xref: /freebsd/sys/ufs/ffs/ffs_softdep.c (revision 147972555f2c70f64cc54182dc18326456e46b92)
1 /*-
2  * Copyright 1998, 2000 Marshall Kirk McKusick.
3  * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org>
4  * All rights reserved.
5  *
6  * The soft updates code is derived from the appendix of a University
7  * of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
8  * "Soft Updates: A Solution to the Metadata Update Problem in File
9  * Systems", CSE-TR-254-95, August 1995).
10  *
11  * Further information about soft updates can be obtained from:
12  *
13  *	Marshall Kirk McKusick		http://www.mckusick.com/softdep/
14  *	1614 Oxford Street		mckusick@mckusick.com
15  *	Berkeley, CA 94709-1608		+1-510-843-9542
16  *	USA
17  *
18  * Redistribution and use in source and binary forms, with or without
19  * modification, are permitted provided that the following conditions
20  * are met:
21  *
22  * 1. Redistributions of source code must retain the above copyright
23  *    notice, this list of conditions and the following disclaimer.
24  * 2. Redistributions in binary form must reproduce the above copyright
25  *    notice, this list of conditions and the following disclaimer in the
26  *    documentation and/or other materials provided with the distribution.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
29  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
31  * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
32  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
33  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
34  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
35  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37  * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38  *
39  *	from: @(#)ffs_softdep.c	9.59 (McKusick) 6/21/00
40  */
41 
42 #include <sys/cdefs.h>
43 __FBSDID("$FreeBSD$");
44 
45 #include "opt_ffs.h"
46 #include "opt_quota.h"
47 #include "opt_ddb.h"
48 
49 /*
50  * For now we want the safety net that the DEBUG flag provides.
51  */
52 #ifndef DEBUG
53 #define DEBUG
54 #endif
55 
56 #include <sys/param.h>
57 #include <sys/kernel.h>
58 #include <sys/systm.h>
59 #include <sys/bio.h>
60 #include <sys/buf.h>
61 #include <sys/kdb.h>
62 #include <sys/kthread.h>
63 #include <sys/limits.h>
64 #include <sys/lock.h>
65 #include <sys/malloc.h>
66 #include <sys/mount.h>
67 #include <sys/mutex.h>
68 #include <sys/namei.h>
69 #include <sys/priv.h>
70 #include <sys/proc.h>
71 #include <sys/stat.h>
72 #include <sys/sysctl.h>
73 #include <sys/syslog.h>
74 #include <sys/vnode.h>
75 #include <sys/conf.h>
76 
77 #include <ufs/ufs/dir.h>
78 #include <ufs/ufs/extattr.h>
79 #include <ufs/ufs/quota.h>
80 #include <ufs/ufs/inode.h>
81 #include <ufs/ufs/ufsmount.h>
82 #include <ufs/ffs/fs.h>
83 #include <ufs/ffs/softdep.h>
84 #include <ufs/ffs/ffs_extern.h>
85 #include <ufs/ufs/ufs_extern.h>
86 
87 #include <vm/vm.h>
88 #include <vm/vm_extern.h>
89 #include <vm/vm_object.h>
90 
91 #include <ddb/ddb.h>
92 
93 #ifndef SOFTUPDATES
94 
95 int
96 softdep_flushfiles(oldmnt, flags, td)
97 	struct mount *oldmnt;
98 	int flags;
99 	struct thread *td;
100 {
101 
102 	panic("softdep_flushfiles called");
103 }
104 
105 int
106 softdep_mount(devvp, mp, fs, cred)
107 	struct vnode *devvp;
108 	struct mount *mp;
109 	struct fs *fs;
110 	struct ucred *cred;
111 {
112 
113 	return (0);
114 }
115 
116 void
117 softdep_initialize()
118 {
119 
120 	return;
121 }
122 
123 void
124 softdep_uninitialize()
125 {
126 
127 	return;
128 }
129 
130 void
131 softdep_unmount(mp)
132 	struct mount *mp;
133 {
134 
135 }
136 
137 void
138 softdep_setup_sbupdate(ump, fs, bp)
139 	struct ufsmount *ump;
140 	struct fs *fs;
141 	struct buf *bp;
142 {
143 }
144 
145 void
146 softdep_setup_inomapdep(bp, ip, newinum, mode)
147 	struct buf *bp;
148 	struct inode *ip;
149 	ino_t newinum;
150 	int mode;
151 {
152 
153 	panic("softdep_setup_inomapdep called");
154 }
155 
156 void
157 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
158 	struct buf *bp;
159 	struct mount *mp;
160 	ufs2_daddr_t newblkno;
161 	int frags;
162 	int oldfrags;
163 {
164 
165 	panic("softdep_setup_blkmapdep called");
166 }
167 
168 void
169 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
170 	struct inode *ip;
171 	ufs_lbn_t lbn;
172 	ufs2_daddr_t newblkno;
173 	ufs2_daddr_t oldblkno;
174 	long newsize;
175 	long oldsize;
176 	struct buf *bp;
177 {
178 
179 	panic("softdep_setup_allocdirect called");
180 }
181 
182 void
183 softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
184 	struct inode *ip;
185 	ufs_lbn_t lbn;
186 	ufs2_daddr_t newblkno;
187 	ufs2_daddr_t oldblkno;
188 	long newsize;
189 	long oldsize;
190 	struct buf *bp;
191 {
192 
193 	panic("softdep_setup_allocext called");
194 }
195 
196 void
197 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
198 	struct inode *ip;
199 	ufs_lbn_t lbn;
200 	struct buf *bp;
201 	int ptrno;
202 	ufs2_daddr_t newblkno;
203 	ufs2_daddr_t oldblkno;
204 	struct buf *nbp;
205 {
206 
207 	panic("softdep_setup_allocindir_page called");
208 }
209 
210 void
211 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
212 	struct buf *nbp;
213 	struct inode *ip;
214 	struct buf *bp;
215 	int ptrno;
216 	ufs2_daddr_t newblkno;
217 {
218 
219 	panic("softdep_setup_allocindir_meta called");
220 }
221 
222 void
223 softdep_journal_freeblocks(ip, cred, length, flags)
224 	struct inode *ip;
225 	struct ucred *cred;
226 	off_t length;
227 	int flags;
228 {
229 
230 	panic("softdep_journal_freeblocks called");
231 }
232 
233 void
234 softdep_journal_fsync(ip)
235 	struct inode *ip;
236 {
237 
238 	panic("softdep_journal_fsync called");
239 }
240 
241 void
242 softdep_setup_freeblocks(ip, length, flags)
243 	struct inode *ip;
244 	off_t length;
245 	int flags;
246 {
247 
248 	panic("softdep_setup_freeblocks called");
249 }
250 
251 void
252 softdep_freefile(pvp, ino, mode)
253 		struct vnode *pvp;
254 		ino_t ino;
255 		int mode;
256 {
257 
258 	panic("softdep_freefile called");
259 }
260 
261 int
262 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
263 	struct buf *bp;
264 	struct inode *dp;
265 	off_t diroffset;
266 	ino_t newinum;
267 	struct buf *newdirbp;
268 	int isnewblk;
269 {
270 
271 	panic("softdep_setup_directory_add called");
272 }
273 
274 void
275 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
276 	struct buf *bp;
277 	struct inode *dp;
278 	caddr_t base;
279 	caddr_t oldloc;
280 	caddr_t newloc;
281 	int entrysize;
282 {
283 
284 	panic("softdep_change_directoryentry_offset called");
285 }
286 
287 void
288 softdep_setup_remove(bp, dp, ip, isrmdir)
289 	struct buf *bp;
290 	struct inode *dp;
291 	struct inode *ip;
292 	int isrmdir;
293 {
294 
295 	panic("softdep_setup_remove called");
296 }
297 
298 void
299 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
300 	struct buf *bp;
301 	struct inode *dp;
302 	struct inode *ip;
303 	ino_t newinum;
304 	int isrmdir;
305 {
306 
307 	panic("softdep_setup_directory_change called");
308 }
309 
310 void
311 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
312 	struct mount *mp;
313 	struct buf *bp;
314 	ufs2_daddr_t blkno;
315 	int frags;
316 	struct workhead *wkhd;
317 {
318 
319 	panic("%s called", __FUNCTION__);
320 }
321 
322 void
323 softdep_setup_inofree(mp, bp, ino, wkhd)
324 	struct mount *mp;
325 	struct buf *bp;
326 	ino_t ino;
327 	struct workhead *wkhd;
328 {
329 
330 	panic("%s called", __FUNCTION__);
331 }
332 
333 void
334 softdep_setup_unlink(dp, ip)
335 	struct inode *dp;
336 	struct inode *ip;
337 {
338 
339 	panic("%s called", __FUNCTION__);
340 }
341 
342 void
343 softdep_setup_link(dp, ip)
344 	struct inode *dp;
345 	struct inode *ip;
346 {
347 
348 	panic("%s called", __FUNCTION__);
349 }
350 
351 void
352 softdep_revert_link(dp, ip)
353 	struct inode *dp;
354 	struct inode *ip;
355 {
356 
357 	panic("%s called", __FUNCTION__);
358 }
359 
360 void
361 softdep_setup_rmdir(dp, ip)
362 	struct inode *dp;
363 	struct inode *ip;
364 {
365 
366 	panic("%s called", __FUNCTION__);
367 }
368 
369 void
370 softdep_revert_rmdir(dp, ip)
371 	struct inode *dp;
372 	struct inode *ip;
373 {
374 
375 	panic("%s called", __FUNCTION__);
376 }
377 
378 void
379 softdep_setup_create(dp, ip)
380 	struct inode *dp;
381 	struct inode *ip;
382 {
383 
384 	panic("%s called", __FUNCTION__);
385 }
386 
387 void
388 softdep_revert_create(dp, ip)
389 	struct inode *dp;
390 	struct inode *ip;
391 {
392 
393 	panic("%s called", __FUNCTION__);
394 }
395 
396 void
397 softdep_setup_mkdir(dp, ip)
398 	struct inode *dp;
399 	struct inode *ip;
400 {
401 
402 	panic("%s called", __FUNCTION__);
403 }
404 
405 void
406 softdep_revert_mkdir(dp, ip)
407 	struct inode *dp;
408 	struct inode *ip;
409 {
410 
411 	panic("%s called", __FUNCTION__);
412 }
413 
414 void
415 softdep_setup_dotdot_link(dp, ip)
416 	struct inode *dp;
417 	struct inode *ip;
418 {
419 
420 	panic("%s called", __FUNCTION__);
421 }
422 
423 int
424 softdep_prealloc(vp, waitok)
425 	struct vnode *vp;
426 	int waitok;
427 {
428 
429 	panic("%s called", __FUNCTION__);
430 
431 	return (0);
432 }
433 
434 int
435 softdep_journal_lookup(mp, vpp)
436 	struct mount *mp;
437 	struct vnode **vpp;
438 {
439 
440 	return (ENOENT);
441 }
442 
443 void
444 softdep_change_linkcnt(ip)
445 	struct inode *ip;
446 {
447 
448 	panic("softdep_change_linkcnt called");
449 }
450 
451 void
452 softdep_load_inodeblock(ip)
453 	struct inode *ip;
454 {
455 
456 	panic("softdep_load_inodeblock called");
457 }
458 
459 void
460 softdep_update_inodeblock(ip, bp, waitfor)
461 	struct inode *ip;
462 	struct buf *bp;
463 	int waitfor;
464 {
465 
466 	panic("softdep_update_inodeblock called");
467 }
468 
469 int
470 softdep_fsync(vp)
471 	struct vnode *vp;	/* the "in_core" copy of the inode */
472 {
473 
474 	return (0);
475 }
476 
477 void
478 softdep_fsync_mountdev(vp)
479 	struct vnode *vp;
480 {
481 
482 	return;
483 }
484 
485 int
486 softdep_flushworklist(oldmnt, countp, td)
487 	struct mount *oldmnt;
488 	int *countp;
489 	struct thread *td;
490 {
491 
492 	*countp = 0;
493 	return (0);
494 }
495 
496 int
497 softdep_sync_metadata(struct vnode *vp)
498 {
499 
500 	return (0);
501 }
502 
503 int
504 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
505 {
506 
507 	return (0);
508 }
509 
510 int
511 softdep_slowdown(vp)
512 	struct vnode *vp;
513 {
514 
515 	panic("softdep_slowdown called");
516 }
517 
518 void
519 softdep_releasefile(ip)
520 	struct inode *ip;	/* inode with the zero effective link count */
521 {
522 
523 	panic("softdep_releasefile called");
524 }
525 
526 int
527 softdep_request_cleanup(fs, vp, cred, resource)
528 	struct fs *fs;
529 	struct vnode *vp;
530 	struct ucred *cred;
531 	int resource;
532 {
533 
534 	return (0);
535 }
536 
537 int
538 softdep_check_suspend(struct mount *mp,
539 		      struct vnode *devvp,
540 		      int softdep_deps,
541 		      int softdep_accdeps,
542 		      int secondary_writes,
543 		      int secondary_accwrites)
544 {
545 	struct bufobj *bo;
546 	int error;
547 
548 	(void) softdep_deps,
549 	(void) softdep_accdeps;
550 
551 	bo = &devvp->v_bufobj;
552 	ASSERT_BO_LOCKED(bo);
553 
554 	MNT_ILOCK(mp);
555 	while (mp->mnt_secondary_writes != 0) {
556 		BO_UNLOCK(bo);
557 		msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
558 		    (PUSER - 1) | PDROP, "secwr", 0);
559 		BO_LOCK(bo);
560 		MNT_ILOCK(mp);
561 	}
562 
563 	/*
564 	 * Reasons for needing more work before suspend:
565 	 * - Dirty buffers on devvp.
566 	 * - Secondary writes occurred after start of vnode sync loop
567 	 */
568 	error = 0;
569 	if (bo->bo_numoutput > 0 ||
570 	    bo->bo_dirty.bv_cnt > 0 ||
571 	    secondary_writes != 0 ||
572 	    mp->mnt_secondary_writes != 0 ||
573 	    secondary_accwrites != mp->mnt_secondary_accwrites)
574 		error = EAGAIN;
575 	BO_UNLOCK(bo);
576 	return (error);
577 }
578 
579 void
580 softdep_get_depcounts(struct mount *mp,
581 		      int *softdepactivep,
582 		      int *softdepactiveaccp)
583 {
584 	(void) mp;
585 	*softdepactivep = 0;
586 	*softdepactiveaccp = 0;
587 }
588 
589 void
590 softdep_buf_append(bp, wkhd)
591 	struct buf *bp;
592 	struct workhead *wkhd;
593 {
594 
595 	panic("softdep_buf_appendwork called");
596 }
597 
598 void
599 softdep_inode_append(ip, cred, wkhd)
600 	struct inode *ip;
601 	struct ucred *cred;
602 	struct workhead *wkhd;
603 {
604 
605 	panic("softdep_inode_appendwork called");
606 }
607 
608 void
609 softdep_freework(wkhd)
610 	struct workhead *wkhd;
611 {
612 
613 	panic("softdep_freework called");
614 }
615 
616 #else
617 
618 FEATURE(softupdates, "FFS soft-updates support");
619 
620 /*
621  * These definitions need to be adapted to the system to which
622  * this file is being ported.
623  */
624 
625 #define M_SOFTDEP_FLAGS	(M_WAITOK)
626 
627 #define	D_PAGEDEP	0
628 #define	D_INODEDEP	1
629 #define	D_BMSAFEMAP	2
630 #define	D_NEWBLK	3
631 #define	D_ALLOCDIRECT	4
632 #define	D_INDIRDEP	5
633 #define	D_ALLOCINDIR	6
634 #define	D_FREEFRAG	7
635 #define	D_FREEBLKS	8
636 #define	D_FREEFILE	9
637 #define	D_DIRADD	10
638 #define	D_MKDIR		11
639 #define	D_DIRREM	12
640 #define	D_NEWDIRBLK	13
641 #define	D_FREEWORK	14
642 #define	D_FREEDEP	15
643 #define	D_JADDREF	16
644 #define	D_JREMREF	17
645 #define	D_JMVREF	18
646 #define	D_JNEWBLK	19
647 #define	D_JFREEBLK	20
648 #define	D_JFREEFRAG	21
649 #define	D_JSEG		22
650 #define	D_JSEGDEP	23
651 #define	D_SBDEP		24
652 #define	D_JTRUNC	25
653 #define	D_JFSYNC	26
654 #define	D_SENTINAL	27
655 #define	D_LAST		D_SENTINAL
656 
657 unsigned long dep_current[D_LAST + 1];
658 unsigned long dep_total[D_LAST + 1];
659 unsigned long dep_write[D_LAST + 1];
660 
661 
662 static SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW, 0,
663     "soft updates stats");
664 static SYSCTL_NODE(_debug_softdep, OID_AUTO, total, CTLFLAG_RW, 0,
665     "total dependencies allocated");
666 static SYSCTL_NODE(_debug_softdep, OID_AUTO, current, CTLFLAG_RW, 0,
667     "current dependencies allocated");
668 static SYSCTL_NODE(_debug_softdep, OID_AUTO, write, CTLFLAG_RW, 0,
669     "current dependencies written");
670 
671 #define	SOFTDEP_TYPE(type, str, long)					\
672     static MALLOC_DEFINE(M_ ## type, #str, long);			\
673     SYSCTL_ULONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD,	\
674 	&dep_total[D_ ## type], 0, "");					\
675     SYSCTL_ULONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD, 	\
676 	&dep_current[D_ ## type], 0, "");				\
677     SYSCTL_ULONG(_debug_softdep_write, OID_AUTO, str, CTLFLAG_RD, 	\
678 	&dep_write[D_ ## type], 0, "");
679 
680 SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies");
681 SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies");
682 SOFTDEP_TYPE(BMSAFEMAP, bmsafemap,
683     "Block or frag allocated from cyl group map");
684 SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency");
685 SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode");
686 SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies");
687 SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block");
688 SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode");
689 SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode");
690 SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated");
691 SOFTDEP_TYPE(DIRADD, diradd, "New directory entry");
692 SOFTDEP_TYPE(MKDIR, mkdir, "New directory");
693 SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted");
694 SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block");
695 SOFTDEP_TYPE(FREEWORK, freework, "free an inode block");
696 SOFTDEP_TYPE(FREEDEP, freedep, "track a block free");
697 SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add");
698 SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove");
699 SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move");
700 SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block");
701 SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block");
702 SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag");
703 SOFTDEP_TYPE(JSEG, jseg, "Journal segment");
704 SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete");
705 SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency");
706 SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation");
707 SOFTDEP_TYPE(JFSYNC, jfsync, "Journal fsync complete");
708 
709 static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes");
710 static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations");
711 
712 /*
713  * translate from workitem type to memory type
714  * MUST match the defines above, such that memtype[D_XXX] == M_XXX
715  */
716 static struct malloc_type *memtype[] = {
717 	M_PAGEDEP,
718 	M_INODEDEP,
719 	M_BMSAFEMAP,
720 	M_NEWBLK,
721 	M_ALLOCDIRECT,
722 	M_INDIRDEP,
723 	M_ALLOCINDIR,
724 	M_FREEFRAG,
725 	M_FREEBLKS,
726 	M_FREEFILE,
727 	M_DIRADD,
728 	M_MKDIR,
729 	M_DIRREM,
730 	M_NEWDIRBLK,
731 	M_FREEWORK,
732 	M_FREEDEP,
733 	M_JADDREF,
734 	M_JREMREF,
735 	M_JMVREF,
736 	M_JNEWBLK,
737 	M_JFREEBLK,
738 	M_JFREEFRAG,
739 	M_JSEG,
740 	M_JSEGDEP,
741 	M_SBDEP,
742 	M_JTRUNC,
743 	M_JFSYNC
744 };
745 
746 static LIST_HEAD(mkdirlist, mkdir) mkdirlisthd;
747 
748 #define DtoM(type) (memtype[type])
749 
750 /*
751  * Names of malloc types.
752  */
753 #define TYPENAME(type)  \
754 	((unsigned)(type) <= D_LAST ? memtype[type]->ks_shortdesc : "???")
755 /*
756  * End system adaptation definitions.
757  */
758 
759 #define	DOTDOT_OFFSET	offsetof(struct dirtemplate, dotdot_ino)
760 #define	DOT_OFFSET	offsetof(struct dirtemplate, dot_ino)
761 
762 /*
763  * Forward declarations.
764  */
765 struct inodedep_hashhead;
766 struct newblk_hashhead;
767 struct pagedep_hashhead;
768 struct bmsafemap_hashhead;
769 
770 /*
771  * Internal function prototypes.
772  */
773 static	void softdep_error(char *, int);
774 static	void drain_output(struct vnode *);
775 static	struct buf *getdirtybuf(struct buf *, struct mtx *, int);
776 static	void clear_remove(struct thread *);
777 static	void clear_inodedeps(struct thread *);
778 static	void unlinked_inodedep(struct mount *, struct inodedep *);
779 static	void clear_unlinked_inodedep(struct inodedep *);
780 static	struct inodedep *first_unlinked_inodedep(struct ufsmount *);
781 static	int flush_pagedep_deps(struct vnode *, struct mount *,
782 	    struct diraddhd *);
783 static	int free_pagedep(struct pagedep *);
784 static	int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t);
785 static	int flush_inodedep_deps(struct vnode *, struct mount *, ino_t);
786 static	int flush_deplist(struct allocdirectlst *, int, int *);
787 static	int sync_cgs(struct mount *, int);
788 static	int handle_written_filepage(struct pagedep *, struct buf *);
789 static	int handle_written_sbdep(struct sbdep *, struct buf *);
790 static	void initiate_write_sbdep(struct sbdep *);
791 static  void diradd_inode_written(struct diradd *, struct inodedep *);
792 static	int handle_written_indirdep(struct indirdep *, struct buf *,
793 	    struct buf**);
794 static	int handle_written_inodeblock(struct inodedep *, struct buf *);
795 static	int jnewblk_rollforward(struct jnewblk *, struct fs *, struct cg *,
796 	    uint8_t *);
797 static	int handle_written_bmsafemap(struct bmsafemap *, struct buf *);
798 static	void handle_written_jaddref(struct jaddref *);
799 static	void handle_written_jremref(struct jremref *);
800 static	void handle_written_jseg(struct jseg *, struct buf *);
801 static	void handle_written_jnewblk(struct jnewblk *);
802 static	void handle_written_jblkdep(struct jblkdep *);
803 static	void handle_written_jfreefrag(struct jfreefrag *);
804 static	void complete_jseg(struct jseg *);
805 static	void jseg_write(struct ufsmount *ump, struct jseg *, uint8_t *);
806 static	void jaddref_write(struct jaddref *, struct jseg *, uint8_t *);
807 static	void jremref_write(struct jremref *, struct jseg *, uint8_t *);
808 static	void jmvref_write(struct jmvref *, struct jseg *, uint8_t *);
809 static	void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *);
810 static	void jfsync_write(struct jfsync *, struct jseg *, uint8_t *data);
811 static	void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *);
812 static	void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *);
813 static	void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *);
814 static	inline void inoref_write(struct inoref *, struct jseg *,
815 	    struct jrefrec *);
816 static	void handle_allocdirect_partdone(struct allocdirect *,
817 	    struct workhead *);
818 static	struct jnewblk *cancel_newblk(struct newblk *, struct worklist *,
819 	    struct workhead *);
820 static	void indirdep_complete(struct indirdep *);
821 static	int indirblk_lookup(struct mount *, ufs2_daddr_t);
822 static	void indirblk_insert(struct freework *);
823 static	void indirblk_remove(struct freework *);
824 static	void handle_allocindir_partdone(struct allocindir *);
825 static	void initiate_write_filepage(struct pagedep *, struct buf *);
826 static	void initiate_write_indirdep(struct indirdep*, struct buf *);
827 static	void handle_written_mkdir(struct mkdir *, int);
828 static	int jnewblk_rollback(struct jnewblk *, struct fs *, struct cg *,
829 	    uint8_t *);
830 static	void initiate_write_bmsafemap(struct bmsafemap *, struct buf *);
831 static	void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *);
832 static	void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *);
833 static	void handle_workitem_freefile(struct freefile *);
834 static	int handle_workitem_remove(struct dirrem *, int);
835 static	struct dirrem *newdirrem(struct buf *, struct inode *,
836 	    struct inode *, int, struct dirrem **);
837 static	struct indirdep *indirdep_lookup(struct mount *, struct inode *,
838 	    struct buf *);
839 static	void cancel_indirdep(struct indirdep *, struct buf *,
840 	    struct freeblks *);
841 static	void free_indirdep(struct indirdep *);
842 static	void free_diradd(struct diradd *, struct workhead *);
843 static	void merge_diradd(struct inodedep *, struct diradd *);
844 static	void complete_diradd(struct diradd *);
845 static	struct diradd *diradd_lookup(struct pagedep *, int);
846 static	struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *,
847 	    struct jremref *);
848 static	struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *,
849 	    struct jremref *);
850 static	void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *,
851 	    struct jremref *, struct jremref *);
852 static	void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *,
853 	    struct jremref *);
854 static	void cancel_allocindir(struct allocindir *, struct buf *bp,
855 	    struct freeblks *, int);
856 static	int setup_trunc_indir(struct freeblks *, struct inode *,
857 	    ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t);
858 static	void complete_trunc_indir(struct freework *);
859 static	void trunc_indirdep(struct indirdep *, struct freeblks *, struct buf *,
860 	    int);
861 static	void complete_mkdir(struct mkdir *);
862 static	void free_newdirblk(struct newdirblk *);
863 static	void free_jremref(struct jremref *);
864 static	void free_jaddref(struct jaddref *);
865 static	void free_jsegdep(struct jsegdep *);
866 static	void free_jsegs(struct jblocks *);
867 static	void rele_jseg(struct jseg *);
868 static	void free_jseg(struct jseg *, struct jblocks *);
869 static	void free_jnewblk(struct jnewblk *);
870 static	void free_jblkdep(struct jblkdep *);
871 static	void free_jfreefrag(struct jfreefrag *);
872 static	void free_freedep(struct freedep *);
873 static	void journal_jremref(struct dirrem *, struct jremref *,
874 	    struct inodedep *);
875 static	void cancel_jnewblk(struct jnewblk *, struct workhead *);
876 static	int cancel_jaddref(struct jaddref *, struct inodedep *,
877 	    struct workhead *);
878 static	void cancel_jfreefrag(struct jfreefrag *);
879 static	inline void setup_freedirect(struct freeblks *, struct inode *,
880 	    int, int);
881 static	inline void setup_freeext(struct freeblks *, struct inode *, int, int);
882 static	inline void setup_freeindir(struct freeblks *, struct inode *, int,
883 	    ufs_lbn_t, int);
884 static	inline struct freeblks *newfreeblks(struct mount *, struct inode *);
885 static	void freeblks_free(struct ufsmount *, struct freeblks *, int);
886 static	void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t);
887 ufs2_daddr_t blkcount(struct fs *, ufs2_daddr_t, off_t);
888 static	int trunc_check_buf(struct buf *, int *, ufs_lbn_t, int, int);
889 static	void trunc_dependencies(struct inode *, struct freeblks *, ufs_lbn_t,
890 	    int, int);
891 static	void trunc_pages(struct inode *, off_t, ufs2_daddr_t, int);
892 static 	int cancel_pagedep(struct pagedep *, struct freeblks *, int);
893 static	int deallocate_dependencies(struct buf *, struct freeblks *, int);
894 static	void newblk_freefrag(struct newblk*);
895 static	void free_newblk(struct newblk *);
896 static	void cancel_allocdirect(struct allocdirectlst *,
897 	    struct allocdirect *, struct freeblks *);
898 static	int check_inode_unwritten(struct inodedep *);
899 static	int free_inodedep(struct inodedep *);
900 static	void freework_freeblock(struct freework *);
901 static	void freework_enqueue(struct freework *);
902 static	int handle_workitem_freeblocks(struct freeblks *, int);
903 static	int handle_complete_freeblocks(struct freeblks *, int);
904 static	void handle_workitem_indirblk(struct freework *);
905 static	void handle_written_freework(struct freework *);
906 static	void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *);
907 static	struct worklist *jnewblk_merge(struct worklist *, struct worklist *,
908 	    struct workhead *);
909 static	struct freefrag *setup_allocindir_phase2(struct buf *, struct inode *,
910 	    struct inodedep *, struct allocindir *, ufs_lbn_t);
911 static	struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t,
912 	    ufs2_daddr_t, ufs_lbn_t);
913 static	void handle_workitem_freefrag(struct freefrag *);
914 static	struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long,
915 	    ufs_lbn_t);
916 static	void allocdirect_merge(struct allocdirectlst *,
917 	    struct allocdirect *, struct allocdirect *);
918 static	struct freefrag *allocindir_merge(struct allocindir *,
919 	    struct allocindir *);
920 static	int bmsafemap_find(struct bmsafemap_hashhead *, struct mount *, int,
921 	    struct bmsafemap **);
922 static	struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *,
923 	    int cg);
924 static	int newblk_find(struct newblk_hashhead *, struct mount *, ufs2_daddr_t,
925 	    int, struct newblk **);
926 static	int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **);
927 static	int inodedep_find(struct inodedep_hashhead *, struct fs *, ino_t,
928 	    struct inodedep **);
929 static	int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **);
930 static	int pagedep_lookup(struct mount *, struct buf *bp, ino_t, ufs_lbn_t,
931 	    int, struct pagedep **);
932 static	int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t,
933 	    struct mount *mp, int, struct pagedep **);
934 static	void pause_timer(void *);
935 static	int request_cleanup(struct mount *, int);
936 static	int process_worklist_item(struct mount *, int, int);
937 static	void process_removes(struct vnode *);
938 static	void process_truncates(struct vnode *);
939 static	void jwork_move(struct workhead *, struct workhead *);
940 static	void jwork_insert(struct workhead *, struct jsegdep *);
941 static	void add_to_worklist(struct worklist *, int);
942 static	void wake_worklist(struct worklist *);
943 static	void wait_worklist(struct worklist *, char *);
944 static	void remove_from_worklist(struct worklist *);
945 static	void softdep_flush(void);
946 static	void softdep_flushjournal(struct mount *);
947 static	int softdep_speedup(void);
948 static	void worklist_speedup(void);
949 static	int journal_mount(struct mount *, struct fs *, struct ucred *);
950 static	void journal_unmount(struct mount *);
951 static	int journal_space(struct ufsmount *, int);
952 static	void journal_suspend(struct ufsmount *);
953 static	int journal_unsuspend(struct ufsmount *ump);
954 static	void softdep_prelink(struct vnode *, struct vnode *);
955 static	void add_to_journal(struct worklist *);
956 static	void remove_from_journal(struct worklist *);
957 static	void softdep_process_journal(struct mount *, struct worklist *, int);
958 static	struct jremref *newjremref(struct dirrem *, struct inode *,
959 	    struct inode *ip, off_t, nlink_t);
960 static	struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t,
961 	    uint16_t);
962 static	inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t,
963 	    uint16_t);
964 static	inline struct jsegdep *inoref_jseg(struct inoref *);
965 static	struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t);
966 static	struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t,
967 	    ufs2_daddr_t, int);
968 static	struct jtrunc *newjtrunc(struct freeblks *, off_t, int);
969 static	void move_newblock_dep(struct jaddref *, struct inodedep *);
970 static	void cancel_jfreeblk(struct freeblks *, ufs2_daddr_t);
971 static	struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *,
972 	    ufs2_daddr_t, long, ufs_lbn_t);
973 static	struct freework *newfreework(struct ufsmount *, struct freeblks *,
974 	    struct freework *, ufs_lbn_t, ufs2_daddr_t, int, int, int);
975 static	int jwait(struct worklist *, int);
976 static	struct inodedep *inodedep_lookup_ip(struct inode *);
977 static	int bmsafemap_rollbacks(struct bmsafemap *);
978 static	struct freefile *handle_bufwait(struct inodedep *, struct workhead *);
979 static	void handle_jwork(struct workhead *);
980 static	struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *,
981 	    struct mkdir **);
982 static	struct jblocks *jblocks_create(void);
983 static	ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *);
984 static	void jblocks_free(struct jblocks *, struct mount *, int);
985 static	void jblocks_destroy(struct jblocks *);
986 static	void jblocks_add(struct jblocks *, ufs2_daddr_t, int);
987 
988 /*
989  * Exported softdep operations.
990  */
991 static	void softdep_disk_io_initiation(struct buf *);
992 static	void softdep_disk_write_complete(struct buf *);
993 static	void softdep_deallocate_dependencies(struct buf *);
994 static	int softdep_count_dependencies(struct buf *bp, int);
995 
996 static struct mtx lk;
997 MTX_SYSINIT(softdep_lock, &lk, "Softdep Lock", MTX_DEF);
998 
999 #define TRY_ACQUIRE_LOCK(lk)		mtx_trylock(lk)
1000 #define ACQUIRE_LOCK(lk)		mtx_lock(lk)
1001 #define FREE_LOCK(lk)			mtx_unlock(lk)
1002 
1003 #define	BUF_AREC(bp)			lockallowrecurse(&(bp)->b_lock)
1004 #define	BUF_NOREC(bp)			lockdisablerecurse(&(bp)->b_lock)
1005 
1006 /*
1007  * Worklist queue management.
1008  * These routines require that the lock be held.
1009  */
1010 #ifndef /* NOT */ DEBUG
1011 #define WORKLIST_INSERT(head, item) do {	\
1012 	(item)->wk_state |= ONWORKLIST;		\
1013 	LIST_INSERT_HEAD(head, item, wk_list);	\
1014 } while (0)
1015 #define WORKLIST_REMOVE(item) do {		\
1016 	(item)->wk_state &= ~ONWORKLIST;	\
1017 	LIST_REMOVE(item, wk_list);		\
1018 } while (0)
1019 #define WORKLIST_INSERT_UNLOCKED	WORKLIST_INSERT
1020 #define WORKLIST_REMOVE_UNLOCKED	WORKLIST_REMOVE
1021 
1022 #else /* DEBUG */
1023 static	void worklist_insert(struct workhead *, struct worklist *, int);
1024 static	void worklist_remove(struct worklist *, int);
1025 
1026 #define WORKLIST_INSERT(head, item) worklist_insert(head, item, 1)
1027 #define WORKLIST_INSERT_UNLOCKED(head, item) worklist_insert(head, item, 0)
1028 #define WORKLIST_REMOVE(item) worklist_remove(item, 1)
1029 #define WORKLIST_REMOVE_UNLOCKED(item) worklist_remove(item, 0)
1030 
1031 static void
1032 worklist_insert(head, item, locked)
1033 	struct workhead *head;
1034 	struct worklist *item;
1035 	int locked;
1036 {
1037 
1038 	if (locked)
1039 		mtx_assert(&lk, MA_OWNED);
1040 	if (item->wk_state & ONWORKLIST)
1041 		panic("worklist_insert: %p %s(0x%X) already on list",
1042 		    item, TYPENAME(item->wk_type), item->wk_state);
1043 	item->wk_state |= ONWORKLIST;
1044 	LIST_INSERT_HEAD(head, item, wk_list);
1045 }
1046 
1047 static void
1048 worklist_remove(item, locked)
1049 	struct worklist *item;
1050 	int locked;
1051 {
1052 
1053 	if (locked)
1054 		mtx_assert(&lk, MA_OWNED);
1055 	if ((item->wk_state & ONWORKLIST) == 0)
1056 		panic("worklist_remove: %p %s(0x%X) not on list",
1057 		    item, TYPENAME(item->wk_type), item->wk_state);
1058 	item->wk_state &= ~ONWORKLIST;
1059 	LIST_REMOVE(item, wk_list);
1060 }
1061 #endif /* DEBUG */
1062 
1063 /*
1064  * Merge two jsegdeps keeping only the oldest one as newer references
1065  * can't be discarded until after older references.
1066  */
1067 static inline struct jsegdep *
1068 jsegdep_merge(struct jsegdep *one, struct jsegdep *two)
1069 {
1070 	struct jsegdep *swp;
1071 
1072 	if (two == NULL)
1073 		return (one);
1074 
1075 	if (one->jd_seg->js_seq > two->jd_seg->js_seq) {
1076 		swp = one;
1077 		one = two;
1078 		two = swp;
1079 	}
1080 	WORKLIST_REMOVE(&two->jd_list);
1081 	free_jsegdep(two);
1082 
1083 	return (one);
1084 }
1085 
1086 /*
1087  * If two freedeps are compatible free one to reduce list size.
1088  */
1089 static inline struct freedep *
1090 freedep_merge(struct freedep *one, struct freedep *two)
1091 {
1092 	if (two == NULL)
1093 		return (one);
1094 
1095 	if (one->fd_freework == two->fd_freework) {
1096 		WORKLIST_REMOVE(&two->fd_list);
1097 		free_freedep(two);
1098 	}
1099 	return (one);
1100 }
1101 
1102 /*
1103  * Move journal work from one list to another.  Duplicate freedeps and
1104  * jsegdeps are coalesced to keep the lists as small as possible.
1105  */
1106 static void
1107 jwork_move(dst, src)
1108 	struct workhead *dst;
1109 	struct workhead *src;
1110 {
1111 	struct freedep *freedep;
1112 	struct jsegdep *jsegdep;
1113 	struct worklist *wkn;
1114 	struct worklist *wk;
1115 
1116 	KASSERT(dst != src,
1117 	    ("jwork_move: dst == src"));
1118 	freedep = NULL;
1119 	jsegdep = NULL;
1120 	LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) {
1121 		if (wk->wk_type == D_JSEGDEP)
1122 			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1123 		if (wk->wk_type == D_FREEDEP)
1124 			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1125 	}
1126 
1127 	mtx_assert(&lk, MA_OWNED);
1128 	while ((wk = LIST_FIRST(src)) != NULL) {
1129 		WORKLIST_REMOVE(wk);
1130 		WORKLIST_INSERT(dst, wk);
1131 		if (wk->wk_type == D_JSEGDEP) {
1132 			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1133 			continue;
1134 		}
1135 		if (wk->wk_type == D_FREEDEP)
1136 			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1137 	}
1138 }
1139 
1140 static void
1141 jwork_insert(dst, jsegdep)
1142 	struct workhead *dst;
1143 	struct jsegdep *jsegdep;
1144 {
1145 	struct jsegdep *jsegdepn;
1146 	struct worklist *wk;
1147 
1148 	LIST_FOREACH(wk, dst, wk_list)
1149 		if (wk->wk_type == D_JSEGDEP)
1150 			break;
1151 	if (wk == NULL) {
1152 		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1153 		return;
1154 	}
1155 	jsegdepn = WK_JSEGDEP(wk);
1156 	if (jsegdep->jd_seg->js_seq < jsegdepn->jd_seg->js_seq) {
1157 		WORKLIST_REMOVE(wk);
1158 		free_jsegdep(jsegdepn);
1159 		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1160 	} else
1161 		free_jsegdep(jsegdep);
1162 }
1163 
1164 /*
1165  * Routines for tracking and managing workitems.
1166  */
1167 static	void workitem_free(struct worklist *, int);
1168 static	void workitem_alloc(struct worklist *, int, struct mount *);
1169 
1170 #define	WORKITEM_FREE(item, type) workitem_free((struct worklist *)(item), (type))
1171 
1172 static void
1173 workitem_free(item, type)
1174 	struct worklist *item;
1175 	int type;
1176 {
1177 	struct ufsmount *ump;
1178 	mtx_assert(&lk, MA_OWNED);
1179 
1180 #ifdef DEBUG
1181 	if (item->wk_state & ONWORKLIST)
1182 		panic("workitem_free: %s(0x%X) still on list",
1183 		    TYPENAME(item->wk_type), item->wk_state);
1184 	if (item->wk_type != type)
1185 		panic("workitem_free: type mismatch %s != %s",
1186 		    TYPENAME(item->wk_type), TYPENAME(type));
1187 #endif
1188 	if (item->wk_state & IOWAITING)
1189 		wakeup(item);
1190 	ump = VFSTOUFS(item->wk_mp);
1191 	if (--ump->softdep_deps == 0 && ump->softdep_req)
1192 		wakeup(&ump->softdep_deps);
1193 	dep_current[type]--;
1194 	free(item, DtoM(type));
1195 }
1196 
1197 static void
1198 workitem_alloc(item, type, mp)
1199 	struct worklist *item;
1200 	int type;
1201 	struct mount *mp;
1202 {
1203 	struct ufsmount *ump;
1204 
1205 	item->wk_type = type;
1206 	item->wk_mp = mp;
1207 	item->wk_state = 0;
1208 
1209 	ump = VFSTOUFS(mp);
1210 	ACQUIRE_LOCK(&lk);
1211 	dep_current[type]++;
1212 	dep_total[type]++;
1213 	ump->softdep_deps++;
1214 	ump->softdep_accdeps++;
1215 	FREE_LOCK(&lk);
1216 }
1217 
1218 /*
1219  * Workitem queue management
1220  */
1221 static int max_softdeps;	/* maximum number of structs before slowdown */
1222 static int maxindirdeps = 50;	/* max number of indirdeps before slowdown */
1223 static int tickdelay = 2;	/* number of ticks to pause during slowdown */
1224 static int proc_waiting;	/* tracks whether we have a timeout posted */
1225 static int *stat_countp;	/* statistic to count in proc_waiting timeout */
1226 static struct callout softdep_callout;
1227 static int req_pending;
1228 static int req_clear_inodedeps;	/* syncer process flush some inodedeps */
1229 static int req_clear_remove;	/* syncer process flush some freeblks */
1230 
1231 /*
1232  * runtime statistics
1233  */
1234 static int stat_worklist_push;	/* number of worklist cleanups */
1235 static int stat_blk_limit_push;	/* number of times block limit neared */
1236 static int stat_ino_limit_push;	/* number of times inode limit neared */
1237 static int stat_blk_limit_hit;	/* number of times block slowdown imposed */
1238 static int stat_ino_limit_hit;	/* number of times inode slowdown imposed */
1239 static int stat_sync_limit_hit;	/* number of synchronous slowdowns imposed */
1240 static int stat_indir_blk_ptrs;	/* bufs redirtied as indir ptrs not written */
1241 static int stat_inode_bitmap;	/* bufs redirtied as inode bitmap not written */
1242 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
1243 static int stat_dir_entry;	/* bufs redirtied as dir entry cannot write */
1244 static int stat_jaddref;	/* bufs redirtied as ino bitmap can not write */
1245 static int stat_jnewblk;	/* bufs redirtied as blk bitmap can not write */
1246 static int stat_journal_min;	/* Times hit journal min threshold */
1247 static int stat_journal_low;	/* Times hit journal low threshold */
1248 static int stat_journal_wait;	/* Times blocked in jwait(). */
1249 static int stat_jwait_filepage;	/* Times blocked in jwait() for filepage. */
1250 static int stat_jwait_freeblks;	/* Times blocked in jwait() for freeblks. */
1251 static int stat_jwait_inode;	/* Times blocked in jwait() for inodes. */
1252 static int stat_jwait_newblk;	/* Times blocked in jwait() for newblks. */
1253 static int stat_cleanup_high_delay; /* Maximum cleanup delay (in ticks) */
1254 static int stat_cleanup_blkrequests; /* Number of block cleanup requests */
1255 static int stat_cleanup_inorequests; /* Number of inode cleanup requests */
1256 static int stat_cleanup_retries; /* Number of cleanups that needed to flush */
1257 static int stat_cleanup_failures; /* Number of cleanup requests that failed */
1258 
1259 SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW,
1260     &max_softdeps, 0, "");
1261 SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW,
1262     &tickdelay, 0, "");
1263 SYSCTL_INT(_debug_softdep, OID_AUTO, maxindirdeps, CTLFLAG_RW,
1264     &maxindirdeps, 0, "");
1265 SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push, CTLFLAG_RW,
1266     &stat_worklist_push, 0,"");
1267 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push, CTLFLAG_RW,
1268     &stat_blk_limit_push, 0,"");
1269 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push, CTLFLAG_RW,
1270     &stat_ino_limit_push, 0,"");
1271 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit, CTLFLAG_RW,
1272     &stat_blk_limit_hit, 0, "");
1273 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit, CTLFLAG_RW,
1274     &stat_ino_limit_hit, 0, "");
1275 SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit, CTLFLAG_RW,
1276     &stat_sync_limit_hit, 0, "");
1277 SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW,
1278     &stat_indir_blk_ptrs, 0, "");
1279 SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap, CTLFLAG_RW,
1280     &stat_inode_bitmap, 0, "");
1281 SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW,
1282     &stat_direct_blk_ptrs, 0, "");
1283 SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry, CTLFLAG_RW,
1284     &stat_dir_entry, 0, "");
1285 SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback, CTLFLAG_RW,
1286     &stat_jaddref, 0, "");
1287 SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback, CTLFLAG_RW,
1288     &stat_jnewblk, 0, "");
1289 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low, CTLFLAG_RW,
1290     &stat_journal_low, 0, "");
1291 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min, CTLFLAG_RW,
1292     &stat_journal_min, 0, "");
1293 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait, CTLFLAG_RW,
1294     &stat_journal_wait, 0, "");
1295 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage, CTLFLAG_RW,
1296     &stat_jwait_filepage, 0, "");
1297 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks, CTLFLAG_RW,
1298     &stat_jwait_freeblks, 0, "");
1299 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode, CTLFLAG_RW,
1300     &stat_jwait_inode, 0, "");
1301 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk, CTLFLAG_RW,
1302     &stat_jwait_newblk, 0, "");
1303 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_blkrequests, CTLFLAG_RW,
1304     &stat_cleanup_blkrequests, 0, "");
1305 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_inorequests, CTLFLAG_RW,
1306     &stat_cleanup_inorequests, 0, "");
1307 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_high_delay, CTLFLAG_RW,
1308     &stat_cleanup_high_delay, 0, "");
1309 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_retries, CTLFLAG_RW,
1310     &stat_cleanup_retries, 0, "");
1311 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_failures, CTLFLAG_RW,
1312     &stat_cleanup_failures, 0, "");
1313 
1314 SYSCTL_DECL(_vfs_ffs);
1315 
1316 LIST_HEAD(bmsafemap_hashhead, bmsafemap) *bmsafemap_hashtbl;
1317 static u_long	bmsafemap_hash;	/* size of hash table - 1 */
1318 
1319 static int compute_summary_at_mount = 0;	/* Whether to recompute the summary at mount time */
1320 SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW,
1321 	   &compute_summary_at_mount, 0, "Recompute summary at mount");
1322 
1323 static struct proc *softdepproc;
1324 static struct kproc_desc softdep_kp = {
1325 	"softdepflush",
1326 	softdep_flush,
1327 	&softdepproc
1328 };
1329 SYSINIT(sdproc, SI_SUB_KTHREAD_UPDATE, SI_ORDER_ANY, kproc_start,
1330     &softdep_kp);
1331 
1332 static void
1333 softdep_flush(void)
1334 {
1335 	struct mount *nmp;
1336 	struct mount *mp;
1337 	struct ufsmount *ump;
1338 	struct thread *td;
1339 	int remaining;
1340 	int progress;
1341 	int vfslocked;
1342 
1343 	td = curthread;
1344 	td->td_pflags |= TDP_NORUNNINGBUF;
1345 
1346 	for (;;) {
1347 		kproc_suspend_check(softdepproc);
1348 		vfslocked = VFS_LOCK_GIANT((struct mount *)NULL);
1349 		ACQUIRE_LOCK(&lk);
1350 		/*
1351 		 * If requested, try removing inode or removal dependencies.
1352 		 */
1353 		if (req_clear_inodedeps) {
1354 			clear_inodedeps(td);
1355 			req_clear_inodedeps -= 1;
1356 			wakeup_one(&proc_waiting);
1357 		}
1358 		if (req_clear_remove) {
1359 			clear_remove(td);
1360 			req_clear_remove -= 1;
1361 			wakeup_one(&proc_waiting);
1362 		}
1363 		FREE_LOCK(&lk);
1364 		VFS_UNLOCK_GIANT(vfslocked);
1365 		remaining = progress = 0;
1366 		mtx_lock(&mountlist_mtx);
1367 		for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp)  {
1368 			nmp = TAILQ_NEXT(mp, mnt_list);
1369 			if (MOUNTEDSOFTDEP(mp) == 0)
1370 				continue;
1371 			if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK))
1372 				continue;
1373 			vfslocked = VFS_LOCK_GIANT(mp);
1374 			progress += softdep_process_worklist(mp, 0);
1375 			ump = VFSTOUFS(mp);
1376 			remaining += ump->softdep_on_worklist;
1377 			VFS_UNLOCK_GIANT(vfslocked);
1378 			mtx_lock(&mountlist_mtx);
1379 			nmp = TAILQ_NEXT(mp, mnt_list);
1380 			vfs_unbusy(mp);
1381 		}
1382 		mtx_unlock(&mountlist_mtx);
1383 		if (remaining && progress)
1384 			continue;
1385 		ACQUIRE_LOCK(&lk);
1386 		if (!req_pending)
1387 			msleep(&req_pending, &lk, PVM, "sdflush", hz);
1388 		req_pending = 0;
1389 		FREE_LOCK(&lk);
1390 	}
1391 }
1392 
1393 static void
1394 worklist_speedup(void)
1395 {
1396 	mtx_assert(&lk, MA_OWNED);
1397 	if (req_pending == 0) {
1398 		req_pending = 1;
1399 		wakeup(&req_pending);
1400 	}
1401 }
1402 
1403 static int
1404 softdep_speedup(void)
1405 {
1406 
1407 	worklist_speedup();
1408 	bd_speedup();
1409 	return speedup_syncer();
1410 }
1411 
1412 /*
1413  * Add an item to the end of the work queue.
1414  * This routine requires that the lock be held.
1415  * This is the only routine that adds items to the list.
1416  * The following routine is the only one that removes items
1417  * and does so in order from first to last.
1418  */
1419 
1420 #define	WK_HEAD		0x0001	/* Add to HEAD. */
1421 #define	WK_NODELAY	0x0002	/* Process immediately. */
1422 
1423 static void
1424 add_to_worklist(wk, flags)
1425 	struct worklist *wk;
1426 	int flags;
1427 {
1428 	struct ufsmount *ump;
1429 
1430 	mtx_assert(&lk, MA_OWNED);
1431 	ump = VFSTOUFS(wk->wk_mp);
1432 	if (wk->wk_state & ONWORKLIST)
1433 		panic("add_to_worklist: %s(0x%X) already on list",
1434 		    TYPENAME(wk->wk_type), wk->wk_state);
1435 	wk->wk_state |= ONWORKLIST;
1436 	if (ump->softdep_on_worklist == 0) {
1437 		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1438 		ump->softdep_worklist_tail = wk;
1439 	} else if (flags & WK_HEAD) {
1440 		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1441 	} else {
1442 		LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list);
1443 		ump->softdep_worklist_tail = wk;
1444 	}
1445 	ump->softdep_on_worklist += 1;
1446 	if (flags & WK_NODELAY)
1447 		worklist_speedup();
1448 }
1449 
1450 /*
1451  * Remove the item to be processed. If we are removing the last
1452  * item on the list, we need to recalculate the tail pointer.
1453  */
1454 static void
1455 remove_from_worklist(wk)
1456 	struct worklist *wk;
1457 {
1458 	struct ufsmount *ump;
1459 
1460 	ump = VFSTOUFS(wk->wk_mp);
1461 	WORKLIST_REMOVE(wk);
1462 	if (ump->softdep_worklist_tail == wk)
1463 		ump->softdep_worklist_tail =
1464 		    (struct worklist *)wk->wk_list.le_prev;
1465 	ump->softdep_on_worklist -= 1;
1466 }
1467 
1468 static void
1469 wake_worklist(wk)
1470 	struct worklist *wk;
1471 {
1472 	if (wk->wk_state & IOWAITING) {
1473 		wk->wk_state &= ~IOWAITING;
1474 		wakeup(wk);
1475 	}
1476 }
1477 
1478 static void
1479 wait_worklist(wk, wmesg)
1480 	struct worklist *wk;
1481 	char *wmesg;
1482 {
1483 
1484 	wk->wk_state |= IOWAITING;
1485 	msleep(wk, &lk, PVM, wmesg, 0);
1486 }
1487 
1488 /*
1489  * Process that runs once per second to handle items in the background queue.
1490  *
1491  * Note that we ensure that everything is done in the order in which they
1492  * appear in the queue. The code below depends on this property to ensure
1493  * that blocks of a file are freed before the inode itself is freed. This
1494  * ordering ensures that no new <vfsid, inum, lbn> triples will be generated
1495  * until all the old ones have been purged from the dependency lists.
1496  */
1497 int
1498 softdep_process_worklist(mp, full)
1499 	struct mount *mp;
1500 	int full;
1501 {
1502 	struct thread *td = curthread;
1503 	int cnt, matchcnt;
1504 	struct ufsmount *ump;
1505 	long starttime;
1506 
1507 	KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp"));
1508 	/*
1509 	 * Record the process identifier of our caller so that we can give
1510 	 * this process preferential treatment in request_cleanup below.
1511 	 */
1512 	matchcnt = 0;
1513 	ump = VFSTOUFS(mp);
1514 	ACQUIRE_LOCK(&lk);
1515 	starttime = time_second;
1516 	softdep_process_journal(mp, NULL, full?MNT_WAIT:0);
1517 	while (ump->softdep_on_worklist > 0) {
1518 		if ((cnt = process_worklist_item(mp, 10, LK_NOWAIT)) == 0)
1519 			break;
1520 		else
1521 			matchcnt += cnt;
1522 		/*
1523 		 * If requested, try removing inode or removal dependencies.
1524 		 */
1525 		if (req_clear_inodedeps) {
1526 			clear_inodedeps(td);
1527 			req_clear_inodedeps -= 1;
1528 			wakeup_one(&proc_waiting);
1529 		}
1530 		if (req_clear_remove) {
1531 			clear_remove(td);
1532 			req_clear_remove -= 1;
1533 			wakeup_one(&proc_waiting);
1534 		}
1535 		/*
1536 		 * We do not generally want to stop for buffer space, but if
1537 		 * we are really being a buffer hog, we will stop and wait.
1538 		 */
1539 		if (should_yield()) {
1540 			FREE_LOCK(&lk);
1541 			kern_yield(PRI_UNCHANGED);
1542 			bwillwrite();
1543 			ACQUIRE_LOCK(&lk);
1544 		}
1545 		/*
1546 		 * Never allow processing to run for more than one
1547 		 * second. Otherwise the other mountpoints may get
1548 		 * excessively backlogged.
1549 		 */
1550 		if (!full && starttime != time_second)
1551 			break;
1552 	}
1553 	if (full == 0)
1554 		journal_unsuspend(ump);
1555 	FREE_LOCK(&lk);
1556 	return (matchcnt);
1557 }
1558 
1559 /*
1560  * Process all removes associated with a vnode if we are running out of
1561  * journal space.  Any other process which attempts to flush these will
1562  * be unable as we have the vnodes locked.
1563  */
1564 static void
1565 process_removes(vp)
1566 	struct vnode *vp;
1567 {
1568 	struct inodedep *inodedep;
1569 	struct dirrem *dirrem;
1570 	struct mount *mp;
1571 	ino_t inum;
1572 
1573 	mtx_assert(&lk, MA_OWNED);
1574 
1575 	mp = vp->v_mount;
1576 	inum = VTOI(vp)->i_number;
1577 	for (;;) {
1578 top:
1579 		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1580 			return;
1581 		LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext) {
1582 			/*
1583 			 * If another thread is trying to lock this vnode
1584 			 * it will fail but we must wait for it to do so
1585 			 * before we can proceed.
1586 			 */
1587 			if (dirrem->dm_state & INPROGRESS) {
1588 				wait_worklist(&dirrem->dm_list, "pwrwait");
1589 				goto top;
1590 			}
1591 			if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) ==
1592 			    (COMPLETE | ONWORKLIST))
1593 				break;
1594 		}
1595 		if (dirrem == NULL)
1596 			return;
1597 		remove_from_worklist(&dirrem->dm_list);
1598 		FREE_LOCK(&lk);
1599 		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1600 			panic("process_removes: suspended filesystem");
1601 		handle_workitem_remove(dirrem, 0);
1602 		vn_finished_secondary_write(mp);
1603 		ACQUIRE_LOCK(&lk);
1604 	}
1605 }
1606 
1607 /*
1608  * Process all truncations associated with a vnode if we are running out
1609  * of journal space.  This is called when the vnode lock is already held
1610  * and no other process can clear the truncation.  This function returns
1611  * a value greater than zero if it did any work.
1612  */
1613 static void
1614 process_truncates(vp)
1615 	struct vnode *vp;
1616 {
1617 	struct inodedep *inodedep;
1618 	struct freeblks *freeblks;
1619 	struct mount *mp;
1620 	ino_t inum;
1621 	int cgwait;
1622 
1623 	mtx_assert(&lk, MA_OWNED);
1624 
1625 	mp = vp->v_mount;
1626 	inum = VTOI(vp)->i_number;
1627 	for (;;) {
1628 		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1629 			return;
1630 		cgwait = 0;
1631 		TAILQ_FOREACH(freeblks, &inodedep->id_freeblklst, fb_next) {
1632 			/* Journal entries not yet written.  */
1633 			if (!LIST_EMPTY(&freeblks->fb_jblkdephd)) {
1634 				jwait(&LIST_FIRST(
1635 				    &freeblks->fb_jblkdephd)->jb_list,
1636 				    MNT_WAIT);
1637 				break;
1638 			}
1639 			/* Another thread is executing this item. */
1640 			if (freeblks->fb_state & INPROGRESS) {
1641 				wait_worklist(&freeblks->fb_list, "ptrwait");
1642 				break;
1643 			}
1644 			/* Freeblks is waiting on a inode write. */
1645 			if ((freeblks->fb_state & COMPLETE) == 0) {
1646 				FREE_LOCK(&lk);
1647 				ffs_update(vp, 1);
1648 				ACQUIRE_LOCK(&lk);
1649 				break;
1650 			}
1651 			if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST)) ==
1652 			    (ALLCOMPLETE | ONWORKLIST)) {
1653 				remove_from_worklist(&freeblks->fb_list);
1654 				freeblks->fb_state |= INPROGRESS;
1655 				FREE_LOCK(&lk);
1656 				if (vn_start_secondary_write(NULL, &mp,
1657 				    V_NOWAIT))
1658 					panic("process_truncates: "
1659 					    "suspended filesystem");
1660 				handle_workitem_freeblocks(freeblks, 0);
1661 				vn_finished_secondary_write(mp);
1662 				ACQUIRE_LOCK(&lk);
1663 				break;
1664 			}
1665 			if (freeblks->fb_cgwait)
1666 				cgwait++;
1667 		}
1668 		if (cgwait) {
1669 			FREE_LOCK(&lk);
1670 			sync_cgs(mp, MNT_WAIT);
1671 			ffs_sync_snap(mp, MNT_WAIT);
1672 			ACQUIRE_LOCK(&lk);
1673 			continue;
1674 		}
1675 		if (freeblks == NULL)
1676 			break;
1677 	}
1678 	return;
1679 }
1680 
1681 /*
1682  * Process one item on the worklist.
1683  */
1684 static int
1685 process_worklist_item(mp, target, flags)
1686 	struct mount *mp;
1687 	int target;
1688 	int flags;
1689 {
1690 	struct worklist sintenel;
1691 	struct worklist *wk;
1692 	struct ufsmount *ump;
1693 	int matchcnt;
1694 	int error;
1695 
1696 	mtx_assert(&lk, MA_OWNED);
1697 	KASSERT(mp != NULL, ("process_worklist_item: NULL mp"));
1698 	/*
1699 	 * If we are being called because of a process doing a
1700 	 * copy-on-write, then it is not safe to write as we may
1701 	 * recurse into the copy-on-write routine.
1702 	 */
1703 	if (curthread->td_pflags & TDP_COWINPROGRESS)
1704 		return (-1);
1705 	PHOLD(curproc);	/* Don't let the stack go away. */
1706 	ump = VFSTOUFS(mp);
1707 	matchcnt = 0;
1708 	sintenel.wk_mp = NULL;
1709 	sintenel.wk_type = D_SENTINAL;
1710 	LIST_INSERT_HEAD(&ump->softdep_workitem_pending, &sintenel, wk_list);
1711 	for (wk = LIST_NEXT(&sintenel, wk_list); wk != NULL;
1712 	    wk = LIST_NEXT(&sintenel, wk_list)) {
1713 		if (wk->wk_type == D_SENTINAL) {
1714 			LIST_REMOVE(&sintenel, wk_list);
1715 			LIST_INSERT_AFTER(wk, &sintenel, wk_list);
1716 			continue;
1717 		}
1718 		if (wk->wk_state & INPROGRESS)
1719 			panic("process_worklist_item: %p already in progress.",
1720 			    wk);
1721 		wk->wk_state |= INPROGRESS;
1722 		remove_from_worklist(wk);
1723 		FREE_LOCK(&lk);
1724 		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1725 			panic("process_worklist_item: suspended filesystem");
1726 		switch (wk->wk_type) {
1727 		case D_DIRREM:
1728 			/* removal of a directory entry */
1729 			error = handle_workitem_remove(WK_DIRREM(wk), flags);
1730 			break;
1731 
1732 		case D_FREEBLKS:
1733 			/* releasing blocks and/or fragments from a file */
1734 			error = handle_workitem_freeblocks(WK_FREEBLKS(wk),
1735 			    flags);
1736 			break;
1737 
1738 		case D_FREEFRAG:
1739 			/* releasing a fragment when replaced as a file grows */
1740 			handle_workitem_freefrag(WK_FREEFRAG(wk));
1741 			error = 0;
1742 			break;
1743 
1744 		case D_FREEFILE:
1745 			/* releasing an inode when its link count drops to 0 */
1746 			handle_workitem_freefile(WK_FREEFILE(wk));
1747 			error = 0;
1748 			break;
1749 
1750 		default:
1751 			panic("%s_process_worklist: Unknown type %s",
1752 			    "softdep", TYPENAME(wk->wk_type));
1753 			/* NOTREACHED */
1754 		}
1755 		vn_finished_secondary_write(mp);
1756 		ACQUIRE_LOCK(&lk);
1757 		if (error == 0) {
1758 			if (++matchcnt == target)
1759 				break;
1760 			continue;
1761 		}
1762 		/*
1763 		 * We have to retry the worklist item later.  Wake up any
1764 		 * waiters who may be able to complete it immediately and
1765 		 * add the item back to the head so we don't try to execute
1766 		 * it again.
1767 		 */
1768 		wk->wk_state &= ~INPROGRESS;
1769 		wake_worklist(wk);
1770 		add_to_worklist(wk, WK_HEAD);
1771 	}
1772 	LIST_REMOVE(&sintenel, wk_list);
1773 	/* Sentinal could've become the tail from remove_from_worklist. */
1774 	if (ump->softdep_worklist_tail == &sintenel)
1775 		ump->softdep_worklist_tail =
1776 		    (struct worklist *)sintenel.wk_list.le_prev;
1777 	PRELE(curproc);
1778 	return (matchcnt);
1779 }
1780 
1781 /*
1782  * Move dependencies from one buffer to another.
1783  */
1784 int
1785 softdep_move_dependencies(oldbp, newbp)
1786 	struct buf *oldbp;
1787 	struct buf *newbp;
1788 {
1789 	struct worklist *wk, *wktail;
1790 	int dirty;
1791 
1792 	dirty = 0;
1793 	wktail = NULL;
1794 	ACQUIRE_LOCK(&lk);
1795 	while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) {
1796 		LIST_REMOVE(wk, wk_list);
1797 		if (wk->wk_type == D_BMSAFEMAP &&
1798 		    bmsafemap_rollbacks(WK_BMSAFEMAP(wk)))
1799 			dirty = 1;
1800 		if (wktail == 0)
1801 			LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list);
1802 		else
1803 			LIST_INSERT_AFTER(wktail, wk, wk_list);
1804 		wktail = wk;
1805 	}
1806 	FREE_LOCK(&lk);
1807 
1808 	return (dirty);
1809 }
1810 
1811 /*
1812  * Purge the work list of all items associated with a particular mount point.
1813  */
1814 int
1815 softdep_flushworklist(oldmnt, countp, td)
1816 	struct mount *oldmnt;
1817 	int *countp;
1818 	struct thread *td;
1819 {
1820 	struct vnode *devvp;
1821 	int count, error = 0;
1822 	struct ufsmount *ump;
1823 
1824 	/*
1825 	 * Alternately flush the block device associated with the mount
1826 	 * point and process any dependencies that the flushing
1827 	 * creates. We continue until no more worklist dependencies
1828 	 * are found.
1829 	 */
1830 	*countp = 0;
1831 	ump = VFSTOUFS(oldmnt);
1832 	devvp = ump->um_devvp;
1833 	while ((count = softdep_process_worklist(oldmnt, 1)) > 0) {
1834 		*countp += count;
1835 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1836 		error = VOP_FSYNC(devvp, MNT_WAIT, td);
1837 		VOP_UNLOCK(devvp, 0);
1838 		if (error)
1839 			break;
1840 	}
1841 	return (error);
1842 }
1843 
1844 int
1845 softdep_waitidle(struct mount *mp)
1846 {
1847 	struct ufsmount *ump;
1848 	int error;
1849 	int i;
1850 
1851 	ump = VFSTOUFS(mp);
1852 	ACQUIRE_LOCK(&lk);
1853 	for (i = 0; i < 10 && ump->softdep_deps; i++) {
1854 		ump->softdep_req = 1;
1855 		if (ump->softdep_on_worklist)
1856 			panic("softdep_waitidle: work added after flush.");
1857 		msleep(&ump->softdep_deps, &lk, PVM, "softdeps", 1);
1858 	}
1859 	ump->softdep_req = 0;
1860 	FREE_LOCK(&lk);
1861 	error = 0;
1862 	if (i == 10) {
1863 		error = EBUSY;
1864 		printf("softdep_waitidle: Failed to flush worklist for %p\n",
1865 		    mp);
1866 	}
1867 
1868 	return (error);
1869 }
1870 
1871 /*
1872  * Flush all vnodes and worklist items associated with a specified mount point.
1873  */
1874 int
1875 softdep_flushfiles(oldmnt, flags, td)
1876 	struct mount *oldmnt;
1877 	int flags;
1878 	struct thread *td;
1879 {
1880 	int error, depcount, loopcnt, retry_flush_count, retry;
1881 
1882 	loopcnt = 10;
1883 	retry_flush_count = 3;
1884 retry_flush:
1885 	error = 0;
1886 
1887 	/*
1888 	 * Alternately flush the vnodes associated with the mount
1889 	 * point and process any dependencies that the flushing
1890 	 * creates. In theory, this loop can happen at most twice,
1891 	 * but we give it a few extra just to be sure.
1892 	 */
1893 	for (; loopcnt > 0; loopcnt--) {
1894 		/*
1895 		 * Do another flush in case any vnodes were brought in
1896 		 * as part of the cleanup operations.
1897 		 */
1898 		if ((error = ffs_flushfiles(oldmnt, flags, td)) != 0)
1899 			break;
1900 		if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 ||
1901 		    depcount == 0)
1902 			break;
1903 	}
1904 	/*
1905 	 * If we are unmounting then it is an error to fail. If we
1906 	 * are simply trying to downgrade to read-only, then filesystem
1907 	 * activity can keep us busy forever, so we just fail with EBUSY.
1908 	 */
1909 	if (loopcnt == 0) {
1910 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT)
1911 			panic("softdep_flushfiles: looping");
1912 		error = EBUSY;
1913 	}
1914 	if (!error)
1915 		error = softdep_waitidle(oldmnt);
1916 	if (!error) {
1917 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) {
1918 			retry = 0;
1919 			MNT_ILOCK(oldmnt);
1920 			KASSERT((oldmnt->mnt_kern_flag & MNTK_NOINSMNTQ) != 0,
1921 			    ("softdep_flushfiles: !MNTK_NOINSMNTQ"));
1922 			if (oldmnt->mnt_nvnodelistsize > 0) {
1923 				if (--retry_flush_count > 0) {
1924 					retry = 1;
1925 					loopcnt = 3;
1926 				} else
1927 					error = EBUSY;
1928 			}
1929 			MNT_IUNLOCK(oldmnt);
1930 			if (retry)
1931 				goto retry_flush;
1932 		}
1933 	}
1934 	return (error);
1935 }
1936 
1937 /*
1938  * Structure hashing.
1939  *
1940  * There are three types of structures that can be looked up:
1941  *	1) pagedep structures identified by mount point, inode number,
1942  *	   and logical block.
1943  *	2) inodedep structures identified by mount point and inode number.
1944  *	3) newblk structures identified by mount point and
1945  *	   physical block number.
1946  *
1947  * The "pagedep" and "inodedep" dependency structures are hashed
1948  * separately from the file blocks and inodes to which they correspond.
1949  * This separation helps when the in-memory copy of an inode or
1950  * file block must be replaced. It also obviates the need to access
1951  * an inode or file page when simply updating (or de-allocating)
1952  * dependency structures. Lookup of newblk structures is needed to
1953  * find newly allocated blocks when trying to associate them with
1954  * their allocdirect or allocindir structure.
1955  *
1956  * The lookup routines optionally create and hash a new instance when
1957  * an existing entry is not found.
1958  */
1959 #define DEPALLOC	0x0001	/* allocate structure if lookup fails */
1960 #define NODELAY		0x0002	/* cannot do background work */
1961 
1962 /*
1963  * Structures and routines associated with pagedep caching.
1964  */
1965 LIST_HEAD(pagedep_hashhead, pagedep) *pagedep_hashtbl;
1966 u_long	pagedep_hash;		/* size of hash table - 1 */
1967 #define	PAGEDEP_HASH(mp, inum, lbn) \
1968 	(&pagedep_hashtbl[((((register_t)(mp)) >> 13) + (inum) + (lbn)) & \
1969 	    pagedep_hash])
1970 
1971 static int
1972 pagedep_find(pagedephd, ino, lbn, mp, flags, pagedeppp)
1973 	struct pagedep_hashhead *pagedephd;
1974 	ino_t ino;
1975 	ufs_lbn_t lbn;
1976 	struct mount *mp;
1977 	int flags;
1978 	struct pagedep **pagedeppp;
1979 {
1980 	struct pagedep *pagedep;
1981 
1982 	LIST_FOREACH(pagedep, pagedephd, pd_hash) {
1983 		if (ino == pagedep->pd_ino && lbn == pagedep->pd_lbn &&
1984 		    mp == pagedep->pd_list.wk_mp) {
1985 			*pagedeppp = pagedep;
1986 			return (1);
1987 		}
1988 	}
1989 	*pagedeppp = NULL;
1990 	return (0);
1991 }
1992 /*
1993  * Look up a pagedep. Return 1 if found, 0 otherwise.
1994  * If not found, allocate if DEPALLOC flag is passed.
1995  * Found or allocated entry is returned in pagedeppp.
1996  * This routine must be called with splbio interrupts blocked.
1997  */
1998 static int
1999 pagedep_lookup(mp, bp, ino, lbn, flags, pagedeppp)
2000 	struct mount *mp;
2001 	struct buf *bp;
2002 	ino_t ino;
2003 	ufs_lbn_t lbn;
2004 	int flags;
2005 	struct pagedep **pagedeppp;
2006 {
2007 	struct pagedep *pagedep;
2008 	struct pagedep_hashhead *pagedephd;
2009 	struct worklist *wk;
2010 	int ret;
2011 	int i;
2012 
2013 	mtx_assert(&lk, MA_OWNED);
2014 	if (bp) {
2015 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
2016 			if (wk->wk_type == D_PAGEDEP) {
2017 				*pagedeppp = WK_PAGEDEP(wk);
2018 				return (1);
2019 			}
2020 		}
2021 	}
2022 	pagedephd = PAGEDEP_HASH(mp, ino, lbn);
2023 	ret = pagedep_find(pagedephd, ino, lbn, mp, flags, pagedeppp);
2024 	if (ret) {
2025 		if (((*pagedeppp)->pd_state & ONWORKLIST) == 0 && bp)
2026 			WORKLIST_INSERT(&bp->b_dep, &(*pagedeppp)->pd_list);
2027 		return (1);
2028 	}
2029 	if ((flags & DEPALLOC) == 0)
2030 		return (0);
2031 	FREE_LOCK(&lk);
2032 	pagedep = malloc(sizeof(struct pagedep),
2033 	    M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO);
2034 	workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp);
2035 	ACQUIRE_LOCK(&lk);
2036 	ret = pagedep_find(pagedephd, ino, lbn, mp, flags, pagedeppp);
2037 	if (*pagedeppp) {
2038 		/*
2039 		 * This should never happen since we only create pagedeps
2040 		 * with the vnode lock held.  Could be an assert.
2041 		 */
2042 		WORKITEM_FREE(pagedep, D_PAGEDEP);
2043 		return (ret);
2044 	}
2045 	pagedep->pd_ino = ino;
2046 	pagedep->pd_lbn = lbn;
2047 	LIST_INIT(&pagedep->pd_dirremhd);
2048 	LIST_INIT(&pagedep->pd_pendinghd);
2049 	for (i = 0; i < DAHASHSZ; i++)
2050 		LIST_INIT(&pagedep->pd_diraddhd[i]);
2051 	LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
2052 	WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
2053 	*pagedeppp = pagedep;
2054 	return (0);
2055 }
2056 
2057 /*
2058  * Structures and routines associated with inodedep caching.
2059  */
2060 LIST_HEAD(inodedep_hashhead, inodedep) *inodedep_hashtbl;
2061 static u_long	inodedep_hash;	/* size of hash table - 1 */
2062 #define	INODEDEP_HASH(fs, inum) \
2063       (&inodedep_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & inodedep_hash])
2064 
2065 static int
2066 inodedep_find(inodedephd, fs, inum, inodedeppp)
2067 	struct inodedep_hashhead *inodedephd;
2068 	struct fs *fs;
2069 	ino_t inum;
2070 	struct inodedep **inodedeppp;
2071 {
2072 	struct inodedep *inodedep;
2073 
2074 	LIST_FOREACH(inodedep, inodedephd, id_hash)
2075 		if (inum == inodedep->id_ino && fs == inodedep->id_fs)
2076 			break;
2077 	if (inodedep) {
2078 		*inodedeppp = inodedep;
2079 		return (1);
2080 	}
2081 	*inodedeppp = NULL;
2082 
2083 	return (0);
2084 }
2085 /*
2086  * Look up an inodedep. Return 1 if found, 0 if not found.
2087  * If not found, allocate if DEPALLOC flag is passed.
2088  * Found or allocated entry is returned in inodedeppp.
2089  * This routine must be called with splbio interrupts blocked.
2090  */
2091 static int
2092 inodedep_lookup(mp, inum, flags, inodedeppp)
2093 	struct mount *mp;
2094 	ino_t inum;
2095 	int flags;
2096 	struct inodedep **inodedeppp;
2097 {
2098 	struct inodedep *inodedep;
2099 	struct inodedep_hashhead *inodedephd;
2100 	struct fs *fs;
2101 
2102 	mtx_assert(&lk, MA_OWNED);
2103 	fs = VFSTOUFS(mp)->um_fs;
2104 	inodedephd = INODEDEP_HASH(fs, inum);
2105 
2106 	if (inodedep_find(inodedephd, fs, inum, inodedeppp))
2107 		return (1);
2108 	if ((flags & DEPALLOC) == 0)
2109 		return (0);
2110 	/*
2111 	 * If we are over our limit, try to improve the situation.
2112 	 */
2113 	if (dep_current[D_INODEDEP] > max_softdeps && (flags & NODELAY) == 0)
2114 		request_cleanup(mp, FLUSH_INODES);
2115 	FREE_LOCK(&lk);
2116 	inodedep = malloc(sizeof(struct inodedep),
2117 		M_INODEDEP, M_SOFTDEP_FLAGS);
2118 	workitem_alloc(&inodedep->id_list, D_INODEDEP, mp);
2119 	ACQUIRE_LOCK(&lk);
2120 	if (inodedep_find(inodedephd, fs, inum, inodedeppp)) {
2121 		WORKITEM_FREE(inodedep, D_INODEDEP);
2122 		return (1);
2123 	}
2124 	inodedep->id_fs = fs;
2125 	inodedep->id_ino = inum;
2126 	inodedep->id_state = ALLCOMPLETE;
2127 	inodedep->id_nlinkdelta = 0;
2128 	inodedep->id_savedino1 = NULL;
2129 	inodedep->id_savedsize = -1;
2130 	inodedep->id_savedextsize = -1;
2131 	inodedep->id_savednlink = -1;
2132 	inodedep->id_bmsafemap = NULL;
2133 	inodedep->id_mkdiradd = NULL;
2134 	LIST_INIT(&inodedep->id_dirremhd);
2135 	LIST_INIT(&inodedep->id_pendinghd);
2136 	LIST_INIT(&inodedep->id_inowait);
2137 	LIST_INIT(&inodedep->id_bufwait);
2138 	TAILQ_INIT(&inodedep->id_inoreflst);
2139 	TAILQ_INIT(&inodedep->id_inoupdt);
2140 	TAILQ_INIT(&inodedep->id_newinoupdt);
2141 	TAILQ_INIT(&inodedep->id_extupdt);
2142 	TAILQ_INIT(&inodedep->id_newextupdt);
2143 	TAILQ_INIT(&inodedep->id_freeblklst);
2144 	LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
2145 	*inodedeppp = inodedep;
2146 	return (0);
2147 }
2148 
2149 /*
2150  * Structures and routines associated with newblk caching.
2151  */
2152 LIST_HEAD(newblk_hashhead, newblk) *newblk_hashtbl;
2153 u_long	newblk_hash;		/* size of hash table - 1 */
2154 #define	NEWBLK_HASH(fs, inum) \
2155 	(&newblk_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & newblk_hash])
2156 
2157 static int
2158 newblk_find(newblkhd, mp, newblkno, flags, newblkpp)
2159 	struct newblk_hashhead *newblkhd;
2160 	struct mount *mp;
2161 	ufs2_daddr_t newblkno;
2162 	int flags;
2163 	struct newblk **newblkpp;
2164 {
2165 	struct newblk *newblk;
2166 
2167 	LIST_FOREACH(newblk, newblkhd, nb_hash) {
2168 		if (newblkno != newblk->nb_newblkno)
2169 			continue;
2170 		if (mp != newblk->nb_list.wk_mp)
2171 			continue;
2172 		/*
2173 		 * If we're creating a new dependency don't match those that
2174 		 * have already been converted to allocdirects.  This is for
2175 		 * a frag extend.
2176 		 */
2177 		if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK)
2178 			continue;
2179 		break;
2180 	}
2181 	if (newblk) {
2182 		*newblkpp = newblk;
2183 		return (1);
2184 	}
2185 	*newblkpp = NULL;
2186 	return (0);
2187 }
2188 
2189 /*
2190  * Look up a newblk. Return 1 if found, 0 if not found.
2191  * If not found, allocate if DEPALLOC flag is passed.
2192  * Found or allocated entry is returned in newblkpp.
2193  */
2194 static int
2195 newblk_lookup(mp, newblkno, flags, newblkpp)
2196 	struct mount *mp;
2197 	ufs2_daddr_t newblkno;
2198 	int flags;
2199 	struct newblk **newblkpp;
2200 {
2201 	struct newblk *newblk;
2202 	struct newblk_hashhead *newblkhd;
2203 
2204 	newblkhd = NEWBLK_HASH(VFSTOUFS(mp)->um_fs, newblkno);
2205 	if (newblk_find(newblkhd, mp, newblkno, flags, newblkpp))
2206 		return (1);
2207 	if ((flags & DEPALLOC) == 0)
2208 		return (0);
2209 	FREE_LOCK(&lk);
2210 	newblk = malloc(sizeof(union allblk), M_NEWBLK,
2211 	    M_SOFTDEP_FLAGS | M_ZERO);
2212 	workitem_alloc(&newblk->nb_list, D_NEWBLK, mp);
2213 	ACQUIRE_LOCK(&lk);
2214 	if (newblk_find(newblkhd, mp, newblkno, flags, newblkpp)) {
2215 		WORKITEM_FREE(newblk, D_NEWBLK);
2216 		return (1);
2217 	}
2218 	newblk->nb_freefrag = NULL;
2219 	LIST_INIT(&newblk->nb_indirdeps);
2220 	LIST_INIT(&newblk->nb_newdirblk);
2221 	LIST_INIT(&newblk->nb_jwork);
2222 	newblk->nb_state = ATTACHED;
2223 	newblk->nb_newblkno = newblkno;
2224 	LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
2225 	*newblkpp = newblk;
2226 	return (0);
2227 }
2228 
2229 /*
2230  * Structures and routines associated with freed indirect block caching.
2231  */
2232 struct freeworklst *indir_hashtbl;
2233 u_long	indir_hash;		/* size of hash table - 1 */
2234 #define	INDIR_HASH(mp, blkno) \
2235 	(&indir_hashtbl[((((register_t)(mp)) >> 13) + (blkno)) & indir_hash])
2236 
2237 /*
2238  * Lookup an indirect block in the indir hash table.  The freework is
2239  * removed and potentially freed.  The caller must do a blocking journal
2240  * write before writing to the blkno.
2241  */
2242 static int
2243 indirblk_lookup(mp, blkno)
2244 	struct mount *mp;
2245 	ufs2_daddr_t blkno;
2246 {
2247 	struct freework *freework;
2248 	struct freeworklst *wkhd;
2249 
2250 	wkhd = INDIR_HASH(mp, blkno);
2251 	TAILQ_FOREACH(freework, wkhd, fw_next) {
2252 		if (freework->fw_blkno != blkno)
2253 			continue;
2254 		if (freework->fw_list.wk_mp != mp)
2255 			continue;
2256 		indirblk_remove(freework);
2257 		return (1);
2258 	}
2259 	return (0);
2260 }
2261 
2262 /*
2263  * Insert an indirect block represented by freework into the indirblk
2264  * hash table so that it may prevent the block from being re-used prior
2265  * to the journal being written.
2266  */
2267 static void
2268 indirblk_insert(freework)
2269 	struct freework *freework;
2270 {
2271 	struct freeblks *freeblks;
2272 	struct jsegdep *jsegdep;
2273 	struct worklist *wk;
2274 
2275 	freeblks = freework->fw_freeblks;
2276 	LIST_FOREACH(wk, &freeblks->fb_jwork, wk_list)
2277 		if (wk->wk_type == D_JSEGDEP)
2278 			break;
2279 	if (wk == NULL)
2280 		return;
2281 
2282 	jsegdep = WK_JSEGDEP(wk);
2283 	LIST_INSERT_HEAD(&jsegdep->jd_seg->js_indirs, freework, fw_segs);
2284 	TAILQ_INSERT_HEAD(INDIR_HASH(freework->fw_list.wk_mp,
2285 	    freework->fw_blkno), freework, fw_next);
2286 	freework->fw_state &= ~DEPCOMPLETE;
2287 }
2288 
2289 static void
2290 indirblk_remove(freework)
2291 	struct freework *freework;
2292 {
2293 
2294 	LIST_REMOVE(freework, fw_segs);
2295 	TAILQ_REMOVE(INDIR_HASH(freework->fw_list.wk_mp,
2296 	    freework->fw_blkno), freework, fw_next);
2297 	freework->fw_state |= DEPCOMPLETE;
2298 	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
2299 		WORKITEM_FREE(freework, D_FREEWORK);
2300 }
2301 
2302 /*
2303  * Executed during filesystem system initialization before
2304  * mounting any filesystems.
2305  */
2306 void
2307 softdep_initialize()
2308 {
2309 	int i;
2310 
2311 	LIST_INIT(&mkdirlisthd);
2312 	max_softdeps = desiredvnodes * 4;
2313 	pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP, &pagedep_hash);
2314 	inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, &inodedep_hash);
2315 	newblk_hashtbl = hashinit(desiredvnodes / 5,  M_NEWBLK, &newblk_hash);
2316 	bmsafemap_hashtbl = hashinit(1024, M_BMSAFEMAP, &bmsafemap_hash);
2317 	i = 1 << (ffs(desiredvnodes / 10) - 1);
2318 	indir_hashtbl = malloc(i * sizeof(indir_hashtbl[0]), M_FREEWORK,
2319 	    M_WAITOK);
2320 	indir_hash = i - 1;
2321 	for (i = 0; i <= indir_hash; i++)
2322 		TAILQ_INIT(&indir_hashtbl[i]);
2323 
2324 	/* initialise bioops hack */
2325 	bioops.io_start = softdep_disk_io_initiation;
2326 	bioops.io_complete = softdep_disk_write_complete;
2327 	bioops.io_deallocate = softdep_deallocate_dependencies;
2328 	bioops.io_countdeps = softdep_count_dependencies;
2329 
2330 	/* Initialize the callout with an mtx. */
2331 	callout_init_mtx(&softdep_callout, &lk, 0);
2332 }
2333 
2334 /*
2335  * Executed after all filesystems have been unmounted during
2336  * filesystem module unload.
2337  */
2338 void
2339 softdep_uninitialize()
2340 {
2341 
2342 	callout_drain(&softdep_callout);
2343 	hashdestroy(pagedep_hashtbl, M_PAGEDEP, pagedep_hash);
2344 	hashdestroy(inodedep_hashtbl, M_INODEDEP, inodedep_hash);
2345 	hashdestroy(newblk_hashtbl, M_NEWBLK, newblk_hash);
2346 	hashdestroy(bmsafemap_hashtbl, M_BMSAFEMAP, bmsafemap_hash);
2347 	free(indir_hashtbl, M_FREEWORK);
2348 }
2349 
2350 /*
2351  * Called at mount time to notify the dependency code that a
2352  * filesystem wishes to use it.
2353  */
2354 int
2355 softdep_mount(devvp, mp, fs, cred)
2356 	struct vnode *devvp;
2357 	struct mount *mp;
2358 	struct fs *fs;
2359 	struct ucred *cred;
2360 {
2361 	struct csum_total cstotal;
2362 	struct ufsmount *ump;
2363 	struct cg *cgp;
2364 	struct buf *bp;
2365 	int error, cyl;
2366 
2367 	MNT_ILOCK(mp);
2368 	mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP;
2369 	if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) {
2370 		mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) |
2371 			MNTK_SOFTDEP | MNTK_NOASYNC;
2372 	}
2373 	MNT_IUNLOCK(mp);
2374 	ump = VFSTOUFS(mp);
2375 	LIST_INIT(&ump->softdep_workitem_pending);
2376 	LIST_INIT(&ump->softdep_journal_pending);
2377 	TAILQ_INIT(&ump->softdep_unlinked);
2378 	LIST_INIT(&ump->softdep_dirtycg);
2379 	ump->softdep_worklist_tail = NULL;
2380 	ump->softdep_on_worklist = 0;
2381 	ump->softdep_deps = 0;
2382 	if ((fs->fs_flags & FS_SUJ) &&
2383 	    (error = journal_mount(mp, fs, cred)) != 0) {
2384 		printf("Failed to start journal: %d\n", error);
2385 		return (error);
2386 	}
2387 	/*
2388 	 * When doing soft updates, the counters in the
2389 	 * superblock may have gotten out of sync. Recomputation
2390 	 * can take a long time and can be deferred for background
2391 	 * fsck.  However, the old behavior of scanning the cylinder
2392 	 * groups and recalculating them at mount time is available
2393 	 * by setting vfs.ffs.compute_summary_at_mount to one.
2394 	 */
2395 	if (compute_summary_at_mount == 0 || fs->fs_clean != 0)
2396 		return (0);
2397 	bzero(&cstotal, sizeof cstotal);
2398 	for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
2399 		if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)),
2400 		    fs->fs_cgsize, cred, &bp)) != 0) {
2401 			brelse(bp);
2402 			return (error);
2403 		}
2404 		cgp = (struct cg *)bp->b_data;
2405 		cstotal.cs_nffree += cgp->cg_cs.cs_nffree;
2406 		cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree;
2407 		cstotal.cs_nifree += cgp->cg_cs.cs_nifree;
2408 		cstotal.cs_ndir += cgp->cg_cs.cs_ndir;
2409 		fs->fs_cs(fs, cyl) = cgp->cg_cs;
2410 		brelse(bp);
2411 	}
2412 #ifdef DEBUG
2413 	if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
2414 		printf("%s: superblock summary recomputed\n", fs->fs_fsmnt);
2415 #endif
2416 	bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
2417 	return (0);
2418 }
2419 
2420 void
2421 softdep_unmount(mp)
2422 	struct mount *mp;
2423 {
2424 
2425 	MNT_ILOCK(mp);
2426 	mp->mnt_flag &= ~MNT_SOFTDEP;
2427 	if (MOUNTEDSUJ(mp) == 0) {
2428 		MNT_IUNLOCK(mp);
2429 		return;
2430 	}
2431 	mp->mnt_flag &= ~MNT_SUJ;
2432 	MNT_IUNLOCK(mp);
2433 	journal_unmount(mp);
2434 }
2435 
2436 struct jblocks {
2437 	struct jseglst	jb_segs;	/* TAILQ of current segments. */
2438 	struct jseg	*jb_writeseg;	/* Next write to complete. */
2439 	struct jseg	*jb_oldestseg;	/* Oldest segment with valid entries. */
2440 	struct jextent	*jb_extent;	/* Extent array. */
2441 	uint64_t	jb_nextseq;	/* Next sequence number. */
2442 	uint64_t	jb_oldestwrseq;	/* Oldest written sequence number. */
2443 	uint8_t		jb_needseg;	/* Need a forced segment. */
2444 	uint8_t		jb_suspended;	/* Did journal suspend writes? */
2445 	int		jb_avail;	/* Available extents. */
2446 	int		jb_used;	/* Last used extent. */
2447 	int		jb_head;	/* Allocator head. */
2448 	int		jb_off;		/* Allocator extent offset. */
2449 	int		jb_blocks;	/* Total disk blocks covered. */
2450 	int		jb_free;	/* Total disk blocks free. */
2451 	int		jb_min;		/* Minimum free space. */
2452 	int		jb_low;		/* Low on space. */
2453 	int		jb_age;		/* Insertion time of oldest rec. */
2454 };
2455 
2456 struct jextent {
2457 	ufs2_daddr_t	je_daddr;	/* Disk block address. */
2458 	int		je_blocks;	/* Disk block count. */
2459 };
2460 
2461 static struct jblocks *
2462 jblocks_create(void)
2463 {
2464 	struct jblocks *jblocks;
2465 
2466 	jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO);
2467 	TAILQ_INIT(&jblocks->jb_segs);
2468 	jblocks->jb_avail = 10;
2469 	jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2470 	    M_JBLOCKS, M_WAITOK | M_ZERO);
2471 
2472 	return (jblocks);
2473 }
2474 
2475 static ufs2_daddr_t
2476 jblocks_alloc(jblocks, bytes, actual)
2477 	struct jblocks *jblocks;
2478 	int bytes;
2479 	int *actual;
2480 {
2481 	ufs2_daddr_t daddr;
2482 	struct jextent *jext;
2483 	int freecnt;
2484 	int blocks;
2485 
2486 	blocks = bytes / DEV_BSIZE;
2487 	jext = &jblocks->jb_extent[jblocks->jb_head];
2488 	freecnt = jext->je_blocks - jblocks->jb_off;
2489 	if (freecnt == 0) {
2490 		jblocks->jb_off = 0;
2491 		if (++jblocks->jb_head > jblocks->jb_used)
2492 			jblocks->jb_head = 0;
2493 		jext = &jblocks->jb_extent[jblocks->jb_head];
2494 		freecnt = jext->je_blocks;
2495 	}
2496 	if (freecnt > blocks)
2497 		freecnt = blocks;
2498 	*actual = freecnt * DEV_BSIZE;
2499 	daddr = jext->je_daddr + jblocks->jb_off;
2500 	jblocks->jb_off += freecnt;
2501 	jblocks->jb_free -= freecnt;
2502 
2503 	return (daddr);
2504 }
2505 
2506 static void
2507 jblocks_free(jblocks, mp, bytes)
2508 	struct jblocks *jblocks;
2509 	struct mount *mp;
2510 	int bytes;
2511 {
2512 
2513 	jblocks->jb_free += bytes / DEV_BSIZE;
2514 	if (jblocks->jb_suspended)
2515 		worklist_speedup();
2516 	wakeup(jblocks);
2517 }
2518 
2519 static void
2520 jblocks_destroy(jblocks)
2521 	struct jblocks *jblocks;
2522 {
2523 
2524 	if (jblocks->jb_extent)
2525 		free(jblocks->jb_extent, M_JBLOCKS);
2526 	free(jblocks, M_JBLOCKS);
2527 }
2528 
2529 static void
2530 jblocks_add(jblocks, daddr, blocks)
2531 	struct jblocks *jblocks;
2532 	ufs2_daddr_t daddr;
2533 	int blocks;
2534 {
2535 	struct jextent *jext;
2536 
2537 	jblocks->jb_blocks += blocks;
2538 	jblocks->jb_free += blocks;
2539 	jext = &jblocks->jb_extent[jblocks->jb_used];
2540 	/* Adding the first block. */
2541 	if (jext->je_daddr == 0) {
2542 		jext->je_daddr = daddr;
2543 		jext->je_blocks = blocks;
2544 		return;
2545 	}
2546 	/* Extending the last extent. */
2547 	if (jext->je_daddr + jext->je_blocks == daddr) {
2548 		jext->je_blocks += blocks;
2549 		return;
2550 	}
2551 	/* Adding a new extent. */
2552 	if (++jblocks->jb_used == jblocks->jb_avail) {
2553 		jblocks->jb_avail *= 2;
2554 		jext = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2555 		    M_JBLOCKS, M_WAITOK | M_ZERO);
2556 		memcpy(jext, jblocks->jb_extent,
2557 		    sizeof(struct jextent) * jblocks->jb_used);
2558 		free(jblocks->jb_extent, M_JBLOCKS);
2559 		jblocks->jb_extent = jext;
2560 	}
2561 	jext = &jblocks->jb_extent[jblocks->jb_used];
2562 	jext->je_daddr = daddr;
2563 	jext->je_blocks = blocks;
2564 	return;
2565 }
2566 
2567 int
2568 softdep_journal_lookup(mp, vpp)
2569 	struct mount *mp;
2570 	struct vnode **vpp;
2571 {
2572 	struct componentname cnp;
2573 	struct vnode *dvp;
2574 	ino_t sujournal;
2575 	int error;
2576 
2577 	error = VFS_VGET(mp, ROOTINO, LK_EXCLUSIVE, &dvp);
2578 	if (error)
2579 		return (error);
2580 	bzero(&cnp, sizeof(cnp));
2581 	cnp.cn_nameiop = LOOKUP;
2582 	cnp.cn_flags = ISLASTCN;
2583 	cnp.cn_thread = curthread;
2584 	cnp.cn_cred = curthread->td_ucred;
2585 	cnp.cn_pnbuf = SUJ_FILE;
2586 	cnp.cn_nameptr = SUJ_FILE;
2587 	cnp.cn_namelen = strlen(SUJ_FILE);
2588 	error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal);
2589 	vput(dvp);
2590 	if (error != 0)
2591 		return (error);
2592 	error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp);
2593 	return (error);
2594 }
2595 
2596 /*
2597  * Open and verify the journal file.
2598  */
2599 static int
2600 journal_mount(mp, fs, cred)
2601 	struct mount *mp;
2602 	struct fs *fs;
2603 	struct ucred *cred;
2604 {
2605 	struct jblocks *jblocks;
2606 	struct vnode *vp;
2607 	struct inode *ip;
2608 	ufs2_daddr_t blkno;
2609 	int bcount;
2610 	int error;
2611 	int i;
2612 
2613 	error = softdep_journal_lookup(mp, &vp);
2614 	if (error != 0) {
2615 		printf("Failed to find journal.  Use tunefs to create one\n");
2616 		return (error);
2617 	}
2618 	ip = VTOI(vp);
2619 	if (ip->i_size < SUJ_MIN) {
2620 		error = ENOSPC;
2621 		goto out;
2622 	}
2623 	bcount = lblkno(fs, ip->i_size);	/* Only use whole blocks. */
2624 	jblocks = jblocks_create();
2625 	for (i = 0; i < bcount; i++) {
2626 		error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL);
2627 		if (error)
2628 			break;
2629 		jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag));
2630 	}
2631 	if (error) {
2632 		jblocks_destroy(jblocks);
2633 		goto out;
2634 	}
2635 	jblocks->jb_low = jblocks->jb_free / 3;	/* Reserve 33%. */
2636 	jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */
2637 	VFSTOUFS(mp)->softdep_jblocks = jblocks;
2638 out:
2639 	if (error == 0) {
2640 		MNT_ILOCK(mp);
2641 		mp->mnt_flag |= MNT_SUJ;
2642 		mp->mnt_flag &= ~MNT_SOFTDEP;
2643 		MNT_IUNLOCK(mp);
2644 		/*
2645 		 * Only validate the journal contents if the
2646 		 * filesystem is clean, otherwise we write the logs
2647 		 * but they'll never be used.  If the filesystem was
2648 		 * still dirty when we mounted it the journal is
2649 		 * invalid and a new journal can only be valid if it
2650 		 * starts from a clean mount.
2651 		 */
2652 		if (fs->fs_clean) {
2653 			DIP_SET(ip, i_modrev, fs->fs_mtime);
2654 			ip->i_flags |= IN_MODIFIED;
2655 			ffs_update(vp, 1);
2656 		}
2657 	}
2658 	vput(vp);
2659 	return (error);
2660 }
2661 
2662 static void
2663 journal_unmount(mp)
2664 	struct mount *mp;
2665 {
2666 	struct ufsmount *ump;
2667 
2668 	ump = VFSTOUFS(mp);
2669 	if (ump->softdep_jblocks)
2670 		jblocks_destroy(ump->softdep_jblocks);
2671 	ump->softdep_jblocks = NULL;
2672 }
2673 
2674 /*
2675  * Called when a journal record is ready to be written.  Space is allocated
2676  * and the journal entry is created when the journal is flushed to stable
2677  * store.
2678  */
2679 static void
2680 add_to_journal(wk)
2681 	struct worklist *wk;
2682 {
2683 	struct ufsmount *ump;
2684 
2685 	mtx_assert(&lk, MA_OWNED);
2686 	ump = VFSTOUFS(wk->wk_mp);
2687 	if (wk->wk_state & ONWORKLIST)
2688 		panic("add_to_journal: %s(0x%X) already on list",
2689 		    TYPENAME(wk->wk_type), wk->wk_state);
2690 	wk->wk_state |= ONWORKLIST | DEPCOMPLETE;
2691 	if (LIST_EMPTY(&ump->softdep_journal_pending)) {
2692 		ump->softdep_jblocks->jb_age = ticks;
2693 		LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list);
2694 	} else
2695 		LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list);
2696 	ump->softdep_journal_tail = wk;
2697 	ump->softdep_on_journal += 1;
2698 }
2699 
2700 /*
2701  * Remove an arbitrary item for the journal worklist maintain the tail
2702  * pointer.  This happens when a new operation obviates the need to
2703  * journal an old operation.
2704  */
2705 static void
2706 remove_from_journal(wk)
2707 	struct worklist *wk;
2708 {
2709 	struct ufsmount *ump;
2710 
2711 	mtx_assert(&lk, MA_OWNED);
2712 	ump = VFSTOUFS(wk->wk_mp);
2713 #ifdef SUJ_DEBUG
2714 	{
2715 		struct worklist *wkn;
2716 
2717 		LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list)
2718 			if (wkn == wk)
2719 				break;
2720 		if (wkn == NULL)
2721 			panic("remove_from_journal: %p is not in journal", wk);
2722 	}
2723 #endif
2724 	/*
2725 	 * We emulate a TAILQ to save space in most structures which do not
2726 	 * require TAILQ semantics.  Here we must update the tail position
2727 	 * when removing the tail which is not the final entry. This works
2728 	 * only if the worklist linkage are at the beginning of the structure.
2729 	 */
2730 	if (ump->softdep_journal_tail == wk)
2731 		ump->softdep_journal_tail =
2732 		    (struct worklist *)wk->wk_list.le_prev;
2733 
2734 	WORKLIST_REMOVE(wk);
2735 	ump->softdep_on_journal -= 1;
2736 }
2737 
2738 /*
2739  * Check for journal space as well as dependency limits so the prelink
2740  * code can throttle both journaled and non-journaled filesystems.
2741  * Threshold is 0 for low and 1 for min.
2742  */
2743 static int
2744 journal_space(ump, thresh)
2745 	struct ufsmount *ump;
2746 	int thresh;
2747 {
2748 	struct jblocks *jblocks;
2749 	int avail;
2750 
2751 	jblocks = ump->softdep_jblocks;
2752 	if (jblocks == NULL)
2753 		return (1);
2754 	/*
2755 	 * We use a tighter restriction here to prevent request_cleanup()
2756 	 * running in threads from running into locks we currently hold.
2757 	 */
2758 	if (dep_current[D_INODEDEP] > (max_softdeps / 10) * 9)
2759 		return (0);
2760 	if (thresh)
2761 		thresh = jblocks->jb_min;
2762 	else
2763 		thresh = jblocks->jb_low;
2764 	avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE;
2765 	avail = jblocks->jb_free - avail;
2766 
2767 	return (avail > thresh);
2768 }
2769 
2770 static void
2771 journal_suspend(ump)
2772 	struct ufsmount *ump;
2773 {
2774 	struct jblocks *jblocks;
2775 	struct mount *mp;
2776 
2777 	mp = UFSTOVFS(ump);
2778 	jblocks = ump->softdep_jblocks;
2779 	MNT_ILOCK(mp);
2780 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
2781 		stat_journal_min++;
2782 		mp->mnt_kern_flag |= MNTK_SUSPEND;
2783 		mp->mnt_susp_owner = FIRST_THREAD_IN_PROC(softdepproc);
2784 	}
2785 	jblocks->jb_suspended = 1;
2786 	MNT_IUNLOCK(mp);
2787 }
2788 
2789 static int
2790 journal_unsuspend(struct ufsmount *ump)
2791 {
2792 	struct jblocks *jblocks;
2793 	struct mount *mp;
2794 
2795 	mp = UFSTOVFS(ump);
2796 	jblocks = ump->softdep_jblocks;
2797 
2798 	if (jblocks != NULL && jblocks->jb_suspended &&
2799 	    journal_space(ump, jblocks->jb_min)) {
2800 		jblocks->jb_suspended = 0;
2801 		FREE_LOCK(&lk);
2802 		mp->mnt_susp_owner = curthread;
2803 		vfs_write_resume(mp);
2804 		ACQUIRE_LOCK(&lk);
2805 		return (1);
2806 	}
2807 	return (0);
2808 }
2809 
2810 /*
2811  * Called before any allocation function to be certain that there is
2812  * sufficient space in the journal prior to creating any new records.
2813  * Since in the case of block allocation we may have multiple locked
2814  * buffers at the time of the actual allocation we can not block
2815  * when the journal records are created.  Doing so would create a deadlock
2816  * if any of these buffers needed to be flushed to reclaim space.  Instead
2817  * we require a sufficiently large amount of available space such that
2818  * each thread in the system could have passed this allocation check and
2819  * still have sufficient free space.  With 20% of a minimum journal size
2820  * of 1MB we have 6553 records available.
2821  */
2822 int
2823 softdep_prealloc(vp, waitok)
2824 	struct vnode *vp;
2825 	int waitok;
2826 {
2827 	struct ufsmount *ump;
2828 
2829 	/*
2830 	 * Nothing to do if we are not running journaled soft updates.
2831 	 * If we currently hold the snapshot lock, we must avoid handling
2832 	 * other resources that could cause deadlock.
2833 	 */
2834 	if (DOINGSUJ(vp) == 0 || IS_SNAPSHOT(VTOI(vp)))
2835 		return (0);
2836 	ump = VFSTOUFS(vp->v_mount);
2837 	ACQUIRE_LOCK(&lk);
2838 	if (journal_space(ump, 0)) {
2839 		FREE_LOCK(&lk);
2840 		return (0);
2841 	}
2842 	stat_journal_low++;
2843 	FREE_LOCK(&lk);
2844 	if (waitok == MNT_NOWAIT)
2845 		return (ENOSPC);
2846 	/*
2847 	 * Attempt to sync this vnode once to flush any journal
2848 	 * work attached to it.
2849 	 */
2850 	if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0)
2851 		ffs_syncvnode(vp, waitok);
2852 	ACQUIRE_LOCK(&lk);
2853 	process_removes(vp);
2854 	process_truncates(vp);
2855 	if (journal_space(ump, 0) == 0) {
2856 		softdep_speedup();
2857 		if (journal_space(ump, 1) == 0)
2858 			journal_suspend(ump);
2859 	}
2860 	FREE_LOCK(&lk);
2861 
2862 	return (0);
2863 }
2864 
2865 /*
2866  * Before adjusting a link count on a vnode verify that we have sufficient
2867  * journal space.  If not, process operations that depend on the currently
2868  * locked pair of vnodes to try to flush space as the syncer, buf daemon,
2869  * and softdep flush threads can not acquire these locks to reclaim space.
2870  */
2871 static void
2872 softdep_prelink(dvp, vp)
2873 	struct vnode *dvp;
2874 	struct vnode *vp;
2875 {
2876 	struct ufsmount *ump;
2877 
2878 	ump = VFSTOUFS(dvp->v_mount);
2879 	mtx_assert(&lk, MA_OWNED);
2880 	/*
2881 	 * Nothing to do if we have sufficient journal space.
2882 	 * If we currently hold the snapshot lock, we must avoid
2883 	 * handling other resources that could cause deadlock.
2884 	 */
2885 	if (journal_space(ump, 0) || (vp && IS_SNAPSHOT(VTOI(vp))))
2886 		return;
2887 	stat_journal_low++;
2888 	FREE_LOCK(&lk);
2889 	if (vp)
2890 		ffs_syncvnode(vp, MNT_NOWAIT);
2891 	ffs_syncvnode(dvp, MNT_WAIT);
2892 	ACQUIRE_LOCK(&lk);
2893 	/* Process vp before dvp as it may create .. removes. */
2894 	if (vp) {
2895 		process_removes(vp);
2896 		process_truncates(vp);
2897 	}
2898 	process_removes(dvp);
2899 	process_truncates(dvp);
2900 	softdep_speedup();
2901 	process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT);
2902 	if (journal_space(ump, 0) == 0) {
2903 		softdep_speedup();
2904 		if (journal_space(ump, 1) == 0)
2905 			journal_suspend(ump);
2906 	}
2907 }
2908 
2909 static void
2910 jseg_write(ump, jseg, data)
2911 	struct ufsmount *ump;
2912 	struct jseg *jseg;
2913 	uint8_t *data;
2914 {
2915 	struct jsegrec *rec;
2916 
2917 	rec = (struct jsegrec *)data;
2918 	rec->jsr_seq = jseg->js_seq;
2919 	rec->jsr_oldest = jseg->js_oldseq;
2920 	rec->jsr_cnt = jseg->js_cnt;
2921 	rec->jsr_blocks = jseg->js_size / ump->um_devvp->v_bufobj.bo_bsize;
2922 	rec->jsr_crc = 0;
2923 	rec->jsr_time = ump->um_fs->fs_mtime;
2924 }
2925 
2926 static inline void
2927 inoref_write(inoref, jseg, rec)
2928 	struct inoref *inoref;
2929 	struct jseg *jseg;
2930 	struct jrefrec *rec;
2931 {
2932 
2933 	inoref->if_jsegdep->jd_seg = jseg;
2934 	rec->jr_ino = inoref->if_ino;
2935 	rec->jr_parent = inoref->if_parent;
2936 	rec->jr_nlink = inoref->if_nlink;
2937 	rec->jr_mode = inoref->if_mode;
2938 	rec->jr_diroff = inoref->if_diroff;
2939 }
2940 
2941 static void
2942 jaddref_write(jaddref, jseg, data)
2943 	struct jaddref *jaddref;
2944 	struct jseg *jseg;
2945 	uint8_t *data;
2946 {
2947 	struct jrefrec *rec;
2948 
2949 	rec = (struct jrefrec *)data;
2950 	rec->jr_op = JOP_ADDREF;
2951 	inoref_write(&jaddref->ja_ref, jseg, rec);
2952 }
2953 
2954 static void
2955 jremref_write(jremref, jseg, data)
2956 	struct jremref *jremref;
2957 	struct jseg *jseg;
2958 	uint8_t *data;
2959 {
2960 	struct jrefrec *rec;
2961 
2962 	rec = (struct jrefrec *)data;
2963 	rec->jr_op = JOP_REMREF;
2964 	inoref_write(&jremref->jr_ref, jseg, rec);
2965 }
2966 
2967 static void
2968 jmvref_write(jmvref, jseg, data)
2969 	struct jmvref *jmvref;
2970 	struct jseg *jseg;
2971 	uint8_t *data;
2972 {
2973 	struct jmvrec *rec;
2974 
2975 	rec = (struct jmvrec *)data;
2976 	rec->jm_op = JOP_MVREF;
2977 	rec->jm_ino = jmvref->jm_ino;
2978 	rec->jm_parent = jmvref->jm_parent;
2979 	rec->jm_oldoff = jmvref->jm_oldoff;
2980 	rec->jm_newoff = jmvref->jm_newoff;
2981 }
2982 
2983 static void
2984 jnewblk_write(jnewblk, jseg, data)
2985 	struct jnewblk *jnewblk;
2986 	struct jseg *jseg;
2987 	uint8_t *data;
2988 {
2989 	struct jblkrec *rec;
2990 
2991 	jnewblk->jn_jsegdep->jd_seg = jseg;
2992 	rec = (struct jblkrec *)data;
2993 	rec->jb_op = JOP_NEWBLK;
2994 	rec->jb_ino = jnewblk->jn_ino;
2995 	rec->jb_blkno = jnewblk->jn_blkno;
2996 	rec->jb_lbn = jnewblk->jn_lbn;
2997 	rec->jb_frags = jnewblk->jn_frags;
2998 	rec->jb_oldfrags = jnewblk->jn_oldfrags;
2999 }
3000 
3001 static void
3002 jfreeblk_write(jfreeblk, jseg, data)
3003 	struct jfreeblk *jfreeblk;
3004 	struct jseg *jseg;
3005 	uint8_t *data;
3006 {
3007 	struct jblkrec *rec;
3008 
3009 	jfreeblk->jf_dep.jb_jsegdep->jd_seg = jseg;
3010 	rec = (struct jblkrec *)data;
3011 	rec->jb_op = JOP_FREEBLK;
3012 	rec->jb_ino = jfreeblk->jf_ino;
3013 	rec->jb_blkno = jfreeblk->jf_blkno;
3014 	rec->jb_lbn = jfreeblk->jf_lbn;
3015 	rec->jb_frags = jfreeblk->jf_frags;
3016 	rec->jb_oldfrags = 0;
3017 }
3018 
3019 static void
3020 jfreefrag_write(jfreefrag, jseg, data)
3021 	struct jfreefrag *jfreefrag;
3022 	struct jseg *jseg;
3023 	uint8_t *data;
3024 {
3025 	struct jblkrec *rec;
3026 
3027 	jfreefrag->fr_jsegdep->jd_seg = jseg;
3028 	rec = (struct jblkrec *)data;
3029 	rec->jb_op = JOP_FREEBLK;
3030 	rec->jb_ino = jfreefrag->fr_ino;
3031 	rec->jb_blkno = jfreefrag->fr_blkno;
3032 	rec->jb_lbn = jfreefrag->fr_lbn;
3033 	rec->jb_frags = jfreefrag->fr_frags;
3034 	rec->jb_oldfrags = 0;
3035 }
3036 
3037 static void
3038 jtrunc_write(jtrunc, jseg, data)
3039 	struct jtrunc *jtrunc;
3040 	struct jseg *jseg;
3041 	uint8_t *data;
3042 {
3043 	struct jtrncrec *rec;
3044 
3045 	jtrunc->jt_dep.jb_jsegdep->jd_seg = jseg;
3046 	rec = (struct jtrncrec *)data;
3047 	rec->jt_op = JOP_TRUNC;
3048 	rec->jt_ino = jtrunc->jt_ino;
3049 	rec->jt_size = jtrunc->jt_size;
3050 	rec->jt_extsize = jtrunc->jt_extsize;
3051 }
3052 
3053 static void
3054 jfsync_write(jfsync, jseg, data)
3055 	struct jfsync *jfsync;
3056 	struct jseg *jseg;
3057 	uint8_t *data;
3058 {
3059 	struct jtrncrec *rec;
3060 
3061 	rec = (struct jtrncrec *)data;
3062 	rec->jt_op = JOP_SYNC;
3063 	rec->jt_ino = jfsync->jfs_ino;
3064 	rec->jt_size = jfsync->jfs_size;
3065 	rec->jt_extsize = jfsync->jfs_extsize;
3066 }
3067 
3068 static void
3069 softdep_flushjournal(mp)
3070 	struct mount *mp;
3071 {
3072 	struct jblocks *jblocks;
3073 	struct ufsmount *ump;
3074 
3075 	if (MOUNTEDSUJ(mp) == 0)
3076 		return;
3077 	ump = VFSTOUFS(mp);
3078 	jblocks = ump->softdep_jblocks;
3079 	ACQUIRE_LOCK(&lk);
3080 	while (ump->softdep_on_journal) {
3081 		jblocks->jb_needseg = 1;
3082 		softdep_process_journal(mp, NULL, MNT_WAIT);
3083 	}
3084 	FREE_LOCK(&lk);
3085 }
3086 
3087 /*
3088  * Flush some journal records to disk.
3089  */
3090 static void
3091 softdep_process_journal(mp, needwk, flags)
3092 	struct mount *mp;
3093 	struct worklist *needwk;
3094 	int flags;
3095 {
3096 	struct jblocks *jblocks;
3097 	struct ufsmount *ump;
3098 	struct worklist *wk;
3099 	struct jseg *jseg;
3100 	struct buf *bp;
3101 	uint8_t *data;
3102 	struct fs *fs;
3103 	int segwritten;
3104 	int jrecmin;	/* Minimum records per block. */
3105 	int jrecmax;	/* Maximum records per block. */
3106 	int size;
3107 	int cnt;
3108 	int off;
3109 	int devbsize;
3110 
3111 	if (MOUNTEDSUJ(mp) == 0)
3112 		return;
3113 	ump = VFSTOUFS(mp);
3114 	fs = ump->um_fs;
3115 	jblocks = ump->softdep_jblocks;
3116 	devbsize = ump->um_devvp->v_bufobj.bo_bsize;
3117 	/*
3118 	 * We write anywhere between a disk block and fs block.  The upper
3119 	 * bound is picked to prevent buffer cache fragmentation and limit
3120 	 * processing time per I/O.
3121 	 */
3122 	jrecmin = (devbsize / JREC_SIZE) - 1; /* -1 for seg header */
3123 	jrecmax = (fs->fs_bsize / devbsize) * jrecmin;
3124 	segwritten = 0;
3125 	for (;;) {
3126 		cnt = ump->softdep_on_journal;
3127 		/*
3128 		 * Criteria for writing a segment:
3129 		 * 1) We have a full block.
3130 		 * 2) We're called from jwait() and haven't found the
3131 		 *    journal item yet.
3132 		 * 3) Always write if needseg is set.
3133 		 * 4) If we are called from process_worklist and have
3134 		 *    not yet written anything we write a partial block
3135 		 *    to enforce a 1 second maximum latency on journal
3136 		 *    entries.
3137 		 */
3138 		if (cnt < (jrecmax - 1) && needwk == NULL &&
3139 		    jblocks->jb_needseg == 0 && (segwritten || cnt == 0))
3140 			break;
3141 		cnt++;
3142 		/*
3143 		 * Verify some free journal space.  softdep_prealloc() should
3144 	 	 * guarantee that we don't run out so this is indicative of
3145 		 * a problem with the flow control.  Try to recover
3146 		 * gracefully in any event.
3147 		 */
3148 		while (jblocks->jb_free == 0) {
3149 			if (flags != MNT_WAIT)
3150 				break;
3151 			printf("softdep: Out of journal space!\n");
3152 			softdep_speedup();
3153 			msleep(jblocks, &lk, PRIBIO, "jblocks", hz);
3154 		}
3155 		FREE_LOCK(&lk);
3156 		jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS);
3157 		workitem_alloc(&jseg->js_list, D_JSEG, mp);
3158 		LIST_INIT(&jseg->js_entries);
3159 		LIST_INIT(&jseg->js_indirs);
3160 		jseg->js_state = ATTACHED;
3161 		jseg->js_jblocks = jblocks;
3162 		bp = geteblk(fs->fs_bsize, 0);
3163 		ACQUIRE_LOCK(&lk);
3164 		/*
3165 		 * If there was a race while we were allocating the block
3166 		 * and jseg the entry we care about was likely written.
3167 		 * We bail out in both the WAIT and NOWAIT case and assume
3168 		 * the caller will loop if the entry it cares about is
3169 		 * not written.
3170 		 */
3171 		cnt = ump->softdep_on_journal;
3172 		if (cnt + jblocks->jb_needseg == 0 || jblocks->jb_free == 0) {
3173 			bp->b_flags |= B_INVAL | B_NOCACHE;
3174 			WORKITEM_FREE(jseg, D_JSEG);
3175 			FREE_LOCK(&lk);
3176 			brelse(bp);
3177 			ACQUIRE_LOCK(&lk);
3178 			break;
3179 		}
3180 		/*
3181 		 * Calculate the disk block size required for the available
3182 		 * records rounded to the min size.
3183 		 */
3184 		if (cnt == 0)
3185 			size = devbsize;
3186 		else if (cnt < jrecmax)
3187 			size = howmany(cnt, jrecmin) * devbsize;
3188 		else
3189 			size = fs->fs_bsize;
3190 		/*
3191 		 * Allocate a disk block for this journal data and account
3192 		 * for truncation of the requested size if enough contiguous
3193 		 * space was not available.
3194 		 */
3195 		bp->b_blkno = jblocks_alloc(jblocks, size, &size);
3196 		bp->b_lblkno = bp->b_blkno;
3197 		bp->b_offset = bp->b_blkno * DEV_BSIZE;
3198 		bp->b_bcount = size;
3199 		bp->b_bufobj = &ump->um_devvp->v_bufobj;
3200 		bp->b_flags &= ~B_INVAL;
3201 		bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY;
3202 		/*
3203 		 * Initialize our jseg with cnt records.  Assign the next
3204 		 * sequence number to it and link it in-order.
3205 		 */
3206 		cnt = MIN(cnt, (size / devbsize) * jrecmin);
3207 		jseg->js_buf = bp;
3208 		jseg->js_cnt = cnt;
3209 		jseg->js_refs = cnt + 1;	/* Self ref. */
3210 		jseg->js_size = size;
3211 		jseg->js_seq = jblocks->jb_nextseq++;
3212 		if (jblocks->jb_oldestseg == NULL)
3213 			jblocks->jb_oldestseg = jseg;
3214 		jseg->js_oldseq = jblocks->jb_oldestseg->js_seq;
3215 		TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next);
3216 		if (jblocks->jb_writeseg == NULL)
3217 			jblocks->jb_writeseg = jseg;
3218 		/*
3219 		 * Start filling in records from the pending list.
3220 		 */
3221 		data = bp->b_data;
3222 		off = 0;
3223 		while ((wk = LIST_FIRST(&ump->softdep_journal_pending))
3224 		    != NULL) {
3225 			if (cnt == 0)
3226 				break;
3227 			/* Place a segment header on every device block. */
3228 			if ((off % devbsize) == 0) {
3229 				jseg_write(ump, jseg, data);
3230 				off += JREC_SIZE;
3231 				data = bp->b_data + off;
3232 			}
3233 			if (wk == needwk)
3234 				needwk = NULL;
3235 			remove_from_journal(wk);
3236 			wk->wk_state |= INPROGRESS;
3237 			WORKLIST_INSERT(&jseg->js_entries, wk);
3238 			switch (wk->wk_type) {
3239 			case D_JADDREF:
3240 				jaddref_write(WK_JADDREF(wk), jseg, data);
3241 				break;
3242 			case D_JREMREF:
3243 				jremref_write(WK_JREMREF(wk), jseg, data);
3244 				break;
3245 			case D_JMVREF:
3246 				jmvref_write(WK_JMVREF(wk), jseg, data);
3247 				break;
3248 			case D_JNEWBLK:
3249 				jnewblk_write(WK_JNEWBLK(wk), jseg, data);
3250 				break;
3251 			case D_JFREEBLK:
3252 				jfreeblk_write(WK_JFREEBLK(wk), jseg, data);
3253 				break;
3254 			case D_JFREEFRAG:
3255 				jfreefrag_write(WK_JFREEFRAG(wk), jseg, data);
3256 				break;
3257 			case D_JTRUNC:
3258 				jtrunc_write(WK_JTRUNC(wk), jseg, data);
3259 				break;
3260 			case D_JFSYNC:
3261 				jfsync_write(WK_JFSYNC(wk), jseg, data);
3262 				break;
3263 			default:
3264 				panic("process_journal: Unknown type %s",
3265 				    TYPENAME(wk->wk_type));
3266 				/* NOTREACHED */
3267 			}
3268 			off += JREC_SIZE;
3269 			data = bp->b_data + off;
3270 			cnt--;
3271 		}
3272 		/*
3273 		 * Write this one buffer and continue.
3274 		 */
3275 		segwritten = 1;
3276 		jblocks->jb_needseg = 0;
3277 		WORKLIST_INSERT(&bp->b_dep, &jseg->js_list);
3278 		FREE_LOCK(&lk);
3279 		BO_LOCK(bp->b_bufobj);
3280 		bgetvp(ump->um_devvp, bp);
3281 		BO_UNLOCK(bp->b_bufobj);
3282 		/*
3283 		 * We only do the blocking wait once we find the journal
3284 		 * entry we're looking for.
3285 		 */
3286 		if (needwk == NULL && flags == MNT_WAIT)
3287 			bwrite(bp);
3288 		else
3289 			bawrite(bp);
3290 		ACQUIRE_LOCK(&lk);
3291 	}
3292 	/*
3293 	 * If we've suspended the filesystem because we ran out of journal
3294 	 * space either try to sync it here to make some progress or
3295 	 * unsuspend it if we already have.
3296 	 */
3297 	if (flags == 0 && jblocks->jb_suspended) {
3298 		if (journal_unsuspend(ump))
3299 			return;
3300 		FREE_LOCK(&lk);
3301 		VFS_SYNC(mp, MNT_NOWAIT);
3302 		ffs_sbupdate(ump, MNT_WAIT, 0);
3303 		ACQUIRE_LOCK(&lk);
3304 	}
3305 }
3306 
3307 /*
3308  * Complete a jseg, allowing all dependencies awaiting journal writes
3309  * to proceed.  Each journal dependency also attaches a jsegdep to dependent
3310  * structures so that the journal segment can be freed to reclaim space.
3311  */
3312 static void
3313 complete_jseg(jseg)
3314 	struct jseg *jseg;
3315 {
3316 	struct worklist *wk;
3317 	struct jmvref *jmvref;
3318 	int waiting;
3319 #ifdef INVARIANTS
3320 	int i = 0;
3321 #endif
3322 
3323 	while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) {
3324 		WORKLIST_REMOVE(wk);
3325 		waiting = wk->wk_state & IOWAITING;
3326 		wk->wk_state &= ~(INPROGRESS | IOWAITING);
3327 		wk->wk_state |= COMPLETE;
3328 		KASSERT(i++ < jseg->js_cnt,
3329 		    ("handle_written_jseg: overflow %d >= %d",
3330 		    i - 1, jseg->js_cnt));
3331 		switch (wk->wk_type) {
3332 		case D_JADDREF:
3333 			handle_written_jaddref(WK_JADDREF(wk));
3334 			break;
3335 		case D_JREMREF:
3336 			handle_written_jremref(WK_JREMREF(wk));
3337 			break;
3338 		case D_JMVREF:
3339 			rele_jseg(jseg);	/* No jsegdep. */
3340 			jmvref = WK_JMVREF(wk);
3341 			LIST_REMOVE(jmvref, jm_deps);
3342 			if ((jmvref->jm_pagedep->pd_state & ONWORKLIST) == 0)
3343 				free_pagedep(jmvref->jm_pagedep);
3344 			WORKITEM_FREE(jmvref, D_JMVREF);
3345 			break;
3346 		case D_JNEWBLK:
3347 			handle_written_jnewblk(WK_JNEWBLK(wk));
3348 			break;
3349 		case D_JFREEBLK:
3350 			handle_written_jblkdep(&WK_JFREEBLK(wk)->jf_dep);
3351 			break;
3352 		case D_JTRUNC:
3353 			handle_written_jblkdep(&WK_JTRUNC(wk)->jt_dep);
3354 			break;
3355 		case D_JFSYNC:
3356 			rele_jseg(jseg);	/* No jsegdep. */
3357 			WORKITEM_FREE(wk, D_JFSYNC);
3358 			break;
3359 		case D_JFREEFRAG:
3360 			handle_written_jfreefrag(WK_JFREEFRAG(wk));
3361 			break;
3362 		default:
3363 			panic("handle_written_jseg: Unknown type %s",
3364 			    TYPENAME(wk->wk_type));
3365 			/* NOTREACHED */
3366 		}
3367 		if (waiting)
3368 			wakeup(wk);
3369 	}
3370 	/* Release the self reference so the structure may be freed. */
3371 	rele_jseg(jseg);
3372 }
3373 
3374 /*
3375  * Mark a jseg as DEPCOMPLETE and throw away the buffer.  Handle jseg
3376  * completions in order only.
3377  */
3378 static void
3379 handle_written_jseg(jseg, bp)
3380 	struct jseg *jseg;
3381 	struct buf *bp;
3382 {
3383 	struct jblocks *jblocks;
3384 	struct jseg *jsegn;
3385 
3386 	if (jseg->js_refs == 0)
3387 		panic("handle_written_jseg: No self-reference on %p", jseg);
3388 	jseg->js_state |= DEPCOMPLETE;
3389 	/*
3390 	 * We'll never need this buffer again, set flags so it will be
3391 	 * discarded.
3392 	 */
3393 	bp->b_flags |= B_INVAL | B_NOCACHE;
3394 	jblocks = jseg->js_jblocks;
3395 	/*
3396 	 * Don't allow out of order completions.  If this isn't the first
3397 	 * block wait for it to write before we're done.
3398 	 */
3399 	if (jseg != jblocks->jb_writeseg)
3400 		return;
3401 	/* Iterate through available jsegs processing their entries. */
3402 	do {
3403 		jblocks->jb_oldestwrseq = jseg->js_oldseq;
3404 		jsegn = TAILQ_NEXT(jseg, js_next);
3405 		complete_jseg(jseg);
3406 		jseg = jsegn;
3407 	} while (jseg && jseg->js_state & DEPCOMPLETE);
3408 	jblocks->jb_writeseg = jseg;
3409 	/*
3410 	 * Attempt to free jsegs now that oldestwrseq may have advanced.
3411 	 */
3412 	free_jsegs(jblocks);
3413 }
3414 
3415 static inline struct jsegdep *
3416 inoref_jseg(inoref)
3417 	struct inoref *inoref;
3418 {
3419 	struct jsegdep *jsegdep;
3420 
3421 	jsegdep = inoref->if_jsegdep;
3422 	inoref->if_jsegdep = NULL;
3423 
3424 	return (jsegdep);
3425 }
3426 
3427 /*
3428  * Called once a jremref has made it to stable store.  The jremref is marked
3429  * complete and we attempt to free it.  Any pagedeps writes sleeping waiting
3430  * for the jremref to complete will be awoken by free_jremref.
3431  */
3432 static void
3433 handle_written_jremref(jremref)
3434 	struct jremref *jremref;
3435 {
3436 	struct inodedep *inodedep;
3437 	struct jsegdep *jsegdep;
3438 	struct dirrem *dirrem;
3439 
3440 	/* Grab the jsegdep. */
3441 	jsegdep = inoref_jseg(&jremref->jr_ref);
3442 	/*
3443 	 * Remove us from the inoref list.
3444 	 */
3445 	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino,
3446 	    0, &inodedep) == 0)
3447 		panic("handle_written_jremref: Lost inodedep");
3448 	TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
3449 	/*
3450 	 * Complete the dirrem.
3451 	 */
3452 	dirrem = jremref->jr_dirrem;
3453 	jremref->jr_dirrem = NULL;
3454 	LIST_REMOVE(jremref, jr_deps);
3455 	jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT;
3456 	jwork_insert(&dirrem->dm_jwork, jsegdep);
3457 	if (LIST_EMPTY(&dirrem->dm_jremrefhd) &&
3458 	    (dirrem->dm_state & COMPLETE) != 0)
3459 		add_to_worklist(&dirrem->dm_list, 0);
3460 	free_jremref(jremref);
3461 }
3462 
3463 /*
3464  * Called once a jaddref has made it to stable store.  The dependency is
3465  * marked complete and any dependent structures are added to the inode
3466  * bufwait list to be completed as soon as it is written.  If a bitmap write
3467  * depends on this entry we move the inode into the inodedephd of the
3468  * bmsafemap dependency and attempt to remove the jaddref from the bmsafemap.
3469  */
3470 static void
3471 handle_written_jaddref(jaddref)
3472 	struct jaddref *jaddref;
3473 {
3474 	struct jsegdep *jsegdep;
3475 	struct inodedep *inodedep;
3476 	struct diradd *diradd;
3477 	struct mkdir *mkdir;
3478 
3479 	/* Grab the jsegdep. */
3480 	jsegdep = inoref_jseg(&jaddref->ja_ref);
3481 	mkdir = NULL;
3482 	diradd = NULL;
3483 	if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
3484 	    0, &inodedep) == 0)
3485 		panic("handle_written_jaddref: Lost inodedep.");
3486 	if (jaddref->ja_diradd == NULL)
3487 		panic("handle_written_jaddref: No dependency");
3488 	if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) {
3489 		diradd = jaddref->ja_diradd;
3490 		WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list);
3491 	} else if (jaddref->ja_state & MKDIR_PARENT) {
3492 		mkdir = jaddref->ja_mkdir;
3493 		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list);
3494 	} else if (jaddref->ja_state & MKDIR_BODY)
3495 		mkdir = jaddref->ja_mkdir;
3496 	else
3497 		panic("handle_written_jaddref: Unknown dependency %p",
3498 		    jaddref->ja_diradd);
3499 	jaddref->ja_diradd = NULL;	/* also clears ja_mkdir */
3500 	/*
3501 	 * Remove us from the inode list.
3502 	 */
3503 	TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps);
3504 	/*
3505 	 * The mkdir may be waiting on the jaddref to clear before freeing.
3506 	 */
3507 	if (mkdir) {
3508 		KASSERT(mkdir->md_list.wk_type == D_MKDIR,
3509 		    ("handle_written_jaddref: Incorrect type for mkdir %s",
3510 		    TYPENAME(mkdir->md_list.wk_type)));
3511 		mkdir->md_jaddref = NULL;
3512 		diradd = mkdir->md_diradd;
3513 		mkdir->md_state |= DEPCOMPLETE;
3514 		complete_mkdir(mkdir);
3515 	}
3516 	jwork_insert(&diradd->da_jwork, jsegdep);
3517 	if (jaddref->ja_state & NEWBLOCK) {
3518 		inodedep->id_state |= ONDEPLIST;
3519 		LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd,
3520 		    inodedep, id_deps);
3521 	}
3522 	free_jaddref(jaddref);
3523 }
3524 
3525 /*
3526  * Called once a jnewblk journal is written.  The allocdirect or allocindir
3527  * is placed in the bmsafemap to await notification of a written bitmap.  If
3528  * the operation was canceled we add the segdep to the appropriate
3529  * dependency to free the journal space once the canceling operation
3530  * completes.
3531  */
3532 static void
3533 handle_written_jnewblk(jnewblk)
3534 	struct jnewblk *jnewblk;
3535 {
3536 	struct bmsafemap *bmsafemap;
3537 	struct freefrag *freefrag;
3538 	struct freework *freework;
3539 	struct jsegdep *jsegdep;
3540 	struct newblk *newblk;
3541 
3542 	/* Grab the jsegdep. */
3543 	jsegdep = jnewblk->jn_jsegdep;
3544 	jnewblk->jn_jsegdep = NULL;
3545 	if (jnewblk->jn_dep == NULL)
3546 		panic("handle_written_jnewblk: No dependency for the segdep.");
3547 	switch (jnewblk->jn_dep->wk_type) {
3548 	case D_NEWBLK:
3549 	case D_ALLOCDIRECT:
3550 	case D_ALLOCINDIR:
3551 		/*
3552 		 * Add the written block to the bmsafemap so it can
3553 		 * be notified when the bitmap is on disk.
3554 		 */
3555 		newblk = WK_NEWBLK(jnewblk->jn_dep);
3556 		newblk->nb_jnewblk = NULL;
3557 		if ((newblk->nb_state & GOINGAWAY) == 0) {
3558 			bmsafemap = newblk->nb_bmsafemap;
3559 			newblk->nb_state |= ONDEPLIST;
3560 			LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk,
3561 			    nb_deps);
3562 		}
3563 		jwork_insert(&newblk->nb_jwork, jsegdep);
3564 		break;
3565 	case D_FREEFRAG:
3566 		/*
3567 		 * A newblock being removed by a freefrag when replaced by
3568 		 * frag extension.
3569 		 */
3570 		freefrag = WK_FREEFRAG(jnewblk->jn_dep);
3571 		freefrag->ff_jdep = NULL;
3572 		WORKLIST_INSERT(&freefrag->ff_jwork, &jsegdep->jd_list);
3573 		break;
3574 	case D_FREEWORK:
3575 		/*
3576 		 * A direct block was removed by truncate.
3577 		 */
3578 		freework = WK_FREEWORK(jnewblk->jn_dep);
3579 		freework->fw_jnewblk = NULL;
3580 		WORKLIST_INSERT(&freework->fw_freeblks->fb_jwork,
3581 		    &jsegdep->jd_list);
3582 		break;
3583 	default:
3584 		panic("handle_written_jnewblk: Unknown type %d.",
3585 		    jnewblk->jn_dep->wk_type);
3586 	}
3587 	jnewblk->jn_dep = NULL;
3588 	free_jnewblk(jnewblk);
3589 }
3590 
3591 /*
3592  * Cancel a jfreefrag that won't be needed, probably due to colliding with
3593  * an in-flight allocation that has not yet been committed.  Divorce us
3594  * from the freefrag and mark it DEPCOMPLETE so that it may be added
3595  * to the worklist.
3596  */
3597 static void
3598 cancel_jfreefrag(jfreefrag)
3599 	struct jfreefrag *jfreefrag;
3600 {
3601 	struct freefrag *freefrag;
3602 
3603 	if (jfreefrag->fr_jsegdep) {
3604 		free_jsegdep(jfreefrag->fr_jsegdep);
3605 		jfreefrag->fr_jsegdep = NULL;
3606 	}
3607 	freefrag = jfreefrag->fr_freefrag;
3608 	jfreefrag->fr_freefrag = NULL;
3609 	free_jfreefrag(jfreefrag);
3610 	freefrag->ff_state |= DEPCOMPLETE;
3611 }
3612 
3613 /*
3614  * Free a jfreefrag when the parent freefrag is rendered obsolete.
3615  */
3616 static void
3617 free_jfreefrag(jfreefrag)
3618 	struct jfreefrag *jfreefrag;
3619 {
3620 
3621 	if (jfreefrag->fr_state & INPROGRESS)
3622 		WORKLIST_REMOVE(&jfreefrag->fr_list);
3623 	else if (jfreefrag->fr_state & ONWORKLIST)
3624 		remove_from_journal(&jfreefrag->fr_list);
3625 	if (jfreefrag->fr_freefrag != NULL)
3626 		panic("free_jfreefrag:  Still attached to a freefrag.");
3627 	WORKITEM_FREE(jfreefrag, D_JFREEFRAG);
3628 }
3629 
3630 /*
3631  * Called when the journal write for a jfreefrag completes.  The parent
3632  * freefrag is added to the worklist if this completes its dependencies.
3633  */
3634 static void
3635 handle_written_jfreefrag(jfreefrag)
3636 	struct jfreefrag *jfreefrag;
3637 {
3638 	struct jsegdep *jsegdep;
3639 	struct freefrag *freefrag;
3640 
3641 	/* Grab the jsegdep. */
3642 	jsegdep = jfreefrag->fr_jsegdep;
3643 	jfreefrag->fr_jsegdep = NULL;
3644 	freefrag = jfreefrag->fr_freefrag;
3645 	if (freefrag == NULL)
3646 		panic("handle_written_jfreefrag: No freefrag.");
3647 	freefrag->ff_state |= DEPCOMPLETE;
3648 	freefrag->ff_jdep = NULL;
3649 	jwork_insert(&freefrag->ff_jwork, jsegdep);
3650 	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
3651 		add_to_worklist(&freefrag->ff_list, 0);
3652 	jfreefrag->fr_freefrag = NULL;
3653 	free_jfreefrag(jfreefrag);
3654 }
3655 
3656 /*
3657  * Called when the journal write for a jfreeblk completes.  The jfreeblk
3658  * is removed from the freeblks list of pending journal writes and the
3659  * jsegdep is moved to the freeblks jwork to be completed when all blocks
3660  * have been reclaimed.
3661  */
3662 static void
3663 handle_written_jblkdep(jblkdep)
3664 	struct jblkdep *jblkdep;
3665 {
3666 	struct freeblks *freeblks;
3667 	struct jsegdep *jsegdep;
3668 
3669 	/* Grab the jsegdep. */
3670 	jsegdep = jblkdep->jb_jsegdep;
3671 	jblkdep->jb_jsegdep = NULL;
3672 	freeblks = jblkdep->jb_freeblks;
3673 	LIST_REMOVE(jblkdep, jb_deps);
3674 	WORKLIST_INSERT(&freeblks->fb_jwork, &jsegdep->jd_list);
3675 	/*
3676 	 * If the freeblks is all journaled, we can add it to the worklist.
3677 	 */
3678 	if (LIST_EMPTY(&freeblks->fb_jblkdephd) &&
3679 	    (freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
3680 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
3681 
3682 	free_jblkdep(jblkdep);
3683 }
3684 
3685 static struct jsegdep *
3686 newjsegdep(struct worklist *wk)
3687 {
3688 	struct jsegdep *jsegdep;
3689 
3690 	jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS);
3691 	workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp);
3692 	jsegdep->jd_seg = NULL;
3693 
3694 	return (jsegdep);
3695 }
3696 
3697 static struct jmvref *
3698 newjmvref(dp, ino, oldoff, newoff)
3699 	struct inode *dp;
3700 	ino_t ino;
3701 	off_t oldoff;
3702 	off_t newoff;
3703 {
3704 	struct jmvref *jmvref;
3705 
3706 	jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS);
3707 	workitem_alloc(&jmvref->jm_list, D_JMVREF, UFSTOVFS(dp->i_ump));
3708 	jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE;
3709 	jmvref->jm_parent = dp->i_number;
3710 	jmvref->jm_ino = ino;
3711 	jmvref->jm_oldoff = oldoff;
3712 	jmvref->jm_newoff = newoff;
3713 
3714 	return (jmvref);
3715 }
3716 
3717 /*
3718  * Allocate a new jremref that tracks the removal of ip from dp with the
3719  * directory entry offset of diroff.  Mark the entry as ATTACHED and
3720  * DEPCOMPLETE as we have all the information required for the journal write
3721  * and the directory has already been removed from the buffer.  The caller
3722  * is responsible for linking the jremref into the pagedep and adding it
3723  * to the journal to write.  The MKDIR_PARENT flag is set if we're doing
3724  * a DOTDOT addition so handle_workitem_remove() can properly assign
3725  * the jsegdep when we're done.
3726  */
3727 static struct jremref *
3728 newjremref(struct dirrem *dirrem, struct inode *dp, struct inode *ip,
3729     off_t diroff, nlink_t nlink)
3730 {
3731 	struct jremref *jremref;
3732 
3733 	jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS);
3734 	workitem_alloc(&jremref->jr_list, D_JREMREF, UFSTOVFS(dp->i_ump));
3735 	jremref->jr_state = ATTACHED;
3736 	newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff,
3737 	   nlink, ip->i_mode);
3738 	jremref->jr_dirrem = dirrem;
3739 
3740 	return (jremref);
3741 }
3742 
3743 static inline void
3744 newinoref(struct inoref *inoref, ino_t ino, ino_t parent, off_t diroff,
3745     nlink_t nlink, uint16_t mode)
3746 {
3747 
3748 	inoref->if_jsegdep = newjsegdep(&inoref->if_list);
3749 	inoref->if_diroff = diroff;
3750 	inoref->if_ino = ino;
3751 	inoref->if_parent = parent;
3752 	inoref->if_nlink = nlink;
3753 	inoref->if_mode = mode;
3754 }
3755 
3756 /*
3757  * Allocate a new jaddref to track the addition of ino to dp at diroff.  The
3758  * directory offset may not be known until later.  The caller is responsible
3759  * adding the entry to the journal when this information is available.  nlink
3760  * should be the link count prior to the addition and mode is only required
3761  * to have the correct FMT.
3762  */
3763 static struct jaddref *
3764 newjaddref(struct inode *dp, ino_t ino, off_t diroff, int16_t nlink,
3765     uint16_t mode)
3766 {
3767 	struct jaddref *jaddref;
3768 
3769 	jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS);
3770 	workitem_alloc(&jaddref->ja_list, D_JADDREF, UFSTOVFS(dp->i_ump));
3771 	jaddref->ja_state = ATTACHED;
3772 	jaddref->ja_mkdir = NULL;
3773 	newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode);
3774 
3775 	return (jaddref);
3776 }
3777 
3778 /*
3779  * Create a new free dependency for a freework.  The caller is responsible
3780  * for adjusting the reference count when it has the lock held.  The freedep
3781  * will track an outstanding bitmap write that will ultimately clear the
3782  * freework to continue.
3783  */
3784 static struct freedep *
3785 newfreedep(struct freework *freework)
3786 {
3787 	struct freedep *freedep;
3788 
3789 	freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS);
3790 	workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp);
3791 	freedep->fd_freework = freework;
3792 
3793 	return (freedep);
3794 }
3795 
3796 /*
3797  * Free a freedep structure once the buffer it is linked to is written.  If
3798  * this is the last reference to the freework schedule it for completion.
3799  */
3800 static void
3801 free_freedep(freedep)
3802 	struct freedep *freedep;
3803 {
3804 	struct freework *freework;
3805 
3806 	freework = freedep->fd_freework;
3807 	freework->fw_freeblks->fb_cgwait--;
3808 	if (--freework->fw_ref == 0)
3809 		freework_enqueue(freework);
3810 	WORKITEM_FREE(freedep, D_FREEDEP);
3811 }
3812 
3813 /*
3814  * Allocate a new freework structure that may be a level in an indirect
3815  * when parent is not NULL or a top level block when it is.  The top level
3816  * freework structures are allocated without lk held and before the freeblks
3817  * is visible outside of softdep_setup_freeblocks().
3818  */
3819 static struct freework *
3820 newfreework(ump, freeblks, parent, lbn, nb, frags, off, journal)
3821 	struct ufsmount *ump;
3822 	struct freeblks *freeblks;
3823 	struct freework *parent;
3824 	ufs_lbn_t lbn;
3825 	ufs2_daddr_t nb;
3826 	int frags;
3827 	int off;
3828 	int journal;
3829 {
3830 	struct freework *freework;
3831 
3832 	freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS);
3833 	workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp);
3834 	freework->fw_state = ATTACHED;
3835 	freework->fw_jnewblk = NULL;
3836 	freework->fw_freeblks = freeblks;
3837 	freework->fw_parent = parent;
3838 	freework->fw_lbn = lbn;
3839 	freework->fw_blkno = nb;
3840 	freework->fw_frags = frags;
3841 	freework->fw_indir = NULL;
3842 	freework->fw_ref = (MOUNTEDSUJ(UFSTOVFS(ump)) == 0 || lbn >= -NXADDR)
3843 		? 0 : NINDIR(ump->um_fs) + 1;
3844 	freework->fw_start = freework->fw_off = off;
3845 	if (journal)
3846 		newjfreeblk(freeblks, lbn, nb, frags);
3847 	if (parent == NULL) {
3848 		ACQUIRE_LOCK(&lk);
3849 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
3850 		freeblks->fb_ref++;
3851 		FREE_LOCK(&lk);
3852 	}
3853 
3854 	return (freework);
3855 }
3856 
3857 /*
3858  * Eliminate a jfreeblk for a block that does not need journaling.
3859  */
3860 static void
3861 cancel_jfreeblk(freeblks, blkno)
3862 	struct freeblks *freeblks;
3863 	ufs2_daddr_t blkno;
3864 {
3865 	struct jfreeblk *jfreeblk;
3866 	struct jblkdep *jblkdep;
3867 
3868 	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) {
3869 		if (jblkdep->jb_list.wk_type != D_JFREEBLK)
3870 			continue;
3871 		jfreeblk = WK_JFREEBLK(&jblkdep->jb_list);
3872 		if (jfreeblk->jf_blkno == blkno)
3873 			break;
3874 	}
3875 	if (jblkdep == NULL)
3876 		return;
3877 	free_jsegdep(jblkdep->jb_jsegdep);
3878 	LIST_REMOVE(jblkdep, jb_deps);
3879 	WORKITEM_FREE(jfreeblk, D_JFREEBLK);
3880 }
3881 
3882 /*
3883  * Allocate a new jfreeblk to journal top level block pointer when truncating
3884  * a file.  The caller must add this to the worklist when lk is held.
3885  */
3886 static struct jfreeblk *
3887 newjfreeblk(freeblks, lbn, blkno, frags)
3888 	struct freeblks *freeblks;
3889 	ufs_lbn_t lbn;
3890 	ufs2_daddr_t blkno;
3891 	int frags;
3892 {
3893 	struct jfreeblk *jfreeblk;
3894 
3895 	jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS);
3896 	workitem_alloc(&jfreeblk->jf_dep.jb_list, D_JFREEBLK,
3897 	    freeblks->fb_list.wk_mp);
3898 	jfreeblk->jf_dep.jb_jsegdep = newjsegdep(&jfreeblk->jf_dep.jb_list);
3899 	jfreeblk->jf_dep.jb_freeblks = freeblks;
3900 	jfreeblk->jf_ino = freeblks->fb_inum;
3901 	jfreeblk->jf_lbn = lbn;
3902 	jfreeblk->jf_blkno = blkno;
3903 	jfreeblk->jf_frags = frags;
3904 	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jfreeblk->jf_dep, jb_deps);
3905 
3906 	return (jfreeblk);
3907 }
3908 
3909 /*
3910  * Allocate a new jtrunc to track a partial truncation.
3911  */
3912 static struct jtrunc *
3913 newjtrunc(freeblks, size, extsize)
3914 	struct freeblks *freeblks;
3915 	off_t size;
3916 	int extsize;
3917 {
3918 	struct jtrunc *jtrunc;
3919 
3920 	jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS);
3921 	workitem_alloc(&jtrunc->jt_dep.jb_list, D_JTRUNC,
3922 	    freeblks->fb_list.wk_mp);
3923 	jtrunc->jt_dep.jb_jsegdep = newjsegdep(&jtrunc->jt_dep.jb_list);
3924 	jtrunc->jt_dep.jb_freeblks = freeblks;
3925 	jtrunc->jt_ino = freeblks->fb_inum;
3926 	jtrunc->jt_size = size;
3927 	jtrunc->jt_extsize = extsize;
3928 	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jtrunc->jt_dep, jb_deps);
3929 
3930 	return (jtrunc);
3931 }
3932 
3933 /*
3934  * If we're canceling a new bitmap we have to search for another ref
3935  * to move into the bmsafemap dep.  This might be better expressed
3936  * with another structure.
3937  */
3938 static void
3939 move_newblock_dep(jaddref, inodedep)
3940 	struct jaddref *jaddref;
3941 	struct inodedep *inodedep;
3942 {
3943 	struct inoref *inoref;
3944 	struct jaddref *jaddrefn;
3945 
3946 	jaddrefn = NULL;
3947 	for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
3948 	    inoref = TAILQ_NEXT(inoref, if_deps)) {
3949 		if ((jaddref->ja_state & NEWBLOCK) &&
3950 		    inoref->if_list.wk_type == D_JADDREF) {
3951 			jaddrefn = (struct jaddref *)inoref;
3952 			break;
3953 		}
3954 	}
3955 	if (jaddrefn == NULL)
3956 		return;
3957 	jaddrefn->ja_state &= ~(ATTACHED | UNDONE);
3958 	jaddrefn->ja_state |= jaddref->ja_state &
3959 	    (ATTACHED | UNDONE | NEWBLOCK);
3960 	jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK);
3961 	jaddref->ja_state |= ATTACHED;
3962 	LIST_REMOVE(jaddref, ja_bmdeps);
3963 	LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn,
3964 	    ja_bmdeps);
3965 }
3966 
3967 /*
3968  * Cancel a jaddref either before it has been written or while it is being
3969  * written.  This happens when a link is removed before the add reaches
3970  * the disk.  The jaddref dependency is kept linked into the bmsafemap
3971  * and inode to prevent the link count or bitmap from reaching the disk
3972  * until handle_workitem_remove() re-adjusts the counts and bitmaps as
3973  * required.
3974  *
3975  * Returns 1 if the canceled addref requires journaling of the remove and
3976  * 0 otherwise.
3977  */
3978 static int
3979 cancel_jaddref(jaddref, inodedep, wkhd)
3980 	struct jaddref *jaddref;
3981 	struct inodedep *inodedep;
3982 	struct workhead *wkhd;
3983 {
3984 	struct inoref *inoref;
3985 	struct jsegdep *jsegdep;
3986 	int needsj;
3987 
3988 	KASSERT((jaddref->ja_state & COMPLETE) == 0,
3989 	    ("cancel_jaddref: Canceling complete jaddref"));
3990 	if (jaddref->ja_state & (INPROGRESS | COMPLETE))
3991 		needsj = 1;
3992 	else
3993 		needsj = 0;
3994 	if (inodedep == NULL)
3995 		if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
3996 		    0, &inodedep) == 0)
3997 			panic("cancel_jaddref: Lost inodedep");
3998 	/*
3999 	 * We must adjust the nlink of any reference operation that follows
4000 	 * us so that it is consistent with the in-memory reference.  This
4001 	 * ensures that inode nlink rollbacks always have the correct link.
4002 	 */
4003 	if (needsj == 0) {
4004 		for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
4005 		    inoref = TAILQ_NEXT(inoref, if_deps)) {
4006 			if (inoref->if_state & GOINGAWAY)
4007 				break;
4008 			inoref->if_nlink--;
4009 		}
4010 	}
4011 	jsegdep = inoref_jseg(&jaddref->ja_ref);
4012 	if (jaddref->ja_state & NEWBLOCK)
4013 		move_newblock_dep(jaddref, inodedep);
4014 	wake_worklist(&jaddref->ja_list);
4015 	jaddref->ja_mkdir = NULL;
4016 	if (jaddref->ja_state & INPROGRESS) {
4017 		jaddref->ja_state &= ~INPROGRESS;
4018 		WORKLIST_REMOVE(&jaddref->ja_list);
4019 		jwork_insert(wkhd, jsegdep);
4020 	} else {
4021 		free_jsegdep(jsegdep);
4022 		if (jaddref->ja_state & DEPCOMPLETE)
4023 			remove_from_journal(&jaddref->ja_list);
4024 	}
4025 	jaddref->ja_state |= (GOINGAWAY | DEPCOMPLETE);
4026 	/*
4027 	 * Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove
4028 	 * can arrange for them to be freed with the bitmap.  Otherwise we
4029 	 * no longer need this addref attached to the inoreflst and it
4030 	 * will incorrectly adjust nlink if we leave it.
4031 	 */
4032 	if ((jaddref->ja_state & NEWBLOCK) == 0) {
4033 		TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
4034 		    if_deps);
4035 		jaddref->ja_state |= COMPLETE;
4036 		free_jaddref(jaddref);
4037 		return (needsj);
4038 	}
4039 	/*
4040 	 * Leave the head of the list for jsegdeps for fast merging.
4041 	 */
4042 	if (LIST_FIRST(wkhd) != NULL) {
4043 		jaddref->ja_state |= ONWORKLIST;
4044 		LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list);
4045 	} else
4046 		WORKLIST_INSERT(wkhd, &jaddref->ja_list);
4047 
4048 	return (needsj);
4049 }
4050 
4051 /*
4052  * Attempt to free a jaddref structure when some work completes.  This
4053  * should only succeed once the entry is written and all dependencies have
4054  * been notified.
4055  */
4056 static void
4057 free_jaddref(jaddref)
4058 	struct jaddref *jaddref;
4059 {
4060 
4061 	if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE)
4062 		return;
4063 	if (jaddref->ja_ref.if_jsegdep)
4064 		panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n",
4065 		    jaddref, jaddref->ja_state);
4066 	if (jaddref->ja_state & NEWBLOCK)
4067 		LIST_REMOVE(jaddref, ja_bmdeps);
4068 	if (jaddref->ja_state & (INPROGRESS | ONWORKLIST))
4069 		panic("free_jaddref: Bad state %p(0x%X)",
4070 		    jaddref, jaddref->ja_state);
4071 	if (jaddref->ja_mkdir != NULL)
4072 		panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state);
4073 	WORKITEM_FREE(jaddref, D_JADDREF);
4074 }
4075 
4076 /*
4077  * Free a jremref structure once it has been written or discarded.
4078  */
4079 static void
4080 free_jremref(jremref)
4081 	struct jremref *jremref;
4082 {
4083 
4084 	if (jremref->jr_ref.if_jsegdep)
4085 		free_jsegdep(jremref->jr_ref.if_jsegdep);
4086 	if (jremref->jr_state & INPROGRESS)
4087 		panic("free_jremref: IO still pending");
4088 	WORKITEM_FREE(jremref, D_JREMREF);
4089 }
4090 
4091 /*
4092  * Free a jnewblk structure.
4093  */
4094 static void
4095 free_jnewblk(jnewblk)
4096 	struct jnewblk *jnewblk;
4097 {
4098 
4099 	if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE)
4100 		return;
4101 	LIST_REMOVE(jnewblk, jn_deps);
4102 	if (jnewblk->jn_dep != NULL)
4103 		panic("free_jnewblk: Dependency still attached.");
4104 	WORKITEM_FREE(jnewblk, D_JNEWBLK);
4105 }
4106 
4107 /*
4108  * Cancel a jnewblk which has been been made redundant by frag extension.
4109  */
4110 static void
4111 cancel_jnewblk(jnewblk, wkhd)
4112 	struct jnewblk *jnewblk;
4113 	struct workhead *wkhd;
4114 {
4115 	struct jsegdep *jsegdep;
4116 
4117 	jsegdep = jnewblk->jn_jsegdep;
4118 	if (jnewblk->jn_jsegdep == NULL || jnewblk->jn_dep == NULL)
4119 		panic("cancel_jnewblk: Invalid state");
4120 	jnewblk->jn_jsegdep  = NULL;
4121 	jnewblk->jn_dep = NULL;
4122 	jnewblk->jn_state |= GOINGAWAY;
4123 	if (jnewblk->jn_state & INPROGRESS) {
4124 		jnewblk->jn_state &= ~INPROGRESS;
4125 		WORKLIST_REMOVE(&jnewblk->jn_list);
4126 		jwork_insert(wkhd, jsegdep);
4127 	} else {
4128 		free_jsegdep(jsegdep);
4129 		remove_from_journal(&jnewblk->jn_list);
4130 	}
4131 	wake_worklist(&jnewblk->jn_list);
4132 	WORKLIST_INSERT(wkhd, &jnewblk->jn_list);
4133 }
4134 
4135 static void
4136 free_jblkdep(jblkdep)
4137 	struct jblkdep *jblkdep;
4138 {
4139 
4140 	if (jblkdep->jb_list.wk_type == D_JFREEBLK)
4141 		WORKITEM_FREE(jblkdep, D_JFREEBLK);
4142 	else if (jblkdep->jb_list.wk_type == D_JTRUNC)
4143 		WORKITEM_FREE(jblkdep, D_JTRUNC);
4144 	else
4145 		panic("free_jblkdep: Unexpected type %s",
4146 		    TYPENAME(jblkdep->jb_list.wk_type));
4147 }
4148 
4149 /*
4150  * Free a single jseg once it is no longer referenced in memory or on
4151  * disk.  Reclaim journal blocks and dependencies waiting for the segment
4152  * to disappear.
4153  */
4154 static void
4155 free_jseg(jseg, jblocks)
4156 	struct jseg *jseg;
4157 	struct jblocks *jblocks;
4158 {
4159 	struct freework *freework;
4160 
4161 	/*
4162 	 * Free freework structures that were lingering to indicate freed
4163 	 * indirect blocks that forced journal write ordering on reallocate.
4164 	 */
4165 	while ((freework = LIST_FIRST(&jseg->js_indirs)) != NULL)
4166 		indirblk_remove(freework);
4167 	if (jblocks->jb_oldestseg == jseg)
4168 		jblocks->jb_oldestseg = TAILQ_NEXT(jseg, js_next);
4169 	TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next);
4170 	jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size);
4171 	KASSERT(LIST_EMPTY(&jseg->js_entries),
4172 	    ("free_jseg: Freed jseg has valid entries."));
4173 	WORKITEM_FREE(jseg, D_JSEG);
4174 }
4175 
4176 /*
4177  * Free all jsegs that meet the criteria for being reclaimed and update
4178  * oldestseg.
4179  */
4180 static void
4181 free_jsegs(jblocks)
4182 	struct jblocks *jblocks;
4183 {
4184 	struct jseg *jseg;
4185 
4186 	/*
4187 	 * Free only those jsegs which have none allocated before them to
4188 	 * preserve the journal space ordering.
4189 	 */
4190 	while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) {
4191 		/*
4192 		 * Only reclaim space when nothing depends on this journal
4193 		 * set and another set has written that it is no longer
4194 		 * valid.
4195 		 */
4196 		if (jseg->js_refs != 0) {
4197 			jblocks->jb_oldestseg = jseg;
4198 			return;
4199 		}
4200 		if (!LIST_EMPTY(&jseg->js_indirs) &&
4201 		    jseg->js_seq >= jblocks->jb_oldestwrseq)
4202 			break;
4203 		free_jseg(jseg, jblocks);
4204 	}
4205 	/*
4206 	 * If we exited the loop above we still must discover the
4207 	 * oldest valid segment.
4208 	 */
4209 	if (jseg)
4210 		for (jseg = jblocks->jb_oldestseg; jseg != NULL;
4211 		     jseg = TAILQ_NEXT(jseg, js_next))
4212 			if (jseg->js_refs != 0)
4213 				break;
4214 	jblocks->jb_oldestseg = jseg;
4215 	/*
4216 	 * The journal has no valid records but some jsegs may still be
4217 	 * waiting on oldestwrseq to advance.  We force a small record
4218 	 * out to permit these lingering records to be reclaimed.
4219 	 */
4220 	if (jblocks->jb_oldestseg == NULL && !TAILQ_EMPTY(&jblocks->jb_segs))
4221 		jblocks->jb_needseg = 1;
4222 }
4223 
4224 /*
4225  * Release one reference to a jseg and free it if the count reaches 0.  This
4226  * should eventually reclaim journal space as well.
4227  */
4228 static void
4229 rele_jseg(jseg)
4230 	struct jseg *jseg;
4231 {
4232 
4233 	KASSERT(jseg->js_refs > 0,
4234 	    ("free_jseg: Invalid refcnt %d", jseg->js_refs));
4235 	if (--jseg->js_refs != 0)
4236 		return;
4237 	free_jsegs(jseg->js_jblocks);
4238 }
4239 
4240 /*
4241  * Release a jsegdep and decrement the jseg count.
4242  */
4243 static void
4244 free_jsegdep(jsegdep)
4245 	struct jsegdep *jsegdep;
4246 {
4247 
4248 	if (jsegdep->jd_seg)
4249 		rele_jseg(jsegdep->jd_seg);
4250 	WORKITEM_FREE(jsegdep, D_JSEGDEP);
4251 }
4252 
4253 /*
4254  * Wait for a journal item to make it to disk.  Initiate journal processing
4255  * if required.
4256  */
4257 static int
4258 jwait(wk, waitfor)
4259 	struct worklist *wk;
4260 	int waitfor;
4261 {
4262 
4263 	/*
4264 	 * Blocking journal waits cause slow synchronous behavior.  Record
4265 	 * stats on the frequency of these blocking operations.
4266 	 */
4267 	if (waitfor == MNT_WAIT) {
4268 		stat_journal_wait++;
4269 		switch (wk->wk_type) {
4270 		case D_JREMREF:
4271 		case D_JMVREF:
4272 			stat_jwait_filepage++;
4273 			break;
4274 		case D_JTRUNC:
4275 		case D_JFREEBLK:
4276 			stat_jwait_freeblks++;
4277 			break;
4278 		case D_JNEWBLK:
4279 			stat_jwait_newblk++;
4280 			break;
4281 		case D_JADDREF:
4282 			stat_jwait_inode++;
4283 			break;
4284 		default:
4285 			break;
4286 		}
4287 	}
4288 	/*
4289 	 * If IO has not started we process the journal.  We can't mark the
4290 	 * worklist item as IOWAITING because we drop the lock while
4291 	 * processing the journal and the worklist entry may be freed after
4292 	 * this point.  The caller may call back in and re-issue the request.
4293 	 */
4294 	if ((wk->wk_state & INPROGRESS) == 0) {
4295 		softdep_process_journal(wk->wk_mp, wk, waitfor);
4296 		if (waitfor != MNT_WAIT)
4297 			return (EBUSY);
4298 		return (0);
4299 	}
4300 	if (waitfor != MNT_WAIT)
4301 		return (EBUSY);
4302 	wait_worklist(wk, "jwait");
4303 	return (0);
4304 }
4305 
4306 /*
4307  * Lookup an inodedep based on an inode pointer and set the nlinkdelta as
4308  * appropriate.  This is a convenience function to reduce duplicate code
4309  * for the setup and revert functions below.
4310  */
4311 static struct inodedep *
4312 inodedep_lookup_ip(ip)
4313 	struct inode *ip;
4314 {
4315 	struct inodedep *inodedep;
4316 	int dflags;
4317 
4318 	KASSERT(ip->i_nlink >= ip->i_effnlink,
4319 	    ("inodedep_lookup_ip: bad delta"));
4320 	dflags = DEPALLOC;
4321 	if (IS_SNAPSHOT(ip))
4322 		dflags |= NODELAY;
4323 	(void) inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, dflags,
4324 	    &inodedep);
4325 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
4326 
4327 	return (inodedep);
4328 }
4329 
4330 /*
4331  * Called prior to creating a new inode and linking it to a directory.  The
4332  * jaddref structure must already be allocated by softdep_setup_inomapdep
4333  * and it is discovered here so we can initialize the mode and update
4334  * nlinkdelta.
4335  */
4336 void
4337 softdep_setup_create(dp, ip)
4338 	struct inode *dp;
4339 	struct inode *ip;
4340 {
4341 	struct inodedep *inodedep;
4342 	struct jaddref *jaddref;
4343 	struct vnode *dvp;
4344 
4345 	KASSERT(ip->i_nlink == 1,
4346 	    ("softdep_setup_create: Invalid link count."));
4347 	dvp = ITOV(dp);
4348 	ACQUIRE_LOCK(&lk);
4349 	inodedep = inodedep_lookup_ip(ip);
4350 	if (DOINGSUJ(dvp)) {
4351 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4352 		    inoreflst);
4353 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
4354 		    ("softdep_setup_create: No addref structure present."));
4355 	}
4356 	softdep_prelink(dvp, NULL);
4357 	FREE_LOCK(&lk);
4358 }
4359 
4360 /*
4361  * Create a jaddref structure to track the addition of a DOTDOT link when
4362  * we are reparenting an inode as part of a rename.  This jaddref will be
4363  * found by softdep_setup_directory_change.  Adjusts nlinkdelta for
4364  * non-journaling softdep.
4365  */
4366 void
4367 softdep_setup_dotdot_link(dp, ip)
4368 	struct inode *dp;
4369 	struct inode *ip;
4370 {
4371 	struct inodedep *inodedep;
4372 	struct jaddref *jaddref;
4373 	struct vnode *dvp;
4374 	struct vnode *vp;
4375 
4376 	dvp = ITOV(dp);
4377 	vp = ITOV(ip);
4378 	jaddref = NULL;
4379 	/*
4380 	 * We don't set MKDIR_PARENT as this is not tied to a mkdir and
4381 	 * is used as a normal link would be.
4382 	 */
4383 	if (DOINGSUJ(dvp))
4384 		jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
4385 		    dp->i_effnlink - 1, dp->i_mode);
4386 	ACQUIRE_LOCK(&lk);
4387 	inodedep = inodedep_lookup_ip(dp);
4388 	if (jaddref)
4389 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4390 		    if_deps);
4391 	softdep_prelink(dvp, ITOV(ip));
4392 	FREE_LOCK(&lk);
4393 }
4394 
4395 /*
4396  * Create a jaddref structure to track a new link to an inode.  The directory
4397  * offset is not known until softdep_setup_directory_add or
4398  * softdep_setup_directory_change.  Adjusts nlinkdelta for non-journaling
4399  * softdep.
4400  */
4401 void
4402 softdep_setup_link(dp, ip)
4403 	struct inode *dp;
4404 	struct inode *ip;
4405 {
4406 	struct inodedep *inodedep;
4407 	struct jaddref *jaddref;
4408 	struct vnode *dvp;
4409 
4410 	dvp = ITOV(dp);
4411 	jaddref = NULL;
4412 	if (DOINGSUJ(dvp))
4413 		jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1,
4414 		    ip->i_mode);
4415 	ACQUIRE_LOCK(&lk);
4416 	inodedep = inodedep_lookup_ip(ip);
4417 	if (jaddref)
4418 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4419 		    if_deps);
4420 	softdep_prelink(dvp, ITOV(ip));
4421 	FREE_LOCK(&lk);
4422 }
4423 
4424 /*
4425  * Called to create the jaddref structures to track . and .. references as
4426  * well as lookup and further initialize the incomplete jaddref created
4427  * by softdep_setup_inomapdep when the inode was allocated.  Adjusts
4428  * nlinkdelta for non-journaling softdep.
4429  */
4430 void
4431 softdep_setup_mkdir(dp, ip)
4432 	struct inode *dp;
4433 	struct inode *ip;
4434 {
4435 	struct inodedep *inodedep;
4436 	struct jaddref *dotdotaddref;
4437 	struct jaddref *dotaddref;
4438 	struct jaddref *jaddref;
4439 	struct vnode *dvp;
4440 
4441 	dvp = ITOV(dp);
4442 	dotaddref = dotdotaddref = NULL;
4443 	if (DOINGSUJ(dvp)) {
4444 		dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1,
4445 		    ip->i_mode);
4446 		dotaddref->ja_state |= MKDIR_BODY;
4447 		dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
4448 		    dp->i_effnlink - 1, dp->i_mode);
4449 		dotdotaddref->ja_state |= MKDIR_PARENT;
4450 	}
4451 	ACQUIRE_LOCK(&lk);
4452 	inodedep = inodedep_lookup_ip(ip);
4453 	if (DOINGSUJ(dvp)) {
4454 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4455 		    inoreflst);
4456 		KASSERT(jaddref != NULL,
4457 		    ("softdep_setup_mkdir: No addref structure present."));
4458 		KASSERT(jaddref->ja_parent == dp->i_number,
4459 		    ("softdep_setup_mkdir: bad parent %d",
4460 		    jaddref->ja_parent));
4461 		TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref,
4462 		    if_deps);
4463 	}
4464 	inodedep = inodedep_lookup_ip(dp);
4465 	if (DOINGSUJ(dvp))
4466 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst,
4467 		    &dotdotaddref->ja_ref, if_deps);
4468 	softdep_prelink(ITOV(dp), NULL);
4469 	FREE_LOCK(&lk);
4470 }
4471 
4472 /*
4473  * Called to track nlinkdelta of the inode and parent directories prior to
4474  * unlinking a directory.
4475  */
4476 void
4477 softdep_setup_rmdir(dp, ip)
4478 	struct inode *dp;
4479 	struct inode *ip;
4480 {
4481 	struct vnode *dvp;
4482 
4483 	dvp = ITOV(dp);
4484 	ACQUIRE_LOCK(&lk);
4485 	(void) inodedep_lookup_ip(ip);
4486 	(void) inodedep_lookup_ip(dp);
4487 	softdep_prelink(dvp, ITOV(ip));
4488 	FREE_LOCK(&lk);
4489 }
4490 
4491 /*
4492  * Called to track nlinkdelta of the inode and parent directories prior to
4493  * unlink.
4494  */
4495 void
4496 softdep_setup_unlink(dp, ip)
4497 	struct inode *dp;
4498 	struct inode *ip;
4499 {
4500 	struct vnode *dvp;
4501 
4502 	dvp = ITOV(dp);
4503 	ACQUIRE_LOCK(&lk);
4504 	(void) inodedep_lookup_ip(ip);
4505 	(void) inodedep_lookup_ip(dp);
4506 	softdep_prelink(dvp, ITOV(ip));
4507 	FREE_LOCK(&lk);
4508 }
4509 
4510 /*
4511  * Called to release the journal structures created by a failed non-directory
4512  * creation.  Adjusts nlinkdelta for non-journaling softdep.
4513  */
4514 void
4515 softdep_revert_create(dp, ip)
4516 	struct inode *dp;
4517 	struct inode *ip;
4518 {
4519 	struct inodedep *inodedep;
4520 	struct jaddref *jaddref;
4521 	struct vnode *dvp;
4522 
4523 	dvp = ITOV(dp);
4524 	ACQUIRE_LOCK(&lk);
4525 	inodedep = inodedep_lookup_ip(ip);
4526 	if (DOINGSUJ(dvp)) {
4527 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4528 		    inoreflst);
4529 		KASSERT(jaddref->ja_parent == dp->i_number,
4530 		    ("softdep_revert_create: addref parent mismatch"));
4531 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4532 	}
4533 	FREE_LOCK(&lk);
4534 }
4535 
4536 /*
4537  * Called to release the journal structures created by a failed dotdot link
4538  * creation.  Adjusts nlinkdelta for non-journaling softdep.
4539  */
4540 void
4541 softdep_revert_dotdot_link(dp, ip)
4542 	struct inode *dp;
4543 	struct inode *ip;
4544 {
4545 	struct inodedep *inodedep;
4546 	struct jaddref *jaddref;
4547 	struct vnode *dvp;
4548 
4549 	dvp = ITOV(dp);
4550 	ACQUIRE_LOCK(&lk);
4551 	inodedep = inodedep_lookup_ip(dp);
4552 	if (DOINGSUJ(dvp)) {
4553 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4554 		    inoreflst);
4555 		KASSERT(jaddref->ja_parent == ip->i_number,
4556 		    ("softdep_revert_dotdot_link: addref parent mismatch"));
4557 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4558 	}
4559 	FREE_LOCK(&lk);
4560 }
4561 
4562 /*
4563  * Called to release the journal structures created by a failed link
4564  * addition.  Adjusts nlinkdelta for non-journaling softdep.
4565  */
4566 void
4567 softdep_revert_link(dp, ip)
4568 	struct inode *dp;
4569 	struct inode *ip;
4570 {
4571 	struct inodedep *inodedep;
4572 	struct jaddref *jaddref;
4573 	struct vnode *dvp;
4574 
4575 	dvp = ITOV(dp);
4576 	ACQUIRE_LOCK(&lk);
4577 	inodedep = inodedep_lookup_ip(ip);
4578 	if (DOINGSUJ(dvp)) {
4579 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4580 		    inoreflst);
4581 		KASSERT(jaddref->ja_parent == dp->i_number,
4582 		    ("softdep_revert_link: addref parent mismatch"));
4583 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4584 	}
4585 	FREE_LOCK(&lk);
4586 }
4587 
4588 /*
4589  * Called to release the journal structures created by a failed mkdir
4590  * attempt.  Adjusts nlinkdelta for non-journaling softdep.
4591  */
4592 void
4593 softdep_revert_mkdir(dp, ip)
4594 	struct inode *dp;
4595 	struct inode *ip;
4596 {
4597 	struct inodedep *inodedep;
4598 	struct jaddref *jaddref;
4599 	struct jaddref *dotaddref;
4600 	struct vnode *dvp;
4601 
4602 	dvp = ITOV(dp);
4603 
4604 	ACQUIRE_LOCK(&lk);
4605 	inodedep = inodedep_lookup_ip(dp);
4606 	if (DOINGSUJ(dvp)) {
4607 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4608 		    inoreflst);
4609 		KASSERT(jaddref->ja_parent == ip->i_number,
4610 		    ("softdep_revert_mkdir: dotdot addref parent mismatch"));
4611 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4612 	}
4613 	inodedep = inodedep_lookup_ip(ip);
4614 	if (DOINGSUJ(dvp)) {
4615 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4616 		    inoreflst);
4617 		KASSERT(jaddref->ja_parent == dp->i_number,
4618 		    ("softdep_revert_mkdir: addref parent mismatch"));
4619 		dotaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
4620 		    inoreflst, if_deps);
4621 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4622 		KASSERT(dotaddref->ja_parent == ip->i_number,
4623 		    ("softdep_revert_mkdir: dot addref parent mismatch"));
4624 		cancel_jaddref(dotaddref, inodedep, &inodedep->id_inowait);
4625 	}
4626 	FREE_LOCK(&lk);
4627 }
4628 
4629 /*
4630  * Called to correct nlinkdelta after a failed rmdir.
4631  */
4632 void
4633 softdep_revert_rmdir(dp, ip)
4634 	struct inode *dp;
4635 	struct inode *ip;
4636 {
4637 
4638 	ACQUIRE_LOCK(&lk);
4639 	(void) inodedep_lookup_ip(ip);
4640 	(void) inodedep_lookup_ip(dp);
4641 	FREE_LOCK(&lk);
4642 }
4643 
4644 /*
4645  * Protecting the freemaps (or bitmaps).
4646  *
4647  * To eliminate the need to execute fsck before mounting a filesystem
4648  * after a power failure, one must (conservatively) guarantee that the
4649  * on-disk copy of the bitmaps never indicate that a live inode or block is
4650  * free.  So, when a block or inode is allocated, the bitmap should be
4651  * updated (on disk) before any new pointers.  When a block or inode is
4652  * freed, the bitmap should not be updated until all pointers have been
4653  * reset.  The latter dependency is handled by the delayed de-allocation
4654  * approach described below for block and inode de-allocation.  The former
4655  * dependency is handled by calling the following procedure when a block or
4656  * inode is allocated. When an inode is allocated an "inodedep" is created
4657  * with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
4658  * Each "inodedep" is also inserted into the hash indexing structure so
4659  * that any additional link additions can be made dependent on the inode
4660  * allocation.
4661  *
4662  * The ufs filesystem maintains a number of free block counts (e.g., per
4663  * cylinder group, per cylinder and per <cylinder, rotational position> pair)
4664  * in addition to the bitmaps.  These counts are used to improve efficiency
4665  * during allocation and therefore must be consistent with the bitmaps.
4666  * There is no convenient way to guarantee post-crash consistency of these
4667  * counts with simple update ordering, for two main reasons: (1) The counts
4668  * and bitmaps for a single cylinder group block are not in the same disk
4669  * sector.  If a disk write is interrupted (e.g., by power failure), one may
4670  * be written and the other not.  (2) Some of the counts are located in the
4671  * superblock rather than the cylinder group block. So, we focus our soft
4672  * updates implementation on protecting the bitmaps. When mounting a
4673  * filesystem, we recompute the auxiliary counts from the bitmaps.
4674  */
4675 
4676 /*
4677  * Called just after updating the cylinder group block to allocate an inode.
4678  */
4679 void
4680 softdep_setup_inomapdep(bp, ip, newinum, mode)
4681 	struct buf *bp;		/* buffer for cylgroup block with inode map */
4682 	struct inode *ip;	/* inode related to allocation */
4683 	ino_t newinum;		/* new inode number being allocated */
4684 	int mode;
4685 {
4686 	struct inodedep *inodedep;
4687 	struct bmsafemap *bmsafemap;
4688 	struct jaddref *jaddref;
4689 	struct mount *mp;
4690 	struct fs *fs;
4691 
4692 	mp = UFSTOVFS(ip->i_ump);
4693 	fs = ip->i_ump->um_fs;
4694 	jaddref = NULL;
4695 
4696 	/*
4697 	 * Allocate the journal reference add structure so that the bitmap
4698 	 * can be dependent on it.
4699 	 */
4700 	if (MOUNTEDSUJ(mp)) {
4701 		jaddref = newjaddref(ip, newinum, 0, 0, mode);
4702 		jaddref->ja_state |= NEWBLOCK;
4703 	}
4704 
4705 	/*
4706 	 * Create a dependency for the newly allocated inode.
4707 	 * Panic if it already exists as something is seriously wrong.
4708 	 * Otherwise add it to the dependency list for the buffer holding
4709 	 * the cylinder group map from which it was allocated.
4710 	 */
4711 	ACQUIRE_LOCK(&lk);
4712 	if ((inodedep_lookup(mp, newinum, DEPALLOC | NODELAY, &inodedep)))
4713 		panic("softdep_setup_inomapdep: dependency %p for new"
4714 		    "inode already exists", inodedep);
4715 	bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum));
4716 	if (jaddref) {
4717 		LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps);
4718 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4719 		    if_deps);
4720 	} else {
4721 		inodedep->id_state |= ONDEPLIST;
4722 		LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
4723 	}
4724 	inodedep->id_bmsafemap = bmsafemap;
4725 	inodedep->id_state &= ~DEPCOMPLETE;
4726 	FREE_LOCK(&lk);
4727 }
4728 
4729 /*
4730  * Called just after updating the cylinder group block to
4731  * allocate block or fragment.
4732  */
4733 void
4734 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
4735 	struct buf *bp;		/* buffer for cylgroup block with block map */
4736 	struct mount *mp;	/* filesystem doing allocation */
4737 	ufs2_daddr_t newblkno;	/* number of newly allocated block */
4738 	int frags;		/* Number of fragments. */
4739 	int oldfrags;		/* Previous number of fragments for extend. */
4740 {
4741 	struct newblk *newblk;
4742 	struct bmsafemap *bmsafemap;
4743 	struct jnewblk *jnewblk;
4744 	struct fs *fs;
4745 
4746 	fs = VFSTOUFS(mp)->um_fs;
4747 	jnewblk = NULL;
4748 	/*
4749 	 * Create a dependency for the newly allocated block.
4750 	 * Add it to the dependency list for the buffer holding
4751 	 * the cylinder group map from which it was allocated.
4752 	 */
4753 	if (MOUNTEDSUJ(mp)) {
4754 		jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS);
4755 		workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp);
4756 		jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list);
4757 		jnewblk->jn_state = ATTACHED;
4758 		jnewblk->jn_blkno = newblkno;
4759 		jnewblk->jn_frags = frags;
4760 		jnewblk->jn_oldfrags = oldfrags;
4761 #ifdef SUJ_DEBUG
4762 		{
4763 			struct cg *cgp;
4764 			uint8_t *blksfree;
4765 			long bno;
4766 			int i;
4767 
4768 			cgp = (struct cg *)bp->b_data;
4769 			blksfree = cg_blksfree(cgp);
4770 			bno = dtogd(fs, jnewblk->jn_blkno);
4771 			for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags;
4772 			    i++) {
4773 				if (isset(blksfree, bno + i))
4774 					panic("softdep_setup_blkmapdep: "
4775 					    "free fragment %d from %d-%d "
4776 					    "state 0x%X dep %p", i,
4777 					    jnewblk->jn_oldfrags,
4778 					    jnewblk->jn_frags,
4779 					    jnewblk->jn_state,
4780 					    jnewblk->jn_dep);
4781 			}
4782 		}
4783 #endif
4784 	}
4785 	ACQUIRE_LOCK(&lk);
4786 	if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0)
4787 		panic("softdep_setup_blkmapdep: found block");
4788 	newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp,
4789 	    dtog(fs, newblkno));
4790 	if (jnewblk) {
4791 		jnewblk->jn_dep = (struct worklist *)newblk;
4792 		LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps);
4793 	} else {
4794 		newblk->nb_state |= ONDEPLIST;
4795 		LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
4796 	}
4797 	newblk->nb_bmsafemap = bmsafemap;
4798 	newblk->nb_jnewblk = jnewblk;
4799 	FREE_LOCK(&lk);
4800 }
4801 
4802 #define	BMSAFEMAP_HASH(fs, cg) \
4803       (&bmsafemap_hashtbl[((((register_t)(fs)) >> 13) + (cg)) & bmsafemap_hash])
4804 
4805 static int
4806 bmsafemap_find(bmsafemaphd, mp, cg, bmsafemapp)
4807 	struct bmsafemap_hashhead *bmsafemaphd;
4808 	struct mount *mp;
4809 	int cg;
4810 	struct bmsafemap **bmsafemapp;
4811 {
4812 	struct bmsafemap *bmsafemap;
4813 
4814 	LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash)
4815 		if (bmsafemap->sm_list.wk_mp == mp && bmsafemap->sm_cg == cg)
4816 			break;
4817 	if (bmsafemap) {
4818 		*bmsafemapp = bmsafemap;
4819 		return (1);
4820 	}
4821 	*bmsafemapp = NULL;
4822 
4823 	return (0);
4824 }
4825 
4826 /*
4827  * Find the bmsafemap associated with a cylinder group buffer.
4828  * If none exists, create one. The buffer must be locked when
4829  * this routine is called and this routine must be called with
4830  * splbio interrupts blocked.
4831  */
4832 static struct bmsafemap *
4833 bmsafemap_lookup(mp, bp, cg)
4834 	struct mount *mp;
4835 	struct buf *bp;
4836 	int cg;
4837 {
4838 	struct bmsafemap_hashhead *bmsafemaphd;
4839 	struct bmsafemap *bmsafemap, *collision;
4840 	struct worklist *wk;
4841 	struct fs *fs;
4842 
4843 	mtx_assert(&lk, MA_OWNED);
4844 	if (bp)
4845 		LIST_FOREACH(wk, &bp->b_dep, wk_list)
4846 			if (wk->wk_type == D_BMSAFEMAP)
4847 				return (WK_BMSAFEMAP(wk));
4848 	fs = VFSTOUFS(mp)->um_fs;
4849 	bmsafemaphd = BMSAFEMAP_HASH(fs, cg);
4850 	if (bmsafemap_find(bmsafemaphd, mp, cg, &bmsafemap) == 1)
4851 		return (bmsafemap);
4852 	FREE_LOCK(&lk);
4853 	bmsafemap = malloc(sizeof(struct bmsafemap),
4854 		M_BMSAFEMAP, M_SOFTDEP_FLAGS);
4855 	workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
4856 	bmsafemap->sm_buf = bp;
4857 	LIST_INIT(&bmsafemap->sm_inodedephd);
4858 	LIST_INIT(&bmsafemap->sm_inodedepwr);
4859 	LIST_INIT(&bmsafemap->sm_newblkhd);
4860 	LIST_INIT(&bmsafemap->sm_newblkwr);
4861 	LIST_INIT(&bmsafemap->sm_jaddrefhd);
4862 	LIST_INIT(&bmsafemap->sm_jnewblkhd);
4863 	LIST_INIT(&bmsafemap->sm_freehd);
4864 	LIST_INIT(&bmsafemap->sm_freewr);
4865 	ACQUIRE_LOCK(&lk);
4866 	if (bmsafemap_find(bmsafemaphd, mp, cg, &collision) == 1) {
4867 		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
4868 		return (collision);
4869 	}
4870 	bmsafemap->sm_cg = cg;
4871 	LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash);
4872 	LIST_INSERT_HEAD(&VFSTOUFS(mp)->softdep_dirtycg, bmsafemap, sm_next);
4873 	WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list);
4874 	return (bmsafemap);
4875 }
4876 
4877 /*
4878  * Direct block allocation dependencies.
4879  *
4880  * When a new block is allocated, the corresponding disk locations must be
4881  * initialized (with zeros or new data) before the on-disk inode points to
4882  * them.  Also, the freemap from which the block was allocated must be
4883  * updated (on disk) before the inode's pointer. These two dependencies are
4884  * independent of each other and are needed for all file blocks and indirect
4885  * blocks that are pointed to directly by the inode.  Just before the
4886  * "in-core" version of the inode is updated with a newly allocated block
4887  * number, a procedure (below) is called to setup allocation dependency
4888  * structures.  These structures are removed when the corresponding
4889  * dependencies are satisfied or when the block allocation becomes obsolete
4890  * (i.e., the file is deleted, the block is de-allocated, or the block is a
4891  * fragment that gets upgraded).  All of these cases are handled in
4892  * procedures described later.
4893  *
4894  * When a file extension causes a fragment to be upgraded, either to a larger
4895  * fragment or to a full block, the on-disk location may change (if the
4896  * previous fragment could not simply be extended). In this case, the old
4897  * fragment must be de-allocated, but not until after the inode's pointer has
4898  * been updated. In most cases, this is handled by later procedures, which
4899  * will construct a "freefrag" structure to be added to the workitem queue
4900  * when the inode update is complete (or obsolete).  The main exception to
4901  * this is when an allocation occurs while a pending allocation dependency
4902  * (for the same block pointer) remains.  This case is handled in the main
4903  * allocation dependency setup procedure by immediately freeing the
4904  * unreferenced fragments.
4905  */
4906 void
4907 softdep_setup_allocdirect(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
4908 	struct inode *ip;	/* inode to which block is being added */
4909 	ufs_lbn_t off;		/* block pointer within inode */
4910 	ufs2_daddr_t newblkno;	/* disk block number being added */
4911 	ufs2_daddr_t oldblkno;	/* previous block number, 0 unless frag */
4912 	long newsize;		/* size of new block */
4913 	long oldsize;		/* size of new block */
4914 	struct buf *bp;		/* bp for allocated block */
4915 {
4916 	struct allocdirect *adp, *oldadp;
4917 	struct allocdirectlst *adphead;
4918 	struct freefrag *freefrag;
4919 	struct inodedep *inodedep;
4920 	struct pagedep *pagedep;
4921 	struct jnewblk *jnewblk;
4922 	struct newblk *newblk;
4923 	struct mount *mp;
4924 	ufs_lbn_t lbn;
4925 
4926 	lbn = bp->b_lblkno;
4927 	mp = UFSTOVFS(ip->i_ump);
4928 	if (oldblkno && oldblkno != newblkno)
4929 		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn);
4930 	else
4931 		freefrag = NULL;
4932 
4933 	ACQUIRE_LOCK(&lk);
4934 	if (off >= NDADDR) {
4935 		if (lbn > 0)
4936 			panic("softdep_setup_allocdirect: bad lbn %jd, off %jd",
4937 			    lbn, off);
4938 		/* allocating an indirect block */
4939 		if (oldblkno != 0)
4940 			panic("softdep_setup_allocdirect: non-zero indir");
4941 	} else {
4942 		if (off != lbn)
4943 			panic("softdep_setup_allocdirect: lbn %jd != off %jd",
4944 			    lbn, off);
4945 		/*
4946 		 * Allocating a direct block.
4947 		 *
4948 		 * If we are allocating a directory block, then we must
4949 		 * allocate an associated pagedep to track additions and
4950 		 * deletions.
4951 		 */
4952 		if ((ip->i_mode & IFMT) == IFDIR)
4953 			pagedep_lookup(mp, bp, ip->i_number, off, DEPALLOC,
4954 			    &pagedep);
4955 	}
4956 	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
4957 		panic("softdep_setup_allocdirect: lost block");
4958 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
4959 	    ("softdep_setup_allocdirect: newblk already initialized"));
4960 	/*
4961 	 * Convert the newblk to an allocdirect.
4962 	 */
4963 	newblk->nb_list.wk_type = D_ALLOCDIRECT;
4964 	adp = (struct allocdirect *)newblk;
4965 	newblk->nb_freefrag = freefrag;
4966 	adp->ad_offset = off;
4967 	adp->ad_oldblkno = oldblkno;
4968 	adp->ad_newsize = newsize;
4969 	adp->ad_oldsize = oldsize;
4970 
4971 	/*
4972 	 * Finish initializing the journal.
4973 	 */
4974 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
4975 		jnewblk->jn_ino = ip->i_number;
4976 		jnewblk->jn_lbn = lbn;
4977 		add_to_journal(&jnewblk->jn_list);
4978 	}
4979 	if (freefrag && freefrag->ff_jdep != NULL &&
4980 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
4981 		add_to_journal(freefrag->ff_jdep);
4982 	inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep);
4983 	adp->ad_inodedep = inodedep;
4984 
4985 	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
4986 	/*
4987 	 * The list of allocdirects must be kept in sorted and ascending
4988 	 * order so that the rollback routines can quickly determine the
4989 	 * first uncommitted block (the size of the file stored on disk
4990 	 * ends at the end of the lowest committed fragment, or if there
4991 	 * are no fragments, at the end of the highest committed block).
4992 	 * Since files generally grow, the typical case is that the new
4993 	 * block is to be added at the end of the list. We speed this
4994 	 * special case by checking against the last allocdirect in the
4995 	 * list before laboriously traversing the list looking for the
4996 	 * insertion point.
4997 	 */
4998 	adphead = &inodedep->id_newinoupdt;
4999 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
5000 	if (oldadp == NULL || oldadp->ad_offset <= off) {
5001 		/* insert at end of list */
5002 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
5003 		if (oldadp != NULL && oldadp->ad_offset == off)
5004 			allocdirect_merge(adphead, adp, oldadp);
5005 		FREE_LOCK(&lk);
5006 		return;
5007 	}
5008 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
5009 		if (oldadp->ad_offset >= off)
5010 			break;
5011 	}
5012 	if (oldadp == NULL)
5013 		panic("softdep_setup_allocdirect: lost entry");
5014 	/* insert in middle of list */
5015 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5016 	if (oldadp->ad_offset == off)
5017 		allocdirect_merge(adphead, adp, oldadp);
5018 
5019 	FREE_LOCK(&lk);
5020 }
5021 
5022 /*
5023  * Merge a newer and older journal record to be stored either in a
5024  * newblock or freefrag.  This handles aggregating journal records for
5025  * fragment allocation into a second record as well as replacing a
5026  * journal free with an aborted journal allocation.  A segment for the
5027  * oldest record will be placed on wkhd if it has been written.  If not
5028  * the segment for the newer record will suffice.
5029  */
5030 static struct worklist *
5031 jnewblk_merge(new, old, wkhd)
5032 	struct worklist *new;
5033 	struct worklist *old;
5034 	struct workhead *wkhd;
5035 {
5036 	struct jnewblk *njnewblk;
5037 	struct jnewblk *jnewblk;
5038 
5039 	/* Handle NULLs to simplify callers. */
5040 	if (new == NULL)
5041 		return (old);
5042 	if (old == NULL)
5043 		return (new);
5044 	/* Replace a jfreefrag with a jnewblk. */
5045 	if (new->wk_type == D_JFREEFRAG) {
5046 		cancel_jfreefrag(WK_JFREEFRAG(new));
5047 		return (old);
5048 	}
5049 	/*
5050 	 * Handle merging of two jnewblk records that describe
5051 	 * different sets of fragments in the same block.
5052 	 */
5053 	jnewblk = WK_JNEWBLK(old);
5054 	njnewblk = WK_JNEWBLK(new);
5055 	if (jnewblk->jn_blkno != njnewblk->jn_blkno)
5056 		panic("jnewblk_merge: Merging disparate blocks.");
5057 	/*
5058 	 * The record may be rolled back in the cg.
5059 	 */
5060 	if (jnewblk->jn_state & UNDONE) {
5061 		jnewblk->jn_state &= ~UNDONE;
5062 		njnewblk->jn_state |= UNDONE;
5063 		njnewblk->jn_state &= ~ATTACHED;
5064 	}
5065 	/*
5066 	 * We modify the newer addref and free the older so that if neither
5067 	 * has been written the most up-to-date copy will be on disk.  If
5068 	 * both have been written but rolled back we only temporarily need
5069 	 * one of them to fix the bits when the cg write completes.
5070 	 */
5071 	jnewblk->jn_state |= ATTACHED | COMPLETE;
5072 	njnewblk->jn_oldfrags = jnewblk->jn_oldfrags;
5073 	cancel_jnewblk(jnewblk, wkhd);
5074 	WORKLIST_REMOVE(&jnewblk->jn_list);
5075 	free_jnewblk(jnewblk);
5076 	return (new);
5077 }
5078 
5079 /*
5080  * Replace an old allocdirect dependency with a newer one.
5081  * This routine must be called with splbio interrupts blocked.
5082  */
5083 static void
5084 allocdirect_merge(adphead, newadp, oldadp)
5085 	struct allocdirectlst *adphead;	/* head of list holding allocdirects */
5086 	struct allocdirect *newadp;	/* allocdirect being added */
5087 	struct allocdirect *oldadp;	/* existing allocdirect being checked */
5088 {
5089 	struct worklist *wk;
5090 	struct freefrag *freefrag;
5091 
5092 	freefrag = NULL;
5093 	mtx_assert(&lk, MA_OWNED);
5094 	if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
5095 	    newadp->ad_oldsize != oldadp->ad_newsize ||
5096 	    newadp->ad_offset >= NDADDR)
5097 		panic("%s %jd != new %jd || old size %ld != new %ld",
5098 		    "allocdirect_merge: old blkno",
5099 		    (intmax_t)newadp->ad_oldblkno,
5100 		    (intmax_t)oldadp->ad_newblkno,
5101 		    newadp->ad_oldsize, oldadp->ad_newsize);
5102 	newadp->ad_oldblkno = oldadp->ad_oldblkno;
5103 	newadp->ad_oldsize = oldadp->ad_oldsize;
5104 	/*
5105 	 * If the old dependency had a fragment to free or had never
5106 	 * previously had a block allocated, then the new dependency
5107 	 * can immediately post its freefrag and adopt the old freefrag.
5108 	 * This action is done by swapping the freefrag dependencies.
5109 	 * The new dependency gains the old one's freefrag, and the
5110 	 * old one gets the new one and then immediately puts it on
5111 	 * the worklist when it is freed by free_newblk. It is
5112 	 * not possible to do this swap when the old dependency had a
5113 	 * non-zero size but no previous fragment to free. This condition
5114 	 * arises when the new block is an extension of the old block.
5115 	 * Here, the first part of the fragment allocated to the new
5116 	 * dependency is part of the block currently claimed on disk by
5117 	 * the old dependency, so cannot legitimately be freed until the
5118 	 * conditions for the new dependency are fulfilled.
5119 	 */
5120 	freefrag = newadp->ad_freefrag;
5121 	if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
5122 		newadp->ad_freefrag = oldadp->ad_freefrag;
5123 		oldadp->ad_freefrag = freefrag;
5124 	}
5125 	/*
5126 	 * If we are tracking a new directory-block allocation,
5127 	 * move it from the old allocdirect to the new allocdirect.
5128 	 */
5129 	if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) {
5130 		WORKLIST_REMOVE(wk);
5131 		if (!LIST_EMPTY(&oldadp->ad_newdirblk))
5132 			panic("allocdirect_merge: extra newdirblk");
5133 		WORKLIST_INSERT(&newadp->ad_newdirblk, wk);
5134 	}
5135 	TAILQ_REMOVE(adphead, oldadp, ad_next);
5136 	/*
5137 	 * We need to move any journal dependencies over to the freefrag
5138 	 * that releases this block if it exists.  Otherwise we are
5139 	 * extending an existing block and we'll wait until that is
5140 	 * complete to release the journal space and extend the
5141 	 * new journal to cover this old space as well.
5142 	 */
5143 	if (freefrag == NULL) {
5144 		if (oldadp->ad_newblkno != newadp->ad_newblkno)
5145 			panic("allocdirect_merge: %jd != %jd",
5146 			    oldadp->ad_newblkno, newadp->ad_newblkno);
5147 		newadp->ad_block.nb_jnewblk = (struct jnewblk *)
5148 		    jnewblk_merge(&newadp->ad_block.nb_jnewblk->jn_list,
5149 		    &oldadp->ad_block.nb_jnewblk->jn_list,
5150 		    &newadp->ad_block.nb_jwork);
5151 		oldadp->ad_block.nb_jnewblk = NULL;
5152 		cancel_newblk(&oldadp->ad_block, NULL,
5153 		    &newadp->ad_block.nb_jwork);
5154 	} else {
5155 		wk = (struct worklist *) cancel_newblk(&oldadp->ad_block,
5156 		    &freefrag->ff_list, &freefrag->ff_jwork);
5157 		freefrag->ff_jdep = jnewblk_merge(freefrag->ff_jdep, wk,
5158 		    &freefrag->ff_jwork);
5159 	}
5160 	free_newblk(&oldadp->ad_block);
5161 }
5162 
5163 /*
5164  * Allocate a jfreefrag structure to journal a single block free.
5165  */
5166 static struct jfreefrag *
5167 newjfreefrag(freefrag, ip, blkno, size, lbn)
5168 	struct freefrag *freefrag;
5169 	struct inode *ip;
5170 	ufs2_daddr_t blkno;
5171 	long size;
5172 	ufs_lbn_t lbn;
5173 {
5174 	struct jfreefrag *jfreefrag;
5175 	struct fs *fs;
5176 
5177 	fs = ip->i_fs;
5178 	jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG,
5179 	    M_SOFTDEP_FLAGS);
5180 	workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, UFSTOVFS(ip->i_ump));
5181 	jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list);
5182 	jfreefrag->fr_state = ATTACHED | DEPCOMPLETE;
5183 	jfreefrag->fr_ino = ip->i_number;
5184 	jfreefrag->fr_lbn = lbn;
5185 	jfreefrag->fr_blkno = blkno;
5186 	jfreefrag->fr_frags = numfrags(fs, size);
5187 	jfreefrag->fr_freefrag = freefrag;
5188 
5189 	return (jfreefrag);
5190 }
5191 
5192 /*
5193  * Allocate a new freefrag structure.
5194  */
5195 static struct freefrag *
5196 newfreefrag(ip, blkno, size, lbn)
5197 	struct inode *ip;
5198 	ufs2_daddr_t blkno;
5199 	long size;
5200 	ufs_lbn_t lbn;
5201 {
5202 	struct freefrag *freefrag;
5203 	struct fs *fs;
5204 
5205 	fs = ip->i_fs;
5206 	if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
5207 		panic("newfreefrag: frag size");
5208 	freefrag = malloc(sizeof(struct freefrag),
5209 	    M_FREEFRAG, M_SOFTDEP_FLAGS);
5210 	workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ip->i_ump));
5211 	freefrag->ff_state = ATTACHED;
5212 	LIST_INIT(&freefrag->ff_jwork);
5213 	freefrag->ff_inum = ip->i_number;
5214 	freefrag->ff_vtype = ITOV(ip)->v_type;
5215 	freefrag->ff_blkno = blkno;
5216 	freefrag->ff_fragsize = size;
5217 
5218 	if (MOUNTEDSUJ(UFSTOVFS(ip->i_ump))) {
5219 		freefrag->ff_jdep = (struct worklist *)
5220 		    newjfreefrag(freefrag, ip, blkno, size, lbn);
5221 	} else {
5222 		freefrag->ff_state |= DEPCOMPLETE;
5223 		freefrag->ff_jdep = NULL;
5224 	}
5225 
5226 	return (freefrag);
5227 }
5228 
5229 /*
5230  * This workitem de-allocates fragments that were replaced during
5231  * file block allocation.
5232  */
5233 static void
5234 handle_workitem_freefrag(freefrag)
5235 	struct freefrag *freefrag;
5236 {
5237 	struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp);
5238 	struct workhead wkhd;
5239 
5240 	/*
5241 	 * It would be illegal to add new completion items to the
5242 	 * freefrag after it was schedule to be done so it must be
5243 	 * safe to modify the list head here.
5244 	 */
5245 	LIST_INIT(&wkhd);
5246 	ACQUIRE_LOCK(&lk);
5247 	LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list);
5248 	/*
5249 	 * If the journal has not been written we must cancel it here.
5250 	 */
5251 	if (freefrag->ff_jdep) {
5252 		if (freefrag->ff_jdep->wk_type != D_JNEWBLK)
5253 			panic("handle_workitem_freefrag: Unexpected type %d\n",
5254 			    freefrag->ff_jdep->wk_type);
5255 		cancel_jnewblk(WK_JNEWBLK(freefrag->ff_jdep), &wkhd);
5256 	}
5257 	FREE_LOCK(&lk);
5258 	ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno,
5259 	   freefrag->ff_fragsize, freefrag->ff_inum, freefrag->ff_vtype, &wkhd);
5260 	ACQUIRE_LOCK(&lk);
5261 	WORKITEM_FREE(freefrag, D_FREEFRAG);
5262 	FREE_LOCK(&lk);
5263 }
5264 
5265 /*
5266  * Set up a dependency structure for an external attributes data block.
5267  * This routine follows much of the structure of softdep_setup_allocdirect.
5268  * See the description of softdep_setup_allocdirect above for details.
5269  */
5270 void
5271 softdep_setup_allocext(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
5272 	struct inode *ip;
5273 	ufs_lbn_t off;
5274 	ufs2_daddr_t newblkno;
5275 	ufs2_daddr_t oldblkno;
5276 	long newsize;
5277 	long oldsize;
5278 	struct buf *bp;
5279 {
5280 	struct allocdirect *adp, *oldadp;
5281 	struct allocdirectlst *adphead;
5282 	struct freefrag *freefrag;
5283 	struct inodedep *inodedep;
5284 	struct jnewblk *jnewblk;
5285 	struct newblk *newblk;
5286 	struct mount *mp;
5287 	ufs_lbn_t lbn;
5288 
5289 	if (off >= NXADDR)
5290 		panic("softdep_setup_allocext: lbn %lld > NXADDR",
5291 		    (long long)off);
5292 
5293 	lbn = bp->b_lblkno;
5294 	mp = UFSTOVFS(ip->i_ump);
5295 	if (oldblkno && oldblkno != newblkno)
5296 		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn);
5297 	else
5298 		freefrag = NULL;
5299 
5300 	ACQUIRE_LOCK(&lk);
5301 	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
5302 		panic("softdep_setup_allocext: lost block");
5303 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5304 	    ("softdep_setup_allocext: newblk already initialized"));
5305 	/*
5306 	 * Convert the newblk to an allocdirect.
5307 	 */
5308 	newblk->nb_list.wk_type = D_ALLOCDIRECT;
5309 	adp = (struct allocdirect *)newblk;
5310 	newblk->nb_freefrag = freefrag;
5311 	adp->ad_offset = off;
5312 	adp->ad_oldblkno = oldblkno;
5313 	adp->ad_newsize = newsize;
5314 	adp->ad_oldsize = oldsize;
5315 	adp->ad_state |=  EXTDATA;
5316 
5317 	/*
5318 	 * Finish initializing the journal.
5319 	 */
5320 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5321 		jnewblk->jn_ino = ip->i_number;
5322 		jnewblk->jn_lbn = lbn;
5323 		add_to_journal(&jnewblk->jn_list);
5324 	}
5325 	if (freefrag && freefrag->ff_jdep != NULL &&
5326 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5327 		add_to_journal(freefrag->ff_jdep);
5328 	inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep);
5329 	adp->ad_inodedep = inodedep;
5330 
5331 	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
5332 	/*
5333 	 * The list of allocdirects must be kept in sorted and ascending
5334 	 * order so that the rollback routines can quickly determine the
5335 	 * first uncommitted block (the size of the file stored on disk
5336 	 * ends at the end of the lowest committed fragment, or if there
5337 	 * are no fragments, at the end of the highest committed block).
5338 	 * Since files generally grow, the typical case is that the new
5339 	 * block is to be added at the end of the list. We speed this
5340 	 * special case by checking against the last allocdirect in the
5341 	 * list before laboriously traversing the list looking for the
5342 	 * insertion point.
5343 	 */
5344 	adphead = &inodedep->id_newextupdt;
5345 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
5346 	if (oldadp == NULL || oldadp->ad_offset <= off) {
5347 		/* insert at end of list */
5348 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
5349 		if (oldadp != NULL && oldadp->ad_offset == off)
5350 			allocdirect_merge(adphead, adp, oldadp);
5351 		FREE_LOCK(&lk);
5352 		return;
5353 	}
5354 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
5355 		if (oldadp->ad_offset >= off)
5356 			break;
5357 	}
5358 	if (oldadp == NULL)
5359 		panic("softdep_setup_allocext: lost entry");
5360 	/* insert in middle of list */
5361 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5362 	if (oldadp->ad_offset == off)
5363 		allocdirect_merge(adphead, adp, oldadp);
5364 	FREE_LOCK(&lk);
5365 }
5366 
5367 /*
5368  * Indirect block allocation dependencies.
5369  *
5370  * The same dependencies that exist for a direct block also exist when
5371  * a new block is allocated and pointed to by an entry in a block of
5372  * indirect pointers. The undo/redo states described above are also
5373  * used here. Because an indirect block contains many pointers that
5374  * may have dependencies, a second copy of the entire in-memory indirect
5375  * block is kept. The buffer cache copy is always completely up-to-date.
5376  * The second copy, which is used only as a source for disk writes,
5377  * contains only the safe pointers (i.e., those that have no remaining
5378  * update dependencies). The second copy is freed when all pointers
5379  * are safe. The cache is not allowed to replace indirect blocks with
5380  * pending update dependencies. If a buffer containing an indirect
5381  * block with dependencies is written, these routines will mark it
5382  * dirty again. It can only be successfully written once all the
5383  * dependencies are removed. The ffs_fsync routine in conjunction with
5384  * softdep_sync_metadata work together to get all the dependencies
5385  * removed so that a file can be successfully written to disk. Three
5386  * procedures are used when setting up indirect block pointer
5387  * dependencies. The division is necessary because of the organization
5388  * of the "balloc" routine and because of the distinction between file
5389  * pages and file metadata blocks.
5390  */
5391 
5392 /*
5393  * Allocate a new allocindir structure.
5394  */
5395 static struct allocindir *
5396 newallocindir(ip, ptrno, newblkno, oldblkno, lbn)
5397 	struct inode *ip;	/* inode for file being extended */
5398 	int ptrno;		/* offset of pointer in indirect block */
5399 	ufs2_daddr_t newblkno;	/* disk block number being added */
5400 	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
5401 	ufs_lbn_t lbn;
5402 {
5403 	struct newblk *newblk;
5404 	struct allocindir *aip;
5405 	struct freefrag *freefrag;
5406 	struct jnewblk *jnewblk;
5407 
5408 	if (oldblkno)
5409 		freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize, lbn);
5410 	else
5411 		freefrag = NULL;
5412 	ACQUIRE_LOCK(&lk);
5413 	if (newblk_lookup(UFSTOVFS(ip->i_ump), newblkno, 0, &newblk) == 0)
5414 		panic("new_allocindir: lost block");
5415 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5416 	    ("newallocindir: newblk already initialized"));
5417 	newblk->nb_list.wk_type = D_ALLOCINDIR;
5418 	newblk->nb_freefrag = freefrag;
5419 	aip = (struct allocindir *)newblk;
5420 	aip->ai_offset = ptrno;
5421 	aip->ai_oldblkno = oldblkno;
5422 	aip->ai_lbn = lbn;
5423 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5424 		jnewblk->jn_ino = ip->i_number;
5425 		jnewblk->jn_lbn = lbn;
5426 		add_to_journal(&jnewblk->jn_list);
5427 	}
5428 	if (freefrag && freefrag->ff_jdep != NULL &&
5429 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5430 		add_to_journal(freefrag->ff_jdep);
5431 	return (aip);
5432 }
5433 
5434 /*
5435  * Called just before setting an indirect block pointer
5436  * to a newly allocated file page.
5437  */
5438 void
5439 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
5440 	struct inode *ip;	/* inode for file being extended */
5441 	ufs_lbn_t lbn;		/* allocated block number within file */
5442 	struct buf *bp;		/* buffer with indirect blk referencing page */
5443 	int ptrno;		/* offset of pointer in indirect block */
5444 	ufs2_daddr_t newblkno;	/* disk block number being added */
5445 	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
5446 	struct buf *nbp;	/* buffer holding allocated page */
5447 {
5448 	struct inodedep *inodedep;
5449 	struct freefrag *freefrag;
5450 	struct allocindir *aip;
5451 	struct pagedep *pagedep;
5452 	struct mount *mp;
5453 	int dflags;
5454 
5455 	if (lbn != nbp->b_lblkno)
5456 		panic("softdep_setup_allocindir_page: lbn %jd != lblkno %jd",
5457 		    lbn, bp->b_lblkno);
5458 	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page");
5459 	mp = UFSTOVFS(ip->i_ump);
5460 	aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn);
5461 	dflags = DEPALLOC;
5462 	if (IS_SNAPSHOT(ip))
5463 		dflags |= NODELAY;
5464 	(void) inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
5465 	/*
5466 	 * If we are allocating a directory page, then we must
5467 	 * allocate an associated pagedep to track additions and
5468 	 * deletions.
5469 	 */
5470 	if ((ip->i_mode & IFMT) == IFDIR)
5471 		pagedep_lookup(mp, nbp, ip->i_number, lbn, DEPALLOC, &pagedep);
5472 	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
5473 	freefrag = setup_allocindir_phase2(bp, ip, inodedep, aip, lbn);
5474 	FREE_LOCK(&lk);
5475 	if (freefrag)
5476 		handle_workitem_freefrag(freefrag);
5477 }
5478 
5479 /*
5480  * Called just before setting an indirect block pointer to a
5481  * newly allocated indirect block.
5482  */
5483 void
5484 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
5485 	struct buf *nbp;	/* newly allocated indirect block */
5486 	struct inode *ip;	/* inode for file being extended */
5487 	struct buf *bp;		/* indirect block referencing allocated block */
5488 	int ptrno;		/* offset of pointer in indirect block */
5489 	ufs2_daddr_t newblkno;	/* disk block number being added */
5490 {
5491 	struct inodedep *inodedep;
5492 	struct allocindir *aip;
5493 	ufs_lbn_t lbn;
5494 	int dflags;
5495 
5496 	lbn = nbp->b_lblkno;
5497 	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta");
5498 	aip = newallocindir(ip, ptrno, newblkno, 0, lbn);
5499 	dflags = DEPALLOC;
5500 	if (IS_SNAPSHOT(ip))
5501 		dflags |= NODELAY;
5502 	inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, dflags, &inodedep);
5503 	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
5504 	if (setup_allocindir_phase2(bp, ip, inodedep, aip, lbn))
5505 		panic("softdep_setup_allocindir_meta: Block already existed");
5506 	FREE_LOCK(&lk);
5507 }
5508 
5509 static void
5510 indirdep_complete(indirdep)
5511 	struct indirdep *indirdep;
5512 {
5513 	struct allocindir *aip;
5514 
5515 	LIST_REMOVE(indirdep, ir_next);
5516 	indirdep->ir_state |= DEPCOMPLETE;
5517 
5518 	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) {
5519 		LIST_REMOVE(aip, ai_next);
5520 		free_newblk(&aip->ai_block);
5521 	}
5522 	/*
5523 	 * If this indirdep is not attached to a buf it was simply waiting
5524 	 * on completion to clear completehd.  free_indirdep() asserts
5525 	 * that nothing is dangling.
5526 	 */
5527 	if ((indirdep->ir_state & ONWORKLIST) == 0)
5528 		free_indirdep(indirdep);
5529 }
5530 
5531 static struct indirdep *
5532 indirdep_lookup(mp, ip, bp)
5533 	struct mount *mp;
5534 	struct inode *ip;
5535 	struct buf *bp;
5536 {
5537 	struct indirdep *indirdep, *newindirdep;
5538 	struct newblk *newblk;
5539 	struct worklist *wk;
5540 	struct fs *fs;
5541 	ufs2_daddr_t blkno;
5542 
5543 	mtx_assert(&lk, MA_OWNED);
5544 	indirdep = NULL;
5545 	newindirdep = NULL;
5546 	fs = ip->i_fs;
5547 	for (;;) {
5548 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5549 			if (wk->wk_type != D_INDIRDEP)
5550 				continue;
5551 			indirdep = WK_INDIRDEP(wk);
5552 			break;
5553 		}
5554 		/* Found on the buffer worklist, no new structure to free. */
5555 		if (indirdep != NULL && newindirdep == NULL)
5556 			return (indirdep);
5557 		if (indirdep != NULL && newindirdep != NULL)
5558 			panic("indirdep_lookup: simultaneous create");
5559 		/* None found on the buffer and a new structure is ready. */
5560 		if (indirdep == NULL && newindirdep != NULL)
5561 			break;
5562 		/* None found and no new structure available. */
5563 		FREE_LOCK(&lk);
5564 		newindirdep = malloc(sizeof(struct indirdep),
5565 		    M_INDIRDEP, M_SOFTDEP_FLAGS);
5566 		workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp);
5567 		newindirdep->ir_state = ATTACHED;
5568 		if (ip->i_ump->um_fstype == UFS1)
5569 			newindirdep->ir_state |= UFS1FMT;
5570 		TAILQ_INIT(&newindirdep->ir_trunc);
5571 		newindirdep->ir_saveddata = NULL;
5572 		LIST_INIT(&newindirdep->ir_deplisthd);
5573 		LIST_INIT(&newindirdep->ir_donehd);
5574 		LIST_INIT(&newindirdep->ir_writehd);
5575 		LIST_INIT(&newindirdep->ir_completehd);
5576 		if (bp->b_blkno == bp->b_lblkno) {
5577 			ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp,
5578 			    NULL, NULL);
5579 			bp->b_blkno = blkno;
5580 		}
5581 		newindirdep->ir_freeblks = NULL;
5582 		newindirdep->ir_savebp =
5583 		    getblk(ip->i_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0);
5584 		newindirdep->ir_bp = bp;
5585 		BUF_KERNPROC(newindirdep->ir_savebp);
5586 		bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
5587 		ACQUIRE_LOCK(&lk);
5588 	}
5589 	indirdep = newindirdep;
5590 	WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list);
5591 	/*
5592 	 * If the block is not yet allocated we don't set DEPCOMPLETE so
5593 	 * that we don't free dependencies until the pointers are valid.
5594 	 * This could search b_dep for D_ALLOCDIRECT/D_ALLOCINDIR rather
5595 	 * than using the hash.
5596 	 */
5597 	if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk))
5598 		LIST_INSERT_HEAD(&newblk->nb_indirdeps, indirdep, ir_next);
5599 	else
5600 		indirdep->ir_state |= DEPCOMPLETE;
5601 	return (indirdep);
5602 }
5603 
5604 /*
5605  * Called to finish the allocation of the "aip" allocated
5606  * by one of the two routines above.
5607  */
5608 static struct freefrag *
5609 setup_allocindir_phase2(bp, ip, inodedep, aip, lbn)
5610 	struct buf *bp;		/* in-memory copy of the indirect block */
5611 	struct inode *ip;	/* inode for file being extended */
5612 	struct inodedep *inodedep; /* Inodedep for ip */
5613 	struct allocindir *aip;	/* allocindir allocated by the above routines */
5614 	ufs_lbn_t lbn;		/* Logical block number for this block. */
5615 {
5616 	struct fs *fs;
5617 	struct indirdep *indirdep;
5618 	struct allocindir *oldaip;
5619 	struct freefrag *freefrag;
5620 	struct mount *mp;
5621 
5622 	mtx_assert(&lk, MA_OWNED);
5623 	mp = UFSTOVFS(ip->i_ump);
5624 	fs = ip->i_fs;
5625 	if (bp->b_lblkno >= 0)
5626 		panic("setup_allocindir_phase2: not indir blk");
5627 	KASSERT(aip->ai_offset >= 0 && aip->ai_offset < NINDIR(fs),
5628 	    ("setup_allocindir_phase2: Bad offset %d", aip->ai_offset));
5629 	indirdep = indirdep_lookup(mp, ip, bp);
5630 	KASSERT(indirdep->ir_savebp != NULL,
5631 	    ("setup_allocindir_phase2 NULL ir_savebp"));
5632 	aip->ai_indirdep = indirdep;
5633 	/*
5634 	 * Check for an unwritten dependency for this indirect offset.  If
5635 	 * there is, merge the old dependency into the new one.  This happens
5636 	 * as a result of reallocblk only.
5637 	 */
5638 	freefrag = NULL;
5639 	if (aip->ai_oldblkno != 0) {
5640 		LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) {
5641 			if (oldaip->ai_offset == aip->ai_offset) {
5642 				freefrag = allocindir_merge(aip, oldaip);
5643 				goto done;
5644 			}
5645 		}
5646 		LIST_FOREACH(oldaip, &indirdep->ir_donehd, ai_next) {
5647 			if (oldaip->ai_offset == aip->ai_offset) {
5648 				freefrag = allocindir_merge(aip, oldaip);
5649 				goto done;
5650 			}
5651 		}
5652 	}
5653 done:
5654 	LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
5655 	return (freefrag);
5656 }
5657 
5658 /*
5659  * Merge two allocindirs which refer to the same block.  Move newblock
5660  * dependencies and setup the freefrags appropriately.
5661  */
5662 static struct freefrag *
5663 allocindir_merge(aip, oldaip)
5664 	struct allocindir *aip;
5665 	struct allocindir *oldaip;
5666 {
5667 	struct freefrag *freefrag;
5668 	struct worklist *wk;
5669 
5670 	if (oldaip->ai_newblkno != aip->ai_oldblkno)
5671 		panic("allocindir_merge: blkno");
5672 	aip->ai_oldblkno = oldaip->ai_oldblkno;
5673 	freefrag = aip->ai_freefrag;
5674 	aip->ai_freefrag = oldaip->ai_freefrag;
5675 	oldaip->ai_freefrag = NULL;
5676 	KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag"));
5677 	/*
5678 	 * If we are tracking a new directory-block allocation,
5679 	 * move it from the old allocindir to the new allocindir.
5680 	 */
5681 	if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) {
5682 		WORKLIST_REMOVE(wk);
5683 		if (!LIST_EMPTY(&oldaip->ai_newdirblk))
5684 			panic("allocindir_merge: extra newdirblk");
5685 		WORKLIST_INSERT(&aip->ai_newdirblk, wk);
5686 	}
5687 	/*
5688 	 * We can skip journaling for this freefrag and just complete
5689 	 * any pending journal work for the allocindir that is being
5690 	 * removed after the freefrag completes.
5691 	 */
5692 	if (freefrag->ff_jdep)
5693 		cancel_jfreefrag(WK_JFREEFRAG(freefrag->ff_jdep));
5694 	LIST_REMOVE(oldaip, ai_next);
5695 	freefrag->ff_jdep = (struct worklist *)cancel_newblk(&oldaip->ai_block,
5696 	    &freefrag->ff_list, &freefrag->ff_jwork);
5697 	free_newblk(&oldaip->ai_block);
5698 
5699 	return (freefrag);
5700 }
5701 
5702 static inline void
5703 setup_freedirect(freeblks, ip, i, needj)
5704 	struct freeblks *freeblks;
5705 	struct inode *ip;
5706 	int i;
5707 	int needj;
5708 {
5709 	ufs2_daddr_t blkno;
5710 	int frags;
5711 
5712 	blkno = DIP(ip, i_db[i]);
5713 	if (blkno == 0)
5714 		return;
5715 	DIP_SET(ip, i_db[i], 0);
5716 	frags = sblksize(ip->i_fs, ip->i_size, i);
5717 	frags = numfrags(ip->i_fs, frags);
5718 	newfreework(ip->i_ump, freeblks, NULL, i, blkno, frags, 0, needj);
5719 }
5720 
5721 static inline void
5722 setup_freeext(freeblks, ip, i, needj)
5723 	struct freeblks *freeblks;
5724 	struct inode *ip;
5725 	int i;
5726 	int needj;
5727 {
5728 	ufs2_daddr_t blkno;
5729 	int frags;
5730 
5731 	blkno = ip->i_din2->di_extb[i];
5732 	if (blkno == 0)
5733 		return;
5734 	ip->i_din2->di_extb[i] = 0;
5735 	frags = sblksize(ip->i_fs, ip->i_din2->di_extsize, i);
5736 	frags = numfrags(ip->i_fs, frags);
5737 	newfreework(ip->i_ump, freeblks, NULL, -1 - i, blkno, frags, 0, needj);
5738 }
5739 
5740 static inline void
5741 setup_freeindir(freeblks, ip, i, lbn, needj)
5742 	struct freeblks *freeblks;
5743 	struct inode *ip;
5744 	int i;
5745 	ufs_lbn_t lbn;
5746 	int needj;
5747 {
5748 	ufs2_daddr_t blkno;
5749 
5750 	blkno = DIP(ip, i_ib[i]);
5751 	if (blkno == 0)
5752 		return;
5753 	DIP_SET(ip, i_ib[i], 0);
5754 	newfreework(ip->i_ump, freeblks, NULL, lbn, blkno, ip->i_fs->fs_frag,
5755 	    0, needj);
5756 }
5757 
5758 static inline struct freeblks *
5759 newfreeblks(mp, ip)
5760 	struct mount *mp;
5761 	struct inode *ip;
5762 {
5763 	struct freeblks *freeblks;
5764 
5765 	freeblks = malloc(sizeof(struct freeblks),
5766 		M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO);
5767 	workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp);
5768 	LIST_INIT(&freeblks->fb_jblkdephd);
5769 	LIST_INIT(&freeblks->fb_jwork);
5770 	freeblks->fb_ref = 0;
5771 	freeblks->fb_cgwait = 0;
5772 	freeblks->fb_state = ATTACHED;
5773 	freeblks->fb_uid = ip->i_uid;
5774 	freeblks->fb_inum = ip->i_number;
5775 	freeblks->fb_vtype = ITOV(ip)->v_type;
5776 	freeblks->fb_modrev = DIP(ip, i_modrev);
5777 	freeblks->fb_devvp = ip->i_devvp;
5778 	freeblks->fb_chkcnt = 0;
5779 	freeblks->fb_len = 0;
5780 
5781 	return (freeblks);
5782 }
5783 
5784 static void
5785 trunc_indirdep(indirdep, freeblks, bp, off)
5786 	struct indirdep *indirdep;
5787 	struct freeblks *freeblks;
5788 	struct buf *bp;
5789 	int off;
5790 {
5791 	struct allocindir *aip, *aipn;
5792 
5793 	/*
5794 	 * The first set of allocindirs won't be in savedbp.
5795 	 */
5796 	LIST_FOREACH_SAFE(aip, &indirdep->ir_deplisthd, ai_next, aipn)
5797 		if (aip->ai_offset > off)
5798 			cancel_allocindir(aip, bp, freeblks, 1);
5799 	LIST_FOREACH_SAFE(aip, &indirdep->ir_donehd, ai_next, aipn)
5800 		if (aip->ai_offset > off)
5801 			cancel_allocindir(aip, bp, freeblks, 1);
5802 	/*
5803 	 * These will exist in savedbp.
5804 	 */
5805 	LIST_FOREACH_SAFE(aip, &indirdep->ir_writehd, ai_next, aipn)
5806 		if (aip->ai_offset > off)
5807 			cancel_allocindir(aip, NULL, freeblks, 0);
5808 	LIST_FOREACH_SAFE(aip, &indirdep->ir_completehd, ai_next, aipn)
5809 		if (aip->ai_offset > off)
5810 			cancel_allocindir(aip, NULL, freeblks, 0);
5811 }
5812 
5813 /*
5814  * Follow the chain of indirects down to lastlbn creating a freework
5815  * structure for each.  This will be used to start indir_trunc() at
5816  * the right offset and create the journal records for the parrtial
5817  * truncation.  A second step will handle the truncated dependencies.
5818  */
5819 static int
5820 setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno)
5821 	struct freeblks *freeblks;
5822 	struct inode *ip;
5823 	ufs_lbn_t lbn;
5824 	ufs_lbn_t lastlbn;
5825 	ufs2_daddr_t blkno;
5826 {
5827 	struct indirdep *indirdep;
5828 	struct indirdep *indirn;
5829 	struct freework *freework;
5830 	struct newblk *newblk;
5831 	struct mount *mp;
5832 	struct buf *bp;
5833 	uint8_t *start;
5834 	uint8_t *end;
5835 	ufs_lbn_t lbnadd;
5836 	int level;
5837 	int error;
5838 	int off;
5839 
5840 
5841 	freework = NULL;
5842 	if (blkno == 0)
5843 		return (0);
5844 	mp = freeblks->fb_list.wk_mp;
5845 	bp = getblk(ITOV(ip), lbn, mp->mnt_stat.f_iosize, 0, 0, 0);
5846 	if ((bp->b_flags & B_CACHE) == 0) {
5847 		bp->b_blkno = blkptrtodb(VFSTOUFS(mp), blkno);
5848 		bp->b_iocmd = BIO_READ;
5849 		bp->b_flags &= ~B_INVAL;
5850 		bp->b_ioflags &= ~BIO_ERROR;
5851 		vfs_busy_pages(bp, 0);
5852 		bp->b_iooffset = dbtob(bp->b_blkno);
5853 		bstrategy(bp);
5854 		curthread->td_ru.ru_inblock++;
5855 		error = bufwait(bp);
5856 		if (error) {
5857 			brelse(bp);
5858 			return (error);
5859 		}
5860 	}
5861 	level = lbn_level(lbn);
5862 	lbnadd = lbn_offset(ip->i_fs, level);
5863 	/*
5864 	 * Compute the offset of the last block we want to keep.  Store
5865 	 * in the freework the first block we want to completely free.
5866 	 */
5867 	off = (lastlbn - -(lbn + level)) / lbnadd;
5868 	if (off + 1 == NINDIR(ip->i_fs))
5869 		goto nowork;
5870 	freework = newfreework(ip->i_ump, freeblks, NULL, lbn, blkno, 0, off+1,
5871 	    0);
5872 	/*
5873 	 * Link the freework into the indirdep.  This will prevent any new
5874 	 * allocations from proceeding until we are finished with the
5875 	 * truncate and the block is written.
5876 	 */
5877 	ACQUIRE_LOCK(&lk);
5878 	indirdep = indirdep_lookup(mp, ip, bp);
5879 	if (indirdep->ir_freeblks)
5880 		panic("setup_trunc_indir: indirdep already truncated.");
5881 	TAILQ_INSERT_TAIL(&indirdep->ir_trunc, freework, fw_next);
5882 	freework->fw_indir = indirdep;
5883 	/*
5884 	 * Cancel any allocindirs that will not make it to disk.
5885 	 * We have to do this for all copies of the indirdep that
5886 	 * live on this newblk.
5887 	 */
5888 	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
5889 		newblk_lookup(mp, dbtofsb(ip->i_fs, bp->b_blkno), 0, &newblk);
5890 		LIST_FOREACH(indirn, &newblk->nb_indirdeps, ir_next)
5891 			trunc_indirdep(indirn, freeblks, bp, off);
5892 	} else
5893 		trunc_indirdep(indirdep, freeblks, bp, off);
5894 	FREE_LOCK(&lk);
5895 	/*
5896 	 * Creation is protected by the buf lock. The saveddata is only
5897 	 * needed if a full truncation follows a partial truncation but it
5898 	 * is difficult to allocate in that case so we fetch it anyway.
5899 	 */
5900 	if (indirdep->ir_saveddata == NULL)
5901 		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
5902 		    M_SOFTDEP_FLAGS);
5903 nowork:
5904 	/* Fetch the blkno of the child and the zero start offset. */
5905 	if (ip->i_ump->um_fstype == UFS1) {
5906 		blkno = ((ufs1_daddr_t *)bp->b_data)[off];
5907 		start = (uint8_t *)&((ufs1_daddr_t *)bp->b_data)[off+1];
5908 	} else {
5909 		blkno = ((ufs2_daddr_t *)bp->b_data)[off];
5910 		start = (uint8_t *)&((ufs2_daddr_t *)bp->b_data)[off+1];
5911 	}
5912 	if (freework) {
5913 		/* Zero the truncated pointers. */
5914 		end = bp->b_data + bp->b_bcount;
5915 		bzero(start, end - start);
5916 		bdwrite(bp);
5917 	} else
5918 		bqrelse(bp);
5919 	if (level == 0)
5920 		return (0);
5921 	lbn++; /* adjust level */
5922 	lbn -= (off * lbnadd);
5923 	return setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno);
5924 }
5925 
5926 /*
5927  * Complete the partial truncation of an indirect block setup by
5928  * setup_trunc_indir().  This zeros the truncated pointers in the saved
5929  * copy and writes them to disk before the freeblks is allowed to complete.
5930  */
5931 static void
5932 complete_trunc_indir(freework)
5933 	struct freework *freework;
5934 {
5935 	struct freework *fwn;
5936 	struct indirdep *indirdep;
5937 	struct buf *bp;
5938 	uintptr_t start;
5939 	int count;
5940 
5941 	indirdep = freework->fw_indir;
5942 	for (;;) {
5943 		bp = indirdep->ir_bp;
5944 		/* See if the block was discarded. */
5945 		if (bp == NULL)
5946 			break;
5947 		/* Inline part of getdirtybuf().  We dont want bremfree. */
5948 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0)
5949 			break;
5950 		if (BUF_LOCK(bp,
5951 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, &lk) == 0)
5952 			BUF_UNLOCK(bp);
5953 		ACQUIRE_LOCK(&lk);
5954 	}
5955 	mtx_assert(&lk, MA_OWNED);
5956 	freework->fw_state |= DEPCOMPLETE;
5957 	TAILQ_REMOVE(&indirdep->ir_trunc, freework, fw_next);
5958 	/*
5959 	 * Zero the pointers in the saved copy.
5960 	 */
5961 	if (indirdep->ir_state & UFS1FMT)
5962 		start = sizeof(ufs1_daddr_t);
5963 	else
5964 		start = sizeof(ufs2_daddr_t);
5965 	start *= freework->fw_start;
5966 	count = indirdep->ir_savebp->b_bcount - start;
5967 	start += (uintptr_t)indirdep->ir_savebp->b_data;
5968 	bzero((char *)start, count);
5969 	/*
5970 	 * We need to start the next truncation in the list if it has not
5971 	 * been started yet.
5972 	 */
5973 	fwn = TAILQ_FIRST(&indirdep->ir_trunc);
5974 	if (fwn != NULL) {
5975 		if (fwn->fw_freeblks == indirdep->ir_freeblks)
5976 			TAILQ_REMOVE(&indirdep->ir_trunc, fwn, fw_next);
5977 		if ((fwn->fw_state & ONWORKLIST) == 0)
5978 			freework_enqueue(fwn);
5979 	}
5980 	/*
5981 	 * If bp is NULL the block was fully truncated, restore
5982 	 * the saved block list otherwise free it if it is no
5983 	 * longer needed.
5984 	 */
5985 	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
5986 		if (bp == NULL)
5987 			bcopy(indirdep->ir_saveddata,
5988 			    indirdep->ir_savebp->b_data,
5989 			    indirdep->ir_savebp->b_bcount);
5990 		free(indirdep->ir_saveddata, M_INDIRDEP);
5991 		indirdep->ir_saveddata = NULL;
5992 	}
5993 	/*
5994 	 * When bp is NULL there is a full truncation pending.  We
5995 	 * must wait for this full truncation to be journaled before
5996 	 * we can release this freework because the disk pointers will
5997 	 * never be written as zero.
5998 	 */
5999 	if (bp == NULL)  {
6000 		if (LIST_EMPTY(&indirdep->ir_freeblks->fb_jblkdephd))
6001 			handle_written_freework(freework);
6002 		else
6003 			WORKLIST_INSERT(&indirdep->ir_freeblks->fb_freeworkhd,
6004 			   &freework->fw_list);
6005 	} else {
6006 		/* Complete when the real copy is written. */
6007 		WORKLIST_INSERT(&bp->b_dep, &freework->fw_list);
6008 		BUF_UNLOCK(bp);
6009 	}
6010 }
6011 
6012 /*
6013  * Calculate the number of blocks we are going to release where datablocks
6014  * is the current total and length is the new file size.
6015  */
6016 ufs2_daddr_t
6017 blkcount(fs, datablocks, length)
6018 	struct fs *fs;
6019 	ufs2_daddr_t datablocks;
6020 	off_t length;
6021 {
6022 	off_t totblks, numblks;
6023 
6024 	totblks = 0;
6025 	numblks = howmany(length, fs->fs_bsize);
6026 	if (numblks <= NDADDR) {
6027 		totblks = howmany(length, fs->fs_fsize);
6028 		goto out;
6029 	}
6030         totblks = blkstofrags(fs, numblks);
6031 	numblks -= NDADDR;
6032 	/*
6033 	 * Count all single, then double, then triple indirects required.
6034 	 * Subtracting one indirects worth of blocks for each pass
6035 	 * acknowledges one of each pointed to by the inode.
6036 	 */
6037 	for (;;) {
6038 		totblks += blkstofrags(fs, howmany(numblks, NINDIR(fs)));
6039 		numblks -= NINDIR(fs);
6040 		if (numblks <= 0)
6041 			break;
6042 		numblks = howmany(numblks, NINDIR(fs));
6043 	}
6044 out:
6045 	totblks = fsbtodb(fs, totblks);
6046 	/*
6047 	 * Handle sparse files.  We can't reclaim more blocks than the inode
6048 	 * references.  We will correct it later in handle_complete_freeblks()
6049 	 * when we know the real count.
6050 	 */
6051 	if (totblks > datablocks)
6052 		return (0);
6053 	return (datablocks - totblks);
6054 }
6055 
6056 /*
6057  * Handle freeblocks for journaled softupdate filesystems.
6058  *
6059  * Contrary to normal softupdates, we must preserve the block pointers in
6060  * indirects until their subordinates are free.  This is to avoid journaling
6061  * every block that is freed which may consume more space than the journal
6062  * itself.  The recovery program will see the free block journals at the
6063  * base of the truncated area and traverse them to reclaim space.  The
6064  * pointers in the inode may be cleared immediately after the journal
6065  * records are written because each direct and indirect pointer in the
6066  * inode is recorded in a journal.  This permits full truncation to proceed
6067  * asynchronously.  The write order is journal -> inode -> cgs -> indirects.
6068  *
6069  * The algorithm is as follows:
6070  * 1) Traverse the in-memory state and create journal entries to release
6071  *    the relevant blocks and full indirect trees.
6072  * 2) Traverse the indirect block chain adding partial truncation freework
6073  *    records to indirects in the path to lastlbn.  The freework will
6074  *    prevent new allocation dependencies from being satisfied in this
6075  *    indirect until the truncation completes.
6076  * 3) Read and lock the inode block, performing an update with the new size
6077  *    and pointers.  This prevents truncated data from becoming valid on
6078  *    disk through step 4.
6079  * 4) Reap unsatisfied dependencies that are beyond the truncated area,
6080  *    eliminate journal work for those records that do not require it.
6081  * 5) Schedule the journal records to be written followed by the inode block.
6082  * 6) Allocate any necessary frags for the end of file.
6083  * 7) Zero any partially truncated blocks.
6084  *
6085  * From this truncation proceeds asynchronously using the freework and
6086  * indir_trunc machinery.  The file will not be extended again into a
6087  * partially truncated indirect block until all work is completed but
6088  * the normal dependency mechanism ensures that it is rolled back/forward
6089  * as appropriate.  Further truncation may occur without delay and is
6090  * serialized in indir_trunc().
6091  */
6092 void
6093 softdep_journal_freeblocks(ip, cred, length, flags)
6094 	struct inode *ip;	/* The inode whose length is to be reduced */
6095 	struct ucred *cred;
6096 	off_t length;		/* The new length for the file */
6097 	int flags;		/* IO_EXT and/or IO_NORMAL */
6098 {
6099 	struct freeblks *freeblks, *fbn;
6100 	struct inodedep *inodedep;
6101 	struct jblkdep *jblkdep;
6102 	struct allocdirect *adp, *adpn;
6103 	struct fs *fs;
6104 	struct buf *bp;
6105 	struct vnode *vp;
6106 	struct mount *mp;
6107 	ufs2_daddr_t extblocks, datablocks;
6108 	ufs_lbn_t tmpval, lbn, lastlbn;
6109 	int frags, lastoff, iboff, allocblock, needj, dflags, error, i;
6110 
6111 	fs = ip->i_fs;
6112 	mp = UFSTOVFS(ip->i_ump);
6113 	vp = ITOV(ip);
6114 	needj = 1;
6115 	iboff = -1;
6116 	allocblock = 0;
6117 	extblocks = 0;
6118 	datablocks = 0;
6119 	frags = 0;
6120 	freeblks = newfreeblks(mp, ip);
6121 	ACQUIRE_LOCK(&lk);
6122 	/*
6123 	 * If we're truncating a removed file that will never be written
6124 	 * we don't need to journal the block frees.  The canceled journals
6125 	 * for the allocations will suffice.
6126 	 */
6127 	dflags = DEPALLOC;
6128 	if (IS_SNAPSHOT(ip))
6129 		dflags |= NODELAY;
6130 	inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
6131 	if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED &&
6132 	    length == 0)
6133 		needj = 0;
6134 	FREE_LOCK(&lk);
6135 	/*
6136 	 * Calculate the lbn that we are truncating to.  This results in -1
6137 	 * if we're truncating the 0 bytes.  So it is the last lbn we want
6138 	 * to keep, not the first lbn we want to truncate.
6139 	 */
6140 	lastlbn = lblkno(fs, length + fs->fs_bsize - 1) - 1;
6141 	lastoff = blkoff(fs, length);
6142 	/*
6143 	 * Compute frags we are keeping in lastlbn.  0 means all.
6144 	 */
6145 	if (lastlbn >= 0 && lastlbn < NDADDR) {
6146 		frags = fragroundup(fs, lastoff);
6147 		/* adp offset of last valid allocdirect. */
6148 		iboff = lastlbn;
6149 	} else if (lastlbn > 0)
6150 		iboff = NDADDR;
6151 	if (fs->fs_magic == FS_UFS2_MAGIC)
6152 		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
6153 	/*
6154 	 * Handle normal data blocks and indirects.  This section saves
6155 	 * values used after the inode update to complete frag and indirect
6156 	 * truncation.
6157 	 */
6158 	if ((flags & IO_NORMAL) != 0) {
6159 		/*
6160 		 * Handle truncation of whole direct and indirect blocks.
6161 		 */
6162 		for (i = iboff + 1; i < NDADDR; i++)
6163 			setup_freedirect(freeblks, ip, i, needj);
6164 		for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR;
6165 		    i++, lbn += tmpval, tmpval *= NINDIR(fs)) {
6166 			/* Release a whole indirect tree. */
6167 			if (lbn > lastlbn) {
6168 				setup_freeindir(freeblks, ip, i, -lbn -i,
6169 				    needj);
6170 				continue;
6171 			}
6172 			iboff = i + NDADDR;
6173 			/*
6174 			 * Traverse partially truncated indirect tree.
6175 			 */
6176 			if (lbn <= lastlbn && lbn + tmpval - 1 > lastlbn)
6177 				setup_trunc_indir(freeblks, ip, -lbn - i,
6178 				    lastlbn, DIP(ip, i_ib[i]));
6179 		}
6180 		/*
6181 		 * Handle partial truncation to a frag boundary.
6182 		 */
6183 		if (frags) {
6184 			ufs2_daddr_t blkno;
6185 			long oldfrags;
6186 
6187 			oldfrags = blksize(fs, ip, lastlbn);
6188 			blkno = DIP(ip, i_db[lastlbn]);
6189 			if (blkno && oldfrags != frags) {
6190 				oldfrags -= frags;
6191 				oldfrags = numfrags(ip->i_fs, oldfrags);
6192 				blkno += numfrags(ip->i_fs, frags);
6193 				newfreework(ip->i_ump, freeblks, NULL, lastlbn,
6194 				    blkno, oldfrags, 0, needj);
6195 			} else if (blkno == 0)
6196 				allocblock = 1;
6197 		}
6198 		/*
6199 		 * Add a journal record for partial truncate if we are
6200 		 * handling indirect blocks.  Non-indirects need no extra
6201 		 * journaling.
6202 		 */
6203 		if (length != 0 && lastlbn >= NDADDR) {
6204 			ip->i_flag |= IN_TRUNCATED;
6205 			newjtrunc(freeblks, length, 0);
6206 		}
6207 		ip->i_size = length;
6208 		DIP_SET(ip, i_size, ip->i_size);
6209 		datablocks = DIP(ip, i_blocks) - extblocks;
6210 		if (length != 0)
6211 			datablocks = blkcount(ip->i_fs, datablocks, length);
6212 		freeblks->fb_len = length;
6213 	}
6214 	if ((flags & IO_EXT) != 0) {
6215 		for (i = 0; i < NXADDR; i++)
6216 			setup_freeext(freeblks, ip, i, needj);
6217 		ip->i_din2->di_extsize = 0;
6218 		datablocks += extblocks;
6219 	}
6220 #ifdef QUOTA
6221 	/* Reference the quotas in case the block count is wrong in the end. */
6222 	quotaref(vp, freeblks->fb_quota);
6223 	(void) chkdq(ip, -datablocks, NOCRED, 0);
6224 #endif
6225 	freeblks->fb_chkcnt = -datablocks;
6226 	UFS_LOCK(ip->i_ump);
6227 	fs->fs_pendingblocks += datablocks;
6228 	UFS_UNLOCK(ip->i_ump);
6229 	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
6230 	/*
6231 	 * Handle truncation of incomplete alloc direct dependencies.  We
6232 	 * hold the inode block locked to prevent incomplete dependencies
6233 	 * from reaching the disk while we are eliminating those that
6234 	 * have been truncated.  This is a partially inlined ffs_update().
6235 	 */
6236 	ufs_itimes(vp);
6237 	ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED);
6238 	error = bread(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
6239 	    (int)fs->fs_bsize, cred, &bp);
6240 	if (error) {
6241 		brelse(bp);
6242 		softdep_error("softdep_journal_freeblocks", error);
6243 		return;
6244 	}
6245 	if (bp->b_bufsize == fs->fs_bsize)
6246 		bp->b_flags |= B_CLUSTEROK;
6247 	softdep_update_inodeblock(ip, bp, 0);
6248 	if (ip->i_ump->um_fstype == UFS1)
6249 		*((struct ufs1_dinode *)bp->b_data +
6250 		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1;
6251 	else
6252 		*((struct ufs2_dinode *)bp->b_data +
6253 		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2;
6254 	ACQUIRE_LOCK(&lk);
6255 	(void) inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
6256 	if ((inodedep->id_state & IOSTARTED) != 0)
6257 		panic("softdep_setup_freeblocks: inode busy");
6258 	/*
6259 	 * Add the freeblks structure to the list of operations that
6260 	 * must await the zero'ed inode being written to disk. If we
6261 	 * still have a bitmap dependency (needj), then the inode
6262 	 * has never been written to disk, so we can process the
6263 	 * freeblks below once we have deleted the dependencies.
6264 	 */
6265 	if (needj)
6266 		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
6267 	else
6268 		freeblks->fb_state |= COMPLETE;
6269 	if ((flags & IO_NORMAL) != 0) {
6270 		TAILQ_FOREACH_SAFE(adp, &inodedep->id_inoupdt, ad_next, adpn) {
6271 			if (adp->ad_offset > iboff)
6272 				cancel_allocdirect(&inodedep->id_inoupdt, adp,
6273 				    freeblks);
6274 			/*
6275 			 * Truncate the allocdirect.  We could eliminate
6276 			 * or modify journal records as well.
6277 			 */
6278 			else if (adp->ad_offset == iboff && frags)
6279 				adp->ad_newsize = frags;
6280 		}
6281 	}
6282 	if ((flags & IO_EXT) != 0)
6283 		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0)
6284 			cancel_allocdirect(&inodedep->id_extupdt, adp,
6285 			    freeblks);
6286 	/*
6287 	 * Add journal work.
6288 	 */
6289 	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps)
6290 		add_to_journal(&jblkdep->jb_list);
6291 	FREE_LOCK(&lk);
6292 	bdwrite(bp);
6293 	/*
6294 	 * Truncate dependency structures beyond length.
6295 	 */
6296 	trunc_dependencies(ip, freeblks, lastlbn, frags, flags);
6297 	/*
6298 	 * This is only set when we need to allocate a fragment because
6299 	 * none existed at the end of a frag-sized file.  It handles only
6300 	 * allocating a new, zero filled block.
6301 	 */
6302 	if (allocblock) {
6303 		ip->i_size = length - lastoff;
6304 		DIP_SET(ip, i_size, ip->i_size);
6305 		error = UFS_BALLOC(vp, length - 1, 1, cred, BA_CLRBUF, &bp);
6306 		if (error != 0) {
6307 			softdep_error("softdep_journal_freeblks", error);
6308 			return;
6309 		}
6310 		ip->i_size = length;
6311 		DIP_SET(ip, i_size, length);
6312 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
6313 		allocbuf(bp, frags);
6314 		ffs_update(vp, MNT_NOWAIT);
6315 		bawrite(bp);
6316 	} else if (lastoff != 0 && vp->v_type != VDIR) {
6317 		int size;
6318 
6319 		/*
6320 		 * Zero the end of a truncated frag or block.
6321 		 */
6322 		size = sblksize(fs, length, lastlbn);
6323 		error = bread(vp, lastlbn, size, cred, &bp);
6324 		if (error) {
6325 			softdep_error("softdep_journal_freeblks", error);
6326 			return;
6327 		}
6328 		bzero((char *)bp->b_data + lastoff, size - lastoff);
6329 		bawrite(bp);
6330 
6331 	}
6332 	ACQUIRE_LOCK(&lk);
6333 	inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
6334 	TAILQ_INSERT_TAIL(&inodedep->id_freeblklst, freeblks, fb_next);
6335 	freeblks->fb_state |= DEPCOMPLETE | ONDEPLIST;
6336 	/*
6337 	 * We zero earlier truncations so they don't erroneously
6338 	 * update i_blocks.
6339 	 */
6340 	if (freeblks->fb_len == 0 && (flags & IO_NORMAL) != 0)
6341 		TAILQ_FOREACH(fbn, &inodedep->id_freeblklst, fb_next)
6342 			fbn->fb_len = 0;
6343 	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE &&
6344 	    LIST_EMPTY(&freeblks->fb_jblkdephd))
6345 		freeblks->fb_state |= INPROGRESS;
6346 	else
6347 		freeblks = NULL;
6348 	FREE_LOCK(&lk);
6349 	if (freeblks)
6350 		handle_workitem_freeblocks(freeblks, 0);
6351 	trunc_pages(ip, length, extblocks, flags);
6352 
6353 }
6354 
6355 /*
6356  * Flush a JOP_SYNC to the journal.
6357  */
6358 void
6359 softdep_journal_fsync(ip)
6360 	struct inode *ip;
6361 {
6362 	struct jfsync *jfsync;
6363 
6364 	if ((ip->i_flag & IN_TRUNCATED) == 0)
6365 		return;
6366 	ip->i_flag &= ~IN_TRUNCATED;
6367 	jfsync = malloc(sizeof(*jfsync), M_JFSYNC, M_SOFTDEP_FLAGS | M_ZERO);
6368 	workitem_alloc(&jfsync->jfs_list, D_JFSYNC, UFSTOVFS(ip->i_ump));
6369 	jfsync->jfs_size = ip->i_size;
6370 	jfsync->jfs_ino = ip->i_number;
6371 	ACQUIRE_LOCK(&lk);
6372 	add_to_journal(&jfsync->jfs_list);
6373 	jwait(&jfsync->jfs_list, MNT_WAIT);
6374 	FREE_LOCK(&lk);
6375 }
6376 
6377 /*
6378  * Block de-allocation dependencies.
6379  *
6380  * When blocks are de-allocated, the on-disk pointers must be nullified before
6381  * the blocks are made available for use by other files.  (The true
6382  * requirement is that old pointers must be nullified before new on-disk
6383  * pointers are set.  We chose this slightly more stringent requirement to
6384  * reduce complexity.) Our implementation handles this dependency by updating
6385  * the inode (or indirect block) appropriately but delaying the actual block
6386  * de-allocation (i.e., freemap and free space count manipulation) until
6387  * after the updated versions reach stable storage.  After the disk is
6388  * updated, the blocks can be safely de-allocated whenever it is convenient.
6389  * This implementation handles only the common case of reducing a file's
6390  * length to zero. Other cases are handled by the conventional synchronous
6391  * write approach.
6392  *
6393  * The ffs implementation with which we worked double-checks
6394  * the state of the block pointers and file size as it reduces
6395  * a file's length.  Some of this code is replicated here in our
6396  * soft updates implementation.  The freeblks->fb_chkcnt field is
6397  * used to transfer a part of this information to the procedure
6398  * that eventually de-allocates the blocks.
6399  *
6400  * This routine should be called from the routine that shortens
6401  * a file's length, before the inode's size or block pointers
6402  * are modified. It will save the block pointer information for
6403  * later release and zero the inode so that the calling routine
6404  * can release it.
6405  */
6406 void
6407 softdep_setup_freeblocks(ip, length, flags)
6408 	struct inode *ip;	/* The inode whose length is to be reduced */
6409 	off_t length;		/* The new length for the file */
6410 	int flags;		/* IO_EXT and/or IO_NORMAL */
6411 {
6412 	struct ufs1_dinode *dp1;
6413 	struct ufs2_dinode *dp2;
6414 	struct freeblks *freeblks;
6415 	struct inodedep *inodedep;
6416 	struct allocdirect *adp;
6417 	struct buf *bp;
6418 	struct fs *fs;
6419 	ufs2_daddr_t extblocks, datablocks;
6420 	struct mount *mp;
6421 	int i, delay, error, dflags;
6422 	ufs_lbn_t tmpval;
6423 	ufs_lbn_t lbn;
6424 
6425 	fs = ip->i_fs;
6426 	mp = UFSTOVFS(ip->i_ump);
6427 	if (length != 0)
6428 		panic("softdep_setup_freeblocks: non-zero length");
6429 	freeblks = newfreeblks(mp, ip);
6430 	extblocks = 0;
6431 	datablocks = 0;
6432 	if (fs->fs_magic == FS_UFS2_MAGIC)
6433 		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
6434 	if ((flags & IO_NORMAL) != 0) {
6435 		for (i = 0; i < NDADDR; i++)
6436 			setup_freedirect(freeblks, ip, i, 0);
6437 		for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR;
6438 		    i++, lbn += tmpval, tmpval *= NINDIR(fs))
6439 			setup_freeindir(freeblks, ip, i, -lbn -i, 0);
6440 		ip->i_size = 0;
6441 		DIP_SET(ip, i_size, 0);
6442 		datablocks = DIP(ip, i_blocks) - extblocks;
6443 	}
6444 	if ((flags & IO_EXT) != 0) {
6445 		for (i = 0; i < NXADDR; i++)
6446 			setup_freeext(freeblks, ip, i, 0);
6447 		ip->i_din2->di_extsize = 0;
6448 		datablocks += extblocks;
6449 	}
6450 #ifdef QUOTA
6451 	/* Reference the quotas in case the block count is wrong in the end. */
6452 	quotaref(ITOV(ip), freeblks->fb_quota);
6453 	(void) chkdq(ip, -datablocks, NOCRED, 0);
6454 #endif
6455 	freeblks->fb_chkcnt = -datablocks;
6456 	UFS_LOCK(ip->i_ump);
6457 	fs->fs_pendingblocks += datablocks;
6458 	UFS_UNLOCK(ip->i_ump);
6459 	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
6460 	/*
6461 	 * Push the zero'ed inode to to its disk buffer so that we are free
6462 	 * to delete its dependencies below. Once the dependencies are gone
6463 	 * the buffer can be safely released.
6464 	 */
6465 	if ((error = bread(ip->i_devvp,
6466 	    fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
6467 	    (int)fs->fs_bsize, NOCRED, &bp)) != 0) {
6468 		brelse(bp);
6469 		softdep_error("softdep_setup_freeblocks", error);
6470 	}
6471 	if (ip->i_ump->um_fstype == UFS1) {
6472 		dp1 = ((struct ufs1_dinode *)bp->b_data +
6473 		    ino_to_fsbo(fs, ip->i_number));
6474 		ip->i_din1->di_freelink = dp1->di_freelink;
6475 		*dp1 = *ip->i_din1;
6476 	} else {
6477 		dp2 = ((struct ufs2_dinode *)bp->b_data +
6478 		    ino_to_fsbo(fs, ip->i_number));
6479 		ip->i_din2->di_freelink = dp2->di_freelink;
6480 		*dp2 = *ip->i_din2;
6481 	}
6482 	/*
6483 	 * Find and eliminate any inode dependencies.
6484 	 */
6485 	ACQUIRE_LOCK(&lk);
6486 	dflags = DEPALLOC;
6487 	if (IS_SNAPSHOT(ip))
6488 		dflags |= NODELAY;
6489 	(void) inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
6490 	if ((inodedep->id_state & IOSTARTED) != 0)
6491 		panic("softdep_setup_freeblocks: inode busy");
6492 	/*
6493 	 * Add the freeblks structure to the list of operations that
6494 	 * must await the zero'ed inode being written to disk. If we
6495 	 * still have a bitmap dependency (delay == 0), then the inode
6496 	 * has never been written to disk, so we can process the
6497 	 * freeblks below once we have deleted the dependencies.
6498 	 */
6499 	delay = (inodedep->id_state & DEPCOMPLETE);
6500 	if (delay)
6501 		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
6502 	else
6503 		freeblks->fb_state |= COMPLETE;
6504 	/*
6505 	 * Because the file length has been truncated to zero, any
6506 	 * pending block allocation dependency structures associated
6507 	 * with this inode are obsolete and can simply be de-allocated.
6508 	 * We must first merge the two dependency lists to get rid of
6509 	 * any duplicate freefrag structures, then purge the merged list.
6510 	 * If we still have a bitmap dependency, then the inode has never
6511 	 * been written to disk, so we can free any fragments without delay.
6512 	 */
6513 	if (flags & IO_NORMAL) {
6514 		merge_inode_lists(&inodedep->id_newinoupdt,
6515 		    &inodedep->id_inoupdt);
6516 		while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != 0)
6517 			cancel_allocdirect(&inodedep->id_inoupdt, adp,
6518 			    freeblks);
6519 	}
6520 	if (flags & IO_EXT) {
6521 		merge_inode_lists(&inodedep->id_newextupdt,
6522 		    &inodedep->id_extupdt);
6523 		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0)
6524 			cancel_allocdirect(&inodedep->id_extupdt, adp,
6525 			    freeblks);
6526 	}
6527 	FREE_LOCK(&lk);
6528 	bdwrite(bp);
6529 	trunc_dependencies(ip, freeblks, -1, 0, flags);
6530 	ACQUIRE_LOCK(&lk);
6531 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
6532 		(void) free_inodedep(inodedep);
6533 	freeblks->fb_state |= DEPCOMPLETE;
6534 	/*
6535 	 * If the inode with zeroed block pointers is now on disk
6536 	 * we can start freeing blocks.
6537 	 */
6538 	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
6539 		freeblks->fb_state |= INPROGRESS;
6540 	else
6541 		freeblks = NULL;
6542 	FREE_LOCK(&lk);
6543 	if (freeblks)
6544 		handle_workitem_freeblocks(freeblks, 0);
6545 	trunc_pages(ip, length, extblocks, flags);
6546 }
6547 
6548 /*
6549  * Eliminate pages from the page cache that back parts of this inode and
6550  * adjust the vnode pager's idea of our size.  This prevents stale data
6551  * from hanging around in the page cache.
6552  */
6553 static void
6554 trunc_pages(ip, length, extblocks, flags)
6555 	struct inode *ip;
6556 	off_t length;
6557 	ufs2_daddr_t extblocks;
6558 	int flags;
6559 {
6560 	struct vnode *vp;
6561 	struct fs *fs;
6562 	ufs_lbn_t lbn;
6563 	off_t end, extend;
6564 
6565 	vp = ITOV(ip);
6566 	fs = ip->i_fs;
6567 	extend = OFF_TO_IDX(lblktosize(fs, -extblocks));
6568 	if ((flags & IO_EXT) != 0)
6569 		vn_pages_remove(vp, extend, 0);
6570 	if ((flags & IO_NORMAL) == 0)
6571 		return;
6572 	BO_LOCK(&vp->v_bufobj);
6573 	drain_output(vp);
6574 	BO_UNLOCK(&vp->v_bufobj);
6575 	/*
6576 	 * The vnode pager eliminates file pages we eliminate indirects
6577 	 * below.
6578 	 */
6579 	vnode_pager_setsize(vp, length);
6580 	/*
6581 	 * Calculate the end based on the last indirect we want to keep.  If
6582 	 * the block extends into indirects we can just use the negative of
6583 	 * its lbn.  Doubles and triples exist at lower numbers so we must
6584 	 * be careful not to remove those, if they exist.  double and triple
6585 	 * indirect lbns do not overlap with others so it is not important
6586 	 * to verify how many levels are required.
6587 	 */
6588 	lbn = lblkno(fs, length);
6589 	if (lbn >= NDADDR) {
6590 		/* Calculate the virtual lbn of the triple indirect. */
6591 		lbn = -lbn - (NIADDR - 1);
6592 		end = OFF_TO_IDX(lblktosize(fs, lbn));
6593 	} else
6594 		end = extend;
6595 	vn_pages_remove(vp, OFF_TO_IDX(OFF_MAX), end);
6596 }
6597 
6598 /*
6599  * See if the buf bp is in the range eliminated by truncation.
6600  */
6601 static int
6602 trunc_check_buf(bp, blkoffp, lastlbn, lastoff, flags)
6603 	struct buf *bp;
6604 	int *blkoffp;
6605 	ufs_lbn_t lastlbn;
6606 	int lastoff;
6607 	int flags;
6608 {
6609 	ufs_lbn_t lbn;
6610 
6611 	*blkoffp = 0;
6612 	/* Only match ext/normal blocks as appropriate. */
6613 	if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) ||
6614 	    ((flags & IO_NORMAL) == 0 && (bp->b_xflags & BX_ALTDATA) == 0))
6615 		return (0);
6616 	/* ALTDATA is always a full truncation. */
6617 	if ((bp->b_xflags & BX_ALTDATA) != 0)
6618 		return (1);
6619 	/* -1 is full truncation. */
6620 	if (lastlbn == -1)
6621 		return (1);
6622 	/*
6623 	 * If this is a partial truncate we only want those
6624 	 * blocks and indirect blocks that cover the range
6625 	 * we're after.
6626 	 */
6627 	lbn = bp->b_lblkno;
6628 	if (lbn < 0)
6629 		lbn = -(lbn + lbn_level(lbn));
6630 	if (lbn < lastlbn)
6631 		return (0);
6632 	/* Here we only truncate lblkno if it's partial. */
6633 	if (lbn == lastlbn) {
6634 		if (lastoff == 0)
6635 			return (0);
6636 		*blkoffp = lastoff;
6637 	}
6638 	return (1);
6639 }
6640 
6641 /*
6642  * Eliminate any dependencies that exist in memory beyond lblkno:off
6643  */
6644 static void
6645 trunc_dependencies(ip, freeblks, lastlbn, lastoff, flags)
6646 	struct inode *ip;
6647 	struct freeblks *freeblks;
6648 	ufs_lbn_t lastlbn;
6649 	int lastoff;
6650 	int flags;
6651 {
6652 	struct bufobj *bo;
6653 	struct vnode *vp;
6654 	struct buf *bp;
6655 	struct fs *fs;
6656 	int blkoff;
6657 
6658 	/*
6659 	 * We must wait for any I/O in progress to finish so that
6660 	 * all potential buffers on the dirty list will be visible.
6661 	 * Once they are all there, walk the list and get rid of
6662 	 * any dependencies.
6663 	 */
6664 	fs = ip->i_fs;
6665 	vp = ITOV(ip);
6666 	bo = &vp->v_bufobj;
6667 	BO_LOCK(bo);
6668 	drain_output(vp);
6669 	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
6670 		bp->b_vflags &= ~BV_SCANNED;
6671 restart:
6672 	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
6673 		if (bp->b_vflags & BV_SCANNED)
6674 			continue;
6675 		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
6676 			bp->b_vflags |= BV_SCANNED;
6677 			continue;
6678 		}
6679 		if ((bp = getdirtybuf(bp, BO_MTX(bo), MNT_WAIT)) == NULL)
6680 			goto restart;
6681 		BO_UNLOCK(bo);
6682 		if (deallocate_dependencies(bp, freeblks, blkoff))
6683 			bqrelse(bp);
6684 		else
6685 			brelse(bp);
6686 		BO_LOCK(bo);
6687 		goto restart;
6688 	}
6689 	/*
6690 	 * Now do the work of vtruncbuf while also matching indirect blocks.
6691 	 */
6692 	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs)
6693 		bp->b_vflags &= ~BV_SCANNED;
6694 cleanrestart:
6695 	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) {
6696 		if (bp->b_vflags & BV_SCANNED)
6697 			continue;
6698 		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
6699 			bp->b_vflags |= BV_SCANNED;
6700 			continue;
6701 		}
6702 		if (BUF_LOCK(bp,
6703 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
6704 		    BO_MTX(bo)) == ENOLCK) {
6705 			BO_LOCK(bo);
6706 			goto cleanrestart;
6707 		}
6708 		bp->b_vflags |= BV_SCANNED;
6709 		BO_LOCK(bo);
6710 		bremfree(bp);
6711 		BO_UNLOCK(bo);
6712 		if (blkoff != 0) {
6713 			allocbuf(bp, blkoff);
6714 			bqrelse(bp);
6715 		} else {
6716 			bp->b_flags |= B_INVAL | B_NOCACHE | B_RELBUF;
6717 			brelse(bp);
6718 		}
6719 		BO_LOCK(bo);
6720 		goto cleanrestart;
6721 	}
6722 	drain_output(vp);
6723 	BO_UNLOCK(bo);
6724 }
6725 
6726 static int
6727 cancel_pagedep(pagedep, freeblks, blkoff)
6728 	struct pagedep *pagedep;
6729 	struct freeblks *freeblks;
6730 	int blkoff;
6731 {
6732 	struct jremref *jremref;
6733 	struct jmvref *jmvref;
6734 	struct dirrem *dirrem, *tmp;
6735 	int i;
6736 
6737 	/*
6738 	 * Copy any directory remove dependencies to the list
6739 	 * to be processed after the freeblks proceeds.  If
6740 	 * directory entry never made it to disk they
6741 	 * can be dumped directly onto the work list.
6742 	 */
6743 	LIST_FOREACH_SAFE(dirrem, &pagedep->pd_dirremhd, dm_next, tmp) {
6744 		/* Skip this directory removal if it is intended to remain. */
6745 		if (dirrem->dm_offset < blkoff)
6746 			continue;
6747 		/*
6748 		 * If there are any dirrems we wait for the journal write
6749 		 * to complete and then restart the buf scan as the lock
6750 		 * has been dropped.
6751 		 */
6752 		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) {
6753 			jwait(&jremref->jr_list, MNT_WAIT);
6754 			return (ERESTART);
6755 		}
6756 		LIST_REMOVE(dirrem, dm_next);
6757 		dirrem->dm_dirinum = pagedep->pd_ino;
6758 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &dirrem->dm_list);
6759 	}
6760 	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) {
6761 		jwait(&jmvref->jm_list, MNT_WAIT);
6762 		return (ERESTART);
6763 	}
6764 	/*
6765 	 * When we're partially truncating a pagedep we just want to flush
6766 	 * journal entries and return.  There can not be any adds in the
6767 	 * truncated portion of the directory and newblk must remain if
6768 	 * part of the block remains.
6769 	 */
6770 	if (blkoff != 0) {
6771 		struct diradd *dap;
6772 
6773 		LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
6774 			if (dap->da_offset > blkoff)
6775 				panic("cancel_pagedep: diradd %p off %d > %d",
6776 				    dap, dap->da_offset, blkoff);
6777 		for (i = 0; i < DAHASHSZ; i++)
6778 			LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist)
6779 				if (dap->da_offset > blkoff)
6780 					panic("cancel_pagedep: diradd %p off %d > %d",
6781 					    dap, dap->da_offset, blkoff);
6782 		return (0);
6783 	}
6784 	/*
6785 	 * There should be no directory add dependencies present
6786 	 * as the directory could not be truncated until all
6787 	 * children were removed.
6788 	 */
6789 	KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL,
6790 	    ("deallocate_dependencies: pendinghd != NULL"));
6791 	for (i = 0; i < DAHASHSZ; i++)
6792 		KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL,
6793 		    ("deallocate_dependencies: diraddhd != NULL"));
6794 	if ((pagedep->pd_state & NEWBLOCK) != 0)
6795 		free_newdirblk(pagedep->pd_newdirblk);
6796 	if (free_pagedep(pagedep) == 0)
6797 		panic("Failed to free pagedep %p", pagedep);
6798 	return (0);
6799 }
6800 
6801 /*
6802  * Reclaim any dependency structures from a buffer that is about to
6803  * be reallocated to a new vnode. The buffer must be locked, thus,
6804  * no I/O completion operations can occur while we are manipulating
6805  * its associated dependencies. The mutex is held so that other I/O's
6806  * associated with related dependencies do not occur.
6807  */
6808 static int
6809 deallocate_dependencies(bp, freeblks, off)
6810 	struct buf *bp;
6811 	struct freeblks *freeblks;
6812 	int off;
6813 {
6814 	struct indirdep *indirdep;
6815 	struct pagedep *pagedep;
6816 	struct allocdirect *adp;
6817 	struct worklist *wk, *wkn;
6818 
6819 	ACQUIRE_LOCK(&lk);
6820 	LIST_FOREACH_SAFE(wk, &bp->b_dep, wk_list, wkn) {
6821 		switch (wk->wk_type) {
6822 		case D_INDIRDEP:
6823 			indirdep = WK_INDIRDEP(wk);
6824 			if (bp->b_lblkno >= 0 ||
6825 			    bp->b_blkno != indirdep->ir_savebp->b_lblkno)
6826 				panic("deallocate_dependencies: not indir");
6827 			cancel_indirdep(indirdep, bp, freeblks);
6828 			continue;
6829 
6830 		case D_PAGEDEP:
6831 			pagedep = WK_PAGEDEP(wk);
6832 			if (cancel_pagedep(pagedep, freeblks, off)) {
6833 				FREE_LOCK(&lk);
6834 				return (ERESTART);
6835 			}
6836 			continue;
6837 
6838 		case D_ALLOCINDIR:
6839 			/*
6840 			 * Simply remove the allocindir, we'll find it via
6841 			 * the indirdep where we can clear pointers if
6842 			 * needed.
6843 			 */
6844 			WORKLIST_REMOVE(wk);
6845 			continue;
6846 
6847 		case D_FREEWORK:
6848 			/*
6849 			 * A truncation is waiting for the zero'd pointers
6850 			 * to be written.  It can be freed when the freeblks
6851 			 * is journaled.
6852 			 */
6853 			WORKLIST_REMOVE(wk);
6854 			wk->wk_state |= ONDEPLIST;
6855 			WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
6856 			break;
6857 
6858 		case D_ALLOCDIRECT:
6859 			adp = WK_ALLOCDIRECT(wk);
6860 			if (off != 0)
6861 				continue;
6862 			/* FALLTHROUGH */
6863 		default:
6864 			panic("deallocate_dependencies: Unexpected type %s",
6865 			    TYPENAME(wk->wk_type));
6866 			/* NOTREACHED */
6867 		}
6868 	}
6869 	FREE_LOCK(&lk);
6870 	/*
6871 	 * Don't throw away this buf, we were partially truncating and
6872 	 * some deps may always remain.
6873 	 */
6874 	if (off) {
6875 		allocbuf(bp, off);
6876 		bp->b_vflags |= BV_SCANNED;
6877 		return (EBUSY);
6878 	}
6879 	bp->b_flags |= B_INVAL | B_NOCACHE;
6880 
6881 	return (0);
6882 }
6883 
6884 /*
6885  * An allocdirect is being canceled due to a truncate.  We must make sure
6886  * the journal entry is released in concert with the blkfree that releases
6887  * the storage.  Completed journal entries must not be released until the
6888  * space is no longer pointed to by the inode or in the bitmap.
6889  */
6890 static void
6891 cancel_allocdirect(adphead, adp, freeblks)
6892 	struct allocdirectlst *adphead;
6893 	struct allocdirect *adp;
6894 	struct freeblks *freeblks;
6895 {
6896 	struct freework *freework;
6897 	struct newblk *newblk;
6898 	struct worklist *wk;
6899 
6900 	TAILQ_REMOVE(adphead, adp, ad_next);
6901 	newblk = (struct newblk *)adp;
6902 	freework = NULL;
6903 	/*
6904 	 * Find the correct freework structure.
6905 	 */
6906 	LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) {
6907 		if (wk->wk_type != D_FREEWORK)
6908 			continue;
6909 		freework = WK_FREEWORK(wk);
6910 		if (freework->fw_blkno == newblk->nb_newblkno)
6911 			break;
6912 	}
6913 	if (freework == NULL)
6914 		panic("cancel_allocdirect: Freework not found");
6915 	/*
6916 	 * If a newblk exists at all we still have the journal entry that
6917 	 * initiated the allocation so we do not need to journal the free.
6918 	 */
6919 	cancel_jfreeblk(freeblks, freework->fw_blkno);
6920 	/*
6921 	 * If the journal hasn't been written the jnewblk must be passed
6922 	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
6923 	 * this by linking the journal dependency into the freework to be
6924 	 * freed when freework_freeblock() is called.  If the journal has
6925 	 * been written we can simply reclaim the journal space when the
6926 	 * freeblks work is complete.
6927 	 */
6928 	freework->fw_jnewblk = cancel_newblk(newblk, &freework->fw_list,
6929 	    &freeblks->fb_jwork);
6930 	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
6931 }
6932 
6933 
6934 /*
6935  * Cancel a new block allocation.  May be an indirect or direct block.  We
6936  * remove it from various lists and return any journal record that needs to
6937  * be resolved by the caller.
6938  *
6939  * A special consideration is made for indirects which were never pointed
6940  * at on disk and will never be found once this block is released.
6941  */
6942 static struct jnewblk *
6943 cancel_newblk(newblk, wk, wkhd)
6944 	struct newblk *newblk;
6945 	struct worklist *wk;
6946 	struct workhead *wkhd;
6947 {
6948 	struct jnewblk *jnewblk;
6949 
6950 	newblk->nb_state |= GOINGAWAY;
6951 	/*
6952 	 * Previously we traversed the completedhd on each indirdep
6953 	 * attached to this newblk to cancel them and gather journal
6954 	 * work.  Since we need only the oldest journal segment and
6955 	 * the lowest point on the tree will always have the oldest
6956 	 * journal segment we are free to release the segments
6957 	 * of any subordinates and may leave the indirdep list to
6958 	 * indirdep_complete() when this newblk is freed.
6959 	 */
6960 	if (newblk->nb_state & ONDEPLIST) {
6961 		newblk->nb_state &= ~ONDEPLIST;
6962 		LIST_REMOVE(newblk, nb_deps);
6963 	}
6964 	if (newblk->nb_state & ONWORKLIST)
6965 		WORKLIST_REMOVE(&newblk->nb_list);
6966 	/*
6967 	 * If the journal entry hasn't been written we save a pointer to
6968 	 * the dependency that frees it until it is written or the
6969 	 * superseding operation completes.
6970 	 */
6971 	jnewblk = newblk->nb_jnewblk;
6972 	if (jnewblk != NULL && wk != NULL) {
6973 		newblk->nb_jnewblk = NULL;
6974 		jnewblk->jn_dep = wk;
6975 	}
6976 	if (!LIST_EMPTY(&newblk->nb_jwork))
6977 		jwork_move(wkhd, &newblk->nb_jwork);
6978 	/*
6979 	 * When truncating we must free the newdirblk early to remove
6980 	 * the pagedep from the hash before returning.
6981 	 */
6982 	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
6983 		free_newdirblk(WK_NEWDIRBLK(wk));
6984 	if (!LIST_EMPTY(&newblk->nb_newdirblk))
6985 		panic("cancel_newblk: extra newdirblk");
6986 
6987 	return (jnewblk);
6988 }
6989 
6990 /*
6991  * Schedule the freefrag associated with a newblk to be released once
6992  * the pointers are written and the previous block is no longer needed.
6993  */
6994 static void
6995 newblk_freefrag(newblk)
6996 	struct newblk *newblk;
6997 {
6998 	struct freefrag *freefrag;
6999 
7000 	if (newblk->nb_freefrag == NULL)
7001 		return;
7002 	freefrag = newblk->nb_freefrag;
7003 	newblk->nb_freefrag = NULL;
7004 	freefrag->ff_state |= COMPLETE;
7005 	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
7006 		add_to_worklist(&freefrag->ff_list, 0);
7007 }
7008 
7009 /*
7010  * Free a newblk. Generate a new freefrag work request if appropriate.
7011  * This must be called after the inode pointer and any direct block pointers
7012  * are valid or fully removed via truncate or frag extension.
7013  */
7014 static void
7015 free_newblk(newblk)
7016 	struct newblk *newblk;
7017 {
7018 	struct indirdep *indirdep;
7019 	struct worklist *wk;
7020 
7021 	KASSERT(newblk->nb_jnewblk == NULL,
7022 	    ("free_newblk; jnewblk %p still attached", newblk->nb_jnewblk));
7023 	mtx_assert(&lk, MA_OWNED);
7024 	newblk_freefrag(newblk);
7025 	if (newblk->nb_state & ONDEPLIST)
7026 		LIST_REMOVE(newblk, nb_deps);
7027 	if (newblk->nb_state & ONWORKLIST)
7028 		WORKLIST_REMOVE(&newblk->nb_list);
7029 	LIST_REMOVE(newblk, nb_hash);
7030 	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7031 		free_newdirblk(WK_NEWDIRBLK(wk));
7032 	if (!LIST_EMPTY(&newblk->nb_newdirblk))
7033 		panic("free_newblk: extra newdirblk");
7034 	while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL)
7035 		indirdep_complete(indirdep);
7036 	handle_jwork(&newblk->nb_jwork);
7037 	newblk->nb_list.wk_type = D_NEWBLK;
7038 	WORKITEM_FREE(newblk, D_NEWBLK);
7039 }
7040 
7041 /*
7042  * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep.
7043  * This routine must be called with splbio interrupts blocked.
7044  */
7045 static void
7046 free_newdirblk(newdirblk)
7047 	struct newdirblk *newdirblk;
7048 {
7049 	struct pagedep *pagedep;
7050 	struct diradd *dap;
7051 	struct worklist *wk;
7052 
7053 	mtx_assert(&lk, MA_OWNED);
7054 	WORKLIST_REMOVE(&newdirblk->db_list);
7055 	/*
7056 	 * If the pagedep is still linked onto the directory buffer
7057 	 * dependency chain, then some of the entries on the
7058 	 * pd_pendinghd list may not be committed to disk yet. In
7059 	 * this case, we will simply clear the NEWBLOCK flag and
7060 	 * let the pd_pendinghd list be processed when the pagedep
7061 	 * is next written. If the pagedep is no longer on the buffer
7062 	 * dependency chain, then all the entries on the pd_pending
7063 	 * list are committed to disk and we can free them here.
7064 	 */
7065 	pagedep = newdirblk->db_pagedep;
7066 	pagedep->pd_state &= ~NEWBLOCK;
7067 	if ((pagedep->pd_state & ONWORKLIST) == 0) {
7068 		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
7069 			free_diradd(dap, NULL);
7070 		/*
7071 		 * If no dependencies remain, the pagedep will be freed.
7072 		 */
7073 		free_pagedep(pagedep);
7074 	}
7075 	/* Should only ever be one item in the list. */
7076 	while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) {
7077 		WORKLIST_REMOVE(wk);
7078 		handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
7079 	}
7080 	WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
7081 }
7082 
7083 /*
7084  * Prepare an inode to be freed. The actual free operation is not
7085  * done until the zero'ed inode has been written to disk.
7086  */
7087 void
7088 softdep_freefile(pvp, ino, mode)
7089 	struct vnode *pvp;
7090 	ino_t ino;
7091 	int mode;
7092 {
7093 	struct inode *ip = VTOI(pvp);
7094 	struct inodedep *inodedep;
7095 	struct freefile *freefile;
7096 	struct freeblks *freeblks;
7097 
7098 	/*
7099 	 * This sets up the inode de-allocation dependency.
7100 	 */
7101 	freefile = malloc(sizeof(struct freefile),
7102 		M_FREEFILE, M_SOFTDEP_FLAGS);
7103 	workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount);
7104 	freefile->fx_mode = mode;
7105 	freefile->fx_oldinum = ino;
7106 	freefile->fx_devvp = ip->i_devvp;
7107 	LIST_INIT(&freefile->fx_jwork);
7108 	UFS_LOCK(ip->i_ump);
7109 	ip->i_fs->fs_pendinginodes += 1;
7110 	UFS_UNLOCK(ip->i_ump);
7111 
7112 	/*
7113 	 * If the inodedep does not exist, then the zero'ed inode has
7114 	 * been written to disk. If the allocated inode has never been
7115 	 * written to disk, then the on-disk inode is zero'ed. In either
7116 	 * case we can free the file immediately.  If the journal was
7117 	 * canceled before being written the inode will never make it to
7118 	 * disk and we must send the canceled journal entrys to
7119 	 * ffs_freefile() to be cleared in conjunction with the bitmap.
7120 	 * Any blocks waiting on the inode to write can be safely freed
7121 	 * here as it will never been written.
7122 	 */
7123 	ACQUIRE_LOCK(&lk);
7124 	inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
7125 	if (inodedep) {
7126 		/*
7127 		 * Clear out freeblks that no longer need to reference
7128 		 * this inode.
7129 		 */
7130 		while ((freeblks =
7131 		    TAILQ_FIRST(&inodedep->id_freeblklst)) != NULL) {
7132 			TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks,
7133 			    fb_next);
7134 			freeblks->fb_state &= ~ONDEPLIST;
7135 		}
7136 		/*
7137 		 * Remove this inode from the unlinked list.
7138 		 */
7139 		if (inodedep->id_state & UNLINKED) {
7140 			/*
7141 			 * Save the journal work to be freed with the bitmap
7142 			 * before we clear UNLINKED.  Otherwise it can be lost
7143 			 * if the inode block is written.
7144 			 */
7145 			handle_bufwait(inodedep, &freefile->fx_jwork);
7146 			clear_unlinked_inodedep(inodedep);
7147 			/* Re-acquire inodedep as we've dropped lk. */
7148 			inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
7149 		}
7150 	}
7151 	if (inodedep == NULL || check_inode_unwritten(inodedep)) {
7152 		FREE_LOCK(&lk);
7153 		handle_workitem_freefile(freefile);
7154 		return;
7155 	}
7156 	if ((inodedep->id_state & DEPCOMPLETE) == 0)
7157 		inodedep->id_state |= GOINGAWAY;
7158 	WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
7159 	FREE_LOCK(&lk);
7160 	if (ip->i_number == ino)
7161 		ip->i_flag |= IN_MODIFIED;
7162 }
7163 
7164 /*
7165  * Check to see if an inode has never been written to disk. If
7166  * so free the inodedep and return success, otherwise return failure.
7167  * This routine must be called with splbio interrupts blocked.
7168  *
7169  * If we still have a bitmap dependency, then the inode has never
7170  * been written to disk. Drop the dependency as it is no longer
7171  * necessary since the inode is being deallocated. We set the
7172  * ALLCOMPLETE flags since the bitmap now properly shows that the
7173  * inode is not allocated. Even if the inode is actively being
7174  * written, it has been rolled back to its zero'ed state, so we
7175  * are ensured that a zero inode is what is on the disk. For short
7176  * lived files, this change will usually result in removing all the
7177  * dependencies from the inode so that it can be freed immediately.
7178  */
7179 static int
7180 check_inode_unwritten(inodedep)
7181 	struct inodedep *inodedep;
7182 {
7183 
7184 	mtx_assert(&lk, MA_OWNED);
7185 
7186 	if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 ||
7187 	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
7188 	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
7189 	    !LIST_EMPTY(&inodedep->id_bufwait) ||
7190 	    !LIST_EMPTY(&inodedep->id_inowait) ||
7191 	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
7192 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
7193 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
7194 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
7195 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
7196 	    !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
7197 	    inodedep->id_mkdiradd != NULL ||
7198 	    inodedep->id_nlinkdelta != 0)
7199 		return (0);
7200 	/*
7201 	 * Another process might be in initiate_write_inodeblock_ufs[12]
7202 	 * trying to allocate memory without holding "Softdep Lock".
7203 	 */
7204 	if ((inodedep->id_state & IOSTARTED) != 0 &&
7205 	    inodedep->id_savedino1 == NULL)
7206 		return (0);
7207 
7208 	if (inodedep->id_state & ONDEPLIST)
7209 		LIST_REMOVE(inodedep, id_deps);
7210 	inodedep->id_state &= ~ONDEPLIST;
7211 	inodedep->id_state |= ALLCOMPLETE;
7212 	inodedep->id_bmsafemap = NULL;
7213 	if (inodedep->id_state & ONWORKLIST)
7214 		WORKLIST_REMOVE(&inodedep->id_list);
7215 	if (inodedep->id_savedino1 != NULL) {
7216 		free(inodedep->id_savedino1, M_SAVEDINO);
7217 		inodedep->id_savedino1 = NULL;
7218 	}
7219 	if (free_inodedep(inodedep) == 0)
7220 		panic("check_inode_unwritten: busy inode");
7221 	return (1);
7222 }
7223 
7224 /*
7225  * Try to free an inodedep structure. Return 1 if it could be freed.
7226  */
7227 static int
7228 free_inodedep(inodedep)
7229 	struct inodedep *inodedep;
7230 {
7231 
7232 	mtx_assert(&lk, MA_OWNED);
7233 	if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 ||
7234 	    (inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
7235 	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
7236 	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
7237 	    !LIST_EMPTY(&inodedep->id_bufwait) ||
7238 	    !LIST_EMPTY(&inodedep->id_inowait) ||
7239 	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
7240 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
7241 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
7242 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
7243 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
7244 	    !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
7245 	    inodedep->id_mkdiradd != NULL ||
7246 	    inodedep->id_nlinkdelta != 0 ||
7247 	    inodedep->id_savedino1 != NULL)
7248 		return (0);
7249 	if (inodedep->id_state & ONDEPLIST)
7250 		LIST_REMOVE(inodedep, id_deps);
7251 	LIST_REMOVE(inodedep, id_hash);
7252 	WORKITEM_FREE(inodedep, D_INODEDEP);
7253 	return (1);
7254 }
7255 
7256 /*
7257  * Free the block referenced by a freework structure.  The parent freeblks
7258  * structure is released and completed when the final cg bitmap reaches
7259  * the disk.  This routine may be freeing a jnewblk which never made it to
7260  * disk in which case we do not have to wait as the operation is undone
7261  * in memory immediately.
7262  */
7263 static void
7264 freework_freeblock(freework)
7265 	struct freework *freework;
7266 {
7267 	struct freeblks *freeblks;
7268 	struct jnewblk *jnewblk;
7269 	struct ufsmount *ump;
7270 	struct workhead wkhd;
7271 	struct fs *fs;
7272 	int bsize;
7273 	int needj;
7274 
7275 	mtx_assert(&lk, MA_OWNED);
7276 	/*
7277 	 * Handle partial truncate separately.
7278 	 */
7279 	if (freework->fw_indir) {
7280 		complete_trunc_indir(freework);
7281 		return;
7282 	}
7283 	freeblks = freework->fw_freeblks;
7284 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7285 	fs = ump->um_fs;
7286 	needj = MOUNTEDSUJ(freeblks->fb_list.wk_mp) != 0;
7287 	bsize = lfragtosize(fs, freework->fw_frags);
7288 	LIST_INIT(&wkhd);
7289 	/*
7290 	 * DEPCOMPLETE is cleared in indirblk_insert() if the block lives
7291 	 * on the indirblk hashtable and prevents premature freeing.
7292 	 */
7293 	freework->fw_state |= DEPCOMPLETE;
7294 	/*
7295 	 * SUJ needs to wait for the segment referencing freed indirect
7296 	 * blocks to expire so that we know the checker will not confuse
7297 	 * a re-allocated indirect block with its old contents.
7298 	 */
7299 	if (needj && freework->fw_lbn <= -NDADDR)
7300 		indirblk_insert(freework);
7301 	/*
7302 	 * If we are canceling an existing jnewblk pass it to the free
7303 	 * routine, otherwise pass the freeblk which will ultimately
7304 	 * release the freeblks.  If we're not journaling, we can just
7305 	 * free the freeblks immediately.
7306 	 */
7307 	jnewblk = freework->fw_jnewblk;
7308 	if (jnewblk != NULL) {
7309 		cancel_jnewblk(jnewblk, &wkhd);
7310 		needj = 0;
7311 	} else if (needj) {
7312 		freework->fw_state |= DELAYEDFREE;
7313 		freeblks->fb_cgwait++;
7314 		WORKLIST_INSERT(&wkhd, &freework->fw_list);
7315 	}
7316 	FREE_LOCK(&lk);
7317 	freeblks_free(ump, freeblks, btodb(bsize));
7318 	ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno, bsize,
7319 	    freeblks->fb_inum, freeblks->fb_vtype, &wkhd);
7320 	ACQUIRE_LOCK(&lk);
7321 	/*
7322 	 * The jnewblk will be discarded and the bits in the map never
7323 	 * made it to disk.  We can immediately free the freeblk.
7324 	 */
7325 	if (needj == 0)
7326 		handle_written_freework(freework);
7327 }
7328 
7329 /*
7330  * We enqueue freework items that need processing back on the freeblks and
7331  * add the freeblks to the worklist.  This makes it easier to find all work
7332  * required to flush a truncation in process_truncates().
7333  */
7334 static void
7335 freework_enqueue(freework)
7336 	struct freework *freework;
7337 {
7338 	struct freeblks *freeblks;
7339 
7340 	freeblks = freework->fw_freeblks;
7341 	if ((freework->fw_state & INPROGRESS) == 0)
7342 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
7343 	if ((freeblks->fb_state &
7344 	    (ONWORKLIST | INPROGRESS | ALLCOMPLETE)) == ALLCOMPLETE &&
7345 	    LIST_EMPTY(&freeblks->fb_jblkdephd))
7346 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
7347 }
7348 
7349 /*
7350  * Start, continue, or finish the process of freeing an indirect block tree.
7351  * The free operation may be paused at any point with fw_off containing the
7352  * offset to restart from.  This enables us to implement some flow control
7353  * for large truncates which may fan out and generate a huge number of
7354  * dependencies.
7355  */
7356 static void
7357 handle_workitem_indirblk(freework)
7358 	struct freework *freework;
7359 {
7360 	struct freeblks *freeblks;
7361 	struct ufsmount *ump;
7362 	struct fs *fs;
7363 
7364 	freeblks = freework->fw_freeblks;
7365 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7366 	fs = ump->um_fs;
7367 	if (freework->fw_state & DEPCOMPLETE) {
7368 		handle_written_freework(freework);
7369 		return;
7370 	}
7371 	if (freework->fw_off == NINDIR(fs)) {
7372 		freework_freeblock(freework);
7373 		return;
7374 	}
7375 	freework->fw_state |= INPROGRESS;
7376 	FREE_LOCK(&lk);
7377 	indir_trunc(freework, fsbtodb(fs, freework->fw_blkno),
7378 	    freework->fw_lbn);
7379 	ACQUIRE_LOCK(&lk);
7380 }
7381 
7382 /*
7383  * Called when a freework structure attached to a cg buf is written.  The
7384  * ref on either the parent or the freeblks structure is released and
7385  * the freeblks is added back to the worklist if there is more work to do.
7386  */
7387 static void
7388 handle_written_freework(freework)
7389 	struct freework *freework;
7390 {
7391 	struct freeblks *freeblks;
7392 	struct freework *parent;
7393 
7394 	freeblks = freework->fw_freeblks;
7395 	parent = freework->fw_parent;
7396 	if (freework->fw_state & DELAYEDFREE)
7397 		freeblks->fb_cgwait--;
7398 	freework->fw_state |= COMPLETE;
7399 	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
7400 		WORKITEM_FREE(freework, D_FREEWORK);
7401 	if (parent) {
7402 		if (--parent->fw_ref == 0)
7403 			freework_enqueue(parent);
7404 		return;
7405 	}
7406 	if (--freeblks->fb_ref != 0)
7407 		return;
7408 	if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST | INPROGRESS)) ==
7409 	    ALLCOMPLETE && LIST_EMPTY(&freeblks->fb_jblkdephd))
7410 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
7411 }
7412 
7413 /*
7414  * This workitem routine performs the block de-allocation.
7415  * The workitem is added to the pending list after the updated
7416  * inode block has been written to disk.  As mentioned above,
7417  * checks regarding the number of blocks de-allocated (compared
7418  * to the number of blocks allocated for the file) are also
7419  * performed in this function.
7420  */
7421 static int
7422 handle_workitem_freeblocks(freeblks, flags)
7423 	struct freeblks *freeblks;
7424 	int flags;
7425 {
7426 	struct freework *freework;
7427 	struct newblk *newblk;
7428 	struct allocindir *aip;
7429 	struct ufsmount *ump;
7430 	struct worklist *wk;
7431 
7432 	KASSERT(LIST_EMPTY(&freeblks->fb_jblkdephd),
7433 	    ("handle_workitem_freeblocks: Journal entries not written."));
7434 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7435 	ACQUIRE_LOCK(&lk);
7436 	while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) {
7437 		WORKLIST_REMOVE(wk);
7438 		switch (wk->wk_type) {
7439 		case D_DIRREM:
7440 			wk->wk_state |= COMPLETE;
7441 			add_to_worklist(wk, 0);
7442 			continue;
7443 
7444 		case D_ALLOCDIRECT:
7445 			free_newblk(WK_NEWBLK(wk));
7446 			continue;
7447 
7448 		case D_ALLOCINDIR:
7449 			aip = WK_ALLOCINDIR(wk);
7450 			freework = NULL;
7451 			if (aip->ai_state & DELAYEDFREE) {
7452 				FREE_LOCK(&lk);
7453 				freework = newfreework(ump, freeblks, NULL,
7454 				    aip->ai_lbn, aip->ai_newblkno,
7455 				    ump->um_fs->fs_frag, 0, 0);
7456 				ACQUIRE_LOCK(&lk);
7457 			}
7458 			newblk = WK_NEWBLK(wk);
7459 			if (newblk->nb_jnewblk) {
7460 				freework->fw_jnewblk = newblk->nb_jnewblk;
7461 				newblk->nb_jnewblk->jn_dep = &freework->fw_list;
7462 				newblk->nb_jnewblk = NULL;
7463 			}
7464 			free_newblk(newblk);
7465 			continue;
7466 
7467 		case D_FREEWORK:
7468 			freework = WK_FREEWORK(wk);
7469 			if (freework->fw_lbn <= -NDADDR)
7470 				handle_workitem_indirblk(freework);
7471 			else
7472 				freework_freeblock(freework);
7473 			continue;
7474 		default:
7475 			panic("handle_workitem_freeblocks: Unknown type %s",
7476 			    TYPENAME(wk->wk_type));
7477 		}
7478 	}
7479 	if (freeblks->fb_ref != 0) {
7480 		freeblks->fb_state &= ~INPROGRESS;
7481 		wake_worklist(&freeblks->fb_list);
7482 		freeblks = NULL;
7483 	}
7484 	FREE_LOCK(&lk);
7485 	if (freeblks)
7486 		return handle_complete_freeblocks(freeblks, flags);
7487 	return (0);
7488 }
7489 
7490 /*
7491  * Handle completion of block free via truncate.  This allows fs_pending
7492  * to track the actual free block count more closely than if we only updated
7493  * it at the end.  We must be careful to handle cases where the block count
7494  * on free was incorrect.
7495  */
7496 static void
7497 freeblks_free(ump, freeblks, blocks)
7498 	struct ufsmount *ump;
7499 	struct freeblks *freeblks;
7500 	int blocks;
7501 {
7502 	struct fs *fs;
7503 	ufs2_daddr_t remain;
7504 
7505 	UFS_LOCK(ump);
7506 	remain = -freeblks->fb_chkcnt;
7507 	freeblks->fb_chkcnt += blocks;
7508 	if (remain > 0) {
7509 		if (remain < blocks)
7510 			blocks = remain;
7511 		fs = ump->um_fs;
7512 		fs->fs_pendingblocks -= blocks;
7513 	}
7514 	UFS_UNLOCK(ump);
7515 }
7516 
7517 /*
7518  * Once all of the freework workitems are complete we can retire the
7519  * freeblocks dependency and any journal work awaiting completion.  This
7520  * can not be called until all other dependencies are stable on disk.
7521  */
7522 static int
7523 handle_complete_freeblocks(freeblks, flags)
7524 	struct freeblks *freeblks;
7525 	int flags;
7526 {
7527 	struct inodedep *inodedep;
7528 	struct inode *ip;
7529 	struct vnode *vp;
7530 	struct fs *fs;
7531 	struct ufsmount *ump;
7532 	ufs2_daddr_t spare;
7533 
7534 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7535 	fs = ump->um_fs;
7536 	flags = LK_EXCLUSIVE | flags;
7537 	spare = freeblks->fb_chkcnt;
7538 
7539 	/*
7540 	 * If we did not release the expected number of blocks we may have
7541 	 * to adjust the inode block count here.  Only do so if it wasn't
7542 	 * a truncation to zero and the modrev still matches.
7543 	 */
7544 	if (spare && freeblks->fb_len != 0) {
7545 		if (ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_inum,
7546 		    flags, &vp, FFSV_FORCEINSMQ) != 0)
7547 			return (EBUSY);
7548 		ip = VTOI(vp);
7549 		if (DIP(ip, i_modrev) == freeblks->fb_modrev) {
7550 			DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - spare);
7551 			ip->i_flag |= IN_CHANGE;
7552 			/*
7553 			 * We must wait so this happens before the
7554 			 * journal is reclaimed.
7555 			 */
7556 			ffs_update(vp, 1);
7557 		}
7558 		vput(vp);
7559 	}
7560 	if (spare < 0) {
7561 		UFS_LOCK(ump);
7562 		fs->fs_pendingblocks += spare;
7563 		UFS_UNLOCK(ump);
7564 	}
7565 #ifdef QUOTA
7566 	/* Handle spare. */
7567 	if (spare)
7568 		quotaadj(freeblks->fb_quota, ump, -spare);
7569 	quotarele(freeblks->fb_quota);
7570 #endif
7571 	ACQUIRE_LOCK(&lk);
7572 	if (freeblks->fb_state & ONDEPLIST) {
7573 		inodedep_lookup(freeblks->fb_list.wk_mp, freeblks->fb_inum,
7574 		    0, &inodedep);
7575 		TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, fb_next);
7576 		freeblks->fb_state &= ~ONDEPLIST;
7577 		if (TAILQ_EMPTY(&inodedep->id_freeblklst))
7578 			free_inodedep(inodedep);
7579 	}
7580 	/*
7581 	 * All of the freeblock deps must be complete prior to this call
7582 	 * so it's now safe to complete earlier outstanding journal entries.
7583 	 */
7584 	handle_jwork(&freeblks->fb_jwork);
7585 	WORKITEM_FREE(freeblks, D_FREEBLKS);
7586 	FREE_LOCK(&lk);
7587 	return (0);
7588 }
7589 
7590 /*
7591  * Release blocks associated with the freeblks and stored in the indirect
7592  * block dbn. If level is greater than SINGLE, the block is an indirect block
7593  * and recursive calls to indirtrunc must be used to cleanse other indirect
7594  * blocks.
7595  *
7596  * This handles partial and complete truncation of blocks.  Partial is noted
7597  * with goingaway == 0.  In this case the freework is completed after the
7598  * zero'd indirects are written to disk.  For full truncation the freework
7599  * is completed after the block is freed.
7600  */
7601 static void
7602 indir_trunc(freework, dbn, lbn)
7603 	struct freework *freework;
7604 	ufs2_daddr_t dbn;
7605 	ufs_lbn_t lbn;
7606 {
7607 	struct freework *nfreework;
7608 	struct workhead wkhd;
7609 	struct freeblks *freeblks;
7610 	struct buf *bp;
7611 	struct fs *fs;
7612 	struct indirdep *indirdep;
7613 	struct ufsmount *ump;
7614 	ufs1_daddr_t *bap1 = 0;
7615 	ufs2_daddr_t nb, nnb, *bap2 = 0;
7616 	ufs_lbn_t lbnadd, nlbn;
7617 	int i, nblocks, ufs1fmt;
7618 	int freedblocks;
7619 	int goingaway;
7620 	int freedeps;
7621 	int needj;
7622 	int level;
7623 	int cnt;
7624 
7625 	freeblks = freework->fw_freeblks;
7626 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7627 	fs = ump->um_fs;
7628 	/*
7629 	 * Get buffer of block pointers to be freed.  There are three cases:
7630 	 *
7631 	 * 1) Partial truncate caches the indirdep pointer in the freework
7632 	 *    which provides us a back copy to the save bp which holds the
7633 	 *    pointers we want to clear.  When this completes the zero
7634 	 *    pointers are written to the real copy.
7635 	 * 2) The indirect is being completely truncated, cancel_indirdep()
7636 	 *    eliminated the real copy and placed the indirdep on the saved
7637 	 *    copy.  The indirdep and buf are discarded when this completes.
7638 	 * 3) The indirect was not in memory, we read a copy off of the disk
7639 	 *    using the devvp and drop and invalidate the buffer when we're
7640 	 *    done.
7641 	 */
7642 	goingaway = 1;
7643 	indirdep = NULL;
7644 	if (freework->fw_indir != NULL) {
7645 		goingaway = 0;
7646 		indirdep = freework->fw_indir;
7647 		bp = indirdep->ir_savebp;
7648 		if (bp == NULL || bp->b_blkno != dbn)
7649 			panic("indir_trunc: Bad saved buf %p blkno %jd",
7650 			    bp, (intmax_t)dbn);
7651 	} else if ((bp = incore(&freeblks->fb_devvp->v_bufobj, dbn)) != NULL) {
7652 		/*
7653 		 * The lock prevents the buf dep list from changing and
7654 	 	 * indirects on devvp should only ever have one dependency.
7655 		 */
7656 		indirdep = WK_INDIRDEP(LIST_FIRST(&bp->b_dep));
7657 		if (indirdep == NULL || (indirdep->ir_state & GOINGAWAY) == 0)
7658 			panic("indir_trunc: Bad indirdep %p from buf %p",
7659 			    indirdep, bp);
7660 	} else if (bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize,
7661 	    NOCRED, &bp) != 0) {
7662 		brelse(bp);
7663 		return;
7664 	}
7665 	ACQUIRE_LOCK(&lk);
7666 	/* Protects against a race with complete_trunc_indir(). */
7667 	freework->fw_state &= ~INPROGRESS;
7668 	/*
7669 	 * If we have an indirdep we need to enforce the truncation order
7670 	 * and discard it when it is complete.
7671 	 */
7672 	if (indirdep) {
7673 		if (freework != TAILQ_FIRST(&indirdep->ir_trunc) &&
7674 		    !TAILQ_EMPTY(&indirdep->ir_trunc)) {
7675 			/*
7676 			 * Add the complete truncate to the list on the
7677 			 * indirdep to enforce in-order processing.
7678 			 */
7679 			if (freework->fw_indir == NULL)
7680 				TAILQ_INSERT_TAIL(&indirdep->ir_trunc,
7681 				    freework, fw_next);
7682 			FREE_LOCK(&lk);
7683 			return;
7684 		}
7685 		/*
7686 		 * If we're goingaway, free the indirdep.  Otherwise it will
7687 		 * linger until the write completes.
7688 		 */
7689 		if (goingaway) {
7690 			free_indirdep(indirdep);
7691 			ump->um_numindirdeps -= 1;
7692 		}
7693 	}
7694 	FREE_LOCK(&lk);
7695 	/* Initialize pointers depending on block size. */
7696 	if (ump->um_fstype == UFS1) {
7697 		bap1 = (ufs1_daddr_t *)bp->b_data;
7698 		nb = bap1[freework->fw_off];
7699 		ufs1fmt = 1;
7700 	} else {
7701 		bap2 = (ufs2_daddr_t *)bp->b_data;
7702 		nb = bap2[freework->fw_off];
7703 		ufs1fmt = 0;
7704 	}
7705 	level = lbn_level(lbn);
7706 	needj = MOUNTEDSUJ(UFSTOVFS(ump)) != 0;
7707 	lbnadd = lbn_offset(fs, level);
7708 	nblocks = btodb(fs->fs_bsize);
7709 	nfreework = freework;
7710 	freedeps = 0;
7711 	cnt = 0;
7712 	/*
7713 	 * Reclaim blocks.  Traverses into nested indirect levels and
7714 	 * arranges for the current level to be freed when subordinates
7715 	 * are free when journaling.
7716 	 */
7717 	for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) {
7718 		if (i != NINDIR(fs) - 1) {
7719 			if (ufs1fmt)
7720 				nnb = bap1[i+1];
7721 			else
7722 				nnb = bap2[i+1];
7723 		} else
7724 			nnb = 0;
7725 		if (nb == 0)
7726 			continue;
7727 		cnt++;
7728 		if (level != 0) {
7729 			nlbn = (lbn + 1) - (i * lbnadd);
7730 			if (needj != 0) {
7731 				nfreework = newfreework(ump, freeblks, freework,
7732 				    nlbn, nb, fs->fs_frag, 0, 0);
7733 				freedeps++;
7734 			}
7735 			indir_trunc(nfreework, fsbtodb(fs, nb), nlbn);
7736 		} else {
7737 			struct freedep *freedep;
7738 
7739 			/*
7740 			 * Attempt to aggregate freedep dependencies for
7741 			 * all blocks being released to the same CG.
7742 			 */
7743 			LIST_INIT(&wkhd);
7744 			if (needj != 0 &&
7745 			    (nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) {
7746 				freedep = newfreedep(freework);
7747 				WORKLIST_INSERT_UNLOCKED(&wkhd,
7748 				    &freedep->fd_list);
7749 				freedeps++;
7750 			}
7751 			ffs_blkfree(ump, fs, freeblks->fb_devvp, nb,
7752 			    fs->fs_bsize, freeblks->fb_inum,
7753 			    freeblks->fb_vtype, &wkhd);
7754 		}
7755 	}
7756 	if (goingaway) {
7757 		bp->b_flags |= B_INVAL | B_NOCACHE;
7758 		brelse(bp);
7759 	}
7760 	freedblocks = 0;
7761 	if (level == 0)
7762 		freedblocks = (nblocks * cnt);
7763 	if (needj == 0)
7764 		freedblocks += nblocks;
7765 	freeblks_free(ump, freeblks, freedblocks);
7766 	/*
7767 	 * If we are journaling set up the ref counts and offset so this
7768 	 * indirect can be completed when its children are free.
7769 	 */
7770 	if (needj) {
7771 		ACQUIRE_LOCK(&lk);
7772 		freework->fw_off = i;
7773 		freework->fw_ref += freedeps;
7774 		freework->fw_ref -= NINDIR(fs) + 1;
7775 		if (level == 0)
7776 			freeblks->fb_cgwait += freedeps;
7777 		if (freework->fw_ref == 0)
7778 			freework_freeblock(freework);
7779 		FREE_LOCK(&lk);
7780 		return;
7781 	}
7782 	/*
7783 	 * If we're not journaling we can free the indirect now.
7784 	 */
7785 	dbn = dbtofsb(fs, dbn);
7786 	ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize,
7787 	    freeblks->fb_inum, freeblks->fb_vtype, NULL);
7788 	/* Non SUJ softdep does single-threaded truncations. */
7789 	if (freework->fw_blkno == dbn) {
7790 		freework->fw_state |= ALLCOMPLETE;
7791 		ACQUIRE_LOCK(&lk);
7792 		handle_written_freework(freework);
7793 		FREE_LOCK(&lk);
7794 	}
7795 	return;
7796 }
7797 
7798 /*
7799  * Cancel an allocindir when it is removed via truncation.  When bp is not
7800  * NULL the indirect never appeared on disk and is scheduled to be freed
7801  * independently of the indir so we can more easily track journal work.
7802  */
7803 static void
7804 cancel_allocindir(aip, bp, freeblks, trunc)
7805 	struct allocindir *aip;
7806 	struct buf *bp;
7807 	struct freeblks *freeblks;
7808 	int trunc;
7809 {
7810 	struct indirdep *indirdep;
7811 	struct freefrag *freefrag;
7812 	struct newblk *newblk;
7813 
7814 	newblk = (struct newblk *)aip;
7815 	LIST_REMOVE(aip, ai_next);
7816 	/*
7817 	 * We must eliminate the pointer in bp if it must be freed on its
7818 	 * own due to partial truncate or pending journal work.
7819 	 */
7820 	if (bp && (trunc || newblk->nb_jnewblk)) {
7821 		/*
7822 		 * Clear the pointer and mark the aip to be freed
7823 		 * directly if it never existed on disk.
7824 		 */
7825 		aip->ai_state |= DELAYEDFREE;
7826 		indirdep = aip->ai_indirdep;
7827 		if (indirdep->ir_state & UFS1FMT)
7828 			((ufs1_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
7829 		else
7830 			((ufs2_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
7831 	}
7832 	/*
7833 	 * When truncating the previous pointer will be freed via
7834 	 * savedbp.  Eliminate the freefrag which would dup free.
7835 	 */
7836 	if (trunc && (freefrag = newblk->nb_freefrag) != NULL) {
7837 		newblk->nb_freefrag = NULL;
7838 		if (freefrag->ff_jdep)
7839 			cancel_jfreefrag(
7840 			    WK_JFREEFRAG(freefrag->ff_jdep));
7841 		jwork_move(&freeblks->fb_jwork, &freefrag->ff_jwork);
7842 		WORKITEM_FREE(freefrag, D_FREEFRAG);
7843 	}
7844 	/*
7845 	 * If the journal hasn't been written the jnewblk must be passed
7846 	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
7847 	 * this by leaving the journal dependency on the newblk to be freed
7848 	 * when a freework is created in handle_workitem_freeblocks().
7849 	 */
7850 	cancel_newblk(newblk, NULL, &freeblks->fb_jwork);
7851 	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
7852 }
7853 
7854 /*
7855  * Create the mkdir dependencies for . and .. in a new directory.  Link them
7856  * in to a newdirblk so any subsequent additions are tracked properly.  The
7857  * caller is responsible for adding the mkdir1 dependency to the journal
7858  * and updating id_mkdiradd.  This function returns with lk held.
7859  */
7860 static struct mkdir *
7861 setup_newdir(dap, newinum, dinum, newdirbp, mkdirp)
7862 	struct diradd *dap;
7863 	ino_t newinum;
7864 	ino_t dinum;
7865 	struct buf *newdirbp;
7866 	struct mkdir **mkdirp;
7867 {
7868 	struct newblk *newblk;
7869 	struct pagedep *pagedep;
7870 	struct inodedep *inodedep;
7871 	struct newdirblk *newdirblk = 0;
7872 	struct mkdir *mkdir1, *mkdir2;
7873 	struct worklist *wk;
7874 	struct jaddref *jaddref;
7875 	struct mount *mp;
7876 
7877 	mp = dap->da_list.wk_mp;
7878 	newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK,
7879 	    M_SOFTDEP_FLAGS);
7880 	workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
7881 	LIST_INIT(&newdirblk->db_mkdir);
7882 	mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
7883 	workitem_alloc(&mkdir1->md_list, D_MKDIR, mp);
7884 	mkdir1->md_state = ATTACHED | MKDIR_BODY;
7885 	mkdir1->md_diradd = dap;
7886 	mkdir1->md_jaddref = NULL;
7887 	mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
7888 	workitem_alloc(&mkdir2->md_list, D_MKDIR, mp);
7889 	mkdir2->md_state = ATTACHED | MKDIR_PARENT;
7890 	mkdir2->md_diradd = dap;
7891 	mkdir2->md_jaddref = NULL;
7892 	if (MOUNTEDSUJ(mp) == 0) {
7893 		mkdir1->md_state |= DEPCOMPLETE;
7894 		mkdir2->md_state |= DEPCOMPLETE;
7895 	}
7896 	/*
7897 	 * Dependency on "." and ".." being written to disk.
7898 	 */
7899 	mkdir1->md_buf = newdirbp;
7900 	ACQUIRE_LOCK(&lk);
7901 	LIST_INSERT_HEAD(&mkdirlisthd, mkdir1, md_mkdirs);
7902 	/*
7903 	 * We must link the pagedep, allocdirect, and newdirblk for
7904 	 * the initial file page so the pointer to the new directory
7905 	 * is not written until the directory contents are live and
7906 	 * any subsequent additions are not marked live until the
7907 	 * block is reachable via the inode.
7908 	 */
7909 	if (pagedep_lookup(mp, newdirbp, newinum, 0, 0, &pagedep) == 0)
7910 		panic("setup_newdir: lost pagedep");
7911 	LIST_FOREACH(wk, &newdirbp->b_dep, wk_list)
7912 		if (wk->wk_type == D_ALLOCDIRECT)
7913 			break;
7914 	if (wk == NULL)
7915 		panic("setup_newdir: lost allocdirect");
7916 	if (pagedep->pd_state & NEWBLOCK)
7917 		panic("setup_newdir: NEWBLOCK already set");
7918 	newblk = WK_NEWBLK(wk);
7919 	pagedep->pd_state |= NEWBLOCK;
7920 	pagedep->pd_newdirblk = newdirblk;
7921 	newdirblk->db_pagedep = pagedep;
7922 	WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
7923 	WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list);
7924 	/*
7925 	 * Look up the inodedep for the parent directory so that we
7926 	 * can link mkdir2 into the pending dotdot jaddref or
7927 	 * the inode write if there is none.  If the inode is
7928 	 * ALLCOMPLETE and no jaddref is present all dependencies have
7929 	 * been satisfied and mkdir2 can be freed.
7930 	 */
7931 	inodedep_lookup(mp, dinum, 0, &inodedep);
7932 	if (MOUNTEDSUJ(mp)) {
7933 		if (inodedep == NULL)
7934 			panic("setup_newdir: Lost parent.");
7935 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
7936 		    inoreflst);
7937 		KASSERT(jaddref != NULL && jaddref->ja_parent == newinum &&
7938 		    (jaddref->ja_state & MKDIR_PARENT),
7939 		    ("setup_newdir: bad dotdot jaddref %p", jaddref));
7940 		LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs);
7941 		mkdir2->md_jaddref = jaddref;
7942 		jaddref->ja_mkdir = mkdir2;
7943 	} else if (inodedep == NULL ||
7944 	    (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
7945 		dap->da_state &= ~MKDIR_PARENT;
7946 		WORKITEM_FREE(mkdir2, D_MKDIR);
7947 	} else {
7948 		LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs);
7949 		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir2->md_list);
7950 	}
7951 	*mkdirp = mkdir2;
7952 
7953 	return (mkdir1);
7954 }
7955 
7956 /*
7957  * Directory entry addition dependencies.
7958  *
7959  * When adding a new directory entry, the inode (with its incremented link
7960  * count) must be written to disk before the directory entry's pointer to it.
7961  * Also, if the inode is newly allocated, the corresponding freemap must be
7962  * updated (on disk) before the directory entry's pointer. These requirements
7963  * are met via undo/redo on the directory entry's pointer, which consists
7964  * simply of the inode number.
7965  *
7966  * As directory entries are added and deleted, the free space within a
7967  * directory block can become fragmented.  The ufs filesystem will compact
7968  * a fragmented directory block to make space for a new entry. When this
7969  * occurs, the offsets of previously added entries change. Any "diradd"
7970  * dependency structures corresponding to these entries must be updated with
7971  * the new offsets.
7972  */
7973 
7974 /*
7975  * This routine is called after the in-memory inode's link
7976  * count has been incremented, but before the directory entry's
7977  * pointer to the inode has been set.
7978  */
7979 int
7980 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
7981 	struct buf *bp;		/* buffer containing directory block */
7982 	struct inode *dp;	/* inode for directory */
7983 	off_t diroffset;	/* offset of new entry in directory */
7984 	ino_t newinum;		/* inode referenced by new directory entry */
7985 	struct buf *newdirbp;	/* non-NULL => contents of new mkdir */
7986 	int isnewblk;		/* entry is in a newly allocated block */
7987 {
7988 	int offset;		/* offset of new entry within directory block */
7989 	ufs_lbn_t lbn;		/* block in directory containing new entry */
7990 	struct fs *fs;
7991 	struct diradd *dap;
7992 	struct newblk *newblk;
7993 	struct pagedep *pagedep;
7994 	struct inodedep *inodedep;
7995 	struct newdirblk *newdirblk = 0;
7996 	struct mkdir *mkdir1, *mkdir2;
7997 	struct jaddref *jaddref;
7998 	struct mount *mp;
7999 	int isindir;
8000 
8001 	/*
8002 	 * Whiteouts have no dependencies.
8003 	 */
8004 	if (newinum == WINO) {
8005 		if (newdirbp != NULL)
8006 			bdwrite(newdirbp);
8007 		return (0);
8008 	}
8009 	jaddref = NULL;
8010 	mkdir1 = mkdir2 = NULL;
8011 	mp = UFSTOVFS(dp->i_ump);
8012 	fs = dp->i_fs;
8013 	lbn = lblkno(fs, diroffset);
8014 	offset = blkoff(fs, diroffset);
8015 	dap = malloc(sizeof(struct diradd), M_DIRADD,
8016 		M_SOFTDEP_FLAGS|M_ZERO);
8017 	workitem_alloc(&dap->da_list, D_DIRADD, mp);
8018 	dap->da_offset = offset;
8019 	dap->da_newinum = newinum;
8020 	dap->da_state = ATTACHED;
8021 	LIST_INIT(&dap->da_jwork);
8022 	isindir = bp->b_lblkno >= NDADDR;
8023 	if (isnewblk &&
8024 	    (isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) {
8025 		newdirblk = malloc(sizeof(struct newdirblk),
8026 		    M_NEWDIRBLK, M_SOFTDEP_FLAGS);
8027 		workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
8028 		LIST_INIT(&newdirblk->db_mkdir);
8029 	}
8030 	/*
8031 	 * If we're creating a new directory setup the dependencies and set
8032 	 * the dap state to wait for them.  Otherwise it's COMPLETE and
8033 	 * we can move on.
8034 	 */
8035 	if (newdirbp == NULL) {
8036 		dap->da_state |= DEPCOMPLETE;
8037 		ACQUIRE_LOCK(&lk);
8038 	} else {
8039 		dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
8040 		mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp,
8041 		    &mkdir2);
8042 	}
8043 	/*
8044 	 * Link into parent directory pagedep to await its being written.
8045 	 */
8046 	pagedep_lookup(mp, bp, dp->i_number, lbn, DEPALLOC, &pagedep);
8047 #ifdef DEBUG
8048 	if (diradd_lookup(pagedep, offset) != NULL)
8049 		panic("softdep_setup_directory_add: %p already at off %d\n",
8050 		    diradd_lookup(pagedep, offset), offset);
8051 #endif
8052 	dap->da_pagedep = pagedep;
8053 	LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
8054 	    da_pdlist);
8055 	inodedep_lookup(mp, newinum, DEPALLOC | NODELAY, &inodedep);
8056 	/*
8057 	 * If we're journaling, link the diradd into the jaddref so it
8058 	 * may be completed after the journal entry is written.  Otherwise,
8059 	 * link the diradd into its inodedep.  If the inode is not yet
8060 	 * written place it on the bufwait list, otherwise do the post-inode
8061 	 * write processing to put it on the id_pendinghd list.
8062 	 */
8063 	if (MOUNTEDSUJ(mp)) {
8064 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8065 		    inoreflst);
8066 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
8067 		    ("softdep_setup_directory_add: bad jaddref %p", jaddref));
8068 		jaddref->ja_diroff = diroffset;
8069 		jaddref->ja_diradd = dap;
8070 		add_to_journal(&jaddref->ja_list);
8071 	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
8072 		diradd_inode_written(dap, inodedep);
8073 	else
8074 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
8075 	/*
8076 	 * Add the journal entries for . and .. links now that the primary
8077 	 * link is written.
8078 	 */
8079 	if (mkdir1 != NULL && MOUNTEDSUJ(mp)) {
8080 		jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
8081 		    inoreflst, if_deps);
8082 		KASSERT(jaddref != NULL &&
8083 		    jaddref->ja_ino == jaddref->ja_parent &&
8084 		    (jaddref->ja_state & MKDIR_BODY),
8085 		    ("softdep_setup_directory_add: bad dot jaddref %p",
8086 		    jaddref));
8087 		mkdir1->md_jaddref = jaddref;
8088 		jaddref->ja_mkdir = mkdir1;
8089 		/*
8090 		 * It is important that the dotdot journal entry
8091 		 * is added prior to the dot entry since dot writes
8092 		 * both the dot and dotdot links.  These both must
8093 		 * be added after the primary link for the journal
8094 		 * to remain consistent.
8095 		 */
8096 		add_to_journal(&mkdir2->md_jaddref->ja_list);
8097 		add_to_journal(&jaddref->ja_list);
8098 	}
8099 	/*
8100 	 * If we are adding a new directory remember this diradd so that if
8101 	 * we rename it we can keep the dot and dotdot dependencies.  If
8102 	 * we are adding a new name for an inode that has a mkdiradd we
8103 	 * must be in rename and we have to move the dot and dotdot
8104 	 * dependencies to this new name.  The old name is being orphaned
8105 	 * soon.
8106 	 */
8107 	if (mkdir1 != NULL) {
8108 		if (inodedep->id_mkdiradd != NULL)
8109 			panic("softdep_setup_directory_add: Existing mkdir");
8110 		inodedep->id_mkdiradd = dap;
8111 	} else if (inodedep->id_mkdiradd)
8112 		merge_diradd(inodedep, dap);
8113 	if (newdirblk) {
8114 		/*
8115 		 * There is nothing to do if we are already tracking
8116 		 * this block.
8117 		 */
8118 		if ((pagedep->pd_state & NEWBLOCK) != 0) {
8119 			WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
8120 			FREE_LOCK(&lk);
8121 			return (0);
8122 		}
8123 		if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)
8124 		    == 0)
8125 			panic("softdep_setup_directory_add: lost entry");
8126 		WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
8127 		pagedep->pd_state |= NEWBLOCK;
8128 		pagedep->pd_newdirblk = newdirblk;
8129 		newdirblk->db_pagedep = pagedep;
8130 		FREE_LOCK(&lk);
8131 		/*
8132 		 * If we extended into an indirect signal direnter to sync.
8133 		 */
8134 		if (isindir)
8135 			return (1);
8136 		return (0);
8137 	}
8138 	FREE_LOCK(&lk);
8139 	return (0);
8140 }
8141 
8142 /*
8143  * This procedure is called to change the offset of a directory
8144  * entry when compacting a directory block which must be owned
8145  * exclusively by the caller. Note that the actual entry movement
8146  * must be done in this procedure to ensure that no I/O completions
8147  * occur while the move is in progress.
8148  */
8149 void
8150 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
8151 	struct buf *bp;		/* Buffer holding directory block. */
8152 	struct inode *dp;	/* inode for directory */
8153 	caddr_t base;		/* address of dp->i_offset */
8154 	caddr_t oldloc;		/* address of old directory location */
8155 	caddr_t newloc;		/* address of new directory location */
8156 	int entrysize;		/* size of directory entry */
8157 {
8158 	int offset, oldoffset, newoffset;
8159 	struct pagedep *pagedep;
8160 	struct jmvref *jmvref;
8161 	struct diradd *dap;
8162 	struct direct *de;
8163 	struct mount *mp;
8164 	ufs_lbn_t lbn;
8165 	int flags;
8166 
8167 	mp = UFSTOVFS(dp->i_ump);
8168 	de = (struct direct *)oldloc;
8169 	jmvref = NULL;
8170 	flags = 0;
8171 	/*
8172 	 * Moves are always journaled as it would be too complex to
8173 	 * determine if any affected adds or removes are present in the
8174 	 * journal.
8175 	 */
8176 	if (MOUNTEDSUJ(mp)) {
8177 		flags = DEPALLOC;
8178 		jmvref = newjmvref(dp, de->d_ino,
8179 		    dp->i_offset + (oldloc - base),
8180 		    dp->i_offset + (newloc - base));
8181 	}
8182 	lbn = lblkno(dp->i_fs, dp->i_offset);
8183 	offset = blkoff(dp->i_fs, dp->i_offset);
8184 	oldoffset = offset + (oldloc - base);
8185 	newoffset = offset + (newloc - base);
8186 	ACQUIRE_LOCK(&lk);
8187 	if (pagedep_lookup(mp, bp, dp->i_number, lbn, flags, &pagedep) == 0)
8188 		goto done;
8189 	dap = diradd_lookup(pagedep, oldoffset);
8190 	if (dap) {
8191 		dap->da_offset = newoffset;
8192 		newoffset = DIRADDHASH(newoffset);
8193 		oldoffset = DIRADDHASH(oldoffset);
8194 		if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE &&
8195 		    newoffset != oldoffset) {
8196 			LIST_REMOVE(dap, da_pdlist);
8197 			LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset],
8198 			    dap, da_pdlist);
8199 		}
8200 	}
8201 done:
8202 	if (jmvref) {
8203 		jmvref->jm_pagedep = pagedep;
8204 		LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps);
8205 		add_to_journal(&jmvref->jm_list);
8206 	}
8207 	bcopy(oldloc, newloc, entrysize);
8208 	FREE_LOCK(&lk);
8209 }
8210 
8211 /*
8212  * Move the mkdir dependencies and journal work from one diradd to another
8213  * when renaming a directory.  The new name must depend on the mkdir deps
8214  * completing as the old name did.  Directories can only have one valid link
8215  * at a time so one must be canonical.
8216  */
8217 static void
8218 merge_diradd(inodedep, newdap)
8219 	struct inodedep *inodedep;
8220 	struct diradd *newdap;
8221 {
8222 	struct diradd *olddap;
8223 	struct mkdir *mkdir, *nextmd;
8224 	short state;
8225 
8226 	olddap = inodedep->id_mkdiradd;
8227 	inodedep->id_mkdiradd = newdap;
8228 	if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8229 		newdap->da_state &= ~DEPCOMPLETE;
8230 		for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) {
8231 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
8232 			if (mkdir->md_diradd != olddap)
8233 				continue;
8234 			mkdir->md_diradd = newdap;
8235 			state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY);
8236 			newdap->da_state |= state;
8237 			olddap->da_state &= ~state;
8238 			if ((olddap->da_state &
8239 			    (MKDIR_PARENT | MKDIR_BODY)) == 0)
8240 				break;
8241 		}
8242 		if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
8243 			panic("merge_diradd: unfound ref");
8244 	}
8245 	/*
8246 	 * Any mkdir related journal items are not safe to be freed until
8247 	 * the new name is stable.
8248 	 */
8249 	jwork_move(&newdap->da_jwork, &olddap->da_jwork);
8250 	olddap->da_state |= DEPCOMPLETE;
8251 	complete_diradd(olddap);
8252 }
8253 
8254 /*
8255  * Move the diradd to the pending list when all diradd dependencies are
8256  * complete.
8257  */
8258 static void
8259 complete_diradd(dap)
8260 	struct diradd *dap;
8261 {
8262 	struct pagedep *pagedep;
8263 
8264 	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
8265 		if (dap->da_state & DIRCHG)
8266 			pagedep = dap->da_previous->dm_pagedep;
8267 		else
8268 			pagedep = dap->da_pagedep;
8269 		LIST_REMOVE(dap, da_pdlist);
8270 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
8271 	}
8272 }
8273 
8274 /*
8275  * Cancel a diradd when a dirrem overlaps with it.  We must cancel the journal
8276  * add entries and conditonally journal the remove.
8277  */
8278 static void
8279 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref)
8280 	struct diradd *dap;
8281 	struct dirrem *dirrem;
8282 	struct jremref *jremref;
8283 	struct jremref *dotremref;
8284 	struct jremref *dotdotremref;
8285 {
8286 	struct inodedep *inodedep;
8287 	struct jaddref *jaddref;
8288 	struct inoref *inoref;
8289 	struct mkdir *mkdir;
8290 
8291 	/*
8292 	 * If no remove references were allocated we're on a non-journaled
8293 	 * filesystem and can skip the cancel step.
8294 	 */
8295 	if (jremref == NULL) {
8296 		free_diradd(dap, NULL);
8297 		return;
8298 	}
8299 	/*
8300 	 * Cancel the primary name an free it if it does not require
8301 	 * journaling.
8302 	 */
8303 	if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum,
8304 	    0, &inodedep) != 0) {
8305 		/* Abort the addref that reference this diradd.  */
8306 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
8307 			if (inoref->if_list.wk_type != D_JADDREF)
8308 				continue;
8309 			jaddref = (struct jaddref *)inoref;
8310 			if (jaddref->ja_diradd != dap)
8311 				continue;
8312 			if (cancel_jaddref(jaddref, inodedep,
8313 			    &dirrem->dm_jwork) == 0) {
8314 				free_jremref(jremref);
8315 				jremref = NULL;
8316 			}
8317 			break;
8318 		}
8319 	}
8320 	/*
8321 	 * Cancel subordinate names and free them if they do not require
8322 	 * journaling.
8323 	 */
8324 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8325 		LIST_FOREACH(mkdir, &mkdirlisthd, md_mkdirs) {
8326 			if (mkdir->md_diradd != dap)
8327 				continue;
8328 			if ((jaddref = mkdir->md_jaddref) == NULL)
8329 				continue;
8330 			mkdir->md_jaddref = NULL;
8331 			if (mkdir->md_state & MKDIR_PARENT) {
8332 				if (cancel_jaddref(jaddref, NULL,
8333 				    &dirrem->dm_jwork) == 0) {
8334 					free_jremref(dotdotremref);
8335 					dotdotremref = NULL;
8336 				}
8337 			} else {
8338 				if (cancel_jaddref(jaddref, inodedep,
8339 				    &dirrem->dm_jwork) == 0) {
8340 					free_jremref(dotremref);
8341 					dotremref = NULL;
8342 				}
8343 			}
8344 		}
8345 	}
8346 
8347 	if (jremref)
8348 		journal_jremref(dirrem, jremref, inodedep);
8349 	if (dotremref)
8350 		journal_jremref(dirrem, dotremref, inodedep);
8351 	if (dotdotremref)
8352 		journal_jremref(dirrem, dotdotremref, NULL);
8353 	jwork_move(&dirrem->dm_jwork, &dap->da_jwork);
8354 	free_diradd(dap, &dirrem->dm_jwork);
8355 }
8356 
8357 /*
8358  * Free a diradd dependency structure. This routine must be called
8359  * with splbio interrupts blocked.
8360  */
8361 static void
8362 free_diradd(dap, wkhd)
8363 	struct diradd *dap;
8364 	struct workhead *wkhd;
8365 {
8366 	struct dirrem *dirrem;
8367 	struct pagedep *pagedep;
8368 	struct inodedep *inodedep;
8369 	struct mkdir *mkdir, *nextmd;
8370 
8371 	mtx_assert(&lk, MA_OWNED);
8372 	LIST_REMOVE(dap, da_pdlist);
8373 	if (dap->da_state & ONWORKLIST)
8374 		WORKLIST_REMOVE(&dap->da_list);
8375 	if ((dap->da_state & DIRCHG) == 0) {
8376 		pagedep = dap->da_pagedep;
8377 	} else {
8378 		dirrem = dap->da_previous;
8379 		pagedep = dirrem->dm_pagedep;
8380 		dirrem->dm_dirinum = pagedep->pd_ino;
8381 		dirrem->dm_state |= COMPLETE;
8382 		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
8383 			add_to_worklist(&dirrem->dm_list, 0);
8384 	}
8385 	if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum,
8386 	    0, &inodedep) != 0)
8387 		if (inodedep->id_mkdiradd == dap)
8388 			inodedep->id_mkdiradd = NULL;
8389 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8390 		for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) {
8391 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
8392 			if (mkdir->md_diradd != dap)
8393 				continue;
8394 			dap->da_state &=
8395 			    ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
8396 			LIST_REMOVE(mkdir, md_mkdirs);
8397 			if (mkdir->md_state & ONWORKLIST)
8398 				WORKLIST_REMOVE(&mkdir->md_list);
8399 			if (mkdir->md_jaddref != NULL)
8400 				panic("free_diradd: Unexpected jaddref");
8401 			WORKITEM_FREE(mkdir, D_MKDIR);
8402 			if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
8403 				break;
8404 		}
8405 		if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
8406 			panic("free_diradd: unfound ref");
8407 	}
8408 	if (inodedep)
8409 		free_inodedep(inodedep);
8410 	/*
8411 	 * Free any journal segments waiting for the directory write.
8412 	 */
8413 	handle_jwork(&dap->da_jwork);
8414 	WORKITEM_FREE(dap, D_DIRADD);
8415 }
8416 
8417 /*
8418  * Directory entry removal dependencies.
8419  *
8420  * When removing a directory entry, the entry's inode pointer must be
8421  * zero'ed on disk before the corresponding inode's link count is decremented
8422  * (possibly freeing the inode for re-use). This dependency is handled by
8423  * updating the directory entry but delaying the inode count reduction until
8424  * after the directory block has been written to disk. After this point, the
8425  * inode count can be decremented whenever it is convenient.
8426  */
8427 
8428 /*
8429  * This routine should be called immediately after removing
8430  * a directory entry.  The inode's link count should not be
8431  * decremented by the calling procedure -- the soft updates
8432  * code will do this task when it is safe.
8433  */
8434 void
8435 softdep_setup_remove(bp, dp, ip, isrmdir)
8436 	struct buf *bp;		/* buffer containing directory block */
8437 	struct inode *dp;	/* inode for the directory being modified */
8438 	struct inode *ip;	/* inode for directory entry being removed */
8439 	int isrmdir;		/* indicates if doing RMDIR */
8440 {
8441 	struct dirrem *dirrem, *prevdirrem;
8442 	struct inodedep *inodedep;
8443 	int direct;
8444 
8445 	/*
8446 	 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK.  We want
8447 	 * newdirrem() to setup the full directory remove which requires
8448 	 * isrmdir > 1.
8449 	 */
8450 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
8451 	/*
8452 	 * Add the dirrem to the inodedep's pending remove list for quick
8453 	 * discovery later.
8454 	 */
8455 	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
8456 	    &inodedep) == 0)
8457 		panic("softdep_setup_remove: Lost inodedep.");
8458 	dirrem->dm_state |= ONDEPLIST;
8459 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
8460 
8461 	/*
8462 	 * If the COMPLETE flag is clear, then there were no active
8463 	 * entries and we want to roll back to a zeroed entry until
8464 	 * the new inode is committed to disk. If the COMPLETE flag is
8465 	 * set then we have deleted an entry that never made it to
8466 	 * disk. If the entry we deleted resulted from a name change,
8467 	 * then the old name still resides on disk. We cannot delete
8468 	 * its inode (returned to us in prevdirrem) until the zeroed
8469 	 * directory entry gets to disk. The new inode has never been
8470 	 * referenced on the disk, so can be deleted immediately.
8471 	 */
8472 	if ((dirrem->dm_state & COMPLETE) == 0) {
8473 		LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
8474 		    dm_next);
8475 		FREE_LOCK(&lk);
8476 	} else {
8477 		if (prevdirrem != NULL)
8478 			LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd,
8479 			    prevdirrem, dm_next);
8480 		dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
8481 		direct = LIST_EMPTY(&dirrem->dm_jremrefhd);
8482 		FREE_LOCK(&lk);
8483 		if (direct)
8484 			handle_workitem_remove(dirrem, 0);
8485 	}
8486 }
8487 
8488 /*
8489  * Check for an entry matching 'offset' on both the pd_dirraddhd list and the
8490  * pd_pendinghd list of a pagedep.
8491  */
8492 static struct diradd *
8493 diradd_lookup(pagedep, offset)
8494 	struct pagedep *pagedep;
8495 	int offset;
8496 {
8497 	struct diradd *dap;
8498 
8499 	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist)
8500 		if (dap->da_offset == offset)
8501 			return (dap);
8502 	LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
8503 		if (dap->da_offset == offset)
8504 			return (dap);
8505 	return (NULL);
8506 }
8507 
8508 /*
8509  * Search for a .. diradd dependency in a directory that is being removed.
8510  * If the directory was renamed to a new parent we have a diradd rather
8511  * than a mkdir for the .. entry.  We need to cancel it now before
8512  * it is found in truncate().
8513  */
8514 static struct jremref *
8515 cancel_diradd_dotdot(ip, dirrem, jremref)
8516 	struct inode *ip;
8517 	struct dirrem *dirrem;
8518 	struct jremref *jremref;
8519 {
8520 	struct pagedep *pagedep;
8521 	struct diradd *dap;
8522 	struct worklist *wk;
8523 
8524 	if (pagedep_lookup(UFSTOVFS(ip->i_ump), NULL, ip->i_number, 0, 0,
8525 	    &pagedep) == 0)
8526 		return (jremref);
8527 	dap = diradd_lookup(pagedep, DOTDOT_OFFSET);
8528 	if (dap == NULL)
8529 		return (jremref);
8530 	cancel_diradd(dap, dirrem, jremref, NULL, NULL);
8531 	/*
8532 	 * Mark any journal work as belonging to the parent so it is freed
8533 	 * with the .. reference.
8534 	 */
8535 	LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
8536 		wk->wk_state |= MKDIR_PARENT;
8537 	return (NULL);
8538 }
8539 
8540 /*
8541  * Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to
8542  * replace it with a dirrem/diradd pair as a result of re-parenting a
8543  * directory.  This ensures that we don't simultaneously have a mkdir and
8544  * a diradd for the same .. entry.
8545  */
8546 static struct jremref *
8547 cancel_mkdir_dotdot(ip, dirrem, jremref)
8548 	struct inode *ip;
8549 	struct dirrem *dirrem;
8550 	struct jremref *jremref;
8551 {
8552 	struct inodedep *inodedep;
8553 	struct jaddref *jaddref;
8554 	struct mkdir *mkdir;
8555 	struct diradd *dap;
8556 
8557 	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
8558 	    &inodedep) == 0)
8559 		panic("cancel_mkdir_dotdot: Lost inodedep");
8560 	dap = inodedep->id_mkdiradd;
8561 	if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0)
8562 		return (jremref);
8563 	for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir;
8564 	    mkdir = LIST_NEXT(mkdir, md_mkdirs))
8565 		if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT)
8566 			break;
8567 	if (mkdir == NULL)
8568 		panic("cancel_mkdir_dotdot: Unable to find mkdir\n");
8569 	if ((jaddref = mkdir->md_jaddref) != NULL) {
8570 		mkdir->md_jaddref = NULL;
8571 		jaddref->ja_state &= ~MKDIR_PARENT;
8572 		if (inodedep_lookup(UFSTOVFS(ip->i_ump), jaddref->ja_ino, 0,
8573 		    &inodedep) == 0)
8574 			panic("cancel_mkdir_dotdot: Lost parent inodedep");
8575 		if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) {
8576 			journal_jremref(dirrem, jremref, inodedep);
8577 			jremref = NULL;
8578 		}
8579 	}
8580 	if (mkdir->md_state & ONWORKLIST)
8581 		WORKLIST_REMOVE(&mkdir->md_list);
8582 	mkdir->md_state |= ALLCOMPLETE;
8583 	complete_mkdir(mkdir);
8584 	return (jremref);
8585 }
8586 
8587 static void
8588 journal_jremref(dirrem, jremref, inodedep)
8589 	struct dirrem *dirrem;
8590 	struct jremref *jremref;
8591 	struct inodedep *inodedep;
8592 {
8593 
8594 	if (inodedep == NULL)
8595 		if (inodedep_lookup(jremref->jr_list.wk_mp,
8596 		    jremref->jr_ref.if_ino, 0, &inodedep) == 0)
8597 			panic("journal_jremref: Lost inodedep");
8598 	LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps);
8599 	TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
8600 	add_to_journal(&jremref->jr_list);
8601 }
8602 
8603 static void
8604 dirrem_journal(dirrem, jremref, dotremref, dotdotremref)
8605 	struct dirrem *dirrem;
8606 	struct jremref *jremref;
8607 	struct jremref *dotremref;
8608 	struct jremref *dotdotremref;
8609 {
8610 	struct inodedep *inodedep;
8611 
8612 
8613 	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0,
8614 	    &inodedep) == 0)
8615 		panic("dirrem_journal: Lost inodedep");
8616 	journal_jremref(dirrem, jremref, inodedep);
8617 	if (dotremref)
8618 		journal_jremref(dirrem, dotremref, inodedep);
8619 	if (dotdotremref)
8620 		journal_jremref(dirrem, dotdotremref, NULL);
8621 }
8622 
8623 /*
8624  * Allocate a new dirrem if appropriate and return it along with
8625  * its associated pagedep. Called without a lock, returns with lock.
8626  */
8627 static struct dirrem *
8628 newdirrem(bp, dp, ip, isrmdir, prevdirremp)
8629 	struct buf *bp;		/* buffer containing directory block */
8630 	struct inode *dp;	/* inode for the directory being modified */
8631 	struct inode *ip;	/* inode for directory entry being removed */
8632 	int isrmdir;		/* indicates if doing RMDIR */
8633 	struct dirrem **prevdirremp; /* previously referenced inode, if any */
8634 {
8635 	int offset;
8636 	ufs_lbn_t lbn;
8637 	struct diradd *dap;
8638 	struct dirrem *dirrem;
8639 	struct pagedep *pagedep;
8640 	struct jremref *jremref;
8641 	struct jremref *dotremref;
8642 	struct jremref *dotdotremref;
8643 	struct vnode *dvp;
8644 
8645 	/*
8646 	 * Whiteouts have no deletion dependencies.
8647 	 */
8648 	if (ip == NULL)
8649 		panic("newdirrem: whiteout");
8650 	dvp = ITOV(dp);
8651 	/*
8652 	 * If we are over our limit, try to improve the situation.
8653 	 * Limiting the number of dirrem structures will also limit
8654 	 * the number of freefile and freeblks structures.
8655 	 */
8656 	ACQUIRE_LOCK(&lk);
8657 	if (!IS_SNAPSHOT(ip) && dep_current[D_DIRREM] > max_softdeps / 2)
8658 		(void) request_cleanup(ITOV(dp)->v_mount, FLUSH_BLOCKS);
8659 	FREE_LOCK(&lk);
8660 	dirrem = malloc(sizeof(struct dirrem),
8661 		M_DIRREM, M_SOFTDEP_FLAGS|M_ZERO);
8662 	workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount);
8663 	LIST_INIT(&dirrem->dm_jremrefhd);
8664 	LIST_INIT(&dirrem->dm_jwork);
8665 	dirrem->dm_state = isrmdir ? RMDIR : 0;
8666 	dirrem->dm_oldinum = ip->i_number;
8667 	*prevdirremp = NULL;
8668 	/*
8669 	 * Allocate remove reference structures to track journal write
8670 	 * dependencies.  We will always have one for the link and
8671 	 * when doing directories we will always have one more for dot.
8672 	 * When renaming a directory we skip the dotdot link change so
8673 	 * this is not needed.
8674 	 */
8675 	jremref = dotremref = dotdotremref = NULL;
8676 	if (DOINGSUJ(dvp)) {
8677 		if (isrmdir) {
8678 			jremref = newjremref(dirrem, dp, ip, dp->i_offset,
8679 			    ip->i_effnlink + 2);
8680 			dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET,
8681 			    ip->i_effnlink + 1);
8682 			dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET,
8683 			    dp->i_effnlink + 1);
8684 			dotdotremref->jr_state |= MKDIR_PARENT;
8685 		} else
8686 			jremref = newjremref(dirrem, dp, ip, dp->i_offset,
8687 			    ip->i_effnlink + 1);
8688 	}
8689 	ACQUIRE_LOCK(&lk);
8690 	lbn = lblkno(dp->i_fs, dp->i_offset);
8691 	offset = blkoff(dp->i_fs, dp->i_offset);
8692 	pagedep_lookup(UFSTOVFS(dp->i_ump), bp, dp->i_number, lbn, DEPALLOC,
8693 	    &pagedep);
8694 	dirrem->dm_pagedep = pagedep;
8695 	dirrem->dm_offset = offset;
8696 	/*
8697 	 * If we're renaming a .. link to a new directory, cancel any
8698 	 * existing MKDIR_PARENT mkdir.  If it has already been canceled
8699 	 * the jremref is preserved for any potential diradd in this
8700 	 * location.  This can not coincide with a rmdir.
8701 	 */
8702 	if (dp->i_offset == DOTDOT_OFFSET) {
8703 		if (isrmdir)
8704 			panic("newdirrem: .. directory change during remove?");
8705 		jremref = cancel_mkdir_dotdot(dp, dirrem, jremref);
8706 	}
8707 	/*
8708 	 * If we're removing a directory search for the .. dependency now and
8709 	 * cancel it.  Any pending journal work will be added to the dirrem
8710 	 * to be completed when the workitem remove completes.
8711 	 */
8712 	if (isrmdir)
8713 		dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref);
8714 	/*
8715 	 * Check for a diradd dependency for the same directory entry.
8716 	 * If present, then both dependencies become obsolete and can
8717 	 * be de-allocated.
8718 	 */
8719 	dap = diradd_lookup(pagedep, offset);
8720 	if (dap == NULL) {
8721 		/*
8722 		 * Link the jremref structures into the dirrem so they are
8723 		 * written prior to the pagedep.
8724 		 */
8725 		if (jremref)
8726 			dirrem_journal(dirrem, jremref, dotremref,
8727 			    dotdotremref);
8728 		return (dirrem);
8729 	}
8730 	/*
8731 	 * Must be ATTACHED at this point.
8732 	 */
8733 	if ((dap->da_state & ATTACHED) == 0)
8734 		panic("newdirrem: not ATTACHED");
8735 	if (dap->da_newinum != ip->i_number)
8736 		panic("newdirrem: inum %d should be %d",
8737 		    ip->i_number, dap->da_newinum);
8738 	/*
8739 	 * If we are deleting a changed name that never made it to disk,
8740 	 * then return the dirrem describing the previous inode (which
8741 	 * represents the inode currently referenced from this entry on disk).
8742 	 */
8743 	if ((dap->da_state & DIRCHG) != 0) {
8744 		*prevdirremp = dap->da_previous;
8745 		dap->da_state &= ~DIRCHG;
8746 		dap->da_pagedep = pagedep;
8747 	}
8748 	/*
8749 	 * We are deleting an entry that never made it to disk.
8750 	 * Mark it COMPLETE so we can delete its inode immediately.
8751 	 */
8752 	dirrem->dm_state |= COMPLETE;
8753 	cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref);
8754 #ifdef SUJ_DEBUG
8755 	if (isrmdir == 0) {
8756 		struct worklist *wk;
8757 
8758 		LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
8759 			if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT))
8760 				panic("bad wk %p (0x%X)\n", wk, wk->wk_state);
8761 	}
8762 #endif
8763 
8764 	return (dirrem);
8765 }
8766 
8767 /*
8768  * Directory entry change dependencies.
8769  *
8770  * Changing an existing directory entry requires that an add operation
8771  * be completed first followed by a deletion. The semantics for the addition
8772  * are identical to the description of adding a new entry above except
8773  * that the rollback is to the old inode number rather than zero. Once
8774  * the addition dependency is completed, the removal is done as described
8775  * in the removal routine above.
8776  */
8777 
8778 /*
8779  * This routine should be called immediately after changing
8780  * a directory entry.  The inode's link count should not be
8781  * decremented by the calling procedure -- the soft updates
8782  * code will perform this task when it is safe.
8783  */
8784 void
8785 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
8786 	struct buf *bp;		/* buffer containing directory block */
8787 	struct inode *dp;	/* inode for the directory being modified */
8788 	struct inode *ip;	/* inode for directory entry being removed */
8789 	ino_t newinum;		/* new inode number for changed entry */
8790 	int isrmdir;		/* indicates if doing RMDIR */
8791 {
8792 	int offset;
8793 	struct diradd *dap = NULL;
8794 	struct dirrem *dirrem, *prevdirrem;
8795 	struct pagedep *pagedep;
8796 	struct inodedep *inodedep;
8797 	struct jaddref *jaddref;
8798 	struct mount *mp;
8799 
8800 	offset = blkoff(dp->i_fs, dp->i_offset);
8801 	mp = UFSTOVFS(dp->i_ump);
8802 
8803 	/*
8804 	 * Whiteouts do not need diradd dependencies.
8805 	 */
8806 	if (newinum != WINO) {
8807 		dap = malloc(sizeof(struct diradd),
8808 		    M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO);
8809 		workitem_alloc(&dap->da_list, D_DIRADD, mp);
8810 		dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
8811 		dap->da_offset = offset;
8812 		dap->da_newinum = newinum;
8813 		LIST_INIT(&dap->da_jwork);
8814 	}
8815 
8816 	/*
8817 	 * Allocate a new dirrem and ACQUIRE_LOCK.
8818 	 */
8819 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
8820 	pagedep = dirrem->dm_pagedep;
8821 	/*
8822 	 * The possible values for isrmdir:
8823 	 *	0 - non-directory file rename
8824 	 *	1 - directory rename within same directory
8825 	 *   inum - directory rename to new directory of given inode number
8826 	 * When renaming to a new directory, we are both deleting and
8827 	 * creating a new directory entry, so the link count on the new
8828 	 * directory should not change. Thus we do not need the followup
8829 	 * dirrem which is usually done in handle_workitem_remove. We set
8830 	 * the DIRCHG flag to tell handle_workitem_remove to skip the
8831 	 * followup dirrem.
8832 	 */
8833 	if (isrmdir > 1)
8834 		dirrem->dm_state |= DIRCHG;
8835 
8836 	/*
8837 	 * Whiteouts have no additional dependencies,
8838 	 * so just put the dirrem on the correct list.
8839 	 */
8840 	if (newinum == WINO) {
8841 		if ((dirrem->dm_state & COMPLETE) == 0) {
8842 			LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
8843 			    dm_next);
8844 		} else {
8845 			dirrem->dm_dirinum = pagedep->pd_ino;
8846 			if (LIST_EMPTY(&dirrem->dm_jremrefhd))
8847 				add_to_worklist(&dirrem->dm_list, 0);
8848 		}
8849 		FREE_LOCK(&lk);
8850 		return;
8851 	}
8852 	/*
8853 	 * Add the dirrem to the inodedep's pending remove list for quick
8854 	 * discovery later.  A valid nlinkdelta ensures that this lookup
8855 	 * will not fail.
8856 	 */
8857 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
8858 		panic("softdep_setup_directory_change: Lost inodedep.");
8859 	dirrem->dm_state |= ONDEPLIST;
8860 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
8861 
8862 	/*
8863 	 * If the COMPLETE flag is clear, then there were no active
8864 	 * entries and we want to roll back to the previous inode until
8865 	 * the new inode is committed to disk. If the COMPLETE flag is
8866 	 * set, then we have deleted an entry that never made it to disk.
8867 	 * If the entry we deleted resulted from a name change, then the old
8868 	 * inode reference still resides on disk. Any rollback that we do
8869 	 * needs to be to that old inode (returned to us in prevdirrem). If
8870 	 * the entry we deleted resulted from a create, then there is
8871 	 * no entry on the disk, so we want to roll back to zero rather
8872 	 * than the uncommitted inode. In either of the COMPLETE cases we
8873 	 * want to immediately free the unwritten and unreferenced inode.
8874 	 */
8875 	if ((dirrem->dm_state & COMPLETE) == 0) {
8876 		dap->da_previous = dirrem;
8877 	} else {
8878 		if (prevdirrem != NULL) {
8879 			dap->da_previous = prevdirrem;
8880 		} else {
8881 			dap->da_state &= ~DIRCHG;
8882 			dap->da_pagedep = pagedep;
8883 		}
8884 		dirrem->dm_dirinum = pagedep->pd_ino;
8885 		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
8886 			add_to_worklist(&dirrem->dm_list, 0);
8887 	}
8888 	/*
8889 	 * Lookup the jaddref for this journal entry.  We must finish
8890 	 * initializing it and make the diradd write dependent on it.
8891 	 * If we're not journaling, put it on the id_bufwait list if the
8892 	 * inode is not yet written. If it is written, do the post-inode
8893 	 * write processing to put it on the id_pendinghd list.
8894 	 */
8895 	inodedep_lookup(mp, newinum, DEPALLOC | NODELAY, &inodedep);
8896 	if (MOUNTEDSUJ(mp)) {
8897 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8898 		    inoreflst);
8899 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
8900 		    ("softdep_setup_directory_change: bad jaddref %p",
8901 		    jaddref));
8902 		jaddref->ja_diroff = dp->i_offset;
8903 		jaddref->ja_diradd = dap;
8904 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
8905 		    dap, da_pdlist);
8906 		add_to_journal(&jaddref->ja_list);
8907 	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
8908 		dap->da_state |= COMPLETE;
8909 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
8910 		WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
8911 	} else {
8912 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
8913 		    dap, da_pdlist);
8914 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
8915 	}
8916 	/*
8917 	 * If we're making a new name for a directory that has not been
8918 	 * committed when need to move the dot and dotdot references to
8919 	 * this new name.
8920 	 */
8921 	if (inodedep->id_mkdiradd && dp->i_offset != DOTDOT_OFFSET)
8922 		merge_diradd(inodedep, dap);
8923 	FREE_LOCK(&lk);
8924 }
8925 
8926 /*
8927  * Called whenever the link count on an inode is changed.
8928  * It creates an inode dependency so that the new reference(s)
8929  * to the inode cannot be committed to disk until the updated
8930  * inode has been written.
8931  */
8932 void
8933 softdep_change_linkcnt(ip)
8934 	struct inode *ip;	/* the inode with the increased link count */
8935 {
8936 	struct inodedep *inodedep;
8937 	int dflags;
8938 
8939 	ACQUIRE_LOCK(&lk);
8940 	dflags = DEPALLOC;
8941 	if (IS_SNAPSHOT(ip))
8942 		dflags |= NODELAY;
8943 	inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, dflags, &inodedep);
8944 	if (ip->i_nlink < ip->i_effnlink)
8945 		panic("softdep_change_linkcnt: bad delta");
8946 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
8947 	FREE_LOCK(&lk);
8948 }
8949 
8950 /*
8951  * Attach a sbdep dependency to the superblock buf so that we can keep
8952  * track of the head of the linked list of referenced but unlinked inodes.
8953  */
8954 void
8955 softdep_setup_sbupdate(ump, fs, bp)
8956 	struct ufsmount *ump;
8957 	struct fs *fs;
8958 	struct buf *bp;
8959 {
8960 	struct sbdep *sbdep;
8961 	struct worklist *wk;
8962 
8963 	if (MOUNTEDSUJ(UFSTOVFS(ump)) == 0)
8964 		return;
8965 	LIST_FOREACH(wk, &bp->b_dep, wk_list)
8966 		if (wk->wk_type == D_SBDEP)
8967 			break;
8968 	if (wk != NULL)
8969 		return;
8970 	sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS);
8971 	workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump));
8972 	sbdep->sb_fs = fs;
8973 	sbdep->sb_ump = ump;
8974 	ACQUIRE_LOCK(&lk);
8975 	WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list);
8976 	FREE_LOCK(&lk);
8977 }
8978 
8979 /*
8980  * Return the first unlinked inodedep which is ready to be the head of the
8981  * list.  The inodedep and all those after it must have valid next pointers.
8982  */
8983 static struct inodedep *
8984 first_unlinked_inodedep(ump)
8985 	struct ufsmount *ump;
8986 {
8987 	struct inodedep *inodedep;
8988 	struct inodedep *idp;
8989 
8990 	for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst);
8991 	    inodedep; inodedep = idp) {
8992 		if ((inodedep->id_state & UNLINKNEXT) == 0)
8993 			return (NULL);
8994 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
8995 		if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0)
8996 			break;
8997 		if ((inodedep->id_state & UNLINKPREV) == 0)
8998 			panic("first_unlinked_inodedep: prev != next");
8999 	}
9000 	if (inodedep == NULL)
9001 		return (NULL);
9002 
9003 	return (inodedep);
9004 }
9005 
9006 /*
9007  * Set the sujfree unlinked head pointer prior to writing a superblock.
9008  */
9009 static void
9010 initiate_write_sbdep(sbdep)
9011 	struct sbdep *sbdep;
9012 {
9013 	struct inodedep *inodedep;
9014 	struct fs *bpfs;
9015 	struct fs *fs;
9016 
9017 	bpfs = sbdep->sb_fs;
9018 	fs = sbdep->sb_ump->um_fs;
9019 	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9020 	if (inodedep) {
9021 		fs->fs_sujfree = inodedep->id_ino;
9022 		inodedep->id_state |= UNLINKPREV;
9023 	} else
9024 		fs->fs_sujfree = 0;
9025 	bpfs->fs_sujfree = fs->fs_sujfree;
9026 }
9027 
9028 /*
9029  * After a superblock is written determine whether it must be written again
9030  * due to a changing unlinked list head.
9031  */
9032 static int
9033 handle_written_sbdep(sbdep, bp)
9034 	struct sbdep *sbdep;
9035 	struct buf *bp;
9036 {
9037 	struct inodedep *inodedep;
9038 	struct mount *mp;
9039 	struct fs *fs;
9040 
9041 	fs = sbdep->sb_fs;
9042 	mp = UFSTOVFS(sbdep->sb_ump);
9043 	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9044 	if ((inodedep && fs->fs_sujfree != inodedep->id_ino) ||
9045 	    (inodedep == NULL && fs->fs_sujfree != 0)) {
9046 		bdirty(bp);
9047 		return (1);
9048 	}
9049 	WORKITEM_FREE(sbdep, D_SBDEP);
9050 	if (fs->fs_sujfree == 0)
9051 		return (0);
9052 	if (inodedep_lookup(mp, fs->fs_sujfree, 0, &inodedep) == 0)
9053 		panic("handle_written_sbdep: lost inodedep");
9054 	/*
9055 	 * Now that we have a record of this inode in stable store allow it
9056 	 * to be written to free up pending work.  Inodes may see a lot of
9057 	 * write activity after they are unlinked which we must not hold up.
9058 	 */
9059 	for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) {
9060 		if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS)
9061 			panic("handle_written_sbdep: Bad inodedep %p (0x%X)",
9062 			    inodedep, inodedep->id_state);
9063 		if (inodedep->id_state & UNLINKONLIST)
9064 			break;
9065 		inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST;
9066 	}
9067 
9068 	return (0);
9069 }
9070 
9071 /*
9072  * Mark an inodedep as unlinked and insert it into the in-memory unlinked list.
9073  */
9074 static void
9075 unlinked_inodedep(mp, inodedep)
9076 	struct mount *mp;
9077 	struct inodedep *inodedep;
9078 {
9079 	struct ufsmount *ump;
9080 
9081 	if (MOUNTEDSUJ(mp) == 0)
9082 		return;
9083 	ump = VFSTOUFS(mp);
9084 	ump->um_fs->fs_fmod = 1;
9085 	inodedep->id_state |= UNLINKED;
9086 	TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked);
9087 }
9088 
9089 /*
9090  * Remove an inodedep from the unlinked inodedep list.  This may require
9091  * disk writes if the inode has made it that far.
9092  */
9093 static void
9094 clear_unlinked_inodedep(inodedep)
9095 	struct inodedep *inodedep;
9096 {
9097 	struct ufsmount *ump;
9098 	struct inodedep *idp;
9099 	struct inodedep *idn;
9100 	struct fs *fs;
9101 	struct buf *bp;
9102 	ino_t ino;
9103 	ino_t nino;
9104 	ino_t pino;
9105 	int error;
9106 
9107 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
9108 	fs = ump->um_fs;
9109 	ino = inodedep->id_ino;
9110 	error = 0;
9111 	for (;;) {
9112 		/*
9113 		 * If nothing has yet been written simply remove us from
9114 		 * the in memory list and return.  This is the most common
9115 		 * case where handle_workitem_remove() loses the final
9116 		 * reference.
9117 		 */
9118 		if ((inodedep->id_state & UNLINKLINKS) == 0)
9119 			break;
9120 		/*
9121 		 * If we have a NEXT pointer and no PREV pointer we can simply
9122 		 * clear NEXT's PREV and remove ourselves from the list.  Be
9123 		 * careful not to clear PREV if the superblock points at
9124 		 * next as well.
9125 		 */
9126 		idn = TAILQ_NEXT(inodedep, id_unlinked);
9127 		if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) {
9128 			if (idn && fs->fs_sujfree != idn->id_ino)
9129 				idn->id_state &= ~UNLINKPREV;
9130 			break;
9131 		}
9132 		/*
9133 		 * Here we have an inodedep which is actually linked into
9134 		 * the list.  We must remove it by forcing a write to the
9135 		 * link before us, whether it be the superblock or an inode.
9136 		 * Unfortunately the list may change while we're waiting
9137 		 * on the buf lock for either resource so we must loop until
9138 		 * we lock the right one.  If both the superblock and an
9139 		 * inode point to this inode we must clear the inode first
9140 		 * followed by the superblock.
9141 		 */
9142 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9143 		pino = 0;
9144 		if (idp && (idp->id_state & UNLINKNEXT))
9145 			pino = idp->id_ino;
9146 		FREE_LOCK(&lk);
9147 		if (pino == 0)
9148 			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
9149 			    (int)fs->fs_sbsize, 0, 0, 0);
9150 		else
9151 			error = bread(ump->um_devvp,
9152 			    fsbtodb(fs, ino_to_fsba(fs, pino)),
9153 			    (int)fs->fs_bsize, NOCRED, &bp);
9154 		ACQUIRE_LOCK(&lk);
9155 		if (error)
9156 			break;
9157 		/* If the list has changed restart the loop. */
9158 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9159 		nino = 0;
9160 		if (idp && (idp->id_state & UNLINKNEXT))
9161 			nino = idp->id_ino;
9162 		if (nino != pino ||
9163 		    (inodedep->id_state & UNLINKPREV) != UNLINKPREV) {
9164 			FREE_LOCK(&lk);
9165 			brelse(bp);
9166 			ACQUIRE_LOCK(&lk);
9167 			continue;
9168 		}
9169 		/*
9170 		 * Remove us from the in memory list.  After this we cannot
9171 		 * access the inodedep.
9172 		 */
9173 		idn = TAILQ_NEXT(inodedep, id_unlinked);
9174 		inodedep->id_state &= ~(UNLINKED | UNLINKLINKS);
9175 		TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
9176 		/*
9177 		 * Determine the next inode number.
9178 		 */
9179 		nino = 0;
9180 		if (idn) {
9181 			/*
9182 			 * If next isn't on the list we can just clear prev's
9183 			 * state and schedule it to be fixed later.  No need
9184 			 * to synchronously write if we're not in the real
9185 			 * list.
9186 			 */
9187 			if ((idn->id_state & UNLINKPREV) == 0 && pino != 0) {
9188 				idp->id_state &= ~UNLINKNEXT;
9189 				if ((idp->id_state & ONWORKLIST) == 0)
9190 					WORKLIST_INSERT(&bp->b_dep,
9191 					    &idp->id_list);
9192 				FREE_LOCK(&lk);
9193 				bawrite(bp);
9194 				ACQUIRE_LOCK(&lk);
9195 				return;
9196 			}
9197 			nino = idn->id_ino;
9198 		}
9199 		FREE_LOCK(&lk);
9200 		/*
9201 		 * The predecessor's next pointer is manually updated here
9202 		 * so that the NEXT flag is never cleared for an element
9203 		 * that is in the list.
9204 		 */
9205 		if (pino == 0) {
9206 			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
9207 			ffs_oldfscompat_write((struct fs *)bp->b_data, ump);
9208 			softdep_setup_sbupdate(ump, (struct fs *)bp->b_data,
9209 			    bp);
9210 		} else if (fs->fs_magic == FS_UFS1_MAGIC)
9211 			((struct ufs1_dinode *)bp->b_data +
9212 			    ino_to_fsbo(fs, pino))->di_freelink = nino;
9213 		else
9214 			((struct ufs2_dinode *)bp->b_data +
9215 			    ino_to_fsbo(fs, pino))->di_freelink = nino;
9216 		/*
9217 		 * If the bwrite fails we have no recourse to recover.  The
9218 		 * filesystem is corrupted already.
9219 		 */
9220 		bwrite(bp);
9221 		ACQUIRE_LOCK(&lk);
9222 		/*
9223 		 * If the superblock pointer still needs to be cleared force
9224 		 * a write here.
9225 		 */
9226 		if (fs->fs_sujfree == ino) {
9227 			FREE_LOCK(&lk);
9228 			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
9229 			    (int)fs->fs_sbsize, 0, 0, 0);
9230 			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
9231 			ffs_oldfscompat_write((struct fs *)bp->b_data, ump);
9232 			softdep_setup_sbupdate(ump, (struct fs *)bp->b_data,
9233 			    bp);
9234 			bwrite(bp);
9235 			ACQUIRE_LOCK(&lk);
9236 		}
9237 		if (fs->fs_sujfree != ino)
9238 			return;
9239 		panic("clear_unlinked_inodedep: Failed to clear free head");
9240 	}
9241 	if (inodedep->id_ino == fs->fs_sujfree)
9242 		panic("clear_unlinked_inodedep: Freeing head of free list");
9243 	inodedep->id_state &= ~(UNLINKED | UNLINKLINKS);
9244 	TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
9245 	return;
9246 }
9247 
9248 /*
9249  * This workitem decrements the inode's link count.
9250  * If the link count reaches zero, the file is removed.
9251  */
9252 static int
9253 handle_workitem_remove(dirrem, flags)
9254 	struct dirrem *dirrem;
9255 	int flags;
9256 {
9257 	struct inodedep *inodedep;
9258 	struct workhead dotdotwk;
9259 	struct worklist *wk;
9260 	struct ufsmount *ump;
9261 	struct mount *mp;
9262 	struct vnode *vp;
9263 	struct inode *ip;
9264 	ino_t oldinum;
9265 
9266 	if (dirrem->dm_state & ONWORKLIST)
9267 		panic("handle_workitem_remove: dirrem %p still on worklist",
9268 		    dirrem);
9269 	oldinum = dirrem->dm_oldinum;
9270 	mp = dirrem->dm_list.wk_mp;
9271 	ump = VFSTOUFS(mp);
9272 	flags |= LK_EXCLUSIVE;
9273 	if (ffs_vgetf(mp, oldinum, flags, &vp, FFSV_FORCEINSMQ) != 0)
9274 		return (EBUSY);
9275 	ip = VTOI(vp);
9276 	ACQUIRE_LOCK(&lk);
9277 	if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0)
9278 		panic("handle_workitem_remove: lost inodedep");
9279 	if (dirrem->dm_state & ONDEPLIST)
9280 		LIST_REMOVE(dirrem, dm_inonext);
9281 	KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
9282 	    ("handle_workitem_remove:  Journal entries not written."));
9283 
9284 	/*
9285 	 * Move all dependencies waiting on the remove to complete
9286 	 * from the dirrem to the inode inowait list to be completed
9287 	 * after the inode has been updated and written to disk.  Any
9288 	 * marked MKDIR_PARENT are saved to be completed when the .. ref
9289 	 * is removed.
9290 	 */
9291 	LIST_INIT(&dotdotwk);
9292 	while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) {
9293 		WORKLIST_REMOVE(wk);
9294 		if (wk->wk_state & MKDIR_PARENT) {
9295 			wk->wk_state &= ~MKDIR_PARENT;
9296 			WORKLIST_INSERT(&dotdotwk, wk);
9297 			continue;
9298 		}
9299 		WORKLIST_INSERT(&inodedep->id_inowait, wk);
9300 	}
9301 	LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list);
9302 	/*
9303 	 * Normal file deletion.
9304 	 */
9305 	if ((dirrem->dm_state & RMDIR) == 0) {
9306 		ip->i_nlink--;
9307 		DIP_SET(ip, i_nlink, ip->i_nlink);
9308 		ip->i_flag |= IN_CHANGE;
9309 		if (ip->i_nlink < ip->i_effnlink)
9310 			panic("handle_workitem_remove: bad file delta");
9311 		if (ip->i_nlink == 0)
9312 			unlinked_inodedep(mp, inodedep);
9313 		inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9314 		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
9315 		    ("handle_workitem_remove: worklist not empty. %s",
9316 		    TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type)));
9317 		WORKITEM_FREE(dirrem, D_DIRREM);
9318 		FREE_LOCK(&lk);
9319 		goto out;
9320 	}
9321 	/*
9322 	 * Directory deletion. Decrement reference count for both the
9323 	 * just deleted parent directory entry and the reference for ".".
9324 	 * Arrange to have the reference count on the parent decremented
9325 	 * to account for the loss of "..".
9326 	 */
9327 	ip->i_nlink -= 2;
9328 	DIP_SET(ip, i_nlink, ip->i_nlink);
9329 	ip->i_flag |= IN_CHANGE;
9330 	if (ip->i_nlink < ip->i_effnlink)
9331 		panic("handle_workitem_remove: bad dir delta");
9332 	if (ip->i_nlink == 0)
9333 		unlinked_inodedep(mp, inodedep);
9334 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9335 	/*
9336 	 * Rename a directory to a new parent. Since, we are both deleting
9337 	 * and creating a new directory entry, the link count on the new
9338 	 * directory should not change. Thus we skip the followup dirrem.
9339 	 */
9340 	if (dirrem->dm_state & DIRCHG) {
9341 		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
9342 		    ("handle_workitem_remove: DIRCHG and worklist not empty."));
9343 		WORKITEM_FREE(dirrem, D_DIRREM);
9344 		FREE_LOCK(&lk);
9345 		goto out;
9346 	}
9347 	dirrem->dm_state = ONDEPLIST;
9348 	dirrem->dm_oldinum = dirrem->dm_dirinum;
9349 	/*
9350 	 * Place the dirrem on the parent's diremhd list.
9351 	 */
9352 	if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0)
9353 		panic("handle_workitem_remove: lost dir inodedep");
9354 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9355 	/*
9356 	 * If the allocated inode has never been written to disk, then
9357 	 * the on-disk inode is zero'ed and we can remove the file
9358 	 * immediately.  When journaling if the inode has been marked
9359 	 * unlinked and not DEPCOMPLETE we know it can never be written.
9360 	 */
9361 	inodedep_lookup(mp, oldinum, 0, &inodedep);
9362 	if (inodedep == NULL ||
9363 	    (inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED ||
9364 	    check_inode_unwritten(inodedep)) {
9365 		FREE_LOCK(&lk);
9366 		vput(vp);
9367 		return handle_workitem_remove(dirrem, flags);
9368 	}
9369 	WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
9370 	FREE_LOCK(&lk);
9371 	ip->i_flag |= IN_CHANGE;
9372 out:
9373 	ffs_update(vp, 0);
9374 	vput(vp);
9375 	return (0);
9376 }
9377 
9378 /*
9379  * Inode de-allocation dependencies.
9380  *
9381  * When an inode's link count is reduced to zero, it can be de-allocated. We
9382  * found it convenient to postpone de-allocation until after the inode is
9383  * written to disk with its new link count (zero).  At this point, all of the
9384  * on-disk inode's block pointers are nullified and, with careful dependency
9385  * list ordering, all dependencies related to the inode will be satisfied and
9386  * the corresponding dependency structures de-allocated.  So, if/when the
9387  * inode is reused, there will be no mixing of old dependencies with new
9388  * ones.  This artificial dependency is set up by the block de-allocation
9389  * procedure above (softdep_setup_freeblocks) and completed by the
9390  * following procedure.
9391  */
9392 static void
9393 handle_workitem_freefile(freefile)
9394 	struct freefile *freefile;
9395 {
9396 	struct workhead wkhd;
9397 	struct fs *fs;
9398 	struct inodedep *idp;
9399 	struct ufsmount *ump;
9400 	int error;
9401 
9402 	ump = VFSTOUFS(freefile->fx_list.wk_mp);
9403 	fs = ump->um_fs;
9404 #ifdef DEBUG
9405 	ACQUIRE_LOCK(&lk);
9406 	error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp);
9407 	FREE_LOCK(&lk);
9408 	if (error)
9409 		panic("handle_workitem_freefile: inodedep %p survived", idp);
9410 #endif
9411 	UFS_LOCK(ump);
9412 	fs->fs_pendinginodes -= 1;
9413 	UFS_UNLOCK(ump);
9414 	LIST_INIT(&wkhd);
9415 	LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list);
9416 	if ((error = ffs_freefile(ump, fs, freefile->fx_devvp,
9417 	    freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0)
9418 		softdep_error("handle_workitem_freefile", error);
9419 	ACQUIRE_LOCK(&lk);
9420 	WORKITEM_FREE(freefile, D_FREEFILE);
9421 	FREE_LOCK(&lk);
9422 }
9423 
9424 
9425 /*
9426  * Helper function which unlinks marker element from work list and returns
9427  * the next element on the list.
9428  */
9429 static __inline struct worklist *
9430 markernext(struct worklist *marker)
9431 {
9432 	struct worklist *next;
9433 
9434 	next = LIST_NEXT(marker, wk_list);
9435 	LIST_REMOVE(marker, wk_list);
9436 	return next;
9437 }
9438 
9439 /*
9440  * Disk writes.
9441  *
9442  * The dependency structures constructed above are most actively used when file
9443  * system blocks are written to disk.  No constraints are placed on when a
9444  * block can be written, but unsatisfied update dependencies are made safe by
9445  * modifying (or replacing) the source memory for the duration of the disk
9446  * write.  When the disk write completes, the memory block is again brought
9447  * up-to-date.
9448  *
9449  * In-core inode structure reclamation.
9450  *
9451  * Because there are a finite number of "in-core" inode structures, they are
9452  * reused regularly.  By transferring all inode-related dependencies to the
9453  * in-memory inode block and indexing them separately (via "inodedep"s), we
9454  * can allow "in-core" inode structures to be reused at any time and avoid
9455  * any increase in contention.
9456  *
9457  * Called just before entering the device driver to initiate a new disk I/O.
9458  * The buffer must be locked, thus, no I/O completion operations can occur
9459  * while we are manipulating its associated dependencies.
9460  */
9461 static void
9462 softdep_disk_io_initiation(bp)
9463 	struct buf *bp;		/* structure describing disk write to occur */
9464 {
9465 	struct worklist *wk;
9466 	struct worklist marker;
9467 	struct inodedep *inodedep;
9468 	struct freeblks *freeblks;
9469 	struct jblkdep *jblkdep;
9470 	struct newblk *newblk;
9471 
9472 	/*
9473 	 * We only care about write operations. There should never
9474 	 * be dependencies for reads.
9475 	 */
9476 	if (bp->b_iocmd != BIO_WRITE)
9477 		panic("softdep_disk_io_initiation: not write");
9478 
9479 	if (bp->b_vflags & BV_BKGRDINPROG)
9480 		panic("softdep_disk_io_initiation: Writing buffer with "
9481 		    "background write in progress: %p", bp);
9482 
9483 	marker.wk_type = D_LAST + 1;	/* Not a normal workitem */
9484 	PHOLD(curproc);			/* Don't swap out kernel stack */
9485 
9486 	ACQUIRE_LOCK(&lk);
9487 	/*
9488 	 * Do any necessary pre-I/O processing.
9489 	 */
9490 	for (wk = LIST_FIRST(&bp->b_dep); wk != NULL;
9491 	     wk = markernext(&marker)) {
9492 		LIST_INSERT_AFTER(wk, &marker, wk_list);
9493 		switch (wk->wk_type) {
9494 
9495 		case D_PAGEDEP:
9496 			initiate_write_filepage(WK_PAGEDEP(wk), bp);
9497 			continue;
9498 
9499 		case D_INODEDEP:
9500 			inodedep = WK_INODEDEP(wk);
9501 			if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC)
9502 				initiate_write_inodeblock_ufs1(inodedep, bp);
9503 			else
9504 				initiate_write_inodeblock_ufs2(inodedep, bp);
9505 			continue;
9506 
9507 		case D_INDIRDEP:
9508 			initiate_write_indirdep(WK_INDIRDEP(wk), bp);
9509 			continue;
9510 
9511 		case D_BMSAFEMAP:
9512 			initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp);
9513 			continue;
9514 
9515 		case D_JSEG:
9516 			WK_JSEG(wk)->js_buf = NULL;
9517 			continue;
9518 
9519 		case D_FREEBLKS:
9520 			freeblks = WK_FREEBLKS(wk);
9521 			jblkdep = LIST_FIRST(&freeblks->fb_jblkdephd);
9522 			/*
9523 			 * We have to wait for the freeblks to be journaled
9524 			 * before we can write an inodeblock with updated
9525 			 * pointers.  Be careful to arrange the marker so
9526 			 * we revisit the freeblks if it's not removed by
9527 			 * the first jwait().
9528 			 */
9529 			if (jblkdep != NULL) {
9530 				LIST_REMOVE(&marker, wk_list);
9531 				LIST_INSERT_BEFORE(wk, &marker, wk_list);
9532 				jwait(&jblkdep->jb_list, MNT_WAIT);
9533 			}
9534 			continue;
9535 		case D_ALLOCDIRECT:
9536 		case D_ALLOCINDIR:
9537 			/*
9538 			 * We have to wait for the jnewblk to be journaled
9539 			 * before we can write to a block if the contents
9540 			 * may be confused with an earlier file's indirect
9541 			 * at recovery time.  Handle the marker as described
9542 			 * above.
9543 			 */
9544 			newblk = WK_NEWBLK(wk);
9545 			if (newblk->nb_jnewblk != NULL &&
9546 			    indirblk_lookup(newblk->nb_list.wk_mp,
9547 			    newblk->nb_newblkno)) {
9548 				LIST_REMOVE(&marker, wk_list);
9549 				LIST_INSERT_BEFORE(wk, &marker, wk_list);
9550 				jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
9551 			}
9552 			continue;
9553 
9554 		case D_SBDEP:
9555 			initiate_write_sbdep(WK_SBDEP(wk));
9556 			continue;
9557 
9558 		case D_MKDIR:
9559 		case D_FREEWORK:
9560 		case D_FREEDEP:
9561 		case D_JSEGDEP:
9562 			continue;
9563 
9564 		default:
9565 			panic("handle_disk_io_initiation: Unexpected type %s",
9566 			    TYPENAME(wk->wk_type));
9567 			/* NOTREACHED */
9568 		}
9569 	}
9570 	FREE_LOCK(&lk);
9571 	PRELE(curproc);			/* Allow swapout of kernel stack */
9572 }
9573 
9574 /*
9575  * Called from within the procedure above to deal with unsatisfied
9576  * allocation dependencies in a directory. The buffer must be locked,
9577  * thus, no I/O completion operations can occur while we are
9578  * manipulating its associated dependencies.
9579  */
9580 static void
9581 initiate_write_filepage(pagedep, bp)
9582 	struct pagedep *pagedep;
9583 	struct buf *bp;
9584 {
9585 	struct jremref *jremref;
9586 	struct jmvref *jmvref;
9587 	struct dirrem *dirrem;
9588 	struct diradd *dap;
9589 	struct direct *ep;
9590 	int i;
9591 
9592 	if (pagedep->pd_state & IOSTARTED) {
9593 		/*
9594 		 * This can only happen if there is a driver that does not
9595 		 * understand chaining. Here biodone will reissue the call
9596 		 * to strategy for the incomplete buffers.
9597 		 */
9598 		printf("initiate_write_filepage: already started\n");
9599 		return;
9600 	}
9601 	pagedep->pd_state |= IOSTARTED;
9602 	/*
9603 	 * Wait for all journal remove dependencies to hit the disk.
9604 	 * We can not allow any potentially conflicting directory adds
9605 	 * to be visible before removes and rollback is too difficult.
9606 	 * lk may be dropped and re-acquired, however we hold the buf
9607 	 * locked so the dependency can not go away.
9608 	 */
9609 	LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next)
9610 		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL)
9611 			jwait(&jremref->jr_list, MNT_WAIT);
9612 	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL)
9613 		jwait(&jmvref->jm_list, MNT_WAIT);
9614 	for (i = 0; i < DAHASHSZ; i++) {
9615 		LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
9616 			ep = (struct direct *)
9617 			    ((char *)bp->b_data + dap->da_offset);
9618 			if (ep->d_ino != dap->da_newinum)
9619 				panic("%s: dir inum %d != new %d",
9620 				    "initiate_write_filepage",
9621 				    ep->d_ino, dap->da_newinum);
9622 			if (dap->da_state & DIRCHG)
9623 				ep->d_ino = dap->da_previous->dm_oldinum;
9624 			else
9625 				ep->d_ino = 0;
9626 			dap->da_state &= ~ATTACHED;
9627 			dap->da_state |= UNDONE;
9628 		}
9629 	}
9630 }
9631 
9632 /*
9633  * Version of initiate_write_inodeblock that handles UFS1 dinodes.
9634  * Note that any bug fixes made to this routine must be done in the
9635  * version found below.
9636  *
9637  * Called from within the procedure above to deal with unsatisfied
9638  * allocation dependencies in an inodeblock. The buffer must be
9639  * locked, thus, no I/O completion operations can occur while we
9640  * are manipulating its associated dependencies.
9641  */
9642 static void
9643 initiate_write_inodeblock_ufs1(inodedep, bp)
9644 	struct inodedep *inodedep;
9645 	struct buf *bp;			/* The inode block */
9646 {
9647 	struct allocdirect *adp, *lastadp;
9648 	struct ufs1_dinode *dp;
9649 	struct ufs1_dinode *sip;
9650 	struct inoref *inoref;
9651 	struct fs *fs;
9652 	ufs_lbn_t i;
9653 #ifdef INVARIANTS
9654 	ufs_lbn_t prevlbn = 0;
9655 #endif
9656 	int deplist;
9657 
9658 	if (inodedep->id_state & IOSTARTED)
9659 		panic("initiate_write_inodeblock_ufs1: already started");
9660 	inodedep->id_state |= IOSTARTED;
9661 	fs = inodedep->id_fs;
9662 	dp = (struct ufs1_dinode *)bp->b_data +
9663 	    ino_to_fsbo(fs, inodedep->id_ino);
9664 
9665 	/*
9666 	 * If we're on the unlinked list but have not yet written our
9667 	 * next pointer initialize it here.
9668 	 */
9669 	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
9670 		struct inodedep *inon;
9671 
9672 		inon = TAILQ_NEXT(inodedep, id_unlinked);
9673 		dp->di_freelink = inon ? inon->id_ino : 0;
9674 	}
9675 	/*
9676 	 * If the bitmap is not yet written, then the allocated
9677 	 * inode cannot be written to disk.
9678 	 */
9679 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
9680 		if (inodedep->id_savedino1 != NULL)
9681 			panic("initiate_write_inodeblock_ufs1: I/O underway");
9682 		FREE_LOCK(&lk);
9683 		sip = malloc(sizeof(struct ufs1_dinode),
9684 		    M_SAVEDINO, M_SOFTDEP_FLAGS);
9685 		ACQUIRE_LOCK(&lk);
9686 		inodedep->id_savedino1 = sip;
9687 		*inodedep->id_savedino1 = *dp;
9688 		bzero((caddr_t)dp, sizeof(struct ufs1_dinode));
9689 		dp->di_gen = inodedep->id_savedino1->di_gen;
9690 		dp->di_freelink = inodedep->id_savedino1->di_freelink;
9691 		return;
9692 	}
9693 	/*
9694 	 * If no dependencies, then there is nothing to roll back.
9695 	 */
9696 	inodedep->id_savedsize = dp->di_size;
9697 	inodedep->id_savedextsize = 0;
9698 	inodedep->id_savednlink = dp->di_nlink;
9699 	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
9700 	    TAILQ_EMPTY(&inodedep->id_inoreflst))
9701 		return;
9702 	/*
9703 	 * Revert the link count to that of the first unwritten journal entry.
9704 	 */
9705 	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
9706 	if (inoref)
9707 		dp->di_nlink = inoref->if_nlink;
9708 	/*
9709 	 * Set the dependencies to busy.
9710 	 */
9711 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
9712 	     adp = TAILQ_NEXT(adp, ad_next)) {
9713 #ifdef INVARIANTS
9714 		if (deplist != 0 && prevlbn >= adp->ad_offset)
9715 			panic("softdep_write_inodeblock: lbn order");
9716 		prevlbn = adp->ad_offset;
9717 		if (adp->ad_offset < NDADDR &&
9718 		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
9719 			panic("%s: direct pointer #%jd mismatch %d != %jd",
9720 			    "softdep_write_inodeblock",
9721 			    (intmax_t)adp->ad_offset,
9722 			    dp->di_db[adp->ad_offset],
9723 			    (intmax_t)adp->ad_newblkno);
9724 		if (adp->ad_offset >= NDADDR &&
9725 		    dp->di_ib[adp->ad_offset - NDADDR] != adp->ad_newblkno)
9726 			panic("%s: indirect pointer #%jd mismatch %d != %jd",
9727 			    "softdep_write_inodeblock",
9728 			    (intmax_t)adp->ad_offset - NDADDR,
9729 			    dp->di_ib[adp->ad_offset - NDADDR],
9730 			    (intmax_t)adp->ad_newblkno);
9731 		deplist |= 1 << adp->ad_offset;
9732 		if ((adp->ad_state & ATTACHED) == 0)
9733 			panic("softdep_write_inodeblock: Unknown state 0x%x",
9734 			    adp->ad_state);
9735 #endif /* INVARIANTS */
9736 		adp->ad_state &= ~ATTACHED;
9737 		adp->ad_state |= UNDONE;
9738 	}
9739 	/*
9740 	 * The on-disk inode cannot claim to be any larger than the last
9741 	 * fragment that has been written. Otherwise, the on-disk inode
9742 	 * might have fragments that were not the last block in the file
9743 	 * which would corrupt the filesystem.
9744 	 */
9745 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
9746 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
9747 		if (adp->ad_offset >= NDADDR)
9748 			break;
9749 		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
9750 		/* keep going until hitting a rollback to a frag */
9751 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
9752 			continue;
9753 		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
9754 		for (i = adp->ad_offset + 1; i < NDADDR; i++) {
9755 #ifdef INVARIANTS
9756 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
9757 				panic("softdep_write_inodeblock: lost dep1");
9758 #endif /* INVARIANTS */
9759 			dp->di_db[i] = 0;
9760 		}
9761 		for (i = 0; i < NIADDR; i++) {
9762 #ifdef INVARIANTS
9763 			if (dp->di_ib[i] != 0 &&
9764 			    (deplist & ((1 << NDADDR) << i)) == 0)
9765 				panic("softdep_write_inodeblock: lost dep2");
9766 #endif /* INVARIANTS */
9767 			dp->di_ib[i] = 0;
9768 		}
9769 		return;
9770 	}
9771 	/*
9772 	 * If we have zero'ed out the last allocated block of the file,
9773 	 * roll back the size to the last currently allocated block.
9774 	 * We know that this last allocated block is a full-sized as
9775 	 * we already checked for fragments in the loop above.
9776 	 */
9777 	if (lastadp != NULL &&
9778 	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
9779 		for (i = lastadp->ad_offset; i >= 0; i--)
9780 			if (dp->di_db[i] != 0)
9781 				break;
9782 		dp->di_size = (i + 1) * fs->fs_bsize;
9783 	}
9784 	/*
9785 	 * The only dependencies are for indirect blocks.
9786 	 *
9787 	 * The file size for indirect block additions is not guaranteed.
9788 	 * Such a guarantee would be non-trivial to achieve. The conventional
9789 	 * synchronous write implementation also does not make this guarantee.
9790 	 * Fsck should catch and fix discrepancies. Arguably, the file size
9791 	 * can be over-estimated without destroying integrity when the file
9792 	 * moves into the indirect blocks (i.e., is large). If we want to
9793 	 * postpone fsck, we are stuck with this argument.
9794 	 */
9795 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
9796 		dp->di_ib[adp->ad_offset - NDADDR] = 0;
9797 }
9798 
9799 /*
9800  * Version of initiate_write_inodeblock that handles UFS2 dinodes.
9801  * Note that any bug fixes made to this routine must be done in the
9802  * version found above.
9803  *
9804  * Called from within the procedure above to deal with unsatisfied
9805  * allocation dependencies in an inodeblock. The buffer must be
9806  * locked, thus, no I/O completion operations can occur while we
9807  * are manipulating its associated dependencies.
9808  */
9809 static void
9810 initiate_write_inodeblock_ufs2(inodedep, bp)
9811 	struct inodedep *inodedep;
9812 	struct buf *bp;			/* The inode block */
9813 {
9814 	struct allocdirect *adp, *lastadp;
9815 	struct ufs2_dinode *dp;
9816 	struct ufs2_dinode *sip;
9817 	struct inoref *inoref;
9818 	struct fs *fs;
9819 	ufs_lbn_t i;
9820 #ifdef INVARIANTS
9821 	ufs_lbn_t prevlbn = 0;
9822 #endif
9823 	int deplist;
9824 
9825 	if (inodedep->id_state & IOSTARTED)
9826 		panic("initiate_write_inodeblock_ufs2: already started");
9827 	inodedep->id_state |= IOSTARTED;
9828 	fs = inodedep->id_fs;
9829 	dp = (struct ufs2_dinode *)bp->b_data +
9830 	    ino_to_fsbo(fs, inodedep->id_ino);
9831 
9832 	/*
9833 	 * If we're on the unlinked list but have not yet written our
9834 	 * next pointer initialize it here.
9835 	 */
9836 	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
9837 		struct inodedep *inon;
9838 
9839 		inon = TAILQ_NEXT(inodedep, id_unlinked);
9840 		dp->di_freelink = inon ? inon->id_ino : 0;
9841 	}
9842 	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) ==
9843 	    (UNLINKED | UNLINKNEXT)) {
9844 		struct inodedep *inon;
9845 		ino_t freelink;
9846 
9847 		inon = TAILQ_NEXT(inodedep, id_unlinked);
9848 		freelink = inon ? inon->id_ino : 0;
9849 		if (freelink != dp->di_freelink)
9850 			panic("ino %p(0x%X) %d, %d != %d",
9851 			    inodedep, inodedep->id_state, inodedep->id_ino,
9852 			    freelink, dp->di_freelink);
9853 	}
9854 	/*
9855 	 * If the bitmap is not yet written, then the allocated
9856 	 * inode cannot be written to disk.
9857 	 */
9858 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
9859 		if (inodedep->id_savedino2 != NULL)
9860 			panic("initiate_write_inodeblock_ufs2: I/O underway");
9861 		FREE_LOCK(&lk);
9862 		sip = malloc(sizeof(struct ufs2_dinode),
9863 		    M_SAVEDINO, M_SOFTDEP_FLAGS);
9864 		ACQUIRE_LOCK(&lk);
9865 		inodedep->id_savedino2 = sip;
9866 		*inodedep->id_savedino2 = *dp;
9867 		bzero((caddr_t)dp, sizeof(struct ufs2_dinode));
9868 		dp->di_gen = inodedep->id_savedino2->di_gen;
9869 		dp->di_freelink = inodedep->id_savedino2->di_freelink;
9870 		return;
9871 	}
9872 	/*
9873 	 * If no dependencies, then there is nothing to roll back.
9874 	 */
9875 	inodedep->id_savedsize = dp->di_size;
9876 	inodedep->id_savedextsize = dp->di_extsize;
9877 	inodedep->id_savednlink = dp->di_nlink;
9878 	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
9879 	    TAILQ_EMPTY(&inodedep->id_extupdt) &&
9880 	    TAILQ_EMPTY(&inodedep->id_inoreflst))
9881 		return;
9882 	/*
9883 	 * Revert the link count to that of the first unwritten journal entry.
9884 	 */
9885 	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
9886 	if (inoref)
9887 		dp->di_nlink = inoref->if_nlink;
9888 
9889 	/*
9890 	 * Set the ext data dependencies to busy.
9891 	 */
9892 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
9893 	     adp = TAILQ_NEXT(adp, ad_next)) {
9894 #ifdef INVARIANTS
9895 		if (deplist != 0 && prevlbn >= adp->ad_offset)
9896 			panic("softdep_write_inodeblock: lbn order");
9897 		prevlbn = adp->ad_offset;
9898 		if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno)
9899 			panic("%s: direct pointer #%jd mismatch %jd != %jd",
9900 			    "softdep_write_inodeblock",
9901 			    (intmax_t)adp->ad_offset,
9902 			    (intmax_t)dp->di_extb[adp->ad_offset],
9903 			    (intmax_t)adp->ad_newblkno);
9904 		deplist |= 1 << adp->ad_offset;
9905 		if ((adp->ad_state & ATTACHED) == 0)
9906 			panic("softdep_write_inodeblock: Unknown state 0x%x",
9907 			    adp->ad_state);
9908 #endif /* INVARIANTS */
9909 		adp->ad_state &= ~ATTACHED;
9910 		adp->ad_state |= UNDONE;
9911 	}
9912 	/*
9913 	 * The on-disk inode cannot claim to be any larger than the last
9914 	 * fragment that has been written. Otherwise, the on-disk inode
9915 	 * might have fragments that were not the last block in the ext
9916 	 * data which would corrupt the filesystem.
9917 	 */
9918 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
9919 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
9920 		dp->di_extb[adp->ad_offset] = adp->ad_oldblkno;
9921 		/* keep going until hitting a rollback to a frag */
9922 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
9923 			continue;
9924 		dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
9925 		for (i = adp->ad_offset + 1; i < NXADDR; i++) {
9926 #ifdef INVARIANTS
9927 			if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0)
9928 				panic("softdep_write_inodeblock: lost dep1");
9929 #endif /* INVARIANTS */
9930 			dp->di_extb[i] = 0;
9931 		}
9932 		lastadp = NULL;
9933 		break;
9934 	}
9935 	/*
9936 	 * If we have zero'ed out the last allocated block of the ext
9937 	 * data, roll back the size to the last currently allocated block.
9938 	 * We know that this last allocated block is a full-sized as
9939 	 * we already checked for fragments in the loop above.
9940 	 */
9941 	if (lastadp != NULL &&
9942 	    dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
9943 		for (i = lastadp->ad_offset; i >= 0; i--)
9944 			if (dp->di_extb[i] != 0)
9945 				break;
9946 		dp->di_extsize = (i + 1) * fs->fs_bsize;
9947 	}
9948 	/*
9949 	 * Set the file data dependencies to busy.
9950 	 */
9951 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
9952 	     adp = TAILQ_NEXT(adp, ad_next)) {
9953 #ifdef INVARIANTS
9954 		if (deplist != 0 && prevlbn >= adp->ad_offset)
9955 			panic("softdep_write_inodeblock: lbn order");
9956 		if ((adp->ad_state & ATTACHED) == 0)
9957 			panic("inodedep %p and adp %p not attached", inodedep, adp);
9958 		prevlbn = adp->ad_offset;
9959 		if (adp->ad_offset < NDADDR &&
9960 		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
9961 			panic("%s: direct pointer #%jd mismatch %jd != %jd",
9962 			    "softdep_write_inodeblock",
9963 			    (intmax_t)adp->ad_offset,
9964 			    (intmax_t)dp->di_db[adp->ad_offset],
9965 			    (intmax_t)adp->ad_newblkno);
9966 		if (adp->ad_offset >= NDADDR &&
9967 		    dp->di_ib[adp->ad_offset - NDADDR] != adp->ad_newblkno)
9968 			panic("%s indirect pointer #%jd mismatch %jd != %jd",
9969 			    "softdep_write_inodeblock:",
9970 			    (intmax_t)adp->ad_offset - NDADDR,
9971 			    (intmax_t)dp->di_ib[adp->ad_offset - NDADDR],
9972 			    (intmax_t)adp->ad_newblkno);
9973 		deplist |= 1 << adp->ad_offset;
9974 		if ((adp->ad_state & ATTACHED) == 0)
9975 			panic("softdep_write_inodeblock: Unknown state 0x%x",
9976 			    adp->ad_state);
9977 #endif /* INVARIANTS */
9978 		adp->ad_state &= ~ATTACHED;
9979 		adp->ad_state |= UNDONE;
9980 	}
9981 	/*
9982 	 * The on-disk inode cannot claim to be any larger than the last
9983 	 * fragment that has been written. Otherwise, the on-disk inode
9984 	 * might have fragments that were not the last block in the file
9985 	 * which would corrupt the filesystem.
9986 	 */
9987 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
9988 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
9989 		if (adp->ad_offset >= NDADDR)
9990 			break;
9991 		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
9992 		/* keep going until hitting a rollback to a frag */
9993 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
9994 			continue;
9995 		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
9996 		for (i = adp->ad_offset + 1; i < NDADDR; i++) {
9997 #ifdef INVARIANTS
9998 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
9999 				panic("softdep_write_inodeblock: lost dep2");
10000 #endif /* INVARIANTS */
10001 			dp->di_db[i] = 0;
10002 		}
10003 		for (i = 0; i < NIADDR; i++) {
10004 #ifdef INVARIANTS
10005 			if (dp->di_ib[i] != 0 &&
10006 			    (deplist & ((1 << NDADDR) << i)) == 0)
10007 				panic("softdep_write_inodeblock: lost dep3");
10008 #endif /* INVARIANTS */
10009 			dp->di_ib[i] = 0;
10010 		}
10011 		return;
10012 	}
10013 	/*
10014 	 * If we have zero'ed out the last allocated block of the file,
10015 	 * roll back the size to the last currently allocated block.
10016 	 * We know that this last allocated block is a full-sized as
10017 	 * we already checked for fragments in the loop above.
10018 	 */
10019 	if (lastadp != NULL &&
10020 	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10021 		for (i = lastadp->ad_offset; i >= 0; i--)
10022 			if (dp->di_db[i] != 0)
10023 				break;
10024 		dp->di_size = (i + 1) * fs->fs_bsize;
10025 	}
10026 	/*
10027 	 * The only dependencies are for indirect blocks.
10028 	 *
10029 	 * The file size for indirect block additions is not guaranteed.
10030 	 * Such a guarantee would be non-trivial to achieve. The conventional
10031 	 * synchronous write implementation also does not make this guarantee.
10032 	 * Fsck should catch and fix discrepancies. Arguably, the file size
10033 	 * can be over-estimated without destroying integrity when the file
10034 	 * moves into the indirect blocks (i.e., is large). If we want to
10035 	 * postpone fsck, we are stuck with this argument.
10036 	 */
10037 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
10038 		dp->di_ib[adp->ad_offset - NDADDR] = 0;
10039 }
10040 
10041 /*
10042  * Cancel an indirdep as a result of truncation.  Release all of the
10043  * children allocindirs and place their journal work on the appropriate
10044  * list.
10045  */
10046 static void
10047 cancel_indirdep(indirdep, bp, freeblks)
10048 	struct indirdep *indirdep;
10049 	struct buf *bp;
10050 	struct freeblks *freeblks;
10051 {
10052 	struct allocindir *aip;
10053 
10054 	/*
10055 	 * None of the indirect pointers will ever be visible,
10056 	 * so they can simply be tossed. GOINGAWAY ensures
10057 	 * that allocated pointers will be saved in the buffer
10058 	 * cache until they are freed. Note that they will
10059 	 * only be able to be found by their physical address
10060 	 * since the inode mapping the logical address will
10061 	 * be gone. The save buffer used for the safe copy
10062 	 * was allocated in setup_allocindir_phase2 using
10063 	 * the physical address so it could be used for this
10064 	 * purpose. Hence we swap the safe copy with the real
10065 	 * copy, allowing the safe copy to be freed and holding
10066 	 * on to the real copy for later use in indir_trunc.
10067 	 */
10068 	if (indirdep->ir_state & GOINGAWAY)
10069 		panic("cancel_indirdep: already gone");
10070 	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
10071 		indirdep->ir_state |= DEPCOMPLETE;
10072 		LIST_REMOVE(indirdep, ir_next);
10073 	}
10074 	indirdep->ir_state |= GOINGAWAY;
10075 	VFSTOUFS(indirdep->ir_list.wk_mp)->um_numindirdeps += 1;
10076 	/*
10077 	 * Pass in bp for blocks still have journal writes
10078 	 * pending so we can cancel them on their own.
10079 	 */
10080 	while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != 0)
10081 		cancel_allocindir(aip, bp, freeblks, 0);
10082 	while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0)
10083 		cancel_allocindir(aip, NULL, freeblks, 0);
10084 	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != 0)
10085 		cancel_allocindir(aip, NULL, freeblks, 0);
10086 	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != 0)
10087 		cancel_allocindir(aip, NULL, freeblks, 0);
10088 	/*
10089 	 * If there are pending partial truncations we need to keep the
10090 	 * old block copy around until they complete.  This is because
10091 	 * the current b_data is not a perfect superset of the available
10092 	 * blocks.
10093 	 */
10094 	if (TAILQ_EMPTY(&indirdep->ir_trunc))
10095 		bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount);
10096 	else
10097 		bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
10098 	WORKLIST_REMOVE(&indirdep->ir_list);
10099 	WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list);
10100 	indirdep->ir_bp = NULL;
10101 	indirdep->ir_freeblks = freeblks;
10102 }
10103 
10104 /*
10105  * Free an indirdep once it no longer has new pointers to track.
10106  */
10107 static void
10108 free_indirdep(indirdep)
10109 	struct indirdep *indirdep;
10110 {
10111 
10112 	KASSERT(TAILQ_EMPTY(&indirdep->ir_trunc),
10113 	    ("free_indirdep: Indir trunc list not empty."));
10114 	KASSERT(LIST_EMPTY(&indirdep->ir_completehd),
10115 	    ("free_indirdep: Complete head not empty."));
10116 	KASSERT(LIST_EMPTY(&indirdep->ir_writehd),
10117 	    ("free_indirdep: write head not empty."));
10118 	KASSERT(LIST_EMPTY(&indirdep->ir_donehd),
10119 	    ("free_indirdep: done head not empty."));
10120 	KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd),
10121 	    ("free_indirdep: deplist head not empty."));
10122 	KASSERT((indirdep->ir_state & DEPCOMPLETE),
10123 	    ("free_indirdep: %p still on newblk list.", indirdep));
10124 	KASSERT(indirdep->ir_saveddata == NULL,
10125 	    ("free_indirdep: %p still has saved data.", indirdep));
10126 	if (indirdep->ir_state & ONWORKLIST)
10127 		WORKLIST_REMOVE(&indirdep->ir_list);
10128 	WORKITEM_FREE(indirdep, D_INDIRDEP);
10129 }
10130 
10131 /*
10132  * Called before a write to an indirdep.  This routine is responsible for
10133  * rolling back pointers to a safe state which includes only those
10134  * allocindirs which have been completed.
10135  */
10136 static void
10137 initiate_write_indirdep(indirdep, bp)
10138 	struct indirdep *indirdep;
10139 	struct buf *bp;
10140 {
10141 
10142 	indirdep->ir_state |= IOSTARTED;
10143 	if (indirdep->ir_state & GOINGAWAY)
10144 		panic("disk_io_initiation: indirdep gone");
10145 	/*
10146 	 * If there are no remaining dependencies, this will be writing
10147 	 * the real pointers.
10148 	 */
10149 	if (LIST_EMPTY(&indirdep->ir_deplisthd) &&
10150 	    TAILQ_EMPTY(&indirdep->ir_trunc))
10151 		return;
10152 	/*
10153 	 * Replace up-to-date version with safe version.
10154 	 */
10155 	if (indirdep->ir_saveddata == NULL) {
10156 		FREE_LOCK(&lk);
10157 		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
10158 		    M_SOFTDEP_FLAGS);
10159 		ACQUIRE_LOCK(&lk);
10160 	}
10161 	indirdep->ir_state &= ~ATTACHED;
10162 	indirdep->ir_state |= UNDONE;
10163 	bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
10164 	bcopy(indirdep->ir_savebp->b_data, bp->b_data,
10165 	    bp->b_bcount);
10166 }
10167 
10168 /*
10169  * Called when an inode has been cleared in a cg bitmap.  This finally
10170  * eliminates any canceled jaddrefs
10171  */
10172 void
10173 softdep_setup_inofree(mp, bp, ino, wkhd)
10174 	struct mount *mp;
10175 	struct buf *bp;
10176 	ino_t ino;
10177 	struct workhead *wkhd;
10178 {
10179 	struct worklist *wk, *wkn;
10180 	struct inodedep *inodedep;
10181 	uint8_t *inosused;
10182 	struct cg *cgp;
10183 	struct fs *fs;
10184 
10185 	ACQUIRE_LOCK(&lk);
10186 	fs = VFSTOUFS(mp)->um_fs;
10187 	cgp = (struct cg *)bp->b_data;
10188 	inosused = cg_inosused(cgp);
10189 	if (isset(inosused, ino % fs->fs_ipg))
10190 		panic("softdep_setup_inofree: inode %d not freed.", ino);
10191 	if (inodedep_lookup(mp, ino, 0, &inodedep))
10192 		panic("softdep_setup_inofree: ino %d has existing inodedep %p",
10193 		    ino, inodedep);
10194 	if (wkhd) {
10195 		LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) {
10196 			if (wk->wk_type != D_JADDREF)
10197 				continue;
10198 			WORKLIST_REMOVE(wk);
10199 			/*
10200 			 * We can free immediately even if the jaddref
10201 			 * isn't attached in a background write as now
10202 			 * the bitmaps are reconciled.
10203 		 	 */
10204 			wk->wk_state |= COMPLETE | ATTACHED;
10205 			free_jaddref(WK_JADDREF(wk));
10206 		}
10207 		jwork_move(&bp->b_dep, wkhd);
10208 	}
10209 	FREE_LOCK(&lk);
10210 }
10211 
10212 
10213 /*
10214  * Called via ffs_blkfree() after a set of frags has been cleared from a cg
10215  * map.  Any dependencies waiting for the write to clear are added to the
10216  * buf's list and any jnewblks that are being canceled are discarded
10217  * immediately.
10218  */
10219 void
10220 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
10221 	struct mount *mp;
10222 	struct buf *bp;
10223 	ufs2_daddr_t blkno;
10224 	int frags;
10225 	struct workhead *wkhd;
10226 {
10227 	struct bmsafemap *bmsafemap;
10228 	struct jnewblk *jnewblk;
10229 	struct worklist *wk;
10230 	struct fs *fs;
10231 #ifdef SUJ_DEBUG
10232 	uint8_t *blksfree;
10233 	struct cg *cgp;
10234 	ufs2_daddr_t jstart;
10235 	ufs2_daddr_t jend;
10236 	ufs2_daddr_t end;
10237 	long bno;
10238 	int i;
10239 #endif
10240 
10241 	ACQUIRE_LOCK(&lk);
10242 	/* Lookup the bmsafemap so we track when it is dirty. */
10243 	fs = VFSTOUFS(mp)->um_fs;
10244 	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno));
10245 	/*
10246 	 * Detach any jnewblks which have been canceled.  They must linger
10247 	 * until the bitmap is cleared again by ffs_blkfree() to prevent
10248 	 * an unjournaled allocation from hitting the disk.
10249 	 */
10250 	if (wkhd) {
10251 		while ((wk = LIST_FIRST(wkhd)) != NULL) {
10252 			WORKLIST_REMOVE(wk);
10253 			if (wk->wk_type != D_JNEWBLK) {
10254 				WORKLIST_INSERT(&bmsafemap->sm_freehd, wk);
10255 				continue;
10256 			}
10257 			jnewblk = WK_JNEWBLK(wk);
10258 			KASSERT(jnewblk->jn_state & GOINGAWAY,
10259 			    ("softdep_setup_blkfree: jnewblk not canceled."));
10260 #ifdef SUJ_DEBUG
10261 			/*
10262 			 * Assert that this block is free in the bitmap
10263 			 * before we discard the jnewblk.
10264 			 */
10265 			cgp = (struct cg *)bp->b_data;
10266 			blksfree = cg_blksfree(cgp);
10267 			bno = dtogd(fs, jnewblk->jn_blkno);
10268 			for (i = jnewblk->jn_oldfrags;
10269 			    i < jnewblk->jn_frags; i++) {
10270 				if (isset(blksfree, bno + i))
10271 					continue;
10272 				panic("softdep_setup_blkfree: not free");
10273 			}
10274 #endif
10275 			/*
10276 			 * Even if it's not attached we can free immediately
10277 			 * as the new bitmap is correct.
10278 			 */
10279 			wk->wk_state |= COMPLETE | ATTACHED;
10280 			free_jnewblk(jnewblk);
10281 		}
10282 	}
10283 
10284 #ifdef SUJ_DEBUG
10285 	/*
10286 	 * Assert that we are not freeing a block which has an outstanding
10287 	 * allocation dependency.
10288 	 */
10289 	fs = VFSTOUFS(mp)->um_fs;
10290 	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno));
10291 	end = blkno + frags;
10292 	LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
10293 		/*
10294 		 * Don't match against blocks that will be freed when the
10295 		 * background write is done.
10296 		 */
10297 		if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) ==
10298 		    (COMPLETE | DEPCOMPLETE))
10299 			continue;
10300 		jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags;
10301 		jend = jnewblk->jn_blkno + jnewblk->jn_frags;
10302 		if ((blkno >= jstart && blkno < jend) ||
10303 		    (end > jstart && end <= jend)) {
10304 			printf("state 0x%X %jd - %d %d dep %p\n",
10305 			    jnewblk->jn_state, jnewblk->jn_blkno,
10306 			    jnewblk->jn_oldfrags, jnewblk->jn_frags,
10307 			    jnewblk->jn_dep);
10308 			panic("softdep_setup_blkfree: "
10309 			    "%jd-%jd(%d) overlaps with %jd-%jd",
10310 			    blkno, end, frags, jstart, jend);
10311 		}
10312 	}
10313 #endif
10314 	FREE_LOCK(&lk);
10315 }
10316 
10317 /*
10318  * Revert a block allocation when the journal record that describes it
10319  * is not yet written.
10320  */
10321 int
10322 jnewblk_rollback(jnewblk, fs, cgp, blksfree)
10323 	struct jnewblk *jnewblk;
10324 	struct fs *fs;
10325 	struct cg *cgp;
10326 	uint8_t *blksfree;
10327 {
10328 	ufs1_daddr_t fragno;
10329 	long cgbno, bbase;
10330 	int frags, blk;
10331 	int i;
10332 
10333 	frags = 0;
10334 	cgbno = dtogd(fs, jnewblk->jn_blkno);
10335 	/*
10336 	 * We have to test which frags need to be rolled back.  We may
10337 	 * be operating on a stale copy when doing background writes.
10338 	 */
10339 	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++)
10340 		if (isclr(blksfree, cgbno + i))
10341 			frags++;
10342 	if (frags == 0)
10343 		return (0);
10344 	/*
10345 	 * This is mostly ffs_blkfree() sans some validation and
10346 	 * superblock updates.
10347 	 */
10348 	if (frags == fs->fs_frag) {
10349 		fragno = fragstoblks(fs, cgbno);
10350 		ffs_setblock(fs, blksfree, fragno);
10351 		ffs_clusteracct(fs, cgp, fragno, 1);
10352 		cgp->cg_cs.cs_nbfree++;
10353 	} else {
10354 		cgbno += jnewblk->jn_oldfrags;
10355 		bbase = cgbno - fragnum(fs, cgbno);
10356 		/* Decrement the old frags.  */
10357 		blk = blkmap(fs, blksfree, bbase);
10358 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
10359 		/* Deallocate the fragment */
10360 		for (i = 0; i < frags; i++)
10361 			setbit(blksfree, cgbno + i);
10362 		cgp->cg_cs.cs_nffree += frags;
10363 		/* Add back in counts associated with the new frags */
10364 		blk = blkmap(fs, blksfree, bbase);
10365 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
10366                 /* If a complete block has been reassembled, account for it. */
10367 		fragno = fragstoblks(fs, bbase);
10368 		if (ffs_isblock(fs, blksfree, fragno)) {
10369 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
10370 			ffs_clusteracct(fs, cgp, fragno, 1);
10371 			cgp->cg_cs.cs_nbfree++;
10372 		}
10373 	}
10374 	stat_jnewblk++;
10375 	jnewblk->jn_state &= ~ATTACHED;
10376 	jnewblk->jn_state |= UNDONE;
10377 
10378 	return (frags);
10379 }
10380 
10381 static void
10382 initiate_write_bmsafemap(bmsafemap, bp)
10383 	struct bmsafemap *bmsafemap;
10384 	struct buf *bp;			/* The cg block. */
10385 {
10386 	struct jaddref *jaddref;
10387 	struct jnewblk *jnewblk;
10388 	uint8_t *inosused;
10389 	uint8_t *blksfree;
10390 	struct cg *cgp;
10391 	struct fs *fs;
10392 	ino_t ino;
10393 
10394 	if (bmsafemap->sm_state & IOSTARTED)
10395 		panic("initiate_write_bmsafemap: Already started\n");
10396 	bmsafemap->sm_state |= IOSTARTED;
10397 	/*
10398 	 * Clear any inode allocations which are pending journal writes.
10399 	 */
10400 	if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) {
10401 		cgp = (struct cg *)bp->b_data;
10402 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
10403 		inosused = cg_inosused(cgp);
10404 		LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) {
10405 			ino = jaddref->ja_ino % fs->fs_ipg;
10406 			/*
10407 			 * If this is a background copy the inode may not
10408 			 * be marked used yet.
10409 			 */
10410 			if (isset(inosused, ino)) {
10411 				if ((jaddref->ja_mode & IFMT) == IFDIR)
10412 					cgp->cg_cs.cs_ndir--;
10413 				cgp->cg_cs.cs_nifree++;
10414 				clrbit(inosused, ino);
10415 				jaddref->ja_state &= ~ATTACHED;
10416 				jaddref->ja_state |= UNDONE;
10417 				stat_jaddref++;
10418 			} else if ((bp->b_xflags & BX_BKGRDMARKER) == 0)
10419 				panic("initiate_write_bmsafemap: inode %d "
10420 				    "marked free", jaddref->ja_ino);
10421 		}
10422 	}
10423 	/*
10424 	 * Clear any block allocations which are pending journal writes.
10425 	 */
10426 	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
10427 		cgp = (struct cg *)bp->b_data;
10428 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
10429 		blksfree = cg_blksfree(cgp);
10430 		LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
10431 			if (jnewblk_rollback(jnewblk, fs, cgp, blksfree))
10432 				continue;
10433 			if ((bp->b_xflags & BX_BKGRDMARKER) == 0)
10434 				panic("initiate_write_bmsafemap: block %jd "
10435 				    "marked free", jnewblk->jn_blkno);
10436 		}
10437 	}
10438 	/*
10439 	 * Move allocation lists to the written lists so they can be
10440 	 * cleared once the block write is complete.
10441 	 */
10442 	LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr,
10443 	    inodedep, id_deps);
10444 	LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr,
10445 	    newblk, nb_deps);
10446 	LIST_SWAP(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, worklist,
10447 	    wk_list);
10448 }
10449 
10450 /*
10451  * This routine is called during the completion interrupt
10452  * service routine for a disk write (from the procedure called
10453  * by the device driver to inform the filesystem caches of
10454  * a request completion).  It should be called early in this
10455  * procedure, before the block is made available to other
10456  * processes or other routines are called.
10457  *
10458  */
10459 static void
10460 softdep_disk_write_complete(bp)
10461 	struct buf *bp;		/* describes the completed disk write */
10462 {
10463 	struct worklist *wk;
10464 	struct worklist *owk;
10465 	struct workhead reattach;
10466 	struct freeblks *freeblks;
10467 	struct buf *sbp;
10468 
10469 	/*
10470 	 * If an error occurred while doing the write, then the data
10471 	 * has not hit the disk and the dependencies cannot be unrolled.
10472 	 */
10473 	if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0)
10474 		return;
10475 	LIST_INIT(&reattach);
10476 	/*
10477 	 * This lock must not be released anywhere in this code segment.
10478 	 */
10479 	sbp = NULL;
10480 	owk = NULL;
10481 	ACQUIRE_LOCK(&lk);
10482 	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
10483 		WORKLIST_REMOVE(wk);
10484 		dep_write[wk->wk_type]++;
10485 		if (wk == owk)
10486 			panic("duplicate worklist: %p\n", wk);
10487 		owk = wk;
10488 		switch (wk->wk_type) {
10489 
10490 		case D_PAGEDEP:
10491 			if (handle_written_filepage(WK_PAGEDEP(wk), bp))
10492 				WORKLIST_INSERT(&reattach, wk);
10493 			continue;
10494 
10495 		case D_INODEDEP:
10496 			if (handle_written_inodeblock(WK_INODEDEP(wk), bp))
10497 				WORKLIST_INSERT(&reattach, wk);
10498 			continue;
10499 
10500 		case D_BMSAFEMAP:
10501 			if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp))
10502 				WORKLIST_INSERT(&reattach, wk);
10503 			continue;
10504 
10505 		case D_MKDIR:
10506 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
10507 			continue;
10508 
10509 		case D_ALLOCDIRECT:
10510 			wk->wk_state |= COMPLETE;
10511 			handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL);
10512 			continue;
10513 
10514 		case D_ALLOCINDIR:
10515 			wk->wk_state |= COMPLETE;
10516 			handle_allocindir_partdone(WK_ALLOCINDIR(wk));
10517 			continue;
10518 
10519 		case D_INDIRDEP:
10520 			if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp))
10521 				WORKLIST_INSERT(&reattach, wk);
10522 			continue;
10523 
10524 		case D_FREEBLKS:
10525 			wk->wk_state |= COMPLETE;
10526 			freeblks = WK_FREEBLKS(wk);
10527 			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE &&
10528 			    LIST_EMPTY(&freeblks->fb_jblkdephd))
10529 				add_to_worklist(wk, WK_NODELAY);
10530 			continue;
10531 
10532 		case D_FREEWORK:
10533 			handle_written_freework(WK_FREEWORK(wk));
10534 			break;
10535 
10536 		case D_JSEGDEP:
10537 			free_jsegdep(WK_JSEGDEP(wk));
10538 			continue;
10539 
10540 		case D_JSEG:
10541 			handle_written_jseg(WK_JSEG(wk), bp);
10542 			continue;
10543 
10544 		case D_SBDEP:
10545 			if (handle_written_sbdep(WK_SBDEP(wk), bp))
10546 				WORKLIST_INSERT(&reattach, wk);
10547 			continue;
10548 
10549 		case D_FREEDEP:
10550 			free_freedep(WK_FREEDEP(wk));
10551 			continue;
10552 
10553 		default:
10554 			panic("handle_disk_write_complete: Unknown type %s",
10555 			    TYPENAME(wk->wk_type));
10556 			/* NOTREACHED */
10557 		}
10558 	}
10559 	/*
10560 	 * Reattach any requests that must be redone.
10561 	 */
10562 	while ((wk = LIST_FIRST(&reattach)) != NULL) {
10563 		WORKLIST_REMOVE(wk);
10564 		WORKLIST_INSERT(&bp->b_dep, wk);
10565 	}
10566 	FREE_LOCK(&lk);
10567 	if (sbp)
10568 		brelse(sbp);
10569 }
10570 
10571 /*
10572  * Called from within softdep_disk_write_complete above. Note that
10573  * this routine is always called from interrupt level with further
10574  * splbio interrupts blocked.
10575  */
10576 static void
10577 handle_allocdirect_partdone(adp, wkhd)
10578 	struct allocdirect *adp;	/* the completed allocdirect */
10579 	struct workhead *wkhd;		/* Work to do when inode is writtne. */
10580 {
10581 	struct allocdirectlst *listhead;
10582 	struct allocdirect *listadp;
10583 	struct inodedep *inodedep;
10584 	long bsize;
10585 
10586 	if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
10587 		return;
10588 	/*
10589 	 * The on-disk inode cannot claim to be any larger than the last
10590 	 * fragment that has been written. Otherwise, the on-disk inode
10591 	 * might have fragments that were not the last block in the file
10592 	 * which would corrupt the filesystem. Thus, we cannot free any
10593 	 * allocdirects after one whose ad_oldblkno claims a fragment as
10594 	 * these blocks must be rolled back to zero before writing the inode.
10595 	 * We check the currently active set of allocdirects in id_inoupdt
10596 	 * or id_extupdt as appropriate.
10597 	 */
10598 	inodedep = adp->ad_inodedep;
10599 	bsize = inodedep->id_fs->fs_bsize;
10600 	if (adp->ad_state & EXTDATA)
10601 		listhead = &inodedep->id_extupdt;
10602 	else
10603 		listhead = &inodedep->id_inoupdt;
10604 	TAILQ_FOREACH(listadp, listhead, ad_next) {
10605 		/* found our block */
10606 		if (listadp == adp)
10607 			break;
10608 		/* continue if ad_oldlbn is not a fragment */
10609 		if (listadp->ad_oldsize == 0 ||
10610 		    listadp->ad_oldsize == bsize)
10611 			continue;
10612 		/* hit a fragment */
10613 		return;
10614 	}
10615 	/*
10616 	 * If we have reached the end of the current list without
10617 	 * finding the just finished dependency, then it must be
10618 	 * on the future dependency list. Future dependencies cannot
10619 	 * be freed until they are moved to the current list.
10620 	 */
10621 	if (listadp == NULL) {
10622 #ifdef DEBUG
10623 		if (adp->ad_state & EXTDATA)
10624 			listhead = &inodedep->id_newextupdt;
10625 		else
10626 			listhead = &inodedep->id_newinoupdt;
10627 		TAILQ_FOREACH(listadp, listhead, ad_next)
10628 			/* found our block */
10629 			if (listadp == adp)
10630 				break;
10631 		if (listadp == NULL)
10632 			panic("handle_allocdirect_partdone: lost dep");
10633 #endif /* DEBUG */
10634 		return;
10635 	}
10636 	/*
10637 	 * If we have found the just finished dependency, then queue
10638 	 * it along with anything that follows it that is complete.
10639 	 * Since the pointer has not yet been written in the inode
10640 	 * as the dependency prevents it, place the allocdirect on the
10641 	 * bufwait list where it will be freed once the pointer is
10642 	 * valid.
10643 	 */
10644 	if (wkhd == NULL)
10645 		wkhd = &inodedep->id_bufwait;
10646 	for (; adp; adp = listadp) {
10647 		listadp = TAILQ_NEXT(adp, ad_next);
10648 		if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
10649 			return;
10650 		TAILQ_REMOVE(listhead, adp, ad_next);
10651 		WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list);
10652 	}
10653 }
10654 
10655 /*
10656  * Called from within softdep_disk_write_complete above.  This routine
10657  * completes successfully written allocindirs.
10658  */
10659 static void
10660 handle_allocindir_partdone(aip)
10661 	struct allocindir *aip;		/* the completed allocindir */
10662 {
10663 	struct indirdep *indirdep;
10664 
10665 	if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
10666 		return;
10667 	indirdep = aip->ai_indirdep;
10668 	LIST_REMOVE(aip, ai_next);
10669 	/*
10670 	 * Don't set a pointer while the buffer is undergoing IO or while
10671 	 * we have active truncations.
10672 	 */
10673 	if (indirdep->ir_state & UNDONE || !TAILQ_EMPTY(&indirdep->ir_trunc)) {
10674 		LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
10675 		return;
10676 	}
10677 	if (indirdep->ir_state & UFS1FMT)
10678 		((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
10679 		    aip->ai_newblkno;
10680 	else
10681 		((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
10682 		    aip->ai_newblkno;
10683 	/*
10684 	 * Await the pointer write before freeing the allocindir.
10685 	 */
10686 	LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next);
10687 }
10688 
10689 /*
10690  * Release segments held on a jwork list.
10691  */
10692 static void
10693 handle_jwork(wkhd)
10694 	struct workhead *wkhd;
10695 {
10696 	struct worklist *wk;
10697 
10698 	while ((wk = LIST_FIRST(wkhd)) != NULL) {
10699 		WORKLIST_REMOVE(wk);
10700 		switch (wk->wk_type) {
10701 		case D_JSEGDEP:
10702 			free_jsegdep(WK_JSEGDEP(wk));
10703 			continue;
10704 		case D_FREEDEP:
10705 			free_freedep(WK_FREEDEP(wk));
10706 			continue;
10707 		case D_FREEFRAG:
10708 			rele_jseg(WK_JSEG(WK_FREEFRAG(wk)->ff_jdep));
10709 			WORKITEM_FREE(wk, D_FREEFRAG);
10710 		case D_FREEWORK:
10711 			handle_written_freework(WK_FREEWORK(wk));
10712 			continue;
10713 		default:
10714 			panic("handle_jwork: Unknown type %s\n",
10715 			    TYPENAME(wk->wk_type));
10716 		}
10717 	}
10718 }
10719 
10720 /*
10721  * Handle the bufwait list on an inode when it is safe to release items
10722  * held there.  This normally happens after an inode block is written but
10723  * may be delayed and handled later if there are pending journal items that
10724  * are not yet safe to be released.
10725  */
10726 static struct freefile *
10727 handle_bufwait(inodedep, refhd)
10728 	struct inodedep *inodedep;
10729 	struct workhead *refhd;
10730 {
10731 	struct jaddref *jaddref;
10732 	struct freefile *freefile;
10733 	struct worklist *wk;
10734 
10735 	freefile = NULL;
10736 	while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
10737 		WORKLIST_REMOVE(wk);
10738 		switch (wk->wk_type) {
10739 		case D_FREEFILE:
10740 			/*
10741 			 * We defer adding freefile to the worklist
10742 			 * until all other additions have been made to
10743 			 * ensure that it will be done after all the
10744 			 * old blocks have been freed.
10745 			 */
10746 			if (freefile != NULL)
10747 				panic("handle_bufwait: freefile");
10748 			freefile = WK_FREEFILE(wk);
10749 			continue;
10750 
10751 		case D_MKDIR:
10752 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
10753 			continue;
10754 
10755 		case D_DIRADD:
10756 			diradd_inode_written(WK_DIRADD(wk), inodedep);
10757 			continue;
10758 
10759 		case D_FREEFRAG:
10760 			wk->wk_state |= COMPLETE;
10761 			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE)
10762 				add_to_worklist(wk, 0);
10763 			continue;
10764 
10765 		case D_DIRREM:
10766 			wk->wk_state |= COMPLETE;
10767 			add_to_worklist(wk, 0);
10768 			continue;
10769 
10770 		case D_ALLOCDIRECT:
10771 		case D_ALLOCINDIR:
10772 			free_newblk(WK_NEWBLK(wk));
10773 			continue;
10774 
10775 		case D_JNEWBLK:
10776 			wk->wk_state |= COMPLETE;
10777 			free_jnewblk(WK_JNEWBLK(wk));
10778 			continue;
10779 
10780 		/*
10781 		 * Save freed journal segments and add references on
10782 		 * the supplied list which will delay their release
10783 		 * until the cg bitmap is cleared on disk.
10784 		 */
10785 		case D_JSEGDEP:
10786 			if (refhd == NULL)
10787 				free_jsegdep(WK_JSEGDEP(wk));
10788 			else
10789 				WORKLIST_INSERT(refhd, wk);
10790 			continue;
10791 
10792 		case D_JADDREF:
10793 			jaddref = WK_JADDREF(wk);
10794 			TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
10795 			    if_deps);
10796 			/*
10797 			 * Transfer any jaddrefs to the list to be freed with
10798 			 * the bitmap if we're handling a removed file.
10799 			 */
10800 			if (refhd == NULL) {
10801 				wk->wk_state |= COMPLETE;
10802 				free_jaddref(jaddref);
10803 			} else
10804 				WORKLIST_INSERT(refhd, wk);
10805 			continue;
10806 
10807 		default:
10808 			panic("handle_bufwait: Unknown type %p(%s)",
10809 			    wk, TYPENAME(wk->wk_type));
10810 			/* NOTREACHED */
10811 		}
10812 	}
10813 	return (freefile);
10814 }
10815 /*
10816  * Called from within softdep_disk_write_complete above to restore
10817  * in-memory inode block contents to their most up-to-date state. Note
10818  * that this routine is always called from interrupt level with further
10819  * splbio interrupts blocked.
10820  */
10821 static int
10822 handle_written_inodeblock(inodedep, bp)
10823 	struct inodedep *inodedep;
10824 	struct buf *bp;		/* buffer containing the inode block */
10825 {
10826 	struct freefile *freefile;
10827 	struct allocdirect *adp, *nextadp;
10828 	struct ufs1_dinode *dp1 = NULL;
10829 	struct ufs2_dinode *dp2 = NULL;
10830 	struct workhead wkhd;
10831 	int hadchanges, fstype;
10832 	ino_t freelink;
10833 
10834 	LIST_INIT(&wkhd);
10835 	hadchanges = 0;
10836 	freefile = NULL;
10837 	if ((inodedep->id_state & IOSTARTED) == 0)
10838 		panic("handle_written_inodeblock: not started");
10839 	inodedep->id_state &= ~IOSTARTED;
10840 	if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) {
10841 		fstype = UFS1;
10842 		dp1 = (struct ufs1_dinode *)bp->b_data +
10843 		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
10844 		freelink = dp1->di_freelink;
10845 	} else {
10846 		fstype = UFS2;
10847 		dp2 = (struct ufs2_dinode *)bp->b_data +
10848 		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
10849 		freelink = dp2->di_freelink;
10850 	}
10851 	/*
10852 	 * If we wrote a valid freelink pointer during the last write
10853 	 * record it here.
10854 	 */
10855 	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
10856 		struct inodedep *inon;
10857 
10858 		inon = TAILQ_NEXT(inodedep, id_unlinked);
10859 		if ((inon == NULL && freelink == 0) ||
10860 		    (inon && inon->id_ino == freelink)) {
10861 			if (inon)
10862 				inon->id_state |= UNLINKPREV;
10863 			inodedep->id_state |= UNLINKNEXT;
10864 		} else
10865 			hadchanges = 1;
10866 	}
10867 	/* Leave this inodeblock dirty until it's in the list. */
10868 	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED)
10869 		hadchanges = 1;
10870 	/*
10871 	 * If we had to rollback the inode allocation because of
10872 	 * bitmaps being incomplete, then simply restore it.
10873 	 * Keep the block dirty so that it will not be reclaimed until
10874 	 * all associated dependencies have been cleared and the
10875 	 * corresponding updates written to disk.
10876 	 */
10877 	if (inodedep->id_savedino1 != NULL) {
10878 		hadchanges = 1;
10879 		if (fstype == UFS1)
10880 			*dp1 = *inodedep->id_savedino1;
10881 		else
10882 			*dp2 = *inodedep->id_savedino2;
10883 		free(inodedep->id_savedino1, M_SAVEDINO);
10884 		inodedep->id_savedino1 = NULL;
10885 		if ((bp->b_flags & B_DELWRI) == 0)
10886 			stat_inode_bitmap++;
10887 		bdirty(bp);
10888 		/*
10889 		 * If the inode is clear here and GOINGAWAY it will never
10890 		 * be written.  Process the bufwait and clear any pending
10891 		 * work which may include the freefile.
10892 		 */
10893 		if (inodedep->id_state & GOINGAWAY)
10894 			goto bufwait;
10895 		return (1);
10896 	}
10897 	inodedep->id_state |= COMPLETE;
10898 	/*
10899 	 * Roll forward anything that had to be rolled back before
10900 	 * the inode could be updated.
10901 	 */
10902 	for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
10903 		nextadp = TAILQ_NEXT(adp, ad_next);
10904 		if (adp->ad_state & ATTACHED)
10905 			panic("handle_written_inodeblock: new entry");
10906 		if (fstype == UFS1) {
10907 			if (adp->ad_offset < NDADDR) {
10908 				if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno)
10909 					panic("%s %s #%jd mismatch %d != %jd",
10910 					    "handle_written_inodeblock:",
10911 					    "direct pointer",
10912 					    (intmax_t)adp->ad_offset,
10913 					    dp1->di_db[adp->ad_offset],
10914 					    (intmax_t)adp->ad_oldblkno);
10915 				dp1->di_db[adp->ad_offset] = adp->ad_newblkno;
10916 			} else {
10917 				if (dp1->di_ib[adp->ad_offset - NDADDR] != 0)
10918 					panic("%s: %s #%jd allocated as %d",
10919 					    "handle_written_inodeblock",
10920 					    "indirect pointer",
10921 					    (intmax_t)adp->ad_offset - NDADDR,
10922 					    dp1->di_ib[adp->ad_offset - NDADDR]);
10923 				dp1->di_ib[adp->ad_offset - NDADDR] =
10924 				    adp->ad_newblkno;
10925 			}
10926 		} else {
10927 			if (adp->ad_offset < NDADDR) {
10928 				if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno)
10929 					panic("%s: %s #%jd %s %jd != %jd",
10930 					    "handle_written_inodeblock",
10931 					    "direct pointer",
10932 					    (intmax_t)adp->ad_offset, "mismatch",
10933 					    (intmax_t)dp2->di_db[adp->ad_offset],
10934 					    (intmax_t)adp->ad_oldblkno);
10935 				dp2->di_db[adp->ad_offset] = adp->ad_newblkno;
10936 			} else {
10937 				if (dp2->di_ib[adp->ad_offset - NDADDR] != 0)
10938 					panic("%s: %s #%jd allocated as %jd",
10939 					    "handle_written_inodeblock",
10940 					    "indirect pointer",
10941 					    (intmax_t)adp->ad_offset - NDADDR,
10942 					    (intmax_t)
10943 					    dp2->di_ib[adp->ad_offset - NDADDR]);
10944 				dp2->di_ib[adp->ad_offset - NDADDR] =
10945 				    adp->ad_newblkno;
10946 			}
10947 		}
10948 		adp->ad_state &= ~UNDONE;
10949 		adp->ad_state |= ATTACHED;
10950 		hadchanges = 1;
10951 	}
10952 	for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) {
10953 		nextadp = TAILQ_NEXT(adp, ad_next);
10954 		if (adp->ad_state & ATTACHED)
10955 			panic("handle_written_inodeblock: new entry");
10956 		if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno)
10957 			panic("%s: direct pointers #%jd %s %jd != %jd",
10958 			    "handle_written_inodeblock",
10959 			    (intmax_t)adp->ad_offset, "mismatch",
10960 			    (intmax_t)dp2->di_extb[adp->ad_offset],
10961 			    (intmax_t)adp->ad_oldblkno);
10962 		dp2->di_extb[adp->ad_offset] = adp->ad_newblkno;
10963 		adp->ad_state &= ~UNDONE;
10964 		adp->ad_state |= ATTACHED;
10965 		hadchanges = 1;
10966 	}
10967 	if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
10968 		stat_direct_blk_ptrs++;
10969 	/*
10970 	 * Reset the file size to its most up-to-date value.
10971 	 */
10972 	if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1)
10973 		panic("handle_written_inodeblock: bad size");
10974 	if (inodedep->id_savednlink > LINK_MAX)
10975 		panic("handle_written_inodeblock: Invalid link count "
10976 		    "%d for inodedep %p", inodedep->id_savednlink, inodedep);
10977 	if (fstype == UFS1) {
10978 		if (dp1->di_nlink != inodedep->id_savednlink) {
10979 			dp1->di_nlink = inodedep->id_savednlink;
10980 			hadchanges = 1;
10981 		}
10982 		if (dp1->di_size != inodedep->id_savedsize) {
10983 			dp1->di_size = inodedep->id_savedsize;
10984 			hadchanges = 1;
10985 		}
10986 	} else {
10987 		if (dp2->di_nlink != inodedep->id_savednlink) {
10988 			dp2->di_nlink = inodedep->id_savednlink;
10989 			hadchanges = 1;
10990 		}
10991 		if (dp2->di_size != inodedep->id_savedsize) {
10992 			dp2->di_size = inodedep->id_savedsize;
10993 			hadchanges = 1;
10994 		}
10995 		if (dp2->di_extsize != inodedep->id_savedextsize) {
10996 			dp2->di_extsize = inodedep->id_savedextsize;
10997 			hadchanges = 1;
10998 		}
10999 	}
11000 	inodedep->id_savedsize = -1;
11001 	inodedep->id_savedextsize = -1;
11002 	inodedep->id_savednlink = -1;
11003 	/*
11004 	 * If there were any rollbacks in the inode block, then it must be
11005 	 * marked dirty so that its will eventually get written back in
11006 	 * its correct form.
11007 	 */
11008 	if (hadchanges)
11009 		bdirty(bp);
11010 bufwait:
11011 	/*
11012 	 * Process any allocdirects that completed during the update.
11013 	 */
11014 	if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
11015 		handle_allocdirect_partdone(adp, &wkhd);
11016 	if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
11017 		handle_allocdirect_partdone(adp, &wkhd);
11018 	/*
11019 	 * Process deallocations that were held pending until the
11020 	 * inode had been written to disk. Freeing of the inode
11021 	 * is delayed until after all blocks have been freed to
11022 	 * avoid creation of new <vfsid, inum, lbn> triples
11023 	 * before the old ones have been deleted.  Completely
11024 	 * unlinked inodes are not processed until the unlinked
11025 	 * inode list is written or the last reference is removed.
11026 	 */
11027 	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) {
11028 		freefile = handle_bufwait(inodedep, NULL);
11029 		if (freefile && !LIST_EMPTY(&wkhd)) {
11030 			WORKLIST_INSERT(&wkhd, &freefile->fx_list);
11031 			freefile = NULL;
11032 		}
11033 	}
11034 	/*
11035 	 * Move rolled forward dependency completions to the bufwait list
11036 	 * now that those that were already written have been processed.
11037 	 */
11038 	if (!LIST_EMPTY(&wkhd) && hadchanges == 0)
11039 		panic("handle_written_inodeblock: bufwait but no changes");
11040 	jwork_move(&inodedep->id_bufwait, &wkhd);
11041 
11042 	if (freefile != NULL) {
11043 		/*
11044 		 * If the inode is goingaway it was never written.  Fake up
11045 		 * the state here so free_inodedep() can succeed.
11046 		 */
11047 		if (inodedep->id_state & GOINGAWAY)
11048 			inodedep->id_state |= COMPLETE | DEPCOMPLETE;
11049 		if (free_inodedep(inodedep) == 0)
11050 			panic("handle_written_inodeblock: live inodedep %p",
11051 			    inodedep);
11052 		add_to_worklist(&freefile->fx_list, 0);
11053 		return (0);
11054 	}
11055 
11056 	/*
11057 	 * If no outstanding dependencies, free it.
11058 	 */
11059 	if (free_inodedep(inodedep) ||
11060 	    (TAILQ_FIRST(&inodedep->id_inoreflst) == 0 &&
11061 	     TAILQ_FIRST(&inodedep->id_inoupdt) == 0 &&
11062 	     TAILQ_FIRST(&inodedep->id_extupdt) == 0 &&
11063 	     LIST_FIRST(&inodedep->id_bufwait) == 0))
11064 		return (0);
11065 	return (hadchanges);
11066 }
11067 
11068 static int
11069 handle_written_indirdep(indirdep, bp, bpp)
11070 	struct indirdep *indirdep;
11071 	struct buf *bp;
11072 	struct buf **bpp;
11073 {
11074 	struct allocindir *aip;
11075 	struct buf *sbp;
11076 	int chgs;
11077 
11078 	if (indirdep->ir_state & GOINGAWAY)
11079 		panic("handle_written_indirdep: indirdep gone");
11080 	if ((indirdep->ir_state & IOSTARTED) == 0)
11081 		panic("handle_written_indirdep: IO not started");
11082 	chgs = 0;
11083 	/*
11084 	 * If there were rollbacks revert them here.
11085 	 */
11086 	if (indirdep->ir_saveddata) {
11087 		bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount);
11088 		if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
11089 			free(indirdep->ir_saveddata, M_INDIRDEP);
11090 			indirdep->ir_saveddata = NULL;
11091 		}
11092 		chgs = 1;
11093 	}
11094 	indirdep->ir_state &= ~(UNDONE | IOSTARTED);
11095 	indirdep->ir_state |= ATTACHED;
11096 	/*
11097 	 * Move allocindirs with written pointers to the completehd if
11098 	 * the indirdep's pointer is not yet written.  Otherwise
11099 	 * free them here.
11100 	 */
11101 	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != 0) {
11102 		LIST_REMOVE(aip, ai_next);
11103 		if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
11104 			LIST_INSERT_HEAD(&indirdep->ir_completehd, aip,
11105 			    ai_next);
11106 			newblk_freefrag(&aip->ai_block);
11107 			continue;
11108 		}
11109 		free_newblk(&aip->ai_block);
11110 	}
11111 	/*
11112 	 * Move allocindirs that have finished dependency processing from
11113 	 * the done list to the write list after updating the pointers.
11114 	 */
11115 	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
11116 		while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) {
11117 			handle_allocindir_partdone(aip);
11118 			if (aip == LIST_FIRST(&indirdep->ir_donehd))
11119 				panic("disk_write_complete: not gone");
11120 			chgs = 1;
11121 		}
11122 	}
11123 	/*
11124 	 * Preserve the indirdep if there were any changes or if it is not
11125 	 * yet valid on disk.
11126 	 */
11127 	if (chgs) {
11128 		stat_indir_blk_ptrs++;
11129 		bdirty(bp);
11130 		return (1);
11131 	}
11132 	/*
11133 	 * If there were no changes we can discard the savedbp and detach
11134 	 * ourselves from the buf.  We are only carrying completed pointers
11135 	 * in this case.
11136 	 */
11137 	sbp = indirdep->ir_savebp;
11138 	sbp->b_flags |= B_INVAL | B_NOCACHE;
11139 	indirdep->ir_savebp = NULL;
11140 	indirdep->ir_bp = NULL;
11141 	if (*bpp != NULL)
11142 		panic("handle_written_indirdep: bp already exists.");
11143 	*bpp = sbp;
11144 	/*
11145 	 * The indirdep may not be freed until its parent points at it.
11146 	 */
11147 	if (indirdep->ir_state & DEPCOMPLETE)
11148 		free_indirdep(indirdep);
11149 
11150 	return (0);
11151 }
11152 
11153 /*
11154  * Process a diradd entry after its dependent inode has been written.
11155  * This routine must be called with splbio interrupts blocked.
11156  */
11157 static void
11158 diradd_inode_written(dap, inodedep)
11159 	struct diradd *dap;
11160 	struct inodedep *inodedep;
11161 {
11162 
11163 	dap->da_state |= COMPLETE;
11164 	complete_diradd(dap);
11165 	WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
11166 }
11167 
11168 /*
11169  * Returns true if the bmsafemap will have rollbacks when written.  Must
11170  * only be called with lk and the buf lock on the cg held.
11171  */
11172 static int
11173 bmsafemap_rollbacks(bmsafemap)
11174 	struct bmsafemap *bmsafemap;
11175 {
11176 
11177 	return (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd) |
11178 	    !LIST_EMPTY(&bmsafemap->sm_jnewblkhd));
11179 }
11180 
11181 /*
11182  * Re-apply an allocation when a cg write is complete.
11183  */
11184 static int
11185 jnewblk_rollforward(jnewblk, fs, cgp, blksfree)
11186 	struct jnewblk *jnewblk;
11187 	struct fs *fs;
11188 	struct cg *cgp;
11189 	uint8_t *blksfree;
11190 {
11191 	ufs1_daddr_t fragno;
11192 	ufs2_daddr_t blkno;
11193 	long cgbno, bbase;
11194 	int frags, blk;
11195 	int i;
11196 
11197 	frags = 0;
11198 	cgbno = dtogd(fs, jnewblk->jn_blkno);
11199 	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) {
11200 		if (isclr(blksfree, cgbno + i))
11201 			panic("jnewblk_rollforward: re-allocated fragment");
11202 		frags++;
11203 	}
11204 	if (frags == fs->fs_frag) {
11205 		blkno = fragstoblks(fs, cgbno);
11206 		ffs_clrblock(fs, blksfree, (long)blkno);
11207 		ffs_clusteracct(fs, cgp, blkno, -1);
11208 		cgp->cg_cs.cs_nbfree--;
11209 	} else {
11210 		bbase = cgbno - fragnum(fs, cgbno);
11211 		cgbno += jnewblk->jn_oldfrags;
11212                 /* If a complete block had been reassembled, account for it. */
11213 		fragno = fragstoblks(fs, bbase);
11214 		if (ffs_isblock(fs, blksfree, fragno)) {
11215 			cgp->cg_cs.cs_nffree += fs->fs_frag;
11216 			ffs_clusteracct(fs, cgp, fragno, -1);
11217 			cgp->cg_cs.cs_nbfree--;
11218 		}
11219 		/* Decrement the old frags.  */
11220 		blk = blkmap(fs, blksfree, bbase);
11221 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
11222 		/* Allocate the fragment */
11223 		for (i = 0; i < frags; i++)
11224 			clrbit(blksfree, cgbno + i);
11225 		cgp->cg_cs.cs_nffree -= frags;
11226 		/* Add back in counts associated with the new frags */
11227 		blk = blkmap(fs, blksfree, bbase);
11228 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
11229 	}
11230 	return (frags);
11231 }
11232 
11233 /*
11234  * Complete a write to a bmsafemap structure.  Roll forward any bitmap
11235  * changes if it's not a background write.  Set all written dependencies
11236  * to DEPCOMPLETE and free the structure if possible.
11237  */
11238 static int
11239 handle_written_bmsafemap(bmsafemap, bp)
11240 	struct bmsafemap *bmsafemap;
11241 	struct buf *bp;
11242 {
11243 	struct newblk *newblk;
11244 	struct inodedep *inodedep;
11245 	struct jaddref *jaddref, *jatmp;
11246 	struct jnewblk *jnewblk, *jntmp;
11247 	struct ufsmount *ump;
11248 	uint8_t *inosused;
11249 	uint8_t *blksfree;
11250 	struct cg *cgp;
11251 	struct fs *fs;
11252 	ino_t ino;
11253 	int chgs;
11254 
11255 	if ((bmsafemap->sm_state & IOSTARTED) == 0)
11256 		panic("initiate_write_bmsafemap: Not started\n");
11257 	ump = VFSTOUFS(bmsafemap->sm_list.wk_mp);
11258 	chgs = 0;
11259 	bmsafemap->sm_state &= ~IOSTARTED;
11260 	/*
11261 	 * Release journal work that was waiting on the write.
11262 	 */
11263 	handle_jwork(&bmsafemap->sm_freewr);
11264 
11265 	/*
11266 	 * Restore unwritten inode allocation pending jaddref writes.
11267 	 */
11268 	if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) {
11269 		cgp = (struct cg *)bp->b_data;
11270 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11271 		inosused = cg_inosused(cgp);
11272 		LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd,
11273 		    ja_bmdeps, jatmp) {
11274 			if ((jaddref->ja_state & UNDONE) == 0)
11275 				continue;
11276 			ino = jaddref->ja_ino % fs->fs_ipg;
11277 			if (isset(inosused, ino))
11278 				panic("handle_written_bmsafemap: "
11279 				    "re-allocated inode");
11280 			if ((bp->b_xflags & BX_BKGRDMARKER) == 0) {
11281 				if ((jaddref->ja_mode & IFMT) == IFDIR)
11282 					cgp->cg_cs.cs_ndir++;
11283 				cgp->cg_cs.cs_nifree--;
11284 				setbit(inosused, ino);
11285 				chgs = 1;
11286 			}
11287 			jaddref->ja_state &= ~UNDONE;
11288 			jaddref->ja_state |= ATTACHED;
11289 			free_jaddref(jaddref);
11290 		}
11291 	}
11292 	/*
11293 	 * Restore any block allocations which are pending journal writes.
11294 	 */
11295 	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
11296 		cgp = (struct cg *)bp->b_data;
11297 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11298 		blksfree = cg_blksfree(cgp);
11299 		LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps,
11300 		    jntmp) {
11301 			if ((jnewblk->jn_state & UNDONE) == 0)
11302 				continue;
11303 			if ((bp->b_xflags & BX_BKGRDMARKER) == 0 &&
11304 			    jnewblk_rollforward(jnewblk, fs, cgp, blksfree))
11305 				chgs = 1;
11306 			jnewblk->jn_state &= ~(UNDONE | NEWBLOCK);
11307 			jnewblk->jn_state |= ATTACHED;
11308 			free_jnewblk(jnewblk);
11309 		}
11310 	}
11311 	while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) {
11312 		newblk->nb_state |= DEPCOMPLETE;
11313 		newblk->nb_state &= ~ONDEPLIST;
11314 		newblk->nb_bmsafemap = NULL;
11315 		LIST_REMOVE(newblk, nb_deps);
11316 		if (newblk->nb_list.wk_type == D_ALLOCDIRECT)
11317 			handle_allocdirect_partdone(
11318 			    WK_ALLOCDIRECT(&newblk->nb_list), NULL);
11319 		else if (newblk->nb_list.wk_type == D_ALLOCINDIR)
11320 			handle_allocindir_partdone(
11321 			    WK_ALLOCINDIR(&newblk->nb_list));
11322 		else if (newblk->nb_list.wk_type != D_NEWBLK)
11323 			panic("handle_written_bmsafemap: Unexpected type: %s",
11324 			    TYPENAME(newblk->nb_list.wk_type));
11325 	}
11326 	while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) {
11327 		inodedep->id_state |= DEPCOMPLETE;
11328 		inodedep->id_state &= ~ONDEPLIST;
11329 		LIST_REMOVE(inodedep, id_deps);
11330 		inodedep->id_bmsafemap = NULL;
11331 	}
11332 	LIST_REMOVE(bmsafemap, sm_next);
11333 	if (chgs == 0 && LIST_EMPTY(&bmsafemap->sm_jaddrefhd) &&
11334 	    LIST_EMPTY(&bmsafemap->sm_jnewblkhd) &&
11335 	    LIST_EMPTY(&bmsafemap->sm_newblkhd) &&
11336 	    LIST_EMPTY(&bmsafemap->sm_inodedephd) &&
11337 	    LIST_EMPTY(&bmsafemap->sm_freehd)) {
11338 		LIST_REMOVE(bmsafemap, sm_hash);
11339 		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
11340 		return (0);
11341 	}
11342 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
11343 	bdirty(bp);
11344 	return (1);
11345 }
11346 
11347 /*
11348  * Try to free a mkdir dependency.
11349  */
11350 static void
11351 complete_mkdir(mkdir)
11352 	struct mkdir *mkdir;
11353 {
11354 	struct diradd *dap;
11355 
11356 	if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE)
11357 		return;
11358 	LIST_REMOVE(mkdir, md_mkdirs);
11359 	dap = mkdir->md_diradd;
11360 	dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
11361 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) {
11362 		dap->da_state |= DEPCOMPLETE;
11363 		complete_diradd(dap);
11364 	}
11365 	WORKITEM_FREE(mkdir, D_MKDIR);
11366 }
11367 
11368 /*
11369  * Handle the completion of a mkdir dependency.
11370  */
11371 static void
11372 handle_written_mkdir(mkdir, type)
11373 	struct mkdir *mkdir;
11374 	int type;
11375 {
11376 
11377 	if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type)
11378 		panic("handle_written_mkdir: bad type");
11379 	mkdir->md_state |= COMPLETE;
11380 	complete_mkdir(mkdir);
11381 }
11382 
11383 static int
11384 free_pagedep(pagedep)
11385 	struct pagedep *pagedep;
11386 {
11387 	int i;
11388 
11389 	if (pagedep->pd_state & NEWBLOCK)
11390 		return (0);
11391 	if (!LIST_EMPTY(&pagedep->pd_dirremhd))
11392 		return (0);
11393 	for (i = 0; i < DAHASHSZ; i++)
11394 		if (!LIST_EMPTY(&pagedep->pd_diraddhd[i]))
11395 			return (0);
11396 	if (!LIST_EMPTY(&pagedep->pd_pendinghd))
11397 		return (0);
11398 	if (!LIST_EMPTY(&pagedep->pd_jmvrefhd))
11399 		return (0);
11400 	if (pagedep->pd_state & ONWORKLIST)
11401 		WORKLIST_REMOVE(&pagedep->pd_list);
11402 	LIST_REMOVE(pagedep, pd_hash);
11403 	WORKITEM_FREE(pagedep, D_PAGEDEP);
11404 
11405 	return (1);
11406 }
11407 
11408 /*
11409  * Called from within softdep_disk_write_complete above.
11410  * A write operation was just completed. Removed inodes can
11411  * now be freed and associated block pointers may be committed.
11412  * Note that this routine is always called from interrupt level
11413  * with further splbio interrupts blocked.
11414  */
11415 static int
11416 handle_written_filepage(pagedep, bp)
11417 	struct pagedep *pagedep;
11418 	struct buf *bp;		/* buffer containing the written page */
11419 {
11420 	struct dirrem *dirrem;
11421 	struct diradd *dap, *nextdap;
11422 	struct direct *ep;
11423 	int i, chgs;
11424 
11425 	if ((pagedep->pd_state & IOSTARTED) == 0)
11426 		panic("handle_written_filepage: not started");
11427 	pagedep->pd_state &= ~IOSTARTED;
11428 	/*
11429 	 * Process any directory removals that have been committed.
11430 	 */
11431 	while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
11432 		LIST_REMOVE(dirrem, dm_next);
11433 		dirrem->dm_state |= COMPLETE;
11434 		dirrem->dm_dirinum = pagedep->pd_ino;
11435 		KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
11436 		    ("handle_written_filepage: Journal entries not written."));
11437 		add_to_worklist(&dirrem->dm_list, 0);
11438 	}
11439 	/*
11440 	 * Free any directory additions that have been committed.
11441 	 * If it is a newly allocated block, we have to wait until
11442 	 * the on-disk directory inode claims the new block.
11443 	 */
11444 	if ((pagedep->pd_state & NEWBLOCK) == 0)
11445 		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
11446 			free_diradd(dap, NULL);
11447 	/*
11448 	 * Uncommitted directory entries must be restored.
11449 	 */
11450 	for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
11451 		for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
11452 		     dap = nextdap) {
11453 			nextdap = LIST_NEXT(dap, da_pdlist);
11454 			if (dap->da_state & ATTACHED)
11455 				panic("handle_written_filepage: attached");
11456 			ep = (struct direct *)
11457 			    ((char *)bp->b_data + dap->da_offset);
11458 			ep->d_ino = dap->da_newinum;
11459 			dap->da_state &= ~UNDONE;
11460 			dap->da_state |= ATTACHED;
11461 			chgs = 1;
11462 			/*
11463 			 * If the inode referenced by the directory has
11464 			 * been written out, then the dependency can be
11465 			 * moved to the pending list.
11466 			 */
11467 			if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
11468 				LIST_REMOVE(dap, da_pdlist);
11469 				LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
11470 				    da_pdlist);
11471 			}
11472 		}
11473 	}
11474 	/*
11475 	 * If there were any rollbacks in the directory, then it must be
11476 	 * marked dirty so that its will eventually get written back in
11477 	 * its correct form.
11478 	 */
11479 	if (chgs) {
11480 		if ((bp->b_flags & B_DELWRI) == 0)
11481 			stat_dir_entry++;
11482 		bdirty(bp);
11483 		return (1);
11484 	}
11485 	/*
11486 	 * If we are not waiting for a new directory block to be
11487 	 * claimed by its inode, then the pagedep will be freed.
11488 	 * Otherwise it will remain to track any new entries on
11489 	 * the page in case they are fsync'ed.
11490 	 */
11491 	free_pagedep(pagedep);
11492 	return (0);
11493 }
11494 
11495 /*
11496  * Writing back in-core inode structures.
11497  *
11498  * The filesystem only accesses an inode's contents when it occupies an
11499  * "in-core" inode structure.  These "in-core" structures are separate from
11500  * the page frames used to cache inode blocks.  Only the latter are
11501  * transferred to/from the disk.  So, when the updated contents of the
11502  * "in-core" inode structure are copied to the corresponding in-memory inode
11503  * block, the dependencies are also transferred.  The following procedure is
11504  * called when copying a dirty "in-core" inode to a cached inode block.
11505  */
11506 
11507 /*
11508  * Called when an inode is loaded from disk. If the effective link count
11509  * differed from the actual link count when it was last flushed, then we
11510  * need to ensure that the correct effective link count is put back.
11511  */
11512 void
11513 softdep_load_inodeblock(ip)
11514 	struct inode *ip;	/* the "in_core" copy of the inode */
11515 {
11516 	struct inodedep *inodedep;
11517 
11518 	/*
11519 	 * Check for alternate nlink count.
11520 	 */
11521 	ip->i_effnlink = ip->i_nlink;
11522 	ACQUIRE_LOCK(&lk);
11523 	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
11524 	    &inodedep) == 0) {
11525 		FREE_LOCK(&lk);
11526 		return;
11527 	}
11528 	ip->i_effnlink -= inodedep->id_nlinkdelta;
11529 	FREE_LOCK(&lk);
11530 }
11531 
11532 /*
11533  * This routine is called just before the "in-core" inode
11534  * information is to be copied to the in-memory inode block.
11535  * Recall that an inode block contains several inodes. If
11536  * the force flag is set, then the dependencies will be
11537  * cleared so that the update can always be made. Note that
11538  * the buffer is locked when this routine is called, so we
11539  * will never be in the middle of writing the inode block
11540  * to disk.
11541  */
11542 void
11543 softdep_update_inodeblock(ip, bp, waitfor)
11544 	struct inode *ip;	/* the "in_core" copy of the inode */
11545 	struct buf *bp;		/* the buffer containing the inode block */
11546 	int waitfor;		/* nonzero => update must be allowed */
11547 {
11548 	struct inodedep *inodedep;
11549 	struct inoref *inoref;
11550 	struct worklist *wk;
11551 	struct mount *mp;
11552 	struct buf *ibp;
11553 	struct fs *fs;
11554 	int error;
11555 
11556 	mp = UFSTOVFS(ip->i_ump);
11557 	fs = ip->i_fs;
11558 	/*
11559 	 * Preserve the freelink that is on disk.  clear_unlinked_inodedep()
11560 	 * does not have access to the in-core ip so must write directly into
11561 	 * the inode block buffer when setting freelink.
11562 	 */
11563 	if (fs->fs_magic == FS_UFS1_MAGIC)
11564 		DIP_SET(ip, i_freelink, ((struct ufs1_dinode *)bp->b_data +
11565 		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
11566 	else
11567 		DIP_SET(ip, i_freelink, ((struct ufs2_dinode *)bp->b_data +
11568 		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
11569 	/*
11570 	 * If the effective link count is not equal to the actual link
11571 	 * count, then we must track the difference in an inodedep while
11572 	 * the inode is (potentially) tossed out of the cache. Otherwise,
11573 	 * if there is no existing inodedep, then there are no dependencies
11574 	 * to track.
11575 	 */
11576 	ACQUIRE_LOCK(&lk);
11577 again:
11578 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
11579 		FREE_LOCK(&lk);
11580 		if (ip->i_effnlink != ip->i_nlink)
11581 			panic("softdep_update_inodeblock: bad link count");
11582 		return;
11583 	}
11584 	if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink)
11585 		panic("softdep_update_inodeblock: bad delta");
11586 	/*
11587 	 * If we're flushing all dependencies we must also move any waiting
11588 	 * for journal writes onto the bufwait list prior to I/O.
11589 	 */
11590 	if (waitfor) {
11591 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
11592 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
11593 			    == DEPCOMPLETE) {
11594 				jwait(&inoref->if_list, MNT_WAIT);
11595 				goto again;
11596 			}
11597 		}
11598 	}
11599 	/*
11600 	 * Changes have been initiated. Anything depending on these
11601 	 * changes cannot occur until this inode has been written.
11602 	 */
11603 	inodedep->id_state &= ~COMPLETE;
11604 	if ((inodedep->id_state & ONWORKLIST) == 0)
11605 		WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list);
11606 	/*
11607 	 * Any new dependencies associated with the incore inode must
11608 	 * now be moved to the list associated with the buffer holding
11609 	 * the in-memory copy of the inode. Once merged process any
11610 	 * allocdirects that are completed by the merger.
11611 	 */
11612 	merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt);
11613 	if (!TAILQ_EMPTY(&inodedep->id_inoupdt))
11614 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt),
11615 		    NULL);
11616 	merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt);
11617 	if (!TAILQ_EMPTY(&inodedep->id_extupdt))
11618 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt),
11619 		    NULL);
11620 	/*
11621 	 * Now that the inode has been pushed into the buffer, the
11622 	 * operations dependent on the inode being written to disk
11623 	 * can be moved to the id_bufwait so that they will be
11624 	 * processed when the buffer I/O completes.
11625 	 */
11626 	while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
11627 		WORKLIST_REMOVE(wk);
11628 		WORKLIST_INSERT(&inodedep->id_bufwait, wk);
11629 	}
11630 	/*
11631 	 * Newly allocated inodes cannot be written until the bitmap
11632 	 * that allocates them have been written (indicated by
11633 	 * DEPCOMPLETE being set in id_state). If we are doing a
11634 	 * forced sync (e.g., an fsync on a file), we force the bitmap
11635 	 * to be written so that the update can be done.
11636 	 */
11637 	if (waitfor == 0) {
11638 		FREE_LOCK(&lk);
11639 		return;
11640 	}
11641 retry:
11642 	if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) {
11643 		FREE_LOCK(&lk);
11644 		return;
11645 	}
11646 	ibp = inodedep->id_bmsafemap->sm_buf;
11647 	ibp = getdirtybuf(ibp, &lk, MNT_WAIT);
11648 	if (ibp == NULL) {
11649 		/*
11650 		 * If ibp came back as NULL, the dependency could have been
11651 		 * freed while we slept.  Look it up again, and check to see
11652 		 * that it has completed.
11653 		 */
11654 		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
11655 			goto retry;
11656 		FREE_LOCK(&lk);
11657 		return;
11658 	}
11659 	FREE_LOCK(&lk);
11660 	if ((error = bwrite(ibp)) != 0)
11661 		softdep_error("softdep_update_inodeblock: bwrite", error);
11662 }
11663 
11664 /*
11665  * Merge the a new inode dependency list (such as id_newinoupdt) into an
11666  * old inode dependency list (such as id_inoupdt). This routine must be
11667  * called with splbio interrupts blocked.
11668  */
11669 static void
11670 merge_inode_lists(newlisthead, oldlisthead)
11671 	struct allocdirectlst *newlisthead;
11672 	struct allocdirectlst *oldlisthead;
11673 {
11674 	struct allocdirect *listadp, *newadp;
11675 
11676 	newadp = TAILQ_FIRST(newlisthead);
11677 	for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) {
11678 		if (listadp->ad_offset < newadp->ad_offset) {
11679 			listadp = TAILQ_NEXT(listadp, ad_next);
11680 			continue;
11681 		}
11682 		TAILQ_REMOVE(newlisthead, newadp, ad_next);
11683 		TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
11684 		if (listadp->ad_offset == newadp->ad_offset) {
11685 			allocdirect_merge(oldlisthead, newadp,
11686 			    listadp);
11687 			listadp = newadp;
11688 		}
11689 		newadp = TAILQ_FIRST(newlisthead);
11690 	}
11691 	while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) {
11692 		TAILQ_REMOVE(newlisthead, newadp, ad_next);
11693 		TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next);
11694 	}
11695 }
11696 
11697 /*
11698  * If we are doing an fsync, then we must ensure that any directory
11699  * entries for the inode have been written after the inode gets to disk.
11700  */
11701 int
11702 softdep_fsync(vp)
11703 	struct vnode *vp;	/* the "in_core" copy of the inode */
11704 {
11705 	struct inodedep *inodedep;
11706 	struct pagedep *pagedep;
11707 	struct inoref *inoref;
11708 	struct worklist *wk;
11709 	struct diradd *dap;
11710 	struct mount *mp;
11711 	struct vnode *pvp;
11712 	struct inode *ip;
11713 	struct buf *bp;
11714 	struct fs *fs;
11715 	struct thread *td = curthread;
11716 	int error, flushparent, pagedep_new_block;
11717 	ino_t parentino;
11718 	ufs_lbn_t lbn;
11719 
11720 	ip = VTOI(vp);
11721 	fs = ip->i_fs;
11722 	mp = vp->v_mount;
11723 	ACQUIRE_LOCK(&lk);
11724 restart:
11725 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
11726 		FREE_LOCK(&lk);
11727 		return (0);
11728 	}
11729 	TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
11730 		if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
11731 		    == DEPCOMPLETE) {
11732 			jwait(&inoref->if_list, MNT_WAIT);
11733 			goto restart;
11734 		}
11735 	}
11736 	if (!LIST_EMPTY(&inodedep->id_inowait) ||
11737 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
11738 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
11739 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
11740 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt))
11741 		panic("softdep_fsync: pending ops %p", inodedep);
11742 	for (error = 0, flushparent = 0; ; ) {
11743 		if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
11744 			break;
11745 		if (wk->wk_type != D_DIRADD)
11746 			panic("softdep_fsync: Unexpected type %s",
11747 			    TYPENAME(wk->wk_type));
11748 		dap = WK_DIRADD(wk);
11749 		/*
11750 		 * Flush our parent if this directory entry has a MKDIR_PARENT
11751 		 * dependency or is contained in a newly allocated block.
11752 		 */
11753 		if (dap->da_state & DIRCHG)
11754 			pagedep = dap->da_previous->dm_pagedep;
11755 		else
11756 			pagedep = dap->da_pagedep;
11757 		parentino = pagedep->pd_ino;
11758 		lbn = pagedep->pd_lbn;
11759 		if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE)
11760 			panic("softdep_fsync: dirty");
11761 		if ((dap->da_state & MKDIR_PARENT) ||
11762 		    (pagedep->pd_state & NEWBLOCK))
11763 			flushparent = 1;
11764 		else
11765 			flushparent = 0;
11766 		/*
11767 		 * If we are being fsync'ed as part of vgone'ing this vnode,
11768 		 * then we will not be able to release and recover the
11769 		 * vnode below, so we just have to give up on writing its
11770 		 * directory entry out. It will eventually be written, just
11771 		 * not now, but then the user was not asking to have it
11772 		 * written, so we are not breaking any promises.
11773 		 */
11774 		if (vp->v_iflag & VI_DOOMED)
11775 			break;
11776 		/*
11777 		 * We prevent deadlock by always fetching inodes from the
11778 		 * root, moving down the directory tree. Thus, when fetching
11779 		 * our parent directory, we first try to get the lock. If
11780 		 * that fails, we must unlock ourselves before requesting
11781 		 * the lock on our parent. See the comment in ufs_lookup
11782 		 * for details on possible races.
11783 		 */
11784 		FREE_LOCK(&lk);
11785 		if (ffs_vgetf(mp, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp,
11786 		    FFSV_FORCEINSMQ)) {
11787 			error = vfs_busy(mp, MBF_NOWAIT);
11788 			if (error != 0) {
11789 				vfs_ref(mp);
11790 				VOP_UNLOCK(vp, 0);
11791 				error = vfs_busy(mp, 0);
11792 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
11793 				vfs_rel(mp);
11794 				if (error != 0)
11795 					return (ENOENT);
11796 				if (vp->v_iflag & VI_DOOMED) {
11797 					vfs_unbusy(mp);
11798 					return (ENOENT);
11799 				}
11800 			}
11801 			VOP_UNLOCK(vp, 0);
11802 			error = ffs_vgetf(mp, parentino, LK_EXCLUSIVE,
11803 			    &pvp, FFSV_FORCEINSMQ);
11804 			vfs_unbusy(mp);
11805 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
11806 			if (vp->v_iflag & VI_DOOMED) {
11807 				if (error == 0)
11808 					vput(pvp);
11809 				error = ENOENT;
11810 			}
11811 			if (error != 0)
11812 				return (error);
11813 		}
11814 		/*
11815 		 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps
11816 		 * that are contained in direct blocks will be resolved by
11817 		 * doing a ffs_update. Pagedeps contained in indirect blocks
11818 		 * may require a complete sync'ing of the directory. So, we
11819 		 * try the cheap and fast ffs_update first, and if that fails,
11820 		 * then we do the slower ffs_syncvnode of the directory.
11821 		 */
11822 		if (flushparent) {
11823 			int locked;
11824 
11825 			if ((error = ffs_update(pvp, 1)) != 0) {
11826 				vput(pvp);
11827 				return (error);
11828 			}
11829 			ACQUIRE_LOCK(&lk);
11830 			locked = 1;
11831 			if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) {
11832 				if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) {
11833 					if (wk->wk_type != D_DIRADD)
11834 						panic("softdep_fsync: Unexpected type %s",
11835 						      TYPENAME(wk->wk_type));
11836 					dap = WK_DIRADD(wk);
11837 					if (dap->da_state & DIRCHG)
11838 						pagedep = dap->da_previous->dm_pagedep;
11839 					else
11840 						pagedep = dap->da_pagedep;
11841 					pagedep_new_block = pagedep->pd_state & NEWBLOCK;
11842 					FREE_LOCK(&lk);
11843 					locked = 0;
11844 					if (pagedep_new_block &&
11845 					    (error = ffs_syncvnode(pvp, MNT_WAIT))) {
11846 						vput(pvp);
11847 						return (error);
11848 					}
11849 				}
11850 			}
11851 			if (locked)
11852 				FREE_LOCK(&lk);
11853 		}
11854 		/*
11855 		 * Flush directory page containing the inode's name.
11856 		 */
11857 		error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred,
11858 		    &bp);
11859 		if (error == 0)
11860 			error = bwrite(bp);
11861 		else
11862 			brelse(bp);
11863 		vput(pvp);
11864 		if (error != 0)
11865 			return (error);
11866 		ACQUIRE_LOCK(&lk);
11867 		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
11868 			break;
11869 	}
11870 	FREE_LOCK(&lk);
11871 	return (0);
11872 }
11873 
11874 /*
11875  * Flush all the dirty bitmaps associated with the block device
11876  * before flushing the rest of the dirty blocks so as to reduce
11877  * the number of dependencies that will have to be rolled back.
11878  *
11879  * XXX Unused?
11880  */
11881 void
11882 softdep_fsync_mountdev(vp)
11883 	struct vnode *vp;
11884 {
11885 	struct buf *bp, *nbp;
11886 	struct worklist *wk;
11887 	struct bufobj *bo;
11888 
11889 	if (!vn_isdisk(vp, NULL))
11890 		panic("softdep_fsync_mountdev: vnode not a disk");
11891 	bo = &vp->v_bufobj;
11892 restart:
11893 	BO_LOCK(bo);
11894 	ACQUIRE_LOCK(&lk);
11895 	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
11896 		/*
11897 		 * If it is already scheduled, skip to the next buffer.
11898 		 */
11899 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
11900 			continue;
11901 
11902 		if ((bp->b_flags & B_DELWRI) == 0)
11903 			panic("softdep_fsync_mountdev: not dirty");
11904 		/*
11905 		 * We are only interested in bitmaps with outstanding
11906 		 * dependencies.
11907 		 */
11908 		if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
11909 		    wk->wk_type != D_BMSAFEMAP ||
11910 		    (bp->b_vflags & BV_BKGRDINPROG)) {
11911 			BUF_UNLOCK(bp);
11912 			continue;
11913 		}
11914 		FREE_LOCK(&lk);
11915 		BO_UNLOCK(bo);
11916 		bremfree(bp);
11917 		(void) bawrite(bp);
11918 		goto restart;
11919 	}
11920 	FREE_LOCK(&lk);
11921 	drain_output(vp);
11922 	BO_UNLOCK(bo);
11923 }
11924 
11925 /*
11926  * Sync all cylinder groups that were dirty at the time this function is
11927  * called.  Newly dirtied cgs will be inserted before the sintenel.  This
11928  * is used to flush freedep activity that may be holding up writes to a
11929  * indirect block.
11930  */
11931 static int
11932 sync_cgs(mp, waitfor)
11933 	struct mount *mp;
11934 	int waitfor;
11935 {
11936 	struct bmsafemap *bmsafemap;
11937 	struct bmsafemap *sintenel;
11938 	struct ufsmount *ump;
11939 	struct buf *bp;
11940 	int error;
11941 
11942 	sintenel = malloc(sizeof(*sintenel), M_BMSAFEMAP, M_ZERO | M_WAITOK);
11943 	sintenel->sm_cg = -1;
11944 	ump = VFSTOUFS(mp);
11945 	error = 0;
11946 	ACQUIRE_LOCK(&lk);
11947 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, sintenel, sm_next);
11948 	for (bmsafemap = LIST_NEXT(sintenel, sm_next); bmsafemap != NULL;
11949 	    bmsafemap = LIST_NEXT(sintenel, sm_next)) {
11950 		/* Skip sintenels and cgs with no work to release. */
11951 		if (bmsafemap->sm_cg == -1 ||
11952 		    (LIST_EMPTY(&bmsafemap->sm_freehd) &&
11953 		    LIST_EMPTY(&bmsafemap->sm_freewr))) {
11954 			LIST_REMOVE(sintenel, sm_next);
11955 			LIST_INSERT_AFTER(bmsafemap, sintenel, sm_next);
11956 			continue;
11957 		}
11958 		/*
11959 		 * If we don't get the lock and we're waiting try again, if
11960 		 * not move on to the next buf and try to sync it.
11961 		 */
11962 		bp = getdirtybuf(bmsafemap->sm_buf, &lk, waitfor);
11963 		if (bp == NULL && waitfor == MNT_WAIT)
11964 			continue;
11965 		LIST_REMOVE(sintenel, sm_next);
11966 		LIST_INSERT_AFTER(bmsafemap, sintenel, sm_next);
11967 		if (bp == NULL)
11968 			continue;
11969 		FREE_LOCK(&lk);
11970 		if (waitfor == MNT_NOWAIT)
11971 			bawrite(bp);
11972 		else
11973 			error = bwrite(bp);
11974 		ACQUIRE_LOCK(&lk);
11975 		if (error)
11976 			break;
11977 	}
11978 	LIST_REMOVE(sintenel, sm_next);
11979 	FREE_LOCK(&lk);
11980 	free(sintenel, M_BMSAFEMAP);
11981 	return (error);
11982 }
11983 
11984 /*
11985  * This routine is called when we are trying to synchronously flush a
11986  * file. This routine must eliminate any filesystem metadata dependencies
11987  * so that the syncing routine can succeed.
11988  */
11989 int
11990 softdep_sync_metadata(struct vnode *vp)
11991 {
11992 	int error;
11993 
11994 	/*
11995 	 * Ensure that any direct block dependencies have been cleared,
11996 	 * truncations are started, and inode references are journaled.
11997 	 */
11998 	ACQUIRE_LOCK(&lk);
11999 	/*
12000 	 * Write all journal records to prevent rollbacks on devvp.
12001 	 */
12002 	if (vp->v_type == VCHR)
12003 		softdep_flushjournal(vp->v_mount);
12004 	error = flush_inodedep_deps(vp, vp->v_mount, VTOI(vp)->i_number);
12005 	/*
12006 	 * Ensure that all truncates are written so we won't find deps on
12007 	 * indirect blocks.
12008 	 */
12009 	process_truncates(vp);
12010 	FREE_LOCK(&lk);
12011 
12012 	return (error);
12013 }
12014 
12015 /*
12016  * This routine is called when we are attempting to sync a buf with
12017  * dependencies.  If waitfor is MNT_NOWAIT it attempts to schedule any
12018  * other IO it can but returns EBUSY if the buffer is not yet able to
12019  * be written.  Dependencies which will not cause rollbacks will always
12020  * return 0.
12021  */
12022 int
12023 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
12024 {
12025 	struct indirdep *indirdep;
12026 	struct pagedep *pagedep;
12027 	struct allocindir *aip;
12028 	struct newblk *newblk;
12029 	struct buf *nbp;
12030 	struct worklist *wk;
12031 	int i, error;
12032 
12033 	/*
12034 	 * For VCHR we just don't want to force flush any dependencies that
12035 	 * will cause rollbacks.
12036 	 */
12037 	if (vp->v_type == VCHR) {
12038 		if (waitfor == MNT_NOWAIT && softdep_count_dependencies(bp, 0))
12039 			return (EBUSY);
12040 		return (0);
12041 	}
12042 	ACQUIRE_LOCK(&lk);
12043 	/*
12044 	 * As we hold the buffer locked, none of its dependencies
12045 	 * will disappear.
12046 	 */
12047 	error = 0;
12048 top:
12049 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
12050 		switch (wk->wk_type) {
12051 
12052 		case D_ALLOCDIRECT:
12053 		case D_ALLOCINDIR:
12054 			newblk = WK_NEWBLK(wk);
12055 			if (newblk->nb_jnewblk != NULL) {
12056 				if (waitfor == MNT_NOWAIT) {
12057 					error = EBUSY;
12058 					goto out_unlock;
12059 				}
12060 				jwait(&newblk->nb_jnewblk->jn_list, waitfor);
12061 				goto top;
12062 			}
12063 			if (newblk->nb_state & DEPCOMPLETE ||
12064 			    waitfor == MNT_NOWAIT)
12065 				continue;
12066 			nbp = newblk->nb_bmsafemap->sm_buf;
12067 			nbp = getdirtybuf(nbp, &lk, waitfor);
12068 			if (nbp == NULL)
12069 				goto top;
12070 			FREE_LOCK(&lk);
12071 			if ((error = bwrite(nbp)) != 0)
12072 				goto out;
12073 			ACQUIRE_LOCK(&lk);
12074 			continue;
12075 
12076 		case D_INDIRDEP:
12077 			indirdep = WK_INDIRDEP(wk);
12078 			if (waitfor == MNT_NOWAIT) {
12079 				if (!TAILQ_EMPTY(&indirdep->ir_trunc) ||
12080 				    !LIST_EMPTY(&indirdep->ir_deplisthd)) {
12081 					error = EBUSY;
12082 					goto out_unlock;
12083 				}
12084 			}
12085 			if (!TAILQ_EMPTY(&indirdep->ir_trunc))
12086 				panic("softdep_sync_buf: truncation pending.");
12087 		restart:
12088 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
12089 				newblk = (struct newblk *)aip;
12090 				if (newblk->nb_jnewblk != NULL) {
12091 					jwait(&newblk->nb_jnewblk->jn_list,
12092 					    waitfor);
12093 					goto restart;
12094 				}
12095 				if (newblk->nb_state & DEPCOMPLETE)
12096 					continue;
12097 				nbp = newblk->nb_bmsafemap->sm_buf;
12098 				nbp = getdirtybuf(nbp, &lk, waitfor);
12099 				if (nbp == NULL)
12100 					goto restart;
12101 				FREE_LOCK(&lk);
12102 				if ((error = bwrite(nbp)) != 0)
12103 					goto out;
12104 				ACQUIRE_LOCK(&lk);
12105 				goto restart;
12106 			}
12107 			continue;
12108 
12109 		case D_PAGEDEP:
12110 			/*
12111 			 * Only flush directory entries in synchronous passes.
12112 			 */
12113 			if (waitfor != MNT_WAIT) {
12114 				error = EBUSY;
12115 				goto out_unlock;
12116 			}
12117 			/*
12118 			 * While syncing snapshots, we must allow recursive
12119 			 * lookups.
12120 			 */
12121 			BUF_AREC(bp);
12122 			/*
12123 			 * We are trying to sync a directory that may
12124 			 * have dependencies on both its own metadata
12125 			 * and/or dependencies on the inodes of any
12126 			 * recently allocated files. We walk its diradd
12127 			 * lists pushing out the associated inode.
12128 			 */
12129 			pagedep = WK_PAGEDEP(wk);
12130 			for (i = 0; i < DAHASHSZ; i++) {
12131 				if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0)
12132 					continue;
12133 				if ((error = flush_pagedep_deps(vp, wk->wk_mp,
12134 				    &pagedep->pd_diraddhd[i]))) {
12135 					BUF_NOREC(bp);
12136 					goto out_unlock;
12137 				}
12138 			}
12139 			BUF_NOREC(bp);
12140 			continue;
12141 
12142 		case D_FREEWORK:
12143 		case D_FREEDEP:
12144 		case D_JSEGDEP:
12145 		case D_JNEWBLK:
12146 			continue;
12147 
12148 		default:
12149 			panic("softdep_sync_buf: Unknown type %s",
12150 			    TYPENAME(wk->wk_type));
12151 			/* NOTREACHED */
12152 		}
12153 	}
12154 out_unlock:
12155 	FREE_LOCK(&lk);
12156 out:
12157 	return (error);
12158 }
12159 
12160 /*
12161  * Flush the dependencies associated with an inodedep.
12162  * Called with splbio blocked.
12163  */
12164 static int
12165 flush_inodedep_deps(vp, mp, ino)
12166 	struct vnode *vp;
12167 	struct mount *mp;
12168 	ino_t ino;
12169 {
12170 	struct inodedep *inodedep;
12171 	struct inoref *inoref;
12172 	int error, waitfor;
12173 
12174 	/*
12175 	 * This work is done in two passes. The first pass grabs most
12176 	 * of the buffers and begins asynchronously writing them. The
12177 	 * only way to wait for these asynchronous writes is to sleep
12178 	 * on the filesystem vnode which may stay busy for a long time
12179 	 * if the filesystem is active. So, instead, we make a second
12180 	 * pass over the dependencies blocking on each write. In the
12181 	 * usual case we will be blocking against a write that we
12182 	 * initiated, so when it is done the dependency will have been
12183 	 * resolved. Thus the second pass is expected to end quickly.
12184 	 * We give a brief window at the top of the loop to allow
12185 	 * any pending I/O to complete.
12186 	 */
12187 	for (error = 0, waitfor = MNT_NOWAIT; ; ) {
12188 		if (error)
12189 			return (error);
12190 		FREE_LOCK(&lk);
12191 		ACQUIRE_LOCK(&lk);
12192 restart:
12193 		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
12194 			return (0);
12195 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12196 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12197 			    == DEPCOMPLETE) {
12198 				jwait(&inoref->if_list, MNT_WAIT);
12199 				goto restart;
12200 			}
12201 		}
12202 		if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) ||
12203 		    flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) ||
12204 		    flush_deplist(&inodedep->id_extupdt, waitfor, &error) ||
12205 		    flush_deplist(&inodedep->id_newextupdt, waitfor, &error))
12206 			continue;
12207 		/*
12208 		 * If pass2, we are done, otherwise do pass 2.
12209 		 */
12210 		if (waitfor == MNT_WAIT)
12211 			break;
12212 		waitfor = MNT_WAIT;
12213 	}
12214 	/*
12215 	 * Try freeing inodedep in case all dependencies have been removed.
12216 	 */
12217 	if (inodedep_lookup(mp, ino, 0, &inodedep) != 0)
12218 		(void) free_inodedep(inodedep);
12219 	return (0);
12220 }
12221 
12222 /*
12223  * Flush an inode dependency list.
12224  * Called with splbio blocked.
12225  */
12226 static int
12227 flush_deplist(listhead, waitfor, errorp)
12228 	struct allocdirectlst *listhead;
12229 	int waitfor;
12230 	int *errorp;
12231 {
12232 	struct allocdirect *adp;
12233 	struct newblk *newblk;
12234 	struct buf *bp;
12235 
12236 	mtx_assert(&lk, MA_OWNED);
12237 	TAILQ_FOREACH(adp, listhead, ad_next) {
12238 		newblk = (struct newblk *)adp;
12239 		if (newblk->nb_jnewblk != NULL) {
12240 			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
12241 			return (1);
12242 		}
12243 		if (newblk->nb_state & DEPCOMPLETE)
12244 			continue;
12245 		bp = newblk->nb_bmsafemap->sm_buf;
12246 		bp = getdirtybuf(bp, &lk, waitfor);
12247 		if (bp == NULL) {
12248 			if (waitfor == MNT_NOWAIT)
12249 				continue;
12250 			return (1);
12251 		}
12252 		FREE_LOCK(&lk);
12253 		if (waitfor == MNT_NOWAIT)
12254 			bawrite(bp);
12255 		else
12256 			*errorp = bwrite(bp);
12257 		ACQUIRE_LOCK(&lk);
12258 		return (1);
12259 	}
12260 	return (0);
12261 }
12262 
12263 /*
12264  * Flush dependencies associated with an allocdirect block.
12265  */
12266 static int
12267 flush_newblk_dep(vp, mp, lbn)
12268 	struct vnode *vp;
12269 	struct mount *mp;
12270 	ufs_lbn_t lbn;
12271 {
12272 	struct newblk *newblk;
12273 	struct bufobj *bo;
12274 	struct inode *ip;
12275 	struct buf *bp;
12276 	ufs2_daddr_t blkno;
12277 	int error;
12278 
12279 	error = 0;
12280 	bo = &vp->v_bufobj;
12281 	ip = VTOI(vp);
12282 	blkno = DIP(ip, i_db[lbn]);
12283 	if (blkno == 0)
12284 		panic("flush_newblk_dep: Missing block");
12285 	ACQUIRE_LOCK(&lk);
12286 	/*
12287 	 * Loop until all dependencies related to this block are satisfied.
12288 	 * We must be careful to restart after each sleep in case a write
12289 	 * completes some part of this process for us.
12290 	 */
12291 	for (;;) {
12292 		if (newblk_lookup(mp, blkno, 0, &newblk) == 0) {
12293 			FREE_LOCK(&lk);
12294 			break;
12295 		}
12296 		if (newblk->nb_list.wk_type != D_ALLOCDIRECT)
12297 			panic("flush_newblk_deps: Bad newblk %p", newblk);
12298 		/*
12299 		 * Flush the journal.
12300 		 */
12301 		if (newblk->nb_jnewblk != NULL) {
12302 			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
12303 			continue;
12304 		}
12305 		/*
12306 		 * Write the bitmap dependency.
12307 		 */
12308 		if ((newblk->nb_state & DEPCOMPLETE) == 0) {
12309 			bp = newblk->nb_bmsafemap->sm_buf;
12310 			bp = getdirtybuf(bp, &lk, MNT_WAIT);
12311 			if (bp == NULL)
12312 				continue;
12313 			FREE_LOCK(&lk);
12314 			error = bwrite(bp);
12315 			if (error)
12316 				break;
12317 			ACQUIRE_LOCK(&lk);
12318 			continue;
12319 		}
12320 		/*
12321 		 * Write the buffer.
12322 		 */
12323 		FREE_LOCK(&lk);
12324 		BO_LOCK(bo);
12325 		bp = gbincore(bo, lbn);
12326 		if (bp != NULL) {
12327 			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
12328 			    LK_INTERLOCK, BO_MTX(bo));
12329 			if (error == ENOLCK) {
12330 				ACQUIRE_LOCK(&lk);
12331 				continue; /* Slept, retry */
12332 			}
12333 			if (error != 0)
12334 				break;	/* Failed */
12335 			if (bp->b_flags & B_DELWRI) {
12336 				bremfree(bp);
12337 				error = bwrite(bp);
12338 				if (error)
12339 					break;
12340 			} else
12341 				BUF_UNLOCK(bp);
12342 		} else
12343 			BO_UNLOCK(bo);
12344 		/*
12345 		 * We have to wait for the direct pointers to
12346 		 * point at the newdirblk before the dependency
12347 		 * will go away.
12348 		 */
12349 		error = ffs_update(vp, MNT_WAIT);
12350 		if (error)
12351 			break;
12352 		ACQUIRE_LOCK(&lk);
12353 	}
12354 	return (error);
12355 }
12356 
12357 /*
12358  * Eliminate a pagedep dependency by flushing out all its diradd dependencies.
12359  * Called with splbio blocked.
12360  */
12361 static int
12362 flush_pagedep_deps(pvp, mp, diraddhdp)
12363 	struct vnode *pvp;
12364 	struct mount *mp;
12365 	struct diraddhd *diraddhdp;
12366 {
12367 	struct inodedep *inodedep;
12368 	struct inoref *inoref;
12369 	struct ufsmount *ump;
12370 	struct diradd *dap;
12371 	struct vnode *vp;
12372 	int error = 0;
12373 	struct buf *bp;
12374 	ino_t inum;
12375 
12376 	ump = VFSTOUFS(mp);
12377 restart:
12378 	while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
12379 		/*
12380 		 * Flush ourselves if this directory entry
12381 		 * has a MKDIR_PARENT dependency.
12382 		 */
12383 		if (dap->da_state & MKDIR_PARENT) {
12384 			FREE_LOCK(&lk);
12385 			if ((error = ffs_update(pvp, MNT_WAIT)) != 0)
12386 				break;
12387 			ACQUIRE_LOCK(&lk);
12388 			/*
12389 			 * If that cleared dependencies, go on to next.
12390 			 */
12391 			if (dap != LIST_FIRST(diraddhdp))
12392 				continue;
12393 			if (dap->da_state & MKDIR_PARENT)
12394 				panic("flush_pagedep_deps: MKDIR_PARENT");
12395 		}
12396 		/*
12397 		 * A newly allocated directory must have its "." and
12398 		 * ".." entries written out before its name can be
12399 		 * committed in its parent.
12400 		 */
12401 		inum = dap->da_newinum;
12402 		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
12403 			panic("flush_pagedep_deps: lost inode1");
12404 		/*
12405 		 * Wait for any pending journal adds to complete so we don't
12406 		 * cause rollbacks while syncing.
12407 		 */
12408 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12409 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12410 			    == DEPCOMPLETE) {
12411 				jwait(&inoref->if_list, MNT_WAIT);
12412 				goto restart;
12413 			}
12414 		}
12415 		if (dap->da_state & MKDIR_BODY) {
12416 			FREE_LOCK(&lk);
12417 			if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
12418 			    FFSV_FORCEINSMQ)))
12419 				break;
12420 			error = flush_newblk_dep(vp, mp, 0);
12421 			/*
12422 			 * If we still have the dependency we might need to
12423 			 * update the vnode to sync the new link count to
12424 			 * disk.
12425 			 */
12426 			if (error == 0 && dap == LIST_FIRST(diraddhdp))
12427 				error = ffs_update(vp, MNT_WAIT);
12428 			vput(vp);
12429 			if (error != 0)
12430 				break;
12431 			ACQUIRE_LOCK(&lk);
12432 			/*
12433 			 * If that cleared dependencies, go on to next.
12434 			 */
12435 			if (dap != LIST_FIRST(diraddhdp))
12436 				continue;
12437 			if (dap->da_state & MKDIR_BODY) {
12438 				inodedep_lookup(UFSTOVFS(ump), inum, 0,
12439 				    &inodedep);
12440 				panic("flush_pagedep_deps: MKDIR_BODY "
12441 				    "inodedep %p dap %p vp %p",
12442 				    inodedep, dap, vp);
12443 			}
12444 		}
12445 		/*
12446 		 * Flush the inode on which the directory entry depends.
12447 		 * Having accounted for MKDIR_PARENT and MKDIR_BODY above,
12448 		 * the only remaining dependency is that the updated inode
12449 		 * count must get pushed to disk. The inode has already
12450 		 * been pushed into its inode buffer (via VOP_UPDATE) at
12451 		 * the time of the reference count change. So we need only
12452 		 * locate that buffer, ensure that there will be no rollback
12453 		 * caused by a bitmap dependency, then write the inode buffer.
12454 		 */
12455 retry:
12456 		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
12457 			panic("flush_pagedep_deps: lost inode");
12458 		/*
12459 		 * If the inode still has bitmap dependencies,
12460 		 * push them to disk.
12461 		 */
12462 		if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) {
12463 			bp = inodedep->id_bmsafemap->sm_buf;
12464 			bp = getdirtybuf(bp, &lk, MNT_WAIT);
12465 			if (bp == NULL)
12466 				goto retry;
12467 			FREE_LOCK(&lk);
12468 			if ((error = bwrite(bp)) != 0)
12469 				break;
12470 			ACQUIRE_LOCK(&lk);
12471 			if (dap != LIST_FIRST(diraddhdp))
12472 				continue;
12473 		}
12474 		/*
12475 		 * If the inode is still sitting in a buffer waiting
12476 		 * to be written or waiting for the link count to be
12477 		 * adjusted update it here to flush it to disk.
12478 		 */
12479 		if (dap == LIST_FIRST(diraddhdp)) {
12480 			FREE_LOCK(&lk);
12481 			if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
12482 			    FFSV_FORCEINSMQ)))
12483 				break;
12484 			error = ffs_update(vp, MNT_WAIT);
12485 			vput(vp);
12486 			if (error)
12487 				break;
12488 			ACQUIRE_LOCK(&lk);
12489 		}
12490 		/*
12491 		 * If we have failed to get rid of all the dependencies
12492 		 * then something is seriously wrong.
12493 		 */
12494 		if (dap == LIST_FIRST(diraddhdp)) {
12495 			inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep);
12496 			panic("flush_pagedep_deps: failed to flush "
12497 			    "inodedep %p ino %d dap %p", inodedep, inum, dap);
12498 		}
12499 	}
12500 	if (error)
12501 		ACQUIRE_LOCK(&lk);
12502 	return (error);
12503 }
12504 
12505 /*
12506  * A large burst of file addition or deletion activity can drive the
12507  * memory load excessively high. First attempt to slow things down
12508  * using the techniques below. If that fails, this routine requests
12509  * the offending operations to fall back to running synchronously
12510  * until the memory load returns to a reasonable level.
12511  */
12512 int
12513 softdep_slowdown(vp)
12514 	struct vnode *vp;
12515 {
12516 	struct ufsmount *ump;
12517 	int jlow;
12518 	int max_softdeps_hard;
12519 
12520 	ACQUIRE_LOCK(&lk);
12521 	jlow = 0;
12522 	/*
12523 	 * Check for journal space if needed.
12524 	 */
12525 	if (DOINGSUJ(vp)) {
12526 		ump = VFSTOUFS(vp->v_mount);
12527 		if (journal_space(ump, 0) == 0)
12528 			jlow = 1;
12529 	}
12530 	max_softdeps_hard = max_softdeps * 11 / 10;
12531 	if (dep_current[D_DIRREM] < max_softdeps_hard / 2 &&
12532 	    dep_current[D_INODEDEP] < max_softdeps_hard &&
12533 	    VFSTOUFS(vp->v_mount)->um_numindirdeps < maxindirdeps &&
12534 	    dep_current[D_FREEBLKS] < max_softdeps_hard && jlow == 0) {
12535 		FREE_LOCK(&lk);
12536   		return (0);
12537 	}
12538 	if (VFSTOUFS(vp->v_mount)->um_numindirdeps >= maxindirdeps || jlow)
12539 		softdep_speedup();
12540 	stat_sync_limit_hit += 1;
12541 	FREE_LOCK(&lk);
12542 	if (DOINGSUJ(vp))
12543 		return (0);
12544 	return (1);
12545 }
12546 
12547 /*
12548  * Called by the allocation routines when they are about to fail
12549  * in the hope that we can free up the requested resource (inodes
12550  * or disk space).
12551  *
12552  * First check to see if the work list has anything on it. If it has,
12553  * clean up entries until we successfully free the requested resource.
12554  * Because this process holds inodes locked, we cannot handle any remove
12555  * requests that might block on a locked inode as that could lead to
12556  * deadlock. If the worklist yields none of the requested resource,
12557  * start syncing out vnodes to free up the needed space.
12558  */
12559 int
12560 softdep_request_cleanup(fs, vp, cred, resource)
12561 	struct fs *fs;
12562 	struct vnode *vp;
12563 	struct ucred *cred;
12564 	int resource;
12565 {
12566 	struct ufsmount *ump;
12567 	struct mount *mp;
12568 	struct vnode *lvp, *mvp;
12569 	long starttime;
12570 	ufs2_daddr_t needed;
12571 	int error;
12572 
12573 	/*
12574 	 * If we are being called because of a process doing a
12575 	 * copy-on-write, then it is not safe to process any
12576 	 * worklist items as we will recurse into the copyonwrite
12577 	 * routine.  This will result in an incoherent snapshot.
12578 	 * If the vnode that we hold is a snapshot, we must avoid
12579 	 * handling other resources that could cause deadlock.
12580 	 */
12581 	if ((curthread->td_pflags & TDP_COWINPROGRESS) || IS_SNAPSHOT(VTOI(vp)))
12582 		return (0);
12583 
12584 	if (resource == FLUSH_BLOCKS_WAIT)
12585 		stat_cleanup_blkrequests += 1;
12586 	else
12587 		stat_cleanup_inorequests += 1;
12588 
12589 	mp = vp->v_mount;
12590 	ump = VFSTOUFS(mp);
12591 	mtx_assert(UFS_MTX(ump), MA_OWNED);
12592 	UFS_UNLOCK(ump);
12593 	error = ffs_update(vp, 1);
12594 	if (error != 0) {
12595 		UFS_LOCK(ump);
12596 		return (0);
12597 	}
12598 	/*
12599 	 * If we are in need of resources, consider pausing for
12600 	 * tickdelay to give ourselves some breathing room.
12601 	 */
12602 	ACQUIRE_LOCK(&lk);
12603 	process_removes(vp);
12604 	process_truncates(vp);
12605 	request_cleanup(UFSTOVFS(ump), resource);
12606 	FREE_LOCK(&lk);
12607 	/*
12608 	 * Now clean up at least as many resources as we will need.
12609 	 *
12610 	 * When requested to clean up inodes, the number that are needed
12611 	 * is set by the number of simultaneous writers (mnt_writeopcount)
12612 	 * plus a bit of slop (2) in case some more writers show up while
12613 	 * we are cleaning.
12614 	 *
12615 	 * When requested to free up space, the amount of space that
12616 	 * we need is enough blocks to allocate a full-sized segment
12617 	 * (fs_contigsumsize). The number of such segments that will
12618 	 * be needed is set by the number of simultaneous writers
12619 	 * (mnt_writeopcount) plus a bit of slop (2) in case some more
12620 	 * writers show up while we are cleaning.
12621 	 *
12622 	 * Additionally, if we are unpriviledged and allocating space,
12623 	 * we need to ensure that we clean up enough blocks to get the
12624 	 * needed number of blocks over the threshhold of the minimum
12625 	 * number of blocks required to be kept free by the filesystem
12626 	 * (fs_minfree).
12627 	 */
12628 	if (resource == FLUSH_INODES_WAIT) {
12629 		needed = vp->v_mount->mnt_writeopcount + 2;
12630 	} else if (resource == FLUSH_BLOCKS_WAIT) {
12631 		needed = (vp->v_mount->mnt_writeopcount + 2) *
12632 		    fs->fs_contigsumsize;
12633 		if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0))
12634 			needed += fragstoblks(fs,
12635 			    roundup((fs->fs_dsize * fs->fs_minfree / 100) -
12636 			    fs->fs_cstotal.cs_nffree, fs->fs_frag));
12637 	} else {
12638 		UFS_LOCK(ump);
12639 		printf("softdep_request_cleanup: Unknown resource type %d\n",
12640 		    resource);
12641 		return (0);
12642 	}
12643 	starttime = time_second;
12644 retry:
12645 	if ((resource == FLUSH_BLOCKS_WAIT && ump->softdep_on_worklist > 0 &&
12646 	    fs->fs_cstotal.cs_nbfree <= needed) ||
12647 	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
12648 	    fs->fs_cstotal.cs_nifree <= needed)) {
12649 		ACQUIRE_LOCK(&lk);
12650 		if (ump->softdep_on_worklist > 0 &&
12651 		    process_worklist_item(UFSTOVFS(ump),
12652 		    ump->softdep_on_worklist, LK_NOWAIT) != 0)
12653 			stat_worklist_push += 1;
12654 		FREE_LOCK(&lk);
12655 	}
12656 	/*
12657 	 * If we still need resources and there are no more worklist
12658 	 * entries to process to obtain them, we have to start flushing
12659 	 * the dirty vnodes to force the release of additional requests
12660 	 * to the worklist that we can then process to reap addition
12661 	 * resources. We walk the vnodes associated with the mount point
12662 	 * until we get the needed worklist requests that we can reap.
12663 	 */
12664 	if ((resource == FLUSH_BLOCKS_WAIT &&
12665 	     fs->fs_cstotal.cs_nbfree <= needed) ||
12666 	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
12667 	     fs->fs_cstotal.cs_nifree <= needed)) {
12668 		MNT_ILOCK(mp);
12669 		MNT_VNODE_FOREACH(lvp, mp, mvp) {
12670 			VI_LOCK(lvp);
12671 			if (TAILQ_FIRST(&lvp->v_bufobj.bo_dirty.bv_hd) == 0) {
12672 				VI_UNLOCK(lvp);
12673 				continue;
12674 			}
12675 			MNT_IUNLOCK(mp);
12676 			if (vget(lvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT,
12677 			    curthread)) {
12678 				MNT_ILOCK(mp);
12679 				continue;
12680 			}
12681 			if (lvp->v_vflag & VV_NOSYNC) {	/* unlinked */
12682 				vput(lvp);
12683 				MNT_ILOCK(mp);
12684 				continue;
12685 			}
12686 			(void) ffs_syncvnode(lvp, MNT_NOWAIT);
12687 			vput(lvp);
12688 			MNT_ILOCK(mp);
12689 		}
12690 		MNT_IUNLOCK(mp);
12691 		lvp = ump->um_devvp;
12692 		if (vn_lock(lvp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
12693 			VOP_FSYNC(lvp, MNT_NOWAIT, curthread);
12694 			VOP_UNLOCK(lvp, 0);
12695 		}
12696 		if (ump->softdep_on_worklist > 0) {
12697 			stat_cleanup_retries += 1;
12698 			goto retry;
12699 		}
12700 		stat_cleanup_failures += 1;
12701 	}
12702 	if (time_second - starttime > stat_cleanup_high_delay)
12703 		stat_cleanup_high_delay = time_second - starttime;
12704 	UFS_LOCK(ump);
12705 	return (1);
12706 }
12707 
12708 /*
12709  * If memory utilization has gotten too high, deliberately slow things
12710  * down and speed up the I/O processing.
12711  */
12712 extern struct thread *syncertd;
12713 static int
12714 request_cleanup(mp, resource)
12715 	struct mount *mp;
12716 	int resource;
12717 {
12718 	struct thread *td = curthread;
12719 	struct ufsmount *ump;
12720 
12721 	mtx_assert(&lk, MA_OWNED);
12722 	/*
12723 	 * We never hold up the filesystem syncer or buf daemon.
12724 	 */
12725 	if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF))
12726 		return (0);
12727 	ump = VFSTOUFS(mp);
12728 	/*
12729 	 * First check to see if the work list has gotten backlogged.
12730 	 * If it has, co-opt this process to help clean up two entries.
12731 	 * Because this process may hold inodes locked, we cannot
12732 	 * handle any remove requests that might block on a locked
12733 	 * inode as that could lead to deadlock.  We set TDP_SOFTDEP
12734 	 * to avoid recursively processing the worklist.
12735 	 */
12736 	if (ump->softdep_on_worklist > max_softdeps / 10) {
12737 		td->td_pflags |= TDP_SOFTDEP;
12738 		process_worklist_item(mp, 2, LK_NOWAIT);
12739 		td->td_pflags &= ~TDP_SOFTDEP;
12740 		stat_worklist_push += 2;
12741 		return(1);
12742 	}
12743 	/*
12744 	 * Next, we attempt to speed up the syncer process. If that
12745 	 * is successful, then we allow the process to continue.
12746 	 */
12747 	if (softdep_speedup() &&
12748 	    resource != FLUSH_BLOCKS_WAIT &&
12749 	    resource != FLUSH_INODES_WAIT)
12750 		return(0);
12751 	/*
12752 	 * If we are resource constrained on inode dependencies, try
12753 	 * flushing some dirty inodes. Otherwise, we are constrained
12754 	 * by file deletions, so try accelerating flushes of directories
12755 	 * with removal dependencies. We would like to do the cleanup
12756 	 * here, but we probably hold an inode locked at this point and
12757 	 * that might deadlock against one that we try to clean. So,
12758 	 * the best that we can do is request the syncer daemon to do
12759 	 * the cleanup for us.
12760 	 */
12761 	switch (resource) {
12762 
12763 	case FLUSH_INODES:
12764 	case FLUSH_INODES_WAIT:
12765 		stat_ino_limit_push += 1;
12766 		req_clear_inodedeps += 1;
12767 		stat_countp = &stat_ino_limit_hit;
12768 		break;
12769 
12770 	case FLUSH_BLOCKS:
12771 	case FLUSH_BLOCKS_WAIT:
12772 		stat_blk_limit_push += 1;
12773 		req_clear_remove += 1;
12774 		stat_countp = &stat_blk_limit_hit;
12775 		break;
12776 
12777 	default:
12778 		panic("request_cleanup: unknown type");
12779 	}
12780 	/*
12781 	 * Hopefully the syncer daemon will catch up and awaken us.
12782 	 * We wait at most tickdelay before proceeding in any case.
12783 	 */
12784 	proc_waiting += 1;
12785 	if (callout_pending(&softdep_callout) == FALSE)
12786 		callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2,
12787 		    pause_timer, 0);
12788 
12789 	msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0);
12790 	proc_waiting -= 1;
12791 	return (1);
12792 }
12793 
12794 /*
12795  * Awaken processes pausing in request_cleanup and clear proc_waiting
12796  * to indicate that there is no longer a timer running.
12797  */
12798 static void
12799 pause_timer(arg)
12800 	void *arg;
12801 {
12802 
12803 	/*
12804 	 * The callout_ API has acquired mtx and will hold it around this
12805 	 * function call.
12806 	 */
12807 	*stat_countp += 1;
12808 	wakeup_one(&proc_waiting);
12809 	if (proc_waiting > 0)
12810 		callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2,
12811 		    pause_timer, 0);
12812 }
12813 
12814 /*
12815  * Flush out a directory with at least one removal dependency in an effort to
12816  * reduce the number of dirrem, freefile, and freeblks dependency structures.
12817  */
12818 static void
12819 clear_remove(td)
12820 	struct thread *td;
12821 {
12822 	struct pagedep_hashhead *pagedephd;
12823 	struct pagedep *pagedep;
12824 	static int next = 0;
12825 	struct mount *mp;
12826 	struct vnode *vp;
12827 	struct bufobj *bo;
12828 	int error, cnt;
12829 	ino_t ino;
12830 
12831 	mtx_assert(&lk, MA_OWNED);
12832 
12833 	for (cnt = 0; cnt < pagedep_hash; cnt++) {
12834 		pagedephd = &pagedep_hashtbl[next++];
12835 		if (next >= pagedep_hash)
12836 			next = 0;
12837 		LIST_FOREACH(pagedep, pagedephd, pd_hash) {
12838 			if (LIST_EMPTY(&pagedep->pd_dirremhd))
12839 				continue;
12840 			mp = pagedep->pd_list.wk_mp;
12841 			ino = pagedep->pd_ino;
12842 			if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
12843 				continue;
12844 			FREE_LOCK(&lk);
12845 
12846 			/*
12847 			 * Let unmount clear deps
12848 			 */
12849 			error = vfs_busy(mp, MBF_NOWAIT);
12850 			if (error != 0)
12851 				goto finish_write;
12852 			error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
12853 			     FFSV_FORCEINSMQ);
12854 			vfs_unbusy(mp);
12855 			if (error != 0) {
12856 				softdep_error("clear_remove: vget", error);
12857 				goto finish_write;
12858 			}
12859 			if ((error = ffs_syncvnode(vp, MNT_NOWAIT)))
12860 				softdep_error("clear_remove: fsync", error);
12861 			bo = &vp->v_bufobj;
12862 			BO_LOCK(bo);
12863 			drain_output(vp);
12864 			BO_UNLOCK(bo);
12865 			vput(vp);
12866 		finish_write:
12867 			vn_finished_write(mp);
12868 			ACQUIRE_LOCK(&lk);
12869 			return;
12870 		}
12871 	}
12872 }
12873 
12874 /*
12875  * Clear out a block of dirty inodes in an effort to reduce
12876  * the number of inodedep dependency structures.
12877  */
12878 static void
12879 clear_inodedeps(td)
12880 	struct thread *td;
12881 {
12882 	struct inodedep_hashhead *inodedephd;
12883 	struct inodedep *inodedep;
12884 	static int next = 0;
12885 	struct mount *mp;
12886 	struct vnode *vp;
12887 	struct fs *fs;
12888 	int error, cnt;
12889 	ino_t firstino, lastino, ino;
12890 
12891 	mtx_assert(&lk, MA_OWNED);
12892 	/*
12893 	 * Pick a random inode dependency to be cleared.
12894 	 * We will then gather up all the inodes in its block
12895 	 * that have dependencies and flush them out.
12896 	 */
12897 	for (cnt = 0; cnt < inodedep_hash; cnt++) {
12898 		inodedephd = &inodedep_hashtbl[next++];
12899 		if (next >= inodedep_hash)
12900 			next = 0;
12901 		if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
12902 			break;
12903 	}
12904 	if (inodedep == NULL)
12905 		return;
12906 	fs = inodedep->id_fs;
12907 	mp = inodedep->id_list.wk_mp;
12908 	/*
12909 	 * Find the last inode in the block with dependencies.
12910 	 */
12911 	firstino = inodedep->id_ino & ~(INOPB(fs) - 1);
12912 	for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
12913 		if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0)
12914 			break;
12915 	/*
12916 	 * Asynchronously push all but the last inode with dependencies.
12917 	 * Synchronously push the last inode with dependencies to ensure
12918 	 * that the inode block gets written to free up the inodedeps.
12919 	 */
12920 	for (ino = firstino; ino <= lastino; ino++) {
12921 		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
12922 			continue;
12923 		if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
12924 			continue;
12925 		FREE_LOCK(&lk);
12926 		error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */
12927 		if (error != 0) {
12928 			vn_finished_write(mp);
12929 			ACQUIRE_LOCK(&lk);
12930 			return;
12931 		}
12932 		if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
12933 		    FFSV_FORCEINSMQ)) != 0) {
12934 			softdep_error("clear_inodedeps: vget", error);
12935 			vfs_unbusy(mp);
12936 			vn_finished_write(mp);
12937 			ACQUIRE_LOCK(&lk);
12938 			return;
12939 		}
12940 		vfs_unbusy(mp);
12941 		if (ino == lastino) {
12942 			if ((error = ffs_syncvnode(vp, MNT_WAIT)))
12943 				softdep_error("clear_inodedeps: fsync1", error);
12944 		} else {
12945 			if ((error = ffs_syncvnode(vp, MNT_NOWAIT)))
12946 				softdep_error("clear_inodedeps: fsync2", error);
12947 			BO_LOCK(&vp->v_bufobj);
12948 			drain_output(vp);
12949 			BO_UNLOCK(&vp->v_bufobj);
12950 		}
12951 		vput(vp);
12952 		vn_finished_write(mp);
12953 		ACQUIRE_LOCK(&lk);
12954 	}
12955 }
12956 
12957 void
12958 softdep_buf_append(bp, wkhd)
12959 	struct buf *bp;
12960 	struct workhead *wkhd;
12961 {
12962 	struct worklist *wk;
12963 
12964 	ACQUIRE_LOCK(&lk);
12965 	while ((wk = LIST_FIRST(wkhd)) != NULL) {
12966 		WORKLIST_REMOVE(wk);
12967 		WORKLIST_INSERT(&bp->b_dep, wk);
12968 	}
12969 	FREE_LOCK(&lk);
12970 
12971 }
12972 
12973 void
12974 softdep_inode_append(ip, cred, wkhd)
12975 	struct inode *ip;
12976 	struct ucred *cred;
12977 	struct workhead *wkhd;
12978 {
12979 	struct buf *bp;
12980 	struct fs *fs;
12981 	int error;
12982 
12983 	fs = ip->i_fs;
12984 	error = bread(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
12985 	    (int)fs->fs_bsize, cred, &bp);
12986 	if (error) {
12987 		softdep_freework(wkhd);
12988 		return;
12989 	}
12990 	softdep_buf_append(bp, wkhd);
12991 	bqrelse(bp);
12992 }
12993 
12994 void
12995 softdep_freework(wkhd)
12996 	struct workhead *wkhd;
12997 {
12998 
12999 	ACQUIRE_LOCK(&lk);
13000 	handle_jwork(wkhd);
13001 	FREE_LOCK(&lk);
13002 }
13003 
13004 /*
13005  * Function to determine if the buffer has outstanding dependencies
13006  * that will cause a roll-back if the buffer is written. If wantcount
13007  * is set, return number of dependencies, otherwise just yes or no.
13008  */
13009 static int
13010 softdep_count_dependencies(bp, wantcount)
13011 	struct buf *bp;
13012 	int wantcount;
13013 {
13014 	struct worklist *wk;
13015 	struct bmsafemap *bmsafemap;
13016 	struct freework *freework;
13017 	struct inodedep *inodedep;
13018 	struct indirdep *indirdep;
13019 	struct freeblks *freeblks;
13020 	struct allocindir *aip;
13021 	struct pagedep *pagedep;
13022 	struct dirrem *dirrem;
13023 	struct newblk *newblk;
13024 	struct mkdir *mkdir;
13025 	struct diradd *dap;
13026 	int i, retval;
13027 
13028 	retval = 0;
13029 	ACQUIRE_LOCK(&lk);
13030 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
13031 		switch (wk->wk_type) {
13032 
13033 		case D_INODEDEP:
13034 			inodedep = WK_INODEDEP(wk);
13035 			if ((inodedep->id_state & DEPCOMPLETE) == 0) {
13036 				/* bitmap allocation dependency */
13037 				retval += 1;
13038 				if (!wantcount)
13039 					goto out;
13040 			}
13041 			if (TAILQ_FIRST(&inodedep->id_inoupdt)) {
13042 				/* direct block pointer dependency */
13043 				retval += 1;
13044 				if (!wantcount)
13045 					goto out;
13046 			}
13047 			if (TAILQ_FIRST(&inodedep->id_extupdt)) {
13048 				/* direct block pointer dependency */
13049 				retval += 1;
13050 				if (!wantcount)
13051 					goto out;
13052 			}
13053 			if (TAILQ_FIRST(&inodedep->id_inoreflst)) {
13054 				/* Add reference dependency. */
13055 				retval += 1;
13056 				if (!wantcount)
13057 					goto out;
13058 			}
13059 			continue;
13060 
13061 		case D_INDIRDEP:
13062 			indirdep = WK_INDIRDEP(wk);
13063 
13064 			TAILQ_FOREACH(freework, &indirdep->ir_trunc, fw_next) {
13065 				/* indirect truncation dependency */
13066 				retval += 1;
13067 				if (!wantcount)
13068 					goto out;
13069 			}
13070 
13071 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
13072 				/* indirect block pointer dependency */
13073 				retval += 1;
13074 				if (!wantcount)
13075 					goto out;
13076 			}
13077 			continue;
13078 
13079 		case D_PAGEDEP:
13080 			pagedep = WK_PAGEDEP(wk);
13081 			LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
13082 				if (LIST_FIRST(&dirrem->dm_jremrefhd)) {
13083 					/* Journal remove ref dependency. */
13084 					retval += 1;
13085 					if (!wantcount)
13086 						goto out;
13087 				}
13088 			}
13089 			for (i = 0; i < DAHASHSZ; i++) {
13090 
13091 				LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
13092 					/* directory entry dependency */
13093 					retval += 1;
13094 					if (!wantcount)
13095 						goto out;
13096 				}
13097 			}
13098 			continue;
13099 
13100 		case D_BMSAFEMAP:
13101 			bmsafemap = WK_BMSAFEMAP(wk);
13102 			if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) {
13103 				/* Add reference dependency. */
13104 				retval += 1;
13105 				if (!wantcount)
13106 					goto out;
13107 			}
13108 			if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) {
13109 				/* Allocate block dependency. */
13110 				retval += 1;
13111 				if (!wantcount)
13112 					goto out;
13113 			}
13114 			continue;
13115 
13116 		case D_FREEBLKS:
13117 			freeblks = WK_FREEBLKS(wk);
13118 			if (LIST_FIRST(&freeblks->fb_jblkdephd)) {
13119 				/* Freeblk journal dependency. */
13120 				retval += 1;
13121 				if (!wantcount)
13122 					goto out;
13123 			}
13124 			continue;
13125 
13126 		case D_ALLOCDIRECT:
13127 		case D_ALLOCINDIR:
13128 			newblk = WK_NEWBLK(wk);
13129 			if (newblk->nb_jnewblk) {
13130 				/* Journal allocate dependency. */
13131 				retval += 1;
13132 				if (!wantcount)
13133 					goto out;
13134 			}
13135 			continue;
13136 
13137 		case D_MKDIR:
13138 			mkdir = WK_MKDIR(wk);
13139 			if (mkdir->md_jaddref) {
13140 				/* Journal reference dependency. */
13141 				retval += 1;
13142 				if (!wantcount)
13143 					goto out;
13144 			}
13145 			continue;
13146 
13147 		case D_FREEWORK:
13148 		case D_FREEDEP:
13149 		case D_JSEGDEP:
13150 		case D_JSEG:
13151 		case D_SBDEP:
13152 			/* never a dependency on these blocks */
13153 			continue;
13154 
13155 		default:
13156 			panic("softdep_count_dependencies: Unexpected type %s",
13157 			    TYPENAME(wk->wk_type));
13158 			/* NOTREACHED */
13159 		}
13160 	}
13161 out:
13162 	FREE_LOCK(&lk);
13163 	return retval;
13164 }
13165 
13166 /*
13167  * Acquire exclusive access to a buffer.
13168  * Must be called with a locked mtx parameter.
13169  * Return acquired buffer or NULL on failure.
13170  */
13171 static struct buf *
13172 getdirtybuf(bp, mtx, waitfor)
13173 	struct buf *bp;
13174 	struct mtx *mtx;
13175 	int waitfor;
13176 {
13177 	int error;
13178 
13179 	mtx_assert(mtx, MA_OWNED);
13180 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) {
13181 		if (waitfor != MNT_WAIT)
13182 			return (NULL);
13183 		error = BUF_LOCK(bp,
13184 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, mtx);
13185 		/*
13186 		 * Even if we sucessfully acquire bp here, we have dropped
13187 		 * mtx, which may violates our guarantee.
13188 		 */
13189 		if (error == 0)
13190 			BUF_UNLOCK(bp);
13191 		else if (error != ENOLCK)
13192 			panic("getdirtybuf: inconsistent lock: %d", error);
13193 		mtx_lock(mtx);
13194 		return (NULL);
13195 	}
13196 	if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
13197 		if (mtx == &lk && waitfor == MNT_WAIT) {
13198 			mtx_unlock(mtx);
13199 			BO_LOCK(bp->b_bufobj);
13200 			BUF_UNLOCK(bp);
13201 			if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
13202 				bp->b_vflags |= BV_BKGRDWAIT;
13203 				msleep(&bp->b_xflags, BO_MTX(bp->b_bufobj),
13204 				       PRIBIO | PDROP, "getbuf", 0);
13205 			} else
13206 				BO_UNLOCK(bp->b_bufobj);
13207 			mtx_lock(mtx);
13208 			return (NULL);
13209 		}
13210 		BUF_UNLOCK(bp);
13211 		if (waitfor != MNT_WAIT)
13212 			return (NULL);
13213 		/*
13214 		 * The mtx argument must be bp->b_vp's mutex in
13215 		 * this case.
13216 		 */
13217 #ifdef	DEBUG_VFS_LOCKS
13218 		if (bp->b_vp->v_type != VCHR)
13219 			ASSERT_BO_LOCKED(bp->b_bufobj);
13220 #endif
13221 		bp->b_vflags |= BV_BKGRDWAIT;
13222 		msleep(&bp->b_xflags, mtx, PRIBIO, "getbuf", 0);
13223 		return (NULL);
13224 	}
13225 	if ((bp->b_flags & B_DELWRI) == 0) {
13226 		BUF_UNLOCK(bp);
13227 		return (NULL);
13228 	}
13229 	bremfree(bp);
13230 	return (bp);
13231 }
13232 
13233 
13234 /*
13235  * Check if it is safe to suspend the file system now.  On entry,
13236  * the vnode interlock for devvp should be held.  Return 0 with
13237  * the mount interlock held if the file system can be suspended now,
13238  * otherwise return EAGAIN with the mount interlock held.
13239  */
13240 int
13241 softdep_check_suspend(struct mount *mp,
13242 		      struct vnode *devvp,
13243 		      int softdep_deps,
13244 		      int softdep_accdeps,
13245 		      int secondary_writes,
13246 		      int secondary_accwrites)
13247 {
13248 	struct bufobj *bo;
13249 	struct ufsmount *ump;
13250 	int error;
13251 
13252 	ump = VFSTOUFS(mp);
13253 	bo = &devvp->v_bufobj;
13254 	ASSERT_BO_LOCKED(bo);
13255 
13256 	for (;;) {
13257 		if (!TRY_ACQUIRE_LOCK(&lk)) {
13258 			BO_UNLOCK(bo);
13259 			ACQUIRE_LOCK(&lk);
13260 			FREE_LOCK(&lk);
13261 			BO_LOCK(bo);
13262 			continue;
13263 		}
13264 		MNT_ILOCK(mp);
13265 		if (mp->mnt_secondary_writes != 0) {
13266 			FREE_LOCK(&lk);
13267 			BO_UNLOCK(bo);
13268 			msleep(&mp->mnt_secondary_writes,
13269 			       MNT_MTX(mp),
13270 			       (PUSER - 1) | PDROP, "secwr", 0);
13271 			BO_LOCK(bo);
13272 			continue;
13273 		}
13274 		break;
13275 	}
13276 
13277 	/*
13278 	 * Reasons for needing more work before suspend:
13279 	 * - Dirty buffers on devvp.
13280 	 * - Softdep activity occurred after start of vnode sync loop
13281 	 * - Secondary writes occurred after start of vnode sync loop
13282 	 */
13283 	error = 0;
13284 	if (bo->bo_numoutput > 0 ||
13285 	    bo->bo_dirty.bv_cnt > 0 ||
13286 	    softdep_deps != 0 ||
13287 	    ump->softdep_deps != 0 ||
13288 	    softdep_accdeps != ump->softdep_accdeps ||
13289 	    secondary_writes != 0 ||
13290 	    mp->mnt_secondary_writes != 0 ||
13291 	    secondary_accwrites != mp->mnt_secondary_accwrites)
13292 		error = EAGAIN;
13293 	FREE_LOCK(&lk);
13294 	BO_UNLOCK(bo);
13295 	return (error);
13296 }
13297 
13298 
13299 /*
13300  * Get the number of dependency structures for the file system, both
13301  * the current number and the total number allocated.  These will
13302  * later be used to detect that softdep processing has occurred.
13303  */
13304 void
13305 softdep_get_depcounts(struct mount *mp,
13306 		      int *softdep_depsp,
13307 		      int *softdep_accdepsp)
13308 {
13309 	struct ufsmount *ump;
13310 
13311 	ump = VFSTOUFS(mp);
13312 	ACQUIRE_LOCK(&lk);
13313 	*softdep_depsp = ump->softdep_deps;
13314 	*softdep_accdepsp = ump->softdep_accdeps;
13315 	FREE_LOCK(&lk);
13316 }
13317 
13318 /*
13319  * Wait for pending output on a vnode to complete.
13320  * Must be called with vnode lock and interlock locked.
13321  *
13322  * XXX: Should just be a call to bufobj_wwait().
13323  */
13324 static void
13325 drain_output(vp)
13326 	struct vnode *vp;
13327 {
13328 	struct bufobj *bo;
13329 
13330 	bo = &vp->v_bufobj;
13331 	ASSERT_VOP_LOCKED(vp, "drain_output");
13332 	ASSERT_BO_LOCKED(bo);
13333 
13334 	while (bo->bo_numoutput) {
13335 		bo->bo_flag |= BO_WWAIT;
13336 		msleep((caddr_t)&bo->bo_numoutput,
13337 		    BO_MTX(bo), PRIBIO + 1, "drainvp", 0);
13338 	}
13339 }
13340 
13341 /*
13342  * Called whenever a buffer that is being invalidated or reallocated
13343  * contains dependencies. This should only happen if an I/O error has
13344  * occurred. The routine is called with the buffer locked.
13345  */
13346 static void
13347 softdep_deallocate_dependencies(bp)
13348 	struct buf *bp;
13349 {
13350 
13351 	if ((bp->b_ioflags & BIO_ERROR) == 0)
13352 		panic("softdep_deallocate_dependencies: dangling deps");
13353 	softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error);
13354 	panic("softdep_deallocate_dependencies: unrecovered I/O error");
13355 }
13356 
13357 /*
13358  * Function to handle asynchronous write errors in the filesystem.
13359  */
13360 static void
13361 softdep_error(func, error)
13362 	char *func;
13363 	int error;
13364 {
13365 
13366 	/* XXX should do something better! */
13367 	printf("%s: got error %d while accessing filesystem\n", func, error);
13368 }
13369 
13370 #ifdef DDB
13371 
13372 static void
13373 inodedep_print(struct inodedep *inodedep, int verbose)
13374 {
13375 	db_printf("%p fs %p st %x ino %jd inoblk %jd delta %d nlink %d"
13376 	    " saveino %p\n",
13377 	    inodedep, inodedep->id_fs, inodedep->id_state,
13378 	    (intmax_t)inodedep->id_ino,
13379 	    (intmax_t)fsbtodb(inodedep->id_fs,
13380 	    ino_to_fsba(inodedep->id_fs, inodedep->id_ino)),
13381 	    inodedep->id_nlinkdelta, inodedep->id_savednlink,
13382 	    inodedep->id_savedino1);
13383 
13384 	if (verbose == 0)
13385 		return;
13386 
13387 	db_printf("\tpendinghd %p, bufwait %p, inowait %p, inoreflst %p, "
13388 	    "mkdiradd %p\n",
13389 	    LIST_FIRST(&inodedep->id_pendinghd),
13390 	    LIST_FIRST(&inodedep->id_bufwait),
13391 	    LIST_FIRST(&inodedep->id_inowait),
13392 	    TAILQ_FIRST(&inodedep->id_inoreflst),
13393 	    inodedep->id_mkdiradd);
13394 	db_printf("\tinoupdt %p, newinoupdt %p, extupdt %p, newextupdt %p\n",
13395 	    TAILQ_FIRST(&inodedep->id_inoupdt),
13396 	    TAILQ_FIRST(&inodedep->id_newinoupdt),
13397 	    TAILQ_FIRST(&inodedep->id_extupdt),
13398 	    TAILQ_FIRST(&inodedep->id_newextupdt));
13399 }
13400 
13401 DB_SHOW_COMMAND(inodedep, db_show_inodedep)
13402 {
13403 
13404 	if (have_addr == 0) {
13405 		db_printf("Address required\n");
13406 		return;
13407 	}
13408 	inodedep_print((struct inodedep*)addr, 1);
13409 }
13410 
13411 DB_SHOW_COMMAND(inodedeps, db_show_inodedeps)
13412 {
13413 	struct inodedep_hashhead *inodedephd;
13414 	struct inodedep *inodedep;
13415 	struct fs *fs;
13416 	int cnt;
13417 
13418 	fs = have_addr ? (struct fs *)addr : NULL;
13419 	for (cnt = 0; cnt < inodedep_hash; cnt++) {
13420 		inodedephd = &inodedep_hashtbl[cnt];
13421 		LIST_FOREACH(inodedep, inodedephd, id_hash) {
13422 			if (fs != NULL && fs != inodedep->id_fs)
13423 				continue;
13424 			inodedep_print(inodedep, 0);
13425 		}
13426 	}
13427 }
13428 
13429 DB_SHOW_COMMAND(worklist, db_show_worklist)
13430 {
13431 	struct worklist *wk;
13432 
13433 	if (have_addr == 0) {
13434 		db_printf("Address required\n");
13435 		return;
13436 	}
13437 	wk = (struct worklist *)addr;
13438 	printf("worklist: %p type %s state 0x%X\n",
13439 	    wk, TYPENAME(wk->wk_type), wk->wk_state);
13440 }
13441 
13442 DB_SHOW_COMMAND(workhead, db_show_workhead)
13443 {
13444 	struct workhead *wkhd;
13445 	struct worklist *wk;
13446 	int i;
13447 
13448 	if (have_addr == 0) {
13449 		db_printf("Address required\n");
13450 		return;
13451 	}
13452 	wkhd = (struct workhead *)addr;
13453 	wk = LIST_FIRST(wkhd);
13454 	for (i = 0; i < 100 && wk != NULL; i++, wk = LIST_NEXT(wk, wk_list))
13455 		db_printf("worklist: %p type %s state 0x%X",
13456 		    wk, TYPENAME(wk->wk_type), wk->wk_state);
13457 	if (i == 100)
13458 		db_printf("workhead overflow");
13459 	printf("\n");
13460 }
13461 
13462 
13463 DB_SHOW_COMMAND(mkdirs, db_show_mkdirs)
13464 {
13465 	struct jaddref *jaddref;
13466 	struct diradd *diradd;
13467 	struct mkdir *mkdir;
13468 
13469 	LIST_FOREACH(mkdir, &mkdirlisthd, md_mkdirs) {
13470 		diradd = mkdir->md_diradd;
13471 		db_printf("mkdir: %p state 0x%X dap %p state 0x%X",
13472 		    mkdir, mkdir->md_state, diradd, diradd->da_state);
13473 		if ((jaddref = mkdir->md_jaddref) != NULL)
13474 			db_printf(" jaddref %p jaddref state 0x%X",
13475 			    jaddref, jaddref->ja_state);
13476 		db_printf("\n");
13477 	}
13478 }
13479 
13480 #endif /* DDB */
13481 
13482 #endif /* SOFTUPDATES */
13483