFS_VGET(mp, ino, &vp)) != 0) { 4432 softdep_error("clear_remove: vget", error); 4433 return; 4434 } 4435 if ((error = VOP_FSYNC(vp, p->p_ucred, MNT_NOWAIT, p))) 4436 softdep_error("clear_remove: fsync", error); 4437 drain_output(vp, 0); 4438 vput(vp); 4439 return; 4440 } 4441 } 4442 FREE_LOCK(&lk); 4443 } 4444 4445 /* 4446 * Clear out a block of dirty inodes in an effort to reduce 4447 * the number of inodedep dependency structures. 4448 */ 4449 static void 4450 clear_inodedeps(p) 4451 struct proc *p; 4452 { 4453 struct inodedep_hashhead *inodedephd; 4454 struct inodedep *inodedep; 4455 static int next = 0; 4456 struct mount *mp; 4457 struct vnode *vp; 4458 struct fs *fs; 4459 int error, cnt; 4460 ino_t firstino, lastino, ino; 4461 4462 ACQUIRE_LOCK(&lk); 4463 /* 4464 * Pick a random inode dependency to be cleared. 4465 * We will then gather up all the inodes in its block 4466 * that have dependencies and flush them out. 4467 */ 4468 for (cnt = 0; cnt < inodedep_hash; cnt++) { 4469 inodedephd = &inodedep_hashtbl[next++]; 4470 if (next >= inodedep_hash) 4471 next = 0; 4472 if ((inodedep = LIST_FIRST(inodedephd)) != NULL) 4473 break; 4474 } 4475 /* 4476 * Ugly code to find mount point given pointer to superblock. 4477 */ 4478 fs = inodedep->id_fs; 4479 TAILQ_FOREACH(mp, &mountlist, mnt_list) 4480 if ((mp->mnt_flag & MNT_SOFTDEP) && fs == VFSTOUFS(mp)->um_fs) 4481 break; 4482 /* 4483 * Find the last inode in the block with dependencies. 4484 */ 4485 firstino = inodedep->id_ino & ~(INOPB(fs) - 1); 4486 for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--) 4487 if (inodedep_lookup(fs, lastino, 0, &inodedep) != 0) 4488 break; 4489 /* 4490 * Asynchronously push all but the last inode with dependencies. 4491 * Synchronously push the last inode with dependencies to ensure 4492 * that the inode block gets written to free up the inodedeps. 4493 */ 4494 for (ino = firstino; ino <= lastino; ino++) { 4495 if (inodedep_lookup(fs, ino, 0, &inodedep) == 0) 4496 continue; 4497 FREE_LOCK(&lk); 4498 if ((error = VFS_VGET(mp, ino, &vp)) != 0) { 4499 softdep_error("clear_inodedeps: vget", error); 4500 return; 4501 } 4502 if (ino == lastino) { 4503 if ((error = VOP_FSYNC(vp, p->p_ucred, MNT_WAIT, p))) 4504 softdep_error("clear_inodedeps: fsync1", error); 4505 } else { 4506 if ((error = VOP_FSYNC(vp, p->p_ucred, MNT_NOWAIT, p))) 4507 softdep_error("clear_inodedeps: fsync2", error); 4508 drain_output(vp, 0); 4509 } 4510 vput(vp); 4511 ACQUIRE_LOCK(&lk); 4512 } 4513 FREE_LOCK(&lk); 4514 } 4515 4516 /* 4517 * Function to determine if the buffer has outstanding dependencies 4518 * that will cause a roll-back if the buffer is written. If wantcount 4519 * is set, return number of dependencies, otherwise just yes or no. 4520 */ 4521 static int 4522 softdep_count_dependencies(bp, wantcount) 4523 struct buf *bp; 4524 int wantcount; 4525 { 4526 struct worklist *wk; 4527 struct inodedep *inodedep; 4528 struct indirdep *indirdep; 4529 struct allocindir *aip; 4530 struct pagedep *pagedep; 4531 struct diradd *dap; 4532 int i, retval; 4533 4534 retval = 0; 4535 ACQUIRE_LOCK(&lk); 4536 for (wk = LIST_FIRST(&bp->b_dep); wk; wk = LIST_NEXT(wk, wk_list)) { 4537 switch (wk->wk_type) { 4538 4539 case D_INODEDEP: 4540 inodedep = WK_INODEDEP(wk); 4541 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 4542 /* bitmap allocation dependency */ 4543 retval += 1; 4544 if (!wantcount) 4545 goto out; 4546 } 4547 if (TAILQ_FIRST(&inodedep->id_inoupdt)) { 4548 /* direct block pointer dependency */ 4549 retval += 1; 4550 if (!wantcount) 4551 goto out; 4552 } 4553 continue; 4554 4555 case D_INDIRDEP: 4556 indirdep = WK_INDIRDEP(wk); 4557 for (aip = LIST_FIRST(&indirdep->ir_deplisthd); 4558 aip; aip = LIST_NEXT(aip, ai_next)) { 4559 /* indirect block pointer dependency */ 4560 retval += 1; 4561 if (!wantcount) 4562 goto out; 4563 } 4564 continue; 4565 4566 case D_PAGEDEP: 4567 pagedep = WK_PAGEDEP(wk); 4568 for (i = 0; i < DAHASHSZ; i++) { 4569 for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); 4570 dap; dap = LIST_NEXT(dap, da_pdlist)) { 4571 /* directory entry dependency */ 4572 retval += 1; 4573 if (!wantcount) 4574 goto out; 4575 } 4576 } 4577 continue; 4578 4579 case D_BMSAFEMAP: 4580 case D_ALLOCDIRECT: 4581 case D_ALLOCINDIR: 4582 case D_MKDIR: 4583 /* never a dependency on these blocks */ 4584 continue; 4585 4586 default: 4587 panic("softdep_check_for_rollback: Unexpected type %s", 4588 TYPENAME(wk->wk_type)); 4589 /* NOTREACHED */ 4590 } 4591 } 4592 out: 4593 FREE_LOCK(&lk); 4594 return retval; 4595 } 4596 4597 /* 4598 * Acquire exclusive access to a buffer. 4599 * Must be called with splbio blocked. 4600 * Return 1 if buffer was acquired. 4601 */ 4602 static int 4603 getdirtybuf(bpp, waitfor) 4604 struct buf **bpp; 4605 int waitfor; 4606 { 4607 struct buf *bp; 4608 4609 for (;;) { 4610 if ((bp = *bpp) == NULL) 4611 return (0); 4612 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) == 0) { 4613 if ((bp->b_xflags & BX_BKGRDINPROG) == 0) 4614 break; 4615 BUF_UNLOCK(bp); 4616 if (waitfor != MNT_WAIT) 4617 return (0); 4618 bp->b_xflags |= BX_BKGRDWAIT; 4619 FREE_LOCK_INTERLOCKED(&lk); 4620 tsleep(&bp->b_xflags, PRIBIO, "getbuf", 0); 4621 ACQUIRE_LOCK_INTERLOCKED(&lk); 4622 continue; 4623 } 4624 if (waitfor != MNT_WAIT) 4625 return (0); 4626 FREE_LOCK_INTERLOCKED(&lk); 4627 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL) != ENOLCK) 4628 panic("getdirtybuf: inconsistent lock"); 4629 ACQUIRE_LOCK_INTERLOCKED(&lk); 4630 } 4631 if ((bp->b_flags & B_DELWRI) == 0) { 4632 BUF_UNLOCK(bp); 4633 return (0); 4634 } 4635 bremfree(bp); 4636 return (1); 4637 } 4638 4639 /* 4640 * Wait for pending output on a vnode to complete. 4641 * Must be called with vnode locked. 4642 */ 4643 static void 4644 drain_output(vp, islocked) 4645 struct vnode *vp; 4646 int islocked; 4647 { 4648 4649 if (!islocked) 4650 ACQUIRE_LOCK(&lk); 4651 while (vp->v_numoutput) { 4652 vp->v_flag |= VBWAIT; 4653 FREE_LOCK_INTERLOCKED(&lk); 4654 tsleep((caddr_t)&vp->v_numoutput, PRIBIO + 1, "drainvp", 0); 4655 ACQUIRE_LOCK_INTERLOCKED(&lk); 4656 } 4657 if (!islocked) 4658 FREE_LOCK(&lk); 4659 } 4660 4661 /* 4662 * Called whenever a buffer that is being invalidated or reallocated 4663 * contains dependencies. This should only happen if an I/O error has 4664 * occurred. The routine is called with the buffer locked. 4665 */ 4666 static void 4667 softdep_deallocate_dependencies(bp) 4668 struct buf *bp; 4669 { 4670 4671 if ((bp->b_ioflags & BIO_ERROR) == 0) 4672 panic("softdep_deallocate_dependencies: dangling deps"); 4673 softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error); 4674 panic("softdep_deallocate_dependencies: unrecovered I/O error"); 4675 } 4676 4677 /* 4678 * Function to handle asynchronous write errors in the filesystem. 4679 */ 4680 void 4681 softdep_error(func, error) 4682 char *func; 4683 int error; 4684 { 4685 4686 /* XXX should do something better! */ 4687 printf("%s: got error %d while accessing filesystem\n", func, error); 4688 } 4689