1 /*- 2 * Copyright 1998, 2000 Marshall Kirk McKusick. All Rights Reserved. 3 * 4 * The soft updates code is derived from the appendix of a University 5 * of Michigan technical report (Gregory R. Ganger and Yale N. Patt, 6 * "Soft Updates: A Solution to the Metadata Update Problem in File 7 * Systems", CSE-TR-254-95, August 1995). 8 * 9 * Further information about soft updates can be obtained from: 10 * 11 * Marshall Kirk McKusick http://www.mckusick.com/softdep/ 12 * 1614 Oxford Street mckusick@mckusick.com 13 * Berkeley, CA 94709-1608 +1-510-843-9542 14 * USA 15 * 16 * Redistribution and use in source and binary forms, with or without 17 * modification, are permitted provided that the following conditions 18 * are met: 19 * 20 * 1. Redistributions of source code must retain the above copyright 21 * notice, this list of conditions and the following disclaimer. 22 * 2. Redistributions in binary form must reproduce the above copyright 23 * notice, this list of conditions and the following disclaimer in the 24 * documentation and/or other materials provided with the distribution. 25 * 26 * THIS SOFTWARE IS PROVIDED BY MARSHALL KIRK MCKUSICK ``AS IS'' AND ANY 27 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 28 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 29 * DISCLAIMED. IN NO EVENT SHALL MARSHALL KIRK MCKUSICK BE LIABLE FOR 30 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * from: @(#)ffs_softdep.c 9.59 (McKusick) 6/21/00 39 */ 40 41 #include <sys/cdefs.h> 42 __FBSDID("$FreeBSD$"); 43 44 /* 45 * For now we want the safety net that the DEBUG flag provides. 46 */ 47 #ifndef DEBUG 48 #define DEBUG 49 #endif 50 51 #include <sys/param.h> 52 #include <sys/kernel.h> 53 #include <sys/systm.h> 54 #include <sys/bio.h> 55 #include <sys/buf.h> 56 #include <sys/kdb.h> 57 #include <sys/kthread.h> 58 #include <sys/lock.h> 59 #include <sys/malloc.h> 60 #include <sys/mount.h> 61 #include <sys/mutex.h> 62 #include <sys/proc.h> 63 #include <sys/stat.h> 64 #include <sys/sysctl.h> 65 #include <sys/syslog.h> 66 #include <sys/vnode.h> 67 #include <sys/conf.h> 68 #include <ufs/ufs/dir.h> 69 #include <ufs/ufs/extattr.h> 70 #include <ufs/ufs/quota.h> 71 #include <ufs/ufs/inode.h> 72 #include <ufs/ufs/ufsmount.h> 73 #include <ufs/ffs/fs.h> 74 #include <ufs/ffs/softdep.h> 75 #include <ufs/ffs/ffs_extern.h> 76 #include <ufs/ufs/ufs_extern.h> 77 78 #include <vm/vm.h> 79 80 #include "opt_ffs.h" 81 #include "opt_quota.h" 82 83 #ifndef SOFTUPDATES 84 85 int 86 softdep_flushfiles(oldmnt, flags, td) 87 struct mount *oldmnt; 88 int flags; 89 struct thread *td; 90 { 91 92 panic("softdep_flushfiles called"); 93 } 94 95 int 96 softdep_mount(devvp, mp, fs, cred) 97 struct vnode *devvp; 98 struct mount *mp; 99 struct fs *fs; 100 struct ucred *cred; 101 { 102 103 return (0); 104 } 105 106 void 107 softdep_initialize() 108 { 109 110 return; 111 } 112 113 void 114 softdep_uninitialize() 115 { 116 117 return; 118 } 119 120 void 121 softdep_setup_inomapdep(bp, ip, newinum) 122 struct buf *bp; 123 struct inode *ip; 124 ino_t newinum; 125 { 126 127 panic("softdep_setup_inomapdep called"); 128 } 129 130 void 131 softdep_setup_blkmapdep(bp, mp, newblkno) 132 struct buf *bp; 133 struct mount *mp; 134 ufs2_daddr_t newblkno; 135 { 136 137 panic("softdep_setup_blkmapdep called"); 138 } 139 140 void 141 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 142 struct inode *ip; 143 ufs_lbn_t lbn; 144 ufs2_daddr_t newblkno; 145 ufs2_daddr_t oldblkno; 146 long newsize; 147 long oldsize; 148 struct buf *bp; 149 { 150 151 panic("softdep_setup_allocdirect called"); 152 } 153 154 void 155 softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 156 struct inode *ip; 157 ufs_lbn_t lbn; 158 ufs2_daddr_t newblkno; 159 ufs2_daddr_t oldblkno; 160 long newsize; 161 long oldsize; 162 struct buf *bp; 163 { 164 165 panic("softdep_setup_allocext called"); 166 } 167 168 void 169 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 170 struct inode *ip; 171 ufs_lbn_t lbn; 172 struct buf *bp; 173 int ptrno; 174 ufs2_daddr_t newblkno; 175 ufs2_daddr_t oldblkno; 176 struct buf *nbp; 177 { 178 179 panic("softdep_setup_allocindir_page called"); 180 } 181 182 void 183 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 184 struct buf *nbp; 185 struct inode *ip; 186 struct buf *bp; 187 int ptrno; 188 ufs2_daddr_t newblkno; 189 { 190 191 panic("softdep_setup_allocindir_meta called"); 192 } 193 194 void 195 softdep_setup_freeblocks(ip, length, flags) 196 struct inode *ip; 197 off_t length; 198 int flags; 199 { 200 201 panic("softdep_setup_freeblocks called"); 202 } 203 204 void 205 softdep_freefile(pvp, ino, mode) 206 struct vnode *pvp; 207 ino_t ino; 208 int mode; 209 { 210 211 panic("softdep_freefile called"); 212 } 213 214 int 215 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk) 216 struct buf *bp; 217 struct inode *dp; 218 off_t diroffset; 219 ino_t newinum; 220 struct buf *newdirbp; 221 int isnewblk; 222 { 223 224 panic("softdep_setup_directory_add called"); 225 } 226 227 void 228 softdep_change_directoryentry_offset(dp, base, oldloc, newloc, entrysize) 229 struct inode *dp; 230 caddr_t base; 231 caddr_t oldloc; 232 caddr_t newloc; 233 int entrysize; 234 { 235 236 panic("softdep_change_directoryentry_offset called"); 237 } 238 239 void 240 softdep_setup_remove(bp, dp, ip, isrmdir) 241 struct buf *bp; 242 struct inode *dp; 243 struct inode *ip; 244 int isrmdir; 245 { 246 247 panic("softdep_setup_remove called"); 248 } 249 250 void 251 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 252 struct buf *bp; 253 struct inode *dp; 254 struct inode *ip; 255 ino_t newinum; 256 int isrmdir; 257 { 258 259 panic("softdep_setup_directory_change called"); 260 } 261 262 void 263 softdep_change_linkcnt(ip) 264 struct inode *ip; 265 { 266 267 panic("softdep_change_linkcnt called"); 268 } 269 270 void 271 softdep_load_inodeblock(ip) 272 struct inode *ip; 273 { 274 275 panic("softdep_load_inodeblock called"); 276 } 277 278 void 279 softdep_update_inodeblock(ip, bp, waitfor) 280 struct inode *ip; 281 struct buf *bp; 282 int waitfor; 283 { 284 285 panic("softdep_update_inodeblock called"); 286 } 287 288 int 289 softdep_fsync(vp) 290 struct vnode *vp; /* the "in_core" copy of the inode */ 291 { 292 293 return (0); 294 } 295 296 void 297 softdep_fsync_mountdev(vp) 298 struct vnode *vp; 299 { 300 301 return; 302 } 303 304 int 305 softdep_flushworklist(oldmnt, countp, td) 306 struct mount *oldmnt; 307 int *countp; 308 struct thread *td; 309 { 310 311 *countp = 0; 312 return (0); 313 } 314 315 int 316 softdep_sync_metadata(struct vnode *vp) 317 { 318 319 return (0); 320 } 321 322 int 323 softdep_slowdown(vp) 324 struct vnode *vp; 325 { 326 327 panic("softdep_slowdown called"); 328 } 329 330 void 331 softdep_releasefile(ip) 332 struct inode *ip; /* inode with the zero effective link count */ 333 { 334 335 panic("softdep_releasefile called"); 336 } 337 338 int 339 softdep_request_cleanup(fs, vp) 340 struct fs *fs; 341 struct vnode *vp; 342 { 343 344 return (0); 345 } 346 347 int 348 softdep_check_suspend(struct mount *mp, 349 struct vnode *devvp, 350 int softdep_deps, 351 int softdep_accdeps, 352 int secondary_writes, 353 int secondary_accwrites) 354 { 355 struct bufobj *bo; 356 int error; 357 358 (void) softdep_deps, 359 (void) softdep_accdeps; 360 361 ASSERT_VI_LOCKED(devvp, "softdep_check_suspend"); 362 bo = &devvp->v_bufobj; 363 364 for (;;) { 365 if (!MNT_ITRYLOCK(mp)) { 366 VI_UNLOCK(devvp); 367 MNT_ILOCK(mp); 368 MNT_IUNLOCK(mp); 369 VI_LOCK(devvp); 370 continue; 371 } 372 if (mp->mnt_secondary_writes != 0) { 373 VI_UNLOCK(devvp); 374 msleep(&mp->mnt_secondary_writes, 375 MNT_MTX(mp), 376 (PUSER - 1) | PDROP, "secwr", 0); 377 VI_LOCK(devvp); 378 continue; 379 } 380 break; 381 } 382 383 /* 384 * Reasons for needing more work before suspend: 385 * - Dirty buffers on devvp. 386 * - Secondary writes occurred after start of vnode sync loop 387 */ 388 error = 0; 389 if (bo->bo_numoutput > 0 || 390 bo->bo_dirty.bv_cnt > 0 || 391 secondary_writes != 0 || 392 mp->mnt_secondary_writes != 0 || 393 secondary_accwrites != mp->mnt_secondary_accwrites) 394 error = EAGAIN; 395 VI_UNLOCK(devvp); 396 return (error); 397 } 398 399 void 400 softdep_get_depcounts(struct mount *mp, 401 int *softdepactivep, 402 int *softdepactiveaccp) 403 { 404 (void) mp; 405 *softdepactivep = 0; 406 *softdepactiveaccp = 0; 407 } 408 409 #else 410 /* 411 * These definitions need to be adapted to the system to which 412 * this file is being ported. 413 */ 414 /* 415 * malloc types defined for the softdep system. 416 */ 417 static MALLOC_DEFINE(M_PAGEDEP, "pagedep","File page dependencies"); 418 static MALLOC_DEFINE(M_INODEDEP, "inodedep","Inode dependencies"); 419 static MALLOC_DEFINE(M_NEWBLK, "newblk","New block allocation"); 420 static MALLOC_DEFINE(M_BMSAFEMAP, "bmsafemap","Block or frag allocated from cyl group map"); 421 static MALLOC_DEFINE(M_ALLOCDIRECT, "allocdirect","Block or frag dependency for an inode"); 422 static MALLOC_DEFINE(M_INDIRDEP, "indirdep","Indirect block dependencies"); 423 static MALLOC_DEFINE(M_ALLOCINDIR, "allocindir","Block dependency for an indirect block"); 424 static MALLOC_DEFINE(M_FREEFRAG, "freefrag","Previously used frag for an inode"); 425 static MALLOC_DEFINE(M_FREEBLKS, "freeblks","Blocks freed from an inode"); 426 static MALLOC_DEFINE(M_FREEFILE, "freefile","Inode deallocated"); 427 static MALLOC_DEFINE(M_DIRADD, "diradd","New directory entry"); 428 static MALLOC_DEFINE(M_MKDIR, "mkdir","New directory"); 429 static MALLOC_DEFINE(M_DIRREM, "dirrem","Directory entry deleted"); 430 static MALLOC_DEFINE(M_NEWDIRBLK, "newdirblk","Unclaimed new directory block"); 431 static MALLOC_DEFINE(M_SAVEDINO, "savedino","Saved inodes"); 432 433 #define M_SOFTDEP_FLAGS (M_WAITOK | M_USE_RESERVE) 434 435 #define D_PAGEDEP 0 436 #define D_INODEDEP 1 437 #define D_NEWBLK 2 438 #define D_BMSAFEMAP 3 439 #define D_ALLOCDIRECT 4 440 #define D_INDIRDEP 5 441 #define D_ALLOCINDIR 6 442 #define D_FREEFRAG 7 443 #define D_FREEBLKS 8 444 #define D_FREEFILE 9 445 #define D_DIRADD 10 446 #define D_MKDIR 11 447 #define D_DIRREM 12 448 #define D_NEWDIRBLK 13 449 #define D_LAST D_NEWDIRBLK 450 451 /* 452 * translate from workitem type to memory type 453 * MUST match the defines above, such that memtype[D_XXX] == M_XXX 454 */ 455 static struct malloc_type *memtype[] = { 456 M_PAGEDEP, 457 M_INODEDEP, 458 M_NEWBLK, 459 M_BMSAFEMAP, 460 M_ALLOCDIRECT, 461 M_INDIRDEP, 462 M_ALLOCINDIR, 463 M_FREEFRAG, 464 M_FREEBLKS, 465 M_FREEFILE, 466 M_DIRADD, 467 M_MKDIR, 468 M_DIRREM, 469 M_NEWDIRBLK 470 }; 471 472 #define DtoM(type) (memtype[type]) 473 474 /* 475 * Names of malloc types. 476 */ 477 #define TYPENAME(type) \ 478 ((unsigned)(type) < D_LAST ? memtype[type]->ks_shortdesc : "???") 479 /* 480 * End system adaptation definitions. 481 */ 482 483 /* 484 * Forward declarations. 485 */ 486 struct inodedep_hashhead; 487 struct newblk_hashhead; 488 struct pagedep_hashhead; 489 490 /* 491 * Internal function prototypes. 492 */ 493 static void softdep_error(char *, int); 494 static void drain_output(struct vnode *); 495 static struct buf *getdirtybuf(struct buf *, struct mtx *, int); 496 static void clear_remove(struct thread *); 497 static void clear_inodedeps(struct thread *); 498 static int flush_pagedep_deps(struct vnode *, struct mount *, 499 struct diraddhd *); 500 static int flush_inodedep_deps(struct mount *, ino_t); 501 static int flush_deplist(struct allocdirectlst *, int, int *); 502 static int handle_written_filepage(struct pagedep *, struct buf *); 503 static void diradd_inode_written(struct diradd *, struct inodedep *); 504 static int handle_written_inodeblock(struct inodedep *, struct buf *); 505 static void handle_allocdirect_partdone(struct allocdirect *); 506 static void handle_allocindir_partdone(struct allocindir *); 507 static void initiate_write_filepage(struct pagedep *, struct buf *); 508 static void handle_written_mkdir(struct mkdir *, int); 509 static void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *); 510 static void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *); 511 static void handle_workitem_freefile(struct freefile *); 512 static void handle_workitem_remove(struct dirrem *, struct vnode *); 513 static struct dirrem *newdirrem(struct buf *, struct inode *, 514 struct inode *, int, struct dirrem **); 515 static void free_diradd(struct diradd *); 516 static void free_allocindir(struct allocindir *, struct inodedep *); 517 static void free_newdirblk(struct newdirblk *); 518 static int indir_trunc(struct freeblks *, ufs2_daddr_t, int, ufs_lbn_t, 519 ufs2_daddr_t *); 520 static void deallocate_dependencies(struct buf *, struct inodedep *); 521 static void free_allocdirect(struct allocdirectlst *, 522 struct allocdirect *, int); 523 static int check_inode_unwritten(struct inodedep *); 524 static int free_inodedep(struct inodedep *); 525 static void handle_workitem_freeblocks(struct freeblks *, int); 526 static void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *); 527 static void setup_allocindir_phase2(struct buf *, struct inode *, 528 struct allocindir *); 529 static struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t, 530 ufs2_daddr_t); 531 static void handle_workitem_freefrag(struct freefrag *); 532 static struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long); 533 static void allocdirect_merge(struct allocdirectlst *, 534 struct allocdirect *, struct allocdirect *); 535 static struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *); 536 static int newblk_find(struct newblk_hashhead *, struct fs *, ufs2_daddr_t, 537 struct newblk **); 538 static int newblk_lookup(struct fs *, ufs2_daddr_t, int, struct newblk **); 539 static int inodedep_find(struct inodedep_hashhead *, struct fs *, ino_t, 540 struct inodedep **); 541 static int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **); 542 static int pagedep_lookup(struct inode *, ufs_lbn_t, int, struct pagedep **); 543 static int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t, 544 struct mount *mp, int, struct pagedep **); 545 static void pause_timer(void *); 546 static int request_cleanup(struct mount *, int); 547 static int process_worklist_item(struct mount *, int); 548 static void add_to_worklist(struct worklist *); 549 static void softdep_flush(void); 550 static int softdep_speedup(void); 551 552 /* 553 * Exported softdep operations. 554 */ 555 static void softdep_disk_io_initiation(struct buf *); 556 static void softdep_disk_write_complete(struct buf *); 557 static void softdep_deallocate_dependencies(struct buf *); 558 static int softdep_count_dependencies(struct buf *bp, int); 559 560 static struct mtx lk; 561 MTX_SYSINIT(softdep_lock, &lk, "Softdep Lock", MTX_DEF); 562 563 #define TRY_ACQUIRE_LOCK(lk) mtx_trylock(lk) 564 #define ACQUIRE_LOCK(lk) mtx_lock(lk) 565 #define FREE_LOCK(lk) mtx_unlock(lk) 566 567 /* 568 * Worklist queue management. 569 * These routines require that the lock be held. 570 */ 571 #ifndef /* NOT */ DEBUG 572 #define WORKLIST_INSERT(head, item) do { \ 573 (item)->wk_state |= ONWORKLIST; \ 574 LIST_INSERT_HEAD(head, item, wk_list); \ 575 } while (0) 576 #define WORKLIST_REMOVE(item) do { \ 577 (item)->wk_state &= ~ONWORKLIST; \ 578 LIST_REMOVE(item, wk_list); \ 579 } while (0) 580 #else /* DEBUG */ 581 static void worklist_insert(struct workhead *, struct worklist *); 582 static void worklist_remove(struct worklist *); 583 584 #define WORKLIST_INSERT(head, item) worklist_insert(head, item) 585 #define WORKLIST_REMOVE(item) worklist_remove(item) 586 587 static void 588 worklist_insert(head, item) 589 struct workhead *head; 590 struct worklist *item; 591 { 592 593 mtx_assert(&lk, MA_OWNED); 594 if (item->wk_state & ONWORKLIST) 595 panic("worklist_insert: already on list"); 596 item->wk_state |= ONWORKLIST; 597 LIST_INSERT_HEAD(head, item, wk_list); 598 } 599 600 static void 601 worklist_remove(item) 602 struct worklist *item; 603 { 604 605 mtx_assert(&lk, MA_OWNED); 606 if ((item->wk_state & ONWORKLIST) == 0) 607 panic("worklist_remove: not on list"); 608 item->wk_state &= ~ONWORKLIST; 609 LIST_REMOVE(item, wk_list); 610 } 611 #endif /* DEBUG */ 612 613 /* 614 * Routines for tracking and managing workitems. 615 */ 616 static void workitem_free(struct worklist *, int); 617 static void workitem_alloc(struct worklist *, int, struct mount *); 618 619 #define WORKITEM_FREE(item, type) workitem_free((struct worklist *)(item), (type)) 620 621 static void 622 workitem_free(item, type) 623 struct worklist *item; 624 int type; 625 { 626 struct ufsmount *ump; 627 mtx_assert(&lk, MA_OWNED); 628 629 #ifdef DEBUG 630 if (item->wk_state & ONWORKLIST) 631 panic("workitem_free: still on list"); 632 if (item->wk_type != type) 633 panic("workitem_free: type mismatch"); 634 #endif 635 ump = VFSTOUFS(item->wk_mp); 636 if (--ump->softdep_deps == 0 && ump->softdep_req) 637 wakeup(&ump->softdep_deps); 638 FREE(item, DtoM(type)); 639 } 640 641 static void 642 workitem_alloc(item, type, mp) 643 struct worklist *item; 644 int type; 645 struct mount *mp; 646 { 647 item->wk_type = type; 648 item->wk_mp = mp; 649 item->wk_state = 0; 650 ACQUIRE_LOCK(&lk); 651 VFSTOUFS(mp)->softdep_deps++; 652 VFSTOUFS(mp)->softdep_accdeps++; 653 FREE_LOCK(&lk); 654 } 655 656 /* 657 * Workitem queue management 658 */ 659 static int max_softdeps; /* maximum number of structs before slowdown */ 660 static int maxindirdeps = 50; /* max number of indirdeps before slowdown */ 661 static int tickdelay = 2; /* number of ticks to pause during slowdown */ 662 static int proc_waiting; /* tracks whether we have a timeout posted */ 663 static int *stat_countp; /* statistic to count in proc_waiting timeout */ 664 static struct callout_handle handle; /* handle on posted proc_waiting timeout */ 665 static int req_pending; 666 static int req_clear_inodedeps; /* syncer process flush some inodedeps */ 667 #define FLUSH_INODES 1 668 static int req_clear_remove; /* syncer process flush some freeblks */ 669 #define FLUSH_REMOVE 2 670 #define FLUSH_REMOVE_WAIT 3 671 /* 672 * runtime statistics 673 */ 674 static int stat_worklist_push; /* number of worklist cleanups */ 675 static int stat_blk_limit_push; /* number of times block limit neared */ 676 static int stat_ino_limit_push; /* number of times inode limit neared */ 677 static int stat_blk_limit_hit; /* number of times block slowdown imposed */ 678 static int stat_ino_limit_hit; /* number of times inode slowdown imposed */ 679 static int stat_sync_limit_hit; /* number of synchronous slowdowns imposed */ 680 static int stat_indir_blk_ptrs; /* bufs redirtied as indir ptrs not written */ 681 static int stat_inode_bitmap; /* bufs redirtied as inode bitmap not written */ 682 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */ 683 static int stat_dir_entry; /* bufs redirtied as dir entry cannot write */ 684 685 SYSCTL_INT(_debug, OID_AUTO, max_softdeps, CTLFLAG_RW, &max_softdeps, 0, ""); 686 SYSCTL_INT(_debug, OID_AUTO, tickdelay, CTLFLAG_RW, &tickdelay, 0, ""); 687 SYSCTL_INT(_debug, OID_AUTO, maxindirdeps, CTLFLAG_RW, &maxindirdeps, 0, ""); 688 SYSCTL_INT(_debug, OID_AUTO, worklist_push, CTLFLAG_RW, &stat_worklist_push, 0,""); 689 SYSCTL_INT(_debug, OID_AUTO, blk_limit_push, CTLFLAG_RW, &stat_blk_limit_push, 0,""); 690 SYSCTL_INT(_debug, OID_AUTO, ino_limit_push, CTLFLAG_RW, &stat_ino_limit_push, 0,""); 691 SYSCTL_INT(_debug, OID_AUTO, blk_limit_hit, CTLFLAG_RW, &stat_blk_limit_hit, 0, ""); 692 SYSCTL_INT(_debug, OID_AUTO, ino_limit_hit, CTLFLAG_RW, &stat_ino_limit_hit, 0, ""); 693 SYSCTL_INT(_debug, OID_AUTO, sync_limit_hit, CTLFLAG_RW, &stat_sync_limit_hit, 0, ""); 694 SYSCTL_INT(_debug, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW, &stat_indir_blk_ptrs, 0, ""); 695 SYSCTL_INT(_debug, OID_AUTO, inode_bitmap, CTLFLAG_RW, &stat_inode_bitmap, 0, ""); 696 SYSCTL_INT(_debug, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW, &stat_direct_blk_ptrs, 0, ""); 697 SYSCTL_INT(_debug, OID_AUTO, dir_entry, CTLFLAG_RW, &stat_dir_entry, 0, ""); 698 /* SYSCTL_INT(_debug, OID_AUTO, worklist_num, CTLFLAG_RD, &softdep_on_worklist, 0, ""); */ 699 700 SYSCTL_DECL(_vfs_ffs); 701 702 static int compute_summary_at_mount = 0; /* Whether to recompute the summary at mount time */ 703 SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW, 704 &compute_summary_at_mount, 0, "Recompute summary at mount"); 705 706 static struct proc *softdepproc; 707 static struct kproc_desc softdep_kp = { 708 "softdepflush", 709 softdep_flush, 710 &softdepproc 711 }; 712 SYSINIT(sdproc, SI_SUB_KTHREAD_UPDATE, SI_ORDER_ANY, kproc_start, &softdep_kp) 713 714 static void 715 softdep_flush(void) 716 { 717 struct mount *nmp; 718 struct mount *mp; 719 struct ufsmount *ump; 720 struct thread *td; 721 int remaining; 722 int vfslocked; 723 724 td = curthread; 725 td->td_pflags |= TDP_NORUNNINGBUF; 726 727 for (;;) { 728 kproc_suspend_check(softdepproc); 729 vfslocked = VFS_LOCK_GIANT((struct mount *)NULL); 730 ACQUIRE_LOCK(&lk); 731 /* 732 * If requested, try removing inode or removal dependencies. 733 */ 734 if (req_clear_inodedeps) { 735 clear_inodedeps(td); 736 req_clear_inodedeps -= 1; 737 wakeup_one(&proc_waiting); 738 } 739 if (req_clear_remove) { 740 clear_remove(td); 741 req_clear_remove -= 1; 742 wakeup_one(&proc_waiting); 743 } 744 FREE_LOCK(&lk); 745 VFS_UNLOCK_GIANT(vfslocked); 746 remaining = 0; 747 mtx_lock(&mountlist_mtx); 748 for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) { 749 nmp = TAILQ_NEXT(mp, mnt_list); 750 if ((mp->mnt_flag & MNT_SOFTDEP) == 0) 751 continue; 752 if (vfs_busy(mp, LK_NOWAIT, &mountlist_mtx, td)) 753 continue; 754 vfslocked = VFS_LOCK_GIANT(mp); 755 softdep_process_worklist(mp, 0); 756 ump = VFSTOUFS(mp); 757 remaining += ump->softdep_on_worklist - 758 ump->softdep_on_worklist_inprogress; 759 VFS_UNLOCK_GIANT(vfslocked); 760 mtx_lock(&mountlist_mtx); 761 nmp = TAILQ_NEXT(mp, mnt_list); 762 vfs_unbusy(mp, td); 763 } 764 mtx_unlock(&mountlist_mtx); 765 if (remaining) 766 continue; 767 ACQUIRE_LOCK(&lk); 768 if (!req_pending) 769 msleep(&req_pending, &lk, PVM, "sdflush", hz); 770 req_pending = 0; 771 FREE_LOCK(&lk); 772 } 773 } 774 775 static int 776 softdep_speedup(void) 777 { 778 779 mtx_assert(&lk, MA_OWNED); 780 if (req_pending == 0) { 781 req_pending = 1; 782 wakeup(&req_pending); 783 } 784 785 return speedup_syncer(); 786 } 787 788 /* 789 * Add an item to the end of the work queue. 790 * This routine requires that the lock be held. 791 * This is the only routine that adds items to the list. 792 * The following routine is the only one that removes items 793 * and does so in order from first to last. 794 */ 795 static void 796 add_to_worklist(wk) 797 struct worklist *wk; 798 { 799 struct ufsmount *ump; 800 801 mtx_assert(&lk, MA_OWNED); 802 ump = VFSTOUFS(wk->wk_mp); 803 if (wk->wk_state & ONWORKLIST) 804 panic("add_to_worklist: already on list"); 805 wk->wk_state |= ONWORKLIST; 806 if (LIST_EMPTY(&ump->softdep_workitem_pending)) 807 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list); 808 else 809 LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list); 810 ump->softdep_worklist_tail = wk; 811 ump->softdep_on_worklist += 1; 812 } 813 814 /* 815 * Process that runs once per second to handle items in the background queue. 816 * 817 * Note that we ensure that everything is done in the order in which they 818 * appear in the queue. The code below depends on this property to ensure 819 * that blocks of a file are freed before the inode itself is freed. This 820 * ordering ensures that no new <vfsid, inum, lbn> triples will be generated 821 * until all the old ones have been purged from the dependency lists. 822 */ 823 int 824 softdep_process_worklist(mp, full) 825 struct mount *mp; 826 int full; 827 { 828 struct thread *td = curthread; 829 int cnt, matchcnt, loopcount; 830 struct ufsmount *ump; 831 long starttime; 832 833 KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp")); 834 /* 835 * Record the process identifier of our caller so that we can give 836 * this process preferential treatment in request_cleanup below. 837 */ 838 matchcnt = 0; 839 ump = VFSTOUFS(mp); 840 ACQUIRE_LOCK(&lk); 841 loopcount = 1; 842 starttime = time_second; 843 while (ump->softdep_on_worklist > 0) { 844 if ((cnt = process_worklist_item(mp, 0)) == -1) 845 break; 846 else 847 matchcnt += cnt; 848 /* 849 * If requested, try removing inode or removal dependencies. 850 */ 851 if (req_clear_inodedeps) { 852 clear_inodedeps(td); 853 req_clear_inodedeps -= 1; 854 wakeup_one(&proc_waiting); 855 } 856 if (req_clear_remove) { 857 clear_remove(td); 858 req_clear_remove -= 1; 859 wakeup_one(&proc_waiting); 860 } 861 /* 862 * We do not generally want to stop for buffer space, but if 863 * we are really being a buffer hog, we will stop and wait. 864 */ 865 if (loopcount++ % 128 == 0) { 866 FREE_LOCK(&lk); 867 bwillwrite(); 868 ACQUIRE_LOCK(&lk); 869 } 870 /* 871 * Never allow processing to run for more than one 872 * second. Otherwise the other mountpoints may get 873 * excessively backlogged. 874 */ 875 if (!full && starttime != time_second) { 876 matchcnt = -1; 877 break; 878 } 879 } 880 FREE_LOCK(&lk); 881 return (matchcnt); 882 } 883 884 /* 885 * Process one item on the worklist. 886 */ 887 static int 888 process_worklist_item(mp, flags) 889 struct mount *mp; 890 int flags; 891 { 892 struct worklist *wk, *wkend; 893 struct ufsmount *ump; 894 struct vnode *vp; 895 int matchcnt = 0; 896 897 mtx_assert(&lk, MA_OWNED); 898 KASSERT(mp != NULL, ("process_worklist_item: NULL mp")); 899 /* 900 * If we are being called because of a process doing a 901 * copy-on-write, then it is not safe to write as we may 902 * recurse into the copy-on-write routine. 903 */ 904 if (curthread->td_pflags & TDP_COWINPROGRESS) 905 return (-1); 906 /* 907 * Normally we just process each item on the worklist in order. 908 * However, if we are in a situation where we cannot lock any 909 * inodes, we have to skip over any dirrem requests whose 910 * vnodes are resident and locked. 911 */ 912 ump = VFSTOUFS(mp); 913 vp = NULL; 914 LIST_FOREACH(wk, &ump->softdep_workitem_pending, wk_list) { 915 if (wk->wk_state & INPROGRESS) 916 continue; 917 if ((flags & LK_NOWAIT) == 0 || wk->wk_type != D_DIRREM) 918 break; 919 wk->wk_state |= INPROGRESS; 920 ump->softdep_on_worklist_inprogress++; 921 FREE_LOCK(&lk); 922 ffs_vget(mp, WK_DIRREM(wk)->dm_oldinum, 923 LK_NOWAIT | LK_EXCLUSIVE, &vp); 924 ACQUIRE_LOCK(&lk); 925 wk->wk_state &= ~INPROGRESS; 926 ump->softdep_on_worklist_inprogress--; 927 if (vp != NULL) 928 break; 929 } 930 if (wk == 0) 931 return (-1); 932 /* 933 * Remove the item to be processed. If we are removing the last 934 * item on the list, we need to recalculate the tail pointer. 935 * As this happens rarely and usually when the list is short, 936 * we just run down the list to find it rather than tracking it 937 * in the above loop. 938 */ 939 WORKLIST_REMOVE(wk); 940 if (wk == ump->softdep_worklist_tail) { 941 LIST_FOREACH(wkend, &ump->softdep_workitem_pending, wk_list) 942 if (LIST_NEXT(wkend, wk_list) == NULL) 943 break; 944 ump->softdep_worklist_tail = wkend; 945 } 946 ump->softdep_on_worklist -= 1; 947 FREE_LOCK(&lk); 948 if (vn_start_secondary_write(NULL, &mp, V_NOWAIT)) 949 panic("process_worklist_item: suspended filesystem"); 950 matchcnt++; 951 switch (wk->wk_type) { 952 953 case D_DIRREM: 954 /* removal of a directory entry */ 955 handle_workitem_remove(WK_DIRREM(wk), vp); 956 break; 957 958 case D_FREEBLKS: 959 /* releasing blocks and/or fragments from a file */ 960 handle_workitem_freeblocks(WK_FREEBLKS(wk), flags & LK_NOWAIT); 961 break; 962 963 case D_FREEFRAG: 964 /* releasing a fragment when replaced as a file grows */ 965 handle_workitem_freefrag(WK_FREEFRAG(wk)); 966 break; 967 968 case D_FREEFILE: 969 /* releasing an inode when its link count drops to 0 */ 970 handle_workitem_freefile(WK_FREEFILE(wk)); 971 break; 972 973 default: 974 panic("%s_process_worklist: Unknown type %s", 975 "softdep", TYPENAME(wk->wk_type)); 976 /* NOTREACHED */ 977 } 978 vn_finished_secondary_write(mp); 979 ACQUIRE_LOCK(&lk); 980 return (matchcnt); 981 } 982 983 /* 984 * Move dependencies from one buffer to another. 985 */ 986 void 987 softdep_move_dependencies(oldbp, newbp) 988 struct buf *oldbp; 989 struct buf *newbp; 990 { 991 struct worklist *wk, *wktail; 992 993 if (!LIST_EMPTY(&newbp->b_dep)) 994 panic("softdep_move_dependencies: need merge code"); 995 wktail = 0; 996 ACQUIRE_LOCK(&lk); 997 while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) { 998 LIST_REMOVE(wk, wk_list); 999 if (wktail == 0) 1000 LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list); 1001 else 1002 LIST_INSERT_AFTER(wktail, wk, wk_list); 1003 wktail = wk; 1004 } 1005 FREE_LOCK(&lk); 1006 } 1007 1008 /* 1009 * Purge the work list of all items associated with a particular mount point. 1010 */ 1011 int 1012 softdep_flushworklist(oldmnt, countp, td) 1013 struct mount *oldmnt; 1014 int *countp; 1015 struct thread *td; 1016 { 1017 struct vnode *devvp; 1018 int count, error = 0; 1019 struct ufsmount *ump; 1020 1021 /* 1022 * Alternately flush the block device associated with the mount 1023 * point and process any dependencies that the flushing 1024 * creates. We continue until no more worklist dependencies 1025 * are found. 1026 */ 1027 *countp = 0; 1028 ump = VFSTOUFS(oldmnt); 1029 devvp = ump->um_devvp; 1030 while ((count = softdep_process_worklist(oldmnt, 1)) > 0) { 1031 *countp += count; 1032 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 1033 error = VOP_FSYNC(devvp, MNT_WAIT, td); 1034 VOP_UNLOCK(devvp, 0); 1035 if (error) 1036 break; 1037 } 1038 return (error); 1039 } 1040 1041 int 1042 softdep_waitidle(struct mount *mp) 1043 { 1044 struct ufsmount *ump; 1045 int error; 1046 int i; 1047 1048 ump = VFSTOUFS(mp); 1049 ACQUIRE_LOCK(&lk); 1050 for (i = 0; i < 10 && ump->softdep_deps; i++) { 1051 ump->softdep_req = 1; 1052 if (ump->softdep_on_worklist) 1053 panic("softdep_waitidle: work added after flush."); 1054 msleep(&ump->softdep_deps, &lk, PVM, "softdeps", 1); 1055 } 1056 ump->softdep_req = 0; 1057 FREE_LOCK(&lk); 1058 error = 0; 1059 if (i == 10) { 1060 error = EBUSY; 1061 printf("softdep_waitidle: Failed to flush worklist for %p\n", 1062 mp); 1063 } 1064 1065 return (error); 1066 } 1067 1068 /* 1069 * Flush all vnodes and worklist items associated with a specified mount point. 1070 */ 1071 int 1072 softdep_flushfiles(oldmnt, flags, td) 1073 struct mount *oldmnt; 1074 int flags; 1075 struct thread *td; 1076 { 1077 int error, count, loopcnt; 1078 1079 error = 0; 1080 1081 /* 1082 * Alternately flush the vnodes associated with the mount 1083 * point and process any dependencies that the flushing 1084 * creates. In theory, this loop can happen at most twice, 1085 * but we give it a few extra just to be sure. 1086 */ 1087 for (loopcnt = 10; loopcnt > 0; loopcnt--) { 1088 /* 1089 * Do another flush in case any vnodes were brought in 1090 * as part of the cleanup operations. 1091 */ 1092 if ((error = ffs_flushfiles(oldmnt, flags, td)) != 0) 1093 break; 1094 if ((error = softdep_flushworklist(oldmnt, &count, td)) != 0 || 1095 count == 0) 1096 break; 1097 } 1098 /* 1099 * If we are unmounting then it is an error to fail. If we 1100 * are simply trying to downgrade to read-only, then filesystem 1101 * activity can keep us busy forever, so we just fail with EBUSY. 1102 */ 1103 if (loopcnt == 0) { 1104 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) 1105 panic("softdep_flushfiles: looping"); 1106 error = EBUSY; 1107 } 1108 if (!error) 1109 error = softdep_waitidle(oldmnt); 1110 return (error); 1111 } 1112 1113 /* 1114 * Structure hashing. 1115 * 1116 * There are three types of structures that can be looked up: 1117 * 1) pagedep structures identified by mount point, inode number, 1118 * and logical block. 1119 * 2) inodedep structures identified by mount point and inode number. 1120 * 3) newblk structures identified by mount point and 1121 * physical block number. 1122 * 1123 * The "pagedep" and "inodedep" dependency structures are hashed 1124 * separately from the file blocks and inodes to which they correspond. 1125 * This separation helps when the in-memory copy of an inode or 1126 * file block must be replaced. It also obviates the need to access 1127 * an inode or file page when simply updating (or de-allocating) 1128 * dependency structures. Lookup of newblk structures is needed to 1129 * find newly allocated blocks when trying to associate them with 1130 * their allocdirect or allocindir structure. 1131 * 1132 * The lookup routines optionally create and hash a new instance when 1133 * an existing entry is not found. 1134 */ 1135 #define DEPALLOC 0x0001 /* allocate structure if lookup fails */ 1136 #define NODELAY 0x0002 /* cannot do background work */ 1137 1138 /* 1139 * Structures and routines associated with pagedep caching. 1140 */ 1141 LIST_HEAD(pagedep_hashhead, pagedep) *pagedep_hashtbl; 1142 u_long pagedep_hash; /* size of hash table - 1 */ 1143 #define PAGEDEP_HASH(mp, inum, lbn) \ 1144 (&pagedep_hashtbl[((((register_t)(mp)) >> 13) + (inum) + (lbn)) & \ 1145 pagedep_hash]) 1146 1147 static int 1148 pagedep_find(pagedephd, ino, lbn, mp, flags, pagedeppp) 1149 struct pagedep_hashhead *pagedephd; 1150 ino_t ino; 1151 ufs_lbn_t lbn; 1152 struct mount *mp; 1153 int flags; 1154 struct pagedep **pagedeppp; 1155 { 1156 struct pagedep *pagedep; 1157 1158 LIST_FOREACH(pagedep, pagedephd, pd_hash) 1159 if (ino == pagedep->pd_ino && 1160 lbn == pagedep->pd_lbn && 1161 mp == pagedep->pd_list.wk_mp) 1162 break; 1163 if (pagedep) { 1164 *pagedeppp = pagedep; 1165 if ((flags & DEPALLOC) != 0 && 1166 (pagedep->pd_state & ONWORKLIST) == 0) 1167 return (0); 1168 return (1); 1169 } 1170 *pagedeppp = NULL; 1171 return (0); 1172 } 1173 /* 1174 * Look up a pagedep. Return 1 if found, 0 if not found or found 1175 * when asked to allocate but not associated with any buffer. 1176 * If not found, allocate if DEPALLOC flag is passed. 1177 * Found or allocated entry is returned in pagedeppp. 1178 * This routine must be called with splbio interrupts blocked. 1179 */ 1180 static int 1181 pagedep_lookup(ip, lbn, flags, pagedeppp) 1182 struct inode *ip; 1183 ufs_lbn_t lbn; 1184 int flags; 1185 struct pagedep **pagedeppp; 1186 { 1187 struct pagedep *pagedep; 1188 struct pagedep_hashhead *pagedephd; 1189 struct mount *mp; 1190 int ret; 1191 int i; 1192 1193 mtx_assert(&lk, MA_OWNED); 1194 mp = ITOV(ip)->v_mount; 1195 pagedephd = PAGEDEP_HASH(mp, ip->i_number, lbn); 1196 1197 ret = pagedep_find(pagedephd, ip->i_number, lbn, mp, flags, pagedeppp); 1198 if (*pagedeppp || (flags & DEPALLOC) == 0) 1199 return (ret); 1200 FREE_LOCK(&lk); 1201 MALLOC(pagedep, struct pagedep *, sizeof(struct pagedep), 1202 M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO); 1203 workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp); 1204 ACQUIRE_LOCK(&lk); 1205 ret = pagedep_find(pagedephd, ip->i_number, lbn, mp, flags, pagedeppp); 1206 if (*pagedeppp) { 1207 WORKITEM_FREE(pagedep, D_PAGEDEP); 1208 return (ret); 1209 } 1210 pagedep->pd_ino = ip->i_number; 1211 pagedep->pd_lbn = lbn; 1212 LIST_INIT(&pagedep->pd_dirremhd); 1213 LIST_INIT(&pagedep->pd_pendinghd); 1214 for (i = 0; i < DAHASHSZ; i++) 1215 LIST_INIT(&pagedep->pd_diraddhd[i]); 1216 LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash); 1217 *pagedeppp = pagedep; 1218 return (0); 1219 } 1220 1221 /* 1222 * Structures and routines associated with inodedep caching. 1223 */ 1224 LIST_HEAD(inodedep_hashhead, inodedep) *inodedep_hashtbl; 1225 static u_long inodedep_hash; /* size of hash table - 1 */ 1226 static long num_inodedep; /* number of inodedep allocated */ 1227 #define INODEDEP_HASH(fs, inum) \ 1228 (&inodedep_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & inodedep_hash]) 1229 1230 static int 1231 inodedep_find(inodedephd, fs, inum, inodedeppp) 1232 struct inodedep_hashhead *inodedephd; 1233 struct fs *fs; 1234 ino_t inum; 1235 struct inodedep **inodedeppp; 1236 { 1237 struct inodedep *inodedep; 1238 1239 LIST_FOREACH(inodedep, inodedephd, id_hash) 1240 if (inum == inodedep->id_ino && fs == inodedep->id_fs) 1241 break; 1242 if (inodedep) { 1243 *inodedeppp = inodedep; 1244 return (1); 1245 } 1246 *inodedeppp = NULL; 1247 1248 return (0); 1249 } 1250 /* 1251 * Look up an inodedep. Return 1 if found, 0 if not found. 1252 * If not found, allocate if DEPALLOC flag is passed. 1253 * Found or allocated entry is returned in inodedeppp. 1254 * This routine must be called with splbio interrupts blocked. 1255 */ 1256 static int 1257 inodedep_lookup(mp, inum, flags, inodedeppp) 1258 struct mount *mp; 1259 ino_t inum; 1260 int flags; 1261 struct inodedep **inodedeppp; 1262 { 1263 struct inodedep *inodedep; 1264 struct inodedep_hashhead *inodedephd; 1265 struct fs *fs; 1266 1267 mtx_assert(&lk, MA_OWNED); 1268 fs = VFSTOUFS(mp)->um_fs; 1269 inodedephd = INODEDEP_HASH(fs, inum); 1270 1271 if (inodedep_find(inodedephd, fs, inum, inodedeppp)) 1272 return (1); 1273 if ((flags & DEPALLOC) == 0) 1274 return (0); 1275 /* 1276 * If we are over our limit, try to improve the situation. 1277 */ 1278 if (num_inodedep > max_softdeps && (flags & NODELAY) == 0) 1279 request_cleanup(mp, FLUSH_INODES); 1280 FREE_LOCK(&lk); 1281 MALLOC(inodedep, struct inodedep *, sizeof(struct inodedep), 1282 M_INODEDEP, M_SOFTDEP_FLAGS); 1283 workitem_alloc(&inodedep->id_list, D_INODEDEP, mp); 1284 ACQUIRE_LOCK(&lk); 1285 if (inodedep_find(inodedephd, fs, inum, inodedeppp)) { 1286 WORKITEM_FREE(inodedep, D_INODEDEP); 1287 return (1); 1288 } 1289 num_inodedep += 1; 1290 inodedep->id_fs = fs; 1291 inodedep->id_ino = inum; 1292 inodedep->id_state = ALLCOMPLETE; 1293 inodedep->id_nlinkdelta = 0; 1294 inodedep->id_savedino1 = NULL; 1295 inodedep->id_savedsize = -1; 1296 inodedep->id_savedextsize = -1; 1297 inodedep->id_buf = NULL; 1298 LIST_INIT(&inodedep->id_pendinghd); 1299 LIST_INIT(&inodedep->id_inowait); 1300 LIST_INIT(&inodedep->id_bufwait); 1301 TAILQ_INIT(&inodedep->id_inoupdt); 1302 TAILQ_INIT(&inodedep->id_newinoupdt); 1303 TAILQ_INIT(&inodedep->id_extupdt); 1304 TAILQ_INIT(&inodedep->id_newextupdt); 1305 LIST_INSERT_HEAD(inodedephd, inodedep, id_hash); 1306 *inodedeppp = inodedep; 1307 return (0); 1308 } 1309 1310 /* 1311 * Structures and routines associated with newblk caching. 1312 */ 1313 LIST_HEAD(newblk_hashhead, newblk) *newblk_hashtbl; 1314 u_long newblk_hash; /* size of hash table - 1 */ 1315 #define NEWBLK_HASH(fs, inum) \ 1316 (&newblk_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & newblk_hash]) 1317 1318 static int 1319 newblk_find(newblkhd, fs, newblkno, newblkpp) 1320 struct newblk_hashhead *newblkhd; 1321 struct fs *fs; 1322 ufs2_daddr_t newblkno; 1323 struct newblk **newblkpp; 1324 { 1325 struct newblk *newblk; 1326 1327 LIST_FOREACH(newblk, newblkhd, nb_hash) 1328 if (newblkno == newblk->nb_newblkno && fs == newblk->nb_fs) 1329 break; 1330 if (newblk) { 1331 *newblkpp = newblk; 1332 return (1); 1333 } 1334 *newblkpp = NULL; 1335 return (0); 1336 } 1337 1338 /* 1339 * Look up a newblk. Return 1 if found, 0 if not found. 1340 * If not found, allocate if DEPALLOC flag is passed. 1341 * Found or allocated entry is returned in newblkpp. 1342 */ 1343 static int 1344 newblk_lookup(fs, newblkno, flags, newblkpp) 1345 struct fs *fs; 1346 ufs2_daddr_t newblkno; 1347 int flags; 1348 struct newblk **newblkpp; 1349 { 1350 struct newblk *newblk; 1351 struct newblk_hashhead *newblkhd; 1352 1353 newblkhd = NEWBLK_HASH(fs, newblkno); 1354 if (newblk_find(newblkhd, fs, newblkno, newblkpp)) 1355 return (1); 1356 if ((flags & DEPALLOC) == 0) 1357 return (0); 1358 FREE_LOCK(&lk); 1359 MALLOC(newblk, struct newblk *, sizeof(struct newblk), 1360 M_NEWBLK, M_SOFTDEP_FLAGS); 1361 ACQUIRE_LOCK(&lk); 1362 if (newblk_find(newblkhd, fs, newblkno, newblkpp)) { 1363 FREE(newblk, M_NEWBLK); 1364 return (1); 1365 } 1366 newblk->nb_state = 0; 1367 newblk->nb_fs = fs; 1368 newblk->nb_newblkno = newblkno; 1369 LIST_INSERT_HEAD(newblkhd, newblk, nb_hash); 1370 *newblkpp = newblk; 1371 return (0); 1372 } 1373 1374 /* 1375 * Executed during filesystem system initialization before 1376 * mounting any filesystems. 1377 */ 1378 void 1379 softdep_initialize() 1380 { 1381 1382 LIST_INIT(&mkdirlisthd); 1383 max_softdeps = desiredvnodes * 4; 1384 pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP, 1385 &pagedep_hash); 1386 inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, &inodedep_hash); 1387 newblk_hashtbl = hashinit(64, M_NEWBLK, &newblk_hash); 1388 1389 /* initialise bioops hack */ 1390 bioops.io_start = softdep_disk_io_initiation; 1391 bioops.io_complete = softdep_disk_write_complete; 1392 bioops.io_deallocate = softdep_deallocate_dependencies; 1393 bioops.io_countdeps = softdep_count_dependencies; 1394 } 1395 1396 /* 1397 * Executed after all filesystems have been unmounted during 1398 * filesystem module unload. 1399 */ 1400 void 1401 softdep_uninitialize() 1402 { 1403 1404 hashdestroy(pagedep_hashtbl, M_PAGEDEP, pagedep_hash); 1405 hashdestroy(inodedep_hashtbl, M_INODEDEP, inodedep_hash); 1406 hashdestroy(newblk_hashtbl, M_NEWBLK, newblk_hash); 1407 } 1408 1409 /* 1410 * Called at mount time to notify the dependency code that a 1411 * filesystem wishes to use it. 1412 */ 1413 int 1414 softdep_mount(devvp, mp, fs, cred) 1415 struct vnode *devvp; 1416 struct mount *mp; 1417 struct fs *fs; 1418 struct ucred *cred; 1419 { 1420 struct csum_total cstotal; 1421 struct ufsmount *ump; 1422 struct cg *cgp; 1423 struct buf *bp; 1424 int error, cyl; 1425 1426 MNT_ILOCK(mp); 1427 mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP; 1428 if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) { 1429 mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) | 1430 MNTK_SOFTDEP; 1431 mp->mnt_noasync++; 1432 } 1433 MNT_IUNLOCK(mp); 1434 ump = VFSTOUFS(mp); 1435 LIST_INIT(&ump->softdep_workitem_pending); 1436 ump->softdep_worklist_tail = NULL; 1437 ump->softdep_on_worklist = 0; 1438 ump->softdep_deps = 0; 1439 /* 1440 * When doing soft updates, the counters in the 1441 * superblock may have gotten out of sync. Recomputation 1442 * can take a long time and can be deferred for background 1443 * fsck. However, the old behavior of scanning the cylinder 1444 * groups and recalculating them at mount time is available 1445 * by setting vfs.ffs.compute_summary_at_mount to one. 1446 */ 1447 if (compute_summary_at_mount == 0 || fs->fs_clean != 0) 1448 return (0); 1449 bzero(&cstotal, sizeof cstotal); 1450 for (cyl = 0; cyl < fs->fs_ncg; cyl++) { 1451 if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)), 1452 fs->fs_cgsize, cred, &bp)) != 0) { 1453 brelse(bp); 1454 return (error); 1455 } 1456 cgp = (struct cg *)bp->b_data; 1457 cstotal.cs_nffree += cgp->cg_cs.cs_nffree; 1458 cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree; 1459 cstotal.cs_nifree += cgp->cg_cs.cs_nifree; 1460 cstotal.cs_ndir += cgp->cg_cs.cs_ndir; 1461 fs->fs_cs(fs, cyl) = cgp->cg_cs; 1462 brelse(bp); 1463 } 1464 #ifdef DEBUG 1465 if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal)) 1466 printf("%s: superblock summary recomputed\n", fs->fs_fsmnt); 1467 #endif 1468 bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal); 1469 return (0); 1470 } 1471 1472 /* 1473 * Protecting the freemaps (or bitmaps). 1474 * 1475 * To eliminate the need to execute fsck before mounting a filesystem 1476 * after a power failure, one must (conservatively) guarantee that the 1477 * on-disk copy of the bitmaps never indicate that a live inode or block is 1478 * free. So, when a block or inode is allocated, the bitmap should be 1479 * updated (on disk) before any new pointers. When a block or inode is 1480 * freed, the bitmap should not be updated until all pointers have been 1481 * reset. The latter dependency is handled by the delayed de-allocation 1482 * approach described below for block and inode de-allocation. The former 1483 * dependency is handled by calling the following procedure when a block or 1484 * inode is allocated. When an inode is allocated an "inodedep" is created 1485 * with its DEPCOMPLETE flag cleared until its bitmap is written to disk. 1486 * Each "inodedep" is also inserted into the hash indexing structure so 1487 * that any additional link additions can be made dependent on the inode 1488 * allocation. 1489 * 1490 * The ufs filesystem maintains a number of free block counts (e.g., per 1491 * cylinder group, per cylinder and per <cylinder, rotational position> pair) 1492 * in addition to the bitmaps. These counts are used to improve efficiency 1493 * during allocation and therefore must be consistent with the bitmaps. 1494 * There is no convenient way to guarantee post-crash consistency of these 1495 * counts with simple update ordering, for two main reasons: (1) The counts 1496 * and bitmaps for a single cylinder group block are not in the same disk 1497 * sector. If a disk write is interrupted (e.g., by power failure), one may 1498 * be written and the other not. (2) Some of the counts are located in the 1499 * superblock rather than the cylinder group block. So, we focus our soft 1500 * updates implementation on protecting the bitmaps. When mounting a 1501 * filesystem, we recompute the auxiliary counts from the bitmaps. 1502 */ 1503 1504 /* 1505 * Called just after updating the cylinder group block to allocate an inode. 1506 */ 1507 void 1508 softdep_setup_inomapdep(bp, ip, newinum) 1509 struct buf *bp; /* buffer for cylgroup block with inode map */ 1510 struct inode *ip; /* inode related to allocation */ 1511 ino_t newinum; /* new inode number being allocated */ 1512 { 1513 struct inodedep *inodedep; 1514 struct bmsafemap *bmsafemap; 1515 1516 /* 1517 * Create a dependency for the newly allocated inode. 1518 * Panic if it already exists as something is seriously wrong. 1519 * Otherwise add it to the dependency list for the buffer holding 1520 * the cylinder group map from which it was allocated. 1521 */ 1522 ACQUIRE_LOCK(&lk); 1523 if ((inodedep_lookup(UFSTOVFS(ip->i_ump), newinum, DEPALLOC|NODELAY, 1524 &inodedep))) 1525 panic("softdep_setup_inomapdep: dependency for new inode " 1526 "already exists"); 1527 inodedep->id_buf = bp; 1528 inodedep->id_state &= ~DEPCOMPLETE; 1529 bmsafemap = bmsafemap_lookup(inodedep->id_list.wk_mp, bp); 1530 LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps); 1531 FREE_LOCK(&lk); 1532 } 1533 1534 /* 1535 * Called just after updating the cylinder group block to 1536 * allocate block or fragment. 1537 */ 1538 void 1539 softdep_setup_blkmapdep(bp, mp, newblkno) 1540 struct buf *bp; /* buffer for cylgroup block with block map */ 1541 struct mount *mp; /* filesystem doing allocation */ 1542 ufs2_daddr_t newblkno; /* number of newly allocated block */ 1543 { 1544 struct newblk *newblk; 1545 struct bmsafemap *bmsafemap; 1546 struct fs *fs; 1547 1548 fs = VFSTOUFS(mp)->um_fs; 1549 /* 1550 * Create a dependency for the newly allocated block. 1551 * Add it to the dependency list for the buffer holding 1552 * the cylinder group map from which it was allocated. 1553 */ 1554 ACQUIRE_LOCK(&lk); 1555 if (newblk_lookup(fs, newblkno, DEPALLOC, &newblk) != 0) 1556 panic("softdep_setup_blkmapdep: found block"); 1557 newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp); 1558 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps); 1559 FREE_LOCK(&lk); 1560 } 1561 1562 /* 1563 * Find the bmsafemap associated with a cylinder group buffer. 1564 * If none exists, create one. The buffer must be locked when 1565 * this routine is called and this routine must be called with 1566 * splbio interrupts blocked. 1567 */ 1568 static struct bmsafemap * 1569 bmsafemap_lookup(mp, bp) 1570 struct mount *mp; 1571 struct buf *bp; 1572 { 1573 struct bmsafemap *bmsafemap; 1574 struct worklist *wk; 1575 1576 mtx_assert(&lk, MA_OWNED); 1577 LIST_FOREACH(wk, &bp->b_dep, wk_list) 1578 if (wk->wk_type == D_BMSAFEMAP) 1579 return (WK_BMSAFEMAP(wk)); 1580 FREE_LOCK(&lk); 1581 MALLOC(bmsafemap, struct bmsafemap *, sizeof(struct bmsafemap), 1582 M_BMSAFEMAP, M_SOFTDEP_FLAGS); 1583 workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp); 1584 bmsafemap->sm_buf = bp; 1585 LIST_INIT(&bmsafemap->sm_allocdirecthd); 1586 LIST_INIT(&bmsafemap->sm_allocindirhd); 1587 LIST_INIT(&bmsafemap->sm_inodedephd); 1588 LIST_INIT(&bmsafemap->sm_newblkhd); 1589 ACQUIRE_LOCK(&lk); 1590 WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list); 1591 return (bmsafemap); 1592 } 1593 1594 /* 1595 * Direct block allocation dependencies. 1596 * 1597 * When a new block is allocated, the corresponding disk locations must be 1598 * initialized (with zeros or new data) before the on-disk inode points to 1599 * them. Also, the freemap from which the block was allocated must be 1600 * updated (on disk) before the inode's pointer. These two dependencies are 1601 * independent of each other and are needed for all file blocks and indirect 1602 * blocks that are pointed to directly by the inode. Just before the 1603 * "in-core" version of the inode is updated with a newly allocated block 1604 * number, a procedure (below) is called to setup allocation dependency 1605 * structures. These structures are removed when the corresponding 1606 * dependencies are satisfied or when the block allocation becomes obsolete 1607 * (i.e., the file is deleted, the block is de-allocated, or the block is a 1608 * fragment that gets upgraded). All of these cases are handled in 1609 * procedures described later. 1610 * 1611 * When a file extension causes a fragment to be upgraded, either to a larger 1612 * fragment or to a full block, the on-disk location may change (if the 1613 * previous fragment could not simply be extended). In this case, the old 1614 * fragment must be de-allocated, but not until after the inode's pointer has 1615 * been updated. In most cases, this is handled by later procedures, which 1616 * will construct a "freefrag" structure to be added to the workitem queue 1617 * when the inode update is complete (or obsolete). The main exception to 1618 * this is when an allocation occurs while a pending allocation dependency 1619 * (for the same block pointer) remains. This case is handled in the main 1620 * allocation dependency setup procedure by immediately freeing the 1621 * unreferenced fragments. 1622 */ 1623 void 1624 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 1625 struct inode *ip; /* inode to which block is being added */ 1626 ufs_lbn_t lbn; /* block pointer within inode */ 1627 ufs2_daddr_t newblkno; /* disk block number being added */ 1628 ufs2_daddr_t oldblkno; /* previous block number, 0 unless frag */ 1629 long newsize; /* size of new block */ 1630 long oldsize; /* size of new block */ 1631 struct buf *bp; /* bp for allocated block */ 1632 { 1633 struct allocdirect *adp, *oldadp; 1634 struct allocdirectlst *adphead; 1635 struct bmsafemap *bmsafemap; 1636 struct inodedep *inodedep; 1637 struct pagedep *pagedep; 1638 struct newblk *newblk; 1639 struct mount *mp; 1640 1641 mp = UFSTOVFS(ip->i_ump); 1642 MALLOC(adp, struct allocdirect *, sizeof(struct allocdirect), 1643 M_ALLOCDIRECT, M_SOFTDEP_FLAGS|M_ZERO); 1644 workitem_alloc(&adp->ad_list, D_ALLOCDIRECT, mp); 1645 adp->ad_lbn = lbn; 1646 adp->ad_newblkno = newblkno; 1647 adp->ad_oldblkno = oldblkno; 1648 adp->ad_newsize = newsize; 1649 adp->ad_oldsize = oldsize; 1650 adp->ad_state = ATTACHED; 1651 LIST_INIT(&adp->ad_newdirblk); 1652 if (newblkno == oldblkno) 1653 adp->ad_freefrag = NULL; 1654 else 1655 adp->ad_freefrag = newfreefrag(ip, oldblkno, oldsize); 1656 1657 ACQUIRE_LOCK(&lk); 1658 if (lbn >= NDADDR) { 1659 /* allocating an indirect block */ 1660 if (oldblkno != 0) 1661 panic("softdep_setup_allocdirect: non-zero indir"); 1662 } else { 1663 /* 1664 * Allocating a direct block. 1665 * 1666 * If we are allocating a directory block, then we must 1667 * allocate an associated pagedep to track additions and 1668 * deletions. 1669 */ 1670 if ((ip->i_mode & IFMT) == IFDIR && 1671 pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0) 1672 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 1673 } 1674 if (newblk_lookup(ip->i_fs, newblkno, 0, &newblk) == 0) 1675 panic("softdep_setup_allocdirect: lost block"); 1676 if (newblk->nb_state == DEPCOMPLETE) { 1677 adp->ad_state |= DEPCOMPLETE; 1678 adp->ad_buf = NULL; 1679 } else { 1680 bmsafemap = newblk->nb_bmsafemap; 1681 adp->ad_buf = bmsafemap->sm_buf; 1682 LIST_REMOVE(newblk, nb_deps); 1683 LIST_INSERT_HEAD(&bmsafemap->sm_allocdirecthd, adp, ad_deps); 1684 } 1685 LIST_REMOVE(newblk, nb_hash); 1686 FREE(newblk, M_NEWBLK); 1687 1688 inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep); 1689 adp->ad_inodedep = inodedep; 1690 WORKLIST_INSERT(&bp->b_dep, &adp->ad_list); 1691 /* 1692 * The list of allocdirects must be kept in sorted and ascending 1693 * order so that the rollback routines can quickly determine the 1694 * first uncommitted block (the size of the file stored on disk 1695 * ends at the end of the lowest committed fragment, or if there 1696 * are no fragments, at the end of the highest committed block). 1697 * Since files generally grow, the typical case is that the new 1698 * block is to be added at the end of the list. We speed this 1699 * special case by checking against the last allocdirect in the 1700 * list before laboriously traversing the list looking for the 1701 * insertion point. 1702 */ 1703 adphead = &inodedep->id_newinoupdt; 1704 oldadp = TAILQ_LAST(adphead, allocdirectlst); 1705 if (oldadp == NULL || oldadp->ad_lbn <= lbn) { 1706 /* insert at end of list */ 1707 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 1708 if (oldadp != NULL && oldadp->ad_lbn == lbn) 1709 allocdirect_merge(adphead, adp, oldadp); 1710 FREE_LOCK(&lk); 1711 return; 1712 } 1713 TAILQ_FOREACH(oldadp, adphead, ad_next) { 1714 if (oldadp->ad_lbn >= lbn) 1715 break; 1716 } 1717 if (oldadp == NULL) 1718 panic("softdep_setup_allocdirect: lost entry"); 1719 /* insert in middle of list */ 1720 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 1721 if (oldadp->ad_lbn == lbn) 1722 allocdirect_merge(adphead, adp, oldadp); 1723 FREE_LOCK(&lk); 1724 } 1725 1726 /* 1727 * Replace an old allocdirect dependency with a newer one. 1728 * This routine must be called with splbio interrupts blocked. 1729 */ 1730 static void 1731 allocdirect_merge(adphead, newadp, oldadp) 1732 struct allocdirectlst *adphead; /* head of list holding allocdirects */ 1733 struct allocdirect *newadp; /* allocdirect being added */ 1734 struct allocdirect *oldadp; /* existing allocdirect being checked */ 1735 { 1736 struct worklist *wk; 1737 struct freefrag *freefrag; 1738 struct newdirblk *newdirblk; 1739 1740 mtx_assert(&lk, MA_OWNED); 1741 if (newadp->ad_oldblkno != oldadp->ad_newblkno || 1742 newadp->ad_oldsize != oldadp->ad_newsize || 1743 newadp->ad_lbn >= NDADDR) 1744 panic("%s %jd != new %jd || old size %ld != new %ld", 1745 "allocdirect_merge: old blkno", 1746 (intmax_t)newadp->ad_oldblkno, 1747 (intmax_t)oldadp->ad_newblkno, 1748 newadp->ad_oldsize, oldadp->ad_newsize); 1749 newadp->ad_oldblkno = oldadp->ad_oldblkno; 1750 newadp->ad_oldsize = oldadp->ad_oldsize; 1751 /* 1752 * If the old dependency had a fragment to free or had never 1753 * previously had a block allocated, then the new dependency 1754 * can immediately post its freefrag and adopt the old freefrag. 1755 * This action is done by swapping the freefrag dependencies. 1756 * The new dependency gains the old one's freefrag, and the 1757 * old one gets the new one and then immediately puts it on 1758 * the worklist when it is freed by free_allocdirect. It is 1759 * not possible to do this swap when the old dependency had a 1760 * non-zero size but no previous fragment to free. This condition 1761 * arises when the new block is an extension of the old block. 1762 * Here, the first part of the fragment allocated to the new 1763 * dependency is part of the block currently claimed on disk by 1764 * the old dependency, so cannot legitimately be freed until the 1765 * conditions for the new dependency are fulfilled. 1766 */ 1767 if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) { 1768 freefrag = newadp->ad_freefrag; 1769 newadp->ad_freefrag = oldadp->ad_freefrag; 1770 oldadp->ad_freefrag = freefrag; 1771 } 1772 /* 1773 * If we are tracking a new directory-block allocation, 1774 * move it from the old allocdirect to the new allocdirect. 1775 */ 1776 if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) { 1777 newdirblk = WK_NEWDIRBLK(wk); 1778 WORKLIST_REMOVE(&newdirblk->db_list); 1779 if (!LIST_EMPTY(&oldadp->ad_newdirblk)) 1780 panic("allocdirect_merge: extra newdirblk"); 1781 WORKLIST_INSERT(&newadp->ad_newdirblk, &newdirblk->db_list); 1782 } 1783 free_allocdirect(adphead, oldadp, 0); 1784 } 1785 1786 /* 1787 * Allocate a new freefrag structure if needed. 1788 */ 1789 static struct freefrag * 1790 newfreefrag(ip, blkno, size) 1791 struct inode *ip; 1792 ufs2_daddr_t blkno; 1793 long size; 1794 { 1795 struct freefrag *freefrag; 1796 struct fs *fs; 1797 1798 if (blkno == 0) 1799 return (NULL); 1800 fs = ip->i_fs; 1801 if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag) 1802 panic("newfreefrag: frag size"); 1803 MALLOC(freefrag, struct freefrag *, sizeof(struct freefrag), 1804 M_FREEFRAG, M_SOFTDEP_FLAGS); 1805 workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ip->i_ump)); 1806 freefrag->ff_inum = ip->i_number; 1807 freefrag->ff_blkno = blkno; 1808 freefrag->ff_fragsize = size; 1809 return (freefrag); 1810 } 1811 1812 /* 1813 * This workitem de-allocates fragments that were replaced during 1814 * file block allocation. 1815 */ 1816 static void 1817 handle_workitem_freefrag(freefrag) 1818 struct freefrag *freefrag; 1819 { 1820 struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp); 1821 1822 ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno, 1823 freefrag->ff_fragsize, freefrag->ff_inum); 1824 ACQUIRE_LOCK(&lk); 1825 WORKITEM_FREE(freefrag, D_FREEFRAG); 1826 FREE_LOCK(&lk); 1827 } 1828 1829 /* 1830 * Set up a dependency structure for an external attributes data block. 1831 * This routine follows much of the structure of softdep_setup_allocdirect. 1832 * See the description of softdep_setup_allocdirect above for details. 1833 */ 1834 void 1835 softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 1836 struct inode *ip; 1837 ufs_lbn_t lbn; 1838 ufs2_daddr_t newblkno; 1839 ufs2_daddr_t oldblkno; 1840 long newsize; 1841 long oldsize; 1842 struct buf *bp; 1843 { 1844 struct allocdirect *adp, *oldadp; 1845 struct allocdirectlst *adphead; 1846 struct bmsafemap *bmsafemap; 1847 struct inodedep *inodedep; 1848 struct newblk *newblk; 1849 struct mount *mp; 1850 1851 mp = UFSTOVFS(ip->i_ump); 1852 MALLOC(adp, struct allocdirect *, sizeof(struct allocdirect), 1853 M_ALLOCDIRECT, M_SOFTDEP_FLAGS|M_ZERO); 1854 workitem_alloc(&adp->ad_list, D_ALLOCDIRECT, mp); 1855 adp->ad_lbn = lbn; 1856 adp->ad_newblkno = newblkno; 1857 adp->ad_oldblkno = oldblkno; 1858 adp->ad_newsize = newsize; 1859 adp->ad_oldsize = oldsize; 1860 adp->ad_state = ATTACHED | EXTDATA; 1861 LIST_INIT(&adp->ad_newdirblk); 1862 if (newblkno == oldblkno) 1863 adp->ad_freefrag = NULL; 1864 else 1865 adp->ad_freefrag = newfreefrag(ip, oldblkno, oldsize); 1866 1867 ACQUIRE_LOCK(&lk); 1868 if (newblk_lookup(ip->i_fs, newblkno, 0, &newblk) == 0) 1869 panic("softdep_setup_allocext: lost block"); 1870 1871 inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep); 1872 adp->ad_inodedep = inodedep; 1873 1874 if (newblk->nb_state == DEPCOMPLETE) { 1875 adp->ad_state |= DEPCOMPLETE; 1876 adp->ad_buf = NULL; 1877 } else { 1878 bmsafemap = newblk->nb_bmsafemap; 1879 adp->ad_buf = bmsafemap->sm_buf; 1880 LIST_REMOVE(newblk, nb_deps); 1881 LIST_INSERT_HEAD(&bmsafemap->sm_allocdirecthd, adp, ad_deps); 1882 } 1883 LIST_REMOVE(newblk, nb_hash); 1884 FREE(newblk, M_NEWBLK); 1885 1886 WORKLIST_INSERT(&bp->b_dep, &adp->ad_list); 1887 if (lbn >= NXADDR) 1888 panic("softdep_setup_allocext: lbn %lld > NXADDR", 1889 (long long)lbn); 1890 /* 1891 * The list of allocdirects must be kept in sorted and ascending 1892 * order so that the rollback routines can quickly determine the 1893 * first uncommitted block (the size of the file stored on disk 1894 * ends at the end of the lowest committed fragment, or if there 1895 * are no fragments, at the end of the highest committed block). 1896 * Since files generally grow, the typical case is that the new 1897 * block is to be added at the end of the list. We speed this 1898 * special case by checking against the last allocdirect in the 1899 * list before laboriously traversing the list looking for the 1900 * insertion point. 1901 */ 1902 adphead = &inodedep->id_newextupdt; 1903 oldadp = TAILQ_LAST(adphead, allocdirectlst); 1904 if (oldadp == NULL || oldadp->ad_lbn <= lbn) { 1905 /* insert at end of list */ 1906 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 1907 if (oldadp != NULL && oldadp->ad_lbn == lbn) 1908 allocdirect_merge(adphead, adp, oldadp); 1909 FREE_LOCK(&lk); 1910 return; 1911 } 1912 TAILQ_FOREACH(oldadp, adphead, ad_next) { 1913 if (oldadp->ad_lbn >= lbn) 1914 break; 1915 } 1916 if (oldadp == NULL) 1917 panic("softdep_setup_allocext: lost entry"); 1918 /* insert in middle of list */ 1919 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 1920 if (oldadp->ad_lbn == lbn) 1921 allocdirect_merge(adphead, adp, oldadp); 1922 FREE_LOCK(&lk); 1923 } 1924 1925 /* 1926 * Indirect block allocation dependencies. 1927 * 1928 * The same dependencies that exist for a direct block also exist when 1929 * a new block is allocated and pointed to by an entry in a block of 1930 * indirect pointers. The undo/redo states described above are also 1931 * used here. Because an indirect block contains many pointers that 1932 * may have dependencies, a second copy of the entire in-memory indirect 1933 * block is kept. The buffer cache copy is always completely up-to-date. 1934 * The second copy, which is used only as a source for disk writes, 1935 * contains only the safe pointers (i.e., those that have no remaining 1936 * update dependencies). The second copy is freed when all pointers 1937 * are safe. The cache is not allowed to replace indirect blocks with 1938 * pending update dependencies. If a buffer containing an indirect 1939 * block with dependencies is written, these routines will mark it 1940 * dirty again. It can only be successfully written once all the 1941 * dependencies are removed. The ffs_fsync routine in conjunction with 1942 * softdep_sync_metadata work together to get all the dependencies 1943 * removed so that a file can be successfully written to disk. Three 1944 * procedures are used when setting up indirect block pointer 1945 * dependencies. The division is necessary because of the organization 1946 * of the "balloc" routine and because of the distinction between file 1947 * pages and file metadata blocks. 1948 */ 1949 1950 /* 1951 * Allocate a new allocindir structure. 1952 */ 1953 static struct allocindir * 1954 newallocindir(ip, ptrno, newblkno, oldblkno) 1955 struct inode *ip; /* inode for file being extended */ 1956 int ptrno; /* offset of pointer in indirect block */ 1957 ufs2_daddr_t newblkno; /* disk block number being added */ 1958 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 1959 { 1960 struct allocindir *aip; 1961 1962 MALLOC(aip, struct allocindir *, sizeof(struct allocindir), 1963 M_ALLOCINDIR, M_SOFTDEP_FLAGS|M_ZERO); 1964 workitem_alloc(&aip->ai_list, D_ALLOCINDIR, UFSTOVFS(ip->i_ump)); 1965 aip->ai_state = ATTACHED; 1966 aip->ai_offset = ptrno; 1967 aip->ai_newblkno = newblkno; 1968 aip->ai_oldblkno = oldblkno; 1969 aip->ai_freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize); 1970 return (aip); 1971 } 1972 1973 /* 1974 * Called just before setting an indirect block pointer 1975 * to a newly allocated file page. 1976 */ 1977 void 1978 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 1979 struct inode *ip; /* inode for file being extended */ 1980 ufs_lbn_t lbn; /* allocated block number within file */ 1981 struct buf *bp; /* buffer with indirect blk referencing page */ 1982 int ptrno; /* offset of pointer in indirect block */ 1983 ufs2_daddr_t newblkno; /* disk block number being added */ 1984 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 1985 struct buf *nbp; /* buffer holding allocated page */ 1986 { 1987 struct allocindir *aip; 1988 struct pagedep *pagedep; 1989 1990 ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page"); 1991 aip = newallocindir(ip, ptrno, newblkno, oldblkno); 1992 ACQUIRE_LOCK(&lk); 1993 /* 1994 * If we are allocating a directory page, then we must 1995 * allocate an associated pagedep to track additions and 1996 * deletions. 1997 */ 1998 if ((ip->i_mode & IFMT) == IFDIR && 1999 pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0) 2000 WORKLIST_INSERT(&nbp->b_dep, &pagedep->pd_list); 2001 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_list); 2002 setup_allocindir_phase2(bp, ip, aip); 2003 FREE_LOCK(&lk); 2004 } 2005 2006 /* 2007 * Called just before setting an indirect block pointer to a 2008 * newly allocated indirect block. 2009 */ 2010 void 2011 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 2012 struct buf *nbp; /* newly allocated indirect block */ 2013 struct inode *ip; /* inode for file being extended */ 2014 struct buf *bp; /* indirect block referencing allocated block */ 2015 int ptrno; /* offset of pointer in indirect block */ 2016 ufs2_daddr_t newblkno; /* disk block number being added */ 2017 { 2018 struct allocindir *aip; 2019 2020 ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta"); 2021 aip = newallocindir(ip, ptrno, newblkno, 0); 2022 ACQUIRE_LOCK(&lk); 2023 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_list); 2024 setup_allocindir_phase2(bp, ip, aip); 2025 FREE_LOCK(&lk); 2026 } 2027 2028 /* 2029 * Called to finish the allocation of the "aip" allocated 2030 * by one of the two routines above. 2031 */ 2032 static void 2033 setup_allocindir_phase2(bp, ip, aip) 2034 struct buf *bp; /* in-memory copy of the indirect block */ 2035 struct inode *ip; /* inode for file being extended */ 2036 struct allocindir *aip; /* allocindir allocated by the above routines */ 2037 { 2038 struct worklist *wk; 2039 struct indirdep *indirdep, *newindirdep; 2040 struct bmsafemap *bmsafemap; 2041 struct allocindir *oldaip; 2042 struct freefrag *freefrag; 2043 struct newblk *newblk; 2044 ufs2_daddr_t blkno; 2045 2046 mtx_assert(&lk, MA_OWNED); 2047 if (bp->b_lblkno >= 0) 2048 panic("setup_allocindir_phase2: not indir blk"); 2049 for (indirdep = NULL, newindirdep = NULL; ; ) { 2050 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 2051 if (wk->wk_type != D_INDIRDEP) 2052 continue; 2053 indirdep = WK_INDIRDEP(wk); 2054 break; 2055 } 2056 if (indirdep == NULL && newindirdep) { 2057 indirdep = newindirdep; 2058 WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list); 2059 newindirdep = NULL; 2060 } 2061 if (indirdep) { 2062 if (newblk_lookup(ip->i_fs, aip->ai_newblkno, 0, 2063 &newblk) == 0) 2064 panic("setup_allocindir: lost block"); 2065 if (newblk->nb_state == DEPCOMPLETE) { 2066 aip->ai_state |= DEPCOMPLETE; 2067 aip->ai_buf = NULL; 2068 } else { 2069 bmsafemap = newblk->nb_bmsafemap; 2070 aip->ai_buf = bmsafemap->sm_buf; 2071 LIST_REMOVE(newblk, nb_deps); 2072 LIST_INSERT_HEAD(&bmsafemap->sm_allocindirhd, 2073 aip, ai_deps); 2074 } 2075 LIST_REMOVE(newblk, nb_hash); 2076 FREE(newblk, M_NEWBLK); 2077 aip->ai_indirdep = indirdep; 2078 /* 2079 * Check to see if there is an existing dependency 2080 * for this block. If there is, merge the old 2081 * dependency into the new one. 2082 */ 2083 if (aip->ai_oldblkno == 0) 2084 oldaip = NULL; 2085 else 2086 2087 LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) 2088 if (oldaip->ai_offset == aip->ai_offset) 2089 break; 2090 freefrag = NULL; 2091 if (oldaip != NULL) { 2092 if (oldaip->ai_newblkno != aip->ai_oldblkno) 2093 panic("setup_allocindir_phase2: blkno"); 2094 aip->ai_oldblkno = oldaip->ai_oldblkno; 2095 freefrag = aip->ai_freefrag; 2096 aip->ai_freefrag = oldaip->ai_freefrag; 2097 oldaip->ai_freefrag = NULL; 2098 free_allocindir(oldaip, NULL); 2099 } 2100 LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next); 2101 if (ip->i_ump->um_fstype == UFS1) 2102 ((ufs1_daddr_t *)indirdep->ir_savebp->b_data) 2103 [aip->ai_offset] = aip->ai_oldblkno; 2104 else 2105 ((ufs2_daddr_t *)indirdep->ir_savebp->b_data) 2106 [aip->ai_offset] = aip->ai_oldblkno; 2107 FREE_LOCK(&lk); 2108 if (freefrag != NULL) 2109 handle_workitem_freefrag(freefrag); 2110 } else 2111 FREE_LOCK(&lk); 2112 if (newindirdep) { 2113 newindirdep->ir_savebp->b_flags |= B_INVAL | B_NOCACHE; 2114 brelse(newindirdep->ir_savebp); 2115 ACQUIRE_LOCK(&lk); 2116 WORKITEM_FREE((caddr_t)newindirdep, D_INDIRDEP); 2117 if (indirdep) 2118 break; 2119 FREE_LOCK(&lk); 2120 } 2121 if (indirdep) { 2122 ACQUIRE_LOCK(&lk); 2123 break; 2124 } 2125 MALLOC(newindirdep, struct indirdep *, sizeof(struct indirdep), 2126 M_INDIRDEP, M_SOFTDEP_FLAGS); 2127 workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, 2128 UFSTOVFS(ip->i_ump)); 2129 newindirdep->ir_state = ATTACHED; 2130 if (ip->i_ump->um_fstype == UFS1) 2131 newindirdep->ir_state |= UFS1FMT; 2132 LIST_INIT(&newindirdep->ir_deplisthd); 2133 LIST_INIT(&newindirdep->ir_donehd); 2134 if (bp->b_blkno == bp->b_lblkno) { 2135 ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp, 2136 NULL, NULL); 2137 bp->b_blkno = blkno; 2138 } 2139 newindirdep->ir_savebp = 2140 getblk(ip->i_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0); 2141 BUF_KERNPROC(newindirdep->ir_savebp); 2142 bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount); 2143 ACQUIRE_LOCK(&lk); 2144 } 2145 } 2146 2147 /* 2148 * Block de-allocation dependencies. 2149 * 2150 * When blocks are de-allocated, the on-disk pointers must be nullified before 2151 * the blocks are made available for use by other files. (The true 2152 * requirement is that old pointers must be nullified before new on-disk 2153 * pointers are set. We chose this slightly more stringent requirement to 2154 * reduce complexity.) Our implementation handles this dependency by updating 2155 * the inode (or indirect block) appropriately but delaying the actual block 2156 * de-allocation (i.e., freemap and free space count manipulation) until 2157 * after the updated versions reach stable storage. After the disk is 2158 * updated, the blocks can be safely de-allocated whenever it is convenient. 2159 * This implementation handles only the common case of reducing a file's 2160 * length to zero. Other cases are handled by the conventional synchronous 2161 * write approach. 2162 * 2163 * The ffs implementation with which we worked double-checks 2164 * the state of the block pointers and file size as it reduces 2165 * a file's length. Some of this code is replicated here in our 2166 * soft updates implementation. The freeblks->fb_chkcnt field is 2167 * used to transfer a part of this information to the procedure 2168 * that eventually de-allocates the blocks. 2169 * 2170 * This routine should be called from the routine that shortens 2171 * a file's length, before the inode's size or block pointers 2172 * are modified. It will save the block pointer information for 2173 * later release and zero the inode so that the calling routine 2174 * can release it. 2175 */ 2176 void 2177 softdep_setup_freeblocks(ip, length, flags) 2178 struct inode *ip; /* The inode whose length is to be reduced */ 2179 off_t length; /* The new length for the file */ 2180 int flags; /* IO_EXT and/or IO_NORMAL */ 2181 { 2182 struct freeblks *freeblks; 2183 struct inodedep *inodedep; 2184 struct allocdirect *adp; 2185 struct vnode *vp; 2186 struct buf *bp; 2187 struct fs *fs; 2188 ufs2_daddr_t extblocks, datablocks; 2189 struct mount *mp; 2190 int i, delay, error; 2191 2192 fs = ip->i_fs; 2193 mp = UFSTOVFS(ip->i_ump); 2194 if (length != 0) 2195 panic("softdep_setup_freeblocks: non-zero length"); 2196 MALLOC(freeblks, struct freeblks *, sizeof(struct freeblks), 2197 M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO); 2198 workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp); 2199 freeblks->fb_state = ATTACHED; 2200 freeblks->fb_uid = ip->i_uid; 2201 freeblks->fb_previousinum = ip->i_number; 2202 freeblks->fb_devvp = ip->i_devvp; 2203 extblocks = 0; 2204 if (fs->fs_magic == FS_UFS2_MAGIC) 2205 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 2206 datablocks = DIP(ip, i_blocks) - extblocks; 2207 if ((flags & IO_NORMAL) == 0) { 2208 freeblks->fb_oldsize = 0; 2209 freeblks->fb_chkcnt = 0; 2210 } else { 2211 freeblks->fb_oldsize = ip->i_size; 2212 ip->i_size = 0; 2213 DIP_SET(ip, i_size, 0); 2214 freeblks->fb_chkcnt = datablocks; 2215 for (i = 0; i < NDADDR; i++) { 2216 freeblks->fb_dblks[i] = DIP(ip, i_db[i]); 2217 DIP_SET(ip, i_db[i], 0); 2218 } 2219 for (i = 0; i < NIADDR; i++) { 2220 freeblks->fb_iblks[i] = DIP(ip, i_ib[i]); 2221 DIP_SET(ip, i_ib[i], 0); 2222 } 2223 /* 2224 * If the file was removed, then the space being freed was 2225 * accounted for then (see softdep_releasefile()). If the 2226 * file is merely being truncated, then we account for it now. 2227 */ 2228 if ((ip->i_flag & IN_SPACECOUNTED) == 0) { 2229 UFS_LOCK(ip->i_ump); 2230 fs->fs_pendingblocks += datablocks; 2231 UFS_UNLOCK(ip->i_ump); 2232 } 2233 } 2234 if ((flags & IO_EXT) == 0) { 2235 freeblks->fb_oldextsize = 0; 2236 } else { 2237 freeblks->fb_oldextsize = ip->i_din2->di_extsize; 2238 ip->i_din2->di_extsize = 0; 2239 freeblks->fb_chkcnt += extblocks; 2240 for (i = 0; i < NXADDR; i++) { 2241 freeblks->fb_eblks[i] = ip->i_din2->di_extb[i]; 2242 ip->i_din2->di_extb[i] = 0; 2243 } 2244 } 2245 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - freeblks->fb_chkcnt); 2246 /* 2247 * Push the zero'ed inode to to its disk buffer so that we are free 2248 * to delete its dependencies below. Once the dependencies are gone 2249 * the buffer can be safely released. 2250 */ 2251 if ((error = bread(ip->i_devvp, 2252 fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 2253 (int)fs->fs_bsize, NOCRED, &bp)) != 0) { 2254 brelse(bp); 2255 softdep_error("softdep_setup_freeblocks", error); 2256 } 2257 if (ip->i_ump->um_fstype == UFS1) 2258 *((struct ufs1_dinode *)bp->b_data + 2259 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1; 2260 else 2261 *((struct ufs2_dinode *)bp->b_data + 2262 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2; 2263 /* 2264 * Find and eliminate any inode dependencies. 2265 */ 2266 ACQUIRE_LOCK(&lk); 2267 (void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 2268 if ((inodedep->id_state & IOSTARTED) != 0) 2269 panic("softdep_setup_freeblocks: inode busy"); 2270 /* 2271 * Add the freeblks structure to the list of operations that 2272 * must await the zero'ed inode being written to disk. If we 2273 * still have a bitmap dependency (delay == 0), then the inode 2274 * has never been written to disk, so we can process the 2275 * freeblks below once we have deleted the dependencies. 2276 */ 2277 delay = (inodedep->id_state & DEPCOMPLETE); 2278 if (delay) 2279 WORKLIST_INSERT(&inodedep->id_bufwait, &freeblks->fb_list); 2280 /* 2281 * Because the file length has been truncated to zero, any 2282 * pending block allocation dependency structures associated 2283 * with this inode are obsolete and can simply be de-allocated. 2284 * We must first merge the two dependency lists to get rid of 2285 * any duplicate freefrag structures, then purge the merged list. 2286 * If we still have a bitmap dependency, then the inode has never 2287 * been written to disk, so we can free any fragments without delay. 2288 */ 2289 if (flags & IO_NORMAL) { 2290 merge_inode_lists(&inodedep->id_newinoupdt, 2291 &inodedep->id_inoupdt); 2292 while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != 0) 2293 free_allocdirect(&inodedep->id_inoupdt, adp, delay); 2294 } 2295 if (flags & IO_EXT) { 2296 merge_inode_lists(&inodedep->id_newextupdt, 2297 &inodedep->id_extupdt); 2298 while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0) 2299 free_allocdirect(&inodedep->id_extupdt, adp, delay); 2300 } 2301 FREE_LOCK(&lk); 2302 bdwrite(bp); 2303 /* 2304 * We must wait for any I/O in progress to finish so that 2305 * all potential buffers on the dirty list will be visible. 2306 * Once they are all there, walk the list and get rid of 2307 * any dependencies. 2308 */ 2309 vp = ITOV(ip); 2310 VI_LOCK(vp); 2311 drain_output(vp); 2312 restart: 2313 TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) { 2314 if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) || 2315 ((flags & IO_NORMAL) == 0 && 2316 (bp->b_xflags & BX_ALTDATA) == 0)) 2317 continue; 2318 if ((bp = getdirtybuf(bp, VI_MTX(vp), MNT_WAIT)) == NULL) 2319 goto restart; 2320 VI_UNLOCK(vp); 2321 ACQUIRE_LOCK(&lk); 2322 (void) inodedep_lookup(mp, ip->i_number, 0, &inodedep); 2323 deallocate_dependencies(bp, inodedep); 2324 FREE_LOCK(&lk); 2325 bp->b_flags |= B_INVAL | B_NOCACHE; 2326 brelse(bp); 2327 VI_LOCK(vp); 2328 goto restart; 2329 } 2330 VI_UNLOCK(vp); 2331 ACQUIRE_LOCK(&lk); 2332 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) 2333 (void) free_inodedep(inodedep); 2334 2335 if(delay) { 2336 freeblks->fb_state |= DEPCOMPLETE; 2337 /* 2338 * If the inode with zeroed block pointers is now on disk 2339 * we can start freeing blocks. Add freeblks to the worklist 2340 * instead of calling handle_workitem_freeblocks directly as 2341 * it is more likely that additional IO is needed to complete 2342 * the request here than in the !delay case. 2343 */ 2344 if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE) 2345 add_to_worklist(&freeblks->fb_list); 2346 } 2347 2348 FREE_LOCK(&lk); 2349 /* 2350 * If the inode has never been written to disk (delay == 0), 2351 * then we can process the freeblks now that we have deleted 2352 * the dependencies. 2353 */ 2354 if (!delay) 2355 handle_workitem_freeblocks(freeblks, 0); 2356 } 2357 2358 /* 2359 * Reclaim any dependency structures from a buffer that is about to 2360 * be reallocated to a new vnode. The buffer must be locked, thus, 2361 * no I/O completion operations can occur while we are manipulating 2362 * its associated dependencies. The mutex is held so that other I/O's 2363 * associated with related dependencies do not occur. 2364 */ 2365 static void 2366 deallocate_dependencies(bp, inodedep) 2367 struct buf *bp; 2368 struct inodedep *inodedep; 2369 { 2370 struct worklist *wk; 2371 struct indirdep *indirdep; 2372 struct allocindir *aip; 2373 struct pagedep *pagedep; 2374 struct dirrem *dirrem; 2375 struct diradd *dap; 2376 int i; 2377 2378 mtx_assert(&lk, MA_OWNED); 2379 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) { 2380 switch (wk->wk_type) { 2381 2382 case D_INDIRDEP: 2383 indirdep = WK_INDIRDEP(wk); 2384 /* 2385 * None of the indirect pointers will ever be visible, 2386 * so they can simply be tossed. GOINGAWAY ensures 2387 * that allocated pointers will be saved in the buffer 2388 * cache until they are freed. Note that they will 2389 * only be able to be found by their physical address 2390 * since the inode mapping the logical address will 2391 * be gone. The save buffer used for the safe copy 2392 * was allocated in setup_allocindir_phase2 using 2393 * the physical address so it could be used for this 2394 * purpose. Hence we swap the safe copy with the real 2395 * copy, allowing the safe copy to be freed and holding 2396 * on to the real copy for later use in indir_trunc. 2397 */ 2398 if (indirdep->ir_state & GOINGAWAY) 2399 panic("deallocate_dependencies: already gone"); 2400 indirdep->ir_state |= GOINGAWAY; 2401 VFSTOUFS(bp->b_vp->v_mount)->um_numindirdeps += 1; 2402 while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != 0) 2403 free_allocindir(aip, inodedep); 2404 if (bp->b_lblkno >= 0 || 2405 bp->b_blkno != indirdep->ir_savebp->b_lblkno) 2406 panic("deallocate_dependencies: not indir"); 2407 bcopy(bp->b_data, indirdep->ir_savebp->b_data, 2408 bp->b_bcount); 2409 WORKLIST_REMOVE(wk); 2410 WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, wk); 2411 continue; 2412 2413 case D_PAGEDEP: 2414 pagedep = WK_PAGEDEP(wk); 2415 /* 2416 * None of the directory additions will ever be 2417 * visible, so they can simply be tossed. 2418 */ 2419 for (i = 0; i < DAHASHSZ; i++) 2420 while ((dap = 2421 LIST_FIRST(&pagedep->pd_diraddhd[i]))) 2422 free_diradd(dap); 2423 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != 0) 2424 free_diradd(dap); 2425 /* 2426 * Copy any directory remove dependencies to the list 2427 * to be processed after the zero'ed inode is written. 2428 * If the inode has already been written, then they 2429 * can be dumped directly onto the work list. 2430 */ 2431 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) { 2432 LIST_REMOVE(dirrem, dm_next); 2433 dirrem->dm_dirinum = pagedep->pd_ino; 2434 if (inodedep == NULL || 2435 (inodedep->id_state & ALLCOMPLETE) == 2436 ALLCOMPLETE) 2437 add_to_worklist(&dirrem->dm_list); 2438 else 2439 WORKLIST_INSERT(&inodedep->id_bufwait, 2440 &dirrem->dm_list); 2441 } 2442 if ((pagedep->pd_state & NEWBLOCK) != 0) { 2443 LIST_FOREACH(wk, &inodedep->id_bufwait, wk_list) 2444 if (wk->wk_type == D_NEWDIRBLK && 2445 WK_NEWDIRBLK(wk)->db_pagedep == 2446 pagedep) 2447 break; 2448 if (wk != NULL) { 2449 WORKLIST_REMOVE(wk); 2450 free_newdirblk(WK_NEWDIRBLK(wk)); 2451 } else 2452 panic("deallocate_dependencies: " 2453 "lost pagedep"); 2454 } 2455 WORKLIST_REMOVE(&pagedep->pd_list); 2456 LIST_REMOVE(pagedep, pd_hash); 2457 WORKITEM_FREE(pagedep, D_PAGEDEP); 2458 continue; 2459 2460 case D_ALLOCINDIR: 2461 free_allocindir(WK_ALLOCINDIR(wk), inodedep); 2462 continue; 2463 2464 case D_ALLOCDIRECT: 2465 case D_INODEDEP: 2466 panic("deallocate_dependencies: Unexpected type %s", 2467 TYPENAME(wk->wk_type)); 2468 /* NOTREACHED */ 2469 2470 default: 2471 panic("deallocate_dependencies: Unknown type %s", 2472 TYPENAME(wk->wk_type)); 2473 /* NOTREACHED */ 2474 } 2475 } 2476 } 2477 2478 /* 2479 * Free an allocdirect. Generate a new freefrag work request if appropriate. 2480 * This routine must be called with splbio interrupts blocked. 2481 */ 2482 static void 2483 free_allocdirect(adphead, adp, delay) 2484 struct allocdirectlst *adphead; 2485 struct allocdirect *adp; 2486 int delay; 2487 { 2488 struct newdirblk *newdirblk; 2489 struct worklist *wk; 2490 2491 mtx_assert(&lk, MA_OWNED); 2492 if ((adp->ad_state & DEPCOMPLETE) == 0) 2493 LIST_REMOVE(adp, ad_deps); 2494 TAILQ_REMOVE(adphead, adp, ad_next); 2495 if ((adp->ad_state & COMPLETE) == 0) 2496 WORKLIST_REMOVE(&adp->ad_list); 2497 if (adp->ad_freefrag != NULL) { 2498 if (delay) 2499 WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait, 2500 &adp->ad_freefrag->ff_list); 2501 else 2502 add_to_worklist(&adp->ad_freefrag->ff_list); 2503 } 2504 if ((wk = LIST_FIRST(&adp->ad_newdirblk)) != NULL) { 2505 newdirblk = WK_NEWDIRBLK(wk); 2506 WORKLIST_REMOVE(&newdirblk->db_list); 2507 if (!LIST_EMPTY(&adp->ad_newdirblk)) 2508 panic("free_allocdirect: extra newdirblk"); 2509 if (delay) 2510 WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait, 2511 &newdirblk->db_list); 2512 else 2513 free_newdirblk(newdirblk); 2514 } 2515 WORKITEM_FREE(adp, D_ALLOCDIRECT); 2516 } 2517 2518 /* 2519 * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep. 2520 * This routine must be called with splbio interrupts blocked. 2521 */ 2522 static void 2523 free_newdirblk(newdirblk) 2524 struct newdirblk *newdirblk; 2525 { 2526 struct pagedep *pagedep; 2527 struct diradd *dap; 2528 int i; 2529 2530 mtx_assert(&lk, MA_OWNED); 2531 /* 2532 * If the pagedep is still linked onto the directory buffer 2533 * dependency chain, then some of the entries on the 2534 * pd_pendinghd list may not be committed to disk yet. In 2535 * this case, we will simply clear the NEWBLOCK flag and 2536 * let the pd_pendinghd list be processed when the pagedep 2537 * is next written. If the pagedep is no longer on the buffer 2538 * dependency chain, then all the entries on the pd_pending 2539 * list are committed to disk and we can free them here. 2540 */ 2541 pagedep = newdirblk->db_pagedep; 2542 pagedep->pd_state &= ~NEWBLOCK; 2543 if ((pagedep->pd_state & ONWORKLIST) == 0) 2544 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 2545 free_diradd(dap); 2546 /* 2547 * If no dependencies remain, the pagedep will be freed. 2548 */ 2549 for (i = 0; i < DAHASHSZ; i++) 2550 if (!LIST_EMPTY(&pagedep->pd_diraddhd[i])) 2551 break; 2552 if (i == DAHASHSZ && (pagedep->pd_state & ONWORKLIST) == 0) { 2553 LIST_REMOVE(pagedep, pd_hash); 2554 WORKITEM_FREE(pagedep, D_PAGEDEP); 2555 } 2556 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 2557 } 2558 2559 /* 2560 * Prepare an inode to be freed. The actual free operation is not 2561 * done until the zero'ed inode has been written to disk. 2562 */ 2563 void 2564 softdep_freefile(pvp, ino, mode) 2565 struct vnode *pvp; 2566 ino_t ino; 2567 int mode; 2568 { 2569 struct inode *ip = VTOI(pvp); 2570 struct inodedep *inodedep; 2571 struct freefile *freefile; 2572 2573 /* 2574 * This sets up the inode de-allocation dependency. 2575 */ 2576 MALLOC(freefile, struct freefile *, sizeof(struct freefile), 2577 M_FREEFILE, M_SOFTDEP_FLAGS); 2578 workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount); 2579 freefile->fx_mode = mode; 2580 freefile->fx_oldinum = ino; 2581 freefile->fx_devvp = ip->i_devvp; 2582 if ((ip->i_flag & IN_SPACECOUNTED) == 0) { 2583 UFS_LOCK(ip->i_ump); 2584 ip->i_fs->fs_pendinginodes += 1; 2585 UFS_UNLOCK(ip->i_ump); 2586 } 2587 2588 /* 2589 * If the inodedep does not exist, then the zero'ed inode has 2590 * been written to disk. If the allocated inode has never been 2591 * written to disk, then the on-disk inode is zero'ed. In either 2592 * case we can free the file immediately. 2593 */ 2594 ACQUIRE_LOCK(&lk); 2595 if (inodedep_lookup(pvp->v_mount, ino, 0, &inodedep) == 0 || 2596 check_inode_unwritten(inodedep)) { 2597 FREE_LOCK(&lk); 2598 handle_workitem_freefile(freefile); 2599 return; 2600 } 2601 WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list); 2602 FREE_LOCK(&lk); 2603 ip->i_flag |= IN_MODIFIED; 2604 } 2605 2606 /* 2607 * Check to see if an inode has never been written to disk. If 2608 * so free the inodedep and return success, otherwise return failure. 2609 * This routine must be called with splbio interrupts blocked. 2610 * 2611 * If we still have a bitmap dependency, then the inode has never 2612 * been written to disk. Drop the dependency as it is no longer 2613 * necessary since the inode is being deallocated. We set the 2614 * ALLCOMPLETE flags since the bitmap now properly shows that the 2615 * inode is not allocated. Even if the inode is actively being 2616 * written, it has been rolled back to its zero'ed state, so we 2617 * are ensured that a zero inode is what is on the disk. For short 2618 * lived files, this change will usually result in removing all the 2619 * dependencies from the inode so that it can be freed immediately. 2620 */ 2621 static int 2622 check_inode_unwritten(inodedep) 2623 struct inodedep *inodedep; 2624 { 2625 2626 mtx_assert(&lk, MA_OWNED); 2627 if ((inodedep->id_state & DEPCOMPLETE) != 0 || 2628 !LIST_EMPTY(&inodedep->id_pendinghd) || 2629 !LIST_EMPTY(&inodedep->id_bufwait) || 2630 !LIST_EMPTY(&inodedep->id_inowait) || 2631 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 2632 !TAILQ_EMPTY(&inodedep->id_newinoupdt) || 2633 !TAILQ_EMPTY(&inodedep->id_extupdt) || 2634 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 2635 inodedep->id_nlinkdelta != 0) 2636 return (0); 2637 2638 /* 2639 * Another process might be in initiate_write_inodeblock_ufs[12] 2640 * trying to allocate memory without holding "Softdep Lock". 2641 */ 2642 if ((inodedep->id_state & IOSTARTED) != 0 && 2643 inodedep->id_savedino1 == NULL) 2644 return (0); 2645 2646 inodedep->id_state |= ALLCOMPLETE; 2647 LIST_REMOVE(inodedep, id_deps); 2648 inodedep->id_buf = NULL; 2649 if (inodedep->id_state & ONWORKLIST) 2650 WORKLIST_REMOVE(&inodedep->id_list); 2651 if (inodedep->id_savedino1 != NULL) { 2652 FREE(inodedep->id_savedino1, M_SAVEDINO); 2653 inodedep->id_savedino1 = NULL; 2654 } 2655 if (free_inodedep(inodedep) == 0) 2656 panic("check_inode_unwritten: busy inode"); 2657 return (1); 2658 } 2659 2660 /* 2661 * Try to free an inodedep structure. Return 1 if it could be freed. 2662 */ 2663 static int 2664 free_inodedep(inodedep) 2665 struct inodedep *inodedep; 2666 { 2667 2668 mtx_assert(&lk, MA_OWNED); 2669 if ((inodedep->id_state & ONWORKLIST) != 0 || 2670 (inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE || 2671 !LIST_EMPTY(&inodedep->id_pendinghd) || 2672 !LIST_EMPTY(&inodedep->id_bufwait) || 2673 !LIST_EMPTY(&inodedep->id_inowait) || 2674 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 2675 !TAILQ_EMPTY(&inodedep->id_newinoupdt) || 2676 !TAILQ_EMPTY(&inodedep->id_extupdt) || 2677 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 2678 inodedep->id_nlinkdelta != 0 || inodedep->id_savedino1 != NULL) 2679 return (0); 2680 LIST_REMOVE(inodedep, id_hash); 2681 WORKITEM_FREE(inodedep, D_INODEDEP); 2682 num_inodedep -= 1; 2683 return (1); 2684 } 2685 2686 /* 2687 * This workitem routine performs the block de-allocation. 2688 * The workitem is added to the pending list after the updated 2689 * inode block has been written to disk. As mentioned above, 2690 * checks regarding the number of blocks de-allocated (compared 2691 * to the number of blocks allocated for the file) are also 2692 * performed in this function. 2693 */ 2694 static void 2695 handle_workitem_freeblocks(freeblks, flags) 2696 struct freeblks *freeblks; 2697 int flags; 2698 { 2699 struct inode *ip; 2700 struct vnode *vp; 2701 struct fs *fs; 2702 struct ufsmount *ump; 2703 int i, nblocks, level, bsize; 2704 ufs2_daddr_t bn, blocksreleased = 0; 2705 int error, allerror = 0; 2706 ufs_lbn_t baselbns[NIADDR], tmpval; 2707 int fs_pendingblocks; 2708 2709 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 2710 fs = ump->um_fs; 2711 fs_pendingblocks = 0; 2712 tmpval = 1; 2713 baselbns[0] = NDADDR; 2714 for (i = 1; i < NIADDR; i++) { 2715 tmpval *= NINDIR(fs); 2716 baselbns[i] = baselbns[i - 1] + tmpval; 2717 } 2718 nblocks = btodb(fs->fs_bsize); 2719 blocksreleased = 0; 2720 /* 2721 * Release all extended attribute blocks or frags. 2722 */ 2723 if (freeblks->fb_oldextsize > 0) { 2724 for (i = (NXADDR - 1); i >= 0; i--) { 2725 if ((bn = freeblks->fb_eblks[i]) == 0) 2726 continue; 2727 bsize = sblksize(fs, freeblks->fb_oldextsize, i); 2728 ffs_blkfree(ump, fs, freeblks->fb_devvp, bn, bsize, 2729 freeblks->fb_previousinum); 2730 blocksreleased += btodb(bsize); 2731 } 2732 } 2733 /* 2734 * Release all data blocks or frags. 2735 */ 2736 if (freeblks->fb_oldsize > 0) { 2737 /* 2738 * Indirect blocks first. 2739 */ 2740 for (level = (NIADDR - 1); level >= 0; level--) { 2741 if ((bn = freeblks->fb_iblks[level]) == 0) 2742 continue; 2743 if ((error = indir_trunc(freeblks, fsbtodb(fs, bn), 2744 level, baselbns[level], &blocksreleased)) != 0) 2745 allerror = error; 2746 ffs_blkfree(ump, fs, freeblks->fb_devvp, bn, 2747 fs->fs_bsize, freeblks->fb_previousinum); 2748 fs_pendingblocks += nblocks; 2749 blocksreleased += nblocks; 2750 } 2751 /* 2752 * All direct blocks or frags. 2753 */ 2754 for (i = (NDADDR - 1); i >= 0; i--) { 2755 if ((bn = freeblks->fb_dblks[i]) == 0) 2756 continue; 2757 bsize = sblksize(fs, freeblks->fb_oldsize, i); 2758 ffs_blkfree(ump, fs, freeblks->fb_devvp, bn, bsize, 2759 freeblks->fb_previousinum); 2760 fs_pendingblocks += btodb(bsize); 2761 blocksreleased += btodb(bsize); 2762 } 2763 } 2764 UFS_LOCK(ump); 2765 fs->fs_pendingblocks -= fs_pendingblocks; 2766 UFS_UNLOCK(ump); 2767 /* 2768 * If we still have not finished background cleanup, then check 2769 * to see if the block count needs to be adjusted. 2770 */ 2771 if (freeblks->fb_chkcnt != blocksreleased && 2772 (fs->fs_flags & FS_UNCLEAN) != 0 && 2773 ffs_vget(freeblks->fb_list.wk_mp, freeblks->fb_previousinum, 2774 (flags & LK_NOWAIT) | LK_EXCLUSIVE, &vp) == 0) { 2775 ip = VTOI(vp); 2776 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + \ 2777 freeblks->fb_chkcnt - blocksreleased); 2778 ip->i_flag |= IN_CHANGE; 2779 vput(vp); 2780 } 2781 2782 #ifdef INVARIANTS 2783 if (freeblks->fb_chkcnt != blocksreleased && 2784 ((fs->fs_flags & FS_UNCLEAN) == 0 || (flags & LK_NOWAIT) != 0)) 2785 printf("handle_workitem_freeblocks: block count\n"); 2786 if (allerror) 2787 softdep_error("handle_workitem_freeblks", allerror); 2788 #endif /* INVARIANTS */ 2789 2790 ACQUIRE_LOCK(&lk); 2791 WORKITEM_FREE(freeblks, D_FREEBLKS); 2792 FREE_LOCK(&lk); 2793 } 2794 2795 /* 2796 * Release blocks associated with the inode ip and stored in the indirect 2797 * block dbn. If level is greater than SINGLE, the block is an indirect block 2798 * and recursive calls to indirtrunc must be used to cleanse other indirect 2799 * blocks. 2800 */ 2801 static int 2802 indir_trunc(freeblks, dbn, level, lbn, countp) 2803 struct freeblks *freeblks; 2804 ufs2_daddr_t dbn; 2805 int level; 2806 ufs_lbn_t lbn; 2807 ufs2_daddr_t *countp; 2808 { 2809 struct buf *bp; 2810 struct fs *fs; 2811 struct worklist *wk; 2812 struct indirdep *indirdep; 2813 struct ufsmount *ump; 2814 ufs1_daddr_t *bap1 = 0; 2815 ufs2_daddr_t nb, *bap2 = 0; 2816 ufs_lbn_t lbnadd; 2817 int i, nblocks, ufs1fmt; 2818 int error, allerror = 0; 2819 int fs_pendingblocks; 2820 2821 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 2822 fs = ump->um_fs; 2823 fs_pendingblocks = 0; 2824 lbnadd = 1; 2825 for (i = level; i > 0; i--) 2826 lbnadd *= NINDIR(fs); 2827 /* 2828 * Get buffer of block pointers to be freed. This routine is not 2829 * called until the zero'ed inode has been written, so it is safe 2830 * to free blocks as they are encountered. Because the inode has 2831 * been zero'ed, calls to bmap on these blocks will fail. So, we 2832 * have to use the on-disk address and the block device for the 2833 * filesystem to look them up. If the file was deleted before its 2834 * indirect blocks were all written to disk, the routine that set 2835 * us up (deallocate_dependencies) will have arranged to leave 2836 * a complete copy of the indirect block in memory for our use. 2837 * Otherwise we have to read the blocks in from the disk. 2838 */ 2839 #ifdef notyet 2840 bp = getblk(freeblks->fb_devvp, dbn, (int)fs->fs_bsize, 0, 0, 2841 GB_NOCREAT); 2842 #else 2843 bp = incore(&freeblks->fb_devvp->v_bufobj, dbn); 2844 #endif 2845 ACQUIRE_LOCK(&lk); 2846 if (bp != NULL && (wk = LIST_FIRST(&bp->b_dep)) != NULL) { 2847 if (wk->wk_type != D_INDIRDEP || 2848 (indirdep = WK_INDIRDEP(wk))->ir_savebp != bp || 2849 (indirdep->ir_state & GOINGAWAY) == 0) 2850 panic("indir_trunc: lost indirdep"); 2851 WORKLIST_REMOVE(wk); 2852 WORKITEM_FREE(indirdep, D_INDIRDEP); 2853 if (!LIST_EMPTY(&bp->b_dep)) 2854 panic("indir_trunc: dangling dep"); 2855 ump->um_numindirdeps -= 1; 2856 FREE_LOCK(&lk); 2857 } else { 2858 #ifdef notyet 2859 if (bp) 2860 brelse(bp); 2861 #endif 2862 FREE_LOCK(&lk); 2863 error = bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize, 2864 NOCRED, &bp); 2865 if (error) { 2866 brelse(bp); 2867 return (error); 2868 } 2869 } 2870 /* 2871 * Recursively free indirect blocks. 2872 */ 2873 if (ump->um_fstype == UFS1) { 2874 ufs1fmt = 1; 2875 bap1 = (ufs1_daddr_t *)bp->b_data; 2876 } else { 2877 ufs1fmt = 0; 2878 bap2 = (ufs2_daddr_t *)bp->b_data; 2879 } 2880 nblocks = btodb(fs->fs_bsize); 2881 for (i = NINDIR(fs) - 1; i >= 0; i--) { 2882 if (ufs1fmt) 2883 nb = bap1[i]; 2884 else 2885 nb = bap2[i]; 2886 if (nb == 0) 2887 continue; 2888 if (level != 0) { 2889 if ((error = indir_trunc(freeblks, fsbtodb(fs, nb), 2890 level - 1, lbn + (i * lbnadd), countp)) != 0) 2891 allerror = error; 2892 } 2893 ffs_blkfree(ump, fs, freeblks->fb_devvp, nb, fs->fs_bsize, 2894 freeblks->fb_previousinum); 2895 fs_pendingblocks += nblocks; 2896 *countp += nblocks; 2897 } 2898 UFS_LOCK(ump); 2899 fs->fs_pendingblocks -= fs_pendingblocks; 2900 UFS_UNLOCK(ump); 2901 bp->b_flags |= B_INVAL | B_NOCACHE; 2902 brelse(bp); 2903 return (allerror); 2904 } 2905 2906 /* 2907 * Free an allocindir. 2908 * This routine must be called with splbio interrupts blocked. 2909 */ 2910 static void 2911 free_allocindir(aip, inodedep) 2912 struct allocindir *aip; 2913 struct inodedep *inodedep; 2914 { 2915 struct freefrag *freefrag; 2916 2917 mtx_assert(&lk, MA_OWNED); 2918 if ((aip->ai_state & DEPCOMPLETE) == 0) 2919 LIST_REMOVE(aip, ai_deps); 2920 if (aip->ai_state & ONWORKLIST) 2921 WORKLIST_REMOVE(&aip->ai_list); 2922 LIST_REMOVE(aip, ai_next); 2923 if ((freefrag = aip->ai_freefrag) != NULL) { 2924 if (inodedep == NULL) 2925 add_to_worklist(&freefrag->ff_list); 2926 else 2927 WORKLIST_INSERT(&inodedep->id_bufwait, 2928 &freefrag->ff_list); 2929 } 2930 WORKITEM_FREE(aip, D_ALLOCINDIR); 2931 } 2932 2933 /* 2934 * Directory entry addition dependencies. 2935 * 2936 * When adding a new directory entry, the inode (with its incremented link 2937 * count) must be written to disk before the directory entry's pointer to it. 2938 * Also, if the inode is newly allocated, the corresponding freemap must be 2939 * updated (on disk) before the directory entry's pointer. These requirements 2940 * are met via undo/redo on the directory entry's pointer, which consists 2941 * simply of the inode number. 2942 * 2943 * As directory entries are added and deleted, the free space within a 2944 * directory block can become fragmented. The ufs filesystem will compact 2945 * a fragmented directory block to make space for a new entry. When this 2946 * occurs, the offsets of previously added entries change. Any "diradd" 2947 * dependency structures corresponding to these entries must be updated with 2948 * the new offsets. 2949 */ 2950 2951 /* 2952 * This routine is called after the in-memory inode's link 2953 * count has been incremented, but before the directory entry's 2954 * pointer to the inode has been set. 2955 */ 2956 int 2957 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk) 2958 struct buf *bp; /* buffer containing directory block */ 2959 struct inode *dp; /* inode for directory */ 2960 off_t diroffset; /* offset of new entry in directory */ 2961 ino_t newinum; /* inode referenced by new directory entry */ 2962 struct buf *newdirbp; /* non-NULL => contents of new mkdir */ 2963 int isnewblk; /* entry is in a newly allocated block */ 2964 { 2965 int offset; /* offset of new entry within directory block */ 2966 ufs_lbn_t lbn; /* block in directory containing new entry */ 2967 struct fs *fs; 2968 struct diradd *dap; 2969 struct allocdirect *adp; 2970 struct pagedep *pagedep; 2971 struct inodedep *inodedep; 2972 struct newdirblk *newdirblk = 0; 2973 struct mkdir *mkdir1, *mkdir2; 2974 struct mount *mp; 2975 2976 /* 2977 * Whiteouts have no dependencies. 2978 */ 2979 if (newinum == WINO) { 2980 if (newdirbp != NULL) 2981 bdwrite(newdirbp); 2982 return (0); 2983 } 2984 mp = UFSTOVFS(dp->i_ump); 2985 fs = dp->i_fs; 2986 lbn = lblkno(fs, diroffset); 2987 offset = blkoff(fs, diroffset); 2988 MALLOC(dap, struct diradd *, sizeof(struct diradd), M_DIRADD, 2989 M_SOFTDEP_FLAGS|M_ZERO); 2990 workitem_alloc(&dap->da_list, D_DIRADD, mp); 2991 dap->da_offset = offset; 2992 dap->da_newinum = newinum; 2993 dap->da_state = ATTACHED; 2994 if (isnewblk && lbn < NDADDR && fragoff(fs, diroffset) == 0) { 2995 MALLOC(newdirblk, struct newdirblk *, sizeof(struct newdirblk), 2996 M_NEWDIRBLK, M_SOFTDEP_FLAGS); 2997 workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp); 2998 } 2999 if (newdirbp == NULL) { 3000 dap->da_state |= DEPCOMPLETE; 3001 ACQUIRE_LOCK(&lk); 3002 } else { 3003 dap->da_state |= MKDIR_BODY | MKDIR_PARENT; 3004 MALLOC(mkdir1, struct mkdir *, sizeof(struct mkdir), M_MKDIR, 3005 M_SOFTDEP_FLAGS); 3006 workitem_alloc(&mkdir1->md_list, D_MKDIR, mp); 3007 mkdir1->md_state = MKDIR_BODY; 3008 mkdir1->md_diradd = dap; 3009 MALLOC(mkdir2, struct mkdir *, sizeof(struct mkdir), M_MKDIR, 3010 M_SOFTDEP_FLAGS); 3011 workitem_alloc(&mkdir2->md_list, D_MKDIR, mp); 3012 mkdir2->md_state = MKDIR_PARENT; 3013 mkdir2->md_diradd = dap; 3014 /* 3015 * Dependency on "." and ".." being written to disk. 3016 */ 3017 mkdir1->md_buf = newdirbp; 3018 ACQUIRE_LOCK(&lk); 3019 LIST_INSERT_HEAD(&mkdirlisthd, mkdir1, md_mkdirs); 3020 WORKLIST_INSERT(&newdirbp->b_dep, &mkdir1->md_list); 3021 FREE_LOCK(&lk); 3022 bdwrite(newdirbp); 3023 /* 3024 * Dependency on link count increase for parent directory 3025 */ 3026 ACQUIRE_LOCK(&lk); 3027 if (inodedep_lookup(mp, dp->i_number, 0, &inodedep) == 0 3028 || (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 3029 dap->da_state &= ~MKDIR_PARENT; 3030 WORKITEM_FREE(mkdir2, D_MKDIR); 3031 } else { 3032 LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs); 3033 WORKLIST_INSERT(&inodedep->id_bufwait,&mkdir2->md_list); 3034 } 3035 } 3036 /* 3037 * Link into parent directory pagedep to await its being written. 3038 */ 3039 if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0) 3040 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 3041 dap->da_pagedep = pagedep; 3042 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap, 3043 da_pdlist); 3044 /* 3045 * Link into its inodedep. Put it on the id_bufwait list if the inode 3046 * is not yet written. If it is written, do the post-inode write 3047 * processing to put it on the id_pendinghd list. 3048 */ 3049 (void) inodedep_lookup(mp, newinum, DEPALLOC, &inodedep); 3050 if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) 3051 diradd_inode_written(dap, inodedep); 3052 else 3053 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 3054 if (isnewblk) { 3055 /* 3056 * Directories growing into indirect blocks are rare 3057 * enough and the frequency of new block allocation 3058 * in those cases even more rare, that we choose not 3059 * to bother tracking them. Rather we simply force the 3060 * new directory entry to disk. 3061 */ 3062 if (lbn >= NDADDR) { 3063 FREE_LOCK(&lk); 3064 /* 3065 * We only have a new allocation when at the 3066 * beginning of a new block, not when we are 3067 * expanding into an existing block. 3068 */ 3069 if (blkoff(fs, diroffset) == 0) 3070 return (1); 3071 return (0); 3072 } 3073 /* 3074 * We only have a new allocation when at the beginning 3075 * of a new fragment, not when we are expanding into an 3076 * existing fragment. Also, there is nothing to do if we 3077 * are already tracking this block. 3078 */ 3079 if (fragoff(fs, diroffset) != 0) { 3080 FREE_LOCK(&lk); 3081 return (0); 3082 } 3083 if ((pagedep->pd_state & NEWBLOCK) != 0) { 3084 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 3085 FREE_LOCK(&lk); 3086 return (0); 3087 } 3088 /* 3089 * Find our associated allocdirect and have it track us. 3090 */ 3091 if (inodedep_lookup(mp, dp->i_number, 0, &inodedep) == 0) 3092 panic("softdep_setup_directory_add: lost inodedep"); 3093 adp = TAILQ_LAST(&inodedep->id_newinoupdt, allocdirectlst); 3094 if (adp == NULL || adp->ad_lbn != lbn) 3095 panic("softdep_setup_directory_add: lost entry"); 3096 pagedep->pd_state |= NEWBLOCK; 3097 newdirblk->db_pagedep = pagedep; 3098 WORKLIST_INSERT(&adp->ad_newdirblk, &newdirblk->db_list); 3099 } 3100 FREE_LOCK(&lk); 3101 return (0); 3102 } 3103 3104 /* 3105 * This procedure is called to change the offset of a directory 3106 * entry when compacting a directory block which must be owned 3107 * exclusively by the caller. Note that the actual entry movement 3108 * must be done in this procedure to ensure that no I/O completions 3109 * occur while the move is in progress. 3110 */ 3111 void 3112 softdep_change_directoryentry_offset(dp, base, oldloc, newloc, entrysize) 3113 struct inode *dp; /* inode for directory */ 3114 caddr_t base; /* address of dp->i_offset */ 3115 caddr_t oldloc; /* address of old directory location */ 3116 caddr_t newloc; /* address of new directory location */ 3117 int entrysize; /* size of directory entry */ 3118 { 3119 int offset, oldoffset, newoffset; 3120 struct pagedep *pagedep; 3121 struct diradd *dap; 3122 ufs_lbn_t lbn; 3123 3124 ACQUIRE_LOCK(&lk); 3125 lbn = lblkno(dp->i_fs, dp->i_offset); 3126 offset = blkoff(dp->i_fs, dp->i_offset); 3127 if (pagedep_lookup(dp, lbn, 0, &pagedep) == 0) 3128 goto done; 3129 oldoffset = offset + (oldloc - base); 3130 newoffset = offset + (newloc - base); 3131 3132 LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(oldoffset)], da_pdlist) { 3133 if (dap->da_offset != oldoffset) 3134 continue; 3135 dap->da_offset = newoffset; 3136 if (DIRADDHASH(newoffset) == DIRADDHASH(oldoffset)) 3137 break; 3138 LIST_REMOVE(dap, da_pdlist); 3139 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(newoffset)], 3140 dap, da_pdlist); 3141 break; 3142 } 3143 if (dap == NULL) { 3144 3145 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) { 3146 if (dap->da_offset == oldoffset) { 3147 dap->da_offset = newoffset; 3148 break; 3149 } 3150 } 3151 } 3152 done: 3153 bcopy(oldloc, newloc, entrysize); 3154 FREE_LOCK(&lk); 3155 } 3156 3157 /* 3158 * Free a diradd dependency structure. This routine must be called 3159 * with splbio interrupts blocked. 3160 */ 3161 static void 3162 free_diradd(dap) 3163 struct diradd *dap; 3164 { 3165 struct dirrem *dirrem; 3166 struct pagedep *pagedep; 3167 struct inodedep *inodedep; 3168 struct mkdir *mkdir, *nextmd; 3169 3170 mtx_assert(&lk, MA_OWNED); 3171 WORKLIST_REMOVE(&dap->da_list); 3172 LIST_REMOVE(dap, da_pdlist); 3173 if ((dap->da_state & DIRCHG) == 0) { 3174 pagedep = dap->da_pagedep; 3175 } else { 3176 dirrem = dap->da_previous; 3177 pagedep = dirrem->dm_pagedep; 3178 dirrem->dm_dirinum = pagedep->pd_ino; 3179 add_to_worklist(&dirrem->dm_list); 3180 } 3181 if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum, 3182 0, &inodedep) != 0) 3183 (void) free_inodedep(inodedep); 3184 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 3185 for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) { 3186 nextmd = LIST_NEXT(mkdir, md_mkdirs); 3187 if (mkdir->md_diradd != dap) 3188 continue; 3189 dap->da_state &= ~mkdir->md_state; 3190 WORKLIST_REMOVE(&mkdir->md_list); 3191 LIST_REMOVE(mkdir, md_mkdirs); 3192 WORKITEM_FREE(mkdir, D_MKDIR); 3193 } 3194 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) 3195 panic("free_diradd: unfound ref"); 3196 } 3197 WORKITEM_FREE(dap, D_DIRADD); 3198 } 3199 3200 /* 3201 * Directory entry removal dependencies. 3202 * 3203 * When removing a directory entry, the entry's inode pointer must be 3204 * zero'ed on disk before the corresponding inode's link count is decremented 3205 * (possibly freeing the inode for re-use). This dependency is handled by 3206 * updating the directory entry but delaying the inode count reduction until 3207 * after the directory block has been written to disk. After this point, the 3208 * inode count can be decremented whenever it is convenient. 3209 */ 3210 3211 /* 3212 * This routine should be called immediately after removing 3213 * a directory entry. The inode's link count should not be 3214 * decremented by the calling procedure -- the soft updates 3215 * code will do this task when it is safe. 3216 */ 3217 void 3218 softdep_setup_remove(bp, dp, ip, isrmdir) 3219 struct buf *bp; /* buffer containing directory block */ 3220 struct inode *dp; /* inode for the directory being modified */ 3221 struct inode *ip; /* inode for directory entry being removed */ 3222 int isrmdir; /* indicates if doing RMDIR */ 3223 { 3224 struct dirrem *dirrem, *prevdirrem; 3225 3226 /* 3227 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK. 3228 */ 3229 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 3230 3231 /* 3232 * If the COMPLETE flag is clear, then there were no active 3233 * entries and we want to roll back to a zeroed entry until 3234 * the new inode is committed to disk. If the COMPLETE flag is 3235 * set then we have deleted an entry that never made it to 3236 * disk. If the entry we deleted resulted from a name change, 3237 * then the old name still resides on disk. We cannot delete 3238 * its inode (returned to us in prevdirrem) until the zeroed 3239 * directory entry gets to disk. The new inode has never been 3240 * referenced on the disk, so can be deleted immediately. 3241 */ 3242 if ((dirrem->dm_state & COMPLETE) == 0) { 3243 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem, 3244 dm_next); 3245 FREE_LOCK(&lk); 3246 } else { 3247 if (prevdirrem != NULL) 3248 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, 3249 prevdirrem, dm_next); 3250 dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino; 3251 FREE_LOCK(&lk); 3252 handle_workitem_remove(dirrem, NULL); 3253 } 3254 } 3255 3256 /* 3257 * Allocate a new dirrem if appropriate and return it along with 3258 * its associated pagedep. Called without a lock, returns with lock. 3259 */ 3260 static long num_dirrem; /* number of dirrem allocated */ 3261 static struct dirrem * 3262 newdirrem(bp, dp, ip, isrmdir, prevdirremp) 3263 struct buf *bp; /* buffer containing directory block */ 3264 struct inode *dp; /* inode for the directory being modified */ 3265 struct inode *ip; /* inode for directory entry being removed */ 3266 int isrmdir; /* indicates if doing RMDIR */ 3267 struct dirrem **prevdirremp; /* previously referenced inode, if any */ 3268 { 3269 int offset; 3270 ufs_lbn_t lbn; 3271 struct diradd *dap; 3272 struct dirrem *dirrem; 3273 struct pagedep *pagedep; 3274 3275 /* 3276 * Whiteouts have no deletion dependencies. 3277 */ 3278 if (ip == NULL) 3279 panic("newdirrem: whiteout"); 3280 /* 3281 * If we are over our limit, try to improve the situation. 3282 * Limiting the number of dirrem structures will also limit 3283 * the number of freefile and freeblks structures. 3284 */ 3285 ACQUIRE_LOCK(&lk); 3286 if (num_dirrem > max_softdeps / 2) 3287 (void) request_cleanup(ITOV(dp)->v_mount, FLUSH_REMOVE); 3288 num_dirrem += 1; 3289 FREE_LOCK(&lk); 3290 MALLOC(dirrem, struct dirrem *, sizeof(struct dirrem), 3291 M_DIRREM, M_SOFTDEP_FLAGS|M_ZERO); 3292 workitem_alloc(&dirrem->dm_list, D_DIRREM, ITOV(dp)->v_mount); 3293 dirrem->dm_state = isrmdir ? RMDIR : 0; 3294 dirrem->dm_oldinum = ip->i_number; 3295 *prevdirremp = NULL; 3296 3297 ACQUIRE_LOCK(&lk); 3298 lbn = lblkno(dp->i_fs, dp->i_offset); 3299 offset = blkoff(dp->i_fs, dp->i_offset); 3300 if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0) 3301 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 3302 dirrem->dm_pagedep = pagedep; 3303 /* 3304 * Check for a diradd dependency for the same directory entry. 3305 * If present, then both dependencies become obsolete and can 3306 * be de-allocated. Check for an entry on both the pd_dirraddhd 3307 * list and the pd_pendinghd list. 3308 */ 3309 3310 LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist) 3311 if (dap->da_offset == offset) 3312 break; 3313 if (dap == NULL) { 3314 3315 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) 3316 if (dap->da_offset == offset) 3317 break; 3318 if (dap == NULL) 3319 return (dirrem); 3320 } 3321 /* 3322 * Must be ATTACHED at this point. 3323 */ 3324 if ((dap->da_state & ATTACHED) == 0) 3325 panic("newdirrem: not ATTACHED"); 3326 if (dap->da_newinum != ip->i_number) 3327 panic("newdirrem: inum %d should be %d", 3328 ip->i_number, dap->da_newinum); 3329 /* 3330 * If we are deleting a changed name that never made it to disk, 3331 * then return the dirrem describing the previous inode (which 3332 * represents the inode currently referenced from this entry on disk). 3333 */ 3334 if ((dap->da_state & DIRCHG) != 0) { 3335 *prevdirremp = dap->da_previous; 3336 dap->da_state &= ~DIRCHG; 3337 dap->da_pagedep = pagedep; 3338 } 3339 /* 3340 * We are deleting an entry that never made it to disk. 3341 * Mark it COMPLETE so we can delete its inode immediately. 3342 */ 3343 dirrem->dm_state |= COMPLETE; 3344 free_diradd(dap); 3345 return (dirrem); 3346 } 3347 3348 /* 3349 * Directory entry change dependencies. 3350 * 3351 * Changing an existing directory entry requires that an add operation 3352 * be completed first followed by a deletion. The semantics for the addition 3353 * are identical to the description of adding a new entry above except 3354 * that the rollback is to the old inode number rather than zero. Once 3355 * the addition dependency is completed, the removal is done as described 3356 * in the removal routine above. 3357 */ 3358 3359 /* 3360 * This routine should be called immediately after changing 3361 * a directory entry. The inode's link count should not be 3362 * decremented by the calling procedure -- the soft updates 3363 * code will perform this task when it is safe. 3364 */ 3365 void 3366 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 3367 struct buf *bp; /* buffer containing directory block */ 3368 struct inode *dp; /* inode for the directory being modified */ 3369 struct inode *ip; /* inode for directory entry being removed */ 3370 ino_t newinum; /* new inode number for changed entry */ 3371 int isrmdir; /* indicates if doing RMDIR */ 3372 { 3373 int offset; 3374 struct diradd *dap = NULL; 3375 struct dirrem *dirrem, *prevdirrem; 3376 struct pagedep *pagedep; 3377 struct inodedep *inodedep; 3378 struct mount *mp; 3379 3380 offset = blkoff(dp->i_fs, dp->i_offset); 3381 mp = UFSTOVFS(dp->i_ump); 3382 3383 /* 3384 * Whiteouts do not need diradd dependencies. 3385 */ 3386 if (newinum != WINO) { 3387 MALLOC(dap, struct diradd *, sizeof(struct diradd), 3388 M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO); 3389 workitem_alloc(&dap->da_list, D_DIRADD, mp); 3390 dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE; 3391 dap->da_offset = offset; 3392 dap->da_newinum = newinum; 3393 } 3394 3395 /* 3396 * Allocate a new dirrem and ACQUIRE_LOCK. 3397 */ 3398 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 3399 pagedep = dirrem->dm_pagedep; 3400 /* 3401 * The possible values for isrmdir: 3402 * 0 - non-directory file rename 3403 * 1 - directory rename within same directory 3404 * inum - directory rename to new directory of given inode number 3405 * When renaming to a new directory, we are both deleting and 3406 * creating a new directory entry, so the link count on the new 3407 * directory should not change. Thus we do not need the followup 3408 * dirrem which is usually done in handle_workitem_remove. We set 3409 * the DIRCHG flag to tell handle_workitem_remove to skip the 3410 * followup dirrem. 3411 */ 3412 if (isrmdir > 1) 3413 dirrem->dm_state |= DIRCHG; 3414 3415 /* 3416 * Whiteouts have no additional dependencies, 3417 * so just put the dirrem on the correct list. 3418 */ 3419 if (newinum == WINO) { 3420 if ((dirrem->dm_state & COMPLETE) == 0) { 3421 LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem, 3422 dm_next); 3423 } else { 3424 dirrem->dm_dirinum = pagedep->pd_ino; 3425 add_to_worklist(&dirrem->dm_list); 3426 } 3427 FREE_LOCK(&lk); 3428 return; 3429 } 3430 3431 /* 3432 * If the COMPLETE flag is clear, then there were no active 3433 * entries and we want to roll back to the previous inode until 3434 * the new inode is committed to disk. If the COMPLETE flag is 3435 * set, then we have deleted an entry that never made it to disk. 3436 * If the entry we deleted resulted from a name change, then the old 3437 * inode reference still resides on disk. Any rollback that we do 3438 * needs to be to that old inode (returned to us in prevdirrem). If 3439 * the entry we deleted resulted from a create, then there is 3440 * no entry on the disk, so we want to roll back to zero rather 3441 * than the uncommitted inode. In either of the COMPLETE cases we 3442 * want to immediately free the unwritten and unreferenced inode. 3443 */ 3444 if ((dirrem->dm_state & COMPLETE) == 0) { 3445 dap->da_previous = dirrem; 3446 } else { 3447 if (prevdirrem != NULL) { 3448 dap->da_previous = prevdirrem; 3449 } else { 3450 dap->da_state &= ~DIRCHG; 3451 dap->da_pagedep = pagedep; 3452 } 3453 dirrem->dm_dirinum = pagedep->pd_ino; 3454 add_to_worklist(&dirrem->dm_list); 3455 } 3456 /* 3457 * Link into its inodedep. Put it on the id_bufwait list if the inode 3458 * is not yet written. If it is written, do the post-inode write 3459 * processing to put it on the id_pendinghd list. 3460 */ 3461 if (inodedep_lookup(mp, newinum, DEPALLOC, &inodedep) == 0 || 3462 (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 3463 dap->da_state |= COMPLETE; 3464 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 3465 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 3466 } else { 3467 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], 3468 dap, da_pdlist); 3469 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 3470 } 3471 FREE_LOCK(&lk); 3472 } 3473 3474 /* 3475 * Called whenever the link count on an inode is changed. 3476 * It creates an inode dependency so that the new reference(s) 3477 * to the inode cannot be committed to disk until the updated 3478 * inode has been written. 3479 */ 3480 void 3481 softdep_change_linkcnt(ip) 3482 struct inode *ip; /* the inode with the increased link count */ 3483 { 3484 struct inodedep *inodedep; 3485 3486 ACQUIRE_LOCK(&lk); 3487 (void) inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 3488 DEPALLOC, &inodedep); 3489 if (ip->i_nlink < ip->i_effnlink) 3490 panic("softdep_change_linkcnt: bad delta"); 3491 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 3492 FREE_LOCK(&lk); 3493 } 3494 3495 /* 3496 * Called when the effective link count and the reference count 3497 * on an inode drops to zero. At this point there are no names 3498 * referencing the file in the filesystem and no active file 3499 * references. The space associated with the file will be freed 3500 * as soon as the necessary soft dependencies are cleared. 3501 */ 3502 void 3503 softdep_releasefile(ip) 3504 struct inode *ip; /* inode with the zero effective link count */ 3505 { 3506 struct inodedep *inodedep; 3507 struct fs *fs; 3508 int extblocks; 3509 3510 if (ip->i_effnlink > 0) 3511 panic("softdep_releasefile: file still referenced"); 3512 /* 3513 * We may be called several times as the on-disk link count 3514 * drops to zero. We only want to account for the space once. 3515 */ 3516 if (ip->i_flag & IN_SPACECOUNTED) 3517 return; 3518 /* 3519 * We have to deactivate a snapshot otherwise copyonwrites may 3520 * add blocks and the cleanup may remove blocks after we have 3521 * tried to account for them. 3522 */ 3523 if ((ip->i_flags & SF_SNAPSHOT) != 0) 3524 ffs_snapremove(ITOV(ip)); 3525 /* 3526 * If we are tracking an nlinkdelta, we have to also remember 3527 * whether we accounted for the freed space yet. 3528 */ 3529 ACQUIRE_LOCK(&lk); 3530 if ((inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0, &inodedep))) 3531 inodedep->id_state |= SPACECOUNTED; 3532 FREE_LOCK(&lk); 3533 fs = ip->i_fs; 3534 extblocks = 0; 3535 if (fs->fs_magic == FS_UFS2_MAGIC) 3536 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 3537 UFS_LOCK(ip->i_ump); 3538 ip->i_fs->fs_pendingblocks += DIP(ip, i_blocks) - extblocks; 3539 ip->i_fs->fs_pendinginodes += 1; 3540 UFS_UNLOCK(ip->i_ump); 3541 ip->i_flag |= IN_SPACECOUNTED; 3542 } 3543 3544 /* 3545 * This workitem decrements the inode's link count. 3546 * If the link count reaches zero, the file is removed. 3547 */ 3548 static void 3549 handle_workitem_remove(dirrem, xp) 3550 struct dirrem *dirrem; 3551 struct vnode *xp; 3552 { 3553 struct thread *td = curthread; 3554 struct inodedep *inodedep; 3555 struct vnode *vp; 3556 struct inode *ip; 3557 ino_t oldinum; 3558 int error; 3559 3560 if ((vp = xp) == NULL && 3561 (error = ffs_vget(dirrem->dm_list.wk_mp, 3562 dirrem->dm_oldinum, LK_EXCLUSIVE, &vp)) != 0) { 3563 softdep_error("handle_workitem_remove: vget", error); 3564 return; 3565 } 3566 ip = VTOI(vp); 3567 ACQUIRE_LOCK(&lk); 3568 if ((inodedep_lookup(dirrem->dm_list.wk_mp, 3569 dirrem->dm_oldinum, 0, &inodedep)) == 0) 3570 panic("handle_workitem_remove: lost inodedep"); 3571 /* 3572 * Normal file deletion. 3573 */ 3574 if ((dirrem->dm_state & RMDIR) == 0) { 3575 ip->i_nlink--; 3576 DIP_SET(ip, i_nlink, ip->i_nlink); 3577 ip->i_flag |= IN_CHANGE; 3578 if (ip->i_nlink < ip->i_effnlink) 3579 panic("handle_workitem_remove: bad file delta"); 3580 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 3581 num_dirrem -= 1; 3582 WORKITEM_FREE(dirrem, D_DIRREM); 3583 FREE_LOCK(&lk); 3584 vput(vp); 3585 return; 3586 } 3587 /* 3588 * Directory deletion. Decrement reference count for both the 3589 * just deleted parent directory entry and the reference for ".". 3590 * Next truncate the directory to length zero. When the 3591 * truncation completes, arrange to have the reference count on 3592 * the parent decremented to account for the loss of "..". 3593 */ 3594 ip->i_nlink -= 2; 3595 DIP_SET(ip, i_nlink, ip->i_nlink); 3596 ip->i_flag |= IN_CHANGE; 3597 if (ip->i_nlink < ip->i_effnlink) 3598 panic("handle_workitem_remove: bad dir delta"); 3599 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 3600 FREE_LOCK(&lk); 3601 if ((error = ffs_truncate(vp, (off_t)0, 0, td->td_ucred, td)) != 0) 3602 softdep_error("handle_workitem_remove: truncate", error); 3603 ACQUIRE_LOCK(&lk); 3604 /* 3605 * Rename a directory to a new parent. Since, we are both deleting 3606 * and creating a new directory entry, the link count on the new 3607 * directory should not change. Thus we skip the followup dirrem. 3608 */ 3609 if (dirrem->dm_state & DIRCHG) { 3610 num_dirrem -= 1; 3611 WORKITEM_FREE(dirrem, D_DIRREM); 3612 FREE_LOCK(&lk); 3613 vput(vp); 3614 return; 3615 } 3616 /* 3617 * If the inodedep does not exist, then the zero'ed inode has 3618 * been written to disk. If the allocated inode has never been 3619 * written to disk, then the on-disk inode is zero'ed. In either 3620 * case we can remove the file immediately. 3621 */ 3622 dirrem->dm_state = 0; 3623 oldinum = dirrem->dm_oldinum; 3624 dirrem->dm_oldinum = dirrem->dm_dirinum; 3625 if (inodedep_lookup(dirrem->dm_list.wk_mp, oldinum, 3626 0, &inodedep) == 0 || check_inode_unwritten(inodedep)) { 3627 if (xp != NULL) 3628 add_to_worklist(&dirrem->dm_list); 3629 FREE_LOCK(&lk); 3630 vput(vp); 3631 if (xp == NULL) 3632 handle_workitem_remove(dirrem, NULL); 3633 return; 3634 } 3635 WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list); 3636 FREE_LOCK(&lk); 3637 ip->i_flag |= IN_CHANGE; 3638 ffs_update(vp, 0); 3639 vput(vp); 3640 } 3641 3642 /* 3643 * Inode de-allocation dependencies. 3644 * 3645 * When an inode's link count is reduced to zero, it can be de-allocated. We 3646 * found it convenient to postpone de-allocation until after the inode is 3647 * written to disk with its new link count (zero). At this point, all of the 3648 * on-disk inode's block pointers are nullified and, with careful dependency 3649 * list ordering, all dependencies related to the inode will be satisfied and 3650 * the corresponding dependency structures de-allocated. So, if/when the 3651 * inode is reused, there will be no mixing of old dependencies with new 3652 * ones. This artificial dependency is set up by the block de-allocation 3653 * procedure above (softdep_setup_freeblocks) and completed by the 3654 * following procedure. 3655 */ 3656 static void 3657 handle_workitem_freefile(freefile) 3658 struct freefile *freefile; 3659 { 3660 struct fs *fs; 3661 struct inodedep *idp; 3662 struct ufsmount *ump; 3663 int error; 3664 3665 ump = VFSTOUFS(freefile->fx_list.wk_mp); 3666 fs = ump->um_fs; 3667 #ifdef DEBUG 3668 ACQUIRE_LOCK(&lk); 3669 error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp); 3670 FREE_LOCK(&lk); 3671 if (error) 3672 panic("handle_workitem_freefile: inodedep survived"); 3673 #endif 3674 UFS_LOCK(ump); 3675 fs->fs_pendinginodes -= 1; 3676 UFS_UNLOCK(ump); 3677 if ((error = ffs_freefile(ump, fs, freefile->fx_devvp, 3678 freefile->fx_oldinum, freefile->fx_mode)) != 0) 3679 softdep_error("handle_workitem_freefile", error); 3680 ACQUIRE_LOCK(&lk); 3681 WORKITEM_FREE(freefile, D_FREEFILE); 3682 FREE_LOCK(&lk); 3683 } 3684 3685 3686 /* 3687 * Helper function which unlinks marker element from work list and returns 3688 * the next element on the list. 3689 */ 3690 static __inline struct worklist * 3691 markernext(struct worklist *marker) 3692 { 3693 struct worklist *next; 3694 3695 next = LIST_NEXT(marker, wk_list); 3696 LIST_REMOVE(marker, wk_list); 3697 return next; 3698 } 3699 3700 /* 3701 * Disk writes. 3702 * 3703 * The dependency structures constructed above are most actively used when file 3704 * system blocks are written to disk. No constraints are placed on when a 3705 * block can be written, but unsatisfied update dependencies are made safe by 3706 * modifying (or replacing) the source memory for the duration of the disk 3707 * write. When the disk write completes, the memory block is again brought 3708 * up-to-date. 3709 * 3710 * In-core inode structure reclamation. 3711 * 3712 * Because there are a finite number of "in-core" inode structures, they are 3713 * reused regularly. By transferring all inode-related dependencies to the 3714 * in-memory inode block and indexing them separately (via "inodedep"s), we 3715 * can allow "in-core" inode structures to be reused at any time and avoid 3716 * any increase in contention. 3717 * 3718 * Called just before entering the device driver to initiate a new disk I/O. 3719 * The buffer must be locked, thus, no I/O completion operations can occur 3720 * while we are manipulating its associated dependencies. 3721 */ 3722 static void 3723 softdep_disk_io_initiation(bp) 3724 struct buf *bp; /* structure describing disk write to occur */ 3725 { 3726 struct worklist *wk; 3727 struct worklist marker; 3728 struct indirdep *indirdep; 3729 struct inodedep *inodedep; 3730 3731 /* 3732 * We only care about write operations. There should never 3733 * be dependencies for reads. 3734 */ 3735 if (bp->b_iocmd != BIO_WRITE) 3736 panic("softdep_disk_io_initiation: not write"); 3737 3738 marker.wk_type = D_LAST + 1; /* Not a normal workitem */ 3739 PHOLD(curproc); /* Don't swap out kernel stack */ 3740 3741 ACQUIRE_LOCK(&lk); 3742 /* 3743 * Do any necessary pre-I/O processing. 3744 */ 3745 for (wk = LIST_FIRST(&bp->b_dep); wk != NULL; 3746 wk = markernext(&marker)) { 3747 LIST_INSERT_AFTER(wk, &marker, wk_list); 3748 switch (wk->wk_type) { 3749 3750 case D_PAGEDEP: 3751 initiate_write_filepage(WK_PAGEDEP(wk), bp); 3752 continue; 3753 3754 case D_INODEDEP: 3755 inodedep = WK_INODEDEP(wk); 3756 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) 3757 initiate_write_inodeblock_ufs1(inodedep, bp); 3758 else 3759 initiate_write_inodeblock_ufs2(inodedep, bp); 3760 continue; 3761 3762 case D_INDIRDEP: 3763 indirdep = WK_INDIRDEP(wk); 3764 if (indirdep->ir_state & GOINGAWAY) 3765 panic("disk_io_initiation: indirdep gone"); 3766 /* 3767 * If there are no remaining dependencies, this 3768 * will be writing the real pointers, so the 3769 * dependency can be freed. 3770 */ 3771 if (LIST_EMPTY(&indirdep->ir_deplisthd)) { 3772 struct buf *bp; 3773 3774 bp = indirdep->ir_savebp; 3775 bp->b_flags |= B_INVAL | B_NOCACHE; 3776 /* inline expand WORKLIST_REMOVE(wk); */ 3777 wk->wk_state &= ~ONWORKLIST; 3778 LIST_REMOVE(wk, wk_list); 3779 WORKITEM_FREE(indirdep, D_INDIRDEP); 3780 FREE_LOCK(&lk); 3781 brelse(bp); 3782 ACQUIRE_LOCK(&lk); 3783 continue; 3784 } 3785 /* 3786 * Replace up-to-date version with safe version. 3787 */ 3788 FREE_LOCK(&lk); 3789 MALLOC(indirdep->ir_saveddata, caddr_t, bp->b_bcount, 3790 M_INDIRDEP, M_SOFTDEP_FLAGS); 3791 ACQUIRE_LOCK(&lk); 3792 indirdep->ir_state &= ~ATTACHED; 3793 indirdep->ir_state |= UNDONE; 3794 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); 3795 bcopy(indirdep->ir_savebp->b_data, bp->b_data, 3796 bp->b_bcount); 3797 continue; 3798 3799 case D_MKDIR: 3800 case D_BMSAFEMAP: 3801 case D_ALLOCDIRECT: 3802 case D_ALLOCINDIR: 3803 continue; 3804 3805 default: 3806 panic("handle_disk_io_initiation: Unexpected type %s", 3807 TYPENAME(wk->wk_type)); 3808 /* NOTREACHED */ 3809 } 3810 } 3811 FREE_LOCK(&lk); 3812 PRELE(curproc); /* Allow swapout of kernel stack */ 3813 } 3814 3815 /* 3816 * Called from within the procedure above to deal with unsatisfied 3817 * allocation dependencies in a directory. The buffer must be locked, 3818 * thus, no I/O completion operations can occur while we are 3819 * manipulating its associated dependencies. 3820 */ 3821 static void 3822 initiate_write_filepage(pagedep, bp) 3823 struct pagedep *pagedep; 3824 struct buf *bp; 3825 { 3826 struct diradd *dap; 3827 struct direct *ep; 3828 int i; 3829 3830 if (pagedep->pd_state & IOSTARTED) { 3831 /* 3832 * This can only happen if there is a driver that does not 3833 * understand chaining. Here biodone will reissue the call 3834 * to strategy for the incomplete buffers. 3835 */ 3836 printf("initiate_write_filepage: already started\n"); 3837 return; 3838 } 3839 pagedep->pd_state |= IOSTARTED; 3840 for (i = 0; i < DAHASHSZ; i++) { 3841 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 3842 ep = (struct direct *) 3843 ((char *)bp->b_data + dap->da_offset); 3844 if (ep->d_ino != dap->da_newinum) 3845 panic("%s: dir inum %d != new %d", 3846 "initiate_write_filepage", 3847 ep->d_ino, dap->da_newinum); 3848 if (dap->da_state & DIRCHG) 3849 ep->d_ino = dap->da_previous->dm_oldinum; 3850 else 3851 ep->d_ino = 0; 3852 dap->da_state &= ~ATTACHED; 3853 dap->da_state |= UNDONE; 3854 } 3855 } 3856 } 3857 3858 /* 3859 * Version of initiate_write_inodeblock that handles UFS1 dinodes. 3860 * Note that any bug fixes made to this routine must be done in the 3861 * version found below. 3862 * 3863 * Called from within the procedure above to deal with unsatisfied 3864 * allocation dependencies in an inodeblock. The buffer must be 3865 * locked, thus, no I/O completion operations can occur while we 3866 * are manipulating its associated dependencies. 3867 */ 3868 static void 3869 initiate_write_inodeblock_ufs1(inodedep, bp) 3870 struct inodedep *inodedep; 3871 struct buf *bp; /* The inode block */ 3872 { 3873 struct allocdirect *adp, *lastadp; 3874 struct ufs1_dinode *dp; 3875 struct ufs1_dinode *sip; 3876 struct fs *fs; 3877 ufs_lbn_t i; 3878 #ifdef INVARIANTS 3879 ufs_lbn_t prevlbn = 0; 3880 #endif 3881 int deplist; 3882 3883 if (inodedep->id_state & IOSTARTED) 3884 panic("initiate_write_inodeblock_ufs1: already started"); 3885 inodedep->id_state |= IOSTARTED; 3886 fs = inodedep->id_fs; 3887 dp = (struct ufs1_dinode *)bp->b_data + 3888 ino_to_fsbo(fs, inodedep->id_ino); 3889 /* 3890 * If the bitmap is not yet written, then the allocated 3891 * inode cannot be written to disk. 3892 */ 3893 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 3894 if (inodedep->id_savedino1 != NULL) 3895 panic("initiate_write_inodeblock_ufs1: I/O underway"); 3896 FREE_LOCK(&lk); 3897 MALLOC(sip, struct ufs1_dinode *, 3898 sizeof(struct ufs1_dinode), M_SAVEDINO, M_SOFTDEP_FLAGS); 3899 ACQUIRE_LOCK(&lk); 3900 inodedep->id_savedino1 = sip; 3901 *inodedep->id_savedino1 = *dp; 3902 bzero((caddr_t)dp, sizeof(struct ufs1_dinode)); 3903 dp->di_gen = inodedep->id_savedino1->di_gen; 3904 return; 3905 } 3906 /* 3907 * If no dependencies, then there is nothing to roll back. 3908 */ 3909 inodedep->id_savedsize = dp->di_size; 3910 inodedep->id_savedextsize = 0; 3911 if (TAILQ_EMPTY(&inodedep->id_inoupdt)) 3912 return; 3913 /* 3914 * Set the dependencies to busy. 3915 */ 3916 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 3917 adp = TAILQ_NEXT(adp, ad_next)) { 3918 #ifdef INVARIANTS 3919 if (deplist != 0 && prevlbn >= adp->ad_lbn) 3920 panic("softdep_write_inodeblock: lbn order"); 3921 prevlbn = adp->ad_lbn; 3922 if (adp->ad_lbn < NDADDR && 3923 dp->di_db[adp->ad_lbn] != adp->ad_newblkno) 3924 panic("%s: direct pointer #%jd mismatch %d != %jd", 3925 "softdep_write_inodeblock", 3926 (intmax_t)adp->ad_lbn, 3927 dp->di_db[adp->ad_lbn], 3928 (intmax_t)adp->ad_newblkno); 3929 if (adp->ad_lbn >= NDADDR && 3930 dp->di_ib[adp->ad_lbn - NDADDR] != adp->ad_newblkno) 3931 panic("%s: indirect pointer #%jd mismatch %d != %jd", 3932 "softdep_write_inodeblock", 3933 (intmax_t)adp->ad_lbn - NDADDR, 3934 dp->di_ib[adp->ad_lbn - NDADDR], 3935 (intmax_t)adp->ad_newblkno); 3936 deplist |= 1 << adp->ad_lbn; 3937 if ((adp->ad_state & ATTACHED) == 0) 3938 panic("softdep_write_inodeblock: Unknown state 0x%x", 3939 adp->ad_state); 3940 #endif /* INVARIANTS */ 3941 adp->ad_state &= ~ATTACHED; 3942 adp->ad_state |= UNDONE; 3943 } 3944 /* 3945 * The on-disk inode cannot claim to be any larger than the last 3946 * fragment that has been written. Otherwise, the on-disk inode 3947 * might have fragments that were not the last block in the file 3948 * which would corrupt the filesystem. 3949 */ 3950 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 3951 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 3952 if (adp->ad_lbn >= NDADDR) 3953 break; 3954 dp->di_db[adp->ad_lbn] = adp->ad_oldblkno; 3955 /* keep going until hitting a rollback to a frag */ 3956 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 3957 continue; 3958 dp->di_size = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize; 3959 for (i = adp->ad_lbn + 1; i < NDADDR; i++) { 3960 #ifdef INVARIANTS 3961 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) 3962 panic("softdep_write_inodeblock: lost dep1"); 3963 #endif /* INVARIANTS */ 3964 dp->di_db[i] = 0; 3965 } 3966 for (i = 0; i < NIADDR; i++) { 3967 #ifdef INVARIANTS 3968 if (dp->di_ib[i] != 0 && 3969 (deplist & ((1 << NDADDR) << i)) == 0) 3970 panic("softdep_write_inodeblock: lost dep2"); 3971 #endif /* INVARIANTS */ 3972 dp->di_ib[i] = 0; 3973 } 3974 return; 3975 } 3976 /* 3977 * If we have zero'ed out the last allocated block of the file, 3978 * roll back the size to the last currently allocated block. 3979 * We know that this last allocated block is a full-sized as 3980 * we already checked for fragments in the loop above. 3981 */ 3982 if (lastadp != NULL && 3983 dp->di_size <= (lastadp->ad_lbn + 1) * fs->fs_bsize) { 3984 for (i = lastadp->ad_lbn; i >= 0; i--) 3985 if (dp->di_db[i] != 0) 3986 break; 3987 dp->di_size = (i + 1) * fs->fs_bsize; 3988 } 3989 /* 3990 * The only dependencies are for indirect blocks. 3991 * 3992 * The file size for indirect block additions is not guaranteed. 3993 * Such a guarantee would be non-trivial to achieve. The conventional 3994 * synchronous write implementation also does not make this guarantee. 3995 * Fsck should catch and fix discrepancies. Arguably, the file size 3996 * can be over-estimated without destroying integrity when the file 3997 * moves into the indirect blocks (i.e., is large). If we want to 3998 * postpone fsck, we are stuck with this argument. 3999 */ 4000 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 4001 dp->di_ib[adp->ad_lbn - NDADDR] = 0; 4002 } 4003 4004 /* 4005 * Version of initiate_write_inodeblock that handles UFS2 dinodes. 4006 * Note that any bug fixes made to this routine must be done in the 4007 * version found above. 4008 * 4009 * Called from within the procedure above to deal with unsatisfied 4010 * allocation dependencies in an inodeblock. The buffer must be 4011 * locked, thus, no I/O completion operations can occur while we 4012 * are manipulating its associated dependencies. 4013 */ 4014 static void 4015 initiate_write_inodeblock_ufs2(inodedep, bp) 4016 struct inodedep *inodedep; 4017 struct buf *bp; /* The inode block */ 4018 { 4019 struct allocdirect *adp, *lastadp; 4020 struct ufs2_dinode *dp; 4021 struct ufs2_dinode *sip; 4022 struct fs *fs; 4023 ufs_lbn_t i; 4024 #ifdef INVARIANTS 4025 ufs_lbn_t prevlbn = 0; 4026 #endif 4027 int deplist; 4028 4029 if (inodedep->id_state & IOSTARTED) 4030 panic("initiate_write_inodeblock_ufs2: already started"); 4031 inodedep->id_state |= IOSTARTED; 4032 fs = inodedep->id_fs; 4033 dp = (struct ufs2_dinode *)bp->b_data + 4034 ino_to_fsbo(fs, inodedep->id_ino); 4035 /* 4036 * If the bitmap is not yet written, then the allocated 4037 * inode cannot be written to disk. 4038 */ 4039 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 4040 if (inodedep->id_savedino2 != NULL) 4041 panic("initiate_write_inodeblock_ufs2: I/O underway"); 4042 FREE_LOCK(&lk); 4043 MALLOC(sip, struct ufs2_dinode *, 4044 sizeof(struct ufs2_dinode), M_SAVEDINO, M_SOFTDEP_FLAGS); 4045 ACQUIRE_LOCK(&lk); 4046 inodedep->id_savedino2 = sip; 4047 *inodedep->id_savedino2 = *dp; 4048 bzero((caddr_t)dp, sizeof(struct ufs2_dinode)); 4049 dp->di_gen = inodedep->id_savedino2->di_gen; 4050 return; 4051 } 4052 /* 4053 * If no dependencies, then there is nothing to roll back. 4054 */ 4055 inodedep->id_savedsize = dp->di_size; 4056 inodedep->id_savedextsize = dp->di_extsize; 4057 if (TAILQ_EMPTY(&inodedep->id_inoupdt) && 4058 TAILQ_EMPTY(&inodedep->id_extupdt)) 4059 return; 4060 /* 4061 * Set the ext data dependencies to busy. 4062 */ 4063 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 4064 adp = TAILQ_NEXT(adp, ad_next)) { 4065 #ifdef INVARIANTS 4066 if (deplist != 0 && prevlbn >= adp->ad_lbn) 4067 panic("softdep_write_inodeblock: lbn order"); 4068 prevlbn = adp->ad_lbn; 4069 if (dp->di_extb[adp->ad_lbn] != adp->ad_newblkno) 4070 panic("%s: direct pointer #%jd mismatch %jd != %jd", 4071 "softdep_write_inodeblock", 4072 (intmax_t)adp->ad_lbn, 4073 (intmax_t)dp->di_extb[adp->ad_lbn], 4074 (intmax_t)adp->ad_newblkno); 4075 deplist |= 1 << adp->ad_lbn; 4076 if ((adp->ad_state & ATTACHED) == 0) 4077 panic("softdep_write_inodeblock: Unknown state 0x%x", 4078 adp->ad_state); 4079 #endif /* INVARIANTS */ 4080 adp->ad_state &= ~ATTACHED; 4081 adp->ad_state |= UNDONE; 4082 } 4083 /* 4084 * The on-disk inode cannot claim to be any larger than the last 4085 * fragment that has been written. Otherwise, the on-disk inode 4086 * might have fragments that were not the last block in the ext 4087 * data which would corrupt the filesystem. 4088 */ 4089 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 4090 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 4091 dp->di_extb[adp->ad_lbn] = adp->ad_oldblkno; 4092 /* keep going until hitting a rollback to a frag */ 4093 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 4094 continue; 4095 dp->di_extsize = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize; 4096 for (i = adp->ad_lbn + 1; i < NXADDR; i++) { 4097 #ifdef INVARIANTS 4098 if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0) 4099 panic("softdep_write_inodeblock: lost dep1"); 4100 #endif /* INVARIANTS */ 4101 dp->di_extb[i] = 0; 4102 } 4103 lastadp = NULL; 4104 break; 4105 } 4106 /* 4107 * If we have zero'ed out the last allocated block of the ext 4108 * data, roll back the size to the last currently allocated block. 4109 * We know that this last allocated block is a full-sized as 4110 * we already checked for fragments in the loop above. 4111 */ 4112 if (lastadp != NULL && 4113 dp->di_extsize <= (lastadp->ad_lbn + 1) * fs->fs_bsize) { 4114 for (i = lastadp->ad_lbn; i >= 0; i--) 4115 if (dp->di_extb[i] != 0) 4116 break; 4117 dp->di_extsize = (i + 1) * fs->fs_bsize; 4118 } 4119 /* 4120 * Set the file data dependencies to busy. 4121 */ 4122 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 4123 adp = TAILQ_NEXT(adp, ad_next)) { 4124 #ifdef INVARIANTS 4125 if (deplist != 0 && prevlbn >= adp->ad_lbn) 4126 panic("softdep_write_inodeblock: lbn order"); 4127 prevlbn = adp->ad_lbn; 4128 if (adp->ad_lbn < NDADDR && 4129 dp->di_db[adp->ad_lbn] != adp->ad_newblkno) 4130 panic("%s: direct pointer #%jd mismatch %jd != %jd", 4131 "softdep_write_inodeblock", 4132 (intmax_t)adp->ad_lbn, 4133 (intmax_t)dp->di_db[adp->ad_lbn], 4134 (intmax_t)adp->ad_newblkno); 4135 if (adp->ad_lbn >= NDADDR && 4136 dp->di_ib[adp->ad_lbn - NDADDR] != adp->ad_newblkno) 4137 panic("%s indirect pointer #%jd mismatch %jd != %jd", 4138 "softdep_write_inodeblock:", 4139 (intmax_t)adp->ad_lbn - NDADDR, 4140 (intmax_t)dp->di_ib[adp->ad_lbn - NDADDR], 4141 (intmax_t)adp->ad_newblkno); 4142 deplist |= 1 << adp->ad_lbn; 4143 if ((adp->ad_state & ATTACHED) == 0) 4144 panic("softdep_write_inodeblock: Unknown state 0x%x", 4145 adp->ad_state); 4146 #endif /* INVARIANTS */ 4147 adp->ad_state &= ~ATTACHED; 4148 adp->ad_state |= UNDONE; 4149 } 4150 /* 4151 * The on-disk inode cannot claim to be any larger than the last 4152 * fragment that has been written. Otherwise, the on-disk inode 4153 * might have fragments that were not the last block in the file 4154 * which would corrupt the filesystem. 4155 */ 4156 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 4157 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 4158 if (adp->ad_lbn >= NDADDR) 4159 break; 4160 dp->di_db[adp->ad_lbn] = adp->ad_oldblkno; 4161 /* keep going until hitting a rollback to a frag */ 4162 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 4163 continue; 4164 dp->di_size = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize; 4165 for (i = adp->ad_lbn + 1; i < NDADDR; i++) { 4166 #ifdef INVARIANTS 4167 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) 4168 panic("softdep_write_inodeblock: lost dep2"); 4169 #endif /* INVARIANTS */ 4170 dp->di_db[i] = 0; 4171 } 4172 for (i = 0; i < NIADDR; i++) { 4173 #ifdef INVARIANTS 4174 if (dp->di_ib[i] != 0 && 4175 (deplist & ((1 << NDADDR) << i)) == 0) 4176 panic("softdep_write_inodeblock: lost dep3"); 4177 #endif /* INVARIANTS */ 4178 dp->di_ib[i] = 0; 4179 } 4180 return; 4181 } 4182 /* 4183 * If we have zero'ed out the last allocated block of the file, 4184 * roll back the size to the last currently allocated block. 4185 * We know that this last allocated block is a full-sized as 4186 * we already checked for fragments in the loop above. 4187 */ 4188 if (lastadp != NULL && 4189 dp->di_size <= (lastadp->ad_lbn + 1) * fs->fs_bsize) { 4190 for (i = lastadp->ad_lbn; i >= 0; i--) 4191 if (dp->di_db[i] != 0) 4192 break; 4193 dp->di_size = (i + 1) * fs->fs_bsize; 4194 } 4195 /* 4196 * The only dependencies are for indirect blocks. 4197 * 4198 * The file size for indirect block additions is not guaranteed. 4199 * Such a guarantee would be non-trivial to achieve. The conventional 4200 * synchronous write implementation also does not make this guarantee. 4201 * Fsck should catch and fix discrepancies. Arguably, the file size 4202 * can be over-estimated without destroying integrity when the file 4203 * moves into the indirect blocks (i.e., is large). If we want to 4204 * postpone fsck, we are stuck with this argument. 4205 */ 4206 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 4207 dp->di_ib[adp->ad_lbn - NDADDR] = 0; 4208 } 4209 4210 /* 4211 * This routine is called during the completion interrupt 4212 * service routine for a disk write (from the procedure called 4213 * by the device driver to inform the filesystem caches of 4214 * a request completion). It should be called early in this 4215 * procedure, before the block is made available to other 4216 * processes or other routines are called. 4217 */ 4218 static void 4219 softdep_disk_write_complete(bp) 4220 struct buf *bp; /* describes the completed disk write */ 4221 { 4222 struct worklist *wk; 4223 struct worklist *owk; 4224 struct workhead reattach; 4225 struct newblk *newblk; 4226 struct allocindir *aip; 4227 struct allocdirect *adp; 4228 struct indirdep *indirdep; 4229 struct inodedep *inodedep; 4230 struct bmsafemap *bmsafemap; 4231 4232 /* 4233 * If an error occurred while doing the write, then the data 4234 * has not hit the disk and the dependencies cannot be unrolled. 4235 */ 4236 if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0) 4237 return; 4238 LIST_INIT(&reattach); 4239 /* 4240 * This lock must not be released anywhere in this code segment. 4241 */ 4242 ACQUIRE_LOCK(&lk); 4243 owk = NULL; 4244 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) { 4245 WORKLIST_REMOVE(wk); 4246 if (wk == owk) 4247 panic("duplicate worklist: %p\n", wk); 4248 owk = wk; 4249 switch (wk->wk_type) { 4250 4251 case D_PAGEDEP: 4252 if (handle_written_filepage(WK_PAGEDEP(wk), bp)) 4253 WORKLIST_INSERT(&reattach, wk); 4254 continue; 4255 4256 case D_INODEDEP: 4257 if (handle_written_inodeblock(WK_INODEDEP(wk), bp)) 4258 WORKLIST_INSERT(&reattach, wk); 4259 continue; 4260 4261 case D_BMSAFEMAP: 4262 bmsafemap = WK_BMSAFEMAP(wk); 4263 while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkhd))) { 4264 newblk->nb_state |= DEPCOMPLETE; 4265 newblk->nb_bmsafemap = NULL; 4266 LIST_REMOVE(newblk, nb_deps); 4267 } 4268 while ((adp = 4269 LIST_FIRST(&bmsafemap->sm_allocdirecthd))) { 4270 adp->ad_state |= DEPCOMPLETE; 4271 adp->ad_buf = NULL; 4272 LIST_REMOVE(adp, ad_deps); 4273 handle_allocdirect_partdone(adp); 4274 } 4275 while ((aip = 4276 LIST_FIRST(&bmsafemap->sm_allocindirhd))) { 4277 aip->ai_state |= DEPCOMPLETE; 4278 aip->ai_buf = NULL; 4279 LIST_REMOVE(aip, ai_deps); 4280 handle_allocindir_partdone(aip); 4281 } 4282 while ((inodedep = 4283 LIST_FIRST(&bmsafemap->sm_inodedephd)) != NULL) { 4284 inodedep->id_state |= DEPCOMPLETE; 4285 LIST_REMOVE(inodedep, id_deps); 4286 inodedep->id_buf = NULL; 4287 } 4288 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); 4289 continue; 4290 4291 case D_MKDIR: 4292 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); 4293 continue; 4294 4295 case D_ALLOCDIRECT: 4296 adp = WK_ALLOCDIRECT(wk); 4297 adp->ad_state |= COMPLETE; 4298 handle_allocdirect_partdone(adp); 4299 continue; 4300 4301 case D_ALLOCINDIR: 4302 aip = WK_ALLOCINDIR(wk); 4303 aip->ai_state |= COMPLETE; 4304 handle_allocindir_partdone(aip); 4305 continue; 4306 4307 case D_INDIRDEP: 4308 indirdep = WK_INDIRDEP(wk); 4309 if (indirdep->ir_state & GOINGAWAY) 4310 panic("disk_write_complete: indirdep gone"); 4311 bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount); 4312 FREE(indirdep->ir_saveddata, M_INDIRDEP); 4313 indirdep->ir_saveddata = 0; 4314 indirdep->ir_state &= ~UNDONE; 4315 indirdep->ir_state |= ATTACHED; 4316 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) { 4317 handle_allocindir_partdone(aip); 4318 if (aip == LIST_FIRST(&indirdep->ir_donehd)) 4319 panic("disk_write_complete: not gone"); 4320 } 4321 WORKLIST_INSERT(&reattach, wk); 4322 if ((bp->b_flags & B_DELWRI) == 0) 4323 stat_indir_blk_ptrs++; 4324 bdirty(bp); 4325 continue; 4326 4327 default: 4328 panic("handle_disk_write_complete: Unknown type %s", 4329 TYPENAME(wk->wk_type)); 4330 /* NOTREACHED */ 4331 } 4332 } 4333 /* 4334 * Reattach any requests that must be redone. 4335 */ 4336 while ((wk = LIST_FIRST(&reattach)) != NULL) { 4337 WORKLIST_REMOVE(wk); 4338 WORKLIST_INSERT(&bp->b_dep, wk); 4339 } 4340 FREE_LOCK(&lk); 4341 } 4342 4343 /* 4344 * Called from within softdep_disk_write_complete above. Note that 4345 * this routine is always called from interrupt level with further 4346 * splbio interrupts blocked. 4347 */ 4348 static void 4349 handle_allocdirect_partdone(adp) 4350 struct allocdirect *adp; /* the completed allocdirect */ 4351 { 4352 struct allocdirectlst *listhead; 4353 struct allocdirect *listadp; 4354 struct inodedep *inodedep; 4355 long bsize, delay; 4356 4357 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 4358 return; 4359 if (adp->ad_buf != NULL) 4360 panic("handle_allocdirect_partdone: dangling dep"); 4361 /* 4362 * The on-disk inode cannot claim to be any larger than the last 4363 * fragment that has been written. Otherwise, the on-disk inode 4364 * might have fragments that were not the last block in the file 4365 * which would corrupt the filesystem. Thus, we cannot free any 4366 * allocdirects after one whose ad_oldblkno claims a fragment as 4367 * these blocks must be rolled back to zero before writing the inode. 4368 * We check the currently active set of allocdirects in id_inoupdt 4369 * or id_extupdt as appropriate. 4370 */ 4371 inodedep = adp->ad_inodedep; 4372 bsize = inodedep->id_fs->fs_bsize; 4373 if (adp->ad_state & EXTDATA) 4374 listhead = &inodedep->id_extupdt; 4375 else 4376 listhead = &inodedep->id_inoupdt; 4377 TAILQ_FOREACH(listadp, listhead, ad_next) { 4378 /* found our block */ 4379 if (listadp == adp) 4380 break; 4381 /* continue if ad_oldlbn is not a fragment */ 4382 if (listadp->ad_oldsize == 0 || 4383 listadp->ad_oldsize == bsize) 4384 continue; 4385 /* hit a fragment */ 4386 return; 4387 } 4388 /* 4389 * If we have reached the end of the current list without 4390 * finding the just finished dependency, then it must be 4391 * on the future dependency list. Future dependencies cannot 4392 * be freed until they are moved to the current list. 4393 */ 4394 if (listadp == NULL) { 4395 #ifdef DEBUG 4396 if (adp->ad_state & EXTDATA) 4397 listhead = &inodedep->id_newextupdt; 4398 else 4399 listhead = &inodedep->id_newinoupdt; 4400 TAILQ_FOREACH(listadp, listhead, ad_next) 4401 /* found our block */ 4402 if (listadp == adp) 4403 break; 4404 if (listadp == NULL) 4405 panic("handle_allocdirect_partdone: lost dep"); 4406 #endif /* DEBUG */ 4407 return; 4408 } 4409 /* 4410 * If we have found the just finished dependency, then free 4411 * it along with anything that follows it that is complete. 4412 * If the inode still has a bitmap dependency, then it has 4413 * never been written to disk, hence the on-disk inode cannot 4414 * reference the old fragment so we can free it without delay. 4415 */ 4416 delay = (inodedep->id_state & DEPCOMPLETE); 4417 for (; adp; adp = listadp) { 4418 listadp = TAILQ_NEXT(adp, ad_next); 4419 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 4420 return; 4421 free_allocdirect(listhead, adp, delay); 4422 } 4423 } 4424 4425 /* 4426 * Called from within softdep_disk_write_complete above. Note that 4427 * this routine is always called from interrupt level with further 4428 * splbio interrupts blocked. 4429 */ 4430 static void 4431 handle_allocindir_partdone(aip) 4432 struct allocindir *aip; /* the completed allocindir */ 4433 { 4434 struct indirdep *indirdep; 4435 4436 if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE) 4437 return; 4438 if (aip->ai_buf != NULL) 4439 panic("handle_allocindir_partdone: dangling dependency"); 4440 indirdep = aip->ai_indirdep; 4441 if (indirdep->ir_state & UNDONE) { 4442 LIST_REMOVE(aip, ai_next); 4443 LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next); 4444 return; 4445 } 4446 if (indirdep->ir_state & UFS1FMT) 4447 ((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 4448 aip->ai_newblkno; 4449 else 4450 ((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 4451 aip->ai_newblkno; 4452 LIST_REMOVE(aip, ai_next); 4453 if (aip->ai_freefrag != NULL) 4454 add_to_worklist(&aip->ai_freefrag->ff_list); 4455 WORKITEM_FREE(aip, D_ALLOCINDIR); 4456 } 4457 4458 /* 4459 * Called from within softdep_disk_write_complete above to restore 4460 * in-memory inode block contents to their most up-to-date state. Note 4461 * that this routine is always called from interrupt level with further 4462 * splbio interrupts blocked. 4463 */ 4464 static int 4465 handle_written_inodeblock(inodedep, bp) 4466 struct inodedep *inodedep; 4467 struct buf *bp; /* buffer containing the inode block */ 4468 { 4469 struct worklist *wk, *filefree; 4470 struct allocdirect *adp, *nextadp; 4471 struct ufs1_dinode *dp1 = NULL; 4472 struct ufs2_dinode *dp2 = NULL; 4473 int hadchanges, fstype; 4474 4475 if ((inodedep->id_state & IOSTARTED) == 0) 4476 panic("handle_written_inodeblock: not started"); 4477 inodedep->id_state &= ~IOSTARTED; 4478 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) { 4479 fstype = UFS1; 4480 dp1 = (struct ufs1_dinode *)bp->b_data + 4481 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 4482 } else { 4483 fstype = UFS2; 4484 dp2 = (struct ufs2_dinode *)bp->b_data + 4485 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 4486 } 4487 /* 4488 * If we had to rollback the inode allocation because of 4489 * bitmaps being incomplete, then simply restore it. 4490 * Keep the block dirty so that it will not be reclaimed until 4491 * all associated dependencies have been cleared and the 4492 * corresponding updates written to disk. 4493 */ 4494 if (inodedep->id_savedino1 != NULL) { 4495 if (fstype == UFS1) 4496 *dp1 = *inodedep->id_savedino1; 4497 else 4498 *dp2 = *inodedep->id_savedino2; 4499 FREE(inodedep->id_savedino1, M_SAVEDINO); 4500 inodedep->id_savedino1 = NULL; 4501 if ((bp->b_flags & B_DELWRI) == 0) 4502 stat_inode_bitmap++; 4503 bdirty(bp); 4504 return (1); 4505 } 4506 inodedep->id_state |= COMPLETE; 4507 /* 4508 * Roll forward anything that had to be rolled back before 4509 * the inode could be updated. 4510 */ 4511 hadchanges = 0; 4512 for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) { 4513 nextadp = TAILQ_NEXT(adp, ad_next); 4514 if (adp->ad_state & ATTACHED) 4515 panic("handle_written_inodeblock: new entry"); 4516 if (fstype == UFS1) { 4517 if (adp->ad_lbn < NDADDR) { 4518 if (dp1->di_db[adp->ad_lbn]!=adp->ad_oldblkno) 4519 panic("%s %s #%jd mismatch %d != %jd", 4520 "handle_written_inodeblock:", 4521 "direct pointer", 4522 (intmax_t)adp->ad_lbn, 4523 dp1->di_db[adp->ad_lbn], 4524 (intmax_t)adp->ad_oldblkno); 4525 dp1->di_db[adp->ad_lbn] = adp->ad_newblkno; 4526 } else { 4527 if (dp1->di_ib[adp->ad_lbn - NDADDR] != 0) 4528 panic("%s: %s #%jd allocated as %d", 4529 "handle_written_inodeblock", 4530 "indirect pointer", 4531 (intmax_t)adp->ad_lbn - NDADDR, 4532 dp1->di_ib[adp->ad_lbn - NDADDR]); 4533 dp1->di_ib[adp->ad_lbn - NDADDR] = 4534 adp->ad_newblkno; 4535 } 4536 } else { 4537 if (adp->ad_lbn < NDADDR) { 4538 if (dp2->di_db[adp->ad_lbn]!=adp->ad_oldblkno) 4539 panic("%s: %s #%jd %s %jd != %jd", 4540 "handle_written_inodeblock", 4541 "direct pointer", 4542 (intmax_t)adp->ad_lbn, "mismatch", 4543 (intmax_t)dp2->di_db[adp->ad_lbn], 4544 (intmax_t)adp->ad_oldblkno); 4545 dp2->di_db[adp->ad_lbn] = adp->ad_newblkno; 4546 } else { 4547 if (dp2->di_ib[adp->ad_lbn - NDADDR] != 0) 4548 panic("%s: %s #%jd allocated as %jd", 4549 "handle_written_inodeblock", 4550 "indirect pointer", 4551 (intmax_t)adp->ad_lbn - NDADDR, 4552 (intmax_t) 4553 dp2->di_ib[adp->ad_lbn - NDADDR]); 4554 dp2->di_ib[adp->ad_lbn - NDADDR] = 4555 adp->ad_newblkno; 4556 } 4557 } 4558 adp->ad_state &= ~UNDONE; 4559 adp->ad_state |= ATTACHED; 4560 hadchanges = 1; 4561 } 4562 for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) { 4563 nextadp = TAILQ_NEXT(adp, ad_next); 4564 if (adp->ad_state & ATTACHED) 4565 panic("handle_written_inodeblock: new entry"); 4566 if (dp2->di_extb[adp->ad_lbn] != adp->ad_oldblkno) 4567 panic("%s: direct pointers #%jd %s %jd != %jd", 4568 "handle_written_inodeblock", 4569 (intmax_t)adp->ad_lbn, "mismatch", 4570 (intmax_t)dp2->di_extb[adp->ad_lbn], 4571 (intmax_t)adp->ad_oldblkno); 4572 dp2->di_extb[adp->ad_lbn] = adp->ad_newblkno; 4573 adp->ad_state &= ~UNDONE; 4574 adp->ad_state |= ATTACHED; 4575 hadchanges = 1; 4576 } 4577 if (hadchanges && (bp->b_flags & B_DELWRI) == 0) 4578 stat_direct_blk_ptrs++; 4579 /* 4580 * Reset the file size to its most up-to-date value. 4581 */ 4582 if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1) 4583 panic("handle_written_inodeblock: bad size"); 4584 if (fstype == UFS1) { 4585 if (dp1->di_size != inodedep->id_savedsize) { 4586 dp1->di_size = inodedep->id_savedsize; 4587 hadchanges = 1; 4588 } 4589 } else { 4590 if (dp2->di_size != inodedep->id_savedsize) { 4591 dp2->di_size = inodedep->id_savedsize; 4592 hadchanges = 1; 4593 } 4594 if (dp2->di_extsize != inodedep->id_savedextsize) { 4595 dp2->di_extsize = inodedep->id_savedextsize; 4596 hadchanges = 1; 4597 } 4598 } 4599 inodedep->id_savedsize = -1; 4600 inodedep->id_savedextsize = -1; 4601 /* 4602 * If there were any rollbacks in the inode block, then it must be 4603 * marked dirty so that its will eventually get written back in 4604 * its correct form. 4605 */ 4606 if (hadchanges) 4607 bdirty(bp); 4608 /* 4609 * Process any allocdirects that completed during the update. 4610 */ 4611 if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL) 4612 handle_allocdirect_partdone(adp); 4613 if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 4614 handle_allocdirect_partdone(adp); 4615 /* 4616 * Process deallocations that were held pending until the 4617 * inode had been written to disk. Freeing of the inode 4618 * is delayed until after all blocks have been freed to 4619 * avoid creation of new <vfsid, inum, lbn> triples 4620 * before the old ones have been deleted. 4621 */ 4622 filefree = NULL; 4623 while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) { 4624 WORKLIST_REMOVE(wk); 4625 switch (wk->wk_type) { 4626 4627 case D_FREEFILE: 4628 /* 4629 * We defer adding filefree to the worklist until 4630 * all other additions have been made to ensure 4631 * that it will be done after all the old blocks 4632 * have been freed. 4633 */ 4634 if (filefree != NULL) 4635 panic("handle_written_inodeblock: filefree"); 4636 filefree = wk; 4637 continue; 4638 4639 case D_MKDIR: 4640 handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT); 4641 continue; 4642 4643 case D_DIRADD: 4644 diradd_inode_written(WK_DIRADD(wk), inodedep); 4645 continue; 4646 4647 case D_FREEBLKS: 4648 wk->wk_state |= COMPLETE; 4649 if ((wk->wk_state & ALLCOMPLETE) != ALLCOMPLETE) 4650 continue; 4651 /* -- fall through -- */ 4652 case D_FREEFRAG: 4653 case D_DIRREM: 4654 add_to_worklist(wk); 4655 continue; 4656 4657 case D_NEWDIRBLK: 4658 free_newdirblk(WK_NEWDIRBLK(wk)); 4659 continue; 4660 4661 default: 4662 panic("handle_written_inodeblock: Unknown type %s", 4663 TYPENAME(wk->wk_type)); 4664 /* NOTREACHED */ 4665 } 4666 } 4667 if (filefree != NULL) { 4668 if (free_inodedep(inodedep) == 0) 4669 panic("handle_written_inodeblock: live inodedep"); 4670 add_to_worklist(filefree); 4671 return (0); 4672 } 4673 4674 /* 4675 * If no outstanding dependencies, free it. 4676 */ 4677 if (free_inodedep(inodedep) || 4678 (TAILQ_FIRST(&inodedep->id_inoupdt) == 0 && 4679 TAILQ_FIRST(&inodedep->id_extupdt) == 0)) 4680 return (0); 4681 return (hadchanges); 4682 } 4683 4684 /* 4685 * Process a diradd entry after its dependent inode has been written. 4686 * This routine must be called with splbio interrupts blocked. 4687 */ 4688 static void 4689 diradd_inode_written(dap, inodedep) 4690 struct diradd *dap; 4691 struct inodedep *inodedep; 4692 { 4693 struct pagedep *pagedep; 4694 4695 dap->da_state |= COMPLETE; 4696 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 4697 if (dap->da_state & DIRCHG) 4698 pagedep = dap->da_previous->dm_pagedep; 4699 else 4700 pagedep = dap->da_pagedep; 4701 LIST_REMOVE(dap, da_pdlist); 4702 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 4703 } 4704 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 4705 } 4706 4707 /* 4708 * Handle the completion of a mkdir dependency. 4709 */ 4710 static void 4711 handle_written_mkdir(mkdir, type) 4712 struct mkdir *mkdir; 4713 int type; 4714 { 4715 struct diradd *dap; 4716 struct pagedep *pagedep; 4717 4718 if (mkdir->md_state != type) 4719 panic("handle_written_mkdir: bad type"); 4720 dap = mkdir->md_diradd; 4721 dap->da_state &= ~type; 4722 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) 4723 dap->da_state |= DEPCOMPLETE; 4724 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 4725 if (dap->da_state & DIRCHG) 4726 pagedep = dap->da_previous->dm_pagedep; 4727 else 4728 pagedep = dap->da_pagedep; 4729 LIST_REMOVE(dap, da_pdlist); 4730 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 4731 } 4732 LIST_REMOVE(mkdir, md_mkdirs); 4733 WORKITEM_FREE(mkdir, D_MKDIR); 4734 } 4735 4736 /* 4737 * Called from within softdep_disk_write_complete above. 4738 * A write operation was just completed. Removed inodes can 4739 * now be freed and associated block pointers may be committed. 4740 * Note that this routine is always called from interrupt level 4741 * with further splbio interrupts blocked. 4742 */ 4743 static int 4744 handle_written_filepage(pagedep, bp) 4745 struct pagedep *pagedep; 4746 struct buf *bp; /* buffer containing the written page */ 4747 { 4748 struct dirrem *dirrem; 4749 struct diradd *dap, *nextdap; 4750 struct direct *ep; 4751 int i, chgs; 4752 4753 if ((pagedep->pd_state & IOSTARTED) == 0) 4754 panic("handle_written_filepage: not started"); 4755 pagedep->pd_state &= ~IOSTARTED; 4756 /* 4757 * Process any directory removals that have been committed. 4758 */ 4759 while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) { 4760 LIST_REMOVE(dirrem, dm_next); 4761 dirrem->dm_dirinum = pagedep->pd_ino; 4762 add_to_worklist(&dirrem->dm_list); 4763 } 4764 /* 4765 * Free any directory additions that have been committed. 4766 * If it is a newly allocated block, we have to wait until 4767 * the on-disk directory inode claims the new block. 4768 */ 4769 if ((pagedep->pd_state & NEWBLOCK) == 0) 4770 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 4771 free_diradd(dap); 4772 /* 4773 * Uncommitted directory entries must be restored. 4774 */ 4775 for (chgs = 0, i = 0; i < DAHASHSZ; i++) { 4776 for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap; 4777 dap = nextdap) { 4778 nextdap = LIST_NEXT(dap, da_pdlist); 4779 if (dap->da_state & ATTACHED) 4780 panic("handle_written_filepage: attached"); 4781 ep = (struct direct *) 4782 ((char *)bp->b_data + dap->da_offset); 4783 ep->d_ino = dap->da_newinum; 4784 dap->da_state &= ~UNDONE; 4785 dap->da_state |= ATTACHED; 4786 chgs = 1; 4787 /* 4788 * If the inode referenced by the directory has 4789 * been written out, then the dependency can be 4790 * moved to the pending list. 4791 */ 4792 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 4793 LIST_REMOVE(dap, da_pdlist); 4794 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, 4795 da_pdlist); 4796 } 4797 } 4798 } 4799 /* 4800 * If there were any rollbacks in the directory, then it must be 4801 * marked dirty so that its will eventually get written back in 4802 * its correct form. 4803 */ 4804 if (chgs) { 4805 if ((bp->b_flags & B_DELWRI) == 0) 4806 stat_dir_entry++; 4807 bdirty(bp); 4808 return (1); 4809 } 4810 /* 4811 * If we are not waiting for a new directory block to be 4812 * claimed by its inode, then the pagedep will be freed. 4813 * Otherwise it will remain to track any new entries on 4814 * the page in case they are fsync'ed. 4815 */ 4816 if ((pagedep->pd_state & NEWBLOCK) == 0) { 4817 LIST_REMOVE(pagedep, pd_hash); 4818 WORKITEM_FREE(pagedep, D_PAGEDEP); 4819 } 4820 return (0); 4821 } 4822 4823 /* 4824 * Writing back in-core inode structures. 4825 * 4826 * The filesystem only accesses an inode's contents when it occupies an 4827 * "in-core" inode structure. These "in-core" structures are separate from 4828 * the page frames used to cache inode blocks. Only the latter are 4829 * transferred to/from the disk. So, when the updated contents of the 4830 * "in-core" inode structure are copied to the corresponding in-memory inode 4831 * block, the dependencies are also transferred. The following procedure is 4832 * called when copying a dirty "in-core" inode to a cached inode block. 4833 */ 4834 4835 /* 4836 * Called when an inode is loaded from disk. If the effective link count 4837 * differed from the actual link count when it was last flushed, then we 4838 * need to ensure that the correct effective link count is put back. 4839 */ 4840 void 4841 softdep_load_inodeblock(ip) 4842 struct inode *ip; /* the "in_core" copy of the inode */ 4843 { 4844 struct inodedep *inodedep; 4845 4846 /* 4847 * Check for alternate nlink count. 4848 */ 4849 ip->i_effnlink = ip->i_nlink; 4850 ACQUIRE_LOCK(&lk); 4851 if (inodedep_lookup(UFSTOVFS(ip->i_ump), 4852 ip->i_number, 0, &inodedep) == 0) { 4853 FREE_LOCK(&lk); 4854 return; 4855 } 4856 ip->i_effnlink -= inodedep->id_nlinkdelta; 4857 if (inodedep->id_state & SPACECOUNTED) 4858 ip->i_flag |= IN_SPACECOUNTED; 4859 FREE_LOCK(&lk); 4860 } 4861 4862 /* 4863 * This routine is called just before the "in-core" inode 4864 * information is to be copied to the in-memory inode block. 4865 * Recall that an inode block contains several inodes. If 4866 * the force flag is set, then the dependencies will be 4867 * cleared so that the update can always be made. Note that 4868 * the buffer is locked when this routine is called, so we 4869 * will never be in the middle of writing the inode block 4870 * to disk. 4871 */ 4872 void 4873 softdep_update_inodeblock(ip, bp, waitfor) 4874 struct inode *ip; /* the "in_core" copy of the inode */ 4875 struct buf *bp; /* the buffer containing the inode block */ 4876 int waitfor; /* nonzero => update must be allowed */ 4877 { 4878 struct inodedep *inodedep; 4879 struct worklist *wk; 4880 struct mount *mp; 4881 struct buf *ibp; 4882 int error; 4883 4884 /* 4885 * If the effective link count is not equal to the actual link 4886 * count, then we must track the difference in an inodedep while 4887 * the inode is (potentially) tossed out of the cache. Otherwise, 4888 * if there is no existing inodedep, then there are no dependencies 4889 * to track. 4890 */ 4891 mp = UFSTOVFS(ip->i_ump); 4892 ACQUIRE_LOCK(&lk); 4893 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) { 4894 FREE_LOCK(&lk); 4895 if (ip->i_effnlink != ip->i_nlink) 4896 panic("softdep_update_inodeblock: bad link count"); 4897 return; 4898 } 4899 if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink) 4900 panic("softdep_update_inodeblock: bad delta"); 4901 /* 4902 * Changes have been initiated. Anything depending on these 4903 * changes cannot occur until this inode has been written. 4904 */ 4905 inodedep->id_state &= ~COMPLETE; 4906 if ((inodedep->id_state & ONWORKLIST) == 0) 4907 WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list); 4908 /* 4909 * Any new dependencies associated with the incore inode must 4910 * now be moved to the list associated with the buffer holding 4911 * the in-memory copy of the inode. Once merged process any 4912 * allocdirects that are completed by the merger. 4913 */ 4914 merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt); 4915 if (!TAILQ_EMPTY(&inodedep->id_inoupdt)) 4916 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt)); 4917 merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt); 4918 if (!TAILQ_EMPTY(&inodedep->id_extupdt)) 4919 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt)); 4920 /* 4921 * Now that the inode has been pushed into the buffer, the 4922 * operations dependent on the inode being written to disk 4923 * can be moved to the id_bufwait so that they will be 4924 * processed when the buffer I/O completes. 4925 */ 4926 while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) { 4927 WORKLIST_REMOVE(wk); 4928 WORKLIST_INSERT(&inodedep->id_bufwait, wk); 4929 } 4930 /* 4931 * Newly allocated inodes cannot be written until the bitmap 4932 * that allocates them have been written (indicated by 4933 * DEPCOMPLETE being set in id_state). If we are doing a 4934 * forced sync (e.g., an fsync on a file), we force the bitmap 4935 * to be written so that the update can be done. 4936 */ 4937 if (waitfor == 0) { 4938 FREE_LOCK(&lk); 4939 return; 4940 } 4941 retry: 4942 if ((inodedep->id_state & DEPCOMPLETE) != 0) { 4943 FREE_LOCK(&lk); 4944 return; 4945 } 4946 ibp = inodedep->id_buf; 4947 ibp = getdirtybuf(ibp, &lk, MNT_WAIT); 4948 if (ibp == NULL) { 4949 /* 4950 * If ibp came back as NULL, the dependency could have been 4951 * freed while we slept. Look it up again, and check to see 4952 * that it has completed. 4953 */ 4954 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) 4955 goto retry; 4956 FREE_LOCK(&lk); 4957 return; 4958 } 4959 FREE_LOCK(&lk); 4960 if ((error = bwrite(ibp)) != 0) 4961 softdep_error("softdep_update_inodeblock: bwrite", error); 4962 } 4963 4964 /* 4965 * Merge the a new inode dependency list (such as id_newinoupdt) into an 4966 * old inode dependency list (such as id_inoupdt). This routine must be 4967 * called with splbio interrupts blocked. 4968 */ 4969 static void 4970 merge_inode_lists(newlisthead, oldlisthead) 4971 struct allocdirectlst *newlisthead; 4972 struct allocdirectlst *oldlisthead; 4973 { 4974 struct allocdirect *listadp, *newadp; 4975 4976 newadp = TAILQ_FIRST(newlisthead); 4977 for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) { 4978 if (listadp->ad_lbn < newadp->ad_lbn) { 4979 listadp = TAILQ_NEXT(listadp, ad_next); 4980 continue; 4981 } 4982 TAILQ_REMOVE(newlisthead, newadp, ad_next); 4983 TAILQ_INSERT_BEFORE(listadp, newadp, ad_next); 4984 if (listadp->ad_lbn == newadp->ad_lbn) { 4985 allocdirect_merge(oldlisthead, newadp, 4986 listadp); 4987 listadp = newadp; 4988 } 4989 newadp = TAILQ_FIRST(newlisthead); 4990 } 4991 while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) { 4992 TAILQ_REMOVE(newlisthead, newadp, ad_next); 4993 TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next); 4994 } 4995 } 4996 4997 /* 4998 * If we are doing an fsync, then we must ensure that any directory 4999 * entries for the inode have been written after the inode gets to disk. 5000 */ 5001 int 5002 softdep_fsync(vp) 5003 struct vnode *vp; /* the "in_core" copy of the inode */ 5004 { 5005 struct inodedep *inodedep; 5006 struct pagedep *pagedep; 5007 struct worklist *wk; 5008 struct diradd *dap; 5009 struct mount *mp; 5010 struct vnode *pvp; 5011 struct inode *ip; 5012 struct buf *bp; 5013 struct fs *fs; 5014 struct thread *td = curthread; 5015 int error, flushparent, pagedep_new_block; 5016 ino_t parentino; 5017 ufs_lbn_t lbn; 5018 5019 ip = VTOI(vp); 5020 fs = ip->i_fs; 5021 mp = vp->v_mount; 5022 ACQUIRE_LOCK(&lk); 5023 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) { 5024 FREE_LOCK(&lk); 5025 return (0); 5026 } 5027 if (!LIST_EMPTY(&inodedep->id_inowait) || 5028 !LIST_EMPTY(&inodedep->id_bufwait) || 5029 !TAILQ_EMPTY(&inodedep->id_extupdt) || 5030 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 5031 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 5032 !TAILQ_EMPTY(&inodedep->id_newinoupdt)) 5033 panic("softdep_fsync: pending ops"); 5034 for (error = 0, flushparent = 0; ; ) { 5035 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL) 5036 break; 5037 if (wk->wk_type != D_DIRADD) 5038 panic("softdep_fsync: Unexpected type %s", 5039 TYPENAME(wk->wk_type)); 5040 dap = WK_DIRADD(wk); 5041 /* 5042 * Flush our parent if this directory entry has a MKDIR_PARENT 5043 * dependency or is contained in a newly allocated block. 5044 */ 5045 if (dap->da_state & DIRCHG) 5046 pagedep = dap->da_previous->dm_pagedep; 5047 else 5048 pagedep = dap->da_pagedep; 5049 parentino = pagedep->pd_ino; 5050 lbn = pagedep->pd_lbn; 5051 if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE) 5052 panic("softdep_fsync: dirty"); 5053 if ((dap->da_state & MKDIR_PARENT) || 5054 (pagedep->pd_state & NEWBLOCK)) 5055 flushparent = 1; 5056 else 5057 flushparent = 0; 5058 /* 5059 * If we are being fsync'ed as part of vgone'ing this vnode, 5060 * then we will not be able to release and recover the 5061 * vnode below, so we just have to give up on writing its 5062 * directory entry out. It will eventually be written, just 5063 * not now, but then the user was not asking to have it 5064 * written, so we are not breaking any promises. 5065 */ 5066 if (vp->v_iflag & VI_DOOMED) 5067 break; 5068 /* 5069 * We prevent deadlock by always fetching inodes from the 5070 * root, moving down the directory tree. Thus, when fetching 5071 * our parent directory, we first try to get the lock. If 5072 * that fails, we must unlock ourselves before requesting 5073 * the lock on our parent. See the comment in ufs_lookup 5074 * for details on possible races. 5075 */ 5076 FREE_LOCK(&lk); 5077 if (ffs_vget(mp, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp)) { 5078 VOP_UNLOCK(vp, 0); 5079 error = ffs_vget(mp, parentino, LK_EXCLUSIVE, &pvp); 5080 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 5081 if (error != 0) 5082 return (error); 5083 } 5084 /* 5085 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps 5086 * that are contained in direct blocks will be resolved by 5087 * doing a ffs_update. Pagedeps contained in indirect blocks 5088 * may require a complete sync'ing of the directory. So, we 5089 * try the cheap and fast ffs_update first, and if that fails, 5090 * then we do the slower ffs_syncvnode of the directory. 5091 */ 5092 if (flushparent) { 5093 int locked; 5094 5095 if ((error = ffs_update(pvp, 1)) != 0) { 5096 vput(pvp); 5097 return (error); 5098 } 5099 ACQUIRE_LOCK(&lk); 5100 locked = 1; 5101 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) { 5102 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) { 5103 if (wk->wk_type != D_DIRADD) 5104 panic("softdep_fsync: Unexpected type %s", 5105 TYPENAME(wk->wk_type)); 5106 dap = WK_DIRADD(wk); 5107 if (dap->da_state & DIRCHG) 5108 pagedep = dap->da_previous->dm_pagedep; 5109 else 5110 pagedep = dap->da_pagedep; 5111 pagedep_new_block = pagedep->pd_state & NEWBLOCK; 5112 FREE_LOCK(&lk); 5113 locked = 0; 5114 if (pagedep_new_block && 5115 (error = ffs_syncvnode(pvp, MNT_WAIT))) { 5116 vput(pvp); 5117 return (error); 5118 } 5119 } 5120 } 5121 if (locked) 5122 FREE_LOCK(&lk); 5123 } 5124 /* 5125 * Flush directory page containing the inode's name. 5126 */ 5127 error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred, 5128 &bp); 5129 if (error == 0) 5130 error = bwrite(bp); 5131 else 5132 brelse(bp); 5133 vput(pvp); 5134 if (error != 0) 5135 return (error); 5136 ACQUIRE_LOCK(&lk); 5137 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 5138 break; 5139 } 5140 FREE_LOCK(&lk); 5141 return (0); 5142 } 5143 5144 /* 5145 * Flush all the dirty bitmaps associated with the block device 5146 * before flushing the rest of the dirty blocks so as to reduce 5147 * the number of dependencies that will have to be rolled back. 5148 */ 5149 void 5150 softdep_fsync_mountdev(vp) 5151 struct vnode *vp; 5152 { 5153 struct buf *bp, *nbp; 5154 struct worklist *wk; 5155 5156 if (!vn_isdisk(vp, NULL)) 5157 panic("softdep_fsync_mountdev: vnode not a disk"); 5158 restart: 5159 ACQUIRE_LOCK(&lk); 5160 VI_LOCK(vp); 5161 TAILQ_FOREACH_SAFE(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs, nbp) { 5162 /* 5163 * If it is already scheduled, skip to the next buffer. 5164 */ 5165 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) 5166 continue; 5167 5168 if ((bp->b_flags & B_DELWRI) == 0) 5169 panic("softdep_fsync_mountdev: not dirty"); 5170 /* 5171 * We are only interested in bitmaps with outstanding 5172 * dependencies. 5173 */ 5174 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL || 5175 wk->wk_type != D_BMSAFEMAP || 5176 (bp->b_vflags & BV_BKGRDINPROG)) { 5177 BUF_UNLOCK(bp); 5178 continue; 5179 } 5180 VI_UNLOCK(vp); 5181 FREE_LOCK(&lk); 5182 bremfree(bp); 5183 (void) bawrite(bp); 5184 goto restart; 5185 } 5186 FREE_LOCK(&lk); 5187 drain_output(vp); 5188 VI_UNLOCK(vp); 5189 } 5190 5191 /* 5192 * This routine is called when we are trying to synchronously flush a 5193 * file. This routine must eliminate any filesystem metadata dependencies 5194 * so that the syncing routine can succeed by pushing the dirty blocks 5195 * associated with the file. If any I/O errors occur, they are returned. 5196 */ 5197 int 5198 softdep_sync_metadata(struct vnode *vp) 5199 { 5200 struct pagedep *pagedep; 5201 struct allocdirect *adp; 5202 struct allocindir *aip; 5203 struct buf *bp, *nbp; 5204 struct worklist *wk; 5205 int i, error, waitfor; 5206 5207 if (!DOINGSOFTDEP(vp)) 5208 return (0); 5209 /* 5210 * Ensure that any direct block dependencies have been cleared. 5211 */ 5212 ACQUIRE_LOCK(&lk); 5213 if ((error = flush_inodedep_deps(vp->v_mount, VTOI(vp)->i_number))) { 5214 FREE_LOCK(&lk); 5215 return (error); 5216 } 5217 FREE_LOCK(&lk); 5218 /* 5219 * For most files, the only metadata dependencies are the 5220 * cylinder group maps that allocate their inode or blocks. 5221 * The block allocation dependencies can be found by traversing 5222 * the dependency lists for any buffers that remain on their 5223 * dirty buffer list. The inode allocation dependency will 5224 * be resolved when the inode is updated with MNT_WAIT. 5225 * This work is done in two passes. The first pass grabs most 5226 * of the buffers and begins asynchronously writing them. The 5227 * only way to wait for these asynchronous writes is to sleep 5228 * on the filesystem vnode which may stay busy for a long time 5229 * if the filesystem is active. So, instead, we make a second 5230 * pass over the dependencies blocking on each write. In the 5231 * usual case we will be blocking against a write that we 5232 * initiated, so when it is done the dependency will have been 5233 * resolved. Thus the second pass is expected to end quickly. 5234 */ 5235 waitfor = MNT_NOWAIT; 5236 5237 top: 5238 /* 5239 * We must wait for any I/O in progress to finish so that 5240 * all potential buffers on the dirty list will be visible. 5241 */ 5242 VI_LOCK(vp); 5243 drain_output(vp); 5244 while ((bp = TAILQ_FIRST(&vp->v_bufobj.bo_dirty.bv_hd)) != NULL) { 5245 bp = getdirtybuf(bp, VI_MTX(vp), MNT_WAIT); 5246 if (bp) 5247 break; 5248 } 5249 VI_UNLOCK(vp); 5250 if (bp == NULL) 5251 return (0); 5252 loop: 5253 /* While syncing snapshots, we must allow recursive lookups */ 5254 bp->b_lock.lk_flags |= LK_CANRECURSE; 5255 ACQUIRE_LOCK(&lk); 5256 /* 5257 * As we hold the buffer locked, none of its dependencies 5258 * will disappear. 5259 */ 5260 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 5261 switch (wk->wk_type) { 5262 5263 case D_ALLOCDIRECT: 5264 adp = WK_ALLOCDIRECT(wk); 5265 if (adp->ad_state & DEPCOMPLETE) 5266 continue; 5267 nbp = adp->ad_buf; 5268 nbp = getdirtybuf(nbp, &lk, waitfor); 5269 if (nbp == NULL) 5270 continue; 5271 FREE_LOCK(&lk); 5272 if (waitfor == MNT_NOWAIT) { 5273 bawrite(nbp); 5274 } else if ((error = bwrite(nbp)) != 0) { 5275 break; 5276 } 5277 ACQUIRE_LOCK(&lk); 5278 continue; 5279 5280 case D_ALLOCINDIR: 5281 aip = WK_ALLOCINDIR(wk); 5282 if (aip->ai_state & DEPCOMPLETE) 5283 continue; 5284 nbp = aip->ai_buf; 5285 nbp = getdirtybuf(nbp, &lk, waitfor); 5286 if (nbp == NULL) 5287 continue; 5288 FREE_LOCK(&lk); 5289 if (waitfor == MNT_NOWAIT) { 5290 bawrite(nbp); 5291 } else if ((error = bwrite(nbp)) != 0) { 5292 break; 5293 } 5294 ACQUIRE_LOCK(&lk); 5295 continue; 5296 5297 case D_INDIRDEP: 5298 restart: 5299 5300 LIST_FOREACH(aip, &WK_INDIRDEP(wk)->ir_deplisthd, ai_next) { 5301 if (aip->ai_state & DEPCOMPLETE) 5302 continue; 5303 nbp = aip->ai_buf; 5304 nbp = getdirtybuf(nbp, &lk, MNT_WAIT); 5305 if (nbp == NULL) 5306 goto restart; 5307 FREE_LOCK(&lk); 5308 if ((error = bwrite(nbp)) != 0) { 5309 goto loop_end; 5310 } 5311 ACQUIRE_LOCK(&lk); 5312 goto restart; 5313 } 5314 continue; 5315 5316 case D_INODEDEP: 5317 if ((error = flush_inodedep_deps(wk->wk_mp, 5318 WK_INODEDEP(wk)->id_ino)) != 0) { 5319 FREE_LOCK(&lk); 5320 break; 5321 } 5322 continue; 5323 5324 case D_PAGEDEP: 5325 /* 5326 * We are trying to sync a directory that may 5327 * have dependencies on both its own metadata 5328 * and/or dependencies on the inodes of any 5329 * recently allocated files. We walk its diradd 5330 * lists pushing out the associated inode. 5331 */ 5332 pagedep = WK_PAGEDEP(wk); 5333 for (i = 0; i < DAHASHSZ; i++) { 5334 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0) 5335 continue; 5336 if ((error = 5337 flush_pagedep_deps(vp, wk->wk_mp, 5338 &pagedep->pd_diraddhd[i]))) { 5339 FREE_LOCK(&lk); 5340 goto loop_end; 5341 } 5342 } 5343 continue; 5344 5345 case D_MKDIR: 5346 /* 5347 * This case should never happen if the vnode has 5348 * been properly sync'ed. However, if this function 5349 * is used at a place where the vnode has not yet 5350 * been sync'ed, this dependency can show up. So, 5351 * rather than panic, just flush it. 5352 */ 5353 nbp = WK_MKDIR(wk)->md_buf; 5354 nbp = getdirtybuf(nbp, &lk, waitfor); 5355 if (nbp == NULL) 5356 continue; 5357 FREE_LOCK(&lk); 5358 if (waitfor == MNT_NOWAIT) { 5359 bawrite(nbp); 5360 } else if ((error = bwrite(nbp)) != 0) { 5361 break; 5362 } 5363 ACQUIRE_LOCK(&lk); 5364 continue; 5365 5366 case D_BMSAFEMAP: 5367 /* 5368 * This case should never happen if the vnode has 5369 * been properly sync'ed. However, if this function 5370 * is used at a place where the vnode has not yet 5371 * been sync'ed, this dependency can show up. So, 5372 * rather than panic, just flush it. 5373 */ 5374 nbp = WK_BMSAFEMAP(wk)->sm_buf; 5375 nbp = getdirtybuf(nbp, &lk, waitfor); 5376 if (nbp == NULL) 5377 continue; 5378 FREE_LOCK(&lk); 5379 if (waitfor == MNT_NOWAIT) { 5380 bawrite(nbp); 5381 } else if ((error = bwrite(nbp)) != 0) { 5382 break; 5383 } 5384 ACQUIRE_LOCK(&lk); 5385 continue; 5386 5387 default: 5388 panic("softdep_sync_metadata: Unknown type %s", 5389 TYPENAME(wk->wk_type)); 5390 /* NOTREACHED */ 5391 } 5392 loop_end: 5393 /* We reach here only in error and unlocked */ 5394 if (error == 0) 5395 panic("softdep_sync_metadata: zero error"); 5396 bp->b_lock.lk_flags &= ~LK_CANRECURSE; 5397 bawrite(bp); 5398 return (error); 5399 } 5400 FREE_LOCK(&lk); 5401 VI_LOCK(vp); 5402 while ((nbp = TAILQ_NEXT(bp, b_bobufs)) != NULL) { 5403 nbp = getdirtybuf(nbp, VI_MTX(vp), MNT_WAIT); 5404 if (nbp) 5405 break; 5406 } 5407 VI_UNLOCK(vp); 5408 bp->b_lock.lk_flags &= ~LK_CANRECURSE; 5409 bawrite(bp); 5410 if (nbp != NULL) { 5411 bp = nbp; 5412 goto loop; 5413 } 5414 /* 5415 * The brief unlock is to allow any pent up dependency 5416 * processing to be done. Then proceed with the second pass. 5417 */ 5418 if (waitfor == MNT_NOWAIT) { 5419 waitfor = MNT_WAIT; 5420 goto top; 5421 } 5422 5423 /* 5424 * If we have managed to get rid of all the dirty buffers, 5425 * then we are done. For certain directories and block 5426 * devices, we may need to do further work. 5427 * 5428 * We must wait for any I/O in progress to finish so that 5429 * all potential buffers on the dirty list will be visible. 5430 */ 5431 VI_LOCK(vp); 5432 drain_output(vp); 5433 VI_UNLOCK(vp); 5434 return (0); 5435 } 5436 5437 /* 5438 * Flush the dependencies associated with an inodedep. 5439 * Called with splbio blocked. 5440 */ 5441 static int 5442 flush_inodedep_deps(mp, ino) 5443 struct mount *mp; 5444 ino_t ino; 5445 { 5446 struct inodedep *inodedep; 5447 int error, waitfor; 5448 5449 /* 5450 * This work is done in two passes. The first pass grabs most 5451 * of the buffers and begins asynchronously writing them. The 5452 * only way to wait for these asynchronous writes is to sleep 5453 * on the filesystem vnode which may stay busy for a long time 5454 * if the filesystem is active. So, instead, we make a second 5455 * pass over the dependencies blocking on each write. In the 5456 * usual case we will be blocking against a write that we 5457 * initiated, so when it is done the dependency will have been 5458 * resolved. Thus the second pass is expected to end quickly. 5459 * We give a brief window at the top of the loop to allow 5460 * any pending I/O to complete. 5461 */ 5462 for (error = 0, waitfor = MNT_NOWAIT; ; ) { 5463 if (error) 5464 return (error); 5465 FREE_LOCK(&lk); 5466 ACQUIRE_LOCK(&lk); 5467 if (inodedep_lookup(mp, ino, 0, &inodedep) == 0) 5468 return (0); 5469 if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) || 5470 flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) || 5471 flush_deplist(&inodedep->id_extupdt, waitfor, &error) || 5472 flush_deplist(&inodedep->id_newextupdt, waitfor, &error)) 5473 continue; 5474 /* 5475 * If pass2, we are done, otherwise do pass 2. 5476 */ 5477 if (waitfor == MNT_WAIT) 5478 break; 5479 waitfor = MNT_WAIT; 5480 } 5481 /* 5482 * Try freeing inodedep in case all dependencies have been removed. 5483 */ 5484 if (inodedep_lookup(mp, ino, 0, &inodedep) != 0) 5485 (void) free_inodedep(inodedep); 5486 return (0); 5487 } 5488 5489 /* 5490 * Flush an inode dependency list. 5491 * Called with splbio blocked. 5492 */ 5493 static int 5494 flush_deplist(listhead, waitfor, errorp) 5495 struct allocdirectlst *listhead; 5496 int waitfor; 5497 int *errorp; 5498 { 5499 struct allocdirect *adp; 5500 struct buf *bp; 5501 5502 mtx_assert(&lk, MA_OWNED); 5503 TAILQ_FOREACH(adp, listhead, ad_next) { 5504 if (adp->ad_state & DEPCOMPLETE) 5505 continue; 5506 bp = adp->ad_buf; 5507 bp = getdirtybuf(bp, &lk, waitfor); 5508 if (bp == NULL) { 5509 if (waitfor == MNT_NOWAIT) 5510 continue; 5511 return (1); 5512 } 5513 FREE_LOCK(&lk); 5514 if (waitfor == MNT_NOWAIT) { 5515 bawrite(bp); 5516 } else if ((*errorp = bwrite(bp)) != 0) { 5517 ACQUIRE_LOCK(&lk); 5518 return (1); 5519 } 5520 ACQUIRE_LOCK(&lk); 5521 return (1); 5522 } 5523 return (0); 5524 } 5525 5526 /* 5527 * Eliminate a pagedep dependency by flushing out all its diradd dependencies. 5528 * Called with splbio blocked. 5529 */ 5530 static int 5531 flush_pagedep_deps(pvp, mp, diraddhdp) 5532 struct vnode *pvp; 5533 struct mount *mp; 5534 struct diraddhd *diraddhdp; 5535 { 5536 struct inodedep *inodedep; 5537 struct ufsmount *ump; 5538 struct diradd *dap; 5539 struct vnode *vp; 5540 int error = 0; 5541 struct buf *bp; 5542 ino_t inum; 5543 struct worklist *wk; 5544 5545 ump = VFSTOUFS(mp); 5546 while ((dap = LIST_FIRST(diraddhdp)) != NULL) { 5547 /* 5548 * Flush ourselves if this directory entry 5549 * has a MKDIR_PARENT dependency. 5550 */ 5551 if (dap->da_state & MKDIR_PARENT) { 5552 FREE_LOCK(&lk); 5553 if ((error = ffs_update(pvp, 1)) != 0) 5554 break; 5555 ACQUIRE_LOCK(&lk); 5556 /* 5557 * If that cleared dependencies, go on to next. 5558 */ 5559 if (dap != LIST_FIRST(diraddhdp)) 5560 continue; 5561 if (dap->da_state & MKDIR_PARENT) 5562 panic("flush_pagedep_deps: MKDIR_PARENT"); 5563 } 5564 /* 5565 * A newly allocated directory must have its "." and 5566 * ".." entries written out before its name can be 5567 * committed in its parent. We do not want or need 5568 * the full semantics of a synchronous ffs_syncvnode as 5569 * that may end up here again, once for each directory 5570 * level in the filesystem. Instead, we push the blocks 5571 * and wait for them to clear. We have to fsync twice 5572 * because the first call may choose to defer blocks 5573 * that still have dependencies, but deferral will 5574 * happen at most once. 5575 */ 5576 inum = dap->da_newinum; 5577 if (dap->da_state & MKDIR_BODY) { 5578 FREE_LOCK(&lk); 5579 if ((error = ffs_vget(mp, inum, LK_EXCLUSIVE, &vp))) 5580 break; 5581 if ((error=ffs_syncvnode(vp, MNT_NOWAIT)) || 5582 (error=ffs_syncvnode(vp, MNT_NOWAIT))) { 5583 vput(vp); 5584 break; 5585 } 5586 VI_LOCK(vp); 5587 drain_output(vp); 5588 /* 5589 * If first block is still dirty with a D_MKDIR 5590 * dependency then it needs to be written now. 5591 */ 5592 for (;;) { 5593 error = 0; 5594 bp = gbincore(&vp->v_bufobj, 0); 5595 if (bp == NULL) 5596 break; /* First block not present */ 5597 error = BUF_LOCK(bp, 5598 LK_EXCLUSIVE | 5599 LK_SLEEPFAIL | 5600 LK_INTERLOCK, 5601 VI_MTX(vp)); 5602 VI_LOCK(vp); 5603 if (error == ENOLCK) 5604 continue; /* Slept, retry */ 5605 if (error != 0) 5606 break; /* Failed */ 5607 if ((bp->b_flags & B_DELWRI) == 0) { 5608 BUF_UNLOCK(bp); 5609 break; /* Buffer not dirty */ 5610 } 5611 for (wk = LIST_FIRST(&bp->b_dep); 5612 wk != NULL; 5613 wk = LIST_NEXT(wk, wk_list)) 5614 if (wk->wk_type == D_MKDIR) 5615 break; 5616 if (wk == NULL) 5617 BUF_UNLOCK(bp); /* Dependency gone */ 5618 else { 5619 /* 5620 * D_MKDIR dependency remains, 5621 * must write buffer to stable 5622 * storage. 5623 */ 5624 VI_UNLOCK(vp); 5625 bremfree(bp); 5626 error = bwrite(bp); 5627 VI_LOCK(vp); 5628 } 5629 break; 5630 } 5631 VI_UNLOCK(vp); 5632 vput(vp); 5633 if (error != 0) 5634 break; /* Flushing of first block failed */ 5635 ACQUIRE_LOCK(&lk); 5636 /* 5637 * If that cleared dependencies, go on to next. 5638 */ 5639 if (dap != LIST_FIRST(diraddhdp)) 5640 continue; 5641 if (dap->da_state & MKDIR_BODY) 5642 panic("flush_pagedep_deps: MKDIR_BODY"); 5643 } 5644 /* 5645 * Flush the inode on which the directory entry depends. 5646 * Having accounted for MKDIR_PARENT and MKDIR_BODY above, 5647 * the only remaining dependency is that the updated inode 5648 * count must get pushed to disk. The inode has already 5649 * been pushed into its inode buffer (via VOP_UPDATE) at 5650 * the time of the reference count change. So we need only 5651 * locate that buffer, ensure that there will be no rollback 5652 * caused by a bitmap dependency, then write the inode buffer. 5653 */ 5654 retry: 5655 if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0) 5656 panic("flush_pagedep_deps: lost inode"); 5657 /* 5658 * If the inode still has bitmap dependencies, 5659 * push them to disk. 5660 */ 5661 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 5662 bp = inodedep->id_buf; 5663 bp = getdirtybuf(bp, &lk, MNT_WAIT); 5664 if (bp == NULL) 5665 goto retry; 5666 FREE_LOCK(&lk); 5667 if ((error = bwrite(bp)) != 0) 5668 break; 5669 ACQUIRE_LOCK(&lk); 5670 if (dap != LIST_FIRST(diraddhdp)) 5671 continue; 5672 } 5673 /* 5674 * If the inode is still sitting in a buffer waiting 5675 * to be written, push it to disk. 5676 */ 5677 FREE_LOCK(&lk); 5678 if ((error = bread(ump->um_devvp, 5679 fsbtodb(ump->um_fs, ino_to_fsba(ump->um_fs, inum)), 5680 (int)ump->um_fs->fs_bsize, NOCRED, &bp)) != 0) { 5681 brelse(bp); 5682 break; 5683 } 5684 if ((error = bwrite(bp)) != 0) 5685 break; 5686 ACQUIRE_LOCK(&lk); 5687 /* 5688 * If we have failed to get rid of all the dependencies 5689 * then something is seriously wrong. 5690 */ 5691 if (dap == LIST_FIRST(diraddhdp)) 5692 panic("flush_pagedep_deps: flush failed"); 5693 } 5694 if (error) 5695 ACQUIRE_LOCK(&lk); 5696 return (error); 5697 } 5698 5699 /* 5700 * A large burst of file addition or deletion activity can drive the 5701 * memory load excessively high. First attempt to slow things down 5702 * using the techniques below. If that fails, this routine requests 5703 * the offending operations to fall back to running synchronously 5704 * until the memory load returns to a reasonable level. 5705 */ 5706 int 5707 softdep_slowdown(vp) 5708 struct vnode *vp; 5709 { 5710 int max_softdeps_hard; 5711 5712 ACQUIRE_LOCK(&lk); 5713 max_softdeps_hard = max_softdeps * 11 / 10; 5714 if (num_dirrem < max_softdeps_hard / 2 && 5715 num_inodedep < max_softdeps_hard && 5716 VFSTOUFS(vp->v_mount)->um_numindirdeps < maxindirdeps) { 5717 FREE_LOCK(&lk); 5718 return (0); 5719 } 5720 if (VFSTOUFS(vp->v_mount)->um_numindirdeps >= maxindirdeps) 5721 softdep_speedup(); 5722 stat_sync_limit_hit += 1; 5723 FREE_LOCK(&lk); 5724 return (1); 5725 } 5726 5727 /* 5728 * Called by the allocation routines when they are about to fail 5729 * in the hope that we can free up some disk space. 5730 * 5731 * First check to see if the work list has anything on it. If it has, 5732 * clean up entries until we successfully free some space. Because this 5733 * process holds inodes locked, we cannot handle any remove requests 5734 * that might block on a locked inode as that could lead to deadlock. 5735 * If the worklist yields no free space, encourage the syncer daemon 5736 * to help us. In no event will we try for longer than tickdelay seconds. 5737 */ 5738 int 5739 softdep_request_cleanup(fs, vp) 5740 struct fs *fs; 5741 struct vnode *vp; 5742 { 5743 struct ufsmount *ump; 5744 long starttime; 5745 ufs2_daddr_t needed; 5746 int error; 5747 5748 ump = VTOI(vp)->i_ump; 5749 mtx_assert(UFS_MTX(ump), MA_OWNED); 5750 needed = fs->fs_cstotal.cs_nbfree + fs->fs_contigsumsize; 5751 starttime = time_second + tickdelay; 5752 /* 5753 * If we are being called because of a process doing a 5754 * copy-on-write, then it is not safe to update the vnode 5755 * as we may recurse into the copy-on-write routine. 5756 */ 5757 if (!(curthread->td_pflags & TDP_COWINPROGRESS)) { 5758 UFS_UNLOCK(ump); 5759 error = ffs_update(vp, 1); 5760 UFS_LOCK(ump); 5761 if (error != 0) 5762 return (0); 5763 } 5764 while (fs->fs_pendingblocks > 0 && fs->fs_cstotal.cs_nbfree <= needed) { 5765 if (time_second > starttime) 5766 return (0); 5767 UFS_UNLOCK(ump); 5768 ACQUIRE_LOCK(&lk); 5769 if (ump->softdep_on_worklist > 0 && 5770 process_worklist_item(UFSTOVFS(ump), LK_NOWAIT) != -1) { 5771 stat_worklist_push += 1; 5772 FREE_LOCK(&lk); 5773 UFS_LOCK(ump); 5774 continue; 5775 } 5776 request_cleanup(UFSTOVFS(ump), FLUSH_REMOVE_WAIT); 5777 FREE_LOCK(&lk); 5778 UFS_LOCK(ump); 5779 } 5780 return (1); 5781 } 5782 5783 /* 5784 * If memory utilization has gotten too high, deliberately slow things 5785 * down and speed up the I/O processing. 5786 */ 5787 extern struct thread *syncertd; 5788 static int 5789 request_cleanup(mp, resource) 5790 struct mount *mp; 5791 int resource; 5792 { 5793 struct thread *td = curthread; 5794 struct ufsmount *ump; 5795 5796 mtx_assert(&lk, MA_OWNED); 5797 /* 5798 * We never hold up the filesystem syncer or buf daemon. 5799 */ 5800 if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF)) 5801 return (0); 5802 ump = VFSTOUFS(mp); 5803 /* 5804 * First check to see if the work list has gotten backlogged. 5805 * If it has, co-opt this process to help clean up two entries. 5806 * Because this process may hold inodes locked, we cannot 5807 * handle any remove requests that might block on a locked 5808 * inode as that could lead to deadlock. We set TDP_SOFTDEP 5809 * to avoid recursively processing the worklist. 5810 */ 5811 if (ump->softdep_on_worklist > max_softdeps / 10) { 5812 td->td_pflags |= TDP_SOFTDEP; 5813 process_worklist_item(mp, LK_NOWAIT); 5814 process_worklist_item(mp, LK_NOWAIT); 5815 td->td_pflags &= ~TDP_SOFTDEP; 5816 stat_worklist_push += 2; 5817 return(1); 5818 } 5819 /* 5820 * Next, we attempt to speed up the syncer process. If that 5821 * is successful, then we allow the process to continue. 5822 */ 5823 if (softdep_speedup() && resource != FLUSH_REMOVE_WAIT) 5824 return(0); 5825 /* 5826 * If we are resource constrained on inode dependencies, try 5827 * flushing some dirty inodes. Otherwise, we are constrained 5828 * by file deletions, so try accelerating flushes of directories 5829 * with removal dependencies. We would like to do the cleanup 5830 * here, but we probably hold an inode locked at this point and 5831 * that might deadlock against one that we try to clean. So, 5832 * the best that we can do is request the syncer daemon to do 5833 * the cleanup for us. 5834 */ 5835 switch (resource) { 5836 5837 case FLUSH_INODES: 5838 stat_ino_limit_push += 1; 5839 req_clear_inodedeps += 1; 5840 stat_countp = &stat_ino_limit_hit; 5841 break; 5842 5843 case FLUSH_REMOVE: 5844 case FLUSH_REMOVE_WAIT: 5845 stat_blk_limit_push += 1; 5846 req_clear_remove += 1; 5847 stat_countp = &stat_blk_limit_hit; 5848 break; 5849 5850 default: 5851 panic("request_cleanup: unknown type"); 5852 } 5853 /* 5854 * Hopefully the syncer daemon will catch up and awaken us. 5855 * We wait at most tickdelay before proceeding in any case. 5856 */ 5857 proc_waiting += 1; 5858 if (handle.callout == NULL) 5859 handle = timeout(pause_timer, 0, tickdelay > 2 ? tickdelay : 2); 5860 msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0); 5861 proc_waiting -= 1; 5862 return (1); 5863 } 5864 5865 /* 5866 * Awaken processes pausing in request_cleanup and clear proc_waiting 5867 * to indicate that there is no longer a timer running. 5868 */ 5869 static void 5870 pause_timer(arg) 5871 void *arg; 5872 { 5873 5874 ACQUIRE_LOCK(&lk); 5875 *stat_countp += 1; 5876 wakeup_one(&proc_waiting); 5877 if (proc_waiting > 0) 5878 handle = timeout(pause_timer, 0, tickdelay > 2 ? tickdelay : 2); 5879 else 5880 handle.callout = NULL; 5881 FREE_LOCK(&lk); 5882 } 5883 5884 /* 5885 * Flush out a directory with at least one removal dependency in an effort to 5886 * reduce the number of dirrem, freefile, and freeblks dependency structures. 5887 */ 5888 static void 5889 clear_remove(td) 5890 struct thread *td; 5891 { 5892 struct pagedep_hashhead *pagedephd; 5893 struct pagedep *pagedep; 5894 static int next = 0; 5895 struct mount *mp; 5896 struct vnode *vp; 5897 int error, cnt; 5898 ino_t ino; 5899 5900 mtx_assert(&lk, MA_OWNED); 5901 5902 for (cnt = 0; cnt < pagedep_hash; cnt++) { 5903 pagedephd = &pagedep_hashtbl[next++]; 5904 if (next >= pagedep_hash) 5905 next = 0; 5906 LIST_FOREACH(pagedep, pagedephd, pd_hash) { 5907 if (LIST_EMPTY(&pagedep->pd_dirremhd)) 5908 continue; 5909 mp = pagedep->pd_list.wk_mp; 5910 ino = pagedep->pd_ino; 5911 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 5912 continue; 5913 FREE_LOCK(&lk); 5914 if ((error = ffs_vget(mp, ino, LK_EXCLUSIVE, &vp))) { 5915 softdep_error("clear_remove: vget", error); 5916 vn_finished_write(mp); 5917 ACQUIRE_LOCK(&lk); 5918 return; 5919 } 5920 if ((error = ffs_syncvnode(vp, MNT_NOWAIT))) 5921 softdep_error("clear_remove: fsync", error); 5922 VI_LOCK(vp); 5923 drain_output(vp); 5924 VI_UNLOCK(vp); 5925 vput(vp); 5926 vn_finished_write(mp); 5927 ACQUIRE_LOCK(&lk); 5928 return; 5929 } 5930 } 5931 } 5932 5933 /* 5934 * Clear out a block of dirty inodes in an effort to reduce 5935 * the number of inodedep dependency structures. 5936 */ 5937 static void 5938 clear_inodedeps(td) 5939 struct thread *td; 5940 { 5941 struct inodedep_hashhead *inodedephd; 5942 struct inodedep *inodedep; 5943 static int next = 0; 5944 struct mount *mp; 5945 struct vnode *vp; 5946 struct fs *fs; 5947 int error, cnt; 5948 ino_t firstino, lastino, ino; 5949 5950 mtx_assert(&lk, MA_OWNED); 5951 /* 5952 * Pick a random inode dependency to be cleared. 5953 * We will then gather up all the inodes in its block 5954 * that have dependencies and flush them out. 5955 */ 5956 for (cnt = 0; cnt < inodedep_hash; cnt++) { 5957 inodedephd = &inodedep_hashtbl[next++]; 5958 if (next >= inodedep_hash) 5959 next = 0; 5960 if ((inodedep = LIST_FIRST(inodedephd)) != NULL) 5961 break; 5962 } 5963 if (inodedep == NULL) 5964 return; 5965 fs = inodedep->id_fs; 5966 mp = inodedep->id_list.wk_mp; 5967 /* 5968 * Find the last inode in the block with dependencies. 5969 */ 5970 firstino = inodedep->id_ino & ~(INOPB(fs) - 1); 5971 for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--) 5972 if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0) 5973 break; 5974 /* 5975 * Asynchronously push all but the last inode with dependencies. 5976 * Synchronously push the last inode with dependencies to ensure 5977 * that the inode block gets written to free up the inodedeps. 5978 */ 5979 for (ino = firstino; ino <= lastino; ino++) { 5980 if (inodedep_lookup(mp, ino, 0, &inodedep) == 0) 5981 continue; 5982 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 5983 continue; 5984 FREE_LOCK(&lk); 5985 if ((error = ffs_vget(mp, ino, LK_EXCLUSIVE, &vp)) != 0) { 5986 softdep_error("clear_inodedeps: vget", error); 5987 vn_finished_write(mp); 5988 ACQUIRE_LOCK(&lk); 5989 return; 5990 } 5991 if (ino == lastino) { 5992 if ((error = ffs_syncvnode(vp, MNT_WAIT))) 5993 softdep_error("clear_inodedeps: fsync1", error); 5994 } else { 5995 if ((error = ffs_syncvnode(vp, MNT_NOWAIT))) 5996 softdep_error("clear_inodedeps: fsync2", error); 5997 VI_LOCK(vp); 5998 drain_output(vp); 5999 VI_UNLOCK(vp); 6000 } 6001 vput(vp); 6002 vn_finished_write(mp); 6003 ACQUIRE_LOCK(&lk); 6004 } 6005 } 6006 6007 /* 6008 * Function to determine if the buffer has outstanding dependencies 6009 * that will cause a roll-back if the buffer is written. If wantcount 6010 * is set, return number of dependencies, otherwise just yes or no. 6011 */ 6012 static int 6013 softdep_count_dependencies(bp, wantcount) 6014 struct buf *bp; 6015 int wantcount; 6016 { 6017 struct worklist *wk; 6018 struct inodedep *inodedep; 6019 struct indirdep *indirdep; 6020 struct allocindir *aip; 6021 struct pagedep *pagedep; 6022 struct diradd *dap; 6023 int i, retval; 6024 6025 retval = 0; 6026 ACQUIRE_LOCK(&lk); 6027 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 6028 switch (wk->wk_type) { 6029 6030 case D_INODEDEP: 6031 inodedep = WK_INODEDEP(wk); 6032 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 6033 /* bitmap allocation dependency */ 6034 retval += 1; 6035 if (!wantcount) 6036 goto out; 6037 } 6038 if (TAILQ_FIRST(&inodedep->id_inoupdt)) { 6039 /* direct block pointer dependency */ 6040 retval += 1; 6041 if (!wantcount) 6042 goto out; 6043 } 6044 if (TAILQ_FIRST(&inodedep->id_extupdt)) { 6045 /* direct block pointer dependency */ 6046 retval += 1; 6047 if (!wantcount) 6048 goto out; 6049 } 6050 continue; 6051 6052 case D_INDIRDEP: 6053 indirdep = WK_INDIRDEP(wk); 6054 6055 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) { 6056 /* indirect block pointer dependency */ 6057 retval += 1; 6058 if (!wantcount) 6059 goto out; 6060 } 6061 continue; 6062 6063 case D_PAGEDEP: 6064 pagedep = WK_PAGEDEP(wk); 6065 for (i = 0; i < DAHASHSZ; i++) { 6066 6067 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 6068 /* directory entry dependency */ 6069 retval += 1; 6070 if (!wantcount) 6071 goto out; 6072 } 6073 } 6074 continue; 6075 6076 case D_BMSAFEMAP: 6077 case D_ALLOCDIRECT: 6078 case D_ALLOCINDIR: 6079 case D_MKDIR: 6080 /* never a dependency on these blocks */ 6081 continue; 6082 6083 default: 6084 panic("softdep_check_for_rollback: Unexpected type %s", 6085 TYPENAME(wk->wk_type)); 6086 /* NOTREACHED */ 6087 } 6088 } 6089 out: 6090 FREE_LOCK(&lk); 6091 return retval; 6092 } 6093 6094 /* 6095 * Acquire exclusive access to a buffer. 6096 * Must be called with a locked mtx parameter. 6097 * Return acquired buffer or NULL on failure. 6098 */ 6099 static struct buf * 6100 getdirtybuf(bp, mtx, waitfor) 6101 struct buf *bp; 6102 struct mtx *mtx; 6103 int waitfor; 6104 { 6105 int error; 6106 6107 mtx_assert(mtx, MA_OWNED); 6108 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) { 6109 if (waitfor != MNT_WAIT) 6110 return (NULL); 6111 error = BUF_LOCK(bp, 6112 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, mtx); 6113 /* 6114 * Even if we sucessfully acquire bp here, we have dropped 6115 * mtx, which may violates our guarantee. 6116 */ 6117 if (error == 0) 6118 BUF_UNLOCK(bp); 6119 else if (error != ENOLCK) 6120 panic("getdirtybuf: inconsistent lock: %d", error); 6121 mtx_lock(mtx); 6122 return (NULL); 6123 } 6124 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) { 6125 if (mtx == &lk && waitfor == MNT_WAIT) { 6126 mtx_unlock(mtx); 6127 BO_LOCK(bp->b_bufobj); 6128 BUF_UNLOCK(bp); 6129 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) { 6130 bp->b_vflags |= BV_BKGRDWAIT; 6131 msleep(&bp->b_xflags, BO_MTX(bp->b_bufobj), 6132 PRIBIO | PDROP, "getbuf", 0); 6133 } else 6134 BO_UNLOCK(bp->b_bufobj); 6135 mtx_lock(mtx); 6136 return (NULL); 6137 } 6138 BUF_UNLOCK(bp); 6139 if (waitfor != MNT_WAIT) 6140 return (NULL); 6141 /* 6142 * The mtx argument must be bp->b_vp's mutex in 6143 * this case. 6144 */ 6145 #ifdef DEBUG_VFS_LOCKS 6146 if (bp->b_vp->v_type != VCHR) 6147 ASSERT_VI_LOCKED(bp->b_vp, "getdirtybuf"); 6148 #endif 6149 bp->b_vflags |= BV_BKGRDWAIT; 6150 msleep(&bp->b_xflags, mtx, PRIBIO, "getbuf", 0); 6151 return (NULL); 6152 } 6153 if ((bp->b_flags & B_DELWRI) == 0) { 6154 BUF_UNLOCK(bp); 6155 return (NULL); 6156 } 6157 bremfree(bp); 6158 return (bp); 6159 } 6160 6161 6162 /* 6163 * Check if it is safe to suspend the file system now. On entry, 6164 * the vnode interlock for devvp should be held. Return 0 with 6165 * the mount interlock held if the file system can be suspended now, 6166 * otherwise return EAGAIN with the mount interlock held. 6167 */ 6168 int 6169 softdep_check_suspend(struct mount *mp, 6170 struct vnode *devvp, 6171 int softdep_deps, 6172 int softdep_accdeps, 6173 int secondary_writes, 6174 int secondary_accwrites) 6175 { 6176 struct bufobj *bo; 6177 struct ufsmount *ump; 6178 int error; 6179 6180 ASSERT_VI_LOCKED(devvp, "softdep_check_suspend"); 6181 ump = VFSTOUFS(mp); 6182 bo = &devvp->v_bufobj; 6183 6184 for (;;) { 6185 if (!TRY_ACQUIRE_LOCK(&lk)) { 6186 VI_UNLOCK(devvp); 6187 ACQUIRE_LOCK(&lk); 6188 FREE_LOCK(&lk); 6189 VI_LOCK(devvp); 6190 continue; 6191 } 6192 if (!MNT_ITRYLOCK(mp)) { 6193 FREE_LOCK(&lk); 6194 VI_UNLOCK(devvp); 6195 MNT_ILOCK(mp); 6196 MNT_IUNLOCK(mp); 6197 VI_LOCK(devvp); 6198 continue; 6199 } 6200 if (mp->mnt_secondary_writes != 0) { 6201 FREE_LOCK(&lk); 6202 VI_UNLOCK(devvp); 6203 msleep(&mp->mnt_secondary_writes, 6204 MNT_MTX(mp), 6205 (PUSER - 1) | PDROP, "secwr", 0); 6206 VI_LOCK(devvp); 6207 continue; 6208 } 6209 break; 6210 } 6211 6212 /* 6213 * Reasons for needing more work before suspend: 6214 * - Dirty buffers on devvp. 6215 * - Softdep activity occurred after start of vnode sync loop 6216 * - Secondary writes occurred after start of vnode sync loop 6217 */ 6218 error = 0; 6219 if (bo->bo_numoutput > 0 || 6220 bo->bo_dirty.bv_cnt > 0 || 6221 softdep_deps != 0 || 6222 ump->softdep_deps != 0 || 6223 softdep_accdeps != ump->softdep_accdeps || 6224 secondary_writes != 0 || 6225 mp->mnt_secondary_writes != 0 || 6226 secondary_accwrites != mp->mnt_secondary_accwrites) 6227 error = EAGAIN; 6228 FREE_LOCK(&lk); 6229 VI_UNLOCK(devvp); 6230 return (error); 6231 } 6232 6233 6234 /* 6235 * Get the number of dependency structures for the file system, both 6236 * the current number and the total number allocated. These will 6237 * later be used to detect that softdep processing has occurred. 6238 */ 6239 void 6240 softdep_get_depcounts(struct mount *mp, 6241 int *softdep_depsp, 6242 int *softdep_accdepsp) 6243 { 6244 struct ufsmount *ump; 6245 6246 ump = VFSTOUFS(mp); 6247 ACQUIRE_LOCK(&lk); 6248 *softdep_depsp = ump->softdep_deps; 6249 *softdep_accdepsp = ump->softdep_accdeps; 6250 FREE_LOCK(&lk); 6251 } 6252 6253 /* 6254 * Wait for pending output on a vnode to complete. 6255 * Must be called with vnode lock and interlock locked. 6256 * 6257 * XXX: Should just be a call to bufobj_wwait(). 6258 */ 6259 static void 6260 drain_output(vp) 6261 struct vnode *vp; 6262 { 6263 ASSERT_VOP_LOCKED(vp, "drain_output"); 6264 ASSERT_VI_LOCKED(vp, "drain_output"); 6265 6266 while (vp->v_bufobj.bo_numoutput) { 6267 vp->v_bufobj.bo_flag |= BO_WWAIT; 6268 msleep((caddr_t)&vp->v_bufobj.bo_numoutput, 6269 VI_MTX(vp), PRIBIO + 1, "drainvp", 0); 6270 } 6271 } 6272 6273 /* 6274 * Called whenever a buffer that is being invalidated or reallocated 6275 * contains dependencies. This should only happen if an I/O error has 6276 * occurred. The routine is called with the buffer locked. 6277 */ 6278 static void 6279 softdep_deallocate_dependencies(bp) 6280 struct buf *bp; 6281 { 6282 6283 if ((bp->b_ioflags & BIO_ERROR) == 0) 6284 panic("softdep_deallocate_dependencies: dangling deps"); 6285 softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error); 6286 panic("softdep_deallocate_dependencies: unrecovered I/O error"); 6287 } 6288 6289 /* 6290 * Function to handle asynchronous write errors in the filesystem. 6291 */ 6292 static void 6293 softdep_error(func, error) 6294 char *func; 6295 int error; 6296 { 6297 6298 /* XXX should do something better! */ 6299 printf("%s: got error %d while accessing filesystem\n", func, error); 6300 } 6301 6302 #endif /* SOFTUPDATES */ 6303