1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright 1998, 2000 Marshall Kirk McKusick. 5 * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org> 6 * All rights reserved. 7 * 8 * The soft updates code is derived from the appendix of a University 9 * of Michigan technical report (Gregory R. Ganger and Yale N. Patt, 10 * "Soft Updates: A Solution to the Metadata Update Problem in File 11 * Systems", CSE-TR-254-95, August 1995). 12 * 13 * Further information about soft updates can be obtained from: 14 * 15 * Marshall Kirk McKusick http://www.mckusick.com/softdep/ 16 * 1614 Oxford Street mckusick@mckusick.com 17 * Berkeley, CA 94709-1608 +1-510-843-9542 18 * USA 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * 1. Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * 2. Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in the 28 * documentation and/or other materials provided with the distribution. 29 * 30 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 31 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 32 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 33 * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, 34 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 35 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 36 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 37 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 38 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 39 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 40 * 41 * from: @(#)ffs_softdep.c 9.59 (McKusick) 6/21/00 42 */ 43 44 #include <sys/cdefs.h> 45 __FBSDID("$FreeBSD$"); 46 47 #include "opt_ffs.h" 48 #include "opt_quota.h" 49 #include "opt_ddb.h" 50 51 #include <sys/param.h> 52 #include <sys/kernel.h> 53 #include <sys/systm.h> 54 #include <sys/bio.h> 55 #include <sys/buf.h> 56 #include <sys/kdb.h> 57 #include <sys/kthread.h> 58 #include <sys/ktr.h> 59 #include <sys/limits.h> 60 #include <sys/lock.h> 61 #include <sys/malloc.h> 62 #include <sys/mount.h> 63 #include <sys/mutex.h> 64 #include <sys/namei.h> 65 #include <sys/priv.h> 66 #include <sys/proc.h> 67 #include <sys/racct.h> 68 #include <sys/rwlock.h> 69 #include <sys/stat.h> 70 #include <sys/sysctl.h> 71 #include <sys/syslog.h> 72 #include <sys/vnode.h> 73 #include <sys/conf.h> 74 75 #include <ufs/ufs/dir.h> 76 #include <ufs/ufs/extattr.h> 77 #include <ufs/ufs/quota.h> 78 #include <ufs/ufs/inode.h> 79 #include <ufs/ufs/ufsmount.h> 80 #include <ufs/ffs/fs.h> 81 #include <ufs/ffs/softdep.h> 82 #include <ufs/ffs/ffs_extern.h> 83 #include <ufs/ufs/ufs_extern.h> 84 85 #include <vm/vm.h> 86 #include <vm/vm_extern.h> 87 #include <vm/vm_object.h> 88 89 #include <geom/geom.h> 90 91 #include <ddb/ddb.h> 92 93 #define KTR_SUJ 0 /* Define to KTR_SPARE. */ 94 95 #ifndef SOFTUPDATES 96 97 int 98 softdep_flushfiles(oldmnt, flags, td) 99 struct mount *oldmnt; 100 int flags; 101 struct thread *td; 102 { 103 104 panic("softdep_flushfiles called"); 105 } 106 107 int 108 softdep_mount(devvp, mp, fs, cred) 109 struct vnode *devvp; 110 struct mount *mp; 111 struct fs *fs; 112 struct ucred *cred; 113 { 114 115 return (0); 116 } 117 118 void 119 softdep_initialize() 120 { 121 122 return; 123 } 124 125 void 126 softdep_uninitialize() 127 { 128 129 return; 130 } 131 132 void 133 softdep_unmount(mp) 134 struct mount *mp; 135 { 136 137 panic("softdep_unmount called"); 138 } 139 140 void 141 softdep_setup_sbupdate(ump, fs, bp) 142 struct ufsmount *ump; 143 struct fs *fs; 144 struct buf *bp; 145 { 146 147 panic("softdep_setup_sbupdate called"); 148 } 149 150 void 151 softdep_setup_inomapdep(bp, ip, newinum, mode) 152 struct buf *bp; 153 struct inode *ip; 154 ino_t newinum; 155 int mode; 156 { 157 158 panic("softdep_setup_inomapdep called"); 159 } 160 161 void 162 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags) 163 struct buf *bp; 164 struct mount *mp; 165 ufs2_daddr_t newblkno; 166 int frags; 167 int oldfrags; 168 { 169 170 panic("softdep_setup_blkmapdep called"); 171 } 172 173 void 174 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 175 struct inode *ip; 176 ufs_lbn_t lbn; 177 ufs2_daddr_t newblkno; 178 ufs2_daddr_t oldblkno; 179 long newsize; 180 long oldsize; 181 struct buf *bp; 182 { 183 184 panic("softdep_setup_allocdirect called"); 185 } 186 187 void 188 softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 189 struct inode *ip; 190 ufs_lbn_t lbn; 191 ufs2_daddr_t newblkno; 192 ufs2_daddr_t oldblkno; 193 long newsize; 194 long oldsize; 195 struct buf *bp; 196 { 197 198 panic("softdep_setup_allocext called"); 199 } 200 201 void 202 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 203 struct inode *ip; 204 ufs_lbn_t lbn; 205 struct buf *bp; 206 int ptrno; 207 ufs2_daddr_t newblkno; 208 ufs2_daddr_t oldblkno; 209 struct buf *nbp; 210 { 211 212 panic("softdep_setup_allocindir_page called"); 213 } 214 215 void 216 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 217 struct buf *nbp; 218 struct inode *ip; 219 struct buf *bp; 220 int ptrno; 221 ufs2_daddr_t newblkno; 222 { 223 224 panic("softdep_setup_allocindir_meta called"); 225 } 226 227 void 228 softdep_journal_freeblocks(ip, cred, length, flags) 229 struct inode *ip; 230 struct ucred *cred; 231 off_t length; 232 int flags; 233 { 234 235 panic("softdep_journal_freeblocks called"); 236 } 237 238 void 239 softdep_journal_fsync(ip) 240 struct inode *ip; 241 { 242 243 panic("softdep_journal_fsync called"); 244 } 245 246 void 247 softdep_setup_freeblocks(ip, length, flags) 248 struct inode *ip; 249 off_t length; 250 int flags; 251 { 252 253 panic("softdep_setup_freeblocks called"); 254 } 255 256 void 257 softdep_freefile(pvp, ino, mode) 258 struct vnode *pvp; 259 ino_t ino; 260 int mode; 261 { 262 263 panic("softdep_freefile called"); 264 } 265 266 int 267 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk) 268 struct buf *bp; 269 struct inode *dp; 270 off_t diroffset; 271 ino_t newinum; 272 struct buf *newdirbp; 273 int isnewblk; 274 { 275 276 panic("softdep_setup_directory_add called"); 277 } 278 279 void 280 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize) 281 struct buf *bp; 282 struct inode *dp; 283 caddr_t base; 284 caddr_t oldloc; 285 caddr_t newloc; 286 int entrysize; 287 { 288 289 panic("softdep_change_directoryentry_offset called"); 290 } 291 292 void 293 softdep_setup_remove(bp, dp, ip, isrmdir) 294 struct buf *bp; 295 struct inode *dp; 296 struct inode *ip; 297 int isrmdir; 298 { 299 300 panic("softdep_setup_remove called"); 301 } 302 303 void 304 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 305 struct buf *bp; 306 struct inode *dp; 307 struct inode *ip; 308 ino_t newinum; 309 int isrmdir; 310 { 311 312 panic("softdep_setup_directory_change called"); 313 } 314 315 void 316 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd) 317 struct mount *mp; 318 struct buf *bp; 319 ufs2_daddr_t blkno; 320 int frags; 321 struct workhead *wkhd; 322 { 323 324 panic("%s called", __FUNCTION__); 325 } 326 327 void 328 softdep_setup_inofree(mp, bp, ino, wkhd) 329 struct mount *mp; 330 struct buf *bp; 331 ino_t ino; 332 struct workhead *wkhd; 333 { 334 335 panic("%s called", __FUNCTION__); 336 } 337 338 void 339 softdep_setup_unlink(dp, ip) 340 struct inode *dp; 341 struct inode *ip; 342 { 343 344 panic("%s called", __FUNCTION__); 345 } 346 347 void 348 softdep_setup_link(dp, ip) 349 struct inode *dp; 350 struct inode *ip; 351 { 352 353 panic("%s called", __FUNCTION__); 354 } 355 356 void 357 softdep_revert_link(dp, ip) 358 struct inode *dp; 359 struct inode *ip; 360 { 361 362 panic("%s called", __FUNCTION__); 363 } 364 365 void 366 softdep_setup_rmdir(dp, ip) 367 struct inode *dp; 368 struct inode *ip; 369 { 370 371 panic("%s called", __FUNCTION__); 372 } 373 374 void 375 softdep_revert_rmdir(dp, ip) 376 struct inode *dp; 377 struct inode *ip; 378 { 379 380 panic("%s called", __FUNCTION__); 381 } 382 383 void 384 softdep_setup_create(dp, ip) 385 struct inode *dp; 386 struct inode *ip; 387 { 388 389 panic("%s called", __FUNCTION__); 390 } 391 392 void 393 softdep_revert_create(dp, ip) 394 struct inode *dp; 395 struct inode *ip; 396 { 397 398 panic("%s called", __FUNCTION__); 399 } 400 401 void 402 softdep_setup_mkdir(dp, ip) 403 struct inode *dp; 404 struct inode *ip; 405 { 406 407 panic("%s called", __FUNCTION__); 408 } 409 410 void 411 softdep_revert_mkdir(dp, ip) 412 struct inode *dp; 413 struct inode *ip; 414 { 415 416 panic("%s called", __FUNCTION__); 417 } 418 419 void 420 softdep_setup_dotdot_link(dp, ip) 421 struct inode *dp; 422 struct inode *ip; 423 { 424 425 panic("%s called", __FUNCTION__); 426 } 427 428 int 429 softdep_prealloc(vp, waitok) 430 struct vnode *vp; 431 int waitok; 432 { 433 434 panic("%s called", __FUNCTION__); 435 } 436 437 int 438 softdep_journal_lookup(mp, vpp) 439 struct mount *mp; 440 struct vnode **vpp; 441 { 442 443 return (ENOENT); 444 } 445 446 void 447 softdep_change_linkcnt(ip) 448 struct inode *ip; 449 { 450 451 panic("softdep_change_linkcnt called"); 452 } 453 454 void 455 softdep_load_inodeblock(ip) 456 struct inode *ip; 457 { 458 459 panic("softdep_load_inodeblock called"); 460 } 461 462 void 463 softdep_update_inodeblock(ip, bp, waitfor) 464 struct inode *ip; 465 struct buf *bp; 466 int waitfor; 467 { 468 469 panic("softdep_update_inodeblock called"); 470 } 471 472 int 473 softdep_fsync(vp) 474 struct vnode *vp; /* the "in_core" copy of the inode */ 475 { 476 477 return (0); 478 } 479 480 void 481 softdep_fsync_mountdev(vp) 482 struct vnode *vp; 483 { 484 485 return; 486 } 487 488 int 489 softdep_flushworklist(oldmnt, countp, td) 490 struct mount *oldmnt; 491 int *countp; 492 struct thread *td; 493 { 494 495 *countp = 0; 496 return (0); 497 } 498 499 int 500 softdep_sync_metadata(struct vnode *vp) 501 { 502 503 panic("softdep_sync_metadata called"); 504 } 505 506 int 507 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor) 508 { 509 510 panic("softdep_sync_buf called"); 511 } 512 513 int 514 softdep_slowdown(vp) 515 struct vnode *vp; 516 { 517 518 panic("softdep_slowdown called"); 519 } 520 521 int 522 softdep_request_cleanup(fs, vp, cred, resource) 523 struct fs *fs; 524 struct vnode *vp; 525 struct ucred *cred; 526 int resource; 527 { 528 529 return (0); 530 } 531 532 int 533 softdep_check_suspend(struct mount *mp, 534 struct vnode *devvp, 535 int softdep_depcnt, 536 int softdep_accdepcnt, 537 int secondary_writes, 538 int secondary_accwrites) 539 { 540 struct bufobj *bo; 541 int error; 542 543 (void) softdep_depcnt, 544 (void) softdep_accdepcnt; 545 546 bo = &devvp->v_bufobj; 547 ASSERT_BO_WLOCKED(bo); 548 549 MNT_ILOCK(mp); 550 while (mp->mnt_secondary_writes != 0) { 551 BO_UNLOCK(bo); 552 msleep(&mp->mnt_secondary_writes, MNT_MTX(mp), 553 (PUSER - 1) | PDROP, "secwr", 0); 554 BO_LOCK(bo); 555 MNT_ILOCK(mp); 556 } 557 558 /* 559 * Reasons for needing more work before suspend: 560 * - Dirty buffers on devvp. 561 * - Secondary writes occurred after start of vnode sync loop 562 */ 563 error = 0; 564 if (bo->bo_numoutput > 0 || 565 bo->bo_dirty.bv_cnt > 0 || 566 secondary_writes != 0 || 567 mp->mnt_secondary_writes != 0 || 568 secondary_accwrites != mp->mnt_secondary_accwrites) 569 error = EAGAIN; 570 BO_UNLOCK(bo); 571 return (error); 572 } 573 574 void 575 softdep_get_depcounts(struct mount *mp, 576 int *softdepactivep, 577 int *softdepactiveaccp) 578 { 579 (void) mp; 580 *softdepactivep = 0; 581 *softdepactiveaccp = 0; 582 } 583 584 void 585 softdep_buf_append(bp, wkhd) 586 struct buf *bp; 587 struct workhead *wkhd; 588 { 589 590 panic("softdep_buf_appendwork called"); 591 } 592 593 void 594 softdep_inode_append(ip, cred, wkhd) 595 struct inode *ip; 596 struct ucred *cred; 597 struct workhead *wkhd; 598 { 599 600 panic("softdep_inode_appendwork called"); 601 } 602 603 void 604 softdep_freework(wkhd) 605 struct workhead *wkhd; 606 { 607 608 panic("softdep_freework called"); 609 } 610 611 #else 612 613 FEATURE(softupdates, "FFS soft-updates support"); 614 615 static SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW, 0, 616 "soft updates stats"); 617 static SYSCTL_NODE(_debug_softdep, OID_AUTO, total, CTLFLAG_RW, 0, 618 "total dependencies allocated"); 619 static SYSCTL_NODE(_debug_softdep, OID_AUTO, highuse, CTLFLAG_RW, 0, 620 "high use dependencies allocated"); 621 static SYSCTL_NODE(_debug_softdep, OID_AUTO, current, CTLFLAG_RW, 0, 622 "current dependencies allocated"); 623 static SYSCTL_NODE(_debug_softdep, OID_AUTO, write, CTLFLAG_RW, 0, 624 "current dependencies written"); 625 626 unsigned long dep_current[D_LAST + 1]; 627 unsigned long dep_highuse[D_LAST + 1]; 628 unsigned long dep_total[D_LAST + 1]; 629 unsigned long dep_write[D_LAST + 1]; 630 631 #define SOFTDEP_TYPE(type, str, long) \ 632 static MALLOC_DEFINE(M_ ## type, #str, long); \ 633 SYSCTL_ULONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD, \ 634 &dep_total[D_ ## type], 0, ""); \ 635 SYSCTL_ULONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD, \ 636 &dep_current[D_ ## type], 0, ""); \ 637 SYSCTL_ULONG(_debug_softdep_highuse, OID_AUTO, str, CTLFLAG_RD, \ 638 &dep_highuse[D_ ## type], 0, ""); \ 639 SYSCTL_ULONG(_debug_softdep_write, OID_AUTO, str, CTLFLAG_RD, \ 640 &dep_write[D_ ## type], 0, ""); 641 642 SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies"); 643 SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies"); 644 SOFTDEP_TYPE(BMSAFEMAP, bmsafemap, 645 "Block or frag allocated from cyl group map"); 646 SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency"); 647 SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode"); 648 SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies"); 649 SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block"); 650 SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode"); 651 SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode"); 652 SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated"); 653 SOFTDEP_TYPE(DIRADD, diradd, "New directory entry"); 654 SOFTDEP_TYPE(MKDIR, mkdir, "New directory"); 655 SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted"); 656 SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block"); 657 SOFTDEP_TYPE(FREEWORK, freework, "free an inode block"); 658 SOFTDEP_TYPE(FREEDEP, freedep, "track a block free"); 659 SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add"); 660 SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove"); 661 SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move"); 662 SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block"); 663 SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block"); 664 SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag"); 665 SOFTDEP_TYPE(JSEG, jseg, "Journal segment"); 666 SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete"); 667 SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency"); 668 SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation"); 669 SOFTDEP_TYPE(JFSYNC, jfsync, "Journal fsync complete"); 670 671 static MALLOC_DEFINE(M_SENTINEL, "sentinel", "Worklist sentinel"); 672 673 static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes"); 674 static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations"); 675 static MALLOC_DEFINE(M_MOUNTDATA, "softdep", "Softdep per-mount data"); 676 677 #define M_SOFTDEP_FLAGS (M_WAITOK) 678 679 /* 680 * translate from workitem type to memory type 681 * MUST match the defines above, such that memtype[D_XXX] == M_XXX 682 */ 683 static struct malloc_type *memtype[] = { 684 NULL, 685 M_PAGEDEP, 686 M_INODEDEP, 687 M_BMSAFEMAP, 688 M_NEWBLK, 689 M_ALLOCDIRECT, 690 M_INDIRDEP, 691 M_ALLOCINDIR, 692 M_FREEFRAG, 693 M_FREEBLKS, 694 M_FREEFILE, 695 M_DIRADD, 696 M_MKDIR, 697 M_DIRREM, 698 M_NEWDIRBLK, 699 M_FREEWORK, 700 M_FREEDEP, 701 M_JADDREF, 702 M_JREMREF, 703 M_JMVREF, 704 M_JNEWBLK, 705 M_JFREEBLK, 706 M_JFREEFRAG, 707 M_JSEG, 708 M_JSEGDEP, 709 M_SBDEP, 710 M_JTRUNC, 711 M_JFSYNC, 712 M_SENTINEL 713 }; 714 715 #define DtoM(type) (memtype[type]) 716 717 /* 718 * Names of malloc types. 719 */ 720 #define TYPENAME(type) \ 721 ((unsigned)(type) <= D_LAST && (unsigned)(type) >= D_FIRST ? \ 722 memtype[type]->ks_shortdesc : "???") 723 /* 724 * End system adaptation definitions. 725 */ 726 727 #define DOTDOT_OFFSET offsetof(struct dirtemplate, dotdot_ino) 728 #define DOT_OFFSET offsetof(struct dirtemplate, dot_ino) 729 730 /* 731 * Internal function prototypes. 732 */ 733 static void check_clear_deps(struct mount *); 734 static void softdep_error(char *, int); 735 static int softdep_process_worklist(struct mount *, int); 736 static int softdep_waitidle(struct mount *, int); 737 static void drain_output(struct vnode *); 738 static struct buf *getdirtybuf(struct buf *, struct rwlock *, int); 739 static int check_inodedep_free(struct inodedep *); 740 static void clear_remove(struct mount *); 741 static void clear_inodedeps(struct mount *); 742 static void unlinked_inodedep(struct mount *, struct inodedep *); 743 static void clear_unlinked_inodedep(struct inodedep *); 744 static struct inodedep *first_unlinked_inodedep(struct ufsmount *); 745 static int flush_pagedep_deps(struct vnode *, struct mount *, 746 struct diraddhd *); 747 static int free_pagedep(struct pagedep *); 748 static int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t); 749 static int flush_inodedep_deps(struct vnode *, struct mount *, ino_t); 750 static int flush_deplist(struct allocdirectlst *, int, int *); 751 static int sync_cgs(struct mount *, int); 752 static int handle_written_filepage(struct pagedep *, struct buf *, int); 753 static int handle_written_sbdep(struct sbdep *, struct buf *); 754 static void initiate_write_sbdep(struct sbdep *); 755 static void diradd_inode_written(struct diradd *, struct inodedep *); 756 static int handle_written_indirdep(struct indirdep *, struct buf *, 757 struct buf**, int); 758 static int handle_written_inodeblock(struct inodedep *, struct buf *, int); 759 static int jnewblk_rollforward(struct jnewblk *, struct fs *, struct cg *, 760 uint8_t *); 761 static int handle_written_bmsafemap(struct bmsafemap *, struct buf *, int); 762 static void handle_written_jaddref(struct jaddref *); 763 static void handle_written_jremref(struct jremref *); 764 static void handle_written_jseg(struct jseg *, struct buf *); 765 static void handle_written_jnewblk(struct jnewblk *); 766 static void handle_written_jblkdep(struct jblkdep *); 767 static void handle_written_jfreefrag(struct jfreefrag *); 768 static void complete_jseg(struct jseg *); 769 static void complete_jsegs(struct jseg *); 770 static void jseg_write(struct ufsmount *ump, struct jseg *, uint8_t *); 771 static void jaddref_write(struct jaddref *, struct jseg *, uint8_t *); 772 static void jremref_write(struct jremref *, struct jseg *, uint8_t *); 773 static void jmvref_write(struct jmvref *, struct jseg *, uint8_t *); 774 static void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *); 775 static void jfsync_write(struct jfsync *, struct jseg *, uint8_t *data); 776 static void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *); 777 static void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *); 778 static void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *); 779 static inline void inoref_write(struct inoref *, struct jseg *, 780 struct jrefrec *); 781 static void handle_allocdirect_partdone(struct allocdirect *, 782 struct workhead *); 783 static struct jnewblk *cancel_newblk(struct newblk *, struct worklist *, 784 struct workhead *); 785 static void indirdep_complete(struct indirdep *); 786 static int indirblk_lookup(struct mount *, ufs2_daddr_t); 787 static void indirblk_insert(struct freework *); 788 static void indirblk_remove(struct freework *); 789 static void handle_allocindir_partdone(struct allocindir *); 790 static void initiate_write_filepage(struct pagedep *, struct buf *); 791 static void initiate_write_indirdep(struct indirdep*, struct buf *); 792 static void handle_written_mkdir(struct mkdir *, int); 793 static int jnewblk_rollback(struct jnewblk *, struct fs *, struct cg *, 794 uint8_t *); 795 static void initiate_write_bmsafemap(struct bmsafemap *, struct buf *); 796 static void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *); 797 static void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *); 798 static void handle_workitem_freefile(struct freefile *); 799 static int handle_workitem_remove(struct dirrem *, int); 800 static struct dirrem *newdirrem(struct buf *, struct inode *, 801 struct inode *, int, struct dirrem **); 802 static struct indirdep *indirdep_lookup(struct mount *, struct inode *, 803 struct buf *); 804 static void cancel_indirdep(struct indirdep *, struct buf *, 805 struct freeblks *); 806 static void free_indirdep(struct indirdep *); 807 static void free_diradd(struct diradd *, struct workhead *); 808 static void merge_diradd(struct inodedep *, struct diradd *); 809 static void complete_diradd(struct diradd *); 810 static struct diradd *diradd_lookup(struct pagedep *, int); 811 static struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *, 812 struct jremref *); 813 static struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *, 814 struct jremref *); 815 static void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *, 816 struct jremref *, struct jremref *); 817 static void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *, 818 struct jremref *); 819 static void cancel_allocindir(struct allocindir *, struct buf *bp, 820 struct freeblks *, int); 821 static int setup_trunc_indir(struct freeblks *, struct inode *, 822 ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t); 823 static void complete_trunc_indir(struct freework *); 824 static void trunc_indirdep(struct indirdep *, struct freeblks *, struct buf *, 825 int); 826 static void complete_mkdir(struct mkdir *); 827 static void free_newdirblk(struct newdirblk *); 828 static void free_jremref(struct jremref *); 829 static void free_jaddref(struct jaddref *); 830 static void free_jsegdep(struct jsegdep *); 831 static void free_jsegs(struct jblocks *); 832 static void rele_jseg(struct jseg *); 833 static void free_jseg(struct jseg *, struct jblocks *); 834 static void free_jnewblk(struct jnewblk *); 835 static void free_jblkdep(struct jblkdep *); 836 static void free_jfreefrag(struct jfreefrag *); 837 static void free_freedep(struct freedep *); 838 static void journal_jremref(struct dirrem *, struct jremref *, 839 struct inodedep *); 840 static void cancel_jnewblk(struct jnewblk *, struct workhead *); 841 static int cancel_jaddref(struct jaddref *, struct inodedep *, 842 struct workhead *); 843 static void cancel_jfreefrag(struct jfreefrag *); 844 static inline void setup_freedirect(struct freeblks *, struct inode *, 845 int, int); 846 static inline void setup_freeext(struct freeblks *, struct inode *, int, int); 847 static inline void setup_freeindir(struct freeblks *, struct inode *, int, 848 ufs_lbn_t, int); 849 static inline struct freeblks *newfreeblks(struct mount *, struct inode *); 850 static void freeblks_free(struct ufsmount *, struct freeblks *, int); 851 static void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t); 852 static ufs2_daddr_t blkcount(struct fs *, ufs2_daddr_t, off_t); 853 static int trunc_check_buf(struct buf *, int *, ufs_lbn_t, int, int); 854 static void trunc_dependencies(struct inode *, struct freeblks *, ufs_lbn_t, 855 int, int); 856 static void trunc_pages(struct inode *, off_t, ufs2_daddr_t, int); 857 static int cancel_pagedep(struct pagedep *, struct freeblks *, int); 858 static int deallocate_dependencies(struct buf *, struct freeblks *, int); 859 static void newblk_freefrag(struct newblk*); 860 static void free_newblk(struct newblk *); 861 static void cancel_allocdirect(struct allocdirectlst *, 862 struct allocdirect *, struct freeblks *); 863 static int check_inode_unwritten(struct inodedep *); 864 static int free_inodedep(struct inodedep *); 865 static void freework_freeblock(struct freework *, u_long); 866 static void freework_enqueue(struct freework *); 867 static int handle_workitem_freeblocks(struct freeblks *, int); 868 static int handle_complete_freeblocks(struct freeblks *, int); 869 static void handle_workitem_indirblk(struct freework *); 870 static void handle_written_freework(struct freework *); 871 static void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *); 872 static struct worklist *jnewblk_merge(struct worklist *, struct worklist *, 873 struct workhead *); 874 static struct freefrag *setup_allocindir_phase2(struct buf *, struct inode *, 875 struct inodedep *, struct allocindir *, ufs_lbn_t); 876 static struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t, 877 ufs2_daddr_t, ufs_lbn_t); 878 static void handle_workitem_freefrag(struct freefrag *); 879 static struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long, 880 ufs_lbn_t, u_long); 881 static void allocdirect_merge(struct allocdirectlst *, 882 struct allocdirect *, struct allocdirect *); 883 static struct freefrag *allocindir_merge(struct allocindir *, 884 struct allocindir *); 885 static int bmsafemap_find(struct bmsafemap_hashhead *, int, 886 struct bmsafemap **); 887 static struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *, 888 int cg, struct bmsafemap *); 889 static int newblk_find(struct newblk_hashhead *, ufs2_daddr_t, int, 890 struct newblk **); 891 static int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **); 892 static int inodedep_find(struct inodedep_hashhead *, ino_t, 893 struct inodedep **); 894 static int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **); 895 static int pagedep_lookup(struct mount *, struct buf *bp, ino_t, ufs_lbn_t, 896 int, struct pagedep **); 897 static int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t, 898 struct pagedep **); 899 static void pause_timer(void *); 900 static int request_cleanup(struct mount *, int); 901 static int softdep_request_cleanup_flush(struct mount *, struct ufsmount *); 902 static void schedule_cleanup(struct mount *); 903 static void softdep_ast_cleanup_proc(struct thread *); 904 static struct ufsmount *softdep_bp_to_mp(struct buf *bp); 905 static int process_worklist_item(struct mount *, int, int); 906 static void process_removes(struct vnode *); 907 static void process_truncates(struct vnode *); 908 static void jwork_move(struct workhead *, struct workhead *); 909 static void jwork_insert(struct workhead *, struct jsegdep *); 910 static void add_to_worklist(struct worklist *, int); 911 static void wake_worklist(struct worklist *); 912 static void wait_worklist(struct worklist *, char *); 913 static void remove_from_worklist(struct worklist *); 914 static void softdep_flush(void *); 915 static void softdep_flushjournal(struct mount *); 916 static int softdep_speedup(struct ufsmount *); 917 static void worklist_speedup(struct mount *); 918 static int journal_mount(struct mount *, struct fs *, struct ucred *); 919 static void journal_unmount(struct ufsmount *); 920 static int journal_space(struct ufsmount *, int); 921 static void journal_suspend(struct ufsmount *); 922 static int journal_unsuspend(struct ufsmount *ump); 923 static void softdep_prelink(struct vnode *, struct vnode *); 924 static void add_to_journal(struct worklist *); 925 static void remove_from_journal(struct worklist *); 926 static bool softdep_excess_items(struct ufsmount *, int); 927 static void softdep_process_journal(struct mount *, struct worklist *, int); 928 static struct jremref *newjremref(struct dirrem *, struct inode *, 929 struct inode *ip, off_t, nlink_t); 930 static struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t, 931 uint16_t); 932 static inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t, 933 uint16_t); 934 static inline struct jsegdep *inoref_jseg(struct inoref *); 935 static struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t); 936 static struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t, 937 ufs2_daddr_t, int); 938 static void adjust_newfreework(struct freeblks *, int); 939 static struct jtrunc *newjtrunc(struct freeblks *, off_t, int); 940 static void move_newblock_dep(struct jaddref *, struct inodedep *); 941 static void cancel_jfreeblk(struct freeblks *, ufs2_daddr_t); 942 static struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *, 943 ufs2_daddr_t, long, ufs_lbn_t); 944 static struct freework *newfreework(struct ufsmount *, struct freeblks *, 945 struct freework *, ufs_lbn_t, ufs2_daddr_t, int, int, int); 946 static int jwait(struct worklist *, int); 947 static struct inodedep *inodedep_lookup_ip(struct inode *); 948 static int bmsafemap_backgroundwrite(struct bmsafemap *, struct buf *); 949 static struct freefile *handle_bufwait(struct inodedep *, struct workhead *); 950 static void handle_jwork(struct workhead *); 951 static struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *, 952 struct mkdir **); 953 static struct jblocks *jblocks_create(void); 954 static ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *); 955 static void jblocks_free(struct jblocks *, struct mount *, int); 956 static void jblocks_destroy(struct jblocks *); 957 static void jblocks_add(struct jblocks *, ufs2_daddr_t, int); 958 959 /* 960 * Exported softdep operations. 961 */ 962 static void softdep_disk_io_initiation(struct buf *); 963 static void softdep_disk_write_complete(struct buf *); 964 static void softdep_deallocate_dependencies(struct buf *); 965 static int softdep_count_dependencies(struct buf *bp, int); 966 967 /* 968 * Global lock over all of soft updates. 969 */ 970 static struct mtx lk; 971 MTX_SYSINIT(softdep_lock, &lk, "Global Softdep Lock", MTX_DEF); 972 973 #define ACQUIRE_GBLLOCK(lk) mtx_lock(lk) 974 #define FREE_GBLLOCK(lk) mtx_unlock(lk) 975 #define GBLLOCK_OWNED(lk) mtx_assert((lk), MA_OWNED) 976 977 /* 978 * Per-filesystem soft-updates locking. 979 */ 980 #define LOCK_PTR(ump) (&(ump)->um_softdep->sd_fslock) 981 #define TRY_ACQUIRE_LOCK(ump) rw_try_wlock(&(ump)->um_softdep->sd_fslock) 982 #define ACQUIRE_LOCK(ump) rw_wlock(&(ump)->um_softdep->sd_fslock) 983 #define FREE_LOCK(ump) rw_wunlock(&(ump)->um_softdep->sd_fslock) 984 #define LOCK_OWNED(ump) rw_assert(&(ump)->um_softdep->sd_fslock, \ 985 RA_WLOCKED) 986 987 #define BUF_AREC(bp) lockallowrecurse(&(bp)->b_lock) 988 #define BUF_NOREC(bp) lockdisablerecurse(&(bp)->b_lock) 989 990 /* 991 * Worklist queue management. 992 * These routines require that the lock be held. 993 */ 994 #ifndef /* NOT */ INVARIANTS 995 #define WORKLIST_INSERT(head, item) do { \ 996 (item)->wk_state |= ONWORKLIST; \ 997 LIST_INSERT_HEAD(head, item, wk_list); \ 998 } while (0) 999 #define WORKLIST_REMOVE(item) do { \ 1000 (item)->wk_state &= ~ONWORKLIST; \ 1001 LIST_REMOVE(item, wk_list); \ 1002 } while (0) 1003 #define WORKLIST_INSERT_UNLOCKED WORKLIST_INSERT 1004 #define WORKLIST_REMOVE_UNLOCKED WORKLIST_REMOVE 1005 1006 #else /* INVARIANTS */ 1007 static void worklist_insert(struct workhead *, struct worklist *, int, 1008 const char *, int); 1009 static void worklist_remove(struct worklist *, int, const char *, int); 1010 1011 #define WORKLIST_INSERT(head, item) \ 1012 worklist_insert(head, item, 1, __func__, __LINE__) 1013 #define WORKLIST_INSERT_UNLOCKED(head, item)\ 1014 worklist_insert(head, item, 0, __func__, __LINE__) 1015 #define WORKLIST_REMOVE(item)\ 1016 worklist_remove(item, 1, __func__, __LINE__) 1017 #define WORKLIST_REMOVE_UNLOCKED(item)\ 1018 worklist_remove(item, 0, __func__, __LINE__) 1019 1020 static void 1021 worklist_insert(head, item, locked, func, line) 1022 struct workhead *head; 1023 struct worklist *item; 1024 int locked; 1025 const char *func; 1026 int line; 1027 { 1028 1029 if (locked) 1030 LOCK_OWNED(VFSTOUFS(item->wk_mp)); 1031 if (item->wk_state & ONWORKLIST) 1032 panic("worklist_insert: %p %s(0x%X) already on list, " 1033 "added in function %s at line %d", 1034 item, TYPENAME(item->wk_type), item->wk_state, 1035 item->wk_func, item->wk_line); 1036 item->wk_state |= ONWORKLIST; 1037 item->wk_func = func; 1038 item->wk_line = line; 1039 LIST_INSERT_HEAD(head, item, wk_list); 1040 } 1041 1042 static void 1043 worklist_remove(item, locked, func, line) 1044 struct worklist *item; 1045 int locked; 1046 const char *func; 1047 int line; 1048 { 1049 1050 if (locked) 1051 LOCK_OWNED(VFSTOUFS(item->wk_mp)); 1052 if ((item->wk_state & ONWORKLIST) == 0) 1053 panic("worklist_remove: %p %s(0x%X) not on list, " 1054 "removed in function %s at line %d", 1055 item, TYPENAME(item->wk_type), item->wk_state, 1056 item->wk_func, item->wk_line); 1057 item->wk_state &= ~ONWORKLIST; 1058 item->wk_func = func; 1059 item->wk_line = line; 1060 LIST_REMOVE(item, wk_list); 1061 } 1062 #endif /* INVARIANTS */ 1063 1064 /* 1065 * Merge two jsegdeps keeping only the oldest one as newer references 1066 * can't be discarded until after older references. 1067 */ 1068 static inline struct jsegdep * 1069 jsegdep_merge(struct jsegdep *one, struct jsegdep *two) 1070 { 1071 struct jsegdep *swp; 1072 1073 if (two == NULL) 1074 return (one); 1075 1076 if (one->jd_seg->js_seq > two->jd_seg->js_seq) { 1077 swp = one; 1078 one = two; 1079 two = swp; 1080 } 1081 WORKLIST_REMOVE(&two->jd_list); 1082 free_jsegdep(two); 1083 1084 return (one); 1085 } 1086 1087 /* 1088 * If two freedeps are compatible free one to reduce list size. 1089 */ 1090 static inline struct freedep * 1091 freedep_merge(struct freedep *one, struct freedep *two) 1092 { 1093 if (two == NULL) 1094 return (one); 1095 1096 if (one->fd_freework == two->fd_freework) { 1097 WORKLIST_REMOVE(&two->fd_list); 1098 free_freedep(two); 1099 } 1100 return (one); 1101 } 1102 1103 /* 1104 * Move journal work from one list to another. Duplicate freedeps and 1105 * jsegdeps are coalesced to keep the lists as small as possible. 1106 */ 1107 static void 1108 jwork_move(dst, src) 1109 struct workhead *dst; 1110 struct workhead *src; 1111 { 1112 struct freedep *freedep; 1113 struct jsegdep *jsegdep; 1114 struct worklist *wkn; 1115 struct worklist *wk; 1116 1117 KASSERT(dst != src, 1118 ("jwork_move: dst == src")); 1119 freedep = NULL; 1120 jsegdep = NULL; 1121 LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) { 1122 if (wk->wk_type == D_JSEGDEP) 1123 jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep); 1124 else if (wk->wk_type == D_FREEDEP) 1125 freedep = freedep_merge(WK_FREEDEP(wk), freedep); 1126 } 1127 1128 while ((wk = LIST_FIRST(src)) != NULL) { 1129 WORKLIST_REMOVE(wk); 1130 WORKLIST_INSERT(dst, wk); 1131 if (wk->wk_type == D_JSEGDEP) { 1132 jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep); 1133 continue; 1134 } 1135 if (wk->wk_type == D_FREEDEP) 1136 freedep = freedep_merge(WK_FREEDEP(wk), freedep); 1137 } 1138 } 1139 1140 static void 1141 jwork_insert(dst, jsegdep) 1142 struct workhead *dst; 1143 struct jsegdep *jsegdep; 1144 { 1145 struct jsegdep *jsegdepn; 1146 struct worklist *wk; 1147 1148 LIST_FOREACH(wk, dst, wk_list) 1149 if (wk->wk_type == D_JSEGDEP) 1150 break; 1151 if (wk == NULL) { 1152 WORKLIST_INSERT(dst, &jsegdep->jd_list); 1153 return; 1154 } 1155 jsegdepn = WK_JSEGDEP(wk); 1156 if (jsegdep->jd_seg->js_seq < jsegdepn->jd_seg->js_seq) { 1157 WORKLIST_REMOVE(wk); 1158 free_jsegdep(jsegdepn); 1159 WORKLIST_INSERT(dst, &jsegdep->jd_list); 1160 } else 1161 free_jsegdep(jsegdep); 1162 } 1163 1164 /* 1165 * Routines for tracking and managing workitems. 1166 */ 1167 static void workitem_free(struct worklist *, int); 1168 static void workitem_alloc(struct worklist *, int, struct mount *); 1169 static void workitem_reassign(struct worklist *, int); 1170 1171 #define WORKITEM_FREE(item, type) \ 1172 workitem_free((struct worklist *)(item), (type)) 1173 #define WORKITEM_REASSIGN(item, type) \ 1174 workitem_reassign((struct worklist *)(item), (type)) 1175 1176 static void 1177 workitem_free(item, type) 1178 struct worklist *item; 1179 int type; 1180 { 1181 struct ufsmount *ump; 1182 1183 #ifdef INVARIANTS 1184 if (item->wk_state & ONWORKLIST) 1185 panic("workitem_free: %s(0x%X) still on list, " 1186 "added in function %s at line %d", 1187 TYPENAME(item->wk_type), item->wk_state, 1188 item->wk_func, item->wk_line); 1189 if (item->wk_type != type && type != D_NEWBLK) 1190 panic("workitem_free: type mismatch %s != %s", 1191 TYPENAME(item->wk_type), TYPENAME(type)); 1192 #endif 1193 if (item->wk_state & IOWAITING) 1194 wakeup(item); 1195 ump = VFSTOUFS(item->wk_mp); 1196 LOCK_OWNED(ump); 1197 KASSERT(ump->softdep_deps > 0, 1198 ("workitem_free: %s: softdep_deps going negative", 1199 ump->um_fs->fs_fsmnt)); 1200 if (--ump->softdep_deps == 0 && ump->softdep_req) 1201 wakeup(&ump->softdep_deps); 1202 KASSERT(dep_current[item->wk_type] > 0, 1203 ("workitem_free: %s: dep_current[%s] going negative", 1204 ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1205 KASSERT(ump->softdep_curdeps[item->wk_type] > 0, 1206 ("workitem_free: %s: softdep_curdeps[%s] going negative", 1207 ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1208 atomic_subtract_long(&dep_current[item->wk_type], 1); 1209 ump->softdep_curdeps[item->wk_type] -= 1; 1210 free(item, DtoM(type)); 1211 } 1212 1213 static void 1214 workitem_alloc(item, type, mp) 1215 struct worklist *item; 1216 int type; 1217 struct mount *mp; 1218 { 1219 struct ufsmount *ump; 1220 1221 item->wk_type = type; 1222 item->wk_mp = mp; 1223 item->wk_state = 0; 1224 1225 ump = VFSTOUFS(mp); 1226 ACQUIRE_GBLLOCK(&lk); 1227 dep_current[type]++; 1228 if (dep_current[type] > dep_highuse[type]) 1229 dep_highuse[type] = dep_current[type]; 1230 dep_total[type]++; 1231 FREE_GBLLOCK(&lk); 1232 ACQUIRE_LOCK(ump); 1233 ump->softdep_curdeps[type] += 1; 1234 ump->softdep_deps++; 1235 ump->softdep_accdeps++; 1236 FREE_LOCK(ump); 1237 } 1238 1239 static void 1240 workitem_reassign(item, newtype) 1241 struct worklist *item; 1242 int newtype; 1243 { 1244 struct ufsmount *ump; 1245 1246 ump = VFSTOUFS(item->wk_mp); 1247 LOCK_OWNED(ump); 1248 KASSERT(ump->softdep_curdeps[item->wk_type] > 0, 1249 ("workitem_reassign: %s: softdep_curdeps[%s] going negative", 1250 VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1251 ump->softdep_curdeps[item->wk_type] -= 1; 1252 ump->softdep_curdeps[newtype] += 1; 1253 KASSERT(dep_current[item->wk_type] > 0, 1254 ("workitem_reassign: %s: dep_current[%s] going negative", 1255 VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1256 ACQUIRE_GBLLOCK(&lk); 1257 dep_current[newtype]++; 1258 dep_current[item->wk_type]--; 1259 if (dep_current[newtype] > dep_highuse[newtype]) 1260 dep_highuse[newtype] = dep_current[newtype]; 1261 dep_total[newtype]++; 1262 FREE_GBLLOCK(&lk); 1263 item->wk_type = newtype; 1264 } 1265 1266 /* 1267 * Workitem queue management 1268 */ 1269 static int max_softdeps; /* maximum number of structs before slowdown */ 1270 static int tickdelay = 2; /* number of ticks to pause during slowdown */ 1271 static int proc_waiting; /* tracks whether we have a timeout posted */ 1272 static int *stat_countp; /* statistic to count in proc_waiting timeout */ 1273 static struct callout softdep_callout; 1274 static int req_clear_inodedeps; /* syncer process flush some inodedeps */ 1275 static int req_clear_remove; /* syncer process flush some freeblks */ 1276 static int softdep_flushcache = 0; /* Should we do BIO_FLUSH? */ 1277 1278 /* 1279 * runtime statistics 1280 */ 1281 static int stat_flush_threads; /* number of softdep flushing threads */ 1282 static int stat_worklist_push; /* number of worklist cleanups */ 1283 static int stat_blk_limit_push; /* number of times block limit neared */ 1284 static int stat_ino_limit_push; /* number of times inode limit neared */ 1285 static int stat_blk_limit_hit; /* number of times block slowdown imposed */ 1286 static int stat_ino_limit_hit; /* number of times inode slowdown imposed */ 1287 static int stat_sync_limit_hit; /* number of synchronous slowdowns imposed */ 1288 static int stat_indir_blk_ptrs; /* bufs redirtied as indir ptrs not written */ 1289 static int stat_inode_bitmap; /* bufs redirtied as inode bitmap not written */ 1290 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */ 1291 static int stat_dir_entry; /* bufs redirtied as dir entry cannot write */ 1292 static int stat_jaddref; /* bufs redirtied as ino bitmap can not write */ 1293 static int stat_jnewblk; /* bufs redirtied as blk bitmap can not write */ 1294 static int stat_journal_min; /* Times hit journal min threshold */ 1295 static int stat_journal_low; /* Times hit journal low threshold */ 1296 static int stat_journal_wait; /* Times blocked in jwait(). */ 1297 static int stat_jwait_filepage; /* Times blocked in jwait() for filepage. */ 1298 static int stat_jwait_freeblks; /* Times blocked in jwait() for freeblks. */ 1299 static int stat_jwait_inode; /* Times blocked in jwait() for inodes. */ 1300 static int stat_jwait_newblk; /* Times blocked in jwait() for newblks. */ 1301 static int stat_cleanup_high_delay; /* Maximum cleanup delay (in ticks) */ 1302 static int stat_cleanup_blkrequests; /* Number of block cleanup requests */ 1303 static int stat_cleanup_inorequests; /* Number of inode cleanup requests */ 1304 static int stat_cleanup_retries; /* Number of cleanups that needed to flush */ 1305 static int stat_cleanup_failures; /* Number of cleanup requests that failed */ 1306 static int stat_emptyjblocks; /* Number of potentially empty journal blocks */ 1307 1308 SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW, 1309 &max_softdeps, 0, ""); 1310 SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW, 1311 &tickdelay, 0, ""); 1312 SYSCTL_INT(_debug_softdep, OID_AUTO, flush_threads, CTLFLAG_RD, 1313 &stat_flush_threads, 0, ""); 1314 SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push, CTLFLAG_RW, 1315 &stat_worklist_push, 0,""); 1316 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push, CTLFLAG_RW, 1317 &stat_blk_limit_push, 0,""); 1318 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push, CTLFLAG_RW, 1319 &stat_ino_limit_push, 0,""); 1320 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit, CTLFLAG_RW, 1321 &stat_blk_limit_hit, 0, ""); 1322 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit, CTLFLAG_RW, 1323 &stat_ino_limit_hit, 0, ""); 1324 SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit, CTLFLAG_RW, 1325 &stat_sync_limit_hit, 0, ""); 1326 SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW, 1327 &stat_indir_blk_ptrs, 0, ""); 1328 SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap, CTLFLAG_RW, 1329 &stat_inode_bitmap, 0, ""); 1330 SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW, 1331 &stat_direct_blk_ptrs, 0, ""); 1332 SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry, CTLFLAG_RW, 1333 &stat_dir_entry, 0, ""); 1334 SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback, CTLFLAG_RW, 1335 &stat_jaddref, 0, ""); 1336 SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback, CTLFLAG_RW, 1337 &stat_jnewblk, 0, ""); 1338 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low, CTLFLAG_RW, 1339 &stat_journal_low, 0, ""); 1340 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min, CTLFLAG_RW, 1341 &stat_journal_min, 0, ""); 1342 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait, CTLFLAG_RW, 1343 &stat_journal_wait, 0, ""); 1344 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage, CTLFLAG_RW, 1345 &stat_jwait_filepage, 0, ""); 1346 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks, CTLFLAG_RW, 1347 &stat_jwait_freeblks, 0, ""); 1348 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode, CTLFLAG_RW, 1349 &stat_jwait_inode, 0, ""); 1350 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk, CTLFLAG_RW, 1351 &stat_jwait_newblk, 0, ""); 1352 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_blkrequests, CTLFLAG_RW, 1353 &stat_cleanup_blkrequests, 0, ""); 1354 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_inorequests, CTLFLAG_RW, 1355 &stat_cleanup_inorequests, 0, ""); 1356 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_high_delay, CTLFLAG_RW, 1357 &stat_cleanup_high_delay, 0, ""); 1358 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_retries, CTLFLAG_RW, 1359 &stat_cleanup_retries, 0, ""); 1360 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_failures, CTLFLAG_RW, 1361 &stat_cleanup_failures, 0, ""); 1362 SYSCTL_INT(_debug_softdep, OID_AUTO, flushcache, CTLFLAG_RW, 1363 &softdep_flushcache, 0, ""); 1364 SYSCTL_INT(_debug_softdep, OID_AUTO, emptyjblocks, CTLFLAG_RD, 1365 &stat_emptyjblocks, 0, ""); 1366 1367 SYSCTL_DECL(_vfs_ffs); 1368 1369 /* Whether to recompute the summary at mount time */ 1370 static int compute_summary_at_mount = 0; 1371 SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW, 1372 &compute_summary_at_mount, 0, "Recompute summary at mount"); 1373 static int print_threads = 0; 1374 SYSCTL_INT(_debug_softdep, OID_AUTO, print_threads, CTLFLAG_RW, 1375 &print_threads, 0, "Notify flusher thread start/stop"); 1376 1377 /* List of all filesystems mounted with soft updates */ 1378 static TAILQ_HEAD(, mount_softdeps) softdepmounts; 1379 1380 /* 1381 * This function cleans the worklist for a filesystem. 1382 * Each filesystem running with soft dependencies gets its own 1383 * thread to run in this function. The thread is started up in 1384 * softdep_mount and shutdown in softdep_unmount. They show up 1385 * as part of the kernel "bufdaemon" process whose process 1386 * entry is available in bufdaemonproc. 1387 */ 1388 static int searchfailed; 1389 extern struct proc *bufdaemonproc; 1390 static void 1391 softdep_flush(addr) 1392 void *addr; 1393 { 1394 struct mount *mp; 1395 struct thread *td; 1396 struct ufsmount *ump; 1397 1398 td = curthread; 1399 td->td_pflags |= TDP_NORUNNINGBUF; 1400 mp = (struct mount *)addr; 1401 ump = VFSTOUFS(mp); 1402 atomic_add_int(&stat_flush_threads, 1); 1403 ACQUIRE_LOCK(ump); 1404 ump->softdep_flags &= ~FLUSH_STARTING; 1405 wakeup(&ump->softdep_flushtd); 1406 FREE_LOCK(ump); 1407 if (print_threads) { 1408 if (stat_flush_threads == 1) 1409 printf("Running %s at pid %d\n", bufdaemonproc->p_comm, 1410 bufdaemonproc->p_pid); 1411 printf("Start thread %s\n", td->td_name); 1412 } 1413 for (;;) { 1414 while (softdep_process_worklist(mp, 0) > 0 || 1415 (MOUNTEDSUJ(mp) && 1416 VFSTOUFS(mp)->softdep_jblocks->jb_suspended)) 1417 kthread_suspend_check(); 1418 ACQUIRE_LOCK(ump); 1419 if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) 1420 msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM, 1421 "sdflush", hz / 2); 1422 ump->softdep_flags &= ~FLUSH_CLEANUP; 1423 /* 1424 * Check to see if we are done and need to exit. 1425 */ 1426 if ((ump->softdep_flags & FLUSH_EXIT) == 0) { 1427 FREE_LOCK(ump); 1428 continue; 1429 } 1430 ump->softdep_flags &= ~FLUSH_EXIT; 1431 FREE_LOCK(ump); 1432 wakeup(&ump->softdep_flags); 1433 if (print_threads) 1434 printf("Stop thread %s: searchfailed %d, did cleanups %d\n", td->td_name, searchfailed, ump->um_softdep->sd_cleanups); 1435 atomic_subtract_int(&stat_flush_threads, 1); 1436 kthread_exit(); 1437 panic("kthread_exit failed\n"); 1438 } 1439 } 1440 1441 static void 1442 worklist_speedup(mp) 1443 struct mount *mp; 1444 { 1445 struct ufsmount *ump; 1446 1447 ump = VFSTOUFS(mp); 1448 LOCK_OWNED(ump); 1449 if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) 1450 ump->softdep_flags |= FLUSH_CLEANUP; 1451 wakeup(&ump->softdep_flushtd); 1452 } 1453 1454 static int 1455 softdep_speedup(ump) 1456 struct ufsmount *ump; 1457 { 1458 struct ufsmount *altump; 1459 struct mount_softdeps *sdp; 1460 1461 LOCK_OWNED(ump); 1462 worklist_speedup(ump->um_mountp); 1463 bd_speedup(); 1464 /* 1465 * If we have global shortages, then we need other 1466 * filesystems to help with the cleanup. Here we wakeup a 1467 * flusher thread for a filesystem that is over its fair 1468 * share of resources. 1469 */ 1470 if (req_clear_inodedeps || req_clear_remove) { 1471 ACQUIRE_GBLLOCK(&lk); 1472 TAILQ_FOREACH(sdp, &softdepmounts, sd_next) { 1473 if ((altump = sdp->sd_ump) == ump) 1474 continue; 1475 if (((req_clear_inodedeps && 1476 altump->softdep_curdeps[D_INODEDEP] > 1477 max_softdeps / stat_flush_threads) || 1478 (req_clear_remove && 1479 altump->softdep_curdeps[D_DIRREM] > 1480 (max_softdeps / 2) / stat_flush_threads)) && 1481 TRY_ACQUIRE_LOCK(altump)) 1482 break; 1483 } 1484 if (sdp == NULL) { 1485 searchfailed++; 1486 FREE_GBLLOCK(&lk); 1487 } else { 1488 /* 1489 * Move to the end of the list so we pick a 1490 * different one on out next try. 1491 */ 1492 TAILQ_REMOVE(&softdepmounts, sdp, sd_next); 1493 TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next); 1494 FREE_GBLLOCK(&lk); 1495 if ((altump->softdep_flags & 1496 (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) 1497 altump->softdep_flags |= FLUSH_CLEANUP; 1498 altump->um_softdep->sd_cleanups++; 1499 wakeup(&altump->softdep_flushtd); 1500 FREE_LOCK(altump); 1501 } 1502 } 1503 return (speedup_syncer()); 1504 } 1505 1506 /* 1507 * Add an item to the end of the work queue. 1508 * This routine requires that the lock be held. 1509 * This is the only routine that adds items to the list. 1510 * The following routine is the only one that removes items 1511 * and does so in order from first to last. 1512 */ 1513 1514 #define WK_HEAD 0x0001 /* Add to HEAD. */ 1515 #define WK_NODELAY 0x0002 /* Process immediately. */ 1516 1517 static void 1518 add_to_worklist(wk, flags) 1519 struct worklist *wk; 1520 int flags; 1521 { 1522 struct ufsmount *ump; 1523 1524 ump = VFSTOUFS(wk->wk_mp); 1525 LOCK_OWNED(ump); 1526 if (wk->wk_state & ONWORKLIST) 1527 panic("add_to_worklist: %s(0x%X) already on list", 1528 TYPENAME(wk->wk_type), wk->wk_state); 1529 wk->wk_state |= ONWORKLIST; 1530 if (ump->softdep_on_worklist == 0) { 1531 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list); 1532 ump->softdep_worklist_tail = wk; 1533 } else if (flags & WK_HEAD) { 1534 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list); 1535 } else { 1536 LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list); 1537 ump->softdep_worklist_tail = wk; 1538 } 1539 ump->softdep_on_worklist += 1; 1540 if (flags & WK_NODELAY) 1541 worklist_speedup(wk->wk_mp); 1542 } 1543 1544 /* 1545 * Remove the item to be processed. If we are removing the last 1546 * item on the list, we need to recalculate the tail pointer. 1547 */ 1548 static void 1549 remove_from_worklist(wk) 1550 struct worklist *wk; 1551 { 1552 struct ufsmount *ump; 1553 1554 ump = VFSTOUFS(wk->wk_mp); 1555 if (ump->softdep_worklist_tail == wk) 1556 ump->softdep_worklist_tail = 1557 (struct worklist *)wk->wk_list.le_prev; 1558 WORKLIST_REMOVE(wk); 1559 ump->softdep_on_worklist -= 1; 1560 } 1561 1562 static void 1563 wake_worklist(wk) 1564 struct worklist *wk; 1565 { 1566 if (wk->wk_state & IOWAITING) { 1567 wk->wk_state &= ~IOWAITING; 1568 wakeup(wk); 1569 } 1570 } 1571 1572 static void 1573 wait_worklist(wk, wmesg) 1574 struct worklist *wk; 1575 char *wmesg; 1576 { 1577 struct ufsmount *ump; 1578 1579 ump = VFSTOUFS(wk->wk_mp); 1580 wk->wk_state |= IOWAITING; 1581 msleep(wk, LOCK_PTR(ump), PVM, wmesg, 0); 1582 } 1583 1584 /* 1585 * Process that runs once per second to handle items in the background queue. 1586 * 1587 * Note that we ensure that everything is done in the order in which they 1588 * appear in the queue. The code below depends on this property to ensure 1589 * that blocks of a file are freed before the inode itself is freed. This 1590 * ordering ensures that no new <vfsid, inum, lbn> triples will be generated 1591 * until all the old ones have been purged from the dependency lists. 1592 */ 1593 static int 1594 softdep_process_worklist(mp, full) 1595 struct mount *mp; 1596 int full; 1597 { 1598 int cnt, matchcnt; 1599 struct ufsmount *ump; 1600 long starttime; 1601 1602 KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp")); 1603 if (MOUNTEDSOFTDEP(mp) == 0) 1604 return (0); 1605 matchcnt = 0; 1606 ump = VFSTOUFS(mp); 1607 ACQUIRE_LOCK(ump); 1608 starttime = time_second; 1609 softdep_process_journal(mp, NULL, full ? MNT_WAIT : 0); 1610 check_clear_deps(mp); 1611 while (ump->softdep_on_worklist > 0) { 1612 if ((cnt = process_worklist_item(mp, 10, LK_NOWAIT)) == 0) 1613 break; 1614 else 1615 matchcnt += cnt; 1616 check_clear_deps(mp); 1617 /* 1618 * We do not generally want to stop for buffer space, but if 1619 * we are really being a buffer hog, we will stop and wait. 1620 */ 1621 if (should_yield()) { 1622 FREE_LOCK(ump); 1623 kern_yield(PRI_USER); 1624 bwillwrite(); 1625 ACQUIRE_LOCK(ump); 1626 } 1627 /* 1628 * Never allow processing to run for more than one 1629 * second. This gives the syncer thread the opportunity 1630 * to pause if appropriate. 1631 */ 1632 if (!full && starttime != time_second) 1633 break; 1634 } 1635 if (full == 0) 1636 journal_unsuspend(ump); 1637 FREE_LOCK(ump); 1638 return (matchcnt); 1639 } 1640 1641 /* 1642 * Process all removes associated with a vnode if we are running out of 1643 * journal space. Any other process which attempts to flush these will 1644 * be unable as we have the vnodes locked. 1645 */ 1646 static void 1647 process_removes(vp) 1648 struct vnode *vp; 1649 { 1650 struct inodedep *inodedep; 1651 struct dirrem *dirrem; 1652 struct ufsmount *ump; 1653 struct mount *mp; 1654 ino_t inum; 1655 1656 mp = vp->v_mount; 1657 ump = VFSTOUFS(mp); 1658 LOCK_OWNED(ump); 1659 inum = VTOI(vp)->i_number; 1660 for (;;) { 1661 top: 1662 if (inodedep_lookup(mp, inum, 0, &inodedep) == 0) 1663 return; 1664 LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext) { 1665 /* 1666 * If another thread is trying to lock this vnode 1667 * it will fail but we must wait for it to do so 1668 * before we can proceed. 1669 */ 1670 if (dirrem->dm_state & INPROGRESS) { 1671 wait_worklist(&dirrem->dm_list, "pwrwait"); 1672 goto top; 1673 } 1674 if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) == 1675 (COMPLETE | ONWORKLIST)) 1676 break; 1677 } 1678 if (dirrem == NULL) 1679 return; 1680 remove_from_worklist(&dirrem->dm_list); 1681 FREE_LOCK(ump); 1682 if (vn_start_secondary_write(NULL, &mp, V_NOWAIT)) 1683 panic("process_removes: suspended filesystem"); 1684 handle_workitem_remove(dirrem, 0); 1685 vn_finished_secondary_write(mp); 1686 ACQUIRE_LOCK(ump); 1687 } 1688 } 1689 1690 /* 1691 * Process all truncations associated with a vnode if we are running out 1692 * of journal space. This is called when the vnode lock is already held 1693 * and no other process can clear the truncation. This function returns 1694 * a value greater than zero if it did any work. 1695 */ 1696 static void 1697 process_truncates(vp) 1698 struct vnode *vp; 1699 { 1700 struct inodedep *inodedep; 1701 struct freeblks *freeblks; 1702 struct ufsmount *ump; 1703 struct mount *mp; 1704 ino_t inum; 1705 int cgwait; 1706 1707 mp = vp->v_mount; 1708 ump = VFSTOUFS(mp); 1709 LOCK_OWNED(ump); 1710 inum = VTOI(vp)->i_number; 1711 for (;;) { 1712 if (inodedep_lookup(mp, inum, 0, &inodedep) == 0) 1713 return; 1714 cgwait = 0; 1715 TAILQ_FOREACH(freeblks, &inodedep->id_freeblklst, fb_next) { 1716 /* Journal entries not yet written. */ 1717 if (!LIST_EMPTY(&freeblks->fb_jblkdephd)) { 1718 jwait(&LIST_FIRST( 1719 &freeblks->fb_jblkdephd)->jb_list, 1720 MNT_WAIT); 1721 break; 1722 } 1723 /* Another thread is executing this item. */ 1724 if (freeblks->fb_state & INPROGRESS) { 1725 wait_worklist(&freeblks->fb_list, "ptrwait"); 1726 break; 1727 } 1728 /* Freeblks is waiting on a inode write. */ 1729 if ((freeblks->fb_state & COMPLETE) == 0) { 1730 FREE_LOCK(ump); 1731 ffs_update(vp, 1); 1732 ACQUIRE_LOCK(ump); 1733 break; 1734 } 1735 if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST)) == 1736 (ALLCOMPLETE | ONWORKLIST)) { 1737 remove_from_worklist(&freeblks->fb_list); 1738 freeblks->fb_state |= INPROGRESS; 1739 FREE_LOCK(ump); 1740 if (vn_start_secondary_write(NULL, &mp, 1741 V_NOWAIT)) 1742 panic("process_truncates: " 1743 "suspended filesystem"); 1744 handle_workitem_freeblocks(freeblks, 0); 1745 vn_finished_secondary_write(mp); 1746 ACQUIRE_LOCK(ump); 1747 break; 1748 } 1749 if (freeblks->fb_cgwait) 1750 cgwait++; 1751 } 1752 if (cgwait) { 1753 FREE_LOCK(ump); 1754 sync_cgs(mp, MNT_WAIT); 1755 ffs_sync_snap(mp, MNT_WAIT); 1756 ACQUIRE_LOCK(ump); 1757 continue; 1758 } 1759 if (freeblks == NULL) 1760 break; 1761 } 1762 return; 1763 } 1764 1765 /* 1766 * Process one item on the worklist. 1767 */ 1768 static int 1769 process_worklist_item(mp, target, flags) 1770 struct mount *mp; 1771 int target; 1772 int flags; 1773 { 1774 struct worklist sentinel; 1775 struct worklist *wk; 1776 struct ufsmount *ump; 1777 int matchcnt; 1778 int error; 1779 1780 KASSERT(mp != NULL, ("process_worklist_item: NULL mp")); 1781 /* 1782 * If we are being called because of a process doing a 1783 * copy-on-write, then it is not safe to write as we may 1784 * recurse into the copy-on-write routine. 1785 */ 1786 if (curthread->td_pflags & TDP_COWINPROGRESS) 1787 return (-1); 1788 PHOLD(curproc); /* Don't let the stack go away. */ 1789 ump = VFSTOUFS(mp); 1790 LOCK_OWNED(ump); 1791 matchcnt = 0; 1792 sentinel.wk_mp = NULL; 1793 sentinel.wk_type = D_SENTINEL; 1794 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, &sentinel, wk_list); 1795 for (wk = LIST_NEXT(&sentinel, wk_list); wk != NULL; 1796 wk = LIST_NEXT(&sentinel, wk_list)) { 1797 if (wk->wk_type == D_SENTINEL) { 1798 LIST_REMOVE(&sentinel, wk_list); 1799 LIST_INSERT_AFTER(wk, &sentinel, wk_list); 1800 continue; 1801 } 1802 if (wk->wk_state & INPROGRESS) 1803 panic("process_worklist_item: %p already in progress.", 1804 wk); 1805 wk->wk_state |= INPROGRESS; 1806 remove_from_worklist(wk); 1807 FREE_LOCK(ump); 1808 if (vn_start_secondary_write(NULL, &mp, V_NOWAIT)) 1809 panic("process_worklist_item: suspended filesystem"); 1810 switch (wk->wk_type) { 1811 case D_DIRREM: 1812 /* removal of a directory entry */ 1813 error = handle_workitem_remove(WK_DIRREM(wk), flags); 1814 break; 1815 1816 case D_FREEBLKS: 1817 /* releasing blocks and/or fragments from a file */ 1818 error = handle_workitem_freeblocks(WK_FREEBLKS(wk), 1819 flags); 1820 break; 1821 1822 case D_FREEFRAG: 1823 /* releasing a fragment when replaced as a file grows */ 1824 handle_workitem_freefrag(WK_FREEFRAG(wk)); 1825 error = 0; 1826 break; 1827 1828 case D_FREEFILE: 1829 /* releasing an inode when its link count drops to 0 */ 1830 handle_workitem_freefile(WK_FREEFILE(wk)); 1831 error = 0; 1832 break; 1833 1834 default: 1835 panic("%s_process_worklist: Unknown type %s", 1836 "softdep", TYPENAME(wk->wk_type)); 1837 /* NOTREACHED */ 1838 } 1839 vn_finished_secondary_write(mp); 1840 ACQUIRE_LOCK(ump); 1841 if (error == 0) { 1842 if (++matchcnt == target) 1843 break; 1844 continue; 1845 } 1846 /* 1847 * We have to retry the worklist item later. Wake up any 1848 * waiters who may be able to complete it immediately and 1849 * add the item back to the head so we don't try to execute 1850 * it again. 1851 */ 1852 wk->wk_state &= ~INPROGRESS; 1853 wake_worklist(wk); 1854 add_to_worklist(wk, WK_HEAD); 1855 } 1856 /* Sentinal could've become the tail from remove_from_worklist. */ 1857 if (ump->softdep_worklist_tail == &sentinel) 1858 ump->softdep_worklist_tail = 1859 (struct worklist *)sentinel.wk_list.le_prev; 1860 LIST_REMOVE(&sentinel, wk_list); 1861 PRELE(curproc); 1862 return (matchcnt); 1863 } 1864 1865 /* 1866 * Move dependencies from one buffer to another. 1867 */ 1868 int 1869 softdep_move_dependencies(oldbp, newbp) 1870 struct buf *oldbp; 1871 struct buf *newbp; 1872 { 1873 struct worklist *wk, *wktail; 1874 struct ufsmount *ump; 1875 int dirty; 1876 1877 if ((wk = LIST_FIRST(&oldbp->b_dep)) == NULL) 1878 return (0); 1879 KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, 1880 ("softdep_move_dependencies called on non-softdep filesystem")); 1881 dirty = 0; 1882 wktail = NULL; 1883 ump = VFSTOUFS(wk->wk_mp); 1884 ACQUIRE_LOCK(ump); 1885 while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) { 1886 LIST_REMOVE(wk, wk_list); 1887 if (wk->wk_type == D_BMSAFEMAP && 1888 bmsafemap_backgroundwrite(WK_BMSAFEMAP(wk), newbp)) 1889 dirty = 1; 1890 if (wktail == NULL) 1891 LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list); 1892 else 1893 LIST_INSERT_AFTER(wktail, wk, wk_list); 1894 wktail = wk; 1895 } 1896 FREE_LOCK(ump); 1897 1898 return (dirty); 1899 } 1900 1901 /* 1902 * Purge the work list of all items associated with a particular mount point. 1903 */ 1904 int 1905 softdep_flushworklist(oldmnt, countp, td) 1906 struct mount *oldmnt; 1907 int *countp; 1908 struct thread *td; 1909 { 1910 struct vnode *devvp; 1911 struct ufsmount *ump; 1912 int count, error; 1913 1914 /* 1915 * Alternately flush the block device associated with the mount 1916 * point and process any dependencies that the flushing 1917 * creates. We continue until no more worklist dependencies 1918 * are found. 1919 */ 1920 *countp = 0; 1921 error = 0; 1922 ump = VFSTOUFS(oldmnt); 1923 devvp = ump->um_devvp; 1924 while ((count = softdep_process_worklist(oldmnt, 1)) > 0) { 1925 *countp += count; 1926 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 1927 error = VOP_FSYNC(devvp, MNT_WAIT, td); 1928 VOP_UNLOCK(devvp, 0); 1929 if (error != 0) 1930 break; 1931 } 1932 return (error); 1933 } 1934 1935 #define SU_WAITIDLE_RETRIES 20 1936 static int 1937 softdep_waitidle(struct mount *mp, int flags __unused) 1938 { 1939 struct ufsmount *ump; 1940 struct vnode *devvp; 1941 struct thread *td; 1942 int error, i; 1943 1944 ump = VFSTOUFS(mp); 1945 devvp = ump->um_devvp; 1946 td = curthread; 1947 error = 0; 1948 ACQUIRE_LOCK(ump); 1949 for (i = 0; i < SU_WAITIDLE_RETRIES && ump->softdep_deps != 0; i++) { 1950 ump->softdep_req = 1; 1951 KASSERT((flags & FORCECLOSE) == 0 || 1952 ump->softdep_on_worklist == 0, 1953 ("softdep_waitidle: work added after flush")); 1954 msleep(&ump->softdep_deps, LOCK_PTR(ump), PVM | PDROP, 1955 "softdeps", 10 * hz); 1956 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 1957 error = VOP_FSYNC(devvp, MNT_WAIT, td); 1958 VOP_UNLOCK(devvp, 0); 1959 ACQUIRE_LOCK(ump); 1960 if (error != 0) 1961 break; 1962 } 1963 ump->softdep_req = 0; 1964 if (i == SU_WAITIDLE_RETRIES && error == 0 && ump->softdep_deps != 0) { 1965 error = EBUSY; 1966 printf("softdep_waitidle: Failed to flush worklist for %p\n", 1967 mp); 1968 } 1969 FREE_LOCK(ump); 1970 return (error); 1971 } 1972 1973 /* 1974 * Flush all vnodes and worklist items associated with a specified mount point. 1975 */ 1976 int 1977 softdep_flushfiles(oldmnt, flags, td) 1978 struct mount *oldmnt; 1979 int flags; 1980 struct thread *td; 1981 { 1982 #ifdef QUOTA 1983 struct ufsmount *ump; 1984 int i; 1985 #endif 1986 int error, early, depcount, loopcnt, retry_flush_count, retry; 1987 int morework; 1988 1989 KASSERT(MOUNTEDSOFTDEP(oldmnt) != 0, 1990 ("softdep_flushfiles called on non-softdep filesystem")); 1991 loopcnt = 10; 1992 retry_flush_count = 3; 1993 retry_flush: 1994 error = 0; 1995 1996 /* 1997 * Alternately flush the vnodes associated with the mount 1998 * point and process any dependencies that the flushing 1999 * creates. In theory, this loop can happen at most twice, 2000 * but we give it a few extra just to be sure. 2001 */ 2002 for (; loopcnt > 0; loopcnt--) { 2003 /* 2004 * Do another flush in case any vnodes were brought in 2005 * as part of the cleanup operations. 2006 */ 2007 early = retry_flush_count == 1 || (oldmnt->mnt_kern_flag & 2008 MNTK_UNMOUNT) == 0 ? 0 : EARLYFLUSH; 2009 if ((error = ffs_flushfiles(oldmnt, flags | early, td)) != 0) 2010 break; 2011 if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 || 2012 depcount == 0) 2013 break; 2014 } 2015 /* 2016 * If we are unmounting then it is an error to fail. If we 2017 * are simply trying to downgrade to read-only, then filesystem 2018 * activity can keep us busy forever, so we just fail with EBUSY. 2019 */ 2020 if (loopcnt == 0) { 2021 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) 2022 panic("softdep_flushfiles: looping"); 2023 error = EBUSY; 2024 } 2025 if (!error) 2026 error = softdep_waitidle(oldmnt, flags); 2027 if (!error) { 2028 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) { 2029 retry = 0; 2030 MNT_ILOCK(oldmnt); 2031 morework = oldmnt->mnt_nvnodelistsize > 0; 2032 #ifdef QUOTA 2033 ump = VFSTOUFS(oldmnt); 2034 UFS_LOCK(ump); 2035 for (i = 0; i < MAXQUOTAS; i++) { 2036 if (ump->um_quotas[i] != NULLVP) 2037 morework = 1; 2038 } 2039 UFS_UNLOCK(ump); 2040 #endif 2041 if (morework) { 2042 if (--retry_flush_count > 0) { 2043 retry = 1; 2044 loopcnt = 3; 2045 } else 2046 error = EBUSY; 2047 } 2048 MNT_IUNLOCK(oldmnt); 2049 if (retry) 2050 goto retry_flush; 2051 } 2052 } 2053 return (error); 2054 } 2055 2056 /* 2057 * Structure hashing. 2058 * 2059 * There are four types of structures that can be looked up: 2060 * 1) pagedep structures identified by mount point, inode number, 2061 * and logical block. 2062 * 2) inodedep structures identified by mount point and inode number. 2063 * 3) newblk structures identified by mount point and 2064 * physical block number. 2065 * 4) bmsafemap structures identified by mount point and 2066 * cylinder group number. 2067 * 2068 * The "pagedep" and "inodedep" dependency structures are hashed 2069 * separately from the file blocks and inodes to which they correspond. 2070 * This separation helps when the in-memory copy of an inode or 2071 * file block must be replaced. It also obviates the need to access 2072 * an inode or file page when simply updating (or de-allocating) 2073 * dependency structures. Lookup of newblk structures is needed to 2074 * find newly allocated blocks when trying to associate them with 2075 * their allocdirect or allocindir structure. 2076 * 2077 * The lookup routines optionally create and hash a new instance when 2078 * an existing entry is not found. The bmsafemap lookup routine always 2079 * allocates a new structure if an existing one is not found. 2080 */ 2081 #define DEPALLOC 0x0001 /* allocate structure if lookup fails */ 2082 2083 /* 2084 * Structures and routines associated with pagedep caching. 2085 */ 2086 #define PAGEDEP_HASH(ump, inum, lbn) \ 2087 (&(ump)->pagedep_hashtbl[((inum) + (lbn)) & (ump)->pagedep_hash_size]) 2088 2089 static int 2090 pagedep_find(pagedephd, ino, lbn, pagedeppp) 2091 struct pagedep_hashhead *pagedephd; 2092 ino_t ino; 2093 ufs_lbn_t lbn; 2094 struct pagedep **pagedeppp; 2095 { 2096 struct pagedep *pagedep; 2097 2098 LIST_FOREACH(pagedep, pagedephd, pd_hash) { 2099 if (ino == pagedep->pd_ino && lbn == pagedep->pd_lbn) { 2100 *pagedeppp = pagedep; 2101 return (1); 2102 } 2103 } 2104 *pagedeppp = NULL; 2105 return (0); 2106 } 2107 /* 2108 * Look up a pagedep. Return 1 if found, 0 otherwise. 2109 * If not found, allocate if DEPALLOC flag is passed. 2110 * Found or allocated entry is returned in pagedeppp. 2111 */ 2112 static int 2113 pagedep_lookup(mp, bp, ino, lbn, flags, pagedeppp) 2114 struct mount *mp; 2115 struct buf *bp; 2116 ino_t ino; 2117 ufs_lbn_t lbn; 2118 int flags; 2119 struct pagedep **pagedeppp; 2120 { 2121 struct pagedep *pagedep; 2122 struct pagedep_hashhead *pagedephd; 2123 struct worklist *wk; 2124 struct ufsmount *ump; 2125 int ret; 2126 int i; 2127 2128 ump = VFSTOUFS(mp); 2129 LOCK_OWNED(ump); 2130 if (bp) { 2131 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 2132 if (wk->wk_type == D_PAGEDEP) { 2133 *pagedeppp = WK_PAGEDEP(wk); 2134 return (1); 2135 } 2136 } 2137 } 2138 pagedephd = PAGEDEP_HASH(ump, ino, lbn); 2139 ret = pagedep_find(pagedephd, ino, lbn, pagedeppp); 2140 if (ret) { 2141 if (((*pagedeppp)->pd_state & ONWORKLIST) == 0 && bp) 2142 WORKLIST_INSERT(&bp->b_dep, &(*pagedeppp)->pd_list); 2143 return (1); 2144 } 2145 if ((flags & DEPALLOC) == 0) 2146 return (0); 2147 FREE_LOCK(ump); 2148 pagedep = malloc(sizeof(struct pagedep), 2149 M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO); 2150 workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp); 2151 ACQUIRE_LOCK(ump); 2152 ret = pagedep_find(pagedephd, ino, lbn, pagedeppp); 2153 if (*pagedeppp) { 2154 /* 2155 * This should never happen since we only create pagedeps 2156 * with the vnode lock held. Could be an assert. 2157 */ 2158 WORKITEM_FREE(pagedep, D_PAGEDEP); 2159 return (ret); 2160 } 2161 pagedep->pd_ino = ino; 2162 pagedep->pd_lbn = lbn; 2163 LIST_INIT(&pagedep->pd_dirremhd); 2164 LIST_INIT(&pagedep->pd_pendinghd); 2165 for (i = 0; i < DAHASHSZ; i++) 2166 LIST_INIT(&pagedep->pd_diraddhd[i]); 2167 LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash); 2168 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 2169 *pagedeppp = pagedep; 2170 return (0); 2171 } 2172 2173 /* 2174 * Structures and routines associated with inodedep caching. 2175 */ 2176 #define INODEDEP_HASH(ump, inum) \ 2177 (&(ump)->inodedep_hashtbl[(inum) & (ump)->inodedep_hash_size]) 2178 2179 static int 2180 inodedep_find(inodedephd, inum, inodedeppp) 2181 struct inodedep_hashhead *inodedephd; 2182 ino_t inum; 2183 struct inodedep **inodedeppp; 2184 { 2185 struct inodedep *inodedep; 2186 2187 LIST_FOREACH(inodedep, inodedephd, id_hash) 2188 if (inum == inodedep->id_ino) 2189 break; 2190 if (inodedep) { 2191 *inodedeppp = inodedep; 2192 return (1); 2193 } 2194 *inodedeppp = NULL; 2195 2196 return (0); 2197 } 2198 /* 2199 * Look up an inodedep. Return 1 if found, 0 if not found. 2200 * If not found, allocate if DEPALLOC flag is passed. 2201 * Found or allocated entry is returned in inodedeppp. 2202 */ 2203 static int 2204 inodedep_lookup(mp, inum, flags, inodedeppp) 2205 struct mount *mp; 2206 ino_t inum; 2207 int flags; 2208 struct inodedep **inodedeppp; 2209 { 2210 struct inodedep *inodedep; 2211 struct inodedep_hashhead *inodedephd; 2212 struct ufsmount *ump; 2213 struct fs *fs; 2214 2215 ump = VFSTOUFS(mp); 2216 LOCK_OWNED(ump); 2217 fs = ump->um_fs; 2218 inodedephd = INODEDEP_HASH(ump, inum); 2219 2220 if (inodedep_find(inodedephd, inum, inodedeppp)) 2221 return (1); 2222 if ((flags & DEPALLOC) == 0) 2223 return (0); 2224 /* 2225 * If the system is over its limit and our filesystem is 2226 * responsible for more than our share of that usage and 2227 * we are not in a rush, request some inodedep cleanup. 2228 */ 2229 if (softdep_excess_items(ump, D_INODEDEP)) 2230 schedule_cleanup(mp); 2231 else 2232 FREE_LOCK(ump); 2233 inodedep = malloc(sizeof(struct inodedep), 2234 M_INODEDEP, M_SOFTDEP_FLAGS); 2235 workitem_alloc(&inodedep->id_list, D_INODEDEP, mp); 2236 ACQUIRE_LOCK(ump); 2237 if (inodedep_find(inodedephd, inum, inodedeppp)) { 2238 WORKITEM_FREE(inodedep, D_INODEDEP); 2239 return (1); 2240 } 2241 inodedep->id_fs = fs; 2242 inodedep->id_ino = inum; 2243 inodedep->id_state = ALLCOMPLETE; 2244 inodedep->id_nlinkdelta = 0; 2245 inodedep->id_savedino1 = NULL; 2246 inodedep->id_savedsize = -1; 2247 inodedep->id_savedextsize = -1; 2248 inodedep->id_savednlink = -1; 2249 inodedep->id_bmsafemap = NULL; 2250 inodedep->id_mkdiradd = NULL; 2251 LIST_INIT(&inodedep->id_dirremhd); 2252 LIST_INIT(&inodedep->id_pendinghd); 2253 LIST_INIT(&inodedep->id_inowait); 2254 LIST_INIT(&inodedep->id_bufwait); 2255 TAILQ_INIT(&inodedep->id_inoreflst); 2256 TAILQ_INIT(&inodedep->id_inoupdt); 2257 TAILQ_INIT(&inodedep->id_newinoupdt); 2258 TAILQ_INIT(&inodedep->id_extupdt); 2259 TAILQ_INIT(&inodedep->id_newextupdt); 2260 TAILQ_INIT(&inodedep->id_freeblklst); 2261 LIST_INSERT_HEAD(inodedephd, inodedep, id_hash); 2262 *inodedeppp = inodedep; 2263 return (0); 2264 } 2265 2266 /* 2267 * Structures and routines associated with newblk caching. 2268 */ 2269 #define NEWBLK_HASH(ump, inum) \ 2270 (&(ump)->newblk_hashtbl[(inum) & (ump)->newblk_hash_size]) 2271 2272 static int 2273 newblk_find(newblkhd, newblkno, flags, newblkpp) 2274 struct newblk_hashhead *newblkhd; 2275 ufs2_daddr_t newblkno; 2276 int flags; 2277 struct newblk **newblkpp; 2278 { 2279 struct newblk *newblk; 2280 2281 LIST_FOREACH(newblk, newblkhd, nb_hash) { 2282 if (newblkno != newblk->nb_newblkno) 2283 continue; 2284 /* 2285 * If we're creating a new dependency don't match those that 2286 * have already been converted to allocdirects. This is for 2287 * a frag extend. 2288 */ 2289 if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK) 2290 continue; 2291 break; 2292 } 2293 if (newblk) { 2294 *newblkpp = newblk; 2295 return (1); 2296 } 2297 *newblkpp = NULL; 2298 return (0); 2299 } 2300 2301 /* 2302 * Look up a newblk. Return 1 if found, 0 if not found. 2303 * If not found, allocate if DEPALLOC flag is passed. 2304 * Found or allocated entry is returned in newblkpp. 2305 */ 2306 static int 2307 newblk_lookup(mp, newblkno, flags, newblkpp) 2308 struct mount *mp; 2309 ufs2_daddr_t newblkno; 2310 int flags; 2311 struct newblk **newblkpp; 2312 { 2313 struct newblk *newblk; 2314 struct newblk_hashhead *newblkhd; 2315 struct ufsmount *ump; 2316 2317 ump = VFSTOUFS(mp); 2318 LOCK_OWNED(ump); 2319 newblkhd = NEWBLK_HASH(ump, newblkno); 2320 if (newblk_find(newblkhd, newblkno, flags, newblkpp)) 2321 return (1); 2322 if ((flags & DEPALLOC) == 0) 2323 return (0); 2324 if (softdep_excess_items(ump, D_NEWBLK) || 2325 softdep_excess_items(ump, D_ALLOCDIRECT) || 2326 softdep_excess_items(ump, D_ALLOCINDIR)) 2327 schedule_cleanup(mp); 2328 else 2329 FREE_LOCK(ump); 2330 newblk = malloc(sizeof(union allblk), M_NEWBLK, 2331 M_SOFTDEP_FLAGS | M_ZERO); 2332 workitem_alloc(&newblk->nb_list, D_NEWBLK, mp); 2333 ACQUIRE_LOCK(ump); 2334 if (newblk_find(newblkhd, newblkno, flags, newblkpp)) { 2335 WORKITEM_FREE(newblk, D_NEWBLK); 2336 return (1); 2337 } 2338 newblk->nb_freefrag = NULL; 2339 LIST_INIT(&newblk->nb_indirdeps); 2340 LIST_INIT(&newblk->nb_newdirblk); 2341 LIST_INIT(&newblk->nb_jwork); 2342 newblk->nb_state = ATTACHED; 2343 newblk->nb_newblkno = newblkno; 2344 LIST_INSERT_HEAD(newblkhd, newblk, nb_hash); 2345 *newblkpp = newblk; 2346 return (0); 2347 } 2348 2349 /* 2350 * Structures and routines associated with freed indirect block caching. 2351 */ 2352 #define INDIR_HASH(ump, blkno) \ 2353 (&(ump)->indir_hashtbl[(blkno) & (ump)->indir_hash_size]) 2354 2355 /* 2356 * Lookup an indirect block in the indir hash table. The freework is 2357 * removed and potentially freed. The caller must do a blocking journal 2358 * write before writing to the blkno. 2359 */ 2360 static int 2361 indirblk_lookup(mp, blkno) 2362 struct mount *mp; 2363 ufs2_daddr_t blkno; 2364 { 2365 struct freework *freework; 2366 struct indir_hashhead *wkhd; 2367 struct ufsmount *ump; 2368 2369 ump = VFSTOUFS(mp); 2370 wkhd = INDIR_HASH(ump, blkno); 2371 TAILQ_FOREACH(freework, wkhd, fw_next) { 2372 if (freework->fw_blkno != blkno) 2373 continue; 2374 indirblk_remove(freework); 2375 return (1); 2376 } 2377 return (0); 2378 } 2379 2380 /* 2381 * Insert an indirect block represented by freework into the indirblk 2382 * hash table so that it may prevent the block from being re-used prior 2383 * to the journal being written. 2384 */ 2385 static void 2386 indirblk_insert(freework) 2387 struct freework *freework; 2388 { 2389 struct jblocks *jblocks; 2390 struct jseg *jseg; 2391 struct ufsmount *ump; 2392 2393 ump = VFSTOUFS(freework->fw_list.wk_mp); 2394 jblocks = ump->softdep_jblocks; 2395 jseg = TAILQ_LAST(&jblocks->jb_segs, jseglst); 2396 if (jseg == NULL) 2397 return; 2398 2399 LIST_INSERT_HEAD(&jseg->js_indirs, freework, fw_segs); 2400 TAILQ_INSERT_HEAD(INDIR_HASH(ump, freework->fw_blkno), freework, 2401 fw_next); 2402 freework->fw_state &= ~DEPCOMPLETE; 2403 } 2404 2405 static void 2406 indirblk_remove(freework) 2407 struct freework *freework; 2408 { 2409 struct ufsmount *ump; 2410 2411 ump = VFSTOUFS(freework->fw_list.wk_mp); 2412 LIST_REMOVE(freework, fw_segs); 2413 TAILQ_REMOVE(INDIR_HASH(ump, freework->fw_blkno), freework, fw_next); 2414 freework->fw_state |= DEPCOMPLETE; 2415 if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE) 2416 WORKITEM_FREE(freework, D_FREEWORK); 2417 } 2418 2419 /* 2420 * Executed during filesystem system initialization before 2421 * mounting any filesystems. 2422 */ 2423 void 2424 softdep_initialize() 2425 { 2426 2427 TAILQ_INIT(&softdepmounts); 2428 #ifdef __LP64__ 2429 max_softdeps = desiredvnodes * 4; 2430 #else 2431 max_softdeps = desiredvnodes * 2; 2432 #endif 2433 2434 /* initialise bioops hack */ 2435 bioops.io_start = softdep_disk_io_initiation; 2436 bioops.io_complete = softdep_disk_write_complete; 2437 bioops.io_deallocate = softdep_deallocate_dependencies; 2438 bioops.io_countdeps = softdep_count_dependencies; 2439 softdep_ast_cleanup = softdep_ast_cleanup_proc; 2440 2441 /* Initialize the callout with an mtx. */ 2442 callout_init_mtx(&softdep_callout, &lk, 0); 2443 } 2444 2445 /* 2446 * Executed after all filesystems have been unmounted during 2447 * filesystem module unload. 2448 */ 2449 void 2450 softdep_uninitialize() 2451 { 2452 2453 /* clear bioops hack */ 2454 bioops.io_start = NULL; 2455 bioops.io_complete = NULL; 2456 bioops.io_deallocate = NULL; 2457 bioops.io_countdeps = NULL; 2458 softdep_ast_cleanup = NULL; 2459 2460 callout_drain(&softdep_callout); 2461 } 2462 2463 /* 2464 * Called at mount time to notify the dependency code that a 2465 * filesystem wishes to use it. 2466 */ 2467 int 2468 softdep_mount(devvp, mp, fs, cred) 2469 struct vnode *devvp; 2470 struct mount *mp; 2471 struct fs *fs; 2472 struct ucred *cred; 2473 { 2474 struct csum_total cstotal; 2475 struct mount_softdeps *sdp; 2476 struct ufsmount *ump; 2477 struct cg *cgp; 2478 struct buf *bp; 2479 u_int cyl, i; 2480 int error; 2481 2482 sdp = malloc(sizeof(struct mount_softdeps), M_MOUNTDATA, 2483 M_WAITOK | M_ZERO); 2484 MNT_ILOCK(mp); 2485 mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP; 2486 if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) { 2487 mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) | 2488 MNTK_SOFTDEP | MNTK_NOASYNC; 2489 } 2490 ump = VFSTOUFS(mp); 2491 ump->um_softdep = sdp; 2492 MNT_IUNLOCK(mp); 2493 rw_init(LOCK_PTR(ump), "Per-Filesystem Softdep Lock"); 2494 sdp->sd_ump = ump; 2495 LIST_INIT(&ump->softdep_workitem_pending); 2496 LIST_INIT(&ump->softdep_journal_pending); 2497 TAILQ_INIT(&ump->softdep_unlinked); 2498 LIST_INIT(&ump->softdep_dirtycg); 2499 ump->softdep_worklist_tail = NULL; 2500 ump->softdep_on_worklist = 0; 2501 ump->softdep_deps = 0; 2502 LIST_INIT(&ump->softdep_mkdirlisthd); 2503 ump->pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP, 2504 &ump->pagedep_hash_size); 2505 ump->pagedep_nextclean = 0; 2506 ump->inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, 2507 &ump->inodedep_hash_size); 2508 ump->inodedep_nextclean = 0; 2509 ump->newblk_hashtbl = hashinit(max_softdeps / 2, M_NEWBLK, 2510 &ump->newblk_hash_size); 2511 ump->bmsafemap_hashtbl = hashinit(1024, M_BMSAFEMAP, 2512 &ump->bmsafemap_hash_size); 2513 i = 1 << (ffs(desiredvnodes / 10) - 1); 2514 ump->indir_hashtbl = malloc(i * sizeof(struct indir_hashhead), 2515 M_FREEWORK, M_WAITOK); 2516 ump->indir_hash_size = i - 1; 2517 for (i = 0; i <= ump->indir_hash_size; i++) 2518 TAILQ_INIT(&ump->indir_hashtbl[i]); 2519 ACQUIRE_GBLLOCK(&lk); 2520 TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next); 2521 FREE_GBLLOCK(&lk); 2522 if ((fs->fs_flags & FS_SUJ) && 2523 (error = journal_mount(mp, fs, cred)) != 0) { 2524 printf("Failed to start journal: %d\n", error); 2525 softdep_unmount(mp); 2526 return (error); 2527 } 2528 /* 2529 * Start our flushing thread in the bufdaemon process. 2530 */ 2531 ACQUIRE_LOCK(ump); 2532 ump->softdep_flags |= FLUSH_STARTING; 2533 FREE_LOCK(ump); 2534 kproc_kthread_add(&softdep_flush, mp, &bufdaemonproc, 2535 &ump->softdep_flushtd, 0, 0, "softdepflush", "%s worker", 2536 mp->mnt_stat.f_mntonname); 2537 ACQUIRE_LOCK(ump); 2538 while ((ump->softdep_flags & FLUSH_STARTING) != 0) { 2539 msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM, "sdstart", 2540 hz / 2); 2541 } 2542 FREE_LOCK(ump); 2543 /* 2544 * When doing soft updates, the counters in the 2545 * superblock may have gotten out of sync. Recomputation 2546 * can take a long time and can be deferred for background 2547 * fsck. However, the old behavior of scanning the cylinder 2548 * groups and recalculating them at mount time is available 2549 * by setting vfs.ffs.compute_summary_at_mount to one. 2550 */ 2551 if (compute_summary_at_mount == 0 || fs->fs_clean != 0) 2552 return (0); 2553 bzero(&cstotal, sizeof cstotal); 2554 for (cyl = 0; cyl < fs->fs_ncg; cyl++) { 2555 if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)), 2556 fs->fs_cgsize, cred, &bp)) != 0) { 2557 brelse(bp); 2558 softdep_unmount(mp); 2559 return (error); 2560 } 2561 cgp = (struct cg *)bp->b_data; 2562 cstotal.cs_nffree += cgp->cg_cs.cs_nffree; 2563 cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree; 2564 cstotal.cs_nifree += cgp->cg_cs.cs_nifree; 2565 cstotal.cs_ndir += cgp->cg_cs.cs_ndir; 2566 fs->fs_cs(fs, cyl) = cgp->cg_cs; 2567 brelse(bp); 2568 } 2569 #ifdef INVARIANTS 2570 if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal)) 2571 printf("%s: superblock summary recomputed\n", fs->fs_fsmnt); 2572 #endif 2573 bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal); 2574 return (0); 2575 } 2576 2577 void 2578 softdep_unmount(mp) 2579 struct mount *mp; 2580 { 2581 struct ufsmount *ump; 2582 #ifdef INVARIANTS 2583 int i; 2584 #endif 2585 2586 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 2587 ("softdep_unmount called on non-softdep filesystem")); 2588 ump = VFSTOUFS(mp); 2589 MNT_ILOCK(mp); 2590 mp->mnt_flag &= ~MNT_SOFTDEP; 2591 if (MOUNTEDSUJ(mp) == 0) { 2592 MNT_IUNLOCK(mp); 2593 } else { 2594 mp->mnt_flag &= ~MNT_SUJ; 2595 MNT_IUNLOCK(mp); 2596 journal_unmount(ump); 2597 } 2598 /* 2599 * Shut down our flushing thread. Check for NULL is if 2600 * softdep_mount errors out before the thread has been created. 2601 */ 2602 if (ump->softdep_flushtd != NULL) { 2603 ACQUIRE_LOCK(ump); 2604 ump->softdep_flags |= FLUSH_EXIT; 2605 wakeup(&ump->softdep_flushtd); 2606 msleep(&ump->softdep_flags, LOCK_PTR(ump), PVM | PDROP, 2607 "sdwait", 0); 2608 KASSERT((ump->softdep_flags & FLUSH_EXIT) == 0, 2609 ("Thread shutdown failed")); 2610 } 2611 /* 2612 * Free up our resources. 2613 */ 2614 ACQUIRE_GBLLOCK(&lk); 2615 TAILQ_REMOVE(&softdepmounts, ump->um_softdep, sd_next); 2616 FREE_GBLLOCK(&lk); 2617 rw_destroy(LOCK_PTR(ump)); 2618 hashdestroy(ump->pagedep_hashtbl, M_PAGEDEP, ump->pagedep_hash_size); 2619 hashdestroy(ump->inodedep_hashtbl, M_INODEDEP, ump->inodedep_hash_size); 2620 hashdestroy(ump->newblk_hashtbl, M_NEWBLK, ump->newblk_hash_size); 2621 hashdestroy(ump->bmsafemap_hashtbl, M_BMSAFEMAP, 2622 ump->bmsafemap_hash_size); 2623 free(ump->indir_hashtbl, M_FREEWORK); 2624 #ifdef INVARIANTS 2625 for (i = 0; i <= D_LAST; i++) 2626 KASSERT(ump->softdep_curdeps[i] == 0, 2627 ("Unmount %s: Dep type %s != 0 (%ld)", ump->um_fs->fs_fsmnt, 2628 TYPENAME(i), ump->softdep_curdeps[i])); 2629 #endif 2630 free(ump->um_softdep, M_MOUNTDATA); 2631 } 2632 2633 static struct jblocks * 2634 jblocks_create(void) 2635 { 2636 struct jblocks *jblocks; 2637 2638 jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO); 2639 TAILQ_INIT(&jblocks->jb_segs); 2640 jblocks->jb_avail = 10; 2641 jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail, 2642 M_JBLOCKS, M_WAITOK | M_ZERO); 2643 2644 return (jblocks); 2645 } 2646 2647 static ufs2_daddr_t 2648 jblocks_alloc(jblocks, bytes, actual) 2649 struct jblocks *jblocks; 2650 int bytes; 2651 int *actual; 2652 { 2653 ufs2_daddr_t daddr; 2654 struct jextent *jext; 2655 int freecnt; 2656 int blocks; 2657 2658 blocks = bytes / DEV_BSIZE; 2659 jext = &jblocks->jb_extent[jblocks->jb_head]; 2660 freecnt = jext->je_blocks - jblocks->jb_off; 2661 if (freecnt == 0) { 2662 jblocks->jb_off = 0; 2663 if (++jblocks->jb_head > jblocks->jb_used) 2664 jblocks->jb_head = 0; 2665 jext = &jblocks->jb_extent[jblocks->jb_head]; 2666 freecnt = jext->je_blocks; 2667 } 2668 if (freecnt > blocks) 2669 freecnt = blocks; 2670 *actual = freecnt * DEV_BSIZE; 2671 daddr = jext->je_daddr + jblocks->jb_off; 2672 jblocks->jb_off += freecnt; 2673 jblocks->jb_free -= freecnt; 2674 2675 return (daddr); 2676 } 2677 2678 static void 2679 jblocks_free(jblocks, mp, bytes) 2680 struct jblocks *jblocks; 2681 struct mount *mp; 2682 int bytes; 2683 { 2684 2685 LOCK_OWNED(VFSTOUFS(mp)); 2686 jblocks->jb_free += bytes / DEV_BSIZE; 2687 if (jblocks->jb_suspended) 2688 worklist_speedup(mp); 2689 wakeup(jblocks); 2690 } 2691 2692 static void 2693 jblocks_destroy(jblocks) 2694 struct jblocks *jblocks; 2695 { 2696 2697 if (jblocks->jb_extent) 2698 free(jblocks->jb_extent, M_JBLOCKS); 2699 free(jblocks, M_JBLOCKS); 2700 } 2701 2702 static void 2703 jblocks_add(jblocks, daddr, blocks) 2704 struct jblocks *jblocks; 2705 ufs2_daddr_t daddr; 2706 int blocks; 2707 { 2708 struct jextent *jext; 2709 2710 jblocks->jb_blocks += blocks; 2711 jblocks->jb_free += blocks; 2712 jext = &jblocks->jb_extent[jblocks->jb_used]; 2713 /* Adding the first block. */ 2714 if (jext->je_daddr == 0) { 2715 jext->je_daddr = daddr; 2716 jext->je_blocks = blocks; 2717 return; 2718 } 2719 /* Extending the last extent. */ 2720 if (jext->je_daddr + jext->je_blocks == daddr) { 2721 jext->je_blocks += blocks; 2722 return; 2723 } 2724 /* Adding a new extent. */ 2725 if (++jblocks->jb_used == jblocks->jb_avail) { 2726 jblocks->jb_avail *= 2; 2727 jext = malloc(sizeof(struct jextent) * jblocks->jb_avail, 2728 M_JBLOCKS, M_WAITOK | M_ZERO); 2729 memcpy(jext, jblocks->jb_extent, 2730 sizeof(struct jextent) * jblocks->jb_used); 2731 free(jblocks->jb_extent, M_JBLOCKS); 2732 jblocks->jb_extent = jext; 2733 } 2734 jext = &jblocks->jb_extent[jblocks->jb_used]; 2735 jext->je_daddr = daddr; 2736 jext->je_blocks = blocks; 2737 return; 2738 } 2739 2740 int 2741 softdep_journal_lookup(mp, vpp) 2742 struct mount *mp; 2743 struct vnode **vpp; 2744 { 2745 struct componentname cnp; 2746 struct vnode *dvp; 2747 ino_t sujournal; 2748 int error; 2749 2750 error = VFS_VGET(mp, UFS_ROOTINO, LK_EXCLUSIVE, &dvp); 2751 if (error) 2752 return (error); 2753 bzero(&cnp, sizeof(cnp)); 2754 cnp.cn_nameiop = LOOKUP; 2755 cnp.cn_flags = ISLASTCN; 2756 cnp.cn_thread = curthread; 2757 cnp.cn_cred = curthread->td_ucred; 2758 cnp.cn_pnbuf = SUJ_FILE; 2759 cnp.cn_nameptr = SUJ_FILE; 2760 cnp.cn_namelen = strlen(SUJ_FILE); 2761 error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal); 2762 vput(dvp); 2763 if (error != 0) 2764 return (error); 2765 error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp); 2766 return (error); 2767 } 2768 2769 /* 2770 * Open and verify the journal file. 2771 */ 2772 static int 2773 journal_mount(mp, fs, cred) 2774 struct mount *mp; 2775 struct fs *fs; 2776 struct ucred *cred; 2777 { 2778 struct jblocks *jblocks; 2779 struct ufsmount *ump; 2780 struct vnode *vp; 2781 struct inode *ip; 2782 ufs2_daddr_t blkno; 2783 int bcount; 2784 int error; 2785 int i; 2786 2787 ump = VFSTOUFS(mp); 2788 ump->softdep_journal_tail = NULL; 2789 ump->softdep_on_journal = 0; 2790 ump->softdep_accdeps = 0; 2791 ump->softdep_req = 0; 2792 ump->softdep_jblocks = NULL; 2793 error = softdep_journal_lookup(mp, &vp); 2794 if (error != 0) { 2795 printf("Failed to find journal. Use tunefs to create one\n"); 2796 return (error); 2797 } 2798 ip = VTOI(vp); 2799 if (ip->i_size < SUJ_MIN) { 2800 error = ENOSPC; 2801 goto out; 2802 } 2803 bcount = lblkno(fs, ip->i_size); /* Only use whole blocks. */ 2804 jblocks = jblocks_create(); 2805 for (i = 0; i < bcount; i++) { 2806 error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL); 2807 if (error) 2808 break; 2809 jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag)); 2810 } 2811 if (error) { 2812 jblocks_destroy(jblocks); 2813 goto out; 2814 } 2815 jblocks->jb_low = jblocks->jb_free / 3; /* Reserve 33%. */ 2816 jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */ 2817 ump->softdep_jblocks = jblocks; 2818 out: 2819 if (error == 0) { 2820 MNT_ILOCK(mp); 2821 mp->mnt_flag |= MNT_SUJ; 2822 mp->mnt_flag &= ~MNT_SOFTDEP; 2823 MNT_IUNLOCK(mp); 2824 /* 2825 * Only validate the journal contents if the 2826 * filesystem is clean, otherwise we write the logs 2827 * but they'll never be used. If the filesystem was 2828 * still dirty when we mounted it the journal is 2829 * invalid and a new journal can only be valid if it 2830 * starts from a clean mount. 2831 */ 2832 if (fs->fs_clean) { 2833 DIP_SET(ip, i_modrev, fs->fs_mtime); 2834 ip->i_flags |= IN_MODIFIED; 2835 ffs_update(vp, 1); 2836 } 2837 } 2838 vput(vp); 2839 return (error); 2840 } 2841 2842 static void 2843 journal_unmount(ump) 2844 struct ufsmount *ump; 2845 { 2846 2847 if (ump->softdep_jblocks) 2848 jblocks_destroy(ump->softdep_jblocks); 2849 ump->softdep_jblocks = NULL; 2850 } 2851 2852 /* 2853 * Called when a journal record is ready to be written. Space is allocated 2854 * and the journal entry is created when the journal is flushed to stable 2855 * store. 2856 */ 2857 static void 2858 add_to_journal(wk) 2859 struct worklist *wk; 2860 { 2861 struct ufsmount *ump; 2862 2863 ump = VFSTOUFS(wk->wk_mp); 2864 LOCK_OWNED(ump); 2865 if (wk->wk_state & ONWORKLIST) 2866 panic("add_to_journal: %s(0x%X) already on list", 2867 TYPENAME(wk->wk_type), wk->wk_state); 2868 wk->wk_state |= ONWORKLIST | DEPCOMPLETE; 2869 if (LIST_EMPTY(&ump->softdep_journal_pending)) { 2870 ump->softdep_jblocks->jb_age = ticks; 2871 LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list); 2872 } else 2873 LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list); 2874 ump->softdep_journal_tail = wk; 2875 ump->softdep_on_journal += 1; 2876 } 2877 2878 /* 2879 * Remove an arbitrary item for the journal worklist maintain the tail 2880 * pointer. This happens when a new operation obviates the need to 2881 * journal an old operation. 2882 */ 2883 static void 2884 remove_from_journal(wk) 2885 struct worklist *wk; 2886 { 2887 struct ufsmount *ump; 2888 2889 ump = VFSTOUFS(wk->wk_mp); 2890 LOCK_OWNED(ump); 2891 #ifdef INVARIANTS 2892 { 2893 struct worklist *wkn; 2894 2895 LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list) 2896 if (wkn == wk) 2897 break; 2898 if (wkn == NULL) 2899 panic("remove_from_journal: %p is not in journal", wk); 2900 } 2901 #endif 2902 /* 2903 * We emulate a TAILQ to save space in most structures which do not 2904 * require TAILQ semantics. Here we must update the tail position 2905 * when removing the tail which is not the final entry. This works 2906 * only if the worklist linkage are at the beginning of the structure. 2907 */ 2908 if (ump->softdep_journal_tail == wk) 2909 ump->softdep_journal_tail = 2910 (struct worklist *)wk->wk_list.le_prev; 2911 WORKLIST_REMOVE(wk); 2912 ump->softdep_on_journal -= 1; 2913 } 2914 2915 /* 2916 * Check for journal space as well as dependency limits so the prelink 2917 * code can throttle both journaled and non-journaled filesystems. 2918 * Threshold is 0 for low and 1 for min. 2919 */ 2920 static int 2921 journal_space(ump, thresh) 2922 struct ufsmount *ump; 2923 int thresh; 2924 { 2925 struct jblocks *jblocks; 2926 int limit, avail; 2927 2928 jblocks = ump->softdep_jblocks; 2929 if (jblocks == NULL) 2930 return (1); 2931 /* 2932 * We use a tighter restriction here to prevent request_cleanup() 2933 * running in threads from running into locks we currently hold. 2934 * We have to be over the limit and our filesystem has to be 2935 * responsible for more than our share of that usage. 2936 */ 2937 limit = (max_softdeps / 10) * 9; 2938 if (dep_current[D_INODEDEP] > limit && 2939 ump->softdep_curdeps[D_INODEDEP] > limit / stat_flush_threads) 2940 return (0); 2941 if (thresh) 2942 thresh = jblocks->jb_min; 2943 else 2944 thresh = jblocks->jb_low; 2945 avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE; 2946 avail = jblocks->jb_free - avail; 2947 2948 return (avail > thresh); 2949 } 2950 2951 static void 2952 journal_suspend(ump) 2953 struct ufsmount *ump; 2954 { 2955 struct jblocks *jblocks; 2956 struct mount *mp; 2957 2958 mp = UFSTOVFS(ump); 2959 jblocks = ump->softdep_jblocks; 2960 MNT_ILOCK(mp); 2961 if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) { 2962 stat_journal_min++; 2963 mp->mnt_kern_flag |= MNTK_SUSPEND; 2964 mp->mnt_susp_owner = ump->softdep_flushtd; 2965 } 2966 jblocks->jb_suspended = 1; 2967 MNT_IUNLOCK(mp); 2968 } 2969 2970 static int 2971 journal_unsuspend(struct ufsmount *ump) 2972 { 2973 struct jblocks *jblocks; 2974 struct mount *mp; 2975 2976 mp = UFSTOVFS(ump); 2977 jblocks = ump->softdep_jblocks; 2978 2979 if (jblocks != NULL && jblocks->jb_suspended && 2980 journal_space(ump, jblocks->jb_min)) { 2981 jblocks->jb_suspended = 0; 2982 FREE_LOCK(ump); 2983 mp->mnt_susp_owner = curthread; 2984 vfs_write_resume(mp, 0); 2985 ACQUIRE_LOCK(ump); 2986 return (1); 2987 } 2988 return (0); 2989 } 2990 2991 /* 2992 * Called before any allocation function to be certain that there is 2993 * sufficient space in the journal prior to creating any new records. 2994 * Since in the case of block allocation we may have multiple locked 2995 * buffers at the time of the actual allocation we can not block 2996 * when the journal records are created. Doing so would create a deadlock 2997 * if any of these buffers needed to be flushed to reclaim space. Instead 2998 * we require a sufficiently large amount of available space such that 2999 * each thread in the system could have passed this allocation check and 3000 * still have sufficient free space. With 20% of a minimum journal size 3001 * of 1MB we have 6553 records available. 3002 */ 3003 int 3004 softdep_prealloc(vp, waitok) 3005 struct vnode *vp; 3006 int waitok; 3007 { 3008 struct ufsmount *ump; 3009 3010 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 3011 ("softdep_prealloc called on non-softdep filesystem")); 3012 /* 3013 * Nothing to do if we are not running journaled soft updates. 3014 * If we currently hold the snapshot lock, we must avoid 3015 * handling other resources that could cause deadlock. Do not 3016 * touch quotas vnode since it is typically recursed with 3017 * other vnode locks held. 3018 */ 3019 if (DOINGSUJ(vp) == 0 || IS_SNAPSHOT(VTOI(vp)) || 3020 (vp->v_vflag & VV_SYSTEM) != 0) 3021 return (0); 3022 ump = VFSTOUFS(vp->v_mount); 3023 ACQUIRE_LOCK(ump); 3024 if (journal_space(ump, 0)) { 3025 FREE_LOCK(ump); 3026 return (0); 3027 } 3028 stat_journal_low++; 3029 FREE_LOCK(ump); 3030 if (waitok == MNT_NOWAIT) 3031 return (ENOSPC); 3032 /* 3033 * Attempt to sync this vnode once to flush any journal 3034 * work attached to it. 3035 */ 3036 if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0) 3037 ffs_syncvnode(vp, waitok, 0); 3038 ACQUIRE_LOCK(ump); 3039 process_removes(vp); 3040 process_truncates(vp); 3041 if (journal_space(ump, 0) == 0) { 3042 softdep_speedup(ump); 3043 if (journal_space(ump, 1) == 0) 3044 journal_suspend(ump); 3045 } 3046 FREE_LOCK(ump); 3047 3048 return (0); 3049 } 3050 3051 /* 3052 * Before adjusting a link count on a vnode verify that we have sufficient 3053 * journal space. If not, process operations that depend on the currently 3054 * locked pair of vnodes to try to flush space as the syncer, buf daemon, 3055 * and softdep flush threads can not acquire these locks to reclaim space. 3056 */ 3057 static void 3058 softdep_prelink(dvp, vp) 3059 struct vnode *dvp; 3060 struct vnode *vp; 3061 { 3062 struct ufsmount *ump; 3063 3064 ump = VFSTOUFS(dvp->v_mount); 3065 LOCK_OWNED(ump); 3066 /* 3067 * Nothing to do if we have sufficient journal space. 3068 * If we currently hold the snapshot lock, we must avoid 3069 * handling other resources that could cause deadlock. 3070 */ 3071 if (journal_space(ump, 0) || (vp && IS_SNAPSHOT(VTOI(vp)))) 3072 return; 3073 stat_journal_low++; 3074 FREE_LOCK(ump); 3075 if (vp) 3076 ffs_syncvnode(vp, MNT_NOWAIT, 0); 3077 ffs_syncvnode(dvp, MNT_WAIT, 0); 3078 ACQUIRE_LOCK(ump); 3079 /* Process vp before dvp as it may create .. removes. */ 3080 if (vp) { 3081 process_removes(vp); 3082 process_truncates(vp); 3083 } 3084 process_removes(dvp); 3085 process_truncates(dvp); 3086 softdep_speedup(ump); 3087 process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT); 3088 if (journal_space(ump, 0) == 0) { 3089 softdep_speedup(ump); 3090 if (journal_space(ump, 1) == 0) 3091 journal_suspend(ump); 3092 } 3093 } 3094 3095 static void 3096 jseg_write(ump, jseg, data) 3097 struct ufsmount *ump; 3098 struct jseg *jseg; 3099 uint8_t *data; 3100 { 3101 struct jsegrec *rec; 3102 3103 rec = (struct jsegrec *)data; 3104 rec->jsr_seq = jseg->js_seq; 3105 rec->jsr_oldest = jseg->js_oldseq; 3106 rec->jsr_cnt = jseg->js_cnt; 3107 rec->jsr_blocks = jseg->js_size / ump->um_devvp->v_bufobj.bo_bsize; 3108 rec->jsr_crc = 0; 3109 rec->jsr_time = ump->um_fs->fs_mtime; 3110 } 3111 3112 static inline void 3113 inoref_write(inoref, jseg, rec) 3114 struct inoref *inoref; 3115 struct jseg *jseg; 3116 struct jrefrec *rec; 3117 { 3118 3119 inoref->if_jsegdep->jd_seg = jseg; 3120 rec->jr_ino = inoref->if_ino; 3121 rec->jr_parent = inoref->if_parent; 3122 rec->jr_nlink = inoref->if_nlink; 3123 rec->jr_mode = inoref->if_mode; 3124 rec->jr_diroff = inoref->if_diroff; 3125 } 3126 3127 static void 3128 jaddref_write(jaddref, jseg, data) 3129 struct jaddref *jaddref; 3130 struct jseg *jseg; 3131 uint8_t *data; 3132 { 3133 struct jrefrec *rec; 3134 3135 rec = (struct jrefrec *)data; 3136 rec->jr_op = JOP_ADDREF; 3137 inoref_write(&jaddref->ja_ref, jseg, rec); 3138 } 3139 3140 static void 3141 jremref_write(jremref, jseg, data) 3142 struct jremref *jremref; 3143 struct jseg *jseg; 3144 uint8_t *data; 3145 { 3146 struct jrefrec *rec; 3147 3148 rec = (struct jrefrec *)data; 3149 rec->jr_op = JOP_REMREF; 3150 inoref_write(&jremref->jr_ref, jseg, rec); 3151 } 3152 3153 static void 3154 jmvref_write(jmvref, jseg, data) 3155 struct jmvref *jmvref; 3156 struct jseg *jseg; 3157 uint8_t *data; 3158 { 3159 struct jmvrec *rec; 3160 3161 rec = (struct jmvrec *)data; 3162 rec->jm_op = JOP_MVREF; 3163 rec->jm_ino = jmvref->jm_ino; 3164 rec->jm_parent = jmvref->jm_parent; 3165 rec->jm_oldoff = jmvref->jm_oldoff; 3166 rec->jm_newoff = jmvref->jm_newoff; 3167 } 3168 3169 static void 3170 jnewblk_write(jnewblk, jseg, data) 3171 struct jnewblk *jnewblk; 3172 struct jseg *jseg; 3173 uint8_t *data; 3174 { 3175 struct jblkrec *rec; 3176 3177 jnewblk->jn_jsegdep->jd_seg = jseg; 3178 rec = (struct jblkrec *)data; 3179 rec->jb_op = JOP_NEWBLK; 3180 rec->jb_ino = jnewblk->jn_ino; 3181 rec->jb_blkno = jnewblk->jn_blkno; 3182 rec->jb_lbn = jnewblk->jn_lbn; 3183 rec->jb_frags = jnewblk->jn_frags; 3184 rec->jb_oldfrags = jnewblk->jn_oldfrags; 3185 } 3186 3187 static void 3188 jfreeblk_write(jfreeblk, jseg, data) 3189 struct jfreeblk *jfreeblk; 3190 struct jseg *jseg; 3191 uint8_t *data; 3192 { 3193 struct jblkrec *rec; 3194 3195 jfreeblk->jf_dep.jb_jsegdep->jd_seg = jseg; 3196 rec = (struct jblkrec *)data; 3197 rec->jb_op = JOP_FREEBLK; 3198 rec->jb_ino = jfreeblk->jf_ino; 3199 rec->jb_blkno = jfreeblk->jf_blkno; 3200 rec->jb_lbn = jfreeblk->jf_lbn; 3201 rec->jb_frags = jfreeblk->jf_frags; 3202 rec->jb_oldfrags = 0; 3203 } 3204 3205 static void 3206 jfreefrag_write(jfreefrag, jseg, data) 3207 struct jfreefrag *jfreefrag; 3208 struct jseg *jseg; 3209 uint8_t *data; 3210 { 3211 struct jblkrec *rec; 3212 3213 jfreefrag->fr_jsegdep->jd_seg = jseg; 3214 rec = (struct jblkrec *)data; 3215 rec->jb_op = JOP_FREEBLK; 3216 rec->jb_ino = jfreefrag->fr_ino; 3217 rec->jb_blkno = jfreefrag->fr_blkno; 3218 rec->jb_lbn = jfreefrag->fr_lbn; 3219 rec->jb_frags = jfreefrag->fr_frags; 3220 rec->jb_oldfrags = 0; 3221 } 3222 3223 static void 3224 jtrunc_write(jtrunc, jseg, data) 3225 struct jtrunc *jtrunc; 3226 struct jseg *jseg; 3227 uint8_t *data; 3228 { 3229 struct jtrncrec *rec; 3230 3231 jtrunc->jt_dep.jb_jsegdep->jd_seg = jseg; 3232 rec = (struct jtrncrec *)data; 3233 rec->jt_op = JOP_TRUNC; 3234 rec->jt_ino = jtrunc->jt_ino; 3235 rec->jt_size = jtrunc->jt_size; 3236 rec->jt_extsize = jtrunc->jt_extsize; 3237 } 3238 3239 static void 3240 jfsync_write(jfsync, jseg, data) 3241 struct jfsync *jfsync; 3242 struct jseg *jseg; 3243 uint8_t *data; 3244 { 3245 struct jtrncrec *rec; 3246 3247 rec = (struct jtrncrec *)data; 3248 rec->jt_op = JOP_SYNC; 3249 rec->jt_ino = jfsync->jfs_ino; 3250 rec->jt_size = jfsync->jfs_size; 3251 rec->jt_extsize = jfsync->jfs_extsize; 3252 } 3253 3254 static void 3255 softdep_flushjournal(mp) 3256 struct mount *mp; 3257 { 3258 struct jblocks *jblocks; 3259 struct ufsmount *ump; 3260 3261 if (MOUNTEDSUJ(mp) == 0) 3262 return; 3263 ump = VFSTOUFS(mp); 3264 jblocks = ump->softdep_jblocks; 3265 ACQUIRE_LOCK(ump); 3266 while (ump->softdep_on_journal) { 3267 jblocks->jb_needseg = 1; 3268 softdep_process_journal(mp, NULL, MNT_WAIT); 3269 } 3270 FREE_LOCK(ump); 3271 } 3272 3273 static void softdep_synchronize_completed(struct bio *); 3274 static void softdep_synchronize(struct bio *, struct ufsmount *, void *); 3275 3276 static void 3277 softdep_synchronize_completed(bp) 3278 struct bio *bp; 3279 { 3280 struct jseg *oldest; 3281 struct jseg *jseg; 3282 struct ufsmount *ump; 3283 3284 /* 3285 * caller1 marks the last segment written before we issued the 3286 * synchronize cache. 3287 */ 3288 jseg = bp->bio_caller1; 3289 if (jseg == NULL) { 3290 g_destroy_bio(bp); 3291 return; 3292 } 3293 ump = VFSTOUFS(jseg->js_list.wk_mp); 3294 ACQUIRE_LOCK(ump); 3295 oldest = NULL; 3296 /* 3297 * Mark all the journal entries waiting on the synchronize cache 3298 * as completed so they may continue on. 3299 */ 3300 while (jseg != NULL && (jseg->js_state & COMPLETE) == 0) { 3301 jseg->js_state |= COMPLETE; 3302 oldest = jseg; 3303 jseg = TAILQ_PREV(jseg, jseglst, js_next); 3304 } 3305 /* 3306 * Restart deferred journal entry processing from the oldest 3307 * completed jseg. 3308 */ 3309 if (oldest) 3310 complete_jsegs(oldest); 3311 3312 FREE_LOCK(ump); 3313 g_destroy_bio(bp); 3314 } 3315 3316 /* 3317 * Send BIO_FLUSH/SYNCHRONIZE CACHE to the device to enforce write ordering 3318 * barriers. The journal must be written prior to any blocks that depend 3319 * on it and the journal can not be released until the blocks have be 3320 * written. This code handles both barriers simultaneously. 3321 */ 3322 static void 3323 softdep_synchronize(bp, ump, caller1) 3324 struct bio *bp; 3325 struct ufsmount *ump; 3326 void *caller1; 3327 { 3328 3329 bp->bio_cmd = BIO_FLUSH; 3330 bp->bio_flags |= BIO_ORDERED; 3331 bp->bio_data = NULL; 3332 bp->bio_offset = ump->um_cp->provider->mediasize; 3333 bp->bio_length = 0; 3334 bp->bio_done = softdep_synchronize_completed; 3335 bp->bio_caller1 = caller1; 3336 g_io_request(bp, 3337 (struct g_consumer *)ump->um_devvp->v_bufobj.bo_private); 3338 } 3339 3340 /* 3341 * Flush some journal records to disk. 3342 */ 3343 static void 3344 softdep_process_journal(mp, needwk, flags) 3345 struct mount *mp; 3346 struct worklist *needwk; 3347 int flags; 3348 { 3349 struct jblocks *jblocks; 3350 struct ufsmount *ump; 3351 struct worklist *wk; 3352 struct jseg *jseg; 3353 struct buf *bp; 3354 struct bio *bio; 3355 uint8_t *data; 3356 struct fs *fs; 3357 int shouldflush; 3358 int segwritten; 3359 int jrecmin; /* Minimum records per block. */ 3360 int jrecmax; /* Maximum records per block. */ 3361 int size; 3362 int cnt; 3363 int off; 3364 int devbsize; 3365 3366 if (MOUNTEDSUJ(mp) == 0) 3367 return; 3368 shouldflush = softdep_flushcache; 3369 bio = NULL; 3370 jseg = NULL; 3371 ump = VFSTOUFS(mp); 3372 LOCK_OWNED(ump); 3373 fs = ump->um_fs; 3374 jblocks = ump->softdep_jblocks; 3375 devbsize = ump->um_devvp->v_bufobj.bo_bsize; 3376 /* 3377 * We write anywhere between a disk block and fs block. The upper 3378 * bound is picked to prevent buffer cache fragmentation and limit 3379 * processing time per I/O. 3380 */ 3381 jrecmin = (devbsize / JREC_SIZE) - 1; /* -1 for seg header */ 3382 jrecmax = (fs->fs_bsize / devbsize) * jrecmin; 3383 segwritten = 0; 3384 for (;;) { 3385 cnt = ump->softdep_on_journal; 3386 /* 3387 * Criteria for writing a segment: 3388 * 1) We have a full block. 3389 * 2) We're called from jwait() and haven't found the 3390 * journal item yet. 3391 * 3) Always write if needseg is set. 3392 * 4) If we are called from process_worklist and have 3393 * not yet written anything we write a partial block 3394 * to enforce a 1 second maximum latency on journal 3395 * entries. 3396 */ 3397 if (cnt < (jrecmax - 1) && needwk == NULL && 3398 jblocks->jb_needseg == 0 && (segwritten || cnt == 0)) 3399 break; 3400 cnt++; 3401 /* 3402 * Verify some free journal space. softdep_prealloc() should 3403 * guarantee that we don't run out so this is indicative of 3404 * a problem with the flow control. Try to recover 3405 * gracefully in any event. 3406 */ 3407 while (jblocks->jb_free == 0) { 3408 if (flags != MNT_WAIT) 3409 break; 3410 printf("softdep: Out of journal space!\n"); 3411 softdep_speedup(ump); 3412 msleep(jblocks, LOCK_PTR(ump), PRIBIO, "jblocks", hz); 3413 } 3414 FREE_LOCK(ump); 3415 jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS); 3416 workitem_alloc(&jseg->js_list, D_JSEG, mp); 3417 LIST_INIT(&jseg->js_entries); 3418 LIST_INIT(&jseg->js_indirs); 3419 jseg->js_state = ATTACHED; 3420 if (shouldflush == 0) 3421 jseg->js_state |= COMPLETE; 3422 else if (bio == NULL) 3423 bio = g_alloc_bio(); 3424 jseg->js_jblocks = jblocks; 3425 bp = geteblk(fs->fs_bsize, 0); 3426 ACQUIRE_LOCK(ump); 3427 /* 3428 * If there was a race while we were allocating the block 3429 * and jseg the entry we care about was likely written. 3430 * We bail out in both the WAIT and NOWAIT case and assume 3431 * the caller will loop if the entry it cares about is 3432 * not written. 3433 */ 3434 cnt = ump->softdep_on_journal; 3435 if (cnt + jblocks->jb_needseg == 0 || jblocks->jb_free == 0) { 3436 bp->b_flags |= B_INVAL | B_NOCACHE; 3437 WORKITEM_FREE(jseg, D_JSEG); 3438 FREE_LOCK(ump); 3439 brelse(bp); 3440 ACQUIRE_LOCK(ump); 3441 break; 3442 } 3443 /* 3444 * Calculate the disk block size required for the available 3445 * records rounded to the min size. 3446 */ 3447 if (cnt == 0) 3448 size = devbsize; 3449 else if (cnt < jrecmax) 3450 size = howmany(cnt, jrecmin) * devbsize; 3451 else 3452 size = fs->fs_bsize; 3453 /* 3454 * Allocate a disk block for this journal data and account 3455 * for truncation of the requested size if enough contiguous 3456 * space was not available. 3457 */ 3458 bp->b_blkno = jblocks_alloc(jblocks, size, &size); 3459 bp->b_lblkno = bp->b_blkno; 3460 bp->b_offset = bp->b_blkno * DEV_BSIZE; 3461 bp->b_bcount = size; 3462 bp->b_flags &= ~B_INVAL; 3463 bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY; 3464 /* 3465 * Initialize our jseg with cnt records. Assign the next 3466 * sequence number to it and link it in-order. 3467 */ 3468 cnt = MIN(cnt, (size / devbsize) * jrecmin); 3469 jseg->js_buf = bp; 3470 jseg->js_cnt = cnt; 3471 jseg->js_refs = cnt + 1; /* Self ref. */ 3472 jseg->js_size = size; 3473 jseg->js_seq = jblocks->jb_nextseq++; 3474 if (jblocks->jb_oldestseg == NULL) 3475 jblocks->jb_oldestseg = jseg; 3476 jseg->js_oldseq = jblocks->jb_oldestseg->js_seq; 3477 TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next); 3478 if (jblocks->jb_writeseg == NULL) 3479 jblocks->jb_writeseg = jseg; 3480 /* 3481 * Start filling in records from the pending list. 3482 */ 3483 data = bp->b_data; 3484 off = 0; 3485 3486 /* 3487 * Always put a header on the first block. 3488 * XXX As with below, there might not be a chance to get 3489 * into the loop. Ensure that something valid is written. 3490 */ 3491 jseg_write(ump, jseg, data); 3492 off += JREC_SIZE; 3493 data = bp->b_data + off; 3494 3495 /* 3496 * XXX Something is wrong here. There's no work to do, 3497 * but we need to perform and I/O and allow it to complete 3498 * anyways. 3499 */ 3500 if (LIST_EMPTY(&ump->softdep_journal_pending)) 3501 stat_emptyjblocks++; 3502 3503 while ((wk = LIST_FIRST(&ump->softdep_journal_pending)) 3504 != NULL) { 3505 if (cnt == 0) 3506 break; 3507 /* Place a segment header on every device block. */ 3508 if ((off % devbsize) == 0) { 3509 jseg_write(ump, jseg, data); 3510 off += JREC_SIZE; 3511 data = bp->b_data + off; 3512 } 3513 if (wk == needwk) 3514 needwk = NULL; 3515 remove_from_journal(wk); 3516 wk->wk_state |= INPROGRESS; 3517 WORKLIST_INSERT(&jseg->js_entries, wk); 3518 switch (wk->wk_type) { 3519 case D_JADDREF: 3520 jaddref_write(WK_JADDREF(wk), jseg, data); 3521 break; 3522 case D_JREMREF: 3523 jremref_write(WK_JREMREF(wk), jseg, data); 3524 break; 3525 case D_JMVREF: 3526 jmvref_write(WK_JMVREF(wk), jseg, data); 3527 break; 3528 case D_JNEWBLK: 3529 jnewblk_write(WK_JNEWBLK(wk), jseg, data); 3530 break; 3531 case D_JFREEBLK: 3532 jfreeblk_write(WK_JFREEBLK(wk), jseg, data); 3533 break; 3534 case D_JFREEFRAG: 3535 jfreefrag_write(WK_JFREEFRAG(wk), jseg, data); 3536 break; 3537 case D_JTRUNC: 3538 jtrunc_write(WK_JTRUNC(wk), jseg, data); 3539 break; 3540 case D_JFSYNC: 3541 jfsync_write(WK_JFSYNC(wk), jseg, data); 3542 break; 3543 default: 3544 panic("process_journal: Unknown type %s", 3545 TYPENAME(wk->wk_type)); 3546 /* NOTREACHED */ 3547 } 3548 off += JREC_SIZE; 3549 data = bp->b_data + off; 3550 cnt--; 3551 } 3552 3553 /* Clear any remaining space so we don't leak kernel data */ 3554 if (size > off) 3555 bzero(data, size - off); 3556 3557 /* 3558 * Write this one buffer and continue. 3559 */ 3560 segwritten = 1; 3561 jblocks->jb_needseg = 0; 3562 WORKLIST_INSERT(&bp->b_dep, &jseg->js_list); 3563 FREE_LOCK(ump); 3564 pbgetvp(ump->um_devvp, bp); 3565 /* 3566 * We only do the blocking wait once we find the journal 3567 * entry we're looking for. 3568 */ 3569 if (needwk == NULL && flags == MNT_WAIT) 3570 bwrite(bp); 3571 else 3572 bawrite(bp); 3573 ACQUIRE_LOCK(ump); 3574 } 3575 /* 3576 * If we wrote a segment issue a synchronize cache so the journal 3577 * is reflected on disk before the data is written. Since reclaiming 3578 * journal space also requires writing a journal record this 3579 * process also enforces a barrier before reclamation. 3580 */ 3581 if (segwritten && shouldflush) { 3582 softdep_synchronize(bio, ump, 3583 TAILQ_LAST(&jblocks->jb_segs, jseglst)); 3584 } else if (bio) 3585 g_destroy_bio(bio); 3586 /* 3587 * If we've suspended the filesystem because we ran out of journal 3588 * space either try to sync it here to make some progress or 3589 * unsuspend it if we already have. 3590 */ 3591 if (flags == 0 && jblocks->jb_suspended) { 3592 if (journal_unsuspend(ump)) 3593 return; 3594 FREE_LOCK(ump); 3595 VFS_SYNC(mp, MNT_NOWAIT); 3596 ffs_sbupdate(ump, MNT_WAIT, 0); 3597 ACQUIRE_LOCK(ump); 3598 } 3599 } 3600 3601 /* 3602 * Complete a jseg, allowing all dependencies awaiting journal writes 3603 * to proceed. Each journal dependency also attaches a jsegdep to dependent 3604 * structures so that the journal segment can be freed to reclaim space. 3605 */ 3606 static void 3607 complete_jseg(jseg) 3608 struct jseg *jseg; 3609 { 3610 struct worklist *wk; 3611 struct jmvref *jmvref; 3612 #ifdef INVARIANTS 3613 int i = 0; 3614 #endif 3615 3616 while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) { 3617 WORKLIST_REMOVE(wk); 3618 wk->wk_state &= ~INPROGRESS; 3619 wk->wk_state |= COMPLETE; 3620 KASSERT(i++ < jseg->js_cnt, 3621 ("handle_written_jseg: overflow %d >= %d", 3622 i - 1, jseg->js_cnt)); 3623 switch (wk->wk_type) { 3624 case D_JADDREF: 3625 handle_written_jaddref(WK_JADDREF(wk)); 3626 break; 3627 case D_JREMREF: 3628 handle_written_jremref(WK_JREMREF(wk)); 3629 break; 3630 case D_JMVREF: 3631 rele_jseg(jseg); /* No jsegdep. */ 3632 jmvref = WK_JMVREF(wk); 3633 LIST_REMOVE(jmvref, jm_deps); 3634 if ((jmvref->jm_pagedep->pd_state & ONWORKLIST) == 0) 3635 free_pagedep(jmvref->jm_pagedep); 3636 WORKITEM_FREE(jmvref, D_JMVREF); 3637 break; 3638 case D_JNEWBLK: 3639 handle_written_jnewblk(WK_JNEWBLK(wk)); 3640 break; 3641 case D_JFREEBLK: 3642 handle_written_jblkdep(&WK_JFREEBLK(wk)->jf_dep); 3643 break; 3644 case D_JTRUNC: 3645 handle_written_jblkdep(&WK_JTRUNC(wk)->jt_dep); 3646 break; 3647 case D_JFSYNC: 3648 rele_jseg(jseg); /* No jsegdep. */ 3649 WORKITEM_FREE(wk, D_JFSYNC); 3650 break; 3651 case D_JFREEFRAG: 3652 handle_written_jfreefrag(WK_JFREEFRAG(wk)); 3653 break; 3654 default: 3655 panic("handle_written_jseg: Unknown type %s", 3656 TYPENAME(wk->wk_type)); 3657 /* NOTREACHED */ 3658 } 3659 } 3660 /* Release the self reference so the structure may be freed. */ 3661 rele_jseg(jseg); 3662 } 3663 3664 /* 3665 * Determine which jsegs are ready for completion processing. Waits for 3666 * synchronize cache to complete as well as forcing in-order completion 3667 * of journal entries. 3668 */ 3669 static void 3670 complete_jsegs(jseg) 3671 struct jseg *jseg; 3672 { 3673 struct jblocks *jblocks; 3674 struct jseg *jsegn; 3675 3676 jblocks = jseg->js_jblocks; 3677 /* 3678 * Don't allow out of order completions. If this isn't the first 3679 * block wait for it to write before we're done. 3680 */ 3681 if (jseg != jblocks->jb_writeseg) 3682 return; 3683 /* Iterate through available jsegs processing their entries. */ 3684 while (jseg && (jseg->js_state & ALLCOMPLETE) == ALLCOMPLETE) { 3685 jblocks->jb_oldestwrseq = jseg->js_oldseq; 3686 jsegn = TAILQ_NEXT(jseg, js_next); 3687 complete_jseg(jseg); 3688 jseg = jsegn; 3689 } 3690 jblocks->jb_writeseg = jseg; 3691 /* 3692 * Attempt to free jsegs now that oldestwrseq may have advanced. 3693 */ 3694 free_jsegs(jblocks); 3695 } 3696 3697 /* 3698 * Mark a jseg as DEPCOMPLETE and throw away the buffer. Attempt to handle 3699 * the final completions. 3700 */ 3701 static void 3702 handle_written_jseg(jseg, bp) 3703 struct jseg *jseg; 3704 struct buf *bp; 3705 { 3706 3707 if (jseg->js_refs == 0) 3708 panic("handle_written_jseg: No self-reference on %p", jseg); 3709 jseg->js_state |= DEPCOMPLETE; 3710 /* 3711 * We'll never need this buffer again, set flags so it will be 3712 * discarded. 3713 */ 3714 bp->b_flags |= B_INVAL | B_NOCACHE; 3715 pbrelvp(bp); 3716 complete_jsegs(jseg); 3717 } 3718 3719 static inline struct jsegdep * 3720 inoref_jseg(inoref) 3721 struct inoref *inoref; 3722 { 3723 struct jsegdep *jsegdep; 3724 3725 jsegdep = inoref->if_jsegdep; 3726 inoref->if_jsegdep = NULL; 3727 3728 return (jsegdep); 3729 } 3730 3731 /* 3732 * Called once a jremref has made it to stable store. The jremref is marked 3733 * complete and we attempt to free it. Any pagedeps writes sleeping waiting 3734 * for the jremref to complete will be awoken by free_jremref. 3735 */ 3736 static void 3737 handle_written_jremref(jremref) 3738 struct jremref *jremref; 3739 { 3740 struct inodedep *inodedep; 3741 struct jsegdep *jsegdep; 3742 struct dirrem *dirrem; 3743 3744 /* Grab the jsegdep. */ 3745 jsegdep = inoref_jseg(&jremref->jr_ref); 3746 /* 3747 * Remove us from the inoref list. 3748 */ 3749 if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 3750 0, &inodedep) == 0) 3751 panic("handle_written_jremref: Lost inodedep"); 3752 TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps); 3753 /* 3754 * Complete the dirrem. 3755 */ 3756 dirrem = jremref->jr_dirrem; 3757 jremref->jr_dirrem = NULL; 3758 LIST_REMOVE(jremref, jr_deps); 3759 jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT; 3760 jwork_insert(&dirrem->dm_jwork, jsegdep); 3761 if (LIST_EMPTY(&dirrem->dm_jremrefhd) && 3762 (dirrem->dm_state & COMPLETE) != 0) 3763 add_to_worklist(&dirrem->dm_list, 0); 3764 free_jremref(jremref); 3765 } 3766 3767 /* 3768 * Called once a jaddref has made it to stable store. The dependency is 3769 * marked complete and any dependent structures are added to the inode 3770 * bufwait list to be completed as soon as it is written. If a bitmap write 3771 * depends on this entry we move the inode into the inodedephd of the 3772 * bmsafemap dependency and attempt to remove the jaddref from the bmsafemap. 3773 */ 3774 static void 3775 handle_written_jaddref(jaddref) 3776 struct jaddref *jaddref; 3777 { 3778 struct jsegdep *jsegdep; 3779 struct inodedep *inodedep; 3780 struct diradd *diradd; 3781 struct mkdir *mkdir; 3782 3783 /* Grab the jsegdep. */ 3784 jsegdep = inoref_jseg(&jaddref->ja_ref); 3785 mkdir = NULL; 3786 diradd = NULL; 3787 if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino, 3788 0, &inodedep) == 0) 3789 panic("handle_written_jaddref: Lost inodedep."); 3790 if (jaddref->ja_diradd == NULL) 3791 panic("handle_written_jaddref: No dependency"); 3792 if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) { 3793 diradd = jaddref->ja_diradd; 3794 WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list); 3795 } else if (jaddref->ja_state & MKDIR_PARENT) { 3796 mkdir = jaddref->ja_mkdir; 3797 WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list); 3798 } else if (jaddref->ja_state & MKDIR_BODY) 3799 mkdir = jaddref->ja_mkdir; 3800 else 3801 panic("handle_written_jaddref: Unknown dependency %p", 3802 jaddref->ja_diradd); 3803 jaddref->ja_diradd = NULL; /* also clears ja_mkdir */ 3804 /* 3805 * Remove us from the inode list. 3806 */ 3807 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps); 3808 /* 3809 * The mkdir may be waiting on the jaddref to clear before freeing. 3810 */ 3811 if (mkdir) { 3812 KASSERT(mkdir->md_list.wk_type == D_MKDIR, 3813 ("handle_written_jaddref: Incorrect type for mkdir %s", 3814 TYPENAME(mkdir->md_list.wk_type))); 3815 mkdir->md_jaddref = NULL; 3816 diradd = mkdir->md_diradd; 3817 mkdir->md_state |= DEPCOMPLETE; 3818 complete_mkdir(mkdir); 3819 } 3820 jwork_insert(&diradd->da_jwork, jsegdep); 3821 if (jaddref->ja_state & NEWBLOCK) { 3822 inodedep->id_state |= ONDEPLIST; 3823 LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd, 3824 inodedep, id_deps); 3825 } 3826 free_jaddref(jaddref); 3827 } 3828 3829 /* 3830 * Called once a jnewblk journal is written. The allocdirect or allocindir 3831 * is placed in the bmsafemap to await notification of a written bitmap. If 3832 * the operation was canceled we add the segdep to the appropriate 3833 * dependency to free the journal space once the canceling operation 3834 * completes. 3835 */ 3836 static void 3837 handle_written_jnewblk(jnewblk) 3838 struct jnewblk *jnewblk; 3839 { 3840 struct bmsafemap *bmsafemap; 3841 struct freefrag *freefrag; 3842 struct freework *freework; 3843 struct jsegdep *jsegdep; 3844 struct newblk *newblk; 3845 3846 /* Grab the jsegdep. */ 3847 jsegdep = jnewblk->jn_jsegdep; 3848 jnewblk->jn_jsegdep = NULL; 3849 if (jnewblk->jn_dep == NULL) 3850 panic("handle_written_jnewblk: No dependency for the segdep."); 3851 switch (jnewblk->jn_dep->wk_type) { 3852 case D_NEWBLK: 3853 case D_ALLOCDIRECT: 3854 case D_ALLOCINDIR: 3855 /* 3856 * Add the written block to the bmsafemap so it can 3857 * be notified when the bitmap is on disk. 3858 */ 3859 newblk = WK_NEWBLK(jnewblk->jn_dep); 3860 newblk->nb_jnewblk = NULL; 3861 if ((newblk->nb_state & GOINGAWAY) == 0) { 3862 bmsafemap = newblk->nb_bmsafemap; 3863 newblk->nb_state |= ONDEPLIST; 3864 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, 3865 nb_deps); 3866 } 3867 jwork_insert(&newblk->nb_jwork, jsegdep); 3868 break; 3869 case D_FREEFRAG: 3870 /* 3871 * A newblock being removed by a freefrag when replaced by 3872 * frag extension. 3873 */ 3874 freefrag = WK_FREEFRAG(jnewblk->jn_dep); 3875 freefrag->ff_jdep = NULL; 3876 jwork_insert(&freefrag->ff_jwork, jsegdep); 3877 break; 3878 case D_FREEWORK: 3879 /* 3880 * A direct block was removed by truncate. 3881 */ 3882 freework = WK_FREEWORK(jnewblk->jn_dep); 3883 freework->fw_jnewblk = NULL; 3884 jwork_insert(&freework->fw_freeblks->fb_jwork, jsegdep); 3885 break; 3886 default: 3887 panic("handle_written_jnewblk: Unknown type %d.", 3888 jnewblk->jn_dep->wk_type); 3889 } 3890 jnewblk->jn_dep = NULL; 3891 free_jnewblk(jnewblk); 3892 } 3893 3894 /* 3895 * Cancel a jfreefrag that won't be needed, probably due to colliding with 3896 * an in-flight allocation that has not yet been committed. Divorce us 3897 * from the freefrag and mark it DEPCOMPLETE so that it may be added 3898 * to the worklist. 3899 */ 3900 static void 3901 cancel_jfreefrag(jfreefrag) 3902 struct jfreefrag *jfreefrag; 3903 { 3904 struct freefrag *freefrag; 3905 3906 if (jfreefrag->fr_jsegdep) { 3907 free_jsegdep(jfreefrag->fr_jsegdep); 3908 jfreefrag->fr_jsegdep = NULL; 3909 } 3910 freefrag = jfreefrag->fr_freefrag; 3911 jfreefrag->fr_freefrag = NULL; 3912 free_jfreefrag(jfreefrag); 3913 freefrag->ff_state |= DEPCOMPLETE; 3914 CTR1(KTR_SUJ, "cancel_jfreefrag: blkno %jd", freefrag->ff_blkno); 3915 } 3916 3917 /* 3918 * Free a jfreefrag when the parent freefrag is rendered obsolete. 3919 */ 3920 static void 3921 free_jfreefrag(jfreefrag) 3922 struct jfreefrag *jfreefrag; 3923 { 3924 3925 if (jfreefrag->fr_state & INPROGRESS) 3926 WORKLIST_REMOVE(&jfreefrag->fr_list); 3927 else if (jfreefrag->fr_state & ONWORKLIST) 3928 remove_from_journal(&jfreefrag->fr_list); 3929 if (jfreefrag->fr_freefrag != NULL) 3930 panic("free_jfreefrag: Still attached to a freefrag."); 3931 WORKITEM_FREE(jfreefrag, D_JFREEFRAG); 3932 } 3933 3934 /* 3935 * Called when the journal write for a jfreefrag completes. The parent 3936 * freefrag is added to the worklist if this completes its dependencies. 3937 */ 3938 static void 3939 handle_written_jfreefrag(jfreefrag) 3940 struct jfreefrag *jfreefrag; 3941 { 3942 struct jsegdep *jsegdep; 3943 struct freefrag *freefrag; 3944 3945 /* Grab the jsegdep. */ 3946 jsegdep = jfreefrag->fr_jsegdep; 3947 jfreefrag->fr_jsegdep = NULL; 3948 freefrag = jfreefrag->fr_freefrag; 3949 if (freefrag == NULL) 3950 panic("handle_written_jfreefrag: No freefrag."); 3951 freefrag->ff_state |= DEPCOMPLETE; 3952 freefrag->ff_jdep = NULL; 3953 jwork_insert(&freefrag->ff_jwork, jsegdep); 3954 if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE) 3955 add_to_worklist(&freefrag->ff_list, 0); 3956 jfreefrag->fr_freefrag = NULL; 3957 free_jfreefrag(jfreefrag); 3958 } 3959 3960 /* 3961 * Called when the journal write for a jfreeblk completes. The jfreeblk 3962 * is removed from the freeblks list of pending journal writes and the 3963 * jsegdep is moved to the freeblks jwork to be completed when all blocks 3964 * have been reclaimed. 3965 */ 3966 static void 3967 handle_written_jblkdep(jblkdep) 3968 struct jblkdep *jblkdep; 3969 { 3970 struct freeblks *freeblks; 3971 struct jsegdep *jsegdep; 3972 3973 /* Grab the jsegdep. */ 3974 jsegdep = jblkdep->jb_jsegdep; 3975 jblkdep->jb_jsegdep = NULL; 3976 freeblks = jblkdep->jb_freeblks; 3977 LIST_REMOVE(jblkdep, jb_deps); 3978 jwork_insert(&freeblks->fb_jwork, jsegdep); 3979 /* 3980 * If the freeblks is all journaled, we can add it to the worklist. 3981 */ 3982 if (LIST_EMPTY(&freeblks->fb_jblkdephd) && 3983 (freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE) 3984 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 3985 3986 free_jblkdep(jblkdep); 3987 } 3988 3989 static struct jsegdep * 3990 newjsegdep(struct worklist *wk) 3991 { 3992 struct jsegdep *jsegdep; 3993 3994 jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS); 3995 workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp); 3996 jsegdep->jd_seg = NULL; 3997 3998 return (jsegdep); 3999 } 4000 4001 static struct jmvref * 4002 newjmvref(dp, ino, oldoff, newoff) 4003 struct inode *dp; 4004 ino_t ino; 4005 off_t oldoff; 4006 off_t newoff; 4007 { 4008 struct jmvref *jmvref; 4009 4010 jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS); 4011 workitem_alloc(&jmvref->jm_list, D_JMVREF, ITOVFS(dp)); 4012 jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE; 4013 jmvref->jm_parent = dp->i_number; 4014 jmvref->jm_ino = ino; 4015 jmvref->jm_oldoff = oldoff; 4016 jmvref->jm_newoff = newoff; 4017 4018 return (jmvref); 4019 } 4020 4021 /* 4022 * Allocate a new jremref that tracks the removal of ip from dp with the 4023 * directory entry offset of diroff. Mark the entry as ATTACHED and 4024 * DEPCOMPLETE as we have all the information required for the journal write 4025 * and the directory has already been removed from the buffer. The caller 4026 * is responsible for linking the jremref into the pagedep and adding it 4027 * to the journal to write. The MKDIR_PARENT flag is set if we're doing 4028 * a DOTDOT addition so handle_workitem_remove() can properly assign 4029 * the jsegdep when we're done. 4030 */ 4031 static struct jremref * 4032 newjremref(struct dirrem *dirrem, struct inode *dp, struct inode *ip, 4033 off_t diroff, nlink_t nlink) 4034 { 4035 struct jremref *jremref; 4036 4037 jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS); 4038 workitem_alloc(&jremref->jr_list, D_JREMREF, ITOVFS(dp)); 4039 jremref->jr_state = ATTACHED; 4040 newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff, 4041 nlink, ip->i_mode); 4042 jremref->jr_dirrem = dirrem; 4043 4044 return (jremref); 4045 } 4046 4047 static inline void 4048 newinoref(struct inoref *inoref, ino_t ino, ino_t parent, off_t diroff, 4049 nlink_t nlink, uint16_t mode) 4050 { 4051 4052 inoref->if_jsegdep = newjsegdep(&inoref->if_list); 4053 inoref->if_diroff = diroff; 4054 inoref->if_ino = ino; 4055 inoref->if_parent = parent; 4056 inoref->if_nlink = nlink; 4057 inoref->if_mode = mode; 4058 } 4059 4060 /* 4061 * Allocate a new jaddref to track the addition of ino to dp at diroff. The 4062 * directory offset may not be known until later. The caller is responsible 4063 * adding the entry to the journal when this information is available. nlink 4064 * should be the link count prior to the addition and mode is only required 4065 * to have the correct FMT. 4066 */ 4067 static struct jaddref * 4068 newjaddref(struct inode *dp, ino_t ino, off_t diroff, int16_t nlink, 4069 uint16_t mode) 4070 { 4071 struct jaddref *jaddref; 4072 4073 jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS); 4074 workitem_alloc(&jaddref->ja_list, D_JADDREF, ITOVFS(dp)); 4075 jaddref->ja_state = ATTACHED; 4076 jaddref->ja_mkdir = NULL; 4077 newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode); 4078 4079 return (jaddref); 4080 } 4081 4082 /* 4083 * Create a new free dependency for a freework. The caller is responsible 4084 * for adjusting the reference count when it has the lock held. The freedep 4085 * will track an outstanding bitmap write that will ultimately clear the 4086 * freework to continue. 4087 */ 4088 static struct freedep * 4089 newfreedep(struct freework *freework) 4090 { 4091 struct freedep *freedep; 4092 4093 freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS); 4094 workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp); 4095 freedep->fd_freework = freework; 4096 4097 return (freedep); 4098 } 4099 4100 /* 4101 * Free a freedep structure once the buffer it is linked to is written. If 4102 * this is the last reference to the freework schedule it for completion. 4103 */ 4104 static void 4105 free_freedep(freedep) 4106 struct freedep *freedep; 4107 { 4108 struct freework *freework; 4109 4110 freework = freedep->fd_freework; 4111 freework->fw_freeblks->fb_cgwait--; 4112 if (--freework->fw_ref == 0) 4113 freework_enqueue(freework); 4114 WORKITEM_FREE(freedep, D_FREEDEP); 4115 } 4116 4117 /* 4118 * Allocate a new freework structure that may be a level in an indirect 4119 * when parent is not NULL or a top level block when it is. The top level 4120 * freework structures are allocated without the per-filesystem lock held 4121 * and before the freeblks is visible outside of softdep_setup_freeblocks(). 4122 */ 4123 static struct freework * 4124 newfreework(ump, freeblks, parent, lbn, nb, frags, off, journal) 4125 struct ufsmount *ump; 4126 struct freeblks *freeblks; 4127 struct freework *parent; 4128 ufs_lbn_t lbn; 4129 ufs2_daddr_t nb; 4130 int frags; 4131 int off; 4132 int journal; 4133 { 4134 struct freework *freework; 4135 4136 freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS); 4137 workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp); 4138 freework->fw_state = ATTACHED; 4139 freework->fw_jnewblk = NULL; 4140 freework->fw_freeblks = freeblks; 4141 freework->fw_parent = parent; 4142 freework->fw_lbn = lbn; 4143 freework->fw_blkno = nb; 4144 freework->fw_frags = frags; 4145 freework->fw_indir = NULL; 4146 freework->fw_ref = (MOUNTEDSUJ(UFSTOVFS(ump)) == 0 || 4147 lbn >= -UFS_NXADDR) ? 0 : NINDIR(ump->um_fs) + 1; 4148 freework->fw_start = freework->fw_off = off; 4149 if (journal) 4150 newjfreeblk(freeblks, lbn, nb, frags); 4151 if (parent == NULL) { 4152 ACQUIRE_LOCK(ump); 4153 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list); 4154 freeblks->fb_ref++; 4155 FREE_LOCK(ump); 4156 } 4157 4158 return (freework); 4159 } 4160 4161 /* 4162 * Eliminate a jfreeblk for a block that does not need journaling. 4163 */ 4164 static void 4165 cancel_jfreeblk(freeblks, blkno) 4166 struct freeblks *freeblks; 4167 ufs2_daddr_t blkno; 4168 { 4169 struct jfreeblk *jfreeblk; 4170 struct jblkdep *jblkdep; 4171 4172 LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) { 4173 if (jblkdep->jb_list.wk_type != D_JFREEBLK) 4174 continue; 4175 jfreeblk = WK_JFREEBLK(&jblkdep->jb_list); 4176 if (jfreeblk->jf_blkno == blkno) 4177 break; 4178 } 4179 if (jblkdep == NULL) 4180 return; 4181 CTR1(KTR_SUJ, "cancel_jfreeblk: blkno %jd", blkno); 4182 free_jsegdep(jblkdep->jb_jsegdep); 4183 LIST_REMOVE(jblkdep, jb_deps); 4184 WORKITEM_FREE(jfreeblk, D_JFREEBLK); 4185 } 4186 4187 /* 4188 * Allocate a new jfreeblk to journal top level block pointer when truncating 4189 * a file. The caller must add this to the worklist when the per-filesystem 4190 * lock is held. 4191 */ 4192 static struct jfreeblk * 4193 newjfreeblk(freeblks, lbn, blkno, frags) 4194 struct freeblks *freeblks; 4195 ufs_lbn_t lbn; 4196 ufs2_daddr_t blkno; 4197 int frags; 4198 { 4199 struct jfreeblk *jfreeblk; 4200 4201 jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS); 4202 workitem_alloc(&jfreeblk->jf_dep.jb_list, D_JFREEBLK, 4203 freeblks->fb_list.wk_mp); 4204 jfreeblk->jf_dep.jb_jsegdep = newjsegdep(&jfreeblk->jf_dep.jb_list); 4205 jfreeblk->jf_dep.jb_freeblks = freeblks; 4206 jfreeblk->jf_ino = freeblks->fb_inum; 4207 jfreeblk->jf_lbn = lbn; 4208 jfreeblk->jf_blkno = blkno; 4209 jfreeblk->jf_frags = frags; 4210 LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jfreeblk->jf_dep, jb_deps); 4211 4212 return (jfreeblk); 4213 } 4214 4215 /* 4216 * The journal is only prepared to handle full-size block numbers, so we 4217 * have to adjust the record to reflect the change to a full-size block. 4218 * For example, suppose we have a block made up of fragments 8-15 and 4219 * want to free its last two fragments. We are given a request that says: 4220 * FREEBLK ino=5, blkno=14, lbn=0, frags=2, oldfrags=0 4221 * where frags are the number of fragments to free and oldfrags are the 4222 * number of fragments to keep. To block align it, we have to change it to 4223 * have a valid full-size blkno, so it becomes: 4224 * FREEBLK ino=5, blkno=8, lbn=0, frags=2, oldfrags=6 4225 */ 4226 static void 4227 adjust_newfreework(freeblks, frag_offset) 4228 struct freeblks *freeblks; 4229 int frag_offset; 4230 { 4231 struct jfreeblk *jfreeblk; 4232 4233 KASSERT((LIST_FIRST(&freeblks->fb_jblkdephd) != NULL && 4234 LIST_FIRST(&freeblks->fb_jblkdephd)->jb_list.wk_type == D_JFREEBLK), 4235 ("adjust_newfreework: Missing freeblks dependency")); 4236 4237 jfreeblk = WK_JFREEBLK(LIST_FIRST(&freeblks->fb_jblkdephd)); 4238 jfreeblk->jf_blkno -= frag_offset; 4239 jfreeblk->jf_frags += frag_offset; 4240 } 4241 4242 /* 4243 * Allocate a new jtrunc to track a partial truncation. 4244 */ 4245 static struct jtrunc * 4246 newjtrunc(freeblks, size, extsize) 4247 struct freeblks *freeblks; 4248 off_t size; 4249 int extsize; 4250 { 4251 struct jtrunc *jtrunc; 4252 4253 jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS); 4254 workitem_alloc(&jtrunc->jt_dep.jb_list, D_JTRUNC, 4255 freeblks->fb_list.wk_mp); 4256 jtrunc->jt_dep.jb_jsegdep = newjsegdep(&jtrunc->jt_dep.jb_list); 4257 jtrunc->jt_dep.jb_freeblks = freeblks; 4258 jtrunc->jt_ino = freeblks->fb_inum; 4259 jtrunc->jt_size = size; 4260 jtrunc->jt_extsize = extsize; 4261 LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jtrunc->jt_dep, jb_deps); 4262 4263 return (jtrunc); 4264 } 4265 4266 /* 4267 * If we're canceling a new bitmap we have to search for another ref 4268 * to move into the bmsafemap dep. This might be better expressed 4269 * with another structure. 4270 */ 4271 static void 4272 move_newblock_dep(jaddref, inodedep) 4273 struct jaddref *jaddref; 4274 struct inodedep *inodedep; 4275 { 4276 struct inoref *inoref; 4277 struct jaddref *jaddrefn; 4278 4279 jaddrefn = NULL; 4280 for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref; 4281 inoref = TAILQ_NEXT(inoref, if_deps)) { 4282 if ((jaddref->ja_state & NEWBLOCK) && 4283 inoref->if_list.wk_type == D_JADDREF) { 4284 jaddrefn = (struct jaddref *)inoref; 4285 break; 4286 } 4287 } 4288 if (jaddrefn == NULL) 4289 return; 4290 jaddrefn->ja_state &= ~(ATTACHED | UNDONE); 4291 jaddrefn->ja_state |= jaddref->ja_state & 4292 (ATTACHED | UNDONE | NEWBLOCK); 4293 jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK); 4294 jaddref->ja_state |= ATTACHED; 4295 LIST_REMOVE(jaddref, ja_bmdeps); 4296 LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn, 4297 ja_bmdeps); 4298 } 4299 4300 /* 4301 * Cancel a jaddref either before it has been written or while it is being 4302 * written. This happens when a link is removed before the add reaches 4303 * the disk. The jaddref dependency is kept linked into the bmsafemap 4304 * and inode to prevent the link count or bitmap from reaching the disk 4305 * until handle_workitem_remove() re-adjusts the counts and bitmaps as 4306 * required. 4307 * 4308 * Returns 1 if the canceled addref requires journaling of the remove and 4309 * 0 otherwise. 4310 */ 4311 static int 4312 cancel_jaddref(jaddref, inodedep, wkhd) 4313 struct jaddref *jaddref; 4314 struct inodedep *inodedep; 4315 struct workhead *wkhd; 4316 { 4317 struct inoref *inoref; 4318 struct jsegdep *jsegdep; 4319 int needsj; 4320 4321 KASSERT((jaddref->ja_state & COMPLETE) == 0, 4322 ("cancel_jaddref: Canceling complete jaddref")); 4323 if (jaddref->ja_state & (INPROGRESS | COMPLETE)) 4324 needsj = 1; 4325 else 4326 needsj = 0; 4327 if (inodedep == NULL) 4328 if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino, 4329 0, &inodedep) == 0) 4330 panic("cancel_jaddref: Lost inodedep"); 4331 /* 4332 * We must adjust the nlink of any reference operation that follows 4333 * us so that it is consistent with the in-memory reference. This 4334 * ensures that inode nlink rollbacks always have the correct link. 4335 */ 4336 if (needsj == 0) { 4337 for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref; 4338 inoref = TAILQ_NEXT(inoref, if_deps)) { 4339 if (inoref->if_state & GOINGAWAY) 4340 break; 4341 inoref->if_nlink--; 4342 } 4343 } 4344 jsegdep = inoref_jseg(&jaddref->ja_ref); 4345 if (jaddref->ja_state & NEWBLOCK) 4346 move_newblock_dep(jaddref, inodedep); 4347 wake_worklist(&jaddref->ja_list); 4348 jaddref->ja_mkdir = NULL; 4349 if (jaddref->ja_state & INPROGRESS) { 4350 jaddref->ja_state &= ~INPROGRESS; 4351 WORKLIST_REMOVE(&jaddref->ja_list); 4352 jwork_insert(wkhd, jsegdep); 4353 } else { 4354 free_jsegdep(jsegdep); 4355 if (jaddref->ja_state & DEPCOMPLETE) 4356 remove_from_journal(&jaddref->ja_list); 4357 } 4358 jaddref->ja_state |= (GOINGAWAY | DEPCOMPLETE); 4359 /* 4360 * Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove 4361 * can arrange for them to be freed with the bitmap. Otherwise we 4362 * no longer need this addref attached to the inoreflst and it 4363 * will incorrectly adjust nlink if we leave it. 4364 */ 4365 if ((jaddref->ja_state & NEWBLOCK) == 0) { 4366 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, 4367 if_deps); 4368 jaddref->ja_state |= COMPLETE; 4369 free_jaddref(jaddref); 4370 return (needsj); 4371 } 4372 /* 4373 * Leave the head of the list for jsegdeps for fast merging. 4374 */ 4375 if (LIST_FIRST(wkhd) != NULL) { 4376 jaddref->ja_state |= ONWORKLIST; 4377 LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list); 4378 } else 4379 WORKLIST_INSERT(wkhd, &jaddref->ja_list); 4380 4381 return (needsj); 4382 } 4383 4384 /* 4385 * Attempt to free a jaddref structure when some work completes. This 4386 * should only succeed once the entry is written and all dependencies have 4387 * been notified. 4388 */ 4389 static void 4390 free_jaddref(jaddref) 4391 struct jaddref *jaddref; 4392 { 4393 4394 if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE) 4395 return; 4396 if (jaddref->ja_ref.if_jsegdep) 4397 panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n", 4398 jaddref, jaddref->ja_state); 4399 if (jaddref->ja_state & NEWBLOCK) 4400 LIST_REMOVE(jaddref, ja_bmdeps); 4401 if (jaddref->ja_state & (INPROGRESS | ONWORKLIST)) 4402 panic("free_jaddref: Bad state %p(0x%X)", 4403 jaddref, jaddref->ja_state); 4404 if (jaddref->ja_mkdir != NULL) 4405 panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state); 4406 WORKITEM_FREE(jaddref, D_JADDREF); 4407 } 4408 4409 /* 4410 * Free a jremref structure once it has been written or discarded. 4411 */ 4412 static void 4413 free_jremref(jremref) 4414 struct jremref *jremref; 4415 { 4416 4417 if (jremref->jr_ref.if_jsegdep) 4418 free_jsegdep(jremref->jr_ref.if_jsegdep); 4419 if (jremref->jr_state & INPROGRESS) 4420 panic("free_jremref: IO still pending"); 4421 WORKITEM_FREE(jremref, D_JREMREF); 4422 } 4423 4424 /* 4425 * Free a jnewblk structure. 4426 */ 4427 static void 4428 free_jnewblk(jnewblk) 4429 struct jnewblk *jnewblk; 4430 { 4431 4432 if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE) 4433 return; 4434 LIST_REMOVE(jnewblk, jn_deps); 4435 if (jnewblk->jn_dep != NULL) 4436 panic("free_jnewblk: Dependency still attached."); 4437 WORKITEM_FREE(jnewblk, D_JNEWBLK); 4438 } 4439 4440 /* 4441 * Cancel a jnewblk which has been been made redundant by frag extension. 4442 */ 4443 static void 4444 cancel_jnewblk(jnewblk, wkhd) 4445 struct jnewblk *jnewblk; 4446 struct workhead *wkhd; 4447 { 4448 struct jsegdep *jsegdep; 4449 4450 CTR1(KTR_SUJ, "cancel_jnewblk: blkno %jd", jnewblk->jn_blkno); 4451 jsegdep = jnewblk->jn_jsegdep; 4452 if (jnewblk->jn_jsegdep == NULL || jnewblk->jn_dep == NULL) 4453 panic("cancel_jnewblk: Invalid state"); 4454 jnewblk->jn_jsegdep = NULL; 4455 jnewblk->jn_dep = NULL; 4456 jnewblk->jn_state |= GOINGAWAY; 4457 if (jnewblk->jn_state & INPROGRESS) { 4458 jnewblk->jn_state &= ~INPROGRESS; 4459 WORKLIST_REMOVE(&jnewblk->jn_list); 4460 jwork_insert(wkhd, jsegdep); 4461 } else { 4462 free_jsegdep(jsegdep); 4463 remove_from_journal(&jnewblk->jn_list); 4464 } 4465 wake_worklist(&jnewblk->jn_list); 4466 WORKLIST_INSERT(wkhd, &jnewblk->jn_list); 4467 } 4468 4469 static void 4470 free_jblkdep(jblkdep) 4471 struct jblkdep *jblkdep; 4472 { 4473 4474 if (jblkdep->jb_list.wk_type == D_JFREEBLK) 4475 WORKITEM_FREE(jblkdep, D_JFREEBLK); 4476 else if (jblkdep->jb_list.wk_type == D_JTRUNC) 4477 WORKITEM_FREE(jblkdep, D_JTRUNC); 4478 else 4479 panic("free_jblkdep: Unexpected type %s", 4480 TYPENAME(jblkdep->jb_list.wk_type)); 4481 } 4482 4483 /* 4484 * Free a single jseg once it is no longer referenced in memory or on 4485 * disk. Reclaim journal blocks and dependencies waiting for the segment 4486 * to disappear. 4487 */ 4488 static void 4489 free_jseg(jseg, jblocks) 4490 struct jseg *jseg; 4491 struct jblocks *jblocks; 4492 { 4493 struct freework *freework; 4494 4495 /* 4496 * Free freework structures that were lingering to indicate freed 4497 * indirect blocks that forced journal write ordering on reallocate. 4498 */ 4499 while ((freework = LIST_FIRST(&jseg->js_indirs)) != NULL) 4500 indirblk_remove(freework); 4501 if (jblocks->jb_oldestseg == jseg) 4502 jblocks->jb_oldestseg = TAILQ_NEXT(jseg, js_next); 4503 TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next); 4504 jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size); 4505 KASSERT(LIST_EMPTY(&jseg->js_entries), 4506 ("free_jseg: Freed jseg has valid entries.")); 4507 WORKITEM_FREE(jseg, D_JSEG); 4508 } 4509 4510 /* 4511 * Free all jsegs that meet the criteria for being reclaimed and update 4512 * oldestseg. 4513 */ 4514 static void 4515 free_jsegs(jblocks) 4516 struct jblocks *jblocks; 4517 { 4518 struct jseg *jseg; 4519 4520 /* 4521 * Free only those jsegs which have none allocated before them to 4522 * preserve the journal space ordering. 4523 */ 4524 while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) { 4525 /* 4526 * Only reclaim space when nothing depends on this journal 4527 * set and another set has written that it is no longer 4528 * valid. 4529 */ 4530 if (jseg->js_refs != 0) { 4531 jblocks->jb_oldestseg = jseg; 4532 return; 4533 } 4534 if ((jseg->js_state & ALLCOMPLETE) != ALLCOMPLETE) 4535 break; 4536 if (jseg->js_seq > jblocks->jb_oldestwrseq) 4537 break; 4538 /* 4539 * We can free jsegs that didn't write entries when 4540 * oldestwrseq == js_seq. 4541 */ 4542 if (jseg->js_seq == jblocks->jb_oldestwrseq && 4543 jseg->js_cnt != 0) 4544 break; 4545 free_jseg(jseg, jblocks); 4546 } 4547 /* 4548 * If we exited the loop above we still must discover the 4549 * oldest valid segment. 4550 */ 4551 if (jseg) 4552 for (jseg = jblocks->jb_oldestseg; jseg != NULL; 4553 jseg = TAILQ_NEXT(jseg, js_next)) 4554 if (jseg->js_refs != 0) 4555 break; 4556 jblocks->jb_oldestseg = jseg; 4557 /* 4558 * The journal has no valid records but some jsegs may still be 4559 * waiting on oldestwrseq to advance. We force a small record 4560 * out to permit these lingering records to be reclaimed. 4561 */ 4562 if (jblocks->jb_oldestseg == NULL && !TAILQ_EMPTY(&jblocks->jb_segs)) 4563 jblocks->jb_needseg = 1; 4564 } 4565 4566 /* 4567 * Release one reference to a jseg and free it if the count reaches 0. This 4568 * should eventually reclaim journal space as well. 4569 */ 4570 static void 4571 rele_jseg(jseg) 4572 struct jseg *jseg; 4573 { 4574 4575 KASSERT(jseg->js_refs > 0, 4576 ("free_jseg: Invalid refcnt %d", jseg->js_refs)); 4577 if (--jseg->js_refs != 0) 4578 return; 4579 free_jsegs(jseg->js_jblocks); 4580 } 4581 4582 /* 4583 * Release a jsegdep and decrement the jseg count. 4584 */ 4585 static void 4586 free_jsegdep(jsegdep) 4587 struct jsegdep *jsegdep; 4588 { 4589 4590 if (jsegdep->jd_seg) 4591 rele_jseg(jsegdep->jd_seg); 4592 WORKITEM_FREE(jsegdep, D_JSEGDEP); 4593 } 4594 4595 /* 4596 * Wait for a journal item to make it to disk. Initiate journal processing 4597 * if required. 4598 */ 4599 static int 4600 jwait(wk, waitfor) 4601 struct worklist *wk; 4602 int waitfor; 4603 { 4604 4605 LOCK_OWNED(VFSTOUFS(wk->wk_mp)); 4606 /* 4607 * Blocking journal waits cause slow synchronous behavior. Record 4608 * stats on the frequency of these blocking operations. 4609 */ 4610 if (waitfor == MNT_WAIT) { 4611 stat_journal_wait++; 4612 switch (wk->wk_type) { 4613 case D_JREMREF: 4614 case D_JMVREF: 4615 stat_jwait_filepage++; 4616 break; 4617 case D_JTRUNC: 4618 case D_JFREEBLK: 4619 stat_jwait_freeblks++; 4620 break; 4621 case D_JNEWBLK: 4622 stat_jwait_newblk++; 4623 break; 4624 case D_JADDREF: 4625 stat_jwait_inode++; 4626 break; 4627 default: 4628 break; 4629 } 4630 } 4631 /* 4632 * If IO has not started we process the journal. We can't mark the 4633 * worklist item as IOWAITING because we drop the lock while 4634 * processing the journal and the worklist entry may be freed after 4635 * this point. The caller may call back in and re-issue the request. 4636 */ 4637 if ((wk->wk_state & INPROGRESS) == 0) { 4638 softdep_process_journal(wk->wk_mp, wk, waitfor); 4639 if (waitfor != MNT_WAIT) 4640 return (EBUSY); 4641 return (0); 4642 } 4643 if (waitfor != MNT_WAIT) 4644 return (EBUSY); 4645 wait_worklist(wk, "jwait"); 4646 return (0); 4647 } 4648 4649 /* 4650 * Lookup an inodedep based on an inode pointer and set the nlinkdelta as 4651 * appropriate. This is a convenience function to reduce duplicate code 4652 * for the setup and revert functions below. 4653 */ 4654 static struct inodedep * 4655 inodedep_lookup_ip(ip) 4656 struct inode *ip; 4657 { 4658 struct inodedep *inodedep; 4659 4660 KASSERT(ip->i_nlink >= ip->i_effnlink, 4661 ("inodedep_lookup_ip: bad delta")); 4662 (void) inodedep_lookup(ITOVFS(ip), ip->i_number, DEPALLOC, 4663 &inodedep); 4664 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 4665 KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked")); 4666 4667 return (inodedep); 4668 } 4669 4670 /* 4671 * Called prior to creating a new inode and linking it to a directory. The 4672 * jaddref structure must already be allocated by softdep_setup_inomapdep 4673 * and it is discovered here so we can initialize the mode and update 4674 * nlinkdelta. 4675 */ 4676 void 4677 softdep_setup_create(dp, ip) 4678 struct inode *dp; 4679 struct inode *ip; 4680 { 4681 struct inodedep *inodedep; 4682 struct jaddref *jaddref; 4683 struct vnode *dvp; 4684 4685 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4686 ("softdep_setup_create called on non-softdep filesystem")); 4687 KASSERT(ip->i_nlink == 1, 4688 ("softdep_setup_create: Invalid link count.")); 4689 dvp = ITOV(dp); 4690 ACQUIRE_LOCK(ITOUMP(dp)); 4691 inodedep = inodedep_lookup_ip(ip); 4692 if (DOINGSUJ(dvp)) { 4693 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4694 inoreflst); 4695 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 4696 ("softdep_setup_create: No addref structure present.")); 4697 } 4698 softdep_prelink(dvp, NULL); 4699 FREE_LOCK(ITOUMP(dp)); 4700 } 4701 4702 /* 4703 * Create a jaddref structure to track the addition of a DOTDOT link when 4704 * we are reparenting an inode as part of a rename. This jaddref will be 4705 * found by softdep_setup_directory_change. Adjusts nlinkdelta for 4706 * non-journaling softdep. 4707 */ 4708 void 4709 softdep_setup_dotdot_link(dp, ip) 4710 struct inode *dp; 4711 struct inode *ip; 4712 { 4713 struct inodedep *inodedep; 4714 struct jaddref *jaddref; 4715 struct vnode *dvp; 4716 4717 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4718 ("softdep_setup_dotdot_link called on non-softdep filesystem")); 4719 dvp = ITOV(dp); 4720 jaddref = NULL; 4721 /* 4722 * We don't set MKDIR_PARENT as this is not tied to a mkdir and 4723 * is used as a normal link would be. 4724 */ 4725 if (DOINGSUJ(dvp)) 4726 jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET, 4727 dp->i_effnlink - 1, dp->i_mode); 4728 ACQUIRE_LOCK(ITOUMP(dp)); 4729 inodedep = inodedep_lookup_ip(dp); 4730 if (jaddref) 4731 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 4732 if_deps); 4733 softdep_prelink(dvp, ITOV(ip)); 4734 FREE_LOCK(ITOUMP(dp)); 4735 } 4736 4737 /* 4738 * Create a jaddref structure to track a new link to an inode. The directory 4739 * offset is not known until softdep_setup_directory_add or 4740 * softdep_setup_directory_change. Adjusts nlinkdelta for non-journaling 4741 * softdep. 4742 */ 4743 void 4744 softdep_setup_link(dp, ip) 4745 struct inode *dp; 4746 struct inode *ip; 4747 { 4748 struct inodedep *inodedep; 4749 struct jaddref *jaddref; 4750 struct vnode *dvp; 4751 4752 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4753 ("softdep_setup_link called on non-softdep filesystem")); 4754 dvp = ITOV(dp); 4755 jaddref = NULL; 4756 if (DOINGSUJ(dvp)) 4757 jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1, 4758 ip->i_mode); 4759 ACQUIRE_LOCK(ITOUMP(dp)); 4760 inodedep = inodedep_lookup_ip(ip); 4761 if (jaddref) 4762 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 4763 if_deps); 4764 softdep_prelink(dvp, ITOV(ip)); 4765 FREE_LOCK(ITOUMP(dp)); 4766 } 4767 4768 /* 4769 * Called to create the jaddref structures to track . and .. references as 4770 * well as lookup and further initialize the incomplete jaddref created 4771 * by softdep_setup_inomapdep when the inode was allocated. Adjusts 4772 * nlinkdelta for non-journaling softdep. 4773 */ 4774 void 4775 softdep_setup_mkdir(dp, ip) 4776 struct inode *dp; 4777 struct inode *ip; 4778 { 4779 struct inodedep *inodedep; 4780 struct jaddref *dotdotaddref; 4781 struct jaddref *dotaddref; 4782 struct jaddref *jaddref; 4783 struct vnode *dvp; 4784 4785 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4786 ("softdep_setup_mkdir called on non-softdep filesystem")); 4787 dvp = ITOV(dp); 4788 dotaddref = dotdotaddref = NULL; 4789 if (DOINGSUJ(dvp)) { 4790 dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1, 4791 ip->i_mode); 4792 dotaddref->ja_state |= MKDIR_BODY; 4793 dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET, 4794 dp->i_effnlink - 1, dp->i_mode); 4795 dotdotaddref->ja_state |= MKDIR_PARENT; 4796 } 4797 ACQUIRE_LOCK(ITOUMP(dp)); 4798 inodedep = inodedep_lookup_ip(ip); 4799 if (DOINGSUJ(dvp)) { 4800 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4801 inoreflst); 4802 KASSERT(jaddref != NULL, 4803 ("softdep_setup_mkdir: No addref structure present.")); 4804 KASSERT(jaddref->ja_parent == dp->i_number, 4805 ("softdep_setup_mkdir: bad parent %ju", 4806 (uintmax_t)jaddref->ja_parent)); 4807 TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref, 4808 if_deps); 4809 } 4810 inodedep = inodedep_lookup_ip(dp); 4811 if (DOINGSUJ(dvp)) 4812 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, 4813 &dotdotaddref->ja_ref, if_deps); 4814 softdep_prelink(ITOV(dp), NULL); 4815 FREE_LOCK(ITOUMP(dp)); 4816 } 4817 4818 /* 4819 * Called to track nlinkdelta of the inode and parent directories prior to 4820 * unlinking a directory. 4821 */ 4822 void 4823 softdep_setup_rmdir(dp, ip) 4824 struct inode *dp; 4825 struct inode *ip; 4826 { 4827 struct vnode *dvp; 4828 4829 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4830 ("softdep_setup_rmdir called on non-softdep filesystem")); 4831 dvp = ITOV(dp); 4832 ACQUIRE_LOCK(ITOUMP(dp)); 4833 (void) inodedep_lookup_ip(ip); 4834 (void) inodedep_lookup_ip(dp); 4835 softdep_prelink(dvp, ITOV(ip)); 4836 FREE_LOCK(ITOUMP(dp)); 4837 } 4838 4839 /* 4840 * Called to track nlinkdelta of the inode and parent directories prior to 4841 * unlink. 4842 */ 4843 void 4844 softdep_setup_unlink(dp, ip) 4845 struct inode *dp; 4846 struct inode *ip; 4847 { 4848 struct vnode *dvp; 4849 4850 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4851 ("softdep_setup_unlink called on non-softdep filesystem")); 4852 dvp = ITOV(dp); 4853 ACQUIRE_LOCK(ITOUMP(dp)); 4854 (void) inodedep_lookup_ip(ip); 4855 (void) inodedep_lookup_ip(dp); 4856 softdep_prelink(dvp, ITOV(ip)); 4857 FREE_LOCK(ITOUMP(dp)); 4858 } 4859 4860 /* 4861 * Called to release the journal structures created by a failed non-directory 4862 * creation. Adjusts nlinkdelta for non-journaling softdep. 4863 */ 4864 void 4865 softdep_revert_create(dp, ip) 4866 struct inode *dp; 4867 struct inode *ip; 4868 { 4869 struct inodedep *inodedep; 4870 struct jaddref *jaddref; 4871 struct vnode *dvp; 4872 4873 KASSERT(MOUNTEDSOFTDEP(ITOVFS((dp))) != 0, 4874 ("softdep_revert_create called on non-softdep filesystem")); 4875 dvp = ITOV(dp); 4876 ACQUIRE_LOCK(ITOUMP(dp)); 4877 inodedep = inodedep_lookup_ip(ip); 4878 if (DOINGSUJ(dvp)) { 4879 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4880 inoreflst); 4881 KASSERT(jaddref->ja_parent == dp->i_number, 4882 ("softdep_revert_create: addref parent mismatch")); 4883 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4884 } 4885 FREE_LOCK(ITOUMP(dp)); 4886 } 4887 4888 /* 4889 * Called to release the journal structures created by a failed link 4890 * addition. Adjusts nlinkdelta for non-journaling softdep. 4891 */ 4892 void 4893 softdep_revert_link(dp, ip) 4894 struct inode *dp; 4895 struct inode *ip; 4896 { 4897 struct inodedep *inodedep; 4898 struct jaddref *jaddref; 4899 struct vnode *dvp; 4900 4901 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4902 ("softdep_revert_link called on non-softdep filesystem")); 4903 dvp = ITOV(dp); 4904 ACQUIRE_LOCK(ITOUMP(dp)); 4905 inodedep = inodedep_lookup_ip(ip); 4906 if (DOINGSUJ(dvp)) { 4907 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4908 inoreflst); 4909 KASSERT(jaddref->ja_parent == dp->i_number, 4910 ("softdep_revert_link: addref parent mismatch")); 4911 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4912 } 4913 FREE_LOCK(ITOUMP(dp)); 4914 } 4915 4916 /* 4917 * Called to release the journal structures created by a failed mkdir 4918 * attempt. Adjusts nlinkdelta for non-journaling softdep. 4919 */ 4920 void 4921 softdep_revert_mkdir(dp, ip) 4922 struct inode *dp; 4923 struct inode *ip; 4924 { 4925 struct inodedep *inodedep; 4926 struct jaddref *jaddref; 4927 struct jaddref *dotaddref; 4928 struct vnode *dvp; 4929 4930 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4931 ("softdep_revert_mkdir called on non-softdep filesystem")); 4932 dvp = ITOV(dp); 4933 4934 ACQUIRE_LOCK(ITOUMP(dp)); 4935 inodedep = inodedep_lookup_ip(dp); 4936 if (DOINGSUJ(dvp)) { 4937 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4938 inoreflst); 4939 KASSERT(jaddref->ja_parent == ip->i_number, 4940 ("softdep_revert_mkdir: dotdot addref parent mismatch")); 4941 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4942 } 4943 inodedep = inodedep_lookup_ip(ip); 4944 if (DOINGSUJ(dvp)) { 4945 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4946 inoreflst); 4947 KASSERT(jaddref->ja_parent == dp->i_number, 4948 ("softdep_revert_mkdir: addref parent mismatch")); 4949 dotaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref, 4950 inoreflst, if_deps); 4951 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4952 KASSERT(dotaddref->ja_parent == ip->i_number, 4953 ("softdep_revert_mkdir: dot addref parent mismatch")); 4954 cancel_jaddref(dotaddref, inodedep, &inodedep->id_inowait); 4955 } 4956 FREE_LOCK(ITOUMP(dp)); 4957 } 4958 4959 /* 4960 * Called to correct nlinkdelta after a failed rmdir. 4961 */ 4962 void 4963 softdep_revert_rmdir(dp, ip) 4964 struct inode *dp; 4965 struct inode *ip; 4966 { 4967 4968 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4969 ("softdep_revert_rmdir called on non-softdep filesystem")); 4970 ACQUIRE_LOCK(ITOUMP(dp)); 4971 (void) inodedep_lookup_ip(ip); 4972 (void) inodedep_lookup_ip(dp); 4973 FREE_LOCK(ITOUMP(dp)); 4974 } 4975 4976 /* 4977 * Protecting the freemaps (or bitmaps). 4978 * 4979 * To eliminate the need to execute fsck before mounting a filesystem 4980 * after a power failure, one must (conservatively) guarantee that the 4981 * on-disk copy of the bitmaps never indicate that a live inode or block is 4982 * free. So, when a block or inode is allocated, the bitmap should be 4983 * updated (on disk) before any new pointers. When a block or inode is 4984 * freed, the bitmap should not be updated until all pointers have been 4985 * reset. The latter dependency is handled by the delayed de-allocation 4986 * approach described below for block and inode de-allocation. The former 4987 * dependency is handled by calling the following procedure when a block or 4988 * inode is allocated. When an inode is allocated an "inodedep" is created 4989 * with its DEPCOMPLETE flag cleared until its bitmap is written to disk. 4990 * Each "inodedep" is also inserted into the hash indexing structure so 4991 * that any additional link additions can be made dependent on the inode 4992 * allocation. 4993 * 4994 * The ufs filesystem maintains a number of free block counts (e.g., per 4995 * cylinder group, per cylinder and per <cylinder, rotational position> pair) 4996 * in addition to the bitmaps. These counts are used to improve efficiency 4997 * during allocation and therefore must be consistent with the bitmaps. 4998 * There is no convenient way to guarantee post-crash consistency of these 4999 * counts with simple update ordering, for two main reasons: (1) The counts 5000 * and bitmaps for a single cylinder group block are not in the same disk 5001 * sector. If a disk write is interrupted (e.g., by power failure), one may 5002 * be written and the other not. (2) Some of the counts are located in the 5003 * superblock rather than the cylinder group block. So, we focus our soft 5004 * updates implementation on protecting the bitmaps. When mounting a 5005 * filesystem, we recompute the auxiliary counts from the bitmaps. 5006 */ 5007 5008 /* 5009 * Called just after updating the cylinder group block to allocate an inode. 5010 */ 5011 void 5012 softdep_setup_inomapdep(bp, ip, newinum, mode) 5013 struct buf *bp; /* buffer for cylgroup block with inode map */ 5014 struct inode *ip; /* inode related to allocation */ 5015 ino_t newinum; /* new inode number being allocated */ 5016 int mode; 5017 { 5018 struct inodedep *inodedep; 5019 struct bmsafemap *bmsafemap; 5020 struct jaddref *jaddref; 5021 struct mount *mp; 5022 struct fs *fs; 5023 5024 mp = ITOVFS(ip); 5025 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5026 ("softdep_setup_inomapdep called on non-softdep filesystem")); 5027 fs = VFSTOUFS(mp)->um_fs; 5028 jaddref = NULL; 5029 5030 /* 5031 * Allocate the journal reference add structure so that the bitmap 5032 * can be dependent on it. 5033 */ 5034 if (MOUNTEDSUJ(mp)) { 5035 jaddref = newjaddref(ip, newinum, 0, 0, mode); 5036 jaddref->ja_state |= NEWBLOCK; 5037 } 5038 5039 /* 5040 * Create a dependency for the newly allocated inode. 5041 * Panic if it already exists as something is seriously wrong. 5042 * Otherwise add it to the dependency list for the buffer holding 5043 * the cylinder group map from which it was allocated. 5044 * 5045 * We have to preallocate a bmsafemap entry in case it is needed 5046 * in bmsafemap_lookup since once we allocate the inodedep, we 5047 * have to finish initializing it before we can FREE_LOCK(). 5048 * By preallocating, we avoid FREE_LOCK() while doing a malloc 5049 * in bmsafemap_lookup. We cannot call bmsafemap_lookup before 5050 * creating the inodedep as it can be freed during the time 5051 * that we FREE_LOCK() while allocating the inodedep. We must 5052 * call workitem_alloc() before entering the locked section as 5053 * it also acquires the lock and we must avoid trying doing so 5054 * recursively. 5055 */ 5056 bmsafemap = malloc(sizeof(struct bmsafemap), 5057 M_BMSAFEMAP, M_SOFTDEP_FLAGS); 5058 workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp); 5059 ACQUIRE_LOCK(ITOUMP(ip)); 5060 if ((inodedep_lookup(mp, newinum, DEPALLOC, &inodedep))) 5061 panic("softdep_setup_inomapdep: dependency %p for new" 5062 "inode already exists", inodedep); 5063 bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum), bmsafemap); 5064 if (jaddref) { 5065 LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps); 5066 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 5067 if_deps); 5068 } else { 5069 inodedep->id_state |= ONDEPLIST; 5070 LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps); 5071 } 5072 inodedep->id_bmsafemap = bmsafemap; 5073 inodedep->id_state &= ~DEPCOMPLETE; 5074 FREE_LOCK(ITOUMP(ip)); 5075 } 5076 5077 /* 5078 * Called just after updating the cylinder group block to 5079 * allocate block or fragment. 5080 */ 5081 void 5082 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags) 5083 struct buf *bp; /* buffer for cylgroup block with block map */ 5084 struct mount *mp; /* filesystem doing allocation */ 5085 ufs2_daddr_t newblkno; /* number of newly allocated block */ 5086 int frags; /* Number of fragments. */ 5087 int oldfrags; /* Previous number of fragments for extend. */ 5088 { 5089 struct newblk *newblk; 5090 struct bmsafemap *bmsafemap; 5091 struct jnewblk *jnewblk; 5092 struct ufsmount *ump; 5093 struct fs *fs; 5094 5095 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5096 ("softdep_setup_blkmapdep called on non-softdep filesystem")); 5097 ump = VFSTOUFS(mp); 5098 fs = ump->um_fs; 5099 jnewblk = NULL; 5100 /* 5101 * Create a dependency for the newly allocated block. 5102 * Add it to the dependency list for the buffer holding 5103 * the cylinder group map from which it was allocated. 5104 */ 5105 if (MOUNTEDSUJ(mp)) { 5106 jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS); 5107 workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp); 5108 jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list); 5109 jnewblk->jn_state = ATTACHED; 5110 jnewblk->jn_blkno = newblkno; 5111 jnewblk->jn_frags = frags; 5112 jnewblk->jn_oldfrags = oldfrags; 5113 #ifdef INVARIANTS 5114 { 5115 struct cg *cgp; 5116 uint8_t *blksfree; 5117 long bno; 5118 int i; 5119 5120 cgp = (struct cg *)bp->b_data; 5121 blksfree = cg_blksfree(cgp); 5122 bno = dtogd(fs, jnewblk->jn_blkno); 5123 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; 5124 i++) { 5125 if (isset(blksfree, bno + i)) 5126 panic("softdep_setup_blkmapdep: " 5127 "free fragment %d from %d-%d " 5128 "state 0x%X dep %p", i, 5129 jnewblk->jn_oldfrags, 5130 jnewblk->jn_frags, 5131 jnewblk->jn_state, 5132 jnewblk->jn_dep); 5133 } 5134 } 5135 #endif 5136 } 5137 5138 CTR3(KTR_SUJ, 5139 "softdep_setup_blkmapdep: blkno %jd frags %d oldfrags %d", 5140 newblkno, frags, oldfrags); 5141 ACQUIRE_LOCK(ump); 5142 if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0) 5143 panic("softdep_setup_blkmapdep: found block"); 5144 newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp, 5145 dtog(fs, newblkno), NULL); 5146 if (jnewblk) { 5147 jnewblk->jn_dep = (struct worklist *)newblk; 5148 LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps); 5149 } else { 5150 newblk->nb_state |= ONDEPLIST; 5151 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps); 5152 } 5153 newblk->nb_bmsafemap = bmsafemap; 5154 newblk->nb_jnewblk = jnewblk; 5155 FREE_LOCK(ump); 5156 } 5157 5158 #define BMSAFEMAP_HASH(ump, cg) \ 5159 (&(ump)->bmsafemap_hashtbl[(cg) & (ump)->bmsafemap_hash_size]) 5160 5161 static int 5162 bmsafemap_find(bmsafemaphd, cg, bmsafemapp) 5163 struct bmsafemap_hashhead *bmsafemaphd; 5164 int cg; 5165 struct bmsafemap **bmsafemapp; 5166 { 5167 struct bmsafemap *bmsafemap; 5168 5169 LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash) 5170 if (bmsafemap->sm_cg == cg) 5171 break; 5172 if (bmsafemap) { 5173 *bmsafemapp = bmsafemap; 5174 return (1); 5175 } 5176 *bmsafemapp = NULL; 5177 5178 return (0); 5179 } 5180 5181 /* 5182 * Find the bmsafemap associated with a cylinder group buffer. 5183 * If none exists, create one. The buffer must be locked when 5184 * this routine is called and this routine must be called with 5185 * the softdep lock held. To avoid giving up the lock while 5186 * allocating a new bmsafemap, a preallocated bmsafemap may be 5187 * provided. If it is provided but not needed, it is freed. 5188 */ 5189 static struct bmsafemap * 5190 bmsafemap_lookup(mp, bp, cg, newbmsafemap) 5191 struct mount *mp; 5192 struct buf *bp; 5193 int cg; 5194 struct bmsafemap *newbmsafemap; 5195 { 5196 struct bmsafemap_hashhead *bmsafemaphd; 5197 struct bmsafemap *bmsafemap, *collision; 5198 struct worklist *wk; 5199 struct ufsmount *ump; 5200 5201 ump = VFSTOUFS(mp); 5202 LOCK_OWNED(ump); 5203 KASSERT(bp != NULL, ("bmsafemap_lookup: missing buffer")); 5204 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 5205 if (wk->wk_type == D_BMSAFEMAP) { 5206 if (newbmsafemap) 5207 WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP); 5208 return (WK_BMSAFEMAP(wk)); 5209 } 5210 } 5211 bmsafemaphd = BMSAFEMAP_HASH(ump, cg); 5212 if (bmsafemap_find(bmsafemaphd, cg, &bmsafemap) == 1) { 5213 if (newbmsafemap) 5214 WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP); 5215 return (bmsafemap); 5216 } 5217 if (newbmsafemap) { 5218 bmsafemap = newbmsafemap; 5219 } else { 5220 FREE_LOCK(ump); 5221 bmsafemap = malloc(sizeof(struct bmsafemap), 5222 M_BMSAFEMAP, M_SOFTDEP_FLAGS); 5223 workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp); 5224 ACQUIRE_LOCK(ump); 5225 } 5226 bmsafemap->sm_buf = bp; 5227 LIST_INIT(&bmsafemap->sm_inodedephd); 5228 LIST_INIT(&bmsafemap->sm_inodedepwr); 5229 LIST_INIT(&bmsafemap->sm_newblkhd); 5230 LIST_INIT(&bmsafemap->sm_newblkwr); 5231 LIST_INIT(&bmsafemap->sm_jaddrefhd); 5232 LIST_INIT(&bmsafemap->sm_jnewblkhd); 5233 LIST_INIT(&bmsafemap->sm_freehd); 5234 LIST_INIT(&bmsafemap->sm_freewr); 5235 if (bmsafemap_find(bmsafemaphd, cg, &collision) == 1) { 5236 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); 5237 return (collision); 5238 } 5239 bmsafemap->sm_cg = cg; 5240 LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash); 5241 LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next); 5242 WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list); 5243 return (bmsafemap); 5244 } 5245 5246 /* 5247 * Direct block allocation dependencies. 5248 * 5249 * When a new block is allocated, the corresponding disk locations must be 5250 * initialized (with zeros or new data) before the on-disk inode points to 5251 * them. Also, the freemap from which the block was allocated must be 5252 * updated (on disk) before the inode's pointer. These two dependencies are 5253 * independent of each other and are needed for all file blocks and indirect 5254 * blocks that are pointed to directly by the inode. Just before the 5255 * "in-core" version of the inode is updated with a newly allocated block 5256 * number, a procedure (below) is called to setup allocation dependency 5257 * structures. These structures are removed when the corresponding 5258 * dependencies are satisfied or when the block allocation becomes obsolete 5259 * (i.e., the file is deleted, the block is de-allocated, or the block is a 5260 * fragment that gets upgraded). All of these cases are handled in 5261 * procedures described later. 5262 * 5263 * When a file extension causes a fragment to be upgraded, either to a larger 5264 * fragment or to a full block, the on-disk location may change (if the 5265 * previous fragment could not simply be extended). In this case, the old 5266 * fragment must be de-allocated, but not until after the inode's pointer has 5267 * been updated. In most cases, this is handled by later procedures, which 5268 * will construct a "freefrag" structure to be added to the workitem queue 5269 * when the inode update is complete (or obsolete). The main exception to 5270 * this is when an allocation occurs while a pending allocation dependency 5271 * (for the same block pointer) remains. This case is handled in the main 5272 * allocation dependency setup procedure by immediately freeing the 5273 * unreferenced fragments. 5274 */ 5275 void 5276 softdep_setup_allocdirect(ip, off, newblkno, oldblkno, newsize, oldsize, bp) 5277 struct inode *ip; /* inode to which block is being added */ 5278 ufs_lbn_t off; /* block pointer within inode */ 5279 ufs2_daddr_t newblkno; /* disk block number being added */ 5280 ufs2_daddr_t oldblkno; /* previous block number, 0 unless frag */ 5281 long newsize; /* size of new block */ 5282 long oldsize; /* size of new block */ 5283 struct buf *bp; /* bp for allocated block */ 5284 { 5285 struct allocdirect *adp, *oldadp; 5286 struct allocdirectlst *adphead; 5287 struct freefrag *freefrag; 5288 struct inodedep *inodedep; 5289 struct pagedep *pagedep; 5290 struct jnewblk *jnewblk; 5291 struct newblk *newblk; 5292 struct mount *mp; 5293 ufs_lbn_t lbn; 5294 5295 lbn = bp->b_lblkno; 5296 mp = ITOVFS(ip); 5297 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5298 ("softdep_setup_allocdirect called on non-softdep filesystem")); 5299 if (oldblkno && oldblkno != newblkno) 5300 /* 5301 * The usual case is that a smaller fragment that 5302 * was just allocated has been replaced with a bigger 5303 * fragment or a full-size block. If it is marked as 5304 * B_DELWRI, the current contents have not been written 5305 * to disk. It is possible that the block was written 5306 * earlier, but very uncommon. If the block has never 5307 * been written, there is no need to send a BIO_DELETE 5308 * for it when it is freed. The gain from avoiding the 5309 * TRIMs for the common case of unwritten blocks far 5310 * exceeds the cost of the write amplification for the 5311 * uncommon case of failing to send a TRIM for a block 5312 * that had been written. 5313 */ 5314 freefrag = newfreefrag(ip, oldblkno, oldsize, lbn, 5315 (bp->b_flags & B_DELWRI) != 0 ? NOTRIM_KEY : SINGLETON_KEY); 5316 else 5317 freefrag = NULL; 5318 5319 CTR6(KTR_SUJ, 5320 "softdep_setup_allocdirect: ino %d blkno %jd oldblkno %jd " 5321 "off %jd newsize %ld oldsize %d", 5322 ip->i_number, newblkno, oldblkno, off, newsize, oldsize); 5323 ACQUIRE_LOCK(ITOUMP(ip)); 5324 if (off >= UFS_NDADDR) { 5325 if (lbn > 0) 5326 panic("softdep_setup_allocdirect: bad lbn %jd, off %jd", 5327 lbn, off); 5328 /* allocating an indirect block */ 5329 if (oldblkno != 0) 5330 panic("softdep_setup_allocdirect: non-zero indir"); 5331 } else { 5332 if (off != lbn) 5333 panic("softdep_setup_allocdirect: lbn %jd != off %jd", 5334 lbn, off); 5335 /* 5336 * Allocating a direct block. 5337 * 5338 * If we are allocating a directory block, then we must 5339 * allocate an associated pagedep to track additions and 5340 * deletions. 5341 */ 5342 if ((ip->i_mode & IFMT) == IFDIR) 5343 pagedep_lookup(mp, bp, ip->i_number, off, DEPALLOC, 5344 &pagedep); 5345 } 5346 if (newblk_lookup(mp, newblkno, 0, &newblk) == 0) 5347 panic("softdep_setup_allocdirect: lost block"); 5348 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 5349 ("softdep_setup_allocdirect: newblk already initialized")); 5350 /* 5351 * Convert the newblk to an allocdirect. 5352 */ 5353 WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT); 5354 adp = (struct allocdirect *)newblk; 5355 newblk->nb_freefrag = freefrag; 5356 adp->ad_offset = off; 5357 adp->ad_oldblkno = oldblkno; 5358 adp->ad_newsize = newsize; 5359 adp->ad_oldsize = oldsize; 5360 5361 /* 5362 * Finish initializing the journal. 5363 */ 5364 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 5365 jnewblk->jn_ino = ip->i_number; 5366 jnewblk->jn_lbn = lbn; 5367 add_to_journal(&jnewblk->jn_list); 5368 } 5369 if (freefrag && freefrag->ff_jdep != NULL && 5370 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 5371 add_to_journal(freefrag->ff_jdep); 5372 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 5373 adp->ad_inodedep = inodedep; 5374 5375 WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list); 5376 /* 5377 * The list of allocdirects must be kept in sorted and ascending 5378 * order so that the rollback routines can quickly determine the 5379 * first uncommitted block (the size of the file stored on disk 5380 * ends at the end of the lowest committed fragment, or if there 5381 * are no fragments, at the end of the highest committed block). 5382 * Since files generally grow, the typical case is that the new 5383 * block is to be added at the end of the list. We speed this 5384 * special case by checking against the last allocdirect in the 5385 * list before laboriously traversing the list looking for the 5386 * insertion point. 5387 */ 5388 adphead = &inodedep->id_newinoupdt; 5389 oldadp = TAILQ_LAST(adphead, allocdirectlst); 5390 if (oldadp == NULL || oldadp->ad_offset <= off) { 5391 /* insert at end of list */ 5392 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 5393 if (oldadp != NULL && oldadp->ad_offset == off) 5394 allocdirect_merge(adphead, adp, oldadp); 5395 FREE_LOCK(ITOUMP(ip)); 5396 return; 5397 } 5398 TAILQ_FOREACH(oldadp, adphead, ad_next) { 5399 if (oldadp->ad_offset >= off) 5400 break; 5401 } 5402 if (oldadp == NULL) 5403 panic("softdep_setup_allocdirect: lost entry"); 5404 /* insert in middle of list */ 5405 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 5406 if (oldadp->ad_offset == off) 5407 allocdirect_merge(adphead, adp, oldadp); 5408 5409 FREE_LOCK(ITOUMP(ip)); 5410 } 5411 5412 /* 5413 * Merge a newer and older journal record to be stored either in a 5414 * newblock or freefrag. This handles aggregating journal records for 5415 * fragment allocation into a second record as well as replacing a 5416 * journal free with an aborted journal allocation. A segment for the 5417 * oldest record will be placed on wkhd if it has been written. If not 5418 * the segment for the newer record will suffice. 5419 */ 5420 static struct worklist * 5421 jnewblk_merge(new, old, wkhd) 5422 struct worklist *new; 5423 struct worklist *old; 5424 struct workhead *wkhd; 5425 { 5426 struct jnewblk *njnewblk; 5427 struct jnewblk *jnewblk; 5428 5429 /* Handle NULLs to simplify callers. */ 5430 if (new == NULL) 5431 return (old); 5432 if (old == NULL) 5433 return (new); 5434 /* Replace a jfreefrag with a jnewblk. */ 5435 if (new->wk_type == D_JFREEFRAG) { 5436 if (WK_JNEWBLK(old)->jn_blkno != WK_JFREEFRAG(new)->fr_blkno) 5437 panic("jnewblk_merge: blkno mismatch: %p, %p", 5438 old, new); 5439 cancel_jfreefrag(WK_JFREEFRAG(new)); 5440 return (old); 5441 } 5442 if (old->wk_type != D_JNEWBLK || new->wk_type != D_JNEWBLK) 5443 panic("jnewblk_merge: Bad type: old %d new %d\n", 5444 old->wk_type, new->wk_type); 5445 /* 5446 * Handle merging of two jnewblk records that describe 5447 * different sets of fragments in the same block. 5448 */ 5449 jnewblk = WK_JNEWBLK(old); 5450 njnewblk = WK_JNEWBLK(new); 5451 if (jnewblk->jn_blkno != njnewblk->jn_blkno) 5452 panic("jnewblk_merge: Merging disparate blocks."); 5453 /* 5454 * The record may be rolled back in the cg. 5455 */ 5456 if (jnewblk->jn_state & UNDONE) { 5457 jnewblk->jn_state &= ~UNDONE; 5458 njnewblk->jn_state |= UNDONE; 5459 njnewblk->jn_state &= ~ATTACHED; 5460 } 5461 /* 5462 * We modify the newer addref and free the older so that if neither 5463 * has been written the most up-to-date copy will be on disk. If 5464 * both have been written but rolled back we only temporarily need 5465 * one of them to fix the bits when the cg write completes. 5466 */ 5467 jnewblk->jn_state |= ATTACHED | COMPLETE; 5468 njnewblk->jn_oldfrags = jnewblk->jn_oldfrags; 5469 cancel_jnewblk(jnewblk, wkhd); 5470 WORKLIST_REMOVE(&jnewblk->jn_list); 5471 free_jnewblk(jnewblk); 5472 return (new); 5473 } 5474 5475 /* 5476 * Replace an old allocdirect dependency with a newer one. 5477 */ 5478 static void 5479 allocdirect_merge(adphead, newadp, oldadp) 5480 struct allocdirectlst *adphead; /* head of list holding allocdirects */ 5481 struct allocdirect *newadp; /* allocdirect being added */ 5482 struct allocdirect *oldadp; /* existing allocdirect being checked */ 5483 { 5484 struct worklist *wk; 5485 struct freefrag *freefrag; 5486 5487 freefrag = NULL; 5488 LOCK_OWNED(VFSTOUFS(newadp->ad_list.wk_mp)); 5489 if (newadp->ad_oldblkno != oldadp->ad_newblkno || 5490 newadp->ad_oldsize != oldadp->ad_newsize || 5491 newadp->ad_offset >= UFS_NDADDR) 5492 panic("%s %jd != new %jd || old size %ld != new %ld", 5493 "allocdirect_merge: old blkno", 5494 (intmax_t)newadp->ad_oldblkno, 5495 (intmax_t)oldadp->ad_newblkno, 5496 newadp->ad_oldsize, oldadp->ad_newsize); 5497 newadp->ad_oldblkno = oldadp->ad_oldblkno; 5498 newadp->ad_oldsize = oldadp->ad_oldsize; 5499 /* 5500 * If the old dependency had a fragment to free or had never 5501 * previously had a block allocated, then the new dependency 5502 * can immediately post its freefrag and adopt the old freefrag. 5503 * This action is done by swapping the freefrag dependencies. 5504 * The new dependency gains the old one's freefrag, and the 5505 * old one gets the new one and then immediately puts it on 5506 * the worklist when it is freed by free_newblk. It is 5507 * not possible to do this swap when the old dependency had a 5508 * non-zero size but no previous fragment to free. This condition 5509 * arises when the new block is an extension of the old block. 5510 * Here, the first part of the fragment allocated to the new 5511 * dependency is part of the block currently claimed on disk by 5512 * the old dependency, so cannot legitimately be freed until the 5513 * conditions for the new dependency are fulfilled. 5514 */ 5515 freefrag = newadp->ad_freefrag; 5516 if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) { 5517 newadp->ad_freefrag = oldadp->ad_freefrag; 5518 oldadp->ad_freefrag = freefrag; 5519 } 5520 /* 5521 * If we are tracking a new directory-block allocation, 5522 * move it from the old allocdirect to the new allocdirect. 5523 */ 5524 if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) { 5525 WORKLIST_REMOVE(wk); 5526 if (!LIST_EMPTY(&oldadp->ad_newdirblk)) 5527 panic("allocdirect_merge: extra newdirblk"); 5528 WORKLIST_INSERT(&newadp->ad_newdirblk, wk); 5529 } 5530 TAILQ_REMOVE(adphead, oldadp, ad_next); 5531 /* 5532 * We need to move any journal dependencies over to the freefrag 5533 * that releases this block if it exists. Otherwise we are 5534 * extending an existing block and we'll wait until that is 5535 * complete to release the journal space and extend the 5536 * new journal to cover this old space as well. 5537 */ 5538 if (freefrag == NULL) { 5539 if (oldadp->ad_newblkno != newadp->ad_newblkno) 5540 panic("allocdirect_merge: %jd != %jd", 5541 oldadp->ad_newblkno, newadp->ad_newblkno); 5542 newadp->ad_block.nb_jnewblk = (struct jnewblk *) 5543 jnewblk_merge(&newadp->ad_block.nb_jnewblk->jn_list, 5544 &oldadp->ad_block.nb_jnewblk->jn_list, 5545 &newadp->ad_block.nb_jwork); 5546 oldadp->ad_block.nb_jnewblk = NULL; 5547 cancel_newblk(&oldadp->ad_block, NULL, 5548 &newadp->ad_block.nb_jwork); 5549 } else { 5550 wk = (struct worklist *) cancel_newblk(&oldadp->ad_block, 5551 &freefrag->ff_list, &freefrag->ff_jwork); 5552 freefrag->ff_jdep = jnewblk_merge(freefrag->ff_jdep, wk, 5553 &freefrag->ff_jwork); 5554 } 5555 free_newblk(&oldadp->ad_block); 5556 } 5557 5558 /* 5559 * Allocate a jfreefrag structure to journal a single block free. 5560 */ 5561 static struct jfreefrag * 5562 newjfreefrag(freefrag, ip, blkno, size, lbn) 5563 struct freefrag *freefrag; 5564 struct inode *ip; 5565 ufs2_daddr_t blkno; 5566 long size; 5567 ufs_lbn_t lbn; 5568 { 5569 struct jfreefrag *jfreefrag; 5570 struct fs *fs; 5571 5572 fs = ITOFS(ip); 5573 jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG, 5574 M_SOFTDEP_FLAGS); 5575 workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, ITOVFS(ip)); 5576 jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list); 5577 jfreefrag->fr_state = ATTACHED | DEPCOMPLETE; 5578 jfreefrag->fr_ino = ip->i_number; 5579 jfreefrag->fr_lbn = lbn; 5580 jfreefrag->fr_blkno = blkno; 5581 jfreefrag->fr_frags = numfrags(fs, size); 5582 jfreefrag->fr_freefrag = freefrag; 5583 5584 return (jfreefrag); 5585 } 5586 5587 /* 5588 * Allocate a new freefrag structure. 5589 */ 5590 static struct freefrag * 5591 newfreefrag(ip, blkno, size, lbn, key) 5592 struct inode *ip; 5593 ufs2_daddr_t blkno; 5594 long size; 5595 ufs_lbn_t lbn; 5596 u_long key; 5597 { 5598 struct freefrag *freefrag; 5599 struct ufsmount *ump; 5600 struct fs *fs; 5601 5602 CTR4(KTR_SUJ, "newfreefrag: ino %d blkno %jd size %ld lbn %jd", 5603 ip->i_number, blkno, size, lbn); 5604 ump = ITOUMP(ip); 5605 fs = ump->um_fs; 5606 if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag) 5607 panic("newfreefrag: frag size"); 5608 freefrag = malloc(sizeof(struct freefrag), 5609 M_FREEFRAG, M_SOFTDEP_FLAGS); 5610 workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ump)); 5611 freefrag->ff_state = ATTACHED; 5612 LIST_INIT(&freefrag->ff_jwork); 5613 freefrag->ff_inum = ip->i_number; 5614 freefrag->ff_vtype = ITOV(ip)->v_type; 5615 freefrag->ff_blkno = blkno; 5616 freefrag->ff_fragsize = size; 5617 freefrag->ff_key = key; 5618 5619 if (MOUNTEDSUJ(UFSTOVFS(ump))) { 5620 freefrag->ff_jdep = (struct worklist *) 5621 newjfreefrag(freefrag, ip, blkno, size, lbn); 5622 } else { 5623 freefrag->ff_state |= DEPCOMPLETE; 5624 freefrag->ff_jdep = NULL; 5625 } 5626 5627 return (freefrag); 5628 } 5629 5630 /* 5631 * This workitem de-allocates fragments that were replaced during 5632 * file block allocation. 5633 */ 5634 static void 5635 handle_workitem_freefrag(freefrag) 5636 struct freefrag *freefrag; 5637 { 5638 struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp); 5639 struct workhead wkhd; 5640 5641 CTR3(KTR_SUJ, 5642 "handle_workitem_freefrag: ino %d blkno %jd size %ld", 5643 freefrag->ff_inum, freefrag->ff_blkno, freefrag->ff_fragsize); 5644 /* 5645 * It would be illegal to add new completion items to the 5646 * freefrag after it was schedule to be done so it must be 5647 * safe to modify the list head here. 5648 */ 5649 LIST_INIT(&wkhd); 5650 ACQUIRE_LOCK(ump); 5651 LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list); 5652 /* 5653 * If the journal has not been written we must cancel it here. 5654 */ 5655 if (freefrag->ff_jdep) { 5656 if (freefrag->ff_jdep->wk_type != D_JNEWBLK) 5657 panic("handle_workitem_freefrag: Unexpected type %d\n", 5658 freefrag->ff_jdep->wk_type); 5659 cancel_jnewblk(WK_JNEWBLK(freefrag->ff_jdep), &wkhd); 5660 } 5661 FREE_LOCK(ump); 5662 ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno, 5663 freefrag->ff_fragsize, freefrag->ff_inum, freefrag->ff_vtype, 5664 &wkhd, freefrag->ff_key); 5665 ACQUIRE_LOCK(ump); 5666 WORKITEM_FREE(freefrag, D_FREEFRAG); 5667 FREE_LOCK(ump); 5668 } 5669 5670 /* 5671 * Set up a dependency structure for an external attributes data block. 5672 * This routine follows much of the structure of softdep_setup_allocdirect. 5673 * See the description of softdep_setup_allocdirect above for details. 5674 */ 5675 void 5676 softdep_setup_allocext(ip, off, newblkno, oldblkno, newsize, oldsize, bp) 5677 struct inode *ip; 5678 ufs_lbn_t off; 5679 ufs2_daddr_t newblkno; 5680 ufs2_daddr_t oldblkno; 5681 long newsize; 5682 long oldsize; 5683 struct buf *bp; 5684 { 5685 struct allocdirect *adp, *oldadp; 5686 struct allocdirectlst *adphead; 5687 struct freefrag *freefrag; 5688 struct inodedep *inodedep; 5689 struct jnewblk *jnewblk; 5690 struct newblk *newblk; 5691 struct mount *mp; 5692 struct ufsmount *ump; 5693 ufs_lbn_t lbn; 5694 5695 mp = ITOVFS(ip); 5696 ump = VFSTOUFS(mp); 5697 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5698 ("softdep_setup_allocext called on non-softdep filesystem")); 5699 KASSERT(off < UFS_NXADDR, 5700 ("softdep_setup_allocext: lbn %lld > UFS_NXADDR", (long long)off)); 5701 5702 lbn = bp->b_lblkno; 5703 if (oldblkno && oldblkno != newblkno) 5704 /* 5705 * The usual case is that a smaller fragment that 5706 * was just allocated has been replaced with a bigger 5707 * fragment or a full-size block. If it is marked as 5708 * B_DELWRI, the current contents have not been written 5709 * to disk. It is possible that the block was written 5710 * earlier, but very uncommon. If the block has never 5711 * been written, there is no need to send a BIO_DELETE 5712 * for it when it is freed. The gain from avoiding the 5713 * TRIMs for the common case of unwritten blocks far 5714 * exceeds the cost of the write amplification for the 5715 * uncommon case of failing to send a TRIM for a block 5716 * that had been written. 5717 */ 5718 freefrag = newfreefrag(ip, oldblkno, oldsize, lbn, 5719 (bp->b_flags & B_DELWRI) != 0 ? NOTRIM_KEY : SINGLETON_KEY); 5720 else 5721 freefrag = NULL; 5722 5723 ACQUIRE_LOCK(ump); 5724 if (newblk_lookup(mp, newblkno, 0, &newblk) == 0) 5725 panic("softdep_setup_allocext: lost block"); 5726 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 5727 ("softdep_setup_allocext: newblk already initialized")); 5728 /* 5729 * Convert the newblk to an allocdirect. 5730 */ 5731 WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT); 5732 adp = (struct allocdirect *)newblk; 5733 newblk->nb_freefrag = freefrag; 5734 adp->ad_offset = off; 5735 adp->ad_oldblkno = oldblkno; 5736 adp->ad_newsize = newsize; 5737 adp->ad_oldsize = oldsize; 5738 adp->ad_state |= EXTDATA; 5739 5740 /* 5741 * Finish initializing the journal. 5742 */ 5743 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 5744 jnewblk->jn_ino = ip->i_number; 5745 jnewblk->jn_lbn = lbn; 5746 add_to_journal(&jnewblk->jn_list); 5747 } 5748 if (freefrag && freefrag->ff_jdep != NULL && 5749 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 5750 add_to_journal(freefrag->ff_jdep); 5751 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 5752 adp->ad_inodedep = inodedep; 5753 5754 WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list); 5755 /* 5756 * The list of allocdirects must be kept in sorted and ascending 5757 * order so that the rollback routines can quickly determine the 5758 * first uncommitted block (the size of the file stored on disk 5759 * ends at the end of the lowest committed fragment, or if there 5760 * are no fragments, at the end of the highest committed block). 5761 * Since files generally grow, the typical case is that the new 5762 * block is to be added at the end of the list. We speed this 5763 * special case by checking against the last allocdirect in the 5764 * list before laboriously traversing the list looking for the 5765 * insertion point. 5766 */ 5767 adphead = &inodedep->id_newextupdt; 5768 oldadp = TAILQ_LAST(adphead, allocdirectlst); 5769 if (oldadp == NULL || oldadp->ad_offset <= off) { 5770 /* insert at end of list */ 5771 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 5772 if (oldadp != NULL && oldadp->ad_offset == off) 5773 allocdirect_merge(adphead, adp, oldadp); 5774 FREE_LOCK(ump); 5775 return; 5776 } 5777 TAILQ_FOREACH(oldadp, adphead, ad_next) { 5778 if (oldadp->ad_offset >= off) 5779 break; 5780 } 5781 if (oldadp == NULL) 5782 panic("softdep_setup_allocext: lost entry"); 5783 /* insert in middle of list */ 5784 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 5785 if (oldadp->ad_offset == off) 5786 allocdirect_merge(adphead, adp, oldadp); 5787 FREE_LOCK(ump); 5788 } 5789 5790 /* 5791 * Indirect block allocation dependencies. 5792 * 5793 * The same dependencies that exist for a direct block also exist when 5794 * a new block is allocated and pointed to by an entry in a block of 5795 * indirect pointers. The undo/redo states described above are also 5796 * used here. Because an indirect block contains many pointers that 5797 * may have dependencies, a second copy of the entire in-memory indirect 5798 * block is kept. The buffer cache copy is always completely up-to-date. 5799 * The second copy, which is used only as a source for disk writes, 5800 * contains only the safe pointers (i.e., those that have no remaining 5801 * update dependencies). The second copy is freed when all pointers 5802 * are safe. The cache is not allowed to replace indirect blocks with 5803 * pending update dependencies. If a buffer containing an indirect 5804 * block with dependencies is written, these routines will mark it 5805 * dirty again. It can only be successfully written once all the 5806 * dependencies are removed. The ffs_fsync routine in conjunction with 5807 * softdep_sync_metadata work together to get all the dependencies 5808 * removed so that a file can be successfully written to disk. Three 5809 * procedures are used when setting up indirect block pointer 5810 * dependencies. The division is necessary because of the organization 5811 * of the "balloc" routine and because of the distinction between file 5812 * pages and file metadata blocks. 5813 */ 5814 5815 /* 5816 * Allocate a new allocindir structure. 5817 */ 5818 static struct allocindir * 5819 newallocindir(ip, ptrno, newblkno, oldblkno, lbn) 5820 struct inode *ip; /* inode for file being extended */ 5821 int ptrno; /* offset of pointer in indirect block */ 5822 ufs2_daddr_t newblkno; /* disk block number being added */ 5823 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 5824 ufs_lbn_t lbn; 5825 { 5826 struct newblk *newblk; 5827 struct allocindir *aip; 5828 struct freefrag *freefrag; 5829 struct jnewblk *jnewblk; 5830 5831 if (oldblkno) 5832 freefrag = newfreefrag(ip, oldblkno, ITOFS(ip)->fs_bsize, lbn, 5833 SINGLETON_KEY); 5834 else 5835 freefrag = NULL; 5836 ACQUIRE_LOCK(ITOUMP(ip)); 5837 if (newblk_lookup(ITOVFS(ip), newblkno, 0, &newblk) == 0) 5838 panic("new_allocindir: lost block"); 5839 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 5840 ("newallocindir: newblk already initialized")); 5841 WORKITEM_REASSIGN(newblk, D_ALLOCINDIR); 5842 newblk->nb_freefrag = freefrag; 5843 aip = (struct allocindir *)newblk; 5844 aip->ai_offset = ptrno; 5845 aip->ai_oldblkno = oldblkno; 5846 aip->ai_lbn = lbn; 5847 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 5848 jnewblk->jn_ino = ip->i_number; 5849 jnewblk->jn_lbn = lbn; 5850 add_to_journal(&jnewblk->jn_list); 5851 } 5852 if (freefrag && freefrag->ff_jdep != NULL && 5853 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 5854 add_to_journal(freefrag->ff_jdep); 5855 return (aip); 5856 } 5857 5858 /* 5859 * Called just before setting an indirect block pointer 5860 * to a newly allocated file page. 5861 */ 5862 void 5863 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 5864 struct inode *ip; /* inode for file being extended */ 5865 ufs_lbn_t lbn; /* allocated block number within file */ 5866 struct buf *bp; /* buffer with indirect blk referencing page */ 5867 int ptrno; /* offset of pointer in indirect block */ 5868 ufs2_daddr_t newblkno; /* disk block number being added */ 5869 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 5870 struct buf *nbp; /* buffer holding allocated page */ 5871 { 5872 struct inodedep *inodedep; 5873 struct freefrag *freefrag; 5874 struct allocindir *aip; 5875 struct pagedep *pagedep; 5876 struct mount *mp; 5877 struct ufsmount *ump; 5878 5879 mp = ITOVFS(ip); 5880 ump = VFSTOUFS(mp); 5881 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5882 ("softdep_setup_allocindir_page called on non-softdep filesystem")); 5883 KASSERT(lbn == nbp->b_lblkno, 5884 ("softdep_setup_allocindir_page: lbn %jd != lblkno %jd", 5885 lbn, bp->b_lblkno)); 5886 CTR4(KTR_SUJ, 5887 "softdep_setup_allocindir_page: ino %d blkno %jd oldblkno %jd " 5888 "lbn %jd", ip->i_number, newblkno, oldblkno, lbn); 5889 ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page"); 5890 aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn); 5891 (void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 5892 /* 5893 * If we are allocating a directory page, then we must 5894 * allocate an associated pagedep to track additions and 5895 * deletions. 5896 */ 5897 if ((ip->i_mode & IFMT) == IFDIR) 5898 pagedep_lookup(mp, nbp, ip->i_number, lbn, DEPALLOC, &pagedep); 5899 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list); 5900 freefrag = setup_allocindir_phase2(bp, ip, inodedep, aip, lbn); 5901 FREE_LOCK(ump); 5902 if (freefrag) 5903 handle_workitem_freefrag(freefrag); 5904 } 5905 5906 /* 5907 * Called just before setting an indirect block pointer to a 5908 * newly allocated indirect block. 5909 */ 5910 void 5911 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 5912 struct buf *nbp; /* newly allocated indirect block */ 5913 struct inode *ip; /* inode for file being extended */ 5914 struct buf *bp; /* indirect block referencing allocated block */ 5915 int ptrno; /* offset of pointer in indirect block */ 5916 ufs2_daddr_t newblkno; /* disk block number being added */ 5917 { 5918 struct inodedep *inodedep; 5919 struct allocindir *aip; 5920 struct ufsmount *ump; 5921 ufs_lbn_t lbn; 5922 5923 ump = ITOUMP(ip); 5924 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 5925 ("softdep_setup_allocindir_meta called on non-softdep filesystem")); 5926 CTR3(KTR_SUJ, 5927 "softdep_setup_allocindir_meta: ino %d blkno %jd ptrno %d", 5928 ip->i_number, newblkno, ptrno); 5929 lbn = nbp->b_lblkno; 5930 ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta"); 5931 aip = newallocindir(ip, ptrno, newblkno, 0, lbn); 5932 inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep); 5933 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list); 5934 if (setup_allocindir_phase2(bp, ip, inodedep, aip, lbn)) 5935 panic("softdep_setup_allocindir_meta: Block already existed"); 5936 FREE_LOCK(ump); 5937 } 5938 5939 static void 5940 indirdep_complete(indirdep) 5941 struct indirdep *indirdep; 5942 { 5943 struct allocindir *aip; 5944 5945 LIST_REMOVE(indirdep, ir_next); 5946 indirdep->ir_state |= DEPCOMPLETE; 5947 5948 while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) { 5949 LIST_REMOVE(aip, ai_next); 5950 free_newblk(&aip->ai_block); 5951 } 5952 /* 5953 * If this indirdep is not attached to a buf it was simply waiting 5954 * on completion to clear completehd. free_indirdep() asserts 5955 * that nothing is dangling. 5956 */ 5957 if ((indirdep->ir_state & ONWORKLIST) == 0) 5958 free_indirdep(indirdep); 5959 } 5960 5961 static struct indirdep * 5962 indirdep_lookup(mp, ip, bp) 5963 struct mount *mp; 5964 struct inode *ip; 5965 struct buf *bp; 5966 { 5967 struct indirdep *indirdep, *newindirdep; 5968 struct newblk *newblk; 5969 struct ufsmount *ump; 5970 struct worklist *wk; 5971 struct fs *fs; 5972 ufs2_daddr_t blkno; 5973 5974 ump = VFSTOUFS(mp); 5975 LOCK_OWNED(ump); 5976 indirdep = NULL; 5977 newindirdep = NULL; 5978 fs = ump->um_fs; 5979 for (;;) { 5980 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 5981 if (wk->wk_type != D_INDIRDEP) 5982 continue; 5983 indirdep = WK_INDIRDEP(wk); 5984 break; 5985 } 5986 /* Found on the buffer worklist, no new structure to free. */ 5987 if (indirdep != NULL && newindirdep == NULL) 5988 return (indirdep); 5989 if (indirdep != NULL && newindirdep != NULL) 5990 panic("indirdep_lookup: simultaneous create"); 5991 /* None found on the buffer and a new structure is ready. */ 5992 if (indirdep == NULL && newindirdep != NULL) 5993 break; 5994 /* None found and no new structure available. */ 5995 FREE_LOCK(ump); 5996 newindirdep = malloc(sizeof(struct indirdep), 5997 M_INDIRDEP, M_SOFTDEP_FLAGS); 5998 workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp); 5999 newindirdep->ir_state = ATTACHED; 6000 if (I_IS_UFS1(ip)) 6001 newindirdep->ir_state |= UFS1FMT; 6002 TAILQ_INIT(&newindirdep->ir_trunc); 6003 newindirdep->ir_saveddata = NULL; 6004 LIST_INIT(&newindirdep->ir_deplisthd); 6005 LIST_INIT(&newindirdep->ir_donehd); 6006 LIST_INIT(&newindirdep->ir_writehd); 6007 LIST_INIT(&newindirdep->ir_completehd); 6008 if (bp->b_blkno == bp->b_lblkno) { 6009 ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp, 6010 NULL, NULL); 6011 bp->b_blkno = blkno; 6012 } 6013 newindirdep->ir_freeblks = NULL; 6014 newindirdep->ir_savebp = 6015 getblk(ump->um_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0); 6016 newindirdep->ir_bp = bp; 6017 BUF_KERNPROC(newindirdep->ir_savebp); 6018 bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount); 6019 ACQUIRE_LOCK(ump); 6020 } 6021 indirdep = newindirdep; 6022 WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list); 6023 /* 6024 * If the block is not yet allocated we don't set DEPCOMPLETE so 6025 * that we don't free dependencies until the pointers are valid. 6026 * This could search b_dep for D_ALLOCDIRECT/D_ALLOCINDIR rather 6027 * than using the hash. 6028 */ 6029 if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)) 6030 LIST_INSERT_HEAD(&newblk->nb_indirdeps, indirdep, ir_next); 6031 else 6032 indirdep->ir_state |= DEPCOMPLETE; 6033 return (indirdep); 6034 } 6035 6036 /* 6037 * Called to finish the allocation of the "aip" allocated 6038 * by one of the two routines above. 6039 */ 6040 static struct freefrag * 6041 setup_allocindir_phase2(bp, ip, inodedep, aip, lbn) 6042 struct buf *bp; /* in-memory copy of the indirect block */ 6043 struct inode *ip; /* inode for file being extended */ 6044 struct inodedep *inodedep; /* Inodedep for ip */ 6045 struct allocindir *aip; /* allocindir allocated by the above routines */ 6046 ufs_lbn_t lbn; /* Logical block number for this block. */ 6047 { 6048 struct fs *fs; 6049 struct indirdep *indirdep; 6050 struct allocindir *oldaip; 6051 struct freefrag *freefrag; 6052 struct mount *mp; 6053 struct ufsmount *ump; 6054 6055 mp = ITOVFS(ip); 6056 ump = VFSTOUFS(mp); 6057 LOCK_OWNED(ump); 6058 fs = ump->um_fs; 6059 if (bp->b_lblkno >= 0) 6060 panic("setup_allocindir_phase2: not indir blk"); 6061 KASSERT(aip->ai_offset >= 0 && aip->ai_offset < NINDIR(fs), 6062 ("setup_allocindir_phase2: Bad offset %d", aip->ai_offset)); 6063 indirdep = indirdep_lookup(mp, ip, bp); 6064 KASSERT(indirdep->ir_savebp != NULL, 6065 ("setup_allocindir_phase2 NULL ir_savebp")); 6066 aip->ai_indirdep = indirdep; 6067 /* 6068 * Check for an unwritten dependency for this indirect offset. If 6069 * there is, merge the old dependency into the new one. This happens 6070 * as a result of reallocblk only. 6071 */ 6072 freefrag = NULL; 6073 if (aip->ai_oldblkno != 0) { 6074 LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) { 6075 if (oldaip->ai_offset == aip->ai_offset) { 6076 freefrag = allocindir_merge(aip, oldaip); 6077 goto done; 6078 } 6079 } 6080 LIST_FOREACH(oldaip, &indirdep->ir_donehd, ai_next) { 6081 if (oldaip->ai_offset == aip->ai_offset) { 6082 freefrag = allocindir_merge(aip, oldaip); 6083 goto done; 6084 } 6085 } 6086 } 6087 done: 6088 LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next); 6089 return (freefrag); 6090 } 6091 6092 /* 6093 * Merge two allocindirs which refer to the same block. Move newblock 6094 * dependencies and setup the freefrags appropriately. 6095 */ 6096 static struct freefrag * 6097 allocindir_merge(aip, oldaip) 6098 struct allocindir *aip; 6099 struct allocindir *oldaip; 6100 { 6101 struct freefrag *freefrag; 6102 struct worklist *wk; 6103 6104 if (oldaip->ai_newblkno != aip->ai_oldblkno) 6105 panic("allocindir_merge: blkno"); 6106 aip->ai_oldblkno = oldaip->ai_oldblkno; 6107 freefrag = aip->ai_freefrag; 6108 aip->ai_freefrag = oldaip->ai_freefrag; 6109 oldaip->ai_freefrag = NULL; 6110 KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag")); 6111 /* 6112 * If we are tracking a new directory-block allocation, 6113 * move it from the old allocindir to the new allocindir. 6114 */ 6115 if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) { 6116 WORKLIST_REMOVE(wk); 6117 if (!LIST_EMPTY(&oldaip->ai_newdirblk)) 6118 panic("allocindir_merge: extra newdirblk"); 6119 WORKLIST_INSERT(&aip->ai_newdirblk, wk); 6120 } 6121 /* 6122 * We can skip journaling for this freefrag and just complete 6123 * any pending journal work for the allocindir that is being 6124 * removed after the freefrag completes. 6125 */ 6126 if (freefrag->ff_jdep) 6127 cancel_jfreefrag(WK_JFREEFRAG(freefrag->ff_jdep)); 6128 LIST_REMOVE(oldaip, ai_next); 6129 freefrag->ff_jdep = (struct worklist *)cancel_newblk(&oldaip->ai_block, 6130 &freefrag->ff_list, &freefrag->ff_jwork); 6131 free_newblk(&oldaip->ai_block); 6132 6133 return (freefrag); 6134 } 6135 6136 static inline void 6137 setup_freedirect(freeblks, ip, i, needj) 6138 struct freeblks *freeblks; 6139 struct inode *ip; 6140 int i; 6141 int needj; 6142 { 6143 struct ufsmount *ump; 6144 ufs2_daddr_t blkno; 6145 int frags; 6146 6147 blkno = DIP(ip, i_db[i]); 6148 if (blkno == 0) 6149 return; 6150 DIP_SET(ip, i_db[i], 0); 6151 ump = ITOUMP(ip); 6152 frags = sblksize(ump->um_fs, ip->i_size, i); 6153 frags = numfrags(ump->um_fs, frags); 6154 newfreework(ump, freeblks, NULL, i, blkno, frags, 0, needj); 6155 } 6156 6157 static inline void 6158 setup_freeext(freeblks, ip, i, needj) 6159 struct freeblks *freeblks; 6160 struct inode *ip; 6161 int i; 6162 int needj; 6163 { 6164 struct ufsmount *ump; 6165 ufs2_daddr_t blkno; 6166 int frags; 6167 6168 blkno = ip->i_din2->di_extb[i]; 6169 if (blkno == 0) 6170 return; 6171 ip->i_din2->di_extb[i] = 0; 6172 ump = ITOUMP(ip); 6173 frags = sblksize(ump->um_fs, ip->i_din2->di_extsize, i); 6174 frags = numfrags(ump->um_fs, frags); 6175 newfreework(ump, freeblks, NULL, -1 - i, blkno, frags, 0, needj); 6176 } 6177 6178 static inline void 6179 setup_freeindir(freeblks, ip, i, lbn, needj) 6180 struct freeblks *freeblks; 6181 struct inode *ip; 6182 int i; 6183 ufs_lbn_t lbn; 6184 int needj; 6185 { 6186 struct ufsmount *ump; 6187 ufs2_daddr_t blkno; 6188 6189 blkno = DIP(ip, i_ib[i]); 6190 if (blkno == 0) 6191 return; 6192 DIP_SET(ip, i_ib[i], 0); 6193 ump = ITOUMP(ip); 6194 newfreework(ump, freeblks, NULL, lbn, blkno, ump->um_fs->fs_frag, 6195 0, needj); 6196 } 6197 6198 static inline struct freeblks * 6199 newfreeblks(mp, ip) 6200 struct mount *mp; 6201 struct inode *ip; 6202 { 6203 struct freeblks *freeblks; 6204 6205 freeblks = malloc(sizeof(struct freeblks), 6206 M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO); 6207 workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp); 6208 LIST_INIT(&freeblks->fb_jblkdephd); 6209 LIST_INIT(&freeblks->fb_jwork); 6210 freeblks->fb_ref = 0; 6211 freeblks->fb_cgwait = 0; 6212 freeblks->fb_state = ATTACHED; 6213 freeblks->fb_uid = ip->i_uid; 6214 freeblks->fb_inum = ip->i_number; 6215 freeblks->fb_vtype = ITOV(ip)->v_type; 6216 freeblks->fb_modrev = DIP(ip, i_modrev); 6217 freeblks->fb_devvp = ITODEVVP(ip); 6218 freeblks->fb_chkcnt = 0; 6219 freeblks->fb_len = 0; 6220 6221 return (freeblks); 6222 } 6223 6224 static void 6225 trunc_indirdep(indirdep, freeblks, bp, off) 6226 struct indirdep *indirdep; 6227 struct freeblks *freeblks; 6228 struct buf *bp; 6229 int off; 6230 { 6231 struct allocindir *aip, *aipn; 6232 6233 /* 6234 * The first set of allocindirs won't be in savedbp. 6235 */ 6236 LIST_FOREACH_SAFE(aip, &indirdep->ir_deplisthd, ai_next, aipn) 6237 if (aip->ai_offset > off) 6238 cancel_allocindir(aip, bp, freeblks, 1); 6239 LIST_FOREACH_SAFE(aip, &indirdep->ir_donehd, ai_next, aipn) 6240 if (aip->ai_offset > off) 6241 cancel_allocindir(aip, bp, freeblks, 1); 6242 /* 6243 * These will exist in savedbp. 6244 */ 6245 LIST_FOREACH_SAFE(aip, &indirdep->ir_writehd, ai_next, aipn) 6246 if (aip->ai_offset > off) 6247 cancel_allocindir(aip, NULL, freeblks, 0); 6248 LIST_FOREACH_SAFE(aip, &indirdep->ir_completehd, ai_next, aipn) 6249 if (aip->ai_offset > off) 6250 cancel_allocindir(aip, NULL, freeblks, 0); 6251 } 6252 6253 /* 6254 * Follow the chain of indirects down to lastlbn creating a freework 6255 * structure for each. This will be used to start indir_trunc() at 6256 * the right offset and create the journal records for the parrtial 6257 * truncation. A second step will handle the truncated dependencies. 6258 */ 6259 static int 6260 setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno) 6261 struct freeblks *freeblks; 6262 struct inode *ip; 6263 ufs_lbn_t lbn; 6264 ufs_lbn_t lastlbn; 6265 ufs2_daddr_t blkno; 6266 { 6267 struct indirdep *indirdep; 6268 struct indirdep *indirn; 6269 struct freework *freework; 6270 struct newblk *newblk; 6271 struct mount *mp; 6272 struct ufsmount *ump; 6273 struct buf *bp; 6274 uint8_t *start; 6275 uint8_t *end; 6276 ufs_lbn_t lbnadd; 6277 int level; 6278 int error; 6279 int off; 6280 6281 6282 freework = NULL; 6283 if (blkno == 0) 6284 return (0); 6285 mp = freeblks->fb_list.wk_mp; 6286 ump = VFSTOUFS(mp); 6287 bp = getblk(ITOV(ip), lbn, mp->mnt_stat.f_iosize, 0, 0, 0); 6288 if ((bp->b_flags & B_CACHE) == 0) { 6289 bp->b_blkno = blkptrtodb(VFSTOUFS(mp), blkno); 6290 bp->b_iocmd = BIO_READ; 6291 bp->b_flags &= ~B_INVAL; 6292 bp->b_ioflags &= ~BIO_ERROR; 6293 vfs_busy_pages(bp, 0); 6294 bp->b_iooffset = dbtob(bp->b_blkno); 6295 bstrategy(bp); 6296 #ifdef RACCT 6297 if (racct_enable) { 6298 PROC_LOCK(curproc); 6299 racct_add_buf(curproc, bp, 0); 6300 PROC_UNLOCK(curproc); 6301 } 6302 #endif /* RACCT */ 6303 curthread->td_ru.ru_inblock++; 6304 error = bufwait(bp); 6305 if (error) { 6306 brelse(bp); 6307 return (error); 6308 } 6309 } 6310 level = lbn_level(lbn); 6311 lbnadd = lbn_offset(ump->um_fs, level); 6312 /* 6313 * Compute the offset of the last block we want to keep. Store 6314 * in the freework the first block we want to completely free. 6315 */ 6316 off = (lastlbn - -(lbn + level)) / lbnadd; 6317 if (off + 1 == NINDIR(ump->um_fs)) 6318 goto nowork; 6319 freework = newfreework(ump, freeblks, NULL, lbn, blkno, 0, off + 1, 0); 6320 /* 6321 * Link the freework into the indirdep. This will prevent any new 6322 * allocations from proceeding until we are finished with the 6323 * truncate and the block is written. 6324 */ 6325 ACQUIRE_LOCK(ump); 6326 indirdep = indirdep_lookup(mp, ip, bp); 6327 if (indirdep->ir_freeblks) 6328 panic("setup_trunc_indir: indirdep already truncated."); 6329 TAILQ_INSERT_TAIL(&indirdep->ir_trunc, freework, fw_next); 6330 freework->fw_indir = indirdep; 6331 /* 6332 * Cancel any allocindirs that will not make it to disk. 6333 * We have to do this for all copies of the indirdep that 6334 * live on this newblk. 6335 */ 6336 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 6337 if (newblk_lookup(mp, dbtofsb(ump->um_fs, bp->b_blkno), 0, 6338 &newblk) == 0) 6339 panic("setup_trunc_indir: lost block"); 6340 LIST_FOREACH(indirn, &newblk->nb_indirdeps, ir_next) 6341 trunc_indirdep(indirn, freeblks, bp, off); 6342 } else 6343 trunc_indirdep(indirdep, freeblks, bp, off); 6344 FREE_LOCK(ump); 6345 /* 6346 * Creation is protected by the buf lock. The saveddata is only 6347 * needed if a full truncation follows a partial truncation but it 6348 * is difficult to allocate in that case so we fetch it anyway. 6349 */ 6350 if (indirdep->ir_saveddata == NULL) 6351 indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP, 6352 M_SOFTDEP_FLAGS); 6353 nowork: 6354 /* Fetch the blkno of the child and the zero start offset. */ 6355 if (I_IS_UFS1(ip)) { 6356 blkno = ((ufs1_daddr_t *)bp->b_data)[off]; 6357 start = (uint8_t *)&((ufs1_daddr_t *)bp->b_data)[off+1]; 6358 } else { 6359 blkno = ((ufs2_daddr_t *)bp->b_data)[off]; 6360 start = (uint8_t *)&((ufs2_daddr_t *)bp->b_data)[off+1]; 6361 } 6362 if (freework) { 6363 /* Zero the truncated pointers. */ 6364 end = bp->b_data + bp->b_bcount; 6365 bzero(start, end - start); 6366 bdwrite(bp); 6367 } else 6368 bqrelse(bp); 6369 if (level == 0) 6370 return (0); 6371 lbn++; /* adjust level */ 6372 lbn -= (off * lbnadd); 6373 return setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno); 6374 } 6375 6376 /* 6377 * Complete the partial truncation of an indirect block setup by 6378 * setup_trunc_indir(). This zeros the truncated pointers in the saved 6379 * copy and writes them to disk before the freeblks is allowed to complete. 6380 */ 6381 static void 6382 complete_trunc_indir(freework) 6383 struct freework *freework; 6384 { 6385 struct freework *fwn; 6386 struct indirdep *indirdep; 6387 struct ufsmount *ump; 6388 struct buf *bp; 6389 uintptr_t start; 6390 int count; 6391 6392 ump = VFSTOUFS(freework->fw_list.wk_mp); 6393 LOCK_OWNED(ump); 6394 indirdep = freework->fw_indir; 6395 for (;;) { 6396 bp = indirdep->ir_bp; 6397 /* See if the block was discarded. */ 6398 if (bp == NULL) 6399 break; 6400 /* Inline part of getdirtybuf(). We dont want bremfree. */ 6401 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0) 6402 break; 6403 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 6404 LOCK_PTR(ump)) == 0) 6405 BUF_UNLOCK(bp); 6406 ACQUIRE_LOCK(ump); 6407 } 6408 freework->fw_state |= DEPCOMPLETE; 6409 TAILQ_REMOVE(&indirdep->ir_trunc, freework, fw_next); 6410 /* 6411 * Zero the pointers in the saved copy. 6412 */ 6413 if (indirdep->ir_state & UFS1FMT) 6414 start = sizeof(ufs1_daddr_t); 6415 else 6416 start = sizeof(ufs2_daddr_t); 6417 start *= freework->fw_start; 6418 count = indirdep->ir_savebp->b_bcount - start; 6419 start += (uintptr_t)indirdep->ir_savebp->b_data; 6420 bzero((char *)start, count); 6421 /* 6422 * We need to start the next truncation in the list if it has not 6423 * been started yet. 6424 */ 6425 fwn = TAILQ_FIRST(&indirdep->ir_trunc); 6426 if (fwn != NULL) { 6427 if (fwn->fw_freeblks == indirdep->ir_freeblks) 6428 TAILQ_REMOVE(&indirdep->ir_trunc, fwn, fw_next); 6429 if ((fwn->fw_state & ONWORKLIST) == 0) 6430 freework_enqueue(fwn); 6431 } 6432 /* 6433 * If bp is NULL the block was fully truncated, restore 6434 * the saved block list otherwise free it if it is no 6435 * longer needed. 6436 */ 6437 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 6438 if (bp == NULL) 6439 bcopy(indirdep->ir_saveddata, 6440 indirdep->ir_savebp->b_data, 6441 indirdep->ir_savebp->b_bcount); 6442 free(indirdep->ir_saveddata, M_INDIRDEP); 6443 indirdep->ir_saveddata = NULL; 6444 } 6445 /* 6446 * When bp is NULL there is a full truncation pending. We 6447 * must wait for this full truncation to be journaled before 6448 * we can release this freework because the disk pointers will 6449 * never be written as zero. 6450 */ 6451 if (bp == NULL) { 6452 if (LIST_EMPTY(&indirdep->ir_freeblks->fb_jblkdephd)) 6453 handle_written_freework(freework); 6454 else 6455 WORKLIST_INSERT(&indirdep->ir_freeblks->fb_freeworkhd, 6456 &freework->fw_list); 6457 } else { 6458 /* Complete when the real copy is written. */ 6459 WORKLIST_INSERT(&bp->b_dep, &freework->fw_list); 6460 BUF_UNLOCK(bp); 6461 } 6462 } 6463 6464 /* 6465 * Calculate the number of blocks we are going to release where datablocks 6466 * is the current total and length is the new file size. 6467 */ 6468 static ufs2_daddr_t 6469 blkcount(fs, datablocks, length) 6470 struct fs *fs; 6471 ufs2_daddr_t datablocks; 6472 off_t length; 6473 { 6474 off_t totblks, numblks; 6475 6476 totblks = 0; 6477 numblks = howmany(length, fs->fs_bsize); 6478 if (numblks <= UFS_NDADDR) { 6479 totblks = howmany(length, fs->fs_fsize); 6480 goto out; 6481 } 6482 totblks = blkstofrags(fs, numblks); 6483 numblks -= UFS_NDADDR; 6484 /* 6485 * Count all single, then double, then triple indirects required. 6486 * Subtracting one indirects worth of blocks for each pass 6487 * acknowledges one of each pointed to by the inode. 6488 */ 6489 for (;;) { 6490 totblks += blkstofrags(fs, howmany(numblks, NINDIR(fs))); 6491 numblks -= NINDIR(fs); 6492 if (numblks <= 0) 6493 break; 6494 numblks = howmany(numblks, NINDIR(fs)); 6495 } 6496 out: 6497 totblks = fsbtodb(fs, totblks); 6498 /* 6499 * Handle sparse files. We can't reclaim more blocks than the inode 6500 * references. We will correct it later in handle_complete_freeblks() 6501 * when we know the real count. 6502 */ 6503 if (totblks > datablocks) 6504 return (0); 6505 return (datablocks - totblks); 6506 } 6507 6508 /* 6509 * Handle freeblocks for journaled softupdate filesystems. 6510 * 6511 * Contrary to normal softupdates, we must preserve the block pointers in 6512 * indirects until their subordinates are free. This is to avoid journaling 6513 * every block that is freed which may consume more space than the journal 6514 * itself. The recovery program will see the free block journals at the 6515 * base of the truncated area and traverse them to reclaim space. The 6516 * pointers in the inode may be cleared immediately after the journal 6517 * records are written because each direct and indirect pointer in the 6518 * inode is recorded in a journal. This permits full truncation to proceed 6519 * asynchronously. The write order is journal -> inode -> cgs -> indirects. 6520 * 6521 * The algorithm is as follows: 6522 * 1) Traverse the in-memory state and create journal entries to release 6523 * the relevant blocks and full indirect trees. 6524 * 2) Traverse the indirect block chain adding partial truncation freework 6525 * records to indirects in the path to lastlbn. The freework will 6526 * prevent new allocation dependencies from being satisfied in this 6527 * indirect until the truncation completes. 6528 * 3) Read and lock the inode block, performing an update with the new size 6529 * and pointers. This prevents truncated data from becoming valid on 6530 * disk through step 4. 6531 * 4) Reap unsatisfied dependencies that are beyond the truncated area, 6532 * eliminate journal work for those records that do not require it. 6533 * 5) Schedule the journal records to be written followed by the inode block. 6534 * 6) Allocate any necessary frags for the end of file. 6535 * 7) Zero any partially truncated blocks. 6536 * 6537 * From this truncation proceeds asynchronously using the freework and 6538 * indir_trunc machinery. The file will not be extended again into a 6539 * partially truncated indirect block until all work is completed but 6540 * the normal dependency mechanism ensures that it is rolled back/forward 6541 * as appropriate. Further truncation may occur without delay and is 6542 * serialized in indir_trunc(). 6543 */ 6544 void 6545 softdep_journal_freeblocks(ip, cred, length, flags) 6546 struct inode *ip; /* The inode whose length is to be reduced */ 6547 struct ucred *cred; 6548 off_t length; /* The new length for the file */ 6549 int flags; /* IO_EXT and/or IO_NORMAL */ 6550 { 6551 struct freeblks *freeblks, *fbn; 6552 struct worklist *wk, *wkn; 6553 struct inodedep *inodedep; 6554 struct jblkdep *jblkdep; 6555 struct allocdirect *adp, *adpn; 6556 struct ufsmount *ump; 6557 struct fs *fs; 6558 struct buf *bp; 6559 struct vnode *vp; 6560 struct mount *mp; 6561 ufs2_daddr_t extblocks, datablocks; 6562 ufs_lbn_t tmpval, lbn, lastlbn; 6563 int frags, lastoff, iboff, allocblock, needj, error, i; 6564 6565 ump = ITOUMP(ip); 6566 mp = UFSTOVFS(ump); 6567 fs = ump->um_fs; 6568 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 6569 ("softdep_journal_freeblocks called on non-softdep filesystem")); 6570 vp = ITOV(ip); 6571 needj = 1; 6572 iboff = -1; 6573 allocblock = 0; 6574 extblocks = 0; 6575 datablocks = 0; 6576 frags = 0; 6577 freeblks = newfreeblks(mp, ip); 6578 ACQUIRE_LOCK(ump); 6579 /* 6580 * If we're truncating a removed file that will never be written 6581 * we don't need to journal the block frees. The canceled journals 6582 * for the allocations will suffice. 6583 */ 6584 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 6585 if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED && 6586 length == 0) 6587 needj = 0; 6588 CTR3(KTR_SUJ, "softdep_journal_freeblks: ip %d length %ld needj %d", 6589 ip->i_number, length, needj); 6590 FREE_LOCK(ump); 6591 /* 6592 * Calculate the lbn that we are truncating to. This results in -1 6593 * if we're truncating the 0 bytes. So it is the last lbn we want 6594 * to keep, not the first lbn we want to truncate. 6595 */ 6596 lastlbn = lblkno(fs, length + fs->fs_bsize - 1) - 1; 6597 lastoff = blkoff(fs, length); 6598 /* 6599 * Compute frags we are keeping in lastlbn. 0 means all. 6600 */ 6601 if (lastlbn >= 0 && lastlbn < UFS_NDADDR) { 6602 frags = fragroundup(fs, lastoff); 6603 /* adp offset of last valid allocdirect. */ 6604 iboff = lastlbn; 6605 } else if (lastlbn > 0) 6606 iboff = UFS_NDADDR; 6607 if (fs->fs_magic == FS_UFS2_MAGIC) 6608 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 6609 /* 6610 * Handle normal data blocks and indirects. This section saves 6611 * values used after the inode update to complete frag and indirect 6612 * truncation. 6613 */ 6614 if ((flags & IO_NORMAL) != 0) { 6615 /* 6616 * Handle truncation of whole direct and indirect blocks. 6617 */ 6618 for (i = iboff + 1; i < UFS_NDADDR; i++) 6619 setup_freedirect(freeblks, ip, i, needj); 6620 for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR; 6621 i < UFS_NIADDR; 6622 i++, lbn += tmpval, tmpval *= NINDIR(fs)) { 6623 /* Release a whole indirect tree. */ 6624 if (lbn > lastlbn) { 6625 setup_freeindir(freeblks, ip, i, -lbn -i, 6626 needj); 6627 continue; 6628 } 6629 iboff = i + UFS_NDADDR; 6630 /* 6631 * Traverse partially truncated indirect tree. 6632 */ 6633 if (lbn <= lastlbn && lbn + tmpval - 1 > lastlbn) 6634 setup_trunc_indir(freeblks, ip, -lbn - i, 6635 lastlbn, DIP(ip, i_ib[i])); 6636 } 6637 /* 6638 * Handle partial truncation to a frag boundary. 6639 */ 6640 if (frags) { 6641 ufs2_daddr_t blkno; 6642 long oldfrags; 6643 6644 oldfrags = blksize(fs, ip, lastlbn); 6645 blkno = DIP(ip, i_db[lastlbn]); 6646 if (blkno && oldfrags != frags) { 6647 oldfrags -= frags; 6648 oldfrags = numfrags(fs, oldfrags); 6649 blkno += numfrags(fs, frags); 6650 newfreework(ump, freeblks, NULL, lastlbn, 6651 blkno, oldfrags, 0, needj); 6652 if (needj) 6653 adjust_newfreework(freeblks, 6654 numfrags(fs, frags)); 6655 } else if (blkno == 0) 6656 allocblock = 1; 6657 } 6658 /* 6659 * Add a journal record for partial truncate if we are 6660 * handling indirect blocks. Non-indirects need no extra 6661 * journaling. 6662 */ 6663 if (length != 0 && lastlbn >= UFS_NDADDR) { 6664 ip->i_flag |= IN_TRUNCATED; 6665 newjtrunc(freeblks, length, 0); 6666 } 6667 ip->i_size = length; 6668 DIP_SET(ip, i_size, ip->i_size); 6669 datablocks = DIP(ip, i_blocks) - extblocks; 6670 if (length != 0) 6671 datablocks = blkcount(fs, datablocks, length); 6672 freeblks->fb_len = length; 6673 } 6674 if ((flags & IO_EXT) != 0) { 6675 for (i = 0; i < UFS_NXADDR; i++) 6676 setup_freeext(freeblks, ip, i, needj); 6677 ip->i_din2->di_extsize = 0; 6678 datablocks += extblocks; 6679 } 6680 #ifdef QUOTA 6681 /* Reference the quotas in case the block count is wrong in the end. */ 6682 quotaref(vp, freeblks->fb_quota); 6683 (void) chkdq(ip, -datablocks, NOCRED, FORCE); 6684 #endif 6685 freeblks->fb_chkcnt = -datablocks; 6686 UFS_LOCK(ump); 6687 fs->fs_pendingblocks += datablocks; 6688 UFS_UNLOCK(ump); 6689 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks); 6690 /* 6691 * Handle truncation of incomplete alloc direct dependencies. We 6692 * hold the inode block locked to prevent incomplete dependencies 6693 * from reaching the disk while we are eliminating those that 6694 * have been truncated. This is a partially inlined ffs_update(). 6695 */ 6696 ufs_itimes(vp); 6697 ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED); 6698 error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 6699 (int)fs->fs_bsize, cred, &bp); 6700 if (error) { 6701 brelse(bp); 6702 softdep_error("softdep_journal_freeblocks", error); 6703 return; 6704 } 6705 if (bp->b_bufsize == fs->fs_bsize) 6706 bp->b_flags |= B_CLUSTEROK; 6707 softdep_update_inodeblock(ip, bp, 0); 6708 if (ump->um_fstype == UFS1) { 6709 *((struct ufs1_dinode *)bp->b_data + 6710 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1; 6711 } else { 6712 ffs_update_dinode_ckhash(fs, ip->i_din2); 6713 *((struct ufs2_dinode *)bp->b_data + 6714 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2; 6715 } 6716 ACQUIRE_LOCK(ump); 6717 (void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 6718 if ((inodedep->id_state & IOSTARTED) != 0) 6719 panic("softdep_setup_freeblocks: inode busy"); 6720 /* 6721 * Add the freeblks structure to the list of operations that 6722 * must await the zero'ed inode being written to disk. If we 6723 * still have a bitmap dependency (needj), then the inode 6724 * has never been written to disk, so we can process the 6725 * freeblks below once we have deleted the dependencies. 6726 */ 6727 if (needj) 6728 WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list); 6729 else 6730 freeblks->fb_state |= COMPLETE; 6731 if ((flags & IO_NORMAL) != 0) { 6732 TAILQ_FOREACH_SAFE(adp, &inodedep->id_inoupdt, ad_next, adpn) { 6733 if (adp->ad_offset > iboff) 6734 cancel_allocdirect(&inodedep->id_inoupdt, adp, 6735 freeblks); 6736 /* 6737 * Truncate the allocdirect. We could eliminate 6738 * or modify journal records as well. 6739 */ 6740 else if (adp->ad_offset == iboff && frags) 6741 adp->ad_newsize = frags; 6742 } 6743 } 6744 if ((flags & IO_EXT) != 0) 6745 while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 6746 cancel_allocdirect(&inodedep->id_extupdt, adp, 6747 freeblks); 6748 /* 6749 * Scan the bufwait list for newblock dependencies that will never 6750 * make it to disk. 6751 */ 6752 LIST_FOREACH_SAFE(wk, &inodedep->id_bufwait, wk_list, wkn) { 6753 if (wk->wk_type != D_ALLOCDIRECT) 6754 continue; 6755 adp = WK_ALLOCDIRECT(wk); 6756 if (((flags & IO_NORMAL) != 0 && (adp->ad_offset > iboff)) || 6757 ((flags & IO_EXT) != 0 && (adp->ad_state & EXTDATA))) { 6758 cancel_jfreeblk(freeblks, adp->ad_newblkno); 6759 cancel_newblk(WK_NEWBLK(wk), NULL, &freeblks->fb_jwork); 6760 WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk); 6761 } 6762 } 6763 /* 6764 * Add journal work. 6765 */ 6766 LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) 6767 add_to_journal(&jblkdep->jb_list); 6768 FREE_LOCK(ump); 6769 bdwrite(bp); 6770 /* 6771 * Truncate dependency structures beyond length. 6772 */ 6773 trunc_dependencies(ip, freeblks, lastlbn, frags, flags); 6774 /* 6775 * This is only set when we need to allocate a fragment because 6776 * none existed at the end of a frag-sized file. It handles only 6777 * allocating a new, zero filled block. 6778 */ 6779 if (allocblock) { 6780 ip->i_size = length - lastoff; 6781 DIP_SET(ip, i_size, ip->i_size); 6782 error = UFS_BALLOC(vp, length - 1, 1, cred, BA_CLRBUF, &bp); 6783 if (error != 0) { 6784 softdep_error("softdep_journal_freeblks", error); 6785 return; 6786 } 6787 ip->i_size = length; 6788 DIP_SET(ip, i_size, length); 6789 ip->i_flag |= IN_CHANGE | IN_UPDATE; 6790 allocbuf(bp, frags); 6791 ffs_update(vp, 0); 6792 bawrite(bp); 6793 } else if (lastoff != 0 && vp->v_type != VDIR) { 6794 int size; 6795 6796 /* 6797 * Zero the end of a truncated frag or block. 6798 */ 6799 size = sblksize(fs, length, lastlbn); 6800 error = bread(vp, lastlbn, size, cred, &bp); 6801 if (error) { 6802 softdep_error("softdep_journal_freeblks", error); 6803 return; 6804 } 6805 bzero((char *)bp->b_data + lastoff, size - lastoff); 6806 bawrite(bp); 6807 6808 } 6809 ACQUIRE_LOCK(ump); 6810 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 6811 TAILQ_INSERT_TAIL(&inodedep->id_freeblklst, freeblks, fb_next); 6812 freeblks->fb_state |= DEPCOMPLETE | ONDEPLIST; 6813 /* 6814 * We zero earlier truncations so they don't erroneously 6815 * update i_blocks. 6816 */ 6817 if (freeblks->fb_len == 0 && (flags & IO_NORMAL) != 0) 6818 TAILQ_FOREACH(fbn, &inodedep->id_freeblklst, fb_next) 6819 fbn->fb_len = 0; 6820 if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE && 6821 LIST_EMPTY(&freeblks->fb_jblkdephd)) 6822 freeblks->fb_state |= INPROGRESS; 6823 else 6824 freeblks = NULL; 6825 FREE_LOCK(ump); 6826 if (freeblks) 6827 handle_workitem_freeblocks(freeblks, 0); 6828 trunc_pages(ip, length, extblocks, flags); 6829 6830 } 6831 6832 /* 6833 * Flush a JOP_SYNC to the journal. 6834 */ 6835 void 6836 softdep_journal_fsync(ip) 6837 struct inode *ip; 6838 { 6839 struct jfsync *jfsync; 6840 struct ufsmount *ump; 6841 6842 ump = ITOUMP(ip); 6843 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 6844 ("softdep_journal_fsync called on non-softdep filesystem")); 6845 if ((ip->i_flag & IN_TRUNCATED) == 0) 6846 return; 6847 ip->i_flag &= ~IN_TRUNCATED; 6848 jfsync = malloc(sizeof(*jfsync), M_JFSYNC, M_SOFTDEP_FLAGS | M_ZERO); 6849 workitem_alloc(&jfsync->jfs_list, D_JFSYNC, UFSTOVFS(ump)); 6850 jfsync->jfs_size = ip->i_size; 6851 jfsync->jfs_ino = ip->i_number; 6852 ACQUIRE_LOCK(ump); 6853 add_to_journal(&jfsync->jfs_list); 6854 jwait(&jfsync->jfs_list, MNT_WAIT); 6855 FREE_LOCK(ump); 6856 } 6857 6858 /* 6859 * Block de-allocation dependencies. 6860 * 6861 * When blocks are de-allocated, the on-disk pointers must be nullified before 6862 * the blocks are made available for use by other files. (The true 6863 * requirement is that old pointers must be nullified before new on-disk 6864 * pointers are set. We chose this slightly more stringent requirement to 6865 * reduce complexity.) Our implementation handles this dependency by updating 6866 * the inode (or indirect block) appropriately but delaying the actual block 6867 * de-allocation (i.e., freemap and free space count manipulation) until 6868 * after the updated versions reach stable storage. After the disk is 6869 * updated, the blocks can be safely de-allocated whenever it is convenient. 6870 * This implementation handles only the common case of reducing a file's 6871 * length to zero. Other cases are handled by the conventional synchronous 6872 * write approach. 6873 * 6874 * The ffs implementation with which we worked double-checks 6875 * the state of the block pointers and file size as it reduces 6876 * a file's length. Some of this code is replicated here in our 6877 * soft updates implementation. The freeblks->fb_chkcnt field is 6878 * used to transfer a part of this information to the procedure 6879 * that eventually de-allocates the blocks. 6880 * 6881 * This routine should be called from the routine that shortens 6882 * a file's length, before the inode's size or block pointers 6883 * are modified. It will save the block pointer information for 6884 * later release and zero the inode so that the calling routine 6885 * can release it. 6886 */ 6887 void 6888 softdep_setup_freeblocks(ip, length, flags) 6889 struct inode *ip; /* The inode whose length is to be reduced */ 6890 off_t length; /* The new length for the file */ 6891 int flags; /* IO_EXT and/or IO_NORMAL */ 6892 { 6893 struct ufs1_dinode *dp1; 6894 struct ufs2_dinode *dp2; 6895 struct freeblks *freeblks; 6896 struct inodedep *inodedep; 6897 struct allocdirect *adp; 6898 struct ufsmount *ump; 6899 struct buf *bp; 6900 struct fs *fs; 6901 ufs2_daddr_t extblocks, datablocks; 6902 struct mount *mp; 6903 int i, delay, error; 6904 ufs_lbn_t tmpval; 6905 ufs_lbn_t lbn; 6906 6907 ump = ITOUMP(ip); 6908 mp = UFSTOVFS(ump); 6909 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 6910 ("softdep_setup_freeblocks called on non-softdep filesystem")); 6911 CTR2(KTR_SUJ, "softdep_setup_freeblks: ip %d length %ld", 6912 ip->i_number, length); 6913 KASSERT(length == 0, ("softdep_setup_freeblocks: non-zero length")); 6914 fs = ump->um_fs; 6915 if ((error = bread(ump->um_devvp, 6916 fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 6917 (int)fs->fs_bsize, NOCRED, &bp)) != 0) { 6918 brelse(bp); 6919 softdep_error("softdep_setup_freeblocks", error); 6920 return; 6921 } 6922 freeblks = newfreeblks(mp, ip); 6923 extblocks = 0; 6924 datablocks = 0; 6925 if (fs->fs_magic == FS_UFS2_MAGIC) 6926 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 6927 if ((flags & IO_NORMAL) != 0) { 6928 for (i = 0; i < UFS_NDADDR; i++) 6929 setup_freedirect(freeblks, ip, i, 0); 6930 for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR; 6931 i < UFS_NIADDR; 6932 i++, lbn += tmpval, tmpval *= NINDIR(fs)) 6933 setup_freeindir(freeblks, ip, i, -lbn -i, 0); 6934 ip->i_size = 0; 6935 DIP_SET(ip, i_size, 0); 6936 datablocks = DIP(ip, i_blocks) - extblocks; 6937 } 6938 if ((flags & IO_EXT) != 0) { 6939 for (i = 0; i < UFS_NXADDR; i++) 6940 setup_freeext(freeblks, ip, i, 0); 6941 ip->i_din2->di_extsize = 0; 6942 datablocks += extblocks; 6943 } 6944 #ifdef QUOTA 6945 /* Reference the quotas in case the block count is wrong in the end. */ 6946 quotaref(ITOV(ip), freeblks->fb_quota); 6947 (void) chkdq(ip, -datablocks, NOCRED, FORCE); 6948 #endif 6949 freeblks->fb_chkcnt = -datablocks; 6950 UFS_LOCK(ump); 6951 fs->fs_pendingblocks += datablocks; 6952 UFS_UNLOCK(ump); 6953 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks); 6954 /* 6955 * Push the zero'ed inode to its disk buffer so that we are free 6956 * to delete its dependencies below. Once the dependencies are gone 6957 * the buffer can be safely released. 6958 */ 6959 if (ump->um_fstype == UFS1) { 6960 dp1 = ((struct ufs1_dinode *)bp->b_data + 6961 ino_to_fsbo(fs, ip->i_number)); 6962 ip->i_din1->di_freelink = dp1->di_freelink; 6963 *dp1 = *ip->i_din1; 6964 } else { 6965 dp2 = ((struct ufs2_dinode *)bp->b_data + 6966 ino_to_fsbo(fs, ip->i_number)); 6967 ip->i_din2->di_freelink = dp2->di_freelink; 6968 ffs_update_dinode_ckhash(fs, ip->i_din2); 6969 *dp2 = *ip->i_din2; 6970 } 6971 /* 6972 * Find and eliminate any inode dependencies. 6973 */ 6974 ACQUIRE_LOCK(ump); 6975 (void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 6976 if ((inodedep->id_state & IOSTARTED) != 0) 6977 panic("softdep_setup_freeblocks: inode busy"); 6978 /* 6979 * Add the freeblks structure to the list of operations that 6980 * must await the zero'ed inode being written to disk. If we 6981 * still have a bitmap dependency (delay == 0), then the inode 6982 * has never been written to disk, so we can process the 6983 * freeblks below once we have deleted the dependencies. 6984 */ 6985 delay = (inodedep->id_state & DEPCOMPLETE); 6986 if (delay) 6987 WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list); 6988 else 6989 freeblks->fb_state |= COMPLETE; 6990 /* 6991 * Because the file length has been truncated to zero, any 6992 * pending block allocation dependency structures associated 6993 * with this inode are obsolete and can simply be de-allocated. 6994 * We must first merge the two dependency lists to get rid of 6995 * any duplicate freefrag structures, then purge the merged list. 6996 * If we still have a bitmap dependency, then the inode has never 6997 * been written to disk, so we can free any fragments without delay. 6998 */ 6999 if (flags & IO_NORMAL) { 7000 merge_inode_lists(&inodedep->id_newinoupdt, 7001 &inodedep->id_inoupdt); 7002 while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL) 7003 cancel_allocdirect(&inodedep->id_inoupdt, adp, 7004 freeblks); 7005 } 7006 if (flags & IO_EXT) { 7007 merge_inode_lists(&inodedep->id_newextupdt, 7008 &inodedep->id_extupdt); 7009 while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 7010 cancel_allocdirect(&inodedep->id_extupdt, adp, 7011 freeblks); 7012 } 7013 FREE_LOCK(ump); 7014 bdwrite(bp); 7015 trunc_dependencies(ip, freeblks, -1, 0, flags); 7016 ACQUIRE_LOCK(ump); 7017 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) 7018 (void) free_inodedep(inodedep); 7019 freeblks->fb_state |= DEPCOMPLETE; 7020 /* 7021 * If the inode with zeroed block pointers is now on disk 7022 * we can start freeing blocks. 7023 */ 7024 if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE) 7025 freeblks->fb_state |= INPROGRESS; 7026 else 7027 freeblks = NULL; 7028 FREE_LOCK(ump); 7029 if (freeblks) 7030 handle_workitem_freeblocks(freeblks, 0); 7031 trunc_pages(ip, length, extblocks, flags); 7032 } 7033 7034 /* 7035 * Eliminate pages from the page cache that back parts of this inode and 7036 * adjust the vnode pager's idea of our size. This prevents stale data 7037 * from hanging around in the page cache. 7038 */ 7039 static void 7040 trunc_pages(ip, length, extblocks, flags) 7041 struct inode *ip; 7042 off_t length; 7043 ufs2_daddr_t extblocks; 7044 int flags; 7045 { 7046 struct vnode *vp; 7047 struct fs *fs; 7048 ufs_lbn_t lbn; 7049 off_t end, extend; 7050 7051 vp = ITOV(ip); 7052 fs = ITOFS(ip); 7053 extend = OFF_TO_IDX(lblktosize(fs, -extblocks)); 7054 if ((flags & IO_EXT) != 0) 7055 vn_pages_remove(vp, extend, 0); 7056 if ((flags & IO_NORMAL) == 0) 7057 return; 7058 BO_LOCK(&vp->v_bufobj); 7059 drain_output(vp); 7060 BO_UNLOCK(&vp->v_bufobj); 7061 /* 7062 * The vnode pager eliminates file pages we eliminate indirects 7063 * below. 7064 */ 7065 vnode_pager_setsize(vp, length); 7066 /* 7067 * Calculate the end based on the last indirect we want to keep. If 7068 * the block extends into indirects we can just use the negative of 7069 * its lbn. Doubles and triples exist at lower numbers so we must 7070 * be careful not to remove those, if they exist. double and triple 7071 * indirect lbns do not overlap with others so it is not important 7072 * to verify how many levels are required. 7073 */ 7074 lbn = lblkno(fs, length); 7075 if (lbn >= UFS_NDADDR) { 7076 /* Calculate the virtual lbn of the triple indirect. */ 7077 lbn = -lbn - (UFS_NIADDR - 1); 7078 end = OFF_TO_IDX(lblktosize(fs, lbn)); 7079 } else 7080 end = extend; 7081 vn_pages_remove(vp, OFF_TO_IDX(OFF_MAX), end); 7082 } 7083 7084 /* 7085 * See if the buf bp is in the range eliminated by truncation. 7086 */ 7087 static int 7088 trunc_check_buf(bp, blkoffp, lastlbn, lastoff, flags) 7089 struct buf *bp; 7090 int *blkoffp; 7091 ufs_lbn_t lastlbn; 7092 int lastoff; 7093 int flags; 7094 { 7095 ufs_lbn_t lbn; 7096 7097 *blkoffp = 0; 7098 /* Only match ext/normal blocks as appropriate. */ 7099 if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) || 7100 ((flags & IO_NORMAL) == 0 && (bp->b_xflags & BX_ALTDATA) == 0)) 7101 return (0); 7102 /* ALTDATA is always a full truncation. */ 7103 if ((bp->b_xflags & BX_ALTDATA) != 0) 7104 return (1); 7105 /* -1 is full truncation. */ 7106 if (lastlbn == -1) 7107 return (1); 7108 /* 7109 * If this is a partial truncate we only want those 7110 * blocks and indirect blocks that cover the range 7111 * we're after. 7112 */ 7113 lbn = bp->b_lblkno; 7114 if (lbn < 0) 7115 lbn = -(lbn + lbn_level(lbn)); 7116 if (lbn < lastlbn) 7117 return (0); 7118 /* Here we only truncate lblkno if it's partial. */ 7119 if (lbn == lastlbn) { 7120 if (lastoff == 0) 7121 return (0); 7122 *blkoffp = lastoff; 7123 } 7124 return (1); 7125 } 7126 7127 /* 7128 * Eliminate any dependencies that exist in memory beyond lblkno:off 7129 */ 7130 static void 7131 trunc_dependencies(ip, freeblks, lastlbn, lastoff, flags) 7132 struct inode *ip; 7133 struct freeblks *freeblks; 7134 ufs_lbn_t lastlbn; 7135 int lastoff; 7136 int flags; 7137 { 7138 struct bufobj *bo; 7139 struct vnode *vp; 7140 struct buf *bp; 7141 int blkoff; 7142 7143 /* 7144 * We must wait for any I/O in progress to finish so that 7145 * all potential buffers on the dirty list will be visible. 7146 * Once they are all there, walk the list and get rid of 7147 * any dependencies. 7148 */ 7149 vp = ITOV(ip); 7150 bo = &vp->v_bufobj; 7151 BO_LOCK(bo); 7152 drain_output(vp); 7153 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) 7154 bp->b_vflags &= ~BV_SCANNED; 7155 restart: 7156 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) { 7157 if (bp->b_vflags & BV_SCANNED) 7158 continue; 7159 if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) { 7160 bp->b_vflags |= BV_SCANNED; 7161 continue; 7162 } 7163 KASSERT(bp->b_bufobj == bo, ("Wrong object in buffer")); 7164 if ((bp = getdirtybuf(bp, BO_LOCKPTR(bo), MNT_WAIT)) == NULL) 7165 goto restart; 7166 BO_UNLOCK(bo); 7167 if (deallocate_dependencies(bp, freeblks, blkoff)) 7168 bqrelse(bp); 7169 else 7170 brelse(bp); 7171 BO_LOCK(bo); 7172 goto restart; 7173 } 7174 /* 7175 * Now do the work of vtruncbuf while also matching indirect blocks. 7176 */ 7177 TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) 7178 bp->b_vflags &= ~BV_SCANNED; 7179 cleanrestart: 7180 TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) { 7181 if (bp->b_vflags & BV_SCANNED) 7182 continue; 7183 if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) { 7184 bp->b_vflags |= BV_SCANNED; 7185 continue; 7186 } 7187 if (BUF_LOCK(bp, 7188 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 7189 BO_LOCKPTR(bo)) == ENOLCK) { 7190 BO_LOCK(bo); 7191 goto cleanrestart; 7192 } 7193 bp->b_vflags |= BV_SCANNED; 7194 bremfree(bp); 7195 if (blkoff != 0) { 7196 allocbuf(bp, blkoff); 7197 bqrelse(bp); 7198 } else { 7199 bp->b_flags |= B_INVAL | B_NOCACHE | B_RELBUF; 7200 brelse(bp); 7201 } 7202 BO_LOCK(bo); 7203 goto cleanrestart; 7204 } 7205 drain_output(vp); 7206 BO_UNLOCK(bo); 7207 } 7208 7209 static int 7210 cancel_pagedep(pagedep, freeblks, blkoff) 7211 struct pagedep *pagedep; 7212 struct freeblks *freeblks; 7213 int blkoff; 7214 { 7215 struct jremref *jremref; 7216 struct jmvref *jmvref; 7217 struct dirrem *dirrem, *tmp; 7218 int i; 7219 7220 /* 7221 * Copy any directory remove dependencies to the list 7222 * to be processed after the freeblks proceeds. If 7223 * directory entry never made it to disk they 7224 * can be dumped directly onto the work list. 7225 */ 7226 LIST_FOREACH_SAFE(dirrem, &pagedep->pd_dirremhd, dm_next, tmp) { 7227 /* Skip this directory removal if it is intended to remain. */ 7228 if (dirrem->dm_offset < blkoff) 7229 continue; 7230 /* 7231 * If there are any dirrems we wait for the journal write 7232 * to complete and then restart the buf scan as the lock 7233 * has been dropped. 7234 */ 7235 while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) { 7236 jwait(&jremref->jr_list, MNT_WAIT); 7237 return (ERESTART); 7238 } 7239 LIST_REMOVE(dirrem, dm_next); 7240 dirrem->dm_dirinum = pagedep->pd_ino; 7241 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &dirrem->dm_list); 7242 } 7243 while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) { 7244 jwait(&jmvref->jm_list, MNT_WAIT); 7245 return (ERESTART); 7246 } 7247 /* 7248 * When we're partially truncating a pagedep we just want to flush 7249 * journal entries and return. There can not be any adds in the 7250 * truncated portion of the directory and newblk must remain if 7251 * part of the block remains. 7252 */ 7253 if (blkoff != 0) { 7254 struct diradd *dap; 7255 7256 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) 7257 if (dap->da_offset > blkoff) 7258 panic("cancel_pagedep: diradd %p off %d > %d", 7259 dap, dap->da_offset, blkoff); 7260 for (i = 0; i < DAHASHSZ; i++) 7261 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) 7262 if (dap->da_offset > blkoff) 7263 panic("cancel_pagedep: diradd %p off %d > %d", 7264 dap, dap->da_offset, blkoff); 7265 return (0); 7266 } 7267 /* 7268 * There should be no directory add dependencies present 7269 * as the directory could not be truncated until all 7270 * children were removed. 7271 */ 7272 KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL, 7273 ("deallocate_dependencies: pendinghd != NULL")); 7274 for (i = 0; i < DAHASHSZ; i++) 7275 KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL, 7276 ("deallocate_dependencies: diraddhd != NULL")); 7277 if ((pagedep->pd_state & NEWBLOCK) != 0) 7278 free_newdirblk(pagedep->pd_newdirblk); 7279 if (free_pagedep(pagedep) == 0) 7280 panic("Failed to free pagedep %p", pagedep); 7281 return (0); 7282 } 7283 7284 /* 7285 * Reclaim any dependency structures from a buffer that is about to 7286 * be reallocated to a new vnode. The buffer must be locked, thus, 7287 * no I/O completion operations can occur while we are manipulating 7288 * its associated dependencies. The mutex is held so that other I/O's 7289 * associated with related dependencies do not occur. 7290 */ 7291 static int 7292 deallocate_dependencies(bp, freeblks, off) 7293 struct buf *bp; 7294 struct freeblks *freeblks; 7295 int off; 7296 { 7297 struct indirdep *indirdep; 7298 struct pagedep *pagedep; 7299 struct worklist *wk, *wkn; 7300 struct ufsmount *ump; 7301 7302 ump = softdep_bp_to_mp(bp); 7303 if (ump == NULL) 7304 goto done; 7305 ACQUIRE_LOCK(ump); 7306 LIST_FOREACH_SAFE(wk, &bp->b_dep, wk_list, wkn) { 7307 switch (wk->wk_type) { 7308 case D_INDIRDEP: 7309 indirdep = WK_INDIRDEP(wk); 7310 if (bp->b_lblkno >= 0 || 7311 bp->b_blkno != indirdep->ir_savebp->b_lblkno) 7312 panic("deallocate_dependencies: not indir"); 7313 cancel_indirdep(indirdep, bp, freeblks); 7314 continue; 7315 7316 case D_PAGEDEP: 7317 pagedep = WK_PAGEDEP(wk); 7318 if (cancel_pagedep(pagedep, freeblks, off)) { 7319 FREE_LOCK(ump); 7320 return (ERESTART); 7321 } 7322 continue; 7323 7324 case D_ALLOCINDIR: 7325 /* 7326 * Simply remove the allocindir, we'll find it via 7327 * the indirdep where we can clear pointers if 7328 * needed. 7329 */ 7330 WORKLIST_REMOVE(wk); 7331 continue; 7332 7333 case D_FREEWORK: 7334 /* 7335 * A truncation is waiting for the zero'd pointers 7336 * to be written. It can be freed when the freeblks 7337 * is journaled. 7338 */ 7339 WORKLIST_REMOVE(wk); 7340 wk->wk_state |= ONDEPLIST; 7341 WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk); 7342 break; 7343 7344 case D_ALLOCDIRECT: 7345 if (off != 0) 7346 continue; 7347 /* FALLTHROUGH */ 7348 default: 7349 panic("deallocate_dependencies: Unexpected type %s", 7350 TYPENAME(wk->wk_type)); 7351 /* NOTREACHED */ 7352 } 7353 } 7354 FREE_LOCK(ump); 7355 done: 7356 /* 7357 * Don't throw away this buf, we were partially truncating and 7358 * some deps may always remain. 7359 */ 7360 if (off) { 7361 allocbuf(bp, off); 7362 bp->b_vflags |= BV_SCANNED; 7363 return (EBUSY); 7364 } 7365 bp->b_flags |= B_INVAL | B_NOCACHE; 7366 7367 return (0); 7368 } 7369 7370 /* 7371 * An allocdirect is being canceled due to a truncate. We must make sure 7372 * the journal entry is released in concert with the blkfree that releases 7373 * the storage. Completed journal entries must not be released until the 7374 * space is no longer pointed to by the inode or in the bitmap. 7375 */ 7376 static void 7377 cancel_allocdirect(adphead, adp, freeblks) 7378 struct allocdirectlst *adphead; 7379 struct allocdirect *adp; 7380 struct freeblks *freeblks; 7381 { 7382 struct freework *freework; 7383 struct newblk *newblk; 7384 struct worklist *wk; 7385 7386 TAILQ_REMOVE(adphead, adp, ad_next); 7387 newblk = (struct newblk *)adp; 7388 freework = NULL; 7389 /* 7390 * Find the correct freework structure. 7391 */ 7392 LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) { 7393 if (wk->wk_type != D_FREEWORK) 7394 continue; 7395 freework = WK_FREEWORK(wk); 7396 if (freework->fw_blkno == newblk->nb_newblkno) 7397 break; 7398 } 7399 if (freework == NULL) 7400 panic("cancel_allocdirect: Freework not found"); 7401 /* 7402 * If a newblk exists at all we still have the journal entry that 7403 * initiated the allocation so we do not need to journal the free. 7404 */ 7405 cancel_jfreeblk(freeblks, freework->fw_blkno); 7406 /* 7407 * If the journal hasn't been written the jnewblk must be passed 7408 * to the call to ffs_blkfree that reclaims the space. We accomplish 7409 * this by linking the journal dependency into the freework to be 7410 * freed when freework_freeblock() is called. If the journal has 7411 * been written we can simply reclaim the journal space when the 7412 * freeblks work is complete. 7413 */ 7414 freework->fw_jnewblk = cancel_newblk(newblk, &freework->fw_list, 7415 &freeblks->fb_jwork); 7416 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list); 7417 } 7418 7419 7420 /* 7421 * Cancel a new block allocation. May be an indirect or direct block. We 7422 * remove it from various lists and return any journal record that needs to 7423 * be resolved by the caller. 7424 * 7425 * A special consideration is made for indirects which were never pointed 7426 * at on disk and will never be found once this block is released. 7427 */ 7428 static struct jnewblk * 7429 cancel_newblk(newblk, wk, wkhd) 7430 struct newblk *newblk; 7431 struct worklist *wk; 7432 struct workhead *wkhd; 7433 { 7434 struct jnewblk *jnewblk; 7435 7436 CTR1(KTR_SUJ, "cancel_newblk: blkno %jd", newblk->nb_newblkno); 7437 7438 newblk->nb_state |= GOINGAWAY; 7439 /* 7440 * Previously we traversed the completedhd on each indirdep 7441 * attached to this newblk to cancel them and gather journal 7442 * work. Since we need only the oldest journal segment and 7443 * the lowest point on the tree will always have the oldest 7444 * journal segment we are free to release the segments 7445 * of any subordinates and may leave the indirdep list to 7446 * indirdep_complete() when this newblk is freed. 7447 */ 7448 if (newblk->nb_state & ONDEPLIST) { 7449 newblk->nb_state &= ~ONDEPLIST; 7450 LIST_REMOVE(newblk, nb_deps); 7451 } 7452 if (newblk->nb_state & ONWORKLIST) 7453 WORKLIST_REMOVE(&newblk->nb_list); 7454 /* 7455 * If the journal entry hasn't been written we save a pointer to 7456 * the dependency that frees it until it is written or the 7457 * superseding operation completes. 7458 */ 7459 jnewblk = newblk->nb_jnewblk; 7460 if (jnewblk != NULL && wk != NULL) { 7461 newblk->nb_jnewblk = NULL; 7462 jnewblk->jn_dep = wk; 7463 } 7464 if (!LIST_EMPTY(&newblk->nb_jwork)) 7465 jwork_move(wkhd, &newblk->nb_jwork); 7466 /* 7467 * When truncating we must free the newdirblk early to remove 7468 * the pagedep from the hash before returning. 7469 */ 7470 if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL) 7471 free_newdirblk(WK_NEWDIRBLK(wk)); 7472 if (!LIST_EMPTY(&newblk->nb_newdirblk)) 7473 panic("cancel_newblk: extra newdirblk"); 7474 7475 return (jnewblk); 7476 } 7477 7478 /* 7479 * Schedule the freefrag associated with a newblk to be released once 7480 * the pointers are written and the previous block is no longer needed. 7481 */ 7482 static void 7483 newblk_freefrag(newblk) 7484 struct newblk *newblk; 7485 { 7486 struct freefrag *freefrag; 7487 7488 if (newblk->nb_freefrag == NULL) 7489 return; 7490 freefrag = newblk->nb_freefrag; 7491 newblk->nb_freefrag = NULL; 7492 freefrag->ff_state |= COMPLETE; 7493 if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE) 7494 add_to_worklist(&freefrag->ff_list, 0); 7495 } 7496 7497 /* 7498 * Free a newblk. Generate a new freefrag work request if appropriate. 7499 * This must be called after the inode pointer and any direct block pointers 7500 * are valid or fully removed via truncate or frag extension. 7501 */ 7502 static void 7503 free_newblk(newblk) 7504 struct newblk *newblk; 7505 { 7506 struct indirdep *indirdep; 7507 struct worklist *wk; 7508 7509 KASSERT(newblk->nb_jnewblk == NULL, 7510 ("free_newblk: jnewblk %p still attached", newblk->nb_jnewblk)); 7511 KASSERT(newblk->nb_list.wk_type != D_NEWBLK, 7512 ("free_newblk: unclaimed newblk")); 7513 LOCK_OWNED(VFSTOUFS(newblk->nb_list.wk_mp)); 7514 newblk_freefrag(newblk); 7515 if (newblk->nb_state & ONDEPLIST) 7516 LIST_REMOVE(newblk, nb_deps); 7517 if (newblk->nb_state & ONWORKLIST) 7518 WORKLIST_REMOVE(&newblk->nb_list); 7519 LIST_REMOVE(newblk, nb_hash); 7520 if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL) 7521 free_newdirblk(WK_NEWDIRBLK(wk)); 7522 if (!LIST_EMPTY(&newblk->nb_newdirblk)) 7523 panic("free_newblk: extra newdirblk"); 7524 while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL) 7525 indirdep_complete(indirdep); 7526 handle_jwork(&newblk->nb_jwork); 7527 WORKITEM_FREE(newblk, D_NEWBLK); 7528 } 7529 7530 /* 7531 * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep. 7532 */ 7533 static void 7534 free_newdirblk(newdirblk) 7535 struct newdirblk *newdirblk; 7536 { 7537 struct pagedep *pagedep; 7538 struct diradd *dap; 7539 struct worklist *wk; 7540 7541 LOCK_OWNED(VFSTOUFS(newdirblk->db_list.wk_mp)); 7542 WORKLIST_REMOVE(&newdirblk->db_list); 7543 /* 7544 * If the pagedep is still linked onto the directory buffer 7545 * dependency chain, then some of the entries on the 7546 * pd_pendinghd list may not be committed to disk yet. In 7547 * this case, we will simply clear the NEWBLOCK flag and 7548 * let the pd_pendinghd list be processed when the pagedep 7549 * is next written. If the pagedep is no longer on the buffer 7550 * dependency chain, then all the entries on the pd_pending 7551 * list are committed to disk and we can free them here. 7552 */ 7553 pagedep = newdirblk->db_pagedep; 7554 pagedep->pd_state &= ~NEWBLOCK; 7555 if ((pagedep->pd_state & ONWORKLIST) == 0) { 7556 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 7557 free_diradd(dap, NULL); 7558 /* 7559 * If no dependencies remain, the pagedep will be freed. 7560 */ 7561 free_pagedep(pagedep); 7562 } 7563 /* Should only ever be one item in the list. */ 7564 while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) { 7565 WORKLIST_REMOVE(wk); 7566 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); 7567 } 7568 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 7569 } 7570 7571 /* 7572 * Prepare an inode to be freed. The actual free operation is not 7573 * done until the zero'ed inode has been written to disk. 7574 */ 7575 void 7576 softdep_freefile(pvp, ino, mode) 7577 struct vnode *pvp; 7578 ino_t ino; 7579 int mode; 7580 { 7581 struct inode *ip = VTOI(pvp); 7582 struct inodedep *inodedep; 7583 struct freefile *freefile; 7584 struct freeblks *freeblks; 7585 struct ufsmount *ump; 7586 7587 ump = ITOUMP(ip); 7588 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 7589 ("softdep_freefile called on non-softdep filesystem")); 7590 /* 7591 * This sets up the inode de-allocation dependency. 7592 */ 7593 freefile = malloc(sizeof(struct freefile), 7594 M_FREEFILE, M_SOFTDEP_FLAGS); 7595 workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount); 7596 freefile->fx_mode = mode; 7597 freefile->fx_oldinum = ino; 7598 freefile->fx_devvp = ump->um_devvp; 7599 LIST_INIT(&freefile->fx_jwork); 7600 UFS_LOCK(ump); 7601 ump->um_fs->fs_pendinginodes += 1; 7602 UFS_UNLOCK(ump); 7603 7604 /* 7605 * If the inodedep does not exist, then the zero'ed inode has 7606 * been written to disk. If the allocated inode has never been 7607 * written to disk, then the on-disk inode is zero'ed. In either 7608 * case we can free the file immediately. If the journal was 7609 * canceled before being written the inode will never make it to 7610 * disk and we must send the canceled journal entrys to 7611 * ffs_freefile() to be cleared in conjunction with the bitmap. 7612 * Any blocks waiting on the inode to write can be safely freed 7613 * here as it will never been written. 7614 */ 7615 ACQUIRE_LOCK(ump); 7616 inodedep_lookup(pvp->v_mount, ino, 0, &inodedep); 7617 if (inodedep) { 7618 /* 7619 * Clear out freeblks that no longer need to reference 7620 * this inode. 7621 */ 7622 while ((freeblks = 7623 TAILQ_FIRST(&inodedep->id_freeblklst)) != NULL) { 7624 TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, 7625 fb_next); 7626 freeblks->fb_state &= ~ONDEPLIST; 7627 } 7628 /* 7629 * Remove this inode from the unlinked list. 7630 */ 7631 if (inodedep->id_state & UNLINKED) { 7632 /* 7633 * Save the journal work to be freed with the bitmap 7634 * before we clear UNLINKED. Otherwise it can be lost 7635 * if the inode block is written. 7636 */ 7637 handle_bufwait(inodedep, &freefile->fx_jwork); 7638 clear_unlinked_inodedep(inodedep); 7639 /* 7640 * Re-acquire inodedep as we've dropped the 7641 * per-filesystem lock in clear_unlinked_inodedep(). 7642 */ 7643 inodedep_lookup(pvp->v_mount, ino, 0, &inodedep); 7644 } 7645 } 7646 if (inodedep == NULL || check_inode_unwritten(inodedep)) { 7647 FREE_LOCK(ump); 7648 handle_workitem_freefile(freefile); 7649 return; 7650 } 7651 if ((inodedep->id_state & DEPCOMPLETE) == 0) 7652 inodedep->id_state |= GOINGAWAY; 7653 WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list); 7654 FREE_LOCK(ump); 7655 if (ip->i_number == ino) 7656 ip->i_flag |= IN_MODIFIED; 7657 } 7658 7659 /* 7660 * Check to see if an inode has never been written to disk. If 7661 * so free the inodedep and return success, otherwise return failure. 7662 * 7663 * If we still have a bitmap dependency, then the inode has never 7664 * been written to disk. Drop the dependency as it is no longer 7665 * necessary since the inode is being deallocated. We set the 7666 * ALLCOMPLETE flags since the bitmap now properly shows that the 7667 * inode is not allocated. Even if the inode is actively being 7668 * written, it has been rolled back to its zero'ed state, so we 7669 * are ensured that a zero inode is what is on the disk. For short 7670 * lived files, this change will usually result in removing all the 7671 * dependencies from the inode so that it can be freed immediately. 7672 */ 7673 static int 7674 check_inode_unwritten(inodedep) 7675 struct inodedep *inodedep; 7676 { 7677 7678 LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp)); 7679 7680 if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 || 7681 !LIST_EMPTY(&inodedep->id_dirremhd) || 7682 !LIST_EMPTY(&inodedep->id_pendinghd) || 7683 !LIST_EMPTY(&inodedep->id_bufwait) || 7684 !LIST_EMPTY(&inodedep->id_inowait) || 7685 !TAILQ_EMPTY(&inodedep->id_inoreflst) || 7686 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 7687 !TAILQ_EMPTY(&inodedep->id_newinoupdt) || 7688 !TAILQ_EMPTY(&inodedep->id_extupdt) || 7689 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 7690 !TAILQ_EMPTY(&inodedep->id_freeblklst) || 7691 inodedep->id_mkdiradd != NULL || 7692 inodedep->id_nlinkdelta != 0) 7693 return (0); 7694 /* 7695 * Another process might be in initiate_write_inodeblock_ufs[12] 7696 * trying to allocate memory without holding "Softdep Lock". 7697 */ 7698 if ((inodedep->id_state & IOSTARTED) != 0 && 7699 inodedep->id_savedino1 == NULL) 7700 return (0); 7701 7702 if (inodedep->id_state & ONDEPLIST) 7703 LIST_REMOVE(inodedep, id_deps); 7704 inodedep->id_state &= ~ONDEPLIST; 7705 inodedep->id_state |= ALLCOMPLETE; 7706 inodedep->id_bmsafemap = NULL; 7707 if (inodedep->id_state & ONWORKLIST) 7708 WORKLIST_REMOVE(&inodedep->id_list); 7709 if (inodedep->id_savedino1 != NULL) { 7710 free(inodedep->id_savedino1, M_SAVEDINO); 7711 inodedep->id_savedino1 = NULL; 7712 } 7713 if (free_inodedep(inodedep) == 0) 7714 panic("check_inode_unwritten: busy inode"); 7715 return (1); 7716 } 7717 7718 static int 7719 check_inodedep_free(inodedep) 7720 struct inodedep *inodedep; 7721 { 7722 7723 LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp)); 7724 if ((inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE || 7725 !LIST_EMPTY(&inodedep->id_dirremhd) || 7726 !LIST_EMPTY(&inodedep->id_pendinghd) || 7727 !LIST_EMPTY(&inodedep->id_bufwait) || 7728 !LIST_EMPTY(&inodedep->id_inowait) || 7729 !TAILQ_EMPTY(&inodedep->id_inoreflst) || 7730 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 7731 !TAILQ_EMPTY(&inodedep->id_newinoupdt) || 7732 !TAILQ_EMPTY(&inodedep->id_extupdt) || 7733 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 7734 !TAILQ_EMPTY(&inodedep->id_freeblklst) || 7735 inodedep->id_mkdiradd != NULL || 7736 inodedep->id_nlinkdelta != 0 || 7737 inodedep->id_savedino1 != NULL) 7738 return (0); 7739 return (1); 7740 } 7741 7742 /* 7743 * Try to free an inodedep structure. Return 1 if it could be freed. 7744 */ 7745 static int 7746 free_inodedep(inodedep) 7747 struct inodedep *inodedep; 7748 { 7749 7750 LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp)); 7751 if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 || 7752 !check_inodedep_free(inodedep)) 7753 return (0); 7754 if (inodedep->id_state & ONDEPLIST) 7755 LIST_REMOVE(inodedep, id_deps); 7756 LIST_REMOVE(inodedep, id_hash); 7757 WORKITEM_FREE(inodedep, D_INODEDEP); 7758 return (1); 7759 } 7760 7761 /* 7762 * Free the block referenced by a freework structure. The parent freeblks 7763 * structure is released and completed when the final cg bitmap reaches 7764 * the disk. This routine may be freeing a jnewblk which never made it to 7765 * disk in which case we do not have to wait as the operation is undone 7766 * in memory immediately. 7767 */ 7768 static void 7769 freework_freeblock(freework, key) 7770 struct freework *freework; 7771 u_long key; 7772 { 7773 struct freeblks *freeblks; 7774 struct jnewblk *jnewblk; 7775 struct ufsmount *ump; 7776 struct workhead wkhd; 7777 struct fs *fs; 7778 int bsize; 7779 int needj; 7780 7781 ump = VFSTOUFS(freework->fw_list.wk_mp); 7782 LOCK_OWNED(ump); 7783 /* 7784 * Handle partial truncate separately. 7785 */ 7786 if (freework->fw_indir) { 7787 complete_trunc_indir(freework); 7788 return; 7789 } 7790 freeblks = freework->fw_freeblks; 7791 fs = ump->um_fs; 7792 needj = MOUNTEDSUJ(freeblks->fb_list.wk_mp) != 0; 7793 bsize = lfragtosize(fs, freework->fw_frags); 7794 LIST_INIT(&wkhd); 7795 /* 7796 * DEPCOMPLETE is cleared in indirblk_insert() if the block lives 7797 * on the indirblk hashtable and prevents premature freeing. 7798 */ 7799 freework->fw_state |= DEPCOMPLETE; 7800 /* 7801 * SUJ needs to wait for the segment referencing freed indirect 7802 * blocks to expire so that we know the checker will not confuse 7803 * a re-allocated indirect block with its old contents. 7804 */ 7805 if (needj && freework->fw_lbn <= -UFS_NDADDR) 7806 indirblk_insert(freework); 7807 /* 7808 * If we are canceling an existing jnewblk pass it to the free 7809 * routine, otherwise pass the freeblk which will ultimately 7810 * release the freeblks. If we're not journaling, we can just 7811 * free the freeblks immediately. 7812 */ 7813 jnewblk = freework->fw_jnewblk; 7814 if (jnewblk != NULL) { 7815 cancel_jnewblk(jnewblk, &wkhd); 7816 needj = 0; 7817 } else if (needj) { 7818 freework->fw_state |= DELAYEDFREE; 7819 freeblks->fb_cgwait++; 7820 WORKLIST_INSERT(&wkhd, &freework->fw_list); 7821 } 7822 FREE_LOCK(ump); 7823 freeblks_free(ump, freeblks, btodb(bsize)); 7824 CTR4(KTR_SUJ, 7825 "freework_freeblock: ino %jd blkno %jd lbn %jd size %d", 7826 freeblks->fb_inum, freework->fw_blkno, freework->fw_lbn, bsize); 7827 ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno, bsize, 7828 freeblks->fb_inum, freeblks->fb_vtype, &wkhd, key); 7829 ACQUIRE_LOCK(ump); 7830 /* 7831 * The jnewblk will be discarded and the bits in the map never 7832 * made it to disk. We can immediately free the freeblk. 7833 */ 7834 if (needj == 0) 7835 handle_written_freework(freework); 7836 } 7837 7838 /* 7839 * We enqueue freework items that need processing back on the freeblks and 7840 * add the freeblks to the worklist. This makes it easier to find all work 7841 * required to flush a truncation in process_truncates(). 7842 */ 7843 static void 7844 freework_enqueue(freework) 7845 struct freework *freework; 7846 { 7847 struct freeblks *freeblks; 7848 7849 freeblks = freework->fw_freeblks; 7850 if ((freework->fw_state & INPROGRESS) == 0) 7851 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list); 7852 if ((freeblks->fb_state & 7853 (ONWORKLIST | INPROGRESS | ALLCOMPLETE)) == ALLCOMPLETE && 7854 LIST_EMPTY(&freeblks->fb_jblkdephd)) 7855 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 7856 } 7857 7858 /* 7859 * Start, continue, or finish the process of freeing an indirect block tree. 7860 * The free operation may be paused at any point with fw_off containing the 7861 * offset to restart from. This enables us to implement some flow control 7862 * for large truncates which may fan out and generate a huge number of 7863 * dependencies. 7864 */ 7865 static void 7866 handle_workitem_indirblk(freework) 7867 struct freework *freework; 7868 { 7869 struct freeblks *freeblks; 7870 struct ufsmount *ump; 7871 struct fs *fs; 7872 7873 freeblks = freework->fw_freeblks; 7874 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 7875 fs = ump->um_fs; 7876 if (freework->fw_state & DEPCOMPLETE) { 7877 handle_written_freework(freework); 7878 return; 7879 } 7880 if (freework->fw_off == NINDIR(fs)) { 7881 freework_freeblock(freework, SINGLETON_KEY); 7882 return; 7883 } 7884 freework->fw_state |= INPROGRESS; 7885 FREE_LOCK(ump); 7886 indir_trunc(freework, fsbtodb(fs, freework->fw_blkno), 7887 freework->fw_lbn); 7888 ACQUIRE_LOCK(ump); 7889 } 7890 7891 /* 7892 * Called when a freework structure attached to a cg buf is written. The 7893 * ref on either the parent or the freeblks structure is released and 7894 * the freeblks is added back to the worklist if there is more work to do. 7895 */ 7896 static void 7897 handle_written_freework(freework) 7898 struct freework *freework; 7899 { 7900 struct freeblks *freeblks; 7901 struct freework *parent; 7902 7903 freeblks = freework->fw_freeblks; 7904 parent = freework->fw_parent; 7905 if (freework->fw_state & DELAYEDFREE) 7906 freeblks->fb_cgwait--; 7907 freework->fw_state |= COMPLETE; 7908 if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE) 7909 WORKITEM_FREE(freework, D_FREEWORK); 7910 if (parent) { 7911 if (--parent->fw_ref == 0) 7912 freework_enqueue(parent); 7913 return; 7914 } 7915 if (--freeblks->fb_ref != 0) 7916 return; 7917 if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST | INPROGRESS)) == 7918 ALLCOMPLETE && LIST_EMPTY(&freeblks->fb_jblkdephd)) 7919 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 7920 } 7921 7922 /* 7923 * This workitem routine performs the block de-allocation. 7924 * The workitem is added to the pending list after the updated 7925 * inode block has been written to disk. As mentioned above, 7926 * checks regarding the number of blocks de-allocated (compared 7927 * to the number of blocks allocated for the file) are also 7928 * performed in this function. 7929 */ 7930 static int 7931 handle_workitem_freeblocks(freeblks, flags) 7932 struct freeblks *freeblks; 7933 int flags; 7934 { 7935 struct freework *freework; 7936 struct newblk *newblk; 7937 struct allocindir *aip; 7938 struct ufsmount *ump; 7939 struct worklist *wk; 7940 u_long key; 7941 7942 KASSERT(LIST_EMPTY(&freeblks->fb_jblkdephd), 7943 ("handle_workitem_freeblocks: Journal entries not written.")); 7944 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 7945 key = ffs_blkrelease_start(ump, freeblks->fb_devvp, freeblks->fb_inum); 7946 ACQUIRE_LOCK(ump); 7947 while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) { 7948 WORKLIST_REMOVE(wk); 7949 switch (wk->wk_type) { 7950 case D_DIRREM: 7951 wk->wk_state |= COMPLETE; 7952 add_to_worklist(wk, 0); 7953 continue; 7954 7955 case D_ALLOCDIRECT: 7956 free_newblk(WK_NEWBLK(wk)); 7957 continue; 7958 7959 case D_ALLOCINDIR: 7960 aip = WK_ALLOCINDIR(wk); 7961 freework = NULL; 7962 if (aip->ai_state & DELAYEDFREE) { 7963 FREE_LOCK(ump); 7964 freework = newfreework(ump, freeblks, NULL, 7965 aip->ai_lbn, aip->ai_newblkno, 7966 ump->um_fs->fs_frag, 0, 0); 7967 ACQUIRE_LOCK(ump); 7968 } 7969 newblk = WK_NEWBLK(wk); 7970 if (newblk->nb_jnewblk) { 7971 freework->fw_jnewblk = newblk->nb_jnewblk; 7972 newblk->nb_jnewblk->jn_dep = &freework->fw_list; 7973 newblk->nb_jnewblk = NULL; 7974 } 7975 free_newblk(newblk); 7976 continue; 7977 7978 case D_FREEWORK: 7979 freework = WK_FREEWORK(wk); 7980 if (freework->fw_lbn <= -UFS_NDADDR) 7981 handle_workitem_indirblk(freework); 7982 else 7983 freework_freeblock(freework, key); 7984 continue; 7985 default: 7986 panic("handle_workitem_freeblocks: Unknown type %s", 7987 TYPENAME(wk->wk_type)); 7988 } 7989 } 7990 if (freeblks->fb_ref != 0) { 7991 freeblks->fb_state &= ~INPROGRESS; 7992 wake_worklist(&freeblks->fb_list); 7993 freeblks = NULL; 7994 } 7995 FREE_LOCK(ump); 7996 ffs_blkrelease_finish(ump, key); 7997 if (freeblks) 7998 return handle_complete_freeblocks(freeblks, flags); 7999 return (0); 8000 } 8001 8002 /* 8003 * Handle completion of block free via truncate. This allows fs_pending 8004 * to track the actual free block count more closely than if we only updated 8005 * it at the end. We must be careful to handle cases where the block count 8006 * on free was incorrect. 8007 */ 8008 static void 8009 freeblks_free(ump, freeblks, blocks) 8010 struct ufsmount *ump; 8011 struct freeblks *freeblks; 8012 int blocks; 8013 { 8014 struct fs *fs; 8015 ufs2_daddr_t remain; 8016 8017 UFS_LOCK(ump); 8018 remain = -freeblks->fb_chkcnt; 8019 freeblks->fb_chkcnt += blocks; 8020 if (remain > 0) { 8021 if (remain < blocks) 8022 blocks = remain; 8023 fs = ump->um_fs; 8024 fs->fs_pendingblocks -= blocks; 8025 } 8026 UFS_UNLOCK(ump); 8027 } 8028 8029 /* 8030 * Once all of the freework workitems are complete we can retire the 8031 * freeblocks dependency and any journal work awaiting completion. This 8032 * can not be called until all other dependencies are stable on disk. 8033 */ 8034 static int 8035 handle_complete_freeblocks(freeblks, flags) 8036 struct freeblks *freeblks; 8037 int flags; 8038 { 8039 struct inodedep *inodedep; 8040 struct inode *ip; 8041 struct vnode *vp; 8042 struct fs *fs; 8043 struct ufsmount *ump; 8044 ufs2_daddr_t spare; 8045 8046 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 8047 fs = ump->um_fs; 8048 flags = LK_EXCLUSIVE | flags; 8049 spare = freeblks->fb_chkcnt; 8050 8051 /* 8052 * If we did not release the expected number of blocks we may have 8053 * to adjust the inode block count here. Only do so if it wasn't 8054 * a truncation to zero and the modrev still matches. 8055 */ 8056 if (spare && freeblks->fb_len != 0) { 8057 if (ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_inum, 8058 flags, &vp, FFSV_FORCEINSMQ) != 0) 8059 return (EBUSY); 8060 ip = VTOI(vp); 8061 if (DIP(ip, i_modrev) == freeblks->fb_modrev) { 8062 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - spare); 8063 ip->i_flag |= IN_CHANGE; 8064 /* 8065 * We must wait so this happens before the 8066 * journal is reclaimed. 8067 */ 8068 ffs_update(vp, 1); 8069 } 8070 vput(vp); 8071 } 8072 if (spare < 0) { 8073 UFS_LOCK(ump); 8074 fs->fs_pendingblocks += spare; 8075 UFS_UNLOCK(ump); 8076 } 8077 #ifdef QUOTA 8078 /* Handle spare. */ 8079 if (spare) 8080 quotaadj(freeblks->fb_quota, ump, -spare); 8081 quotarele(freeblks->fb_quota); 8082 #endif 8083 ACQUIRE_LOCK(ump); 8084 if (freeblks->fb_state & ONDEPLIST) { 8085 inodedep_lookup(freeblks->fb_list.wk_mp, freeblks->fb_inum, 8086 0, &inodedep); 8087 TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, fb_next); 8088 freeblks->fb_state &= ~ONDEPLIST; 8089 if (TAILQ_EMPTY(&inodedep->id_freeblklst)) 8090 free_inodedep(inodedep); 8091 } 8092 /* 8093 * All of the freeblock deps must be complete prior to this call 8094 * so it's now safe to complete earlier outstanding journal entries. 8095 */ 8096 handle_jwork(&freeblks->fb_jwork); 8097 WORKITEM_FREE(freeblks, D_FREEBLKS); 8098 FREE_LOCK(ump); 8099 return (0); 8100 } 8101 8102 /* 8103 * Release blocks associated with the freeblks and stored in the indirect 8104 * block dbn. If level is greater than SINGLE, the block is an indirect block 8105 * and recursive calls to indirtrunc must be used to cleanse other indirect 8106 * blocks. 8107 * 8108 * This handles partial and complete truncation of blocks. Partial is noted 8109 * with goingaway == 0. In this case the freework is completed after the 8110 * zero'd indirects are written to disk. For full truncation the freework 8111 * is completed after the block is freed. 8112 */ 8113 static void 8114 indir_trunc(freework, dbn, lbn) 8115 struct freework *freework; 8116 ufs2_daddr_t dbn; 8117 ufs_lbn_t lbn; 8118 { 8119 struct freework *nfreework; 8120 struct workhead wkhd; 8121 struct freeblks *freeblks; 8122 struct buf *bp; 8123 struct fs *fs; 8124 struct indirdep *indirdep; 8125 struct mount *mp; 8126 struct ufsmount *ump; 8127 ufs1_daddr_t *bap1; 8128 ufs2_daddr_t nb, nnb, *bap2; 8129 ufs_lbn_t lbnadd, nlbn; 8130 u_long key; 8131 int nblocks, ufs1fmt, freedblocks; 8132 int goingaway, freedeps, needj, level, cnt, i; 8133 8134 freeblks = freework->fw_freeblks; 8135 mp = freeblks->fb_list.wk_mp; 8136 ump = VFSTOUFS(mp); 8137 fs = ump->um_fs; 8138 /* 8139 * Get buffer of block pointers to be freed. There are three cases: 8140 * 8141 * 1) Partial truncate caches the indirdep pointer in the freework 8142 * which provides us a back copy to the save bp which holds the 8143 * pointers we want to clear. When this completes the zero 8144 * pointers are written to the real copy. 8145 * 2) The indirect is being completely truncated, cancel_indirdep() 8146 * eliminated the real copy and placed the indirdep on the saved 8147 * copy. The indirdep and buf are discarded when this completes. 8148 * 3) The indirect was not in memory, we read a copy off of the disk 8149 * using the devvp and drop and invalidate the buffer when we're 8150 * done. 8151 */ 8152 goingaway = 1; 8153 indirdep = NULL; 8154 if (freework->fw_indir != NULL) { 8155 goingaway = 0; 8156 indirdep = freework->fw_indir; 8157 bp = indirdep->ir_savebp; 8158 if (bp == NULL || bp->b_blkno != dbn) 8159 panic("indir_trunc: Bad saved buf %p blkno %jd", 8160 bp, (intmax_t)dbn); 8161 } else if ((bp = incore(&freeblks->fb_devvp->v_bufobj, dbn)) != NULL) { 8162 /* 8163 * The lock prevents the buf dep list from changing and 8164 * indirects on devvp should only ever have one dependency. 8165 */ 8166 indirdep = WK_INDIRDEP(LIST_FIRST(&bp->b_dep)); 8167 if (indirdep == NULL || (indirdep->ir_state & GOINGAWAY) == 0) 8168 panic("indir_trunc: Bad indirdep %p from buf %p", 8169 indirdep, bp); 8170 } else if (bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize, 8171 NOCRED, &bp) != 0) { 8172 brelse(bp); 8173 return; 8174 } 8175 ACQUIRE_LOCK(ump); 8176 /* Protects against a race with complete_trunc_indir(). */ 8177 freework->fw_state &= ~INPROGRESS; 8178 /* 8179 * If we have an indirdep we need to enforce the truncation order 8180 * and discard it when it is complete. 8181 */ 8182 if (indirdep) { 8183 if (freework != TAILQ_FIRST(&indirdep->ir_trunc) && 8184 !TAILQ_EMPTY(&indirdep->ir_trunc)) { 8185 /* 8186 * Add the complete truncate to the list on the 8187 * indirdep to enforce in-order processing. 8188 */ 8189 if (freework->fw_indir == NULL) 8190 TAILQ_INSERT_TAIL(&indirdep->ir_trunc, 8191 freework, fw_next); 8192 FREE_LOCK(ump); 8193 return; 8194 } 8195 /* 8196 * If we're goingaway, free the indirdep. Otherwise it will 8197 * linger until the write completes. 8198 */ 8199 if (goingaway) 8200 free_indirdep(indirdep); 8201 } 8202 FREE_LOCK(ump); 8203 /* Initialize pointers depending on block size. */ 8204 if (ump->um_fstype == UFS1) { 8205 bap1 = (ufs1_daddr_t *)bp->b_data; 8206 nb = bap1[freework->fw_off]; 8207 ufs1fmt = 1; 8208 bap2 = NULL; 8209 } else { 8210 bap2 = (ufs2_daddr_t *)bp->b_data; 8211 nb = bap2[freework->fw_off]; 8212 ufs1fmt = 0; 8213 bap1 = NULL; 8214 } 8215 level = lbn_level(lbn); 8216 needj = MOUNTEDSUJ(UFSTOVFS(ump)) != 0; 8217 lbnadd = lbn_offset(fs, level); 8218 nblocks = btodb(fs->fs_bsize); 8219 nfreework = freework; 8220 freedeps = 0; 8221 cnt = 0; 8222 /* 8223 * Reclaim blocks. Traverses into nested indirect levels and 8224 * arranges for the current level to be freed when subordinates 8225 * are free when journaling. 8226 */ 8227 key = ffs_blkrelease_start(ump, freeblks->fb_devvp, freeblks->fb_inum); 8228 for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) { 8229 if (UFS_CHECK_BLKNO(mp, freeblks->fb_inum, nb, 8230 fs->fs_bsize) != 0) 8231 nb = 0; 8232 if (i != NINDIR(fs) - 1) { 8233 if (ufs1fmt) 8234 nnb = bap1[i+1]; 8235 else 8236 nnb = bap2[i+1]; 8237 } else 8238 nnb = 0; 8239 if (nb == 0) 8240 continue; 8241 cnt++; 8242 if (level != 0) { 8243 nlbn = (lbn + 1) - (i * lbnadd); 8244 if (needj != 0) { 8245 nfreework = newfreework(ump, freeblks, freework, 8246 nlbn, nb, fs->fs_frag, 0, 0); 8247 freedeps++; 8248 } 8249 indir_trunc(nfreework, fsbtodb(fs, nb), nlbn); 8250 } else { 8251 struct freedep *freedep; 8252 8253 /* 8254 * Attempt to aggregate freedep dependencies for 8255 * all blocks being released to the same CG. 8256 */ 8257 LIST_INIT(&wkhd); 8258 if (needj != 0 && 8259 (nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) { 8260 freedep = newfreedep(freework); 8261 WORKLIST_INSERT_UNLOCKED(&wkhd, 8262 &freedep->fd_list); 8263 freedeps++; 8264 } 8265 CTR3(KTR_SUJ, 8266 "indir_trunc: ino %jd blkno %jd size %d", 8267 freeblks->fb_inum, nb, fs->fs_bsize); 8268 ffs_blkfree(ump, fs, freeblks->fb_devvp, nb, 8269 fs->fs_bsize, freeblks->fb_inum, 8270 freeblks->fb_vtype, &wkhd, key); 8271 } 8272 } 8273 ffs_blkrelease_finish(ump, key); 8274 if (goingaway) { 8275 bp->b_flags |= B_INVAL | B_NOCACHE; 8276 brelse(bp); 8277 } 8278 freedblocks = 0; 8279 if (level == 0) 8280 freedblocks = (nblocks * cnt); 8281 if (needj == 0) 8282 freedblocks += nblocks; 8283 freeblks_free(ump, freeblks, freedblocks); 8284 /* 8285 * If we are journaling set up the ref counts and offset so this 8286 * indirect can be completed when its children are free. 8287 */ 8288 if (needj) { 8289 ACQUIRE_LOCK(ump); 8290 freework->fw_off = i; 8291 freework->fw_ref += freedeps; 8292 freework->fw_ref -= NINDIR(fs) + 1; 8293 if (level == 0) 8294 freeblks->fb_cgwait += freedeps; 8295 if (freework->fw_ref == 0) 8296 freework_freeblock(freework, SINGLETON_KEY); 8297 FREE_LOCK(ump); 8298 return; 8299 } 8300 /* 8301 * If we're not journaling we can free the indirect now. 8302 */ 8303 dbn = dbtofsb(fs, dbn); 8304 CTR3(KTR_SUJ, 8305 "indir_trunc 2: ino %jd blkno %jd size %d", 8306 freeblks->fb_inum, dbn, fs->fs_bsize); 8307 ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize, 8308 freeblks->fb_inum, freeblks->fb_vtype, NULL, SINGLETON_KEY); 8309 /* Non SUJ softdep does single-threaded truncations. */ 8310 if (freework->fw_blkno == dbn) { 8311 freework->fw_state |= ALLCOMPLETE; 8312 ACQUIRE_LOCK(ump); 8313 handle_written_freework(freework); 8314 FREE_LOCK(ump); 8315 } 8316 return; 8317 } 8318 8319 /* 8320 * Cancel an allocindir when it is removed via truncation. When bp is not 8321 * NULL the indirect never appeared on disk and is scheduled to be freed 8322 * independently of the indir so we can more easily track journal work. 8323 */ 8324 static void 8325 cancel_allocindir(aip, bp, freeblks, trunc) 8326 struct allocindir *aip; 8327 struct buf *bp; 8328 struct freeblks *freeblks; 8329 int trunc; 8330 { 8331 struct indirdep *indirdep; 8332 struct freefrag *freefrag; 8333 struct newblk *newblk; 8334 8335 newblk = (struct newblk *)aip; 8336 LIST_REMOVE(aip, ai_next); 8337 /* 8338 * We must eliminate the pointer in bp if it must be freed on its 8339 * own due to partial truncate or pending journal work. 8340 */ 8341 if (bp && (trunc || newblk->nb_jnewblk)) { 8342 /* 8343 * Clear the pointer and mark the aip to be freed 8344 * directly if it never existed on disk. 8345 */ 8346 aip->ai_state |= DELAYEDFREE; 8347 indirdep = aip->ai_indirdep; 8348 if (indirdep->ir_state & UFS1FMT) 8349 ((ufs1_daddr_t *)bp->b_data)[aip->ai_offset] = 0; 8350 else 8351 ((ufs2_daddr_t *)bp->b_data)[aip->ai_offset] = 0; 8352 } 8353 /* 8354 * When truncating the previous pointer will be freed via 8355 * savedbp. Eliminate the freefrag which would dup free. 8356 */ 8357 if (trunc && (freefrag = newblk->nb_freefrag) != NULL) { 8358 newblk->nb_freefrag = NULL; 8359 if (freefrag->ff_jdep) 8360 cancel_jfreefrag( 8361 WK_JFREEFRAG(freefrag->ff_jdep)); 8362 jwork_move(&freeblks->fb_jwork, &freefrag->ff_jwork); 8363 WORKITEM_FREE(freefrag, D_FREEFRAG); 8364 } 8365 /* 8366 * If the journal hasn't been written the jnewblk must be passed 8367 * to the call to ffs_blkfree that reclaims the space. We accomplish 8368 * this by leaving the journal dependency on the newblk to be freed 8369 * when a freework is created in handle_workitem_freeblocks(). 8370 */ 8371 cancel_newblk(newblk, NULL, &freeblks->fb_jwork); 8372 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list); 8373 } 8374 8375 /* 8376 * Create the mkdir dependencies for . and .. in a new directory. Link them 8377 * in to a newdirblk so any subsequent additions are tracked properly. The 8378 * caller is responsible for adding the mkdir1 dependency to the journal 8379 * and updating id_mkdiradd. This function returns with the per-filesystem 8380 * lock held. 8381 */ 8382 static struct mkdir * 8383 setup_newdir(dap, newinum, dinum, newdirbp, mkdirp) 8384 struct diradd *dap; 8385 ino_t newinum; 8386 ino_t dinum; 8387 struct buf *newdirbp; 8388 struct mkdir **mkdirp; 8389 { 8390 struct newblk *newblk; 8391 struct pagedep *pagedep; 8392 struct inodedep *inodedep; 8393 struct newdirblk *newdirblk; 8394 struct mkdir *mkdir1, *mkdir2; 8395 struct worklist *wk; 8396 struct jaddref *jaddref; 8397 struct ufsmount *ump; 8398 struct mount *mp; 8399 8400 mp = dap->da_list.wk_mp; 8401 ump = VFSTOUFS(mp); 8402 newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK, 8403 M_SOFTDEP_FLAGS); 8404 workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp); 8405 LIST_INIT(&newdirblk->db_mkdir); 8406 mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS); 8407 workitem_alloc(&mkdir1->md_list, D_MKDIR, mp); 8408 mkdir1->md_state = ATTACHED | MKDIR_BODY; 8409 mkdir1->md_diradd = dap; 8410 mkdir1->md_jaddref = NULL; 8411 mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS); 8412 workitem_alloc(&mkdir2->md_list, D_MKDIR, mp); 8413 mkdir2->md_state = ATTACHED | MKDIR_PARENT; 8414 mkdir2->md_diradd = dap; 8415 mkdir2->md_jaddref = NULL; 8416 if (MOUNTEDSUJ(mp) == 0) { 8417 mkdir1->md_state |= DEPCOMPLETE; 8418 mkdir2->md_state |= DEPCOMPLETE; 8419 } 8420 /* 8421 * Dependency on "." and ".." being written to disk. 8422 */ 8423 mkdir1->md_buf = newdirbp; 8424 ACQUIRE_LOCK(VFSTOUFS(mp)); 8425 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir1, md_mkdirs); 8426 /* 8427 * We must link the pagedep, allocdirect, and newdirblk for 8428 * the initial file page so the pointer to the new directory 8429 * is not written until the directory contents are live and 8430 * any subsequent additions are not marked live until the 8431 * block is reachable via the inode. 8432 */ 8433 if (pagedep_lookup(mp, newdirbp, newinum, 0, 0, &pagedep) == 0) 8434 panic("setup_newdir: lost pagedep"); 8435 LIST_FOREACH(wk, &newdirbp->b_dep, wk_list) 8436 if (wk->wk_type == D_ALLOCDIRECT) 8437 break; 8438 if (wk == NULL) 8439 panic("setup_newdir: lost allocdirect"); 8440 if (pagedep->pd_state & NEWBLOCK) 8441 panic("setup_newdir: NEWBLOCK already set"); 8442 newblk = WK_NEWBLK(wk); 8443 pagedep->pd_state |= NEWBLOCK; 8444 pagedep->pd_newdirblk = newdirblk; 8445 newdirblk->db_pagedep = pagedep; 8446 WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list); 8447 WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list); 8448 /* 8449 * Look up the inodedep for the parent directory so that we 8450 * can link mkdir2 into the pending dotdot jaddref or 8451 * the inode write if there is none. If the inode is 8452 * ALLCOMPLETE and no jaddref is present all dependencies have 8453 * been satisfied and mkdir2 can be freed. 8454 */ 8455 inodedep_lookup(mp, dinum, 0, &inodedep); 8456 if (MOUNTEDSUJ(mp)) { 8457 if (inodedep == NULL) 8458 panic("setup_newdir: Lost parent."); 8459 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 8460 inoreflst); 8461 KASSERT(jaddref != NULL && jaddref->ja_parent == newinum && 8462 (jaddref->ja_state & MKDIR_PARENT), 8463 ("setup_newdir: bad dotdot jaddref %p", jaddref)); 8464 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs); 8465 mkdir2->md_jaddref = jaddref; 8466 jaddref->ja_mkdir = mkdir2; 8467 } else if (inodedep == NULL || 8468 (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 8469 dap->da_state &= ~MKDIR_PARENT; 8470 WORKITEM_FREE(mkdir2, D_MKDIR); 8471 mkdir2 = NULL; 8472 } else { 8473 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs); 8474 WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir2->md_list); 8475 } 8476 *mkdirp = mkdir2; 8477 8478 return (mkdir1); 8479 } 8480 8481 /* 8482 * Directory entry addition dependencies. 8483 * 8484 * When adding a new directory entry, the inode (with its incremented link 8485 * count) must be written to disk before the directory entry's pointer to it. 8486 * Also, if the inode is newly allocated, the corresponding freemap must be 8487 * updated (on disk) before the directory entry's pointer. These requirements 8488 * are met via undo/redo on the directory entry's pointer, which consists 8489 * simply of the inode number. 8490 * 8491 * As directory entries are added and deleted, the free space within a 8492 * directory block can become fragmented. The ufs filesystem will compact 8493 * a fragmented directory block to make space for a new entry. When this 8494 * occurs, the offsets of previously added entries change. Any "diradd" 8495 * dependency structures corresponding to these entries must be updated with 8496 * the new offsets. 8497 */ 8498 8499 /* 8500 * This routine is called after the in-memory inode's link 8501 * count has been incremented, but before the directory entry's 8502 * pointer to the inode has been set. 8503 */ 8504 int 8505 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk) 8506 struct buf *bp; /* buffer containing directory block */ 8507 struct inode *dp; /* inode for directory */ 8508 off_t diroffset; /* offset of new entry in directory */ 8509 ino_t newinum; /* inode referenced by new directory entry */ 8510 struct buf *newdirbp; /* non-NULL => contents of new mkdir */ 8511 int isnewblk; /* entry is in a newly allocated block */ 8512 { 8513 int offset; /* offset of new entry within directory block */ 8514 ufs_lbn_t lbn; /* block in directory containing new entry */ 8515 struct fs *fs; 8516 struct diradd *dap; 8517 struct newblk *newblk; 8518 struct pagedep *pagedep; 8519 struct inodedep *inodedep; 8520 struct newdirblk *newdirblk; 8521 struct mkdir *mkdir1, *mkdir2; 8522 struct jaddref *jaddref; 8523 struct ufsmount *ump; 8524 struct mount *mp; 8525 int isindir; 8526 8527 mp = ITOVFS(dp); 8528 ump = VFSTOUFS(mp); 8529 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 8530 ("softdep_setup_directory_add called on non-softdep filesystem")); 8531 /* 8532 * Whiteouts have no dependencies. 8533 */ 8534 if (newinum == UFS_WINO) { 8535 if (newdirbp != NULL) 8536 bdwrite(newdirbp); 8537 return (0); 8538 } 8539 jaddref = NULL; 8540 mkdir1 = mkdir2 = NULL; 8541 fs = ump->um_fs; 8542 lbn = lblkno(fs, diroffset); 8543 offset = blkoff(fs, diroffset); 8544 dap = malloc(sizeof(struct diradd), M_DIRADD, 8545 M_SOFTDEP_FLAGS|M_ZERO); 8546 workitem_alloc(&dap->da_list, D_DIRADD, mp); 8547 dap->da_offset = offset; 8548 dap->da_newinum = newinum; 8549 dap->da_state = ATTACHED; 8550 LIST_INIT(&dap->da_jwork); 8551 isindir = bp->b_lblkno >= UFS_NDADDR; 8552 newdirblk = NULL; 8553 if (isnewblk && 8554 (isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) { 8555 newdirblk = malloc(sizeof(struct newdirblk), 8556 M_NEWDIRBLK, M_SOFTDEP_FLAGS); 8557 workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp); 8558 LIST_INIT(&newdirblk->db_mkdir); 8559 } 8560 /* 8561 * If we're creating a new directory setup the dependencies and set 8562 * the dap state to wait for them. Otherwise it's COMPLETE and 8563 * we can move on. 8564 */ 8565 if (newdirbp == NULL) { 8566 dap->da_state |= DEPCOMPLETE; 8567 ACQUIRE_LOCK(ump); 8568 } else { 8569 dap->da_state |= MKDIR_BODY | MKDIR_PARENT; 8570 mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp, 8571 &mkdir2); 8572 } 8573 /* 8574 * Link into parent directory pagedep to await its being written. 8575 */ 8576 pagedep_lookup(mp, bp, dp->i_number, lbn, DEPALLOC, &pagedep); 8577 #ifdef INVARIANTS 8578 if (diradd_lookup(pagedep, offset) != NULL) 8579 panic("softdep_setup_directory_add: %p already at off %d\n", 8580 diradd_lookup(pagedep, offset), offset); 8581 #endif 8582 dap->da_pagedep = pagedep; 8583 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap, 8584 da_pdlist); 8585 inodedep_lookup(mp, newinum, DEPALLOC, &inodedep); 8586 /* 8587 * If we're journaling, link the diradd into the jaddref so it 8588 * may be completed after the journal entry is written. Otherwise, 8589 * link the diradd into its inodedep. If the inode is not yet 8590 * written place it on the bufwait list, otherwise do the post-inode 8591 * write processing to put it on the id_pendinghd list. 8592 */ 8593 if (MOUNTEDSUJ(mp)) { 8594 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 8595 inoreflst); 8596 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 8597 ("softdep_setup_directory_add: bad jaddref %p", jaddref)); 8598 jaddref->ja_diroff = diroffset; 8599 jaddref->ja_diradd = dap; 8600 add_to_journal(&jaddref->ja_list); 8601 } else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) 8602 diradd_inode_written(dap, inodedep); 8603 else 8604 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 8605 /* 8606 * Add the journal entries for . and .. links now that the primary 8607 * link is written. 8608 */ 8609 if (mkdir1 != NULL && MOUNTEDSUJ(mp)) { 8610 jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref, 8611 inoreflst, if_deps); 8612 KASSERT(jaddref != NULL && 8613 jaddref->ja_ino == jaddref->ja_parent && 8614 (jaddref->ja_state & MKDIR_BODY), 8615 ("softdep_setup_directory_add: bad dot jaddref %p", 8616 jaddref)); 8617 mkdir1->md_jaddref = jaddref; 8618 jaddref->ja_mkdir = mkdir1; 8619 /* 8620 * It is important that the dotdot journal entry 8621 * is added prior to the dot entry since dot writes 8622 * both the dot and dotdot links. These both must 8623 * be added after the primary link for the journal 8624 * to remain consistent. 8625 */ 8626 add_to_journal(&mkdir2->md_jaddref->ja_list); 8627 add_to_journal(&jaddref->ja_list); 8628 } 8629 /* 8630 * If we are adding a new directory remember this diradd so that if 8631 * we rename it we can keep the dot and dotdot dependencies. If 8632 * we are adding a new name for an inode that has a mkdiradd we 8633 * must be in rename and we have to move the dot and dotdot 8634 * dependencies to this new name. The old name is being orphaned 8635 * soon. 8636 */ 8637 if (mkdir1 != NULL) { 8638 if (inodedep->id_mkdiradd != NULL) 8639 panic("softdep_setup_directory_add: Existing mkdir"); 8640 inodedep->id_mkdiradd = dap; 8641 } else if (inodedep->id_mkdiradd) 8642 merge_diradd(inodedep, dap); 8643 if (newdirblk != NULL) { 8644 /* 8645 * There is nothing to do if we are already tracking 8646 * this block. 8647 */ 8648 if ((pagedep->pd_state & NEWBLOCK) != 0) { 8649 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 8650 FREE_LOCK(ump); 8651 return (0); 8652 } 8653 if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk) 8654 == 0) 8655 panic("softdep_setup_directory_add: lost entry"); 8656 WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list); 8657 pagedep->pd_state |= NEWBLOCK; 8658 pagedep->pd_newdirblk = newdirblk; 8659 newdirblk->db_pagedep = pagedep; 8660 FREE_LOCK(ump); 8661 /* 8662 * If we extended into an indirect signal direnter to sync. 8663 */ 8664 if (isindir) 8665 return (1); 8666 return (0); 8667 } 8668 FREE_LOCK(ump); 8669 return (0); 8670 } 8671 8672 /* 8673 * This procedure is called to change the offset of a directory 8674 * entry when compacting a directory block which must be owned 8675 * exclusively by the caller. Note that the actual entry movement 8676 * must be done in this procedure to ensure that no I/O completions 8677 * occur while the move is in progress. 8678 */ 8679 void 8680 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize) 8681 struct buf *bp; /* Buffer holding directory block. */ 8682 struct inode *dp; /* inode for directory */ 8683 caddr_t base; /* address of dp->i_offset */ 8684 caddr_t oldloc; /* address of old directory location */ 8685 caddr_t newloc; /* address of new directory location */ 8686 int entrysize; /* size of directory entry */ 8687 { 8688 int offset, oldoffset, newoffset; 8689 struct pagedep *pagedep; 8690 struct jmvref *jmvref; 8691 struct diradd *dap; 8692 struct direct *de; 8693 struct mount *mp; 8694 struct ufsmount *ump; 8695 ufs_lbn_t lbn; 8696 int flags; 8697 8698 mp = ITOVFS(dp); 8699 ump = VFSTOUFS(mp); 8700 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 8701 ("softdep_change_directoryentry_offset called on " 8702 "non-softdep filesystem")); 8703 de = (struct direct *)oldloc; 8704 jmvref = NULL; 8705 flags = 0; 8706 /* 8707 * Moves are always journaled as it would be too complex to 8708 * determine if any affected adds or removes are present in the 8709 * journal. 8710 */ 8711 if (MOUNTEDSUJ(mp)) { 8712 flags = DEPALLOC; 8713 jmvref = newjmvref(dp, de->d_ino, 8714 dp->i_offset + (oldloc - base), 8715 dp->i_offset + (newloc - base)); 8716 } 8717 lbn = lblkno(ump->um_fs, dp->i_offset); 8718 offset = blkoff(ump->um_fs, dp->i_offset); 8719 oldoffset = offset + (oldloc - base); 8720 newoffset = offset + (newloc - base); 8721 ACQUIRE_LOCK(ump); 8722 if (pagedep_lookup(mp, bp, dp->i_number, lbn, flags, &pagedep) == 0) 8723 goto done; 8724 dap = diradd_lookup(pagedep, oldoffset); 8725 if (dap) { 8726 dap->da_offset = newoffset; 8727 newoffset = DIRADDHASH(newoffset); 8728 oldoffset = DIRADDHASH(oldoffset); 8729 if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE && 8730 newoffset != oldoffset) { 8731 LIST_REMOVE(dap, da_pdlist); 8732 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset], 8733 dap, da_pdlist); 8734 } 8735 } 8736 done: 8737 if (jmvref) { 8738 jmvref->jm_pagedep = pagedep; 8739 LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps); 8740 add_to_journal(&jmvref->jm_list); 8741 } 8742 bcopy(oldloc, newloc, entrysize); 8743 FREE_LOCK(ump); 8744 } 8745 8746 /* 8747 * Move the mkdir dependencies and journal work from one diradd to another 8748 * when renaming a directory. The new name must depend on the mkdir deps 8749 * completing as the old name did. Directories can only have one valid link 8750 * at a time so one must be canonical. 8751 */ 8752 static void 8753 merge_diradd(inodedep, newdap) 8754 struct inodedep *inodedep; 8755 struct diradd *newdap; 8756 { 8757 struct diradd *olddap; 8758 struct mkdir *mkdir, *nextmd; 8759 struct ufsmount *ump; 8760 short state; 8761 8762 olddap = inodedep->id_mkdiradd; 8763 inodedep->id_mkdiradd = newdap; 8764 if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 8765 newdap->da_state &= ~DEPCOMPLETE; 8766 ump = VFSTOUFS(inodedep->id_list.wk_mp); 8767 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; 8768 mkdir = nextmd) { 8769 nextmd = LIST_NEXT(mkdir, md_mkdirs); 8770 if (mkdir->md_diradd != olddap) 8771 continue; 8772 mkdir->md_diradd = newdap; 8773 state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY); 8774 newdap->da_state |= state; 8775 olddap->da_state &= ~state; 8776 if ((olddap->da_state & 8777 (MKDIR_PARENT | MKDIR_BODY)) == 0) 8778 break; 8779 } 8780 if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) 8781 panic("merge_diradd: unfound ref"); 8782 } 8783 /* 8784 * Any mkdir related journal items are not safe to be freed until 8785 * the new name is stable. 8786 */ 8787 jwork_move(&newdap->da_jwork, &olddap->da_jwork); 8788 olddap->da_state |= DEPCOMPLETE; 8789 complete_diradd(olddap); 8790 } 8791 8792 /* 8793 * Move the diradd to the pending list when all diradd dependencies are 8794 * complete. 8795 */ 8796 static void 8797 complete_diradd(dap) 8798 struct diradd *dap; 8799 { 8800 struct pagedep *pagedep; 8801 8802 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 8803 if (dap->da_state & DIRCHG) 8804 pagedep = dap->da_previous->dm_pagedep; 8805 else 8806 pagedep = dap->da_pagedep; 8807 LIST_REMOVE(dap, da_pdlist); 8808 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 8809 } 8810 } 8811 8812 /* 8813 * Cancel a diradd when a dirrem overlaps with it. We must cancel the journal 8814 * add entries and conditonally journal the remove. 8815 */ 8816 static void 8817 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref) 8818 struct diradd *dap; 8819 struct dirrem *dirrem; 8820 struct jremref *jremref; 8821 struct jremref *dotremref; 8822 struct jremref *dotdotremref; 8823 { 8824 struct inodedep *inodedep; 8825 struct jaddref *jaddref; 8826 struct inoref *inoref; 8827 struct ufsmount *ump; 8828 struct mkdir *mkdir; 8829 8830 /* 8831 * If no remove references were allocated we're on a non-journaled 8832 * filesystem and can skip the cancel step. 8833 */ 8834 if (jremref == NULL) { 8835 free_diradd(dap, NULL); 8836 return; 8837 } 8838 /* 8839 * Cancel the primary name an free it if it does not require 8840 * journaling. 8841 */ 8842 if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum, 8843 0, &inodedep) != 0) { 8844 /* Abort the addref that reference this diradd. */ 8845 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 8846 if (inoref->if_list.wk_type != D_JADDREF) 8847 continue; 8848 jaddref = (struct jaddref *)inoref; 8849 if (jaddref->ja_diradd != dap) 8850 continue; 8851 if (cancel_jaddref(jaddref, inodedep, 8852 &dirrem->dm_jwork) == 0) { 8853 free_jremref(jremref); 8854 jremref = NULL; 8855 } 8856 break; 8857 } 8858 } 8859 /* 8860 * Cancel subordinate names and free them if they do not require 8861 * journaling. 8862 */ 8863 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 8864 ump = VFSTOUFS(dap->da_list.wk_mp); 8865 LIST_FOREACH(mkdir, &ump->softdep_mkdirlisthd, md_mkdirs) { 8866 if (mkdir->md_diradd != dap) 8867 continue; 8868 if ((jaddref = mkdir->md_jaddref) == NULL) 8869 continue; 8870 mkdir->md_jaddref = NULL; 8871 if (mkdir->md_state & MKDIR_PARENT) { 8872 if (cancel_jaddref(jaddref, NULL, 8873 &dirrem->dm_jwork) == 0) { 8874 free_jremref(dotdotremref); 8875 dotdotremref = NULL; 8876 } 8877 } else { 8878 if (cancel_jaddref(jaddref, inodedep, 8879 &dirrem->dm_jwork) == 0) { 8880 free_jremref(dotremref); 8881 dotremref = NULL; 8882 } 8883 } 8884 } 8885 } 8886 8887 if (jremref) 8888 journal_jremref(dirrem, jremref, inodedep); 8889 if (dotremref) 8890 journal_jremref(dirrem, dotremref, inodedep); 8891 if (dotdotremref) 8892 journal_jremref(dirrem, dotdotremref, NULL); 8893 jwork_move(&dirrem->dm_jwork, &dap->da_jwork); 8894 free_diradd(dap, &dirrem->dm_jwork); 8895 } 8896 8897 /* 8898 * Free a diradd dependency structure. 8899 */ 8900 static void 8901 free_diradd(dap, wkhd) 8902 struct diradd *dap; 8903 struct workhead *wkhd; 8904 { 8905 struct dirrem *dirrem; 8906 struct pagedep *pagedep; 8907 struct inodedep *inodedep; 8908 struct mkdir *mkdir, *nextmd; 8909 struct ufsmount *ump; 8910 8911 ump = VFSTOUFS(dap->da_list.wk_mp); 8912 LOCK_OWNED(ump); 8913 LIST_REMOVE(dap, da_pdlist); 8914 if (dap->da_state & ONWORKLIST) 8915 WORKLIST_REMOVE(&dap->da_list); 8916 if ((dap->da_state & DIRCHG) == 0) { 8917 pagedep = dap->da_pagedep; 8918 } else { 8919 dirrem = dap->da_previous; 8920 pagedep = dirrem->dm_pagedep; 8921 dirrem->dm_dirinum = pagedep->pd_ino; 8922 dirrem->dm_state |= COMPLETE; 8923 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 8924 add_to_worklist(&dirrem->dm_list, 0); 8925 } 8926 if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum, 8927 0, &inodedep) != 0) 8928 if (inodedep->id_mkdiradd == dap) 8929 inodedep->id_mkdiradd = NULL; 8930 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 8931 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; 8932 mkdir = nextmd) { 8933 nextmd = LIST_NEXT(mkdir, md_mkdirs); 8934 if (mkdir->md_diradd != dap) 8935 continue; 8936 dap->da_state &= 8937 ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)); 8938 LIST_REMOVE(mkdir, md_mkdirs); 8939 if (mkdir->md_state & ONWORKLIST) 8940 WORKLIST_REMOVE(&mkdir->md_list); 8941 if (mkdir->md_jaddref != NULL) 8942 panic("free_diradd: Unexpected jaddref"); 8943 WORKITEM_FREE(mkdir, D_MKDIR); 8944 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) 8945 break; 8946 } 8947 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) 8948 panic("free_diradd: unfound ref"); 8949 } 8950 if (inodedep) 8951 free_inodedep(inodedep); 8952 /* 8953 * Free any journal segments waiting for the directory write. 8954 */ 8955 handle_jwork(&dap->da_jwork); 8956 WORKITEM_FREE(dap, D_DIRADD); 8957 } 8958 8959 /* 8960 * Directory entry removal dependencies. 8961 * 8962 * When removing a directory entry, the entry's inode pointer must be 8963 * zero'ed on disk before the corresponding inode's link count is decremented 8964 * (possibly freeing the inode for re-use). This dependency is handled by 8965 * updating the directory entry but delaying the inode count reduction until 8966 * after the directory block has been written to disk. After this point, the 8967 * inode count can be decremented whenever it is convenient. 8968 */ 8969 8970 /* 8971 * This routine should be called immediately after removing 8972 * a directory entry. The inode's link count should not be 8973 * decremented by the calling procedure -- the soft updates 8974 * code will do this task when it is safe. 8975 */ 8976 void 8977 softdep_setup_remove(bp, dp, ip, isrmdir) 8978 struct buf *bp; /* buffer containing directory block */ 8979 struct inode *dp; /* inode for the directory being modified */ 8980 struct inode *ip; /* inode for directory entry being removed */ 8981 int isrmdir; /* indicates if doing RMDIR */ 8982 { 8983 struct dirrem *dirrem, *prevdirrem; 8984 struct inodedep *inodedep; 8985 struct ufsmount *ump; 8986 int direct; 8987 8988 ump = ITOUMP(ip); 8989 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 8990 ("softdep_setup_remove called on non-softdep filesystem")); 8991 /* 8992 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK. We want 8993 * newdirrem() to setup the full directory remove which requires 8994 * isrmdir > 1. 8995 */ 8996 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 8997 /* 8998 * Add the dirrem to the inodedep's pending remove list for quick 8999 * discovery later. 9000 */ 9001 if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0) 9002 panic("softdep_setup_remove: Lost inodedep."); 9003 KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked")); 9004 dirrem->dm_state |= ONDEPLIST; 9005 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 9006 9007 /* 9008 * If the COMPLETE flag is clear, then there were no active 9009 * entries and we want to roll back to a zeroed entry until 9010 * the new inode is committed to disk. If the COMPLETE flag is 9011 * set then we have deleted an entry that never made it to 9012 * disk. If the entry we deleted resulted from a name change, 9013 * then the old name still resides on disk. We cannot delete 9014 * its inode (returned to us in prevdirrem) until the zeroed 9015 * directory entry gets to disk. The new inode has never been 9016 * referenced on the disk, so can be deleted immediately. 9017 */ 9018 if ((dirrem->dm_state & COMPLETE) == 0) { 9019 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem, 9020 dm_next); 9021 FREE_LOCK(ump); 9022 } else { 9023 if (prevdirrem != NULL) 9024 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, 9025 prevdirrem, dm_next); 9026 dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino; 9027 direct = LIST_EMPTY(&dirrem->dm_jremrefhd); 9028 FREE_LOCK(ump); 9029 if (direct) 9030 handle_workitem_remove(dirrem, 0); 9031 } 9032 } 9033 9034 /* 9035 * Check for an entry matching 'offset' on both the pd_dirraddhd list and the 9036 * pd_pendinghd list of a pagedep. 9037 */ 9038 static struct diradd * 9039 diradd_lookup(pagedep, offset) 9040 struct pagedep *pagedep; 9041 int offset; 9042 { 9043 struct diradd *dap; 9044 9045 LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist) 9046 if (dap->da_offset == offset) 9047 return (dap); 9048 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) 9049 if (dap->da_offset == offset) 9050 return (dap); 9051 return (NULL); 9052 } 9053 9054 /* 9055 * Search for a .. diradd dependency in a directory that is being removed. 9056 * If the directory was renamed to a new parent we have a diradd rather 9057 * than a mkdir for the .. entry. We need to cancel it now before 9058 * it is found in truncate(). 9059 */ 9060 static struct jremref * 9061 cancel_diradd_dotdot(ip, dirrem, jremref) 9062 struct inode *ip; 9063 struct dirrem *dirrem; 9064 struct jremref *jremref; 9065 { 9066 struct pagedep *pagedep; 9067 struct diradd *dap; 9068 struct worklist *wk; 9069 9070 if (pagedep_lookup(ITOVFS(ip), NULL, ip->i_number, 0, 0, &pagedep) == 0) 9071 return (jremref); 9072 dap = diradd_lookup(pagedep, DOTDOT_OFFSET); 9073 if (dap == NULL) 9074 return (jremref); 9075 cancel_diradd(dap, dirrem, jremref, NULL, NULL); 9076 /* 9077 * Mark any journal work as belonging to the parent so it is freed 9078 * with the .. reference. 9079 */ 9080 LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list) 9081 wk->wk_state |= MKDIR_PARENT; 9082 return (NULL); 9083 } 9084 9085 /* 9086 * Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to 9087 * replace it with a dirrem/diradd pair as a result of re-parenting a 9088 * directory. This ensures that we don't simultaneously have a mkdir and 9089 * a diradd for the same .. entry. 9090 */ 9091 static struct jremref * 9092 cancel_mkdir_dotdot(ip, dirrem, jremref) 9093 struct inode *ip; 9094 struct dirrem *dirrem; 9095 struct jremref *jremref; 9096 { 9097 struct inodedep *inodedep; 9098 struct jaddref *jaddref; 9099 struct ufsmount *ump; 9100 struct mkdir *mkdir; 9101 struct diradd *dap; 9102 struct mount *mp; 9103 9104 mp = ITOVFS(ip); 9105 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 9106 return (jremref); 9107 dap = inodedep->id_mkdiradd; 9108 if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0) 9109 return (jremref); 9110 ump = VFSTOUFS(inodedep->id_list.wk_mp); 9111 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; 9112 mkdir = LIST_NEXT(mkdir, md_mkdirs)) 9113 if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT) 9114 break; 9115 if (mkdir == NULL) 9116 panic("cancel_mkdir_dotdot: Unable to find mkdir\n"); 9117 if ((jaddref = mkdir->md_jaddref) != NULL) { 9118 mkdir->md_jaddref = NULL; 9119 jaddref->ja_state &= ~MKDIR_PARENT; 9120 if (inodedep_lookup(mp, jaddref->ja_ino, 0, &inodedep) == 0) 9121 panic("cancel_mkdir_dotdot: Lost parent inodedep"); 9122 if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) { 9123 journal_jremref(dirrem, jremref, inodedep); 9124 jremref = NULL; 9125 } 9126 } 9127 if (mkdir->md_state & ONWORKLIST) 9128 WORKLIST_REMOVE(&mkdir->md_list); 9129 mkdir->md_state |= ALLCOMPLETE; 9130 complete_mkdir(mkdir); 9131 return (jremref); 9132 } 9133 9134 static void 9135 journal_jremref(dirrem, jremref, inodedep) 9136 struct dirrem *dirrem; 9137 struct jremref *jremref; 9138 struct inodedep *inodedep; 9139 { 9140 9141 if (inodedep == NULL) 9142 if (inodedep_lookup(jremref->jr_list.wk_mp, 9143 jremref->jr_ref.if_ino, 0, &inodedep) == 0) 9144 panic("journal_jremref: Lost inodedep"); 9145 LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps); 9146 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps); 9147 add_to_journal(&jremref->jr_list); 9148 } 9149 9150 static void 9151 dirrem_journal(dirrem, jremref, dotremref, dotdotremref) 9152 struct dirrem *dirrem; 9153 struct jremref *jremref; 9154 struct jremref *dotremref; 9155 struct jremref *dotdotremref; 9156 { 9157 struct inodedep *inodedep; 9158 9159 9160 if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0, 9161 &inodedep) == 0) 9162 panic("dirrem_journal: Lost inodedep"); 9163 journal_jremref(dirrem, jremref, inodedep); 9164 if (dotremref) 9165 journal_jremref(dirrem, dotremref, inodedep); 9166 if (dotdotremref) 9167 journal_jremref(dirrem, dotdotremref, NULL); 9168 } 9169 9170 /* 9171 * Allocate a new dirrem if appropriate and return it along with 9172 * its associated pagedep. Called without a lock, returns with lock. 9173 */ 9174 static struct dirrem * 9175 newdirrem(bp, dp, ip, isrmdir, prevdirremp) 9176 struct buf *bp; /* buffer containing directory block */ 9177 struct inode *dp; /* inode for the directory being modified */ 9178 struct inode *ip; /* inode for directory entry being removed */ 9179 int isrmdir; /* indicates if doing RMDIR */ 9180 struct dirrem **prevdirremp; /* previously referenced inode, if any */ 9181 { 9182 int offset; 9183 ufs_lbn_t lbn; 9184 struct diradd *dap; 9185 struct dirrem *dirrem; 9186 struct pagedep *pagedep; 9187 struct jremref *jremref; 9188 struct jremref *dotremref; 9189 struct jremref *dotdotremref; 9190 struct vnode *dvp; 9191 struct ufsmount *ump; 9192 9193 /* 9194 * Whiteouts have no deletion dependencies. 9195 */ 9196 if (ip == NULL) 9197 panic("newdirrem: whiteout"); 9198 dvp = ITOV(dp); 9199 ump = ITOUMP(dp); 9200 9201 /* 9202 * If the system is over its limit and our filesystem is 9203 * responsible for more than our share of that usage and 9204 * we are not a snapshot, request some inodedep cleanup. 9205 * Limiting the number of dirrem structures will also limit 9206 * the number of freefile and freeblks structures. 9207 */ 9208 ACQUIRE_LOCK(ump); 9209 if (!IS_SNAPSHOT(ip) && softdep_excess_items(ump, D_DIRREM)) 9210 schedule_cleanup(UFSTOVFS(ump)); 9211 else 9212 FREE_LOCK(ump); 9213 dirrem = malloc(sizeof(struct dirrem), M_DIRREM, M_SOFTDEP_FLAGS | 9214 M_ZERO); 9215 workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount); 9216 LIST_INIT(&dirrem->dm_jremrefhd); 9217 LIST_INIT(&dirrem->dm_jwork); 9218 dirrem->dm_state = isrmdir ? RMDIR : 0; 9219 dirrem->dm_oldinum = ip->i_number; 9220 *prevdirremp = NULL; 9221 /* 9222 * Allocate remove reference structures to track journal write 9223 * dependencies. We will always have one for the link and 9224 * when doing directories we will always have one more for dot. 9225 * When renaming a directory we skip the dotdot link change so 9226 * this is not needed. 9227 */ 9228 jremref = dotremref = dotdotremref = NULL; 9229 if (DOINGSUJ(dvp)) { 9230 if (isrmdir) { 9231 jremref = newjremref(dirrem, dp, ip, dp->i_offset, 9232 ip->i_effnlink + 2); 9233 dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET, 9234 ip->i_effnlink + 1); 9235 dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET, 9236 dp->i_effnlink + 1); 9237 dotdotremref->jr_state |= MKDIR_PARENT; 9238 } else 9239 jremref = newjremref(dirrem, dp, ip, dp->i_offset, 9240 ip->i_effnlink + 1); 9241 } 9242 ACQUIRE_LOCK(ump); 9243 lbn = lblkno(ump->um_fs, dp->i_offset); 9244 offset = blkoff(ump->um_fs, dp->i_offset); 9245 pagedep_lookup(UFSTOVFS(ump), bp, dp->i_number, lbn, DEPALLOC, 9246 &pagedep); 9247 dirrem->dm_pagedep = pagedep; 9248 dirrem->dm_offset = offset; 9249 /* 9250 * If we're renaming a .. link to a new directory, cancel any 9251 * existing MKDIR_PARENT mkdir. If it has already been canceled 9252 * the jremref is preserved for any potential diradd in this 9253 * location. This can not coincide with a rmdir. 9254 */ 9255 if (dp->i_offset == DOTDOT_OFFSET) { 9256 if (isrmdir) 9257 panic("newdirrem: .. directory change during remove?"); 9258 jremref = cancel_mkdir_dotdot(dp, dirrem, jremref); 9259 } 9260 /* 9261 * If we're removing a directory search for the .. dependency now and 9262 * cancel it. Any pending journal work will be added to the dirrem 9263 * to be completed when the workitem remove completes. 9264 */ 9265 if (isrmdir) 9266 dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref); 9267 /* 9268 * Check for a diradd dependency for the same directory entry. 9269 * If present, then both dependencies become obsolete and can 9270 * be de-allocated. 9271 */ 9272 dap = diradd_lookup(pagedep, offset); 9273 if (dap == NULL) { 9274 /* 9275 * Link the jremref structures into the dirrem so they are 9276 * written prior to the pagedep. 9277 */ 9278 if (jremref) 9279 dirrem_journal(dirrem, jremref, dotremref, 9280 dotdotremref); 9281 return (dirrem); 9282 } 9283 /* 9284 * Must be ATTACHED at this point. 9285 */ 9286 if ((dap->da_state & ATTACHED) == 0) 9287 panic("newdirrem: not ATTACHED"); 9288 if (dap->da_newinum != ip->i_number) 9289 panic("newdirrem: inum %ju should be %ju", 9290 (uintmax_t)ip->i_number, (uintmax_t)dap->da_newinum); 9291 /* 9292 * If we are deleting a changed name that never made it to disk, 9293 * then return the dirrem describing the previous inode (which 9294 * represents the inode currently referenced from this entry on disk). 9295 */ 9296 if ((dap->da_state & DIRCHG) != 0) { 9297 *prevdirremp = dap->da_previous; 9298 dap->da_state &= ~DIRCHG; 9299 dap->da_pagedep = pagedep; 9300 } 9301 /* 9302 * We are deleting an entry that never made it to disk. 9303 * Mark it COMPLETE so we can delete its inode immediately. 9304 */ 9305 dirrem->dm_state |= COMPLETE; 9306 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref); 9307 #ifdef INVARIANTS 9308 if (isrmdir == 0) { 9309 struct worklist *wk; 9310 9311 LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list) 9312 if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT)) 9313 panic("bad wk %p (0x%X)\n", wk, wk->wk_state); 9314 } 9315 #endif 9316 9317 return (dirrem); 9318 } 9319 9320 /* 9321 * Directory entry change dependencies. 9322 * 9323 * Changing an existing directory entry requires that an add operation 9324 * be completed first followed by a deletion. The semantics for the addition 9325 * are identical to the description of adding a new entry above except 9326 * that the rollback is to the old inode number rather than zero. Once 9327 * the addition dependency is completed, the removal is done as described 9328 * in the removal routine above. 9329 */ 9330 9331 /* 9332 * This routine should be called immediately after changing 9333 * a directory entry. The inode's link count should not be 9334 * decremented by the calling procedure -- the soft updates 9335 * code will perform this task when it is safe. 9336 */ 9337 void 9338 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 9339 struct buf *bp; /* buffer containing directory block */ 9340 struct inode *dp; /* inode for the directory being modified */ 9341 struct inode *ip; /* inode for directory entry being removed */ 9342 ino_t newinum; /* new inode number for changed entry */ 9343 int isrmdir; /* indicates if doing RMDIR */ 9344 { 9345 int offset; 9346 struct diradd *dap = NULL; 9347 struct dirrem *dirrem, *prevdirrem; 9348 struct pagedep *pagedep; 9349 struct inodedep *inodedep; 9350 struct jaddref *jaddref; 9351 struct mount *mp; 9352 struct ufsmount *ump; 9353 9354 mp = ITOVFS(dp); 9355 ump = VFSTOUFS(mp); 9356 offset = blkoff(ump->um_fs, dp->i_offset); 9357 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 9358 ("softdep_setup_directory_change called on non-softdep filesystem")); 9359 9360 /* 9361 * Whiteouts do not need diradd dependencies. 9362 */ 9363 if (newinum != UFS_WINO) { 9364 dap = malloc(sizeof(struct diradd), 9365 M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO); 9366 workitem_alloc(&dap->da_list, D_DIRADD, mp); 9367 dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE; 9368 dap->da_offset = offset; 9369 dap->da_newinum = newinum; 9370 LIST_INIT(&dap->da_jwork); 9371 } 9372 9373 /* 9374 * Allocate a new dirrem and ACQUIRE_LOCK. 9375 */ 9376 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 9377 pagedep = dirrem->dm_pagedep; 9378 /* 9379 * The possible values for isrmdir: 9380 * 0 - non-directory file rename 9381 * 1 - directory rename within same directory 9382 * inum - directory rename to new directory of given inode number 9383 * When renaming to a new directory, we are both deleting and 9384 * creating a new directory entry, so the link count on the new 9385 * directory should not change. Thus we do not need the followup 9386 * dirrem which is usually done in handle_workitem_remove. We set 9387 * the DIRCHG flag to tell handle_workitem_remove to skip the 9388 * followup dirrem. 9389 */ 9390 if (isrmdir > 1) 9391 dirrem->dm_state |= DIRCHG; 9392 9393 /* 9394 * Whiteouts have no additional dependencies, 9395 * so just put the dirrem on the correct list. 9396 */ 9397 if (newinum == UFS_WINO) { 9398 if ((dirrem->dm_state & COMPLETE) == 0) { 9399 LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem, 9400 dm_next); 9401 } else { 9402 dirrem->dm_dirinum = pagedep->pd_ino; 9403 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 9404 add_to_worklist(&dirrem->dm_list, 0); 9405 } 9406 FREE_LOCK(ump); 9407 return; 9408 } 9409 /* 9410 * Add the dirrem to the inodedep's pending remove list for quick 9411 * discovery later. A valid nlinkdelta ensures that this lookup 9412 * will not fail. 9413 */ 9414 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 9415 panic("softdep_setup_directory_change: Lost inodedep."); 9416 dirrem->dm_state |= ONDEPLIST; 9417 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 9418 9419 /* 9420 * If the COMPLETE flag is clear, then there were no active 9421 * entries and we want to roll back to the previous inode until 9422 * the new inode is committed to disk. If the COMPLETE flag is 9423 * set, then we have deleted an entry that never made it to disk. 9424 * If the entry we deleted resulted from a name change, then the old 9425 * inode reference still resides on disk. Any rollback that we do 9426 * needs to be to that old inode (returned to us in prevdirrem). If 9427 * the entry we deleted resulted from a create, then there is 9428 * no entry on the disk, so we want to roll back to zero rather 9429 * than the uncommitted inode. In either of the COMPLETE cases we 9430 * want to immediately free the unwritten and unreferenced inode. 9431 */ 9432 if ((dirrem->dm_state & COMPLETE) == 0) { 9433 dap->da_previous = dirrem; 9434 } else { 9435 if (prevdirrem != NULL) { 9436 dap->da_previous = prevdirrem; 9437 } else { 9438 dap->da_state &= ~DIRCHG; 9439 dap->da_pagedep = pagedep; 9440 } 9441 dirrem->dm_dirinum = pagedep->pd_ino; 9442 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 9443 add_to_worklist(&dirrem->dm_list, 0); 9444 } 9445 /* 9446 * Lookup the jaddref for this journal entry. We must finish 9447 * initializing it and make the diradd write dependent on it. 9448 * If we're not journaling, put it on the id_bufwait list if the 9449 * inode is not yet written. If it is written, do the post-inode 9450 * write processing to put it on the id_pendinghd list. 9451 */ 9452 inodedep_lookup(mp, newinum, DEPALLOC, &inodedep); 9453 if (MOUNTEDSUJ(mp)) { 9454 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 9455 inoreflst); 9456 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 9457 ("softdep_setup_directory_change: bad jaddref %p", 9458 jaddref)); 9459 jaddref->ja_diroff = dp->i_offset; 9460 jaddref->ja_diradd = dap; 9461 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], 9462 dap, da_pdlist); 9463 add_to_journal(&jaddref->ja_list); 9464 } else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 9465 dap->da_state |= COMPLETE; 9466 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 9467 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 9468 } else { 9469 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], 9470 dap, da_pdlist); 9471 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 9472 } 9473 /* 9474 * If we're making a new name for a directory that has not been 9475 * committed when need to move the dot and dotdot references to 9476 * this new name. 9477 */ 9478 if (inodedep->id_mkdiradd && dp->i_offset != DOTDOT_OFFSET) 9479 merge_diradd(inodedep, dap); 9480 FREE_LOCK(ump); 9481 } 9482 9483 /* 9484 * Called whenever the link count on an inode is changed. 9485 * It creates an inode dependency so that the new reference(s) 9486 * to the inode cannot be committed to disk until the updated 9487 * inode has been written. 9488 */ 9489 void 9490 softdep_change_linkcnt(ip) 9491 struct inode *ip; /* the inode with the increased link count */ 9492 { 9493 struct inodedep *inodedep; 9494 struct ufsmount *ump; 9495 9496 ump = ITOUMP(ip); 9497 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 9498 ("softdep_change_linkcnt called on non-softdep filesystem")); 9499 ACQUIRE_LOCK(ump); 9500 inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep); 9501 if (ip->i_nlink < ip->i_effnlink) 9502 panic("softdep_change_linkcnt: bad delta"); 9503 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 9504 FREE_LOCK(ump); 9505 } 9506 9507 /* 9508 * Attach a sbdep dependency to the superblock buf so that we can keep 9509 * track of the head of the linked list of referenced but unlinked inodes. 9510 */ 9511 void 9512 softdep_setup_sbupdate(ump, fs, bp) 9513 struct ufsmount *ump; 9514 struct fs *fs; 9515 struct buf *bp; 9516 { 9517 struct sbdep *sbdep; 9518 struct worklist *wk; 9519 9520 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 9521 ("softdep_setup_sbupdate called on non-softdep filesystem")); 9522 LIST_FOREACH(wk, &bp->b_dep, wk_list) 9523 if (wk->wk_type == D_SBDEP) 9524 break; 9525 if (wk != NULL) 9526 return; 9527 sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS); 9528 workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump)); 9529 sbdep->sb_fs = fs; 9530 sbdep->sb_ump = ump; 9531 ACQUIRE_LOCK(ump); 9532 WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list); 9533 FREE_LOCK(ump); 9534 } 9535 9536 /* 9537 * Return the first unlinked inodedep which is ready to be the head of the 9538 * list. The inodedep and all those after it must have valid next pointers. 9539 */ 9540 static struct inodedep * 9541 first_unlinked_inodedep(ump) 9542 struct ufsmount *ump; 9543 { 9544 struct inodedep *inodedep; 9545 struct inodedep *idp; 9546 9547 LOCK_OWNED(ump); 9548 for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst); 9549 inodedep; inodedep = idp) { 9550 if ((inodedep->id_state & UNLINKNEXT) == 0) 9551 return (NULL); 9552 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 9553 if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0) 9554 break; 9555 if ((inodedep->id_state & UNLINKPREV) == 0) 9556 break; 9557 } 9558 return (inodedep); 9559 } 9560 9561 /* 9562 * Set the sujfree unlinked head pointer prior to writing a superblock. 9563 */ 9564 static void 9565 initiate_write_sbdep(sbdep) 9566 struct sbdep *sbdep; 9567 { 9568 struct inodedep *inodedep; 9569 struct fs *bpfs; 9570 struct fs *fs; 9571 9572 bpfs = sbdep->sb_fs; 9573 fs = sbdep->sb_ump->um_fs; 9574 inodedep = first_unlinked_inodedep(sbdep->sb_ump); 9575 if (inodedep) { 9576 fs->fs_sujfree = inodedep->id_ino; 9577 inodedep->id_state |= UNLINKPREV; 9578 } else 9579 fs->fs_sujfree = 0; 9580 bpfs->fs_sujfree = fs->fs_sujfree; 9581 } 9582 9583 /* 9584 * After a superblock is written determine whether it must be written again 9585 * due to a changing unlinked list head. 9586 */ 9587 static int 9588 handle_written_sbdep(sbdep, bp) 9589 struct sbdep *sbdep; 9590 struct buf *bp; 9591 { 9592 struct inodedep *inodedep; 9593 struct fs *fs; 9594 9595 LOCK_OWNED(sbdep->sb_ump); 9596 fs = sbdep->sb_fs; 9597 /* 9598 * If the superblock doesn't match the in-memory list start over. 9599 */ 9600 inodedep = first_unlinked_inodedep(sbdep->sb_ump); 9601 if ((inodedep && fs->fs_sujfree != inodedep->id_ino) || 9602 (inodedep == NULL && fs->fs_sujfree != 0)) { 9603 bdirty(bp); 9604 return (1); 9605 } 9606 WORKITEM_FREE(sbdep, D_SBDEP); 9607 if (fs->fs_sujfree == 0) 9608 return (0); 9609 /* 9610 * Now that we have a record of this inode in stable store allow it 9611 * to be written to free up pending work. Inodes may see a lot of 9612 * write activity after they are unlinked which we must not hold up. 9613 */ 9614 for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) { 9615 if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS) 9616 panic("handle_written_sbdep: Bad inodedep %p (0x%X)", 9617 inodedep, inodedep->id_state); 9618 if (inodedep->id_state & UNLINKONLIST) 9619 break; 9620 inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST; 9621 } 9622 9623 return (0); 9624 } 9625 9626 /* 9627 * Mark an inodedep as unlinked and insert it into the in-memory unlinked list. 9628 */ 9629 static void 9630 unlinked_inodedep(mp, inodedep) 9631 struct mount *mp; 9632 struct inodedep *inodedep; 9633 { 9634 struct ufsmount *ump; 9635 9636 ump = VFSTOUFS(mp); 9637 LOCK_OWNED(ump); 9638 if (MOUNTEDSUJ(mp) == 0) 9639 return; 9640 ump->um_fs->fs_fmod = 1; 9641 if (inodedep->id_state & UNLINKED) 9642 panic("unlinked_inodedep: %p already unlinked\n", inodedep); 9643 inodedep->id_state |= UNLINKED; 9644 TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked); 9645 } 9646 9647 /* 9648 * Remove an inodedep from the unlinked inodedep list. This may require 9649 * disk writes if the inode has made it that far. 9650 */ 9651 static void 9652 clear_unlinked_inodedep(inodedep) 9653 struct inodedep *inodedep; 9654 { 9655 struct ufs2_dinode *dip; 9656 struct ufsmount *ump; 9657 struct inodedep *idp; 9658 struct inodedep *idn; 9659 struct fs *fs; 9660 struct buf *bp; 9661 ino_t ino; 9662 ino_t nino; 9663 ino_t pino; 9664 int error; 9665 9666 ump = VFSTOUFS(inodedep->id_list.wk_mp); 9667 fs = ump->um_fs; 9668 ino = inodedep->id_ino; 9669 error = 0; 9670 for (;;) { 9671 LOCK_OWNED(ump); 9672 KASSERT((inodedep->id_state & UNLINKED) != 0, 9673 ("clear_unlinked_inodedep: inodedep %p not unlinked", 9674 inodedep)); 9675 /* 9676 * If nothing has yet been written simply remove us from 9677 * the in memory list and return. This is the most common 9678 * case where handle_workitem_remove() loses the final 9679 * reference. 9680 */ 9681 if ((inodedep->id_state & UNLINKLINKS) == 0) 9682 break; 9683 /* 9684 * If we have a NEXT pointer and no PREV pointer we can simply 9685 * clear NEXT's PREV and remove ourselves from the list. Be 9686 * careful not to clear PREV if the superblock points at 9687 * next as well. 9688 */ 9689 idn = TAILQ_NEXT(inodedep, id_unlinked); 9690 if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) { 9691 if (idn && fs->fs_sujfree != idn->id_ino) 9692 idn->id_state &= ~UNLINKPREV; 9693 break; 9694 } 9695 /* 9696 * Here we have an inodedep which is actually linked into 9697 * the list. We must remove it by forcing a write to the 9698 * link before us, whether it be the superblock or an inode. 9699 * Unfortunately the list may change while we're waiting 9700 * on the buf lock for either resource so we must loop until 9701 * we lock the right one. If both the superblock and an 9702 * inode point to this inode we must clear the inode first 9703 * followed by the superblock. 9704 */ 9705 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 9706 pino = 0; 9707 if (idp && (idp->id_state & UNLINKNEXT)) 9708 pino = idp->id_ino; 9709 FREE_LOCK(ump); 9710 if (pino == 0) { 9711 bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc), 9712 (int)fs->fs_sbsize, 0, 0, 0); 9713 } else { 9714 error = bread(ump->um_devvp, 9715 fsbtodb(fs, ino_to_fsba(fs, pino)), 9716 (int)fs->fs_bsize, NOCRED, &bp); 9717 if (error) 9718 brelse(bp); 9719 } 9720 ACQUIRE_LOCK(ump); 9721 if (error) 9722 break; 9723 /* If the list has changed restart the loop. */ 9724 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 9725 nino = 0; 9726 if (idp && (idp->id_state & UNLINKNEXT)) 9727 nino = idp->id_ino; 9728 if (nino != pino || 9729 (inodedep->id_state & UNLINKPREV) != UNLINKPREV) { 9730 FREE_LOCK(ump); 9731 brelse(bp); 9732 ACQUIRE_LOCK(ump); 9733 continue; 9734 } 9735 nino = 0; 9736 idn = TAILQ_NEXT(inodedep, id_unlinked); 9737 if (idn) 9738 nino = idn->id_ino; 9739 /* 9740 * Remove us from the in memory list. After this we cannot 9741 * access the inodedep. 9742 */ 9743 KASSERT((inodedep->id_state & UNLINKED) != 0, 9744 ("clear_unlinked_inodedep: inodedep %p not unlinked", 9745 inodedep)); 9746 inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST); 9747 TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked); 9748 FREE_LOCK(ump); 9749 /* 9750 * The predecessor's next pointer is manually updated here 9751 * so that the NEXT flag is never cleared for an element 9752 * that is in the list. 9753 */ 9754 if (pino == 0) { 9755 bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize); 9756 ffs_oldfscompat_write((struct fs *)bp->b_data, ump); 9757 softdep_setup_sbupdate(ump, (struct fs *)bp->b_data, 9758 bp); 9759 } else if (fs->fs_magic == FS_UFS1_MAGIC) { 9760 ((struct ufs1_dinode *)bp->b_data + 9761 ino_to_fsbo(fs, pino))->di_freelink = nino; 9762 } else { 9763 dip = (struct ufs2_dinode *)bp->b_data + 9764 ino_to_fsbo(fs, pino); 9765 dip->di_freelink = nino; 9766 ffs_update_dinode_ckhash(fs, dip); 9767 } 9768 /* 9769 * If the bwrite fails we have no recourse to recover. The 9770 * filesystem is corrupted already. 9771 */ 9772 bwrite(bp); 9773 ACQUIRE_LOCK(ump); 9774 /* 9775 * If the superblock pointer still needs to be cleared force 9776 * a write here. 9777 */ 9778 if (fs->fs_sujfree == ino) { 9779 FREE_LOCK(ump); 9780 bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc), 9781 (int)fs->fs_sbsize, 0, 0, 0); 9782 bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize); 9783 ffs_oldfscompat_write((struct fs *)bp->b_data, ump); 9784 softdep_setup_sbupdate(ump, (struct fs *)bp->b_data, 9785 bp); 9786 bwrite(bp); 9787 ACQUIRE_LOCK(ump); 9788 } 9789 9790 if (fs->fs_sujfree != ino) 9791 return; 9792 panic("clear_unlinked_inodedep: Failed to clear free head"); 9793 } 9794 if (inodedep->id_ino == fs->fs_sujfree) 9795 panic("clear_unlinked_inodedep: Freeing head of free list"); 9796 inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST); 9797 TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked); 9798 return; 9799 } 9800 9801 /* 9802 * This workitem decrements the inode's link count. 9803 * If the link count reaches zero, the file is removed. 9804 */ 9805 static int 9806 handle_workitem_remove(dirrem, flags) 9807 struct dirrem *dirrem; 9808 int flags; 9809 { 9810 struct inodedep *inodedep; 9811 struct workhead dotdotwk; 9812 struct worklist *wk; 9813 struct ufsmount *ump; 9814 struct mount *mp; 9815 struct vnode *vp; 9816 struct inode *ip; 9817 ino_t oldinum; 9818 9819 if (dirrem->dm_state & ONWORKLIST) 9820 panic("handle_workitem_remove: dirrem %p still on worklist", 9821 dirrem); 9822 oldinum = dirrem->dm_oldinum; 9823 mp = dirrem->dm_list.wk_mp; 9824 ump = VFSTOUFS(mp); 9825 flags |= LK_EXCLUSIVE; 9826 if (ffs_vgetf(mp, oldinum, flags, &vp, FFSV_FORCEINSMQ) != 0) 9827 return (EBUSY); 9828 ip = VTOI(vp); 9829 ACQUIRE_LOCK(ump); 9830 if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0) 9831 panic("handle_workitem_remove: lost inodedep"); 9832 if (dirrem->dm_state & ONDEPLIST) 9833 LIST_REMOVE(dirrem, dm_inonext); 9834 KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd), 9835 ("handle_workitem_remove: Journal entries not written.")); 9836 9837 /* 9838 * Move all dependencies waiting on the remove to complete 9839 * from the dirrem to the inode inowait list to be completed 9840 * after the inode has been updated and written to disk. Any 9841 * marked MKDIR_PARENT are saved to be completed when the .. ref 9842 * is removed. 9843 */ 9844 LIST_INIT(&dotdotwk); 9845 while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) { 9846 WORKLIST_REMOVE(wk); 9847 if (wk->wk_state & MKDIR_PARENT) { 9848 wk->wk_state &= ~MKDIR_PARENT; 9849 WORKLIST_INSERT(&dotdotwk, wk); 9850 continue; 9851 } 9852 WORKLIST_INSERT(&inodedep->id_inowait, wk); 9853 } 9854 LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list); 9855 /* 9856 * Normal file deletion. 9857 */ 9858 if ((dirrem->dm_state & RMDIR) == 0) { 9859 ip->i_nlink--; 9860 DIP_SET(ip, i_nlink, ip->i_nlink); 9861 ip->i_flag |= IN_CHANGE; 9862 if (ip->i_nlink < ip->i_effnlink) 9863 panic("handle_workitem_remove: bad file delta"); 9864 if (ip->i_nlink == 0) 9865 unlinked_inodedep(mp, inodedep); 9866 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 9867 KASSERT(LIST_EMPTY(&dirrem->dm_jwork), 9868 ("handle_workitem_remove: worklist not empty. %s", 9869 TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type))); 9870 WORKITEM_FREE(dirrem, D_DIRREM); 9871 FREE_LOCK(ump); 9872 goto out; 9873 } 9874 /* 9875 * Directory deletion. Decrement reference count for both the 9876 * just deleted parent directory entry and the reference for ".". 9877 * Arrange to have the reference count on the parent decremented 9878 * to account for the loss of "..". 9879 */ 9880 ip->i_nlink -= 2; 9881 DIP_SET(ip, i_nlink, ip->i_nlink); 9882 ip->i_flag |= IN_CHANGE; 9883 if (ip->i_nlink < ip->i_effnlink) 9884 panic("handle_workitem_remove: bad dir delta"); 9885 if (ip->i_nlink == 0) 9886 unlinked_inodedep(mp, inodedep); 9887 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 9888 /* 9889 * Rename a directory to a new parent. Since, we are both deleting 9890 * and creating a new directory entry, the link count on the new 9891 * directory should not change. Thus we skip the followup dirrem. 9892 */ 9893 if (dirrem->dm_state & DIRCHG) { 9894 KASSERT(LIST_EMPTY(&dirrem->dm_jwork), 9895 ("handle_workitem_remove: DIRCHG and worklist not empty.")); 9896 WORKITEM_FREE(dirrem, D_DIRREM); 9897 FREE_LOCK(ump); 9898 goto out; 9899 } 9900 dirrem->dm_state = ONDEPLIST; 9901 dirrem->dm_oldinum = dirrem->dm_dirinum; 9902 /* 9903 * Place the dirrem on the parent's diremhd list. 9904 */ 9905 if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0) 9906 panic("handle_workitem_remove: lost dir inodedep"); 9907 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 9908 /* 9909 * If the allocated inode has never been written to disk, then 9910 * the on-disk inode is zero'ed and we can remove the file 9911 * immediately. When journaling if the inode has been marked 9912 * unlinked and not DEPCOMPLETE we know it can never be written. 9913 */ 9914 inodedep_lookup(mp, oldinum, 0, &inodedep); 9915 if (inodedep == NULL || 9916 (inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED || 9917 check_inode_unwritten(inodedep)) { 9918 FREE_LOCK(ump); 9919 vput(vp); 9920 return handle_workitem_remove(dirrem, flags); 9921 } 9922 WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list); 9923 FREE_LOCK(ump); 9924 ip->i_flag |= IN_CHANGE; 9925 out: 9926 ffs_update(vp, 0); 9927 vput(vp); 9928 return (0); 9929 } 9930 9931 /* 9932 * Inode de-allocation dependencies. 9933 * 9934 * When an inode's link count is reduced to zero, it can be de-allocated. We 9935 * found it convenient to postpone de-allocation until after the inode is 9936 * written to disk with its new link count (zero). At this point, all of the 9937 * on-disk inode's block pointers are nullified and, with careful dependency 9938 * list ordering, all dependencies related to the inode will be satisfied and 9939 * the corresponding dependency structures de-allocated. So, if/when the 9940 * inode is reused, there will be no mixing of old dependencies with new 9941 * ones. This artificial dependency is set up by the block de-allocation 9942 * procedure above (softdep_setup_freeblocks) and completed by the 9943 * following procedure. 9944 */ 9945 static void 9946 handle_workitem_freefile(freefile) 9947 struct freefile *freefile; 9948 { 9949 struct workhead wkhd; 9950 struct fs *fs; 9951 struct ufsmount *ump; 9952 int error; 9953 #ifdef INVARIANTS 9954 struct inodedep *idp; 9955 #endif 9956 9957 ump = VFSTOUFS(freefile->fx_list.wk_mp); 9958 fs = ump->um_fs; 9959 #ifdef INVARIANTS 9960 ACQUIRE_LOCK(ump); 9961 error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp); 9962 FREE_LOCK(ump); 9963 if (error) 9964 panic("handle_workitem_freefile: inodedep %p survived", idp); 9965 #endif 9966 UFS_LOCK(ump); 9967 fs->fs_pendinginodes -= 1; 9968 UFS_UNLOCK(ump); 9969 LIST_INIT(&wkhd); 9970 LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list); 9971 if ((error = ffs_freefile(ump, fs, freefile->fx_devvp, 9972 freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0) 9973 softdep_error("handle_workitem_freefile", error); 9974 ACQUIRE_LOCK(ump); 9975 WORKITEM_FREE(freefile, D_FREEFILE); 9976 FREE_LOCK(ump); 9977 } 9978 9979 9980 /* 9981 * Helper function which unlinks marker element from work list and returns 9982 * the next element on the list. 9983 */ 9984 static __inline struct worklist * 9985 markernext(struct worklist *marker) 9986 { 9987 struct worklist *next; 9988 9989 next = LIST_NEXT(marker, wk_list); 9990 LIST_REMOVE(marker, wk_list); 9991 return next; 9992 } 9993 9994 /* 9995 * Disk writes. 9996 * 9997 * The dependency structures constructed above are most actively used when file 9998 * system blocks are written to disk. No constraints are placed on when a 9999 * block can be written, but unsatisfied update dependencies are made safe by 10000 * modifying (or replacing) the source memory for the duration of the disk 10001 * write. When the disk write completes, the memory block is again brought 10002 * up-to-date. 10003 * 10004 * In-core inode structure reclamation. 10005 * 10006 * Because there are a finite number of "in-core" inode structures, they are 10007 * reused regularly. By transferring all inode-related dependencies to the 10008 * in-memory inode block and indexing them separately (via "inodedep"s), we 10009 * can allow "in-core" inode structures to be reused at any time and avoid 10010 * any increase in contention. 10011 * 10012 * Called just before entering the device driver to initiate a new disk I/O. 10013 * The buffer must be locked, thus, no I/O completion operations can occur 10014 * while we are manipulating its associated dependencies. 10015 */ 10016 static void 10017 softdep_disk_io_initiation(bp) 10018 struct buf *bp; /* structure describing disk write to occur */ 10019 { 10020 struct worklist *wk; 10021 struct worklist marker; 10022 struct inodedep *inodedep; 10023 struct freeblks *freeblks; 10024 struct jblkdep *jblkdep; 10025 struct newblk *newblk; 10026 struct ufsmount *ump; 10027 10028 /* 10029 * We only care about write operations. There should never 10030 * be dependencies for reads. 10031 */ 10032 if (bp->b_iocmd != BIO_WRITE) 10033 panic("softdep_disk_io_initiation: not write"); 10034 10035 if (bp->b_vflags & BV_BKGRDINPROG) 10036 panic("softdep_disk_io_initiation: Writing buffer with " 10037 "background write in progress: %p", bp); 10038 10039 ump = softdep_bp_to_mp(bp); 10040 if (ump == NULL) 10041 return; 10042 10043 marker.wk_type = D_LAST + 1; /* Not a normal workitem */ 10044 PHOLD(curproc); /* Don't swap out kernel stack */ 10045 ACQUIRE_LOCK(ump); 10046 /* 10047 * Do any necessary pre-I/O processing. 10048 */ 10049 for (wk = LIST_FIRST(&bp->b_dep); wk != NULL; 10050 wk = markernext(&marker)) { 10051 LIST_INSERT_AFTER(wk, &marker, wk_list); 10052 switch (wk->wk_type) { 10053 10054 case D_PAGEDEP: 10055 initiate_write_filepage(WK_PAGEDEP(wk), bp); 10056 continue; 10057 10058 case D_INODEDEP: 10059 inodedep = WK_INODEDEP(wk); 10060 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) 10061 initiate_write_inodeblock_ufs1(inodedep, bp); 10062 else 10063 initiate_write_inodeblock_ufs2(inodedep, bp); 10064 continue; 10065 10066 case D_INDIRDEP: 10067 initiate_write_indirdep(WK_INDIRDEP(wk), bp); 10068 continue; 10069 10070 case D_BMSAFEMAP: 10071 initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp); 10072 continue; 10073 10074 case D_JSEG: 10075 WK_JSEG(wk)->js_buf = NULL; 10076 continue; 10077 10078 case D_FREEBLKS: 10079 freeblks = WK_FREEBLKS(wk); 10080 jblkdep = LIST_FIRST(&freeblks->fb_jblkdephd); 10081 /* 10082 * We have to wait for the freeblks to be journaled 10083 * before we can write an inodeblock with updated 10084 * pointers. Be careful to arrange the marker so 10085 * we revisit the freeblks if it's not removed by 10086 * the first jwait(). 10087 */ 10088 if (jblkdep != NULL) { 10089 LIST_REMOVE(&marker, wk_list); 10090 LIST_INSERT_BEFORE(wk, &marker, wk_list); 10091 jwait(&jblkdep->jb_list, MNT_WAIT); 10092 } 10093 continue; 10094 case D_ALLOCDIRECT: 10095 case D_ALLOCINDIR: 10096 /* 10097 * We have to wait for the jnewblk to be journaled 10098 * before we can write to a block if the contents 10099 * may be confused with an earlier file's indirect 10100 * at recovery time. Handle the marker as described 10101 * above. 10102 */ 10103 newblk = WK_NEWBLK(wk); 10104 if (newblk->nb_jnewblk != NULL && 10105 indirblk_lookup(newblk->nb_list.wk_mp, 10106 newblk->nb_newblkno)) { 10107 LIST_REMOVE(&marker, wk_list); 10108 LIST_INSERT_BEFORE(wk, &marker, wk_list); 10109 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 10110 } 10111 continue; 10112 10113 case D_SBDEP: 10114 initiate_write_sbdep(WK_SBDEP(wk)); 10115 continue; 10116 10117 case D_MKDIR: 10118 case D_FREEWORK: 10119 case D_FREEDEP: 10120 case D_JSEGDEP: 10121 continue; 10122 10123 default: 10124 panic("handle_disk_io_initiation: Unexpected type %s", 10125 TYPENAME(wk->wk_type)); 10126 /* NOTREACHED */ 10127 } 10128 } 10129 FREE_LOCK(ump); 10130 PRELE(curproc); /* Allow swapout of kernel stack */ 10131 } 10132 10133 /* 10134 * Called from within the procedure above to deal with unsatisfied 10135 * allocation dependencies in a directory. The buffer must be locked, 10136 * thus, no I/O completion operations can occur while we are 10137 * manipulating its associated dependencies. 10138 */ 10139 static void 10140 initiate_write_filepage(pagedep, bp) 10141 struct pagedep *pagedep; 10142 struct buf *bp; 10143 { 10144 struct jremref *jremref; 10145 struct jmvref *jmvref; 10146 struct dirrem *dirrem; 10147 struct diradd *dap; 10148 struct direct *ep; 10149 int i; 10150 10151 if (pagedep->pd_state & IOSTARTED) { 10152 /* 10153 * This can only happen if there is a driver that does not 10154 * understand chaining. Here biodone will reissue the call 10155 * to strategy for the incomplete buffers. 10156 */ 10157 printf("initiate_write_filepage: already started\n"); 10158 return; 10159 } 10160 pagedep->pd_state |= IOSTARTED; 10161 /* 10162 * Wait for all journal remove dependencies to hit the disk. 10163 * We can not allow any potentially conflicting directory adds 10164 * to be visible before removes and rollback is too difficult. 10165 * The per-filesystem lock may be dropped and re-acquired, however 10166 * we hold the buf locked so the dependency can not go away. 10167 */ 10168 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) 10169 while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) 10170 jwait(&jremref->jr_list, MNT_WAIT); 10171 while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) 10172 jwait(&jmvref->jm_list, MNT_WAIT); 10173 for (i = 0; i < DAHASHSZ; i++) { 10174 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 10175 ep = (struct direct *) 10176 ((char *)bp->b_data + dap->da_offset); 10177 if (ep->d_ino != dap->da_newinum) 10178 panic("%s: dir inum %ju != new %ju", 10179 "initiate_write_filepage", 10180 (uintmax_t)ep->d_ino, 10181 (uintmax_t)dap->da_newinum); 10182 if (dap->da_state & DIRCHG) 10183 ep->d_ino = dap->da_previous->dm_oldinum; 10184 else 10185 ep->d_ino = 0; 10186 dap->da_state &= ~ATTACHED; 10187 dap->da_state |= UNDONE; 10188 } 10189 } 10190 } 10191 10192 /* 10193 * Version of initiate_write_inodeblock that handles UFS1 dinodes. 10194 * Note that any bug fixes made to this routine must be done in the 10195 * version found below. 10196 * 10197 * Called from within the procedure above to deal with unsatisfied 10198 * allocation dependencies in an inodeblock. The buffer must be 10199 * locked, thus, no I/O completion operations can occur while we 10200 * are manipulating its associated dependencies. 10201 */ 10202 static void 10203 initiate_write_inodeblock_ufs1(inodedep, bp) 10204 struct inodedep *inodedep; 10205 struct buf *bp; /* The inode block */ 10206 { 10207 struct allocdirect *adp, *lastadp; 10208 struct ufs1_dinode *dp; 10209 struct ufs1_dinode *sip; 10210 struct inoref *inoref; 10211 struct ufsmount *ump; 10212 struct fs *fs; 10213 ufs_lbn_t i; 10214 #ifdef INVARIANTS 10215 ufs_lbn_t prevlbn = 0; 10216 #endif 10217 int deplist; 10218 10219 if (inodedep->id_state & IOSTARTED) 10220 panic("initiate_write_inodeblock_ufs1: already started"); 10221 inodedep->id_state |= IOSTARTED; 10222 fs = inodedep->id_fs; 10223 ump = VFSTOUFS(inodedep->id_list.wk_mp); 10224 LOCK_OWNED(ump); 10225 dp = (struct ufs1_dinode *)bp->b_data + 10226 ino_to_fsbo(fs, inodedep->id_ino); 10227 10228 /* 10229 * If we're on the unlinked list but have not yet written our 10230 * next pointer initialize it here. 10231 */ 10232 if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) { 10233 struct inodedep *inon; 10234 10235 inon = TAILQ_NEXT(inodedep, id_unlinked); 10236 dp->di_freelink = inon ? inon->id_ino : 0; 10237 } 10238 /* 10239 * If the bitmap is not yet written, then the allocated 10240 * inode cannot be written to disk. 10241 */ 10242 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 10243 if (inodedep->id_savedino1 != NULL) 10244 panic("initiate_write_inodeblock_ufs1: I/O underway"); 10245 FREE_LOCK(ump); 10246 sip = malloc(sizeof(struct ufs1_dinode), 10247 M_SAVEDINO, M_SOFTDEP_FLAGS); 10248 ACQUIRE_LOCK(ump); 10249 inodedep->id_savedino1 = sip; 10250 *inodedep->id_savedino1 = *dp; 10251 bzero((caddr_t)dp, sizeof(struct ufs1_dinode)); 10252 dp->di_gen = inodedep->id_savedino1->di_gen; 10253 dp->di_freelink = inodedep->id_savedino1->di_freelink; 10254 return; 10255 } 10256 /* 10257 * If no dependencies, then there is nothing to roll back. 10258 */ 10259 inodedep->id_savedsize = dp->di_size; 10260 inodedep->id_savedextsize = 0; 10261 inodedep->id_savednlink = dp->di_nlink; 10262 if (TAILQ_EMPTY(&inodedep->id_inoupdt) && 10263 TAILQ_EMPTY(&inodedep->id_inoreflst)) 10264 return; 10265 /* 10266 * Revert the link count to that of the first unwritten journal entry. 10267 */ 10268 inoref = TAILQ_FIRST(&inodedep->id_inoreflst); 10269 if (inoref) 10270 dp->di_nlink = inoref->if_nlink; 10271 /* 10272 * Set the dependencies to busy. 10273 */ 10274 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10275 adp = TAILQ_NEXT(adp, ad_next)) { 10276 #ifdef INVARIANTS 10277 if (deplist != 0 && prevlbn >= adp->ad_offset) 10278 panic("softdep_write_inodeblock: lbn order"); 10279 prevlbn = adp->ad_offset; 10280 if (adp->ad_offset < UFS_NDADDR && 10281 dp->di_db[adp->ad_offset] != adp->ad_newblkno) 10282 panic("initiate_write_inodeblock_ufs1: " 10283 "direct pointer #%jd mismatch %d != %jd", 10284 (intmax_t)adp->ad_offset, 10285 dp->di_db[adp->ad_offset], 10286 (intmax_t)adp->ad_newblkno); 10287 if (adp->ad_offset >= UFS_NDADDR && 10288 dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno) 10289 panic("initiate_write_inodeblock_ufs1: " 10290 "indirect pointer #%jd mismatch %d != %jd", 10291 (intmax_t)adp->ad_offset - UFS_NDADDR, 10292 dp->di_ib[adp->ad_offset - UFS_NDADDR], 10293 (intmax_t)adp->ad_newblkno); 10294 deplist |= 1 << adp->ad_offset; 10295 if ((adp->ad_state & ATTACHED) == 0) 10296 panic("initiate_write_inodeblock_ufs1: " 10297 "Unknown state 0x%x", adp->ad_state); 10298 #endif /* INVARIANTS */ 10299 adp->ad_state &= ~ATTACHED; 10300 adp->ad_state |= UNDONE; 10301 } 10302 /* 10303 * The on-disk inode cannot claim to be any larger than the last 10304 * fragment that has been written. Otherwise, the on-disk inode 10305 * might have fragments that were not the last block in the file 10306 * which would corrupt the filesystem. 10307 */ 10308 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10309 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10310 if (adp->ad_offset >= UFS_NDADDR) 10311 break; 10312 dp->di_db[adp->ad_offset] = adp->ad_oldblkno; 10313 /* keep going until hitting a rollback to a frag */ 10314 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10315 continue; 10316 dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10317 for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) { 10318 #ifdef INVARIANTS 10319 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) 10320 panic("initiate_write_inodeblock_ufs1: " 10321 "lost dep1"); 10322 #endif /* INVARIANTS */ 10323 dp->di_db[i] = 0; 10324 } 10325 for (i = 0; i < UFS_NIADDR; i++) { 10326 #ifdef INVARIANTS 10327 if (dp->di_ib[i] != 0 && 10328 (deplist & ((1 << UFS_NDADDR) << i)) == 0) 10329 panic("initiate_write_inodeblock_ufs1: " 10330 "lost dep2"); 10331 #endif /* INVARIANTS */ 10332 dp->di_ib[i] = 0; 10333 } 10334 return; 10335 } 10336 /* 10337 * If we have zero'ed out the last allocated block of the file, 10338 * roll back the size to the last currently allocated block. 10339 * We know that this last allocated block is a full-sized as 10340 * we already checked for fragments in the loop above. 10341 */ 10342 if (lastadp != NULL && 10343 dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10344 for (i = lastadp->ad_offset; i >= 0; i--) 10345 if (dp->di_db[i] != 0) 10346 break; 10347 dp->di_size = (i + 1) * fs->fs_bsize; 10348 } 10349 /* 10350 * The only dependencies are for indirect blocks. 10351 * 10352 * The file size for indirect block additions is not guaranteed. 10353 * Such a guarantee would be non-trivial to achieve. The conventional 10354 * synchronous write implementation also does not make this guarantee. 10355 * Fsck should catch and fix discrepancies. Arguably, the file size 10356 * can be over-estimated without destroying integrity when the file 10357 * moves into the indirect blocks (i.e., is large). If we want to 10358 * postpone fsck, we are stuck with this argument. 10359 */ 10360 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 10361 dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0; 10362 } 10363 10364 /* 10365 * Version of initiate_write_inodeblock that handles UFS2 dinodes. 10366 * Note that any bug fixes made to this routine must be done in the 10367 * version found above. 10368 * 10369 * Called from within the procedure above to deal with unsatisfied 10370 * allocation dependencies in an inodeblock. The buffer must be 10371 * locked, thus, no I/O completion operations can occur while we 10372 * are manipulating its associated dependencies. 10373 */ 10374 static void 10375 initiate_write_inodeblock_ufs2(inodedep, bp) 10376 struct inodedep *inodedep; 10377 struct buf *bp; /* The inode block */ 10378 { 10379 struct allocdirect *adp, *lastadp; 10380 struct ufs2_dinode *dp; 10381 struct ufs2_dinode *sip; 10382 struct inoref *inoref; 10383 struct ufsmount *ump; 10384 struct fs *fs; 10385 ufs_lbn_t i; 10386 #ifdef INVARIANTS 10387 ufs_lbn_t prevlbn = 0; 10388 #endif 10389 int deplist; 10390 10391 if (inodedep->id_state & IOSTARTED) 10392 panic("initiate_write_inodeblock_ufs2: already started"); 10393 inodedep->id_state |= IOSTARTED; 10394 fs = inodedep->id_fs; 10395 ump = VFSTOUFS(inodedep->id_list.wk_mp); 10396 LOCK_OWNED(ump); 10397 dp = (struct ufs2_dinode *)bp->b_data + 10398 ino_to_fsbo(fs, inodedep->id_ino); 10399 10400 /* 10401 * If we're on the unlinked list but have not yet written our 10402 * next pointer initialize it here. 10403 */ 10404 if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) { 10405 struct inodedep *inon; 10406 10407 inon = TAILQ_NEXT(inodedep, id_unlinked); 10408 dp->di_freelink = inon ? inon->id_ino : 0; 10409 ffs_update_dinode_ckhash(fs, dp); 10410 } 10411 /* 10412 * If the bitmap is not yet written, then the allocated 10413 * inode cannot be written to disk. 10414 */ 10415 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 10416 if (inodedep->id_savedino2 != NULL) 10417 panic("initiate_write_inodeblock_ufs2: I/O underway"); 10418 FREE_LOCK(ump); 10419 sip = malloc(sizeof(struct ufs2_dinode), 10420 M_SAVEDINO, M_SOFTDEP_FLAGS); 10421 ACQUIRE_LOCK(ump); 10422 inodedep->id_savedino2 = sip; 10423 *inodedep->id_savedino2 = *dp; 10424 bzero((caddr_t)dp, sizeof(struct ufs2_dinode)); 10425 dp->di_gen = inodedep->id_savedino2->di_gen; 10426 dp->di_freelink = inodedep->id_savedino2->di_freelink; 10427 return; 10428 } 10429 /* 10430 * If no dependencies, then there is nothing to roll back. 10431 */ 10432 inodedep->id_savedsize = dp->di_size; 10433 inodedep->id_savedextsize = dp->di_extsize; 10434 inodedep->id_savednlink = dp->di_nlink; 10435 if (TAILQ_EMPTY(&inodedep->id_inoupdt) && 10436 TAILQ_EMPTY(&inodedep->id_extupdt) && 10437 TAILQ_EMPTY(&inodedep->id_inoreflst)) 10438 return; 10439 /* 10440 * Revert the link count to that of the first unwritten journal entry. 10441 */ 10442 inoref = TAILQ_FIRST(&inodedep->id_inoreflst); 10443 if (inoref) 10444 dp->di_nlink = inoref->if_nlink; 10445 10446 /* 10447 * Set the ext data dependencies to busy. 10448 */ 10449 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 10450 adp = TAILQ_NEXT(adp, ad_next)) { 10451 #ifdef INVARIANTS 10452 if (deplist != 0 && prevlbn >= adp->ad_offset) 10453 panic("initiate_write_inodeblock_ufs2: lbn order"); 10454 prevlbn = adp->ad_offset; 10455 if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno) 10456 panic("initiate_write_inodeblock_ufs2: " 10457 "ext pointer #%jd mismatch %jd != %jd", 10458 (intmax_t)adp->ad_offset, 10459 (intmax_t)dp->di_extb[adp->ad_offset], 10460 (intmax_t)adp->ad_newblkno); 10461 deplist |= 1 << adp->ad_offset; 10462 if ((adp->ad_state & ATTACHED) == 0) 10463 panic("initiate_write_inodeblock_ufs2: Unknown " 10464 "state 0x%x", adp->ad_state); 10465 #endif /* INVARIANTS */ 10466 adp->ad_state &= ~ATTACHED; 10467 adp->ad_state |= UNDONE; 10468 } 10469 /* 10470 * The on-disk inode cannot claim to be any larger than the last 10471 * fragment that has been written. Otherwise, the on-disk inode 10472 * might have fragments that were not the last block in the ext 10473 * data which would corrupt the filesystem. 10474 */ 10475 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 10476 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10477 dp->di_extb[adp->ad_offset] = adp->ad_oldblkno; 10478 /* keep going until hitting a rollback to a frag */ 10479 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10480 continue; 10481 dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10482 for (i = adp->ad_offset + 1; i < UFS_NXADDR; i++) { 10483 #ifdef INVARIANTS 10484 if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0) 10485 panic("initiate_write_inodeblock_ufs2: " 10486 "lost dep1"); 10487 #endif /* INVARIANTS */ 10488 dp->di_extb[i] = 0; 10489 } 10490 lastadp = NULL; 10491 break; 10492 } 10493 /* 10494 * If we have zero'ed out the last allocated block of the ext 10495 * data, roll back the size to the last currently allocated block. 10496 * We know that this last allocated block is a full-sized as 10497 * we already checked for fragments in the loop above. 10498 */ 10499 if (lastadp != NULL && 10500 dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10501 for (i = lastadp->ad_offset; i >= 0; i--) 10502 if (dp->di_extb[i] != 0) 10503 break; 10504 dp->di_extsize = (i + 1) * fs->fs_bsize; 10505 } 10506 /* 10507 * Set the file data dependencies to busy. 10508 */ 10509 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10510 adp = TAILQ_NEXT(adp, ad_next)) { 10511 #ifdef INVARIANTS 10512 if (deplist != 0 && prevlbn >= adp->ad_offset) 10513 panic("softdep_write_inodeblock: lbn order"); 10514 if ((adp->ad_state & ATTACHED) == 0) 10515 panic("inodedep %p and adp %p not attached", inodedep, adp); 10516 prevlbn = adp->ad_offset; 10517 if (adp->ad_offset < UFS_NDADDR && 10518 dp->di_db[adp->ad_offset] != adp->ad_newblkno) 10519 panic("initiate_write_inodeblock_ufs2: " 10520 "direct pointer #%jd mismatch %jd != %jd", 10521 (intmax_t)adp->ad_offset, 10522 (intmax_t)dp->di_db[adp->ad_offset], 10523 (intmax_t)adp->ad_newblkno); 10524 if (adp->ad_offset >= UFS_NDADDR && 10525 dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno) 10526 panic("initiate_write_inodeblock_ufs2: " 10527 "indirect pointer #%jd mismatch %jd != %jd", 10528 (intmax_t)adp->ad_offset - UFS_NDADDR, 10529 (intmax_t)dp->di_ib[adp->ad_offset - UFS_NDADDR], 10530 (intmax_t)adp->ad_newblkno); 10531 deplist |= 1 << adp->ad_offset; 10532 if ((adp->ad_state & ATTACHED) == 0) 10533 panic("initiate_write_inodeblock_ufs2: Unknown " 10534 "state 0x%x", adp->ad_state); 10535 #endif /* INVARIANTS */ 10536 adp->ad_state &= ~ATTACHED; 10537 adp->ad_state |= UNDONE; 10538 } 10539 /* 10540 * The on-disk inode cannot claim to be any larger than the last 10541 * fragment that has been written. Otherwise, the on-disk inode 10542 * might have fragments that were not the last block in the file 10543 * which would corrupt the filesystem. 10544 */ 10545 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10546 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10547 if (adp->ad_offset >= UFS_NDADDR) 10548 break; 10549 dp->di_db[adp->ad_offset] = adp->ad_oldblkno; 10550 /* keep going until hitting a rollback to a frag */ 10551 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10552 continue; 10553 dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10554 for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) { 10555 #ifdef INVARIANTS 10556 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) 10557 panic("initiate_write_inodeblock_ufs2: " 10558 "lost dep2"); 10559 #endif /* INVARIANTS */ 10560 dp->di_db[i] = 0; 10561 } 10562 for (i = 0; i < UFS_NIADDR; i++) { 10563 #ifdef INVARIANTS 10564 if (dp->di_ib[i] != 0 && 10565 (deplist & ((1 << UFS_NDADDR) << i)) == 0) 10566 panic("initiate_write_inodeblock_ufs2: " 10567 "lost dep3"); 10568 #endif /* INVARIANTS */ 10569 dp->di_ib[i] = 0; 10570 } 10571 ffs_update_dinode_ckhash(fs, dp); 10572 return; 10573 } 10574 /* 10575 * If we have zero'ed out the last allocated block of the file, 10576 * roll back the size to the last currently allocated block. 10577 * We know that this last allocated block is a full-sized as 10578 * we already checked for fragments in the loop above. 10579 */ 10580 if (lastadp != NULL && 10581 dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10582 for (i = lastadp->ad_offset; i >= 0; i--) 10583 if (dp->di_db[i] != 0) 10584 break; 10585 dp->di_size = (i + 1) * fs->fs_bsize; 10586 } 10587 /* 10588 * The only dependencies are for indirect blocks. 10589 * 10590 * The file size for indirect block additions is not guaranteed. 10591 * Such a guarantee would be non-trivial to achieve. The conventional 10592 * synchronous write implementation also does not make this guarantee. 10593 * Fsck should catch and fix discrepancies. Arguably, the file size 10594 * can be over-estimated without destroying integrity when the file 10595 * moves into the indirect blocks (i.e., is large). If we want to 10596 * postpone fsck, we are stuck with this argument. 10597 */ 10598 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 10599 dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0; 10600 ffs_update_dinode_ckhash(fs, dp); 10601 } 10602 10603 /* 10604 * Cancel an indirdep as a result of truncation. Release all of the 10605 * children allocindirs and place their journal work on the appropriate 10606 * list. 10607 */ 10608 static void 10609 cancel_indirdep(indirdep, bp, freeblks) 10610 struct indirdep *indirdep; 10611 struct buf *bp; 10612 struct freeblks *freeblks; 10613 { 10614 struct allocindir *aip; 10615 10616 /* 10617 * None of the indirect pointers will ever be visible, 10618 * so they can simply be tossed. GOINGAWAY ensures 10619 * that allocated pointers will be saved in the buffer 10620 * cache until they are freed. Note that they will 10621 * only be able to be found by their physical address 10622 * since the inode mapping the logical address will 10623 * be gone. The save buffer used for the safe copy 10624 * was allocated in setup_allocindir_phase2 using 10625 * the physical address so it could be used for this 10626 * purpose. Hence we swap the safe copy with the real 10627 * copy, allowing the safe copy to be freed and holding 10628 * on to the real copy for later use in indir_trunc. 10629 */ 10630 if (indirdep->ir_state & GOINGAWAY) 10631 panic("cancel_indirdep: already gone"); 10632 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 10633 indirdep->ir_state |= DEPCOMPLETE; 10634 LIST_REMOVE(indirdep, ir_next); 10635 } 10636 indirdep->ir_state |= GOINGAWAY; 10637 /* 10638 * Pass in bp for blocks still have journal writes 10639 * pending so we can cancel them on their own. 10640 */ 10641 while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != NULL) 10642 cancel_allocindir(aip, bp, freeblks, 0); 10643 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL) 10644 cancel_allocindir(aip, NULL, freeblks, 0); 10645 while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL) 10646 cancel_allocindir(aip, NULL, freeblks, 0); 10647 while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) 10648 cancel_allocindir(aip, NULL, freeblks, 0); 10649 /* 10650 * If there are pending partial truncations we need to keep the 10651 * old block copy around until they complete. This is because 10652 * the current b_data is not a perfect superset of the available 10653 * blocks. 10654 */ 10655 if (TAILQ_EMPTY(&indirdep->ir_trunc)) 10656 bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount); 10657 else 10658 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); 10659 WORKLIST_REMOVE(&indirdep->ir_list); 10660 WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list); 10661 indirdep->ir_bp = NULL; 10662 indirdep->ir_freeblks = freeblks; 10663 } 10664 10665 /* 10666 * Free an indirdep once it no longer has new pointers to track. 10667 */ 10668 static void 10669 free_indirdep(indirdep) 10670 struct indirdep *indirdep; 10671 { 10672 10673 KASSERT(TAILQ_EMPTY(&indirdep->ir_trunc), 10674 ("free_indirdep: Indir trunc list not empty.")); 10675 KASSERT(LIST_EMPTY(&indirdep->ir_completehd), 10676 ("free_indirdep: Complete head not empty.")); 10677 KASSERT(LIST_EMPTY(&indirdep->ir_writehd), 10678 ("free_indirdep: write head not empty.")); 10679 KASSERT(LIST_EMPTY(&indirdep->ir_donehd), 10680 ("free_indirdep: done head not empty.")); 10681 KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd), 10682 ("free_indirdep: deplist head not empty.")); 10683 KASSERT((indirdep->ir_state & DEPCOMPLETE), 10684 ("free_indirdep: %p still on newblk list.", indirdep)); 10685 KASSERT(indirdep->ir_saveddata == NULL, 10686 ("free_indirdep: %p still has saved data.", indirdep)); 10687 if (indirdep->ir_state & ONWORKLIST) 10688 WORKLIST_REMOVE(&indirdep->ir_list); 10689 WORKITEM_FREE(indirdep, D_INDIRDEP); 10690 } 10691 10692 /* 10693 * Called before a write to an indirdep. This routine is responsible for 10694 * rolling back pointers to a safe state which includes only those 10695 * allocindirs which have been completed. 10696 */ 10697 static void 10698 initiate_write_indirdep(indirdep, bp) 10699 struct indirdep *indirdep; 10700 struct buf *bp; 10701 { 10702 struct ufsmount *ump; 10703 10704 indirdep->ir_state |= IOSTARTED; 10705 if (indirdep->ir_state & GOINGAWAY) 10706 panic("disk_io_initiation: indirdep gone"); 10707 /* 10708 * If there are no remaining dependencies, this will be writing 10709 * the real pointers. 10710 */ 10711 if (LIST_EMPTY(&indirdep->ir_deplisthd) && 10712 TAILQ_EMPTY(&indirdep->ir_trunc)) 10713 return; 10714 /* 10715 * Replace up-to-date version with safe version. 10716 */ 10717 if (indirdep->ir_saveddata == NULL) { 10718 ump = VFSTOUFS(indirdep->ir_list.wk_mp); 10719 LOCK_OWNED(ump); 10720 FREE_LOCK(ump); 10721 indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP, 10722 M_SOFTDEP_FLAGS); 10723 ACQUIRE_LOCK(ump); 10724 } 10725 indirdep->ir_state &= ~ATTACHED; 10726 indirdep->ir_state |= UNDONE; 10727 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); 10728 bcopy(indirdep->ir_savebp->b_data, bp->b_data, 10729 bp->b_bcount); 10730 } 10731 10732 /* 10733 * Called when an inode has been cleared in a cg bitmap. This finally 10734 * eliminates any canceled jaddrefs 10735 */ 10736 void 10737 softdep_setup_inofree(mp, bp, ino, wkhd) 10738 struct mount *mp; 10739 struct buf *bp; 10740 ino_t ino; 10741 struct workhead *wkhd; 10742 { 10743 struct worklist *wk, *wkn; 10744 struct inodedep *inodedep; 10745 struct ufsmount *ump; 10746 uint8_t *inosused; 10747 struct cg *cgp; 10748 struct fs *fs; 10749 10750 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 10751 ("softdep_setup_inofree called on non-softdep filesystem")); 10752 ump = VFSTOUFS(mp); 10753 ACQUIRE_LOCK(ump); 10754 fs = ump->um_fs; 10755 cgp = (struct cg *)bp->b_data; 10756 inosused = cg_inosused(cgp); 10757 if (isset(inosused, ino % fs->fs_ipg)) 10758 panic("softdep_setup_inofree: inode %ju not freed.", 10759 (uintmax_t)ino); 10760 if (inodedep_lookup(mp, ino, 0, &inodedep)) 10761 panic("softdep_setup_inofree: ino %ju has existing inodedep %p", 10762 (uintmax_t)ino, inodedep); 10763 if (wkhd) { 10764 LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) { 10765 if (wk->wk_type != D_JADDREF) 10766 continue; 10767 WORKLIST_REMOVE(wk); 10768 /* 10769 * We can free immediately even if the jaddref 10770 * isn't attached in a background write as now 10771 * the bitmaps are reconciled. 10772 */ 10773 wk->wk_state |= COMPLETE | ATTACHED; 10774 free_jaddref(WK_JADDREF(wk)); 10775 } 10776 jwork_move(&bp->b_dep, wkhd); 10777 } 10778 FREE_LOCK(ump); 10779 } 10780 10781 10782 /* 10783 * Called via ffs_blkfree() after a set of frags has been cleared from a cg 10784 * map. Any dependencies waiting for the write to clear are added to the 10785 * buf's list and any jnewblks that are being canceled are discarded 10786 * immediately. 10787 */ 10788 void 10789 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd) 10790 struct mount *mp; 10791 struct buf *bp; 10792 ufs2_daddr_t blkno; 10793 int frags; 10794 struct workhead *wkhd; 10795 { 10796 struct bmsafemap *bmsafemap; 10797 struct jnewblk *jnewblk; 10798 struct ufsmount *ump; 10799 struct worklist *wk; 10800 struct fs *fs; 10801 #ifdef INVARIANTS 10802 uint8_t *blksfree; 10803 struct cg *cgp; 10804 ufs2_daddr_t jstart; 10805 ufs2_daddr_t jend; 10806 ufs2_daddr_t end; 10807 long bno; 10808 int i; 10809 #endif 10810 10811 CTR3(KTR_SUJ, 10812 "softdep_setup_blkfree: blkno %jd frags %d wk head %p", 10813 blkno, frags, wkhd); 10814 10815 ump = VFSTOUFS(mp); 10816 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 10817 ("softdep_setup_blkfree called on non-softdep filesystem")); 10818 ACQUIRE_LOCK(ump); 10819 /* Lookup the bmsafemap so we track when it is dirty. */ 10820 fs = ump->um_fs; 10821 bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL); 10822 /* 10823 * Detach any jnewblks which have been canceled. They must linger 10824 * until the bitmap is cleared again by ffs_blkfree() to prevent 10825 * an unjournaled allocation from hitting the disk. 10826 */ 10827 if (wkhd) { 10828 while ((wk = LIST_FIRST(wkhd)) != NULL) { 10829 CTR2(KTR_SUJ, 10830 "softdep_setup_blkfree: blkno %jd wk type %d", 10831 blkno, wk->wk_type); 10832 WORKLIST_REMOVE(wk); 10833 if (wk->wk_type != D_JNEWBLK) { 10834 WORKLIST_INSERT(&bmsafemap->sm_freehd, wk); 10835 continue; 10836 } 10837 jnewblk = WK_JNEWBLK(wk); 10838 KASSERT(jnewblk->jn_state & GOINGAWAY, 10839 ("softdep_setup_blkfree: jnewblk not canceled.")); 10840 #ifdef INVARIANTS 10841 /* 10842 * Assert that this block is free in the bitmap 10843 * before we discard the jnewblk. 10844 */ 10845 cgp = (struct cg *)bp->b_data; 10846 blksfree = cg_blksfree(cgp); 10847 bno = dtogd(fs, jnewblk->jn_blkno); 10848 for (i = jnewblk->jn_oldfrags; 10849 i < jnewblk->jn_frags; i++) { 10850 if (isset(blksfree, bno + i)) 10851 continue; 10852 panic("softdep_setup_blkfree: not free"); 10853 } 10854 #endif 10855 /* 10856 * Even if it's not attached we can free immediately 10857 * as the new bitmap is correct. 10858 */ 10859 wk->wk_state |= COMPLETE | ATTACHED; 10860 free_jnewblk(jnewblk); 10861 } 10862 } 10863 10864 #ifdef INVARIANTS 10865 /* 10866 * Assert that we are not freeing a block which has an outstanding 10867 * allocation dependency. 10868 */ 10869 fs = VFSTOUFS(mp)->um_fs; 10870 bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL); 10871 end = blkno + frags; 10872 LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) { 10873 /* 10874 * Don't match against blocks that will be freed when the 10875 * background write is done. 10876 */ 10877 if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) == 10878 (COMPLETE | DEPCOMPLETE)) 10879 continue; 10880 jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags; 10881 jend = jnewblk->jn_blkno + jnewblk->jn_frags; 10882 if ((blkno >= jstart && blkno < jend) || 10883 (end > jstart && end <= jend)) { 10884 printf("state 0x%X %jd - %d %d dep %p\n", 10885 jnewblk->jn_state, jnewblk->jn_blkno, 10886 jnewblk->jn_oldfrags, jnewblk->jn_frags, 10887 jnewblk->jn_dep); 10888 panic("softdep_setup_blkfree: " 10889 "%jd-%jd(%d) overlaps with %jd-%jd", 10890 blkno, end, frags, jstart, jend); 10891 } 10892 } 10893 #endif 10894 FREE_LOCK(ump); 10895 } 10896 10897 /* 10898 * Revert a block allocation when the journal record that describes it 10899 * is not yet written. 10900 */ 10901 static int 10902 jnewblk_rollback(jnewblk, fs, cgp, blksfree) 10903 struct jnewblk *jnewblk; 10904 struct fs *fs; 10905 struct cg *cgp; 10906 uint8_t *blksfree; 10907 { 10908 ufs1_daddr_t fragno; 10909 long cgbno, bbase; 10910 int frags, blk; 10911 int i; 10912 10913 frags = 0; 10914 cgbno = dtogd(fs, jnewblk->jn_blkno); 10915 /* 10916 * We have to test which frags need to be rolled back. We may 10917 * be operating on a stale copy when doing background writes. 10918 */ 10919 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) 10920 if (isclr(blksfree, cgbno + i)) 10921 frags++; 10922 if (frags == 0) 10923 return (0); 10924 /* 10925 * This is mostly ffs_blkfree() sans some validation and 10926 * superblock updates. 10927 */ 10928 if (frags == fs->fs_frag) { 10929 fragno = fragstoblks(fs, cgbno); 10930 ffs_setblock(fs, blksfree, fragno); 10931 ffs_clusteracct(fs, cgp, fragno, 1); 10932 cgp->cg_cs.cs_nbfree++; 10933 } else { 10934 cgbno += jnewblk->jn_oldfrags; 10935 bbase = cgbno - fragnum(fs, cgbno); 10936 /* Decrement the old frags. */ 10937 blk = blkmap(fs, blksfree, bbase); 10938 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 10939 /* Deallocate the fragment */ 10940 for (i = 0; i < frags; i++) 10941 setbit(blksfree, cgbno + i); 10942 cgp->cg_cs.cs_nffree += frags; 10943 /* Add back in counts associated with the new frags */ 10944 blk = blkmap(fs, blksfree, bbase); 10945 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 10946 /* If a complete block has been reassembled, account for it. */ 10947 fragno = fragstoblks(fs, bbase); 10948 if (ffs_isblock(fs, blksfree, fragno)) { 10949 cgp->cg_cs.cs_nffree -= fs->fs_frag; 10950 ffs_clusteracct(fs, cgp, fragno, 1); 10951 cgp->cg_cs.cs_nbfree++; 10952 } 10953 } 10954 stat_jnewblk++; 10955 jnewblk->jn_state &= ~ATTACHED; 10956 jnewblk->jn_state |= UNDONE; 10957 10958 return (frags); 10959 } 10960 10961 static void 10962 initiate_write_bmsafemap(bmsafemap, bp) 10963 struct bmsafemap *bmsafemap; 10964 struct buf *bp; /* The cg block. */ 10965 { 10966 struct jaddref *jaddref; 10967 struct jnewblk *jnewblk; 10968 uint8_t *inosused; 10969 uint8_t *blksfree; 10970 struct cg *cgp; 10971 struct fs *fs; 10972 ino_t ino; 10973 10974 /* 10975 * If this is a background write, we did this at the time that 10976 * the copy was made, so do not need to do it again. 10977 */ 10978 if (bmsafemap->sm_state & IOSTARTED) 10979 return; 10980 bmsafemap->sm_state |= IOSTARTED; 10981 /* 10982 * Clear any inode allocations which are pending journal writes. 10983 */ 10984 if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) { 10985 cgp = (struct cg *)bp->b_data; 10986 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 10987 inosused = cg_inosused(cgp); 10988 LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) { 10989 ino = jaddref->ja_ino % fs->fs_ipg; 10990 if (isset(inosused, ino)) { 10991 if ((jaddref->ja_mode & IFMT) == IFDIR) 10992 cgp->cg_cs.cs_ndir--; 10993 cgp->cg_cs.cs_nifree++; 10994 clrbit(inosused, ino); 10995 jaddref->ja_state &= ~ATTACHED; 10996 jaddref->ja_state |= UNDONE; 10997 stat_jaddref++; 10998 } else 10999 panic("initiate_write_bmsafemap: inode %ju " 11000 "marked free", (uintmax_t)jaddref->ja_ino); 11001 } 11002 } 11003 /* 11004 * Clear any block allocations which are pending journal writes. 11005 */ 11006 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) { 11007 cgp = (struct cg *)bp->b_data; 11008 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 11009 blksfree = cg_blksfree(cgp); 11010 LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) { 11011 if (jnewblk_rollback(jnewblk, fs, cgp, blksfree)) 11012 continue; 11013 panic("initiate_write_bmsafemap: block %jd " 11014 "marked free", jnewblk->jn_blkno); 11015 } 11016 } 11017 /* 11018 * Move allocation lists to the written lists so they can be 11019 * cleared once the block write is complete. 11020 */ 11021 LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr, 11022 inodedep, id_deps); 11023 LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr, 11024 newblk, nb_deps); 11025 LIST_SWAP(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, worklist, 11026 wk_list); 11027 } 11028 11029 /* 11030 * This routine is called during the completion interrupt 11031 * service routine for a disk write (from the procedure called 11032 * by the device driver to inform the filesystem caches of 11033 * a request completion). It should be called early in this 11034 * procedure, before the block is made available to other 11035 * processes or other routines are called. 11036 * 11037 */ 11038 static void 11039 softdep_disk_write_complete(bp) 11040 struct buf *bp; /* describes the completed disk write */ 11041 { 11042 struct worklist *wk; 11043 struct worklist *owk; 11044 struct ufsmount *ump; 11045 struct workhead reattach; 11046 struct freeblks *freeblks; 11047 struct buf *sbp; 11048 11049 ump = softdep_bp_to_mp(bp); 11050 KASSERT(LIST_EMPTY(&bp->b_dep) || ump != NULL, 11051 ("softdep_disk_write_complete: softdep_bp_to_mp returned NULL " 11052 "with outstanding dependencies for buffer %p", bp)); 11053 if (ump == NULL) 11054 return; 11055 /* 11056 * If an error occurred while doing the write, then the data 11057 * has not hit the disk and the dependencies cannot be processed. 11058 * But we do have to go through and roll forward any dependencies 11059 * that were rolled back before the disk write. 11060 */ 11061 sbp = NULL; 11062 ACQUIRE_LOCK(ump); 11063 if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0) { 11064 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 11065 switch (wk->wk_type) { 11066 11067 case D_PAGEDEP: 11068 handle_written_filepage(WK_PAGEDEP(wk), bp, 0); 11069 continue; 11070 11071 case D_INODEDEP: 11072 handle_written_inodeblock(WK_INODEDEP(wk), 11073 bp, 0); 11074 continue; 11075 11076 case D_BMSAFEMAP: 11077 handle_written_bmsafemap(WK_BMSAFEMAP(wk), 11078 bp, 0); 11079 continue; 11080 11081 case D_INDIRDEP: 11082 handle_written_indirdep(WK_INDIRDEP(wk), 11083 bp, &sbp, 0); 11084 continue; 11085 default: 11086 /* nothing to roll forward */ 11087 continue; 11088 } 11089 } 11090 FREE_LOCK(ump); 11091 if (sbp) 11092 brelse(sbp); 11093 return; 11094 } 11095 LIST_INIT(&reattach); 11096 11097 /* 11098 * Ump SU lock must not be released anywhere in this code segment. 11099 */ 11100 owk = NULL; 11101 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) { 11102 WORKLIST_REMOVE(wk); 11103 atomic_add_long(&dep_write[wk->wk_type], 1); 11104 if (wk == owk) 11105 panic("duplicate worklist: %p\n", wk); 11106 owk = wk; 11107 switch (wk->wk_type) { 11108 11109 case D_PAGEDEP: 11110 if (handle_written_filepage(WK_PAGEDEP(wk), bp, 11111 WRITESUCCEEDED)) 11112 WORKLIST_INSERT(&reattach, wk); 11113 continue; 11114 11115 case D_INODEDEP: 11116 if (handle_written_inodeblock(WK_INODEDEP(wk), bp, 11117 WRITESUCCEEDED)) 11118 WORKLIST_INSERT(&reattach, wk); 11119 continue; 11120 11121 case D_BMSAFEMAP: 11122 if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp, 11123 WRITESUCCEEDED)) 11124 WORKLIST_INSERT(&reattach, wk); 11125 continue; 11126 11127 case D_MKDIR: 11128 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); 11129 continue; 11130 11131 case D_ALLOCDIRECT: 11132 wk->wk_state |= COMPLETE; 11133 handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL); 11134 continue; 11135 11136 case D_ALLOCINDIR: 11137 wk->wk_state |= COMPLETE; 11138 handle_allocindir_partdone(WK_ALLOCINDIR(wk)); 11139 continue; 11140 11141 case D_INDIRDEP: 11142 if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp, 11143 WRITESUCCEEDED)) 11144 WORKLIST_INSERT(&reattach, wk); 11145 continue; 11146 11147 case D_FREEBLKS: 11148 wk->wk_state |= COMPLETE; 11149 freeblks = WK_FREEBLKS(wk); 11150 if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE && 11151 LIST_EMPTY(&freeblks->fb_jblkdephd)) 11152 add_to_worklist(wk, WK_NODELAY); 11153 continue; 11154 11155 case D_FREEWORK: 11156 handle_written_freework(WK_FREEWORK(wk)); 11157 break; 11158 11159 case D_JSEGDEP: 11160 free_jsegdep(WK_JSEGDEP(wk)); 11161 continue; 11162 11163 case D_JSEG: 11164 handle_written_jseg(WK_JSEG(wk), bp); 11165 continue; 11166 11167 case D_SBDEP: 11168 if (handle_written_sbdep(WK_SBDEP(wk), bp)) 11169 WORKLIST_INSERT(&reattach, wk); 11170 continue; 11171 11172 case D_FREEDEP: 11173 free_freedep(WK_FREEDEP(wk)); 11174 continue; 11175 11176 default: 11177 panic("handle_disk_write_complete: Unknown type %s", 11178 TYPENAME(wk->wk_type)); 11179 /* NOTREACHED */ 11180 } 11181 } 11182 /* 11183 * Reattach any requests that must be redone. 11184 */ 11185 while ((wk = LIST_FIRST(&reattach)) != NULL) { 11186 WORKLIST_REMOVE(wk); 11187 WORKLIST_INSERT(&bp->b_dep, wk); 11188 } 11189 FREE_LOCK(ump); 11190 if (sbp) 11191 brelse(sbp); 11192 } 11193 11194 /* 11195 * Called from within softdep_disk_write_complete above. 11196 */ 11197 static void 11198 handle_allocdirect_partdone(adp, wkhd) 11199 struct allocdirect *adp; /* the completed allocdirect */ 11200 struct workhead *wkhd; /* Work to do when inode is writtne. */ 11201 { 11202 struct allocdirectlst *listhead; 11203 struct allocdirect *listadp; 11204 struct inodedep *inodedep; 11205 long bsize; 11206 11207 LOCK_OWNED(VFSTOUFS(adp->ad_block.nb_list.wk_mp)); 11208 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 11209 return; 11210 /* 11211 * The on-disk inode cannot claim to be any larger than the last 11212 * fragment that has been written. Otherwise, the on-disk inode 11213 * might have fragments that were not the last block in the file 11214 * which would corrupt the filesystem. Thus, we cannot free any 11215 * allocdirects after one whose ad_oldblkno claims a fragment as 11216 * these blocks must be rolled back to zero before writing the inode. 11217 * We check the currently active set of allocdirects in id_inoupdt 11218 * or id_extupdt as appropriate. 11219 */ 11220 inodedep = adp->ad_inodedep; 11221 bsize = inodedep->id_fs->fs_bsize; 11222 if (adp->ad_state & EXTDATA) 11223 listhead = &inodedep->id_extupdt; 11224 else 11225 listhead = &inodedep->id_inoupdt; 11226 TAILQ_FOREACH(listadp, listhead, ad_next) { 11227 /* found our block */ 11228 if (listadp == adp) 11229 break; 11230 /* continue if ad_oldlbn is not a fragment */ 11231 if (listadp->ad_oldsize == 0 || 11232 listadp->ad_oldsize == bsize) 11233 continue; 11234 /* hit a fragment */ 11235 return; 11236 } 11237 /* 11238 * If we have reached the end of the current list without 11239 * finding the just finished dependency, then it must be 11240 * on the future dependency list. Future dependencies cannot 11241 * be freed until they are moved to the current list. 11242 */ 11243 if (listadp == NULL) { 11244 #ifdef INVARIANTS 11245 if (adp->ad_state & EXTDATA) 11246 listhead = &inodedep->id_newextupdt; 11247 else 11248 listhead = &inodedep->id_newinoupdt; 11249 TAILQ_FOREACH(listadp, listhead, ad_next) 11250 /* found our block */ 11251 if (listadp == adp) 11252 break; 11253 if (listadp == NULL) 11254 panic("handle_allocdirect_partdone: lost dep"); 11255 #endif /* INVARIANTS */ 11256 return; 11257 } 11258 /* 11259 * If we have found the just finished dependency, then queue 11260 * it along with anything that follows it that is complete. 11261 * Since the pointer has not yet been written in the inode 11262 * as the dependency prevents it, place the allocdirect on the 11263 * bufwait list where it will be freed once the pointer is 11264 * valid. 11265 */ 11266 if (wkhd == NULL) 11267 wkhd = &inodedep->id_bufwait; 11268 for (; adp; adp = listadp) { 11269 listadp = TAILQ_NEXT(adp, ad_next); 11270 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 11271 return; 11272 TAILQ_REMOVE(listhead, adp, ad_next); 11273 WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list); 11274 } 11275 } 11276 11277 /* 11278 * Called from within softdep_disk_write_complete above. This routine 11279 * completes successfully written allocindirs. 11280 */ 11281 static void 11282 handle_allocindir_partdone(aip) 11283 struct allocindir *aip; /* the completed allocindir */ 11284 { 11285 struct indirdep *indirdep; 11286 11287 if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE) 11288 return; 11289 indirdep = aip->ai_indirdep; 11290 LIST_REMOVE(aip, ai_next); 11291 /* 11292 * Don't set a pointer while the buffer is undergoing IO or while 11293 * we have active truncations. 11294 */ 11295 if (indirdep->ir_state & UNDONE || !TAILQ_EMPTY(&indirdep->ir_trunc)) { 11296 LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next); 11297 return; 11298 } 11299 if (indirdep->ir_state & UFS1FMT) 11300 ((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 11301 aip->ai_newblkno; 11302 else 11303 ((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 11304 aip->ai_newblkno; 11305 /* 11306 * Await the pointer write before freeing the allocindir. 11307 */ 11308 LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next); 11309 } 11310 11311 /* 11312 * Release segments held on a jwork list. 11313 */ 11314 static void 11315 handle_jwork(wkhd) 11316 struct workhead *wkhd; 11317 { 11318 struct worklist *wk; 11319 11320 while ((wk = LIST_FIRST(wkhd)) != NULL) { 11321 WORKLIST_REMOVE(wk); 11322 switch (wk->wk_type) { 11323 case D_JSEGDEP: 11324 free_jsegdep(WK_JSEGDEP(wk)); 11325 continue; 11326 case D_FREEDEP: 11327 free_freedep(WK_FREEDEP(wk)); 11328 continue; 11329 case D_FREEFRAG: 11330 rele_jseg(WK_JSEG(WK_FREEFRAG(wk)->ff_jdep)); 11331 WORKITEM_FREE(wk, D_FREEFRAG); 11332 continue; 11333 case D_FREEWORK: 11334 handle_written_freework(WK_FREEWORK(wk)); 11335 continue; 11336 default: 11337 panic("handle_jwork: Unknown type %s\n", 11338 TYPENAME(wk->wk_type)); 11339 } 11340 } 11341 } 11342 11343 /* 11344 * Handle the bufwait list on an inode when it is safe to release items 11345 * held there. This normally happens after an inode block is written but 11346 * may be delayed and handled later if there are pending journal items that 11347 * are not yet safe to be released. 11348 */ 11349 static struct freefile * 11350 handle_bufwait(inodedep, refhd) 11351 struct inodedep *inodedep; 11352 struct workhead *refhd; 11353 { 11354 struct jaddref *jaddref; 11355 struct freefile *freefile; 11356 struct worklist *wk; 11357 11358 freefile = NULL; 11359 while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) { 11360 WORKLIST_REMOVE(wk); 11361 switch (wk->wk_type) { 11362 case D_FREEFILE: 11363 /* 11364 * We defer adding freefile to the worklist 11365 * until all other additions have been made to 11366 * ensure that it will be done after all the 11367 * old blocks have been freed. 11368 */ 11369 if (freefile != NULL) 11370 panic("handle_bufwait: freefile"); 11371 freefile = WK_FREEFILE(wk); 11372 continue; 11373 11374 case D_MKDIR: 11375 handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT); 11376 continue; 11377 11378 case D_DIRADD: 11379 diradd_inode_written(WK_DIRADD(wk), inodedep); 11380 continue; 11381 11382 case D_FREEFRAG: 11383 wk->wk_state |= COMPLETE; 11384 if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE) 11385 add_to_worklist(wk, 0); 11386 continue; 11387 11388 case D_DIRREM: 11389 wk->wk_state |= COMPLETE; 11390 add_to_worklist(wk, 0); 11391 continue; 11392 11393 case D_ALLOCDIRECT: 11394 case D_ALLOCINDIR: 11395 free_newblk(WK_NEWBLK(wk)); 11396 continue; 11397 11398 case D_JNEWBLK: 11399 wk->wk_state |= COMPLETE; 11400 free_jnewblk(WK_JNEWBLK(wk)); 11401 continue; 11402 11403 /* 11404 * Save freed journal segments and add references on 11405 * the supplied list which will delay their release 11406 * until the cg bitmap is cleared on disk. 11407 */ 11408 case D_JSEGDEP: 11409 if (refhd == NULL) 11410 free_jsegdep(WK_JSEGDEP(wk)); 11411 else 11412 WORKLIST_INSERT(refhd, wk); 11413 continue; 11414 11415 case D_JADDREF: 11416 jaddref = WK_JADDREF(wk); 11417 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, 11418 if_deps); 11419 /* 11420 * Transfer any jaddrefs to the list to be freed with 11421 * the bitmap if we're handling a removed file. 11422 */ 11423 if (refhd == NULL) { 11424 wk->wk_state |= COMPLETE; 11425 free_jaddref(jaddref); 11426 } else 11427 WORKLIST_INSERT(refhd, wk); 11428 continue; 11429 11430 default: 11431 panic("handle_bufwait: Unknown type %p(%s)", 11432 wk, TYPENAME(wk->wk_type)); 11433 /* NOTREACHED */ 11434 } 11435 } 11436 return (freefile); 11437 } 11438 /* 11439 * Called from within softdep_disk_write_complete above to restore 11440 * in-memory inode block contents to their most up-to-date state. Note 11441 * that this routine is always called from interrupt level with further 11442 * interrupts from this device blocked. 11443 * 11444 * If the write did not succeed, we will do all the roll-forward 11445 * operations, but we will not take the actions that will allow its 11446 * dependencies to be processed. 11447 */ 11448 static int 11449 handle_written_inodeblock(inodedep, bp, flags) 11450 struct inodedep *inodedep; 11451 struct buf *bp; /* buffer containing the inode block */ 11452 int flags; 11453 { 11454 struct freefile *freefile; 11455 struct allocdirect *adp, *nextadp; 11456 struct ufs1_dinode *dp1 = NULL; 11457 struct ufs2_dinode *dp2 = NULL; 11458 struct workhead wkhd; 11459 int hadchanges, fstype; 11460 ino_t freelink; 11461 11462 LIST_INIT(&wkhd); 11463 hadchanges = 0; 11464 freefile = NULL; 11465 if ((inodedep->id_state & IOSTARTED) == 0) 11466 panic("handle_written_inodeblock: not started"); 11467 inodedep->id_state &= ~IOSTARTED; 11468 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) { 11469 fstype = UFS1; 11470 dp1 = (struct ufs1_dinode *)bp->b_data + 11471 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 11472 freelink = dp1->di_freelink; 11473 } else { 11474 fstype = UFS2; 11475 dp2 = (struct ufs2_dinode *)bp->b_data + 11476 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 11477 freelink = dp2->di_freelink; 11478 } 11479 /* 11480 * Leave this inodeblock dirty until it's in the list. 11481 */ 11482 if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED && 11483 (flags & WRITESUCCEEDED)) { 11484 struct inodedep *inon; 11485 11486 inon = TAILQ_NEXT(inodedep, id_unlinked); 11487 if ((inon == NULL && freelink == 0) || 11488 (inon && inon->id_ino == freelink)) { 11489 if (inon) 11490 inon->id_state |= UNLINKPREV; 11491 inodedep->id_state |= UNLINKNEXT; 11492 } 11493 hadchanges = 1; 11494 } 11495 /* 11496 * If we had to rollback the inode allocation because of 11497 * bitmaps being incomplete, then simply restore it. 11498 * Keep the block dirty so that it will not be reclaimed until 11499 * all associated dependencies have been cleared and the 11500 * corresponding updates written to disk. 11501 */ 11502 if (inodedep->id_savedino1 != NULL) { 11503 hadchanges = 1; 11504 if (fstype == UFS1) 11505 *dp1 = *inodedep->id_savedino1; 11506 else 11507 *dp2 = *inodedep->id_savedino2; 11508 free(inodedep->id_savedino1, M_SAVEDINO); 11509 inodedep->id_savedino1 = NULL; 11510 if ((bp->b_flags & B_DELWRI) == 0) 11511 stat_inode_bitmap++; 11512 bdirty(bp); 11513 /* 11514 * If the inode is clear here and GOINGAWAY it will never 11515 * be written. Process the bufwait and clear any pending 11516 * work which may include the freefile. 11517 */ 11518 if (inodedep->id_state & GOINGAWAY) 11519 goto bufwait; 11520 return (1); 11521 } 11522 if (flags & WRITESUCCEEDED) 11523 inodedep->id_state |= COMPLETE; 11524 /* 11525 * Roll forward anything that had to be rolled back before 11526 * the inode could be updated. 11527 */ 11528 for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) { 11529 nextadp = TAILQ_NEXT(adp, ad_next); 11530 if (adp->ad_state & ATTACHED) 11531 panic("handle_written_inodeblock: new entry"); 11532 if (fstype == UFS1) { 11533 if (adp->ad_offset < UFS_NDADDR) { 11534 if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno) 11535 panic("%s %s #%jd mismatch %d != %jd", 11536 "handle_written_inodeblock:", 11537 "direct pointer", 11538 (intmax_t)adp->ad_offset, 11539 dp1->di_db[adp->ad_offset], 11540 (intmax_t)adp->ad_oldblkno); 11541 dp1->di_db[adp->ad_offset] = adp->ad_newblkno; 11542 } else { 11543 if (dp1->di_ib[adp->ad_offset - UFS_NDADDR] != 11544 0) 11545 panic("%s: %s #%jd allocated as %d", 11546 "handle_written_inodeblock", 11547 "indirect pointer", 11548 (intmax_t)adp->ad_offset - 11549 UFS_NDADDR, 11550 dp1->di_ib[adp->ad_offset - 11551 UFS_NDADDR]); 11552 dp1->di_ib[adp->ad_offset - UFS_NDADDR] = 11553 adp->ad_newblkno; 11554 } 11555 } else { 11556 if (adp->ad_offset < UFS_NDADDR) { 11557 if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno) 11558 panic("%s: %s #%jd %s %jd != %jd", 11559 "handle_written_inodeblock", 11560 "direct pointer", 11561 (intmax_t)adp->ad_offset, "mismatch", 11562 (intmax_t)dp2->di_db[adp->ad_offset], 11563 (intmax_t)adp->ad_oldblkno); 11564 dp2->di_db[adp->ad_offset] = adp->ad_newblkno; 11565 } else { 11566 if (dp2->di_ib[adp->ad_offset - UFS_NDADDR] != 11567 0) 11568 panic("%s: %s #%jd allocated as %jd", 11569 "handle_written_inodeblock", 11570 "indirect pointer", 11571 (intmax_t)adp->ad_offset - 11572 UFS_NDADDR, 11573 (intmax_t) 11574 dp2->di_ib[adp->ad_offset - 11575 UFS_NDADDR]); 11576 dp2->di_ib[adp->ad_offset - UFS_NDADDR] = 11577 adp->ad_newblkno; 11578 } 11579 } 11580 adp->ad_state &= ~UNDONE; 11581 adp->ad_state |= ATTACHED; 11582 hadchanges = 1; 11583 } 11584 for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) { 11585 nextadp = TAILQ_NEXT(adp, ad_next); 11586 if (adp->ad_state & ATTACHED) 11587 panic("handle_written_inodeblock: new entry"); 11588 if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno) 11589 panic("%s: direct pointers #%jd %s %jd != %jd", 11590 "handle_written_inodeblock", 11591 (intmax_t)adp->ad_offset, "mismatch", 11592 (intmax_t)dp2->di_extb[adp->ad_offset], 11593 (intmax_t)adp->ad_oldblkno); 11594 dp2->di_extb[adp->ad_offset] = adp->ad_newblkno; 11595 adp->ad_state &= ~UNDONE; 11596 adp->ad_state |= ATTACHED; 11597 hadchanges = 1; 11598 } 11599 if (hadchanges && (bp->b_flags & B_DELWRI) == 0) 11600 stat_direct_blk_ptrs++; 11601 /* 11602 * Reset the file size to its most up-to-date value. 11603 */ 11604 if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1) 11605 panic("handle_written_inodeblock: bad size"); 11606 if (inodedep->id_savednlink > UFS_LINK_MAX) 11607 panic("handle_written_inodeblock: Invalid link count " 11608 "%jd for inodedep %p", (uintmax_t)inodedep->id_savednlink, 11609 inodedep); 11610 if (fstype == UFS1) { 11611 if (dp1->di_nlink != inodedep->id_savednlink) { 11612 dp1->di_nlink = inodedep->id_savednlink; 11613 hadchanges = 1; 11614 } 11615 if (dp1->di_size != inodedep->id_savedsize) { 11616 dp1->di_size = inodedep->id_savedsize; 11617 hadchanges = 1; 11618 } 11619 } else { 11620 if (dp2->di_nlink != inodedep->id_savednlink) { 11621 dp2->di_nlink = inodedep->id_savednlink; 11622 hadchanges = 1; 11623 } 11624 if (dp2->di_size != inodedep->id_savedsize) { 11625 dp2->di_size = inodedep->id_savedsize; 11626 hadchanges = 1; 11627 } 11628 if (dp2->di_extsize != inodedep->id_savedextsize) { 11629 dp2->di_extsize = inodedep->id_savedextsize; 11630 hadchanges = 1; 11631 } 11632 } 11633 inodedep->id_savedsize = -1; 11634 inodedep->id_savedextsize = -1; 11635 inodedep->id_savednlink = -1; 11636 /* 11637 * If there were any rollbacks in the inode block, then it must be 11638 * marked dirty so that its will eventually get written back in 11639 * its correct form. 11640 */ 11641 if (hadchanges) { 11642 if (fstype == UFS2) 11643 ffs_update_dinode_ckhash(inodedep->id_fs, dp2); 11644 bdirty(bp); 11645 } 11646 bufwait: 11647 /* 11648 * If the write did not succeed, we have done all the roll-forward 11649 * operations, but we cannot take the actions that will allow its 11650 * dependencies to be processed. 11651 */ 11652 if ((flags & WRITESUCCEEDED) == 0) 11653 return (hadchanges); 11654 /* 11655 * Process any allocdirects that completed during the update. 11656 */ 11657 if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL) 11658 handle_allocdirect_partdone(adp, &wkhd); 11659 if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 11660 handle_allocdirect_partdone(adp, &wkhd); 11661 /* 11662 * Process deallocations that were held pending until the 11663 * inode had been written to disk. Freeing of the inode 11664 * is delayed until after all blocks have been freed to 11665 * avoid creation of new <vfsid, inum, lbn> triples 11666 * before the old ones have been deleted. Completely 11667 * unlinked inodes are not processed until the unlinked 11668 * inode list is written or the last reference is removed. 11669 */ 11670 if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) { 11671 freefile = handle_bufwait(inodedep, NULL); 11672 if (freefile && !LIST_EMPTY(&wkhd)) { 11673 WORKLIST_INSERT(&wkhd, &freefile->fx_list); 11674 freefile = NULL; 11675 } 11676 } 11677 /* 11678 * Move rolled forward dependency completions to the bufwait list 11679 * now that those that were already written have been processed. 11680 */ 11681 if (!LIST_EMPTY(&wkhd) && hadchanges == 0) 11682 panic("handle_written_inodeblock: bufwait but no changes"); 11683 jwork_move(&inodedep->id_bufwait, &wkhd); 11684 11685 if (freefile != NULL) { 11686 /* 11687 * If the inode is goingaway it was never written. Fake up 11688 * the state here so free_inodedep() can succeed. 11689 */ 11690 if (inodedep->id_state & GOINGAWAY) 11691 inodedep->id_state |= COMPLETE | DEPCOMPLETE; 11692 if (free_inodedep(inodedep) == 0) 11693 panic("handle_written_inodeblock: live inodedep %p", 11694 inodedep); 11695 add_to_worklist(&freefile->fx_list, 0); 11696 return (0); 11697 } 11698 11699 /* 11700 * If no outstanding dependencies, free it. 11701 */ 11702 if (free_inodedep(inodedep) || 11703 (TAILQ_FIRST(&inodedep->id_inoreflst) == 0 && 11704 TAILQ_FIRST(&inodedep->id_inoupdt) == 0 && 11705 TAILQ_FIRST(&inodedep->id_extupdt) == 0 && 11706 LIST_FIRST(&inodedep->id_bufwait) == 0)) 11707 return (0); 11708 return (hadchanges); 11709 } 11710 11711 /* 11712 * Perform needed roll-forwards and kick off any dependencies that 11713 * can now be processed. 11714 * 11715 * If the write did not succeed, we will do all the roll-forward 11716 * operations, but we will not take the actions that will allow its 11717 * dependencies to be processed. 11718 */ 11719 static int 11720 handle_written_indirdep(indirdep, bp, bpp, flags) 11721 struct indirdep *indirdep; 11722 struct buf *bp; 11723 struct buf **bpp; 11724 int flags; 11725 { 11726 struct allocindir *aip; 11727 struct buf *sbp; 11728 int chgs; 11729 11730 if (indirdep->ir_state & GOINGAWAY) 11731 panic("handle_written_indirdep: indirdep gone"); 11732 if ((indirdep->ir_state & IOSTARTED) == 0) 11733 panic("handle_written_indirdep: IO not started"); 11734 chgs = 0; 11735 /* 11736 * If there were rollbacks revert them here. 11737 */ 11738 if (indirdep->ir_saveddata) { 11739 bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount); 11740 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 11741 free(indirdep->ir_saveddata, M_INDIRDEP); 11742 indirdep->ir_saveddata = NULL; 11743 } 11744 chgs = 1; 11745 } 11746 indirdep->ir_state &= ~(UNDONE | IOSTARTED); 11747 indirdep->ir_state |= ATTACHED; 11748 /* 11749 * If the write did not succeed, we have done all the roll-forward 11750 * operations, but we cannot take the actions that will allow its 11751 * dependencies to be processed. 11752 */ 11753 if ((flags & WRITESUCCEEDED) == 0) { 11754 stat_indir_blk_ptrs++; 11755 bdirty(bp); 11756 return (1); 11757 } 11758 /* 11759 * Move allocindirs with written pointers to the completehd if 11760 * the indirdep's pointer is not yet written. Otherwise 11761 * free them here. 11762 */ 11763 while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL) { 11764 LIST_REMOVE(aip, ai_next); 11765 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 11766 LIST_INSERT_HEAD(&indirdep->ir_completehd, aip, 11767 ai_next); 11768 newblk_freefrag(&aip->ai_block); 11769 continue; 11770 } 11771 free_newblk(&aip->ai_block); 11772 } 11773 /* 11774 * Move allocindirs that have finished dependency processing from 11775 * the done list to the write list after updating the pointers. 11776 */ 11777 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 11778 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL) { 11779 handle_allocindir_partdone(aip); 11780 if (aip == LIST_FIRST(&indirdep->ir_donehd)) 11781 panic("disk_write_complete: not gone"); 11782 chgs = 1; 11783 } 11784 } 11785 /* 11786 * Preserve the indirdep if there were any changes or if it is not 11787 * yet valid on disk. 11788 */ 11789 if (chgs) { 11790 stat_indir_blk_ptrs++; 11791 bdirty(bp); 11792 return (1); 11793 } 11794 /* 11795 * If there were no changes we can discard the savedbp and detach 11796 * ourselves from the buf. We are only carrying completed pointers 11797 * in this case. 11798 */ 11799 sbp = indirdep->ir_savebp; 11800 sbp->b_flags |= B_INVAL | B_NOCACHE; 11801 indirdep->ir_savebp = NULL; 11802 indirdep->ir_bp = NULL; 11803 if (*bpp != NULL) 11804 panic("handle_written_indirdep: bp already exists."); 11805 *bpp = sbp; 11806 /* 11807 * The indirdep may not be freed until its parent points at it. 11808 */ 11809 if (indirdep->ir_state & DEPCOMPLETE) 11810 free_indirdep(indirdep); 11811 11812 return (0); 11813 } 11814 11815 /* 11816 * Process a diradd entry after its dependent inode has been written. 11817 */ 11818 static void 11819 diradd_inode_written(dap, inodedep) 11820 struct diradd *dap; 11821 struct inodedep *inodedep; 11822 { 11823 11824 LOCK_OWNED(VFSTOUFS(dap->da_list.wk_mp)); 11825 dap->da_state |= COMPLETE; 11826 complete_diradd(dap); 11827 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 11828 } 11829 11830 /* 11831 * Returns true if the bmsafemap will have rollbacks when written. Must only 11832 * be called with the per-filesystem lock and the buf lock on the cg held. 11833 */ 11834 static int 11835 bmsafemap_backgroundwrite(bmsafemap, bp) 11836 struct bmsafemap *bmsafemap; 11837 struct buf *bp; 11838 { 11839 int dirty; 11840 11841 LOCK_OWNED(VFSTOUFS(bmsafemap->sm_list.wk_mp)); 11842 dirty = !LIST_EMPTY(&bmsafemap->sm_jaddrefhd) | 11843 !LIST_EMPTY(&bmsafemap->sm_jnewblkhd); 11844 /* 11845 * If we're initiating a background write we need to process the 11846 * rollbacks as they exist now, not as they exist when IO starts. 11847 * No other consumers will look at the contents of the shadowed 11848 * buf so this is safe to do here. 11849 */ 11850 if (bp->b_xflags & BX_BKGRDMARKER) 11851 initiate_write_bmsafemap(bmsafemap, bp); 11852 11853 return (dirty); 11854 } 11855 11856 /* 11857 * Re-apply an allocation when a cg write is complete. 11858 */ 11859 static int 11860 jnewblk_rollforward(jnewblk, fs, cgp, blksfree) 11861 struct jnewblk *jnewblk; 11862 struct fs *fs; 11863 struct cg *cgp; 11864 uint8_t *blksfree; 11865 { 11866 ufs1_daddr_t fragno; 11867 ufs2_daddr_t blkno; 11868 long cgbno, bbase; 11869 int frags, blk; 11870 int i; 11871 11872 frags = 0; 11873 cgbno = dtogd(fs, jnewblk->jn_blkno); 11874 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) { 11875 if (isclr(blksfree, cgbno + i)) 11876 panic("jnewblk_rollforward: re-allocated fragment"); 11877 frags++; 11878 } 11879 if (frags == fs->fs_frag) { 11880 blkno = fragstoblks(fs, cgbno); 11881 ffs_clrblock(fs, blksfree, (long)blkno); 11882 ffs_clusteracct(fs, cgp, blkno, -1); 11883 cgp->cg_cs.cs_nbfree--; 11884 } else { 11885 bbase = cgbno - fragnum(fs, cgbno); 11886 cgbno += jnewblk->jn_oldfrags; 11887 /* If a complete block had been reassembled, account for it. */ 11888 fragno = fragstoblks(fs, bbase); 11889 if (ffs_isblock(fs, blksfree, fragno)) { 11890 cgp->cg_cs.cs_nffree += fs->fs_frag; 11891 ffs_clusteracct(fs, cgp, fragno, -1); 11892 cgp->cg_cs.cs_nbfree--; 11893 } 11894 /* Decrement the old frags. */ 11895 blk = blkmap(fs, blksfree, bbase); 11896 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 11897 /* Allocate the fragment */ 11898 for (i = 0; i < frags; i++) 11899 clrbit(blksfree, cgbno + i); 11900 cgp->cg_cs.cs_nffree -= frags; 11901 /* Add back in counts associated with the new frags */ 11902 blk = blkmap(fs, blksfree, bbase); 11903 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 11904 } 11905 return (frags); 11906 } 11907 11908 /* 11909 * Complete a write to a bmsafemap structure. Roll forward any bitmap 11910 * changes if it's not a background write. Set all written dependencies 11911 * to DEPCOMPLETE and free the structure if possible. 11912 * 11913 * If the write did not succeed, we will do all the roll-forward 11914 * operations, but we will not take the actions that will allow its 11915 * dependencies to be processed. 11916 */ 11917 static int 11918 handle_written_bmsafemap(bmsafemap, bp, flags) 11919 struct bmsafemap *bmsafemap; 11920 struct buf *bp; 11921 int flags; 11922 { 11923 struct newblk *newblk; 11924 struct inodedep *inodedep; 11925 struct jaddref *jaddref, *jatmp; 11926 struct jnewblk *jnewblk, *jntmp; 11927 struct ufsmount *ump; 11928 uint8_t *inosused; 11929 uint8_t *blksfree; 11930 struct cg *cgp; 11931 struct fs *fs; 11932 ino_t ino; 11933 int foreground; 11934 int chgs; 11935 11936 if ((bmsafemap->sm_state & IOSTARTED) == 0) 11937 panic("handle_written_bmsafemap: Not started\n"); 11938 ump = VFSTOUFS(bmsafemap->sm_list.wk_mp); 11939 chgs = 0; 11940 bmsafemap->sm_state &= ~IOSTARTED; 11941 foreground = (bp->b_xflags & BX_BKGRDMARKER) == 0; 11942 /* 11943 * If write was successful, release journal work that was waiting 11944 * on the write. Otherwise move the work back. 11945 */ 11946 if (flags & WRITESUCCEEDED) 11947 handle_jwork(&bmsafemap->sm_freewr); 11948 else 11949 LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, 11950 worklist, wk_list); 11951 11952 /* 11953 * Restore unwritten inode allocation pending jaddref writes. 11954 */ 11955 if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) { 11956 cgp = (struct cg *)bp->b_data; 11957 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 11958 inosused = cg_inosused(cgp); 11959 LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd, 11960 ja_bmdeps, jatmp) { 11961 if ((jaddref->ja_state & UNDONE) == 0) 11962 continue; 11963 ino = jaddref->ja_ino % fs->fs_ipg; 11964 if (isset(inosused, ino)) 11965 panic("handle_written_bmsafemap: " 11966 "re-allocated inode"); 11967 /* Do the roll-forward only if it's a real copy. */ 11968 if (foreground) { 11969 if ((jaddref->ja_mode & IFMT) == IFDIR) 11970 cgp->cg_cs.cs_ndir++; 11971 cgp->cg_cs.cs_nifree--; 11972 setbit(inosused, ino); 11973 chgs = 1; 11974 } 11975 jaddref->ja_state &= ~UNDONE; 11976 jaddref->ja_state |= ATTACHED; 11977 free_jaddref(jaddref); 11978 } 11979 } 11980 /* 11981 * Restore any block allocations which are pending journal writes. 11982 */ 11983 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) { 11984 cgp = (struct cg *)bp->b_data; 11985 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 11986 blksfree = cg_blksfree(cgp); 11987 LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps, 11988 jntmp) { 11989 if ((jnewblk->jn_state & UNDONE) == 0) 11990 continue; 11991 /* Do the roll-forward only if it's a real copy. */ 11992 if (foreground && 11993 jnewblk_rollforward(jnewblk, fs, cgp, blksfree)) 11994 chgs = 1; 11995 jnewblk->jn_state &= ~(UNDONE | NEWBLOCK); 11996 jnewblk->jn_state |= ATTACHED; 11997 free_jnewblk(jnewblk); 11998 } 11999 } 12000 /* 12001 * If the write did not succeed, we have done all the roll-forward 12002 * operations, but we cannot take the actions that will allow its 12003 * dependencies to be processed. 12004 */ 12005 if ((flags & WRITESUCCEEDED) == 0) { 12006 LIST_CONCAT(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr, 12007 newblk, nb_deps); 12008 LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, 12009 worklist, wk_list); 12010 if (foreground) 12011 bdirty(bp); 12012 return (1); 12013 } 12014 while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) { 12015 newblk->nb_state |= DEPCOMPLETE; 12016 newblk->nb_state &= ~ONDEPLIST; 12017 newblk->nb_bmsafemap = NULL; 12018 LIST_REMOVE(newblk, nb_deps); 12019 if (newblk->nb_list.wk_type == D_ALLOCDIRECT) 12020 handle_allocdirect_partdone( 12021 WK_ALLOCDIRECT(&newblk->nb_list), NULL); 12022 else if (newblk->nb_list.wk_type == D_ALLOCINDIR) 12023 handle_allocindir_partdone( 12024 WK_ALLOCINDIR(&newblk->nb_list)); 12025 else if (newblk->nb_list.wk_type != D_NEWBLK) 12026 panic("handle_written_bmsafemap: Unexpected type: %s", 12027 TYPENAME(newblk->nb_list.wk_type)); 12028 } 12029 while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) { 12030 inodedep->id_state |= DEPCOMPLETE; 12031 inodedep->id_state &= ~ONDEPLIST; 12032 LIST_REMOVE(inodedep, id_deps); 12033 inodedep->id_bmsafemap = NULL; 12034 } 12035 LIST_REMOVE(bmsafemap, sm_next); 12036 if (chgs == 0 && LIST_EMPTY(&bmsafemap->sm_jaddrefhd) && 12037 LIST_EMPTY(&bmsafemap->sm_jnewblkhd) && 12038 LIST_EMPTY(&bmsafemap->sm_newblkhd) && 12039 LIST_EMPTY(&bmsafemap->sm_inodedephd) && 12040 LIST_EMPTY(&bmsafemap->sm_freehd)) { 12041 LIST_REMOVE(bmsafemap, sm_hash); 12042 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); 12043 return (0); 12044 } 12045 LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next); 12046 if (foreground) 12047 bdirty(bp); 12048 return (1); 12049 } 12050 12051 /* 12052 * Try to free a mkdir dependency. 12053 */ 12054 static void 12055 complete_mkdir(mkdir) 12056 struct mkdir *mkdir; 12057 { 12058 struct diradd *dap; 12059 12060 if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE) 12061 return; 12062 LIST_REMOVE(mkdir, md_mkdirs); 12063 dap = mkdir->md_diradd; 12064 dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)); 12065 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) { 12066 dap->da_state |= DEPCOMPLETE; 12067 complete_diradd(dap); 12068 } 12069 WORKITEM_FREE(mkdir, D_MKDIR); 12070 } 12071 12072 /* 12073 * Handle the completion of a mkdir dependency. 12074 */ 12075 static void 12076 handle_written_mkdir(mkdir, type) 12077 struct mkdir *mkdir; 12078 int type; 12079 { 12080 12081 if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type) 12082 panic("handle_written_mkdir: bad type"); 12083 mkdir->md_state |= COMPLETE; 12084 complete_mkdir(mkdir); 12085 } 12086 12087 static int 12088 free_pagedep(pagedep) 12089 struct pagedep *pagedep; 12090 { 12091 int i; 12092 12093 if (pagedep->pd_state & NEWBLOCK) 12094 return (0); 12095 if (!LIST_EMPTY(&pagedep->pd_dirremhd)) 12096 return (0); 12097 for (i = 0; i < DAHASHSZ; i++) 12098 if (!LIST_EMPTY(&pagedep->pd_diraddhd[i])) 12099 return (0); 12100 if (!LIST_EMPTY(&pagedep->pd_pendinghd)) 12101 return (0); 12102 if (!LIST_EMPTY(&pagedep->pd_jmvrefhd)) 12103 return (0); 12104 if (pagedep->pd_state & ONWORKLIST) 12105 WORKLIST_REMOVE(&pagedep->pd_list); 12106 LIST_REMOVE(pagedep, pd_hash); 12107 WORKITEM_FREE(pagedep, D_PAGEDEP); 12108 12109 return (1); 12110 } 12111 12112 /* 12113 * Called from within softdep_disk_write_complete above. 12114 * A write operation was just completed. Removed inodes can 12115 * now be freed and associated block pointers may be committed. 12116 * Note that this routine is always called from interrupt level 12117 * with further interrupts from this device blocked. 12118 * 12119 * If the write did not succeed, we will do all the roll-forward 12120 * operations, but we will not take the actions that will allow its 12121 * dependencies to be processed. 12122 */ 12123 static int 12124 handle_written_filepage(pagedep, bp, flags) 12125 struct pagedep *pagedep; 12126 struct buf *bp; /* buffer containing the written page */ 12127 int flags; 12128 { 12129 struct dirrem *dirrem; 12130 struct diradd *dap, *nextdap; 12131 struct direct *ep; 12132 int i, chgs; 12133 12134 if ((pagedep->pd_state & IOSTARTED) == 0) 12135 panic("handle_written_filepage: not started"); 12136 pagedep->pd_state &= ~IOSTARTED; 12137 if ((flags & WRITESUCCEEDED) == 0) 12138 goto rollforward; 12139 /* 12140 * Process any directory removals that have been committed. 12141 */ 12142 while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) { 12143 LIST_REMOVE(dirrem, dm_next); 12144 dirrem->dm_state |= COMPLETE; 12145 dirrem->dm_dirinum = pagedep->pd_ino; 12146 KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd), 12147 ("handle_written_filepage: Journal entries not written.")); 12148 add_to_worklist(&dirrem->dm_list, 0); 12149 } 12150 /* 12151 * Free any directory additions that have been committed. 12152 * If it is a newly allocated block, we have to wait until 12153 * the on-disk directory inode claims the new block. 12154 */ 12155 if ((pagedep->pd_state & NEWBLOCK) == 0) 12156 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 12157 free_diradd(dap, NULL); 12158 rollforward: 12159 /* 12160 * Uncommitted directory entries must be restored. 12161 */ 12162 for (chgs = 0, i = 0; i < DAHASHSZ; i++) { 12163 for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap; 12164 dap = nextdap) { 12165 nextdap = LIST_NEXT(dap, da_pdlist); 12166 if (dap->da_state & ATTACHED) 12167 panic("handle_written_filepage: attached"); 12168 ep = (struct direct *) 12169 ((char *)bp->b_data + dap->da_offset); 12170 ep->d_ino = dap->da_newinum; 12171 dap->da_state &= ~UNDONE; 12172 dap->da_state |= ATTACHED; 12173 chgs = 1; 12174 /* 12175 * If the inode referenced by the directory has 12176 * been written out, then the dependency can be 12177 * moved to the pending list. 12178 */ 12179 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 12180 LIST_REMOVE(dap, da_pdlist); 12181 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, 12182 da_pdlist); 12183 } 12184 } 12185 } 12186 /* 12187 * If there were any rollbacks in the directory, then it must be 12188 * marked dirty so that its will eventually get written back in 12189 * its correct form. 12190 */ 12191 if (chgs || (flags & WRITESUCCEEDED) == 0) { 12192 if ((bp->b_flags & B_DELWRI) == 0) 12193 stat_dir_entry++; 12194 bdirty(bp); 12195 return (1); 12196 } 12197 /* 12198 * If we are not waiting for a new directory block to be 12199 * claimed by its inode, then the pagedep will be freed. 12200 * Otherwise it will remain to track any new entries on 12201 * the page in case they are fsync'ed. 12202 */ 12203 free_pagedep(pagedep); 12204 return (0); 12205 } 12206 12207 /* 12208 * Writing back in-core inode structures. 12209 * 12210 * The filesystem only accesses an inode's contents when it occupies an 12211 * "in-core" inode structure. These "in-core" structures are separate from 12212 * the page frames used to cache inode blocks. Only the latter are 12213 * transferred to/from the disk. So, when the updated contents of the 12214 * "in-core" inode structure are copied to the corresponding in-memory inode 12215 * block, the dependencies are also transferred. The following procedure is 12216 * called when copying a dirty "in-core" inode to a cached inode block. 12217 */ 12218 12219 /* 12220 * Called when an inode is loaded from disk. If the effective link count 12221 * differed from the actual link count when it was last flushed, then we 12222 * need to ensure that the correct effective link count is put back. 12223 */ 12224 void 12225 softdep_load_inodeblock(ip) 12226 struct inode *ip; /* the "in_core" copy of the inode */ 12227 { 12228 struct inodedep *inodedep; 12229 struct ufsmount *ump; 12230 12231 ump = ITOUMP(ip); 12232 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 12233 ("softdep_load_inodeblock called on non-softdep filesystem")); 12234 /* 12235 * Check for alternate nlink count. 12236 */ 12237 ip->i_effnlink = ip->i_nlink; 12238 ACQUIRE_LOCK(ump); 12239 if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0) { 12240 FREE_LOCK(ump); 12241 return; 12242 } 12243 ip->i_effnlink -= inodedep->id_nlinkdelta; 12244 FREE_LOCK(ump); 12245 } 12246 12247 /* 12248 * This routine is called just before the "in-core" inode 12249 * information is to be copied to the in-memory inode block. 12250 * Recall that an inode block contains several inodes. If 12251 * the force flag is set, then the dependencies will be 12252 * cleared so that the update can always be made. Note that 12253 * the buffer is locked when this routine is called, so we 12254 * will never be in the middle of writing the inode block 12255 * to disk. 12256 */ 12257 void 12258 softdep_update_inodeblock(ip, bp, waitfor) 12259 struct inode *ip; /* the "in_core" copy of the inode */ 12260 struct buf *bp; /* the buffer containing the inode block */ 12261 int waitfor; /* nonzero => update must be allowed */ 12262 { 12263 struct inodedep *inodedep; 12264 struct inoref *inoref; 12265 struct ufsmount *ump; 12266 struct worklist *wk; 12267 struct mount *mp; 12268 struct buf *ibp; 12269 struct fs *fs; 12270 int error; 12271 12272 ump = ITOUMP(ip); 12273 mp = UFSTOVFS(ump); 12274 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 12275 ("softdep_update_inodeblock called on non-softdep filesystem")); 12276 fs = ump->um_fs; 12277 /* 12278 * Preserve the freelink that is on disk. clear_unlinked_inodedep() 12279 * does not have access to the in-core ip so must write directly into 12280 * the inode block buffer when setting freelink. 12281 */ 12282 if (fs->fs_magic == FS_UFS1_MAGIC) 12283 DIP_SET(ip, i_freelink, ((struct ufs1_dinode *)bp->b_data + 12284 ino_to_fsbo(fs, ip->i_number))->di_freelink); 12285 else 12286 DIP_SET(ip, i_freelink, ((struct ufs2_dinode *)bp->b_data + 12287 ino_to_fsbo(fs, ip->i_number))->di_freelink); 12288 /* 12289 * If the effective link count is not equal to the actual link 12290 * count, then we must track the difference in an inodedep while 12291 * the inode is (potentially) tossed out of the cache. Otherwise, 12292 * if there is no existing inodedep, then there are no dependencies 12293 * to track. 12294 */ 12295 ACQUIRE_LOCK(ump); 12296 again: 12297 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) { 12298 FREE_LOCK(ump); 12299 if (ip->i_effnlink != ip->i_nlink) 12300 panic("softdep_update_inodeblock: bad link count"); 12301 return; 12302 } 12303 if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink) 12304 panic("softdep_update_inodeblock: bad delta"); 12305 /* 12306 * If we're flushing all dependencies we must also move any waiting 12307 * for journal writes onto the bufwait list prior to I/O. 12308 */ 12309 if (waitfor) { 12310 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 12311 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 12312 == DEPCOMPLETE) { 12313 jwait(&inoref->if_list, MNT_WAIT); 12314 goto again; 12315 } 12316 } 12317 } 12318 /* 12319 * Changes have been initiated. Anything depending on these 12320 * changes cannot occur until this inode has been written. 12321 */ 12322 inodedep->id_state &= ~COMPLETE; 12323 if ((inodedep->id_state & ONWORKLIST) == 0) 12324 WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list); 12325 /* 12326 * Any new dependencies associated with the incore inode must 12327 * now be moved to the list associated with the buffer holding 12328 * the in-memory copy of the inode. Once merged process any 12329 * allocdirects that are completed by the merger. 12330 */ 12331 merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt); 12332 if (!TAILQ_EMPTY(&inodedep->id_inoupdt)) 12333 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt), 12334 NULL); 12335 merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt); 12336 if (!TAILQ_EMPTY(&inodedep->id_extupdt)) 12337 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt), 12338 NULL); 12339 /* 12340 * Now that the inode has been pushed into the buffer, the 12341 * operations dependent on the inode being written to disk 12342 * can be moved to the id_bufwait so that they will be 12343 * processed when the buffer I/O completes. 12344 */ 12345 while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) { 12346 WORKLIST_REMOVE(wk); 12347 WORKLIST_INSERT(&inodedep->id_bufwait, wk); 12348 } 12349 /* 12350 * Newly allocated inodes cannot be written until the bitmap 12351 * that allocates them have been written (indicated by 12352 * DEPCOMPLETE being set in id_state). If we are doing a 12353 * forced sync (e.g., an fsync on a file), we force the bitmap 12354 * to be written so that the update can be done. 12355 */ 12356 if (waitfor == 0) { 12357 FREE_LOCK(ump); 12358 return; 12359 } 12360 retry: 12361 if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) { 12362 FREE_LOCK(ump); 12363 return; 12364 } 12365 ibp = inodedep->id_bmsafemap->sm_buf; 12366 ibp = getdirtybuf(ibp, LOCK_PTR(ump), MNT_WAIT); 12367 if (ibp == NULL) { 12368 /* 12369 * If ibp came back as NULL, the dependency could have been 12370 * freed while we slept. Look it up again, and check to see 12371 * that it has completed. 12372 */ 12373 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) 12374 goto retry; 12375 FREE_LOCK(ump); 12376 return; 12377 } 12378 FREE_LOCK(ump); 12379 if ((error = bwrite(ibp)) != 0) 12380 softdep_error("softdep_update_inodeblock: bwrite", error); 12381 } 12382 12383 /* 12384 * Merge the a new inode dependency list (such as id_newinoupdt) into an 12385 * old inode dependency list (such as id_inoupdt). 12386 */ 12387 static void 12388 merge_inode_lists(newlisthead, oldlisthead) 12389 struct allocdirectlst *newlisthead; 12390 struct allocdirectlst *oldlisthead; 12391 { 12392 struct allocdirect *listadp, *newadp; 12393 12394 newadp = TAILQ_FIRST(newlisthead); 12395 if (newadp != NULL) 12396 LOCK_OWNED(VFSTOUFS(newadp->ad_block.nb_list.wk_mp)); 12397 for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) { 12398 if (listadp->ad_offset < newadp->ad_offset) { 12399 listadp = TAILQ_NEXT(listadp, ad_next); 12400 continue; 12401 } 12402 TAILQ_REMOVE(newlisthead, newadp, ad_next); 12403 TAILQ_INSERT_BEFORE(listadp, newadp, ad_next); 12404 if (listadp->ad_offset == newadp->ad_offset) { 12405 allocdirect_merge(oldlisthead, newadp, 12406 listadp); 12407 listadp = newadp; 12408 } 12409 newadp = TAILQ_FIRST(newlisthead); 12410 } 12411 while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) { 12412 TAILQ_REMOVE(newlisthead, newadp, ad_next); 12413 TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next); 12414 } 12415 } 12416 12417 /* 12418 * If we are doing an fsync, then we must ensure that any directory 12419 * entries for the inode have been written after the inode gets to disk. 12420 */ 12421 int 12422 softdep_fsync(vp) 12423 struct vnode *vp; /* the "in_core" copy of the inode */ 12424 { 12425 struct inodedep *inodedep; 12426 struct pagedep *pagedep; 12427 struct inoref *inoref; 12428 struct ufsmount *ump; 12429 struct worklist *wk; 12430 struct diradd *dap; 12431 struct mount *mp; 12432 struct vnode *pvp; 12433 struct inode *ip; 12434 struct buf *bp; 12435 struct fs *fs; 12436 struct thread *td = curthread; 12437 int error, flushparent, pagedep_new_block; 12438 ino_t parentino; 12439 ufs_lbn_t lbn; 12440 12441 ip = VTOI(vp); 12442 mp = vp->v_mount; 12443 ump = VFSTOUFS(mp); 12444 fs = ump->um_fs; 12445 if (MOUNTEDSOFTDEP(mp) == 0) 12446 return (0); 12447 ACQUIRE_LOCK(ump); 12448 restart: 12449 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) { 12450 FREE_LOCK(ump); 12451 return (0); 12452 } 12453 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 12454 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 12455 == DEPCOMPLETE) { 12456 jwait(&inoref->if_list, MNT_WAIT); 12457 goto restart; 12458 } 12459 } 12460 if (!LIST_EMPTY(&inodedep->id_inowait) || 12461 !TAILQ_EMPTY(&inodedep->id_extupdt) || 12462 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 12463 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 12464 !TAILQ_EMPTY(&inodedep->id_newinoupdt)) 12465 panic("softdep_fsync: pending ops %p", inodedep); 12466 for (error = 0, flushparent = 0; ; ) { 12467 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL) 12468 break; 12469 if (wk->wk_type != D_DIRADD) 12470 panic("softdep_fsync: Unexpected type %s", 12471 TYPENAME(wk->wk_type)); 12472 dap = WK_DIRADD(wk); 12473 /* 12474 * Flush our parent if this directory entry has a MKDIR_PARENT 12475 * dependency or is contained in a newly allocated block. 12476 */ 12477 if (dap->da_state & DIRCHG) 12478 pagedep = dap->da_previous->dm_pagedep; 12479 else 12480 pagedep = dap->da_pagedep; 12481 parentino = pagedep->pd_ino; 12482 lbn = pagedep->pd_lbn; 12483 if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE) 12484 panic("softdep_fsync: dirty"); 12485 if ((dap->da_state & MKDIR_PARENT) || 12486 (pagedep->pd_state & NEWBLOCK)) 12487 flushparent = 1; 12488 else 12489 flushparent = 0; 12490 /* 12491 * If we are being fsync'ed as part of vgone'ing this vnode, 12492 * then we will not be able to release and recover the 12493 * vnode below, so we just have to give up on writing its 12494 * directory entry out. It will eventually be written, just 12495 * not now, but then the user was not asking to have it 12496 * written, so we are not breaking any promises. 12497 */ 12498 if (vp->v_iflag & VI_DOOMED) 12499 break; 12500 /* 12501 * We prevent deadlock by always fetching inodes from the 12502 * root, moving down the directory tree. Thus, when fetching 12503 * our parent directory, we first try to get the lock. If 12504 * that fails, we must unlock ourselves before requesting 12505 * the lock on our parent. See the comment in ufs_lookup 12506 * for details on possible races. 12507 */ 12508 FREE_LOCK(ump); 12509 if (ffs_vgetf(mp, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp, 12510 FFSV_FORCEINSMQ)) { 12511 error = vfs_busy(mp, MBF_NOWAIT); 12512 if (error != 0) { 12513 vfs_ref(mp); 12514 VOP_UNLOCK(vp, 0); 12515 error = vfs_busy(mp, 0); 12516 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 12517 vfs_rel(mp); 12518 if (error != 0) 12519 return (ENOENT); 12520 if (vp->v_iflag & VI_DOOMED) { 12521 vfs_unbusy(mp); 12522 return (ENOENT); 12523 } 12524 } 12525 VOP_UNLOCK(vp, 0); 12526 error = ffs_vgetf(mp, parentino, LK_EXCLUSIVE, 12527 &pvp, FFSV_FORCEINSMQ); 12528 vfs_unbusy(mp); 12529 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 12530 if (vp->v_iflag & VI_DOOMED) { 12531 if (error == 0) 12532 vput(pvp); 12533 error = ENOENT; 12534 } 12535 if (error != 0) 12536 return (error); 12537 } 12538 /* 12539 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps 12540 * that are contained in direct blocks will be resolved by 12541 * doing a ffs_update. Pagedeps contained in indirect blocks 12542 * may require a complete sync'ing of the directory. So, we 12543 * try the cheap and fast ffs_update first, and if that fails, 12544 * then we do the slower ffs_syncvnode of the directory. 12545 */ 12546 if (flushparent) { 12547 int locked; 12548 12549 if ((error = ffs_update(pvp, 1)) != 0) { 12550 vput(pvp); 12551 return (error); 12552 } 12553 ACQUIRE_LOCK(ump); 12554 locked = 1; 12555 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) { 12556 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) { 12557 if (wk->wk_type != D_DIRADD) 12558 panic("softdep_fsync: Unexpected type %s", 12559 TYPENAME(wk->wk_type)); 12560 dap = WK_DIRADD(wk); 12561 if (dap->da_state & DIRCHG) 12562 pagedep = dap->da_previous->dm_pagedep; 12563 else 12564 pagedep = dap->da_pagedep; 12565 pagedep_new_block = pagedep->pd_state & NEWBLOCK; 12566 FREE_LOCK(ump); 12567 locked = 0; 12568 if (pagedep_new_block && (error = 12569 ffs_syncvnode(pvp, MNT_WAIT, 0))) { 12570 vput(pvp); 12571 return (error); 12572 } 12573 } 12574 } 12575 if (locked) 12576 FREE_LOCK(ump); 12577 } 12578 /* 12579 * Flush directory page containing the inode's name. 12580 */ 12581 error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred, 12582 &bp); 12583 if (error == 0) 12584 error = bwrite(bp); 12585 else 12586 brelse(bp); 12587 vput(pvp); 12588 if (error != 0) 12589 return (error); 12590 ACQUIRE_LOCK(ump); 12591 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 12592 break; 12593 } 12594 FREE_LOCK(ump); 12595 return (0); 12596 } 12597 12598 /* 12599 * Flush all the dirty bitmaps associated with the block device 12600 * before flushing the rest of the dirty blocks so as to reduce 12601 * the number of dependencies that will have to be rolled back. 12602 * 12603 * XXX Unused? 12604 */ 12605 void 12606 softdep_fsync_mountdev(vp) 12607 struct vnode *vp; 12608 { 12609 struct buf *bp, *nbp; 12610 struct worklist *wk; 12611 struct bufobj *bo; 12612 12613 if (!vn_isdisk(vp, NULL)) 12614 panic("softdep_fsync_mountdev: vnode not a disk"); 12615 bo = &vp->v_bufobj; 12616 restart: 12617 BO_LOCK(bo); 12618 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 12619 /* 12620 * If it is already scheduled, skip to the next buffer. 12621 */ 12622 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) 12623 continue; 12624 12625 if ((bp->b_flags & B_DELWRI) == 0) 12626 panic("softdep_fsync_mountdev: not dirty"); 12627 /* 12628 * We are only interested in bitmaps with outstanding 12629 * dependencies. 12630 */ 12631 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL || 12632 wk->wk_type != D_BMSAFEMAP || 12633 (bp->b_vflags & BV_BKGRDINPROG)) { 12634 BUF_UNLOCK(bp); 12635 continue; 12636 } 12637 BO_UNLOCK(bo); 12638 bremfree(bp); 12639 (void) bawrite(bp); 12640 goto restart; 12641 } 12642 drain_output(vp); 12643 BO_UNLOCK(bo); 12644 } 12645 12646 /* 12647 * Sync all cylinder groups that were dirty at the time this function is 12648 * called. Newly dirtied cgs will be inserted before the sentinel. This 12649 * is used to flush freedep activity that may be holding up writes to a 12650 * indirect block. 12651 */ 12652 static int 12653 sync_cgs(mp, waitfor) 12654 struct mount *mp; 12655 int waitfor; 12656 { 12657 struct bmsafemap *bmsafemap; 12658 struct bmsafemap *sentinel; 12659 struct ufsmount *ump; 12660 struct buf *bp; 12661 int error; 12662 12663 sentinel = malloc(sizeof(*sentinel), M_BMSAFEMAP, M_ZERO | M_WAITOK); 12664 sentinel->sm_cg = -1; 12665 ump = VFSTOUFS(mp); 12666 error = 0; 12667 ACQUIRE_LOCK(ump); 12668 LIST_INSERT_HEAD(&ump->softdep_dirtycg, sentinel, sm_next); 12669 for (bmsafemap = LIST_NEXT(sentinel, sm_next); bmsafemap != NULL; 12670 bmsafemap = LIST_NEXT(sentinel, sm_next)) { 12671 /* Skip sentinels and cgs with no work to release. */ 12672 if (bmsafemap->sm_cg == -1 || 12673 (LIST_EMPTY(&bmsafemap->sm_freehd) && 12674 LIST_EMPTY(&bmsafemap->sm_freewr))) { 12675 LIST_REMOVE(sentinel, sm_next); 12676 LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next); 12677 continue; 12678 } 12679 /* 12680 * If we don't get the lock and we're waiting try again, if 12681 * not move on to the next buf and try to sync it. 12682 */ 12683 bp = getdirtybuf(bmsafemap->sm_buf, LOCK_PTR(ump), waitfor); 12684 if (bp == NULL && waitfor == MNT_WAIT) 12685 continue; 12686 LIST_REMOVE(sentinel, sm_next); 12687 LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next); 12688 if (bp == NULL) 12689 continue; 12690 FREE_LOCK(ump); 12691 if (waitfor == MNT_NOWAIT) 12692 bawrite(bp); 12693 else 12694 error = bwrite(bp); 12695 ACQUIRE_LOCK(ump); 12696 if (error) 12697 break; 12698 } 12699 LIST_REMOVE(sentinel, sm_next); 12700 FREE_LOCK(ump); 12701 free(sentinel, M_BMSAFEMAP); 12702 return (error); 12703 } 12704 12705 /* 12706 * This routine is called when we are trying to synchronously flush a 12707 * file. This routine must eliminate any filesystem metadata dependencies 12708 * so that the syncing routine can succeed. 12709 */ 12710 int 12711 softdep_sync_metadata(struct vnode *vp) 12712 { 12713 struct inode *ip; 12714 int error; 12715 12716 ip = VTOI(vp); 12717 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 12718 ("softdep_sync_metadata called on non-softdep filesystem")); 12719 /* 12720 * Ensure that any direct block dependencies have been cleared, 12721 * truncations are started, and inode references are journaled. 12722 */ 12723 ACQUIRE_LOCK(VFSTOUFS(vp->v_mount)); 12724 /* 12725 * Write all journal records to prevent rollbacks on devvp. 12726 */ 12727 if (vp->v_type == VCHR) 12728 softdep_flushjournal(vp->v_mount); 12729 error = flush_inodedep_deps(vp, vp->v_mount, ip->i_number); 12730 /* 12731 * Ensure that all truncates are written so we won't find deps on 12732 * indirect blocks. 12733 */ 12734 process_truncates(vp); 12735 FREE_LOCK(VFSTOUFS(vp->v_mount)); 12736 12737 return (error); 12738 } 12739 12740 /* 12741 * This routine is called when we are attempting to sync a buf with 12742 * dependencies. If waitfor is MNT_NOWAIT it attempts to schedule any 12743 * other IO it can but returns EBUSY if the buffer is not yet able to 12744 * be written. Dependencies which will not cause rollbacks will always 12745 * return 0. 12746 */ 12747 int 12748 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor) 12749 { 12750 struct indirdep *indirdep; 12751 struct pagedep *pagedep; 12752 struct allocindir *aip; 12753 struct newblk *newblk; 12754 struct ufsmount *ump; 12755 struct buf *nbp; 12756 struct worklist *wk; 12757 int i, error; 12758 12759 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 12760 ("softdep_sync_buf called on non-softdep filesystem")); 12761 /* 12762 * For VCHR we just don't want to force flush any dependencies that 12763 * will cause rollbacks. 12764 */ 12765 if (vp->v_type == VCHR) { 12766 if (waitfor == MNT_NOWAIT && softdep_count_dependencies(bp, 0)) 12767 return (EBUSY); 12768 return (0); 12769 } 12770 ump = VFSTOUFS(vp->v_mount); 12771 ACQUIRE_LOCK(ump); 12772 /* 12773 * As we hold the buffer locked, none of its dependencies 12774 * will disappear. 12775 */ 12776 error = 0; 12777 top: 12778 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 12779 switch (wk->wk_type) { 12780 12781 case D_ALLOCDIRECT: 12782 case D_ALLOCINDIR: 12783 newblk = WK_NEWBLK(wk); 12784 if (newblk->nb_jnewblk != NULL) { 12785 if (waitfor == MNT_NOWAIT) { 12786 error = EBUSY; 12787 goto out_unlock; 12788 } 12789 jwait(&newblk->nb_jnewblk->jn_list, waitfor); 12790 goto top; 12791 } 12792 if (newblk->nb_state & DEPCOMPLETE || 12793 waitfor == MNT_NOWAIT) 12794 continue; 12795 nbp = newblk->nb_bmsafemap->sm_buf; 12796 nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor); 12797 if (nbp == NULL) 12798 goto top; 12799 FREE_LOCK(ump); 12800 if ((error = bwrite(nbp)) != 0) 12801 goto out; 12802 ACQUIRE_LOCK(ump); 12803 continue; 12804 12805 case D_INDIRDEP: 12806 indirdep = WK_INDIRDEP(wk); 12807 if (waitfor == MNT_NOWAIT) { 12808 if (!TAILQ_EMPTY(&indirdep->ir_trunc) || 12809 !LIST_EMPTY(&indirdep->ir_deplisthd)) { 12810 error = EBUSY; 12811 goto out_unlock; 12812 } 12813 } 12814 if (!TAILQ_EMPTY(&indirdep->ir_trunc)) 12815 panic("softdep_sync_buf: truncation pending."); 12816 restart: 12817 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) { 12818 newblk = (struct newblk *)aip; 12819 if (newblk->nb_jnewblk != NULL) { 12820 jwait(&newblk->nb_jnewblk->jn_list, 12821 waitfor); 12822 goto restart; 12823 } 12824 if (newblk->nb_state & DEPCOMPLETE) 12825 continue; 12826 nbp = newblk->nb_bmsafemap->sm_buf; 12827 nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor); 12828 if (nbp == NULL) 12829 goto restart; 12830 FREE_LOCK(ump); 12831 if ((error = bwrite(nbp)) != 0) 12832 goto out; 12833 ACQUIRE_LOCK(ump); 12834 goto restart; 12835 } 12836 continue; 12837 12838 case D_PAGEDEP: 12839 /* 12840 * Only flush directory entries in synchronous passes. 12841 */ 12842 if (waitfor != MNT_WAIT) { 12843 error = EBUSY; 12844 goto out_unlock; 12845 } 12846 /* 12847 * While syncing snapshots, we must allow recursive 12848 * lookups. 12849 */ 12850 BUF_AREC(bp); 12851 /* 12852 * We are trying to sync a directory that may 12853 * have dependencies on both its own metadata 12854 * and/or dependencies on the inodes of any 12855 * recently allocated files. We walk its diradd 12856 * lists pushing out the associated inode. 12857 */ 12858 pagedep = WK_PAGEDEP(wk); 12859 for (i = 0; i < DAHASHSZ; i++) { 12860 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0) 12861 continue; 12862 if ((error = flush_pagedep_deps(vp, wk->wk_mp, 12863 &pagedep->pd_diraddhd[i]))) { 12864 BUF_NOREC(bp); 12865 goto out_unlock; 12866 } 12867 } 12868 BUF_NOREC(bp); 12869 continue; 12870 12871 case D_FREEWORK: 12872 case D_FREEDEP: 12873 case D_JSEGDEP: 12874 case D_JNEWBLK: 12875 continue; 12876 12877 default: 12878 panic("softdep_sync_buf: Unknown type %s", 12879 TYPENAME(wk->wk_type)); 12880 /* NOTREACHED */ 12881 } 12882 } 12883 out_unlock: 12884 FREE_LOCK(ump); 12885 out: 12886 return (error); 12887 } 12888 12889 /* 12890 * Flush the dependencies associated with an inodedep. 12891 */ 12892 static int 12893 flush_inodedep_deps(vp, mp, ino) 12894 struct vnode *vp; 12895 struct mount *mp; 12896 ino_t ino; 12897 { 12898 struct inodedep *inodedep; 12899 struct inoref *inoref; 12900 struct ufsmount *ump; 12901 int error, waitfor; 12902 12903 /* 12904 * This work is done in two passes. The first pass grabs most 12905 * of the buffers and begins asynchronously writing them. The 12906 * only way to wait for these asynchronous writes is to sleep 12907 * on the filesystem vnode which may stay busy for a long time 12908 * if the filesystem is active. So, instead, we make a second 12909 * pass over the dependencies blocking on each write. In the 12910 * usual case we will be blocking against a write that we 12911 * initiated, so when it is done the dependency will have been 12912 * resolved. Thus the second pass is expected to end quickly. 12913 * We give a brief window at the top of the loop to allow 12914 * any pending I/O to complete. 12915 */ 12916 ump = VFSTOUFS(mp); 12917 LOCK_OWNED(ump); 12918 for (error = 0, waitfor = MNT_NOWAIT; ; ) { 12919 if (error) 12920 return (error); 12921 FREE_LOCK(ump); 12922 ACQUIRE_LOCK(ump); 12923 restart: 12924 if (inodedep_lookup(mp, ino, 0, &inodedep) == 0) 12925 return (0); 12926 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 12927 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 12928 == DEPCOMPLETE) { 12929 jwait(&inoref->if_list, MNT_WAIT); 12930 goto restart; 12931 } 12932 } 12933 if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) || 12934 flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) || 12935 flush_deplist(&inodedep->id_extupdt, waitfor, &error) || 12936 flush_deplist(&inodedep->id_newextupdt, waitfor, &error)) 12937 continue; 12938 /* 12939 * If pass2, we are done, otherwise do pass 2. 12940 */ 12941 if (waitfor == MNT_WAIT) 12942 break; 12943 waitfor = MNT_WAIT; 12944 } 12945 /* 12946 * Try freeing inodedep in case all dependencies have been removed. 12947 */ 12948 if (inodedep_lookup(mp, ino, 0, &inodedep) != 0) 12949 (void) free_inodedep(inodedep); 12950 return (0); 12951 } 12952 12953 /* 12954 * Flush an inode dependency list. 12955 */ 12956 static int 12957 flush_deplist(listhead, waitfor, errorp) 12958 struct allocdirectlst *listhead; 12959 int waitfor; 12960 int *errorp; 12961 { 12962 struct allocdirect *adp; 12963 struct newblk *newblk; 12964 struct ufsmount *ump; 12965 struct buf *bp; 12966 12967 if ((adp = TAILQ_FIRST(listhead)) == NULL) 12968 return (0); 12969 ump = VFSTOUFS(adp->ad_list.wk_mp); 12970 LOCK_OWNED(ump); 12971 TAILQ_FOREACH(adp, listhead, ad_next) { 12972 newblk = (struct newblk *)adp; 12973 if (newblk->nb_jnewblk != NULL) { 12974 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 12975 return (1); 12976 } 12977 if (newblk->nb_state & DEPCOMPLETE) 12978 continue; 12979 bp = newblk->nb_bmsafemap->sm_buf; 12980 bp = getdirtybuf(bp, LOCK_PTR(ump), waitfor); 12981 if (bp == NULL) { 12982 if (waitfor == MNT_NOWAIT) 12983 continue; 12984 return (1); 12985 } 12986 FREE_LOCK(ump); 12987 if (waitfor == MNT_NOWAIT) 12988 bawrite(bp); 12989 else 12990 *errorp = bwrite(bp); 12991 ACQUIRE_LOCK(ump); 12992 return (1); 12993 } 12994 return (0); 12995 } 12996 12997 /* 12998 * Flush dependencies associated with an allocdirect block. 12999 */ 13000 static int 13001 flush_newblk_dep(vp, mp, lbn) 13002 struct vnode *vp; 13003 struct mount *mp; 13004 ufs_lbn_t lbn; 13005 { 13006 struct newblk *newblk; 13007 struct ufsmount *ump; 13008 struct bufobj *bo; 13009 struct inode *ip; 13010 struct buf *bp; 13011 ufs2_daddr_t blkno; 13012 int error; 13013 13014 error = 0; 13015 bo = &vp->v_bufobj; 13016 ip = VTOI(vp); 13017 blkno = DIP(ip, i_db[lbn]); 13018 if (blkno == 0) 13019 panic("flush_newblk_dep: Missing block"); 13020 ump = VFSTOUFS(mp); 13021 ACQUIRE_LOCK(ump); 13022 /* 13023 * Loop until all dependencies related to this block are satisfied. 13024 * We must be careful to restart after each sleep in case a write 13025 * completes some part of this process for us. 13026 */ 13027 for (;;) { 13028 if (newblk_lookup(mp, blkno, 0, &newblk) == 0) { 13029 FREE_LOCK(ump); 13030 break; 13031 } 13032 if (newblk->nb_list.wk_type != D_ALLOCDIRECT) 13033 panic("flush_newblk_dep: Bad newblk %p", newblk); 13034 /* 13035 * Flush the journal. 13036 */ 13037 if (newblk->nb_jnewblk != NULL) { 13038 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 13039 continue; 13040 } 13041 /* 13042 * Write the bitmap dependency. 13043 */ 13044 if ((newblk->nb_state & DEPCOMPLETE) == 0) { 13045 bp = newblk->nb_bmsafemap->sm_buf; 13046 bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT); 13047 if (bp == NULL) 13048 continue; 13049 FREE_LOCK(ump); 13050 error = bwrite(bp); 13051 if (error) 13052 break; 13053 ACQUIRE_LOCK(ump); 13054 continue; 13055 } 13056 /* 13057 * Write the buffer. 13058 */ 13059 FREE_LOCK(ump); 13060 BO_LOCK(bo); 13061 bp = gbincore(bo, lbn); 13062 if (bp != NULL) { 13063 error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | 13064 LK_INTERLOCK, BO_LOCKPTR(bo)); 13065 if (error == ENOLCK) { 13066 ACQUIRE_LOCK(ump); 13067 error = 0; 13068 continue; /* Slept, retry */ 13069 } 13070 if (error != 0) 13071 break; /* Failed */ 13072 if (bp->b_flags & B_DELWRI) { 13073 bremfree(bp); 13074 error = bwrite(bp); 13075 if (error) 13076 break; 13077 } else 13078 BUF_UNLOCK(bp); 13079 } else 13080 BO_UNLOCK(bo); 13081 /* 13082 * We have to wait for the direct pointers to 13083 * point at the newdirblk before the dependency 13084 * will go away. 13085 */ 13086 error = ffs_update(vp, 1); 13087 if (error) 13088 break; 13089 ACQUIRE_LOCK(ump); 13090 } 13091 return (error); 13092 } 13093 13094 /* 13095 * Eliminate a pagedep dependency by flushing out all its diradd dependencies. 13096 */ 13097 static int 13098 flush_pagedep_deps(pvp, mp, diraddhdp) 13099 struct vnode *pvp; 13100 struct mount *mp; 13101 struct diraddhd *diraddhdp; 13102 { 13103 struct inodedep *inodedep; 13104 struct inoref *inoref; 13105 struct ufsmount *ump; 13106 struct diradd *dap; 13107 struct vnode *vp; 13108 int error = 0; 13109 struct buf *bp; 13110 ino_t inum; 13111 struct diraddhd unfinished; 13112 13113 LIST_INIT(&unfinished); 13114 ump = VFSTOUFS(mp); 13115 LOCK_OWNED(ump); 13116 restart: 13117 while ((dap = LIST_FIRST(diraddhdp)) != NULL) { 13118 /* 13119 * Flush ourselves if this directory entry 13120 * has a MKDIR_PARENT dependency. 13121 */ 13122 if (dap->da_state & MKDIR_PARENT) { 13123 FREE_LOCK(ump); 13124 if ((error = ffs_update(pvp, 1)) != 0) 13125 break; 13126 ACQUIRE_LOCK(ump); 13127 /* 13128 * If that cleared dependencies, go on to next. 13129 */ 13130 if (dap != LIST_FIRST(diraddhdp)) 13131 continue; 13132 /* 13133 * All MKDIR_PARENT dependencies and all the 13134 * NEWBLOCK pagedeps that are contained in direct 13135 * blocks were resolved by doing above ffs_update. 13136 * Pagedeps contained in indirect blocks may 13137 * require a complete sync'ing of the directory. 13138 * We are in the midst of doing a complete sync, 13139 * so if they are not resolved in this pass we 13140 * defer them for now as they will be sync'ed by 13141 * our caller shortly. 13142 */ 13143 LIST_REMOVE(dap, da_pdlist); 13144 LIST_INSERT_HEAD(&unfinished, dap, da_pdlist); 13145 continue; 13146 } 13147 /* 13148 * A newly allocated directory must have its "." and 13149 * ".." entries written out before its name can be 13150 * committed in its parent. 13151 */ 13152 inum = dap->da_newinum; 13153 if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0) 13154 panic("flush_pagedep_deps: lost inode1"); 13155 /* 13156 * Wait for any pending journal adds to complete so we don't 13157 * cause rollbacks while syncing. 13158 */ 13159 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 13160 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 13161 == DEPCOMPLETE) { 13162 jwait(&inoref->if_list, MNT_WAIT); 13163 goto restart; 13164 } 13165 } 13166 if (dap->da_state & MKDIR_BODY) { 13167 FREE_LOCK(ump); 13168 if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp, 13169 FFSV_FORCEINSMQ))) 13170 break; 13171 error = flush_newblk_dep(vp, mp, 0); 13172 /* 13173 * If we still have the dependency we might need to 13174 * update the vnode to sync the new link count to 13175 * disk. 13176 */ 13177 if (error == 0 && dap == LIST_FIRST(diraddhdp)) 13178 error = ffs_update(vp, 1); 13179 vput(vp); 13180 if (error != 0) 13181 break; 13182 ACQUIRE_LOCK(ump); 13183 /* 13184 * If that cleared dependencies, go on to next. 13185 */ 13186 if (dap != LIST_FIRST(diraddhdp)) 13187 continue; 13188 if (dap->da_state & MKDIR_BODY) { 13189 inodedep_lookup(UFSTOVFS(ump), inum, 0, 13190 &inodedep); 13191 panic("flush_pagedep_deps: MKDIR_BODY " 13192 "inodedep %p dap %p vp %p", 13193 inodedep, dap, vp); 13194 } 13195 } 13196 /* 13197 * Flush the inode on which the directory entry depends. 13198 * Having accounted for MKDIR_PARENT and MKDIR_BODY above, 13199 * the only remaining dependency is that the updated inode 13200 * count must get pushed to disk. The inode has already 13201 * been pushed into its inode buffer (via VOP_UPDATE) at 13202 * the time of the reference count change. So we need only 13203 * locate that buffer, ensure that there will be no rollback 13204 * caused by a bitmap dependency, then write the inode buffer. 13205 */ 13206 retry: 13207 if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0) 13208 panic("flush_pagedep_deps: lost inode"); 13209 /* 13210 * If the inode still has bitmap dependencies, 13211 * push them to disk. 13212 */ 13213 if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) { 13214 bp = inodedep->id_bmsafemap->sm_buf; 13215 bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT); 13216 if (bp == NULL) 13217 goto retry; 13218 FREE_LOCK(ump); 13219 if ((error = bwrite(bp)) != 0) 13220 break; 13221 ACQUIRE_LOCK(ump); 13222 if (dap != LIST_FIRST(diraddhdp)) 13223 continue; 13224 } 13225 /* 13226 * If the inode is still sitting in a buffer waiting 13227 * to be written or waiting for the link count to be 13228 * adjusted update it here to flush it to disk. 13229 */ 13230 if (dap == LIST_FIRST(diraddhdp)) { 13231 FREE_LOCK(ump); 13232 if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp, 13233 FFSV_FORCEINSMQ))) 13234 break; 13235 error = ffs_update(vp, 1); 13236 vput(vp); 13237 if (error) 13238 break; 13239 ACQUIRE_LOCK(ump); 13240 } 13241 /* 13242 * If we have failed to get rid of all the dependencies 13243 * then something is seriously wrong. 13244 */ 13245 if (dap == LIST_FIRST(diraddhdp)) { 13246 inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep); 13247 panic("flush_pagedep_deps: failed to flush " 13248 "inodedep %p ino %ju dap %p", 13249 inodedep, (uintmax_t)inum, dap); 13250 } 13251 } 13252 if (error) 13253 ACQUIRE_LOCK(ump); 13254 while ((dap = LIST_FIRST(&unfinished)) != NULL) { 13255 LIST_REMOVE(dap, da_pdlist); 13256 LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist); 13257 } 13258 return (error); 13259 } 13260 13261 /* 13262 * A large burst of file addition or deletion activity can drive the 13263 * memory load excessively high. First attempt to slow things down 13264 * using the techniques below. If that fails, this routine requests 13265 * the offending operations to fall back to running synchronously 13266 * until the memory load returns to a reasonable level. 13267 */ 13268 int 13269 softdep_slowdown(vp) 13270 struct vnode *vp; 13271 { 13272 struct ufsmount *ump; 13273 int jlow; 13274 int max_softdeps_hard; 13275 13276 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 13277 ("softdep_slowdown called on non-softdep filesystem")); 13278 ump = VFSTOUFS(vp->v_mount); 13279 ACQUIRE_LOCK(ump); 13280 jlow = 0; 13281 /* 13282 * Check for journal space if needed. 13283 */ 13284 if (DOINGSUJ(vp)) { 13285 if (journal_space(ump, 0) == 0) 13286 jlow = 1; 13287 } 13288 /* 13289 * If the system is under its limits and our filesystem is 13290 * not responsible for more than our share of the usage and 13291 * we are not low on journal space, then no need to slow down. 13292 */ 13293 max_softdeps_hard = max_softdeps * 11 / 10; 13294 if (dep_current[D_DIRREM] < max_softdeps_hard / 2 && 13295 dep_current[D_INODEDEP] < max_softdeps_hard && 13296 dep_current[D_INDIRDEP] < max_softdeps_hard / 1000 && 13297 dep_current[D_FREEBLKS] < max_softdeps_hard && jlow == 0 && 13298 ump->softdep_curdeps[D_DIRREM] < 13299 (max_softdeps_hard / 2) / stat_flush_threads && 13300 ump->softdep_curdeps[D_INODEDEP] < 13301 max_softdeps_hard / stat_flush_threads && 13302 ump->softdep_curdeps[D_INDIRDEP] < 13303 (max_softdeps_hard / 1000) / stat_flush_threads && 13304 ump->softdep_curdeps[D_FREEBLKS] < 13305 max_softdeps_hard / stat_flush_threads) { 13306 FREE_LOCK(ump); 13307 return (0); 13308 } 13309 /* 13310 * If the journal is low or our filesystem is over its limit 13311 * then speedup the cleanup. 13312 */ 13313 if (ump->softdep_curdeps[D_INDIRDEP] < 13314 (max_softdeps_hard / 1000) / stat_flush_threads || jlow) 13315 softdep_speedup(ump); 13316 stat_sync_limit_hit += 1; 13317 FREE_LOCK(ump); 13318 /* 13319 * We only slow down the rate at which new dependencies are 13320 * generated if we are not using journaling. With journaling, 13321 * the cleanup should always be sufficient to keep things 13322 * under control. 13323 */ 13324 if (DOINGSUJ(vp)) 13325 return (0); 13326 return (1); 13327 } 13328 13329 /* 13330 * Called by the allocation routines when they are about to fail 13331 * in the hope that we can free up the requested resource (inodes 13332 * or disk space). 13333 * 13334 * First check to see if the work list has anything on it. If it has, 13335 * clean up entries until we successfully free the requested resource. 13336 * Because this process holds inodes locked, we cannot handle any remove 13337 * requests that might block on a locked inode as that could lead to 13338 * deadlock. If the worklist yields none of the requested resource, 13339 * start syncing out vnodes to free up the needed space. 13340 */ 13341 int 13342 softdep_request_cleanup(fs, vp, cred, resource) 13343 struct fs *fs; 13344 struct vnode *vp; 13345 struct ucred *cred; 13346 int resource; 13347 { 13348 struct ufsmount *ump; 13349 struct mount *mp; 13350 long starttime; 13351 ufs2_daddr_t needed; 13352 int error, failed_vnode; 13353 13354 /* 13355 * If we are being called because of a process doing a 13356 * copy-on-write, then it is not safe to process any 13357 * worklist items as we will recurse into the copyonwrite 13358 * routine. This will result in an incoherent snapshot. 13359 * If the vnode that we hold is a snapshot, we must avoid 13360 * handling other resources that could cause deadlock. 13361 */ 13362 if ((curthread->td_pflags & TDP_COWINPROGRESS) || IS_SNAPSHOT(VTOI(vp))) 13363 return (0); 13364 13365 if (resource == FLUSH_BLOCKS_WAIT) 13366 stat_cleanup_blkrequests += 1; 13367 else 13368 stat_cleanup_inorequests += 1; 13369 13370 mp = vp->v_mount; 13371 ump = VFSTOUFS(mp); 13372 mtx_assert(UFS_MTX(ump), MA_OWNED); 13373 UFS_UNLOCK(ump); 13374 error = ffs_update(vp, 1); 13375 if (error != 0 || MOUNTEDSOFTDEP(mp) == 0) { 13376 UFS_LOCK(ump); 13377 return (0); 13378 } 13379 /* 13380 * If we are in need of resources, start by cleaning up 13381 * any block removals associated with our inode. 13382 */ 13383 ACQUIRE_LOCK(ump); 13384 process_removes(vp); 13385 process_truncates(vp); 13386 FREE_LOCK(ump); 13387 /* 13388 * Now clean up at least as many resources as we will need. 13389 * 13390 * When requested to clean up inodes, the number that are needed 13391 * is set by the number of simultaneous writers (mnt_writeopcount) 13392 * plus a bit of slop (2) in case some more writers show up while 13393 * we are cleaning. 13394 * 13395 * When requested to free up space, the amount of space that 13396 * we need is enough blocks to allocate a full-sized segment 13397 * (fs_contigsumsize). The number of such segments that will 13398 * be needed is set by the number of simultaneous writers 13399 * (mnt_writeopcount) plus a bit of slop (2) in case some more 13400 * writers show up while we are cleaning. 13401 * 13402 * Additionally, if we are unpriviledged and allocating space, 13403 * we need to ensure that we clean up enough blocks to get the 13404 * needed number of blocks over the threshold of the minimum 13405 * number of blocks required to be kept free by the filesystem 13406 * (fs_minfree). 13407 */ 13408 if (resource == FLUSH_INODES_WAIT) { 13409 needed = vp->v_mount->mnt_writeopcount + 2; 13410 } else if (resource == FLUSH_BLOCKS_WAIT) { 13411 needed = (vp->v_mount->mnt_writeopcount + 2) * 13412 fs->fs_contigsumsize; 13413 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE)) 13414 needed += fragstoblks(fs, 13415 roundup((fs->fs_dsize * fs->fs_minfree / 100) - 13416 fs->fs_cstotal.cs_nffree, fs->fs_frag)); 13417 } else { 13418 UFS_LOCK(ump); 13419 printf("softdep_request_cleanup: Unknown resource type %d\n", 13420 resource); 13421 return (0); 13422 } 13423 starttime = time_second; 13424 retry: 13425 if ((resource == FLUSH_BLOCKS_WAIT && ump->softdep_on_worklist > 0 && 13426 fs->fs_cstotal.cs_nbfree <= needed) || 13427 (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 && 13428 fs->fs_cstotal.cs_nifree <= needed)) { 13429 ACQUIRE_LOCK(ump); 13430 if (ump->softdep_on_worklist > 0 && 13431 process_worklist_item(UFSTOVFS(ump), 13432 ump->softdep_on_worklist, LK_NOWAIT) != 0) 13433 stat_worklist_push += 1; 13434 FREE_LOCK(ump); 13435 } 13436 /* 13437 * If we still need resources and there are no more worklist 13438 * entries to process to obtain them, we have to start flushing 13439 * the dirty vnodes to force the release of additional requests 13440 * to the worklist that we can then process to reap addition 13441 * resources. We walk the vnodes associated with the mount point 13442 * until we get the needed worklist requests that we can reap. 13443 * 13444 * If there are several threads all needing to clean the same 13445 * mount point, only one is allowed to walk the mount list. 13446 * When several threads all try to walk the same mount list, 13447 * they end up competing with each other and often end up in 13448 * livelock. This approach ensures that forward progress is 13449 * made at the cost of occational ENOSPC errors being returned 13450 * that might otherwise have been avoided. 13451 */ 13452 error = 1; 13453 if ((resource == FLUSH_BLOCKS_WAIT && 13454 fs->fs_cstotal.cs_nbfree <= needed) || 13455 (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 && 13456 fs->fs_cstotal.cs_nifree <= needed)) { 13457 ACQUIRE_LOCK(ump); 13458 if ((ump->um_softdep->sd_flags & FLUSH_RC_ACTIVE) == 0) { 13459 ump->um_softdep->sd_flags |= FLUSH_RC_ACTIVE; 13460 FREE_LOCK(ump); 13461 failed_vnode = softdep_request_cleanup_flush(mp, ump); 13462 ACQUIRE_LOCK(ump); 13463 ump->um_softdep->sd_flags &= ~FLUSH_RC_ACTIVE; 13464 FREE_LOCK(ump); 13465 if (ump->softdep_on_worklist > 0) { 13466 stat_cleanup_retries += 1; 13467 if (!failed_vnode) 13468 goto retry; 13469 } 13470 } else { 13471 FREE_LOCK(ump); 13472 error = 0; 13473 } 13474 stat_cleanup_failures += 1; 13475 } 13476 if (time_second - starttime > stat_cleanup_high_delay) 13477 stat_cleanup_high_delay = time_second - starttime; 13478 UFS_LOCK(ump); 13479 return (error); 13480 } 13481 13482 /* 13483 * Scan the vnodes for the specified mount point flushing out any 13484 * vnodes that can be locked without waiting. Finally, try to flush 13485 * the device associated with the mount point if it can be locked 13486 * without waiting. 13487 * 13488 * We return 0 if we were able to lock every vnode in our scan. 13489 * If we had to skip one or more vnodes, we return 1. 13490 */ 13491 static int 13492 softdep_request_cleanup_flush(mp, ump) 13493 struct mount *mp; 13494 struct ufsmount *ump; 13495 { 13496 struct thread *td; 13497 struct vnode *lvp, *mvp; 13498 int failed_vnode; 13499 13500 failed_vnode = 0; 13501 td = curthread; 13502 MNT_VNODE_FOREACH_ALL(lvp, mp, mvp) { 13503 if (TAILQ_FIRST(&lvp->v_bufobj.bo_dirty.bv_hd) == 0) { 13504 VI_UNLOCK(lvp); 13505 continue; 13506 } 13507 if (vget(lvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT, 13508 td) != 0) { 13509 failed_vnode = 1; 13510 continue; 13511 } 13512 if (lvp->v_vflag & VV_NOSYNC) { /* unlinked */ 13513 vput(lvp); 13514 continue; 13515 } 13516 (void) ffs_syncvnode(lvp, MNT_NOWAIT, 0); 13517 vput(lvp); 13518 } 13519 lvp = ump->um_devvp; 13520 if (vn_lock(lvp, LK_EXCLUSIVE | LK_NOWAIT) == 0) { 13521 VOP_FSYNC(lvp, MNT_NOWAIT, td); 13522 VOP_UNLOCK(lvp, 0); 13523 } 13524 return (failed_vnode); 13525 } 13526 13527 static bool 13528 softdep_excess_items(struct ufsmount *ump, int item) 13529 { 13530 13531 KASSERT(item >= 0 && item < D_LAST, ("item %d", item)); 13532 return (dep_current[item] > max_softdeps && 13533 ump->softdep_curdeps[item] > max_softdeps / 13534 stat_flush_threads); 13535 } 13536 13537 static void 13538 schedule_cleanup(struct mount *mp) 13539 { 13540 struct ufsmount *ump; 13541 struct thread *td; 13542 13543 ump = VFSTOUFS(mp); 13544 LOCK_OWNED(ump); 13545 FREE_LOCK(ump); 13546 td = curthread; 13547 if ((td->td_pflags & TDP_KTHREAD) != 0 && 13548 (td->td_proc->p_flag2 & P2_AST_SU) == 0) { 13549 /* 13550 * No ast is delivered to kernel threads, so nobody 13551 * would deref the mp. Some kernel threads 13552 * explicitely check for AST, e.g. NFS daemon does 13553 * this in the serving loop. 13554 */ 13555 return; 13556 } 13557 if (td->td_su != NULL) 13558 vfs_rel(td->td_su); 13559 vfs_ref(mp); 13560 td->td_su = mp; 13561 thread_lock(td); 13562 td->td_flags |= TDF_ASTPENDING; 13563 thread_unlock(td); 13564 } 13565 13566 static void 13567 softdep_ast_cleanup_proc(struct thread *td) 13568 { 13569 struct mount *mp; 13570 struct ufsmount *ump; 13571 int error; 13572 bool req; 13573 13574 while ((mp = td->td_su) != NULL) { 13575 td->td_su = NULL; 13576 error = vfs_busy(mp, MBF_NOWAIT); 13577 vfs_rel(mp); 13578 if (error != 0) 13579 return; 13580 if (ffs_own_mount(mp) && MOUNTEDSOFTDEP(mp)) { 13581 ump = VFSTOUFS(mp); 13582 for (;;) { 13583 req = false; 13584 ACQUIRE_LOCK(ump); 13585 if (softdep_excess_items(ump, D_INODEDEP)) { 13586 req = true; 13587 request_cleanup(mp, FLUSH_INODES); 13588 } 13589 if (softdep_excess_items(ump, D_DIRREM)) { 13590 req = true; 13591 request_cleanup(mp, FLUSH_BLOCKS); 13592 } 13593 FREE_LOCK(ump); 13594 if (softdep_excess_items(ump, D_NEWBLK) || 13595 softdep_excess_items(ump, D_ALLOCDIRECT) || 13596 softdep_excess_items(ump, D_ALLOCINDIR)) { 13597 error = vn_start_write(NULL, &mp, 13598 V_WAIT); 13599 if (error == 0) { 13600 req = true; 13601 VFS_SYNC(mp, MNT_WAIT); 13602 vn_finished_write(mp); 13603 } 13604 } 13605 if ((td->td_pflags & TDP_KTHREAD) != 0 || !req) 13606 break; 13607 } 13608 } 13609 vfs_unbusy(mp); 13610 } 13611 if ((mp = td->td_su) != NULL) { 13612 td->td_su = NULL; 13613 vfs_rel(mp); 13614 } 13615 } 13616 13617 /* 13618 * If memory utilization has gotten too high, deliberately slow things 13619 * down and speed up the I/O processing. 13620 */ 13621 static int 13622 request_cleanup(mp, resource) 13623 struct mount *mp; 13624 int resource; 13625 { 13626 struct thread *td = curthread; 13627 struct ufsmount *ump; 13628 13629 ump = VFSTOUFS(mp); 13630 LOCK_OWNED(ump); 13631 /* 13632 * We never hold up the filesystem syncer or buf daemon. 13633 */ 13634 if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF)) 13635 return (0); 13636 /* 13637 * First check to see if the work list has gotten backlogged. 13638 * If it has, co-opt this process to help clean up two entries. 13639 * Because this process may hold inodes locked, we cannot 13640 * handle any remove requests that might block on a locked 13641 * inode as that could lead to deadlock. We set TDP_SOFTDEP 13642 * to avoid recursively processing the worklist. 13643 */ 13644 if (ump->softdep_on_worklist > max_softdeps / 10) { 13645 td->td_pflags |= TDP_SOFTDEP; 13646 process_worklist_item(mp, 2, LK_NOWAIT); 13647 td->td_pflags &= ~TDP_SOFTDEP; 13648 stat_worklist_push += 2; 13649 return(1); 13650 } 13651 /* 13652 * Next, we attempt to speed up the syncer process. If that 13653 * is successful, then we allow the process to continue. 13654 */ 13655 if (softdep_speedup(ump) && 13656 resource != FLUSH_BLOCKS_WAIT && 13657 resource != FLUSH_INODES_WAIT) 13658 return(0); 13659 /* 13660 * If we are resource constrained on inode dependencies, try 13661 * flushing some dirty inodes. Otherwise, we are constrained 13662 * by file deletions, so try accelerating flushes of directories 13663 * with removal dependencies. We would like to do the cleanup 13664 * here, but we probably hold an inode locked at this point and 13665 * that might deadlock against one that we try to clean. So, 13666 * the best that we can do is request the syncer daemon to do 13667 * the cleanup for us. 13668 */ 13669 switch (resource) { 13670 13671 case FLUSH_INODES: 13672 case FLUSH_INODES_WAIT: 13673 ACQUIRE_GBLLOCK(&lk); 13674 stat_ino_limit_push += 1; 13675 req_clear_inodedeps += 1; 13676 FREE_GBLLOCK(&lk); 13677 stat_countp = &stat_ino_limit_hit; 13678 break; 13679 13680 case FLUSH_BLOCKS: 13681 case FLUSH_BLOCKS_WAIT: 13682 ACQUIRE_GBLLOCK(&lk); 13683 stat_blk_limit_push += 1; 13684 req_clear_remove += 1; 13685 FREE_GBLLOCK(&lk); 13686 stat_countp = &stat_blk_limit_hit; 13687 break; 13688 13689 default: 13690 panic("request_cleanup: unknown type"); 13691 } 13692 /* 13693 * Hopefully the syncer daemon will catch up and awaken us. 13694 * We wait at most tickdelay before proceeding in any case. 13695 */ 13696 ACQUIRE_GBLLOCK(&lk); 13697 FREE_LOCK(ump); 13698 proc_waiting += 1; 13699 if (callout_pending(&softdep_callout) == FALSE) 13700 callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2, 13701 pause_timer, 0); 13702 13703 if ((td->td_pflags & TDP_KTHREAD) == 0) 13704 msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0); 13705 proc_waiting -= 1; 13706 FREE_GBLLOCK(&lk); 13707 ACQUIRE_LOCK(ump); 13708 return (1); 13709 } 13710 13711 /* 13712 * Awaken processes pausing in request_cleanup and clear proc_waiting 13713 * to indicate that there is no longer a timer running. Pause_timer 13714 * will be called with the global softdep mutex (&lk) locked. 13715 */ 13716 static void 13717 pause_timer(arg) 13718 void *arg; 13719 { 13720 13721 GBLLOCK_OWNED(&lk); 13722 /* 13723 * The callout_ API has acquired mtx and will hold it around this 13724 * function call. 13725 */ 13726 *stat_countp += proc_waiting; 13727 wakeup(&proc_waiting); 13728 } 13729 13730 /* 13731 * If requested, try removing inode or removal dependencies. 13732 */ 13733 static void 13734 check_clear_deps(mp) 13735 struct mount *mp; 13736 { 13737 13738 /* 13739 * If we are suspended, it may be because of our using 13740 * too many inodedeps, so help clear them out. 13741 */ 13742 if (MOUNTEDSUJ(mp) && VFSTOUFS(mp)->softdep_jblocks->jb_suspended) 13743 clear_inodedeps(mp); 13744 /* 13745 * General requests for cleanup of backed up dependencies 13746 */ 13747 ACQUIRE_GBLLOCK(&lk); 13748 if (req_clear_inodedeps) { 13749 req_clear_inodedeps -= 1; 13750 FREE_GBLLOCK(&lk); 13751 clear_inodedeps(mp); 13752 ACQUIRE_GBLLOCK(&lk); 13753 wakeup(&proc_waiting); 13754 } 13755 if (req_clear_remove) { 13756 req_clear_remove -= 1; 13757 FREE_GBLLOCK(&lk); 13758 clear_remove(mp); 13759 ACQUIRE_GBLLOCK(&lk); 13760 wakeup(&proc_waiting); 13761 } 13762 FREE_GBLLOCK(&lk); 13763 } 13764 13765 /* 13766 * Flush out a directory with at least one removal dependency in an effort to 13767 * reduce the number of dirrem, freefile, and freeblks dependency structures. 13768 */ 13769 static void 13770 clear_remove(mp) 13771 struct mount *mp; 13772 { 13773 struct pagedep_hashhead *pagedephd; 13774 struct pagedep *pagedep; 13775 struct ufsmount *ump; 13776 struct vnode *vp; 13777 struct bufobj *bo; 13778 int error, cnt; 13779 ino_t ino; 13780 13781 ump = VFSTOUFS(mp); 13782 LOCK_OWNED(ump); 13783 13784 for (cnt = 0; cnt <= ump->pagedep_hash_size; cnt++) { 13785 pagedephd = &ump->pagedep_hashtbl[ump->pagedep_nextclean++]; 13786 if (ump->pagedep_nextclean > ump->pagedep_hash_size) 13787 ump->pagedep_nextclean = 0; 13788 LIST_FOREACH(pagedep, pagedephd, pd_hash) { 13789 if (LIST_EMPTY(&pagedep->pd_dirremhd)) 13790 continue; 13791 ino = pagedep->pd_ino; 13792 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 13793 continue; 13794 FREE_LOCK(ump); 13795 13796 /* 13797 * Let unmount clear deps 13798 */ 13799 error = vfs_busy(mp, MBF_NOWAIT); 13800 if (error != 0) 13801 goto finish_write; 13802 error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp, 13803 FFSV_FORCEINSMQ); 13804 vfs_unbusy(mp); 13805 if (error != 0) { 13806 softdep_error("clear_remove: vget", error); 13807 goto finish_write; 13808 } 13809 if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0))) 13810 softdep_error("clear_remove: fsync", error); 13811 bo = &vp->v_bufobj; 13812 BO_LOCK(bo); 13813 drain_output(vp); 13814 BO_UNLOCK(bo); 13815 vput(vp); 13816 finish_write: 13817 vn_finished_write(mp); 13818 ACQUIRE_LOCK(ump); 13819 return; 13820 } 13821 } 13822 } 13823 13824 /* 13825 * Clear out a block of dirty inodes in an effort to reduce 13826 * the number of inodedep dependency structures. 13827 */ 13828 static void 13829 clear_inodedeps(mp) 13830 struct mount *mp; 13831 { 13832 struct inodedep_hashhead *inodedephd; 13833 struct inodedep *inodedep; 13834 struct ufsmount *ump; 13835 struct vnode *vp; 13836 struct fs *fs; 13837 int error, cnt; 13838 ino_t firstino, lastino, ino; 13839 13840 ump = VFSTOUFS(mp); 13841 fs = ump->um_fs; 13842 LOCK_OWNED(ump); 13843 /* 13844 * Pick a random inode dependency to be cleared. 13845 * We will then gather up all the inodes in its block 13846 * that have dependencies and flush them out. 13847 */ 13848 for (cnt = 0; cnt <= ump->inodedep_hash_size; cnt++) { 13849 inodedephd = &ump->inodedep_hashtbl[ump->inodedep_nextclean++]; 13850 if (ump->inodedep_nextclean > ump->inodedep_hash_size) 13851 ump->inodedep_nextclean = 0; 13852 if ((inodedep = LIST_FIRST(inodedephd)) != NULL) 13853 break; 13854 } 13855 if (inodedep == NULL) 13856 return; 13857 /* 13858 * Find the last inode in the block with dependencies. 13859 */ 13860 firstino = rounddown2(inodedep->id_ino, INOPB(fs)); 13861 for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--) 13862 if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0) 13863 break; 13864 /* 13865 * Asynchronously push all but the last inode with dependencies. 13866 * Synchronously push the last inode with dependencies to ensure 13867 * that the inode block gets written to free up the inodedeps. 13868 */ 13869 for (ino = firstino; ino <= lastino; ino++) { 13870 if (inodedep_lookup(mp, ino, 0, &inodedep) == 0) 13871 continue; 13872 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 13873 continue; 13874 FREE_LOCK(ump); 13875 error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */ 13876 if (error != 0) { 13877 vn_finished_write(mp); 13878 ACQUIRE_LOCK(ump); 13879 return; 13880 } 13881 if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp, 13882 FFSV_FORCEINSMQ)) != 0) { 13883 softdep_error("clear_inodedeps: vget", error); 13884 vfs_unbusy(mp); 13885 vn_finished_write(mp); 13886 ACQUIRE_LOCK(ump); 13887 return; 13888 } 13889 vfs_unbusy(mp); 13890 if (ino == lastino) { 13891 if ((error = ffs_syncvnode(vp, MNT_WAIT, 0))) 13892 softdep_error("clear_inodedeps: fsync1", error); 13893 } else { 13894 if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0))) 13895 softdep_error("clear_inodedeps: fsync2", error); 13896 BO_LOCK(&vp->v_bufobj); 13897 drain_output(vp); 13898 BO_UNLOCK(&vp->v_bufobj); 13899 } 13900 vput(vp); 13901 vn_finished_write(mp); 13902 ACQUIRE_LOCK(ump); 13903 } 13904 } 13905 13906 void 13907 softdep_buf_append(bp, wkhd) 13908 struct buf *bp; 13909 struct workhead *wkhd; 13910 { 13911 struct worklist *wk; 13912 struct ufsmount *ump; 13913 13914 if ((wk = LIST_FIRST(wkhd)) == NULL) 13915 return; 13916 KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, 13917 ("softdep_buf_append called on non-softdep filesystem")); 13918 ump = VFSTOUFS(wk->wk_mp); 13919 ACQUIRE_LOCK(ump); 13920 while ((wk = LIST_FIRST(wkhd)) != NULL) { 13921 WORKLIST_REMOVE(wk); 13922 WORKLIST_INSERT(&bp->b_dep, wk); 13923 } 13924 FREE_LOCK(ump); 13925 13926 } 13927 13928 void 13929 softdep_inode_append(ip, cred, wkhd) 13930 struct inode *ip; 13931 struct ucred *cred; 13932 struct workhead *wkhd; 13933 { 13934 struct buf *bp; 13935 struct fs *fs; 13936 struct ufsmount *ump; 13937 int error; 13938 13939 ump = ITOUMP(ip); 13940 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 13941 ("softdep_inode_append called on non-softdep filesystem")); 13942 fs = ump->um_fs; 13943 error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 13944 (int)fs->fs_bsize, cred, &bp); 13945 if (error) { 13946 bqrelse(bp); 13947 softdep_freework(wkhd); 13948 return; 13949 } 13950 softdep_buf_append(bp, wkhd); 13951 bqrelse(bp); 13952 } 13953 13954 void 13955 softdep_freework(wkhd) 13956 struct workhead *wkhd; 13957 { 13958 struct worklist *wk; 13959 struct ufsmount *ump; 13960 13961 if ((wk = LIST_FIRST(wkhd)) == NULL) 13962 return; 13963 KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, 13964 ("softdep_freework called on non-softdep filesystem")); 13965 ump = VFSTOUFS(wk->wk_mp); 13966 ACQUIRE_LOCK(ump); 13967 handle_jwork(wkhd); 13968 FREE_LOCK(ump); 13969 } 13970 13971 static struct ufsmount * 13972 softdep_bp_to_mp(bp) 13973 struct buf *bp; 13974 { 13975 struct mount *mp; 13976 struct vnode *vp; 13977 13978 if (LIST_EMPTY(&bp->b_dep)) 13979 return (NULL); 13980 vp = bp->b_vp; 13981 KASSERT(vp != NULL, 13982 ("%s, buffer with dependencies lacks vnode", __func__)); 13983 13984 /* 13985 * The ump mount point is stable after we get a correct 13986 * pointer, since bp is locked and this prevents unmount from 13987 * proceeding. But to get to it, we cannot dereference bp->b_dep 13988 * head wk_mp, because we do not yet own SU ump lock and 13989 * workitem might be freed while dereferenced. 13990 */ 13991 retry: 13992 switch (vp->v_type) { 13993 case VCHR: 13994 VI_LOCK(vp); 13995 mp = vp->v_type == VCHR ? vp->v_rdev->si_mountpt : NULL; 13996 VI_UNLOCK(vp); 13997 if (mp == NULL) 13998 goto retry; 13999 break; 14000 case VREG: 14001 case VDIR: 14002 case VLNK: 14003 case VFIFO: 14004 case VSOCK: 14005 mp = vp->v_mount; 14006 break; 14007 case VBLK: 14008 vn_printf(vp, "softdep_bp_to_mp: unexpected block device\n"); 14009 /* FALLTHROUGH */ 14010 case VNON: 14011 case VBAD: 14012 case VMARKER: 14013 mp = NULL; 14014 break; 14015 default: 14016 vn_printf(vp, "unknown vnode type"); 14017 mp = NULL; 14018 break; 14019 } 14020 return (VFSTOUFS(mp)); 14021 } 14022 14023 /* 14024 * Function to determine if the buffer has outstanding dependencies 14025 * that will cause a roll-back if the buffer is written. If wantcount 14026 * is set, return number of dependencies, otherwise just yes or no. 14027 */ 14028 static int 14029 softdep_count_dependencies(bp, wantcount) 14030 struct buf *bp; 14031 int wantcount; 14032 { 14033 struct worklist *wk; 14034 struct ufsmount *ump; 14035 struct bmsafemap *bmsafemap; 14036 struct freework *freework; 14037 struct inodedep *inodedep; 14038 struct indirdep *indirdep; 14039 struct freeblks *freeblks; 14040 struct allocindir *aip; 14041 struct pagedep *pagedep; 14042 struct dirrem *dirrem; 14043 struct newblk *newblk; 14044 struct mkdir *mkdir; 14045 struct diradd *dap; 14046 int i, retval; 14047 14048 ump = softdep_bp_to_mp(bp); 14049 if (ump == NULL) 14050 return (0); 14051 retval = 0; 14052 ACQUIRE_LOCK(ump); 14053 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 14054 switch (wk->wk_type) { 14055 14056 case D_INODEDEP: 14057 inodedep = WK_INODEDEP(wk); 14058 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 14059 /* bitmap allocation dependency */ 14060 retval += 1; 14061 if (!wantcount) 14062 goto out; 14063 } 14064 if (TAILQ_FIRST(&inodedep->id_inoupdt)) { 14065 /* direct block pointer dependency */ 14066 retval += 1; 14067 if (!wantcount) 14068 goto out; 14069 } 14070 if (TAILQ_FIRST(&inodedep->id_extupdt)) { 14071 /* direct block pointer dependency */ 14072 retval += 1; 14073 if (!wantcount) 14074 goto out; 14075 } 14076 if (TAILQ_FIRST(&inodedep->id_inoreflst)) { 14077 /* Add reference dependency. */ 14078 retval += 1; 14079 if (!wantcount) 14080 goto out; 14081 } 14082 continue; 14083 14084 case D_INDIRDEP: 14085 indirdep = WK_INDIRDEP(wk); 14086 14087 TAILQ_FOREACH(freework, &indirdep->ir_trunc, fw_next) { 14088 /* indirect truncation dependency */ 14089 retval += 1; 14090 if (!wantcount) 14091 goto out; 14092 } 14093 14094 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) { 14095 /* indirect block pointer dependency */ 14096 retval += 1; 14097 if (!wantcount) 14098 goto out; 14099 } 14100 continue; 14101 14102 case D_PAGEDEP: 14103 pagedep = WK_PAGEDEP(wk); 14104 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) { 14105 if (LIST_FIRST(&dirrem->dm_jremrefhd)) { 14106 /* Journal remove ref dependency. */ 14107 retval += 1; 14108 if (!wantcount) 14109 goto out; 14110 } 14111 } 14112 for (i = 0; i < DAHASHSZ; i++) { 14113 14114 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 14115 /* directory entry dependency */ 14116 retval += 1; 14117 if (!wantcount) 14118 goto out; 14119 } 14120 } 14121 continue; 14122 14123 case D_BMSAFEMAP: 14124 bmsafemap = WK_BMSAFEMAP(wk); 14125 if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) { 14126 /* Add reference dependency. */ 14127 retval += 1; 14128 if (!wantcount) 14129 goto out; 14130 } 14131 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) { 14132 /* Allocate block dependency. */ 14133 retval += 1; 14134 if (!wantcount) 14135 goto out; 14136 } 14137 continue; 14138 14139 case D_FREEBLKS: 14140 freeblks = WK_FREEBLKS(wk); 14141 if (LIST_FIRST(&freeblks->fb_jblkdephd)) { 14142 /* Freeblk journal dependency. */ 14143 retval += 1; 14144 if (!wantcount) 14145 goto out; 14146 } 14147 continue; 14148 14149 case D_ALLOCDIRECT: 14150 case D_ALLOCINDIR: 14151 newblk = WK_NEWBLK(wk); 14152 if (newblk->nb_jnewblk) { 14153 /* Journal allocate dependency. */ 14154 retval += 1; 14155 if (!wantcount) 14156 goto out; 14157 } 14158 continue; 14159 14160 case D_MKDIR: 14161 mkdir = WK_MKDIR(wk); 14162 if (mkdir->md_jaddref) { 14163 /* Journal reference dependency. */ 14164 retval += 1; 14165 if (!wantcount) 14166 goto out; 14167 } 14168 continue; 14169 14170 case D_FREEWORK: 14171 case D_FREEDEP: 14172 case D_JSEGDEP: 14173 case D_JSEG: 14174 case D_SBDEP: 14175 /* never a dependency on these blocks */ 14176 continue; 14177 14178 default: 14179 panic("softdep_count_dependencies: Unexpected type %s", 14180 TYPENAME(wk->wk_type)); 14181 /* NOTREACHED */ 14182 } 14183 } 14184 out: 14185 FREE_LOCK(ump); 14186 return (retval); 14187 } 14188 14189 /* 14190 * Acquire exclusive access to a buffer. 14191 * Must be called with a locked mtx parameter. 14192 * Return acquired buffer or NULL on failure. 14193 */ 14194 static struct buf * 14195 getdirtybuf(bp, lock, waitfor) 14196 struct buf *bp; 14197 struct rwlock *lock; 14198 int waitfor; 14199 { 14200 int error; 14201 14202 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) { 14203 if (waitfor != MNT_WAIT) 14204 return (NULL); 14205 error = BUF_LOCK(bp, 14206 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, lock); 14207 /* 14208 * Even if we successfully acquire bp here, we have dropped 14209 * lock, which may violates our guarantee. 14210 */ 14211 if (error == 0) 14212 BUF_UNLOCK(bp); 14213 else if (error != ENOLCK) 14214 panic("getdirtybuf: inconsistent lock: %d", error); 14215 rw_wlock(lock); 14216 return (NULL); 14217 } 14218 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) { 14219 if (lock != BO_LOCKPTR(bp->b_bufobj) && waitfor == MNT_WAIT) { 14220 rw_wunlock(lock); 14221 BO_LOCK(bp->b_bufobj); 14222 BUF_UNLOCK(bp); 14223 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) { 14224 bp->b_vflags |= BV_BKGRDWAIT; 14225 msleep(&bp->b_xflags, BO_LOCKPTR(bp->b_bufobj), 14226 PRIBIO | PDROP, "getbuf", 0); 14227 } else 14228 BO_UNLOCK(bp->b_bufobj); 14229 rw_wlock(lock); 14230 return (NULL); 14231 } 14232 BUF_UNLOCK(bp); 14233 if (waitfor != MNT_WAIT) 14234 return (NULL); 14235 #ifdef DEBUG_VFS_LOCKS 14236 if (bp->b_vp->v_type != VCHR) 14237 ASSERT_BO_WLOCKED(bp->b_bufobj); 14238 #endif 14239 bp->b_vflags |= BV_BKGRDWAIT; 14240 rw_sleep(&bp->b_xflags, lock, PRIBIO, "getbuf", 0); 14241 return (NULL); 14242 } 14243 if ((bp->b_flags & B_DELWRI) == 0) { 14244 BUF_UNLOCK(bp); 14245 return (NULL); 14246 } 14247 bremfree(bp); 14248 return (bp); 14249 } 14250 14251 14252 /* 14253 * Check if it is safe to suspend the file system now. On entry, 14254 * the vnode interlock for devvp should be held. Return 0 with 14255 * the mount interlock held if the file system can be suspended now, 14256 * otherwise return EAGAIN with the mount interlock held. 14257 */ 14258 int 14259 softdep_check_suspend(struct mount *mp, 14260 struct vnode *devvp, 14261 int softdep_depcnt, 14262 int softdep_accdepcnt, 14263 int secondary_writes, 14264 int secondary_accwrites) 14265 { 14266 struct bufobj *bo; 14267 struct ufsmount *ump; 14268 struct inodedep *inodedep; 14269 int error, unlinked; 14270 14271 bo = &devvp->v_bufobj; 14272 ASSERT_BO_WLOCKED(bo); 14273 14274 /* 14275 * If we are not running with soft updates, then we need only 14276 * deal with secondary writes as we try to suspend. 14277 */ 14278 if (MOUNTEDSOFTDEP(mp) == 0) { 14279 MNT_ILOCK(mp); 14280 while (mp->mnt_secondary_writes != 0) { 14281 BO_UNLOCK(bo); 14282 msleep(&mp->mnt_secondary_writes, MNT_MTX(mp), 14283 (PUSER - 1) | PDROP, "secwr", 0); 14284 BO_LOCK(bo); 14285 MNT_ILOCK(mp); 14286 } 14287 14288 /* 14289 * Reasons for needing more work before suspend: 14290 * - Dirty buffers on devvp. 14291 * - Secondary writes occurred after start of vnode sync loop 14292 */ 14293 error = 0; 14294 if (bo->bo_numoutput > 0 || 14295 bo->bo_dirty.bv_cnt > 0 || 14296 secondary_writes != 0 || 14297 mp->mnt_secondary_writes != 0 || 14298 secondary_accwrites != mp->mnt_secondary_accwrites) 14299 error = EAGAIN; 14300 BO_UNLOCK(bo); 14301 return (error); 14302 } 14303 14304 /* 14305 * If we are running with soft updates, then we need to coordinate 14306 * with them as we try to suspend. 14307 */ 14308 ump = VFSTOUFS(mp); 14309 for (;;) { 14310 if (!TRY_ACQUIRE_LOCK(ump)) { 14311 BO_UNLOCK(bo); 14312 ACQUIRE_LOCK(ump); 14313 FREE_LOCK(ump); 14314 BO_LOCK(bo); 14315 continue; 14316 } 14317 MNT_ILOCK(mp); 14318 if (mp->mnt_secondary_writes != 0) { 14319 FREE_LOCK(ump); 14320 BO_UNLOCK(bo); 14321 msleep(&mp->mnt_secondary_writes, 14322 MNT_MTX(mp), 14323 (PUSER - 1) | PDROP, "secwr", 0); 14324 BO_LOCK(bo); 14325 continue; 14326 } 14327 break; 14328 } 14329 14330 unlinked = 0; 14331 if (MOUNTEDSUJ(mp)) { 14332 for (inodedep = TAILQ_FIRST(&ump->softdep_unlinked); 14333 inodedep != NULL; 14334 inodedep = TAILQ_NEXT(inodedep, id_unlinked)) { 14335 if ((inodedep->id_state & (UNLINKED | UNLINKLINKS | 14336 UNLINKONLIST)) != (UNLINKED | UNLINKLINKS | 14337 UNLINKONLIST) || 14338 !check_inodedep_free(inodedep)) 14339 continue; 14340 unlinked++; 14341 } 14342 } 14343 14344 /* 14345 * Reasons for needing more work before suspend: 14346 * - Dirty buffers on devvp. 14347 * - Softdep activity occurred after start of vnode sync loop 14348 * - Secondary writes occurred after start of vnode sync loop 14349 */ 14350 error = 0; 14351 if (bo->bo_numoutput > 0 || 14352 bo->bo_dirty.bv_cnt > 0 || 14353 softdep_depcnt != unlinked || 14354 ump->softdep_deps != unlinked || 14355 softdep_accdepcnt != ump->softdep_accdeps || 14356 secondary_writes != 0 || 14357 mp->mnt_secondary_writes != 0 || 14358 secondary_accwrites != mp->mnt_secondary_accwrites) 14359 error = EAGAIN; 14360 FREE_LOCK(ump); 14361 BO_UNLOCK(bo); 14362 return (error); 14363 } 14364 14365 14366 /* 14367 * Get the number of dependency structures for the file system, both 14368 * the current number and the total number allocated. These will 14369 * later be used to detect that softdep processing has occurred. 14370 */ 14371 void 14372 softdep_get_depcounts(struct mount *mp, 14373 int *softdep_depsp, 14374 int *softdep_accdepsp) 14375 { 14376 struct ufsmount *ump; 14377 14378 if (MOUNTEDSOFTDEP(mp) == 0) { 14379 *softdep_depsp = 0; 14380 *softdep_accdepsp = 0; 14381 return; 14382 } 14383 ump = VFSTOUFS(mp); 14384 ACQUIRE_LOCK(ump); 14385 *softdep_depsp = ump->softdep_deps; 14386 *softdep_accdepsp = ump->softdep_accdeps; 14387 FREE_LOCK(ump); 14388 } 14389 14390 /* 14391 * Wait for pending output on a vnode to complete. 14392 */ 14393 static void 14394 drain_output(vp) 14395 struct vnode *vp; 14396 { 14397 14398 ASSERT_VOP_LOCKED(vp, "drain_output"); 14399 (void)bufobj_wwait(&vp->v_bufobj, 0, 0); 14400 } 14401 14402 /* 14403 * Called whenever a buffer that is being invalidated or reallocated 14404 * contains dependencies. This should only happen if an I/O error has 14405 * occurred. The routine is called with the buffer locked. 14406 */ 14407 static void 14408 softdep_deallocate_dependencies(bp) 14409 struct buf *bp; 14410 { 14411 14412 if ((bp->b_ioflags & BIO_ERROR) == 0) 14413 panic("softdep_deallocate_dependencies: dangling deps"); 14414 if (bp->b_vp != NULL && bp->b_vp->v_mount != NULL) 14415 softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error); 14416 else 14417 printf("softdep_deallocate_dependencies: " 14418 "got error %d while accessing filesystem\n", bp->b_error); 14419 if (bp->b_error != ENXIO) 14420 panic("softdep_deallocate_dependencies: unrecovered I/O error"); 14421 } 14422 14423 /* 14424 * Function to handle asynchronous write errors in the filesystem. 14425 */ 14426 static void 14427 softdep_error(func, error) 14428 char *func; 14429 int error; 14430 { 14431 14432 /* XXX should do something better! */ 14433 printf("%s: got error %d while accessing filesystem\n", func, error); 14434 } 14435 14436 #ifdef DDB 14437 14438 /* exported to ffs_vfsops.c */ 14439 extern void db_print_ffs(struct ufsmount *ump); 14440 void 14441 db_print_ffs(struct ufsmount *ump) 14442 { 14443 db_printf("mp %p (%s) devvp %p\n", ump->um_mountp, 14444 ump->um_mountp->mnt_stat.f_mntonname, ump->um_devvp); 14445 db_printf(" fs %p su_wl %d su_deps %d su_req %d\n", 14446 ump->um_fs, ump->softdep_on_worklist, 14447 ump->softdep_deps, ump->softdep_req); 14448 } 14449 14450 static void 14451 worklist_print(struct worklist *wk, int verbose) 14452 { 14453 14454 if (!verbose) { 14455 db_printf("%s: %p state 0x%b\n", TYPENAME(wk->wk_type), wk, 14456 (u_int)wk->wk_state, PRINT_SOFTDEP_FLAGS); 14457 return; 14458 } 14459 db_printf("worklist: %p type %s state 0x%b next %p\n ", wk, 14460 TYPENAME(wk->wk_type), (u_int)wk->wk_state, PRINT_SOFTDEP_FLAGS, 14461 LIST_NEXT(wk, wk_list)); 14462 db_print_ffs(VFSTOUFS(wk->wk_mp)); 14463 } 14464 14465 static void 14466 inodedep_print(struct inodedep *inodedep, int verbose) 14467 { 14468 14469 worklist_print(&inodedep->id_list, 0); 14470 db_printf(" fs %p ino %jd inoblk %jd delta %jd nlink %jd\n", 14471 inodedep->id_fs, 14472 (intmax_t)inodedep->id_ino, 14473 (intmax_t)fsbtodb(inodedep->id_fs, 14474 ino_to_fsba(inodedep->id_fs, inodedep->id_ino)), 14475 (intmax_t)inodedep->id_nlinkdelta, 14476 (intmax_t)inodedep->id_savednlink); 14477 14478 if (verbose == 0) 14479 return; 14480 14481 db_printf(" bmsafemap %p, mkdiradd %p, inoreflst %p\n", 14482 inodedep->id_bmsafemap, 14483 inodedep->id_mkdiradd, 14484 TAILQ_FIRST(&inodedep->id_inoreflst)); 14485 db_printf(" dirremhd %p, pendinghd %p, bufwait %p\n", 14486 LIST_FIRST(&inodedep->id_dirremhd), 14487 LIST_FIRST(&inodedep->id_pendinghd), 14488 LIST_FIRST(&inodedep->id_bufwait)); 14489 db_printf(" inowait %p, inoupdt %p, newinoupdt %p\n", 14490 LIST_FIRST(&inodedep->id_inowait), 14491 TAILQ_FIRST(&inodedep->id_inoupdt), 14492 TAILQ_FIRST(&inodedep->id_newinoupdt)); 14493 db_printf(" extupdt %p, newextupdt %p, freeblklst %p\n", 14494 TAILQ_FIRST(&inodedep->id_extupdt), 14495 TAILQ_FIRST(&inodedep->id_newextupdt), 14496 TAILQ_FIRST(&inodedep->id_freeblklst)); 14497 db_printf(" saveino %p, savedsize %jd, savedextsize %jd\n", 14498 inodedep->id_savedino1, 14499 (intmax_t)inodedep->id_savedsize, 14500 (intmax_t)inodedep->id_savedextsize); 14501 } 14502 14503 static void 14504 newblk_print(struct newblk *nbp) 14505 { 14506 14507 worklist_print(&nbp->nb_list, 0); 14508 db_printf(" newblkno %jd\n", (intmax_t)nbp->nb_newblkno); 14509 db_printf(" jnewblk %p, bmsafemap %p, freefrag %p\n", 14510 &nbp->nb_jnewblk, 14511 &nbp->nb_bmsafemap, 14512 &nbp->nb_freefrag); 14513 db_printf(" indirdeps %p, newdirblk %p, jwork %p\n", 14514 LIST_FIRST(&nbp->nb_indirdeps), 14515 LIST_FIRST(&nbp->nb_newdirblk), 14516 LIST_FIRST(&nbp->nb_jwork)); 14517 } 14518 14519 static void 14520 allocdirect_print(struct allocdirect *adp) 14521 { 14522 14523 newblk_print(&adp->ad_block); 14524 db_printf(" oldblkno %jd, oldsize %ld, newsize %ld\n", 14525 adp->ad_oldblkno, adp->ad_oldsize, adp->ad_newsize); 14526 db_printf(" offset %d, inodedep %p\n", 14527 adp->ad_offset, adp->ad_inodedep); 14528 } 14529 14530 static void 14531 allocindir_print(struct allocindir *aip) 14532 { 14533 14534 newblk_print(&aip->ai_block); 14535 db_printf(" oldblkno %jd, lbn %jd\n", 14536 (intmax_t)aip->ai_oldblkno, (intmax_t)aip->ai_lbn); 14537 db_printf(" offset %d, indirdep %p\n", 14538 aip->ai_offset, aip->ai_indirdep); 14539 } 14540 14541 static void 14542 mkdir_print(struct mkdir *mkdir) 14543 { 14544 14545 worklist_print(&mkdir->md_list, 0); 14546 db_printf(" diradd %p, jaddref %p, buf %p\n", 14547 mkdir->md_diradd, mkdir->md_jaddref, mkdir->md_buf); 14548 } 14549 14550 DB_SHOW_COMMAND(sd_inodedep, db_show_sd_inodedep) 14551 { 14552 14553 if (have_addr == 0) { 14554 db_printf("inodedep address required\n"); 14555 return; 14556 } 14557 inodedep_print((struct inodedep*)addr, 1); 14558 } 14559 14560 DB_SHOW_COMMAND(sd_allinodedeps, db_show_sd_allinodedeps) 14561 { 14562 struct inodedep_hashhead *inodedephd; 14563 struct inodedep *inodedep; 14564 struct ufsmount *ump; 14565 int cnt; 14566 14567 if (have_addr == 0) { 14568 db_printf("ufsmount address required\n"); 14569 return; 14570 } 14571 ump = (struct ufsmount *)addr; 14572 for (cnt = 0; cnt < ump->inodedep_hash_size; cnt++) { 14573 inodedephd = &ump->inodedep_hashtbl[cnt]; 14574 LIST_FOREACH(inodedep, inodedephd, id_hash) { 14575 inodedep_print(inodedep, 0); 14576 } 14577 } 14578 } 14579 14580 DB_SHOW_COMMAND(sd_worklist, db_show_sd_worklist) 14581 { 14582 14583 if (have_addr == 0) { 14584 db_printf("worklist address required\n"); 14585 return; 14586 } 14587 worklist_print((struct worklist *)addr, 1); 14588 } 14589 14590 DB_SHOW_COMMAND(sd_workhead, db_show_sd_workhead) 14591 { 14592 struct worklist *wk; 14593 struct workhead *wkhd; 14594 14595 if (have_addr == 0) { 14596 db_printf("worklist address required " 14597 "(for example value in bp->b_dep)\n"); 14598 return; 14599 } 14600 /* 14601 * We often do not have the address of the worklist head but 14602 * instead a pointer to its first entry (e.g., we have the 14603 * contents of bp->b_dep rather than &bp->b_dep). But the back 14604 * pointer of bp->b_dep will point at the head of the list, so 14605 * we cheat and use that instead. If we are in the middle of 14606 * a list we will still get the same result, so nothing 14607 * unexpected will result. 14608 */ 14609 wk = (struct worklist *)addr; 14610 if (wk == NULL) 14611 return; 14612 wkhd = (struct workhead *)wk->wk_list.le_prev; 14613 LIST_FOREACH(wk, wkhd, wk_list) { 14614 switch(wk->wk_type) { 14615 case D_INODEDEP: 14616 inodedep_print(WK_INODEDEP(wk), 0); 14617 continue; 14618 case D_ALLOCDIRECT: 14619 allocdirect_print(WK_ALLOCDIRECT(wk)); 14620 continue; 14621 case D_ALLOCINDIR: 14622 allocindir_print(WK_ALLOCINDIR(wk)); 14623 continue; 14624 case D_MKDIR: 14625 mkdir_print(WK_MKDIR(wk)); 14626 continue; 14627 default: 14628 worklist_print(wk, 0); 14629 continue; 14630 } 14631 } 14632 } 14633 14634 DB_SHOW_COMMAND(sd_mkdir, db_show_sd_mkdir) 14635 { 14636 if (have_addr == 0) { 14637 db_printf("mkdir address required\n"); 14638 return; 14639 } 14640 mkdir_print((struct mkdir *)addr); 14641 } 14642 14643 DB_SHOW_COMMAND(sd_mkdir_list, db_show_sd_mkdir_list) 14644 { 14645 struct mkdirlist *mkdirlisthd; 14646 struct mkdir *mkdir; 14647 14648 if (have_addr == 0) { 14649 db_printf("mkdir listhead address required\n"); 14650 return; 14651 } 14652 mkdirlisthd = (struct mkdirlist *)addr; 14653 LIST_FOREACH(mkdir, mkdirlisthd, md_mkdirs) { 14654 mkdir_print(mkdir); 14655 if (mkdir->md_diradd != NULL) { 14656 db_printf(" "); 14657 worklist_print(&mkdir->md_diradd->da_list, 0); 14658 } 14659 if (mkdir->md_jaddref != NULL) { 14660 db_printf(" "); 14661 worklist_print(&mkdir->md_jaddref->ja_list, 0); 14662 } 14663 } 14664 } 14665 14666 DB_SHOW_COMMAND(sd_allocdirect, db_show_sd_allocdirect) 14667 { 14668 if (have_addr == 0) { 14669 db_printf("allocdirect address required\n"); 14670 return; 14671 } 14672 allocdirect_print((struct allocdirect *)addr); 14673 } 14674 14675 DB_SHOW_COMMAND(sd_allocindir, db_show_sd_allocindir) 14676 { 14677 if (have_addr == 0) { 14678 db_printf("allocindir address required\n"); 14679 return; 14680 } 14681 allocindir_print((struct allocindir *)addr); 14682 } 14683 14684 #endif /* DDB */ 14685 14686 #endif /* SOFTUPDATES */ 14687