1 /* 2 * Copyright 1998, 2000 Marshall Kirk McKusick. All Rights Reserved. 3 * 4 * The soft updates code is derived from the appendix of a University 5 * of Michigan technical report (Gregory R. Ganger and Yale N. Patt, 6 * "Soft Updates: A Solution to the Metadata Update Problem in File 7 * Systems", CSE-TR-254-95, August 1995). 8 * 9 * Further information about soft updates can be obtained from: 10 * 11 * Marshall Kirk McKusick http://www.mckusick.com/softdep/ 12 * 1614 Oxford Street mckusick@mckusick.com 13 * Berkeley, CA 94709-1608 +1-510-843-9542 14 * USA 15 * 16 * Redistribution and use in source and binary forms, with or without 17 * modification, are permitted provided that the following conditions 18 * are met: 19 * 20 * 1. Redistributions of source code must retain the above copyright 21 * notice, this list of conditions and the following disclaimer. 22 * 2. Redistributions in binary form must reproduce the above copyright 23 * notice, this list of conditions and the following disclaimer in the 24 * documentation and/or other materials provided with the distribution. 25 * 26 * THIS SOFTWARE IS PROVIDED BY MARSHALL KIRK MCKUSICK ``AS IS'' AND ANY 27 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 28 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 29 * DISCLAIMED. IN NO EVENT SHALL MARSHALL KIRK MCKUSICK BE LIABLE FOR 30 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * from: @(#)ffs_softdep.c 9.59 (McKusick) 6/21/00 39 */ 40 41 #include <sys/cdefs.h> 42 __FBSDID("$FreeBSD$"); 43 44 /* 45 * For now we want the safety net that the DIAGNOSTIC and DEBUG flags provide. 46 */ 47 #ifndef DIAGNOSTIC 48 #define DIAGNOSTIC 49 #endif 50 #ifndef DEBUG 51 #define DEBUG 52 #endif 53 54 #include <sys/param.h> 55 #include <sys/kernel.h> 56 #include <sys/systm.h> 57 #include <sys/stdint.h> 58 #include <sys/bio.h> 59 #include <sys/buf.h> 60 #include <sys/malloc.h> 61 #include <sys/mount.h> 62 #include <sys/proc.h> 63 #include <sys/stat.h> 64 #include <sys/syslog.h> 65 #include <sys/vnode.h> 66 #include <sys/conf.h> 67 #include <ufs/ufs/dir.h> 68 #include <ufs/ufs/extattr.h> 69 #include <ufs/ufs/quota.h> 70 #include <ufs/ufs/inode.h> 71 #include <ufs/ufs/ufsmount.h> 72 #include <ufs/ffs/fs.h> 73 #include <ufs/ffs/softdep.h> 74 #include <ufs/ffs/ffs_extern.h> 75 #include <ufs/ufs/ufs_extern.h> 76 77 /* 78 * These definitions need to be adapted to the system to which 79 * this file is being ported. 80 */ 81 /* 82 * malloc types defined for the softdep system. 83 */ 84 static MALLOC_DEFINE(M_PAGEDEP, "pagedep","File page dependencies"); 85 static MALLOC_DEFINE(M_INODEDEP, "inodedep","Inode dependencies"); 86 static MALLOC_DEFINE(M_NEWBLK, "newblk","New block allocation"); 87 static MALLOC_DEFINE(M_BMSAFEMAP, "bmsafemap","Block or frag allocated from cyl group map"); 88 static MALLOC_DEFINE(M_ALLOCDIRECT, "allocdirect","Block or frag dependency for an inode"); 89 static MALLOC_DEFINE(M_INDIRDEP, "indirdep","Indirect block dependencies"); 90 static MALLOC_DEFINE(M_ALLOCINDIR, "allocindir","Block dependency for an indirect block"); 91 static MALLOC_DEFINE(M_FREEFRAG, "freefrag","Previously used frag for an inode"); 92 static MALLOC_DEFINE(M_FREEBLKS, "freeblks","Blocks freed from an inode"); 93 static MALLOC_DEFINE(M_FREEFILE, "freefile","Inode deallocated"); 94 static MALLOC_DEFINE(M_DIRADD, "diradd","New directory entry"); 95 static MALLOC_DEFINE(M_MKDIR, "mkdir","New directory"); 96 static MALLOC_DEFINE(M_DIRREM, "dirrem","Directory entry deleted"); 97 static MALLOC_DEFINE(M_NEWDIRBLK, "newdirblk","Unclaimed new directory block"); 98 99 #define M_SOFTDEP_FLAGS (M_WAITOK | M_USE_RESERVE) 100 101 #define D_PAGEDEP 0 102 #define D_INODEDEP 1 103 #define D_NEWBLK 2 104 #define D_BMSAFEMAP 3 105 #define D_ALLOCDIRECT 4 106 #define D_INDIRDEP 5 107 #define D_ALLOCINDIR 6 108 #define D_FREEFRAG 7 109 #define D_FREEBLKS 8 110 #define D_FREEFILE 9 111 #define D_DIRADD 10 112 #define D_MKDIR 11 113 #define D_DIRREM 12 114 #define D_NEWDIRBLK 13 115 #define D_LAST D_NEWDIRBLK 116 117 /* 118 * translate from workitem type to memory type 119 * MUST match the defines above, such that memtype[D_XXX] == M_XXX 120 */ 121 static struct malloc_type *memtype[] = { 122 M_PAGEDEP, 123 M_INODEDEP, 124 M_NEWBLK, 125 M_BMSAFEMAP, 126 M_ALLOCDIRECT, 127 M_INDIRDEP, 128 M_ALLOCINDIR, 129 M_FREEFRAG, 130 M_FREEBLKS, 131 M_FREEFILE, 132 M_DIRADD, 133 M_MKDIR, 134 M_DIRREM, 135 M_NEWDIRBLK 136 }; 137 138 #define DtoM(type) (memtype[type]) 139 140 /* 141 * Names of malloc types. 142 */ 143 #define TYPENAME(type) \ 144 ((unsigned)(type) < D_LAST ? memtype[type]->ks_shortdesc : "???") 145 /* 146 * End system adaptaion definitions. 147 */ 148 149 /* 150 * Internal function prototypes. 151 */ 152 static void softdep_error(char *, int); 153 static void drain_output(struct vnode *, int); 154 static int getdirtybuf(struct buf **, int); 155 static void clear_remove(struct thread *); 156 static void clear_inodedeps(struct thread *); 157 static int flush_pagedep_deps(struct vnode *, struct mount *, 158 struct diraddhd *); 159 static int flush_inodedep_deps(struct fs *, ino_t); 160 static int handle_written_filepage(struct pagedep *, struct buf *); 161 static void diradd_inode_written(struct diradd *, struct inodedep *); 162 static int handle_written_inodeblock(struct inodedep *, struct buf *); 163 static void handle_allocdirect_partdone(struct allocdirect *); 164 static void handle_allocindir_partdone(struct allocindir *); 165 static void initiate_write_filepage(struct pagedep *, struct buf *); 166 static void handle_written_mkdir(struct mkdir *, int); 167 static void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *); 168 static void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *); 169 static void handle_workitem_freefile(struct freefile *); 170 static void handle_workitem_remove(struct dirrem *, struct vnode *); 171 static struct dirrem *newdirrem(struct buf *, struct inode *, 172 struct inode *, int, struct dirrem **); 173 static void free_diradd(struct diradd *); 174 static void free_allocindir(struct allocindir *, struct inodedep *); 175 static void free_newdirblk(struct newdirblk *); 176 static int indir_trunc(struct freeblks *, ufs2_daddr_t, int, ufs_lbn_t, 177 ufs2_daddr_t *); 178 static void deallocate_dependencies(struct buf *, struct inodedep *); 179 static void free_allocdirect(struct allocdirectlst *, 180 struct allocdirect *, int); 181 static int check_inode_unwritten(struct inodedep *); 182 static int free_inodedep(struct inodedep *); 183 static void handle_workitem_freeblocks(struct freeblks *, int); 184 static void merge_inode_lists(struct inodedep *); 185 static void setup_allocindir_phase2(struct buf *, struct inode *, 186 struct allocindir *); 187 static struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t, 188 ufs2_daddr_t); 189 static void handle_workitem_freefrag(struct freefrag *); 190 static struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long); 191 static void allocdirect_merge(struct allocdirectlst *, 192 struct allocdirect *, struct allocdirect *); 193 static struct bmsafemap *bmsafemap_lookup(struct buf *); 194 static int newblk_lookup(struct fs *, ufs2_daddr_t, int, struct newblk **); 195 static int inodedep_lookup(struct fs *, ino_t, int, struct inodedep **); 196 static int pagedep_lookup(struct inode *, ufs_lbn_t, int, struct pagedep **); 197 static void pause_timer(void *); 198 static int request_cleanup(int, int); 199 static int process_worklist_item(struct mount *, int); 200 static void add_to_worklist(struct worklist *); 201 202 /* 203 * Exported softdep operations. 204 */ 205 static void softdep_disk_io_initiation(struct buf *); 206 static void softdep_disk_write_complete(struct buf *); 207 static void softdep_deallocate_dependencies(struct buf *); 208 static void softdep_move_dependencies(struct buf *, struct buf *); 209 static int softdep_count_dependencies(struct buf *bp, int); 210 211 /* 212 * Locking primitives. 213 * 214 * For a uniprocessor, all we need to do is protect against disk 215 * interrupts. For a multiprocessor, this lock would have to be 216 * a mutex. A single mutex is used throughout this file, though 217 * finer grain locking could be used if contention warranted it. 218 * 219 * For a multiprocessor, the sleep call would accept a lock and 220 * release it after the sleep processing was complete. In a uniprocessor 221 * implementation there is no such interlock, so we simple mark 222 * the places where it needs to be done with the `interlocked' form 223 * of the lock calls. Since the uniprocessor sleep already interlocks 224 * the spl, there is nothing that really needs to be done. 225 */ 226 #ifndef /* NOT */ DEBUG 227 static struct lockit { 228 int lkt_spl; 229 } lk = { 0 }; 230 #define ACQUIRE_LOCK(lk) (lk)->lkt_spl = splbio() 231 #define FREE_LOCK(lk) splx((lk)->lkt_spl) 232 233 #else /* DEBUG */ 234 #define NOHOLDER ((struct thread *)-1) 235 #define SPECIAL_FLAG ((struct thread *)-2) 236 static struct lockit { 237 int lkt_spl; 238 struct thread *lkt_held; 239 } lk = { 0, NOHOLDER }; 240 static int lockcnt; 241 242 static void acquire_lock(struct lockit *); 243 static void free_lock(struct lockit *); 244 void softdep_panic(char *); 245 246 #define ACQUIRE_LOCK(lk) acquire_lock(lk) 247 #define FREE_LOCK(lk) free_lock(lk) 248 249 static void 250 acquire_lock(lk) 251 struct lockit *lk; 252 { 253 struct thread *holder; 254 255 if (lk->lkt_held != NOHOLDER) { 256 holder = lk->lkt_held; 257 FREE_LOCK(lk); 258 if (holder == curthread) 259 panic("softdep_lock: locking against myself"); 260 else 261 panic("softdep_lock: lock held by %p", holder); 262 } 263 lk->lkt_spl = splbio(); 264 lk->lkt_held = curthread; 265 lockcnt++; 266 } 267 268 static void 269 free_lock(lk) 270 struct lockit *lk; 271 { 272 273 if (lk->lkt_held == NOHOLDER) 274 panic("softdep_unlock: lock not held"); 275 lk->lkt_held = NOHOLDER; 276 splx(lk->lkt_spl); 277 } 278 279 /* 280 * Function to release soft updates lock and panic. 281 */ 282 void 283 softdep_panic(msg) 284 char *msg; 285 { 286 287 if (lk.lkt_held != NOHOLDER) 288 FREE_LOCK(&lk); 289 panic(msg); 290 } 291 #endif /* DEBUG */ 292 293 static int interlocked_sleep(struct lockit *, int, void *, int, 294 const char *, int); 295 296 /* 297 * When going to sleep, we must save our SPL so that it does 298 * not get lost if some other process uses the lock while we 299 * are sleeping. We restore it after we have slept. This routine 300 * wraps the interlocking with functions that sleep. The list 301 * below enumerates the available set of operations. 302 */ 303 #define UNKNOWN 0 304 #define SLEEP 1 305 #define LOCKBUF 2 306 307 static int 308 interlocked_sleep(lk, op, ident, flags, wmesg, timo) 309 struct lockit *lk; 310 int op; 311 void *ident; 312 int flags; 313 const char *wmesg; 314 int timo; 315 { 316 struct thread *holder; 317 int s, retval; 318 319 s = lk->lkt_spl; 320 # ifdef DEBUG 321 if (lk->lkt_held == NOHOLDER) 322 panic("interlocked_sleep: lock not held"); 323 lk->lkt_held = NOHOLDER; 324 # endif /* DEBUG */ 325 switch (op) { 326 case SLEEP: 327 retval = tsleep(ident, flags, wmesg, timo); 328 break; 329 case LOCKBUF: 330 retval = BUF_LOCK((struct buf *)ident, flags); 331 break; 332 default: 333 panic("interlocked_sleep: unknown operation"); 334 } 335 # ifdef DEBUG 336 if (lk->lkt_held != NOHOLDER) { 337 holder = lk->lkt_held; 338 FREE_LOCK(lk); 339 if (holder == curthread) 340 panic("interlocked_sleep: locking against self"); 341 else 342 panic("interlocked_sleep: lock held by %p", holder); 343 } 344 lk->lkt_held = curthread; 345 lockcnt++; 346 # endif /* DEBUG */ 347 lk->lkt_spl = s; 348 return (retval); 349 } 350 351 /* 352 * Place holder for real semaphores. 353 */ 354 struct sema { 355 int value; 356 struct thread *holder; 357 char *name; 358 int prio; 359 int timo; 360 }; 361 static void sema_init(struct sema *, char *, int, int); 362 static int sema_get(struct sema *, struct lockit *); 363 static void sema_release(struct sema *); 364 365 static void 366 sema_init(semap, name, prio, timo) 367 struct sema *semap; 368 char *name; 369 int prio, timo; 370 { 371 372 semap->holder = NOHOLDER; 373 semap->value = 0; 374 semap->name = name; 375 semap->prio = prio; 376 semap->timo = timo; 377 } 378 379 static int 380 sema_get(semap, interlock) 381 struct sema *semap; 382 struct lockit *interlock; 383 { 384 385 if (semap->value++ > 0) { 386 if (interlock != NULL) { 387 interlocked_sleep(interlock, SLEEP, (caddr_t)semap, 388 semap->prio, semap->name, semap->timo); 389 FREE_LOCK(interlock); 390 } else { 391 tsleep((caddr_t)semap, semap->prio, semap->name, 392 semap->timo); 393 } 394 return (0); 395 } 396 semap->holder = curthread; 397 if (interlock != NULL) 398 FREE_LOCK(interlock); 399 return (1); 400 } 401 402 static void 403 sema_release(semap) 404 struct sema *semap; 405 { 406 407 if (semap->value <= 0 || semap->holder != curthread) { 408 if (lk.lkt_held != NOHOLDER) 409 FREE_LOCK(&lk); 410 panic("sema_release: not held"); 411 } 412 if (--semap->value > 0) { 413 semap->value = 0; 414 wakeup(semap); 415 } 416 semap->holder = NOHOLDER; 417 } 418 419 /* 420 * Worklist queue management. 421 * These routines require that the lock be held. 422 */ 423 #ifndef /* NOT */ DEBUG 424 #define WORKLIST_INSERT(head, item) do { \ 425 (item)->wk_state |= ONWORKLIST; \ 426 LIST_INSERT_HEAD(head, item, wk_list); \ 427 } while (0) 428 #define WORKLIST_REMOVE(item) do { \ 429 (item)->wk_state &= ~ONWORKLIST; \ 430 LIST_REMOVE(item, wk_list); \ 431 } while (0) 432 #define WORKITEM_FREE(item, type) FREE(item, DtoM(type)) 433 434 #else /* DEBUG */ 435 static void worklist_insert(struct workhead *, struct worklist *); 436 static void worklist_remove(struct worklist *); 437 static void workitem_free(struct worklist *, int); 438 439 #define WORKLIST_INSERT(head, item) worklist_insert(head, item) 440 #define WORKLIST_REMOVE(item) worklist_remove(item) 441 #define WORKITEM_FREE(item, type) workitem_free((struct worklist *)item, type) 442 443 static void 444 worklist_insert(head, item) 445 struct workhead *head; 446 struct worklist *item; 447 { 448 449 if (lk.lkt_held == NOHOLDER) 450 panic("worklist_insert: lock not held"); 451 if (item->wk_state & ONWORKLIST) { 452 FREE_LOCK(&lk); 453 panic("worklist_insert: already on list"); 454 } 455 item->wk_state |= ONWORKLIST; 456 LIST_INSERT_HEAD(head, item, wk_list); 457 } 458 459 static void 460 worklist_remove(item) 461 struct worklist *item; 462 { 463 464 if (lk.lkt_held == NOHOLDER) 465 panic("worklist_remove: lock not held"); 466 if ((item->wk_state & ONWORKLIST) == 0) { 467 FREE_LOCK(&lk); 468 panic("worklist_remove: not on list"); 469 } 470 item->wk_state &= ~ONWORKLIST; 471 LIST_REMOVE(item, wk_list); 472 } 473 474 static void 475 workitem_free(item, type) 476 struct worklist *item; 477 int type; 478 { 479 480 if (item->wk_state & ONWORKLIST) { 481 if (lk.lkt_held != NOHOLDER) 482 FREE_LOCK(&lk); 483 panic("workitem_free: still on list"); 484 } 485 if (item->wk_type != type) { 486 if (lk.lkt_held != NOHOLDER) 487 FREE_LOCK(&lk); 488 panic("workitem_free: type mismatch"); 489 } 490 FREE(item, DtoM(type)); 491 } 492 #endif /* DEBUG */ 493 494 /* 495 * Workitem queue management 496 */ 497 static struct workhead softdep_workitem_pending; 498 static int num_on_worklist; /* number of worklist items to be processed */ 499 static int softdep_worklist_busy; /* 1 => trying to do unmount */ 500 static int softdep_worklist_req; /* serialized waiters */ 501 static int max_softdeps; /* maximum number of structs before slowdown */ 502 static int tickdelay = 2; /* number of ticks to pause during slowdown */ 503 static int proc_waiting; /* tracks whether we have a timeout posted */ 504 static int *stat_countp; /* statistic to count in proc_waiting timeout */ 505 static struct callout_handle handle; /* handle on posted proc_waiting timeout */ 506 static struct thread *filesys_syncer; /* proc of filesystem syncer process */ 507 static int req_clear_inodedeps; /* syncer process flush some inodedeps */ 508 #define FLUSH_INODES 1 509 static int req_clear_remove; /* syncer process flush some freeblks */ 510 #define FLUSH_REMOVE 2 511 #define FLUSH_REMOVE_WAIT 3 512 /* 513 * runtime statistics 514 */ 515 static int stat_worklist_push; /* number of worklist cleanups */ 516 static int stat_blk_limit_push; /* number of times block limit neared */ 517 static int stat_ino_limit_push; /* number of times inode limit neared */ 518 static int stat_blk_limit_hit; /* number of times block slowdown imposed */ 519 static int stat_ino_limit_hit; /* number of times inode slowdown imposed */ 520 static int stat_sync_limit_hit; /* number of synchronous slowdowns imposed */ 521 static int stat_indir_blk_ptrs; /* bufs redirtied as indir ptrs not written */ 522 static int stat_inode_bitmap; /* bufs redirtied as inode bitmap not written */ 523 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */ 524 static int stat_dir_entry; /* bufs redirtied as dir entry cannot write */ 525 #ifdef DEBUG 526 #include <vm/vm.h> 527 #include <sys/sysctl.h> 528 SYSCTL_INT(_debug, OID_AUTO, max_softdeps, CTLFLAG_RW, &max_softdeps, 0, ""); 529 SYSCTL_INT(_debug, OID_AUTO, tickdelay, CTLFLAG_RW, &tickdelay, 0, ""); 530 SYSCTL_INT(_debug, OID_AUTO, worklist_push, CTLFLAG_RW, &stat_worklist_push, 0,""); 531 SYSCTL_INT(_debug, OID_AUTO, blk_limit_push, CTLFLAG_RW, &stat_blk_limit_push, 0,""); 532 SYSCTL_INT(_debug, OID_AUTO, ino_limit_push, CTLFLAG_RW, &stat_ino_limit_push, 0,""); 533 SYSCTL_INT(_debug, OID_AUTO, blk_limit_hit, CTLFLAG_RW, &stat_blk_limit_hit, 0, ""); 534 SYSCTL_INT(_debug, OID_AUTO, ino_limit_hit, CTLFLAG_RW, &stat_ino_limit_hit, 0, ""); 535 SYSCTL_INT(_debug, OID_AUTO, sync_limit_hit, CTLFLAG_RW, &stat_sync_limit_hit, 0, ""); 536 SYSCTL_INT(_debug, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW, &stat_indir_blk_ptrs, 0, ""); 537 SYSCTL_INT(_debug, OID_AUTO, inode_bitmap, CTLFLAG_RW, &stat_inode_bitmap, 0, ""); 538 SYSCTL_INT(_debug, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW, &stat_direct_blk_ptrs, 0, ""); 539 SYSCTL_INT(_debug, OID_AUTO, dir_entry, CTLFLAG_RW, &stat_dir_entry, 0, ""); 540 #endif /* DEBUG */ 541 542 /* 543 * Add an item to the end of the work queue. 544 * This routine requires that the lock be held. 545 * This is the only routine that adds items to the list. 546 * The following routine is the only one that removes items 547 * and does so in order from first to last. 548 */ 549 static void 550 add_to_worklist(wk) 551 struct worklist *wk; 552 { 553 static struct worklist *worklist_tail; 554 555 if (wk->wk_state & ONWORKLIST) { 556 if (lk.lkt_held != NOHOLDER) 557 FREE_LOCK(&lk); 558 panic("add_to_worklist: already on list"); 559 } 560 wk->wk_state |= ONWORKLIST; 561 if (LIST_FIRST(&softdep_workitem_pending) == NULL) 562 LIST_INSERT_HEAD(&softdep_workitem_pending, wk, wk_list); 563 else 564 LIST_INSERT_AFTER(worklist_tail, wk, wk_list); 565 worklist_tail = wk; 566 num_on_worklist += 1; 567 } 568 569 /* 570 * Process that runs once per second to handle items in the background queue. 571 * 572 * Note that we ensure that everything is done in the order in which they 573 * appear in the queue. The code below depends on this property to ensure 574 * that blocks of a file are freed before the inode itself is freed. This 575 * ordering ensures that no new <vfsid, inum, lbn> triples will be generated 576 * until all the old ones have been purged from the dependency lists. 577 */ 578 int 579 softdep_process_worklist(matchmnt) 580 struct mount *matchmnt; 581 { 582 struct thread *td = curthread; 583 int cnt, matchcnt, loopcount; 584 long starttime; 585 586 /* 587 * Record the process identifier of our caller so that we can give 588 * this process preferential treatment in request_cleanup below. 589 */ 590 filesys_syncer = td; 591 matchcnt = 0; 592 593 /* 594 * There is no danger of having multiple processes run this 595 * code, but we have to single-thread it when softdep_flushfiles() 596 * is in operation to get an accurate count of the number of items 597 * related to its mount point that are in the list. 598 */ 599 if (matchmnt == NULL) { 600 if (softdep_worklist_busy < 0) 601 return(-1); 602 softdep_worklist_busy += 1; 603 } 604 605 /* 606 * If requested, try removing inode or removal dependencies. 607 */ 608 if (req_clear_inodedeps) { 609 clear_inodedeps(td); 610 req_clear_inodedeps -= 1; 611 wakeup_one(&proc_waiting); 612 } 613 if (req_clear_remove) { 614 clear_remove(td); 615 req_clear_remove -= 1; 616 wakeup_one(&proc_waiting); 617 } 618 loopcount = 1; 619 starttime = time_second; 620 while (num_on_worklist > 0) { 621 if ((cnt = process_worklist_item(matchmnt, 0)) == -1) 622 break; 623 else 624 matchcnt += cnt; 625 626 /* 627 * If a umount operation wants to run the worklist 628 * accurately, abort. 629 */ 630 if (softdep_worklist_req && matchmnt == NULL) { 631 matchcnt = -1; 632 break; 633 } 634 635 /* 636 * If requested, try removing inode or removal dependencies. 637 */ 638 if (req_clear_inodedeps) { 639 clear_inodedeps(td); 640 req_clear_inodedeps -= 1; 641 wakeup_one(&proc_waiting); 642 } 643 if (req_clear_remove) { 644 clear_remove(td); 645 req_clear_remove -= 1; 646 wakeup_one(&proc_waiting); 647 } 648 /* 649 * We do not generally want to stop for buffer space, but if 650 * we are really being a buffer hog, we will stop and wait. 651 */ 652 if (loopcount++ % 128 == 0) 653 bwillwrite(); 654 /* 655 * Never allow processing to run for more than one 656 * second. Otherwise the other syncer tasks may get 657 * excessively backlogged. 658 */ 659 if (starttime != time_second && matchmnt == NULL) { 660 matchcnt = -1; 661 break; 662 } 663 } 664 if (matchmnt == NULL) { 665 softdep_worklist_busy -= 1; 666 if (softdep_worklist_req && softdep_worklist_busy == 0) 667 wakeup(&softdep_worklist_req); 668 } 669 return (matchcnt); 670 } 671 672 /* 673 * Process one item on the worklist. 674 */ 675 static int 676 process_worklist_item(matchmnt, flags) 677 struct mount *matchmnt; 678 int flags; 679 { 680 struct worklist *wk; 681 struct mount *mp; 682 struct vnode *vp; 683 int matchcnt = 0; 684 685 ACQUIRE_LOCK(&lk); 686 /* 687 * Normally we just process each item on the worklist in order. 688 * However, if we are in a situation where we cannot lock any 689 * inodes, we have to skip over any dirrem requests whose 690 * vnodes are resident and locked. 691 */ 692 vp = NULL; 693 LIST_FOREACH(wk, &softdep_workitem_pending, wk_list) { 694 if (wk->wk_state & INPROGRESS) 695 continue; 696 if ((flags & LK_NOWAIT) == 0 || wk->wk_type != D_DIRREM) 697 break; 698 wk->wk_state |= INPROGRESS; 699 FREE_LOCK(&lk); 700 VFS_VGET(WK_DIRREM(wk)->dm_mnt, WK_DIRREM(wk)->dm_oldinum, 701 LK_NOWAIT | LK_EXCLUSIVE, &vp); 702 ACQUIRE_LOCK(&lk); 703 wk->wk_state &= ~INPROGRESS; 704 if (vp != NULL) 705 break; 706 } 707 if (wk == 0) { 708 FREE_LOCK(&lk); 709 return (-1); 710 } 711 WORKLIST_REMOVE(wk); 712 num_on_worklist -= 1; 713 FREE_LOCK(&lk); 714 switch (wk->wk_type) { 715 716 case D_DIRREM: 717 /* removal of a directory entry */ 718 mp = WK_DIRREM(wk)->dm_mnt; 719 if (vn_write_suspend_wait(NULL, mp, V_NOWAIT)) 720 panic("%s: dirrem on suspended filesystem", 721 "process_worklist_item"); 722 if (mp == matchmnt) 723 matchcnt += 1; 724 handle_workitem_remove(WK_DIRREM(wk), vp); 725 break; 726 727 case D_FREEBLKS: 728 /* releasing blocks and/or fragments from a file */ 729 mp = WK_FREEBLKS(wk)->fb_mnt; 730 if (vn_write_suspend_wait(NULL, mp, V_NOWAIT)) 731 panic("%s: freeblks on suspended filesystem", 732 "process_worklist_item"); 733 if (mp == matchmnt) 734 matchcnt += 1; 735 handle_workitem_freeblocks(WK_FREEBLKS(wk), flags & LK_NOWAIT); 736 break; 737 738 case D_FREEFRAG: 739 /* releasing a fragment when replaced as a file grows */ 740 mp = WK_FREEFRAG(wk)->ff_mnt; 741 if (vn_write_suspend_wait(NULL, mp, V_NOWAIT)) 742 panic("%s: freefrag on suspended filesystem", 743 "process_worklist_item"); 744 if (mp == matchmnt) 745 matchcnt += 1; 746 handle_workitem_freefrag(WK_FREEFRAG(wk)); 747 break; 748 749 case D_FREEFILE: 750 /* releasing an inode when its link count drops to 0 */ 751 mp = WK_FREEFILE(wk)->fx_mnt; 752 if (vn_write_suspend_wait(NULL, mp, V_NOWAIT)) 753 panic("%s: freefile on suspended filesystem", 754 "process_worklist_item"); 755 if (mp == matchmnt) 756 matchcnt += 1; 757 handle_workitem_freefile(WK_FREEFILE(wk)); 758 break; 759 760 default: 761 panic("%s_process_worklist: Unknown type %s", 762 "softdep", TYPENAME(wk->wk_type)); 763 /* NOTREACHED */ 764 } 765 return (matchcnt); 766 } 767 768 /* 769 * Move dependencies from one buffer to another. 770 */ 771 static void 772 softdep_move_dependencies(oldbp, newbp) 773 struct buf *oldbp; 774 struct buf *newbp; 775 { 776 struct worklist *wk, *wktail; 777 778 if (LIST_FIRST(&newbp->b_dep) != NULL) 779 panic("softdep_move_dependencies: need merge code"); 780 wktail = 0; 781 ACQUIRE_LOCK(&lk); 782 while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) { 783 LIST_REMOVE(wk, wk_list); 784 if (wktail == 0) 785 LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list); 786 else 787 LIST_INSERT_AFTER(wktail, wk, wk_list); 788 wktail = wk; 789 } 790 FREE_LOCK(&lk); 791 } 792 793 /* 794 * Purge the work list of all items associated with a particular mount point. 795 */ 796 int 797 softdep_flushworklist(oldmnt, countp, td) 798 struct mount *oldmnt; 799 int *countp; 800 struct thread *td; 801 { 802 struct vnode *devvp; 803 int count, error = 0; 804 805 /* 806 * Await our turn to clear out the queue, then serialize access. 807 */ 808 while (softdep_worklist_busy) { 809 softdep_worklist_req += 1; 810 tsleep(&softdep_worklist_req, PRIBIO, "softflush", 0); 811 softdep_worklist_req -= 1; 812 } 813 softdep_worklist_busy = -1; 814 /* 815 * Alternately flush the block device associated with the mount 816 * point and process any dependencies that the flushing 817 * creates. We continue until no more worklist dependencies 818 * are found. 819 */ 820 *countp = 0; 821 devvp = VFSTOUFS(oldmnt)->um_devvp; 822 while ((count = softdep_process_worklist(oldmnt)) > 0) { 823 *countp += count; 824 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY, td); 825 error = VOP_FSYNC(devvp, td->td_ucred, MNT_WAIT, td); 826 VOP_UNLOCK(devvp, 0, td); 827 if (error) 828 break; 829 } 830 softdep_worklist_busy = 0; 831 if (softdep_worklist_req) 832 wakeup(&softdep_worklist_req); 833 return (error); 834 } 835 836 /* 837 * Flush all vnodes and worklist items associated with a specified mount point. 838 */ 839 int 840 softdep_flushfiles(oldmnt, flags, td) 841 struct mount *oldmnt; 842 int flags; 843 struct thread *td; 844 { 845 int error, count, loopcnt; 846 847 error = 0; 848 849 /* 850 * Alternately flush the vnodes associated with the mount 851 * point and process any dependencies that the flushing 852 * creates. In theory, this loop can happen at most twice, 853 * but we give it a few extra just to be sure. 854 */ 855 for (loopcnt = 10; loopcnt > 0; loopcnt--) { 856 /* 857 * Do another flush in case any vnodes were brought in 858 * as part of the cleanup operations. 859 */ 860 if ((error = ffs_flushfiles(oldmnt, flags, td)) != 0) 861 break; 862 if ((error = softdep_flushworklist(oldmnt, &count, td)) != 0 || 863 count == 0) 864 break; 865 } 866 /* 867 * If we are unmounting then it is an error to fail. If we 868 * are simply trying to downgrade to read-only, then filesystem 869 * activity can keep us busy forever, so we just fail with EBUSY. 870 */ 871 if (loopcnt == 0) { 872 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) 873 panic("softdep_flushfiles: looping"); 874 error = EBUSY; 875 } 876 return (error); 877 } 878 879 /* 880 * Structure hashing. 881 * 882 * There are three types of structures that can be looked up: 883 * 1) pagedep structures identified by mount point, inode number, 884 * and logical block. 885 * 2) inodedep structures identified by mount point and inode number. 886 * 3) newblk structures identified by mount point and 887 * physical block number. 888 * 889 * The "pagedep" and "inodedep" dependency structures are hashed 890 * separately from the file blocks and inodes to which they correspond. 891 * This separation helps when the in-memory copy of an inode or 892 * file block must be replaced. It also obviates the need to access 893 * an inode or file page when simply updating (or de-allocating) 894 * dependency structures. Lookup of newblk structures is needed to 895 * find newly allocated blocks when trying to associate them with 896 * their allocdirect or allocindir structure. 897 * 898 * The lookup routines optionally create and hash a new instance when 899 * an existing entry is not found. 900 */ 901 #define DEPALLOC 0x0001 /* allocate structure if lookup fails */ 902 #define NODELAY 0x0002 /* cannot do background work */ 903 904 /* 905 * Structures and routines associated with pagedep caching. 906 */ 907 LIST_HEAD(pagedep_hashhead, pagedep) *pagedep_hashtbl; 908 u_long pagedep_hash; /* size of hash table - 1 */ 909 #define PAGEDEP_HASH(mp, inum, lbn) \ 910 (&pagedep_hashtbl[((((register_t)(mp)) >> 13) + (inum) + (lbn)) & \ 911 pagedep_hash]) 912 static struct sema pagedep_in_progress; 913 914 /* 915 * Look up a pagedep. Return 1 if found, 0 if not found or found 916 * when asked to allocate but not associated with any buffer. 917 * If not found, allocate if DEPALLOC flag is passed. 918 * Found or allocated entry is returned in pagedeppp. 919 * This routine must be called with splbio interrupts blocked. 920 */ 921 static int 922 pagedep_lookup(ip, lbn, flags, pagedeppp) 923 struct inode *ip; 924 ufs_lbn_t lbn; 925 int flags; 926 struct pagedep **pagedeppp; 927 { 928 struct pagedep *pagedep; 929 struct pagedep_hashhead *pagedephd; 930 struct mount *mp; 931 int i; 932 933 #ifdef DEBUG 934 if (lk.lkt_held == NOHOLDER) 935 panic("pagedep_lookup: lock not held"); 936 #endif 937 mp = ITOV(ip)->v_mount; 938 pagedephd = PAGEDEP_HASH(mp, ip->i_number, lbn); 939 top: 940 LIST_FOREACH(pagedep, pagedephd, pd_hash) 941 if (ip->i_number == pagedep->pd_ino && 942 lbn == pagedep->pd_lbn && 943 mp == pagedep->pd_mnt) 944 break; 945 if (pagedep) { 946 *pagedeppp = pagedep; 947 if ((flags & DEPALLOC) != 0 && 948 (pagedep->pd_state & ONWORKLIST) == 0) 949 return (0); 950 return (1); 951 } 952 if ((flags & DEPALLOC) == 0) { 953 *pagedeppp = NULL; 954 return (0); 955 } 956 if (sema_get(&pagedep_in_progress, &lk) == 0) { 957 ACQUIRE_LOCK(&lk); 958 goto top; 959 } 960 MALLOC(pagedep, struct pagedep *, sizeof(struct pagedep), M_PAGEDEP, 961 M_SOFTDEP_FLAGS|M_ZERO); 962 pagedep->pd_list.wk_type = D_PAGEDEP; 963 pagedep->pd_mnt = mp; 964 pagedep->pd_ino = ip->i_number; 965 pagedep->pd_lbn = lbn; 966 LIST_INIT(&pagedep->pd_dirremhd); 967 LIST_INIT(&pagedep->pd_pendinghd); 968 for (i = 0; i < DAHASHSZ; i++) 969 LIST_INIT(&pagedep->pd_diraddhd[i]); 970 ACQUIRE_LOCK(&lk); 971 LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash); 972 sema_release(&pagedep_in_progress); 973 *pagedeppp = pagedep; 974 return (0); 975 } 976 977 /* 978 * Structures and routines associated with inodedep caching. 979 */ 980 LIST_HEAD(inodedep_hashhead, inodedep) *inodedep_hashtbl; 981 static u_long inodedep_hash; /* size of hash table - 1 */ 982 static long num_inodedep; /* number of inodedep allocated */ 983 #define INODEDEP_HASH(fs, inum) \ 984 (&inodedep_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & inodedep_hash]) 985 static struct sema inodedep_in_progress; 986 987 /* 988 * Look up a inodedep. Return 1 if found, 0 if not found. 989 * If not found, allocate if DEPALLOC flag is passed. 990 * Found or allocated entry is returned in inodedeppp. 991 * This routine must be called with splbio interrupts blocked. 992 */ 993 static int 994 inodedep_lookup(fs, inum, flags, inodedeppp) 995 struct fs *fs; 996 ino_t inum; 997 int flags; 998 struct inodedep **inodedeppp; 999 { 1000 struct inodedep *inodedep; 1001 struct inodedep_hashhead *inodedephd; 1002 int firsttry; 1003 1004 #ifdef DEBUG 1005 if (lk.lkt_held == NOHOLDER) 1006 panic("inodedep_lookup: lock not held"); 1007 #endif 1008 firsttry = 1; 1009 inodedephd = INODEDEP_HASH(fs, inum); 1010 top: 1011 LIST_FOREACH(inodedep, inodedephd, id_hash) 1012 if (inum == inodedep->id_ino && fs == inodedep->id_fs) 1013 break; 1014 if (inodedep) { 1015 *inodedeppp = inodedep; 1016 return (1); 1017 } 1018 if ((flags & DEPALLOC) == 0) { 1019 *inodedeppp = NULL; 1020 return (0); 1021 } 1022 /* 1023 * If we are over our limit, try to improve the situation. 1024 */ 1025 if (num_inodedep > max_softdeps && firsttry && (flags & NODELAY) == 0 && 1026 request_cleanup(FLUSH_INODES, 1)) { 1027 firsttry = 0; 1028 goto top; 1029 } 1030 if (sema_get(&inodedep_in_progress, &lk) == 0) { 1031 ACQUIRE_LOCK(&lk); 1032 goto top; 1033 } 1034 num_inodedep += 1; 1035 MALLOC(inodedep, struct inodedep *, sizeof(struct inodedep), 1036 M_INODEDEP, M_SOFTDEP_FLAGS); 1037 inodedep->id_list.wk_type = D_INODEDEP; 1038 inodedep->id_fs = fs; 1039 inodedep->id_ino = inum; 1040 inodedep->id_state = ALLCOMPLETE; 1041 inodedep->id_nlinkdelta = 0; 1042 inodedep->id_savedino1 = NULL; 1043 inodedep->id_savedsize = -1; 1044 inodedep->id_buf = NULL; 1045 LIST_INIT(&inodedep->id_pendinghd); 1046 LIST_INIT(&inodedep->id_inowait); 1047 LIST_INIT(&inodedep->id_bufwait); 1048 TAILQ_INIT(&inodedep->id_inoupdt); 1049 TAILQ_INIT(&inodedep->id_newinoupdt); 1050 ACQUIRE_LOCK(&lk); 1051 LIST_INSERT_HEAD(inodedephd, inodedep, id_hash); 1052 sema_release(&inodedep_in_progress); 1053 *inodedeppp = inodedep; 1054 return (0); 1055 } 1056 1057 /* 1058 * Structures and routines associated with newblk caching. 1059 */ 1060 LIST_HEAD(newblk_hashhead, newblk) *newblk_hashtbl; 1061 u_long newblk_hash; /* size of hash table - 1 */ 1062 #define NEWBLK_HASH(fs, inum) \ 1063 (&newblk_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & newblk_hash]) 1064 static struct sema newblk_in_progress; 1065 1066 /* 1067 * Look up a newblk. Return 1 if found, 0 if not found. 1068 * If not found, allocate if DEPALLOC flag is passed. 1069 * Found or allocated entry is returned in newblkpp. 1070 */ 1071 static int 1072 newblk_lookup(fs, newblkno, flags, newblkpp) 1073 struct fs *fs; 1074 ufs2_daddr_t newblkno; 1075 int flags; 1076 struct newblk **newblkpp; 1077 { 1078 struct newblk *newblk; 1079 struct newblk_hashhead *newblkhd; 1080 1081 newblkhd = NEWBLK_HASH(fs, newblkno); 1082 top: 1083 LIST_FOREACH(newblk, newblkhd, nb_hash) 1084 if (newblkno == newblk->nb_newblkno && fs == newblk->nb_fs) 1085 break; 1086 if (newblk) { 1087 *newblkpp = newblk; 1088 return (1); 1089 } 1090 if ((flags & DEPALLOC) == 0) { 1091 *newblkpp = NULL; 1092 return (0); 1093 } 1094 if (sema_get(&newblk_in_progress, 0) == 0) 1095 goto top; 1096 MALLOC(newblk, struct newblk *, sizeof(struct newblk), 1097 M_NEWBLK, M_SOFTDEP_FLAGS); 1098 newblk->nb_state = 0; 1099 newblk->nb_fs = fs; 1100 newblk->nb_newblkno = newblkno; 1101 LIST_INSERT_HEAD(newblkhd, newblk, nb_hash); 1102 sema_release(&newblk_in_progress); 1103 *newblkpp = newblk; 1104 return (0); 1105 } 1106 1107 /* 1108 * Executed during filesystem system initialization before 1109 * mounting any filesystems. 1110 */ 1111 void 1112 softdep_initialize() 1113 { 1114 1115 LIST_INIT(&mkdirlisthd); 1116 LIST_INIT(&softdep_workitem_pending); 1117 max_softdeps = desiredvnodes * 8; 1118 pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP, 1119 &pagedep_hash); 1120 sema_init(&pagedep_in_progress, "pagedep", PRIBIO, 0); 1121 inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, &inodedep_hash); 1122 sema_init(&inodedep_in_progress, "inodedep", PRIBIO, 0); 1123 newblk_hashtbl = hashinit(64, M_NEWBLK, &newblk_hash); 1124 sema_init(&newblk_in_progress, "newblk", PRIBIO, 0); 1125 1126 /* initialise bioops hack */ 1127 bioops.io_start = softdep_disk_io_initiation; 1128 bioops.io_complete = softdep_disk_write_complete; 1129 bioops.io_deallocate = softdep_deallocate_dependencies; 1130 bioops.io_movedeps = softdep_move_dependencies; 1131 bioops.io_countdeps = softdep_count_dependencies; 1132 } 1133 1134 /* 1135 * Called at mount time to notify the dependency code that a 1136 * filesystem wishes to use it. 1137 */ 1138 int 1139 softdep_mount(devvp, mp, fs, cred) 1140 struct vnode *devvp; 1141 struct mount *mp; 1142 struct fs *fs; 1143 struct ucred *cred; 1144 { 1145 struct csum_total cstotal; 1146 struct cg *cgp; 1147 struct buf *bp; 1148 int error, cyl; 1149 1150 mp->mnt_flag &= ~MNT_ASYNC; 1151 mp->mnt_flag |= MNT_SOFTDEP; 1152 /* 1153 * When doing soft updates, the counters in the 1154 * superblock may have gotten out of sync, so we have 1155 * to scan the cylinder groups and recalculate them. 1156 */ 1157 if (fs->fs_clean != 0) 1158 return (0); 1159 bzero(&cstotal, sizeof cstotal); 1160 for (cyl = 0; cyl < fs->fs_ncg; cyl++) { 1161 if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)), 1162 fs->fs_cgsize, cred, &bp)) != 0) { 1163 brelse(bp); 1164 return (error); 1165 } 1166 cgp = (struct cg *)bp->b_data; 1167 cstotal.cs_nffree += cgp->cg_cs.cs_nffree; 1168 cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree; 1169 cstotal.cs_nifree += cgp->cg_cs.cs_nifree; 1170 cstotal.cs_ndir += cgp->cg_cs.cs_ndir; 1171 fs->fs_cs(fs, cyl) = cgp->cg_cs; 1172 brelse(bp); 1173 } 1174 #ifdef DEBUG 1175 if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal)) 1176 printf("%s: superblock summary recomputed\n", fs->fs_fsmnt); 1177 #endif 1178 bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal); 1179 return (0); 1180 } 1181 1182 /* 1183 * Protecting the freemaps (or bitmaps). 1184 * 1185 * To eliminate the need to execute fsck before mounting a filesystem 1186 * after a power failure, one must (conservatively) guarantee that the 1187 * on-disk copy of the bitmaps never indicate that a live inode or block is 1188 * free. So, when a block or inode is allocated, the bitmap should be 1189 * updated (on disk) before any new pointers. When a block or inode is 1190 * freed, the bitmap should not be updated until all pointers have been 1191 * reset. The latter dependency is handled by the delayed de-allocation 1192 * approach described below for block and inode de-allocation. The former 1193 * dependency is handled by calling the following procedure when a block or 1194 * inode is allocated. When an inode is allocated an "inodedep" is created 1195 * with its DEPCOMPLETE flag cleared until its bitmap is written to disk. 1196 * Each "inodedep" is also inserted into the hash indexing structure so 1197 * that any additional link additions can be made dependent on the inode 1198 * allocation. 1199 * 1200 * The ufs filesystem maintains a number of free block counts (e.g., per 1201 * cylinder group, per cylinder and per <cylinder, rotational position> pair) 1202 * in addition to the bitmaps. These counts are used to improve efficiency 1203 * during allocation and therefore must be consistent with the bitmaps. 1204 * There is no convenient way to guarantee post-crash consistency of these 1205 * counts with simple update ordering, for two main reasons: (1) The counts 1206 * and bitmaps for a single cylinder group block are not in the same disk 1207 * sector. If a disk write is interrupted (e.g., by power failure), one may 1208 * be written and the other not. (2) Some of the counts are located in the 1209 * superblock rather than the cylinder group block. So, we focus our soft 1210 * updates implementation on protecting the bitmaps. When mounting a 1211 * filesystem, we recompute the auxiliary counts from the bitmaps. 1212 */ 1213 1214 /* 1215 * Called just after updating the cylinder group block to allocate an inode. 1216 */ 1217 void 1218 softdep_setup_inomapdep(bp, ip, newinum) 1219 struct buf *bp; /* buffer for cylgroup block with inode map */ 1220 struct inode *ip; /* inode related to allocation */ 1221 ino_t newinum; /* new inode number being allocated */ 1222 { 1223 struct inodedep *inodedep; 1224 struct bmsafemap *bmsafemap; 1225 1226 /* 1227 * Create a dependency for the newly allocated inode. 1228 * Panic if it already exists as something is seriously wrong. 1229 * Otherwise add it to the dependency list for the buffer holding 1230 * the cylinder group map from which it was allocated. 1231 */ 1232 ACQUIRE_LOCK(&lk); 1233 if ((inodedep_lookup(ip->i_fs, newinum, DEPALLOC|NODELAY, &inodedep))) { 1234 FREE_LOCK(&lk); 1235 panic("softdep_setup_inomapdep: found inode"); 1236 } 1237 inodedep->id_buf = bp; 1238 inodedep->id_state &= ~DEPCOMPLETE; 1239 bmsafemap = bmsafemap_lookup(bp); 1240 LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps); 1241 FREE_LOCK(&lk); 1242 } 1243 1244 /* 1245 * Called just after updating the cylinder group block to 1246 * allocate block or fragment. 1247 */ 1248 void 1249 softdep_setup_blkmapdep(bp, fs, newblkno) 1250 struct buf *bp; /* buffer for cylgroup block with block map */ 1251 struct fs *fs; /* filesystem doing allocation */ 1252 ufs2_daddr_t newblkno; /* number of newly allocated block */ 1253 { 1254 struct newblk *newblk; 1255 struct bmsafemap *bmsafemap; 1256 1257 /* 1258 * Create a dependency for the newly allocated block. 1259 * Add it to the dependency list for the buffer holding 1260 * the cylinder group map from which it was allocated. 1261 */ 1262 if (newblk_lookup(fs, newblkno, DEPALLOC, &newblk) != 0) 1263 panic("softdep_setup_blkmapdep: found block"); 1264 ACQUIRE_LOCK(&lk); 1265 newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(bp); 1266 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps); 1267 FREE_LOCK(&lk); 1268 } 1269 1270 /* 1271 * Find the bmsafemap associated with a cylinder group buffer. 1272 * If none exists, create one. The buffer must be locked when 1273 * this routine is called and this routine must be called with 1274 * splbio interrupts blocked. 1275 */ 1276 static struct bmsafemap * 1277 bmsafemap_lookup(bp) 1278 struct buf *bp; 1279 { 1280 struct bmsafemap *bmsafemap; 1281 struct worklist *wk; 1282 1283 #ifdef DEBUG 1284 if (lk.lkt_held == NOHOLDER) 1285 panic("bmsafemap_lookup: lock not held"); 1286 #endif 1287 LIST_FOREACH(wk, &bp->b_dep, wk_list) 1288 if (wk->wk_type == D_BMSAFEMAP) 1289 return (WK_BMSAFEMAP(wk)); 1290 FREE_LOCK(&lk); 1291 MALLOC(bmsafemap, struct bmsafemap *, sizeof(struct bmsafemap), 1292 M_BMSAFEMAP, M_SOFTDEP_FLAGS); 1293 bmsafemap->sm_list.wk_type = D_BMSAFEMAP; 1294 bmsafemap->sm_list.wk_state = 0; 1295 bmsafemap->sm_buf = bp; 1296 LIST_INIT(&bmsafemap->sm_allocdirecthd); 1297 LIST_INIT(&bmsafemap->sm_allocindirhd); 1298 LIST_INIT(&bmsafemap->sm_inodedephd); 1299 LIST_INIT(&bmsafemap->sm_newblkhd); 1300 ACQUIRE_LOCK(&lk); 1301 WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list); 1302 return (bmsafemap); 1303 } 1304 1305 /* 1306 * Direct block allocation dependencies. 1307 * 1308 * When a new block is allocated, the corresponding disk locations must be 1309 * initialized (with zeros or new data) before the on-disk inode points to 1310 * them. Also, the freemap from which the block was allocated must be 1311 * updated (on disk) before the inode's pointer. These two dependencies are 1312 * independent of each other and are needed for all file blocks and indirect 1313 * blocks that are pointed to directly by the inode. Just before the 1314 * "in-core" version of the inode is updated with a newly allocated block 1315 * number, a procedure (below) is called to setup allocation dependency 1316 * structures. These structures are removed when the corresponding 1317 * dependencies are satisfied or when the block allocation becomes obsolete 1318 * (i.e., the file is deleted, the block is de-allocated, or the block is a 1319 * fragment that gets upgraded). All of these cases are handled in 1320 * procedures described later. 1321 * 1322 * When a file extension causes a fragment to be upgraded, either to a larger 1323 * fragment or to a full block, the on-disk location may change (if the 1324 * previous fragment could not simply be extended). In this case, the old 1325 * fragment must be de-allocated, but not until after the inode's pointer has 1326 * been updated. In most cases, this is handled by later procedures, which 1327 * will construct a "freefrag" structure to be added to the workitem queue 1328 * when the inode update is complete (or obsolete). The main exception to 1329 * this is when an allocation occurs while a pending allocation dependency 1330 * (for the same block pointer) remains. This case is handled in the main 1331 * allocation dependency setup procedure by immediately freeing the 1332 * unreferenced fragments. 1333 */ 1334 void 1335 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 1336 struct inode *ip; /* inode to which block is being added */ 1337 ufs_lbn_t lbn; /* block pointer within inode */ 1338 ufs2_daddr_t newblkno; /* disk block number being added */ 1339 ufs2_daddr_t oldblkno; /* previous block number, 0 unless frag */ 1340 long newsize; /* size of new block */ 1341 long oldsize; /* size of new block */ 1342 struct buf *bp; /* bp for allocated block */ 1343 { 1344 struct allocdirect *adp, *oldadp; 1345 struct allocdirectlst *adphead; 1346 struct bmsafemap *bmsafemap; 1347 struct inodedep *inodedep; 1348 struct pagedep *pagedep; 1349 struct newblk *newblk; 1350 1351 MALLOC(adp, struct allocdirect *, sizeof(struct allocdirect), 1352 M_ALLOCDIRECT, M_SOFTDEP_FLAGS|M_ZERO); 1353 adp->ad_list.wk_type = D_ALLOCDIRECT; 1354 adp->ad_lbn = lbn; 1355 adp->ad_newblkno = newblkno; 1356 adp->ad_oldblkno = oldblkno; 1357 adp->ad_newsize = newsize; 1358 adp->ad_oldsize = oldsize; 1359 adp->ad_state = ATTACHED; 1360 LIST_INIT(&adp->ad_newdirblk); 1361 if (newblkno == oldblkno) 1362 adp->ad_freefrag = NULL; 1363 else 1364 adp->ad_freefrag = newfreefrag(ip, oldblkno, oldsize); 1365 1366 if (newblk_lookup(ip->i_fs, newblkno, 0, &newblk) == 0) 1367 panic("softdep_setup_allocdirect: lost block"); 1368 1369 ACQUIRE_LOCK(&lk); 1370 inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC | NODELAY, &inodedep); 1371 adp->ad_inodedep = inodedep; 1372 1373 if (newblk->nb_state == DEPCOMPLETE) { 1374 adp->ad_state |= DEPCOMPLETE; 1375 adp->ad_buf = NULL; 1376 } else { 1377 bmsafemap = newblk->nb_bmsafemap; 1378 adp->ad_buf = bmsafemap->sm_buf; 1379 LIST_REMOVE(newblk, nb_deps); 1380 LIST_INSERT_HEAD(&bmsafemap->sm_allocdirecthd, adp, ad_deps); 1381 } 1382 LIST_REMOVE(newblk, nb_hash); 1383 FREE(newblk, M_NEWBLK); 1384 1385 WORKLIST_INSERT(&bp->b_dep, &adp->ad_list); 1386 if (lbn >= NDADDR) { 1387 /* allocating an indirect block */ 1388 if (oldblkno != 0) { 1389 FREE_LOCK(&lk); 1390 panic("softdep_setup_allocdirect: non-zero indir"); 1391 } 1392 } else { 1393 /* 1394 * Allocating a direct block. 1395 * 1396 * If we are allocating a directory block, then we must 1397 * allocate an associated pagedep to track additions and 1398 * deletions. 1399 */ 1400 if ((ip->i_mode & IFMT) == IFDIR && 1401 pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0) 1402 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 1403 } 1404 /* 1405 * The list of allocdirects must be kept in sorted and ascending 1406 * order so that the rollback routines can quickly determine the 1407 * first uncommitted block (the size of the file stored on disk 1408 * ends at the end of the lowest committed fragment, or if there 1409 * are no fragments, at the end of the highest committed block). 1410 * Since files generally grow, the typical case is that the new 1411 * block is to be added at the end of the list. We speed this 1412 * special case by checking against the last allocdirect in the 1413 * list before laboriously traversing the list looking for the 1414 * insertion point. 1415 */ 1416 adphead = &inodedep->id_newinoupdt; 1417 oldadp = TAILQ_LAST(adphead, allocdirectlst); 1418 if (oldadp == NULL || oldadp->ad_lbn <= lbn) { 1419 /* insert at end of list */ 1420 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 1421 if (oldadp != NULL && oldadp->ad_lbn == lbn) 1422 allocdirect_merge(adphead, adp, oldadp); 1423 FREE_LOCK(&lk); 1424 return; 1425 } 1426 TAILQ_FOREACH(oldadp, adphead, ad_next) { 1427 if (oldadp->ad_lbn >= lbn) 1428 break; 1429 } 1430 if (oldadp == NULL) { 1431 FREE_LOCK(&lk); 1432 panic("softdep_setup_allocdirect: lost entry"); 1433 } 1434 /* insert in middle of list */ 1435 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 1436 if (oldadp->ad_lbn == lbn) 1437 allocdirect_merge(adphead, adp, oldadp); 1438 FREE_LOCK(&lk); 1439 } 1440 1441 /* 1442 * Replace an old allocdirect dependency with a newer one. 1443 * This routine must be called with splbio interrupts blocked. 1444 */ 1445 static void 1446 allocdirect_merge(adphead, newadp, oldadp) 1447 struct allocdirectlst *adphead; /* head of list holding allocdirects */ 1448 struct allocdirect *newadp; /* allocdirect being added */ 1449 struct allocdirect *oldadp; /* existing allocdirect being checked */ 1450 { 1451 struct worklist *wk; 1452 struct freefrag *freefrag; 1453 struct newdirblk *newdirblk; 1454 1455 #ifdef DEBUG 1456 if (lk.lkt_held == NOHOLDER) 1457 panic("allocdirect_merge: lock not held"); 1458 #endif 1459 if (newadp->ad_oldblkno != oldadp->ad_newblkno || 1460 newadp->ad_oldsize != oldadp->ad_newsize || 1461 newadp->ad_lbn >= NDADDR) { 1462 FREE_LOCK(&lk); 1463 panic("%s %jd != new %jd || old size %ld != new %ld", 1464 "allocdirect_merge: old blkno", 1465 (intmax_t)newadp->ad_oldblkno, 1466 (intmax_t)oldadp->ad_newblkno, 1467 newadp->ad_oldsize, oldadp->ad_newsize); 1468 } 1469 newadp->ad_oldblkno = oldadp->ad_oldblkno; 1470 newadp->ad_oldsize = oldadp->ad_oldsize; 1471 /* 1472 * If the old dependency had a fragment to free or had never 1473 * previously had a block allocated, then the new dependency 1474 * can immediately post its freefrag and adopt the old freefrag. 1475 * This action is done by swapping the freefrag dependencies. 1476 * The new dependency gains the old one's freefrag, and the 1477 * old one gets the new one and then immediately puts it on 1478 * the worklist when it is freed by free_allocdirect. It is 1479 * not possible to do this swap when the old dependency had a 1480 * non-zero size but no previous fragment to free. This condition 1481 * arises when the new block is an extension of the old block. 1482 * Here, the first part of the fragment allocated to the new 1483 * dependency is part of the block currently claimed on disk by 1484 * the old dependency, so cannot legitimately be freed until the 1485 * conditions for the new dependency are fulfilled. 1486 */ 1487 if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) { 1488 freefrag = newadp->ad_freefrag; 1489 newadp->ad_freefrag = oldadp->ad_freefrag; 1490 oldadp->ad_freefrag = freefrag; 1491 } 1492 /* 1493 * If we are tracking a new directory-block allocation, 1494 * move it from the old allocdirect to the new allocdirect. 1495 */ 1496 if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) { 1497 newdirblk = WK_NEWDIRBLK(wk); 1498 WORKLIST_REMOVE(&newdirblk->db_list); 1499 if (LIST_FIRST(&oldadp->ad_newdirblk) != NULL) 1500 panic("allocdirect_merge: extra newdirblk"); 1501 WORKLIST_INSERT(&newadp->ad_newdirblk, &newdirblk->db_list); 1502 } 1503 free_allocdirect(adphead, oldadp, 0); 1504 } 1505 1506 /* 1507 * Allocate a new freefrag structure if needed. 1508 */ 1509 static struct freefrag * 1510 newfreefrag(ip, blkno, size) 1511 struct inode *ip; 1512 ufs2_daddr_t blkno; 1513 long size; 1514 { 1515 struct freefrag *freefrag; 1516 struct fs *fs; 1517 1518 if (blkno == 0) 1519 return (NULL); 1520 fs = ip->i_fs; 1521 if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag) 1522 panic("newfreefrag: frag size"); 1523 MALLOC(freefrag, struct freefrag *, sizeof(struct freefrag), 1524 M_FREEFRAG, M_SOFTDEP_FLAGS); 1525 freefrag->ff_list.wk_type = D_FREEFRAG; 1526 freefrag->ff_state = 0; 1527 freefrag->ff_inum = ip->i_number; 1528 freefrag->ff_mnt = ITOV(ip)->v_mount; 1529 freefrag->ff_blkno = blkno; 1530 freefrag->ff_fragsize = size; 1531 return (freefrag); 1532 } 1533 1534 /* 1535 * This workitem de-allocates fragments that were replaced during 1536 * file block allocation. 1537 */ 1538 static void 1539 handle_workitem_freefrag(freefrag) 1540 struct freefrag *freefrag; 1541 { 1542 struct ufsmount *ump = VFSTOUFS(freefrag->ff_mnt); 1543 1544 ffs_blkfree(ump->um_fs, ump->um_devvp, freefrag->ff_blkno, 1545 freefrag->ff_fragsize, freefrag->ff_inum); 1546 FREE(freefrag, M_FREEFRAG); 1547 } 1548 1549 /* 1550 * Indirect block allocation dependencies. 1551 * 1552 * The same dependencies that exist for a direct block also exist when 1553 * a new block is allocated and pointed to by an entry in a block of 1554 * indirect pointers. The undo/redo states described above are also 1555 * used here. Because an indirect block contains many pointers that 1556 * may have dependencies, a second copy of the entire in-memory indirect 1557 * block is kept. The buffer cache copy is always completely up-to-date. 1558 * The second copy, which is used only as a source for disk writes, 1559 * contains only the safe pointers (i.e., those that have no remaining 1560 * update dependencies). The second copy is freed when all pointers 1561 * are safe. The cache is not allowed to replace indirect blocks with 1562 * pending update dependencies. If a buffer containing an indirect 1563 * block with dependencies is written, these routines will mark it 1564 * dirty again. It can only be successfully written once all the 1565 * dependencies are removed. The ffs_fsync routine in conjunction with 1566 * softdep_sync_metadata work together to get all the dependencies 1567 * removed so that a file can be successfully written to disk. Three 1568 * procedures are used when setting up indirect block pointer 1569 * dependencies. The division is necessary because of the organization 1570 * of the "balloc" routine and because of the distinction between file 1571 * pages and file metadata blocks. 1572 */ 1573 1574 /* 1575 * Allocate a new allocindir structure. 1576 */ 1577 static struct allocindir * 1578 newallocindir(ip, ptrno, newblkno, oldblkno) 1579 struct inode *ip; /* inode for file being extended */ 1580 int ptrno; /* offset of pointer in indirect block */ 1581 ufs2_daddr_t newblkno; /* disk block number being added */ 1582 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 1583 { 1584 struct allocindir *aip; 1585 1586 MALLOC(aip, struct allocindir *, sizeof(struct allocindir), 1587 M_ALLOCINDIR, M_SOFTDEP_FLAGS|M_ZERO); 1588 aip->ai_list.wk_type = D_ALLOCINDIR; 1589 aip->ai_state = ATTACHED; 1590 aip->ai_offset = ptrno; 1591 aip->ai_newblkno = newblkno; 1592 aip->ai_oldblkno = oldblkno; 1593 aip->ai_freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize); 1594 return (aip); 1595 } 1596 1597 /* 1598 * Called just before setting an indirect block pointer 1599 * to a newly allocated file page. 1600 */ 1601 void 1602 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 1603 struct inode *ip; /* inode for file being extended */ 1604 ufs_lbn_t lbn; /* allocated block number within file */ 1605 struct buf *bp; /* buffer with indirect blk referencing page */ 1606 int ptrno; /* offset of pointer in indirect block */ 1607 ufs2_daddr_t newblkno; /* disk block number being added */ 1608 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 1609 struct buf *nbp; /* buffer holding allocated page */ 1610 { 1611 struct allocindir *aip; 1612 struct pagedep *pagedep; 1613 1614 aip = newallocindir(ip, ptrno, newblkno, oldblkno); 1615 ACQUIRE_LOCK(&lk); 1616 /* 1617 * If we are allocating a directory page, then we must 1618 * allocate an associated pagedep to track additions and 1619 * deletions. 1620 */ 1621 if ((ip->i_mode & IFMT) == IFDIR && 1622 pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0) 1623 WORKLIST_INSERT(&nbp->b_dep, &pagedep->pd_list); 1624 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_list); 1625 FREE_LOCK(&lk); 1626 setup_allocindir_phase2(bp, ip, aip); 1627 } 1628 1629 /* 1630 * Called just before setting an indirect block pointer to a 1631 * newly allocated indirect block. 1632 */ 1633 void 1634 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 1635 struct buf *nbp; /* newly allocated indirect block */ 1636 struct inode *ip; /* inode for file being extended */ 1637 struct buf *bp; /* indirect block referencing allocated block */ 1638 int ptrno; /* offset of pointer in indirect block */ 1639 ufs2_daddr_t newblkno; /* disk block number being added */ 1640 { 1641 struct allocindir *aip; 1642 1643 aip = newallocindir(ip, ptrno, newblkno, 0); 1644 ACQUIRE_LOCK(&lk); 1645 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_list); 1646 FREE_LOCK(&lk); 1647 setup_allocindir_phase2(bp, ip, aip); 1648 } 1649 1650 /* 1651 * Called to finish the allocation of the "aip" allocated 1652 * by one of the two routines above. 1653 */ 1654 static void 1655 setup_allocindir_phase2(bp, ip, aip) 1656 struct buf *bp; /* in-memory copy of the indirect block */ 1657 struct inode *ip; /* inode for file being extended */ 1658 struct allocindir *aip; /* allocindir allocated by the above routines */ 1659 { 1660 struct worklist *wk; 1661 struct indirdep *indirdep, *newindirdep; 1662 struct bmsafemap *bmsafemap; 1663 struct allocindir *oldaip; 1664 struct freefrag *freefrag; 1665 struct newblk *newblk; 1666 ufs2_daddr_t blkno; 1667 1668 if (bp->b_lblkno >= 0) 1669 panic("setup_allocindir_phase2: not indir blk"); 1670 for (indirdep = NULL, newindirdep = NULL; ; ) { 1671 ACQUIRE_LOCK(&lk); 1672 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 1673 if (wk->wk_type != D_INDIRDEP) 1674 continue; 1675 indirdep = WK_INDIRDEP(wk); 1676 break; 1677 } 1678 if (indirdep == NULL && newindirdep) { 1679 indirdep = newindirdep; 1680 WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list); 1681 newindirdep = NULL; 1682 } 1683 FREE_LOCK(&lk); 1684 if (indirdep) { 1685 if (newblk_lookup(ip->i_fs, aip->ai_newblkno, 0, 1686 &newblk) == 0) 1687 panic("setup_allocindir: lost block"); 1688 ACQUIRE_LOCK(&lk); 1689 if (newblk->nb_state == DEPCOMPLETE) { 1690 aip->ai_state |= DEPCOMPLETE; 1691 aip->ai_buf = NULL; 1692 } else { 1693 bmsafemap = newblk->nb_bmsafemap; 1694 aip->ai_buf = bmsafemap->sm_buf; 1695 LIST_REMOVE(newblk, nb_deps); 1696 LIST_INSERT_HEAD(&bmsafemap->sm_allocindirhd, 1697 aip, ai_deps); 1698 } 1699 LIST_REMOVE(newblk, nb_hash); 1700 FREE(newblk, M_NEWBLK); 1701 aip->ai_indirdep = indirdep; 1702 /* 1703 * Check to see if there is an existing dependency 1704 * for this block. If there is, merge the old 1705 * dependency into the new one. 1706 */ 1707 if (aip->ai_oldblkno == 0) 1708 oldaip = NULL; 1709 else 1710 1711 LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) 1712 if (oldaip->ai_offset == aip->ai_offset) 1713 break; 1714 freefrag = NULL; 1715 if (oldaip != NULL) { 1716 if (oldaip->ai_newblkno != aip->ai_oldblkno) { 1717 FREE_LOCK(&lk); 1718 panic("setup_allocindir_phase2: blkno"); 1719 } 1720 aip->ai_oldblkno = oldaip->ai_oldblkno; 1721 freefrag = aip->ai_freefrag; 1722 aip->ai_freefrag = oldaip->ai_freefrag; 1723 oldaip->ai_freefrag = NULL; 1724 free_allocindir(oldaip, NULL); 1725 } 1726 LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next); 1727 if (ip->i_ump->um_fstype == UFS1) 1728 ((ufs1_daddr_t *)indirdep->ir_savebp->b_data) 1729 [aip->ai_offset] = aip->ai_oldblkno; 1730 else 1731 ((ufs2_daddr_t *)indirdep->ir_savebp->b_data) 1732 [aip->ai_offset] = aip->ai_oldblkno; 1733 FREE_LOCK(&lk); 1734 if (freefrag != NULL) 1735 handle_workitem_freefrag(freefrag); 1736 } 1737 if (newindirdep) { 1738 if (indirdep->ir_savebp != NULL) 1739 brelse(newindirdep->ir_savebp); 1740 WORKITEM_FREE((caddr_t)newindirdep, D_INDIRDEP); 1741 } 1742 if (indirdep) 1743 break; 1744 MALLOC(newindirdep, struct indirdep *, sizeof(struct indirdep), 1745 M_INDIRDEP, M_SOFTDEP_FLAGS); 1746 newindirdep->ir_list.wk_type = D_INDIRDEP; 1747 newindirdep->ir_state = ATTACHED; 1748 if (ip->i_ump->um_fstype == UFS1) 1749 newindirdep->ir_state |= UFS1FMT; 1750 LIST_INIT(&newindirdep->ir_deplisthd); 1751 LIST_INIT(&newindirdep->ir_donehd); 1752 if (bp->b_blkno == bp->b_lblkno) { 1753 ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, NULL, NULL); 1754 bp->b_blkno = blkno; 1755 } 1756 newindirdep->ir_savebp = 1757 getblk(ip->i_devvp, bp->b_blkno, bp->b_bcount, 0, 0); 1758 BUF_KERNPROC(newindirdep->ir_savebp); 1759 bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount); 1760 } 1761 } 1762 1763 /* 1764 * Block de-allocation dependencies. 1765 * 1766 * When blocks are de-allocated, the on-disk pointers must be nullified before 1767 * the blocks are made available for use by other files. (The true 1768 * requirement is that old pointers must be nullified before new on-disk 1769 * pointers are set. We chose this slightly more stringent requirement to 1770 * reduce complexity.) Our implementation handles this dependency by updating 1771 * the inode (or indirect block) appropriately but delaying the actual block 1772 * de-allocation (i.e., freemap and free space count manipulation) until 1773 * after the updated versions reach stable storage. After the disk is 1774 * updated, the blocks can be safely de-allocated whenever it is convenient. 1775 * This implementation handles only the common case of reducing a file's 1776 * length to zero. Other cases are handled by the conventional synchronous 1777 * write approach. 1778 * 1779 * The ffs implementation with which we worked double-checks 1780 * the state of the block pointers and file size as it reduces 1781 * a file's length. Some of this code is replicated here in our 1782 * soft updates implementation. The freeblks->fb_chkcnt field is 1783 * used to transfer a part of this information to the procedure 1784 * that eventually de-allocates the blocks. 1785 * 1786 * This routine should be called from the routine that shortens 1787 * a file's length, before the inode's size or block pointers 1788 * are modified. It will save the block pointer information for 1789 * later release and zero the inode so that the calling routine 1790 * can release it. 1791 */ 1792 void 1793 softdep_setup_freeblocks(ip, length) 1794 struct inode *ip; /* The inode whose length is to be reduced */ 1795 off_t length; /* The new length for the file */ 1796 { 1797 struct freeblks *freeblks; 1798 struct inodedep *inodedep; 1799 struct allocdirect *adp; 1800 struct vnode *vp; 1801 struct buf *bp; 1802 struct fs *fs; 1803 int i, delay, error; 1804 1805 fs = ip->i_fs; 1806 if (length != 0) 1807 panic("softdep_setup_freeblocks: non-zero length"); 1808 MALLOC(freeblks, struct freeblks *, sizeof(struct freeblks), 1809 M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO); 1810 freeblks->fb_list.wk_type = D_FREEBLKS; 1811 freeblks->fb_uid = ip->i_uid; 1812 freeblks->fb_previousinum = ip->i_number; 1813 freeblks->fb_devvp = ip->i_devvp; 1814 freeblks->fb_mnt = ITOV(ip)->v_mount; 1815 freeblks->fb_oldsize = ip->i_size; 1816 freeblks->fb_newsize = length; 1817 freeblks->fb_chkcnt = DIP(ip, i_blocks); 1818 for (i = 0; i < NDADDR; i++) { 1819 freeblks->fb_dblks[i] = DIP(ip, i_db[i]); 1820 DIP(ip, i_db[i]) = 0; 1821 } 1822 for (i = 0; i < NIADDR; i++) { 1823 freeblks->fb_iblks[i] = DIP(ip, i_ib[i]); 1824 DIP(ip, i_ib[i]) = 0; 1825 } 1826 DIP(ip, i_blocks) = 0; 1827 ip->i_size = 0; 1828 DIP(ip, i_size) = 0; 1829 /* 1830 * If the file was removed, then the space being freed was 1831 * accounted for then (see softdep_filereleased()). If the 1832 * file is merely being truncated, then we account for it now. 1833 */ 1834 if ((ip->i_flag & IN_SPACECOUNTED) == 0) 1835 fs->fs_pendingblocks += freeblks->fb_chkcnt; 1836 /* 1837 * Push the zero'ed inode to to its disk buffer so that we are free 1838 * to delete its dependencies below. Once the dependencies are gone 1839 * the buffer can be safely released. 1840 */ 1841 if ((error = bread(ip->i_devvp, 1842 fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 1843 (int)fs->fs_bsize, NOCRED, &bp)) != 0) { 1844 brelse(bp); 1845 softdep_error("softdep_setup_freeblocks", error); 1846 } 1847 if (ip->i_ump->um_fstype == UFS1) 1848 *((struct ufs1_dinode *)bp->b_data + 1849 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1; 1850 else 1851 *((struct ufs2_dinode *)bp->b_data + 1852 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2; 1853 /* 1854 * Find and eliminate any inode dependencies. 1855 */ 1856 ACQUIRE_LOCK(&lk); 1857 (void) inodedep_lookup(fs, ip->i_number, DEPALLOC, &inodedep); 1858 if ((inodedep->id_state & IOSTARTED) != 0) { 1859 FREE_LOCK(&lk); 1860 panic("softdep_setup_freeblocks: inode busy"); 1861 } 1862 /* 1863 * Add the freeblks structure to the list of operations that 1864 * must await the zero'ed inode being written to disk. If we 1865 * still have a bitmap dependency (delay == 0), then the inode 1866 * has never been written to disk, so we can process the 1867 * freeblks below once we have deleted the dependencies. 1868 */ 1869 delay = (inodedep->id_state & DEPCOMPLETE); 1870 if (delay) 1871 WORKLIST_INSERT(&inodedep->id_bufwait, &freeblks->fb_list); 1872 /* 1873 * Because the file length has been truncated to zero, any 1874 * pending block allocation dependency structures associated 1875 * with this inode are obsolete and can simply be de-allocated. 1876 * We must first merge the two dependency lists to get rid of 1877 * any duplicate freefrag structures, then purge the merged list. 1878 * If we still have a bitmap dependency, then the inode has never 1879 * been written to disk, so we can free any fragments without delay. 1880 */ 1881 merge_inode_lists(inodedep); 1882 while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != 0) 1883 free_allocdirect(&inodedep->id_inoupdt, adp, delay); 1884 FREE_LOCK(&lk); 1885 bdwrite(bp); 1886 /* 1887 * We must wait for any I/O in progress to finish so that 1888 * all potential buffers on the dirty list will be visible. 1889 * Once they are all there, walk the list and get rid of 1890 * any dependencies. 1891 */ 1892 vp = ITOV(ip); 1893 ACQUIRE_LOCK(&lk); 1894 drain_output(vp, 1); 1895 while (getdirtybuf(&TAILQ_FIRST(&vp->v_dirtyblkhd), MNT_WAIT)) { 1896 bp = TAILQ_FIRST(&vp->v_dirtyblkhd); 1897 (void) inodedep_lookup(fs, ip->i_number, 0, &inodedep); 1898 deallocate_dependencies(bp, inodedep); 1899 bp->b_flags |= B_INVAL | B_NOCACHE; 1900 FREE_LOCK(&lk); 1901 brelse(bp); 1902 ACQUIRE_LOCK(&lk); 1903 } 1904 if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) != 0) 1905 (void) free_inodedep(inodedep); 1906 FREE_LOCK(&lk); 1907 /* 1908 * If the inode has never been written to disk (delay == 0), 1909 * then we can process the freeblks now that we have deleted 1910 * the dependencies. 1911 */ 1912 if (!delay) 1913 handle_workitem_freeblocks(freeblks, 0); 1914 } 1915 1916 /* 1917 * Reclaim any dependency structures from a buffer that is about to 1918 * be reallocated to a new vnode. The buffer must be locked, thus, 1919 * no I/O completion operations can occur while we are manipulating 1920 * its associated dependencies. The mutex is held so that other I/O's 1921 * associated with related dependencies do not occur. 1922 */ 1923 static void 1924 deallocate_dependencies(bp, inodedep) 1925 struct buf *bp; 1926 struct inodedep *inodedep; 1927 { 1928 struct worklist *wk; 1929 struct indirdep *indirdep; 1930 struct allocindir *aip; 1931 struct pagedep *pagedep; 1932 struct dirrem *dirrem; 1933 struct diradd *dap; 1934 int i; 1935 1936 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) { 1937 switch (wk->wk_type) { 1938 1939 case D_INDIRDEP: 1940 indirdep = WK_INDIRDEP(wk); 1941 /* 1942 * None of the indirect pointers will ever be visible, 1943 * so they can simply be tossed. GOINGAWAY ensures 1944 * that allocated pointers will be saved in the buffer 1945 * cache until they are freed. Note that they will 1946 * only be able to be found by their physical address 1947 * since the inode mapping the logical address will 1948 * be gone. The save buffer used for the safe copy 1949 * was allocated in setup_allocindir_phase2 using 1950 * the physical address so it could be used for this 1951 * purpose. Hence we swap the safe copy with the real 1952 * copy, allowing the safe copy to be freed and holding 1953 * on to the real copy for later use in indir_trunc. 1954 */ 1955 if (indirdep->ir_state & GOINGAWAY) { 1956 FREE_LOCK(&lk); 1957 panic("deallocate_dependencies: already gone"); 1958 } 1959 indirdep->ir_state |= GOINGAWAY; 1960 while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != 0) 1961 free_allocindir(aip, inodedep); 1962 if (bp->b_lblkno >= 0 || 1963 bp->b_blkno != indirdep->ir_savebp->b_lblkno) { 1964 FREE_LOCK(&lk); 1965 panic("deallocate_dependencies: not indir"); 1966 } 1967 bcopy(bp->b_data, indirdep->ir_savebp->b_data, 1968 bp->b_bcount); 1969 WORKLIST_REMOVE(wk); 1970 WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, wk); 1971 continue; 1972 1973 case D_PAGEDEP: 1974 pagedep = WK_PAGEDEP(wk); 1975 /* 1976 * None of the directory additions will ever be 1977 * visible, so they can simply be tossed. 1978 */ 1979 for (i = 0; i < DAHASHSZ; i++) 1980 while ((dap = 1981 LIST_FIRST(&pagedep->pd_diraddhd[i]))) 1982 free_diradd(dap); 1983 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != 0) 1984 free_diradd(dap); 1985 /* 1986 * Copy any directory remove dependencies to the list 1987 * to be processed after the zero'ed inode is written. 1988 * If the inode has already been written, then they 1989 * can be dumped directly onto the work list. 1990 */ 1991 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) { 1992 LIST_REMOVE(dirrem, dm_next); 1993 dirrem->dm_dirinum = pagedep->pd_ino; 1994 if (inodedep == NULL || 1995 (inodedep->id_state & ALLCOMPLETE) == 1996 ALLCOMPLETE) 1997 add_to_worklist(&dirrem->dm_list); 1998 else 1999 WORKLIST_INSERT(&inodedep->id_bufwait, 2000 &dirrem->dm_list); 2001 } 2002 if ((pagedep->pd_state & NEWBLOCK) != 0) { 2003 LIST_FOREACH(wk, &inodedep->id_bufwait, wk_list) 2004 if (wk->wk_type == D_NEWDIRBLK && 2005 WK_NEWDIRBLK(wk)->db_pagedep == 2006 pagedep) 2007 break; 2008 if (wk != NULL) { 2009 WORKLIST_REMOVE(wk); 2010 free_newdirblk(WK_NEWDIRBLK(wk)); 2011 } else { 2012 FREE_LOCK(&lk); 2013 panic("deallocate_dependencies: " 2014 "lost pagedep"); 2015 } 2016 } 2017 WORKLIST_REMOVE(&pagedep->pd_list); 2018 LIST_REMOVE(pagedep, pd_hash); 2019 WORKITEM_FREE(pagedep, D_PAGEDEP); 2020 continue; 2021 2022 case D_ALLOCINDIR: 2023 free_allocindir(WK_ALLOCINDIR(wk), inodedep); 2024 continue; 2025 2026 case D_ALLOCDIRECT: 2027 case D_INODEDEP: 2028 FREE_LOCK(&lk); 2029 panic("deallocate_dependencies: Unexpected type %s", 2030 TYPENAME(wk->wk_type)); 2031 /* NOTREACHED */ 2032 2033 default: 2034 FREE_LOCK(&lk); 2035 panic("deallocate_dependencies: Unknown type %s", 2036 TYPENAME(wk->wk_type)); 2037 /* NOTREACHED */ 2038 } 2039 } 2040 } 2041 2042 /* 2043 * Free an allocdirect. Generate a new freefrag work request if appropriate. 2044 * This routine must be called with splbio interrupts blocked. 2045 */ 2046 static void 2047 free_allocdirect(adphead, adp, delay) 2048 struct allocdirectlst *adphead; 2049 struct allocdirect *adp; 2050 int delay; 2051 { 2052 struct newdirblk *newdirblk; 2053 struct worklist *wk; 2054 2055 #ifdef DEBUG 2056 if (lk.lkt_held == NOHOLDER) 2057 panic("free_allocdirect: lock not held"); 2058 #endif 2059 if ((adp->ad_state & DEPCOMPLETE) == 0) 2060 LIST_REMOVE(adp, ad_deps); 2061 TAILQ_REMOVE(adphead, adp, ad_next); 2062 if ((adp->ad_state & COMPLETE) == 0) 2063 WORKLIST_REMOVE(&adp->ad_list); 2064 if (adp->ad_freefrag != NULL) { 2065 if (delay) 2066 WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait, 2067 &adp->ad_freefrag->ff_list); 2068 else 2069 add_to_worklist(&adp->ad_freefrag->ff_list); 2070 } 2071 if ((wk = LIST_FIRST(&adp->ad_newdirblk)) != NULL) { 2072 newdirblk = WK_NEWDIRBLK(wk); 2073 WORKLIST_REMOVE(&newdirblk->db_list); 2074 if (LIST_FIRST(&adp->ad_newdirblk) != NULL) 2075 panic("free_allocdirect: extra newdirblk"); 2076 if (delay) 2077 WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait, 2078 &newdirblk->db_list); 2079 else 2080 free_newdirblk(newdirblk); 2081 } 2082 WORKITEM_FREE(adp, D_ALLOCDIRECT); 2083 } 2084 2085 /* 2086 * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep. 2087 * This routine must be called with splbio interrupts blocked. 2088 */ 2089 static void 2090 free_newdirblk(newdirblk) 2091 struct newdirblk *newdirblk; 2092 { 2093 struct pagedep *pagedep; 2094 struct diradd *dap; 2095 int i; 2096 2097 #ifdef DEBUG 2098 if (lk.lkt_held == NOHOLDER) 2099 panic("free_newdirblk: lock not held"); 2100 #endif 2101 /* 2102 * If the pagedep is still linked onto the directory buffer 2103 * dependency chain, then some of the entries on the 2104 * pd_pendinghd list may not be committed to disk yet. In 2105 * this case, we will simply clear the NEWBLOCK flag and 2106 * let the pd_pendinghd list be processed when the pagedep 2107 * is next written. If the pagedep is no longer on the buffer 2108 * dependency chain, then all the entries on the pd_pending 2109 * list are committed to disk and we can free them here. 2110 */ 2111 pagedep = newdirblk->db_pagedep; 2112 pagedep->pd_state &= ~NEWBLOCK; 2113 if ((pagedep->pd_state & ONWORKLIST) == 0) 2114 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 2115 free_diradd(dap); 2116 /* 2117 * If no dependencies remain, the pagedep will be freed. 2118 */ 2119 for (i = 0; i < DAHASHSZ; i++) 2120 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) != NULL) 2121 break; 2122 if (i == DAHASHSZ && (pagedep->pd_state & ONWORKLIST) == 0) { 2123 LIST_REMOVE(pagedep, pd_hash); 2124 WORKITEM_FREE(pagedep, D_PAGEDEP); 2125 } 2126 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 2127 } 2128 2129 /* 2130 * Prepare an inode to be freed. The actual free operation is not 2131 * done until the zero'ed inode has been written to disk. 2132 */ 2133 void 2134 softdep_freefile(pvp, ino, mode) 2135 struct vnode *pvp; 2136 ino_t ino; 2137 int mode; 2138 { 2139 struct inode *ip = VTOI(pvp); 2140 struct inodedep *inodedep; 2141 struct freefile *freefile; 2142 2143 /* 2144 * This sets up the inode de-allocation dependency. 2145 */ 2146 MALLOC(freefile, struct freefile *, sizeof(struct freefile), 2147 M_FREEFILE, M_SOFTDEP_FLAGS); 2148 freefile->fx_list.wk_type = D_FREEFILE; 2149 freefile->fx_list.wk_state = 0; 2150 freefile->fx_mode = mode; 2151 freefile->fx_oldinum = ino; 2152 freefile->fx_devvp = ip->i_devvp; 2153 freefile->fx_mnt = ITOV(ip)->v_mount; 2154 if ((ip->i_flag & IN_SPACECOUNTED) == 0) 2155 ip->i_fs->fs_pendinginodes += 1; 2156 2157 /* 2158 * If the inodedep does not exist, then the zero'ed inode has 2159 * been written to disk. If the allocated inode has never been 2160 * written to disk, then the on-disk inode is zero'ed. In either 2161 * case we can free the file immediately. 2162 */ 2163 ACQUIRE_LOCK(&lk); 2164 if (inodedep_lookup(ip->i_fs, ino, 0, &inodedep) == 0 || 2165 check_inode_unwritten(inodedep)) { 2166 FREE_LOCK(&lk); 2167 handle_workitem_freefile(freefile); 2168 return; 2169 } 2170 WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list); 2171 FREE_LOCK(&lk); 2172 } 2173 2174 /* 2175 * Check to see if an inode has never been written to disk. If 2176 * so free the inodedep and return success, otherwise return failure. 2177 * This routine must be called with splbio interrupts blocked. 2178 * 2179 * If we still have a bitmap dependency, then the inode has never 2180 * been written to disk. Drop the dependency as it is no longer 2181 * necessary since the inode is being deallocated. We set the 2182 * ALLCOMPLETE flags since the bitmap now properly shows that the 2183 * inode is not allocated. Even if the inode is actively being 2184 * written, it has been rolled back to its zero'ed state, so we 2185 * are ensured that a zero inode is what is on the disk. For short 2186 * lived files, this change will usually result in removing all the 2187 * dependencies from the inode so that it can be freed immediately. 2188 */ 2189 static int 2190 check_inode_unwritten(inodedep) 2191 struct inodedep *inodedep; 2192 { 2193 2194 if ((inodedep->id_state & DEPCOMPLETE) != 0 || 2195 LIST_FIRST(&inodedep->id_pendinghd) != NULL || 2196 LIST_FIRST(&inodedep->id_bufwait) != NULL || 2197 LIST_FIRST(&inodedep->id_inowait) != NULL || 2198 TAILQ_FIRST(&inodedep->id_inoupdt) != NULL || 2199 TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL || 2200 inodedep->id_nlinkdelta != 0) 2201 return (0); 2202 inodedep->id_state |= ALLCOMPLETE; 2203 LIST_REMOVE(inodedep, id_deps); 2204 inodedep->id_buf = NULL; 2205 if (inodedep->id_state & ONWORKLIST) 2206 WORKLIST_REMOVE(&inodedep->id_list); 2207 if (inodedep->id_savedino1 != NULL) { 2208 FREE(inodedep->id_savedino1, M_INODEDEP); 2209 inodedep->id_savedino1 = NULL; 2210 } 2211 if (free_inodedep(inodedep) == 0) { 2212 FREE_LOCK(&lk); 2213 panic("check_inode_unwritten: busy inode"); 2214 } 2215 return (1); 2216 } 2217 2218 /* 2219 * Try to free an inodedep structure. Return 1 if it could be freed. 2220 */ 2221 static int 2222 free_inodedep(inodedep) 2223 struct inodedep *inodedep; 2224 { 2225 2226 if ((inodedep->id_state & ONWORKLIST) != 0 || 2227 (inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE || 2228 LIST_FIRST(&inodedep->id_pendinghd) != NULL || 2229 LIST_FIRST(&inodedep->id_bufwait) != NULL || 2230 LIST_FIRST(&inodedep->id_inowait) != NULL || 2231 TAILQ_FIRST(&inodedep->id_inoupdt) != NULL || 2232 TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL || 2233 inodedep->id_nlinkdelta != 0 || inodedep->id_savedino1 != NULL) 2234 return (0); 2235 LIST_REMOVE(inodedep, id_hash); 2236 WORKITEM_FREE(inodedep, D_INODEDEP); 2237 num_inodedep -= 1; 2238 return (1); 2239 } 2240 2241 /* 2242 * This workitem routine performs the block de-allocation. 2243 * The workitem is added to the pending list after the updated 2244 * inode block has been written to disk. As mentioned above, 2245 * checks regarding the number of blocks de-allocated (compared 2246 * to the number of blocks allocated for the file) are also 2247 * performed in this function. 2248 */ 2249 static void 2250 handle_workitem_freeblocks(freeblks, flags) 2251 struct freeblks *freeblks; 2252 int flags; 2253 { 2254 struct inode *ip; 2255 struct vnode *vp; 2256 struct fs *fs; 2257 int i, nblocks, level, bsize; 2258 ufs2_daddr_t bn, blocksreleased = 0; 2259 int error, allerror = 0; 2260 ufs_lbn_t baselbns[NIADDR], tmpval; 2261 2262 fs = VFSTOUFS(freeblks->fb_mnt)->um_fs; 2263 tmpval = 1; 2264 baselbns[0] = NDADDR; 2265 for (i = 1; i < NIADDR; i++) { 2266 tmpval *= NINDIR(fs); 2267 baselbns[i] = baselbns[i - 1] + tmpval; 2268 } 2269 nblocks = btodb(fs->fs_bsize); 2270 blocksreleased = 0; 2271 /* 2272 * Indirect blocks first. 2273 */ 2274 for (level = (NIADDR - 1); level >= 0; level--) { 2275 if ((bn = freeblks->fb_iblks[level]) == 0) 2276 continue; 2277 if ((error = indir_trunc(freeblks, fsbtodb(fs, bn), level, 2278 baselbns[level], &blocksreleased)) == 0) 2279 allerror = error; 2280 ffs_blkfree(fs, freeblks->fb_devvp, bn, fs->fs_bsize, 2281 freeblks->fb_previousinum); 2282 fs->fs_pendingblocks -= nblocks; 2283 blocksreleased += nblocks; 2284 } 2285 /* 2286 * All direct blocks or frags. 2287 */ 2288 for (i = (NDADDR - 1); i >= 0; i--) { 2289 if ((bn = freeblks->fb_dblks[i]) == 0) 2290 continue; 2291 bsize = sblksize(fs, freeblks->fb_oldsize, i); 2292 ffs_blkfree(fs, freeblks->fb_devvp, bn, bsize, 2293 freeblks->fb_previousinum); 2294 fs->fs_pendingblocks -= btodb(bsize); 2295 blocksreleased += btodb(bsize); 2296 } 2297 /* 2298 * If we still have not finished background cleanup, then check 2299 * to see if the block count needs to be adjusted. 2300 */ 2301 if (freeblks->fb_chkcnt != blocksreleased && 2302 (fs->fs_flags & FS_UNCLEAN) != 0 && 2303 VFS_VGET(freeblks->fb_mnt, freeblks->fb_previousinum, 2304 (flags & LK_NOWAIT) | LK_EXCLUSIVE, &vp) == 0) { 2305 ip = VTOI(vp); 2306 DIP(ip, i_blocks) += freeblks->fb_chkcnt - blocksreleased; 2307 ip->i_flag |= IN_CHANGE; 2308 vput(vp); 2309 } 2310 2311 #ifdef DIAGNOSTIC 2312 if (freeblks->fb_chkcnt != blocksreleased && 2313 ((fs->fs_flags & FS_UNCLEAN) == 0 || (flags & LK_NOWAIT) != 0)) 2314 printf("handle_workitem_freeblocks: block count"); 2315 if (allerror) 2316 softdep_error("handle_workitem_freeblks", allerror); 2317 #endif /* DIAGNOSTIC */ 2318 2319 WORKITEM_FREE(freeblks, D_FREEBLKS); 2320 } 2321 2322 /* 2323 * Release blocks associated with the inode ip and stored in the indirect 2324 * block dbn. If level is greater than SINGLE, the block is an indirect block 2325 * and recursive calls to indirtrunc must be used to cleanse other indirect 2326 * blocks. 2327 */ 2328 static int 2329 indir_trunc(freeblks, dbn, level, lbn, countp) 2330 struct freeblks *freeblks; 2331 ufs2_daddr_t dbn; 2332 int level; 2333 ufs_lbn_t lbn; 2334 ufs2_daddr_t *countp; 2335 { 2336 struct buf *bp; 2337 struct fs *fs; 2338 struct worklist *wk; 2339 struct indirdep *indirdep; 2340 ufs1_daddr_t *bap1 = 0; 2341 ufs2_daddr_t nb, *bap2 = 0; 2342 ufs_lbn_t lbnadd; 2343 int i, nblocks, ufs1fmt; 2344 int error, allerror = 0; 2345 2346 fs = VFSTOUFS(freeblks->fb_mnt)->um_fs; 2347 lbnadd = 1; 2348 for (i = level; i > 0; i--) 2349 lbnadd *= NINDIR(fs); 2350 /* 2351 * Get buffer of block pointers to be freed. This routine is not 2352 * called until the zero'ed inode has been written, so it is safe 2353 * to free blocks as they are encountered. Because the inode has 2354 * been zero'ed, calls to bmap on these blocks will fail. So, we 2355 * have to use the on-disk address and the block device for the 2356 * filesystem to look them up. If the file was deleted before its 2357 * indirect blocks were all written to disk, the routine that set 2358 * us up (deallocate_dependencies) will have arranged to leave 2359 * a complete copy of the indirect block in memory for our use. 2360 * Otherwise we have to read the blocks in from the disk. 2361 */ 2362 ACQUIRE_LOCK(&lk); 2363 if ((bp = incore(freeblks->fb_devvp, dbn)) != NULL && 2364 (wk = LIST_FIRST(&bp->b_dep)) != NULL) { 2365 if (wk->wk_type != D_INDIRDEP || 2366 (indirdep = WK_INDIRDEP(wk))->ir_savebp != bp || 2367 (indirdep->ir_state & GOINGAWAY) == 0) { 2368 FREE_LOCK(&lk); 2369 panic("indir_trunc: lost indirdep"); 2370 } 2371 WORKLIST_REMOVE(wk); 2372 WORKITEM_FREE(indirdep, D_INDIRDEP); 2373 if (LIST_FIRST(&bp->b_dep) != NULL) { 2374 FREE_LOCK(&lk); 2375 panic("indir_trunc: dangling dep"); 2376 } 2377 FREE_LOCK(&lk); 2378 } else { 2379 FREE_LOCK(&lk); 2380 error = bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize, 2381 NOCRED, &bp); 2382 if (error) { 2383 brelse(bp); 2384 return (error); 2385 } 2386 } 2387 /* 2388 * Recursively free indirect blocks. 2389 */ 2390 if (VFSTOUFS(freeblks->fb_mnt)->um_fstype == UFS1) { 2391 ufs1fmt = 1; 2392 bap1 = (ufs1_daddr_t *)bp->b_data; 2393 } else { 2394 ufs1fmt = 0; 2395 bap2 = (ufs2_daddr_t *)bp->b_data; 2396 } 2397 nblocks = btodb(fs->fs_bsize); 2398 for (i = NINDIR(fs) - 1; i >= 0; i--) { 2399 if (ufs1fmt) 2400 nb = bap1[i]; 2401 else 2402 nb = bap2[i]; 2403 if (nb == 0) 2404 continue; 2405 if (level != 0) { 2406 if ((error = indir_trunc(freeblks, fsbtodb(fs, nb), 2407 level - 1, lbn + (i * lbnadd), countp)) != 0) 2408 allerror = error; 2409 } 2410 ffs_blkfree(fs, freeblks->fb_devvp, nb, fs->fs_bsize, 2411 freeblks->fb_previousinum); 2412 fs->fs_pendingblocks -= nblocks; 2413 *countp += nblocks; 2414 } 2415 bp->b_flags |= B_INVAL | B_NOCACHE; 2416 brelse(bp); 2417 return (allerror); 2418 } 2419 2420 /* 2421 * Free an allocindir. 2422 * This routine must be called with splbio interrupts blocked. 2423 */ 2424 static void 2425 free_allocindir(aip, inodedep) 2426 struct allocindir *aip; 2427 struct inodedep *inodedep; 2428 { 2429 struct freefrag *freefrag; 2430 2431 #ifdef DEBUG 2432 if (lk.lkt_held == NOHOLDER) 2433 panic("free_allocindir: lock not held"); 2434 #endif 2435 if ((aip->ai_state & DEPCOMPLETE) == 0) 2436 LIST_REMOVE(aip, ai_deps); 2437 if (aip->ai_state & ONWORKLIST) 2438 WORKLIST_REMOVE(&aip->ai_list); 2439 LIST_REMOVE(aip, ai_next); 2440 if ((freefrag = aip->ai_freefrag) != NULL) { 2441 if (inodedep == NULL) 2442 add_to_worklist(&freefrag->ff_list); 2443 else 2444 WORKLIST_INSERT(&inodedep->id_bufwait, 2445 &freefrag->ff_list); 2446 } 2447 WORKITEM_FREE(aip, D_ALLOCINDIR); 2448 } 2449 2450 /* 2451 * Directory entry addition dependencies. 2452 * 2453 * When adding a new directory entry, the inode (with its incremented link 2454 * count) must be written to disk before the directory entry's pointer to it. 2455 * Also, if the inode is newly allocated, the corresponding freemap must be 2456 * updated (on disk) before the directory entry's pointer. These requirements 2457 * are met via undo/redo on the directory entry's pointer, which consists 2458 * simply of the inode number. 2459 * 2460 * As directory entries are added and deleted, the free space within a 2461 * directory block can become fragmented. The ufs filesystem will compact 2462 * a fragmented directory block to make space for a new entry. When this 2463 * occurs, the offsets of previously added entries change. Any "diradd" 2464 * dependency structures corresponding to these entries must be updated with 2465 * the new offsets. 2466 */ 2467 2468 /* 2469 * This routine is called after the in-memory inode's link 2470 * count has been incremented, but before the directory entry's 2471 * pointer to the inode has been set. 2472 */ 2473 int 2474 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk) 2475 struct buf *bp; /* buffer containing directory block */ 2476 struct inode *dp; /* inode for directory */ 2477 off_t diroffset; /* offset of new entry in directory */ 2478 ino_t newinum; /* inode referenced by new directory entry */ 2479 struct buf *newdirbp; /* non-NULL => contents of new mkdir */ 2480 int isnewblk; /* entry is in a newly allocated block */ 2481 { 2482 int offset; /* offset of new entry within directory block */ 2483 ufs_lbn_t lbn; /* block in directory containing new entry */ 2484 struct fs *fs; 2485 struct diradd *dap; 2486 struct allocdirect *adp; 2487 struct pagedep *pagedep; 2488 struct inodedep *inodedep; 2489 struct newdirblk *newdirblk = 0; 2490 struct mkdir *mkdir1, *mkdir2; 2491 2492 /* 2493 * Whiteouts have no dependencies. 2494 */ 2495 if (newinum == WINO) { 2496 if (newdirbp != NULL) 2497 bdwrite(newdirbp); 2498 return (0); 2499 } 2500 2501 fs = dp->i_fs; 2502 lbn = lblkno(fs, diroffset); 2503 offset = blkoff(fs, diroffset); 2504 MALLOC(dap, struct diradd *, sizeof(struct diradd), M_DIRADD, 2505 M_SOFTDEP_FLAGS|M_ZERO); 2506 dap->da_list.wk_type = D_DIRADD; 2507 dap->da_offset = offset; 2508 dap->da_newinum = newinum; 2509 dap->da_state = ATTACHED; 2510 if (isnewblk && lbn < NDADDR && fragoff(fs, diroffset) == 0) { 2511 MALLOC(newdirblk, struct newdirblk *, sizeof(struct newdirblk), 2512 M_NEWDIRBLK, M_SOFTDEP_FLAGS); 2513 newdirblk->db_list.wk_type = D_NEWDIRBLK; 2514 newdirblk->db_state = 0; 2515 } 2516 if (newdirbp == NULL) { 2517 dap->da_state |= DEPCOMPLETE; 2518 ACQUIRE_LOCK(&lk); 2519 } else { 2520 dap->da_state |= MKDIR_BODY | MKDIR_PARENT; 2521 MALLOC(mkdir1, struct mkdir *, sizeof(struct mkdir), M_MKDIR, 2522 M_SOFTDEP_FLAGS); 2523 mkdir1->md_list.wk_type = D_MKDIR; 2524 mkdir1->md_state = MKDIR_BODY; 2525 mkdir1->md_diradd = dap; 2526 MALLOC(mkdir2, struct mkdir *, sizeof(struct mkdir), M_MKDIR, 2527 M_SOFTDEP_FLAGS); 2528 mkdir2->md_list.wk_type = D_MKDIR; 2529 mkdir2->md_state = MKDIR_PARENT; 2530 mkdir2->md_diradd = dap; 2531 /* 2532 * Dependency on "." and ".." being written to disk. 2533 */ 2534 mkdir1->md_buf = newdirbp; 2535 ACQUIRE_LOCK(&lk); 2536 LIST_INSERT_HEAD(&mkdirlisthd, mkdir1, md_mkdirs); 2537 WORKLIST_INSERT(&newdirbp->b_dep, &mkdir1->md_list); 2538 FREE_LOCK(&lk); 2539 bdwrite(newdirbp); 2540 /* 2541 * Dependency on link count increase for parent directory 2542 */ 2543 ACQUIRE_LOCK(&lk); 2544 if (inodedep_lookup(fs, dp->i_number, 0, &inodedep) == 0 2545 || (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 2546 dap->da_state &= ~MKDIR_PARENT; 2547 WORKITEM_FREE(mkdir2, D_MKDIR); 2548 } else { 2549 LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs); 2550 WORKLIST_INSERT(&inodedep->id_bufwait,&mkdir2->md_list); 2551 } 2552 } 2553 /* 2554 * Link into parent directory pagedep to await its being written. 2555 */ 2556 if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0) 2557 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 2558 dap->da_pagedep = pagedep; 2559 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap, 2560 da_pdlist); 2561 /* 2562 * Link into its inodedep. Put it on the id_bufwait list if the inode 2563 * is not yet written. If it is written, do the post-inode write 2564 * processing to put it on the id_pendinghd list. 2565 */ 2566 (void) inodedep_lookup(fs, newinum, DEPALLOC, &inodedep); 2567 if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) 2568 diradd_inode_written(dap, inodedep); 2569 else 2570 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 2571 if (isnewblk) { 2572 /* 2573 * Directories growing into indirect blocks are rare 2574 * enough and the frequency of new block allocation 2575 * in those cases even more rare, that we choose not 2576 * to bother tracking them. Rather we simply force the 2577 * new directory entry to disk. 2578 */ 2579 if (lbn >= NDADDR) { 2580 FREE_LOCK(&lk); 2581 /* 2582 * We only have a new allocation when at the 2583 * beginning of a new block, not when we are 2584 * expanding into an existing block. 2585 */ 2586 if (blkoff(fs, diroffset) == 0) 2587 return (1); 2588 return (0); 2589 } 2590 /* 2591 * We only have a new allocation when at the beginning 2592 * of a new fragment, not when we are expanding into an 2593 * existing fragment. Also, there is nothing to do if we 2594 * are already tracking this block. 2595 */ 2596 if (fragoff(fs, diroffset) != 0) { 2597 FREE_LOCK(&lk); 2598 return (0); 2599 } 2600 if ((pagedep->pd_state & NEWBLOCK) != 0) { 2601 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 2602 FREE_LOCK(&lk); 2603 return (0); 2604 } 2605 /* 2606 * Find our associated allocdirect and have it track us. 2607 */ 2608 if (inodedep_lookup(fs, dp->i_number, 0, &inodedep) == 0) 2609 panic("softdep_setup_directory_add: lost inodedep"); 2610 adp = TAILQ_LAST(&inodedep->id_newinoupdt, allocdirectlst); 2611 if (adp == NULL || adp->ad_lbn != lbn) { 2612 FREE_LOCK(&lk); 2613 panic("softdep_setup_directory_add: lost entry"); 2614 } 2615 pagedep->pd_state |= NEWBLOCK; 2616 newdirblk->db_pagedep = pagedep; 2617 WORKLIST_INSERT(&adp->ad_newdirblk, &newdirblk->db_list); 2618 } 2619 FREE_LOCK(&lk); 2620 return (0); 2621 } 2622 2623 /* 2624 * This procedure is called to change the offset of a directory 2625 * entry when compacting a directory block which must be owned 2626 * exclusively by the caller. Note that the actual entry movement 2627 * must be done in this procedure to ensure that no I/O completions 2628 * occur while the move is in progress. 2629 */ 2630 void 2631 softdep_change_directoryentry_offset(dp, base, oldloc, newloc, entrysize) 2632 struct inode *dp; /* inode for directory */ 2633 caddr_t base; /* address of dp->i_offset */ 2634 caddr_t oldloc; /* address of old directory location */ 2635 caddr_t newloc; /* address of new directory location */ 2636 int entrysize; /* size of directory entry */ 2637 { 2638 int offset, oldoffset, newoffset; 2639 struct pagedep *pagedep; 2640 struct diradd *dap; 2641 ufs_lbn_t lbn; 2642 2643 ACQUIRE_LOCK(&lk); 2644 lbn = lblkno(dp->i_fs, dp->i_offset); 2645 offset = blkoff(dp->i_fs, dp->i_offset); 2646 if (pagedep_lookup(dp, lbn, 0, &pagedep) == 0) 2647 goto done; 2648 oldoffset = offset + (oldloc - base); 2649 newoffset = offset + (newloc - base); 2650 2651 LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(oldoffset)], da_pdlist) { 2652 if (dap->da_offset != oldoffset) 2653 continue; 2654 dap->da_offset = newoffset; 2655 if (DIRADDHASH(newoffset) == DIRADDHASH(oldoffset)) 2656 break; 2657 LIST_REMOVE(dap, da_pdlist); 2658 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(newoffset)], 2659 dap, da_pdlist); 2660 break; 2661 } 2662 if (dap == NULL) { 2663 2664 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) { 2665 if (dap->da_offset == oldoffset) { 2666 dap->da_offset = newoffset; 2667 break; 2668 } 2669 } 2670 } 2671 done: 2672 bcopy(oldloc, newloc, entrysize); 2673 FREE_LOCK(&lk); 2674 } 2675 2676 /* 2677 * Free a diradd dependency structure. This routine must be called 2678 * with splbio interrupts blocked. 2679 */ 2680 static void 2681 free_diradd(dap) 2682 struct diradd *dap; 2683 { 2684 struct dirrem *dirrem; 2685 struct pagedep *pagedep; 2686 struct inodedep *inodedep; 2687 struct mkdir *mkdir, *nextmd; 2688 2689 #ifdef DEBUG 2690 if (lk.lkt_held == NOHOLDER) 2691 panic("free_diradd: lock not held"); 2692 #endif 2693 WORKLIST_REMOVE(&dap->da_list); 2694 LIST_REMOVE(dap, da_pdlist); 2695 if ((dap->da_state & DIRCHG) == 0) { 2696 pagedep = dap->da_pagedep; 2697 } else { 2698 dirrem = dap->da_previous; 2699 pagedep = dirrem->dm_pagedep; 2700 dirrem->dm_dirinum = pagedep->pd_ino; 2701 add_to_worklist(&dirrem->dm_list); 2702 } 2703 if (inodedep_lookup(VFSTOUFS(pagedep->pd_mnt)->um_fs, dap->da_newinum, 2704 0, &inodedep) != 0) 2705 (void) free_inodedep(inodedep); 2706 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 2707 for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) { 2708 nextmd = LIST_NEXT(mkdir, md_mkdirs); 2709 if (mkdir->md_diradd != dap) 2710 continue; 2711 dap->da_state &= ~mkdir->md_state; 2712 WORKLIST_REMOVE(&mkdir->md_list); 2713 LIST_REMOVE(mkdir, md_mkdirs); 2714 WORKITEM_FREE(mkdir, D_MKDIR); 2715 } 2716 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 2717 FREE_LOCK(&lk); 2718 panic("free_diradd: unfound ref"); 2719 } 2720 } 2721 WORKITEM_FREE(dap, D_DIRADD); 2722 } 2723 2724 /* 2725 * Directory entry removal dependencies. 2726 * 2727 * When removing a directory entry, the entry's inode pointer must be 2728 * zero'ed on disk before the corresponding inode's link count is decremented 2729 * (possibly freeing the inode for re-use). This dependency is handled by 2730 * updating the directory entry but delaying the inode count reduction until 2731 * after the directory block has been written to disk. After this point, the 2732 * inode count can be decremented whenever it is convenient. 2733 */ 2734 2735 /* 2736 * This routine should be called immediately after removing 2737 * a directory entry. The inode's link count should not be 2738 * decremented by the calling procedure -- the soft updates 2739 * code will do this task when it is safe. 2740 */ 2741 void 2742 softdep_setup_remove(bp, dp, ip, isrmdir) 2743 struct buf *bp; /* buffer containing directory block */ 2744 struct inode *dp; /* inode for the directory being modified */ 2745 struct inode *ip; /* inode for directory entry being removed */ 2746 int isrmdir; /* indicates if doing RMDIR */ 2747 { 2748 struct dirrem *dirrem, *prevdirrem; 2749 2750 /* 2751 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK. 2752 */ 2753 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 2754 2755 /* 2756 * If the COMPLETE flag is clear, then there were no active 2757 * entries and we want to roll back to a zeroed entry until 2758 * the new inode is committed to disk. If the COMPLETE flag is 2759 * set then we have deleted an entry that never made it to 2760 * disk. If the entry we deleted resulted from a name change, 2761 * then the old name still resides on disk. We cannot delete 2762 * its inode (returned to us in prevdirrem) until the zeroed 2763 * directory entry gets to disk. The new inode has never been 2764 * referenced on the disk, so can be deleted immediately. 2765 */ 2766 if ((dirrem->dm_state & COMPLETE) == 0) { 2767 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem, 2768 dm_next); 2769 FREE_LOCK(&lk); 2770 } else { 2771 if (prevdirrem != NULL) 2772 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, 2773 prevdirrem, dm_next); 2774 dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino; 2775 FREE_LOCK(&lk); 2776 handle_workitem_remove(dirrem, NULL); 2777 } 2778 } 2779 2780 /* 2781 * Allocate a new dirrem if appropriate and return it along with 2782 * its associated pagedep. Called without a lock, returns with lock. 2783 */ 2784 static long num_dirrem; /* number of dirrem allocated */ 2785 static struct dirrem * 2786 newdirrem(bp, dp, ip, isrmdir, prevdirremp) 2787 struct buf *bp; /* buffer containing directory block */ 2788 struct inode *dp; /* inode for the directory being modified */ 2789 struct inode *ip; /* inode for directory entry being removed */ 2790 int isrmdir; /* indicates if doing RMDIR */ 2791 struct dirrem **prevdirremp; /* previously referenced inode, if any */ 2792 { 2793 int offset; 2794 ufs_lbn_t lbn; 2795 struct diradd *dap; 2796 struct dirrem *dirrem; 2797 struct pagedep *pagedep; 2798 2799 /* 2800 * Whiteouts have no deletion dependencies. 2801 */ 2802 if (ip == NULL) 2803 panic("newdirrem: whiteout"); 2804 /* 2805 * If we are over our limit, try to improve the situation. 2806 * Limiting the number of dirrem structures will also limit 2807 * the number of freefile and freeblks structures. 2808 */ 2809 if (num_dirrem > max_softdeps / 2) 2810 (void) request_cleanup(FLUSH_REMOVE, 0); 2811 num_dirrem += 1; 2812 MALLOC(dirrem, struct dirrem *, sizeof(struct dirrem), 2813 M_DIRREM, M_SOFTDEP_FLAGS|M_ZERO); 2814 dirrem->dm_list.wk_type = D_DIRREM; 2815 dirrem->dm_state = isrmdir ? RMDIR : 0; 2816 dirrem->dm_mnt = ITOV(ip)->v_mount; 2817 dirrem->dm_oldinum = ip->i_number; 2818 *prevdirremp = NULL; 2819 2820 ACQUIRE_LOCK(&lk); 2821 lbn = lblkno(dp->i_fs, dp->i_offset); 2822 offset = blkoff(dp->i_fs, dp->i_offset); 2823 if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0) 2824 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 2825 dirrem->dm_pagedep = pagedep; 2826 /* 2827 * Check for a diradd dependency for the same directory entry. 2828 * If present, then both dependencies become obsolete and can 2829 * be de-allocated. Check for an entry on both the pd_dirraddhd 2830 * list and the pd_pendinghd list. 2831 */ 2832 2833 LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist) 2834 if (dap->da_offset == offset) 2835 break; 2836 if (dap == NULL) { 2837 2838 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) 2839 if (dap->da_offset == offset) 2840 break; 2841 if (dap == NULL) 2842 return (dirrem); 2843 } 2844 /* 2845 * Must be ATTACHED at this point. 2846 */ 2847 if ((dap->da_state & ATTACHED) == 0) { 2848 FREE_LOCK(&lk); 2849 panic("newdirrem: not ATTACHED"); 2850 } 2851 if (dap->da_newinum != ip->i_number) { 2852 FREE_LOCK(&lk); 2853 panic("newdirrem: inum %d should be %d", 2854 ip->i_number, dap->da_newinum); 2855 } 2856 /* 2857 * If we are deleting a changed name that never made it to disk, 2858 * then return the dirrem describing the previous inode (which 2859 * represents the inode currently referenced from this entry on disk). 2860 */ 2861 if ((dap->da_state & DIRCHG) != 0) { 2862 *prevdirremp = dap->da_previous; 2863 dap->da_state &= ~DIRCHG; 2864 dap->da_pagedep = pagedep; 2865 } 2866 /* 2867 * We are deleting an entry that never made it to disk. 2868 * Mark it COMPLETE so we can delete its inode immediately. 2869 */ 2870 dirrem->dm_state |= COMPLETE; 2871 free_diradd(dap); 2872 return (dirrem); 2873 } 2874 2875 /* 2876 * Directory entry change dependencies. 2877 * 2878 * Changing an existing directory entry requires that an add operation 2879 * be completed first followed by a deletion. The semantics for the addition 2880 * are identical to the description of adding a new entry above except 2881 * that the rollback is to the old inode number rather than zero. Once 2882 * the addition dependency is completed, the removal is done as described 2883 * in the removal routine above. 2884 */ 2885 2886 /* 2887 * This routine should be called immediately after changing 2888 * a directory entry. The inode's link count should not be 2889 * decremented by the calling procedure -- the soft updates 2890 * code will perform this task when it is safe. 2891 */ 2892 void 2893 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 2894 struct buf *bp; /* buffer containing directory block */ 2895 struct inode *dp; /* inode for the directory being modified */ 2896 struct inode *ip; /* inode for directory entry being removed */ 2897 ino_t newinum; /* new inode number for changed entry */ 2898 int isrmdir; /* indicates if doing RMDIR */ 2899 { 2900 int offset; 2901 struct diradd *dap = NULL; 2902 struct dirrem *dirrem, *prevdirrem; 2903 struct pagedep *pagedep; 2904 struct inodedep *inodedep; 2905 2906 offset = blkoff(dp->i_fs, dp->i_offset); 2907 2908 /* 2909 * Whiteouts do not need diradd dependencies. 2910 */ 2911 if (newinum != WINO) { 2912 MALLOC(dap, struct diradd *, sizeof(struct diradd), 2913 M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO); 2914 dap->da_list.wk_type = D_DIRADD; 2915 dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE; 2916 dap->da_offset = offset; 2917 dap->da_newinum = newinum; 2918 } 2919 2920 /* 2921 * Allocate a new dirrem and ACQUIRE_LOCK. 2922 */ 2923 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 2924 pagedep = dirrem->dm_pagedep; 2925 /* 2926 * The possible values for isrmdir: 2927 * 0 - non-directory file rename 2928 * 1 - directory rename within same directory 2929 * inum - directory rename to new directory of given inode number 2930 * When renaming to a new directory, we are both deleting and 2931 * creating a new directory entry, so the link count on the new 2932 * directory should not change. Thus we do not need the followup 2933 * dirrem which is usually done in handle_workitem_remove. We set 2934 * the DIRCHG flag to tell handle_workitem_remove to skip the 2935 * followup dirrem. 2936 */ 2937 if (isrmdir > 1) 2938 dirrem->dm_state |= DIRCHG; 2939 2940 /* 2941 * Whiteouts have no additional dependencies, 2942 * so just put the dirrem on the correct list. 2943 */ 2944 if (newinum == WINO) { 2945 if ((dirrem->dm_state & COMPLETE) == 0) { 2946 LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem, 2947 dm_next); 2948 } else { 2949 dirrem->dm_dirinum = pagedep->pd_ino; 2950 add_to_worklist(&dirrem->dm_list); 2951 } 2952 FREE_LOCK(&lk); 2953 return; 2954 } 2955 2956 /* 2957 * If the COMPLETE flag is clear, then there were no active 2958 * entries and we want to roll back to the previous inode until 2959 * the new inode is committed to disk. If the COMPLETE flag is 2960 * set, then we have deleted an entry that never made it to disk. 2961 * If the entry we deleted resulted from a name change, then the old 2962 * inode reference still resides on disk. Any rollback that we do 2963 * needs to be to that old inode (returned to us in prevdirrem). If 2964 * the entry we deleted resulted from a create, then there is 2965 * no entry on the disk, so we want to roll back to zero rather 2966 * than the uncommitted inode. In either of the COMPLETE cases we 2967 * want to immediately free the unwritten and unreferenced inode. 2968 */ 2969 if ((dirrem->dm_state & COMPLETE) == 0) { 2970 dap->da_previous = dirrem; 2971 } else { 2972 if (prevdirrem != NULL) { 2973 dap->da_previous = prevdirrem; 2974 } else { 2975 dap->da_state &= ~DIRCHG; 2976 dap->da_pagedep = pagedep; 2977 } 2978 dirrem->dm_dirinum = pagedep->pd_ino; 2979 add_to_worklist(&dirrem->dm_list); 2980 } 2981 /* 2982 * Link into its inodedep. Put it on the id_bufwait list if the inode 2983 * is not yet written. If it is written, do the post-inode write 2984 * processing to put it on the id_pendinghd list. 2985 */ 2986 if (inodedep_lookup(dp->i_fs, newinum, DEPALLOC, &inodedep) == 0 || 2987 (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 2988 dap->da_state |= COMPLETE; 2989 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 2990 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 2991 } else { 2992 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], 2993 dap, da_pdlist); 2994 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 2995 } 2996 FREE_LOCK(&lk); 2997 } 2998 2999 /* 3000 * Called whenever the link count on an inode is changed. 3001 * It creates an inode dependency so that the new reference(s) 3002 * to the inode cannot be committed to disk until the updated 3003 * inode has been written. 3004 */ 3005 void 3006 softdep_change_linkcnt(ip) 3007 struct inode *ip; /* the inode with the increased link count */ 3008 { 3009 struct inodedep *inodedep; 3010 3011 ACQUIRE_LOCK(&lk); 3012 (void) inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC, &inodedep); 3013 if (ip->i_nlink < ip->i_effnlink) { 3014 FREE_LOCK(&lk); 3015 panic("softdep_change_linkcnt: bad delta"); 3016 } 3017 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 3018 FREE_LOCK(&lk); 3019 } 3020 3021 /* 3022 * Called when the effective link count and the reference count 3023 * on an inode drops to zero. At this point there are no names 3024 * referencing the file in the filesystem and no active file 3025 * references. The space associated with the file will be freed 3026 * as soon as the necessary soft dependencies are cleared. 3027 */ 3028 void 3029 softdep_releasefile(ip) 3030 struct inode *ip; /* inode with the zero effective link count */ 3031 { 3032 struct inodedep *inodedep; 3033 3034 if (ip->i_effnlink > 0) 3035 panic("softdep_filerelease: file still referenced"); 3036 /* 3037 * We may be called several times as the real reference count 3038 * drops to zero. We only want to account for the space once. 3039 */ 3040 if (ip->i_flag & IN_SPACECOUNTED) 3041 return; 3042 /* 3043 * We have to deactivate a snapshot otherwise copyonwrites may 3044 * add blocks and the cleanup may remove blocks after we have 3045 * tried to account for them. 3046 */ 3047 if ((ip->i_flags & SF_SNAPSHOT) != 0) 3048 ffs_snapremove(ITOV(ip)); 3049 /* 3050 * If we are tracking an nlinkdelta, we have to also remember 3051 * whether we accounted for the freed space yet. 3052 */ 3053 ACQUIRE_LOCK(&lk); 3054 if ((inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep))) 3055 inodedep->id_state |= SPACECOUNTED; 3056 FREE_LOCK(&lk); 3057 ip->i_fs->fs_pendingblocks += DIP(ip, i_blocks); 3058 ip->i_fs->fs_pendinginodes += 1; 3059 ip->i_flag |= IN_SPACECOUNTED; 3060 } 3061 3062 /* 3063 * This workitem decrements the inode's link count. 3064 * If the link count reaches zero, the file is removed. 3065 */ 3066 static void 3067 handle_workitem_remove(dirrem, xp) 3068 struct dirrem *dirrem; 3069 struct vnode *xp; 3070 { 3071 struct thread *td = curthread; 3072 struct inodedep *inodedep; 3073 struct vnode *vp; 3074 struct inode *ip; 3075 ino_t oldinum; 3076 int error; 3077 3078 if ((vp = xp) == NULL && 3079 (error = VFS_VGET(dirrem->dm_mnt, dirrem->dm_oldinum, LK_EXCLUSIVE, 3080 &vp)) != 0) { 3081 softdep_error("handle_workitem_remove: vget", error); 3082 return; 3083 } 3084 ip = VTOI(vp); 3085 ACQUIRE_LOCK(&lk); 3086 if ((inodedep_lookup(ip->i_fs, dirrem->dm_oldinum, 0, &inodedep)) == 0){ 3087 FREE_LOCK(&lk); 3088 panic("handle_workitem_remove: lost inodedep"); 3089 } 3090 /* 3091 * Normal file deletion. 3092 */ 3093 if ((dirrem->dm_state & RMDIR) == 0) { 3094 ip->i_nlink--; 3095 DIP(ip, i_nlink) = ip->i_nlink; 3096 ip->i_flag |= IN_CHANGE; 3097 if (ip->i_nlink < ip->i_effnlink) { 3098 FREE_LOCK(&lk); 3099 panic("handle_workitem_remove: bad file delta"); 3100 } 3101 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 3102 FREE_LOCK(&lk); 3103 vput(vp); 3104 num_dirrem -= 1; 3105 WORKITEM_FREE(dirrem, D_DIRREM); 3106 return; 3107 } 3108 /* 3109 * Directory deletion. Decrement reference count for both the 3110 * just deleted parent directory entry and the reference for ".". 3111 * Next truncate the directory to length zero. When the 3112 * truncation completes, arrange to have the reference count on 3113 * the parent decremented to account for the loss of "..". 3114 */ 3115 ip->i_nlink -= 2; 3116 DIP(ip, i_nlink) = ip->i_nlink; 3117 ip->i_flag |= IN_CHANGE; 3118 if (ip->i_nlink < ip->i_effnlink) { 3119 FREE_LOCK(&lk); 3120 panic("handle_workitem_remove: bad dir delta"); 3121 } 3122 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 3123 FREE_LOCK(&lk); 3124 if ((error = UFS_TRUNCATE(vp, (off_t)0, 0, td->td_ucred, td)) != 0) 3125 softdep_error("handle_workitem_remove: truncate", error); 3126 /* 3127 * Rename a directory to a new parent. Since, we are both deleting 3128 * and creating a new directory entry, the link count on the new 3129 * directory should not change. Thus we skip the followup dirrem. 3130 */ 3131 if (dirrem->dm_state & DIRCHG) { 3132 vput(vp); 3133 num_dirrem -= 1; 3134 WORKITEM_FREE(dirrem, D_DIRREM); 3135 return; 3136 } 3137 /* 3138 * If the inodedep does not exist, then the zero'ed inode has 3139 * been written to disk. If the allocated inode has never been 3140 * written to disk, then the on-disk inode is zero'ed. In either 3141 * case we can remove the file immediately. 3142 */ 3143 ACQUIRE_LOCK(&lk); 3144 dirrem->dm_state = 0; 3145 oldinum = dirrem->dm_oldinum; 3146 dirrem->dm_oldinum = dirrem->dm_dirinum; 3147 if (inodedep_lookup(ip->i_fs, oldinum, 0, &inodedep) == 0 || 3148 check_inode_unwritten(inodedep)) { 3149 FREE_LOCK(&lk); 3150 vput(vp); 3151 handle_workitem_remove(dirrem, NULL); 3152 return; 3153 } 3154 WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list); 3155 FREE_LOCK(&lk); 3156 vput(vp); 3157 } 3158 3159 /* 3160 * Inode de-allocation dependencies. 3161 * 3162 * When an inode's link count is reduced to zero, it can be de-allocated. We 3163 * found it convenient to postpone de-allocation until after the inode is 3164 * written to disk with its new link count (zero). At this point, all of the 3165 * on-disk inode's block pointers are nullified and, with careful dependency 3166 * list ordering, all dependencies related to the inode will be satisfied and 3167 * the corresponding dependency structures de-allocated. So, if/when the 3168 * inode is reused, there will be no mixing of old dependencies with new 3169 * ones. This artificial dependency is set up by the block de-allocation 3170 * procedure above (softdep_setup_freeblocks) and completed by the 3171 * following procedure. 3172 */ 3173 static void 3174 handle_workitem_freefile(freefile) 3175 struct freefile *freefile; 3176 { 3177 struct fs *fs; 3178 struct inodedep *idp; 3179 int error; 3180 3181 fs = VFSTOUFS(freefile->fx_mnt)->um_fs; 3182 #ifdef DEBUG 3183 ACQUIRE_LOCK(&lk); 3184 error = inodedep_lookup(fs, freefile->fx_oldinum, 0, &idp); 3185 FREE_LOCK(&lk); 3186 if (error) 3187 panic("handle_workitem_freefile: inodedep survived"); 3188 #endif 3189 fs->fs_pendinginodes -= 1; 3190 if ((error = ffs_freefile(fs, freefile->fx_devvp, freefile->fx_oldinum, 3191 freefile->fx_mode)) != 0) 3192 softdep_error("handle_workitem_freefile", error); 3193 WORKITEM_FREE(freefile, D_FREEFILE); 3194 } 3195 3196 /* 3197 * Disk writes. 3198 * 3199 * The dependency structures constructed above are most actively used when file 3200 * system blocks are written to disk. No constraints are placed on when a 3201 * block can be written, but unsatisfied update dependencies are made safe by 3202 * modifying (or replacing) the source memory for the duration of the disk 3203 * write. When the disk write completes, the memory block is again brought 3204 * up-to-date. 3205 * 3206 * In-core inode structure reclamation. 3207 * 3208 * Because there are a finite number of "in-core" inode structures, they are 3209 * reused regularly. By transferring all inode-related dependencies to the 3210 * in-memory inode block and indexing them separately (via "inodedep"s), we 3211 * can allow "in-core" inode structures to be reused at any time and avoid 3212 * any increase in contention. 3213 * 3214 * Called just before entering the device driver to initiate a new disk I/O. 3215 * The buffer must be locked, thus, no I/O completion operations can occur 3216 * while we are manipulating its associated dependencies. 3217 */ 3218 static void 3219 softdep_disk_io_initiation(bp) 3220 struct buf *bp; /* structure describing disk write to occur */ 3221 { 3222 struct worklist *wk, *nextwk; 3223 struct indirdep *indirdep; 3224 struct inodedep *inodedep; 3225 3226 /* 3227 * We only care about write operations. There should never 3228 * be dependencies for reads. 3229 */ 3230 if (bp->b_iocmd == BIO_READ) 3231 panic("softdep_disk_io_initiation: read"); 3232 /* 3233 * Do any necessary pre-I/O processing. 3234 */ 3235 for (wk = LIST_FIRST(&bp->b_dep); wk; wk = nextwk) { 3236 nextwk = LIST_NEXT(wk, wk_list); 3237 switch (wk->wk_type) { 3238 3239 case D_PAGEDEP: 3240 initiate_write_filepage(WK_PAGEDEP(wk), bp); 3241 continue; 3242 3243 case D_INODEDEP: 3244 inodedep = WK_INODEDEP(wk); 3245 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) 3246 initiate_write_inodeblock_ufs1(inodedep, bp); 3247 else 3248 initiate_write_inodeblock_ufs2(inodedep, bp); 3249 continue; 3250 3251 case D_INDIRDEP: 3252 indirdep = WK_INDIRDEP(wk); 3253 if (indirdep->ir_state & GOINGAWAY) 3254 panic("disk_io_initiation: indirdep gone"); 3255 /* 3256 * If there are no remaining dependencies, this 3257 * will be writing the real pointers, so the 3258 * dependency can be freed. 3259 */ 3260 if (LIST_FIRST(&indirdep->ir_deplisthd) == NULL) { 3261 indirdep->ir_savebp->b_flags |= B_INVAL | B_NOCACHE; 3262 brelse(indirdep->ir_savebp); 3263 /* inline expand WORKLIST_REMOVE(wk); */ 3264 wk->wk_state &= ~ONWORKLIST; 3265 LIST_REMOVE(wk, wk_list); 3266 WORKITEM_FREE(indirdep, D_INDIRDEP); 3267 continue; 3268 } 3269 /* 3270 * Replace up-to-date version with safe version. 3271 */ 3272 MALLOC(indirdep->ir_saveddata, caddr_t, bp->b_bcount, 3273 M_INDIRDEP, M_SOFTDEP_FLAGS); 3274 ACQUIRE_LOCK(&lk); 3275 indirdep->ir_state &= ~ATTACHED; 3276 indirdep->ir_state |= UNDONE; 3277 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); 3278 bcopy(indirdep->ir_savebp->b_data, bp->b_data, 3279 bp->b_bcount); 3280 FREE_LOCK(&lk); 3281 continue; 3282 3283 case D_MKDIR: 3284 case D_BMSAFEMAP: 3285 case D_ALLOCDIRECT: 3286 case D_ALLOCINDIR: 3287 continue; 3288 3289 default: 3290 panic("handle_disk_io_initiation: Unexpected type %s", 3291 TYPENAME(wk->wk_type)); 3292 /* NOTREACHED */ 3293 } 3294 } 3295 } 3296 3297 /* 3298 * Called from within the procedure above to deal with unsatisfied 3299 * allocation dependencies in a directory. The buffer must be locked, 3300 * thus, no I/O completion operations can occur while we are 3301 * manipulating its associated dependencies. 3302 */ 3303 static void 3304 initiate_write_filepage(pagedep, bp) 3305 struct pagedep *pagedep; 3306 struct buf *bp; 3307 { 3308 struct diradd *dap; 3309 struct direct *ep; 3310 int i; 3311 3312 if (pagedep->pd_state & IOSTARTED) { 3313 /* 3314 * This can only happen if there is a driver that does not 3315 * understand chaining. Here biodone will reissue the call 3316 * to strategy for the incomplete buffers. 3317 */ 3318 printf("initiate_write_filepage: already started\n"); 3319 return; 3320 } 3321 pagedep->pd_state |= IOSTARTED; 3322 ACQUIRE_LOCK(&lk); 3323 for (i = 0; i < DAHASHSZ; i++) { 3324 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 3325 ep = (struct direct *) 3326 ((char *)bp->b_data + dap->da_offset); 3327 if (ep->d_ino != dap->da_newinum) { 3328 FREE_LOCK(&lk); 3329 panic("%s: dir inum %d != new %d", 3330 "initiate_write_filepage", 3331 ep->d_ino, dap->da_newinum); 3332 } 3333 if (dap->da_state & DIRCHG) 3334 ep->d_ino = dap->da_previous->dm_oldinum; 3335 else 3336 ep->d_ino = 0; 3337 dap->da_state &= ~ATTACHED; 3338 dap->da_state |= UNDONE; 3339 } 3340 } 3341 FREE_LOCK(&lk); 3342 } 3343 3344 /* 3345 * Version of initiate_write_inodeblock that handles UFS1 dinodes. 3346 * Note that any bug fixes made to this routine must be done in the 3347 * version found below. 3348 * 3349 * Called from within the procedure above to deal with unsatisfied 3350 * allocation dependencies in an inodeblock. The buffer must be 3351 * locked, thus, no I/O completion operations can occur while we 3352 * are manipulating its associated dependencies. 3353 */ 3354 static void 3355 initiate_write_inodeblock_ufs1(inodedep, bp) 3356 struct inodedep *inodedep; 3357 struct buf *bp; /* The inode block */ 3358 { 3359 struct allocdirect *adp, *lastadp; 3360 struct ufs1_dinode *dp; 3361 struct fs *fs; 3362 ufs_lbn_t i, prevlbn = 0; 3363 int deplist; 3364 3365 if (inodedep->id_state & IOSTARTED) 3366 panic("initiate_write_inodeblock_ufs1: already started"); 3367 inodedep->id_state |= IOSTARTED; 3368 fs = inodedep->id_fs; 3369 dp = (struct ufs1_dinode *)bp->b_data + 3370 ino_to_fsbo(fs, inodedep->id_ino); 3371 /* 3372 * If the bitmap is not yet written, then the allocated 3373 * inode cannot be written to disk. 3374 */ 3375 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 3376 if (inodedep->id_savedino1 != NULL) 3377 panic("initiate_write_inodeblock_ufs1: I/O underway"); 3378 MALLOC(inodedep->id_savedino1, struct ufs1_dinode *, 3379 sizeof(struct ufs1_dinode), M_INODEDEP, M_SOFTDEP_FLAGS); 3380 *inodedep->id_savedino1 = *dp; 3381 bzero((caddr_t)dp, sizeof(struct ufs1_dinode)); 3382 return; 3383 } 3384 /* 3385 * If no dependencies, then there is nothing to roll back. 3386 */ 3387 inodedep->id_savedsize = dp->di_size; 3388 if (TAILQ_FIRST(&inodedep->id_inoupdt) == NULL) 3389 return; 3390 /* 3391 * Set the dependencies to busy. 3392 */ 3393 ACQUIRE_LOCK(&lk); 3394 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 3395 adp = TAILQ_NEXT(adp, ad_next)) { 3396 #ifdef DIAGNOSTIC 3397 if (deplist != 0 && prevlbn >= adp->ad_lbn) { 3398 FREE_LOCK(&lk); 3399 panic("softdep_write_inodeblock: lbn order"); 3400 } 3401 prevlbn = adp->ad_lbn; 3402 if (adp->ad_lbn < NDADDR && 3403 dp->di_db[adp->ad_lbn] != adp->ad_newblkno) { 3404 FREE_LOCK(&lk); 3405 panic("%s: direct pointer #%jd mismatch %d != %jd", 3406 "softdep_write_inodeblock", 3407 (intmax_t)adp->ad_lbn, 3408 dp->di_db[adp->ad_lbn], 3409 (intmax_t)adp->ad_newblkno); 3410 } 3411 if (adp->ad_lbn >= NDADDR && 3412 dp->di_ib[adp->ad_lbn - NDADDR] != adp->ad_newblkno) { 3413 FREE_LOCK(&lk); 3414 panic("%s: indirect pointer #%jd mismatch %d != %jd", 3415 "softdep_write_inodeblock", 3416 (intmax_t)adp->ad_lbn - NDADDR, 3417 dp->di_ib[adp->ad_lbn - NDADDR], 3418 (intmax_t)adp->ad_newblkno); 3419 } 3420 deplist |= 1 << adp->ad_lbn; 3421 if ((adp->ad_state & ATTACHED) == 0) { 3422 FREE_LOCK(&lk); 3423 panic("softdep_write_inodeblock: Unknown state 0x%x", 3424 adp->ad_state); 3425 } 3426 #endif /* DIAGNOSTIC */ 3427 adp->ad_state &= ~ATTACHED; 3428 adp->ad_state |= UNDONE; 3429 } 3430 /* 3431 * The on-disk inode cannot claim to be any larger than the last 3432 * fragment that has been written. Otherwise, the on-disk inode 3433 * might have fragments that were not the last block in the file 3434 * which would corrupt the filesystem. 3435 */ 3436 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 3437 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 3438 if (adp->ad_lbn >= NDADDR) 3439 break; 3440 dp->di_db[adp->ad_lbn] = adp->ad_oldblkno; 3441 /* keep going until hitting a rollback to a frag */ 3442 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 3443 continue; 3444 dp->di_size = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize; 3445 for (i = adp->ad_lbn + 1; i < NDADDR; i++) { 3446 #ifdef DIAGNOSTIC 3447 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) { 3448 FREE_LOCK(&lk); 3449 panic("softdep_write_inodeblock: lost dep1"); 3450 } 3451 #endif /* DIAGNOSTIC */ 3452 dp->di_db[i] = 0; 3453 } 3454 for (i = 0; i < NIADDR; i++) { 3455 #ifdef DIAGNOSTIC 3456 if (dp->di_ib[i] != 0 && 3457 (deplist & ((1 << NDADDR) << i)) == 0) { 3458 FREE_LOCK(&lk); 3459 panic("softdep_write_inodeblock: lost dep2"); 3460 } 3461 #endif /* DIAGNOSTIC */ 3462 dp->di_ib[i] = 0; 3463 } 3464 FREE_LOCK(&lk); 3465 return; 3466 } 3467 /* 3468 * If we have zero'ed out the last allocated block of the file, 3469 * roll back the size to the last currently allocated block. 3470 * We know that this last allocated block is a full-sized as 3471 * we already checked for fragments in the loop above. 3472 */ 3473 if (lastadp != NULL && 3474 dp->di_size <= (lastadp->ad_lbn + 1) * fs->fs_bsize) { 3475 for (i = lastadp->ad_lbn; i >= 0; i--) 3476 if (dp->di_db[i] != 0) 3477 break; 3478 dp->di_size = (i + 1) * fs->fs_bsize; 3479 } 3480 /* 3481 * The only dependencies are for indirect blocks. 3482 * 3483 * The file size for indirect block additions is not guaranteed. 3484 * Such a guarantee would be non-trivial to achieve. The conventional 3485 * synchronous write implementation also does not make this guarantee. 3486 * Fsck should catch and fix discrepancies. Arguably, the file size 3487 * can be over-estimated without destroying integrity when the file 3488 * moves into the indirect blocks (i.e., is large). If we want to 3489 * postpone fsck, we are stuck with this argument. 3490 */ 3491 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 3492 dp->di_ib[adp->ad_lbn - NDADDR] = 0; 3493 FREE_LOCK(&lk); 3494 } 3495 3496 /* 3497 * Version of initiate_write_inodeblock that handles UFS2 dinodes. 3498 * Note that any bug fixes made to this routine must be done in the 3499 * version found above. 3500 * 3501 * Called from within the procedure above to deal with unsatisfied 3502 * allocation dependencies in an inodeblock. The buffer must be 3503 * locked, thus, no I/O completion operations can occur while we 3504 * are manipulating its associated dependencies. 3505 */ 3506 static void 3507 initiate_write_inodeblock_ufs2(inodedep, bp) 3508 struct inodedep *inodedep; 3509 struct buf *bp; /* The inode block */ 3510 { 3511 struct allocdirect *adp, *lastadp; 3512 struct ufs2_dinode *dp; 3513 struct fs *fs; 3514 ufs_lbn_t i, prevlbn = 0; 3515 int deplist; 3516 3517 if (inodedep->id_state & IOSTARTED) 3518 panic("initiate_write_inodeblock_ufs2: already started"); 3519 inodedep->id_state |= IOSTARTED; 3520 fs = inodedep->id_fs; 3521 dp = (struct ufs2_dinode *)bp->b_data + 3522 ino_to_fsbo(fs, inodedep->id_ino); 3523 /* 3524 * If the bitmap is not yet written, then the allocated 3525 * inode cannot be written to disk. 3526 */ 3527 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 3528 if (inodedep->id_savedino2 != NULL) 3529 panic("initiate_write_inodeblock_ufs2: I/O underway"); 3530 MALLOC(inodedep->id_savedino2, struct ufs2_dinode *, 3531 sizeof(struct ufs2_dinode), M_INODEDEP, M_SOFTDEP_FLAGS); 3532 *inodedep->id_savedino2 = *dp; 3533 bzero((caddr_t)dp, sizeof(struct ufs2_dinode)); 3534 return; 3535 } 3536 /* 3537 * If no dependencies, then there is nothing to roll back. 3538 */ 3539 inodedep->id_savedsize = dp->di_size; 3540 if (TAILQ_FIRST(&inodedep->id_inoupdt) == NULL) 3541 return; 3542 /* 3543 * Set the dependencies to busy. 3544 */ 3545 ACQUIRE_LOCK(&lk); 3546 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 3547 adp = TAILQ_NEXT(adp, ad_next)) { 3548 #ifdef DIAGNOSTIC 3549 if (deplist != 0 && prevlbn >= adp->ad_lbn) { 3550 FREE_LOCK(&lk); 3551 panic("softdep_write_inodeblock: lbn order"); 3552 } 3553 prevlbn = adp->ad_lbn; 3554 if (adp->ad_lbn < NDADDR && 3555 dp->di_db[adp->ad_lbn] != adp->ad_newblkno) { 3556 FREE_LOCK(&lk); 3557 panic("%s: direct pointer #%jd mismatch %jd != %jd", 3558 "softdep_write_inodeblock", 3559 (intmax_t)adp->ad_lbn, 3560 (intmax_t)dp->di_db[adp->ad_lbn], 3561 (intmax_t)adp->ad_newblkno); 3562 } 3563 if (adp->ad_lbn >= NDADDR && 3564 dp->di_ib[adp->ad_lbn - NDADDR] != adp->ad_newblkno) { 3565 FREE_LOCK(&lk); 3566 panic("%s indirect pointer #%jd mismatch %jd != %jd", 3567 "softdep_write_inodeblock:", 3568 (intmax_t)adp->ad_lbn - NDADDR, 3569 (intmax_t)dp->di_ib[adp->ad_lbn - NDADDR], 3570 (intmax_t)adp->ad_newblkno); 3571 } 3572 deplist |= 1 << adp->ad_lbn; 3573 if ((adp->ad_state & ATTACHED) == 0) { 3574 FREE_LOCK(&lk); 3575 panic("softdep_write_inodeblock: Unknown state 0x%x", 3576 adp->ad_state); 3577 } 3578 #endif /* DIAGNOSTIC */ 3579 adp->ad_state &= ~ATTACHED; 3580 adp->ad_state |= UNDONE; 3581 } 3582 /* 3583 * The on-disk inode cannot claim to be any larger than the last 3584 * fragment that has been written. Otherwise, the on-disk inode 3585 * might have fragments that were not the last block in the file 3586 * which would corrupt the filesystem. 3587 */ 3588 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 3589 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 3590 if (adp->ad_lbn >= NDADDR) 3591 break; 3592 dp->di_db[adp->ad_lbn] = adp->ad_oldblkno; 3593 /* keep going until hitting a rollback to a frag */ 3594 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 3595 continue; 3596 dp->di_size = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize; 3597 for (i = adp->ad_lbn + 1; i < NDADDR; i++) { 3598 #ifdef DIAGNOSTIC 3599 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) { 3600 FREE_LOCK(&lk); 3601 panic("softdep_write_inodeblock: lost dep1"); 3602 } 3603 #endif /* DIAGNOSTIC */ 3604 dp->di_db[i] = 0; 3605 } 3606 for (i = 0; i < NIADDR; i++) { 3607 #ifdef DIAGNOSTIC 3608 if (dp->di_ib[i] != 0 && 3609 (deplist & ((1 << NDADDR) << i)) == 0) { 3610 FREE_LOCK(&lk); 3611 panic("softdep_write_inodeblock: lost dep2"); 3612 } 3613 #endif /* DIAGNOSTIC */ 3614 dp->di_ib[i] = 0; 3615 } 3616 FREE_LOCK(&lk); 3617 return; 3618 } 3619 /* 3620 * If we have zero'ed out the last allocated block of the file, 3621 * roll back the size to the last currently allocated block. 3622 * We know that this last allocated block is a full-sized as 3623 * we already checked for fragments in the loop above. 3624 */ 3625 if (lastadp != NULL && 3626 dp->di_size <= (lastadp->ad_lbn + 1) * fs->fs_bsize) { 3627 for (i = lastadp->ad_lbn; i >= 0; i--) 3628 if (dp->di_db[i] != 0) 3629 break; 3630 dp->di_size = (i + 1) * fs->fs_bsize; 3631 } 3632 /* 3633 * The only dependencies are for indirect blocks. 3634 * 3635 * The file size for indirect block additions is not guaranteed. 3636 * Such a guarantee would be non-trivial to achieve. The conventional 3637 * synchronous write implementation also does not make this guarantee. 3638 * Fsck should catch and fix discrepancies. Arguably, the file size 3639 * can be over-estimated without destroying integrity when the file 3640 * moves into the indirect blocks (i.e., is large). If we want to 3641 * postpone fsck, we are stuck with this argument. 3642 */ 3643 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 3644 dp->di_ib[adp->ad_lbn - NDADDR] = 0; 3645 FREE_LOCK(&lk); 3646 } 3647 3648 /* 3649 * This routine is called during the completion interrupt 3650 * service routine for a disk write (from the procedure called 3651 * by the device driver to inform the filesystem caches of 3652 * a request completion). It should be called early in this 3653 * procedure, before the block is made available to other 3654 * processes or other routines are called. 3655 */ 3656 static void 3657 softdep_disk_write_complete(bp) 3658 struct buf *bp; /* describes the completed disk write */ 3659 { 3660 struct worklist *wk; 3661 struct workhead reattach; 3662 struct newblk *newblk; 3663 struct allocindir *aip; 3664 struct allocdirect *adp; 3665 struct indirdep *indirdep; 3666 struct inodedep *inodedep; 3667 struct bmsafemap *bmsafemap; 3668 3669 #ifdef DEBUG 3670 if (lk.lkt_held != NOHOLDER) 3671 panic("softdep_disk_write_complete: lock is held"); 3672 lk.lkt_held = SPECIAL_FLAG; 3673 #endif 3674 LIST_INIT(&reattach); 3675 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) { 3676 WORKLIST_REMOVE(wk); 3677 switch (wk->wk_type) { 3678 3679 case D_PAGEDEP: 3680 if (handle_written_filepage(WK_PAGEDEP(wk), bp)) 3681 WORKLIST_INSERT(&reattach, wk); 3682 continue; 3683 3684 case D_INODEDEP: 3685 if (handle_written_inodeblock(WK_INODEDEP(wk), bp)) 3686 WORKLIST_INSERT(&reattach, wk); 3687 continue; 3688 3689 case D_BMSAFEMAP: 3690 bmsafemap = WK_BMSAFEMAP(wk); 3691 while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkhd))) { 3692 newblk->nb_state |= DEPCOMPLETE; 3693 newblk->nb_bmsafemap = NULL; 3694 LIST_REMOVE(newblk, nb_deps); 3695 } 3696 while ((adp = 3697 LIST_FIRST(&bmsafemap->sm_allocdirecthd))) { 3698 adp->ad_state |= DEPCOMPLETE; 3699 adp->ad_buf = NULL; 3700 LIST_REMOVE(adp, ad_deps); 3701 handle_allocdirect_partdone(adp); 3702 } 3703 while ((aip = 3704 LIST_FIRST(&bmsafemap->sm_allocindirhd))) { 3705 aip->ai_state |= DEPCOMPLETE; 3706 aip->ai_buf = NULL; 3707 LIST_REMOVE(aip, ai_deps); 3708 handle_allocindir_partdone(aip); 3709 } 3710 while ((inodedep = 3711 LIST_FIRST(&bmsafemap->sm_inodedephd)) != NULL) { 3712 inodedep->id_state |= DEPCOMPLETE; 3713 LIST_REMOVE(inodedep, id_deps); 3714 inodedep->id_buf = NULL; 3715 } 3716 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); 3717 continue; 3718 3719 case D_MKDIR: 3720 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); 3721 continue; 3722 3723 case D_ALLOCDIRECT: 3724 adp = WK_ALLOCDIRECT(wk); 3725 adp->ad_state |= COMPLETE; 3726 handle_allocdirect_partdone(adp); 3727 continue; 3728 3729 case D_ALLOCINDIR: 3730 aip = WK_ALLOCINDIR(wk); 3731 aip->ai_state |= COMPLETE; 3732 handle_allocindir_partdone(aip); 3733 continue; 3734 3735 case D_INDIRDEP: 3736 indirdep = WK_INDIRDEP(wk); 3737 if (indirdep->ir_state & GOINGAWAY) { 3738 lk.lkt_held = NOHOLDER; 3739 panic("disk_write_complete: indirdep gone"); 3740 } 3741 bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount); 3742 FREE(indirdep->ir_saveddata, M_INDIRDEP); 3743 indirdep->ir_saveddata = 0; 3744 indirdep->ir_state &= ~UNDONE; 3745 indirdep->ir_state |= ATTACHED; 3746 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) { 3747 handle_allocindir_partdone(aip); 3748 if (aip == LIST_FIRST(&indirdep->ir_donehd)) { 3749 lk.lkt_held = NOHOLDER; 3750 panic("disk_write_complete: not gone"); 3751 } 3752 } 3753 WORKLIST_INSERT(&reattach, wk); 3754 if ((bp->b_flags & B_DELWRI) == 0) 3755 stat_indir_blk_ptrs++; 3756 bdirty(bp); 3757 continue; 3758 3759 default: 3760 lk.lkt_held = NOHOLDER; 3761 panic("handle_disk_write_complete: Unknown type %s", 3762 TYPENAME(wk->wk_type)); 3763 /* NOTREACHED */ 3764 } 3765 } 3766 /* 3767 * Reattach any requests that must be redone. 3768 */ 3769 while ((wk = LIST_FIRST(&reattach)) != NULL) { 3770 WORKLIST_REMOVE(wk); 3771 WORKLIST_INSERT(&bp->b_dep, wk); 3772 } 3773 #ifdef DEBUG 3774 if (lk.lkt_held != SPECIAL_FLAG) 3775 panic("softdep_disk_write_complete: lock lost"); 3776 lk.lkt_held = NOHOLDER; 3777 #endif 3778 } 3779 3780 /* 3781 * Called from within softdep_disk_write_complete above. Note that 3782 * this routine is always called from interrupt level with further 3783 * splbio interrupts blocked. 3784 */ 3785 static void 3786 handle_allocdirect_partdone(adp) 3787 struct allocdirect *adp; /* the completed allocdirect */ 3788 { 3789 struct allocdirect *listadp; 3790 struct inodedep *inodedep; 3791 long bsize, delay; 3792 3793 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 3794 return; 3795 if (adp->ad_buf != NULL) { 3796 lk.lkt_held = NOHOLDER; 3797 panic("handle_allocdirect_partdone: dangling dep"); 3798 } 3799 /* 3800 * The on-disk inode cannot claim to be any larger than the last 3801 * fragment that has been written. Otherwise, the on-disk inode 3802 * might have fragments that were not the last block in the file 3803 * which would corrupt the filesystem. Thus, we cannot free any 3804 * allocdirects after one whose ad_oldblkno claims a fragment as 3805 * these blocks must be rolled back to zero before writing the inode. 3806 * We check the currently active set of allocdirects in id_inoupdt. 3807 */ 3808 inodedep = adp->ad_inodedep; 3809 bsize = inodedep->id_fs->fs_bsize; 3810 TAILQ_FOREACH(listadp, &inodedep->id_inoupdt, ad_next) { 3811 /* found our block */ 3812 if (listadp == adp) 3813 break; 3814 /* continue if ad_oldlbn is not a fragment */ 3815 if (listadp->ad_oldsize == 0 || 3816 listadp->ad_oldsize == bsize) 3817 continue; 3818 /* hit a fragment */ 3819 return; 3820 } 3821 /* 3822 * If we have reached the end of the current list without 3823 * finding the just finished dependency, then it must be 3824 * on the future dependency list. Future dependencies cannot 3825 * be freed until they are moved to the current list. 3826 */ 3827 if (listadp == NULL) { 3828 #ifdef DEBUG 3829 TAILQ_FOREACH(listadp, &inodedep->id_newinoupdt, ad_next) 3830 /* found our block */ 3831 if (listadp == adp) 3832 break; 3833 if (listadp == NULL) { 3834 lk.lkt_held = NOHOLDER; 3835 panic("handle_allocdirect_partdone: lost dep"); 3836 } 3837 #endif /* DEBUG */ 3838 return; 3839 } 3840 /* 3841 * If we have found the just finished dependency, then free 3842 * it along with anything that follows it that is complete. 3843 * If the inode still has a bitmap dependency, then it has 3844 * never been written to disk, hence the on-disk inode cannot 3845 * reference the old fragment so we can free it without delay. 3846 */ 3847 delay = (inodedep->id_state & DEPCOMPLETE); 3848 for (; adp; adp = listadp) { 3849 listadp = TAILQ_NEXT(adp, ad_next); 3850 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 3851 return; 3852 free_allocdirect(&inodedep->id_inoupdt, adp, delay); 3853 } 3854 } 3855 3856 /* 3857 * Called from within softdep_disk_write_complete above. Note that 3858 * this routine is always called from interrupt level with further 3859 * splbio interrupts blocked. 3860 */ 3861 static void 3862 handle_allocindir_partdone(aip) 3863 struct allocindir *aip; /* the completed allocindir */ 3864 { 3865 struct indirdep *indirdep; 3866 3867 if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE) 3868 return; 3869 if (aip->ai_buf != NULL) { 3870 lk.lkt_held = NOHOLDER; 3871 panic("handle_allocindir_partdone: dangling dependency"); 3872 } 3873 indirdep = aip->ai_indirdep; 3874 if (indirdep->ir_state & UNDONE) { 3875 LIST_REMOVE(aip, ai_next); 3876 LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next); 3877 return; 3878 } 3879 if (indirdep->ir_state & UFS1FMT) 3880 ((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 3881 aip->ai_newblkno; 3882 else 3883 ((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 3884 aip->ai_newblkno; 3885 LIST_REMOVE(aip, ai_next); 3886 if (aip->ai_freefrag != NULL) 3887 add_to_worklist(&aip->ai_freefrag->ff_list); 3888 WORKITEM_FREE(aip, D_ALLOCINDIR); 3889 } 3890 3891 /* 3892 * Called from within softdep_disk_write_complete above to restore 3893 * in-memory inode block contents to their most up-to-date state. Note 3894 * that this routine is always called from interrupt level with further 3895 * splbio interrupts blocked. 3896 */ 3897 static int 3898 handle_written_inodeblock(inodedep, bp) 3899 struct inodedep *inodedep; 3900 struct buf *bp; /* buffer containing the inode block */ 3901 { 3902 struct worklist *wk, *filefree; 3903 struct allocdirect *adp, *nextadp; 3904 struct ufs1_dinode *dp1 = NULL; 3905 struct ufs2_dinode *dp2 = NULL; 3906 int hadchanges, fstype; 3907 3908 if ((inodedep->id_state & IOSTARTED) == 0) { 3909 lk.lkt_held = NOHOLDER; 3910 panic("handle_written_inodeblock: not started"); 3911 } 3912 inodedep->id_state &= ~IOSTARTED; 3913 inodedep->id_state |= COMPLETE; 3914 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) { 3915 fstype = UFS1; 3916 dp1 = (struct ufs1_dinode *)bp->b_data + 3917 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 3918 } else { 3919 fstype = UFS2; 3920 dp2 = (struct ufs2_dinode *)bp->b_data + 3921 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 3922 } 3923 /* 3924 * If we had to rollback the inode allocation because of 3925 * bitmaps being incomplete, then simply restore it. 3926 * Keep the block dirty so that it will not be reclaimed until 3927 * all associated dependencies have been cleared and the 3928 * corresponding updates written to disk. 3929 */ 3930 if (inodedep->id_savedino1 != NULL) { 3931 if (fstype == UFS1) 3932 *dp1 = *inodedep->id_savedino1; 3933 else 3934 *dp2 = *inodedep->id_savedino2; 3935 FREE(inodedep->id_savedino1, M_INODEDEP); 3936 inodedep->id_savedino1 = NULL; 3937 if ((bp->b_flags & B_DELWRI) == 0) 3938 stat_inode_bitmap++; 3939 bdirty(bp); 3940 return (1); 3941 } 3942 /* 3943 * Roll forward anything that had to be rolled back before 3944 * the inode could be updated. 3945 */ 3946 hadchanges = 0; 3947 for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) { 3948 nextadp = TAILQ_NEXT(adp, ad_next); 3949 if (adp->ad_state & ATTACHED) { 3950 lk.lkt_held = NOHOLDER; 3951 panic("handle_written_inodeblock: new entry"); 3952 } 3953 if (fstype == UFS1) { 3954 if (adp->ad_lbn < NDADDR) { 3955 if (dp1->di_db[adp->ad_lbn]!=adp->ad_oldblkno) { 3956 lk.lkt_held = NOHOLDER; 3957 panic("%s %s #%jd mismatch %d != %jd", 3958 "handle_written_inodeblock:", 3959 "direct pointer", 3960 (intmax_t)adp->ad_lbn, 3961 dp1->di_db[adp->ad_lbn], 3962 (intmax_t)adp->ad_oldblkno); 3963 } 3964 dp1->di_db[adp->ad_lbn] = adp->ad_newblkno; 3965 } else { 3966 if (dp1->di_ib[adp->ad_lbn - NDADDR] != 0) { 3967 lk.lkt_held = NOHOLDER; 3968 panic("%s: %s #%jd allocated as %d", 3969 "handle_written_inodeblock", 3970 "indirect pointer", 3971 (intmax_t)adp->ad_lbn - NDADDR, 3972 dp1->di_ib[adp->ad_lbn - NDADDR]); 3973 } 3974 dp1->di_ib[adp->ad_lbn - NDADDR] = 3975 adp->ad_newblkno; 3976 } 3977 } else { 3978 if (adp->ad_lbn < NDADDR) { 3979 if (dp2->di_db[adp->ad_lbn]!=adp->ad_oldblkno) { 3980 lk.lkt_held = NOHOLDER; 3981 panic("%s: %s #%jd %s %jd != %jd", 3982 "handle_written_inodeblock", 3983 "direct pointer", 3984 (intmax_t)adp->ad_lbn, "mismatch", 3985 (intmax_t)dp2->di_db[adp->ad_lbn], 3986 (intmax_t)adp->ad_oldblkno); 3987 } 3988 dp2->di_db[adp->ad_lbn] = adp->ad_newblkno; 3989 } else { 3990 if (dp2->di_ib[adp->ad_lbn - NDADDR] != 0) { 3991 lk.lkt_held = NOHOLDER; 3992 panic("%s: %s #%jd allocated as %jd", 3993 "handle_written_inodeblock", 3994 "indirect pointer", 3995 (intmax_t)adp->ad_lbn - NDADDR, 3996 (intmax_t) 3997 dp2->di_ib[adp->ad_lbn - NDADDR]); 3998 } 3999 dp2->di_ib[adp->ad_lbn - NDADDR] = 4000 adp->ad_newblkno; 4001 } 4002 } 4003 adp->ad_state &= ~UNDONE; 4004 adp->ad_state |= ATTACHED; 4005 hadchanges = 1; 4006 } 4007 if (hadchanges && (bp->b_flags & B_DELWRI) == 0) 4008 stat_direct_blk_ptrs++; 4009 /* 4010 * Reset the file size to its most up-to-date value. 4011 */ 4012 if (inodedep->id_savedsize == -1) { 4013 lk.lkt_held = NOHOLDER; 4014 panic("handle_written_inodeblock: bad size"); 4015 } 4016 if (fstype == UFS1) { 4017 if (dp1->di_size != inodedep->id_savedsize) { 4018 dp1->di_size = inodedep->id_savedsize; 4019 hadchanges = 1; 4020 } 4021 } else { 4022 if (dp2->di_size != inodedep->id_savedsize) { 4023 dp2->di_size = inodedep->id_savedsize; 4024 hadchanges = 1; 4025 } 4026 } 4027 inodedep->id_savedsize = -1; 4028 /* 4029 * If there were any rollbacks in the inode block, then it must be 4030 * marked dirty so that its will eventually get written back in 4031 * its correct form. 4032 */ 4033 if (hadchanges) 4034 bdirty(bp); 4035 /* 4036 * Process any allocdirects that completed during the update. 4037 */ 4038 if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL) 4039 handle_allocdirect_partdone(adp); 4040 /* 4041 * Process deallocations that were held pending until the 4042 * inode had been written to disk. Freeing of the inode 4043 * is delayed until after all blocks have been freed to 4044 * avoid creation of new <vfsid, inum, lbn> triples 4045 * before the old ones have been deleted. 4046 */ 4047 filefree = NULL; 4048 while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) { 4049 WORKLIST_REMOVE(wk); 4050 switch (wk->wk_type) { 4051 4052 case D_FREEFILE: 4053 /* 4054 * We defer adding filefree to the worklist until 4055 * all other additions have been made to ensure 4056 * that it will be done after all the old blocks 4057 * have been freed. 4058 */ 4059 if (filefree != NULL) { 4060 lk.lkt_held = NOHOLDER; 4061 panic("handle_written_inodeblock: filefree"); 4062 } 4063 filefree = wk; 4064 continue; 4065 4066 case D_MKDIR: 4067 handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT); 4068 continue; 4069 4070 case D_DIRADD: 4071 diradd_inode_written(WK_DIRADD(wk), inodedep); 4072 continue; 4073 4074 case D_FREEBLKS: 4075 case D_FREEFRAG: 4076 case D_DIRREM: 4077 add_to_worklist(wk); 4078 continue; 4079 4080 case D_NEWDIRBLK: 4081 free_newdirblk(WK_NEWDIRBLK(wk)); 4082 continue; 4083 4084 default: 4085 lk.lkt_held = NOHOLDER; 4086 panic("handle_written_inodeblock: Unknown type %s", 4087 TYPENAME(wk->wk_type)); 4088 /* NOTREACHED */ 4089 } 4090 } 4091 if (filefree != NULL) { 4092 if (free_inodedep(inodedep) == 0) { 4093 lk.lkt_held = NOHOLDER; 4094 panic("handle_written_inodeblock: live inodedep"); 4095 } 4096 add_to_worklist(filefree); 4097 return (0); 4098 } 4099 4100 /* 4101 * If no outstanding dependencies, free it. 4102 */ 4103 if (free_inodedep(inodedep) || TAILQ_FIRST(&inodedep->id_inoupdt) == 0) 4104 return (0); 4105 return (hadchanges); 4106 } 4107 4108 /* 4109 * Process a diradd entry after its dependent inode has been written. 4110 * This routine must be called with splbio interrupts blocked. 4111 */ 4112 static void 4113 diradd_inode_written(dap, inodedep) 4114 struct diradd *dap; 4115 struct inodedep *inodedep; 4116 { 4117 struct pagedep *pagedep; 4118 4119 dap->da_state |= COMPLETE; 4120 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 4121 if (dap->da_state & DIRCHG) 4122 pagedep = dap->da_previous->dm_pagedep; 4123 else 4124 pagedep = dap->da_pagedep; 4125 LIST_REMOVE(dap, da_pdlist); 4126 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 4127 } 4128 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 4129 } 4130 4131 /* 4132 * Handle the completion of a mkdir dependency. 4133 */ 4134 static void 4135 handle_written_mkdir(mkdir, type) 4136 struct mkdir *mkdir; 4137 int type; 4138 { 4139 struct diradd *dap; 4140 struct pagedep *pagedep; 4141 4142 if (mkdir->md_state != type) { 4143 lk.lkt_held = NOHOLDER; 4144 panic("handle_written_mkdir: bad type"); 4145 } 4146 dap = mkdir->md_diradd; 4147 dap->da_state &= ~type; 4148 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) 4149 dap->da_state |= DEPCOMPLETE; 4150 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 4151 if (dap->da_state & DIRCHG) 4152 pagedep = dap->da_previous->dm_pagedep; 4153 else 4154 pagedep = dap->da_pagedep; 4155 LIST_REMOVE(dap, da_pdlist); 4156 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 4157 } 4158 LIST_REMOVE(mkdir, md_mkdirs); 4159 WORKITEM_FREE(mkdir, D_MKDIR); 4160 } 4161 4162 /* 4163 * Called from within softdep_disk_write_complete above. 4164 * A write operation was just completed. Removed inodes can 4165 * now be freed and associated block pointers may be committed. 4166 * Note that this routine is always called from interrupt level 4167 * with further splbio interrupts blocked. 4168 */ 4169 static int 4170 handle_written_filepage(pagedep, bp) 4171 struct pagedep *pagedep; 4172 struct buf *bp; /* buffer containing the written page */ 4173 { 4174 struct dirrem *dirrem; 4175 struct diradd *dap, *nextdap; 4176 struct direct *ep; 4177 int i, chgs; 4178 4179 if ((pagedep->pd_state & IOSTARTED) == 0) { 4180 lk.lkt_held = NOHOLDER; 4181 panic("handle_written_filepage: not started"); 4182 } 4183 pagedep->pd_state &= ~IOSTARTED; 4184 /* 4185 * Process any directory removals that have been committed. 4186 */ 4187 while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) { 4188 LIST_REMOVE(dirrem, dm_next); 4189 dirrem->dm_dirinum = pagedep->pd_ino; 4190 add_to_worklist(&dirrem->dm_list); 4191 } 4192 /* 4193 * Free any directory additions that have been committed. 4194 * If it is a newly allocated block, we have to wait until 4195 * the on-disk directory inode claims the new block. 4196 */ 4197 if ((pagedep->pd_state & NEWBLOCK) == 0) 4198 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 4199 free_diradd(dap); 4200 /* 4201 * Uncommitted directory entries must be restored. 4202 */ 4203 for (chgs = 0, i = 0; i < DAHASHSZ; i++) { 4204 for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap; 4205 dap = nextdap) { 4206 nextdap = LIST_NEXT(dap, da_pdlist); 4207 if (dap->da_state & ATTACHED) { 4208 lk.lkt_held = NOHOLDER; 4209 panic("handle_written_filepage: attached"); 4210 } 4211 ep = (struct direct *) 4212 ((char *)bp->b_data + dap->da_offset); 4213 ep->d_ino = dap->da_newinum; 4214 dap->da_state &= ~UNDONE; 4215 dap->da_state |= ATTACHED; 4216 chgs = 1; 4217 /* 4218 * If the inode referenced by the directory has 4219 * been written out, then the dependency can be 4220 * moved to the pending list. 4221 */ 4222 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 4223 LIST_REMOVE(dap, da_pdlist); 4224 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, 4225 da_pdlist); 4226 } 4227 } 4228 } 4229 /* 4230 * If there were any rollbacks in the directory, then it must be 4231 * marked dirty so that its will eventually get written back in 4232 * its correct form. 4233 */ 4234 if (chgs) { 4235 if ((bp->b_flags & B_DELWRI) == 0) 4236 stat_dir_entry++; 4237 bdirty(bp); 4238 return (1); 4239 } 4240 /* 4241 * If we are not waiting for a new directory block to be 4242 * claimed by its inode, then the pagedep will be freed. 4243 * Otherwise it will remain to track any new entries on 4244 * the page in case they are fsync'ed. 4245 */ 4246 if ((pagedep->pd_state & NEWBLOCK) == 0) { 4247 LIST_REMOVE(pagedep, pd_hash); 4248 WORKITEM_FREE(pagedep, D_PAGEDEP); 4249 } 4250 return (0); 4251 } 4252 4253 /* 4254 * Writing back in-core inode structures. 4255 * 4256 * The filesystem only accesses an inode's contents when it occupies an 4257 * "in-core" inode structure. These "in-core" structures are separate from 4258 * the page frames used to cache inode blocks. Only the latter are 4259 * transferred to/from the disk. So, when the updated contents of the 4260 * "in-core" inode structure are copied to the corresponding in-memory inode 4261 * block, the dependencies are also transferred. The following procedure is 4262 * called when copying a dirty "in-core" inode to a cached inode block. 4263 */ 4264 4265 /* 4266 * Called when an inode is loaded from disk. If the effective link count 4267 * differed from the actual link count when it was last flushed, then we 4268 * need to ensure that the correct effective link count is put back. 4269 */ 4270 void 4271 softdep_load_inodeblock(ip) 4272 struct inode *ip; /* the "in_core" copy of the inode */ 4273 { 4274 struct inodedep *inodedep; 4275 4276 /* 4277 * Check for alternate nlink count. 4278 */ 4279 ip->i_effnlink = ip->i_nlink; 4280 ACQUIRE_LOCK(&lk); 4281 if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) { 4282 FREE_LOCK(&lk); 4283 return; 4284 } 4285 ip->i_effnlink -= inodedep->id_nlinkdelta; 4286 if (inodedep->id_state & SPACECOUNTED) 4287 ip->i_flag |= IN_SPACECOUNTED; 4288 FREE_LOCK(&lk); 4289 } 4290 4291 /* 4292 * This routine is called just before the "in-core" inode 4293 * information is to be copied to the in-memory inode block. 4294 * Recall that an inode block contains several inodes. If 4295 * the force flag is set, then the dependencies will be 4296 * cleared so that the update can always be made. Note that 4297 * the buffer is locked when this routine is called, so we 4298 * will never be in the middle of writing the inode block 4299 * to disk. 4300 */ 4301 void 4302 softdep_update_inodeblock(ip, bp, waitfor) 4303 struct inode *ip; /* the "in_core" copy of the inode */ 4304 struct buf *bp; /* the buffer containing the inode block */ 4305 int waitfor; /* nonzero => update must be allowed */ 4306 { 4307 struct inodedep *inodedep; 4308 struct worklist *wk; 4309 int error, gotit; 4310 4311 /* 4312 * If the effective link count is not equal to the actual link 4313 * count, then we must track the difference in an inodedep while 4314 * the inode is (potentially) tossed out of the cache. Otherwise, 4315 * if there is no existing inodedep, then there are no dependencies 4316 * to track. 4317 */ 4318 ACQUIRE_LOCK(&lk); 4319 if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) { 4320 FREE_LOCK(&lk); 4321 if (ip->i_effnlink != ip->i_nlink) 4322 panic("softdep_update_inodeblock: bad link count"); 4323 return; 4324 } 4325 if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink) { 4326 FREE_LOCK(&lk); 4327 panic("softdep_update_inodeblock: bad delta"); 4328 } 4329 /* 4330 * Changes have been initiated. Anything depending on these 4331 * changes cannot occur until this inode has been written. 4332 */ 4333 inodedep->id_state &= ~COMPLETE; 4334 if ((inodedep->id_state & ONWORKLIST) == 0) 4335 WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list); 4336 /* 4337 * Any new dependencies associated with the incore inode must 4338 * now be moved to the list associated with the buffer holding 4339 * the in-memory copy of the inode. Once merged process any 4340 * allocdirects that are completed by the merger. 4341 */ 4342 merge_inode_lists(inodedep); 4343 if (TAILQ_FIRST(&inodedep->id_inoupdt) != NULL) 4344 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt)); 4345 /* 4346 * Now that the inode has been pushed into the buffer, the 4347 * operations dependent on the inode being written to disk 4348 * can be moved to the id_bufwait so that they will be 4349 * processed when the buffer I/O completes. 4350 */ 4351 while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) { 4352 WORKLIST_REMOVE(wk); 4353 WORKLIST_INSERT(&inodedep->id_bufwait, wk); 4354 } 4355 /* 4356 * Newly allocated inodes cannot be written until the bitmap 4357 * that allocates them have been written (indicated by 4358 * DEPCOMPLETE being set in id_state). If we are doing a 4359 * forced sync (e.g., an fsync on a file), we force the bitmap 4360 * to be written so that the update can be done. 4361 */ 4362 if ((inodedep->id_state & DEPCOMPLETE) != 0 || waitfor == 0) { 4363 FREE_LOCK(&lk); 4364 return; 4365 } 4366 gotit = getdirtybuf(&inodedep->id_buf, MNT_WAIT); 4367 FREE_LOCK(&lk); 4368 if (gotit && 4369 (error = BUF_WRITE(inodedep->id_buf)) != 0) 4370 softdep_error("softdep_update_inodeblock: bwrite", error); 4371 if ((inodedep->id_state & DEPCOMPLETE) == 0) 4372 panic("softdep_update_inodeblock: update failed"); 4373 } 4374 4375 /* 4376 * Merge the new inode dependency list (id_newinoupdt) into the old 4377 * inode dependency list (id_inoupdt). This routine must be called 4378 * with splbio interrupts blocked. 4379 */ 4380 static void 4381 merge_inode_lists(inodedep) 4382 struct inodedep *inodedep; 4383 { 4384 struct allocdirect *listadp, *newadp; 4385 4386 newadp = TAILQ_FIRST(&inodedep->id_newinoupdt); 4387 for (listadp = TAILQ_FIRST(&inodedep->id_inoupdt); listadp && newadp;) { 4388 if (listadp->ad_lbn < newadp->ad_lbn) { 4389 listadp = TAILQ_NEXT(listadp, ad_next); 4390 continue; 4391 } 4392 TAILQ_REMOVE(&inodedep->id_newinoupdt, newadp, ad_next); 4393 TAILQ_INSERT_BEFORE(listadp, newadp, ad_next); 4394 if (listadp->ad_lbn == newadp->ad_lbn) { 4395 allocdirect_merge(&inodedep->id_inoupdt, newadp, 4396 listadp); 4397 listadp = newadp; 4398 } 4399 newadp = TAILQ_FIRST(&inodedep->id_newinoupdt); 4400 } 4401 while ((newadp = TAILQ_FIRST(&inodedep->id_newinoupdt)) != NULL) { 4402 TAILQ_REMOVE(&inodedep->id_newinoupdt, newadp, ad_next); 4403 TAILQ_INSERT_TAIL(&inodedep->id_inoupdt, newadp, ad_next); 4404 } 4405 } 4406 4407 /* 4408 * If we are doing an fsync, then we must ensure that any directory 4409 * entries for the inode have been written after the inode gets to disk. 4410 */ 4411 int 4412 softdep_fsync(vp) 4413 struct vnode *vp; /* the "in_core" copy of the inode */ 4414 { 4415 struct inodedep *inodedep; 4416 struct pagedep *pagedep; 4417 struct worklist *wk; 4418 struct diradd *dap; 4419 struct mount *mnt; 4420 struct vnode *pvp; 4421 struct inode *ip; 4422 struct buf *bp; 4423 struct fs *fs; 4424 struct thread *td = curthread; 4425 int error, flushparent; 4426 ino_t parentino; 4427 ufs_lbn_t lbn; 4428 4429 ip = VTOI(vp); 4430 fs = ip->i_fs; 4431 ACQUIRE_LOCK(&lk); 4432 if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0) { 4433 FREE_LOCK(&lk); 4434 return (0); 4435 } 4436 if (LIST_FIRST(&inodedep->id_inowait) != NULL || 4437 LIST_FIRST(&inodedep->id_bufwait) != NULL || 4438 TAILQ_FIRST(&inodedep->id_inoupdt) != NULL || 4439 TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL) { 4440 FREE_LOCK(&lk); 4441 panic("softdep_fsync: pending ops"); 4442 } 4443 for (error = 0, flushparent = 0; ; ) { 4444 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL) 4445 break; 4446 if (wk->wk_type != D_DIRADD) { 4447 FREE_LOCK(&lk); 4448 panic("softdep_fsync: Unexpected type %s", 4449 TYPENAME(wk->wk_type)); 4450 } 4451 dap = WK_DIRADD(wk); 4452 /* 4453 * Flush our parent if this directory entry has a MKDIR_PARENT 4454 * dependency or is contained in a newly allocated block. 4455 */ 4456 if (dap->da_state & DIRCHG) 4457 pagedep = dap->da_previous->dm_pagedep; 4458 else 4459 pagedep = dap->da_pagedep; 4460 mnt = pagedep->pd_mnt; 4461 parentino = pagedep->pd_ino; 4462 lbn = pagedep->pd_lbn; 4463 if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE) { 4464 FREE_LOCK(&lk); 4465 panic("softdep_fsync: dirty"); 4466 } 4467 if ((dap->da_state & MKDIR_PARENT) || 4468 (pagedep->pd_state & NEWBLOCK)) 4469 flushparent = 1; 4470 else 4471 flushparent = 0; 4472 /* 4473 * If we are being fsync'ed as part of vgone'ing this vnode, 4474 * then we will not be able to release and recover the 4475 * vnode below, so we just have to give up on writing its 4476 * directory entry out. It will eventually be written, just 4477 * not now, but then the user was not asking to have it 4478 * written, so we are not breaking any promises. 4479 */ 4480 if (vp->v_flag & VXLOCK) 4481 break; 4482 /* 4483 * We prevent deadlock by always fetching inodes from the 4484 * root, moving down the directory tree. Thus, when fetching 4485 * our parent directory, we first try to get the lock. If 4486 * that fails, we must unlock ourselves before requesting 4487 * the lock on our parent. See the comment in ufs_lookup 4488 * for details on possible races. 4489 */ 4490 FREE_LOCK(&lk); 4491 if (VFS_VGET(mnt, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp)) { 4492 VOP_UNLOCK(vp, 0, td); 4493 error = VFS_VGET(mnt, parentino, LK_EXCLUSIVE, &pvp); 4494 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td); 4495 if (error != 0) 4496 return (error); 4497 } 4498 /* 4499 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps 4500 * that are contained in direct blocks will be resolved by 4501 * doing a UFS_UPDATE. Pagedeps contained in indirect blocks 4502 * may require a complete sync'ing of the directory. So, we 4503 * try the cheap and fast UFS_UPDATE first, and if that fails, 4504 * then we do the slower VOP_FSYNC of the directory. 4505 */ 4506 if (flushparent) { 4507 if ((error = UFS_UPDATE(pvp, 1)) != 0) { 4508 vput(pvp); 4509 return (error); 4510 } 4511 if ((pagedep->pd_state & NEWBLOCK) && 4512 (error = VOP_FSYNC(pvp, td->td_ucred, MNT_WAIT, td))) { 4513 vput(pvp); 4514 return (error); 4515 } 4516 } 4517 /* 4518 * Flush directory page containing the inode's name. 4519 */ 4520 error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred, 4521 &bp); 4522 if (error == 0) 4523 error = BUF_WRITE(bp); 4524 else 4525 brelse(bp); 4526 vput(pvp); 4527 if (error != 0) 4528 return (error); 4529 ACQUIRE_LOCK(&lk); 4530 if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0) 4531 break; 4532 } 4533 FREE_LOCK(&lk); 4534 return (0); 4535 } 4536 4537 /* 4538 * Flush all the dirty bitmaps associated with the block device 4539 * before flushing the rest of the dirty blocks so as to reduce 4540 * the number of dependencies that will have to be rolled back. 4541 */ 4542 void 4543 softdep_fsync_mountdev(vp) 4544 struct vnode *vp; 4545 { 4546 struct buf *bp, *nbp; 4547 struct worklist *wk; 4548 4549 if (!vn_isdisk(vp, NULL)) 4550 panic("softdep_fsync_mountdev: vnode not a disk"); 4551 ACQUIRE_LOCK(&lk); 4552 for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { 4553 nbp = TAILQ_NEXT(bp, b_vnbufs); 4554 /* 4555 * If it is already scheduled, skip to the next buffer. 4556 */ 4557 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) 4558 continue; 4559 if ((bp->b_flags & B_DELWRI) == 0) { 4560 FREE_LOCK(&lk); 4561 panic("softdep_fsync_mountdev: not dirty"); 4562 } 4563 /* 4564 * We are only interested in bitmaps with outstanding 4565 * dependencies. 4566 */ 4567 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL || 4568 wk->wk_type != D_BMSAFEMAP || 4569 (bp->b_xflags & BX_BKGRDINPROG)) { 4570 BUF_UNLOCK(bp); 4571 continue; 4572 } 4573 bremfree(bp); 4574 FREE_LOCK(&lk); 4575 (void) bawrite(bp); 4576 ACQUIRE_LOCK(&lk); 4577 /* 4578 * Since we may have slept during the I/O, we need 4579 * to start from a known point. 4580 */ 4581 nbp = TAILQ_FIRST(&vp->v_dirtyblkhd); 4582 } 4583 drain_output(vp, 1); 4584 FREE_LOCK(&lk); 4585 } 4586 4587 /* 4588 * This routine is called when we are trying to synchronously flush a 4589 * file. This routine must eliminate any filesystem metadata dependencies 4590 * so that the syncing routine can succeed by pushing the dirty blocks 4591 * associated with the file. If any I/O errors occur, they are returned. 4592 */ 4593 int 4594 softdep_sync_metadata(ap) 4595 struct vop_fsync_args /* { 4596 struct vnode *a_vp; 4597 struct ucred *a_cred; 4598 int a_waitfor; 4599 struct thread *a_td; 4600 } */ *ap; 4601 { 4602 struct vnode *vp = ap->a_vp; 4603 struct pagedep *pagedep; 4604 struct allocdirect *adp; 4605 struct allocindir *aip; 4606 struct buf *bp, *nbp; 4607 struct worklist *wk; 4608 int i, error, waitfor; 4609 4610 /* 4611 * Check whether this vnode is involved in a filesystem 4612 * that is doing soft dependency processing. 4613 */ 4614 if (!vn_isdisk(vp, NULL)) { 4615 if (!DOINGSOFTDEP(vp)) 4616 return (0); 4617 } else 4618 if (vp->v_rdev->si_mountpoint == NULL || 4619 (vp->v_rdev->si_mountpoint->mnt_flag & MNT_SOFTDEP) == 0) 4620 return (0); 4621 /* 4622 * Ensure that any direct block dependencies have been cleared. 4623 */ 4624 ACQUIRE_LOCK(&lk); 4625 if ((error = flush_inodedep_deps(VTOI(vp)->i_fs, VTOI(vp)->i_number))) { 4626 FREE_LOCK(&lk); 4627 return (error); 4628 } 4629 /* 4630 * For most files, the only metadata dependencies are the 4631 * cylinder group maps that allocate their inode or blocks. 4632 * The block allocation dependencies can be found by traversing 4633 * the dependency lists for any buffers that remain on their 4634 * dirty buffer list. The inode allocation dependency will 4635 * be resolved when the inode is updated with MNT_WAIT. 4636 * This work is done in two passes. The first pass grabs most 4637 * of the buffers and begins asynchronously writing them. The 4638 * only way to wait for these asynchronous writes is to sleep 4639 * on the filesystem vnode which may stay busy for a long time 4640 * if the filesystem is active. So, instead, we make a second 4641 * pass over the dependencies blocking on each write. In the 4642 * usual case we will be blocking against a write that we 4643 * initiated, so when it is done the dependency will have been 4644 * resolved. Thus the second pass is expected to end quickly. 4645 */ 4646 waitfor = MNT_NOWAIT; 4647 top: 4648 /* 4649 * We must wait for any I/O in progress to finish so that 4650 * all potential buffers on the dirty list will be visible. 4651 */ 4652 drain_output(vp, 1); 4653 if (getdirtybuf(&TAILQ_FIRST(&vp->v_dirtyblkhd), MNT_WAIT) == 0) { 4654 FREE_LOCK(&lk); 4655 return (0); 4656 } 4657 bp = TAILQ_FIRST(&vp->v_dirtyblkhd); 4658 /* While syncing snapshots, we must allow recursive lookups */ 4659 bp->b_lock.lk_flags |= LK_CANRECURSE; 4660 loop: 4661 /* 4662 * As we hold the buffer locked, none of its dependencies 4663 * will disappear. 4664 */ 4665 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 4666 switch (wk->wk_type) { 4667 4668 case D_ALLOCDIRECT: 4669 adp = WK_ALLOCDIRECT(wk); 4670 if (adp->ad_state & DEPCOMPLETE) 4671 continue; 4672 nbp = adp->ad_buf; 4673 if (getdirtybuf(&nbp, waitfor) == 0) 4674 continue; 4675 FREE_LOCK(&lk); 4676 if (waitfor == MNT_NOWAIT) { 4677 bawrite(nbp); 4678 } else if ((error = BUF_WRITE(nbp)) != 0) { 4679 break; 4680 } 4681 ACQUIRE_LOCK(&lk); 4682 continue; 4683 4684 case D_ALLOCINDIR: 4685 aip = WK_ALLOCINDIR(wk); 4686 if (aip->ai_state & DEPCOMPLETE) 4687 continue; 4688 nbp = aip->ai_buf; 4689 if (getdirtybuf(&nbp, waitfor) == 0) 4690 continue; 4691 FREE_LOCK(&lk); 4692 if (waitfor == MNT_NOWAIT) { 4693 bawrite(nbp); 4694 } else if ((error = BUF_WRITE(nbp)) != 0) { 4695 break; 4696 } 4697 ACQUIRE_LOCK(&lk); 4698 continue; 4699 4700 case D_INDIRDEP: 4701 restart: 4702 4703 LIST_FOREACH(aip, &WK_INDIRDEP(wk)->ir_deplisthd, ai_next) { 4704 if (aip->ai_state & DEPCOMPLETE) 4705 continue; 4706 nbp = aip->ai_buf; 4707 if (getdirtybuf(&nbp, MNT_WAIT) == 0) 4708 goto restart; 4709 FREE_LOCK(&lk); 4710 if ((error = BUF_WRITE(nbp)) != 0) { 4711 break; 4712 } 4713 ACQUIRE_LOCK(&lk); 4714 goto restart; 4715 } 4716 continue; 4717 4718 case D_INODEDEP: 4719 if ((error = flush_inodedep_deps(WK_INODEDEP(wk)->id_fs, 4720 WK_INODEDEP(wk)->id_ino)) != 0) { 4721 FREE_LOCK(&lk); 4722 break; 4723 } 4724 continue; 4725 4726 case D_PAGEDEP: 4727 /* 4728 * We are trying to sync a directory that may 4729 * have dependencies on both its own metadata 4730 * and/or dependencies on the inodes of any 4731 * recently allocated files. We walk its diradd 4732 * lists pushing out the associated inode. 4733 */ 4734 pagedep = WK_PAGEDEP(wk); 4735 for (i = 0; i < DAHASHSZ; i++) { 4736 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0) 4737 continue; 4738 if ((error = 4739 flush_pagedep_deps(vp, pagedep->pd_mnt, 4740 &pagedep->pd_diraddhd[i]))) { 4741 FREE_LOCK(&lk); 4742 break; 4743 } 4744 } 4745 continue; 4746 4747 case D_MKDIR: 4748 /* 4749 * This case should never happen if the vnode has 4750 * been properly sync'ed. However, if this function 4751 * is used at a place where the vnode has not yet 4752 * been sync'ed, this dependency can show up. So, 4753 * rather than panic, just flush it. 4754 */ 4755 nbp = WK_MKDIR(wk)->md_buf; 4756 if (getdirtybuf(&nbp, waitfor) == 0) 4757 continue; 4758 FREE_LOCK(&lk); 4759 if (waitfor == MNT_NOWAIT) { 4760 bawrite(nbp); 4761 } else if ((error = BUF_WRITE(nbp)) != 0) { 4762 break; 4763 } 4764 ACQUIRE_LOCK(&lk); 4765 continue; 4766 4767 case D_BMSAFEMAP: 4768 /* 4769 * This case should never happen if the vnode has 4770 * been properly sync'ed. However, if this function 4771 * is used at a place where the vnode has not yet 4772 * been sync'ed, this dependency can show up. So, 4773 * rather than panic, just flush it. 4774 */ 4775 nbp = WK_BMSAFEMAP(wk)->sm_buf; 4776 if (getdirtybuf(&nbp, waitfor) == 0) 4777 continue; 4778 FREE_LOCK(&lk); 4779 if (waitfor == MNT_NOWAIT) { 4780 bawrite(nbp); 4781 } else if ((error = BUF_WRITE(nbp)) != 0) { 4782 break; 4783 } 4784 ACQUIRE_LOCK(&lk); 4785 continue; 4786 4787 default: 4788 FREE_LOCK(&lk); 4789 panic("softdep_sync_metadata: Unknown type %s", 4790 TYPENAME(wk->wk_type)); 4791 /* NOTREACHED */ 4792 } 4793 /* We reach here only in error and unlocked */ 4794 if (error == 0) 4795 panic("softdep_sync_metadata: zero error"); 4796 bp->b_lock.lk_flags &= ~LK_CANRECURSE; 4797 bawrite(bp); 4798 return (error); 4799 } 4800 (void) getdirtybuf(&TAILQ_NEXT(bp, b_vnbufs), MNT_WAIT); 4801 nbp = TAILQ_NEXT(bp, b_vnbufs); 4802 FREE_LOCK(&lk); 4803 bp->b_lock.lk_flags &= ~LK_CANRECURSE; 4804 bawrite(bp); 4805 ACQUIRE_LOCK(&lk); 4806 if (nbp != NULL) { 4807 bp = nbp; 4808 goto loop; 4809 } 4810 /* 4811 * The brief unlock is to allow any pent up dependency 4812 * processing to be done. Then proceed with the second pass. 4813 */ 4814 if (waitfor == MNT_NOWAIT) { 4815 waitfor = MNT_WAIT; 4816 FREE_LOCK(&lk); 4817 ACQUIRE_LOCK(&lk); 4818 goto top; 4819 } 4820 4821 /* 4822 * If we have managed to get rid of all the dirty buffers, 4823 * then we are done. For certain directories and block 4824 * devices, we may need to do further work. 4825 * 4826 * We must wait for any I/O in progress to finish so that 4827 * all potential buffers on the dirty list will be visible. 4828 */ 4829 drain_output(vp, 1); 4830 if (TAILQ_FIRST(&vp->v_dirtyblkhd) == NULL) { 4831 FREE_LOCK(&lk); 4832 return (0); 4833 } 4834 4835 FREE_LOCK(&lk); 4836 /* 4837 * If we are trying to sync a block device, some of its buffers may 4838 * contain metadata that cannot be written until the contents of some 4839 * partially written files have been written to disk. The only easy 4840 * way to accomplish this is to sync the entire filesystem (luckily 4841 * this happens rarely). 4842 */ 4843 if (vn_isdisk(vp, NULL) && 4844 vp->v_rdev->si_mountpoint && !VOP_ISLOCKED(vp, NULL) && 4845 (error = VFS_SYNC(vp->v_rdev->si_mountpoint, MNT_WAIT, ap->a_cred, 4846 ap->a_td)) != 0) 4847 return (error); 4848 return (0); 4849 } 4850 4851 /* 4852 * Flush the dependencies associated with an inodedep. 4853 * Called with splbio blocked. 4854 */ 4855 static int 4856 flush_inodedep_deps(fs, ino) 4857 struct fs *fs; 4858 ino_t ino; 4859 { 4860 struct inodedep *inodedep; 4861 struct allocdirect *adp; 4862 int error, waitfor; 4863 struct buf *bp; 4864 4865 /* 4866 * This work is done in two passes. The first pass grabs most 4867 * of the buffers and begins asynchronously writing them. The 4868 * only way to wait for these asynchronous writes is to sleep 4869 * on the filesystem vnode which may stay busy for a long time 4870 * if the filesystem is active. So, instead, we make a second 4871 * pass over the dependencies blocking on each write. In the 4872 * usual case we will be blocking against a write that we 4873 * initiated, so when it is done the dependency will have been 4874 * resolved. Thus the second pass is expected to end quickly. 4875 * We give a brief window at the top of the loop to allow 4876 * any pending I/O to complete. 4877 */ 4878 for (waitfor = MNT_NOWAIT; ; ) { 4879 FREE_LOCK(&lk); 4880 ACQUIRE_LOCK(&lk); 4881 if (inodedep_lookup(fs, ino, 0, &inodedep) == 0) 4882 return (0); 4883 TAILQ_FOREACH(adp, &inodedep->id_inoupdt, ad_next) { 4884 if (adp->ad_state & DEPCOMPLETE) 4885 continue; 4886 bp = adp->ad_buf; 4887 if (getdirtybuf(&bp, waitfor) == 0) { 4888 if (waitfor == MNT_NOWAIT) 4889 continue; 4890 break; 4891 } 4892 FREE_LOCK(&lk); 4893 if (waitfor == MNT_NOWAIT) { 4894 bawrite(bp); 4895 } else if ((error = BUF_WRITE(bp)) != 0) { 4896 ACQUIRE_LOCK(&lk); 4897 return (error); 4898 } 4899 ACQUIRE_LOCK(&lk); 4900 break; 4901 } 4902 if (adp != NULL) 4903 continue; 4904 TAILQ_FOREACH(adp, &inodedep->id_newinoupdt, ad_next) { 4905 if (adp->ad_state & DEPCOMPLETE) 4906 continue; 4907 bp = adp->ad_buf; 4908 if (getdirtybuf(&bp, waitfor) == 0) { 4909 if (waitfor == MNT_NOWAIT) 4910 continue; 4911 break; 4912 } 4913 FREE_LOCK(&lk); 4914 if (waitfor == MNT_NOWAIT) { 4915 bawrite(bp); 4916 } else if ((error = BUF_WRITE(bp)) != 0) { 4917 ACQUIRE_LOCK(&lk); 4918 return (error); 4919 } 4920 ACQUIRE_LOCK(&lk); 4921 break; 4922 } 4923 if (adp != NULL) 4924 continue; 4925 /* 4926 * If pass2, we are done, otherwise do pass 2. 4927 */ 4928 if (waitfor == MNT_WAIT) 4929 break; 4930 waitfor = MNT_WAIT; 4931 } 4932 /* 4933 * Try freeing inodedep in case all dependencies have been removed. 4934 */ 4935 if (inodedep_lookup(fs, ino, 0, &inodedep) != 0) 4936 (void) free_inodedep(inodedep); 4937 return (0); 4938 } 4939 4940 /* 4941 * Eliminate a pagedep dependency by flushing out all its diradd dependencies. 4942 * Called with splbio blocked. 4943 */ 4944 static int 4945 flush_pagedep_deps(pvp, mp, diraddhdp) 4946 struct vnode *pvp; 4947 struct mount *mp; 4948 struct diraddhd *diraddhdp; 4949 { 4950 struct thread *td = curthread; 4951 struct inodedep *inodedep; 4952 struct ufsmount *ump; 4953 struct diradd *dap; 4954 struct vnode *vp; 4955 int gotit, error = 0; 4956 struct buf *bp; 4957 ino_t inum; 4958 4959 ump = VFSTOUFS(mp); 4960 while ((dap = LIST_FIRST(diraddhdp)) != NULL) { 4961 /* 4962 * Flush ourselves if this directory entry 4963 * has a MKDIR_PARENT dependency. 4964 */ 4965 if (dap->da_state & MKDIR_PARENT) { 4966 FREE_LOCK(&lk); 4967 if ((error = UFS_UPDATE(pvp, 1)) != 0) 4968 break; 4969 ACQUIRE_LOCK(&lk); 4970 /* 4971 * If that cleared dependencies, go on to next. 4972 */ 4973 if (dap != LIST_FIRST(diraddhdp)) 4974 continue; 4975 if (dap->da_state & MKDIR_PARENT) { 4976 FREE_LOCK(&lk); 4977 panic("flush_pagedep_deps: MKDIR_PARENT"); 4978 } 4979 } 4980 /* 4981 * A newly allocated directory must have its "." and 4982 * ".." entries written out before its name can be 4983 * committed in its parent. We do not want or need 4984 * the full semantics of a synchronous VOP_FSYNC as 4985 * that may end up here again, once for each directory 4986 * level in the filesystem. Instead, we push the blocks 4987 * and wait for them to clear. We have to fsync twice 4988 * because the first call may choose to defer blocks 4989 * that still have dependencies, but deferral will 4990 * happen at most once. 4991 */ 4992 inum = dap->da_newinum; 4993 if (dap->da_state & MKDIR_BODY) { 4994 FREE_LOCK(&lk); 4995 if ((error = VFS_VGET(mp, inum, LK_EXCLUSIVE, &vp))) 4996 break; 4997 if ((error=VOP_FSYNC(vp, td->td_ucred, MNT_NOWAIT, td)) || 4998 (error=VOP_FSYNC(vp, td->td_ucred, MNT_NOWAIT, td))) { 4999 vput(vp); 5000 break; 5001 } 5002 drain_output(vp, 0); 5003 vput(vp); 5004 ACQUIRE_LOCK(&lk); 5005 /* 5006 * If that cleared dependencies, go on to next. 5007 */ 5008 if (dap != LIST_FIRST(diraddhdp)) 5009 continue; 5010 if (dap->da_state & MKDIR_BODY) { 5011 FREE_LOCK(&lk); 5012 panic("flush_pagedep_deps: MKDIR_BODY"); 5013 } 5014 } 5015 /* 5016 * Flush the inode on which the directory entry depends. 5017 * Having accounted for MKDIR_PARENT and MKDIR_BODY above, 5018 * the only remaining dependency is that the updated inode 5019 * count must get pushed to disk. The inode has already 5020 * been pushed into its inode buffer (via VOP_UPDATE) at 5021 * the time of the reference count change. So we need only 5022 * locate that buffer, ensure that there will be no rollback 5023 * caused by a bitmap dependency, then write the inode buffer. 5024 */ 5025 if (inodedep_lookup(ump->um_fs, inum, 0, &inodedep) == 0) { 5026 FREE_LOCK(&lk); 5027 panic("flush_pagedep_deps: lost inode"); 5028 } 5029 /* 5030 * If the inode still has bitmap dependencies, 5031 * push them to disk. 5032 */ 5033 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 5034 gotit = getdirtybuf(&inodedep->id_buf, MNT_WAIT); 5035 FREE_LOCK(&lk); 5036 if (gotit && 5037 (error = BUF_WRITE(inodedep->id_buf)) != 0) 5038 break; 5039 ACQUIRE_LOCK(&lk); 5040 if (dap != LIST_FIRST(diraddhdp)) 5041 continue; 5042 } 5043 /* 5044 * If the inode is still sitting in a buffer waiting 5045 * to be written, push it to disk. 5046 */ 5047 FREE_LOCK(&lk); 5048 if ((error = bread(ump->um_devvp, 5049 fsbtodb(ump->um_fs, ino_to_fsba(ump->um_fs, inum)), 5050 (int)ump->um_fs->fs_bsize, NOCRED, &bp)) != 0) { 5051 brelse(bp); 5052 break; 5053 } 5054 if ((error = BUF_WRITE(bp)) != 0) 5055 break; 5056 ACQUIRE_LOCK(&lk); 5057 /* 5058 * If we have failed to get rid of all the dependencies 5059 * then something is seriously wrong. 5060 */ 5061 if (dap == LIST_FIRST(diraddhdp)) { 5062 FREE_LOCK(&lk); 5063 panic("flush_pagedep_deps: flush failed"); 5064 } 5065 } 5066 if (error) 5067 ACQUIRE_LOCK(&lk); 5068 return (error); 5069 } 5070 5071 /* 5072 * A large burst of file addition or deletion activity can drive the 5073 * memory load excessively high. First attempt to slow things down 5074 * using the techniques below. If that fails, this routine requests 5075 * the offending operations to fall back to running synchronously 5076 * until the memory load returns to a reasonable level. 5077 */ 5078 int 5079 softdep_slowdown(vp) 5080 struct vnode *vp; 5081 { 5082 int max_softdeps_hard; 5083 5084 max_softdeps_hard = max_softdeps * 11 / 10; 5085 if (num_dirrem < max_softdeps_hard / 2 && 5086 num_inodedep < max_softdeps_hard) 5087 return (0); 5088 stat_sync_limit_hit += 1; 5089 return (1); 5090 } 5091 5092 /* 5093 * Called by the allocation routines when they are about to fail 5094 * in the hope that we can free up some disk space. 5095 * 5096 * First check to see if the work list has anything on it. If it has, 5097 * clean up entries until we successfully free some space. Because this 5098 * process holds inodes locked, we cannot handle any remove requests 5099 * that might block on a locked inode as that could lead to deadlock. 5100 * If the worklist yields no free space, encourage the syncer daemon 5101 * to help us. In no event will we try for longer than tickdelay seconds. 5102 */ 5103 int 5104 softdep_request_cleanup(fs, vp) 5105 struct fs *fs; 5106 struct vnode *vp; 5107 { 5108 long starttime; 5109 ufs2_daddr_t needed; 5110 5111 needed = fs->fs_cstotal.cs_nbfree + fs->fs_contigsumsize; 5112 starttime = time_second + tickdelay; 5113 if (UFS_UPDATE(vp, 1) != 0) 5114 return (0); 5115 while (fs->fs_pendingblocks > 0 && fs->fs_cstotal.cs_nbfree <= needed) { 5116 if (time_second > starttime) 5117 return (0); 5118 if (num_on_worklist > 0 && 5119 process_worklist_item(NULL, LK_NOWAIT) != -1) { 5120 stat_worklist_push += 1; 5121 continue; 5122 } 5123 request_cleanup(FLUSH_REMOVE_WAIT, 0); 5124 } 5125 return (1); 5126 } 5127 5128 /* 5129 * If memory utilization has gotten too high, deliberately slow things 5130 * down and speed up the I/O processing. 5131 */ 5132 static int 5133 request_cleanup(resource, islocked) 5134 int resource; 5135 int islocked; 5136 { 5137 struct thread *td = curthread; 5138 5139 /* 5140 * We never hold up the filesystem syncer process. 5141 */ 5142 if (td == filesys_syncer) 5143 return (0); 5144 /* 5145 * First check to see if the work list has gotten backlogged. 5146 * If it has, co-opt this process to help clean up two entries. 5147 * Because this process may hold inodes locked, we cannot 5148 * handle any remove requests that might block on a locked 5149 * inode as that could lead to deadlock. 5150 */ 5151 if (num_on_worklist > max_softdeps / 10) { 5152 if (islocked) 5153 FREE_LOCK(&lk); 5154 process_worklist_item(NULL, LK_NOWAIT); 5155 process_worklist_item(NULL, LK_NOWAIT); 5156 stat_worklist_push += 2; 5157 if (islocked) 5158 ACQUIRE_LOCK(&lk); 5159 return(1); 5160 } 5161 /* 5162 * Next, we attempt to speed up the syncer process. If that 5163 * is successful, then we allow the process to continue. 5164 */ 5165 if (speedup_syncer() && resource != FLUSH_REMOVE_WAIT) 5166 return(0); 5167 /* 5168 * If we are resource constrained on inode dependencies, try 5169 * flushing some dirty inodes. Otherwise, we are constrained 5170 * by file deletions, so try accelerating flushes of directories 5171 * with removal dependencies. We would like to do the cleanup 5172 * here, but we probably hold an inode locked at this point and 5173 * that might deadlock against one that we try to clean. So, 5174 * the best that we can do is request the syncer daemon to do 5175 * the cleanup for us. 5176 */ 5177 switch (resource) { 5178 5179 case FLUSH_INODES: 5180 stat_ino_limit_push += 1; 5181 req_clear_inodedeps += 1; 5182 stat_countp = &stat_ino_limit_hit; 5183 break; 5184 5185 case FLUSH_REMOVE: 5186 case FLUSH_REMOVE_WAIT: 5187 stat_blk_limit_push += 1; 5188 req_clear_remove += 1; 5189 stat_countp = &stat_blk_limit_hit; 5190 break; 5191 5192 default: 5193 if (islocked) 5194 FREE_LOCK(&lk); 5195 panic("request_cleanup: unknown type"); 5196 } 5197 /* 5198 * Hopefully the syncer daemon will catch up and awaken us. 5199 * We wait at most tickdelay before proceeding in any case. 5200 */ 5201 if (islocked == 0) 5202 ACQUIRE_LOCK(&lk); 5203 proc_waiting += 1; 5204 if (handle.callout == NULL) 5205 handle = timeout(pause_timer, 0, tickdelay > 2 ? tickdelay : 2); 5206 interlocked_sleep(&lk, SLEEP, (caddr_t)&proc_waiting, PPAUSE, 5207 "softupdate", 0); 5208 proc_waiting -= 1; 5209 if (islocked == 0) 5210 FREE_LOCK(&lk); 5211 return (1); 5212 } 5213 5214 /* 5215 * Awaken processes pausing in request_cleanup and clear proc_waiting 5216 * to indicate that there is no longer a timer running. 5217 */ 5218 void 5219 pause_timer(arg) 5220 void *arg; 5221 { 5222 5223 *stat_countp += 1; 5224 wakeup_one(&proc_waiting); 5225 if (proc_waiting > 0) 5226 handle = timeout(pause_timer, 0, tickdelay > 2 ? tickdelay : 2); 5227 else 5228 handle.callout = NULL; 5229 } 5230 5231 /* 5232 * Flush out a directory with at least one removal dependency in an effort to 5233 * reduce the number of dirrem, freefile, and freeblks dependency structures. 5234 */ 5235 static void 5236 clear_remove(td) 5237 struct thread *td; 5238 { 5239 struct pagedep_hashhead *pagedephd; 5240 struct pagedep *pagedep; 5241 static int next = 0; 5242 struct mount *mp; 5243 struct vnode *vp; 5244 int error, cnt; 5245 ino_t ino; 5246 5247 ACQUIRE_LOCK(&lk); 5248 for (cnt = 0; cnt < pagedep_hash; cnt++) { 5249 pagedephd = &pagedep_hashtbl[next++]; 5250 if (next >= pagedep_hash) 5251 next = 0; 5252 LIST_FOREACH(pagedep, pagedephd, pd_hash) { 5253 if (LIST_FIRST(&pagedep->pd_dirremhd) == NULL) 5254 continue; 5255 mp = pagedep->pd_mnt; 5256 ino = pagedep->pd_ino; 5257 FREE_LOCK(&lk); 5258 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 5259 continue; 5260 if ((error = VFS_VGET(mp, ino, LK_EXCLUSIVE, &vp))) { 5261 softdep_error("clear_remove: vget", error); 5262 vn_finished_write(mp); 5263 return; 5264 } 5265 if ((error = VOP_FSYNC(vp, td->td_ucred, MNT_NOWAIT, td))) 5266 softdep_error("clear_remove: fsync", error); 5267 drain_output(vp, 0); 5268 vput(vp); 5269 vn_finished_write(mp); 5270 return; 5271 } 5272 } 5273 FREE_LOCK(&lk); 5274 } 5275 5276 /* 5277 * Clear out a block of dirty inodes in an effort to reduce 5278 * the number of inodedep dependency structures. 5279 */ 5280 static void 5281 clear_inodedeps(td) 5282 struct thread *td; 5283 { 5284 struct inodedep_hashhead *inodedephd; 5285 struct inodedep *inodedep; 5286 static int next = 0; 5287 struct mount *mp; 5288 struct vnode *vp; 5289 struct fs *fs; 5290 int error, cnt; 5291 ino_t firstino, lastino, ino; 5292 5293 ACQUIRE_LOCK(&lk); 5294 /* 5295 * Pick a random inode dependency to be cleared. 5296 * We will then gather up all the inodes in its block 5297 * that have dependencies and flush them out. 5298 */ 5299 for (cnt = 0; cnt < inodedep_hash; cnt++) { 5300 inodedephd = &inodedep_hashtbl[next++]; 5301 if (next >= inodedep_hash) 5302 next = 0; 5303 if ((inodedep = LIST_FIRST(inodedephd)) != NULL) 5304 break; 5305 } 5306 if (inodedep == NULL) 5307 return; 5308 /* 5309 * Ugly code to find mount point given pointer to superblock. 5310 */ 5311 fs = inodedep->id_fs; 5312 TAILQ_FOREACH(mp, &mountlist, mnt_list) 5313 if ((mp->mnt_flag & MNT_SOFTDEP) && fs == VFSTOUFS(mp)->um_fs) 5314 break; 5315 /* 5316 * Find the last inode in the block with dependencies. 5317 */ 5318 firstino = inodedep->id_ino & ~(INOPB(fs) - 1); 5319 for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--) 5320 if (inodedep_lookup(fs, lastino, 0, &inodedep) != 0) 5321 break; 5322 /* 5323 * Asynchronously push all but the last inode with dependencies. 5324 * Synchronously push the last inode with dependencies to ensure 5325 * that the inode block gets written to free up the inodedeps. 5326 */ 5327 for (ino = firstino; ino <= lastino; ino++) { 5328 if (inodedep_lookup(fs, ino, 0, &inodedep) == 0) 5329 continue; 5330 FREE_LOCK(&lk); 5331 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 5332 continue; 5333 if ((error = VFS_VGET(mp, ino, LK_EXCLUSIVE, &vp)) != 0) { 5334 softdep_error("clear_inodedeps: vget", error); 5335 vn_finished_write(mp); 5336 return; 5337 } 5338 if (ino == lastino) { 5339 if ((error = VOP_FSYNC(vp, td->td_ucred, MNT_WAIT, td))) 5340 softdep_error("clear_inodedeps: fsync1", error); 5341 } else { 5342 if ((error = VOP_FSYNC(vp, td->td_ucred, MNT_NOWAIT, td))) 5343 softdep_error("clear_inodedeps: fsync2", error); 5344 drain_output(vp, 0); 5345 } 5346 vput(vp); 5347 vn_finished_write(mp); 5348 ACQUIRE_LOCK(&lk); 5349 } 5350 FREE_LOCK(&lk); 5351 } 5352 5353 /* 5354 * Function to determine if the buffer has outstanding dependencies 5355 * that will cause a roll-back if the buffer is written. If wantcount 5356 * is set, return number of dependencies, otherwise just yes or no. 5357 */ 5358 static int 5359 softdep_count_dependencies(bp, wantcount) 5360 struct buf *bp; 5361 int wantcount; 5362 { 5363 struct worklist *wk; 5364 struct inodedep *inodedep; 5365 struct indirdep *indirdep; 5366 struct allocindir *aip; 5367 struct pagedep *pagedep; 5368 struct diradd *dap; 5369 int i, retval; 5370 5371 retval = 0; 5372 ACQUIRE_LOCK(&lk); 5373 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 5374 switch (wk->wk_type) { 5375 5376 case D_INODEDEP: 5377 inodedep = WK_INODEDEP(wk); 5378 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 5379 /* bitmap allocation dependency */ 5380 retval += 1; 5381 if (!wantcount) 5382 goto out; 5383 } 5384 if (TAILQ_FIRST(&inodedep->id_inoupdt)) { 5385 /* direct block pointer dependency */ 5386 retval += 1; 5387 if (!wantcount) 5388 goto out; 5389 } 5390 continue; 5391 5392 case D_INDIRDEP: 5393 indirdep = WK_INDIRDEP(wk); 5394 5395 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) { 5396 /* indirect block pointer dependency */ 5397 retval += 1; 5398 if (!wantcount) 5399 goto out; 5400 } 5401 continue; 5402 5403 case D_PAGEDEP: 5404 pagedep = WK_PAGEDEP(wk); 5405 for (i = 0; i < DAHASHSZ; i++) { 5406 5407 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 5408 /* directory entry dependency */ 5409 retval += 1; 5410 if (!wantcount) 5411 goto out; 5412 } 5413 } 5414 continue; 5415 5416 case D_BMSAFEMAP: 5417 case D_ALLOCDIRECT: 5418 case D_ALLOCINDIR: 5419 case D_MKDIR: 5420 /* never a dependency on these blocks */ 5421 continue; 5422 5423 default: 5424 FREE_LOCK(&lk); 5425 panic("softdep_check_for_rollback: Unexpected type %s", 5426 TYPENAME(wk->wk_type)); 5427 /* NOTREACHED */ 5428 } 5429 } 5430 out: 5431 FREE_LOCK(&lk); 5432 return retval; 5433 } 5434 5435 /* 5436 * Acquire exclusive access to a buffer. 5437 * Must be called with splbio blocked. 5438 * Return 1 if buffer was acquired. 5439 */ 5440 static int 5441 getdirtybuf(bpp, waitfor) 5442 struct buf **bpp; 5443 int waitfor; 5444 { 5445 struct buf *bp; 5446 int error; 5447 5448 for (;;) { 5449 if ((bp = *bpp) == NULL) 5450 return (0); 5451 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) == 0) { 5452 if ((bp->b_xflags & BX_BKGRDINPROG) == 0) 5453 break; 5454 BUF_UNLOCK(bp); 5455 if (waitfor != MNT_WAIT) 5456 return (0); 5457 bp->b_xflags |= BX_BKGRDWAIT; 5458 interlocked_sleep(&lk, SLEEP, &bp->b_xflags, PRIBIO, 5459 "getbuf", 0); 5460 continue; 5461 } 5462 if (waitfor != MNT_WAIT) 5463 return (0); 5464 error = interlocked_sleep(&lk, LOCKBUF, bp, 5465 LK_EXCLUSIVE | LK_SLEEPFAIL, 0, 0); 5466 if (error != ENOLCK) { 5467 FREE_LOCK(&lk); 5468 panic("getdirtybuf: inconsistent lock"); 5469 } 5470 } 5471 if ((bp->b_flags & B_DELWRI) == 0) { 5472 BUF_UNLOCK(bp); 5473 return (0); 5474 } 5475 bremfree(bp); 5476 return (1); 5477 } 5478 5479 /* 5480 * Wait for pending output on a vnode to complete. 5481 * Must be called with vnode locked. 5482 */ 5483 static void 5484 drain_output(vp, islocked) 5485 struct vnode *vp; 5486 int islocked; 5487 { 5488 5489 if (!islocked) 5490 ACQUIRE_LOCK(&lk); 5491 while (vp->v_numoutput) { 5492 vp->v_flag |= VBWAIT; 5493 interlocked_sleep(&lk, SLEEP, (caddr_t)&vp->v_numoutput, 5494 PRIBIO + 1, "drainvp", 0); 5495 } 5496 if (!islocked) 5497 FREE_LOCK(&lk); 5498 } 5499 5500 /* 5501 * Called whenever a buffer that is being invalidated or reallocated 5502 * contains dependencies. This should only happen if an I/O error has 5503 * occurred. The routine is called with the buffer locked. 5504 */ 5505 static void 5506 softdep_deallocate_dependencies(bp) 5507 struct buf *bp; 5508 { 5509 5510 if ((bp->b_ioflags & BIO_ERROR) == 0) 5511 panic("softdep_deallocate_dependencies: dangling deps"); 5512 softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error); 5513 panic("softdep_deallocate_dependencies: unrecovered I/O error"); 5514 } 5515 5516 /* 5517 * Function to handle asynchronous write errors in the filesystem. 5518 */ 5519 void 5520 softdep_error(func, error) 5521 char *func; 5522 int error; 5523 { 5524 5525 /* XXX should do something better! */ 5526 printf("%s: got error %d while accessing filesystem\n", func, error); 5527 } 5528