1 /* 2 * Copyright 1998, 2000 Marshall Kirk McKusick. All Rights Reserved. 3 * 4 * The soft updates code is derived from the appendix of a University 5 * of Michigan technical report (Gregory R. Ganger and Yale N. Patt, 6 * "Soft Updates: A Solution to the Metadata Update Problem in File 7 * Systems", CSE-TR-254-95, August 1995). 8 * 9 * Further information about soft updates can be obtained from: 10 * 11 * Marshall Kirk McKusick http://www.mckusick.com/softdep/ 12 * 1614 Oxford Street mckusick@mckusick.com 13 * Berkeley, CA 94709-1608 +1-510-843-9542 14 * USA 15 * 16 * Redistribution and use in source and binary forms, with or without 17 * modification, are permitted provided that the following conditions 18 * are met: 19 * 20 * 1. Redistributions of source code must retain the above copyright 21 * notice, this list of conditions and the following disclaimer. 22 * 2. Redistributions in binary form must reproduce the above copyright 23 * notice, this list of conditions and the following disclaimer in the 24 * documentation and/or other materials provided with the distribution. 25 * 26 * THIS SOFTWARE IS PROVIDED BY MARSHALL KIRK MCKUSICK ``AS IS'' AND ANY 27 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 28 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 29 * DISCLAIMED. IN NO EVENT SHALL MARSHALL KIRK MCKUSICK BE LIABLE FOR 30 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * from: @(#)ffs_softdep.c 9.59 (McKusick) 6/21/00 39 */ 40 41 #include <sys/cdefs.h> 42 __FBSDID("$FreeBSD$"); 43 44 /* 45 * For now we want the safety net that the DIAGNOSTIC and DEBUG flags provide. 46 */ 47 #ifndef DIAGNOSTIC 48 #define DIAGNOSTIC 49 #endif 50 #ifndef DEBUG 51 #define DEBUG 52 #endif 53 54 #include <sys/param.h> 55 #include <sys/kernel.h> 56 #include <sys/systm.h> 57 #include <sys/stdint.h> 58 #include <sys/bio.h> 59 #include <sys/buf.h> 60 #include <sys/malloc.h> 61 #include <sys/mount.h> 62 #include <sys/proc.h> 63 #include <sys/stat.h> 64 #include <sys/syslog.h> 65 #include <sys/vnode.h> 66 #include <sys/conf.h> 67 #include <ufs/ufs/dir.h> 68 #include <ufs/ufs/extattr.h> 69 #include <ufs/ufs/quota.h> 70 #include <ufs/ufs/inode.h> 71 #include <ufs/ufs/ufsmount.h> 72 #include <ufs/ffs/fs.h> 73 #include <ufs/ffs/softdep.h> 74 #include <ufs/ffs/ffs_extern.h> 75 #include <ufs/ufs/ufs_extern.h> 76 77 /* 78 * These definitions need to be adapted to the system to which 79 * this file is being ported. 80 */ 81 /* 82 * malloc types defined for the softdep system. 83 */ 84 static MALLOC_DEFINE(M_PAGEDEP, "pagedep","File page dependencies"); 85 static MALLOC_DEFINE(M_INODEDEP, "inodedep","Inode dependencies"); 86 static MALLOC_DEFINE(M_NEWBLK, "newblk","New block allocation"); 87 static MALLOC_DEFINE(M_BMSAFEMAP, "bmsafemap","Block or frag allocated from cyl group map"); 88 static MALLOC_DEFINE(M_ALLOCDIRECT, "allocdirect","Block or frag dependency for an inode"); 89 static MALLOC_DEFINE(M_INDIRDEP, "indirdep","Indirect block dependencies"); 90 static MALLOC_DEFINE(M_ALLOCINDIR, "allocindir","Block dependency for an indirect block"); 91 static MALLOC_DEFINE(M_FREEFRAG, "freefrag","Previously used frag for an inode"); 92 static MALLOC_DEFINE(M_FREEBLKS, "freeblks","Blocks freed from an inode"); 93 static MALLOC_DEFINE(M_FREEFILE, "freefile","Inode deallocated"); 94 static MALLOC_DEFINE(M_DIRADD, "diradd","New directory entry"); 95 static MALLOC_DEFINE(M_MKDIR, "mkdir","New directory"); 96 static MALLOC_DEFINE(M_DIRREM, "dirrem","Directory entry deleted"); 97 static MALLOC_DEFINE(M_NEWDIRBLK, "newdirblk","Unclaimed new directory block"); 98 99 #define M_SOFTDEP_FLAGS (M_WAITOK | M_USE_RESERVE) 100 101 #define D_PAGEDEP 0 102 #define D_INODEDEP 1 103 #define D_NEWBLK 2 104 #define D_BMSAFEMAP 3 105 #define D_ALLOCDIRECT 4 106 #define D_INDIRDEP 5 107 #define D_ALLOCINDIR 6 108 #define D_FREEFRAG 7 109 #define D_FREEBLKS 8 110 #define D_FREEFILE 9 111 #define D_DIRADD 10 112 #define D_MKDIR 11 113 #define D_DIRREM 12 114 #define D_NEWDIRBLK 13 115 #define D_LAST D_NEWDIRBLK 116 117 /* 118 * translate from workitem type to memory type 119 * MUST match the defines above, such that memtype[D_XXX] == M_XXX 120 */ 121 static struct malloc_type *memtype[] = { 122 M_PAGEDEP, 123 M_INODEDEP, 124 M_NEWBLK, 125 M_BMSAFEMAP, 126 M_ALLOCDIRECT, 127 M_INDIRDEP, 128 M_ALLOCINDIR, 129 M_FREEFRAG, 130 M_FREEBLKS, 131 M_FREEFILE, 132 M_DIRADD, 133 M_MKDIR, 134 M_DIRREM, 135 M_NEWDIRBLK 136 }; 137 138 #define DtoM(type) (memtype[type]) 139 140 /* 141 * Names of malloc types. 142 */ 143 #define TYPENAME(type) \ 144 ((unsigned)(type) < D_LAST ? memtype[type]->ks_shortdesc : "???") 145 /* 146 * End system adaptaion definitions. 147 */ 148 149 /* 150 * Internal function prototypes. 151 */ 152 static void softdep_error(char *, int); 153 static void drain_output(struct vnode *, int); 154 static int getdirtybuf(struct buf **, int); 155 static void clear_remove(struct thread *); 156 static void clear_inodedeps(struct thread *); 157 static int flush_pagedep_deps(struct vnode *, struct mount *, 158 struct diraddhd *); 159 static int flush_inodedep_deps(struct fs *, ino_t); 160 static int handle_written_filepage(struct pagedep *, struct buf *); 161 static void diradd_inode_written(struct diradd *, struct inodedep *); 162 static int handle_written_inodeblock(struct inodedep *, struct buf *); 163 static void handle_allocdirect_partdone(struct allocdirect *); 164 static void handle_allocindir_partdone(struct allocindir *); 165 static void initiate_write_filepage(struct pagedep *, struct buf *); 166 static void handle_written_mkdir(struct mkdir *, int); 167 static void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *); 168 static void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *); 169 static void handle_workitem_freefile(struct freefile *); 170 static void handle_workitem_remove(struct dirrem *, struct vnode *); 171 static struct dirrem *newdirrem(struct buf *, struct inode *, 172 struct inode *, int, struct dirrem **); 173 static void free_diradd(struct diradd *); 174 static void free_allocindir(struct allocindir *, struct inodedep *); 175 static void free_newdirblk(struct newdirblk *); 176 static int indir_trunc(struct freeblks *, ufs2_daddr_t, int, ufs_lbn_t, 177 ufs2_daddr_t *); 178 static void deallocate_dependencies(struct buf *, struct inodedep *); 179 static void free_allocdirect(struct allocdirectlst *, 180 struct allocdirect *, int); 181 static int check_inode_unwritten(struct inodedep *); 182 static int free_inodedep(struct inodedep *); 183 static void handle_workitem_freeblocks(struct freeblks *, int); 184 static void merge_inode_lists(struct inodedep *); 185 static void setup_allocindir_phase2(struct buf *, struct inode *, 186 struct allocindir *); 187 static struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t, 188 ufs2_daddr_t); 189 static void handle_workitem_freefrag(struct freefrag *); 190 static struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long); 191 static void allocdirect_merge(struct allocdirectlst *, 192 struct allocdirect *, struct allocdirect *); 193 static struct bmsafemap *bmsafemap_lookup(struct buf *); 194 static int newblk_lookup(struct fs *, ufs2_daddr_t, int, struct newblk **); 195 static int inodedep_lookup(struct fs *, ino_t, int, struct inodedep **); 196 static int pagedep_lookup(struct inode *, ufs_lbn_t, int, struct pagedep **); 197 static void pause_timer(void *); 198 static int request_cleanup(int, int); 199 static int process_worklist_item(struct mount *, int); 200 static void add_to_worklist(struct worklist *); 201 202 /* 203 * Exported softdep operations. 204 */ 205 static void softdep_disk_io_initiation(struct buf *); 206 static void softdep_disk_write_complete(struct buf *); 207 static void softdep_deallocate_dependencies(struct buf *); 208 static void softdep_move_dependencies(struct buf *, struct buf *); 209 static int softdep_count_dependencies(struct buf *bp, int); 210 211 /* 212 * Locking primitives. 213 * 214 * For a uniprocessor, all we need to do is protect against disk 215 * interrupts. For a multiprocessor, this lock would have to be 216 * a mutex. A single mutex is used throughout this file, though 217 * finer grain locking could be used if contention warranted it. 218 * 219 * For a multiprocessor, the sleep call would accept a lock and 220 * release it after the sleep processing was complete. In a uniprocessor 221 * implementation there is no such interlock, so we simple mark 222 * the places where it needs to be done with the `interlocked' form 223 * of the lock calls. Since the uniprocessor sleep already interlocks 224 * the spl, there is nothing that really needs to be done. 225 */ 226 #ifndef /* NOT */ DEBUG 227 static struct lockit { 228 int lkt_spl; 229 } lk = { 0 }; 230 #define ACQUIRE_LOCK(lk) (lk)->lkt_spl = splbio() 231 #define FREE_LOCK(lk) splx((lk)->lkt_spl) 232 233 #else /* DEBUG */ 234 #define NOHOLDER ((struct thread *)-1) 235 #define SPECIAL_FLAG ((struct thread *)-2) 236 static struct lockit { 237 int lkt_spl; 238 struct thread *lkt_held; 239 } lk = { 0, NOHOLDER }; 240 static int lockcnt; 241 242 static void acquire_lock(struct lockit *); 243 static void free_lock(struct lockit *); 244 void softdep_panic(char *); 245 246 #define ACQUIRE_LOCK(lk) acquire_lock(lk) 247 #define FREE_LOCK(lk) free_lock(lk) 248 249 static void 250 acquire_lock(lk) 251 struct lockit *lk; 252 { 253 struct thread *holder; 254 255 if (lk->lkt_held != NOHOLDER) { 256 holder = lk->lkt_held; 257 FREE_LOCK(lk); 258 if (holder == curthread) 259 panic("softdep_lock: locking against myself"); 260 else 261 panic("softdep_lock: lock held by %p", holder); 262 } 263 lk->lkt_spl = splbio(); 264 lk->lkt_held = curthread; 265 lockcnt++; 266 } 267 268 static void 269 free_lock(lk) 270 struct lockit *lk; 271 { 272 273 if (lk->lkt_held == NOHOLDER) 274 panic("softdep_unlock: lock not held"); 275 lk->lkt_held = NOHOLDER; 276 splx(lk->lkt_spl); 277 } 278 279 /* 280 * Function to release soft updates lock and panic. 281 */ 282 void 283 softdep_panic(msg) 284 char *msg; 285 { 286 287 if (lk.lkt_held != NOHOLDER) 288 FREE_LOCK(&lk); 289 panic(msg); 290 } 291 #endif /* DEBUG */ 292 293 static int interlocked_sleep(struct lockit *, int, void *, int, 294 const char *, int); 295 296 /* 297 * When going to sleep, we must save our SPL so that it does 298 * not get lost if some other process uses the lock while we 299 * are sleeping. We restore it after we have slept. This routine 300 * wraps the interlocking with functions that sleep. The list 301 * below enumerates the available set of operations. 302 */ 303 #define UNKNOWN 0 304 #define SLEEP 1 305 #define LOCKBUF 2 306 307 static int 308 interlocked_sleep(lk, op, ident, flags, wmesg, timo) 309 struct lockit *lk; 310 int op; 311 void *ident; 312 int flags; 313 const char *wmesg; 314 int timo; 315 { 316 struct thread *holder; 317 int s, retval; 318 319 s = lk->lkt_spl; 320 # ifdef DEBUG 321 if (lk->lkt_held == NOHOLDER) 322 panic("interlocked_sleep: lock not held"); 323 lk->lkt_held = NOHOLDER; 324 # endif /* DEBUG */ 325 switch (op) { 326 case SLEEP: 327 retval = tsleep(ident, flags, wmesg, timo); 328 break; 329 case LOCKBUF: 330 retval = BUF_LOCK((struct buf *)ident, flags); 331 break; 332 default: 333 panic("interlocked_sleep: unknown operation"); 334 } 335 # ifdef DEBUG 336 if (lk->lkt_held != NOHOLDER) { 337 holder = lk->lkt_held; 338 FREE_LOCK(lk); 339 if (holder == curthread) 340 panic("interlocked_sleep: locking against self"); 341 else 342 panic("interlocked_sleep: lock held by %p", holder); 343 } 344 lk->lkt_held = curthread; 345 lockcnt++; 346 # endif /* DEBUG */ 347 lk->lkt_spl = s; 348 return (retval); 349 } 350 351 /* 352 * Place holder for real semaphores. 353 */ 354 struct sema { 355 int value; 356 struct thread *holder; 357 char *name; 358 int prio; 359 int timo; 360 }; 361 static void sema_init(struct sema *, char *, int, int); 362 static int sema_get(struct sema *, struct lockit *); 363 static void sema_release(struct sema *); 364 365 static void 366 sema_init(semap, name, prio, timo) 367 struct sema *semap; 368 char *name; 369 int prio, timo; 370 { 371 372 semap->holder = NOHOLDER; 373 semap->value = 0; 374 semap->name = name; 375 semap->prio = prio; 376 semap->timo = timo; 377 } 378 379 static int 380 sema_get(semap, interlock) 381 struct sema *semap; 382 struct lockit *interlock; 383 { 384 385 if (semap->value++ > 0) { 386 if (interlock != NULL) { 387 interlocked_sleep(interlock, SLEEP, (caddr_t)semap, 388 semap->prio, semap->name, semap->timo); 389 FREE_LOCK(interlock); 390 } else { 391 tsleep((caddr_t)semap, semap->prio, semap->name, 392 semap->timo); 393 } 394 return (0); 395 } 396 semap->holder = curthread; 397 if (interlock != NULL) 398 FREE_LOCK(interlock); 399 return (1); 400 } 401 402 static void 403 sema_release(semap) 404 struct sema *semap; 405 { 406 407 if (semap->value <= 0 || semap->holder != curthread) { 408 if (lk.lkt_held != NOHOLDER) 409 FREE_LOCK(&lk); 410 panic("sema_release: not held"); 411 } 412 if (--semap->value > 0) { 413 semap->value = 0; 414 wakeup(semap); 415 } 416 semap->holder = NOHOLDER; 417 } 418 419 /* 420 * Worklist queue management. 421 * These routines require that the lock be held. 422 */ 423 #ifndef /* NOT */ DEBUG 424 #define WORKLIST_INSERT(head, item) do { \ 425 (item)->wk_state |= ONWORKLIST; \ 426 LIST_INSERT_HEAD(head, item, wk_list); \ 427 } while (0) 428 #define WORKLIST_REMOVE(item) do { \ 429 (item)->wk_state &= ~ONWORKLIST; \ 430 LIST_REMOVE(item, wk_list); \ 431 } while (0) 432 #define WORKITEM_FREE(item, type) FREE(item, DtoM(type)) 433 434 #else /* DEBUG */ 435 static void worklist_insert(struct workhead *, struct worklist *); 436 static void worklist_remove(struct worklist *); 437 static void workitem_free(struct worklist *, int); 438 439 #define WORKLIST_INSERT(head, item) worklist_insert(head, item) 440 #define WORKLIST_REMOVE(item) worklist_remove(item) 441 #define WORKITEM_FREE(item, type) workitem_free((struct worklist *)item, type) 442 443 static void 444 worklist_insert(head, item) 445 struct workhead *head; 446 struct worklist *item; 447 { 448 449 if (lk.lkt_held == NOHOLDER) 450 panic("worklist_insert: lock not held"); 451 if (item->wk_state & ONWORKLIST) { 452 FREE_LOCK(&lk); 453 panic("worklist_insert: already on list"); 454 } 455 item->wk_state |= ONWORKLIST; 456 LIST_INSERT_HEAD(head, item, wk_list); 457 } 458 459 static void 460 worklist_remove(item) 461 struct worklist *item; 462 { 463 464 if (lk.lkt_held == NOHOLDER) 465 panic("worklist_remove: lock not held"); 466 if ((item->wk_state & ONWORKLIST) == 0) { 467 FREE_LOCK(&lk); 468 panic("worklist_remove: not on list"); 469 } 470 item->wk_state &= ~ONWORKLIST; 471 LIST_REMOVE(item, wk_list); 472 } 473 474 static void 475 workitem_free(item, type) 476 struct worklist *item; 477 int type; 478 { 479 480 if (item->wk_state & ONWORKLIST) { 481 if (lk.lkt_held != NOHOLDER) 482 FREE_LOCK(&lk); 483 panic("workitem_free: still on list"); 484 } 485 if (item->wk_type != type) { 486 if (lk.lkt_held != NOHOLDER) 487 FREE_LOCK(&lk); 488 panic("workitem_free: type mismatch"); 489 } 490 FREE(item, DtoM(type)); 491 } 492 #endif /* DEBUG */ 493 494 /* 495 * Workitem queue management 496 */ 497 static struct workhead softdep_workitem_pending; 498 static int num_on_worklist; /* number of worklist items to be processed */ 499 static int softdep_worklist_busy; /* 1 => trying to do unmount */ 500 static int softdep_worklist_req; /* serialized waiters */ 501 static int max_softdeps; /* maximum number of structs before slowdown */ 502 static int tickdelay = 2; /* number of ticks to pause during slowdown */ 503 static int proc_waiting; /* tracks whether we have a timeout posted */ 504 static int *stat_countp; /* statistic to count in proc_waiting timeout */ 505 static struct callout_handle handle; /* handle on posted proc_waiting timeout */ 506 static struct thread *filesys_syncer; /* proc of filesystem syncer process */ 507 static int req_clear_inodedeps; /* syncer process flush some inodedeps */ 508 #define FLUSH_INODES 1 509 static int req_clear_remove; /* syncer process flush some freeblks */ 510 #define FLUSH_REMOVE 2 511 #define FLUSH_REMOVE_WAIT 3 512 /* 513 * runtime statistics 514 */ 515 static int stat_worklist_push; /* number of worklist cleanups */ 516 static int stat_blk_limit_push; /* number of times block limit neared */ 517 static int stat_ino_limit_push; /* number of times inode limit neared */ 518 static int stat_blk_limit_hit; /* number of times block slowdown imposed */ 519 static int stat_ino_limit_hit; /* number of times inode slowdown imposed */ 520 static int stat_sync_limit_hit; /* number of synchronous slowdowns imposed */ 521 static int stat_indir_blk_ptrs; /* bufs redirtied as indir ptrs not written */ 522 static int stat_inode_bitmap; /* bufs redirtied as inode bitmap not written */ 523 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */ 524 static int stat_dir_entry; /* bufs redirtied as dir entry cannot write */ 525 #ifdef DEBUG 526 #include <vm/vm.h> 527 #include <sys/sysctl.h> 528 SYSCTL_INT(_debug, OID_AUTO, max_softdeps, CTLFLAG_RW, &max_softdeps, 0, ""); 529 SYSCTL_INT(_debug, OID_AUTO, tickdelay, CTLFLAG_RW, &tickdelay, 0, ""); 530 SYSCTL_INT(_debug, OID_AUTO, worklist_push, CTLFLAG_RW, &stat_worklist_push, 0,""); 531 SYSCTL_INT(_debug, OID_AUTO, blk_limit_push, CTLFLAG_RW, &stat_blk_limit_push, 0,""); 532 SYSCTL_INT(_debug, OID_AUTO, ino_limit_push, CTLFLAG_RW, &stat_ino_limit_push, 0,""); 533 SYSCTL_INT(_debug, OID_AUTO, blk_limit_hit, CTLFLAG_RW, &stat_blk_limit_hit, 0, ""); 534 SYSCTL_INT(_debug, OID_AUTO, ino_limit_hit, CTLFLAG_RW, &stat_ino_limit_hit, 0, ""); 535 SYSCTL_INT(_debug, OID_AUTO, sync_limit_hit, CTLFLAG_RW, &stat_sync_limit_hit, 0, ""); 536 SYSCTL_INT(_debug, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW, &stat_indir_blk_ptrs, 0, ""); 537 SYSCTL_INT(_debug, OID_AUTO, inode_bitmap, CTLFLAG_RW, &stat_inode_bitmap, 0, ""); 538 SYSCTL_INT(_debug, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW, &stat_direct_blk_ptrs, 0, ""); 539 SYSCTL_INT(_debug, OID_AUTO, dir_entry, CTLFLAG_RW, &stat_dir_entry, 0, ""); 540 #endif /* DEBUG */ 541 542 /* 543 * Add an item to the end of the work queue. 544 * This routine requires that the lock be held. 545 * This is the only routine that adds items to the list. 546 * The following routine is the only one that removes items 547 * and does so in order from first to last. 548 */ 549 static void 550 add_to_worklist(wk) 551 struct worklist *wk; 552 { 553 static struct worklist *worklist_tail; 554 555 if (wk->wk_state & ONWORKLIST) { 556 if (lk.lkt_held != NOHOLDER) 557 FREE_LOCK(&lk); 558 panic("add_to_worklist: already on list"); 559 } 560 wk->wk_state |= ONWORKLIST; 561 if (LIST_FIRST(&softdep_workitem_pending) == NULL) 562 LIST_INSERT_HEAD(&softdep_workitem_pending, wk, wk_list); 563 else 564 LIST_INSERT_AFTER(worklist_tail, wk, wk_list); 565 worklist_tail = wk; 566 num_on_worklist += 1; 567 } 568 569 /* 570 * Process that runs once per second to handle items in the background queue. 571 * 572 * Note that we ensure that everything is done in the order in which they 573 * appear in the queue. The code below depends on this property to ensure 574 * that blocks of a file are freed before the inode itself is freed. This 575 * ordering ensures that no new <vfsid, inum, lbn> triples will be generated 576 * until all the old ones have been purged from the dependency lists. 577 */ 578 int 579 softdep_process_worklist(matchmnt) 580 struct mount *matchmnt; 581 { 582 struct thread *td = curthread; 583 int cnt, matchcnt, loopcount; 584 long starttime; 585 586 /* 587 * Record the process identifier of our caller so that we can give 588 * this process preferential treatment in request_cleanup below. 589 */ 590 filesys_syncer = td; 591 matchcnt = 0; 592 593 /* 594 * There is no danger of having multiple processes run this 595 * code, but we have to single-thread it when softdep_flushfiles() 596 * is in operation to get an accurate count of the number of items 597 * related to its mount point that are in the list. 598 */ 599 if (matchmnt == NULL) { 600 if (softdep_worklist_busy < 0) 601 return(-1); 602 softdep_worklist_busy += 1; 603 } 604 605 /* 606 * If requested, try removing inode or removal dependencies. 607 */ 608 if (req_clear_inodedeps) { 609 clear_inodedeps(td); 610 req_clear_inodedeps -= 1; 611 wakeup_one(&proc_waiting); 612 } 613 if (req_clear_remove) { 614 clear_remove(td); 615 req_clear_remove -= 1; 616 wakeup_one(&proc_waiting); 617 } 618 loopcount = 1; 619 starttime = time_second; 620 while (num_on_worklist > 0) { 621 if ((cnt = process_worklist_item(matchmnt, 0)) == -1) 622 break; 623 else 624 matchcnt += cnt; 625 626 /* 627 * If a umount operation wants to run the worklist 628 * accurately, abort. 629 */ 630 if (softdep_worklist_req && matchmnt == NULL) { 631 matchcnt = -1; 632 break; 633 } 634 635 /* 636 * If requested, try removing inode or removal dependencies. 637 */ 638 if (req_clear_inodedeps) { 639 clear_inodedeps(td); 640 req_clear_inodedeps -= 1; 641 wakeup_one(&proc_waiting); 642 } 643 if (req_clear_remove) { 644 clear_remove(td); 645 req_clear_remove -= 1; 646 wakeup_one(&proc_waiting); 647 } 648 /* 649 * We do not generally want to stop for buffer space, but if 650 * we are really being a buffer hog, we will stop and wait. 651 */ 652 if (loopcount++ % 128 == 0) 653 bwillwrite(); 654 /* 655 * Never allow processing to run for more than one 656 * second. Otherwise the other syncer tasks may get 657 * excessively backlogged. 658 */ 659 if (starttime != time_second && matchmnt == NULL) { 660 matchcnt = -1; 661 break; 662 } 663 } 664 if (matchmnt == NULL) { 665 softdep_worklist_busy -= 1; 666 if (softdep_worklist_req && softdep_worklist_busy == 0) 667 wakeup(&softdep_worklist_req); 668 } 669 return (matchcnt); 670 } 671 672 /* 673 * Process one item on the worklist. 674 */ 675 static int 676 process_worklist_item(matchmnt, flags) 677 struct mount *matchmnt; 678 int flags; 679 { 680 struct worklist *wk; 681 struct mount *mp; 682 struct vnode *vp; 683 int matchcnt = 0; 684 685 ACQUIRE_LOCK(&lk); 686 /* 687 * Normally we just process each item on the worklist in order. 688 * However, if we are in a situation where we cannot lock any 689 * inodes, we have to skip over any dirrem requests whose 690 * vnodes are resident and locked. 691 */ 692 vp = NULL; 693 LIST_FOREACH(wk, &softdep_workitem_pending, wk_list) { 694 if (wk->wk_state & INPROGRESS) 695 continue; 696 if ((flags & LK_NOWAIT) == 0 || wk->wk_type != D_DIRREM) 697 break; 698 wk->wk_state |= INPROGRESS; 699 FREE_LOCK(&lk); 700 VFS_VGET(WK_DIRREM(wk)->dm_mnt, WK_DIRREM(wk)->dm_oldinum, 701 LK_NOWAIT | LK_EXCLUSIVE, &vp); 702 ACQUIRE_LOCK(&lk); 703 wk->wk_state &= ~INPROGRESS; 704 if (vp != NULL) 705 break; 706 } 707 if (wk == 0) { 708 FREE_LOCK(&lk); 709 return (-1); 710 } 711 WORKLIST_REMOVE(wk); 712 num_on_worklist -= 1; 713 FREE_LOCK(&lk); 714 switch (wk->wk_type) { 715 716 case D_DIRREM: 717 /* removal of a directory entry */ 718 mp = WK_DIRREM(wk)->dm_mnt; 719 if (vn_write_suspend_wait(NULL, mp, V_NOWAIT)) 720 panic("%s: dirrem on suspended filesystem", 721 "process_worklist_item"); 722 if (mp == matchmnt) 723 matchcnt += 1; 724 handle_workitem_remove(WK_DIRREM(wk), vp); 725 break; 726 727 case D_FREEBLKS: 728 /* releasing blocks and/or fragments from a file */ 729 mp = WK_FREEBLKS(wk)->fb_mnt; 730 if (vn_write_suspend_wait(NULL, mp, V_NOWAIT)) 731 panic("%s: freeblks on suspended filesystem", 732 "process_worklist_item"); 733 if (mp == matchmnt) 734 matchcnt += 1; 735 handle_workitem_freeblocks(WK_FREEBLKS(wk), flags & LK_NOWAIT); 736 break; 737 738 case D_FREEFRAG: 739 /* releasing a fragment when replaced as a file grows */ 740 mp = WK_FREEFRAG(wk)->ff_mnt; 741 if (vn_write_suspend_wait(NULL, mp, V_NOWAIT)) 742 panic("%s: freefrag on suspended filesystem", 743 "process_worklist_item"); 744 if (mp == matchmnt) 745 matchcnt += 1; 746 handle_workitem_freefrag(WK_FREEFRAG(wk)); 747 break; 748 749 case D_FREEFILE: 750 /* releasing an inode when its link count drops to 0 */ 751 mp = WK_FREEFILE(wk)->fx_mnt; 752 if (vn_write_suspend_wait(NULL, mp, V_NOWAIT)) 753 panic("%s: freefile on suspended filesystem", 754 "process_worklist_item"); 755 if (mp == matchmnt) 756 matchcnt += 1; 757 handle_workitem_freefile(WK_FREEFILE(wk)); 758 break; 759 760 default: 761 panic("%s_process_worklist: Unknown type %s", 762 "softdep", TYPENAME(wk->wk_type)); 763 /* NOTREACHED */ 764 } 765 return (matchcnt); 766 } 767 768 /* 769 * Move dependencies from one buffer to another. 770 */ 771 static void 772 softdep_move_dependencies(oldbp, newbp) 773 struct buf *oldbp; 774 struct buf *newbp; 775 { 776 struct worklist *wk, *wktail; 777 778 if (LIST_FIRST(&newbp->b_dep) != NULL) 779 panic("softdep_move_dependencies: need merge code"); 780 wktail = 0; 781 ACQUIRE_LOCK(&lk); 782 while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) { 783 LIST_REMOVE(wk, wk_list); 784 if (wktail == 0) 785 LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list); 786 else 787 LIST_INSERT_AFTER(wktail, wk, wk_list); 788 wktail = wk; 789 } 790 FREE_LOCK(&lk); 791 } 792 793 /* 794 * Purge the work list of all items associated with a particular mount point. 795 */ 796 int 797 softdep_flushworklist(oldmnt, countp, td) 798 struct mount *oldmnt; 799 int *countp; 800 struct thread *td; 801 { 802 struct vnode *devvp; 803 int count, error = 0; 804 805 /* 806 * Await our turn to clear out the queue, then serialize access. 807 */ 808 while (softdep_worklist_busy) { 809 softdep_worklist_req += 1; 810 tsleep(&softdep_worklist_req, PRIBIO, "softflush", 0); 811 softdep_worklist_req -= 1; 812 } 813 softdep_worklist_busy = -1; 814 /* 815 * Alternately flush the block device associated with the mount 816 * point and process any dependencies that the flushing 817 * creates. We continue until no more worklist dependencies 818 * are found. 819 */ 820 *countp = 0; 821 devvp = VFSTOUFS(oldmnt)->um_devvp; 822 while ((count = softdep_process_worklist(oldmnt)) > 0) { 823 *countp += count; 824 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY, td); 825 error = VOP_FSYNC(devvp, td->td_ucred, MNT_WAIT, td); 826 VOP_UNLOCK(devvp, 0, td); 827 if (error) 828 break; 829 } 830 softdep_worklist_busy = 0; 831 if (softdep_worklist_req) 832 wakeup(&softdep_worklist_req); 833 return (error); 834 } 835 836 /* 837 * Flush all vnodes and worklist items associated with a specified mount point. 838 */ 839 int 840 softdep_flushfiles(oldmnt, flags, td) 841 struct mount *oldmnt; 842 int flags; 843 struct thread *td; 844 { 845 int error, count, loopcnt; 846 847 error = 0; 848 849 /* 850 * Alternately flush the vnodes associated with the mount 851 * point and process any dependencies that the flushing 852 * creates. In theory, this loop can happen at most twice, 853 * but we give it a few extra just to be sure. 854 */ 855 for (loopcnt = 10; loopcnt > 0; loopcnt--) { 856 /* 857 * Do another flush in case any vnodes were brought in 858 * as part of the cleanup operations. 859 */ 860 if ((error = ffs_flushfiles(oldmnt, flags, td)) != 0) 861 break; 862 if ((error = softdep_flushworklist(oldmnt, &count, td)) != 0 || 863 count == 0) 864 break; 865 } 866 /* 867 * If we are unmounting then it is an error to fail. If we 868 * are simply trying to downgrade to read-only, then filesystem 869 * activity can keep us busy forever, so we just fail with EBUSY. 870 */ 871 if (loopcnt == 0) { 872 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) 873 panic("softdep_flushfiles: looping"); 874 error = EBUSY; 875 } 876 return (error); 877 } 878 879 /* 880 * Structure hashing. 881 * 882 * There are three types of structures that can be looked up: 883 * 1) pagedep structures identified by mount point, inode number, 884 * and logical block. 885 * 2) inodedep structures identified by mount point and inode number. 886 * 3) newblk structures identified by mount point and 887 * physical block number. 888 * 889 * The "pagedep" and "inodedep" dependency structures are hashed 890 * separately from the file blocks and inodes to which they correspond. 891 * This separation helps when the in-memory copy of an inode or 892 * file block must be replaced. It also obviates the need to access 893 * an inode or file page when simply updating (or de-allocating) 894 * dependency structures. Lookup of newblk structures is needed to 895 * find newly allocated blocks when trying to associate them with 896 * their allocdirect or allocindir structure. 897 * 898 * The lookup routines optionally create and hash a new instance when 899 * an existing entry is not found. 900 */ 901 #define DEPALLOC 0x0001 /* allocate structure if lookup fails */ 902 #define NODELAY 0x0002 /* cannot do background work */ 903 904 /* 905 * Structures and routines associated with pagedep caching. 906 */ 907 LIST_HEAD(pagedep_hashhead, pagedep) *pagedep_hashtbl; 908 u_long pagedep_hash; /* size of hash table - 1 */ 909 #define PAGEDEP_HASH(mp, inum, lbn) \ 910 (&pagedep_hashtbl[((((register_t)(mp)) >> 13) + (inum) + (lbn)) & \ 911 pagedep_hash]) 912 static struct sema pagedep_in_progress; 913 914 /* 915 * Look up a pagedep. Return 1 if found, 0 if not found or found 916 * when asked to allocate but not associated with any buffer. 917 * If not found, allocate if DEPALLOC flag is passed. 918 * Found or allocated entry is returned in pagedeppp. 919 * This routine must be called with splbio interrupts blocked. 920 */ 921 static int 922 pagedep_lookup(ip, lbn, flags, pagedeppp) 923 struct inode *ip; 924 ufs_lbn_t lbn; 925 int flags; 926 struct pagedep **pagedeppp; 927 { 928 struct pagedep *pagedep; 929 struct pagedep_hashhead *pagedephd; 930 struct mount *mp; 931 int i; 932 933 #ifdef DEBUG 934 if (lk.lkt_held == NOHOLDER) 935 panic("pagedep_lookup: lock not held"); 936 #endif 937 mp = ITOV(ip)->v_mount; 938 pagedephd = PAGEDEP_HASH(mp, ip->i_number, lbn); 939 top: 940 LIST_FOREACH(pagedep, pagedephd, pd_hash) 941 if (ip->i_number == pagedep->pd_ino && 942 lbn == pagedep->pd_lbn && 943 mp == pagedep->pd_mnt) 944 break; 945 if (pagedep) { 946 *pagedeppp = pagedep; 947 if ((flags & DEPALLOC) != 0 && 948 (pagedep->pd_state & ONWORKLIST) == 0) 949 return (0); 950 return (1); 951 } 952 if ((flags & DEPALLOC) == 0) { 953 *pagedeppp = NULL; 954 return (0); 955 } 956 if (sema_get(&pagedep_in_progress, &lk) == 0) { 957 ACQUIRE_LOCK(&lk); 958 goto top; 959 } 960 MALLOC(pagedep, struct pagedep *, sizeof(struct pagedep), M_PAGEDEP, 961 M_SOFTDEP_FLAGS|M_ZERO); 962 pagedep->pd_list.wk_type = D_PAGEDEP; 963 pagedep->pd_mnt = mp; 964 pagedep->pd_ino = ip->i_number; 965 pagedep->pd_lbn = lbn; 966 LIST_INIT(&pagedep->pd_dirremhd); 967 LIST_INIT(&pagedep->pd_pendinghd); 968 for (i = 0; i < DAHASHSZ; i++) 969 LIST_INIT(&pagedep->pd_diraddhd[i]); 970 ACQUIRE_LOCK(&lk); 971 LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash); 972 sema_release(&pagedep_in_progress); 973 *pagedeppp = pagedep; 974 return (0); 975 } 976 977 /* 978 * Structures and routines associated with inodedep caching. 979 */ 980 LIST_HEAD(inodedep_hashhead, inodedep) *inodedep_hashtbl; 981 static u_long inodedep_hash; /* size of hash table - 1 */ 982 static long num_inodedep; /* number of inodedep allocated */ 983 #define INODEDEP_HASH(fs, inum) \ 984 (&inodedep_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & inodedep_hash]) 985 static struct sema inodedep_in_progress; 986 987 /* 988 * Look up a inodedep. Return 1 if found, 0 if not found. 989 * If not found, allocate if DEPALLOC flag is passed. 990 * Found or allocated entry is returned in inodedeppp. 991 * This routine must be called with splbio interrupts blocked. 992 */ 993 static int 994 inodedep_lookup(fs, inum, flags, inodedeppp) 995 struct fs *fs; 996 ino_t inum; 997 int flags; 998 struct inodedep **inodedeppp; 999 { 1000 struct inodedep *inodedep; 1001 struct inodedep_hashhead *inodedephd; 1002 int firsttry; 1003 1004 #ifdef DEBUG 1005 if (lk.lkt_held == NOHOLDER) 1006 panic("inodedep_lookup: lock not held"); 1007 #endif 1008 firsttry = 1; 1009 inodedephd = INODEDEP_HASH(fs, inum); 1010 top: 1011 LIST_FOREACH(inodedep, inodedephd, id_hash) 1012 if (inum == inodedep->id_ino && fs == inodedep->id_fs) 1013 break; 1014 if (inodedep) { 1015 *inodedeppp = inodedep; 1016 return (1); 1017 } 1018 if ((flags & DEPALLOC) == 0) { 1019 *inodedeppp = NULL; 1020 return (0); 1021 } 1022 /* 1023 * If we are over our limit, try to improve the situation. 1024 */ 1025 if (num_inodedep > max_softdeps && firsttry && (flags & NODELAY) == 0 && 1026 request_cleanup(FLUSH_INODES, 1)) { 1027 firsttry = 0; 1028 goto top; 1029 } 1030 if (sema_get(&inodedep_in_progress, &lk) == 0) { 1031 ACQUIRE_LOCK(&lk); 1032 goto top; 1033 } 1034 num_inodedep += 1; 1035 MALLOC(inodedep, struct inodedep *, sizeof(struct inodedep), 1036 M_INODEDEP, M_SOFTDEP_FLAGS); 1037 inodedep->id_list.wk_type = D_INODEDEP; 1038 inodedep->id_fs = fs; 1039 inodedep->id_ino = inum; 1040 inodedep->id_state = ALLCOMPLETE; 1041 inodedep->id_nlinkdelta = 0; 1042 inodedep->id_savedino1 = NULL; 1043 inodedep->id_savedsize = -1; 1044 inodedep->id_buf = NULL; 1045 LIST_INIT(&inodedep->id_pendinghd); 1046 LIST_INIT(&inodedep->id_inowait); 1047 LIST_INIT(&inodedep->id_bufwait); 1048 TAILQ_INIT(&inodedep->id_inoupdt); 1049 TAILQ_INIT(&inodedep->id_newinoupdt); 1050 ACQUIRE_LOCK(&lk); 1051 LIST_INSERT_HEAD(inodedephd, inodedep, id_hash); 1052 sema_release(&inodedep_in_progress); 1053 *inodedeppp = inodedep; 1054 return (0); 1055 } 1056 1057 /* 1058 * Structures and routines associated with newblk caching. 1059 */ 1060 LIST_HEAD(newblk_hashhead, newblk) *newblk_hashtbl; 1061 u_long newblk_hash; /* size of hash table - 1 */ 1062 #define NEWBLK_HASH(fs, inum) \ 1063 (&newblk_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & newblk_hash]) 1064 static struct sema newblk_in_progress; 1065 1066 /* 1067 * Look up a newblk. Return 1 if found, 0 if not found. 1068 * If not found, allocate if DEPALLOC flag is passed. 1069 * Found or allocated entry is returned in newblkpp. 1070 */ 1071 static int 1072 newblk_lookup(fs, newblkno, flags, newblkpp) 1073 struct fs *fs; 1074 ufs2_daddr_t newblkno; 1075 int flags; 1076 struct newblk **newblkpp; 1077 { 1078 struct newblk *newblk; 1079 struct newblk_hashhead *newblkhd; 1080 1081 newblkhd = NEWBLK_HASH(fs, newblkno); 1082 top: 1083 LIST_FOREACH(newblk, newblkhd, nb_hash) 1084 if (newblkno == newblk->nb_newblkno && fs == newblk->nb_fs) 1085 break; 1086 if (newblk) { 1087 *newblkpp = newblk; 1088 return (1); 1089 } 1090 if ((flags & DEPALLOC) == 0) { 1091 *newblkpp = NULL; 1092 return (0); 1093 } 1094 if (sema_get(&newblk_in_progress, 0) == 0) 1095 goto top; 1096 MALLOC(newblk, struct newblk *, sizeof(struct newblk), 1097 M_NEWBLK, M_SOFTDEP_FLAGS); 1098 newblk->nb_state = 0; 1099 newblk->nb_fs = fs; 1100 newblk->nb_newblkno = newblkno; 1101 LIST_INSERT_HEAD(newblkhd, newblk, nb_hash); 1102 sema_release(&newblk_in_progress); 1103 *newblkpp = newblk; 1104 return (0); 1105 } 1106 1107 /* 1108 * Executed during filesystem system initialization before 1109 * mounting any filesystems. 1110 */ 1111 void 1112 softdep_initialize() 1113 { 1114 1115 LIST_INIT(&mkdirlisthd); 1116 LIST_INIT(&softdep_workitem_pending); 1117 max_softdeps = desiredvnodes * 8; 1118 pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP, 1119 &pagedep_hash); 1120 sema_init(&pagedep_in_progress, "pagedep", PRIBIO, 0); 1121 inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, &inodedep_hash); 1122 sema_init(&inodedep_in_progress, "inodedep", PRIBIO, 0); 1123 newblk_hashtbl = hashinit(64, M_NEWBLK, &newblk_hash); 1124 sema_init(&newblk_in_progress, "newblk", PRIBIO, 0); 1125 1126 /* hooks through which the main kernel code calls us */ 1127 softdep_process_worklist_hook = softdep_process_worklist; 1128 softdep_fsync_hook = softdep_fsync; 1129 1130 /* initialise bioops hack */ 1131 bioops.io_start = softdep_disk_io_initiation; 1132 bioops.io_complete = softdep_disk_write_complete; 1133 bioops.io_deallocate = softdep_deallocate_dependencies; 1134 bioops.io_movedeps = softdep_move_dependencies; 1135 bioops.io_countdeps = softdep_count_dependencies; 1136 } 1137 1138 /* 1139 * Executed after all filesystems have been unmounted during 1140 * filesystem module unload. 1141 */ 1142 void 1143 softdep_uninitialize() 1144 { 1145 1146 softdep_process_worklist_hook = NULL; 1147 softdep_fsync_hook = NULL; 1148 hashdestroy(pagedep_hashtbl, M_PAGEDEP, pagedep_hash); 1149 hashdestroy(inodedep_hashtbl, M_INODEDEP, inodedep_hash); 1150 hashdestroy(newblk_hashtbl, M_NEWBLK, newblk_hash); 1151 } 1152 1153 /* 1154 * Called at mount time to notify the dependency code that a 1155 * filesystem wishes to use it. 1156 */ 1157 int 1158 softdep_mount(devvp, mp, fs, cred) 1159 struct vnode *devvp; 1160 struct mount *mp; 1161 struct fs *fs; 1162 struct ucred *cred; 1163 { 1164 struct csum_total cstotal; 1165 struct cg *cgp; 1166 struct buf *bp; 1167 int error, cyl; 1168 1169 mp->mnt_flag &= ~MNT_ASYNC; 1170 mp->mnt_flag |= MNT_SOFTDEP; 1171 /* 1172 * When doing soft updates, the counters in the 1173 * superblock may have gotten out of sync, so we have 1174 * to scan the cylinder groups and recalculate them. 1175 */ 1176 if (fs->fs_clean != 0) 1177 return (0); 1178 bzero(&cstotal, sizeof cstotal); 1179 for (cyl = 0; cyl < fs->fs_ncg; cyl++) { 1180 if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)), 1181 fs->fs_cgsize, cred, &bp)) != 0) { 1182 brelse(bp); 1183 return (error); 1184 } 1185 cgp = (struct cg *)bp->b_data; 1186 cstotal.cs_nffree += cgp->cg_cs.cs_nffree; 1187 cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree; 1188 cstotal.cs_nifree += cgp->cg_cs.cs_nifree; 1189 cstotal.cs_ndir += cgp->cg_cs.cs_ndir; 1190 fs->fs_cs(fs, cyl) = cgp->cg_cs; 1191 brelse(bp); 1192 } 1193 #ifdef DEBUG 1194 if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal)) 1195 printf("%s: superblock summary recomputed\n", fs->fs_fsmnt); 1196 #endif 1197 bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal); 1198 return (0); 1199 } 1200 1201 /* 1202 * Protecting the freemaps (or bitmaps). 1203 * 1204 * To eliminate the need to execute fsck before mounting a filesystem 1205 * after a power failure, one must (conservatively) guarantee that the 1206 * on-disk copy of the bitmaps never indicate that a live inode or block is 1207 * free. So, when a block or inode is allocated, the bitmap should be 1208 * updated (on disk) before any new pointers. When a block or inode is 1209 * freed, the bitmap should not be updated until all pointers have been 1210 * reset. The latter dependency is handled by the delayed de-allocation 1211 * approach described below for block and inode de-allocation. The former 1212 * dependency is handled by calling the following procedure when a block or 1213 * inode is allocated. When an inode is allocated an "inodedep" is created 1214 * with its DEPCOMPLETE flag cleared until its bitmap is written to disk. 1215 * Each "inodedep" is also inserted into the hash indexing structure so 1216 * that any additional link additions can be made dependent on the inode 1217 * allocation. 1218 * 1219 * The ufs filesystem maintains a number of free block counts (e.g., per 1220 * cylinder group, per cylinder and per <cylinder, rotational position> pair) 1221 * in addition to the bitmaps. These counts are used to improve efficiency 1222 * during allocation and therefore must be consistent with the bitmaps. 1223 * There is no convenient way to guarantee post-crash consistency of these 1224 * counts with simple update ordering, for two main reasons: (1) The counts 1225 * and bitmaps for a single cylinder group block are not in the same disk 1226 * sector. If a disk write is interrupted (e.g., by power failure), one may 1227 * be written and the other not. (2) Some of the counts are located in the 1228 * superblock rather than the cylinder group block. So, we focus our soft 1229 * updates implementation on protecting the bitmaps. When mounting a 1230 * filesystem, we recompute the auxiliary counts from the bitmaps. 1231 */ 1232 1233 /* 1234 * Called just after updating the cylinder group block to allocate an inode. 1235 */ 1236 void 1237 softdep_setup_inomapdep(bp, ip, newinum) 1238 struct buf *bp; /* buffer for cylgroup block with inode map */ 1239 struct inode *ip; /* inode related to allocation */ 1240 ino_t newinum; /* new inode number being allocated */ 1241 { 1242 struct inodedep *inodedep; 1243 struct bmsafemap *bmsafemap; 1244 1245 /* 1246 * Create a dependency for the newly allocated inode. 1247 * Panic if it already exists as something is seriously wrong. 1248 * Otherwise add it to the dependency list for the buffer holding 1249 * the cylinder group map from which it was allocated. 1250 */ 1251 ACQUIRE_LOCK(&lk); 1252 if ((inodedep_lookup(ip->i_fs, newinum, DEPALLOC|NODELAY, &inodedep))) { 1253 FREE_LOCK(&lk); 1254 panic("softdep_setup_inomapdep: found inode"); 1255 } 1256 inodedep->id_buf = bp; 1257 inodedep->id_state &= ~DEPCOMPLETE; 1258 bmsafemap = bmsafemap_lookup(bp); 1259 LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps); 1260 FREE_LOCK(&lk); 1261 } 1262 1263 /* 1264 * Called just after updating the cylinder group block to 1265 * allocate block or fragment. 1266 */ 1267 void 1268 softdep_setup_blkmapdep(bp, fs, newblkno) 1269 struct buf *bp; /* buffer for cylgroup block with block map */ 1270 struct fs *fs; /* filesystem doing allocation */ 1271 ufs2_daddr_t newblkno; /* number of newly allocated block */ 1272 { 1273 struct newblk *newblk; 1274 struct bmsafemap *bmsafemap; 1275 1276 /* 1277 * Create a dependency for the newly allocated block. 1278 * Add it to the dependency list for the buffer holding 1279 * the cylinder group map from which it was allocated. 1280 */ 1281 if (newblk_lookup(fs, newblkno, DEPALLOC, &newblk) != 0) 1282 panic("softdep_setup_blkmapdep: found block"); 1283 ACQUIRE_LOCK(&lk); 1284 newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(bp); 1285 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps); 1286 FREE_LOCK(&lk); 1287 } 1288 1289 /* 1290 * Find the bmsafemap associated with a cylinder group buffer. 1291 * If none exists, create one. The buffer must be locked when 1292 * this routine is called and this routine must be called with 1293 * splbio interrupts blocked. 1294 */ 1295 static struct bmsafemap * 1296 bmsafemap_lookup(bp) 1297 struct buf *bp; 1298 { 1299 struct bmsafemap *bmsafemap; 1300 struct worklist *wk; 1301 1302 #ifdef DEBUG 1303 if (lk.lkt_held == NOHOLDER) 1304 panic("bmsafemap_lookup: lock not held"); 1305 #endif 1306 LIST_FOREACH(wk, &bp->b_dep, wk_list) 1307 if (wk->wk_type == D_BMSAFEMAP) 1308 return (WK_BMSAFEMAP(wk)); 1309 FREE_LOCK(&lk); 1310 MALLOC(bmsafemap, struct bmsafemap *, sizeof(struct bmsafemap), 1311 M_BMSAFEMAP, M_SOFTDEP_FLAGS); 1312 bmsafemap->sm_list.wk_type = D_BMSAFEMAP; 1313 bmsafemap->sm_list.wk_state = 0; 1314 bmsafemap->sm_buf = bp; 1315 LIST_INIT(&bmsafemap->sm_allocdirecthd); 1316 LIST_INIT(&bmsafemap->sm_allocindirhd); 1317 LIST_INIT(&bmsafemap->sm_inodedephd); 1318 LIST_INIT(&bmsafemap->sm_newblkhd); 1319 ACQUIRE_LOCK(&lk); 1320 WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list); 1321 return (bmsafemap); 1322 } 1323 1324 /* 1325 * Direct block allocation dependencies. 1326 * 1327 * When a new block is allocated, the corresponding disk locations must be 1328 * initialized (with zeros or new data) before the on-disk inode points to 1329 * them. Also, the freemap from which the block was allocated must be 1330 * updated (on disk) before the inode's pointer. These two dependencies are 1331 * independent of each other and are needed for all file blocks and indirect 1332 * blocks that are pointed to directly by the inode. Just before the 1333 * "in-core" version of the inode is updated with a newly allocated block 1334 * number, a procedure (below) is called to setup allocation dependency 1335 * structures. These structures are removed when the corresponding 1336 * dependencies are satisfied or when the block allocation becomes obsolete 1337 * (i.e., the file is deleted, the block is de-allocated, or the block is a 1338 * fragment that gets upgraded). All of these cases are handled in 1339 * procedures described later. 1340 * 1341 * When a file extension causes a fragment to be upgraded, either to a larger 1342 * fragment or to a full block, the on-disk location may change (if the 1343 * previous fragment could not simply be extended). In this case, the old 1344 * fragment must be de-allocated, but not until after the inode's pointer has 1345 * been updated. In most cases, this is handled by later procedures, which 1346 * will construct a "freefrag" structure to be added to the workitem queue 1347 * when the inode update is complete (or obsolete). The main exception to 1348 * this is when an allocation occurs while a pending allocation dependency 1349 * (for the same block pointer) remains. This case is handled in the main 1350 * allocation dependency setup procedure by immediately freeing the 1351 * unreferenced fragments. 1352 */ 1353 void 1354 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 1355 struct inode *ip; /* inode to which block is being added */ 1356 ufs_lbn_t lbn; /* block pointer within inode */ 1357 ufs2_daddr_t newblkno; /* disk block number being added */ 1358 ufs2_daddr_t oldblkno; /* previous block number, 0 unless frag */ 1359 long newsize; /* size of new block */ 1360 long oldsize; /* size of new block */ 1361 struct buf *bp; /* bp for allocated block */ 1362 { 1363 struct allocdirect *adp, *oldadp; 1364 struct allocdirectlst *adphead; 1365 struct bmsafemap *bmsafemap; 1366 struct inodedep *inodedep; 1367 struct pagedep *pagedep; 1368 struct newblk *newblk; 1369 1370 MALLOC(adp, struct allocdirect *, sizeof(struct allocdirect), 1371 M_ALLOCDIRECT, M_SOFTDEP_FLAGS|M_ZERO); 1372 adp->ad_list.wk_type = D_ALLOCDIRECT; 1373 adp->ad_lbn = lbn; 1374 adp->ad_newblkno = newblkno; 1375 adp->ad_oldblkno = oldblkno; 1376 adp->ad_newsize = newsize; 1377 adp->ad_oldsize = oldsize; 1378 adp->ad_state = ATTACHED; 1379 LIST_INIT(&adp->ad_newdirblk); 1380 if (newblkno == oldblkno) 1381 adp->ad_freefrag = NULL; 1382 else 1383 adp->ad_freefrag = newfreefrag(ip, oldblkno, oldsize); 1384 1385 if (newblk_lookup(ip->i_fs, newblkno, 0, &newblk) == 0) 1386 panic("softdep_setup_allocdirect: lost block"); 1387 1388 ACQUIRE_LOCK(&lk); 1389 inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC | NODELAY, &inodedep); 1390 adp->ad_inodedep = inodedep; 1391 1392 if (newblk->nb_state == DEPCOMPLETE) { 1393 adp->ad_state |= DEPCOMPLETE; 1394 adp->ad_buf = NULL; 1395 } else { 1396 bmsafemap = newblk->nb_bmsafemap; 1397 adp->ad_buf = bmsafemap->sm_buf; 1398 LIST_REMOVE(newblk, nb_deps); 1399 LIST_INSERT_HEAD(&bmsafemap->sm_allocdirecthd, adp, ad_deps); 1400 } 1401 LIST_REMOVE(newblk, nb_hash); 1402 FREE(newblk, M_NEWBLK); 1403 1404 WORKLIST_INSERT(&bp->b_dep, &adp->ad_list); 1405 if (lbn >= NDADDR) { 1406 /* allocating an indirect block */ 1407 if (oldblkno != 0) { 1408 FREE_LOCK(&lk); 1409 panic("softdep_setup_allocdirect: non-zero indir"); 1410 } 1411 } else { 1412 /* 1413 * Allocating a direct block. 1414 * 1415 * If we are allocating a directory block, then we must 1416 * allocate an associated pagedep to track additions and 1417 * deletions. 1418 */ 1419 if ((ip->i_mode & IFMT) == IFDIR && 1420 pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0) 1421 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 1422 } 1423 /* 1424 * The list of allocdirects must be kept in sorted and ascending 1425 * order so that the rollback routines can quickly determine the 1426 * first uncommitted block (the size of the file stored on disk 1427 * ends at the end of the lowest committed fragment, or if there 1428 * are no fragments, at the end of the highest committed block). 1429 * Since files generally grow, the typical case is that the new 1430 * block is to be added at the end of the list. We speed this 1431 * special case by checking against the last allocdirect in the 1432 * list before laboriously traversing the list looking for the 1433 * insertion point. 1434 */ 1435 adphead = &inodedep->id_newinoupdt; 1436 oldadp = TAILQ_LAST(adphead, allocdirectlst); 1437 if (oldadp == NULL || oldadp->ad_lbn <= lbn) { 1438 /* insert at end of list */ 1439 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 1440 if (oldadp != NULL && oldadp->ad_lbn == lbn) 1441 allocdirect_merge(adphead, adp, oldadp); 1442 FREE_LOCK(&lk); 1443 return; 1444 } 1445 TAILQ_FOREACH(oldadp, adphead, ad_next) { 1446 if (oldadp->ad_lbn >= lbn) 1447 break; 1448 } 1449 if (oldadp == NULL) { 1450 FREE_LOCK(&lk); 1451 panic("softdep_setup_allocdirect: lost entry"); 1452 } 1453 /* insert in middle of list */ 1454 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 1455 if (oldadp->ad_lbn == lbn) 1456 allocdirect_merge(adphead, adp, oldadp); 1457 FREE_LOCK(&lk); 1458 } 1459 1460 /* 1461 * Replace an old allocdirect dependency with a newer one. 1462 * This routine must be called with splbio interrupts blocked. 1463 */ 1464 static void 1465 allocdirect_merge(adphead, newadp, oldadp) 1466 struct allocdirectlst *adphead; /* head of list holding allocdirects */ 1467 struct allocdirect *newadp; /* allocdirect being added */ 1468 struct allocdirect *oldadp; /* existing allocdirect being checked */ 1469 { 1470 struct worklist *wk; 1471 struct freefrag *freefrag; 1472 struct newdirblk *newdirblk; 1473 1474 #ifdef DEBUG 1475 if (lk.lkt_held == NOHOLDER) 1476 panic("allocdirect_merge: lock not held"); 1477 #endif 1478 if (newadp->ad_oldblkno != oldadp->ad_newblkno || 1479 newadp->ad_oldsize != oldadp->ad_newsize || 1480 newadp->ad_lbn >= NDADDR) { 1481 FREE_LOCK(&lk); 1482 panic("%s %jd != new %jd || old size %ld != new %ld", 1483 "allocdirect_merge: old blkno", 1484 (intmax_t)newadp->ad_oldblkno, 1485 (intmax_t)oldadp->ad_newblkno, 1486 newadp->ad_oldsize, oldadp->ad_newsize); 1487 } 1488 newadp->ad_oldblkno = oldadp->ad_oldblkno; 1489 newadp->ad_oldsize = oldadp->ad_oldsize; 1490 /* 1491 * If the old dependency had a fragment to free or had never 1492 * previously had a block allocated, then the new dependency 1493 * can immediately post its freefrag and adopt the old freefrag. 1494 * This action is done by swapping the freefrag dependencies. 1495 * The new dependency gains the old one's freefrag, and the 1496 * old one gets the new one and then immediately puts it on 1497 * the worklist when it is freed by free_allocdirect. It is 1498 * not possible to do this swap when the old dependency had a 1499 * non-zero size but no previous fragment to free. This condition 1500 * arises when the new block is an extension of the old block. 1501 * Here, the first part of the fragment allocated to the new 1502 * dependency is part of the block currently claimed on disk by 1503 * the old dependency, so cannot legitimately be freed until the 1504 * conditions for the new dependency are fulfilled. 1505 */ 1506 if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) { 1507 freefrag = newadp->ad_freefrag; 1508 newadp->ad_freefrag = oldadp->ad_freefrag; 1509 oldadp->ad_freefrag = freefrag; 1510 } 1511 /* 1512 * If we are tracking a new directory-block allocation, 1513 * move it from the old allocdirect to the new allocdirect. 1514 */ 1515 if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) { 1516 newdirblk = WK_NEWDIRBLK(wk); 1517 WORKLIST_REMOVE(&newdirblk->db_list); 1518 if (LIST_FIRST(&oldadp->ad_newdirblk) != NULL) 1519 panic("allocdirect_merge: extra newdirblk"); 1520 WORKLIST_INSERT(&newadp->ad_newdirblk, &newdirblk->db_list); 1521 } 1522 free_allocdirect(adphead, oldadp, 0); 1523 } 1524 1525 /* 1526 * Allocate a new freefrag structure if needed. 1527 */ 1528 static struct freefrag * 1529 newfreefrag(ip, blkno, size) 1530 struct inode *ip; 1531 ufs2_daddr_t blkno; 1532 long size; 1533 { 1534 struct freefrag *freefrag; 1535 struct fs *fs; 1536 1537 if (blkno == 0) 1538 return (NULL); 1539 fs = ip->i_fs; 1540 if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag) 1541 panic("newfreefrag: frag size"); 1542 MALLOC(freefrag, struct freefrag *, sizeof(struct freefrag), 1543 M_FREEFRAG, M_SOFTDEP_FLAGS); 1544 freefrag->ff_list.wk_type = D_FREEFRAG; 1545 freefrag->ff_state = 0; 1546 freefrag->ff_inum = ip->i_number; 1547 freefrag->ff_mnt = ITOV(ip)->v_mount; 1548 freefrag->ff_blkno = blkno; 1549 freefrag->ff_fragsize = size; 1550 return (freefrag); 1551 } 1552 1553 /* 1554 * This workitem de-allocates fragments that were replaced during 1555 * file block allocation. 1556 */ 1557 static void 1558 handle_workitem_freefrag(freefrag) 1559 struct freefrag *freefrag; 1560 { 1561 struct ufsmount *ump = VFSTOUFS(freefrag->ff_mnt); 1562 1563 ffs_blkfree(ump->um_fs, ump->um_devvp, freefrag->ff_blkno, 1564 freefrag->ff_fragsize, freefrag->ff_inum); 1565 FREE(freefrag, M_FREEFRAG); 1566 } 1567 1568 /* 1569 * Indirect block allocation dependencies. 1570 * 1571 * The same dependencies that exist for a direct block also exist when 1572 * a new block is allocated and pointed to by an entry in a block of 1573 * indirect pointers. The undo/redo states described above are also 1574 * used here. Because an indirect block contains many pointers that 1575 * may have dependencies, a second copy of the entire in-memory indirect 1576 * block is kept. The buffer cache copy is always completely up-to-date. 1577 * The second copy, which is used only as a source for disk writes, 1578 * contains only the safe pointers (i.e., those that have no remaining 1579 * update dependencies). The second copy is freed when all pointers 1580 * are safe. The cache is not allowed to replace indirect blocks with 1581 * pending update dependencies. If a buffer containing an indirect 1582 * block with dependencies is written, these routines will mark it 1583 * dirty again. It can only be successfully written once all the 1584 * dependencies are removed. The ffs_fsync routine in conjunction with 1585 * softdep_sync_metadata work together to get all the dependencies 1586 * removed so that a file can be successfully written to disk. Three 1587 * procedures are used when setting up indirect block pointer 1588 * dependencies. The division is necessary because of the organization 1589 * of the "balloc" routine and because of the distinction between file 1590 * pages and file metadata blocks. 1591 */ 1592 1593 /* 1594 * Allocate a new allocindir structure. 1595 */ 1596 static struct allocindir * 1597 newallocindir(ip, ptrno, newblkno, oldblkno) 1598 struct inode *ip; /* inode for file being extended */ 1599 int ptrno; /* offset of pointer in indirect block */ 1600 ufs2_daddr_t newblkno; /* disk block number being added */ 1601 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 1602 { 1603 struct allocindir *aip; 1604 1605 MALLOC(aip, struct allocindir *, sizeof(struct allocindir), 1606 M_ALLOCINDIR, M_SOFTDEP_FLAGS|M_ZERO); 1607 aip->ai_list.wk_type = D_ALLOCINDIR; 1608 aip->ai_state = ATTACHED; 1609 aip->ai_offset = ptrno; 1610 aip->ai_newblkno = newblkno; 1611 aip->ai_oldblkno = oldblkno; 1612 aip->ai_freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize); 1613 return (aip); 1614 } 1615 1616 /* 1617 * Called just before setting an indirect block pointer 1618 * to a newly allocated file page. 1619 */ 1620 void 1621 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 1622 struct inode *ip; /* inode for file being extended */ 1623 ufs_lbn_t lbn; /* allocated block number within file */ 1624 struct buf *bp; /* buffer with indirect blk referencing page */ 1625 int ptrno; /* offset of pointer in indirect block */ 1626 ufs2_daddr_t newblkno; /* disk block number being added */ 1627 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 1628 struct buf *nbp; /* buffer holding allocated page */ 1629 { 1630 struct allocindir *aip; 1631 struct pagedep *pagedep; 1632 1633 aip = newallocindir(ip, ptrno, newblkno, oldblkno); 1634 ACQUIRE_LOCK(&lk); 1635 /* 1636 * If we are allocating a directory page, then we must 1637 * allocate an associated pagedep to track additions and 1638 * deletions. 1639 */ 1640 if ((ip->i_mode & IFMT) == IFDIR && 1641 pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0) 1642 WORKLIST_INSERT(&nbp->b_dep, &pagedep->pd_list); 1643 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_list); 1644 FREE_LOCK(&lk); 1645 setup_allocindir_phase2(bp, ip, aip); 1646 } 1647 1648 /* 1649 * Called just before setting an indirect block pointer to a 1650 * newly allocated indirect block. 1651 */ 1652 void 1653 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 1654 struct buf *nbp; /* newly allocated indirect block */ 1655 struct inode *ip; /* inode for file being extended */ 1656 struct buf *bp; /* indirect block referencing allocated block */ 1657 int ptrno; /* offset of pointer in indirect block */ 1658 ufs2_daddr_t newblkno; /* disk block number being added */ 1659 { 1660 struct allocindir *aip; 1661 1662 aip = newallocindir(ip, ptrno, newblkno, 0); 1663 ACQUIRE_LOCK(&lk); 1664 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_list); 1665 FREE_LOCK(&lk); 1666 setup_allocindir_phase2(bp, ip, aip); 1667 } 1668 1669 /* 1670 * Called to finish the allocation of the "aip" allocated 1671 * by one of the two routines above. 1672 */ 1673 static void 1674 setup_allocindir_phase2(bp, ip, aip) 1675 struct buf *bp; /* in-memory copy of the indirect block */ 1676 struct inode *ip; /* inode for file being extended */ 1677 struct allocindir *aip; /* allocindir allocated by the above routines */ 1678 { 1679 struct worklist *wk; 1680 struct indirdep *indirdep, *newindirdep; 1681 struct bmsafemap *bmsafemap; 1682 struct allocindir *oldaip; 1683 struct freefrag *freefrag; 1684 struct newblk *newblk; 1685 ufs2_daddr_t blkno; 1686 1687 if (bp->b_lblkno >= 0) 1688 panic("setup_allocindir_phase2: not indir blk"); 1689 for (indirdep = NULL, newindirdep = NULL; ; ) { 1690 ACQUIRE_LOCK(&lk); 1691 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 1692 if (wk->wk_type != D_INDIRDEP) 1693 continue; 1694 indirdep = WK_INDIRDEP(wk); 1695 break; 1696 } 1697 if (indirdep == NULL && newindirdep) { 1698 indirdep = newindirdep; 1699 WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list); 1700 newindirdep = NULL; 1701 } 1702 FREE_LOCK(&lk); 1703 if (indirdep) { 1704 if (newblk_lookup(ip->i_fs, aip->ai_newblkno, 0, 1705 &newblk) == 0) 1706 panic("setup_allocindir: lost block"); 1707 ACQUIRE_LOCK(&lk); 1708 if (newblk->nb_state == DEPCOMPLETE) { 1709 aip->ai_state |= DEPCOMPLETE; 1710 aip->ai_buf = NULL; 1711 } else { 1712 bmsafemap = newblk->nb_bmsafemap; 1713 aip->ai_buf = bmsafemap->sm_buf; 1714 LIST_REMOVE(newblk, nb_deps); 1715 LIST_INSERT_HEAD(&bmsafemap->sm_allocindirhd, 1716 aip, ai_deps); 1717 } 1718 LIST_REMOVE(newblk, nb_hash); 1719 FREE(newblk, M_NEWBLK); 1720 aip->ai_indirdep = indirdep; 1721 /* 1722 * Check to see if there is an existing dependency 1723 * for this block. If there is, merge the old 1724 * dependency into the new one. 1725 */ 1726 if (aip->ai_oldblkno == 0) 1727 oldaip = NULL; 1728 else 1729 1730 LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) 1731 if (oldaip->ai_offset == aip->ai_offset) 1732 break; 1733 freefrag = NULL; 1734 if (oldaip != NULL) { 1735 if (oldaip->ai_newblkno != aip->ai_oldblkno) { 1736 FREE_LOCK(&lk); 1737 panic("setup_allocindir_phase2: blkno"); 1738 } 1739 aip->ai_oldblkno = oldaip->ai_oldblkno; 1740 freefrag = aip->ai_freefrag; 1741 aip->ai_freefrag = oldaip->ai_freefrag; 1742 oldaip->ai_freefrag = NULL; 1743 free_allocindir(oldaip, NULL); 1744 } 1745 LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next); 1746 if (ip->i_ump->um_fstype == UFS1) 1747 ((ufs1_daddr_t *)indirdep->ir_savebp->b_data) 1748 [aip->ai_offset] = aip->ai_oldblkno; 1749 else 1750 ((ufs2_daddr_t *)indirdep->ir_savebp->b_data) 1751 [aip->ai_offset] = aip->ai_oldblkno; 1752 FREE_LOCK(&lk); 1753 if (freefrag != NULL) 1754 handle_workitem_freefrag(freefrag); 1755 } 1756 if (newindirdep) { 1757 if (indirdep->ir_savebp != NULL) 1758 brelse(newindirdep->ir_savebp); 1759 WORKITEM_FREE((caddr_t)newindirdep, D_INDIRDEP); 1760 } 1761 if (indirdep) 1762 break; 1763 MALLOC(newindirdep, struct indirdep *, sizeof(struct indirdep), 1764 M_INDIRDEP, M_SOFTDEP_FLAGS); 1765 newindirdep->ir_list.wk_type = D_INDIRDEP; 1766 newindirdep->ir_state = ATTACHED; 1767 if (ip->i_ump->um_fstype == UFS1) 1768 newindirdep->ir_state |= UFS1FMT; 1769 LIST_INIT(&newindirdep->ir_deplisthd); 1770 LIST_INIT(&newindirdep->ir_donehd); 1771 if (bp->b_blkno == bp->b_lblkno) { 1772 ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, NULL, NULL); 1773 bp->b_blkno = blkno; 1774 } 1775 newindirdep->ir_savebp = 1776 getblk(ip->i_devvp, bp->b_blkno, bp->b_bcount, 0, 0); 1777 BUF_KERNPROC(newindirdep->ir_savebp); 1778 bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount); 1779 } 1780 } 1781 1782 /* 1783 * Block de-allocation dependencies. 1784 * 1785 * When blocks are de-allocated, the on-disk pointers must be nullified before 1786 * the blocks are made available for use by other files. (The true 1787 * requirement is that old pointers must be nullified before new on-disk 1788 * pointers are set. We chose this slightly more stringent requirement to 1789 * reduce complexity.) Our implementation handles this dependency by updating 1790 * the inode (or indirect block) appropriately but delaying the actual block 1791 * de-allocation (i.e., freemap and free space count manipulation) until 1792 * after the updated versions reach stable storage. After the disk is 1793 * updated, the blocks can be safely de-allocated whenever it is convenient. 1794 * This implementation handles only the common case of reducing a file's 1795 * length to zero. Other cases are handled by the conventional synchronous 1796 * write approach. 1797 * 1798 * The ffs implementation with which we worked double-checks 1799 * the state of the block pointers and file size as it reduces 1800 * a file's length. Some of this code is replicated here in our 1801 * soft updates implementation. The freeblks->fb_chkcnt field is 1802 * used to transfer a part of this information to the procedure 1803 * that eventually de-allocates the blocks. 1804 * 1805 * This routine should be called from the routine that shortens 1806 * a file's length, before the inode's size or block pointers 1807 * are modified. It will save the block pointer information for 1808 * later release and zero the inode so that the calling routine 1809 * can release it. 1810 */ 1811 void 1812 softdep_setup_freeblocks(ip, length) 1813 struct inode *ip; /* The inode whose length is to be reduced */ 1814 off_t length; /* The new length for the file */ 1815 { 1816 struct freeblks *freeblks; 1817 struct inodedep *inodedep; 1818 struct allocdirect *adp; 1819 struct vnode *vp; 1820 struct buf *bp; 1821 struct fs *fs; 1822 int i, delay, error; 1823 1824 fs = ip->i_fs; 1825 if (length != 0) 1826 panic("softdep_setup_freeblocks: non-zero length"); 1827 MALLOC(freeblks, struct freeblks *, sizeof(struct freeblks), 1828 M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO); 1829 freeblks->fb_list.wk_type = D_FREEBLKS; 1830 freeblks->fb_uid = ip->i_uid; 1831 freeblks->fb_previousinum = ip->i_number; 1832 freeblks->fb_devvp = ip->i_devvp; 1833 freeblks->fb_mnt = ITOV(ip)->v_mount; 1834 freeblks->fb_oldsize = ip->i_size; 1835 freeblks->fb_newsize = length; 1836 freeblks->fb_chkcnt = DIP(ip, i_blocks); 1837 for (i = 0; i < NDADDR; i++) { 1838 freeblks->fb_dblks[i] = DIP(ip, i_db[i]); 1839 DIP(ip, i_db[i]) = 0; 1840 } 1841 for (i = 0; i < NIADDR; i++) { 1842 freeblks->fb_iblks[i] = DIP(ip, i_ib[i]); 1843 DIP(ip, i_ib[i]) = 0; 1844 } 1845 DIP(ip, i_blocks) = 0; 1846 ip->i_size = 0; 1847 DIP(ip, i_size) = 0; 1848 /* 1849 * If the file was removed, then the space being freed was 1850 * accounted for then (see softdep_filereleased()). If the 1851 * file is merely being truncated, then we account for it now. 1852 */ 1853 if ((ip->i_flag & IN_SPACECOUNTED) == 0) 1854 fs->fs_pendingblocks += freeblks->fb_chkcnt; 1855 /* 1856 * Push the zero'ed inode to to its disk buffer so that we are free 1857 * to delete its dependencies below. Once the dependencies are gone 1858 * the buffer can be safely released. 1859 */ 1860 if ((error = bread(ip->i_devvp, 1861 fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 1862 (int)fs->fs_bsize, NOCRED, &bp)) != 0) { 1863 brelse(bp); 1864 softdep_error("softdep_setup_freeblocks", error); 1865 } 1866 if (ip->i_ump->um_fstype == UFS1) 1867 *((struct ufs1_dinode *)bp->b_data + 1868 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1; 1869 else 1870 *((struct ufs2_dinode *)bp->b_data + 1871 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2; 1872 /* 1873 * Find and eliminate any inode dependencies. 1874 */ 1875 ACQUIRE_LOCK(&lk); 1876 (void) inodedep_lookup(fs, ip->i_number, DEPALLOC, &inodedep); 1877 if ((inodedep->id_state & IOSTARTED) != 0) { 1878 FREE_LOCK(&lk); 1879 panic("softdep_setup_freeblocks: inode busy"); 1880 } 1881 /* 1882 * Add the freeblks structure to the list of operations that 1883 * must await the zero'ed inode being written to disk. If we 1884 * still have a bitmap dependency (delay == 0), then the inode 1885 * has never been written to disk, so we can process the 1886 * freeblks below once we have deleted the dependencies. 1887 */ 1888 delay = (inodedep->id_state & DEPCOMPLETE); 1889 if (delay) 1890 WORKLIST_INSERT(&inodedep->id_bufwait, &freeblks->fb_list); 1891 /* 1892 * Because the file length has been truncated to zero, any 1893 * pending block allocation dependency structures associated 1894 * with this inode are obsolete and can simply be de-allocated. 1895 * We must first merge the two dependency lists to get rid of 1896 * any duplicate freefrag structures, then purge the merged list. 1897 * If we still have a bitmap dependency, then the inode has never 1898 * been written to disk, so we can free any fragments without delay. 1899 */ 1900 merge_inode_lists(inodedep); 1901 while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != 0) 1902 free_allocdirect(&inodedep->id_inoupdt, adp, delay); 1903 FREE_LOCK(&lk); 1904 bdwrite(bp); 1905 /* 1906 * We must wait for any I/O in progress to finish so that 1907 * all potential buffers on the dirty list will be visible. 1908 * Once they are all there, walk the list and get rid of 1909 * any dependencies. 1910 */ 1911 vp = ITOV(ip); 1912 ACQUIRE_LOCK(&lk); 1913 drain_output(vp, 1); 1914 while (getdirtybuf(&TAILQ_FIRST(&vp->v_dirtyblkhd), MNT_WAIT)) { 1915 bp = TAILQ_FIRST(&vp->v_dirtyblkhd); 1916 (void) inodedep_lookup(fs, ip->i_number, 0, &inodedep); 1917 deallocate_dependencies(bp, inodedep); 1918 bp->b_flags |= B_INVAL | B_NOCACHE; 1919 FREE_LOCK(&lk); 1920 brelse(bp); 1921 ACQUIRE_LOCK(&lk); 1922 } 1923 if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) != 0) 1924 (void) free_inodedep(inodedep); 1925 FREE_LOCK(&lk); 1926 /* 1927 * If the inode has never been written to disk (delay == 0), 1928 * then we can process the freeblks now that we have deleted 1929 * the dependencies. 1930 */ 1931 if (!delay) 1932 handle_workitem_freeblocks(freeblks, 0); 1933 } 1934 1935 /* 1936 * Reclaim any dependency structures from a buffer that is about to 1937 * be reallocated to a new vnode. The buffer must be locked, thus, 1938 * no I/O completion operations can occur while we are manipulating 1939 * its associated dependencies. The mutex is held so that other I/O's 1940 * associated with related dependencies do not occur. 1941 */ 1942 static void 1943 deallocate_dependencies(bp, inodedep) 1944 struct buf *bp; 1945 struct inodedep *inodedep; 1946 { 1947 struct worklist *wk; 1948 struct indirdep *indirdep; 1949 struct allocindir *aip; 1950 struct pagedep *pagedep; 1951 struct dirrem *dirrem; 1952 struct diradd *dap; 1953 int i; 1954 1955 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) { 1956 switch (wk->wk_type) { 1957 1958 case D_INDIRDEP: 1959 indirdep = WK_INDIRDEP(wk); 1960 /* 1961 * None of the indirect pointers will ever be visible, 1962 * so they can simply be tossed. GOINGAWAY ensures 1963 * that allocated pointers will be saved in the buffer 1964 * cache until they are freed. Note that they will 1965 * only be able to be found by their physical address 1966 * since the inode mapping the logical address will 1967 * be gone. The save buffer used for the safe copy 1968 * was allocated in setup_allocindir_phase2 using 1969 * the physical address so it could be used for this 1970 * purpose. Hence we swap the safe copy with the real 1971 * copy, allowing the safe copy to be freed and holding 1972 * on to the real copy for later use in indir_trunc. 1973 */ 1974 if (indirdep->ir_state & GOINGAWAY) { 1975 FREE_LOCK(&lk); 1976 panic("deallocate_dependencies: already gone"); 1977 } 1978 indirdep->ir_state |= GOINGAWAY; 1979 while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != 0) 1980 free_allocindir(aip, inodedep); 1981 if (bp->b_lblkno >= 0 || 1982 bp->b_blkno != indirdep->ir_savebp->b_lblkno) { 1983 FREE_LOCK(&lk); 1984 panic("deallocate_dependencies: not indir"); 1985 } 1986 bcopy(bp->b_data, indirdep->ir_savebp->b_data, 1987 bp->b_bcount); 1988 WORKLIST_REMOVE(wk); 1989 WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, wk); 1990 continue; 1991 1992 case D_PAGEDEP: 1993 pagedep = WK_PAGEDEP(wk); 1994 /* 1995 * None of the directory additions will ever be 1996 * visible, so they can simply be tossed. 1997 */ 1998 for (i = 0; i < DAHASHSZ; i++) 1999 while ((dap = 2000 LIST_FIRST(&pagedep->pd_diraddhd[i]))) 2001 free_diradd(dap); 2002 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != 0) 2003 free_diradd(dap); 2004 /* 2005 * Copy any directory remove dependencies to the list 2006 * to be processed after the zero'ed inode is written. 2007 * If the inode has already been written, then they 2008 * can be dumped directly onto the work list. 2009 */ 2010 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) { 2011 LIST_REMOVE(dirrem, dm_next); 2012 dirrem->dm_dirinum = pagedep->pd_ino; 2013 if (inodedep == NULL || 2014 (inodedep->id_state & ALLCOMPLETE) == 2015 ALLCOMPLETE) 2016 add_to_worklist(&dirrem->dm_list); 2017 else 2018 WORKLIST_INSERT(&inodedep->id_bufwait, 2019 &dirrem->dm_list); 2020 } 2021 if ((pagedep->pd_state & NEWBLOCK) != 0) { 2022 LIST_FOREACH(wk, &inodedep->id_bufwait, wk_list) 2023 if (wk->wk_type == D_NEWDIRBLK && 2024 WK_NEWDIRBLK(wk)->db_pagedep == 2025 pagedep) 2026 break; 2027 if (wk != NULL) { 2028 WORKLIST_REMOVE(wk); 2029 free_newdirblk(WK_NEWDIRBLK(wk)); 2030 } else { 2031 FREE_LOCK(&lk); 2032 panic("deallocate_dependencies: " 2033 "lost pagedep"); 2034 } 2035 } 2036 WORKLIST_REMOVE(&pagedep->pd_list); 2037 LIST_REMOVE(pagedep, pd_hash); 2038 WORKITEM_FREE(pagedep, D_PAGEDEP); 2039 continue; 2040 2041 case D_ALLOCINDIR: 2042 free_allocindir(WK_ALLOCINDIR(wk), inodedep); 2043 continue; 2044 2045 case D_ALLOCDIRECT: 2046 case D_INODEDEP: 2047 FREE_LOCK(&lk); 2048 panic("deallocate_dependencies: Unexpected type %s", 2049 TYPENAME(wk->wk_type)); 2050 /* NOTREACHED */ 2051 2052 default: 2053 FREE_LOCK(&lk); 2054 panic("deallocate_dependencies: Unknown type %s", 2055 TYPENAME(wk->wk_type)); 2056 /* NOTREACHED */ 2057 } 2058 } 2059 } 2060 2061 /* 2062 * Free an allocdirect. Generate a new freefrag work request if appropriate. 2063 * This routine must be called with splbio interrupts blocked. 2064 */ 2065 static void 2066 free_allocdirect(adphead, adp, delay) 2067 struct allocdirectlst *adphead; 2068 struct allocdirect *adp; 2069 int delay; 2070 { 2071 struct newdirblk *newdirblk; 2072 struct worklist *wk; 2073 2074 #ifdef DEBUG 2075 if (lk.lkt_held == NOHOLDER) 2076 panic("free_allocdirect: lock not held"); 2077 #endif 2078 if ((adp->ad_state & DEPCOMPLETE) == 0) 2079 LIST_REMOVE(adp, ad_deps); 2080 TAILQ_REMOVE(adphead, adp, ad_next); 2081 if ((adp->ad_state & COMPLETE) == 0) 2082 WORKLIST_REMOVE(&adp->ad_list); 2083 if (adp->ad_freefrag != NULL) { 2084 if (delay) 2085 WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait, 2086 &adp->ad_freefrag->ff_list); 2087 else 2088 add_to_worklist(&adp->ad_freefrag->ff_list); 2089 } 2090 if ((wk = LIST_FIRST(&adp->ad_newdirblk)) != NULL) { 2091 newdirblk = WK_NEWDIRBLK(wk); 2092 WORKLIST_REMOVE(&newdirblk->db_list); 2093 if (LIST_FIRST(&adp->ad_newdirblk) != NULL) 2094 panic("free_allocdirect: extra newdirblk"); 2095 if (delay) 2096 WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait, 2097 &newdirblk->db_list); 2098 else 2099 free_newdirblk(newdirblk); 2100 } 2101 WORKITEM_FREE(adp, D_ALLOCDIRECT); 2102 } 2103 2104 /* 2105 * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep. 2106 * This routine must be called with splbio interrupts blocked. 2107 */ 2108 static void 2109 free_newdirblk(newdirblk) 2110 struct newdirblk *newdirblk; 2111 { 2112 struct pagedep *pagedep; 2113 struct diradd *dap; 2114 int i; 2115 2116 #ifdef DEBUG 2117 if (lk.lkt_held == NOHOLDER) 2118 panic("free_newdirblk: lock not held"); 2119 #endif 2120 /* 2121 * If the pagedep is still linked onto the directory buffer 2122 * dependency chain, then some of the entries on the 2123 * pd_pendinghd list may not be committed to disk yet. In 2124 * this case, we will simply clear the NEWBLOCK flag and 2125 * let the pd_pendinghd list be processed when the pagedep 2126 * is next written. If the pagedep is no longer on the buffer 2127 * dependency chain, then all the entries on the pd_pending 2128 * list are committed to disk and we can free them here. 2129 */ 2130 pagedep = newdirblk->db_pagedep; 2131 pagedep->pd_state &= ~NEWBLOCK; 2132 if ((pagedep->pd_state & ONWORKLIST) == 0) 2133 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 2134 free_diradd(dap); 2135 /* 2136 * If no dependencies remain, the pagedep will be freed. 2137 */ 2138 for (i = 0; i < DAHASHSZ; i++) 2139 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) != NULL) 2140 break; 2141 if (i == DAHASHSZ && (pagedep->pd_state & ONWORKLIST) == 0) { 2142 LIST_REMOVE(pagedep, pd_hash); 2143 WORKITEM_FREE(pagedep, D_PAGEDEP); 2144 } 2145 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 2146 } 2147 2148 /* 2149 * Prepare an inode to be freed. The actual free operation is not 2150 * done until the zero'ed inode has been written to disk. 2151 */ 2152 void 2153 softdep_freefile(pvp, ino, mode) 2154 struct vnode *pvp; 2155 ino_t ino; 2156 int mode; 2157 { 2158 struct inode *ip = VTOI(pvp); 2159 struct inodedep *inodedep; 2160 struct freefile *freefile; 2161 2162 /* 2163 * This sets up the inode de-allocation dependency. 2164 */ 2165 MALLOC(freefile, struct freefile *, sizeof(struct freefile), 2166 M_FREEFILE, M_SOFTDEP_FLAGS); 2167 freefile->fx_list.wk_type = D_FREEFILE; 2168 freefile->fx_list.wk_state = 0; 2169 freefile->fx_mode = mode; 2170 freefile->fx_oldinum = ino; 2171 freefile->fx_devvp = ip->i_devvp; 2172 freefile->fx_mnt = ITOV(ip)->v_mount; 2173 if ((ip->i_flag & IN_SPACECOUNTED) == 0) 2174 ip->i_fs->fs_pendinginodes += 1; 2175 2176 /* 2177 * If the inodedep does not exist, then the zero'ed inode has 2178 * been written to disk. If the allocated inode has never been 2179 * written to disk, then the on-disk inode is zero'ed. In either 2180 * case we can free the file immediately. 2181 */ 2182 ACQUIRE_LOCK(&lk); 2183 if (inodedep_lookup(ip->i_fs, ino, 0, &inodedep) == 0 || 2184 check_inode_unwritten(inodedep)) { 2185 FREE_LOCK(&lk); 2186 handle_workitem_freefile(freefile); 2187 return; 2188 } 2189 WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list); 2190 FREE_LOCK(&lk); 2191 } 2192 2193 /* 2194 * Check to see if an inode has never been written to disk. If 2195 * so free the inodedep and return success, otherwise return failure. 2196 * This routine must be called with splbio interrupts blocked. 2197 * 2198 * If we still have a bitmap dependency, then the inode has never 2199 * been written to disk. Drop the dependency as it is no longer 2200 * necessary since the inode is being deallocated. We set the 2201 * ALLCOMPLETE flags since the bitmap now properly shows that the 2202 * inode is not allocated. Even if the inode is actively being 2203 * written, it has been rolled back to its zero'ed state, so we 2204 * are ensured that a zero inode is what is on the disk. For short 2205 * lived files, this change will usually result in removing all the 2206 * dependencies from the inode so that it can be freed immediately. 2207 */ 2208 static int 2209 check_inode_unwritten(inodedep) 2210 struct inodedep *inodedep; 2211 { 2212 2213 if ((inodedep->id_state & DEPCOMPLETE) != 0 || 2214 LIST_FIRST(&inodedep->id_pendinghd) != NULL || 2215 LIST_FIRST(&inodedep->id_bufwait) != NULL || 2216 LIST_FIRST(&inodedep->id_inowait) != NULL || 2217 TAILQ_FIRST(&inodedep->id_inoupdt) != NULL || 2218 TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL || 2219 inodedep->id_nlinkdelta != 0) 2220 return (0); 2221 inodedep->id_state |= ALLCOMPLETE; 2222 LIST_REMOVE(inodedep, id_deps); 2223 inodedep->id_buf = NULL; 2224 if (inodedep->id_state & ONWORKLIST) 2225 WORKLIST_REMOVE(&inodedep->id_list); 2226 if (inodedep->id_savedino1 != NULL) { 2227 FREE(inodedep->id_savedino1, M_INODEDEP); 2228 inodedep->id_savedino1 = NULL; 2229 } 2230 if (free_inodedep(inodedep) == 0) { 2231 FREE_LOCK(&lk); 2232 panic("check_inode_unwritten: busy inode"); 2233 } 2234 return (1); 2235 } 2236 2237 /* 2238 * Try to free an inodedep structure. Return 1 if it could be freed. 2239 */ 2240 static int 2241 free_inodedep(inodedep) 2242 struct inodedep *inodedep; 2243 { 2244 2245 if ((inodedep->id_state & ONWORKLIST) != 0 || 2246 (inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE || 2247 LIST_FIRST(&inodedep->id_pendinghd) != NULL || 2248 LIST_FIRST(&inodedep->id_bufwait) != NULL || 2249 LIST_FIRST(&inodedep->id_inowait) != NULL || 2250 TAILQ_FIRST(&inodedep->id_inoupdt) != NULL || 2251 TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL || 2252 inodedep->id_nlinkdelta != 0 || inodedep->id_savedino1 != NULL) 2253 return (0); 2254 LIST_REMOVE(inodedep, id_hash); 2255 WORKITEM_FREE(inodedep, D_INODEDEP); 2256 num_inodedep -= 1; 2257 return (1); 2258 } 2259 2260 /* 2261 * This workitem routine performs the block de-allocation. 2262 * The workitem is added to the pending list after the updated 2263 * inode block has been written to disk. As mentioned above, 2264 * checks regarding the number of blocks de-allocated (compared 2265 * to the number of blocks allocated for the file) are also 2266 * performed in this function. 2267 */ 2268 static void 2269 handle_workitem_freeblocks(freeblks, flags) 2270 struct freeblks *freeblks; 2271 int flags; 2272 { 2273 struct inode *ip; 2274 struct vnode *vp; 2275 struct fs *fs; 2276 int i, nblocks, level, bsize; 2277 ufs2_daddr_t bn, blocksreleased = 0; 2278 int error, allerror = 0; 2279 ufs_lbn_t baselbns[NIADDR], tmpval; 2280 2281 fs = VFSTOUFS(freeblks->fb_mnt)->um_fs; 2282 tmpval = 1; 2283 baselbns[0] = NDADDR; 2284 for (i = 1; i < NIADDR; i++) { 2285 tmpval *= NINDIR(fs); 2286 baselbns[i] = baselbns[i - 1] + tmpval; 2287 } 2288 nblocks = btodb(fs->fs_bsize); 2289 blocksreleased = 0; 2290 /* 2291 * Indirect blocks first. 2292 */ 2293 for (level = (NIADDR - 1); level >= 0; level--) { 2294 if ((bn = freeblks->fb_iblks[level]) == 0) 2295 continue; 2296 if ((error = indir_trunc(freeblks, fsbtodb(fs, bn), level, 2297 baselbns[level], &blocksreleased)) == 0) 2298 allerror = error; 2299 ffs_blkfree(fs, freeblks->fb_devvp, bn, fs->fs_bsize, 2300 freeblks->fb_previousinum); 2301 fs->fs_pendingblocks -= nblocks; 2302 blocksreleased += nblocks; 2303 } 2304 /* 2305 * All direct blocks or frags. 2306 */ 2307 for (i = (NDADDR - 1); i >= 0; i--) { 2308 if ((bn = freeblks->fb_dblks[i]) == 0) 2309 continue; 2310 bsize = sblksize(fs, freeblks->fb_oldsize, i); 2311 ffs_blkfree(fs, freeblks->fb_devvp, bn, bsize, 2312 freeblks->fb_previousinum); 2313 fs->fs_pendingblocks -= btodb(bsize); 2314 blocksreleased += btodb(bsize); 2315 } 2316 /* 2317 * If we still have not finished background cleanup, then check 2318 * to see if the block count needs to be adjusted. 2319 */ 2320 if (freeblks->fb_chkcnt != blocksreleased && 2321 (fs->fs_flags & FS_UNCLEAN) != 0 && 2322 VFS_VGET(freeblks->fb_mnt, freeblks->fb_previousinum, 2323 (flags & LK_NOWAIT) | LK_EXCLUSIVE, &vp) == 0) { 2324 ip = VTOI(vp); 2325 DIP(ip, i_blocks) += freeblks->fb_chkcnt - blocksreleased; 2326 ip->i_flag |= IN_CHANGE; 2327 vput(vp); 2328 } 2329 2330 #ifdef DIAGNOSTIC 2331 if (freeblks->fb_chkcnt != blocksreleased && 2332 ((fs->fs_flags & FS_UNCLEAN) == 0 || (flags & LK_NOWAIT) != 0)) 2333 printf("handle_workitem_freeblocks: block count"); 2334 if (allerror) 2335 softdep_error("handle_workitem_freeblks", allerror); 2336 #endif /* DIAGNOSTIC */ 2337 2338 WORKITEM_FREE(freeblks, D_FREEBLKS); 2339 } 2340 2341 /* 2342 * Release blocks associated with the inode ip and stored in the indirect 2343 * block dbn. If level is greater than SINGLE, the block is an indirect block 2344 * and recursive calls to indirtrunc must be used to cleanse other indirect 2345 * blocks. 2346 */ 2347 static int 2348 indir_trunc(freeblks, dbn, level, lbn, countp) 2349 struct freeblks *freeblks; 2350 ufs2_daddr_t dbn; 2351 int level; 2352 ufs_lbn_t lbn; 2353 ufs2_daddr_t *countp; 2354 { 2355 struct buf *bp; 2356 struct fs *fs; 2357 struct worklist *wk; 2358 struct indirdep *indirdep; 2359 ufs1_daddr_t *bap1 = 0; 2360 ufs2_daddr_t nb, *bap2 = 0; 2361 ufs_lbn_t lbnadd; 2362 int i, nblocks, ufs1fmt; 2363 int error, allerror = 0; 2364 2365 fs = VFSTOUFS(freeblks->fb_mnt)->um_fs; 2366 lbnadd = 1; 2367 for (i = level; i > 0; i--) 2368 lbnadd *= NINDIR(fs); 2369 /* 2370 * Get buffer of block pointers to be freed. This routine is not 2371 * called until the zero'ed inode has been written, so it is safe 2372 * to free blocks as they are encountered. Because the inode has 2373 * been zero'ed, calls to bmap on these blocks will fail. So, we 2374 * have to use the on-disk address and the block device for the 2375 * filesystem to look them up. If the file was deleted before its 2376 * indirect blocks were all written to disk, the routine that set 2377 * us up (deallocate_dependencies) will have arranged to leave 2378 * a complete copy of the indirect block in memory for our use. 2379 * Otherwise we have to read the blocks in from the disk. 2380 */ 2381 ACQUIRE_LOCK(&lk); 2382 if ((bp = incore(freeblks->fb_devvp, dbn)) != NULL && 2383 (wk = LIST_FIRST(&bp->b_dep)) != NULL) { 2384 if (wk->wk_type != D_INDIRDEP || 2385 (indirdep = WK_INDIRDEP(wk))->ir_savebp != bp || 2386 (indirdep->ir_state & GOINGAWAY) == 0) { 2387 FREE_LOCK(&lk); 2388 panic("indir_trunc: lost indirdep"); 2389 } 2390 WORKLIST_REMOVE(wk); 2391 WORKITEM_FREE(indirdep, D_INDIRDEP); 2392 if (LIST_FIRST(&bp->b_dep) != NULL) { 2393 FREE_LOCK(&lk); 2394 panic("indir_trunc: dangling dep"); 2395 } 2396 FREE_LOCK(&lk); 2397 } else { 2398 FREE_LOCK(&lk); 2399 error = bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize, 2400 NOCRED, &bp); 2401 if (error) { 2402 brelse(bp); 2403 return (error); 2404 } 2405 } 2406 /* 2407 * Recursively free indirect blocks. 2408 */ 2409 if (VFSTOUFS(freeblks->fb_mnt)->um_fstype == UFS1) { 2410 ufs1fmt = 1; 2411 bap1 = (ufs1_daddr_t *)bp->b_data; 2412 } else { 2413 ufs1fmt = 0; 2414 bap2 = (ufs2_daddr_t *)bp->b_data; 2415 } 2416 nblocks = btodb(fs->fs_bsize); 2417 for (i = NINDIR(fs) - 1; i >= 0; i--) { 2418 if (ufs1fmt) 2419 nb = bap1[i]; 2420 else 2421 nb = bap2[i]; 2422 if (nb == 0) 2423 continue; 2424 if (level != 0) { 2425 if ((error = indir_trunc(freeblks, fsbtodb(fs, nb), 2426 level - 1, lbn + (i * lbnadd), countp)) != 0) 2427 allerror = error; 2428 } 2429 ffs_blkfree(fs, freeblks->fb_devvp, nb, fs->fs_bsize, 2430 freeblks->fb_previousinum); 2431 fs->fs_pendingblocks -= nblocks; 2432 *countp += nblocks; 2433 } 2434 bp->b_flags |= B_INVAL | B_NOCACHE; 2435 brelse(bp); 2436 return (allerror); 2437 } 2438 2439 /* 2440 * Free an allocindir. 2441 * This routine must be called with splbio interrupts blocked. 2442 */ 2443 static void 2444 free_allocindir(aip, inodedep) 2445 struct allocindir *aip; 2446 struct inodedep *inodedep; 2447 { 2448 struct freefrag *freefrag; 2449 2450 #ifdef DEBUG 2451 if (lk.lkt_held == NOHOLDER) 2452 panic("free_allocindir: lock not held"); 2453 #endif 2454 if ((aip->ai_state & DEPCOMPLETE) == 0) 2455 LIST_REMOVE(aip, ai_deps); 2456 if (aip->ai_state & ONWORKLIST) 2457 WORKLIST_REMOVE(&aip->ai_list); 2458 LIST_REMOVE(aip, ai_next); 2459 if ((freefrag = aip->ai_freefrag) != NULL) { 2460 if (inodedep == NULL) 2461 add_to_worklist(&freefrag->ff_list); 2462 else 2463 WORKLIST_INSERT(&inodedep->id_bufwait, 2464 &freefrag->ff_list); 2465 } 2466 WORKITEM_FREE(aip, D_ALLOCINDIR); 2467 } 2468 2469 /* 2470 * Directory entry addition dependencies. 2471 * 2472 * When adding a new directory entry, the inode (with its incremented link 2473 * count) must be written to disk before the directory entry's pointer to it. 2474 * Also, if the inode is newly allocated, the corresponding freemap must be 2475 * updated (on disk) before the directory entry's pointer. These requirements 2476 * are met via undo/redo on the directory entry's pointer, which consists 2477 * simply of the inode number. 2478 * 2479 * As directory entries are added and deleted, the free space within a 2480 * directory block can become fragmented. The ufs filesystem will compact 2481 * a fragmented directory block to make space for a new entry. When this 2482 * occurs, the offsets of previously added entries change. Any "diradd" 2483 * dependency structures corresponding to these entries must be updated with 2484 * the new offsets. 2485 */ 2486 2487 /* 2488 * This routine is called after the in-memory inode's link 2489 * count has been incremented, but before the directory entry's 2490 * pointer to the inode has been set. 2491 */ 2492 int 2493 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk) 2494 struct buf *bp; /* buffer containing directory block */ 2495 struct inode *dp; /* inode for directory */ 2496 off_t diroffset; /* offset of new entry in directory */ 2497 ino_t newinum; /* inode referenced by new directory entry */ 2498 struct buf *newdirbp; /* non-NULL => contents of new mkdir */ 2499 int isnewblk; /* entry is in a newly allocated block */ 2500 { 2501 int offset; /* offset of new entry within directory block */ 2502 ufs_lbn_t lbn; /* block in directory containing new entry */ 2503 struct fs *fs; 2504 struct diradd *dap; 2505 struct allocdirect *adp; 2506 struct pagedep *pagedep; 2507 struct inodedep *inodedep; 2508 struct newdirblk *newdirblk = 0; 2509 struct mkdir *mkdir1, *mkdir2; 2510 2511 /* 2512 * Whiteouts have no dependencies. 2513 */ 2514 if (newinum == WINO) { 2515 if (newdirbp != NULL) 2516 bdwrite(newdirbp); 2517 return (0); 2518 } 2519 2520 fs = dp->i_fs; 2521 lbn = lblkno(fs, diroffset); 2522 offset = blkoff(fs, diroffset); 2523 MALLOC(dap, struct diradd *, sizeof(struct diradd), M_DIRADD, 2524 M_SOFTDEP_FLAGS|M_ZERO); 2525 dap->da_list.wk_type = D_DIRADD; 2526 dap->da_offset = offset; 2527 dap->da_newinum = newinum; 2528 dap->da_state = ATTACHED; 2529 if (isnewblk && lbn < NDADDR && fragoff(fs, diroffset) == 0) { 2530 MALLOC(newdirblk, struct newdirblk *, sizeof(struct newdirblk), 2531 M_NEWDIRBLK, M_SOFTDEP_FLAGS); 2532 newdirblk->db_list.wk_type = D_NEWDIRBLK; 2533 newdirblk->db_state = 0; 2534 } 2535 if (newdirbp == NULL) { 2536 dap->da_state |= DEPCOMPLETE; 2537 ACQUIRE_LOCK(&lk); 2538 } else { 2539 dap->da_state |= MKDIR_BODY | MKDIR_PARENT; 2540 MALLOC(mkdir1, struct mkdir *, sizeof(struct mkdir), M_MKDIR, 2541 M_SOFTDEP_FLAGS); 2542 mkdir1->md_list.wk_type = D_MKDIR; 2543 mkdir1->md_state = MKDIR_BODY; 2544 mkdir1->md_diradd = dap; 2545 MALLOC(mkdir2, struct mkdir *, sizeof(struct mkdir), M_MKDIR, 2546 M_SOFTDEP_FLAGS); 2547 mkdir2->md_list.wk_type = D_MKDIR; 2548 mkdir2->md_state = MKDIR_PARENT; 2549 mkdir2->md_diradd = dap; 2550 /* 2551 * Dependency on "." and ".." being written to disk. 2552 */ 2553 mkdir1->md_buf = newdirbp; 2554 ACQUIRE_LOCK(&lk); 2555 LIST_INSERT_HEAD(&mkdirlisthd, mkdir1, md_mkdirs); 2556 WORKLIST_INSERT(&newdirbp->b_dep, &mkdir1->md_list); 2557 FREE_LOCK(&lk); 2558 bdwrite(newdirbp); 2559 /* 2560 * Dependency on link count increase for parent directory 2561 */ 2562 ACQUIRE_LOCK(&lk); 2563 if (inodedep_lookup(fs, dp->i_number, 0, &inodedep) == 0 2564 || (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 2565 dap->da_state &= ~MKDIR_PARENT; 2566 WORKITEM_FREE(mkdir2, D_MKDIR); 2567 } else { 2568 LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs); 2569 WORKLIST_INSERT(&inodedep->id_bufwait,&mkdir2->md_list); 2570 } 2571 } 2572 /* 2573 * Link into parent directory pagedep to await its being written. 2574 */ 2575 if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0) 2576 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 2577 dap->da_pagedep = pagedep; 2578 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap, 2579 da_pdlist); 2580 /* 2581 * Link into its inodedep. Put it on the id_bufwait list if the inode 2582 * is not yet written. If it is written, do the post-inode write 2583 * processing to put it on the id_pendinghd list. 2584 */ 2585 (void) inodedep_lookup(fs, newinum, DEPALLOC, &inodedep); 2586 if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) 2587 diradd_inode_written(dap, inodedep); 2588 else 2589 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 2590 if (isnewblk) { 2591 /* 2592 * Directories growing into indirect blocks are rare 2593 * enough and the frequency of new block allocation 2594 * in those cases even more rare, that we choose not 2595 * to bother tracking them. Rather we simply force the 2596 * new directory entry to disk. 2597 */ 2598 if (lbn >= NDADDR) { 2599 FREE_LOCK(&lk); 2600 /* 2601 * We only have a new allocation when at the 2602 * beginning of a new block, not when we are 2603 * expanding into an existing block. 2604 */ 2605 if (blkoff(fs, diroffset) == 0) 2606 return (1); 2607 return (0); 2608 } 2609 /* 2610 * We only have a new allocation when at the beginning 2611 * of a new fragment, not when we are expanding into an 2612 * existing fragment. Also, there is nothing to do if we 2613 * are already tracking this block. 2614 */ 2615 if (fragoff(fs, diroffset) != 0) { 2616 FREE_LOCK(&lk); 2617 return (0); 2618 } 2619 if ((pagedep->pd_state & NEWBLOCK) != 0) { 2620 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 2621 FREE_LOCK(&lk); 2622 return (0); 2623 } 2624 /* 2625 * Find our associated allocdirect and have it track us. 2626 */ 2627 if (inodedep_lookup(fs, dp->i_number, 0, &inodedep) == 0) 2628 panic("softdep_setup_directory_add: lost inodedep"); 2629 adp = TAILQ_LAST(&inodedep->id_newinoupdt, allocdirectlst); 2630 if (adp == NULL || adp->ad_lbn != lbn) { 2631 FREE_LOCK(&lk); 2632 panic("softdep_setup_directory_add: lost entry"); 2633 } 2634 pagedep->pd_state |= NEWBLOCK; 2635 newdirblk->db_pagedep = pagedep; 2636 WORKLIST_INSERT(&adp->ad_newdirblk, &newdirblk->db_list); 2637 } 2638 FREE_LOCK(&lk); 2639 return (0); 2640 } 2641 2642 /* 2643 * This procedure is called to change the offset of a directory 2644 * entry when compacting a directory block which must be owned 2645 * exclusively by the caller. Note that the actual entry movement 2646 * must be done in this procedure to ensure that no I/O completions 2647 * occur while the move is in progress. 2648 */ 2649 void 2650 softdep_change_directoryentry_offset(dp, base, oldloc, newloc, entrysize) 2651 struct inode *dp; /* inode for directory */ 2652 caddr_t base; /* address of dp->i_offset */ 2653 caddr_t oldloc; /* address of old directory location */ 2654 caddr_t newloc; /* address of new directory location */ 2655 int entrysize; /* size of directory entry */ 2656 { 2657 int offset, oldoffset, newoffset; 2658 struct pagedep *pagedep; 2659 struct diradd *dap; 2660 ufs_lbn_t lbn; 2661 2662 ACQUIRE_LOCK(&lk); 2663 lbn = lblkno(dp->i_fs, dp->i_offset); 2664 offset = blkoff(dp->i_fs, dp->i_offset); 2665 if (pagedep_lookup(dp, lbn, 0, &pagedep) == 0) 2666 goto done; 2667 oldoffset = offset + (oldloc - base); 2668 newoffset = offset + (newloc - base); 2669 2670 LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(oldoffset)], da_pdlist) { 2671 if (dap->da_offset != oldoffset) 2672 continue; 2673 dap->da_offset = newoffset; 2674 if (DIRADDHASH(newoffset) == DIRADDHASH(oldoffset)) 2675 break; 2676 LIST_REMOVE(dap, da_pdlist); 2677 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(newoffset)], 2678 dap, da_pdlist); 2679 break; 2680 } 2681 if (dap == NULL) { 2682 2683 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) { 2684 if (dap->da_offset == oldoffset) { 2685 dap->da_offset = newoffset; 2686 break; 2687 } 2688 } 2689 } 2690 done: 2691 bcopy(oldloc, newloc, entrysize); 2692 FREE_LOCK(&lk); 2693 } 2694 2695 /* 2696 * Free a diradd dependency structure. This routine must be called 2697 * with splbio interrupts blocked. 2698 */ 2699 static void 2700 free_diradd(dap) 2701 struct diradd *dap; 2702 { 2703 struct dirrem *dirrem; 2704 struct pagedep *pagedep; 2705 struct inodedep *inodedep; 2706 struct mkdir *mkdir, *nextmd; 2707 2708 #ifdef DEBUG 2709 if (lk.lkt_held == NOHOLDER) 2710 panic("free_diradd: lock not held"); 2711 #endif 2712 WORKLIST_REMOVE(&dap->da_list); 2713 LIST_REMOVE(dap, da_pdlist); 2714 if ((dap->da_state & DIRCHG) == 0) { 2715 pagedep = dap->da_pagedep; 2716 } else { 2717 dirrem = dap->da_previous; 2718 pagedep = dirrem->dm_pagedep; 2719 dirrem->dm_dirinum = pagedep->pd_ino; 2720 add_to_worklist(&dirrem->dm_list); 2721 } 2722 if (inodedep_lookup(VFSTOUFS(pagedep->pd_mnt)->um_fs, dap->da_newinum, 2723 0, &inodedep) != 0) 2724 (void) free_inodedep(inodedep); 2725 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 2726 for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) { 2727 nextmd = LIST_NEXT(mkdir, md_mkdirs); 2728 if (mkdir->md_diradd != dap) 2729 continue; 2730 dap->da_state &= ~mkdir->md_state; 2731 WORKLIST_REMOVE(&mkdir->md_list); 2732 LIST_REMOVE(mkdir, md_mkdirs); 2733 WORKITEM_FREE(mkdir, D_MKDIR); 2734 } 2735 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 2736 FREE_LOCK(&lk); 2737 panic("free_diradd: unfound ref"); 2738 } 2739 } 2740 WORKITEM_FREE(dap, D_DIRADD); 2741 } 2742 2743 /* 2744 * Directory entry removal dependencies. 2745 * 2746 * When removing a directory entry, the entry's inode pointer must be 2747 * zero'ed on disk before the corresponding inode's link count is decremented 2748 * (possibly freeing the inode for re-use). This dependency is handled by 2749 * updating the directory entry but delaying the inode count reduction until 2750 * after the directory block has been written to disk. After this point, the 2751 * inode count can be decremented whenever it is convenient. 2752 */ 2753 2754 /* 2755 * This routine should be called immediately after removing 2756 * a directory entry. The inode's link count should not be 2757 * decremented by the calling procedure -- the soft updates 2758 * code will do this task when it is safe. 2759 */ 2760 void 2761 softdep_setup_remove(bp, dp, ip, isrmdir) 2762 struct buf *bp; /* buffer containing directory block */ 2763 struct inode *dp; /* inode for the directory being modified */ 2764 struct inode *ip; /* inode for directory entry being removed */ 2765 int isrmdir; /* indicates if doing RMDIR */ 2766 { 2767 struct dirrem *dirrem, *prevdirrem; 2768 2769 /* 2770 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK. 2771 */ 2772 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 2773 2774 /* 2775 * If the COMPLETE flag is clear, then there were no active 2776 * entries and we want to roll back to a zeroed entry until 2777 * the new inode is committed to disk. If the COMPLETE flag is 2778 * set then we have deleted an entry that never made it to 2779 * disk. If the entry we deleted resulted from a name change, 2780 * then the old name still resides on disk. We cannot delete 2781 * its inode (returned to us in prevdirrem) until the zeroed 2782 * directory entry gets to disk. The new inode has never been 2783 * referenced on the disk, so can be deleted immediately. 2784 */ 2785 if ((dirrem->dm_state & COMPLETE) == 0) { 2786 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem, 2787 dm_next); 2788 FREE_LOCK(&lk); 2789 } else { 2790 if (prevdirrem != NULL) 2791 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, 2792 prevdirrem, dm_next); 2793 dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino; 2794 FREE_LOCK(&lk); 2795 handle_workitem_remove(dirrem, NULL); 2796 } 2797 } 2798 2799 /* 2800 * Allocate a new dirrem if appropriate and return it along with 2801 * its associated pagedep. Called without a lock, returns with lock. 2802 */ 2803 static long num_dirrem; /* number of dirrem allocated */ 2804 static struct dirrem * 2805 newdirrem(bp, dp, ip, isrmdir, prevdirremp) 2806 struct buf *bp; /* buffer containing directory block */ 2807 struct inode *dp; /* inode for the directory being modified */ 2808 struct inode *ip; /* inode for directory entry being removed */ 2809 int isrmdir; /* indicates if doing RMDIR */ 2810 struct dirrem **prevdirremp; /* previously referenced inode, if any */ 2811 { 2812 int offset; 2813 ufs_lbn_t lbn; 2814 struct diradd *dap; 2815 struct dirrem *dirrem; 2816 struct pagedep *pagedep; 2817 2818 /* 2819 * Whiteouts have no deletion dependencies. 2820 */ 2821 if (ip == NULL) 2822 panic("newdirrem: whiteout"); 2823 /* 2824 * If we are over our limit, try to improve the situation. 2825 * Limiting the number of dirrem structures will also limit 2826 * the number of freefile and freeblks structures. 2827 */ 2828 if (num_dirrem > max_softdeps / 2) 2829 (void) request_cleanup(FLUSH_REMOVE, 0); 2830 num_dirrem += 1; 2831 MALLOC(dirrem, struct dirrem *, sizeof(struct dirrem), 2832 M_DIRREM, M_SOFTDEP_FLAGS|M_ZERO); 2833 dirrem->dm_list.wk_type = D_DIRREM; 2834 dirrem->dm_state = isrmdir ? RMDIR : 0; 2835 dirrem->dm_mnt = ITOV(ip)->v_mount; 2836 dirrem->dm_oldinum = ip->i_number; 2837 *prevdirremp = NULL; 2838 2839 ACQUIRE_LOCK(&lk); 2840 lbn = lblkno(dp->i_fs, dp->i_offset); 2841 offset = blkoff(dp->i_fs, dp->i_offset); 2842 if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0) 2843 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 2844 dirrem->dm_pagedep = pagedep; 2845 /* 2846 * Check for a diradd dependency for the same directory entry. 2847 * If present, then both dependencies become obsolete and can 2848 * be de-allocated. Check for an entry on both the pd_dirraddhd 2849 * list and the pd_pendinghd list. 2850 */ 2851 2852 LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist) 2853 if (dap->da_offset == offset) 2854 break; 2855 if (dap == NULL) { 2856 2857 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) 2858 if (dap->da_offset == offset) 2859 break; 2860 if (dap == NULL) 2861 return (dirrem); 2862 } 2863 /* 2864 * Must be ATTACHED at this point. 2865 */ 2866 if ((dap->da_state & ATTACHED) == 0) { 2867 FREE_LOCK(&lk); 2868 panic("newdirrem: not ATTACHED"); 2869 } 2870 if (dap->da_newinum != ip->i_number) { 2871 FREE_LOCK(&lk); 2872 panic("newdirrem: inum %d should be %d", 2873 ip->i_number, dap->da_newinum); 2874 } 2875 /* 2876 * If we are deleting a changed name that never made it to disk, 2877 * then return the dirrem describing the previous inode (which 2878 * represents the inode currently referenced from this entry on disk). 2879 */ 2880 if ((dap->da_state & DIRCHG) != 0) { 2881 *prevdirremp = dap->da_previous; 2882 dap->da_state &= ~DIRCHG; 2883 dap->da_pagedep = pagedep; 2884 } 2885 /* 2886 * We are deleting an entry that never made it to disk. 2887 * Mark it COMPLETE so we can delete its inode immediately. 2888 */ 2889 dirrem->dm_state |= COMPLETE; 2890 free_diradd(dap); 2891 return (dirrem); 2892 } 2893 2894 /* 2895 * Directory entry change dependencies. 2896 * 2897 * Changing an existing directory entry requires that an add operation 2898 * be completed first followed by a deletion. The semantics for the addition 2899 * are identical to the description of adding a new entry above except 2900 * that the rollback is to the old inode number rather than zero. Once 2901 * the addition dependency is completed, the removal is done as described 2902 * in the removal routine above. 2903 */ 2904 2905 /* 2906 * This routine should be called immediately after changing 2907 * a directory entry. The inode's link count should not be 2908 * decremented by the calling procedure -- the soft updates 2909 * code will perform this task when it is safe. 2910 */ 2911 void 2912 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 2913 struct buf *bp; /* buffer containing directory block */ 2914 struct inode *dp; /* inode for the directory being modified */ 2915 struct inode *ip; /* inode for directory entry being removed */ 2916 ino_t newinum; /* new inode number for changed entry */ 2917 int isrmdir; /* indicates if doing RMDIR */ 2918 { 2919 int offset; 2920 struct diradd *dap = NULL; 2921 struct dirrem *dirrem, *prevdirrem; 2922 struct pagedep *pagedep; 2923 struct inodedep *inodedep; 2924 2925 offset = blkoff(dp->i_fs, dp->i_offset); 2926 2927 /* 2928 * Whiteouts do not need diradd dependencies. 2929 */ 2930 if (newinum != WINO) { 2931 MALLOC(dap, struct diradd *, sizeof(struct diradd), 2932 M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO); 2933 dap->da_list.wk_type = D_DIRADD; 2934 dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE; 2935 dap->da_offset = offset; 2936 dap->da_newinum = newinum; 2937 } 2938 2939 /* 2940 * Allocate a new dirrem and ACQUIRE_LOCK. 2941 */ 2942 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 2943 pagedep = dirrem->dm_pagedep; 2944 /* 2945 * The possible values for isrmdir: 2946 * 0 - non-directory file rename 2947 * 1 - directory rename within same directory 2948 * inum - directory rename to new directory of given inode number 2949 * When renaming to a new directory, we are both deleting and 2950 * creating a new directory entry, so the link count on the new 2951 * directory should not change. Thus we do not need the followup 2952 * dirrem which is usually done in handle_workitem_remove. We set 2953 * the DIRCHG flag to tell handle_workitem_remove to skip the 2954 * followup dirrem. 2955 */ 2956 if (isrmdir > 1) 2957 dirrem->dm_state |= DIRCHG; 2958 2959 /* 2960 * Whiteouts have no additional dependencies, 2961 * so just put the dirrem on the correct list. 2962 */ 2963 if (newinum == WINO) { 2964 if ((dirrem->dm_state & COMPLETE) == 0) { 2965 LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem, 2966 dm_next); 2967 } else { 2968 dirrem->dm_dirinum = pagedep->pd_ino; 2969 add_to_worklist(&dirrem->dm_list); 2970 } 2971 FREE_LOCK(&lk); 2972 return; 2973 } 2974 2975 /* 2976 * If the COMPLETE flag is clear, then there were no active 2977 * entries and we want to roll back to the previous inode until 2978 * the new inode is committed to disk. If the COMPLETE flag is 2979 * set, then we have deleted an entry that never made it to disk. 2980 * If the entry we deleted resulted from a name change, then the old 2981 * inode reference still resides on disk. Any rollback that we do 2982 * needs to be to that old inode (returned to us in prevdirrem). If 2983 * the entry we deleted resulted from a create, then there is 2984 * no entry on the disk, so we want to roll back to zero rather 2985 * than the uncommitted inode. In either of the COMPLETE cases we 2986 * want to immediately free the unwritten and unreferenced inode. 2987 */ 2988 if ((dirrem->dm_state & COMPLETE) == 0) { 2989 dap->da_previous = dirrem; 2990 } else { 2991 if (prevdirrem != NULL) { 2992 dap->da_previous = prevdirrem; 2993 } else { 2994 dap->da_state &= ~DIRCHG; 2995 dap->da_pagedep = pagedep; 2996 } 2997 dirrem->dm_dirinum = pagedep->pd_ino; 2998 add_to_worklist(&dirrem->dm_list); 2999 } 3000 /* 3001 * Link into its inodedep. Put it on the id_bufwait list if the inode 3002 * is not yet written. If it is written, do the post-inode write 3003 * processing to put it on the id_pendinghd list. 3004 */ 3005 if (inodedep_lookup(dp->i_fs, newinum, DEPALLOC, &inodedep) == 0 || 3006 (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 3007 dap->da_state |= COMPLETE; 3008 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 3009 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 3010 } else { 3011 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], 3012 dap, da_pdlist); 3013 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 3014 } 3015 FREE_LOCK(&lk); 3016 } 3017 3018 /* 3019 * Called whenever the link count on an inode is changed. 3020 * It creates an inode dependency so that the new reference(s) 3021 * to the inode cannot be committed to disk until the updated 3022 * inode has been written. 3023 */ 3024 void 3025 softdep_change_linkcnt(ip) 3026 struct inode *ip; /* the inode with the increased link count */ 3027 { 3028 struct inodedep *inodedep; 3029 3030 ACQUIRE_LOCK(&lk); 3031 (void) inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC, &inodedep); 3032 if (ip->i_nlink < ip->i_effnlink) { 3033 FREE_LOCK(&lk); 3034 panic("softdep_change_linkcnt: bad delta"); 3035 } 3036 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 3037 FREE_LOCK(&lk); 3038 } 3039 3040 /* 3041 * Called when the effective link count and the reference count 3042 * on an inode drops to zero. At this point there are no names 3043 * referencing the file in the filesystem and no active file 3044 * references. The space associated with the file will be freed 3045 * as soon as the necessary soft dependencies are cleared. 3046 */ 3047 void 3048 softdep_releasefile(ip) 3049 struct inode *ip; /* inode with the zero effective link count */ 3050 { 3051 struct inodedep *inodedep; 3052 3053 if (ip->i_effnlink > 0) 3054 panic("softdep_filerelease: file still referenced"); 3055 /* 3056 * We may be called several times as the real reference count 3057 * drops to zero. We only want to account for the space once. 3058 */ 3059 if (ip->i_flag & IN_SPACECOUNTED) 3060 return; 3061 /* 3062 * We have to deactivate a snapshot otherwise copyonwrites may 3063 * add blocks and the cleanup may remove blocks after we have 3064 * tried to account for them. 3065 */ 3066 if ((ip->i_flags & SF_SNAPSHOT) != 0) 3067 ffs_snapremove(ITOV(ip)); 3068 /* 3069 * If we are tracking an nlinkdelta, we have to also remember 3070 * whether we accounted for the freed space yet. 3071 */ 3072 ACQUIRE_LOCK(&lk); 3073 if ((inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep))) 3074 inodedep->id_state |= SPACECOUNTED; 3075 FREE_LOCK(&lk); 3076 ip->i_fs->fs_pendingblocks += DIP(ip, i_blocks); 3077 ip->i_fs->fs_pendinginodes += 1; 3078 ip->i_flag |= IN_SPACECOUNTED; 3079 } 3080 3081 /* 3082 * This workitem decrements the inode's link count. 3083 * If the link count reaches zero, the file is removed. 3084 */ 3085 static void 3086 handle_workitem_remove(dirrem, xp) 3087 struct dirrem *dirrem; 3088 struct vnode *xp; 3089 { 3090 struct thread *td = curthread; 3091 struct inodedep *inodedep; 3092 struct vnode *vp; 3093 struct inode *ip; 3094 ino_t oldinum; 3095 int error; 3096 3097 if ((vp = xp) == NULL && 3098 (error = VFS_VGET(dirrem->dm_mnt, dirrem->dm_oldinum, LK_EXCLUSIVE, 3099 &vp)) != 0) { 3100 softdep_error("handle_workitem_remove: vget", error); 3101 return; 3102 } 3103 ip = VTOI(vp); 3104 ACQUIRE_LOCK(&lk); 3105 if ((inodedep_lookup(ip->i_fs, dirrem->dm_oldinum, 0, &inodedep)) == 0){ 3106 FREE_LOCK(&lk); 3107 panic("handle_workitem_remove: lost inodedep"); 3108 } 3109 /* 3110 * Normal file deletion. 3111 */ 3112 if ((dirrem->dm_state & RMDIR) == 0) { 3113 ip->i_nlink--; 3114 DIP(ip, i_nlink) = ip->i_nlink; 3115 ip->i_flag |= IN_CHANGE; 3116 if (ip->i_nlink < ip->i_effnlink) { 3117 FREE_LOCK(&lk); 3118 panic("handle_workitem_remove: bad file delta"); 3119 } 3120 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 3121 FREE_LOCK(&lk); 3122 vput(vp); 3123 num_dirrem -= 1; 3124 WORKITEM_FREE(dirrem, D_DIRREM); 3125 return; 3126 } 3127 /* 3128 * Directory deletion. Decrement reference count for both the 3129 * just deleted parent directory entry and the reference for ".". 3130 * Next truncate the directory to length zero. When the 3131 * truncation completes, arrange to have the reference count on 3132 * the parent decremented to account for the loss of "..". 3133 */ 3134 ip->i_nlink -= 2; 3135 DIP(ip, i_nlink) = ip->i_nlink; 3136 ip->i_flag |= IN_CHANGE; 3137 if (ip->i_nlink < ip->i_effnlink) { 3138 FREE_LOCK(&lk); 3139 panic("handle_workitem_remove: bad dir delta"); 3140 } 3141 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 3142 FREE_LOCK(&lk); 3143 if ((error = UFS_TRUNCATE(vp, (off_t)0, 0, td->td_ucred, td)) != 0) 3144 softdep_error("handle_workitem_remove: truncate", error); 3145 /* 3146 * Rename a directory to a new parent. Since, we are both deleting 3147 * and creating a new directory entry, the link count on the new 3148 * directory should not change. Thus we skip the followup dirrem. 3149 */ 3150 if (dirrem->dm_state & DIRCHG) { 3151 vput(vp); 3152 num_dirrem -= 1; 3153 WORKITEM_FREE(dirrem, D_DIRREM); 3154 return; 3155 } 3156 /* 3157 * If the inodedep does not exist, then the zero'ed inode has 3158 * been written to disk. If the allocated inode has never been 3159 * written to disk, then the on-disk inode is zero'ed. In either 3160 * case we can remove the file immediately. 3161 */ 3162 ACQUIRE_LOCK(&lk); 3163 dirrem->dm_state = 0; 3164 oldinum = dirrem->dm_oldinum; 3165 dirrem->dm_oldinum = dirrem->dm_dirinum; 3166 if (inodedep_lookup(ip->i_fs, oldinum, 0, &inodedep) == 0 || 3167 check_inode_unwritten(inodedep)) { 3168 FREE_LOCK(&lk); 3169 vput(vp); 3170 handle_workitem_remove(dirrem, NULL); 3171 return; 3172 } 3173 WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list); 3174 FREE_LOCK(&lk); 3175 vput(vp); 3176 } 3177 3178 /* 3179 * Inode de-allocation dependencies. 3180 * 3181 * When an inode's link count is reduced to zero, it can be de-allocated. We 3182 * found it convenient to postpone de-allocation until after the inode is 3183 * written to disk with its new link count (zero). At this point, all of the 3184 * on-disk inode's block pointers are nullified and, with careful dependency 3185 * list ordering, all dependencies related to the inode will be satisfied and 3186 * the corresponding dependency structures de-allocated. So, if/when the 3187 * inode is reused, there will be no mixing of old dependencies with new 3188 * ones. This artificial dependency is set up by the block de-allocation 3189 * procedure above (softdep_setup_freeblocks) and completed by the 3190 * following procedure. 3191 */ 3192 static void 3193 handle_workitem_freefile(freefile) 3194 struct freefile *freefile; 3195 { 3196 struct fs *fs; 3197 struct inodedep *idp; 3198 int error; 3199 3200 fs = VFSTOUFS(freefile->fx_mnt)->um_fs; 3201 #ifdef DEBUG 3202 ACQUIRE_LOCK(&lk); 3203 error = inodedep_lookup(fs, freefile->fx_oldinum, 0, &idp); 3204 FREE_LOCK(&lk); 3205 if (error) 3206 panic("handle_workitem_freefile: inodedep survived"); 3207 #endif 3208 fs->fs_pendinginodes -= 1; 3209 if ((error = ffs_freefile(fs, freefile->fx_devvp, freefile->fx_oldinum, 3210 freefile->fx_mode)) != 0) 3211 softdep_error("handle_workitem_freefile", error); 3212 WORKITEM_FREE(freefile, D_FREEFILE); 3213 } 3214 3215 /* 3216 * Disk writes. 3217 * 3218 * The dependency structures constructed above are most actively used when file 3219 * system blocks are written to disk. No constraints are placed on when a 3220 * block can be written, but unsatisfied update dependencies are made safe by 3221 * modifying (or replacing) the source memory for the duration of the disk 3222 * write. When the disk write completes, the memory block is again brought 3223 * up-to-date. 3224 * 3225 * In-core inode structure reclamation. 3226 * 3227 * Because there are a finite number of "in-core" inode structures, they are 3228 * reused regularly. By transferring all inode-related dependencies to the 3229 * in-memory inode block and indexing them separately (via "inodedep"s), we 3230 * can allow "in-core" inode structures to be reused at any time and avoid 3231 * any increase in contention. 3232 * 3233 * Called just before entering the device driver to initiate a new disk I/O. 3234 * The buffer must be locked, thus, no I/O completion operations can occur 3235 * while we are manipulating its associated dependencies. 3236 */ 3237 static void 3238 softdep_disk_io_initiation(bp) 3239 struct buf *bp; /* structure describing disk write to occur */ 3240 { 3241 struct worklist *wk, *nextwk; 3242 struct indirdep *indirdep; 3243 struct inodedep *inodedep; 3244 3245 /* 3246 * We only care about write operations. There should never 3247 * be dependencies for reads. 3248 */ 3249 if (bp->b_iocmd == BIO_READ) 3250 panic("softdep_disk_io_initiation: read"); 3251 /* 3252 * Do any necessary pre-I/O processing. 3253 */ 3254 for (wk = LIST_FIRST(&bp->b_dep); wk; wk = nextwk) { 3255 nextwk = LIST_NEXT(wk, wk_list); 3256 switch (wk->wk_type) { 3257 3258 case D_PAGEDEP: 3259 initiate_write_filepage(WK_PAGEDEP(wk), bp); 3260 continue; 3261 3262 case D_INODEDEP: 3263 inodedep = WK_INODEDEP(wk); 3264 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) 3265 initiate_write_inodeblock_ufs1(inodedep, bp); 3266 else 3267 initiate_write_inodeblock_ufs2(inodedep, bp); 3268 continue; 3269 3270 case D_INDIRDEP: 3271 indirdep = WK_INDIRDEP(wk); 3272 if (indirdep->ir_state & GOINGAWAY) 3273 panic("disk_io_initiation: indirdep gone"); 3274 /* 3275 * If there are no remaining dependencies, this 3276 * will be writing the real pointers, so the 3277 * dependency can be freed. 3278 */ 3279 if (LIST_FIRST(&indirdep->ir_deplisthd) == NULL) { 3280 indirdep->ir_savebp->b_flags |= B_INVAL | B_NOCACHE; 3281 brelse(indirdep->ir_savebp); 3282 /* inline expand WORKLIST_REMOVE(wk); */ 3283 wk->wk_state &= ~ONWORKLIST; 3284 LIST_REMOVE(wk, wk_list); 3285 WORKITEM_FREE(indirdep, D_INDIRDEP); 3286 continue; 3287 } 3288 /* 3289 * Replace up-to-date version with safe version. 3290 */ 3291 MALLOC(indirdep->ir_saveddata, caddr_t, bp->b_bcount, 3292 M_INDIRDEP, M_SOFTDEP_FLAGS); 3293 ACQUIRE_LOCK(&lk); 3294 indirdep->ir_state &= ~ATTACHED; 3295 indirdep->ir_state |= UNDONE; 3296 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); 3297 bcopy(indirdep->ir_savebp->b_data, bp->b_data, 3298 bp->b_bcount); 3299 FREE_LOCK(&lk); 3300 continue; 3301 3302 case D_MKDIR: 3303 case D_BMSAFEMAP: 3304 case D_ALLOCDIRECT: 3305 case D_ALLOCINDIR: 3306 continue; 3307 3308 default: 3309 panic("handle_disk_io_initiation: Unexpected type %s", 3310 TYPENAME(wk->wk_type)); 3311 /* NOTREACHED */ 3312 } 3313 } 3314 } 3315 3316 /* 3317 * Called from within the procedure above to deal with unsatisfied 3318 * allocation dependencies in a directory. The buffer must be locked, 3319 * thus, no I/O completion operations can occur while we are 3320 * manipulating its associated dependencies. 3321 */ 3322 static void 3323 initiate_write_filepage(pagedep, bp) 3324 struct pagedep *pagedep; 3325 struct buf *bp; 3326 { 3327 struct diradd *dap; 3328 struct direct *ep; 3329 int i; 3330 3331 if (pagedep->pd_state & IOSTARTED) { 3332 /* 3333 * This can only happen if there is a driver that does not 3334 * understand chaining. Here biodone will reissue the call 3335 * to strategy for the incomplete buffers. 3336 */ 3337 printf("initiate_write_filepage: already started\n"); 3338 return; 3339 } 3340 pagedep->pd_state |= IOSTARTED; 3341 ACQUIRE_LOCK(&lk); 3342 for (i = 0; i < DAHASHSZ; i++) { 3343 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 3344 ep = (struct direct *) 3345 ((char *)bp->b_data + dap->da_offset); 3346 if (ep->d_ino != dap->da_newinum) { 3347 FREE_LOCK(&lk); 3348 panic("%s: dir inum %d != new %d", 3349 "initiate_write_filepage", 3350 ep->d_ino, dap->da_newinum); 3351 } 3352 if (dap->da_state & DIRCHG) 3353 ep->d_ino = dap->da_previous->dm_oldinum; 3354 else 3355 ep->d_ino = 0; 3356 dap->da_state &= ~ATTACHED; 3357 dap->da_state |= UNDONE; 3358 } 3359 } 3360 FREE_LOCK(&lk); 3361 } 3362 3363 /* 3364 * Version of initiate_write_inodeblock that handles UFS1 dinodes. 3365 * Note that any bug fixes made to this routine must be done in the 3366 * version found below. 3367 * 3368 * Called from within the procedure above to deal with unsatisfied 3369 * allocation dependencies in an inodeblock. The buffer must be 3370 * locked, thus, no I/O completion operations can occur while we 3371 * are manipulating its associated dependencies. 3372 */ 3373 static void 3374 initiate_write_inodeblock_ufs1(inodedep, bp) 3375 struct inodedep *inodedep; 3376 struct buf *bp; /* The inode block */ 3377 { 3378 struct allocdirect *adp, *lastadp; 3379 struct ufs1_dinode *dp; 3380 struct fs *fs; 3381 ufs_lbn_t i, prevlbn = 0; 3382 int deplist; 3383 3384 if (inodedep->id_state & IOSTARTED) 3385 panic("initiate_write_inodeblock_ufs1: already started"); 3386 inodedep->id_state |= IOSTARTED; 3387 fs = inodedep->id_fs; 3388 dp = (struct ufs1_dinode *)bp->b_data + 3389 ino_to_fsbo(fs, inodedep->id_ino); 3390 /* 3391 * If the bitmap is not yet written, then the allocated 3392 * inode cannot be written to disk. 3393 */ 3394 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 3395 if (inodedep->id_savedino1 != NULL) 3396 panic("initiate_write_inodeblock_ufs1: I/O underway"); 3397 MALLOC(inodedep->id_savedino1, struct ufs1_dinode *, 3398 sizeof(struct ufs1_dinode), M_INODEDEP, M_SOFTDEP_FLAGS); 3399 *inodedep->id_savedino1 = *dp; 3400 bzero((caddr_t)dp, sizeof(struct ufs1_dinode)); 3401 return; 3402 } 3403 /* 3404 * If no dependencies, then there is nothing to roll back. 3405 */ 3406 inodedep->id_savedsize = dp->di_size; 3407 if (TAILQ_FIRST(&inodedep->id_inoupdt) == NULL) 3408 return; 3409 /* 3410 * Set the dependencies to busy. 3411 */ 3412 ACQUIRE_LOCK(&lk); 3413 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 3414 adp = TAILQ_NEXT(adp, ad_next)) { 3415 #ifdef DIAGNOSTIC 3416 if (deplist != 0 && prevlbn >= adp->ad_lbn) { 3417 FREE_LOCK(&lk); 3418 panic("softdep_write_inodeblock: lbn order"); 3419 } 3420 prevlbn = adp->ad_lbn; 3421 if (adp->ad_lbn < NDADDR && 3422 dp->di_db[adp->ad_lbn] != adp->ad_newblkno) { 3423 FREE_LOCK(&lk); 3424 panic("%s: direct pointer #%jd mismatch %d != %jd", 3425 "softdep_write_inodeblock", 3426 (intmax_t)adp->ad_lbn, 3427 dp->di_db[adp->ad_lbn], 3428 (intmax_t)adp->ad_newblkno); 3429 } 3430 if (adp->ad_lbn >= NDADDR && 3431 dp->di_ib[adp->ad_lbn - NDADDR] != adp->ad_newblkno) { 3432 FREE_LOCK(&lk); 3433 panic("%s: indirect pointer #%jd mismatch %d != %jd", 3434 "softdep_write_inodeblock", 3435 (intmax_t)adp->ad_lbn - NDADDR, 3436 dp->di_ib[adp->ad_lbn - NDADDR], 3437 (intmax_t)adp->ad_newblkno); 3438 } 3439 deplist |= 1 << adp->ad_lbn; 3440 if ((adp->ad_state & ATTACHED) == 0) { 3441 FREE_LOCK(&lk); 3442 panic("softdep_write_inodeblock: Unknown state 0x%x", 3443 adp->ad_state); 3444 } 3445 #endif /* DIAGNOSTIC */ 3446 adp->ad_state &= ~ATTACHED; 3447 adp->ad_state |= UNDONE; 3448 } 3449 /* 3450 * The on-disk inode cannot claim to be any larger than the last 3451 * fragment that has been written. Otherwise, the on-disk inode 3452 * might have fragments that were not the last block in the file 3453 * which would corrupt the filesystem. 3454 */ 3455 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 3456 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 3457 if (adp->ad_lbn >= NDADDR) 3458 break; 3459 dp->di_db[adp->ad_lbn] = adp->ad_oldblkno; 3460 /* keep going until hitting a rollback to a frag */ 3461 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 3462 continue; 3463 dp->di_size = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize; 3464 for (i = adp->ad_lbn + 1; i < NDADDR; i++) { 3465 #ifdef DIAGNOSTIC 3466 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) { 3467 FREE_LOCK(&lk); 3468 panic("softdep_write_inodeblock: lost dep1"); 3469 } 3470 #endif /* DIAGNOSTIC */ 3471 dp->di_db[i] = 0; 3472 } 3473 for (i = 0; i < NIADDR; i++) { 3474 #ifdef DIAGNOSTIC 3475 if (dp->di_ib[i] != 0 && 3476 (deplist & ((1 << NDADDR) << i)) == 0) { 3477 FREE_LOCK(&lk); 3478 panic("softdep_write_inodeblock: lost dep2"); 3479 } 3480 #endif /* DIAGNOSTIC */ 3481 dp->di_ib[i] = 0; 3482 } 3483 FREE_LOCK(&lk); 3484 return; 3485 } 3486 /* 3487 * If we have zero'ed out the last allocated block of the file, 3488 * roll back the size to the last currently allocated block. 3489 * We know that this last allocated block is a full-sized as 3490 * we already checked for fragments in the loop above. 3491 */ 3492 if (lastadp != NULL && 3493 dp->di_size <= (lastadp->ad_lbn + 1) * fs->fs_bsize) { 3494 for (i = lastadp->ad_lbn; i >= 0; i--) 3495 if (dp->di_db[i] != 0) 3496 break; 3497 dp->di_size = (i + 1) * fs->fs_bsize; 3498 } 3499 /* 3500 * The only dependencies are for indirect blocks. 3501 * 3502 * The file size for indirect block additions is not guaranteed. 3503 * Such a guarantee would be non-trivial to achieve. The conventional 3504 * synchronous write implementation also does not make this guarantee. 3505 * Fsck should catch and fix discrepancies. Arguably, the file size 3506 * can be over-estimated without destroying integrity when the file 3507 * moves into the indirect blocks (i.e., is large). If we want to 3508 * postpone fsck, we are stuck with this argument. 3509 */ 3510 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 3511 dp->di_ib[adp->ad_lbn - NDADDR] = 0; 3512 FREE_LOCK(&lk); 3513 } 3514 3515 /* 3516 * Version of initiate_write_inodeblock that handles UFS2 dinodes. 3517 * Note that any bug fixes made to this routine must be done in the 3518 * version found above. 3519 * 3520 * Called from within the procedure above to deal with unsatisfied 3521 * allocation dependencies in an inodeblock. The buffer must be 3522 * locked, thus, no I/O completion operations can occur while we 3523 * are manipulating its associated dependencies. 3524 */ 3525 static void 3526 initiate_write_inodeblock_ufs2(inodedep, bp) 3527 struct inodedep *inodedep; 3528 struct buf *bp; /* The inode block */ 3529 { 3530 struct allocdirect *adp, *lastadp; 3531 struct ufs2_dinode *dp; 3532 struct fs *fs; 3533 ufs_lbn_t i, prevlbn = 0; 3534 int deplist; 3535 3536 if (inodedep->id_state & IOSTARTED) 3537 panic("initiate_write_inodeblock_ufs2: already started"); 3538 inodedep->id_state |= IOSTARTED; 3539 fs = inodedep->id_fs; 3540 dp = (struct ufs2_dinode *)bp->b_data + 3541 ino_to_fsbo(fs, inodedep->id_ino); 3542 /* 3543 * If the bitmap is not yet written, then the allocated 3544 * inode cannot be written to disk. 3545 */ 3546 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 3547 if (inodedep->id_savedino2 != NULL) 3548 panic("initiate_write_inodeblock_ufs2: I/O underway"); 3549 MALLOC(inodedep->id_savedino2, struct ufs2_dinode *, 3550 sizeof(struct ufs2_dinode), M_INODEDEP, M_SOFTDEP_FLAGS); 3551 *inodedep->id_savedino2 = *dp; 3552 bzero((caddr_t)dp, sizeof(struct ufs2_dinode)); 3553 return; 3554 } 3555 /* 3556 * If no dependencies, then there is nothing to roll back. 3557 */ 3558 inodedep->id_savedsize = dp->di_size; 3559 if (TAILQ_FIRST(&inodedep->id_inoupdt) == NULL) 3560 return; 3561 /* 3562 * Set the dependencies to busy. 3563 */ 3564 ACQUIRE_LOCK(&lk); 3565 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 3566 adp = TAILQ_NEXT(adp, ad_next)) { 3567 #ifdef DIAGNOSTIC 3568 if (deplist != 0 && prevlbn >= adp->ad_lbn) { 3569 FREE_LOCK(&lk); 3570 panic("softdep_write_inodeblock: lbn order"); 3571 } 3572 prevlbn = adp->ad_lbn; 3573 if (adp->ad_lbn < NDADDR && 3574 dp->di_db[adp->ad_lbn] != adp->ad_newblkno) { 3575 FREE_LOCK(&lk); 3576 panic("%s: direct pointer #%jd mismatch %jd != %jd", 3577 "softdep_write_inodeblock", 3578 (intmax_t)adp->ad_lbn, 3579 (intmax_t)dp->di_db[adp->ad_lbn], 3580 (intmax_t)adp->ad_newblkno); 3581 } 3582 if (adp->ad_lbn >= NDADDR && 3583 dp->di_ib[adp->ad_lbn - NDADDR] != adp->ad_newblkno) { 3584 FREE_LOCK(&lk); 3585 panic("%s indirect pointer #%jd mismatch %jd != %jd", 3586 "softdep_write_inodeblock:", 3587 (intmax_t)adp->ad_lbn - NDADDR, 3588 (intmax_t)dp->di_ib[adp->ad_lbn - NDADDR], 3589 (intmax_t)adp->ad_newblkno); 3590 } 3591 deplist |= 1 << adp->ad_lbn; 3592 if ((adp->ad_state & ATTACHED) == 0) { 3593 FREE_LOCK(&lk); 3594 panic("softdep_write_inodeblock: Unknown state 0x%x", 3595 adp->ad_state); 3596 } 3597 #endif /* DIAGNOSTIC */ 3598 adp->ad_state &= ~ATTACHED; 3599 adp->ad_state |= UNDONE; 3600 } 3601 /* 3602 * The on-disk inode cannot claim to be any larger than the last 3603 * fragment that has been written. Otherwise, the on-disk inode 3604 * might have fragments that were not the last block in the file 3605 * which would corrupt the filesystem. 3606 */ 3607 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 3608 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 3609 if (adp->ad_lbn >= NDADDR) 3610 break; 3611 dp->di_db[adp->ad_lbn] = adp->ad_oldblkno; 3612 /* keep going until hitting a rollback to a frag */ 3613 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 3614 continue; 3615 dp->di_size = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize; 3616 for (i = adp->ad_lbn + 1; i < NDADDR; i++) { 3617 #ifdef DIAGNOSTIC 3618 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) { 3619 FREE_LOCK(&lk); 3620 panic("softdep_write_inodeblock: lost dep1"); 3621 } 3622 #endif /* DIAGNOSTIC */ 3623 dp->di_db[i] = 0; 3624 } 3625 for (i = 0; i < NIADDR; i++) { 3626 #ifdef DIAGNOSTIC 3627 if (dp->di_ib[i] != 0 && 3628 (deplist & ((1 << NDADDR) << i)) == 0) { 3629 FREE_LOCK(&lk); 3630 panic("softdep_write_inodeblock: lost dep2"); 3631 } 3632 #endif /* DIAGNOSTIC */ 3633 dp->di_ib[i] = 0; 3634 } 3635 FREE_LOCK(&lk); 3636 return; 3637 } 3638 /* 3639 * If we have zero'ed out the last allocated block of the file, 3640 * roll back the size to the last currently allocated block. 3641 * We know that this last allocated block is a full-sized as 3642 * we already checked for fragments in the loop above. 3643 */ 3644 if (lastadp != NULL && 3645 dp->di_size <= (lastadp->ad_lbn + 1) * fs->fs_bsize) { 3646 for (i = lastadp->ad_lbn; i >= 0; i--) 3647 if (dp->di_db[i] != 0) 3648 break; 3649 dp->di_size = (i + 1) * fs->fs_bsize; 3650 } 3651 /* 3652 * The only dependencies are for indirect blocks. 3653 * 3654 * The file size for indirect block additions is not guaranteed. 3655 * Such a guarantee would be non-trivial to achieve. The conventional 3656 * synchronous write implementation also does not make this guarantee. 3657 * Fsck should catch and fix discrepancies. Arguably, the file size 3658 * can be over-estimated without destroying integrity when the file 3659 * moves into the indirect blocks (i.e., is large). If we want to 3660 * postpone fsck, we are stuck with this argument. 3661 */ 3662 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 3663 dp->di_ib[adp->ad_lbn - NDADDR] = 0; 3664 FREE_LOCK(&lk); 3665 } 3666 3667 /* 3668 * This routine is called during the completion interrupt 3669 * service routine for a disk write (from the procedure called 3670 * by the device driver to inform the filesystem caches of 3671 * a request completion). It should be called early in this 3672 * procedure, before the block is made available to other 3673 * processes or other routines are called. 3674 */ 3675 static void 3676 softdep_disk_write_complete(bp) 3677 struct buf *bp; /* describes the completed disk write */ 3678 { 3679 struct worklist *wk; 3680 struct workhead reattach; 3681 struct newblk *newblk; 3682 struct allocindir *aip; 3683 struct allocdirect *adp; 3684 struct indirdep *indirdep; 3685 struct inodedep *inodedep; 3686 struct bmsafemap *bmsafemap; 3687 3688 #ifdef DEBUG 3689 if (lk.lkt_held != NOHOLDER) 3690 panic("softdep_disk_write_complete: lock is held"); 3691 lk.lkt_held = SPECIAL_FLAG; 3692 #endif 3693 LIST_INIT(&reattach); 3694 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) { 3695 WORKLIST_REMOVE(wk); 3696 switch (wk->wk_type) { 3697 3698 case D_PAGEDEP: 3699 if (handle_written_filepage(WK_PAGEDEP(wk), bp)) 3700 WORKLIST_INSERT(&reattach, wk); 3701 continue; 3702 3703 case D_INODEDEP: 3704 if (handle_written_inodeblock(WK_INODEDEP(wk), bp)) 3705 WORKLIST_INSERT(&reattach, wk); 3706 continue; 3707 3708 case D_BMSAFEMAP: 3709 bmsafemap = WK_BMSAFEMAP(wk); 3710 while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkhd))) { 3711 newblk->nb_state |= DEPCOMPLETE; 3712 newblk->nb_bmsafemap = NULL; 3713 LIST_REMOVE(newblk, nb_deps); 3714 } 3715 while ((adp = 3716 LIST_FIRST(&bmsafemap->sm_allocdirecthd))) { 3717 adp->ad_state |= DEPCOMPLETE; 3718 adp->ad_buf = NULL; 3719 LIST_REMOVE(adp, ad_deps); 3720 handle_allocdirect_partdone(adp); 3721 } 3722 while ((aip = 3723 LIST_FIRST(&bmsafemap->sm_allocindirhd))) { 3724 aip->ai_state |= DEPCOMPLETE; 3725 aip->ai_buf = NULL; 3726 LIST_REMOVE(aip, ai_deps); 3727 handle_allocindir_partdone(aip); 3728 } 3729 while ((inodedep = 3730 LIST_FIRST(&bmsafemap->sm_inodedephd)) != NULL) { 3731 inodedep->id_state |= DEPCOMPLETE; 3732 LIST_REMOVE(inodedep, id_deps); 3733 inodedep->id_buf = NULL; 3734 } 3735 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); 3736 continue; 3737 3738 case D_MKDIR: 3739 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); 3740 continue; 3741 3742 case D_ALLOCDIRECT: 3743 adp = WK_ALLOCDIRECT(wk); 3744 adp->ad_state |= COMPLETE; 3745 handle_allocdirect_partdone(adp); 3746 continue; 3747 3748 case D_ALLOCINDIR: 3749 aip = WK_ALLOCINDIR(wk); 3750 aip->ai_state |= COMPLETE; 3751 handle_allocindir_partdone(aip); 3752 continue; 3753 3754 case D_INDIRDEP: 3755 indirdep = WK_INDIRDEP(wk); 3756 if (indirdep->ir_state & GOINGAWAY) { 3757 lk.lkt_held = NOHOLDER; 3758 panic("disk_write_complete: indirdep gone"); 3759 } 3760 bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount); 3761 FREE(indirdep->ir_saveddata, M_INDIRDEP); 3762 indirdep->ir_saveddata = 0; 3763 indirdep->ir_state &= ~UNDONE; 3764 indirdep->ir_state |= ATTACHED; 3765 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) { 3766 handle_allocindir_partdone(aip); 3767 if (aip == LIST_FIRST(&indirdep->ir_donehd)) { 3768 lk.lkt_held = NOHOLDER; 3769 panic("disk_write_complete: not gone"); 3770 } 3771 } 3772 WORKLIST_INSERT(&reattach, wk); 3773 if ((bp->b_flags & B_DELWRI) == 0) 3774 stat_indir_blk_ptrs++; 3775 bdirty(bp); 3776 continue; 3777 3778 default: 3779 lk.lkt_held = NOHOLDER; 3780 panic("handle_disk_write_complete: Unknown type %s", 3781 TYPENAME(wk->wk_type)); 3782 /* NOTREACHED */ 3783 } 3784 } 3785 /* 3786 * Reattach any requests that must be redone. 3787 */ 3788 while ((wk = LIST_FIRST(&reattach)) != NULL) { 3789 WORKLIST_REMOVE(wk); 3790 WORKLIST_INSERT(&bp->b_dep, wk); 3791 } 3792 #ifdef DEBUG 3793 if (lk.lkt_held != SPECIAL_FLAG) 3794 panic("softdep_disk_write_complete: lock lost"); 3795 lk.lkt_held = NOHOLDER; 3796 #endif 3797 } 3798 3799 /* 3800 * Called from within softdep_disk_write_complete above. Note that 3801 * this routine is always called from interrupt level with further 3802 * splbio interrupts blocked. 3803 */ 3804 static void 3805 handle_allocdirect_partdone(adp) 3806 struct allocdirect *adp; /* the completed allocdirect */ 3807 { 3808 struct allocdirect *listadp; 3809 struct inodedep *inodedep; 3810 long bsize, delay; 3811 3812 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 3813 return; 3814 if (adp->ad_buf != NULL) { 3815 lk.lkt_held = NOHOLDER; 3816 panic("handle_allocdirect_partdone: dangling dep"); 3817 } 3818 /* 3819 * The on-disk inode cannot claim to be any larger than the last 3820 * fragment that has been written. Otherwise, the on-disk inode 3821 * might have fragments that were not the last block in the file 3822 * which would corrupt the filesystem. Thus, we cannot free any 3823 * allocdirects after one whose ad_oldblkno claims a fragment as 3824 * these blocks must be rolled back to zero before writing the inode. 3825 * We check the currently active set of allocdirects in id_inoupdt. 3826 */ 3827 inodedep = adp->ad_inodedep; 3828 bsize = inodedep->id_fs->fs_bsize; 3829 TAILQ_FOREACH(listadp, &inodedep->id_inoupdt, ad_next) { 3830 /* found our block */ 3831 if (listadp == adp) 3832 break; 3833 /* continue if ad_oldlbn is not a fragment */ 3834 if (listadp->ad_oldsize == 0 || 3835 listadp->ad_oldsize == bsize) 3836 continue; 3837 /* hit a fragment */ 3838 return; 3839 } 3840 /* 3841 * If we have reached the end of the current list without 3842 * finding the just finished dependency, then it must be 3843 * on the future dependency list. Future dependencies cannot 3844 * be freed until they are moved to the current list. 3845 */ 3846 if (listadp == NULL) { 3847 #ifdef DEBUG 3848 TAILQ_FOREACH(listadp, &inodedep->id_newinoupdt, ad_next) 3849 /* found our block */ 3850 if (listadp == adp) 3851 break; 3852 if (listadp == NULL) { 3853 lk.lkt_held = NOHOLDER; 3854 panic("handle_allocdirect_partdone: lost dep"); 3855 } 3856 #endif /* DEBUG */ 3857 return; 3858 } 3859 /* 3860 * If we have found the just finished dependency, then free 3861 * it along with anything that follows it that is complete. 3862 * If the inode still has a bitmap dependency, then it has 3863 * never been written to disk, hence the on-disk inode cannot 3864 * reference the old fragment so we can free it without delay. 3865 */ 3866 delay = (inodedep->id_state & DEPCOMPLETE); 3867 for (; adp; adp = listadp) { 3868 listadp = TAILQ_NEXT(adp, ad_next); 3869 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 3870 return; 3871 free_allocdirect(&inodedep->id_inoupdt, adp, delay); 3872 } 3873 } 3874 3875 /* 3876 * Called from within softdep_disk_write_complete above. Note that 3877 * this routine is always called from interrupt level with further 3878 * splbio interrupts blocked. 3879 */ 3880 static void 3881 handle_allocindir_partdone(aip) 3882 struct allocindir *aip; /* the completed allocindir */ 3883 { 3884 struct indirdep *indirdep; 3885 3886 if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE) 3887 return; 3888 if (aip->ai_buf != NULL) { 3889 lk.lkt_held = NOHOLDER; 3890 panic("handle_allocindir_partdone: dangling dependency"); 3891 } 3892 indirdep = aip->ai_indirdep; 3893 if (indirdep->ir_state & UNDONE) { 3894 LIST_REMOVE(aip, ai_next); 3895 LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next); 3896 return; 3897 } 3898 if (indirdep->ir_state & UFS1FMT) 3899 ((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 3900 aip->ai_newblkno; 3901 else 3902 ((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 3903 aip->ai_newblkno; 3904 LIST_REMOVE(aip, ai_next); 3905 if (aip->ai_freefrag != NULL) 3906 add_to_worklist(&aip->ai_freefrag->ff_list); 3907 WORKITEM_FREE(aip, D_ALLOCINDIR); 3908 } 3909 3910 /* 3911 * Called from within softdep_disk_write_complete above to restore 3912 * in-memory inode block contents to their most up-to-date state. Note 3913 * that this routine is always called from interrupt level with further 3914 * splbio interrupts blocked. 3915 */ 3916 static int 3917 handle_written_inodeblock(inodedep, bp) 3918 struct inodedep *inodedep; 3919 struct buf *bp; /* buffer containing the inode block */ 3920 { 3921 struct worklist *wk, *filefree; 3922 struct allocdirect *adp, *nextadp; 3923 struct ufs1_dinode *dp1 = NULL; 3924 struct ufs2_dinode *dp2 = NULL; 3925 int hadchanges, fstype; 3926 3927 if ((inodedep->id_state & IOSTARTED) == 0) { 3928 lk.lkt_held = NOHOLDER; 3929 panic("handle_written_inodeblock: not started"); 3930 } 3931 inodedep->id_state &= ~IOSTARTED; 3932 inodedep->id_state |= COMPLETE; 3933 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) { 3934 fstype = UFS1; 3935 dp1 = (struct ufs1_dinode *)bp->b_data + 3936 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 3937 } else { 3938 fstype = UFS2; 3939 dp2 = (struct ufs2_dinode *)bp->b_data + 3940 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 3941 } 3942 /* 3943 * If we had to rollback the inode allocation because of 3944 * bitmaps being incomplete, then simply restore it. 3945 * Keep the block dirty so that it will not be reclaimed until 3946 * all associated dependencies have been cleared and the 3947 * corresponding updates written to disk. 3948 */ 3949 if (inodedep->id_savedino1 != NULL) { 3950 if (fstype == UFS1) 3951 *dp1 = *inodedep->id_savedino1; 3952 else 3953 *dp2 = *inodedep->id_savedino2; 3954 FREE(inodedep->id_savedino1, M_INODEDEP); 3955 inodedep->id_savedino1 = NULL; 3956 if ((bp->b_flags & B_DELWRI) == 0) 3957 stat_inode_bitmap++; 3958 bdirty(bp); 3959 return (1); 3960 } 3961 /* 3962 * Roll forward anything that had to be rolled back before 3963 * the inode could be updated. 3964 */ 3965 hadchanges = 0; 3966 for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) { 3967 nextadp = TAILQ_NEXT(adp, ad_next); 3968 if (adp->ad_state & ATTACHED) { 3969 lk.lkt_held = NOHOLDER; 3970 panic("handle_written_inodeblock: new entry"); 3971 } 3972 if (fstype == UFS1) { 3973 if (adp->ad_lbn < NDADDR) { 3974 if (dp1->di_db[adp->ad_lbn]!=adp->ad_oldblkno) { 3975 lk.lkt_held = NOHOLDER; 3976 panic("%s %s #%jd mismatch %d != %jd", 3977 "handle_written_inodeblock:", 3978 "direct pointer", 3979 (intmax_t)adp->ad_lbn, 3980 dp1->di_db[adp->ad_lbn], 3981 (intmax_t)adp->ad_oldblkno); 3982 } 3983 dp1->di_db[adp->ad_lbn] = adp->ad_newblkno; 3984 } else { 3985 if (dp1->di_ib[adp->ad_lbn - NDADDR] != 0) { 3986 lk.lkt_held = NOHOLDER; 3987 panic("%s: %s #%jd allocated as %d", 3988 "handle_written_inodeblock", 3989 "indirect pointer", 3990 (intmax_t)adp->ad_lbn - NDADDR, 3991 dp1->di_ib[adp->ad_lbn - NDADDR]); 3992 } 3993 dp1->di_ib[adp->ad_lbn - NDADDR] = 3994 adp->ad_newblkno; 3995 } 3996 } else { 3997 if (adp->ad_lbn < NDADDR) { 3998 if (dp2->di_db[adp->ad_lbn]!=adp->ad_oldblkno) { 3999 lk.lkt_held = NOHOLDER; 4000 panic("%s: %s #%jd %s %jd != %jd", 4001 "handle_written_inodeblock", 4002 "direct pointer", 4003 (intmax_t)adp->ad_lbn, "mismatch", 4004 (intmax_t)dp2->di_db[adp->ad_lbn], 4005 (intmax_t)adp->ad_oldblkno); 4006 } 4007 dp2->di_db[adp->ad_lbn] = adp->ad_newblkno; 4008 } else { 4009 if (dp2->di_ib[adp->ad_lbn - NDADDR] != 0) { 4010 lk.lkt_held = NOHOLDER; 4011 panic("%s: %s #%jd allocated as %jd", 4012 "handle_written_inodeblock", 4013 "indirect pointer", 4014 (intmax_t)adp->ad_lbn - NDADDR, 4015 (intmax_t) 4016 dp2->di_ib[adp->ad_lbn - NDADDR]); 4017 } 4018 dp2->di_ib[adp->ad_lbn - NDADDR] = 4019 adp->ad_newblkno; 4020 } 4021 } 4022 adp->ad_state &= ~UNDONE; 4023 adp->ad_state |= ATTACHED; 4024 hadchanges = 1; 4025 } 4026 if (hadchanges && (bp->b_flags & B_DELWRI) == 0) 4027 stat_direct_blk_ptrs++; 4028 /* 4029 * Reset the file size to its most up-to-date value. 4030 */ 4031 if (inodedep->id_savedsize == -1) { 4032 lk.lkt_held = NOHOLDER; 4033 panic("handle_written_inodeblock: bad size"); 4034 } 4035 if (fstype == UFS1) { 4036 if (dp1->di_size != inodedep->id_savedsize) { 4037 dp1->di_size = inodedep->id_savedsize; 4038 hadchanges = 1; 4039 } 4040 } else { 4041 if (dp2->di_size != inodedep->id_savedsize) { 4042 dp2->di_size = inodedep->id_savedsize; 4043 hadchanges = 1; 4044 } 4045 } 4046 inodedep->id_savedsize = -1; 4047 /* 4048 * If there were any rollbacks in the inode block, then it must be 4049 * marked dirty so that its will eventually get written back in 4050 * its correct form. 4051 */ 4052 if (hadchanges) 4053 bdirty(bp); 4054 /* 4055 * Process any allocdirects that completed during the update. 4056 */ 4057 if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL) 4058 handle_allocdirect_partdone(adp); 4059 /* 4060 * Process deallocations that were held pending until the 4061 * inode had been written to disk. Freeing of the inode 4062 * is delayed until after all blocks have been freed to 4063 * avoid creation of new <vfsid, inum, lbn> triples 4064 * before the old ones have been deleted. 4065 */ 4066 filefree = NULL; 4067 while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) { 4068 WORKLIST_REMOVE(wk); 4069 switch (wk->wk_type) { 4070 4071 case D_FREEFILE: 4072 /* 4073 * We defer adding filefree to the worklist until 4074 * all other additions have been made to ensure 4075 * that it will be done after all the old blocks 4076 * have been freed. 4077 */ 4078 if (filefree != NULL) { 4079 lk.lkt_held = NOHOLDER; 4080 panic("handle_written_inodeblock: filefree"); 4081 } 4082 filefree = wk; 4083 continue; 4084 4085 case D_MKDIR: 4086 handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT); 4087 continue; 4088 4089 case D_DIRADD: 4090 diradd_inode_written(WK_DIRADD(wk), inodedep); 4091 continue; 4092 4093 case D_FREEBLKS: 4094 case D_FREEFRAG: 4095 case D_DIRREM: 4096 add_to_worklist(wk); 4097 continue; 4098 4099 case D_NEWDIRBLK: 4100 free_newdirblk(WK_NEWDIRBLK(wk)); 4101 continue; 4102 4103 default: 4104 lk.lkt_held = NOHOLDER; 4105 panic("handle_written_inodeblock: Unknown type %s", 4106 TYPENAME(wk->wk_type)); 4107 /* NOTREACHED */ 4108 } 4109 } 4110 if (filefree != NULL) { 4111 if (free_inodedep(inodedep) == 0) { 4112 lk.lkt_held = NOHOLDER; 4113 panic("handle_written_inodeblock: live inodedep"); 4114 } 4115 add_to_worklist(filefree); 4116 return (0); 4117 } 4118 4119 /* 4120 * If no outstanding dependencies, free it. 4121 */ 4122 if (free_inodedep(inodedep) || TAILQ_FIRST(&inodedep->id_inoupdt) == 0) 4123 return (0); 4124 return (hadchanges); 4125 } 4126 4127 /* 4128 * Process a diradd entry after its dependent inode has been written. 4129 * This routine must be called with splbio interrupts blocked. 4130 */ 4131 static void 4132 diradd_inode_written(dap, inodedep) 4133 struct diradd *dap; 4134 struct inodedep *inodedep; 4135 { 4136 struct pagedep *pagedep; 4137 4138 dap->da_state |= COMPLETE; 4139 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 4140 if (dap->da_state & DIRCHG) 4141 pagedep = dap->da_previous->dm_pagedep; 4142 else 4143 pagedep = dap->da_pagedep; 4144 LIST_REMOVE(dap, da_pdlist); 4145 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 4146 } 4147 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 4148 } 4149 4150 /* 4151 * Handle the completion of a mkdir dependency. 4152 */ 4153 static void 4154 handle_written_mkdir(mkdir, type) 4155 struct mkdir *mkdir; 4156 int type; 4157 { 4158 struct diradd *dap; 4159 struct pagedep *pagedep; 4160 4161 if (mkdir->md_state != type) { 4162 lk.lkt_held = NOHOLDER; 4163 panic("handle_written_mkdir: bad type"); 4164 } 4165 dap = mkdir->md_diradd; 4166 dap->da_state &= ~type; 4167 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) 4168 dap->da_state |= DEPCOMPLETE; 4169 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 4170 if (dap->da_state & DIRCHG) 4171 pagedep = dap->da_previous->dm_pagedep; 4172 else 4173 pagedep = dap->da_pagedep; 4174 LIST_REMOVE(dap, da_pdlist); 4175 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 4176 } 4177 LIST_REMOVE(mkdir, md_mkdirs); 4178 WORKITEM_FREE(mkdir, D_MKDIR); 4179 } 4180 4181 /* 4182 * Called from within softdep_disk_write_complete above. 4183 * A write operation was just completed. Removed inodes can 4184 * now be freed and associated block pointers may be committed. 4185 * Note that this routine is always called from interrupt level 4186 * with further splbio interrupts blocked. 4187 */ 4188 static int 4189 handle_written_filepage(pagedep, bp) 4190 struct pagedep *pagedep; 4191 struct buf *bp; /* buffer containing the written page */ 4192 { 4193 struct dirrem *dirrem; 4194 struct diradd *dap, *nextdap; 4195 struct direct *ep; 4196 int i, chgs; 4197 4198 if ((pagedep->pd_state & IOSTARTED) == 0) { 4199 lk.lkt_held = NOHOLDER; 4200 panic("handle_written_filepage: not started"); 4201 } 4202 pagedep->pd_state &= ~IOSTARTED; 4203 /* 4204 * Process any directory removals that have been committed. 4205 */ 4206 while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) { 4207 LIST_REMOVE(dirrem, dm_next); 4208 dirrem->dm_dirinum = pagedep->pd_ino; 4209 add_to_worklist(&dirrem->dm_list); 4210 } 4211 /* 4212 * Free any directory additions that have been committed. 4213 * If it is a newly allocated block, we have to wait until 4214 * the on-disk directory inode claims the new block. 4215 */ 4216 if ((pagedep->pd_state & NEWBLOCK) == 0) 4217 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 4218 free_diradd(dap); 4219 /* 4220 * Uncommitted directory entries must be restored. 4221 */ 4222 for (chgs = 0, i = 0; i < DAHASHSZ; i++) { 4223 for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap; 4224 dap = nextdap) { 4225 nextdap = LIST_NEXT(dap, da_pdlist); 4226 if (dap->da_state & ATTACHED) { 4227 lk.lkt_held = NOHOLDER; 4228 panic("handle_written_filepage: attached"); 4229 } 4230 ep = (struct direct *) 4231 ((char *)bp->b_data + dap->da_offset); 4232 ep->d_ino = dap->da_newinum; 4233 dap->da_state &= ~UNDONE; 4234 dap->da_state |= ATTACHED; 4235 chgs = 1; 4236 /* 4237 * If the inode referenced by the directory has 4238 * been written out, then the dependency can be 4239 * moved to the pending list. 4240 */ 4241 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 4242 LIST_REMOVE(dap, da_pdlist); 4243 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, 4244 da_pdlist); 4245 } 4246 } 4247 } 4248 /* 4249 * If there were any rollbacks in the directory, then it must be 4250 * marked dirty so that its will eventually get written back in 4251 * its correct form. 4252 */ 4253 if (chgs) { 4254 if ((bp->b_flags & B_DELWRI) == 0) 4255 stat_dir_entry++; 4256 bdirty(bp); 4257 return (1); 4258 } 4259 /* 4260 * If we are not waiting for a new directory block to be 4261 * claimed by its inode, then the pagedep will be freed. 4262 * Otherwise it will remain to track any new entries on 4263 * the page in case they are fsync'ed. 4264 */ 4265 if ((pagedep->pd_state & NEWBLOCK) == 0) { 4266 LIST_REMOVE(pagedep, pd_hash); 4267 WORKITEM_FREE(pagedep, D_PAGEDEP); 4268 } 4269 return (0); 4270 } 4271 4272 /* 4273 * Writing back in-core inode structures. 4274 * 4275 * The filesystem only accesses an inode's contents when it occupies an 4276 * "in-core" inode structure. These "in-core" structures are separate from 4277 * the page frames used to cache inode blocks. Only the latter are 4278 * transferred to/from the disk. So, when the updated contents of the 4279 * "in-core" inode structure are copied to the corresponding in-memory inode 4280 * block, the dependencies are also transferred. The following procedure is 4281 * called when copying a dirty "in-core" inode to a cached inode block. 4282 */ 4283 4284 /* 4285 * Called when an inode is loaded from disk. If the effective link count 4286 * differed from the actual link count when it was last flushed, then we 4287 * need to ensure that the correct effective link count is put back. 4288 */ 4289 void 4290 softdep_load_inodeblock(ip) 4291 struct inode *ip; /* the "in_core" copy of the inode */ 4292 { 4293 struct inodedep *inodedep; 4294 4295 /* 4296 * Check for alternate nlink count. 4297 */ 4298 ip->i_effnlink = ip->i_nlink; 4299 ACQUIRE_LOCK(&lk); 4300 if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) { 4301 FREE_LOCK(&lk); 4302 return; 4303 } 4304 ip->i_effnlink -= inodedep->id_nlinkdelta; 4305 if (inodedep->id_state & SPACECOUNTED) 4306 ip->i_flag |= IN_SPACECOUNTED; 4307 FREE_LOCK(&lk); 4308 } 4309 4310 /* 4311 * This routine is called just before the "in-core" inode 4312 * information is to be copied to the in-memory inode block. 4313 * Recall that an inode block contains several inodes. If 4314 * the force flag is set, then the dependencies will be 4315 * cleared so that the update can always be made. Note that 4316 * the buffer is locked when this routine is called, so we 4317 * will never be in the middle of writing the inode block 4318 * to disk. 4319 */ 4320 void 4321 softdep_update_inodeblock(ip, bp, waitfor) 4322 struct inode *ip; /* the "in_core" copy of the inode */ 4323 struct buf *bp; /* the buffer containing the inode block */ 4324 int waitfor; /* nonzero => update must be allowed */ 4325 { 4326 struct inodedep *inodedep; 4327 struct worklist *wk; 4328 int error, gotit; 4329 4330 /* 4331 * If the effective link count is not equal to the actual link 4332 * count, then we must track the difference in an inodedep while 4333 * the inode is (potentially) tossed out of the cache. Otherwise, 4334 * if there is no existing inodedep, then there are no dependencies 4335 * to track. 4336 */ 4337 ACQUIRE_LOCK(&lk); 4338 if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) { 4339 FREE_LOCK(&lk); 4340 if (ip->i_effnlink != ip->i_nlink) 4341 panic("softdep_update_inodeblock: bad link count"); 4342 return; 4343 } 4344 if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink) { 4345 FREE_LOCK(&lk); 4346 panic("softdep_update_inodeblock: bad delta"); 4347 } 4348 /* 4349 * Changes have been initiated. Anything depending on these 4350 * changes cannot occur until this inode has been written. 4351 */ 4352 inodedep->id_state &= ~COMPLETE; 4353 if ((inodedep->id_state & ONWORKLIST) == 0) 4354 WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list); 4355 /* 4356 * Any new dependencies associated with the incore inode must 4357 * now be moved to the list associated with the buffer holding 4358 * the in-memory copy of the inode. Once merged process any 4359 * allocdirects that are completed by the merger. 4360 */ 4361 merge_inode_lists(inodedep); 4362 if (TAILQ_FIRST(&inodedep->id_inoupdt) != NULL) 4363 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt)); 4364 /* 4365 * Now that the inode has been pushed into the buffer, the 4366 * operations dependent on the inode being written to disk 4367 * can be moved to the id_bufwait so that they will be 4368 * processed when the buffer I/O completes. 4369 */ 4370 while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) { 4371 WORKLIST_REMOVE(wk); 4372 WORKLIST_INSERT(&inodedep->id_bufwait, wk); 4373 } 4374 /* 4375 * Newly allocated inodes cannot be written until the bitmap 4376 * that allocates them have been written (indicated by 4377 * DEPCOMPLETE being set in id_state). If we are doing a 4378 * forced sync (e.g., an fsync on a file), we force the bitmap 4379 * to be written so that the update can be done. 4380 */ 4381 if ((inodedep->id_state & DEPCOMPLETE) != 0 || waitfor == 0) { 4382 FREE_LOCK(&lk); 4383 return; 4384 } 4385 gotit = getdirtybuf(&inodedep->id_buf, MNT_WAIT); 4386 FREE_LOCK(&lk); 4387 if (gotit && 4388 (error = BUF_WRITE(inodedep->id_buf)) != 0) 4389 softdep_error("softdep_update_inodeblock: bwrite", error); 4390 if ((inodedep->id_state & DEPCOMPLETE) == 0) 4391 panic("softdep_update_inodeblock: update failed"); 4392 } 4393 4394 /* 4395 * Merge the new inode dependency list (id_newinoupdt) into the old 4396 * inode dependency list (id_inoupdt). This routine must be called 4397 * with splbio interrupts blocked. 4398 */ 4399 static void 4400 merge_inode_lists(inodedep) 4401 struct inodedep *inodedep; 4402 { 4403 struct allocdirect *listadp, *newadp; 4404 4405 newadp = TAILQ_FIRST(&inodedep->id_newinoupdt); 4406 for (listadp = TAILQ_FIRST(&inodedep->id_inoupdt); listadp && newadp;) { 4407 if (listadp->ad_lbn < newadp->ad_lbn) { 4408 listadp = TAILQ_NEXT(listadp, ad_next); 4409 continue; 4410 } 4411 TAILQ_REMOVE(&inodedep->id_newinoupdt, newadp, ad_next); 4412 TAILQ_INSERT_BEFORE(listadp, newadp, ad_next); 4413 if (listadp->ad_lbn == newadp->ad_lbn) { 4414 allocdirect_merge(&inodedep->id_inoupdt, newadp, 4415 listadp); 4416 listadp = newadp; 4417 } 4418 newadp = TAILQ_FIRST(&inodedep->id_newinoupdt); 4419 } 4420 while ((newadp = TAILQ_FIRST(&inodedep->id_newinoupdt)) != NULL) { 4421 TAILQ_REMOVE(&inodedep->id_newinoupdt, newadp, ad_next); 4422 TAILQ_INSERT_TAIL(&inodedep->id_inoupdt, newadp, ad_next); 4423 } 4424 } 4425 4426 /* 4427 * If we are doing an fsync, then we must ensure that any directory 4428 * entries for the inode have been written after the inode gets to disk. 4429 */ 4430 int 4431 softdep_fsync(vp) 4432 struct vnode *vp; /* the "in_core" copy of the inode */ 4433 { 4434 struct inodedep *inodedep; 4435 struct pagedep *pagedep; 4436 struct worklist *wk; 4437 struct diradd *dap; 4438 struct mount *mnt; 4439 struct vnode *pvp; 4440 struct inode *ip; 4441 struct buf *bp; 4442 struct fs *fs; 4443 struct thread *td = curthread; 4444 int error, flushparent; 4445 ino_t parentino; 4446 ufs_lbn_t lbn; 4447 4448 ip = VTOI(vp); 4449 fs = ip->i_fs; 4450 ACQUIRE_LOCK(&lk); 4451 if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0) { 4452 FREE_LOCK(&lk); 4453 return (0); 4454 } 4455 if (LIST_FIRST(&inodedep->id_inowait) != NULL || 4456 LIST_FIRST(&inodedep->id_bufwait) != NULL || 4457 TAILQ_FIRST(&inodedep->id_inoupdt) != NULL || 4458 TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL) { 4459 FREE_LOCK(&lk); 4460 panic("softdep_fsync: pending ops"); 4461 } 4462 for (error = 0, flushparent = 0; ; ) { 4463 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL) 4464 break; 4465 if (wk->wk_type != D_DIRADD) { 4466 FREE_LOCK(&lk); 4467 panic("softdep_fsync: Unexpected type %s", 4468 TYPENAME(wk->wk_type)); 4469 } 4470 dap = WK_DIRADD(wk); 4471 /* 4472 * Flush our parent if this directory entry has a MKDIR_PARENT 4473 * dependency or is contained in a newly allocated block. 4474 */ 4475 if (dap->da_state & DIRCHG) 4476 pagedep = dap->da_previous->dm_pagedep; 4477 else 4478 pagedep = dap->da_pagedep; 4479 mnt = pagedep->pd_mnt; 4480 parentino = pagedep->pd_ino; 4481 lbn = pagedep->pd_lbn; 4482 if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE) { 4483 FREE_LOCK(&lk); 4484 panic("softdep_fsync: dirty"); 4485 } 4486 if ((dap->da_state & MKDIR_PARENT) || 4487 (pagedep->pd_state & NEWBLOCK)) 4488 flushparent = 1; 4489 else 4490 flushparent = 0; 4491 /* 4492 * If we are being fsync'ed as part of vgone'ing this vnode, 4493 * then we will not be able to release and recover the 4494 * vnode below, so we just have to give up on writing its 4495 * directory entry out. It will eventually be written, just 4496 * not now, but then the user was not asking to have it 4497 * written, so we are not breaking any promises. 4498 */ 4499 if (vp->v_flag & VXLOCK) 4500 break; 4501 /* 4502 * We prevent deadlock by always fetching inodes from the 4503 * root, moving down the directory tree. Thus, when fetching 4504 * our parent directory, we first try to get the lock. If 4505 * that fails, we must unlock ourselves before requesting 4506 * the lock on our parent. See the comment in ufs_lookup 4507 * for details on possible races. 4508 */ 4509 FREE_LOCK(&lk); 4510 if (VFS_VGET(mnt, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp)) { 4511 VOP_UNLOCK(vp, 0, td); 4512 error = VFS_VGET(mnt, parentino, LK_EXCLUSIVE, &pvp); 4513 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td); 4514 if (error != 0) 4515 return (error); 4516 } 4517 /* 4518 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps 4519 * that are contained in direct blocks will be resolved by 4520 * doing a UFS_UPDATE. Pagedeps contained in indirect blocks 4521 * may require a complete sync'ing of the directory. So, we 4522 * try the cheap and fast UFS_UPDATE first, and if that fails, 4523 * then we do the slower VOP_FSYNC of the directory. 4524 */ 4525 if (flushparent) { 4526 if ((error = UFS_UPDATE(pvp, 1)) != 0) { 4527 vput(pvp); 4528 return (error); 4529 } 4530 if ((pagedep->pd_state & NEWBLOCK) && 4531 (error = VOP_FSYNC(pvp, td->td_ucred, MNT_WAIT, td))) { 4532 vput(pvp); 4533 return (error); 4534 } 4535 } 4536 /* 4537 * Flush directory page containing the inode's name. 4538 */ 4539 error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred, 4540 &bp); 4541 if (error == 0) 4542 error = BUF_WRITE(bp); 4543 else 4544 brelse(bp); 4545 vput(pvp); 4546 if (error != 0) 4547 return (error); 4548 ACQUIRE_LOCK(&lk); 4549 if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0) 4550 break; 4551 } 4552 FREE_LOCK(&lk); 4553 return (0); 4554 } 4555 4556 /* 4557 * Flush all the dirty bitmaps associated with the block device 4558 * before flushing the rest of the dirty blocks so as to reduce 4559 * the number of dependencies that will have to be rolled back. 4560 */ 4561 void 4562 softdep_fsync_mountdev(vp) 4563 struct vnode *vp; 4564 { 4565 struct buf *bp, *nbp; 4566 struct worklist *wk; 4567 4568 if (!vn_isdisk(vp, NULL)) 4569 panic("softdep_fsync_mountdev: vnode not a disk"); 4570 ACQUIRE_LOCK(&lk); 4571 for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { 4572 nbp = TAILQ_NEXT(bp, b_vnbufs); 4573 /* 4574 * If it is already scheduled, skip to the next buffer. 4575 */ 4576 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) 4577 continue; 4578 if ((bp->b_flags & B_DELWRI) == 0) { 4579 FREE_LOCK(&lk); 4580 panic("softdep_fsync_mountdev: not dirty"); 4581 } 4582 /* 4583 * We are only interested in bitmaps with outstanding 4584 * dependencies. 4585 */ 4586 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL || 4587 wk->wk_type != D_BMSAFEMAP || 4588 (bp->b_xflags & BX_BKGRDINPROG)) { 4589 BUF_UNLOCK(bp); 4590 continue; 4591 } 4592 bremfree(bp); 4593 FREE_LOCK(&lk); 4594 (void) bawrite(bp); 4595 ACQUIRE_LOCK(&lk); 4596 /* 4597 * Since we may have slept during the I/O, we need 4598 * to start from a known point. 4599 */ 4600 nbp = TAILQ_FIRST(&vp->v_dirtyblkhd); 4601 } 4602 drain_output(vp, 1); 4603 FREE_LOCK(&lk); 4604 } 4605 4606 /* 4607 * This routine is called when we are trying to synchronously flush a 4608 * file. This routine must eliminate any filesystem metadata dependencies 4609 * so that the syncing routine can succeed by pushing the dirty blocks 4610 * associated with the file. If any I/O errors occur, they are returned. 4611 */ 4612 int 4613 softdep_sync_metadata(ap) 4614 struct vop_fsync_args /* { 4615 struct vnode *a_vp; 4616 struct ucred *a_cred; 4617 int a_waitfor; 4618 struct thread *a_td; 4619 } */ *ap; 4620 { 4621 struct vnode *vp = ap->a_vp; 4622 struct pagedep *pagedep; 4623 struct allocdirect *adp; 4624 struct allocindir *aip; 4625 struct buf *bp, *nbp; 4626 struct worklist *wk; 4627 int i, error, waitfor; 4628 4629 /* 4630 * Check whether this vnode is involved in a filesystem 4631 * that is doing soft dependency processing. 4632 */ 4633 if (!vn_isdisk(vp, NULL)) { 4634 if (!DOINGSOFTDEP(vp)) 4635 return (0); 4636 } else 4637 if (vp->v_rdev->si_mountpoint == NULL || 4638 (vp->v_rdev->si_mountpoint->mnt_flag & MNT_SOFTDEP) == 0) 4639 return (0); 4640 /* 4641 * Ensure that any direct block dependencies have been cleared. 4642 */ 4643 ACQUIRE_LOCK(&lk); 4644 if ((error = flush_inodedep_deps(VTOI(vp)->i_fs, VTOI(vp)->i_number))) { 4645 FREE_LOCK(&lk); 4646 return (error); 4647 } 4648 /* 4649 * For most files, the only metadata dependencies are the 4650 * cylinder group maps that allocate their inode or blocks. 4651 * The block allocation dependencies can be found by traversing 4652 * the dependency lists for any buffers that remain on their 4653 * dirty buffer list. The inode allocation dependency will 4654 * be resolved when the inode is updated with MNT_WAIT. 4655 * This work is done in two passes. The first pass grabs most 4656 * of the buffers and begins asynchronously writing them. The 4657 * only way to wait for these asynchronous writes is to sleep 4658 * on the filesystem vnode which may stay busy for a long time 4659 * if the filesystem is active. So, instead, we make a second 4660 * pass over the dependencies blocking on each write. In the 4661 * usual case we will be blocking against a write that we 4662 * initiated, so when it is done the dependency will have been 4663 * resolved. Thus the second pass is expected to end quickly. 4664 */ 4665 waitfor = MNT_NOWAIT; 4666 top: 4667 /* 4668 * We must wait for any I/O in progress to finish so that 4669 * all potential buffers on the dirty list will be visible. 4670 */ 4671 drain_output(vp, 1); 4672 if (getdirtybuf(&TAILQ_FIRST(&vp->v_dirtyblkhd), MNT_WAIT) == 0) { 4673 FREE_LOCK(&lk); 4674 return (0); 4675 } 4676 bp = TAILQ_FIRST(&vp->v_dirtyblkhd); 4677 /* While syncing snapshots, we must allow recursive lookups */ 4678 bp->b_lock.lk_flags |= LK_CANRECURSE; 4679 loop: 4680 /* 4681 * As we hold the buffer locked, none of its dependencies 4682 * will disappear. 4683 */ 4684 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 4685 switch (wk->wk_type) { 4686 4687 case D_ALLOCDIRECT: 4688 adp = WK_ALLOCDIRECT(wk); 4689 if (adp->ad_state & DEPCOMPLETE) 4690 continue; 4691 nbp = adp->ad_buf; 4692 if (getdirtybuf(&nbp, waitfor) == 0) 4693 continue; 4694 FREE_LOCK(&lk); 4695 if (waitfor == MNT_NOWAIT) { 4696 bawrite(nbp); 4697 } else if ((error = BUF_WRITE(nbp)) != 0) { 4698 break; 4699 } 4700 ACQUIRE_LOCK(&lk); 4701 continue; 4702 4703 case D_ALLOCINDIR: 4704 aip = WK_ALLOCINDIR(wk); 4705 if (aip->ai_state & DEPCOMPLETE) 4706 continue; 4707 nbp = aip->ai_buf; 4708 if (getdirtybuf(&nbp, waitfor) == 0) 4709 continue; 4710 FREE_LOCK(&lk); 4711 if (waitfor == MNT_NOWAIT) { 4712 bawrite(nbp); 4713 } else if ((error = BUF_WRITE(nbp)) != 0) { 4714 break; 4715 } 4716 ACQUIRE_LOCK(&lk); 4717 continue; 4718 4719 case D_INDIRDEP: 4720 restart: 4721 4722 LIST_FOREACH(aip, &WK_INDIRDEP(wk)->ir_deplisthd, ai_next) { 4723 if (aip->ai_state & DEPCOMPLETE) 4724 continue; 4725 nbp = aip->ai_buf; 4726 if (getdirtybuf(&nbp, MNT_WAIT) == 0) 4727 goto restart; 4728 FREE_LOCK(&lk); 4729 if ((error = BUF_WRITE(nbp)) != 0) { 4730 break; 4731 } 4732 ACQUIRE_LOCK(&lk); 4733 goto restart; 4734 } 4735 continue; 4736 4737 case D_INODEDEP: 4738 if ((error = flush_inodedep_deps(WK_INODEDEP(wk)->id_fs, 4739 WK_INODEDEP(wk)->id_ino)) != 0) { 4740 FREE_LOCK(&lk); 4741 break; 4742 } 4743 continue; 4744 4745 case D_PAGEDEP: 4746 /* 4747 * We are trying to sync a directory that may 4748 * have dependencies on both its own metadata 4749 * and/or dependencies on the inodes of any 4750 * recently allocated files. We walk its diradd 4751 * lists pushing out the associated inode. 4752 */ 4753 pagedep = WK_PAGEDEP(wk); 4754 for (i = 0; i < DAHASHSZ; i++) { 4755 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0) 4756 continue; 4757 if ((error = 4758 flush_pagedep_deps(vp, pagedep->pd_mnt, 4759 &pagedep->pd_diraddhd[i]))) { 4760 FREE_LOCK(&lk); 4761 break; 4762 } 4763 } 4764 continue; 4765 4766 case D_MKDIR: 4767 /* 4768 * This case should never happen if the vnode has 4769 * been properly sync'ed. However, if this function 4770 * is used at a place where the vnode has not yet 4771 * been sync'ed, this dependency can show up. So, 4772 * rather than panic, just flush it. 4773 */ 4774 nbp = WK_MKDIR(wk)->md_buf; 4775 if (getdirtybuf(&nbp, waitfor) == 0) 4776 continue; 4777 FREE_LOCK(&lk); 4778 if (waitfor == MNT_NOWAIT) { 4779 bawrite(nbp); 4780 } else if ((error = BUF_WRITE(nbp)) != 0) { 4781 break; 4782 } 4783 ACQUIRE_LOCK(&lk); 4784 continue; 4785 4786 case D_BMSAFEMAP: 4787 /* 4788 * This case should never happen if the vnode has 4789 * been properly sync'ed. However, if this function 4790 * is used at a place where the vnode has not yet 4791 * been sync'ed, this dependency can show up. So, 4792 * rather than panic, just flush it. 4793 */ 4794 nbp = WK_BMSAFEMAP(wk)->sm_buf; 4795 if (getdirtybuf(&nbp, waitfor) == 0) 4796 continue; 4797 FREE_LOCK(&lk); 4798 if (waitfor == MNT_NOWAIT) { 4799 bawrite(nbp); 4800 } else if ((error = BUF_WRITE(nbp)) != 0) { 4801 break; 4802 } 4803 ACQUIRE_LOCK(&lk); 4804 continue; 4805 4806 default: 4807 FREE_LOCK(&lk); 4808 panic("softdep_sync_metadata: Unknown type %s", 4809 TYPENAME(wk->wk_type)); 4810 /* NOTREACHED */ 4811 } 4812 /* We reach here only in error and unlocked */ 4813 if (error == 0) 4814 panic("softdep_sync_metadata: zero error"); 4815 bp->b_lock.lk_flags &= ~LK_CANRECURSE; 4816 bawrite(bp); 4817 return (error); 4818 } 4819 (void) getdirtybuf(&TAILQ_NEXT(bp, b_vnbufs), MNT_WAIT); 4820 nbp = TAILQ_NEXT(bp, b_vnbufs); 4821 FREE_LOCK(&lk); 4822 bp->b_lock.lk_flags &= ~LK_CANRECURSE; 4823 bawrite(bp); 4824 ACQUIRE_LOCK(&lk); 4825 if (nbp != NULL) { 4826 bp = nbp; 4827 goto loop; 4828 } 4829 /* 4830 * The brief unlock is to allow any pent up dependency 4831 * processing to be done. Then proceed with the second pass. 4832 */ 4833 if (waitfor == MNT_NOWAIT) { 4834 waitfor = MNT_WAIT; 4835 FREE_LOCK(&lk); 4836 ACQUIRE_LOCK(&lk); 4837 goto top; 4838 } 4839 4840 /* 4841 * If we have managed to get rid of all the dirty buffers, 4842 * then we are done. For certain directories and block 4843 * devices, we may need to do further work. 4844 * 4845 * We must wait for any I/O in progress to finish so that 4846 * all potential buffers on the dirty list will be visible. 4847 */ 4848 drain_output(vp, 1); 4849 if (TAILQ_FIRST(&vp->v_dirtyblkhd) == NULL) { 4850 FREE_LOCK(&lk); 4851 return (0); 4852 } 4853 4854 FREE_LOCK(&lk); 4855 /* 4856 * If we are trying to sync a block device, some of its buffers may 4857 * contain metadata that cannot be written until the contents of some 4858 * partially written files have been written to disk. The only easy 4859 * way to accomplish this is to sync the entire filesystem (luckily 4860 * this happens rarely). 4861 */ 4862 if (vn_isdisk(vp, NULL) && 4863 vp->v_rdev->si_mountpoint && !VOP_ISLOCKED(vp, NULL) && 4864 (error = VFS_SYNC(vp->v_rdev->si_mountpoint, MNT_WAIT, ap->a_cred, 4865 ap->a_td)) != 0) 4866 return (error); 4867 return (0); 4868 } 4869 4870 /* 4871 * Flush the dependencies associated with an inodedep. 4872 * Called with splbio blocked. 4873 */ 4874 static int 4875 flush_inodedep_deps(fs, ino) 4876 struct fs *fs; 4877 ino_t ino; 4878 { 4879 struct inodedep *inodedep; 4880 struct allocdirect *adp; 4881 int error, waitfor; 4882 struct buf *bp; 4883 4884 /* 4885 * This work is done in two passes. The first pass grabs most 4886 * of the buffers and begins asynchronously writing them. The 4887 * only way to wait for these asynchronous writes is to sleep 4888 * on the filesystem vnode which may stay busy for a long time 4889 * if the filesystem is active. So, instead, we make a second 4890 * pass over the dependencies blocking on each write. In the 4891 * usual case we will be blocking against a write that we 4892 * initiated, so when it is done the dependency will have been 4893 * resolved. Thus the second pass is expected to end quickly. 4894 * We give a brief window at the top of the loop to allow 4895 * any pending I/O to complete. 4896 */ 4897 for (waitfor = MNT_NOWAIT; ; ) { 4898 FREE_LOCK(&lk); 4899 ACQUIRE_LOCK(&lk); 4900 if (inodedep_lookup(fs, ino, 0, &inodedep) == 0) 4901 return (0); 4902 TAILQ_FOREACH(adp, &inodedep->id_inoupdt, ad_next) { 4903 if (adp->ad_state & DEPCOMPLETE) 4904 continue; 4905 bp = adp->ad_buf; 4906 if (getdirtybuf(&bp, waitfor) == 0) { 4907 if (waitfor == MNT_NOWAIT) 4908 continue; 4909 break; 4910 } 4911 FREE_LOCK(&lk); 4912 if (waitfor == MNT_NOWAIT) { 4913 bawrite(bp); 4914 } else if ((error = BUF_WRITE(bp)) != 0) { 4915 ACQUIRE_LOCK(&lk); 4916 return (error); 4917 } 4918 ACQUIRE_LOCK(&lk); 4919 break; 4920 } 4921 if (adp != NULL) 4922 continue; 4923 TAILQ_FOREACH(adp, &inodedep->id_newinoupdt, ad_next) { 4924 if (adp->ad_state & DEPCOMPLETE) 4925 continue; 4926 bp = adp->ad_buf; 4927 if (getdirtybuf(&bp, waitfor) == 0) { 4928 if (waitfor == MNT_NOWAIT) 4929 continue; 4930 break; 4931 } 4932 FREE_LOCK(&lk); 4933 if (waitfor == MNT_NOWAIT) { 4934 bawrite(bp); 4935 } else if ((error = BUF_WRITE(bp)) != 0) { 4936 ACQUIRE_LOCK(&lk); 4937 return (error); 4938 } 4939 ACQUIRE_LOCK(&lk); 4940 break; 4941 } 4942 if (adp != NULL) 4943 continue; 4944 /* 4945 * If pass2, we are done, otherwise do pass 2. 4946 */ 4947 if (waitfor == MNT_WAIT) 4948 break; 4949 waitfor = MNT_WAIT; 4950 } 4951 /* 4952 * Try freeing inodedep in case all dependencies have been removed. 4953 */ 4954 if (inodedep_lookup(fs, ino, 0, &inodedep) != 0) 4955 (void) free_inodedep(inodedep); 4956 return (0); 4957 } 4958 4959 /* 4960 * Eliminate a pagedep dependency by flushing out all its diradd dependencies. 4961 * Called with splbio blocked. 4962 */ 4963 static int 4964 flush_pagedep_deps(pvp, mp, diraddhdp) 4965 struct vnode *pvp; 4966 struct mount *mp; 4967 struct diraddhd *diraddhdp; 4968 { 4969 struct thread *td = curthread; 4970 struct inodedep *inodedep; 4971 struct ufsmount *ump; 4972 struct diradd *dap; 4973 struct vnode *vp; 4974 int gotit, error = 0; 4975 struct buf *bp; 4976 ino_t inum; 4977 4978 ump = VFSTOUFS(mp); 4979 while ((dap = LIST_FIRST(diraddhdp)) != NULL) { 4980 /* 4981 * Flush ourselves if this directory entry 4982 * has a MKDIR_PARENT dependency. 4983 */ 4984 if (dap->da_state & MKDIR_PARENT) { 4985 FREE_LOCK(&lk); 4986 if ((error = UFS_UPDATE(pvp, 1)) != 0) 4987 break; 4988 ACQUIRE_LOCK(&lk); 4989 /* 4990 * If that cleared dependencies, go on to next. 4991 */ 4992 if (dap != LIST_FIRST(diraddhdp)) 4993 continue; 4994 if (dap->da_state & MKDIR_PARENT) { 4995 FREE_LOCK(&lk); 4996 panic("flush_pagedep_deps: MKDIR_PARENT"); 4997 } 4998 } 4999 /* 5000 * A newly allocated directory must have its "." and 5001 * ".." entries written out before its name can be 5002 * committed in its parent. We do not want or need 5003 * the full semantics of a synchronous VOP_FSYNC as 5004 * that may end up here again, once for each directory 5005 * level in the filesystem. Instead, we push the blocks 5006 * and wait for them to clear. We have to fsync twice 5007 * because the first call may choose to defer blocks 5008 * that still have dependencies, but deferral will 5009 * happen at most once. 5010 */ 5011 inum = dap->da_newinum; 5012 if (dap->da_state & MKDIR_BODY) { 5013 FREE_LOCK(&lk); 5014 if ((error = VFS_VGET(mp, inum, LK_EXCLUSIVE, &vp))) 5015 break; 5016 if ((error=VOP_FSYNC(vp, td->td_ucred, MNT_NOWAIT, td)) || 5017 (error=VOP_FSYNC(vp, td->td_ucred, MNT_NOWAIT, td))) { 5018 vput(vp); 5019 break; 5020 } 5021 drain_output(vp, 0); 5022 vput(vp); 5023 ACQUIRE_LOCK(&lk); 5024 /* 5025 * If that cleared dependencies, go on to next. 5026 */ 5027 if (dap != LIST_FIRST(diraddhdp)) 5028 continue; 5029 if (dap->da_state & MKDIR_BODY) { 5030 FREE_LOCK(&lk); 5031 panic("flush_pagedep_deps: MKDIR_BODY"); 5032 } 5033 } 5034 /* 5035 * Flush the inode on which the directory entry depends. 5036 * Having accounted for MKDIR_PARENT and MKDIR_BODY above, 5037 * the only remaining dependency is that the updated inode 5038 * count must get pushed to disk. The inode has already 5039 * been pushed into its inode buffer (via VOP_UPDATE) at 5040 * the time of the reference count change. So we need only 5041 * locate that buffer, ensure that there will be no rollback 5042 * caused by a bitmap dependency, then write the inode buffer. 5043 */ 5044 if (inodedep_lookup(ump->um_fs, inum, 0, &inodedep) == 0) { 5045 FREE_LOCK(&lk); 5046 panic("flush_pagedep_deps: lost inode"); 5047 } 5048 /* 5049 * If the inode still has bitmap dependencies, 5050 * push them to disk. 5051 */ 5052 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 5053 gotit = getdirtybuf(&inodedep->id_buf, MNT_WAIT); 5054 FREE_LOCK(&lk); 5055 if (gotit && 5056 (error = BUF_WRITE(inodedep->id_buf)) != 0) 5057 break; 5058 ACQUIRE_LOCK(&lk); 5059 if (dap != LIST_FIRST(diraddhdp)) 5060 continue; 5061 } 5062 /* 5063 * If the inode is still sitting in a buffer waiting 5064 * to be written, push it to disk. 5065 */ 5066 FREE_LOCK(&lk); 5067 if ((error = bread(ump->um_devvp, 5068 fsbtodb(ump->um_fs, ino_to_fsba(ump->um_fs, inum)), 5069 (int)ump->um_fs->fs_bsize, NOCRED, &bp)) != 0) { 5070 brelse(bp); 5071 break; 5072 } 5073 if ((error = BUF_WRITE(bp)) != 0) 5074 break; 5075 ACQUIRE_LOCK(&lk); 5076 /* 5077 * If we have failed to get rid of all the dependencies 5078 * then something is seriously wrong. 5079 */ 5080 if (dap == LIST_FIRST(diraddhdp)) { 5081 FREE_LOCK(&lk); 5082 panic("flush_pagedep_deps: flush failed"); 5083 } 5084 } 5085 if (error) 5086 ACQUIRE_LOCK(&lk); 5087 return (error); 5088 } 5089 5090 /* 5091 * A large burst of file addition or deletion activity can drive the 5092 * memory load excessively high. First attempt to slow things down 5093 * using the techniques below. If that fails, this routine requests 5094 * the offending operations to fall back to running synchronously 5095 * until the memory load returns to a reasonable level. 5096 */ 5097 int 5098 softdep_slowdown(vp) 5099 struct vnode *vp; 5100 { 5101 int max_softdeps_hard; 5102 5103 max_softdeps_hard = max_softdeps * 11 / 10; 5104 if (num_dirrem < max_softdeps_hard / 2 && 5105 num_inodedep < max_softdeps_hard) 5106 return (0); 5107 stat_sync_limit_hit += 1; 5108 return (1); 5109 } 5110 5111 /* 5112 * Called by the allocation routines when they are about to fail 5113 * in the hope that we can free up some disk space. 5114 * 5115 * First check to see if the work list has anything on it. If it has, 5116 * clean up entries until we successfully free some space. Because this 5117 * process holds inodes locked, we cannot handle any remove requests 5118 * that might block on a locked inode as that could lead to deadlock. 5119 * If the worklist yields no free space, encourage the syncer daemon 5120 * to help us. In no event will we try for longer than tickdelay seconds. 5121 */ 5122 int 5123 softdep_request_cleanup(fs, vp) 5124 struct fs *fs; 5125 struct vnode *vp; 5126 { 5127 long starttime; 5128 ufs2_daddr_t needed; 5129 5130 needed = fs->fs_cstotal.cs_nbfree + fs->fs_contigsumsize; 5131 starttime = time_second + tickdelay; 5132 if (UFS_UPDATE(vp, 1) != 0) 5133 return (0); 5134 while (fs->fs_pendingblocks > 0 && fs->fs_cstotal.cs_nbfree <= needed) { 5135 if (time_second > starttime) 5136 return (0); 5137 if (num_on_worklist > 0 && 5138 process_worklist_item(NULL, LK_NOWAIT) != -1) { 5139 stat_worklist_push += 1; 5140 continue; 5141 } 5142 request_cleanup(FLUSH_REMOVE_WAIT, 0); 5143 } 5144 return (1); 5145 } 5146 5147 /* 5148 * If memory utilization has gotten too high, deliberately slow things 5149 * down and speed up the I/O processing. 5150 */ 5151 static int 5152 request_cleanup(resource, islocked) 5153 int resource; 5154 int islocked; 5155 { 5156 struct thread *td = curthread; 5157 5158 /* 5159 * We never hold up the filesystem syncer process. 5160 */ 5161 if (td == filesys_syncer) 5162 return (0); 5163 /* 5164 * First check to see if the work list has gotten backlogged. 5165 * If it has, co-opt this process to help clean up two entries. 5166 * Because this process may hold inodes locked, we cannot 5167 * handle any remove requests that might block on a locked 5168 * inode as that could lead to deadlock. 5169 */ 5170 if (num_on_worklist > max_softdeps / 10) { 5171 if (islocked) 5172 FREE_LOCK(&lk); 5173 process_worklist_item(NULL, LK_NOWAIT); 5174 process_worklist_item(NULL, LK_NOWAIT); 5175 stat_worklist_push += 2; 5176 if (islocked) 5177 ACQUIRE_LOCK(&lk); 5178 return(1); 5179 } 5180 /* 5181 * Next, we attempt to speed up the syncer process. If that 5182 * is successful, then we allow the process to continue. 5183 */ 5184 if (speedup_syncer() && resource != FLUSH_REMOVE_WAIT) 5185 return(0); 5186 /* 5187 * If we are resource constrained on inode dependencies, try 5188 * flushing some dirty inodes. Otherwise, we are constrained 5189 * by file deletions, so try accelerating flushes of directories 5190 * with removal dependencies. We would like to do the cleanup 5191 * here, but we probably hold an inode locked at this point and 5192 * that might deadlock against one that we try to clean. So, 5193 * the best that we can do is request the syncer daemon to do 5194 * the cleanup for us. 5195 */ 5196 switch (resource) { 5197 5198 case FLUSH_INODES: 5199 stat_ino_limit_push += 1; 5200 req_clear_inodedeps += 1; 5201 stat_countp = &stat_ino_limit_hit; 5202 break; 5203 5204 case FLUSH_REMOVE: 5205 case FLUSH_REMOVE_WAIT: 5206 stat_blk_limit_push += 1; 5207 req_clear_remove += 1; 5208 stat_countp = &stat_blk_limit_hit; 5209 break; 5210 5211 default: 5212 if (islocked) 5213 FREE_LOCK(&lk); 5214 panic("request_cleanup: unknown type"); 5215 } 5216 /* 5217 * Hopefully the syncer daemon will catch up and awaken us. 5218 * We wait at most tickdelay before proceeding in any case. 5219 */ 5220 if (islocked == 0) 5221 ACQUIRE_LOCK(&lk); 5222 proc_waiting += 1; 5223 if (handle.callout == NULL) 5224 handle = timeout(pause_timer, 0, tickdelay > 2 ? tickdelay : 2); 5225 interlocked_sleep(&lk, SLEEP, (caddr_t)&proc_waiting, PPAUSE, 5226 "softupdate", 0); 5227 proc_waiting -= 1; 5228 if (islocked == 0) 5229 FREE_LOCK(&lk); 5230 return (1); 5231 } 5232 5233 /* 5234 * Awaken processes pausing in request_cleanup and clear proc_waiting 5235 * to indicate that there is no longer a timer running. 5236 */ 5237 void 5238 pause_timer(arg) 5239 void *arg; 5240 { 5241 5242 *stat_countp += 1; 5243 wakeup_one(&proc_waiting); 5244 if (proc_waiting > 0) 5245 handle = timeout(pause_timer, 0, tickdelay > 2 ? tickdelay : 2); 5246 else 5247 handle.callout = NULL; 5248 } 5249 5250 /* 5251 * Flush out a directory with at least one removal dependency in an effort to 5252 * reduce the number of dirrem, freefile, and freeblks dependency structures. 5253 */ 5254 static void 5255 clear_remove(td) 5256 struct thread *td; 5257 { 5258 struct pagedep_hashhead *pagedephd; 5259 struct pagedep *pagedep; 5260 static int next = 0; 5261 struct mount *mp; 5262 struct vnode *vp; 5263 int error, cnt; 5264 ino_t ino; 5265 5266 ACQUIRE_LOCK(&lk); 5267 for (cnt = 0; cnt < pagedep_hash; cnt++) { 5268 pagedephd = &pagedep_hashtbl[next++]; 5269 if (next >= pagedep_hash) 5270 next = 0; 5271 LIST_FOREACH(pagedep, pagedephd, pd_hash) { 5272 if (LIST_FIRST(&pagedep->pd_dirremhd) == NULL) 5273 continue; 5274 mp = pagedep->pd_mnt; 5275 ino = pagedep->pd_ino; 5276 FREE_LOCK(&lk); 5277 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 5278 continue; 5279 if ((error = VFS_VGET(mp, ino, LK_EXCLUSIVE, &vp))) { 5280 softdep_error("clear_remove: vget", error); 5281 vn_finished_write(mp); 5282 return; 5283 } 5284 if ((error = VOP_FSYNC(vp, td->td_ucred, MNT_NOWAIT, td))) 5285 softdep_error("clear_remove: fsync", error); 5286 drain_output(vp, 0); 5287 vput(vp); 5288 vn_finished_write(mp); 5289 return; 5290 } 5291 } 5292 FREE_LOCK(&lk); 5293 } 5294 5295 /* 5296 * Clear out a block of dirty inodes in an effort to reduce 5297 * the number of inodedep dependency structures. 5298 */ 5299 static void 5300 clear_inodedeps(td) 5301 struct thread *td; 5302 { 5303 struct inodedep_hashhead *inodedephd; 5304 struct inodedep *inodedep; 5305 static int next = 0; 5306 struct mount *mp; 5307 struct vnode *vp; 5308 struct fs *fs; 5309 int error, cnt; 5310 ino_t firstino, lastino, ino; 5311 5312 ACQUIRE_LOCK(&lk); 5313 /* 5314 * Pick a random inode dependency to be cleared. 5315 * We will then gather up all the inodes in its block 5316 * that have dependencies and flush them out. 5317 */ 5318 for (cnt = 0; cnt < inodedep_hash; cnt++) { 5319 inodedephd = &inodedep_hashtbl[next++]; 5320 if (next >= inodedep_hash) 5321 next = 0; 5322 if ((inodedep = LIST_FIRST(inodedephd)) != NULL) 5323 break; 5324 } 5325 if (inodedep == NULL) 5326 return; 5327 /* 5328 * Ugly code to find mount point given pointer to superblock. 5329 */ 5330 fs = inodedep->id_fs; 5331 TAILQ_FOREACH(mp, &mountlist, mnt_list) 5332 if ((mp->mnt_flag & MNT_SOFTDEP) && fs == VFSTOUFS(mp)->um_fs) 5333 break; 5334 /* 5335 * Find the last inode in the block with dependencies. 5336 */ 5337 firstino = inodedep->id_ino & ~(INOPB(fs) - 1); 5338 for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--) 5339 if (inodedep_lookup(fs, lastino, 0, &inodedep) != 0) 5340 break; 5341 /* 5342 * Asynchronously push all but the last inode with dependencies. 5343 * Synchronously push the last inode with dependencies to ensure 5344 * that the inode block gets written to free up the inodedeps. 5345 */ 5346 for (ino = firstino; ino <= lastino; ino++) { 5347 if (inodedep_lookup(fs, ino, 0, &inodedep) == 0) 5348 continue; 5349 FREE_LOCK(&lk); 5350 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 5351 continue; 5352 if ((error = VFS_VGET(mp, ino, LK_EXCLUSIVE, &vp)) != 0) { 5353 softdep_error("clear_inodedeps: vget", error); 5354 vn_finished_write(mp); 5355 return; 5356 } 5357 if (ino == lastino) { 5358 if ((error = VOP_FSYNC(vp, td->td_ucred, MNT_WAIT, td))) 5359 softdep_error("clear_inodedeps: fsync1", error); 5360 } else { 5361 if ((error = VOP_FSYNC(vp, td->td_ucred, MNT_NOWAIT, td))) 5362 softdep_error("clear_inodedeps: fsync2", error); 5363 drain_output(vp, 0); 5364 } 5365 vput(vp); 5366 vn_finished_write(mp); 5367 ACQUIRE_LOCK(&lk); 5368 } 5369 FREE_LOCK(&lk); 5370 } 5371 5372 /* 5373 * Function to determine if the buffer has outstanding dependencies 5374 * that will cause a roll-back if the buffer is written. If wantcount 5375 * is set, return number of dependencies, otherwise just yes or no. 5376 */ 5377 static int 5378 softdep_count_dependencies(bp, wantcount) 5379 struct buf *bp; 5380 int wantcount; 5381 { 5382 struct worklist *wk; 5383 struct inodedep *inodedep; 5384 struct indirdep *indirdep; 5385 struct allocindir *aip; 5386 struct pagedep *pagedep; 5387 struct diradd *dap; 5388 int i, retval; 5389 5390 retval = 0; 5391 ACQUIRE_LOCK(&lk); 5392 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 5393 switch (wk->wk_type) { 5394 5395 case D_INODEDEP: 5396 inodedep = WK_INODEDEP(wk); 5397 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 5398 /* bitmap allocation dependency */ 5399 retval += 1; 5400 if (!wantcount) 5401 goto out; 5402 } 5403 if (TAILQ_FIRST(&inodedep->id_inoupdt)) { 5404 /* direct block pointer dependency */ 5405 retval += 1; 5406 if (!wantcount) 5407 goto out; 5408 } 5409 continue; 5410 5411 case D_INDIRDEP: 5412 indirdep = WK_INDIRDEP(wk); 5413 5414 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) { 5415 /* indirect block pointer dependency */ 5416 retval += 1; 5417 if (!wantcount) 5418 goto out; 5419 } 5420 continue; 5421 5422 case D_PAGEDEP: 5423 pagedep = WK_PAGEDEP(wk); 5424 for (i = 0; i < DAHASHSZ; i++) { 5425 5426 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 5427 /* directory entry dependency */ 5428 retval += 1; 5429 if (!wantcount) 5430 goto out; 5431 } 5432 } 5433 continue; 5434 5435 case D_BMSAFEMAP: 5436 case D_ALLOCDIRECT: 5437 case D_ALLOCINDIR: 5438 case D_MKDIR: 5439 /* never a dependency on these blocks */ 5440 continue; 5441 5442 default: 5443 FREE_LOCK(&lk); 5444 panic("softdep_check_for_rollback: Unexpected type %s", 5445 TYPENAME(wk->wk_type)); 5446 /* NOTREACHED */ 5447 } 5448 } 5449 out: 5450 FREE_LOCK(&lk); 5451 return retval; 5452 } 5453 5454 /* 5455 * Acquire exclusive access to a buffer. 5456 * Must be called with splbio blocked. 5457 * Return 1 if buffer was acquired. 5458 */ 5459 static int 5460 getdirtybuf(bpp, waitfor) 5461 struct buf **bpp; 5462 int waitfor; 5463 { 5464 struct buf *bp; 5465 int error; 5466 5467 for (;;) { 5468 if ((bp = *bpp) == NULL) 5469 return (0); 5470 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) == 0) { 5471 if ((bp->b_xflags & BX_BKGRDINPROG) == 0) 5472 break; 5473 BUF_UNLOCK(bp); 5474 if (waitfor != MNT_WAIT) 5475 return (0); 5476 bp->b_xflags |= BX_BKGRDWAIT; 5477 interlocked_sleep(&lk, SLEEP, &bp->b_xflags, PRIBIO, 5478 "getbuf", 0); 5479 continue; 5480 } 5481 if (waitfor != MNT_WAIT) 5482 return (0); 5483 error = interlocked_sleep(&lk, LOCKBUF, bp, 5484 LK_EXCLUSIVE | LK_SLEEPFAIL, 0, 0); 5485 if (error != ENOLCK) { 5486 FREE_LOCK(&lk); 5487 panic("getdirtybuf: inconsistent lock"); 5488 } 5489 } 5490 if ((bp->b_flags & B_DELWRI) == 0) { 5491 BUF_UNLOCK(bp); 5492 return (0); 5493 } 5494 bremfree(bp); 5495 return (1); 5496 } 5497 5498 /* 5499 * Wait for pending output on a vnode to complete. 5500 * Must be called with vnode locked. 5501 */ 5502 static void 5503 drain_output(vp, islocked) 5504 struct vnode *vp; 5505 int islocked; 5506 { 5507 5508 if (!islocked) 5509 ACQUIRE_LOCK(&lk); 5510 while (vp->v_numoutput) { 5511 vp->v_flag |= VBWAIT; 5512 interlocked_sleep(&lk, SLEEP, (caddr_t)&vp->v_numoutput, 5513 PRIBIO + 1, "drainvp", 0); 5514 } 5515 if (!islocked) 5516 FREE_LOCK(&lk); 5517 } 5518 5519 /* 5520 * Called whenever a buffer that is being invalidated or reallocated 5521 * contains dependencies. This should only happen if an I/O error has 5522 * occurred. The routine is called with the buffer locked. 5523 */ 5524 static void 5525 softdep_deallocate_dependencies(bp) 5526 struct buf *bp; 5527 { 5528 5529 if ((bp->b_ioflags & BIO_ERROR) == 0) 5530 panic("softdep_deallocate_dependencies: dangling deps"); 5531 softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error); 5532 panic("softdep_deallocate_dependencies: unrecovered I/O error"); 5533 } 5534 5535 /* 5536 * Function to handle asynchronous write errors in the filesystem. 5537 */ 5538 void 5539 softdep_error(func, error) 5540 char *func; 5541 int error; 5542 { 5543 5544 /* XXX should do something better! */ 5545 printf("%s: got error %d while accessing filesystem\n", func, error); 5546 } 5547